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ABSTRACT 

 
Ecological and historical approaches to studying species’ geographic ranges have yet to be unified. 
Ideal scenarios for integrating ecology with evolutionary biology in biogeography are those where 
contemporary ecological interactions may have influenced species’ distributions historically, driving 
the evolution of ecological niches. I focused on understanding the origin of elevational distributions 
of species, and specifically on the role of  interspecific competition in the origin of complementary 
elevational ranges. To test hypotheses about the origin of elevational distributions, I followed a 
combined approach involving molecular phylogenetics, phylogeography, population genetics, and 
ecological niche modeling. I focused on Buarremon torquatus and B. brunneinucha (Aves, 
Emberizinae), whose elevational distributions appear to be influenced by interspecific competition.  
 
The hypothesis that elevational distributions in Buarremon changed in opposite directions as a result 
of competition is untenable because: (1) a historical expansion of the range of B. brunneinucha into 
areas occupied by B. torquatus was not accompanied by a shift in the elevational range of the former 
species, (2) when B. brunneinucha colonized the range of B. torquatus, lineages with disparate 
elevational distributions had already diverged, and (3) historical trends in effective population size do 
not suggest populations with elevational ranges abutting those of putative competitors have declined 
as would be expected if competition caused range contractions. In addition, explicit analyses relating 
elevation to environmental variables that limit distributions directly indicate some distribution 
patterns can be more parsimoniously explained by hypotheses alternative to competition. The role of 
competition in elevational zonation may be to act as a sorting mechanism that allows the coexistence 
along mountain slopes only of ecologically similar species that differ in elevational distributions prior 
to attaining sympatry. 
 
A comprehensive assessment of species limits within B. torquatus based on phylogenetic, vocal, 
morphological, and ecological data  indicates that B. torquatus comprises multiple species. Although 
examining the origin of the contrasting elevational ranges of different species is still sensible because 
the B. torquatus complex is a clade, when viewed in comparison to those of genera with multiple 
species, the patterns of elevational distribution of “B. torquatus” do not appear as unique as 
traditionally thought. 
 
  
 



 Cadena, C. Daniel, UMSL, 2006 p. ii

TABLE OF CONTENTS 
 

 

ABSTRACT ............................................................................................................................................i 

TABLE OF CONTENTS .......................................................................................................................ii 

 

CHAPTER 1 – MOLECULAR PHYLOGENETICS AND PHYLOGEOGRAPHY OF BUARREMON 

BRUSH-FINCHES (AVES, EMBERIZINAE) ......................................................................................1 

 

CHAPTER 2 - TESTING THE ROLE OF INTERSPECIFIC COMPETITION IN THE 

EVOLUTIONARY ORIGIN OF ELEVATIONAL ZONATION .......................................................43  

 

CHAPTER 3 - LIMITS TO ELEVATIONAL DISTRIBUTIONS: DISENTANGLING THE ROLE 

OF INTERSPECIFIC COMPETITION, AUTOECOLOGY, AND GEOGRAPHIC VARIATION IN 

THE ENVIRONMENT ........................................................................................................................79 

 

CHAPTER 4 - HOW MANY SPECIES IS “BUARREMON TORQUATUS” (AVES, 

EMBERIZINAE)? INSIGHTS FROM MOLECULES, ECOLOGICAL NICHE MODELING, 

SONGS, AND MORPHOLOGY .......................................................................................................107 



 Cadena, C. Daniel, UMSL, 2006 p. 1

CHAPTER 1 

 

Molecular Phylogenetics and Phylogeography of Buarremon brush-finches (Aves, Emberizinae) 

 

Introduction 

 

Recent years have seen much progress in the development of comprehensive phylogeographic studies 

of various groups of Neotropical organisms. This new body of work has led to important insights on 

the history of biotic diversification in the Neotropics that substantially improves our understanding of 

the degree to which populations are genetically structured, the timing of population differentiation, 

the relationships among areas of endemism, and the role of features of the landscape such as rivers, 

mountains, or geological arcs as barriers to gene flow (reviewed by Moritz et al. 2000; see also Marks 

et al. 2002, Aleixo 2004, Dick et al. 2003, Dick et al. 2004, Cheviron et al. 2005, Weigt et al. 2005). 

Much of this work, however, has focused exclusively on lineages occurring in the Neotropical 

lowlands.  

 

A recent review of molecular phylogenies of birds revealed important differences in the history of 

diversification between lowland and highland regions of the Neotropics (Weir 2006). Lineage-

through-time plots indicate that, in contrast to lowland areas, where diversification rates were highest 

in the late Miocene and appear to have decreased towards the present, rates of species production in 

highland areas have increased substantially in recent times following the onset of Pleistocene glacial 

cycles in the Andes. Therefore, Weir (2006) concluded that Neotropical organisms occurring in 

lowland and highland regions were affected differently by climatic fluctuations and other recent 

events within the region. This implies that patterns of population differentiation that appear to have 

some generality in lowland taxa (e.g. strong genetic structuring and Pre-Pleistocene population 

differentiation in birds) may not reflect the extent and timing of population differentiation in montane 

areas. However, to date, few comprehensive phylogeographic studies of Neotropical montane taxa 

have been conducted, and most of those available have focused on relatively narrow geographic 

regions.  

 

In this study we present a detailed assessment of evolutionary relationships and patterns of genetic 

differentiation in Buarremon brush-finches (Aves: Emberizidae), a group of passerine birds widely 

distributed in montane areas of the New World from Mexico through Argentina. We begin by 

reconstructing phylogenetic relationships among Buarremon and related genera, among species of 
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Buarremon, and among lineages of each species occurring in different regions based on sequences of 

several mitochondrial and nuclear genes. Guided by this phylogenetic framework, we use gene 

genealogies inferred from mtDNA data to examine the evolutionary relationships of population 

lineages in more detail, to describe the geographic distribution of genetic variation, and to assess the 

extent of migration between some populations separated by potential barriers to gene flow. To our 

knowledge, this study represents the most comprehensive analysis of population genetic 

differentiation conducted for a widespread group of Neotropical montane organisms. In addition to 

furthering our general understanding of the history of biotic diversification in the tropical and 

subtropical mountains of Central and South America, our results provide a framework for 

forthcoming studies on the evolution of phenotypic diversity, species limits, and the role of 

interspecific interactions in the origin of elevational distributions in Buarremon. 

 

Materials and methods 

 

Study system 

 

As currently defined, the genus Buarremon includes three species: B. torquatus (Stripe-headed Brush-

finch), which ranges from central Costa Rica to northern Argentina, B. brunneinucha (Chestnut-

capped Brush-finch), occurring from central Mexico to southern Peru, and B. virenticeps (Green-

striped Brush-finch), endemic to western and central Mexico (A.O.U. 1998, Remsen et al. 2006). 

Both B. torquatus and B. brunneinucha were originally described in the genus Embernagra, but they 

were placed in Buarremon by Bonaparte (1850), who, without a clear rationale, erected the genus 

including not only these two taxa, but also several other species of emberizines, most of which are 

now placed in the genus Atlapetes. Buarremon virenticeps was described a few years later by 

Bonaparte himself as a new member of the genus. Based only on similarities in bill shape, Hellmayr 

(1938) merged Buarremon with the large genus Atlapetes, a treatment followed without question by 

all subsequent authors until mitochondrial DNA and allozyme evidence indicated that Buarremon 

(i.e., B. brunneinucha and B. torquatus) and Atlapetes are not each other’s closest relatives (Hackett 

1992). This prompted the resurrection of Buarremon for brunneinucha, torquatus, and virenticeps, 

now widely accepted (Remsen and Graves 1995, A.O.U. 1998). Our ongoing phylogenetic studies 

with broader taxon sampling support this rearrangement, and strongly suggest that together with the 

genera Arremon and Lysurus, the three species of Buarremon form one of six major clades within the 

Emberizini (J. Klicka et al., unpubl. data). However, relationships among these three genera are 

uncertain, and the long-held assumption of the monophyly of Buarremon has not been rigorously 
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tested. As is typical for nine-primaried oscines in general, unambiguous morphological 

synapomorphies that would aid in establishing the affinities among members of this clade are lacking. 

 

At a lower level, relationships among Buarremon taxa are not well established. Based on the 

morphological similarity between juvenile B. torquatus and adult B. virenticeps, Paynter (1970) 

considered these taxa to be conspecific but later regarded them as distinct sister species (Paynter 

1978), which has been the more common position of systematists notwithstanding the lack of a 

phylogenetic appraisal. Species delimitation has been especially contentious within what is currently 

treated as a single species, B. torquatus (see Remsen and Graves 1995b for a review). Different 

authors have argued this taxon may comprise as many as three species-level taxa, yet there is 

disagreement over how these species should be circumscribed. Part of this uncertainty is a result of 

the remarkable phenotypic diversity of the group, which consists of 14 allopatrically distributed 

subspecies among which plumage characters vary rather chaotically, with no clear correspondence 

between the geographic proximity of populations and their phenotypic similarity (Chapman 1923, 

Paynter 1978). There has also been some discussion regarding species limits in B. brunneinucha, with 

some authors favoring the treatment of the subspecies apertus of the Sierra de los Tuxtlas, Mexico, as 

a separate species based on its distinct plumage (Navarro-Sigüenza and Peterson 2004). 

 

Taxon and geographic sampling  

 

We followed a variety of taxon sampling and DNA sequencing strategies to reconstruct evolutionary 

relationships and to examine patterns of population differentiation at various hierarchical levels in 

Buarremon and near relatives. In total, we generated sequence data for 235 samples, including 138 

individuals representing eight of the nine subspecies of B. brunneinucha, 78 representing 13 of the 14 

subspecies of B. torquatus, eight B. virenticeps, and one for each of four species of Arremon, the two 

species of Lysurus, and outgroup taxa in the genera Atlapetes, Pezopetes, Pselliophorus, Pipilo, 

Ammodramus, Junco, Zonotrichia, and Melospiza. Our choice of outgroups was guided by analyses 

based on sequences of multiple genes for nearly all genera in the Emberizini (J. Klicka et al., unpubl. 

data).  

 

To obtain a general overview of relationships of major groups and a detailed picture of patterns of 

differentiation in Buarremon, we sequenced the second subunit of the NADH dehydrogenase 

mitochondrial gene (ND2) for all available samples of all taxa. Based on results of preliminary 

analyses of this data set, we selected a few individuals from each major lineage of B. torquatus and B. 
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brunneinucha for more data-intensive analyses. For this subset, and for all individuals of other taxa, 

we sequenced the cytochrome b (cyt b), ATP-synthase 6 (ATPase 6), and ATP-synthase 8 (ATPase 8) 

mitochondrial genes. In addition, for a subset of these, we sequenced fragments of introns of two 

nuclear genes linked to the Z chromosome: intron 10 of aconitase 1 (ACO1) and intron 3 of muscle-

specific kinase (MUSK). In sum, we used three data sets for analyses: (1) 1026 bp of ND2 for 235 

individuals, (2) 2871 bp of ND2, cyt b, ATPase 6, and ATPase 8 for 43 individuals, and (3) 4208 bp 

of ND2, cyt b, ATPase 6, ATPase 8, ACO1, and MUSK for 22 individuals. Whenever possible, we 

used samples collected with voucher museum specimens; for a few cases in which we used non-

vouchered material, subspecies identifications rely on the localities where samples were obtained. 

Appendix 1 presents localities and information on vouchers for all sequenced samples. Fig. 1 shows 

the localities where samples of Buarremon included in analyses were obtained. 

  

Laboratory procedures  

 

We extracted DNA from liver or pectoral muscle tissues, blood samples, feathers, or skin from toe 

pads of museum specimens using the DNeasy Tissue Kit (Qiagen) following the manufacturer’s 

instructions, except for the addition of 30μl of 10% dithiothreitol (DTT) solution to the digestion 

buffer, and for final elution in only 60μl of AE buffer heated to 70°C when working with feather and 

toe pad samples. We amplified the ND2 gene for most individuals using combinations of primers 

L5216, H5766, L5758, and H6313 (Sorenson et al. 1999, M. Sorenson pers. comm.). Whenever 

possible, the whole gene (1041 bp) was amplified as a single fragment to reduce the likelihood of 

amplifying nuclear pseudogenes, but this was not always feasible due to degradation of some of the 

samples. To work with samples yielding low-quality DNA, we designed six internal primers that, in 

combination with others, allowed us to amplify and sequence fragments of 300-350 bp (Table 1). For 

amplification and sequencing of cyt b, we employed primers L14996, H15646, L15413, and H16064 

(Sorenson et al. 1999), and for ATPase6 and ATPase8 primers CO2GQL and CO3HMH (G. Seutin 

and E. Bermingham, http://nmg.si.edu/bermlab/bermlab.htm). To amplify and sequence the nuclear 

introns ACO1 and MUSK we used unpublished primers designed by F. K. Barker.  

 

PCR amplifications, conducted in a PTC-200 Thermal Cycler (MJ Research), typically consisted of 

an initial denaturation at 94°C for 2 min, followed by 35 cycles of denaturation at 94°C for 45 s, 

annealing at 52°C for 30 s and extension at 72°C for 60 s, occasionally finishing with an additional 

extension at 72°C for 10 minutes. Amounts of PCR constituents were: 1–2 μl of template DNA, 

0.625U of Taq polymerase (Promega), 10mM Tris–HCl (pH 9.0), 50mM KCl, 1.5mM MgCl2, 0.48 
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μM of each primer, and 80 μM dNTP’s, in a total volume of 25μl. For poor-quality extracts that 

could not be amplified as indicated above, we prepared 25 or 50μl reactions using HotStar Taq DNA 

polymerase (Qiagen) with the concentration of constituents indicated by the manufacturer; in order to 

activate the enzyme, the PCR protocol included an initial phase of heating at 95°C for 15 minutes. 

When amplifications yielded a single product of the expected size, we purified them directly using the 

QiaQuick PCR Kit (Qiagen). If multiple products were obtained, we excised the appropriate bands 

from agarose gels and purified them using the GeneClean III protocol (BIO 101), a Gel Extraction Kit 

(Qiagen), or by incubating them overnight with GELase (Epicentre). Clean products were used as 

templates for sequencing both light and heavy DNA strands employing the same primers used for 

amplification and the Big Dye Terminator kit (ABI). Products were treated with ethanol and sodium 

acetate to remove unincorporated dyes, and run on an ABI 377 sequencer or an ABI 3730XL 

analyzer. 

 

Alignment and exploration of sequence data 

 

We assembled and edited sequence chromatograms in the program SeqMan (DNAstar), and aligned 

sequences manually using a text editor. All mitochondrial sequences lacked conflict between 

complementary light and heavy strands, their base composition and patterns of substitution were 

typical of protein-coding mtDNA (e.g., most substitutions were transitions at third codon positions), 

and indels and stop or nonsense codons were lacking, suggesting they were in fact of mitochondrial 

origin and not nuclear pseudogenes. This was further corroborated by the large number of haplotypes 

observed relative to the number of individuals assayed (see Results). Insertions and deletions in 

nuclear sequences were rare, which allowed us to align them manually in a straightforward fashion.  

 

The incongruence length difference test (Farris et al. 1995) implemented in the program PAUP* 

version 4.0b10 (Swofford 2002) did not reveal any instance of significant conflict in the phylogenetic 

signal of different genes or data partitions (e.g. mitochondrial vs. nuclear genes). Thus, we conducted 

analyses combining sequences of all genes in single matrices, but also analyzed partitions 

independently to assess the degree of support for relationships afforded by different character sets. 

 

To assess the possibility of substitutional saturation of mtDNA sequences, we plotted pairwise 

comparisons of uncorrected p-distances based on different substitution types (transitions, 

transversions) as a function of maximum-likelihood distances estimated under a best-fit model of 

nucleotide substitution (see below). Plots indicated evidence of saturation for transitions in the third 
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position of codons in cyt b and the ATPase genes above model-corrected distances of ca. 0.10. We 

assessed the effect of saturation on phylogenetic inference by employing different character 

weighting schemes in parsimony analyses (see below). 

 

Phylogenetic analyses 

 

We conducted analyses aimed at resolving relationships among Buarremon and related genera and 

among species and major lineages of Buarremon using maximum likelihood, Bayesian, and 

maximum parsimony methods of phylogenetic inference. These analyses were based on the 42-

individual, 4-gene mitochondrial data set and the 21-individual, six-gene mitochondrial-nuclear data 

set. For maximum likelihood analyses of both data sets we implemented the GTR+I+G model of 

nucleotide substitution, which was selected as the best fit to the data according to the Akaike 

Information Criterion (AIC) in ModelTest version 3.7 (Posada and Crandall 1998). We conducted 

heuristic searches under the maximum-likelihood criterion in PAUP*, each consisting of ten 

replicates with random taxon addition and tree-bisection reconnection (TBR) branch swapping. We 

assessed support for nodes under maximum likelihood via bootstrap resampling (200 and 500 

pseudoreplicates for the mitochondrial and nuclear-mitochondrial data sets, respectively). We 

conducted Bayesian analyses using the parallel implementation of MrBayes version 3.0 (Ronquist et 

al. 2003, Altekar et al. 2004). To ensure proper examination of tree and parameter space, we 

employed Metropolis-coupled Markov Chain Monte Carlo (MCMC) sampling with one cold and 

three incrementally heated chains ran for 25 million generations. To further ensure that results did not 

depend on starting conditions, we conducted four independent analyses initiated from random trees 

on each data set. Results of each run were examined for convergence by plotting the posterior 

probabilities of clades as a function of generation number using AWTY (Wilgenbusch et al. 2004); 

convergence across runs was evaluated by examining the standard deviation of the split frequencies 

reported by MrBayes and by plotting the correlation of clade frequencies obtained in different 

analyses in AWTY. We did not observe changes in the posterior probabilities of clades after c. 5 

million generations of sampling in any run; thus, we conservatively discarded the first ten million 

generations of each run as the burn-in. Indicating convergence to the posterior distributions, results of 

the independent runs were remarkably similar to each other, so we combined them and constructed a 

majority rule consensus of 60,000 trees for each data set (trees sampled every 1000 generations were 

saved for each run). Results of Bayesian analyses in which separate partitions were specified (e.g. 

mitochondrial vs. nuclear genes) did not differ appreciably from those based on unpartitioned data 

and are not reported here. For parsimony analyses, we employed heuristic searches with tree-



 Cadena, C. Daniel, UMSL, 2006 p. 7

bisection-reconnection (TBR) branch swapping and 100 random stepwise addition replicates in 

PAUP*. To assess nodal support, we conducted bootstrap analyses with 1000 replicates. To explore 

the effect of substitutional saturation on the outcome of parsimony reconstructions, we examined 

bootstrap support for clades in analyses in which transitions in third codon positions of cyt b and 

ATPase 6 & 8 were excluded or downweighted with respect to other substitution types by factors of 

2, 5, and 20. 

 

We reconstructed genealogical relationships among ND2 haplotypes in Buarremon using maximum 

likelihood and maximum parsimony. Separate analyses were conducted for (1) B. brunneinucha and 

B. virenticeps, which were shown to be closely related taxa by the comprehensive multigene analyses 

(see below) and (2), the B. torquatus complex. Based on the AIC calculated using ModelTest we 

selected the GTR+I+G model of nucleotide substitution as the best fit to both data sets and 

implemented it in maximum-likelihood analyses, which were run as described above. Maximum 

parsimony analyses of the ND2 data were similar to those described above for the multigene data sets, 

except that the number of trees retained per random addition replicate was set to 100. 

 

Assessment of statistical conflict between taxonomy and phylogeny 

 

Some hypotheses of relationship revealed by our phylogenetic analyses are contrary to those implied 

by traditional taxonomic classifications. We assessed the significance of these conflicts from 

frequentist and Bayesian perspectives. First, we conducted hypothesis testing in a maximum-

likelihood framework to determine whether observed topologies were statistically more likely than 

hypotheses of relationships implied by taxonomic treatments available in the literature. We calculated 

the likelihood of constraint trees in which genera were forced to be monophyletic and contrasted these 

likelihoods with that of the unconstrained maximum-likelihood trees using Shimodaira-Hasegawa 

tests with resampling estimated log-likelihood (RELL) optimization and 1000 bootstrap replicates. 

This test evaluates the null hypothesis that all topologies are equally good explanations of the data 

(Shimodaira and Hasegawa 1999, Goldman et al. 2000).  From a Bayesian perspective, the posterior 

probability of a node in a phylogenetic tree indicates the probability that the relationships indicated by 

the node are correct, conditional on the data and the model of nucleotide substitution (Huelsenbeck 

and Rannala 2004). Thus, to determine whether the data provided any support for the monophyly of 

clades defined by traditional taxonomy that were not recovered in the majority rule consensus of the 

MCMC samples of trees, we determined their posterior probabilities by excluding from the sample all 
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trees that did not include these clades and determining the proportion of the total sample represented 

by the remaining trees. 

 

Population genetic analyses in Buarremon 

 

Guided by the gene genealogies inferred by phylogenetic analyses, we used the program DNAsp 

(Rozas et al. 2003) to calculate nucleotide diversity (the average number of nucleotide differences per 

site between two sequences; Nei 1987) and its standard deviation for selected clades and for 

populations occurring in distinct geographic regions. Nucleotide diversity is typically reduced in areas 

that have been more recently colonized (reviewed by Zink 2002), which allowed us to make 

inferences regarding the directionality of range expansions. We also used DNAsp to conduct Tajima’s 

(1989) test to assess whether departure from neutral evolution could compromise the use of mtDNA 

data to make inferences about population history. 

 

To obtain estimates of gene flow between selected pairs of populations occurring in geographical 

proximity, we used the coalescent method implemented in the program MDIV (Nielsen and Wakeley 

2001). For these analyses, we focused on populations occurring in lower Central America and South 

America, where our sampling was most intensive. The specific pairs of populations were selected 

based on the existence of potential barriers to gene flow and patterns observed in genealogies, which 

seemed to suggest isolation between some of them, but distinct, isolated clades were not always well-

supported by phylogenetic analyses. The implementation of the coalescent approach allowed us to 

estimate the extent of gene flow between populations independently of the uncertainty inherent to the 

reconstruction of gene genealogies. MDIV uses MCMC sampling of genealogies to obtain joint 

estimates of migration rates and divergence times between pairs of populations assuming no further 

population subdivision and selective neutrality (Nielsen and Wakeley 2001). Each run consisted of 

5,000,000 generations of MCMC sampling, of which the first 500,000 were discarded as burn-in; 

based on estimates obtained in preliminary test runs, we set the maximum values for the scaled 

migration rates and divergence times in all analyses to 10 and 5, respectively. To ensure that results 

did not depend on starting conditions, we conducted each analysis three times starting from different 

random seeds; all runs employed the HKY substitution model (Palsbøll et al. 2004). 

 

Results 
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Phylogenetics – Mitochondrial data 

 

Phylogenetic relationships among genera, among species of Buarremon, and among major lineages of 

B. torquatus and B. brunneinucha inferred from sequences of the four mitochondrial genes are shown 

in Fig. 2. Results obtained using different methods of phylogenetic inference were congruent with 

each other except for a few nodes that were not strongly supported in any analysis.  

 

Although the mitochondrial data strongly support the monophyly of Arremon and Lysurus, they 

suggest that Buarremon as currently defined is not a monophyletic group. All analyses placed the 

Arremon clade as sister to the B. torquatus complex, a result strongly supported in Bayesian analyses 

(0.96 posterior probability), but less so in maximum-likelihood (64% bootstrap), or parsimony (53% 

bootstrap) analyses. In all analyses, B. brunneinucha appeared to be closest to the clade formed by 

species in the genus Lysurus, but this hypothesis of relationship was never strongly supported. 

Inferences from parsimony bootstrap analyses in which transitions at third codon positions in cyt b 

and the ATPase genes were excluded or downweighted (results not shown) were generally consistent 

with the unweighted analysis. Support for deep relationships (i.e., those among genera, whose 

recovery could have been obscured by saturation) was low, as in the unweighted analysis. 

 

In stark contrast with traditional taxonomy, we found that B. virenticeps is clearly sister (100% 

maximum-likelihood and maximum parsimony bootstrap and 1.00 posterior probability) to B. 

brunneinucha, not to B. torquatus. Moreover, some reconstructions suggested B. brunneinucha may 

be paraphyletic with respect to B. virenticeps, a result strongly supported in the Bayesian and 

maximum likelihood analyses, in which a posterior probability of 0.99 and bootstrap value of 78% 

was obtained for a clade formed by B. virenticeps and a representative of the nominate subspecies of 

B. brunneinucha, to the exclusion of other Mexican and Central and South American populations of 

the latter. Based on this data set, populations of B. brunneinucha from Central and South America 

form a clearly distinct clade with respect to those from Mexico, a pattern we will discuss at length 

below. 

 

Support for the monophyly of the phenotypically variable B. torquatus complex was strong in all 

analyses (100% bootstrap and 1.00 posterior probability). Within the complex, a well-supported basal 

division separates the Central American taxon costaricensis from the rest of the group. Within the 

latter clade, however, basal relationships among major groups (several of which were well-supported) 

could not be resolved with certainty owing to the collapse in a polytomy of several long branches 
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connected by short internodes. Relationships within this group are discussed in detail below based on 

more comprehensive sampling of populations. 

 

Phylogenetics – Nuclear data 

 

Sequence variation in the two nuclear introns was limited. Considering only ingroup taxa (i.e., 

Buarremon, Arremon, Lysurus) only 54 and 48 variable characters were observed in ACO1 and 

MUSK, respectively, of which only 27 and 26 were informative from a parsimony standpoint. 

Therefore, the number of characters supporting relationships inferred only from nuclear data (Fig. 3) 

was always small, and we emphasize that results should be viewed with care (the unexpected position 

of Melospiza in the MUSK tree immediately calls for caution). Nonetheless, it is noteworthy that 

despite their limited information content, both nuclear genes recovered some of the relationships 

obtained with the mitochondrial data with good support (Fig. 3). These include the monophyly of the 

B. torquatus complex, of Arremon, and of Lysurus, and the close relationship of B. virenticeps and 

Mexican B. brunneinucha. However, the two introns offered contrasting information regarding 

relationships among genera: while inferences from MUSK were consistent with the mitochondrial 

data in placing B. torquatus and Arremon as sister clades, ACO1 recovered a clade that included all 

Buarremon and Lysurus, with moderate support for Arremon as its sister group. 

 

Phylogenetics – Combined data 

 

The topology obtained from the combined analyses including mitochondrial and nuclear sequences 

(Fig. 4) is entirely consistent with the mitochondrial trees, which is not surprising considering the 

much higher information content in the mitochondrial data. However, although informative 

substitutions in the nuclear sequences were limited, when analyzed in combination with 

mitochondrial data they increased support for some relationships. These include the sister relationship 

of B. torquatus and Arremon (supported by a posterior probability of 1.00, 80% maximum-likelihood 

bootstrap and 62% parsimony bootstrap) and the relationship of B. brunneinucha-B. virenticeps to 

Lysurus, which increased to 0.94 posterior probability, though bootstrap support remained low (61% 

in maximum-likelihood and less than 50% in parsimony).  

 

Statistical assessment of Buarremon monophyly 
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Shimodaira-Hasegawa likelihood tests indicated that trees in which the monophyly of Buarremon was 

enforced are not significantly worse explanations of the mitochondrial and combined mitochondrial 

and nuclear sequence data than the optimal trees we recovered, in which Buarremon was not 

monophyletic (Table 2). In contrast, not a single tree of the combined total of 120,000 that were 

sampled in Bayesian analyses of mitochondrial and combined data showed B. torquatus, B. 

brunneinucha and B. virenticeps forming a clade, implying that the posterior probability of the 

monophyly of Buarremon is zero. 

 

Phylogeography of B. brunneinucha 

 

We obtained complete sequences of the ND2 gene for a total of 135 individuals of B. brunneinucha 

and 8 individuals of B. virenticeps, which represented 98 and 6 different haplotypes, respectively. The 

deep branching structure of the tree indicating genealogical relationships among haplotypes in the B. 

brunneinucha – B. virenticeps clade (Fig. 5) was not well supported as indicated by low bootstrap 

values, and by discrepancies in resolution of branching patterns between the maximum-likelihood and 

maximum parsimony trees (not shown). Despite these discrepancies, reconstructions under both 

criteria indicated that Mexican populations from west of the Isthmus of Tehuantepec constitute a 

paraphyletic assemblage composed of several early branching lineages. Due to the lack of support for 

relationships among deep branches, however, we cannot rule out the hypothesis that lineages from 

west of Tehuantepec form a clade. Based on this larger sample of individuals, B. brunneinucha still 

appears to be paraphyletic with respect to B. virenticeps, which in turn was recovered as 

monophyletic. However, support for the paraphyly of B. brunneinucha is not compelling, which 

implies that the hypothesis that B. brunneinucha and B. virenticeps are sister species cannot be 

rejected.  

 

Independently of the uncertainty in resolving the deeper branches of the tree, all analyses recovered a 

well-supported “southern” B. brunneinucha clade consisting of all samples collected throughout 

Mesoamerica east of Tehuantepec and South America. Haplotypes from Chiapas, Mexico, are not 

shown in the tree because DNA from the available samples (old study skins) was degraded, and we 

could only sequence c. 300 base pairs; however, analyses based on that short fragment 

unambiguously indicated these are closely allied to populations from Guatemala rather than those 

from Mexico west of Tehuantepec, which is consistent with their subspecific designation. 

Relationships among some of the major lineages in the southern B. brunneinucha clade were not well 

supported, probably as a result of a rapid population expansion through Central America.  
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A phylogeographic break in B. brunneinucha appears to exist between western and central-eastern 

Panama, with most individuals from each region forming a reciprocally monophyletic group; 

individuals from central and eastern Panama are more closely allied to populations occurring in South 

America. Reciprocal monophyly is not complete owing to the placement of one individual from 

Chiriquí Province (western Panama) in the central-eastern clade and of one individual from Veraguas 

Province (central Panama) in the eastern clade; these may reflect ongoing gene flow or incomplete 

lineage sorting in isolated populations (see below).  

 

Further south, it appears clear that a recent major split took place between populations from central 

Panama and South America (including the Panamanian Darién region). The derived position of South 

American populations with respect to Mexican and Central American ones suggests that B. 

brunneinucha had a northern origin and expanded its range southward to colonize South America. 

This hypothesis is further supported by a marked decline in nucleotide diversity from Mexico south 

(Table 3).  

 

Within South America, two distinct clades can be identified: one comprises haplotypes from the 

Cordillera Oriental of Colombia, montane areas of Venezuela, and the Amazonian slope of the Andes 

of Ecuador and Peru, whereas the other includes haplotypes from the Cordillera Central and 

Cordillera Occidental of Colombia and the Pacific slope of the Ecuadorian Andes. Within the latter 

clade, individuals from the Coastal Cordillera of Ecuador (subspecies inornatus) form a monophyletic 

group together with a single individual from the Pacific Andean slope. Ecuadorian populations from 

the west slope of the Andes do not form a clade with respect to those of Central and Western 

Colombia. Within the eastern South America clade geographic structure was limited. The four 

individuals sampled from the isolated population (allinornatus) from the Sierra de San Luis in 

Venezuela shared a single haplotype, which was most similar to other haplotypes from Venezuela. 

 

Gene flow in B. brunneinucha 

 

Tajima’s tests conducted for several clades and geographic regions where B. brunneinucha occurs 

were never significant (P > 0.1 in all cases), indicating that patterns of genetic variation are consistent 

with selective neutrality. Estimates of migration from coalescent analyses revealed that different 

populations of B. brunneinucha separated by lowland areas are genetically isolated to varying degrees 

(Fig. 6). Perhaps the most striking pattern is the apparently complete lack of gene flow between 
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populations occurring in eastern (Cordillera Oriental) and central-western (Cordillera Central and 

Cordillera Occidental) Colombia: the posterior probability distribution estimated by MDIV was 

concentrated at or very near values of zero female migrants per generation. In contrast, the posterior 

distribution estimated for migration between the Cordillera Central and the Cordillera Occidental of 

Colombia is essentially flat, with equivalent probabilities extending up to remarkably high levels of 

migration. Although strong inferences cannot be made owing to the enormous credibility interval 

around the modal estimate of migration, the data suggest that these two populations are panmictic. 

Movement of individuals between western and central Panama appears to be higher than between 

eastern and central-west Colombia, but still somewhat limited. In western Ecuador, the probability 

distribution was more evenly spread over values of migration in the range up to c. 1.5 female 

migrants per generation between the Coastal Cordillera and the Pacific slope of the Andes.  

 

Phylogeography of B. torquatus 

 

We obtained sequence data for a total of 78 individuals of B. torquatus, which represented 68 

different ND2 haplotypes. Phylogenetic analyses (Fig. 7) revealed a well-supported basal split 

between the taxon costaricensis of Costa Rica and western Panama and a clade comprising 

populations occurring through central and eastern Panama and all of South America. The Panamanian 

taxon tacarcunae is nested within the clade formed by the South American members of the group, 

which suggests eastern and central Panama may have been colonized from South America. However, 

the geographic origin of B. torquatus as a whole is uncertain, as the sister group of the complex is the 

genus Arremon, which also has both Central and South American members. At any rate, the long 

branches and distinct clades present within South America indicate that this group has been in that 

continent for a substantial period of time; uncorrected sequence divergence (p distance) among South 

American members of the complex reaches 8%.  

 

As mentioned above for the four-gene mitochondrial data set, resolution of relationships among South 

American lineages of B. torquatus was quite limited, with several long branches collapsing in a 

polytomy. These branches of unresolved affinities correspond to populations occurring in (1) the 

Sierra Nevada de Santa Marta of Colombia (subspecies basilicus), (2) the Serranía de Perijá in the 

Venezuela-Colombia border (perijanus), (3) east Venezuela (phygas), (4) extreme southern Peru, 

Bolivia, and northern Argentina (torquatus, fimbriatus, and borelli), (5) high elevation areas of the 

Colombian Andes, Ecuador, and Peru (assimilis, nigrifrons, and poliophrys) and northeast Colombia 

and west Venezuela (larensis), and (6) foothill to mid-elevation areas of the Andes of Colombia and 
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eastern and central Panama (atricapillus and tacarcunae). Within lineage 4, borelli and fimbriatus 

were not reciprocally monophyletic and formed a clade sister to the monophyletic nominate 

torquatus. In lineage 5, larensis was sister to the assimilis-nigrifrons-poliophrys clade, within which 

poliophrys was sister to the closely allied assimilis and nigrifrons, which were not reciprocally 

monophyletic. Note that in contrast to monographic work on B. torquatus that treated populations 

occurring in the northern sector of the Cordillera Oriental of Colombia (Depto. Norte de Santander) 

as referable to subspecies perijanus (Paynter 1978), here we consider birds from this area as 

belonging to the taxon larensis (formerly thought to occur only in Venezuela) based on their very 

close affinity indicated by the mtDNA data and general similarity in plumage (see further details in 

Chapter 4). 

 

Discussion 

 

Phylogenetics 

 

Unexpectedly, we found that B. virenticeps is not sister to B. torquatus as had always been assumed 

based on the close resemblance in plumage of adult B. virenticeps and juvenile B. torquatus (Paynter 

1970, 1978). Rather, B. virenticeps is more closely allied to B. brunneinucha, a result strongly 

supported in all analyses, and independently by mitochondrial and nuclear data. Furthermore, 

although support is not compelling, mtDNA data suggest that B. virenticeps may be nested within B. 

brunneinucha, making the latter species paraphyletic. Such a striking apparent decoupling of 

phenotypic and genetic variation must be interpreted cautiously because several factors can affect the 

ability of mitochondrial genealogies to accurately reflect species relationships (Nichols 2001); more 

data are necessary to address this intriguing possibility. At any rate, the close relationship between B. 

virenticeps and B. brunneinucha demonstrates that external appearance (i.e., plumage) is not a 

reliable indicator of phylogenetic relationships in Buarremon, mirroring the situation documented for 

the allied genus Atlapetes (García-Moreno and Fjeldså 1999). 

 

The monophyly of the genus Buarremon as currently defined is dubious. Although support for 

relationships among major groups in the clade formed by Buarremon, Arremon, and Lysurus was 

variable in analyses conducted using different methods (e.g., Bayesian inference vs. maximum 

parsimony) and employing different data (i.e., mitochondrial vs. nuclear sequences), perhaps the most 

telling fact is that we never recovered a monophyletic Buarremon in any analysis of mitochondrial, 

nuclear, or combined data. Indeed, an exclusive clade formed by B. torquatus, B. brunneinucha, and 
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B. virenticeps was not observed in a single tree of the combined total of 120,000 sampled in Bayesian 

analyses of mitochondrial and combined data. This implies that, conditional on our data and the 

models of nucleotide substitution, the probability that these three taxa form a clade is zero 

(Huelsenbeck and Rannala 2004). However, according to Shimodaira-Hasegawa (S-H) tests, the 

hypothesis of a monophyletic Buarremon is not a significantly less likely explanation of the sequence 

data than the optimal topologies we obtained. This discrepancy in the statistical conclusions reached 

by Bayesian and maximum-likelihood tests of topologies may be attributable to the tendency for 

Bayesian MCMC analyses to place excessive confidence on relatively short branches owing to how 

prior probabilities of branch lengths are set (Lewis et al. 2005, Yang and Rannala 2005), or to the 

conservative nature of the S-H test (Goldman et al. 2000, Shi et al. 2005). The former possibility 

appears less likely because the branches receiving high posterior probability support did not exhibit 

low bootstrap values under maximum-likelihood, which is typical for cases in which high posteriors 

on short branches may be artifactual (Lewis et al. 2005). 

 

Mitochondrial data suggest that B. torquatus is more closely related to the genus Arremon than to B. 

brunneinucha and B. virenticeps, a result consistently recovered in all analyses and supported 

strongly by Bayesian posterior probability (0.96). However, this result was only moderately to weakly 

supported by bootstrap values (64% in maximum likelihood and 53% in parsimony). One of the 

nuclear genes (MUSK) was consistent with this sister relationship, whereas the other (ACO1) placed 

Arremon outside a clade formed by Lysurus and Buarremon. In retrospect, that B. torquatus and 

Arremon may be sister groups is not altogether surprising, because some Arremon taxa (e.g., A. 

taciturnus) are strikingly similar in plumage to members of the B. torquatus complex. Perhaps the 

only marked difference between B. torquatus and species of Arremon is the smaller body size of the 

latter, which might reflect their occurrence at lower, warmer elevations (i.e., Bergmann’s 

ecogeographic “rule”, see Zink and Remsen 1986). The hypothesis that the B. torquatus complex and 

Arremon are two distinct, probably sister, groups is robust to denser sampling within Arremon: 

ongoing studies involving all species in this genus support its monophyly (J. Klicka, C. D. Cadena 

and J. Pérez-Emán, unpubl. data).  On the other hand, B. brunneinucha and B. virenticeps may be 

more closely allied to the genus Lysurus than to B. torquatus, but support for this relationship in the 

mitochondrial data set was not compelling, and it was not recovered by any of the nuclear genes. Our 

findings seemingly contrast with allozyme variation documented by Hackett (1992), who found that 

B. brunneinucha and B. torquatus formed a monophyletic group with respect to Lysurus castaneiceps. 

However, her data set lacked representatives of Arremon, and bootstrap support for the monophyly of 

Buarremon was not reported.  
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In sum, although one statistical test suggested that the hypothesis of a monophyletic Buarremon 

cannot be rejected as an explanation of the sequence data, the evidence we have presented points 

more strongly away from Buarremon being a monophyletic group. Therefore, we suggest that the 

classification of this group should be revised to be consistent with the recognition of monophyletic 

supraspecific taxa. Even if the sister relationship between B. torquatus and Arremon to the exclusion 

of B. brunneinucha and B. virenticeps turns out not to be supported by additional data, which we 

consider unlikely, genetic differentiation between the two clades of Buarremon is clearly at least as 

great as the differentiation that exists between Arremon and Lysurus, and between these and the two 

Buarremon clades. Considering this, and especially the strong similarities among all Buarremon, 

Arremon, and Lysurus taxa in plumage, voices, behavior, and microhabitat, we believe the best course 

is to treat all of them as members of an expanded genus Arremon (this name has priority over 

Buarremon and Lysurus; Paynter 1970). To retain the information conveyed by traditional 

classification regarding the existence of distinct clades within this expanded genus, Lysurus and 

Arremon (sensu stricto), but not Buarremon, could be recognized at the subgenus level. For 

consistency, however, and until this proposed change in nomenclature is accepted by taxonomic 

authorities (i.e., Remsen et al. 2006), in the following we continue to refer to the established genus 

names to avoid confusion. 

 

Phylogeography  

 

Variation in mtDNA sequences strongly supports the scenario that B. brunneinucha originated in 

northern Mesoamerica (presumably in montane areas of Mexico), an area from which populations 

expanded across Central America and into South America. That populations have had more time to 

differentiate in the northern sector of the range provides a reasonable explanation for patterns of 

phenotypic variation: several morphologically distinctive forms of B. brunneinucha occur in Mexico 

and northern Mesoamerica, whereas variation in plumage across lower Central America and South 

America is quite limited (Parkes 1954, Paynter 1978). Probably as a result of rapid differentiation, 

relationships among Mexican populations (including B. virenticeps) could not be established with 

certainty, but it is clear that following their rapid divergence these have had a long history of isolation 

(see also Peterson et al. 1992). Although additional data are necessary to resolve relationships among 

Mexican lineages and to determine whether some of them (e.g. apertus) should be treated as distinct 

species (see Navarro-Sigüenza and Peterson 2004), mitochondrial data clearly demonstrate the 

existence of a marked phylogeographic break within Mexico that separates populations from the 
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western and eastern sides of the Isthmus of Tehuantepec. This pattern is consistent with genetic 

differentiation in other montane taxa (e.g. Sullivan et al. 2000, Pérez-Emán 2002, García-Moreno et 

al. 2004, García-Moreno et al. 2006), highlighting the importance of the low-elevation Isthmus as a 

barrier to dispersal.  

 

The short internodes separating mitochondrial lineages of B. brunneinucha occurring through much 

of Central America is suggestive of rapid expansion of populations across the region. A similar 

pattern of rapid north to south expansion across Central America has been documented for the Slate-

colored Redstart Myioborus miniatus (Pérez-Emán 2002), and, in fact, assuming that rates of 

nucleotide substitution are similar in Buarremon and Myioborus, population expansions in both 

groups appear to have occurred concurrently on the basis of mtDNA divergence levels. 

 

Further south, another phylogeographic break in B. brunneinucha appears between western and 

central-eastern Panama, with most individuals from each region forming a reciprocally monophyletic 

group. Isolation of these areas is not complete, however, as coalescent analyses give some support for 

the existence of limited gene flow. From central-southern Costa Rica south, the ranges of B. 

brunneinucha and B. torquatus begin to overlap. Although no samples of B. torquatus from western 

Panama were available for this study, populations from Chiriquí Province are referable to the taxon 

costaricensis and thus are probably closest to those from adjacent Costa Rica. Since costaricensis is 

sister to all other members of the B. torquatus complex, populations in western and central-eastern 

Panama are also likely differentiated in this complex. Other phylogeographic studies on montane taxa 

(e.g. Solórzano et al. 2004) do not have comparable sampling to ours across Panama, and so we 

cannot determine the generality of this pattern of differentiation. Clearly, further analyses of montane 

species are necessary to better understand the history of diversification across lower Central America, 

especially because varied phylogeographic patterns among lowland taxa highlight the historical 

complexity of this region (Bermingham and Martin 1998, Brumfield and Braun 2001, Marks et al. 

2002, Perdices et al. 2002, Cortés-Ortiz et al. 2003, Dick et al. 2003, 2004, González et al. 2003, Witt 

2004, Weigt et al. 2005). 

 

Divergence between central Panamanian and South American populations of B. brunneinucha is 

relatively modest, with mean uncorrected p distances reaching only 2-3%. Therefore, the available 

estimates of nucleotide substitution rates for avian protein-coding mitochondrial genes (reviewed by 

Lovette 2004a; Arbogast et al. 2006) imply that the colonization of South America by B. 

brunneinucha took place after the completion of the Isthmus of Panama, dated at c. 3 million years 
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before present (Coates and Obando 1996). The direction of colonization of B. torquatus cannot be 

established with certainty by polarizing ancestral areas on the phylogeny, but the divergence between 

Central American (costaricensis) and South American populations appears to have occurred earlier 

than in B. brunneinucha. The timing of population divergence in both species is explored in more 

detail elsewhere (Chapter 2). Although data on other taxa are still quite limited, studies of avifaunal 

interchange across the Central American land bridge have documented range expansions both north to 

south (Pérez-Emán 2002, 2005; Barker 2006; this study) and south to north (Hackett 1995, Burns and 

Naoki 2004, Witt 2004), with some of these events occurring prior to the completion of a terrestrial 

connection (Witt 2004, Barker 2006). As with the expansion across Central America, genetic 

distances suggest that colonization of South America by B. brunneinucha may have occurred 

simultaneously with that of M. miniatus (Pérez-Emán 2002), highlighting once again that these co-

distributed taxa appear to have had remarkably congruent histories. It is also noteworthy that patterns 

of geographic variation in plumage are similar in B. brunneinucha and M. miniatus, with both species 

showing minimal variation in South America relative to Middle America. Accumulating similar 

phylogeographic information for additional taxa will be of great interest to determine whether 

consistent patterns are observed in multiple lineages; ultimately, this will allow a better understanding 

of the role of trans-Isthmian colonization events on the historical assembly of communities in both 

North and South America (Ricklefs 2002). 

 

The existence of distinct western and eastern South American clades of B. brunneinucha haplotypes 

is remarkable. Although they were not always strongly supported, both lineages were recovered in all 

analyses, and coalescent estimates of migration indicate negligible levels of gene flow between 

eastern and central-western Colombia. The documentation of these two distinct haplotype clades 

suggests that range expansion by B. brunneinucha across South America following a single 

colonization event proceeded through two independent routes, one through the west and one through 

the east of the continent. Members of the two phylogroups probably come quite close to each other in 

areas of the Ecuadorian Andes, but they are likely isolated by unsuitable high-elevation habitat. That 

populations from the Cordillera Oriental of Colombia are genetically isolated from those from the 

Cordillera Central and Cordillera Occidental represents evidence of the long-suspected effect of the 

complex geography of the Colombian Andes on patterns of population genetic differentiation, and 

specifically on the role of the Río Magdalena Valley as a barrier to gene flow for montane organisms. 

Indeed, of the three pairs of populations among which we documented restricted to moderate 

migration, the ones occurring in closest geographic proximity to one another are those from eastern 

and central-western Colombia, where migration appears most restricted. Because the elevations of the 
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lowland areas separating these pairs of populations differ little, the more restricted migration in 

Colombia may reflect the additional barrier to dispersal imposed by the Río Magdalena. Although 

detailed studies on population differentiation of Andean birds are lacking, these results are consistent 

with those of studies conducted in other montane regions that show an effect of lowland areas as 

barriers to gene flow (Bowie et al. 2006), and in the Neotropical lowlands demonstrating an effect of 

large rivers restricting genetic exchange (Aleixo 2004, Bates et al. 2004, Cheviron et al. 2005). In 

contrast, however, populations separated by the Río Cauca Valley (i.e., those occurring in the 

Cordillera Central and Cordillera Occidental of Colombia) are less differentiated, have not attained 

reciprocal monophyly, and maintain gene flow as indicated by coalescent analysis. This probably 

reflects the very close proximity of these cordilleras, the fact that they are connected at their southern 

ends, and the higher elevation of the Cauca Valley in comparison to the Magdalena, which may have 

allowed for increased historical connectivity between mountain ranges during cool periods when 

vegetation zones were displaced downslope (Hooghiemstra and van der Hammen 2004). Other 

studies have documented close affinities between montane taxa from the Cordillera Central and 

Cordillera Occidental of Colombia (see Cuervo et al. 2005), suggesting this pattern may have some 

generality.  

 

In contrast to signatures of restricted gene flow across some lowland areas in B. brunneinucha, 

differentiation along broad latitudinal expanses of the Andes appears to be limited in the two South 

American lineages of B. brunneinucha and in the assimilis-nigrifrons clade of B. torquatus. This lack 

of clear population genetic structuring with respect to latitude is somewhat surprising, considering 

that the linear distributions of Andean taxa are thought to be especially prone to fragmentation and 

subsequent allopatric divergence (Graves 1988). However, processes of this sort may be responsible 

for the differentiation between assimilis-nigrifrons and poliophrys, which despite their relatively 

close proximity in the Peruvian Andes are reciprocally monophyletic, ca. 4 % different in mtDNA, 

and phenotypically distinct (see also Chapter 4). Another instance of differentiation along the Andes 

in B. torquatus occurs between the clade formed by larensis, assimilis, nigrifrons, and poliophrys and 

the one comprising nominate torquatus, fimbriatus, and borelli. Although members of these clades 

have been collected within 50 km of one another in southern Peru (Chapter 4), mtDNA suggests a 

long history of isolation, with the minimum uncorrected sequence divergence between the nearly 

abutting poliophrys and torquatus being 6.6%. This zone may represent an area of secondary contact. 

Finally, differentiation along the Andes is also apparent from the recovery of distinct clades in 

northern-central Bolivia (torquatus) and southern Bolivia and Argentina (fimbriatus and borelli), 



 Cadena, C. Daniel, UMSL, 2006 p. 20

although we cannot rule out the possibility that these two clades are in fact the extremes of a cline in 

genetic variation that we did not observe due to sparse sampling (see Brumfield 2005). 

 

The B. torquatus complex comprises a suite of relatively old lineages, which according to the widely 

applied rate of nucleotide substitution of 1.6-2% divergence per million years (Lovette 2004a, Weir 

2006), would appear to have last shared a common ancestor more than 3 million years ago. Even 

assuming that ND2 evolves at a faster rate (Arbogast et al. 2006), the divergence among these 

lineages would date back to at least 1.5 million years before present. Regardless of whether these 

phylogroups represent different species or variants of a single species (Chapter 4), these levels of 

divergence are comparatively high for Neotropical montane birds, many of which diversified within 

the last million years as inferred from the 2% per million years rate calibration (Weir 2006). In fact, 

the patterns of mtDNA differentiation observed in B. torquatus resemble those documented for 

several passerine birds of the Neotropical lowlands (e.g., Bates et al. 1999, Marks et al. 2002, Lovette 

2004b, Cheviron et al. 2005) in terms of the existence of highly distinct phylogroups of pre-

Pleistocene age. There are however, some cases of Pre-Pleistocene differentiation in Andean taxa 

(García-Moreno and Fjeldså 2000, Pérez-Emán 2005). 

 

Relationships among major phylogroups of South American B. torquatus are unresolved. Because 

mitochondrial data could recover relationships at deeper and shallower levels of divergence with good 

support, we consider this to be a hard polytomy resulting from differentiation within a brief period. 

Similar patterns of rapid diversification of distinct lineages have been described for Neotropical 

warblers in the genera Phaeothlypis and Myioborus (Lovette 2004b, Pérez-Emán 2005). The 

apparently explosive differentiation of B. torquatus in South America precludes strong inference 

about the geographic context of differentiation in the group. It is striking, however, that lineages 

occurring in the same general area (e.g., assimilis and atricapillus, which are found segregating 

elevationally on the same mountain slopes in the three Colombian cordilleras) are approximately 

equally divergent from each other as they are from groups occurring in distant locations (e.g. the 

clade occurring through Bolivia and Argentina). Moreover, although phylogenetic relationships 

among lineages at this level are tentative, tree topologies suggest that lineages occurring in allopatry 

and separated by thousands of kilometers may be each other’s closest relatives. If this were correct, 

then B. torquatus would have a complex history of diversification, probably involving multiple events 

of vicariance, dispersal, and lineage extinction over broad spatial scales (see also Dingle et al. 2006). 

This suggests that processes of avian diversification in the Andes likely involve complex large scale 

processes in addition to the rather simple, small-scale vicariant events that are thought to prevail 
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(Remsen 1984, García-Moreno and Fjeldså 2000).  

 

Due to various reasons, including political instability in the region, researchers working on population 

genetics, phylogeography, and molecular phylogenetics of Neotropical organisms have largely 

ignored Colombian populations. Studies on Andean birds have either focused on taxa distributed in 

the Central and Southern Andes (reviewed by García-Moreno and Fjeldså 2000, Weir 2006), or have 

described patterns of differentiation in widespread groups without including material from Colombia 

(e.g. Dingle et al. 2006; but see Witt 2004, Pérez-Emán 2005). Without sampling in Colombia, our 

analyses would have resulted in a woefully incomplete picture of the history of Buarremon, missing 

the crucial but unexpected affinities of populations of B. brunneinucha from the Cordillera Oriental to 

those of Venezuela and the Amazonian slope of the Andes of Ecuador and Peru, and of populations 

from the Cordillera Central and Cordillera Occidental to those from the Pacific slope of Ecuador, in 

addition to the occurrence of five divergent lineages of B. torquatus that are not each other’s closest 

relatives within the country. Due to its geographic position at the crossroads between Central and 

South America and the expected effects of its complex geography on population structure, it comes as 

no surprise that the results of this study imply that analyses of patterns of differentiation involving 

detailed sampling in Colombia should be considered essential to understanding the biogeographic 

history of many Neotropical taxa. 
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Table 1. Primers designed for PCR amplification of fragments of the ND2 gene from degraded DNA 
samples. Primers are named according to their position in comparison to the  first nucleotide in the 
ND2 gene and on whether they are located on the light (L) or heavy (H) strand. 
 
Primer Sequence (5’ to 3’) 
L301 GCAGTAGCAATAAAACTYGGAYTAG 
H330  TTCTGGGAATCAGAAGTGGAAT 
L515  ARACACAAATCCGAAAAATCYTAG 
H590  GTTRAGGAGAGTGAGTTTRGGGT 
L697  ACATGAAGCAAAGYYCCA 
H850  AARAAYAGGCTTAGTAGTGAGAGGAG 
 
 
Table 2. Results of Shimodaira-Hasegawa tests comparing the likelihoods of maximum-likelihood 
estimates of phylogeny obtained for mitochondrial and combined mitochondrial and nuclear data with 
those of trees recovered in maximum-likelihood analyses in which the monophyly of Buarremon was 
enforced. Tests were one-tailed, based on 1000 RELL bootstrap replicates. 
 
Data Set ML tree 

-ln L 
Constrained tree 

-ln L 
p-value 

    
Mitochondrial (four genes) 19856.741 19861.797 0.216 
Mitochondrial – nuclear (six genes) 19217.315 19226.091 0.134 
    
 
 
Table 3. Estimates of nucleotide diversity and its standard deviation calculated for different areas and 
regions where B. brunneinucha occurs, indicating declining genetic diversity from north to south. 
 
Region n Nucleotide Diversity ± S. D. 
   
Mexico (excluding virenticeps) 12 0.0459 ± 0.0041 
Mexico (including virenticeps) 20 0.0445 ± 0.0031 
   
Central America (Guatemala – Panama) 30 0.0249 ± 0.0024 
        Guatemala – West Panama 24 0.0206 ± 0.0029 
        Central Panama 6 0.0148 ± 0.0073 
   
South America (East Panama – Peru) 93 0.0168 ± 0.0005 
        Western Clade 32 0.0134 ± 0.0008 
        Eastern Clade 59 0.0131 ± 0.0008 
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FIGURE LEGENDS 
 

 
Figure 1. Geographic distribution of samples of Buarremon brunneinucha and B. virenticeps (A) and 
B. torquatus (B) included in phylogenetic and phylogeographic analyses. Localities are numbered by 
species following the locality codes indicated in the Appendix.  
 
Figure 2. Phylogenetic hypothesis for relationships of 43 individuals of Buarremon, Lysurus, 
Arremon, and outgroup taxa based on combined analyses of 2871 aligned base pairs of four 
mitochondrial genes. The phylogram shown is the maximum-likelihood tree. Numbers on branches 
indicate Bayesian posterior probabilities and bootstrap values obtained under maximum-likelihood 
and maximum parsimony, respectively. Support values for relationships of taxa in the outgroup are 
not shown. 
 
Figure 3. Phylogenies inferred for 22 individuals using sequences of two nuclear loci, ACO1 (top), 
and MUSK (bottom). The phylograms shown are the maximum-likelihood trees obtained for each 
data set. Numbers above and below nodes are bootstrap values obtained under maximum-likelihood 
and maximum parsimony, respectively, whenever these are greater than 50%.  
 
Figure 4. Phylogenetic hypothesis for relationships of  Buarremon, Lysurus, and Arremon taxa based 
on combined analyses of 4208 aligned base pairs of four mitochondrial and two nuclear genes. The 
phylogram shown is the maximum-likelihood tree. Numbers on branches indicate Bayesian posterior 
probabilities and bootstrap values obtained under maximum-likelihood and maximum parsimony, 
respectively. Outgroup not shown. 
 
Figure 5. Maximum-likelihood tree showing relationships among haplotypes of B. brunneinucha and 
B. virenticeps. Localities are named as in Figure 1a and in the Appendix. The number of individuals 
sharing a given haplotype is indicated in parentheses following each locality, when applicable.  
Brackets on the right group haplotypes by region, but note that for Mexico and Central America these 
do not correspond to clades. For selected clades discussed in the text, bootstrap values obtained under 
maximum-likelihood and maximum parsimony are shown above and below branches, respectively. 
Other clades receiving high support under both criteria are indicated with asterisks. Support for 
relationships near terminal branches is not shown for clarity; deep nodes without boostrap values or 
asterisks were not strongly supported. The tree was rooted with sequences of Lysurus castaneiceps 
and L. crassirostris (not shown). 
 
Figure 6. Posterior probability distributions of estimates of migration between selected pairs of 
populations of B. brunneinucha obtained using coalescent analyses in MDIV. (A) Cordillera Oriental 
vs. Cordilleras Central and Occidental, Colombia. (B) Cordillera Central vs Cordillera Occidental, 
Colombia. (C) Coastal Cordilleras vs. West Andean Slope, Ecuador. (D). East Panama vs. Central 
Panama. 
 
Figure 7. Maximum-likelihood tree showing relationships among haplotypes of B. torquatus. 
Localities are named as in Figure 1b and in the Appendix. The number of individuals sharing a given 
haplotype is indicated in parentheses following each locality, when applicable. Bootstrap values 
exceeding 70% obtained under maximum-likelihood and maximum parsimony are shown above and 
below branches, respectively; support values are omitted from terminal branches for clarity.  
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FIGURE 1A 
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FIGURE 1B 
 

 
 
 
 



 Cadena, C. Daniel, UMSL, 2006 p. 30

 



 Cadena, C. Daniel, UMSL, 2006 p. 31

FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 
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Appendix. Information on localities and museum catalogue numbers for samples of Buarremon brush-finches included in phylogenetic and 
phylogeographic analyses. The ID field indicates localities as shown in Figures 1, 5, and 7. Sequences of the ND2 gene were obtained for all 
samples; samples with an asterisk after the ID were included in analyses of ND2, cyt b, ATPase 6 and ATPase 8; those with two asterisks were 
included in analyses of the four mitochondrial genes and the ACO1 and MUSK nuclear introns. 
 

Id Taxon Country Locality Catalogue No. * Lat. Lon. 
       
 Buarremon brunneinucha      
       
b1 Buarremon brunneinucha brunneinucha Mexico Hidalgo, 5 km E Tlanchinol FMNH 394029 21.013 -98.646
b1 Buarremon brunneinucha brunneinucha Mexico Hidalgo, 5 km E Tlanchinol FMNH 394035 21.013 -98.646
b2 Buarremon brunneinucha brunneinucha Mexico Puebla, 2 km W Teziutlan LSUMZ B44 19.821 -97.379
b3 Buarremon brunneinucha suttoni Mexico Guerrero, El Iris, Sierra de Atoyac  FMNH 393757 17.504 -100.212
b3 Buarremon brunneinucha suttoni Mexico Guerrero, El Iris, Sierra de Atoyac FMNH 394152 17.504 -100.212
b4 Buarremon brunneinucha suttoni Mexico Guerrero, Carrizal de Bravo, Sierra Madre del Sur MBM MM 907 17.613 -99.871
b4 Buarremon brunneinucha suttoni Mexico Guerrero, Carrizal de Bravo, Sierra Madre del Sur MBM GMS 905 17.613 -99.871
b5 Buarremon brunneinucha brunneinucha Mexico Oaxaca, Cerro Zempoaltéptl, Totontepec FMNH 393766 17.133 -95.983
b5** Buarremon brunneinucha brunneinucha Mexico Oaxaca, Cerro Zempoaltéptl, Totontepec FMNH 393770 17.133 -95.983
b6 Buarremon brunneinucha apertus Mexico Veracruz, Volcan San Martin, 21 km N San Andres Tuxtla MBM 4989 18.560 -95.220
b7** Buarremon brunneinucha apertus Mexico Veracruz, [Catemaco] El Bastonal, 3 km S, 3 km E, Sierra de Santa Martha FMNH 393763 18.371 -94.921
b7 Buarremon brunneinucha apertus Mexico Veracruz, [Catemaco] El Bastonal, 3 km S, 3 km E, Sierra de Santa Martha FMNH 393870 18.371 -94.921
b8 Buarremon brunneinucha macrourus Mexico Chiapas, Las Margaritas, approx. 33 mi NE; Finca Patichuiz WFVZ 1190 16.739 -91.737
b9 Buarremon brunneinucha macrourus Guatemala Quetzaltenango, Xela, El Baul MBM DHB 4405 14.821 -91.521
b10 Buarremon brunneinucha macrourus Guatemala Quetzaltenango, Santa Maria de Jesus 5km SSW, Fca de Sta. Maria MBM DHB 4429 14.713 -91.563
b10 Buarremon brunneinucha macrourus Guatemala Quetzaltenango, Santa Maria de Jesus 5km SSW, Fca de Sta. Maria MBM DHB 4434  14.713 -91.563
b10 Buarremon brunneinucha macrourus Guatemala Quetzaltenango, Santa Maria de Jesus 5km SSW, Fca de Sta. Maria MBM DHB 4440  14.713 -91.563
b11 Buarremon brunneinucha macrourus Guatemala Quetzaltenango, Santa Maria de Jesus 2km E MBM GAV 2372 14.713 -91.538
b12 Buarremon brunneinucha alleni El Salvador Chalatenango, Cerro El Pital KU 5072 14.313 -89.113
b13 Buarremon brunneinucha alleni El Salvador San Miguel KU 4903 13.421 -88.279
b14 Buarremon brunneinucha alleni Nicaragua Nicaragua, Chocoyero, Volcan Mombacho, 48 km SE Managua  MBM DAB 960 11.829 -85.963
b14 Buarremon brunneinucha alleni Nicaragua Nicaragua, Chocoyero, Volcan Mombacho, 48 km SE Managua  MBM DAB 1751 11.829 -85.963
b14** Buarremon brunneinucha alleni Nicaragua Nicaragua, Chocoyero, Volcan Mombacho, 48 km SE Managua MBM DAB 1706 11.829 -85.963
b14 Buarremon brunneinucha alleni Nicaragua Nicaragua, Chocoyero, Volcan Mombacho, 48 km SE Managua MBM DAB 1834 11.829 -85.963
b15 Buarremon brunneinucha elsae Costa Rica Heredia, Finca La Fortuna, 4 km SE Virgen del Socorro LSUMZ B16053 10.246 -84.129
b16 Buarremon brunneinucha elsae Costa Rica Cartago, near Fca. Pizote, Tres Rios, 4.5 km NE FMNH 393081  9.929 -83.963
b17 Buarremon brunneinucha elsae Panama Chiriqui, Boquete, Paso de Respingo on Cerro Punta-Boquete trail LSUMZ B28316 8.838 -82.521
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Id Taxon Country Locality Catalogue No. * Lat. Lon. 
b17 Buarremon brunneinucha elsae Panama Chiriqui, Boquete, Paso de Respingo on Cerro Punta-Boquete trail LSUMZ B28322 8.838 -82.521
b18 Buarremon brunneinucha elsae Panama Chiriqui, Gualaca-Chiriqui Grande Road, at continental divide USNM B05407 8.763 -82.271
b18 Buarremon brunneinucha elsae Panama Chiriqui, Gualaca-Chiriqui Grande Road, at continental divide USNM B05408 8.763 -82.271
b19 Buarremon brunneinucha elsae Panama Chiriqui, Los Planes, 10 km N Fortuna Field Station USNM B05300 8.736 -82.273
b19 Buarremon brunneinucha elsae Panama Chiriqui, Los Planes, 10 km N Fortuna Field Station USNM B05329 8.736 -82.273
b19 Buarremon brunneinucha elsae Panama Chiriqui, Los Planes, 10 km N Fortuna Field Station USNM B05474 8.736 -82.273
b20 Buarremon brunneinucha elsae Panama Chiriqui, Gualaca, Cordillera Central, 4.3 km by road S Lago Fortuna dam LSUMZ B26947 8.729 -82.246
b21 Buarremon brunneinucha elsae Panama Chiriqui, 12.6-23.3 road km N Los Planes, Gualaca-Chiriqui Grande Road USNM B01436 8.688 -82.229
b21 Buarremon brunneinucha elsae Panama Chiriqui, 12.6-23.3 road km N Los Planes, Gualaca-Chiriqui Grande Road USNM B01492  8.688 -82.229
b21 Buarremon brunneinucha elsae Panama Chiriqui, 12.6-23.3 road km N Los Planes, Gualaca-Chiriqui Grande Road USNM B01542 8.688 -82.229
b22 Buarremon brunneinucha elsae Panama Veraguas, Santa Fe 3km WSW hacia Alto de Piedra Road MBM JMD 126 8.513 -81.121
b22 Buarremon brunneinucha elsae Panama Veraguas, Santa Fe 3km WSW hacia Alto de Piedra Road MBM JMD 145 8.513 -81.121
b22 Buarremon brunneinucha elsae Panama Veraguas, Santa Fe 3km WSW hacia Alto de Piedra Road MBM JMD 146 8.513 -81.121
b23 Buarremon brunneinucha elsae Panama Cocle, El Valle, foothills NE of town MBM JK 04209 8.629 -80.129
b23 Buarremon brunneinucha elsae Panama Cocle, El Valle, foothills NE of town MBM JK 04210 8.629 -80.129
b23 Buarremon brunneinucha elsae Panama Cocle, El Valle, foothills NE of town MBM JK 04211 8.629 -80.129
b24 Buarremon brunneinucha frontalis Panama Darien,  ca. 9km NW Cana on slopes of Cerro Pirre LSUMZ B1371 7.788 -77.721
b25 Buarremon brunneinucha frontalis Panama Darien, ca. 6 km NW Cana LSUMZ B2102 7.771 -77.721
b26 Buarremon brunneinucha frontalis Colombia Antioquia, Páramo de Frontino ZMUC 134985 6.413 -76.079
b26 Buarremon brunneinucha frontalis Colombia Antioquia, Páramo de Frontino ZMUC 134994 6.413 -76.079
b26 Buarremon brunneinucha frontalis Colombia Antioquia, Páramo de Frontino ZMUC 134963 6.429 -76.079
b27 Buarremon brunneinucha frontalis Colombia Antioquia, Amalfi, Vda. Las Animas, Bosque Las Animas AMC 160 6.929 -75.038
b28 Buarremon brunneinucha frontalis Colombia Antioquia, Amalfi, Vda. Salazar, Finca Bodega Vieja IAvH BT-1165  6.902 -75.088
b29 Buarremon brunneinucha frontalis Colombia Antioquia, Amalfi, Vda. Cajamarca, Fca. Canales IAvH BT-2137 6.818 -75.104
b30 Buarremon brunneinucha frontalis Colombia Antioquia, Jardin, Vda. Dojurgo, Finca Las Mercedes ICN 34716 5.504 -75.871
b30 Buarremon brunneinucha frontalis Colombia Antioquia, Jardin, Vda. Dojurgo, Finca Las Mercedes ICN 34717 5.504 -75.871
b31 Buarremon brunneinucha frontalis Colombia Antioquia, Jardin, La Mesenia ZMUC 134844 5.496 -75.888
b31 Buarremon brunneinucha frontalis Colombia Antioquia, Jardin, La Mesenia ZMUC 134852 5.496 -75.888
b32 Buarremon brunneinucha frontalis Colombia Caldas, Aranzazu, Vda. El Laurel, Hda. Termopilas IAvH 11906 5.229 -75.496
b32 Buarremon brunneinucha frontalis Colombia Caldas, Aranzazu, Vda. El Laurel, Hda. Termopilas IAvH 11925 5.229 -75.496
b33 Buarremon brunneinucha frontalis Colombia Risaralda, Pereira, Vda. La Suiza, SFF Otun Quimbaya IAvH 11691 4.721 -75.579
b33 Buarremon brunneinucha frontalis Colombia Risaralda, Pereira, Vda. La Suiza, SFF Otun Quimbaya IAvH 11692 4.721 -75.579
b33 Buarremon brunneinucha frontalis Colombia Risaralda, Pereira, Vda. La Suiza, SFF Otun Quimbaya CDC 056 4.721 -75.579
b34 Buarremon brunneinucha frontalis Colombia Risaralda, Pereira, Parque Ucumari, La Pastora IAvH 11693  4.701 -75.504
b35 Buarremon brunneinucha frontalis Colombia Cundinamarca, Mpio. Bojaca, Finca Macanal IAvH 11679  4.663 -74.346
b35 Buarremon brunneinucha frontalis Colombia Cundinamarca, Mpio. Bojaca, Finca Macanal IAvH 11686 4.654 -74.329
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b35 Buarremon brunneinucha frontalis Colombia Cundinamarca, Mpio. Bojaca, Finca Macanal CDC 010 4.654 -74.329
b35 Buarremon brunneinucha frontalis Colombia Cundinamarca, Mpio. Bojaca, Finca Macanal CDC 011 4.654 -74.329
b36 Buarremon brunneinucha frontalis Colombia Cundinamarca, Parque Nacional Chingaza, Rio Blanco IAvH 12676 4.696 -73.854
b37 Buarremon brunneinucha frontalis Colombia Boyacá, Mpio. Villa de Leyva, S.F.F. Iguaque IAvH 11661 5.685 -73.470
b37 Buarremon brunneinucha frontalis Colombia Boyacá, Mpio. Villa de Leyva, S.F.F. Iguaque IAvH 11667  5.696 -73.471
b38 Buarremon brunneinucha frontalis Colombia Boyaca, alrededores de SFF Iguaque IAvH 12562 5.729 -73.054
b39 Buarremon brunneinucha frontalis Colombia Santander, Encino, Reserva Cachalú IAvH 11690 6.071 -73.129
b40 Buarremon brunneinucha frontalis Colombia Norte de Santander, Mpio de Cucutilla, Vda. Carrizal, Sector Sisavita IAvH 12104 7.446 -72.838
b41 Buarremon brunneinucha frontalis Colombia Norte de Santander, PNN Tamá. Sector Orocué IAvH 10650 7.429 -72.446
b42 Buarremon brunneinucha allinornatus Venezuela Falcón, Sierra de San Luis, Cerro Galicia COP IC 963 11.180 -69.704
b42* Buarremon brunneinucha allinornatus Venezuela Falcón, Sierra de San Luis, Cerro Galicia COP IC 965 11.180 -69.704
b42 Buarremon brunneinucha allinornatus Venezuela Falcón, Sierra de San Luis, Cerro Galicia COP IC 981 11.180 -69.704
b42 Buarremon brunneinucha allinornatus Venezuela Falcón, Sierra de San Luis, Cerro Galicia COP IC 991 11.180 -69.704
b43 Buarremon brunneinucha frontalis Venezuela Aragua, Paso Portachuelo, Rancho Grande, PN Henry Pitier COP IC 742 10.346 -67.671
b44** Buarremon brunneinucha frontalis Venezuela Aragua, Km 40 on El Junquito/Col. Tovar Road AMNH GFB3161 10.421 -67.213
b45 Buarremon brunneinucha frontalis Colombia Valle del Cauca, La Cumbre, Chicoral IAvH 12455 3.568 -76.588
b45 Buarremon brunneinucha frontalis Colombia Valle del Cauca, La Cumbre, Chicoral IAvH 12461 3.568 -76.588
b46 Buarremon brunneinucha frontalis Colombia Huila, sendero entre Centro de Visitantes Andaqui y Cueva de los Guacharos IAvH 11738  1.629 -76.121
b46 Buarremon brunneinucha frontalis Colombia Huila, sendero entre Centro de Visitantes Andaqui y Cueva de los Guacharos IAvH 11769  1.629 -76.121
b46 Buarremon brunneinucha frontalis Colombia Huila, sendero entre Centro de Visitantes Andaqui y Cueva de los Guacharos IAvH 11806 1.629 -76.121
b46 Buarremon brunneinucha frontalis Colombia Huila, Cueva de los Guacharos, Puente Nuevo , cuenca del rio Suaza IAvH 11790 1.629 -76.096
b47 Buarremon brunneinucha frontalis Colombia Caquetá. Mpio. San José de Fragua. Vda. La Esmeralda, Alto río Yurayaco IAvH 11406 1.346 -76.113
b48 Buarremon brunneinucha frontalis Colombia Nariño, Altaquer, Rio Ñambí JCDC 01  1.300 -78.083
b49 Buarremon brunneinucha frontalis Ecuador Esmeraldas, El Placer LSUMZ B11931 0.879 -78.596
b50 Buarremon brunneinucha frontalis Ecuador Esmeraldas, ca. 2 km E Alto Tambo LSUMZ B30013 0.883 -78.555
b51 Buarremon brunneinucha frontalis Ecuador Napo, Rio Maspa Chico ZMUC 120268 0.371 -78.029
b51 Buarremon brunneinucha frontalis Ecuador Napo, Rio Maspa Chico ZMUC 120271 0.371 -78.029
b52 Buarremon brunneinucha frontalis Ecuador Pichincha, Maquipucuna ZMUC 121333 0.129 -78.596
b53 Buarremon brunneinucha frontalis Ecuador Bellavista Cloud Forest Reserve (c. 60 km NW Quito) DB 309 -0.011 -78.705
b54 Buarremon brunneinucha inornatus Ecuador Manabi, Cerro San Sebastian, PN Machalilla ANSP 2945 -1.584 -80.689
b54 Buarremon brunneinucha inornatus Ecuador Manabi, Cerro San Sebastian, PN Machalilla ANSP 2953 -1.584 -80.689
b54* Buarremon brunneinucha inornatus Ecuador Manabi, Cerro San Sebastian, PN Machalilla ANSP 3112 -1.584 -80.689
b54 Buarremon brunneinucha inornatus Ecuador Manabi, Cerro San Sebastian, PN Machalilla ANSP 3149 -1.584 -80.689
b54 Buarremon brunneinucha inornatus Ecuador Manabi, Cerro San Sebastian, PN Machalilla ANSP 3384 -1.584 -80.689
b54 Buarremon brunneinucha inornatus Ecuador Manabi, Cerro San Sebastian, PN Machalilla DB 289 -1.584 -80.689
b54 Buarremon brunneinucha inornatus Ecuador Manabi, Cerro San Sebastian, PN Machalilla DB 450 -1.584 -80.689
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b55 Buarremon brunneinucha inornatus Ecuador Guayas, Loma Alta, Cerro La Torre, 35 km S PN Machalilla  DB 525 -1.829 -80.563
b56 Buarremon brunneinucha inornatus Ecuador Azuay, Manta Real, ca. 6 km S Zhucay (near Naranjal) ANSP 3529 -2.554 -79.346
b57 Buarremon brunneinucha frontalis Ecuador Morona-Santiago, Cordillera de Cutucu, trail Logrono to Yaupi-Yapitya LSUMZ B6124 -2.629 -78.096
b57 Buarremon brunneinucha frontalis Ecuador Morona-Santiago, Cordillera de Cutucu, trail Logrono to Yaupi-Yapitya LSUMZ B6126 -2.629 -78.096
b58 Buarremon brunneinucha frontalis Ecuador Zamora-Chinchipe, below Chinapinza ZMUC 116150 -4.001 -78.472
b58 Buarremon brunneinucha frontalis Ecuador Zamora-Chinchipe, below Chinapinza ZMUC 116151 -4.001 -78.472
b59 Buarremon brunneinucha frontalis Ecuador Zamora-Chinchipe, S Romerillos ZMUC 119146 -4.238 -79.013
b60 Buarremon brunneinucha frontalis Ecuador Zamora-Chinchipe, Cerro Toledo ZMUC 122261 -4.384 -79.122
b61 Buarremon brunneinucha frontalis Peru Cajamarca, Machete on Sapalache-Carmen trail LSUMZ B224 -5.050 -79.350
b62 Buarremon brunneinucha frontalis Peru Cajamarca, E slope Cerro Chinguela, 8 km NE Sapalache LSUMZ B316 -5.113 -79.371
b63 Buarremon brunneinucha frontalis Peru Cajamarca, Nuevo Peru, 16 km NE junction Rios Tabacomas and Chinchipe LSUMZ B33491 -5.285 -78.685
b63 Buarremon brunneinucha frontalis Peru Cajamarca, Nuevo Peru, 16 km NE junction Rios Tabacomas and Chinchipe LSUMZ B33497 -5.285 -78.685
b63 Buarremon brunneinucha frontalis Peru Cajamarca, Nuevo Peru, 16 km NE junction Rios Tabacomas and Chinchipe LSUMZ B33667 -5.285 -78.685
b63 Buarremon brunneinucha frontalis Peru Cajamarca, Nuevo Peru, 16 km NE junction Rios Tabacomas and Chinchipe LSUMZ B33725 -5.285 -78.685
b63 Buarremon brunneinucha frontalis Peru Cajamarca, Nuevo Peru, 16 km NE junction Rios Tabacomas and Chinchipe LSUMZ B33400 -5.285 -78.685
b64 Buarremon brunneinucha frontalis Peru Cajamarca, Quebrada Lanchal, ca. 8 km ESE Sallique LSUMZ B31704 -5.688 -79.272
b64 Buarremon brunneinucha frontalis Peru Cajamarca, Quebrada Lanchal, ca. 8 km ESE Sallique LSUMZ B31855 -5.688 -79.272
b64 Buarremon brunneinucha frontalis Peru Cajamarca, Quebrada Lanchal, ca. 8 km ESE Sallique LSUMZ B31944 -5.688 -79.272
b64 Buarremon brunneinucha frontalis Peru Cajamarca, Quebrada Lanchal, ca. 8 km ESE Sallique LSUMZ B31987 -5.688 -79.272
b64 Buarremon brunneinucha frontalis Peru Cajamarca, Quebrada Lanchal, ca. 8 km ESE Sallique LSUMZ B32207 -5.688 -79.272
b64 Buarremon brunneinucha frontalis Peru Cajamarca, Quebrada Lanchal, ca. 8 km ESE Sallique LSUMZ B32349 -5.688 -79.272
b64 Buarremon brunneinucha frontalis Peru Cajamarca, Quebrada Lanchal, ca. 8 km ESE Sallique LSUMZ B32532 -5.688 -79.272
b65 Buarremon brunneinucha frontalis Peru San Martin, 15 km by trail NE Jirillo on trail to Balsapuerto LSUMZ B5541 -6.071 -76.721
b66 Buarremon brunneinucha frontalis Peru San Martin, 20 km by road NE Tarapoto on road to Yurimaguas LSUMZ B5462 -6.396 -76.213
b67 Buarremon brunneinucha frontalis Peru Loreto, 77 km WNW Contamana LSUMZ B27755 -7.054 -75.654
b67 Buarremon brunneinucha frontalis Peru Loreto, 77 km WNW Contamana LSUMZ B27816 -7.054 -75.654
b67 Buarremon brunneinucha frontalis Peru Loreto, 77 km WNW Contamana LSUMZ B27856 -7.054 -75.654
b68 Buarremon brunneinucha frontalis Peru Loreto, ca. 86 km SE Juanjui on E bank upper Rio Pauya LSUMZ B39863 -7.538 -75.904
b68 Buarremon brunneinucha frontalis Peru Loreto, ca. 86 km SE Juanjui on E bank upper Rio Pauya LSUMZ B40009 -7.538 -75.904
b69 Buarremon brunneinucha frontalis Peru Pasco, Playa Pampa, ca. 8 km NW Cushi on trail to Chaglla LSUMZ B7990 -9.829 -75.721
b69 Buarremon brunneinucha frontalis Peru Pasco, Playa Pampa, ca. 8 km NW Cushi on trail to Chaglla LSUMZ B8095 -9.829 -75.721
b70 Buarremon brunneinucha frontalis Peru Pasco, Santa Cruz, ca. 9 km SSE Oxapampa LSUMZ B1626 -10.621 -75.363
b70 Buarremon brunneinucha frontalis Peru Pasco, Santa Cruz, ca. 9 km SSE Oxapampa LSUMZ B1645 -10.621 -75.363
b70 Buarremon brunneinucha frontalis Peru Pasco, Santa Cruz, ca. 9 km SSE Oxapampa LSUMZ B1688 -10.621 -75.363
b71 Buarremon brunneinucha frontalis Peru Cusco, Paucartambo, San Pedro FMNH 430059 -13.056 -71.548
b72 Buarremon brunneinucha frontalis Peru Cusco, Paucartambo, Suecia, km 138.5 on Cusco-Shintuya Highway FMNH 398360 -13.129 -71.504
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b73 Buarremon brunneinucha frontalis Peru Cusco, Machu Picchu, Intipata ruins MUSM 24327 -13.188 -72.546
       
 Buarremon virenticeps      
       
v1 Buarremon virenticeps Mexico Jalisco, Puerto Los Mazos, Sierra de Manantlán FMNH 343338 19.538 -103.479
v1 Buarremon virenticeps Mexico Jalisco, Puerto Los Mazos, Sierra de Manantlán FMNH 343351 19.538 -103.479
v2 Buarremon virenticeps Mexico Michoacan, 3 km N Zirimondiro, Pico de Tancítaro FMNH 394040 19.371 -102.334
v2 Buarremon virenticeps Mexico Michoacan, 3 km N Zirimondiro, Pico de Tancítaro FMNH 394041 19.371 -102.334
v2 Buarremon virenticeps Mexico Michoacan, 3 km N Zirimondiro, Pico de Tancítaro FMNH 394043 19.371 -102.334
v3 Buarremon virenticeps Mexico Ocuilon-Cuernavaca Hwy, Km 14 FMNH 394044 18.938 -99.354
v3 Buarremon virenticeps Mexico Ocuilon-Cuernavaca Hwy, Km 14 FMNH 395825 18.938 -99.354
v4** Buarremon virenticeps Mexico Mexico, 2 km E San Rafael, hacia Cañada de los Diamantes, Iztaccihuatl AMNH PEP 1427 19.209 -98.758
v5* Buarremon virenticeps Mexico Mexico, undetermined locality BMUM MT410 - - 
       
 Buarremon torquatus      
       
t1 Buarremon torquatus costaricensis Costa Rica Puntarenas, Potrero Grande, 12 km NE; Finca Los Helechales WFVZ 26697 9.096 -83.063
t2** Buarremon torquatus costaricensis Costa Rica Puntarenas, Coto Brus, Estación Biológica Las Cruces UCR GB 130 8.786 -82.973
t2* Buarremon torquatus costaricensis Costa Rica Puntarenas, Coto Brus, Estación Biológica Las Cruces UCR GB 131 8.786 -82.973
t3** Buarremon torquatus tacarcunae Panama Panama, NW slope Cerro Jefe LSUMZ B28362 9.254 -79.413
t3* Buarremon torquatus tacarcunae Panama Panama, NW slope Cerro Jefe LSUMZ B28367 9.254 -79.413
t4** Buarremon torquatus basilicus Colombia Magdalena, Sierra Nevada de Santa Marta, Estación San Lorenzo IAvH BT-463 11.104 -74.063
t4 Buarremon torquatus basilicus Colombia Magdalena, Sierra Nevada de Santa Marta, Estación San Lorenzo ICN 23517 11.104 -74.063
t5 Buarremon torquatus perijanus Venezuela Zulia, Sierra del Perijá, Barranquilla Rancheria Julian COP 58258 10.121 -72.713
t6* Buarremon torquatus cf larensis Colombia Norte de Santander, Agua de la Virgen ICN FGS 3906 8.229 -73.254
t7 Buarremon torquatus larensis Venezuela Lara, 40 km S Cabudare COP 72251 9.746 -69.429
t8 Buarremon torquatus phygas Venezuela Sucre, Piedra de Moler, San Antonio, Serrania del Turimiquire COP JLP 358 10.103 -63.815
t8* Buarremon torquatus phygas Venezuela Sucre, Piedra de Moler, San Antonio, Serrania del Turimiquire COP JLP 363 10.103 -63.815
t9** Buarremon torquatus phygas Venezuela Sucre, PN Peninsula de Paria, Subida al Cerro Humo desde Las Melenas COP JLP 248 10.704 -62.629
t10 Buarremon torquatus atricapillus Colombia Antioquia, Dabeiba,  Río Amparradó, campamento Pantano Ingeominas ICN 27218  7.017 -76.267
t11 Buarremon torquatus assimilis Colombia Antioquia, Páramo de Frontino ZMUC 134956 6.429 -76.079
t11 Buarremon torquatus assimilis Colombia Antioquia, Páramo de Frontino ZMUC 134979 6.429 -76.079
t12 Buarremon torquatus assimilis Colombia Antioquia, Bello, Cgto. San Felix, Cuchilla de Las Baldias, "Las Antenas" IAvH 11698 6.338 -75.654
t12 Buarremon torquatus assimilis Colombia Antioquia, Bello, Cgto. San Felix, Cuchilla de Las Baldias, "Las Antenas" IAvH 11700  6.338 -75.654
t13 Buarremon torquatus atricapillus Colombia Antioquia, Amalfi, Vda. Salazar, Finca Bodega Vieja ICN AMC 658 6.929 -75.096
t14 Buarremon torquatus atricapillus Colombia Antioquia, Amalfi, Vda. Las Animas, Bosque La Escuela ICN AMC 634 6.929 -75.004
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t15* Buarremon torquatus atricapillus Colombia Antioquia, Mpio. Don Matías, Estación Pradera IAvH 11697 6.529 -75.263
t16 Buarremon torquatus atricapillus Colombia Santander, Suaita, 3 km ENE San José de Suaita ICN 33290 6.188 -73.429
t16* Buarremon torquatus atricapillus Colombia Santander, Suaita, 3 km ENE San José de Suaita ICN  33292  6.188 -73.429
t17 Buarremon torquatus assimilis Colombia Boyacá, Santuario de Fauna y Flora de Iguaque IAvH 12207 5.696 -73.471
t18 Buarremon torquatus assimilis Colombia Boyaca, Sutamarchán, Serranía de Merchan IAvH 12271  5.679 -73.663
t19 Buarremon torquatus atricapillus Colombia Cundinamarca, La Vega, Finca El Encanto ICN 16248 5.000 -74.350
t20** Buarremon torquatus assimilis Colombia Cundinamarca, Bojacá, Via Bogotá - La Mesa IAvH 11681 4.663 -74.346
t21 Buarremon torquatus assimilis Colombia Cundinamarca, Parque Nacional Chingaza, Río Blanco IAvH 12680 4.696 -73.854
t22 Buarremon torquatus assimilis Colombia Meta, Parque Nacional Chingaza, San José IAvH 12632 4.494 -73.693
t23 Buarremon torquatus assimilis Colombia Risaralda, Parque Regional Ucumarí, Camino Peña Bonita a Peñas Blancas IAvH 11695 4.718 -75.488
t23 Buarremon torquatus assimilis Colombia Risaralda,  Parque Regional Ucumarí, Camino Peña Bonita a Peñas Blancas IAvH 11696 4.718 -75.488
t24 Buarremon torquatus atricapillus Colombia Valle del Cauca, Rio Bravo, Embalse Rio Calima ICN 28442 3.921 -76.646
t25 Buarremon torquatus assimilis Ecuador Carchi, W slope, near road Maldonado-Tulcán along Río La Plata ANSP 631 0.804 -78.054
t26 Buarremon torquatus assimilis Ecuador Carchi, ca. 3k SE Impueran, Cerro Mongus ANSP 3955 0.438 -77.854
t26 Buarremon torquatus assimilis Ecuador Carchi, ca. 3k SE Impueran, Cerro Mongus ANSP 4001 0.438 -77.854
t27 Buarremon torquatus assimilis Ecuador Imbabura, Apuela road ZMUC 116213 0.346 -78.438
t28 Buarremon torquatus assimilis Ecuador Imbabura, Loma Taminanga ZMUC 116216  0.271 -78.471
t29 Buarremon torquatus assimilis Ecuador Napo, Rio Azul ZMUC 122189  -0.979 -78.271
t30 Buarremon torquatus nigrifrons Ecuador Loja, Cajanuma ZMUC 121538  -4.101 -79.172
t31 Buarremon torquatus nigrifrons Ecuador Loja, 10 km E El Limo ANSP 5164 -3.988 -80.163
t32 Buarremon torquatus nigrifrons Ecuador Loja, Celica Mts. ZMUC 116214  -4.029 -79.879
t33 Buarremon torquatus nigrifrons Ecuador Loja, Utuana ZMUC 116219 -4.371 -79.721
t33 Buarremon torquatus nigrifrons Ecuador Loja, Utuana ZMUC 116220 -4.371 -79.721
t34 Buarremon torquatus nigrifrons Ecuador Loja, 1 km SE Carimanga ZMUC 116217 -4.354 -79.563
t34 Buarremon torquatus nigrifrons Ecuador Loja, 1 km SE Carimanga ZMUC 116218 -4.354 -79.563
t35 Buarremon torquatus nigrifrons Peru Piura, Cruz Blanca, 33 rd km SW Huancabamba LSUMZ B405 -5.338 -79.546
t35* Buarremon torquatus nigrifrons Peru Piura, Cruz Blanca, 33 rd km SW Huancabamba LSUMZ B427 -5.338 -79.546
t36 Buarremon torquatus assimilis Peru Cajamarca, El Espino LSUMZ B31669 -5.688 -79.338
t37* Buarremon torquatus assimilis Peru Cajamarca, Quebrada Lanchal, ca. 8 km ESE Sallique LSUMZ B31948 -5.688 -79.254
t37 Buarremon torquatus assimilis Peru Cajamarca, Quebrada Lanchal, ca. 8 km ESE Sallique LSUMZ B31970 -5.688 -79.254
t37 Buarremon torquatus assimilis Peru Cajamarca, Quebrada Lanchal, ca. 8 km ESE Sallique LSUMZ B32429 -5.688 -79.254
t37 Buarremon torquatus assimilis Peru Cajamarca, Quebrada Lanchal, ca. 8 km ESE Sallique LSUMZ B32460 -5.688 -79.254
t38 Buarremon torquatus poliophrys Peru San Martin, Puerta del Monte, 30 km NE Los Alisos LSUMZ B51279 -7.538 -77.479
t39 Buarremon torquatus poliophrys Peru La Libertad, Masua, E Tayabamba, on trail to Ongon LSUMZ B51355 -8.221 -77.196
t40 Buarremon torquatus poliophrys Peru Pasco, Playa Pampa, ca. 8 km NW Cushi on trail to Chaglla LSUMZ B8129 -9.796 -75.746
t41 Buarremon torquatus poliophrys Peru Pasco, Millpo, E Tambo de Vacas on Pozuzo-Chaglla Trail LSUMZ  B8240 -10.371 -76.304
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t42* Buarremon torquatus poliophrys Peru Pasco, Cumbre de Ollon, ca. 12 km E Oxapampa LSUMZ B1844 -10.579 -75.296
t43 Buarremon torquatus poliophrys Peru Cusco, Paucartambo, Pillahuata FMNH 430060 -13.164 -71.595
t43* Buarremon torquatus poliophrys Peru Cusco, Paucartambo, Pillahuata FMNH 430061 -13.164 -71.595
t44 Buarremon torquatus torquatus Peru Puno, Abra de Maruncunca, 10 km SW San Juan del Oro LSUMZ B51275 -14.246 -69.004
t45* Buarremon torquatus torquatus Bolivia La Paz, Piara, near Pelechuco AMNH CBF 38 -14.787 -69.019
t46 Buarremon torquatus torquatus Bolivia Franz Tamayo, Parque Nacional Apolobamba AMNH CJV 379 -14.821 -68.952
t46 Buarremon torquatus torquatus Bolivia Franz Tamayo, Parque Nacional Apolobamba AMNH CJV 384 -14.821 -68.952
t46 Buarremon torquatus torquatus Bolivia Franz Tamayo, Parque Nacional Apolobamba AMNH OMZ 102 -14.821 -68.952
t46 Buarremon torquatus torquatus Bolivia Franz Tamayo, Parque Nacional Apolobamba AMNH OMZ 129 -14.821 -68.952
t47* Buarremon torquatus torquatus Bolivia La Paz, ca. 1 km S Chuspipata LSUMZ B1284 -16.296 -67.084
t48 Buarremon torquatus torquatus Bolivia Cochabamba, Tablas Montes, Tunari ZMUC 122899 -17.104 -65.888
t48 Buarremon torquatus torquatus Bolivia Cochabamba, Tablas Montes, Tunari ZMUC 122904 -17.104 -65.888
t48 Buarremon torquatus torquatus Bolivia Cochabamba, Tablas Montes, Tunari ZMUC 122925  -17.104 -65.888
t49 Buarremon torquatus torquatus Bolivia Cochabamba, Chapare, San Onofre, ca. 43 km W Villa Tunari LSUMZ B38932 -17.138 -65.785
t49 Buarremon torquatus torquatus Bolivia Cochabamba, Chapare, San Onofre, ca. 43 km W Villa Tunari LSUMZ B39032 -17.138 -65.785
t50 Buarremon torquatus torquatus Bolivia Cochabamba, Villa Tunari UWBM RIS 114 -17.163 -65.796
t51* Buarremon torquatus fimbriatus Bolivia Chuquisaca, 7 km N Sopachuy ZMUC 120842 -19.438 -64.479
t51* Buarremon torquatus fimbriatus Bolivia Chuquisaca, 7 km N Sopachuy ZMUC 120843  -19.438 -64.479
t52 Buarremon torquatus borelli Argentina Jujuy, Yuto WFVZ 37050 -23.638 -64.571
t53** Buarremon torquatus borelli Argentina Salta, 30 km N, 5 km E Salta  MBM 5489 -24.554 -65.404
t54 Buarremon torquatus borelli Argentina Tucumán, Rio Tajamar, a few kilometers from Taruca towards Rio Nio   PH 003 (1992) -26.574 -64.834
t54* Buarremon torquatus borelli Argentina Tucumán, Rio Tajamar, a few kilometers from Taruca towards Rio Nio PH 004 (1992) -26.574 -64.834
 
* Museum acronyms: AMNH (American Museum of Natural History), ANSP (Academy of Natural Sciences of Philadelphia), BMUM (Bell Museum of Natural 
History, University of Minnesota), COP (Colección Ornitológica Phelps), FMNH (Field Museum of Natural History), IAvH (Instituto Alexander von Humboldt), 
ICN (Instituto de Ciencias Naturales, Universidad Nacional de Colombia), KU (University of Kansas Natural History Museum), LSUMZ (Louisiana State 
University Museum of Natural Science), MBM (Marjorie Barrick Musem, University of Nevada-Las Vegas), MUSM (Museo de la Universidad de San Marcos), 
UCR (Universidad de Costa Rica), USNM (United States National Museum, Smithsonian Institution), UWBM (University of Washington Burke Museum), 
WFVZ (Western Foundation of Vertebrate Zoology), ZMUC (Zoological Museum, University of Copenhagen) 
 
* Collections of blood or feather samples: AMC (Andrés M. Cuervo), CDC (Carlos Daniel Cadena), DB (Dusti Becker, University of New Mexico), JCDC (Juan 
Carlos de las Casas), PH (Paul Handford – Steven Lougheed, Queens University) 
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CHAPTER 2 

 

Testing the Role of Interspecific Competition in the Evolutionary Origin of Elevational 

Zonation 

 

Introduction 

 

Species’ ranges result from the interplay of processes that act across many scales of time, so 

understanding the current distributions of species depends on the integration of various core concepts 

of ecological and evolutionary theory (Kirkpatrick and Barton 1997, Pulliam 2000, Gaston 2003, Holt 

2003, Holt and Keitt 2005). Nevertheless, ecological and historical approaches to studying geographic 

ranges have yet to be unified (Wiens and Donoghue 2004). The ecological biogeographic perspective 

(e.g., MacArthur 1972) emphasizes the role of environmental conditions, the distribution and 

abundance of resources, and species interactions as determinants of geographic ranges. In contrast, 

historical biogeography (e.g., Crisci et al. 2003) focuses on the role of events that have taken place in 

Earth history and their impact on processes that affect distributions, such as vicariance, dispersal, and 

extinction. Although these two approaches are valid in their own right, both are limited in scope 

because the dichotomy between “ecology” and “history” is artificial. Ecological processes observable 

in contemporary time influence species’ ranges over evolutionary time scales (Jackson and Overpeck 

2000, Holt 2003), and current ecology is contingent upon the history of the region and organisms 

involved (Webb et al. 2002; Ackerly 2003; Ricklefs 2004, 2005). Thus, a critical challenge for 

ecological and historical biogeographers alike is integrating processes that affect geographic ranges 

across a broad continuum of timescales (Donoghue and Moore 2003, Jackson 2004, Fjeldså and 

Rahbek 2006). 

 

Parapatric distributions, in which pairs of taxa have separate but abutting ranges, occur widely and 

have provided a focus for many analyses of geographic ranges (Bull 1991). In particular, since 

Humboldt’s (1807) time, researchers have been interested in the replacement of species along 

elevational gradients, often referred to as elevational zonation. Factors influencing elevational ranges 

can be distinguished according to the ecological versus historical (or shallow-time versus deep-time) 

apparent dichotomy outlined above (see also Vuilleumier and Simberloff 1980). On the ecological 

side of the continuum, hypotheses to explain elevational zonation invoke local determinism, and 

focus on individual tolerances to environmental conditions, distribution of resources and habitats, and 

interactions such as predation, parasitism, or competition, that change with elevation (Terborgh 1971, 
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Repasky and Schluter 1994, Carothers et al. 2001, Navas 2003, Buckley and Roughgarden 2005). The 

hypothesis that interspecific competition underlies elevational replacements is supported by 

observations of pairs of species with restricted and complementary distributions where they co-occur, 

but broader elevational ranges where one or the other is absent (Lack and Southern 1949; Diamond 

1970, 1973; Terborgh and Weske 1975; Mayr and Diamond 1976; Remsen and Cardiff 1990; Remsen 

and Graves 1995; Hall et al. 2005; but see Prodon et al. 2002).  

 

At the other end of the spectrum, purely historical hypotheses have also been advanced to explain 

vertical zonation of species and geographic variation in the positions of species along elevational 

gradients. For instance, it has been proposed that the uplift of mountains or the subsidence of plates in 

marine environments might stratify species along vertical gradients of elevation or depth, respectively 

(Heads 1989, 2005). Indeed, examples of geographic variation in elevational ranges used to illustrate 

the role of interspecific competition in elevational zonation (Diamond 1986) have also been attributed 

to tectonic processes (Heads 2001). Similarly, vicariance resulting from mountain uplift, or from 

fragmentation of habitats driven by climate change, could cause the differentiation of lowland and 

highland clades (e.g. Patton and Smith 1992, Schulte et al. 2000). Other “historical” explanations for 

elevational zonation include parapatric speciation along elevational gradients (Endler 1982, Hall et al. 

2005) and the colonization of newly formed high-elevation areas by taxa from other regions tracking 

their favored environments (Chapman 1917). 

 

Hypotheses that attribute a protracted role in time for ecological processes affecting geographic 

ranges lie somewhere in between. Although ecological interactions such as interspecific competition 

are often viewed as proximate mechanisms that maintain patterns of elevational zonation ultimately 

generated by some other process (Remsen and Cardiff 1990), competition might also play a role in 

generating such patterns. Foremost, Diamond (1970, 1973) described several stages in a hypothetical 

process leading to pairs of species with exclusive elevational ranges. He proposed that when 

allopatric, ecologically similar species with broadly overlapping elevational distributions expand their 

ranges and come into contact, competition causes them to segregate with respect to elevation, with 

each species “giving up” the section of its range in which it is an inferior competitor. This partitioning 

of the elevational range allows the species to coexist at the landscape scale. Diamond argued that this 

process of elevational displacement need not entail evolutionary modifications of species’ 

fundamental niches (sensu Hutchinson 1957); he believed it often involves only compression of 

realized niches through plastic behavioral responses (Diamond and Marshall 1977). However, 

Diamond (1973) also entertained the possibility that species’ fundamental niches can evolve via 
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adaptation to different elevational ranges following competitive segregation, which would lead to 

fixed elevational distributions. This idea is equivalent to the hypothesis of ecological character 

displacement (Brown and Wilson 1956; reviewed by Schluter 2000, Dayan and Simberloff 2005).  

 

Whether the concept of character displacement can be applied to elevational distributions depends on 

whether they reflect phenotypic traits amenable to evolution by natural selection. Although 

elevational distributions are population rather than organismal attributes, they do represent evolved 

functional traits that allow individuals to survive and reproduce within the range of environmental 

conditions encountered over a range of elevation (Porter et al. 2002, Navas 2003, Altshuler and 

Dudley 2006). Accordingly, the concept of character displacement applied to elevational ranges is 

sensible and amenable to testing (see Schluter 2000). Indeed, recent theoretical work has 

demonstrated that interspecific competition can lead to character displacement in the positions of 

species along environmental gradients, and may result in stable parapatric range margins (Case and 

Taper 2000, Case et al. 2005). Moreover, specific elements of the character displacement scenario 

proposed by Diamond (1973) have been identified, including shifts in competitive superiority in pairs 

of species with elevation (Altshuler 2006), and inability of species that segregate altitudinally to 

expand their elevational ranges as a consequence of evolved niche differences (Angert and Schemske 

2005). However, the fundamental assumption that competition is responsible for the origin of 

altitudinally exclusive ranges remains untested. 

 

Distinguishing among alternative explanations for distributional patterns is made challenging in many 

cases by the absence of clearly articulated, falsifiable predictions. For example, responding to 

criticism of his competition hypothesis for the origin of elevational replacements, Diamond (1978) 

acknowledged: ““Proof” that the correlation with the competitor’s presence was causal is neither 

available nor possible”. However, tools that were for the most part unavailable at the time of 

Diamond’s writings now offer insights into the role of competition relative to other explanations for 

the origin of elevational zonation. In particular, as with the evolution of ecological interactions, such 

as host-parasite associations (articles in Page 2003), the origin of presumed competitive interactions 

and their role in the historical development of elevational ranges can be assessed from a phylogenetic 

perspective.  

 

Molecular phylogenies provide information on patterns of relationship and timing of historical events 

that can be brought to bear on the origin of elevational replacements. Specifically, they can reveal the 

evolutionary lability or conservation of elevational ranges, and can show whether inferred changes in 
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elevational distributions occurred at times and places when competition could have been causally 

involved with their origin (see Losos 1990). In addition, the study of within-species genetic variation 

in a geographical context using gene trees (phylogeography), combined with population genetic 

analyses grounded in coalescent theory, offers insights into the biogeographic history of species and 

the events that have played a role structuring their geographic ranges (Avise 2000, Wakeley 2005). In 

particular, recently developed methods use DNA sequence data to estimate population divergence 

times and to infer the occurrence of historical events, including range expansions and changes in 

population size (reviewed by Knowles 2004). When these methods are applied to study the history of 

species that occur in the same geographical setting and interact ecologically, valuable information can 

be gained on how these interactions arose through space and time, and on the influence that species 

may have had on each other (Arbogast and Kenagy 2001, Flanagan et al. 2004). 

 

In this study, I develop predictions based on possible effects of interspecific competition resulting in 

elevationally exclusive ranges, describe how these can be tested using phylogenetic and population 

genetic methods, and apply this framework to study the origin of elevational replacements in a group 

of Neotropical birds whose ranges are thought to be strongly influenced by competition. My analyses 

illustrate how the factors underlying geographic ranges can be better understood if ecological 

processes that are thought to operate at present are viewed retrospectively in the context of population 

histories, an approach that has seldom been taken to explain features of species’ distributions (e.g., 

Bernardi 2005).  

 

Study System 

 

Understanding distributions of birds along elevational gradients in the Neotropical region has been a 

subject of keen interest ever since the early explorations of montane areas of South America (e.g., 

Chapman 1917, Todd and Carriker 1922). In general, montane bird species occupy relatively 

consistent elevation ranges throughout their distributions (Graves 1988), with some remarkable 

exceptions, such as the brush-finches in the genus Buarremon (Emberizini). Consistent with 

Diamond’s (1973) hypothesis, the stripe-headed (Buarremon torquatus) and chestnut-capped (B. 

brunneinucha) brush-finches replace each other along elevational gradients in areas where both occur, 

but B. torquatus occupies most of the montane gradient in areas of allopatry in South America. This 

suggests that interspecific competition is an important determinant of distributions (Remsen and 

Graves 1995). Competition-mediated elevational replacements have been argued to be pervasive in 

Andean birds (Terborgh and Weske 1975; but see Remsen and Graves 1995), yet the case of 
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Buarremon is anomalous because the relative elevational positions of the putative competitors vary 

geographically (Remsen and Graves 1995). In regions where both taxa occur along the Peruvian, 

Ecuadorian, and most of the Colombian Andes, B. brunneinucha consistently occupies the lower part 

of the gradient, whereas B. torquatus occurs at high elevations. In some regions of northern South 

America and Central America the pattern is reversed, and B. torquatus is found at lower elevations; in 

other areas, mid-montane populations of B. brunneinucha are puzzlingly sandwiched between high 

and low elevation populations of B. torquatus. Although I have argued elsewhere that the currently 

defined B. torquatus comprises more than one species-level taxon, and specifically that the 

populations that sandwich B. brunneinucha in the Colombian Andes must be treated as different 

species, all the taxa that have been considered part of the B. torquatus complex by recent authors 

constitute a strongly supported monophyletic group (Chapter 1, Chapter 4). This implies it is sensible 

to investigate the causes of geographic variation in elevational distribution of this clade, irrespective 

of whether its members represent different species, different subspecies, or different populations. 

Thus, for simplicity, in the following I refer to the group formed by all members of this species 

complex as B. torquatus and refer to distinct populations with their subspecific epithets. I also note 

that the genus Buarremon is unlikely to be monophyletic with respect to the genera Arremon and 

Lysurus (Chapter 1); however, because a change in nomenclature merging these three genera into an 

expanded Arremon has yet to be broadly accepted (Remsen et al. 2006), here, to avoid confusion, I 

continue to use Buarremon to refer to torquatus and brunneinucha. 

  

How did the unusual patterns of elevational distribution of Buarremon brush-finches arise? Remsen 

and Graves (1995) did not present information on elevational distributions from Central America and 

Mexico, where B. brunneinucha occurs mostly in the absence of B. torquatus. Therefore, 

documenting the elevational ranges of B. brunneinucha in areas with and without B. torquatus 

remains a crucial missing step towards testing the hypothesis that the elevational ranges of the two 

species may have evolved in opposite directions as a consequence of competition (Diamond 1973). In 

addition, previous analyses did not consider distribution patterns in the context of the biogeographic 

history of species and the ages of different lineages. Therefore, the origin of the differences in 

elevational distributions of populations of B. torquatus and B. brunneinucha that replace each other 

along montane gradients may have predated the co-occurrence of these species (see Losos 1990).  

  

 

Predictions 

 



 Cadena, C. Daniel, UMSL, 2006 p. 48

The hypothesis that interspecific competition caused the elevational ranges of B. torquatus and B. 

brunneinucha to change in opposite directions (cf. Diamond 1973) predicts that (1) elevational 

distributions of both species differ between areas of allopatry and areas of sympatry, and (2) that 

historical changes in elevational ranges occurred within geographical areas and periods of time during 

which these species could have interacted. Likewise, if the varying elevational distributions of 

different populations in the B. torquatus complex, specifically the occurrence of members of the 

group only at the two extremes of the elevational gradient in the Northern Andes, were caused by 

competition with B. brunneinucha, (1) splits among these populations must have occurred at times 

and places when interacting with this species was possible, and (2) populations replacing B. 

brunneinucha at low and high elevations along the same mountain slope should be sister taxa. 

Alternatively, even if competition was not involved directly with the divergence of these populations, 

competition might still have been responsible for the origin of observed distributions if it caused their 

elevational ranges to contract after they diverged. Accordingly, members of the B. torquatus complex 

with limited elevational distributions should show evidence of historical population declines. Specific 

tests of these predictions are described in detail below. 

 

Materials and Methods 

 

Data on elevational distributions. I characterized the elevational distributions of B. brunneinucha 

and B. torquatus throughout their geographic ranges based on c. 350 georeferenced locality records 

for each species obtained from museum specimens, publications, and field data gathered by myself or 

provided by several researchers. Elevations were obtained from the primary data (specimen labels, 

field notes) whenever possible, or by overlaying the geographic coordinates of localities onto a 1 km 

by 1 km digital elevation model (Shuttle Radar Topography Mission; http://www.jpl.nasa.gov/srtm) 

using a geographic information system (GIS; ArcGIS 9.1, ESRI, Inc.). Details on this procedure, data 

sources, and protocols followed to verify the accuracy of georeferenced data are presented elsewhere 

(Chapter 3). 

 

Phylogenetic and population genetic data. In an earlier study (Chapter 1), I reconstructed 

phylogenetic relationships among members of the B. torquatus complex, among species of 

Buarremon, and among Buarremon and related genera on the basis of sequences from several 

mitochondrial and nuclear genes. In addition, based on thorough sampling of variation in 

mitochondrial DNA, I presented a general picture of the biogeographic history of B. torquatus and B. 

brunneinucha. Here, I use the inferences about phylogenetic relationships and population history as a 
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framework to guide the development and testing of predictions related to the role of interspecific 

competition in the origin of elevational distributions in Buarremon. I also capitalize on the available 

sequence data to conduct new analyses on the timing of lineage differentiation and on the 

demographic history of populations.  

 

The Effect of B. torquatus on the Elevational Range of B. brunneinucha 

 

The hypothesis of character displacement predicts that coexistence along mountain slopes with 

elevational replacement follows secondary sympatry, and that elevational distributions of derived 

lineages occurring in sympatry with competitors should be shifted in comparison to those of early 

branching lineages that occur in allopatry.  I was able to test this prediction for B. brunneinucha 

because populations from the southern sector of its range, where it co-occurs with B. torquatus, are of 

recent origin with respect to those of the northern sector, from where B. torquatus is absent (Chapter 

1). Testing for character displacement requires that environments are similar enough in sympatry and 

allopatry that differences in species’ ecology cannot be accounted for by tracking of varying 

environmental factors (Grant 1972, 1975; Schluter and McPhail 1992). Therefore, I compared the 

slopes and intercepts of the relationship between elevation and mean annual temperature measured in 

areas of allopatry and sympatry. In contrast to elevation, which only limits distributions indirectly 

through its correlation with other factors, temperature affects organisms directly. This comparison 

allowed me to assess whether the documented differences in the elevation-temperature relationship 

between lower and higher latitudes (Janzen 1967, Ghalambor et al. 2006) are observable within the 

study region. If they were, then elevational ranges in different areas would not be readily comparable 

because, on average, B. brunneinucha occurs at higher latitudes in allopatry than in sympatry. To set 

up this analysis, I used GIS to randomly place 1500 points in the area of allopatry and 1500 in 

sympatry, with the constraint that they should fall within the elevation range encompassed by all B. 

brunneinucha localities. At each point, I recorded elevation based on the digital elevation model and 

temperature from an interpolated surface with a 1 km x 1 km resolution (Hijmans et al. 2005).  

 

Because randomly placed points sample different elevations in proportion to their area, I used these 

data to account for differences in the abundance of sites at different elevations when testing for 

differences in the mean of the elevational range of B. brunneinucha in sympatry and allopatry. That 

is, the variation in the elevational distribution of the random points in allopatry and sympatry can be 

taken as a null expectation against which actual differences in elevational distributions can be 

compared. I conducted a two-way ANOVA with geographic context (i.e., allopatry or sympatry) and 
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elevation data source (i.e., locality records or randomly placed points) as main factors, and elevation 

as response variable. A significant interaction term would indicate the difference in mean elevational 

distributions of B. brunneinucha between regions deviated from the difference that would be expected 

as a consequence of varying abundance of sites at different elevations. This could result from 

interspecific competition. I also examined elevational distributions in areas where populations of B. 

brunneinucha were either sandwiched, replaced at high elevations, or replaced at low elevations by B. 

torquatus. If displacement in elevational ranges occurred, then populations replaced at low elevations 

should be shifted towards higher altitudes in comparison to those being replaced at high elevations.  

 

The Effect of B. brunneinucha on the Elevational Range of B. torquatus 

 

Timing of Differentiation. The hypothesis that competition with B. brunneinucha is responsible for 

the disparate elevational distributions of populations of B. torquatus predicts these populations 

diverged at times when B. brunneinucha and B. torquatus could have been in sympatry. To test this 

prediction, I used a relaxed molecular clock approach to compare the ages of South American 

lineages of B. torquatus with the estimated time at which B. brunneinucha colonized South America. 

Based on results of phylogenetic analyses that included multiple individuals of the three species of 

Buarremon and a variety of related genera (Chapter 1), I selected a few representatives of major 

groups and inferred their relationships using sequences of the mitochondrial ND2 gene. Relationships 

inferred from ND2 sequences do not conflict significantly with those inferred with more data from 

other mitochondrial and nuclear genes, and restricting analyses to ND2 allowed me to sample 

lineages for which sequences of other genes are not available.  

 

To root the phylogeny of the clade formed by Buarremon, Arremon, and Lysurus, I used sequences of 

Atlapetes and Pipilo as outgroups. I conducted maximum-likelihood phylogenetic analyses in PAUP* 

(Swofford 2002), using procedures described in Chapter 1. A likelihood ratio test comparing the 

scores of the maximum-likelihood tree and of a tree with a molecular clock enforced rejected the null 

hypothesis of clock-like sequence evolution. Therefore, I used the penalized likelihood method 

(Sanderson 2002) implemented in the program r8s version 1.70 (Sanderson 2003) to convert branch 

lengths to comparable estimates of divergence times. This method allows for rate variation across the 

tree, but applies a roughness penalty to discourage departures from rate constancy among close 

relatives. I determined the optimal level of rate smoothing using the cross-validation procedure 

available in r8s. Because neither fossil nor biogeographic calibrations are available for Buarremon 

and its near relatives, I did not attempt to infer the absolute timing of historical events, but rely on 
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relative timing. For this purpose, I fixed the node representing the most recent common ancestor of 

the ingroup (i.e., the Buarremon-Arremon-Lysurus clade) to have an age of 1.0 and scaled branch 

lengths relative to this value. Based on the resulting chronogram, I estimated the relative ages of 

nodes indicating the colonization of South America by B. brunneinucha or the divergence of 

populations of B. torquatus with contrasting elevational ranges. To assess the uncertainty of estimates 

of node ages resulting from data sampling error, I estimated these ages for 100 bootstrap 

pseudoreplicate data sets (Sanderson and Doyle 2001). Because a few nodes in the phylogeny were 

not well supported, phylogenetic uncertainty introduces additional error in node age estimation. To 

evaluate the influence of this source of error, I repeated the analysis for trees in which branches 

receiving less than 70% maximum-likelihood bootstrap support were resolved in alternative ways. 

Because all the poorly supported branches are short, alternative topologies did not influence the main 

conclusions of this analysis. Therefore, I only report results based on the maximum-likelihood 

phylogeny. 

 

Inferences about the divergence time between populations of a species can be confounded by 

ancestral polymorphism (Edwards and Beerli 2000). However, I did not employ methods to 

distinguish between the time of gene divergence and the time of population divergence (e.g., Nielsen 

and Wakeley 2001) because the data did not meet the assumption of no population structure within 

the diverging groups. This assumption was particularly unsuited for B. torquatus, which comprises 

several distinct, reciprocally monophyletic, and geographically isolated groups (Chapter 1). I address 

the effect of possible biases in the estimation of population divergence times in the discussion. 

 

Historical Demography. Methods that reconstruct ancestral character states for nodes on phylogenies 

are not well suited for the study of historical changes in elevational distributions. Consider the 

hypothetical situation that all extant members of a clade occur over a narrow elevational range: 

ancestral state reconstructions will typically indicate the range of their ancestor was similarly narrow 

(see Hardy and Linder 2005). This scenario overlooks the possibility that the elevational distributions 

of all members of the clade may have been compressed in concert since they last shared a common 

ancestor, which would be what one would expect if competitive displacement occurred relatively 

recently in evolutionary history. Although one could accommodate this possibility by employing a 

model of trait evolution that allows high rates of change along branches in the phylogeny, ancestral 

states estimated under such a model would be imprecise. Therefore, I did not attempt to infer the 

evolutionary pathways by which current elevational distributions arose. Instead, I use historical 

patterns of change in population size to determine the plausibility of the occurrence of elevational 
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range contractions because the restriction of a widespread population to a narrow elevational range 

cannot occur unless there is a reduction in its size, especially if it occurs at or near its carrying 

capacity. Population genetic theory provides a framework that allows assessing historical 

demographic trends: alleles sampled from historically stable, shrinking, and expanding populations 

exhibit different distributions of coalescence times because lineages coalesce back to their common 

ancestor more rapidly when populations are small and more slowly when they are large (Kingman 

1982). If a population has declined as a consequence of a contraction in its elevational range, this 

should be detectable in gene genealogies inferred from series of randomly sampled haplotypes 

(reviewed by Emerson et al. 2001, Knowles 2004). I applied this framework to test the hypothesis that 

competition with B. brunneinucha caused the elevational ranges of populations of B. torquatus to 

contract. 

 

I used two different coalescent approaches to examine historical trends in population size using ND2 

sequence data for assimilis and atricapillus, two members of the B. torquatus complex that could 

have experienced elevational range contractions as a result of competition with B. brunneinucha, and 

that presently sandwich that species in areas of the Colombian Andes. First, I estimated historical 

population growth rates using LAMARC version 1.2.2 (Kuhner et al. 2004). This package samples 

genealogies using a Markov chain Monte Carlo (MCMC) method, and assuming a model of 

exponential change in population size and no selection, migration, or recombination, it calculates 

maximum-likelihood estimates of θ, a measure of genetic diversity that reflects female effective 

population size and mutation rate per site (θ = Neμ for the haploid and maternally-inherited mtDNA), 

and its exponential growth parameter g (θt = θnowexp- [gt], where t is some time in the past). Positive 

values of g indicate population growth, whereas negative values indicate population decline. I 

analyzed data for assimilis and atricapillus independently using 10 short-chain runs of 1,000 steps, 

followed by two long-chain runs of 100,000 steps; chains were sampled every 20 steps, with the first 

1000 discarded as burn-in. I also assessed trends in effective population size using the Bayesian 

skyline plot method (Drummond et al. 2005), a nonparametric approach implemented in BEAST 

version 1.2 (Drummond and Rambaut 2003) that estimates a posterior distribution of effective 

population size through time on the basis of a set of plausible genealogies sampled using MCMC. I 

used the TrN+I and TrN models of nucleotide substitution (selected based on the AIC using 

ModelTest 3.7; Posada and Crandall 1998) to analyze data for assimilis and atricapillus, respectively. 

Chains were run for 50,000,000 iterations with genealogies and model parameters sampled every 

1000 iterations; the first 1% of iterations was discarded as burn-in. The number of groups (m) was set 

to 10 for analyses involving assimilis and to 5 for those involving atricapillus due to varying sample 
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sizes. I imported the output of each run into Tracer version 1.2 (Rambaut and Drummond 2003) and 

examined results to verify that parameter estimates were based on acceptable effective sample sizes 

and that trace plots indicated appropriate mixing. Finally, I generated skyline plots in Tracer showing 

the median estimates of population size and their associated credibility intervals (95% highest 

posterior density) from present time back to the most recent common ancestor of the samples.  

 

These approaches to assessing historical demography assume that sequences are sampled from a 

single panmictic population. Estimates of migration between Colombian and Ecuadorian-Peruvian 

highland populations of B. torquatus indicate that, on average, one female individual is exchanged 

between the two regions approximately every five generations (C. D. Cadena, unpubl. data; see 

Chapter 1 for methods). Although simulations suggest migration would need to be much lower to bias 

the estimation of g (P. Beerli, unpublished data), the credible interval for this estimate of gene flow is 

wide, and cannot distinguish complete isolation from relatively frequent interchange of migrants. 

Thus, I tested for the sensitivity of the models to population structure by conducting independent 

analyses with: (1) only sequences of assimilis from Colombia, (2) sequences of assimilis and 

nigrifrons from Ecuador and Peru, and (3) all sequences of assimilis and nigrifrons from Colombia, 

Ecuador, and Peru. Because geographic structure is limited within Colombia and in Ecuador-Peru 

(Chapter 1), consistent results across analyses with these different sampling schemes would suggest 

that the models were robust to the possible violation of the assumption of panmixia (Shapiro et al. 

2004). Sequences of nigrifrons were included in the analyses because this taxon and assimilis are not 

reciprocally monophyletic. Although this taxon only replaces B. brunneinucha at high elevations in 

part of its range (see below), not considering it would likely have resulted in gene genealogies with 

longer coalescent times near the base, which would have biased analyses towards inferring population 

declines. The sample size for atricapillus was too limited to allow for sensitivity analyses, so I 

considered all available sequences as a single group, except for the fact that I conducted analyses with 

and without sequences of tacarcunae, a closely related taxon. Although the sample size precluded 

examining the possible effect of violating the assumption of no population subdivision in atricapillus, 

it was probably sufficient to capture the general structure of gene genealogies, and thereby reach the 

level of accuracy that can be achieved estimating population genetic parameters from single-locus 

data (Felsenstein 2006). 

 

Forces other than interspecific competition with B. brunneinucha might have influenced population 

sizes throughout the history of B. torquatus, especially because the areas it inhabits have experienced 

mountain uplifting and vertical displacement of ecological zones as a consequence of climate change 
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(Gregory-Wodzicki et al. 2000, Hooghiemstra and Van der Hammen 2004). Therefore, even if 

interspecific competition caused ranges to contract, these contractions might be difficult to detect 

from the background of all other events that influenced population sizes over time. This caveat 

applies particularly to the estimation of g because LAMARC assumes constant exponential growth or 

decline, and, thus, reveals only an overall trend in population size. It is less likely that fluctuations 

unrelated to competition would obscure a strong pattern of competition-driven decline in skyline 

plots, which can recover distinct episodes of growth and decline throughout a population’s history 

(Drummond et al. 2005). Nonetheless, I sought to address the possible confounding effect of 

demographic changes unrelated to competition on the outcome of coalescent analyses by assessing 

trends in population size in “control” taxa.  

 

An ideal control would be a population of similar age and distribution to the one that may have been 

displaced by competition; this control population would be expected to have been affected by the 

same historical processes resulting in population growth and decline, except competition. I used two 

controls: (1) the population of B. torquatus (subspecies torquatus) that extends from the Peru-Bolivia 

border south to central Bolivia, and (2) the lineage formed by Myioborus ornatus and M. 

melanocephalus (Parulidae) that extends from the Venezuela-Colombia border through Colombia into 

northern Peru (Pérez-Emán 2005). The Bolivian B. torquatus are close relatives of assimilis-

nigrifrons and atricapillus-tacarcunae, constitute a lineage of comparable age that may have been 

similarly affected by large-scale historical changes in climate, and occur in areas where B. 

brunneinucha does not occur (with the exception of a single locality in southernmost Peru). Although 

the M. ornatus-M. melanocephalus complex belongs to a different family, it occurs in similar 

environments to assimilis-nigrifrons, the distribution and elevational ranges of the two groups are 

remarkably consistent, and sequence data for the same genes indicate similar age (Chapter 1, Pérez-

Emán 2005, J. L. Pérez-Emán and C. D. Cadena, unpublished data). 

 

RESULTS 

 

History of populations and elevational ranges in B. brunneinucha 

 

Southern Costa Rican, Panamanian, and South American populations of B. brunneinucha that occur 

in sympatry at the landscape scale with members of the B. torquatus complex are of recent origin 

with respect to populations from Mexico and northern Mesoamerica that occur in allopatry (Chapter 

1). This allowed me to test the prediction of the character displacement hypothesis that derived 
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populations occurring in sympatry should exhibit shifted elevational ranges with respect to 

populations free of competition from areas of allopatry. Although the relationship between elevation 

and climate varies with latitude, differences are minor within the range of Buarremon: the slopes and 

intercepts of regressions between elevation and temperature do not differ between regions (data not 

shown). This suggests that the elevational distributions of B. brunneinucha in sympatry and allopatry 

can be compared to one another. 

 

Elevational distributions of B. brunneinucha in sympatry and allopatry differ significantly 

(Kolmogorov-Smirnov two-sample test, p=0.0034, Fig. 1a), and the mean elevation of records of this 

species is significantly higher in sympatry than in allopatry (ANOVA, P < 0.0001, Fig. 1b). However, 

this can hardly be interpreted as evidence of displacement resulting from interspecific competition 

with B. torquatus. First, the magnitude of differences in mean elevation of records between areas does 

not exceed that of differences that would be expected by chance as a result of the varying abundance 

of sites at different elevations in each area, as indicated by the lack of a significant interaction term in 

the ANOVA that involved a comparison of the mean elevation of randomly placed points in allopatry 

and sympatry (P = 0.42, Fig. 1b). Second, distributions in sympatry are shifted towards higher 

elevations in comparison to allopatry independently of whether B. brunneinucha is replaced at low 

elevations, replaced at high elevations, or sandwiched by B. torquatus (Fig. 1c). This is inconsistent 

with the prediction from competitive displacement that distributions would be shifted towards those 

elevations not occupied by the putative competitors. Finally, the elevational range of B. brunneinucha 

has similar standard deviations in areas of allopatry (s = 569 ± 36 m SE), and areas where replaced at 

low elevations (s = 599 ± 68.7 m), replaced at high elevations (s = 555 ± 38 m), and sandwiched (s = 

544 ± 48 m) by B. torquatus, indicating that ranges are not more compressed in sympatry.  

 

History of populations and elevational ranges in B. torquatus 

 

As described in Chapter 1, relationships among major South American lineages of B. torquatus are 

generally poorly supported, but there are several distinct and strongly supported clades, some of 

which comprise lineages occupying similar positions along elevational gradients (Fig. 2). In 

particular, the populations that replace B. brunneinucha at high elevations form a well-supported 

monophyletic group that in turn comprises two distinct clades, one including forms from Colombia, 

Ecuador, and northern Peru (assimilis and nigrifrons), the other a form ranging from central to 

southern Peru (poliophrys). Low-elevation taxa do not form a single monophyletic group, but 

atricapillus, tacarcunae, which replace B. brunneinucha at low elevations appear to constitute a 
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clade, with the low-elevation and allopatric phygas, although support is weak. The other low-

elevation taxa are sister to all other members of the complex (costaricensis), to the high-elevation 

clade (larensis), or to the elevationally widespread basilicus (perijanus), but the latter relationship is 

not strongly supported. Finally, the three taxa that occur in allopatry from B. brunneinucha in Bolivia 

and Argentina (nominate torquatus, fimbriatus, and borelli) formed a well-supported group 

(fimbriatus is not shown in the figure; this taxon and borelli are not reciprocally monophyletic with 

respect to each other; Chapter 1).  

 

Penalized likelihood analyses of timing of diversification indicate the colonization of South America 

by B. brunneinucha occurred substantially more recently than the origin of most South American 

lineages of B. torquatus that presently have disparate elevational distributions (Fig. 2). This result is 

robust to error introduced by substitutional noise in the mtDNA data, as indicated by the entirely non-

overlapping bootstrap estimates of ages of relevant nodes (Fig. 3). Specifically, estimates of the 

crown ages of groups of B. torquatus that replace B. brunneinucha at high or low-elevation areas 

(nodes 4 and 5 in Fig. 2) have confidence intervals that do not overlap with the confidence interval 

around the crown age of South American B. brunneinucha (node 1; Fig. 3a). Differences are more 

striking when the ages of stem groups (i.e., nodes 2 and 3) are compared (Fig. 3b). Likewise, the 

divergence between the low-elevation taxon perijanus and the wide-ranging basilicus (node 7) clearly 

predates the colonization of South America by B. brunneinucha (Fig. 3c). In sum, interspecific 

competition with B. brunneinucha in South America is not a parsimonious explanation of the 

differentiation of B. torquatus into distinct lineages that currently replace B. brunneinucha at 

particular elevational zones: these lineages last shared common ancestors well before the onset of 

sympatry with B. brunneinucha in South America. However, it is important to note that the taxon 

nigrifrons only replaces B. brunneinucha at high elevations in the northern extreme of its range; 

through much of southern Ecuador and northern Peru, it occurs in allopatry and extends to low 

elevation areas. The divergence of assimilis and nigrifrons is recent (they are not reciprocally 

monophyletic, Chapter 1) and penalized likelihood cannot reject the hypothesis that they diverged 

after the colonization of South America by B. brunneinucha (Fig. 2). This raises the possibility that 

the elevational range of assimilis and poliophrys, but not of nigrifrons, may have been compressed as 

a consequence of competition (see below).  

 

Historical Demography 
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Maximum-likelihood estimates of the exponential growth parameter (g) were greater than zero for all 

populations (Table 1), suggesting histories of demographic growth. However, the MCMC method 

implemented in LAMARC tends to produce upwardly biased estimates of g (Kuhner et al. 1998, 

Felsenstein et al. 1999). The fact that the 95% confidence intervals of g did not include zero or 

negative values in some analyses (Table 1) argues more strongly against population decline than for 

population expansion. The confidence intervals around g estimated for atricapillus-tacarcunae are 

too large to reach definitive conclusions, other than that there is no compelling evidence that these 

populations have declined. Likewise, Bayesian credibility intervals in skyline plots were wide, 

particularly for atricapillus-tacarcunae (Fig. 4), yet the median estimates of population size in these 

analyses showed trends that indicate either growth or stable population sizes. The value of g for one 

of the control populations (Bolivian torquatus) was an order of magnitude greater than those 

estimated for assimilis-nigrifrons and atricapillus-tacarcunae, but the estimate of θ for this 

population had an extremely large confidence interval, spanning four orders of magnitude (Table 3). 

Because the extent of population growth or decline can only be interpreted with reference to θ, 

making inferences about the demographic history of this taxon is difficult. For comparison, patterns 

in Myioborus ornatus-melanocephalus appear indistinguishable from those of the populations of B. 

torquatus that might have been affected by competition with B. brunneinucha (Table 3). Note that the 

results of analyses did not vary qualitatively with different sampling schemes, indicating that 

inferences are unlikely to be affected by possible violations of the assumption of panmixia. 

 

DISCUSSION 

 

Biogeographers have long been interested in determining what factors underlie the replacement of 

species along elevational gradients, a question that is arguably central to explaining macroecological 

patterns such as the turnover of species composition and the changes in species diversity with 

elevation (reviewed by Rahbek 2005). This issue is especially relevant in the tropical Andes, where 

elevational turnover is a major component of high regional species richness in many groups of 

organisms. In this study I set out to evaluate the hypothesis that abutting elevational distributions 

result from interspecific competition by testing predictions involving historical scenarios with 

phylogenetic and population genetic analyses in a group of Neotropical birds. Although some 

conclusions depend on the assumption that the history of mitochondrial lineages reflects the history of 

populations, my results reject some potential historical roles for interspecific competition in 

elevational zonation in Buarremon. Although the results of this study might not be generalizable 

across other taxa and regions, of all Neotropical birds, Buarremon is the group in which elevational 



 Cadena, C. Daniel, UMSL, 2006 p. 58

distribution patterns seemed to be most consistent with the hypothesis that competition may have 

been causally involved with their origin (see Remsen and Graves 1995 for a review of problems with 

other cases in which elevational zonation had been suggested to be determined by competition).  

  

Historical Effect of Interspecific Competition on the Elevational Range of B. brunneinucha 

 

Mitochondrial DNA variation in B. brunneinucha suggests that this species colonized the southern 

portion of its present distribution from northern Central America (Chapter 1). Because members of 

the B. torquatus complex do not occur north of central Costa Rica (and presumably did not extend 

much further north historically), the biogeographic history of B. brunneinucha is well suited to test 

the hypothesis that its elevational range was modified by interspecific competition once it expanded 

into the range of B. torquatus (Diamond 1973). Although the mean of the elevational distribution of 

B. brunneinucha differs between the region of sympatry and the region of allopatry, the area available 

at different elevations also differs between regions in parallel, obviating the need to invoke 

competition. Moreover, a shift towards higher elevations in areas of sympatry is observed regardless 

of whether B. brunneinucha is replaced at high elevations, replaced at low elevations, or sandwiched 

by its putative competitor, and this shift is not accompanied by a compression in the elevational 

range. Thus, I can reject the hypothesis that the elevational distribution of B. brunneinucha has been 

influenced by competition with B. torquatus. The more restrictive scenario of ecological character 

displacement, which also requires niche evolution beyond the alternative of ecological plasticity 

(Schluter 2000, but see Pfennig et al. 2006), must also be rejected.  

 

Although character displacement is typically tested only on the basis of mean differences in traits, the 

mean and the variation around it are not the only descriptors of elevational ranges that merit 

consideration. The distributions of B. brunneinucha in allopatry and sympatry are not only 

significantly different in their means, but also according to a Kolmogorov-Smirnov test, which is 

sensitive to differences in location, dispersion, and skewness. Also, elevational distributions in 

allopatry and sympatry appear to differ in terms of their relationship to the relative abundance of sites 

at different elevations in their respective areas (data not shown). It is improbable, however, that these 

patterns may reflect an effect of B. torquatus on elevational distributions because the relationships 

between proportional use and abundance are similar in areas of replacement at low elevations and at 

high elevations. Although at a coarse level the relationship between elevation and some 

environmental variables that may limit species’ distributions directly is similar in sympatry and 

allopatry, it is possible that a finer examination of environmental variation between regions could 
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explain these regional differences in elevational distributions in more detail. I present such an 

examination based on multivariate analyses and modeling of species ecological niches (Carpenter et 

al. 1993) based on a broad suite of environmental variables in Chapter 3. 

 

Effect of Interspecific Competition on the Diversification of Lineages in B. torquatus 

 

Distinct lineages of B. torquatus currently associated with different elevational zones in South 

America last shared common ancestors well before the colonization of the continent by B. 

brunneinucha. Thus, although divergence in elevational ranges might have occurred more recently in 

response to competition with B. brunneinucha (see below), the origin of these lineages predated 

sympatry. Furthermore, the populations of B. torquatus that sandwich B. brunneinucha in the 

Colombian Andes (assimilis and atricapillus) are not each other’s closest relatives, which implies 

there is no support for a scenario in which competition displaced members of a single lineage to the 

extremes of the elevational gradient, a pattern that has been described in systems involving other 

kinds of gradients and by theoretical models of character displacement (Austin et al. 1990, Austin 

1999, Doebeli and Dieckmann 2000). 

 

Conclusions involving estimates of divergence times are robust to bias introduced by failing to 

account for the discrepancy between the time of gene divergence and the time of population 

divergence. As noted by Edwards and Beerli (2000), equating gene divergence with population 

divergence will almost invariably result in overestimation of divergence times, a bias that is most 

acute for cases of recent separation of lineages. Therefore, if divergence times are overestimates, the 

bias is likely strongest for B. brunneinucha, which would argue even more compellingly in favor of 

the idea that its colonization of South America occurred after the differentiation of major lineages of 

B. torquatus. Also, as shown by analyses reported elsewhere (Chapter 1), the shallow differentiation 

between Central American and South American populations of B. brunneinucha is not a consequence 

of recurrent migration, and contrasting patterns of mtDNA variation in B. brunneinucha and B. 

torquatus cannot be explained by varying effects of selection.   

 

Historical Effect of Interspecific Competition on the Elevational Range of B. torquatus 

 

The plausibility of the hypothesis that competition with B. brunneinucha led to contractions in the 

elevational distributions of lineages of B. torquatus (cf. Diamond 1973) remains somewhat uncertain. 

If ecological niches are conserved, that lineages of B. torquatus replacing B. brunneinucha at high or 
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low elevations originated prior to sympatry would imply lack of support for this hypothesis. To some 

extent, the assumption of elevational niche conservatism is tenable because distinct clades associated 

with particular elevational zones have been documented in multiple organisms and geographic 

regions (Patton and Smith 1992, Arctander and Fjeldså 1994, García-Moreno et al. 1999, Renner and 

Won 2001, Moyle et al. 2005, Pérez-Emán 2005). More generally, theory argues for niche 

conservatism (Holt and Gaines 1992, Holt 2003), and numerous empirical studies support this idea 

(Ricklefs and Latham 1992, Peterson et al. 1999, Hugall et al. 2002, Ackerly 2003, Martínez-Meyer 

et al. 2004, Qian and Ricklefs 2004). Also, it could be argued that if all members of a clade have 

similar elevational distributions, it is most parsimonious to assume they inherited those distributions 

unchanged from their most recent common ancestor. This line of reasoning would imply rejecting the 

hypothesis that competition with B. brunneinucha caused changes in the elevational distributions of 

B. torquatus lineages. 

  

The arguments in favor of niche conservatism and the principle of parsimony notwithstanding, 

elevational distributions evidently differ between lineages, implying they do change over time, and 

they have done so in B. torquatus. Therefore, the relevant issue is not whether elevational niches are 

conserved, but rather when and under what circumstances niche conservatism breaks down (see 

Wiens and Graham 2005). I addressed the possibility of recent changes in elevational ranges using 

coalescent models to examine historical trends in population size for B. torquatus taxa that replace B. 

brunneinucha along elevational gradients. The analyses did not provide strong evidence that these 

populations have experienced substantial declines as would have been expected if competition-driven 

range displacement occurred, and demographic trends appear quite similar to those observed in a co-

distributed lineage that presumably was not affected by competition. Thus, the null hypothesis that 

populations have been stable or even growing cannot be rejected in favor of the hypothesis that they 

have declined. However, support for scenarios of constant size or growth is not compelling either. 

Both coalescent methods rendered reconstructions of the demographic history of populations with a 

substantial amount of uncertainty (i.e., wide confidence limits and credibility intervals). Part of this 

uncertainty likely reflects the limitations inherent to employing information from a single locus to 

infer population history; simulations suggest that multilocus data increase the accuracy and precision 

in the estimation of population genetic parameters (Felsenstein 2006). Because results appear more 

suggestive of growing or stable than of declining populations, incorporating sequence data from 

additional loci in the analyses may allow rejecting the prediction of population declines with some 

confidence. However, the only study that has tested the effect of the number of loci on the estimation 
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of ancestral population sizes empirically did not demonstrate a consistent decline in variance with 

increasing numbers of loci (Jennings and Edwards 2005).  

 

What is the historical role of competition in elevational replacements? 

 

Although I have shown that it is unlikely that elevational distributions in Buarremon arose through a 

process of reciprocal range contraction in both B. brunneinucha and B. torquatus as envisioned by 

Diamond (1973) in his hypothesis for the origin of elevational replacements, interspecific competition 

might still have been of historical importance in this system and in others involving parapatric 

elevational distributions in alternative ways, some of which are not mutually exclusive. First, my 

analyses suggest that interspecific competition with B. torquatus does not seem to have modified the 

elevational distribution of B. brunneinucha, but it is not entirely clear that the reverse did not occur 

because of the wide confidence intervals in coalescent inferences of historical demography. If the 

latter were to be confirmed, it could imply the occurrence of asymmetric character displacement (i.e., 

only one of two interacting species experiences a response to interspecific competition). Asymmetric 

displacement appears to be more of a rule than an exception (Schluter 2002), and probably reflects the 

varying competitive abilities of species, with inferior competitors being the ones that become 

displaced and experience reduced fitness as a consequence of trade-offs resulting from selection to 

reduce competition (Pfennig and Pfennig 2005). Hence, one could speculate that B. brunneinucha 

may be competitively superior to B. torquatus, a hypothesis that can be tested using distributional 

data and information on spatial variation in species’ abundances (Anderson et al. 2002), or by 

measuring the effects of release from competition in the field (Martin and Martin 2001). This novel 

hypothesis regarding the contemporary ecology of these species can be formulated based on the 

historical information offered by their phylogeographies, which highlights the value of developing 

ecological studies in light of an understanding of species’ histories. 

 

Second, bi-directional interspecific competition may have not been involved with the origin of 

patterns of elevational replacement, but may play a pivotal role in their maintenance (Remsen and 

Cardiff 1990). Testing this hypothesis experimentally by manipulating the occurrence of species and 

examining changes in fitness components or in the boundaries of elevational ranges would be 

challenging for Buarremon, but assessing the potential for interference competition through 

interspecific territoriality in areas of parapatry could shed some light on its plausibility (Robinson and 

Terborgh 1995). I have conducted a limited number of playback experiments in the Colombian Andes 

that indicate that B. torquatus and B. brunneinucha at least occasionally respond to each other’s 
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vocalizations, which suggests that interspecific territoriality between them is possible. This 

hypothesis deserves further scrutiny. 

 

Third, because I tested only for the historical signals of one-to-one competition between B. 

brunneinucha and B. torquatus, I cannot rule out the possibility that their elevational ranges could 

have been shaped by competition with other species individually (e.g., members of the closely allied 

genus Arremon), or through diffuse competition at the community level (Terborgh and Weske 1975, 

Mayr and Diamond 1976). Addressing these hypotheses in detail is beyond the scope of this study, 

but I note that the absence of Buarremon species from particular geographical areas in some cases 

correlates with the absence of other taxa, suggesting it is possible that compressed elevational ranges 

in sympatry may partly reflect competition with a suite of species, not only with each other. For 

instance, Remsen and Graves (1995) demonstrated a marked expansion of the elevational range of B. 

torquatus south of northern Bolivia; since B. brunneinucha does not occur in this region, a sensible 

explanation for the expanded range of B. torquatus was release from competition with B. 

brunneinucha. However, the absence of B. brunneinucha from this region correlates with a 

conspicuous decline in avian species richness along the eastern slope of the Andes from central 

Bolivia to the south (Rahbek and Graves 2001).  

 

Finally, there might be a role for interspecific competition in the origin of elevational zonation that 

would imply turning Diamond’s (1973) original argument on its head: coexistence with elevational 

segregation may be possible only if the elevational distributions of species that colonize any given 

mountain slope are different enough at the outset that they do not compete (cf. Losos 1990, Pfennig 

and Murphy 2003). In other words, the role of interspecific competition may be to act as a sorting 

mechanism that allows co-occurrence along mountain slopes only of ecologically similar species with 

pre-existing differences in elevational distributions that minimize the potential for competition. The 

idea that ecological sorting enables the coexistence of species with contrasting niches evolved prior to 

community assembly has gained ample support from studies combining data on community structure 

with phylogenetic analyses of the evolution of ecological traits (reviewed by Webb et al. 2002; see 

also Kozak et al. 2005, Vitt and Pianka 2005). The patterns of elevational replacement in Buarremon 

may thus be the result of a process in which upon colonizing the range of B. torquatus, B. 

brunneinucha established populations at elevations that matched its ecological requirements, without 

any modifications of elevational ranges in either species. This scenario would be consistent with the 

idea that elevational niches are evolutionarily conserved. In addition, it would imply that at some 

point in the past, members of the B. torquatus complex could have had disjunct distributions along 
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the northern Andean slopes, and that colonizing individuals of B. brunneinucha established 

populations at “vacant” intermediate elevations, leading to the present-day sandwich pattern of 

elevational replacements in the Colombian cordilleras. This would not be entirely atypical, as some 

avian taxa belonging to the same species or species complex have disjunct elevational distributions at 

present (Vuilleumier 1986).  

 

Biogeographic history and the origin of elevational distributions 

 

Although this hypothesis could not be rejected firmly in this study, it appears unlikely that 

competition with B. brunneinucha was involved with the origin of the contrasting elevational 

distributions of different lineages in the B. torquatus complex, a phenomenon ornithologists have 

long been interested in explaining (Paynter 1978, Fjeldså and Krabbe 1990, Remsen and Graves 

1995). More generally, the origin of elevational replacements in this group and others may not be 

related to interspecific competition, which leaves open for discussion the question of how patterns of 

abrupt turnover of congeners along elevational transects arise.  

 

The hypothesis that populations may be displaced vertically as mountains uplift (Heads 1989) would 

predict that the separation of lineages associated with elevational zones occurred during periods of 

tectonic activity. The Cordillera Oriental of the Colombian Andes was fairly low (40% of its current 

elevation) up until the early Pliocene and elevations increased rapidly between 5 and 2 million years 

before present, achieving its modern altitudes by around 2.7 Ma (Gregory-Wodzicki 2000). If branch 

lengths are transformed to approximate divergence times based on existing calibrations of nucleotide 

substitution rates in avian protein-coding mtDNA (reviewed by Lovette 2004, see also Weir 2006, 

Arbogast et al. 2006), then the divergence among Northern Andean lineages of B. torquatus would 

appear to have taken place concurrently with events of mountain uplifting in this region (i.e., more 

than 1.5-3 million years ago). Thus, the hypothesis that orogenic processes were involved with the 

differentiation of lineages with distinct elevational distributions appears plausible. An additional 

prediction of this hypothesis that would allow for a much more robust test is that consistent patterns 

in phylogenetic relationships and timing of differentiation of lineages with similar elevational 

distributions should be observed in other organisms. Owing to the current lack of comprehensive 

phylogenetic and phylogeographic studies on other North Andean taxa, this prediction is not yet 

testable. 
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In contrast to the idea that species may be stratified along elevational gradients as a result of limited 

dispersal abilities that “trap” populations in vertical geological movements, elevational zonation can 

also be explained on the basis of dispersal scenarios. It has long been hypothesized (e.g. Chapman 

1917; reviewed by Vuilleumier 1986) that species replacing others in high-elevation areas may have 

colonized these environments from temperate latitudes tracking their favored environmental 

conditions. This hypothesis is supported by phylogenetic evidence that taxa occurring at high 

elevations in the Northern Andes had their origin in alpine temperate areas (Chesser 2000, von Hagen 

and Kadereit 2003, Chesser 2004, Bell and Donoghue 2005). Although basal relationships among 

major South American lineages of B. torquatus are not well supported, it is intriguing that 

phylogenetic analyses suggest affinities between populations occurring in quite distant geographical 

areas (Chapter 1). Because they may reflect extinction of intervening populations of formerly 

widespread lineages, these disjunct patterns need not involve scenarios of long-distance dispersal, but 

do illustrate the potential for complex historical changes in the geographic distributions of montane 

taxa (see also Dingle et al. 2006). If species’ niches remain conserved despite range expansions and 

shifts, colonization processes coupled with “niche tracking” may be an important determinant of 

patterns of elevational zonation, particularly in light of the hypothesis that interspecific competition 

may act as a sorting mechanism in community assembly along elevational gradients (Stephens and 

Wiens 2004). 

 

Finally, although this hypothesis does not apply to Buarremon brush-finches, speciation along 

elevational gradients can result in closely related species with abutting elevational ranges. Speciation 

may occur as a consequence of varying selective pressures along the elevational gradient that lead to 

differentiation of continuously distributed populations into pairs of daughter species (i.e., the 

divergence with gene flow model; reviewed by Smith et al. 2005), or as a result of allopatric 

differentiation following dispersal across elevations, with parapatry resulting from subsequent range 

expansions. Although they cannot distinguish between these two scenarios, phylogenetic studies on 

Andean taxa provide evidence of speciation into the highlands, with successively sister taxa 

distributed parapatrically and the most recently diverged species occurring at the highest elevations 

(Bates and Zink 1994, Hall et al. 2005). 

 

Conclusion 

 

This study demonstrates that two taxa that were thought to have potentially influenced the limits of 

their geographic ranges mutually have had quite contrasting histories of differentiation in the 
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continent where distributions led ecologists to suspect they might have had closely interconnected 

histories. Buarremon brunneinucha appears to have colonized the range of B. torquatus only recently, 

and this colonization does not seem to have involved a modification of its elevational range in 

response to the possible onset of interspecific competition. Although the possibility that the 

elevational distributions of lineages of B. torquatus were shaped by competition with B. 

brunneinucha cannot be entirely ruled out by coalescent analyses, if this happened it must have 

occurred relatively recently in the history of these taxa. This insight adds to mounting evidence that, 

regardless of their pervasiveness in present time, ecological interactions may have played out over 

only short snapshots of the evolutionary history of lineages (e.g., Sorenson et al. 2003, Flanagan et al. 

2004), which underscores the importance of framing hypotheses related to the effect of current 

species interactions on geographic ranges and on the evolution of ecological niches in an explicitly 

historical context. 

 

The results of this study also highlight a challenge for researchers testing hypotheses of character 

displacement using phylogenetic comparative methods. Phylogenetic tests of character displacement 

(Losos 1990, Butler and Losos 1997, Radtkey et al. 1997, Giannasi et al. 2000) attempt to distinguish 

whether exaggerated differences between species in sympatry reflect evolution of derived character 

states taken place in situ, or the retention of plesiomorphic states acquired elsewhere prior to the 

potential onset of interspecific competition. Although this approach has provided much valuable 

insights, under some circumstances it may be misleading as a consequence of the dynamic nature of 

geographic ranges. As illustrated by the history of Buarremon brush-finches, although two species 

may now co-occur with ecological segregation in a particular geographical setting, it is possible that 

these species have had quite different residence times in such setting, implying that ecological 

differences that allow them to coexist may have evolved in situ but effectively in allopatry in areas 

where they are currently sympatric. This scenario cannot be distinguished from evolution in real 

sympatry only on the basis of phylogenetic relationships, species distributions, and geographic 

variation in ecological traits. It follows that an additional prediction of character displacement is that 

differences between species evolved within a time period in which they could have been sympatric. In 

other words, ideally, one would like to determine not only where but also precisely when did 

ecological differences arise, especially in studies with little or no replication of areas of sympatry and 

allopatry. Unfortunately, however, the difficulty of obtaining precise and accurate reconstructions of 

trait evolution (Webster and Purvis 2002) represents a major obstacle to implementing robust tests of 

predictions about the timing of ecological differentiation. As probabilistic approaches for inferring the 
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evolution of organismal traits (e.g. Huelsenbeck et al. 2003) and geographic ranges (Ree et al. 2005) 

continue to be developed, the current hurdles may be overcome in the not too distant future.  
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Table 1. Estimates of the exponential growth parameter (g) and population size (Θ) for different sets 
of populations belonging to the B. torquatus complex and control taxa obtained using LAMARC. 
Values are the maximum-likelihood estimates and 95% confidence intervals (in parentheses). All 
estimates of g are greater than 0 and confidence intervals do not include 0 or negative values in some 
analyses, indicating that population growth or stasis cannot be rejected in favor of population 
declines, as predicted by the hypothesis that competition caused the ranges of populations to contract.  
 
Taxa and Region n g Θ 
    
assimilis Colombia 11 348.5 (-34.4 – 879.5) 0.035 (0.011 – 0.160) 
assimilis and nigrifrons Ecuador & Peru 19 437.5 (60.9 – 984.8) 0.041 (0.016 – 0.130) 
assimilis and nigrifrons Colombia, Ecuador & Peru 30 411.7 (167.3 – 757.5) 0.077 (0.038 – 0.174) 
    
atricapillus Colombia 8 96.5 (-292.5 – 507.4) 0.014 (0.004 – 0.065) 
atricapillus and tacarcunae Colombia & Panama 10 157.1 (-124.6 – 467.1) 0.027 (0.009 – 0.102) 
    
Control Taxa    
torquatus Bolivia 13 2158.6 (622.2 – 8876.6) 0.059 (0.007 – 120.9) 
Myioborus ornatus – melanocephalus 16 483.5 (-109.4 – 1530.0) 0.017 (0.006 – 0.067) 
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FIGURE LEGENDS 
 
 
Figure 1. (A). Frequency distribution of elevations obtained from locality records of B. brunneinucha 
from areas where it occurs in allopatry from B. torquatus (black bars) and areas where it occurs with 
it in sympatry at the landscape scale (white bars). Note the shift in the distribution towards higher 
elevations in sympatry. (B) Mean elevation (± 2 standard errors) of locality records (open dots) of B. 
brunneinucha and randomly placed points (black dots) in areas of allopatry and sympatry with B. 
torquatus. The magnitude of the differences between allopatry and sympatry is not significantly 
different for locality data and random data, as indicated by the slopes of the lines connecting mean 
values. (C) Elevational distributions of B. brunneinucha in areas where it co-occurs with B. torquatus 
and areas of allopatry. Box plots show the 5th, 10th, 25th, 50, 75th, and 90th, and 95th percentiles. The 
horizontal dotted line indicates the mean of the elevational range in allopatry, which shows that 
ranges are displaced towards higher elevations in sympatry, regardless of the relative position along 
mountain slopes of putative competitors. Sample sizes are shown above each box plot. 
 
Figure 2. Maximum-likelihood tree showing relationships of major lineages of B. brunneinucha, B. 
torquatus, and related taxa inferred based on mitochondrial DNA sequences. Branches have been 
scaled to reflect time using penalized likelihood, setting the age of the deepest node to 1 (see scale). 
The ages of numbered nodes are discussed in the text and the confidence intervals of some are shown 
in Figure 3. Box plots to the right of taxon names in B. torquatus indicate the elevational distribution 
of each lineage, and whether they replace B. brunneinucha at low elevations (grey) or high elevations 
(black), or if they occur in allopatry (white). Taxon nigrifrons is shown in black because where it co-
occurs with B. brunneinucha it replaces it at high elevation, but through much of this range this taxon 
occurs in allopatry (see text). The number of locality points on which elevational distributions are 
based, and the geographic distribution of each lineage, are shown to the right of box plots. The 5th and 
95th percentiles (black dots) are shown only when more than 20 records are available. Data on 
elevational distributions of the closely allied atricapillus and tacarcunae are shown in a single plot. 
Note that the diversification of most South American lineages of B. torquatus with disparate 
altitudinal ranges predates the divergence between Central and South American populations of B. 
brunneinucha (an indication of its colonization time).  
 
Figure 3. Frequency distributions of the ages of nodes estimated using penalized likelihood based on 
100 bootstrap replicate data sets. Ages of nodes relevant to the colonization of South America by B. 
brunneinucha are shown in black bars and those indicating the divergence of B. torquatus lineages in 
grey. Note that none of the distributions are overlapping. However, confidence intervals are not 
shown for node 5 in Figure 2 (i.e., divergence between assimilis and nigrifrons), the age of which is 
very consistent with the timing of colonization of South America by B. brunneinucha (see text). 
 
Figure 4. Two examples of Bayesian skyline plots showing population size as a function of time for 
members of the Buarremon torquatus complex inferred using the program BEAST. (a) assimilis + 
nigrifrons (Colombia, Ecuador, and Peru); (b) atricapillus (Colombia). The solid lines indicate the 
median estimates of population size and the shaded areas its Bayesian credibility intervals (i.e., 95% 
highest posterior densities). Time zero is the present, with increasing values representing time into the 
past. Both axes are scaled by the mutation rate. Although credible intervals are large, these plots do 
not suggest the population declines that would be expected if competition with B. brunneinucha had 
caused the elevational ranges of these populations to contract. 
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CHAPTER 3 
 
Limits to Elevational Distributions: Disentangling the Role of Interspecific Competition, 

Autoecology, and Geographic Variation in the Environment  

 

“The only conclusion that one can draw at present from the observations is that although animal 

communities appear qualitatively to be constructed as if competition were regulating their structure, 

even in the best studied cases there are nearly always difficulties and unexplored possibilities” 

 

G. E. Hutchinson, Concluding Remarks, p. 419. 

 

INTRODUCTION 

 

The idea that interspecific interactions impose limits to the spatial distribution of organisms, from 

patterns of habitat use at local scales to geographic ranges at the scale of large regions, is pervasive in 

ecology (MacArthur 1972). In particular, the influence of interspecific competition on distributions is 

explicitly embodied in some definitions of the ecological niche (Pulliam 2000), one of the central 

concepts of ecological theory (Chase and Leibold 2003). According to niche theory, competitive 

interactions constrain species to occupy a limited portion—the realized niche—of the full spectrum of 

conditions under which they could maintain populations without immigration—the fundamental niche 

(Hutchinson 1957). 

 

Testing the role of interspecific competition in limiting the geographic ranges of species is 

challenging because experiments cannot be conducted over landscape to regional scales. Thus, 

researchers have traditionally relied on “natural experiments”, in which distributions of species are 

compared in the presence and absence of putative competitors. When species’ distributions along 

ecological gradients are narrower in the presence of competitors, ecologists have inferred competitive 

displacement in sympatry or competitive release in allopatry. Results of many studies of distributions 

over elevation gradients indicate that species often occur over wider ranges where potential 

competitors are absent, which suggests that interspecific competition is an important factor that 

creates or maintains parapatric distributions along elevational gradients (Lack and Southern 1949; 

Diamond 1970, 1973; Terborgh and Weske 1975; Mayr and Diamond 1976; Remsen and Cardiff 

1990; Remsen and Graves 1995). 
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Many studies on the role of interspecific competition in limiting geographic ranges compare the 

position of species along gradients of a single variable selected from among all those that may impose 

constraints on their distributions in sympatry and allopatry. This narrow focus may be misleading, 

particularly when the variables examined are not the factors that directly limit species’ ranges, but 

rather surrogates for other factors that may covary with them in complex ways. An example of one 

such surrogate is elevation, which in itself is not the factor that directly limits species’ ranges along 

montane gradients. Instead, these are governed by regulators or resources (sensu Austin and Smith 

1989) that covary with elevation (e.g. temperature, partial oxygen pressure, availability of particular 

food types) and impose limits to the fitness of organisms directly according to their physiological 

tolerances and ecological requirements. As is typical for indirect gradients as defined by niche theory 

(Austin and Smith 1989; Huston 1994; Austin 1999, 2002), the relationship between many of these 

factors and elevation is context-dependent. For example, although temperature declines with 

increasing elevation, this relationship varies with latitude, the mass of mountains, and the orientation 

of mountains with respect to prevailing winds. Therefore, “elevation” may pose different challenges 

to the performance of organisms and thus to the persistence of populations in different areas (Janzen 

1967, Ghalambor et al. 2006). Consequently, the inference that expanded elevational ranges in areas 

of allopatry reflect a release from competition relies on the critical assumption that environments 

located at the same elevations in sympatry and allopatry are comparable in terms of the factors that 

affect organisms directly. Because previous studies have not tested this important assumption 

explicitly, one cannot  rule out the hypothesis that expanded elevational ranges in allopatry or 

contracted ranges in sympatry reflect the response of organisms to geographic variation in the way in 

which elevation covaries with environmental conditions rather than competitive release. 

 

In this study we present a refined approach to study the role of interspecific competition in elevational 

replacements that considers niche differentiation not only with reference to elevation, but also to a 

suite of climatic variables that likely impose limits to geographic ranges along montane slopes 

directly. We focus on the Neotropical brush-finches in the genus Buarremon (Aves, Emberizinae), 

whose patterns of geographic variation in elevational distributions present a compelling case for the 

influence of interspecific competition in limiting elevational ranges (Remsen and Graves 1995). We 

assess patterns of niche differentiation in Buarremon using ecological niche modeling (sensu Peterson 

2001), an approach that characterizes species niches based on environmental variables at localities 

within the known range, and then projects these models onto geographic space (reviewed by Guisan 

and Zimmerman 2000, Elith et al. 2006). In addition, we conduct multivariate analyses that allow us 

to distinguish potentially limiting environmental variables that vary with elevation from others that do 
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not. Although we have not examined all relevant niche axes, our analyses confirm that some patterns 

of variation in elevational distributions are consistent with predictions of the hypothesis of ecological 

release in allopatry. However, we also find that some patterns of ecological differentiation consistent 

with the hypothesis that expanded elevational ranges in allopatry are a result of competitive release 

have alternative, more parsimonious, explanations. 

 

Natural history of study species 

 

The Chestnut-capped (Buarremon brunneinucha) and Stripe-headed (B. torquatus) brush-finches are 

common passerine birds that inhabit the undergrowth of Neotropical montane forests. Buarremon 

brunneinucha is widely distributed from Mexico through southern Peru, whereas B. torquatus ranges 

from central Costa Rica south to northern Argentina. Based on museum specimen locality data, 

Remsen and Graves (1995) showed that B. brunneinucha and B. torquatus have complementary 

elevational distributions in areas of South America where they co-occur, and that B. torquatus 

expands its range to encompass much of the montane gradient in areas where B. brunneinucha is 

naturally absent. Cadena (Chapter 2) further compared the elevational distributions of B. 

brunneinucha between areas where it co-occurs with B. torquatus (i.e., central Costa Rica south 

through southern Peru) and areas where it occurs in allopatry (i.e., Mexico through central Costa 

Rica). In contrast to the patterns of elevational range expansion documented for B. torquatus, the 

elevational ranges of B. brunneinucha are not wider in allopatry, yet, on average, populations of this 

species occur at higher elevations in sympatry. Because the range shift to higher elevations by B. 

brunneinucha is consistent across areas where this species is replaced at high elevations, replaced at 

low elevations, and sandwiched by populations of B. torquatus, Cadena (Chapter 2) reasoned that the 

shift was not likely a consequence of competitive displacement. Instead, regional differences in 

elevational distributions might be better explained by an increased abundance of sites that occur at 

higher elevations in South America. If populations have equivalent niches, their establishment in 

regions that differ in the distribution of sites at different elevations would naturally lead to ranges 

being shifted upslope in areas where sites at higher elevations that meet niche requirements are 

disproportionately abundant (Chapter 2).  

 

Although both Remsen and Graves (1995) and Cadena (Chapter 2) presented arguments that suggest 

elevational distributions in different areas may be considered roughly comparable to each other in 

terms of conditions that likely affect the distributions of Buarremon brush-finches directly, they did 

not formally address this assumption based on a broad suite of environmental variables. In fact, there 
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are also compelling reasons why one may think elevational ranges may not be readily comparable in 

across different areas as a result of varying environmental conditions. Consider the three regions 

where populations of B. torquatus have remarkably expanded elevational ranges in the absence of B. 

brunneinucha. These regions correspond to (1) an ocean-facing slope of an isolated mountain massif 

that rises from dry lowlands in very close proximity to the Caribbean Ocean (the northern slope of the 

Sierra Nevada de Santa Marta in northern Colombia), (2) an area where climate is affected strongly 

by the Pacific Ocean, from which it is separated by a narrow stretch of xeric lowlands (the western 

slope of the Andes in southwestern Ecuador and northwestern Peru), and (3) the most southerly 

latitudes at which B. torquatus occurs (the Andes of Bolivia and Argentina). Environmental 

conditions, such as temperature and precipitation, may differ markedly between mountain slopes in 

these geographical settings and other slopes, such as those on the eastern versant of the Andes. 

Likewise, on average, the populations of B. brunneinucha occurring in the absence of B. torquatus are 

located at higher (i.e., more northerly) latitudes than those occurring in sympatry. In addition, all 

populations of B. brunneinucha in allopatry occur in the northern hemisphere and many of those in 

sympatry in the southern hemisphere, and climate is known to differ substantially between 

hemispheres with increasing distances from the Equator (Chown et al. 2004). 

 

Hypotheses and Predictions 

 

Two hypotheses may account for situations in which species have wider elevational ranges where 

potential competitors are absent. First, range expansions may simply reflect that the environmental 

conditions over which species can maintain populations occur over a broader range of elevations in 

areas of allopatry. We refer to this hypothesis as that of autoecology because it implies species tend to 

occur in similar environments throughout their ranges, tracking areas where their fundamental niches 

intersect with the combinations of environmental conditions that actually exist in geographic space 

(Jackson and Overpeck 2000, Soberón and Peterson 2005). Alternatively, expanded distributions in 

allopatry may reflect ecological release resulting from the absence of competitors. The predictions of 

these hypotheses are testable by examining the environmental conditions under which species occur 

in sympatry and allopatry (see also Anderson et al. 2002). If wider elevational ranges in allopatry 

reflect autoecology, the environmental conditions of sites occupied in these areas should be readily 

predictable based on those from sites located in areas where closely allied populations co-occur with 

potential competitors. In contrast, the hypothesis of ecological release predicts that the environmental 

space occupied should be wider in allopatric populations in comparison to populations potentially 

constrained by competition in sympatry. Furthermore, ecological release predicts that the expansion 
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in environmental space should result from the occupation of niche space that the putative competitor 

occupies in sympatry. We describe specific tests of these predictions in relation to the elevational 

ranges of Buarremon brush-finches below. 

 

MATERIALS AND METHODS  

 

Primary Occurrence Data 

 

We compiled primary occurrence data for B. torquatus and B. brunneinucha based on museum 

specimens, published reports, field records provided by several ornithologists, and observations we 

collected in the field. We entered data into Geographical Information Systems (GIS; ArcView 3.2, 

ArcGIS 9.0, ESRI) by georeferencing all available point localities using published (e.g., Paynter 

1997) and internet-based (e.g., GEOnet Names Server: http://earth-info.nga.mil/gns/html/index.html) 

gazetteers. As a first step to verify the accuracy of georeferences, we relocated points that mapped to 

obviously incorrect areas (i.e., incorrect countries, provinces, or geographic regions). Following this 

initial screening, we cross-checked each point individually for correspondence between the elevation 

recorded in specimen labels or measured in the field and the elevation indicated by a digital elevation 

model with a 1 km by 1 km resolution (Shuttle Radar Topography Mission; 

http://www.jpl.nasa.gov/srtm). Georeferences for which both sources of elevation data differed by 

100 m or less were left unchanged. Cases revealing discrepancies were either corrected by moving 

points to the nearest site matching the elevation on the specimen label or the field data if this site was 

within 2-3 km of the original georeference, georeferenced again and re-checked, or discarded if 

accurate coordinates could not be obtained. For localities lacking data on elevation, most of which 

were located in Mexico, we extracted the elevation for each point based on the digital elevation model 

and excluded from the database all those that extended beyond the known elevation range of each 

taxon in the region (e.g. Howell and Webb 1995). Although this approach does not guarantee records 

will always be mapped with maximum accuracy, it is conservative in that localities representing 

conditions that extend beyond those known to be part of the realized niche of populations are not 

considered. Finally, we randomly excluded records of the same taxon located within 1 km of one 

another. The final database consisted of 342 and 350 point localities for B. brunneinucha and B. 

torquatus, respectively. For each locality, we recorded whether it was located in areas of sympatry or 

areas of allopatry based on existing maps of species’ distributions (Ridgely et al. 2005) and on 

compilations of locality data (Remsen and Graves 1995; this study). The areas from where one or the 

other of the species appears to be absent have been extensively sampled by ornithologists using 
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techniques likely to lead to their detection or collection as revealed by the existence of multiple 

records of the other species. This suggests absences over broad areas are real and not artifacts of 

incomplete sampling (Anderson 2003).  

 

Ecological Niche Modeling 

 

We examined ecological differentiation on climatic niche space across the range of B. torquatus and 

B. brunneinucha based on 19 climate surfaces on a 30 arc-second resolution grid (ca. 1 km, or 

0.00833 decimal degrees on the side) obtained from WorldClim version 1.2 (Hijmans et al. 2005). 

These surfaces reflect annual trends (e.g. mean annual temperature), seasonality (e.g. annual range in 

rainfall), and extreme conditions (e.g. temperature of the coldest month) in variables thought to be 

important in limiting species’ distributions, and thus represent a closer approximation to ecological 

niches than elevation, which only influences distributions indirectly. 

 

We used principal components analysis (PCA) to reduce the 19 environmental variables to a set of 

uncorrelated axes that we then employed as independent variables to construct ecological niche 

models. Recording climate data at every 1 km2 grid cell from Mexico through Argentina would have 

resulted in a very large database that would have been difficult to manipulate. Instead, we sampled 

environmental variation across the study region (i.e., all countries where Buarremon species occur) 

by recording the values of each bioclimatic variable at 100,000 points placed at random locations. We 

standardized the data by transforming each climatic variable to have a mean of zero and a standard 

deviation of one to control for differences in the variances among variables and allow measurements 

made in different units to contribute equally to the analysis. We then conducted PCA on the 

standardized data using the FACTOR procedure in SAS version 9.1 (SAS Institute, Cary, NC). Using 

the eigenvector coefficients obtained in PCA, we created GIS layers that covered the whole study 

region for different principal component axes using the raster calculator in ArcMap. Four of these 

layers were then used to construct ecological niche models and predict potential distributions because 

they had eigenvalues that exceeded those predicted by a broken-stick model (Peres-Neto et al. 2003) 

and encompassed most (i.e., 91%) of the climatic variation across the study region. In addition, 

because locality data for some populations modeled were limited (i.e., less than 20 records), including 

more variables would likely have resulted in model over-fitting.  

 

We modeled ecological niches for different taxa and populations using the DOMAIN algorithm 

(Carpenter et al. 1993) implemented in the program DIVA-GIS version 5.2 (http://www.diva-gis.org). 
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DOMAIN assigns each grid cell in the output layer the distance in environmental space (measured by 

the Gower [1971] metric) to the closest site in which the taxon being modeled is known to occur 

(Carpenter et al., 1993). Thus, the output of this algorithm can be readily interpreted as a 

measurement of overall environmental similarity to sites of known occurrence, and is thus consistent 

with niche theory (Hill and Binford 2002). Many studies employing DOMAIN to predict potential 

distributions consider sites to be ecologically suitable when receiving scores ≥ 95 (i.e., points not 

more than 5% outside the range of occupied sites). Because we do not focus on predicting potential 

distributions but rather on describing ecological similarity, here we follow this convention only when 

presenting maps of the geographic projection of niche models or for display purposes in graphs, but 

treat DOMAIN scores as a continuous variable that measures ecological similarity to sites of known 

occurrence. 

 

We used ecological niche modeling to test the predictions of autoecology and ecological release for 

the four cases of elevational range expansions or shifts in allopatry mentioned above, namely those 

involving populations of B. torquatus in the Sierra Nevada de Santa Marta, the Pacific Andean slope, 

and the Andes of Bolivia and Argentina, and populations of B. brunneinucha occurring from Mexico 

to central Costa Rica. For each of these “target” populations, we constructed two different ecological 

niche models that served to evaluate the predictions of each hypothesis, one based on localities of 

conspecific populations occurring in sympatry with the putative competitor, and one based on 

localities of the putative competitor from areas of sympatry (see Table 1). We projected models onto 

geographic space, and then recorded the DOMAIN score on each model at all the points of 

occurrence of the target populations. This resulted in data sets in which all localities of the target 

allopatric populations (e.g. B. torquatus in Bolivia and Argentina) were associated with two 

DOMAIN scores, one indicating environmental similarity to sites occupied by a population of the 

same species occurring in sympatry with the putative competitor (e.g. B. torquatus populations 

occurring in sympatry with B. brunneinucha along the East Andes) and one indicating environmental 

similarity to sites occupied by the putative competitor (e.g. B. brunneinucha in areas of sympatry). 

We compared these scores for each target population using paired t-tests: significantly higher scores 

on the model constructed for the conspecific population would support the hypothesis of autoecology 

and significantly higher scores for the heterospecific one would support ecological release. This test 

was somewhat inconclusive for the case involving populations of B. brunneinucha in sympatry and 

allopatry (see below). Therefore, we also projected the model based on data from localities in 

allopatry onto the area of sympatry, where we recorded the score at each locality of occurrence. This 

allowed us to further evaluate the two competing hypotheses by examining the scores of sites in 
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sympatry based on the model constructed with data from allopatry and vice versa. If the shifted range 

towards higher elevations in sympatry reflects competitive displacement, sites at higher elevations in 

sympatry should receive lower scores in the model based on data from allopatry (i.e., a regression 

between elevation and model scores would have a negative slope), and sites at lower elevations in 

allopatry should receive lower scores in the model based on data from sympatry (i.e., a regression 

between elevation and model scores would have a positive slope). Alternatively, if the shift reflects 

autoecology, there should be no relation between elevation and model scores (i.e., slopes should not 

differ from zero). 

 

Principal Components Analysis  

 

The projection of ecological niche models onto geographic space allows one to determine whether 

environments where allopatric populations occur resemble more closely those occupied by 

individuals of the same species elsewhere or those occupied by the species that is a putative 

competitor, thereby allowing one to tease apart the role of autoecology and ecological release in 

creating expanded elevational distributions in allopatry. However, models do not readily indicate 

which climatic variables contribute most to overall assessments of differences and similarities in the 

environments populations experience in different areas. We pursued this question examining climatic 

variation using PCA. Instead of using the principal component GIS layers we created for ecological 

niche modeling, we conducted a new PCA with varimax rotation in which we included only climatic 

data for all the localities where B. torquatus and B. brunneinucha are known to occur. This focused 

PCA allowed us to visualize variation in climatic niches more clearly by plotting the scores of each of 

the point localities along different axes of environmental variation. 

  

RESULTS 

Buarremon torquatus in the Sierra Nevada de Santa Marta 

The elevational range of the population of B. torquatus occurring in the Sierra Nevada de Santa Marta 

(B. t. basilicus) is one of the widest among all taxa that comprise the B. torquatus complex, ranging 

from c. 500 m to 3000 m. Ecological niche modeling shows that all of the localities where B. t. 

basilicus is known to occur are climatically similar to sites where B. brunneinucha is found 

elsewhere. All localities of B. t. basilicus received higher DOMAIN scores on the model constructed 

for B. brunneinucha (mean score ± SD: 98.3 ± 1.9) than on the model based on localities of B. t. 

perijanus and B. t. larensis (79.4 ± 15.1) despite the fact that the latter populations occur in close 
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proximity to the Sierra Nevada. Mean scores on the B. brunneinucha model were significantly higher 

(t=5.62, 17 df, P < 0.0001), and were always greater than 95%, whereas none of the scores on the B. 

torquatus model reached this value (Figure 1). These results are consistent with the hypothesis that B. 

t. basilicus occurs over a broad elevational range by filling ecological space occupied elsewhere by B. 

brunneinucha, not by tracking conditions under which conspecific populations occur elsewhere.  

Buarremon torquatus on the Pacific Andean Slope 

On the Pacific slope of the Andes of southern Ecuador and northwestern Peru, B. torquatus nigrifrons 

occurs over a wide range of elevations, and extends to lowland areas that its sister taxon (B. t. 

assimilis) never occupies. DOMAIN scores recorded at the localities of occurrence of B. t. nigrifrons 

were significantly higher (t=5.4, 36 df, P < 0.0001) on the model constructed based on B. 

brunneinucha locality data (96.2 ± 4.0) than on the model based on records of B. t. assimilis from 

Colombia, Ecuador, and Peru (88.9 ± 9.2). Moreover, the environmental conditions at all eight 

localities of B. t. nigrifrons below the lower elevational limit of B. t. assimilis were more similar to 

those of sites occupied by B. brunneinucha where it co-occurs with B. torquatus than to sites 

occupied by B. t. assimilis (Figure 2). Again, these data indicate that the expanded elevational range 

of B. t. nigrifrons may in fact reflect release from interspecific competition with B. brunneinucha. 

Buarremon torquatus in Bolivia and Argentina 

Ecological niche models indicate that localities of occurrence of B. torquatus in the Andes of Bolivia 

and Argentina are environmentally more similar to sites occupied elsewhere by B. brunneinucha 

(90.1± 7.1) than to sites occupied by B. torquatus along the eastern slope of the Andes in areas where 

it co-occurs with B. brunneinucha (83.1 ± 11.4). Although mean DOMAIN scores differed 

significantly between models (t=10.7, 83 df, P < 0.001), scores on both models in this region were 

generally low in comparison to those obtained in analyses of other target populations. This suggested 

the possibility that neither hypothesis (i.e., autoecology nor ecological release) might be the best 

explanation for the expanded elevational range of B. torquatus in the region, which prompted us to 

examine the data in more detail. 

Plotting the elevation of occurrence records of B. torquatus along the eastern slope of the Andes with 

respect to latitude confirms the pattern documented by Remsen and Graves (1995) based on a partly 

non-overlapping data base (Figure 3a). Buarremon torquatus ranges to substantially lower elevations 

south of the Peru-Bolivia border (ca. 15° S), and this elevational range expansion coincides with the 
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absence of B. brunneinucha, which replaces it at lower elevations from Colombia through southern 

Peru along this slope, but is absent from Bolivia and Argentina. However, niche models indicate that 

the environments to which B. torquatus expands in Bolivia and Argentina are distinct from those that 

are occupied by B. brunneinucha in areas where both species co-occur with elevational segregation. 

Of a total of 32 localities in which B. torquatus occurs at elevations that are below those known from 

areas where it co-occurs with B. brunneinucha, only 4 correspond to sites that DOMAIN classified as 

climatically suitable for the latter species (i.e., sites receiving scores ≥ 95%), all of which are located 

at elevations that are within 100 m of the lowest record of B. torquatus in areas of sympatry (Figure 

3a). This result is insensitive to the cutoff value applied to discriminate between suitable and 

unsuitable sites for B. brunneinucha in the DOMAIN model: a strong correlation between latitude and 

DOMAIN model scores is readily apparent (Figure 3b). Similar patterns (i.e., decreased 

environmental similarity to sites of known occurrence with increasing latitude) are observed based on 

the niche model constructed with data from the range of B. torquatus (not shown). These data suggest 

that the expansion of the elevational range of B. torquatus in Bolivia and Argentina to lower 

elevations cannot be explained satisfactorily based on the hypotheses of autoecology or ecological 

release because the environments to which the species expands at these latitudes are not similar to 

those occupied by either B. brunneinucha or B. torquatus in areas of sympatry. 

Buarremon brunneinucha in allopatry and sympatry 

Sites where B. brunneinucha occurs in allopatry from B. torquatus are significantly more similar 

(t=6.84, 115 df, P < 0.0001) to sites occupied by this species in areas where it is sympatric with B. 

torquatus (95.8 ± 3.7) than to the sites that B. torquatus occupies in areas of sympatry (93.9 ± 4.6). 

However, differences in scores between the two models are not as marked as in other cases and 

biologically do not seem very compelling. Thus, we believe that this comparison is insufficient to 

favor the hypothesis of autoecology, which we explore further below.  

The vast majority of localities in areas of allopatry were classified as environmentally suitable 

(DOMAIN scores ≥95%) by the model constructed based on data from sympatry, and vice versa 

(Figure 4a) indicating the species occurs in very similar environments in both parts of its range. 

Although the model from allopatry performed less well in characterizing the environmental 

characteristics under which the species occurs in sympatry (scores under 90% were more frequent in 

this model), all localities from sympatry receiving low scores on the model from allopatry occur at 

rather low elevations (Figure 4b), which is contrary to what would have been expected if the shift to 

higher elevations in sympatry were the result of competition. Moreover, the slopes of regressions 
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between elevation and DOMAIN scores are not different from zero in either sympatry (slope ± SE = 

0.002 ± 0.001) or allopatry (0.001 ± 0.001), which implies that the shift to higher elevations in 

sympatry is fully consistent with the hypothesis of autoecology.  

Principal Components Analysis 

PCA reduced the variation in climate that Buarremon brush-finches experience across their ranges to 

a small set of independent axes of environmental variation, and allowed us to distinguish sets of 

potentially limiting climatic variables that correlate with elevation from sets that do not. Indeed, 

although elevation was not included in the analyses, scores along the first principal component, which 

accounted for 38% of the climatic variation, correlate tightly with elevation (Figure 5a). High scores 

along this axis indicate high values for annual mean temperature, maximum temperature of the 

warmest month, minimum temperature of the coldest month, and mean temperatures of the wettest, 

driest, warmest, and coldest quarters. The second axis accounted for 33% of the variation, and has a 

remarkable correspondence with latitude (Figure 5b). High scores reflect high values of mean diurnal 

range in temperature, temperature seasonality, and temperature annual range, and low values of 

isothermality. The third axis accounted for 13% of the variation; high values reflect high annual 

precipitation, precipitation during the wettest month, and precipitation during the wettest and warmest 

quarters. Finally, the fourth axis explained 7% of the variation; scores correlate positively with 

precipitation during the driest month, driest quarter, and coldest quarter, and negatively with 

precipitation seasonality. 

Examining the positions of populations along axes of climatic variation allows us to interpret the 

results from ecological niche modeling. Based on scores along the first principal component, 

populations of B. torquatus occurring in Bolivia and Argentina indeed appear to occupy environments 

that are intermediate between those occupied by lowland and highland populations of B. torquatus 

and resemble closely those occupied by B. brunneinucha (Figures 6a, 6c). However, the positions 

along the second principal component clearly indicate that sites in the region occupied by B. 

torquatus are characterized by environmental conditions that are not experienced by B. brunneinucha 

anywhere on the part of its range where it co-occurs with B. torquatus (Figure 6c). It is also worth 

noting that the range of variation in climatic variables that correlate with elevation (i.e., principal 

component 1) over which Bolivian and Argentinean populations occur is not nearly as wide in 

comparison to that of other populations as a cursory examination of elevational distributions would 

suggest (contrast elevation range and PC1 range in Figures 6e and 6f). Also, the range of 
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environmental conditions in which these populations occur is rather limited compared to others in 

other dimensions of climatic space (i.e., principal components 3 and 4, Figure 6b). 

Patterns of variation in environmental space occupied by populations of B. brunneinucha have similar 

interpretations. First, the discrepancy in the mean elevational distributions in sympatry and allopatry 

becomes less pronounced when these populations are plotted along the first principal component of 

climatic variation (Figure 6e, 6f). Second, the reduced ability of the model from allopatry to establish 

environmental suitability in sympatry very likely results from the changing climatic conditions with 

latitude; the localities receiving lower scores on the DOMAIN model (Figure 4b) are those with 

higher values along the second principal component (Figure 6c). 

DISCUSSION 

Ecological niche modeling and multivariate analyses of the climatic conditions under which different 

populations of Buarremon brush-finches occur support the predictions of competitive release for 

some populations occurring in allopatry from competitors but not for others. In the Sierra Nevada de 

Santa Marta and the Pacific slope of the Andes of southern Ecuador and Peru, the elevational 

expansion of the range of B. torquatus indeed results in the occupation of areas of niche space that B. 

brunneinucha occupies in areas of coexistence, and is not consistent with the hypothesis that range 

expansion is a result of tracking geographic variation in the elevations at which favored conditions 

occur. On the other hand, attributing the wide elevational range of B. torquatus in areas of Bolivia 

and Argentina to release from competition with B. brunneinucha is untenable because the 

environments to which the species expands are not equivalent to those occupied by its potential 

competitor in areas of sympatry. Finally, the shift towards higher elevations of populations of B. 

brunneinucha occurring in sympatry with B. torquatus is not likely to be a consequence of the 

presence of the competitor, but is consistent with tracking environmental suitability. This pattern, in 

combination with the apparent differences in the availability of sites at different elevations between 

areas of sympatry and areas of allopatry (Chapter 2), suggests that the elevational range of B. 

brunneinucha was most likely not influenced by competition with B. torquatus as it encountered this 

species following its southward range expansion from areas of northern Central America (Chapter 2). 

This implies that there is no support for the hypothesis that elevational replacements in this group 

arose as a consequence of reciprocal contractions in the ranges of both species resulting from 

interspecific competition (Diamond 1973). 
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Examining geographic variation in the elevational distributions of species is relatively 

straightforward, which explains why this has been one of the dimensions of geographic ranges on 

which researchers have placed most emphasis when addressing the role that interspecific interactions 

may play in constraining species’ niches and spatial distributions. That elevation is an indirect 

gradient that affects organisms only through its influence on regulators and resources with which it 

covaries in different ways in different areas (Austin and Smith 1989, Huston 1994) implies that some 

of the studies that assumed elevational distributions are comparable across geographic regions may 

have reached spurious conclusions. Some readers may interpret our results as showing this is not 

necessarily true because much of the climatic variation is captured by a linear combination of climatic 

variables that correlate tightly with elevation. However, concluding that elevation is a good surrogate 

for variation in several climatic variables that likely affect organisms directly from our data has two 

rather serious caveats. First, the reasoning that the correlation of many climatic variables and 

elevation implies the latter is a proper surrogate for climatic variation is circular because the climate 

surfaces we employed are the result of interpolations based on a digital elevation model (Hijmans et 

al. 2005); thus, such reasoning can only be made rigorously on the basis of non interpolated climate 

data. Second, because the correlation between elevation and climatic variables is not perfect (i.e., r2 

does not equal 1.0, Figure 5a), the slopes of the relationship between elevation and climatic axes (e.g. 

principal component 1) may differ substantially among different geographic areas. 

Of course, the correlation between elevation and some climatic variables is not at all surprising. More 

importantly, our results illustrate patterns related to the interaction between elevation, climatic 

variation, and species’ distributions that are not as widely appreciated. Foremost, our analyses show 

clearly that from the perspective of some environmental variables that likely limit species’ 

distributions directly, elevation may mean very different things in different areas. The most striking 

effect in this regard we observed was that of latitude. Clearly, ecologists have long been aware that 

the relationship between elevation and climate varies with latitude (e.g., Janzen 1967), but we 

emphasize that the lack of consistent “meaning” for elevation does not only manifest itself over broad 

spatial scales and need not involve variation in latitude. For example, ecological niche modeling 

shows that environments in the Sierra Nevada de Santa Marta are quite distinct from those in the 

adjacent Serranía de Perijá and the Andes of northeast Colombia and west Venezuela (Figure 1b). 

Although there are many sites at the same elevations in both areas, the conditions at these sites are 

rather different, as shown by the rather limited areas of potential habitat identified for B. t. perijanus 

and B. t. larensis in Santa Marta. That elevation may mean different things in different areas even 

over relatively small geographic scales implies that some of the classic examples of competitive 
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displacement and competitive release along elevational gradients (e.g. Diamond 1973, Terborgh and 

Weske 1975) may need to be re-evaluated. 

A related issue is that the occurrence of a population over a wide elevational range does not 

necessarily imply that it occurs over a broader range of environmental conditions than a population 

with a more restricted elevational range. For example, although the elevational range of populations 

of B. torquatus in Bolivia and Argentina as a whole is certainly much wider than that of populations 

occurring in sympatry at the landscape scale with B. brunneinucha, the differences in ecological 

amplitude among regions do not appear nearly as large when they are considered in terms of the 

climatic variables that correlate with elevation (i.e., principal component 1, Figure 6e, f). In this 

particular case, this pattern most likely reflects that the elevational distribution of B. torquatus is not 

consistent through Bolivia and Argentina: with increasing latitudes, the species’ range as a whole is 

displaced to lower elevations (Figure 3a). Indeed, at any given latitude, the elevational range of B. 

torquatus does not appear to be any wider than that of populations occurring in sympatry with B. 

brunneinucha. This suggests that the rationale for proposing that populations in Bolivia and 

Argentina encompass a wider range of elevations as a result of competitive release (Remsen and 

Graves 1995) was incorrect to begin with.  

More generally, our analyses show that niche breadth along one axis of ecological differentiation may 

say very little about niche breadth along other axes (e.g. contrast the large range of environmental 

conditions occupied by Bolivian-Argentinean populations along principal components 1 and 2 and the 

narrow ranges along principal components 3 and 4; Figure 6). Therefore, although elevation is indeed 

a valid surrogate for important ecological variation, this variable may be uninformative about 

differentiation along other niche axes that may be just as important descriptors of the ecology of 

different populations. The implications are twofold. On one hand, examining elevational ranges by 

themselves will often be insufficient to ascertain whether the expansion of elevational ranges of 

populations in allopatry represents an expansion to occupy the same environmental space that 

populations of competitors occupy in areas of sympatry. On the other, the observation that 

populations occurring with and without competitors have similar elevational distributions does not 

imply that the two species do not impose limits to each other’s geographic ranges in areas where their 

distributions come into contact. Elevation is perhaps the easiest dimension of niche space to examine, 

but there is no reason why ecological displacement and ecological release cannot occur along direct 

climatic gradients that are uncorrelated with elevation (e.g. Melville et al. 2002).  
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In describing the hypotheses that could account for expanded elevational ranges in the absence of 

competitors we only mentioned those of ecological release and autoecology. Our analyses reveal the 

importance of a third hypothesis that we suspect is likely to apply in many other similar situations: 

geographic variation in the realized environment (sensu Jackson and Overpeck 2000, see also Ackerly 

2003, Peterson and Holt 2003). For example, populations of B. torquatus occur over a wide 

elevational range in Bolivia and Argentina, an apparent niche expansion that entails the occupation of 

areas of environmental space that simply do not exist throughout the rest of the distribution range of 

this species. Thus, the wide elevational range of B. torquatus in the region cannot be explained on the 

basis of the hypotheses of autoecology or ecological release. Patterns such as this may reflect either 

adaptive evolution of fundamental niches as populations encounter varying environmental conditions 

across their ranges (see Holt 2003), or simply a more complete expression of the realized niche that is 

not possible anywhere else owing to patterns of geographic variation in the environment; 

distinguishing these two alternatives requires experimental work (Kearney and Porter 2004). It 

follows that contrary to claims repeatedly made in the literature (e.g. Peterson et al. 1999, reviewed 

by Soberón and Peterson 2005), ecological niche models are unlikely to approximate species’ 

fundamental niches. In addition, we suggest that the use of ecological niche modeling or multivariate 

analyses of climatic data to test ecological and evolutionary hypotheses about ecological niches 

across geography (e.g. Peterson et al. 1999, Anderson et al. 2002, Peterson and Holt 2003, Rice et al. 

2003, Hoffmann 2005) should involve a characterization of the combinations of environmental 

conditions that actually exist in different geographic regions. For instance, in a novel study 

integrating ecological niche modeling with phylogenetics to study modes of speciation, Graham et al. 

(2004) concluded that most speciation events involve both geographic isolation and ecological 

differentiation because sister species are typically allopatric and occur in climatically different 

environments. Without information on whether climatically similar environments in fact exist in 

sympatry and allopatry, it is unclear whether the correlation between ecological divergence and 

speciation is causal, or rather a fortuitous byproduct of a correlation between geographic distance and 

environmental dissimilarity. 

Finally, our analyses assume that the climatic variables we considered act as direct gradients (sensu 

Austin and Smith 1989) that affect the distributions of populations along elevational transects through 

direct effects on the performance of organisms. This assumption has been well-established by 

functional studies (e.g. Porter et. al 2002, Navas 2003, Altshuler and Dudley 2006), implying that our 

approach is closer to characterizing ecological niches than that of studies that only consider elevation, 

a variable that affects organisms only indirectly. However, climatic variables influence elevational 
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distributions indirectly as well. For example, variables such as temperature, precipitation, and 

evapotranspiration influence vegetation structure (see Holdridge 1967), which in turn is often an 

important proximate correlate of species’ distributions. Just as the relationship between elevation and 

climate is context-dependent, the relationship between elevation, climate, and vegetation is unlikely 

to be the same everywhere. Therefore, it is important to bear in mind that geographic variation in 

elevational distributions may arise if organisms track relevant attributes of niche dimensions that 

cannot be predicted precisely only based on climatic data, a possibility that our analyses do not 

address. Nevertheless, this further illustrates the importance of distinguishing variables that affect 

species’ distributions directly from those that do not, and cautions against using elevation uncritically 

as a dimension of ecological niches. 
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Table 1. Populations of Buarremon with expanded or shifted elevational ranges in areas where 
competitors are absent and populations used to construct models that allowed testing the hypotheses 
of autoecology and ecological release in each case. 
 
 
 Population or taxa modeled 
Target populations with expanded or 
shifted elevational range in allopatry 

Autoecology hypothesis Ecological release hypothesis 

B. torquatus basilicus 
Sierra Nevada de Santa Marta 
(N Colombia) 

B. t. perijanus and B. t. larensis1 
(NE Colombia – NW Venezuela) 

B. brunneinucha in sympatry 
with B. torquatus 
(central Costa Rica – Peru) 

B. torquatus nigrifrons 
Pacific Slope of the Andes 
(Ecuador – Peru) 

B. t. assimilis2 
(Ecuador – Peru) 

B. brunneinucha in sympatry 
with B. torquatus 
(central Costa Rica – Peru) 

B. t. torquatus, B. t. fimbriatus, and 
B. t borelli  
(Bolivia – Argentina) 

B. torquatus East slope 
 (Colombia – Peru) 

B. brunneinucha in sympatry 
with B. torquatus 
(central Costa Rica – Peru) 

B. brunneinucha, several subspecies 
(Mexico – central Costa Rica) 

B. brunneinucha in sympatry with 
B. torquatus 
(central Costa Rica – Peru) 

B. torquatus in sympatry with 
B. brunneinucha3 
(central Costa Rica – Peru) 

 
(1) These populations occur in sympatry with B. brunneinucha and are those in closest geographic proximity to 
the Sierra Nevada de Santa Marta. Also, mitochondrial sequence data (Chapter 2) indicates B. t. perijanus is the 
sister taxon of B. t. basilicus. 
 
(2) This taxon is very closely allied to B. t. nigrifrons (i.e., they are each others closest relatives and have not 
attained reciprocal monophyly in mtDNA; Chapter 2) and occurs in sympatry with B. brunneinucha. 
 
(3) The populations of B. torquatus considered are only those that occur in sympatry with B. brunneinucha in 
the region: costaricensis, tacarcunae, atricapillus, assimilis, larensis, perijanus, phaeopleurus, and poliophrys 
(basilicus, phygas, nigrifrons, torquatus, fimbriatus and borelli are not included). 
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FIGURE LEGENDS 

 
Figure 1. Geographic projections onto the Sierra Nevada de Santa Marta of ecological niche models 
constructed for (A) B. brunneinucha and (B) populations of B. torquatus occurring in the Serranía de 
Perijá and the Eastern Andes of northeast Colombia and west Venezuela. Points are the localities of 
known occurrence of B. torquatus in the region and shaded areas indicate grid cells receiving 
DOMAIN scores ≥95%. Models classify extensive areas as suitable for B. brunneinucha, but only 
limited areas for the B. torquatus taxa, and all localities match sites of predicted presence of B. 
brunneinucha, not of B. torquatus. 
 
Figure 2. Scores obtained by overlaying localities of known occurrence of B. torquatus nigrifrons on 
the Pacific slope of the Andes of southern Ecuador and northern Peru onto ecological niche models 
constructed based on locality data for B. brunneinucha (black dots) and B. torquatus assimilis, its 
sister taxon occurring through Colombia, Ecuador, and northern Peru (white dots). The vertical dotted 
line shows the lower elevational limit of B. t. assimilis where it co-occurs with B. brunneinucha, and 
the horizontal line indicates the 95% threshold of environmental similarity. Note that DOMAIN 
scores for all localities of B. t. nigrifrons under the lower elevational limit of B. t. assimilis in 
sympatry are higher on the model based on locality data from B. brunneinucha. Some localities at 
higher elevations received equal scores on both models; in these cases points overlap, but only those 
on the B. t. assimilis model are shown. 
 
Figure 3. (A) Elevational distribution of B. torquatus with respect to latitude along the eastern slope 
of the Andes, from Colombia to northern Argentina. The vertical line indicates the approximate 
latitude marking the southern limit of the distribution of B. brunneinucha and the horizontal line the 
lowest elevation at which B. torquatus is known to occur in this slope in areas where it co-occurs with 
B. brunneinucha. Dots are colored according to whether they are above (white) or below (black) the 
95% environmental similarity threshold according to the ecological niche model constructed based on 
locality data for B. brunneinucha. Note that all sites at which B. torquatus occurs at high latitudes and 
low elevations are classified as unsuitable for B. brunneinucha by the model. (B) Positive relationship 
between elevation and environmental similarity to sites where B. brunneinucha occurs for records of 
B. torquatus from the eastern slope of the Andes, indicating its expansion to lower elevations does not 
reflect the occupation of environments occupied by its potential competitor in areas of sympatry. 
 
Figure 4. (A) Frequency distribution of similarity scores of records of B. brunneinucha from areas of 
sympatry to models constructed based on data from allopatry (white bars) and vice versa (black bars). 
Note that in both cases the majority of records are at or above 95%, indicating the environments 
occupied by the species in sympatry and allopatry are similar. However, sites receiving scores ≤ 90% 
are more common for localities in sympatry. (B) Lack of relationship between elevation and the 
environmental similarity of records of B. brunneinucha from areas of sympatry to models constructed 
based on data from allopatry (white dots) and vice versa (black dots). Box plots show the shift in 
distribution to higher elevations in sympatry.  
 
Figure 5. Relationships between the first two principal components of climatic variation observed at 
localities of occurrence of B. torquatus and B. brunneinucha and elevation (A) and latitude (B). 
 
Figure 6.  Results of principal components analyses of climatic variation observed at localities of 
occurrence of B. torquatus and B. brunneinucha. Panes (A) through (D) show the positions in 
environmental space along the first four principal components of different populations (note that the 
scale of the first component has been inverted to indicate increasing elevations from left to right). In 
(A) and (B), grey circles correspond to localities of B. torquatus in Bolivia and Argentina, and white 
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and black circles to localities of this species from areas where it replaces B. brunneinucha at low and 
high elevations, respectively. White and black squares in (C) and (D) are localities where B. 
brunneinucha occurs in allopatry and sympatry with B. torquatus, respectively. Panes (E) and (F) 
illustrate that differences among populations in elevational ranges are more pronounced than 
differences in the actual range of climatic conditions that correlate with elevation (i.e. principal 
component 1) under which these populations occur. 
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
 

 

 
 



 Cadena, C. Daniel, UMSL, 2006 p. 106

FIGURE 6 
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CHAPTER 4 

 

How Many Species is “Buarremon torquatus” (Aves, Emberizinae)? Insights from Molecules, 

Ecological Niche Modeling, Songs, and Morphology  

 

 

INTRODUCTION 

 

Two central questions in biology are what species are, and what criteria should systematists use to 

recognize them. Much of the heated debate surrounding the so-called “species problem” has resulted 

from failing to distinguish these two questions (de Queiroz 1998, 1999, 2005a, 2005b). A solution to 

the problem is to accept that the only necessary property of species is that they are segments of 

lineages at the population level of organization, and that the multiple species definitions that have 

been proposed are only different criteria that can be used to distinguish lineages on the basis of 

secondary properties that arise at different stages of evolutionary differentiation. An acceptance of 

this unified concept of species (de Queiroz 2005b) implies that systematists can focus on identifying 

lineages and on testing hypotheses about where those lineages stand in the process of differentiation 

by examining whether they have attained properties such as phenotypic diagnosability, reciprocal 

monophyly, or mechanisms of reproductive isolation. That these properties are not by themselves 

necessary conditions of the definition of species does not undermine their central importance in 

evolutionary biology (e.g. reproductive isolation, see Coyne and Orr 2004). 

 

The best approximation to the delimitation of lineages and to testing the emergence of secondary 

properties is achieved by integrating information from multiple sources (Wiens and Penkrot 2002; 

Sites and Marshall 2003, 2004; Yoder et al. 2005). Wiens and Graham (2005) recently proposed that 

ecological niche models constructed on the basis of environmental variables thought to shape species’ 

geographic ranges can be used as a novel tool to inform species delimitation. Embracing the concept 

that species are segments of population lineages, they presented a hypothetical example involving two 

allopatric populations of uncertain status to describe the implications for species limits of different 

scenarios regarding the relationship between the climatically defined niche of each population and the 

projection of that niche onto geographic space. First, they proposed that populations could be 

considered distinct species if their climatic niches are equivalent and are separated geographically by 

areas outside their climatic niche envelopes that would limit gene flow. Second, they reasoned that if 

the two populations share similar climatic niche envelopes and their ranges are connected by areas of 
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suitable environmental conditions, the likelihood of dispersal and gene flow would be high, which 

would not add support to the hypothesis that they represent different species. Finally, they proposed 

that if the populations have dissimilar niche envelopes, niche conservatism would maintain their 

geographic separation, supporting the hypothesis that they are distinct species.  

 

We agree with Wiens and Graham (2005) in that ecological niche modeling (ENM) can illuminate 

species delimitation, but the scenarios they described are amenable to alternative interpretations, 

particularly when ENM is employed in conjunction with other sources of information. Specifically, 

the scenario in which two populations with similar niches are connected by areas of continuous 

suitable environments not only does not imply that these populations represent a single lineage, but 

indeed provides an ideal scenario to test the hypothesis that the populations are evolutionarily isolated 

from each other. If allopatric or parapatric populations do not show evidence of intergradation 

(phenotypic intermediacy or extensive gene flow) despite the opportunity for interbreeding offered by 

habitat continuity, this scenario may in fact suggest they are distinct lineages evolving in isolation. On 

the other hand, the occurrence of populations under distinct climatic conditions in allopatry can 

hardly be considered evidence that they have different environmental tolerances, and thus correspond 

to different species (i.e., Figure 1d in Wiens and Graham 2005). To make such a claim, one would 

need to demonstrate that the realized environment (i.e., the combination of environmental conditions 

that actually exists in a given landscape; Jackson and Overpeck 2000) is comparable in the areas 

where each population occurs. Otherwise, such a pattern may simply reflect that the fundamental 

niche of a single lineage is constrained differentially by varying environmental conditions in different 

parts of its geographic range (see Kearney and Porter 2004).  

 

We propose that the real value of ENM for studies on species delimitation is that it can highlight the 

continuity of habitable areas in space, which in turn allows drawing on various kinds of data to test 

hypotheses related to the status of lineages in the process of evolutionary differentiation. Thus, we 

argue that a scenario in which two populations occur in areas where they could be connected by 

dispersal, but where individuals of each of them consistently occur under distinct climatic conditions,  

represents a much more compelling case illustrating how niche conservatism may maintain lineages 

as independent units than the example where populations are widely spaced. Here, we illustrate these 

ideas with a multidimensional analysis of species limits in the Buarremon torquatus complex (Aves, 

Emberizinae), a widespread group of Neotropical passerine birds exhibiting unparalleled patterns of 

geographic variation and within which species delimitation has been contentious. Combining ENM 

with data on phylogenetic relationships, genetic differentiation, morphometrics, plumage, 
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vocalizations, and distribution ranges, we provide a new hypothesis of species limits in the group, 

highlighting cases of clear-cut evolutionary distinctiveness, previously unnoticed patterns of 

differentiation, and several outstanding challenges, both practical and conceptual, for future studies. 

 

We assume species are segments of population lineages, but focus on assessing the status of 

differentiation of lineages in terms of secondary properties (sensu de Queiroz 2005b), particularly on 

reproductive isolation. From a theoretical standpoint, reproductive isolation is the cornerstone of 

research in speciation, which deals with understanding the origin of isolating barriers that prevent 

gene flow in sympatry (Coyne and Orr 2004). From a more pragmatic perspective, although 

consensus may be emerging regarding the ontological status of species (de Queiroz 1998, 2005b), in 

practice taxonomy still relies on particular contingent properties, among which reproductive isolation 

is one of the most prominent because it is central to the pervasive biological species criterion (BSC; 

Mayr 1942, 1963). In particular, the BSC prevails in ornithology, being adopted by authoritative 

classification committees (e.g. A.O. U. 1998, Helbig et al. 2002, Remsen et al. 2006). Species lists 

produced by such authorities serve as baselines for most research in avian biology and conservation, 

so their reliance on the BSC influences ornithological science profoundly. Although taxonomy may 

be best served by embracing a new view of species (de Queiroz 2005b), this is unlikely to occur in the 

near future, and many researchers will continue to base their species diagnoses on the criterion of 

reproductive isolation. Therefore, the development of new approaches that allow applying the BSC 

more objectively remains an important priority in systematics (Remsen 2005). As we shall show 

below, models of species distributions based on niche theory, when combined with other data, can be 

brought to bear on situations in which the application of the BSC has been most contentious, namely 

those in which reproductive isolation cannot be assessed directly because members of populations of 

uncertain status are not known to occur in strict sympatry. 

  

STUDY SYSTEM 

 

The B. torquatus complex is a clade comprising 14 taxa currently treated as subspecies (A.O.U. 1998, 

Remsen et al. 2006)  that occur in montane areas of the Neotropics, ranging from central Costa Rica 

south to northern Argentina (Chapman 1923, Paynter 1978; Figure 1). Although presently considered 

a single species, several authors have suggested that B. torquatus may comprise two and possibly 

more species, but the ideas of how these are to be circumscribed are conflicting (see Paynter 1978 and 

Remsen and Graves 1995b for reviews). Much of the controversy relates to the status of the 

atricapillus group, which occurs in mid-montane areas of the three cordilleras of the Colombian 
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Andes (atricapillus), eastern and central Panama (tacarcunae), and, according to some, Costa Rica 

and western Panama (costaricensis). Some authors have treated the atricapillus group as a distinct 

species, whereas others consider its members as subspecies of B. torquatus; even among those that 

separate atricapillus as a species there is disagreement, as some include and others exclude 

costaricensis. Part of the confusion has arisen from conflicting perspectives on patterns of geographic 

variation in the group. The populations of eastern Panama including tacarcunae have been said to 

“form a nearly perfectly graded series between costaricensis of western Panama and Costa Rica, and 

atricapillus of South America” (Wetmore et al. 1984). At the same time, however, at least some 

specimens of costaricensis are remarkably similar in plumage to South American members of the 

torquatus group (i.e., assimilis), and quite distinct from atricapillus, which has led to statements such 

as the following. “I cannot appreciate how tacarcunae can be considered to be intermediate between 

costaricensis and atricapillus. On the contrary, I find tacarcunae difficult to distinguish from 

atricapillus and to be well-differentiated from costaricensis” (Paynter 1978). Clearly, making sense 

of geographic variation in plumage patterns to understand species limits in the B. torquatus complex 

has proved challenging.  

 

Cadena et al. (Chapter 1) described phylogenetic relationships and patterns of geographic variation in 

mitochondrial DNA (mtDNA) sequences in B. torquatus based on a total of 78 individuals 

representing 13 of the 14 named taxa. Their analyses indicated that costaricensis is the sister group of 

a well-supported clade formed by all other members of the complex, including atricapillus and 

tacarcunae, which are each other’s closest relatives (Figure 1). Relationships among major groups 

within this large clade were not strongly supported, but several distinct clades were recovered, with 

the interesting outcome that some populations occurring in distant geographic locations are more 

closely allied than they are to populations occurring in close geographic proximity. For the most part, 

named taxa within the complex formed reciprocally monophyletic mtDNA clades, and genetic 

distances among many of these clades were substantial (see below). The patterns of mtDNA variation 

indicating long-term isolation of several populations and the phenotypic distinctiveness of several of 

them (Paynter 1978), suggest that B. torquatus comprises more than one species. How such species 

are circumscribed, however, would vary according to the operational criteria used to delimit them. 

  

The levels of genetic divergence observed among clades of B. torquatus may suggest more than one 

“biological” species is involved because they exceed those observed between many pairs of 

reproductively isolated passerines, both in the temperate zone and in the Neotropics (reviewed by 

Lovette 2005 and Weir 2006), but using only genetic distance and reciprocal monophyly of mtDNA 
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to assess reproductive isolation is fraught with problems due to the weak nature of the association 

between time of divergence and the attainment of reproductive isolation (Price and Bouvier 2002, see 

also Edwards et al. 2005). However, mtDNA genealogies reflect evolutionary differentiation and 

provide hypotheses for species limits that can be evaluated with additional data (Templeton 2001, 

Yoder et al. 2005). Here, we use the mtDNA framework presented in Chapter 1 to guide our 

discussion of species limits based on other sources of information. 

 

We begin by focusing on two pairs of populations (i.e., subspecies in current taxonomy) in the B. 

torquatus complex that represent distinct lineages (sensu De Queiroz 2005b) that may have 

differentiated sufficiently to attain reproductive isolation. One of these pairs consists of assimilis and 

atricapillus, both of which occur widely across the Andes of Colombia, but have never been collected 

or observed at the same geographic location and generally occur at different elevations (Remsen and 

Graves 1995; Figure 1). The second pair consists of poliophrys and nominate torquatus; these have 

linear and presumably non-overlapping ranges along the Andes of Peru and Bolivia, although it is 

possible that they may be parapatric and meet in a contact zone in southern Peru (Figure 1). These 

pairs of taxa are not each other’s closest relatives and appear to form monophyletic mtDNA clades 

with respect to other taxa in the complex (Figure 1). However, it is unclear whether this is a result of 

lack of opportunities for gene flow due to spatial disjunction of their ranges or to their status as 

distinct, potentially overlapping, and reproductively isolated species. Based on patterns observed in 

these pairs of taxa, we discuss variation in B. torquatus as a whole. 

 

BACKGROUND ON ECOLOGICAL NICHE MODELING 

 

The term ecological niche modeling was first used explicitly by Peterson (2001) to refer to the use of 

environmental (mostly climatic) data recorded at sites where species are known to occur to generate 

models that characterize their ecological niches in environmental space and to predict potential 

distribution ranges by projecting these models spatially (reviewed by Guisan and Zimmermann 2000, 

Elith et al. 2006). There has been some confusion in the literature over  whether these models 

approximate species’ fundamental niches (sensu Hutchinson 1957), or if they only describe realized 

niches considering that the known occurrence sites used to construct them have already been 

influenced by factors that constrain the fundamental niche such as interactions, dispersal limitation, or 

extinction (reviewed by Soberón and Peterson 2005). We favor the idea that ecological niche models 

can only be interpreted as characterizations of realized niches in environmental dimensions. 

Accordingly, cases in which models indicate two populations occur in distinct environments do not 
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imply that each of them is unable to occur under the conditions that characterize localities occupied 

by the other. Alternatively, in cases in which models indicate two populations occur under the same 

environmental conditions, it can be concluded that their geographic ranges could potentially overlap, 

assuming other niche requirements are met. This inference requires assuming that locality data do not 

include wandering individuals occurring in sink habitats, which strictly speaking are not part of 

realized niches (Pulliam 2000). Although we cannot reject this possibility, its effect at the coarse scale 

of our analyses is likely to be minor. 

 

MATERIALS AND METHODS 

 

CHARACTERIZATION AND GEOGRAPHIC PROJECTION OF CLIMATIC NICHE ENVELOPES 

 

We georeferenced primary occurrence data for B. torquatus obtained from museum specimens, 

published reports, and reliable field records. For details on data sources and protocols followed to 

verify the accuracy of georeferences, see Chapter 3.  

 

We characterized ecological niches climatically using a set of 19 climate surfaces on a 30 arc-second 

resolution grid (i.e., 0.00833 decimal degrees or c. 1 km on the side) obtained from WorldClim 

version 1.2 (Hijmans et al. 2005). These surfaces reflect annual trends (e.g. mean annual 

temperature), seasonality (e.g. annual range in rainfall), and extreme conditions (e.g. temperature of 

the coldest month) in variables that are thought to be important in limiting geographic ranges 

(Hijmans et al. 2005). Prior to constructing models, we reduced the 19 environmental variables to sets 

of uncorrelated axes of climatic variation using principal components analyses (PCA). For each pair 

of populations being modeled, we defined a focal region for analysis (i.e., Colombia for assimilis and 

atricapillus and Peru and Bolivia for poliophrys and torquatus) and sampled environmental variation 

across the region by recording the values of each bioclimatic variable at 3000-6000 points placed 

randomly within an elevation range that encompassed all occurrence records of the taxa being 

modeled plus or minus 200 m. Although the range of assimilis extends through Ecuador and into 

Peru, and that of atricapillus into Panama, we focus in Colombia because this is where these taxa may 

come into contact. After standardizing climatic variables using Z-scores, we subjected the matrices to 

PCA (PROC FACTOR, SAS version 9.1, SAS Institute, Cary, NC), and selected axes describing non-

trivial variation by comparing their eigenvalues to a broken-stick model. Based on the PCA 

eigenvector coefficients, we generated GIS layers for each of the selected axes using the raster 
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calculator in ArcMap version 9.0 (ESRI). These layers, consisting of grids of equal size to those of 

the original climate surfaces (i.e., 0.00833 x 0.00833 decimal degrees), were then used for ENM.  

 

To generate niche models and project them onto geographic space we used the DOMAIN algorithm 

(Carpenter et al. 1993) implemented in DIVA-GIS version 5.2 (http://www.diva-gis.org). DOMAIN 

produces an output that is readily interpretable in the context of ecological niche theory (Hill and 

Binford 2002). The algorithm identifies sites that are potentially suitable for occurrence based on 

multivariate similarity to sites where the target taxa occur. Here, we consider sites to be suitable if 

DOMAIN models indicated their similarity to sites of known occurrence was equal or greater than 

95%, but our conclusions would not change if the threshold were reduced to 90%.  

  

MORPHOMETRIC AND PLUMAGE VARIATION 

Phenotypic traits such as bill dimensions may readily change in different environments as a result of 

selection, implying they are often of limited value as characters to assess the status of populations that 

occur in geographic isolation. However, patterns of variation in areas of regional sympatry or contact 

zones can provide insights about interbreeding that can complement inferences made from genetic 

variation. Accordingly, we examined differentiation in morphometrics between atricapillus and 

assimilis and poliophrys and torquatus based on measurements taken on museum specimens. For the 

former pair, whose ranges are intermingled in the Colombian Andes, we assessed diagnosability in 

external morphology using scatter plots to portray variation in bill length, height, and width. If the 

two taxa intergrade, these measurements should overlap. For the latter pair, a simple assessment of 

variation of this sort would be insufficient to assess the possibility of intergradation owing to their 

non-overlapping ranges. Our approach to assess intermediacy was to conduct discriminant function 

analyses (PROC DISCRIM and PROC CANDISC in SAS) independently for male and female 

specimens using six morphological measurements (the three bill measurements mentioned above plus 

tarsus, tail, and wing length), and to plot discriminant function scores as a function of latitude. If 

poliophrys and torquatus intergrade where their ranges abut, scores obtained for specimens of each 

taxon should resemble each other more closely in areas closer to the contact zone (i.e., localities at 

similar latitudes).  

 

We did not conduct quantitative analyses of plumage coloration. However, we noted whether 

specimens conformed to patterns of plumage variation described for each subspecies (Chapman 1923, 

Paynter 1978), paying special attention to possible hybrids in areas of geographic contact. 
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VOCAL VARIATION 

 

Vocal characters are seldom used in taxonomy of oscine passerines because songs in these birds are 

learned, and therefore, substantial variation often exists within species as a result of processes such as 

cultural transmission of local dialects (Baptista 1996, Podos et al. 2004). However, we concur with 

Remsen (2005) in that the predisposition for learning the song of the parental population rather than 

other species’ songs in oscines (Baptista 1996) implies that vocalizations are at least under partial 

genetic control, and are thus useful for delimiting species. Indeed, it has been shown that once 

elements that are consistent across individuals and geography within species are identified, oscine 

song can reflect phylogenetic relationships closely (Price and Lanyon 2002). Clearly, however, 

studies of song variation in oscines should sample broadly, allowing the extent of individual and 

geographic variation within species to be addressed.  

 

To assess the extent of differentiation in vocalizations between atricapillus and assimilis and 

poliophrys and torquatus, we compiled a total of 41 sound recordings, each comprising vocalizations 

of a different individual. We examined overall sound quality in Adobe Audition 1.5 (Adobe Systems 

Inc. 2004) and generated spectrograms using Syrinx-PC (www.syrinxpc.com—developed by John 

Burt, University of Washington, Seattle). We analyzed only the 24 recordings that conformed to 

unsolicited songs with undistorted notes that could be unambiguously distinguished from other 

sounds (Appendix). This implied that relatively few recordings were available for any given taxon, 

particularly for atricapillus, for which only three recordings were considered adequate. This limited 

sample size could be problematic in light of the potential for ample within-species variation in songs 

in oscines mentioned above. However, recordings of atricapillus were made in three different slopes 

of two different cordilleras where this species co-occurs with elevational segregation with assimilis. 

Because recordings of assimilis from these areas are available, we assume that if these taxa differ 

vocally in a consistent fashion across slopes, it would be unlikely that differences are artifacts of 

small sample sizes and poor geographic coverage. Small sample sizes and sparse geographic coverage 

are more of an issue for the comparison between poliophrys and torquatus, so we interpret our results 

for these taxa conservatively.  

 

An individual B. torquatus may sing uninterruptedly for a few minutes, repeating series of four to 

nine notes (i.e., note complexes; see Podos et al. 2004) that vary in pace. Because the arrangement of 

note complexes may vary through singing, and to minimize the effects of environmental distortion 

(e.g. reverberation, which may make notes appear longer than they are), we quantitatively examined 
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3-5 consecutive note complexes per individual recording. For each note complex, we recorded the 

following 14 acoustic variables: maximum frequency, minimum frequency, bandwidth (frequency 

range), maximum note bandwidth, minimum note bandwidth, peak frequency (frequency with the 

highest amplitude), duration, number of notes, note pace (number of notes divided by duration), 

summed note duration, note proportion (summed note duration divided by duration), maximum note 

duration, minimum note duration, and mean note duration. We obtained these measurements directly 

from spectrograms in Syrinx-PC, except for peak frequency, which we measured by generating 

amplitude spectra using the frequency analysis function of Adobe Audition. Although we took 

measurements on only 3-5 note complexes per song, we examined many more qualitatively to verify 

the consistency of patterns of variation. 

 

To assess differences in vocalizations between pairs of taxa (i.e., assimilis-atricapillus and 

poliophrys-torquatus), we used univariate and multivariate analyses. First, we compared the mean of 

each individual song variable between taxa using t-tests. Second, we determined whether taxa in each 

pair were vocally diagnosable using discriminant function analyses based on 13 log-transformed 

acoustic variables (we did not include number of notes because it is the only one variable not related 

to frequency or time).  

 

To examine the extent of vocal differentiation between the taxa that are the focus of this study in the 

broader context of variation across the whole B. torquatus complex, we compiled recordings of 

natural songs from as many localities as possible. Unfortunately, the availability of recordings for 

many populations occurring in distinct geographical areas and for some of the clades revealed by 

mtDNA is rather limited, which implies that quantitative analyses of the available material would be 

premature. Thus, here we chose to only describe the extent of vocal variation we observed across the 

complex by presenting representative spectrograms for different populations. Detailed quantitative 

analyses of vocal variation throughout the range of B. torquatus will be presented in forthcoming 

studies. 

 

GENETIC VARIATION 

 

Phylogenetic relationships and general patterns of geographic variation in mtDNA were presented in 

Chapter 1 and are summarized schematically in Figure 1. Here, we employ data from that study to 

calculate levels of sequence divergence observed between different populations, and discuss the 
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implications of phylogenetic relationships and of the extent of genetic differentiation for species 

limits in relation to variation in other aspects. 

 

RESULTS AND DISCUSSION 

 

DIFFERENTIATION BETWEEN ASSIMILIS AND ATRICAPILLUS  

 

1. Ecological differentiation 

 

Niche models indicate that assimilis and atricapillus occur in distinct environments. Areas of suitable 

habitat for assimilis occur extensively along the Cordillera Oriental and Cordillera Central of the 

Colombian Andes, whereas suitable areas are smaller and more sparsely distributed in the Cordillera 

Occidental, where sites at high elevations are more limited (Figure 2). The potential distribution of 

atricapillus appears somewhat more patchy, but also extends broadly along the three cordilleras 

(Figure 2). However, none of the point localities of atricapillus was located in areas where the model 

predicted presence of assimilis or vice versa. In fact, the DOMAIN algorithm did not classify a single 

grid cell in Colombia as potentially suitable for both taxa based on the climate data. 

 

2. Morphometric and plumage variation 

 

External morphology indicates that assimilis and atricapillus are 100% diagnosable taxa that exhibit 

no evidence of intermediacy. Independently of sex and of geographic location, specimens of 

atricapillus have substantially larger bills than specimens of assimilis: measurements of bill width, 

height, and length of each taxon are entirely nonoverlapping (Figure 3). Furthermore, we examined 

more than two hundred specimens of these taxa combined and did not encounter a single one that 

could not be assigned to one or the other taxon unambiguously based on the pattern of plumage 

pigmentation of the head: atricapillus has a mostly solid black head with only a few grey feathers in 

some specimens, whereas assimilis exhibits wide grey markings through much of the head.  

 

3. Vocal variation 

 

Vocal variation further confirms the distinctiveness of assimilis and atricapillus (Figure 4). The songs 

of atricapillus are higher pitched and are composed of notes emitted at a faster pace than those of 

assimilis, but encompass a much narrower frequency range and are less structurally complex, 
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exhibiting lower overall note richness and lacking notes that cover wide frequency ranges over short 

periods of time, which are typical of the song of assimilis (Table 1). Despite limited sample sizes, 

nine out of the 14 song variables we compared were significantly different between assimilis and 

atricapillus (Table 1). The discriminant function analysis indicated that vocalizations of these taxa are 

diagnosable: all songs were correctly classified to their corresponding taxon. 

 

4. Genetic variation 

 

As indicated above (Figure 1), assimilis and atricapillus are not each other’s closest relatives: 

assimilis forms a strongly supported clade with subspecies nigrifrons and poliophrys from Ecuador 

and Peru, and larensis from northeast Colombia and Venezuela; the affinities of the atricapillus-

tacarcunae clade are unresolved. Genetic distances between assimilis and atricapillus are substantial: 

the minimum observed sequence divergence was 6.3%. In contrast, the highest sequence divergence 

observed between individuals throughout the whole range of assimilis and the closely allied 

nigrifrons was only 2.0%.  The maximum distance observed within the clade formed by atricapillus 

and the closely allied tacarcunae was 2.4%.  

 

ARE ASSIMILIS AND ATRICAPILLUS REPRODUCTIVELY ISOLATED? 

 

Our data show that assimilis and atricapillus are diagnosable taxa that show no evidence of 

intermediacy in external phenotype, have distinct voices, and have been evolving in isolation for a 

substantial time. Although it had not been previously shown quantitatively, our finding that assimilis 

and atricapillus are phenotypically distinct is not novel: this is the argument invoked by authors that 

have advocated treating atricapillus as a different species (e.g. Ridgely and Tudor 1989, but see 

Paynter (1970), who expressed doubt about the possibility of phenotypic intergradation in western 

Colombia, which can be ruled out based on our analyses). However, the relevance of the lack of 

intergradation between atricapillus and assimilis for addressing their taxonomic status was brought 

into question by Remsen and Graves (1995), who argued these taxa have no opportunity to intergrade 

because they are separated in altitudinal distribution, with atricapillus occurring at lower elevations. 

 

ENM shows that assimilis and atricapillus indeed occur under rather different environmental 

conditions, a reflection of their different elevational distributions. This scenario matches one of those 

described by Wiens and Graham (2005), in which populations occur under distinct climatic regimes 

(their Figure 1d). These authors argued that such situations indicate that niche conservatism is likely 
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to maintain the populations in geographic isolation and thus, that they could be considered different 

species in a broad sense. We do not disagree with this interpretation (see below), but the way in 

which environments that appear to be suitable for the occurrence of these taxa are distributed spatially 

can and should inform the inference of whether populations are in the position to intergrade or not. 

Although not a single cell was classified as sufficiently similar in climate to sites of known 

occurrence of both assimilis and atricapillus, many sites suitable for each of them are in very close 

geographic proximity (within 1-2 km of each other). In addition, our models are based on climate data 

from only the past 50 plus years (Hijmans et al 2005), a minute period of time relative to the time 

frame over which these taxa have been isolated, which probably exceeds 2-3 million years (Chapter 

1). Thus, in light of the history of climate change in the Colombian Andes over the Quaternary 

(Hooghiemstra and van der Hammen 2004), sites matching climatic conditions suitable for the 

occurrence of both taxa may have existed in the past, implying that historical opportunities for gene 

flow have likely been higher than what a static view of present-day climatic conditions would 

suggest. In sum, we argue that although conditions suitable for the occurrence of both atricapillus and 

assimilis may not presently occur in any 1 km2 cell, and that these taxa have not been collected in 

syntopy, the way in which suitable environments are arrayed implies that for the practical purpose of 

assessing their taxonomic status, these taxa can be considered sympatric. This view is supported by 

patterns of mtDNA variation (i.e., rather limited population genetic structure within assimilis and 

atricapillus across their ranges, Chapter 1), which imply that dispersal over historical time frames has 

not been limited to small spatial scales. We also do not discard the possibility that these two taxa 

actually occur in syntopy. The range of atricapillus remains little known, and its retiring habits, local 

distribution, and apparently low abundance can make it difficult to detect, implying that continued 

fieldwork may result in finding it in sites below c. 2000 m where assimilis is known to occur.  

 

In addition, the gap in elevation separating the ranges of assimilis and atricapillus described by 

Remsen and Graves (1995) has been bridged by recent records indicating that assimilis ranges down 

to 1800 m, whereas atricapillus extends to 2000 m in the same cordillera (T. Donegan and O. 

Laverde, unpublished data). Therefore, we suggest that that the observation that these forms generally 

remain segregated by elevation indicates that habitat selection driven by niche conservatism likely 

plays a role in maintaining them as distinct entities where they occur in the same geographical area. 

The significance of patterns of habitat use stands out considering they are consistent over a wide 

geographical setting: both atricapillus and assimilis have been recorded in all but one of the six 

slopes of the Colombian cordilleras (atricapillus is not known from the east slope of the Cordillera 

Occidental, which may reflect lack of historical exploration; see Cuervo et al. 2003). Remsen and 
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Graves (1995) rightly pointed out that the occurrence of atricapillus at lower elevations is not unique 

in the B. torquatus complex, and argued that this cannot be considered a sufficient criterion to support 

its status as a distinct species. Certainly, the elevational range of atricapillus does not indicate that it 

is ecologically distinct from allopatric low elevation taxa, but it does serve as an important ecological 

mechanism isolating it from assimilis, the only taxon with which it is known to coexist at the 

landscape scale (see also Olson et al. 2004). This ecological isolating mechanism likely acts in 

concert with the marked differentiation in songs we observed; we hypothesize that vocalizations are 

likely to serve as an important mate recognition mechanism that would impede these taxa from 

hybridizing where their ranges may come into contact. 

 

In sum, our analyses show unequivocally that assimilis and atricapillus are two distinct lineages 

evolving in isolation that have attained multiple secondary properties of species that include 

diagnosability in plumage, morphometrics, and vocalizations, reciprocal monophyly in mtDNA, and 

reproductive isolation likely mediated by habitat selection and differentiation in songs. Therefore, we 

suggest these taxa should be treated as different species in classifications that apply essentially any 

species criterion, including the BSC.  

 

DIFFERENTIATION BETWEEN POLIOPHRYS AND TORQUATUS  

 

1. Ecological differentiation 

 

Projecting ecological niche models onto geography shows that although poliophrys and torquatus do 

not have broadly overlapping ranges, their distributions do not appear to be constrained by 

discontinuities in climatic niche space. Models classified fairly extensive areas of the range of 

poliophrys as climatically suitable for torquatus and vice versa (Figure 5). Of the 34 point localities 

of poliophrys, 16 occurred at sites classified as suitable for torquatus, whereas the reverse was true 

for 5 of 26 localities. Moreover, much of the intervening area between the southernmost record of 

poliophrys and the northernmost of torquatus we employed for modeling was predicted to be suitable 

for both taxa (compare Figure 1 and Figure 5). Interestingly, however, models identified a large area 

within the extent of the range of poliophrys in southern Peru where the environments are dissimilar to 

those under which either taxon is known to occur. This apparent gap in potential distributions 

corresponds to a remarkably humid area (Killeen et al.  2006). 

 

2. Morphometric and plumage variation 
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Discriminant function analyses based on morphological measurements correctly classified 90% of 

male specimens and 94% of female specimens to their respective taxa. Plotting the discriminant 

function scores with respect to latitude does not reveal trends that would suggest clinal variation 

leading to more similar morphology near the area where the ranges of poliophrys and torquatus may 

abut (Figure 6), which suggests intergradation is limited. However, because we did not have access to 

many specimens from near the potential area of parapatry, the morphological distinctiveness of the 

two taxa may not be as clear if they intergrade in a narrow contact zone (see below).  

 

Although torquatus and poliophrys are superficially similar in plumage patterns, the two taxa are 

diagnosable: torquatus has a distinct white superciliary that is grey in poliophrys. Unfortunately, there 

are few available specimens from southern Puno Department (Peru), so material that would allow 

assessing intermediacy in plumage patterns in areas of possible contact is limited. Several specimens 

from near the Peru-Bolivia border (Abra Maruncunca) housed at LSUMZ (see acknowledgements for 

museum acronyms) are typical torquatus plumage types, and at least one of them has torquatus 

mtDNA (Chapter 1). Also, an individual captured and photographed by F. Schmitt near Masiapo 

(Puno) is referable to torquatus. In turn, specimens from easternmost Cusco Department (e.g., YPM 

81959) appear to be typical poliophrys. Collections from the intervening area very sparse, but a 

specimen from Limbani, Carabaya, Puno (AMNH 520399) is intermediate in plumage between 

poliophrys and torquatus, showing a mixture of grey and white feathers in the superciliary. It is 

possible that this bird is a hybrid, but it is not morphometrically intermediate as would be expected if 

this were the case, since the discriminant analysis clearly classified it as poliophrys (Figure 6). Thus, 

the possibility that this specimen represents an aberrant poliophrys cannot be ruled out, but we do not 

discard the hypothesis that poliophrys and torquatus may hybridize in a narrow contact zone. Should 

hybridization occur, its extent and the width of the hybrid zone are unknown. The only other 

specimen from this area we are aware of (MVZ 126435 from Agualani, near Limbani) is a subadult 

individual that seems to be a “pure” poliophrys.  

 

It is also worth noting that at least part of the superficial similarity of poliophrys and torquatus is 

either plesiomorphic or the result of convergence or parallel evolution of plumage patterns. Analyses 

to be reported in detail elsewhere (C. D. Cadena unpubl. data) indicate that plumage traits are highly 

homoplasious in B. torquatus, and that characters such as the black pectoral band have been lost or 

gained repeatedly throughout the history of the group. In this particular case, it is readily apparent that 



 Cadena, C. Daniel, UMSL, 2006 p. 121

poliophrys and torquatus, both of which exhibit collars, are closely allied to taxa that lack this trait 

(e.g. assimilis and borelli, respectively). 

 

3. Vocal variation 

 

Vocal variation in poliophrys and torquatus is consistent with taxon designations. The vocalizations 

of poliophrys have significantly longer and lower-pitched notes than those of torquatus (Table 1, 

Figure 4). Although many acoustic variables showed some overlap, the variability in vocal traits 

appeared to be higher in poliophrys, and maximum frequency and bandwidth tended to differ between 

taxa. The discriminant function analysis indicates that poliophrys and torquatus can be diagnosed 

based on vocalizations: 100% of the songs analyzed were correctly classified to their corresponding 

taxon. Plotting discriminant function scores with respect to latitude does not indicate that songs are 

more similar in areas where the ranges of both taxa are closer to each other (Figure 7), which suggests 

there is no evidence for clinal variation in vocalizations over broad scales. However, our sampling is 

not sufficiently detailed to entirely rule out this possibility at finer scales. 

 

4. Genetic variation 

 

Phylogenetic analyses show that poliophrys and torquatus belong to different major clades within B. 

torquatus (Chapter 1). Whereas poliophrys is sister to a clade formed by assimilis and nigrifrons, and 

these three taxa are sister to larensis, torquatus belongs to a clade of unresolved affinities, within 

which it is sister to a clade formed by borelli and fimbriatus. Both poliophrys and torquatus appear to 

be reciprocally monophyletic with respect to other taxa, but sampling for the latter taxon is 

insufficient to confirm this pattern (Chapter 1). The minimum level of sequence divergence observed 

between poliophrys and torquatus is 6.6% (uncorrected p distance). The individuals of each taxon 

assayed for mtDNA variation occurring in closest geographic proximity are separated by c. 300 km, 

and are at least 7.5% different in mtDNA sequences. This contrasts with variation within each taxon, 

which reaches only 2.8% within poliophrys and 0.5% within torquatus over distances of c. 900 and c. 

475 km, respectively. 

 

ARE POLIOPHRYS AND TORQUATUS REPRODUCTIVELY ISOLATED? 

 

Ecological niche models indicate environments climatically suitable for the occurrence of poliophrys 

and torquatus are largely continuous in the area where their ranges abut, a scenario that corresponds 
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to the one portrayed in Figure 1c by Wiens and Graham (2005). We suggest that the continuity of 

climatic niche envelopes in space implies that it is unlikely that niche conservatism impedes these 

taxa from being sympatric, which in turn leads to the prediction that if they are not reproductively 

isolated, there should be evidence of gene flow and intergradation near their range boundaries. The 

ability of these taxa to disperse historically over areas exceeding the potential gap in their 

distributions is clear based on patterns of genetic variation indicating limited to no genetic structure 

across all of their ranges. 

 

Inferences of whether poliophrys and torquatus may exchange genes to the extent that it is no longer 

justifiable to maintain they correspond to a single species under the BSC are somewhat tentative 

because relevant data are not available at the very fine spatial resolution that one would like. The best 

approximation we have are data on morphometric and plumage variation, which suggest these taxa 

exhibit little to no intergradation, and that the phenotypic transition from one form to the other occurs 

over a maximum distance of 50 km of mostly continuous habitat. Hybrid zones of some avian taxa 

considered “good” species under the BSC are wider than this (e.g. Rising 1983, Brumfield et al. 

2001), an observation that could be used to support the argument that poliophrys and torquatus 

demonstrate “essential” reproductive isolation (sensu Johnson et al. 1999).  

 

The hypothesis that poliophrys and torquatus are different species under the BSC is not free of 

caveats, the most significant of which are the 300 km gap in sampling of mtDNA variation that exists 

in southern Peru and the lack of recordings of songs from areas of possible contact. In the absence of 

sequence data at the same spatial resolution as morphological data, we cannot reject the hypothesis 

that variation may be decoupled, and that the transition from one to another mtDNA phylogroup 

actually occurs within the range of the poliophrys phenotype. Studies on hybrid zones have shown 

that plumage traits may introgress asymmetrically from one lineage into another, resulting in 

discordance in the geographical position of molecular and phenotypic contact zones (Brumfield et al. 

2001). These patterns need not occur at small spatial scales; a contact zone between highly divergent 

mtDNA clades in Phaeothlypis warblers is more than 1000 km away from the area where different 

plumage forms are known to hybridize (Lovette 2004). Because the distribution of available song 

recordings is also sparse, the exact correspondence between plumage, vocal, and mtDNA variation in 

the area of potential contact cannot be established with complete certainty at this time. We believe 

that the possibility of molecular, phenotypic, and vocal decoupling is unlikely because differences in 

all of these traits are rather striking, and suspect that detailed analyses in the area will confirm that 

poliophrys and torquatus are reproductively isolated taxa. In addition, even if traits do not vary 
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exactly in parallel, it is not clear to us what would be the implications for species delimitation, 

considering how such cases are treated in other avian taxa. For example, plumage clines in the 

manakin hybrid zone located in Panama are known be displaced several kilometers with respect to 

molecular and morphometric clines (Parsons et al. 1993, Brumfield et al. 2001), but no one seems to 

question the status of Manacus vitellinus and M. candei as different species. However, some 

researchers might believe it is best to err on the side of caution, and maintain the taxonomic status of 

poliophrys and torquatus unchanged until the abovementioned hypothesis and also the possibility that 

there is clinal variation in song and mtDNA in southern Peru are ruled out (see Brumfield 2005, Isler 

et al. 2005).  

 

HOW MANY REPRODUCTIVELY ISOLATED SPECIES COMPRISE THE BUARREMON TORQUATUS 

COMPLEX? 

 

We have demonstrated that atricapillus and assimilis on one hand, and likely poliophrys and 

torquatus on the other, are reproductively isolated species. The remaining challenge is to decide to 

which of these “biological” species, if any, should all other members of the B. torquatus complex be 

assigned. In an effort to develop an objective framework for the application of the BSC in 

ornithology, Remsen (2005) suggested that allopatric populations should be treated as species if their 

degree of divergence is at or beyond that of taxa known to have reached reproductive isolation (see 

also Isler and Isler 1998, Helbig et al. 2002). Following this logic, one could use the degree of 

differentiation attained by assimilis and atricapillus (and perhaps by poliophrys and torquatus) as an 

approximate yard stick to assess whether other populations may represent reproductively isolated 

species. We attempt to do so in the following paragraphs, but we note at the outset there is an 

important caveat to this approach, namely the problem of distinguishing causes and consequences of 

reproductive isolation. Although two populations reproductively isolated from each other may differ 

in a suite of characteristics, the significance of any of these by itself as a mechanism preventing 

interbreeding is unclear; it may well be that one or a few of them confer reproductive isolation, and 

that others diverge as a consequence of lack of gene flow. This issue is important because when 

comparing allopatric populations with reference to known pairs of reproductively isolated species, 

one may find that they are more divergent in some aspects and less divergent in others. Indeed, this is 

the case in B. torquatus. 

 

Genetic divergence between several populations of B. torquatus is comparable to, and actually greater 

than, the divergence observed between assimilis and atricapillus, reaching values of uncorrected 
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sequence divergence of c. 9% (e.g. costaricensis vs. poliophrys). Levels of sequence divergence 

within the genus Arremon, the sister group of B. torquatus, reach 11% in the same mtDNA region, 

but several of the seven reproductively isolated species of Arremon recognized by current taxonomy 

are in the range of c. 7 to 9% divergence (J. Klicka, C. D. Cadena and J. L. Pérez-Emán, unpublished 

data). We present these comparisons to indicate that based on what has been observed for good 

species within the complex and in a closely allied group, many populations of B. torquatus have been 

isolated from each other for periods of time over which mechanisms of reproductive isolation may 

well have evolved. Although genetic distances are rather poor surrogates of species status under the 

BSC because the correlation between time of divergence and reproductive isolation is weak, such a 

correlation does exist (reviewed by Coyne and Orr 2004).  

 

Ecology has long been thought to play a crucial role in speciation, and the divergence of populations 

in allopatry to the point where they can no longer interbreed is often believed to be a byproduct of 

adaptive evolution resulting from varying selective pressures in different environments (Mayr 1942). 

Accordingly, much of the residual variation of the regression between genetic distance (i.e., time) and 

measures of reproductive isolation can be accounted for by ecological differentiation (Funk et al. 

2006). Our data demonstrate that reproductive isolation may correlate with differences in ecology in 

B. torquatus based on the patterns observed in assimilis and atricapillus. Several sets of populations 

arguably are just as ecologically distinct as these two, the most obvious being those occurring at high-

elevations (e.g. assimilis, poliophrys) and those occurring in mid-montane areas (e.g. atricapillus, 

costaricensis, larensis, phygas). Other patterns of ecological differentiation may not be as obvious at 

first glance, but become clear using ENM. For example, Cadena and Loiselle (Chapter 3) showed that 

the sites where basilicus occurs in the Sierra Nevada de Santa Marta of northern Colombia are 

environmentally distinct from those occupied by populations occurring in the Andes of northeast 

Colombia and in northwest Venezuela (i.e., perijanus, larensis). Similarly, the environments occupied 

by populations occurring at relatively high latitudes in Bolivia and Argentina (fimbriatus, borelli) are 

markedly distinct from those occupied by other members of the complex (Chapter 3). 

 

On the other hand, ecological similarity in the environments connecting populations not known to 

occur in sympatry but that do not show evidence of intermediacy suggests that intrinsic barriers to 

gene flow may prevent them from merging into a single species. We have discussed the case of 

poliophrys and torquatus in some detail, but there are others. One of them is that of assimilis and 

poliophrys, whose ranges closely approach each other along the Peruvian Andes. These two taxa are 

readily diagnosable based on plumage and form distinct mtDNA clades that differ by a minimum 
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3.8% sequence divergence (Chapter 1). The southernmost locality of assimilis and the northernmost 

of poliophrys are separated by c. 70 km over which climatically suitable environments for both taxa 

are entirely continuous (see Figure 5 for poliophrys, data for assimilis not shown). Another case of 

distinct populations that occupy similar environments in close proximity is that of atricapillus and the 

population occurring in Depto. Norte de Santander, Colombia (these birds have been historically 

referred to taxon perijanus, but mtDNA data indicate they are much more closely allied to larensis 

from the Venezuelan Andes; Chapter 1). Both taxa occur on the west slope of the Cordillera Oriental 

of Colombia over a similar elevational range, and have been collected within 120 km of one another 

on this slope. They are arguably more distinct phenotypically from each other than assimilis and 

atricapillus, and they are divergent to roughly the same level in mtDNA and in vocalizations (see 

below).  

 

The available material is too limited to allow quantitative analyses of vocal differentiation among all 

populations of B. torquatus, but the extent of vocal variation in the complex is substantial (Figure 8). 

In spite of the variation, there are somewhat distinct groups of taxa with generally similar 

vocalizations. First, the songs of assimilis, nigrifrons, poliophrys, larensis, phaeopleurus, and phygas 

are rich in note variety, encompass a wide frequency range, and consist of notes that are evenly 

interspaced. The songs of these taxa are not characterized by distinct phrases, but rather by individual, 

highly variable notes emitted at regular intervals. Among these taxa, the songs of phaeopleurus and 

phygas stand out for having buzzing notes that we have not observed in any other member of the 

complex. Second, the songs of borelli, fimbriatus, torquatus, costaricensis, atricapillus, and 

tacarcunae are overall simpler, higher pitched, and are composed of one to three alternated, distinct 

phrases interspersed with silent periods. Despite the substantial variation in songs we observed, this 

general description of patterns of vocal variation is consistent in some ways with phylogenetic 

relationships. Most of the taxa in the group exhibiting more complex songs form a well-supported 

clade (i.e., assimilis, nigrifrons, poliophrys, larensis), whereas the phylogenetic position of the other 

two taxa with complex songs is uncertain (analyses are inconclusive for phygas and sequence data are 

not available for phaeopleurus), and they differ in having the unique buzzing notes. On the other 

hand, taxa with simpler songs occurring in Bolivia and Argentina (torquatus, fimbriatus, and borelli) 

and in Colombia and Panama (atricapillus and tacarcunae) also form distinct clades. 

 

It is noteworthy that vocalizations of populations from distant geographical areas (e.g. tacarcunae 

from Panama and fimbriatus from Bolivia) are more similar to each other than any of them are to 

those of intervening populations (e.g. assimilis from Colombia, Ecuador, and Peru). This “leapfrog” 
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pattern of geographic variation is pervasive in plumage patterns among Andean birds (Remsen 1984), 

but to our knowledge it has not been reported previously for patterns of vocal variation, except 

perhaps for ring species (Irwin et al. 2001). Two plumage traits (the presence or absence of a black 

pectoral band and the color of the superciliary – white vs. grey–) also vary in leapfrog fashion in B. 

torquatus, but the two traits do not vary in parallel, leading to a complicated mosaic of geographic 

variation in plumage (Chapman 1923, Paynter 1978). Leapfrog variation in vocal characters is not 

congruent with variation in either of the two leapfrogging plumage traits (compare Figure 8 with 

Figure 20 in Paynter 1978). 

 

Comparisons across broad geographic areas are likely to reveal morphometric variation, but whether 

this indicates anything about the ability of populations to interbreed is at best dubious, so we did not 

perform comparisons involving allopatric populations. Plumage variation is also best used in 

sympatry and parapatry to identify intermediate phenotypes that may have resulted from 

hybridization, but plumage patterns may be important for mate choice and thus be useful indicators of 

reproductive isolation. Some pairs of populations of B. torquatus are arguably more divergent in 

plumage than atricapillus is from assimilis. The main difference between these taxa is that 

atricapillus has a solid black head, whereas the head of assimilis has conspicuous grey stripes. An 

example of taxa that could be considered more divergent are costaricensis and torquatus: the former 

has a black head with broad grey stripes and an entirely white chest, whereas the latter has a white 

superciliary and a conspicuous black collar band. However, arguing that these differences could 

confer reproductive isolation would be premature without knowing the role of plumage signaling in 

mate selection. At any rate, considering that these populations occur thousands of kilometers apart, 

this is probably of little relevance. 

 

In sum, our attempt to use the degree of divergence between reproductively isolated species occurring 

in geographic contact as a guide to making decisions about the status of allopatric populations has not 

taken us very far. In some aspects (e.g. divergence times, plumage), some populations are more 

divergent from each other than assimilis and atricapillus, but in other aspects (e.g. songs, ecology) 

they may be more similar. Therefore, making any recommendations regarding species status for many 

pairs of allopatric populations would still involve a substantial degree of subjectivity because it would 

require giving more importance to some traits over others without knowing which of them are the 

cause, and which a consequence of reproductive isolation between assimilis and atricapillus. Indeed, 

poliophrys and torquatus appear very likely candidates to be considered different species under the 

BSC, but these taxa are arguably less different from each other in several aspects than assimilis and 
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atricapillus, indicating that differentiation in all the aspects these taxa differ is probably not required 

for populations to reach reproductive isolation.  

 

PREVIOUSLY PUBLISHED ALTERNATIVES 

 

Because we are unable to provide a novel and satisfactory BSC-based classification, we consider 

treatments that have been proposed in the literature. The two views of how B. torquatus may be split 

into more than one species are to recognize (1) atricapillus and tacarcunae, or (2) atricapillus, 

tacarcunae, and costaricensis, as members of a different species from the rest of the complex. 

Adopting any of these options would result in recognizing non-monophyletic species. Although 

polyphyletic and paraphyletic species are not inconsistent with the philosophy of the BSC, which 

emphasizes interbreeding and not common ancestry (Donoghue 1985, de Queiroz & Donoghue 1988, 

Olmstead 1995), the appropriateness of recognizing nonmonophyletic species is far from generally 

accepted. One of the most compelling arguments against this practice is that it implies a 

misrepresentation of the evolutionary units involved in the process of speciation (Cracraft 1989, Zink 

and McKitrick 1995). For the case of B. torquatus, even if we ignore this criticism, we see no 

compelling genetic, phenotypic, ecological, or vocal evidence that would support the recognition of 

the nonmonophyletic species circumscribed by earlier authors. For example, we find it impossible to 

contend that taxa as different in all aspects such as costaricensis and poliophrys belong to a cohesive, 

collectively evolving group (see Rieseberg and Burke 2000) to the exclusion of atricapillus and 

tacarcunae.  

  

RESOLVING THE CONUNDRUM? 

  

There is still much more to learn about patterns of variation in B. torquatus, particularly in potential 

contact zones of parapatrically distributed taxa. Also, increased availability of recordings should 

improve our ability to distinguish clusters of vocally distinct populations through more detailed 

analyses. However, achieving a complete picture of patterns of variation may take years of work and 

may still be inconclusive because some of the difficulties related to using the divergence between the 

only two sympatric and reproductively isolated taxa available as a yard stick to establish species 

status for allopatric taxa will remain. Also, it is already clear from our analyses that there will not be 

strict correspondence between patterns of geographic variation in plumage, morphometrics, song, and 

ecology; genetic distances; and phylogeny. 
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Clearly, the B. torquatus complex is no exception to the idea that species have fuzzy boundaries 

(Baum 1998). However, there is no doubt, under any species criterion, that the hypothesis that B. 

torquatus is one species is untenable, which implies that a revised classification is required. Under 

established taxonomic practices, advocating taxonomic changes based on our analyses may appear to 

create turmoil because it would disturb the status quo, but would fail to provide an entirely resolved 

picture of how many reproductively isolated species comprise the B. torquatus complex and how are 

they delimited. Although we appreciate the need for taxonomic stability, we contend that a 

classification that highlights that we already know some populations are reproductively isolated from 

each other conveys much more useful information about our understanding of evolution than a 

classification in which all taxa are lumped because we do not know enough about the potential for 

interbreeding across all members of the clade. In other words, we would argue that if taxonomy is to 

really provide a meaningful foundation for studying the biology of these birds, a classification that 

explicitly states what we do know and what we do not is preferable to a stable one that for all 

practical purposes amounts to assuming we do not know anything.  

 

In theory, a solution that allows incorporating what we know and what we do not into classifications 

is having taxonomy be consistent with the emerging view of what species are, rather than with 

recognizing lineages on the basis of secondary properties that arise at different stages of 

differentiation (de Queiroz 2005b). Buarremon torquatus clearly comprises several species, that is 

segments of lineages at the population level of organization. Some of these are phenetically 

distinguishable, some statistically diagnosable based on morphology, songs, or ecology, some 

reciprocally monophyletic, and some reproductively isolated. In practice, however, existing 

taxonomic conventions do not readily lend themselves to incorporating all this information into 

baseline lists used by non systematists, which consist only of binomials and trinomials. 

To bridge the gap between a classification that emphasizes only reproductive isolation that may turn 

out to be objectively unworkable even in the long run, and a novel classification scheme that would 

be consistent with the ontology of species (sensu de Queiroz 1998) but in practice difficult to 

implement and communicate, we suggest that the best available alternative is to consider treating the 

different major clades of B. torquatus identified by mtDNA data as different species. We realize there 

are many reasons why gene trees and organismal trees may be incongruent and that mtDNA may be a 

poor surrogate for differentiation in other traits. However, aside from the resolution of phylogenetic 

relationships, the mtDNA data indicate clearly there are several discrete lineages of comparable age 

that are in independent evolutionary trajectories. Also, these lineages occur in different biogeographic 
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regions, and examining other traits when there is information (e.g. song) reveals that their members 

have characteristics in common that may be important in maintaining them as cohesive units. 

Therefore, delineating lineages on the basis of mtDNA data and biogeographic and vocal 

considerations is consistent with methods of species delimitation proposed by authors that favor an 

evolutionary species criterion (e.g. Wiens and Penkrot 2002) and has the advantage that the 

recognition of nonmonophyletic species is avoided. Also, although we are aware of the fact that some 

lineages may comprise more than one species (they certainly include diagnosable and ecologically 

distinct populations and group nonintergrading taxa whose ranges may be nearly parapatric), we 

believe it is very unlikely that members of different major lineages will be shown to be conspecific. 

We also note that although some lineages may seem heterogeneous in plumage patterns and members 

of different lineages can be difficult to distinguish, similarity in plumage is a very poor surrogate of 

evolutionary relationships in this group (C. D. Cadena in prep.). 

Therefore, we propose a provisional classification that recognizes seven species-level taxa as follows: 

(1) B. costaricensis from Costa Rica and western Panama; (2) B. atricapillus from central and eastern 

Panama and the Colombian Andes (includes atricapillus and tacarcunae); (3) B. basilicus from the 

Sierra Nevada de Santa Marta, northern Colombia; (4) B. perijanus from the Serranía del Perijá, 

northeast Colombia and northwest Venezuela; (5) B. assimilis from the Andes of Venezuela, 

Colombia, Ecuador, and most of Peru (includes larensis, assimilis, nigrifrons, and poliophrys); (6) B. 

torquatus from the Andes of extreme southern Peru, Bolivia, and Argentina (includes torquatus, 

fimbriatus, and borelli); and (7) B. phygas from the Cordillera de la Costa Oriental, northeast 

Venezuela. The position of taxon phaeopleurus is uncertain because it is the only taxon for which 

sequence data are lacking. Its vocalizations resemble those of members of B. assimilis closely, so this 

appears to be the best place to allocate it for now, although it may represent yet another distinct 

lineage, or it could be conspecific with B. phygas, which it resembles closely in plumage and with 

which it shares some vocal traits (i.e. buzzing notes). The lack of vocal data for B. basilicus and B. 

perijanus is unfortunate, but these taxa are just as genetically distinct as others (Chapter 1).  

 

CONCLUSION 

 

Despite the central importance of species in biology, delimiting them objectively remains one of the 

most challenging problems faced by systematists. In this study we have begun to tackle the thorny 

issue of species delimitation in a complicated group of Neotropical birds in which sets of characters 

vary substantially across space, but do not obviously vary in a concerted fashion. To earlier 



 Cadena, C. Daniel, UMSL, 2006 p. 130

discussions of species limits in the group, we have added a historical perspective offered by a 

molecular phylogeny, have presented quantitative analyses of morphological and vocal variation, and 

have incorporated the new tool of ENM to highlight cases of ecological distinctiveness and cases 

where populations seem to be in independent evolutionary trajectories despite being connected by 

environments unlikely to represent barriers to gene flow. Although our provisional classification is 

likely to change as more detailed work is conducted particularly within some groups (e.g. B. 

assimilis), it helps to better describe the diversity of this clade, which is obscured when all taxa are 

subsumed into a single species name. Because species are the units most commonly used by 

biologists working in various fields, there are important implications of this increased understanding 

of diversity beyond systematics. For example, arguably part of the explanation for the patterns of 

elevational distribution of B. torquatus (sensu lato) that have long puzzled ecologists and 

biogeographers (Remsen and Graves 1995, Chapter 2, Chapter 3) is that some populations with 

disparate distributions are referable to different species. An improved understanding of the diversity 

of this group may also be of importance from a conservation standpoint because some of the newly 

recognized lineages are endemic to rather small areas, and may become endangered if processes of 

habitat degradation continue at the present pace (e.g. B. perijanus, see Fjeldså et al. 2005). 
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Table 1. Mean values and standard deviations for 14 acoustic variables measured on spectrograms of songs of assimilis, atricapillus, poliophrys, 
and torquatus. Numbers in parentheses are the number of individual recordings on which measurements were taken. For each pair of taxa, results 
of t-tests comparing means are shown, with significance levels indicated by asterisks. 
 
 

assimilis atricapillus  poliophrys torquatus 
Song variables 

(12) (3) 
T-test 

 (5) (4) 
T-test 

Maximum frequency 9.941±0.54 10.200±0.59 -0.73  9.857±0.35 10.364±1.02 -1.06 

Min. frequency 3.164±0.64 6.043±0.39 -7.30***  3.602±0.98 5.089±0.46 -2.77* 

Bandwidth 6.777±0.66 4.157±0.88 5.81***  6.255±0.84 5.276±1.23 1.43 

Max. note bandwidth 5.269±0.94 3.306±0.91 1.29**  3.786±0.74 3.821±1.51 -0.05 

Min. note bandwidth 0.751±0.44 0.574±0.30 3.24  0.740±0.26 0.398±0.25 2.01 

Peak frequency 6.675±1.91 8.150±0.52 0.65**  6.120±1.24 7.920±1.45 -2.02 

Song duration 4.679±1.55 1.738±1.13 3.05**  4.945±1.73 4.924±2.05 0.02 

Number of notes 8.500±1.75 4.667±2.08 3.30**  7.300±1.48 8.500±1.73 -1.12 

Note pace 1.975±0.56 2.937±0.78 -2.49*  1.577±0.49 1.842±0.37 -0.89 

Summed note duration 1.984±0.53 1.130±0.35 -3.38  1.838±0.20 1.720±0.54 0.46 

Note proportion 0.448±0.12 0.741±0.21 2.63**  0.399±0.11 0.361±0.03 0.65 

Max. note duration 0.376±0.07 0.377±0.05 -0.77*  0.389±0.06 0.332±0.04 1.68 

Min. note duration 0.109±0.06 0.147±0.09 -0.03  0.135±0.07 0.092±0.04 1.09 

Mean note duration 0.231±0.05 0.256±0.07 -0.96  0.257±0.04 0.199±0.02 2.49* 

***P < 0.001, ** P < 0.01, * P < 0.05 
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FIGURE LEGENDS 
 
 

Figure 1. Geographic distribution of members of the B. torquatus complex in Central and South 
America. Areas above 1500 m elevation are shown in grey. Each dot indicates a site where members 
of the complex have been collected, tape-recorded, or reliably observed. Brackets indicate the ranges 
of each taxon. Unbracketed points within Colombia correspond to localities of assimilis and 
atricapillus, which are shown separately in the inset for clarity. Question marks indicate areas where 
the identity of populations is uncertain owing to lack of specimens or to the existence of possible 
intergrades. In southern Ecuador and northern Peru, records on the West slope of the Andes 
correspond to taxon nigrifrons and those on the east slope to assimilis. The inset on the right shows a 
simplified diagram of phylogenetic relationships among members of the complex as determined from 
mtDNA sequence data by Cadena et al. (Chapter 1). Nodes that did not receive significant bootstrap 
or posterior probability support are collapsed into polytomies; all relationships shown as resolved are 
strongly supported. Stars indicate nodes connecting pairs of taxa that are not reciprocally 
monophyletic with respect to each other; the number of individuals per taxon assayed for mtDNA 
variation is shown in parentheses. 
 
Figure 2. Geographic projections on maps of Colombia of ecological niche models constructed using 
the DOMAIN algorithm for assimilis and atricapillus. Black areas are those with DOMAIN scores ≥ 
95%. Models were constructed on the basis of three independent climatic axes obtained from 
principal components analysis of 19 climatic variables. Although climatically suitable areas for both 
taxa are widespread in some of the same mountain ranges, they do not overlap with each other, 
indicating their very different ecologies. 
 
Figure 3. Scatter plot showing variation in three bill dimensions measured on Colombian specimens 
of assimilis and atricapillus. Taxa are indicated by the shape of the symbols and sex by fill patterns. 
Samples of specimens of both taxa included material from all three Cordilleras of the Colombian 
Andes. None of the bill measurements overlap, a strong indication that these taxa are diagnosably 
distinct and do not intergrade. 
 
Figure 4. Spectrograms showing representative examples of the songs of taxa assimilis (Colombia, 
Risaralda, Parque Regional Ucumarí; recording by C. D. Cadena, BSA 6780), atricapillus (Colombia, 
Santander, Lebrija, Portugal; recording by J. E. Avendaño, not yet archived), poliophrys (Peru, La 
Libertad, E Tayabamba on Trail to Ongón; recording by T. A. Parker III, LNS 17282), and torquatus 
(Bolivia, La Paz, Franz Tamayo, Madidi National Park; recording by B. A. Hennessey, LNS 120885). 
 
Figure 5. Geographic projections on maps of Peru and Bolivia of ecological niche models constructed 
using the DOMAIN algorithm for poliophrys and torquatus, and intersection of climatically suitable 
areas for both taxa. Black areas are those with DOMAIN scores ≥ 95%. Models were constructed on 
the basis of three independent climatic axes obtained from principal components analysis of 19 
climatic variables. Climatically suitable areas for both taxa occur widely, including part of the area 
separating the southernmost records of poliophrys and the northernmost of torquatus (for reference, 
see Figure 1). 
 
Figure 6. Scores obtained from discriminant function analyses based on six morphological 
measurements taken on female and male specimens of poliophrys (black dots) and torquatus (white 
dots) plotted as a function of latitude. The star indicates an individual that was presumed to be a 
hybrid based on plumage patterns, but appears closest to poliophrys morphometrically. Plots indicate 
most specimens can be readily assigned to their corresponding subspecies and that there are no trends 
that would indicate specimens are more difficult to distinguish near areas of potential contact (c. 14° 
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S). One male poliophrys that is clearly an outlier is from an isolated population (Cordillera 
Vilcabamba). There are no additional specimens from this locality so we cannot determine whether 
this represents errors in measurements or that birds in the area are in fact more similar to torquatus. 
 
Figure 7. Scores obtained from discriminant function analysis based on thirteen acoustic 
measurements on song spectrograms of poliophrys (black dots) and torquatus (white dots) plotted as 
a function of latitude. More than one song is shown for several individuals (total individuals = 4 
poliophrys and 5 torquatus), but the pattern and statistical results of the analysis are identical when 
mean values for songs of each individual are used. Plots indicate all recordings can be readily 
assigned to their corresponding subspecies, and although sampling is geographically sparse, they do 
not suggest there are trends that would indicate songs are more difficult to distinguish in areas that 
approach the potential contact zone more closely. 
 
Figure 8. Geographic variation in vocalizations in the B. torquatus complex. A single spectrogram is 
shown for each taxon for which recordings are available, with arrows indicating the locality where the 
recording was made. Sample sizes are insufficient to determine the extent of vocal variation within 
taxa, but the spectrograms shown seem representative in general terms of vocalizations over the 
ranges of each taxon (see Figure 1 for distributions). Note the superficial similarity of songs from the 
southern extreme of the range (torquatus, fimbriatus, and borelli) to those of northern taxa 
(costaricensis, atricapillus, tacarcunae). Songs of other populations are much more complex, yet 
similar in overall structure to one another.  
 
Spectograms show songs from the following localities: costaricensis (Costa Rica, Puntarenas, Las 
Cruces Biological Station; J. R. Zook, unarchived), tacarcunae (Panama, Cerro Jefe; T. A. Parker III, 
LNS 25634), phygas (Venezuela, Monagas, Cerro Negro; P. Boesman, unarchived) atricapillus 
(Colombia, Santander, Lebrija, Portugal; J. E. Avendaño, unarchived), phaeopleurus (Venezuela, 
Miranda, Oripoto; P. Schwartz, LNS 67488), assimilis (Colombia, Risaralda, Parque Regional 
Ucumarí; C. D. Cadena, BSA 6780), larensis (Venezuela, Mérida, Chorotal, Carretera La Azulita-
Mérida; D. Ascanio, unarchived), nigrifrons (Ecuador, Azuay, upper Yunguilla Valley, J. V. Moore, 
Krabbe et al. 20001), poliophrys (Peru, La Libertad, E Tayabamba on Trail to Ongón; T. A. Parker 
III, LNS 17282), torquatus (Bolivia, La Paz, Franz Tamayo, Madidi National Park; B. A. Hennessey, 
LNS 120885), fimbriatus (Bolivia, Santa Cruz, Siberia; T. A. Parker III, LNS 33643), borelli 
(Argentina, Jujuy, Parque Nacional Calilegua; J. Mazar Barnett, Mayer 2000). See appendix for 
references. 
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 
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FIGURE 8 
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Appendix. Recordings of songs of assimilis, atricapillus, poliophrys, and torquatus used in quantitative analyses. Acronyms for sound archives: 
BSA = Banco de Sonidos Animales, Instituto Alexander von Humboldt, Villa de Leyva, Colombia; LNS = Library of Natural Sounds, Cornell 
Laboratory of Ornithology, Ithaca, USA. 
 
Taxon Source Recordist Locality Latitude Longitude 
assimilis BSA 6324 C. D. Cadena Colombia, Cundinamarca, Parque Natural Chicaque 4.6087 -74.3066 
assimilis BSA 6338 C. D. Cadena Colombia, Cundinamarca, Bojacá, Finca Macanal 4.6625 -74.3458 
assimilis BSA 6773 C. D. Cadena Colombia, Risaralda, Parque Regional Ucumarí 4.7214 -75.4685 
assimilis BSA 6778 C. D. Cadena Colombia, Risaralda, Parque Regional Ucumarí 4.7214 -75.4685 
assimilis BSA 6780 C. D. Cadena Colombia, Risaralda, Parque Regional Ucumarí 4.7345 -75.4621 
assimilis BSA 6804 C. D. Cadena Colombia, Risaralda, Parque Regional Ucumarí 4.7088 -75.4901 
assimilis BSA 7697 S. Córdoba – M. Alvarez Colombia, Caldas, Aranzazu, Vereda El Laurel 5.2225 -75.4883 
assimilis Krabbe et al. (2001) CD 4, # 5 N. Krabbe Ecuador, Chimborazo, Orregán -1.6500 -78.5000 
assimilis Krabbe and Nilsson (2003), #14 J. Nilsson Ecuador, Napo, Pass of Cordillera Guacamayos -0.6125 -77.8292 
assimilis Krabbe and Nilsson (2003), # 17 N. Krabbe Ecuador, Imbabura, Apuela Road 0.3458 -78.4375 
assimilis Krabbe and Nilsson (2003), # 18 N. Krabbe Ecuador, Napo, 3-5 km below Oyacachi -0.2125 -78.0375 
assimilis Krabbe et al. 2001 CD 4, # 1 J. V. Moore Ecuador, Pichincha  -0.1000 -78.2833 
atricapillus Not archived or published J. Avendaño Colombia, Santander, Lebrija, Portugal 7.1625 -73.2792 
atricapillus BSA 6815 C. D. Cadena Colombia, Antioquia, Don Matías, Estación Pradera 6.5292 -75.2625 
atricapillus Not archived or published O. Laverde Colombia, Santander, San José de Suaita 6.1875 -73.4292 
poliophrys LNS 17258 T. A. Parker III Peru, La Libertad, E Tayabamba, on trail to Ongón -8.22083  -77.1958 
poliophrys LNS 17282 T. A. Parker III Peru, La Libertad, E Tayabamba, on trail to Ongón -8.22083  -77.1958 
poliophrys LNS 35950 T. S. Schulenberg Peru, Pasco, Oxapampa, Cumbre de Ollón -10.5792 -75.2958 
poliophrys LNS 36006 T. S. Schulenberg Peru, Pasco, Oxapampa, Cumbre de Ollón -10.5792 -75.2958 
poliophrys LNS 24051 T. A. Parker III Peru, Cusco, Canchaillo, below (N) Abra Málaga -13.1167 -72.3667 
torquatus Mayer 2000, # 2 S. Herzog Bolivia, Cochabamba – Villa Tunari Rd, Carrasco NP -17.1375  -65.5792 
torquatus LNS 120885 A. B. Hennessey Bolivia, La Paz, Torcillo-Sarayoj; Madidi NP -14.5958 -68.9458 
torquatus LNS 120922 A. B. Hennessey Bolivia, La Paz, Torcillo-Sarayoj; Madidi NP -14.5958 -68.9458 
torquatus LNS 121717 A. B. Hennessey Bolivia, La Paz, Tokoaque; Madidi NP -14.5958 -68.9458 
References:  Krabbe, N., J. V. Moore, P. Coopmans, M. Lysinger, and R. E. Ridgely. 2001 Birds of the Ecuadorian Highlands: The Upper Montane and Paramo 
Zones of Ecuador. John V. Moore Nature recordings, San Jose, CA.    Mayer, S. Birds of Bolivia, CD-ROM. Bird Songs International. Enschede, Netherlands.     
Krabbe, N. and J. Nilsson. 2003. Birds of Ecuador: Sounds and Photographs, DVD-ROM. Bird Songs International. Enschede, Netherlands 
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