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Abstract

The empirical mode decomposition (EMD) algorithm, introduced

by N.E. Huang et al in 1998, is arguably the most popular mathemati-

cal scheme for non-stationary signal decomposition and analysis. The

objective of EMD is to separate a given signal into a number of com-

ponents, called intrinsic mode functions (IMF's), after which the in-

stantaneous frequency (IF) and amplitude of each IMF are computed

through Hilbert spectral analysis (HSA). On the other hand, the syn-

chrosqueezed wavelet transform (SST), introduced by I. Daubechies

and S. Maes in 1996 and further developed by I. Daubechies, J. Lu

and H.-T. Wu in 2011, is �rst applied to estimate the IF's of all signal

components of the given signal, based on one single frequency reas-

signment rule, under the assumption that the signal components sat-

isfy certain strict properties of the so-called adaptive harmonic model,

before the signal components of the model are recovered, based on

the estimated IF's.

The objective of this dissertation is to develop a hybrid EMD-

SST computational scheme by applying a modi�ed SST to each IMF

produced by a modi�ed EMD, as an alternative approach to the

original EMD-HSA method. While our modi�ed SST assures non-

negative instantaneous frequencies of the IMF's, application of the

EMD scheme eliminates the dependence on a single frequency reas-

signment rule as well as the guessing work of the number of signal

components in the original SST approach. Our modi�cation of the

SST consists of applying analytic vanishing moment wavelets (in-

troduced in a recent paper by C.K. Chui, Y.-T. Lin and H.-T. Wu)

with stacked knots to process signals on bounded or half-in�nite time

intervals, and spline curve �tting with optimal smoothing parame-

ter selection through generalized cross-validation. In addition, we

modify EMD by formulating a local spline interpolation scheme for

bounded intervals, for real-time realization of the EMD sifting pro-

cess. This scheme improves over the standard global cubic spline

interpolation, both in quality and computational cost, particularly

when applied to bounded and half-in�nite time intervals.
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Chapter 1

Introduction

Time-frequency analysis is one of the most important and powerful tools in
signal processing for understanding the oscillatory features of signals.

Let us consider the signal (or function)

f(t) = a0 +
N∑
j=1

aj cos(2πωjt), (1.0.1)

for arbitrary real values ωj > 0 and aj ∈ R. It is clear from (1.0.1) that f is a
superposition of the signal components fj(t) = aj cos(2πωjt), j = 1, . . . , N ,
each with a frequency of ωjHz. Since each ωj is a constant, independent of
the time variable t, such a signal is classi�ed as stationary.

However, most real-world signals (for example, biological signals, speech
signals and music signals) are non-stationary, meaning that their frequen-
cies may change with time. In the literature, these types of signals are
represented by a generalization of the model in (1.0.1), namely

f(t) = A0(t) +
N∑
j=1

Aj(t) cos 2πφj(t), (1.0.2)

where Aj(t) ≥ 0 and each φj(t) is a general C
1 function such that φ′j(t) > 0

(where C1 denotes the space of all functions with continuous �rst deriva-
tives). The derivative φ′j(t) is a natural extension of the frequency ωj in
(1.0.1), and is called the instantaneous frequency (IF) of the component
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fj(t) = Aj(t) cos 2πφj(t), j = 1, . . . , N . While the mathematical theory to
analyze stationary signals is well developed in the literature (and is mainly
founded on Fourier analysis), the study of non-stationary signals is still a
relatively new �eld, only developing over the last thirty years [31, 17, 23, 2].

The contributions of this dissertation can be grouped into two parts:
�rst, the development of a spline interpolation scheme, which is then ap-
plied in the second part, which concerns the non-stationary signal analysis
problem described above.

In the �rst part, we formulate a new spline interpolation scheme for a
bounded interval [a, b], in terms of the mth order B-splines. We start by de-
veloping a quasi-interpolation operator Qm with a local formulation (in the
sense that the value of Qm applied to a given function f at any x∗ ∈ [a, b]
only depends on the values of f in a small neighborhood of x∗), which pre-
serves polynomials of degree ≤ m− 1. This quasi-interpolation operator is
based on a scheme introduced in [9]; however, the method in [9] is formu-
lated for an unbounded interval, and is adapted here (in a non-trivial way)
for a bounded interval.

The next step is to develop a local spline interpolation operator Rm,
such that Rmf interpolates the function f at a given sequence of discrete
data points in [a, b] and satis�es certain Hermite interpolation conditions
at the endpoints of the interval x = a and x = b. We base our local spline
interpolation operator on an idea described in [15]; it is adapted here to
include the Hermite interpolation conditions at the endpoints.

The quasi-interpolation operator Qm and interpolation operator Rm are
then combined in a smart way to form a so-called blending operator Pm (�rst
considered in [13]), such that Pm meets all the requirements met by Qm and
Rm. Corresponding error bounds for both Qm and Pm are also derived rig-
orously.

The local formulation and boundary considerations make this spline
interpolation method particularly useful. A speci�c application for this
scheme is presented in our approach to instantaneous frequency estimation
of non-stationary signal components, considered in the second part of this
dissertation.
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The empirical mode decomposition (EMD) algorithm, introduced by
N.E. Huang and others in 1998 [36], is currently one of the most popular
mathematical schemes for non-stationary signal decomposition and time-
frequency analysis. The objective of EMD is to decompose a given (non-
stationary) signal into a number of oscillating components, called intrinsic
mode functions (IMF's), and a monotone or slowly oscillating remainder.
This is done through an algorithm that is based on standard cubic spline
interpolation. Each IMF is then extended to an amplitude-frequency mod-
ulated (AM-FM) signal through Hilbert spectral analysis (HSA), based on
the Hilbert transform, in order to compute its instantaneous frequency and
amplitude.

However, the EMD scheme, and the current modi�cations and improve-
ments of it [53, 55], have several limitations. Firstly, there is no guarantee
that the AM-FM extension of an IMF will yield a non-negative IF. This is a
serious defect, since negative frequency is meaningless for signals and limits
the application of EMD. Moreover, since the Hilbert transform is de�ned
for functions on an unbounded interval, while real-life signals are typically
de�ned on bounded or half-in�nite intervals, arti�cial extension of an IMF
to the real line is necessary in order to apply the Hilbert transform, often
yielding unreliable results.

Instead of computing the IF's after the signal is decomposed as is done
when applying EMD, the approach that I. Daubechies and others [20, 21]
proposed is to �rst estimate the IF's of the signal components, under the
assumption that the signal satis�es certain strict properties of the model
in (1.0.2), before recovering the signal components of the model. For this
purpose, the notion of the synchrosqueezed wavelet transform (SST), based
on the continuous wavelet transform, was introduced to compute a single
reassignment rule, or IF reference function, through which the IF's of all
the signal components are �squeezed out� from the input signal in the form
of a digital image displaying a set of IF curves, allowing the estimation of
the individual IF functions and the signal components themselves.

Again, there are a few limitations to the SST. First, to estimate the in-
stantaneous frequencies of signal components, the IF curves represented in
the digital image output of the SST must be extracted, one by one, through
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a suitable curve �tting scheme. In general, this can be quite complicated,
particularly for over four of �ve IF curves, and therefore, the process must
be supervised. Moreover, the SST's original formulation is not suited to
real-time implementation.

Our approach to instantaneous frequency estimation of non-stationary
signal components consists of combining the �best� parts of EMD and SST
to form a hybrid EMD-SST scheme. In a nutshell, we apply a modi�ed SST
to each IMF produced by a modi�ed EMD. With this approach, we are as-
sured of non-negative instantaneous frequencies of the IMF's through the
SST, while the EMD eliminates the need to extract multiple IF curves from
the digital image output of the original SST approach. In addition, since
the Hilbert transform of the original EMD approach is replaced by our mod-
i�ed SST, arti�cial extension of the IMF's to the real line is avoided, solving
many computational issues. The modi�cation of the SST consists in apply-
ing so-called analytic vanishing moment wavelets with stacked knots (�rst
considered in [15]) to allow processing of signals on bounded or half-in�nite
time intervals, as well as applying spline curve �tting with optimal smooth-
ing parameter selection through generalized cross-validation to identify the
IF curve displayed in the digital image output of the SST. The modi�ca-
tion of EMD consists in replacing the standard cubic spline interpolation
in the original algorithm with our real-time spline interpolation scheme for
bounded intervals.

According to our results, the instantaneous frequency estimation of sig-
nal components is remarkably more accurate when using our approach,
compared to the original EMD-HSA approach. The construction of IMF's
through EMD is also improved by our real-time spline interpolation scheme.

The next chapter is devoted to the study of the preliminary results that
we will rely on in this dissertation. Speci�cally, we will study the theory of
Fourier series and the Fourier transform, B-splines and spline interpolation,
the continuous wavelet transform, and the Hilbert transform.

In Chapter 3, we introduce our quasi-interpolation scheme for a bounded
interval in terms of the mth order B-splines. We consider two variants of
this scheme, developed for di�erent types of knot sequences and sampling
points. A corresponding approximation order analysis is also derived. We
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formulate our local spline interpolation operator in Chapter 4, again con-
sidering two variants for di�erent knot sequences and sampling points. The
blending operator and corresponding error bounds are also derived in Chap-
ter 4.

Next, we move on to the second part of the dissertation, namely the
study of instantaneous frequency estimation of non-stationary signal com-
ponents. To this end, we start, in Chapter 5, by considering the notions of
stationary and non-stationary signals in greater detail, as well as di�erent
time-frequency methods in the literature. The EMD algorithm, some mod-
i�cations and improvements of it and its limitations are studied in detail
in Chapter 6, while the SST and its limitations are discussed in Chapter
7. The essential properties and computational algorithms of the analytic
vanishing moment wavelets are described in Chapter 8. In Chapter 9, we
describe our hybrid EMD-SST scheme in greater detail and provide graph-
ical results, numerical experiments and comparisons, based on a number of
representative test signals.

Final remarks and conclusions follow in Chapter 10.



Van der Walt, Maria, 2015, UMSL, p.6

Chapter 2

Preliminaries

This chapter is devoted to the development of preliminary results that will
be needed later in this dissertation.

In Section 2.1, we discuss Fourier series, with speci�c reference to the
Fourier cosine series (which occur often in signal processing applications).
The Fourier transform and its properties are studied in Section 2.2. Section
2.3 is devoted to B-splines and its properties, and in Section 2.4, we con-
sider the basic theory of spline interpolation, including quasi-interpolation
and Hermite interpolation. Next, in Section 2.5, we de�ne the notions of
wavelets and the continuous wavelet transform. Lastly, in Section 2.6, we
consider the Hilbert spectral analysis technique, a method in the signal
analysis literature to estimate a signal's instantaneous frequency, which is
based on the Hilbert transform.

2.1 Fourier series

Traditionally, signal analysis has been based on �nding a Fourier represen-
tation of a signal. In this section, we examine the notions of Fourier series
and Fourier cosine series.

To this end, let L2[−L
2
, L

2
] denote the set of square-integrable functions

on [−L
2
, L

2
] (for some L > 0). Any function f ∈ L2[−L

2
, L

2
] can be extended



CHAPTER 2 Van der Walt, Maria, 2015, UMSL, p.7

to an L-periodic function F (x) on R through the de�nition
F (x) = f(x), x ∈ (−L

2
, L

2
);

F (−L
2
) = F (L

2
) = 1

2

(
f(L

2
) + f(−L

2
)
)

;

F (x+ kL) = F (x), k ∈ Z.

For convenience, we will rename F (x) as f(x) also. With this de�nition, we
denote the inner product space of all L-periodic square-integrable functions
by L2?[−L

2
, L

2
], with inner product

〈f, g〉 =

∫ L
2

−L
2

f(x)g(x)dx.

De�nition 2.1.1 (Fourier series) If f ∈ L2?, its Fourier series Sf is
de�ned by

(Sf)(x) =
a0

2
+
∞∑
j=1

(
aj cos

(
2πjx

L

)
+ bj sin

(
2πjx

L

))
, (2.1.1)

where 
aj =

2

L

∫ ∞
−∞

f(x) cos

(
2πjx

L

)
dx, j = 0, 1, 2, . . . ;

bj =
2

L

∫ ∞
−∞

f(x) sin

(
2πjx

L

)
dx, j = 1, 2, . . . .

(2.1.2)

The signi�cance of the Fourier series in De�nition 2.1.1 is the following
(see [14, Theorem 2, p.282]):

Theorem 2.1.1 (Fourier series) For L > 0, the family{
1√
L
,

√
2

L
cos

(
2πjx

L

)
,

√
2

L
sin

(
2πjx

L

)
: j = 1, 2, . . .

}
is an orthonormal basis of L2[−L

2
, L

2
]. Therefore, any f ∈ L2[−L

2
, L

2
] can be

represented by its Fourier series, namely

f(x) = (Sf)(x) =
a0

2
+
∞∑
j=1

(
aj cos

(
2πjx

L

)
+ bj sin

(
2πjx

L

))
,
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which converges to f in L2[−L
2
, L

2
], where aj, j = 0, 1, 2, . . . and bj, j =

1, 2, . . . are de�ned in (2.1.2).

The convergence of the Fourier series in Theorem 2.1.1 rests upon the
fact that the partial sums of the Fourier series of f are best L2-approximations
of f from the space of all trigonometric polynomials, and is proved in [14,
Chapter 6].

For signal analysis, to reduce computational complexity, it is customary
in the literature to �nd a Fourier cosine series representation of a signal
instead of the Fourier series representation in terms of both cosines and
sines. To this end, we consider a function f ∈ L2[0, L

2
], and extend f to an

even function fe on [−L
2
, L

2
] through the de�nition

fe(x) :=

{
f(x), 0 ≤ x ≤ L

2
,

f(−x), −L
2
≤ x < 0.

This implies that the coe�cient bj of the Fourier series of fe (de�ned in
(2.1.2)) is 0, since sin

(
2πjx
L

)
in (2.1.2) is an odd function. Therefore, the

Fourier series in (2.1.1) of fe reduces to the Fourier cosine series

(Sfe)(x) =
a0

2
+
∞∑
j=1

aj cos

(
2πjx

L

)
,

with

aj =
2

L

∫ L
2

−L
2

fe(x) cos

(
2πjx

L

)
dx =

4

L

∫ L
2

0

f(x) cos

(
2πjx

L

)
dx,

for j = 0, 1, 2, . . .. From Theorem 2.1.1, we have that

(Snfe)(x) =
a0

2
+

n∑
j=1

aj cos

(
2πjx

L

)

converges to fe in L2[−L
2
, L

2
] as n → ∞, so that Snfe restricted to [0, L

2
]

converges to f in L2[0, L
2
].

We therefore have the following (see [14, Theorem 3, p.284]):
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Theorem 2.1.2 (Fourier cosine series) For L > 0, the family{
1√
L
,

√
2

L
cos

(
2πjx

L

)
: j = 1, 2, . . .

}
is an orthonormal basis of L2[0, L

2
]. Therefore, any f ∈ L2[0, L

2
] can be

represented by its Fourier cosine series, namely

f(x) = (Sef)(x) =
a0

2
+
∞∑
j=1

aj cos

(
2πjx

L

)
,

which converges to f in L2[0, L
2
], where aj, j = 0, 1, 2, . . . is given by

aj =
4

L

∫ L
2

0

f(x) cos

(
2πjx

L

)
dx, j = 0, 1, 2, . . . .

We note that a Fourier sine representation may be found in a similar
way (by extending the function f ∈ L2[0, L

2
] to an odd function instead of an

even one), but this is not conventional for signal analysis in the literature.

2.2 Fourier transform

The Fourier series, considered in Section 2.1, provides us with a method
to study the frequency contents of periodic functions (as we shall see in
Chapter 5). In this section, we consider the Fourier transform, which may
be used instead to study the frequency contents of stationary signals.

De�nition 2.2.1 (Fourier transform) Let f be a function in L1(R), where
L1 denotes the space of all integrable functions. Then the Fourier transform
of f , which we denote by f̂ or Ff , is de�ned by

f̂(ω) = (Ff)(ω) =

∫ ∞
−∞

f(x)e−i2πωxdx, ω ∈ R. (2.2.1)

In Theorem 2.2.1, we list some important properties of the Fourier trans-
form of a function f in L1(R) or L1[0,∞). We will make use of the following
function operations:
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� Even extension:
For f ∈ L1[0,∞), the even extension fe of f is de�ned by

fe(x) :=

{
f(x), x ≥ 0;

f(−x), x < 0.
(2.2.2)

� Translation:
For f ∈ L1(R) and b ∈ R, the translation operator Tb is given by

(Tbf)(x) := f(x− b). (2.2.3)

� Dilation:
For f ∈ L1(R) and a > 0, the dilation operator Da is de�ned by

(Daf)(x) := f(ax). (2.2.4)

� Frequency modulation:
For f ∈ L1(R) and c ∈ R, c 6= 0, the (frequency) modulation operator
Mc is de�ned by

(Mcf)(x) := f(x)ei2πcx. (2.2.5)

� Convolution:
Let f, h be functions on R. Then the convolution of f with h is
de�ned by

(f ? h) (x) :=

∫ ∞
−∞

f(t)h(x− t)dt. (2.2.6)

We note that each of the function operations in (2.2.2)-(2.2.5) are in L1(R).
If f, h ∈ L1(R), then the convolution f ? h in (2.2.6) is also in L1(R); that
is, ∫ ∞

−∞
| (f ? h) (x)|dx ≤

∫ ∞
−∞

∫ ∞
−∞
|f(t)h(x− t)|dtdx <∞. (2.2.7)

This follows from Fubini's Theorem (see, for example, [14, Theorem 1, p.376]),
by which we may interchange the order of integration in (2.2.7).

Theorem 2.2.1 (Properties of Fourier transform) The Fourier trans-
form satis�es the following properties:
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(i) Let fe be the even extension of f ∈ L1[0,∞). Then

f̂e(ω) = 2

∫ ∞
0

f(x) cos 2πωxdx;

(ii) For f ∈ L1(R) and b ∈ R,

(̂Tbf)(ω) = e−i2πωbf̂(ω); (2.2.8)

(iii) For f ∈ L1(R) and a > 0,

(̂Daf)(ω) =
1

a
f̂
(ω
a

)
; (2.2.9)

(iv) For f ∈ L1(R) and c ∈ R, c 6= 0,

(̂Mcf)(ω) = f̂ (ω − c) ; (2.2.10)

(v) Let f, h ∈ L1(R). Then

(̂f ? h)(ω) = f̂(ω)ĥ(ω).

Proof:

(i) From (2.2.1) and (2.2.2), we have

f̂e(ω) =

∫ ∞
−∞

fe(x)e−i2πωxdx

=

∫ 0

−∞
f(−x)e−i2πωxdx+

∫ ∞
0

f(x)e−i2πωxdx

= −
∫ 0

∞
f(x)ei2πωxdx+

∫ ∞
0

f(x)e−i2πωxdx

=

∫ ∞
0

f(x)
[
ei2πωx + e−i2πωx

]
dx = 2

∫ ∞
0

f(x) cos 2πωxdx,

from Euler's formula eiθ = cos θ + i sin θ for θ ∈ R.
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(ii) From (2.2.1) and (2.2.3), it follows that

(̂Tbf)(ω) =

∫ ∞
−∞

f(x− b)e−i2πωxdx

=

∫ ∞
−∞

f(x)e−i2πω(x+b)dx

= e−i2πωb
∫ ∞
−∞

f(x)e−i2πωxdx = e−i2πωbf̂(ω).

(iii) From (2.2.1) and (2.2.4), it follows that

(̂Daf)(ω) =

∫ ∞
−∞

f(ax)e−i2πωxdx

=
1

a

∫ ∞
−∞

f(x)e−i2πω(x/a)dx

=
1

a

∫ ∞
−∞

f(x)e−i2π(ω/a)xdx =
1

a
f̂
(ω
a

)
.

(iv) From (2.2.1) and (2.2.5), it follows that

(̂Mcf)(ω) =

∫ ∞
−∞

f(x)ei2πcxe−i2πωxdx

=

∫ ∞
−∞

f(x)e−i2π(ω−c)xdx = f̂(ω − c).

(v) From (2.2.1), (2.2.6) and Fubini's theorem, we have

(̂f ? h)(ω) =

∫ ∞
−∞

(f ? h)(x)e−i2πωxdx

=

∫ ∞
−∞

[∫ ∞
−∞

f(t)h(x− t)dt
]
e−i2πωxdx

=

∫ ∞
−∞

f(t)

[∫ ∞
−∞

h(x− t)e−i2πωxdx
]

dt

=

∫ ∞
−∞

f(t)

[∫ ∞
−∞

h(x)e−i2πω(x+t)dx

]
dt

=

∫ ∞
−∞

f(t)ĥ(ω)e−i2πωtdt = f̂(ω)ĥ(ω).

�
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Example 2.2.1

(a) For f(x) = cos 2πcx with c > 0,

f̂(ω) =
1

2
(δ(ω − c) + δ(ω + c)) . (2.2.11)

(b) For f(x) = sin 2πcx with c > 0,

f̂(ω) =
1

2i
(δ(ω − c)− δ(ω + c)) . (2.2.12)

Solution:

(a) From the de�nition of the Fourier transform in (2.2.1), we have

f̂(ω) =

∫ ∞
−∞

cos(2πcx)e−i2πωxdx

=
1

2

∫ ∞
−∞

(
ei2πcx + e−i2πcx

)
e−i2πωxdx

=
1

2

∫ ∞
−∞

(
e−i2π(ω−c)x + e−i2π(ω+c)x

)
dx

=
1

2
(δ (ω − c) + δ (ω + c)) ,

where δ denotes the Dirac delta distribution.

(b) The solution is obtained in a similar way to the solution of (2.2.11)
above. �

If f ∈ L2(R) such that its Fourier transform f̂ is in L1(R), f may be
recovered from its Fourier transform (as shown in [14, Theorem 4, p.335]):

Theorem 2.2.2 (Inverse Fourier transform) For a function f ∈ L2(R),
let g(ω) = f̂(ω) ∈ L1(R). Then

f(x) = ǧ(x) :=

∫ ∞
−∞

g(ω)ei2πωxdω.

The function ǧ is called the inverse Fourier transform of f .
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In Section 5.1 in Chapter 5, we will see how the Fourier transform may
be applied to reveal the frequency content of stationary signals.

2.3 B-splines

We start this section by de�ning the mth order spline space Sx,m[a, b] with
knot sequence x, for m ≥ 1.

De�nition 2.3.1 (Spline space) For positive integersm and N and a, b ∈
R, let

x : x−m+1 = · · · = a = x0 < x1 < · · · < xN+1 = b = · · · = xN+m. (2.3.1)

We denote by Sx,m[a, b] the linear space of mth order polynomial splines on
[a, b] with knots in x, namely

Sx,m[a, b] =
{
f(x) ∈ Cm−2[a, b] : f |[xi,xi+1] ∈ πm−1, i = 0, . . . , N

}
,

(2.3.2)
where Cm−2[a, b] denotes the space of all functions on [a, b] with m − 2
continuous derivatives, and πm−1 denotes the space of all polynomials of
degree ≤ m− 1.

As shown in [19],[6, Theorem IX.1], a locally supported basis for Sx,m[a, b]
is given by the set of normalized mth order B-splines

{Nx,m,j : j = −m+ 1, . . . , N} ,

where each Nx,m,j is de�ned in terms of divided di�erences of truncated
powers (to be made precise in De�nition 2.3.2 below). Divided di�erences
are de�ned by

[u, . . . , u]g :=
g`(u)

`!
(2.3.3)

if there are `+ 1 entries in [u . . . , u], and

[u0, . . . , un]g :=
[u1, . . . , un]g − [u0, . . . , un−1]g

un − u0

(2.3.4)

if u0 ≤ u1 ≤ · · · ≤ un with un > u0, where [ui]g := g(ui). The truncated
powers are given by

xn+ := (max {0, x})n. (2.3.5)
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De�nition 2.3.2 (B-splines) For the sequence x in (2.3.1), the normal-
ized mth order B-splines Nx,m,j, j = −m+ 1, . . . , N, are de�ned by

Nx,m,j(x) := (xj+m − xj)[xj, . . . , xj+m](· − x)m−1
+ , j = −m+ 1, . . . , N.

(2.3.6)

For the knot sequence x in (2.3.1), the B-splines Nx,m,j, j = 0, . . . , N −
m+ 1, are called interior B-splines, while Nx,m,j, j = −m+ 1, . . . ,−1;N −
m + 2, . . . , N, are called left hand side and right hand side boundary B-
splines, respectively.

We note that

Nx,m,j ≡ 0, j /∈ {−m+ 1, . . . , N} . (2.3.7)

By expanding the divided di�erences in the de�nition of B-splines (2.3.6),
we obtain the following special formulations for the boundary B-splines
Nx,m,−m+1 and Nx,m,N .

Theorem 2.3.1 (Boundary B-splines) For the knot sequence x in (2.3.1),
the boundary B-splines Nx,m,−m+1 and Nx,m,N satisfy the formulations

Nx,m,−m+1(x) =


(
x1−x
x1−a

)m−1

, a ≤ x ≤ x1;

0, otherwise,
(2.3.8)

and

Nx,m,N(x) =


(
x−xN
b−xN

)m−1

, xN ≤ x ≤ b;

0, otherwise.
(2.3.9)

Proof:

We proceed to prove (2.3.9); the proof of (2.3.8) is similar.

From (2.3.6) and the de�nition of divided di�erences in (2.3.3)-(2.3.4),
we have

Nx,m,N(x)
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= (xN+m − xN) [xN , . . . , xN+m] (· − x)m−1
+

= (xN+m − xN)
[xN+1, . . . , xN+m] (· − x)m−1

+ − [xN , . . . , xN+m−1] (· − x)m−1
+

xN+m − xN

=
(m− 1)! (b− x)0

+

(m− 1)!

−
[xN+1, . . . , xN+m−1] (· − x)m−1

+ − [xN , . . . , xN+m−2] (· − x)m−1
+

xN+m−1 − xN

=
(m− 1)! (b− x)0

+

(m− 1)!
−

(m− 1)! (b− x)1
+

(m− 2)!1!(b− xN)

+
[xN+1, . . . , xN+m−2] (· − x)m−1

+ − [xN , . . . , xN+m−3] (· − x)m−1
+

(b− x)(xN+m−2 − xN)

=
(m− 1)! (b− x)0

+

(m− 1)!
−

(m− 1)! (b− x)1
+

(m− 2)!1!(b− xN)
+

(m− 1)! (b− x)2
+

(m− 3)!2!(b− xN)2

−
[xN+1, . . . , xN+m−3] (· − x)m−1

+ − [xN , . . . , xN+m−4] (· − x)m−1
+

(b− xN)2(xN+m−3 − xN)

= · · ·

=
m−1∑
i=0

(−1)i
(
m− 1

i

)
(b− x)i+
(b− xN)i

+
(−1)m(xN − x)m−1

+

(b− xN)m−1
.

From the de�nition of truncated powers (2.3.5), we have

Nx,m,N(x) = 0, x > b.

Therefore, let x ≤ b, so that

Nx,m,N(x)

=
m−1∑
i=0

(−1)i
(
m− 1

i

)(
b− x
b− xN

)i
+

(−1)m(xN − x)m−1
+

(b− xN)m−1

=
m−1∑
i=0

(
m− 1

i

)(
x− b
b− xN

)i
+

(−1)m(xN − x)m−1
+

(b− xN)m−1

=

(
x− b
b− xN

+ 1

)m−1

+
(−1)m(xN − x)m−1

+

(b− xN)m−1

=

(
x− xN
b− xN

)m−1

+
(−1)m(xN − x)m−1

+

(b− xN)m−1
,
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from the binomial theorem. If x < xN , it follows from the de�nition of
truncated powers (2.3.5) that

Nx,m,N(x) =

(
x− xN
b− xN

)m−1

+
(−1)m(xN − x)m−1

(b− xN)m−1

=

(
x− xN
b− xN

)m−1

−
(
x− xN
b− xN

)m−1

= 0,

while, if xN ≤ x ≤ b, we have

Nx,m,N(x) =

(
x− xN
b− xN

)m−1

,

again from (2.3.5), completing our proof of (2.3.9). �

The normalizedmth order B-splinesNx,m,j, j = −m+1, . . . , N, in (2.3.6)
satisfy the following properties (see, for example, [12, Theorem 6.4] and [22,
Theorems 10.2.2, 10.2.5, 10.2.6] and [5]).

Theorem 2.3.2 (Properties of B-splines) The B-splines
{Nx,m,j : j = −m+ 1, . . . , N} with knot sequence x, as de�ned in (2.3.6)
and (2.3.1), respectively, satisfy the following properties:

(i)

suppNxm,j = [a, b] ∩ [xj, xj+m], j = −m+ 1, . . . , N ; (2.3.10)

(ii) Nx,m,j, j = −m+ 1, . . . , N, may be computed recursively through

Nx,m,j(x) =
x− xj

xj+m−1 − xj
Nx,m−1,j(x) +

xj+m − x
xj+m − xj+1

Nx,m−1,j+1(x),

(2.3.11)
where

Nx,1,j(x) = χ[xj ,xj+1)(x), j = 0, . . . , N, (2.3.12)

the characteristic function on the interval [xj, xj+1);

(iii)
Nx,m,j(x) > 0, x ∈ (xj, xj+m); (2.3.13)
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(iv) The B-splines {Nx,m,j : j = −m+ 1, . . . , N} form a partition of unity;
that is,

N∑
j=−m+1

Nx,m,j(x) = 1, x ∈ [a, b]; (2.3.14)

(v) The derivative of Nx,m,j, j = −m+ 1, . . . , N, may be computed recur-
sively through

N ′x,m,j(x) =
m− 1

xj+m−1 − xj
Nx,m−1,j(x)− m− 1

xj+m − xj+1

Nx,m−1,j+1(x),

(2.3.15)
for m ≥ 2.

Proof:

(i) First, let x > xj+m for some �xed j. Then

Nx,m,j(x) = (xj+m − xj)[xj, . . . , xj+m](· − x)m−1
+ = 0,

from the de�nition of truncated powers. On the other hand, if we let
x < xj, we have

Nx,m,j(x) = (xj+m − xj)[xj, . . . , xj+m](· − x)m−1
+

= (xj+m − xj)[xj, . . . , xj+m](· − x)m−1. (2.3.16)

We now use the fact that, if g is a function with n continuous deriva-
tives in the smallest interval containing the points {u0, . . . , un}, then

[u0, . . . , un]g =
g(n)(ξ)

n!

for some point ξ in the smallest interval containing the points {u0, . . . , un}
(see [22, Theorem 2.1.2]). With g := (·−x)m−1, (2.3.16) therefore be-
comes

Nx,m,j(x) = (xj+m − xj)[xj, . . . , xj+m]g = (xj+m − xj)
g(m)(ξ)

m!
= 0,

where ξ is some point in the smallest interval containing {xj, . . . , xj+m},
since g ∈ πm−1.
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(ii) The formulation (2.3.12) for Nx,1,j, j = 0, . . . , N, follows directly from
the de�nition (2.3.6) with m = 1 and the de�nition of divided di�er-
ences (2.3.4).

For j = −m + 1 and j = N , the formulation (2.3.11) follows from
Theorem 2.3.1. Indeed, if j = N and x ∈ R is �xed, we have

x− xN
xN+m−1 − xN

Nx,m−1,N(x) +
xN+m − x

xN+m − xN+1

Nx,m−1,N+1(x)

=
x− xN
b− xN

(
x− xN
b− xN

)m−2

+ 0

=

(
x− xN
b− xN

)m−1

= Nx,m,N(x),

using also (2.3.7). The result follows similarly if j = −m+ 1.

Hence, let j ∈ {−m+ 2, . . . , N − 1}, so that xj+m−1 > xj and xj >
xj+1 both hold, and let x ∈ R be �xed. To prove (2.3.11), we recall
the Leibniz rule for the divided di�erence of a product, namely, for
two functions f and g and any sequence of points {u0, . . . , un},

[u0, . . . , un](fg) =
n∑
j=0

[u0, . . . , uj]f [uj, . . . , un]g.

(see [45, Theorem 2.52]). Using also (2.3.6) and (2.3.4), we have

Nx,m,j(x)

= (xj+m − xj)[xj, . . . , xj+m](· − x)m−1
+

= (xj+m − xj)[xj, . . . , xj+m](· − x)(· − x)m−2
+

= (xj+m − xj)
j+m∑
k=j

[xj, . . . , xk](· − x)[xk, . . . , xj+m](· − x)m−2
+

= (xj+m − xj)
[
(xj − x)[xj, . . . , xj+m](· − x)m−2

+

+[xj+1, . . . , xj+m](· − x)m−2
+

]
= (xj+m − xj)×[
(xj − x)

[xj+1, . . . , xj+m](· − x)m−2
+ − [xj − xj+m−1](· − x)m−2

+

xj+m − xj
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+ [xj+1, . . . , xj+m](· − x)m−2
+

]
= (xj − x)[xj+1, . . . , xj+m](· − x)m−2

+

−(xj − x)[xj, . . . , xj+m−1](· − x)m−2
+

+(xj+m − xj)[xj+1, . . . , xj+m](· − x)m−2
+

= [xj+1, . . . , xj+m](· − x)m−2
+ (xj − x+ xj+m − xj)

+(x− xj)[xj, . . . , xj+m−1](· − x)m−2
+

=
xj+m − x
xj+m − xj+1

(xj+m − xj+1) [xj+1, . . . , xj+m](· − x)m−2
+

+
x− xj

xj+m−1 − xj
(xj+m−1 − xj) [xj, . . . , xj+m−1](· − x)m−2

+

=
xj+m − x
xj+m − xj+1

Nx,m−1,j+1(x) +
x− xj

xj+m−1 − xj
Nx,m−1,j(x).

(iii) We know that suppNx,m,j = [xj, xj+m], j = −m + 1, . . . , N , so that
Nx,m,j(x) = 0, x ∈ R \ [xj, xj+m]. We now proceed to show by in-
duction that (2.3.13) holds. Since Nx,1,j(x) = χ[xj ,xj+1)(x) (as follows
from (ii)), it is clear that the result holds for m = 1. Next, we as-
sume that (2.3.13) holds for a �xed non-negative integer m − 1, and
let x ∈ (xj, xj+m). From the recursion formula (2.3.11), we have

Nx,m,j(x) =
x− xj

xj+m−1 − xj
Nx,m−1,j(x) +

xj+m − x
xj+m − xj+1

Nx,m−1,j+1(x).

Next, we note that, from the support property (2.3.10),{
Nx,m−1,j(x) = 0, x ∈ [xj+m−1, xj+m);

Nx,m−1,j+1(x) = 0, x ∈ (xj, xj+1],

for all j = −m + 1, . . . , N . Therefore, using also the induction hy-
pothesis, we deduce that

Nx,m,j(x) > 0, x ∈ (xj, xj+m),

for all j = −m + 1, . . . , N, which completes our inductive proof of
(2.3.13).

(iv) Our proof is once again by induction onm. SinceNx,1,j(x) = χ[xj ,xj+1)(x),
it is clear that (2.3.14) holds for m = 1. Next, we assume the result
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holds for a �xed non-negative integer m − 1 and let x ∈ [a, b]. From
the recursive formulation in (2.3.11), it follows that

N∑
j=−m+1

Nx,m,j(x)

=
N∑

j=−m+1

x− xj
xj+m−1 − xj

Nx,m−1,j(x) +
N∑

j=−m+1

xj+m − x
xj+m − xj+1

Nx,m−1,j+1(x)

=
N∑

j=−m+1

x− xj
xj+m−1 − xj

Nx,m−1,j(x) +
N+1∑

j=−m+2

xj+m−1 − x
xj+m−1 − xj

Nx,m−1,j(x)

=
N∑

j=−m+2

x− xj
xj+m−1 − xj

Nx,m−1,j(x) +
N∑

j=−m+2

xj+m−1 − x
xj+m−1 − xj

Nx,m−1,j(x),

from the support property (2.3.10). It therefore follows that

N∑
j=−m+1

Nx,m,j(x) =
N∑

j=−m+2

x− xj + xj+m−1 − x
xj+m−1 − xj

Nx,m−1,j(x)

=
N∑

j=−m+2

xj+m−1 − xj
xj+m−1 − xj

Nx,m−1,j(x)

=
N∑

j=−m+2

Nx,m−1,j(x) = 1,

from the induction hypothesis, completing our proof of (2.3.14).

(v) Lastly, to verify (2.3.15), we di�erentiate (2.3.6) and use (2.3.4) to
obtain

N ′x,m,j(x) = −(m− 1) (xj+m − xj) [xj, . . . , xj+m] (· − x)m−2
+

= −(m− 1) (xj+m − xj)×
[xj+1, . . . , xj+m] (· − x)m−2

+ − [xj, . . . , xj+m−1] (· − x)m−2
+

xj+m − xj
= −(m− 1) [xj+1, . . . , xj+m] (· − x)m−2

+

+(m− 1) [xj, . . . , xj+m−1] (· − x)m−2
+
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= − m− 1

xj+m − xj+1

(xj+m − xj+1) [xj+1, . . . , xj+m] (· − x)m−2
+

+
m− 1

xj+m−1 − xj
(xj+m−1 − xj) [xj, . . . , xj+m−1] (· − x)m−2

+

=
m− 1

xj+m−1 − xj
Nx,m−1,j(x)− m− 1

xj+m − xj+1

Nx,m−1,j+1(x),

from (2.3.6). �

2.4 Spline interpolation

B-splines are useful in many applications, including spline interpolation and
approximations problems (the applications that we will be studying in this
dissertation).

Before de�ning a spline interpolation operator in terms of B-splines of
any arbitrary order, we start this section by reviewing the standard cubic
spline interpolation scheme in [6, Chapter IV], since it is one of the most
popular interpolation methods in current applications (due to the simplicity
to implement it).

For a function f : [a, b]→ R and a sequence

y : a = y1 < y2 < · · · < yn = b,

we proceed to investigate the construction of a cubic spline interpolant S,
with knot sequence y, that satis�es the interpolation conditions

S(yi) = f(yi), i = 1, . . . , n.

Since S is a cubic polynomial spline, we know that

S ∈ C2 and S|[yi,yi+1] ∈ π3

(as in (2.3.2)). Therefore, we have

S(x) = pi(x), x ∈ [yi, yi+1] ,

for all i = 1, . . . , n− 1, for some cubic polynomials

pi(x) = ai+bi (x− yi)+ci (x− yi)2+di (x− yi)3 , i = 1, . . . , n−1, (2.4.1)
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such that {
pi(yi) = f(yi); pi(yi+1) = f(yi+1);

p′i(yi) = si; p′i(yi+1) = si+1,
(2.4.2)

for i = 1, . . . , n − 1, where s1, . . . , sn are free parameters determining the
slope of each polynomial pi, and such that

p′′i−1(yi) = p′′i (yi), i = 2, . . . , n− 1. (2.4.3)

By substituting the conditions (2.4.2) in the polynomial formulations (2.4.1),
we may solve for ai, bi, ci, di, i = 1, . . . , n− 1, in terms of the parameters
s1, . . . , sn. Assuming that the parameters s1 and sn are chosen by the user
in some way, the remaining n− 2 free parameters s2, . . . , sn−1 are then de-
termined uniquely by the n− 2 conditions in (2.4.3).

There exist di�erent approaches in the literature to choosing the bound-
ary slopes s1 and sn. The most popular techniques include the so-called nat-
ural spline interpolation, where s1 and sn are chosen to satisfy the free-end
condition S ′′(y1) = S ′′(yn) = 0, and the spline resulting from the not-a-knot
condition p1 = p2 and pn−2 = pn−1 (so that the knots y2 and yn−1 are not
active).

We now turn our attention to spline interpolation schemes in terms of
B-splines with arbitrary order m (the type of spline interpolation methods
that we will be considering in this dissertation), and where the spline knot
sequence x need not coincide with the interpolation points y.

For a function f : [a, b] → R, we will be interested in �nding a spline
interpolation operator Sm : C[a, b]→ Sx,m, where C[a, b] denotes the space
of continuous functions on the interval [a, b] and with the spline space Sx,m

de�ned in (2.3.2) for the knot sequence x in (2.3.1), such that the spline
Smf interpolates the function f at a given sequence of discrete data points
on the interval [a, b].

Since the set of normalized B-splines {Nx,m,j : j = −m+ 1, . . . , N} forms
a basis for the spline space Sx,m, the dimension of Sx,m ism+N . This means
that we can accommodate m + N interpolation conditions on the interval
[a, b].
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De�nition 2.4.1 (Spline interpolation operator) Given a function f :
[a, b] → R, let y = {y1, . . . , ym+N} denote a sequence of m + N distinct
points in the interval [a, b], with

y : a ≤ y1 < y2 < · · · ym+N ≤ b. (2.4.4)

Then the spline interpolation operator Sm : C[a, b] → Sx,m, with knot se-
quence x given in (2.3.1), satis�es the m+N interpolation conditions

(Smf)(yi) = f(yi), i = 1, . . . ,m+N. (2.4.5)

Spline interpolation has the advantage over traditional polynomial in-
terpolation (for example, the Lagrange and Newton interpolation formulas
[22, Sections 1.2, 1.3]) that the approximation accuracy may be improved
by decreasing the distance between consecutive knots in x while keeping
the polynomial degree m− 1 relatively low.

Now, since {Nx,m,j : j = −m+ 1, . . . , N} forms a basis for the spline
space Sx,m, we know that there exists a spline Smf satisfying (2.4.5) if and
only if

(Smf)(x) =
N∑

j=−m+1

cfjNx,m,j(x), x ∈ [a, b]

for certain coe�cients
{
cf−m+1, . . . , c

f
N

}
⊆ R, such that

N∑
j=−m+1

cfjNx,m,j(yi) = f(yi), i = 1, . . . ,m+N. (2.4.6)

In other words, the vector cf :=
(
cf−m+1, . . . , c

f
N

)T
∈ Rm+N , where Rm+N

denotes the (m + N)-dimensional real space, is a solution to the matrix
equation

Am,Ncf = fm+N ,
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with fm+N := (f(y1), . . . , f(ym+N))T ∈ Rm+N , and where Am,N is the (m+
N)× (m+N) coe�cient matrix

Am,N =


Nx,m,−m+1(y1) Nx,m,−m+2(y1) · · · Nx,m,N(y1)
Nx,m,−m+1(y2) Nx,m,−m+2(y2) · · · Nx,m,N(y2)

...
...

...
Nx,m,−m+1(ym+N) Nx,m,−m+2(ym+N) · · · Nx,m,N(ym+N)

 .
(2.4.7)

A necessary and su�cient condition for the matrix Am,N to be invertible is
given by the Schoenberg-Whitney theorem [44]:

Theorem 2.4.1 (Schoenberg-Whitney) The matrix Am,N in (2.4.7) of
the linear system (2.4.6) is invertible if and only if

Nx,m,−m+i(yi) 6= 0, i = 1, . . . ,m+N.

In other words, from the B-spline support property (2.3.10), the linear
system (2.4.6) has a unique solution if and only if

x−m+i ≤ yi ≤ xi, i = 1, . . . ,m+N,

in which case the spline interpolant is given by

(Smf)(x) =
N∑

j=−m+1

(
A−1
m,N fm+N

)
j
Nx,m,j(x), x ∈ [a, b]. (2.4.8)

This gives an existence and uniqueness result for spline interpolation in
terms of the normalized mth order B-splines, for any arbitrary order m.

In general, the inverse matrix A−1
m,N is not banded, but a full matrix.

This means that the value of (Smf)(x) in (2.4.8) at any x ∈ [a, b] depends
on most, if not all, of the function values {f(y1), . . . , f(ym+N)}. The spline
interpolant in (2.4.8) is therefore not a local interpolant. In Chapter 4, we
will investigate the construction of local interpolation schemes in terms of
B-splines.

In some applications, it might be advantageous to not only interpolate
function values f(yi), i = 1, . . . ,m + N, as in (2.4.5) in De�nition 2.4.1,



CHAPTER 2 Van der Walt, Maria, 2015, UMSL, p.26

but derivative values of f as well. If {r1, . . . , rm+N} is a sequence of m+N
non-negative integers such that

r1 + · · ·+ rm+N = m+N,

the m+N interpolation conditions in (2.4.5) in De�nition 2.4.1 become

(Smf)(`)(yi) = f (`)(yi), ` = 1, . . . , ri; i = 1, . . . ,m+N,

called Hermite interpolation conditions. We will investigate spline interpo-
lation operators with this type of interpolation conditions in Chapter 4.

We note that, in practice, the `th order derivative values of the function
f may also be approximated with the `th order divided di�erences of f ,
with the divided di�erences de�ned in (2.3.3)-(2.3.4).

In this dissertation, we will also be interested in certain spline approx-
imation operators, called quasi-interpolation operators, �rst introduced by
De Boor and Fix in [7].

De�nition 2.4.2 (Spline quasi-interpolation operator) The spline ap-
proximation operator Qm : C[a, b] → Sx,m with knot sequence x in (2.3.1)
is called a quasi-interpolation operator if it reproduces polynomials of degree
≤ n for any non-negative integer n; that is,

(Qmp)(x) = p(x), x ∈ [a, b], (2.4.9)

for polynomials p ∈ πn.

Again, since {Nx,m,j : j = −m+ 1, . . . , N} forms a basis for the spline
space Sx,m, we know that there exists a spline Qmf satisfying (2.4.9) if

(Qmf)(x) =
N∑

j=−m+1

cfjNx,m,j(x), x ∈ [a, b]

for certain coe�cients
{
cf−m+1, . . . , c

f
N

}
⊆ R, such that

N∑
j=−m+1

cpjNx,m,j(x) = p(x), p ∈ πn.

We will investigate the construction of quasi-interpolation operators,
with a local formulation in terms of the normalized mth order B-splines, in
Chapter 3.
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2.5 Continuous wavelet transform

Let us consider a function ψ ∈ L2(R). If ψ satis�es the conditions

ψ(x)→ 0, x→ ±∞, (2.5.1)

and

p.v.

∫ ∞
−∞

ψ(x)dx = lim
A→∞

∫ A

−A
ψ(x)dx = 0, (2.5.2)

where �p.v.� denotes the Cauchy principal value, then ψ is called a wavelet.
From (2.5.2), we see that ψ oscillates (ψ has a �wavy� shape), while the
condition (2.5.1) ensures that the function ψ dies down as x → ±∞, so
that the graph of ψ looks like a �short wave� or wavelet.

Given a wavelet ψ, we can generate a whole family of wavelets through

ψb,a(x) :=
1

a
ψ

(
x− b
a

)
, (2.5.3)

where b ∈ R and a > 0. The factor a is used to adjust the scale and length
of the wavelet, while the support interval of ψb,a can be shifted over the
entire real axis by changing the value of b.

There are many applications of wavelets in the literature. In this dis-
sertation, we will mainly be interested in the continuous wavelet transform
(CWT), where the wavelets ψb,a (2.5.3) generated by ψ are used as integra-
tion kernel.

De�nition 2.5.1 (Continuous wavelet transform) For a function f ∈
L2(R), the CWT Wψf of f at the time-scale point (b, a) is de�ned as the
inner product of f with the wavelet ψb,a; that is,

(Wψf)(b, a) = 〈f, ψb,a〉 =
1

a

∫ ∞
−∞

f(x)ψ

(
x− b
a

)
dx. (2.5.4)

The CWT is a time-frequency method used to analyze the time and
frequency contents of a function f . In this regard, the wavelet ψb,a is called
a window function, and it is used to localize f in order to examine its
time and frequency contents. This localization depends on the width of the
window function. In general, the window width of a time-frequency window
function is calculated as follows.
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De�nition 2.5.2 (Time-frequency window width) Let
u ∈ (L1 ∩ L2) (R) be a non-trivial window function such that xu(x) ∈
L2(R). The center of the localization window function u(x) is de�ned by

x?u :=

∫∞
−∞ x|u(x)|2dx∫∞
−∞ |u(x)|2dx

, (2.5.5)

and the radius of the window function u(x) is de�ned by

∆u :=

[∫∞
−∞(x− x?u)2|u(x)|2dx∫∞

−∞ |u(x)|2dx

]1
2

. (2.5.6)

The window width of u(x) is de�ned by 2∆u.

With this de�nition, and using also (2.5.3), we may calculate the center
of the window function ψb,a to be

x?ψb,a =

∫∞
−∞ x|ψ

(
x−b
a

)
|2dx∫∞

−∞ |ψ
(
x−b
a

)
|2dx

=

∫∞
−∞(ax+ b)|ψ(x)|2dx∫∞

−∞ |ψ(x)|2dx
= ax?ψ + b,

while

∆ψb,a =

[∫∞
−∞(x− x?ψb,a)

2|ψ
(
x−b
a

)
|2dx∫∞

−∞ |ψ
(
x−b
a

)
|2dx

]1
2

=

[∫∞
−∞(ax+ b− (ax?ψ + b))2|ψ(x)|2dx∫∞

−∞ |ψ(x)|2dx

]1
2

= a∆ψ. (2.5.7)

With the Fourier transform of a function f ∈ L1(R) de�ned by (2.2.1),
we may also consider ω?

ψ̂b,a
and ∆ψ̂b,a

, which describe the center and radius

of the window function ψ̂b,a in the frequency domain. Since

ψ̂b,a(ω) = e−i2πωbψ̂(aω),

from the de�nition (2.5.3) of ψb,a and the Fourier transform properties
(2.2.8) and (2.2.9) in Theorem 2.2.1, we have

ω?
ψ̂b,a

=

∫∞
−∞ ω|ψ̂(aω)|2dω∫∞
−∞ |ψ̂(aω)|2dω

=

∫∞
−∞

ω
a
|ψ̂(ω)|2dω∫∞

−∞ |ψ̂(ω)|2dω
=

1

a
ω?
ψ̂



CHAPTER 2 Van der Walt, Maria, 2015, UMSL, p.29

and

∆ψ̂b,a
=

∫∞−∞(ω − ω?
ψ̂b,a

)2|ψ̂(aω)|2dω∫∞
−∞ |ψ̂(aω)|2dω


1
2

=

∫∞−∞(ω
a
−

ω?
ψ̂

a
)2|ψ̂(ω)|2dω∫∞

−∞ |ψ̂(ω)|2dω


1
2

=
1

a
∆ψ̂, (2.5.8)

from (2.5.5) and (2.5.6).

From (2.5.7) and (2.5.8), it is clear that the localization window ψb,a in
the CWT has the advantage that the window width is not �xed (in con-
trast to the short-time Fourier transform, for example [14, (7.4.1), p.354]);
it varies with a. When the value of a is larger, the window width 2∆ψb,a =
2a∆ψ widens (in other words, the CWT �zooms out�), while the frequency
window width 2∆ψ̂b,a

= 2
a
∆ψ̂ narrows, facilitating analysis of high-frequency

contents. On the other hand, when the value of a is smaller, the window
width 2a∆ψ narrows (the CWT �zooms in�), providing higher resolution in
the time domain, while the frequency window width 2

a
∆ψ̂ widens.

At the same time, the window function ψb,a �slides� across the entire real
axis as the value of b ∈ R changes. In this way, the window ψb,a facilitates
the analysis of f for di�erent time and frequency detail over the whole real
line or �time axis�.

The CWT is equipped with an �inversion� or �recovery� formula, called
the inverse CWT. This allows us to recover a function f from its CWT
Wψf (see [14, Theorem 3, p.391]).

Theorem 2.5.1 (Inverse continuous wavelet transform) Let ψ ∈ L2(R)
be an admissible wavelet, in the sense that

Cψ :=

∫ ∞
0

|ψ̂(ω)|2

ω
dω <∞.

Then

f(x) =
1

Cψ

∫ ∞
0

[∫ ∞
−∞

(Wψf)(b, a)ψ

(
x− b
a

)
db

]
da

a2
,
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for all f ∈ (L2 ∩ L∞) (R), where L∞ denotes the space of all bounded func-
tions.

2.6 Hilbert spectral analysis

We end this chapter by considering the notion of Hilbert spectral analysis,
which is based on the Hilbert transform, de�ned as follows.

De�nition 2.6.1 (Hilbert transform) Let f be a measurable real-valued
function and let

h(x) :=
1

πx

denote the Hilbert kernel. Then the Hilbert transform of f is de�ned as the
convolution of f with the Hilbert kernel h; that is,

(Hf)(x) = (h ? f) (x) =
1

π
p.v.

∫ ∞
−∞

f(s)

x− s
ds, (2.6.1)

or, equivalently,

(Hf)(x) =
1

π
p.v.

∫ ∞
−∞

f(x− s)
s

ds,

provided that the integral in (2.6.1) exists and is �nite.

The Hilbert transform in (2.6.1) satis�es the following properties (see
[40, Chapter 4]):

Theorem 2.6.1 (Properties of Hilbert transform) The Hilbert trans-
form operator in (2.6.1) satis�es the following properties:

(i) The Hilbert transform operator is linear; that is, for real-valued func-
tions f and g and a, b,∈ R,

H(af + bg) = aHf + bHg;

(ii) For a real-valued function f and a, b ∈ R,

H (f(ax+ b)) = sgn(a)(Hf)(ax+ b),
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where sgn denotes the sign of a, namely

sgn(a) :=


−1, if a < 0;

0, if a = 0;

1, if a > 0;

(iii) For a real-valued function f ,

H
(
df(x)

dx

)
=

d

dx
(Hf)(x).

Proof:

(i) From the de�nition of the Hilbert transform in (2.6.1), it is clear that

H(af + bg)(x) =
1

π
p.v.

∫ ∞
−∞

(af + bg)(s)

x− s
ds

=
a

π
p.v.

∫ ∞
−∞

f(s)

x− s
ds+

b

π
p.v.

∫ ∞
−∞

g(s)

x− s
ds

= a(Hf)(x) + b(Hg)(x).

(ii) From (2.6.1), we have

H (f(ax+ b)) =
1

π
p.v.

∫ ∞
−∞

f(as+ b)

x− s
ds

=

{
1
π
p.v.

∫∞
−∞

f(s)
ax+b−sds, a > 0;

− 1
π
p.v.

∫∞
−∞

f(s)
ax+b−sds, a < 0;

= sgn(a) (Hf) (ax+ b).

(iii) We start by recalling the Leibniz integral rule

d

dz

∫ β(z)

α(z)

f(x, z)dx

=

∫ β(z)

α(z)

∂

∂z
f(x, z)dx+ f(β(z), z)

dβ(z)

dz
− f(α(z), z)

dα(z)

dz
,
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so that, if α and β are independent of z,

d

dz

∫ β

α

f(x, z)dx =

∫ β

α

∂

∂z
f(x, z)dx.

We therefore have

d

dx
(Hf)(x) =

1

π

d

dx
p.v.

∫ ∞
−∞

f(s)

x− s
ds

=
1

π

d

dx
p.v.

∫ ∞
−∞

f(x− s)
s

ds

=
1

π
p.v.

∫ ∞
−∞

sf ′(x− s)
s2

ds

=
1

π
p.v.

∫ ∞
−∞

f ′(x− s)
s

ds

= H
(
df(x)

dx

)
�

We will also rely on the following two results. The �rst is a formulation
of the Fourier transform applied to the Hilbert transform, the proof of which
can be found in [40, pp.252-255].

Theorem 2.6.2 (Fourier transform applied to Hilbert transform)
For f ∈ L2(R),

(̂Hf)(ω) = −i sgn(ω)f̂(ω). (2.6.2)

The second is referred to as the Hilbert transform product theorem or
Bedrosian's theorem [3].

Theorem 2.6.3 (Bedrosian) Let f, g ∈ L2(R). If the Fourier transform
f̂(ω) of f(x) vanishes for |ω| > a, with a > 0, and the Fourier transform
ĝ(ω) of g(x) vanishes for |ω| < a, then

H (f(x)g(x)) = f(x)(Hg)(x). (2.6.3)
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Example 2.6.1

(a) For a ∈ R,
Ha = 0; (2.6.4)

(b) For f(x) = cos 2πcx with c > 0,

(Hf)(x) = sin 2πcx. (2.6.5)

Solution:

(a) From the de�nition of the Hilbert transform in (2.6.1), we have

(Ha)(x) =
1

π
p.v.

∫ ∞
−∞

a

x− s
ds

=
a

π
lim
A→∞

[− ln |x− s|]A−A

=
a

π
lim
A→∞

ln

∣∣∣∣x+ A

x− A

∣∣∣∣ = 0.

(b) Let f(x) = cos 2πcx. Using (2.6.2) in Theorem 2.6.2 and (2.2.11)-
(2.2.12) in Example 2.2.1, we know that

F ((Hf) (x)) = −i sgn(ω)f̂(ω)

=
−i
2

sgn(ω) [δ(ω − c) + δ(ω + c)]

=
1

2i
[δ(ω − c)− δ(ω + c)]

= F (sin 2πcx) .

Therefore,
(Hf) (x) = sin 2πcx.

�
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In this dissertation, we will be using the Hilbert transform to extend a
given signal f to its analytic signal representation f ?, given by

f ?(t) = f(t) + i(Hf)(t). (2.6.6)

This approach is commonly used in the area of signal processing and analy-
sis to analyze a signal's instantaneous frequency information, and was �rst
proposed by Dennis Gabor [26]. By taking the real part of the polar for-
mulation of f ? in (2.6.6),the given signal f(t) has the representation

f(t) = A(t) cos 2πθ(t), (2.6.7)

where

A(t) = |f ?(t)| =
(
(f(t))2 + ((Hf)(t))2

)1
2 (2.6.8)

is called the instantaneous amplitude (IA) of f , and

θ(t) =
1

2π
tan−1

(
Hf(t)

f(t)

)
(2.6.9)

denotes the instantaneous phase of f . The instantaneous frequency ω is
simply de�ned to be the time-derivative of the instantaneous phase; that
is,

ω(t) =
dθ(t)

dt
, (2.6.10)

as already mentioned in Chapter 1. (This terminology will be considered
in general in Section 5.2 in Chapter 5.) This method of �nding a signal's
amplitude, frequency and phase information is called Hilbert spectral anal-
ysis in the current signal processing literature.

Since a negative IF is not physically meaningful, we include the following
condition:

Theorem 2.6.4 (Non-negative IF) The IF ω(t) in (2.6.10) is non-negative
if and only if

f(t) (Hf)′ (t)− (Hf) (t)f ′(t) ≥ 0. (2.6.11)
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Proof:

From (2.6.10) and (2.6.9), we know that

ω(t) =
1

2π

d

dt
tan−1

(
Hf(t)

f(t)

)
=

1

2π
· 1

1 +
(

(Hf)(t)
f(t)

)2 ·
f(t)(Hf)′(t)− (Hf)(t)f ′(t)

(f(t))2

=
1

2π

f(t)(Hf)′(t)− (Hf)(t)f ′(t)

(f(t))2 + ((Hf)(t))2 .

Therefore, ω(t) ≥ 0 if and only if

f(t) (Hf)′ (t)− (Hf) (t)f ′(t) ≥ 0.

�

As mentioned in Chapter 1, the empirical mode decomposition is one
approach to signal decomposition and analysis that relies on the HSA tech-
nique described above. We will discuss this method in detail in Chapter
6.
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Chapter 3

Quasi-interpolation

In this chapter, we de�ne and describe a quasi-interpolation scheme (as
introduced in Section 2.4 in Chapter 2) based on the mth order B-splines
(de�ned in (2.3.6) in Chapter 2). Our idea is to use this scheme, together
with a local interpolation scheme (to be described in Chapter 4) to create a
so-called blending operator (which will also be de�ned in Chapter 4). This
operator is developed in such a way that it preserves the properties of both
its constituent parts � it will therefore have a local formulation, preserve
polynomials up to a certain degree, and satisfy certain interpolation condi-
tions. This interpolation scheme may then be used in applications such as
constructing upper and lower envelopes in the empirical mode decomposi-
tion algorithm (to be described in Section 6.1 of Chapter 6).

In Section 3.1, we start by developing a quasi-interpolation operator,
in terms of the mth order B-splines, that preserves polynomials p of degree
≤ m−1. Our quasi-interpolation operator is based on a quasi-interpolation
scheme for real-time application described in [9] � however, the method in
[9] is derived for data values on an unbounded interval, and is adapted here
(in a non-trivial way) for a bounded interval.

In Section 3.2, we develop a variation on the quasi-interpolation scheme
described in Section 3.1 (where the spline knots are chosen to be equal to the
sampling points) by adapting this scheme for the case where the knots are
chosen to lie midway between every two consecutive sampling points. This
setup facilitates a more symmetric formulation of the quasi-interpolation
scheme.
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The quasi-interpolation schemes in Sections 3.1 and 3.2 are exact on
πm−1; that is, when it is applied to a polynomial of degree ≤ m − 1, this
exact polynomial is returned. In Section 3.3, we provide error bounds that
describe how well a general, real-valued function f (that is not a polynomial)
is approximated by these schemes.

3.1 Quasi-interpolation: Scheme E

For m ≥ 3, let
y : a = y0 < y1 < · · · < yN+1 = b (3.1.1)

be a given sequence of (non-uniform) sampling points, and let f be a real-
valued function. In this section, we develop a spline quasi-interpolation
operator QEm, under the assumption that the B-spline knot sequence x is
equal to the sampling point sequence y. We append the m − 1 stacked
knots x−m+1 = · · · = x−1 = a and b = xN+2 = · · · = xN+m on either side,
so that the (non-uniform) knot sequence x is given by

x : x−m+1 = · · · = a = x0 < x1 < · · · < xN+1 = b = · · · = xN+m. (3.1.2)

In this section, we will therefore denote the sampling points y by x also, for
convenience. This setup facilitates easy implementation in real-time appli-
cations in practice.

We will need the following notations.

First, D(xj, . . . , xj+m−1) denotes the Vandermonde determinant of
xj, . . . , xj+m−1; that is,

D(xj, . . . , xj+m−1) =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
xj xj+1 · · · xj+m−1
...

...
...

xm−1
j xm−1

j+1 · · · xm−1
j+m−1

∣∣∣∣∣∣∣∣∣ ; (3.1.3)

and D(xj, . . . , xj+k−1, ξx,m,`, xj+k+1, . . . , xj+m−1) is obtained from
D(xj, . . . , xj+m−1) by replacing its (k + 1)th column with the vector

ξx,m,` := [ξ0
x(`), . . . , ξm−1

x (`)]T , (3.1.4)
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with 
ξ0
x(`) = 1;

ξnx(`) =
σn(x`+1, . . . , x`+m−1)(

m−1
n

) , n = 1, . . . ,m− 1;
(3.1.5)

and where σn(x`+1, . . . , x`+m−1) denotes the classical symmetric function,
de�ned by

σ0(x`+1, . . . , x`+m−1) = 1;

σn(x`+1, . . . , x`+m−1) =
∑

`+1≤t1<t2<···<tn≤`+m−1

xt1xt2 · · ·xtn ,

n = 1, . . . ,m− 1,

(3.1.6)

with the de�nition that σn(x`+1, . . . , x`+m−1) = 0 if n ≥ m.

Furthermore, DC(xj, . . . , xj+p, x
(1)
j+p, . . . , x

(q)
j+p, xj+p+1, . . . , xj+m−q−1) de-

notes the con�uent Vandermonde determinant; that is, for ` = 1, . . . , q, the
(p+ 1 + `)th column of DC is given by

(DC)k,p+1+` =

{
0, if k ≤ `;

(k−1)!
(k−1−`)!x

k−1−`
j+p , if k > `.

(3.1.7)

(In other words, con�uent columns are derivatives of the original Vander-
monde columns.) The remaining m− q columns of DC are regular Vander-
monde columns corresponding to xj, . . . , xj+m−q−1 (as in (3.1.3)). Similar
as above,
DC(xj, . . . , xj+p, x

(1)
j+p, . . . , x

(k−1)
j+p , ξx,m,`, x

(k+1)
j+p , . . . , x

(q)
j+p, xj+p+1, . . . , xj+m−q−1)

is obtained from DC(xj, . . . , xj+p, x
(1)
j+p, . . . , x

(q)
j+p, xj+p+1, . . . , xj+m−q−1) by

replacing its (p+ k + 1)th column with ξx,m,`.

De�nition 3.1.1 (Quasi-interpolation operator) For an integer m ≥
3, the quasi-interpolation operator QEm is de�ned by

(QEmf)(x) :=
m−1∑
`=1

f (`)(a)ME
m,−`(x)+

N+1∑
i=0

f(yi)M
E
m,i(x)+

m−2∑
r=1

f (r)(b)ME
m,N+1+r(x),

(3.1.8)
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in terms of the spline molecules

ME
m,−`(x) :=

m−1−`∑
j=0

aEm,−`,jNx,m,j−m+1(x), ` = 1, . . . ,m− 1;

ME
m,i(x) :=

m−1∑
j=0

aEm,i,jNx,m,i+j−m+1(x), i = 0, . . . , N ;

ME
m,N+1+r(x) :=

m−2∑
j=r

aEm,N+1+r,jNx,m,N+j−m+2(x), r = 0, . . . ,m− 2,

(3.1.9)
where the coe�cients are given by:

� For i = 0, . . . ,m−2, j = m−1− i, . . . ,m−1, and i = m−1, . . . , N+
1−m, j = 0, . . . ,m− 1, and i = N −m+ 2, . . . , N, j = 0, . . . , N − i:

aEm,i,j =
D(xi+j−m+1, . . . , xi−1, ξx,m,i+j−m+1, xi+1, . . . , xi+j)

D(xi+j−m+1, . . . , xi+j)
; (3.1.10)

� For i = 0, . . . ,m− 2, j = 0, . . . ,m− 2− i:

aEm,i,j =
DC(x0, x

(1)
0 , . . . , x

(m−1−i−j)
0 , x1, . . . , xi−1, ξx,m,i+j−m+1, xi+1, . . . , xi+j)

DC(x0, x
(1)
0 , . . . , x

(m−1−i−j)
0 , x1, . . . , xi+j)

;

(3.1.11)

� For ` = 1, . . . ,m− 1, j = 0, . . . ,m− 1− `:

aEm,−`,j =
DC(x0, x

(1)
0 , . . . , x

(`−1)
0 , ξx,m,j−m+1, x

(`+1)
0 , . . . , x

(m−1−j)
0 , x1, . . . , xj)

DC(x0, x
(1)
0 , . . . , x

(m−1−j)
0 , x1, . . . , xj)

;

(3.1.12)

� For i = N −m+ 2, . . . , N, j = N − i+ 1, . . . ,m− 1:

aEm,i,j

=
DC(xi+j−m+1, . . . , xi−1, ξx,m,i+j−m+1, xi+1, . . . , xN+1, x

(1)
N+1, . . . , x

(i+j−N−1)
N+1 )

DC(xi+j−m+1, . . . , xN+1, x
(1)
N+1, . . . , x

(i+j−N−1)
N+1 )

;

(3.1.13)
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� For r = 0, . . . ,m− 2, j = r, . . . ,m− 2:

aEm,N+1+r,j

=
DC(xN+j−m+2, . . . , xN+1, x

(1)
N+1, . . . , x

(r−1)
N+1 , ξx,m,N+j−m+2, x

(r+1)
N+1 , . . . , x

(j)
N+1)

DC(xN+j−m+2, . . . , xN+1, x
(1)
N+1, . . . , x

(j)
N+1)

.

(3.1.14)

We note that the molecules in the de�nition above are compactly sup-
ported, with

suppME
m,−` = [x0, xm−`], ` = 1, . . . ,m− 1;

suppME
m,i = [xi−m+1, xi+m], i = 0, . . . , N ;

suppME
m,N+1+r = [xN−m+2+r, xN+1], r = 0, . . . ,m− 2.

(3.1.15)

With these de�nitions, we can show that polynomials of degree ≤ m−1
are indeed preserved, as follows.

Theorem 3.1.1 (Polynomial preservation) For N ≥ 3m−3, the quasi-
interpolation operator QEm, formulated in (3.1.8) in De�nition 3.1.1, satis-
�es the condition

(QEmp)(x) = p(x), (3.1.16)

for all x ∈ [a, b] and p ∈ πm−1.

Proof:

We divide the proof into three parts.

(a) Let x ∈ [x2m−2, xN−2m+3], so that (3.1.8) becomes simply

(QEmf)(x) =
N+1−m∑
i=m−1

f(xi)M
E
m,i(x), (3.1.17)

from the support properties of ME
m,i in (3.1.15). We proceed to show

that the constants aEm,i,j, i = m− 1, . . . , N + 1−m, j = 0, . . . ,m− 1,
satisfy the formulation (3.1.10) in De�nition 3.1.1 if QEm satis�es
(3.1.16), for p(x) = xt, t = 0, . . . ,m− 1.
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To this end, by using (3.1.17) and the second equation in (3.1.9), the
left hand side of (3.1.16) becomes

(QEmp)(x) =
N+1−m∑
i=m−1

xti

m−1∑
j=0

aEm,i,jNx,m,i+j−m+1(x)

=
m−1∑
j=0

N+2−2m+j∑
k=j

xtk−j+m−1a
E
m,k−j+m−1,jNx,m,k(x)

=
N+1−m∑
k=0

min{m−1,k}∑
j=max{0,k−N−2+2m}

xtk−j+m−1a
E
m,k−j+m−1,jNx,m,k(x),

(3.1.18)

for p(x) = xt, t = 0, . . . ,m− 1. Next, from Marsden's identity on the
interval [x2m−2, xN−2m+3], we have

xt =
N−2m+2∑
k=m−1

ξtx(k)Nx,m,k(x), t = 0, . . . ,m− 1, (3.1.19)

where ξtx(k) is de�ned in terms of the classical symmetric functions
as in (3.1.4)-(3.1.6). By substituting (3.1.18) and (3.1.19) in (3.1.16),
we obtain

min{m−1,k}∑
j=max{0,k−N−2+2m}

xtk−j+m−1a
E
m,k−j+m−1,j = ξtx(k), t = 0, . . . ,m− 1,

for k = m− 1, . . . , N − 2m+ 2, yielding (for N ≥ 3m− 3)

m−1∑
j=0

xtk−j+m−1a
E
m,k−j+m−1,j = ξtx(k), t = 0, . . . ,m− 1.

The formulation (3.1.10) in De�nition 3.1.1 then follows by using
Cramer's rule.

(b) Next, let x ∈ [a, x2m−2], so that (3.1.8) becomes

(QEmf)(x) =
m−1∑
`=1

f (`)(a)ME
m,−`(x) +

3m−4∑
i=0

f(xi)M
E
m,i(x), (3.1.20)
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from the support properties ofME
m,i in (3.1.15). As in the �rst part, we

show that the constants aEm,i,j, i = −m+ 1, . . . ,m− 2, satisfy the for-
mulation (3.1.10)-(3.1.12) in De�nition 3.1.1 if QEm satis�es (3.1.16),
for p(x) = xt, t = 0, . . . ,m− 1.

By using (3.1.20) and the �rst two equations in (3.1.9), the left hand
side of (3.1.16) becomes

(QEmp)(x) =
m−1∑
`=1

(
t
`

)
`!xt−`0

m−1−`∑
j=0

aEm,−`,jNx,m,j−m+1(x)

+
3m−4∑
i=0

xti

m−1∑
j=0

aEm,i,jNx,m,i+j−m+1(x)

=
m−1∑
`=1

−∑̀
k=−m+1

(
t
`

)
`!xt−`0 aEm,−`,k+m−1Nx,m,k(x)

+
m−1∑
j=0

2m+j−3∑
k=j−m+1

xtk−j+m−1a
E
m,k−j+m−1,jNx,m,k(x)

=
−1∑

k=−m+1

−k∑
`=1

(
t
`

)
`!xt−`0 aEm,−`,k+m−1Nx,m,k(x)

+
3m−4∑

k=−m+1

min{m−1,k+m−1}∑
j=max{0,k−2m+3}

xtk−j+m−1a
E
m,k−j+m−1,jNx,m,k(x).

(3.1.21)

Combining (3.1.16) and (3.1.21) with Marsden's identity on the inter-
val [a, x2m−2], given by

xt =
2m−3∑

k=−m+1

ξtx(k)Nx,m,k(x), t = 0, . . . ,m− 1,

we have

−1∑
k=−m+1

[
−k∑
`=1

(
t
`

)
`!xt−`0 aEm,−`,k+m−1
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+
k+m−1∑
j=0

xtk−j+m−1a
E
m,k−j+m−1,j

]
Nx,m,k(x)

+
m−2∑
k=0

[
m−1∑
j=0

xtk−j+m−1a
E
m,k−j+m−1,j

]
Nx,m,k(x)

=
m−2∑

k=−m+1

ξtx(k)Nx,m,k(x).

The result follows by comparing the left hand side and right hand side
for k = −m+ 1, . . . ,m− 2, and using Cramer's rule. The formulation
(3.1.10) corresponds to k = 0, . . . ,m − 2, while (3.1.11) and (3.1.12)
(in terms of con�uent Vandermonde determinants) correspond to k =
−m+ 1, . . . ,−1.

(c) Lastly, let x ∈ [xN+3−2m, b], so that (3.1.8) becomes

(QEmf)(x) =
N∑

i=N+4−3m

f(xi)M
E
m,i(x) +

m−2∑
r=0

f (r)(b)ME
m,N+1+r(x),

(3.1.22)
from the support properties of ME

m,i in (3.1.15). We proceed to show
that the constants aEm,i,j, i = N −m + 2, . . . , N + m− 1, satisfy the
formulation (3.1.10), (3.1.13) and (3.1.14) in De�nition 3.1.1 if QEm
satis�es (3.1.16), for p(x) = xt, t = 0, . . . ,m− 1.

By using (3.1.22) and the �rst two equations in (3.1.9), the left hand
side of (3.1.16) becomes

(QEmp)(x) =
N∑

i=N+4−3m

xti

m−1∑
j=0

aEm,i,jNx,m,i+j−m+1(x)

+
m−2∑
r=0

(
t
r

)
r!xt−rN+1

m−2∑
j=r

aEm,N+1+r,jNx,m,N+j−m+2(x)

=
m−1∑
j=0

N+j−m+1∑
k=N+j−4m+5

xtk−j+m−1a
E
m,k−j+m−1,jNx,m,k(x)

+
m−2∑
r=0

N∑
k=N+r−m+2

(
t
r

)
r!xt−rN+1a

E
m,N+1+r,k−N+m−2Nx,m,k(x)
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=
N∑

k=N−4m+5

min{m−1,k−N+4m−5}∑
j=max{0,k−N+m−1}

xtk−j+m−1a
E
m,k−j+m−1,jNx,m,k(x)

+
N∑

k=N−m+2

k−N+m−2∑
r=0

(
t
r

)
r!xt−rN+1a

E
m,N+1+r,k−N+m−2Nx,m,k(x).

(3.1.23)

Combining (3.1.16) and (3.1.23) with Marsden's identity on the inter-
val [xN+3−2m, b], namely

xt =
N∑

k=N+3−2m

ξtx(k)Nx,m,k(x), t = 0, . . . ,m− 1,

we have

N−m+1∑
k=N+3−2m

[
m−1∑
j=0

xtk−j+m−1a
E
m,k−j+m−1,j

]
Nx,m,k(x)

+
N∑

k=N−m+2

[
m−1∑

j=k−N+m−1

xtk−j+m−1a
E
m,k−j+m−1,j

+
k−N+m−2∑

r=0

(
t
r

)
r!xt−r0 aEm,N+1+r,k−N+m−2

]
Nx,m,k(x)

=
N∑

k=N+3−2m

ξtx(k)Nx,m,k(x).

The result follows by comparing the left hand side and right hand side
for k = N +3−2m, . . . , N, and using Cramer's rule. The formulation
(3.1.10) corresponds to k = N +3−2m, . . . , N−m+1, while (3.1.13)
and (3.1.14) (in terms of con�uent Vandermonde determinants) cor-
respond to k = N −m+ 2, . . . , N . �

3.2 Quasi-interpolation: Scheme H

For the sampling points

y : a = y0 < y1 < · · · < yN = b (3.2.1)
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and a real-valued function f , we proceed in this section to adapt the spline
quasi-interpolation scheme of Section 3.1 (where the spline knots were cho-
sen to coincide with the sampling points) for the case where we de�ne the
spline knots to lie midway between consecutive sampling points. More pre-
cisely, we de�ne the knot sequence x by

x : x−m+1 = · · · = a = x0 < x1 < · · · < xN+1 = b = · · · = xN+m,

with 
x0 := y0;

xi := 1
2

(yi−1 + yi) , i = 1, . . . , N ;

xN+1 := yN .

(3.2.2)

Using the de�nitions (3.1.3)-(3.1.7), we have the following:

De�nition 3.2.1 (Quasi-interpolation operator) The quasi-interpolation
operator QHm is de�ned by

(QHmf)(x) :=
m−1∑
`=1

f (`)(a)MH
m,−`(x)+

N∑
i=0

f(yi)M
H
m,i(x)+

m−1∑
r=1

f (r)(b)MH
m,N+r(x),

(3.2.3)
in terms of the spline molecules

MH
m,−`(x) :=

m−1−`∑
j=0

aHm,−`,jNx,m,j−m+1(x), ` = 1, . . . ,m− 1;

MH
m,i(x) :=

m−1∑
j=0

aHm,i,jNx,m,i+j−m+1(x), i = 0, . . . , N ;

MH
m,N+r(x) :=

m−1∑
j=r

aHm,N+r,jNx,m,N+j−m+1(x), r = 1, . . . ,m− 1,

(3.2.4)
where the coe�cients are given by:

� For i = 0, . . . ,m−2, j = m−1− i, . . . ,m−1, and i = m−1, . . . , N+
1−m, j = 0, . . . ,m− 1, and i = N −m+ 2, . . . , N, j = 0, . . . , N − i:

aHm,i,j =
D(yi+j−m+1, . . . , yi−1, ξx,m,i+j−m+1, yi+1, . . . , yi+j)

D(yi+j−m+1, . . . , yi+j)
; (3.2.5)
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� For i = 0, . . . ,m− 2, j = 0, . . . ,m− 2− i:

aHm,i,j =
DC(y0, y

(1)
0 , . . . , y

(m−1−i−j)
0 , y1, . . . , yi−1, ξx,m,i+j−m+1, yi+1, . . . , yi+j)

DC(y0, y
(1)
0 , . . . , y

(m−1−i−j)
0 , y1, . . . , yi+j)

;

(3.2.6)

� For ` = 1, . . . ,m− 1, j = 0, . . . ,m− 1− `:

aHm,−`,j =
DC(y0, y

(1)
0 , . . . , y

(`−1)
0 , ξx,m,j−m+1, y

(`+1)
0 , . . . , y

(m−1−j)
0 , y1, . . . , yj)

DC(y0, y
(1)
0 , . . . , y

(m−1−j)
0 , y1, . . . , yj)

;

(3.2.7)

� For i = N −m+ 2, . . . , N, j = N − i+ 1, . . . ,m− 1:

aHm,i,j

=
DC(yi+j−m+1, . . . , yi−1, ξx,m,i+j−m+1, yi+1, . . . , yN , y

(1)
N , . . . , y

(i+j−N)
N )

DC(yi+j−m+1, . . . , yN , y
(1)
N , . . . , y

(i+j−N)
N )

;

(3.2.8)

� For r = 1, . . . ,m− 1, j = r, . . . ,m− 1:

aHm,N+r,j

=
DC(yN+j−m+1, . . . , yN , y

(1)
N , . . . , y

(r−1)
N , ξx,m,N+j−m+1, y

(r+1)
N , . . . , y

(j)
N )

DC(yN+j−m+1, . . . , yN , y
(1)
N , . . . , y

(j)
N )

.

(3.2.9)

The molecules in the de�nition above are compactly supported, with
suppMH

m,−` = [x0, xm−`], ` = 1, . . . ,m− 1;

suppMH
m,i = [xi−m+1, xi+m], i = 0, . . . , N ;

suppMH
m,N+r = [xN−m+1+r, xN+1], r = 1, . . . ,m− 1.

(3.2.10)

We remark that, in contrast to the quasi-interpolant described in (3.1.8)
in Section 3.1, each sampling point y0, . . . , yN , is located precisely in the
center of the support interval of each corresponding molecule MH

m,i, i =
0, . . . , N .
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With these de�nitions, we can show that QHm preserves polynomials of
degree ≤ m− 1:

Theorem 3.2.1 (Polynomial preservation) For N ≥ 3m−3, the quasi-
interpolation operator QHm, formulated in (3.2.3) in De�nition 3.2.1, satis-
�es the condition

(QHmp)(x) = p(x), (3.2.11)

for all x ∈ [a, b] and p ∈ πm−1.

The proof follows a similar pattern as the proof of Theorem 3.1.1 and
is omitted here. �

3.3 Approximation order

Lastly in this chapter, we analyze the order of approximation of the quasi-
interpolation operators QEm and QHm.

In this regard, since QEm and QHm are expressed in terms of the spline
moleculesME

m,i andM
H
m,i, respectively, it is a key requirement to �nd upper

bounds on these spline molecules on the interval [a, b]. These upper bounds
will be given in Theorem 3.3.1. Our �rst task in developing these upper
bounds is to bound the spline coe�cients aEm,i,j and a

H
m,i,j.

To this end, we start by noting that, for an integerm ≥ 3 and a sequence
of real numbers {x1, . . . , xm−1},

m−1∑
i=1

σ`(x1, . . . , xi−1, xi+1, . . . , xm−1) = (m− 1− `)σ`(x1, . . . , xm−1);

m−1∑
i=1

xiσ
`(x1, . . . , xi−1, xi+1, . . . , xm−1) = (`+ 1)σ`+1(x1, . . . , xm−1),

(3.3.1)
for ` = 0, . . . ,m− 2, and

xm−1σ
m−2−`(x1, . . . , xm−2) +σm−1−`(x1, . . . , xm−2) = σm−1−`(x1, . . . , xm−1),

(3.3.2)
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for ` = 0, . . . ,m − 1, all of which follow directly from the de�nition of the
symmetric polynomials in (3.1.6).

We will rely on the following lemma, which originally appeared in [9,
Lemma 2.1]. It is given here with a modi�ed proof.

Lemma 3.3.1 (Symmetric polynomials) For an integer m ≥ 3, let
{x1, . . . , xm−1} and {y1, . . . , ym−1} denote two sequences of real numbers.
Then

m−1∑
`=0

(−1)`
σm−1−`(x1, . . . , xm−1)(

m−1
`

) σ`(y1, . . . , ym−1)

=
1

(m− 1)!

 ∑
1≤t1,...,tm−1≤m−1

m−1∏
k=1

(xtk − yk)

 . (3.3.3)

Proof:

Our proof is by induction on m. It can be veri�ed directly, using the
de�nition (3.1.6) of the symmetric polynomials, that the result holds for
m = 3. We now assume the result holds for an integer m− 1 and proceed
to prove (3.3.3). Using the induction hypothesis, (3.3.1) and (3.3.2), we
have that

1

(m− 1)!

 ∑
1≤t1,...,tm−1≤m−1

m−1∏
k=1

(xtk − yk)


=

1

(m− 1)!

 ∑
1≤t2,...,tm−1≤m−2

t1=m−1

m−1∏
k=1

(xtk − yk) +
∑

1≤t1,t3...,tm−1≤m−2
t2=m−1

m−1∏
k=1

(xtk − yk)

+ · · ·+
∑

1≤t1,...,tm−2≤m−2
tm−1=m−1

m−1∏
k=1

(xtk − yk)


=

1

(m− 1)!

(xm−1 − y1)
∑

1≤t2,...,tm−1≤m−2

m−1∏
k=1

(xtk − yk)
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+ (xm−1 − y2)
∑

1≤t1,t3...,tm−1≤m−2

m−1∏
k=1

(xtk − yk)

+ · · ·+ (xm−1 − ym−1)
∑

1≤t1,...,tm−2≤m−2

m−1∏
k=1

(xtk − yk)


=

1

m− 1

[
(xm−1 − y1)

m−2∑
`=0

(−1)`
σm−2−`(x1, . . . , xm−2)(

m−2
`

) σ`(y2, . . . , ym−1)

+ (xm−1 − y2)
m−2∑
`=0

(−1)`
σm−2−`(x1, . . . , xm−2)(

m−2
`

) σ`(y1, y3, . . . , ym−1)

+ · · ·+ (xm−1 − ym−1)
m−2∑
`=0

(−1)`
σm−2−`(x1, . . . , xm−2)(

m−2
`

) σ`(y1, . . . , ym−2)

]

=
1

m− 1

[
m−2∑
`=0

(−1)`
xm−1σ

m−2−`(x1, . . . , xm−2)(
m−2
`

) ×

(
σ`(y2, . . . , ym−1) + σ`(y1, y3, . . . , ym−1) + · · ·+ σ`(y1, . . . , ym−2)

)
−

m−2∑
`=0

(−1)`
σm−2−`(x1, . . . , xm−2)(

m−2
`

) ×

(
y1σ

`(y2, . . . , ym−1) + y2σ
`(y1, y3, . . . , ym−1) + · · ·+ ym−1σ

`(y1, . . . , ym−2)
) ]

=
1

m− 1

[
m−1∑
`=0

(−1)`
xm−1σ

m−2−`(x1, . . . , xm−2)(
m−2
`

) (m− 1− `)σ`(y1, . . . , ym−1)

+
m−2∑
`=−1

(−1)`+1σ
m−2−`(x1, . . . , xm−2)(

m−2
`

) (`+ 1)σ`+1(y1, . . . , ym−1)

]

=
m−1∑
`=0

(−1)`
xm−1σ

m−2−`(x1, . . . , xm−2)(
m−1
`

) σ`(y1, . . . , ym−1)

+
m−1∑
`=0

(−1)`
σm−1−`(x1, . . . , xm−2)(

m−1
`

) σ`(y1, . . . , ym−1)
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=
m−1∑
`=0

(−1)`(
m−1
`

) [xm−1σ
m−2−`(x1, . . . , xm−2) + σm−1−`(x1, . . . , xm−2)

]
×

σ`(y1, . . . , ym−1)

=
m−1∑
`=0

(−1)`
σm−1−`(x1, . . . , xm−1)(

m−1
`

) σ`(y1, . . . , ym−1),

completing our inductive proof of (3.3.3). �

Next, we derive an upper bound on the spline coe�cients aEm,i,j, a
H
m,i,j, i =

−m+1, . . . , N+m−1, j = 0, . . . ,m−1. To this end, we recall the standard
formula for the expansion of a linear factorization of a monomial in terms
of the symmetric polynomials in (3.1.6): for a sequence of real numbers
{t1, . . . , tn} and some r ∈ R and n ∈ N,

n∏
j=1

(r − tj) =
n∑
j=0

(−1)jrn−jσj(t1, . . . , tn). (3.3.4)

The following lemma originally appeared in [9, Theorem 2.2], where the
result was proved only for an unbounded interval. Our lemma below is a
non-trivial extension that include upper bounds on the spline coe�cients
near the boundaries x = a and x = b.

Lemma 3.3.2 (Upper bound on spline coe�cients) For an integerm ≥
3, let x and y be the sequences de�ned in (3.1.2) and (3.2.1), respectively.
Suppose that 

γE := sup
n=0,...,N+m−1

|xn − xn−m+1|;

δE := min

{
1, inf

n=0,...,N
|xn+1 − xn|

}
,

(3.3.5)

and 
γH := sup

n=0,...,N+m−1
|xn − yn−m+1|;

δH := min

{
1, inf

n=0,...,N−1
|yn+1 − yn|

}
,

(3.3.6)

with the de�nition that y−m+1 = · · · = y0. Then

|aEm,i,j| ≤
1

(m− 2)!

(
γE

δE

)m−1

(3.3.7)
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and

|aHm,i,j| ≤
1

(m− 2)!

(
γH

δH

)m−1

, (3.3.8)

for i = −m+ 1, . . . , N +m− 1, j = 0, . . . ,m− 1.

Proof:

We provide the proof of (3.3.8); the proof of (3.3.7) is similar.

First, let i ∈ {m− 1, . . . , N + 1−m} and j ∈ {0, . . . ,m− 1} be �xed.
From a standard result in linear algebra, we have an explicit formulation of
the Vandermonde determinant D(yi+j−m+1, . . . , yi+j), namely

D(yi+j−m+1, . . . , yi+j) =
∏

i+j−m+1≤k<`≤i+j

(y` − yk) (3.3.9)

(see, for example, [32]). Therefore,

D(yi+j−m+1, . . . , yi−1, ξx,m,i+j−m+1, yi+1, . . . , yi+j)

=
∏

i+j−m+1≤k<`≤i+j
k, 6̀=i

(y` − yk)×

i−1∏
k=i+j−m+1

(ξx,m,i+j−m+1 − yk)
i+j∏

k=i+1

(yk − ξx,m,i+j−m+1)

=
∏

i+j−m+1≤k<`≤i+j
k, 6̀=i

(y` − yk)
m−1∏
k=0

k 6=m−j−1

(−1)j (ξx,m,i+j−m+1 − yk+i+j−m+1)

= (−1)j
∏

i+j−m+1≤k<`≤i+j
k, 6̀=i

(y` − yk)×

m−1∑
n=0

(−1)nξm−1−n
x (i+ j −m+ 1)σn(yi+j−m+1, . . . , yi−1, yi+1, . . . , yi+j)

= (−1)j
∏

i+j−m+1≤k<`≤i+j
k, 6̀=i

(y` − yk)×

m−1∑
n=0

(−1)n
σm−1−n(xi+j−m+2, . . . , xi+j)(

m−1
n

) σn(yi+j−m+1, . . . , yi−1, yi+1, . . . , yi+j)
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= (−1)j
∏

i+j−m+1≤k<`≤i+j
k, 6̀=i

(y` − yk)×

1

(m− 1)!

 ∑
i+j−m+2≤ti+j−m+1,...,ti−1,ti+1,...,ti+j≤i+j

i+j∏
n=i+j−m+1

n6=i

(xtn − yn)

,
(3.3.10)

from the de�nition (3.1.4)-(3.1.5), together with (3.3.4) and (3.3.3) in Lemma
3.3.1. It therefore follows from the de�nition of aHm,i,j in (3.2.5), as well as
(3.3.9)-(3.3.10), that

|aHm,i,j| ≤
1

(m− 1)!

i+j∏
k=i+j−m+1

k 6=i

|yi − yk|−1×

∑
i+j−m+2≤ti+j−m+1,...,ti−1,ti+1,...,ti+j≤i+j

i+j∏
n=i+j−m+1

n6=i

|xtn − yn|

≤ 1

(m− 2)!

(
γH

δH

)m−1

.

Next, we prove (3.3.8) for the spline coe�cients near the left hand side
boundary x = a; the proof for the spline coe�cients near the right hand
side boundary is similar.

Let i ∈ {1, . . . ,m− 2} and j ∈ {0, . . . ,m− 2− i} be �xed. An explicit
formulation of the con�uent Vandermonde determinant
DC(y0, y

(1)
0 , . . . , y

(m−1−j−i)
0 , y1, . . . , yi+j) is given in [32, 43], namely

DC(y0, y
(1)
0 , . . . , y

(m−1−j−i)
0 , y1, . . . , yi+j) =

i+j∏
`=1

(y`−y0)m−j−i
∏

1≤k<`≤i+j

(y`−yk).

(3.3.11)
Therefore, with y−m+1 = · · · = y0, we have

DC(y0, y
(1)
0 , . . . , y

(m−1−j−i)
0 , y1, . . . , yi−1, ξx,m,i+j−m+1, yi+1, . . . , yi+j)
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=

i+j∏
`=1
6̀=i

(y` − y0)m−j−i
∏

1≤k<`≤i+j
k, 6̀=i

(y` − yk)×

(ξx,m,i+j−m+1 − y0)m−j−i
i−1∏
k=1

(ξx,m,i+j−m+1 − yk)
i+j∏

k=i+1

(yk − ξx,m,i+j−m+1)

=

i+j∏
`=1
6̀=i

(y` − y0)m−j−i
∏

1≤k<`≤i+j
k, 6̀=i

(y` − yk)
i+j∏

k=i+j−m+1
k 6=i

(−1)j (ξx,m,i+j−m+1 − yk)

= (−1)j
i+j∏
`=1
6̀=i

(y` − y0)m−j−i
∏

1≤k<`≤i+j
k, 6̀=i

(y` − yk)×

m−1∏
k=0

k 6=m−1−j

(ξx,m,i+j−m+1 − yk+i+j−m+1)

= (−1)j
i+j∏
`=1
6̀=i

(y` − y0)m−j−i
∏

1≤k<`≤i+j
k, 6̀=i

(y` − yk)×

m−1∑
n=0

(−1)nξm−1−n
x (i+ j −m+ 1)σn(yi+j−m+1, . . . , yi−1, yi+1, . . . , yi+j)

= (−1)j
i+j∏
`=1
6̀=i

(y` − y0)m−j−i
∏

1≤k<`≤i+j
k, 6̀=i

(y` − yk)×

m−1∑
n=0

(−1)n
σm−1−n(xi+j−m+2, . . . , xi+j)(

m−1
n

) σn(yi+j−m+1, . . . , yi−1, yi+1, . . . , yi+j)

= (−1)j
i+j∏
`=1
6̀=i

(y` − y0)m−j−i
∏

1≤k<`≤i+j
k, 6̀=i

(y` − yk)×

1

(m− 1)!

 ∑
i+j−m+2≤ti+j−m+1,...,ti−1,ti+1,...,ti+j≤i+j

i+j∏
n=i+j−m+1

n6=i

(xtn − yn)

,
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(3.3.12)

from the de�nition (3.1.4)-(3.1.5), together with (3.3.4) and (3.3.3) in Lemma
3.3.1. It therefore follows from the de�nition of aHm,i,j in (3.2.6), as well as
(3.3.11)-(3.3.12), that

|aHm,i,j| ≤
1

(m− 1)!
|yi − y0|−(m−j−i)

i+j∏
k=1
k 6=i

|yi − yk|−1×

∑
i+j−m+2≤ti+j−m+1,...,ti−1,ti+1,...,ti+j≤i+j

i+j∏
n=i+j−m+1

n6=i

|xtn − yn|

≤ 1

(m− 2)!

(
γH

δH

)m−1

.

Lastly, let i = 0, j ∈ {0, . . . ,m− 2} or i = 0, ` ∈ {1, . . . ,m− 1} , j ∈
{0, . . . ,m− 1− `} be �xed. Then, with the de�nition y−m+1 = · · · = y0,
we have, from (3.3.11) with i = 0,

DC(y0, y
(1)
0 , . . . , y

(`−1)
0 , ξx,m,j−m+1, y

(`+1)
0 , . . . , y

(m−1−j)
0 , y1, . . . , yj)

=

j∏
s=1

(ys − y0)m−j−1
∏

1≤k<s≤j

(ys − yk)×

(ξx,m,j−m+1 − y0)m−j−1
j∏

k=1

(yk − ξx,m,j−m+1)

=

j∏
s=1

(ys − y0)m−j−1
∏

1≤k<s≤j

(ys − yk)
j∏

k=j−m+2

(−1)j (ξx,m,j−m+1 − yk)

= (−1)j
j∏
s=1

(ys − y0)m−j−1
∏

1≤k<s≤j

(ys − yk)
m−2∏
k=0

(ξx,m,j−m+1 − yk+j−m+2)

= (−1)j
j∏
s=1

(ys − y0)m−j−1
∏

1≤k<s≤j

(ys − yk)×

m−1∑
n=0

(−1)nξm−1−n
x (j −m+ 1)σn(yj−m+2, . . . , yj)
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= (−1)j
j∏
s=1

(ys − y0)m−j−1
∏

1≤k<s≤j

(ys − yk)×

m−1∑
n=0

(−1)n
σm−1−n(xj−m+2, . . . , xj)(

m−1
n

) σn(yj−m+2, . . . , yj)

= (−1)j
j∏
s=1

(ys − y0)m−j−1
∏

1≤k<s≤j

(ys − yk)×

1

(m− 1)!

 ∑
j−m+2≤tj−m+2,...,tj≤j

j∏
n=j−m+2

(xtn − yn)

,
(3.3.13)

from (3.1.4)-(3.1.5), and (3.3.4) and (3.3.3) in Lemma 3.3.1. It therefore
follows from the de�nition of aHm,i,j in (3.2.6)-(3.2.7), as well as (3.3.13),
that

|aHm,i,j| ≤
1

(m− 1)!

j∏
s=1

|ys − y0|−1
∑

j−m+2≤tj−m+2,...,tj≤j

j∏
n=j−m+2

|xtn − yn|

≤ 1

(m− 2)!

(
γH

δH

)m−1

.

�

From Lemma 3.3.2, and the fact that the B-splines
{Nx,m,j : j = −m+ 1, . . . , N} provide a partition of unity, the result on
the upper bound on the spline molecules ME

m,i and M
H
m,i follows easily:

Theorem 3.3.1 (Upper bound on spline molecules) For an integerm ≥
3, let ME

m,i and M
H
m,i, i = −m + 1, . . . , N + m− 1, be the spline molecules

de�ned in (3.1.9) and (3.2.4), respectively. Then

|ME
m,i(x)| ≤ 1

(m− 2)!

(
γE

δE

)m−1

(3.3.14)

and

|MH
m,i(x)| ≤ 1

(m− 2)!

(
γH

δH

)m−1

, (3.3.15)
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for all i = −m+1, . . . , N+m−1, and x ∈ [a, b], where the constants γE, δE

and γH , δH are de�ned in (3.3.5) and (3.3.6), respectively.

Proof:

We provide the proof of (3.3.15); the proof of (3.3.14) is similar.

Using the spline molecule de�nition (3.2.4) and (3.3.8) in Lemma 3.3.2,
and the properties (2.3.10)-(2.3.14) in Theorem 2.3.2, we have, for i =
−m+ 1, . . . , N +m− 1,

|MH
m,i(x)| ≤

m−1∑
j=0

|aHm,i,jNx,m,i+j−m+1(x)|

≤ 1

(m− 2)!

(
γH

δH

)m−1 m−1∑
j=0

Nx,m,i+j−m+1(x)

=
1

(m− 2)!

(
γH

δH

)m−1

.

�

We are now ready to provide error estimates for the quasi-interpolation
operators QEm and QHm. In the following, || · ||∞,[xi,xi+1] denotes the uniform
(or supremum) norm on the interval [xi, xi+1]; that is,

||g||∞,[xi,xi+1] = sup {|g(x)| : x ∈ [xi, xi+1]} .

Theorem 3.3.2 (Error of quasi-interpolation) For a function f ∈ Cm[a, b],
let QEm and QHm be the quasi-interpolation operators de�ned in De�nitions
3.1.1 and 3.2.1, respectively. De�ne

ε := sup
n=0,...,N

|xn+1 − xn|, (3.3.16)

and let γE, δE and γH , δH be de�ned by (3.3.5) and (3.3.6), respectively.
Then the supremum norm approximation error of quasi-interpolation is
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given by

||f −QEm||∞,[xi,xi+1] ≤


AEm||f (m)||∞,[xi,xi+1]R

E
m, i = 0;

BE
m||f (m)||∞,[xi,xi+1]S

E
m, i = 1, . . . , N −m+ 2;

CE
m||f (m)||∞,[xi,xi+1]T

E
m , i = N −m+ 3, . . . , N,

(3.3.17)
where AEm, B

E
m and CE

m are constants independent of ε, γE and δE, and
RE
m := εm + εm

(
γE

δE

)m−1

+ ε
(
γE

δE

)m−1

;

SEm := εm + εm
(
γE

δE

)m−1

;

TEm := εm + εm
(
γE

δE

)m−1

+ ε
(
γE

δE

)m−1 (
1−εm−2

1−ε

)
,

whereas

||f −QHm||∞,[xi,xi+1] ≤


AHm||f (m)||∞,[xi,xi+1]R

H
m, i = 0;

BH
m ||f (m)||∞,[xi,xi+1]S

H
m , i = 1, . . . , N −m+ 1;

CH
m ||f (m)||∞,[xi,xi+1]T

H
m , i = N −m+ 2, . . . , N,

(3.3.18)
where AHm, B

H
m and CH

m are constants independent of ε, γH and δH , and
RH
m := εm + εm

(
γH

δH

)m−1

+ ε
(
γH

δH

)m−1

;

SHm := εm + εm
(
γH

δH

)m−1

;

THm := εm + εm
(
γH

δH

)m−1

+ ε
(
γH

δH

)m−1 (
1−εm−1

1−ε

)
.

Proof:

We proceed to prove (3.3.18); the proof of (3.3.17) is similar. In the
following, we suppress the superscript H to simplify notation.

Let i ∈ {0, . . . , N} be �xed, and let x ∈ [xi, xi+1]. Then, with the
de�nition

h(x, y) := (x− y)m−1
+ , (3.3.19)
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the Taylor expansion of f at xi is given by

f(x) =
m−1∑
j=0

f (j)(xi)

j!
(x− xi)j +

∫ xi+1

xi

f (m)(y)

(m− 1)!
h(x, y)dy,

whereas the Taylor expansion of Qmf is given by

(Qmf)(x) =
m−1∑
j=0

f (j)(xi)

j!
(x− xi)j +

∫ xi+1

xi

f (m)(y)

(m− 1)!
(Qmh(·, y))(x)dy,

since the quasi-interpolation operator Qm preserves polynomials in πm−1.
It therefore follows that

f(x)− (Qmf)(x) =

∫ xi+1

xi

f (m)(y)

(m− 1)!
[h(x, y)− (Qmh(·, y))(x)] dy. (3.3.20)

The rest of the proof is divided into three parts.

Proof of second inequality in (3.3.18):

We �rst derive the second inequality in (3.3.18). To this end, let i ∈
{m− 1, . . . , N −m+ 1} (with x ∈ [xi, xi+1]). In the following, we suppress
the variable of integration y, so that h(x, y) = h(x).

By using the de�nition (3.2.3) of Qm and keeping in mind the support
conditions (3.2.10) of the spline molecules constituting Qm, it follows that

h(x)− (Qmh)(x) = h(x)−
i+m−1∑
j=i+1−m

h(yj)Mm,j(x). (3.3.21)

Next, we observe that

h(yj) = (yj − y)m−1
+ = 0, y ≥ yj,

from the de�nition of h in (3.3.19), so that, since y ∈ [xi, xi+1] and xj <
yj < xj+1 for all j = 1, . . . , N − 1 (from (3.2.1)),

h(yj) = 0, j ≤ i− 1. (3.3.22)
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Therefore, with ε de�ned in (3.3.16) and the upper bound on the spline
molecules Mm,j given in (3.3.15) in Theorem 3.3.1, (3.3.21) becomes

|h(x)− (Qmh)(x)|

≤ |h(x)|+ 1

(m− 2)!

(γ
δ

)m−1
i+m−1∑
j=i

|h(yj)|

≤ εm−1 +
1

(m− 2)!

(γ
δ

)m−1 (
εm−1 + 2εm−1 + · · ·+mεm−1

)
= εm−1 +

εm−1

(m− 2)!

(γ
δ

)m−1 m(m+ 1)

2
.

Therefore, (3.3.20) becomes

|f(x)− (Qmf)(x)|

≤
∫ xi+1

xi

f (m)(y)

(m− 1)!

[
εm−1 +

m(m+ 1)εm−1

2(m− 2)!

(γ
δ

)m−1
]

dy

≤ ||f (m)||∞,[xi,xi+1]

[
εm

(m− 1)!
+

m(m+ 1)εm

2(m− 1)!(m− 2)!

(γ
δ

)m−1
]
,

from which our result follows.

Next, for a �xed i ∈ {1, . . . ,m− 2}, let x ∈ [xi, xi+1]. In this case, from
the de�nition (3.2.3) and the support properties (3.2.10), we have

h(x)− (Qmh)(x) = h(x)−
−1∑

j=i+1−m

h(−j)(a)Mm,j(x)−
i+m−1∑
j=0

h(yj)Mm,j(x).

Now, we deduce from the de�nition of h in (3.3.19) that

h(n)(x) = (m− 1)(m− 2) · · · (m− n)(x− y)m−1−n
+ , n = 0, . . . ,m− 1,

(3.3.23)
so that

h(n)(a) =

{
(m− 1)!, n = m− 1;

0, n = 0, . . . ,m− 2.
(3.3.24)

Therefore, using also the upper bound (3.3.15) and (3.3.22), we have

|h(x)− (Qmh)(x)|
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≤ |h(x)|+ 1

(m− 2)!

(γ
δ

)m−1
m−i−1∑
j=1

|h(j)(a)|+ 1

(m− 2)!

(γ
δ

)m−1
i+m−1∑
j=i

|h(yj)|

≤ εm−1 +
1

(m− 2)!

(γ
δ

)m−1 (
εm−1 + 2εm−1 + · · ·+mεm−1

)
= εm−1 +

εm−1

(m− 2)!

(γ
δ

)m−1 m(m+ 1)

2
.

Therefore, (3.3.20) yields

|f(x)− (Qmf)(x)|

≤
∫ xi+1

xi

f (m)(y)

(m− 1)!

[
εm−1 +

m(m+ 1)εm−1

2(m− 2)!

(γ
δ

)m−1
]

dy

≤ ||f (m)||∞,[xi,xi+1]

[
εm

(m− 1)!
+

m(m+ 1)εm

2(m− 1)!(m− 2)!

(γ
δ

)m−1
]
,

producing the same result as before.

Proof of �rst inequality in (3.3.18):

Next, we proceed to show the �rst inequality in (3.3.18). To this end,
let x ∈ [x0, x1]. In this case, we have

h(x)− (Qmh)(x) = h(x)−
−1∑

j=1−m

h(−j)(a)Mm,j(x)−
m−1∑
j=0

h(yj)Mm,j(x),

from (3.2.3) and (3.2.10). Keeping in mind that x0 = y0 < x1 < y1 <
x2 < · · · from (3.2.1), we have, using also (3.3.19), (3.3.22), (3.3.24) and
the upper bound (3.3.15),

|h(x)− (Qmh)(x)|

≤ |h(x)|+ 1

(m− 2)!

(γ
δ

)m−1
m−1∑
j=1

|h(j)(a)|+ 1

(m− 2)!

(γ
δ

)m−1
m−1∑
j=1

|h(yj)|

≤ εm−1 +
1

(m− 2)!

(γ
δ

)m−1

(m− 1)!

+
1

(m− 2)!

(γ
δ

)m−1 (
2εm−1 + 3εm−1 + · · ·+mεm−1

)
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≤ εm−1 +
(m− 1)!

(m− 2)!

(γ
δ

)m−1

+
εm−1

(m− 2)!

(γ
δ

)m−1 m(m+ 1)

2
.

Therefore, (3.3.20) yields

|f(x)− (Qmf)(x)|

≤
∫ xi+1

xi

f (m)(y)

(m− 1)!

[
εm−1 +

m(m+ 1)εm−1

2(m− 2)!

(γ
δ

)m−1

+
(m− 1)!

(m− 2)!

(γ
δ

)m−1
]

dy

≤ ||f (m)||∞,[xi,xi+1]

[
εm

(m− 1)!
+

m(m+ 1)εm

2(m− 1)!(m− 2)!

(γ
δ

)m−1

+
ε

(m− 2)!

(γ
δ

)m−1
]
,

from which our result follows.

Proof of third inequality in (3.3.18):

Lastly, we let i ∈ {N −m+ 2, . . . , N} be �xed, and let x ∈ [xi, xi+1].
This time, we have

h(x)− (Qmh)(x) = h(x)−
N∑

j=i+1−m

h(yj)Mm,j(x)−
i+m−1∑
j=N+1

h(j−N)(b)Mm,j(x),

from the de�nition (3.2.3) and the support properties (3.2.10). Using
(3.3.22) and the upper bound (3.3.15), we have

|h(x)− (Qmh)(x)|

≤ |h(x)|+ 1

(m− 2)!

(γ
δ

)m−1
N∑
j=i

|h(yj)|+
1

(m− 2)!

(γ
δ

)m−1
i+m−1−N∑

j=1

|h(j)(b)|.

(3.3.25)

Now, from (3.3.19) and (3.3.23), we have

i+m−1−N∑
j=1

|h(j)(b)|

=
i+m−1−N∑

j=1

|(m− 1)(m− 2) · · · (m− j)(b− y)m−1−j
+ |
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≤ (N + 1− i)
[
(m− 1)εm−2 + (m− 1)(m− 2)εm−3 + · · ·

+(m− 1)(m− 2) · · · (m− (i+m− 1−N))εm−1−(i+m−1−N)
]

≤ (m− 1)
m−1∑
k=1

[
k∏
`=1

(m− `)

]
εm−1−k

≤ (m− 1)(m− 1)!
m−2∑
k=0

εk = (m− 1)(m− 1)!
1− εm−1

1− ε
. (3.3.26)

Therefore, (3.3.25) becomes

|h(x)− (Qmh)(x)|

≤ εm−1 +
1

(m− 2)!

(γ
δ

)m−1 (
εm−1 + 2εm−1 + · · ·+ (N + 1− i)εm−1

)
+

1

(m− 2)!

(γ
δ

)m−1

(m− 1)(m− 1)!
1− εm−1

1− ε

≤ εm−1 +
1

(m− 2)!

(γ
δ

)m−1 (
εm−1 + 2εm−1 + · · ·+ (m− 1)εm−1

)
+

(m− 1)(m− 1)!

(m− 2)!

(γ
δ

)m−1 1− εm−1

1− ε

≤ εm−1 +
εm−1

(m− 2)!

(γ
δ

)m−1 m(m− 1)

2
+

(m− 1)(m− 1)!

(m− 2)!

(γ
δ

)m−1 1− εm−1

1− ε
.

Therefore, (3.3.20) becomes

|f(x)− (Qmf)(x)|

≤
∫ xi+1

xi

f (m)(y)

(m− 1)!

[
εm−1 +

m(m− 1)εm−1

2(m− 2)!

(γ
δ

)m−1

+
(m− 1)(m− 1)!

(m− 2)!

(γ
δ

)m−1
(

1− εm−1

1− ε

)]
dy

≤ ||f (m)||∞,[xi,xi+1]

[
εm

(m− 1)!
+

m(m− 1)εm

2(m− 1)!(m− 2)!

(γ
δ

)m−1

+
(m− 1)ε

(m− 2)!

(γ
δ

)m−1
(

1− εm−1

1− ε

)]
,

which completes our proof. �
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Chapter 4

Blending interpolation

Given a real-valued function f and a strictly increasing sequence of sampling
points {yi} ⊆ [a, b], our objective in this chapter is to construct a spline
interpolation operator Pm in terms of the mth order B-splines (de�ned in
(2.3.6) in Chapter 2) such that the following conditions are satis�ed:

(i) Pm is local in the sense that the value of Pmf at any y∗ ∈ [a, b] only
depends on the values of f in a small neighborhood of y∗;

(ii) Pm preserves polynomials of degree ≤ m− 1; that is,

(Pmp)(x) = p(x), p ∈ πm−1, x ∈ [a, b]; (4.0.1)

(iii) Pmf interpolates f at the interpolation points {yi}; that is,

(Pmf)(yi) = f(yi), (4.0.2)

for all i in {yi};

(iv) Pm preserves derivatives of f of order ` (for some `) at a and b, so
that {

(Pmf)(`)(a) = f (`)(a);

(Pmf)(`)(b) = f (`)(b).
(4.0.3)

In (iv), since the derivatives of the function f might not be known in
practice, we approximate the `th derivative of f at a and b by the `th order
divided di�erence of f at a and b, respectively, when applying our method.
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Our idea is to apply the spline quasi-interpolation operator Qm (speci�-
cally, QEm or QHm), developed in Chapter 3, to satisfy properties (i) and (ii).
Then, to satisfy the interpolation conditions (iii) and the Hermite interpo-
lation conditions (iv) above (while preserving local support), we will apply
a local interpolation operator Rm as well, leading to the blending operator
Pm, as introduced in [13], de�ned by

Pm := Rm ⊕Qm, (4.0.4)

where

Rm ⊕Qm := Qm +Rm(Im −Qm) = Qm +Rm −RmQm, (4.0.5)

with Im denoting the identity operator. From this formulation, it becomes
clear that the idea of the blending operation is to �rst apply the local quasi-
interpolation operator Qm to f to ensure desired smoothness and high ap-
proximation order, and then to apply the local interpolation operator Rm

to the error produced by Qm to achieve interpolation at the interpolation
points {yi} and preservation of the `th order derivatives at the boundaries
x = a and x = b. (Note that the operators Qm and Rm are not commuta-
tive.)

In Section 4.1, we develop a local interpolation operator RE
m that will

achieve properties (iii) and (iv) when the knot sequence x is chosen to
coincide with the interpolation point sequence y. Our local interpolation
operator is inspired by a method in [15]. However, we note that, in contrast
to the scheme in [15], our method is de�ned for a bounded interval and
accommodates the Hermite interpolation conditions in (iv).

Similar to our approach in Chapter 3, we also develop a variation on
the local interpolation scheme in Section 4.1 by considering a spline knot
sequence x where each knot xi is de�ned to lie midway between the inter-
polation points yi−1 and yi in y. This gives rise to the local interpolation
operator RH

m, and is described in Section 4.2.

In Section 4.3, we combine the quasi-interpolation operators QEm and
QHm of Chapter 3 with the local interpolation operators RE

m and RH
m, re-

spectively, in the blending operator, de�ned in (4.0.4)-(4.0.5). We also show
in this section that the blending operator preserves the properties of both
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the quasi-interpolation and local interpolation operators.

Lastly, in Section 4.4, we investigate the error bounds for the blending
interpolation operator applied to a general real-valued function f .

4.1 Local interpolation: Scheme E

For m ≥ 3, let y = {y0, . . . , yN+1} in (3.1.1) be a given sequence of (non-
uniform) sampling points in [a, b], and let f be a real-valued function. We
proceed to de�ne the local spline interpolation operatorRE

m, which will facil-
itate the interpolation conditions (iii) and Hermite interpolation conditions
(iv) on p.63. This operator will accompany the spline quasi-interpolation
operator QEm, described in Section 3.1 in Chapter 3, in the formation of the
blending operator Pm in (4.0.4). Therefore, the B-spline knot sequence x is
chosen to coincide with the interpolation point sequence y, and we denote
both by x in this section.

To construct RE
m, we also consider a knot sequence t ⊃ x, which is con-

structed as follows:

� First, let m be even.

With the de�nition
qm :=

m

2
, (4.1.1)

we insert qm− 1 equally spaced knots in between every two (interior)
knots of x, so that

tm+(j−1)qm = xj, j = 1, . . . , N.

Furthermore, to facilitate the Hermite interpolation conditions at the
boundaries x = a and x = b, we also insert m−1 evenly spaced knots
t1, . . . , tm−1 in the interval (x0, x1), with t0 := x0, as well as m − 2
evenly spaced knots tm+(N−1)qm+1, . . . , t2m+(N−1)qm−2 in the interval
(xN , xN+1), with t2m+(N−1)qm−1 := xN+1. The knot sequence t is also
extended with stacked knots in the same way as x, with tj = xj, j =
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−1, . . . ,−m+ 1, and t2m+(N−1)qm−1+j = xN+1+j, j = 1, . . . ,m− 1.

With this setup, we de�ne the knot sequences t−k, k = 0, . . . ,m− 1,
and tN+1+k, k = 0, . . . ,m− 2, by

t−k =

t−k, . . . , t0, . . . , tm︸ ︷︷ ︸
m+ 1− k knots

 , k = 0, . . . ,m− 1;

tN+1+k =

tm+(N−1)qm , . . . , t2m+(N−1)qm−1︸ ︷︷ ︸
m− k knots

, . . . , t2m+(N−1)qm−1+k+1

 ,

k = 0, . . . ,m− 2,
(4.1.2)

where the m+1−k knots in [t0, tm] are chosen to be evenly spread out
among t0, . . . , tm; and the m− k knots in [tm+(N−1)qm , t2m+(N−1)qm−1]
are chosen to be evenly spread out among tm+(N−1)qm , . . . , t2m+(N−1)qm−1.

Lastly, the knot sequence t1 is de�ned by

t1 = {tm−qm , . . . , tm+qm} .

We note that, with the above de�nitions, each tk, k = −m+1, . . . , 1; N+
1, . . . , N +m− 1, contain exactly m+ 1 knots.

� Second, suppose m is odd.

With the de�nition

rm :=
m+ 1

2
, (4.1.3)

we insert rm − 1 equally spaced knots in (xj, xj+1) if j is even, and
rm − 2 equally spaced knots in (xj, xj+1) if j is odd, so that

tm+(j−1)rm−bj/2c = xj, j = 1, . . . , N.

Furthermore, to facilitate the Hermite interpolation conditions at the
boundaries x = a and x = b, we also insert m − 1 evenly spaced
knots t1, . . . , tm−1 in the interval (x0, x1), with t0 := x0, as well as
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m−2 evenly spaced knots tm+(N−1)rm−bN/2c+1, . . . , t2m+(N−1)rm−bN/2c−2

in the interval (xN , xN+1), with t2m+(N−1)rm−bN/2c−1 := xN+1. The
knot sequence t is also extended with stacked knots in the same way
as x, with tj = xj, j = −1, . . . ,−m+ 1, and t2m+(N−1)rm−bN/2c−1+j =
xN+1+j, j = 1, . . . ,m− 1.

With this setup, we de�ne the knot sequences t−k, k = 0, . . . ,m− 1,
and tN+1+k, k = 0, . . . ,m− 2, by

t−k =

t−k, . . . , t0, . . . , tm︸ ︷︷ ︸
m+ 1− k knots

 , k = 0, . . . ,m− 1;

tN+1+k =

tm+(N−1)rm−bN/2c, . . . , t2m+(N−1)rm−bN/2c−1︸ ︷︷ ︸
m− k knots

,

. . . , t2m+(N−1)rm−bN/2c−1+k+1

 , k = 0, . . . ,m− 2,

(4.1.4)
where the m + 1 − k knots in [t0, tm] are chosen to be evenly spread
out among t0, . . . , tm; and the m− k knots in
[tm+(N−1)rm−bN/2c, t2m+(N−1)rm−bN/2c−1] are chosen to be evenly spread
out among tm+(N−1)rm−bN/2c, . . . , t2m+(N−1)rm−bN/2c−1.

Lastly, the knot sequence t1 is de�ned by

t1 = {tm−rm , . . . , tm+rm−1} .

Again, we note that with the above de�nitions, each tk, k = −m +
1, . . . , 1; N + 1, . . . , N +m− 1, contain exactly m+ 1 knots.

De�nition 4.1.1 (Local interpolation operator) With the de�nitions
(4.1.1) and (4.1.3), the local interpolation operator RE

m is de�ned by

(RE
mf)(x) :=

m−1∑
`=1

f (`)(a)LEm,−`(x)+
N+1∑
i=0

f(xi)L
E
m,i(x)+

m−2∑
r=1

f (r)(b)LEm,N+1+r(x),

(4.1.5)
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in terms of the spline molecules

LEm,−`(x) :=
m−1∑
k=0

bEm,−`,kNt−m+1+k,m(x), ` = 0, . . . ,m− 1;

LEm,1(x) :=
Nt1,m(x)

Nt1,m(x1)
;

LEm,i(x) :=
Nt,m,m+(i−2)qm(x)

Nt,m,m+(i−2)qm(xi)
, i = 2, . . . , N, if m is even;

LEm,i(x) :=
Nt,m,m+(i−2)rm−b(i−1)/2c(x)

Nt,m,m+(i−2)rm−b(i−1)/2c(xi)
, i = 2, . . . , N, if m is odd;

LEm,N+1+r(x) :=
m−2∑
k=0

bEm,N+1+r,kNtN+1+k,m(x), r = 0, . . . ,m− 2,

(4.1.6)
with the coe�cients bEm,−`,k, k, ` = 0, . . . ,m − 1, and bEm,N+1+r,k, k, r =
0, . . . ,m− 2, determined by the conditions{

L
E(n)
m,−`(a) = δ`−n, `, n = 0, . . . ,m− 1;

L
E(n)
m,N+1+r(b) = δr−n, r, n = 0, . . . ,m− 2.

(4.1.7)

The above molecules are compactly supported, with

suppLEm,−` = [x0, x1], ` = 0, . . . ,m− 1;

suppLEm,1 = [tm−qm , x2], if m is even;

suppLEm,1 = [tm−rm , x2], if m is odd;

suppLEm,i = [xi−1, xi+1], i = 2, . . . , N ;

suppLEm,N+1+r = [xN , xN+1], r = 0, . . . ,m− 2.

(4.1.8)

From the construction in (4.1.6), it is clear that

LEm,i(xj) = δi−j, i = 1, . . . , N ; j = 0, . . . , N + 1. (4.1.9)

By using also (4.1.7), the following result follows immediately.

Theorem 4.1.1 (Interpolation conditions) The local interpolation op-
erator RE

m, formulated in (4.1.5) of De�nition 4.1.1, satis�es the Hermite
interpolation conditions

(RE
mf)(xi) = f(xi), i = 0, . . . , N + 1,
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and {
(RE

mf)(n)(a) = f (n)(a), n = 1, . . . ,m− 1;

(RE
mf)(n)(b) = f (n)(b), n = 1, . . . ,m− 2.

4.2 Local interpolation: Scheme H

For m ≥ 3, let y = {y0, . . . , yN} in (3.2.1) be a given sequence of (non-
uniform) sampling points in [a, b], and let f be a real-valued function. In
this section, we de�ne the local spline interpolation operator RH

m to satisfy
the interpolation conditions (iii) and Hermite interpolation conditions (iv)
on p.63. This operator will accompany the spline quasi-interpolation oper-
ator QHm, described in Section 3.2 in Chapter 3, in the construction of the
blending operator Pm in (4.0.4). We therefore construct the spline knots to
lie midway between consecutive sampling points, as in (3.2.2) in Section 3.2.

To construct RH
m, we again consider a knot sequence t ⊃ y, which is

constructed following a similar approach as in Section 4.1:

� First, suppose m is even.

With qm de�ned in (4.1.1), that is,

qm :=
m

2
,

we insert qm− 1 equally spaced knots in between every two (interior)
knots of y, so that

tm+(j−1)qm = yj, j = 1, . . . , N − 1.

Furthermore, to facilitate the Hermite interpolation conditions at the
boundaries x = a and x = b, we also insert m − 1 evenly spaced
knots t1, . . . , tm−1 in the interval (y0, y1), with t0 := x0, as well as
m − 1 evenly spaced knots tm+(N−2)qm+1, . . . , t2m+(N−2)qm−1 in the
interval (yN−1, yN), with t2m+(N−2)qm := yN . The knot sequence t
is also extended with stacked knots, with t−m+1 = · · · = t0 and
t2m+(N−2)qm = · · · = t3m+(N−2)qm−1.
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With this setup, we de�ne the knot sequences t−k, k = 0, . . . ,m− 1,
and tN+k, k = 0, . . . ,m− 1, by

t−k =

t−k, . . . , t0, . . . , tm︸ ︷︷ ︸
m+ 1− k knots

 , k = 0, . . . ,m− 1;

tN+k =

tm+(N−2)qm , . . . , t2m+(N−2)qm︸ ︷︷ ︸
m+ 1− k knots

, . . . , t2m+(N−2)qm+k

 ,

k = 0, . . . ,m− 1,
(4.2.1)

where the m+1−k knots in [t0, tm] are chosen to be evenly spread out
among t0, . . . , tm; and the m+1−k knots in [tm+(N−2)qm , t2m+(N−2)qm ]
are chosen to be evenly spread out in among tm+(N−2)qm , . . . , t2m+(N−2)qm .

Lastly, the knot sequences t1 and tN−1 are de�ned by

t1 = {tm−qm , . . . , tm+qm} ;

tN−1 =
{
tm+(N−3)qm , . . . , tm+(N−1)qm

}
.

We note that, with the above de�nitions, each tk, k = −m+1, . . . , 1; N−
1, . . . , N +m− 1, contain exactly m+ 1 knots.

� Second, let m be odd.

With rm de�ned in (4.1.3), that is,

rm :=
m+ 1

2
,

we insert rm − 1 equally spaced knots in (yj, yj+1) if j is even, and
rm − 2 equally spaced knots in (yj, yj+1) if j is odd, so that

tm+(j−1)rm−bj/2c = yj, j = 1, . . . , N − 1.

Furthermore, to facilitate the Hermite interpolation conditions at the
boundaries x = a and x = b, we also insert m−1 evenly spaced knots
t1, . . . , tm−1 in the interval (y0, y1), with t0 := y0, as well as m − 1
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evenly spaced knots tm+(N−2)rm−b(N−1)/2c+1, . . . , t2m+(N−2)rm−b(N−1)/2c−1

in the interval (yN , yN+1), with t2m+(N−2)rm−b(N−1)/2c := yN . The knot
sequence t is also extended with stacked knots, with t−m+1 = · · · = t0
and t2m+(N−2)rm−b(N−1)/2c = · · · = t3m+(N−2)rm−b(N−1)/2c−1.

With this setup, we de�ne the knot sequences t−k, k = 0, . . . ,m− 1,
and tN+k, k = 0, . . . ,m− 1, by

t−k =

t−k, . . . , t0, . . . , tm︸ ︷︷ ︸
m+ 1− k knots

 , k = 0, . . . ,m− 1;

tN+k =

tm+(N−2)rm−b(N−1)/2c, . . . , t2m+(N−2)rm−b(N−1)/2c︸ ︷︷ ︸
m+ 1− k knots

,

. . . , t2m+(N−2)rm−b(N−1)/2c+k

 , k = 0, . . . ,m− 1,

(4.2.2)
where the m + 1 − k knots in [t0, tm] are chosen to be evenly spread
out among t0, . . . , tm; and the m+ 1− k knots in
[tm+(N−2)rm−b(N−1)/2c, t2m+(N−2)rm−b(N−1)/2c] are chosen to be evenly
spread out among tm+(N−2)rm−b(N−1)/2c, . . . , t2m+(N−2)rm−b(N−1)/2c.

Lastly, the knot sequences t1 and tN−1 are de�ned by

t1 = {tm−rm , . . . , tm+rm−1} ,

and
tN−1 =

{
tm+(N−3)rm−b(N−2)/2c, . . . , tm+(N−1)rm−b(N−1)/2c−1

}
,

if N is even;

tN−1 =
{
tm+(N−3)rm−b(N−2)/2c, . . . , tm+(N−1)rm−b(N−1)/2c

}
,

if N is odd.

Again, we note that with the above de�nitions, each tk, k = −m +
1, . . . , 1; N − 1, . . . , N +m− 1, contain exactly m+ 1 knots.
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De�nition 4.2.1 (Local interpolation operator) With the de�nitions
(4.1.1) and (4.1.3), the local interpolation operator RH

m is de�ned by

(RH
mf)(x) :=

m−1∑
`=1

f (`)(a)LHm,−`(x) +
N∑
i=0

f(yi)L
H
m,i(x) +

m−1∑
r=1

f (r)(b)LHm,N+r(x),

(4.2.3)
in terms of the spline molecules

LHm,−`(x) :=
m−1∑
k=0

bHm,−`,kNt−m+1+k,m(x), ` = 0, . . . ,m− 1;

LHm,1(x) :=
Nt1,m(x)

Nt1,m(y1)
;

LHm,i(x) :=
Nt,m,m+(i−2)qm(x)

Nt,m,m+(i−2)qm(yi)
, i = 2, . . . , N − 2, if m is even;

LHm,i(x) :=
Nt,m,m+(i−2)rm−b(i−1)/2c(x)

Nt,m,m+(i−2)rm−b(i−1)/2c(yi)
, i = 2, . . . , N − 2, if m is odd;

LHm,N−1(x) :=
NtN−1,m

(x)

NtN−1,m
(yN−1)

;

LHm,N+r(x) :=
m−1∑
k=0

bHm,N+r,kNtN+k,m(x), r = 0, . . . ,m− 1,

(4.2.4)
with the coe�cients bHm,−`,k, k, ` = 0, . . . ,m − 1, and bHm,N+r,k, k, r =
0, . . . ,m− 1, determined by the conditions{

L
H(n)
m,−`(a) = δ`−n, `, n = 0, . . . ,m− 1;

L
H(n)
m,N+r(b) = δr−n, r, n = 0, . . . ,m− 1.

(4.2.5)
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The above molecules are compactly supported, with

suppLHm,−` = [y0, y1], ` = 0, . . . ,m− 1;

suppLHm,1 = [tm−qm , y2], if m is even;

suppLHm,1 = [tm−rm , y2], if m is odd;

suppLHm,i = [yi−1, yi+1], i = 2, . . . , N − 2;

suppLHm,N−1 = [yN−2, tm+(N−1)qm ], if m is even;

suppLHm,N−1 = [yN−2, tm+(N−1)rm−b(N−1)/2c−1], if m is odd, N is even;

suppLHm,N−1 = [yN−2, tm+(N−1)rm−b(N−1)/2c], if m is odd, N is odd;

suppLHm,N+r = [yN−1, yN ], r = 0, . . . ,m− 1.
(4.2.6)

From the construction in (4.2.4), it is clear that

LHm,i(yj) = δi−j, i = 1, . . . , N − 1; j = 0, . . . , N. (4.2.7)

By using also (4.2.5), the following result follows immediately.

Theorem 4.2.1 (Interpolation conditions) The local interpolation op-
erator RH

m, formulated in (4.2.3) in De�nition 4.2.1, satis�es the Hermite
interpolation conditions

(RH
mf)(yi) = f(yi), i = 0, . . . , N,

and {
(RH

mf)(n)(a) = f (n)(a), n = 1, . . . ,m− 1;

(RH
mf)(n)(b) = f (n)(b), n = 1, . . . ,m− 1.

4.3 Blending interpolation

With QEm and RE
m formulated in De�nitions 3.1.1 and 4.1.1, respectively,

and QHm and RH
m formulated in De�nitions 3.2.1 and 4.2.1, respectively, we

can now derive the blending operator as in (4.0.4), (4.0.5). More speci�cally,
we have

PEm
= QEm +RE

m −RE
mQEm
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=
m−1∑
`=1

f (`)(a)ME
m,−`(x) +

m−1∑
`=1

[
f (`)(a)− (QEmf)(`)(a)

]
LEm,−`(x)

+
N+1∑
i=0

f(xi)M
E
m,i(x) +

N+1∑
i=0

[
f(xi)− (QEmf)(xi)

]
LEm,i(x)

+
m−2∑
r=1

f (r)(b)ME
m,N+1+r(x) +

m−2∑
r=1

[
f (r)(b)− (QEmf)(r)(b)

]
LEm,N+1+r(x),

(4.3.1)

and

PHm
= QHm +RH

m −RH
mQHm

=
m−1∑
`=1

f (`)(a)MH
m,−`(x) +

m−1∑
`=1

[
f (`)(a)− (QHmf)(`)(a)

]
LHm,−`(x)

+
N∑
i=0

f(yi)M
H
m,i(x) +

N∑
i=0

[
f(yi)− (QHmf)(yi)

]
LHm,i(x)

+
m−1∑
r=1

f (r)(b)MH
m,N+r(x) +

m−1∑
r=1

[
f (r)(b)− (QHmf)(r)(b)

]
LHm,N+r(x).

(4.3.2)

We can then show that PEm and PHm satisfy all four conditions (i)-(iv)
on p.63, as follows:

Theorem 4.3.1 (Blending operator) The blending operators PEm and PHm ,
de�ned by (4.3.1) and (4.3.2), respectively, are local and satisfy the polyno-
mial preservation property of the quasi-interpolation operators QEm and QHm,
respectively, as well as the Hermite interpolation conditions of the local in-
terpolation operators RE

m and RH
m, respectively; that is, PEm and PHm satisfy

(4.0.1)-(4.0.3).

Proof:

We proceed to prove Theorem 4.3.1 for the blending operator PHm ; the
proof for PEm is similar.
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(i) First, from the support properties (3.2.10) and (4.2.6), it is clear that
PHm is local.

(ii) To verify the polynomial preservation property (4.0.1), let p be a poly-
nomial in πm−1. Then, from Theorem 3.2.1,

(PHmp)(x) = (QHmp)(x) + (RH
mp)(x)− (RH

m(QHmp))(x)

= p(x) + (RH
mp)(x)− (RH

mp)(x) = p(x),

for all x ∈ [a, b].

(iii) To show that PHmf interpolates f at yi, i = 0, . . . , N , we may use
Theorem 4.2.1 together with (4.2.3), (4.2.7) and (4.2.5) to deduce
that

(PHmf)(yi) = (QHmf)(yi) + (RH
mf)(yi)− (RH

m(QHmf))(yi)

= (QHmf)(yi) + f(yi)− (QHmf)(yi) = f(yi),

for i = 0, . . . , N , yielding (4.0.2).

(iv) Lastly, we observe that

(RH
m(QHmf))(n)(a) = (QHmf)(n)(a); n = 1, . . . ,m− 1;

(RH
m(QHmf))(n)(b) = (QHmf)(n)(b), n = 1, . . . ,m− 1,

from the construction of RH
m and the spline molecules LHm,i in De�ni-

tion 4.2.1. Therefore, using also Theorem 4.2.1, we have

(PHmf)(n)(a)

= (QHmf)(n)(a) + (RH
mf)(n)(a)− (RH

m(QHmf))(n)(a)

= (QHmf)(n)(a) + f (n)(a)− (QHmf)(n)(a) = f (n)(a),

for n = 1, . . . ,m− 1, and

(PHmf)(n)(b)

= (QHmf)(n)(b) + (RH
mf)(n)(b)− (RH

m(QHmf))(n)(b)

= (QHmf)(n)(b) + f (n)(b)− (QHmf)(n)(b) = f (n)(b),

for n = 1, . . . ,m− 1, so that (4.0.3) follows. �
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4.4 Approximation order

Lastly in this chapter, we provide an error analysis of the blending interpo-
lation operators PEm and PHm .

From the de�nitions of PEm and PHm in (4.3.1) and (4.3.2), respectively,
it is clear that, in order to bound the error of spline interpolation of these
operators, we need upper bounds on the spline moleculesME

m,i, L
E
m,i, M

E(n)
m,i

and MH
m,i, L

H
m,i, M

H(n)
m,i , respectively. The upper bounds on ME

m,i and M
H
m,i

are given in Theorem 3.3.1 of Chapter 3. We now proceed to derive upper
bounds on LEm,i, M

E(n)
m,i and LHm,i, M

H(n)
m,i .

To this end, we start by obtaining an upper bound on the spline coe�-
cients bEm,i,k and b

H
m,i,k in (4.1.6) and (4.2.4), respectively.

Lemma 4.4.1 (Upper bound on spline coe�cients) For an integerm ≥
3, let x and y be the sequences de�ned in (3.1.2) and (3.2.1), respectively,
and let t be the �ne knot sequence de�ned in (4.1.2), (4.1.4), (4.2.1) and
(4.2.2). Suppose that

ρE := max {1, |x1 − x0|, |xN+1 − xN |} (4.4.1)

and
ρH := max {1, |y1 − y0|, |yN − yN−1|} . (4.4.2)

Then

|bEm,i,k| = 1, i = 0, k = 0, . . . ,m− 1;

i = N + 1, k = 0, . . . ,m− 2;

|bEm,i,k| ≤
ρE

m− 1
, i = −m+ 1, . . . ,−1; k = 0, . . . ,m− 1;

i = N + 2, . . . , N +m− 1;

k = 0, . . . ,m− 2,

(4.4.3)

and
|bHm,i,k| = 1, i = 0, N ; k = 0, . . . ,m− 1;

|bHm,i,k| ≤
ρH

m− 1
, i = −m+ 1, . . . ,−1, N + 1, . . . , N +m− 1;

k = 0, . . . ,m− 1.

(4.4.4)
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Proof:

We provide the proof of (4.4.4); the proof of (4.4.3) follows the same
pattern.

Let −` := i ∈ {−m+ 1, . . . , 0} and k ∈ {0, . . . ,m− 1} be �xed (the
proof for the case when i ∈ {N, . . . , N +m− 1}, k ∈ {0, . . . ,m− 1} is
similar). From the linear system in the �rst line of (4.2.4), we may obtain
an explicit expression of bHm,−`,k by using Cramer's rule; that is,

bHm,−`,k =
detSm,`
detSm

,

where

Sm :=


Nt−m+1,m(a) Nt−m+2,m(a) · · · Nt0,m(a)
N ′t−m+1,m

(a) N ′t−m+2,m
(a) · · · N ′t0,m

(a)
...

...
. . .

...

N
(m−1)
t−m+1,m(a) N

(m−1)
t−m+2,m(a) · · · N

(m−1)
t0,m (a)

 ,
and Sm,` is obtained from Sm by replacing its (` + 1)th column with the
column vector

d` := [0, . . . , 0︸ ︷︷ ︸
`

, 1, 0, . . . , 0︸ ︷︷ ︸
m−`−1

]T ;

that is,

Sm,` :=



Nt−m+1,m(a) · · · Nt−m+`,m(a) 0 Nt−m+`+2,m(a) · · · Nt0,m(a)
...

. . .
...

...
...

. . .
...

N
(`−1)
t−m+1,m(a) · · · N

(`−1)
t−m+`,m

(a) 0 N
(`−1)
t−m+`+2,m

(a) · · · N
(`−1)
t0,m (a)

N
(`)
t−m+1,m(a) · · · N

(`)
t−m+`,m

(a) 1 N
(`)
t−m+`+2,m

(a) · · · N
(`)
t0,m(a)

N
(`+1)
t−m+1,m(a) · · · N

(`+1)
t−m+`,m

(a) 0 N
(`+1)
t−m+`+2,m

(a) · · · N
(`+1)
t0,m (a)

...
. . .

...
...

...
. . .

...

N
(m−1)
t−m+1,m(a) · · · N

(m−1)
t−m+`,m

(a) 0 N
(m−1)
t−m+`+2,m

(a) · · · N
(m−1)
t0,m (a)


.

From the construction of the B-splines Nt−m+1,m, . . . , Nt0,m, it is clear that
both Sm and Sm,` are lower triangular matrices, so that their determinants
are simply the products of the elements on the main diagonals. Therefore,
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we have

bHm,−`,k =

∏m−1
j=0
j 6=`

N
(j)
t−m+1+j ,m

(a)∏m−1
j=0 N

(j)
t−m+1+j ,m

(a)
=

1

N
(`)
t−m+1+`,m

(a)
. (4.4.5)

If ` = 0, it follows from the construction of t−m+1 in (4.2.1), (4.2.2), that

Nt−m+1,m(a) = 1,

so that (4.4.5) yields
bHm,0,k = 1.

If ` 6= 0, we deduce, by using the recursive formula for the derivative of a
B-spline in (2.3.15) and the positivity property (2.3.13) in Theorem 2.3.2,
together with the de�nitions of the knot sequences t−m+1, . . . , t0 in (4.2.1)
and (4.2.2), that

N
(`)
t−m+1+`,m

(a)

= N
(`)
t−m+1+`,m,−m+1+`(a)

= (m− 1)

[
1

t` − y0

N
(`−1)
t−m+1+`,m−1,−m+1+`(a)

− 1

y1 − t−m+2+`

N
(`−1)
t−m+1+`,m−1,−m+2+`(a)

]
= (m− 1)(m− 2)

[
1

(t` − y0)

(
1

(t`−1 − y0)
N

(`−2)
t−m+1+`,m−2,−m+1+`(a)

− 1

(y1 − t−m+2+`)
N

(`−2)
t−m+1+`,m−2,−m+2+`(a)

)
− 1

(y1 − t−m+2+`)

(
1

(t` − y0)
N

(`−2)
t−m+1+`,m−2,−m+2+`(a)

− 1

(y1 − t−m+3+`)
N

(`−2)
t−m+1+`,m−2,−m+3+`(a)

)]
= (m− 1)(m− 2)

[
1

(t` − y0)(t`−1 − y0)
N

(`−2)
t−m+1+`,m−2,−m+1+`(a)

−2
1

(t` − y0)(y1 − t−m+2+`)
N

(`−2)
t−m+1+`,m−2,−m+2+`(a)

+
1

(y1 − t−m+2+`)(y1 − t−m+3+`)
N

(`−2)
t−m+1+`,m−2,−m+3+`(a)

]
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= · · ·
= (m− 1)(m− 2) · · · (m− `)×[

1

(t` − y0) · · · (t1 − y0)
Nt−m+1+`,m−`,−m+1+`(a)− · · ·

+
1

(y1 − t−m+1+`+1) · · · (y1 − t−m+1+2`)
Nt−m+1+`,m−`,−m+1+2`(a)

]
.

The only B-spline in this sum with a non-zero value at x = a is
Nt−m+1+`,m−`,−m+1+`(a) = 1; that is, the only non-zero term in the sum
above is the �rst term. Therefore, with ρH de�ned in (4.4.2), we have

|N (`)
t−m+1+`,m

(a)| ≥ (m− 1)(m− 2) · · · (m− `)
(ρH)`

≥ m− 1

ρH
.

Therefore, (4.4.5) yields

bHm,−`,k ≤
ρH

m− 1
.

�
Using Lemma 4.4.1, we may now obtain the following upper bounds on

the spline molecules LEm,i and L
H
m,i, as follows.

Theorem 4.4.1 (Upper bound on spline molecules) For an integerm ≥
3, let LEm,i and L

H
m,i, i = −m + 1, . . . , N + m − 1, be the spline molecules

de�ned in (4.1.6) and (4.2.4), respectively. Then

|LEm,i(x)| ≤



mρE

m− 1
, i = −m+ 1, . . . ,−1;

m, i = 0, N + 1;

1, i = 1, . . . , N ;

ρE, i = N + 2, . . . , N +m− 1,

(4.4.6)

for all x ∈ [a, b], and

|LHm,i(x)| ≤



mρH

m− 1
, i = −m+ 1, . . . ,−1;

m, i = 0, N ;

1, i = 1, . . . , N − 1;

mρH

m− 1
, i = N + 1, . . . , N +m− 1,

(4.4.7)
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for all x ∈ [a, b].

Proof:

We show the proof of (4.4.7); the proof of (4.4.6) is similar.

First, if i ∈ {1, . . . , N − 1}, the result follows immediately from the con-
struction of LHm,i in (4.2.4).

For i = 0 and i = N , we have, from the spline molecule de�nition
(4.2.4), (2.3.10)-(2.3.14) in Theorem 2.3.2, (4.4.4) in Lemma 4.4.1, and the
construction of the knot sequences t−m+1, . . . , t0 in (4.2.1) and (4.2.2),

|LHm,i(x)| ≤
m−1∑
k=0

|bHm,i,kNt−m+1+k,m(x)| ≤ m.

Lastly, for i ∈ {−m+ 1, . . . ,−1} or i ∈ {N + 1, . . . , N +m− 1}, we
have, again using the spline molecule de�nition (4.2.4) and (2.3.10)-(2.3.14)
in Theorem 2.3.2 and (4.4.4) in Lemma 4.4.1 and the construction of the
knot sequences t−m+1, . . . , t0 in (4.2.1)-(4.2.2),

|LHm,i(x)| ≤
m−1∑
k=0

|bHm,i,kNt−m+1+k,m(x)| ≤ mρH

m− 1
.

�

Next, we �nd an upper bound on the spline molecule derivatives M
E(n)
m,i

and M
H(n)
m,i , as follows:

Theorem 4.4.2 (Upper bound on spline molecule derivatives) For
an integer m ≥ 3, let ME

m,i and M
H
m,i, i = −m+1, . . . , N+m−1, be de�ned

by (3.1.9) and (3.2.4), respectively. Then

|ME(n)
m,i (a)| ≤ m

(m− 2)!

(
γE

δE

)m−1(
2

δE

)m−1

,

i = −m+ 1, . . . ,m− 1; n = 1, . . . ,m− 1;

|ME(n)
m,i (b)| ≤ m

(m− 2)!

(
γE

δE

)m−1(
2

δE

)m−2

,

i = N −m+ 3, . . . , N +m− 1; n = 1, . . . ,m− 2;

(4.4.8)
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and 

|MH(n)
m,i (a)| ≤ m

(m− 2)!

(
γH

δH

)m−1(
2

δH

)m−1

,

i = −m+ 1, . . . ,m− 1; n = 1, . . . ,m− 1;

|MH(n)
m,i (b)| ≤ m

(m− 2)!

(
γH

δH

)m−1(
2

δH

)m−1

,

i = N −m+ 2, . . . , N +m− 1; n = 1, . . . ,m− 1.

(4.4.9)

Proof:

We provide the proof of (4.4.9); the proof of (4.4.8) is similar.

Let i ∈ {−m+ 1, . . . ,m− 1} be �xed (the proof for the right hand side
boundary follows similarly). From the spline molecule de�nition (3.2.4),
the upper bound (3.3.8), the recursive formulation of the derivative of a
B-spline in (2.3.15), and the de�nition of δH in (3.3.6), we have, for any
n ∈ {1, . . . ,m− 1},

|MH(n)
m,i (a)| ≤

m−1∑
j=0

|aHm,i,jN
(n)
x,m,i+j−m+1(a)|

≤ 1

(δH)n
1

(m− 2)!

(
γH

δH

)m−1 m−1∑
j=0

n∑
k=0

(
n

k

)
Nx,m−n,i+j−m+1+k(a)

≤ 1

(δH)n
1

(m− 2)!

(
γH

δH

)m−1

m2m−1

≤ m

(m− 2)!

(
γH

δH

)m−1(
2

δH

)m−1

.

�

We are now in a position to analyze the approximation order of the
blending interpolation operators PEm and PHm .

Theorem 4.4.3 (Error of blending interpolation) For a function f ∈
Cm[a, b], let PEm and PHm be the spline interpolation operators de�ned in
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(4.3.1) and (4.3.2), respectively. Let ε and γE, δE and γH , δH and ρE, ρH

be de�ned as in (3.3.16), (3.3.5), (3.3.6), (4.4.1) and (4.4.2), respectively.
Then the supremum norm approximation error of blending spline interpo-
lation is given by

||f−PEm||∞,[xi,xi+1] ≤


AEm||f (m)||∞,[xi,xi+1]U

E
m, i = 0;

BE
m||f (m)||∞,[xi,xi+1]V

E
m , i = 1, . . . , N −m+ 2;

CE
m||f (m)||∞,[xi,xi+1]W

E
m , i = N −m+ 3, . . . , N − 1;

DE
m||f (m)||∞,[xi,xi+1]X

E
m, i = N,

(4.4.10)
where AEm, B

E
m and CE

m are constants independent of ε, γE and δE, and

UE
m := εm + εm

(
γE

δE

)m−1

+ ε
(
γE

δE

)m−1

+ εmρE
(
γE

δE

)m−1 (
2
δE

)m−1

+ερE
(
γE

δE

)m−1 (
2
δE

)m−1
+ ερE;

V E
m := εm + εm

(
γE

δE

)m−1

;

WE
m := εm + εm

(
γE

δE

)m−1

+ ε
(
γE

δE

)m−1 (
1−εm−1

1−ε

)
;

XE
m := εm + εm

(
γE

δE

)m−1

+ ε
(
γE

δE

)m−1 (
1−εm−1

1−ε

)
+ εmρE

(
γE

δE

)m−1 (
2
δE

)m−2

+ερE
(

1−εm−1

1−ε

)
+ ερE

(
γE

δE

)m−1 (
2
δE

)m−2
(

1−εm−1

1−ε

)
,

whereas

||f−PHm ||∞,[xi,xi+1] ≤


AHm||f (m)||∞,[xi,xi+1]U

H
m , i = 0, 1;

BH
m ||f (m)||∞,[xi,xi+1]V

H
m , i = 2, . . . , N −m+ 1;

CH
m ||f (m)||∞,[xi,xi+1]W

H
m , i = N −m+ 2, . . . , N − 2;

DH
m||f (m)||∞,[xi,xi+1]X

H
m , i = N − 1, N,

(4.4.11)
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where AHm, B
H
m and CH

m are constants independent of ε, γH and δH , and

UH
m := εm + εm

(
γH

δH

)m−1

+ ε
(
γH

δH

)m−1

+ εmρH
(
γH

δH

)m−1 (
2
δH

)m−1

+ερH
(
γH

δH

)m−1 (
2
δH

)m−1
+ ερH ;

V H
m := εm + εm

(
γH

δH

)m−1

;

WH
m := εm + εm

(
γH

δH

)m−1

+ ε
(
γH

δH

)m−1 (
1−εm−1

1−ε

)
;

XH
m := εm + εm

(
γH

δH

)m−1

+ ε
(
γH

δH

)m−1 (
1−εm−1

1−ε

)
+ εmρH

(
γH

δH

)m−1 (
2
δH

)m−1

+ερH
(

1−εm−1

1−ε

)
+ ερH

(
γH

δH

)m−1 (
2
δH

)m−1
(

1−εm−1

1−ε

)
.

Proof:

We proceed to prove (4.4.11); the proof of (4.4.10) is similar. In the
following, we suppress the superscript H to simplify notation.

Similar to our approach in Theorem 3.3.2, let i ∈ {0, . . . , N} be �xed,
and let x ∈ [xi, xi+1]. Then, with

h(x, y) = (x− y)m−1
+ ,

as in (3.3.19), the Taylor expansion of f at xi is given by

f(x) =
m−1∑
j=0

f (j)(xi)

j!
(x− xi)j +

∫ xi+1

xi

f (m)(y)

(m− 1)!
h(x, y)dy,

whereas the Taylor expansion of Pmf is given by

(Pmf)(x) =
m−1∑
j=0

f (j)(xi)

j!
(x− xi)j +

∫ xi+1

xi

f (m)(y)

(m− 1)!
(Pmh(·, y))(x)dy,

since the blending interpolation operator Pm preserves polynomials in πm−1.
It therefore follows that

f(x)− (Pmf)(x) =

∫ xi+1

xi

f (m)(y)

(m− 1)!
[h(x, y)− (Pmh(·, y))(x)] dy. (4.4.12)
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The rest of the proof is divided into three parts.

Proof of second inequality in (4.4.11):

Let i ∈ {m− 1, . . . , N −m+ 1}, with x ∈ [xi, xi+1]. In the following,
we suppress the variable of integration y, so that h(x, y) = h(x).

From the de�nition of Pm in (4.3.2), the support properties (3.2.10) and
(4.2.6) of the spline molecules, and the de�nition of Qm in (3.2.3), we have

h(x)− (Pmh)(x)

= h(x)−
i+m−1∑
j=i+1−m

h(yj)Mm,j(x)−
i+1∑
j=i−1

h(yj)Lm,j(x) +
i+1∑
j=i−1

(Qmh)(yj)Lm,j(x)

= h(x)−
i+m−1∑
j=i+1−m

h(yj)Mm,j(x)−
i+1∑
j=i−1

h(yj)Lm,j(x)

+
i+1∑
j=i−1

[
j+m−1∑

k=j+1−m

h(yk)Mm,k(yj)

]
Lm,j(x).

Next, we use the upper bounds (3.3.15) in Theorem 3.3.1 and (4.4.7) in
Theorem 4.4.1, together with (3.3.22), to deduce that

|h(x)− (Pmh)(x)|

≤ |h(x)|+ 1

(m− 2)!

(γ
δ

)m−1
i+m−1∑
j=i

|h(yj)|+
i+1∑
j=i

|h(yj)|

+
1

(m− 2)!

(γ
δ

)m−1
i+1∑
j=i−1

j+m−1∑
k=j+1−m

|h(yk)|

≤ εm−1 +
1

(m− 2)!

(γ
δ

)m−1 (
εm−1 + 2εm−1 + · · ·+mεm−1

)
+
(
εm−1 + 2εm−1

)
+

1

(m− 2)!

(γ
δ

)m−1
[
i+m−2∑
k=i

|h(yk)|+
i+m−1∑
k=i

|h(yk)|+
i+m∑
k=i

|h(yk)|

]
≤ 4εm−1 +

1

(m− 2)!

(γ
δ

)m−1 [(
εm−1 + · · ·+ (m− 1)εm−1

)
+2
(
εm−1 + · · ·+mεm−1

)
+
(
εm−1 + · · ·+ (m+ 1)εm−1

)]
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= 4εm−1 +
εm−1

(m− 2)!

(γ
δ

)m−1
[
m(m− 1)

2
+

2m(m+ 1)

2
+

(m+ 1)(m+ 2)

2

]
= 4εm−1 +

(2m2 + 2m+ 1)εm−1

(m− 2)!

(γ
δ

)m−1

.

Therefore, (4.4.12) becomes

|f(x)− (Pmf)(x)|

≤
∫ xi+1

xi

f (m)(y)

(m− 1)!

[
4εm−1 +

(2m2 + 2m+ 1)εm−1

(m− 2)!

(γ
δ

)m−1
]

dy

≤ ||f (m)||∞,[xi,xi+1]

[
4εm

(m− 1)!
+

(2m2 + 2m+ 1)εm

(m− 1)!(m− 2)!

(γ
δ

)m−1
]
,

from which our result follows.

Next, for a �xed i ∈ {2, . . . ,m− 2}, let x ∈ [xi, xi+1]. By applying the
de�nition of Pm in (4.3.2), the support properties (3.2.10) and (4.2.6) of
the spline molecules, and the de�nition of Qm in (3.2.3), we deduce that

h(x)− (Pmh)(x)

= h(x)−
−1∑

j=i+1−m

h(−j)(a)Mm,j(x)−
i+m−1∑
j=0

h(yj)Mm,j(x)

−
i+1∑
j=i−1

h(yj)Lm,j(x) +
i+1∑
j=i−1

(Qmh)(yj)Lm,j(x)

= h(x)−
−1∑

j=i+1−m

h(−j)(a)Mm,j(x)−
i+m−1∑
j=0

h(yj)Mm,j(x)−
i+1∑
j=i−1

h(yj)Lm,j(x)

+
i+1∑
j=i−1

[
−1∑

k=j+1−m

h(−k)(a)Mm,k(yj) +

j+m−1∑
k=0

h(yk)Mm,k(yj)

]
Lm,j(x).

Next, we use the upper bounds (3.3.15) in Theorem 3.3.1 and (4.4.7) in
Theorem 4.4.1, together with (3.3.22) and (3.3.24), to obtain

|h(x)− (Pmh)(x)|

≤ |h(x)|+ 1

(m− 2)!

(γ
δ

)m−1
m−1−i∑
j=1

|h(j)(a)|+ 1

(m− 2)!

(γ
δ

)m−1
i+m−1∑
j=i

|h(yj)|
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+
i+1∑
j=i

|h(yj)|+
1

(m− 2)!

(γ
δ

)m−1
i+1∑
j=i−1

[
m−1−j∑
k=1

|h(k)(a)|+
j+m−1∑
k=i

|h(yk)|

]

≤ εm−1 +
1

(m− 2)!

(γ
δ

)m−1 (
εm−1 + 2εm−1 + · · ·+mεm−1

)
+
(
εm−1 + 2εm−1

)
+

1

(m− 2)!

(γ
δ

)m−1
[
m−i∑
k=1

|h(k)(a)|+
m−1−i∑
k=1

|h(k)(a)|+
m−2−i∑
k=1

|h(k)(a)|

+
i+m−2∑
k=i

|h(yk)|+
i+m−1∑
k=i

|h(yk)|+
i+m∑
k=i

|h(yk)|

]
≤ 4εm−1 +

1

(m− 2)!

(γ
δ

)m−1 [(
εm−1 + · · ·+ (m− 1)εm−1

)
+2
(
εm−1 + · · ·+mεm−1

)
+
(
εm−1 + · · ·+ (m+ 1)εm−1

)]
= 4εm−1 +

εm−1

(m− 2)!

(γ
δ

)m−1
[
m(m− 1)

2
+

2m(m+ 1)

2
+

(m+ 1)(m+ 2)

2

]
= 4εm−1 +

(2m2 + 2m+ 1)εm−1

(m− 2)!

(γ
δ

)m−1

.

Therefore, (4.4.12) becomes

|f(x)− (Pmf)(x)|

≤
∫ xi+1

xi

f (m)(y)

(m− 1)!

[
4εm−1 +

(2m2 + 2m+ 1)εm−1

(m− 2)!

(γ
δ

)m−1
]

dy

≤ ||f (m)||∞,[xi,xi+1]

[
4εm

(m− 1)!
+

(2m2 + 2m+ 1)εm

(m− 1)!(m− 2)!

(γ
δ

)m−1
]
,

which is the same result as before.

Proof of �rst inequality in (4.4.11):

Next, let x ∈ [xi, xi+1], i ∈ {0, 1}. In this case, we have

h(x)− (Pmh)(x)

= h(x)−
−1∑

j=i+1−m

h(−j)(a)Mm,j(x)−
i+m−1∑
j=0

h(yj)Mm,j(x)

−
−1∑

j=1−m

h(−j)(a)Lm,j(x)−
i+1∑
j=0

h(yj)Lm,j(x)
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+
−1∑

j=1−m

(Qmh)(−j)(a)Lm,j(x) +
i+1∑
j=0

(Qmh)(yj)Lm,j(x)

= h(x)−
−1∑

j=i+1−m

h(−j)(a)Mm,j(x)−
i+m−1∑
j=0

h(yj)Mm,j(x)

−
−1∑

j=1−m

h(−j)(a)Lm,j(x)−
i+1∑
j=0

h(yj)Lm,j(x)

+
−1∑

j=1−m

[
−1∑

k=j+1−m

h(−k)(a)M
(−j)
m,k (a) +

j+m−1∑
k=0

h(yk)M
(−j)
m,k (a)

]
Lm,j(x)

+
i+1∑
j=0

[
−1∑

k=j+1−m

h(−k)(a)Mm,k(yj) +

j+m−1∑
k=0

h(yk)Mm,k(yj)

]
Lm,j(x),

from the de�nition of Pm in (4.3.2), the support properties (3.2.10) and
(4.2.6) of the spline molecules, and the de�nition of Qm in (3.2.3). Now,
we use the upper bounds (3.3.15) in Theorem 3.3.1 and (4.4.7) in Theorem
4.4.1 and (4.4.9) in Theorem 4.4.2, together with (3.3.22) and (3.3.23), to
obtain

|h(x)− (Pmh)(x)|

≤ |h(x)|+ 1

(m− 2)!

(γ
δ

)m−1
m−1−i∑
j=1

|h(j)(a)|+ 1

(m− 2)!

(γ
δ

)m−1
i+m−1∑
j=1

|h(yj)|

+
mρ

m− 1

m−1∑
j=1

|h(j)(a)|+m
i+1∑
j=1

|h(yj)|

+
mρ

m− 1

1

(m− 2)!

(γ
δ

)m−1

m

(
2

δ

)m−1 m−1∑
j=1

[
m−1∑
k=1

|h(k)(a)|+
m−1−j∑
k=1

|h(yk)|

]

+m
1

(m− 2)!

(γ
δ

)m−1
i+1∑
j=0

[
m−1−j∑
k=1

|h(k)(a)|+
j+m−1∑
k=1

|h(yk)|

]

≤ εm−1 +
1

(m− 2)!

(γ
δ

)m−1

(m− 1)!

+
1

(m− 2)!

(γ
δ

)m−1 (
2εm−1 + · · ·+ (m+ 1)εm−1

)
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+
mρ

m− 1
(m− 1)! +m

(
2εm−1 + 3εm−1

)
+

mρ

m− 1

1

(m− 2)!

(γ
δ

)m−1

m

(
2

δ

)m−1

×[
(m− 1)(m− 1)! +

(
2εm−1 + · · ·+ (m− 1)εm−1

)]
+

m

(m− 2)!

(γ
δ

)m−1 [
(m− 1)! + 3

(
2εm−1 + · · ·+ (m+ 2)εm−1

)]
≤ (5m+ 1)εm−1 +

(m+ 1)(m− 1)!

(m− 2)!

(γ
δ

)m−1

+
εm−1

(m− 2)!

(γ
δ

)m−1
[

(m+ 1)(m+ 2)

2
+

3m(m+ 2)(m+ 3)

2

]
+
mρ(m− 1)!

m− 1
+
m2ρ(m− 1)!

(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1

+
m2ρεm−1

(m− 1)(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1
m(m− 1)

2

≤ (5m+ 1)εm−1 +
(m+ 1)(m− 1)!

(m− 2)!

(γ
δ

)m−1

+
εm−1(m+ 2)(3m2 + 10m+ 1)

2(m− 2)!

(γ
δ

)m−1

+
mρ(m− 1)!

m− 1

+
m2ρ(m− 1)!

(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1

+
m3ρεm−1

2(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1

.

Therefore, (4.4.12) yields

|f(x)− (Pmf)(x)|

≤
∫ xi+1

xi

f (m)(y)

(m− 1)!

[
(5m+ 1)εm−1 +

(m+ 1)(m− 1)!

(m− 2)!

(γ
δ

)m−1

+
(m+ 2)(3m2 + 10m+ 1)εm−1

2(m− 2)!

(γ
δ

)m−1

+
mρ(m− 1)!

m− 1

+
m2ρ(m− 1)!

(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1

+
m3ρεm−1

2(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1
]

dy

≤ ||f (m)||∞,[xi,xi+1]

[
(5m+ 1)εm

(m− 1)!
+

(m+ 1)ε

(m− 2)!

(γ
δ

)m−1

+
(m+ 2)(3m2 + 10m+ 1)εm

2(m− 1)!(m− 2)!

(γ
δ

)m−1

+
mρε

m− 1
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+
m2ρε

(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1

+
m3ρεm

2(m− 1)!(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1
]
,

from which our result follows.

Proof of third inequality in (4.4.11):

Next, let i ∈ {N −m+ 2, . . . , N − 2}, with x ∈ [xi, xi+1]. In this case,
we have, from the de�nition of Pm in (4.3.2), the spline molecule support
properties in (3.2.10) and (4.2.6), and the de�nition of Qm in (3.2.3),

h(x)− (Pmh)(x)

= h(x)−
N∑

j=i+1−m

h(yj)Mm,j(x)−
i+m−1∑
j=N+1

h(j−N)(b)Mm,j(x)

−
i+1∑
j=i−1

h(yj)Lm,j(x) +
i+1∑
j=i−1

(Qmh)(yj)Lm,j(x)

= h(x)−
N∑

j=i+1−m

h(yj)Mm,j(x)−
i+m−1∑
j=N+1

h(j−N)(b)Mm,j(x)−
i+1∑
j=i−1

h(yj)Lm,j(x)

+
i+1∑
j=i−1

[
N∑

k=j+1−m

h(yk)Mm,k(yj) +

j+m−1∑
k=N+1

h(k−N)(b)Mm,k(yj)

]
Lm,j(x).

Now, we apply the upper bounds (3.3.15) and (4.4.7) together with (3.3.22),
(3.3.23) and (3.3.26), to deduce that

|h(x)− (Pmh)(x)|

≤ |h(x)|+ 1

(m− 2)!

(γ
δ

)m−1
N∑
j=i

|h(yj)|+
1

(m− 2)!

(γ
δ

)m−1
i+m−1−N∑

j=1

|h(j)(b)|

+
i+1∑
j=i

|h(yj)|+
1

(m− 2)!

(γ
δ

)m−1
i+1∑
j=i−1

[
N∑

k=j+1−m

|h(yk)|+
j+m−1−N∑

k=1

|h(k)(b)|

]

≤ εm−1 +
1

(m− 2)!

(γ
δ

)m−1 (
εm−1 + · · ·+ (m− 1)εm−1

)
+

1

(m− 2)!

(γ
δ

)m−1
[
(m− 1)(m− 1)!

1− εm−1

1− ε

]
+
(
εm−1 + 2εm−1

)
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+
1

(m− 2)!

(γ
δ

)m−1
[

3
N∑
k=i

|h(yk)|+
i+m−2−N∑

k=1

|h(k)(b)|

+
i+m−1−N∑

k=1

|h(k)(b)|+
i+m−N∑
k=1

|h(k)(b)|

]
≤ 4εm−1 +

4

(m− 2)!

(γ
δ

)m−1 (
εm−1 + · · ·+ (m− 1)εm−1

)
+

4

(m− 2)!

(γ
δ

)m−1
[
(m− 1)(m− 1)!

1− εm−1

1− ε

]
= 4εm−1 +

4εm−1

(m− 2)!

(γ
δ

)m−1 m(m− 1)

2
+

4(m− 1)(m− 1)!

(m− 2)!

(γ
δ

)m−1 1− εm−1

1− ε
.

Therefore, (4.4.12) becomes

|f(x)− (Pmf)(x)|

≤
∫ xi+1

xi

f (m)(y)

(m− 1)!

[
4εm−1 +

4m(m− 1)εm−1

2(m− 2)!

(γ
δ

)m−1

+
4(m− 1)(m− 1)!

(m− 2)!

(γ
δ

)m−1
(

1− εm−1

1− ε

)]
dy

≤ ||f (m)||∞,[xi,xi+1]

[
4εm

(m− 1)!
+

4m(m− 1)εm

2(m− 1)!(m− 2)!

(γ
δ

)m−1

+
4(m− 1)ε

(m− 2)!

(γ
δ

)m−1
(

1− εm−1

1− ε

)]
,

and our result follows.

Proof of fourth inequality in (4.4.11):

Lastly, let i ∈ {N − 1, N}, with x ∈ [xi, xi+1]. In this case, we have,
from the de�nition of Pm in (4.3.2), the spline molecule support properties
in (3.2.10) and (4.2.6), and the de�nition of Qm in (3.2.3),

h(x)− (Pmh)(x)

= h(x)−
N∑

j=i+1−m

h(yj)Mm,j(x)−
i+m−1∑
j=N+1

h(j−N)(b)Mm,j(x)
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−
N∑

j=i−1

h(yj)Lm,j(x)−
N+m−1∑
j=N+1

h(j−N)(b)Lm,j(x)

+
N∑

j=i−1

(Qmh)(yj)Lm,j(x) +
N+m−1∑
j=N+1

(Qmh)(j−N)(b)Lm,j(x)

= h(x)−
N∑

j=i+1−m

h(yj)Mm,j(x)−
i+m−1∑
j=N+1

h(j−N)(b)Mm,j(x)

−
N∑

j=i−1

h(yj)Lm,j(x)−
N+m−1∑
j=N+1

h(j−N)(b)Lm,j(x)

+
N∑

j=i−1

[
N∑

k=j+1−m

h(yk)Mm,k(yj) +

j+m−1∑
k=N+1

h(k−N)(b)Mm,k(yj)

]
Lm,j(x)

+
N+m−1∑
j=N+1

[
N∑

k=j+1−m

h(yk)M
(j−N)
m,k (b) +

j+m−1∑
k=N+1

h(k−N)(b)M
(j−N)
m,k (b)

]
Lm,j(x).

Next, we apply the upper bounds (3.3.15), (4.4.7) and (4.4.9), together with
(3.3.22), (3.3.23) and (3.3.26), to deduce that

|h(x)− (Pmh)(x)|

≤ |h(x)|+ 1

(m− 2)!

(γ
δ

)m−1
N∑
j=i

|h(yj)|+
1

(m− 2)!

(γ
δ

)m−1
i+m−1−N∑

j=1

|h(j)(b)|

+m
N∑
j=i

|h(yj)|+
mρ

m− 1

m−1∑
j=1

|h(j)(b)|

+m
1

(m− 2)!

(γ
δ

)m−1
N∑

j=i−1

[
N∑

k=j+1−m

|h(yk)|+
j+m−1−N∑

k=1

|h(k)(b)|

]

+
mρ

m− 1

1

(m− 2)!

(γ
δ

)m−1

m

(
2

δ

)m−1

×

m−1∑
j=1

[
N∑

k=j+1−m+N

|h(yk)|+
m−1∑
k=1

|h(k)(b)|

]

≤ εm−1 +
1

(m− 2)!

(γ
δ

)m−1 (
εm−1 + 2εm−1

)
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+
1

(m− 2)!

(γ
δ

)m−1

2(m− 1)!
1− εm−1

1− ε
+m

(
εm−1 + 2εm−1

)
+

mρ

m− 1
2(m− 1)!

1− εm−1

1− ε

+
m

(m− 2)!

(γ
δ

)m−1

3

[(
εm−1 + 2εm−1

)
+ 2(m− 1)!

1− εm−1

1− ε

]
+

mρ

m− 1

1

(m− 2)!

(γ
δ

)m−1

m

(
2

δ

)m−1

(m− 1)×[(
εm−1 + 2εm−1

)
+ 2(m− 1)!

1− εm−1

1− ε

]
≤ (3m+ 1)εm−1 +

(9m+ 3)εm−1

(m− 2)!

(γ
δ

)m−1

+
(6m+ 2)(m− 1)!

(m− 2)!

(γ
δ

)m−1 1− εm−1

1− ε

+
2mρ(m− 1)!

m− 1

1− εm−1

1− ε
+

3m2ρεm−1

(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1

+
2m2ρ(m− 1)!

(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1
1− εm−1

1− ε
.

Therefore, (4.4.12) becomes

|f(x)− (Pmf)(x)|

≤
∫ xi+1

xi

f (m)(y)

(m− 1)!

[
(3m+ 1)εm−1 +

3(3m+ 1)εm−1

(m− 2)!

(γ
δ

)m−1

+
2(3m+ 1)(m− 1)!

(m− 2)!

(γ
δ

)m−1 1− εm−1

1− ε
+

2mρ(m− 1)!

m− 1

(
1− εm−1

1− ε

)
+

3m2ρεm−1

(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1

+
2m2ρ(m− 1)!

(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1(
1− εm−1

1− ε

)]
dy

≤ ||f (m)||∞,[xi,xi+1]

[
(3m+ 1)εm

(m− 1)!
+

3(3m+ 1)εm

(m− 1)!(m− 2)!

(γ
δ

)m−1

+
2(3m+ 1)ε

(m− 2)!

(γ
δ

)m−1
(

1− εm−1

1− ε

)
+

2mρε

m− 1

(
1− εm−1

1− ε

)
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+
3m2ρεm

(m− 1)!(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1

+
2m2ρε

(m− 2)!

(γ
δ

)m−1
(

2

δ

)m−1(
1− εm−1

1− ε

)]
,

thereby completing our proof of (4.4.11). �
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Chapter 5

Stationary and non-stationary

signals

Signals with frequencies that do not change with time are called stationary
signals. These types of signals are best analyzed by Fourier series meth-
ods or the Fourier transform. This is discussed in Section 5.1 of this chapter.

However, most real-life signals are non-stationary; that is, their frequen-
cies may change with time. To analyze these types of signals, we need to
expand the traditional Fourier signal model. In the current signal processing
literature, this is done by the adaptive harmonic model, to be introduced
and described in Section 5.2 of this chapter.

In Section 5.3, we give an overview of a few existing methods in the lit-
erature that analyze non-stationary signals, namely the short-time Fourier
transform, the continuous wavelet transform, the Wigner distribution, and
reassignment methods. Empirical mode decomposition and the synchrosqueezed
wavelet transform are two more non-stationary signal analysis techniques �
these will be studied in much more detail in Chapters 6 and 7, respectively.

5.1 Stationary signals

We have already seen in Section 2.1 in Chapter 2 that, by considering the
Fourier series of even function extensions, every �nite-energy signal f on

the bounded interval [0, L
2
] (that is, f satis�es

∫ L/2
0
|f(t)|2dt < ∞) has a
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Fourier cosine series representation given by

f(t) =
a0

2
+
∞∑
j=1

aj cos

(
2πjt

L

)
, −L

2
≤ t ≤ L

2
, (5.1.1)

where

aj =
4

L

∫ L
2

0

f(t) cos

(
2πjt

L

)
, j = 0, 1, 2, . . . (5.1.2)

(see Theorem 2.1.2 in Chapter 2). Therefore, every periodic signal f , with
period L as in (5.1.1)-(5.1.2), has frequencies ωj = j

L
Hz, for all positive

integers j, provided that aj 6= 0 (where �Hz� stands for the unit Hertz, for
measuring the number of cycles of oscillation per second, when t represents
the time variable).

On the other hand, to study the frequency content of a �nite-energy
signal f with time-domain R, the Fourier transform, de�ned in (2.2.1) in
Section 2.2 in Chapter 2, is commonly used instead. As an example, let us
consider the signal

f(t) = a0 +
N∑
j=1

aj cos 2πωjt, (5.1.3)

for arbitrary frequency values ωj > 0 and aj ∈ R, j = 1, . . . , N . This signal
is called a stationary signal, since the frequencies ωj, j = 1, . . . , N, are
independent of the time variable t ∈ R. Using (2.2.11) in Example 2.2.1,
the Fourier transform of f in (5.1.3) is given by

f̂(ω) = a0δ(ω) +
1

2

N∑
j=1

aj (δ (ω − ωj) + δ (ω + ωj)) . (5.1.4)

Therefore, the frequencies of a stationary signal f with time domain R can
be easily determined by applying the Fourier transform.

We remark that the stationary signal in (5.1.3) is a special case of the
general stationary signal model

f(t) = a0 +
N∑
j=1

aj cos 2π(ωjt+ bj), (5.1.5)
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with bj = 0. This general model allows for the use of sine functions and
negative amplitudes for stationary signals. Of course, every f in (5.1.5) has
the same frequencies ωj, j = 1, . . . , N, as the corresponding f in (5.1.3),
since

f̂(ω) = a0δ(ω) +
1

2

N∑
j=1

aje
i2πωbj/ωj (δ(ω − ωj) + δ(ω + ωj)) ,

as in (5.1.4), using also (2.2.8) in Theorem 2.2.1.

It is clear that the Fourier transform is useful to discover the frequency
contents of a stationary signal. However, since the Fourier transform does
not display the time instants at which speci�c frequency values are assumed,
it becomes problematic to analyze the frequency contents of signals whose
frequencies change with time. These types of signals and methods to study
them are the topics of investigation in our following sections.

5.2 Non-stationary signals

In the previous section, we saw how the Fourier cosine series representation
(5.1.1)-(5.1.2) may be used to study the frequency content of periodic sig-
nals, whereas the Fourier transform is useful to study the frequency content
of stationary signals as in (5.1.3) or (5.1.5).

In this section, we study signals of the form

f(t) =
N∑
j=1

Aj(t) cos 2πφj(t) + T (t), (5.2.1)

where Aj(t) > 0, φj(t) ∈ C2 such that φ′j(t) > 0, and T (t) is some polyno-
mial (possibly embedded with noise). In other words, f is a superposition
of the signal components

fj(t) = Aj(t) cos 2πφj(t), j = 1, . . . , N. (5.2.2)

The functions Aj(t) are called magnitude or amplitude functions, general-
izing the constants aj in (5.1.3), while the functions φj(t) are called phase
functions, generalizing the linear functions ωjt in (5.1.3). The derivative
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of the phase function φ′j(t), j = 1, . . . , N, is therefore a natural extension
of the frequency ωj in (5.1.3), and we call each φ′j(t) the instantaneous
frequency of fj(t) (as mentioned in Chapter 1). The trend T (t) is a gener-
alization of the constant factor a0 in the stationary signal model (5.1.3).

If the phase functions φj(t) are non-linear functions, we say that f in
(5.2.1) is a non-stationary signal (as introduced in Chapter 1). If the mag-
nitude functions Aj(t) are allowed to be non-constants, f is said to be
non-linear.

In the current signal processing literature, the signal model (5.2.1) is
called the adaptive harmonic model (AHM) [11, 15, 20, 48, 16]. It is impor-
tant to point out that when a given signal f in the AHM (5.2.1) is a blind
source signal, it is de�nitely not feasible to determine its speci�c signal com-
ponents fj(t), j = 1, . . . , N, by any decomposition scheme, without prior
knowledge of these components and/or specifying appropriate restrictions
on the AHM. In the literature, these restrictions are described by

Aj ∈ C1(R) ∩ L∞(R); φj ∈ C2(R);

inf
t∈R

Aj(t) > c1; sup
t∈R

Aj(t) < c2;

inf
t∈R

φ′j(t) > c1; sup
t∈R

φ′j(t) < c2;

|A′j(t)| ≤ εφ′j(t); |φ′′j (t)| < εφ′j(t),

(5.2.3)

for all t ∈ R, where 0 < ε � 1 and ε � c1 < c2 < ∞. Also, this model
assumes that the components are well-separated, in the sense that their
respective phase functions φj(t) satisfy

φ′j(t) > φ′j−1(t); and |φ′j(t)− φ′j−1(t)| ≥ d[φ′j(t) + φ′j−1(t)], (5.2.4)

for some 0 < d < 1 and all t ∈ R. We will denote the class of functions f
that satisfy the AHM conditions (5.2.3)-(5.2.4) by Ac1,c2ε,d .

In general, the representation of a signal component fj(t) in (5.2.2) is
not unique � indeed, there exist smooth functions α(t) and β(t) such that
cos t = (1 + α(t)) cos(t + β(t)). This is called the identi�ability problem in
[11]. However, it is shown in [11, Theorem 2.1] that if

g(t) = A(t) cos 2πφ(t) = (A(t) + α(t)) cos 2π(φ(t) + β(t))
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satis�es the conditions in (5.2.3), then

|α(t)| ≤ Cε and |β′(t)| ≤ Cε,

where C is a constant depending only on c1 and c2. In other words, the
de�nitions of instantaneous frequency and amplitude are rigorous in the
sense that they are unique up to a negligible error when ε is small enough.
(See also [15].)

We remark that the de�nition of the AHM in (5.2.1)-(5.2.4) may be
adapted to model signals contaminated with noise (see [11, 15]), or even
to model signal components in terms of general wave shape functions sj(t)
instead of cosine functions (see [52, 15]).

5.3 Overview of time-frequency methods

Since the IF's φ′j(t), j = 1, . . . , N, in (5.2.1) may be time-dependent, the
Fourier transform (which provides us with a frequency domain representa-
tion f̂(ω) of a signal f(t) in the time domain) is not su�cient to study
the frequency content of non-stationary signals of the form (5.2.1). This
type of signal is better analyzed through methods that provide us with
a signal representation in the time-frequency plane. These methods are
commonly called time-frequency methods in the signal processing literature
[31, 17, 23, 30, 4]. We proceed to give a brief overview of well-known time-
frequency methods in the literature, namely:

� the short-time Fourier transform;

� the continuous wavelet transform;

� the Wigner distribution; and

� reassignment methods.

Short-time Fourier transform:

The short-time Fourier transform (STFT) or localized Fourier transform
is one method that aims to make the traditional Fourier transform time-
dependent by introducing a window function, as follows.
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De�nition 5.3.1 (Short-time Fourier transform) For a window func-
tion u ∈ (L1 ∩ L2) (R) and a function f ∈ L2(R), the short-time Fourier
transform Fuf of f with respect to u at the time-frequency point (x, ω) is
de�ned by

(Fuf)(x, ω) =

∫ ∞
−∞

f(t)u(t− x)e−i2πωtdt, (5.3.1)

for x, ω ∈ R.

The STFT was �rst considered by Dennis Gabor in his 1946 paper on the
mathematical theory of communications [26], where he used the Gaussian
function

gσ(x) :=
1

2σ
√
π
e−( x

2σ )
2

,

with σ = 1
2
√
π
, as window function, leading to the Gabor transform (a spe-

cial case of the STFT).

The STFT may be described as follows: the window function u in (5.3.1)
is used to localize the signal f before the Fourier transform is applied,
and this window is allowed to �slide� continuously along the time-axis R.
In other words, the STFT Fuf essentially consists of consecutive Fourier
transforms, where each transform is performed on the signal f within the
window u. As the window u moves along the time line, the Fourier trans-
form is performed on the entire signal f [27].

An important feature of the STFT is that the signal f may be recon-
structed from its STFT Fuf , provided that the window function u satis�es
certain conditions (see [14, Theorem 4, p.358]):

Theorem 5.3.1 (Inverse short-time Fourier transform) Let u ∈ (L1∩
L2)(R) such that û ∈ (L1 ∩ L2) (R) and u(0) 6= 0. If f ∈ (L1 ∩ L2)(R) with
f̂ ∈ L1(R), then

f(x) =
1

u(0)

∫ ∞
−∞

(Fuf)(x, ω)ei2πωxdω.

Continuous wavelet transform:
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Second, the continuous wavelet transform, considered in Section 2.5 of
Chapter 2, is another example of a time-frequency method. Like the STFT,
the CWT makes use of a window function (the wavelet ψb,a) to localize the
observed signal f to analyze its time and frequency content. However, where
the window width of the window function u in the de�nition of the STFT
(5.3.1) is �xed for a given window u, the window width of the wavelet ψb,a
is allowed to change as the scale factor a varies (as explained in Section 2.5).

Wigner distribution:

Next, the Wigner distribution (WD) was invented by E. Wigner in 1932
[51] in the context of quantum mechanics, and introduced in the area of
signal analysis by J. Ville in 1948 [49].

De�nition 5.3.2 (Wigner distribution) For a function f ∈ L2(R), the
Wigner distribution Wf of f at the time-frequency point (x, ω) is given by

(Wf)(x, ω) =

∫ ∞
−∞

f
(
x+ t

2

)
f
(
x− t

2

)
e−i2πωtdt. (5.3.2)

Unlike the STFT and CWT, the WD does not depend on an arbitrary
window function; it only depends on the signal f itself. As such, it should
display the time-frequency behavior of f in a �pure, unobstructed form�
[30, p.60]. However, the WD is an example of a quadratic time-frequency
method (whereas the STFT and CWT are classi�ed as linear time-frequency
methods), as can be seen from its de�nition in (5.3.2). In other words, if
we think of the WD Wf of a signal f as Wf = C(f, f), it follows that, for
any complex numbers α and β,

W(αf + βh) = |α|2Wf + |β|2Wh+ αβC(f, h) + αβC(h, f).

Therefore, the quadratic nature of this method introduces the cross terms
C(f, h) and C(h, f), which are di�cult to analyze and interpret [30]. The
cross terms may also introduce disturbing interferences in the visual repre-
sentation of the WD in the time-frequency plane (see [20, 2, 24]). There are
many variations on theWD which aim to reduce the e�ect of the cross terms,
at the expense of good localization in the time-frequency plane. These in-
clude the pseudo Wigner-Ville distribution and the smoothed pseudo Wigner-
Ville distribution [1].
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Reassignment methods:

Lastly, reassignment was �rst introduced in the late 1970's by Kodera,
Gendrin and De Villedary [41, 42], and later generalized by Flandrin and
Auger (who coined the term �reassignment�) [1]. The method works by cre-
ating a modi�ed version of a time-frequency representation (like the STFT,
for example) by moving its time-frequency values away from where they are
computed, in order to produce a better localization of the signal compo-
nents. In essence, the time-frequency values (x, ω) are moved or reassigned
to the center of gravity or local centroid (x̃, ω̃) of the energy contributions
of the time-frequency representation [1, 2]. This improves classic time-
frequency representations by providing a clearer graphical display of the os-
cillatory features of a signal, easing signal interpretation. It is very e�ective
in this regard, but reconstruction of signal components is not straightfor-
ward.

More recent developments in the area of time-frequency methods include
empirical mode decomposition and the synchrosqueezed wavelet transform,
as introduced in Chapter 1. We will study these methods in great detail in
Chapters 6 and 7, respectively.
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Chapter 6

Empirical mode decomposition

The EMD algorithm, introduced by N.E. Huang and others in 1998 [36], is
arguably the most popular mathematical scheme for non-stationary signal
decomposition and time-frequency analysis. As brie�y described in Chapter
1, the objective of EMD is to decompose a given (not necessarily station-
ary) signal into a number of oscillating components, called intrinsic mode
functions, and a monotone or slowly oscillating remainder, which may be
considered as the trend of the given signal. Each IMF is then extended to
an amplitude-frequency modulated signal through the Hilbert transform in
order to compute its instantaneous frequency and amplitude.

In Section 6.1, we describe the EMD algorithm in detail and provide
illustrations of the method. Much research has been done to develop vari-
ations on EMD to improve the results yielded by EMD; we consider some
of these variations in Section 6.2. Lastly, in Section 6.3, we describe some
limitations of this method.

6.1 EMD algorithm

We start this chapter by describing the EMD algorithm.

Given a real-valued signal f on an interval [0, T ] for some T > 0, the
EMD algorithm starts by setting h1,0 := f and computing the cubic spline
interpolants (as described in the beginning of Section 2.4 in Chapter 2) of
the local maxima and minima of h1,0, respectively, called the upper and
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lower envelopes of h10. Next, it computes the average m1,1 of the upper
and lower envelopes, and subtracts it from h1,0 to obtain h1,1. This process
of �nding upper and lower envelopes and subtracting their mean from the
input signal is now repeated on h1,1 to �nd h1,2, h1,3, h1,4, and so on, until
for some ` ≥ 1 the resulting h1,` = h1,`−1−m1,` satis�es the de�nition of an
IMF:

(i) its upper and lower envelopes are (at least approximately) symmetric
about the time axis; and

(ii) the di�erence between its number of local extrema and its number of
zero crossings equals -1, 0 or 1.

In practice, h1,` is classi�ed as an IMF when a certain stopping criterion is
satis�ed. In the EMD literature, various criteria have been implemented.
The most common one originates from the original paper [36], namely that
h1,` is de�ned to be an IMF when∑n

i=0 |h1,`−1(ti)− h1,`(ti)|∑n
i=0 h

2
1,`−1(ti)

< ε,

for all sampling points {t0, . . . , tn} in the time interval [0, T ]. Typically,
ε is set between 0.2 and 0.3 [36]. A di�erent approach was proposed in
[35, 39], called the S-stoppage criterion. With this approach, the sifting
process stops after the number of zero crossings and the number of extrema
are equal or di�er by at most 1 (condition (ii) above), and these numbers
stay the same for S consecutive iterations. Experimental results indicate
that S should be chosen between 3 and 8 [39]. (See also [37].)

The �rst IMF h1,` is denoted by C1, and this process to �nd an IMF
is called sifting. To �nd the subsequent IMF's Cj, j = 2, 3, . . ., the sifting
procedure is repeated on hj,0 := f −C1−· · ·−Cj−1. The stopping criterion
can be chosen by the user; usually, the algorithm stops when the remain-
der RN := f − C1 − · · · − CN (for some N ≥ 1) is a monotonic or slowly
oscillating function [37].

The above series of sifting procedures yields a decomposition of the
original signal f into the N IMF's C1, . . . , CN , and the remainder RN ,
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written as

f(t) =
N∑
j=1

Cj(t) +RN(t). (6.1.1)

This constitutes the �rst part of the algorithm, with the aim of extracting
the intrinsic oscillating modes, at characteristic time scales, contained in-
side the signal f . The �rst IMF, C1, constitutes the mode with the �nest
time scale and is extracted �rst. The subsequent IMF's C2, . . . , CN each
represent modes with coarser time scales. Therefore, the IMF-expansion in
(6.1.1) may be viewed as a waveform-based decomposition.

The second part of the algorithm is to �nd the instantaneous frequency
and amplitude of each IMF through Hilbert spectral analysis, described in
(2.6.6)-(2.6.10) in Section 2.6 in Chapter 2, so that

f(t) =
N∑
j=1

Cj(t) +RN(t);

Cj(t) = Bj(t) cos 2πθj(t), j = 1, . . . , N,

(6.1.2)

with

Bj(t) = |C?
j (t)|; and θj(t) =

1

2π
tan−1 (HCj)(t)

Cj(t)
. (6.1.3)

The derivative θ′j(t) of the phase function θj(t) is the IF of the IMF Cj.

In Figures 6.1-6.3, we illustrate the working of the EMD-HSA approach
by considering the stationary signal

f(t) = f1(t) + f2(t) + f3(t), (6.1.4)

with

f1(t) = cos 2π(8t); f2(t) = cos 2π(4t); f3(t) = cos 2πt. (6.1.5)

The three components have actual frequencies 8, 4 and 1, respectively.

In Figure 6.1, we display the �rst part of the sifting process, with the
original signal h1,0 := f in (a), the upper envelope (in red) and lower en-
velope (in blue) in (b), the mean envelope m1,1 (in purple) in (c), and
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Figure 6.1 Illustration of sifting. (a) Original signal f(t) = cos 2π(8t) + cos 2π(4t) + cos 2πt.
(b) Construction of upper envelope (in red) and lower envelope (in blue). (c) Calculation of
mean envelope (in purple). (d) Result of subtracting mean envelope from input signal.

h1,1 := h1,0 −m1,1 in (d).

In Figure 6.2, we display the three IMF's C1(t), C2(t) and C3(t) together
with the remainder R3(t), calculated by the EMD algorithm. We note that
Ci(t) is an approximation of fi(t) for each i = 1, 2, 3. For this example, the
remainder is the zero function. We also note that C1(t) in (a) represents the
intrinsic oscillating mode with the �nest time scale (or highest frequency),
while C3(t) in (c) has the coarsest time scale (or lowest frequency).

Lastly, in Figure 6.3, we display the end result of the EMD-HSA proce-
dure. The three IMF's C1(t), C2(t) and C3(t) are displayed in (a)-(c), while
the calculated IF's θ′1(t), θ′2(t), θ′3(t) of the IMF's are shown in (d)-(f). The
calculated IF's are estimations of the actual IF's 8, 4 and 1, respectively.

6.2 Variations on EMD

The EMD algorithm remains to be an active research �eld in the signal pro-
cessing community, and several extensions to the original EMD formulation
have been developed over the last �fteen years. In this section, we consider
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Figure 6.2 Illustration of IMF-expansion obtained through EMD. (a) C1(t) (b) C2(t) (c) C3(t)
(d) R3(t)

Figure 6.3 End result of EMD and HSA. (a)-(c) IMF's C1(t), C2(t), C3(t). (d)-(f) IF's
θ′1(t), θ

′
2(t), θ

′
3(t).
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two of these.

Ensemble EMD:

The EMD algorithm works really well when it is applied to signals
with �well-behaved� components � components with well-separated instan-
taneous frequencies, and non-intermittent components. When some of the
signal components are intermittent, the end result of EMD could su�er from
mode mixing : di�erent oscillating modes are extracted in a single IMF, or
one oscillating mode is identi�ed in di�erent IMF's. Of course, this restricts
the physical interpretation of an IMF as representing a characteristic time
scale contained in the signal [37].

In [54, 55], Z. Wu and N.E. Huang proposed an extension of EMD
to overcome the mode mixing problem, called ensemble EMD (EEMD), a
noise-assisted data analysis method. As the name suggests, EEMD can be
thought of as an ensemble of EMD trials. For each trial i = 1, . . . , K, for
some large K ≥ 0, the algorithm starts by adding white noise wi with �nite
amplitude α to the original signal f to create the �observation�

fi(t) = f(t) + αwi(t), i = 1, . . . , K

(mimicking an experiment with multiple observations of a data set, with
measurement errors). Next, the EMD algorithm is applied to the observa-
tion fi, yielding a set of IMF's {Ci,1, . . . , Ci,N}, for each i = 1, . . . , K. The
true IMF Cj, j = 1, . . . , N, of the original signal f is then de�ned to be the
mean of the jth IMF in all K trials as K approaches in�nity; that is,

Cj(t) = lim
K→∞

1

K

K∑
i=1

Ci,j(t), j = 1, . . . , N.

The di�erence between the true IMF Cj and the result of the ensemble for
K trials decreases as 1√

K
[54, 37].

The addition of white noise to the original signal f creates a uniform
reference scale distribution in f to overcome intermittency in signal compo-
nents. It perturbs the signal in such a manner to encourage the method to
search for all possible answers in a �nite neighborhood of the true answer
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[54]. Experimental results in [54, 55] indicate that EEMD is successful to
overcome mode mixing problems.

According to [54], the idea of a noise-assisted data analysis method was
inspired by two pioneering works. In his PhD thesis [28], R. Gledhill tested
the robustness of the EMD algorithm by adding noise to an ensemble of
EMD trials. Flandrin, Gonçalves and Rilling [25], on the other hand, stud-
ied the question of applying EMD to a signal that do not have enough
extrema to construct upper or lower envelopes in the sifting process, like
the delta function (which only has one extremum). They came up with the
novel idea of adding noise with in�nitesimal amplitude to make the EMD
algorithm operable. However, since the method is sensitive to noise, they
decided to run an ensemble of 5000 trials, with a di�erent noise signal added
every time. Both of these approaches delivered new insights into the e�ect
of noise on the EMD algorithm.

Normalized Hilbert transform:

We have seen in Section 6.1 that, for a given signal f(t), the EMD-
HSA approach provides us with an IMF-expansion (6.1.1), where each IMF-
component Cj(t) is written as

Cj(t) = Bj(t) cos 2πθj(t), j = 1, . . . , N

(with Bj(t) and θj(t) de�ned in (6.1.3)). Theoretically, the amplitude func-
tion Bj(t) oscillates so slowly that the frequency information of Cj(t) is
entirely determined by cos 2πθj(t) at any time value t inside the time inter-
val [0, T ]. Therefore, the IMF Cj(t) should satisfy the relation

H(Bj(t) cos 2πθj(t)) = Bj(t)(H cos 2πθj)(t); (6.2.1)

in other words, Bj(t) cos 2πθj(t) should satisfy (2.6.3) in Bedrosian's the-
orem (Theorem 2.6.3). However, in practice, the assumptions in Theorem
2.6.3 are generally not satis�ed by Bj(t) and cos 2πθj(t), so that (6.2.1)
does not hold [37].

In [34, 38], Huang and others proposed the normalized Hilbert trans-
form (NHT), a normalization algorithm to better separate a given IMF
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Cj(t), j = 1, . . . , N, into its amplitude-modulated (AM) and frequency-
modulated (FM) parts, Mj(t) and Fj(t), respectively, so that

Cj(t) = Mj(t)Fj(t), j = 1, . . . , N.

The Hilbert transform is then only applied to the FM-part Fj(t) instead of
the entire IMF Cj(t).

After the IMF's C1(t), . . . , CN(t) have been obtained through the EMD
algorithm, the NHT starts by computing the local maxima of the absolute
values of each IMF, |Cj(t)|, j = 1, . . . , N . Next, for each j = 1, . . . , N, it
computes the envelope ej,1 by �nding the (standard) cubic spline interpolant
through the local maxima of |Cj(t)|. With the de�nition

fj,1 :=
Cj
ej,1

,

if |fj,1(t)| ≤ 1 for all t ∈ [0, T ], we deduce that fj,1(t) = cos 2πθj(t) (and
ej,1 = Bj, with Bj obtained by applying the regular Hilbert transform
method to Cj, as in (6.1.3)). In this case, the (empirical) FM-part Fj and
AM-part Mj are simply fj,1 and ej,1, respectively.

Otherwise, we repeat this procedure on fj,1 to obtain fj,2, . . . , fj,n, through

fj,k :=
fj,k−1

ej,k
, j = 1, . . . , N ; k = 2, . . . , n,

until |fj,n(t)| ≤ 1 for all t ∈ [0, T ] for some n ≥ 2. The (empirical) FM-part
Fj and AM-part Mj are then de�ned by

Fj := fj,n and Mj :=
Cj
Fj
, j = 1, . . . , N.

After Fj and Mj have been found in this way, the Hilbert transform is ap-
plied to Fj (instead of Cj) to obtain the IF θ′j.

According to [37], experimental results indicate that this method pro-
duces more accurate estimations of θ′j, j = 1, . . . , N, than the original
EMD-HSA approach. However, studies in [33] show that, even with the
NHT-extension to EMD, the Hilbert transform still produces inaccurate re-
sults, indicating that the Hilbert transform might not be the best approach
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to estimating the IF's of the signal f . This brings us to the last section of
this chapter, where we discuss certain limitations of the EMD algorithm.

6.3 Limitations of EMD

The EMD algorithm continues to be one of the most popular methods for
non-stationary signal analysis and decomposition. It is easy to implement,
and it produces good results in practice. However, there are some limita-
tions of this method.

A major drawback of the EMD-HSA approach is that the IF's θ′j, j =
1, . . . , N, produced by the Hilbert transform method, might be negative.
This is a big disadvantage, since a negative IF is not physically meaningful.

When EMD was introduced in [36], the authors argued that the de�ning
properties of an IMF (in (i) and (ii) on p.103) are necessary conditions on
a function so that the Hilbert transform applied to this function produces
a non-negative IF. They deduced this by considering the function

f(t) = cos 2πct+ α, (6.3.1)

where α is a constant and c > 0, with Hilbert transform given by

(Hf)(t) = sin 2πct,

from (2.6.4)-(2.6.5) in Example 2.6.1. From (2.6.11) in Theorem 2.6.4, we
know that the IF ω(t) of f , as calculated through the HSA approach, will
be non-negative if and only if

f(t) (Hf)′ (t)− (Hf) (t)f ′(t)

= 2πc cos 2πct (cos 2πct+ α) + 2πc sin2 2πct

= 2πc+ 2πcα cos 2πct ≥ 0,

which will be true only if α ≤ 1 (the result obtained in [36], but with a
di�erent approach). Moreover, the IF of the signal f in (6.3.1) should (the-
oretically) be constant, which will only be true if α = 0. Therefore, for
the special case when f is a cosine function, a physically meaningful IF can
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only be obtained when f is symmetric with respect to the zero mean level
� in other words, when f is an IMF.

However, this condition is not su�cient to yield a non-negative IF. In
fact, R.C. Sharpley and V. Vatchev in [46] constructed explicit counter-
examples of functions that satisfy the de�nition of an IMF, while its IF
calculated through the Hilbert transform method changes sign on intervals
of positive measure (see [46, Prop. 4.1�4.4]).

A second limitation of the EMD-HSA approach stems from the fact that
the Hilbert transform is de�ned for real-valued functions on the entire real
line (see De�nition 2.6.1), while real-life signals are typically de�ned on
bounded or half-in�nite intervals. Therefore, arti�cial extension of an IMF
to the real line is necessary in order to apply the Hilbert transform, often
yielding unreliable results (as also noted by [37, 33]).

Another important aspect of EMD is the construction of upper and
lower envelopes through interpolation of local maxima and minima. In the
original formulation of EMD in [36], the authors proposed to use standard
cubic spline interpolation. Not being a local method (as described in Sec-
tion 2.4 in Chapter 2), it becomes computationally expensive to obtain the
interpolant when the number of extrema becomes very large. Taking care
of the boundary values is also somewhat problematic. One solution men-
tioned in [36, 10] is to extend the data signal at the boundaries according to
some user-de�ned rule; however, this is arti�cial and does not always yield
accurate results.

In Chapter 9, we will describe our approach to the question of IF es-
timation of signal components, which will address the above limitations of
the EMD-HSA approach.
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Chapter 7

Synchrosqueezed wavelet

transform

Described as a �mathematically sound� alternative to EMD, the synchrosqueezed
wavelet transform, introduced by I. Daubechies and others [20, 21], is an-
other approach in the literature to non-stationary signal analysis (as de-
scribed brie�y in Chapter 1). Instead of computing the IF's after the signal
is decomposed (as is done when applying EMD), the SST approach is to
�rst estimate the IF's of the signal components, under the assumption that
the signal satis�es the properties of the AHM in (5.2.3)-(5.2.4), before re-
covering the signal components of the model. The details and motivation of
this idea are described in Section 7.1. Limitations of the SST are discussed
in Section 7.2.

7.1 SST

As the name suggests, the synchrosqueezed wavelet transform works through
�squeezing� the continuous wavelet transform (which we de�ned in (2.5.4)
in Chapter 2), where the analysis wavelet ψ of the CWT is required to
be admissible in the sense that its Fourier transform (de�ned in (2.2.1) in
Chapter 2) vanishes on the negative frequency axis; that is,

ψ̂(ω) = 0, ω < 0. (7.1.1)
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The �squeezing out� of IF's is achieved through the single reference IF
function

ωf (b, a) :=

{
∂b(Wψf)(b,a)

2πi(Wψf)(b,a)
, if (Wψf)(b, a) 6= 0;

−∞, otherwise,
(7.1.2)

for any function f ∈ L2(R), where ∂b denotes the partial derivative with
respect to b. We call the function ωf in (7.1.2) the frequency reassignment
(FRA) rule.

The de�nition of the FRA rule is motivated in [20, 21] by considering
the monotone signal

g(t) = A cos 2πct, (7.1.3)

with frequency c > 0 and amplitude A > 0. From the de�nitions of the
CWT in (2.5.4) and the Fourier transform in (2.2.1), we deduce that, for
b ∈ R and a > 0,

(Wψg)(b, a)

=
A

a

∫ ∞
−∞

cos 2πctψ

(
t− b
a

)
dt

=
A

2a

∫ ∞
−∞

(ei2πct + e−i2πct)ψ

(
t− b
a

)
dt

=
A

2

(∫ ∞
−∞

ei2πcauψ(u)du

)
ei2πbc +

A

2

(∫ ∞
−∞

e−i2πcauψ(u)du

)
e−i2πbc

=
A

2

(∫ ∞
−∞

e−i2πcauψ(u)du

)
ei2πbc +

A

2

(∫ ∞
−∞

ei2πcauψ(u)du

)
e−i2πbc

=
A

2
ψ̂(2πac)ei2πbc +

A

2
ψ̂(−2πac)e−i2πbc

=
A

2
ψ̂(2πac)ei2πbc,

since ψ satis�es (7.1.1). Therefore,

∂b(Wψg)(b, a) = i2πc(Wψg)(b, a),

so that (7.1.2) yields

ωg(b, a) =
∂b(Wψg)(b, a)

2πi(Wψg)(b, a)
=
i2πc(Wψg)(b, a)

2πi(Wψg)(b, a)
= c.
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In other words, the FRA rule extracts the frequency c of the monotone
signal g in (7.1.3) precisely.

With these de�nitions, the SST may be applied to non-stationary sig-
nals of the AHM (5.2.1), satisfying the AHM conditions (5.2.3)-(5.2.4), as
follows:

De�nition 7.1.1 (SST) Let f ∈ Ac1,c2ε,d . For a function h ∈ L1(R), let

hα(t) :=
1

α
h

(
t

α

)
, 0 < α << 1, (7.1.4)

so that {hα} converges to the delta distribution as α → 0, and let ψ be an
admissible wavelet that satis�es (7.1.1). Then the SST SΓ,αf of f at the
time-frequency point (b, ξ) is de�ned by

(SΓ,αf)(b, ξ) =

∫
{a:|(Wψf)(a,b)|>Γ}

(Wψf)(b, a)hα(|ξ − ωf (b, a)|)da

a
, (7.1.5)

where Γ > 0 is a thresholding parameter, and ωf is de�ned in (7.1.2).

In other words, the SST is a special type of reassignment method (as de-
scribed in Section 5.3 of Chapter 5) on the CWT which reallocates the
values of the CWT from the time-scale point (b, a) to a time-frequency po-
sition (b, ξ), through the FRA rule (7.1.2).

The output of the SST may be viewed as a two-dimensional digital im-
age representing a set of IF curves. An example is displayed in Figure 7.1,
for the stationary signal f that we considered in (6.1.4)-(6.1.5) in Chapter
6. The original signal can be seen in (a), while (b) shows the digital image
output of the SST, displaying three distinct IF curves (one for each com-
ponent in f).

The set of IF curves displayed in the digital image output of the SST
may now be extracted through a suitable curve �tting method (as described
in [11, 48]). In practice, the curves are extracted one by one, where the im-
age pixels that constitute a particular curve are removed from the image
before the next curve is found. This process is repeated until no obvious
curve remains in the digital image. The curves extracted in this way are
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Figure 7.1 Illustration of SST. (a) Original signal f(t) = cos 2π(8t) + cos 2π(4t) + cos 2πt. (b)
SST output.

estimations of the IF's φ′j(t) of the signal components fj(t) in the AHM in
(5.2.2), for j = 1, . . . , N . This curve extraction process requires supervi-
sion, especially if the thresholding parameter is small.

Once the N IF's φ′j(t), j = 1, . . . , N, have been determined, they may
be used to estimate the signal components fj(t) in (5.2.2). For a positive
constant ∆ < d

1+d
(with d de�ned in the AHM conditions (5.2.4)), this

estimation is given by

fΓ,∆
j (t) := ReR−1

ψ

∫ 1+∆
φ′
j
(t)

1−∆
φ′
j
(t)

(Wψf)(t, a)χ{a:|(Wψf)(b,a)|>Γ}(a)
da

a
, (7.1.6)

where �Re� means taking the real part, and

Rψ :=

∫ ∞
0

ψ̂(ζ)

ζ
dζ. (7.1.7)

The amplitude Aj of each fj in (5.2.2) may be estimated through

AΓ,∆
j (t) = |fΓ,∆

j (t)|,



CHAPTER 7 Van der Walt, Maria, 2015, UMSL, p.116

and an estimator of the phase φj of fj in (5.2.2) may be obtained by un-

wrapping the phase of
fΓ,∆
j (t)

AΓ,∆
j (t)

, for each j = 1, . . . , N . The interested reader

is referred to [20, 11, 47] for details on these reconstruction formulas.

Lastly in this section, we provide the main result of [20], which summa-
rizes the working of the SST and describes the robustness of the SST (see
also [11, Theorem 3.1]):

Theorem 7.1.1 (SST) Let f be a function in Ac1,c2ε,d , and set ε̃ := ε1/3.
Let ψ be a wavelet in the Schwartz space (that is, the space of all functions
with rapidly decreasing derivatives) such that its Fourier transform ψ̂ is
supported in [1−∆, 1 + ∆] for ∆ < d

1+d
. With the SST Sε̃,αf of f de�ned

in De�nition 7.1.1, the following hold for su�ciently small ε:

(i) |(Wψf)(b, a)| > ε̃ only when, for some j ∈ {1, . . . , N}, (b, a) ∈ Zj,
with Zj :=

{
(b, a) : |aφ′j(b)− 1| < ∆

}
;

(ii) For each j ∈ {1, . . . , N}, and for each pair (b, a) ∈ Zj for which
|(Wψf)(b, a)| > ε̃,

|ωf (b, a)− φ′j(b)| ≤ ε̃;

(iii) For each j ∈ {1, . . . , N}, there exists a constant C such that, for any
b ∈ R,∣∣∣∣∣R−1

ψ

∫ 1+∆
φ′
j
(b)

1−∆
φ′
j
(b)

(Wψf)(b, a)χ{a:|(Wψf)(b,a)|>ε̃}(a)
da

a
− Aj(b)ei2πφj(b)

∣∣∣∣∣ ≤ Cε̃,

with Rψ de�ned in (7.1.7).

As explained in [20, 47], this theorem tells us that the plot of |Sε̃,αf |
is concentrated around the IF curves

{
φ′j(t)

}
, and that each fj(t) may

be reconstructed as in (7.1.6)-(7.1.7). In other words, the SST provides a
clearer visual representation of the IF information of a signal in the time-
frequency plane, and this method provides a way to construct the signal
components fj(t) once the IF's φ

′
j(t) have been obtained, for j = 1, . . . , N .
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7.2 Limitations of SST

We have seen in the previous section that the SST provides us with a method
to analyze non-stationary signals, with a rigorous mathematical foundation.
In particular, since the SST is based on the AHM (5.2.1) with restrictions
given in (5.2.3)-(5.2.4), the IF's φ′1(t), . . . , φ′N(t) produced by the SST are
guaranteed to be non-negative. This poses a signi�cant advantage over the
EMD-HSA approach (as discussed in Section 6.3 of Chapter 6). However,
there are a couple of limitations of the SST.

First, as described in Section 7.1, the output of the SST is a digital im-
age, displaying a set of IF curves � one curve for every φ′j(t), j = 1, . . . , N .
These curves must then be extracted, one by one, through a suitable curve
�tting scheme. This procedure could be quite complicated, particularly if
the number N of IF curves is large, or when the IF curves are close together
in the time-frequency plane. Therefore, the curve extraction process must
be supervised.

A second obstacle of the SST approach is that the analysis wavelet of
the CWT is required to be admissible, in the sense that ψ̂(ω) = 0, ω < 0
(as given in (7.1.1)). This means the analysis wavelet cannot be compactly
supported in the time domain, and is therefore not suited to real-time im-
plementation.

In Chapter 9, we will outline our approach to estimating the instanta-
neous frequencies of signal components, which will address these limitations
of the SST approach. In a nutshell, our idea will combine the EMD algo-
rithm of Chapter 6 and the SST in a clever way to exploit the plus points
of both methods. Before describing our approach, though, we proceed to
describe the analytic vanishing moment wavelets (as introduced in Chapter
1) in the next chapter. This type of wavelet will be used as the analysis
wavelet in the CWT when applied in the SST in our approach.
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Chapter 8

Analytic vanishing moment

wavelets

The analytic vanishing moment (VM) spline wavelets were recently intro-
duced by C.K. Chui, Y.-T. Lin and H.-T. Wu [15] to achieve real-time imple-
mentation of the synchrosqueezed wavelet transform (described in Chapter
7). Moreover, the application of these wavelets in the SST have the added
bene�t that they permit an explicit formulation of the derivative of the
CWT in the FRA rule ωf (b, a) in (7.1.2), as we shall see in (8.2.2) of this
chapter.

Because of these properties of the analytic VM wavelets, we will also
apply these wavelets as analysis wavelet in the CWT as part of the SST in
our approach (to be described in Chapter 9). Our application di�ers from
the application in [15], though, in the sense that we construct the analytic
VM spline wavelets by using a di�erent knot sequence (to be described in
(8.1.2)-(8.1.4)).

In [15], the analytic VM wavelet is de�ned to be the analytic signal
representation (as in (2.6.6)) of a VM wavelet. In Section 8.1, we therefore
start by constructing VM wavelets and discussing their derivatives, before
considering their analytic representation in Section 8.2. The application
of these wavelets in the CWT as part of the SST, with speci�c reference
to applying the CWT on a bounded interval by considering analytic VM
wavelets with stacked knots, is also discussed in Section 8.2.
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8.1 VM wavelets

For an integer m ≥ 1, let x be an arbitrary knot sequence, with xj+1 ≥ xj
and xj+m > xj for all j ∈ Z. Then, for an integer n ≥ 1, the vanishing
moment wavelets ψx,m,n,j, j ∈ Z, are constructed in [15] in terms of the
mth order B-splines (as de�ned in (2.3.6) in Chapter 2) to have minimum
support and satisfy the n vanishing moment conditions

∫ ∞
−∞

x`ψx,m,n,j(x)dx = 0, ` = 0, 1, . . . , n− 1;∫ ∞
−∞

xnψx,m,n,j(x)dx 6= 0.

Under these conditions, it is shown in [15, Theorem 3.2] that the VM
wavelets ψx,m,n,j satisfy the unique formulation (up to a non-zero constant
multiple)

ψx,m,n,j(x) = N
(n)
x,m+n,j(x), j ∈ Z. (8.1.1)

It follows immediately that the derivative of the VM wavelet ψx,m,n,j in
(8.1.1) is given by

ψ′x,m,n,j(x) = N
(n+1)
x,m+n,j(x) = N

(n+1)
x,(m−1)+(n+1),j(x) = ψx,m−1,n+1,j(x),

for any j ∈ Z; in other words, the derivative of a VM wavelet is also a VM
wavelet (as in [15, Corollary 3.3]).

For our application of the VM wavelets as analysis wavelet in the CWT,
let us consider the knot sequence (with stacked knots)

x : x−m+1 = · · · = −L = x0 < x1 < · · · < xm+n = L = · · · = x2m+n−1,
(8.1.2)

with x0, . . . , xm+n uniformly spaced in the bounded interval [−L,L], so that

xj = −L+ jh, j = 0, . . . ,m+ n, (8.1.3)

with knot spacing

h :=
2L

(m+ n)
. (8.1.4)

In this setting, we may derive an explicit representation of the interior
wavelet ψx,m,n,0 in terms of the normalized mth order B-splines, by applying
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the formula (2.3.15) for the derivative of a B-spline n times to (8.1.1),

starting with N
(n)
x,m+n,0; that is,

N
(n)
x,m+n,0(x)

=
m+ n− 1

(m+ n− 1)h
N

(n−1)
x,m+n−1,0(x)− m+ n− 1

(m+ n− 1)h
N

(n−1)
x,m+n−1,1(x)

=
1

h

[
N

(n−1)
x,m+n−1,0(x)−N (n−1)

x,m+n−1,1(x)
]

=
1

h

[
m+ n− 2

(m+ n− 2)h
N

(n−2)
x,m+n−2,0(x)− m+ n− 2

(m+ n− 2)h
N

(n−2)
x,m+n−2,1(x)

− m+ n− 2

(m+ n− 2)h
N

(n−2)
x,m+n−2,1(x) +

m+ n− 2

(m+ n− 2)h
N

(n−2)
x,m+n−2,2(x)

]
=

1

h2

[
N

(n−2)
x,m+n−2,0(x)− 2N

(n−2)
x,m+n−2,1(x) +N

(n−2)
x,m+n−2,2(x)

]
= · · ·

=
1

hn

n∑
k=0

(−1)k
(
n

k

)
Nx,m,k(x),

so that

ψx,m,n,0(x) =
1

hn

n∑
k=0

(−1)k
(
n

k

)
Nx,m,0(x− kh).

We note that the support of ψx,m,n,0 spans the entire interval, so that

suppψx,m,n,0 = [−L,L].

The m−1 boundary wavelets ψx,m,n,j, j = −m+1, . . . ,−1, at the left hand
side endpoint x = −L, with supports

suppψx,m,n,j = [−L,L+ jh], j = −m+ 1, . . . ,−1,

and the m − 1 boundary wavelets ψx,m,n,j, j = 1, . . . ,m − 1, at the right
hand side endpoint x = L, with supports

suppψx,m,n,j = [−L+ jh, L], j = 1, . . . ,m− 1,

may be obtained similarly by applying the B-spline derivative formula
(2.3.15) n times to (8.1.1), starting with N

(n)
x,m+n,j, for j = −m+ 1, . . . ,−1,
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1, . . . ,m − 1, respectively (keeping in mind the stacked knots at x = −L
and x = L in (8.1.2)).

Speci�cally, for m = 4 and n = 1, we have the following.

Theorem 8.1.1 (VM wavelets with m = 4, n = 1) For the knot sequence
x in (8.1.2)-(8.1.4) with m = 4 and n = 1, the cubic VM wavelets with 1
vanishing moment are given by

ψx,4,1,0(x) = 1
h

(Nx,4,0(x)−Nx,4,0(x− h)) ;

ψx,4,1,j(x) = 4
h

(
1

4+j
Nx,4,j(x)− 1

5+j
Nx,4,j+1(x)

)
, j = −3,−2,−1;

ψx,4,1,j(x) = 4
h

(
1

5−jNx,4,j(x)− 1
4−jNx,4,j+1(x)

)
, j = 1, 2, 3.

(8.1.5)
The derivatives of the VM wavelets ψx,4,1,j, j = −3, . . . , 3, are given by

ψ′x,4,1,j(x) = ψx,3,2,j(x), j = −3, . . . , 3.

The cubic VM wavelets of Theorem 8.1.1 are shown in Figures 8.1 and
8.2 (with the speci�c choice of L = 5).

Figure 8.1 Interior wavelet ψx,4,1,0 on the interval [−5, 5].
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Figure 8.2 Boundary wavelets on the interval [−5, 5]. (a)-(c) ψx,4,1,−3, ψx,4,1,−2 and ψx,4,1,−1.
(d)-(f) ψx,4,1,1, ψx,4,1,2 and ψx,4,1,3.

The VM wavelets ψx,3,2,j, j = −3, . . . , 3, can be obtained similarly to
ψx,4,1,j, j = −3, . . . , 3, in (8.1.5) by applying the B-spline derivative for-
mula (2.3.15) twice to (8.1.1) (with m = 3 and n = 2). This leads to the
formulations in terms of quadratic B-splines (de�ned in (2.3.6) with m = 3)

ψx,3,2,0(x) = 1
h2 (Nx,3,0(x)− 2Nx,3,0(x− h) +Nx,3,0(x− 2h)) ;

ψx,3,2,−3(x) = 12
h

(
−3

2
Nx,3,−2(x) + 1

4
Nx,3,−1(x)

)
;

ψx,3,2,j(x) = 12
h

(
1

(4+j)(3+j)
Nx,3,j(x)−

[
1

(4+j)2 + 1
(5+j)(4+j)

]
Nx,3,j+1(x)

+ 1
3(5+j)

Nx,3,j+2(x)
)
, j = −2,−1;

ψx,3,2,j(x) = 12
h

(
1

3(5−j)Nx,3,j(x)−
[

1
(4+j)2 + 1

(5+j)(4+j)

]
Nx,3,j+1(x)

+ 1
(4−j)(3−j)Nx,3,j+2(x)

)
, j = 1, 2;

ψx,3,2,3(x) = 12
h

(
1
4
Nx,3,3(x)− 3

2
Nx,3,4(x)

)
.

(8.1.6)
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8.2 Analytic VM wavelets

We now turn our attention to applying the VM wavelets ψx,4,1,j, j =
−3, . . . , 3, developed in Section 8.1, to the CWT (de�ned in (2.5.4)), em-
ployed as part of the SST in De�nition 7.1.1.

To this end, our �rst task is to pick an analysis wavelet ψ that is ad-
missible according to the de�nition of the SST; that is, it satis�es (7.1.1).
With the de�nition

ψj(x) := ψx,4,1,j(x), j = −3, . . . , 3,

we will consider the analytic representation of ψj as in (2.6.6) in Chapter
2; that is,

ψ?j (x) = ψj(x) + i(Hψj)(x), j = −3, . . . , 3, (8.2.1)

with the Hilbert transform given in De�nition 2.6.1 of Chapter 2. The
wavelet ψ?j in (8.2.1) is called an analytic VM wavelet. We note that ψ?j is
admissible, since, by recalling (2.6.2) in Theorem 2.6.2,

ψ̂?j (ω) = ψ̂j(ω) + i(Ĥψj)(ω) = ψ̂j(ω) + i(−i sgnω)ψ̂j(ω)

=

{
2ψ̂j(ω), if ω ≥ 0;

0, if ω < 0.

We therefore use ψ?0 as the �center� interior analysis wavelet in the CWT,
while ψ?j , j = −3, . . . ,−1, 1, . . . , 3, are used to take care of the boundaries
at x = −L and x = L, respectively. The scaling and translation operations
on the analysis wavelet when applied in the CWT, as indicated in (2.5.3),
are applied as follows.

When scaling by 0 < a < 1, we note that ψ0(x
a
) is a VM wavelet on the

uniformly spaced knot sequence

xa : −L < −L+ ah < −L+ 2ah < · · · < L− 2ah < L− ah < L,

with knot spacing ah, where h := 2L
5
, according to (8.1.4), and with the

support of ψ0(x
a
) given by

suppψ0(x
a
) = [−aL, aL].
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ψ0(x
a
) is also translated by b

a
, where −L(1−a) ≤ b ≤ L(1−a), to ensure

that ψ0(x−b
a

) stays inside the bounded interval [−L,L].

For the boundary wavelets, we apply a similar scaling operation, with
0 < a < 1. For the boundary wavelets at the left hand side endpoint, let
b = −L(1− a), so that the supports of ψj(

x−b
a

), j = −3,−2,−1, are given
by

suppψj(
x−b
a

) = [−L,−L(1− 2a) + jah], j = −3,−2,−1.

On the other hand, for the boundary wavelets at the right hand side
endpoint, we set b = L(1− a), so that the supports of ψj(

x−b
a

), j = 1, 2, 3,
are given by

suppψj(
x−b
a

) = [L(1− 2a) + jah, L], j = 1, 2, 3.

As mentioned at the beginning of this chapter, the derivative property
in Theorem 8.1.1 is one of the key reasons for employing the VM wavelets
in the SST. The �rst step in the execution of the SST is to calculate the
FRA rule in (7.1.2), and this involves the calculation of the derivative of
the CWT. From Theorem 8.1.1, we have an explicit formulation for this
derivative � therefore, the FRA rule in (7.1.2) applied to a function f be-
comes

(ωf )(b, a) =
∂b(Wψ?j

f)(b, a)

2πi(Wψ?j
f)(b, a)

=
〈f(x), ∂bψ

?
j (
x−b
a

)〉
2πi〈f(x), ψ?j (

x−b
a

)〉
=
− 1
a
〈f(x), ψ?x,3,2,j(

x−b
a

)〉
2πi〈f(x), ψ?x,4,1,j(

x−b
a

)〉
,

(8.2.2)

for j = −3, . . . , 3 (unless (Wψ?x,4,1,j
f)(b, a) = 0), with ψx,3,2,j and ψx,4,1,j

given in (8.1.6) and (8.1.5), respectively. Therefore, there is no need to
carry out inaccurate estimation of the derivative of the CWT in the FRA
rule (7.1.2) when using the analytic VM wavelets as analysis wavelet; these
wavelets permit an explicit formulation of the FRA rule, as shown in (8.2.2).

Lastly in this section, we describe the computation of Hψj in the con-
struction of the analytic VM wavelets in (8.2.1). Since each ψj = ψx,4,1,j is a
linear combination of the B-splines Nx,4,−3, . . . , Nx,4,4 (according to (8.1.5)),
and since the Hilbert transform is translation invariant (as shown in Theo-
rem 2.6.1), the computation ofHψj consists in �ndingHNx,4,−3, . . . ,HNx,4,4.
It has been shown by Chen and others [10] that the recursive formulation
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for the computation of B-splines in (2.3.11) in Theorem 2.3.2 is preserved
by the Hilbert transform, so that, for ` = 2, 3, 4,

(HNx,`,k)(x) =
x− xk

x`+k−1 − xk
(HNx,`−1,k)(x) +

x`+k − x
x`+k − xk+1

(HNx,`−1,k+1)(x),

with initial function

(HNx,1,k)(x) =
1

π
ln

∣∣∣∣ x− xkx− xk+1

∣∣∣∣.
This recurrence formulation may therefore be used to construct the analytic
VM wavelets ψ?j = ψ?x,4,1,j, j = −3, . . . , 3, in (8.2.1). The same procedure
may be applied to obtain ψ?x,3,2,j, required in (8.2.2).



Van der Walt, Maria, 2015, UMSL, p.126

Chapter 9

Hybrid EMD-SST scheme

With the empirical mode decomposition and the synchrosqueezed wavelet
transform de�ned in Chapters 6 and 7, respectively, we are now ready to
describe our approach to the question of instantaneous frequency estimation
of signal components. Our idea is to develop a hybrid EMD-SST computa-
tional scheme by combining the �best� parts of EMD and SST: we propose
to use the EMD algorithm to separate a given signal into IMF components,
after which we will apply the SST, instead of Hilbert spectral analysis (as
in the original EMD approach), to each IMF to compute its instantaneous
frequency.

This approach has a number of advantages. First, the SST assures non-
negative instantaneous frequencies of the IMF's, since it is built on the AHM
in (5.2.1)-(5.2.4), thereby addressing one of the main obstacles of the origi-
nal EMD-HSA approach (as discussed in Section 6.3 of Chapter 6). Second,
with our EMD-SST approach, the reliance upon the Hilbert transform to
compute the instantaneous frequency of each IMF is eliminated, solving
many computational issues (described in Section 6.3 as well). Third, since
the SST is only applied to one IMF component at a time (instead of to the
mixed signal as in the original SST approach), there is no need to extract
multiple IF curves (one by one) from the SST digital image output any-
more, solving a major obstacle of the original SST approach (as discussed
in Section 7.2 of Chapter 7). This simpli�es and streamlines the method
signi�cantly, and also produces clearer results (as we shall see in Section
9.2).
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Besides combining EMD and SST in this novel way, we also propose to
modify the EMD algorithm by applying our real-time spline interpolation
scheme for a bounded interval (described in Chapters 3 and 4) in the sifting
process of EMD. As discussed at the start of Chapter 4, this scheme has a
local formulation and is designed to include shape-preserving conditions at
the boundary values, which yield more accurate results near the boundaries
than the standard cubic spline interpolation used in the original formula-
tion of EMD (as we shall see in Section 9.2).

Furthermore, we modify the SST to process signals on bounded or half-
in�nite time intervals by applying analytic VM wavelets with stacked knots
(as described in Chapter 8) as analysis wavelets in the CWT (as part of the
SST). These wavelets facilitate an exact formulation of the time derivative
of the CWT in the FRA rule in (7.1.2), as shown in (8.2.2) in Chapter 8,
and permit a real-time implementation of the SST.

Lastly, we apply a smoothing spline curve �tting scheme, with auto-
matic optimal smoothing through generalized cross-validation (GCV), to
the digital image output of the SST, instead of the least-squares curve �t-
ting scheme described in [11, 47].

In what follows, we provide more detail on our approach described above,
we test our approach using di�erent types of test signals, and we compare
our approach with the original EMD-HSA method. In Section 9.1, we
provide details of the implementation of our hybrid EMD-SST method and
of the curve �tting scheme based on GCV. Examples, visual results and
comparison of errors are discussed in Section 9.2.

9.1 Implementation

Our proposed method of instantaneous frequency estimation of signal com-
ponents can be summarized as follows:

1. Given a signal composed of a number of (not necessarily stationary)
oscillating components, we apply EMD, equipped with our real-time
spline interpolation scheme (described in Chapters 3 and 4), to sepa-
rate the signal into its IMF components. Speci�cally, for easy imple-
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mentation, we apply the blending cubic spline interpolation operator
PE4 in (4.3.1).

2. We apply the SST, with the analytic VM wavelet in (8.2.1) as analysis
wavelet in the CWT, to each IMF separately to estimate its IF.

3. Lastly, we apply a smoothing spline curve �tting scheme, with auto-
matic optimal smoothing parameter selection through GCV, to the
digital image produced by the SST to obtain the IF curve of a given
IMF.

In practice, to apply this curve �tting scheme to the SST grayscale im-
age, we proceed as follows.

Let S be the µ × ν output matrix of the SST, and let the entries in S
be denoted by pi,j for i = 1, . . . , µ, and j = 1, . . . , ν. The entries pi,j may
be interpreted as grayscale image pixel intensities, with the de�nition that
an entry value of 0 represents a white pixel, and increasingly higher values
represent increasingly darker pixels. (Note that pixels with a low intensity
usually represent dark pixels in practice, while high intensity pixels usually
represent light pixels. This setup is inverted in the above de�nition for
application to the SST output matrix S.)

For each j = 1, . . . , b ν
n
c, if

p∗nj := max {p1,nj, . . . , pµ,nj} > M,

where M > 0 (a thresholding parameter) and n > 0 (typically between 10
and 20) are chosen by the user, we record the row index of p∗nj and denote
this value by rnj (so that 1 ≤ rnj ≤ µ). Otherwise, we record the mean
of the row indices of the pixel intensities higher than the 99th percentile of
{p1,nj, . . . , pµ,nj} and set this equal to rnj.

Applying this process for each j = 1, . . . , b ν
n
c, we obtain a sequence

of ordered pairs
{

(n, rn), . . . , (nb ν
n
c, rnbν/nc)

}
, to which we �t a smoothing

spline curve sλ(t) with smoothing parameter λ ≥ 0. More precisely, follow-
ing the approach described in [8], an estimator of sλ(nj), j = 1, . . . , b ν

n
c, is
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given by

s̃λ(nj) = arg min
sλ∈C2[n,nbν/nc]

bν/nc∑
j=1

(rnj − sλ(nj))2 + λ

∫ nbν/nc

n

(s′′λ(x))2dx

 ,

(9.1.1)
where the amount of smoothing is controlled by λ. The unique solution
of (9.1.1) is a natural cubic spline. The optimal smoothing parameter λ
is determined through generalized cross-validation: the GCV estimate λ is
de�ned to be the minimzer of the GCV score

G(λ) =
1

bν/nc
·
∑bν/nc

j=1 (rnj − s̃λ(nj))2

(1− bν/nc−1trA(λ))2 ,

where A(λ) is the hat matrix for a given λ; that is, A(λ) is the bν/nc×bν/nc
matrix satisfying (s̃λ(n), . . . , s̃λ(nbν/nc))T = A(λ)

(
rn, . . . , rnbν/nc

)T
. More

details are given in [50, 18, 29, 8].

We remark that the choice of using the 99th percentile of p1,nj, . . . , pµ,nj,
j = 1, . . . , bν/nc, as a thresholding parameter produces good results in
practice, but it may be adjusted by the user.

9.2 Numerical experiments

We proceed to test our method on three representative signal types.

Example 1:

Our �rst test signal is a stationary signal with three components with
integer frequencies, given by

f(t) = f1(t) + f2(t) + f3(t), (9.2.1)

where

f1(t) = 1
2

cos 2π(16t); f2(t) = 2 cos 2π(4t); f3(t) = 8 cos 2πt. (9.2.2)

The signal f and its three components are displayed in Figure 9.1.
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Figure 9.1 Ex. 1: graphs of originals. (a) Original signal f(t). (b)-(d) Components f1(t),
f2(t), f3(t).

Figure 9.2 displays the three IMF's C1, C2 and C3, approximating the
components f1, f2 and f3, respectively, constructed through applying EMD
with our real-time cubic spline interpolation scheme of Chapters 3 and 4
(speci�cally, we apply the blending operator PE4 in (4.3.1)).

In Figure 9.3, we illustrate the results of applying our modi�ed SST
(with the analytic VM wavelet of Chapter 8) to each IMF C1, C2 and C3

obtained from the modi�ed EMD. The SST digital image output is shown
in grayscale in each case. The pixels selected for curve �tting are circled
in red, and the resulting smoothing spline curve is shown as a red dashed
line in each case. With the true IF's given by φ′2(t) = 4 and φ′3(t) = 1,
the estimated IF's φ′2 and φ′3, in (b) and (c) in Figure 9.3, respectively, are
very accurate. For the higher frequency component, the SST digital image
in Figure 9.3(a) displays a more noisy result, causing a lower estimated IF
than the true value of 16, although it still reveals a constant frequency.
We remark that greater noise reduction may be achieved by choosing an
analytic VM wavelet with a higher number of vanishing moments (at the
expense of computation time). The result here was obtained with an ana-
lytic VM wavelet with 5 vanishing moments (in terms of cubic B-splines so
that m = 4).
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Figure 9.2 Ex. 1: IMF's constructed through EMD with our real-time cubic spline interpola-
tion scheme. (a)-(c) C1(t), C2(t), C3(t).

Next, we proceed to compare the results of our hybrid EMD-SST ap-
proach with the original EMD-HSA approach. In Figure 9.4, we compare
the construction of IMF's through the original EMD (with standard cu-
bic spline interpolation) and the modi�ed EMD (with our real-time spline
interpolation). The true components f1, f2 and f3 are shown in the left
hand side column. The middle column displays the IMF's CO

1 , C
O
2 and

CO
3 constructed through the original EMD algorithm using standard cubic

spline interpolation in the sifting process, while the right hand side col-
umn shows the IMF's CS

1 , C
S
2 and CS

3 obtained by applying the modi�ed
EMD using our real-time cubic spline interpolation scheme in the sifting
process. The results are comparable for the �rst two components; however,
our real-time interpolation scheme produces a closer approximation of the
third component, especially close to the boundaries. This is supported by
the comparison of maximum errors, mean errors and standard deviation of
errors, displayed in Tables 9.1, 9.2 and 9.3, respectively.

A comparison of the estimated IF's is given in Figure 9.5. The column
on the left displays the true IF's φ′1(t) = 16, φ′2(t) = 4 and φ′3(t) = 1. The
middle column displays the estimated IF's φ′O1 , φ′O2 and φ′O3 , obtained by
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Figure 9.3 Ex. 1: digital image output of SST (in grayscale) with IF's estimated through
curve �tting (in red). (a)-(c) φ′1(t), φ

′
2(t), φ

′
3(t).

applying Hilbert spectral analysis to each IMF CO
j , j = 1, 2, 3. On the right

we show our estimated IF's φ′S1 , φ
′S
2 and φ′S3 , constructed through smooth-

ing spline curve �tting (with generalized cross-validation) to our modi�ed
SST applied to each CS

j , j = 1, 2, 3, separately. Especially close to the
endpoints, our hybrid EMD-SST method yield better results than the orig-
inal EMD-HSA approach. This is also evident from the error analysis in
Table 9.1, where the relatively high maximum errors in the estimation of
φ′1, φ

′
2 and φ′3 by the EMD-HSA approach occur at the endpoints of the

time interval. Although our estimation φ′S1 shows a constant frequency, it is
a bit lower than the true value of 16. As explained previously, this could be
improved upon by implementing an analysis wavelet with a higher number
of vanishing moments.

Example 2:

Second, we test our method on another stationary signal with three
components, two of which have irrational frequency values, given by

g(t) = g1(t) + g2(t) + g3(t), (9.2.3)



CHAPTER 9 Van der Walt, Maria, 2015, UMSL, p.133

Figure 9.4 Ex. 1: comparison of IMF's. (a),(d),(g) True components f1(t), f2(t), f3(t).
(b),(e),(h) IMF's CO1 (t), CO2 (t), CO3 (t), obtained from the original EMD with standard cubic

spline interpolation. (c),(f),(i) IMF's CS1 (t), C
S
2 (t), C

S
3 (t), obtained through applying EMD

with our real-time cubic spline interpolation scheme.

Figure 9.5 Ex. 1: comparison of IF estimation. (a),(d),(g) True IF's φ′1(t), φ
′
2(t), φ

′
3(t).

(b),(e),(h) Estimated IF's φ′O1 (t), φ′O2 (t), φ′O3 (t), obtained by applying HSA to the original

EMD. (c),(f),(i) Estimated IF's φ′S1 (t), φ′S2 (t), φ′S3 (t), obtained through smoothing spline curve

�tting of our modi�ed SST applied to each IMF CSj , j = 1, 2, 3 separately.
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EMD-HSA EMD-SST
f1(t) 0.5 0.5
f2(t) 2.0186 2
f3(t) 8 2.5
φ′1(t) 13.2339 0.6724
φ′2(t) 2.3882 0.0145
φ′3(t) 8.9178 0.0564

Table 9.1 Ex. 1: comparison of maximum errors produced by EMD-HSA and EMD-SST
approaches.

EMD-HSA EMD-SST
f1(t) 0.0124 0.0156
f2(t) 0.0972 0.1240
f3(t) 1.4110 0.1210
φ′1(t) 0.1898 0.6724
φ′2(t) 0.1147 0.0145
φ′3(t) 0.1450 0.0564

Table 9.2 Ex. 1: comparison of mean errors produced by EMD-HSA and EMD-SST ap-
proaches.

EMD-HSA EMD-SST
f1(t) 0.0291 0.0340
f2(t) 0.2485 0.2841
f3(t) 1.4427 0.2888
φ′1(t) 0.8111 0
φ′2(t) 0.2910 0
φ′3(t) 0.6925 0

Table 9.3 Ex. 1: comparison of standard deviation of errors produced by EMD-HSA and
EMD-SST approaches.
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Figure 9.6 Ex. 2: graphs of originals. (a) Original signal g(t). (b)-(d) Components g1(t),
g2(t), g3(t).

where

g1(t) = cos 2π(
√

29t); g2(t) = cos 2π(
√

13t); g3(t) = cos 2πt. (9.2.4)

The signal g and its three components are displayed in Figure 9.6.

Figure 9.7 displays the three IMF's C1, C2 and C3, approximating the
components g1, g2 and g3, respectively, while Figure 9.8 illustrates the re-
sults of applying our modi�ed SST to each IMF C1, C2 and C3, with the
SST digital image output in grayscale, the pixels selected for curve �tting
circled in red, and the resulting smoothing spline curve shown as a red
dashed line in each case. The estimated IF's obtained through curve �tting
applied to the SST digital image are remarkably accurate in each case.

Next, we compare the results of our hybrid EMD-SST method with the
original EMD-HSA approach. In Figure 9.9, we compare the construction
of IMF's using the original EMD (with standard cubic spline interpolation)
and EMD with our real-time cubic spline interpolation scheme. The true
components g1, g2 and g3 are shown in the left hand side column. The mid-
dle column displays the IMF's CO

1 , C
O
2 and CO

3 constructed through the
original EMD algorithm using standard cubic spline interpolation, while
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Figure 9.7 Ex. 2: IMF's constructed through EMD with our real-time cubic spline interpola-
tion scheme. (a)-(c) C1(t), C2(t), C3(t).

Figure 9.8 Ex. 2: digital image output of SST (in grayscale) with IF's estimated through
curve �tting (in red). (a)-(c) φ′1(t), φ

′
2(t), φ

′
3(t).
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EMD-HSA EMD-SST
g1(t) 0.9433 0.9433
g2(t) 1.1180 1.3256
g3(t) 1.3108 1.6277
φ′1(t) 11.5341 0.0754
φ′2(t) 7.9199 0.3342
φ′3(t) 8.8720 0.1716

Table 9.4 Ex. 2: comparison of maximum errors produced by EMD-HSA and EMD-SST
approaches.

the right hand side column shows the IMF's CS
1 , C

S
2 and CS

3 obtained by
applying the modi�ed EMD using our real-time cubic spline interpolation
scheme. Our method provides a better approximation of especially the �rst
and second components (rows 1 and 2). This is also supported by the com-
parison of mean errors and standard deviation of errors, provided in Tables
9.5 and 9.6, respectively. The comparison of maximum errors is displayed
in Table 9.4.

A comparison of the estimated IF's is given in Figure 9.10. The column
on the left displays the true IF's φ′1(t) =

√
29 ≈ 5.385, φ′2(t) =

√
13 ≈

3.606 and φ′3(t) = 1. The middle column displays the estimated IF's φ′O1 ,
φ′O2 and φ′O3 , obtained by applying Hilbert spectral analysis to each IMF
CO
j , j = 1, 2, 3. On the right we show our estimated IF's φ′S1 , φ

′S
2 and

φ′S3 , constructed through smoothing spline curve �tting (with generalized
cross-validation) and our modi�ed SST applied to each CS

j , j = 1, 2, 3,
separately. Our hybrid EMD-SST scheme yield much better estimations
of all three IF's φ′1, φ

′
2 and φ′3 than the original EMD-HSA approach, as is

also evident from the comparison of errors in Tables 9.4-9.6. Again, the
relatively high maximum errors in the estimation of φ′1, φ

′
2 and φ′3 by the

EMD-HSA approach (in Table 9.4) are produced at the endpoints of the
time interval, illustrating one of our main motivations for replacing HSA
with the SST (as discussed in Section 6.3 in Chapter 6).

Example 3:

Lastly, we implement our method for a non-linear, non-stationary signal
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Figure 9.9 Ex. 2: comparison of IMF's. (a),(d),(g) True components g1(t), g2(t), g3(t).
(b),(e),(h) IMF's CO1 (t), CO2 (t), CO3 (t), obtained from the original EMD with standard cubic

spline interpolation. (c),(f),(i) IMF's CS1 (t), C
S
2 (t), C

S
3 (t), obtained through applying EMD

with our real-time cubic spline interpolation scheme.

Figure 9.10 Ex. 2: comparison of IF estimation. (a),(d),(g) True IF's φ′1(t), φ
′
2(t), φ

′
3(t).

(b),(e),(h) Estimated IF's φ′O1 (t), φ′O2 (t), φ′O3 (t), obtained by applying HSA to the original

EMD. (c),(f),(i) Estimated IF's φ′S1 (t), φ′S2 (t), φ′S3 (t), obtained through smoothing spline curve

�tting of our modi�ed SST applied to each IMF CSj , j = 1, 2, 3 separately.
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EMD-HSA EMD-SST
g1(t) 0.4103 0.2431
g2(t) 0.4228 0.2604
g3(t) 0.2262 0.2845
φ′1(t) 0.8188 0.0754
φ′2(t) 0.3275 0.0531
φ′3(t) 0.2546 0.0557

Table 9.5 Ex. 2: comparison of mean errors produced by EMD-HSA and EMD-SST ap-
proaches.

EMD-HSA EMD-SST
g1(t) 0.2097 0.1403
g2(t) 0.2214 0.1821
g3(t) 0.2582 0.3450
φ′1(t) 0.8489 0
φ′2(t) 0.5168 0.0817
φ′3(t) 0.6685 0.0481

Table 9.6 Ex. 2: comparison of standard deviation of errors produced by EMD-HSA and
EMD-SST approaches.

with two components, given by

h(t) = h1(t) + h2(t), (9.2.5)

where {
h1(t) = 0.1(t4 − 12t3 + 44t2 − 48t) cos 2π(3t+ 0.2t2);

h2(t) = e(−0.15t) cos 2π(2t+ 0.2 cos t),
(9.2.6)

so that
φ′1(t) = 3 + 0.4t; φ′2(t) = 2− 0.2 sin t.

The signal h and its two components are shown in Figure 9.11.

Figure 9.12 displays the two IMF's C1 and C2, approximating the com-
ponents h1 and h2, respectively, while Figure 9.13 illustrates the results of



CHAPTER 9 Van der Walt, Maria, 2015, UMSL, p.140

Figure 9.11 Ex. 3: graphs of originals. (a) Original signal h(t). (b)-(c) Components h1(t),
h2(t).

applying our modi�ed SST to each IMF C1 and C2, with the SST digital
image output in grayscale, the pixels selected for curve �tting circled in red,
and the resulting smoothing spline curve shown as a red dashed line in each
case.

In Figure 9.14, we compare the construction of IMF's through the orig-
inal EMD (with standard cubic spline interpolation) and EMD with our
real-time cubic spline interpolation. The true components h1 and h2 are
shown in the left hand side column. The middle column displays the IMF's
CO

1 and CO
2 constructed through the original EMD algorithm using stan-

dard cubic spline interpolation in the sifting process, while the right hand
side column shows the IMF's CS

1 and CS
2 obtained by applying the modi-

�ed EMD using our real-time cubic spline interpolation scheme in the sifting
process. The maximum errors, mean errors and standard deviation of er-
rors are provided in Tables 9.7, 9.8 and 9.9, respectively. With respect to
the estimation of signal components, the results of the two methods are
comparable.

Lastly, a comparison of the estimated IF's, constructed through the
original EMD-HSA approach and our hybrid EMD-SST scheme, is given in
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Figure 9.12 Ex. 3: IMF's constructed through EMD with our real-time cubic spline interpo-
lation scheme. (a)-(b) C1(t), C2(t).

Figure 9.13 Ex. 3: digital image output of SST (in grayscale) with IF's estimated through
curve �tting (in red). (a)-(b) φ′1(t), φ

′
2(t).
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Figure 9.14 Ex. 3: comparison of IMF's. (a),(d) True components h1(t), h2(t). (b),(e)

IMF's CO1 (t), CO2 (t), obtained from the original EMD with standard cubic spline interpolation.

(c),(f) IMF's CS1 (t), C
S
2 (t), obtained through applying EMD with our real-time cubic spline

interpolation scheme.

EMD-HSA EMD-SST
h1(t) 0.6567 0.4766
h2(t) 0.5536 1.0273
φ′1(t) 6.5744 0.3421
φ′2(t) 7.4990 0.5039

Table 9.7 Ex. 3: comparison of maximum errors produced by EMD-HSA and EMD-SST
approaches.

Figure 9.15. The column on the left displays the true IF's φ′1(t) = 3 + 0.4t
and φ′2(t) = 2 − 0.2 sin t. The middle column displays the estimated IF's
φ′O1 and φ′O2 , obtained by applying Hilbert spectral analysis to each IMF
CO
j , j = 1, 2. On the right we show our estimated IF's φ′S1 and φ′S2 , con-

structed through smoothing spline curve �tting (with generalized cross-
validation) and our modi�ed SST applied to each CS

j , j = 1, 2, separately.
Our hybrid EMD-SST provide much better estimations of the IF's of both
signal components. This is also supported by the error analysis in Tables
9.7-9.9.
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Figure 9.15 Ex. 3: comparison of IF estimation. (a),(d) True IF's φ′1(t), φ
′
2(t). (b),(e)

Estimated IF's φ′O1 (t), φ′O2 (t), obtained by applying HSA to the original EMD. (c),(f) Estimated

IF's φ′S1 (t), φ′S2 (t), obtained through smoothing spline curve �tting of our modi�ed SST applied

to each IMF CSj , j = 1, 2 separately.

EMD-HSA EMD-SST
h1(t) 0.1143 0.0818
h2(t) 0.1474 0.1537
φ′1(t) 0.4460 0.0970
φ′2(t) 0.1920 0.1683

Table 9.8 Ex. 3: comparison of mean errors produced by EMD-HSA and EMD-SST ap-
proaches.

EMD-HSA EMD-SST
h1(t) 0.1402 0.1081
h2(t) 0.1329 0.1847
φ′1(t) 0.7896 0.0827
φ′2(t) 0.4852 0.1193

Table 9.9 Ex. 3: comparison of standard deviation of errors produced by EMD-HSA and
EMD-SST approaches.
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Figure 9.16 Ex. 3: comparison of our hybrid EMD-SST scheme and original SST approach.
(a) The output from the (improved) SST (with our analytic VM wavelet and boundary con-
siderations) applied to the mixed input signal. (b)-(c) The output from the hybrid EMD-SST
approach.

To illustrate the advantage of �rst decomposing a given signal using the
EMD algorithm before estimating each component's IF using the modi�ed
SST, we also display, in Figure 9.16, the result of the original SST approach
applied to the mixed signal h in (9.2.5)-(9.2.6) (where we used our analytic
VM wavelet in the CWT with boundary considerations), as well as the
result of our hybrid EMD-SST approach. We note that, as a result of
�rst applying EMD to separate the input signal into IMF components, the
shapes of the IF curves displayed in the digital SST images from our hybrid
EMD-SST approach are much clearer than in the original SST output.
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Chapter 10

Final remarks

The contributions of this dissertation can be grouped into two categories.

First, we formulate a new spline interpolation scheme for a bounded in-
terval in terms of themth order B-splines, by combining a quasi-interpolation
spline operator with a local spline interpolation operator. The end result
is a blending operator with a local formulation that preserves polynomials
of degree ≤ m− 1 and satis�es certain Hermite interpolation conditions at
a given sequence of discrete data points. A corresponding approximation
order analysis is also derived rigorously for both quasi-interpolation and
blending interpolation operators.

The local formulation and boundary considerations of the method make
this spline interpolation scheme particularly useful, since it facilitates real-
time implementation for fast computation (without extending the signal in
any way). It may be applied in applications such as the empirical mode
decomposition algorithm, where an interpolation scheme is required in its
sifting procedure.

Second, we introduce a novel approach to instantaneous frequency es-
timation of (non-stationary) signal components. This approach consists of
combining the �best� parts of the empirical mode decomposition and the
synchrosqueezed wavelet transform into a hybrid EMD-SST scheme. In
a nutshell, we apply a modi�ed SST to each IMF produced by a modi�ed
EMD. While our modi�ed SST assures non-negative instantaneous frequen-
cies of the IMF's, the EMD eliminates the guessing work of the number of
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signal components from the digital image of the original SST approach.
More speci�cally, we modify the SST to process signals on bounded or half-
in�nite time intervals by applying VM wavelets with stacked knots, whereas
we replace the standard cubic spline interpolation in the sifting process of
EMD with our real-time spline interpolation scheme for bounded intervals.
In addition, we replace the Hilbert transform of the original EMD approach
by our modi�ed SST to avoid arti�cial extension of the IMF's to the real
line, solving many computational issues.

We apply this scheme to di�erent test signals to obtain visual results
and error comparisons. According to these results, our approach provides
a signi�cantly more accurate instantaneous frequency estimation of signal
components than the original EMD-HSA approach. The construction of
IMF's through EMD is also improved by our real-time spline interpolation
scheme.

In this dissertation, we have implemented the original formulation of
the EMD algorithm, only replacing the standard cubic spline interpolation
scheme by our real-time spline interpolation method. Further work must
be done to improve this algorithm by implementing some of the many ex-
tensions to EMD in the literature. One example of such an extension is
the ensemble EMD, which aims to make EMD more accurate and robust to
noise.

In addition, it is our goal to replace the SST in our hybrid EMD-SST
approach by the direct method for instantaneous frequency estimation, in-
troduced recently in [16]. This method can be realized in near real-time,
and it can be extended directly to the multivariate setting.
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