
University of Missouri, St. Louis
IRL @ UMSL

Dissertations UMSL Graduate Works

5-12-2014

Basis Function Approaches for Two Dimensional
Cochlear Models
Lihua Li
University of Missouri-St. Louis, ll9n8@mail.umsl.edu

Follow this and additional works at: https://irl.umsl.edu/dissertation

Part of the Mathematics Commons

This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in
Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.

Recommended Citation
Li, Lihua, "Basis Function Approaches for Two Dimensional Cochlear Models" (2014). Dissertations. 259.
https://irl.umsl.edu/dissertation/259

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Missouri, St. Louis

https://core.ac.uk/display/217321789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://irl.umsl.edu?utm_source=irl.umsl.edu%2Fdissertation%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/grad?utm_source=irl.umsl.edu%2Fdissertation%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=irl.umsl.edu%2Fdissertation%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation/259?utm_source=irl.umsl.edu%2Fdissertation%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:marvinh@umsl.edu


Basis Function Approaches for Two Dimensional Cochlear Models

Lihua Li

M.Phil., Computer Science, City University of Hong Kong, 2010

B.S., Computer Science, Wuhan University, 2008

A Thesis Submitted to the Graduate School a the University of Missouri – St. Louis

in Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy in Applied Mathematics

May 2014

Advisory Committee

Charles K. Chui, Ph.D.

Chairperson

Wenjie He, Ph.D.

Henry Kang, Ph.D.

Uday Chakraborty, Ph.D.

Copyright, Lihua Li, 2014



Abstract

The human cochlea possesses the amazing ability of analyzing audio signals. The

structures and mechanisms behind its characteristic response to sound stimuli has

been an active area of research for decades. It has been demonstrated that mathe-

matical cochlear modeling poses a promising alternative to discover the elusive activ-

ities in an in vivo cochlea. However, despite the successful application of numerical

methods such as the Wentzel–Kramers–Brillouin (WKB) method, finite difference

method (FDM) and finite element method (FEM), the critical effects of the choice

of basis functions have not been studied exclusively for the numerical solutions of

cochlea models. This work presents the numerical solution procedures to two types

of cochlear models using the basis function collocation approach. Accuracies and ef-

fectiveness of basis functions are evaluated by comparing simulation results with past

experiment and physiological data. The time-domain solutions in response to vari-

ous audio inputs are also shown. The cochlear model demonstrates sound processing

abilities which are qualitatively comparable to physiological data. It is hoped that

the results in this work would help in laying the foundation for future cochlear model

solutions and cochlea-based audio signal processor.
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List of Abbreviations

The following table describes the list of abbreviations and acronyms used through-

out the thesis. The page number on which each one is defined or first used is also

given.

Abbreviation Meaning Page
WKB Wentzel–Kramers–Brillouin (method) i
FDM finite difference method i
FEM finite element method i
OHC outer hair cell 1
OW oval window 6
RW round window 6
BM basilar membrane 6
RM Reissner’s membrane 6
SV scala vestibuli 6
ST scala tympani 6
SM scala media 7
OC organ of Corti 7
IP inner pillar cell 7
OP outer pillar cell 7
IHC inner hair cell 7
TM tectorial membrane 8
CP characteristic place 9
2TS two-tone suppression 15
FF feed-forward 17
RBF radial basis function 22

MQRBF multiquadric radial basis function 23
GRBF Gaussian radial basis function 26
QS quadratic spline 29
CS cubic spline 29

Table 1: Abbreviations
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Chapter 1

Introduction

The sense of hearing for human is extraordinary, for its ability to perceive sounds

with wide range of magnitude, to distinguish individual frequencies, and to maintain

satisfactory performance in adverse situations. It is believed that the cochlea plays an

crucial role in the exceptional performance of the human auditory system. Resided

in the bony labyrinth, the cochlea converts the fluctuation in mechanical sound pres-

sure into electrical spikes in the auditory nerve, decomposing the audio signal by

frequency, boosting up weak signals, attenuating high-level sounds, and creating in-

terferences between different frequencies. For decades, physiological researches have

been conducted to reveal the elusive mechanism behind the sound analysis capability

of the cochlea. However, medical experiments often encounter great difficulties for

the minuscule scale and the delicate structure of the cochlea.

Mathematical cochlear models provides a promising alternative to unlock the mys-

teries of the biological cochlea. Combining results in recent physiological measure-

ments, and numerical techniques such as the WKB method and the finite difference

method, a large extent of the cochlea mechanics have been revealed. In the mam-

malian cochlea, different frequencies of the input signal incites different locations of

the basilar membrane to vibrate. The vibrations are then enhanced and reshaped

by the nonlinear cochlear amplifier, resulting in sensitive audio perception and acute

frequency selectivity. It is commonly believed that the cochlear amplifier originates

from the the electro-motilities of the outer hair cells (OHCs) residing in the organ

of Corti. Active cochlear models that incorporate OHC feedback mechanisms are

proposed to give responses qualitatively matching to physiological data.

As a variety of numerical techniques has been applied to find the solutions of math-

ematical cochlear models, the effects of different basis functions to simulation results

are rarely studied despite their critical role in spatial discretization. By the proper

1
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selection of basis functions and the corresponding discretization scheme, efficient so-

lutions can be obtained while the numerical errors of the models are minimized. Such

research lays the foundation for future studies of cochlear modeling where complex

domain geometry and convoluted physical mechanisms are incorporated.

The contribution of this work is two-fold. First, finding out the best strategy of

selecting the basis functions and the discretization scheme for solving cochlear models.

Various basis functions are applied in the solution of the spatial cochlear model, and

properties such as solution accuracy and stability are evaluated to determine the suit-

ability of each basis functions. Second, investigating the output of the cochlear model

in response to different types of audio signals. The dynamic and static states of the

system are studied, and the results are compared to past simulation and physiological

data.

1.1 Road Map

The following describes the organization of this thesis.

1.1.1 Chapter 2: Background

Chapter 2 is dedicated to introducing the background of the present work. The

first part describes the anatomy structure and the mechanics of the human cochlea.

The general work mode, the micro-structures, and the characteristic behaviors of

the cochlea are shown. The second part is focused on the past efforts in cochlear

modeling and the solutions to cochlear models. Classical cochlear models such as the

passive model and the OHC feedforward model are discussed, and solutions obtained

by various numerical methods are listed.

1.1.2 Chapter 3: Objectives and Approaches

Chapter 3 describes the objectives and approaches for this research. The first part

states the objectives of this research, defining the scope of the thesis. The second

part describes the types of basis functions used in the solutions of cochlear models.

Their way of construction, numerical properties, and the corresponding discretization

scheme are explained. The third part describes the temporal discretization technique

used in time domain experiments.
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1.1.3 Chapter 4: Cochlear Models and Simulations

Chapter 4 presents the mathematical cochlear models and their experiment results.

The first part gives the formulation of two types of cochlear models: the spatial model

and the temporal-spatial model. The second part presents the experiment results of

the spatial model, where the discussions are focused on the effects of different basis

functions and spatial discretization schemes. The third part shows the experiment

results of the temporal-spatial model, with an emphasis on comparing the model

performance to physiological data.

1.1.4 Chapter 5: Future Work

Chapter 5 discusses possible directions for future development of the present work.

1.1.5 Chapter 6: Conclusion

Chapter 6 concludes the thesis with reviews on important findings.



Chapter 2

Background

2.1 The Cochlea

2.1.1 Cochlear Anatomy

The human peripheral auditory system contains three parts: the outer ear, the middle

ear, and the inner ear (i.e. the cochlea). They play different roles in the process

of sound before the audio signals reach the central auditory system located at the

temporal lobe of the human brain.

The outer ear and the middle ear

The outer ear consists of the pinna and the external auditory canal that leads to the

eardrum. The main function of the outer ear is to magnify sound pressure for later

process. As sound waves approach the pinna, the energy is condensed and funneled

down to the ear canal due to the conical shape of the pinna. And because the ear canal

is basically a tube filled with air, the sound wave is further amplified as they resonate

within the canal, similar to how sound resonates in musical wind instruments.

The middle ear resides behind the eardrum, which divides the middle ear from the

outer ear. The middle ear cavity contains a chain of three tiny ear bones: malleus,

incas, and stapes. These bones are also called the ossicles. The function of the middle

ear is to overcome the difference of acoustic impedance between the eardrum and the

sensor port of the inner ear. Acoustic impedance ZA is defined as the ratio of acoustic

pressure P to volume velocity V A, where V is the velocity and A is the cross-sectional

area:

ZA =
P

V A

4
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Figure 2.1: Human ear.
The human ear is generally divided into the outer, middle, and inner regions. The outer ear
has the simplest structure of the three, containing only the pinna and the external auditory
canal. The middle ear is slightly more complex. It comprises of the middle ear cavity, the
Eustachian tube, and the ossicular chain that connects to the inner ear. The inner ear is a
bony labyrinth filled with fluid. The auditory part of the inner ear is the cochlea, a snail-like
structure that transduce mechanical vibrations to electrical signals to be transmitted to the
brain. Image adapted from [20].

The passing of sound energy will be highly ineffective without matching the

impedance of two conducting media. Especially when passing sound from air (ear

canal) to water (cochlea). With a 1:3880 impedance ratio, most of the sound energy

will be lost due to reflection. The impedance matching is done by the surface area

discrepancy between eardrum and the stapes footplate: the stapes footplate is much

smaller than the eardrum. If we assume the velocity of the eardrum and the stapes

are the same, and the force acting on both are also equal, a 62:1 enhancement would

be produced due to the area difference [26].

Apart from the enhancement of sound pressure magnitude, the outer ear and the

middle ear also changes the energy distribution in sound frequencies. Studies of the

energy transfer function can be found in [77].
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Figure 2.2: Sound propagation in the ear.
The air pressure at the eardrum (Pd) is passed down the ossicular chain to become the
displacement (Xs and velocity Vs) of the stapes. The stapes is connected to the oval
window of the cochlea. The motion of the stapes creates a pressure (POW) at its footplate
matching the cochlea impedance ZOW. The disturbance at the oval window generates a
pressure difference P across the cochlear partition, which in turn creates a traveling wave
in the cochlear fluid along the cochlear partition. This graph also depicts two full cycles of
the traveling wave with different wavelengths, λ1 and λ2. The peak of the traveling wave
is located at the short wavelength section. The fluid pressure in the cochlea is released at
the round window, marked as RW. Image adapted from [10].

The Inner Ear

The inner ear consists of three parts: the semicircular canals, the vestibule, and the

cochlea. The cochlea is a small spiral-shaped cavity in the bony labyrinth. It is the

only part responsible for sound perception.

The cochlea is similar to a tube coiled increasing sharply on itself, turning approx-

imately 25
8
times in humans. The cochlea terminates blindly in its third turn at the

apex. If we uncoil the cochlea into a long tube, it is approximate 35 mm in length.

The basic structure of the cochlea is shown in the cross-sectional sketch of a radial

slice of a guinea pig, taken at the second turn (Figure 2.3). The cochlea fluid duct

is separated into three chambers by the basilar membrane (BM) and the Reissner’s

membrane (RM). The scala vestibuli (SV, the upper chamber in Figure 2.3) runs

from the oval window to the apex. The scala tympani (ST, the lower chamber in

Figure 2.3) runs from the round window to the apex. SV and ST are connected to
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Figure 2.3: Radial segment of the cochlear duct.
The cochlear duct is divided into three fluid-filled chambers: scala vestibuli, scala media,
and scala tympani — by the Reissner’s membrane and the basilar membrane. The organ of
Corti resides on the basilar membrane. To the left of this graph is the modiolus, the axis
of the cochlear spiral. Image from [19].

each other at a small opening at the apex. The scala media (SM), also named the

cochlear sac, is an enclosed chamber bounded by RM and BM. The organ of Corti

(OC) resides on BM inside SM.

The organ of Corti is a sensory organ containing both sensory cells and supporting

cells. The chief structural cells in the OC are the inner pillar cells (IP) and the outer

pillar cells(OP). As shown in Figure 2.4, one IP cell and one OP cell, combined with

a small portion of the BM, form a relatively rigid stricture called the Corti arch. The

array of IP cells and OP cells runs longitudinally along the cochlear duct, thus the

Corti arches form a tunnel through the cochlear sac, called the tunnel of Corti. Other

structural cells include the Deiters’ cells (D), Hensen cells (H), and Claudius(C) cells.

There are two types of sensory cells: the inner hair cells (IHCs) and the outer

hair cells (OHCs). They serve very different purposes. The IHCs are responsible
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Figure 2.4: Organ of Corti.
The organ of Corti resides on the basilar membrane on the side of scala media. It contains
both sensory and supporting cells. The array of inner pillar (IP) cell, outer pillar (OP)
cell, and a small portion of the BM form the tunnel of Corti. Other supporting cells such
as Deiters’ cells (D), Hensen cells (H), and Claudius cells (C) are also shown in the graph.
Image from [63].

for transducing the mechanical oscillation of the cochlea fluids into electrical signals.

Information such as timing, intensity, frequency composition, and other physical prop-

erties are encoded to be transmitted to the central nervous system via afferent axons

of spiral ganglion cells. Such process is triggered by the the movement of the stere-

ocilia at the top of IHCs. The IHCs are encircled by supporting pillar cells, and thus

they are immobile to the OC structures.

The OHCs are connected to the efferent axons originated from the brain stem. It

is believed that the OHCs serve as the amplifier of BM movements. Unlike the IHCs

whose stereocilia are surrounded by cochlear fluid, OHCs’ stereocilia are embedded

in the tectorial membrane (TM). Also, the OHCs are not contacted with other cells

on their sides; they are only supported at their bases by Deiters’ cells (D) and at

their apexes by the reticular lamina. Such a structure is pertinent to the motility of

OHCs.
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2.1.2 Cochlear Mechanics

Figure 2.5: Basilar membrane vibration.
This graph illustrates how an uncoiled cochlea react to sound stimuli. The pressure input
from the oval window (stapes footplate) travels to the apex and to the round window. Due
to the incompressibility of cochlea fluids, the volume displacement of the round window is
the same as that of the oval window. As the acoustic energy is carried along the cochlea
duct, it is absorbed by the BM where the resistance to the pressure is minimum. As a
result, the BM is driven up and down by the pressure diffrence across it. Image from [26].

Sound stimuli are forwarded to the cochlea via the stapes footplate at the oval

window. Because the cochlear fluids are incompressible (they are mainly water in

composition), the pressure travels along the cochlear duct to the apex, then back

along the duct to the round window. The pressure difference between the two sides of

the BM drives the membrane into motion. The BM is made of fibers aligned in radial

directions. These transverse fibers are at one side inserted into the the bony spiral

lamina, and at the opposite side into the spiral ligament; it is commonly believed

that these fibers do not have strong longitudinal coupling [18]. The BM is narrower

and thicker in the base than in the apex, resulting in a gradient of stiffness. Because

of such physical property, the basal end of the BM resonates with sound stimuli of

higher frequency, while the apical end of BM resonate with sound stimuli of low

frequency. Given a sound input of certain frequency, the BM movement achieves the

maximum amplitude at a certain fixed location corresponding to the input frequency.

That location is called the characteristic place (CP) of the corresponding frequency;

likewise, the corresponding frequency is called the characteristic frequency of that

location [56, 66, 69]. Most of the acoustic energy carried by the cochlear fluids is

absorbed by the cochlear partition close to the CP.
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Figure 2.6: Deflection of OHC stereocilia.
The motion of the basilar membrane (BM) causes the sterocilia of the outer hair cells
(OHCs) to deflect, as the organ of Corti (OC) is driven into motion with the BM. This
diagram shows the effect of a downward BM motion. Because the rigid Corti arch formed
by pillar cells, the downward BM motion cause the OHCs to rotate clockwise around the
pivot point, leading to the deflection of the stereocilia in the counterclockwise direction and
the hyperpolarization of the OHCs. Through a similar mechanism the upward BM motions
cause the OHCs to depolarize. Image from [26].

By the observation of von Békésy in [72], sound stimuli cause a mechanical trav-

eling wave to form both in the cochlear fluid and on the BM: a pressure wave in the

cochlear fluids, and a displacement wave on the BM. Compared to the acoustic wave,

which traverses the entire cochlea in just a few microseconds [57], the mechanical

traveling wave is much slower. At the basal end, the traveling wave has a larger

velocity and a longer wavelength. The velocity and wavelength is then greatly dimin-

ished as the wave approaches to the characteristic place. Soon after its magnitude

peaks at the CP, the traveling wave sharply decays as most of its energy is acquired

by the BM.

The up-and-down motion of BM causes the stereocilia to deflect through the

structural organization of the organ of Corti. See Figure 2.6. The arches of Corti

formed by relatively rigid, triangularly placed pillar cells retain its shape as the BM is
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Figure 2.7: Deflection of IHC stereocilia.
As the stereocilia of the OHCs are deflected due to BM motion, the fluid in the gap between
the stereocilia and the tectorial membrane is caused to flow, which deflects the stereocilia
of the IHCs in the same direction as that of the OHCs. Image from [26].

pushed downward by fluid pressure, pivoting clockwise about the foot of the IP cells

located close to the edge of the immobile bony spiral lamina. The OHCs, supported

by the Deiters’ cell, are displaced to move away from the spiral limbus. Because the

OHCs have their stereocilia embedded in the tectorial membrane at the top of the

organ of Corti, the displacement of OHCs causes a shear force between the recticular

membrane and the tectorial membrane. As a result, the stereocilia are deflected

counterclockwise with downward BMmotion, resulting in a forward mechanoelectrical

transduction where the mechanical forces creates a electrical transduction current in

the OHCs. The OHCs are depolarized by the influx of tranduction current. The

resultant change in transmembrane receptor potential provides input to OHCs motor

activity.

Another transduction process takes place at the IHCs. See Figure 2.7. As the

deflection of the stereocilia of OHCs causes displacements of fluids between the tec-

torial membrane and the recticula lamina, the stereocilia of the IHCs are bent with

the fluid motion since they are not attached to the tectorial membrane [42]. Ac-

tually, the IHC stereocilia are lined up in a row perpendicular to the flow of fluid,

helping the stereocilia to be effectively deflected by the uninterrupted fluid motions

[26]. The stereociliary deflection result in a transduction current. However, unlike the



CHAPTER 2. BACKGROUND 12

Figure 2.8: Feedback System with Outer Hair Cell Electromotility.
This figure illustrates the general feedback mechanism of BM due to the OHCs, also called
the cochlear amplifier. The movement (or force) of the cochlear partition deflects the
sterecilia of the OHCs, generating a transduction current i(t). The current in turn creates
the receptor potential Erec(t) which causes the OHCs to shrink or expand, changing its
length. As a result, the length changes of the OHCs exerts a force F (t) back onto the BM,
completing the feedback loop. Image from [26].

transduction current in OHCs, the IHC transduction does not cause cell motility, but

instead cause the neurotransmitter to release at the IHC-spiral ganglion cell synaptic

interface.

Cochlear Amplifier

In vivo cochlea serves as a excellent frequency analyzer with remarkable acoustic

sensitivity and high frequency selectivity. The measurements performed upon dead

and living cochlear reveals a significant difference in vibration amplitude/velocity

and frequency tuning, which strongly suggests the existence of a localized feedback

mechanism inside the organ of Corti [9]. Such feedback mechanism, called the cochlear

amplifier, enhances the sensitivity and tuning of the cochlea. The characteristics of a

living cochlea is therefore a combined effect of the cochlear amplifier and the passive

frequency tuning of the BM.

It is widely believed that the amplifying agent of the cochlear amplifier are the
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(a) (b)

Figure 2.9: OHC nonlinearity.
(a) The S-shape curve showing the compressive growth rate of outer hair cells’ receptor
potential with respect to increase of acoustic pressure [59]. (b) The compressive relationship
between changes of outer hair cell’s body length with respect to various transmembrane
voltage steps [61]. Hyperpolarization causes the cell to expand, while depolarization causes
the cell to contract. Inserted image shows an outer hair cell with length reference.

OHCs, due to their ability to change cell lengths given acoustic stimuli [2]. The speed

of OHC electromotility is observed to be as high as 24 kHz [7]. The magnitude of

cell length change is a few percent of cell’s full length, which is comparable to the

magnitude of acoustic BM vibrations [26]. As the OHCs expand or contract due to

electromotility, a fast motile force is exerted to the supporting Deiters’ cells, which

in turn carry the force onto the BM to change its motion.

The cochlear amplifier is commonly considered as a positive feedback system onto

the BM motions. See Figure 2.8. The OHCs transduction process contains forward

and reverse mode. Contrary to the forward transduction discussed in previous sec-

tions, the reverse transduction describes the induced mechanical forces by electrical

cell membrane voltage—an electromechanical process. However, it is still largely un-

known how exactly the OHC exert feedback motile force so that the BM exhibits

amplification in magnitude and frequency selectivity.

Cochlear Nonlinearity

The OHCs have been discover to possess a saturation property, resulting in a nonlinear

cochlear response. The measured receptor voltage for OHCs grows with the input
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(a)

(b)

Figure 2.10: Nonlinear compression to input sound level.
The cochlear response to various input intensity is compressive. (a) Isointensity curves
showing the response of the BM given input signals of various frequencies (abscissa) and
intensity (parameter, in dB SPL). The average motion of the stapes is plotted as a line
at the bottom. (b) Phases of the BM response towards various input frequencies. Image
adapted from [58].
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sound pressure in a compressive way, giving a S-shaped curve in Figure 2.9a [60,

11]. Likewise, the change of OHC cell body lengths saturates with transmembrane

potential in Figure 2.9b. If we assume the BM displacement is proportional to the

input sound pressure, and the change in a OHC length is proportional to its receptor

potential change, it can be derived that the OHC’s electromotility force saturates

with respect to the magnitude of the input sound stimuli.

The in vivo cochlea exhibits nonlinear responses to sound stimuli. One of the most

significant nonlinear phenomena is the compression of high-level sounds. The human

ear is capable of perceiving sound signals of a large range of magnitudes. According

to [68], the lightest sound that human can perceive (0 dB) is six-order of magnitude

smaller in sound pressure compared to a rock-and-roll concert (120 dB). It is observed

that acoustic signal with small magnitude are greatly amplified by the cochlea—high

amplification gain, while the high-level input are not amplified almost at all—low

amplification gain. See Figure 2.10. The cochlear amplifier automatically attenuates

the amplification gain as the input intensity increases.

Another nonlinear cochlear phenomenon is two-tone suppression (2TS), which

means the cochlear response to one pure-tone signal (the probe, measured at the

corresponding CP) is suppressed by the presence of another loud tone (the suppres-

sor). One example for that phenomenon is a person would have difficulties hearing

conversations if loud music is played at the background. 2TS can be detected in

the BM’s mechanical motion, in IHC receptor potential, and in the electrical dis-

charges on the auditory nerve [58]. Although it is still debatable whether the 2TS

phenomenon detected in IHCs and in the auditory nerve is a direct result of the sup-

pressed BM motions, it is believed that the suppression in BM motions is resulted

from the saturation of OHC motility forces [57].

Studies of 2TS reveal that the suppression is both dependent on intensity and

frequency. See Figure 2.11. For a weak probe tone and a strong suppressor tone, the

response to the probe tone is reduced further. Such a reduction is more insignificant

when a strong probe tone is used. Consequently, the presence of a moderately strong

suppressor tone linearizes the response to a probe tone.

2.2 Cochlear Modeling

The study of cochlear modeling has a long history [1, 13], and the existing models

are constantly updated by experiment results. Since the discovery of OHC electro-

motility in mammalian cochlea [2], one of the main focus of cochlear modeling is to
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Figure 2.11: Two-tone suppression in live cochlea.
Two-tone suppression demonstrates nonlinear characteristics with varying suppressor inten-
sity. The experiment was carried out with a probe tone F1 = 18.8 kHz, and a suppressor
tone F2 = 22.9 kHz. As the the suppressor intensity is increased to 71.1 dB SPL, the BM
response to the probe tone grows almost linearly. These data were measured from Guinea
pig cochlea in [53].

incorporate the activeness of OHCs into the overall model so as to reproduce char-

acteristic cochlear behaviors. However, due to the difficulties to perform medical

experiments on live cochlea, the precise mechanism behind the cochlear amplifier is

largely unknown. Another focus of cochlea modeling is to include mechanical prop-

erties produced by the micro-structures of the organ of Corti. The models for OHC

motility and organ of Corti micro-mechanism are developed hand-in-hand, as it is

commonly believed that the OHC motile forces are transmitted onto the BM via the

complex organization of the organ of Corti. Despite many different cochlear models

were raised over the decades, one goal is shared for all these individual developments:

trying to simulate BM responses which are comparable to physiological data.

Cochlear models incorporating OHC motility are commonly called active cochlear

models, whereas cochlear models without OHC motility are called passive cochlear

models [49]. The analytical and numerical solutions of active cochlear models help
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bridging the understanding of how the OHC motility force contributes to the ampli-

fying and sharpening the traveling waves along the basilar membrane, as well as to

the nonlinear response of the cochlear to different sound intensities. [27, 22, 46, 23,

33, 50, 25, 41, 67] describe a number of active cochlear models that combine the OHC

motility into cochlear macro-mechanics.

It is commonly believed that the BM fibers only weakly couple to their adjacent

neighbors through cochlear fluids due to their radial orientation towards the modio-

lus [12, 18]. See experiments performed by Voldrich [70], Neidu et. al. [47], and von

Békésy [72] for medical researches on the longitudinal stiffness of the BM fibers. Most

of the cochlear models neglect the longitudinal stiffness of the BM since it is insignif-

icant compared to the transverse stiffness. Several cochlear models implemented the

longitudinal coupling of BM fibers trying to produce more realistic cochlear responses;

see the work of Hubbard [33] and Jaffer et. al. [34].

As pointed out by Voldrich [71], the OHCs are arranged so that motile force

generated by a OHC is exerted to neighbor BM segments, effectively coupling the

adjacent BM fibers longitudinally. Some cochlear models took into consideration the

basal tilt of OHCs when modeling the feedback mechanism [27, 22, 46, 41, 67]. A

example is the feedforward (FF) micro-mechanics OHC model proposed in [46], where

the FF model is joined with a three-dimensional, fourth order plate model of the BM.

In [27], the tectorial membrane was model as an additional resonant system altogether

with the FF model to create more realistic BM motions as compare to physiological

data.

The formation of the FF model is still debatable, as Karavitaki and Mountain

pointed out that the feed-forward mechanism is in contradiction to experiment data,

where the longitudinal component of OHC motion in apex is observed to be ten times

smaller than the radial component [37]. Given the limitations in model complexity

and the lack of understanding of the amplification mechanism, the FF model still offers

a favorable compromise between modeling constraints and agreements to physiological

data.

The cochlear nonlinearity is commonly attributed to the nonlinear behaviors of

the OHCs [8]. OHC nonlinearity has been included in some cochlear models in or-

der to reproduce nonlinear cochlear behaviors such as compressive growth to sound

intensities, two-tone suppression, and otoacoustic emissions [26, 30, 24, 4, 32]. Most

of the nonlinear cochlear models adopted nonlinear functions (such as the hyperbolic

tangent) as a source of nonlinear elements.
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2.2.1 Solutions to Cochlear Models

The cochlear models are usually given as a set of partial differential equations. Al-

though analytical solutions can sometimes be derived out of simple cochlear models,

the incorporation of OHC electromotility into the overall models drastically increase

the complexity of cochlear models, rendering the analytical solutions very difficult to

obtain. Numerical methods are commonly used in cochlear modeling and simulations.

The following gives a general survey on three popular types of numerical methods:

the WKB method, finite difference method, and finite element method.

The WKB method (WKB approximation) is a technique to approximate solutions

to linear partial differential equation with spatially varying coefficients. Named after

three physicists: Wentzel, Kramers, and Brillouin, the method was developed in

1926 as an approach to solve partial differential equations such as the Schrödinger

equation. Steele and Miller applied the WKB method in solving a two-dimensional

cochlear model [64]. Another example is the work of Lim and Steele in [46], where a

three-dimensional nonlinear active cochlear model was studied. More application of

the WKB methods can be found in [74, 65, 15, 46].

The finite difference method (FDM) approximates solutions to differential equa-

tions by constructing a linear system in which differential operators are replaced by

finite difference equations. Such a technique works particularly well if the domain

of the problem has a rectangular shape. Neely [48] solved a two dimensional, linear

passive cochlear model using FDM. A model with added active element (negative

damping) was later solved in [51], which demonstrates improved frequency selectiv-

ity. An alternative to FDM is the finite element method (FEM), which grants the

flexibility to use arbitrary discretization mesh. An example of cochlear modeling us-

ing FEM is the work of Kolston and Ashmore [40]. More examples of the FDM and

FEM methods can be found in [55, 65, 17, 73].



Chapter 3

Objectives and Approaches

3.1 Objectives

The objectives of our research in this thesis is outlined as follows:

1. First, we demonstrate the solutions to two types of two-dimensional cochlear

models using basis function approaches. The cochlear models have been previ-

ously solved by techniques such as the WKB method, FDM, and FEM, where

the focus was mainly on model and mesh specification. Although the types of

basis function play a critical role in approximation scheme, their effects and

constraints in application were rarely studied. In this work, basis function col-

location methods are adopted as the solution technique. The detailed steps

to derive numerical solutions with various types of bases are shown, and the

strength and weakness of different basis functions are discussed by comparing

with past experiments and physiological data. The results of this work should

help in laying the foundation of future construction of cochlear model solutions,

serving as guidelines for better selection of basis functions and proper solution

scheme.

2. Second, we test the output of a cochlear model in response to different types

of audio input signals. The cochlear model to be studied was presented in [39],

which provides a drastic simplification of the human cochlear with assumptions

to compromise between complex biological structure and limited computational

constraints. Although the model was successfully solved by FDM, the perfor-

mance of the solution is unknown when more generic selection of basis functions

are applied. Likewise, physical phenomenon arise from the temporal-spatial so-

lution requires proper interpretation. The study of this cochlear model sheds

19
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lights to the intriguing characteristics of the biological cochlea, which in turn in-

spire future development of cochlear models to better comply with physiological

observations.

3.2 CollocationMethods for Linear Boundary Value

Problem

Figure 3.1: Boundary value problem of the cochlea model.
The cochlea model is defined on a rectangular domain [0, L] × [0,H] as a set of partial
differential equations. After temporal discretization, the model is reduced to a well-posed,
elliptic boundary problem with Dirichlet and Neumann boundary conditions. n = 2, 3, · · ·
represents time steps for temporal discretization.

To facilitate the discussion of our solution methodology, an abstraction of the

cochlear model used in this thesis is shown in Figure 3.1. By denoting superscripts

as the time step in temporal discretization, the cochlea model is reduced to a linear

boundary value problem defined on a rectangular domain [0, L] × [0, H ]. In this

thesis, we only consider the linear model of the homogeneous Laplace’s equation in

the interior domain Ω. The boundary of the domain, denoted as ∂Ω, is governed

by a combination of Dirichlet and Neumann boundary conditions. The input of the

system is given as a Neumann boundary condition at the left boundary x = 0 with

sound pressure fn at the nth time step. The fluid pressure is released at the sink

at right boundary x = L, represented as a zero Dirichlet boundary condition. The

upper boundary is an impenetrable bone wall, given as a zero Neumann boundary

condition. The bottom boundary, i.e. the BM boundary, is a mixture of Dirichlet and
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Neumann boundary condition. Coefficient η(x, un−1, un−2) incorporates BM stiffness

and BM’s temporal state, and is updated at each time step by the results of previous

two time steps. The detailed derivation of the cochlear model will be given in Chapter

4.1.

The numerical solution of the aforementioned boundary value problem can be

computed by using collocation method. Let L denote the differential operator for

the interior of the domain (i.e. the Laplacian operator ∇2), and let B denote the

differential operator for the boundary of the domain. The set of partial differential

equation can be simplified as

Lun = 0, in Ω

Bun = g, in ∂Ω

where g(0, z) = fn, g(L, z) = 0 for 0 ≤ z ≤ H , and g(x, 0) = g(x,H) = 0 for

0 ≤ x ≤ L.

First, the solution un(x, z) is approximated by a linear combination of basis func-

tions {φj(x, z)}, namely

un(x, z) =
M
∑

j=1

cjφj(x, z).

By selecting certain mutually exclusive collocation points {xi, zi}Ni

i=1 in Ω, and

{xi, zi}Ni=Ni+1 on ∂Ω, the values of the basis function coefficients cj can be derived by

enforcing
M
∑

j=1

cjLφj(xi, zi) = 0, for i = 1, · · · , Ni, (3.1)

and
M
∑

j=1

cjBφj(xi, zi) = g(xi, zi), for i = Ni + 1, · · · , N. (3.2)

Equation (3.1) and (3.2) can be written in the matrix format as

[

A

B

]

C =

[

0

G

]

,
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where

A =













Lφ1(x1, z1) Lφ2(x1, z1) · · · LφM(x1, z1)

Lφ1(x2, z2) Lφ2(x2, z2) · · · LφM(x2, z2)
...

...
. . .

...

Lφ1(xNi
, zNi

) Lφ2(xNi
, zNi

) · · · LφM(xNi
, zNi

)













,

B =













Bφ1(xNi+1, zNi+1) Bφ2(xNi+1, zNi+1) · · · BφM(xNi+1, zNi+1)

Bφ1(xNi+2, zNi+2) Bφ2(xNi+2, zNi+2) · · · BφM(xNi+2, zNi+2)
...

...
. . .

...

Bφ1(xN , zN ) Bφ2(xN , zN) · · · BφM(xN , zN )













,

C = [c1, c2, · · · , cJ ]⊤,

and

G = [g(xNi+1, zNi+1), g(xNi+2, zNi+2), · · · , g(xN , zN)]
⊤.

The accuracy of the collocation method is dependent on the selection of basis

functions and collocation points. The following sections present two types of basis

functions: global radial basis functions and B-spline bases. Their properties and the

corresponding collocation schemes are discussed.

3.2.1 Global Radial Basis Functions

A radial basis function (RBF) is a real-valued function whose value is dependent on

the distance between the sampled position x to the center of the function xc
1. That

is

φc(x; ǫ) = φ(||x− xc||2; ǫ) = φ(r; ǫ)

where r denotes the L2 distance between x and xc. ǫ is the shape parameter to control

how localized the basis function is; usually speaking, the smaller |ǫ|, the flatter (less

localized) the basis function. A global RBF is an RBF with global support, which

would result in a non-sparse system matrix in a collocation scheme. In return, using

global basis functions allows us to have arbitrary distribution of basis function and

collocation points. The collocation method using global RBF are also called mesh-

free methods because the absence of a discretization mesh during computation. The

meshfree methods are generally advantageous in solving problems defined on an irreg-

ularly shaped domain because efforts to create and maintain a proper discretization

1In this thesis, the center of a basis function refer to the point about which the value of the
function is symmetrical.
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mesh is removed.

The partial derivatives of RBFs with respect to dimension xi are given as follows.

For any sufficiently differentiable RBFs, the chain rule yields

∂φ

∂xi

=
dφ

dr

∂r

∂xi

and
∂2φ

∂x2
i

=
dφ

dr

∂2

∂x2
i

+
d2φ

dr2
(
∂r

∂xi
)2

where
∂r

∂xi
=

xi

r

and
∂2r

∂x2
i

=
1− [ ∂r

∂xi

]2

r
.

In this thesis, the collocation scheme for global RBF is very straight-forward: the

centers of the function basis coincide with the collocation points. For a specific class

of global RBFs, the accuracy of collocation scheme can be controlled by three factors:

the distribution of function basis, the distribution of collocation points, and the shape

parameter ǫ. Generally speaking, high accuracy of approximation is usually obtained

when the domain is densely “covered” with function basis and collocation points, and

when less localized (small ǫ) function bases are used. However, the large number of

function bases and collocation points drastically increases the computational cost of

the system matrix. Worse still, small point distance with flat (non-localized) function

bases result in a system matrix with large condition number, rendering the solution

unstable and sometimes unobtainable. Finding the optimal collocation scheme for a

function basis is currently an active research topic. More information can be found

in [62].

In the following we introduce the multiquadric RBF and the Gaussian RBF.

Multiquadric RBF

The multiquadric RBF (MQRBF) was originally used as an interpolation method

by Iowa State University Geodesist Roland Hardy in 1968. The work was published

later on in 1971 [31]. In 1979, Richard Franke from the Naval Postgraduate School

compared various methods to solve the scattered data interpolation problem [21].

He concluded that Hardy’s MQ interpolation scheme was the best among all tested

schemes. In 1990, the MQ method was modified by physicist Edward Kansa [35, 36]
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(a) Multiquadric RBF and its first, second derivatives.
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(b) Multiquadric RBF with different shape parameters
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Figure 3.2: Shape of MQRBF.
Graph (a) plots the single variate MQRBF and its first, second order derivatives, with shape
parameter ǫ = 2. Graph (b) shows the effect of shape parameter. As we can see in the
graph, the larger the shape parameter, the sharper (more localized) the basis function is.
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(a) Gaussian RBF and its first, second derivatives.
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Figure 3.3: Shape of GRBF.
Graph (a) plots the single variate Gaussian RBF and its first, second order derivative, with
shape parameter ǫ = 2. Graph (b) shows the effect of shape parameter. As we can see in
the graph, the larger the shape parameter, the sharper (more localized) the basis function
is.
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to solve differential equations, after which the popularity of the method grow rapidly.

The MQRBF φMQ(r, ǫ) is defined as

φMQ(r; ǫ) =
√
1 + ǫ2r2

Figure 3.2 illustrates the properties of the MQRBF. As we can see in Figure 3.2

(a), the further away the sampling point is from the function center, the greater value

the function obtains. That means the configuration of the system matrix is sensitive

to the collocation points at the boundary of the domain.

Gaussian RBF

The Gaussian RBF (GRBF) is named after the German mathematician Carl Friedrich

Gauss. It is defined as

φG(r; ǫ) = e−(ǫr)2

where e is the base of the natural logarithm Introduced by L. Euler.

Figure 3.3 illustrates the properties of the GRBF. Similar to MQRBF, the function

value is more localized with a greater shape parameter ǫ. But unlike MQRBF, the

value of GRBF decreases quickly as the sampling point moves away from the function

center. Therefore, the GRBF is more sensitive to local structure of collocation points

instead of the boundary of the domain.

3.2.2 B-Spline Bases

In contrast to the aforementioned global basis functions, locally supported spline

basis functions are used also used in the solution schemes. The following introduces

the formulation of the quadratic and cubic spline defined in [6]. Their corresponding

collocation schemes are also given.

Let πn−1 = π1
n−1 denote the space of all polynomials in one variable of order n, or

degree at most n− 1, and let a = t0 < · · · < tm+1 = b. The space

St,n = {f ∈ Cn−2[a, b] : f |[ti,ti+1] ∈ πn−1, i = 0, · · · , m, }

is called the spline space of order n and with knot sequence t = {ti}, i = 1, · · · , m.

Definition 1. Divided differences. Let

t : · · · ≤ t0 ≤ t1 ≤ t2 ≤ · · ·
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be a nondecreasing sequence of real numbers. Then the divided difference (dd) of a

(sufficiently smooth) function f(t) is defined as follows: the zeroth dd of f(t) at t = tk

is

[tk]f := f(tk);

the first dd of f(t) at {tk ≤ tk+1} is

[tk, tk+1] :=







f ′(tk), if tk = tk+1,

f(tk+1)−f(tk)

tk+1−tk
, if tk 6= tk+1;

and, for any m > 0, the mth dd of f(t) at {tk ≤ · · · ≤ tk+m} is

[tk, · · · , tk+m]f :=







f(m)(tk)
m!

, if tk = · · · = tk+m

[tk+1,··· ,tk+m]f−[tk,··· ,tk+m−1]f

tk+m−tk
, if tk 6= tk+m.

The normalized B-spline basis which spans spline space St,n is defined as

Nt,n,i(x) = (ti+n − ti)[ti, · · · , ti+n]t(t− x)n−1
+

where the divided difference is taken at the variable t, and

(t− x)n−1
+ = max((t− x)n−1, 0)

is a truncated power function.

The explicit formulation for each polynomial piece of the B-spline Nt,n,i(x) can be

deduced by the following algorithm given in [6].

Let

φn
k(x) =

(

n

r

)

xk(1− x)n−k

and

φn
j,k(x) = φn

k

( x− tj
tj+1 − tj

)

We will denote the restriction of Nt,n,i to [tj , tj+1] by

P n
i,j(x) =

n−1
∑

k=0

an−1
k (i, j)φn−1

j,k (x).

The set of coefficients {an−1
k (i, j)} will be called the Bernstein net of the B-spline

Nt,n,i. We have the following result
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Figure 3.4: Bernstein net of the quadratic B-spline Nt,3,i(x) and cubic B-spline Nt,4,i(x).

Theorem 3.2.1. Let am−1
k (i, i− 1) = am−1

m (i, i+m) = 0. For each j = i, · · · , i+m

and k = 0, · · · , m− 1,

amk+1(i, j) =amk (i, j) +
ti+j+1 − ti+j

ti+m − ti
am−1
k (i, j)− ti+j+1 − ti+j

ti+m+1 − ti+1
am−1
k (i+ 1, j − 1) (3.3)

with initial condition am0 (i, i) = 0 and am0 (i, j) = amm(i, j − 1), j = i+ 1, · · · , i+m.

In the special case of uniform mesh, say tk = k, the formula 3.3 for computing the

B-spline Nn(x) is particularly simple, since by setting i = 0, it becomes:

amk+1(0, j) = amk (0, j) +
1

m
(am−1

k (0, j)− am−1
k (1, j − 1))

with am0 (0, 0) = 0, and j, k = 0, · · · , m− 1.

Hence, to compute Nm+1(x) from Nm(x), we first write down the Bernstein net

for 1
m
(Nm(x)−Nm(x− 1)), namely:

bm−1
jk =

1

m
(am−1

k (0, j)− am−1
k (1, j − 1)).

Then the Bernstein net amjk = amk (0, j) of Nm+1(x) can be obtained by the simple

addition:

amj,k+1 = amjk + bm−1
jk , k = 0, · · · , m− 1,

with amj0 = amj−1,m and its initial condition am00 = 0, where the index j, j = 0, · · · , m−1,

indicates the (j + 1)th polynomial pieces of Nm+1(x). The computation of B-spline
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on a nonuniform mesh is more complicated. By using Equation (3.3), we may find

the Bernstein net of the quadratic and cubic splines as shown in Figure 3.4, where

we have used the following notations.






























hi = ti+1 − ti

ki = hi+1 + hi = ti+2 − ti

ℓi = hi+2 + hi+1 + hi = ti+3 − ti

Hi = 1− h2
i+2

ki+1ℓi
− h2

i+1

ki+1ℓi+1

Figure 3.5 illustrates the shapes of quadratic and cubic B-splines basis derived by

the aforementioned algorithm. Defined by equally spaced knots, quadratic B-spline

spans three intervals, with the center located in the middle of the second interval;

the cubic B-spline spans four intervals, with the center located on the knot between

the second and the third interval. The quadratic spline is continuous up to first

derivative; the cubic spline is continuous up to second derivative.

B-splines Collocation

In this part the collocation schemes for quadratic and cubic B-spline (QS and CS) are

discussed. Define the domain of a univariate problem [0, L], which is divided evenly

into M segments with length h. Denote the endpoints of the segments as knot points

ti, i = 0, · · · ,M , it follows ti = i×h. The nth order spline space St,n on interval [0, L]

is spanned by a B-spline basis set Bn := {Bn
j (x)}M−1

j=−n+1. A function f(x) defined on

[0, L] can be thus approximated as

f(x) ≈ fn(x) =
M−1
∑

j=−n+1

cjB
n
j (x) (3.4)

We should note that a regular B-spline of n order spans n intervals. If only regular

B-splines are used in approximation scheme defined in Equation (3.4), basis function

Bn
−n+1, · · · , Bn

−1 are defined partially outside the left boundary of domain [0, L], and

basis function Bn
M−n+1, · · · , Bn

N−1 are defined partially outside the right boundary of

domain [0, L]. Such bases are unsuitable for collocation methods. Because collocation

points can only locate inside the problem domain (both interior and on boundaries),

information about the external parts of the basis functions is unobtainable by colloca-

tion, which in turn render the system matrix less accurate or even singular. [5] shows

collocation schemes using only regular B-splines. The proper rate of convergence

cannot be retained unless perturbations are introduced to the system matrix.
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(a) Quadratic spline with equally−spaced knots,
 and its first, second derivatives.
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(b) Cubic spline with equally−spaced knots,
 and its first, second derivatives.
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Figure 3.5: B-splines and their first, second derivatives
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In this thesis, the B-spline basis functions are corrected as they are close to the

boundary of the problem. The modified B-splines are defined only inside the problem

domain, yet still serve as the bases for the corresponding spline space. The correction

can be demonstrated with Figure 3.4. Take the cubic B-spline for example; if interval

[ti, ti+4] resides inside the problem domain, the corresponding B-spline is uncorrected;

if a part of the interval [ti, ti+4] is outside of the problem domain, the nodes that are

outside of the domain are assigned to be the same as the boundary node, which

updates the Bernstein net and consequently defines the corrected B-spline.

Figure 3.6 shows the corrected Bernstein net of quadratic and cubic B-spline

defined to the left boundary of the domain [0, L]. The explicit formula of the corre-

sponding left-boundary B-splines are defined as follows.

B4
−3(x) =

(h− x)3

h3
, 0 ≤ x < h;

B4
−2(x) =







x(12h2−18hx+7x2)
4h3 , 0 ≤ x < h,

(2h−x)3

4h3 , h ≤ x < 2h;

B4
−1(x) =



















(18h−11x)x2

12h3 , 0 ≤ x < h,

−3
2
+ 9x

2h
− 3x2

h2 + 7x3

12h3 , h ≤ x < 2h,

(3h−x)3

6h3 , 2h ≤ x < 3h;

B4
0(x) =































x3

6h3 , 0 ≤ x < h,

2
3
− 2x

h
+ 2x2

h2 − x3

2h3 , h ≤ x < 2h,

−22
3
+ 10x

h
− 4x2

h2 + x3

2h3 , 2h ≤ x < 3h

(4h−x)3

6h3 , 3h ≤ x < 4h;

B3
−2(x) =

(1− x)2

h2
, 0 ≤ x < h,

B3
−1(x) =







(4−3x)x
2h2 , 0 ≤ x < h,

(2−x)2

2h2 , h ≤ x < 2h,

B3
0 =



















x2

2h2 , 0 ≤ x < h,

−3
2
+ 3x

h
− x2

h2 , h ≤ x < 2h,

(3−x)2

2h2 , 2h ≤ x < 3h.

The collocation set SQS for quadratic B-spline is defined as the union of two
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Figure 3.6: Bernstein net of the quadratic and cubic B-splines with boundary corrections.
The splines are defined on an integer interval at the left boundary of the domain [0, L]. The
Bernstein net of the right boundary is horizontal reflection of that on the left boundary.
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boundary points and the mid-point of the intervals [tk, tk + 1]. That is

SQS := {xi}M+2
i=1 , where x1 = 0, xM+2 = L,

xi = i× h− 3h

2
, i = 2, · · · ,M + 1.

The collocation set SCS for cubic B-spline is defined as the union of all the knot points

of the domain and the mid-points of two boundary interval [0, h] and [L−h, L]. That

is

SCS := {xi}M+3
i=1 , where x1 = 0, x2 =

h

2
, xM+1 = L− h

2
, xM+2 = L,

xi = (i− 2)× h, i = 3, · · · ,M + 1

Extending univariate B-spline collocation scheme to multivariate rectangular do-

main is straightforward. Take two dimensional domain (x, y) ∈ R
2 for example.

Denote Bn
i (x) the basis function for dimension x with index set I, and denote the

corresponding collocation points xp with index set P. Denote Bn
j (y) the basis function

for dimension y with index set J , and denote the corresponding collocation points yq

with index set Q. The two dimensional basis function is given by the tensor product

φi,j(x, y) = Bn
i (x)B

n
j (y), i ∈ I and j ∈ J ,

and the corresponding collocation points are given as

(xp, yq), p ∈ P and q ∈ Q.

Figure 3.7 and 3.8 illustrate the boundary splines and the corresponding two

dimensional collocation schemes for quadratic and cubic splines.

B-spline basis functions are local basis functions. Compared to using global basis

functions, collocation scheme with local basis functions results in a sparse system

matrix, which is generally advantageous in data storage and computational time.

However, the use of B-spline basis functions requires a more rigid collocation scheme;

solutions are only obtainable with regular distribution of function centers and collo-

cation points.
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(a) Quadratic spline with stacked knots at boundary
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(b) Collocation scheme for quadratic spline

Figure 3.7: Boundary quadratic B-spline and the 2D collocation scheme.
(a) Boundary quadratic B-splines. The boundary splines on the right boundary is the
horizontal reflection of the case in the left. (b) Two dimensional collocation scheme for
domain [0, 5] × [0, 4], where collocation points are marked as “×”.
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(a) Cubic splines with stacked knots at boundary
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(d) Collocation scheme for cubic splines

Figure 3.8: Boundary cubic B-spline and the 2D collocation scheme.
(a) Boundary cubic B-splines. The boundary splines on the right boundary is the horizontal
reflection of the case in the left. (b) Two dimensional collocation scheme for domain [0, 5]×
[0, 4], where collocation points are marked as “×”.
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3.3 Multistep Method

Physical and engineering problems can often be modeled into so-called initial-value

problems (IVPs) [3], that is, the solution to which is required to satisfy a given initial

condition. One very typical category of the problem is the time domain simulation

of physical phenomenon: estimating the temporal states of a systems given the the

initial state of the system, the duration of time, and a set of differential equations to

govern the evolution of the state of the system.

The following defines a prototype of a univariate initial-value problem: find the

value of time-domain function y(t) given

y′(t) = f(t, y), a ≤ t ≤ b, y(a) = α.

The solution to an initial-value problem can be approximated by the solution

of the weaker form of the problem on a discretized domain. To numerically solve

a time domain problem y(t) on [a, b], one can discretized the time variable t into

a series of successive time steps t0, t1, · · · , tN , where t0 = a and tN = b. We know

y(t0) = y(a) = α; function values at t1, t2, · · · , tN can be computed by function values

at previous time-steps and the evaluation of f(t, y). For the sake of simplicity, the

methods discussed in this dissertation use constant step size. That is, tn = t0+n×h,

with constant step size h.

Popular methods for solving IVPs can be categorized into one-step methods and

multi-step methods. One-step methods approximate the function value at tn+1 using

information from only one of the previous time step ti. To ensure the accuracy

of numerical approximation, one-step methods, such as the popular “Runge-Kutta”

methods, often evaluates f(t, y) multiple times in the subinterval between tn and tn+1.

These function evaluation could be costly. And because the information is obtained

within the subinterval between tn and tn+1, it is not retained for direct use for the

future approximations. To efficiently reuse previous computed results as a means

to improve approximation accuracy, we can use function values y(t) and f(t, y) at

multiple previous time steps ti, ti−1 to compute the function values at the current

time tn+1. Such approximation methods are called multi-step methods.

The following equation defines the linear m-step method:

yn+1 =

m−1
∑

j=0

ajyn−1 + h

m−1
∑

j=−1

bjf(tn−j , yn−j) (3.5)
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for all integers n satisfying 0 ≤ nh ≤ b − a. When b−1 = 0 the method is called

explicit, or open, since Equation (3.5) gives yn+1 explicitly in terms of previously

determined values. When b−1 6= 0 the method is called implicit, or closed, since yn+1

occurs on both sides of the equation.

The following introduce them-step backward difference formula methods, BDFm

[54]. These methods can be derived by interpolating the function y(t) at tn+1, tn, · · · , tn+1−m

with an m-degree polynomial pm(t), then replacing the derivative y′ with p′m(t) for

discretization.

For m = 1, since

p1(t) = y(tn+1) + (t− tn+1) + (t− tn+1)
y(tn+1 − y(tn))

h
,

discretization gives
yn+1 − yn

h
= f(tn+1, yn+1).

The BDF1 formula is therefore

yn+1 = yn + hf(tn+1, yn+1)

which is also called the Backward Euler Method.

For m = 2,

p2(t) = y(tn+1) + (t− tn+1)[
yn+1 − yn

h
+ (t− tn)

yn+1 − 2yn + yn−1

2h2
],

p′2(tn+1) =
3yyn+1 − 4yn + yn−1

2h
.

Through discretization we obtain the BDF2 formula

yn+1 =
4

3
yn −

1

3
yn−1 +

2h

3
f(tn+1, yn+1)

One can refer to [3] for a more comprehensive IVP solution methods, their con-

vergence condition, and example of applications.

Handling IVP with Higher Degree Derivatives

For initial-value problem specified with derivatives of degree greater than one, addi-

tional variables representing lower degree derivatives can be added to form multiple

lines of linear equations. For example, to use BDF2 to numerically approximate the
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following problem

y′′(t) = f(t, y), a ≤ t ≤ b, y(a) = α,

one can define variable v(t) = y′(t), and thus v′(t) = y′′(t). The following set of

equations can be derived

yn+1 =
4

3
yn −

1

3
yn−1 +

2h

3
vn+1,

vn+1 =
4

3
vn −

1

3
vn−1 +

2h

3
f(t, yn+1).

The aforementioned technique is applied in solving the temporal-spatial cochlear

model because the state of the basilar membrane is defined with a second order time

differential equation.



Chapter 4

Cochlear Models and Simulations

4.1 Mathematical Models

4.1.1 Passive Model

The cochlea is filled with water-like incompressible Stokes fluids. If we assume that

the Reissner’s membrane deforms passively with fluid movements, as it is commonly

handled in cochlear models, the cochlea can be viewed as two fluid chamber divided

by the BM in the middle. The movements of BM is subjected to the pressure differ-

ence between the two fluid chambers. In this thesis, the cochlea is modeled in two

dimensions. To further simplify the model, we model only the upper cochlea chamber

as an rectangle Ω ∪ ∂Ω = [0, L] × [0, H ], with the BM at z = 0 (Figure 4.1). The

lower cochlear chamber is removed because it is symmetric to the upper chamber

with respect to the BM, and thus its pressure is complementary to that of the upper

chamber. Such simplification is also used in [43, 49].

Sound pressure is applied at the stapes, represented as the left boundary x = 0

of the domain. The change of pressure induces fluid motions to propagate along

the the upper chamber (SV), reaching a small hole (helicotrema) at the other end

of the domain x = L. In an actual cochlea, fluid motions continue to travel into

the “lower” chamber (ST), causing a pressure difference against the fluids in SV. In

our simplified model, the pressure difference is modeled as simply the pressure in the

upper chamber. Let p represents the fluid pressure in our simplified model, and pSV,

pST represents the fluid pressure in SV and ST in an actual cochlea, it follows

p = pSV − pST (4.1)

39
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Figure 4.1: Diagram of the two-dimensional cochlear model and magnified BM vibration

Figure 4.1 shows the the diagram of our two-dimension cochlear model with BM

movements. Note that the BM movements are amplified several orders of magnitude

for ease of viewing. In an actual cochlea, the BM movement is on the order of

nanometers (nm) [52, 56, 26], while our domain size is on the order of centimeters

(cm). Because of this huge difference in length scales, the BM displacements is in

effect negligible in fluid simulations. Thus we model the cochlear chamber with a

fixed domain boundary ∂Ω.

From the incompressibility of the cochlear fluid, the pressure p satisfies

∇2p(x, z, t) =
∂2p

∂x2
+

∂2p

∂z2
= 0, (x, z) ∈ [0, L]× [0, H ], (4.2)

where ∇2 is the Laplacian operator.

The upper boundary at z = H represents the bony wall of cochlear chamber, rigid

and impenetrable to cochlear fluids. It follows

∂p

∂z
(x,H, t) = 0, 0 ≤ x ≤ L (4.3)

The right boundary at x = L represents the helicotrema, which equalizes the fluid

pressure between SV and ST. Therefore the fluid pressure satisfies a zero Dirichlet

boundary condition:

p(L, z, t) = 0, 0 ≤ z ≤ H. (4.4)

Some other cochlear models instead use a zero Neumann boundary condition at

x = L. It is shown in [49, 75] that the alternative configuration has minimal effect on

the interior BM response. However, using Neumann boundary condition might offer

some insights into the dispersive nature of BM dynamics.

The left boundary at x = 0 represents the footplate of the stapes, which applies
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sound pressure to cochlear fluids:

∂p

∂x
(0, z, t) = 2ρTmpe(t), 0 ≤ z ≤ H, (4.5)

where ρ is the density of fluid, Tm is the middle ear filtering operator, and pe(t) is the

input sound pressure at the eardrum. The middle ear filtering is frequency dependent.

If the input is defined as an multi-tone signal pe = 2
∑Jm

j=1Aj cos(ωjt), we have

Tmpe(t) = 2
Jm
∑

j=1

am(ωj)Aj cos(ωjt), (4.6)

where am(·) is the following.

am(ω) = 30(1/30 + 0.0605ω2((1− ω2ω−2
m )2 + (2φmω/ωm)

2)−0.5). (4.7)

Here, ωm is the middle ear characteristic frequency 4 kHz. φm = 0.7 represents

the middle ear damping ratio. Equation (4.7) is obtained by fitting experimental data

in [29].

Let the BM displacement along the z direction be represented by u(x, t), with the

first and second order derivatives denoted by ut(x, t) and utt(x, t), respectively. Then

the bottom boundary (BM) condition at z = 0 is given by

∂p

∂z
(x, 0, t) = 2ρutt(x, t), 0 ≤ x ≤ L. (4.8)

The BM is modeled as a spring-mass system subjected to the external force p.

Following the classical spring-mass mechanics, we obtain

p(x, 0, t) = mutt(x, t) + rut(x, t) + s(x)u(x, t), 0 ≤ x ≤ L, (4.9)

where m represents the mass density, r represents the damping term, and s(x) rep-

resents the varying stiffness of the BM along its length. s(x) is defined as

s(x) = 4π2m(0.456 exp(4.83(1− x/L))− 0.45)2. (4.10)

The formula is based on data in [28, 44]; see also [16, 76].

The model presented above is a complete initial boundary value problem, with

initial value given by u(x, 0) and ut(x, 0), the initial displacement and velocity of BM

segments. Pressure p(x, z, t) can be uniquely determined by the spatial conditions
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once the u(x, t) and ut(x, t) is resolved.

The cochlear mode listed above does not incorporate the effect of the cochlear am-

plifier. As demonstrated in past cochlear researches, the passive cochlear model could

not achieve characteristics such as the high frequency selectivity the actual cochlea

possess. The OHC feed-forward model is introduced in addition to the passive model

with the intension to bridge the gap between model performance and physiological

data.

4.1.2 Feed-forward active model

A feed-forward (FF) OHC model is combined with the classical passive cochlea model

to reproduce the high sensitivity and frequency selectivity of a normal ear. The model

presented in this thesis appeared in [45]. Figure 4.2 shows a schematic drawing of the

organ of Corti, view transversally and longitudinally. The OHCs are microstructures

that live on the BM. Organized in rows, the OHCs responds to mechanical stimuli

like piezo-electric actuators, pushing and pulling the BM. The force applied by the

OHCs are assumed to be proportional to the force received by the BM. The total

force applied on the BM is transmitted to the cilia of the OHCs, which in turn acts

on the OHCs and back on the BM. We obtain the relation

Fcilia(x, t) = C1(x, t)
FBM(x, t)

2
, (4.11)

where Fcilia is the force acting on the cilia, FBM is the total force acting on the BM,

and C1 is a coefficient. FBM is a compound of fluid force from both cochlear chambers

Ff and OHCs feedback force Fcell

FBM(x, t) = 2Ff(x, t) + Fcell(x, t). (4.12)

As shown in the longitudinal view of Figure 4.2b, the array of OHCs leans towards

the basal end of the cochlea. Thus the force acting on cilia at location x cause the

OHCs to push (or pull) at a point x+∆ downstream on the BM:

Fcell(x+∆, t) = C2(x, t)Fcilia(x, t), (4.13)

where C2 is a transfer function coefficient, and ∆ is the OHCs tilt offset. Combining
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(a) Transverse view

(b) Longitudinal view

Figure 4.2: Schematic drawing feed-forward OHC mechanism.
Both transversal and longitudinal view of the organ of Corti are shown. The force applied
to BM causes a rotational movement around the pivot point of the arch of Corti, bringing a
shear movement of the cilia against the tectorial membrane. Such shear movement results in
the piezo-electric movement of the OHCs, consequently pushing or pulling the BM section
downstream due to the longitudinal tilt of the OHCs. Image adapted with modification
from [46].
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Equation (4.11), (4.12) and (4.13), it follows

Fcell(x+∆, t) =
C1(x, t)C2(x, t)

2
(2Ff(x, t) + Fcell(x, t))

= α(x, t)(2Ff(x, t) + Fcell(x, t)), (4.14)

where α(x, t) = C1C2/2 denotes the FF gain factor. It is known that the OHC force

exhibits a compressive growth with respect to BM displacements u. More specifically,

alpha(x, t) remains fairly constant for small value u, and plummet to close to 0 as u

increases.

4.1.3 Nonlinear nonlocal FF model

Kim and Xin’s work in [39] discovered that the aforementioned FF model is prob-

lematic for its pointwise definition of BM feedback force. In temporal simulations,

the evolving BM profile generates a sawtooth-shaped gain factor, which consequently

renders the BM profile to be more irregular and unstable. Such a problem can be

remedied by broadening the support of the BM gain factor, making the computation

of α nonlocal:

α(x, u, t) =
γ√
λπ

∫ L

0

exp(−(x− x′)2/λ)g(u(x′, t))dx′, (4.15)

where γ and λ are constants. g(·) is defined as

g(x) =
1

2
(1 + tanh(6− |x|

0.03
)) (4.16)

Figure 4.3 shows the shape of g(·).
According to Equation (4.1), we have p(x, 0, t) = 2Ff(x, t). Denote the OHC

feedback force by q(x, t) = Fcell(x, t). Then Equation (4.9) is modified as

q(x, t) + p(x, 0, t) = mutt + rut + s(x)u, 0 ≤ x ≤ L. (4.17)

Equation (4.14) gives

q(x+∆, t) = α(x, u, t)(p(x, 0, t) + q(x, t)), 0 ≤ x ≤ L−∆ (4.18)

At interval x = [0,∆] we define q(x, t) = 0 because the lack of feedback force from

the OHCs due to the longitudinal tilt.
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Figure 4.3: Nonlinear feedback gain on BM displacement values.

4.1.4 Overall Models

Summarizing the formulas in the mathematical modeling, the following two overall

models can be derived.

Temporal-Spatial Model

The physical conditions listed above are gathered to form temporal-spatial partial dif-

ferential equation system. To allow for more efficient numerical simulation, a change

of variable is performed to homogenize the equations. Let p′ = p+2ρTmpe(t)(L− x).

p′ satisfies a Laplace equation with homogeneous boundary data except on z = 0.

Replace p′ by p as a notation, the temporal-spatial cochlear model is given by the
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following set of differential equations:

∇2p(x, z, t) = 0, (x, z) ∈ [0, L]× [0, H ], (4.19)

p(L, z, t) = 0,
∂p

∂x
(0, z, t) = 0,

∂p

∂z
(x,H, t) = 0, (4.20)

∂p

∂z
(x, 0, t) = 2ρutt(x, t), (4.21)

q(x, t) + p(x, 0, t) = mutt + rut + s(x)u+ 2ρTmpe(t)(L− x), (4.22)

q(x+∆, t) = α(x, u, t)(p(x, 0, t) + q(x, t)− 2ρTmpe(t)(L− x)). (4.23)

Spatial Model

Let us first assume that the sound input is a pure tone signal pe = Aeiωt, and impose

the system response to take the form

u(x, t) = U(x)eiωt, q(x, t) = Q(x)eiωt, p(x, z, t) = P (x, z)eiωt. (4.24)

The aforementioned temporal-spatial model can be simplified into the following

spatial model

∇2P (x, z) = 0, (x, z) ∈ [0, L]× [0, H ], (4.25)

P (L, z) = 0,
∂P

∂x
(0, z) = 2ρam(ω)A,

∂P

∂z
(x,H) = 0, (4.26)

∂P

∂z
(x, 0) = −2ρω2U(x), (4.27)

Q(x) + P (x, 0) = (−mω2 + irω + s(x))U(x), (4.28)

Q(x+∆) = α(P (x, 0) +Q(x)). (4.29)

Finding a numerical solution to the PDEs requires proper discretization of the

solution domain. Because the spatial model is a simplified version of the temporal-

spatial model, the spatial discretization techniques apply directly to the temporal-

spatial model. In the following sections the solution to the spatial model is first

presented. The effectiveness of various spatial discretization scheme are compared.

Then the best scheme will be adapted in order to find the solution to the temporal-

spatial model.
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4.2 Spatial Model Solution

In this thesis, the basis function collocation methods are used to find the solution

to the spatial cochlear model. Let the pressure value P (x, z) function be a linear

combination of basis functions

P (x, z) =
J

∑

j=1

kjφj(x, z). (4.30)

If global radial basis functions are used, we have

φj(x, z) = φ(x− xj , z − zj)

where (xj , zj) represents the center of the basis function φj(x, z). If the basis functions

are constructed with tensor products of basis function of different variables, we have

φj(x, z) = χℓ(x)ζm(z)

where j denotes the index pair (ℓ,m), and χ(x) and ζ(z) are basis functions for

dimension x, z respectively.

By selecting a set of collocation points S := {(xi, zi)}Ii=1, we apply the collocation

method defined in Equation (3.1) and (3.2) to the system of equations (4.25), (4.26)

and (4.27), to obtain the following linear system

DK = F,

such that D is the I × J system matrix, K is the J × 1 coefficient vector, and and F

is the I × 1 right-hand side vector.

The domain of the problem is [0, L] × [0, H ]. The collocation points are selected

on a regular grid with grid size ∆x = ∆z. 1 Let N = L/∆x and M = H/∆x, and

denote xn = n×∆x for n = 0, 1, · · · , N . For simplicity, assuming the OHC feedback

distance ∆ = τ∆x for some integer τ < N , Equation (4.29) gives

Q(xn + τ ×∆x)− αQ(xn) = αP (xn), for n = 0, 1, · · · , N − τ. (4.31)

Let P,Q denote the column vector of P (x, z) and Q(x) evaluated on the collocation

1with special boundary treatment for spline basis functions. Same in the following passages.
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points on the BM boundary, it follows

BQ = CP. (4.32)

The matrix B has 1’s on its diagonal, B(n+τ, n) = −α for n = 0, 1, · · · , N−τ , and

zeros everywhere else. The matrix C is a lower triangular matrix with C(n+τ, n) = α

for n = 0, 1, · · · , N − τ and zero everywhere else. It is obvious that B + C produces

the identity matrix Id of size (N + 1) × (N + 1). For the sake of simplicity, the

discretization procedure in Equation (4.31) is applied directly to the spline collocation

schemes despite the irregularities at the boundaries. As we can see in the experiments,

the straight-forward adaptation still produces reasonable results.

Because matrix B is invertible, Equation (4.32) gives

Q = B−1CP. (4.33)

Let U denote the vector of BM displacement function U(x) evaluated at BM collo-

cation points. Equation (4.33) and (4.28) gives

(B−1C + Id)P = (−ω2M + iωR + S)U

where the matrices M,R and S are diagonal matrices with m, s, and S(n, n) =

s(n×∆x). It follows

U = EP (4.34)

where E = (−ω2M+ iωR+S)−1(B−1C+Id). Let D̃ represent the part of the system

matrix D created with collocation points on the BM boundary, and let Ď represent

the rest of the system matrix. Equation (4.27) and (4.34) gives

D̃K + 2ρω2EP = 0

Let Γ̃ denote the reconstruction matrix for BM boundary collocation points. It follows

(D̃ + 2ρω2EΓ̃)K = 0

Let F̌ represent the right-hand size vector of collocation points which are not on the

BM boundary. We derive the following linear system that incorporate OHC feedback
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force and the BM spring system

[

Ď

D̃ + 2ρω2EΓ̃

]

K =

[

F̌

0

]

(4.35)

In this thesis, we restraint the number of basis functions to be the same as the

number of collocation points. The coefficient vector K is thus computed as the inverse

of the system matrix times the right-hand size vector. Least square solutions were

also attempted, but the discussion is excluded from this thesis because only poor

results were obtained.

Simulation Parameters

Parameters Symbol Magnitude Unit
Membrane density m 0.07 g/cm2

Fluid density ρ 1 g/cm3

Length of cochlear L 3.5 cm
Height of cochlear H 0.1 cm
Resistance r 0.07 g/(cm2· ms)

Table 4.1: Simulation parameters for spatial cochlear model.

Table 4.1 lists the general parameters used throughout the spatial simulation.

The OHC tilt ∆ is chosen to be the same as the grid width ∆x throughout spatial

experiments. The parameters has the same value as in [39], so that the results are

directly comparable.

4.2.1 Results and Discussions

Comparison Between Basis Functions

This experiment focus on comparing the effect of using different basis functions with

their corresponding collocation schemes. The input frequency is fixed to be 4.5 kHz,

and the input magnitude is fixed to be 40 dB SPL. Four types of basis functions are

used

1. Multiquadric radial basis function (MQRBF). The shape parameter ǫ in this
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experiment is chosen to be

ǫ =
1

0.815d
, where d =

1

J
=

J
∑

j=1

dj

and dj is the distance from the jth center from its nearest neighbor. The

selection of shape parameter is recommended by Hardy in [31]. Other parameter

selection strategies, such as the leave-one-out-cross-validation (LOOCV) may

lead to better performance, yet we do not pursue that in this thesis. The

collocation points are selected on a regular grid with grid size ∆x = 0.05, 0.025

and 0.01, and the function centers coincide with the collocation points. Because

regular grids are used for collocation points and function centers, d is obviously

the grid width ∆x.

2. Gaussian radial basis function (GRBF). The shape parameter is chosen to be

ǫ =
1√
2∆x

so that the GRBF corresponds to normal distribution with ∆x as the standard

deviation. As a result, three collocation points are sampled within one standard

deviation. The effect can be compared with the spline basis function colloca-

tion schemes where three collocation points are also sampled inside one basis

function. The collocation points and the function centers are identical to the

MQRBF case.

3. Quadratic spline basis function (QS). The collocation scheme is described in

the previous chapter. Because the spline basis function has finite support, the

system matrix is sparse, allowing finer grid size to be used. The grid width is

chosen as ∆x = 0.025, 0.01 and 0.005.

4. Cubic spline basis function (CS). The collocation scheme is described in the

previous chapter. The grid width is chosen as the same as in the QS case.

Because the spatial cochlear model does not have a known analytical solution, the

following criteria are used to evaluate the accuracies of spatial solutions.

1. κ, the condition number of the system matrix. The condition number reflects

the stability of the solution with respect to changes in the input. Because the

machine epsilon of a double variable, the accuracy of the direct solution of a
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linear system with condition number close to or larger than 1e+16 is question-

able. We consider that a matrix with large condition number, say 1e+10, may

yield unreliable solutions.

2. xcp, the location of the characteristic place (CP). xcp is defined as

xcp = argmax
x

|U(x)|

where |U(x)| is the complex modulus of the BM displacement given a pure-tone

input of frequency f . As we found out in experiments, xcp often deviates from

the reference CP location deduced by the BM stiffness function, which is

xref = cp(f) = 3.5 · (1− (4.83)−1 · log((f + 0.45)/0.456)).

Because the cochlear model we study is a drastic simplification of the actual

cochlea, plus that numerical errors are unavoidable in discretization, we be-

lieve small differences between xcp and xref are normal and acceptable. A more

important property is the exponential mapping between xcp and the input fre-

quency, which demonstrates the main function of the cochlea as a frequency

analyzer.

3. |U(xcp)|, the magnitude of BM displacement at CP. According to [39, 46, 26],

the BM displacement is at the range of fractions of a nanometer (nm) in a

passive cochlea, and is magnified for about 100 times when active element is

present.

4. Ξ(xcp), energy concentration around CP. The energy concentration is defined

as the percentage of energy distributed in the interval [xcp − δx, xcp + δx]:

Ξ(xcp) =

∫ xcp+δx

xcp−δx
|U(x)|2dx

∫ L

0
|U(x)|2dx

. (4.36)

Throughout this thesis, δx is fixed as 0.05 cm, and is thus omitted from the no-

tation. Energy concentration represents the frequency selectivity of the cochlear

model. Cochlea maps the frequency of a pure-tone input to the vibration of a

certain part of the BM, and therefore a large portion of the BM energy should

distribute around the CP. The addition of OHC active feedback system should

increase frequency selectivity of the cochlea, which boosts the energy concen-

tration further.
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5. Shape of BM displacement profile and cochlear fluid pressure. A pure-tone

signal produces a traveling wave within the cochlea, which consists of a long

wavelength section close to the basal end, a short wavelength section close

to the CP, and a sharp cut-off after the CP (The “long-short-cut-off” shape.

See Figure 2.2). Because it is difficult to quantify the shape characteristics,

qualitative observation were made based on the BM displacement profile and

cochlea pressure distribution.

Figure 4.4 and 4.5 show the pressure distribution and the BM profiles of the

solutions obtained with different basis functions. The details of the experiments are

listed in Table 4.2 and 4.3. Below are the discussions of the results by basis functions.

1. MQRBF. Judging from the shape of the pressure map and BM profile of the

passive model, the solution is partially correct. The long wavelength region,

short wavelength region and the sharp cut-off are observed in the graph. How-

ever, the CP location is drastically away from the reference point. In the active

model, a boost of BM displacement and energy concentration is observed, but

the amplification is beyond reasonable range. For the active model with grid

width ∆x = 0.01 cm, The magnitude of BM displacement is 2 mm, a number

greater than the height of the cochlear duct. The erroneous result is probably

due to the large condition number of the system matrix. As it is indicated in

the Table 4.2 and 4.3, the MQRBF basis seems very sensitive to the addition

of OHC feedback factor. The change of grid size also tend to greatly alter the

simulation result.

2. GRBF. The pressure distribution of the passive model does not show any sig-

nificant concentration of fluid pressure. Although the BM displacement has it

peak close to the reference CP location, the waveform does not comply with

the “long-short-cut-off” shape. In the solution of the active model, concentra-

tion of pressure and BM displacement is clearly observed near the reference CP

location. However, for the active model with grid width ∆x = 0.01 cm, the

magnitude of BM displacement is a lot larger than the expected range. Worse

still, a decrease in energy concentration is observed in the active model solution

for ∆x = 0.05 and 0.025. As we can see in the tables, although the solutions us-

ing GRBF produce xcp closer to the reference CP, and have a smaller condition

number, the simulation result is still far from ideal.

3. QS. In the passive solution, the BM displacement profile clearly demonstrates

a “long-short-cut-off” pattern, with the maximum BM displacement close to
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Figure 4.4: Pressure map and BM displacement for global RBFs.
The input signal is a 4.5 kHz, 40 dB SPL pure-tone. Grid width ∆x = 0.01. The left column
shows the pressure map within the simulated cochlear model, where darker area represents
larger magnitude. The right column shows the imaginary part of the corresponding BM
profile. Axis labels are shown for graphs on the first row only. The reference CP (1.77 cm)
is marked in the graphs.



CHAPTER 4. COCHLEAR MODELS AND SIMULATIONS 54

x

z

(a1) Pressure map for QS, passive

0 1.77 3.5

0.1

0
0 1.77 3.5

−0.4

−0.2

0

0.2

x

B
M

 d
is

pl
ac

em
en

t (
nm

) (a2) imag(u) for QS, passive

(b1) QS, active

0 1.77 3.5

0.1

0
0 1.77 3.5

−40

−20

0

20

40
(b2) QS, active

(c1) CS, passive

0 1.77 3.5

0.1

0
0 1.77 3.5

−0.4

−0.2

0

0.2

(c2) CS, passive

(d1) CS, active

0 1.77 3.5

0.1

0
0 1.77 3.5

−20

0

20

40
(d2) CS, active

Figure 4.5: Pressure map and BM displacement for spline basis functions.
The input signal is a 4.5 kHz, 40 dB SPL pure-tone. Grid width ∆x = 0.01. The left column
shows the pressure map within the simulated cochlear model, where darker area represents
larger magnitude. The right column shows the imaginary part of the corresponding BM
profile. Axis labels are shown for graphs on the first row only. The reference CP (1.77 cm)
is marked in the graphs.
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Basis ∆x κ xcp |U(xcp)| Ξ(xcp)(%)
MQRBF

0.05 1.63e+7 0.87 0.0164 50.86%
ǫ = 24.54
MQRBF

0.025 9.95e+7 1.23 0.0797 53.15%
ǫ = 49.08
MQRBF

0.01 5.52e+8 1.48 0.2665 63.27%
ǫ = 122.7
GRBF

0.05 6.50e+4 1.25 0.0485 42.27%
ǫ = 14.14
GRBF

0.025 2.93e+5 1.48 0.0622 57.71%
ǫ = 28.28
GRBF

0.01 1.99e+6 1.64 0.0488 39.31%
ǫ = 70.71
QS 0.025 4.09e+5 1.68 0.3499 52.28%
QS 0.01 4.33e+6 1.7 0.269 51.43%
QS 0.005 3.16e+7 1.7 0.2621 53.08%
CS 0.025 5.37e+5 1.69 0.3541 51.55%
CS 0.01 5.01e+6 1.7 0.2629 53.99%
CS 0.005 3.52e+7 1.7 0.2597 53.11%

Table 4.2: Comparison between basis functions, passive model.

∆x and xcp is given in cm, while |U(xcp)| is given in nm.
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Basis ∆x κ xcp |U(xcp)| Ξ(xcp)(%)
MQRBF

0.05 1.98e+9 0.91
1.62e+0 48.82%

ǫ = 24.54 (9.81e+1) (-4.01%)
MQRBF

0.025 7.73e+11 1.11
2.89e+2 70.18%

ǫ = 49.08 (3.62e+2) (32.04%)
MQRBF

0.01 6.69e+15 1.36
1.39e+6 95.21%

ǫ = 122.7 (5.20e+6) (50.48%)
GRBF

0.05 1.59e+6 1.78
1.91e+0 25.73%

ǫ = 14.14 (3.83e+1) (-39.13%)
GRBF

0.025 1.34e+8 1.56
4.29e+1 55.58%

ǫ = 28.28 (6.89e+2) (-3.69%)
GRBF

0.01 6.09e+10 1.68
2.35e+3 99.39%

ǫ = 70.71 (4.81e+4) (152.84%)

QS 0.025 5.39e+5 1.7
1.96e+1 79.9%

(5.51e+1) (52.83%)

QS 0.01 4.92e+6 1.76
3.20e+1 95.62%

(1.18e+2) (85.92%)

QS 0.005 2.85e+7 1.76
2.46e+1 98.47%

(9.28e+1) (85.51%)

CS 0.025 7.63e+5 1.77
1.94e+1 64.79%

(5.37e+1) (25.68%)

CS 0.01 5.59e+6 1.75
4.02e+1 98.58%

(1.52e+2) (82.59%)

CS 0.005 3.17e+7 1.76
2.26e+1 98.35%

(8.61e+1) (85.18%)

Table 4.3: Comparison between basis functions, active model (α = 0.36).

∆x and xcp is given in cm, while |U(xcp)| is given in nm. Number in parentheses
denote the boost amount from the passive case.
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the reference CP location. In the pressure map, a clear cut-off is found after

the reference CP, showing that most of the pressure energy is absorbed by the

BM segment before the CP. In the active solution, the BM displacement and

the pressure distribution is condensed into a small region about the reference

CP, showing high frequency selectivity. The BM displacement is magnified for

about 100 times after the active element is added, which matches the observed

difference between impaired and normal ears [26, 46]. The model solutions using

QS ideally matches the physiological characteristics of the cochlea. Additionally,

solutions using QS seems to be stable with the variation of grid size.

4. CS. The performance of the CS basis functions is nearly identical to the QS

basis functions. Except for some small numerical difference, the results are

essentially the same.
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Figure 4.6: Relationship between shape parameter of RBFs and the condition number of
the system matrix. ∆x = 0.01

The relationship between the RBF shape parameter ǫ and the system matrix con-

dition number κ is further investigated; the results are shown in Figure 4.6. MQRBF
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Figure 4.7: Relationship between OHC feedback factor and the condition number of the
system matrix. ∆x = 0.01

and GRBF is compared side-by-side on the same grid with ∆x = 0.01. As we see

in the graph, a larger shape parameter generally result in a smaller condition num-

ber, except for using MQRBF on the active model, where the condition number rise

again after ǫ = 40. Generally speaking, a larger shape parameter results in a more

localized basis function. The condition number is decreased because the columns

of the system matrix are less linearly dependent, while the target function is worse

represented because the basis functions have less coverage. However, such a trend is

not preserved for using MQRBF on the active model. The added OHC active feed-

back factor introduces a Dirichlet boundary condition on the BM boundary (overall

it is a Robin boundary condition), and because the value of the MQRBF increases

as the collocation point moves away from the function center, the the columns of the

system matrix is dominated by the homogeneous OHC active feedback factor when

the shape parameter is large, rendering the matrix linearly dependent. Additionally,

we discovered that reasonable results are rarely obtained for global RBF with a large

shape parameters after repeated experiments. It suggests that global RBF may not
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be an ideal type of basis functions for this spatial cochlear model.

Figure 4.7 shows the relationship between the OHC active feedback factor α and

the system matrix condition number κ. The grid size is 0.01 cm, and the shape

parameter for MQRBF and GRBF is 122.7 and 70.71 respectively. It can be observed

that MQRBF is indeed very sensitive to the introduction of OHC feedback factor.

For a fixed grid and a fixed shape parameter, a larger α results in a larger κ, quickly

rendering the linear system unstable. GRBF is less affected by the change of α, yet

κ does increase with α in general. The condition number for QS and CS is largely

unaffected by the change of α due to their finite support.

In conclusion, we discussed the effects of solving the spatial cochlear model using

four types of basis functions. It is discovered that the global RBF functions are

generally disadvantageous, because inaccurate solution are obtained for large grid

width and large shape parameter, while small grid width and small shape parameter

renders the solution unstable. We believe the cause is two-fold: 1. To find a highly

localized solution (high frequency selectivity) in a highly elongated model (35:1), it

requires a fine grid and a small shape parameter to produce a localized result, which

consequently renders the system matrix linearly dependent as the collocation points

are arranged in tightly placed arrays. 2. The introduction of homogeneous OHC

feedback factor linearizes the boundary condition, deteriorating the system matrix

further because global RBFs are sensitive to boundary conditions. On the other

hand, the spline basis functions give stable results which agree with physiological

data and past works. They serve as ideal basis functions for future experiments.

Response to Pure-Tone Inputs

Figure 4.8 shows the so-called iso-intensity graph for the spatial cochlear model,

computed using the CS basis function with grid width ∆x = 0.01. Pure-tone signals

of same sound pressure level but different frequencies are used as input, and modulus

of the BM displacement are taken as output. The graph shows the system response

for 40 dB SPL signals of frequencies 18, 12.73, 9, 6.36, 4.5, 3.18 and 2.25 kHz, peaking

at BM location 2.19, 1.98, 1.76, 1.52, 1.28, 1.04 and 0.8 cm, respectively. The vertical

axis is the BM displacements in logarithmic scale, and the horizontal axis is the

distance to the oval window. Dashed lines represent the BM displacement of the

passive model with same input signals.

The graph demonstrates traits of the spatial cochlear model that comply with

physiological observations. First of all, the cochlea as a frequency analyzer maps

the frequency of a input signal to a certain location (CP) of the BM. As the input
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Figure 4.8: BM displacement magnitude for input signal of different frequencies.

increase exponentially in frequency, the CP moves linearly towards the basal end (oval

window). That can be observed from the graph where the BM displacement peaks

are placed linearly for exponential growth of frequencies. Second, the addition of

OHC active feedback factor drastically improves the frequency selectivity and peak

magnitude, conforming to the observations made in live cochlea [26, 46] and the

experiment results in [45, 46]. Third, the sensitivity grows as the input frequency

gets higher. Such a characteristic coincide with our sense of hearing, as we are

generally more sensitive to high frequency sounds (sirens, blackboard scratches) than

low frequency sounds (footsteps, bass guitar).

Figure 4.9 shows the frequency–location map of the solutions presented in Figure

4.8. The vertical axis is the input frequency in logarithmic scale, and the horizontal

axis represent the distance of the CP location to the oval window. As we can observe,

the frequency–location map obtained from both the passive and the active spatial

model conform well with physiological data in [28, 44].
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Figure 4.9: Frequency-location map of the spatial cochlear model.

4.3 Temporal-Spatial Model Solution

Solving the temporal-spatial model requires proper discretization in both space and

time domain. By the method of separation of variables, p(x, z, t) is given as

p(x, z, t) =
J

∑

j=1

kj(t)φj(x, z)

The spatial discretization is given in the previous section. The following discusses

the temporal discretization for Equation (4.22) and (4.23).

Assuming that collocation points are selected on a regular grid, and ∆ = τ∆x.

Denoting xn = n×∆x for n = 0, 1, · · · , N , Equation (4.23) gives

q(xn + τ∆x, t)− α(xn, u, t)q(xn, t) = α(xn, u, t)(p(xn, 0, t)− Fin(xn, t))

where Fin(x, t) = 2ρTmpe(t)(L − x). Let Q(t),P(t) and Fin(t) denotes the column
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vector for q(xn, t), p(xn, 0, t) and Fin(xn, t) respectively. It follows

BQ(t) = C(P(t)− F (t))

where matrices B and C are very similar to the spatial case except for variable α

values. Because matrix B is invertible, it can be further deduced

Q(t) = B−1C(P(t)− F (t)). (4.37)

Define U (t) as the vector of u(x, t) evaluated at BM boundary collocation points.

Define G = B−1C + Id, where Id is the (N + 1)× (N + 1) identity matrix. Putting

Equation (4.37) into Equation(4.22) gives

B−1C(P(t)− Fin(t)) + P(t) = MUtt(t) +RUt(t) + SU (t) + Fin(t)

By simplification,

G(U )P(t)−MUtt(t) = RUt(t) + SU (t) +G(U )Fin(t). (4.38)

Similar to the spatial case, let D̃ and Γ̃ denote the BM boundary differentiation

and reconstruction matrices. Equation (4.21) and (4.38) gives

(G(U )Γ̃− 1

2ρ
MD̃)K(t) = RUt(t) + SU (t) +B−1C +G(U )Fin(t). (4.39)

The relationship among vector K(t), Ut(t) and U (t) is specified by a second order

differential equation in time domain. To make the problem applicable to common

numerical integration schemes which are typically written for first order differential

equations, we need to introduce an intermediate variable V (t). Define V (t) = Ut(t),

and thus Vt(t) = Utt(t). Let the superscript denote the time step of a variable. For

example, U n denotes vector U (t) at the nth time step. By the second order backward

differencing formula BFD2, we obtain the following two equations

U
n+2 =

4

3
U

n+1 − 1

3
U

n +
2∆t

3
V

n+2 (4.40)

V
n+2 =

4

3
V

n+1 − 1

3
V

n +
2∆t

3
U

n+2
tt (4.41)

where ∆t is the time step size. Note that we have U
n+2
tt = Γ̃Kn+2. Combining
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the equations (4.39), (4.40), and (4.41), we derive

(G(U n+2)Γ̃− 1

2ρ
MD̃)Kn+2 = R(

4

3
V

n+1 − 1

3
V

n +
2∆t

3

1

2ρ
D̃Kn+2)

+ S(
4

3
U

n+1 − 1

3
U

n +
2∆t

3
(
4

3
V

n+1 − 1

3
V

n +
2∆t

3

1

2ρ
D̃Kn+2))

+G(U n+2)F n+2
in .

Grouping terms with Kn+2 on the left-hand side of the equation, and simplifying the

coefficients, it follows,

(G(U n+2)Γ̃− 1

2ρ
MD̃ − ∆t

3ρ
RD̃ − 2∆t2

9ρ
SD̃)Kn+2 =

R(
4

3
V

n+1 − 1

3
V

n) + S(
4

3
U

n+1 − 1

3
U

n +
2∆t

3
(
4

3
V

n+1 − 1

3
V

n)) +G(U n+2)F n+2
in

(4.42)

Let ˜̃D denote the left-hand side of equation 4.42, and let ˜̃F denote the right-hand

side. Let Ď and F̌ denote the differentiation matrix and the right-hand side vector

for collocation points not on the BM boundary. Combining the spatial and temporal

discretization we obtain the following linear system

[

Ď
˜̃Dn+2

]

Kn+2 =

[

F̌
˜̃F n+2

]

. (4.43)

The value of ˜̃Dn+2 is dependent on G(U n+2), where U n+2 is approximated ex-

plicitly by the second order Taylor expansion,

U
n+2 = U

n+1 +∆tV n+1 +
∆t

2
(V n+1 − V

n).

˜̃F n+2 is determined by the sound pressure input of the system. Once the coefficient

vector Kn+2 is solved, V
n+2
t is calculated by Equation (4.21), which in term updates

V n+2 and U n+2 to prepare for the simulation of next time step. The homogenization

of the temporal-spatial model allows most of the system matrix and the right-hand

side vector to stay constant for the entire simulation. Such a configuration may be

exploited for fast matrix inverse to shorten the simulation time [39].
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4.3.1 Experiment Setup

Simulation Parameters

Parameters Symbol Magnitude Unit
Membrane density m 0.07 g/cm2

Fluid density ρ 1 g/cm3

Length of cochlear L 3.5 cm
Height of cochlear H 0.1 cm
Resistance r 0.07 g/(cm2· ms)
Grid width ∆x 0.025 cm
Time step ∆t 0.0025 ms

Table 4.4: Simulation parameters for spatial cochlear model.

Table 4.4 lists the parameters for the temporal-spatial experiments. The nonlinear

gain factor α(x, u, t) is defined in Equation (4.15) with γ = 0.36 and λ = 0.12 cm2.

The grid width is fixed to be 0.025 as a compromise between simulation time and

numerical accuracy. Cubic spline basis functions are used for their numerical sta-

bility shown in the spatial experiments. ∆t is chosen as the same as in [39] where

proof of convergence for FDM discretization is given. However, we do not prove the

convergence of our temporal-spatial solution for cubic spline basis functions.

The input is given as

Tmpe(t) = (1− e−t/t0)
Jm
∑

j=1

am(ωj)Aj sin(ωjt),

where t0 = 2.0. This configuration gradually increase the input magnitude as a

measure to suppress the undesirable dispersive tail which often appears in the BM

displacement. The convergence to a quasi-static state is sped up as a result [39, 75].

Figure 4.10 shows an example of the temporal-spatial simulation result, were a

4.5 kHz, 40 dB SPL pure-tone is used as input. The top graph illustrates the BM

velocity profile at t = 28 ms, where a “long-short-cut-off” waveform is observed.

The middle graph shows the evolution of the BM velocity. The BM location which

obtained maximum BM velocity is marked at the vertical axis, while time is given in

the horizontal axis. As we can observe that the BM location with maximum velocity

changes drastically for the first three milliseconds, after which the profile converges

to a quasi-static state where the maximum location only varies within a small range.

It can be explained that the dynamic state is the transient period for the pressure



CHAPTER 4. COCHLEAR MODELS AND SIMULATIONS 65

0 0.5 1 1.5 2 2.5 3 3.5
−100

−50

0

50

100
BM velocity profile at t=28 ms

Distance to oval window (cm)

B
M

 v
el

oc
ity

 (
nm

/m
s)

0 1 2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

3.5
BM location with maximum velocity, uncorrected

B
M

 lo
ca

tio
n 

(c
m

)

Time (ms)

0 1 2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

3.5
BM location with maximum velocity, corrected

B
M

 lo
ca

tio
n 

(c
m

)

Time (ms)

Quasi−static
state

Dynamic
state

Constant value
after temporal correction

Figure 4.10: Example of temporal-spatial simulation results. Input is a 4.5 kHz, 40 dB SPL
pure-tone.
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energy to concentrate around the CP, and after the BM attains most of its energy

around the CP, the small variation is caused by the vertical movements of the BM

spring systems around the CP. To allow quantitative analysis, the BM velocity v(x, t)

is corrected by choosing the maximum velocity in a small time window:

vc(x, t) = max
t′∈[t−δt,t+δt]

|v(x, t′)|,

where Vc(x, t) denotes the corrected BM velocity, and δt is fixed as three cycles of the

input frequency. The BM evolution computed with corrected BM velocity is shown

in the bottom graph of Figure 4.10, where the corrected BM velocity profile reaches

a static state after four milliseconds.

Similar to the spatial model, we define the following values to facilitate the dis-

cussion.

1. xcp, the location of the characteristic place (CP). xcp for the temporal-spatial

model is defined as

xcp = xcp,[ta,tb] = argmax
x

1

tb − ta

∫ tb

ta

vc(x, t)dt

where interval [ta, tb] is selected so that the corrected BM velocity profile is in a

static state. Through repeated experiments, we discovered that the static state

is reach after 20 ms regardless of the input. The interval is therefore chosen to

be [20, 40] throughout the discussion.

2. umean(xcp), the average of BM displacement at CP, defined as

umean(xcp) =
1

tb − ta

∫ tb

ta

|u(xcp, t)|dt

3. Ξ(xcp), energy concentration. The energy concentration around xcp is defined

as

Ξ(xcp) =

∫ xcp+δx

xcp−δx

∫ tb
ta
E(x, t)dtdx

∫ L

0

∫ tb
ta
E(x, t)dtdx

where the energy function E(x, t) is given as the energy of individual BM spring

systems

E(x, t) =
1

2
mv2(x, t) +

1

2
S(x)u2(x, t).

Similar to the spatial model, the energy concentration around CP reveals the
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degree of frequency selectivity for the temporal-spatial mode.

4.3.2 Results and Discussions

Response to Pure-Tone Input

Frequency γ xcp |umean(xcp)| Ξ(xcp)(%)
2.25 0 2.28 6.16e-2 17.94%
3.182 0 2.03 6.43e-2 17.95%
4.5 0 1.96 9.95e-2 17.94%
6.364 0 1.88 1.48e-1 18.04%
9 0 1.5 2.78e-1 17.66%
12.7279 0 1.45 8.36e-1 24.57%
18 0 1.05 8.24e-1 24.70%

2.25 0.36 2.45
6.68e-1 34.16%
(9.85) (90.46%)

3.182 0.36 2.3
1.05 37.02%

(1.53e+1) (106.24%)

4.5 0.36 2.18
1.74 41.41%

(1.65e+1) (130.73%)

6.364 0.36 1.93
2.10 46.68%

(1.32e+1) (158.71%)

9 0.36 1.73
4.13 53.86%

(1.39e+1) (205.03%)

12.7279 0.36 1.55
3.73 58.67%

(3.46) (138.80%)

18 0.36 1.28
5.70 58.77%

(5.92) (137.96%)

Table 4.5: Temporal-spatial simulation results of 40 dB SPL pure-tone signals.

xcp is given in cm. |umean(xcp)| is given in nm. Numbers in parenthesis represents
the boost compared to the passive model (γ = 0).

Table 4.5 lists the experiment results for 40 dB SPL pure-tone signals. The ex-

periments were carried out for input frequencies 2.25, 3.182, 4.5, 6.364, 9, 12.7279,

and 18 kHz, on both the passive model (γ = 0) and the nonlinear active model

(γ = 0.36). The location of the characteristic place, energy concentration, and the

average BM displacement are shown. The value gain for adding the nonlinear OHC

active feedback factor are listed in parentheses.

It can be observed from Table 4.5 that the inclusion of nonlinear OHC feedback

factor enhance the BM vibration and frequency selectivity, as shown by increased
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BM displacement value and the energy concentration. However, the addition of active

element creates a less significant effect compared to the results from the spatial model,.

That is probably due to the saturation property of the nonlinear feedback factor in

time simulation. Moreover, adding the the nonlinear element seems to alter the CP

location, some phenomenon not observed from the spatial model.
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Figure 4.11: Frequency–location map for temporal-spatial simulation.

Figure 4.11 shows the frequency–location map of the temporal-spatial simulations.

It can be observed that the temporal-spatial model is capable of mapping pure-tone

input frequency to a specific location of the BM boundary. However, the frequency

response for the passive model deviates substantially from the reference CP location,

and the addition of OHC active feedback factor moves the line further from the

reference. The result is significantly different from Figure 4.9 and from the results in

[39].

We believe the cause for the discrepancy lies in our method of solution. The

pressure-wave created by the pure-tone input propagates much slower than the sound

wave in the cochlear fluid. Through the nonlinear OHC feedback system, and through

the complex fluid interaction in the two dimensional domain, the frequency content
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of the input signal is potentially changed to include low-frequency contents. Such a

phenomenon is not captured by the spatial model or the temporal-spatial solution

in [39] because the spatial model constraints the fluid pressure P (x, z) and the BM

displacement U(x) to be a multiple of the carrying pure-tone signal eiωt, while the

temporal-spatial solution in [39] is algebraically reduced to the solution on the BM

boundary for efficiency. However, further study is required to fully determine the

effect of the nonlinear OHC feedback factor on the CP location.

Response to Multi-Tone Input

Figure 4.12 shows the simulation results of a multi-tone signal comprised of four pure-

tone signals of 2.25, 4.5, 9 and 18 kHz. The top graph shows the BM uncorrected

velocity profile at t = 28 ms, enveloped by the correct velocity profile. Two clear peaks

are observed for input signal of 9 and 18 kHz, while the peaks for lower frequency are

not obvious. The bottom graph shows the velocity profile in logarithmic scale, where

the four peaks of the input pure-tone signals. An dispersive tail is also observed at

the apex end as a result of the termination of the cochlear duct.

The result of multi-tone signal simulation conforms to the results of the spatial

model; the cochlear model is more sensitive to high frequency signals than low fre-

quency signals. The observation also complies with our sense of hearing that high

frequency signals are more easily distinguished from a complex sound background.

Additionally, the presence of high frequency signals saturates the OHC feedback fac-

tor, diminishing the sensitivity for low frequency signals.

Response to Transient Input

Figure 4.13 shows the transient response of the temporal-spatial model to a “click”

input. The top graph shows the shape of the “click” signal, while the rest of the

graphs shows the system response sampled as the BM velocity at x = 1.5 cm. It

can be observed that, the passive system gives a weak response to the input click,

which quickly dies down to zero. Equipped with the OHC active feedback mechanism,

the click signal is greatly magnified at about 1 ms. The magnification of the click

signal grows compressively with respect to the strength of the input as a result of the

saturation of OHC feedback factor. Interestingly, a small, delayed wave lobe resurges

at t = 2.7 ms, reflecting the complex dynamics of a nonlinear active cochlear model.

The resurgence of the BM response is correlated to the long known phenomenon

of otoacoustic emission. Predicted by Thomas Gold in 1948, and experimentally
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demonstrated by David Kemp in 1978 [38], the cochlea emits sounds back to the ear

canal in response to audio inputs. Such a phenomenon is believed to originate from

the amplification mechanisms in cochlea, and is only observed in healthy cochlea.

Given the difficulties to conduct experiments on live cochlea, numerical simulation

with the temporal-spatial cochlea model may provide means to investigate the elusive

mechanisms behind in vivo cochlear behaviors.

Compressive Growth

Figure 4.14 illustrates the compressive growth phenomenon in the temporal-spatial

model. Pure-tone signal of different sound pressure level as used as the input of the

system, the BM velocity is surveyed throughout the BM boundary after a static state

has reached. Frequency 2.25, 4.5, 9, and 18 kHz are used for this experiment.

It can be observed from the graph that all the BM profiles demonstrates a peaked

curve with the peak located around the corresponding CP. However, with the increase

of input sound pressure level, the peak location becomes less sharp as BM segments

away from the CP has greater gain in velocity than that of the CP. The curves reveal

that the cochlea model possess greater frequency selectivity when a lighter sound is

present, and the sensitivity grows duller with the increase of sound pressure level.

The experiment results comply with the finding in numerical experiments of [39], and

the physiological measurements in [57].

Two-tone Suppression

Figure 4.15 shows the effects of two-tone suppression observed in the temporal-spatial

model. The input comprises of two pure-tone signals: the probe tone at 18.8 kHz,

and the suppressor tone at 22.9 kHz. The signal is created with different combination

of sound pressure levels, and the BM velocity is measured after the static state has

reached. Measuring site is at x = 1.25 cm, the corresponding peak for the probe tone.

It can be observed that when a strong suppressor is present, the BM response for the

probe tone is generally weaker. The suppression effect diminishes with the increase

of probe tone level. This result qualitatively agrees with the physiological data in

Figure 2.11.

In conclusion, the solutions of the temporal-spatial cochlear model is presented.

Experiments are conducted with the focus on comparing model performance with

previously reported numerical results and physiological data. In general, the simula-

tion results agree qualitatively with past works and the results of the spatial cochlear
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Figure 4.15: Two-tone suppression experiment with probe tone 18.8 kHz and suppressor
tone 22.9 kHz. BM velocity is measured at x = 1.25 cm.

model, but a large discrepancy is found in the location of CP for input frequencies. We

believe that the difference is due to the solution techniques we employ. Because the

exponential–linear relationship is preserved for the frequency–location map, the dis-

crepancy can be easily remedied with the change of system parameters. A thorough

parameter adjustment may be conducted so that the cochlear model agrees better

with existing medical data. The simulation results of a transient “click” input also

suggest an possible approach to study the mechanism behind oto-acoustic emissions.



Chapter 5

Future Work

Future development of this work can be carried out in the following aspects:

First, proving the convergence of the temporal-spatial model. The temporal-

spatial model used in this work is identical to the one used in [39], while the solution

technique is different. In [39] the temporal-spatial model was solved using FDM,

for which the convergence of the temporal simulation is proved. Although our own

solution gives results comparable to that of simulation results and physiological data,

the proof of convergence for simulation is still lacking, yet it is required to underpin

the correctness of the solution. Proving the convergence for the solution scheme also

help optimizing the simulation results by selecting appropriate time-step size which

guarantees both convergence and fast simulation.

Second, studying the location of CP in the temporal-spatial model with changes

in the OHC active feedback factor. In our temporal-spatial solutions, the location of

CP appears to be offset by the addition of the OHC feedback factor, which deviates

from past simulation results and physiological data. We suspected the change of CP

is due to the complex fluid interaction in the two dimensional domain, which can

be further investigated using analytical and numerical methods. Likewise, values of

parameters such as the OHC tilt distance, OHC feedback structure, etc., are asserted

so as to conduct temporal simulations. Relationships between simulation results and

the OHC feedback parameters can be further deduced.

Third, solving more complex models. This thesis demonstrates general procedures

to solve two types of cochlear models. The solution technique and the properties we

discover can be extended to the solution of other cochlear models which encompass

more complex features. For example, a three dimensional cochlear model may offer

performance closer to the biological cochlea. The spiral shape of the cochlea, and the

feed-backward factors [14] can be incorporated to better represent the actual structure

75
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of the cochlea.

Fourth, developing a signal processing model from the model simulations. One

ultimate goal of the cochlear study is to create a signal processing tool which gives

similar performance to the human cochlea, so that better hearing aids and audio

processing applications can be developed. The temporal-spatial model demonstrates

desirable signal processing ability of analyzing audio signals of complex composition.

However, the simulation time is unacceptably long for signal processing applications,

for the analysis of a 40 millisecond signal requires 10 minutes of computation time

(MATLAB codes on a 2000 MHz AMD processor). The temporal-spatial model and

its solution scheme can be potentially simplified, so that similar simulation results can

be obtained with shorter simulation time. Computational techniques such as domain

decomposition and parallel computing may also be employ to speed up the analysis

process.



Chapter 6

Conclusion

Two cochlear models and their numerical solutions have been presented in this the-

sis. For the spatial cochlear model, collocation schemes of various basis functions are

proposed to obtain solutions. As is observed in experiment results, the two types

of global RBF are not suitable choices for collocation basis functions. Because of

the elongated shape of the problem domain, and because the specification of the BM

boundary condition with OHC active feedback factor, solutions with global RBF are

challenged by severe numerical instability. On the other hand, spline basis func-

tions demonstrate favorable numerical stability. The experiment results appear to

be qualitatively consistent with the variation of grid width and boundary conditions.

Remarkable agreements are found between the experiment results obtained by cubic

spline basis function and physiological data.

The temporal-spatial cochlear model has also been studied. The solutions are

obtained by proper discretization in both the spatial and temporal domain, where

the cubic spline collocation method and the second order backward difference method

are used, respectively. The experiment results deviate from past experiments and

physiological data, for the location of CP appeared to be offset by the addition of

OHC active feedback factor. We believe the phenomenon is due to our solution

scheme, yet further investigation are required to fully determine the source of the

effect. Apart from the discrepancy found in CP locations, the experiment results

of the temporal-spatial cochlear model agrees qualitatively to past experiments and

physiological data. The cochlear model exhibits high frequency selectivity, nonlinear

growth of signal magnification, and special phenomena such as otoacoustic emission

and two-tone suppression that are typically found in live cochlea.

This work has presented a general procedure for solving cochlear models. The

results and techniques can be extended to complex cochlear models that incorporate

77
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more biological features. The experiment results of the temporal-spatial cochlear

model can be used in development of a cochlear-based, audio signal processor, which

can be employed to construct better hearing aids and audio processing applications.



Bibliography

[1] Jont Allen. Cochlear modeling. ASSP Magazine, IEEE, 2(1):3–29, 1985.

[2] William E Brownell, Charles R Bader, Daniel Bertrand, and Yves de Rib-

aupierre. Evoked mechanical responses of isolated cochlear outer hair cells. Sci-

ence, 227(4683):194–196, 1985.

[3] Richard L Burden and J Douglas Faires. Numerical analysis. 2001. Brooks/Cole,

USA.

[4] Yidao Cai and C Daniel Geisler. Suppression in auditory-nerve fibers of cats

using low-side suppressors. i. temporal aspects. Hearing research, 96(1):94–112,

1996.

[5] Christina C Christara. Quadratic spline collocation methods for elliptic partial

differential equations. BIT Numerical Mathematics, 34(1):33–61, 1994.

[6] Charles C.K. Chui. Multivariate splines. SIAM, 1988.

[7] Dallos, He, Evans, and Clark. Dynamic characteristics of outer hair cell motility.

In Biophysics of hair cell sensory systems, pages 167–174. World Scientific, 1993.

[8] Peter Dallos. The Mechanics and biophysics of hearing: proceedings of a con-

ference held at the University of Wisconsin, Madison, WI, June 25-29, 1990,

volume 87. Springer-Verlag, 1990.

[9] Peter Dallos. The active cochlea. J neurosci, 12:4575–4585, 1992.

[10] Peter Dallos. Overview: cochlear neurobiology. In The cochlea, pages 1–43.

Springer, 1996.

[11] Peter Dallos and Mary Ann Cheatham. Nonlinearities in cochlear receptor po-

tentials and their origins. The Journal of the Acoustical Society of America,

86(5):1790–1796, 1989.

79



BIBLIOGRAPHY 80

[12] Egbert de Boer. On equivalence of locally active models of the cochlea. The

Journal of the Acoustical Society of America, 98(3):1400–1409, 1995.

[13] Egbert De Boer. Mechanics of the cochlea: modeling efforts. In The cochlea,

pages 258–317. Springer, 1996.

[14] Egbert de Boer and Alfred Nuttall. Properties of amplifying elements in the

cochlea. In Biophysics of the Cochlea. From Molecules to Models, volume 1,

pages 331–342, 2003.

[15] Egbert De Boer and Max Viergever. Validity of the liouville-green (or wkb)

method for cochlear mechanics. Hearing research, 8(2):131–155, 1982.

[16] Li Deng. Processing of acoustic signals in a cochlear model incorporating laterally

coupled suppressive elements. Neural Networks, 5(1):19–34, 1992.

[17] Stephen J Elliott, Guangjian Ni, Brian R Mace, and Ben Lineton. A wave finite

element analysis of the passive cochlea. The Journal of the Acoustical Society of

America, 133(3):1535–1545, 2013.

[18] N Eze and ES Olson. Basilar membrane velocity in a cochlea with a modified

organ of corti. Biophysical journal, 100(4):858–867, 2011.

[19] DW Fawcett. W. bloom and dw fawcett: a textbook of histology, 1994.

[20] James L Flanagan. Speech analysis: Synthesis and perception. 1972.

[21] Richard Franke. Scattered data interpolation: Tests of some methods. Mathe-

matics of computation, 38(157):181–200, 1982.

[22] Tatsuya Fukazawa. How can the cochlear amplifier be realized by the outer hair

cells which have nothing to push against? Hearing research, 172(1):53–61, 2002.

[23] C Daniel Geisler. A cochlear model using feedback from motile outer hair cells.

Hearing research, 54(1):105–117, 1991.

[24] C Daniel Geisler. Two-tone suppression by a saturating feedback model of the

cochlear partition. Hearing research, 63(1):203–210, 1992.

[25] C Daniel Geisler. A realizable cochlear model using feedback from motile outer

hair cells. Hearing research, 68(2):253–262, 1993.



BIBLIOGRAPHY 81

[26] C Daniel Geisler. From sound to synapse: physiology of the mammalian ear.

Oxford University Press, 1998.

[27] C Daniel Geisler and Chunning Sang. A cochlear model using feed-forward outer-

hair-cell forces. Hearing research, 86(1):132–146, 1995.

[28] Donald D Greenwood. A cochlear frequency-position function for several species–

29 years later. The Journal of the Acoustical Society of America, 87(6):2592–

2605, 1990.

[29] JJ Guinan Jr and WT Peake. Middle-ear characteristics of anesthetized cats.

The Journal of the Acoustical Society of America, 41(5):1237–1261, 2005.

[30] JL Hall. Two-tone suppression in a nonlinear model of the basilar membrane.

The Journal of the Acoustical Society of America, 61(3):802–810, 1977.

[31] Rolland L Hardy. Multiquadric equations of topography and other irregular

surfaces. Journal of geophysical research, 76(8):1905–1915, 1971.

[32] Kenneth G Hill. Basilar membrane motion in relation to two-tone suppression.

Hearing research, 115(1-2):129–142, 1998.

[33] Allyn Hubbard. A traveling-wave amplifier model of the cochlea. Science,

259(5091):68–71, 1993.

[34] Taha SA Jaffer, Hans Kunov, and Willy Wong. A model cochlear partition in-

volving longitudinal elasticity. The Journal of the Acoustical Society of America,

112(2):576–589, 2002.

[35] Edward J Kansa. Multiquadrics–a scattered data approximation scheme with ap-

plications to computational fluid-dynamics–i surface approximations and partial

derivative estimates. Computers & Mathematics with applications, 19(8):127–

145, 1990.

[36] Edward J Kansa. Multiquadrics–a scattered data approximation scheme with

applications to computational fluid-dynamics–ii solutions to parabolic, hyper-

bolic and elliptic partial differential equations. Computers & mathematics with

applications, 19(8):147–161, 1990.

[37] KD Karavitaki and DC Mountain. Experimental evidence does not support feed-

forward outer hair cell forces. In Association for Research in Otolaryngology

MidWinter Meeting Abstracts, 1999.



BIBLIOGRAPHY 82

[38] David T Kemp. Stimulated acoustic emissions from within the human auditory

system. The Journal of the Acoustical Society of America, 64(5):1386–1391, 1978.

[39] Yongsam Kim and Jack Xin. A two-dimensional nonlinear nonlocal feed-forward

cochlear model and time domain computation of multitone interactions. Multi-

scale Modeling & Simulation, 4(2):664–690, 2005.

[40] Paul J Kolston and Jonathan F Ashmore. Finite element micromechanical mod-

eling of the cochlea in three dimensions. The Journal of the Acoustical Society

of America, 99(1):455–467, 1996.

[41] Paul J Kolston, Max A Viergever, Egbert de Boer, and Rob J Diependaal. Re-

alistic mechanical tuning in a micromechanical cochlear model. The Journal of

the Acoustical Society of America, 86(1):133–140, 1989.
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