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Abstract 

 

Mechanistic Studies of Specific DNA Cleavage by PvuII Restriction Endonuclease 

(August 2008) 

 

Fuqian Xie, B.S., Zhejiang University, P. R. China 

 

Chair of Committee: Dr. C. Dupureur 

 

  

 PvuII restriction endonuclease is a homodimeric protein which recognizes 

and cleaves the palindromic sequence (CAG↓CTG) in the presence of Mg(II) ions.  

Starting with PvuII as a model system, pKa calculations with crystallographically 

defined metal ligated water are applied to PD…D/ExK motif metallonucleases in 

order to investigate the activation of nucleophile in metal dependent DNA hydrolysis. 

These results establish the electrostatic contributions of the metal ions and the 

conserved Lys in lowering water pKa.  The calculated pKa values of metal ligands 

have been used to simulate the pH dependence of Mg(II) binding to PvuII.  The bell 

shaped pH-rate profile is dissected into three ionizations.  One is recognized as from 

the metal ligands, and the other two have pKa’s similar to calculated metal ligated 

water pKa in the absence of DNA.  The determined pH profiles agree well with 

previous pH dependence studies on metallonucleases, and the correlation with pKa 

calculations indicates the direct involvement of metal activated water in catalysis. 
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 The different metal occupancies observed in crystal structures lead to 

controversy regarding the number and function of metal ions involved in DNA 

hydrolysis by type II restriction endonucleases.  Quench flow experiments are used 

to monitor Mg(II) dependent single and multiple turnover DNA cleavage reactions 

with PvuII.  Several models which differ in order of binding and the number of metal 

ions supporting catalysis are examined by global fits using DynaFit.  The best fitted 

model has a preference of binding order in the reaction scheme and supports 

one-metal ion catalysis with 50 fold reduced activity compared with two-metal ion 

catalysis.  The same model is also found to account for multiple turnover data in fits 

and simulations.  A unique reaction scheme for PvuII is established to interpret the 

determined Mg(II) dependence of kinetic data, which provides an insight into Mg(II) 

participation in substrate binding, catalysis and product dissociation by restriction 

endonucleases.  
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CHAPTER I.  INTRODUCTION 
 
 

 This mechanistic study of specific DNA cleavage by PvuII restriction 

endonucleases combines computational and experimental approaches to investigate 

the nucleophile activations in the catalytic mechanism and Mg(II) participation in 

DNA association, catalysis and product dissociation.  The biophysical 

characterizations are particularly important to study enzyme behaviors, which provide 

the most reliable evidences to understand the catalytic mechanism or build up the 

reaction scheme.  Besides those conventional experimental approaches, the 

computational methods in biophysics are developing rapidly since they provide new 

scopes to those issues which are beyond the reach of experiments.  Based on protein 

crystal structures, the pKa calculations can predict the pKa’s for those catalytic 

residues.  Now kinetic modeling greatly depends on the application of some data 

fitting programs (Scientist, Original, DynaFit and etc), which provide more freedom 

and convenience in modeling, and are able to derive those critical kinetic parameters 

which are not measurable experimentally.  This chapter includes a brief description 

of restriction endonucleases, structural and functional features of metal cofactor, pKa 

calculation methods and kinetic studies in enzymology.  

Restriction Endonuclease  

The biological function of type II restriction endonucleases is to protect the 

host DNA by cleaving the invading phage DNA into fragments as a part of restriction 

modification system (Figure 1.1) (Tock & Dryden, 2005).  DNA cleavage reactions 

 



 

 2 

Figure 1.1.  The biological function of restriction endonuclease as a part of 
restriction modification system in bacteria.  The methylated host DNAs are 
highlighted as green spheres attached to host DNA backbone.  The invading phage 
DNAs as the recognition and cleavage target by restriction endonuclease are marked 
red spheres.   Type II restriction endonucleases only require Mg(II) as cofactor for 
hydrolytic activity (Tock & Dryden, 2005).    
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catalyzed by type II restriction endonucleases occur specifically at the recognition 

sites and generate products with 3’-hydroxyl and 5’-phosphate.  The recognition site 

usually is a palindromic sequences with 4～8 base pairs on both strands of a duplex 

and the products can have either blunt ends (ex. EcoRV and PvuII) or a 5’ or 3’ 

overhang (EcoRI and BglI) depending on the cleavage sites on the top and bottom 

strand.  The type II restriction endonucleases are typically homodimers, binding to 

the DNA duplex.  Dramatic conformational changes in the protein occur during 

DNA association coupled with DNA bending (Hiller, et al., 2003; Dupureur, 2005).  

The substrate binding and cleavage is accomplished by one catalytic domain on each 

subunit and one binding domain, which consists of five stranded β sheets flanked by 

two α helices (Figure 1.2).  

Metal Cofactor Required In Specific DNA Association and Cleavage.  

According to crystal structures of DNA bound complexes, metal cofactors mediate the 

specific DNA association by type II restriction endonucleases and the direct contact 

between scissile phosphate and metal binding sites of enzyme has been visualized 

(Horton, et al., 1998; Horton & Cheng, 2000).  The binding experiments also 

indicate that the specificity of DNA binding is greatly enhanced in the presence of a 

metal cofactor such as Ca(II) (Engler, et al., 1997; Martin, et al., 1999a; Conlan & 

Dupureur, 2002b).  DNA binding affinities from pico to nanomolar in the presence 

of Ca(II) have been determined by various methods including fluorescence 
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Figure 1.2.  The crystal structures of type II restriction endonucleases as a 
homodimer and its association with cognate DNA duplex.   The crystal structures 
of PvuII, EcoRV and BamHI bound with cognate DNA duplex have been shown from 
left to right.  The pdb codes of those structures are indicated at the bottom of figure.    
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anisotropy, nitrocellulose filter binding and gel shift assay (Nastri, et al., 1997; Conlan 

& Dupureur, 2002b).  The metal cofactors are essential for specific DNA cleavage 

reactions by type II restriction endonucleases, but the number of metal ions required 

in the hydrolysis is still controversial (Pingoud, et al., 2005).  Cofactors which 

support the hydrolysis are Mg(II) (native divalent metal cofactor), Co(II) and Mn(II) 

(Bowen & Dupureur, 2003).  The metal dependence of enzymatic activity on 

specific DNA cleavage has been determined for EcoRV (Groll, et al., 1997).  A 

sigmoidal shaped metal dependence has been obtained, which implies multiple metal 

ion involvement in DNA cleavage and the possibility of metal binding cooperativity 

(Vipond, et al., 1995b; Groll, et al., 1997; Sam & Perona, 1999b).  

Conserved PD….D/ExK Catalytic Motif In Endonuclease Family.  The active 

sites of a few endonucleases featured with this motif are shown in Figure 1.3.  Since 

divalent metal cofactors are essential for hydrolytic activity of cognate DNA by 

restriction endonucleases, the metal binding sites of acidic residues Glu and Asp 

residues are conserved in the active sites of restriction endonucleases.   However, 

the number of metal ions bound in the active site is not unique for all type II 

restriction endonucleases.  EcoRI is found to bind one metal ion in its active site 

(JenJacobson, et al., 1996), but BamHI, EcoRV and PvuII are observed to bind two 

metal ions with two acidic residues Asp and Glu (Horton, et al., 1998; Viadiu & 

Aggarwal, 1998; Horton & Cheng, 2000).  In the presence of cognate DNA, it is 

observed that the scissile phosphate can function as an additional metal binding ligand 

(Horton, et al., 1998; Horton & Cheng, 2000).  The metal binding affinities  
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Figure 1.3.  Conserved PD….D/ExK catalytic motif in endonuclease family.  
The active sites of EcoRI (1QPS), EcoRV (1BSS), BamHI (2BAM) and PvuII (1F0O) 
are indicated with conserved residues and metal ions.   
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determined for Mg(II) and Ca(II) are from a few hundred micromolar to millimolar 

(Jose, et al., 1999; Dupureur & Conlan, 2000).  Besides the acidic residues 

conserved in the active site, the nearby Lys is also conserved and its structural 

function remains controversial.  According to the PvuII crystal structure, this 

conserved Lys is within hydrogen bonding distance to metal ligated water molecules, 

and Ala mutation at this position destroys the enzymatic activity effectively (Horton 

& Cheng, 2000).  Not all the type II restriction endonucleases belong to this family 

with conserved PD….D/ExK catalytic motif, BamHI and BglII are exceptions, and in 

them the conserved Lys residue is replaced with Glu and Gln, respectively (Horton & 

Cheng, 2000).  Some of the endonucleases with conserved PD….D/ExK catalytic 

motif are summarized in Table 1.1 including the active site, DNA recognition sites 

and crystal structure information.   

Catalytic Mechanism of DNA Hydrolysis By Restriction Endonucleases.   

Although structural and biophysical studies reveal metal ion stoichiometry, there is no 

universally accepted mechanism for the DNA hydrolysis reaction.  Generally, the 

hydrolysis of the phophodiester bond consists of nucleophilic attack, the stabilization 

of pentavalent transition state and the departure of 3’ hydroxyl group (Figure 1.4).  

The metal ions which ligate the carboxylate groups (Asp or Glu) conserved in the 

catalytic center function to activate the attacking water molecule and neutralize the 

negative charge developed by the pentavalent transition state (Horton, et al., 1998; 

Martin, et al., 1999b; Horton & Cheng, 2000).   
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Table 1.1.  Crystal structures of type II restriction endonucleases which belong 
to PD…D/ExK family and exceptions.  
 

Enzyme Catalytic motif 
pdb code for 

enzyme-M(II)-DNA 
complex 

PD…D/ExK family 
EcoRI Asp91;Glu111;Lys113 1QPS 

NgoMIV Asp140;Glu201;Lys187 1FIU 
TnsA 

(Tn7transposase) 
Glu63;Asp114;Lys132 1F1Z 

BglI Asp116;Asp142;Lys144 1DMU 

EcoRV Asp74;Asp90;Lys92 
1AZ0, 1B94, 1RVA, 
1BSS, 1SUZ, 1SX8, 
1STX, 1SX5, 1RVB, 

HincII Asp114;Asp127;Lys129 1HXV 
PvuII Asp58;Glu68;Lys70 1F0O 

T7 endonuclease I Asp55;Glu65;Lys67 1M0I 
Exceptions 

BamHI Asp94;Glu111;Glu113 2BAM 
BglII Asp84;Glu93;Gln95 1DFM 

 
The table is adapted from the review about restriction endonucleases (Pingoud, et al., 
2005). 
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Figure 1.4.  The general mechanism for the hydrolysis of phophodiester bond.  
The scissile phosphate is hydrolyzed to form the 5’ phosphate and 3’ hydroxyl group.  
“B” represents the general base to abstract the proton from the attacking water 
molecule.   Two water molecules are included; one serves as a general base to form 
the hydroxide and attack the scissile phosphate; the other serves as a general acid to 
protonate the 3’ hydroxyl group.    
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The major controversy regarding the mechanism of DNA cleavage by restriction 

endonucleases is about the number of divalent metal ions involved in the catalytic 

process (Pingoud, et al., 2005).  The proposed mechanistic models are named after 

the number of metal ions involved in the catalysis including one-metal ion, two-metal 

ion and three-metal ion mechanisms. 

One-metal ion mechanism.  This mechanism is mainly supported by EcoRI 

and BglII co-crystal structures with a single divalent metal ion at the active site since 

there is no evidence of binding a second metal ion at the catalytic center in any case 

(Grigorescu, et al., 2004).  The proposed one-metal ion mechanism (Figure 1.5) 

requires that the single metal ion acts to stabilize the negative charge of the transition 

state, and the deprotonation of water molecule is accomplished with the assistance of 

3’ phosphate.  This mechanism is also called substrate assisted catalysis (Jeltsch, et 

al., 1993; Horton, et al., 1998).  

Two-metal ion mechanism.  This mechanism has been adapted for numerous 

reactions in metalloenzymes including nuclease, polymerase, and ribozymes (Aaqvist 

& Warshel, 1990; Pyle, 1993; Steitz & Steitz, 1993; Vipond, et al., 1995a; Wilcox, 

1996).  An ideal two-metal ion mechanism features the two metal ions 4 Å apart 

from each other, which is the most efficient to reduce the electrostatic repulsion 

between negative charges that accumulate at the transition state (Pingoud, et al., 2005) 

(Figure 1.6).  One metal ion ligates with one attacking water molecule to favor its 

deprotonation, and the other interacts with a second water molecule involved in 

protonation of the leaving group (Horton & Cheng, 2000).  Horton compared the two  
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Figure 1.5.  One-Metal ion mechanism.  The 3’ phosphate serves as a general 
base to deprotonate the attacking water molecules.  The second water molecule that 
ligates with Mg(II) ion serves as a general acid to protonate the 3’ leaving group.
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Figure 1.6.  Two-Metal ion mechanism.  One metal ion ligates with one attacking 
water molecule to favor its deprotonation, which is assisted by a general base such as 
Lys or Glu.  The other metal ion interacts with second water molecules involved in 
protonation of the leaving group for its departure.  Both metal ions are required to 
stabilize the negatively charged transition state and they should lie in parallel with 
apical direction of trigonal bipyramidal transition state (Horton & Cheng, 2000; 
Pingoud, et al., 2005). 
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Ca(II) sites in PvuII-Ca(II)-DNA complex with other restriction endonucleases and 

concluded that site A in PvuII is commonly conserved in all well characterized 

structures of type II restriction endonucleases (Figure 1.7), including BamHI and 

BglII (Horton & Cheng, 2000).  The site B in PvuII does not overlap with that in 

BamHI and BglI which have the same second metal binding sites, while it is very 

similar with the third metal binding site in EcoRV (Figure 1.7) (Horton & Cheng, 

2000).  The distance between two Ca(II) ions in PvuII is 3.5 Å, which is shorter than 

4.3 Å in BglI and BamHI (Horton & Cheng, 2000).   

Three-metal ion mechanism.  This mechanism has been proposed for EcoRV 

based on the multiple crystallographic structures which feature three distinct metal ion 

binding sites, although those three sites have never been occupied simultaneously 

(Horton & Cheng, 2000; Horton & Perona, 2004) (Figure 1.8).  Compared with 

two-metal ion mechanism, two metal ions initially occupy site I and site II which are 

equivalent to those two sites in two-metal ion mechanism, acting to generate the 

nucleophilic hydroxide, stabilize the transition state and facilitate the ionization of a 

second water molecule to protonate the 3’ oxyanion.  The metal ion in site III shifts 

to site II later, together with the movement of scissile phosphate deeper into the active 

site cleft.  During this rearrangement, the metal ion in site I still maintains the 

contact with scissile phosphate and the intermediate has been observed in pre-reactive 

crystal structures with occupied site I and site II (Horton, et al., 1998; Horton, 2000). 
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Figure 1.7.  Superposition of PvuII with BglI, BamHI and EcoRV.  A. BglI 
(1DMU) (Newman, et al., 1998), B. BamHI (2BAM) (Viadiu & Aggarwal, 1998), and 
C. EcoRV T93A mutant (1BSS) (Horton, et al., 1998).  The comparison is based on 
the structural alignment of three active site amino acid residues (Asp58, Glu68, and 
Lys70) plus two Ca(II) ions in subunit B of PvuII (1F0O) and their structural 
equivalents in BamHI, BglI, and EcoRV, respectively (Horton & Cheng, 2000).  
Structure of PvuII is in red; BamHI, BglI, and EcoRV are in green, yellow and blue.  
Spatially equivalent metal ions are circled in each case, which is referred to site A and 
the other is site B.  
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Figure 1.8.  Three-Metal ion mechanism.  Three metal binding sites are indicated 
as site I, II and III (Horton & Perona, 2004).  In left panel, site III is occupied and 
the metal ion in site III make the direct phosphate contact.  This metal ion will move 
to occupy site II in the following transition state configuration, which is indicated by 
arrow.  Right panel depicts the transition configurations in the catalysis, which still 
follows up a two-metal ion mechanism.  Site I and site II are equivalent to the site A 
and site B in a two-metal ion mechanism and site III probably just serves a structural 
role.  This figure is provided by Dr. Dupureur from personal communication with 
Perona. 
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Divalent Metal Cofactors Mg(II)  

Many biological activities are dependent on the participation of metal 

cofactors.  Some metal cofactors experience the change of oxidation state during a 

redox reaction cycle such as iron and copper, which is beyond our scope.  Here, we 

focus only on the Mg(II) ion involved in protein-DNA interactions and DNA 

hydrolysis.   Mg(II) ion follows a octahedral coordination and is heavily hydrated, 

which assists its binding with protein or nucleic acid through outer sphere 

complexation (Cowan, 1998).  The catalytic functions that Mg(II) is essential for the 

hydrolysis of DNA include: 1) Mg(II) can stabilize the developed negative charge in 

the formation of transition state to lower the energy barrier for catalysis; 2) Mg(II) can 

effectively lower the pKa of a water molecule which ligates to it and facilitate its 

deprotonation to form the attacking nucleophile.   The distance of Mg(II)-O (oxygen 

in ligand) in coordination complex is about 2.0 Å and the determined pKa of Mg(II) 

ligated water molecule is 11.4 (Dahm, et al., 1993).   

Mg(II)-Protein Interaction.  It is known that Mg(II) can bind with 

endonucleases, pyrophosphatase, polymerase and farnesyltransferase with binding 

affinity from 1 mM to 10 mM but there are some proteins such as paravalbumin 

which has a micromolar affinity (Cowan, 1997; Henzl, et al., 2003).  Mg(II) itself is 

spectroscopically silent and it causes no dramatic conformational change for CD or 

UV studies when it is bound to protein, which makes the Mg(II) binding studies more 

difficult than other metal ions such as iron and copper.  Intracellular and extracellular 

Mg(II) concentrations were reported via ion selective microelectrode (Lanter, et al., 
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1980).  The competition binding assay using Mg(II) sensitive mag-fura-2 is used to 

determine the Mg(II) binding affinities for PvuII endonuclease and its variant 

(Papadakos, et al., 2007).  25Mg NMR has also been used to determine the Mg(II) 

binding affinities with PvuII endonuclease (Dupureur & Conlan, 2000).   ITC is also 

employed to determine Mg(II) binding affinities with paravalbumin coupled with a 

competition assay using the metal chelator EDTA (Henzl, et al., 2003).   

Mechanism Studies Of Mg(II) Dependent Enzymatic Activity.  The Mg(II) 

dependent mechanism has been investigated by crystal structures and biochemical 

characterizations of restriction endonucleases, exonucleases III, ribonulcease H, 

general nucleases, polymerases and phosphatase and integrases (Cowan, 1998).  It is 

widely observed that Mg(II) promotes the enzymatic activity at low concentrations 

but inhibits enzymatic activity gradually at higher concentrations (>20 mM).  This is 

interpreted as due to the non specific Mg(II) binding to the substrate and inhibition of 

enzyme substrate interactions (Cowan, 1998).  A series of catalytic mechanisms have 

been proposed to address the number of metal ions required and distinct roles of those 

metal ions in catalysis (Pingoud, et al., 2005).  The Mg(II) ions may shuffle among 

three metal binding sites of EcoRV during the DNA association and cleavage, based 

on multiple crystal structures corresponding to various reaction phases (Horton & 

Perona, 2004).   

Mg(II)-DNA Interaction And Its Catalytic Role In Ribozyme.  Mg(II) is 

known to bind with DNA through phosphate groups or oxygen atoms on the base, 

which has been observed in the crystal structures of metal DNA complexes and 
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interpreted as random binding (Minasov, et al., 1999).  Mg(II) is found to serve as a 

Lewis acid in ribozymes when it coordinates with water molecules or stabilizes 

particular folded conformations critical for catalysis (Dahm, et al., 1993; Sreedhara & 

Cowan, 2002).  Unlike endonucleases, more divalent ions can mediate ribozyme 

catalysis, which allows metal substitution experiments and investigations of pKa’s of 

metal ligated water molecule for various metal ions (Dahm, et al., 1993; Lott, et al., 

1998; Roychowdhury-Saha & Burke, 2006).  The mixed metal experiments can be 

used to dissect the structural and functional roles of distinct metal ions in the active 

site.  In a mechanistic study of the hammer head ribozyme, a two-metal ion 

mechanism was concluded by assigning the role of the first Mg(II) ion to lowering the 

pKa of the 2’ attached proton and the role of the second Mg(II) ion to absorbing the 

negative charge accumulated in the transition state (Lott, et al., 1998).    

pKa Calculation and Its Correlation With pH Dependence Studies. 

Proteins consist of natural amino acids, and those with ionizable side chain are 

divided into acidic and basic groups.  The ionization states of the amino acid groups 

determine the important protein properties like pI value.  Table 1.2 lists all the 

ionizable groups considered in pKa calculations with proteins.  

 pKa Calculation Methodology.  Most of the pKa calculations depend on the 

solution of the Poisson-Boltzmann equation to calculate the electrostatic energies for 

a given protein structure.  The electrostatic interactions serve a critical role in 

protein-ligand binding and protein stabilities (Honig & Nicholls, 1995).  The 
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Table 1.2.  The ionizable groups in proteins and their model pKa’s.   

Residue Structure of side chain Model pKa
a 

Asp 
CH

H2
C C OH

O

 
4.0 

Glu 
CH

H2
C

H2
C C OH

O

 
4.4 

Cys CH
H2
C SH  

9.5 

Tyr CH
H2
C OH

 

9.6 

His CH
H2
C

N

NH

 

6.3 

Lys CH
H2
C

H2
C

H2
C

H2
C NH2  

10.4 

Arg 
CH

H2
C

H2
C

H2
C

H
N C NH2

NH
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a. The model pKa values for UHBD calculations.  
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developed software packages to calculate electrostatic energies include Delphi, 

GRASP, WHAT IF and UHBD (Vriend, 1990; Nicholls & Honig, 1991; Nicholls, et 

al., 1991; Antosiewicz, et al., 1996b).  Most of the pKa calculation programs are now 

embedded into those software packages because the pKa predictions are also need to 

deal with site-site interactions among multiple titratable sites in proteins, and related 

methods have been developed to minimize the possibilities (Honig & Nicholls, 1995).   

Accuracy of pKa predictions is always of major concern since it is related to 

the validation of the electrostatic model and applied atomic parameters (charges and 

radii).  NMR experiments combined with pH titration of specific ionizable groups in 

ribonucleases and lysozyme was used to measure experimental pKa values (Mandel, 

1964; Mandel, 1965).  The comparison of experimental and predicted pKa values can 

be used to validate the methodology and estimate the accuracy of pKa calculations for 

other systems in which the experimental pKa is not available (Antosiewicz, et al., 

1996b).  Factors that may affect pKa calculations include protein structures used in 

the calculations (X-ray structure or solution structure), the assignment of the dielectric 

constant in protein, the conformational flexibility of the protein structure and the 

influence of ligands (ions and organic group) (Antosiewicz, et al., 1996b).    

Solution Structure vs. Crystal Structure.  The pKa calculations based on 41 

lysozyme crystal structures indicate that the crystallization conditions and resolutions 

of crystal structure are not helpful in selecting a reliable structure for pKa calculations, 

even the applications of optimization methods such as energy minimization and 

molecular dynamics simulation would not effectively improve the pKa calculation 
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results (Nielsen & McCammon, 2003).  Although NMR structure reflects the 

dynamic information and seems more applicable than the crystal structure, it is not 

conclusive that the solution structure can provide a better accuracy than crystal 

structure (Antosiewicz, et al., 1996b).   

Empirical Dielectric Constant For Proteins.  The dielectric constant can be 

calculated from the dipole moment of a protein molecule and a low value (2～5) is 

estimated (Gilson & Honig, 1986).  The argument lies in whether the contribution of 

the ionizable groups should be included or not in the calculations of dipole moments 

(Antosiewicz, et al., 1994).  Applying a single site model in UHBD, the calculated 

pKa values with an empirical value of dielectric at 20 show better agreement with 

experimental pKa values than using a dielectric constant of 4 (Antosiewicz, et al., 

1994; Antosiewicz, et al., 1996b).  However, the pKa calculation results could be 

improved assuming dielectric constant of 4 using a more detailed charged model (full 

site model) (Antosiewicz, et al., 1996a).   pKa calculations on staphylococcal 

nuclease with UHBD indicate that the calculated pKa values show little dependence 

on dielectric constant when using a value above 20, and a value of 20 still gives the 

best agreement between calculations and measurements for most surface ionizable 

groups.  The predicted pKa values obtained when assigning the dielectric constant to 

10 seem to be the best for buried ionizable groups.    

Conformational Flexibility.  Protein flexibility has been taken into account 

for pKa calculations to reflect protein fluctuations in the real environment.  The 

strategy is to generate enough possibilities in order to determine either the 
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conformation with the lowest energy or conformationally averaged protonation status 

for titratable sites (Zhou & Vijayakumar, 1997).  You and Bashford investigated the 

effects of local side chain conformational change by sampling the torsion angle of 

Asp, Glu and Tyr residue side chains and generating a library including 36 conformers.  

The application of this multiple conformers strategy on hen lysozyme proved to be a 

significant improvement on the predicted pKa values as compared to the single 

conformational calculation (You & Bashford, 1995).  A similar strategy of flipping 

the side chain of Asn, His and Gln around their χ2 and χ3 torsion angles to optimize 

the hydrogen bond network resulted in better calculation results on hen lysozyme and 

superoxide dismutase (Nielsen, et al., 1999).  The conventional molecular dynamics 

and Monte Carlo simulations are employed to generate the multiple conformations 

used to determine the averaged protonation states of the titratable sites as a function of 

pH.  The calculated pKa’s with yeast iso-1-ferricytochrome c are in good agreement 

with experimental pKa values (Zhou & Vijayakumar, 1997).  Except for the position 

changes of heavy atoms on the side chains (O, N and C), the change of proton 

positions is considered protonation flexibility.  Alexov and Gunner coupled the 

proton position at the titratable site with orientation of neighboring hydroxyl groups to 

generate a series of conformers and determined their distributions by Monte Carlo 

sampling (Alexov & Gunner, 1997; Alexov & Gunner, 1999).  All the methods 

mentioned above deal with local conformational variability in proteins.  The effect 

of global structural variability can be examined by long time (1 ns) molecular 

dynamics simulation (Gorfe, et al., 2002).  By using four trajectories in a calculation 
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on an engineered leucine zipper, the error of calculated pKa values was reduced to 

0.25 pH units (Gorfe, et al., 2002).   

pKa Perturbations In Proteins.  There are three factors which can effectively 

perturb the pKa values of ionizable groups: charge-charge interaction, a hydrophobic 

environment and hydrogen bonding.  As shown in Figure 1.9, a negatively charged 

environment (neighboring residues) will increase the pKa of a titratable site since the 

negative charge stabilizes the protonated state of an acidic ionizable group, and 

destabilizes the protonated state of a basic group (Lys) (Nielsen, et al., 2001).  For 

the positive charged environment, the effect is to decrease the pKa of a titratable site.  

The hydrophobic environment will elevate the pKa of an acidic group but lower the 

pKa of a basic group because it always favors the neutral state and destabilizes the 

ionized state.  In a folded protein, those factors which perturb the pKa values of 

ionizable groups may all exist.  However, in a denatured protein there are fewer local 

electrostatic interactions, and the measured pKa is very close to the model pKa of a 

given amino acid (Laurents, et al., 2003).   Following those principles, the pKa shift 

can be predicted in the mutagenesis studies when charged residues are neutralized by 

introducing Ala substitution.  The apparent pKa shift has been observed 

experimentally when Ala mutation occurs in the active site on PvuII (Dupureur & 

Conlan, 2000).  In the case of pH dependence studies of MunI, the derived apparent 

pKa of the same ionizable moiety in the active site is elevated upon DNA association 

as an effect of the negatively charged phosphate on the DNA backbone (Haq, et al., 

2001). 
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Figure 1.9.  Environment effects on pKa of titratable sites.  The effects of 
placing a titratable site in a negative, positive and hydrophobic environment are 
indicated.  The figure is adapted from reference (Nielsen, et al., 2001). 
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Surface Groups vs. Buried Groups.  It is reported that the pKa values of 

surface residues are much less disturbed (less than one pH unit) than buried ones  

(Huyghues-Despointes, et al., 2003).  Since they are solvent exposed and do not 

form hydrogen bonds, the perturbations are mainly from long range electrostatic 

interactions (Huyghues-Despointes, et al., 2003).  The long range electrostatic 

interactions can be screened by increasing the salt concentration, which has been 

observed in the pKa calculations with two His residues in RNase Sa and its variant 

(Laurents, et al., 2003).  pKa perturbation of buried groups is more complex and has 

to be correlated with specific electrostatic environments.  Short range electrostatic 

interactions are expected if charged residues can be identified in close proximity to 

each other in the crystal structures.  For example, that a water molecule can elevate 

the pKa of a buried His via hydrogen bonding, and such a elevation can not be 

screened by increasing the salt concentration (Huyghues-Despointes, et al., 2003).  

More than 90% of buried groups are predicted to be ionizable based on MCCE 

(multiple-conformation continuum electrostatic) calculations with 490 proteins (Kim, 

et al., 2005).   The factors which stabilize the ionizable states of those buried groups 

have been shown to include ion pair interactions, interactions between backbone 

dipoles, polar interactions between side chains and hydrogen bond donors (Kim, et al., 

2005).  Staphylococcal nuclease (SNase) has been used as a model to calculate the 

pKa values of buried groups such as Lys66 and Glu66, and the determined pKa values 

were found to be highly perturbed (5.7 for Glu and 8.8 for Lys) (Fitch, et al., 2002).  

The polarity is rationalized to be the main cause of pKa perturbations because Glu66 
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is hydrogen bonding to an internal water molecule which is observed in the crystal 

structure.  In the case Lys66, the water penetration probably occurs since there is no 

internal water molecule visualized in the crystal structure.  The calculations show 

that internal water molecules can modulate pKa values of buried groups.      

Kinetics Studies in Enzymology.    

The kinetic studies discussed below include not only the measurements of 

enzymatic activities under various reaction conditions, but also the dynamic studies of 

substrate or ligand association, dissociation and conformational changes during the 

reaction.   

The enzymatic activity measurements determine steady state and single 

turnover rate constants, which are widely used to distinguish the residues critical for 

catalysis in mutagenesis studies (Groll, et al., 1997; Sam & Perona, 1999a).  The 

single turnover condition can be described as the saturation of bound substrate using 

excess amounts of enzyme to reach the maximal activity so that the measured rate 

constant is independent of the substrate binding process and best reflects the rate of 

the chemistry step.  The steady state kinetics provides the apparent rate constant for 

the overall reaction pathway, which is probably partially or fully limited by the 

slowest step.  To elucidate the details of a reaction mechanism, the measurements of 

single turnover and steady state kinetic parameters are not sufficient.  Basic 

questions have to be addressed regarding the complexity of catalytic mechanism.  Is 

the reaction reversible or irreversible?  What is the rate limiting step in the overall 

reaction pathway?  Is there any intermediate formed in the course of the reaction 
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pathway?  Is the reaction following a random binding mechanism or a sequential 

binding order when a cofactor is present?  Kenneth A. Johnson pointed out that 

transient kinetics and kinetic programs were very powerful tools to establish a 

complete reaction scheme (Johnson, 1998).   

Transient Kinetics Approaches.  The application of stopped flow and rapid 

quench flow instruments allows monitoring fast processes during a reaction.  The 

chemistry steps or binding processes can be monitored in a time scale of milliseconds.  

The individual rate constant for a specific event can be derived from the kinetic 

analysis of reaction progress curves.  

EcoRV is a well-characterized type II restriction endonuclease, and transient 

kinetics have been conducted with EcoRV to study DNA association, DNA bending, 

enzyme transfer from a nonspecific to a specific site on the plasmid and cleavage 

reactions.  In experiments tracking tryptophan fluorescence signal during a single 

turnover DNA cleavage reaction by EcoRV, the increase of the fluorescence intensity 

was regarded due to the effect of a fast conformational change occurring 

simultaneously with DNA binding to EcoRV.  The subsequent slow decay was 

attributed to DNA cleavage since the derived rate constant was similar to the 

determined single turnover rate constant (Baldwin, et al., 1995).  With fluorescence 

resonance energy transfer assays using a double labeled DNA duplex (rhodamine and 

fluorescein), DNA bending is found to occur simultaneously with DNA binding to 

EcoRV and the rate constants are determined to be 1.46～1.6*108 M-1s-1 (Hiller, et al., 

2003).  Through the combination of quench flow techniques and data fitting, it was 
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found that EcoRV could scan and locate the specific site on a plasmid at an extremely 

rapid rate of 5*105 bases per second (Erskine, et al., 1997).  As the measured 

plasmid association rate was 1.2*108 M-1s-1, the binding was proposed to be a 

diffusion controlled process (Erskine, et al., 1997).  The quench flow techniques 

were also applied to monitor rapid cleavage reactions by EcoRV with radiolabeled 

short oligonucleotides in the cleavage studies under pre-steady state conditions in the 

presence of Mg(II) or Mn(II) (Sam & Perona, 1999b).  The appearance of a burst 

phase indicated that product release step was partially or completely rate limiting step 

for EcoRV catalyzed DNA cleavage reactions.  Those examples show the 

applications of rapid mixing techniques in characterizing the fast processes in the case 

of restriction endonucleases.   

Data Analysis of Kinetics Studies.  Kinetic studies generally yield time 

dependent signal which accounts for the substrate disappearance or the product 

appearance.  The first order equation is often fit to a reaction course under single 

turnover conditions and a Michaelis-Menten equation is usually fit to data sets of 

velocities as a function of substrate concentration under steady state conditions.  

Pre-steady state reaction courses are usually fit to an equation integrating a burst 

phase with a linear phase.  Those kinetic equations are expressed in exponential or 

linear terms of the enzyme and substrate concentrations, and they can be derived from 

a simple reaction scheme (Fierke & Hammes, 1995).   

There are some situations in which a reaction scheme contains multiple 

ligands, cofactors and multiple binding sites.  This can involve non equivalent 
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activities or multiple phases such as conformational changes or iso-forms of enzyme.  

In order to fit the kinetic data to the whole reaction scheme, global fits are employed 

to distinguish the kinetic models and estimate the unknown kinetic parameters with 

the assistance of fitting programs.  Unlike fitting data to derived equations, fitting 

programs usually provide a friendly interface to construct kinetic models or reaction 

schemes, allowing user to assign initial value and constraints to unknown kinetic 

parameters and quantitate fitting qualities for evaluation.  Simulations by these 

programs can be conducted prior to experiments to guide experimental design.  The 

widely used global fitting programs are KinTek Global Kinetic Explorer (KinTek 

Corporation, www.kintek-corp.com) and DynaFit (BioKin, Ltd, www.biokin.com).   

Kinetic analysis using global fits has been performed with several 

metalloenzymes.  The transient kinetic data of yeast cytosine deaminase (a zinc 

metalloenzyme) have been globally fit using DynaFit to derive the rate constants of 

the chemical step and the product release, and the simulation results are consistent 

with measured steady state kinetic parameters (Yao, et al., 2005).  Another example 

of using DynaFit is in the case of MutT pyrophosphohydrolase (a Mg2+ dependent 

enzyme).  Both single and multiple turnover data globally fit to a uni-bi-iso kinetic 

mechanism yield all the nine rate constants in the reaction scheme (Xia, et al., 2005).   

DynaFit has also been also used to distinguish the models for observed data by 

comparing the qualities of global fits (Moss, et al., 1996).  According to Kenneth A 

Johnson, the simplest model is always proposed as long as it accounts for 

experimental data.  New steps incorporated into a reaction scheme should be 
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supported by sufficient experimental evidence (Johnson, 1998).   

Overview of Dissertation 

The characterization of WT PvuII restrictions endonuclease and variants has 

been conducted in Dr. Dupureur’s lab for several years, and substantial biophysical 

data have been collected including DNA binding equilibrium constants, DNA 

association and dissociation rate constants, and Ca(II) and Mg(II) binding affinities 

with enzyme (Dupureur & Conlan, 2000; Conlan & Dupureur, 2002b; Conlan & 

Dupureur, 2002a).  Those kinetic data, combined with metal dependent activity 

measurements, provide the possibility to establish a complete reaction scheme 

regarding participation of the metal cofactor for the specific DNA cleavage reaction.  

It was attempted to fit all the experimental data to a single and complete kinetic model.  

pH dependence studies of Mg(II) binding and enzymatic activities provide an insight 

to ionizable groups critical for catalysis in PvuII active site.  On the basis of the pKa 

calculation package embedded in UHBD, the nearly neutral apparent pKa of general 

base derived from pH-rate profiles can not be correlated with the calculated pKa’s of 

any active site residues, but is correlated with the calculated pKa of metal ligated 

water molecule in the absence of DNA.  The factors which lower the pKa of metal 

ligated water have been investigated by a computational approach, and the major 

electrostatic contribution appears to be the effect of the metal ions and nearby Lys.   

Chapter II describes preparations of experimental materials, experimental 

techniques and computational methodology.   

Chapter III describes the pKa calculations with PvuII active site residues and 
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metal ligated water, rationalizing the factors which effectively perturb their pKa 

values.  It also includes the pH dependence studies of PvuII activity and the 

corresponding dissection of ionizations reflected from pH profiles.  The pKa 

calculations with metal ligated water have been applied to metallonucleases featuring 

the PD….D/ExK catalytic motif, which provides an insight into the water activation 

mechanism in DNA hydrolysis reactions.  The hypotheses of possible water 

activation mechanisms and related computational studies on BamHI are also discussed 

as an exception.  

Chapter IV deals with metal dependent kinetic studies of single turnover, 

steady state and pre-steady state reactions and the corresponding global fits using 

various candidate models.  The various kinetic models are presented and examined 

with respect to observed experimental data.  Finally, a unique reaction scheme is 

concluded with detailed information about metal ion participation in binding, catalysis 

and product dissociation.  The properties of two distinct metal binding sites are 

investigated by global fits, and the data seems to fit best to a two-equivalent site 

model with positive cooperativity.        
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CHAPTER II.  MATERIAL AND METHODS 

 

MATERIALS 

In the purification and preparation of PvuII, the following reagents were used: 

M9 salts (Na2HPO4-7H2O, KH2PO4, NaCl, NH4Cl), Buffer D (KH2PO4, 

β-mercaptoethanol, KCl, EDTA), Lysis buffer (KH2PO4, β-mercaptoethanol, KCl, 

EDTA), glucose, IPTG, ampicillin, ammonium sulfate, phosphocellulose and heparin 

sepharose which was used to prepare the column. 

Most reagents were purchased from Fisher with ACS grade or higher purity 

such as most of the salts used in the preparation of buffer, acids, bases and organic 

solvents.  The Puratronic MgCl2 and CaCl2 used to prepare the metal cofactor stock 

were also purchased from Fisher.  The absolute ethanol (99.99%) used to rinse the 

curette was purchased from stock room in the chemistry department.  

In the PAGE gel preparation, the reagents such as acrylamide (electrophoresis 

grade), TEMED (N,N,N',N'-Tetramethylethylenediamine) and ammonium persulfate  

were purchased from Fisher or Sigma/Aldrich.  The PAGE gel running buffer 5X 

TBE was prepared by dissolving Tris, boric acid and EDTA in the MilliQ water.  

Water used to make solutions was distilled and deionized by MilliQ Biocel 

A10 from Millipore (Bilerica, MA).  Chelex resin was purchased from Biorad 

(Hercules, CA) and used to remove the metal ions in the buffer.  All buffers were 

prepared using deionized water and subsequently flowed through Chelex resin 
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(Hercules, CA).  To prepare the buffer of the desired pH, several concentrations of 

acids/bases were prepared (typically 100 mM, 1 M and 6 M).  

METHODS  

Purification and Preparation of PvuII Restriction Endonucleases.  The 

recombinant PvuII expression systems in Escherichia coli PR1206 (pBBE) for wild 

type (WT in abbreviation) were kindly provided by Dr. Paul Riggs of New England 

Biolabs.  

On the first day, media in the cell culture, nutrient cocktails and MgCl2/CaCl2 

are prepared and sterilized with the necessary glasswares.  The recipes of media and 

nutrient cocktails are recorded in protocol “PvuII purification”.  8 L of buffer D 

containing 30 mM potassium phosphate and 50 mM KCl is also prepared.  The 

transfected cells from a single colony were cultured overnight with addition of 

ampicillin (0.10 mg / mL media) in about 100 mL nutrient cocktails and M9 media. 

The flasks were placed in incubator at 37 ºC shaking at 225 rpm.  

On the second day, overnight cultures were scaled up to 1 L.  IPTG 

(0.036g/ml) was added to initiate the induction when OD600 of culture reached 0.6～

0.8, then cells continued to grow 3～4 more hours.  The culture was then harvested 

by centrifugation and stored as a frozen pellet.  

On the third day, the frozen pellet is resuspended in lysis buffer (50 mM 

KPhosphate, 15 mM β-mercaptoethanol, 1 mM EDTA, pH 7.4).  The overall volume 

of resuspended cell was kept below 100 mL for 10 L of original culture.  After the 

cell lysis using a French press, the pellets were centrifuged for several times until the 
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supernatant was clear.  The pellets were discarded.  The nucleic acids were 

precipitated by addition of streptomycin sulfate to a final concentration of 25% w/v. 

Ammonium sulfate was added up to 45% w/v to precipitate the proteins in the 

solution.  The precipitated protein could be recovered by centrifugation and dialysis 

in buffer D (30 mM potassium phosphate and 50 mM KCl, pH 7.4 at 4 ºC).  

On the fourth day, the purification was accomplished by ion exchange 

chromatography using a phosphocellulose column.  The column was precycled with 

buffer D until pH of the buffer flowing in and out of the column both were about 7.4 

(7.37～7.43).  The pH of protein was also adjusted to pH 7.4 (7.37～7.43) and 

loaded onto the column.  Following a wash, the pure protein was eluted using linear 

gradients of 0.05 M KCl～0.8 M KCl at 2 mL/min over 600～800 mL, and 6 mL 

fractions were collected.  The proteins concentrations were monitored by UV 

absorbance at 280 nM.  The collected fractions were analyzed using a 17% SDS 

PAGE gel. The purest fractions were selected to run heparin sepharose column.  The 

protein fractions were pooled and dialyzed again overnight.   

 On the fifth day, the protein was purified by heparin sepharose column.  

The pH flowing in and out of the column was assured to be around 7.4 (7.37～7.43).  

The dialyzed protein was adjusted to the same pH and eluted by linear gradients of 

0.05 M KCl～0.8 M KCl. Pure protein was reported to be eluted from the heparin 

column at 240～530 mM KCl (Dupureur & Hallman, 1999).  6 mL fractions were 

collected and analyzed on a 17% SDS PAGE gel.  The chromatography of 

purification and SDS gel image are shown in Figure 2.1.     
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Figure 2.1.  Purification of WT PvuII endonucleases using heparin sepharose. A 
typical FPLC is shown.  Pooled fractions containing enriched protein from the 
phosphocellulose column were dialyzed into 0.03 M potassium phosphate pH 7.4, 15 
mM β-mercaptoethanol, 1 mM EDTA, 0.05 mM KCl.  Protein was eluted by using a 
linear gradient of 0.05 M KCl ~ 0.8 M KCl over 300 mL with 6 mL each fraction. The 
inset shows the 17% SDS gel image used to determine the purity of fractions.  From 
left to righ: PvuII marker, fractions 17 ~ 30 and the waste. The arrow indicates the 
position of purified protein.    
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The proteins was either lyophilized or prepared for assays.  To get rid of the 

high concentrations of salt, the protein was dialyzed in a Slide-A-Lyzer Dialysis 

Cassette (0.5-3 mL, 10,000 MWCO, purchased from PIERCE) twice with metal free 

buffer (100 mM NaCl, 50 mM Tris, pH 7.5 at 25 ºC).  The proteins could also be 

concentrated using Amicon Centricon and Microcon concentrators (Millipore 

Corporation, Billerica, MA).  

The proteins were measured UV absorbance at 280 nM and its concentration 

in monomer was calculated using ε280 = 36,900 M-1cm-1 (Pace, et al., 1995).  The 

protein concentration could be expressed either as monomer or dimer depending on 

binding or cleavage assay.  

Preparation and Quantitation of Oligonucleotides. The unlabeled or 

Hex-labeled oligonucleotides were purchased from IDT (Coralville, Iowa) and 

rhodamine or dansyl labeled oligonucleotides were purchased from Midland Certified 

Reagent Company (Midland, Texas) (Table 2.1).  If the purchased oligonucleotides 

were not HPLC purified, they had to be purified by PAGE gel and recovered by 

Elutrap (Schleicher and Schuell, Keene, NH).  The oligonucleotides were quantitated 

by monitoring the UV absorbance at 260 nm.  The extinction coefficient of 

oligonucleotides used was either from the vendor or calculated using 6600*the 

number of nucleotides in the DNA.  Duplexes were prepared by mixing 

complementary single strand at a molar ratio of 1:1, heating up to 95 ºC then cooling 

the mixture to room temperature. 
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Table 2.1 Oligonucleotides sequences used in the assays. 

 Sequence Modification 

Sq3121-1 5’-CAG GCA GCT GCG GA -3’ None 

Sq3121-2 5’-TCC GCA GCT GCC TG -3’ None 

Rs1086-a 5’-Phos CTG CGG TCG CG -3’ Phosphate 

Rs1086-b 5’ Hex-CGC GAC CGC AG -3’ Hex 

Sq1126-1 5’HEX- CAG GCA GCT GCG GA -3’ Hex 

Sq2100-2 5’Rhoda (C6amino) CAG GCA GCT GCG GA -3’ Rhodamine 

Fx0970 5’-CGC GAC CGC AG -3’ None 

Fx09101 5’ Dansyl (C6amino) CGC GAC CGC AG -3’ Dansyl 

Fx09102 5’-Phos CTG CGG TCG CG -3’ Phosphate 
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Hexchlorofluorescein (Hex), rhodamine and dansyl Chloride (Figure 2.2) 

were used as fluorescent tags.  According to the Molecular Probes Handbook 

(www.probes.com), hex and rhodamine offer lots of desirable properties, including 

good photostability, high extinction coefficients (>75,000 cm-1M-1) and high 

fluorescence quantum yields.  Moreover, the fluorescence of their conjugates are 

completely insensitive to pH between 4 and 9.  The dansyl fluorophore has a lower 

quantum yield than hex or rhodamine, which allows the use of higher concentrations 

without inner filter effects.  The more weakly absorbing dansyl probe was used to 

study the weak interactions between enzyme and product.  In an emission 

experiment, an inner filter effect refers to an apparent decrease in emission quantum 

yield as a result of reabsorption of emitted radiation.  In order to avoid inner filter 

effects, the optical density of the absorbing species should be less than 0.1 absorbance 

units at the emission wavelength (Lakowicz & Thompson, 1983).  
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Figure 2.2.  Structures of the fluorescent dye of Hex, Rhodamine and Dansyl 
fluorophore. The structure of dansyl fluorophore was obtained from 
www.probes.com. Hex and rhodamine structures were obtained from 
www.idtdna.com. 

 

 

 

Hexachlorofluorescein 5' RhodamineRed

dansyl

Hexachlorofluorescein 5' RhodamineRed

dansyl



 

 40 

Radio-labeling of Oligonucleotides.  In the PAGE gel activity assay, the 

oligonucleotides were radio-labeled so as to be visualized by the Storm 

phosphoimager.  The radio-label reaction was initiated by addition of 1 or 2 µL 

[32P-γ] ATP (33 pmoles of a 6000 Ci/mmol stock, purchased from Perkin Elmer, 

Boston, MA) and T4 polynucleotide kinase (New England Biolab), then incubated at 

37 ºC for half an hour.  The radio-labeled duplexes was diluted by 10 fold (final 

concentration is about 200 nM) and purified by Sephadex G-50 resin (Sigma, St. 

Louis, MO). 

 Assay of PvuII Endonucleases Activity.  The hydrolysis reaction at 

different time points could be monitored by loading denatured samples into PAGE 

gel.  The denatured PAGE gel was prepared by addition of TEMED 

(N,N,N',N'-Tetramethylethylenediamine) and 10% APS (ammonium persulfate) into 

the 20% acrylamide/8 M Urea/0.5X TBE (buffer containing Tris, Boric acid and 

EDTA) solution.  The gel was formed in the template between two glass plates with 

20 wells on top (35X45 cm with 0.4 mm spacer).  The sample is run in the gel for 

about 4 hours at 1500 Voltage till the substrate and product band were clearly 

separate.  The amount of product and substrate were subsequently visualized by the 

Storm Phosphoimager (GE Healthcare, Piscataway, NJ) and the scanned image could 

be further quantitated by ImageQuant (GE Healthcare, Piscataway, NJ).  

The reaction conditions varied depending on the kinetic study (i.e. single 

turnover, steady state and pre-steady kinetics).  The typical single turnover reactions 

conditions were 2 µM enzyme, 300 nM DNA (Figure 2.3).   
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Figure 2.3.  PAGE gel and kinetic analysis of PvuII endonucleases activity for 
single turnover assay and steady state assay.  The top panel shows the separation 
of radio-labeled substrate and product in a 20% polyacrylamide gel with 8 M urea, 
running for 4 hours in 0.5 TBE buffer.  The bottom panels show the kinetic curve fit 
for typical single turnover and steady state reactions.  The single turnover reaction 
conditions: 2 µM enzyme, 50 nM DNA, 2 mM Mg(II), Buffer: 100 mM NaCl, 50 mM 
Tris, at pH 7.5, 37 ºC.  Steady state reaction condition: 2 nM enzyme, 30nM DNA, 
10 mM Mg(II), Buffer: 100 mM NaCl, 50 mM Tris, at pH 7.5, 37ºC.  The single 
turnover data was fit to a first order rate equation and the steady state data was fit to a 
linear equation to calculate the reaction velocity. 
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For the steady state kinetics, 1 or 2 nM enzyme was usually used and DNA 

concentration varied from 5 nM to 200 nM.  Pre-steady state conditions usually were 

the same as steady state at low Mg(II) concentrations (below 3 mM). At high Mg(II) 

concentrations (above 3 mM), a much higher enzyme to substrate ratio of 3～5 was 

applied so that the product could be visualized.  

For the investigation of Mg(II) dependence of reaction rates, the typical buffer 

system consisting Tris (50 mM) and NaCl.  The concentration of NaCl was adjusted 

according to Mg(II) concentrations to keep the ionic strength as constant as buffer 

with 100 mM NaCl/50 mM Tris/10 mM Mg(II) and pH was typically 7.5 at 37 ºC.  

For the investigation of pH dependent activity study, a triple buffer system consisting 

of 80 mM NaCl/50 mM Tris/25 mM NaAc/25mM MES was used, which was 

designed to keep ionic strength as constant at a broad pH range (4～9) without 

changing any components concentrations (Lagunavicius, et al., 1997). 

 Quantitation of Metal Ions Stocks by Atomic Absorption.  

Concentrations of MgCl2 and CaCl2 stocks solution were determined by flame atomic 

absorption spectroscopy using a GBC model 904BT double beam atomic absorption 

spectrometer. Standard solutions were purchased from Fisher (Pittsburgh, PA) and 

appropriate dilutions were made into 5% HNO3 to produce the standard curves. 

 Determination of PvuII Endonuclease-DNA Equilibrium Constants 

Using Fluorescence Anisotropy.  The fluorescence anisotropy measurements reflect 

the target molecule’s intrinsic properties or its local environment.  The 

measurements have been conducted using a Fluorolog-3 (SPEX) spectrofluorimeter 
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equipped with a polarization assembly.  Depending on the fluorophore labeling 

oligonucleotides, the excitation and emission spectra were collected to determine the 

wavelength of emission and excitation during the measurement.  For example, the 

excitation/emission wavelength is 540/556 nm for hex, 553/578 nm for rhodamine 

and 350/543 nm for dansyl.  The target molecules, which usually are fluorophore 

labeled oligonucleotides, are placed in a nitric acid cleaned cuvette (NSG Scientific, 

Farmingdale, NY) with filtered buffer containing the appropriate metal cofactor 

concentration, and the solution in the cuvette is kept stirring at 25 ºC using a water 

bath and a thermstatted cell holder.  Filtered enzyme was titrated into the 

oligonucleotides in the cuvette, allowing about 5 minutes incubation to reach 

equilibrium.  The intensity of polarized fluorescence in both parallel and vertical 

direction are measured and anisotropy values are obtained in triplicate and 

automatically calculated from equation 2.1.  

A = (I║-I┴)/( I║+2I┴)     (2.1) 

where I is recorded as intensity at the indicated polarizer orientation (perpendicular 

and parallel).  Normalized anisotropy values were plotted as a function of added 

protein concentration and then fit to an appropriate binding model.  

 For PvuII endonuclease-DNA binding, it was assumed that one dimer of 

PvuII endonuclease binds to one duplex of DNA (equation 2.2). 

Ka 
E + D <=>ED                    (2.2) 

where [ED]=[E][D]*Ka, Ka is the association constant, E and D represent PvuII 

endonuclease dimer and DNA duplex, respectively.  This one-site equilibrium model 
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can be fit to the Langmuir isotherm (equation 2.3) using KaleidaGraph software.  

θ= Ka[E]/(1+ Ka[E])                (2.3) 

where θ is bound fraction (normalized anisotropy values) and [E] is the concentration 

of enzyme in dimers. 

 Quench Flow.  The quench flow is used to monitor the reaction or process 

on the millisecond time scale.  SFM4/Q quenched-flow device has four syringes 

ports and it can process two mixing events (Bio-Logic Science Instruments, Knoxville 

TN).  For PvuII endonuclease cleavage reactions, typically port 1 and port 2 were 

filled with enzyme and DNA, respectively.  The reaction was initiated at inter-mixer 

1 by mixing equivalent volumes of solutions from port 1 and 2, then after flowing 

through the designated delay lines, the reaction was quenched by addition of 100 mM 

EDTA solution from port 4 (Figure 2.4).  The accessory includes delay lines with 

various volumes and can be easily combined and replaced.  MPS software was used 

to program the driving sequence and monitor the injection volume and flowing rates.  

The reaction time is the interrupt phase time plus the aging time in the delay lines.  

The aging time can be calculated using the volume of delay line and solution flowing 

rate.  The typical delay line combination for PvuII cleavage reactions were 17 µL 

and 90 µL, and the flow rates was 0.5 mL/sec, therefore the minimum reaction time 

was about 200 ms.  

 The Application of SwissPdbviewer.  Swiss-PdbViewer (version 3.7) 

(Guex & Peitsch, 1997) is application software that provides a user friendly interface 

allowing visualizing and modifying protein structures.  The proteins can be 
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SFM-4 quench flow modeSFM-4 quench flow mode
 

Figure 2.4.  The configuration of SFM-4 quench flow instruments.  The 
configuration of SFM-4 quench flow mode is adapted from stop flow manual of Bio 
Logic Science Instruments.  Quench flow consists of four syringe ports (S1, S2, S3 
and S4), two delay lines and three inter-mixers.  Typically S1 and S2 are filled up 
with enzyme and DNA, S4 is filled up with EDTA. The reaction is initiated at the first 
inter-mixer and quenched at the third inter-mixer.  Each syringe plumber is driven by 
electric motor and its motion can be programmed. 
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superimposed in order to deduce structural alignments and compare their active sites 

or any other relevant parts, which is used to compare the Ca(II) and Mg(II) binding 

sites available in the different PvuII crystal structures.  Amino acid mutations, 

distances between atoms, shifting atoms in the active site and addition of water 

molecules as metal ion ligand can also be accomplished using the intuitive graphic 

and menu interface.  In the pKa calculations of PvuII endonucleases, the mutations 

and the shift of metal ions or ligated water molecules were all conducted by 

SwissPdbviewer.  The distance information between atoms is easily obtained using 

the distance tools in the menu.  

 UHBD Program.  The electrostatics-based computational methodology 

implemented in the University of Houston Brownian Dynamics (UHBD) program 

(Antosiewicz, et al., 1994; Antosiewicz, et al., 1996a) was used to predict pKa values 

of all ionizable groups and molecules in the type II restriction endonuclease PvuII.  

UHBD is used to compute the electrostatic potential and the electrostatic free energy 

for a given charge distribution in an arbitrary dielectric medium by solving the 

Poisson-Boltzmann equation using a finite-difference method.  In this approach, 

each ionizable group is assigned to a model pKa value which represents the pKa of 

that group in solution.  For Mg(II)-ligated water molecules, 11.4 was used as the 

model pKa (Dahm, et al., 1993).  According to a thermodynamic cycle of ionization 

in solution and in a protein, prediction of the apparent pKa value of an ionizable 

group in the protein environment is computed from the difference in electrostatic free 

energy (∆∆G) for protonating such a group in solution vs. in its environment in the 
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protein (equation 2.4) (Briggs, et al., 1989).  

∆∆G = ∆Gel
protein - ∆Gel

solution                              (2.4) 

where ∆Gel is the electrostatic free energy difference for ionization of a given site in a 

molecule in the solution and in the protein with all other groups in their neutral state.   

The intrinsic pKa is defined by the equation 2.5 (Briggs, et al., 1989): 

pKa intrinsic = pKa model - γ∆∆G/2.303RT                     (2.5) 

where γ is -1 for an acidic group and +1 for a basic group.    

The electrostatic work for the ionization is calculated by use of the linearized 

Poisson-Boltzmann equation implemented in UHBD.  The determination of pKa 

intrinsic consists of two electrostatic contributions.  One is the desolvation energy when 

the ionizable group is transferred from bulk solution to its environment in the protein, 

the latter of which exhibits a low dielectric environment.  The other contribution is 

from the ionization energies assuming that all of the other titratable groups are neutral. 

The electrostatic energy is determined by the interaction with all of the background 

charges in the protein when all amino acids are in their neutral state.  

In reality, of course, the protein has multiple titratable sites, so pKa intrinsic is 

not equal to pKa apparent because all other ionizable residues will not be neutral. 

Therefore, to calculate the electrostatic energy from the charge-charge interaction 

between the given ionizable group and all other titratable groups, it is essential to 

evaluate the ionization states of each site at various pH values.  This multiple 

titration state problem requires the evaluation of numerous protonation patterns.  

This problem can be treated using a Monte Carlo method, which samples 
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combinations of protonation states using a Metropolis algorithm, resulting in a 

Boltzmann distribution of protein protonation states and their associated electrostatic 

free energies.  The Monte Carlo method provides a list of pKa apparent and pKa 

intrinsic values for all ionizable groups in the protein. Since the number of protein 

ionization states is huge (on the order of 2N, where N is the number of ionizable 

groups in the protein system), it is difficult to adequately sample the possibilities.  

Therefore, a different approach was also taken to address this coupled titration 

problem, which was a hybrid divide-and-conquer Tanford-Roxby method (Gilson, 

1993).  In this approach, titratable residues that strongly interact are put in the same 

cluster and the coupled titration problem is solved exactly within each cluster, 

supplemented by an inter-cluster interaction term. 

The single site approach was used to describe the ionization in the titratable 

group upon protonation or deprotonation.  This approach neglects the fact that the 

partial charge distribution changes upon ionization and treats ionization by adding or 

subtracting a full charge to one atomic position in the group.  The atomic ionization 

sites are atom CG in Asp, CD in Glu, CZ in Arg, NZ in Lys, OH in Tyr, NE2 in His 

and OW in H2O, where the unit charge is added upon protonation or deprotonation. 

Ionizable groups were switched “off” by changing the atom type to nonionizable.  

Due to the somewhat rough description of ionization in the single site model and the 

neglect of conformational flexibility, the error in the pKa prediction is ca. one pH unit 

(Antosiewicz, et al., 1994). 

 In the pKa predictions, atomic partial charges and radii from the 
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CHARMM22 force field were used in all calculations (Follope & Alexander D. 

Mackerell, 1999).  Solvent and protein dielectric constants were 80 and 20, 

respectively.  The ionic strength (150 mM), ionic radius (2 Å), surface probe radius 

(1.4 Å), and temperature (293 K) were chosen to reflect the experimental conditions.  

 DynaFit Program.  DynaFit is the program to perform nonlinear 

least-squares regression of chemical kinetic and ligand-receptor binding data.  The 

interface consisting of three windows as reaction scheme, data graphic and status 

(Figure 2.5) (Kuzmic, 1996).  The experimental data can be either reaction 

velocities dependent on the concentration of varied species (e.g., enzyme, substrate, 

and metal concentration vs. steady state velocity), or the reaction progress curves (e.g., 

in the global fit of single turnover data), or the equilibrium data (e.g., Ca(II) 

dependent enzyme titration).  The established reaction scheme can be converted to 

scripts in DynaFit to represent the terms of symbolic, or stoichiometric, binding or 

chemical equations.  The measured kinetic parameters are fixed in the global fits and 

the unknown kinetic parameters are given the initial values as estimate, which are 

varied and finally derived from the global fits.  For global fits with Mg(II) 

dependence of PvuII single turnover and pre-steady state kinetics, the fixed kinetic 

parameters includes DNA association rates, DNA dissociation rates and metal 

dissociation rates.  The floating kinetic parameters include metal association rates, 

turnover rates and product dissociation rates.  A sample fit of Mg(II) dependence of 

single turnover progressive curves has been attached as Appendix I including the 

global fit script, fit curves and output.  
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Figure 2.5.  The application of Dynafit in global fit.  It consists of three windows 
including such as data graphic, reaction mechanism and status. The graphic window 
shows the original data and generated fit curves marked with different colors.  The 
text window shows the edit of reaction scheme and kinetic parameters for each step 
that is floating during the global fit.  It partially shows the fit error status when fit is 
accomplished, which is indicated in status window.       
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The global fit quality can be evaluated by either overall standard deviation or 

the error of the derived unknown rate constants.  In some cases, simulations based on 

the best fit unknown parameter sets to reproduce the metal dependent rate profiles are 

employed to facilitate the visualization and evaluation of various models.  
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CHAPTER III.  ELECTROSTATIC CONTRIBUTIONS TO WATER 
ACTIVATIION IN PD…(D/E)xK METALLONUCLEASE 

 
INTRODUCTION 

Most of the type II restriction endonucleases feature the conserved catalytic 

center motif PD…D/ExK.  Two conserved carboxylate groups in the active sites 

ligate one or multiple divalent metal ions which are essential for catalysis.  But 

Mg(II), Mn(II) and Co(II) are known to support the efficient catalysis while others 

like Ca(II) only drive the association of DNA (Bowen & Dupureur, 2003).  The role 

of the Lys in the catalytic motif remains unclear.  This Lys is not always conserved; 

in BglI and BamHI, it is replaced with Gln and Glu, respectively (Newman, et al., 

1998; Lukacs, et al., 2000).   

The general mechanism of phosphodiester bond hydrolysis by type II 

restriction endonucleases starts with the activation of the nucleophile as a hydroxide 

ion, followed by attack on the scissile phosphate.  The developed transition state is 

stabilized by the divalent metal ions in the active site.  Another water molecule 

protonates the developed 3’ oxyanion and facilitates its departure (Pingoud, et al., 

2005).   

The activation of the nucleophile and the roles of metal ions in catalysis 

remain controversial.  Proposals are depicted in Figure 3.1.  For the generation of 

the attacking nucleophile, the proposals include extrinsic mechanism, substrate 

assisted catalysis and general base catalysis.  The extrinsic mechanism (Figure 3.1A) 

suggests penetration of the hydroxide from bulk solvent and is found to be the most 

favorable by quantum mechanical simulations and calculated energy barrier (Mones, 
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et al., 2007a).  Substrate assisted catalysis and general base catalysis agrees with the 

formation of nucleophile by the deprotonation of metal ligated water molecules, but 

differs in which group abstracts a proton and assists its deprotonation (Jeltsch, et al., 

1993; Horton & Cheng, 2000).  In general base catalysis, the group that abstracts a 

proton from metal ligated water molecule is the conserved Lys or Glu (the substitution 

in BamHI) (Figure 3.1B), and in substrate assisted catalysis it is the 3’ neighboring 

phosphate (Figure 3.1C).  Besides one metal ligated water molecule to form the 

nucleophile, the second metal ligated water molecule (Figure 3.1D) protonates the 3’ 

oxyanion and facilitates the departure of the leaving group based on 

PvuII-Ca(II)-cognate DNA crystal structure (Horton & Cheng, 2000).  Solely based 

on the crystal structures, it appears that two metal ions are required to accomplish the 

formation of nucleophile and the following protonation of the leaving group since two 

metal ligated water molecules can serve as a general base and general acid, 

respectively.  However, the number of metal ions essential for catalysis remains 

controversial and will be discussed in Chapter IV.  

The significance of ionization of critical residues in binding and catalysis of 

nucleases has long been recognized.  The measurements of pH dependence of metal 

binding, DNA binding and enzymatic activity has been conducted with many 

nucleases in order to disclose the ionizable groups involved (Zebala, et al., 1992; Sam 

& Perona, 1999a; Haq, et al., 2001; Tock, et al., 2003).   
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Figure 3.1.  Possible roles of metal ions and the activation of water molecule in 
the DNA hydrolysis by endonuclease.  The figure is adapted from the reference 
(Tock, et al., 2003).  A. Penetration of the hydroxide ion from bulk solvent which is 
stabilized by the metal ions.  Metal ions also stabilize the transition states in the 
DNA hydrolysis.  B. The conserved Lys or Glu functions as a general base to 
abstract a proton from the metal ligated water molecule.  C. Substrate assisted 
catalysis.  The neighboring 3’ phosphate abstracts a proton from the metal ligated 
water molecule.  D. The nucleophilic attacking on the scissile phosphate by a 
hydroxide ion and the protonation of leaving group by a metal ligated water.   
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 The steady state and single turnover kinetics of TaqI restriction endonuclease 

was characterized before the conserved catalytic center motif PD…D/ExK for type II 

restriction endonucleases was recognized (Zebala, et al., 1992).  pH profiles of Km 

and single turnover rate constant kst (single turnover rate constant) both increased 

markedly with pH and showed sigmoidal curves, but kcat did not.  The pH 

dependence of Km (pKa=9) and kst (pKa=7) suggested a titration of Lys/Arg and His, 

respectively.  Based on the fact that kcat did not change much with pH, at least one 

step other than the chemical step (kst) is rate limiting step in the reaction pathway.  

Besides the pH study, initial velocities were studied as a function of Mg2+ 

concentration, and a Kd (2.5mM) for the cofactor binding was determined, although 

the experiments could not distinguish whether Kd was due to Mg(II) binding to the 

enzyme or the enzyme-substrate complex.  

The single turnover rate constants for site specific DNA cleavage by EcoRV 

have been determined as a function of pH.  A bell shaped pH-rate curve was 

determined in the presence of Mg(II), and log linear plot of pH-rate was consistent 

with general acid and general base catalysis (Sam & Perona, 1999a).  Two 

equivalent pKa values (8.54 and 8.52) derived from the pH-rate profiles agree well 

with a model in which the ionizations of two distinct metal-ligand waters generate the 

attacking hydroxide ion and the proton for donation to the leaving group.  For Mg(II) 

a pKa value of 11.4 for the inner sphere water molecule was commonly assumed.  

Compared with the pKa (8.5) of the water molecules determined from the kinetic data, 

two pH units of the pKa shift is speculated to be due to the proximity of Lys92.      
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  pH dependence of specific DNA binding by MunI restriction endonuclease 

has been studied in the absence of Mg(II) (Haq, et al., 2001).  The binding constant 

Kobs decreased with pH, and the curve showed two distinct inflections and was fit to a 

two-event model in which the same ionizable group in the free enzyme and substrate 

bound enzyme were distinguished with different pKa’s.  The free enzyme was 

assigned two ionizable groups (pKa1=6.0 and pKa2=6.9), which are interpreted as the 

pKa’s of acidic residues in the active site such as D83 and E98.  There is evidence 

that the analogous residues in PvuII (D58 and E68) have similar pKa,app (Dupureur & 

Conlan, 2000).  The upward shifts of those two pKa’s in the DNA-bound form of 

enzyme have been speculated to be due to the negative charges of the bound DNA 

backbone.  In addition to specific DNA recognition and binding studies, plasmid 

DNA cleavage by MunI restriction endonuclease has been investigated by single 

turnover and steady state kinetics (Sasnauskas, et al., 1999).  The pH dependence of 

kcat in steady state kinetics (measured at 1 mM Mg2+) gave a sigmoidal curve in the 

pH range (6-9).  The apparent pKa of 7.8 was derived from fitting to a single proton 

binding event; terminal phosphate and carboxylate groups might be responsible for 

this apparent pKa.  It is also found that the plots of plasmid cleavage rate against 

Mg(II) concentration were linear at low pH (<6.0) but hyperbolic at high pH (>6.0).  

Therefore, the unsaturated Mg(II) dependence at low pH indicates the competition 

binding between proton and Mg(II) ion to the active site.  

The direct involvement of different divalent metal ions in nucleophile 

activation has been observed in flap endonuclease (Tock, et al., 2003).  The single 
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turnover rate constant as a function of pH has been determined with Mg(II), Mn(II) 

and Co(II).  The pH rate plots were fit with one ionization equation and the derived 

apparent pKa shows a linear dependence on their metal ligated water pKa (11.4 for 

Mg(II), 10.6 for Mn(II) and 9.6 for Co(II) ligated water molecule).  Since the kinetic 

pKa’s display good correlation with the acidicity of the corresponding hexahydrated 

metal ions, this strongly suggests a role for metal bound hydroxide in catalysis.  

  The apparent pKa’s near neutrality have been derived for MunI, PvuII and 

EcoRV, but typical pKa’s of acidic groups (4.0 for Asp and 4.4 for Glu) and Lys (10.4) 

conserved in the active site obviously do not agree with it.  From those pH 

dependence studies with nucleases, it is very challengeable to assign the apparent 

pKa’s derived from pH profiles to the ionizable groups in the active site.  But it is 

possible that the pKa values of those active site residues shift in proteins and those 

pKa shifts are not experimentally accessible by a normal titration experiment.  pKa 

prediction of protein residues by computational chemistry provide a tool to investigate 

the pH dependent properties of proteins since it can evaluate the pKa’s for each 

titratable site in proteins.  Although very precise pKa predictions remain challenging, 

some programs such as UHBD and DelPhi have been developed based on solving the 

Possion-Boltzman equation (Nielsen & Vriend, 2001).  Those programs allow the 

application of X-ray crystal structures and NMR solution structures to predict the pKa 

values of all the titratable groups in a protein and the results of calculations can be 

correlated with the pH dependence studies of protein stability and enzymatic activity.  

The apparent pKa’s derived from pH profiles can generally reflect the ionizations of a 



 

 58 

cluster of residues in the active site.  By such correlations between those 

experimental determinations and the predicted pKa’s of protein residues, the catalytic 

residues are expected to be identified.   

The target protein we mainly work with in this chapter is PvuII restriction 

endonuclease.  PvuII restriction endonuclease is a homodimeric enzyme of 18kDa.  

It recognizes DNA sequences 5’-CAG↓CTG-3’ and cleaves DNA duplex in the 

presence of Mg(II) to produce 3’-hydroxyl and 5’-phosphate ends (Gingeras, et al., 

1981). Applying isothermal titration calorimetry to PvuII restriction endonuclease, it 

is determined that two metal ions bind to its active site, which agrees well with crystal 

structure of PvuII-Ca(II)-DNA complex (Jose, et al., 1999; Horton & Cheng, 2000).  

Two acidic residues Asp58 and Glu68 and one basic Lys70 comprise its catalytic 

center and they are critical to enzymatic activity and specificity (Nastri, et al., 1997).   

The pH dependence of Mg(II) binding was measured by 25Mg NMR 

experiments, and an abnormal apparent pKa of 6.7 was determined for WT with a two 

ionzable group model (Dupureur & Conlan, 2000).  pKa predictions of acidic 

residues will be an appropriate approach to assign abnormal apparent pKa to the 

specific ionizable groups. 

PvuII endonuclease likely follows a two-metal ion mechanism in catalysis 

based on structural and biophysical characterization (Figure 3.2).  The metal ions 

are responsible for lowering the pKa of a neighboring water molecule, thereby 

facilitating its deprotonation to prepare the attacking nucleophile (Horton & Cheng, 

2000).  One metal ligated water molecule deprotonates to form the attacking  
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Figure 3.2.  The general mechanism of phosphodiester bond hydrolysis by type 
II restriction endonucleases.  The general catalytic mechanism for PvuII is adapted 
from crystal structure of PvuII-Ca(II)-DNA complex (Horton & Cheng, 2000).  Two 
metal ligated water molecules are highlighted in the active site.  One deprotonated to 
form the attacking nucleophile, with its deprotonation is assisted by a nearby Lys.  
The other protonates the hydroxyl group after the cleavage of phosphodiester bond.  
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nucleophile and a second metal ligated water molecule protonates the leaving group.  

The proximity of Lys70 may account for a magnitude of 2 pH units pKa shift of metal 

ligated water molecule (Sam & Perona, 1999a).  

In this work, I attempt to calculate the pKa values of active site residues and 

crystallographic defined metal ligated water molecules in PvuII endonuclease using 

the implementation of protein ionization state prediction method embedded in the 

UHBD program (Antosiewicz, et al., 1994).  The effect of local electrostatic 

environments on predicted pKa value is also the focus of the pKa calculations.  The 

pKa calculations are performed on several crystal structures of PvuII and finally are 

extended to other endonucleases featured with the motif PD…D/ExK to test a 

possible general trend that the pKa’s of metal ligated water molecules are mediated by 

metal ions and conserved Lys.   
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 EXPERIMENTS AND METHODS 

  pKa Predictions using UHBD.  The UHBD (University of Houston Brownian 

Dynamics) is a program capable calculating the electrostatic free energies in proteins on 

the basis of solving the Poisson-Boltzmann equation.  pKa calculations were performed 

utilizing a methodology embedded in the UHBD package release 5.1.  The detailed 

methodology of how to use the calculated electrostatic free energies to derive the apparent 

pKa has been described in Chapter II.  The overall pKa predictions have been performed 

based on two stages.  The first stage is to calculate the intrinsic pKa of each titratable site. 

The second stage is to determine the interaction energies among all the titratable sites.  

Monte Carlo simulations are performed to determine the ionization status for each 

titratable site, and the hybrid program predicts the apparent pKa with better precision.  

The charge distribution of one titratable site is simplified as a single site model which 

assumes that one unit positive or negative charge is added on a given atom of the 

ionizable group upon protonation or deprotonation.  For example, atom CG in Asp, CD 

in Glu, CZ in Arg, NZ in Lys, OH in Tyr, NE2 in His and OW in H2O are the positions 

where the unit charge is added.  To turn off a residue as a non titratable site in pKa 

calculations, the name of that titratable atom is changed so that it is not recognized in the 

program.  Then no unit charge will be added on them and the whole site remains neutral 

in the pKa calculations.  

Parameters Applied In pKa Calculations.  Single-site approach was carried out 

with atomic charges and radii of CHARMM22 force field for amino acid residues, nuclei 

acids and metal ions (provided by Dr. Briggs in University of Houston).  In the single 
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site approach, the ionization occurs to each titratable group as the addition of a single 

point charge of ±1 electron to a single atom.  The solvent and protein dielectric constants 

were set as 80 and 20, respectively. The ionic strength (150 mM) and temperature (293 K) 

were chosen to reflect the experimental conditions. 

Preparation of Protein Structures.  As described in Chapter II, PvuII and other 

endonuclease crystal structures in pdb form are downloaded from Protein Data Bank 

(www.rcsb.org).  To perform pKa calculation in apo enzyme, all the water molecules, 

metal ions and DNA molecules are removed from crystal structures prior to the 

calculations.  The metal ions or DNA strand are kept when the inclusion of metal ions or 

DNA strand in pKa calculations is indicated.  All the PvuII variants are created in 

SwissPdbviewer (www.expasy.org/spdbv) by changing the target residues to Ala or 

turning them off (treat as untitratable site) and following up with energy minimization to 

refine the coordinates of variant structures.   

Single Turnover and Steady State Cleavage Assays as a Function of pH.  

Single turnover rate constants and steady state rate constants for specific DNA cleavage as 

a function of pH were measured using PAGE cleavage assay as described in Chapter II.  

The triple buffer system containing 10 mM Mg(II), 80 mM NaCl, 50 mM Tris, 25 mM 

NaAc and 25 mM MES was used to maintain the same ionic strength at various pH.  pH 

values were adjusted at 37°C.  

The steady state cleavage assay experiments measure the reaction velocity of the 

linear phase with 1 or 2 nM enzyme with at least 5 fold excess substrate concentrations as 

a function of pH.  The reaction is slow enough to collect at different time points 
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manually.  The reaction is usually terminated before 5% substrate cleavage is achieved.  

The amount of product vs time is plotted and the reaction velocity is calculated by 

normalization of linear phase slope using enzyme concentration.  The plot of reaction 

velocity against substrate concentration is to fit the Michaelis-Menten equation to derive 

kcat and KM.   

The single turnover reactions were performed in the same buffer with the same 

method of sample collection except for rapid reactions (pH 7～8.6), for which the 

instrument quench flow (BioLogic SFM-400) was used to monitor the reactions.  The 

typical reaction concentration for single turnover reactions was 2 µM enzyme and 300 

nM DNA.  As described in Chapter II quench flow section, the single turnover 

reactions were initiated by mixing metal-free enzyme from one syringe and DNA with 

pre-mixed Mg(II) containing buffer from another syringe.  After the designated 

incubation time, the reactions were quenched by addition of 100 mM EDTA syringe 

from a third syringe.  200 µL reaction samples were collected and 10-12 µL of samples 

were loaded on a PAGE gel for further analysis.  The amount of substrate and product 

both are quantitated from a gel image.  For single turnover reactions, the amount of 

product was normalized and fit with a first order reaction equation to derive the 

apparent single turnover rate constant.    

Data Fit With PvuII pH Rate Profiles.  The pH dependence of PvuII 

activity regardless of single turnover and steady state reactions shows a typical bell 

shaped curve, which is similar to pH rate profiles of EcoRV (Sam & Perona, 1999a).  

It is generally interpreted that bell-shaped pH-rate profiles represents two ionizations 
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involved the catalytic activity with one deprotonation in the acidic pH serving as a 

general base and one protonation in the basic pH range serving as general acid.  The 

two ionization equations below were used for EcoRV and can be used to fit the pH 

rate profiles of PvuII as well (Sam & Perona, 1999a).  

The pH dependence of single turnover or steady state cleavage rate has been 

fitted to a classic equation (1) for bell shaped pH profiles, where kmax represents the 

maximal enzymatic activity independent of pH, and pKa1 and pKa2 are the pKa values 

of the deprotonated group in the acidic limb and the protonated group in the basic 

limb, respectively (Sam & Perona, 1999a).  The ionizations of two groups are 

assumed to be independent and their apparent pKa values should be separated by at 

least two pH units. 

kobs=kmax/(1+10(pka1-pH)+10(pH-pka2))   eq (1) 

A modified equation (2) deviated from classic equation (1) has also been applied to 

fit the pH-rate profile.  Equation (2) gives two almost equivalent pKa values for two 

ionizable groups, to address possibilities of reverse ionization (pKa1 is higher than 

pKa2).  This allows a better estimation of real pKa values when the difference of two 

pKa values are less than two pH units.  

kobs=kmax/(1+10(pka1-pH)+10(pH-pka2)+10(pka1-pka2))  eq (2) 

Equation (3) has also been applied to address the experimental data which deviated 

from a single ionization model in the acid limb.  In the case of PvuII, multiple 

ionizable groups are involved in the acid limb, and competition binding between 

proton and Mg(II) ions occurs as well as a formation of a general base.  In equation 
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(3), the additional pKa1 represents the apparent pKa of two metal ion binding sites of 

PvuII which are essential and deprotonate prior to general base catalysis.  pKa2 and 

pKa3 represent two ionizable groups for general base catalysis and general acid 

catalysis.  The Scheme 3.1 describes the speculated ionizations involved in catalysis.  

In the scheme, three ionizations involved in metal binding and chemistry steps are 

indicated.  

kobs=kmax/(1+10(2*pKa1+pKa2-3*pH)+10(pKa2-pH)+10(pH-pKa3)+10^(pKa2-pKa3))  eq (3) 

kmax is the maximum single turnover cleavage rate constant or steady state cleavage 

rate constant which is independent of pH. 
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Scheme 3.1.  The kinetic model scheme for equation 3.  Totally four ionizable 
groups involved in Mg(II) and catalysis includes two metal binding sites with 
equivalent pKa1, a general base with pKa2 and a general acid with pKa3.   Two 
deprotonated metal binding ligands result in Mg(II) binding in the active site 
(H4ES->H2ES).  The deprotonation of general base forms the pre-reactive complex 
HESMg(II).  After the turnover step, the post-reactive complex EPMg(II)* is 
formed, which needs to be protonated by a general acid for product dissociation.    
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RESULTS  

Calculating pKa values of titratable sites in PvuII endonuclease employs 

electrostatic interaction energies.  Individual charged species like metal ions and 

DNA molecules contribute to the pKa values of ionizable groups in PvuII.  I assume 

that the inclusion of the metal ions and DNA molecules in the calculation procedure 

will make a significant difference on the predicted pKa values of interesting ionizable 

groups.  Therefore it is necessary to perform pKa calculations on apo enzyme and 

binary E-M(II) and tertiary E-DNA-M(II) complexes, respectively.  The various 

subsets of calculated pKa values of interesting ionizable groups in PvuII are 

established based on WT or mutant apo enzyme and binary complex of E·Mg(II). 

Comparison of pKa values of interesting ionizable groups in those subsets are 

important for understanding the perturbation of pKa caused by metal ions and coupled 

electrostatic interaction between titratable sites.  It is widely accepted that the 

depronation of metal ligated water molecules forms the attacking nucleophile to 

initiate the cleavage reaction.  The rationale of pKa perturbation is particularly 

helpful to understand the activation of water that is critical for the enzyme catalytic 

mechanism. 

 Prediction of pKa Values For Apo Enzyme.  Two acidic residues Asp58 

and Glu68 in PvuII are regarded as metal binding ligands (Nastri, et al., 1997).  

X-ray crystal structures of Mg(II) or Ca(II) binding to PvuII indicates that the active 

site can coordinate with two Ca(II) ions in the presence of DNA and one Mg(II) ion in 

the absence of DNA by those two carboxylic groups.  The two metal ions share the 
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similar metal binding ligands and geometry (Horton & Cheng, 2000; Spyridaki, et al., 

2003).  The metal binding studies on mutant D58A and E68A show that the roles of 

E68 and D58 in metal binding are probably not equivalent.  E68 appears to dominate 

metal binding because Ala mutation on E68 causes a complete loss of metal binding 

ability of PvuII, but D58A retains the ability to bind Mg(II) (Dupureur & Conlan, 

2000).  Besides D58 and E68, a recent crystallographic study of PvuII-Mg(II) binary 

complex (1H56) unexpectedly revealed an active site Tyr94 as a metal ion ligand 

(Spyridaki, et al., 2003).  Lysine residue is widely conserved in the active site motif 

of type II restriction endonucleases and probably assists the activation of metal ligated 

water molecules.   

pKa calculations on the apo enzyme are performed on three X-ray crystal 

structures of PvuII which represent various conformers according to their 

crystallization conditions.  1NIO is apo form of PvuII mutant Y94F and in the pKa 

calculation it is mutated back to WT; 1H56 is binary complex of PvuII binding to 

Mg(II) with two different metal binding sites in each monomer; 1F0O is a ternary 

complex of PvuII-DNA-Ca(II) with two missing residues G53 and Q54 near to the 

active site (Horton & Cheng, 2000; Spyridaki, et al., 2003).  The single Mg(II) ion 

coordinates with Asp58 and Glu68 in 1H56 subunit A which is consistent with Ca(II) 

binding sites in 1F0O.  Mg(II) ion coordinates with Tyr94 in 1H56 subunit B, but the 

mutant Y94F retains the metal binding capability and activity.  This implies that 

Asp58 and E68 are still major metal binding ligands for PvuII.  By removing metal 

ions in those structures (1H56 and 1F0O), the pKa values of D58, E68, K70 and Y94 
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in apo enzyme are calculated and reported in Table 3.1. 

The pKa values of D58 and E68 are moderately shifted compared to their 

model pKa values for all calculation sets in Table 3.1, regardless of the crystal 

structure used.  The pKa values of D58 and E68 vary among the structures, which 

indicates the quality of crystal structures and the conformations of proteins probably 

affect the pKa calculation results.  The similarity of pKa values between 1NIO and 

1H56 (expt 1 & 2 in Table 3.1) but their large differences compared with 1F0O (expt 

1 & 2 compared with 3 & 4 in Table 3.1) is consistent with evidence that DNA 

binding induces the dramatic conformational change rather than metal ion binding 

(Dupureur, 2005).  In spite of the differences caused by crystal structures for D58 

and E68, one residue pKa always shifts upward and the other shifts downwards 

compared to their model pKa values.  The pKa’s of K70 and Y94 are much higher 

compared to their model pKa’s, which are conserved for all three crystal structures.   

The methodology of pKa calculation is based on the Gibbs free energies 

difference between neutral state and ionized state.  The Gibbs free energies 

calculated consists of desolvation energies and site-site electrostatic energies.  The 

effect of site-site electrostatic energies on determination of pKa values for a titratable 

site can be evaluated by electrostatic interaction potentials (personal communication 

with Dr. Briggs).  Of course it is sensitive to the distance between two titratable sites.  

The high electrostatic interaction potentials imply a strong electrostatic interaction 

between D58 and E68 due to their proximity.  The distance of titratable atoms 

 
 



 

 70 

Table 3.1.  Summary of pKa predictions for apo enzyme.  
 

Expt Structure D58 E68 K70 Y94 
1 1NIO(subunit A) 3.0 5.2 14.1 13.5 
2 1H56(subunit A) 4.3 5.3 13.0 14.6 
3 1F0O(subunit A) 5.2 2.2 13.0 12.4 
4 1F0O(subunit B) 5.6 2.4 >15 11.8 

For crystal structures 1F0O and 1H56, the crystallographic nucleic acids, water 
molecules and metal ions are deleted prior to the pKa calculations. 
Model pKa of Asp, Glu, Tyr and Lys are 4.0, 4.4, 9.6 and 10.4, respectively.   
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between CG in D58 and CD in E68 is 4.25 Å in 1F0O structure, 4.68 Å in 1H56 

structure and 4.22 Å in 1NIO structure, respectively.  This strong electrostatic 

interaction between those two titratable sites (D58 and E68) probably is responsible 

for their pKa shift up and down in a coupled way.  Appendix II lists the electrostatic 

potentials of some site-site interactions and can be used to rationalize the pKa shifts of 

those active site residues. 

Prediction of pKa’s for PvuII Variants.  The coupled pKa shifts of D58 and 

E68 upwards and downward is rationalized as the result of strong site-site interaction 

between them.  Ala mutation or site neutralization is expected to disturb this kind of 

site-site interaction, resulting in large pKa shifts for those groups which exhibit strong 

site-site interactions in WT.  The direction of pKa shifts can be predicted: Ala 

mutation on a nearby negatively charged residue will decrease the pKa of the target 

titratable residue, and Ala mutation on a positively charged residue will increase the 

pKa (Nielsen & Vriend, 2001). 

Ala mutations are made at four positions (D58, E68, K70 and Y94) by 

Swisspdbviewer or charged residues are neutralized by altering the name of titratable 

atom as described in methods.  The calculated pKa’s are summarized in Table 3.2. 

For variant Y94F, the pKa shifts are not significant relative to WT.  For the 

variant D58A (also the case D58 off), the pKa values of E68 and K70 both show a 

downward shift, which indicates D58 remains deprotonated.  Therefore 

neutralization of D58 shifts the pKa’s of other residues in a predictable direction 

mentioned above.  K70 has a high apparent pKa and can be interpreted as a titratable  
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Table 3.2.  Summary of pKa calculations for PvuII variants. 

 

Structure mutation D58 E68 K70 Y94 
1NIO(subunit A) WT 3.0 5.2 14.1 13.5 
1NIO(subunit A) Y94F 3.0 5.8 13.6 n/a 
1NIO(subunit A) D58A n/a 3.6 13.1 13.2 
1NIO(subunit A) D58 off n/a 3.4 13.0 13.1 
1NIO(subunit A) E68A 2.7 n/a 12.6 12.5 
1NIO(subunit A) E68 off 2.8 n/a 13.0 13.1 
1NIO(subunit A) K70A 4.0 6.2 n/a 13.6 

pKa calculations were performed based on 1NI0 structure which is switched back 
to WT by F94Y mutation.  Model pKa of Asp, Glu, Tyr and Lys are 4.0, 4.4, 9.6 
and 10.4, respectively.  The mutation on one residue or neutralization on the 
same residue should have a very similar effect on calculated pKa’s.  n/a means 
not available in the pH titration range from 0 to 15. 
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site with positive charge.  So the neutralization on K70 increases the pKa values of 

other residues in the active site. 

pH Titration With Metal Binding Sites.  pH titration of Mg(II) binding to 

WT and D58A were performed using 25Mg(II) NMR (Dupureur & Conlan, 2000).  

The apparent pKa’s for WT (6.7) and D58A (7.1) obtained from data fit seems 

abnormally high compared with calculated pKa’s of D58 and E68 in WT.  However, 

considering the possible negative cooperativitity for proton binding between D58 and 

E68, a two-site interacting model is used to fit the experimental pH titration of WT 

with calculated pKa for D58 (3.0) and E68 (5.2) (expt 1 in Table 3.1).  The two-site 

interacting model fits well with experimental data and generates the 5 kcal/mol 

interaction energies between two sites (Figure 3.3).  Unfortunately, the pKa 

calculation with D58A does not agree with pH titration of D58A by 25Mg(II) NMR 

spectroscopy (Dupureur & Conlan, 2000).  The predicted pKa of E68 decreases in 

D58A but the pH titration of D58A shifts to basic direction determined by 25Mg(II) 

NMR.  The reasons for this discrepancy between pKa calculation and experiments 

can be complex.  The mutation may induce the conformational change in the active 

site which somehow compensates for the electrostatic effect.   
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Figure 3.3.  A two site interacting model fits well with experimental pH titration 
of WT using 25Mg(II) NMR.  The D58 and E68 are considered as two Mg(II) 
binding sites.  Their pKa’s are fixed in the model as 3.0 (pKa1) and 5.2 (pKa2) 
obtained from pKa calculation with apo enzyme (expt 1 in Table 3.1).  The inset 
equation is adapted from reference (Dupureur & Conlan, 2000).   
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pKa Calculation In the Presence of Mg(II).  Mg(II) ion is treated  as 

background charge in the pKa calculation, which has a significant effect on the 

predicted pKa’s of active site residues.  It is determined that PvuII contains two metal 

binding sites on each subunit (see Introduction).  Their binding configurations 

observed in the PvuII crystal structures are illustrated in Figure 3.4.  The influence 

of occupancy status of two metal binding sites is particularly of interest and 

investigated in the different calculation experiments.  

The results are summarized in Table 3.3.  In the pKa calculation expt 2, both 

metal binding sites are filled and the pH titration range is from 0 to 15.  The apparent 

pKa’s of metal binding ligands (D58 and E68) are not detectable (their theoretical 

pKa’s must be negative).  When Mg(II) ions occupy their metal binding sites, the 

strong electrostatic interaction between metal ions and side chain of carboxylic group 

causes the abnormal downward shift for pKa values of D58 and E68.  Theoretically it 

is very unfavorable to protonate a metal binding ligand such as D58 and E68 when 

they coordinate with a metal ion.  The pKa of K70 has a dramatic drop but it is still 

high enough to remain protonated at physiological pH. 

The effect of occupancy of metal binding sites is also evaluated by performing 

pKa calculations on the crystal structures of PvuII when either metal binding site is 

filled.  The pKa calculation (expt 3 in Table 3.3) is performed based on PvuII crystal 

structure 1H56 subunit A (Figure 3.4B), in which one Mg(II) coordinates with  
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Figure 3.4.  The metal ion occupancies in the PvuII active sites.  (A) apo 
enzyme of PvuII(1NI0); (B) one Mg(II) bound in PvuII subunit A (1H56) 
(Spyridaki, et al., 2003); (C) one Mg(II) coordinates with Tyr94 in subunit B 
(1H56); (D) two Ca(II) ions in PvuII (1F0O) (Horton & Cheng, 2000).  
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Table 3.3.  Summary of pKa calculations in the presence of Mg(II)  
 

Expt Structure Metal Ions D58 E68 K70 Y94 
1 1NIO(subunit A) No 3.0 5.2 14.1 13.5 
2 1F0O(subunit A) 2Ca(II) n/a n/a 10.3 8.7 
3 1H56(subunit A) Mg(II) 1.4 -1.9 9.9 10.8 
4 1H56(subunit B) Mg(II) 2.8 0.5 11.6 4.9 

n/a means not available when the calculated pKa is out of pH titration range.  pH 
titration range is from 0 to 15 for expt 1, 2 and 4.  Expt 3 applies pH titration 
range from -5 to 15 due to an old version of executable file.  The pKa calculation 
set 2, 3 and 4 are performed excluding all the solvent molecules in the crystal 
structures, and Ca(II) was replaced by Mg(II) without changing their positions in 
expt 2. 



 

 78 

D58 and E68.  The pKa calculation (expt 4 in Table 3.3) is conducted on the PvuII 

crystal structure 1H56 subunit B (Figure 3.4C), where one Mg(II) ion coordinates with 

Y94.  The electrostatic interaction energy between Mg(II) and binding site results in 

Mg(II)-ligand distance dependence on pKa shift of metal binding ligands.  In expt 3, 

D58 and E68 are the metal binding ligands and a dramatic downward pKa shift is 

observed.  In expt 4, Y94 is the metal binding site and the similar large downward pKa 

shift for this residue.  Among those three calculations (expt 2, 3 and 4) in the presence 

of metal ions, the pKa of K70 is relatively stable and changes within a range from 9.9 to 

11.5.  The pKa values of metal binding ligands D58, E68 and Y94 change dramatically 

upon changing metal ion positions in the crystal structures.   

pKa Calculations of Metal Ligated Water Molecules.  The metal ligated 

water molecule has a very important role in catalysis, and its ionization is of great 

interest in understanding the catalytic mechanism.  The metal ligated water 

molecules (Figure 3.5) are well defined in crystal structures of PvuII (1H56 and 

1F0O) and are added as the additional titratable site in the pKa calculations.  The 

OW atom in the water molecule carries one unit negative charge when it is 

deprotonated, and its model pKa in solution is regarded as 11.4 when it is ligated to 

the Mg(II) ion (model pKa varies with ligated divalent metal ions) (Dahm, et al., 

1993).  The predicted pKa’s of metal ligated water in various PvuII crystal structures 

are summarized in Table 3.4. 
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Figure 3.5.  The defined metal ligated water molecules in PvuII.  Left panel 
shows the Mg(II) ligated W14 in subunit A of 1H56 (Spyridaki, et al., 2003).  Right 
panel shows a Ca(II) ligated water molecule in subunit A of 1F0O.  A similar W898 
exists in subunit B of 1F0O.  W1035 in 1F0O subunit A actually is artificially added 
using SwissPdbviewer on the basis of geometry of W898 in subunit B (Horton & 
Cheng, 2000).  Both highlighted water molecule are speculated to form the attacking 
nucleophile.  The distances of those water molecules to metal ions and Lys70 are 
indicated.   
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Table 3.4.  Summary of pKa calculations of Mg(II) ligated water molecules.  
 

Structure 
No. of 
Mg(II) 

Model 
pKa 

pKa of 
water 

K70 
Distance 
of Mg-O 

(Å) 
1H56(subunit A) 0 11.4 >15 12.5 - 
1F0O(subunit A)a 2 11.4 7.4 >15 2.6 Å 
1F0O(subunit B)b 2 11.4 9.3 12.7 2.79 Å 
1F0O(subunit B) 

Modifiedc 2 11.4 6.4 10.7 2.04 Å 

1H56(subunit A)d 1 11.4 6.5 14.4 1.9 Å 
a. pKa calculation is performed on subunit A with W1035 (Figure 3.5, right 
panel).  
b. pKa calculation is performed on subunit B with W898. 
c. The position of both metal ions are fixed and the W898 in 1F0O(subunit B) is 
shifted closer to metal ion CA761.  The distance from OW in H2O to NE in K70 is 
3.393 Å.  The distance from OW in H2O to atom P of G8-p-C9 is 3.396 Å; in 
modified 1F0O(subunit B), the corresponding distance is 3.457 and 3.468 Å, 
respectively. So the water pKa shift between calculation b and c mainly comes from 
the extent of approaching Mg(II) ion.  
d. pKa calculation is performed on subunit A with W14 as shown in Figure 3.5 left 
panel.   
All those pKa calculations are performed keeping the metal ions and specified water 
molecules, and all other water molecules are deleted.  In 1F0O structure, Ca(II) is 
replaced by Mg(II) in the calculations.  
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The pKa of metal bound waters in the 1F0O structure of PvuII are particularly 

interesting because 1F0O structure best reflects the pre-reactive PvuII conformation 

with Ca(II) ions and cognate DNA.  One of the metal bound waters in subunit B of 

1F0O structure is considered as the candidate carrying out the nucleophilic attack.  

In subunit A, a Ca(II) ligated water molecule (W1035) was built up artificially using 

SwissPdbviewer based on the geometry of metal ligated water (W898) complex in 

subunit B: the water molecule coordinates with Ca(II) ion, is within the hydrogen 

bound distance to Lys70 and is well positioned to attack the phosphorous atom on the 

DNA backbone.  The distance between OW in water and metal ion are assigned to 

2.60 Å, a default value for Ca(II) in Swisspdbviewer.  The water molecule is 

incorporated at a position to avoid any clash with protein backbone or side chain.  In 

Table 3.4, the distances between metal ion and OW atom in water molecule actually 

reflects the Ca(II)-ligand distance not Mg(II)-ligand distance, since the typical 

Mg(II)-H2O distance is around 2.0 Å.  So W898 in subunit B (1F0O) is moved 

closer to the Ca(II) ion in order to reduce the metal-ligand distance (Table 3.4 note c).  

When setting model pKa of metal bound water as 11.4, the pKa of metal ligated water 

is 7.4 in subunit A (W1035) and 9.3 in subunit B (W898).  Considering the 

symmetry between subunit A and B, the difference of calculated pKa may be partially 

due to the sensitivity of pKa upon the distance between metal ion and water molecule 

because the distance of Mg(II)-OW in subunit A is 2.6 Å while that is 2.79 Å in 

subunit B (Table 3.4).  In PvuII structure 1H56, the calculated pKa of Mg(II) bound 

water is even lower (6.5) because the distance of Mg(II)-OW is closer than the  
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of Ca(II)-OW.  To evaluate how well the Mg(II)-OW affects the predicted water pKa , 

in 1F0O structure subunit B the target water molecule was shifted close to metal ion 

(2.04 Å).  So the modified 1F0O structure subunit B contains a very similar distance 

of Mg(II)-OW as observed in PvuII structure 1H56).  It is not surprising that the pKa 

obtained in the modified 1F0O subunit B is similar to that obtained with 1H56 (6.4 vs. 

6.5 in Table 3.4).  Although the calculated pKa of metal ligated water varied due to 

the sensitivity of distance Mg(II)-OW, all those calculated pKa values support the 

deprotonation of metal ligated water and formation of hydroxide ion can be achieved 

at physiological pH according to the predicted pKa’s.  As a control, when the pKa 

calculation with W14 in 1H56 structure is performed in the absence of Mg(II) ion; a 

very high pKa for W14 is generated (pKa>15 in Table 3.4).  This strongly supports 

the involvement of metal ions in decreasing the pKa of ligated water in order to assist 

its deprotonation and form the attacking nucleophile.  

The pKa of Metal Ligated Water and Its Dependence on K70.  In the 

presence of metal ions, the pKa of K70 is still high enough to be protonated at 

physiological pH and carries a positive charge.  Besides, the PvuII crystal structure 

(1F0O) shows that Ca(II) ligated water molecule is within hydrogen bonding distance 

of  K70.  This suggests that K70 may also participate in the modulation of metal 

ligated water pKa.  For each structure, the pKa of water is calculated in the presence 

of K70, and then the similar calculation is performed with K70 mutated to Ala or 

turned “off”.  As summarized in Table 3.5, K70 does indeed influence the pKa of 

metal bound water.  It is found that most of calculations show an upward pKa  
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Table 3.5.  Summary of water pKa calculations with WT and K70A variants.   
 

expt 
 

Structure Enzyme 
No. of 
M(II) 

∆pKa
a Water Mg-OW 

Negative control in the absence of M(II) 
1 1H56(subunit A) WT 0 n/a >15 n/a 

Comparison of water pKa between WT and K70A(K70 off) 
2 1F0O(subunit A) WT 2  7.4 2.6 

1F0O(subunit A) K70A 2 2.5 9.9 2.6 
3 

1F0O(subunit A) K70 off 2 3.1 10.5 2.6 
4 1F0O(subunit B) WT 2  9.3 2.79 

1F0O(subunit B) K70A 2 1.2 10.5 2.79 
5 

1F0O(subunit B) K70 off 2 1.2 10.5 2.79 
6 1F0O(subunit B) WT 2  6.4 2.04 

1F0O(subunit B) K70A 2 1.4 7.8 2.04 
7 

1F0O(subunit B) K70 off 2 1.4 7.8 2.04 
8 1H56(subunit A) WT 1  6.5 1.9 

1H56(subunit A) K70A 1 3.3 9.8 1.9 
9 

1H56(subunit A) K70 off 1 3.3 9.8 1.9 
water pKa calculation with Arg substitution ----analog of Lys 

10 1F0O(subunit B) K70Rb 2  8.7 2.04 
11 1F0O(subunit B) R70 offc 2 2.0 10.7 2.04 
a. ∆pKa is defined as pKa of water in variant (Ala mutation or Lys off)-pKa of 

water in WT. 
b. Mutation was performed by Swisspdbviewer, the conformation of R70 after 

replacement was refined by energy minimization. 
c. To evaluate the contribution of R+ (protonated state) to the water pKa, R70 

was shut off by changing the name of titratable atom CZ in Arg70, thus during 
the pKa calculation, Arg70 remains neutral state and no charge will be added 
on CZ atom in any Arg70.   

Model pKa of water molecules is assigned to 11.4 uniquely. 
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shift moderately beyond one pH unit after the neutralization of K70 (In Table 3.5 expt 

2 & 3, 4 & 5, 6 & 7 and 8 & 9).  . 

The water pKa of PvuII variant K70A shifts upward compared to WT and this 

pKa shift is caused by the neutralization of positive charge of K70.  Since the model 

pKa of Arg (12.0) is higher than Lys and also can be protonated like Lys, it is expected 

that in PvuII mutant K70R should also have a similar pKa shift compared with WT 

when R70 is turned “off”.  The expt 10 & 11 in Table 3.5 confirmed the predicted 

upward pKa shift and a high water pKa shift of 2.1 is obtained.   

The pKa Calculations on Other Nucleases Featured With Conserved Lys.  

To explore the possibility that such a contribution to lower water pKa by conserved 

Lys generally exists in the PD…D/ExK endonuclease family, the same strategy was 

applied to the related enzymes HincII, EcoRI, EcoRV, NgoMIV, Tn7 transposase and 

T7 endonuclease I.  In each structure, the metal ligated water is well positioned to 

attack the phosphodiester bond, and the side chain of conserved Lys is within 

hydrogen bonding distance with the attacking water molecule.  Table 3.6 lists the 

chosen crystal structures and the calculated water pKa shift for lacking the positive 

charge on Lys in the catalytic center (Appendix III is the supplementary table 

showing all calculated pKa’s).  In each calculation set, the conserved Lys was shut 

off.  Most of metal ligated waters have a pKa shift beyond one pH unit (Table 3.6).  

For PvuII, only crystal structures with Mg(II) and Ca(II) are available.  In the  
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Table 3.6.  Summary of pKa calculations with other nucleases with 
conserved Lys.  pKa shifts caused by conserved Lys in restriction enzymes 
which share PD…D/ExK motif (∆pKa=pKa of water in variant (K off) - pKa of 
water in WT). This table only summarizes the pKa shift, and the calculated pKa 
values are listed in Appendix III. 

 

Enzyme pdb code ∆pKa 
Model 

pKa 
Metal ion 

Mutation 
position 

1.44 14 Two Mn2+ 
1.04 11.4 Two Mn2+ HincII 1XHV.pdb 
1.08 10.6 Two Mn2+ 

K129 

EcoRI 1QPS.pdb 0.83 11.4 One Mn2+ K113 
1EO4.pdb 1.15 10.6 Two Mn2+ 
1EON.pdb 2.11 11.4 Two Mg2+ 
1RVB.pdb 1.21 11.4 Two Mg2+ 
1SX5.pdb 2.08 14 Two Mn2+ 

 
 

EcoRV 
 

1SX8.pdb 1.68 10.6 Two Mn2+ 

K92 

TnsA 1F1Z.pdb 1.59 11.4 Two Mg2+ K132 
T7 

endonuclease I 
1M0D.pdb 1.55 10.6 Two Mn2+ K67 

NgoMIV 1FIU.pdb 1.57 11.4 Two Mg2+ K187 
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type II restriction endonucleases family, Mn(II) also supports the enzymatic activity 

(Bowen & Dupureur, 2003) and inner water of their metal complexes have a pKa of 10.6 

(Dahm, et al., 1993).  In the pKa calculation with crystal structures including Mg(II) and 

Mn(II), the model pKa was assigned to various values to evaluate if the upward pKa shifts 

caused by neutralization of conserved Lys is sensitive to the change of model pKa.  For 

the same crystal structure of HincII, although the different model pKa’s of 10.6, 11.4 and 

14 are applied, the pKa shift caused by neutralizing conserved Lys did not change very 

much (Table 3.6 HincII).   

The pKa Calculation of Metal Ligated Water In the Presence of Nucleotides. 

Since the pKa of metal bound water is dominated by electrostatic interactions between 

water molecule and metal ions, the binding of highly charged DNA strand in the active 

site is expected to cause an upward pKa shift of the metal bound water molecule.  PvuII 

crystal structure (1F0O) provides a description of PvuII binding to both metal ions and its 

cognate DNA strand.  In the pKa calculation, the DNA strand was modeled as 

non-titratable ligand with high charge density.  The DNA contribution to the 

deprotonation of metal bound water molecule is tested by assigning its model pKa as 11.4.  

Table 3.7A shows that the introduction of DNA strand not only compensates the pKa shift 

caused by positively charged species such as metal ions and K70, but also elevates the 

pKa of metal bound water molecule to the original value in bulk solvent.  The same 

metal bound water pKa was raised from 7.4 without the presence of DNA up to 14.1 in the 

presence of whole 14mer DNA strand (expt 4 Table 3.7A).  These predicted results are 

not surprising because each phosphate has an overall -1.2 charge and a 14mer DNA strand 
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definitely can oppose the electrostatic contribution by metal ion with +2 charges and K70 

with +1 charge.  The elongation of DNA strand will bring more negative charges and 

cause a higher pKa shift of metal bound water molecules.  In Table 3.7A (expt 2), a water 

pKa of 14.1 was obtained in the calculation including a 14mer DNA strand compared with 

10.9 in the presence of two nucleotides. 

The high density of negative charges on the DNA backbone is the main obstacle 

for us to get reasonable water pKa’s when including DNA.  Actually the DNA is bound 

to cationic ions in solution, so its high negative charge density on the phosphate backbone 

is speculated to be neutralized (Record, et al., 1976).  To better simulate the electrostatic 

environment of DNA bound to salt ions, several ways to neutralize the negative charges of 

phosphate were explored.  Assuming cations in salt buffer may directly bind to the 

phosphate backbone of DNA, the partial negative charge of the phosphorus or 

non-bridging oxygen in the DNA parameter sets are reduced by one or half unit charge 

and the reduced partial charge parameters for DNA backbone were applied in pKa 

calculations (Table 3.7B).  The calculation expt 1 is the original parameter set for DNA 

molecules (described in Experiments and Methods) we used in pKa calculations shown in 

Table 3.7A.  In expt 2, the partial charge on phosphorous atom is reduced by half unit.  

In expt 3, a relatively low water pKa of 10.9 is obtained when a cation is directly bound to 

the phosphate and the overall charge on the phosphate are reduced by one unit positive 

charge (0.5 on each non bridging O atom).  Other parameter sets such as Charmm27 and 

Amber force field are also applied to the pKa calculations and the results are shown in 
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Table 3.7.  The pKa Calculation of Metal Ligated Water In the Presence of 
Nucleotides and Neutralization of DNA backbone. 

A: The water pKa calculation in the presence of DNA strands.  
Expt  K70 W1035 Remark 

1 12.60 7.4 No DNA 
2 >15 10.9 CpG 
3 >15 12.8 All bases removed 

4 >15 14.1 DNA stand D 14mer fully reserved  

All the calculations were conducted with crystal structure (1F0O.pdb) subunit A. 
In expt 3, all bases on the DNA strand D have been removed.   
 
B: The application of neutralization of DNA strand in the pKa calculations 

Expt pKa, Intrinsic pKa, Apparent Parameter set 
Partial charge on atom 

P and O1P 
1 13.7 >15 Charmm22a P = +1.5 and O1P=-0.8 
2 10.9 14.6 Charmm22 P = +2 and O1P=-0.8 
3 8.5 10.9 Charmm22 P = +2 and O1P=-0.3 
4 13.6 >15 Charmm27b P = +1.5 and O1P=-0.8 
5 15.0 >15 Amber force filedc P=1.166 and O1P=-0.776 

Water pKa calculations are conducted with crystal structure (pdb code:1F0O) 
subunit B including the whole DNA strand C.  Subunit A was deleted in the pKa 
calculation and all the reported pKa values are for W898 subunit B. 
a. (MacKerell, et al., 1995) 
b. (Follope & Alexander D. Mackerell, 1999) 
c. (Cieplak, et al., 1994). 
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Table 3.7B expt 4 and 5.  The water pKa obtained by those parameter sets are not 

lowered. 

Substrate Assisted Catalysis.  The pKa calculation is also used to examine the 

influence of phosphorothioate on the pKa of attacking water molecule.  The introduction 

of phosphorothioate is to test if 3’ phosphate functions as a general base to activate the 

attacking water molecule in the proposal of substrate assisted catalysis (see Figure 3.1C) 

(Horton, et al., 1998).  According to this mechanism, the RP phosphorothioate carrying a 

negatively charged sulfur also can abstract the proton, whereas the SP-phosphorothioate 

results in an uncharged double-bonded oxygen in the RP position (Thorogood, et al., 1996).  

This uncharged oxygen cannot function as a base, resulting in SP substitution catalytically 

inactive.  It has been shown that substitution of the pro-SP oxygen of this phosphate with 

sulfur reduces Vmax/KM by at least 200-fold, whereas substitution of the pro-RP oxygen has 

little effect (Thorogood, et al., 1996).  The effect of phosphorothioate on the attacking 

water pKa would be abnormal, resulting in the reduced enzyme activity.  Such 

simulations can be carried out once the charge parameterization of phosphorothioate is 

available (Bertrand, et al., 1999).  The crystal structure of EcoRV (1BSS) has been 

selected to calculate the attacking water pKa in the presence of phosphorothioate because 

that is the crystal structure used to support the substrate assisted catalysis (Horton, et al., 

1998).  Water 439 is ligated with one Ca(II) ion and is 4.2 Å to scissile phosphorus, and 

within 4 Å distance to O1P and O2P of 3’ phosphate, which is considered as the ideal 

attacking water molecule.  Upon substitution of S on either O1P or O2P of 3’ phosphate, 

no dramatic changes on the pKa of attacking water molecules was observed regardless of 
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whether the DNA backbone is neutralized by counter ions or not.  All the calculated 

results are summarized in Table 3.8.  From an insight of electrostatic interactions, the 

charge distributions do not make any difference between phosphate and phosphorothioate. 

So the electrostatic contributions to water pKa caused by S substitution are very limited.  

In the presence of two nucleotides, the attacking water pKa is determined to be within a 

range 9.3～10.5, depending on the neutralization of counter ions on the phosphate.  

Salt Concentration And Protein Dielectric Constant Dependence On pKa 

Calculation of Metal Ligated Water.  The ionic strength was usually assigned to 150 

mM to simulate the real salt environment of experiments. The Debye-Huckel screening 

effect is incorporated into linear Poisson-Boltzmann equation and increasing salt 

concentration screens the charge-charge interaction, which may affect the predicted pKa. 

Salt dependences of the pKa values with amino acid residues and Mg(II) bound water 

molecules were examined.  The increasing salt concentration slightly decreases the 

calculated pKa of titratable sites (Table 3.9A).   

The dielectric constant in proteins for the pKa calculation package implemented in 

UHBD was calibrated to be 20 although 4 or less may better reflects the real dielectric 

value for proteins (Antosiewicz & McCammon, 1996).  In Table 3.9B, the dielectric 

constant was assigned values from 4 to 30.  The pKa’s of amino acid residues are 

increasing along with dielectric constant increasing.  The pKa of metal bound water is 

not that sensitive to the change of dielectric constant, which achieves the minimum value 

at dielectric constant of 15 or 20. 
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Table 3.8.  The pKa calculation of attacking water molecules in EcoRV upon S 
substitution on non-bridging O of 3’ phosphate.  

 

Charge distributions on 3’ phosphatea W439 
pKa,apparent 

Operations on DNA 
P O3 O5 O1P O2P 

No counter ion neutralization 
10.5 Phosphate 0.4561 -0.281 -0.278 -0.58 -0.58 
10.3 S substitution on O1P  0.4419 -0.3227 -0.318 -0.561 -0.471 
10.3 S substitution on O2P 0.4419 -0.3227 -0.318 -0.471 -0.561 
Counter ion neutralization 
9.4 Phosphate 0.4561 -0.281 -0.278 -0.23 -0.23 
9.3 S substitution on O1P  0.4419 -0.3227 -0.318 -0.307 -0.157 
9.3 S substitution on O2P 0.4419 -0.3227 -0.318 -0.157 -0.307 

 
The pKa calculation with W439 has been conducted with EcoRV mutant crystal 
structure (1BSS.pdb) subunit A (Horton, et al., 1998).  During the calculation, two 
Ca(II) ions are replaced by two Mg(II) ions, and two nucleotides A907 and T908 are 
conserved with scissile phosphate and 3’ phosphate.  The charge parameters of 
phosphate and phosphorothioate are assigned according to reference (Bertrand, et al., 
1999).  The model pKa of water is 11.4.  
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Table 3.9.  The pKa of metal Ligated water dependence on salt concentration and 
protein dielectric constant.  All the pKa calculations were conducted based on 1F0O 
subunit A structure in the presence of two Mg(II) ions and water molecule W1035.  
Model pKa of Asp, Glu, Lys and metal ligated water are 4.0, 4.4, 10.4 and 11.4, 
respectively.  pH titration range is from -5 to 15 in calculation.  

A: Salt dependence  
Ionic 

strength 
(mM) 

D58 E68 K70 Y94 W1035a 

150 1.1 <0 >15 13.5 12.8 
250 1.3 -2.1 >15 13.2 12.5 

B: Dielectric constant dependence  
Dielectric 
constant 

D58 E68 K70 Y94 W1035a 

4 -3.3 <-5 -1.3 >15 14.6 
10 -0.1 <-5 7.7 >15 13.6 
15 0.7 -3.6 12.3 15.0 12.7 
20 1.2 -2.3 >15 13.5 12.7 
25 1.4 -1.4 >15 12.2 13.1 
30 1.6 -0.7 >15 10.9 13.4 

a. The same water molecule in 1F0O structure subunit A as in Table 3.4.  
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pH Dependence of Single Turnover Cleavage Activity.  The pH 

dependence of PvuII single turnover cleavage rates shows a typical bell shaped curve 

(Figure 3.6), which have been also observed for pH rate profiles of EcoRV 

endonuclease (Sam & Perona, 1999a).  It is generally interpreted that bell-shaped 

pH-rate profiles represents two ionizations involved in the catalytic activity, one 

deprotonation in the acidic pH range representing general base catalysis and one 

protonation in the basic pH range representing general acid catalysis.  The enzymatic 

activity of PvuII reaches a maximum at pH 8.0.  The plot of pH-rate on a logarithmic 

scale above pH 8.0 gives a classic linear phase with a slope of 0.78 (Figure 3.6B) 

Below pH 8.0 it is biphasic with two different slopes 1.3 and 2.8, and dramatic 

deviation from a linear dependence is observed in the very low pH region (5.5～6.5) 

(Figure 3.6A).  This shows that at low pH multiple titratable groups might be 

involved.  In addition to the deprotonation of a metal ligated water molecule to form 

the attacking nucleophile, the deprotonation of active groups to bind Mg(II) might be 

candidates for that.  Sasnauskas proposed a competition between proton binding and 

Mg(II) binding at the active site from the investigation ns of the pH dependence of 

DNA binding and steady state plasmid cleavage by MunI endonuclease (Sasnauskas, 

et al., 1999).  Since the binding of metal ions in the active site are critical for 

enzymatic activity, multiple ionizations are reflected in the pH-rate profiles at the low 

pH range, while the binding of metal ions gets saturated along with pH and single 

ionization is observed at high pH values.  Based on two Mg(II) binding sites in PvuII, 

Scheme 3.1 describes the kinetic model  
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Figure 3.6.  pH dependence of single turnover rate constant.  pH-log(kobs) has been 
dissected into acid limb and basic limb.  (A) Acid limb shows two phases with different 
slopes.  (B) Basic limb shows a typical linear phase with slope of 0.8 representing 
general acid catalysis by one ionizable group.  (C) Fit pH-kobs profile data with 
equation 3 (described in Experiments and Methods), three apparent pKa’s for metal 
binding site, general base and general acid are obtained.    
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for multiple ionizations involved in catalysis and equation (3) is derived (Appendix IV 

for details).  pH rate profile data is fit with equation (3), and the obtained pKa1 (6.3) for 

metal binding site is close to determined apparent pKa in pH titration of Mg(II) binding 

experiments (Dupureur & Conlan, 2000).  pKa2 (7.7) and pKa3 (7.8) are believed to 

reflect the metal ligated water pKa’s, which can be correlated with calculated water pKa’s 

in Table 3.4.  

pH Dependence of Steady State Cleavage Activity.  pH profiles of steady state 

kinetics has been determined with a fixed 10 mM Mg(II) concentration.  In Figure 3.7, 

The plot of pH-kcat shows a very similar bell shape as EcoRV and pH-rate plot of PvuII 

((Sam & Perona, 1999a) and Figure 3.6).  The maximum steady state activity appears at 

the pH range around 8.0, and the slope for the acid limb (6.0～8.0) in the log plot is 0.56 

instead of two phases shown as in single turnover pH-rate profile (Figure 3.6).  It could 

be interpreted that one ionizable group is involved in acid limb and basic limb, 

respectively.  Due to the bell shaped pH profiles, a simple model assuming two 

ionization events are fit to pH-kcat data using the equations (1) and (2) (see Experiment 

and Methods) (Sam & Perona, 1999a).  Equation (1) showed a better fit quality and 

yielded two pKa’s differing by just one pH unit.  Equation (2) yielded two equivalent 

apparent pKa’s, similar to that derived from single turnover pH-rate profile.  The 

disappearance of two phases in the acid limb for steady state pH-profile can be attributed 

to a switch of rate-limiting step from turnover step in single turnover kinetics to physical 

release of product in steady state kinetics, and physical release of product probably is not 

sensitive to Mg(II) binding as catalytic step. 
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Figure 3.7.  pH dependence of steady state kinetics.  (A) pH-kcat fit to equation 1 
(for fit quality, R=0.948 and χ2=0.017).    (B) pH-kcat fit to equation 2 (for fit quality, 
R=0.938 and χ2=0.020).  Derived pKa’s are indicated in the plots.  (C) Acidic limb 
plotted as pH-log(kcat).  (D) Basic limb plotted as pH-log(kcat).  The slopes are shown in 
the plots.   
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 An Optional Approach For Kinetic Analysis of pH Dependence Using 

DynaFit.  The equations used to derive the apparent pKa’s are based on the binding 

equilibrium equations among different ionizable forms of PvuII.  Assuming some 

specific ionizable forms of PvuII are active, the binding equilibrium equations can be 

easily converted to fractional activity equations.  In other words, the apparent observed 

enzymatic activity is the maximal activity of those species multiplied by its fraction in the 

ionization equilibrium.  If the overall reaction scheme is depicted by binding, catalytic 

turnover and product release, the different ionizations occurs at different stages during the 

reaction.  For example, the ionizations of metal binding sites are coupled with metal 

binding, and the deprotonation of the metal ligated water molecule is directly related to 

catalytic turnover step after substrate binding.  The application of DynaFit in global fits 

allows incorporation of ionizations into different kinetic steps in the reaction scheme.  

In Scheme 3.2, a general kinetic model for single turnover kinetics and steady 

state kinetics has been constructed to fit the pH dependent rate profiles.  Actually 

Scheme 3.2 should be considered as an extension version of Scheme 3.1 with the 

addition of new binding and turnover step kinetic parameters.  Starting with EH, metal 

binding sites in PvuII (Asp58 and Glu68) are deprotonated to form E, then E can bind 

metal ions.  The DNA binding affinities of metal bound form of PvuII have been 

characterized in the presence of 10 mM Ca(II) (about 125 pM) and Mg(II) (5 nM 

according to Shabir’s unpublished steady state kinetic data, see details in Chapter IV 

Table 4.3) (Conlan & Dupureur, 2002a).  kchem is the conversion of ES to a transition  
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Scheme 3.2.  The general kinetic model for single turnover and steady state 
reaction.  Each ionization is described by proton association rate and dissociation 
rate constants in the reaction scheme and all the proton dissociation rate constants 
were fixed as 1 sec-1 and proton association rate constants are floating.  pKa for each 
ionization can be calculated from proton association rate constant and dissociation 
rate constant.  Kd varies in two trials corresponding to determined DNA binding 
affinities in the presence Ca(II) and Mg(II), respectively.  kchem represents chemistry 
step and kp represents product dissociation step.  kp is the rate limiting step in steady 
state kinetics and kchem is the rate limiting step in single turnover kinetics.    
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state EP* after the cleavage of scissile phosphate bond, and EP* forms the final product 

EPH* through the protonation to form the 3’ hydroxyl group.  kp represents the product 

dissociation step and is rate limiting step in steady state kinetics.  For single turnover 

kinetics, kchem would be rate limiting step, since both EPH* and P account for the amount 

of final product.            

Global fit has been performed with single turnover reaction courses at various pH, 

and local fit has been performed with reaction velocities with 100 nM substrate against 

pH.  Several kinetic parameters have been fixed to reduce the number of unknown 

parameters and improve fit qualities including DNA association rate constant (8*106 

M-1s-1 for Ca(II) and 2*105 M-1s-1 for Mg(II)), DNA dissociation rate constant (0.001 s-1) 

and proton dissociation rate constant (1 s-1).  The floating kinetic parameters include 

proton association rate constant, kchem (floating in global fit to single turnover data and 

derived value fixed for local fit to steady state data) and kp.  So the pKa values can be 

calculated from proton association rate constant and dissociation rate constants.  The 

global fit results using DynaFit are summarized in Table 3.10.  The global fits to single 

turnover data generate simulated reaction courses with apparent kobs against pH, which are 

plotted with determined experimental pH-rate profiles.  The simulated pH-kobs plot and 

local fit to pH dependent steady state velocities are shown in Figure 3.8.  

As shown in Figure 3.8, there are large deviations between simulated pH profiles 

and experimental pH profiles particularly for single turnover data.  This indicates that the 

developed unique kinetic model and global fits using DynaFit are not successful, although 

the derived pKa values have low percentage errors (Table 3.10).  Those efforts can not  
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Table 3.10.  The summary of global fits and local fits with pH profiles of single 
turnover and steady state kinetics. 
 

 Single turnover kinetics Steady state kinetics 
 Trial 1 Trial 2 Trial 1 Trial 2 

k1 3.6e6 (13%) 2.7e6 (13%) 5.7e7 (>100%) 4.6e7 (>100%) 
k2 2.4e8 (9.9%) 4.2e8 (14%) 2.2e9 (68%) 4.5e9 (70%) 
k3 1.9e9 (13%) 2.3e9 (15%) 2.1e7 (>100%) 4.9e7 (>100%) 

kchem (s
-1) 0.31 (5%) 0.70 (12%) 0.31* 0.70* 

kp (s
-1) 1e8 (>100%) 6.9e7 (>100%) 0.062 (>100%) 0.028 (>100%) 

Calculated pKa values according to proton association rate constant k 
pKa1 6.6 6.6 7.8 7.7 
pKa2 8.4 8.6 9.3 9.7 
pKa3 9.3 9.4 7.3 7.7 

The difference of trial 1 and trial 2 lies on DNA binding affinities (Kd = 125 pM in 
trial 1 and 10 nM in trial 2).  The DNA dissociation rate constant is 0.001 s-1 in both 
trials.  The corresponding DNA association rate constants are 8*106 M-1s-1 in trial 1 
and 2*105 M-1s-1 in trial 2.  Proton dissociation rate constant is fixed as 1 s-1.  
* kchem in local fit is assigned to the derived value from global fit to single turnover 
data.  The % errors of derived parameters are indicated in bracket.   
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Figure 3.8.  Simulated pH-rate profiles for single turnover and steady state 
reaction by derived pKa and kinetic parameters in corresponding global fits and 
local fits.  Single turnover reactions were conducted with 2 µM WT PvuII, 300 nM 
DNA with cognate sequence.  Steady state reaction was conducted with 1 or 2 nM 
WT PvuII and 100 nM DNA 14 mer with cognate sequence.  Both pH dependent 
single turnover reaction courses and steady state velocity profiles have been fitted to 
the kinetic model shown in Scheme 3.2 using DynaFit.  The single turnover progress 
curve is the amount of product over time, which is calculated by determined kobs from 
0 to 100 seconds with interval of 2 seconds.  Experimental steady state velocity is 
calculated as the slope of linear phase and normalized by enzyme concentration.  
Panel A and B represent simulated single turnover pH profiles from trial 1 and trial 2.  
Panel C and D represent local fits with steady state velocities from trial 1 and trial 2.  
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effectively improve the fit qualities compared with Figure 3.6 and Figure 3.7.  The 

derived pKa values from single turnover and steady state kinetics are still dramatically 

different, which implies that different ionizable groups may be involved in those two 

kinetic processes.   

DISCUSSION 

BamHI vs. PvuII.  BamHI has to be discussed here because published 

computational studies on BamHI seems to contradict with what we propose based on 

our pKa calculations (Fuxreiter & Osman, 2001; Mones, et al., 2007a).  We propose 

that metal ions in the active site dramatically lower the pKa value of water and 

promote its deprotonation in order to form the nucleophile.  Conserved Lys in the 

active site aids this process.  The extrinsic mechanism (Figure 3.1) has been shown 

to be feasible as well as the general base catalysis by E113, based on calculations of 

activation energy barrier using quantum mechanical/molecular mechanical simulation 

on BamHI.  Here the hydroxide ion can penetrate from solvent to reach the active 

site and probably is stabilized by metal ions.  If this is true, there is no need for metal 

ions to lower the pKa of its ligated water molecules since hydroxide is available from 

the bulk solvent.  Secondly, among the type II restriction endonucleases family, 

BamHI is a structural exception since it has a Glu residue instead conserved Lys in its 

active site.  Based on computer simulations using the semiempirical protein dipoles 

Langevin dipoles (PDLD/S) method, general base catalysis involving Glu and 

substrate assisted catalysis have been ruled out due to a much higher energy barrier 

compared with the pathway a proton transferring from the attacking water molecule to 



 

 103 

bulk solvent (Fuxreiter & Osman, 2001).  However, in a recent study, the same 

group reevaluated the pKa’s of attacking water molecule (5.7) and Glu (6.7) by using 

a new force field (AMBER vs. ENZYMIX) and the treatment of negatively charged 

phosphate groups, and concluded that a general base catalysis by Glu113 is feasible 

(Mones, et al., 2007a).   

The contribution of this Glu113 in BamHI is expected to elevate the water pKa, 

since Lys in PvuII lowers the water pKa.  This is verified by our calculations (7.2 in 

BamHI WT and 8.3 when E113 is off).  Due to the opposite electrostatic 

contributions to metal ligated water pKa by Glu113 in BamHI and Lys70 in PvuII, it 

seems unlikely that BamHI and PvuII follow the same water activation mechanism or 

that Glu and Lys have a similar structural or functional role.  However, the 

superposition of BamHI vs. PvuII crystal structures (Figure 3.9) shows a very similar 

active site configuration except the position of the second metal ion.  Considering 

diversity among type II restriction endonucleases, it is quite possible that one theory 

or mechanism can not be generalized for the whole family without any exceptions.  

Although an extrinsic mechanism is proved valid for BamHI (Figure 3.1 A), it is still 

not widely accepted for type II restriction endonucleases (Mones, et al., 2007a).  If 

metal ions just stabilize the transition state but are not involved in the activation of 

nucleophile, all divalent metal ions should be able to support catalysis since they all 

carry the same positive charges (Pingoud, et al., 2005).  pH studies of flap 

endonucleases provide evidence that divalent metal ions are directly involved in the 

activation of nucleophile (Tock, et al., 2003).   
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Figure 3.9.  Superposition of BamHI and PvuII active site.  The active sites of 
BamHI and PvuII are labeled in red and blue, respectively.  The active site of BamHI 
in subunit A includes Asp94, Glu111, Glu113, CA502, CA501 and W1.  The active 
site of PvuII in subunit B includes Asp58, Glu68, Lys70, CA725, CA761 and W898.  
Both highlighted water molecules are proposed to form the attack nucleophiles.  pdb 
code is 1F0O for PvuII and is 2BAM for BamHI. 
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pH Dependence Studies and Correlations With Predicted pKa’s.  The 

general mechanism for hydrolysis of the phosphodiester bond can be clearly described 

when those ionizable groups such as nucleophile, general base and general acid are 

identified.  So the primary question will be whether we can identify those ionizable 

groups by correlating the calculated pKa of those candidates (metal binding sites and 

metal ligated water) with the derived apparent pKa from experimental pH profiles.  

The improvement of correlations will greatly depend on the accuracy of pKa 

calculations and in many cases the calculated pKa are not accurate enough to match 

the apparent pKa determined kinetically.   

There are some examples using a pKa calculation program based on the 

Poisson-Boltzmann equation to examine such kind of possibilities (Lamotte-Brasseur, 

et al., 1999; Noble, et al., 2000; Tolbert, et al., 2005).  Lamotte-Brasseur applied 

such pKa calculations to wild type class C β-lactamases and mutants 

(Lamotte-Brasseur, et al., 1999).  Mutation of charged residues in the active site 

cause moderate pKa shifts of Tyr150, which is in good agreement with relative 

measured kcat values.  This indicates that Tyr150 is directly involved in the activation 

of nucleophilic serine.  The pKa of active site residue Asp158 in papain has been 

experimentally determined (2.8) and predicted by UHBD program (2.0) (Noble, et al., 

2000).  A slightly lower pKa than 2.8 has been predicted when hydrogen bond 

network of Asp158 has been considered.  The pH dependent stopped flow kinetic 

study combined with pKa calculations proposed that Asp158 was one of the 

electrostatic modulator mediating the enzymatic activities.  The pKa of Cys in 
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ubiquitin-conjugating enzymes has been predicted to elevate about 2 pH units 

compared with its model pKa, which is in good agreement with experimental 

determinations and is speculated to be due to the proximity of carboxyl terminus 

(Tolbert, et al., 2005).  Water molecules have been treated as titratable sites in pKa 

calculations on bacteriorhodopsin.  It was found that the overall predicted 

protonation curves within a wide pH range assuming a water dimer coupled with two 

Glu residues matched perfectly with the concept of proton storage in the active site 

(Spassov, et al., 2001).    

 Another challenge in the study of the pH dependence of protein-DNA 

interactions is to predict the influence of the substrate.  For MunI, the apparent pKa 

of the same moiety shifts upward to one pH unit upon DNA association (Haq, et al., 

2001).  Unfortunately, the pKa calculation using UHBD can not provide the reliable 

solution to address this question (Table 3.7).  It is known that the linear 

Poisson-Boltzmann equation has been mostly used in proteins and non linear 

Poisson-Boltzmann equation is more appropriate for systems with high charge density 

(Tang, et al., 2007).   

For PvuII, the apparent pKa for metal binding sites are determined to be 6.7 by 

the pH titration of Mg(II) binding, but the calculated pKa of metal binding sites (D58 

and E68) is 5.2 maximally (Table 3.1) (Dupureur & Conlan, 2000).   The extremely 

low pKa of metal binding sites calculated from PvuII structure (Table 3.2) with one 

Mg(II) ion bound in the active site also preclude the protonation of those sites in the 

presence of Mg(II).  This indicates that ionizations of metal binding sites with the 
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apparent pKa actually reflect a cluster of ionizable groups rather than a single residue 

as metal binding ligand.  The application of those calculated pKa with two sites 

interacting model (Figure 3.3) shows good agreement with experimental titration 

curve for WT, which confirmed the coupled ionizations of two nearby residues 

actually is responsible for this unusual apparent pKa.  This reminds us the 

complexity of interpreting experimental pH profiles.   

The pH dependence of cleavage kinetics is more complex than the ligand 

binding behaviors, since additional titratable sites involved in the catalysis may not 

belong to protein residues.  For hydrolysis of phosphodiester bonds by 

metallonucleases, the metal-ligated water serves as the attacking nucleophile, and its 

pKa is speculated to be more correlative with apparent pKa from pH dependence of 

single turnover cleavage rate than active site residues (Sam & Perona, 1999a; Tock, et 

al., 2003).  pH dependence studies with EcoRV endonuclease and flap endonuclease 

were performed with carefully selected Mg(II) concentrations to assure the Mg(II) 

binding saturation at physiological pH and very similar apparent pKa’s are derived 

(8.5 in EcoRV and 8.3 for flap endonuclease) (Sam & Perona, 1999a; Tock, et al., 

2003).  For PvuII, the biphasic acidic limb of pH-log(kobs) plot indicates  

competition between proton and metal ions binding to metal binding sites at low pH.  

This allows the application of Scheme 3.1 to fit the pH-kobs, and derived apparent pKa 

for metal binding sites agrees well with experimental apparent pKa for metal binding 

sites obtained via 25Mg NMR (Dupureur & Conlan, 2000).  The derived apparent 

pKa’s of general base and general acid fall within the range of the calculated pKa of 
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water molecules (Table 3.4).   

Steady state parameters rely on a multitude of pH dependent processes 

extending to metal ion and DNA binding and product release (Sasnauskas, et al., 1999; 

Bastock, et al., 2007).  The kinetic parameters of PvuII demonstrate that product 

dissociation is the rate limiting step in the steady state kinetics since the cleavage rates 

differ by almost 2 orders of magnitude between single turnover and steady state 

conditions at the same Mg(II) concentrations.  Surprisingly, the pH dependence of 

steady state kcat shows a very similar bell shape as single turnover rate constants, and 

the derived pKa (7.59) for the general base and acid well reproduces the apparent 

pKa’s in single turnover kinetics.  The similar phenomenon has been observed in the 

Mg(II) dependence studies since derived Hill coefficients and apparent Kd’s are 

similar to both kinetics (Chapter IV).  One possible explanation for this similarity 

would be that the steady state rate in PvuII actually is proportional to the turnover rate 

within the experimental pH range, which means turnover rate actually determines the 

product dissociation rate.  Or it might be just a coincidence that different moieties 

occur to have the same macroscopic effect.  Therefore it is not clear if the apparent 

pKa’s in steady state kinetics should be assigned to the same moieties as in single 

turnover kinetics.  A further kinetic analysis with same assignments on ionizable 

groups using DynaFit (Scheme 3.2) actually generates quite different apparent pKa’s 

for single turnover and steady state kinetics, which seems that the involvements of 

ionizable groups somehow are different.  In the kinetics study it has been proposed 

that the terminal phosphate might strengthen the product enzyme interaction and 
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retard the product dissociation of MunI.  So this group may be a candidate as well 

(Sasnauskas, et al., 1999).      

Since our pKa calculations do not include DNA, objections can be raised that 

the influence of DNA on pKa’s of metal binding sites or metal ligated water is not 

evaluated and this influence could be large enough to change the overall conclusion.  

The influence of DNA on predicted pKa depends on reaction scheme (Figure 3.10).  

If metal ion binds to active site prior to DNA, then with assistance of metal ions and 

Lys, in the active site hydroxide might be formed and populated soon after metal ion 

binding.  Then scissile phosphate would be attacked by the hydroxide ion as soon as 

it’s bound in the active site.  So when does the nucleophile form?  If nucleophile 

formation is prior to DNA binding, then influence from DNA is very limited on the 

pKa shift because the irreversible cleavage step will go on, which makes it less likely 

that the hydroxide will get protonated back to water even if water’s pKa is shifted to 

higher extent by phosphate.  If nucelophile formation occurs after DNA is bound in 

the active site, it makes more sense to discuss the DNA influence on the activation of 

water.  

The Role of Conserved Lys in Metallonucleases.  The pKa of Lys70 in 

PvuII has been predicted to be high in any case and its protonation seems very 

reasonable in physiological pH.  With the assistance of the positive charged Lys 

nearby, it is quite possible that the attacking water’s pKa can be further lowered by 

more than two pH units if Lys is close enough to the attacking water molecule.  In 

conformational behavior accessible in solution, such flexibility on distance criteria  
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Figure 3.10.  The water activation in the presence and without the presence of 
substrate.   A. The Mg(II) ions is bound to the active site of enzyme prior to DNA 
binding, and Mg ligated water is deprotonated without the presence of DNA 
molecules.  B. Mg(II) ligated water is deprotonated after the formation of terniary 
complex E-M(II)-DNA.  The calculated water pKa’s in scheme A and B are largely 
different due to the high negative charge density of DNA molecules.   
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can easily be met.     

The role of conserved Lys as a general base can not be concluded from any 

pKa calculations shown in this chapter.  Actually even in apo form of PvuII, the 

Lys70 remains a high pKa and is supposed to be charged if it is fully hydrated.  But 

its protonation status can be compromised depending on how easily the water 

molecules penetrates into the active site; and it is still possible that Lys is available as 

a proton acceptor when it is buried and not hydrated.  At least a general base 

catalysis by E113 is proved to be feasible in BamHI (Mones, et al., 2007b). 

CONCLUSIONS  

 pH profiles of PvuII activity have been characterized and the derived apparent 

pKa’s are assigned to metal binding sites and metal ligated water molecules.  Both 

the pKa’s of metal binding sites and metal ligated water molecules have been studied 

with computational approach using the UHBD suite program on a series of active site 

configurations.  It is concluded that the pKa of attacking water molecule is 

modulated by the metal ions and the nearby conserved Lys for the PD…D/ExK motif 

enzymes.  The calculated pKa can be correlated with experimental pKa’s.  Applying 

this approach to a number of metallonucleases with similar active site configurations 

confirmed that the water pKa is lowered by the conserved Lys, which provides a 

general nucleophile activation mechanism for the PD…D/ExK motif enzymes.    
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CHAPTER IV. METAL DEPENDENCE STUDY AND KINETIC MODELING 

INTRODUCTION 

Type II restriction endonucleases are members of a restriction modification 

system that protect the bacteria and archaea against invading DNA.  They protect 

their host by cleaving the invading phage DNAs at specific sites of 4-8 bp in length 

and require Mg(II) as the cofactor for catalysis (Horton & Perona, 2004).  PvuII 

restriction endonuclease belongs to the family of type II restriction endonucleases and 

shares the catalytic motif PD…D/ExK (Anderson, 1993).   Metal cofactors play a 

very critical role in the mechanism of nuclease activity and their binding properties 

and functions are to be addressed by kinetic analysis in this chapter.   

The most common metal cofactor supporting DNA hydrolysis by restriction 

enzymes is Mg(II) and its physiological concentration in cells is about 0.5 mM 

(Cowan, 1998).  In addition, Mn(II) and Co(II) support the detectable cleavage 

activity (Bowen & Dupureur, 2003).  Ca(II) promotes DNA association to PvuII 

endonuclease (Conlan & Dupureur, 2002b; Bowen & Dupureur, 2003), but it also 

supports the hydrolytic cleavage of DNA in a few cases (e.g. staphylococcal nuclease).  

The stoichiometry of the metal cofactor and metal binding sites of PvuII restriction 

endonucleases has been characterized by X-ray crystallography structures (Horton & 

Cheng, 2000; Spyridaki, et al., 2003). Figure 4.1 shows all the active site 

configurations resolved for metal bound PvuII.  In the presence of Ca(II) and 

cognate DNA sequence (Horton & Cheng, 2000), PvuII binds two metal ions at each 

subunit (Figure 4.1A).  However when soaked solely with high Mg(II)  
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Figure 4.1.  The resolved metal binding sites in PvuII.  A. Subunit B of PvuII 
structure (1F0O) with two Ca(II) ions and cognate DNA (Horton & Cheng, 2000).  
The two water molecules bound to Ca(II) ions are labeled and are speculated to be the 
general base (the one near to Lys residue) and general acid in catalysis.  The two 
Ca(II) ions are distinguished as site A and B.  B. Subunit A of PvuII structure (1H56) 
with one Mg(II) ion, and DNA is absent in such a binary complex (Spyridaki, et al., 
2003).  The Mg(II) ion only binds the active site at site A.  The water molecule 
positioned as nucleophile bound to Mg(II) is highlighted.  
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concentrations, the enzyme binds one Mg(II) ion with each subunit (Figure 4.1B) 

(Spyridaki, et al., 2003).  It has been determined via isothermal titration calorimetry 

and 25Mg NMR that two metal ions bind to each PvuII active site with mM binding 

affinity (Dupureur & Hallman, 1999; Jose, et al., 1999).  The Hill analysis of Ca(II) 

dependence of DNA binding also supports two metal ions involved in the DNA 

association for each subunit (Conlan & Dupureur, 2002b).  

The general mechanism of DNA hydrolysis by type II restriction endonuclease 

has been described in Chapter I including proposed three catalytic mechanisms on the 

basis of crystal structures.  The number of metal ions involved in catalysis is still the 

controversial problem for type II restriction endonucleases (Pingoud, et al., 2005).    

Kinetic Evidence Of A Two-Metal Ion Mechanism?  Besides the 

supporting evidence from crystallographic data, the mutagenesis and kinetic approach 

has been applied to address the number of metal ions required in catalysis.  By 

mixing two different metal ions, the bell shaped metal dependent cleavage rates 

appears to support the two-metal ion mechanism.  In the cleavage reaction of EcoRV 

at low Mn(II) concentration, addition of small amounts of Ca(II) which does not 

support catalysis stimulates DNA cleavage; however large amounts of Ca(II) inhibit 

catalysis (Vipond, et al., 1995a).  Titration with La(III) ions of the hammerhead 

ribozyme catalyzed RNA cleavage against a fixed Mg(II) background concentration 

also yielded a bell-shaped curve of cleavage rate against La(III) concentration, with 

activation at low concentration and inhibition at high concentration (Lott, et al., 1998).  

Both experimental results can not be explained by one-metal ion mechanism, 
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therefore a two-metal ion mechanism is proposed based on the distinct roles of two 

metal ions in catalysis.  However, Mn(II) is used to conduct those mixing metal 

experiments for EcoRV instead of Mg(II) discussed in this chapter.  So it does not 

provide the direct support evidence for two-metal ion mechanism with Mg(II).  

Mn(II) is known to have the additional inhibitory sites on EcoRV, and it also binds to 

DNA efficiently in mM concentrations (Reid & Cowan, 1990; Groll, et al., 1997).  

The two-metal ion mechanism suggested from bell shaped Ca(II) effect on cleavage 

rate can be compromised with respect to the different binding behavior between Mg(II) 

and Mn(II).  

The sigmoidal dependence of cleavage rate as a function of Mg(II) 

concentration has been observed in both EcoRV and PvuII, and derived Hill 

coefficients indicate the multiple metal ions involved in binding and catalysis (Groll, 

et al., 1997; Spyridaki, et al., 2003).  It should be noted that sigmoidal dependence 

only indicates the multiple metal ions influence the cleavage rate but does not prove 

that two metal ions participate the catalytic steps.  The Hill coefficient actually 

depends on the cooperativity of sites, which remains unclear for the metal binding to 

PvuII or EcoRV.  

Besides deriving the number of metal ions in catalysis from macroscopic 

binding data, mutagenesis on the candidate metal binding sites is a more direct 

approach to determine if two metal ions are essential for the detectable enzymatic 

activity.  Mutations on metal binding sites have been performed on both EcoRV and 

PvuII.  EcoRV have two candidate metal binding sites the D74/D90 site and the 
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E45/D74 site (Kostrewa & Winkler, 1995).  D74A and D90A mutants are 

catalytically inactive, but the activity of E45A is only 1.8 fold reduced compared with 

WT (Groll, et al., 1997).  Therefore one metal binding site (E45) is ruled out as a 

catalytic residue in EcoRV.  

In PvuII, alanine mutations of metal binding ligands such as D58 and E68 give 

the residual activity of about 1000 fold and 50 fold lower compared with WT, 

respectively (Dupureur & Conlan, 2000).  It was known structurally that both 

residues are the ligands for two Ca(II) ions for the interactions of PvuII and DNA 

(Horton & Cheng, 2000). While in the 25Mg(II) NMR titration experiments it seems 

that D58A binds one Mg(II) ion with similar affinity to WT, Mg(II) binding in the 

active site is clearly disrupted in E68A (Dupureur & Conlan, 2000).  From those 

observations, it is plausible that E68 is the bridging ligand essential for two metal ions 

binding and D58 is the ligand that enhances the binding affinity for the second metal 

ion.  Besides bound to the active site, the metal ions are required to be positioned in 

the right place to support efficient catalysis, which could be a reasonable explanation 

for the 1000 fold reduced activity for D58A.   

Here, on the basis of two metal binding sites in the PvuII restriction 

endonucleases, we establish the two-site kinetic models to fit Mg(II) concentration 

dependence of PvuII cleavage kinetics.  The two-site kinetic models are divided into 

two groups which differ in the number of metal ions directly required for the catalysis.  

In group A, the catalysis requires two metal ions bound per active site.  In group B, 

the catalysis occurs no matter how many metal ions in the active site; two distinct 
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catalytic activities are dependent on one and two metal ions bound in the active site, 

respectively.  The binding equilibrium and kinetics of catalytic steps and product 

release steps are globally fit to the candidate models separately so that the metal 

dependence of apparent cleavage activity are analyzed with respect to the whole 

reaction scheme.  The qualities of global fits with candidate models have been 

compared to determine the most kinetically favorable reaction pathway or parameters 

for metal participation in binding and catalysis.   

 

EXPERIMENTS AND METHODS 

The Determination of Single Turnover Rate Constants.  A series of single 

turnover experiments were conducted with 2 µM enzyme and 300 nM DNA duplex  

which is a 14 mer hybridized from strand sq3121-1 and sq3121-2 (see CHAPTER II 

Table 2.1, all the DNA cleavage assay use the same oligonucleotides).  Reaction 

conditions were determined at low Mg(II) concentration (below 1 mM) to assure the 

measured single turnover rate constants are independent of enzyme and DNA 

concentrations.  The reaction buffer contains 50 mM Tris, NaCl (adjusted to keep 

ionic strength constant) and desirable MgCl2.  The concentration of NaCl was 

adjusted with Mg(II) concentration to keep the same ionic strength as a buffer 

solution containing 100 mM NaCl and 10 mM Mg(II).  The pH of buffer is 7.5 at 37 

ºC.  DNA consisted of a small amount of radiolabeled probe added to cold DNA 14 

mer.  At Mg(II) concentrations below 3 mM, reactions were initiated by addition of 

metal-free enzyme and reaction samples were collected manually at different time 
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points.  The reactions were quenched by stop dye containing 100 mM EDTA.  At 2 

mM Mg(II), a different mixing order procedure with the same reaction conditions was 

examined to prove that the mixing orders did not have any dramatic effect on the 

measured single turnover rate constants.  The samples were loaded on 20% PAGE 

gel with 8 M urea.  PAGE gel was scanned with Storm Imager and gel image was 

quantitated using ImageQuant.  The cleavage extent was normalized and fit to the 

first order exponential equation to derive the single turnover rate constants. 

Quench Flow Experiments.  At Mg(II) concentration above 3 mM, the 

reaction progress was so fast that an SFM4/Q quenched-flow device (Bio-Logic) was 

used to mix equivalent volume of solutions containing 600 nM DNA and 4 µM 

enzyme. Both DNA or enzyme were incubated with the same reaction buffer 

containing Mg(II) described in the single turnover experiments.  At Mg(II) 

concentration of 10 mM, mixing the metal free enzyme and DNA containing 20 mM 

Mg(II) gave the similar apparent single turnover rate constants as mixing the enzyme 

and DNA both containing 10 mM Mg(II).  At appropriate time intervals (250 ms-30 

s) the reaction was quenched by mixing with 140 µL of 100 mM EDTA solution. The 

collected samples were loaded on a PAGE gel and gel image was obtained and 

processed as described above. 

The Characterization of Mg(II) Dependent Steady State Kinetics. 

Cleavage experiments were performed at 37 ºC in the same reaction buffer containing 

various Mg(II) concentrations.  Reaction mixtures typically contained 2 nM enzyme 

and at least 5 times higher DNA concentrations.  The reaction was initiated by the 
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addition of metal free enzyme and quenched by stop dye containing 100 mM EDTA.  

The reaction was quenched by adding stop dye at the appropriate time so that less 

than 10% substrate was cleaved during the reaction.  The product and substrate in 

the collected reaction samples were separated and analyzed by PAGE gel.  The 

reaction rates were determined from the linear parts of the reaction progress curves by 

linear regression and were normalized to enzyme concentrations. 

Pre-Steady State Experiments Against Various Mg(II).  Pre-steady state 

experiments were performed at 37 ºC in the same reaction buffer containing various 

Mg(II) concentrations.  The reaction samples were collected manually at Mg(II) 

concentration below 2.5 mM and conditions was the same as the steady state rate 

measurements.  The reaction progress was monitored by quench flow at higher 

Mg(II) concentrations.  The equivalent volume of enzyme and DNA incubated with 

the same buffer with Mg(II) were mixed and reactions were quenched by EDTA.  

Reaction mixtures typically contained 20 nM enzyme and at least 5 times higher DNA 

concentrations.  Within 30 seconds, reaction were monitored by quench flow while 

reaction sample with longer time intervals was monitored by a manually sample 

collection.  All the samples were loaded on a PAGE gel for further processing and 

data quantitation.  

Global Fit Using DynaFit And Model Analysis.  To quantitatively 

understand the Ca(II) dependence of DNA association equilibrium and Mg(II) 

dependence of DNA cleavage kinetics, the candidate models have been developed to 

determine the most favorable reaction scheme and derive those parameters not 
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measured experimentally.   Since PvuII has two metal binding sites per active site, 

the two-site model is the basis of all the candidate models in this chapter, and the first 

and the second metal binding events are assumed to occur in a sequential way.  The 

global fits using DynaFit have been applied to Ca(II) dependent DNA binding titration 

curves (equilibrium), Mg(II) dependent single turnover and pre-steady state reaction 

courses (progress) and Mg(II) dependent steady state velocity (velocity) in order to 

determine the kinetically favorable reaction pathways and metal binding affinities.  

In the global fits, DNA bound fraction, amount of product and normalized reaction 

velocity as a function of Ca(II)/Mg(II) concentrations, enzyme concentrations and 

DNA concentrations are treated as original data sets, which are fit with possible 

reaction schemes to examine the standard deviations and percentage errors for the 

unknown kinetic parameters.    
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RESULTS 

Dissection of Ca(II) Dependence Of Specific DNA Association. 

Experiments.  The DNA binding equilibrium constants were measured by 

nitrocellulose filter binding or fluorescence anisotropy (Conlan & Dupureur, 2002b).  

In Figure 4.2, the plot of equilibrium association constants as a function of Ca(II) 

concentration appears to be sigmoidal and yields a Hill coefficient of 3.5 per enzyme 

dimer, consistent with two metal binding sites for each monomer (Horton & Cheng, 

2000).  The apparent DNA association constants is the average value of several 

titrations, in which the enzyme is being titrated to some amount of DNA and signal is 

monitored by nitrocellulose filter binding or fluorescence anisotropy.  The data is 

normalized as DNA bound fractions at a series of Ca(II) concentrations.   

Reaction Scheme.  The unique model of Ca(II) participation in the DNA 

binding equilibrium is shown in Scheme 4.1.  This is the only case in this chapter 

that the model has been decided uniquely and the goal of global fit is to simply derive 

the apparent DNA binding affinity for EM2 (which is not accessible experimentally) 

and apparent Ca(II) binding affinities for two sequential binding steps.  Assuming 

the same metal ion occupancy in each subunit for a homodimeric enzyme, the species 

of PvuII-Ca(II) complex are restricted to EM2 and EM4.  Therefore, the substrate the 

cognate DNA duplex potentially can bind to three species: apoE, EM2 and EM4, and 

the distribution among those three species can be dictated by Ca(II) binding affinities 

and Ca(II) concentrations. 
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Figure 4.2.  DNA binding affinity is dependent on Ca(II) concentration.  The 
buffer contained 50 mM Tris, NaCl and desirable Ca(II) concentration, pH 7.5 at 25 
ºC.  The NaCl concentration was adjusted to assure a constant buffer ionic strength 
of 107.5 mM.  Below 1 mM CaCl2, binding constants were collected by fluorescence 
anisotropy assay with 2.5 nM Hex-labeled 14-mer duplex.  At higher Ca(II) 
concentrations (>1 mM), binding constants were measured using nitrocellulose filter 
binding with 9 pM DNA duplex titrated with enzyme (Conlan & Dupureur, 2002b). 
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Scheme 4.1.  Model of metal ion participation in metal dependence of DNA 
binding equilibrium.  E: homodimeric enzyme, S: cognate DNA duplex, M: metal 
ion.  All the K’s are dissociation constants.  The scheme presents all the Kd’s 
involved in the global fit of Ca(II) dependent DNA binding equilibrium constants. 
Dashed lines indicate the possible equilibrium among ES, EM2S and EM4S but those 
equilibria are not included in the global fit.  Reasons for that are explained in the 
results. 
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Global Fits.  The raw PvuII titration curves (DNA bound fractions against 

titrated enzyme concentrations at a series of Ca(II) concentrations) were fit globally to 

the unique binding model (Scheme 4.1).  The metal binding equilibria among ES, 

EM2S and EM4S (the binding steps involve KM1’ and KM2’) have not been included in 

DynaFit script for global fit since they have been proven incapable to affect any 

global fit results; however they were shown in Scheme 4.1 as possible binding 

pathways.  In such a simplified scheme, three DNA disassociation constants (KS, KS1 

and KS2) and two metal disassociation constants (KM1 and KM2) dictate Ca(II) 

dependence on DNA association.  Two trials of global fits have been conducted with 

respect to available experimental evidence.  Since there is no direct measurement for 

KS1, KS1 is floating in both trials.  Trial 1 makes full use of the measured DNA 

binding affinities and attempts to derive all the metal binding affinities, but trial 2 

does the opposite.  In trial 1, DNA binding affinity for apo E and EM4 is assigned to 

300 nM and 125 pM, respectively, according to DNA binding assays at metal free 

condition and 10 mM Ca(II) (Conlan & Dupureur, 2002b).  In trial 2, Ca(II) binding 

affinities are assigned to 0.12 mM and 2.1 mM according to ITC experiments (Jose, et 

al., 1999).  Table 4.1 listed the derived constants with percentage error, fixed 

parameters (without error) for both trials and corresponding experimental 

measurements in order to compare. 

Comments.  In Table 4.1, global fits trial 1 and trial 2 give the same KS1 value 

about 10 nM in both trials, which indicates this value should be reliable with neglect 

of variations on Ca(II) binding affinities applied to both trials.  According to the  
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Table 4.1.  Experimental measurements and corresponding global fits on the 
equilibrium constants in Scheme 4.1. 
 

 DNA binding affinity (nM) 
Metal binding 
affinity(mM) 

Species Apo E EM2 EM4 Apo E EM2 

Experiments KS KS1 KS2 KM1 KM2 

Gel shift assaya n/a n/a 0.11a n/a n/a 

Fluorescence anisotropyb 307± 
146 

n/a 
0.056 
±0.02 

n/a n/a 

Nitrocellulose filter 
bindingb n/a n/a 

0.053 
±0.01 

n/a n/a 

ITCc n/a n/a n/a 0.12±0.08 2.1±0.14 

Global fit Trial 1 300* 10.6 
(31%) 

0.125* 0.087 
(88%) 

4.3 
(22%) 

Global fit Trial 2 300* 10.9 
(17%) 

0.22 
(14%) 

0.12* 2.1* 

a. (Nastri, et al., 1997) 
b. (Conlan & Dupureur, 2002b) 
c. (Jose, et al., 1999) 
Kinetic parameters labeled with * are assigned to experimental measurements and the 
rest are derived by global fit with error status inside the bracket. 
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experimental methods applied to quantitate Ca(II) binding and DNA binding affinities, 

it is easier and more precise to measure the latter.  So fixing KS’s and floating KM’s 

in trial 1 probably is more reasonable than fixing KM’s to guess KS’s in trial 2.  The 

derived metal binding affinities from global fit trial 1 is acceptable compared with 

measurements by ITC experiments (Jose, et al., 1999).  In the subsequent global fits, 

it is noticeable that metal binding association rate constants or dissociation rate 

constants will be floating in the most of cases rather than those parameters for DNA 

binding due to the difficulty in achieving accurate metal ion binding equilibrium 

parameters. 

In Scheme 4.1, the net equilibrium among ES, EM2S and EM4S has been 

indicated in dashed line.  ES complex can form EM2S and EM4S respectively by two 

sequential metal binding steps, in which the Kd for metal ion binding (KM1’ and KM2’) 

remains unknown for the ES and EM2S complex.  There is no experimental evidence 

to address the metal binding affinity of ES complex.  Surprisingly, floating KM1’ and 

KM2’ with any initial values in the global fits always generate the same best fit values 

as the initial values, which means KM1’ and KM2’ are not critical to the scheme. 

KM1’ and KM2’ are not affecting the net equilibrium in Scheme 4.1 because in 

the global fit the signal (substrate bound fraction) is counted as the sum of ES, EM2S 

and EM4S, and equilibrium among those three species only change the distributions 

among them but not the sum of their amount.  To obtain reliable KM1’ and KM2’ from 

global fit, binding experiments have to be conducted in a way that distinguishes the 

signals of ES, EM2S and EM4S, respectively.  For example, those three species 
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might display the different anisotropy values and global fit could to be conducted 

using original data.  The other way to derive KM1’ and KM2’ is from perspective of 

thermodynamic cycles.  KM1’ and KM2’ can be calculated if all other equilibrium 

constants are known in Scheme 4.1.  Such a strategy will be applied and discussed in 

the kinetic modeling section.  

Mg(II) dependence on DNA Association.  

      Experiments.  Since the goal is to develop the kinetic model of PvuII on the 

basis of reaction courses, it is essential to know the association and dissociation rate 

constants for Mg(II) binding and DNA binding.  The direct measurements of the 

association and dissociation rate constants for DNA binding by PvuII endonuclease 

have been reported (Table 4.2) (Conlan & Dupureur, 2002a).  At 10 mM Ca(II), kon 

reaches the maximal value of 2.7*107 M-1s-1 as determined using a nitrocellulose filter 

binding assay.  kon is 100 fold slower at 0.2 mM Ca(II).  The dissociation rate 

constants range from 10-3
 to 10-4 s-1 at various metal concentrations and Ca(II) does 

not make a dramatic difference relative to Mg(II).  Therefore, for E, EM2 and EM4 in 

the future global fits, koff was assigned to 10-3 s-1 uniquely.  Their association rate 

constants kon can be calculated from koff according to DNA binding affinity Kd.  

The remaining question would be if we can use KS’s in Table 4.1 as 

corresponding DNA binding affinities in the presence of Mg(II).  The hydrolyzable 

DNA binding affinity in the presence of Mg(II) is not measurable since Mg(II) 

supports catalysis; but it can be evaluated by measurement of KM in the steady state  
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Table 4.2.  Measured dissociation rate constants for DNA binding equilibrium 
of PvuII.a 

Metal ion 
concentration 

Rate constants (s-1) Experiments 

Metal free 3.42*10-3 Fluorescence anisotropy 
10 mM Ca(II) 3.87*10-4 Fluorescence anisotropy 
0.3 mM Ca(II) 1.13*10-3 Fluorescence anisotropy 
1 mM Mg(II) 1.8*10-3 DNA trap experiments 

0.3 mM Mg(II) 4.0*10-4 DNA trap experiments 

a. (Conlan & Dupureur, 2002a) 
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kinetics.  In Michaelis-Menten kinetics, KM is a function of substrate association rate 

constant (k1), dissociation rate constant (k-1) and catalytic rate constant (kcat).  If kcat 

and k-1 are known, k1 can be calculated from KM.  In steady state kinetics, both KM 

and kcat are derived by fitting reaction velocity as a function of DNA concentration to 

the Michaelis-Menten equation at a series of Mg(II) concentrations.  If DNA 

dissociation rate constants are assigned to 10-3 s-1, the DNA dissociation rate constants 

and DNA binding affinities can be derived from KM as shown in Table 4.3. 

      The plot of the Mg(II) dependent DNA association rate constants shows a 

typically sigmoidal shape and can be fitted to Hill equation to yield a Hill coefficient 

of 3.4, which exhibits the same pattern as Ca(II) (shown in Figure 4.3).  The derived 

association rate constant (k1) in the presence of 10 mM Mg(II) is about 2*105 M-1s-1, 

100 fold lower compared with measured DNA association rate constant (2.7*107 

M-1s-1) at the same concentration of Ca(II) (Conlan & Dupureur, 2002a).  This is 

consistent with the 100 or 50 fold difference in DNA binding affinities for non 

hydrolysable DNAs at the same concentration of Ca(II) and Mg(II) (Engler, et al., 

1997; Martin, et al., 1999a; King, et al., 2004).   

The difference in association rate constant on this kind of scale may have a 

dramatic effect on the kinetics.  So instead of using measured Ca(II) dependent DNA 

association rate constants, the calculated association rate constants from steady state 

kinetics will be regarded as the best approximation for Mg(II) supported DNA binding 

and will be used in the global fit of kinetics. 

 



 

 130 

Table 4.3.  Estimate Mg(II) dependent DNA association rate.  Measured KM and 
kcat in the steady state kinetics and estimated Kd and DNA association rate constants 
(kon) at various Mg(II) concentrations.  
 

Mg(mM) 
KM 

(nM) 
kcat (s

-1) 
k1 (M

-1s-1) 
estimate 

Kd (nM) 
estimate 

10 27 0.0045 2e5 4.9 
6.5 65 0.0068 1.2e5 8.3 
3 50 0.0035 9e4 11.1 

2.5 94 0.0033 4.6e4 21.6 
2.25 136 0.0028 2.8e4 35.5 

2 170 0.0017 1.6e4 63.8 
1.25 74 0.00088 2.6e4 39.3 

1 71 0.00022 1.7e4 58.4 
0.5 110 3.7E-05 9.4e3 106.1 

Metal free n/a n/a 3.3e3 300 
 
The k-1 was assumed to be 0.001 s-1 and k1 was estimated from equation 
KM=(k-1+kcat)/k1.  All the data in this table were collected by Dr. Qureshi as a former 
post-doc in the lab.   
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Figure 4.3.  The Hill analysis of Mg(II) dependence of DNA association rate 
constants.  k1 in Table 4.3 can be fit to the Hill equation yielding the similar 
coefficient of 3.4 as presented in Ca(II) binding data (see Figure 4.2). 
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One vs. Two Chemistry Step 

Experiments.  The Mg(II) dependence of single turnover rate constants shows 

a typical sigmoidal shape with Hill coefficient of 3.9 (Figure 4.4), which indicates 

that multiple metal ions are involved in specific DNA binding and cleavage by 

homodimeric PvuII endonucleases.  However, this is not the direct experimental 

evidence that PvuII really requires two metal binding sites occupied for catalysis to 

occur (see Introduction of this chapter).  In the investigation of Ca(II) dependent 

DNA association, the pre-reactive complex is described as a mixture of EM2S and 

EM4S (Scheme 4.1).  If both species are catalytically active, it is believed that they 

might have different turnover rates and involve a reaction scheme with two chemistry 

steps.  If EM4 is the only active species, the reaction scheme with one chemistry step 

is suggested, and PvuII does requires two metal ions for catalysis.  Here we will 

address the number of metal ions required in PvuII active site for catalysis by 

proposing the following new reaction scheme.  

Reaction Scheme.  Scheme 4.2 describes all the possible reaction pathways 

in Mg(II) dependent single turnover kinetics.  The preference of apo enzyme binding 

to cognate DNA or metal ions is given serious consideration among those candidate 

models.  Besides the examination of binding order preference, one turnover step 

supported by EM4S or two turnover steps supported by EM2S and EM4S are 

distinguished into groups A and B.  Each candidate model is named after the reaction 

pathway and its turnover steps belonging to group A or B.  Reaction 
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Figure 4.4.  Dependence of single turnover rate constants on metal ion 
concentrations.  The conditions were 50 mM Tris, pH 7.5 at 37 ºC.  The NaCl 
concentration was adjusted to a constant ionic strength of 125 mM according to Mg(II) 
concentration.  Below 3.5 mM MgCl2, reaction courses were monitored manually at 
37 ºC with 2 µM enzyme and 300 nM 14-mer duplex (The rate constants were 
provided by Greg Papadakos).  Above 3.5 mM MgCl2, rate constants were measured 
by quench flow using the same reaction conditions.  The Hill coefficient of 4 is 
yielded by the fit shown in the plot.    
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Scheme 4.2.  Proposed candidate kinetic models for global fits to Mg(II) 
dependent single turnover progressive courses.  Eight candidate models from A1 
to A4 with one turnover step (k5) and B1 to B4 with two turnover steps (k5 & k6) 
depending on four reaction pathways.  Note: double arrow represents equilibrium in 
the scheme including two kinetic parameters (e.g. k1 and k-1) and single arrow 
represents turnover step (k5 or k6).  The units of those rate constants are given in 
results.  The dashed line indicate the chemistry step (k6) only exsit in group B 
candidate models.  
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pathway 4 is the most comprehensive one including all possibilities.  In reaction 

pathway 1, metal binding is obligated to occur prior to DNA binding and the binding 

order is the opposite in reaction pathway 2.  Pathway 3 obligates DNA binding prior 

to the second metal ion binding event.  Scheme 4.2A shows all the eight candidate 

models.  In candidate model A1, it appears that EM2S become a dead end complex 

due to its inactivity.  In model B1, it looks unnecessary for this modification since 

the presence of model B4.  Finally eight candidate models are examined in global 

fits to single turnover reactions courses as a function Mg(II) concentrations.  

Global fits.  In Scheme 4.2, it is obvious that each kinetic model contains at 

least two metal ion association rate constants (k1 and k3) and two DNA association 

rate constants (k2 and k4) plus their corresponding dissociation rate constants.  The 

measurements of DNA association rate constants are easier and more reliable than 

measurements of metal ions dissociation rate constants.  To reduce the unknown 

kinetic parameters in the global fits, DNA association rate constants (k2 and k4), 

dissociation rate constants (k-2 and k-4) and metal ion dissociation rate constants (k-1 

and k-3) are fixed in the global fits while metal ion association rate (k1 and k3) and 

turnover rates (k5 and k6) were floating to derive the best fit results.  The DNA 

dissociation rate constants (k-2 and k-4) are measured experimentally (see Table 4.2) 

and assigned to 10-3 s-1 (Conlan & Dupureur, 2002a).  The association rate constant 

for each species can be calculated if the DNA binding affinity is known, which is 

estimated from the KM of Mg(II) dependent steady state velocities (see Table 4.3).  

The DNA binding association rate constants are calculated from Kd (around 300 nM) 
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for apo enzyme under metal free conditions and KM (Table 4.3) of steady state 

kinetics for EM4 when the metal ions were saturated.  Theoretically the DNA 

association rate constant (k2) for EM2 could take any values between estimated 

binding rates under metal free and 10 mM Mg(II) in Table 4.3.  DNA association 

rate constants of EM2 is particularly important in deriving the second turnover step 

and might have a dramatic effect on discriminating one vs. two chemistry step models.  

Two separate global fit trials have been conducted to address this rate constant.  

Therefore, k2 as the DNA association rate constant for EM2 is assigned to be 1*104 

M-1sec-1 in trial 1 (lowest limit under metal free conditions) and 1*105 M-1sec-1 in trial 

2 (highest limit under saturated Mg(II) conditions).  And k4 for EM4 is assigned as 

2*105 M-1sec-1, which is the apparent DNA binding rates estimated at 10 mM Mg(II).  

The dissociation rate constants (k-1 and k-3) for metal ion binding (see Table 

4.4) ranges from several hundred s-1 to a few thousand s-1 with various enzymes and 

metal species (Ca(II) and Mg(II)).  To simplify our kinetic models, the dissociation 

rate constants for metal binding are fixed at 1000 s-1.  The floating kinetic 

parameters include turnover steps and Mg(II) binding association rate constants (k1 

and k3) for species apo E, ES, EM2 and EM2S.   

In global fit with candidate models A4 and B4, apo E and ES are assigned to 

the same metal binding association constant to simplify the model, as well as EM2 and  
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Table 4.4.  The dissociation rate constants for metal ion binding.  

 Enzyme Metal ion Rate constants (sec-1) 
Calmodulin a Mg(II) koff=2700 for strong site 

koff=6600 for weak site 
Enolaseb Mg(II) 1/T2=4000 
Pyruvate kinaseb Mg(II) 1/T2=2200 
Phospholipase A2c Ca(II) koff=1000 
PPLA2c Ca(II) koff=3000 
Troponin Cd Ca(II) koff=600 
Troponin Ce Mg(II) koff=4000 
Parvalbuminf Ca(II) koff>3*105 

a. (Tsai, et al., 1987) 
b. (Lee & Nowak, 1992) 
c. (Andersson, et al., 1981; Drakenberg, et al., 1984) 
d. (Braunlin, et al., 1985) 
e. (Forsen, et al., 1983) 
f. (Andersson, et al., 1982) 

 



 

 138 

EM2S.  However, there is evidence that substrate can potentially influence the metal 

binding affinity due to direct metal-phosphate contact observed in PvuII crystal 

structures and possible active site conformational changes caused by substrate binding 

(Jose, et al., 1999; Horton & Cheng, 2000; Dupureur, 2005).  Special care has been 

taken in handling metal binding affinities of apo E and ES since they are probably 

different and are yet not characterized quantatively.  Candidate models A4 and B4 in 

Scheme 4.2 contain the closed thermodynamic box for the formation of EMnS 

(E->ES->EMnS or E->EMn->EMnS, n=2 or 4).  In such a closed thermodynamic 

cycle, the overall change of binding free energies regardless of the binding pathway 

should be the same and therefore the following equation is expected: K1*K2 = K0*K1’, 

K3*K4 = K2*K3’. As mentioned above, in the global fits with model A4 and B4, the 

same metal association rate constants are floating for apo E/ES (k1) and EMn/EMnS 

(k3) species.  To fulfill the binding constants relations based on thermodynamic 

equations described above, the metal dissociation rate constants (k-1’ and k-3’) for ES 

and EMnS are adjusted from 1000 s-1 by multiplying by the factor K2/K0 and K4/K2.  

As described above, K0 and K4 are fixed as 300 nM and 5 nM, respectively.  K2 is 

assigned to 100 nM in trial 1 and 10 nM in trial 2.  The detailed assignments for all 

those kinetic parameters are listed in the notes of Table 4.5.   

In the global fit, the data sets are original single turnover reaction time courses 

at various Mg(II) concentrations.  They were selected to best reflect the determined 

average single turnover constants.  The data have been collected by rapid quench  
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Table 4.5.  Global fit results with single turnover reaction courses as a function 
of Mg(II) concentrations.  
 
 A. Comparison of standard deviation and error status of floating rate constants for all 
the kinetic models 

 Trial 1 error status Trial 2 error status 

Model 
Standard 
deviation 

*10-8 

k1 
(%) 

k3 
(%) 

k5 
(%) 

k6 
(%) 

Standard 
deviation 

*10-8 

k1 
(%) 

k3 
(%) 

k5 
(%) 

k6 
(%) 

A1 2.78 31 22 13 n/a 2.88 62 57 9.4 n/a 
A2 11.5 >500 >500 >500 n/a 11.5 >500 >500 >500 n/a 
A3 8.36 23 >500 >500 n/a 3.30 5.3 >500 >500 n/a 
A4 2.83 350 340 12 n/a 2.86 150 140 12 n/a 
B1 2.19 16 8.3 20 34 2.11 9.6 10 13 22 
B2 11.5 >500 >500 >500 >500 11.5 >500 >500 >500 >500 
B3 8.36 20 >500 >500 >500 3.3 5.2 >500 >500 >500 
B4 2.87 170 160 14 >500 2.85 150 140 13 >500 

 

B. Comparison of best fit for model A1, A4, B1 and B4. 

Model A1 A4 B1 B4 
Kinetic parameters floating in global fits in trial 1 

k1 (M-2s-1) 6.2e7 2.4e6 1.4e8 5.9e6 
Kd 1(mM) 4.0 20.6 2.72 13.0 
k3 (M-2s-1) 1.2e8 8.0e8 5.0e7 3.6e8 
Kd 3(mM) 2.9 1.1 4.5 1.7 

k5 (s-1) 0.74 0.62 1.9 0.66 
k6 (s-1) n/a n/a 0.0095 1e-7 

Kinetic parameters floating in global fits in trial 2 
k1 (M-2s-1) 2.0e6 2e6 1.6e7 1.7e6 
Kd 1(mM) 22 22.3 7.9 24.1 
k3 (M-2s-1) 2.8e9 1e9 2.3e8 1.1e9 
Kd 3(mM) 0.59 1.0 2.1 1 

k5 (s-1) 0.53 0.6 1.1 0.65 
k6 (s-1) n/a n/a 0.02 1e-7 

Error status about floating rate constants is shown in table A. 
Note: in the global fits, fixed parameters include: 
DNA binding dissociation rates k-0, k-2, and k-4 are all assigned to be 0.001 s-1.  
Metal ion binding dissociation rates k-1, k-3 are all assigned to be 1000 s-1 in all trials; 
For model A4 and B4 which involved k1’&, k3’ and k-1’ & k-3’, k1 equals to k1’ and 
k3 equals to k3’; k’-1 and k’-3 are assigned to be 333.3 s-1and 50 s-1in trial 1, 33.33 s-1 
and 500 s-1 in trial 2, respectively.  
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methods and conducting reactions manually.  For those data sets collected manually, 

a mixing time of 1.5 seconds as delay time is used in the global fit using Dynafit. 

The Table 4.5 listed all the results including error status.  In addition to 

evaluating errors, the best fits were used to derive the single turnover constants, which 

are plotted as a function of Mg(II) concentrations (Figure 4.5A).  At low Mg(II) 

concentrations of 0.1 and 0.5 mM Mg(II), the single turnover rate constants can not be 

derived since time course only cover 900 seconds and during this short time range the 

reaction is not completed yet.  The global fits of reaction time courses are directly 

plotted to visualize the fit quality (Figure 4.5B). 

Conclusion.  According to error status listed in Table 4.5A, obviously model 

A2, A3, B2 and B3 can be ruled out as the kinetically favorable models since their 

error status is far higher than others.  This indicates that apo-enzyme prefers binding 

metal ions prior to DNA (model A2 and B2) and proceeds via the EM2 (model A3 and 

B3).  Although it can not be completely ruled out, the ES complex binding metal 

ions to form the active species is at least not the major pathway.  The smaller 

deviations from model A1 and B1 also confirm the postulated reaction pathway of 

enzyme binding metal ions as prior to the DNA association.  Results with models A4 

and B4 can determine if a random binding mechanism will improve the fit quality.  

Theoretically, fitting quality generally can be improved by increasing model 

complexity by introducing more reaction pathways and more kinetic parameters.  In 

this case, the fitting quality of models A4 and B4 did not improve compared with 

models A1 and B1 (see deviations of those models in Table 4.5A).  In Table 4.5A,  
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Figure 4.5 A.  Simulated Mg(II)-kobs profiles from the best fit based on model A 
and B are plotted with experimental Mg(II) -kobs profile.  The compared models 
are indicated at the right corner of each plot.  The experimental kobs against Mg(II) 
concentrations are shown in solid line and solid circle, the simulated kobs against 
Mg(II) concentrations are indicated in dashed line, models in group A and B are 
shown in empty circle and square, respectively.  All the simulated kobs are derived 
from the progress curves in the same global fit as shown in Table 4.5.  
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Figure 4.5 B.  Global fits of single turnover time courses at 0.1, 0.5 and 1 mM 
Mg(II).  Partial single turnover progress curves at 0.1, 0.5 and 10 mM Mg(II) are 
shown to examine the fit qualities of candidate models in group A and B.  The 
simulated progress curves are from the same global fit as shown in Table 4.5. 
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standard deviation of model B1 is the smallest but is at the similar to models A1, A4 

and B4.  The errors status of floating kinetic parameters shows that B1 generates the 

smallest error.  Besides model B1, Model A1 and A4 mostly give errors for unknown 

kinetic parameters below 50%. 

In Table 4.5B, some best fit metal ion binding affinities of models A1, A4 and 

B4 reach as high as 20 or 50 mM, which is not reasonable.  The derived metal ion 

binding affinity of model B1 is always below 10 mM, regardless of the trials.  This 

can be demonstrated by the introduction of alternative reaction pathways.  The metal 

ion binding affinities basically is dictated by the portion of apo E and its metal bound 

form.  In models A4 and B4, the EMnS complex can be formed by the alternative 

path not including EMn so that the derived apparent portion of EMn is less than that 

derived from model B1.  Therefore, the apparent metal ion binding affinities increase 

as a result of that.  In Table 4.5, it could be concluded that model B1 is the best 

model.  It is also noteworthy that the metal binding affinities below 10 mM are 

consistent with that obtained from the Hill equation (Figure 4.9).  

The quality of the global fits can also be visualized in the fits of reaction time 

courses and reproduced Mg(II)-kobs plots.  Figure 4.10A compares the reproduced 

Mg(II)-kobs plots by global fits with two groups of models A and B in trial 1 and trial 2.  

First of all, although DNA binding rates of EM2 (k2) differ by 10 fold in trial 1 and 

trial 2, two chemistry models (group B) always show a better agreement than one 

chemistry step models (group A).  While models A4 and B4 appear similar, the 

difference between A1 and B1 in both trials is dramatic.  B1 shows a better 
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agreement at both high and low Mg(II) compared with A1.  Except in the transition 

region near 3.5 and 4 mM Mg(II), the predicted kobs are slower than determined 

experimentally; others fits reproduced experimental single turnover rate constants 

quite well.  Models A1 in the plot shows an obvious shift towards the left at low 

metal concentrations and a lower plateau at high metal concentrations related to 

experimental data.  This indicates that for one chemistry step model, it is hard to find 

a turnover rate which satisfies both apparent enzymatic activities at high and low 

metal concentrations.  The model B1 introducing with two chemistry steps solves 

this problem easily.  In Figure 4.5B, the global fits of time courses for 0.1, 0.5 and 1 

mM Mg(II) were directly plotted and divided by group A (one chemistry step) and 

group B (two chemistry steps).  Obviously the group B global fits are dramatically 

better than group A since all models in group A show large deviations from 

experimental data.  In particular, model B1 shows an even better fitting quality than 

model B4.  It can be concluded from this analysis that model B1 is the best model.   

Table 4.5B gives the turnover rate for EM2S (for model B1, k6 is 0.009 s-1 in 

trial 1 and 0.02 s-1 in trial 2).  Compared with first turnover step by EM4S (k5), this 

is almost 2 orders of magnitude slower.  However, the difference between trial 1 and 

trial 2 is not enough to change the final conclusion that model B1 is the best model.  

The DNA association rate constant (k2) did make quite some difference on the 

turnover rate constant.  With a 10 folder slower DNA association rate constant (k2) 

in trial 1 (1*104 M-1s-1) compared with trial 2 (1*105 M-1s-1), a 2 fold faster turnover 

rate constant are obtained and appears to impact k5 and k6 similarly.  It is interesting 
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that the ratio of k5/k6 is about 100 and remains unchanged while DNA association 

rate constants change.  In an attempt to apply Ca(II) dependent DNA association rate 

constants (derived from DNA binding constants in Table 4.1 and 100 fold faster than 

Mg(II)) to the same kinetic model B1, a much lower turnover rate of 0.28 s-1 (k5) was 

obtained (data not shown).  This is consistent with what is observed in Table 4.5B.  

The DNA association rate constant does affect the turnover rate constant in the global 

fit until it is fast enough to be ignored.  Reaction conditions such as enzyme and 

substrate concentrations should be elevated to achieve the rapid binding, although this 

may not affect Mg(II) dependence on the apparent activity.  It seems that our 

reaction conditions are not the optimal to reach maximal activity.  With 5 µM 

enzyme and unchanged DNA concentration, a single turnover rate constant (0.47 s-1) 

at 10 mM Mg(II) has been determined, which is higher than 0.24 s-1 measured with 2 

µM enzyme at 10 mM Mg(II).  

Dissection of Two Metal Binding Sites (A and B). 

As shown in last section, the global fits with Scheme 4.2 finally suggest 

one-metal ion catalysis is possible but slow and that a sequential binding model in 

which metal ions bind prior to DNA.  Two metal binding sites are identified 

distinctively in the PvuII crystal structure bound to cognate DNA (Horton & Cheng, 

2000).  Those two sites probably are not functionally equivalent in DNA binding and 

cleavage, which has been discussed in the introduction of this chapter.  Since there 

are few experiments to characterize two sites distinctively, it would be interesting to 

model two distinct sites in global fits and derive their metal ion binding affinities and 
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cooperativity between those sites.     

Reaction Scheme.  All the candidate kinetic models shown in Scheme 4.2 

assume that metal binding occurs in a sequential way without distinguishing two 

metal binding sites A and B.  Site A and site B can only be distinguished if the first 

metal binding results in two different binary complexes (EM2A and EM2B) as shown in 

Scheme 4.3 but the second metal binding step results in the same EM4 complex as in 

Scheme 4.2.  The computational studies on BamHI indicate that site A seems more 

catalytically critical than site B (Mones, et al., 2007c).  So in Scheme 4.3, the 

complex EM2AS is regarded catalytically active but EM2BS inactive.  Since the 

kinetic model B1 with two chemistry steps has been accepted to be the best 

(concluded from last section), replacing EM2 with EM2A and EM2B generates new 

kinetic models which examine the cooperativity between site A and B.  All EM2 

related steps and parameters are unchanged and diverted to EM2A and EM2B except 

turnover step 6 which is specified for EM2AS.  Depending on properties of site A and 

B (equivalent or non equivalent) and their interactions (independent or interacting), 

three candidate models C1 (equivalent and interacting), C2 (non equivalent and 

independent) and C3 (non equivalent and interacting) are examined, and each contains 

two trials.  The assignments are the same as in Table 4.5: 100 nM in trial 1 and 10 

nM in trial 2 for DNA binding affinity of EM2. 
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Scheme 4.3.  Proposed candidate models to dissect two metal binding site A and 
site B.  Model C1, C2 and C3 have the same DNA binding and turnover steps 
indicated by lower panel but are different in the properties of two sites.  Two sites 
are equivalent or not depending on the binding constants of site A and B with E.  
Two sites are interacting or independent depending on the binding constants with E 
and EM2 at the same site.  According to the assignments of k1 and k3, C1 is two site 
equivalent and interacting model, C2 is two site non equivalent and independent 
model, C3 is two site no equivalent and interacting model.  In model C1 and C2, k1 
and k3 are metal association rate constants and floating in the global fits.  In model 
C3, metal association rate constants k1 and k3 are equal to k1’ and k3’, respectively, 
but the dissociation rate constants for step 1’ and 3’ (koff) are treated as unknown 
parameters in the global fits, unlike k-1 and k-3 given as 1000 s-1.    
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Global Fits.  Mg(II) dependent single turnover reaction courses are globally 

fit to three kinetic model candidates, and each contains two trials assuming the DNA 

binding affinity of EM2A and EM2B (they have the same binding affinities) are 10 nM 

in trial 1 and 100 nM in trial 2.  The error status and derived kinetic parameters are 

summarized in Table 4.6A to demonstrate the qualities of those global fits.  Table 

4.6B summarizes the derived metal binding affinities of two distinctive sites and their 

cooperativity.  The interaction factor (Table 4.6B) is introduced in order to discuss 

the cooperativity of two metal binding sites.  The interaction factor is defined as 

KBA/KA or KAB/KB, and KA is the metal binding affinity of site A in apo enzyme and 

KBA is still the site A metal binding affinity when site B is pre-occupied.  The same 

applies for site B.  According to Scheme 4.3, the interaction factor is Kd3/Kd1 in 

model C1 and 1 in model C2.  For model C3, the interaction factor actually is 

determined by comparing the derived koff (dissociation rate constant for step 1’ and 3’) 

and 1000 s-1 (dissociation rate constant for step 1 and 3) since those steps have the 

same metal association rate constants (k1 and k3).  The interaction factor value 

larger than 1 reflects the negative cooperativity between two sites; a value below 1 

reflects positive cooperativity.  The criteria to evaluate those models focus on the 

standard deviations for the global fits and the obtained metal binding affinities.   
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Table 4.6.  The investigations of two distinct sites on metal binding properties 
and cooperativity.  Fixed kinetic parameters are the same as in Table 4.5, please 
refer to its note for detailed information.   
A. The derived kinetic parameters with % error from global fits.  

Model Trial 
k1 

(M-2s-1) 
k3 

(M-2s-1) 
k5 

(s-1) 
k6 

(s-1) 
koff 

(s-1) 

1 
8.41e7 
(19%) 

1.00e8 
(9.6%) 

1.48 
(19%) 

0.02 
(96%) 

n/a 
C1 

 
2 

8.58e5 
(16%) 

5.85e8 
(15%) 

0.79 
(12%) 

0.049 
(94%) 

n/a 

1 
1.63e8 
(17%) 

5.19e7 
(11%) 

4.6 
(41%) 

0.01 
(47%) 

n/a 
C2 

2 
3.40e8 
(26%) 

1.89e8 
(15%) 

0.79 
(17%) 

0.01 
(36%) 

n/a 

1 
1.41e8 
(16%) 

2.27e7 
(71%) 

3.48 
(32%) 

0.01 
(47%) 

446 
(64%) 

C3 
2 

1.63e7 
(10%) 

2.78e6 
(37%) 

1.06 
(13%) 

0.03 
(29%) 

11.27 
(38%) 

B. Calculated metal binding affinities for two sites and interaction factor. 

Model Trial 
Stand 

deviation 
*108 

KA 

(mM) 
KB 

(mM) 
KBA 

(mM) 
KAB 

(mM) 
Interaction 

factor 

1 2.35 3.45 3.45 3.14 3.14 0.91 
C1 

2 2.49 10.79 10.79 1.31 1.31 0.12 
1 2.21 2.48 4.40 2.48 4.40 1 

C2 
2 3.68 1.71 2.30 1.71 2.30 1 
1 2.18 2.67 6.64 1.78 4.43 0.67 

C3 
2 2.10 7.84 18.90 0.83 2.01 0.11 

The interaction factor is defined as KBA/KA or KAB/KB.  KA is the metal binding 
affinity of site A in apo enzyme and KBA is still the site A metal binding affinity when 
site B is pre-occupied.  The same rule works with site B.  KA, KB, KAB and KBA are 
defined according to Scheme 4.3 and definitions vary depending on models.  
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Like Figure 4.5, the derived apparent single turnover rate constants from those global 

fits are also plotted together with experimental data (Figure 4.6).  Since global fits 

never generate a negative cooperativity scenario for Scheme 4.3, koff of 3000 s-1 is 

obligated so that the interaction factor of model C3 will be above 1 and C3 became a 

two site non equivalent model with negative cooperativity.  The global fit with such 

a model generates the simulated Mg(II)-rate plot which is also shown in Figure 4.6 

and does not agree well with experimental data.    

Comments.  Model C1 assumes two metal binding sites to have the same 

metal binding affinities which is supported by the shared metal binding ligands and 

the very similar geometries of Ca(II) binding sites (Horton & Cheng, 2000).  In both 

trials, model C1 gave the reasonable metal binding affinities (Table 4.6B) as well as 

the turnover steps (k5 and k6 in Table 4.6A).  Model C2 is constructed based on two 

independent sites.  According to standard deviation shown in Table 4.6B, trial 1 

improves a little bit compared with model C1 but with a much higher turnover step 

for EM4, which is in doubt since no kinetic experiments show such a high apparent 

turnover rate (k5 Table 4.6A).  Trial 2 actually is a bad fit since its standard 

deviation is the highest in Table 4.6B.  Therefore, model C2 seems to be unlikely to 

be selected as the most favorable model.  Model C3 is another reasonable model 

which fits well according to standard deviations in both trials; however, the metal 

binding affinities derived from trial 2 seems to be out of the range (>10 mM).   
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Figure 4.6.  Simulated Mg(II)-kobs profiles from the best fit based on model C1, 
C2 and C3 are plotted with experimental Mg(II)-kobs profile.  The models are 
indicated at the right corner of each plot.  The experimental kobs against Mg(II) 
concentrations are shown in solid line and solid circle, the simulated kobs against 
Mg(II) concentrations are indicated in dashed line, models in two trials are shown in 
empty circle and square, respectively.  The first three panels are corresponding to 
model C1, C2 and C3 shown in Table 4.6.  The global fit of last panel is not shown 
here and the koff is obligated to be 3000 s-1 and other parameters are set the same as 
model C3 trial 2.   
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Except model C2 (non interactions between two sites), the best global fits to model 

C1 and C3 both gave positive cooperativity.   

The simulated Mg(II)-rate (Figure 4.6) also shows both trials with model C2 

do not agree well with experimental Mg(II) dependence.  Both trials of model C1 

and trial 2 of model C3 agree with experimental data quite well.  And obviously 

model C3 with an obligated negative cooperativity does not look good since it lacks a 

plateau at high Mg(II) concentration region.  The analysis about error status and 

metal binding affinities based on Table 4.6 also concludes that model C2 is unlikely 

to be the best.  Since trial 2 of model C3 does not generate the reasonable Mg(II) 

binding affinities (>10 mM), it seems that model C1 is the best model being tested.     

Dissection Mg(II) Dependence On Product Release.  

Experiments.  Product release steps were investigated by Mg(II) 

concentration dependence study of steady state kinetic and pre-steady state kinetic 

parameters.  The steady state kinetics data including KM and kcat are shown in Table 

4.3, which was used to derive the Mg(II) dependent DNA association rate constants.  

Pre-steady state kinetic time courses show a burst phase at high Mg(II) concentrations 

(>2 mM) (Figure 4.7), which indicates that product release becomes rate-limiting 

(Sam & Perona, 1999b).  At 10 mM Mg(II), the measured single turnover rate (0.24 

s-1) is nearly 2 orders of magnitude faster than the measured steady state rate constant 

(0.0035 s-1), which also confirms the product release as the rate limiting step.   

It has been proposed from the steady state kinetics study of MunI that Mg(II) 

ions might still remain bound to the enzyme-product complexes after DNA cleavage,  
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Figure 4.7.  A Typical Burst Phase Observed In Specific DNA Cleavage by PvuII 
Under Pre-Steady State Kinetics Conditions.  20 nM enzyme and 100 nM cognate 
14mer with 4 mM Mg(II), pH 7.5. The ionic strength was adjusted to the same as 100 
mM NaCl, 50 mM Tris and 10mM Mg(II). The experimental data were fitted to the 
typical burst phase equation  P = A(1-e-k1*t) + k2*t ; A is burst phase amplitude, k1 is 
assigned as 0.136 sec-1 according to measured single turnover rate constants (average) 
at 4 mM Mg(II) and k2 is the slope of linear phase. 
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and this probably retards product dissociation (Sasnauskas, et al., 1999).  To 

investigate the possible effects of Mg(II) on product dissociation, the fluorescence 

anisotropy assay using dansyl labeled 11mer was conducted to monitor the weak 

interactions between enzyme and product under the metal free conditions or in the 

presence of high Mg(II) concentrations.  The simulated product (a 11mer duplex) is 

hybridized from complementary oligo strands fx09101 containing CAG-3’ hydroxyl 

group and fx09102 containing 5’phosphate CTG (Table 2.1), which reflects the 

cleavage site configuration of a 14mer used in the cleavage assay.  Considering the 

5’ phosphate as a potential Mg(II) ligand in the post-reactive complex, the non 

specific 11mer with the same sequence (no phosphate at 5’ terminus) was also tested 

using the same assay.  For this non specific 11mer without 5’ phosphate, the 

fluorescence anisotropy increased similarly due to enzyme binding to DNA, 

regardless the presence and absence of Mg(II) (Figure 4.8).  For the simulated 

product 11mer with 5’ phosphate it is surprised to observe the weak binding 

equilibrium (Kd > 10 µM) under metal free conditions but obviously this weak 

binding equilibrium has been perturbed at high Mg(II) concentrations (10 mM).   

Figure 4.8 shows the typical enzyme titration curves with 11mer product duplex and 

non specific 11mer duplex.  Except that titration with simulated 11mer product at 10 

mM Mg(II) does not show a obvious trend on anisotropy values, the obtained 

isotherms are used to yield Kd’s for enzyme binding to product.  
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Figure 4.8.  Mg(II) effect on the weak interactions between protein and product 
using fluorescence anisotropy binding assays.  All the oligos are dansyl labeled.  
The product 11mer duplex is hybridized from complementary oligo strands fx09101 
with CAG-3’ hydroxyl group and fx09102 with 5’phosphate CTG.  The nonspecific 
11mer duplex has the exactly same sequence as product 11mer except without a 5’ 
phosphate.  Duplex concentration is 2 µM under metal free conditions and 4 µM at 
10 mM Mg(II).  The buffer consists of 125 mM NaCl, 50 mM Tris without Mg(II) or 
100 mM NaCl, 50 mM Tris with 10 mM Mg(II).  The buffer pH was adjusted to 7.5 
at 25 ºC.  Except for the titration with simulated 11mer product at 10 mM Mg(II) (no 
trend), the obtained isotherms are used to yield Kd’s for enzyme binding to product.  
The averaged apparent Kd’s are about 15 µM. 
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Reaction Scheme.  Scheme 4.4 features candidate kinetic models to address 

the product release pathway.  Model B1 in Scheme 4.2 is in good agreement with 

experimental data and has the least error (see Section One vs. Two chemistry step).  

Therefore this model with obtained turnover rate constants (k5 & k6 in Table 4.5B) is 

selected to generate the new models for the dissection of the product release pathway.  

Starting with the post-reactive complex EMnP, the release of P can occur through 

EMnP (B1-1) or indirectly through an intermediate EP (B1-2) or both.  If either B1-1 

or B1-2 fits well with experimental data, in theory B1-3 should also fit well as long as 

one pathway dominates in B1-3.    

In the global fits, the metal binding association rate constants (k1 ad k3) are 

floating plus introduced product dissociation rate constants (k7 & k8).  In the model 

B1-2 and B1-3, the product bound enzyme is involved in the metal binding 

equilibrium, and the corresponding parameters have to be addressed.  In order to 

reduce the number of unknown kinetic parameters, EP (EM2P) are assigned to the 

same floating metal binding association rate constants as E (EM2) in the global fit.   

The anisotropy binding experiments (Figure 4.8) with simulated product duplex 

(11mer duplex hybridized from strands fx09101 and fx09102, see Chapter II) shows a 

weak binding equilibrium between enzyme and product with micromolar binding 

affinity under metal free conditions.  In order to simplify the model, the dissociation 

of product from EP complex is regarded as an irreversible step with one rate constant 

(k8) in most of the global fits.  Subsequently, trials to replace this step with an 
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Scheme 4.4.  The proposed candidate models to fit Mg(II) dependent steady 
state and pre-steady state experimental data.  The binding and turnover steps are 
from kinetic model B1 in Scheme 4.2.  Model B1-3 can be simply interpreted as the 
sum of the other two models.  The unity of and meaning rate constants in each step 
are consistent with models in Scheme 4.2.  Step 8 highlighted in dash line is actually 
a weak equilibrium with micromolar binding affinity, but can be handled as an 
irreversible product release step without affecting global fit quality.   
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equilibrium step (highlighted in dash line in Scheme 4.4) including k8 and k-8 are 

found to make no difference in the global fit output.   

Global Fits With Steady State Kinetic Data.  Using DynaFit, a single plot of 

the reaction rates as a function of Mg(II) under steady state conditions has been fitted 

to two models B1-1 and B1-2, respectively.  In the global fit of model B1, two 

separate trials were conducted regarding DNA binding affinity of EM2 specie.  

Those two trials differ in the selection of k2 value (k2=1*104 M-1s-1 in trial 1 and 

1*105 M-1s-1 in trial 2).    The same two trials have been conducted for model B1-1 

and B1-2.  In model B1-2, the EP (EM2P) complex is assumed to have the same 

metal binding affinity as apo-E (EM2), and the same binding rate constants k1 (k3) are 

assigned as shown in Scheme 4.4.  The best fits of model B1-1 and B1-2 in both 

trials are plotted in Figure 4.9. 

Comment on Steady State Kinetics.  In both trials, it is clear that model B1-1 

fits much better than model B1-2.  The Mg(II)-rate curve generated by the best fit of 

model B1-1 shows a plateau at Mg(II) concentrations above 5 mM in good agreement 

with experimental data.  The plot of model B1-2 appears to be bell shaped, deviating 

dramatically from the experimental plot.  In the case of model B1-2, the increase of 

metal concentration increases the amount of active species and speeds up the 

chemistry step.  However, the product release is limited by EP, and the amount of EP 

is reduced at high metal concentrations in a metal binding equilibrium.  Therefore, a 

bell shaped metal dependence on reaction velocity is expected.  It can be concluded  
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Figure 4.9.  The best fit to the Mg(II)-steady state velocity profile by two models 
B1-1 and B1-2.  The experimental conditions were 75 nM DNA and 1 or 2 nM 
enzyme with buffers containing various Mg(II) concentrations. The reactions were 
usually monitored for about 15 to 20 minutes.  The experimental velocities were 
calculated by the slope of linear phase in the reaction courses and normalized by 
enzyme concentrations.  In global fits, the steady state reaction velocity were 
calculated when the reaction lasted 500 seconds. 
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that model B1-1 fits better and the product release is independent of the metal 

dissociation from the active site.    

Global Fits With Pre-steady State Reaction Time Courses.  Both single 

turnover and multiple turnovers are monitored in the pre-steady state progress curves, 

indicated by burst phase and linear phase, respectively.  The best fit model for single 

turnover and steady state kinetics should also fit well with pre-steady state kinetic 

data.  A series of progress curves of pre-steady state data have been collected at 

Mg(II) concentrations from 2 mM to 10 mM with substrate concentrations in at least 5 

fold excess over enzyme concentration.  Global fits have been performed with this 

series of pre-steady state progress curves using models B1-1 and B1-2 in Scheme 4.4.  

The assignments of floating and fixed kinetic parameters are the same as described as 

in steady state kinetics section.  The plots of global fits to pre-steady state progress 

curves are shown in Figure 4.10.   

Comments On Pre-Steady State Kinetics.  It is obvious that model B1-1 

shows a much better fit quality than model B1-2 regardless of two trials.  It can be 

concluded that model B1-1 is the best model to fit pre-steady state experimental data.  

The errors status and derived unknown kinetic parameters are summarized in Table 

4.7.   The local fit using model B1-1 with steady state kinetic data shows a higher 

error status with metal association rate constant (k1 or k3) than the global fit with 

pre-steady state kinetic data using the same model.  This indicates that global fit can 

effectively improve the error status when floating multiple kinetic parameters.  The  

 



 

 161 

Figure 4.10.  Global fit of pre-steady state time courses under various Mg(II) 
concentration.  From bottom to top, the experiment data are collected under 
reaction conditions ([E]/[S] nM/nM) including 20/100 at 2, 2.5, 3, 4 mM Mg(II), 
15/150 and 20/100 at 4, 5 and 7 mM Mg(II),  10/100 and 15/100 at 10 mM Mg(II).   
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Table 4.7.  The best fit results of steady state and pre-steady state kinetics with 
model B1-1 and B1-2.  
 
 Steady state kinetics Pre-steady state kinetics 
Model  B1-1 B1-2 B1-1 B1-2 
Trial 1 
k1 (M-2s-1) 3.2e7 

(170%) 
2.5e7 
(260%) 

4.0e7 
(60%) 

4.8e6 
(610%) 

k3 (M-2s-1) 2.2e8 
(160%) 

2.9e7 
(180%) 

5.6e7 
(43%) 

7.5e8 
(600%) 

k7/k8a (s-1) 0.0047 
(6.5%) 

0.040 
(150%) 

0.0054 
(34%) 

0.011 
(38%) 

Trial 2 
k1 (M-2s-1) 1.2e7 

(130%) 
5.4e7 
(14%) 

1.6e7 
(34%) 

4.8e6 
(290%) 

k3 (M-2s-1) 4.7e8 
(150%) 

746600 
(570%) 

7.7e7 
(39%) 

7.8e8 
(290%) 

k7/k8 (s-1) 0.0047 
(4.8%) 

0.077 
(100%) 

0.0062 
(30%) 

0.0093 
(32%) 

Percentage errors are indicated in the bracket.  As shown in Scheme 4.4, k7 is for 
model B1-1 and k8 is for model B1-2.  In those global fits, step 8 is regarded as 
irreversible step with one kinetic parameter k8, not like in Scheme 4.4.  
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error status of product release rate constant (k7 or k8) is low and does not differ away 

data sets.  For model B1-1, most of the errors in global fits with pre-steady state time 

courses were well below 50% (except k1 in trial 1).  But global fits with model B1-2 

is generally higher than 100% (except k7).  Those results demonstrate that model 

B1-1 can account for both steady state and pre-steady state data sets, and the derived 

product release rate constants are consistent when using the same kinetic model.   

Global Fits With Binding Equilibrium For EP.  It seems that model B1-1 

works well with most of the kinetic data, so there is no need to explore model B1-3 

since model B1-1 is the part of it.  However, there are two small variations between 

modeling and experimental evidence.  It is mentioned above that step 8 in models 

B1-2 and B1-3 (Scheme 4.4) is a weak equilibrium with micromolar binding affinity, 

rather than irreversible.  Does this small variation change our conclusion that model 

B1-1 fits experimental data better than B1-2?  In model B1-2, E (EM2) and EP 

(EM2P) are assumed to have the same metal binding affinities.  What are the metal 

binding affinities of EP and EM2P if they are floating as unknown parameters (model 

B1-3 in Scheme 4.4)? 

Model B1-2* (to distinguish the previously discussed B1-2) is constructed by 

assigning step 8 as an equilibrium characterized by two kinetic parameters (k8 and 

k-8).  k8 is still floating as in the previous global fit (Table 4.7), and k-8 is fixed to 

be 300 M-1s-1.  The DNA binding association rate constant for cognate DNA under 

metal free conditions is about 3000 M-1s-1 (in Table 4.5), and a 10 fold decrease 

should make sense for a product association rate constant since binding affinity of 
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cognate DNA and product to apo enzyme are about 300 nM (Table 4.1) and 10 µM 

(averaged values from binding experiments in Figure 4.8), respectively.  The 

comparison of global fits with model B1-2 and B1-2* is summarized in Table 4.8A 

including derived kinetic parameters and standard deviations.  It is obvious that 

treating step 8 as equilibrium or irreversible product dissociation really makes no 

difference in global fit results using model B1-2.   

Two trials of global fits have been conducted with pre-steady progress curves 

in order to estimate the unknown metal binding affinity of EP (EM2P) and examine if 

treating step 8 as equilibrium or irreversible step makes any difference for model 

B1-3.  In trial 1, k9, k10, k7 are floating, and equilibrium of step 8 has been 

characterized by on and off rate constants (k8 is fixed as 0.003 s-1 and k-8 is fixed as 

300 s-1).  In trial 2, k9, k10, k7 and k8 (irreversible step) are all floating.  k1 and k3 

are both fixed from the derived Mg(II) binding association rate constant from model 

B1 in Table 4.5.  Table 4.8B summarizes the derived kinetic parameters and error 

status for both trials.  Derived parameters do not make any different in derived 

kinetic parameters.  Even derived k8 from trial 2 is the same as fixed k8 in trial 1.  

Those two trials fully demonstrate that assuming step 8 is irreversible in previous 

global fits (Table 4.7) is valid and should not cause any problems.  It is also 

noticeable that the derived metal binding affinity of EP (EM2P) is within the same 

range as apo E (EM2) (Table 4.8B). 

These results are expected because in either steady state kinetics or pre-steady 
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Table 4.8.  The potential influence of weak equilibrium between apo enzyme 
and product on global fit results.  A: influence on model B1-2, B: influence on 
model B1-3.   
 
A. Comparison of model B1-2 and B1-2* by the best fit of steady state kinetic and 
pre-steady state kinetics.  

Model  
Standard 
deviation 

 

k1 
(M-2s-1) 

k3 
(M-2s-1) 

k8 
(s-1) 

Steady State Kinetics 

B1-2 2.49e-4 
5.4e7 

 (14%) 
7.5e5 

(570%) 
0.077 

(100%) 

B1-2* 2.49e-4 
5.4e7  
(14%) 

7.5e5 
(570%) 

0.077 
(100%) 

Pre-steady state Kinetics 

B1-2 2.72e-9 
4.8e6  

(290%) 
7.8e8 

(290%) 
0.0093 
(32%) 

B1-2* 2.72e-9 
4.4e6 

(310%) 
8.5e8 

(320%) 
0.01 

(32%) 
 
B. Comparison of global fit results with step 8 as equilibrium and irreversible on 
model B1-3.  The pre-steady state kinetic data is the same shown in Figure 4.10.  
k1 and k3 are fixed according to global fit of model B1 in Table 4.5B.     

Model  
Standard 
deviation 

k9a 

(M-2s-1) 
k10b 

(M-2s-1) 
k7 

(s-1) 
k8 

(s-1) 

Trial 1 2.5e-4 
1.5e7 

(170%) 
5.74e7 
(38%) 

0.0063 
(29%) 

n/a 

Trial 2 2.5e-4 
1.55e7  
(270%) 

5.72e7 
(70%) 

0.0063 
(38%) 

0.0030 
(110%) 

a. k9 is the association rate constant of step 9 (EP + 2M <->EM2P) in model B1-3 of 
Scheme 4.4.  The calculated Kd for step 9 is 8.2 mM. 

b. k10 is the association rate constant for step 10 (EM2P + 2M <->EM4P) in B1-3 of 
Scheme 4.4.  The calculated Kd for step 10 is 4.2 mM. 
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state kinetics, the concentration of enzyme (<50 nM) and DNA (<200 nM) is too low 

to form a large proportion of EP complex (micromolar binding affinity).  Since there 

is little EP complex, the product dissociation can be treated as irreversible without 

affecting any global fit results. 

Possibility of One Unique Kinetic Model For Single Turnover Kinetics, 

Steady State Kinetics And Pre-Steady State Kinetics.  

Returning to our goal of using one unique, complete kinetic model to unify all 

metal dependence of specific DNA binding and cleavage by PvuII, a kinetic model 

B1-1 shown in Scheme 4.4 seems to be our answer.  The following assumptions 

have been made to reduce unknown parameters in order to improve fitting quality.  

The number of Mg(II) ions bound in the post-reactive complex may not affect the 

product dissociation rate constants (in model B1-1, the product dissociation rate 

constant k7 is used for both EM2P and EM4P).  Substrate dissociation rate constants 

were measured experimentally and assumed to be the same for all DNA dissociation 

steps (Table 4.2).  Metal ion dissociation rate constants were obtained from 

references and assumed to be the same for all metal dissociation steps (Table 4.4) 

The following conclusions can be drawn from the kinetic modeling.  In the 

reaction, metal ion association mostly occurs prior to the DNA association, a sequence 

which has been proven to be kinetically more favorable.  The binding mechanism of 

DNA association prior to metal ions is shown to be kinetically unfavorable (model 

A2/B2 or A3/B3 for single turnover kinetics).  Two separate trials have been 

conducted with different DNA association rate constants for EM2, and trial 2 actually 
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is more reasonable than trial 1 (Kd = 100 nM in trial 1 and 10 nM in trial 2 for EM2) 

because assumed 100 nM DNA binding affinity in trial 1 is too close to determined 

affinity (307±146) nM under metal free conditions and probably is not valid in the 

case of one metal binding site occupied.  

Model B1 supports enzymatic activity when one metal binding site is occupied.  

Two different turnover rate constants (Table 4.5) have been derived (k5=1.128 s-1 for 

EM4 and k6=0.02 s-1 for EM2) from global fit, which indicates that one-metal ion 

catalytic activity is about 50 fold slower than two-metal ion catalytic activity.  The 

presence of second metal ion in the active site seems to effectively lower the 

activation energy barrier.  This can be attributed to protonation of the leaving group 

and stabilization of the transition state by electrostatic interactions.  For the multiple 

turnover reactions, enzyme dissociates from the product and metal ions are still bound 

in the active site.   

The derived metal binding affinities are summarized in Table 4.9 in order to 

examine if the unique model can accounts for all the experimental data.  Except for 

Ca(II) binding experiments with metal ion binding affinities of micromolar, all other 

kinetic experiments generate metal binding affinities for two sequential Mg(II) 

binding steps within a range from 1 to 10 mM (Table 4.9).  In trial 2, Kd1 is always 

higher than Kd3, regardless of the data sets used in global fits, and similar metal 

binding affinities have been obtained for three different data sets.  These 

comparisons provide the confidence that model B1-1 probably is the unique kinetic  
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Table 4.9.  Best fit derived metal binding equilibrium constants and product 
release rate for DNA binding, single turnover kinetics, steady state kinetics and 
pre-steady state kinetics.  
 

Derived kinetic 
parameters 

DNA binding 
Single 

turnover 
kinetics 

Pre-steady 
state kinetics 

Steady state 
kinetics 

Scheme 4.1 4.2 4.4 4.4 
Trial 1 

Metal ion Ca(II) Mg(II) Mg(II) Mg(II) 
Kd1 (mM) 0.087 2.7 5.0 5.6 
Kd3 (mM) 4.3 4.5 4.2 2.2 
k7 (sec-1) n/a n/a 0.0054 0.0047 

Trial 2 
Metal ion Ca(II) Mg(II) Mg(II) Mg(II) 
Kd1 (mM) 0.12a 7.9 7.9 9.4 
Kd3 (mM) 2.1a 2.1 3.6 1.5 
k7 (sec-1) n/a n/a 0.0062 0.0047 

The global fit results are summarized in trial 1 and trial 2, respectively.  The 
meaning of trial 1 and trial 2 are different for Ca(II) dependent DNA association data 
and Mg(II) dependent cleavage data (see Results Table 4.1, Table 4.5 and Table 4.7).  
The Ca(II) binding affinities in trial 2 are fixed in the global fit and are obtained from 
ITC experiments.  The applied reaction scheme for each global fit is indicated.  
a. (Jose, et al., 1999) 
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model for single turnover, steady state and pre-steady state kinetics.  The DNA 

binding equilibrium constants used in global fits could not be measured directly, and 

are estimated from steady state kinetics data (Table 4.3).  These approximations can 

contribute to uncertainty in the global fits and contribute to the differences on the 

metal binding affinities derived from single turnover, steady state and pre-steady state 

data sets.   
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DISCUSSION 

Ca(II) Dependence of Specific DNA Binding.  Ca(II) is the metal cofactor 

used in the specific DNA binding measurements for type II restriction endonucleases 

since it does not support hydrolysis (Engler, et al., 1997; Engler, et al., 2001; Reid, et 

al., 2001; Conlan & Dupureur, 2002b; Conlan & Dupureur, 2002a).  The two Ca(II) 

binding sites for each subunit in the crystallographic structure of PvuII-DNA complex 

agree well with Hill analysis (nH = 3.6 per dimer) of the sigmoidal DNA association 

constants as a function of Ca(II) concentration (Figure 4.2) (Conlan & Dupureur, 

2002b).  As shown in Scheme 4.1, DNA binding in the presence of Ca(II) is 

described as stepwise, excluding the possible DNA binding to apo-enzyme prior to the 

metal ion association.  Global fit yields the DNA association constant (10 nM in 

Table 4.1) when one metal binding site is occupied, which was not available 

experimentally.  The DNA binding affinity to PvuII is enhanced by 30 fold when 

filling the first site and by 50 (in trial 1 of Table 4.1) or 80 fold (in trial 2 of Table 4.1) 

when filling the second site.  This indicates that the contribution of the first and 

second Ca(II) ions to the DNA dissociation are similar.  The crystallographic 

structure of PvuII (1F0O) shows that both Ca(II) ions coordinate with Asp58, Glu68 

and oxygen O2P of the scissile phosphate, supporting the similar geometry for their 

coordinations (Figure 4.1A) (Horton & Cheng, 2000).  The derived Ca(II) binding 

affinities for two sites from the global fits shows good agreement with binding 

affinities obtained with ITC data (Jose, et al., 1999).  ITC data fitted to two 

independent site equation yields a strong site with an affinity of 120 µM and a weak 
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site with an affinity of 2.1 mM, while global fit resulted in Ca(II) binding affinities of 

120 µM and 4.3 mM (Table 4.1).  The observation of a strong and weak metal 

binding site may be attributed to the repulsive interactions between two Ca(II) ions.  

Ca(II) vs Mg(II).  It is known that the addition of Ca(II) inhibits the 

enzymatic activity in a 5 mM Mg(II) background (unpublished results), which 

indicates that Ca(II) ions can effectively substitute the bound Mg(II) ions in the PvuII 

active site.  This may be attributed to the different metal binding affinities of PvuII 

with Ca(II) and Mg(II).   

Ca(II) and Mg(II) Binding Affinities.  

The Ca(II) titration with PvuII using ITC shows a strong site with micromolar 

affinity and a weak site with millimolar affinity (Table 4.1).  The global fits with 

Mg(II) dependent kinetic data show millimolar affinities for both sites (Table 4.9).  

The binding affinities of Mg(II) for some metallonucleases are summarized in Table 

4.10A.  The typical Mg(II) binding affinity for metallonucleases is within a range 

from sub-millimolar to a few millimolar.  Table 4.10B compares the binding 

affinities between Mg(II) and Ca(II) for the same enzymes.  For the metallonucleases, 

there are no dramatic differences in Ca(II) and Mg(II) binding affinities since both are 

divalent metal ions.  However, parvalbumin is an exception in that Ca(II) binding 

affinity is over 20 fold higher than Mg(II). 
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Table 4.10 A.  Mg(II) binding affinities of enzymes.  

Enzyme Methods 
Binding 
affinity 
(mM) 

Reference 

Klenow ITC 0.16 (Cowan, 1997) 
Klenow ITC 0.4 (Cowan, 1997) 

Ribonuclease H 25Mg NMR 0.06 (Cowan, et al., 1997) 
Ribonuclease H 1H NMR 0.2 (Cowan, et al., 1997) 

exo III ITC 0.91 (Black & Cowan, 1998) 
EcoRI ENase Kinetics 3.1 (JenJacobson, et al., 1996) 
EcoRV Enase Kinetics 5 (Engler, et al., 1997) 
EcoRV Enase Kinetics 1.3 (Groll, et al., 1997) 
BamI Enase Kinetics 4.7 (Engler, et al., 1997) 
PvuII Enase 25Mg NMR 1.9 (Dupureur & Conlan, 2000) 

Pyrophosphatase Dialysis 0.083 (Kapyla, et al., 1995) 
Pyrophosphatase Dialysis 1.67 (Kapyla, et al., 1995) 

Parvalbumin ITC 0.01 (Moeschler, et al., 1980) 
T7 RNA 

Polymerase 
EPR 2 (Woody, et al., 1996) 

Farnesyltransferase Kinetics 4 (Pickett, et al., 2003) 
Hepatitis Delta 

Virus Ribozyme 
Kinetics 2.4 (Nakano, et al., 2000) 

 
 
 
 
 
 
 
 
 
 
 



 

 173 

Table 4.10 B.  The comparision of Mg(II) and Ca(II) binding affinities for the 
same enzyme.  
 

Enzyme 
Kd of 
Ca(II) 
(mM) 

Kd of 
Mg(II) 
(mM) 

Experiments  Reference 

Exo III 1.8 0.91 ITC (Black & Cowan, 1998) 

PvuII Enase 1.3 1.9 
ITC and 25Mg 

NMR 
(Dupureur & Conlan, 2000) 

(Jose, et al., 1999) 
Parvalbumin 3.7*10-4 0.01 ITC (Moeschler, et al., 1980) 

Rat α PV 8.3*10-3 0.105 ITC (Henzl, et al., 2003) 
Rat β PV 4.55*10-2 0.091 ITC (Henzl, et al., 2003) 
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The ionic radius of Ca(II) is 0.34 Å larger than that of Mg(II), and Ca(II) 

prefers a longer coordination distance (2.5 Å) than Mg(II) (2.0 Å) (Horton & Cheng, 

2000).  For two metal binding sites, the difference in binding affinity between the 

strong and weak sites for Mg(II) is not as dramatic as that for Ca(II).  For the derived 

Mg(II) binding affinities in global fits (Table 4.9, trial 2), the difference in binding 

affinities between strong and weak binding sites is between 2 and 6 fold, and two sites 

tend to have similar metal ion binding affinities.   

The distances between two metal ions captured in the crystal structures for 

metallonucleases are summarized in Table 4.11.  It seems that the distance between 

two metal ions regardless of Ca(II) or Mg(II) is ranging from 3.5 Å to 5.5 Å, which 

demonstrates that the geometry and configurations of two Ca(II) and Mg(II) ions in 

the active sites are similar for most of metallonucleases.  Carboxylic groups (Asp 

and Glu) are the common ligands for both metal ions.  The difference of ligation 

between Ca(II) and Mg(II) is the extensive hydration of Mg(II) and possible 

outer-sphere interactions between Mg(II) ions and their binding sites (Cowan, 1998).  

In the crystallographic structure of PvuII-Ca(II)-DNA, the direct Ca(II) phosphate 

contact is observed and the Ca(II) ions follow inner-sphere interactions in this case 

(Horton & Cheng, 2000).   

 Ca(II) and Mg(II) Dependent DNA Association.  

In the presence of 10 mM Ca(II), the DNA dissociation constant is about 100 

pM (Table 4.1), whereas the derived DNA dissociation constant is about 5 nM (Table 

4.4) in the presence of the same concentration of Mg(II).  Table 4.12 lists  
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Table 4.11.  The summary of distance between two metal ions in the crystal 
structures of nucleases.  
 

Enzyme 
Metal 
ions 

Distance 
(Å) 

pdb 
code 

Remark 

Pvu II Ca(II) 3.5 1F0O Subunit A 
Pvu II Ca(II) 4.2 1F0O Subunit B 
Bgl I Ca(II) 4.3 1DMU  

BamHI Ca(II) 4.3 2DAM  
BamHI Mn(II) 3.9 3BAM  
EcoRV Ca(II) 5.4 1BSS  
EcoRV Mg(II) 5.43 1RVS  
EcoRV Mn(II) 3.62 1SX5 Subunit A 

T7 Enase I Mn(II) 3.52 1M0D  
TnsA Mg(II) 4.0 1F1Z  

NgoMIV Mg(II) 3.7 1FIU  
Vsr endonuclease Mg(II) 4.0 1CW0  

HincII Mn(II) 4.1 1XHV  

 
List of references for pdb files: 
1F0O (Horton & Cheng, 2000), 1DMU (Newman, et al., 1998), 2DAM (unpublished 
result), 3BAM (Viadiu & Aggarwal, 1998), 1BSS (Horton, et al., 1998), 1RVS 
(Jaroniec, et al., 2004), 1SX5 (Horton & Perona, 2004), 1M0D (Hadden, et al., 2002), 
1FIZ (Tranter, et al., 2000), 1FIU ((Deibert, et al., 2000), 1CW0 (Tsutakawa, 1999), 
1XHV (Etzkorn & Horton, 2004). 
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Table 4.12.  Summary of Ca(II) and Mg(II) dependence on DNA binding 
affinity. 
 

Substrate 
Relative DNA 

binding affinitya Endonuclease Reference 

3’-S-phosphorothiolate 175 EcoRV (WT) (Engler, et al., 1997) 
4’-thiodeoxyribose 92.5 EcoRV (WT) (Engler, et al., 1997) 
UA instead of TA 3.6 EcoRV (WT) (Martin, et al., 1999a) 
UA instead of TA 93 EcoRV (K38A) (Martin, et al., 1999a) 

CI (inosine) instead of 
TA 

24 EcoRV (K38A) (Martin, et al., 1999a) 

CG instead of TA 1.1 EcoRV (K38A) (Martin, et al., 1999a) 
Nspb strand 1 EcoRV (K38A) (Martin, et al., 1999a) 

phosphoramidate 50 PvuII (WT) (King, et al., 2004) 
a. Relative DNA binding affinity is the ratio of DNA binding affinity at the same 
concentration of Ca(II) and Mg(II): Ka(Ca2+)/Ka(Mg2+).  b. Nsp means non specific 
DNA sequence for endonucleases.  The non-hydrolyzable substrates have been used 
in the measurement of binding affinity in the presence of Mg(II). 
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determined DNA binding affinities with Ca(II) and Mg(II) at the same concentration 

for restriction endonucleases.  For the non-hydrolysable DNA, Ca(II) stimulates a 

nearly 200 fold binding enhancement of DNA association compared with the same 

concentration of Mg(II) (Engler, et al., 1997).  The inactive mutant K38A of EcoRV 

also shows a 50 fold enhancement of DNA binding affinity with Ca(II) compared to 

Mg(II) at the same concentration (Martin, et al., 1999a).  It seems electrostatic 

interactions can not solely account for this enhancement on DNA association since 

Ca(II) and Mg(II) both are divalent ions.  The reason may be the different type of 

ligation (inner vs. outer sphere interactions) and different size between Ca(II) and 

Mg(II).  The size of Ca(II) is slightly larger and Ca(II) may better coordinate with 

the bending of DNA molecules upon binding.  

The Number of Metal Ions Required In Catalysis.  It is certain that there 

are two metal ions involved in DNA binding, whereas the number of metal ions 

required in catalysis has been unclear.  To address this problem, the kinetic models 

are divided into group A and group B; group A contains one chemistry step which 

requires both metal binding sites to be occupied.  Group B contains two chemistry 

steps which require at least one metal binding site to be occupied.  It is found that 

group B fits the experimental single turnover data better than group A, which 

indicates that one metal ion occupied in the active site is able to support catalysis with 

reduced activity.  The kinetic model B1 yields a turnover rate constant 1.13 s-1 (k5 in 

Table 4.5B trial 2) when both sites are filled and turnover rate constant 0.02 s-1 (k6 in 

Table 4.5B trial 2 ) when one site is filled.  An enhancement of 50 fold in enzymatic 
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activity is estimated upon to the addition of the second Mg(II) ion.  The turnover rate 

k5 is considered as the intrinsic and the maximal activity for PvuII with given pH (7.5) 

and temperature (37 ºC), which is independent of Mg(II) concentration.  It is noted 

that the derived k5 is higher than the measured single turnover rate constant of 0.24 s-1 

with 2 µM enzyme and 0.47 s-1 with 5 µM enzyme at 10 mM Mg(II).  This indicates 

that the measured rate constant is still influenced by the enzyme concentration 

because DNA association step is not fast enough to be neglected, which is in a good 

agreement with a slow DNA association rate (k4 = 2*105 M-1s-1 in Table 4.5) constant 

used in global fits.  For plasmid cleavage by MunI, the maximal single turnover 

activity is reported to be 1.9 s-1 (Sasnauskas, et al., 1999).  For EcoRV, the measured 

single turnover rate is 0.62 s-1 at 10 mM Mg(II) with 150 nM enzyme and 50 nM 

oligonucleotides (Sam & Perona, 1999a).  The determined rate constants with PvuII 

seems slower than those published data, and derived k5 agrees well with them. 

The mixing procedure to initiate the reaction may affect the measured single 

turnover rates.  Three different mixing protocols have been used in our lab to address 

the potential influence of order addition on the measured activity.  It was observed 

that reactions initiated by Mg(II) are generally slower than reactions initiated by 

enzyme, regardless of enzyme is pre-mixed with Mg(II) or not (Baldwin, et al., 1995; 

Sam & Perona, 1999a).  As shown in Table 4.13, most of the cleavage rate constants 

using protocol 1 are higher or similar to those values using protocol 2 except at 2 mM 

Mg(II).  At 1 mM Mg(II), the average rate using protocol 1 falls within the range of  
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Table 4.13.  The summary of measured PvuII enzyme activity for different 
mixing protocols. 
 
Mg(II) (mM) Average kobs under single turnover reaction conditions (s-1) 

 
Mixing protocol # 1 

E + MS 
Mixing protocol # 2 

ES + M 
Mixing protocol # 3 

EM + SM 
0.5 0.0024 0.005a n/a 
1 0.0027 0.024b n/a 
2 0.015 0.035b n/a 
3 0.053 0.039b n/a 

10 0.23 n/a 0.26 
 
E, S and M represents enzyme dimer, substrate and Mg(II) cofactors. MS means 
pre-mixing metal cofactor with substrate. ES means pre-mixing apo enzyme and 
substrate without the presence of Mg(II) cofactor. EM and ES means both enzyme and 
substrate containing Mg(II) cofactor. The single turnover conditions are 2 µM enzyme 
and 300 nM substrate, pH 7.5 at 37 ºC. 
a. The three trials are 0.0047, 0.008, 0.0017 s-1 and the average rate constant in 
protocol #1 actually falls within it.  
b. The error bar of those average values are within 0.005 s-1 for three trials. 



 

 180 

three trials using protocol 2 (see notes of Table 4.13).  This is consistent with 

observations that reactions initiated by adding Mg(II) into enzyme-DNA complex are 

generally slower.  Protocol 1 and protocol 3 yield similar rate constants at 10 mM 

Mg(II) in.  So pre-mixing enzyme with metal ions or not does not affect the 

measured cleavage rate since DNA association is rate limiting step in the formation of 

EMnS complex.    

Figure 4.5A clearly shows that all the plots of Mg(II)-kobs are sigmoidal shape, 

regardless of the number of chemistry steps.  Since the apparent cleavage rate is a 

result of binding and catalysis, the two sequential metal ion binding steps in the 

two-site kinetic models seems sufficient to provide the sigmoidal shape.  The 

sigmoidal dependence can also be the result of cooperativity between multiple sites, 

which complicates the dissection of the number of metal ions in catalysis.   

For EcoRV, which is structurally similar to PvuII, Pingoud was not convinced 

that a second metal ion was directly relevant to catalysis because Ala mutation on a 

metal binding site E45 yielded cleavage activity reduced by only 1.8 fold compared 

with WT (Groll, et al., 1997).  Fuxreiter probed the Mg(II) positions in the active site 

of BamHI by molecular dynamics simulations and suggested a single metal ion is 

critical in catalysis and a second metal ion serves a regulatory function (Mones, et al., 

2007c).  Although EcoRV, BamHI and PvuII structurally can tolerate two metal ions 

in their active sties, they may just need one metal ion for catalysis.  Different 

approaches (mutagenesis, molecular dynamics simulation and kinetic modeling) 

surprisingly appear to draw the same conclusion (Groll, et al., 1997; Mones, et al., 
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2007a; Mones, et al., 2007b).  

Two Distinct Sites (A and B) In PvuII.  As shown in Scheme 4.3, two 

distinctive metal binding sites are distinguished in the kinetic models and finally 

conclude two sites equivalent with positive cooperativity (best fit model C1).  Two 

equivalent sites can be interpreted from the PvuII crystal structures containing two 

Ca(II) ions each subunit, which shares the same ligands and geometries.  In Table 

4.6B for model C1, the interaction factor differs in two trails depending on DNA 

binding affinity of EM2 (100 nM in trial 1 and 10 nM in trial 2).  The tighter DNA 

binding for EM2 in trial 2 resulted in a stronger cooperativity between two sites.  

This suggests that the cooperativity between two metal binding sites may be a result 

of DNA binding rather than the repulsive interactions between two Mg(II) ions since 

negatively cooperative metal ions binding affinities would be expected due to 

repulsive interactions.  The scissile phosphates provide additional metal binding 

ligands, and cause dramatic conformational changes in restriction enzymes (Horton & 

Cheng, 2000; Spyridaki, et al., 2003; Dupureur, 2005).   

The global fits for four reaction pathways (from B1 to B4) appear to support 

the subsequent metal binding mechanism and metal binding steps are prior to DNA 

binding.  If the bound DNA enhances the binding affinities of the second metal ion, 

DNA must bind before the second metal ion as modeled in candidate B3 or they binds 

to the enzyme simultaneously.  Since model B3 has the large standard deviations and 

error status, the simultaneous binding of the second metal ion and DNA probably 

occurs when the second site is filled up.  The only related experimental evidence 



 

 182 

about two metal binding order is stop flow experiments on EcoRV (Baldwin, et al., 

1995), which identified two metal dependent transitions.  The affinities of site A and 

site B can be estimated from trial 2 using model C1 (Table 4.6), similar to derived 

metal binding affinities using model B1 (Table 4.5).  Without filling up another site, 

Mg(II) in one site can solely support the cleavage and this cleavage rate is indicated 

by rate constant k6, which is derived ranging from 0.01 up to 0.049 s-1 depending on 

trials. 

Mg(II) Ion Included In Post-Reactive Complex.  The best fit kinetic model 

B1-1 with multiple turnover data sets strongly suggests that metal ions remain bound 

in the post-reactive complex, and product release occurs without the dissociation of 

metal ions in the active site.  This conclusion is also supported by the crystal 

structures of a post-reactive complex containing Mg(II) ions in EcoRV (Kostrewa & 

Winkler, 1995).  The measured steady state velocity at saturated Mg(II) 

concentrations is comparable with the cognate DNA dissociation rate constant (in 

Table 4.2).  The similarity of those two rate constants implies that the product 

release measured in steady state kinetics is fully a physical process.  Compared with 

the binding step and the chemistry step, product release is much slower and is 

considered the rate limiting step in overall reaction scheme.  So a burst phase in the 

pre-steady state kinetics can be visualized (Figure 4.7).  The crystal structure of 

pre-reactive complexes and post-reactive complexes shows the Mg(II) ions binding at 

different sites, which reflects the change of the Mg(II) binding environment once the 

scissile phosphate is broken (Kostrewa & Winkler, 1995).   It is worth noting that 
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the fits of B1-2 were conducted based on the assumption that metal ion binding 

affinities of the enzyme product complex are the same as apo-enzyme.  This might 

not be true because the metal-phosphate contact is absent in the PvuII-Mg(II) complex 

but present in the post-reactive complex of EcoRV (Kostrewa & Winkler, 1995).  A 

global fit using model B1-3 in Scheme 4.4 performed with pre-steady state reaction 

courses with fixing k1 and k3 (from Table 4.5B model B1) generated metal binding 

affinities for EP and EM2P which are about 4 mM and 8 mM, respectively (derived 

from Table 4.8B, k9 and k10 are metal binding association rate constants for EP and 

EM2P, respectively).  This indicates that although enzyme product complex may not 

have the same metal binding affinity as apo enzyme, the values are still within 10 mM 

and do not change much.  

Although the kinetic models B1 and B1-1 are limited by the assumptions and 

approximations of fixing kinetic parameters, the global fits with this kinetic model 

produced the unknown kinetic parameters which are hard to measure experimentally 

with small error status.  The outputs are similar for single turnover, steady state and 

pre-steady state kinetics.  The derived metal ion binding affinities and kinetic 

behavior supports one-metal ion catalytic mechanism with the assumption of one 

catalytic site and one regulatory site, which shows good agreement with work on 

other type II endonucleases.  
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Appendix I 
 
Scripts for global fit.  
[task]a 

 
   data      = progress         

   task      = fit                     

 
[mechanism]    
 
   E + M + M <--> EM2       :    k1  k-1 
   EM2 + S <--> EM2S        :    k2  k-2 
   EM2 + M + M <--> EM4     :    k3  k-3 
   EM4 + S <--> EM4S        :    k4  k-4 
   EM4S --> P               :    k5 
   EM2S --> P               :    k6 
  
[constants]     

     
   k1 = 1E8 ?,         k-1 = 1000          
   k2 = 1E+5 ,       k-2 = 0.001          
   k3 = 1E8 ?,         k-3 =  1000  
   k4 = 2E+05 ,       k-4 = 0.001       
   k5 = 0.6 ?      
   k6 = 0.05 ?  
 
[responses] 
 
   P = 1 
                               
[progress]b   
   offset auto  
   directory ./examples/fuqian/sto/data/ 
   extension   txt 
 
file       fx61214(3.5) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 3.5E-3     
file       fx61207(3.5) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 3.5E-3  
file       fx61112(4) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 4E-3  
file       fx61214(4) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 4E-3  
file       fx70108(5) 
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   conc.       E = 2000e-9 , S = 300e-9 , M = 5E-3 
file       fx70109(5) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 5E-3 
file       fx61204(7) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 7E-3  
file       fx61207(7) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 7E-3   
file       fx70103(10) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 10E-3   
file       fx71011(12) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 12E-3 
 
delay  1.5c  
 
file       fx61207(0.1) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 0.1E-3 
file       fx61204(0.5) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 0.5E-3 
file       60712(1) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 1E-3 
file       60713(1) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 1E-3 
file       60706(1.5) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 1.5E-3 
file       60713(1.5) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 1.5E-3 
file       fx61122(2) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 2E-3    
file       50415(2.5) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 2.5E-3 
file       fx61207(3) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 3E-3  
file       fx61205(3) 
   conc.       E = 2000e-9 , S = 300e-9 , M = 3E-3  
    
[output] 
 
   directory ./examples/fuqian/sto/b1 
 
[settings] 
 
   <Filter> 
      Scale      = seconds 
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The best fit of reaction courses at various Mg(II) concentrations given by 
Dynafit. 

 
 
 
The standard error status of floating four kinetic parameters.  
 

 
Note:  

a. The data type could be progress or equilibrium or velocity, task type could be either 

fit or simulate. 

b. All the data sets are listed as below, the number in the bracket indicate the metal 

ion concentrations. E, S and M represent enzyme dimer, substrate and metal ions. 

Their concentrations are given for each data set-a single reaction course.  

c. Reaction samples collected manually needs 1.5 seconds mixing time while reactions 

monitored by quench flow doesn’t need since it is a real time experiment.   
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Appendix II. The electrostatic potentials among four conserved active site 
residues: D58, E68, K70 and Y94.  
 

Refer the part “Theory and Methods” for the definition and instruction about 
electrostatic potential.  pKa calculations were preformed based on 1F0O subunit 
A structure in the presence of two Mg(II) ions and one water molecules (W1035) 
as shown in Figure 3.5. 

 
Residue Electrostatic potential 

D58 n/a - - - 
E68 1.83269 n/a - - 
K70 0.678835 1.82826 n/a - 
Y94 0.58314 1.62349 2.44791 n/a 

 D58 E68 K70 Y94 
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Appendix III.  Summary of metal ligated water pKa on metallonucleases. 
 

Enzyme pdb code pKa, apparent 
Model 

pKa 
Operations M(II) 

1H56(subunit A) 6.5 11.4 WT One Mg2+ 

1H56(subunit A) 9.8 11.4 K70A One Mg2+ 
1F0O(subunit A) 7.4 11.4 WT Two Mg2+ 
1F0O(subunit A) 9.9 11.4 K70A Two Mg2+ 
1F0O(subunit B) 9.3 11.4 WT Two Mg2+ 
1F0O(subunit B) 10.5 11.4 K70 off Two Mg2+ 
1F0O(subunit B) 8.7 11.4 K70Q Two Mg2+ 

PvuII 

1F0O(subunit B) 10.7 11.4 Q70 off Two Mg2+ 
1HXV(subunit A) 10.8 14 WT Two Mn2+ 
1HXV(subunit A) 12.2 14 K129A Two Mn2+ 
1HXV(subunit A) 7.1 11.4 WT Two Mn2+ 
1HXV(subunit A) 8.2 11.4 K129A Two Mn2+ 
1HXV(subunit A) 6.3 10.6 WT Two Mn2+ 

HincII 

1HXV(subunit A) 7.4 10.6 K129A Two Mn2+ 
1EO4(subunit A) 7.3 10.6 WT Two Mn2+ 
1EO4(subunit A) 8.5 10.6 K91A Two Mn2+ 
1EON(subunit A) 8.6 11.4 WT Two Mg2+ 
1EON(subunit A) 10.7 11.4 K91A Two Mg2+ 
1RVB(subunit B) 8.9 11.4 WT Two Mg2+ 
1RVB(subunit B) 10.1 11.4 K91 off Two Mg2+ 
1SX5(subunit A) 9.5 14 A38K Two Mn2+ 
1SX5(subunit A) 11.6 14 K91off Two Mn2+ 
1SX8(subunit B) 6.6 10.6 WT Two Mn2+ 

EcoRV 

1SX8(subunit B) 8.3 10.6 K92A Two Mn2+ 
1F1Z(subunit A) 6.3 11.4 WT Two Mg2+ 

TnsA 
1F1Z(subunit A) 7.9 11.4 K132 off Two Mg2+ 
1M0D(subunit A) 6.3 10.6 WT Two Mn2+ 

T7 Endo I 
1M0D(subunit A) 7.9 10.6 K67 off Two Mn2+ 
1QPS(subunit A) 7.5 10.6 WT One Mn2+ 

EcoRI 
1QPS(subunit A) 8.1 10.6 K113A One Mn2+ 
1F1U(subunit A) 5.6 11.4 WT Two Mg2+ 

NgoMIV 
1F1U(subunit A) 7.2 11.4 K187 off Two Mg2+ 

 

The pdb files are downloaded from www.rcsb.org.  The subunit of the crystal 
structures are modified according to the “mutation” or “off” operations as described in 
Experiments and Methods. 
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Appendix IV.  pH dependent activity equation (3). 

The ionizations scheme is shown as above.  The assumptions include:  
1). EH4 loses one proton through intermediate EH3 step by step with apparent 
equilibrium constant Ka1.  
2). E has two proton binding sites corresponding to general base and general acid 
catalysis.  EH is active and HE is inactive.  
 
The apparent activity kobs=kmax*EH/Etotal. 
Etotal=EH4+HEH+EH+HE+E 
According to ionizations shown in the scheme, EH4, HEH, HE and E all can be 
expressed as a function of EH. 
 
EH4=EH*102*pKa1+pKa2-3*pH; 
HEH= EH*10pKa2-pH; 
HE= EH*10pKa2-pKa3; 
E= EH*10pH-pKa3 
Therefore, kobs=kmax/(1+10(2*pKa1+pKa2-3*pH)+10(pKa2-pH)+10(pH-pKa3)+10^(pKa2-pKa3)). 
 

HEH

EH HE

E

EH4

Ka1

Ka2

Ka2

Ka3

Ka3

HEH

EH HE

E

EH4

Ka1

Ka2

Ka2

Ka3

Ka3
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