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ABSTRACT 

 
Purpose.  Few prior studies have investigated the temporal properties of inter-

ocular (i.e. dichoptic) contrast integration across space in primary visual cortex.  

My pilot study used collinear flanks to investigate the effect of varying the 

interstimulus interval (ISI) and flank duration on contrast detection threshold 

(CDT).  As expected, the results revealed CDT facilitation at shorter stimulus 

onset asynchronies (SOA = ISI + flank duration) and reduced inter-ocular 

contrast integration relative to intra-ocular (i.e. monoptic) integration.  It also 

showed unexpected, inter-ocular CDT suppression at longer SOAs.  To better 

understand that surprising finding, I conducted additional experiments that added 

more subjects, longer SOAs, an additional viewing condition (half-binocular), and 

orthogonal flanks.  

Methods.  Eleven subjects with normal vision participated.  Nine were naive to 

the purpose and participated for a mean of 25 hours each.  The primary 

investigator (WK) and a summer research fellow (MM) participated for 

approximately 240 and 100 hours, respectively.  In the main experiment, target 

and flanks were three cpd vertical sinusoids separated by six lambda (sigma=1.5 

lambda) center-to-center vertical separation.  Flank contrast was normalized to 

3X flank CDT.  Flanks were presented at four durations (67-500ms) and ISIs at 
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seven durations (0-2500ms) resulting in SOAs from 0-3000ms.  Target 

presentations were 250ms to the dominant eye via mirror haploscope and 

septum.  Flanks were presented to dominant (monoptic and half-binocular 

viewing) and non-dominant eyes (dichoptic and half-binocular viewing).  Forward 

masking was used with a 1-FC detection paradigm and 7-level MOCS.  Each 

threshold was calculated from approximately 700 trials (approximately 10 runs 

over 2-3 days).  A supplemental, orthogonal flank experiment resembled the main 

experiment with the exception of flank orientation and SOA range (0-1000ms).     

Results.  As expected, simultaneous presentation of collinear flanks resulted in 

mean CDT facilitation (monoptic 18.9% ± 3.9% (SE); dichoptic 13.9% ± 4.0%; 

half-binocular 18.0% ± 4.2%).  For all viewing conditions, relative facilitation 

decreased as SOA increased up to 1000ms.  Surprisingly, dichoptic and half-

binocular viewing showed CDT suppression at long SOAs beginning at 500ms 

(dichoptic) and 750ms (half-binocular), with maximal suppression (9.9% ± 5.1% 

and 5.3% ± 4.7%, respectively) occurring at 1000ms.  For dichoptic viewing, the 

CDT suppression was statistically significant (p < 0.05) at all 5 SOAs from 500-

1000ms.  All viewing conditions approached no effect at the longest SOAs (1500-

3000ms).  Flank duration had a significantly greater contribution to the overall 

effect than ISI for monoptic and half-binocular viewing.  There was no significant 

difference in contribution under dichoptic viewing.  Both monoptic orthogonal and 
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dichoptic orthogonal flanks produced CDT facilitation at shorter SOAs that 

decreased with increasing SOA.  Importantly, neither orthogonal flank condition 

produced CDT suppression. 

Discussion.  The collinear CDT facilitation produced by intra-ocular and inter-

ocular flanks at shorter SOAs is consistent with the properties of long-range, 

lateral connections in primary visual cortex.  This facilitation persists well beyond 

the maximal temporal integration limit (approximately 200ms) of the transducer 

model of contrast integration and therefore appears inconsistent with that model.  

The reduced degree of dichoptic CDT facilitation at shorter SOAs (compared with 

monoptic viewing) is evidence of decreased inter-ocular contrast integration.  In 

general, the results are in agreement with existing models of intra- and inter-

ocular contrast gain control.  The temporal aspects of long SOA inter-ocular CDT 

suppression observed in the present study are consistent with the temporal 

properties of illusory contour perception reported in prior studies.  

Conclusions.  I propose the novel hypothesis that the CDT suppression 

produced by collinear flanks at longer SOAs under dichoptic and half-binocular 

viewing is due to one-way, contrast adaptation from lateral propagation that 

produced the effect of a collinear, illusory contour.  This hypothesis is supported 

by the dichoptic, orthogonal flank experiment that showed no CDT suppression at 

the same longer SOAs.  
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Chapter 1 

 

Visual system overview through primary visual cortex 

 The ability to detect and extract useful information from differences in 

luminance across space (i.e. contrast) is known as spatial vision.  Given spatial 

visionʼs importance as a building block for visual, motor and cognitive functions, it 

shouldnʼt be surprising that this area has been extensively studied over the past 

three decades.  One aspect of this research investigates the integration of 

surround (spatially adjacent) contrast.  Studies using psychophysics, physiology, 

and electrophysiology have contributed to our understanding of cortical neural 

networks and the mechanisms underlying contrast integration across space 

under monoptic (intra-ocular) and binocular viewing.   

 Current models of contrast integration incorporate physiologic knowledge 

of horizontal (lateral) cortical connections in V1 and feedback/forward 

connections between and within cortical (V1-V5) and sub-cortical (LGN and 

superior colliculus) areas.  This study was designed to further elucidate these 

cortical networks as well as contribute novel findings about the mechanisms of 

inter-ocular contrast integration across space.  Specifically, I was interested in 

how varying the temporal separation (i.e. flank duration and ISI) between 
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suprathreshold flanking contrast and a foveal target affects the contrast detection 

threshold of the target. 

1.1 Central visual pathway 

 The target and flanks utilized in this study stimulate the retinal fovea 

almost exclusively.  Since each individual stimulus had a diameter of two visual 

degrees and the stimuli were basically abutting, the total visual space from the 

upper limit of the top flank to the lower limit of the lower flank was about six 

degrees.  Hence, the distance from the center of the target to the edge of either 

flank (the radius of the total stimulus area) was approximately three degrees.  

This slightly exceeds the commonly cited foveal radius size of 2.5 degrees 

(Schwartz, 1998; Snell and Lemp, 1997).  The presentation of stimuli in visual 

space corresponding to the fovea is significant due to the asymmetric distribution 

of retinal ganglion cells (RGCs) carrying information to cortex from the central 

retina.  Approximately 50% of ganglion cells lie within five mm (approximately 15 

degrees) of the fovea's center, an area making up only about 7% of the retina's 

total area.  This asymmetric distribution is also reflected in the relatively high 

percentage of primary visual cortex representing the fovea.      

 After photons strike foveal photoreceptors cells (mainly cones in this study 

since it deals with the fovea under photopic viewing conditions), a graded 
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potential is generated.  This signal then travels to retinal ganglion cells via bipolar 

cells.  Along the way it is heavily modified by laterally-expansive, inhibitory 

horizontal and amacrine cells.  RGCs produce the first action potential of the 

visual pathway.  Their output is organized into receptive fields of varying size with 

center/surround organization.   

 RGCs are bundled together and exit the posterior eye via the optic nerve.  

Three types of RGCs constitute a substantial majority (approximately 80%) of the 

entire RGC population (Field and Chichilnisky, 2007).  These are the midget, 

parasol, and small bistratified RGCs.  Midget RGCs exhibit sustained responses 

and project to the parvocellular layers of the lateral geniculate nucleus (LGN).  

Traditionally, they are thought to show relatively high spatial resolution and slow 

action potential propagation.  Parasol RGCs exhibit transient responses and 

project to the magnocellular layers of the LGN.  They are traditionally thought to 

demonstrate relatively low spatial resolution and rapid action potential 

propagation.  Bistratified RGCs are a relatively recent discovery that carry a 

distinctive blue-on/yellow-off chromatic signal and project to koniocellular LGN 

layers.  As mentioned above, these three RGC types constitute about 80% of 

RGC projections.  For a complete review of RGC types see Field and 

Chichilnisky (2007).  The stimuli in this study are achromatic, stationary and 

primarily stimulate midget RGCs and the parvocellular pathway.   
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 The right and left optic nerves travel to the optic chiasm where 

approximately 50% of optic nerve fibers decussate.  Fibers originating in 

temporal retina stay ipsilateral and nasal fibers crossover to the contralateral 

side.  As a result, distal to the optic chiasm information from the right hemifield is 

carried to the left side of primary visual cortex and vice versa.  Beyond the optic 

chiasm, the optic nerve fibers are formed into right and left optic tracts.  The optic 

tracts synapse (the first post ganglion cell synapse) at the thalamus.  These 

synapses form the right and left LGN.   

 The LGN is arranged into six distinct layers of cells.  Each layer contains 

projections from a single eye.  Layers 2, 3 and 5 receive projections from the 

ipsilateral eye and layers 1, 4 and 6 receive projections from the contralateral 

eye.  Hence, at the level of the LGN incoming information from earlier in the 

visual pathway is still segregated by eye (i.e. monocular).  The receptive fields of 

LGN neurons closely resemble the center/surround organization of ganglion cell 

receptive fields.     

 In addition to projections originating from the retina, approximately 80% of 

excitatory LGN input originates in primary visual cortex (Bear et al., 2007).  The 

corticogeniculate neurons that constitute this feedback pathway are located in 

layer 6 of primary visual cortex (V1).  Corticogeniculate feedback appears to be 

segregated into parallel streams analogous to the forward processing pathways 
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(see below).  Corticogeniculate neurons in the upper portion of V1's layer 6 

project axons that target parvocellular layers in the LGN and corticogeniculate 

neurons in the lower portion of V1's layer 6 target the magnocellular layers of 

LGN.  Also, a small percentage of corticogeniculate neurons in the lower portion 

of layer 6 appear to provide input to the koniocellular layers of LGN.  For a 

complete review of corticogeniculate feedback in primate see Briggs and Usrey 

(2011).   

 One implication of this corticogeniculate feedback is that LGN neurons 

may receive information from both eyes.  Hence, it is possible that binocular 

interactions occur at the level of the LGN.  However, the similarity of LGN neuron 

properties to the properties of upstream neurons (e.g. the same center/surround  

organization as retinal gangion cells) suggests that the corticogeniculate pathway 

is modulatory rather than driving (Sherman and Guillery, 1998).  The implication 

of this is that the LGN is more than simply a relay station on the way to cortex.     

 Projections from the LGN travel along the geniculo-calcarine tract and 

synapse in V1.  Like the rest of cortex, V1 (also known as striate cortex) is 

organized into six layers.  Although there are technically six layers, layer four is 

considered to have three distinct layers (layers 4A, 4B, and 4C) creating eight 

functional layers.  Magnocellular and parvocellular pathway axons primarily 

project to layers 4Cα and 4Cβ of striate cortex, respectively.  However, both 
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magnocellular and parvocellular pathways also provide input to layer 6 of V1.  

Koniocellular pathway axons target cytochrome-oxidase rich blobs, layer 1, and 

layer 4A in some species, including macaque monkeys (Sherman and Guillery, 

1998).   

 Neurons in layer 4 tend to have center surround organization (similar to 

retinal ganglion cells and LGN neurons) and monocular receptive fields.  After the 

second cortical synapse (layer 3 of V1 for most projections) neurons have more 

complex receptive fields and most receive input from both eyes.  Importantly, this 

is thought to be the first synapse to receive binocular input and approximately 

50% of V1 neurons are binocular.  Prior to this step in the visual pathway 

information is monocular.  Downstream from primary cortex, at visual area two 

(V2) and beyond, neurons receive almost exclusively binocular input and visual 

fields become much more complex.  For a review of V1 neuro-physiology 

literature see Sincich and Horton (2005). 

 The windowed sinusoid stimuli used in this study were designed to 

primarily stimulate a single population of neurons in early visual cortex.  Unlike 

square waves that contain multiple odd integer harmonic frequencies (Fourier 

components) and real world scenes that contain all integer harmonics, sinusoids 

only contain a single spatial frequency and stimulate a single spatial frequency 

channel (population of neurons).  Using a Gaussian window also helps to limit the 
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stimulation of neurons outside the target population.  For sinusoid with a hard 

edge window, the edge contains multiple spatial frequencies and stimulates a 

wide range of neurons in V1/V2.  Using a single spatial frequency (3 cpd), 

windowed sinusoid avoided this and primarily stimulated a single spatial 

frequency channel in early visual cortex.      

 Dichoptic flank presentation effects (CDT facilitation or suppression) 

require the inter-ocular transfer of contrast information.  Therefore, given what is 

known about the visual pathway, it is reasonable to assume that when a dichoptic 

effect is observed it is initially generated by a neuron at or beyond layer 2/3 of 

V1.  Also, since the windowed sinusoids utilized in this study target a single 

population of V1 neurons, the effect likely occurs prior to V2.   Hence the 

dichoptic effects observed in this study probably occur at or beyond layer three of 

V1, but prior to V2.  

1.2 Lateral connections in primary visual cortex  

 In addition to the sequential flow of visual information from retina to higher 

cortical areas and feedback connections (e.g. cortex to LGN), the visual system 

also extensively utilizes lateral connections to integrate visual information from 

areas larger than the classical receptive field (CRF).  Using intracelluar injections 

of horseradish peroxidase in cat, Gilbert and Wiesel (1979; 1983) showed that 
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individual neurons are able to communicate over long distances (two mm or 

more) horizontally, parallel to the cortical surface.  Gilbert and Wiesel also 

reported intra-layer and inter-layer lateral connections in layers 2+3, 3, 4, 5, and 

6 of cat primary visual cortex.  Subsequent studies in primate have found lateral 

connections as great as seven mm in length corresponding to four degrees of 

object space (Kapadia et al., 1995 and 2000).  These values correlate well with 

the spatial interactions demonstrated in psychophysical studies (Li and Gilbert, 

2002).  

 The existence of correlated excitation patterns between cortical neurons 

with similar orientation field preferences (Ts'o et al., 1986; Ts'o and Gilbert, 1988) 

suggests that cells connect mainly to other cells with similar orientation 

preferences (intra-channel connections).  However, these correlated excitation 

patterns are not yet supported by primate experimental results (LeVay, S., 1988).  

For a recent review of lateral connection studies, see Voges et al. (2010).  For a 

discussion of lateral connections as they relate to the present study see section 

2.6 (Linking hypotheses:  psychophysics with neuro-physiology). 
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Chapter 2 

 

Introduction 

2.1 Psychophysical studies of contrast integration across space from 

collinear flanks under monocular and binocular viewing 

 It has been demonstrated in a number of studies that the detection of 

foveal targets may be facilitated by the concurrent presentation of collinear, 

higher contrast flanks of the same spatial frequency (Polat and Sagi, 1993, 1994; 

Solomon et al., 1999; Solomon and Morgan, 2000; Woods et al., 2002; Huang et 

al., 2012).  In their seminal psychophysics paper, Polat and Sagi (1993) used a 

central Gabor target flanked vertically by 40% contrast, collinear Gabors in an 

experiment that demonstrated both suppression and facilitation of target 

detection.  The effect (suppression vs. facilitation) was shown to be dependent 

on the separation of flanks from the target.  Less than two wavelength (λ = one 

cycle) separations produced suppression and two or greater λ separations 

produced facilitation of target detection.  The amount of facilitation decreased 

gradually to approximately 12λ separation where it approached the baseline 

(target alone) threshold. Subsequent studies have confirmed many of these 

general findings for separation (Polat and Sagi, 1994; Solomon et al., 1999; Cass 
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and Spehar 2005; Polat and Sagi, 2006; Tanaka et al., 2007).  This effect was 

evaluated at several target/flank wavelengths and found to be largely spatial 

scale invariant with respect to spatial frequency.  The center-to-center separation 

between target and flankers relative to their spatial frequencies contributes more 

to determining the effect than the visual angle subtended by the separation.   

Here, it is useful to examine the effect of flank contrast on target contrast 

detection threshold (CDT).  Woods et al. (2002) found that, in general, as flank 

contrast increased the target CDT decreased.  At the highest flank contrasts they 

evaluated (20-40% Michelson contrast) the effect tended to asymptote at the 

maximum effect.  Even sub-threshold flanks were associated with a relatively low 

degree of facilitation.  Yu et al. (2002) also studied the effect of surround contrast 

on target CDT, but used orthogonal flank and annulus surrounds.  They included 

a wider range of surround contrasts (2.5-80% Michelson contrast) and found 

facilitation that peaked around 10% contrast and gradually transitioned to no 

effect at the highest and lowest surround contrasts.  Because of differences in 

other parameters (spatial frequency, sigma, etc.) it is difficult to directly translate 

these findings to other studies.  However, the findings are still useful for 

establishing broad hypotheses.  

An area of recent interest is the effect of collinear facilitation across depth.  

Huang et al. (2012) used Gabor flankers and targets presented to both eyes to 
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study the effect of differences in surface assignment and differences in disparity 

on collinear facilitation.  The flankers in their study were high contrast (50%) with 

center-to-center three λ separation between flanks and targets.  All stimuli had a 

spatial frequency of 1.6 cpd and a Gaussian envelope (σ) of 0.47 degree.  The 

paradigm was a 2-AFC staircase used to measure detection threshold of the 

target.  In the frontal-collinear condition (essentially binocular, collinear flanks and 

targets), the flank effect was an approximate 88% increase in sensitivity (i.e. 

facilitation).  Manipulations of perceived depth and slant suggested that 

differences in surface assignment cause more disruption of collinear facilitation 

than differences in disparity.  This contradicts Huang et al. (2006) who reported 

that differences in depth produced disruption of collinear facilitation.  One 

implication of Huang et al. (2012) for the present study is that in the unlikely 

event a subject did not maintain complete fusion and perceived the target and 

flanks at slightly different depths, the disruption of collinear facilitation would not 

be expected. 

 Petrov et al. (2006) hypothesized that the facilitation of CDTs observed in 

collinear, flanking experiments derived mainly from a reduction in uncertainty 

about the stimulus location.  To test this hypothesis, they added two conditions to 

a Gabor flanking experiment: 1) a thin (1.2 arc min) circle surround and 2) four 

thin, surrounding lines with the same orientation as the target.  All Gabor stimuli 
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(target and flanks) were three cpd with 2.5λ separation between the target-center 

and the flank-center.  Flanks were always 30% Michelson contrast.  Unlike most 

other collinear flanking paradigms in which the stimuli are vertical, Petrov et al.'s 

(2006) stimuli were oriented 45 degrees from vertical.  In the circle surround 

experiment, the 15% contrast circle was 2.5λ in diameter and 1.2 arcmin wide.  

The line surrounds were two λ long and their center was 2.5λ from the center of 

the target.   

 Petrov et al. (2006) found similar levels of CDT facilitation for the circle 

surround (28%) and the line surround (27%) when Gabor surrounds were not 

included.  When Gabor surrounds were included the level of facilitation increased 

to 46% and 40% for the circle and line surrounds, respectively.  While all four of 

these conditions demonstrate significant facilitation compared with the target 

alone CDT, none of the four are significantly different from one another.  Based 

on these results, the authors conclude that a reduction in uncertainty accounts for 

most of the contrast detection facilitation.  However, the lack of a condition with 

only Gabor flanks (not including circle or line surrounds) makes the interpretation 

of these findings more difficult.      

   Most flanking experiments have used the same high contrast, supra-

threshold flanks for all subjects participating in the experiment (Polat and Sagi, 

1993, 1994; Cass and Spehar, 2005; Meese and Hess, 2005; Shani and Sagi, 
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2006).  In this experiment, we instead scaled flank contrast based on individual 

flank CDTs.  The time intensive nature of this experiment makes it difficult for 

subjects to complete the entire experiment.  Hence, the ability to make valid intra-

subject comparisons takes on added importance and the use of scaled flank 

contrast in the present study adds to the validity of intra-subject comparisons.  It 

has also been shown in animal, single-cell studies that modulations of cell 

response by a stimulus outside the cell's classic receptive field depends on the 

contrast level relative to the cell's response threshold and not simply the absolute 

contrast of the flanking stimulus (Mizobe et al., 2001).  

Another frequently utilized stimulus for examining the effect of adjacent 

contrast on a foveal target is an annular surround.  Unlike flanks that only occupy 

a portion of the visual space adjacent to a target, an annular surround, as the 

name suggests, completely surrounds the target.  Yu et al. (2003) used 

monocular annular surrounds to study threshold-versus-contrast functions over a 

wide range of pedestal and surround contrasts.  They found that an orthogonal 

surround (a surround oriented 90 degrees from the target) lowered contrast 

thresholds (i.e. produced CDT facilitation) over the entire range of pedestal and 

surround contrasts.  They also found that the effect of collinear surrounds was 

dependent on the contrast of the surround.  The effect was facilitative when the 

surround/pedestal contrast ratio was less than one and suppressive when the 
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same ratio was greater than one.  This suggests that cross- and iso-oriented 

surrounds are mediated by different mechanisms.  

With binocular viewing of collinear, annular surrounds and a contrast 

matching paradigm, Nurminen et al. (2010) found facilitation of contrast 

perception that extended out as far as 19.8 cycles (λ).  This facilitation decreased 

as the surround-to-center contrast ratio increased and eventually became 

suppression at their highest surround-to-center ratio (3:1). 

2.2 Neuro-physiology studies of contrast integration across space 

 The classical receptive field (CRF) is usually defined as the region of 

visual space that is responsive to the presentation of light or dark stimuli 

(Hartline, 1938).  At the level of primary visual cortex (V1), most neurons have 

well defined receptive fields (Hubel and Wiesel, 1958).  Many of the findings 

reported in psychophysical experiments have also been demonstrated in animal 

experiments that examined the response of individual cells in striate visual 

cortex.  In these studies, a stimulus is projected onto the retina and the spiking 

responses from a single visual cortex cell are recorded.  Stimuli presented 

outside the CRF's visual space have also been shown to influence the firing rate 

of visual neurons.  The presentation of these "surround" stimuli is analogous to 

the presentation of flanking stimuli in psychophysical paradigms.       
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 Both inhibitory and facilitatory surround interactions have been reported in 

single cell studies, although inhibition is more frequently described.  In cat, Hubel 

and Wiesel (1963) recorded receptive fields in which firing rates drop off sharply 

if a bar-shaped stimulus extended beyond a critical length.  Other studies have 

confirmed the presence of these "end-stopped" cells cat area 17 (Sengpiel et al., 

1997, 1998; Walker et al., 1999, 2000) and primate V1 (Jones et al., 2001).   

 The diameter of the inhibitory surround has been approximated to be 2-5 

times the CRF diameter (Li and Li, 1994; Maffei and Fiorentini, 1976).  

Orientation (Levitt and Lund, 1997; Li and Li, 1994), spatial frequency (Levitt and 

Lund, 1997; Walker et al., 1999) and relative phase (Levitt and Lund, 1997; 

DeAngelis et al., 1994) have all been shown to be important in determining the 

level of suppression.  In general, the greater the difference between the target 

and surround the less suppression is demonstrated.  Dichoptic presentation of 

the center and surround stimuli has been shown to decrease (but not eliminate) 

the suppressive effects of the surround in cat (DeAngelis et al., 1994).  This 

suggests that at least a portion of the integration of surround contrast occurs after 

binocular integration. 

   A smaller number of studies have reported the facilitation of cell firing by 

stimuli outside the CRF.  Maffei and Fiorentini (1976) identified orientative 

selective, facilitory regions in cat.  Nelson and Frost (1985) reported facilitation of 
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the neuron firing rate by stimuli that were of a similar orientation and aligned with 

the long axis of the neuron's receptive field.  Kasamatsu et al. (2010) used 

flanking, Gabor patches to investigate a possible relationship between collinear 

facilitation and the expansion of receptive fields in cat neurons.   

 Previous studies had shown that low target contrast neuronal receptive 

fields are up to 3x's larger than high contrast, target receptive fields (Kapadia et 

al., 1999; Sceniak et al., 1999; Cavanaugh et al., 2002).  The contrast dependent 

nature of the receptive fields described in these studies suggested that effect 

modulation by flanks might be due to variable receptive field size.  However, 

when Kasamatsu et al. (2010) directly compared receptive field size changes 

associated with decreased target contrast with changes produced by altering 

target to collinear flank separation, they found that the spatial extent of receptive 

field expansion (when it existed) was smaller than the spatial extent modulated 

by collinear flanks.  Kasamatsu et al. (2010) conclude that receptive field size 

changes associated with decreased contrast and effect modulation by collinear 

flanks are separate processes that function independently from one another.  

This supports the hypothesis that collinear flank effects are caused by long-

range, lateral connections in area V1 of primate visual cortex.           

 The sign of the surround's modulation (inhibition or facilitation) is 

dependant on the contrast of the center stimulus relative to the cell's contrast 
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threshold (Mizobe et al., 2001; Polat et al., 1998; Sengpiel et al., 1997; Toth et 

al., 1996).  Close to the threshold, the presentation of surround stimuli is 

associated with a relative facilitation of the neuron's firing rate.  As target contrast 

increases and moves further from threshold, the presentation of surround stimuli 

is associated with relative suppressive of the firing rate.  These findings are 

consistent with the surround contrast adding to center contrast and affecting the 

contrast gain (i.e. contrast response function) of the neuron.    

 Mizobe et al. (2001) attempted a systematic study of the conditions that 

promote CDT facilitation.  They found that facilitation and suppression frequently 

occurred in the same cell and that the effect was dependent on the contrast of 

the central target.  Facilitation with collinear flankers occurred most frequently 

near the neuron's contrast threshold and suppression became more frequent at 

high target contrasts.  They also reported that cross-oriented flankers (rotated 90 

degrees relative to the target) did not facilitate target detection.          

 In summary, neuro-physiology studies in cat and primate have 

demonstrated that surround stimuli outside the CRF can have inhibitory or 

facilitatory effects on cortical neuron firing rates.  In general, the greater the 

difference between center and surround in orientation, spatial frequency, and 

relative phase the less the surround effect.  The sign of the effect (inhibition or 

facilitation) may be dependant on the relative contrast of the center and surround.  
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At relatively low target contrast levels surrounds tend to produce firing rate 

facilitation and at relatively high target contrast levels surrounds tend to produce 

firing rate inhibition. 

 Dichoptic presentation of center and surround has been shown to produce 

surround effects suggesting that surround contrast integrates beyond the first 

cortical synapse.  Receptive field size has been shown to increase at low 

contrast levels.  At first this seems to suggest that facilitatory surround effects 

may simply be due to receptive field expansion.  However, there is experimental 

evidence that contrast dependant field size changes and collinear flank effects 

are independent (Kasamatsu et al., 2010).  This supports the hypothesis that 

collinear flank effects are dependant on lateral, cortical connections. 

2.3 Psychophysical and neuro-physiology studies of contrast integration 

across space from orthogonal flanks   

 Polat and Sagi (1994) used a flanking paradigm to explore the interaction 

between the local and global orientations of 13.3 cpd Gabor stimuli (σ=λ).  A 2-

AFC method was used to determine the CDT of a foveal target presented to both 

eyes (binocular viewing) simultaneously with two high contrast flanks.  They 

reported CDT facilitation at 2-8λ center-to-center separations for both collinear 

and orthogonal flanks.  Facilitation was maximal with vertical (collinear) 
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orientations, but smaller facilitatory effects were also observed with orthogonal 

orientations.  Diagonal (45 degree) local orientations had minimal effect on 

detection thresholds. 

 Polat et al. (1997) used both psychophysical and visual evoked potential 

(VEP) measures to evaluate the neural interactions between foveal Gabor targets 

and Gabor flankers in normal and amblyopic subjects.  At three λ center-to-center 

target/flank separation and a flank contrast of 40%, they found that orthogonal 

flanks produced significant CDT facilitation in normal subjects.  However, the 

degree of facilitation was approximately 1/3 less than the facilitation observed 

with collinear flanks.  In the same experiment, amblyopic subjects also showed 

facilitation with collinear flanks, although the degree of facilitation was about 1/3 

the amount seen with normal subjects.  Orthogonal flanks produced minimal 

effects in the amblyopic subjects.   

 In Polat et al.'s (2007) VEP experiment, the test/flank separation was 6λ 

and the flank contrast was set at 50%.  Test contrast was 8%, 16%, or 32%.  It is 

worth noting that all three of these values are well above typical CDT levels.  

Test-alone and flank-alone VEPs were summed and compared to the response 

seen when test and flanks were displayed simultaneously.  This was termed the 

interaction index.  When test and flanks were collinear, normal subjects showed a 

significant, positive interaction index (analogous to facilitation) at 8% target 
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contrast and minimal facilitation with 16% and 32% test contrasts.  When test 

and flanks were orthogonal, normal subjects showed minimal effect with 8% test 

contrast.  Mildly negative interaction index values (analogous to inhibition) were 

observed at 16% and 32% test contrasts. 

 Compared with the number of collinear flanking studies, relatively few 

studies have evaluated the effect of orthogonal flanks.  Those that have included 

orthogonal flanks show mixed results.  In both studies described above (Polat 

and Sagi, 1994; Polat et al., 1997) psychophysical experiments indicate that 

orthogonal flanks produce CDT facilitation, but less than collinear flanks.  The 

VEP experiment in Polat et al. (1997) showed signal inhibition by orthogonal 

flanks at test contrasts of 16% and 32%.  However, those contrasts are well 

above detection threshold levels.  As a result, they are probably located in a 

different (decelerating) portion of the contrast gain control curve (see section 6.2). 

 Orthogonal surrounds have also been included in neuro-physiology 

studies.  In paradigms where collinear flanks produce neuron firing rate 

suppression, orthogonal flanks tend to produce less effect (suppression in this 

case) than collinear surrounds.  It has also been reported that orthogonal 

surrounds can produce a net facilitation of the firing rate (Jones et al., 2001; 

Sillito et al., 1995).  In such cases, the firing rate is greater for the surround and 

optimal target together than the optimal target alone firing rate.  Interestingly, 
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some of the cells examined in Sillito et al. (1995) responded strongly even if the 

orientation of the target and surround were switched.  The authors propose that 

the observed neuron firing rate facilitation has two components:  1) an active 

facilitatory mechanism produced by the target and 2) a disinhibitory mechanism 

that reduces inhibitory input from the surround.  Together these components 

produce a supra-optimal response.      

2.4 Psychophysical studies of contrast integration across space from 

collinear flanks under dichoptic viewing 

 Tanaka and Sagi (1998) used Gabor flanking experiments to evaluate the 

effect of briefly presented vertical flanks on contrast detection thresholds.  

Forward masking was utilized throughout.  The 90ms flank presentation 

preceded a very brief (36ms) target presentation.  Stimulus onset asynchrony 

(SOA) varied between 0ms (simultaneous) and 16290ms.  Center-to-center 

target/flank separation ranged from zero λ (shared visual space) to 12λ.  In 

contrast to the 1-AFC (yes/no) paradigm used in this study, Tanaka and Sagi 

(1998) used a 2-AFC paradigm with randomly determined delay periods inserted 

between presentation intervals.  This 2-AFC paradigm resulted in very lengthy 

trials up to 55,332ms.     
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 Under monoptic viewing, Tanaka and Sagi (1998) found maximal CDT 

facilitation when flanks and target were collinear.  They also found mild CDT 

facilitation for both three λ and 12λ separations of collinear flanks that continued 

out to the maximum SOA included in the experiment (16290ms).  However, this 

SOA was only evaluated for a single subject.  Two other subjects showed similar 

levels of mild facilitation up to a 2700ms SOA (the maximum SOA they were 

evaluated at).  The authors also report that the effect was dependent on spatial 

frequency and relative phase. 

 Tanaka and Sagi (1998) also evaluated the effect of dichoptic viewing for 

two subjects at three SOAs (167ms, 336ms and 867ms), but did not include a 

simultaneous presentation.  They found significant CDT facilitation under 

monoptic viewing at the 336 and 867ms SOAs, but did not find significant 

facilitation at any SOA under dichoptic viewing.  Based on these results, they 

conclude that the masking effect is strictly monocular.   

 Huang et al. (2006) used a 2-AFC paradigm to examine the effect of flank 

presentation on target CDTs.  Their stimuli (flanks and targets) were 0.75 

cycle/deg vertically oriented, collinear Gabor patches.  High contrast (40%) flanks 

were used throughout and the center-flank to center-target separation was 

always three λ.  Both presentations (flanks alone and target with simultaneous 

flanks) had 1000ms durations with a 1000ms inter-stimulus interval (ISI) between 
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the presentations.  They found significant CDT facilitation under monoptic and 

binocular flank conditions for all three subjects.  For dichoptic viewing, the 

outcome was mixed.  Two subjects exhibited CDT suppression and one subject 

showed CDT facilitation.  The mean effect for the dichoptic condition was not 

statistically significant.  Based on this somewhat limited data set, the authors 

conclude that flank-facilitated detection is a purely monocular phenomenon.      

Using annular surrounds, Meese and Hess (2004) evaluated the effect of 

spatial scale, orientation, field position and eye of origin on both contrast 

detection and contrast matching.  They used monoptic and dichoptic 

presentations.  In the contrast detection experiment, a temporal 2-AFC paradigm 

was used to estimate thresholds.  Both stimulus presentations (annular surround 

alone and annulus+target) had 200ms durations and were separated by a 500ms 

interval.  In the contrast matching experiment, the contrast of the test stimulus 

was adjusted in a staircase procedure to match the perceived contrast of a 

reference stimulus over a range of reference contrasts.  Stimulus duration was 

200ms and the interval between stimuli was 500ms.   

Meese and Hess (2004) found the greatest degree of suppression when 

the spatial frequency, stimulus orientation and field position were different for 

mask and target stimuli.  In their contrast detection experiment, both subjects 

showed suppression in the monoptic and dichoptic presentations.  One subject 
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showed greater suppression in dichoptic than monoptic presentation.  The 

authors note that the finding of dichoptic (inter-eye) suppression contradicts prior 

work that concluded that surround suppression was strictly monocular (Chubb et 

al., 1989). 

As mentioned above, evidence has been reported that both contradicts 

(Tanaka and Sagi, 1998; Huang et al., 2006) and supports (Meese and Hess, 

2004) inter-ocular (dichoptic) contrast integration across space.  However, in the 

present study the simultaneous presentation of dichoptic flanks was expected to 

facilitate the detection of a foveal target.  This expectation was based on several 

sources including annular surround studies that reported inter-ocular contrast 

integration (Yu et al., 2003; Meese and Hess, 2004), a neuro-physiology study 

that demonstrated inter-ocular contrast integration (DeAngelis et al. (1994) and 

prior experiments in our lab that used a collinear flanking paradigm and produced 

CDT facilitation (unpublished data).  The long-range lateral connections known to 

provide excitatory input between V1 neurons (Gilbert and Wiesel, 1979, 1989) 

also provide an anatomic basis for the expectation of inter-ocular contrast 

integration. 
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2.5 Phase effects in psychophysical studies of contrast integration across 

space from collinear flanks 

The effect of phase differences between targets and non-overlapping 

masks is another parameter that has been investigated in prior studies.  The 

experimental results are mixed.  Zenger and Sagi (1996) reported that flanking 

Gabors of opposite phase facilitated target detection.  However, facilitation only 

occurred at relatively large differences in target/flank orientation and spatial 

location.  At smaller orientation and spatial location differences target thresholds 

were suppressed.  Yu and Levi (1997) found facilitation using inducers of 

opposite polarity that flanked a line target.  As mentioned above, Tanaka and 

Sagi (1998) also reported that opposite phase flanks facilitated target detection 

when presented simultaneously.  At SOAs greater than 144ms up to and 

including 1800ms (the maximum SOA evaluated) Tanaka and Sagi observed 

suppression.  

Solomon et al. (1999) examined the effect of phase using a paradigm of 

horizontal, flanking Gabors.  They reported that opposite sign flanks resulted in 

target detection facilitation, but the degree of facilitation was reduced compared 

with the effect of same-sign flanks.  They used their results to argue that the 

transducer model can explain facilitation from non-overlapping stimuli.  In the 

transducer model, CDT suppression and facilitation are thought to be the product 
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of a nonlinear response of neurons sensitive to local (similar visual space) 

contrast.  Subjects detect a target when its presence causes a criterion change in 

neuronal response.  At low contrasts, the response is accelerating and at high 

contrasts it is decelerating.  Hence, near detection threshold, adding small 

amounts of contrast facilitates target detection.  Williams and Hess (1998) also 

reported that facilitation by flanking patterns was phase dependent.   

The effect of phase difference on perceived contrast has also been 

evaluated.  Huang et al. (2010) conducted a binocular contrast matching 

experiment that varied inter-ocular phase differences.  Using relatively high 

contrast (16%, 32%, and 64%) sinusoid stimuli, they found that binocular 

perceived contrast was independent of the relative phase in the respective eyes.  

However, the perceived phase of the binocular image did depend on the relative 

phase and contrast ratio of the monocular images.  In a recent study, Baker et al. 

(2012) utilized lower contrast sinusoid stimuli (2-32%) and report a more complex 

interaction than Huang et al. (2010).  Baker et al. (2012) found that, at low 

contrast levels, perceived contrast reduced monotonically as the inter-ocular 

phase difference increased.  At higher contrast levels, perceived contrast was 

unaffected by the inter-ocular phase difference for in-phase and antiphase 

conditions, but increased slightly at intermediate phases.  In the present study, 
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unintended phase dependent effects were avoided by presenting all targets and 

flanks in phase. 

2.6 Linking hypotheses:  psychophysics with neuro-physiology 

 Psychophysical contrast integration experiments have the potential to 

reveal many underlying visual neural mechanisms.  Several models have been 

put forward in an attempt to link neuro-physiology with these psychophysical 

findings.  These models are generally based on a few underlying assumptions.  

These assumptions generally include the following.  1) The average (mean) firing 

rate of V1 neurons is somehow correlated with a subject's ability to detect or 

discriminate between stimuli (Li, 2002; Adini et al., 1997).  2) A change in the 

perception of an original stimulus caused by the presentation of another stimulus 

or set of stimuli is due to the modulation of the firing rate of neurons sensitive to 

the original stimulus.  In their review of V1 receptive field surrounds, Series et al. 

(2003) pose two questions related to these assumptions.  First, when V1 neuron 

responses increase or decrease due to surround influences, which aspect of 

visual representation is modulated?  Second, what is the implication of V1 neuron 

activity in perceptual judgment?    

   Presently, there are two main mechanisms used to explain collinear 

facilitation.  In the first, facilitation is caused by interactions within a single neuron 
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or localized group of neurons (Georgeson and Georgeson, 1987).  This effect is 

believed to arise from the non-linear response of neurons tuned to local contrast.  

In these transducer type models, the detection threshold of a target is adjusted 

by a criterion change in neuronal response.  At low contrast, the response is 

accelerating and detection thresholds are lowered.  At high contrast, the 

response is decelerating and detection thresholds are elevated (Solomon et al., 

1999).  While the transducer model was originally applied to masks and targets 

presented in the same spatial location (Legge and Foley, 1980), it has also been 

adapted in an attempt to explain detection facilitation when the mask (flanks) are 

spatially separated from the target (Solomon et al., 1999).       

In the transducer model, flank interactions are expected to be rapid and 

have maximal effect within close temporal proximity to the target (Huang and 

Hess, 2008).  Estimates of the integration time of target response have been 

obtained from physiological experiments (Mizobe et al., 2001; Polat et al., 1998) 

and psychophysical experiments (Watson et al., 1983).  These studies suggest 

an upper limit of 200ms for contrast detection at threshold.  This implies that 

under the transducer model, temporal separations greater 200ms contrast would 

have no effect.  Given the rapid speed of intra-neuron communication, spatial 

separation between the target and flanks should have very little effect on this 

integration time.  In our experimental paradigm, the transducer model predicts 
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that inter-stimulus intervals (ISI) greater than 200ms (250ms and 500ms ISIs) 

should have little or no effect on target detection threshold. 

The second mechanism that is frequently cited to explain collinear 

facilitation is the interaction of two or more neuron groups acting via long-range, 

lateral connections in V1 (Polat and Sagi, 1993; Cass and Spehar, 2005; Polat 

and Sagi, 2006).  In this mechanism, one of the neuron populations is responding 

to the target and the others are responding to flank contrast.  The long-range, 

lateral connections are understood to have relatively slow propagation speeds.  

Hence, the effect should be delayed in a manner that co-varies with spatial 

separation between target and flanks.  As separation between target and flank 

increases, the integration time required to reach maximal facilitation should also 

increase.   

Several experiments have obtained cortical propagation speed estimates 

in this manner.  These estimates vary by cortical location and spatial frequency, 

but range from approximately 0.10m/s to 0.23m/s (Davey et al., 1998; Cass and 

Spehar, 2005).  Using the slower of these estimates (0.10m/s) and the human 

cortical magnification factor reported by Horton and Hoyt (1991), only the 

shortest of the stimulus onset asynchronies (SOA) used in our experiment (67ms 

flank time+67ms ISI=134ms) should not allow full contrast integration. 
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Referring back to the transducer model, it has been suggested that the 

expansion of cell receptive fields in the presence of low contrast stimuli is the 

underlying cause of effects attributed to modulation by flankers.  In cat striate 

cortex, Kasamatsu et al. (2010) directly compared receptive field size changes 

when stimulus contrast decreased with receptive field changes associated with 

changing target to collinear, flanker separation.  They found receptive field 

expansion at low contrast in some, but not all of the cells they measured.  

Importantly, when receptive field expansion was recorded, it was smaller than the 

area of collinear, flanker modulation.  This suggests than collinear, flanker 

facilitation is a separate process from receptive field expansion at low stimulus 

contrast.  

To summarize, linking psychophysical results with neuro-physiology 

findings allows us explore the anatomical basis of perception.  The transducer 

model of contrast integration was originally applied to pedestal-type, same object 

space experiments, but has been adapted to explain spatially separated flank 

effects on target visibility.  It predicts rapid contrast integration driven by 

feedback/feed-forward connections and maximal effect in close temporal 

proximity to the target with little temporal dependence on spatial separation.  The 

long-range lateral connection model predicts relatively slow contrast integration 

that is dependent on the spatial separation between target and flanks.  Prior 
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studies that examined the effect of spatial separation on integration time have 

supported the lateral connection model (Polat and Sagi, 1993; Cass and Spehar, 

2005; Polat and Sagi, 2006).      

2.7 Psychophysical studies of the temporal properties of contrast 

integration across space 

 Most lateral integration experiments have simultaneously presented flanks 

with a target. Thus, the temporal aspects of flanking contrast integration are not 

as well understood (Cass and Spehar, 2005; Polat and Sagi, 2006; Huang and 

Hess, 2008).  The present study is intended to fill this gap in knowledge.  A better 

understanding of the temporal integration of peripheral contrast will expand our 

current understanding of the underlying neural processes.  A comparison of the 

monoptic and dichoptic conditions, in particular, may be beneficial because the 

intra-ocular and inter-ocular integration of contrast occur at different locations in 

the visual pathway.   

 The temporal aspects of masking under conditions in which the target and 

mask appear in the same object space (i.e. pedestal experiments) have been 

well studied and serve as a foundation for studying the temporal aspects of flank 

contrast integration.  In general, when a mask is presented a short time before 

(forward masking) or after (backward masking) a target the visual systemʼs ability 
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to detect the target is reduced.  The existence of backward masking can seem 

counterintuitive.  How does a mask that is presented after a target affect the 

target's visibility?  The answer lies in the relative contrast of the mask and target.  

If the mask is high contrast and the target is near threshold, the mask information 

is transmitted faster along the neural pathway and reaches cortex before the 

slower (low contrast) target information.  The temporal separation between mask 

and target is usually limited to 100ms or less.  Beyond that, the effect of the mask 

approaches zero.  For a review see Breitmeyer (2007).   

Studies that have investigated the temporal separation between flanks and 

target typically vary the time lag between target and flanks (ISI), but not the 

duration of the flanks.  Huang and Hess (2008) varied the ISI between vertical, 

collinear flanks and target of multiple spatial separations (three λ, 4.5λ, and six 

λ).  The flanks and target each had brief (50ms) presentation times.  Flank 

contrast was set at 50%.  Using a binocular presentation and temporal 2-AFC 

paradigm, they found facilitation near the simultaneous presentation of target and 

flanks for all spatial separations.  Facilitation was greatest for the three λ spatial 

separation.  This facilitation peaked when the target preceded the flanks 

(backward masking) by 50ms.  The maximum temporal separation that they 

examined was a 200ms SOA.  At this temporal separation, the effect of the flanks 

approached zero for both backward and forward masking.    
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Using binocular presentation of a novel, rotating flank paradigm Cass and 

Alais (2006) also reported finding facilitation when the target onset preceded 

physical collinearity with the flanks (analogous to backward masking).  However, 

they found that peak facilitation occurred when target onset succeeded physical 

collinearity (analogous to the forward masking paradigm used in this study).  

Flanks and target were horizontally arranged 0.67 cpd Gabors.  Center-to-center 

separation was set at three λ, 4.5λ, and six λ.  For all three subjects, the 

temporal separation between physical collinearity and the facilitative peak 

increased as the spatial separation between flanks and target increased.  At the 

six λ separation, this facilitative peak occurred between 80ms and 140ms after 

collinearity and faded toward no effect as the target onset latency approached 

200ms. 

In summary, temporal experiments with mask and target presented in the 

same object space (i.e. pedestal studies) have shown that beyond approximately 

100ms of SOA the effect of a collinear mask approaches zero.  Relatively few 

temporal studies have examined the effect of collinear flanks on target detection.  

Of those, the findings are mixed regarding when peak facilitation occurs.      

However, both Cass and Alais (2006) and Huang and Hess (2008) found that 

with forward masking the flank effect (CDT facilitation) approached zero at an 

SOA of approximately 200ms.  Cass and Alais (2006) found the temporal location 
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of peak facilitation was dependant on the spatial separation between target and 

flanks.  This finding is consistent with flank effect mediation by lateral cortical 

connections.          

2.8 Potential effect of binocular rivalry on the temporal properties of 

contrast integration across space  

 Binocular rivalry results from the introduction of markedly dissimilar 

images to each eye in the same object space.  In this condition, the images 

alternate dominance with the dominant image being consciously perceived and 

the non-dominant image being suppressed.  The period of suppression can be 

affected by several factors including differences in luminance (Fox and Rasche, 

1969), image contrast (Meuller and Blake, 1989), contour context (Sobel and 

Blake, 2002), spatial frequency (Fahle, 1982), orientation (Stuit et al., 2009) and 

color (Kovas et al., 1996).  This is an area that has received considerable 

attention from researchers due to its potential contribution to identification of 

neural pathways and understanding visual awareness. 

 In one model of binocular rivalry, information from monocular stimuli 

travels neural pathways connecting the primary visual cortex to higher cortical 

areas.  During rivalry, information is suppressed along the entire length of one 

pathway allowing the other to dominate.  The depth of suppression is thought to 
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increase as information moves from lower to higher cortex (Freeman et al., 

2005).  Although the relatively brief presentation times of the stimuli in this 

experiment are not long enough in duration to be considered truly rivalrous, the 

concept of increased suppression depth accompanying transitions to higher 

cortex has potential application to the experiments in this study.   

 The model for increasing depth of suppression at higher cortical levels has 

received support from physiological findings.  Leopold and Logothetis (1996) 

recorded from individual monkey neurons in V1, V2, and V4 while presenting a 

stimulus that evoked binocular rivalry.  They found cells, especially in V4, that 

demonstrated patterns of activity correlated with the monkeys' perceptual state 

(dominance or suppression).  In a subsequent study, Sheinberg and Logothetis 

(1997) found that the activity of a very large percentage of monkey neurons in 

inferior temporal cortex and the visual areas of the superior temporal sulcus 

(much further downstream than V1, V2, or V4) depended on the perceptual 

dominance of the stimulus.  Together these findings provide evidence for the 

model and suggest that the depth of binocular rivalry suppression increases at 

higher cortical levels.  

 In a functional magnetic resonance imaging (fMRI) study Polonsky et al. 

(2000) reported consistent V1 response modulation during binocular rivalry.  

Polonsky et al. and another fMRI study (Lee and Blake, 2002) both reported that 
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the response modulations in V1 were approximately one-half those evoked by 

physical alternations of the stimuli.  Also, the relative degree of fMRI response 

was fairly constant across visual areas.  These findings do not appear to support 

the model of increasing binocular rivalry depth at higher cortical levels.  However, 

since approximately 50% of V1 neurons are driven by binocular input and 

Polonsky et al. (2000) did not isolate monocular V1 cell activity, there was not a 

direct assessment of whether rivalry is produced by monocular neuron 

competition or binocular pattern-selective neurons. 

 In another fMRI study, Tong and Engel (2001) used the large monocular 

region in V1 corresponding to the cortical representation of the physiologic blind 

spot to isolate monocular responses.  They found that V1 blind-spot 

representation was highly correlated with rivalry perception in all four of their 

subjects.  The presumably monocular blind-spot representation showed a large 

increase in activity following the perceptual dominance of an ipsilateral grating 

spanning the blind spot.  Activity decreased when a stimulus presented to 

contralateral (competing) eye became perceptually dominant.  These results 

support the inter-ocular competition theory which states that inter-ocular 

competition leads to the early selection of a single monocular stimulus for 

perception that is processed further by subsequent visual areas (Tong, 2005).         
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 In the present experiment, the monoptic condition is defined by a target 

stimulus flanked vertically by two similar stimuli presented to the same eye.  Each 

stimulus occupies approximately two degrees of visual space.  Since the target 

and flanks are nearly abutting, they occupy about six degrees of vertical visual 

space.  Thus, while target and flanks are not overlapping, they are relatively 

close in terms of visual space and nearly within the approximate five degree 

diameter of the fovea.      

 In the dichoptic condition, the target is presented to the dominant eye 

while flanks are presented to the fellow (non-dominant) eye.  The final condition 

involves the presentation of a target to the dominant eye and flanks to both 

dominant and non-dominant eyes.  Following the increasing suppression depth 

model described above, we would expect the "baseline" level of suppression to 

be deeper in dichoptic than monoptic conditions since dichoptic integration 

occurs further along the neural pathway.  This could be manifest as an overall 

shift toward suppression (or reduced facilitation).   

 Determining the model's expectation for a half-binocular condition is more 

complicated.  The most straightforward interpretation involves summation of the 

dominant and non-dominant eye flank effects.  In this interpretation half-binocular 

suppression (or reduction in facilitation) should be greater than for the dichoptic 

condition.  However, this interpretation does not include the potential for between 
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eye flank effects.  The dominant and non-dominant eye flanks occupy the same 

object space and may not be perceived as rivalrous stimuli.  If the flanks are not 

rivalrous, the shift toward suppression caused by non-dominant eye flanks in the 

dichoptic condition will not be seen when the same flanks are presented in a half-

binocular setting.  In this case, expectations for the half-binocular condition may 

be similar to the monoptic findings.     

2.9 Potential effect of flank induced illusory contours on dichoptic contrast 

integration across space   

 When two low-contrast, collinear gratings are separated by a blank gap, a 

fill-in effect may be perceived (Tynan and Sekuler, 1975).  These illusory contours 

bridge the gap between the physical gratings and appear to match their pattern, 

motion, color and texture and can mimic the perceptual effect of physical stimuli 

(Meng et al., 2005).  Moving inducing gratings produce especially vivid illusory 

contours and can lead to motion aftereffects in the blank gap.  This suggests that 

illusory contours are actively represented in visual cortex (Weisstein et al., 1977).  

 While collinear CDT facilitation has been documented in both 

psychophysical (Polat and Sagi, 1993, 1994; Solomon et al., 1999; Solomon and 

Morgan, 2000; Woods et al., 2002; Huang et al., 2012) and neuro-physiology 

(Mizobe et al., 2001; Polat et al., 1998; Sengpiel et al., 1997; Toth et al., 1996) 
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studies, its real world visual significance is not well understood.  Studies of 

contour integration have shown that suprathreshold stimuli aligned to form a 

virtual curve are perceived to stand-out against a background of a randomly 

oriented lines or Gabors (Field et al., 1993; Hess et al., 2001; Huang et al. 2006).  

The apparent arithmetic similarities between collinear facilitation and contour 

integration prompted Polat and Bonneh (2000) to suggest that the two might be 

regulated by the same mechanism(s).  However, this link is still being debated 

(Hess et al., 1998).    

 Contrast adaptation to an illusory contour may have produced the CDT 

suppression observed in the present study at long SOAs under dichoptic and 

half-binocular viewing.  Hence, the results of prior illusory contour experiments 

are explored here and related to the present study's findings in the Discussion 

(Chapter 6).   

Site of illusory contour representation in the visual pathway  

 The site of illusory contour representation has been the subject of several 

studies.  Tynan and Sekuler (1975) investigated this by arranging oppositely 

oriented Polaroid analyzers over an oscilloscope display to produce dichoptic, 

viewing conditions.  In their study, vertical sinusoidal gratings were displayed on 

an oscilloscope.  The spatial frequency of the gratings was 0.75 cycle/deg, 
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contrast was 25%, mean luminance was 60 cd/m2 and they drifted horizontally at 

one hertz.  The upper inducing grating was visible only to the right eye and the 

lower inducing grating was only visible to the left eye.  The illusory contours 

(referred to as "visual phantoms" in Tynan and Sekuler) observed with dichoptic 

viewing were of "normal vividness" compared with contours observed with 

binocular viewing.  However, when both upper and lower inducers were viewed 

with the same eye (monoptic viewing), illusory contours were not seen. Meng et 

al. (2007) also reported the intact dichoptic perception of illusory contours.  

These findings are consistent with the site of illusory contour generation being 

cortical and beyond the point of binocular combination (layer three of V1 for most 

projections).  

 Meng et al. (2005) reported evidence that illusory contours (again referred 

to as "visual phantoms") lead to enhanced fMRI activity in cortical visual areas 

representing the blank gap region.  They presented 15% contrast, 0.286 

cycle/deg sinusoid gratings above and below fixation with the center of the blank 

gap between the inducing gratings and eight degrees to the left of fixation.  Thus, 

they evaluated the formation of illusory contours peripheral to the macula.  Their 

experiment assumed the perception of illusory contours whenever upper and 

lower inducers were both vertical (collinear).  This assumption was confirmed in a 

separate experiment performed after the fMRI study.  During that experiment, 
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subjects performed a task that required either attention at fixation or attention at 

the inducing gratings.  They found that significant neural filling-in effects 

corresponding with the blank gap region occurred in visual cortex areas V1 and 

V2, regardless of where the subject attended.  However, the neural effect was 

greater when subjects attended to the physical gratings.   

 A second experiment in the same article (Meng et al., 2005) examined the 

neural correlates of conscious perception.  Here, a binocular rivalry paradigm 

was utilized to create spontaneous alternations between perceptual dominance 

and suppression of illusory contours.  With a button push, subjects indicated the 

perception of:  1) an illusory contour between two vertical inducing gratings, 2) no 

illusory contour between two horizontal gratings, or 3) mixed dominance and no 

illusory contour.  Thus, attention was held constant (on the blank gap between 

gratings) and perception was allowed to fluctuate.  The authors found that 

changes in perception of the illusory contour without changes in the physical 

stimuli led to neural effects similar to those seen with changes to the physical 

stimuli.  This was interpreted as a tight coupling between neural activity in early 

visual cortical areas representing the gap region between inducers and 

alternations in conscious perception of the illusory contours.   

 Meng et al. (2007) utilized the relationship between illusory contour 

perception (termed "perceptual filling-in" by Meng et al.) and dominance state 
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during a binocular rivalry task to examine the temporal dynamics of illusory 

contour perception.  In experiment one, subjects viewed peripheral, dichoptic 

rivalry stimuli through a mirror stereoscope.  Vertical, collinear sinusoid gratings 

(15% contrast, 0.5 cpd, 16 cd/m2) were presented to the left eye and paired 

against horizontal gratings of the same contrast, spatial frequency, and 

luminance presented to the right eye.  Both grating pairs drifted within a 

stationary window at a rate of 0.5 cycle/s and reversed every two seconds.  Each 

stimulus center was six degrees to the left of fixation and 4.5 degrees 

above/below fixation.  This resulted in a blank gap size of approximately three 

degrees.  During the 120s viewing period, subjects reported:  1) transitions in 

rivalry perception via button push with the right hand and 2) illusory contour 

(termed "visual phantoms") perception via button push with the left hand.   

 They found that illusory contour perception was strongly tied to rivalry 

state.  Immediately after the vertical gratings (left eye) became dominant, an 

illusory contour was perceived in greater than 80% of trials for all three 

observers.  Conversely, after the horizontal gratings (right eye) became 

dominant, illusory contour perception approached (but did not reach) zero for all 

observers.  After the high initial rate of illusory contour perception following 

vertical grating dominance, the perception rate decreased as time elapsed.  

Following a switch to horizontal grating dominance, the illusory contour 
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perception rate increased with time.  For two out of three observers, the illusory 

contour perception rate began to decrease beyond 400ms and converged at 

around 50% perception approximately 1000ms after the rivalry switch.  The third 

observer's illusory contour perception did not converge until approximately 

2500ms after the rivalry switch.  These findings imply that illusory contours began 

to fade after about 400ms and persisted for up to 1000-2500ms.  The authors 

suggest that these results support the hypothesis that rivalry suppression occurs 

prior to or at a common stage of visual processing relative to the site of illusory 

contour processing. 

 To summarize, the perception of illusory contours with dichoptic viewing of 

the upper and lower inducing stimuli suggests that illusory contours form beyond 

the point of binocular combination (Tynan and Sekuler, 1975; Meng et al., 2007).  

Neuroimaging (fMRI) has shown activity in areas V1/V2 corresponding to the 

blank gap region is correlated with the presentation of inducing stimuli (Meng et 

al., 2005).  Neuroimaging has also shown that changes in illusory contour 

perception produced similar V1/V2 neural effects as adding a physical grating 

stimulus to the blank gap region (Meng et al., 2005).  This suggests that illusory 

contours could produce similar neural effects as a physical grating (e.g. contrast 

adaptation).  It has also been demonstrated that illusory contour perception is 
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strongly tied to the rivalry state (Meng et al., 2007).  This suggests that illusory 

contour formation occurs either at a common stage as, or after binocular rivalry. 

Temporal aspects of illusory contour appearance and disappearance       

 In other experiments, Meng et al. (2007) used flash suppression to 

characterize the temporal aspects of the effect of rivalry on illusory contour 

formation for both experienced and inexperienced observers.  For four 

experienced observers, low contrast (15%), vertical, drifting sinusoid gratings (0.5 

cpd, 1.71 cycle/s) were presented to the left eye for 5-6s prior to the introduction 

of otherwise identical high contrast (75%), horizontal gratings presented to 

corresponding locations in the right eye.  The vertical, left eye grating 

presentation continued throughout the trial.  The introduction of high contrast, 

horizontal gratings produced suppression of the illusory contour inducing, vertical 

grating in almost every trial for all observers.  Trials in which flash suppression 

was not reported were discarded.  The observer's task was to report when the 

phantom disappeared.  In another condition, low contrast horizontal (non-illusory 

contour inducing) gratings were presented to the right eye for 5-6s and then high 

contrast, vertical gratings were added to the left eye.  Here, the observer's task 

was to report when the phantom appeared.  Both conditions (vertical gratings 

presented first and horizontal gratings presented first) were completed for two, 

three, four, and five degree gap sizes.   
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 The experienced observers reported very similar intra-observer illusory 

contour appearance and disappearance times for the two degree gap size 

(approximately 0.6-1.5s range for all experienced observers).  Illusory contour 

disappearance time stayed about the same for all observers as gap size 

increased.  However, the time for an illusory contour to appear increased as gap 

size increased up to approximately 1-3s for a five degree gap.   

 Data for the 12 inexperienced observers were reported as means.  The 

inexperienced paradigm was similar to the experienced observer paradigm 

described above with a few exceptions.  The initial stimuli (subsequently flash 

suppressed) were only presented for 2-3s before mask onset.  Vertical, illusory 

contour inducing gratings were presented at 8% and 16% contrast and masked 

2% contrast horizontal gratings.  Horizontal gratings presented at 80% contrast 

masked 8% and 16% vertical gratings.  Also, unlike the experienced observer 

paradigm, eye assignment of stimulus displays was randomly assigned to each 

subject.  Inexperienced observer results were very similar to those reported for 

experienced observers.  For both 8% and 16% contrast vertical inducers, the 

time required for illusory contour formation increased as the gap size between 

the inducers increased.  However, the time required for illusory contours to 

disappear after being masked by horizontal gratings did not vary as a function of 

gap size.   
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 For all subjects (experienced and inexperienced combined) the average 

response time for illusory contour formation time ranged from 1163ms for a two 

degree gap to 1612ms for a five degree gap.  Of course, the response time 

includes not only the time required for illusory contour formation, but also the time 

required for a button push after the contour forms.  If button push response time 

is subtracted from the total response time, the time required for formation of 

illusory contours would be significantly less than the total response times (1163-

1612ms). The authors interpreted the dependence of time required for the 

formation of illusory contours on gap size as suggestive that illusory contours 

require more time to propagate across larger gaps.  This is consistent with 

theories of active filling-in in which signals are propagated by horizontal 

connections in early visual cortex.  A specific prediction of active filling-in theories 

is that because of the relatively slow transmission speed of horizontal 

connections, larger blank gaps will result in delayed illusory contour perception. 

 Using the same flash suppression paradigm described above, Meng et al. 

(2007) also evaluated the time required for an illusory contour to disappear after 

initial formation.  For the 12 inexperienced subjects, mean disappearance times 

fell into the 800-900ms range for all four of the evaluated gap sizes (two, three, 

four, and five degrees of separation) with both 8% and 16% contrast inducing 
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stimuli.  This strongly suggests that illusory contour disappearance time is 

independent of gap size for this paradigm.   

 Ringach and Shapley (1996) investigated the temporal properties of 

illusory contours and amodal completion using a shape discrimination task.  They 

used Kanizsa-like squares and squares with small deformations that produced 

the perception of illusory contours and found that shape discrimination 

performance depended on boundary completion.  Based on this finding, they 

investigated the relationship between illusory contour completion and spatial 

scale of the figures.  The relationship was reported as approximately scale-

invariant (the relative separation between inducing stimuli was more important 

than the absolute separation) and subjects were able to integrate information 

from inducing stimuli separated by gaps as large as 13 degrees.  This finding is 

reminiscent of the scale invariance previously described in collinear, facilitation 

experiments (Polat and Sagi, 1993; Polat and Sagi, 1994).  Ringach and Shapely 

(1996) also performed an experiment that compared shape recognition for 

illusory contour completion and amodally completed contours.  They reported 

similar accuracy for both.   

 Ringach and Shapely's (1996) final experiment explored the temporal 

dynamics of boundary completion using a backward masking paradigm.  This 

experiment has particular relevance to this dissertation because it specifically 
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asked how long the process of contour formation takes to occur.  Previous 

estimates of the time required for contour formation were inconsistent with 

estimates ranging from 30ms (Spillman et al., 1976) to approximately 1000ms 

(Gellatly, 1980).  Two non-naive subjects (both authors) participated in Ringach 

and Shapely's (1996) temporal experiment.  The inducing stimuli were separated 

by a 9.5 degree gap.  Kanizsa-like square stimuli were presented for variable 

times, followed by a 50ms presentation of pinwheel-like masks.  The relationship 

between detection threshold (in degrees of stimuli rotation) and presentation time 

of the stimuli was examined.  For both subjects, detection thresholds asymptoted 

100-117ms after initial stimulus presentation.  This suggests that, for this 

paradigm, the inducing stimuli must be present for about 100-117ms to cause 

their maximal inducing effect.   

 Gold et al. (2000) used a Kanizsa-like square stimuli paradigm similar to 

Ringach and Shapely (1996), but added a response classification technique that 

provided pictorial representations of the stimulus parts observers used to make 

perceptual decisions.  Where previous studies showed indirect evidence that 

illusory contours are used to perform perceptual tasks, response classification 

provided a more direct link.  Two signals (either "thin" or "fat" Kanizsa-like 

squares in this case) are presented in luminance noise on subsequent trials.  The 

subject's task is to determine which of the two signals is presented in a given 
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trial.  Signal contrast is adjusted across trials until the subject maintains a 

criterion performance level (75% correct here).  A statistical test then correlates 

the contrast at each pixel (after the incorporation of luminance noise) with the 

subject's responses across all trials.  A map showing the degree to which noise 

affects the subject's response can then be constructed.  In the Gold et al. (2000) 

a gray-scale map was produced with darker areas representing a negative 

correlation between noise and the subject's response.  Lighter areas represented 

a positive correlation between noise and the subject's response.  Thus, if the 

classification map showed that subject responses were affected by noise in 

locations where illusory contours were perceived it could be interpreted as direct 

evidence that subjects were basing their decisions on a perceptually completed 

representation of the stimulus.  The location of the illusory contours should be 

specified on the classification map as dark (negative correlation) areas.         

 Gold et al. (2000) found nearly identical classification images for the Real 

condition in which thin parabolic contours physically connected the inducing 

stimuli and the Virtual condition where only the inducers were present.  This 

provides strong evidence that subjects used illusory contours in the Illusory 

condition to perform a discrimination task ("fat" vs. "thin" squares in this case) in 

the same way they used physical contours present in the Real condition.  In 

addition to the Real and Illusory conditions, the authors included an Occluded 
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condition in which a thin ring surrounded the perimeter of each inducing stimuli.  

This created the appearance of a thin or fat square viewed through four holes in 

an occluding surface.  As in the Illusory condition, classification response images 

for the Occluded condition closely resembled the Real classification response 

images for all subjects.  Again, this provides robust evidence that for this 

discrimination task subjects used illusory contours in a similar manner as 

physical contours.   

 Gold and Shubel (2006) used the response classification technique to 

examine the spatiotemporal properties of visual completion. Three subjects (two 

naïve) were presented with “fat” or “thin” stimuli created by rotating the corners of 

Kanizsa-like squares by ± 1.75 degrees. Each stimulus occupied 0.34 degrees of 

visual angle and the center of each was 1.36 degrees from the center of adjacent 

inducers. This resulted in a support ratio (the ratio of a single inducer's diameter 

to the distance between the centers of adjacent inducers) of 0.25. A 1000ms 

fixation point was presented before each trial followed by a thin or fat Kanizsa 

square (2-AFC task) viewed binocularly for approximately 500ms. Luminance 

noise (43 frames totaling approximately 500ms) was presented at the same time 

as the stimuli in the same visual space.  The final stimuli + noise frame was 

followed by a 36ms blank screen and then the subject responded as to whether 
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the stimuli was thin or fat. A Weibull function was fit to the resulting data to 

estimate the stimulus contrast level that yielded 71% correct performance.  

 To explore the temporal properties of visual completion, Gold and Shubel 

(2006) then created classification movies showing the correlation between pixel 

contrast at each stimulus location and subject response over the course of the 43 

stimulus frames. If visual completion (illusory contour formation) is temporally 

dependent such a movie should show the gradual formation of illusory contours 

between the inducing stimuli. Classification movies created using real contours 

(physical lines connecting the inducing stimuli) served as controls for this 

experiment, ensuring that changes seen in the illusory contour condition do not 

simply reflect the time course of normal visual information processing between 

the inducers. Of the three subjects, one did not show any influence of noise in the 

area between the inducing stimuli. The other two subjects showed a gradual 

increase over time in the influence of noise in the area between inducing stimuli 

where illusory contours are thought to form. A graphical representation of the 

cross-correlation between actual subject performance and the ideal observer 

standard over time (0-500ms) showed that the gradual increase in noise 

influence peaked around 130-180ms.  The authors interpret this result as 

consistent with the idea that there is a time course to illusory contour completion 

on the order of approximately 175ms. 
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 Measurements of illusory contour formation time have produced a variety 

of estimates ranging from 30ms (Spillman et al., 1976) to 1000ms (Gellatly, 

1980).  More recent estimates have reported illusory contour completion times of 

100-117ms (Ringach and Shapley, 1996) and 175ms (Gold and Shubel, 2006).  

However, the comparison of completion time estimates is complicated by 

differences in experimental paradigms and the inclusion of subject reaction times 

in some estimates.  When Meng et al. (2007) compensated for reaction time by 

varying the gap size and measuring the difference in fill-in time, they found that it 

that took approximately 150ms for an illusory contour to complete each additional 

degree of gap.  For the present study's two degree gap between inducing stimuli, 

this suggests that illusory contour completion should take approximately 300ms.     

Signal Detection Theory applied to illusory contour formation 

 Polat and Sagi (2007) examined the relationship between subjective and 

objective aspects of illusory contours (termed "visual filling-in" in their study) 

using a 1-FC (yes/no) detection task.  Utilizing a paradigm very similar to the 

present study's paradigm, Polat and Sagi's results show that illusory contours 

formed between collinear flanks and that those illusory contours affected 

perception of the target.  They used Signal Detection Theory (Green and Swets, 

1966) (SDT) to measure both the objective (d') and subjective (criterion) 

descriptors of SDT for a low contrast Gabor target with variable target-flanker 
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(inducer) separation.  Flanker contrast was set at 60% throughout and target-

flanker separation varied from 1-15λ.  Illusory contours can be thought of arising 

from an increase in the firing rate of neurons sensitive to the detection stimulus 

(vertically oriented, nine cpd Gabors in Polat and Sagi (2007)).  If the visual field 

of the stimulated neurons falls within the visual space between the inducing 

flankers, such an increase in activity would be expected to produce a higher rate 

of false-positives (and true-positives) if the subject's absolute response criterion 

were not adjusted upward as well.  Under most settings, subjects are able to 

adjust their own response criteria to minimize false alarm rates by requiring a 

higher neuronal activity level to produce a Yes response.  However, multiple 

detection tasks make it more difficult to adjust the absolute response criterion for 

individual tasks and subjects have been shown to apply the same absolute 

response criterion to all tasks (Gorea and Sagi, 2000; Gorea et al., 2005).   

 If increased neuronal activity produces illusory contours and the response 

criterion is not adjustable, then the expected outcome of inducing flankers is an 

increase in the false-positive rate.  Polat and Sagi (2007) created a multiple 

detection task environment by interleaving multiple target-flanker separations 

(termed the "Mix" condition) within an experimental session.  They compared the 

Mix condition with sessions that were blocked into a single target-flanker 

separation (termed the "Fix" condition).  Under the Fix condition they found that 
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subjects had a moderate criterion bias that was weakly dependent on separation.  

In the Mix condition, subjects showed a large increase in the false positive rate at 

small target/flanker separations that gradually decreased as the distance 

between target and flanker increased.  At the largest separations (approximately 

9-15λ) the Mix false-positive rate closely resembled the Fix false-positive rate.  In 

other words, when subject response criterion was allowed to vary, the false-

positive rate was close to constant.  However, when subject response criterion 

was held constant, the false-positive rate was elevated at target/flank separations 

where flanks are know to have their greatest effect on detection thresholds.  This 

result is consistent with the perception of illusory contours being the result of a 

filling-in process caused by lateral excitation. 

2.10 Summary of introduction 

 Prior psychophysical studies have shown that the simultaneous 

presentation of monocular or binocular collinear flanks can facilitate the detection 

of a foveal target of the same spatial frequency (Polat and Sagi, 1993, 1994; 

Solomon et al., 1999; Solomon and Morgan, 2000; Woods et al., 2002; Huang et 

al., 2012).  Relatively few psychophysical studies have examined the effect of 

dichoptic, collinear flank presentations.  Tanaka and Sagi (1998) showed no 

mean effect with dichoptic, collinear flanks and Huang et al. (2006) reported 

mixed results (one subject showed facilitation and two showed suppression).  
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Studies with dichoptic presentations of collinear, annular surrounds have reported 

both no effect (Chubb et al., 1989) and inter-ocular contrast integration (Yu et al., 

2003; Meese and Hess, 2004).  In cat, a neuro-physiology study has also 

demonstrated the existence of dichoptic contrast integration (DeAngelis et al., 

1994).  

 Under monocular and binocular viewing conditions several variables 

including flank spatial separation, temporal separation between flank and target, 

and spatial phase have been shown to affect the degree of collinear flank 

facilitation.  Facilitation was maximal at approximately 3λ center-to-center flank 

separation (abutting the target) and decreased as spatial separation increased 

(Polat and Sagi, 1993; Polat and Sagi, 1994; Solomon et al., 1999; Cass and 

Spehar 2005; Polat and Sagi, 2006; Tanaka et al., 2007).  The results of studies 

investigating the effect of spatial phase differences between a target and non-

overlapping flanks are mixed.  In some studies, phase differences did modulate 

the flank effect (Solomon et al., 1999; Williams and Hess, 1998).  In other 

studies, phase differences did not modulate the flank effect (Zender and Sagi, 

1996; Yu and Levi, 1997; Tanaka and Sagi, 1998). 

 Relatively few studies have examined the effect of temporal separation 

between collinear flanks and target.  Under binocular viewing, peak contrast 

detection facilitation has been reported for both backward (Huang and Hess, 
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2008) and forward (Cass and Alais, 2006) masking.  However, both of these 

studies returned facilitation for both forward and backward masking that 

approached zero at a 200ms SOA.  

 When two low-contrast collinear gratings are separated by a blank gap (as 

in the present study), a fill-in perception in which the gratings appear to continue 

across the gap may be perceived (Tynan and Sekuler, 1975).  This perception is 

frequently referred to as an illusory contour.  The intact perception of illusory 

contour formation under dichoptic viewing suggests that illusory contour 

perception is cortical and occurs beyond the point of binocular combination 

(Tynan and Sekuler, 1975; Meng et al., 2005).  Neuroimaging studies have 

shown that illusory contour perception produces similar V1/V2 neural effects as a 

physical grating presented to the blank gap region (Meng et al., 2005). 

 Relatively few studies have examined the temporal aspects of illusory 

contour formation and disappearance.  Estimates of the time between inducing 

flank presentation and the perception of an illusory contour vary widely ranging 

from 30ms (Spillman et al., 1976) to 1000ms (Gellatly, 1980).  However, a more 

recent experiment that compensated for subject reaction time (Meng et al., 2007) 

reported that each degree of blank gap took approximately 150ms for illusory 

contour completion.  Hence, the two degree gap in the present study should 

require approximately 300ms for illusory contour perception.  In the same study, 
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Meng et al. (2007) found that the time required for an illusory contour to 

disappear was not dependant on the blank gap size and occurred approximately 

800-900ms after initial illusory contour formation.   

 Both Meng et al.'s estimate of illusory contour formation time and the 

estimate of time to disappearance compare favorably with the temporal aspects 

of the longer SOA threshold suppression produced by inter-ocular flanks in the 

present study (see section 6.4 for a more detailed explanation).  This supports 

the hypothesis that a potential mechanism behind the unexpected suppression 

produced by inter-ocular flanks at longer SOAs is contrast adaptation to an inter-

ocular illusory contour.  More direct support for this hypothesis is provided by a 

supplemental, orthogonal flank experiment (see section 5.7) which demonstrates 

that flank/target collinearity is necessary for the suppression to occur.  
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Chapter 3 

 

Methods 

3.1 Subjects 

 A total of 11 subjects participated in the study.  Of these, nine were naïve 

to the purpose of the experiments and the other two knew about the purpose 

(primary investigator WK and UMSL College of Optometry summer 2011 

research fellow MM).  They ranged from 20 to 36 years of age.  Six were male 

and five were female. Eight subjects were right eye dominant (AW, CL, WK, 

MBM, JS, TP, ND, and MM) and three were left eye dominant (AM, CP, and TH).  

One subject was left hand dominant (WK) and 10 were right hand dominant.   

 All subjects were examined by a licensed optometrist and shown to have 

normal or corrected to normal visual acuity in both eyes, normal binocular vision 

(including local and global stereopsis), and were free from active ocular disease.  

Subjects requiring visual correction wore the same spectacle prescription 

throughout the experiment.  Contact lenses were not worn during experimental 

sessions due to the increased variability in vision associated with their wear, 

especially at low contrast levels (Timberlake et al., 1992).  
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 One subject (WK) completed all the experiments in the study.  Due to the 

time intensive nature of the experiments (see below), the other 10 subjects 

participated in portions of study and their data was combined to form complete 

data sets.  Within the main experiment, sessions were blocked by ISI with each 

ISI set containing four flank durations.  All subjects completed a minimum of one 

ISI set.  Prior to participating in the study, informed consent was obtained and 

subjects were given a copy of the informed consent form.  Subjects were 

compensated for their participation at a rate of 12 dollars per hour.  All 

procedures were conducted in accordance with the guidelines of the University of 

Missouri-St. Louis Human Subjects Committee (protocol number 100506K). 

3.2 Time requirements   

 Subject WK took approximately 240 observation hours to complete all the 

experimental conditions in the study.  The other investigator (MM) participated for 

approximately 100 hours. The nine naïve subjects participated for an average of 

approximately 25 hours with a minimum of eight hours (subject CP).  These 

hours were split into sessions lasting an average of 1.5 hours.  Each session 

included multiple subject initiated breaks.  Since most subjects attended 2-3 

sessions per week it took approximately 5-8 weeks for them to complete their 

portion of the study.    
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3.3 Apparatus 

 Two nearly identical experimental apparatus were used.  Stimuli were 

displayed on 19” CRT monitors (NEC model FE992 and Viewsonic G90fB).  

Screen resolution was set at 1280x1024 pixels with a 75Hz refresh rate 

throughout the experiment.  This resulted in an approximate pixel diameter of 

0.25mm or 0.91 seconds of arc.  Subjects observed the monitor at a 95cm 

viewing distance resulting in a 19.12x15.35 degree field of view.  The mean 

luminance of the monitors was 73.2 cd/m2.  A PR-650 SpectraScan Spectra 

Colorimeter (Photo Research, Inc.) was used to linearize gamma output from the 

individual guns and their combined output.   

 A fixed chin and headrest were used to control the viewing distance and 

keep the subjectʼs head stable.  A full-length, black, foam-board septum running 

from the screen to the chin rest assured independent visual input to each eye, 

and a two mirror haploscope system allowed comfortable fusion of the images 

(Figure 1).  The septum created a corridor-like visual effect when properly fused 

and served as a suppression check prior to and during sessions.  The right side 

of the corridor was formed by the image of the septum on the left eyeʼs temporal 

retina and vice versa.  Hence, if one side of the corridor was not perceived it was 

possible to ascertain which eye was suppressed.   
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Before each session, subjects made vertical and horizontal adjustments to 

the haploscope mirrors while viewing fixation stimuli.  These adjustments allowed 

comfortable, fused vision.  Subjects also had the opportunity to adjust the mirrors 

between trials if they experienced eyestrain or diplopia.  Maintaining fused vision 

was essential during dichoptic and half-binocular presentations because it 

ensured that the stimuli were presented in corresponding visual space.  All 

experimental runs were conducted in a consistent, dimly lit room with a 

luminance of approximately 28 cd/m2.  A hood attached to the monitor and 

blinders affixed to the chin rest apparatus minimized outside sources of light.  

The blinders also ensured that extraneous images from the room were not 

imaged onto the peripheral retina.  Peripheral images would have added noise to 

the system and made the contrast detection task more difficult.  

 Stimuli were created with Psykinematix (version 1.2.3).  Two 13.3" 

MacBook Pro computers (one for each experimental apparatus) were used to 

generate the stimuli.  Both ran Macintosh OS X.  The MacBook Pro 7,1 had a 2.4 

GHz Intel Core 2 Duo processor and a NVIDIA GeForce 320M video card.  The 

MacBook Pro 8,1 had a 2.3 GHz Intel Core i5 processor and an integrated Intel 

HD Graphics 3000 video card.   Output from each graphics card was increased to 

1,786 gray levels using a 10.8 bit-stealing algorithm (Tyler, 1997) integrated into 

Psykinematix.       
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Figure 1.  Experimental apparatus.  A second, very similar apparatus differed in 

the brand of the monitor and the video card. 
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3.4 Viewing conditions 

 Thresholds were obtained under monoptic, dichoptic, and half-binocular 

viewing conditions.  In the monoptic condition, the dominant eye viewed both the 

target and flanks.  Under dichoptic conditions, a target was shown to the 

dominant eye and flanks were presented to the non-dominant eye.  The half-

binocular condition was essentially a combination of monoptic and dichoptic 

conditions.  A target was presented to the dominant eye and flanks were 

presented to both dominant and non-dominant eyes.  Eye dominance was 

established during an initial patient history and confirmed using a variant of the 

Miles test (fixating a distance target through a hole formed between the hands). 

3.5 Stimuli 

 All stimuli (targets and flanks) were sine wave gratings with a spatial 

frequency of three cycles per degree (cpd).  This spatial frequency was chosen 

for two reasons.  First, it is near the peak of the human contrast sensitivity 

function (Regan, 2000).  Second, it matches the stimuli used in previous lateral 

integration experiments performed in our lab and makes direct comparison with 

those studies possible.  An approximate pixel diameter of 0.25mm (see section 

3.3) and spatial frequency of three cpd resulted in about 100 pixels per cycle (or 

50 pixels per bar).  A Gaussian window was applied and the standard deviation of  
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Figure 2.  Summary of viewing conditions.  In the monoptic viewing condition, all 

stimuli (target and flanks) were presented to the dominant eye (right eye in this 

example).  Under dichoptic viewing, the target was presented to the dominant 

eye and flanks were presented to the non-dominant eye.  With half-binocular 

viewing, the target was again presented to the dominant eye and flank sets were 

presented to both dominant and non-dominant eyes.  The stimulus eye of origin 

was lost in the final perception (i.e. perception did not vary with the viewing 

condition).   
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Figure 3.  Windowed sinusoid stimuli (top) and luminance profile (bottom).  

Stimuli had approximately five visible cycles in all experiments. 



	   80	  

the window (sigma) was set at 0.5 degrees.  Using a Gaussian window 

eliminates the sharp cutoff seen at the edge of non-windowed stimuli, and helped 

to ensure that only the targeted cortical neurons were stimulated.  Stimuli were 

defined by the following sinusoid equation:   

L(x,y) = Lmean [1 + Csin(2πFx + Ф)* exp(-(x2+y2)/2σ2)]  

where Lmean is mean luminance of the background, C is contrast, F is spatial 

frequency, Ф is spatial phase, x and y are horizontal and vertical distances from 

the peak of the contrast envelope, and σ is the standard deviation of the 

windowed envelope. 

	   All stimuli (target and flanks) in the main experiment were vertically 

oriented and collinear.  Previous studies have shown that flank separations from 

3-10 lambda demonstrate facilitation with a collinear orientation (Polat and Sagi, 

1993; Solomon et al., 1999; Cass and Spehar, 2005; Shani and Sagi, 2006).  

Facilitation peaked around three lambda, and tended to cause suppression of the 

target contrast detection threshold (CDT) at separations less than three lambda. 

Since the goal of this project was to examine the temporal effect of ISI and flank 

durations, we choose a separation designed to promote maximal facilitation.  	  

 In most collinear flanking experiments the stimuli have been Gabors 

(Graham, 1989) with approximately 2.5 visible cycles.  In these experiments, a 
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three lambda separation between target and flanks results in stimulus edges that 

are approximately abutting.  We chose to use a windowed sinusoid that produced 

about five visible cycles (the exact number of visible cycles being dependant on 

the stimulus contrast) to promote spatial interactions.  As a result, we used a six 

lambda target/flank separation in this pilot project to make it comparable to a 

three lambda separation using Gabor stimuli.  

3.6 Flank contrast 

 Flank contrast detection thresholds were obtained by presenting near 

threshold flank stimuli two degrees above and below fixation while the subject 

maintained central fixation.  Using a yes/no, seven-level MOCS paradigm 

described below, the subject reported when the flanks were or were not visible.  

The results of the flanks alone contrast detection thresholds were used to scale 

each individual subjectʼs flank contrast level for all subsequent experiments.  The 

flank contrasts were set at 3X the flank detection threshold for all subjects and 

conditions except for subject AW who completed the monoptic condition at 4.5X 

his flank detection threshold during a pilot experiment.  The use of 3X threshold 

flanks resulted in a dominant eye flank contrast range of 4.2% to 5.94% and a 

non-dominant eye flank contrast range of 4.98% to 6.93% (Figure 6). 
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3.7 Paradigm 

 A single alternative (yes/no), forced choice contrast detection paradigm 

was used throughout the study.  All programs were based on native Psykinematix 

programs.  Fixation circles (0.04 deg radius, 43% contrast) were presented to 

each eye for 500ms prior to the presentation of the flank stimuli.  Subjects were 

instructed to maintain fixation and avoid eye movements within each trial.  Two 

flanks were presented above and below fixation with two degrees of center-to- 

center separation between each flank and fixation.  At a spatial frequency of 

three cpd, two degrees of separation created six wavelength (λ) spacing between 

the stimuli.   

3.8 Collinear flanking experiment 

 Ten subjects participated in the main, collinear flank experiment.  The 

flanks were presented at four durations (67ms, 117ms, 250ms, and 500ms) and 

were followed by an inter-stimulus interval (ISI) presented at seven durations 

(67ms, 117ms, 250ms, 500ms, 1000ms, 1500ms, and 2500ms).  A simultaneous 

presentation with flanks and target in the same visual space for 250ms was also 

included.  This created total stimulus onset asynchronies (SOA = flank duration + 

ISI) ranging from zero to 3000ms.  A central target stimulus followed the ISI and 

was presented for the same duration (250ms) in every condition.   
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Figure 4.  Timing diagram for the main (collinear flank) experiment.  Slides 

represent subject perception for all viewing conditions.  The 14 SOAs ranged 

from 0-3000ms. 
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 A 250ms target presentation was chosen because it exceeds prior 

psychophysical study integration time estimates of 160-200ms (Watson et al., 

1983) and 120ms (Polat et al., 2007).  A relatively longer duration target 

presentation was also chosen in anticipation of including people with amblyopia 

in future variations of this experimental setup.  Since people with amblyopia are 

known to have longer integration times (Levi and Harwerth, 1980), 250ms would 

allow sufficient time for people with mild to moderate amblyopia to process the 

target and allow direct comparison to the present study.  A second set of fixation 

circles identical to the first followed the target and remained on screen until the 

subject responded.  The subjectʼs task was to indicate whether or not the target 

was visible by pressing one of two buttons on a keyboard.  No feedback was 

given within runs.  Subjects were unable to respond until 1000ms after the 

second set of fixation circles appeared.  Responses entered prior to this, were 

not recorded and the next trial was not triggered.  This ensured that the 

aftereffects of one trial did not carry over into the next.  A final condition consisted 

of simultaneous presentation of the flanks with the target (test) stimulus. 

 A 1-FC detection design was chosen over a two alternative, forced choice 

(2-AFC) design because of the importance of the temporal aspect to our 

hypothesis.  A 2-AFC design would have resulted in very long trials within which 

order effects would have been difficult to account for and confounded our ability 
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to extract useful information about how varying the ISI and flank presentation 

time affected thresholds.  

 For SOAs up to 1000ms, subjects completed all four flank durations within 

a single ISI.  Runs were counterbalanced within each ISI.  Each subject did 2-3 

runs per flank duration before moving on to another flank duration.  This allowed 

flank durations to be completed in a parallel manner that minimized the influence 

of learning effects.  Dominant eye, target alone runs were also conducted at the 

beginning or end (alternating) of each session.  This allowed us to monitor 

subjects for threshold changes over time. 

To allow for easy comparison between subjects, thresholds were adjusted 

for each condition by dividing the threshold of the target with flanks by the 

subjectʼs target alone threshold.  This ratio was then subtracted from one.  In the 

resultant quantity, positive values indicate facilitation of detection and negative 

values indicate suppression.  

3.9 Orthogonal flanking experiment 

   A supplemental experiment designed to investigate the unexpected CDT 

suppression seen with dichoptic and half-binocular flanks utilized orthogonal 

flanks in a paradigm that was otherwise very similar to main (collinear) 

experiment.  The orthogonal flanks were identical to the previously described 
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collinear flanks except their orientation was rotated 90 degrees relative to the 

vertical target.  The same forward masking, 1-FC detection paradigm, and 7-level 

MOCS used in the main experiment were utilized for the supplemental 

experiment.   Five subjects participated in the orthogonal flanking experiment.  

 The temporal aspects of flank presentation did differ slightly from the main 

experiment.  As in the main experiment, fixation circles (0.04 deg radius, 43% 

contrast) were presented to each eye for 500ms prior to each trial.  However, 

since understanding the relative contributions of flank duration and ISI to the 

overall effect was not experiment's intent, the number of SOAs was limited to six.  

These SOAs were created by pairing 67ms flank duration with 67ms ISI, 117ms 

flank duration with 117ms ISI, 250ms flank duration with 250ms ISI, 500ms flank 

duration with 250ms ISI, and 500ms flank duration with 500ms ISI.  As a result of 

these pairings, the SOAs ranged from zero to 1000ms.  
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Figure 5.  Timing diagram for the supplemental, orthogonal flank experiment.  

Slides represent subject perception for all viewing conditions.  The six SOAs 

ranged from 0-1000ms.   
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3.10 Analysis 

 A seven level method of constant stimuli (MOCS) with 10 trials per level 

was used to obtain psychometric functions with a Weibull fit.  The threshold 

criterion was set at 50%.  The contrast difference between MOCS levels was 

created using 0.05 log steps.  Contrast levels were established by dividing the 

maximum and each subsequent value by 1.122 (the antilog of 0.05).  This 

normalized contrast levels despite differences in individual sensitivity and 

increased the validity of intra-subject comparisons.  Maximum contrast levels 

were carefully chosen so that the range of contrasts presented to a subject 

included a maximum value that approached 100% visibility and a minimum value 

that approached 0% visibility (i.e. values that spanned the psychometric 

function).  Since a 1-FC procedure was used, contrast levels one and seven 

provided an effect similar to catch trials.  For most subjects, several runs were 

needed to establish the optimal maximum contrast level and this process had to 

be repeated for each condition.  This process was time consuming but necessary 

due to the importance of selecting the appropriate maximum contrast levels.  

The Psykinematix “Plotter” module allowed for easy evaluation of each 

individual runʼs psychometric function both within and between sessions (Figure 

6).  This instant feedback assisted in the selection of optimal contrast levels and 

allowed subjects to maintain a more consistent decision criterion.  Each threshold 
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was estimated 10-12 times over 2-3 sessions and pooled to obtain the final 

threshold values.  Since each experimental run consisted of 70 trials (7 MOCS 

levels shown 10 times each), the final threshold for each condition was the 

product of approximately 700-840 trials. 

 The Weibull functions producing contrast detection thresholds, variance, 

and exponents (slopes) were obtained using an Apple PowerBook computer 

running Matlab®.  The Weibull function has the general form: F(x) = 1 - exp-(x/α)ᵝ 

where x, α, β are greater than zero.  α is the scale parameter (threshold), and β 

is the form parameter (slope).  Standards errors and 95% confidence intervals 

were calculated using the macro capabilities of Microsoft Excel software.  Paired 

T-tests, regressions, and correlations were calculated using SPSS software 

(version 19).  Figures were produced using Microsoft Excel, Microsoft 

PowerPoint, SPSS, and Igor Pro (version 5.03) software.       
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Figure 6.  Cumulative Weibull distribution over a linear x-axis as displayed by the 

Psykinematix Plotter module.  The Plotter module provided feedback within and 

between experimental sessions assisting in the selection of optimal contrast 

levels and allowing subject to maintain a more consistent decision criteria.  

MOCS contrast levels 1 and 7 anchor the distribution at 0% and 100% visibility, 

respectively and perform a function similar to catch trials.   
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3.11 Summary of variables 

 

Collinear flank experiment 

Viewing conditions: monoptic, dichoptic, and half-binocular 

Center-to-center target/flank separation:  3λ (2 degrees) 

Target and flank spatial frequency:  3cpd 

Flank contrasts: 3 times individual flank detection threshold (3X)  

Flank durations: 67ms, 117ms, 250ms and 500ms 

Inter-stimulus intervals: 0ms, 67ms, 117ms, 250ms, 500ms, 1000ms, 1500ms, 

and 2500ms 

Stimulus Onset Asynchronies:  14 ranging from 0-3000ms 

 

Supplemental orthogonal flank experiment 

Viewing conditions: monoptic and dichoptic 

Center-to-center target/flank separation:  3λ (2 degrees) 

Target and flank spatial frequency:  3cpd 

Flank contrasts: 3 times individual flank detection threshold (3X)  

Flank durations: 67ms, 117ms, 250ms and 500ms 

Inter-stimulus intervals: 0ms, 67ms, 117ms, 250ms, and 500ms 

Stimulus Onset Asynchrony:  6 ranging from 0-1000ms 
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Chapter 4 

 
 
Hypotheses 

 In general, collinear flanks were expected to produce facilitation at the six 

wavelength (λ) center-to-center separation used in this study.  With collinear, 

vertical Gabor stimuli, Polat and Sagi (1993) found suppression of contrast 

detection at target/flank separations from approximately 0-2λ and a zone of 

contrast detection facilitation from greater than 2λ out to 10λ separation.  They 

also found facilitation to be greatest in the 3-4λ separation zone.  Another, more 

recent Polat and Sagi (2006) article also reported maximal facilitation for collinear 

flanks around 3λ separation.   

 While these findings were useful in shaping the expectations for this study, 

there are a few significant differences between those paradigms and this study.  

First, the flanks used by Polat and Sagi (1993) are higher contrast (40%) than the 

individually scaled flanks in the present study (averaging approximately 5.4% 

contrast).  Second, the Gabor stimuli from Polat and Sagiʼs papers (1993, 2006) 

have fewer visible cycles (2-2.5) than the windowed sinusoids used in this study 

(approximately 5 cycles).  Finally, the spatial frequency of their stimuli was nine 

cpd (compared to three cpd).  A more direct comparison can be made to recent 
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experiments conducted in our lab.  Utilizing very similar stimuli, we found that 

individually scaled 3X contrast, collinear flanks produced similar amounts of 

facilitation at 4.5λ and 6λ separation with less inter-subject variation at 6λ 

(unpublished results).  Hence, the 6λ separation was selected. 

 Given that our general expectation was for facilitation, we anticipated the 

independent variables (ISI and flank presentation duration) to affect the degree of 

facilitation, but did not expect to find suppression of the detection threshold under 

any of the evaluated conditions.      

 Because the flanks and ISI are presented in succession immediately prior 

to the target, the addition of these two variables yields the SOA.  Given that the 

shortest flank duration was 67ms and the shortest ISI was 67ms, the briefest 

SOA (flank duration + ISI) in this study was 134ms.  Assuming a cortical 

propagation speed in the approximate range of 0.10-0.23 m/s (Cass and Spehar, 

2005) even the briefest SOA of the flanks presentation time/ISI conditions 

(134ms) should be sufficient to allow near complete lateral integration of three 

cpd stimuli at a 6λ separation.   

 Since CDT suppression was not expected at any SOA under any viewing 

condition, the long SOA suppression observed under dichoptic and half-binocular 

viewing was surprising.  The supplemental, orthogonal flanks experiment was 
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designed to test the hypothesis that the long SOA inter-ocular suppression 

produced by collinear flanks was the result of inter-ocular contrast adaptation to 

an illusory contour.  Previous experiments have shown that inter-ocular flanks 

can produce illusory contours (Tynan and Sekuler, 1975; Meng et al., 2007).  An 

illusory contour formed between the upper and lower flanks presented to the non-

dominant eye would be in the same visual space as a target presented to the 

dominant eye.   

 All 11 subjects in the present study described the formation of such an 

illusory contour during the simultaneous presentation of target and flanks.  The 

sustained presence of same visual space contrast (in the form of an illusory 

contour) might produce contrast adaptation of cortical neurons with receptive 

fields corresponding to the physical target.  Adaptation would decrease neuronal 

sensitivity and result in a suppression of detection threshold relative to the target 

alone threshold. 

 If inter-ocular contrast adaptation to an illusory contour were occurring, 

utilizing orthogonal flanks (instead of collinear flanks) should eliminate the inter-

ocular, long SOA suppression.  Hence, the expectation for the orthogonal flanks 

experiment was CDT facilitation at shorter SOAs that decreased as SOA 

increased and approached no effect at the longest SOA studied (1000ms).  

Relative to collinear flanks, orthogonal flanks were generally expected to produce 
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less facilitation.  The absence of CDT suppression under dichoptic and half-

binocular viewing would indicate that the collinear orientation of flanks and target 

was required to produce inter-ocular CDT suppression at longer SOAs.  This 

would support the hypothesis that contrast adaptation to an illusory contour was 

a primary contributor to the long SOA suppression seen under dichoptic and half-

binocular viewing with collinear flanks.     
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Chapter 5 

 

Results 

5.1 Target alone and flanks alone CDTs 

 Contrast detection thresholds were obtained for a dominant eye foveal 

target, dominant eye flank stimuli, and non-dominant eye flank stimuli.  Flank 

thresholds were used to scale flank contrast for monoptic, dichoptic, and half-

binocular conditions and were obtained prior to beginning the main experiment.  

Dominant eye target CDTs were based on runs conducted throughout the course 

of the experiment.  This allowed for monitoring of changes in decision criteria.  

Thresholds were based on runs completed after decision criteria stabilization.  

Target CDTs ranged from 1.33% to 2.07% with an arithmetic mean of 1.72% ± 

0.25% (SE) (Figure 7).  All 11 subjectʼs target CDT fell within the 95% confidence 

interval of the mean.  Six of the 11 subject's (MM, ND, MBM, CL, AW, and WK) 

target CDTs were tightly clustered ranging from 1.62% to 1.88% contrast (Figure 

7). Dominant eye flank CDTs ranged from 1.39% (ND) to 2.06% (CP) with a 

arithmetic mean of 1.77% ± 0.20%.  Non-dominant eye flank CDTs were slightly 

less sensitive on average, ranging from 1.67% (TP) to 2.31% (AW) with an 

arithmetic mean of 1.87% ± 0.19%.   
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Figure 7.  Individual subject contrast detection thresholds (CDT) for dominant eye 

target alone, dominant eye flanks alone, and non-dominant eye flanks alone.  

Error bars represent standard errors for individual thresholds and the standard 

error of the mean for mean thresholds.  Individual thresholds show approximately 

normal distributions for all three conditions and minimal difference in mean CDT 

among the conditions.       
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5.2 Monoptic, collinear flank results 

 As expected, the presence of monoptic, collinear flanks generally resulted 

in lower CDTs than when the target was viewed alone.  Facilitation was maximal 

for all subjects in the simultaneous presentation.  Simultaneous presentation 

resulted in CDT facilitation ranging from 13.8-22.2% with a mean of 19% ± 3.9% 

(SE).   

In general, as the SOA (the combination of ISI and flank duration) 

increased, the effect was diminished (the amount of facilitation decreased).  If we 

consider the effect of flank duration within each ISI a slightly more complicated 

mechanism emerges.  Because one subject (author WK) completed all conditions 

and each of the other four subjects completed all the flank durations within a 

single ISI duration, there are at least two data points available for comparison at 

each combination of flank duration/ISI duration.  Subject WK completed all the 

conditions, thus it is possible to make comparisons both within and between ISIs.  

However, for the other subjects who only completed the flank durations within a 

single ISI it is impossible to compare between ISI within subjects and very difficult 

to interpret comparisons between ISIs completed by different subjects.   

At the 67ms ISI duration, the effect generally decreased as flank duration 

increased.  For subject WK (Figure 8), the 67ms flank was an exception, showing 
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less facilitation than the 117ms flank, but more than the 250ms flank.  It seems 

unlikely that the 67ms ISI/67ms flank (SOA = 134ms) was not long enough to 

allow complete integration of the flank contrast.  Using the slower of two cortical 

propagation speeds calculated by Cass and Spehar (2005, 0.1m/s) as a 

reference, a signal should travel approximately 13.4mm in 134ms.  Applying the 

two degree center-to-center separation to Horton and Hoytʼs (1991) cortical 

magnification factor formula (y = 17.3ln(E+0.75)) (where E = eccentricity in 

degrees) yields 17.5mm as the distance a signal would need to travel to link 

stimuli separated by two degrees.   

 While 17.5mm is greater than the estimated 13.4mm that a signal 

could travel in 134ms, it is also necessary to consider that the spatial frequency 

used in this experiment (3 cpd) is 0.5 to 1.5 octaves below the spatial frequencies 

Cass and Spehar (2005) used to calculate the 0.1m/s propagation speed (4.65 

and 9.3 cpd).  Using a 2.32 cpd stimulus in the same paper Cass and Spehar 

estimated a cortical propagation speed of 0.23m/s.  At that speed, a signal  
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Figure 8.  Monoptic viewing CDT by flank duration and ISI for subject WK.  

Detection thresholds are depicted relative to the target alone detection threshold.  

As a result, values greater than zero indicate CDT facilitation and values less that 

zero indicate CDT suppression.  Error bars indicate ± one standard error. 
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would travel approximately 30.82mm and easily reach a point 17.5mm away.  

Given this, it seems unlikely that CDT facilitation being slightly less at 67ms 

ISI/67ms flank duration than 67ms ISI/117ms flank duration is due to a lack of 

integration time. 

At the 117ms ISI, subject WK degree of facilitation decreased with 

increasing flank duration until the 500ms flank approached no effect.  Subject AM 

(Figure 9), also completed the 117 ISI and showed less difference between the 

effect of flank durations than subject WK although the 67ms and 117ms flanks 

did show more facilitation than the 250ms and 500ms duration flanks.  At the 

250ms ISI, subject WK showed facilitation at the 67ms and 117ms flank durations 

and minimal effect at the 250ms and 500ms flank durations.  Subject AW (Figure 

10) showed a similar degree of facilitation for 67ms, 117ms and 250ms flanks.  

Slightly less facilitation was shown at the 500ms flank duration.     

At the 500ms ISI, subject WK showed mild facilitation for the 67ms, 

117ms, and 500ms flank durations.  The CDT was mildly suppressed at the 

250ms flank duration.  Interestingly, subject CL (Figure 11) showed a very similar 

pattern with the 250ms flank duration again showing mild suppression.  While 

only demonstrated in two subjects, the repeatability of this finding indicates that it 

may be significant and warrants further study (i.e. additional subjects). 
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Figure 9.  Individual data for subject AM.  Detection thresholds are depicted 

relative to the target alone detection threshold.  As a result, values greater than 

zero indicate CDT facilitation and values less that zero indicate CDT suppression.  

Error bars indicate ± one standard error.    
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Figure 10.  Individual data for subject AW.  Detection thresholds are depicted 

relative to the target alone detection threshold.  As a result, values greater than 

zero indicate CDT facilitation and values less that zero indicate CDT suppression. 

Error bars indicate ± one standard error.     
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Figure 11.  Individual data for subject CL.  Detection thresholds are depicted 

relative to the target alone detection threshold.  As a result, values greater than 

zero indicate CDT facilitation and values less that zero indicate CDT suppression. 

Error bars indicate ± one standard error.    
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In Figure 12 the monoptic adjusted ratio of CDT with flanks to target alone 

CDT is plotted against the log scale of SOA in milliseconds.  Also in this figure, a 

curve is plotted using an exponential function to fit the arithmetic means of data 

points at each of the SOAs recorded in this experiment (simultaneous 

presentation, 134ms, 184ms, 234ms, 317ms, 367ms, 500ms, 567ms, 617ms, 

750ms, and 1000ms).  At the longest SOA (1000ms), the effect of the flanks 

approached zero.  The exponential function Y = y0+Aexp[-(x-x0)/τ] (Igor Pro v5.0) 

provided a good fit to the data.  Table 1 provides the exponential function 

variables for all viewing and flank conditions.   

 As mentioned previously, there was a strong overall tendency for the 

degree of facilitation to decrease as SOA increased.  Up to the 184ms SOA, the 

amount of facilitation remains fairly steady with only a mild decrease.  From 

184ms up to approximately 500ms the absolute value of the slope increases and 

resembles a linear function.  Beyond 500ms, the slope levels off and approaches 

zero.  The correlation between degree of facilitation and SOA suggests that the 

duration between initial presentation of flanks and presentation of the target is an 

important factor in determining how lateral contrast is integrated to affect the CDT 

of a foveal target. 
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Table 1.  Exponential function variables for 0-1000ms SOA functions.  In this 

exponential function (exp Xoffset from Igor Pro), x0 and y0 are the offset 

constants.  Multiple fits were attempted and the exp Xoffset equation provided 

the best fit (see section 6.1 for a line fit figure).  A represents the initial amount 

constant and t is the decay constant.  Y and x represent the vertical and 

horizontal co-ordinate positioning, respectively.  Errors represent ± one standard 

deviation.  

 

Y= y0+Aexp[-(x-x0)/t] y0 A t 

Monoptic 0.0044 ± 0.0174 0.2009 ± 0.0182 250.7 ± 64.6 

Dichoptic -0.0965 ± 0.0276 0.2051 ± 0.026 324 ± 110 Collinear 
Flanks 

Half-
binocular -0.0747 ± 0.0501 0.2852 ± 0.0459 377.2 ± 153 

Monoptic -0.0914 ± 0.218 0.2135 ± 0.213 1194 ± 1720  
Orthogonal 

Flanks Dichoptic -0.0148 ± 0.0615 0.1507 ± 0.0579 580 ± 466 
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Figure 12.  The effect of monoptic flanks on CDT up to a 1000ms SOA (flank 

duration and ISI combined).  As mentioned in the Methods, subject AW used 4.5X 

contrast flanks and all other subjects used 3X contrast flanks.  Error bars are 

omitted for clarity.  Each individual data point is the product of approximately 700 

trials. An exponential function was fit to the arithmetic means.  CDT facilitation is 

maximal when target and flanks are displayed simultaneously.  The degree of 

facilitation decreases gradually as SOA increases until it approaches no effect at 
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800-1000ms.  At no point do monoptically viewed flanks produce CDT 

suppression. 

5.3 Dichoptic, collinear flank results 

 The dichoptic introduction of collinear flanks generally resulted in CDT 

facilitation at short SOAs, CDT suppression at long SOAs (from approximately 

500ms-1000ms) and a return to approximately no effect at the longest SOAs 

evaluated (1500-3000ms).  The data is best fit by an exponential function and 

generally mirrors the monoptic function shape, but is shifted vertically (Figure 13).  

Where the monoptic function's slope decreases and appears to asymptote near 

no effect, the dichoptic function crosses over into suppression before it returns to 

no effect.  The dichoptic suppression of CDT at long SOAs was unexpected.  The 

study's original hypothesis was that both monoptic and dichoptic conditions 

would show CDT facilitation at short SOAs that would decrease as SOA 

increased until they approached no effect at long SOAs.  The longest SOAs in 

this study (1500ms, 2000ms, and 3000ms) were added to evaluate the duration 

of inter-ocular CDT suppression (Figure 14).  For efficiency, only two subjects 

were evaluated at these longest SOAs.  

 Mean dichoptic, collinear flank effect sizes ranged from maximal facilitation 

of 13.9% ± 4.00% at the 0ms SOA (simultaneous presentation) to maximal 
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suppression of -9.90% ± 5.10% at the 1000ms SOA.  Suppression was observed 

from the 500-1000ms SOAs.  T-tests (SPSS version 19, Table 2) showed that the 

suppression at 500ms, 567ms, 617ms, 750ms, and 1000ms SOAs were 

statistically significantly (p = 0.036, 0.019, 0.034, 0.002, 0.030 respectively, 2-

tailed).  This suppression was consistent across all six subjects who completed 

the two longest SOAs (750 and 1000ms).  This suggests that these suppressive 

effects could be generalized to the rest of the normal population. 
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Figure 13. The effect of dichoptic flanks on CDT up to a 1000ms SOA for 10 

subjects.  Each individual data point is the product of approximately 700 trials.  

Error bars are omitted for clarity.  An exponential function was fit to the arithmetic 

means.  Dichoptic flanks produced maximal CDT facilitation with simultaneous 

target presentation.  The degree of facilitation decreases as SOA increases until 

there is minimal effect around 360ms SOA.  Beyond approximately 400ms, 

dichoptic flanks produced CDT suppression that was maximal at a 1000ms SOA.       
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Table 2.  Statistical analysis of longer SOA threshold suppression produced by 

collinear, dichoptic flanks.  T-tests show statistically significant threshold 

suppression at 500-1000ms SOAs.     

 

 Dichoptic 
SOA 

Mean Difference 
from zero t df Sig (2-tailed) 

500ms -0.0457 -3.645 3 0.036 

567ms -0.0445 -2.929 8 0.019 

617ms -0.0442 -2.738 6 0.034 

750ms -0.0595 -4.997 6 0.002 

1000ms -0.0989 -3.908 3 0.030 
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Figure 14. The effect of dichoptic flanks on CDT up to a 3000ms SOA.  Individual 

error bars are omitted for clarity.  The longest SOAs (1500ms, 2000ms, and 

3000ms) show minimal flank effect for the two subjects evaluated at those SOAs. 
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 As with the monoptic results above, it is appropriate to review the effect of 

flank duration within each ISI.  Again, subject WK completed all ISI/flank duration 

combinations and the other three subjects completed all flank durations within a 

single ISI.  For WK's dichoptic 67ms ISI condition (Figure 15), the degree of 

facilitation was nearly flat between the 67ms and 117ms flank durations.  

Facilitation decreased sharply at the 250ms flank and crossed over into 

suppression at 500ms.  Subject AM also completed the dichoptic 67ms ISI 

condition (Figure 9).  AM's thresholds followed a similar pattern as subject WK's 

(plateau followed by a sharp downward vertical shift) with two major differences.  

First, for subject AM, dichoptic flanks caused suppression throughout the 67ms 

ISI.  Second, subject AM's downward vertical shift occurred at the 500ms flank 

duration as opposed to subject WK's downward shift beginning at the 250ms 

flank.  Subject AM generally showed less dichoptic integration than the other 

three participants.        

 Subject WK's 117ms ISI block (Figure 15) followed a pattern similar to his 

67ms ISI, but crossed over into suppression at the 250ms flank duration, earlier 

than the 67ms ISI.  This is not altogether unexpected since the total SOA at these 

points are roughly comparable.  Subject AM also completed the 117ms ISI under 
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Figure 15.  Dichoptic viewing CDT by flank duration and ISI for subject WK. 

Detection thresholds are depicted relative to the target alone detection threshold.  

As a result, values greater than zero indicate CDT facilitation and values less that 

zero indicate CDT suppression.  Error bars indicate ±1 standard error.   
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dichoptic conditions (Figure 9).  AMʼs thresholds showed a pattern similar to 

subject WK although, as mentioned previously, the dichoptic flanks affected AM's 

thresholds much less than they did under monoptic conditions.  The most 

apparent pattern in Figure 9 is the similarity of subject AM's 117ms ISI monoptic 

and dichoptic curves.  The curve shapes are nearly identical with the dichoptic 

curve shifted vertically downward.  At least for AM, this argues in favor of a 

similar method of intra and inter-ocular contrast integration.         

 Subject WK's 250ms ISI pattern closely resembles the 117ms ISI pattern, 

but with slightly less facilitation at the 67ms and 117ms flank durations and 

slightly less suppression at the 250ms and 500ms flank durations.  Closely 

resembling WK's results, subject AW showed slight facilitation at the 67ms and 

117ms flank durations and mild suppression at the 250ms and 500ms flank 

durations.  Although not a striking as AM's 117ms ISI blocks, subject AW's 

monoptic and dichoptic 250ms ISI conditions (Figure 10) closely resemble one 

another, but with the dichoptic condition shifted vertically downward.       

 At the 500ms ISI WK's results show suppression of the detection threshold 

throughout that increases slightly as SOA increases.  Subject CL also completed 

the 500ms ISI dichoptic condition (Figure 11).  This subject showed close to zero 

effect at the shorter ISIs, which transitioned to slight suppression at the longer 

SOAs. 
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 Figure 16 shows the mean flank effect by flank duration and ISI for all 10 

subjects that participated in the dichoptic viewing condition.  Within every ISI 

(67ms, 117ms, 250ms, and 500ms) the CDT decreases as flank duration 

increases.  With the exception of the 117ms and 250ms ISIs, the ISI sets 

resemble one another in shape, but are vertically shifted with the longer ISIs 

having lower overall CDTs.  The 117ms and 250ms ISI sets have approximately 

the same shape and vertical positioning.      

 In Figure 13 the dichoptic adjusted CDT ratio is plotted against the log of 

the stimulus onset ratio.  An exponential function provides a good fit to arithmetic 

means of the data points at each SOA.  This function's curve is plotted on the 

figure in solid red.  The curve starts with approximately 11% facilitation when the 

flanks are presented simultaneously.  The degree of facilitation decreases 

gradually as SOA increases until approximately 400-500ms SOA when the flank 

effect transitions to CDT suppression.  The suppressive effect persists up to the 

1000ms SOA.  Beyond that (1500-3000ms), the flank effect is minimal (Figure 

14).     

 Compared to the monoptic function shown in Figure 12, there are two 

obvious differences.  First, the dichoptic individual data shows more variability 

than the individual monoptic data, especially at shorter SOAs.  The dichoptic 

exponential function fits the dichoptic data well.  Previous experiments in this lab  
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Figure 16.  The mean effect of dichoptic flanks on CDT by flank duration and ISI.  

Each data point represents the mean for all subjects that contributed to that flank 

duration/ISI combination.  For each ISI, CDT decreases as flank duration 

increases.  
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that utilized monoptic and dichoptic conditions have also reported more dichoptic 

inter-subject variability.  As mentioned previously, subject AM in particular added 

to the variability.  AM showed mild CDT facilitation with simultaneous flank 

presentation, but beyond that showed either suppression or approximately no 

effect at each SOA.  Subject MM (Figure 13) also appeared to show minimal 

inter-ocular contrast integration at short SOAs.  The second difference is a 

vertical shift of the dichoptic function compared with the monoptic function.  This 

shift is remarkably consistent across the entire range of SOAs. 

 To review, dichoptic flank presentation produced CDT facilitation at shorter 

SOAs (up to 500ms) and unexpected CDT suppression at longer SOAs (500-

1000ms).  At the longest SOAs (1500-3000ms), dichoptic flank effects were 

minimal.  Compared to the monoptic flank findings, inter-subject variability was 

greater with dichoptic flank presentations.  The unanticipated dichoptic CDT 

suppression at longer SOAs prompted the inclusion of a half-binocular (Meese 

and Hess, 2005) viewing condition (discussed below in section 5.4).   

5.4 Half-binocular, collinear flank results 

 In addition to the previously described monoptic and dichoptic viewing 

conditions, four subjects completed at least a single ISI block of the half-binocular 

condition.  Two of those four subjects (WK and MM) completed the entire half-  
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Figure 17.  Half-binocular and dichoptic flank effects for subjects WK and MM 

(the only two subjects to complete the entire half-binocular and dichoptic viewing 

conditions).  With half-binocular viewing, WK and MM show similar degrees of 

CDT facilitation at shorter SOAs.  At longer SOAs (750ms and 1000ms), half-

binocular flanks showed minimal effect on WK's thresholds and suppressed 

MM's thresholds.  For both subjects, simultaneous dichoptic viewing produced 

CDT facilitation that decreased with increasing SOA and became CDT 

suppression at longer SOAs.  However, for subject MM, CDT suppression began 

at shorter SOAs than it did for subject WK.   
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binocular condition.  Their half-binocular results (along with their dichoptic 

results) are shown in Figure 17.  For half-binocular viewing, the flanking stimuli 

were presented to both eyes, but the target was only presented to the dominant 

eye.  In essence, the half-binocular condition is a combination of the monoptic 

and binocular flanks.  The effect produced by half-binocular flanks might  

 From Figure 18, the simultaneous presentation of half-binocular flanks 

resulted in mean CDT facilitation of 18.0% ± 4.2%.  Maximal facilitation occurred 

at the 134ms SOA (21.0% ± 0.7%).  The degree of CDT facilitation generally 

decreased as SOA increased until the mean effect crossed over to suppression 

at the 750ms and 1000ms SOAs with maximal CDT suppression occurring at 

1000ms (-5.3% ± 4.7%).  However, t-tests (SPSS version 19) showed that the 

suppression was not statistically significant at the 750ms (p = 0.201, 2-tailed) and 

1000ms (p = 0.194, 2-tailed) SOAs.   

 An exponential function fit to the half-binocular means provides a good fit 

(Figure 18).  It resembles the monoptic and dichoptic functions in shape, but 

some differences are apparent.  At shorter SOAs (0-500ms) the half-binocular 

function nearly overlays the monoptic function.  However, from the 500-1000ms 

SOAs the half-binocular function diverges from the monoptic function and lies 

midway between the monoptic and dichoptic functions in terms of relative 
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facilitation.  At the longest SOAs (1500-3000ms) the effect of half-binocular flanks 

approaches no effect (Figure 19). 

 To review, half-binocular flanks produced CDT facilitation at shorter SOAs 

(up to 750ms), mild suppression at longer SOAs (750-1000ms), and minimal 

effect at the longest SOA (1500-3000ms).  This pattern closely resembles the 

monoptic flank effect at shorter SOAs and appears to be a combination of 

monoptic and dichoptic flank effects at longer SOAs (Figure 31 in the Discussion 

shows all three viewing condition functions on the same graph).   
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Figure 18. The effect of half-binocular flanks on CDT up to a 1000ms SOA.  Each 

individual data point is the product of approximately 700 trials. An exponential 

function was fit to the arithmetic means.  Error bars are omitted for clarity.  Half-

binocular flanks produced CDT facilitation at shorter SOAs with maximum 

facilitation at the 134ms SOA.  The degree of facilitation gradually decreased to 

approximately 600ms.  Beyond 600ms, half-binocular flanks produced mild CDT 

suppression.  
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Figure 19. The effect of half-binocular flanks on CDT up to a 3000ms SOA.  

Individual error bars are omitted for clarity.  The longest SOAs (1500ms, 2000ms, 

and 3000ms) show minimal flank effect for the four subjects evaluated at those 

SOAs. 
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5.5 Effect of flank contrast  

 In my pilot experiment, flanker contrast was increased to 9X the flank 

contrast detection threshold and the collinear flank experiment was repeated for 

one subject (WK) under monoptic conditions for all flank durations within the 

117ms ISI duration.  This resulted in the generation of five thresholds 

(simultaneous, 67ms, 117ms, 250ms and 500ms flank durations) for the 9X 

flanks.  These are plotted in Figure 20 along with the comparable 3X flanks 

contrast values for subject WK.  While it is difficult to draw conclusions from a 

limited data set, the available data suggest that thresholds may be mildly 

depressed relative to the 3X flanks for simultaneous, 67ms and 117ms flank 

durations.  The 250ms and 500ms 9X flank thresholds are very similar to 

thresholds for the 3X flanks. 

  Another point relevant to the flank contrast effect is that subject AW 

completed the 250ms ISI block of the monoptic, collinear flank experiment using 

4.5X contrast flanks instead of the 3X flanks used in the rest of the study (see 

Methods section).  In Figure 12, AW's 4.5X flank thresholds are very similar to the 

other subject's 3X flank thresholds.  Again, this is a limited dataset, but it 

suggests that the difference between 3X and 4.5X contrast flanks is minimal.      
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 To summarize, relative to the 3X flank thresholds used in the main 

experiment, there is mild threshold suppression with 9X contrast flanks at the 

shorter flank durations that decreases until it converges with the 3X thresholds at 

longer flank durations.  This finding is important because it suggests that the 3X 

flanks used in the main experiment were consistent with the goal of obtaining 

maximal facilitation. 
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Figure 20.  Monoptic 3X and 9X threshold flanks produce similar effects.  Data is 

from a single subject (WK) and the ISI is 117ms for all data points.  3X flanks 

produced a slightly greater effect (CDT facilitation) than 9X flanks for 

simultaneous, 67ms, and 117ms flank durations.  The effect of 3X and 9X flanks 

was very similar for 250ms and 500ms flank durations.  This finding is important 

because it suggests that the 3X flanks used in the main experiment were 

consistent with the goal of obtaining facilitation in the pilot study paradigm. Error 

bars indicate ± one standard error. 
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5.6 Relative contribution of flank duration vs. interstimulus interval to the 

overall flank effect  

 The hypothesis regarding the relative contribution of flank duration vs. ISI 

was that the total duration from initial flank presentation to onset of the test 

stimulus (i.e. ISI + flank duration) is the most important contributor in determining 

flank effect on CDT.  However, the preceding sections have only described the 

effect of the total duration (SOA) on CDT.  These total SOA results are 

summarized in the followed paragraph and then a method of separating the 

relative contribution of flank duration vs. ISI is described.      

 The adjusted effect on CDT [1-(target threshold with flanks/target 

threshold)] was plotted against the SOA on a log scale in milliseconds.  When the 

arithmetic means for all subjects who participated in the project were fit to an 

exponential function the resulting curve initially showed maximal relative 

facilitation at shorter SOAs.  The degree of facilitation decreased as SOA 

increased until it approached no effect (monoptic viewing) or CDT suppression 

(dichoptic and half-binocular viewing) at longer SOAs and approached no effect 

at the longest SOAs evaluated in this study (1500-3000ms).    

 This finding supports the importance of SOA in determining the flank effect 

on CDT, but does not address the relative importance of ISI and flank durations.  
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To parse out the contributions of ISI versus flank duration the adjusted effect on 

CDT was plotted against the ratio of ISI duration to total SOA duration. This was 

accomplished by creating pairs of data points in which total SOA was the same, 

but the duration of the flanks and ISIs differed.  

 The first step in creating the plot was describing each flank/ISI 

combination as an ISI/SOA ratio.  For example, the combination of a 250ms ISI 

and a 500ms flank presentation (750ms SOA) results in a 0.33 ISI/SOA ratio.  

The ISI/SOA ratios were then paired by SOA.  Continuing the previous example, 

the 0.33 ratio would pair with the 0.67 ratio (250ms flank and 500ms ISI) to form 

a 750ms SOA pair.  A total of 6 SOA pairs were formed (184, 317, 367, 567, 617, 

and 750ms).   

 A lower ISI/SOA ratio indicates a greater flank contribution to the total SOA 

and higher ISI/SOA ratios show greater ISI contributions.  This plot provides a 

more convenient means of comparing flank/ISI duration effects.  While the effect 

of total SOA is deemphasized, it is still visible via the Y-axis positioning of the 

SOA pairs.  The If flank duration and ISI contribute equally to the flankʼs effect on 

CDT, a line plotted through the means at each ISI/SOA ratio (between SOA pairs) 

would be expected to be flat (zero slope).  A positive slope would suggest that the 

ISI has a greater effect and a negative slope would be associated with a greater 

effect from flank duration.   
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 Within each viewing condition, the mean for every ISI/SOA ratio were 

blocked by SOA pair creating a greater flank contribution group and a greater ISI 

contribution group.  Table 2 displays the descriptive statistics for these groups. 

The groups were then evaluated for statistically significant differences using a 

paired two-sample t-test (SPSS version 19.0).  The use of a paired t-test 

controlled for the effect of overall SOA and resulted in greater power than a 

simple t-test. 	  

 In the monoptic condition (Figure 21), a line plotted through the means at 

each ISI/SOA ratio has a negative slope (-0.067).  A visual inspection of Figure 

20 also shows that all individual ISI/SOA ratio pairings have a slightly negative 

slope.  This suggests that the flank duration may have had greater contribution to 

the overall effect than ISI duration.  The longer flank duration group's mean effect 

was 8.5% ± 2.6% (SEM) and the longer ISI duration group's mean effect was 

5.0% ± 2.5%.  Linear regression (Table 3) showed a highly significant correlation 

between the longer flank group and the longer ISI group (r2=0.984, p<0.000, one 

tailed).  A paired samples t-test (Table 4) gave a mean difference of 3.5% ± 0.3%.  

With five degrees of freedom and a t-value of 10.57, this test showed a highly 

significant difference (p<0.000, two-tailed) between flank longer and ISI longer  
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Figure 21.  Monoptic flank duration and ISI component effects.  Each line on the 

figure represents a complementary flank duration/ISI pairing that equals the 

same SOA.  For example, the 750ms SOA pair consists of 250ms flank/500ms 

ISI and 500ms flank/250ms ISI points.  The relative contribution of flank duration 

or ISI is represented on the X-axis by the ISI/SOA ratio.  A lower ISI/SOA ratio 

indicates a greater flank contribution and a higher ISI/SOA ratio indicates a 

greater ISI contribution.  A line fit to the means has a negative slope (-0.067) that 

closely resembles all of the SOA pairs and shows a greater contribution of flank 

duration than ISI to the overall effect.   
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groups.  This indicates that, contrary the hypothesis, flank duration contributed 

more to the overall effect than ISI duration.  

 Analysis of the dichoptic ISI/SOA ratio plot (Figure 22) is less 

straightforward than analysis of the monoptic plot because at longer SOAs the 

flank effect changes from CDT facilitation to CDT suppression.  Hence, for the 

184ms, 317ms, and 367ms SOA pairs a positive slope would indicate the ISI 

contributed more the overall effect than flank duration.  For 567ms, 617ms, and 

750ms SOA pairs, a positive slope would indicate that flank duration had a 

greater contribution to the overall effect than ISI.  However, a visual analysis of 

these pairs does not show any obvious trends.  Since the flank effect (CDT 

facilitation vs. suppression) is dependent on SOA, a line was not fit to the means.   

 Due to the transition in dichoptic flank effect mentioned above, SOA pairs 

that produced CDT suppression (567ms, 617ms, and 750ms pairs) were included 

as absolute values in a paired t-test analysis. The longer flank group's mean 

effect was 4.2% ± 1.9% and the longer ISI group's mean effect was 4.5% ± 1.3%.  

Linear regression (Table 3) showed a non-significant correlation between the 

longer flank group and the longer ISI group (r2 = 0.236, p = 0.328, one-tailed).  A 

paired samples t-test (Table 4) gave a mean difference of -0.3% ± 1.7%.  This 

difference was not significant (t = -0.194, p = 0.854, two-tailed) and supports the  
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Figure 22.  Dichoptic flank duration and ISI component effects.  Each line on the 

figure represents a complementary flank duration/ISI pairing that equals the 

same SOA.  For example, the 750ms SOA pair consists of 250ms flank/500ms 

ISI and 500ms flank/250ms ISI points.  The relative contribution of flank duration 

or ISI is represented on the X-axis by the ISI/SOA ratio.  A lower ISI/SOA ratio 

indicates a greater flank contribution and a higher ISI/SOA ratio indicates a 

greater ISI contribution.  The 184ms and 367ms pairs show conflicting trends and 

the other ISI pairs do not demonstrate an overall trend.   
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hypothesis that overall SOA is the most important contributor to the flank effect 

for the dichoptic viewing. 

 For half-binocular viewing (Figure 23), the flank effect changed from CDT 

facilitation to suppression for the 750ms SOA pair.  Hence, the 750ms SOA 

values were included as absolute values.  Also, as in the dichoptic condition, 

since the flank effect was dependent on SOA, a line was not fit to the means.  

The longer flank mean effect was 9.2% ± 1.9% and the longer ISI mean effect 

was 5.2% ± 2.8% (Table 2).   

 The relationship between the longer flank group and the longer ISI group 

was significant (Table 3; r2 = 0.803, p = 0.016, one-tailed).  A paired samples t-

test (Table 4) gave a mean difference of 4.1% ± 1.4%.  The difference between 

the flank longer and ISI longer groups was significant with five degrees of 

freedom (t = 2.886, p = 0.034, two-tailed).  Thus, for half-binocular viewing, flank 

duration contributed more to the overall effect than ISI duration.  For half-

binocular viewing, this result contradicts the hypothesis that overall SOA is the 

most important contributor to the flank effect. 

 To summarize, under monoptic and half-binocular viewing flank duration 

had a significantly greater contribution to the overall effect than ISI.  This 
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contradicted the hypothesis that flank duration and ISI contribute equally to the 

overall effect.  Monoptic viewing produced less variability than the half-binocular 

or dichoptic viewing conditions that included inter-ocular flank data.  The 

consistent, negative slopes of the SOA pairs in Figure 20 are evidence of this.  

Dichoptic viewing did not show a significant difference in effect contribution 

between flank duration and ISI.  Hence, the hypothesis that total SOA has 

greatest effect contribution was supported for dichoptic viewing.         
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Figure 23.  Half-binocular flank duration and ISI component effects.  Each line on 

the figure represents a complementary flank duration/ISI pairing that equals the 

same SOA.  For example, the 750ms SOA pair consists of 250ms flank/500ms 

ISI and 500ms flank/250ms ISI points.  The relative contribution of flank duration 

or ISI is represented on the X-axis by the ISI/SOA ratio.  A lower ISI/SOA ratio 

indicates a greater flank contribution and a higher ISI/SOA ratio indicates a 

greater ISI contribution.  With the exception of the 184ms SOA pair, the SOA 

pairs less than 750ms show a negative slope.  Since the overall effect of half-

binocular flanks at SOAs less than 750ms is CDT facilitation, a negative slope for 
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these SOA pairs indicates that flank duration had a greater contribution than ISI 

to the overall effect.  At the 750ms SOA, the overall effect of half-binocular flanks 

is CDT suppression.  Hence, the positive slope exhibited by the 750ms SOA pair 

also indicates that flank duration had a greater contribution than ISI to the overall 

effect.      
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Table 3.  Flank duration vs. ISI paired sample descriptive statistics. 
 

 
Mean N Std. Deviation 

Flank longer  .085799 6 .0637786 
Monoptic 

ISI longer  .050483 6 .0618035 

Flank longer .092450 6 .0454899 Half-
binocular ISI longer .051833 6 .0686469 

Flank longer .042000 6 .0467974 
Dichoptic 

ISI longer .045333 6 .0324572 
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Table 4.  SOA paired sample correlations by viewing condition.  A total of six SOA 

pairs were formed (184, 317, 367, 567, 617, and 750ms).  Within each SOA pair, 

a Pearson correlation test (SPSS version 19) was used to examine the 

relationship between the point with a greater flank contribution and the point with 

a greater ISI contribution.  The resulting correlation values demonstrate strong, 

statistically significant correlations for the monoptic and half-binocular flanks.  

Dichoptic flanks show a much weaker correlation that is not statistically 

significant.       

 
 

Viewing Condition  N Correlation (r2) Sig. 

Pair 1 Monoptic 6 .992 .000 

Pair 2 Half-binocular 6 .896 .016 

Pair 3 Dichoptic 6 .486 .328 
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Table 5.  Paired samples t-tests evaluating the relative contributions of flank 

duration and ISI.  Within each viewing condition, the mean for every ISI/SOA ratio 

was blocked by SOA pair creating greater flank contribution and greater ISI 

contribution groups.  The use of a paired t-test controlled for the effect of overall 

SOA and resulted in greater power than a simple t-test.  The difference between 

greater flank contribution and greater ISI contribution groups was significant for 

the monoptic and half-binocular viewing conditions.  However, there was not a 

significant difference between the greater flank and greater ISI contribution group 

with dichoptic viewing.              

 

Paired Differences 

 

Mean 
Std. 

Deviation 

Std. Error of 
Difference 
Between 
Means t df 

 
P-value   

(2-tailed) 

Pair 1 Monoptic .03532 .00818 .00334 10.58 5 < .001 

Pair 2 Half-binocular .04062 .03448 .01407 2.89 5 .034 

Pair 3 Dichoptic -.00333 .04202 .01716 -0.19 5 .854 
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5.7 Monoptic and dichoptic orthogonal flank results 

 In an effort to explain the unexpected suppression seen with long SOA 

dichoptic and half-binocular flanks, a supplemental experiment was run using 

orthogonal flanks under monoptic and dichoptic viewing.  For efficiency, half-

binocular, orthogonal flanks were not included since their inclusion was not 

expected to yield any information that could not be gleaned from the dichoptic 

data.  Simultaneous presentation of monoptic, orthogonal flanks produced CDT 

facilitation (10.6% ± 2.3%) that generally decreased as SOA increased until it 

approached no effect at the 1000ms SOA (1.3% ± 0.3%).  The two subjects who 

participated in the monoptic, orthogonal flank experiment (CP and WK) showed 

similar responses at all six evaluated SOAs (Figure 24). 

 Simultaneous presentation of dichoptic, orthogonal flanks produced CDT 

facilitation (12.3% ± 6%).  As with monoptic presentation, the degree of 

facilitation decreased as SOA increased until it approached no effect at the 

1000ms SOA (2.1% ± 1.8%).  Three of the four subjects showed consistently 

small amounts of inter-subject variability (Figure 25).  The fourth (MM) showed 

minimal inter-ocular contrast transfer, as demonstrated by low degrees of CDT 

facilitation.  Subject MM's dichoptic, collinear flank findings (Figure 16) also show 

minimal effects of inter-ocular contrast transfer at shorter SOAs (where most 
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subjects showed facilitation).  However, at longer SOAs subject MM 

demonstrated CDT suppression at levels comparable to the group means.  

 Both monoptic and dichoptic orthogonal flank means were fit to the same 

exponential function (Y = y0+Aexp[-(x-x0)/τ]) as in the main experiment (Table 1).  

A comparison of the monoptic and dichoptic orthogonal flank functions (Figure 

26) shows that the functions are very similar in shape and vertical placement on 

the plot.  Here, the most pertinent finding to the experiment's purpose is that 

dichoptic, orthogonal flanks did not produce CDT suppression at any of the 

evaluated SOAs.  This supports the hypothesis that the long SOA CDT 

suppression produced by inter-ocular flank contrast is due to adaptation to an 

illusory contour (see section 6.4 of the Discussion).  
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Figure 24.  Monoptic, orthogonal flanks produce CDT facilitation.  Error bars 

represent ± 1 SD.  The degree of facilitation decreases as SOA increases.  At the 

1000ms SOA, the flank effect approaches no effect. 
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Figure 25. Dichoptic, orthogonal flanks produce CDT facilitation. Error bars 

represent ± 1 SD.  The degree of facilitation decreases as SOA increases.  At the 

1000ms SOA, the flank effect approaches no effect. 
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Figure 26.  Orthogonal flanks under monoptic and dichoptic viewing produce very 

similar exponential functions.  Data points represent arithmetic means of all 

available thresholds. 
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5.8 Relationship between CDT and slope of the psychometric function  

 To better understand the relationship between detection threshold and the 

slope of the Weibull psychometric function, slope was plotted against CDT for 

each of the main (collinear flank) experiment viewing conditions.  Thus, each 

point on the scatter plots (Figures 27-30) represents the CDT and slope of a 

Weibull function and is the result of approximately 700 trials (see section 3.7 of 

the Methods).  A regression line was then fit to the points on the scatter plot. 

 Analysis of 35 monoptic contrast detection thresholds (Figure 27) shows a 

regression line with a positive slope (0.174 ± 0.042 (SD)) indicating a positive 

relationship between CDT and slope (i.e. as threshold increased slope also 

tended to increase).  The Pearson correlation between threshold and slope is 

0.595 (p < 0.001, 1-tailed).  The r2 value is 0.354 indicating that 35.4% of the 

variability in slope values is directly predictable from the variability in threshold 

values. 

 Analysis of 81 dichoptic collinear flank thresholds (Figure 28) shows a 

positive relationship between CDT and slope (regression line slope = 0.103 ± 

0.029).  The Pearson correlation between slope and threshold is 0.369 (p < 

0.001, 1-tailed) and the r2 value is 0.136 indicating that 13.6% of the variability in 

slope values is directly predictable from the variability in threshold values.  Fifty 
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half-binocular collinear flank thresholds were analyzed (Figure 29) and show a 

positive relationship between CDT and slope (regression line slope=0.180 ± 

0.023).  The half-binocular viewing condition's Pearson correlation between slope 

and threshold is 0.746 (p < 0.001, 1-tailed).  The corresponding r2 value of 0.556 

indicates that 55.6% of the variability in slope can be explained by the variability 

in CDT. 

 Figure 30 shows all three viewing conditions plotted on a single graph.  

The most apparent observation is the similarity of the monoptic and half-binocular 

regression lines.  The slopes of the monoptic and half-binocular regression lines 

(0.174 ± 0.042 and 0.180 ± 0.023 respectively) are similar and the lines on the 

plot almost completely overlap.  They also show a stronger correlation between 

CDT and slope (r2 = 0.354 and 0.556 for monoptic and half-binocular 

respectively) than the dichoptic condition (r2 = 0.136), which also has a flatter 

slope. 

 In summary, an analysis of the relationship between detection thresholds 

and slopes of the psychometric function suggests similarities between the 

monoptic and half-binocular viewing conditions, both of which contain intra-ocular 

flank contrast.  This analysis also shows a trend toward differences between 

intra-ocular flanks contrast integration (monoptic and half-binocular viewing) and 

inter-ocular contrast integration (dichoptic viewing).  However, due to high 
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variability, the 95% confidence intervals overlap for all three viewing condition's 

regression line slopes.  This high variability also precluded an analysis that 

included SOA.   

 Shallower psychometric function slopes are generally associated with 

threshold reductions.  The positive correlation between CDT and slope for all 

three viewing conditions in the present study is consistent with this association.  

The relatively flat slope of the dichoptic regression line (compared with the 

monoptic and half-binocular regression line) appears to be primarily the result of 

greater dichoptic threshold variability at steeper slopes (Figure 30).  Even at low 

thresholds some dichoptic slopes were relatively steep.  This is consistent with 

dichoptic contrast integration being a fundamentally more difficult task.  In total, 

although not statistically significant, these results agree with prior findings (see 

sections 5.2, 5.3, and 5.4 of the Discussion) that intra-ocular, collinear contrast 

integration is governed by a different neural mechanism than inter-ocular, 

collinear contrast integration.      
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Figure 27.  Slope vs. contrast detection threshold regression for monoptic 

viewing.  The mean slope value is 4.60 ± 0.74 (SD).  
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Figure 28.  Slope vs. contrast detection threshold regression for dichoptic 

viewing.  The mean slope value is 4.50 ± 0.76 (SD). 

 

 

 

 



	   150	  

 

 

Figure 29.  Slope vs. contrast detection threshold regression for half-binocular 

viewing.  The mean slope value is 4.46 ± 0.78 (SD). 
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Figure 30.  Weibull function slope plotted against contrast detection threshold by 

viewing condition. 
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Table 6.  Relationship between CDT and slope of the psychometric function by 
viewing condition.  Errors represent ± one standard deviation. 
 

 
Regression 

Slope 
Pearson 

Correlation 
r2 

Monoptic  0.174 ± 0.042 0.595  (p < 0.001) 0.354 

Dichoptic  0.103 ± 0.029 0.369  (p < 0.001) 0.136 

Half-binocular 0.180 ± 0.023 0.746 (p < 0.001) 0.556 
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5.9 Summary of results 

 Collinear flank effects on contrast detection thresholds (CDT) were 

measured under monoptic, dichoptic and half-binocular viewing conditions at 

SOAs ranging from 0ms (simultaneous presentation) to 3000ms.  Monoptic flanks 

(Figure 12) produced CDT facilitation at shorter SOAs.  Simultaneous 

presentation produced maximal facilitation (18.9% ± 3.86% (SE)).  Monoptic flank 

effects approached zero at the longest SOAs evaluated, but never produced CDT 

suppression.   

 As expected, simultaneously presented collinear, dichoptic flanks (Figure 

14) produced less CDT facilitation (13.9% ± 4.00%) than simultaneous monoptic 

flanks.  This is evidence of decreased inter-ocular contrast integration.  At longer 

SOAs (500-1000ms), dichoptic flanks produced unexpected CDT suppression 

(9.9% ± 5.1% at the 1000ms SOA).  This suppression was statistically significant 

at all five longer SOAs (500ms, 567ms, 617ms, 750ms, 1000ms; p < 0.05).   

 Half-binocular flanks (Figure 18) produced CDT facilitation levels similar to 

monoptic viewing at shorter SOAs (18.0% ± 4.20% with simultaneous 

presentation).  The degree of half-binocular flank facilitation decreased with 

increasing SOA until the effect changed to CDT suppression at the 750ms and 

1000ms SOAs.  However, this suppression was not statistically significant.  The 
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maximal suppression produced by half-binocular flanks was approximately one-

half of the maximal suppression produced by dichoptic flanks (5.3% ± 4.7% at the 

1000ms SOA), suggesting that the intra-ocular flanks mediated the effect of the 

inter-ocular flanks.   

 The individual contributions of collinear flank duration and ISI to the overall 

effect were also examined.  In the monoptic condition, there was a trend toward 

flank duration having a greater contribution than ISI duration.  However, this trend 

was not statistically significant (p > 0.05).  In the dichoptic condition, ISI tended to 

have a greater contribution to the overall effect than flank duration.  Again, this 

trend was not statistically significant (p > 0.05).  Overall, the complete SOA (flank 

duration + ISI) appeared to make the greatest contribution to effect size.  

 To evaluate the hypothesis that the unexpected inter-ocular flank 

suppression at long SOAs was due to adaptation to an illusory contour, 

orthogonal flanks effects were measured under monoptic and dichoptic viewing.  

Intra-ocular (monoptic) and inter-ocular (dichoptic) flanks produced similar levels 

CDT facilitation with simultaneous presentation (monoptic 10.6% ± 2.3%, 

dichoptic 12.3% ± 6.0%).  Figures 23 and 24 show individual subject and mean 

data for orthogonal flank monoptic and dichoptic viewing, respectively.  For both 

orthogonal flank viewing conditions, the degree of facilitation decreased with 

increasing SOA until the flank effect approached zero at the 1000ms SOA.  



	   155	  

Figure 25 demonstrates the similarity of exponential functions fit to the monoptic 

and dichoptic orthogonal flank means.  The absence of orthogonal flank CDT 

suppression at longer SOAs supports the hypothesis that adaptation to an 

illusory contour produced the CDT suppression observed with inter-ocular, 

collinear flanks at longer SOAs (500-1000ms).       
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Chapter 6 

 

Discussion 

6.1 Comparison of intra-ocular and inter-ocular lateral contrast integration 

across space 

Collinear flanks 

 As expected, flank contrast did transfer inter-ocularly to affect target 

detection thresholds under dichoptic and half-binocular viewing conditions.  Intra-

ocular flank contrast (monoptic viewing) produced CDT facilitation with 

simultaneous presentation.  The facilitatory effect decreased as the temporal 

separation between initial flank presentation and target presentation (SOA) 

increased until it approached minimal effect at the longest SOAs.  Inter-ocular 

flank contrast also produced CDT facilitation at simultaneous and shorter SOAs.  

However, at longer SOAs (500-1000ms for dichoptic viewing and 750-1000ms for 

half-binocular viewing) inter-ocular flank contrast produced CDT suppression that 

approached no effect beyond 1000ms.   

 Monoptic and half-binocular viewing produced similar degrees of 

facilitation at simultaneous and short SOAs.  At the same SOAs dichoptic viewing 
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Figure 31.  The mean effect of monoptic, dichoptic, and half-binocular collinear 

flanks on CDT up to the 1000ms SOA.  Exponential functions are fit to each 

viewing condition.  The monoptic and half-binocular functions appear very similar 

up to approximately 400ms SOA.  Beyond 400ms, they diverge with the monoptic 

function asymptoting at approximately no effect and the half-binocular function 

transitions to CDT suppression at the longest SOAs.  The dichoptic function is 

shaped similarly to the monoptic function, but shifted vertically such that beyond 

400ms dichoptic flanks produced CDT suppression.        
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Figure 32.  Line functions fit to collinear flank data up to the 1000ms SOA.  Line 

functions provide reasonable fits to the dichoptic and half-binocular data.  

However, for the monoptic data, an exponential function (Figure 30) provides a 

better fit than a line function.  This poor fit is especially noticeable at longer SOAs 

where the line function predicts CDT suppression that is not reflected in the data.   
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produced approximately one-half the degree of facilitation effect.  Figure 31 

shows exponential functions fit to the mean values for all subjects. These results 

were expected based on prior studies in our lab that demonstrated reduced inter-

ocular integration of contrast across space (unpublished data).  Interestingly, a 

visual inspection of Figure 31 shows that at SOA durations beyond 500ms the 

half-binocular exponential function falls approximately midway between the 

monoptic and dichoptic exponential functions.  This matches the qualitative 

expectation that a viewing condition including both intra-ocular and inter-ocular 

flank contrast would fall between the monoptic and dichoptic flank functions. 

 At the longest SOAs, the collinear flank effect approached zero for both 

intra-ocular and inter-ocular contrast integration.  In Figure 33 lines plotted 

through the 1500ms, 2000ms, and 3000ms SOAs for monoptic, dichoptic, and 

half-binocular viewing conditions converge at the 3000ms SOA.  Given this 

convergence at a minimal level of facilitation (2.1% for monoptic, 1.4% for 

dichoptic, and 1.6% for half-binocular) and the relative stability of all three 

viewing conditions at the longest SOAs, committing subject resources beyond the 

3000ms SOA seemed unnecessary.             
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Figure 33.  All three collinear flank viewing conditions approached no effect at the 

longest SOAs (1500-3000ms).  For monoptic viewing, an exponential function is 

fit to the entire range of SOAs (0-3000ms) and asymptotes at minimal facilitation 

after approximately 750ms.  Dichoptic and half-binocular viewing are fit with 

exponential functions for 0-1000ms SOAs.  Beyond 1000ms (1500-3000ms), 

dichoptic and half-binocular viewing are fit with line functions and approach 

minimal facilitation.  All three collinear viewing conditions converge at the longest 

SOA evaluated (3000ms).        
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Orthogonal flanks 

 Orthogonal flank contrast transferred both intra- and inter-ocularly.  As 

shown in Figure 34, monoptic and dichoptic flank effects closely resembled one 

another across the entire range of evaluated SOAs (0-1000ms).  This suggests 

that the intra- and inter-ocular mechanisms of contrast integration are similar 

when the target and flanks differ in orientation.  With simultaneous presentation 

and at shorter SOAs, the effect was CDT facilitation.  This effect decreased as 

SOA increased and approached zero at the 1000ms SOA.  Of particular interest 

to the present study is the lack of SOA suppression under either orthogonal 

flanks viewing condition.   

 Figure 34 also allows an easy comparison of the dichoptic collinear and 

dichoptic orthogonal flank functions.  With dichoptic, simultaneous presentation of 

flanks and target, the degree of facilitation is similar for both flank orientations.  

However, as SOA increases the vertical displacement between the dichoptic 

collinear and dichoptic orthogonal function increases.  This suggests that the 

inter-ocular contrast integration mechanism is orientation channel specific.         
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Figure 34.  Comparison of collinear and orthogonal functions by viewing 

condition.  The shape and vertical placement of orthogonal monoptic and 

dichoptic functions closely resemble one another, suggesting that the intra-ocular 

and inter-ocular mechanisms of contrast integration are similar for contrast from 

outside the orientation channel.  The collinear monoptic and dichoptic functions 

resemble one another in shape, but are vertically displaced.   
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6.2 Underlying neural mechanisms 

 The transducer model was originally applied to same space, pedestal-type 

presentation of contrast, but has also been applied to spatially separated target 

and flank contrast (Solomon, et al., 1999).  In the transducer model of contrast 

integration, CDT facilitation is thought to be the result of interactions within a 

single neuron or localized group of neurons (Georgeson and Georgeson, 1987).  

Lower detection thresholds are caused by a criterion change in neuronal 

response (response threshold).  At near threshold contrast levels, the neuronal 

response is accelerating and CDTs are lowered.  At higher, suprathreshold 

contrast levels, the neuronal response is decelerating and CDTs are elevated.  

Figure 35 illustrates the contrast response function described above and explains 

the four stages of the function. 

 The non-linearity of the contrast response function described above 

produces a psychophysical contrast discrimination function known as the "dipper 

effect" (Figure 35).  When a low contrast pedestal stimulus (typically from 0-1% 

for low spatial frequencies) is presented simultaneously with and in the same 

space as a target, the target just-noticable difference (jnd) contrast threshold is 

decreased below the target absolute detection threshold (i.e. facilitation).  As the 

pedestal contrast increases), the target jnd then increases above the target 

absolute detection threshold (i.e. suppression).   
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 Legge and Foley (1980) showed that subthreshold pedestals (the pedestal 

itself is not perceived) facilitate the detection of a luminance grating and 

suprathreshold pedestals suppress detection of a luminance grating.  Based on 

their results, they proposed a model could account for the dipper function.  The 

model predicts that with low contrast pedestals, target signal processing is 

characterized by an accelerating non-linearity that produces a reduction in target 

detection threshold (i.e. facilitation).  Higher pedestal contrasts produce a 

compressive non-linearity that suppresses the target detection threshold.  Again, 

this model refers to same space contrast integration, but has also been applied to 

contrast integration across space (Solomon, et al., 1999).     

 Contrast integration across space in the transducer model is expected to 

be rapid and have decreased effect with increasing flank separation (Huang and 

Hess, 2008).  Neuro-physiology (Mizobe et al., 2001; Polat et al., 1998) and 

psychophysical (Watson et al., 1983) studies designed to estimate the integration 

time across space have suggested an upper limit of 200ms for contrast detection 

near threshold.  This implies that, in the present study, flank contrast presented at 

temporal separations greater than 200ms from the target should not have an  
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(a)       (b) 

Figure 35.  The contrast response function (CRF) and dipper function.  (a) The 

CRF shows an increase in neuron response with increasing contrast and then 

response saturation at the highest contrast levels.  Section (a) shows the 

response increasing in a non-linear fashion (accelerating section).  In section (b) 

the response is increasing in a near linear manner.  Section (c) shows a rapidly 

compressed, non-linear response (decelerating section).  Finally, in section (d) 

the response is saturated.  (b) The dipper function shows CDT facilitation at 

subthreshold through near threshold pedestal contrast.  At suprathreshold 

pedestal contrast, CDT suppression is produced due to the saturating neuronal 

response.   The horizontal dashed line represents the absolute target CDT.   
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effect on CDT.  However, this was not observed in the present study.  Temporal 

separations greater than 200ms (250ms and 500ms ISIs) showed flank effects 

that were dependant on the viewing condition.  At these temporal separations, 

monoptic viewing tended to produce CDT facilitation (Figure 12), dichoptic 

viewing tended to produce CDT suppression, and half-binocular viewing 

produced either facilitation or suppression depending on the total SOA.  These 

findings are not consistent with the expectations of the transducer model. 

Reduction in uncertainty 

 A second proposed explanation for CDT facilitation in psychophysical flank 

studies is a reduction in uncertainty about the target location (Petrov et al. 2006).  

The uncertainty reduction explanation states that other cues could provide 

location information and would produce similar threshold reductions as collinear 

flanks.  Petrov et al. (2006) substituted either a circle surround or a set of nonius 

lines for Gabor flanks as location cues.  Both the circle surround and nonius line 

cues were very thin (1.2 arcmin width) and basically created an edge (as 

opposed to the sinusoid flanks used in the present experiment that had a 

Gaussian window applied to prevent edges).  Target presentation times were also 

shorter than the present study (150ms and 250ms respectively).  Petrov et al. 

found similar improvements in detection threshold (i.e. CDT facilitation) for all 

location cues.  However, they did not include a flank only condition.  This made 
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comparison with their other location cues difficult (see section 2.1 of the 

Introduction).  As a result of these issues, uncertainty reduction is not a widely 

accepted explanation for collinear flank facilitation.             

 The orthogonal flanks supplemental experiment in the present study would 

be expected to produce similar location cues as the collinear flanks.  The 

monoptic orthogonal flanks did produce CDT facilitation at shorter SOAs that 

diminished as SOA increased, but relative to the monoptic collinear flanks they 

produced less facilitation (Figure 36).  This suggests that, under monoptic 

viewing, a reduction in uncertainty is not responsible for the entire collinear flank 

effect.   
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Figure 36.  Comparison of monoptic, orthogonal and collinear flank effects.   

The curves represent exponential functions fit to means.  At shorter SOAs, 

collinear flanks produce greater CDT facilitation than orthogonal flanks.  Both 

decrease as SOA increases and approach no effect at the 1000ms SOA. 
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Figure 37. Comparison of dichoptic, orthogonal and collinear flank effects.  Both 

curves represent exponential functions fit to means.  Importantly, unlike the 

collinear flanks, orthogonal flanks did not produce CDT suppression at long 

SOAs.  This suggests that the mechanism of contrast integration is different for 

orthogonal and collinear flanks.               
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 Under dichoptic viewing, a comparison of collinear and orthogonal flank 

effects shows a similar effect with simultaneous presentation (Figure 37).  As 

SOA increases the collinear flanks produce less relative facilitation than 

orthogonal flanks and show CDT suppression at and beyond the 500ms SOA. 

Here, two aspects argue against a reduction in uncertainty being the primary 

cause for the findings.  First, the dichoptic collinear and dichoptic orthogonal 

functions differ markedly over time (Figure 36).  Second, the CDT suppression 

observed at longer SOAs under dichoptic viewing is very difficult to reconcile with 

a reduction in uncertainty.  This does not exclude a reduction in target location 

uncertainty as a possible effect contributor at shorter SOAs, but it seems unlikely 

to be the primary contributor for collinear flanks.  

Lateral connections in cortex  

 The third neuro-physiological mechanism frequently cited as an 

explanation for collinear flank facilitation are long-range lateral (also referred to 

as horizontal) connections between two or more neuron groups in primary visual 

cortex (Polat and Sagi, 1993; Cass and Spehar, 2005; Polat and Sagi, 2006).  

This mechanism provides the most likely explanation for collinear flank CDT 

facilitation.  One group(s) of the connected neurons is responding to flank 

contrast and another group is responding to the target.  This mechanism is 

supported by physiology studies describing lateral connections parallel to the 
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cortical surface in cat (Gilbert and Wiesel, 1979, 1983) and primate (Kapadia et 

al., 1995 and 2000).  These long-range lateral connections are un-myelinated.  

Consequently, they have relatively slow propagation speeds due to the slow 

conduction of the un-myelinated fibers.  This property has been exploited to 

support the lateral connection mechanism by showing a positive relationship 

between increasing target to flank separation, and increased integration time 

required to reach maximal CDT facilitation (Cass and Spehar, 2005).       

 In the current study, the temporal properties of lateral contrast integration 

are consistent with what is known about the physiology of lateral connections in 

primary visual cortex.  Intra-ocular flank effects extended to approximately 600ms 

SOA and inter-ocular flank effects extended up to the 1000ms SOA (Figure 30).  

This is in alignment with relatively slow, non-myelinated lateral connections (see 

section 2.6 of the Introduction).   

 While many neural connections exist within and between the 

hypercolumns of primary visual cortex, the strongest connections occur between 

similarly tuned neurons (Gilbert and Weisel, 1989).  In primates, lateral 

connections between orientation-tuned hypercolumns have been shown to 

stretch approximately 7mm from end to end (Stettler et al., 2002).  Assuming an 

orientation column periodicity of 0.75mm, a 7mm connection would encompass 

about 8-10 columns (Stettler et al., 2002).   
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 Per the lateral connection model, a comparison of the current study's 

monoptic collinear and monoptic orthogonal flank effects (Figure 36) 

demonstrates the difference between orientation tuned (collinear flank) and non-

orientation tuned (orthogonal flank) interactions.  Here, the most pertinent finding 

is the relatively elevated collinear flank CDT facilitation at shorter SOAs.  The 

collinear flank effect being greater than the orthogonal flank effect suggests that 

the orientation tuned cortical connections are stronger than the non-orientation 

tuned connections.                       

6.3 Application of the two-stage model of contrast integration 

  One recent model of contrast integration is the two-stage model 

proposed by Meese et al. (2006).  This model is designed to explain the 

integration of contrast overlapping the same visual space, but can also be 

applied to the integration of contrast across space.  Meese et al. (2006) mainly 

considered suppressive influences in their description of the model, but 

facilitative effects can be supported as well.  This is demonstrated by the two-

stage model's ability to support a "dipper" type function (Meese et al., 2006).  

 In the two-stage contrast gain control model (Figure 38), both intra-ocular 

and inter-ocular effects occur prior to binocular summation.  In the present  
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Figure 38.  Model for two-stage, contrast gain control.  Red arrows represent 

divisive suppression.  R and L are right and left eye luminance contrasts, 

respectively.  S and Z are saturation constants for the first and second stages of 

contrast gain control, respectively.  The exponent for first stage non-linear 

transduction is m, and p and q are free parameters (Meese et al., 2006).           

Depending on the values assigned to these weights, the effect at the first 

monocular stage may be either suppression or facilitation of contrast detection 

thresholds.     
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study's paradigm, the intra-ocular effect is represented by the monoptic viewing 

condition and inter-ocular effect is represented by dichoptic viewing.  The variable 

m is the excitatory exponent of the first monocular stage and is assumed to be 

the same for both eyes.  The first-stage excitatory variable is represented by q.  

The second stage excitatory component, p, may allow deeper regions of 

facilitation than models with only a first stage transducer.  Not shown in Figure 38 

are the relative weights assigned to intra- and inter-ocular effects.  These weights 

determine the effect (i.e. facilitation or suppression).   

 If we consider the possible outcomes of the half-binocular condition in 

terms of the two-stage model, two main alternatives emerge.  The first alternative 

is that the additional flanks presented in the half-binocular condition enhance the 

effect (facilitation or suppression) due to additional inter-ocular effect.  Here, 

under conditions that produce facilitation (e.g. shorter SOAs in the present study) 

additional facilitation would be expected.  In the monoptic condition, collinear 

flank effects approached zero at the long SOAs.  Following the logic of an 

additional inter-ocular effect, dichoptic and half-binocular flank conditions should 

also approach no effect at the long SOAs.  However, the long SOA suppression 

produced by collinear, dichoptic and half-binocular flanks clearly contradicts this 

expectation (Figure 31). 
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 The second alternative is that the additional set of flanks presented in the 

half-binocular condition activates inter-ocular suppression between the two sets 

of flanks.  This suppression would reduce the effect of both the monoptic (same 

eye as target) flanks and dichoptic (fellow eye) flanks.  If the original effect were 

CDT facilitation, then the new effect would be a reduced degree of facilitation.  If, 

on the other hand, the original effect were CDT suppression the new effect would 

be a reduced degree of suppression.   

 At shorter SOAs, monoptic and dichoptic, collinear flanks both produced 

CDT facilitation (monoptic greater than dichoptic).  If the flank effect is reduced by 

the presence of an additional set of flanks presented to the fellow eye, we would 

expect less CDT facilitation from both monoptic and dichoptic flanks.  Depending 

on the relative weights assigned to intra-ocular and inter-ocular inputs, the 

combination of these reduced effects might result in a similar degree of 

facilitation as the monoptic condition.  This appears to be the case when the 

collinear, monoptic and half-binocular conditions are compared (Figure 31).  The 

monoptic and half-binocular exponential functions closely resemble one another 

at shorter SOAs.  Of course, the combination of intra-ocular and inter-ocular flank 

effects could also result in a cumulative effect that falls somewhere between the 

monoptic and dichoptic conditions.  Again, this would be dependant on the 

relative weights assigned to the inputs.  
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 Beginning at the 750ms SOA, monoptic, collinear flanks effects approach 

zero.  Dichoptic, collinear flanks produced CDT suppression at SOAs longer than 

approximately 400ms.  This suppression persisted up to and including the 

1000ms SOA.  Reducing the effect of the monoptic flank via inter-ocular 

suppression would not change the overall effect significantly because the 

monoptic flanks already produce minimal effect at longer SOAs (Figure 12).  If 

the dichoptic flank effect were reduced, the expected result would be decreased 

CDT suppression.  When the minimal effect of the intra-ocular (monoptic) flanks 

and reduced suppressive effect of the inter-ocular (dichoptic) flanks are 

combined, half-binocular target CDTs would be expected to fall between the 

monoptic and dichoptic flank effects.  Referring again to Figure 30, the results of 

the present study appear to support this interpretation. 

 To summarize, the two-stage model of contrast gain control can be applied 

to the integration of contrast across space.  Here, the expectations of the two-

stage model were applied to the results of the present study's half-binocular flank 

viewing condition.  In the "additional inter-ocular effect" interpretation the intra- 

and inter-ocular flank effects are additive.  This interpretation is not supported by 

the CDT suppression produced by collinear, dichoptic and half-binocular flanks.  

In an alternative interpretation, the presence of same visual space intra- and 

inter-ocular flank sets activates suppression between the flank sets.  The effect of 



	   177	  

each flank set is subsequently reduced.  Since intra-ocular (monoptic) and inter-

ocular (dichoptic) flank effects are SOA dependent (Figures 12 and 13 

respectively), their combined effect is also SOA dependent.  This interpretation 

predicts that collinear, half-binocular flank effects would fall between monoptic 

and dichoptic effects at longer SOA.  Figure 31 shows that the present study's 

collinear, half-binocular results support the "suppression between flank sets" 

interpretation.        

6.4 Proposed mechanism for inter-ocular CDT suppression at longer SOAs 

 All 11 subjects in this study reported the perception of a filling-in effect (i.e. 

illusory contour) when flanks and target were presented simultaneously.  For 

some subjects, this effect was strong enough that it was initially difficult to 

differentiate the appearance of the target from the fill-in effect.  This observation 

prompted the hypothesis that the unexpected inter-ocular CDT suppression 

observed with collinear flanks resulted from contrast adaptation attributable to an 

illusory contour. 

 Illusory contours are known to affect perception in psychophysical studies 

(Tynan and Sekular, 1975; Gold et al., 2000; Reynolds, 1981; Ringach and 

Shapley, 1996; Gold and Shubel, 2006).  In a neuro-imaging study, Meng et al. 

(2005) reported a strong correlation between the perception of illusory contours 
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(termed phantoms in their study) and activity in early visual areas (V1 and V2).  

In addition to the suprathreshold perceptual effect of illusory contours, collinear 

inducing stimuli have also been correlated with subthreshold V1 activity (Kapadia 

et al., 1995; Das and Gilbert, 1999; Stettler et al., 2002).  The area in cortex 

corresponding to the visual area between inducing flanks showed increases in 

activity even when an illusory contour was not perceived.  This subthreshold 

(perception) correlation is important because the proposed explanation requires 

contrast adaptation to a subthreshold illusory contour.  The sustained presence of 

a subthreshold, illusory contour in the same visual space and of the same 

orientation and spatial frequency as the target may produce contrast adaptation 

of cortical neurons whose receptive fields correspond to the physical target.  

 A walk-through of the proposed mechanism follows.  First, the 

presentation of collinear flanks separated by a blank gap increases the firing rate 

of early visual cortex neurons whose receptive fields correspond to the blank gap 

region.  This increased activity is associated with the formation of a subthreshold 

illusory contour.  Then, the continued presence of the subthreshold contour, 

which may continue even after the physical inducing stimuli have been removed, 

produces contrast adaptation of the stimulated, binocular, cortical neurons.  This 

adaptation desensitizes the neurons with receptive fields corresponding to the 
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blank gap region and increases the detection threshold of a subsequently 

presented target stimulus. 

 Referring back the two-stage model of contrast gain control (Figure 38), 

the illusory contour formation described above would be expected to occur after 

binocular summation.  Studies reporting the perception of illusory contours 

produced by dichopticly viewed flanks (upper flank shown to one eye and lower 

flank to the other eye) support this expectation (Tynan and Sekular, 1975; Meng 

et al., 2007).   

Does binocular rivalry contribute the threshold suppression produced by 

inter-ocular flanks at longer SOAs? 

 For several reasons it seems unlikely that binocular rivalry is the primary 

underlying mechanism behind the longer SOA suppressive effect produced by 

inter-ocular flanks.  Perhaps the most apparent reason is that rivalry typically 

occurs when stimuli are presented in the same visual space (Alais and Blake, 

2005).  While the flank stimuli in the present study are basically abutting with the 

target, they never share the same visual space (see section 2.8 of the 

Introduction) and at are separated temporally at every SOA with the exception of 

simultaneous presentation.  Stimuli also tend to produce rivalry when they have 

dissimilar properties, e.g. spatial frequency, color, and orientation (Alais and 
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Blake, 2005).  All stimuli in the collinear flank experiment have identical spatial 

frequencies (three cpd), orientation (vertical), and are monochromatic.  It seems 

unlikely that essentially identical stimuli would produce rivalry. 

 The temporal properties of binocular rivalry also seem inconsistent with 

the temporal properties of inter-ocular, long SOA suppression observed in the 

present study.  Rivalry takes at least several hundred milliseconds to develop and 

perceptual dominance typically persists for 1-3 seconds (Brascamp et al., 2005).  

This seems inconsistent with the time course of the present study in which inter-

ocular flanks produced CDT suppression at 500-1000ms SOAs.  Finally, if 

binocular rivalry were responsible for the longer SOA suppression produced by 

inter-ocular flanks, the orthogonal flank experiment would also be expected to 

produce CDT suppression at longer SOAs.  However, this was not observed.  

Inter-ocular (dichoptic) flanks did not produce CDT suppression at any of the 

evaluated SOAs.  

Why do dichoptic flanks produce long SOA suppression, but monoptic 

flanks do not? 

	   A natural question is why suppression was observed under viewing 

conditions with inter-ocular flank contrast (dichoptic and half-binocular viewing), 

but not with exclusively intra-ocular flank contrast (monoptic viewing).  The most 
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apparent answer is that intra-ocular contrast and inter-ocular contrast initially 

integrate at different locations in the visual pathway and via different 

mechanisms.  

 The present study's analysis of the relative contributions of flank duration 

and ISI to the overall effect (Results section 5.6) shows that the mechanisms of 

intra- and inter-ocular contrast integration across space differ significantly.  

Viewing conditions that included intra-ocular flanks (monoptic and half-binocular) 

showed that flank duration had a significantly greater contribution to the overall 

than ISI.  The inter-ocular flank viewing condition (dichoptic) did not show a 

significant difference between the contributions of flank duration and ISI.  This 

suggests that the mechanism of temporal summation is different for intra- and 

inter-ocular contrast integration across space. 

Temporal aspects of illusory contour formation 

 In the present study, dichoptic flanks produced CDT suppression at 500-

1000ms SOAs.  Half-binocular flanks produced suppression at 750-1000ms 

SOAs.  To further examine the hypothesis that inter-ocular CDT threshold at 

longer SOAs results from contrast adaptation to illusory contours, it is useful to 

compare what is known about the temporal aspects of illusory contour formation 
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and the temporal dynamics observed in this study.  The number of prior studies 

examining the temporal properties of illusory contours is relatively small.  

Illusory Contour Appearance 

 Ringach and Shapley (1996) used Kanizsa-like figures to measure 

binocular illusory contour formation times.  For both subjects in their study, 

performance on a detection task asymptoted after approximately 117ms of 

inducing stimulus presentation time.  In another, similar study Reynolds (1981) 

demonstrated the completion of an illusory triangle after 100ms of presentation 

time.   

 Gold and Shubel (2006) used a response classification technique to 

evaluate the time course to illusory contour completion.  The response 

classification technique added luminance noise to luminance defined or illusory 

contours and created spatiotemporal maps by correlating subject decisions to the 

noise presented at each point.  They concluded that the illusory contour 

completion process required approximately 176ms.  Thus, the time required for 

illusory contour completion appears to be approximately 100-200ms. 

 Meng et al. (2007) used grating stimuli similar to the flanks used in this 

study to study the temporal dynamics of perceptual fill-in.  However, unlike the 

flanks in this study, their stimuli were drifting and peripheral.  Meng et al. (2007) 
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found that, with a two degree edge-to-edge gap between inducing elements, the 

mean time for an illusory contour (referred to as a visual phantom in their study) 

to appear ranged between 600-1300ms in four experienced subjects.  In a similar 

experiment with 12 inexperienced subjects described in the same paper, the 

mean time for a phantom to appear was approximately 1075ms.  Appearance 

time was about the same for 8% or 16% contrast inducers.  Of course, these 

induction times include the subject's reaction time.  The actual time for illusory 

contour completion is the observed time minus the subject's reaction time.   

 The inclusion of subject reaction time in the same study (Meng et al., 

2007) two degree gap temporal measurement makes direct comparison to this 

study difficult.  However, they also measured illusory contour completion times for 

gaps up to five degrees.  By subtracting the five degree and two degree gap 

completion times, the author's show that it took approximately 450ms to fill the 

additional three degrees.  Assuming a linear increase in completion time with gap 

size, this equates to about 150ms per degree.  Based on this measure (which 

does not include subject reaction time), it is plausible that the two degree gap in 

the present study would take around 300ms to be filled by an illusory contour. 

 Prolonged exposure to a simple pattern can alter the visibility of 

subsequent patterns (Blakemore and Campbell, 1969).  This phenomenon is 

known as contrast adaptation and can occur within orientation and spatial 
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frequency specific channels (Campbell and Sekuler, 1968; Blakemore and 

Campbell 1969; Blakemore and Nachmias 1971; Wilson et al. 1983).  Adaptation 

desensitizes neurons responsive to contrast of that particular orientation and 

produces increased CDTs (suppression).  Because it is orientation specific, 

contrast adaptation is traditionally associated with cortical neurons.  However, 

adaptation in primates may occur as early in the visual pathway as retinal 

ganglion cells (Solomon et al., 2004).  In human, psychophysical experiments 

contrast adaptation has been shown to occur relatively rapidly, reaching 

maximum desensitization to grating stimuli in less than 200ms (Foley and 

Boyton, 1993).  For stationary, 20% contrast, two cpd mask and target gratings 

Foley and Boyton (1993) showed that near maximal desensitization occurred in 

less than 100ms.   

 Adding these estimates of the time required for formation of an illusory 

contour (300ms) and the time required for adaptation to a grating stimulus 

(200ms) yields a total of 500ms.  This plausible approximation of the temporal 

properties of illusory contour formation and contrast adaptation resembles the 

onset time of CDT suppression observed in the present study under dichoptic 

viewing (500ms) and half-binocular viewing (750ms).  Of course, directly 

comparing the temporal aspects of prior studies with the present study is 

complicated by the differences in stimulus type, contrast, and retinal location.  
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Still, what is known about the time course of illusory contour formation appears 

comparable to the inter-ocular CDT suppression observed in the present study. 

Illusory Contour Disappearance  

 In the present study, the temporal limit of inter-ocular CDT suppression is 

shown by the SOA that produced a near zero flank effect.  Under both dichoptic 

and half-binocular viewing, the flank effect is minimal by the 1500ms SOA and 

remains so up to and including the 3000ms SOA (the longest included in the 

experiment).  Since suppression is maximal for both dichoptic and half-binocular 

viewing at the 1000ms, it appears that the suppressive effect expires between 

1000ms and 1500ms of SOA.  The next natural question is:  how does the timing 

of suppression expiration observed in the present study compare with that in 

previous illusory contour studies? 

 In the same experiments where they examined the temporal aspects of 

illusory contour appearance, Meng et al. (2007) also investigated the timing of 

illusory contour disappearance.  The time to disappearance for a two degree 

edge-to-edge gap between inducing stimuli (8% or 16% contrast) showed 

considerable inter-subject variability.  For four experienced observers, illusory 

contour disappearance times ranged from approximately 600ms to 1300ms.  

Similarly, for 12 inexperienced subjects, the time to disappearance for the same 
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gap size was approximately 850ms.  Interestingly, the size of the gap between 

inducing stimuli did not seem to affect the time to disappearance. 

 Meng et al. (2007) attribute this asymmetry (illusory contour appearance 

being dependant on gap size while disappearance is not) to a model 

incorporating two sources of diffuse subthreshold input:  1) a fast component 

composed of feedback and feedforward connections that provide cortical input 

from the area corresponding to the illusory contour forming area (see section 1.1 

of Chapter 1) and 2) a slow component incorporating information via 

unmyelinated, lateral connections (see section 1.2 of Chapter 1).  In this model, 

only the combination of both sources of input leads to the formation of illusory 

contours.  Input from the fast component would not be able to initiate the 

perception of contours by itself and would instead lead to subthreshold activity in 

the area of V1 corresponding to the gap region.  When input from the slower, 

lateral connections arrives, an illusory contour is perceived.  Appearance of the 

contour takes longer for larger gap sizes because the lateral connection input has 

to traverse the gap.  Disappearance is not dependant on gap size because, since 

input from both sources is required to perceive the contour, as soon as input from 

the fast, feedforward/feedback source is removed the contour disappears.        

 To find the SOA at which it would be reasonable to expect the suppressive 

effects of an illusory contour to expire, the estimates of time to contour 
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appearance and time to disappearance need to be summed.  However, since for 

the present study's 1000-3000ms SOAs the flank (inducing stimuli) duration is 

500ms and the illusory contour would not be expected to begin to process of 

disappearing while the inducing stimuli were still present, the flank duration 

(500ms) should be added to the expected time to disappearance (850ms).  This 

summation yields a plausible estimate for illusory contour disappearance of 

1350ms after initial flank presentation.  This calculation falls within the observed 

1000-1500ms SOA window when CDT suppression ceased and provides indirect 

support for the hypothesis that the inter-ocular suppression observed at long 

SOAs was produced by contrast adaptation to illusory contours.     

Experimental support for the illusory contour hypothesis 

 The orthogonal flank experiment was designed to test the hypothesis that 

collinear flank orientation is required to produce long SOA, inter-ocular CDT 

suppression.  Since non-collinear flanks will not produce an illusory contour, 

contrast adaptation will not occur, and CDT suppression would not be expected.  

Based on prior psychophysical studies under binocular viewing (Polat and Sagi, 

1994; Polat and Sagi, 1997), CDT facilitation was expected with simultaneous, 

orthogonal flank presentation.  These experiments have shown reduced 

facilitation relative to the amount produced by collinear flanks (Polat and Sagi, 

1994, 1997).  However, other psychophysical studies have shown CDT 
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suppression to no effect with orthogonal flanks and in their VEP experiment Polat 

and Sagi (1997) showed no effect with low (8%) contrast flanks and inhibition 

(analogous to suppression) with 16% and 32% contrast flanks.  Other neuro-

physiology experiments have demonstrated that orthogonal surrounds can 

produce a net facilitation of neuron firing rate (Jones et al., 2001; Sillito et al., 

1995).  As with the monoptic, collinear flanks in the main experiments, the degree 

of facilitation was expected to decrease as SOA increased until it approached no 

effect at the longest SOA (1000ms). 

 Both monoptic and dichoptic orthogonal flank results were consistent with 

the expectations described above.  Exponential functions fit to the mean 

thresholds at each SOA show monoptic and dichoptic functions that are 

remarkably similar with respect to their shape and vertical placement (Figure 26).  

This suggests that the output of intra-ocular and inter-ocular contrast integration 

mechanisms is comparable for contrast from outside the orientation channel. 

 The finding with the most relevance to the illusory contour hypothesis is 

the lack of CDT suppression at longer SOAs under dichoptic viewing.  This 

suggests that the mechanism responsible for inter-ocular suppression with 

collinear flanks is orientation channel specific.  If CDT suppression were 

observed with orthogonal flanks, it would argue strongly against adaptation to an 

illusory contour being responsible for the dichoptic and half-binocular CDT 
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suppression observed in the main (collinear flank) experiment.  In summary, the 

orthogonal flank experiment findings support the hypothesis that inter-ocular, long 

SOA suppression resulted from contrast adaptation to an illusory contour.  

6.5 Conclusion 

 This study investigated the temporal properties of intra- and inter-ocular 

lateral contrast integration in 11 adults with normal vision.  The effect of collinear 

and orthogonal flanks on contrast detection thresholds (CDT) was measured over 

a wide range of flank presentations (67-500ms) and the interstimulus intervals (0-

2500ms) under monoptic, dichoptic, and half-binocular viewing conditions 

yielding stimulus onset asynchronies (SOA) ranging from zero (simultaneous 

presentation) to 3000ms.  

 As expected, at shorter SOAs both intra- and inter-ocular collinear flanks 

produced CDT facilitation.  Simultaneous viewing produced maximal facilitation 

(monoptic 18.9% ± 3.9% (SE); dichoptic 13.9% ± 4.0%; half-binocular 18.0% ± 

4.2%).  The facilitative effect persisted up to approximately the 600ms SOA for 

monoptic and half-binocular viewing, and the 400ms SOA for dichoptic viewing.  

The long effect duration of the collinear flanks is consistent with the temporal 

properties of long-range, lateral connections in primary visual cortex (Polat and 

Sagi, 1993; Cass and Spehar, 2005; Polat and Sagi, 2006).       
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 Both viewing conditions that contained inter-ocular, collinear flanks 

(dichoptic and half-binocular) produced unexpected CDT suppression at longer 

SOAs.  Collinear, dichoptic flanks produced statistically significant (p < 0.05) 

suppression at 500-1000ms SOAs and half-binocular flanks produced 

suppression at 750-1000ms SOAs.  Suppression was maximal at the 1000ms 

SOA (dichoptic 9.9% ± 5.1%; half-binocular 5.3% ± 4.7%).  This suppression was 

not observed with collinear, intra-ocular (monoptic) flanks and appears to be 

consistent with the temporal properties of illusory contour perception and contrast 

adaptation (see section 6.4 of the Discussion). 

 For collinear, intra-ocular flanks the contribution of flank duration was 

significantly greater than the contribution of ISI to the overall flank effect.  There 

was not a significant difference between the contributions of inter-ocular flank 

duration and ISI, indicating that total SOA was the greatest effect contributor.  

Thus, the temporal summation of inter-ocular flank contrast across space 

appears to be much greater than that for intra-ocular summation.  This is 

consistent with the longer SOA inter-ocular CDT suppression produced by 

collinear flanks in that both results suggest differences between the mechanisms 

of intra- and inter-ocular contrast integration across space. 

 Intra- and inter-ocular orthogonal flank viewing conditions produced CDT 

facilitation at shorter SOAs.  Simultaneous viewing produced maximal facilitation 
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(monoptic 10.6% ± 2.3%; dichoptic 12.3% ± 6%).  For both viewing conditions, 

the orthogonal flank effect decreased as SOA increased until it approached zero 

at the 1000ms SOA.  Importantly, inter-ocular (dichoptic) orthogonal flanks did 

not produce CDT suppression at any SOA.  This suggests that the longer SOA 

CDT suppression produced by inter-ocular, collinear flanks is orientation channel 

dependent.     

 I propose the novel hypothesis that the CDT suppression produced by 

inter-ocular, collinear flanks at longer SOAs is due to a one-way, contrast 

adaptation from lateral propagation that produced the effect of a collinear, illusory 

contour.  This hypothesis is supported by the dichoptic, orthogonal flank 

experiment that showed no CDT suppression at the same longer SOAs.   
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Future Directions 

 

1.  This study examined the temporal properties of contrast integration across 

space in adults with normal binocular vision.  A natural extension of this research 

would be to conduct similar experiments on subjects without normal binocular 

vision.  Ideally the non-normal subjects would have abnormal binocular vision, 

but normal or near normal visual acuity in each eye.  This would avoid the 

potentially confounding influence of significant acuity differences between the 

eyes.  Such a study would assist in the identification of visual pathway 

differences between normal and non-normal binocular contrast integration across 

space.  This information could conceivably lead to clinical applications that 

advance the diagnosis of binocular vision deficits. 

2. My hypothesis that the CDT suppression produced by inter-ocular, collinear 

flanks at 500-1000ms SOAs is due to a one-way, contrast adaptation from lateral 

propagation that produced the effect of a collinear, illusory contour was evaluated 

in two ways.  The SOA range that produced CDT suppression was compared 

with a plausible range of contrast adaptation to an illusory contour based on prior 

studies and provided indirect support for the hypothesis.  The results of the 

orthogonal flank study also supported the hypothesis.  However, it would be 

preferable to directly evaluate the hypothesis without manipulating the flank 
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orientation and introducing the conceivably, confounding effect of the flanks and 

target having different orientations.  It might be possible to affect illusory contour 

formation by introducing differences between the flanks and target that affect 

illusory contour formation (e.g. phase differences) without altering the orientation.  

Such an experiment might provide stronger support for my hypothesis.         

3.  One experiment that preceded this study attempted to investigate the 

contribution of ocular dominance to the dichoptic integration of contrast across 

space.  That experiment was not completed due to a reallocation of human 

resources.  However, a future attempt to correlate a measure of ocular 

dominance with dichoptic contrast integration strength (as measured by flank 

effect size) would contribute to our understanding of dichoptic contrast 

integration. 

 The presentation of targets only to the dominant eye in the present study 

was also a response to a finite set of resources.  The dominant eye target 

presentation was selected due to the expectation that non-dominant eye flanks 

would produce a greater effect size.  It would be interesting to evaluate this 

expectation, especially given the unexpected, longer SOA threshold suppression 

produced by dichoptic flanks.  Would dominant eye flanks produce the same 

effect on detection thresholds of a non-dominant eye target?  Answering this 
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question would provide information about the role of inter-ocular inhibition in 

determining dichoptic flanks effects.          

4. This study found that dichoptic flanks produced surprising suppression of 

contrast detection at longer SOAs.  However, the maximum suppressive effect 

(approximately 10%) was relatively small.  In subsequent studies larger effects 

sizes might be obtained by manipulating the experimental parameters.  Changing 

from the windowed sinusoid flanks in the present study to an annulus that 

completely surrounds the target might encourage larger effect sizes.  Altering the 

contrast of such an annulus might also produce larger effect sizes.  Furthermore, 

studies that include subjects without normal binocular vision would benefit from 

larger effect sizes. 
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