
University of Missouri, St. Louis
IRL @ UMSL

Dissertations UMSL Graduate Works

12-9-2016

Historical Biogeography, Spatial Distribution, and
Within-Host Interactions of Avian
Haemosporidian Parasites (Apicomplexa,
Haemosporida)
Leticia De Souza Soares
University of Missouri-St. Louis, lssnrf@mail.umsl.edu

Follow this and additional works at: https://irl.umsl.edu/dissertation

Part of the Biology Commons

This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in
Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.

Recommended Citation
De Souza Soares, Leticia, "Historical Biogeography, Spatial Distribution, and Within-Host Interactions of Avian Haemosporidian
Parasites (Apicomplexa, Haemosporida)" (2016). Dissertations. 50.
https://irl.umsl.edu/dissertation/50

https://irl.umsl.edu?utm_source=irl.umsl.edu%2Fdissertation%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/grad?utm_source=irl.umsl.edu%2Fdissertation%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=irl.umsl.edu%2Fdissertation%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation/50?utm_source=irl.umsl.edu%2Fdissertation%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:marvinh@umsl.edu


Historical Biogeography, Spatial Distribution, and Within-Host Interactions of 
Avian Haemosporidian Parasites (Apicomplexa, Haemosporida) 

 
 

by 
 

Letícia de Souza Soares 
 

Master in Ecology – National Institute for Amazonian Research (Brazil), 2010 
Bachelor of Science, Biology – Federal University of Minas Gerais (Brazil), 2007 

 

A Dissertation  

Submitted to The Graduate School of the  

 
University of Missouri-St. Louis 

in partial fulfillment of the requirements for the degree 
 

Doctor of Philosophy  
 

In 
 

Biology 
With an emphasis in Ecology, Evolution, and Systematics 

 
 

December, 2016 
 
 
 
 

 
Advisory Committee 

 
Robert E. Ricklefs, Ph.D. 

(Advisor) 

Michael E. Hughes, Ph.D. 
Nathan Muchhala, Ph.D. 

Patricia G. Parker, Ph.D. 
Robert J. Marquis, Ph.D. 

 
 

 



De Souza Soares, Leticia, 2016, UMSL, p.   
	

2	

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my nieces, Estela and Bianca. 
 
 

 



De Souza Soares, Leticia, 2016, UMSL, p.   
	

3	

ACKNOWLEDGEMENTS 
First and foremost I thank my advisor, Bob Ricklefs, for his endless patience and 
academic guidance. It was my pleasure and priviledge to be advised by one of the 
brightest ecologists in the world, who also is one of the kindest, open hearted, and 
generous persons I have ever met. Patty Parker has given limitless professional guidance 
and support (on all matters). Bob Marquis always had the most challenging questions, 
and has taught me to think of my questions and hypotheses through different 
perspectives. Michael Hughes and Nathan Muchhala have become role models on 
professionalism and academic excelence from junior faculty. I am glad for the friendship 
from fellow grad students, in especial Maria Pil (Lua), Eliot Miller, Matt Medeiros, 
Vincenzo Ellis, Iris Levin, Samoa Asigau, Robbie Hart, Oyomoare Osazuwa-Peters, 
Camilo Calderon, Vona Kuczynska, Emma Young, and Meg Humphries. I thank my 
brother Paulo and my sister Juliana, of whom enternal friendship makes life 5,000.00 
miles apart bearable. I thank Walter for his food-conditional love and companionship, 
and for being the best (and worst) dog ever. Last, but not least, I am grateful for having 
the friendship and support of Israel Slick, who manages to love me even after having to 
hear countless hours of bird and parasite monologue.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



De Souza Soares, Leticia, 2016, UMSL, p.   
	

4	

ABSTRACT 
This dissertation addresses several aspects of the biogeography and evolution of avian 
malarial parasites (Haemosporida: Plasmodium and Haemoproteus), and the interactions 
of these pathogens with their hosts and other avian blood parasites. In Chapter 1, I 
investigate change in haemosporidian assemblages on islands in the West Indies over 
millennial time scales, taking advantage of the historical isolation of islands by 
postglacial rising sea levels. I found that the prevalence of parasite lineages is highly 
dynamic over periods from decades to thousands of years. Millenial timescales are 
required for the turnover of lineages in insular assemblages, likely because of processes 
such as evolution of host resistance to individual parasite lineages. In Chapter 2, I report 
the occurrence of the highly invasive and virulent avian malaria parasite, Plasmodium 
relictum, in the endemic avifauna of Cuba. Using molecular markers that target a region 
of the parasite’s merozoite surface protein gene, I determined that the P. relictum 
haplotype present in Cuba matches that of the malaria parasite that caused the population 
decline and extinction of several endemic Hawaiian birds. I suggested a time frame for 
the introduction of this parasite lineage on Cuba, and raised the possibility that avian 
malaria might be responsible for the remarkable absence from Cuba of several otherwise 
common and geographically widespread bird species in the West Indies, such as the 
bananaquit Coereba flaveola. In Chapter 3, I compare parasite prevalence in wintering 
shorebirds in two areas in Argentina: coastal, marine habitats of Patagonia generally 
lacking dipteran parasite vectors, and the shorelines of Mar Chiquita Lagoon, an inland 
freshwater basin, where landbirds exhibiting high parasite prevalence, as well as dipteran 
vectors, are also present. I found that haemosporidian infections are close to nil in both 
shorebird assemblages, even when these birds are exposed to parasite transmission. This 
study offered unprecedented evidence of the rarity of haemosporidian infections in 
shorebirds, regardless of suitable conditions for parasite transmission. In contrast to 
hypotheses based on the avoidance of parasite transmission areas, I propose that these 
birds are highly resistant to haemosporidian infections, presenting either a physiological 
barrier to the parasites, or quickly clearing infections as they appear. In Chapter 4, I 
investigate the occurrence of co-infections between Plasmodium spp. and Trypanosoma 
spp. parasites in a population of yellow-breasted chats (Icteria virens) in southern 
Missouri. I determine that individuals infected with avian malaria parasites are more 
likely also to host trypanosome parasites, when compared to individuals free of 
infections. This study also presents evidence that trypanosome infections may cause 
disease in birds. Overall, this dissertation supports hypotheses regarding the geographic 
and the host distribution of haemosporidian parasites, and how these distributions change 
over evolutionary periods of time.  
 
 
 



De Souza Soares, Leticia, 2016, UMSL, p.   
	

5	

INTELLECTUAL MERIT 
This dissertation presents original research that advances the fields of ecology and 
evolution on several fronts related to the effects of haemosporidian parasites on 
populations and assemblages of avian host species. In the first chapter, I present a new 
method for quantifying changes in ecological assemblages over millennial timescales 
taking advantage of the joining and separating of islands on shallow banks in the West 
Indies archipelago, caused by glacial-cycle sea-level changes. I compare pairs of 
assemblages on islands that were connected during periods of low sea levels and 
subsequently isolated about 2.5 thousand years (Ka) ago by rising sea levels, to 
assemblages on islands that remained isolated, as well as assemblages sampled locally 
over up to two decades and assemblages sampled in the same year at distant localities on 
the same island. This approach could be applied to determine long-term variation in 
communities or assemblages of any taxonomic group, and is especially useful for the 
retrospective study of change in assemblages of organisms lacking fossil records. This 
method also could be applied to any set of assemblages composed of discrete units on a 
landscape that was affected by climate change during the Last Glacial Maximum (ca., 27 
Ka), which include, but is not limited to, assemblages on other oceanic archipelagos and 
assemblages in regions with isolated Pleistocene refugia. Using this method, I 
demonstrate that avian haemosporidian assemblages on Caribbean islands are highly 
dynamic over a time frame of up to 2.5 Ka, during which prevalence and composition of 
lineages change significantly. This study not only offers an innovative approach to 
investigating host-parasite relationships over time-scales inaccessible through 
epidemiological and fossil records, but also presents unprecedented evidence of rapid 
dynamics of haemosporidian parasite assemblages over millennial time-scales. In the 
second chapter, I report the occurrence in Cuba of a highly pathogenic lineage of avian 
malaria, Plasmodium relictum GRW4 Pr9, which has been responsible for extinctions of 
native Hawaiian bird populations. I recommend, as high priority for the future assessment 
of the distribution of this lineage and other haemosporidian parasites in Cuba, as well as 
experimental infections to determine the effects of this parasite on resident and wintering 
avifauna of the West Indies. In the third chapter, I present evidence that one species of 
shorebird (Charadriiformes: Scolopacidae) is resistant to haemosporidian parasites. This 
finding supports the hypothesis that haemosporidian parasites reduce oxygen transport in 
the blood and impact performance during energy-demanding long-distance migration, 
setting up strong selection in shorebirds for resistance to parasite infection. Future studies 
should confirm that dipteran vectors take blood meals from Charadriiformes and whether, 
or not, infected shorebirds are competent hosts in which the haemosporidian life cycle is 
completed. Finally, in the fourth chapter, I demonstrate that haemosporidian parasites 
facilitate infection of individual hosts by another common avian blood parasite, 
Trypanosoma spp.. I also provide novel evidence that trypanosome parasites may cause 
disease in birds, and therefore may depress their host populations. These results indicate 
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the utility of future research on the effect of Trypanosoma spp. infections on avian hosts, 
as well as on the health consequences of parasitic co-infections for avian populations. 
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CHAPTER 1. 
THE DYNAMICS OF AVIAN HAEMOSPORIDIAN ASSEMBLAGES THROUGH MILLENNIAL 
TIMESCALES INFERRED FROM INSULAR BIOTAS OF THE WEST INDIES 
 
Leticia Soares1*, Steven C. Latta2, Robert E. Ricklefs1 
1. Department of Biology, University of Missouri-St. Louis, One University Boulevard, 
USA.  
2. National Aviary, Allegheny Commons West, Pittsburgh, PA 15212, USA. 
*Corresponding author. 
 
Original article formatted for submission on Science Reports. 
 
Abstract 
Although introduced haemosporidian (malaria) parasites (Apicomplexa: Haemosporida) 
have hastened the extinction of endemic bird species in the Hawaiian Islands and perhaps 
elsewhere, little is known about the temporal dynamics of endemic malaria parasite 
populations. Haemosporidian parasites do not leave informative fossils and records of 
population change are lacking beyond a few decades. Here, we take advantage of the 
isolation of West Indian land-bridge islands by rising post-glacial sea levels to estimate 
rates of change in haemosporidian parasite assemblages over a millennial time frame. 
Several pairs of West Indian islands have been connected and separated by falling and 
rising sea levels associated with the advance and retreat of Pleistocene glaciers. We use 
island isolation following post-glacial sea-level rise, ca. 2.5 ka, to characterize long-term 
change in insular assemblages of haemosporidian parasites. We find that assemblages on 
formerly connected islands are as differentiated as assemblages on islands that have never 
been connected, and both are more differentiated than local assemblages sampled up to 
two decades apart. Differentiation of parasite assemblages on formerly connected islands 
reflects variation in the prevalence (i.e., frequency of infections) of shared 
haemosporidian lineages, whereas differentiation on islands isolated by millions of years 
reflects replacement of haemosporidian lineages infecting similar assemblages of avian 
host species.  
 
Introduction 
Insular biotas provide natural laboratories for characterizing change in host-parasite 
relationships over time(1). Haemosporidian parasites (genera Plasmodium and 
Haemoproteus, among others) are dipteran vector-transmitted protozoans that clonally 
reproduce in cells of vertebrates(2). The few fossils of ancient haemosporidians(3) are 
insufficient to analyze retrospectively the dynamics of these host-parasite interactions. 
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We have found that haemosporidian parasite assemblages of birds present remarkable 
geographic heterogeneity in the West Indies, even though common host species are 
widely distributed throughout the archipelago(4). Additionally, the frequencies of 
individual lineages in assemblages of avian haemosporidian parasites have been observed 
to vary over periods as short as one decade(5, 6). Here, we take advantage of the 
geographic history of islands in the West Indies to characterize changes in avian 
haemosporidian parasite assemblages over millennial time scales.  
 
During the late Quaternary glaciations, which reached their maximum extent ca. 26 ka, 
increase in continental ice volume caused the global sea level to drop as much as 120 m, 
exposing land connections between islands lying on shallow banks(7). During periods of 
sea level lows, we presume that organisms could freely disperse between some pairs of 
present-day islands, tending to homogenize assemblages of birds and, presumably, their 
pathogens(7). Deglaciation started 7.5-10 ka, and ended ca. 2.5 ka when seas returned to 
currently observed levels and many pairs of islands were re-isolated (Figure 1)(8). We 
use island coalescence during glacial sea-level lows to define a natural experimental 
group in which host and parasite assemblages presumably were homogenized, then 
subsequently isolated, providing ca. 2.5 ka during which insular host-parasite 
assemblages could change independently and diverge.  
 
We ask whether the period from the re-isolation of insular biotas by rising sea levels to 
the present has been sufficient for the homogenized parasite assemblages on the 
previously connected island pairs to become differentiated. We quantify differences in 
host and parasite assemblages by indices based on differences in parasite prevalence, as 
well as gains and losses of haemosporidian lineages on one island of a pair relative to the 
other. Finally, we ask whether differences in assemblage composition are due to 
replacement of lineages that are more or less closely related through evolution than one 
would expect of random replacement.     
 
To establish relative points of comparison to the millennial timeframe of haemosporidian 
assemblage isolation, we compare parasite assemblages from islands that were formerly 
connected and assemblages from islands separated by deep-water channels for millions of 
years. These island pairs are relatively well matched in terms of size and ecology. We 
account for short-term variation by comparing parasite assemblages from the same island 
sampled between time intervals as short as two years and as long as two decades. Finally, 
we use pairwise comparisons between assemblages sampled at the same time, but at 
different locations within the same island, to assess parasite assemblage homogenization 
over distance and the assumption, implicit in our analysis, that assemblages were initially 
homogeneous across formerly connected islands. Assemblage comparisons, sample size, 
and year of collection are listed on Tables 1 and 2 of the Supplemental Material. We 
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analyze two types of parasite assemblages (Table 2, Supplemental Material). Island 
assemblages refer to all haemosporidian lineages sampled on an island. Host focal 
assemblages refer to haemosporidian lineages recovered from a suite of six common bird 
species across individual islands. We compare bird assemblages themselves to quantify 
the influence of variation in host composition on changes on haemosporidian 
assemblages over time.   
 
Our analyses are based on blood samples obtained from 6,270 individuals of 143 avian 
host species across 17 islands of the West Indies archipelago, five pairs of which were 
connected until ca. 2.5 ka (Figure 1, Supplementary Tables 1 and 2). Parasite assemblage 
data come from 1,245 sequenced haemosporidian infections assigned to 71 
phylogenetically distinct lineages, which are defined by nucleotide differences in a region 
of the parasites’ mitochondrial cytochrome b gene(9). Beta (β) diversity is a between-
sample component of variance used by community ecologists to quantify differences 
between two or more assemblages of organisms.  Here, β diversity metrics are used to 
describe differences in the composition of haemosporidian parasite assemblages between 
pairs of islands, and over space and time within islands. We use these metrics to compare 
four groups of assemblage pairs associated with distinct points on a time-scale of island 
isolation: 1) islands never connected, and separated by millions of years; 2) islands 
connected until ca. 2.5 ka; 3) assemblages from the same island, but sampled over 
intervals of two years to two decades; 4) contemporary assemblages from the same 
island, isolated by distances comparable to the distances between islands, and testing the 
assumption of homogeneity between pairs of assemblages connected by land.    
 
Results 
Parasite assemblages on islands connected by land bridges until ca. 2.5 ka were as 
differentiated as pairs of assemblages on islands that have never been connected, and 
assemblages on both groups were considerably more differentiated than assemblages 
from the same island sampled at intervals of up to two decades, or between 
contemporaneous samples from the same island (𝛽!!!"!!ø!"#$"#, island assemblages: 
𝜒!=31.8, P<0.01; host focal assemblages: 𝜒!=6.0, P=0.04; Figure 2, Supplementary 
Table 4a and 4b). Avian host assemblages are not differentiated within these 
comparisons (𝛽!!!"!!ø!"#$"#, avian assemblages: 𝜒!=3.9, P=0.2; Supplementary Table 
4c); most of the common host species used in our analyses are widely distributed within 
the West Indies(10). Thus, the increasing dissimilarity between haemosporidian 
assemblages over time is not caused by changes in host assemblages. 
 
Beta (β) diversity quantifies the variance between two assemblages and it can be 
partitioned into components that represent replacement of parasite lineages (i.e., coupled 
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gains and losses), differential gains or losses of lineages, and variation in lineage 
prevalence(10). The contribution of each partition might represent assembly processes 
that occur on distinct time-scales. Haemosporidian lineages often present short-term 
variation in prevalence(5, 6, 11), including cycles in the proportion of infected host 
individuals(5). Replacement of lineages might reflect sorting processes that constrain 
assemblage composition, including competition among parasite lineages, involving 
interactions through the host immune system and the evolution of host resistance.  
 
Most parasite lineages on individual islands were replaced or lost over periods of 2.5 ka 
or more (host focal assemblages, 𝛽!"#$%&"'"() 𝜒!=9.3, P<0.01; 𝛽!"#$"%&"## 𝜒!=8.2, 
P<0.01; Figure 2, Supplementary Table 4a). Lineages within host focal assemblages were 
replaced almost twice as often between islands isolated for millions of years than 
between islands separated by ca. 2.5 ka. However, lineages were replaced between 
formerly connected assemblages more frequently than between local assemblages 
sampled over time intervals of up to two decades. Parasite lineage replacement in host 
focal assemblages was not related to replacement of host species, which do not vary 
across comparison groups (𝛽!"#$%&"'"() avian assemblages: 𝜒!=5.4, P=0.07; 
Supplementary Table 4c). The overall lineage composition within an island appeared to 
be stable, as we observed no differences in the frequency with which lineages were 
replaced between island assemblages across all comparison groups (𝛽!"#$%&"'"() 𝜒!=2.9, 
P=0.4; 𝛽!"#$"%&"## 𝜒!=2.3, P=0.5; Supplementary Table 4b), even though replacement in 
host focal assemblages was more frequent at longer time intervals. Hence, changes in 
lineage prevalence, not replacement or losses of lineages, are primarily responsible for 
the positive relationship between dissimilarity and isolation time in island assemblages. 
This suggests that although the composition of haemosporidian assemblages of an island 
remains stable through time, parasite lineages switch among different host species within 
an island. The observed temporal stability of insular haemosporidian assemblage 
composition is likely a result of limited parasite dispersal among islands within the 
archipelago, as differential gains and losses of lineages (𝛽!"#$"%&"##) did not explain 
differentiation of assemblages with increased isolation time (Supplementary Table 
4b)(12).  
 
Finally, we ask whether replacement of haemosporidian lineages involves closely or 
distantly related parasites. If closely related lineages replaced one another more often 
than expected by chance, parasite assemblages might be constrained by one or more traits 
that are shared by common descent through parasite evolutionary history. Secondly, if 
lineages are substituted at random, stochastic processes, such as ecological drift, are the 
major drivers of lineage composition on haemosporidian assemblages. Alternatively, if 
substituted lineages are distant relatives, competitive exclusion might constrain the 



De Souza Soares, Leticia, 2016, UMSL, p.   
	

12	

coexistence of closely related lineages within an island host fauna. We found that 
differential gain and loss of lineages over evolutionary time scales results in higher 
phylogenetic diversity of haemosporidian assemblages on islands isolated by deep marine 
channels (𝛽!!!"#!!"# !" 𝜒!=7.7, P=0.02; Supplementary Table 4a). However, 
replacement of haemosporidian lineages apparently is unrelated to phylogenetic 
relationships among parasites (𝛽!!!"#!!"# !"#$%&"'"(), island assemblages: 𝜒!=4.8, 
P=0.2; host focal assemblages: 𝜒!=3.2, P=0.2; Supplementary Table 4a and 4b). This 
result mirrors the observation that the hosts of related parasites (i.e., sister lineages) are 
not more closely related than pairs of species drawn at random from the host taxonomic 
hierarchy(13). In the West Indies, we frequently observe locally prevalent and 
geographically widespread lineages replacing one another across islands of the 
archipelago (Figure 3)(12, 14).  
 
Discussion 
We have found that pairs of insular haemosporidian assemblages that were formerly 
homogenized, but isolated for the past ca. 2.5 ka, present decay in similarity comparable 
to pairs of assemblages that have never been connected (Figure 2). The most detailed 
retrospective record of endemic haemosporidian assemblages is from a breeding 
population of great reed warbler (Acrocephalus arundinaceus) from Scandinavia(5). Over 
the period of 17 years, A. arundinaceus hosts were mainly infected by three 
haemosporidian lineages that presented coupled periodicity in prevalence, with cycles 
every 3-4 years (5). On Puerto Rico and Saint Lucia, in the West Indies, changes on 
haemosporidian assemblages between intervals of approximately ten years are mostly due 
to variation in the prevalence of parasite lineages, but gains and losses of lineages were 
also observed (11). Similar patterns of temporal dynamics are observed for human 
malaria parasites. A 14-year cohort study of Plasmodium falciparum infections of 
humans in Brazil revealed temporal fluctuations in the frequency of allelic variants of the 
polymorphic merozoite surface protein gene (msp-1)(15). Mathematical models have 
suggested that parasite prevalence can present periodic and even deterministic chaotic 
behavior when host populations are exposed to pathogens with polymorphic antigens 
(16). Although we present strong evidence of temporal variation over evolutionary time-
scales (Figure 2, Supplementary Table 4a and 4b, the mechanisms producing change in 
haemosporidian assemblages remain unknown. 
 
Our results suggest long-term temporal variation on the regulatory effects of 
haemosporidian parasites on their host populations, and vice versa. In the initial stages of 
a host-parasite interaction, a population of parasites presents a strong selective pressure, 
and therefore a regulatory effect, over their host populations (i.e., periods of high parasite 
prevalence). Through time, host susceptibility wears off as hosts evolve immune 
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resistance, switching the direction of selective pressure towards parasite populations and 
reducing parasite prevalence(17). Haemosporidian parasites can depress avian 
populations on islands of the Lesser Antilles, where relative population sizes of two 
widespread and common species of bird were negatively related to the relative 
abundances of two common parasite lineages(14). Hence, the temporal variation in the 
prevalence of endemic parasite lineages in the West Indies (Figure 2) and elsewhere 
could reflect cycles of host-parasite evolution and co-evolution.  
 
Islands in the West Indies present parasite assemblage stability, exhibited by the little 
variance on the frequency of lineage replacement through time (Figure 2). However, 
within an island, haemosporidian assemblages of specific host species present dynamic 
composition, in which replacement of lineages within subset assemblages within an 
island is more likely to happen over longer time scales of several thousands of years 
(Figure 2).  This result suggests that differences in haemosporidian assemblages between 
islands are due to host switching of parasite lineages between host populations within an 
island, rather than replacement of lineages over the island as a whole; this observation is 
supported by the remarkable ability of host shifting among avian haemosporidian 
parasites (6, 13). Although we cannot assess the mechanisms that drive replacement and 
host shifting of lineages, we suggest that the observed “ecological drift” of lineage 
distributions across host species is consistent with the observed phylogenetic 
unpredictability of lineage replacement among host populations within an island (i.e., 
lineages are substituted at random across the parasite phylogeny). Insular assemblages of 
the West Indies represent a scenario of limited dispersion of parasite lineages (12), in 
whivh ecological drift would predict that the chance one lineage would replace another is 
directly proportional to its prevalence (i.e., probability of replacement drawn from the 
prevalence of the lineage in the island assemblage).  
 
In conclusion, differentiation among haemosporidian assemblages that were presumed to 
be homogeneous on connected islands until 2.5 ka reflects variation in the prevalence of 
established parasite lineages, and not substitutions, gains, or losses of lineages. In 
contrast, turnover of lineages drives dissimilarity among haemosporidian assemblages 
between pairs of islands that have been isolated for longer periods, up to millions of 
years. Our results suggest limited dispersal of parasite lineages among insular host 
assemblages, and that parasite lineages of particular host species are replaced at random 
with respect to parasite phylogenetic relationship.  
 
Methods  
Study Sites. Field studies were conducted on 17 islands across the West Indies. Formerly 
connected pairs of islands included: 1) Grenada and Carriacou; 2) Antigua and Barbuda; 
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3) St. Kitts and Nevis; 4) Little Cayman and Cayman Brac; and 5) Eastern Puerto Rico 
and British Virgin Islands. Each assemblage from these five pairs of formerly connected 
islands was compared to assemblages on isolated islands, with the exception of Puerto 
Rico and British Virgin Islands for which we had no suitable comparison. The isolated 
islands in each comparison were, respectively: 1) St. Vincent; 2) Guadeloupe; 3) 
Montserrat; 4) Grand Cayman. Pair-wise comparisons between assemblages sampled on 
the same island, over intervals of up to two decades, were: Dominican Republic (2001, 
2002, and 2014) and St. Lucia (1991 and 2000). In addition, we sampled haemosporidian 
assemblages geographically separated within the same island: 1) St. Eustatius; 2) St. 
Kitts; 3) Nevis; 4) St. Vincent. Detailed information about study sites and sample 
collection is provided in the Supplement.  
 
Field methods. We captured birds with mist nets in representative habitats on each island, 
generally during the late spring and summer months. We took blood samples from 
captured individuals by brachial venipuncture and stored the samples in Puregene® 
(Germantown, MD, USA) or Longmire's lysis buffer. All samples were collected under 
IACUC protocols approved at the University of Pennsylvania (collections up to 1995), 
and at the University of Missouri-St Louis or National Aviary (after 1995), and under 
appropriate permits from the governments of the individual islands. Individual birds were 
released after blood sampling at the site of capture. 
 
Laboratory methods. We extracted DNA from lysis buffer by isopropanol precipitation 
proceeded by removal of proteins by ammonium acetate precipitation. We used 
polymerase chain reaction (PCR) to detect the presence of haemosporidian infections by 
amplification of a highly conserved, 154-bp 16S rRNA-coding sequence of the parasite 
mitochondrial DNA18. Samples found to be infected in the first PCR step were further 
subjected to one or more nested PCR assays that amplify a phylogenetically informative 
region of the mitochondrial cytochrome b gene (cyt b) of haemosporidian parasites of the 
genera Plasmodium and Haemoproteus. For the first set of nested PCR assays, we used 
the outer primer pair 3932F and DW4R(18, 19)19,20 and the inner primer pair 413F and 
926R(20)21. We also amplified and sequenced regions of the mitochondrial cyt b gene 
from positive samples using a variety of primer pairs and protocols(21-23)22-24. Our 
protocols often fail to recognize mixed infections, meaning that parasite lineage 
prevalence in host populations may be somewhat underestimated. We distinguished 
lineages of haemosporidian parasites based on pairwise nucleotide differences between 
sequences(9)11.  
 
Phylogenetic tree reconstruction. We constructed a phylogenetic tree of 132 
haemosporidian lineages from North America, Central America, and the Caribbean 
region. We used Geneious®  
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 9.1.5 to generate an alignment of the 132 Plasmodium and Haemoproteus sequences 
together with 10 Leucocytozoon sequences used as outgroup(24). We used BEAST 2.4.2 
and its applications(25) to obtain a Bayesian maximum clade credibility tree using an 
uncorrelated relaxed lognormal clock, a GTR+I+G substitution model, and a Yule 
speciation prior. Trees were sampled every 5,000th run throughout an MCMC chain of 
10 million trees and 10% burn-in. Analyses were run using CIPRES cluster(26). The 
maximum clade credibility tree was summarized using TreeAnnotator 2.4.2 and 
visualized using FigTree 1.4.2 (Supplementary Data Figure 1).  
Statistical analyses. For each haemosporidian lineage, we calculated the proportion of 
infected host individuals, which we refer as lineage prevalence. Two ratios were 
calculated using two populations of hosts: 1) captured individuals of six selected focal 
bird species (island assemblages); and 2) captured individuals of all haemosporidian-
infected bird species on an island (host focal assemblages). Focal host species were the 
most well-sampled and widespread avian species for which we had haemosporidian 
infections recorded. These were: 1) Bananaquit, Coereba flaveola; 2) Black-faced 
grassquit, Tiaris bicolor; 3) Common ground dove, Columbina passerina; 4) Lesser 
Antillean bullfinch, Loxigilla noctis; 5) Pearly-eyed thrasher, Margarops fuscatus; and 6) 
Scaly-breasted thrasher, Margarops fuscus. We used these lineage prevalence data to 
build island × parasite assemblage pair-wise comparison matrices. Due to limitations in 
sample size, we did not include comparisons of contemporary assemblages using host 
focal assemblage data. We then used these matrices to calculate metrics that describe and 
partition 𝛽 diversity to characterize pair-wise assemblage comparisons.  
 
We first calculated Chao-Sørensen dissimilarity, which estimates the difference between 
assemblages on two islands by taking into account lineage prevalence, the number of 
island-unique lineages, and the number of shared lineages between islands(26). Chao-
Sørensen dissimilarity was calculated by  
 

𝛽!"#$!!ø#$%&$% = 1− !!"
!!!

 , 
 
where U is the sum of the prevalence of all shared lineages (i.e., present on both islands) 
on one island, and V represents the same for the other island. When islands of a pair have 
no shared lineages, dissimilarity equals 1; when islands of a pair have identical 
composition and prevalence of haemosporidian lineages, the dissimilarity index equals 0. 
 
We then used an additive partitioning method to decompose β diversity into two 
compartments with different biological meaning: turnover (i.e., replacement) and 
nestedness(27). This partitioning method is based on the Sørensen dissimilarity index, but 
also takes into account the proportion of shared lineages among assemblages.  
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𝛽!ø#$%&$% =  
𝑏 + 𝑐

2𝑎 + 𝑏 + 𝑐 

 
The parameter a represents the number of shared lineages, as above, and the parameters b 
and c represent, for each island, the number of lineages present on one island, but absent 
on the other. Therefore, 𝛽!ø#$%&$% combines differences between islands in both the total 
number of lineages and lineage identity. Following Baselga (2009), we calculated 
assemblage turnover as: 
 

𝛽!"#$%&'# =  
𝑚𝑖𝑛 𝑏, 𝑐

𝑎 +𝑚𝑖𝑛 𝑏, 𝑐  

 
Then, we calculated 𝛽!ø#$%&$% − 𝛽!"#$%&'# as the nested component of β diversity 
(𝛽!"#$"%&!""). As an example of assemblage turnover, bananaquits (Coereba flaveola) 
from Grenada are infected by the lineages OZ21 and OZ04, whereas on Carriacou, an 
islet connected to Grenada by land bridges up until ca. 2.5 ka, OZ21 is replaced by 
lineage LA07. On Barbuda, bananaquit hosts are infected by two haemosporidian 
lineages, LA07 and OZ21. However, on Antigua, an island connected to Barbuda during 
the Last Glacial Maximum (LGM), bananaquits are infected solely by OZ21, which 
makes Antigua a nested subset of Barbuda’s haemosporidian assemblage. We used the R 
package betapart(28) to calculate and partition 𝛽!ø#$%&$% dissimilarity.  
 
We applied a metric analogous to 𝛽!ø#$%&$% and its partitions to weight dissimilarity by 
the phylogenetic distance between lineages among assemblages(29). To calculate 
phylogenetic β diversity, we used the same parameters a, b, and c described above, but 
weighted by the total branch length of lineages from the haemosporidian phylogeny we 
generated. The phylogenetic diversity of an assemblage (PD) is the sum of the length of 
all branches from all lineages present in that assemblage. When comparing two 
assemblages, phylogenetic β diversity represents the variation in composition due to 
differences between the total PDs of each assemblage (i.e., phylogenetic nestedness), and 
due to the turnover of lineages that are not related to differences in PD among 
assemblages (phylogenetic turnover). PhyloSør and its partitions are calculated by  
 

𝛽!!!"#!ø# =  !!"!"!#$!!"!!!"!
!"!!!"!

  

and 

𝛽!!!"#!ø#!!"#$%&'# =
!"# !"!"!#$!!"!  ,   !"!"!#$!!"!

!"!!!"!!!"!"!#$!!"#(!"!"!#$!!"! ,   !"!"!#$!!"!)
, 

where 𝑃𝐷! and 𝑃𝐷! are the sum of branch lengths of lineages from assemblage k and j, 
respectively, and 𝑃𝐷!"!#$ is the sum of branch lengths from all lineages present on 
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assemblages k and j. 

𝛽!!!"#!ø#!!"  =  𝛽!!!"#!ø#!𝛽!!!!"!ø#!!"#$%&'# 

To determine whether assemblages are more evolutionarily related than expected by 
chance, which indicates environmental (including host) filtering, we compared 
phylogenetic and taxonomic β diversity among pairs of assemblages. Low phylogenetic 
and high taxonomic β diversity suggests that assemblages share closely related, but not 
identical lineages of parasites. In contrast, high phylogenetic and low taxonomic β 
diversity suggests exclusion of phylogenetically related lineages, potentially the result of 
parasite competition. We also calculated the standardized effect size (SES) for 𝛽!!!"#!ø# 
and its partitions, using the formula: 
 

𝑆𝐸𝑆 =
𝛽!"# −𝑚𝑒𝑎𝑛 𝛽!"##

𝑠𝑑 𝛽!"##
 

The parameter 𝛽!"# represents the value of the phylogenetic β diversity index derived 
from the data, whereas mean(𝛽!"##) and sd(𝛽!"##) represent the average and the standard 
deviation of  a null distribution of phylogenetic β diversity indices calculated by shuffling 
labels of lineages in the phylogeny 999 times. Results are displayed in the Supplementary 
Data Figure 2. 

Finally, we used linear mixed models to test the null hypothesis that assemblage 
dissimilarity does not change across the four comparison groups: between islands that 
have never been connected; between islands connected during the Pleistocene LGM and 
isolated for 2.5 ka; between samples separated by short periods of time (i.e., years or 
decades); and between contemporary samples from the same island. In one set of models, 
we combined all pair-wise comparisons from assemblages of host focal species and 
treated avian host species identity as a random intercept in the models. Note that 
comparisons using pooled host focal assemblages did not include contemporary samples 
from the same island due to sampling limitations. In a second set of models, we used data 
from the overall island haemosporidian assemblages and treated groups of island 
comparisons as a random intercept in the models. The first set of models describes 
changes on haemosporidian assemblages of determined host species, occurring within the 
same island, whereas the second set of models provides an overview of changes on island 
assemblages in their entirety. In both sets of models, by adding a random intercept we not 
only acknowledge that there is variation in dissimilarity within each set of comparisons, 
but also address the unbalanced design across groups of pair-wise comparisons 
(Supplemental Table 2). We ran one model per β diversity metric, requiring ten models 
for pooled host focal assemblages and ten models for island assemblages. All models 
were weighted by sample size, calculated as the sum of the total number of host 
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individuals captured on each island. Linear mixed models were run using the R package 
lme4(30).  
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Figures  
  

 
Figure 1: Bathymetric map representing part of the West Indies archipelago. Puerto Rico 
and islands of the Lesser Antilles are represented. Black contours delineate the 100 m 
isobath (i.e., depth contour). This isobath approximates shorelines at the most recent sea 
level minimum, ca. 26 ka. Islands that were formerly connected, as well as their isolated 
counterparts, are labeled; the Cayman Islands are located to the west in the Greater 
Antilles, outside the map area. Bathymetry data were obtained from the National Oceanic 
and Atmospheric Administration (NOAA).  
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Figure 2: Haemosporidian assemblage dissimilarity across groups of island pair-wise 
comparisons. Dissimilarity is represented by two metrics: Chao-Sørensen (i.e., overall 
dissimilarity describing differences in lineage composition and prevalence) and 
Sørensen-Replacement (i.e., dissimilarity describing differences in lineage composition 
only), which are summarized for each group of pair-wise assemblage comparison. Chao-
Sørensen estimates dissimilarity between two assemblages based on (i) the prevalence of 
parasite lineages, (ii) the number of lineages shared between two assemblages, and (iii) 
the number of unique lineages in each assemblage. Chao-Sørensen values vary from 0 for 
identical assemblages, to 1 for assemblages that differ completely with respect to one, or 
a combination, of the metric components. Sørensen-Replacement is a compositional 
dissimilarity metric that measures only the sharing, or not, of lineages and attributes zero 
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weight to differences in prevalence. When two assemblages of hosts support the same 
lineages of parasites, Sørensen-Replacement = 0; when no lineages are shared, Sørensen-
Replacement = 1. The left panel (A) summarizes dissimilarity metrics for pair-wise 
comparisons based the overall haemosporidian assemblage within each sample. On island 
haemosporidian assemblages, dissimilarity measured by Chao-Sørensen (top left) 
increases with isolation time (𝑃𝒳! <0.01; 𝒳! = 31.8), but replacement of lineages 
(bottom left) is unrelated to assemblage isolation (𝑃𝒳! = 0.4; 𝒳! = 2.9). The right panel 
(B) summarizes dissimilarity metrics for pair-wise comparisons based on haemosporidian 
assemblages of bananaquits (Coereba flaveola), which similarly to island assemblages, 
show a patter of decay in assemblage similarity with isolation time based on the Chao-
Sørensen dissimilarity metric (𝑃𝒳! = 0.04; 𝒳! = 6.0). However, replacement of 
haemosporidian lineages on bananaquit assemblages increase with isolation time (𝑃𝒳! < 
0.01; 𝒳! = 9.3). Contemporary comparisons of haemosporidian assemblages from 
banaquits were not included in the analyses due to sampling limitation.  
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Figure 3: Haemosporidian assemblages from selected populations of Coereba flaveola 
(bananaquit). Lineage OZ21 (Haemoproteus coatneyi, a host generalist) occurs in three 
out of five samples; its prevalence is inversely related to that of the bananaquit specialist 
lineage, LA07 (Haemoproteus sp.). Antigua and Barbuda were connected by a broad land 
until 2.5 ka, but both islands have always been separated from Guadeloupe by deep 
marine channels. The parasite lineages on Antigua and Barbuda differ from those on 
Guadeloupe in prevalence, composition, and number of parasite lineages; parasite 
assemblages in the Dominican Republic that are separated by a short time interval have 
similar composition, with variation in the prevalence of the dominant lineage DR03, 
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which is closely related to the bananaquit specialist LA07. The phylogeny represents 132 
lineages of Haemosporidian parasites from North America, Central America, and the 
Caribbean. Lineages found infecting the five populations of C. flaveola are labeled in the 
phylogeny (maximum clade credibility tree), showing that lineage composition and 
replacement on parasite assemblages are phylogenetically uncorrelated. Branch colors 
correspond to the four major haemosporidian genera: black for Leucocytozoon sp., the 
outgroup; brown for Plasmodium sp. lineages; blue for Haemoproteus (Haemoproteus) 
lineages; and gold for Haemoproteus (Parahaemoproteus) lineages.  
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Supplementary Tables 
 
Supplementary Table 1: Sampling summary across 17 islands of the archipelago of the West 
Indies, displaying the year of sampling on each island, and the number of blood samples collected 
on each year (in between parenthesis). Islands are ordered on the table based on their geographic 
position, with northernmost islands on the top; geographic coordinates for each island are given. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Island Year (Number of Samples) Coordinates 
Grand Cayman 2002 (281) 19.31, 81.23 
Cayman Brac 2002 (186) 19.72, 79.79 
Little Cayman 2002 (89) 19.69, 80.04 
Dominican Republic 1994 (18); 1995 (89); 2001 (612); 2002 (642); 2014 (600) 18.78, 70.35 
Eastern Puerto Rico 1993 (149) 18.29, 65.70 
British Virgin Islands  2001 (150) 18.47, 64.56 
St. Eustatius 2015 (375) 17.49, 62.97 
St. Kitts 2012 (321) 17.34, 62.77 
Nevis 2012 (353) 17.15, 62.58 
Barbuda 1993 (95) 17.62, 61.77 
Antigua 1993 (88) 17.10, 61.81 
Montserrat   1993 (150) 16.73, 62.18 
Guadeloupe 1993 (171) 16.11, 61.66 
St. Lucia 1991(226); 2000 (200) 13.86, 60.97 
St. Vincent 2008 (334) 13.21, 61.20 
Carriacou 2013 (241) 12.47, 61.44 
Grenada 2002 (477) 12.12, 61.68 
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Supplementary Table 2: Pair-wise comparisons of haemosporidian parasite assemblages. Pairs of 
islands are represented by rows, and the total number of pair-wise comparisons is shown in 
between parenthesis. Columns represent the type of host haemosporidian assemblages were 
derived from. Island assemblage represents all haemosporidian infections retrieved within an 
island, and the remaining columns represent assemblages of individual host species, which we  
refer as focal assemblages. Species codes represent the following species: CFA, Coereba flaveola 
(bananaquit); LNO, Loxigilla noctis (Lesser Antillean bullfinch); CPA, Columbina passerina 
(common ground dove); Tiaris bicolor (black-faced grassquit); Margarops fuscus (pearly-eyed 
thrasher); and Margarops fuscatus (scaly breasted thrasher). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
Island 

Assemblage CFA LNO CPA TBI MFU MFT 

Pairs of assemblages on islands isolated for millions of years (Never connected), N=34 
Grand Cayman vs. Little Cayman (2)        Grand Cayman vs. Cayman Brac (2)        Guadeloupe vs. Antigua (5)        Guadeloupe vs. Barbuda (3)        Montserrat vs. St. Kitts (5)        Montserrat vs. Nevis (7)        St. Vincent vs. Carriacou (6)        St. Vincent vs. Grenada (4)        Pairs of assemblages on islands connected up until 2.5 ka (LGM connected), N=15 
Little Cayman vs. Cayman Brac (2)        
East Puerto Rico vs. British Virgin Is. (2)        
Antigua vs. Barbuda (3)        
St. Kitts vs. Nevis (5)        
Carriacou vs. Grenada (3)        

Pairs of assemblages sampled between short periods of time (Short-term isolation), N=15 

Dominican Republic 
2001 vs. 2002 (3)        
2001 vs. 2014 (3)        
2002 vs. 2014 (3)        

St. Lucia 1991 vs. 2000 (6)        
Pairs of assemblages within an island (Contemporary assemblage), N=4 

St. Eustatius (1)        
St. Kitts (1)        
Nevis (1)        
St. Vincent (1)        
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Supplementary Table 3: Mean and standard deviation for seven metrics of 𝛽 diversity comparing 
pairs of haemosporidian assemblages on islands of the West Indies archipelago. 𝛽!"#$!!ø#$%&$% 
estimates dissimilarity between two assemblages based on the prevalence of parasite lineages, the 
number of lineages shared between two assemblages, and the number of unique lineages in each 
assemblage. 𝛽!"#$!!ø#$%&$% values vary from 0 for identical assemblages, to 1, for assemblages 
that differ completely with respect to one, or a combination, of the three metric components. 
𝛽!ø#!"#!" is a compositional dissimilarity metric that measures only the sharing, or not, of 
lineages and attributes zero weight to differences in prevalence, and can be partitioned into a 
measure of dissimilarity due to substitutions of lineages among islands (𝛽!"#$%&"'"()), and 
differences in gains and losses of lineages, estimating the extent at which one assemblage is a 
subset of the other (𝛽!"#$"%&"%&"##). 𝛽!"#$%!!ø# is the phylogenetic correspondent of 𝛽!ø#$%&$%, in 
which dissimilarity is weighted by branch lengths taken from a phylogeny of haemosporidian 
lineages. The replacement component of 𝛽!"#$%!!ø# corresponds to differences in parasite 
assemblages that are attributed to replacement of lineages that do not change the phylogenetic 
diversity of assemblages, whereas the PD (i.e., phylogenetic diversity, the sum of branch lengths 
of all lineages within an assemblage) estimates the amount of dissimilarity between assemblages 
due to differences in the total branch length of assemblages. SES, or standard effect size, is a 
metric calculated for each compartment of phylogenetic 𝛽 diversity (PhyloSor and its partition 
components, Replacement and PD), and represents how much the observed dissimilarity deviates 
from a null expectation. Assemblages with phylogenetic diversity higher than expected by chance 
(i.e., overdispersion, SES>1.96) represent assembly processes related to competitive exclusion 
and evolution of host resistance. Pairs of assemblages more similar than expected by chance (i.e., 
phylogenetic clustering, SES>1.96) suggest that replacement takes place among closely related 
lineages, a process correspondent to environmental filtering.  
 
Island 
comparison 

𝛽!"#$!!ø#$%&$% 𝛽!ø#$%&$% 𝛽!"#$%&"'"() 𝛽!"#$"%&"## 𝛽!"#$%!!ø# 𝛽 !"#$%!!ø#
!"#$%&"'"()

 𝛽!"#$%!!ø# !" 𝑆𝐸𝑆 𝛽!"#$%!!ø# 𝑆𝐸𝑆 𝛽 !"#$%!!ø#
!"#$%&"'"()

 𝑆𝐸𝑆 𝛽!"#$%!!ø# !" 

Combined focal host assemblages, Coreba flaveola, Tiaris bicolor, Loxigilla noctis, Columbina passerina, Margarops fuscus, and Margarops fuscatus. 

Never connected 0.8 (0.2) 0.6 (0.3) 0.5 (0.4) 0.1 (0.2) 0.3 (0.2) 0.2 (0.2) 0.1 (0.1) -0.4 (1.2) -0.7 (1.0) 0.2 (1.0) 
LGM connected 0.7 (0.2) 0.5 (0.3) 0.3 (0.4) 0.2 (0.2) 0.3 (0.2) 0.1 (0.2) 0.2 (0.1) 0.3 (0.7) 0.5 (0.6) -0.1 (0.8) 
Short-term 
isolation 0.5 (0.2) 0.4 (0.1) 0.2 (0.2) 0.2 (0.1) 0.3 (0.1) 0.1 (0.1) 0.2 (0.1) -0.1 (1.2) -1.1 (0.9) 1.0 (1.9) 

Island assemblages 

Never connected 0.9 (0.1) 0.6 (0.2) 0.5 (0.2) 0.1 (0.1) 0.4 (0.2) 0.2 (0.2) 0.1 (0.2) 0.3 (0.9) 0.1 (1.1) 0.2 (1.4) 

LGM connected 0.9 (0.1) 0.6 (0.2) 0.4 (0.3) 0.2 (0.2) 0.4 (0.1) 0.2 (0.1) 0.2 (0.2) 0.7 (1.0) -0.4 (0.6) 1.3 (1.5) 
Short-term 
isolation 0.7 (0.4) 0.4 (0.2) 0.4 (0.2) 0.0 (0.0) 0.2 (0.1) 0.2 (0.1) 0.1 (0.1) 0.3 (1.0) 0.8 (1.0) -0.5 (0.5) 

Contemporary 0.2 (0.1) 0.4 (0.1) 0.3 (0.2) 0.1 (0.2) 0.2 (0.1) 0.1 (0.1) 0.1 (0.1) -0.8 (0.6) -0.9 (0.6) -0.2 (0.6) 
Host 
assemblages           

Never connected 0.2 (0.1) 0.4 (0.1) 0.2 (0.1) 0.2 (0.1)       
LGM connected 0.3 (0.2) 0.4 (0.1) 0.2 (0.1) 0.2 (0.2)       
Short-term 
isolation 0.1 (0.0) 0.2 (0.1) 0.1 (0.1) 0.1 (0.1)       
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Supplementary Table 4: Parameter estimates from the linear mixed effect models testing the null 
hypothesis that haemosporidian assemblages isolated for millions of years are as similar as 
assemblages isolated for short periods of time, or even assemblages that have never been 
separated. We run one model per dissimilarity metric for two types of assemblages: combined 
dissimilarity metrics from comparisons between parasite assemblages retrieved from focal host 
species, and dissimilarity metrics from comparisons between overall island haemosporidian 
assemblage.  
 
Dissimilarity Metric (x) Predictor (y) Effec

t 
S.E. 
(Effe

ct) 

t-value Pz χ2 Pχ2 

A. Combined pair-wise comparisons between haemosporidian assemblages of six avian host species 

𝜷𝐂𝐡𝐚𝐨!𝐒ø𝐫𝐞𝐧𝐬𝐞𝐧 Never connected  0.8 0.1 12.7 0.0 6.0 0.04 

 LGM connected -0.1 0.1 -0.7 0.5   

 Short-term isolation -0.2 0.1 -2.4 0.0   
�!ø#$%&$% Never connected  0.4 0.1 3.6 0.0 4.7 0.09 

 LGM connected 0.1 0.1 1.4 0.2   

 Short-term isolation 0.2 0.1 2.0 0.0   
𝜷𝐑𝐞𝐩𝐥𝐚𝐜𝐞𝐦𝐞𝐧𝐭 Never connected  0.5 0.1 4.2 0.0 9.3 0.009 

 LGM connected -0.2 0.1 -2.2 0.0   

 Short-term isolation -0.3 0.1 -2.8 0.0   
𝜷𝐍𝐞𝐬𝐭𝐞𝐝𝐧𝐞𝐬𝐬 Never connected  0.9 0.0 33.2 0.0 8.2 0.01 

 LGM connected -0.1 0.0 -2.0 0.0   

 Short-term isolation -0.1 0.1 -2.6 0.0   
𝛽!"#$%!!ø# Never connected  0.3 0.0 5.7 0.0 0.9 0.6 

 LGM connected 0.0 0.1 0.8 0.4   

 Short-term isolation 0.0 0.1 -0.3 0.8   
𝛽!"#$%!!ø# !"#$%&"'"() Never connected  0.2 0.1 3.0 0.0 3.2 0.2 

 LGM connected 0.0 0.1 -0.4 0.7   

 Short-term isolation -0.1 0.1 -1.8 0.1   
𝜷𝐏𝐡𝐲𝐥𝐨!𝐒ø𝐫 𝐏𝐃 Never connected  0.1 0.0 4.0 0.0 7.7 0.02 

 LGM connected 0.1 0.0 1.8 0.1   

 Short-term isolation 0.1 0.0 2.6 0.0   
Dissimilarity Metric (x) Predictor (y) Effec

t 
S.E. 
(Effe

ct) 

t-value Pz χ2 Pχ2 

B. Pair-wise comparisons between overall island haemosporidian assemblages  

𝜷𝐂𝐡𝐚𝐨!𝐒ø𝐫𝐞𝐧𝐬𝐞𝐧 Never connected  0.9 0.1 8.5 0.0 31.8 0.00 

 LGM connected 0.0 0.0 0.2 0.8   

 Short-term isolation -0.4 0.2 -2.1 0.0   

 Contemporary isolated -0.6 0.1 -8.5 0.0   
𝛽!ø#$%&$% Never connected  0.4 0.1 4.8 0.0 4.5 0.2 

 LGM connected 0.0 0.1 0.4 0.7   
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 Short-term isolation 0.3 0.2 1.9 0.1   

 Contemporary isolated 0.1 0.1 0.9 0.4   
𝛽!"#$%&"'"() Never connected  0.5 0.1 5.8 0.0 2.9 0.4 

 LGM connected 0.1 0.1 0.8 0.4   

 Short-term isolation 0.2 0.2 1.1 0.3   

 Contemporary isolated 0.1 0.1 1.2 0.2   
𝛽!"#$"%&"## Never connected  0.9 0.1 15.1 0.0 2.3 0.5 

 LGM connected 0.0 0.1 -0.7 0.5   
 Short-term isolation 0.1 0.1 0.9 0.4   
 Contemporary isolated -0.1 0.1 -0.6 0.5  

 

𝛽!"#$%!!ø# Never connected  0.4 0.1 6.8 0.0 5.0 0.2 

 LGM connected 0.0 0.1 0.2 0.9   
 Short-term isolation -0.2 0.1 -1.7 0.1   
 Contemporary isolated -0.1 0.1 -1.2 0.2   

𝛽!"#$%!!ø# !"#$%&"'"() Never connected  0.3 0.1 4.7 0.0 4.8 0.2 

 LGM connected -0.1 0.1 -1.2 0.2   
 Short-term isolation -0.1 0.1 -1.2 0.2   
 Contemporary isolated -0.1 0.1 -1.7 0.1   

𝛽!"#$%!!ø# !" Never connected  0.1 0.1 2.2 0.0 2.4 0.5 

 LGM connected 0.1 0.1 1.2 0.2   
 Short-term isolation -0.1 0.1 -0.5 0.6   

 Contemporary isolated 0.0 0.1 0.4 0.7   
Dissimilarity Metric (x) Predictor (y) Effec

t 
S.E. 
(Effe

ct) 

t-value Pz χ2 Pχ2 

C. Pair-wise comparisons between host assemblages  

𝛽!"#$!!ø#$%&$% Never connected  0.3 0.1 3.9 0.0 3.0 0.2 

 LGM connected 0.0 0.0 -0.4 0.7   

 Short-term isolation -0.2 0.1 -1.6 0.1   
𝛽!ø#$%&$% Never connected  0.4 0.0 8.0 0.0 2.8 0.2 

 LGM connected 0.0 0.1 -0.5 0.6   

 Short-term isolation -0.2 0.1 -1.6 0.1   
𝛽!"#$%&"'"() Never connected  0.2 0.0 7.0 0.0 5.4 0.07 

 LGM connected -0.1 0.0 -2.2 0.0   

 Short-term isolation -0.1 0.1 -1.0 0.3   
𝛽!"#$"%&"## Never connected  0.2 0.1 2.9 0.0 3.0 0.2 

 LGM connected 0.1 0.1 1.2 0.2   
 Short-term isolation -0.1 0.1 -0.8 0.4   
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Supplementary Figures 
 

 

 
Supplementary Data Figure 1: Bayesian maximum clade credibility tree of 132 
haemosporidian lineages from North America, Central America, and the Caribbean 
region. Phylogenetic relationships were reconstructed using 10 Leucocytozoon sequences 
as outgroup (highlighted in brown), and applying an uncorrelated relaxed lognormal 
clock, a GTR+I+G substitution model, and a Yule speciation prior. Plasmodium sp. 
lineages were highlighted in red, Haemoproteus (Parahaemoproteus) sp. in green, and 
Haemoproteus (Haemoproteus) sp. in blue. Diamonds represent nodes with posterior 
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probability higher than 80%.  
 
 

 
Supplementary Data Figure 2: Standardized effect size (SES) values for phylogenetic beta 
diversity index PhyloSør and its partitioned components, PhyloSør-Replacement and 
PhyløSor-PD, among haemosporidian assemblage pair-wise comparison groups. Each 
point represents a pair-wise comparison, and each pane represents the SES values for a 
phylogenetic beta diversity metric. The dashed red line represents the lower (-1.96) and 
upper (1.96) cut-off limits for SES values. Pairs of assemblages with phylogenetic beta 
diversity higher than expected by chance (i.e., overdispersion, SES>1.96) represent 
assembly processes related to competitive exclusion and evolution of host resistance. 
Pairs of assemblages more similar than expected by chance (i.e., phylogenetic clustering, 
SES>1.96) suggest that replacement takes place among closely related lineages, a process 
correspondent to environmental filtering. None of the pair-wise comparison groups 
showed 
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Abstract 
 
Island populations are vulnerable to introduced pathogens, as evidenced by extinction of several 
endemic Hawaiian birds caused by the malaria parasite, Plasmodium relictum. Among avian 
malaria parasites (order Haemosporida; genera Plasmodium and Haemoproteus) surveyed in the 
vicinity of Guantánamo Bay, Cuba, nine of 363 individuals were infected with the Plasmodium 
relictum lineage GRW4. Five of the infected individuals were endemic Cuban grassquits (Tiaris 
canorus). A sequence of the merozoite surface protein gene from T. canorus infected with GRW4 
matched that of the Hawaiian haplotype Pr9. Cuba lacks several bird species, including the 
bananaquit Coereba flaveola, that are ubiquitous elsewhere in the West Indies. Thus, from the 
standpoint of avian conservation in the Caribbean Basin, it will be important to determine the 
distribution of P. relictum in Cuba and its pathogenicity in local birds, including species absent 
from the island.  

Introduction 

In 1826, the Royal Navy warship HMS Wellington sailed from the west coast of Mexico to the 
island of Maui, making history as the vessel that introduced a mosquito vector of avian pox and 
avian malaria, Culex quinquefasciatus, to the Hawaiian archipelago (Warner 1968). Beginning at 
the end of the 19th century, mortality attributed to the pox virus and, somewhat later, an 
introduced avian malaria pathogen caused the extinction, or dramatic population decline, of 
several endemic Hawaiian bird species, especially among the honeycreepers of the endemic 
subfamily Drepanidinae (Atkinson & LaPointe 2009a). Plasmodium relictum (Apicomplexa: 
Haemosporida), a causative agent of avian malaria, has been listed among the 100 most invasive 
species on Earth (Lowe et al. 2000). In such remote areas as the Hawaiian Islands, where the 
endemic avifauna has evolved resistance to few pathogens (Matson 2006; Beadell et al. 2007), 
infections by newly invasive pathogens can have severe health consequences (Diamond 1999). 
For example, experimental infections from single bites of the vector C. quinquefasciatus bearing 
sporozoites (i.e., the parasite’s infective stage to vertebrate hosts) of P. relictum caused 65% 
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mortality in Hawaii amakihis (Hemignathus virens) (Atkinson et al. 2000).  

Species limits are not well defined for haemosporidian parasites (Outlaw & Ricklefs 2014; 
Perkins 2014). Several avian malaria lineages distinguished on the basis of sequences of the 
parasite’s mitochondrial cytochrome b (cyt b) gene have been attributed to the morphological 
species P. relictum (Beadell et al. 2006). The lineage GRW4, which has been identified in 39 bird 
species belonging to 13 families, is among the most widespread of the P. relictum lineages, and in 
Hawaii it is the only avian malaria lineage, as defined by nucleotide variation in the cytochrome b 
gene (Beadell et al. 2006). This lineage is rare in New World birds (Figure 1), having been found 
primarily in introduced European species, such as the house sparrow Passer domesticus (Marzal 
et al. 2011; Ewen et al. 2012). Phylogeographic analyses suggest that GRW4, together with its 
dipteran mosquito vector, C. quinquefasciatus, originated in the Old World, likely in tropical 
Africa (Fonseca et al. 2000; Beadell et al. 2006; Valkiünas et al. 2007).  

Here we report the presence of P. relictum GRW4 in the endemic avifauna of eastern Cuba. We 
discuss the origins of GRW4 in the New World and speculate on the possible role of P. relictum 
in the near absence of several common and widespread West Indian bird species from the 
avifauna of Cuba.  

Methods 

A field team under the supervision of P. Marra captured birds with mist nets in the surroundings 
of Guantanamo Bay, on the southeast coast of Cuba (19° 55´ N, 75° 07´ W), between January 10 
and February 4, 2004. Blood samples were obtained from captured individuals by brachial 
venipuncture. Following centrifugation, the red blood cells were frozen in microcapillary tubes 
and later extracted using Puregene Cell Lysis Buffer (Gentra Systems, Minneapolis, MN, USA; 
currently QIAGEN, Hilden, Germany). All samples were collected under IACUC protocols 
approved at the Smithsonian Institution (03-355) and analyzed in the senior author’s laboratory at 
the University of Missouri-St. Louis. 

We isolated DNA from extracted blood samples using standard isopropanol precipitation 
preceded by enzymatic protein digestion and precipitation with ammonium acetate. We tested the 
quantity and quality of the extracted DNA using a Nanodrop EpochTM Take3TM multivolume plate 
reader spectrophotometer (ThermoFisher Scientific, Waltham, MA) and by running 6 µL of each 
extracted sample for 60 min in a 2% TAE agarose gel stained with ethidium bromide. We 
repeated DNA extractions for samples that produced no band on the gel, and used spin-columns 
to purify samples that presented low DNA-to-contaminant ratios (DNeasy Kit, QIAGEN, 
Valencia, CA).  

We screened all samples for presence of either of the haemosporidian genera Plasmodium or 
Haemoproteus by a PCR that targets a highly conserved 154-bp 16S rRNA-coding sequence of 
the parasite mitochondrial DNA, using the primers 343F and 496R (Fallon et al. 2003). All 
samples that tested negative were screened a second time to reduce false negative results. 
Samples found to be infected in the first PCR step were further subjected to one or more nested 
PCR assays that amplify a phylogenetically informative region of the parasite’s cytochrome b 
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(cyt b) gene. For the first set of nested PCR assays, we used the outer primer pair 3932F and 
DW4R (Perkins & Schall 2002; Olival et al. 2007) and the inner primer pair 413F and 926R 
(Ricklefs et al. 2005). When a sample was positive at the initial PCR screening, but failed to 
amplify in the first nested cyt b assay, we ran a second nested PCR using the HAEM primers 
(Waldenstrom et al. 2002). Two positive and one negative control were included in all PCR 
reactions. Forward sequencing of cyt b products was conducted at Eurofins MWG Operon 
(Louisville, KY) following manufacturer’s protocols. We matched cyt b sequences to known 
haemosporidian lineages using BLAST® (Basic Local Alignment Search Tool) against lineages 
deposited in GenBank®, MalAvi (Bensch et al. 2009), and our local lineage database. We 
distinguished as new haemosporidian lineages sequences that differed by one non-silent 
nucleotide substitution or at least three silent nucleotide substitutions from known sequences. 
Sequences for new lineages were deposited in GenBank® [KX958175, KX958176, and 
KX958177]. 

For all infections genotyped as P. relictum GRW4, we ran a nested PCR assay that targets a 
highly variable region of the P. relictum nuclear DNA, the merozoite surface protein (msp1) gene 
(Hellgren et al. 2013; 2014). The msp1 gene accumulates nucleotide variation 3.2–4.8 times 
faster than the cyt b gene, and is therefore more useful for resolving fine-scale genetic variation 
within Plasmodium relictum lineages (Hellgren et al. 2014). Outer PCR reactions were conducted 
in a volume of 10 µL composed by 2 µL of DNA template, 0.2 µL of each 3F and 3R primers at 
10 µM (Hellgren et al. 2013), 5 µL of ImmoMixTM Red (Bioline, Tauntom, MA), and 2.6 µL of 
ddH2O. Inner PCR reactions had final volumes of 25 µL, consisting of 2 µL of DNA amplicon 
from the outer reaction, 0.6 µL of each 3FN and 3RN primers at 10 µM (Hellgren et al. 2014), 
14.4 µL of ImmoMixTM Red (Bioline, Tauntom, MA), and 7.5 µL of ddH2O. Thermocycling 
conditions for both outer and inner assays were those described by Hellgren et al. (2014). We ran 
a 6 µL sample from the inner assay for 20 min in a 2% TAE agarose gel stained with ethidium 
bromide, and positive samples were submitted to Eurofins MWG Operon (Louisville, KY) for 
forward sequencing.  

Results 

We obtained 363 blood samples from 23 species in 11 families of birds (Table 1). Initial 
screening detected haemosporidian parasites in 59 (16%) samples. The concentrations of final 
DNA extractions were low, and we were able to amplify and sequence a region of the parasites’ 
mitochondrial cyt b gene from only 20 (34%) of the individuals that initially tested positive. 
Among these sequences, we identified seven phylogenetically distinct haemosporidian lineages. 
The lineage representing P. relictum GRW4 (AY099041) was the most common parasite, having 
been detected in nine individuals of five host species distributed across four avian families (Table 
1). The other identified haemosporidian lineages are common on several host species across the 
Greater Antilles (KZ04 gb KX958176, OZ02 gb KX958177 and YU02 gb HM222483), or widely 
distributed in the West Indies (GA01 gb HM222486, H. multipigmentatus) (Fallon et al. 2005; 
Ricklefs et al. 2011). The lineage KZ04 is common on North American warblers wintering in the 
West Indies and in the Yucatán Peninsula. The lineage OZ02 is widely distributed across bird 
species, occurring on host populations sampled on North and Central America, as well as on the 
Caribbean region. We identified a new Haemoproteus sp. lineage, designated CUH01 
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(KX958175) in four individuals of three resident species: one common ground dove (Columbina 
passerina), two Oriente warblers (Teretistris fornsi), and one Cuban grassquit (Tiaris canorus). 
The common ground dove and the two Oriente warblers carrying lineage CUH01 were also co-
infected with the Haemoproteus lineage OZ02.  

Five of the nine individuals infected with GRW4 were Cuban grassquits, which belong to the 
West Indian radiation of Coerebinae (Thraupidae) (Burns et al. 2010; Barker et al. 2015); the 
grassquit is endemic to the island of Cuba (Raffaele et al. 2003). GRW4 was also detected in 
three other resident species: a single common ground dove of 19 sampled, one of seven red-
legged thrushes (Turdus plumbeus), and one of five yellow warblers (Setophaga petechia 
gundlachi). These three species are common resident birds on Cuba; the dove occurs throughout 
the West Indies archipelago, while the thrush is restricted to the Greater Antilles (Raffaele et al. 
2003). Yellow warblers have breeding populations across many islands in the West Indies, and on 
Cuba residents overlap with fall transient migrants from North America (Klein & Brown 1994; 
Raffaele et al. 2003). One Cape May warbler, a migratory species, also was infected with GRW4. 
Cape May warblers winter in the Greater Antilles and Central America, with breeding 
populations distributed in the northeastern United States and broadly across southern Canada.  

We amplified and sequenced a fragment of the merozoite surface protein (msp1) gene from one 
Cuban grassquit infected with GRW4. The sequence was identical to allele Pr 9 (gb KJ850280), 
identified as the most common allele out of the five unique msp1 alleles that have been described 
worldwide for GRW4 and it is the allele found in the Hawaiian P. relictum (Hellgren et al. 2014).  

Discussion 

We report the presence of the highly invasive and virulent avian malaria parasite P. relictum in 
the endemic avifauna of eastern Cuba. The P. relictum haplotype (GRW4 Pr9) that infects some 
Cuban birds is the same haplotype that has caused extinction and population decline in the 
Hawaiian endemic avifauna (Atkinson et al. 1995; Hellgren et al. 2014). GRW4 Pr9 is also the 
most prevalent P. relictum lineage in Hawaii, where it has been identified in four endemic species 
of honeycreepers on four of the islands in the Hawaiian archipelago (Hellgren et al. 2014). The 
only other GRW4 msp1 allele present in Hawaii (Pr 8) was found only in Kauai amakihis 
(Hemignathus kauaiensis). Prior to this study, the only known infections of Pr 9 outside Hawaii 
have been in introduced house sparrows (P. domesticus) in Tampa, Florida, and St. Louis, 
Missouri, in the continental United States, and in central Brazil and on the island of Bermuda in 
the North Atlantic Ocean (Hellgren et al. 2014).  

The rarity of P. relictum GRW4 in the New World might be due to an incompatibility with novel 
hosts. In Europe, GRW4 is most commonly detected in Afrotropical migrants upon their arrival 
on their breeding grounds (Bensch et al. 2007; Hellgren et al. 2007), and infections in the resident 
avifauna are rare, even though experimental infections have demonstrated that GRW4 is able to 
develop sporozoites in Culex pipiens pipiens, which are common dipteran vectors in Northern 
Europe (Valkiünas et al. 2015). Additionally, like many pathogens, GRW4 exhibits host 
specialization. When nineteen individuals from six European bird species were injected with 
blood from a great reed warbler (Acrocephalus arundinaceus) infected with GRW4, only five 
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individuals developed infections (i.e., exhibited parasitemias), four of which were from the same 
species, A. arundinaceus, as the donor individual (Dimitrov et al. 2015). Except for Hawaii, the 
effect of GRW4 infections on New World birds has not been determined, and we cannot exclude 
the possibility that infections are infrequently detected because they can be lethal. Differently 
from what has been reported in Europe and North America, and because in our study GRW4 was 
the most common haemosporidian lineage infecting Cuban birds in our sample, this lineage 
apparently can infect a wide range of host species. Because we lacked blood smears for the 
Cuban samples, we cannot confirm directly that these parasites complete their life cycles within 
these hosts, which would only be supported by the presence on blood smears of fully developed 
gametocytes (i.e., the parasite’s infective stage to invertebrate hosts). However, the presence of 
GRW4 in several endemic Cuban species indicates local transmission and implies local 
completion of the parasite life cycle.  

Avian malaria is of special concern when introduced parasites are detected in naïve host 
populations that lack immunity against the parasites and are highly susceptible to infections 
(Ricklefs 2010). When Hawaiian native iiwis (Vestiaria coccinea) were experimentally infected 
with P. relictum, all birds developed symptoms of the disease and subsequently died. In contrast, 
nutmeg mannikins (Lonchura punctulata), which are introduced in Hawaii, were refractory to 
infection by P. relictum (Atkinson et al. 1995). Prior to the present study, the haplotype GRW4 
Pr9 had been found in only five host species, four of which are endemic Hawaiian birds and the 
fifth being the cosmopolitan house sparrow Passer domesticus (Hellgren et al. 2014). In North 
and South America, GRW4 is the most common lineage found in introduced house sparrows, and 
it has been suggested that the lineage switched to native hosts as P. domesticus expanded its 
distribution (Marzal et al. 2011). The presence of GRW4 P9 on house sparrows in the USA 
(Hellgren et al. 2014) and on resident Cuban birds (this study) suggest that infections detected in 
the migratory Cape May warbler wintering in Cuba could have been acquired on either breeding 
or wintering grounds.  
 
In Hawaii, P. relictum was likely introduced by the mid-19th century (Atkinson & LaPointe 
2009b), and the introduction of the mosquito vector Cx. quinquefasciatus in 1826 constrains the 
date of earliest potential transmission of avian malaria. When Cx. quinquefasciatus first arrived in 
Cuba also is not known, but the history of European colonization of islands on the Caribbean 
suggests that these mosquito vectors could have been introduced much earlier to Cuba than they 
were to Hawaii. Sugar plantations were established in Cuba in the 16th century, which coincided 
with the beginning of the slave trade from West Africa (Knight 1997); both GRW4 and Cx. 
quinquefasciatus have evolutionary origins in West Africa (Fonseca et al. 2000; Hellgren et al. 
2014). If vector and parasite hitchhiked with ships coming from West Africa, P. relictum might 
have become established on other islands in the West Indies. Avian populations on the West 
Indies have been extensively surveyed for haemosporidian parasites (Fallon et al. 2004; 2005; 
Ricklefs et al. 2011; Svensson-Coelho & Ricklefs 2011; Latta 2012) and, with the exception of 
Cuba, we have only two records of P. relictum GRW4 in the archipelago: one Greater Antillean 
bullfinch (Loxigilla violacea) in the Dominican Republic in 2001, and one Tropical mockingbird 
(Mimus gilvus) in Grenada in 2002.  
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An early introduction of P. relictum in Cuba raises the possibility that avian malaria might be 
responsible for the remarkable absence, or near absence, from Cuba of several otherwise common 
and geographically widespread bird species in the West Indies, including the bananaquit C. 
flaveola, the black-faced grassquit (Tiaris bicolor), and the Greater Antillean bullfinch (Loxigilla 
violacea). Competition with island endemics has been suggested as preventing the establishment 
of these species on Cuba (Lack 1976; Ricklefs 2010), however the three mentioned species are 
abundant on other islands of the West Indies, including close-by Jamaica and Hispaniola. 
Additionally, bananaquits present one of the rare cases of “reverse colonization”, with ancestral 
populations that originated in the Greater Antilles between 1.7 and 4 mya and spread widely 
throughout the West Indies, but also colonized the tropical American mainland (Bellemain et al. 
2008). The phylogeographic history of C. flaveola excludes dispersal limitation as an explanation 
for the absence of the species on Cuba, particularly inasmuch as bananaquits in Quintana Roo on 
the Yucatan Peninsula of Mexico are most closely related to the population in the Bahamas 
Islands (Bellemain et al. 2008), with Cuba in between. The most likely cause of the absence of 
several species of widespread West Indian birds from the island of Cuba remains one or more 
pathogens, among which P. relictum is a likely candidate.  

We report the presence of the avian malaria haplotype P. relictum GRW4 Pr9 in the endemic 
avifauna of Cuba. This parasite is rare in the New World, and haplotype Pr9 has been associated 
with extinction and population decline in the native Hawaiian avifauna. In view of the drastic 
impacts of this avian malaria lineage in Hawaii, assessing the broader effects and potential threat 
of avian malaria in the Cuban avifauna is a high priority. The coincidental presence in Cuba of 
GRW4 and absence of several common West Indian bird species from the island suggest that 
experimental infection by GRW4 of individuals of these missing species from other island 
populations would be highly informative. Moreover, given the high host-switching potential of 
avian malaria parasites, and the presence of wintering North American migratory birds on the 
island, local transmission of P. relictum on Cuba raises the potential for spread of the parasite 
more widely. At this point, determining the distribution of P. relictum GRW4 Pr9 and other 
haemosporidian parasites on Cuba, and the effects of these parasitic infections on resident and 
wintering avifauna, should be high priorities.  
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Table 

Table 1: Samples of birds in Guantánamo Bay, Cuba. The column labeled “Infected” represents 
positive samples identified through PCR amplification of a coding region for the 16S small 
subunit of ribosomal RNA. The number of infections sequenced represents the positives 
amplified and sequenced using primers that target the parasite’s cytochrome b coding region. 
Migratory species are represented by M, resident species by R, and resident species that are also 
endemic to Cuba by E.  GRW4 is Plasmodium relictum; GA01 is Haemoproteus (Haemoproteus) 
multipigmentatus (HM222486); CUH01 (KX958175), OZ02 (KX958177), KZ04 (KX958176), 
YU02 (HM222483), and LA01 (GQ395656) are Haemoproteus spp. 

 

Species 
Migrant (M) 

or Resident (R) 
(E = endemic) 

Infected Sequenced Total Haemosporidian 
Lineages 

Ardeidae 
     

Green Heron (Butorides virescens) R 
  

6 
 

Columbidae 
     

Common Ground-dove (Columbina passerina) R 7 4 19 
GRW4, CUH01, 
GA01, OZ02 

Strigidae      

Cuban Pygmy Owl (Glaucidium siju) R,E   5  

Picidae      
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Cuban Green Woodpecker (Xiphidiopicus 
percussus) R,E   1  

Tyrannidae      

Cuban Pewee (Contopus caribaeus) R 1  1  

LaSagra's Flycatcher (Myiarchus sagrae) R   10  

Parulidae      

Black and White Warbler (Mniotilta varia) M   2  

Cape May Warbler (Setophaga tigrina) M 2 1 26 GRW4 

Northern Parula (Setophaga americana) M 6 1 17 KZ04 

Northern Waterthrush (Parkesia noveboracensis) M   14  

Oriente Warbler (Teretistris fornsi) R,E 6 2 8 CUH01, OZ02 

Ovenbird (Seiurus aurocapilla) M   3  

Prairie Warbler (Setophaga discolor) M   7  

Western Palm Warbler (Stetophaga palmarum) M 6 1 25 GA01 

Yellow Warbler (Setophaga petechia) M 1 1 5 GRW4 

Mimidae      

Northern Mockingbird (Mimus polyglottos) R 6 2 15 YU02 

Turdidae      

Red-legged Thrush (Turdus plumbeus) R 5 1 7 GRW4 

Thraupidae      

Cuban Grassquit (Tiaris canorus) R,E 17 7 66 GRW4, GA01, LA01  

Icteridae      

Black-cowled Oriole (Icterus prosthemelas) M   16  

Cuban blackbird (Dives atroviolaceus) R,E 1  73  

Shiny Cowbird (Molothrus bonariensis) R   7  

Tawny-shouldered Blackbird (Agelaius humeralis) R   27  

Emberizidae 
     

Yellow-faced Grassquit (Tiaris olivaceus) R 1 
 

3 
 

Total 
 

59 20 363 
 



Figure. 
 

 
Figure 1: Map of showing locations where haemosporidian parasites were surveyed in bird 
populations (black). Red points represent areas where the Plasmodium relictum haplotype GRW4 
Pr9 was detected.  
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Abstract 
Although shorebirds (Charadriiformes: suborders Scolopaci and Charadrii) face 
physiological stress during migration and experience a wide range of vector-suitable 
habitats across their distributions, haemosporidian parasites (order Haemosporida) have 
rarely been detected in these species worldwide. We ask whether shorebirds remain 
infection-free when wintering in areas where parasite transmission occurs among 
landbird species. Blood samples were collected at three locations in Argentina: 
Patagonia, with an avian assemblage dominated by shorebird species; Mar Chiquita 
Lagoon, a high-salinity water basin where shorebird and landbird species co-occur; and 
inland sites in Chaco and Cordoba provinces, where host assemblages included mostly 
landbird species. We screened 650 samples for the presence of haemosporidian infections 
and sequenced a part of the parasite mitochondrial cytochrome b gene to determine 
parasite lineages. Of 342 landbirds, 91 were infected with haemosporidian parasites, 
compared to only three of 318 shorebirds. Wintering location had no effect on the 
prevalence of haemosporidian parasites in shorebirds. Haemosporidian infections are rare 
in shorebirds even when these co-occur with landbird species in inland areas suitable for 
parasite transmission. The few infections detected in shorebirds might represent spillover 
infections from landbirds, as the parasite lineages were also found in common landbird 
species. We suggest that shorebirds are resistant to haemosporidian parasites, and either 
do not become infected or quickly clear occasional infections.  

Introduction 
Haemosporidian parasites (Apicomplexa: order Haemosporida; genera Plasmodium, 
Haemoproteus, and Leucocytozoon) are vector-transmitted protozoans that replicate in 
the tissues of their vertebrate hosts (Valkiūnas 2004), and that are known to reduce host 
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reproductive success and survival (Atkinson et al. 2000, LaPointe et al. 2005, Asghar et 
al. 2011, Asghar et al. 2015). These parasites infect most species of birds that have been 
sampled, with a conspicuous exception of many shorebirds (Charadriiformes: primarily 
Charadriidae and Scolopacidae) (Greiner et al. 1975, Mendes et al. 2005, Yohannes et al. 
2008, D'Amico and Baker 2010). Greiner et al. (1975) screened 84 blood films from five 
Charadriidae species from the Western Hemisphere and found only a single individual 
(1.1%) black-bellied plover (Pluvialis squatarola) infected with Leucocytozoon parasites. 
They also examined 1156 blood films of 25 Scolopacidae species, and found only eight 
infections (0.7% of potential host individuals), five of which (0.4%) carried Plasmodium 
infections. Using PCR to identify infections, Mendes et al. (2005) found only six 
individuals of marine shorebirds (0.7%) with circulating haemosporidian parasites out of 
816 individuals screened across the East-Atlantic (Europe-Africa) flyway. Yohannes et 
al. (2008) also used PCR to search for haemosporidian parasites in 114 pectoral 
sandpipers (Calidris melanotus) and 84 semipalmated sandpipers (C. pusilla), finding 
only three Plasmodium infections (2.6%) in C. melanotus. D’Amico and Baker (2010) 
used PCR to screen 341 blood samples from red knots (Calidris canutus) caught in the 
Delaware Bay, New Jersey (USA), and found only one individual (0.3%) infected with 
Plasmodium parasites. Clark et al. (2016) discovered 40 haemosporidian infections (3. 
6%) in 1125 screened Australian wader samples. The scarcity of infections in migratory 
shorebirds is unexpected because haemosporidian parasites have been detected in most 
well-sampled bird species across all biogeographic regions of the world, except 
Antarctica (Bensch et al. 2009, Perkins 2014).  

Three complementary hypotheses might explain why haemosporidian infections are 
rarely detected in shorebirds. First, the ‘parasite avoidance’ hypothesis proposes that 
species travel longer distances to avoid pathogen transmission, breeding and wintering in 
relatively parasite-free environments (Curtis 2014). Indeed, some authors have suggested 
that parasite avoidance might determine whether individuals migrate or not, how far they 
travel, and even where they stop (Lokki and Saurola 2004, Poulin et al. 2012, Gohli et al. 
2015). Piersma (1997) suggested that shorebirds which use coastal marine wetlands 
rather than inland freshwater habitats tend to be less parasitized because marine 
environments do not support abundant dipteran vector populations. Testing the parasite 
avoidance hypothesis is challenging because the absence of detectable infections in 
shorebirds may indicate absence of suitable parasite vectors, resistance to or rapid 
clearing of infections, or absence of parasites from the peripheral blood while present in 
other tissues (Svensson-Coelho et al. 2016). Moreover, this hypothesis might have little 
relevance for birds in general, because migratory passerine species, some of which travel 
as far as shorebird species, are commonly infected by haemosporidian parasites (Hellgren 
et al. 2007), often with higher prevalence and parasite diversity than nonmigratory 
species (Pérez-Tris et al. 2004, Jenkins et al. 2012, Hellgren et al. 2013). Second, the 
‘migration culling’ hypothesis states that the physiological stress of migration (Nebel et 
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al. 2013) removes infected individuals from host populations, reducing prevalence and 
transmission of parasites in subsequent host generations (Bradley and Altizer 2005). Over 
time, through the elimination of susceptible hosts, migration culling could reduce 
pathogen prevalence, leading to reduced transmission or even to parasite extirpation. 
Migration culling can be tested only by monitoring parasite prevalence during host 
migration; the hypothesis would be supported if prevalence declined as a host population 
progresses through its migratory route (Bartel et al. 2011). Third, the ‘parasite resistance’ 
hypothesis suggests that shorebirds might have strong intrinsic immunity to parasite 
infection, which either prevents infection or clears infections rapidly. Accordingly, such 
species would be expected to exhibit low parasite prevalence throughout the annual 
cycle, even where parasite transmission is indicated locally by infections in other, 
resident species. This hypothesis is consistent with the general absence of infections by 
blood-borne pathogens in shorebirds (Greiner et al. 1975), but experimental infections 
have not been conducted in shorebirds to determine whether they are resistant to 
haemosporidian infections.  

In this study, to test the parasite resistance hypothesis, we screened wintering shorebirds 
for haemosporidian parasites in an area that we hypothesize to have a high infection risk 
for resident landbirds. We compare parasite prevalence between populations of shorebird 
species wintering at an inland site in Argentina, in association with haemosporidian-
infected individuals of many resident passeriform bird species, and at coastal sites in 
Patagonia, with few other potential host species and, presumably, few vectors. 
Specifically, we compare infections from four locations: two subtropical inland areas 
with abundant landbird species but lacking shorebirds (Cordoba city and Monte Alto, in 
Chaco province), one inland saline lakeside area that supports both landbird and 
shorebird species (Mar Chiquita Lagoon), and several arid, temperate coastal sites in 
southern Patagonia, where host assemblages are exclusively shorebirds. Infections in 
resident landbirds at Mar Chiquita Lagoon indicate local parasite transmission.  

The comparative framework of our study allows us to make predictions related to the 
parasite avoidance and the parasite resistance hypotheses. Specifically, if both landbirds 
and post-breeding migratory shorebirds at Mar Chiquita Lagoon were infected by 
parasites, we would conclude that the general absence of parasites in shorebirds 
elsewhere is a result of their reduced exposure to parasite transmission (supporting the 
parasite avoidance hypothesis). If landbirds are infected at Mar Chiquita Lagoon, but 
shorebirds are not, provided that shorebirds are present during the parasite transmission 
season we would conclude that shorebirds are inherently resistant to infection by 
haemosporidians (supporting the parasite resistance hypothesis).  

Two characteristics determine the suitability of an area for parasite transmission: 
competent invertebrate vectors and vertebrate host reservoirs. Because we did not assess 
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vectors in this study, we judge the suitability of an area for parasite transmission by the 
presence of infections in resident species. If Mar Chiquita Lagoon is a stopover or 
wintering site having low transmission risk, the diversity and prevalence of 
haemosporidian infections in shorebirds would be comparable to that in coastal 
environments of Patagonia, and landbirds would exhibit lower parasite diversity and 
prevalence there than their counterparts inland at Cordoba and Chaco. Alternatively, if 
shorebirds were generally resistant to haemosporidian parasites, the prevalence of 
infections should be low both in Patagonia and at Mar Chiquita Lagoon, and we would 
expect landbirds at Mar Chiquita Lagoon to be infected at frequencies comparable to 
those of landbirds at the sites in Cordoba and Chaco. Our analyses support the second 
hypothesis of well-developed parasite resistance in shorebirds.  

Materials and methods 

Field methods. Blood samples were collected in four regions of Argentina (Fig 1), 
principally during the southern hemisphere summer: Monte Alto in Chaco province 
(January through December, 2004), Cordoba city (January and February, 2005) and Mar 
Chiquita Lagoon (December 2004, October through November 2006) in Cordoba 
province, and fifteen localities in Patagonia (October through November 2004, January, 
April and December 2005, as well as November 2006). Numbers of landbirds and 
shorebirds captured at each location are presented in Tables S1 and S2 of the 
Supplemental Material. Lowland semi-arid vegetation interspersed with urban and 
farming areas characterizes Monte Alto and Cordoba city. Mar Chiquita Lagoon is a post-
Pliocene water basin that experiences variation in its water levels and salinity (Reati et al. 
1996). Water levels remained stable from 1980 through 2004, when a drought caused 
water levels decrease, leading to an increase in salinity and the exposure of coastal areas 
by 2006. Variation in the hydrologic regime of the lagoon impacts shorebird populations 
in the area, with numbers of individuals increasing as water levels decline and salinity 
increases (Reati et al. 1996, Nores 2011). Our samples from the Patagonian region of 
Argentina, which included only charadriiform species, were obtained in Chubut and 
Santa Cruz provinces from lakeside or coastal areas (Fig 1). For each individual captured, 
a small blood sample, generally <10 mL, was taken, after which the bird was released. 
Blood samples were stored in 70% ethanol at room temperature until laboratory analysis.  

Molecular detection, genotyping, and phylogenetic reconstruction. We removed 
approximately 1 mm3 of clotted blood from each sample and transferred it to a new 
microcentrifuge tube. Samples were then placed in a heated water bath at 50 °C for five 
days, or until all the ethanol had evaporated. The tubes with the dried blood were then 
filled with 1000 µL of Longmire’s lysis buffer (Longmire et al. 1997), and placed in a 
heated bath at 50 °C for five days or until all the blood had been incorporated into the 
solution. We extracted DNA from dissolved blood samples using standard isopropanol 
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precipitation preceded by enzymatic protein digestion and precipitation with ammonium 
acetate. We tested the quantity and quality of the extracted DNA using a Nanodrop 
EpochTM Take3TM multivolume plate reader spectrophotometer (ThermoFisher Scientific, 
Waltham, MA, USA) and by running 6 µL of each extracted sample for 60 min in a 2% 
TAE agarose gel stained with ethidium bromide. We repeated DNA extraction for 
samples that presented low DNA-to-contaminant ratios and samples that produced no 
band on the gel.  

We genotyped haemosporidian parasites in two steps. First, we screened all samples for 
infection with either of the haemosporidian genera Plasmodium or Haemoproteus by a 
PCR that targets a highly conserved, 154-bp 16S rRNA-coding sequence of the parasite 
mitochondrial DNA, using the primers 343F and 496R (Fallon et al. 2003). All samples 
that tested negative were screened twice to reduce false negative results.   

Samples found to be infected in the first PCR step were further subjected to one or more 
nested PCR assays that amplify a phylogenetically informative region of the 
mitochondrial cytochrome b gene (cyt b) of haemosporidian parasites of the genera 
Plasmodium and Haemoproteus. For the first set of nested PCR assays, we used the outer 
primer pair 3932F and DW4R (Perkins and Schall 2002, Olival et al. 2007) and the inner 
primer pair 413F and 926R (Ricklefs et al. 2005). When a sample was positive at the 
initial PCR screening, but failed to amplify in the first nested cyt b assay, we ran a second 
nested PCR using the HAEM primers (Waldenström et al. 2002). Two positive and one 
negative control were used on all PCR reactions. Forward sequencing of cyt b products 
was conducted at Beckman Coulter Genomics (Danvers, MA, USA), following the 
manufacturer’s protocols. Because our screening primers can amplify infections by other 
apicomplexan parasites, we sequenced the 154-bp amplicons from shorebird samples that 
failed to amplify on all cyt b assays.  

We matched cyt b sequences to known haemosporidian lineages using BLAST® (Basic 
Local Alignment Search Tool) against lineages deposited in GenBank®, MalAvi (Bensch 
et al. 2009), and our local lineage database. We distinguished as new haemosporidian 
lineages, sequences that differed by one non-silent nucleotide substitution or at least three 
silent nucleotide substitutions from known sequences. Sequences for new lineages were 
deposited in GenBank® (numbers KU258504-KU258521). Phylogenetic relationships 
among the parasite lineages were determined by maximum likelihood phylogeny 
reconstruction using a GTR + gamma model of nucleotide substitution and 100 bootstrap 
replicates. Sequence editing and phylogenetic analyses were performed using CLC Main 
Workbench version 7.0 (QIAGEN, http://www.clcbio.com). 

Statistical analyses. We used generalized linear mixed models with a binomial error 
distribution to test: 1) the null hypothesis that the prevalence of haemosporidian parasites 
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is comparable between shorebirds and landbirds in Mar Chiquita Lagoon; and 2) whether 
haemosporidian prevalence differed between Chaco province, Cordoba city, and Mar 
Chiquita Lagoon. One the first model, we used the classification landbird vs. shorebird as 
a two level-fixed effect, and on the second model we used the sampling locality as a four-
level fixed effect. To control for variation on prevalence attributed to differences on avian 
species composition between locations, we added a random intercept that corresponds the 
taxonomic family of each individual bird. The dependent variable on both models was the 
prevalence of haemosporidian infections (binary, infected vs. non-infected). We 
considered a sample to be infected with haemosporidian parasites only when positive 
PCR result was confirmed by sequencing of the parasite’s 16S rRNA or cyt b regions. 
Analyses were run using the package lme4 in R (Bates et al. 2015).   

Results 
Three of the 318 shorebirds sampled were positive for haemosporidian infections, 
revealing that these parasites are rare in shorebird species even when these birds are 
found in habitats where infections are known to occur in landbirds (Fig 2, Table 1). 
Below we divide our results in three sections that describe host assemblage composition, 
parasite assemblage composition, and finally the distribution of haemosporidian 
infections on shorebirds and landbirds across Monte Alto, Cordoba city, Mar Chiquita 
Lagoon, and Patagonia.  
 
Host assemblage composition. We screened 650 blood samples, of which 332 were from 
53 species of landbirds and 318 were from 16 species of shorebirds (Table 1 and Table 
S1 of the Supplemental Material). Ten of the shorebird species are long-distance migrants 
that breed at high latitudes on the arctic tundra of the northern hemisphere; the other six 
species migrate within the Southern hemisphere, wintering in sub-tropical regions and 
breeding primarily in cold, south-temperate areas. Eleven of the landbird species migrate 
within the Southern Hemisphere, and the remaining 42 are resident locally in the sample 
areas. Landbirds were sampled during winter months in Cordoba city and Monte Alto, 
which skewed our sampling of migratory landbirds by sampling more species that breed 
in temperate regions of the Southern hemisphere, and winter in subtropical areas. 

Host samples from Monte Alto and Cordoba were dominated by landbird species; no 
shorebird was caught in Monte Alto, and individuals of only four charadriiform species 
were caught in Cordoba: one southern lapwing (Vanellus chilensis), three collared 
plovers (Charadrius collaris), one white-rumped sandpiper (Calidris fuscicolis), and four 
pectoral sandpipers (Calidris melanotus). The Mar Chiquita Lagoon sample had a mixed 
host composition, including 18 landbird species, eight of which were also caught in 
Cordoba and Monte Alto, and 11 shorebird species, eight of which also were caught in 
Patagonia. No landbird species was sampled in Patagonia, but we did sample two least 
seedsnipes (Thinocorus rumicivorus), which is a charadriiform wader of temperate and 
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sub-tropical grasslands. T. rumicivorus individuals, like those of V. chilensis caught in 
Cordoba, often occur far from water bodies, even though they are more closely related to 
shorebirds than to landbirds. The differences in sample composition between Patagonia 
and the inland areas of Cordoba and Monte Alto reflected the dominance of shorebird 
species in the first location.  
 
Haemosporidian phylogenetic diversity. We were able to sequence the cyt b gene and 
assign lineages to 68% (91/134) of the infections of landbird species, and to two of the 20 
infections of shorebird species (Table 1). We confirmed the haemosporidian infection 
from one Charadrius falklandicus caught in Mar Chiquita by sequencing the parasite’s 
16S SSU rRNA, but we were unable to amplify the parasite’s cyt b of these shorebird 
infections. When looking at populations of shorebirds, landbirds, or both groups across 
locations, we found no difference in parasite incidence between the sampling years. 
Parasites were assigned to 33 haemosporidian lineages, including 13 Haemoproteus spp. 
and 20 Plasmodium spp. (Fig. 3), 10 and 8 of which, respectively, were new to us. The 
Plasmodium lineages ArgP1, ArgP3, ArgP7, ArgP8, and ArgP9 each occurred only once, 
and these were from host species represented by single captures (Table S1). Among the 
Haemoproteus lineages, ArgH1 and ArgH9 were each found only once, in individuals of 
the ground dove Columbina picui. ArgH1 is a close match to Haemoproteus sacharovi 
(Bensch et al. 2009); ArgH9 falls within a clade that includes lineages GA02 and SocH4, 
which are dove specialist parasites (Fallon et al. 2005, Carlson et al. 2013). Lineages 
ArgH2 and ArgH3 likely are generalist parasites, as they were recovered from three and 
seven host species, respectively.  
 
Site and host distribution of haemosporidian lineages. After controlling for differences in 
taxonomic composition between avian assemblages, the prevalence of haemosporidian 
parasites was comparable in Monte Alto (30%) and Cordoba (27%), marginally lower 
(10%) at Mar Chiquita Lagoon (Table 2), and close to nil in Patagonia. The most 
common lineage in Monte Alto, Cordoba, and Mar Chiquita was Haemoproteus sp. 
SocH4, first described in the Socorro ground dove (Zenaida graysoni), a resident 
endemic on Socorro Island, off the west coast of Mexico (Carlson et al. 2013). The 
second most prevalent lineage was Haemoproteus (Parahaemoproteus) ArgH2, which 
clusters with haplotype ArgH3 and haplotype CEhapH, the latter also described from the 
Brazilian Cerrado, a region with similar host composition and comparable climate to the 
Chaco province and to Cordoba, where ArgH2 was found.  
Compared to landbirds, shorebirds in Mar Chiquita Lagoon had lower, indeed close to 
nil, haemosporidian prevalence (Table 2). Only three shorebird individuals out of 318 
captured were infected with haemosporidian parasites: one white-rumped sandpiper 
(Calidris fuscicollis) at Mar Chiquita, one southern lapwing (Vanellus chilensis) at 
Cordoba, and a two-banded plover (Charadrius falklandicus) in Patagonia. The infection 
of C. fuscicollis was genotyped as a Haemoproteus lineage (ArgH2), which was also 
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found in a tyrant flycatcher (Elaenia sp.), a rufous hornero (Furnarius rufus), and a great 
kiskadee (Pitangus sulphuratus), which are common suboscine passerine landbirds in the 
region, and which could serve as reservoirs for this lineage. In Cordoba, we found 
another Haemoproteus lineage (ArgH10) infecting V. chilensis, as well as both sampled 
individuals of the bay-winged cowbird (Molothrus badius).  
 
We were unable to amplify the cyt b gene of the parasites infecting two individuals of C. 
falklandicus in Patagonia, but we confirmed that at least one of these was a 
haemosporidian infection by sequencing the 154 bp 16S rRNA coding region, which 
matched haemosporidian sequences in GenBank. In 15 cases, however, the screening 
primers based on the 16S rRNA coding region (the 343F/496R primer pair) amplified 
144 to 240 bp of DNA from C. fuscicollis. These 15 cases also correspond to samples that 
showed negative on the first PCR assay using the 16S rRNA screening primers, but 
appeared positive on the second 16S rRNA assay that attempted to identify false 
negatives. Apparently, this primer pair sometimes anneals to a region of C. fuscicollis 
genome, which could be misinterpreted as a haemosporidian infection without 
sequencing additional parasite DNA markers. 
 
Discussion  
We found that haemosporidian infections were rare in shorebird species compared to 
landbirds within the same environment (Mar Chiquita Lagoon) providing support for the 
hypothesis that shorebird species are resistant to haemosporidian infections. A shorebird 
in Mar Chiquita Lagoon, where we detected haemosporidian parasites in 26% of the 
landbirds, is as unlikely to be infected as a shorebird in Patagonia, where infection 
prevalence is close to nil. Infections are rarely detected in shorebirds generally, and when 
parasites are present, they usually exhibit low prevalence (Greiner et al. 1975, Mendes et 
al. 2005, Yohannes et al. 2008, Clark et al. 2016, this study). Haemosporidian parasites 
have been found in populations of migratory shorebirds of the east Atlantic flyway 
between Europe and Africa, though most of these infections were detected at inland, 
freshwater wintering sites in Africa, which presumably are suitable for parasite 
transmission owing to both competent host reservoirs and vectors (Mendes et al. 2005). 
However, even at inland, freshwater sites in Africa, Mendes et al. (2005) found 
haemosporidian infections in only 1 of 37 individuals of shorebird species that typically 
winter along saline shorelines, contrasting with 18% (48/261) of individuals of shorebird 
species that typically winter in freshwater habitats (Gadj = 7.8, d,f, = 1, P < 0.01). It is 
noteworthy that 40 of the 48 infections detected in shorebirds by Mendes et al. (2005) 
were found in ruffs (Philomachus pugnax), known to occur in freshwater wetlands. The 
results from Mendes et al. (2005), combined with evidence from our study that shorebird 
species rarely harbour haemosporidian infections, even when they occur in inland areas 
with infected resident landbird species, suggest that shorebird species that typically 
winter along saline shorelines effectively resist or suppress haemosporidian infection. 
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Why shorebirds generally have so few haemosporidian infections is not understood 
(Greiner et al. 1975, Piersma 2002). Proposed mechanisms have included limited vector 
exposure (Mendes et al. 2005), and even the size of the areas of the geographic 
distributions during breeding and wintering (Piersma 1997, Piersma 2003, Yohannes et 
al. 2008). Greiner et al. (1975) highlighted the scarcity of haemosporidian parasites in 
blood smears of shorebird species, suggesting a physiological barrier of parasitism in 
these species, as shorebirds occur in areas known to have vectors able to transmit the 
parasites. Our results also support the hypothesis that these birds are either incompatible 
hosts for haemosporidian parasites, in the sense of preventing parasite development, or 
are highly resistant, controlling or eliminating infections even when parasites are able to 
complete their life-cycle within the host.  
 

Most shorebirds that breed at high latitudes in the northern hemisphere undertake long-
distance migrations to wintering areas. Infections, particularly by blood parasites, likely 
increase the stress of migration (Jenni-Eiermann et al. 2014) and would therefore favour 
individuals with strong immune responses that reduce or eliminate haemosporidian and 
other blood parasites (Nebel et al. 2013). Strong immune resistance to haemosporidian 
parasites might be associated with the relatively long development periods and lifespans 
of shorebird species. Longer incubation periods allow more time for diversification of B-
cell lines that will express functionally different immunoglobulins (Killpack and Karasov 
2012). Studies in precocial galliforms have shown that B-cell lines differentiate mostly 
during embryonic development (Ratcliffe 2006). In altricial landbirds, incubation time is 
inversely related to the prevalence of hemoparasites (Ricklefs 1992), but this relationship 
has yet to be investigated in precocial birds. Little is known about the susceptibility of 
Charadriidae birds to infection or their ability to mount immune responses against 
parasites (except for Piersma 1997, Mendes 2006). 

Failure to detect haemosporidian infections should also be taken into account with respect 
to differences in prevalence between shorebird and landbird species. Given the high 
survival rates of migratory shorebirds (Sandercock 2003), we believe it is unlikely that 
parasites are highly pathogenic to these hosts, to the point that parasite-caused mortality 
would lead to under-detection of infections. However, under-detection might occur 
because haemosporidian parasites initially develop in tissues other than the blood, and 
infected hosts that do not present gametogeny or schizogony in red blood cells might test 
negative if the parasite survey is solely based on blood samples. In ruffs, for instance, 
haemosporidian lineages have been detected by PCR in tissues other than blood, 
including pectoral muscle, brain, and liver (Mendes et al. 2013).  

The marginally lower parasite prevalence in Mar Chiquita compared to Monte Alto and 
Cordoba suggests that the high salinity in the coastal areas of the lagoon might limit 



De Souza Soares, Leticia, 2016, UMSL, p.   
	

53	

vector reproduction. Although the abundance of dipteran vectors might be lower in the 
shoreline of the lagoon, ornithophilic vectors must be present in the area because resident 
land birds exhibit normal prevalence of haemosporidian parasites. Amiron and Brewer 
(1995) determined the feeding preferences of mosquitoes in Mar Chiquita by looking at 
the frequency of dipterans captured in traps baited with turtles, rabbits, or chickens. The 
traps baited with chickens collected 69% of the mosquitos, all of which belonged to four 
species of Culex sp. (Almirón and Brewer 1995), including C. quinquefasciatus, a known 
vector of avian malaria (Fonseca et al. 1998). As far as we are aware, ornithophilic biting 
midges (Culicoides, Diptera), which are the vectors of Haemoproteus sp. parasites, have 
not been surveyed in the area. We also acknowledge that untested variables could explain 
the scarcity of infections on shorebird species; these include differences in microhabitat 
usage among host species, which could lead differential vector exposure. Future studies 
on vector ecology should focus on surveying avian parasite vectors as well as 
determining vector-feeding preferences, particularly on landbirds compared to shorebirds. 

Finally, the identified Haemoproteus sp. lineages from shorebirds were also present in 
passerine hosts in the study areas, suggesting that the occasional infections in shorebird 
species represent spillover infections from common landbirds. Similarly, Mendes et al. 
(2013) found that most lineages detected in tissue samples of ruffs were also found in 
several common passerine species in both Africa and Europe. Haemoproteus and 
Plasmodium parasites can have broad host breadth, being able to infect host species of 
different genera and even different families (Bensch et al. 2000). However, because we 
lacked blood smears for the Argentine samples, we could not determine whether the few 
infections in shorebirds produced gametocytes and, therefore, could be transmitted to 
other birds (Valkiūnas 2004). Serological tests of immune responses could reveal whether 
shorebird individuals had been infected, but had not developed the blood stages of the 
infection, and therefore were under-detected in PCR screenings (Jarvi et al. 2002). Future 
studies should determine the frequency of parasite exposure through immune assays, and 
look for evidence of haemosporidian gametocytes in blood smears, testing the hypothesis 
that parasites often fail to complete their life cycles within shorebirds once infection takes 
place. Overall, our study indicates that haemosporidian infections are rare in shorebird 
species that winter along high salinity shorelines, even in areas of high transmission risk, 
implying that shorebirds resist haemosporidian infection.  
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Tables 

Table 1: Numbers of landbird and shorebird samples analysed per location. Numbers 
within the parentheses represent the number of infected individuals detected using 
conservative screening primers that amplify a region of the 16S SSU rRNA of 
haemosporidian parasites and, in bold type, individuals that tested positive and were 
successfully sequenced and genotyped using primers that amplify a region of the 
parasite’s mitochondrial cytochrome b gene.  
 

Area Landbirds Shorebirds 

Monte Alto (Chaco province) 87 (40/26) 0 

Cordoba city (Cordoba province) 176 (68/49) 7 (2/1) 

Laguna Mar Chiquita (Cordoba province) 61 (18/16) 119 (16/1) 

Patagonia 0 197 (2/0)  
 

 
Table 2: Parameter estimate, standard error, P value for the two generalized linear mixed 
effect models testing the differences in prevalence between landbirds and shorebirds on 
Mar Chiquita lagoon, and the differences in prevalence between sampling locations. In 
both models, the taxonomic family of each individual bird was used as a random 
intercept to account for differences in species composition between comparison groups.  
 

 Model 1 H0: Prevalence of haemosporidian parasites is comparable between 
shorebirds and landbirds in Mar Chiquita Lagoon.   
Parameter Estimate Std. Error P 
Landbird (intercept) -1.5 0.6 0.01 
Shorebird -2.9 1.4 0.04 
Parameter (Random Effect) Variance Std. Deviation   
Avian Family 0.2 0.4   
Model 2 H0: Prevalence of haemosporidian parasites is comparable between 
sampling locations.  
Parameter (Fixed Effect) Estimate Std. Error P 
Cordoba (intercept) -1.4 0.3 <0.01 
Monte Alto 0.3 0.3 0.4 
Mar Chiquita Lagoon -0.6 0.4 0.09 
Patagonia -21.8 142.0 0.9 
Parameter (Random Effect) Variance Std. Deviation   
Avian Family 0.5 0.7   

 



De Souza Soares, Leticia, 2016, UMSL, p.   
	

59	

Figures 

 

Figure 1. Map showing the sample locations: Monte Alto (Chaco province), Cordoba 
province (Mar Chiquita Lagoon and Cordoba city), and fifteen localities in Patagonia, 
which were either coastal or bordered bodies of fresh water.  
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Figure 2. Graph representing the number of landbird and shorebird individuals infected 
with haemosporidian parasites in Cordoba, Monte Alto (Chaco Province), Mar Chiquita 
Lagoon, and Patagonia.  
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Figure 3. Maximum likelihood phylogeny of haemosporidian lineages found infecting 
avian hosts in Argentina constructed using a GTR + gamma model of nucleotide 
substitution. New lineages are labelled with the code Arg. PL, HP and HH correspond to 
the clades grouping haemosporidian lineages of the genera Plasmodium, Haemoproteus 
(subgenus Parahaemoproteus) and Haemoproteus (subgenus Haemoproteus), 
respectively. Numbers at the nodes represent bootstrap support values above 70%, based 
on 100 replicates.  
 

 

 

 

 



Table S1: Samples of birds in four locations in Argentina. The numbers within 
parentheses represent positive samples identified through PCR amplification of a coding 
region for the 16S small subunit of ribosomal RNA. The number of infections sequenced 
represents the positives amplified and sequenced using primers that target the parasite’s 
cytochrome b coding region. Plasmodium lineages in italics; Haemoproteus 
(Haemoproteus) lineages in bold type; Haemoproteus (Parahaemoproteus) lineages in 
normal type. Shorebird species are shaded in grey.  

 
Classification 

Migratory 
/Resident 

Monte 
Alto 

Cordoba 
Mar 
Chiquita  

Patagonia Total 
 Infections 
Sequenced 

Lineages 

SCOLOPACIDAE                 

Calidris fuscicollis M   1 (1) 57 (15) 62 120 1 ArgH2 

Calidris bairdii M       29 29     

Micropalama 
himantopus 

M     27 (1)   27     

Calidris melanotos M   4 11 2 17     

Tringa flavipes M     11 6 17     

Limosa haemastica M       7 7     

Calidris alba M       3 3     

Steganopus tricolor M     2   2     

Calidris canutus M       1 1     

CHARADRIIDAE                 

Charadrius 
falklandicus 

M/R*     4 58 (2) 62 
1 

 ** 

Vanellus chilensis R   1 (1) 2 3 6 1 ArgH10 

Charadrius collaris R   3 3   6     

Oreopholus ruficollis M     1   1     

Pluvialis dominica M     1   1     

HAEMATOPODID
AE 

                

Haematopus 
leucopodus 

M       17 17     

THINOCORIDAE                 

Thinocorus 
rumicivorus 

R       2 2     

COLUMBIDAE                 

Columbina picui R 8 (6) 28 (13) 39 (12)   75 23 

ArgH1, 
ArgH9, 
ArgP5, 
CEhapH, 
GA02, OZ04, 
SocH4 

Zenaida auriculata R   5 (2)     5 2 ArgH5, DSA-
2013 

Leptotila verreauxi R 2 (1)       2 1 ArgH8 

Columba maculosa R   1     1     

TYRANNIDAE                 

Pitangus sulphuratus R 1 (1) 46 (13) 2 (1)   49 15 
ArgH2, 
ArgH3, 
ArgP7, NA03  

Elaenia sp. R 7 (4) 3     10 3 
ArgH2, 
ArgH3, 
CHI04PL 
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Xolmis irupero R     3   3     

Pyrocephalus 
rubinus 

M   2     2 
  

  

Griseotyrannus 
aurantioatrocristatus 

M     1 (1)   1 1 ArgP1 

Tyrannus 
melancholicus 

R 1 (1)       1 1 ArgH2 

Tyrannus savana M   1 (1)     1 1 ArgH3 

Stigmatura 
budytoides 

R 1 (1)       1 1 ArgH3 

FURNARIIDAE                 

Furnarius rufus R 6 (2) 31 (13) 3 (2)   40 17 

ArgH2, 
ArgH3, 
ArgP2, 
CHI04PL, 
LINN1, OZ01, 
P11 

Coryphistera 
alaudina 

R 6 (2)   1   7 1 ArgH3 

Pseudoseisura 
lophotes 

R   5 (3)     5     

Lepidocolaptes 
angustirostris 

R 3       3     

Xiphocolaptes major R 1       1     

Campylorhamphus 
falcularius 

R 1       1     

Anumbius annumbi R 1 (1)       1     

TURDIDAE                 

Turdus 
amaurochalinus 

M 12 (5)   2 (1)   14 4 
ArgP6, 
ArgP8, P11, 
SocH4 

Turdus rufiventris R 6 (4)       6 1 ArgP6 

THRAUPIDAE                 

Thraupis sayaca M 11 (3)       11 2 P26879, 
SocH4 

Sicalis flaveola R   9 (2)     9 2 
ArgH4, 
ArgP2 

Sporophila 
caerulescens 

M   6 (3)     6 1 ArgP2 

Poospiza 
melanoleuca 

R 4 (2)       4 1 OZ04  

Coryphospingus 
cucullatus 

R 3 1     4     

Poospiza nigrorufa R   1 (1)     1     

Poospiza ornata M   1     1     

Embernagra 
platensis 

R     1   1     

EMBERIZIDAE                 

Saltator 
aurantiirostris 

R 4 (3) 2 1   7 
  

  

Zonotrichia capensis R   5 (3) 1 (1)   6 1 ArgH6 

Lophospingus 
pusillus 

R 
  

1 (1)     1 1 JA06  

Ammodramus 
humeralis 

R   1 (1)     1 
  

  

PASSERIDAE                 

Passer domesticus R   10 (3)     10 2 ArgH5, 
NAN015 

CUCULIDAE                 

Coccyzus 
melacoryphus 

R 3 (2) 4 (1)     7 1 ArgP9 



De Souza Soares, Leticia, 2016, UMSL, p.   
	

64	

COTINGIDAE                 

Phytotoma rutila M   5 (2)     5 2 ArgP2, 
RDSM1 

MIMIDAE                 

Mimus triurus M   5 (3)     5 2 ArgP2, P11 

ICTERIDAE                 

Molothrus 
bonariensis 

R   2 1   3     

Molothrus badius R 1 (1) 1 (1)     2 2 ArgH10 

Cacicus solitarius R 2 (1)       2 1 ArgH7 

Molothrus 
rufoaxillaris 

R     1   1     

TROGLODYTIDAE                 

Troglodytes aedon M   2 (2)     2 1 ArgP2 

TITYRIDAE                 

Pachyramphus 
polychopterus 

R   2     2     

PSITTACIDAE                 

Myiopsitta monachus R   2     2     

CERYLIIDAE                 

Chloroceryle 
americana 

R 1   1   2     

HIRUNDINIDAE                 

Tachycineta meyeni R     1   1     

PICIDAE                 

Picoides mixtus M     1   1     

BUCCONIDAE                 

Nystalus maculatus R     1   1     

FALCONIDAE                 

Milvago chimango R   1 (1)     1 1 ArgP3 

CAPRIMULGIDAE                 

Caprimulgus 
longirostris 

R 1       1     

Hydropsalis 
brasiliana 

R     1   1     

CARDINALIDAE                 

Cyanocompsa 
brissonii 

R 1       1     

FRINGILLIDAE                 

Carduelis 
magellanica 

R   1 (1)     1 
  

  

TOTAL   87 (40) 183 (78) 180 (34) 190 (2) 650 
(154) 93   

* Mar Chiquita Lagoon has a breeding population of Charadrius falklandicus. 
** Haemosporidian infection confirmed by sequencing a 154-bp fragment of the 
parasite’s mitochondrial genome encoding for the 16S subunit of rRNA.  
 
Notes: CEhapH has been found in passerine species occurring in the arid regions of 
Cerrado and Caatinga in Brazil; CHI04PL is very common in North American 
thrushes, especially Turdus migratorius; DSA-2013 and CE261 are closely related to 
the lineage MODO1, which has been previously recorded only in mourning doves of 
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North America (Zenaida macrorura); GA02 is common in common ground doves 
(Columbina passerina) in the West Indies and Central America; JA06, recovered from 
two bananaquits (Coereba flaveola) in Jamaica; NA03, has been found in several 
migratory passerine species that winter in Chile and Argentina, and also in the austral 
residents Falkland thrush (Turdus falklandii) and Juan Fernandez tit-tyrant (Anairetes 
fernandezianus); LINN1 is a lineage that frequently infects Passeriformes, previously 
detected only in hosts caught in Europe and Oceania. NAN015 (or GRW03) is a 
cosmopolitan lineage, found in the Americas, Europe, Africa, Asia and Oceania; OZ01, 
widespread and abundant in many North American hosts, common in the West Indies 
and Mexico, and occasional in South America; OZ04 has been recovered from many 
hosts in the West Indies, and also infrequently in Trinidad, Tiputini (Amazonian 
Ecuador), and migrant passerines in Misssouri; P11, P26489 and RDSM are common 
generalist lineages of passerine species from South America.  

Table S2: Number of samples from landbirds (L) and shorebirds (S) sampled at each 
location, between 2004 and 2006.  

 
 2004 2005 2006 
Cordoba  L=176; S=7  
Monte Alto L=87   
Patagonia S=31 S=159  
Mar Chiquita L=61; S=79  S=40 
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CHAPTER 4. 
CO-INFECTIONS OF HAEMOSPORIDIAN AND TRYPANOSOME PARASITES IN A NORTH 
AMERICAN SONGBIRD 
 
Letícia Soares1, Vincenzo A. Ellis1,2 and Robert E. Ricklefs1 
 
1. Department of Biology, University of Missouri-St. Louis, R223 Research Building, 
One University Boulevard, St. Louis 63121 MO, USA.  
2. Departamento de Biologia Geral, Instituto de Ciências Biológicas, 
Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. 
 
Published as: Soares L., Ellis V. and Ricklefs R. 2016. Co-infections of haemosporidian 
and trypanosome parasites in a North American songbird. Parasitology (20) 1–9, doi: 
10.1017/S0031182016001384 
 
Summary 
Hosts frequently harbor multiple parasite infections, yet patterns of parasite co-
occurrence are poorly documented in nature. In this study, we asked whether two 
common avian blood parasites, one haemosporidian and one trypanosome, affect each 
other’s occurrence in individuals of a single host species. We used molecular genotyping 
to survey protozoan parasites in the peripheral blood of yellow-breasted chats (Aves: 
Passeriformes [Parulidae]: Icteria virens) from the Ozarks of southern Missouri. We also 
determined whether single and co-infections differently influence white blood cell and 
polychromatic erythrocyte counts, the latter being a measure of regenerative anemia. We 
found a positive association between the haemosporidian and trypanosome parasites, 
such that infection by one increases the probability that an individual host is infected by 
the other. Adult individuals were more likely than juveniles to exhibit haemosporidian 
infection, but co-infections and single trypanosome infections were not age-related. We 
found evidence of pathogenicity of trypanosomes in that infected individuals exhibited 
similar levels of regenerative anemia as birds infected with haemosporidian parasites of 
the genus Plasmodium. Counts of white blood cells did not differ with respect to 
infection status.  
 
Introduction 
Multiple infections by different parasites are commonly observed within single host 
individuals (Cox, 2001; Alizon et al., 2013), and such coexisting parasites may interact to 
either enhance or reduce the pathologic effects of infection (Alizon et al., 2013; 
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Budischak et al., 2015). Co-infection also can influence host survival (Klemme et al., 
2016). For example, survival of laboratory mice infected with Trypanosoma brucei 
increased when the mice were experimentally infected with a second, less virulent, 
genotype (Balmer et al., 2009). In another set of experimental infections of mice, two 
helminth species and one bacterial strain affected each other’s virulence in co-infection, a 
result of direct competition for host resources and of interaction with the host immune 
system (Budischak et al., 2015). While within-host parasite interactions may influence 
parasite virulence, and therefore, the consequences of parasitism, co-infections in wild 
populations remain under-studied.  
 
In one-host-one-parasite systems, the evolution of virulence shifts the trade-off between 
parasite replication and host mortality; high host mortality can outweigh the benefits to 
the parasite of increased parasite transmission (de Roode et al., 2008; Alizon et al., 
2013). However, co-infections can make such trade-offs irrelevant by causing parasite 
virulence to increase beyond the transmission-host mortality threshold (de Roode et al., 
2005). For example, red crossbills (Loxia curvirostra) co-infected with two species of 
malaria parasites, Plasmodium relictum and P. ashfordi, develop higher parasitemias of 
both infections than birds infected with either one of these parasite species alone 
(Palinauskas et al., 2011; Dimitrov et al., 2015).  Increased virulence is not the only 
possible outcome of co-infection. Apparent competition is often detected in co-infections, 
as one parasite infection can interact through the host immune system to influence the 
probability of acquiring a subsequent infection (Mideo, 2009). For instance, field voles 
(Microtus agrestis) are more or less likely to acquire new infections over time depending 
on pre-existing parasite infections, regardless of their body condition (Telfer et al., 2010).  
 
Here, we ask how two common protozoan parasites influence each other’s occurrence in 
a host population of yellow-breasted chats (Parulidae, Icteria virens) in North America. 
Avian haemosporidian parasites (order Haemosporida, genera Plasmodium, 
Haemoproteus and Leucocytozoon) are protozoans transmitted by blood-feeding 
dipterans, replicating in the tissues of their vertebrate hosts, and undergoing sexual 
reproduction and sporulation in the midgut of the their invertebrate dipteran vectors 
(Valkiūnas et al., 2005). Experimental infections indicate that haemosporidian parasites 
reduce host activity, reproductive success, and longevity (Atkinson et al., 2000; 
Palinauskas et al., 2008; Knowles et al., 2009; Palinauskas et al., 2009; Knowles et al., 
2010; Asghar et al., 2015). The principal vectors for Plasmodium parasites are Culicidae 
mosquitos; Haemoproteus parasites are transmitted by biting midges (Ceratopogonidae: 
Culicoides) and hippoboscid flies (Hippoboscidae); Leucocytozoon parasites are vectored 
by Simuliidae black-flies (Valkiūnas, 2004).  
 
Trypanosomes (class Kinetoplastida: order Trypanosomatida) are transmitted by a variety 
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of vectors, including mosquitoes, mites, black flies, hippoboscids, and midges (Votýpka 
et al., 2004; Van Dyken et al., 2006; Černý et al., 2011; Ivkovic et al., 2013). In contrast 
to haemosporidian parasites, which are transmitted to the vertebrate host by inoculation 
of sporozoites along with the vector’s saliva, trypanosomes actively reach the host’s 
blood stream by crossing mucosal membranes (Dresser et al., 1975). Metacyclic 
trypomastigotes, the trypanosome infective stage from invertebrate to vertebrate host, 
may develop in the insect’s hindgut, although Trypanosoma culicavium infecting Culex 
spp. mosquitos develop first in the midgut, and later migrate to the stomodeal valve of the 
insect host (Votýpka et al., 2012), showing that development strategies in the invertebrate 
vector are variable. Transmission to the vertebrate host can happen via abraded skin, with 
parasites entering the host through the epidermis, or via an oral route, whereby birds feed 
on infected vectors and the parasites enter the bloodstream by crossing the mucosa of the 
bird’s oral cavity, esophagus, or crop (Baker, 1956a; Votýpka and Svobodová, 2004). 
Although little is known about the pathogenicity of trypanosome infections in birds, these 
parasites are reported to cause subclinical infections of low parasitemia in avian hosts 
(Baker, 1956b; Valkiūnas et al., 2004; Zídková et al., 2012), with extremely variable 
prevalence across host species, ranging from zero to as high as 100% (Greiner et al., 
1975a; Kirkpatrick and Lauer, 1985; Kirkpatrick and Suthers, 1988; Sehgal et al., 2001).  
 
Yellow-breasted chats are the largest of the North American warblers, although their 
taxonomic placement is not fully resolved (Lovette et al., 2010). They typically inhabit 
dense shrublands and second-growth forests (Morris et al., 2013; Reidy et al., 2014). 
Individuals breed across most of the United States, southern British Columbia and 
Alberta, as well as northern Mexico; the winter range extends from Mexico to Panama. 
Yellow-breasted chats that we have sampled across Missouri, Tennessee, and Mexico are 
mainly parasitized by one specialist lineage of haemosporidian parasite, designated in our 
laboratory as Plasmodium sp. OZ08 (GenBank accession HM222485). Surveys of blood 
parasites in North America have detected trypanosomes in blood films of I. virens 
(Stabler et al., 1966; Greiner et al., 1975b; Kirkpatrick and Suthers, 1988). During a 
recent investigation of white blood cell frequencies in birds infected with haemosporidian 
parasites (Ellis et al., 2014), we detected trypanosome parasites in the blood films of 
yellow-breasted chats sampled in the Ozarks plateau of southern Missouri. Accordingly, 
in this study, we sought to determine whether: 1) occurrences of haemosporidian and 
trypanosome parasites are associated in this host population; 2) co-infections exhibit an 
age or sex bias; and 3) co-infections affect host condition, using, as proxies, regenerative 
anemia and white blood cell counts.   
 
Materials and Methods 
Blood sampling 
Yellow-breasted chats were caught using standard mist-net protocols. Sampling was 
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originally conducted to survey haemosporidian parasites of avian assemblages in the 
Ozarks plateau of southern Missouri (91.03°W, 37.12°N), during the summer of the years 
1999-2002 and again in 2011 (Ricklefs et al., 2005; Svensson-Coelho et al., 2013; Ellis et 
al., 2015). All sampling was covered under state and federal permits, with field protocols 
approved by an Institutional Animal Care and Use Committee (IACUC) at the University 
of Missouri-St. Louis. For each individual captured, a small blood sample was taken 
through brachial venipuncture and stored in Longmire’s lysis buffer (Longmire et al., 
1997) and a thin blood film was prepared in the field. We fixed all blood smears with 
methanol on the same day, and stained them with Giemsa within 30 days, following a 
standard staining protocol (Valkiūnas, 2004). Individuals were identified as after-hatch 
year (AHY), and hatch-year (HY) birds, which we refer to as adults and juveniles, 
respectively. All birds were released at the site of capture. 
 
Molecular detection and genotyping of parasites 
We extracted DNA from blood samples using a standard isopropanol precipitation 
protocol, preceded by enzymatic protein digestion and precipitation with ammonium 
acetate. Detection and genotyping of haemosporidian infections have been described 
elsewhere (Ricklefs et al., 2005; Svensson-Coelho et al., 2013; Ellis et al., 2015). 
Detection and genotyping of trypanosome parasites were based on a nested PCR assay 
that amplifies a 770 bp fragment of the 18S SSU rRNA gene sequence, adapted from 
Valkiūnas et al. (2011). The outer PCR assay used the primers Tryp763 and Tryp1016, 
with 10 µL of master mix containing 0.6 µM of each primer, 200 µM of each dNTP, 1.2 
mM of MgCl2, 8 mM of Tris-HCl, 40 mM of KCl, 0.1 µL Taq DNA polymerase and 2 
µL of DNA template. The inner PCR assay used 0.5 µL of DNA template from the outer 
reaction, in a 20 µL reaction volume with the primers Tryp99 and Tryp957. The PCR 
master mix for the inner reaction contained 0.6 µM of each primer, 200 µM of each 
dNTP, 1.2 mM of MgCl2, 8 mM of Tris-HCl, 40 mM of KCl, 0.5 µL of Taq DNA 
polymerase. Thermocycler conditions for the outer essay were: initial denaturation at 
95°C for 5 min, 5 cycles of 95°C for 1 min, 45°C for 30 sec, and 65°C for 1 min, 
followed by 35 cycles of 95°C for 1 min, 50°C for 30 sec, 72°C for 1 min, and a final 
extension at 65°C for 10 min. On the inner PCR assay, thermocycler conditions were: 
initial denaturation of 96°C for 3 min, 25 cycles of 96°C for 30 sec, 58°C for 1 min, and 
72°C for 30 sec, and a final extension at 72°C for 7 min. We measured the DNA 
concentration and purity from all samples that tested negative, and confirmed that 
negative results were not due to extraction failures. We used the product of the inner PCR 
assay for bidirectional sequencing with BigDye Terminator v3.1 using ABI PRISM® 
3100 DNA Analyzer (Applied Bio Systems®, USA) at the University of Missouri-St. 
Louis. DNA sequences were edited and analyzed on CLC Main Workbench version 7.0 
(QIAGEN, http://www.clcbio.com).  
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Molecular sexing of hosts 
For all individuals whose sex we could not determine based on plumage differences 
observed in the field (N=100), we used molecular sexing based on the PCR amplification 
of CDH1 genes found in avian sex chromosomes (Fridolfsson and Ellegren, 1999). 
Primers were 2550F and 2718R, in a PCR master mix with a final volume of 10 µL and 1 
µL of genomic DNA. The master mix contained 0.3125 units of Taq DNA polymerase, 
1.5 µL of 10X buffer, 2.5mM of each dNTP, 1.625 mM of MgCl2, and 0.5 µM of each 
primer. Thermal cycling conditions were as follows: 2 minutes at 94 ºC, followed by 31 
cycles of 45 seconds at 94 ºC, 45 seconds at 48 ºC, 45 seconds at 72 ºC, and final 
elongation for 10 minutes at 72 ºC. Sex was determined by the number of bands after 
running 8 µL of amplicon on a 2% agarose gel for 40 min.  
 
Microscopy 
We selected slides for microscopic viewing based on the PCR detection of parasites. We 
analyzed five slides for each of the following groups of individuals: 1) negative for both 
haemosporidian and trypanosome parasites; 2) positive for both haemosporidian and 
trypanosome parasites; 3) positive only for haemosporidian parasites; and 4) positive 
only for trypanosome parasites (four slides analyzed). We examined blood slides using an 
Olympus 224 CX31 light microscope, equipped with a Leica ICC50 HD digital camera 
and Leica Application Suite, version 4.4.0, imaging software. We took 100 pictures, 
corresponding to 100 fields at high magnification (x 1000), and used ImageJ to count the 
number of cell nuclei on each picture (Girish and Vijayalakshmi, 2004; Gering and 
Atkinson, 2004). We manually recorded the numbers of heterophils, eosinophils, 
basophils, lymphocytes, thrombocytes, as well as the number of polychromatic 
erythrocytes (PE) and the number of mature erythrocytes infected with haemosporidian 
parasites. Infections by haemosporidian parasites can lead to elevated counts of 
heterophils (Ellis et al., 2014), which could be costly to the host due to tissue damage 
related to inflammatory responses (Ots et al., 1998). Decreased numbers of lymphocytes 
could signal immunosuppression, as these cells are responsible for the production of 
antibodies against infective agents (Ots et al., 1998). PE are erythrocytes prematurely 
released, or just released, from the bone marrow into the blood stream. PE have 
basophilic cytoplasm and cell nuclei showing clumps of condensed chromatin. Elevated 
levels of PE may signify regenerative anemia, which is a condition caused by either 
blood loss or hemolysis (Atkinson et al. 2014; Samour, 2006). The proportion of each 
white blood cell type was calculated as the number of cells per 104 non-polychromatic 
erythrocytes.  
 
Statistical analyses  
We used Fisher’s exact tests and log linear tests for two-way and three-way contingency 
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analysis, respectively. We applied generalized linear models with a binomial error 
distribution to determine the effects of individual parasite lineages on the 
presence/absence of a second parasite. The first of these models tested the effects of 
haemosporidian lineages on the occurrence of trypanosome parasites. In this model, 
presence/absence of trypanosome parasites in each individual host was the response 
variable, and the presence/absence of each lineage of haemosporidian parasite was a 
multi-level categorical predictor. The second model followed the same reasoning, but 
with trypanosome lineages as the predictor variable and presence/absence of 
haemosporidian parasites as the response variable. Blood cell count data were represented 
as proportions of cells relative to 104 non-polychromatic erythrocytes. We used ANOVA 
and the post-hoc Tukey’s HSD to compare hematological parameters determined through 
microscopy between groups of birds with single and co-infections. All analyses were 
performed in R (R Core Team, 2015). 
 
Results  
We screened 153 individual yellow-breasted chats, of which 52 were infected with 
haemosporidian parasites, 40 were infected with trypanosomes, and 23 harbored co-
infections with lineages of both parasites. Genotyping identified ten haemosporidian 
lineages, with 33 (63%) of the infections being Plasmodium lineage OZ08, and 7 (13%) 
Plasmodium lineage OZ01 (Fig. 1). We observed five trypanosome lineages, 29 (72.5%) 
of which were assigned to the lineage Tryp01, which closely matches (nucleotide 
pairwise difference of 1.6%) a SSU rRNA sequence of Trypanosoma bennetti (Genbank 
accession AJ223562), first isolated from an American kestrel (Falco sparverius) (Haag, 
1998). The lineage Tryp04 also matches T. bennetti AJ223562 (nucleotide pairwise 
difference of 2.2%). Tryp02 and Tryp03 do not match any identifiable morphotype 
sequence available in Genbank. The trypanosome lineages Tryp01-Tryp03 have an 
average nucleotide pairwise difference of 2%; Tryp04 differs by an average of 6.5% from 
Tryp01-Tryp03. Sequences for new trypanosome lineages were deposited in Genbank: 
accession numbers KX179915 – KX179918. 
We determined the sex of 149 individuals, of which 81 were males and 68 were females. 
Sexes did not differ in the prevalence of single or co-infections (Table 1). Overall, 102 
individuals were identified adults, and 42 as juveniles. Adults were more likely than 
juveniles to be infected with haemosporidian parasites; however, we found no effect of 
age on the occurrence of trypanosome infections (Table 2). We had determined in the 
field the age of 30 out of the 33 individuals infected with the specialist Plasmodium 
lineage OZ 08, and 28 of these were adults. Additionally, only ten adults harbored 
infections by lineages other than OZ 08. Co-infections were more common in adults than 
in juveniles, though the difference was only marginally significant (Table 2). 
 
An individual I. virens carrying one parasite infection was almost four times more likely 
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to be carrying a second type of parasite (Fisher’s exact test, P = 0.0004, odds ratio = 3.9, 
CI = 1.7–8.9). The Plasmodium lineage OZ08, the most common haemosporidian lineage 
infecting yellow-breasted chats (Fig. 1), was positively associated with the occurrence of 
trypanosome infections in individual hosts. That is, if an individual was infected with 
OZ08, it would more likely be infected with any given lineage of trypanosome parasite 
(Table 3). The Plasmodium lineage OZ04, recovered from only three individuals, showed 
a positive, marginally significant relationship with trypanosome infections; two of the 
three hosts infected with OZ04 also were infected with trypanosome parasites (Table 3). 
When we looked at the effects of trypanosome lineages on the probability of harboring 
haemosporidian infections, we found that Tryp01, the most frequent trypanosome 
lineage, increased the probability of an individual host also being infected with a 
haemosporidian parasite (Table 3).  
 
Counts of polychromatic erythrocytes (PE), white blood cells, and erythrocytes infected 
with haemosporidian parasites are summarized in Table S1 of the Supplemental Material. 
Yellow-breasted chats that tested negative for both haemosporidian and trypanosome 
infections had lower levels of PE compared to individuals with either single or co-
infections (F = 11.9; P < 0.001, Tables S1 and S2 of the Supplemental Material). 
Individuals infected with both Plasmodium spp. and Trypanosoma spp. had levels of 
haemosporidian-infected erythrocytes comparable to individuals infected only with 
Plasmodium spp. parasites (t-test = -0.4366, d.f. = 4, P = 0.7). The proportion of 
heterophils, eosinophils, basophils, lymphocytes, monocytes, and thrombocytes did not 
differ among individuals that were uninfected, co-infected, or singly infected.  
 
Discussion 
We found a positive association between haemosporidian and trypanosome infections, 
meaning that individuals infected by one parasite are more likely to carry a second 
protozoan infection. Specifically, the Plasmodium lineage OZ08 was positively 
associated with the trypanosome lineage Tryp01. A relationship between haemosporidian 
and trypanosome parasites was similarly observed in Alaskan passerine birds, where 
Trypanosoma infections were positively associated with Leucocytozoon and 
Haemoproteus infections, but not with Plasmodium infections (Oakgrove et al., 2014). 
These associations are unlikely to result solely from these parasites being co-vectored, as 
the transmission routes of avian trypanosomes and some avian haemosporidian parasites 
may differ (Baker, 1956a; c; Molyneux and Robertson, 1974; Votýpka and Svobodová, 
2004). We also found that trypanosome infections cause comparable levels of 
regenerative anemia as Plasmodium infections, which provides evidence of disease 
related to Trypanosoma.  
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An association between trypanosome and haemosporidian parasites also has been 
reported in Eurasian sparrowhawks (Accipeter nisus) and common buzzards (Buteo 
buteo) (Svobodová et al., 2015). For individuals of these raptor species, co-infections 
involving Trypanosoma and Leucocytozoon parasites were more frequent than co-
infections involving Trypanosoma and the other two haemosporidian parasite genera 
(Svobodová et al., 2015). Blackflies can vector the Trypanosoma and Leucocytozoon 
parasites of sparrowhawks and buzzards, but Haemoproteus and Plasmodium parasites 
require other vectors (Svobodová et al., 2015). The co-infections by Trypanosoma and 
Leucocytozoon in sparrowhawks and buzzards could be due to co-transmission by 
blackflies. However, we find it unlikely that co-transmission is responsible for the 
observed association between Trypanosoma and Plasmodium in yellow-breasted chats. 
First, although we have not identified the vectors of trypanosomes for yellow-breasted 
chats, Trypanosoma culicavium isolated from Culex mosquitoes is the only known case 
of avian trypanosome parasites potentially transmitted by mosquitoes (Votýpka et al., 
2012). Second, Trypanosoma-Plasmodium co-infection might not be survived by 
mosquito vectors. Experimental infections of avian haemosporidians in Culicidae vectors 
show that infections with a single parasite species reduce mosquito survival rates, even in 
naturally occurring (i.e., co-evolved) parasite-vector associations (see Ferguson and 
Read, 2002; Valkiūnas et al., 2014).  
 
Empirical evidence suggests that the association of haemosporidian and trypanosome 
infections could be even stronger than what we observed, since trypanosome parasites are 
difficult to detect in the peripheral blood of birds (Kirkpatrick and Suthers, 1988; 
Apanius, 1991). Experimental infections of Trypanosoma avium in canaries demonstrated 
that, upon ingestion of infected louse-flies, metacyclic trypomastigotes first migrated to 
the host lymph nodes (Baker, 1956c). Within a few days post infection, and after growing 
in size in the lymph nodes, individual trypanosomes could be found in the peripheral 
blood, where they remained for two to three months before migrating to the bone marrow 
(Baker, 1956c; Molyneux and Robertson, 1974; Valkiūnas et al., 2004; Votýpka and 
Svobodová, 2004). Thus, the narrow window of detection of the parasite in the peripheral 
blood suggests that we likely underestimated the prevalence of trypanosome parasites in 
our study population. However, our samples were collected during the summer months, 
when trypanosomes are known to reappear in the peripheral blood of infected birds, and 
when haemosporidian infections also relapse (Valkiūnas et al., 2004). Additionally, 
detection bias in our molecular methods might have resulted in underestimating the 
strength of the association between haemosporidian and trypanosome parasites; in the 
presence of co-infections of either type of parasite (i.e., multiple haemosporidians or 
multiple trypanosomes infecting the same individual host), a PCR reaction may amplify 
one parasite over the other (Pérez-Tris and Bensch, 2005). However, this bias does not 
affect the probability of detecting one of two or more infections of either type of parasite.   
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We detected five lineages of Trypanosoma parasites infecting a single host population. In 
samples from 71 bird species caught in African rainforests, Sehgal et al. (2001) found 
eight trypanosome lineages, four of which were found infecting olive sunbirds 
(Cyanomitra olivacea). In an assemblage of 49 bird species in Alaska, only Trypanosoma 
avium was detected (Oakgrove et al., 2014). As trypanosomes are known to have low 
host specificity (Bennett et al., 1994; Sehgal et al., 2001), each of the lineages identified 
in this study might infect multiple bird species in the Ozarks region. Our findings also 
suggest high genetic diversity of Trypanosoma lineages, which might correspond to 
species other than T. bennetti depending on analyses of morphological characters and 
further genetic markers.   
 
The lack of support for sex-biased incidence of infection is consistent with the findings of 
previous studies. For example, Kirkpatrick and Suthers (1988) analyzed blood films of 
697 individuals from 59 bird species and found no differences between males and 
females in the prevalence of Plasmodium, Haemoproteus, and Trypanosoma, or co-
infections amongst the three genera of parasites. In our study, haemosporidian infections 
were found more often in adults than juveniles, which is consistent with at least three 
hypotheses: (1) mortality due to haemosporidian infections is higher among juveniles, 
leading to detection bias favoring infections in older individuals; (2) infections 
accumulate with age, meaning that older birds have been exposed more to infected 
vectors than juveniles; (3) most infections in adults correspond to relapses of chronic 
infections acquired in previous years. Hypothesis (1) seems unlikely, given the high local 
abundance of yellow-breasted chats. Some combination of (2) and (3) more likely 
explains the higher prevalence of infections in adults. Previous studies have demonstrated 
that older birds are not only more likely to be infected than juveniles (Svobodová et al., 
2015), but also that they are more likely to be harbor specialist rather than generalist 
parasites, possibly reflecting differences in the ability of specialist versus generalist 
parasites to infect hosts that they share (Medeiros et al., 2014).  
 
Haemosporidian parasite relapse in spring is an adaptation of the parasite to seasonal host 
susceptibility, availability of naïve hosts, and vector availability (Cornet et al., 2014; 
Pérez-Rodríguez et al., 2015). Additionally, in chronically infected birds in temperate 
regions, trypanosomes spend the winter in the bone marrow, and only migrate to the 
peripheral blood during spring and summer months (Baker, 1956a; c). Kirkpatrick and 
Suthers (1988) found hatch year (HY) North American birds to have half the 
haemosporidian and trypanosome infections as after hatch year (AHY) individuals. The 
difference between our findings and those of Kirkpatrick and Suthers (1988) may be due 
to the different methods used to detect trypanosomes; they surveyed trypanosomes using 
blood cultures, which boosts the detectability of these parasites when they are uncommon 



De Souza Soares, Leticia, 2016, UMSL, p.   
	

75	

in the peripheral blood (Stabler et al., 1966; Kirkpatrick and Lauer, 1985). Thus, although 
PCR methods have high sensitivity when it comes to detection of blood parasites, it is 
possible that we failed to detect some developing trypanosome infections in juvenile 
birds.  
 
While the pathogenicity of some avian haemosporidian lineages is fairly well understood 
(Valkiūnas 2004), little is known about the consequences of Trypanosoma infections for 
birds. The similar white blood cell levels of infected and uninfected birds is consistent 
with previous studies, in which white-blood cell responses to blood parasite infections 
occurred in some populations of hosts, but not others (Ricklefs and Sheldon, 2007). Ellis 
et al. (2014) found that haemosporidian-infected birds of the Ozarks presented higher 
levels of heterophils and lymphocytes than non-infected individuals. The difference in 
results between this study and Ellis et al. (2014) could be due to the latter being a broader 
analysis of the effects of any haemosporidian infection on the white-blood cell profiles of 
several host species, whereas this study focused on Plasmodium-infected individuals 
from one population of a single host species.  
 
We found evidence for regenerative anemia associated with trypanosome parasites on the 
same level as that caused by haemosporidian infections. Elevated numbers of 
polychromatic erythrocytes (PE) in trypanosome-infected individuals is evidence of 
disease. Although we found a statistically significant difference in PE between 
trypanosome-infected and uninfected individuals, the number of slides available for 
analysis was limited, and we interpret these results as evidence that trypanosome 
infections have the potential to cause disease. More importantly, we recommend that 
future studies investigating the effect of avian trypanosome infections include in their 
design some measure of anemia. Although reports are scarce, ours is not the first to 
associate avian Trypanosoma parasites with disease-like symptoms in birds. 
Experimental infections of Trypanosoma bouffardi in canaries revealed myocarditis, 
nephritis, congestion of the spleen, and myofibril degeneration in infected subjects 
(Molyneux et al., 1983). However, experimental studies of infection of Trypanosoma in 
canaries have not detected multiplication of the parasite (Baker, 1956c; Votýpka and 
Svobodová, 2004), which suggests that canaries are not natural hosts for the parasites 
(Chatterjee and Ray, 1971). When Trypanosoma avium was experimentally inoculated in 
red-whiskered bulbuls (Otocompsa jocosa), Chatterjee and Ray (1971) observed 
trypomastigotes multiplying by binary fission in the blood and bone marrow. Yet, the 
evidence of multiplication by binary fission does not make the pathogenicity of avian 
trypanosomes straightforward to understand, as parasites are not multiplying within the 
erythrocytes, as are Plasmodium schizonts. Moreover, comparable numbers of 
polychromatic erythrocytes between single and co-infected individuals suggest that either 
haemosporidian or trypanosome parasites have suppressed virulence in co-infections.  
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In conclusion, we have demonstrated a positive association between Plasmodium and 
Trypanosoma infections in yellow-breasted chats, with evidence of pathogenicity of 
trypanosomes in these hosts. The association between these two protozoans could arise 
from a negative effect of one parasite on the host’s immune response to the other. Future 
studies might focus on determining whether such an association remains during host 
migration and wintering. The basic life cycle of avian trypanosome parasites and their 
pathogenicity in vertebrate hosts remains poorly understood. However, the evidence 
presented here sheds some light on the mechanisms of within-host interactions between 
trypanosomes and haemosporidians, two common parasites of birds.  
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Figure 
 

 
Figure 1. Prevalence of lineages of and haemosporidian (left) and trypanosome (right) 
parasites retrieved from yellow-breasted chats sampled in the Ozarks (MO).  
 
Supplemental Material 
 
Table S1. Proportion of polychromatic erythrocytes (PE), and white blood cell 
differentials of yellow-breasted chats (Icteria virens). Each row is a group of individual 
hosts, and each cell represents the mean and standard deviation (in parenthesis) for all 
individuals within the groups. Proportions were calculated based on cell counts over 104 
non-polychromatic erythrocytes.  
 
 PE Eosinophils Lymphocytes Thrombocytes Haemosporidian 

Uninfected 0.02 
(0.00) 

0.001 
(0) 

0.005 
(0.002) 

0.003 
(0.004) 

 

Co-infected 0.065 
(0.02) 

0.0002 
(0.0004) 

0.004 
(0.002) 

0.001 
(0.001) 

0.001 
(0.001) 

Haemosporidian 
Infected 

0.059 
(0.01) 

0.0002 
(0.0004) 

0.005 
(0.002) 

0.002 
(0.0007) 

0.0007 
(0.0009) 

Trypanosome  
Infected 

0.059 
(0.007) 

0.001 
(0.001) 

0.002 
(0.0006) 

0.005 
(0.005) 

 

The average proportion of heterophils for uninfected individuals was 0.0004 (0.0005); 
monocytes were 0.0005 (0.0001) for trypanosome-infected birds. Basophil counts were 
zero as well as otherwise noted for heterophils and eosinophils. Only one trypanosome 
parasite was observed on a slide of an individual that tested negative for haemosporidian 
parasites.  
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Table S2. Post-hoc Tukey HSD test of comparisons of the proportion of polychromatic 
erythrocytes (PE) between the four groups of Icteria virens blood films analyzed. 
Represented on the table are the average differences between the groups, the lower and 
upper confidence intervals (CI), as well as the P-values. Significant comparisons were 
highlighted in bold. 
 

 

Average 
Difference 

Lower 
CI 

Upper 
CI P 

Co-infected vs. Uninfected 0.04 0.02 0.07 0.0005 
Plasmodium infected vs. Uninfected 0.04 0.02 0.06 0.002 
Trypanosoma infected vs. Uninfected 0.04 0.01 0.07 0.003 
Plasmodium infected vs. Co-infected -0.005 -0.03 0.02 0.92 
Trypanosoma infected vs. Co-infected -0.005 -0.03 0.02 0.93 
Plasmodium infected vs. Trypanosoma infected -0.0001 -0.03 0.03 1.0 
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