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Abstract 

One-piece flow and kanban/pull methods have been used to reduce WIP and speed 

flowtime in manufacturing flow processes; however, these methods have limitations. For 

example, one-piece flow does not work well when there are relatively large set-up times 

required between different components. One-piece flow also requires operations to be 

well-balanced. Unfortunately, these conditions often do not exist. The Theory of 

Constraints drum-buffer-rope (DBR) method is designed for unbalanced processes, and it 

has been shown to be effective for products with large operation time variation. However, 

DBR does not generally optimize flowtime and cannot handle a process with moving 

constraints (bottlenecks). Recognizing that there are manufacturing applications that have 

these limitations, we have developed a method called Takt Time Grouping (TTG) for 

implementing kanban-flow manufacturing when one-piece flow or DBR do not perform 

well. TTG combines one-piece flow, transfer-batch sizing and DBR concepts through the 

use of a grouping algorithm. Using a discrete event simulation model, the application of 

TTG, one-piece flow, DBR and a dynamic version of DBR, that moves the time-buffer 

and drum when it is known that constraints move (DynDBR), was investigated under 

varying conditions and production processes.  Generalized findings of TTG’s advantages 

over competing methods are presented.   
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Section 1: Introduction 

This research was motivated by a manufacturing company that wanted to implement 

cellular flow manufacturing.  However, their application did not fit any of the well-

known flow manufacturing methods.  The authors, in the role of a consultant, 

conceptualized a new method called Takt Time Grouping (TTG) to enable cellular flow 

manufacturing when existing methods do not provide good solutions.   

Section 1.1: Flow Cell Methods 

Manufacturing flow cells are a series of spatially adjacent or connected 

machines/operations through which tangible parts or components flow and are processed 

in a fixed sequence.  The cells provide the efficiency of a flow process while allowing 

some degree of component variety and processing flexibility. When the component 

characteristics, mix, and volumes are such that the operations within the cell are very 

well-balanced with little randomness or time variation, one-piece flow with simple 

sequencing of the component types works well. However, one-piece flow does not work 

well when: 1) the cell must produce substantially different components with relatively 

large set-up times from one part number to the next, making batch processing an 

economic necessity; 2) processing/cycle times for operations vary considerably from 

component to component and operation to operation, which causes 

constraints/bottlenecks, 3) the bottleneck(s) “move” depending on the component being 

produced; 4) individual processing times exhibit significant randomness; or 5) when 

move-time to transport product between operations must be done manually and is a 

significant percentage of operation cycle time. If there is a constraint operation in the cell, 

work-in-process (WIP) inventory can become large while many other operations may 
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have low utilization unless the dispatching of products through the cell is well-controlled. 

The drum-buffer-rope (DBR) method, based on the Theory of Constraints (Goldratt and 

Cox, 1986; Schragenheim and Ronen,1990), has been shown to be an effective 

mechanism for controlling the flow of product through unbalanced cells. DBR uses the 

constraint operation to set the tempo (the “drum”) and limits entry of material into the 

cell. The term drum-buffer-rope can be explained as follows.  The operation cycle time of 

the constraint sets the pace for the entire process and therefore acts as the drum.  An 

inventory buffer is situated immediately upstream of the constraint.  The “rope” is a 

signal from the constraint’s buffer to the beginning of the production system, which 

controls the release of materials.  If WIP builds above a limit at the constraint’s time-

buffer, the “rope” signals the beginning of the flow cell to stop releasing new orders into 

the flow cell.  The effectiveness of the DBR approach decreases though if there is not a 

stationary constraint operation (i.e., if the bottleneck “moves”).  In addition, production 

systems can lose efficiency when there is variation in processing times from component 

to component and operation to operation due to differences in components or general 

process randomness.  One-piece flow is especially sensitive to randomness and variation 

in processing times, and efficiency decreases rapidly as randomness and variation 

increase (Yavuz and Satir, 1995). 

Section 1.2: Research Motivation 

The manufacturing company that motivated this research, suffered from long production 

flowtime (and therefore long lead-times quoted to customers), unacceptable throughput 

rate, poor on-time delivery to customers and excessive work-in-process inventory of 

machined components. [We define the four performance measures below.   
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Flowtime = time from when an entity begins processing at the first operation until it 

completes the last operation.          (1) 

Throughput quantity = number of entities completed by the process   (2) 

Throughput rate = throughput quantity per unit time (hour, shift, week)  (3) 

Work-in-process inventory = the total number of units that have completed the first 

process but have not completed the last process     (4) 

Makespan = the total time to complete a fixed quantity of units   (5)] 

The company used material requirements planning to schedule production of 

components through multiple work-centers and processed in batches equal to order 

quantities. Order quantities could be in the thousands for the machined components they 

produced. The components produced were of the company’s own design, which it used in 

downstream assembly operations.  

Company managers thought that one-piece flow or DBR might be the solutions to 

their problems.  However, for the initial application (a product requiring light machining 

processes), problems with each were identified.  One-piece flow relies on 1) well-

balanced operations with approximately equal work content at each operation, 2) minimal 

operation cycle time variation, 3) very fast set-ups to change from one product to another, 

and 4) minimal times to hand off products from one operation to the next.  These four 

requirements enable even flow within the cell, resulting in very fast throughput times and 

low WIP inventory levels.  The production characteristics of the application did not 

match these requirements.  The product required primarily machining operations, with 
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only some assembly operations.  We could not break up machining steps into equal 

duration time-buckets.  Therefore, the process could never be balanced.  The machining 

and assembly steps in the process exhibited significant random operation cycle time 

variation.  As stated earlier, variation can disrupt the even flow of product through a one-

piece flow cell.  Set-up times varied from 15 to 45 minutes, which was large enough to 

idle operations and operators.  The long set-up times also eliminated the possibility of 

using mixed-model sequencing of products through the cell (Boysen et. al. 2009).   

DBR seemed more appropriate; however, it also had significant problems.  First, 

DBR relies on the process having one constraint that signals the beginning of the flow 

cell to release the next order.  In their product lines, different product families had their 

constraining cycle time at different operations.  The literature calls this “moving 

constraints” (Ronen and Starr, 1990; Plenert, 1993).  When a process has moving 

constraints, the drum-buffer-rope signal concept breaks down.  This might be solved by 

designing a DBR method that reacts to deterministically known moving constraints.  This 

possibility was investigated as part of this research study.  The method we developed, 

Dynamic DBR (DynDBR), locates the time-buffer based on the constraint operation of 

the part number entering the flow cell.  However, even by reacting to moving constraints, 

DBR does not generally minimize WIP inventory or flowtime.  WIP inventory is 

controlled primarily at the constraint, which can allow greater WIP inventory build-up 

than the one-piece flow method.  This also translates into longer flowtime.  (Customers 

wanted reduced lead times and improved responsiveness to emergencies.) This motivated 
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the author to develop a new method for implementing flow manufacturing in this 

environment. 

Section 1.3: Takt Time Grouping Concept 

 This paper presents a solution to producing components with large operation 

cycle time variation in an unbalanced process, where set-up time is a consideration; 

move-times are long, and constraints move.  The proposed method, Takt Time Grouping 

(TTG), calculates a transfer-batch size for each product (called Takt Time Group size 

below). (Takt is a German word for tempo.  It is used by one-piece flow cell designers to 

designate the tempo of the cell or how often one unit of production leaves the process 

(Costanza, 1996).  Takt time is measured as time per unit.)  The Takt Time Group size 

may be different for each product because the operation cycle time at the constraint can 

be different for every product.  However, the average processing times for transfer-

batches at each product’s constraint operation is approximately the same, across all 

product lines. Kanbans are then used to control the movement of the Takt Time Groups 

through the production cell using a pull mechanism. The result is essentially one-piece 

flow, where the “piece” is a transfer-batch.  TTG accommodates imbalances among 

operations with no loss of performance, just as DBR accommodates unbalanced 

production processes. A lot size or customer order is broken up into equal Takt Time 

Groups (of the same product), but the groups are processed consecutively until the order 

quantity or lot size is completed. Therefore, the entire order of the product is processed 

with one set-up, but material is released among operations in smaller transfer-batches.    
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 Takt Time Grouping solves a number of problems. No additional set-up time is 

required because orders are completed in their entirety without breaking into the set-up to 

produce other products. The group quantities (transfer batch sizes) are large enough so 

that the operation cycle time variation of transfer-batches at operations is very small, 

relative to the mean time to process the batch (due to the law of large numbers). This 

allows the process to function at high throughput rates with minimal WIP inventory, even 

in a high operation cycle time variation environment.  TTG cells enjoy consistent flow, 

producing products according to an exogenously determined tempo time. This is 

accomplished because the grouping formula converts products with greatly differing 

operation cycle times to transfer-batches with equal time “buckets” at their constraint.  

The following research shows that in the flow cell environments studied, TTG generally 

produces significantly larger throughput rates and shorter makespan times than one-piece 

flow.  In addition, while DBR creates high utilization at a stationary constraint operation, 

unlike DBR, TTG creates high utilization even when there are multiple constraining 

operations (moving bottlenecks). This results in TTG generally having higher throughput 

rates and shorter makespan times with less work-in-process inventory than DBR. 

 

Section 1.4: Manuscript Sections 

This manuscript is laid out as follows.  Section 2 reviews all relevant literature.  Section 3 

describes the TTG model, including how the grouping tempo time is determined.  Section 

4 lays out the research questions we seek to answer in this study.  These are noted as 

eight hypotheses.  Section 5 explains the data used in this study and the various 
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experimental settings.  Section 6 describes the details of the simulation model used in this 

study.  Section 7 studies the four production methods (one-piece flow, DBR, DynDBR 

and TTG) using a light machining data set.  Results are explained including which 

method performed best, based on three performance measures (throughput rate, flowtime 

and WIP), under various conditions.  Section 8 studies the four production methods using 

a heavy machining data set.  Section 9 studies the four production methods using an 

assembly data set.  Section 10 analyzes when the amount of labor available is varied.  In 

Section 11 we compare the performance of the four production methods using makespan 

instead of throughput rate.  We conclude in Section 12 by identifying what results can be 

generalized and discussing areas for future research.    
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Section 2: Literature Review 

The research that informed the development of Takt Time Grouping includes the 

following subject areas: 

 Cellular production 

 Kanban and one piece flow 

 Theory of Constraints and DBR 

 Problems with DBR 

 Combining one-piece flow and DBR 

 Comparing one-piece flow and DBR 

 Transfer-batch sizing 

Section 2.1: Cellular Manufacturing 

Cellular manufacturing consists of grouping together dissimilar equipment types 

dedicated to the production of a specific set of parts with similar processing requirements 

called part families.  Manufacturing products in a production cell has been shown to 

improve response time, quality and efficiency with a minimum capital investment (Marsh 

et al. 1999).  A number of research studies have sought to improve upon the general 

concept by creating cell design models (Suresh, 1991; Murthy and Srinvansan, 1995; 

Kannan, 1998; Shambu and Suresh, 2000; Venkataramanaiah and Krishnaiah, 2002; 

Viguier and Pierreval, 2004; Gravel, 2007).  Most companies operating production cells 

initially used material requirements planning (MRP) and manufacturing resource 

planning (MRP2) to schedule orders (Gupta and Snyder, 2009).  In the 1980’s and 

1990’s, two methods were widely adopted in industry to improve performance of a 
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production cell by controlling WIP and signaling the release of production: one-piece 

flow and the theory of constraints’ drum-buffer-rope.   

Section 2.2: Kanban and One-Piece Flow 

One-piece flow, which is associated with the Toyota Production System, also known as 

lean production, was popularized, and to some extent introduced to western (European 

and American) manufacturing companies, by two books, Lean Thinking (Womack and 

Jones, 1996) and Demand Flow Technology (Costanza, 1996).  A one-piece flow 

production cell utilizes the concept of pull.  Before one-piece flow, manufacturers used 

manufacturing resource planning (MRP2) computer systems to schedule production cells.  

MRP2 system processes batches through operations based on planned scheduling.  MRP2 

systems use “push” scheduling because they in effect, schedule batches at the first 

operation and “push” the batches to subsequent operations regardless of whether there are 

other products queued up in front of the operations (Chakavorty and Atwater, 1996; 

Benton and Shih, 1998; Gupta and Snyder, 2009).  In comparison, “pull” production uses 

kanbans (kanban translates to a “signal” in Japanese) to signal upstream operations that 

downstream operations are ready for the next product.  Pull creates synchronization of all 

operations in a production cell (Womack and Jones, 1996; Costanza, 1996; Liker, 2004; 

Black, 2007; Sataglu et al. 2010).  One-piece flow was a further enhancement of kanban 

manufacturing (or just-in-time manufacturing) by processing only one unit at a time, 

instead of a batch.  This has the effect of minimizing flowtime, WIP and lead time, which 

developed as an important strategic differentiator in the 1990s (Constanza, 1996).   
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One approach that enabled the application of one-piece flow in medium volume, 

high mix manufacturing was Conwip, or constant WIP (Spearman et al. 1990).  These 

researchers replaced the kanban card system, where each card had a specific part number, 

with a more general method, where the kanban bins or cards are not identified with 

specific parts, but instead control WIP inventory as it moves through a flow cell.  The 

number of kanbans “allowed” in the process controls WIP inventory.  The Conwip 

method is used in one-piece flow cells.  One-piece flow, however, has limitations 

identified by proponents (Constanza, 1996; Monden, 1998; Black, 2007) that were 

discussed in the Introduction (operations must be well balanced with approximately equal 

work-content at each operation, set-ups to change from one product to another must be 

fast, and operations must be physically close to minimize time required to hand-off 

products from one operation to the next).  If the operations in a cellular production 

system do not adhere to these requirements, the applicability of one-piece flow is limited 

and/or performance (in terms of throughput rate, WIP and flowtime) suffers.  Another 

significant limitation of one-piece flow cells was discovered by Yavuz and Satir (1995).  

They studied the effect of operation cycle time variation on one-piece flow cell 

performance.  These researchers, using simulation models, found that operation cycle 

time variation disturbs cell performance by preventing consistent flow of material.  This 

research and additional studies comparing one-piece flow to other cellular production 

methods provided manufacturing companies with useful boundaries, as to when they 

could apply one-piece flow as an inventory control and scheduling method.   
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Section 2.3: Theory of Constraints and DBR 

At the same time that one-piece flow was being popularized in the 1980s, a separate 

manufacturing process called theory of constraints was gaining attention from industry 

and researchers due to the success of the book, The Goal (Goldratt and Cox, 1986).  The 

implementation of Theory of Constraints (TOC) in manufacturing utilizes a production 

control method called drum-buffer-rope (DBR).  In a DBR production process, a buffer at 

the constraining resource controls flow by signaling the first operation to release material 

(Schragenheim and Ronen, 1990).  Numerous researchers have studied DBR, 

contributing to the general understanding of this method and its applications in different 

production environments (Raban and Nagel, 1991; Schragenheim, Cox and Ronen, 1994; 

Martin, 1997; Ruelle, 1997; Rippenhagen and Krishnaswamy, 1998; Rahman, 1998; 

Mabin and Balderstone, 2003; Pegels and Watrous, 2005; Umble et al. 2006a, Umble et 

al. 2006b).   

DBR research has improved on buffer sizing, scheduling, transfer-batch sizing as 

compared to the original concept.  Radovilsky (1998) and Louw and Page (2004) use 

queuing theory to optimize the time-buffer with the objective of maximizing profit 

generated by the DBR production cell.  Georgiadis and Politou (2013) create a method of 

altering the time-buffer daily, to consider demand, due-dates and mean production time.  

A number of studies have been conducted to improve performance of a DBR production 

cell through scheduling and enable the use of DBR under special conditions.  Wu and 

Yeh (2006) develop a model to schedule batches through a bottleneck when the batch 

traverses the bottleneck multiple times.  Sirikrai and Yenradee (2006) modify the DBR 

rope scheduling method to handle the special case when the bottleneck has two non-
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identical parallel machines.  Chen and Chen (2009) develop a heuristic for handling the 

more complicated case when there are non-identical parallel machines at multiple stages 

of production.   

Transfer-batch sizing (or lot-splitting) is an important aspect to the successful 

operation of a DBR process (Jacobs and Bragg, 1988; Russel and Fry, 1997).  Hilmola 

(2004) and Russel and Fry (1997) study the effect of transfer-batches in DBR production 

processes.  Hilmola (2004) used an iterative approach, comparing inventory costs to 

operational performance, to size transfer-batch sizes based on a constraints perspective.  

They constrain the transfer-batch sizing decision to ensure that set-up time on machines 

does not create bottlenecks.   

Like one-piece flow, researchers have found problems with DBR.  The most 

widely documented is when multiple constraints exist in the process.  In this situation, the 

DBR method is not feasible as the drum concept breaks down (Ronen and Starr, 1990; 

Plenert, 1993).  Hadas et al (2009) dealt with implementing DBR when the bottleneck 

appears to wander.  Their proposed solution, however, requires materials requirement 

planning software.   

Section 2.4: Combining DBR and One-Piece Flow 

There has been limited research combining DBR with one-piece flow manufacturing.  A 

hierarchical control algorithm using DBR was developed to improve production output of 

flow cells (Raban and Nagel, 1991).  Gung and Steudel (1999) demonstrated how to 

calculate production lot sizes to ensure that no operation becomes a bottleneck on a one-

piece flow line operation due to set-up (or product-to-product changeover) time.  The 
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bottleneck is mathematically represented as an operation with the largest utilization % in 

the process.  When production lots are too small, in combination with long set-up times, 

the operation can spend so much time on set-up that it becomes a bottleneck, even if this 

operation does not have the greatest cycle time.  The authors showed how to calculate 

minimum production lot sizes to avoid creating a bottleneck due to set-up.  Lambrecht 

and Decaluwe (1988) recognized that one-piece flow cells can have bottlenecks.  They 

applied DBR methods, increasing the WIP buffer (by increasing the allowable number of 

kanbans) upstream and downstream of the bottleneck to improve performance of a one-

piece flow cell.  In DBR terminology this is called “elevating the constraint.”  

Schonberger (2001) demonstrated that kanbans can be an effective approach for 

managing over-production of inventory at non-bottleneck processes in a DBR production 

cell.  Boysen et al. (2009) develop a scheduling method for a one-piece flow cell based 

on limited space to store WIP between operations (which the authors call material storage 

constraints).   

Section 2.5: Comparing DBR and One-Piece Flow 

There are numerous studies comparing one-piece flow versus DBR.  Gupta and Snyder 

(2009) conducted a literature review of comparisons of these two methods.  Many of the 

papers used discrete event simulation to make the comparisons.  In some simulations one-

piece flow performed best while for others DBR performed best.  The greatest 

controversy concerns the supremacy of one-piece flow or DBR.  There seems to be a bias 

by authors as to which system is better, and the arguments reflect their bias.  DBR with 

constraint buffering is better than a one-piece flow system with equal buffers and trigger 

levels at each station (Lambrecht and Segaert, 1990).  Simulation has been used to 
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determine that the DBR system performed better when station variability was high, while 

one-piece flow performed best when station variability was low (Chakravorty and 

Atwater, 1996).  This can be explained by the law of large numbers and kanban control of 

work-in-process inventory.  One-piece flow processes one unit at a time at an operation.  

Therefore, the full variability of the process will impact these parts.  This can create gaps 

(of no product) in the flow cell.  Gaps will reduce utilization of machines and people, and 

therefore will reduce throughput rate.  In a DBR system, variation is reduced because 

orders are processed in batches.  According to the law of large numbers, operation cycle 

time variation of a large batch will be reduced relative to the mean cycle time of the 

batch.  Simulation was also used to compare tradeoffs in capacity and inventory between 

DBR and one-piece flow approaches (Hurley and Whybark, 1999).  Output and 

utilization are higher using DBR.  Ronen and Starr (1990) differentiate DBR’s goals and 

methods to one-piece flow’s goals and methods.  First, DBR accepts unbalanced 

operations, recognizing that often one operation is the constraint.  One-piece flow 

balances the work-content and capacity of all operations.  Second, DBR utilizes the 

constraint’s “drum” to set the pace of the production process.  One-piece flow maintains 

a pace based on balancing work-content at all operations to meet a customer-demand rate, 

defined as the Takt Time.  DBR buffers only the constraint.  One-piece flow utilizes 

kanban work-in-process inventory control at all operations.  DBR seeks only to reduce 

set-up at the constraint.  One-piece reduces set-up at all operations.  A numerical model 

was used to compare how one-piece flow works in an unbalanced, bottlenecked, 

production line to a DBR production system (Takahashi et al, 2007).  It is concluded that 
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one-piece flow reduces total cost when inventory value is high, but DBR was lower cost 

when inventory value is low.   

Section 2.6: Transfer-Batch Sizing 

The grouping algorithm that forms the key contribution of TTG (discussed in Section 3) 

is a form of transfer-batch sizing.  The first reference to transfer-batching (also known as 

lot streaming and lot splitting) was by Reiter (1966) who defined it as overlapping 

processing of one job on successive machines.   The reason to consider transfer-batching 

is that transfer-batches reduce flow time as compared to lot quantity batch production 

(Jacobs and Bragg, 1988).  Additional applications of transfer-batch sizing have been 

developed.  Kropp and Smunt (1990) evaluate lot splitting in a flow shop.  They develop 

mixed integer linear math programs for calculating optimal split-lot sizes, which allows a 

lot to be split in different quantities after each operation.  As important as the 

methodology is, they point out that while optimal in theory, lot-splitting in different 

quantities after each operation is not easy to implement.  Recent papers have presented 

math programming models to improve performance (Biskup and Feldmann, 2006).  

Transfer-batching has been referred to in DBR studies (Jacobs and Bragg, 1988).  

However, only Himola (2004) provides guidance on determining a transfer-batch size 

within a DBR operation.  This method used an iterative approach, comparing inventory 

costs to operational performance, to size transfer-batch sizes based on a constraints 

perspective.   

Section 2.7: Gaps in the Research 

Despite the extensive literature, we find three significant gaps in the research.   
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 First, although Chakravorty and Atwater (1996) suggest that the combination of DBR 

and one-piece flow is essential, we find few models that combine these methods to 

solve the problems with each.  The focus of research involving both DBR and one-

piece flow is often on comparing the two methods, with researchers choosing one 

method over the other (Gupta and Snyder, 2009).   

 Second, researchers have not tried to combine transfer-batching with kanban as a 

method of controlling work-in-process inventory and reducing flowtime.   

 Third, researchers have compared one-piece flow and DBR by 1) altering the 

coefficient of variation of processes and 2) changing the value of WIP inventory to 

determine which method is optimal under varying values of these two factors.  

However, researchers have not considered practical issues such as the time to move 

WIP from one operation to the next or set-up time.  In addition, there is a lack of 

research on interaction effects from multiple factors.   

 Fourth, researchers have not provided easy-to-use methods for practitioners to utilize 

DBR when there are moving constraints.  The one method developed (Hadas et al. 

2009) requires an MRP system to manage two time-buffers.   

 Fifth, researchers have not studied the effect of constrained or slack labor on the 

performance of one-piece flow and DBR.   

 Finally, the research has compared one-piece flow and using throughput rate or 

makespan.  However, no study compares these methods using both metrics, to 

determine if evaluation using different metrics will provide different answers to the 

question of, “which is better.”  
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Section 3: The Takt Time Grouping Method 

Takt Time Grouping (TTG) can produce many different components in a flow cell.  Each 

component may require set-up and possibly have different constraints.  To implement 

TTG we borrow the concept of Takt (a German word for tempo) used by one-piece flow 

cell designers to designate the tempo time of the cell or how often one unit of production 

leaves the process (Costanza, 1996).  Takt time is measured as time per unit.  In TTG, we 

use this term, but change its meaning to be the tempo time that the “group of component 

i” spends being processed at its’ constraint.  This group quantity, also known as transfer 

batch size, is a subset of the total customer order quantity, or lot size, for each 

component.  In the transfer-batch, parts travel as a group and do not wait for the rest of 

the lot quantity to be completed at any operation.   

The Takt Time Group Quantity is calculated as follows.   

TTGQi = T / CTci   for all i = 1… n      (6) 

n = number of different components produced by the flow cell 

Where: 

TTGQi = Group Quantity of Component i  

T = Exogenously chosen grouping tempo time of the flow cell (see Figure 1 or 

explanation of how the tempo time is determined) 

CTij = Mean operation cycle time for component i at operation j (j = 1… m) 

CTci= Maximum CTij  w.r.t. j = 1 … m    for all i = 1 … n   (7) 

m = number of operations in the flow cell 
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This algorithm, and the one-piece flow manufacturing method of controlling WIP 

using kanbans, allows components of very different operation cycle times to be produced 

by the same set of machines in a flow manufacturing cell.  Products with longer operation 

cycle times will have smaller TTG quantities.  Products with shorter operation cycle 

times will have larger TTG quantities.  This is designed so that processing time of each 

group at its constraint, regardless of group size, is approximately equal to the tempo time 

(T).  As a simple example, suppose we are producing three components in a TTG flow 

cell with the following operation cycle time at the constraint: 

CTc1 = 60 seconds 

CTc2 = 30 seconds 

CTc3 = 15 seconds 

If T (tempo time) = 15 minutes, then: 

TTGQ1 = 900 seconds / 60 seconds = 15 

TTGQ2 = 900 seconds / 30 seconds = 30 

TTGQ3 = 900 seconds / 15 seconds = 60 

Customer orders are broken up into Takt Time Groups that flow sequentially 

through the flow cell until the entire customer order quantity has entered the flow cell.  

The last group of one component part number is followed by the next component part 

number on the schedule.  An entire order is run sequentially, with no extra set-ups 

required.  The number of Takt Time Groups per customer order of a component is the 

customer order quantity divided by the Takt Time Group quantity.   
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# of groups per customer order for component i = Customer order quantity / TTGQi

 (8) 

Customer orders can be rounded up to multiples of the Takt Time Group quantity 

to ensure integer values of Takt Time Groups are produced at the end of the customer 

order.  Alternatively, the last group can be a fraction of the group quantity.  If the number 

of groups per customer order is large, this will have a minimal effect on flow cell 

performance.  In general, TTG assumes that the customer order size is much larger than 

the Takt Time Group size for all products produced in a TTG flow cell. 

If the customer order quantity for each of the three hypothetical products shown 

above is equal to 300 units, then the number of groups per order is equal to: 

# of TTGQ1 = 300 / 15 = 20 groups 

# of TTGQ2 = 300 / 30 = 10 groups 

# of TTGQ3 = 300 / 60 = 5 groups 

For operations that are not the constraint, the Takt Time Group will spend less 

time than the pre-determined grouping tempo time at these operations.  Using the 

principles of DBR, however, we know that the constraining resource controls the tempo 

time of production.  Therefore, we focus on the constraining operation for that 

component and use the TTG algorithm to ensure that component i, in its group quantity, 

spends on average “T” (the grouping tempo time or Takt time) amount of time at the 

constraint.  All components, no matter their operation cycle time at the constraint, will 
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spend this same amount of time, “T” (the grouping tempo time or Takt time), at their 

constraint.  Like the DBR method, we do not try to create a perfectly balanced production 

line (Cook, 1994), and instead focus on the tempo time at the constraining resource.   

Another beneficial property of the TTG quantity algorithm is that the constraint 

does not have to be the same machine for every component.  Theory of Constraints 

assumes that the constraint in a process is the same for every product (Goldratt and Cox, 

1986).  This is often not the case as noted by Ronen and Starr (1990) and Plenert (1993).  

A TTG flow cell doesn’t require this limitation.  Each component i will spend, on 

average, time “T” at its constraining operation.  Therefore, each Takt Time Group of all 

components will exit the production flow cell, on average, at the grouping tempo time 

“T”.  Moving constraints may actually be beneficial as they can even-out machine 

utilization, allowing greater throughput.   

The Takt Time, or grouping tempo time, is chosen exogenously.  There are 

additional research opportunities, which will be discussed in the Conclusion, to optimize 

the grouping tempo time using math models.  However, in this paper we will present a 

simple decision flow chart for exogenously choosing the grouping tempo time.  Choosing 

the grouping tempo time “T” involves tradeoffs of throughput rate, flowtime and WIP 

levels.  A larger tempo time will result in larger transfer-batch sizes.  Large transfer-batch 

sizes reduce operation cycle time variation of the batch relative to the mean operation 

cycle time.  Higher operation cycle time variation was shown by Yavuz and Satir (1995) 

to reduce throughput rate.  Therefore, large transfer-batch sizes can increase throughput 

rate.  However, large transfer-batches can also increase flowtime, which is a measure of 
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responsiveness of the flow cell.  Spearman et al. (1990) proved, using Little’s law, that 

flowtime is controlled by the amount of WIP in the process.  Greater WIP results in a 

longer flowtime, or a less responsive production process.  In addition, larger transfer-

batch sizes increase WIP (Hilmola, 2004).  Greater WIP levels negatively affect the 

financial performance of a production process by increasing inventory holding costs of 

the firm.  The decision flowchart to choose the grouping tempo time “T” is shown in 

Figure 1.  This decision flow chart balances intrinsic choices practitioners must make 

when choosing the grouping tempo time.  Table 1 shows different transfer-batch sizes 

and the expected variation reduction, WIP level and calculated flowtime based on the 

choice of the grouping tempo time.   

Set initial 

tempo (T)

Are Group 

Sizes large enough 

to sufficiently reduce 

batch cycle time variation 

relative to the 

mean?

Calculate Takt 

Time Group Size 

for all products 

i = 1...n

Increase 

tempo time

Calculate 

Flowtime

Group Size = 

T / CTci

Yes
Is Flowtime <= 

target?

Flowtime = T * 

(# of Kanbans 

+ # of 

Operations)

Decrease 

tempo time

Finished

Actual 

variation = 1 / 

(group size)
1/2

Calculate actual 

variation for all 

products 

i = 1...n

No
No

Is the WIP level 

 <= target?

Yes

No

WIP = Group 

Size * 

(# of Kanbans 

+ # of 

Operations)

Calculate WIP

 
Figure 1: Logic Flow for Determining Tempo time (T) 

 

  



 
 
 
 

Revision: July 2, 2014  Copyright, Mitchell A. Millstein, 2014   29 

 

 

Measure 

Tempo time = 

5 minutes 

(units) 

Tempo time = 

15 minutes 

(units) 

Tempo time = 

30 minutes 

(units) 

Tempo time = 

60 minutes 

(units) 

Group 

Quantity* 
10 30 60 120 

Variation 

Reduction 
68.38% 81.74% 87.09% 90.87% 

WIP 

Level
+ 

(units) 

180 540 1080 2160 

Calculated 

Flowtime ^ 

(min) 

90 270 540 1080 

Table 1: Data for Choosing the Takt Time Grouping Tempo time 

*Based on CTci = 30 seconds 
+
Based on 2 kanbans per operation and 6 operations (see Figure 1 for calculation) 

^Based on 2 kanbans per operation and 6 operations (see Figure 1 for calculation) 
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Section 4: Key Research Questions 

The purpose of this research is to provide practitioners with limits of TTG’s application.  

This will help companies choose when they should use TTG, or alternatively one-piece 

flow or DBR.  In addition, we created a flexible version of DBR, DynDBR, which moves 

the time-buffer and drum based on deterministically-known moving constraints.  The 

general theme of the research study is to understand which of the four WIP control 

methods is better, for what applications and why.  To accomplish this purpose, three 

factors that can practically affect performance of manufacturing production cells were 

chosen.  These factors are time to move work-in-process product from one operation to 

the next (move-time), the coefficient of variation (COV) of operation cycle time and the 

duration of changeover time on machinery to produce different products (set-up time).  A 

priori understanding of manufacturing processes has allowed for development of 

hypotheses with regards to these three factors that will be investigated during this 

research study.  As will be discussed in more detail in Section 5, these three factors are 

used in a full factorial ANOVA experiment applied to three different manufacturing data 

sets.  The only commonality of the data sets is that each has moving constraint 

operations.   

Some manufacturing processes produce small products using large machinery.  

Therefore, move-time can be a significant percentage of the operation cycle time.  

Automated conveyors are often used to move parts between machines; however, it is not 

always practical to utilize conveyors.  When manually moving a single unit in a one-

piece flow cell, this move-time is added to an operation’s cycle time, increasing the time 

required for production.  However, when moving a transfer-batch, such as used by DBR, 
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DynDBR and TTG, the move-time is allocated over a larger quantity.  This diminishes 

the impact of move-time for a large transfer-batch.  Therefore, we propose hypothesis 

H1.   

 H1: Throughput rate performance of one-piece flow is more negatively affected by 

large move-times than DBR, DynDBR and TTG. 

 Coefficient of variation (COV) was shown by Yavuz and Satir (1995) to 

negatively affect the throughput rate performance of a one-piece flow cell.  However, 

DBR, DynDBR and TTG, which use transfer-batches take advantage of the law of large 

numbers, which states that the variation of large quantities is reduced relative to the mean 

of the batch.  Therefore we propose hypothesis H2.   

 H2: Throughput rate performance of one-piece flow is more negatively affected by 

high operation cycle time variation than DBR, DynDBR and TTG. 

One-piece flow is designed for the least WIP.  This is due to the combination of 

kanbans that limit WIP at every operation and the fact that there is only one unit-of-

production in each kanban.  Less WIP, while often desirable, can negatively affect 

throughput rate performance by not providing enough buffer to overcome the duration of 

a set-up or operation cycle time variation.  The result may be that, at certain times, the 

one-piece flow cell is “starved” of WIP, idling operations.  DBR, DynDBR and TTG are 

designed for larger levels of WIP, because they use transfer-batches versus one-piece.  

Therefore, we propose hypothesis H3. 

 H3: Throughput rate performance of one-piece flow is more negatively affected by 

large set-up times than DBR, DynDBR and TTG. 
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As stated in the Literature Review, researchers have not studied the interaction 

effects of multiple factors on DBR and one-piece flow.  We believe interaction effects 

amongst the three factors exist, which affects throughput rate performance of the four 

methods tested in this research study.  Therefore, we propose hypothesis H4.   

 H4: Interaction effects exist between move-time, operation cycle time variation and 

set-up time which affect throughput rate of all four methods.   

There are additional expected differences between the four methods, under all 

conditions, that will be confirmed or rejected.  As stated above, one-piece flow cells are 

designed to minimize WIP and flowtime.  Therefore, we propose hypothesis H5.   

 H5: One-piece flow will have the lowest WIP and fastest flowtime for all 

applications.   

The DBR method has been shown to reduce WIP and flowtime when compared to 

traditional batch production methods.  However, DBR is not intended to minimize WIP, 

but rather to maximize throughput rate.  DBR controls WIP only at the constraint 

operation, via a time-buffer.  The WIP at non-constraint operations is usually much 

smaller than the time buffer because these operations are faster.  However, low WIP is 

not the objective of the DBR method.  TTG controls WIP at every operation using 

kanbans.  Kanban control at every operation will provide for improved WIP control 

throughout the entire flow cell.  Therefore we believe that TTG will maintain lower WIP 

levels than DBR.  In addition, lower WIP can result in faster flowtime (Spearman et al. 

1990).  Therefore, we propose hypothesis H6.   

 H6: TTG will always have lower WIP and faster flowtime than DBR and DynDBR. 
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This research study uses three different types of production processes to test the 

four competing methods.  These are described in greater detail in Section 5.  However, as 

a summary they are 1) a light machining process with unbalanced operation cycle times, 

unbalanced and moderate set-up times, 2) a heavy machining process with unbalanced 

operation cycle times, very unbalanced and large set-up times, and 3) an assembly 

process with relatively balanced operation cycle times, smaller and balanced set-up times.  

One-piece flow requires balanced production and low set-up times.  TTG, DBR and 

DynDBR are intended for unbalanced operation cycle times with moderate to large set-up 

times.  Therefore, we propose hypothesis H7 and H8.   

 H7: One-piece flow will out-perform DBR, DynDBR and TTG, as measured by 

throughput rate, for the assembly process.   

 H8: One-piece flow will perform worse than DBR, DynDBR and TTG, as measured 

by throughput rate, for the light and heavy machining processes.   

The specific questions studied in this dissertation are: 

 What are the effects of: 1) move-time, 2) operation cycle time variation and 3) set-up 

time on the throughput rate performance of one-piece flow, DBR, DynDBR and 

TTG?   

 Are there interaction effects amongst these three factors?  Do changes in these three 

factors affect one method more than another?  Are interaction effects, if they exist, 

more pronounced in one method?  (Note, while one-piece flow and DBR have been 

heavily researched, no one has published an ANOVA study of factors that affect 

performance.) 
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 How does TTG compare to one-piece flow, DBR and DynDBR when applied to three 

very different production processes (light machining, heavy machining, and 

assembly)?   

 How does move-time, operation cycle time variation and set-up time affect the 

throughput rate performance of all four methods in each of the three different 

production applications?   

By answering “why” the specific outcomes occur, we seek to generalize the 

application of TTG beyond the three data sets and full factorial settings used in this study.   

As this research was conducted, we realized that to generalize the results, we 

needed to extend the analysis beyond the factors and performance measures discussed 

above.  We therefore analyzed the performance of each method, for all three data sets, 

using makespan as a performance measure.  As will be discussed in Section 11, 

makespan may be a more appropriate performance measure for certain manufacturers.  In 

addition, by evaluating the four methods using makespan as the performance measure of 

interest, we also increase the general understanding of which method is better, when and 

why.   

The last factor analyzed is the amount of labor resources available to staff the 

flow cell.  This was evaluated for only one application (light machining) and for one 

treatment (the normal settings of the actual process).  The light machining application 

required only three labor resources to achieve an 80%, or greater labor utilization.  

However, the number of workstations is six.  Therefore the “operators” in the simulation 

model move to different workstations to keep WIP moving through the process.  While 
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most firms seek to maximize labor utilization, this constrained labor resource case may 

not be the most profitable way to run the flow cell.  If adding labor increases marginal 

profit, then having slack labor resources may be more profitable.  We therefore created an 

unconstrained labor case, with six operators (one per workstation) to compare to the 

constrained (three operator) case for all four WIP control methods.  Analysis of 

throughput rate and WIP is conducted, and marginal profit is calculated for each method.   
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Section 5: Details of the Research Methodology 

Previously it was unknown under what conditions TTG is superior to one-piece flow or 

DBR as measured by throughput rate, WIP inventory and flowtime.  This research used 

data sets from three manufacturing processes.  These processes can be categorized as 1) 

light machining (producing a product referred to as piston discs), 2) heavy machining 

(producing a product referred to as slide-valves) and 3) assembly (producing a product 

referred to as solenoids).   

We ran multiple experiments using these three data sets.  Details of each 

experiment’s design are explained in the following sub-sections.  Section 5.1 will review 

the full factorial ANOVA experimental design to test the effect of the move-time, 

operation cycle time variation and set-up time factors on throughput rate, WIP and 

flowtime performance of each WIP control method.   Section 5.2 will review the details 

of the experiment to test the effect of unconstrained labor.  Section 5.3 will review the 

details of the experiments using makespan as the performance measure on interest. 

Section 5.1: Full Factorial ANOVA Experimental Design 

The data was used in full factorial experiments evaluating the three factors (move-time, 

operation cycle time variation and set-up) under high and low settings.  Specific 

experimental settings are shown in Table 2.  The output data was analyzed using 

ANOVA.  Output of ANOVA showed the performance of each of the four methods (one-

piece flow, DBR, DynDBR and TTG) and the interaction effects of the three factors 

(move-time, operation cycle time variation and set-up) under the various operating 

conditions of the three production processes (light machining, heavy machining and 
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assembly).  The full factorial experiments were run separately for the one-piece flow, 

DBR, DynDBR and TTG production methods.   

 
Move-time COV 

Set-Up 

Time* 

Experiment 1 
High 

(10 seconds) 

High 

(50%) 

High 

 

Experiment 2 
High 

(10 seconds) 

Low 

(10%) 

High 

 

Experiment 3 
High 

(10 seconds) 

High 

(50%) 

Low 

 

Experiment 4 
High 

(10 seconds) 

Low 

(10%) 

Low 

 

Experiment 5 
Low 

(1 second) 

High 

(50%) 

High 

 

Experiment 6 
Low 

(1 second) 

Low 

(10%) 

High 

 

Experiment 7 
Low 

(1 second) 

High 

(50%) 

Low 

 

Experiment 8 
Low 

(1 second) 

Low 

(10%) 

Low 

 

Table 2: Full Factorial Experimental Design 

*Set up time high and low settings vary by the application and are described below 

 

The three factors were altered in the full factorial experimental design as follows: 

 Move-time is the time to transport parts from one operation to the next.   

o Move-time is either set at high (10 seconds) or low (1 second) setting.   

o The high move-time represents a process where distances between operations are 

large and operators have to walk to move parts to the next process.   

o The low move-time represents an assembly process where workstations are close, 

requiring minimal move-time.   
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o Move-time is not subject to stochastic conditions.  The reasoning is discussed in 

Section 6.   

 Operation cycle time variation is modeled by modifying the standard deviation used 

in the simulation model.   

o The standard deviation for each operation was set to represent low variation 

(standard deviation = 10% of the average operation cycle time) or high variation 

(standard deviation = 50% of the average operation cycle time).   

o The standard deviation is used within a normal probability distribution function 

by the simulation model (See Appendix).   

 Set-up time is the time to changeover from one product to the next in the schedule.   

o Set-up time is based on actual set-up times shown in Tables 3, 4 and 5.   

o The high set-up time settings represent machining processes with significant set-

up time, such as the light and heavy machining processes used to produce the 

piston-disc (Figure 2) and slide-valve (Figure 3).  These times vary from ten 

minutes to four hours depending on the operation and application.   

o The low set-up times represent an assembly process with minimal set-up, such as 

used to assemble the solenoid shown in Figure 4.   

o Set-up is subject to stochastic conditions as described in the Appendix.   

Specific information about the three production processes is documented below.   

 Light machining of piston discs 

o These processes are mostly done using machines with some assembly operations.  

They exhibit significant differences in operation cycle time from one family to 
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another (unbalanced production) and require set-up time that many manufacturers 

would consider moderate.  Due to the small size of the piston disc and the large 

machinery used in the production process, move-time is significant relative to 

operation cycle time.  The piston disc is shown in Figure 2.  Each disc pictured 

below is approximately ½ inch in diameter.  There are nine families of piston-

discs based on size.  Manufacturing operation cycle time data of the piston disc is 

shown in Table 3.   

 

Figure 2: Piston-Disc in a Takt Time Group Kanban Tray 
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Table 3: Piston Disc Operation Cycle Time Data in Seconds 

Constraining operation for each product is highlighted in yellow 
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CTc

D1 10 20 20 10 2700 0 5 2.5 100 12 12 6 900 0 7 3.5 100 19 19 9.5 1800 12 12 6 600 20

D2 10 20 20 10 2700 0 7 3.5 100 17 17 8.5 900 0 5 2.5 100 19 19 9.5 1800 12 12 6 600 20

D3 10 20 20 10 2700 0 12 6 100 15 15 7.5 900 0 7 3.5 100 19 19 9.5 1800 12 12 6 600 20

D4 10 27 27 14 2700 0 7 3.5 100 30 30 15 900 0 10 5 100 19 19 9.5 1800 12 12 6 600 30

D5 10 27 27 14 2700 0 9 4.5 100 30 30 15 900 0 8 4 100 19 19 9.5 1800 12 12 6 600 30

D6 10 27 27 14 2700 0 21 11 100 30 30 15 900 0 9 4.5 100 25 25 13 1800 12 12 6 600 30

D7 10 34 34 17 2700 0 5 2.5 100 12 12 6 900 0 7 3.5 100 60 60 30 1800 12 12 6 600 60

D8 10 34 34 17 2700 0 8 4 100 21 21 11 900 0 5 2.5 100 60 60 30 1800 12 12 6 600 60

D9 10 34 34 17 2700 0 12 6 100 15 15 7.5 900 0 7 3.5 100 60 60 30 1800 12 12 6 600 60

Avg. = 27 27 0 9.6 20 20 0 7.2 33 33 12 12

Cut from stock Deburr Drill Sub Assemble Face Test
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 Heavy machining of slide-valves 

o These processes include a combination of machining operations, manual assembly 

and semi-automated testing.  The machining operations require set-up times that 

would be considered very long, with one set-up requiring four hours.  Due to the 

large machinery used in the production process, move-time is significant relative 

to operation cycle time.  One of these valves is shown in Figure 3.  The valve 

pictured below is approximately two feet tall.  Manufacturing operation cycle 

time data of the slide-valve is shown in Table 4.   

 

Figure 3: Slide-Valve 
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Table 4: Slide-Valve Operation Cycle Time Data in Seconds 

Constraining operation for each product is highlighted in yellow 
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S8 10 88 88 44 5400 157 157 79 3600 187 187 93.5 3600 0 240 120 100 219 219 110 100 0 213 107 600 240

S10 10 88 88 44 5400 208 208 104 3600 205 205 103 7200 0 300 150 100 144 144 72 100 0 213 107 600 300

S12 10 88 88 44 5400 326 326 163 3600 298 298 149 7200 0 236 118 100 268 268 134 100 0 213 107 600 326

S16 10 88 88 44 5400 330 330 165 3600 448 448 224 14400 0 236 118 100 382 382 191 100 0 304 152 1050 448

Avg. = 88 88 255 255 285 285 0 253 253 253 0 236

Assemble & Machine 

Stem-Seat Machine BodyBrazing Pre-Assemble Assemble & Test Paint
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 Assembly of small (solenoid) valves 

o Assembly is done using labor to manually assemble products from machined 

components (including the piston-discs), then test and packaged these products.  

There is almost no set-up time incurred in producing these products.  The 

operations are very close together.  These are the types of processes that one 

would typically use one-piece flow.  One of these solenoid valves, produced in a 

one-piece flow cell, is shown in Figure 4.  The valve pictured below is 

approximately three inches tall.  Manufacturing operation cycle time data of the 

solenoid is shown in Table 5.   

 

Figure 4: Small Solenoid Valve 
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Table 5: Small Solenoid Valve Operation Cycle Time Data in Seconds 

Constraining operation for each product is highlighted in yellow 
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CTc

E1 1 0 26 2.6 100 0 24 2.4 100 0 28 2.8 100 0 30 3.0 100 0 45 4.5 100 0 42 4.2 100 45

E2 1 0 26 2.6 100 0 25 2.5 100 0 28 2.8 100 0 27 2.7 100 0 45 4.5 100 0 42 4.2 100 45

E3 1 0 22 2.2 100 0 24 2.4 100 0 50 5.0 100 0 31 3.1 100 0 44 4.4 100 0 41 4.1 100 50

E4 1 0 31 3.1 100 0 23 2.3 100 0 27 2.7 100 0 30 3.0 100 0 44 4.4 100 0 41 4.1 100 44

E5 1 0 41 4.1 100 0 27 2.7 100 0 28 2.8 100 0 31 3.1 100 0 45 4.5 100 0 42 4.2 100 45

E6 1 0 45 4.5 100 0 23 2.3 100 0 27 2.7 100 0 30 3.0 100 0 44 4.4 100 0 41 4.1 100 44

E7 1 0 34 3.4 100 0 24 2.4 100 0 27 2.7 100 0 30 3.0 100 0 44 4.4 100 0 41 4.1 100 44

E8 1 0 23 2.3 100 0 26 2.6 100 0 28 2.8 100 0 31 3.1 100 0 45 4.5 100 0 42 4.2 100 45

E9 1 0 28 2.8 100 0 25 2.5 100 0 50 5.0 100 0 30 3.0 100 0 44 4.4 100 0 42 4.2 100 50

Avg. = 0 31 0 25 0 33 0 30 0 44 0 42

Assemble Noise TestInternal Test Pre-Pack Package Box
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In all experiments, comparisons are be made between one-piece flow, DBR, 

DynDBR and TTG.  Performance measures under evaluation are throughput rate 

(quantity completed during a fixed time period of 120 hours (simulating a five day, three 

shift operation)), average WIP inventory in the flow cell and average flowtime of all 

entities.  An entity can be one unit, a Takt Time Group or a DBR transfer-batch.  In 

addition, WIP will be measured and, if needed, reported at one hour intervals.  This 

clarity of WIP levels should provide additional understanding of the throughput rate 

results.  Throughput rate only measures entities (single units) complete after 120 hours.  

(Note, there is no warm-up period used in this experiment.  The reason for no warm-up 

period is described in Section 6.)  Entities that have gone through operation 1 but are not 

complete are WIP.  Finding how many hours pass before WIP achieves a steady-state 

condition will provide insight into each methods’ ability to control WIP, which may 

affect throughput rate.   

 

Section 5.2: Labor Resource Experimental Design 

A factor that we did not alter in the full factorial experiments is labor.  The number of 

labor resources used in all simulation models was calculated to achieve greater than 80% 

utilization.  This follows general practices in most companies which try to have minimal 

idle labor.  The number of labor resources used in our simulation models was always less 

than the number of operations.  In an unbalanced flow cell (a mix of fast and slower 

operations) there will often be fewer people than workstations.  This occurs because, if 

labor-time is similar to operation cycle time, then there is less labor needed at the faster 



 
 
 
 

Revision: July 2, 2014  Copyright, Mitchell A. Millstein, 2014   46 

operations and more labor needed at the slower operations.  If a firm wants to minimize 

idle labor they would require their labor resources to move to operations within the flow 

cell, as needed, based on the location of WIP.  If there was no WIP to process then the 

labor resource would move to an operation that had WIP in its incoming queue.  We 

could therefore consider these experiments as having constrained labor resources.     

The application that was the most interesting to use for the unconstrained-labor 

experiment was the light machining process.  The light machining process required three 

operators to achieve labor utilization greater than 80%.  (It should be noted that the need 

for three labor resources was not determined experimentally; it was calculated external to 

the simulation model.)  In the simulation, these three labor resources go wherever they 

are seized and stay at that process until released.  We investigate the results of relaxing 

the labor constraint by placing six labor resources in the system.  This gives each 

workstation its own labor resource.  Production, in the unconstrained case, was therefore 

never delayed due to a shortage of labor.   

The reason we used the light machining applications for this experiment was 

because the heavy machining and assembly applications already used five labor 

resources, and six was the maximum that could be used in these six operation flow cells.  

As explained above, the need for five labor resources was based on a calculation to 

achieve 80% or greater labor utilization.  Experimenting with increasing the labor 

resources from five to six is generally less interesting and has limits for conducting future 

research, which could involve creating throughput rate versus labor resource curves.  

Therefore, we chose the light machining application for this experiment.   
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We did not alter any of the factors discussed in Section 5.1 in the labor 

experiment.  A single treatment (high Move, high COV, high Set-up) was used because it 

represents the most realistic factor settings of the actual light machining process.   

 

Section 5.3: Makespan Experimental Design 

In all of the experiments described above we were primarily concerned with measuring 

the throughput rate of each method.  When measuring throughput rate, time is fixed and 

the quantity completed varies.  An alternative method of measuring the performance of a 

production cell is makespan.  The definition of makespan (see equation 5 in the 

Introduction) is the total time to complete a fixed set of products.  While the literature 

often uses throughput rate to determine a production method’s performance, one could 

make the case that makespan is a better performance measure.  In a throughput rate 

scenario a firm would set-up the production cell, run it for a fixed duration (in our case 

120 hours) and then be left with WIP.  The literature does not address what happens with 

the remaining WIP.   In reality, this WIP has to either be completed through the 

production process or stocked for the next time this product is run.  If the remaining WIP 

is stocked, this often requires multiple sub-part numbers to keep track of which 

operations have been completed and which remain.  The WIP would then be brought 

back into the production cell the next time the product is run, and stocked in front of the 

appropriate operation (based on the sub-part number).  In addition, while flowtime 

measures the speed of an item being completed in the flow process, we do not know if 

this translates into the speed of completing an entire order.  An analysis of makespan 
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should help us understand how long it takes each of the four methods to complete a fixed 

set of orders.  In this makespan scenario the firm would have enough customer or 

stocking orders to justify running the production cell.  The firm would take the total 

quantity of parts needed to be produced in the flow cell and run the cell long enough to 

complete the entire quantity.   

In these experiments we ran the simulations for the light machining, heavy 

machining and assembly applications, using a single treatment for each.  The light and 

heavy machining applications used the high Move, high COV and high Set-up settings.  

The assembly application used the low Move, low COV and low Set-up time setting.   
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Section 6: Discrete Event Simulation Model 

This research was largely carried out using discrete event simulation modeling.  Discrete 

event simulation has a number of advantages for use evaluating manufacturing 

scheduling systems.  These include: 

 Evaluating uncertainty in cycle and set-up times 

 Altering probability distribution factors 

 Modeling complex interdependencies between operation queues via kanban control  

 Providing information about transient states in the production process in addition to 

production completed  

 Development of statistics and confidence intervals of performance measures 

An important aspect of the simulation model is the ability to create kanban control 

of WIP inventory flow and machine set-up time when changing products.  Additional 

details of the how the discrete event simulation model created kanban control and 

allowed for set-up are discussed in Appendix A.   

A discrete event simulation model was developed to compare performance of a 

TTG flow cell to a one-piece flow, DBR and DynDBR production cell.  This simulation 

model is based on the characteristics of a functioning TTG flow cell at an actual 

manufacturing facility described in the Introduction.  It should be noted that the 

simulation model in this paper was validated using the actual performing TTG flow cell.  

The model performs similarly to the real TTG flow cells described in Section 5.   
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The simulation model allowed us to empirically compare the performance of TTG 

to one-piece flow, DBR and DynDBR.  Set-up and operation cycle times were 

randomized by the model.  Every simulation run is replicated 100 times.  Performance 

was measured by three metrics; throughput rate, work-in-process inventory level and 

flowtime.  Throughput rate is measured as the number of individual units of finished 

goods completed in 120 hours; a five day, three shift operation.  The use of a fixed 

duration simulation is common in production simulation literature (Chu and Shih, 1992).  

All simulations “start” with an empty flow cell (no WIP).  We decided not to use a warm-

up period.  Some of the applications did not reach steady-state conditions even after the 

120 hour duration of the simulation.  As will be discussed in Section 7, one of the 

applications, DBR, when applied to an unbalanced production process with moving 

constraints, will never reach steady state.  In addition, the one-piece flow method has an 

advantage in speed (flowtime) and very quickly was producing completed components.  

Using a warm-up period, to allow the flow cell to fill up with WIP, penalizes one-piece 

flow as compared to DBR and TTG.  Finally, in many companies flow cells can be 

turned-on and off.  They do not have to be run continuously.  This is best represented 

with a replicating simulation.  Therefore, the analysis below is based on a “cold-start” 

production process and how many units each application can complete in 120 hours.   

Work in process inventory is measured as units of production that have completed 

operation 1 but have not completed the final operation, at the end of the week.  WIP is 

reported as a average over the duration of the simulation.  Flowtime is measured as the 
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average time each entity (Takt Time Group, one piece or transfer-batch) spent in the flow 

cell; from the time it exited the first operation until it exited the last operation.   

Operation cycle time and set-up time were subject to stochastic conditions, and 

chosen probability distributions, based on observations of the actual production processes 

used in this study.  Move-time per transfer batch, however, is constant in the simulation.  

It is not subject to stochastic conditions.  While move-time is certainly subject to 

stochasticity in real-life applications, and these stochastic conditions could impact the 

performance metrics, the author decided to not include randomness of move-time in the 

experiment. 

Labor (resource) allocation was modelled using Arena’s default setting.  This 

setting gives the entity that has waited the longest, across all process queues, the highest 

priority for seizing a labor resource that has been released.  Other, possibly more 

effective, methods for modelling where labor resources go when they are released will be 

discussed in Section 10 and the Conclusion.   

Four models were created to test one piece flow, DBR and DynDBR and TTG.  

The TTG and one piece flow scheduling / WIP control methods were run through similar 

models.  The only difference is the TTG model processed items individually, but moved 

them as a transfer-batch based on the Takt Time Group quantity.  One-piece flow moved 

items as a transfer-batch of one unit.  The DBR and DynDBR methods were run through 

a model that used a time-buffer versus kanban.  The TTG and one piece flow model 

utilizes two kanbans at each operation.  For one-piece flow each kanban holds a single 

item transfer-batch.  For TTG each kanban holds a Takt Time Group transfer-batch.  The 
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kanbans prevent any new transfer-batch from entering a process if there are currently two 

transfer-batches (either one item for one-piece flow, or a Takt Time Group quantity) in 

queue in front of that process.  Effectively this limits the number of transfer-batches in 

the entire process to 18, or two transfer batches in queue in front of each of the six 

processes and one transfer-batch in each of the six processes.   

The DBR simulation model has important differences.  The DBR model utilizes a 

hold step, but it holds entities at the beginning of the flow cell based on a time-buffer in 

front of a single operation.  The single constraint is chosen because it is the highest 

overall utilization operation, and is therefore the drum.  The rope from this operation 

releases entities into the flow cell.  Using the formula from Radovilsky (1998) we 

calculated an optimal time-buffer for each of the three production processes.  The number 

of components in the buffered operation’s queue, times the cycle time of these 

components at this operation determines the actual “time” in front of the “constraint” 

operation.  When this time is greater than the time-buffer, the process stops releasing new 

entities into the flow cell.  The entity of the DBR simulation model is a single unit, but 

like the TTG model it is batched and moved as a transfer-batch.  Using the range of Takt 

Time Group sizes as a guide, we follow the advice of Hilmola (2004) and iteratively 

determine the optimal transfer-batch size.   

The moving constraints in these applications, from a deterministic perspective, are 

known (See Table 3, 4 and 5).  We therefore created the DynDBR model because a 

practitioner may ask, “if the moving constraints are known, couldn’t we move the time 

buffer and drum?”  The DynDBR simulation model will help us understand how a DBR 
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system that reacts to moving constraints will perform.  We need to note, however, that the 

practical ability to implement DynDBR may be limited.  Every part number in the 

sequence could have a different constraint operation than the part that was run prior in the 

sequence, requiring a continuous change in the location of the time-buffer and drum 

signaling operation.   

The DynDBR simulation was identical to the DBR model, except it allowed the 

time buffer and drum to move to the operation that was the constraint operation for 

entities entering the cell.  The constraint operation of the part numbers was read into the 

simulation from the data file.  The model placed the time-buffer and drum at that 

operation when the entity is released into the system.  This allowed the time-buffer and 

drum to move with the known constraint operation for a specific part.  Note, other 

methods could be used to relocate the time-buffer and drum, such as changing the time-

buffer location after the part leaves the constraint. However, given the short transfer time 

intervals, “drum-shifting” methods more complicated than the one used would probably 

be very difficult to implement in practice.  

The transfer-batch size varied for each method and production process (light 

machining, heavy machining and assembly).  The transfer-batch sizes are shown in Table 

6 below.  One-piece flow always had a transfer-batch size of one unit.  TTG’s transfer 

batch size varied based on the tempo time chosen for each production process (15 

minutes for light machining, 30 minutes for heavy machining and 15 minutes for 

assembly).  DBR and DynDBR was always set at the minimum transfer-batch size of the 

TTG process.   
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Revision: July 2, 2014  Copyright, Mitchell A. Millstein, 2014   55 

Process 
One-Piece 

Flow (units) 

DBR  

(units) 

DynDBR  

(units) 

TTG * 

(units) 

Light 

Machining 
1 15 15 15, 30, 45 

Heavy 

Machining  
1 8 8 8, 11, 12, 15 

Assembly 1 18 18 18, 20 

Table 6: Transfer-Batch Sizes  

* Transfer batch size varies per Takt Time Group sizing formula 

 

The production quantities used in the simulation models is important.  The light 

machining process has nine products (D1, D2, D3, D4, D5, D6, D7, D8, D9) which differ 

slightly based on size.  The light machining data set read into the simulation model 

produces 900 of each part number, sequentially.  The assembly process also has nine 

products (E1 – E9).  (The solenoids produced in the assembly process use the piston discs 

produced in the light machining process.)  The assembly data set read into the simulation 

model produces 900 of each part number sequentially.  The heavy machining process 

produces a different quantity of each of the four part numbers (S8, S10, S12, S16).  

Specifically we are simulating the production of 480 S8 slide-valves, 72 S10 slide-valves, 

220 S12 slide-valves and 200 S16 slide valves.  These quantities may seem odd, but they 

match the average demand per week per part number of the slide-valve product line.   
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Section 7: Performance of One-Piece Flow, DBR, DynDBR and TTG 

Under Varying Conditions – Light Machining Flow Cell Process 

The discussion of the experimental results for the application of one-piece flow, DBR, 

DynDBR and TTG under varying conditions for a light machining process is divided into 

seven sections.  Section 7.1 presents the results of the experiments, comparing the 

performance of the four methods (one-piece flow, DBR, DynDBR and TTG) for all 

treatments (all combinations of high and low move-time, coefficient of variation and set-

up time), considering all three performance measures (throughput rate flowtime and 

WIP).  While all three performance measures are important, the primary concern of this 

study is increasing throughput rate.  Therefore, much of the analysis will be on 

understanding the four methods’ throughput rate performance.  This analysis includes the 

comparisons of the four methods and the effects of the three factors (move-time, 

operation cycle time variation and set-up time) on throughput rate.  The other two 

performance measures, WIP and flowtime, will support the analysis of how each method 

performed as measured by throughput rate.  Section 7.2 will discuss the effect, on each of 

the four methods, of high and low move-time.  This will include statistical significance 

and discussion of the practical importance of high move-time on the throughput rate 

performance of each method.  Section 7.3 will discuss the effect, on each of the four 

methods, of high and low operation cycle time variation (also presented as the coefficient 

of variation or COV).  Section 7.4 will discuss the effect, on each of the four methods, of 

high and low set-up time.  Section 7.5 will analyze the interaction effects of the three 

factors on each production method and whether the interactions are statistically 

significant.  The analyses in Sections 7.2, 7.3, 7.4 and 7.5 will enable a deeper 
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understanding of why certain performance results were achieved.  Section 7.6 will 

discuss the comparison of the four methods for the light machining application, 

considering all three performance metrics.  Section 7.7 will summarize the advantages of 

TTG for the light machining process. 

 

Section 7.1: Overall Results for the Light Machining Process 

The results for the full factorial experiment are shown in Table 7.  In terms of throughput 

rate, TTG outperformed one-piece flow and DBR for all treatments, and outperformed 

DynDBR for five the eight treatments.  DynDBR outperformed TTG by 1% for two 

treatments and was statistically equal to TTG for one treatment.  These three treatments 

all had low Set-up time factor settings.  When evaluating the throughput rate results, 

based on the average of all treatments, TTG performed best, DynDBR second, DBR third 

and one-piece flow was last.   

In terms of mean flowtime and average WIP in the production process, one-piece 

flow, not surprisingly, was the clear winner with a mean flowtime of 10 minutes and an 

average of only 11 units in WIP.  TTG was second best in terms of flowtime and WIP.  

DBR was the next best and DynDBR was the worst when measuring WIP and flowtime.  

DynDBR had more WIP and a longer average flowtime than the other three methods. 

Section 7.6 will discuss the specific reasons why TTG outperformed one-piece 

flow, DBR and DynDBR on average throughput rate, and why TTG outperformed DBR 

and DynDBR on WIP and flowtime.   
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Table 7: Results for Light Machining Flow Cell Process 

Note: 1 = high setting, 0 = low setting 

Through-

put Rate

Flow-

Time WIP

Through-

put Rate

Flow-

Time WIP

Through-

put Rate

Flow-

Time WIP

Through-

put Rate

Flow-

Time WIP

Treat-

ment Move COV

Set-

up

Average 

(units)

Average 

(min)

Average 

(units)

Average 

(units)

Average 

(min)

Average 

(units)

Average 

(units)

Average 

(min)

Average 

(units)

Average 

(units)

Average 

(min)

Average 

(units)

1 1 1 1 6602 13 12 8466 542 918 8649 672 1156 9203 222 326

2 1 0 1 6770 13 13 8495 532 904 8630 657 1143 9241 220 322

3 1 1 0 7735 12 13 9470 379 628 9787 471 804 9826 190 295

4 1 0 0 7885 12 14 9455 376 629 9857 465 791 9854 188 292

5 0 1 1 8350 8 9 8759 483 803 8948 593 1006 9296 212 310

6 0 0 1 8388 8 9 8761 471 783 8933 587 998 9315 212 311

7 0 1 0 9402 7 10 9622 338 554 9998 431 728 9899 182 281

8 0 0 0 9432 7 10 9656 334 547 10041 424 717 9940 178 276

Average = 8071 10 11 9085 432 721 9355 538 918 9572 200 301

One Piece Drum Buffer Rope Takt Time GroupingDyn-DBR
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Section 7.2: Effect of Move-Time on Throughput Rate – Light Machining 

Process 

The effect of the “Move” factor setting on throughput rate performance of all four 

production methods is shown in Table 8.  This factor represents the time to move a 

transfer batch from one operation to the next.  The high setting of move-time per transfer 

batch is 10 seconds.  The low setting is 1 second.   

 

One-
Piece DBR 

DynDBR 
TTG 

Average Move = 1 (10 
seconds)  7248 8971 

9231 
 

9531 

Average Move = 0 (1 
second)  8893 9200 

9480 
9612 

Difference 0 vs. 1 Setting 1645 229 249 81 

% Difference 18.5% 2.48% 2.63% 0.85% 

p-value <0.0001 <0.0001 <0.0001 <0.0001 

Table 8: Average Throughput Rate Results for Move-Time Factor Settings – Light 

Machining Process 

 

For the one-piece flow method, “Move” (move-time per transfer batch quantity of 

1 unit) at the high versus low setting was statistically significant and practically 

important.  The p-value was very low (< 0.0001) and the delta from high to low was 1645 

units, or an 18.5% reduction in throughput rate.  One-piece flow’s throughput rate 

performance was very sensitive to move-time in this light machining process.  The 

degradation of throughput rate when move-time is high was expected in one-piece flow.  

In this light machining, one-piece flow, process, the move-time was “allocated” over a 

quantity of only one unit.  (In one-piece flow, the transfer-batch size is one unit.)  

Therefore, the high setting for the move-time delayed every unit from reaching the next 

operation for 10 seconds.  In one-piece flow, each operation was only buffered by one 
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unit (by the one kanban allowed between two operations).  When there was a 10 second 

delay in getting a unit to the next operation, the minimal buffer of one unit could not 

prevent a WIP “outage”, and therefore, significantly reduced utilization on all operations.  

This was especially true for the constraining operation of each product.  The 10 second 

delay is an unrecoverable amount of time when considering throughput rate.  The overall 

results will be summarized in Section 7.6, however, it is easy to see that when a 

production process has any significant level of move-time between operations, one-piece 

flow would not be the best choice of a scheduling / WIP control method.  

For the DBR and DynDBR applications, “Move” (move-time per transfer-batch) 

at the high versus low setting was statistically significant and somewhat less practically 

important than one-piece flow.  For DBR, the p-value was very low (< 0.0001), but the 

delta from high to low was 228 units, or a 2.48% reduction in throughput rate. For 

DynDBR the degradation was also statistically significant (p value < 0.0001) and slightly 

worse at 249 units or a 2.63% reduction in throughput rate.  The degradation of 

throughput rate when move-time was high for both DBR processes (traditional DBR and 

DynDBR), as compared to TTG was not surprising.  In the light machining DBR and 

DynDBR process, the move-time was “allocated” over a quantity of only 15 units in the 

light machining process.  (The transfer-batch size of the DBR and DynDBR application 

was fixed at 15 units, based on iterative experiments (Hilmola, 2004) discussed below.)  

This was half the average transfer-batch size of the TTG process.  Therefore, the 10 

second move-time for a transfer-batch was effectively 2/3
rds

 of a second per unit.  For a 

number of operations, when compared to the operation cycle times in the light machining 
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process, this was a meaningful percentage of non-value added time.  This effect could be 

negated by increasing the transfer-batch size used in the DBR and DynDBR models.  

However, larger transfer-batch sizes were tested in the simulation model.  We iteratively 

reduced the transfer-batch size within the range of Takt Time Group sizes (from 45 down 

to 15), using the method from Hilmola (2004).  The smallest transfer-batch size tested, 15 

units, was the best overall throughput rate performer in the DBR and DynDBR 

production methods. 

For the TTG process, “Move” (move-time per transfer-batch) at the high versus 

low setting was statistically significant, but had the lowest degradation in throughput rate.  

The p-value was very low (< 0.0001).  The delta from high to low was only 81, or a 

0.85% reduction in throughput rate.  The reduced degradation in throughput rate was due 

to the use of relatively larger (than DBR) transfer-batches in the TTG method.  Move-

time was “allocated” over a quantity of, on average, 30 units in the TTG light machining 

process.  (The transfer-batch sizes were 45, 30 and 15 units.)  Therefore, even the 10 

second move-time for a transfer-batch was effectively only 1/3
rd

 of a second per unit.  We 

can conclude that when a production process has high move-time (where operations are 

far apart) TTG would be the preferential scheduling / WIP control method.  The use of 

relatively large transfer-batch sizes by the TTG method negates the effect of move-time 

on throughput rate.   
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Section 7.3: Effect of Operation Cycle Time Variation on Throughput 

Rate – Light Machining Process 

The effect of the “COV” (coefficient of variation of the operation cycle time) factor 

setting on throughput rate performance of all four production methods is shown in Table 

9.  The high setting of COV was 50% (the standard deviation is 50% of the average 

operation cycle time).  The low setting was 10%.   

 
One-Piece DBR DynDBR TTG 

Average COV = 1 (50%)  8022 9079 9345 9556 

Average COV = 0 (10%)  8119 9092 9365 9587 

Difference 0 vs. 1 Setting 97 13 20 31 

% Difference 1.19% 0.14% .21% 0.33% 

p-value <0.0001 0.596 0.512 0.032 

Table 9: Average Throughput Rate Results for Operation Cycle Time Variation Factor 

Settings – Light Machining Process 

 

Of the four methods, high operation cycle time variation had the largest 

(throughput rate degradation) effect when using the one-piece flow method.  The delta 

from the high COV setting (standard deviation = 50% of each operations’ cycle time) to 

the low setting (standard deviation = 10% of each operations’ cycle time) was 97 units, or 

1.19%.  This was statistically significant (p-value < 0.0001); and was also expected.  The 

one-piece flow method had the least WIP in the production cell (average of 11 units) and 

the smallest transfer-batch size (one unit).  Both WIP and large transfer-batches dampen 

the effect of variation.  The reasoning is as follows.  Operation cycle time variation can 

create gaps of “no-WIP” at certain operations.  If a cycle of an operation was on the faster 

end of the probability distribution, followed by a cycle on the slower end of the 

probability distribution, the downstream operation may “empty-out” of anything to 
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process.  When there was ample WIP between operations this negates the effect of 

variation, as there are usually items to process. Minimal WIP, therefore, can create gaps 

of “no WIP” in the process.  Additional support for this hypothesis, and for one-piece 

flow’s underperformance under high operation cycle time variation, can be seen more 

clearly in Figure 5 (below), which shows the average WIP level in the one-piece flow cell 

reported out once each hour.  Whenever WIP was below six units, at least one of the flow 

cell operations was idle.  Note, not shown on this graph is that for some replications, at 

several time-periods, the one-piece flow cell had zero WIP, which implies that all 

operations are idle, resulting in zero throughput.  Essentially, the one-piece flow cell, by 

design, did not provide enough WIP to overcome the gaps of “no WIP” that result from 

variation in operation cycle time.  These gaps created “lost utilization” on constraint 

operations, resulting in lost throughput.  As opposed to DBR and TTG, which allow 

larger amounts of WIP in the flow cell (discussed later), one-piece flow “starved” itself at 

various points in time.   
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Figure 5: One-Piece Flow WIP by Hour – Light Machining Process 

 

The one unit transfer-batch size used in one-piece flow also hurt throughput rate 

performance under conditions of high operation cycle time variation.  One piece flow’s 

transfer-batch size of one unit resulted in each operation realizing the full operation cycle 

time variation.  According to the Law of large numbers, processing time variation of a 

large batch will be reduced relative to the mean of the batch (realized variation = 1 / 

transfer-batch
1/2

).  With one unit in the transfer-batch, the Law of large numbers has no 

effect.  This confirms the findings of Yavuz and Satir (1995).  It should be noted that 

Yavuz and Satir (1995) evaluated many more levels of COV; from 10% up to 90%.  

Their study showed greater degradation in throughput rate as COV increased beyond 

50%.  (Note a COV setting of 50% was used in this study, as this was the highest 

observed operation cycle time variation provided by the case study company.  We wanted 

to use a high, but realistic, level of variation in this experiment.)   
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However, despite the reasons that high operation cycle time variation affected 

throughput rate performance of a one-piece flow cell more than DBR or TTG, it is 

interesting that high operation cycle time variation only degraded throughput rate by 

1.19%.  This may, or may not be important to practitioners.  This was the least 

“impactful” of the three factors for one-piece flow.  Therefore, for this light machining 

process, with a high operation cycle time variation, even one piece flow may be a 

reasonable choice of production method.  This would depend, of course, on the value of 

1% improvement in throughput rate to the firm.   

The effect of high operation cycle time variation, for the DBR and DynDBR 

methods, was not significant.  When operation cycle time variation was high versus low, 

the impact was negligible.  The delta from high to low for DBR was only 13 units, and 

for DynDBR it was only 20 units.  This was not statistically significant (p-value = 0.596 

and 0.512).  The DBR and DynDBR methods had similarly large quantities of WIP in the 

production cell.  In addition, they had the largest amount of WIP at every operation (see 

Figure 6 below).  As mentioned above, WIP dampens the effect of variation.  Therefore, 

it was no surprise that the methods with the most WIP would be least affected by high 

operation cycle time variation.  In addition, transfer-batches used in the DBR and 

DynDBR methods reduce variation of the batch, as supported by the Law of large 

numbers.  With a transfer-batch size of 15 units, the variation, relative to an individual 

unit, realized in any transfer-batch was reduced by 74% (1 – 1/15
1/2

).  DBR and 

DynDBR’s combination of high WIP levels and the use of transfer-batches negate the 

impact of operation cycle time variation on this light machining process; even with 
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unbalanced cycle times and moving constraints.  Therefore, processes with high 

operation cycle time variation may lend themselves to the use of DBR or DynDBR as the 

choice of scheduling / WIP control method.   

For the TTG process, the difference of operation cycle time variation at the high 

versus low setting was statistically significant.  However, the degradation can be 

considered practically unimportant.  While the p-value was 0.032, the delta from high to 

low was only 31 units, or a 0.33% reduction in throughput rate.  TTG was robust with 

regards to operation cycle time variation for the same reasons as DBR (discussed above).  

With an average transfer-batch size of 30 units, the variation realized by the batch was 

reduced by 82% (1 – 1/30
1/2

).  The fact that it was impacted more (a reduction in 

throughput rate of 13 for DBR and 20 for DynDBR versus 31for TTG) is due to the lower 

level of WIP in the TTG process (see Figure 6).  However, this difference in the 

reduction for the TTG versus the DBR method (18 units over an entire week) and 

DynDBR method (11 units over an entire week) may not be something that would be 

important to practitioners.   
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Figure 6: WIP in Each Operation – Light Machining Process 

Graph is for the high Move, high COV, high Set-Up treatment 
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Section 7.4: Effect of Set-Up Time on Throughput Rate – Light Machining 

Process 

The effect of the “Set-Up” factor setting on throughput rate performance of all four 

production methods is shown in Table 10.  The high setting of set-up is the normal set-up 

time for this light machining process (shown in Table 3, Section 5).  The low setting is 

10% of the actual set-up time.  It should be noted that the sequence used for all four 

methods was identical.  Products must be completed in their order quantity before a set-

up occurs.  Therefore, the number of set-ups for all four methods will be nearly identical.  

(A method will only have additional set-ups if it produces more units and reaches the 

next part number in the sequence.)   

 
One-Piece DBR DynDBR TTG 

Average Set-Up = 1 (actual 
times)  7528 8620 8790 9264 

Average Set-Up  = 0 (10% of 
actual)  8613 9551 9921 9880 

Difference 0 vs. 1 Setting 1085 931 1311 616 

% Difference 12.61% 9.74% 11.4% 6.24% 

p-value <0.0001 <0.0001 <0.0001 <0.0001 

Table 10: Average Throughput Rate Results for Set-Up Factor Settings – Light 

Machining Process 

See Table 3 (Section 5) for actual set-up times of the light machining process 

For one-piece flow, “Set-Up” at the high versus low setting was statistically 

significant and practically important.  The p-value was very low (< 0.0001) and the delta 

from high to low was 1085 units, or a 12.61% reduction in throughput rate.  The 

degradation of throughput rate, when set-up time was high, was expected in a one-piece 

flow application.  Referencing Figure 5 and 6 above, we can see that there was not 

enough WIP in the one-piece flow cell to overcome the effects of when set-up occurs.  
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When the one-piece flow cell changes over from one product to the next, the very low 

WIP level virtually guarantees that the flow cell empties of all WIP.  In addition to Figure 

5 and 6 we reported the percent of the simulation duration where an operation had zero-

WIP on Figure 7.  The percentage of time there was zero-WIP in an operation was much 

higher for one-piece flow than DBR, DynDBR or TTG.  From Table 3 (Section 5) we see 

that the mean set-up duration is 10 to 45 minutes, depending on the specific operation.  

Given that the operation cycle times varied from 20 to 60 seconds, even a set-up that 

requires 10 minutes will empty out the one-piece flow cell.  This was no surprise, as one 

of the most important tools within the Toyota Lean Production System is quick-

changeover (Shingo, 1985).  Quick-changeover is an important enabler of one-piece flow.  

When a manufacturer does not have the resources to make large reductions in set-up 

time, one-piece flow is often not feasible (Monden, 1998).   

For DBR, “Set-Up” at the high versus low setting was statistically significant and 

practically important.  The p-value was very low (< 0.0001) and the delta from high to 

low was 931 units, or a 9.74% reduction in throughput rate. Higher set-up time logically 

reduces throughput rate as machines undergoing set-up cannot produce, even when there 

was ample WIP in the production cell.  For TTG, “Set-Up” at the high versus low setting 

was also statistically significant and practically important.  The p-value was very low (< 

0.0001) and the delta from high to low was 623 units, or a 6.31% reduction in throughput 

rate.  It is perhaps most interesting, however, that TTG outperformed DBR from the 

perspective of degradation of throughput rate when set-up was at the high versus low 

setting, even though DBR had an average level of WIP much higher than that of TTG.  
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(WIP levels can be seen on Table 7 and Figure 6.)  One use of WIP in production cells is 

to buffer against set-up.  WIP can help operations that are not undergoing set-up to 

continue to process.  One possibility that we evaluated was that TTG outperformed DBR 

when set-up was high because it had less “zero-WIP” occurrences.  We believed that the 

more uneven flow of the DBR process could have created these zero-WIP occurrences, 

where there was no inventory to process.  However, Figure 7 shows that DBR and TTG 

had similar amounts of time that there was zero-WIP at an operation.  In fact, DBR was 

slightly better, having zero-WIP, on average, 1.2% of the simulation duration.  TTG had 

zero-WIP, on average, 1.7% of the simulation duration.  DBR, therefore, should have 

performed similarly to TTG, or slightly better.   

 

Figure 7: Zero WIP % of Time in Each Operation – Light Machining Process 

Graph is for the high Move, high COV, high Set-Up treatment 
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The next investigation is whether the high WIP levels in DBR are actually 

causing the higher (than TTG) degradation of throughput rate when set-up time was high.  

Figure 8 shows the graph of WIP levels of the DBR process, over time.  It is apparent that 

DBR never achieved steady-state conditions (entities “in” = entities “out”).  This could 

lead one to believe that the simulation was not run long enough.  However, 120 hours is a 

long time for a discrete production operation, such as our light machining application, to 

not achieve steady-state.  The ever-increasing levels of WIP, however, makes sense when 

one looks at the reason DBR is not recommended for production applications have 

moving constraints.  As noted in the Literature Review, researchers state that the DBR 

concept breaks down when constraints move.  However, they do not discuss why.  We 

can see why in Figure 8.  DBR releases material (entities in this simulation) into the 

production cell based on the status of a time-buffer in front of one operation.  In the light 

machining application the time-buffer was placed in front of Operation 5.  However, 

other operations could be the constraint depending on the products currently going 

through the cell.  Therefore, the DBR process would release additional items into the 

production cell at a pace faster than the constraint could process them, resulting in 

infinitely increasing WIP.  TTG does not have this limitation.  It allows for moving 

constraints because it uses kanban control at all operations and varying transfer-batch 

sizes.   
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Figure 8: DBR WIP by Hour – Light Machining Process 

Graph is for the high Move, high COV, high Set-Up treatment 

The results for DBR, in fact, led us to develop the DynDBR simulation model.  It 

was hoped that by moving the time-buffer and drum these unplanned queues, and the 

ever-increasing WIP, would not occur.  Given that the moving constraints are known, 

from a deterministic perspective, this could be seen as a more “fair” comparison of the 

DBR concept versus TTG.   

The DynDBR method performed differently than DBR.  As mentioned in Section 

7.1, it outperformed DBR for all treatments, as measured by throughput rate.  However, 

DynDBR required more WIP and had a slower flowtime than DBR.  DynDBR had a 

higher throughput rate than TTG when the set-up time was low (9921 average throughput 

rate for DynDBR, 9880 average throughput rate for TTG).  Conversely, DynDBR had the 

worst degradation in throughput rate from low to high set-up time of all four methods.  

DynDBR produced 1311 fewer units, on average, when set-up time was high versus low.   
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The expected benefit of the DynDBR method over DBR is conceptually logical.  

The ability to move the time-buffer and drum based on the product entering the 

production cell would intuitively improve the performance of a production application 

with known moving constraints.  Referencing Figure 7 above, DynDBR had the lowest 

zero-WIP % (0.93%).  However, we can also see that DynDBR had much more WIP, and 

a slower flowtime, than DBR (Table 7 and Figure 6).  While the DynDBR method would 

seem to be able to keep WIP lower than DBR, a few key issues increase WIP.  First, as 

discussed in Section 6, the simulation sets the drum-operation based on the constraint 

operation of the parts entering the production cell.  With multiple part numbers flowing 

through the process, the drum was not accurate for many of the parts currently in WIP; 

and there was a lot of WIP in the DynDBR production cell.  This potentially creates a 

type of system confusion, which results in the unplanned queues in DynDBR.  These 

unplanned queues are the result of a control mechanism that was receiving poorly timed 

feedback.  DynDBR built up new queues, based on the new drum, but it did a poor job in 

draining these queues to the very low levels expected from a DBR system; where most of 

the WIP was only at the time-buffer.   

The unplanned queues of the DynDBR method were, in fact, better at reducing 

zero-WIP occurrences, but still created a lot of inventory that was “stuck” in the 

production cell.  Observing the data in Table 7 we can see that the WIP level in the 

DynDBR process, when set-up was high, was significantly greater than when set- up was 

low.  The average WIP in the DynDBR production cell at the high set-up time setting was 

1076 units, while the low set-up time setting had, on average, 760 units in WIP.  This was 
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a 42% increase in WIP.  TTG, on the other hand, was much more balanced.  The average 

WIP in the TTG flow cell at the high set-up setting was 317 units, while the low set-up 

setting had on average 286 units.  TTG had only 11% more WIP when set-up was at the 

high versus low setting.  As discussed above, WIP is often used to buffer set-ups.  

However, when the WIP is located upstream of the operating undergoing set-up it doesn’t 

help the production cell because operations downstream of a long set-up will still be 

starved of WIP to process.   

Once again we look at the method of signaling the release of new items into the 

process as a possible cause of poor performance of DynDBR; even if this signal moves 

with the constraint.  The drum signals the beginning of the production cell to release new 

items if it has less WIP than the time-buffer target, which was 2.5 hours for the light 

machining process (Radovilsky, 1998).  However, if an operation upstream of the time-

buffer was undergoing a set-up then this WIP will be held up in front of that operation 

until the set-up was complete.  This “starves” the time- buffer in front of the drum 

operations, which would cause the drum to signal for the release of more items into the 

production cell. The signal for more items caused operations upstream of the time-buffer 

to receive WIP even when they were undergoing set-up.  Since operations cannot process 

parts until the set-up was complete, this WIP built up in their queue.  We now see that for 

processes with long set-up times the DynDBR process does not function in a logical 

manner.  It may seem to the reader that there should be a “stop” mechanism for releasing 

items into the process during set-up.  However, this could be detrimental if this prevents 

WIP from getting quickly to the constraint.  In addition, the logic would have to 
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determine which set-up would create this stop mechanism and how long the stop should 

last.  These improvements are possible, but are not within the scope of this study.   

In general, we can see the advantage of kanban control and the constant tempo 

time of TTG, when the system was subject to interruptions, such as set-up.  TTG 

maintains two transfer-batches in front of all operations.  When two transfer-batches are 

in any operation it stops the prior operation from sending any more transfer-batches 

downstream.  This creates the even level of WIP shown in Figure 6.  TTG reacts faster 

than DBR or DynDBR, preventing unplanned queues, and keeping the WIP moving 

through the system.  DynDBR, with its greater WIP level, did a better job in reducing 

zero-WIP occurrences when interruptions were not part of the production process, but did 

not improve throughput rate.  In addition, DynDBR had the most WIP and the longest 

flowtime of all four methods.  

This negative aspect of DBR and DynDBR, when the process has moving 

constraints, is reinforced with the data in Table 11.  This table shows the average WIP by 

operation and the WIP at the end of the simulation (120 hours).  We can see that all four 

methods had higher WIP at the end of the 120 hour simulation, relative to the average.  

DBR’s increase, however, was greater than the other two methods, with Operation 5 

more than doubling the WIP at shutdown versus the average.   

WIP is generally seen, in the production literature, as a negative performance 

measure.  However, it does have value as these units have completed at least one process.  

Given that there are conflicting objectives, we report the amount of WIP in each 

operation at the end of the 120 hour simulation duration.  It should be noted that the 



 
 
 
 

Revision: July 2, 2014  Copyright, Mitchell A. Millstein, 2014   76 

production literature does not seem to address the issue of reporting WIP at the end of a 

fixed duration simulation, nor what “happens” to this WIP.  In real-world applications it 

is often put into inventory storage as a semi-finished product (with a unique part number) 

and then put back into production the next time these products are run in the production 

cell.   

 
One Piece DBR Dyn DBR TTG 

  Average Shutdown Average Shutdown Average Shutdown Average Shutdown 

Op 2 1.3 1.8 211 402 234 433 62 76 

Op 3 1.3 1.7 237 355 278 463 62 86 

Op 4 1.0 1.1 206 359 241 538 50 67 

Op 5 1.4 1.3 306 769 375 734 63 80 

Op 6 0.6 1.0 111 273 141 303 28 34 

Table 11: WIP by Operation: Average and at Shutdown – Light Machining Process 

Table is for the high Move, high COV, high Set-Up treatment 

The literature favors fixed simulation duration (Chu and Shih, 1992), which was 

reason for our original choice of using 120 hour fixed duration, and measuring 

throughput rate.  However, based the difference between the WIP on average and WIP at 

the end of the 120 hour simulation, we identified the need to understand each method 

from a makespan perspective.  Makespan (as discussed in the Introduction) is measured 

as the time to complete a fixed quantity of items.  Instead of limiting time and measuring 

quantity, we are fixing quantity and measuring time.  We need to note that the two ways 

of running these experiments, measuring throughput rate based on fixed time duration, 

and measuring makespan are both viable based on practice in industry.  Some companies 
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will wait to run their production cell when they have a fixed quantity to run.  Others will 

run their production cells for a fixed duration, putting the excess WIP into inventory 

storage until these products are scheduled to run again.  The makespan analysis is 

discussed in Section 10.   

Section 7.5: Factor Interaction Effects on Throughput Rate – Light 

Machining Process 

As stated above in Hypothesis 4, it is believed that interactions of the three factors 

may affect throughput rate.  Interaction effects are shown below on Figure 9.  (Note, the 

scale of the graphs is held constant for the one-piece flow, DBR, DynDBR and TTG 

analyses.)  The p-values of the interaction effects are shown below on Table 12.  The 

Move-COV and Move-Setup interactions are statistically significant for one-piece flow.  

The Move-Setup interaction was statistically significant for the DBR process.  No factor 

interactions are significant for DynDBR or TTG.   
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Figure 9: Factor Interaction Effects for One-Piece Flow, DBR, DynDBR, TTG – Light Machining Process 
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One-Piece DBR DynDBR TTG 

Move COV <0.0001 0.822 0.855 0.642 

Move 
Setup <0.0001 0.027 

0.091 
0.601 

COV Setup 0.073 0.898 0.234 0.815 

Table 12: p-values of Interaction Effects – Light Machining Process 

 

The high Move and high COV combination interacted and degraded one-piece 

flow’s throughput rate by 124.5 units (159 minus 34 or 1583 minus 1707).  The 

combination of high Move and high Set-up interacted and degraded throughput rate of 

the one-piece flow cell by 76 units (1124 minus 1048 or 1683 minus 1607).  This data is 

shown in Table 13.   

 
COV0 COV1 Delta = 

Move0 8910 8876 34 

Move1 7327 7169 159 

Delta =  1583 1707 -124.5 

    

 

SetUp0 SetUp1 Delta = 

Move0 9417 8369 1048 

Move1 7810 6686 1124 

Delta =  1607 1683 -76.0 

Table 13: One-Piece Flow Interaction Effect Table – Light Machining Process 
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The combination of high Move and high Set-up interacted and degraded 

throughput rate of DBR by 103 units (982 minus 879 or 280 minus 176).  This data is 

shown in Table 14.   

 

SetUp0 SetUp1 Delta = 

Move0 9639 8760 879 

Move1 9463 8480 982 

Delta =  176 280 -103.3 

Table 14: DBR Interaction Effect Table – Light Machining Process 

 

The interaction effects that were statistically significant were also the factors that 

were most significant and practically important for each production method.  Move and 

Set-up were the two factors that had the greatest impact on the throughput rate of one-

piece flow.  Operation cycle time variation, while statistically significant, was less 

important.  DBR’s interaction effects can be explained similarly.  The two statistically 

significant factors, Move and Set-up, interacted to create a greater than expected 

degradation of throughput rate.  However, the interaction effects were small relative to 

the main effects.  What we can learn from this analysis is primarily that TTG did not have 

interaction effects.  TTG proved to be more robust, not only to the main effects, but also 

to interaction effects.   

 

Section 7.6: Comparison of the Four Methods – Light Machining Process 

As discussed in Section 7.1, the results show that for this light machining 

production process, TTG produces the highest throughput rate when averaging all 
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treatments.  One-piece flow “allows” only a minimum amount of WIP inventory in the 

flow cell, so it was not surprising that in terms of WIP inventory level and flowtime, one-

piece flow performed best.  One-piece flow completed the light machined products, on 

average, in 7 to 13 minutes, depending on the treatment, with only an average of 9 to 14 

units of WIP in the entire flow cell.  (See Table 7 for all data and Table 15 below for a 

more granular analysis of throughput rate data.)  Our light machining one-piece flow cell 

could have, at most, 18 units in process. (This design was discussed in Section 6.) In 

addition, with one-piece flow, completed items do not have to wait at a given operation 

for other units in a transfer-batch to be completed at that operation.  They move to the 

next operation with almost no time in queue.  However, low WIP comes at the expense of 

lower throughput rate because it causes substantial idle time in operations.  DBR, 

DynDBR and TTG had slower flowtimes and greater WIP inventory levels.  In DBR, 

DynDBR and TTG flow cells, however, items are processed and transferred in batches, 

so each unit must wait until an entire transfer-batch has been processed, before moving to 

the next operation.   

Although we evaluate the four methods based on three performance metrics, 

throughput rate was our primary concern.  The results in Table 7 show that although one-

piece flow had the advantage in flowtime and WIP, one-piece flow was the worst 

performer for throughput rate (see Table 15 below).  One-piece flow’s underperformance 

can be attributed to the low amount of WIP “allowed” in the flow cell and the fact that 

each unit travels through the process as a one-unit transfer batch.  Both of these features 

make one-piece flow unable to adapt well to set-up times and operation cycle time 
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variation.  However, one-piece flow’s under-performance cannot be due to only high 

move-time, variation and set-up because one-piece flow underperformed DBR, DynDBR 

and TTG on throughput rate regardless of the levels of the three factors.  One-piece flow 

was the worst throughput rate method due to the unbalanced nature of this light 

machining production process.  As stated in the Introduction, one-piece flow is intended 

for balanced production processes.  The operation cycle times of the six operations in this 

light machining process are not balanced (see Table 3 in Section 5).  In general, it is often 

impossible to balance machining processes in a flow cell, because machine times cannot 

be “broken-up” like manual labor times.  Therefore, even when Move, COV and Set-Up 

were at the low setting, one-piece flow underperformed DBR, DynDBR and TTG on 

throughput rate.  This confirms the work of Takahashi et al. (2007) that in unbalanced 

systems, with low WIP values, DBR (with greater allowable WIP) will outperform one-

piece flow.  In summary, although individual items passed through the flow cell quickly 

with one-piece flow, and WIP was kept low, the unbalanced nature of this light 

machining process leaves individual operations, or even the entire cell, idle for periods of 

time. 
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Table 15: Throughput Rate Comparison – Light Machining Process 

 

One Piece DBR DynDBR TTG

Through-put 

Rate

Through-put 

Rate

Through-put 

Rate

Through-put 

Rate

Treat-

ment Move COV

Set-

up

Average 

(units)

Average 

(units)

Average 

(units)

Average 

(units)

TTG > 

OnePiece

TTG > 

DBR

TTG > 

Dyn DBR

1 1 1 1 6602 8466 8649 9203 39.4% 8.7% 6.4%

2 1 0 1 6770 8495 8630 9241 36.5% 8.8% 7.1%

3 1 1 0 7735 9470 9787 9826 27.0% 3.8% 0.4%

4 1 0 0 7885 9455 9857 9854 25.0% 4.2% 0.0%

5 0 1 1 8350 8759 8948 9296 11.3% 6.1% 3.9%

6 0 0 1 8388 8761 8933 9315 11.1% 6.3% 4.3%

7 0 1 0 9402 9622 9998 9899 5.3% 2.9% -1.0%

8 0 0 0 9432 9656 10041 9940 5.4% 2.9% -1.0%

Average = 8071 9085 9355 9572 18.6% 5.4% 2.3%

Throughput Rate
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DBR, DynDBR and TTG perform somewhat similarly because both use transfer-

batches, have greater WIP inventory than one-piece flow, and are constraints-focused.  

However, in the light machining application TTG outperformed DBR on all three 

performance metrics and for all treatments.  TTG outperformed DynDBR on all three 

performance metrics when set-up time was high.  TTG also had lower WIP and faster 

flowtime than DynDBR for all treatments.  TTG’s performance in the light machining 

process is due to the nature of the TTG transfer-batch sizing and kanban control when 

there are moving constraints.   

The convention when using DBR is to fix the transfer-batch.  In this study the 

transfer-batch was fixed at 15 units.  (The reason for 15 units was discussed in Section 6.)  

Therefore each part number’s transfer-batch spent either 5, 10 or 15 minutes at its 

constraint.  (In this experiment, not only are the flow cell operation cycle times 

unbalanced, but the constraint operation varies depending on the part number.)  In 

contrast, Takt Time Group sizes for this application were either 15, 30 or 45 units 

depending on the part number.  (The average Takt Time Group size, or transfer-batch size 

was therefore 30 units.)  These group sizes were based on a tempo time of 15 minutes and 

the operation cycle times at the constraint for each part number shown in Table 3 

(Section 5).  Therefore, each part numbers’ group spent approximately 15 minutes at its 

constraint.   

Intuitively it would seem that DBR and DynDBR, with smaller transfer-batch 

sizes (15 units versus an average Takt Time Group size of 30 units for the TTG flow 

cell), would process items through the flow cell faster.  However, as Table 7 shows, TTG 
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was almost 54% faster (200 versus 432 minutes) with 58% less WIP (301 versus 721 

units) than DBR; and 63% faster (200 versus 538 minutes) with 67% less WIP (301 

versus 918 units) than DynDBR.  Previous research has shown that DBR can operate 

with relatively low WIP, and techniques have been applied to minimize flowtime.  

However, that research assumed a stationary constraint.  The light machining production 

process has three constraints depending on the product in the flow cell (See Table 3).  

Because the DBR transfer-batch quantity was fixed at 15 units, but the operation cycle 

times at the constraints vary from 20 to 60 seconds, the transfer-batches spend 

substantially different amounts of time (5, 10 or 15 minutes) at their constraint.  If a 

“fast” product follows a “slow” product, the slow product can back-up the fast product, 

creating queues that are not intended, and at operations that are not time-buffered.  The 

time-buffer was placed in front of operation 5, which was overall the highest utilization 

operation.  Operation 5, therefore, controls the signal to release more transfer-batches.  

However, depending on the product in the DBR production cell, the constraint may be 

operation 1 or 3.  The unplanned queues in DBR create the greater level of WIP 

inventory and longer flowtime as compared to TTG.  This is seen clearly in Figure 6 

(WIP in each operation) and Figure 8 (WIP by hour for the DBR method).  In the DBR 

method, there should be very little WIP at any operation except Operation 5.  However, 

every operation using the DBR method had a higher WIP level than TTG.  A single time-

buffer works well with a stationary constraint, but not when the constraint moves.  When 

unplanned queues are created, inventory does not flow evenly.  Uneven flow can create 

back-ups of WIP that do not move quickly to the next operation, and therefore negatively 
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affect throughput rate.  As discussed above, DBR, with moving constraints will 

continually build up WIP.   

A stationary constraint process will (almost) always have WIP in front of the 

constraint because of the calculated time-buffer and the drum release mechanism.  

However, when constraints move to different operations, back-ups of WIP at non-

constraining operations can occur.  This is the primary reason that DBR underperformed 

TTG, when higher WIP levels would seem to support improved throughput rate 

performance (to offset high set-up times and high operation cycle time variation).  When 

constraints move, the WIP in a DBR process can back-up at multiple operations and build 

up on the production cell.  Unlike TTG, there is no pull mechanism at every operation to 

ensure that the WIP keeps moving through the process.  DBR doesn’t use a pull 

mechanism at all operations because all non-constraint operations are faster than the 

constraint.  In these “normal” DBR processes, WIP moves through non-constraint 

operations quickly and relatively evenly, with the only large queue located in front of the 

constraint operation.  However, moving constraints pushed WIP to the next operation 

even if there was a large queue in front of that operation.  “Push” processes often build up 

large WIP levels (Spearman et al, 1990) at multiple operations, which is what occurred 

with the DBR process.   

Finally, DBR, using a fixed transfer-batch size, also results in varying time spent 

at the constraints.  This exacerbates the uneven flow.  The fact that transfer-batches in the 

DBR process are spending 5, 10 or 15 minutes at their constraint will create WIP backups 

(unplanned queues) when the constraints move.   
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We created the DynDBR model to understand how a DBR system that reacts to 

moving constraints would perform.  DynDBR was better than DBR on throughput rate 

but was worse, on average, than TTG.  DynDBR’s improvement in throughput rate over 

DBR is logical as a system that can move the time-buffer and drum should improve 

throughput.  DynDBR performed worse than TTG, specifically when set-up times are 

high.  DynDBR did reduce zero-WIP occurrences (0.93%) relative to DBR (1.08%) and 

TTG (1.56%).  However, it still built up unplanned queues.  In fact, we can see on Table 

11 that once a queue was created, it was hard for it to “drain down” to the very low levels 

expected in DBR at non-constraint operations.  In Table 11, the end-of-simulation WIP 

level for DynDBR was very high.  The end-of-simulation measure was taken at a point-

in-time.  If the time-buffers were working as planned, the queue at all but one operation 

(whichever operation was the constraint operation at that moment) would be low.  The 

fact that queues were large at multiple operations demonstrates that queues in a moving 

constraint process, with interruptions, such as set-up, are difficult to “drain down” to 

designed (low) levels.  In general this shows the weakness of the single-operation 

signaling method, such as DynDBR, when constraints move.  The signal was not 

sensitive to interruptions or unplanned build-up of WIP.  Additional signals may be 

needed to “moderate” the release of new items when there is an interruption.  In general, 

unintended negative results can occur when a control method is receiving badly timed 

feedback.   

TTG, in contrast, uses varying transfer-batch sizes (Takt Time Group sizes) to 

create a constant tempo time.  Each Takt Time Group spends approximately 15 minutes 
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(based on our chosen tempo time) at its constraint.  TTG also controls WIP at every 

operation with kanbans.  The kanbans ensure that there are no unplanned queues.  Each 

queue was set at two kanbans, regardless of where the constraint was located.  Each 

kanban holds a single Takt Time Group or transfer-batch.  TTG uses kanbans at every 

operation because of the realization that with moving constraints, we don’t know which 

operation may be the constraint at any point in time.  In addition, stochasticity further 

exacerbates the problem of moving constraints, as the actual constraint may not be as 

planned.  The combination of a constant tempo time and kanban WIP control at every 

operation improves the evenness of product flow and keeps WIP moving through the 

process.  This is seen clearly in Figure 6, where TTG had a relatively even amount of 

WIP at each operation.  The result was a 5.5% average greater throughput rate achieved 

by TTG (average 9572 units) versus DBR (average 9085 units) and 2.5% average greater 

throughput rate than DynDBR (average 9355 units), as seen on Table 15 above.   

Section 7.7: TTG’s Robustness – Light Machining Process 

As discussed in the Introduction, TTG was conceptualized to implement flow 

manufacturing when processes are unbalanced, constraints move and set-up times cause 

interruptions in the flow.  In these situations neither one-piece flow nor DBR are 

reasonable choices as a WIP control and scheduling method.  As demonstrated in this 

study, one-piece flow had the lowest throughput rate performance due to the unbalanced 

nature of this light machining process.  Even when the three factors (move-time, 

operation cycle time variation and set-up) that could negatively affect throughput rate 

performance of a one-piece flow cell were low, it still had the worst throughput rate 

performance.  DBR performed worse than TTG, based on all three measures.  DynDBR 
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performed worse than TTG, based on all three measures, when set-up times were high.  

DynDBR also always had more WIP and a slower flowtime than TTG for all treatments.  

Even though for some low set-up applications DynDBR slightly outperformed TTG 

(producing about 1% more piston-discs), it required a greater investment in WIP 

inventory and was much slower than TTG.  Overall, TTG balanced high throughput rate 

with relatively low levels of WIP and moderately fast flowtime.   

TTG also proved the most robust of the four methods, when applied to the light 

machining process.  It had the smallest degradation of throughput rate when both move-

time and set-up time were at the high setting (and was only slightly higher than DBR for 

high operation cycle time variation).  It was the only method that had no factor 

interaction effects.  For all conditions in this experiment, it was the best performer and 

the most impervious to changes in conditions.   

There are three aspects of TTG that resulted in its superior performance for this 

unbalanced production process with moving constraints, and robustness to changes in 

move-time, operation cycle time variation and set-up time.  The first is the nature of the 

TTG algorithm.  TTG’s transfer-batch sizes vary in quantity, but hold the operation cycle 

time for batches at the constraint constant (or as constant as possible, given the stochastic 

nature of operation cycle times).  This effectively balances the work-cell, creating more 

even flow through the process and minimizing unplanned queues.  Unplanned queues 

back-up flow, preventing WIP from moving to the next operation and completing the 

process.  Second, TTG uses relatively large transfer-batch sizes, without suffering long 

flowtimes or high WIP levels.  The large transfer-batch sizes reduce the impact of high 
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move-time (which gets allocated over a large quantity) and high operation cycle time 

variation due to the Law of large numbers.  Third, TTG controls WIP at every operation 

using kanbans, which reduces the effects of workstation imbalances and keeps WIP 

relatively low, while also minimizing zero-WIP occurrences.  These results demonstrate 

the benefit to industry of the TTG method for light machining processes that are 

unbalanced, have moving constraints and experience interruptions to the production flow 

from activities such as set-up.   
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Section 8: Performance of One-Piece Flow, DBR, DynDBR and TTG 

Under Varying Conditions – Heavy Machining Flow Cell Process 

The subsections in Section 8 are similar to those in Section 7.  While a complete analysis 

will be performed, we will attempt to not be repetitive in the explanations of outcomes.  

A brief discussion of the overall results will be covered in Section 8.1.  Each factor’s 

impact on performance will be analyzed in Sections 8.2, 8.3 and 8.4.  Factor interactions 

will be analyzed in Section 8.5.  Results will be summarized in Section 8.6.   

Section 8.1: Overall Results for the Heavy Machining Process 

The results for the full factorial experiment are shown in Table 16.  TTG and DBR’s 

average throughput rate, over all treatments, differed by three units, or 0.18%.  This 

difference was not statistically significant (p-value = 0.191).  DynDBR’s throughput rate 

was five units less than TTG.  One-piece flow performed worst, based on throughput rate.  

In terms of mean flowtime and average WIP in the production process, however, one-

piece flow was again the clear winner with a mean flowtime of 43 minutes and an 

average of only 8 units of WIP.  TTG was second best in terms of WIP and flowtime.  

TTG flow cells had, on average, 57% faster flowtime (560 minutes) than DBR (1294 

minutes) and 53% faster flowtime than DynDBR (1184 minutes).  TTG also had 52% 

less WIP (142 units) than DBR (297 units) and DynDBR (296 units).   

Throughout Section 8, the results from the light machining application will be 

compared to the results from the heavy machining application.  Therefore, we created 

Table 17, which gives the percentage different in throughput rate between TTG and the 

other three production methods for the light and heavy machining applications.   
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Table 16: Results for Heavy Machining Flow Cell Process 

 

 

Table 17: % Difference of TTG Throughput Rate versus all Methods, Light Machining and Heavy Machining  

 

Through-

put Rate

Flow-

Time WIP

Through-

put Rate

Flow-

Time WIP

Through-

put Rate

Flow-

Time WIP

Through-

put Rate

Flow-

Time WIP

Treat-

ment Move COV

Set-

up

Average 

(units)

Average 

(min)

Average 

(units)

Average 

(units)

Average 

(min)

Average 

(units)

Average 

(units)

Average 

(min)

Average 

(units)

Average 

(units)

Average 

(min)

Average 

(units)

1 1 1 1 1025 48 8 1178 1460 324 1166 1440 355 1185 642 155

2 1 0 1 1099 43 7 1189 1439 359 1171 1413 348 1194 620 153

3 1 1 0 1272 44 9 1369 965 247 1370 964 246 1363 500 131

4 1 0 0 1372 39 8 1383 937 240 1383 936 240 1374 483 128

5 0 1 1 1033 47 8 1178 1463 365 1161 1435 354 1188 636 154

6 0 0 1 1103 42 7 1194 1430 357 1174 1402 346 1195 622 151

7 0 1 0 1283 43 8 1377 956 245 1375 954 243 1363 497 131

8 0 0 0 1379 38 8 1386 1705 238 1388 930 238 1374 482 128

Average = 1196 43 8 1282 1294 297 1274 1184 296 1279 560 142

One Piece Drum Buffer Rope Takt Time GroupingDynDBR

Treat-

ment Move COV

Set-

up

Light 

Machine

Heavy 

Machine

Light 

Machine

Heavy 

Machine

Light 

Machine

Heavy 

Machine

1 1 1 1 39.4% 15.6% 8.7% 0.6% 6.4% 1.7%

2 1 0 1 36.5% 8.7% 8.8% 0.4% 7.1% 1.9%

3 1 1 0 27.0% 7.2% 3.8% -0.5% 0.4% -0.6%

4 1 0 0 25.0% 0.1% 4.2% -0.7% 0.0% -0.7%

5 0 1 1 11.3% 15.0% 6.1% 0.9% 3.9% 2.3%

6 0 0 1 11.1% 8.4% 6.3% 0.1% 4.3% 1.8%

7 0 1 0 5.3% 6.3% 2.9% -1.0% -1.0% -0.9%

8 0 0 0 5.4% -0.4% 2.9% -0.9% -1.0% -1.0%

Average = 18.6% 7.6% 5.4% -0.1% 2.3% 0.6%

TTG v. One Piece TTG v. DBR TTG v. DynDBR
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Section 8.2: Effect of Move-Time on Throughput Rate – Heavy Machining 

Process 

The effect of the “Move” factor setting on throughput rate performance of all four 

production methods is shown in Table 18.  This factor represents the time to move a 

transfer batch from one operation to the next.  The high setting of move-time per transfer 

batch was 10 seconds.  The low setting was 1 second.   

 
One-Piece DBR DynDBR TTG 

Average Move = 1 (10 
seconds)  1192 1280 

1273 
1279 

Average Move = 0 (1 second)  1199 1284 1275 1280 

Difference 0 vs. 1 Setting 7 4 2 1 

% Difference 0.63% 0.30% .15% 0.10% 

p-value 0.054 0.308 .651 0.777 

Table 18: Average Throughput Rate Results for Move-Time Factor Settings – Heavy 

Machining Process 

 

Move-time did not have a significant effect (at the 95% confidence level) for any 

of the four production methods.  At first this seems surprising, given the impact of move-

time on the light machining process.  However, observing Table 19 (average set-up and 

cycle time data for the light and heavy machining processes), we see that the heavy 

machining process has cycle times that are five to ten times greater than the light 

machining process.  Even when the ten second move-time was allocated over a single 

unit, for one-piece flow, this time was small compared to the very long operation cycle 

time.  Therefore, unlike the light machining process, within reasonable limits, move-time 

was not a significant consideration when choosing a production method for heavy 

machining.  This finding is important as heavy machining processes often have long 
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distances between operations, requiring meaningful move time to transport WIP.  (As a 

reminder, the ten second move-time was based on actual observation of the heavy and 

light machining production processes.) 

 

Table 19: Light Machining and Heavy Machining – Average Operation Cycle and 

Average Set-up Times (in Seconds) 

 

 

Section 8.3: Effect of Operation Cycle Time Variation on Throughput 

Rate – Heavy Machining Process 

The effect of the “COV” (coefficient of variation of the operation cycle time) factor 

setting on throughput rate performance of all four production methods is shown in Table 

20.  The high setting of COV was 50% (the standard deviation is 50% of the average 

operation cycle time).  The low setting was 10%.   

 
One-Piece DBR DynDBR TTG 

Average COV = 1 (50%)  1153 1275 1268 1275 

Average COV = 0 (10%)  1238 1288 1279 1284 

Difference 0 vs. 1 Setting 85 13 11 9 

% Difference 6.87% 1.01% 0.87% 0.75% 

p-value <0.0001 <0.0001 0.009 0.027 

Table 20: Average Throughput Rate Results for Operation Cycle Time Variation 

Factor Settings – Heavy Machining Process 
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Light Machining 27 27 2700 0 9.6 100 20 20 900 0 7.2 100 33 33 1800 12 12 600

Heavy Machining 88 88 5400 255 255 3600 285 285 8100 0 253 100 253 253 100 0 236 713

Operation 6Operation 1 Operation 2 Operation 3 Operation 4 Operation 5
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The operation cycle time variation factor had the largest throughput rate 

degradation impact on the one-piece flow method.  The delta from the high operation 

cycle time variation setting to the low setting was 85 units, or 6.87%, which was 

statistically significant (p-value < 0.0001).  The one-piece flow method suffered much 

greater degradation than DBR (13 unit degradation between the low and high setting), 

DynDBR (11 units) and TTG (9 units).  As explained previously in Section 7.3, one-

piece flow will be more susceptible to operation cycle time variation because of the 

single unit transfer-batch size and the minimal WIP “allowed” in the process.   

The effect of high operation cycle time variation, for the DBR, DynDBR and 

TTG methods was also statistically significant.  (In the light machining application 

operation cycle time variation was not statistically significant for DBR, DynDBR and 

TTG.)  The greater impact of high operation cycle time variation on DBR, DynDBR and 

TTG within the heavy machining application, as compared to the light machining 

application, can largely be explained by the smaller transfer-batch sizes used in the heavy 

machining process.  Table 6 in Section 6 shows the transfer-batch sizes used in the heavy 

machining process.  DBR and DynDBR used an 8 unit transfer-batch size for the heavy 

machining application versus 15 units for the light machining application.  TTG used 

transfer-batch sizes of 15, 12, 11 and 8 units for the heavy machining application versus 

15, 30 and 45 for the light machining application.  The smaller transfer-batch sizes used 

in the heavy machining process by DBR, DynDBR and TTG reduced the effect of the 

Law of large numbers to minimize operation cycle time variation relative to the mean of 

the batch (as compared to the light machining process).  While the reduction in 
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throughput rate was not considerable (less than 1%), it was enough to make operation 

cycle time variation for DBR, DynDBR and TTG statistically significant.   

 

Section 8.4: Effect of Set-Up Time on Throughput Rate – Heavy 

Machining Process 

The effect of “Set-Up” time on throughput rate performance of all four production 

methods is shown in Table 21.  The high setting of set-up was the normal set-up time for 

this heavy machining process (part number specific set-up times are shown in Table 4 of 

Section 5 and average set-up times by operation are shown in Table 19).  We used this 

data set specifically because the set-up times would be considered long for a production 

process.  The low setting was 10% of the actual set-up time.  We chose the low setting of 

10% based on assumptions of what may be possible with the use of quick-changeover 

techniques and capital to purchase quick-changeover tooling.  With enough investment in 

time to implement quick-changeover and capital to purchase tooling, these reductions in 

set-up time have been achieved (Shingo, 1985).  Therefore, analysis of results at this 

level is potentially useful in practice.   

 
One-Piece DBR DynDBR TTG 

Average Set-Up = 1 (actual 
times)  1065 1185 1168 1190 

Average Set-Up  = 0 (10% of 
actual)  1326 1379 1379 1368 

Difference 0 vs. 1 Setting 261 194 211 178 

% Difference 19.74% 14.08% 15.3% 13.01% 

p-value <0.0001 <0.0001 <0.0001 <0.0001 

Table 21: Average Throughput Rate Results for Set-Up Factor Settings – Heavy 

Machining Process 
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If we look at the individual treatment results in Table 16, we see that one-piece 

flow performed similarly to TTG for two treatments with low set-up.  (Both of these 

treatments are also low operation cycle time variation.  As discussed above, high 

operation cycle time variation had a large negative effect on one-piece flow’s throughput 

rate performance.  Low operation cycle time variation, therefore, reduces the advantage 

of TTG’s relatively larger transfer-batches over one-piece flow’s single unit transfer-

batch size.)  This was, initially an unexpected result.  However, by observing Table 19 

we see that the heavy machining process is actually, on average, a well-balanced process.  

Except for Operation 1 (average operation cycle time = 88 seconds per unit), the average 

operation cycle times of all operations are similar (236 to 285 seconds per unit).  The 

heavy machining process has a fast operation at the front (Operation 1, whose average 

operation cycle time is 88 seconds per unit) followed by a well-balanced process.  This 

process, therefore, moves items quickly through Operation 1, onto a series of relatively 

well-balanced operations.  Light machining is comparatively more unbalanced.  The two 

fastest light machining operations require an average of 7.2 and 9.6 seconds per unit, 

while the two slowest operations require an average of 27 and 33 seconds per unit.  In 

addition, by carefully observing Table 19, we see that the light machining operations 

actually alternate between slow, fast, back to slow and so on.  This is extreme imbalance 

in a flow process.  (As a reminder to the reader, all data sets are based on actual 

production systems and have not been altered.)  These results verify prior research, that 

one-piece flow is most suitable for balanced processes with low set-up times and low 

operation cycle time variation.  It also shows that in a well-balanced process, where the 
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only imbalance is a fast operation at the very beginning, DBR, DynDBR and TTG 

perform similarly.   

The difference between the throughput rate of DBR, DynDBR and TTG, for fast 

versus long set-ups was minimal.  All three methods saw a 13 – 15% reduction in 

throughput rate when set-up times were high.  It appears that if there is sufficient WIP, 

the heavy machining process will perform within a narrow throughput rate range.   

While the throughput rate results were similar, the way DBR and DynDBR 

distributed WIP was very different than TTG; particularly when set-up times were high.  

This difference is worth studying more closely.  This analysis demonstrated a weakness 

in the DBR and DynDBR methods, which could be improved in a future research study.  

To analyze the distribution of WIP we created Figure 10, Tables 22a and 22b.  Figure 10 

shows the average WIP-by-operation for all four production methods.  Tables 22a and 

22b show the data of the WIP-by-operation, on average, and at shutdown.  These figures 

and tables have the low Move, low COV and low Set-up treatment on the top and the 

high Move, high COV and high Set-up treatment on the bottom for comparison purposes.   
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Figure 10: Average WIP in Each Operation – Heavy Machining Process 

Top Graph is for the low Move, low COV, low Set-Up treatment (000) 

Bottom Graph is for the high Move, high COV, high Set-Up treatment (111) 
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One Piece DBR Dyn DBR TTG 

 
Average Shutdown Average Shutdown Average Shutdown Average Shutdown 

Op 2 1.4 1.4 68 114 71 97 32 65 

Op 3 0.9 0.9 95 108 104 185 18 27 

Op 4 0.6 0.5 46 67 46 68 18 20 

Op 5 0.6 0.6 15 36 15 36 11 14 

Op 6 0.2 0.2 7 15 7 14 8 8 

Table 22a: Treatment 000, WIP by Operation: Average and at Shutdown – Heavy 

Machining Process 

Table is for the low Move, low COV, low Set-Up treatment 

 
One Piece DBR Dyn DBR TTG 

  Average Shutdown Average Shutdown Average Shutdown Average Shutdown 

Op 2 1.3 1.3 129 183 130 216 47 78 

Op 3 0.9 0.9 173 307 170 279 27 31 

Op 4 0.7 0.7 36 43 37 50 19 18 

Op 5 0.9 0.9 22 31 20 36 13 14 

Op 6 0.6 0.6 10 16 12 19 8 9 

Table 22b: Treatment 111, WIP by Operation: Average and at Shutdown – Heavy 

Machining Process 

Table is for the high Move, high COV, high Set-Up treatment 

Figure 10 shows the very large build-up of WIP for DBR and DynDBR in front of 

Operations 2 and 3.  Observing the top versus bottom graph we see that this build-up gets 

worse when set-up times are high.  The DBR and DynDBR processes were designed to 

release new items into the system when the time-buffer in front of the drum operation 

was less than the 12 hour target calculated from the formula by Radovilsky (1998).  If an 
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operation upstream of the time-buffer (moving or stationary) is undergoing a set-up, then 

any WIP flowing to that operation will be held up in its queue during the set-up.  This 

“starves” a drum operation located downstream of WIP, which would cause it to signal 

for the release of more items into the production cell.  This will occur even though there 

is likely substantial WIP at operations upstream of the time-buffer.  

In the heavy machining process, the reason the WIP build-up was greater during 

high set-up times is as follows.  The constraint operation for the heavy machining process 

could be Operations 2, 3 or 4, depending on the specific product (see Table 4 for part 

number specific operation cycle time data).  Operation 1, 2 and 3 had mean set-up times 

of 90, 60 and 135 minutes.  (Operations 4, 5 and 6 had much shorter mean set-up times of 

approximately 2, 2 and 12 minutes.)  During the long set-up times at Operations 1, 2 or 3, 

if the time-buffered operation was downstream of the set-up operation, the WIP in the 

time-buffer would drop below the target.  (Operations that are not undergoing set-up will 

always process any WIP in their queue.)  When a very long set-up is occurring at an 

operation upstream of the time-buffer, the drum operation will continue to signal the first 

operation to send more items into the production cell because it is starved of WIP.  The 

drum “ignores” WIP that is further upstream, even if it is a substantial quantity.  This 

increased the WIP in the DBR and DynDBR production cell, as compared to the low set-

up time treatments, and created the greater imbalance in the WIP queues.   

This analysis indicates that further refinements to the DBR and DynDBR are 

required to ameliorate this condition.  The drum could, perhaps, be turned off if a very 

long set-up is occurring upstream of the time-buffer.  This should not be done, however, 
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for set-ups downstream of the time-buffer as this would potentially starve the time-buffer.  

Given that the heavy machining data set was based on a real application, we did not 

attempt to preemptively customize the drum mechanism.  These results were discovered 

during experimentation and are therefore reported without additional changes to the DBR 

or DynDBR item-release mechanism.  Additional upgrades to DBR and DynDBR could 

potentially be done in a future research study. 

TTG, in contrast didn’t change the WIP distribution very much when set-up time 

was high versus low (See Figure 10).  TTG maintains two kanbans (each with one 

transfer-batch) in front of all operations.  When more than two transfer-batches are in any 

operation, it stops the prior operation from sending more transfer-batches downstream to 

the next operation.  TTG therefore maintained a more even WIP level even when the 

process was interrupted by a long set-up.   
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Section 8.5: Factor Interaction Effects on Throughput Rate – Heavy 

Machining Process 

As stated above in Hypothesis 4, it is believed that interactions of the three factors 

may affect throughput rate.  Interaction effects are shown below on Figure 11.  (Note, the 

scale of the graphs is held constant for the one-piece flow, DBR, DynDBR and TTG 

analyses.)  The p-values of the interaction effects are shown below on Table 23.  The 

only factor interaction that was statistically significant was COV-Setup; for one-piece 

flow.  There are no factor interactions that are significant for DBR, DynDBR or TTG.  

This result was different than the light machining process, where only the TTG method 

had no interaction effects.  The fact that one-piece flow had a significant factor 

interaction was expected.  One piece flow is very sensitive to variability and disruptions 

(such as set-up).  Therefore, the combination of high operation cycle time variation and 

high set-up time had additional effects on the one-piece flow, beyond those explained by 

the main effects.   

 
One-Piece DBR DynDBR TTG 

Move COV 0.642 0.963 0.653 0.949 

Move 
Setup 0.665 0.712 

0.485 
0.849 

COV Setup 0.001 0.752 0.679 0.747 

Table 23: p-values of Interaction Effects – Heavy Machining Process 

 

The most important aspect of the factor interaction effect analysis is the continued 

similarity of DBR, DynDBR and TTG, as measured by throughput rate, for the heavy 

machining process.  In all aspects of this experiment the factors affected each of these 

three methods similarly.   
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Figure 11: Factor Interaction Effects for One-Piece Flow, DBR, TTG – Heavy Machining Process 
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Section 8.6: Comparison of the Four Methods – Heavy Machining Process 

When considering flowtime and WIP, one-piece flow was the best performer 

(fastest flowtime and least WIP) and TTG was second best.  DBR and DynDBR required 

more than twice the time to complete a single item, and required about twice the WIP, as 

compared to TTG.  When measuring throughput rate, however, DBR, DynDBR and TTG 

were virtually tied; and were far superior to one-piece flow.   

The heavy machining process was, in fact, a relatively well-balanced process.  As 

seen in Table 19, the operation cycle times, with the exception of Operation 1, are 

similar.  There is a relatively minor difference between the slowest and fastest operation 

(except for Operation 1).  In addition, Operation 1 has very fast operation cycle times and 

therefore moves items to the rest of the well-balanced operations very quickly.  When 

there was little variation and short set-up times, one-piece flow worked very well in this 

type of production process.  (This contrasts with how poorly one-piece flow performed in 

all cases in the light machining process.)  The DBR, DynDBR and TTG methods worked 

well, in terms of throughput rate, for all treatment combinations of the heavy machining 

process.   

In this application, somewhat surprisingly, being able to move the time-buffer and 

drum held no advantage over traditional DBR, with a stationary time-buffer and drum.  In 

fact, DynDBR performed slightly, but statistically, worse than DBR.  DynDBR, by 

design, creates time-buffers at different operations.  When the process is well balanced, 

these queues are almost impossible to drain down.  Therefore, there is no reason to use 
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DynDBR, even if constraints move, when the process is relatively well balanced.  DBR 

performed slightly better, and is less complicated to manage.   

TTG’s overall (balanced) superior performance of moderate WIP, relatively fast 

flowtime and high throughput rate are the result of the combination of transfer-batches 

with kanban WIP control.  Transfer-batches have a number of positive benefits.  First, 

they reduce the effect of high move time by allocating this time over larger quantities.  

Second, they reduce the effect of operational cycle time variation (due to the Law of large 

numbers).  Finally, transfer-batches “allowed” the build-up of a moderate level of WIP in 

the production cell, which further dampened the effect of operation cycle time variation.  

Transfer batches primarily provided TTG’s advantage over one-piece flow.  (DBR and 

DynDBR also used transfer-batches.)  Controlling WIP, by using kanbans between all 

operations, maintained an even flow of material through the production cell, even when 

there were interruptions from long set-up times.  The kanbans used in TTG reacted to the 

interruption of the process flow from a set-up by turning off the flow of items that are 

allowed to move to the next operation.  This is a classic pull process (Womack and Jones, 

1996).  In contrast, DBR and DynDBR, which are intended to be hybrid push/pull 

systems (pulling items into the cell from the constraint, then pushing them within the 

cell), acted more like just a push system when set-up times were high.  DBR and 

DynDBR pushed items to operations that already had very large queues of WIP, but 

weren’t the drum operation.  TTG acted like a pure pull system, which only sends 

material into the production cell if Operation 2 signals Operation 1 that it needs more 

material to process.  Operation 2 was signaled to send more items downstream by 
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Operation 3; this continues for all operations.  When WIP backed up in the TTG flow 

cell, because a set-up was occurring, the kanbans signaled the upstream operation to stop 

sending more items downstream.  This quickly reached the beginning of the production 

process, shutting off the release of new items until the set-up was completed and WIP 

began flowing.   

These results may require choices by practitioners; they do not point to a clear 

winner, as with the light-machining process.  If in this heavy machining process we 

could: 1) minimize move-time by conveying parts from one operation to the next with 

minimal labor, 2) minimize operation cycle time variation through statistical process 

improvement methods such as Six Sigma (Klefsjö, et al. 2001), and 3) reduce set-up time 

through Lean tools such as quick-changeover, then one-piece flow may be the preferred 

method.  As we state this, however, it must be recognized that in any stochastic process 

deviations from these conditions are possible.  If there are any deviations from the low 

COV or Set-up conditions, TTG becomes substantially better in terms of throughput rate, 

as compared to one-piece flow.  Therefore, even in a low Move, low COV and low Set-

up process it may be “safer” for practitioners to use TTG.    

Overall, when set-up times were low, DBR and DynDBR had the highest 

throughput rate.  However, they also had more than twice as much WIP, and required 

more than twice the time to complete items, as compared to TTG.  TTG provides the 

most balanced performance when considering all three performance metrics, across all 

treatments.    



 
 
 
 

Revision: July 2, 2014  Copyright, Mitchell A. Millstein, 2014   108 

Section 9: Performance of One-Piece Flow, DBR, DynDBR and TTG 

Under Varying Conditions – Assembly Process  

The assembly process is quite different than the light machining and heavy machining 

applications discussed in Sections 7 and 8.  Move time was minor as the workstations in 

the actual assembly flow cell are so close that production-operators can hand off items or 

kanbans to the next operation in about 1 second.  Set-up time was also almost non-

existent, as there is no tooling required in this production process.  We therefore 

estimated the low setting for set-up time at 100 seconds and the high setting at 10 times 

this low level, or 1000 seconds.  All experimental settings are discussed in greater detail 

below in Sections 9.2, 9.3 and 9.4.   

The results of the assembly process were also quite different than light machining 

and heavy machining.  This application required additional experimentation beyond those 

conducted in Sections 7 and 8.  The focus of the analysis will be conducted in Section 9.6 

which reviews why DynDBR initially was the best throughput rate performer, and the 

results from our additional experimentation which made changes to TTG’s kanban 

distribution.  This analysis will also help explain why TTG performed so well in the light 

machining application.   

Section 9.1: Overall Results for the Assembly Process 

The results for the full factorial experiment are shown in Table 24.  In addition, we 

present the percentage difference of each method as compared to TTG for each treatment 

in Table 25.  We see that for this application DynDBR performed best in terms of 

throughput rate.  It produced, on average, 1% more solenoids than TTG (9167 for 

DynDBR versus 9074 for TTG), which was statistically significant (p < 0.0001).  In 
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addition, unlike previous applications, DynDBR was only slightly slower than TTG (136 

minute flowtime for DynDBR versus 113 minute flowtime for TTG) and had only 

slightly more WIP than TTG (151 items for DynDBR versus 125 for TTG).  Overall, 

DBR was the third best throughput rate performer and one-piece flow was the worst.  

(The only exception was the low-low-low treatment, where one-piece flow had a higher 

throughput rate than DBR.)   
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Table 24: Results for Assembly Flow Cell Process 

 

 

Table 25: % Difference of TTG Throughput Rate versus all Methods – Assembly 

 

Through-

put Rate

Flow-

Time WIP

Through-

put Rate

Flow-

Time WIP

Through-

put Rate

Flow-

Time WIP

Through-

put Rate

Flow-

Time WIP

Treat-

ment Move COV

Set-

up

Average 

(units)

Average 

(min)

Average 

(units)

Average 

(units)

Average 

(min)

Average 

(units)

Average 

(units)

Average 

(min)

Average 

(units)

Average 

(units)

Average 

(min)

Average 

(units)

1 1 1 1 6943 9.9 10.0 8275 250 308 9009 208 250 8849 149 176

2 1 0 1 7160 9.7 10.1 8310 240 295 9095 190 222 8905 146 171

3 1 1 0 7994 9.0 10.4 8754 135 157 9266 80 76 9249 85 84

4 1 0 0 8280 8.9 10.6 8862 114 128 9277 71 65 9269 75 71

5 0 1 1 7470 8.8 9.7 8311 240 292 9049 202 240 8866 148 175

6 0 0 1 7824 7.9 9.0 8353 230 279 9100 187 218 8932 145 170

7 0 1 0 8688 8.0 10.0 8802 125 143 9265 79 75 9251 85 85

8 0 0 0 9167 7.1 9.4 8902 105 115 9277 70 64 9270 75 70

Average = 7941 8.7 9.9 8571 180 214 9167 136 151 9074 113 125

One Piece Drum Buffer Rope Takt Time GroupingDynDBR

One Piece DBR DynDBR TTG

Throughput 

Rate

Throughput 

Rate

Throughput 

Rate

Throughput 

Rate

Treat-

ment Move COV

Set-

up

Average 

(units)

Average 

(units)

Average 

(units)

Average 

(units)

TTG > 

OnePiece

TTG > 

DBR

TTG > 

DynDBR

1 1 1 1 6943 8275 9009 8849 27.4% 6.9% -1.8%

2 1 0 1 7160 8310 9095 8905 24.4% 7.2% -2.1%

3 1 1 0 7994 8754 9266 9249 15.7% 5.7% -0.2%

4 1 0 0 8280 8862 9277 9269 12.0% 4.6% -0.1%

5 0 1 1 7470 8311 9049 8866 18.7% 6.7% -2.0%

6 0 0 1 7824 8353 9100 8932 14.2% 6.9% -1.8%

7 0 1 0 8688 8802 9265 9251 6.5% 5.1% -0.2%

8 0 0 0 9167 8902 9277 9270 1.1% 4.1% -0.1%

Average = 7941 8571 9167 9074 14.3% 5.9% -1.0%

Throughput Rate
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Section 9.2: Effect of Move-Time on Throughput Rate – Assembly 

Process 

The effect of the “Move” factor setting on throughput rate performance of all four 

production methods is shown in Table 26.  This factor represents the time to move a 

transfer batch from one operation to the next.   

 
One-Piece DBR DynDBR TTG 

Average Move = 1 (10 
seconds)  7594 8550 9162 9068 

Average Move = 0 (1 
second)  8287 8592 9173 9080 

Difference 0 vs. 1 Setting 693 42 11 12 

% Difference 8.36% 0.49% .12% 0.13% 

p-value <0.0001 <0.0001 0.094 0.0002 

Table 26: Average Throughput Rate Results for Move-Time Factor Settings – 

Assembly Process 

 

Only DynDBR was not statistically affected by move-time in this assembly 

process (using p-value of 5% as a guide).  One can see, however, that the actual 

reductions in throughput rate for DynDBR (11 units) and TTG (12 units) are almost 

identical.  The transfer-batch size for DBR and DynDBR was 18 units; the transfer batch 

size for TTG was either 18 or 20 units, based on the part number.  (This small difference 

in the transfer-batch sizes between the DBR methods and TTG will be discussed further 

in Section 9.6.)  The difference in statistical significance of DynDBR versus TTG, given 

the small difference in throughput rate, appears illogical.  To understand why, we have to 

dig deeper into the ANOVA calculations.  The sum of squares of the move factor in 

DynDBR and TTG are also similar.  However, the total explained variation in the TTG 

model was much higher, meaning the sum of squares of the error was much lower 
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(almost 1/3
rd

 the SSE of DynDBR).  Therefore, the F value of the TTG Move factor was 

larger, resulting in the statistical significance.  This data can be provided upon request. 

The throughput rate degradation of DBR was worse than expected, as compared 

to DynDBR, when move-time was high.  Logically, DBR should have been affected 

similarly to DynDBR.  The transfer-batch sizes used in DBR and DynDBR were identical 

(18 units).  Overall, DBR underperformed DynDBR, as measured by throughput rate, by 

approximately 7% (8571 units versus DynDBR’s 9174 units).  In the assembly process, 

DBR both underperformed DynDBR overall and was more susceptible to all factor level 

changes, including move-time.  This phenomenon will be explained in greater detail in 

Section 9.6, which will review the specific reasons for DynDBR’s superior performance 

and robustness in this assembly process.    
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Section 9.3: Effect of Operation Cycle Time Variation on Throughput 

Rate – Assembly Process 

The effect of the “COV” (coefficient of variation of the operation cycle time) factor 

setting on throughput rate performance of all four production methods is shown in Table 

27.  The high setting of COV was 50% (the standard deviation is 50% of the average 

operation cycle time).  The low setting was 10%.  In the actual solenoid assembly process 

the operation cycle times could be consistent (low) or inconsistent (high).  While it 

usually is a very consistent process, certain changes, such as incoming quality of 

components could vary the time it takes to perform the operations in this application.  

Therefore, the experimental settings represent the range of variation that could be 

expected.   

 
One-Piece DBR DynDBR TTG 

Average COV = 1 (50%)  7774 8536 9147 9054 

Average COV = 0 (10%)  8108 8607 9187 9094 

Difference 0 vs. 1 
Setting 334 71 

40 
40 

% Difference 4.12% 0.83% 0.43% 0.44% 

p-value <0.0001 <0.0001 <0.0001 <0.0001 

Table 27: Average Throughput Rate Results for Operation Cycle Time Variation 

Factor Settings – Assembly Process 

 

The effect of high operation cycle time variation was significant for all four 

production methods.  This differs from the light machining process, where only one-piece 

flow was statistically affected by high operation cycle time variation.  The reason DBR, 

DynDBR and TTG experienced significant degradation in throughput rate when 

operation cycle time variation was high is the relatively lower level of WIP in the 
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assembly process versus light machining.  The average WIP levels of DBR, DynDBR 

and TTG in the light machining process were 721, 918 and 301 units (see Table 7 in 

Section 7).  The average WIP levels of DBR, DynDBR and TTG were 214, 151 and 125 

units.  As discussed previously, more WIP in a process helps to dampen the impact of 

variation.  The lower WIP levels achieved by the assembly process (which is generally 

viewed as positive) worsened the negative impact of high operation cycle time variation.  

One-piece flow, with its single unit transfer batch size, was affected even more than the 

other production methods.   

We also want to point out, as discussed in Section 9.2, that once again, DBR had 

greater throughput rate degradation than DynDBR.  This occurred despite the fact that the 

transfer-batch size was identical, and DBR had a greater level of WIP.  This phenomenon 

points to the robustness of DynDBR to factor level changes in this assembly application 

(and the specific data set used in the simulation model).  Additional details of why 

DynDBR performed so well, and better than DBR, are contained in Section 9.6.    
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Section 9.4: Effect of Set-Up Time on Throughput Rate – Assembly 

Process 

The effect of “Set-Up” time on throughput rate performance of all four production 

methods is shown in Table 28.  As discussed above, the low setting of set-up was the 

actual mean set-up time for this assembly process (100 seconds).  This assembly process 

does not have significant tooling.  It requires only changes in work-instructions, 

purchased components and tools to change-over to the next product.  However, it is 

possible that there may be a problem in locating work-instructions, purchased 

components or tools.  Additionally, it may take longer for new employees to perform the 

simple change-over.  Therefore, the high setting of all operations’ set-up times, at 1000 

seconds (or 16.7 minutes) is feasible in practice.   

 
One-Piece DBR DynDBR TTG 

Average Set-Up = 1 (1000 
seconds)  7350 8312 9063 8888 

Average Set-Up  = 0 (100 
seconds)  8532 8830 9271 9260 

Difference 0 vs. 1 Setting 1182 518 208 372 

% Difference 13.86% 5.86% 2.24% 4.05% 

p-value <0.0001 <0.0001 <0.0001 <0.0001 

Table 28: Average Throughput Rate Results for Set-Up Factor Settings – Assembly 

Process 

 

As expected, all four production methods were significantly impacted by high set-

up times.  The results are similar to those from the two other applications (light 

machining and heavy machining), with the exception of DynDBR.  The DynDBR method 

experienced the least degradation in throughput rate when set-up times were high.  Once 

again, as seen in Sections 9.2 and 9.3, DynDBR had less degradation in throughput rate, 
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at the high factor level, than the other three methods.  DynDBR not only was the best 

throughput rate method when producing items in this light machining application, but 

also was the most robust to factor level changes.  DynDBR, like TTG in the light 

machining application, was able to maintain an even flow and create WIP queues in 

better locations to maximize throughput rate.  The reasons for the performance of 

DynDBR, and its robustness to factor level changes will be explained in Section 9.6.   
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Section 9.5: Factor Interaction Effects on Throughput Rate – Assembly 

Process 

The p-values of the interaction effects are shown below on Table 29.  The COV-

Setup interaction was statistically significant for all four methods.  One-piece flow had 

statistically significant interactions for Move-Setup and Move-COV.  In addition, TTG 

had a statistically significant interaction effect for Move-Setup.  We did not include the 

interaction effect graphs in this section.  Like Sections 7 and 8 the interaction effects that 

were significant were also very small compared to the main effects.   

 
One-Piece DBR 

 
DynDBR TTG 

Move COV <0.0001 0.962 0.198 0.544 

Move 
Setup <0.0001 0.714 0.09 0.005 

COV Setup <0.0001 <0.0001 <0.0001 <0.0001 

Table 29: p-values of Interaction Effects – Assembly Process 

 

What is most interesting from this analysis is the fact that TTG was not among the 

most robust methods when considering factor interaction effects.  In the other production 

applications, TTG and DynDBR were the most unaffected by factor interactions.  

Specifically, in the light machining application only DynDBR and TTG had no 

statistically significant interaction effects.  In the heavy machining application DBR, 

DynDBR and TTG had no statistically significant factor interaction effects.  In this 

assembly production application TTG was significantly affected by Move-Setup and 

COV-Setup.  DBR and DynDBR are only significantly affected by COV-Setup.  As 

discussed throughout Section 9, DynDBR was the one method that demonstrates 

robustness to factor level changes and factor interactions in the assembly process.    
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Section 9.6: Comparison of the Four Methods – Assembly Process 

The best throughput rate performer in this assembly process (and the associated 

data set of operation cycle times and set-up times) was DynDBR.  It had a 1% higher 

throughput rate than the second best method, TTG.  However, DynDBR had 16% greater 

flowtime and 17% more WIP than TTG.  The remaining two methods performed as 

follows.  DBR had lower throughput rate than DynDBR and TTG, with more WIP and 

longer flowtime.  One-piece flow was once again the fastest method (smallest flowtime) 

and had the least WIP, but it was the worst throughput rate performer for all but one 

treatment.   

This analysis will include comparisons of the assembly data set to the data sets 

associated with the light machining and heavy machining experiments.  Therefore we 

provide Table 30, the average operation cycle time and set-up time for all three 

production applications.  (This is similar to Table 19 in Section 8.)  However, the average 

operation cycle times do not provide the answers to why DynDBR outperformed the 

other methods, and particularly TTG.  For these answers we need the part-number 

specific operation cycle time data.  This is shown in Table 31.  Table 31 is a compilation 

of the operation cycle times and set-up times from Tables 3, 4 and 5 in Section 4.  For the 

reader we point out that the part numbers are referenced down the left side of the table.  

For example, D1 through D9 are piston disc part numbers and E1 through E9 are solenoid 

part numbers.  The part number references the size of the product.  S8, S10, S12 and S16 

are different size slide-valves.  In Table 31 we highlight the operation cycle time at the 

constraint (CTc) for all part-numbers.  For example, in the light machining application, 
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D1 – D3’s CTc is 20 seconds at Operation 1, D4 – D6’s CTc is 30 seconds at Operation 3 

and D7 – D9’s CTc is 60 seconds at Operation 5.   

 

Table 30: Average Operation Cycle and Average Set-up Times (in Seconds) – All 

Applications 
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Light Machining 27 27 2700 0 9.6 100 20 20 900 0 7.2 100 33 33 1800 12 12 600

Heavy Machining 88 88 5400 255 255 3600 285 285 8100 0 253 100 253 253 100 0 236 713

Light Assembly 0 31 100 0 25 100 0 33 100 0 30 100 0 44 100 0 42 100

Operation 6Operation 1 Operation 2 Operation 3 Operation 4 Operation 5
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Table 31: Actual Operation Cycle and Average Set-up Times (in Seconds) – All 

Applications  

 

As we evaluate the differences in results of the three applications (light 

machining, heavy machining and assembly), we must evaluate how balanced or 

unbalanced each production process is on average (see Table 30).  Heavy machining 

appears relatively balanced, except for Operation 1, which is much faster than the other 

operations.  Assembly appears relatively balanced from Operations 1 through 4, with two 

slower operations at the end of the process (Operations 5 and 6).  In addition, assembly’s 
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CTc

Piston Discs - Light Machining

D1 10 20 20 2700 0 5 100 12 12 900 0 7 100 19 19 1800 12 12 600 20

D2 10 20 20 2700 0 7 100 17 17 900 0 5 100 19 19 1800 12 12 600 20

D3 10 20 20 2700 0 12 100 15 15 900 0 7 100 19 19 1800 12 12 600 20

D4 10 27 27 2700 0 7 100 30 30 900 0 10 100 19 19 1800 12 12 600 30

D5 10 27 27 2700 0 9 100 30 30 900 0 8 100 19 19 1800 12 12 600 30

D6 10 27 27 2700 0 21 100 30 30 900 0 9 100 25 25 1800 12 12 600 30

D7 10 34 34 2700 0 5 100 12 12 900 0 7 100 60 60 1800 12 12 600 60

D8 10 34 34 2700 0 8 100 21 21 900 0 5 100 60 60 1800 12 12 600 60

D9 10 34 34 2700 0 12 100 15 15 900 0 7 100 60 60 1800 12 12 600 60

Slide Valve - Heavy Machining

S8 10 88 88 5400 157 157 3600 187 187 3600 0 240 100 219 219 100 0 213 600 240

S10 10 88 88 5400 208 208 3600 205 205 7200 0 300 100 144 144 100 0 213 600 300

S12 10 88 88 5400 326 326 3600 298 298 7200 0 236 100 268 268 100 0 213 600 326

S16 10 88 88 5400 330 330 3600 448 448 14400 0 236 100 382 382 100 0 304 1050 448

Soleniod - Light Assembly

E1 1 0 26 100 0 24 100 0 28 100 0 30 100 0 45 100 0 42 100 45

E2 1 0 26 100 0 25 100 0 28 100 0 27 100 0 45 100 0 42 100 45

E3 1 0 22 100 0 24 100 0 50 100 0 31 100 0 44 100 0 41 100 50

E4 1 0 31 100 0 23 100 0 27 100 0 30 100 0 44 100 0 41 100 44

E5 1 0 41 100 0 27 100 0 28 100 0 31 100 0 45 100 0 42 100 45

E6 1 0 45 100 0 23 100 0 27 100 0 30 100 0 44 100 0 41 100 44

E7 1 0 34 100 0 24 100 0 27 100 0 30 100 0 44 100 0 41 100 44

E8 1 0 23 100 0 26 100 0 28 100 0 31 100 0 45 100 0 42 100 45

E9 1 0 28 100 0 25 100 0 50 100 0 30 100 0 44 100 0 42 100 50

Operation 6Operation 1 Operation 2 Operation 3 Operation 4 Operation 5
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set-up times were identical across all operations, which can be in important factor with 

respect to balance.  Light machining was the most unbalanced process with alternating 

slow then fast operations.  This data, however, does not explain why, in the assembly 

application, DynDBR was the most robust method and the best overall performer.  

Instead we must observe the differences in the operation cycle time at the constraint 

(CTc).  A well balanced process, from both a flow and constraints perspective considers 

not only average cycle times across the processes, but the difference in the CTc of all 

products.  The difference in CTc for all part numbers within a production process can be 

seen in Table 31.   

In the light machining application the CTc can be as fast as 20 seconds or as slow 

as 60 seconds; a 1:3 ratio.  In the heavy machining application the CTc can be as fast as 

240 seconds or as slow as 448 seconds, an approximately 1:2 ratio.  In the assembly 

application, however, the CTc times are very similar (fastest = 44 seconds, slowest = 50 

seconds).  As a reminder for the reader, a key aspect of the TTG method is its ability to 

vary the transfer-batch size to maintain a constant tempo through the flow process.  When 

the ratio of the fastest to slowest CTc is large, such as for the light machining application, 

this benefit becomes most pronounced.  In a production process, such as the light 

machining data set used in this study, fixed-size transfer-batches move through the light 

machining application at very different tempos, creating unevenness of low.  In contrast, 

varying transfer-batch sizes, as TTG does, creates more even flow.  In a process such as 

assembly, with similar CTc’s, there is little to no advantage for TTG over a fixed-size 

transfer-batch, because the varying transfer-batch size does not actually vary much.  (The 
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transfer-batch sizes for TTG in the assembly process were either 18 or 20 units, while the 

transfer- batch sizes for DynDBR and DBR were 18 units.)  Therefore, in the assembly 

application the tempo, or the time spent at the constraint operation, of transfer-batches 

moving through the flow cell using the DynDBR method was basically identical to TTG.  

However, based on the superior performance of TTG in the light machining and heavy 

machining applications we would not have expected DynDBR to outperform TTG.  This 

required additional investigation, which will be explained later in this section.   

The reason DynDBR performed so well is explained by how WIP was distributed.  

In Figure 12 (below) we see the distribution of WIP across all operations.  (This graph is 

for the low Move, low COV, low Setup treatment.  However, all treatments showed a 

similar distribution.)  Unlike the light machining and heavy machining applications, the 

DynDBR’s distribution of WIP in the assembly application was close to ideal.  Operation 

5 was the constraint operation for seven of nine part numbers.  In the DynDBR 

simulation, Operation 5 was the operation with the most WIP.  Operation 3 was the only 

other constraint operation (for two of the nine part numbers).  Operation 3 had the second 

most amount of WIP.  All of the other operations in the DynDBR simulation had very 

low WIP; lower than any other production method, including TTG.  TTG, because it 

controls WIP with two kanbans at each operation (each kanban can contain one transfer-

batch), maintains a more even level of WIP at each operation.  Therefore at Operations 5 

and 3 TTG had less WIP than DynDBR, but at the non-constraint operations (2, 4 and 6) 

it had more WIP.  DynDBR, by creating and moving an optimized time-buffer (3.5 hours 

for the assembly application) in front of Operations 3 and 5, puts the WIP where it 
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belongs; in front of the “current” constraint operation.  For this relatively well-balanced 

and low set-up time assembly process, this difference in WIP distribution improved 

throughput, maintained a reasonably low level of WIP and fast flowtime as compared to 

the other three production methods.   

 

Figure 12: Average WIP in Each Operation – Assembly Process 

Graph is for the low Move, low COV, low Set-Up treatment (000) 

 

Traditional DBR, with a fixed time-buffer, performed relatively poorly in the 

assembly application because it did not appear to place the WIP in the best locations and 

created unplanned WIP queues.  Specifically, we notice the large WIP queue in DBR’s 

Operation 3 (see Figure 12).  In this application, the fixed time-buffer for DBR was 

located in front of Operation 5, which was the overall highest utilization operation.  DBR 

therefore signaled the system to send more items into the flow cell based on the status of 

Operation 5’s time-buffer.  When Operation 3 was the “current” constraint, however, it 
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processed items more slowly than Operation 5.  This results in the uncontrolled WIP 

queue that built up in front of Operation 3.  As we have seen previously, when an 

uncontrolled WIP queue is created, it is hard to drain down.  This dramatically increased 

the WIP in the DBR process, slowed flowtime and reduced throughput rate.   

The results of the DynDBR simulations suggest an opportunity to improve the 

operation of TTG.  Using the WIP distribution difference shown in Figure 12 we made 

adjustments to TTG’s kanban placement.  As stated in Section 6, in all of these 

experiments we used 2 kanbans at each operation.  However, the results from DynDBR 

show that there was some advantage to placing more WIP in front of Operations 3 and 5.  

Therefore we adjusted the kanbans in TTG to be more similar to how DynDBR 

distributed WIP, but held the total number of kanbans as twelve.  The altered kanban 

placement for TTG was:  

 Operation 1 = 2 kanbans,  

 Operation 2 = 1 kanban,  

 Operation 3 = 3 kanbans,  

 Operation 4 = 1 kanban,  

 Operation 5 = 4 kanbans 

 Operation 6 = 1 kanban 

We reran this kanban placement using the high Move, high COV, high Setup 

treatment.  This treatment was used because it resulted in a large difference between 

DynDBR and TTG’s throughput rate (9009 for DynDBR, 8849 for TTG, a 1.8% 
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difference).  The results of this experiment, which are given in Table 32, show the 

throughput rate and average WIP for DynDBR and TTG with the original “uniform” 

kanban distribution and with the unbalanced kanban distribution.   

 
Dynamic DBR 

TTG 
Uniform 
Kanbans 

TTG Unbalanced 
Kanbans 

Throughput 
Rate 9009 8849 9021 

WIP 250 176 198 

Table 32: Experimental Results of Non-Uniform Kanban Placement in TTG – Assembly 

Process 

Table is for the high Move, high COV, high Set-Up treatment 

By using the results of our original experiment and improving the placement of 

kanbans in TTG we increased throughput rate by 172 units.  In fact, “unbalanced” TTG 

had both greater throughput rate and less WIP than DynDBR.   

DynDBR originally outperformed TTG because the benefits of TTG, including 

varying the transfer-batch size to maintain an even tempo at the constraint and controlling 

WIP evenly at each operation with kanbans, were not benefits for this application.  The 

tempo of DynDBR and TTG were similar because the transfer-batch sizes were very 

similar.  TTG’s control of WIP at each operation, based a uniform distribution of two 

kanbans at each operation, was actually sub-optimal in this assembly application because 

it stores WIP at levels that are too high at some operations and too low at others.  

However, by placing more kanbans where they provide a buffer specifically for 

constraint operations, and less at non-constraint operations, TTG slightly outperformed 

DynDBR.   
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Conversely the assembly analysis shows why TTG performed so well within the 

light machining application.  That process, with its operation cycle time imbalances 

across the process, and within each products’ operation cycle time at the constraint 

(CTc), is what TTG was designed to optimize.  The imbalances were evened-out by the 

constant tempo (due to varying transfer-batch sizes) and by controlling, and maintaining, 

a small amount of WIP at each operation.   

Finally, DynDBR outperformed traditional DBR because it was able to move the 

time-buffer dynamically, as needed.  This moved the control of the WIP in the system to 

the proper operation, which works well in the relatively well balanced assembly process 

with comparatively low set-up times.  In the assembly application the DynDBR method 

performed as Goldratt intended when he conceptualized the drum-buffer-rope; even with 

moving constraints.  DynDBR maintained a reasonable amount of WIP at the constraint 

operation and very low WIP at all other operations.    
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Section 10: Relieving the Labor Constraint in the Light Machining 

Process 

As discussed in Section 5.2, in the full factorial experiments we purposely 

constrained labor to achieve a high utilization.  The number of labor resources in these 

flow cells is always less than the number of workstations; requiring the “operators” to 

move to different workstations to keep the WIP moving to completion.  In the light 

machining application the number of labor resources used in the full factorial experiment 

is three.  We therefore chose to create a completely unconstrained case, with six operators 

responsible for six workstations.  Since the light machining application is unbalanced, 

this would ensure that the lack of labor would never delay production.   

In Table 33 below, we show the throughput rate and WIP results for the 

constrained and unconstrained levels of labor resources in the system.  In addition, we 

show the labor utilization so the reader will be aware of the idleness of labor in the two 

scenarios.  Note, this analysis was done only for the high Move, high COV and high Set-

up time treatment of the light machining process.  This treatment “stresses” the process 

the most and requires the labor resources to perform multiple functions (move, operation, 

set-up).   

First we notice that with labor based on the level calculated to maintain high 

utilization, the labor resources are, in fact, highly utilized (87.5% or higher).  However, it 

is also apparent that this significantly constrained the throughput rate.  TTG had the 

smallest increase when labor was doubled; a 10.58% increase (10176 vs 9203).  While 

TTG improved the least, this would conversely mean that TTG does the best job utilizing 
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labor resources when they are constrained to achieve high utilization.  Because TTG tries 

to balance WIP at all operations, and maintains a reasonable level of WIP (more than 

one-piece flow, but less than DBR of DynDBR), it ensures the labor is working on items 

in such a way that they move through the system.   

DBR and DynDBR had similar 21% increases in throughput rate when labor 

resources were doubled.  They also saw a similar reduction in labor utilization of 45%.  

Both methods surpassed TTG in throughput rate performance.  Therefore, DBR and 

DynDBR with slack labor resources move more WIP towards completion.  This is 

logical; with lots of WIP and excess labor there is no reason, except for set-up, that 

production should ever be delayed at the constraints.  Most notably, however, is that 

DynDBR, with unconstrained labor, was the best throughput rate performer.  This 

supports the statement above, that more WIP and excess labor is a recipe for greater 

throughput rate in this unbalanced production cell application.  DynDBR had the highest 

WIP level in the constrained (3 labor resource) case.   

The method that had the greatest increase in throughput rate, and the least 

degradation in utilization, was one-piece flow.  While it started from a lower throughput 

rate, one-piece flow utilized the additional labor best (61.4% utilization) and completed 

44% more piston-discs.  One-piece flow did not, however, produce as many piston-discs 

as DBR, DynDBR or TTG.  While it benefited the most, even if additional labor was 

profitable (discussed below), we would still not use one-piece flow in this application.   
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One Piece Drum Buffer Rope Dyn-DBR Takt Time Grouping 

# of Labor 
Resources 

Through-
put Rate WIP 

Labor 
Utilization 

Through-
put Rate WIP 

Labor 
Utilization 

Through-
put Rate WIP 

Labor 
Utilization 

Through-
put Rate WIP 

Labor 
Utilization 

3 6602 13 89.9% 8466 542 90.2% 8649 672 94.9% 9203 222 87.5% 

6 9475 8 61.4% 10285 187 49.1% 10474 383 51.7% 10176 189 48.0% 
% 
Difference 44% -36% -32% 21% -66% -46% 21% -43% -46% 11% -15% -45% 

Table 33: Throughput Rate and WIP When Labor is Unconstrained – Light Machining Process 

Data is for the high Move, high COV, high Set-up treatment 

 

Dyn-DBR  
(same as Table 33) 

Takt Time Grouping 
2 Kanbans per Operation 

Takt Time Grouping 
4 Kanbans per Operation 

Takt Time Grouping 
6 Kanbans per Operation 

# of Labor 
Resources 

Through
-put 
Rate WIP 

Labor 
Utilizatio

n 

Through
-put 
Rate WIP 

Labor 
Utilizatio

n 

Through
-put 
Rate WIP 

Labor 
Utilizatio

n 

Through
-put 
Rate WIP 

Labor 
Utilizatio

n 

3 8649 672 94.9% 9203 222 87.5% 9315 510 89.8% 9442 704 92.4% 

6 10474 383 51.7% 10176 189 48.0% 10385 285 49.2% 10529 429 50.2% 
% 
Difference 21% -43% -46% 11% -15% -45% 11% -44% -45% 12% -39% -46% 

Table 34: TTG with Additional Kanbans – Throughput Rate and WIP When Labor is Unconstrained – Light Machining 

Process 

Data is for the high Move, high COV, high Set-up treatment 
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The results from the initial experiment led to the conclusion that a higher WIP 

level in the cell, coupled with more labor, can increase throughput rate.  Therefore, we 

sought to know if TTG could benefit from greater WIP levels, if labor was unconstrained.  

In Table 34 we show the results of increasing the number of kanbans from two per 

operation to four and six.  We left the DynDBR results from the initial experiment in this 

table to compare TTG against the best throughput rate performer from the initial 

experiment discussed in this Section.  What we find provides support for additional 

research on WIP levels and labor in TTG flow cells.  Increasing the allowable level of 

WIP, by increasing the number of kanbans between each operation, increases throughput 

rate.  However, this comes at a cost of additional WIP, and likely slower flowtime.  (We 

do not show the flowtime results, but prior research proved, using Little’s Law, that 

flowtime correlates with WIP levels (Spearman et al. 1990).)  TTG out-performs 

DynDBR with unconstrained labor, when TTG uses 6 kanbans per operation; but then the 

WIP level was slightly higher than DynDBR (429 units for TTG, 383 units for DynDBR).   

However, while the analysis above is interesting, what we don’t know from this 

specific experiment is whether having slack labor resources available in the production 

cell is economical.  This would depend on the cost of labor and the value of the items 

being produced.  We must determine whether the marginal profit earned from the 

additional labor is positive.  To help practitioners make this decision, a simple gross 

profit versus labor cost analysis is shown below in Table 35.  We are assuming that each 

piston-disc earns the firm on average $1 of gross profit (sale price minus material cost) 

and the variable wage rate for an operator working in the light machining flow cell is $20 
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per hour.  We can see that increasing the number of people from three to six is not a wise 

financial decision for any of the production methods.   

Profit of running cell with 3 Operators 
   One-Piece DBR DynDBR TTG 

Units Produced 6602 8466 8649 9203 

Gross Profit $ $6,602 $8,466 $8,649 $9,203 

Labor Hours 360 360 360 360 

Labor Cost $7,200 $7,200 $7,200 $7,200 

Profit / Loss -$598 $1,266 $1,449 $2,003 

     Profit of running cell with 6 Operators 
    One-Piece DBR DynDBR TTG 

Units 9475 10285 10474 10176 

Gross Profit $ $9,475 $10,285 $10,474 $10,176 

Labor Hours 720 720 720 720 

Labor Cost $14,400 $14,400 $14,400 $14,400 

Profit / Loss -$4,925 -$4,115 -$3,926 -$4,224 

     Profit Delta -$4,327 -$5,381 -$5,374 -$6,226 

Table 35: Weekly Profit or Loss from Additional Labor – Light Machining Process 

Data is for the high Move, high COV, high Set-up treatment 

We have learned three important lessons from the unconstrained labor 

experiments.  First, TTG does the best job in utilizing constrained labor resources to 

move WIP through the production process towards completion.  If labor resources are 

constrained (perhaps because of availability of skilled operators) or labor is expensive 

relative to the value of the product being manufactured, TTG is the preferred method.  

This is important as this light-machining process, in reality, requires skilled operators 

who can set-up and run machinery that creates a product requiring fine tolerances.  

Second, we can improve the performance of the TTG flow cell by increasing the 

allowable WIP level.  This was true when labor was constrained (3 operators) or 
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unconstrained (6 operators).  Finally, it is clear from this experiment that labor has a large 

and significant effect on the throughput rate of these four production processes.  The 

magnitude of the effect is second only to the set-up time factor.  In Section 6 we noted 

that labor was allocated to entities based on Arena’s default setting (the entity that was in 

any process queue the longest gets the highest priority for seizing labor resources).  

Additional options are available to prioritize the entities that seize labor resources that are 

released.  Two options that could be realistically implemented, and may provide benefits 

to firms under constrained resource scenarios, are 1) labor resources preferentially go, 

when released, to “current” constraint operations, if this operation does not have a labor 

resource, and 2) labor resources go, when released, to the process that has the largest 

queue and does not have a labor resource.  It is possible that the four methods under 

investigation in this study may react differently when different labor prioritization 

schemes are used.  Therefore, additional comparison analysis is needed to understand 

how TTG performs against one-piece flow, DBR and DynDBR when these labor 

resource schemes are applied.   

We also see that additional analysis is needed to understand if and when firms can 

profitably add slack labor to produce more units.  While firms do not often size their 

labor force to achieve lower labor-utilization, that may be a profitable decision.  Future 

studies could develop general tradeoff curves to determine if having idle production 

operators, so that they could be available when needed, would actually increase a firm’s 

profit.  Additionally, application-specific simulation analysis could be used to optimize 

the decision of how much labor to use in any of the methods investigated in this study.  
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Finally, the results show that increasing the number of kanbans improves throughput rate 

for both constrained and unconstrained labor.  More experiments are needed to determine 

optimal buffering and understand the tradeoff of throughput rate versus more WIP and 

slower flowtime.   
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Section 11: Makespan Performance of One-Piece Flow, DBR, 

DynDBR and TTG  

This analysis is divided into four sections.  In Sections 11.1, 11.2 and 11.3 we compare 

the makespan and average WIP performance for each method on each of the three 

production applications (light machining, heavy machining and assembly).  In Section 

11.4 we will discuss the overall findings of measuring makespan and average WIP.   
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Section 11.1: Makespan Performance in the Light Machining Process 

In the light machining makespan experiment we produced 450 of each part number (D1 

through D9), for a total quantity produced of 4050.  The high Move, high COV, high 

Setup treatment was used for this experiment.  This treatment most closely matches the 

actual parameters of this operating production cell.  The performance measures include 

the makespan and average WIP in the production cell from initiation until each 

replication had completed 4050 units (for 100 replications).  The results are shown in 

Table 36a and the percent difference of TTG versus the other production methods is 

shown in Table 36b.  In addition to the data, Figure 13 shows the level of WIP by hour, 

averaged over all replications.  (The reason why there was WIP in the process after the 

average makespan times in Table 36a was due to the randomness of makespan in the 100 

replications.) 

 
One Piece DBR DynDBR TTG 

Avg. Makespan 
(hours) 78.2 59.4 57.3 56.3 

Average WIP (units) 12.6 555 673 261 

Table 36a: Makespan and Average WIP – Light Machining Process 

Data is for the high Move, high COV, high Set-up treatment 

 
TTG vs. OnePiece TTG vs. DBR TTG vs. DynDBR 

Avg. Makespan 
(hours) -28.0% -5.3% -1.8% 

Average WIP (units) 1968.9% -53.0% -61.3% 

Table 36b: Percent Difference TTG versus Other Methods, Makespan and Average 

WIP – Light Machining Process 
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Figure 13: WIP by Hour – Makespan Experiment – Light Machining Process 
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The results of measuring makespan and average WIP are similar to the throughput 

rate experiments in Section 7.  On average, TTG completed the total order quantity the 

fastest at 56.3 hours.  It was 1.8% faster than DynDBR (57.3 hours) and 5.3% faster than 

DBR (59.4 hours).  One-piece flow was the worst performer, requiring 78.2 hours to 

complete 4050 piston discs.  While the difference in makespan between TTG and 

DynDBR was only one hour, this was statistically significant (p = 0.0165).  TTG also 

completed the total order quantity using less than half the average WIP of DynDBR and 

DBR.   

When considering a makespan scenario, the average amount of WIP could be 

considered to be unimportant, as it all will be turned into finished goods.  However, if 

floor-space is limited, a firm would still want to use a method that minimizes, and closely 

controls, WIP.  We also measured WIP to evaluate the change in WIP levels over time.  

Figure 13 provides additional insight into how WIP flows through the flow cell using 

each method.  One-piece flow maintains a very low level of WIP throughout the 

simulation and drops off to zero very quickly.  DBR and DynDBR both climb to very 

high WIP levels, then go down somewhat slowly as new items stop entering the system.  

TTG reacts similarly to one-piece flow but with a moderately higher WIP level.  Unlike 

DBR and DynDBR, TTG does not have a spike in WIP level.  It maintains a level amount 

of WIP, and then quickly depletes all WIP in the process.   

The analysis in Section 7 explained the positive benefit of a moderate WIP level 

for reducing the effect of operation cycle time variation and set-up.  This analysis applies 

when using makespan as the performance measure.  From both the throughput rate and 
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makespan analyses, we see that TTG allows a reasonable amount of WIP in the system, 

maintains that level, and uses varying transfer-batch sizes to create even flow in the light 

machining process.  This results in high throughput rate and short makespan time.   

 

Figure 14: Pareto Efficiency: WIP versus Makespan – Light Machining Process 

 

An alternate analysis for evaluating the results of the light machining application 

is to graph WIP versus makespan.  This is shown in Figure 14.  This graph clearly 

demonstrates that TTG, with a faster makespan time and much less WIP, is more Pareto 

efficient than DBR or DynDBR.  The choice between TTG and one-piece flow, from this 

perspective is not as clear.  TTG and one-piece flow create a Pareto frontier (Fang et al. 

2011).  If less WIP is the preference of the firm, then one-piece flow would be the chosen 

method, whereas if faster makespan is the preference of the firm (which is likely), then 

TTG is superior.  DBR and DynDBR would never be the preferred methods as they have 

much more WIP than either TTG or one-piece flow, and have a longer makespan than 
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TTG.  A logical next step in this research is to apply a value to makespan, which would 

enable practitioners to determine the most profitable method, based on the tradeoff of the 

cost of WIP versus the value of faster makespan.   
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Section 11.2: Makespan Performance in the Heavy Machining Process 

In the heavy machining makespan experiment we produced a total quantity of 532 slide-

valves, or approximately half of a week’s worth of demand.  Specifically we produced 

the following quantities of each of the four part numbers in the slide-valve product 

family; 240 S8 slide-valves, 72 S10 slide-valves, 110 S12 slide-valves and 100 S16 slide 

valves.  (As a reference, the quantity per part number used in all of the throughput rate 

simulation models was discussed at the end of Section 6.)  The high Move, high COV, 

high Setup treatment was used for this experiment.  This treatment most closely matches 

the actual parameters of this operating production cell.  We measure the average time and 

the average WIP in the production cell from initiation until each replication had 

completed 532 units (over all 100 replications).  The results are shown in Table 37a.  

Table 37b has the percentage improvement of TTG versus the other three methods.   

 
One Piece DBR DynDBR TTG 

Makespan (Hours) 72.2 65.1 65.2 64.8 

Average WIP 
(units) 7.1 165 162 113 

Table 37a: Makespan and Average WIP – Heavy Machining Process 

Data is for the high Move, high COV, high Set-up treatment 

 
TTG vs. OnePiece TTG vs. DBR TTG vs. DynDBR 

Makespan (Hours) -10.4% -0.6% -0.7% 

Average WIP 
(units) 1493.3% -31.3% -30.3% 

Table 37b: Percent Difference TTG versus Other Methods, Makespan and Average 

WIP – Heavy Machining Process 
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Figure 15 shows the WIP by hour for each method.  It should be noted, that while 

DBR and DynDBR look identical, there are small differences in these graphs.  In 

addition, the reason why there was WIP in the process after the makespan times shown in 

Table 37a was due to the randomness of makespan in the 100 replications.   
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Figure 15: WIP by Hour – Makespan Experiment – Heavy Machining Process 
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Once again TTG completed the total order quantity the fastest, with an average 

makespan of 64.8 hours.  However, the difference from the next fastest, DBR at 65.1 

hours, or DynDBR at 65.2 hours was not statistically significant (p-value = 0.386).  One-

piece flow was the worst performer, requiring 72.2 hours to complete 532 slide-valves.  

Therefore, the results, based on makespan, are similar to those in Section 8.  TTG, DBR 

and DynDBR were all very close in performance as measured by throughput rate.  (In the 

fixed duration experiments discussed in Section 8, TTG and DBR were not statistically 

different and DynDBR was only slightly worse.)  As stated in Section 8, in this heavy 

machining application, sufficient WIP helps to overcome the disruptions due to operation 

cycle time variation and very long set-up times.   

The TTG graph in Figure 15, however, provides further insight into why TTG did 

not substantially outperform DBR or DynDBR in the heavy machining application.  

Unlike the light-machining application, TTG did not demonstrate an even flow of WIP.  

If one compares the TTG graph from Figure 13 to Figure 15, we see that TTG had 

increasing levels of WIP in the heavy machining process versus even levels of WIP in the 

light machining process.  Increasing levels of WIP could have been logical if the 

sequence of items being produced in the heavy machining process had successively larger 

transfer-batch sizes.  WIP would increase because the same number of transfer-batches 

with larger transfer-batch sizes equates to more WIP.  However, the opposite was true.  

The sequence started with S8, then S10, S12 and finally S16 slide-valves.  The transfer-

batch sizes of these part-numbers got smaller, further into the sequence, as seen in Table 
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38.  Even though the transfer-batch sizes were getting smaller, WIP in the TTG flow cell 

increased.   

 Part 
Number 

Transfer-Batch 
Size (units) 

S8 15 

S10 12 

S12 11 

S16 8 

Table 38: Takt Time Group (Transfer-Batch) Sizes – Heavy Machining Process 

Based on 60 minute Tempo-Time (T) 

The reason WIP increased in the TTG flow cell was the increasingly large set-up 

times further into the sequence.  As seen in Table 4 of Section 5 and Table 31 of Section 

9, the set-up times at Operations 3 and 6 increased dramatically further into the sequence.  

The set-up time of the S16 slide-valve, at Operations 3 and 6, approximately double the 

set-up time of the prior part number in the sequence, the S12 slide-valve.  These very 

long set-up times cause all of the kanbans to be filled with transfer-batches, creating the 

peak of WIP towards the end of the production run.    

These results suggest that TTG’s variable transfer-batch sizes (which create a 

relatively constant tempo of all transfer batches at their constraint operation) did not 

provide the same benefit in the heavy machining process as it did in the light machining 

process.  Instead it was TTG’s kanban WIP control at each operation, in combination 

with the use of transfer-batches, that provided the minimum, but sufficient, level of WIP 

to overcome disruptions in the heavy-machining application.  This production process, 

has large cycle times, very long and uneven set-up times, and process variation.  These 
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attributes created disruptions in the flow of product through the operations.  The TTG 

method was able to overcome these disruptions, with much less WIP than DBR and 

DynDBR.  The kanbans between each operation essentially maintained the minimum 

WIP level needed to overcome the disruptions.  A process with less WIP, if disruptions 

and variation are ameliorated, will have faster makespan time due to Little’s Law.   

This experiment demonstrates the robustness of the TTG method.  Because it 

combines multiple features from other WIP control methods (kanbans, transfer-batches, 

and constraints-based transfer-batch sizing), it can perform well in many different 

applications.   

 

Figure 16: Pareto Efficiency: WIP versus Makespan – Heavy Machining Process 

 

Figure 16 shows the Pareto efficiency of each method for the heavy machining 

application.  Similar to the light machining application, this graph demonstrates that 
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TTG, with a faster makespan time and less WIP, is more Pareto efficient than DBR or 

DynDBR.  The choice between TTG and one-piece flow, from this perspective is not as 

clear because TTG and one-piece flow create a Pareto frontier.  If less WIP is the 

preference of the firm, then one-piece flow would be the chosen method, whereas if faster 

makespan in the preference of the firm (which is likely), then TTG is superior.  DBR and 

DynDBR would never be the preferred methods as they have much more WIP than either 

TTG or one-piece flow, and have a longer makespan than TTG.   
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Section 11.3: Makespan Performance in the Assembly Process 

In the assembly makespan experiment we produced a total quantity of 4050 

solenoids, or approximately half of a week’s worth of demand.  The low Move, low 

COV, low Setup treatment was used for this experiment.  The results are shown in Table 

39a.  Table 39b has the percentage improvement of TTG versus the other three methods.  

Figure 17 shows the WIP by hour for each method.    

 
One Piece DBR DynDBR TTG 

Makespan (Hours) 53.35 55.90 53.14 53.20 

Average WIP 
(units) 9.4 120 89 94 

Table 39a: Makespan and Average WIP – Assembly Process 

Data is for the high Move, high COV, high Set-up treatment 

 
TTG vs. OnePiece TTG vs. DBR TTG vs. DynDBR 

Makespan (Hours) -0.3% -4.8% 0.1% 

Average WIP 
(units) 897.7% -21.8% 5.6% 

Table 39b: Percent Difference TTG versus Other Methods, Makespan and Average 

WIP – Assembly Process 
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Figure 17: WIP by Hour – Makespan Experiment – Assembly Process 
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Unlike the light machining and heavy machining applications, in this experiment 

we used the low Move, low COV, low Setup treatment.  As discussed in Section 9, the 

assembly application can experience a range of factor levels.  However, most often this 

process has low operation cycle time variation and low set-up time.  In this application 

one-piece flow, DynDBR and TTG are virtually equal in makespan.  The difference in 

DynDBR’s makespan (53.14 hours) versus one-piece flow’s makespan (53.35 hours) was 

approximately 13 minutes.  The difference in DynDBR’s makespan (53.14 hours) and 

TTG’s makespan (53.20 hours) was approximately 4 minutes.  These differences, while 

very small, are actually statistically significant (p-value < 0.0001) because makespan was 

extremely consistent over the 100 replications.  The standard deviation of makespan was 

0.105 hours for one-piece flow, 0.103 hours for DynDBR and 0.097 hours for TTG.  This 

consistency can also be seen in Figure 17’s one-piece flow, DynDBR and TTG graphs.  

Unlike Figure 13 (light machining) and Figure 15 (heavy machining) the WIP in Figure 

17 drops off quickly for one-piece flow, DynDBR and TTG.   

In the comparatively balanced assembly process we see a practical three-way tie 

in makespan.  To understand the similarities in one-piece flow, DynDBR and TTG we 

added to this analysis the WIP by hour graph for the one-piece flow method with its 

natural scale (See Figure 18 below).  Comparing this graph with the pattern of WIP by 

hour in Figure 17’s DynDBR and TTG graphs, we can see that they all look similar, with 

the slight edge in makespan performance going to DynDBR.  However, these are 

essentially the same makespan times, even if there is a statistically significant difference.   
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Figure 18: One-Piece Flow WIP by Hour – Makespan Experiment – Assembly Process 

 

 

Figure 19: Pareto Efficiency: WIP versus Makespan – Assembly Process 

 

Figure 19 shows the WIP by makespan graph of the four methods for the 

assembly process.  As a reminder to the reader, the treatment used in this application was 
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the low Move, low COV, low Setup.  From this graph we see the advantages that one-

piece flow demonstrates in a balanced process with minimal disruptions.  It had almost as 

fast a makespan time as DynDBR and TTG, but with much less WIP.  As stated 

previously in this study, these results are not surprising.  One-piece flow was intended for 

balanced processes with minimal disruptions due to operation cycle time variation 

(Yavuz and Satir, 1995) or set-up time (Monden, 1998).  These were exactly the 

conditions that existed for the assembly application in this makespan experiment, and as 

expected, one-piece flow was the best choice when considering both WIP and makespan.   

Practitioners would, therefore, appear to have a choice of methods in this 

relatively well balanced case.  Although this assembly application is especially suitable 

for one-piece flow, TTG has shown itself to be more robust than one-piece flow over a 

range of conditions.  In addition, TTG is probably easier to apply than DynDBR. 
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Section 11.4: Summary Makespan Experiments 

The results from the makespan experiment generally match and reinforce those 

from the throughput rate experiments.  However, these results provide clarification.  TTG 

was either the best performer (for the light machining and heavy machining application) 

or, in the assembly application, matched one-piece flow and DynDBR in terms of 

makespan.  In the assembly application, one-piece flow, DynDBR and TTG had similar 

performance due to the very similar patterns of WIP flow over time.   

The makespan experiments also provided clarification of why TTG does not 

substantially outperform DBR or DynDBR in the heavy machining application, when 

using throughput rate as the primary performance measure.  This application had very 

long and unbalanced set-up times.  In this production environment there was no 

significant advantage to TTG’s varying transfer-batch size and constant tempo.  The set-

up times were too disruptive, and order quantities too small, to make an even flow of 

WIP possible.  Instead, it was TTG’s moderate level of WIP from the use of transfer-

batches and kanban control of WIP at each operation that allowed it to perform slightly 

better than DBR and DynDBR in terms of throughput rate (See Section 8), with smaller 

levels of WIP.   

The most important conclusion of these experiments is that TTG was always the 

best or among the best performers.  No other method achieved this level of makespan 

(and throughput rate) performance across all three manufacturing applications.   
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Section 12: Conclusion 

The conclusion is divided into three sections.  Section 12.1 will review the generalized 

findings from this research study.  Section 12.2 will summarize why TTG achieved 

superior performance in these applications.  Section 12.3 will discuss areas for additional 

research of the TTG method, including extensions and improvements.   

Section 12.1: Generalized Findings about Takt Time Grouping 

Takt Time Grouping (TTG) was developed to utilize flow manufacturing in an 

unbalanced production process with moving constraints.  Neither one-piece flow nor 

DBR have been shown to be effective in these production environments.  In this study we 

compared TTG to one-piece flow, DBR, and a modified DBR designed for processes 

with moving constraint operations that we call Dynamic DBR (DynDBR).  These four 

methods were tested under various operating conditions while measuring multiple 

performance metrics.  The operating conditions we altered include: 1) balanced and 

unbalanced flow processes, 2) low, medium and high set-up times, 3) high and low move 

time between operations, 4) high and low operation cycle time variation, and 5) 

constrained and unconstrained labor availability.  The results demonstrate that TTG is the 

most robust method across these varied operating conditions.  In every case TTG had the 

best, or very close to the best performance, as measured by throughput rate and 

makespan; with consideration given to secondary performance measures, flowtime and 

WIP.  One-piece flow consistently had the fastest flowtime and least WIP, but was 

always the worst, or almost the worst, in throughput rate and makespan performance.  

TTG always outperformed DBR and DynDBR when measuring flowtime and WIP.  We 

can therefore conclude that when a firm faces a large range of possible operating 
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conditions in its flow cells, either from the deterministic nature of the process or due to 

process randomness, TTG is likely the best choice to optimize throughput rate and 

makespan performance.   

In addition to these general findings, we can accept or reject most of the 

hypotheses from Section 4.  These conclusions are shown in Table 40.   

# Hypothesis Description Accept Reject In-
conclusive 

H1 Throughput rate performance of one-piece flow 
is more negatively affected by large move-times 
than DBR, DynDBR and TTG 

X   

H2 Throughput rate performance of one-piece flow 
is more negatively affected by high operation 
cycle time variation than DBR, DynDBR and TTG 

X   

H3 Throughput rate performance of one-piece flow 
is more negatively affected by large set-up times 
than DBR, DynDBR and TTG 

X   

H4 Interaction effects exist between move-time, 

operation cycle time variation and set-up time 

which affect throughput rate of all four 

methods 

  X 

H5 One-piece flow will have the lowest WIP and 

fastest flowtime for all applications 

X   

H6 TTG will always have lower WIP and faster 
flowtime than DBR and DynDBR 

X   

H7 One-piece flow will out-perform DBR, DynDBR 
and TTG, as measured by throughput rate, for the 
assembly process 

 X  

H8 One-piece flow will perform worse than DBR, 
DynDBR and TTG, as measured by throughput 
rate, for the light and heavy machining processes 

X   

Table 40: Conclusions to Hypotheses 
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Section 12.2: Why TTG Achieved Superior Performance  

The superior performance of TTG is due to three elements: 1) the use of transfer-batches, 

2) varying the transfer-batch size to attain a near-constant tempo at constraint operations 

and 3) kanban control of WIP at every operation.  Transfer-batching has multiple 

benefits.  When comparing the use of transfer-batches to a one-piece flow cell design, 

transfer-batches reduce the effect of move-time between operations by allocating the 

move time over a larger quantity.  Transfer-batches also create a moderate level of WIP, 

which reduces the impact of set-up time disruptions and dampens operation cycle time 

variation.  Finally, transfer-batches reduce the impact of operation cycle time variation 

because of the Law of large numbers.   

Varying transfer-batch sizes across the items produced in a flow cell, to maintain 

a near-constant tempo at constraint operations, keeps a relatively even flow of WIP 

moving through the process.  This near-constant tempo enables TTG to maintain an even 

flow of WIP (transfer-batches) when constraints move and the operation cycle times at 

the constraints are very different.  These outcomes are best seen in the light machining 

experiments.  This application has very different cycle times at the constraint operations 

and three different constraint operations.  In this application TTG produced greater 

throughput rate and shorter makespan times than any of the other three methods.   

Kanban control of WIP at each operation distributes WIP relatively evenly at all 

operations.  When combined with transfer-batches, kanbans create a moderate level of 

WIP, evenly distributed in the flow cell.  Although greater than the one-piece flow 

method, WIP levels for TTG are less than DBR or DynDBR.  This evenly distributed, 
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moderate level of WIP, buffers set-ups and dampens operation cycle time variation.  In 

addition, because the WIP level is significantly smaller than DBR and DynDBR the TTG 

flow cells generally operated faster than these two methods, as measured by flowtime.  

This was shown experimentally in this study and supported using Little’s Law by 

Spearman et al. (1990).  TTG’s kanban buffers can also be designed to accommodate 

balanced and unbalanced processes.  This was demonstrated in the assembly application 

experiments.  With evenly distributed kanbans, TTG very slightly underperformed 

DynDBR, in terms of throughput rate, in the balanced assembly application.  However, 

when the kanbans are distributed to place more WIP at the constraint operations, TTG 

outperformed DynDBR as measured by throughput rate, and achieved these results with 

less WIP.  In the very unbalanced light machining application, it is the even distribution 

of WIP in the TTG flow cell that improved flow and achieved a demonstrably higher 

throughput rate than DBR and DynDBR.  Finally, kanban control of WIP results in the 

most effective use of constrained labor resources.  Because there is a moderate level of 

WIP at all operations in a TTG flow cell, constrained labor resources will move to 

different operations and therefore keep the product moving to completion.   

 

Section 12.3: Future Research Opportunities – Extending and Improving 

TTG 

The experiments and analysis in this study are only the beginning of the research into 

TTG.  The additional research questions under consideration fall into four categories: 1) 

understanding the effect of labor on TTG and its competing methods, 2) modifications 
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and refinements to TTG to enhance its performance, 3) extensions to processes beyond 

discrete manufacturing, and 4) extensions to supply chains.   

Understanding the Effect of Labor 

The experiments from Section 10 highlighted multiple opportunities to understand 

how TTG, and the competing methods, perform when labor resources are the 

experimental factor that is changed.  The experiment described in Section 10 altered the 

number of labor resources from highly constrained (achieving greater than 80% 

utilization) to completely unconstrained.  We saw that this changed the results and had a 

large impact on throughput rate of all four WIP control methods.  Using these results we 

have conceived additional experiments.  First, we can increase the number of labor 

resources from three to six, by single labor resource increments, and understand shape of 

the throughput rate versus labor resource graph.  In addition, we can use the financial 

metrics from Section 10 (labor costs, gross profit per unit) to graph marginal profit versus 

the number of labor resources.   

Other experiments would alter the way labor resources are prioritized when 

released at a process.  Two possible methods discussed in Section 10 are 1) prioritizing 

the current constraint operation and 2) prioritizing operations with the largest WIP queue.   

The purpose of all experiments would be to understand how TTG and its 

competing methods react to changing labor allocation schemes.  This will further the 

understanding of when TTG is better and why.  It may be that TTG is most effective in 

labor constrained environments.  We expect to use these results to provide industry with 

recommendations for how to design and operate their TTG flow cells.   
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Improving TTG’s Performance 

Perhaps the most interesting research area for TTG is improving its intrinsic 

performance.  We have mentioned earlier three implementation decisions that need 

further refinement; 1) determining the grouping tempo-time, 2) how to sequence different 

part numbers when part numbers have different constraints, and 3) determining the best 

number and location of kanbans.  We will seek to create analytical models to provide 

optimal solutions.  However, if optimal solutions are not attainable, developing heuristics 

or decision flow charts to improve TTG’s performance would still be beneficial.   

The decision flow chart in Figure 1 shows how the author has worked with 

industry partners to determine the tempo-time.  An optimal, or near-optimal solution, 

would depend on variables such as move-time between operations, set-up time, 

probability distributions of operation cycle times, the cost of labor and the value of the 

products.  The solution would attempt to maximize profit by balancing the costs of 

inventory (WIP) and labor, with the value of additional throughput.  It is likely that a 

closed-form equation is not achievable due to the non-linear effect of a stochastic 

variable (operation cycle time variation).  Therefore, we may decide to omit operation 

cycle time variation from the analytical expression or develop nomographs to determine 

near optimal solutions.   

Another “optimal decision” opportunity is the development of an analytical 

expression to choose the best WIP control method when choosing between faster 

makespan and less WIP.  As discussed in Section 11, we can evaluate the four methods 

from the perspective of which is Pareto efficient when considering WIP and makespan 
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performance.  However, in this study we did not create analytical expressions to decide 

which method, along the Pareto frontier, provides the firm optimal profits.  To do this we 

will need to determine the value of faster makespan.  Once this determination is made, 

we should be able to create an analytical expression to optimize the tradeoff decision of 

faster makespan versus the cost of additional WIP.   

An obvious opportunity for improvement lies in developing heuristics for 

sequencing different part numbers.  Some (undocumented) experiments made during this 

study indicate that the part number sequence influences throughput rate.  This is an area 

where manufacturing scheduling literature can provide some insight.  Numerous 

heuristics exist such as shortest processing time first, longest processing time first and 

critical ratio.  Initial experiments indicate there may be an advantage in sequencing 

products according to the location of their constraint; the earlier in the flow cell a 

products’ constraint operation occurs, the earlier in the sequence the product should be 

run.   

Another area that can benefit from existing literature is improving buffering the 

flow cell.  In the DBR literature, two prominent studies (Radovilsky, 1998; Louw, et al. 

2004) determined optimal time-buffers for DBR processes, and for one-piece flow.  Price 

et al. (1994) summarized different optimization models for determining the number of 

kanbans to use in a production system.  We can build on this literature for TTG, which 

uses kanbans that contain transfer-batches.  In addition, in Section 9 we saw that 

unevenly distributing the kanbans improved performance of TTG in the assembly 
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application.  We plan to use the literature, and these initial findings, to determine the 

optimal number and placement of kanbans in a TTG flow cell.   

Extensions Beyond Discrete Manufacturing 

Rahman (1998) reviewed applications of TOC and DBR in industry.  The DBR 

method, which started in discrete manufacturing, has been extended into process 

industries (Schragenheim et al. 1994), healthcare (Umble et al. 2006b) and others 

mentioned in the Literature Review.  We believe TTG can also be extended beyond 

discrete manufacturing to process industries, healthcare and financial services (processing 

tax returns, loan applications, etc.).  This research would combine the actual 

implementation of TTG, in coordination with our industry partners, and simulation 

modelling to perform deeper analysis.   

Extensions to Supply Chains 

The ultimate application of TTG would take it beyond a single factory or 

company to a supply chain.  The data used in this study was from a single company that 

both manufactures components and assembles valves.  However, we can utilize these data 

to consider a three-echelon supply chain.  The piston disc produced in the light 

machining application is actually used in the solenoid produced in the assembly 

application.  If one observes Figures 3 and 4 we can see that the solenoid is a component 

of the slide-valve.  (The solenoid actuates the mechanism that moves the slide-valve into 

the open-shut position.)  When one considers the optimization studies proposed above, 

decisions could change if the parts produced in a single flow cell all go on a truck and get 

stocked as components in a different factory which then are assembled and shipped to a 



 
 
 
 

Revision: July 2, 2014  Copyright, Mitchell A. Millstein, 2014   161 

third factory.  Perhaps in this case the WIP value in the cell is immaterial as it will be 

stocked in much larger quantities on the truck and as components used in a downstream 

flow cell.  We would like to also study if the entire supply chain could operate on a single 

Takt time used for the transfer-batch sizing formula.  Currently many auto assembly 

plants, and their suppliers, operate on a single Takt time used to balance one-piece flow 

processes.  When one-piece flow is sub-optimal it may be beneficial to use TTG 

throughout the supply chain, creating a single tempo for all echelons.  In addition to 

buffering the flow cell, we would like to determine how to size the buffer in between 

echelons.  The problem of buffering echelons between supply chains has been studied 

previously by many supply chain researchers, but not for a supply chain using TTG.  

Finally, we discussed the potential benefit of sequencing different part numbers to 

improve throughput rate and makespan.  We may be able to determine the potential for 

sequencing this three-echelon supply chain and understand if sub-optimizing one echelon 

can improve results for the overall supply chain.    
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Appendix A: Discrete Event Simulation Model Design 

The discrete event simulation model was created using Arena® software.  The simulation 

model was originally designed to mimic an actual functioning TTG flow cell producing 

components used in shut-off (solenoid) valves.  Important aspects of the model’s design 

will be discussed in detail.  The first is how to model an entity being held at an operation 

waiting for a kanban signal from a downstream operation to pull it into the operation.  

This code models the “pull” of a kanban-flow production system.  The second important 

aspect is how to model a new part number going through a set-up on any operation that 

requires set-up.   

The entities within the model represent different part numbers.  Figure 2 shows a 

picture of the parts produced by a Takt Time Grouping flow cell.  The tray represents a 

kanban in the flow cell.  The kanbans shown are based on the Conwip concept by 

Spearman et al. (1990) in that it is generic and will hold all parts, in their transfer-batch 

quantity, flowing through the cell.  The kanban is not part number specific.  The example 

kanban tray is a 10x10 grid that can hold a group quantity up to 100 on small pins that 

stick out of the tray.   

One of the first actions of the model after creation of the entities is to read in 

entity attributes from a data file.  A sample of the data file (with titles added) is shown 

below in Table 41.  Group quantity is used within the process blocks (or operations) to 

ensure the entity delays the resource (labor and machine) for the correct time.  The 

customer order quantity is 900 for all parts i = 1..9.  We used 900 as it is close to actual 

customer order quantities, and as a convenience to ensure an integer value of the total 
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number of groups for all part numbers.  The cycle time of a part number in an operation 

is multiplied by the group quantity to represent how long the entity will spend being 

processed (delayed) within the operation.  The first group of every part number was also 

processed (delayed) for the duration of the set-up time.  Set-up code is described in 

greater detail below.   

The operation cycle time and set-up time expressions used in the model were 

based on observations of the actual operations and created data.  The realized variation in 

operation cycle time is also based on observed and experimental settings, as well as 

adherence to the Law of large numbers for large quantities of parts within an entity.  Set-

up times used a non-symmetric triangular distribution with the following settings: 

Minimum = set-up time / 2 

Most Likely = set-up time 

Maximum =  set-up time *2 

Stochastic operation cycle times used a normal distribution.  We varied the 

standard deviation as an experimental setting.  The operation cycle times shown in Table 

41 represent the mean cycle time of each operation.   
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Table 41: Sample of Entity Operation cycle time Attributes 

 

This model simulates a kanban pull process by holding entities in an operation 

until the downstream operation can accept an additional entity based on the number of 

kanbans between the two operations.  As an entity is entering an operation, an “assign 

block” updates a global variable EntitiesInProcessX by 1 (X denotes the operation 

number).  This is shown below in Figure 20.  The entity then seizes and delays the 

resource in the “process block” based on the entity’s group quantity and operation cycle 

time attributes.  The “hold block”, shown in Figure 21, holds the entity until the number 

of entities in the downstream operation is less than a preset variable ProcessXKanban (X 

denotes the operation number).  If the number of entities in the operation is less than 

ProcessXKanban, the “release block” releases the entity from the resource and the entity 

moves to the next operation.  The “assign block” then subtracts one from the global 

Sequent 

# Part #

Group 

Quantity

Op 1 

Cycle 

Time

Op 1 

Set-up 

Time

Op 2 

Cycle 

Time

Op 3 

Cycle 

Time

Op 3 

Set-up 

Time

Op 4 

Cycle 

Time

Op 5 

Machine 

Time

Op 5 

Labor 

Time

Op 5 

Set-up 

Time

Op 6 

Cycle 

Time

Op 6 

Set-up 

Time

1 1 45 20 2700 5 12 900 7 19 19 1800 12 600

2 1 45 20 2700 5 12 900 7 19 19 1800 12 600

3 1 45 20 2700 5 12 900 7 19 19 1800 12 600

4 1 45 20 2700 5 12 900 7 19 19 1800 12 600

5 1 45 20 2700 5 12 900 7 19 19 1800 12 600

6 1 45 20 2700 5 12 900 7 19 19 1800 12 600

7 1 45 20 2700 5 12 900 7 19 19 1800 12 600

8 1 45 20 2700 5 12 900 7 19 19 1800 12 600

9 1 45 20 2700 5 12 900 7 19 19 1800 12 600

10 1 45 20 2700 5 12 900 7 19 19 1800 12 600

11 1 45 20 2700 5 12 900 7 19 19 1800 12 600

12 1 45 20 2700 5 12 900 7 19 19 1800 12 600

13 1 45 20 2700 5 12 900 7 19 19 1800 12 600

14 1 45 20 2700 5 12 900 7 19 19 1800 12 600

15 1 45 20 2700 5 12 900 7 19 19 1800 12 600

16 1 45 20 2700 5 12 900 7 19 19 1800 12 600

17 1 45 20 2700 5 12 900 7 19 19 1800 12 600

18 1 45 20 2700 5 12 900 7 19 19 1800 12 600

19 1 45 20 2700 5 12 900 7 19 19 1800 12 600

20 1 45 20 2700 5 12 900 7 19 19 1800 12 600

21 2 45 20 2700 7 17 900 5 19 19 1800 12 600

22 2 45 20 2700 7 17 900 5 19 19 1800 12 600
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variable EntitiesInProcessX.  Entities are moved to the next operation by a separate move 

block that uses only labor resources to move the entity based on inputted move-times, 

which are set at a constant of either one or ten seconds based on the experimental run. 

 

Figure 20: Assigning Entity Count in an Operation 

 

 

Figure 21: Kanban Hold and Release Logic 

 

Process 2
Assign Entities in



 
 
 
 

Revision: July 2, 2014  Copyright, Mitchell A. Millstein, 2014   166 

The TTG methodology is intended for machine-based production.  Most 

machinery has some set-up time associated with changing over from one part number to 

another.  Therefore, set-up logic had to be included in the simulation model.  The block 

logic is shown below in Figure 22.  When data is read into the model, the second column 

of data is PartNumber, an entity attribute.  At each operation that requires set-up a global 

variable is assigned with the current part number of the entity going through the 

operation.  Note, we assigned the entity part number to the global variable at the “assign 

block” Machine-X-undergoing-changeover (X denotes the operation number).  These 

assignments are shown in Figure 22.  Because we are assigning a global variable it holds 

the current entity part number entering the operation whether that entity goes through the 

set-up seize-delay-release or if it skips this step.   

 

Figure 22: Set-up Logic 
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Figure 23: Assigning the Current Part Number going through the Process 

 

At the “decide block”, the program logic compares the entity at the “decide 

block” with the last part number that entered the operation.  If these part numbers are not 

the same, it satisfies the “true” condition and sends that entity through the set-up “process 

block”.  Finally, we had to account for the fact that while the machine resource is seized 

during the entire set-up process, all other entities of that same part number had to wait 

until the set-up is complete.  Therefore, we added a “hold block” that looks for the 

condition that there is no entity in the set-up process.  We did this by creating a global 

variable, MachineXChangeover (X denotes the operation number).  As an entity enters 

the changeover “process block” we add one to this variable.  When an entity leaves the 
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changeover “process block” we subtract one from this variable.  The “hold block” holds 

entities, preventing them from entering the operation, if MachineXChangeover is >= 1.   
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