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Dissertation Abstract 

Colorful floral signaling and resulting insect foraging behaviors have only been 

extensively examined in hymenopteran pollinators, especially bees, in comparison to 

flies, beetles, and butterflies regardless of their ecological importance. Therefore, my 

study provides novel information by focusing on foraging behaviors of adult 

passionflower butterflies, Heliconius melpomene and Dryas iulia, to the color changing 

flowers of Lantana camara. My dissertation which is divided into four chapters, aims to 

explore various aspects of color mediate foraging in passionflower butterflies by 

combining observations in the wild with controlled field and laboratory experiments. In 

the first chapter I reviewed flower color development and pollinators' sensory 

mechanisms to detect color changes to first elucidate the evolution of communication 

tactics from the senders (plants), and the detection mechanisms used by receivers 

(pollinators). In the second chapter I examined the relationship between sexual and 

foraging color biases of butterflies. In my third chapter I determined how color change 

associated with reward differences affected pollinator-plant attraction; and for my final 

chapter I investigated foraging movement patterns as butterflies fed on L. camara plants 

in their natural habitat. Overall, I presented evidence that indicated the following: 1) L. 

camara evolved a generalized pollination visitation system based on honest signaling―of 

reward quantity and quality tied to color changing visual signals acting in consort to 

produce a billboard effect that was easily perceived and deciphered by both 

passionflower butterflies; 2) experienced butterflies fed at flowers and were attracted to 

inflorescences that were of similar color to their wings, however, newly emerged 

butterflies exhibited different  but species specific behaviors; 3) foraging behaviors were 
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subject to change based on light environment, with yellow flower color eliciting feeding 

responses under blue light (open sky), and red elicited foraging under green light 

conditions (under forest canopy); 4) butterflies partitioned food resources spatially and 

temporally from each other, and from aggressive territorial hummingbirds; and 5) 

butterfly species changed the number of visits to plants, number of plants visited, and 

time spent foraging in order to successfully coexist with heterospecific competitors that 

shared the same space and food resource.  
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Chapter 1 

Floral color signals and their Heliconiid butterfly receivers 

 

Abstract 

Signals vary in type and function. However, regardless of the signal, effective 

transmission and receiver detection is needed in order for communication to exist. This 

review focuses on visual color signals used by plants to attract pollinators. It specifically 

focuses on the relationship between floral color and Lepidopteran pollinator attraction. I 

focus on butterflies because, although, the effect of floral color signals on the behavior of 

pollinators has been studied extensively in bees, little work has been carried out on non-

hymenopteran pollinators, despite their ecological importance. In addition, signal 

detection work has strongly focused on epigamic signals; therefore, this review adds to 

the body of knowledge on non-sexual signal communication. In this review I investigate 

what are visual signals as it relates to pollinators, why they develop and how the presence 

of these signals in the environment affect the behaviors of animals with which they 

communicate. I focus my review specifically on visual color signals used by 

Angiosperms flowers and I look at the pollinators’ need to forage balanced by the plants’ 

need for pollination. I also detail the visual systems used by pollinators, specifically 

Heliconiid butterflies, to detect these signals. I have found that signals in nature vary, 

however, the two of the main driving forces in the evolution of signal for all organisms is 

the need to find food and mates. In order to attract potential pollinators, Angiosperms 

have evolved many characteristics, that serve as signals and exploit these driving forces 

in order to attract animals. One of the primary signals used by Angiosperms include floral 



11 

 

color that attract a variety of visually-oriented pollinators, such as butterflies. Butterflies 

possess compound eyes with ultraviolet, blue and longwave length sensitive opsin genes 

and many duplications of these genes allowing them to have one of the widest visual 

ranges in the animal kingdom. As such, they use color signals in many different aspects 

of their lives, including mating and foraging. However, although their color preferences 

for these behaviors has been demonstrated independently, similarities/differences 

between their preferences have not yet been shown.  

Keywords: signal, pollinator, floral color, visual system, butterfly 
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Introduction 

It is recognized that various signals such as color, sound, vibration, scent among others, 

play a pivotal role in attracting animals to con- and heterospecifics (Shettleworth, 2009). 

Receiver’s choice is based on an evaluation process whereby these signals are detected 

and subsequently discriminated (Heinrich 1975, Gumbert 2000, Andersson and Dobson 

2003, Goulson et al. 2007, Raine and Chittka 2007, Ings et al.  2009). Although the idea 

of biological signals and its detection have existed since Darwin (1871) and his theories 

on sexual selection, the theory of signal detection was based on the founding work of 

Green and Swets (1966). Initially this idea of detecting a signal was used by radar 

researchers and in 1954 Peterson, Birdsall, Fox, Tanner, Green and Swets developed the 

theoretical framework for the signal detection theory (SDT) with Green and Swets (1966) 

going on to develop methods for psychophysics, many of which are used today (Abdi 

2007). The central strategy of SDT is to manipulate the decision criterion through 

experiments in order to expose the sensitivity factors that remain unchanged (Macmillan 

2002). Recent work on signal detection varies from fields such as biology, diagnostics, 

and psychology, among others. This review focuses on signal detection theory as it 

relates to color bias in butterflies, where they are more likely to respond to one color than 

another. Specifically, this review focuses on color bias of Lepidopteran pollinators and 

their response to plant signals. I focus on Lepidopteran as they represent an understudied 

group of taxa in the area of color detection despite their importance as pollinators, their 

known reliance on color in variety of behavioral contexts and their range of light 

perception is one of the broadest of all animals (Briscoe and Chittka 2001, Blackiston et 

al. 2011).   
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Color is one of the most important signals used in nature and the diversity in 

physical appearance of both plants and animals coupled with their receivers’ ability to 

detect these traits is a testament to this, as it is in part explained by the multiplicity of 

signals used for communication between and within taxa (Endler 1992). Color and the 

use of visual displays that incorporate color are quite ubiquitous in many animal and 

plant taxa and these signals are used for a wide range of behavior such as; foraging, mate 

recognition and selection, recognition of members of their own species and various other 

forms of inter- and intra-specific communication, such as those between predator and 

prey and pollinator and plants, etc. (Osorio and Vorobyev 2008). Angiosperms in 

particular exhibit many colors and these are often used to communicate with their 

pollinators (Quattrocchio et al. 1999, Muchhala et al. 2014). These pollinators in turn 

have complex visual systems that allow for the discrimination of various wavelength of 

light (Sison-Mangus et al. 2006).  

Although signal use spans such a wide range, the study of signals in organisms 

have been very narrow, mainly focusing on sexual selection (Schaefer et al. 2004, Pohl et 

al. 2011, Ryan and Cummings 2013). This review chapter aims to add to the body of 

knowledge on biological signals by focusing on floral color signals used by plants to 

attract their butterfly pollinators, it highlights Heliconius butterflies as they are known to 

use color in elaborated mimicry rings and as aposematic signals (Bybee et al. 2012). It 

looks at the evolution of visual signals and the use of these signals by these pollinators. 

This review also examines floral color and factors that drive its development and the 

mechanisms used by these Lepidopteran pollinators to detect this signal thereby adding to 
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the sparse non-hymenopteran, specifically non-bee, literature available in this area of 

study.  

   

Visual Signals 

Natural selection only favors signaling behavior if the signal strength is greater than 

background noise and thus can be detected clearly and effectively by receptors (Endler 

1992). As such, signals, receptors and behavior are evolutionarily dependent traits and 

the evolution of one is likely to influence the evolution of another. For example, the 

visual signals of many fishes evolved in tandem with their visual systems (Briscoe et al. 

2009). The factors driving the evolution of signals, receptors and behavior include: the 

environment in which the organism is found, biophysics such as communication between 

sender and receiver, ability to sensing the environment and foraging choices and, the 

neurobiological systems of the taxa, a few of which are seen in figure 1 (Endler 1992).   

Plants use many types of visual signals involving both vegetative and 

reproductive parts (Hamilton and Brown 2001, Schaefer et al.  2004). Although I focus 

this review on flower color and insect attraction, it is recognized that this idea of use of 

floral color signals by plants is not in restricted to flowers, as fruits (Schaefer et al.  2004) 

and even leaves (Hamilton and Brown 2001) exploit insect color preferences.  I focus on 

plant-pollinator signals as this provides unique insights into plant communication and the 

animals that interact with them and a direct way in which facets of signal theory can be 

directly tested such as honesty signals and sensory drive hypothesis. 
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Visual Signals — why did they evolve?  

Two of the main factors driving the evolution of signals, receptors and signaling behavior 

stem from the basic need of all organisms to find food and mates (Ryan and Cummings 

2013). Work by Allen (1879) links these two basic needs, as he proposed that color 

vision evolved as a food finding tool used to locate the edible parts of plants and this lead 

to secondary color preferences such as those for mate attraction and conspecific 

identification (Osorio and Vorobyev 2008, Bybee et al. 2012). Ryan and Cummings 

(2013) show that in addition to the cognitive processes of the receiver such as its 

preference for a particular trait of its potential mate there are many organisms in which 

intraspecific mating preferences can also be influenced by various perceptual biases such 

as foraging (Ryan and Cummings 2013). Owing to the need to feed, many males are able 

to use food biases to attract females (sensory bias). Examples of these include guppies 

that exploit the female penchant for orange food, water mites that vibrate their legs like 

prey and male swordtail characins that mimic prey (Rodd et al. 2002, Kokko et al. 2003, 

Smith et al. 2004, Bourne and Watson 2009, Ryan and Cummings 2013). Thus these 

senders evolved signals to exploit preexisting biases for food in receivers.  

In butterflies, in addition to food, visual color signals are needed for mate 

selection and conspecific identification, especially in Heliconius due to the presences of 

elaborate Müllerian mimicry rings, where several distasteful species in a given area share 

a common warning signal used in predator deterrence, that show a convergence of pattern 

both between close and distantly related species (Mallet et al. 1998, Jiggins et al. 2004, 

Briscoe et al. 2009, Klein and de Araujo 2010). From research using colored models of 

the mimetic Hypolimnas misippus and melanic mimic forms of Papilio glaucus, it has 
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been shown that butterflies depend on wing color for mate recognition and selection 

(Jigging et al.  2004). Further, research by Arikawa et al. (2005) demonstrates that there 

is a co-evolutionary relationship between wing color and color vision as seen by the 

sexually dimorphic violet receptors of Pieris rapae crucivora which are used to 

discriminate between male and females. Briscoe and colleagues (2009) also show that 

Heliconius spp. possess positively selected UV opsins that allow detection of distinct 

yellow colors found on the wings of conspecifics. Additionally, Heliconius spp. are able 

to use these yellow wing markings to recognize and attract mates; e.g., in H. pachinus, H. 

cydno, H. melpomene and H. erato where females lacking these markings were less 

attractive to males (Jiggins et al.  2001, Briscoe et al.  2009). Therefore, in these species 

and among other Heliconius spp. mate preference is known to co-evolve with wing color 

as races are more attracted to their own color patterns (Jiggins et al.  2004, Briscoe et al.  

2009)     

 In addition to conspecific communication, organisms also communicate with 

other completely unrelated taxa. One such relationship is clearly seen in plant-pollinator 

interactions. Flowers signal presence of rewards through the corolla or other floral parts 

(Schaefer et al.  2004) and these signals, including flower color, shape, and size, can play 

an important role in flower detection and choice (Waser and Price 1983).   

Visual Signals — how do pollinators interact? 

Owing to the decoupling of reward and signal in flowers, pollinators must visit flowers to 

ascertain rewards offered (Schaefer et al. 2004). While foraging, pollinators increase 

foraging efficiency by making two decisions based on distance: from long distances they 

decide 1) which plants should be approached and from shorter distances i.e., when they 
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are at the plant 2) which flower/s should be visited. Both of these decisions are based on 

visual attractiveness of plants and flowers, respectively (Oberrath and Böhning-Gaese 

1999). In many cases pollinators usually visit one type of flower per foraging trip even if 

they routinely collect pollen from multiple sources (floral constancy) (Gullan and 

Cranston 2009). This behavior in turn benefits plants by reducing deposition of 

heterospecific pollen and increasing conspecific pollen (Schaefer et al.  2004) and 

benefits pollinators by reducing handling times (Andersson and Dobson 2003). In 

addition to being faithful to one species of plant, pollinators can also display faithfulness 

to a specific feeding area where they trapline i.e.  they collect food at steady, repeatable 

sequences from the same plants within the site (Williams and Thomson 1998, Ohashi and 

Thomson 2008, Ohashi and Thomson 209 Lihoreau et al.  2010 and citations therein). 

This behavior has been reported in many taxa, included Heliconius butterflies (Gilbert 

1980), and offers a deeper understanding of floral attraction and pollinators’ ability to 

track rewards offered by flowers displaying honesty signals.  

It is posited that plant constancy coupled with color preference behaviors of 

animal pollinators exert such strong selective pressures it is the major driving force 

behind the diversity in flower color (Meléndez-Ackerman et al. 1997). Flower color as a 

result of pollinator interaction can then be explained by two scenarios. First, pollinator 

behavior is constrained by its limited ability to perceive and distinguish different color. 

Hence, flower visiting animals show fixed color preferences and these preferences differ 

according to taxa. Therefore, different color signals are aimed at different pollinator 

groups (Fenster et al. 2004). An alternate scenario states that pollinators are relatively 

unconstrained by their ability to perceive color as many exhibit true color vision (Sison-
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Mangus et al. . 2006) and flower color thus acts as an advertising mechanism to signal 

visitation that is induced by quality of reward offered (Meléndez-Ackerman et al. 1997). 

In the following sections, I will, in more detail, discuss flower color, its use in 

communication and how it is detected.  

Floral Color  

Color signals are an important attractant to pollinators, as flowers communicate with 

pollinators through overt advertising of large brightly-colored showy petal to subtle 

presentation of color combination that act as guides (Kevan 1972). It is recognized that 

although color does play an important part in pollination, its function in plants is not 

limited to pollinator communication (Rausher 2008, Campbell et al. 2012).  

Floral Color — how is it produced?  

Plants produce many different types of compounds, many of which are pigmented 

(Tanaka 2008). Humans recognize the color of a compound by perceiving reflected or 

transmitted light of wavelengths between 380 and 730 nm, while insects recognize light 

of shorter wavelengths (Tanaka 2008). Most flower colors are a result of chemical 

pigments present in the cells of the flower petals. Three major groups of pigments, 

betalains, carotenoids, and the flavonoids, are responsible for the attractive natural 

display of flower colors (Tanaka et al. 1998, Grotewold 2006).  

Betalains are water soluble nitrogen containing compounds synthesized from 

tyrosine by the condensation of betalamic acid, with a derivative of 

dihydroxyphenylalanine (Grotewold 2006). This reaction results in the formation of the 

red to violet betacyanins. While yellow to orange betaxanthins are formed by the 
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condensation of betalamic acid with an amino acid or amino acid derivatives (Grotewold 

2006). Unlike carotenoids, and the anthocyanins which are broadly distributed among a 

wide taxonomic range of flowering plants, betalains are restricted to the order of 

Caryophyllaceae (Grotewold 2006).   

Plant carotenoids are 40-carbon isoprenoids with polyene chains that may contain 

up to 15 conjugated double bonds (Hirschberg 2001). They are split in to two major 

groups xanthophylls and carotenes (Kevan 1972). These are the red, orange and yellow 

lipid soluble pigments found embedded in the membranes of chloroplasts and 

chromoplasts and contribute to the bright colors of fruits and flowers, which attract 

animals (Bartley and Scolnik 1995, Hirschberg 2001).  

Flavonoids are a large class of secondary plant metabolites of which anthocyanins 

are the most conspicuous and thus function to attract pollinators when in petals (Holton 

and Cornish 1995). Flavonoids have a wide range of colors from white, pale yellow to 

red, purple and blue (Tanaka et al.  1998). Anthocyanins are water-soluble pigments that 

possess a hydroxylated 2-phenylbenzopyrilium chromophore of which there are six types 

and increases in the number of hydroxyl groups result in increases in the visible 

absorption maximum (Tanaka et al.  1998, Yoshida et al.  2009).  Anthocyanins which 

occur in the vacuoles of almost all vascular plants and are responsible for the majority of 

the orange, red, purple, and blue colors of flowers (Grotewold 2006, Tanaka 2008). 

Anthoxanthins, a less popular group of flavonoids, are responsible for white, cream to 

pale yellow coloration of plants that absorb ultraviolet light (Kevan 1972). 

 Plants also exhibit morphological characteristics that allow for enhancing the 

perceived color of the petal. Kay (1981, 1988 as cited in Glover and Martin 1998) show 
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that conical or papillate cells found on the adaxial epidermis of the petal increased the 

amount of light absorbed by the floral pigments (Glover and Martin 1998). Glover and 

Martin (1998) and Dryer et al.  (2007) further provided experimental evidence from their 

study of Antirrhinum majus that flowers with conical cells received more pollinator 

attention than those with flat cells.  

In addition to these structural color enhancers, contrasting floral color  traits such 

as iridescent patches in some orchids, bulls-eye images caused by striations in certain 

region of the petal as in Hibiscus trionum or darken flower centers as in Tulipa humilis, 

or nectar guides in many groups which contrast the flower by absorbing light in the UV 

range, increases the attractiveness of a flower by increasing visibility  from a distance and 

help pollinators orient themselves on the flower prior and post landing (Whitney et al. 

2009).  

Researchers observed that various floral phenotypes serve to signal or advertise 

the presence of nutrition rewards (Raguso and Willis 2005) with communication between 

flowering plants and their pollinators involving a combination of  sensory signals which 

include color, morphology, odor, among others which in turn act in concert with each 

other to become “sensory billboards” (Willmer et al. . 2009; Raguso 2004).  

Floral Color — why did it develop?  

The importance of color as a signal in floral parts in attracting pollinators has led to the 

common interpretation that pollinators are the primary selective agents influencing flower 

color. Transitions to different colors represents adaptation to different suites of 

pollinators as selection of one functional group may cause divergence of color while 

another functional group may maintain that trait (Fenster et al. . 2004; Rausher 2008). In 
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addition, competition for pollinators can also account for color divergence as this 

promotes species level specialization by pollinators, thus decreasing the cost of 

intraspecific pollen deposition (Muchhala et al. 2014). Observations on the correlations 

between floral-trait combination and pollinator type by Darwin (1862 as cited by Fenster 

et al. 2004) and many others suggest that different pollinators promote selection for 

diverse floral forms that produce an array of “pollination syndromes,” (Fenster et al. 

2004, Ollerton et al.  2009). The primary evidence supporting this contention is the 

existence of groups of floral traits that occur together associated with attraction and 

utilization of a specific group of animals as pollinators (Fenster et al. 2004, Rausher 

2008). Examples include: bird-pollinated flowers, which are typically red or orange and 

have elongated floral tubes, reduced floral limbs, exserted stigmas, and copious dilute 

nectar; butterfly pollinated flowers which are bright red or orange and have a landing 

platform and a narrow deep corolla tube, while bee-pollinated flowers, which are 

typically blue or purple and have short, wide tubes, wide limbs, inserted stigmas, and 

small amounts of concentrated nectar among many other specialized examples 

(Andersson and Dobson 2003; Fenster et al.  2004; Rausher 2008).  

In addition to the pollinator-shift and the competition models as explanations for 

why flowers have colors, researchers also recognized the importance of flower 

pigmentation in other functions aside from visual signaling (Campbell et al. 2012). 

Enzymes used in the synthesis of anthocyanin pigments are also used to synthesize other 

flavonoid compounds which effect flower color and other ecological and physiological 

traits such as flower temperature. Thus, flower color evolution may be influenced by 

selection on these pleiotropic effects (Rausher 2008). For example, flower color mutants 
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not expressing anthocyanins can be less tolerant of stresses such as drought and heat 

(Campbell et al. 2012). Other selective pressures such as herbivory also select for flower 

color, as pigmentation in flowers often correlates with green pigmentation in vegetative 

tissues, caused by chlorophyll a and b (Kevan 1972), and affect the level of resistance to 

herbivores (Campbell et al. 2012). If selection is all together discounted another view on 

color divergence is based on the neutrality hypothesis which suggests that genetic drift is 

responsible for flower color transitions (Rausher 2008). 

Floral Color — how is it used? 

Color signals in plants are important to pollinators as they show color preferences due to 

reward associations (Campbell et al. 2012). Flower color can remain constant or it can 

change due to factors such as age, pollinators or the environment (Weiss 1991, Yoshida 

et al. 2009). However, regardless if flower color is stable or dynamic, it functions to 

communicate with its animal pollinators. Therefore, the evolution of floral color change 

is most likely the result of visually orientated pollinator color preference behavior (as was 

discussed above).  

The physiological mechanisms responsible for the color change of the flower   

include the gain or loss of pigments such as anthocyanin, carotenoid and flavonol, the 

appearance of betalain, change in pH, or movement of floral part such as curling of petals 

(Robinson 1939, Weiss 1995, Tanaka et al.  1998, Yoshida et al.  2009). In fact, one of 

the first theories used to explain red and blue coloration was based on change in pH by 

Willstatter and Everest (1913) where plants would exhibit blue coloration under alkaline 

conditions and red when acidic (as cited in Yoshida et al.  2009). The rivaling theory at 

the time was by Shibata et al.  (1919) who proposed the metal complex theory that 
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showed the yellow pigments of plants, flovone and the flavonal series when reduced with 

compounds such has sodium amalgamate obtained red anthocyanin solutions (Shibata et 

al. 1919).   

Floral color change provides important information that benefit both plant 

communicators and animal receivers, as plants receive potential pollinators and animal 

usually gain food rewards. Color change usually occur in fully turgid flowers and differ 

in the locations which they affect, as dictated by pollinator type. For example, the entire 

flowers of bat or moth plants change color, while butterfly, bee and fly pollinated plants 

show changes to only specific floral parts (Weiss 1995).  Regardless of location of color 

change, pre-change flowers generally signal the provision of rewards and the availability 

of receptive stigmas, while post change flowers that are often retained, to increase 

attractiveness of displays, are generally unrewarding and sexually inviable. (Gori 1989, 

Weiss 1995, Willmer et al. 2009). For example, as seen in Lungworth flowers 

(Pulmonaria collina) which change from red to blue with age (Oberrath and Bohning-

Gaese 1999) or Sweet sage (Lantana camara) which employ honest signals where one 

day old yellow flowers offer the most rewards, while day two orange or day three scarlet 

flowers offer little or no rewards but are retained to serve as a large billboard for long 

distance attraction and larger landing platforms (Barrows, 1976, Weiss 1991, Nuttman et 

al. 2005). Therefore, floral color change is an adaptive trait that benefits both the plant 

and its insect pollinators by cuing the insects to visit the flowers at the optimal 

reproductive stage and with the greatest reward (Willmer et al.  2009). 
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Visual Systems  

Color vision offers a remarkable point of entry to understand mechanisms underlying 

complex behaviors as many taxa are users and receivers of color signals. Among 

terrestrial animals, only vertebrates and arthropods possess the ability to discriminate 

wavelengths independent of color intensity, characteristic of ‘‘color vision’’ (Sison-

Mangus et al. . 2006). Although the origin of color vision is still unknown one 

explanation is based on the fact that light reflected from objects lacks UV wavelengths 

but possess green/yellow middle energy wavelengths. Therefore, if an organism is able to 

detect UV and middle wavelengths then it can tell the difference between an open space 

with high UV from an UV low space that can serve as a habitat or has the presences of 

food and other organisms. This theory is further supported by the presence of UV and 

green sensitive pigments of primitive arthropods (Pichaud et al. 2002). 

Visual Systems — what does it comprise?  

The compound eyes insects are made up of 8-9 photoreceptor cells surrounded by support 

and visual pigment cells that are organized in optical units called ommatidia (Pichaud et 

al. 2002). Ommatidia are classified as either open, fused or tiered based on the structure 

of their rhabdoms which in turn affects the spectral sensitivities of the photoreceptor cells 

(Briscoe and Chittka 2001). If open, such as in flies, receptor cells 1-6 each have their 

own rhabdomere that receives its own image (broadening spectral sensitivity), if fused 

rhabdomeres which have different photopigments act as lateral filters for each other thus 

narrowing spectral sensitivity, and if tiered distal photoreceptor cells filter light from the 

proximal cells, narrowing the spectral sensitivity of the animals such as butterflies and 

dragonflies (Briscoe and Chittka 2001, Pichaud et al.2002). In addition to visual 
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pigments, screening/filtering pigment found surrounding the rhabdom vary in spectral 

absorption and distribution, and affect the spectral sensitivity of the eye, although the 

interaction between these pigments are not clearly understood (Briscoe and Chittka 

2001). For example, in Papilio butterflies their UV screening pigments superimpose onto 

their UV or green sensitive opsins causing an increase in spectral sensitivity allowing 

these butterflies to be able to detect six different colors; UV, violet, two kinds of green 

and red (Pichaud et al.2002).  

Regardless of all the factors that affect the color sensitivity of the eye, for color 

vision of any kind to exist opsin genes (Fig. 2 modified from Frentiu et al.  2007), which 

encode visual pigments sensitive to different wavelengths of light, are obligatory (Briscoe 

1998, Frentiu et al.  2007, Koyanagi et al. 2008). Visual pigments are made of two 

components; a light-sensitive retinal base chromophore (e.g. 11-cis-3- hydroxyretinal) 

(Smith and Goldsmith, 1990) attached by a Schiff- base linkage to an opsin protein 

(Briscoe and Chittka 2001). An opsin belongs to the family of G-protein-couple receptor 

and they contain transmembrane domains which form a binding pocket within which the 

chromophore is located (Briscoe and Chittka 2001). The spectral tuning of the visual 

pigment wavelength of peak absorbance, λ max, is achieved through the interaction of the 

chromophore with critical amino acid residues within the opsin. Changes in the polarity 

of amino acids in the chromophore-binding pocket of opsins affect the distribution of 

electrons in the π-electron system of the chromophore, producing a diversity of λ max 

values (Honig et al.1976). However, although the amino acid sequence and the 

chromophore both affect the maximum absorption λ max the fact that most organisms 

make a single chromophore, the diversity of the visual pigment absorption spectra 



26 

 

primarily depends on the amino acid of the visual pigments (Briscoe and Chittka 2001).  

Selection for amino acid substitutions at these key sites has led to the spectrally diverse 

array of visual pigments present in different classes of photoreceptor cells (Briscoe 

2000). It is believed that photo pigment sensitivities represent adaptations to an animal’s 

light environment, therefore these amino acid sites may be under positive selection from 

selective pressures such as finding food, shelter, oviposition sites (butterflies), mates and 

conspecifics (Frentiu et al.  2007). 

Visual Systems — how did they evolve? 

Phylogenetic analyses confirm that opsin genes duplicated many times before the 

radiations of the metazoans giving rise to several protein subfamilies (Frentiu et al.  

2007). In Arthropods four phylogenetic groups of opsins have been identified (Briscoe 

and Chittka 2001) with most butterflies possessing three, as in most insects. Peak 

sensitivities of these opsins include: the ultraviolet (UV, 300-400 nm), blue (B, 400-500 

nm) and long wavelength (L, 500-600nm) part of the light spectrum (Briscoe 2008, 

Bybee et al. 2012). Exceptions, in the insect kingdom, include the loss of the blue 

sensitive receptors in Dictyoptera and Hymenoptera, the gain of an additional short 

wavelength in Odonata and Diptera and the presences of a red-sensitive receptor in some 

Lepidoptera, Odonata and Hymenoptera (Briscoe 2000).   

In bees, moths and most butterflies each ommatidium has six or seven receptors 

expressing long wavelength opsins, and two receptors expressing two blue and short 

wavelength opsins or just one of each (Zaccardi et al.  2006). The spectrum visible to 

butterflies (ultraviolet through the red) is one of the broadest in the animal kingdom 

(Bybee et al. 2012), therefore making them ideal study specimens in color vision studies. 
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Most butterflies possess the three major spectral classes encoded by ancient duplications, 

which produced distinct UVRh, BRh and LWRh opsin genes (Bybee et al. 2012). 

Although all butterflies share this similarity, butterfly eyes are extremely diverse in terms 

of their spectral organization (Sison-Mangus et al. 2006; Briscoe et al. 2010), as some 

have kept this ancestral arrangement while many other butterflies have many more 

(Osorio and Vorobyev 2008). For example, swallowtail butterflies Papilio spp. have at 

least three L opsins expressed in the compound eye owing to repeated gene duplication 

events (Kitamoto et al. 2000) whereas in the family Pieridae, B opsins are duplicated 

(Awata and Wakakuwa 2009). Overall it has been found that representative species of 

each butterfly family have different number of opsins due to lineage specific duplication 

events of the three basic classes of opsins (Yuan et al.  2010). Butterflies also show 

diversity in terms of the spectral sensitivities of their photopigments and their intraocular 

filters (Osorio and Vorobyev 2008).  

Butterflies of the genus Heliconius (Nymphalidae) are considered examples of an 

adaptive radiation due to the spectacular diversity of mimetic wing color patterns that 

evolved in species and races throughout Mexico and Central and South America (Yuan et 

al.  2013). They also have unique visual systems because, besides  the pressures of 

finding food they must also be able to recognize mates from the multitudinous arrays of 

mimics (Yuan et al. 2010; Zaccardi et al. 2006). As such they exhibit a remarkable 

radiation of photoreceptor sensitivities (Osorio and Vorobyev 2008). These Nymphalid 

butterflies have eyes that typically contain three spectrally distinct rhodopsins, including, 

as was stated before, one ultraviolet, one blue, and one long-wavelength. For example, 

Dryas iulia, a close Heliconius relative, has eyes that contain three rhodopsins with λ 
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max=385, 470, and 555 nm, whereas Heliconius erato has eyes that contain four 

rhodopsins with λ max = 355, 398, 470, and 555 nm. Heliconius erato eyes also contain 

four opsin-encoding mRNAs UVRh1 (UV Rhodopsin 1), UVRh2 (UV Rhodopsin 2), 

BRh (Blue Rhodopsin), and LWRh (Long wavelength Rhodopsin) in contrast to the usual 

three found in D. iulia (UV, B, L) (Briscoe et al. 2010, Yuan et al.  2010). This diversity 

of the eye design reflects the diversity of its evolution and of the lifestyles of the different 

species (Awata et al. 2010). For example, the gene duplication events such as that of the 

UVRh into UVRh1 and UVRh2 opsin genes have occurred at the same time that UV–

yellow pigments of the wings appeared (Briscoe et al. 2010) suggesting that the duplicate 

UV opsin genes has evolved for species recognition and by extension mate selection, in 

Heliconiid group (Briscoe et al. 2010, Yuan et al.  2010). 

Conclusion  

Generally, photoreceptor sensitivities are adapted for universal vison and do not focus on 

specific communication signals (Osorio and Vorobyev 2008). However, this is definitely 

not the case for butterflies that possess a wide diversity of photoreceptors, owing to its 

multitudinous uses, such as recognition of green leaves for oviposition, yellow, blue, 

among other color flowers for feeding (Weiss 1997, Blackiston et al. 2011, Nuzhnova 

and Vasilevskaya 2013), yellow for mate recognition (Briscoe et al.2010, Yuan et al. 

2010) etc.  

Bodies of work showing clear cut evidence for the co-evolutionary relationship 

between butterfly receptors and mating signals have been substantial (Naisbit et al. 2001, 

Jiggins et al. 2004, Arikawa et al. 2005, Sison-Mangus et al. 2006, Bybee et al 2012). It 

is also shown that butterflies exhibit innate color preferences associated with feeding 
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(Hsu 2001) and the color of flowers play an important role in attracting pollinators 

(Quattrocchio et al.  1999). Additionally, Angiosperms employ a variety of strategies to 

encourage pollinators to approach, of these; color and changing color appears to be 

particularly important for flower recognition  (Weiss 1997; Willmer et al. 2009). In 

particular, the flowers of Angiosperms exhibit tremendous diversity in color that ranges 

across the UV and visible spectrum (Muchhala et al. 2014). These flowers also differ 

from pale to nearly black in intensity with closely related sister species or populations of 

the same species differing in the intensity, hue, or patterning of the corolla (Rausher 

2008, Muchhala et al. 2014) caused by numerous evolutionary transitions attributed to 

pollinator-mediated selection (Rausher 2008, Muchhala et al. 2014). 

Thus, although, separate bodies of work focused on communication signals as it 

relates to conspecific identification and mate selection and plant-pollinator 

communication this review highlights the need to on focus relationships and correlations 

between these signals, especially in light of Ryan and Cumming’s (2013) recent review 

linking the color biases for food and sex in other taxa. More so, this review shows that it 

is essential to bring more attention to plant-pollinator communication as this facilitates an 

increase in knowledge in the area of signal theory that has, historically, been biased 

towards epigamic signals. Further, future work in plant-pollinator communication should 

offer insights into non-hymenopteran pollinator behavior and how visual signals affect 

these behaviors and should not be limited to stable floral signals but include understudied 

areas such as floral color change.    
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Fig.1 Process of sensory drive (sensu Endler 1992) as seen in innate food choices and 

sexual selection. Arrows indicate evolutionary influences.  

Fig. 2 Butterfly compound eye and opsin expression patterns (Frentiu et al. 2007).   

A. Diagram of a longitudinal 
section through the compound 
eye showing the ommatidial 
units. Black dots indicate 
location of photoreceptor 
nuclei. R, retina; L, lamina; and 
M, medulla. 
B. Schematic of an 
ommatidium. C, cornea; CC, 
crystalline cone; n, nuclei; 9, 
the ninth photoreceptor cell 
that sits just above the 
basement membrane, r, 
rhabdom, rc, retinula cell, 
pigment cells not represented 
located as outer layer of cc 
and rc. 
C. Opsin mRNA expression 
patterns. The cross-sections of 
three ommatidia are shown. 
The cross-hatched area in the 
middle of each depicts the 
fused microvillous membranes 
of the rhabdomeres that 
contain the visual pigment 
proteins. Numbers refer to the 
photoreceptor cells (R1–R8), 
and the colors refer to the 
opsin expression patterns: 
violet, UV opsin mRNA; blue, 
blue opsin; green, long-
wavelength opsin.  
Modified from Frentiu et al 
.2007. 
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Chapter 2 

Passionflower butterflies, Heliconius melpomene and Dryas iulia prefer flowers that 

match their wing colors 

Manuscript draft to be submitted to Journal of Behavioral Ecology and Sociobiology with 

Godfrey R. Bourne and Jessica L. Ware.  

Lay Summary 

Color in nature serves many functions, and many animals exhibit pre-existing color 

biases for food which in turn sub-serve other functions such as finding mates. We show 

that experienced passionflower butterflies fed on flowers that were similar in color to 

their wings. Similarly, naïve flambeau (Dryas iulia) demonstrated the same color 

preferences for both food and mates. However, although naïve postman (Heliconius 

melpomene) butterflies showed preferences for red wings they did not show foraging 

preferences for flower color.  
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Abstract   

Colors are one of the most ubiquitous and important cues exploited as signals by animals 

in nature. We investigated the relationship between colored signals used for foraging and 

mate selection by two passionflower butterflies, Heliconius melpomene and Dryas iulia, 

by testing the hypothesis that sensory bias for easy food detection was exploited during 

mate acquisition. We did this by presenting naïve butterflies with model yellow, orange 

and red Lantana camara flowers and same color model mates of each species. We also 

observed the feeding preferences of experienced butterflies at L. camara flowers and we 

ascertained from literature that these butterflies are attracted to mates with same 

conspecific wing color. We found support for the sensory bias hypothesis in naïve D. 

iulia that chose the same colored model flowers and model wings. However, H. 

melpomene butterflies showed no preference for flower choices, but chose red wing 

models as potential mates, as was noted in experienced butterflies. However, we also 

found that these feeding preferences were subject to change under simulated sky or forest 

environments. When we observed experienced butterflies in nature, we found support for 

the sensory bias hypothesis for both of our study species as the spectral reflectance 

measurements of conspecific wing color more closely matched their foraging plants in 

comparison to non-foraging plants present in the study site with flower color being as 

conspicuous to potential pollinators as wing color was to potential conspecifics against 

the visual back ground.  

 

Key Words: color preference, sensory bias, Lantana camara, foraging, mate choice, 

floral preference, Heliconius melpomene, Dryas iulia 
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Introduction 

Elucidating the origin and evolution of mating preferences and cues that influence signal 

evolution is an important goal of evolutionary ecology because the origin of these 

preferences and the cues that trigger them are usually unknown (Ryan and Cummings 

2013). As early as 1879, Allen surmised that color vision was primarily adapted to 

finding edible parts of plants, and this lead to secondary color preferences such as those 

due to sexual selection—however he had no evidence for his conclusion (Osorio and 

Vorobyev 2008;  Bybee et al. 2012a). We now know that either preference or cue can 

evolve first and then be favored by sexual selection, or both preference and cue can 

coevolve simultaneously in the sensory or receiver bias model (Arak and Enquist 1995; 

Ryan 1997; Ryan 1998; Payne and Pagel 2001; Andersson and Simmons 2006; Ryan and 

Cummings 2013). This model, which posits that preference for a trait did not evolve 

through sexual selection but rather in a non-mating context and is then exploited by one 

sex to increase their probability of mating (Ryan 1998; Endler and Basolo 1998) has been 

receiving growing empirical support (Grether et al. 2003; Kokko and Brooks 2003; Smith 

et al. 2004). For example, investigations in sexual selection have demonstrated that 

females have preferences for traits that are not yet exhibited by conspecific males (Basolo 

1990a;Ryan 1997; Ryan 1998). These females show preferences for conspecific males 

with manipulated phenotypes, preferring males with an added trait such as a colored 

sword or complex call components, over the typical male phenotype (Basolo 1990; Shaw 

1995; Ryan 1998; Ryan and Cummings 2013). Other sources of support for the receiver 

bias model come from empirical studies of foraging behavior (Endler 1992; Rodd et al. 

2002; Smith et al. 2004; Fuller et al. 2005; Bourne and Watson 2009). The sexual 
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preference of female guppies (Poecilia reticulata), stickle backs (Gasterosteus 

aculeatus), and pentamorphic livebearing fish (P. parae) for males with orange spots, red 

throats, and yellow and red swaths respectively are explained by the idea that orange, 

yellow, and red coloration resemble the colors of their food sources (Rodd et al. 2002; 

Kokko and Brooks 2003; Smith et al. 2004; Bourne and Watson 2009).  

The expression of many ornamental traits depends on carotenoids that animals 

cannot synthesize de novo (Brush 1990) but can only be obtained through ingestion 

(Olson and Owens 1998). Moreover, carotenoids are antioxidants and immunostimulants 

(Britton 1995), with a tradeoff between carotenoid allocation for maintaining health and 

enhancing ornamentation (Negro et al. 2002). Thus, when females exhibit preferences for 

males or males for females with the most intense carotenoid coloration they are choosing 

mates with strong immune systems (Blount et al. 2003) and foraging abilities (Rodd et al. 

2002), and these colorful traits are in fact honest signals (Garcia and Ramirez 2005; 

McGraw 2005; Maan et al. 2006). Observations of guppies foraging on fruits rich in 

carotenoids in Trinidad led Rodd et al. (2002) to propose, test, and corroborate the 

hypothesis of a non-sexual origin of the female mate preference by using colored discs to 

test female and male guppy preferences for colors by recording approaches to and 

nibbling at these discs. They also showed that the visual system of guppies is tuned to 

preferentially detect orange food items, thereby providing further evidence for the 

predictions by Basolo (1990, 1995) and Endler and Basolo (1998) that demonstrate male 

orange coloration evolved because of a pre-existing female receiver bias. As far as we 

can determine, all tests of the sensory bias hypothesis to date focus on vertebrates (Ryan 

and Cummings 2013), and this prompted us to test this hypothesis on passionflower 
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butterflies, the flambeau, Dryas iulia, a member of the high-flying orange-patterned 

Müllerian mimicry complex, and postman, Heliconius melpomene, a member of low-

flying red and black patterned mimicry ring (Papageorgis 1975; Mallet and Gilbert 1995). 

In Guyana, adults of both species feed on pollen and nectar (The Heliconius Genome 

Consortium  2012) from flowers that were red, yellow, orange, yellow-green and pink (G. 

R. Bourne and G. Maharaj pers. observ.). 

In order to test this hypothesis, we needed to provide proof of Basolo and 

Endler’s (Basolo 1990, 1995; Endler and Basolo 1998) four predictions to demonstrate 

that a male trait evolved because of female receiver bias. These are as follows: 1) 

preference for the trait is ancestral, however, 2) the trait itself must be absent or in a 

primitive form in ancestors, that is, the trait is derived; 3) there is a bias in the 

psychosensory system that matches the direction of preferences, that is, it predicts the 

direction of the preferences; and 4) male choice relies on heritable variation in the trait. 

So if the trait is present, there is a preference for it and the trait is used in mate choice. 

Previous work suggests that primitive arthropods developed color vision to first 

distinguish between open spaces that reflected high amounts of UV light and 

green/yellow food rich environments (Pichaud et al. 1999). This simple system then 

evolved into the three major classes of photoreceptors, with peak sensitivity (λ max) in 

the ultraviolet (UV, 300–400nm), blue (B, 400–500) and long wavelength (LW, 500–

600nm) UV (ultra-violet) part of the light spectrum, seen in many insects today (Briscoe 

2008). In butterflies, recent duplications of these ancestral opsin genes and changes in the 

kind and distribution of lateral filtering pigments has led to the evolution of novel λ max 

values (Briscoe 2001; Briscoe and Chittka 2001; Briscoe 2008), thereby increasing color 
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discrimination (Kelber and Pfaff 1999; Kinoshita et al. 1999; Bybee et al. 2012b). Many 

of these changes correlate with the evolution of wing color pigments, thus butterflies that 

developed additional wing colors simultaneously exhibited changes in the ancestral opsin 

expression and their filtering pigments  (Briscoe et al. 2010a) and, as such, demonstrate 

respective changes in their mating preferences  (Cook et al. 1994; Jiggins et al. 2001; 

Ellers and Boggs 2003; Jiggins et al. 2004). Thus lending support for predictions 1) the 

trait must be absent in ancestors; and 2) trait preference is ancestral (Endler and 

Basolo1998). Since we failed at extracting opsin genes from our specimens following 

protocols provided by Briscoe et al. (2010), we had no way of directly evaluating tuning 

in the visual systems of H. melpomene and D. iulia. Therefore, we were unable to directly 

and definitively test prediction three, bias in the psychosensory system matches the 

direction of preferences (Endler and Basolo1998). However, we assume that these 

butterflies’ visual systems are tuned preferentially for detecting carotenoid-colored 

flowers (flowers with colors in the long-wavelength range) as reported for other 

Heliconiinae, as they both possess LW opsins and Heliconius melpomene possesses 

screening pigments that selectively absorb short-wavelength light and, thus, fine-tune the 

sensitivity spectrum of long-wavelength receptors (Stavenga 2002ab; Zaccardi et al. 

2006). Therefore, for our study as a test for the sensory bias hypothesis we provide 

evidence for the final prediction using Passionflower butterflies, i.e. 4) male choice relies 

on heritable variation in the trait (Endler and Basolo 1998). So if the trait is present, there 

is a preference for it and the trait is used in mate choice.  

 Passionflower butterflies (Nymphalidae: Heliconiinae) exhibit sexually selected 

color dimorphism with males exhibiting greater color saturation than females (G. R. 
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Bourne unpubl. data). Male H. melpomene only approach and court females with species 

typical larger red spots on black wings (Fig. 2a), and females prefer males with these 

distinctive red-and-black badges as mates (G. R. Bourne and G. Maharaj pers. observ.), 

but the origin of this preference is unknown. We hypothesize that mate preference for 

females with larger or more chromatic red spots might be a pleiotropic effect of selection 

in a foraging context as is seen in several fish taxa i.e. mate preference developed as a 

result of a unrelated non-mating preference (Rodd et al. 2002; Ryan and Cummings 

2013). Our aim was to devise experiments to determine whether H. melpomene with its 

bold red wing patches, and the mostly orange winged D. iulia had a pre-existing sensory-

bias for carotenoid coloration. Specifically, we tested four predictions about the foraging 

and mating preferences of H. melpomene and D. iulia. First, newly eclosed (naïve) male 

and female butterflies should approach and uncurl proboscises to flowers with colors that 

match their own wing coloration; i.e. naïve H. melpomene and D. iulia will choose red 

and orange model flowers respectively. Second, spectral reflectance measurements of 

conspecific wing color patterns should match flower color preferences of experienced 

butterfly foraging than colors of non-visited flowers. Third, both butterfly species should 

more often approach butterfly models displaying conspecific wing color patterns. And 

finally, flower color will be as detectable to potential pollinators, as wing color is to 

potential conspecifics in similar light environments i.e. wing color and flower color will 

exhibit equal contrast against the visual back ground.   

Materials and Methods 

Study area  



49 

 

We conducted our study at CEIBA Biological Center (N 06° 29/.945//, W 058° 

13/.106//), Madewini, Guyana (Fig. 1). This white sand forested area is comprised of low 

seasonal forest dominated by the fast-growing Eperua falcate (Caesalpiniaceae), and tall 

primary growth flooded forests dominated by Mora excelsa (Fabaceae) (Bourne and 

Bourne 2010). A mixed farm was established in this habitat and consisted of an 80×40m 

(320m2) plot with numerous L. camara stands interspersed among Citrus spp. (lime, 

orange and citrus hybrids) and Ananas comosus (pineapples). In order to tract butterfly 

behavior we followed line transects that started in the northern forested margin and south 

of the biological station’s complex. This transect extended towards the path to the mixed 

farm south of the biological station, it then continued west bound to the flooded forest, 

then north towards the spring, finally culminating in an easterly direction to the camp 

complex.   

Study Species  

Passionflower butterflies, or Heliconiids, are associated with a suite of derived life-

history and ecological traits, including pollen feeding, extended lifespans, traplining 

foraging behaviors, gregarious roosting, and complex mating behaviors (Heliconius 

Genome Consortium, 2012). We have chosen to work with this group because they are 

tractable to study in the laboratory and the wild, and have been the focus of a large body 

of work in evolutionary biology, genetics, and animal behavior (Hsu et al. 2001). 

Additionally, Heliconiids vary considerably in the way they use visual signals to find 

flowers, mates, and communicate (Hsu et al. 2001).  

Heliconius melpomene and Dryas iulia are common at CEIBA and belong to two 

different mimicry color rings as defined by their wing colors: red for H. melpomene and 
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orange for D. iulia  (Mallet and Gilbert 1995), caused by yellow, orange and red scales 

containing 3-OH kynurenine and ommochrome pigments (Stavenga et al. 2014).  

Heliconius melpomene (Fig. 2a) wing color consists of red and black color patterns. The 

race used in this study can be identified by three features, viz., the color of the forewing 

band, the absence of the red patch on the proximal portion of the forewing, and the 

absence of red hindwing rays (Sheppard et al. 1985; Papa et al. 2008; Wallbank et al. 

2016). This species is often encountered as solitary individuals along forest edges and old 

second growth (Barcant 1970; DeVries 1987). Dryas iulia (Fig. 2b) have elongate 

forewings characterized by bright orange dorsal surfaces with black margins (DeVries 

1987). This butterfly is frequently found in secondary growth forest, gardens, and 

roadways feeding on pollen and nectar of flowers (Barcant 1970; G. Maharaj and G.R. 

Bourne unpublished data). 

Study System 

We focused our study on floral visitation as flowers are relatively constant in time and 

space and convey unambiguous messages to their receivers thus presenting a suitable 

system with which to study the effects of these signals on animal behavior (Schaefer et al. 

2004). In addition flower visitation and foraging has been extensively studied in 

hymenopteran pollinators in comparison to butterflies regardless of their ecological 

importance (Weiss 1991; Weiss 1997). We record all foraging at non-foraging plants of 

our study species at CEIBA, however we focus our experiments on Lantana camara 

(Verbenaceae).   

Lantana camara is a weedy Neotropical herb that has spread to various parts of 

the world as an invasive (Fig. 2c). It is usually found growing on human disturbed sites 
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(Sharma et al. 2005). This shrub has many inflorescences with 20–25 flowers per 

inflorescence placed in whorls (Fig. 2c; G.R. Bourne unpublished data). There are many 

horticulture varieties of Lantana that have small 5-lobed flowers in a variety of colors 

which include white, yellow, orange, red and purple that are often mixed in the same 

cluster (Ghisalberti 2000; Sharma et al. 2005). Common floral visitors include ants, 

carpenter bees, honey bees, black and brown stingless bees (usually as nectar robbers), 

and wasps, but especially butterflies belonging to diverse families. This plant has been 

the focus of many studies on color vision and color preference (Weiss 1991, 1997) and its 

tri-phasic color system provides unique insight to floral color signals and pollinator 

perception. Additionally, the major color phases of L. camara match the wing color of 

our study species i.e., red and orange, therefore this model system provides a unique 

opportunity to investigate whether each of my study species will be more attracted to 

colors matching their wing color.  

Data collection  

Feeding and wing preferences of naïve butterflies  

We tested individuals for preference in terms of flower color (feeding) and wing color 

pattern (mating) using newly emerged imagoes of H. melpomene and D. iulia at the 

Chesterfield Butterfly House, Chesterfield Missouri, from (March 2015-September 

2016). These butterflies were reared and shipped as pupa from the Bosque Nuevo 

Butterfly Farm, Santa Cecilia, Guanacaste, Costa Rica. Prior to testing, butterflies were 

kept in black cages and food was withheld for 12-24 h following eclosion (Nuzhnova and 

Vasilevskaya 2013).  Each butterfly was tested in a 1 m3 black mesh cage (feeding arena) 

that was only illuminated by two 15 W Philips Natural Light bulbs - color rendering 
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index = 92, Color temperature 5000K, full spectrum light, at a distance of 20 cm and no 

natural daylight was admitted into the testing cage. For our feeding experiments two 

types of additional colored filters were used to simulate blue and green lighting 

environments.  All models were produced from pictures taken with a Nikon D90 DSLR 

camera (June 2015) printed on 100% white reflectance paper using PG-240/CL-240 ink 

on a Cannon MX432 printer.  

Innate feeding  

Before initiating the innate flower color preference trials, we gently unrolled each 

individual’s proboscis with a dissecting needle and guided it into a black paper model 

flower containing 50% sucrose solution in order to expose the butterfly to the model and 

to stimulate interest in foraging. Initial models were black, as this was the only color 

butterflies were exposed to subsequent to eclosion and this prevented any color bias.  

Each butterfly was allowed to feed for 5s after which we placed them into the feeding 

arena.   

Model flowers 3 cm in diameter consisting of four rays projecting from a circular 

center were made from matte paper to reduce glare of the three main colors viz. red, 

orange and yellow, of the natural wild-type L. camara. These models were created from 

pictures of flowers that were taken from the day one yellow flowers, day two orange 

flowers and day three red flowers. All pictures were taken at 08:00 h each day to ensure 

consistency as flower color changes temporally. Flowers were printed, cut to shape and 

attached to leaf green cardboard.  Flowers were placed 10 cm apart in a completely 

random array and presented in the feeding arena. The light generated by the Philips 

Natural Light bulbs were diffused by a single sheet of UV-transmitting white diffusion 
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screen (no. 216, Rosco, Munich) to provide even, homogenous illumination (Blackiston 

et al. 2011).  Blue illumination was generated by Mist blue Rosco 061(transmittance – 

13%) filter sheets placed on top of the arena cover to simulate a blue sky-lit foraging 

environment. Green illumination, simulating conditions under forest canopy, was 

provided by placing a Rosco 139 Primary Green (transmittance – 15%) filter sheet on top 

of the flight arena (Lotto and Chittka 2005).  

We conducted two experiments, the first to determine innate flower color 

preferences and the second to elucidate preferences for spatial orientations of color 

whorls on inflorescences. The first experiment utilized three single model flowers (red, 

yellow and orange) under the two lighting conditions discussed above. We tested a total 

of 104 D. iulia and 61 H. melpomene butterflies of both sexes. Butterflies were randomly 

chosen to be tested using blue (ND. iulia = 45, NH. melpomene = 32) or green filters (ND. iulia = 

59, NH. melpomene = 29). In the second experiment we made L. camara inflorescences 

composed of model flowers in three colors whorls (red, yellow, orange). We altered the 

order of these colored whorls in six different orientations (Fig. 3). Orientation tests were 

carried out using 95 D. iulia and 52 H. melpomene butterflies of both sexes under blue 

illumination only.   

In both of these experiments one butterfly was released into the array and its 

behavior recorded for 15 mins. None of the models contained sugar solution rewards. We 

recorded the color and location of the first model probed and then the butterfly was 

removed. Butterfly settlings without probing were not tallied. We used the location data 

to ensure that butterflies visited different individual flowers choices, rather than a 

particular area/location in the array.  
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Wing preferences 

Butterfly models were made from pictures of Heliconius melpomene and Dryas iulia 

taken in the field. The coloration of their respective wings were manipulated to reflect 

yellow, orange, and red color markings, e.g., the red patches found on the fore wings of 

the H. melpomene were altered to look orange and yellow (matching day-2 and day-1 L. 

camara flowers, as taken from pictures). H. melpomene were presented with models that 

had red (control), and orange and yellow wing patches, whereas the wings of the D. iulia 

were altered to look yellow and red. After models were printed they were mounted on a 

black plastic stand (Jiggins et al. 2001; Ellers and Boggs 2003). All three models were 

presented together in the 1m3 mesh cage with one butterfly at a time. Butterflies were 

observed for 15 mins and the first approach was recorded. An approach was tallied if we 

observed the butterfly flying towards the models or settling on the model. We tested 76 

D. iulia (29 females and 47 males) and 58 H. melpomene (33 females and 25 males).  

Flower and wing preferences of experienced butterflies 

We used an Ocean Optics STS-VIS-50-400-SMA microspectrometer with a HL-2000-HP 

light source to measure flowers of all foraging and non-foraging plants and butterfly wing 

color reflectance. The system permits reflectance relative to a white reflectance standard 

to be measured over a working wavelength range of 337-821 nm. We followed butterflies 

along fixed transects in open and closed canopy habitats at CEIBA, as described in the 

method, and selected flowers of foraging and non-foraging plants. Foraging plants were 

classified as those whose flowers were probed by imagoes of our study species, while 

non-foraging plants were those that were available to butterflies but whose flowers were 
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not visited. These flowers were taken back to the field station where we took spectral 

measurements on the upper surface of the petals using a probe holder and fix the fiber-

optic probe at a 45° angle relative to the tissue surface.  We randomly selected and 

measured five flowers from each foraging and non-foraging plant for each butterfly 

species (Muchhala et al. 2014). In order to take wing color measurements the wings were 

mounted on a black plastic backing and the fiber optic probe with the stand was placed on 

different colored dorsal sections of the wings (Luke et al. 2009). Reflectance spectra were 

taken from ten members of each species in order to account for variation in reflectance 

across conspecifics.  

Data analyses  

Innate flower and wing color preferences  

For this experiment, the first model probed/approached by each individual were tallied 

across all butterflies and compared with an expected even distribution using a chi-square 

goodness-of-fit test (Blackiston et al. 2011).We do recognize that only males search for 

females, whether it is actively by patrolling in search of resting females or passively by 

perching and waiting for females (Scott 1975; Rutowski 1991). Therefore, we first used a 

chi-squared test to compare male and female innate mate preferences, before combining 

these data (male and female choices) and comparing them to the feeding color choices of 

flower models under blue illumination.  

Flower and wing color measurements 

We used the model specified by Gomez and Théry (2007) to better understand the 

differences in contrast between the butterfly wing color and food source relative to 
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natural light conditions and its background as perceived by the butterflies themselves. 

This model was chosen because it describes the discriminability of two colors against a 

chromatic background by their ‘distance’, in perceptual space, where perceptual space is 

defined by quantum catches of receptors of the animals looking at the colors analyzed. 

We used the quantum catches calculated from Gomez and Théry’s model (as detailed in 

supplementary information) to plot in a color space flower, flower models and wing color 

for each species. We divided all reflectance spectra into three categories, feeding plants 

(background―mean of leaves of feeding and non-feeding plants), non-feeding plants 

(background―mean of leaves of feeding and non-feeding plants), flower model (back 

ground―leaf green cardboard on which models were presented) and wing color 

(background―mean of border around color), and we calculated the color differences 

from their respective backgrounds in units of just noticeable differences (JNDs).  We 

calculated chromatic contrast (hue). That is, the distance between any two points 

representing a pair of colors and achromatic contrast (brightness) for a hypothetical white 

target (reflectance = 1 across all wavelengths) (analysis conducted as in Gomez and 

Théry 2007) and compared these values using a One-way ANOVA with accompanying 

post-hoc analyses for flowers and wings and a t-test for flower models under the two light 

environments.  

Results  

Feeding and wing preferences of naïve butterflies  

Chi-square analyses of food preference under blue and green illumination show that there 

was a significant relationship between color choice and filter for D. iulia (χ2 = 13.696, df 

= 2, p = 0.001) but not for H. melpomene (χ2 = 2.666, df = 2, p = 0.264). With orange 
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being favored under the blue filter for D. iulia and yellow for H. melpomene, while red 

was favored under the green filter by both butterflies (Fig 4a, b). There were no 

differences for color choices between sexes for either D. iulia, (χ2 = 3.477, df = 2, p = 

0.176) or H. melpomene (χ2 = 2.578, df = 2, p = 0.276).  

Our analyses of our model flowers under the different filters revealed that there 

was no statistically significant difference between the chromatic (t D. iulia = 0.994, df = 2, 

p = 0.425, t H. melpomene = 0.705, df = 2, p = 0.554) and achromatic measurements (t D. iulia = 

0.261, df = 2, p = 0.819, t H. melpomene = 0.263 df = 2, p = 0.817) of any flower model for 

either butterfly. However, we did note for D. iulia red flower models under the green 

light filter were 6.411 times brighter than under the blue filter while yellow and orange 

models were less bright i.e. their achromatic contrast against the background was less 

under green filters. Additionally, orange flower models were 15.512 times brighter and 

yellow models 1.624 times brighter, while the blue filters.   For H. melpomene red 

flowers were 9.341 times blighter under blue light filters while orange and yellow were 

more bright under the green filter. Orange was 8.751 times brighter under green light 

filters, while yellow was 1.606 times brighter.  

Our analyses of wing color and food color preferences for D. iulia (χ2 = 6.207, df 

= 2, p = 0.045), and H. melpomene (χ2 = 7.319, df = 2, p = 0.026) were significantly 

different, both butterflies preferred orange and yellow to red for food choices, and D. 

iulia preferred orange for mating choices, and H. melpomene red (Fig 5a, b). When we 

examined the orientation for feeding choice D. iulia butterflies preferred the OYR 

(orange, red, yellow), ORY and RYO orientations over YOR, YRO and RYO whereas H. 

melpomene preferred the ORY and YRO over the others. Although, our butterflies 
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displayed an observable preference for certain orientations, these preferences were not 

statistically significant for either species (χ2 = 6.672, df = 5, p = 0.246) (Fig. 6). 

Flower and wing preferences by experienced butterflies 

Color spaces for wing color and feeding plants (Table 1) were clustered, but both were 

separated from non-feeding plants, although there was some overlap for both species 

(Fig. 8). When we compared the just noticeable differences (JNDs) for D. iulia, feeding 

and non-feeding plants had larger achromatic contrasts than wings, but similar chromatic 

contrasts (Fig. 8). Our one-way ANOVA showed that there were no statistically 

significant differences in chromatic contrasts between wings, flowers and non-feeding 

plants (F = 2.167, df = 2, p = 0.119). However, there were statistically significant 

differences between the achromatic measurements of these groups (F = 3.949, df = 2, p = 

0.022), specifically wings and non-feeding plants (Tukey HSD). For H. melpomene 

achromatic contrasts for wing, non-feeding and feeding plants were similar, however 

there were noted differences in chromatic contrasts between feed and non-feeding plants 

(Fig. 8). Our one-way ANOVA revealed that there were no statistically significant 

differences between the achromatic measurements of wings, food and non-feeding plants 

(F = 1.677, df = 2, p = 0.191).  However, we found between group statistically significant 

differences in the chromatic values (F = 9.003, df = 2, p = 0.000) of feed and non-feeding 

plants but not wings and feeding plants (Tukey HSD).  

Discussion  

To date, proof of the sensory bias hypothesis had been shown mainly in fishes. Our study, 

similar to Rodd and colleagues (2002) show that our study species, Heliconiid butterflies, 



59 

 

show a similar color preference for food and mates, thereby specifically providing 

evidence for Basolo and Endler’s final prediction. In our study we also show that color 

choice is also species specific and subject to change with experience and various lighting 

environments.     

Feeding and wing color preferences of naïve butterflies  

Flower visiting animals have innate sensory biases evolved to detect flowers by traits 

such as color, pattern, odor, size of these traits color is often used to locate, recognize and 

discriminate among flowers (Menzel and Shmida 1993; Lunau and Maier 1995; Gumbert 

2000). Thus, due to these innate sensory biases, we see patterns, known as pollination 

syndromes, with blue and yellow bee pollinated flowers, red  hummingbird flowers, and  

orange or red butterfly flowers although  for butterflies, preference for flower color varies 

depending on family membership (Menzel and Shmida 1993; Weiss 1997; Andersson 

and Dobson 2003; Fenster et al. 2004; Chittka and Raine 2006). Such pollination 

syndromes arose by bilateral coevolution between flower color signals and the 

pollinators’ ability to detect and exploit these signals to identify specific food plants 

(Menzel and Shmida 1993; Gumbert 2000). 

Evidence of innate color preferences for food plant types by bees was presented 

as early 1881 by Müller (Gumbert 2000), and additional evidence presented in the early 

to mid-1900s by Knoll, for hawk-moths, and Ilse (1928) and Eltringham (1933) and 

butterflies (Ilse and Vaidya 1956; Lunau and Maier 1995; Hsul et al. 2001). Butterfly 

color preferences, in particular, were the subject of many studies that followed later 

because the taxon demonstrates innate preferences for flower color across many species, 

and this can vary depending on family or even species affiliation (Weiss 1997; Goyret et 
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al. 2008). For example, in cognitive studies, purple is preferred by several Papilionids 

and Pierids, and yellow by several Pierids and Nymphalids (Weiss 1997; Blackiston et al. 

2011; Nuzhnova and Vasilevskaya 2013). However, preferences varies among species, 

e.g., newly emerged Papilio aegues (Papilionid) preferred human perceived blue, while 

Pieris brassicae (Pierid) preferred human perceived red (Lunau and Maier 1995). 

In our study, feeding preferences changed with the quality of illumination (open 

sky vs canopy) for D. iulia but not H. melpomene. Both D. iulia and H. melpomene 

butterflies demonstrated a preference for yellow and orange flowers under blue filters that 

mimic open sky, and red flowers under forest green filters. However, for H. melpomene 

observed choices were not statistically significantly different. As such, only D. iulia 

support the prediction that newly eclosed (naïve) male and female butterflies should 

approach and uncurl proboscises to flowers with colors that match their own wing 

coloration, but both butterflies supported our prediction, that they should more often 

approach models displaying conspecific wing color patterns.  

These results are similar to findings by Weiss (1997) and Andersson et al. (2003) 

where under controlled conditions, yellow elicited strong butterfly feeding responses, and 

under field conditions, butterflies favored the yellow and orange flowers of L. camara 

(our model plant) that grow in open unshaded habitats (Darwin 1877). Endler (1992) also 

found similar results and elegantly explained in his sensory drive model how 

heterogeneity in light environments, e.g., cloudy, clear skies, woodland shade, forest 

shade, can affect the overall conspicuousness of a color by affecting both the brightness 

and color contrast of adjacent patches and thus color choices. For example, he stated that 

“…..a color pattern of gray, blue, yellow-green, and red patches show high color and 
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brightness contrast in white light, but under the yellow-green light of forest-shade the 

yellow-green is very bright, whereas the blue and red patches are darker and duller. In 

woodland shade the blue is brightest (reflecting the greatest proportion of ambient light), 

whereas the other colors are duller” (Endler 1992). Therefore, he concludes that this 

varied light can affect the appearance of an organism sending a color signal and thus in 

turn affect the behavior of their receiver, as exemplified by guppies (Endler 1992), 

cichlid fishes, Pundamilia pundamilia and P. nyererei (Seehausen et al. 2008). For D. 

iulia yellow and orange appeared brighter under blue light while red was brighter under 

green lighting as such, depending on the lighting conditions certain colors were darker 

and duller and as a result were not chosen. However, for H. melpomene although red was 

brighter under blue light while orange and yellow were brighter it is possible that H. 

melpomene did not show a statistically significant difference in color choice when food 

was presented under various lighting conditions because similar to its co-mimic, H. erato, 

opthalmoscope studies reveal two classes of ommatidia resulting from lateral filtering 

pigments that can affect the long wavelength of light to which receptors are sensitive that 

are present in Helconius spp. unlike other Nymphalidae such as Vanessa atalanta, V. 

cardi, Siproeta steneles, Inachis io and Polygonia c-album, and possibly D. iulia 

(Stavenga 2002ab; Briscoe and Bernard 2005; Zaccardi et al. 2006). Additional studies 

should be conducted to confirm this. Moreover, Heliconius spp., unlike D. iulia, have 

coevolved new mechanisms for producing and detecting yellow wing pigments; a double 

duplication of their UV opsins, which likely favored the evolution of distinct yellow 

colors on the wing compared to non-Heliconius spp. which can now distinguish among 

several shades of yellow with increased sensitivity (Briscoe et al. 2010). Due to the 
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increased sensitivity in color range detection driven by these lateral filtering pigments 

and the presence of a duplicated UV opsin it is now possible that H. melpomene can 

differentiate among types of yellow, orange and red pigments under open sky and canopy 

filtered lighting conditions. In addition, it is interesting to note that although naïve H. 

melpomene did not discriminate among the colors presented when feeding, we observed 

that experienced butterflies under blue sky open field conditions visit L. camara 

inflorescences with greater numbers of red flowers although, they foraged more on plants 

with yellow and orange flowers (Maharaj et al. 2016 manuscript in review). Therefore, it 

is possible that although H. melpomene may be attracted to red flowers as red appears 

brighter under blue light, yellow elicits feeding behaviors because for L. camara, yellow 

flowers produce greater quantities and quality of nectar than red flowers (Maharaj et al. 

2016 manuscript in review), which was the behavior tested in our experiments. This is 

strong evidence supporting the prediction that if the trait is present, in this case 

carotenoid flower coloration, there is a preference for it and the trait is used in mate 

choice, i.e., selection of similar carotenoid colored wings (Endler and Basolo 1998). 

Flower and wing color preferences of experienced butterflies 

Color vision enables animals to reliably detect and recognize food types and mates 

(Zaccardi et al. 2006; Ryan and Cummings 2013), and Lepidopterans are no exception 

(Swihart and Swihart 1970; Jiggins et al. 2001). In particular, the ability to discriminate 

colors in the red spectrum is vital as it can increase the number of flower species that can 

be perceived, facilitating the finding of better hosts for larvae and aiding mate detection 

of butterflies with orange-red coloration of their wings (Zaccardi et al. 2006). As such, it 

is not surprising that our results show the feeding plants (human detected yellow, orange 
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and red) of both of our butterfly species clustered with wing color (orange and red), but 

separated from the non-feeding plants (mostly human detected white and blue). Thus 

supporting our second prediction―spectral reflectance measurements of conspecific 

wing color patterns should match more closely experienced butterfly foraging flower 

color preferences than colors of non-visited flowers. Again, this is strong evidence 

corroborating the final prediction of Endler and Basolo, as there is a preference for 

orange/red food and this color trait is used in mate choice.  

 Our results, also demonstrated that the flowers of the feeding plants of our 

butterflies are as noticeable as the wings of their conspecifics thereby facilitating the 

increase in communication efficacy between conspecifics and pollinators in order to 

maximize detection by potential receivers. This supported our final prediction―flower 

color will be as detectable (equal contrast against the visual back ground) to potential 

pollinators, as wing color is to potential conspecific mates in similar light environments.  

Specifically, there were no statistical differences between the chromatic and achromatic 

contrasts of feeding plants and wings for either butterfly, i.e., butterflies were able to 

detect the hue and brightness of the flowers and conspecific wing color equally well 

against their backgrounds.  In Heliconiinae, wing coloration serves as both defense 

(aposematic signals) and interspecific communication (epigamic signals) (Jiggins et al. 

2004; Estrada and Jiggins 2008; Bybee et al. 2012a). Therefore wings evolved to be 

visible to Lepidopteran conspecifics that possess opsins in the ultraviolet (λmax 349-399 

nm), blue (λmax 460-470 nm) and long wavelength (λmax 550-560 nm) (Briscoe 2008;  

Yuan et al. 2010), and to avian predators such as tyrant flycatchers and tanagers (G. 

Maharaj and G. R. Bourne pers. obser.), which possess opsins similar to the blue tit (λmax 
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372, 451, 537, and 605nm) (Shultz 2011; Bybee et al. 2012b). The flowers that are fed on 

by our study species are also shared by other pollinators from a broad range of taxa which 

possess opsins with differing and similar λ max values than H. melpomene and D. iulia. 

For example, other Lepidopterans such as Papilionids with five different photoreceptors 

(360 nm, 390 nm, 440 nm, 540 nm and 600 nm) (Kelber and Pfaff 1999; Kelber et al. 

2003), hummingbirds (370 nm, 455 nm, 515 nm, 575 nm) (Muchhala et al. 2014), and 

hymenopterans such as Xylocopa spp. (360 nm, 428 nm, 544 nm) (Peitsch et al. 1992). 

Thus, our butterflies and the plants in their environment, whether feeding or non-feeding, 

evolved to send colorful signals with strong contrasts to many different taxa with similar 

and varying opsin sensitivities. As such, in our study, there were no statistical differences 

in chromatic contrasts between wings, and feeding and non-feeding plants for D. iulia, 

nor were there differences in achromatic contrasts for H. melpomene.    

 In summary, our findings implied that the mate acquisition of D. iulia and H. 

melpomene butterflies probably originated as a result of a sensory-bias for orange- red- 

and yellow-colored objects, such as rare flowers which might be sources of high quality 

pollen and nectar as foods (The Heliconius Genome Consortium 2012). However, the 

relationship between response to carotenoid models and mating preference suggests 

experiments should be conducted to elucidate causal relationships such as exposing 

multiple generations of butterflies to multicolored foods and noting if changes will also 

occur mate choice in models. Also, further study is needed to clarify to what extent 

geographical variation in male preference for orange, red, and yellow flowers is a result 

of natural selection influencing foraging behavior, and to what extent mate acquisition 

may have been co-opted by sexual selection mechanisms (Ryan and Cummings 2013).            
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 We presented evidence that innate attraction to carotenoid colored model flowers 

and wings were similar for D. iulia and H. melpomene butterflies. Overall, our results 

suggest a strong association between a potential trigger of a mate choice preference and a 

sexually selected trait, thereby corroborating the receiver-bias hypothesis for carotenoid 

coloration (Ryan and Cummings 2013). Our study suggested both an association between 

a potential trigger of a mate preference and a sexually selected trait, thereby 

corroborating the sensory-bias hypothesis for the evolution of male mating choice in D. 

iulia and H. melpomene butterflies. 
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Figure Legends 

Fig.1 Satellite view of study site, CEIBA Biological Center, Madewini, Guyana, 18 

September 2002, 6°29/ 57.75//N, 58°13/ 07.23// (Google© 2009 Europa Technologies). 

Fig.2 Study species, a) Dorsal views of the postman, Heliconius melpomene, (b) the 

flambeau, Dryas iulia and (c) multiple inflorescences of the study plant, wild type of the 

sweet sage, Lantana camara, showing central position of unopened flower buds, inner 

whorl of yellow, newly opened flowers, followed by a whorl of orange 2-day old flowers, 

flanked by inflorescences of pollinated, non-nectar producing red flowers that are 3-days 

or older. These flowers also occur in the outer most whorls of inflorescences, however 

this is not captured in this photograph.    

Fig.3 Model of inflorescence used to test spatial preferences of color whorls. These 

inflorescences were assembled by placing single model flower in concentric rings/whorls 

of six color orientations, viz., 1) center yellow, second ring orange, third ring red (YOR), 

yellow/red/orange (YRO), orange/yellow/red (OYR), orange/red/yellow (ORY), 

red/orange/yellow (ROY) and red/yellow/orange (RYO). 

Fig. 4 Comparison of observed and expected color choices of food under blue and green 

lighting environments based on chi-squared contingency table values. Butterflies show 

preference for different colors while foraging in different lighting environments, i.e. open 

sky (blue filter) vs forest canopy (green filter); a) D. iulia preferred orange under the blue 

filter while red was favored under the green filter, and yellow favored equally under both 

filters b) H. melpomene preferred yellow under the blue filter but red under the green 

filter.  



76 

 

 

Fig. 5 Comparison of observed and expected color choices of food and mates based on 

chi-squared contingency table values. Butterflies show preferences for similar colors 

while foraging in blue light conditions but species specific color when choosing mates. a) 

D. iulia preferred orange and yellow to red for food choices and orange for mate choices, 

while b) H. melpomene, similarly preferred orange and yellow for food choices but chose 

red winged mates. 

Fig. 6 Newly emerged a) Dryas iulia and b) Heliconius melpomene preferred test arrays 

with orange in the center. Orange, yellow, red (OYR) arrays were favored by D. iulia, 

while ORY arrays were visited more often by H. melpomene. However, there were no 

statistical differences among the color choices made by either butterfly species. 

Fig. 7 Triangular and tetrahedral color spaces for (a) D. iulia, and (b) H. melpomene, 

produced by plotting relative quantum catches of opsins, show clumping of the floral 

spectral reflectance readings for feeding plants and wing color measurements. There was 

separation of non-feeding plants from feeding plants, although there was some overlap 

between the color reflectance of feeding and non-feeding plants. 

Fig. 8 JNDs (chromatic and achromatic differences), (a) D. iulia, and (b) H. melpomene, 

based on reflectance readings from flowers of feeding and non-feeding plants and leaf 

backgrounds, and contrasts between colored and black portions of conspecific butterfly 

wing color patterns show no difference between butterfly foraging plants and wing 

colors.  
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Table 1: Adult feeding plant preferences of butterflies with associated petal color as 

observed by researchers identified using Smithe (1975)  

Family Plant species  Color of petals (as seen by humans)  Butterfly species 

Bromeliaceae Aechmea nudicaulis Spinel pink bracts with parrot green 

flowers 

H. melpomene 

Anacardiaceae Anacardium occidentale Ruby center with lime green tips H. melpomene 

Bromeliaceae Billbergia pyramidalis Spinel pink bracts with spinel red 

flowers with spectrum violet tips 

H. melpomene 

Asteraceae Erechtites sp. Spinel red tips and trogon yellow petals H. melpomene 

Verbenaceae Lantana camara Spectrum orange with flame scarlet 

edges 

H. melpomene 

Verbenaceae Lantana camara Orange yellow with flame scarlet edges H. melpomene 

Verbenaceae Lantana camara Chrome orange D. iulia 

H. melpomene 

Verbenaceae Lantana camara Flame scarlet D. iulia 

H. melpomene 

Verbenaceae Lantana camara Orange yellow with chrome orange 

edges 

D. iulia 

H. melpomene 

Verbenaceae Lantana camara Orange yellow center with spectrum 

orange edges  

D. iulia 

H. melpomene 

Cucurbitaceae Psiguria spp. 1 Spectrum orange D. iulia 

H. melpomene 

Cucurbitaceae Psiguria spp. 2 Chrome orange with orange yellow 

center 

D. iulia 

H. melpomene 

Anacardiaceae Tapirira guianensis Straw yellow center with olive yellow 

petals  

H. melpomene 
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Asteraceae Wulffia baccata Spectrum yellow petals and spectrum 

orange center 

D. iulia 

H. melpomene 
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Supplementary information  

Quantal catch calculations 

We used measured irradiance measurements, with previous measurements of flower color 

and wing color  to compute quantal catch (Q -amount of light captured for each 

photoreceptors (i)) for wing and flower color as Qi =∫ 𝑅 (λ) 𝐼 (λ) 𝑇 (λ) 𝑆𝑖 (λ) dλ 
700

337
, 

where λ = the wavelength in nanometers, R is the  reflectance of the stimulus (butterfly 

wing color or flower petals), I is spectral irradiance of the illuminant (the light 

environment), T is transmittance in air (taken perfect transmittance (T = 1) as readings 

were taken in areas without, fog or dust at close distances), and Si refers to the spectral 

sensitivity of the respective cone i (Gomez and Théry 2004; Gomez and Théry 2007; 

Muchhala et al. 2014) (as taken from literature, D. iulia―(UVRh λmax 385 nm, BRh 

λmax 470 nm, LWRh λmax 556 nm as cited in Yuan 2010), H. melpomene―(UVRh1 

λmax 355 nm, UVRh2 λmax 398 nm, BRhλ max 465 nm, LWRhλ max 550 nm as cited 

in Zaccardi et al. 2006, Briscoe et al. 2010, Bybee et al. 2012). We then corrected quantal 

catch to take into account receptor saturation and model color constancy (sensu Gomez 

and Théry 2007): qi = Qi/(Qi + Qi
B )where Qi

B is the response of cone to background. 
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Chapter 3 

Honest signalling and the billboard effect: how Heliconiid pollinators respond to the 

trichromatic colour changing Lantana camara L. (Verbenaceae)  

Currently, resubmitted to be reviewed in Journal of Pollination Ecology with Godfrey R. 

Bourne. 

 

Abstract  

Plants communicate with their pollinators through an astonishing range of signals that 

serve as either honest or deceptive cues which draw in and inform potential visitors of 

possible rewards. In wild type sweet sage, Lantana camara, floral colour signals were 

associated with nectar volume and sucrose concentration, and many pollinator taxa 

quickly learned to associate these varying colour signals with rewards. We tested the 

hypothesis that if sweet sage is employing a generalist pollinator strategy based on a 

trichromatic changing floral presentation system of honest rewards for pollinators, then 

the following predictions will be realized: 1) pre-change yellow coloured flowers will be 

visited more frequently by pollinators than post change orange, or scarlet flowers; 2) pre-

change yellow flowers will produce higher quality and greater quantities of sucrose 

rewards than post-change orange, or scarlet flowers; 3) inflorescences with higher ratios 

of rewarding flowers to unrewarding flowers are more attractive at short distances; and 4) 

inflorescences with a combination of pre-change rewarding and post-change rewarding 

and unrewarding flowers will act as a multi-coloured advertising billboard and as such be 

most attractive at long distances.  We found corroboration for all of the aforementioned 

predictions. Thus, sweet sage evolved a generalized pollination visitation system based 
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on honest signalling―of reward quantity and quality tied to colour changing visual 

signals acting in consort to produce a billboard that was easily perceived and deciphered. 

These resulted in high visitation rates by many different taxa of pollinators, thus 

contributing to higher individual plant fitness. 

Keywords: colour change, Guyana, honesty signals, billboard effect, Lantana camara, 

pollinator 
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Introduction 

The evolution of the great array of floral traits seen in Angiosperms rely on the diversity 

of animal pollinators to visit regularly and inadvertently transfer pollen efficiently from 

anthers of one flower to the stigmas of conspecifics (Graham et al. 2003; Kaesar et al. 

2006). Approximately, 90% of the more than 240,000 species of flowering plants are 

pollinated by over 200,000 animal species (Graham et al. 2003; Holland 2011). These 

plants employ three broad strategies for achieving pollination: (1) deception, where 

animals are tricked by mimicry of real rewards into providing pollen transfer among 

flowers (Wickler 1968; Ackerman 1986; Nilsson 1992; Graham et al. 2003); (2) 

imprisonment, where flowers, that often offer rewards, attract insects most of which are 

already covered with conspecific pollen, and they are then delayed for several hours until 

pollen is released (Lack & Diaz 1991; Proctor et al. 1996; Gibernau et al. 2004; Bolin et 

al. 2009); and (3) honesty, in which the plant produces something of value to the animal 

(Nilsson 1992; Graham et al. 2003). Here the plant usually invests in food rewards—

nutritious nectar fortified by sugars and amino acids, modified food pollen devoid of 

sperm; or provides safe and food−rich oviposition sites for insects to lay eggs, or produce 

fragrances that enhance males’ mating success through female choice (Simpson & Neff 

1981; Seymour & Matthews 2006; Wright & Schiestl 2009; Goodrich 2012). In honest 

signalling, these rewards are positively correlated with the presence and intensity of 

display signals (Kaesar et al. 2006; von Arx 2012).    

Many plants employ sensory signals which include colour, morphology, odour, 

among others, which in concert become “sensory billboards” (Raguso 2004; Willmer et 

al. 2009) . These sensory signals can function “honestly” in their communication with 
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pollinators if they reliably signal the presence and/or quality of nectar, pollen, oil, or 

fragrance rewards (Nilsson 1992; Proctor et al. 1996; von Arx 2013). Colour signals are 

of particular importance to pollinators as they are able to perceive and distinguish colours 

and many show innate and learned colour preferences due to reward associations 

(Campbell et al. 2012). Flower colour can remain constant during the entire anthesis 

stage or it can experience colour change due to multiple factors (Weiss 1991; Yoshida et 

al. 2009). In some plant taxa, floral signals can also change with the environment, age or 

receptivity status (Weiss 1991; Yoshida et al. 2009)—with younger pre-change flowers 

signalling receptive stigmas and the provisioning of rewards for animal visitors. While 

older post change flowers are generally unrewarding and sexually inviable (Gori 1989; 

Weiss 1995; Willmer et al. 2009). Floral colour change (pollination-induced or an age-

dependent pattern) has most likely evolved in response to selection by visually orientated 

pollinators, and reflects a widespread functional convergence within flowering plants 

(Weiss 1991). Von Linne 1793 (cited in Oberrath & Böhning-Gaese 1999) noted that 

floral colour change is a common phenomenon among flowering plants with diverse life 

histories and growth forms from over 78 families and 250 genera of angiosperms, 

distributed worldwide, visited by approximately 15 families of insects and four families 

of birds (Weiss 1991; Weiss 1995; Weiss & Lamont 1997, Oberrath & Böhning-Gaese 

1999).   

Despite the wide prevalence of flower colour change (Ida & Kudo 2010) and the 

well−developed hypotheses offered to explain the adaptive nature of this trait, this 

phenomenon has been experimentally examined in only a few species (Weiss 1995; 

Oberrath & Bohning−Gaese 1999). In addition, many of these studies focus on non-
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lepidopterans (see Ida & Kudo 2003; Ida & Kudo 2010; Pereira et al. 2011, Suzuki et al. 

2014) or multiple groups of pollinators (Weiss & Lamont 1997; Oberrath & Böhning-

Gaese 1999). Our study is unique because we compare the feeding behaviours of two 

major lepidopterans in a natural setting. Thus offering a unique perspective of how colour 

change of one plant differentially affects two pollinators that share a similar feeding 

niche (G. Maharaj unpubl. data). Our goal was to examine the relationships among floral 

colour change, and nectar volume and sucrose concentration in wild type sweet sage, L. 

camara on pollinator visitation rates at CEIBA Biological Center, Madewini, Guyana. 

Specifically, we asked the following questions of the sweet sage pollinator system: (1) 

Do younger yellow flowers produce greater quantities and higher sucrose concentration 

nectar than older orange and scarlet flowers? (2) Do newly opened yellow flowers attract 

more L. camara pollinators than older orange and scarlet flowers? And (3) how does 

inflorescence size and ratio of rewarding to unrewarding flowers influence butterfly 

pollinator visitation rates? Thus, we tested the hypothesis that if L. camara is employing 

a generalist pollinator strategy based on a trichromatic colour changing floral 

presentation system of honest rewards for pollinators, then the following predictions will 

be realized: (P1) first stage yellow flowers will attract more pollinators because they 

contain higher concentrations and volumes of sucrose than later orange and scarlet stages; 

(P2) inflorescences with greater proportions of rewarding to unrewarding flowers will be 

more attractive over short distances as this will result in multiple visits to an individual 

plant due to butterflies’ tendencies to visit particular colours that are associated with 

greater sucrose rewards; and (P3) inflorescences with a combination of rewarding yellow 

and orange flowers and unrewarding scarlet will be most attractive to butterflies over 
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long distances as these large multi-coloured inflorescences will provide large landing 

platforms (Barrows 1976) and serve as an advertising billboard drawing in potential 

pollinators from greater distances (Barrows 1976; Weiss 1991; Raguso 2004; Nuttman et 

al. 2005; Willmer et al. 2009).  

Materials and Methods 

Study site  

Experiments on the pollination biology of sweet sage, L. camara were conducted at 

CEIBA Biological Center (CEIBA; 06°29/57//N, 58°13/06//W), on the Soesdyke-Linden 

Highway, Madewini, Guyana, South America. Observations were conducted in a 

sustainable demonstration farm site (320m2) filled with numerous L. camara stands. The 

study plot was bordered by a seasonally flooded white podsolized sand area comprised of 

low seasonal forest dominated by the fast-growing Eperua falcate (Caesalpiniaceae), and 

tall primary growth flooded forests dominated by Mora excelsa (Fabaceae) (Hughes 

1947; Bourne & Bourne 2010).  

Study species 

Sweet sage, Lantana camara is a perennial shrub of the Vervain or Teak family 

(Verbenaceae) (Munir 1996) native to tropical regions of Central and South America 

(Graham 1963; Myint 1994). It is a readily available, easily tractable, common plant of 

CEIBA found in open habitats, especially on human disturbed sites (Sharma & Singh 

2005) that provides food to a variety of pollinators. This plant has been the focus of many 

studies on colour vision and colour preference (Weiss 1991; Weiss 1997). This hairy herb 

with very aromatic leaves sometimes assumes either climbing or woody shrub growth 
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forms. Wild type L. camara usually attains heights between 1 and 2 m and has square 

stems armed with short coarse spines (Ghisalberti 2000). L. camara plants used in this 

study were large shrubs that were approximately 1 m in height as these smaller plants 

were easier to work with i.e. manipulate.  Leaves are simple and opposite, emanating at 

right angles from each node to leaves of the nearest neighbouring node. Leaf surfaces are 

wrinkled and scabrous or rough textured, while leaf edges are regularly serrate. In 

addition, leaf shapes vary from broadly lanceolate to cordate with distinctive pointed drip 

tips; leaves vary in measurement from 75.0−102.4 mm long by 25.3−56.7 mm wide, and 

with petiole lengths of 21.2−32.8 mm (G.R. Bourne unpubl. data). When leaves or stems 

are damaged, a distinctive odour is released. There are many horticulture varieties of 

Lantana that have small 5-lobed flowers in a variety of colours which include white, 

yellow, orange, pink, red and purple that are often mixed in the same cluster (Ghisalberti 

2000; Sharma & Singh 2005). Inflorescences of our studied variety (wild-type) present 

trichromatic succession flowers (i.e. yellow to orange to scarlet), held in close heads of 

umbel form, ranging from 31.3−42.6 mm in diameter, and with 9−30 flowers with four 

stamens. Thus, the inflorescences of L. camara allow for manipulation experiments 

testing the effect of colour of rewarding and unrewarding flowers on short and long 

distance attractiveness. Regular floral visitors include ants, carpenter bees, honey bees, 

black and brown stingless bees (usually as nectar robbers), wasps and hummingbirds 

(Weiss 1991), but especially butterflies belonging to diverse families such that many 

Guyanese classify sweet sage as a butterfly bush (G.R. Bourne and G. Maharaj pers. 

obs.). Fruits are smooth, round, two−celled berries (Graham 1963) with diameters of 

4.2−6.6 mm presented in ball−like clusters 21.4−31.7 mm in diameter. When immature 
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they are a shiny lime green in colour changing to indigo blue when ripe (Sharma & Singh 

2005), and whose seeds are dispersed by many bird taxa including barbets, flycatchers, 

and tanagers.  

We focused our experiments on two common butterfly species (Nymphalidae, 

Heliconiinae) at CEIBA, Heliconius melpomene and Dryas iulia. The first species is 

characterised by black wings with a red blurred patch on forewing (fwl ~ 41mm) and a 

yellow line on underside of hind wing curves towards the posterior. This species is often 

encountered as solitary individuals along forest edges and old second growth groves 

(DeVries 1987), and is frequently observed feeding on Lantana camara (Verbenaceae) 

(G. Maharaj & G.R. Bourne pers. obs.). Whereas, D. iulia is characterised by bright 

orange wings with black margins and with elongate forewings (fwl ~ 85mm); males are 

typically brighter than females (DeVries 1987). This species is usually found in second 

growth forest imbibing nectar from many flower species, it is also a noted gregarious 

feeder of L. camara (G. Maharaj & G.R. Bourne unpubl. data). We chose to work with 

species of Heliconiinae because they are tractable to study in the laboratory and the wild, 

and have been the focus of a large body of work in evolutionary biology, genetics, and 

animal behaviour (Hsu et al. 2001). Heliconiids also vary considerably in the way they 

use visual signals to find flowers (food sources), mates, and communicate (Hsu et al. 

2001).  

General sampling protocols  

Flower colour and diurnal sucrose measurements  

In order to determine flower colour and respective rewards offered we used destructive 

sampling to measure daily diurnal spectral reflectance change, nectar volume and sucrose 
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concentrations. For each flower, we used type colour swatches in Smithe (1975) to 

measure and name flower colour (as perceived by humans).  Flowers were placed directly 

onto swatch and colour was determined by researcher and research assistant. If both 

investigators were unable to agree on colour nomenclature, a third researcher was 

consulted. Although human colour nomenclature and just noticeable differences were 

used in this study, we do recognise the need to refer to colour differences in terms of 

insect perceptions as both study species and most insect classes possess three classes of 

opsin genes, ultraviolet (UVRh λmax ~350nm), blue (BRh λmax ~ 440nm) and long-

wavelength (LWRh λmax ~ 530nm) (Briscoe & Chittka 2001; Sison-Mangus et al. 2006; 

Briscoe 2008; Yuan et al. 2010). In this study we first aimed to establish whether there is 

an actual difference in behaviours to flower colour changes as seen by humans, taking 

into consideration that due to the presence of long-wavelength opsins and long-

wavelength opsins and the possible presence of lateral filtering pigments that filter short 

wavelength light, thus shifting the sensitivity of the visual pigments to the longer 

wavelengths, such as red filtering pigments seen in Heliconius erato, our study species 

are capable of distinguishing changes in long wave length red markings (Zaccardi et al. 

2006, Briscoe 2008). In a different study we investigated these floral colour changes in 

our respective butterflies’ colour spaces (Maharaj et al. manuscript in prep.). 

For this current study, we used 1µL Drummond Microcap® tubes and a digital 

calliper to estimate nectar volumes, and a SPER Scientific Sugar−Brix Refractometer to 

measure nectar concentration (Waser & Price 1981). In order to determine colour and 

sucrose measurements of the three major colour stages, a total of 20 flowers were used 

for each cohort of each colour type. These flowers were haphazardly selected from 
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several inflorescences of ten marked plants at 09:00 h for three days during May 2010. 

Day 1(yellow) ― was taken as the first day after buds bloomed, day 2 (orange) ― was 

taken the morning after that and day 3 (scarlet) ― was taken on the following morning. 

To estimate colour and sucrose measurements of the sub-divisions of these three major 

colour stages a total of 25 flowers were selected for nine days (July 2014). These flowers 

were picked during four 3-hour time blocks (TBs); (TBI 06:00−9:00 h, TBII 09:00−12:00 

h, TBIII 12:00−15:00 h and TBIV 15:00−18:00 h). All sampled flowers were fresh and 

turgid and picked from previously bagged inflorescences. These inflorescences were 

placed in light-admitting bags as buds initially and remained bagged for the duration of 

the study to prevent nectar consumption by pollinators. Our sampled colour change 

flowers did not include colour changes from bud to flower or wilted flowers.   

Pollinator species & fruit set 

 In order to determine which visitor taxa were effective pollinators we conducted 

visitation watches and fruit set experiments. We counted the number of diurnal animals 

visiting wildtype L. camara inflorescences of nine selected plants that differed in floral 

density, number of inflorescences per 0.5 m2, (high [20+], medium [6-19], and low [2-

5]), and colour for 60 d during May–July 2010 at CEIBA. Each 0.5 m2 quadrat was 

sampled for 2 mins only during sunny periods in time block II (TB II, 09:00–11:59 h), the 

peak pollinator activity period at CEIBA. Every visiting animal taxon was photographed 

to aid in identification using various guides (Barcant 1970; Borror & White 1970; Milne 

& Milne 1980; Pyle 1981; DeVries 1987; Opler 1992; Restall et al. 2007a, b; Marshall 

2008; Maharaj et al. 2010), and foraging behaviours recorded. If a floral visitor had 

pollen on any part of its body, it was considered a pollinator of L. camara. A checklist 
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was made of all pollinators, a special focus was made on butterflies due to their proclivity 

for visiting this plant and the two major pollinators (as characterized by frequency of 

visits and abundance), Dryas iulia (Fabricius, 1775) (Nymphalidae) and Heliconius 

melpomene (Linnaeus, 1758) (Nymphalidae) (DeVries 1987) were our focal animals for 

our inflorescence manipulation experiments due to ease of observations. 

Fruit-set experiments were carried out by inclusion (focal taxon)/exclusion (other 

taxa) in 1 m3 mesh cages (fine gauge mosquito netting 3000 holes per cm). Prior to 

initiation of fruit-set studies, 240 immature inflorescences on 10 L. camara bushes were 

bagged using see-through, home-made pollinator bags during May 2010. Pollinator bags, 

133×99 mm were constructed from perforated (by safety-pins, 26±8 holes1cm2) white 

printing paper on one side and clear plastic from ZipLock® freezer bags on the other, 

stitched together by 17 mini-staples. As inflorescences matured some were unbagged and 

the mesh cages set up in the evening (18:00 h) after diurnal pollinator activity ceased. 

Each pollinator tested (included all captured as we did not control for pollinator sex) was 

introduced by hand and held for a 72 h period. Inflorescences were then rebagged to 

prevent cross species visitation, after which the mesh cages were removed. Hummingbird 

diets were supplemented by 25% sucrose solution and adult fruit flies (Drosophila spp.).  

Flower colour preference and billboard effect 

In order to demonstrate whether or not pollinators exhibited a pattern of colour 

preferences, and that clustering of floral displays had a billboard effect, we conducted 

two field experiments in which we manipulated L. camara inflorescence densities by 

removing variable numbers of individual coloured flowers to create multiple treatments. 

We then observed visitation rates to these treatments.  The first experiment, called, colour 
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preference, was a generalized study that examined colour choices of all animal visitors to 

L. camara flowers. The second experiment, entitled, billboard effect, followed two focal 

butterfly species, H. melpomene and D. iulia. These were major visitors to L. camara 

where they navigated different concentrations of colour combinations in their choices of 

inflorescences that may explain why non-rewarding red flowers persist in displays. 

Experiment 1 ― Colour preference  

These field studies were conducted over 60 days during May–July 2010. We first 

measured pollinator visitation rates (counts/2 min) of all L. camara visitors during sunny 

periods, from 09:00-14:59 h, to vases with control inflorescences (all three flower 

colours), yellow, orange and scarlet only inflorescences matched by floral numbers. Vials 

of flowers were presented on wooden dowels, completely randomly arrayed across the 

study site. The number of flowers in each treatment was standardized at nine and sample 

size was established at 15. This experiment was repeated by removing flowers from 

inflorescences on randomly selected plant stands to determine whether patterns of general 

pollinator visitation patterns were similar for flowers detached from plants (vase 

presentation) and those still attached to plants (natural presentation). 

Experiment 2 ― Billboard effect  

For Experiment 2, a 0.5 m2 quadrat was placed on an individual L. camara plant to 

delineate the area in which inflorescences were manipulated to reflect treatments 

described below. After the quadrat was removed, the entire plant with the exception of 

the 0.5 m2 manipulated portion was covered with fine gauge mosquito netting, 3000 holes 

per cm, to prevent access of pollinators to un-manipulated inflorescences. Visitation rates 

of H. melpomene and D. iulia were observed for 30 d (June–July 2014) and 10 d 
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(December–January 2015), with visitation rates estimated over a 2-hour observational 

period. A butterfly was characterized as a visitor if it perched on the inflorescence. Visits 

were further categorized as either, long distance―number of approaches to a single plant 

stand or short distance―number of successive visits to multiple inflorescences on a 

single L. camara plant (Oberrath & Böhning-Gaese 1999). All experimental 

manipulations were done at 08:00 h just after yellow flowers had first opened but before 

focal butterfly species had begun to forage (G. Maharaj unpubl. data). All visitation 

observations were initiated 2-hours after experimental set-up. Each treatment was 

replicated five times on different plants randomly chosen form 25 marked plants with 

each replication carried out on different days to account for variability in butterfly 

behaviours and weather conditions.  

Treatments were as follows (Fig. 1): ― a) same size (app. 19-24 flowers) 

different colour: Each day we randomly selected a total of eight plants (two per 

treatment).  Inflorescences on these plants were manipulated in the following ways ― (i) 

control (not manipulated), (ii) 25:25:50 ratios of yellow: orange: red flowers, (iii) 50:50 

ratios of yellow and orange flowers only, and (iv) All red flowers only (Gori 1989).    

b) different size different colour: 

We modified a total of six inflorescences per day (two plants per treatment) to offer the 

following three pairs of choices ― (i) large red inflorescences (20 red flowers) versus 

large mixed inflorescences (three yellow, five orange and 12 red), (ii) large red versus 

small yellow (five yellow flowers), and (iii) large mixed versus small yellow (Weiss 

1991). 
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Statistical analyses 

A Kruskal−Wallis 1-Way Analysis of Variance (ANOVA) model was employed to assess 

differences among volumes for each of the major floral colour stages (yellow, orange and 

red) in wild-type sweet sage. A 1-Way ANOVA was used to compare sucrose 

concentrations of the three major flower stages and for the nine sub-colour stages. We 

employed a χ2 goodness of fit model with a null hypothesis of equal attractiveness in test 

for significant differences among treatments (Weiss 1991), while a logistic regression 

was employed to compute short and long distance attraction based on single versus 

multiple visits to each treatment plant. All statistical analyses were carried out using IBM 

SPSS Statistics Version 23 (IBM Corp. 2015) and R Version 3.2.2 (R Development Core 

Team 2015).  

Results   

Flower colour and sucrose measurements  

A Kruskal-Wallis 1-Way ANOVA revealed significant differences among sucrose 

volumes for all colour stages (H2 = 49.06, P < 0.001, N = 20, Fig. 2) with significant 

differences between all pairwise comparisons (Tukey Test).  Similarly, a 1-Way ANOVA 

model also showed significant differences among sucrose concentrations (F2, 57 = 619.84, 

P < 0.001, N = 20, Fig. 3) with significant differences for pairwise comparisons (Holm-

Sidak method).  

A more detailed look at the wildtype L. camara flower colour change system 

revealed that it can be subdivided into nine stages characterized by variations of the three 

main colours, yellow, orange, and red. These were as follows: Stg. I ― orange yellow 

centre with spectrum orange edges, Stg. II ― orange yellow centre with chrome orange 
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edges, Stg. III ― orange yellow with flame scarlet edges, Stg. IV― spectrum orange 

with flame scarlet edges, Stg. V ― chrome orange with flame scarlet edges, Stg. VI― 

chrome orange, Stg. VII― flame scarlet, Stg. VIII― flame scarlet with scarlet edges and 

Stg. XI ― scarlet (colour swatches in Smith 1975). Measurements of sucrose 

concentration and volume by colour stage showed substantial variability (Figs. 4 & 5). 

However, there were significant differences among stages for both nectar sucrose 

concentrations and volumes. The 1-Way ANOVA for volume (F8,216 = 12.906, P < 0.05, 

N = 25) and post-hoc analyses (Tukey Test) revealed that Stg. 1 flowers were statistically 

different from stages 4, 8 and 9, Stg. 2 was different from 8 and 9, Stg. 3 differed 

significantly from 4 and 5, while Stg. 4 differed from Stg. 9 (Fig. 4). For our 

concentration measurements analyses (F8,216 = 117.32, P < 0.05, N = 25) we found that 

Stgs. 1, 2, 3, 4 and 5 were different from 6, 7, 8, and 9, and Stgs. 6, 7, and 8 were 

different from 9 (Fig. 5).   

Pollinator taxa & fruit set 

When percentage fruit set is considered, butterflies were the most effective taxon 

of diurnal pollinators, followed by carpenter bees (Apidae; Xylocopa spp.), and 

hummingbirds (Trochilidae; Fig. 6). Controls, butterflies, carpenter bees and humming 

birds had significantly better fruit set percentages than Trigonid bees, wasps and ants 

(Fig. 6). The numbers of diurnal pollinator butterfly taxa observed on L. camara are 

presented in Fig. 7. Therefore, we focused our study on butterflies due to their proclivity 

to visit L. camara, and their efficacy as pollinators. Of the butterflies, the most frequent 

visitors were Heliconius melpomene followed by Heliconius sara, Dryas iulia and 
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Heraclides thoas (syn Papilio thoas) (as seen in Fig. 7), however only H. melpomene and 

D. iulia were used in experiments because of their high abundancies. 

 Flower colour preference and billboard effect 

Experiment 1 ― Colour preference 

Pollinator interest (mean pollinator visitation rates – number per 2 min) in the 

arrays of L. camara bouquets presented away from the plants had highest visitation rates 

at the all yellow only and control inflorescences (F 3, 56 = 98.34, P < 0.001, N = 15). 

These results were similar to what was found in nature (H3 = 47.60, P < 0.001, N = 15), 

where we observed butterflies showing preferences for inflorescences with all colour 

morphs (control) and inflorescences with only yellow morphs.    

Experiment 2a ― Billboard effects 

A χ2 test indicated a significant relationship between species and the frequency of 

visits to treatments (Tab. 1), χ2
2 = 7.520, P = 0.02, N = 823 Heliconius melpomene visited 

Large Mixed and Large Red flower more than Small Yellow whereas D. iulia visited 

Small Yellow and Large Mixed more than Large Red. A logistic regression analysis 

predicted the likelihood that our focal butterflies (NH. melpomene = 633, ND. iulia = 190) 

visited either single or multiple inflorescences on a single plant. For our model we used 

species and the three treatments (Small Yellow, Large Mixed and Large Red) as 

predictors. We did this to elucidate how species and treatment affects long and short 

distance attraction. A test of the full model against a constant only model was statistically 

significant indicating that the predictors as a set reliably distinguished between single 

versus multiple flower visitation, χ3
2 = 41.23, P < 0.001. The Wald criterion demonstrated 
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that of the two predictor variables only treatment was statistically significant.  Butterflies 

visiting Large Mixed were 1.783 (P = 0.001) times more likely to visit multiple 

inflorescences on a plant, whereas butterflies visiting Large Red inflorescences (Exp (B) 

=  0.603, P = 0.005)  were less likely to visit multiple inflorescences in comparison to 

plants with only small yellow inflorescences (see Tab. 3).  

Experiment 2b ― Billboard effects 

A significant relationship between species and the frequency of visits to 

treatments was elucidated by a χ2 test (Tab. 2), χ2
2 = 70.434, P < 0.001, N = 1054. 

Heliconius melpomene visited 25:25:50 and all red more in comparison to the other 

treatments, while D. iulia preferred Control and 25:25:50 treatments.  A logistic 

regression analysis was employed to predict the likelihood that our focal butterflies (NH. 

melpomene = 805, ND. iulia = 249) visited either single or multiple inflorescences on a single 

plant—in this model we used species and the four treatments (Control, 25:25:50-yellow: 

orange: red, 50:50-red and orange, and All Red) as predictors. We did this to determine 

how species and treatment affects long and short distance attraction. A test of the full 

model against a constant only model was statistically significant indicating that the 

predictors as a set reliably distinguished between single versus multiple flower visitation, 

χ4
2 = 60.954, P < 0.001. The Wald criterion demonstrated that both predictor variables 

were statistically significant (Tab. 4). We found that H. melpomene (Exp (B) = 1.430, 

95% CI 1.057-1.935) was more likely to visit multiple inflorescences than D. iulia and 

overall, butterflies were more likely to visit multiple inflorescences on the following 

plants, i.e. 50:50 (yellow: orange) (Exp (B) = 3.563, 95% CI 2.433-5.219), control (un-

manipulated mixed) (Exp (B) = 3.562, 95% CI 2.464-5.148), and 25:25:50 (yellow: 
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orange: red) (Exp (B) = 2.618, 95% CI 1.822-3.761), in comparison to all red (see Table 

4).   

  

Discussion  

Plants signal to a wide range of organisms using many types of visual signals involving 

both vegetative and reproductive parts (Hamilton & Brown 2001; Schaefer et al. 2004). 

In particular, many floral features, including but not exclusive to colour, odours, shapes, 

act as advertisements for potential pollinators (Weiss & Lamont 1997; Raguso 2004; 

Willmer et al. 2009). Researchers have also observed that various floral phenotypes serve 

to signal or advertise the presence of nutrition rewards (Schaefer et al.  2004; Raguso & 

Willis 2005). Angiosperms, such as sweet sage (L. camara), Lungwort flowers 

(Pulmonaria collina) and Weigela middendorffiana and W. coraeensis employ a variety 

of strategies to encourage pollinators to approach, of these; colour and changing colour 

appears to be particularly important for flower recognition and it exemplifies the 

evolution of floral traits driven by ecological interactions between plants and pollinators 

(Weiss 1997; Oberrath & Bohning-Gaese 1999; Ida & Kudo 2003; Ida & Kudo 2010; 

Willmer et al. 2009; Suzuki & Ohashi 2014). Changes in colour which occur in fully 

turgid flowers and differ from fading or darkening associated with floral senescence 

(Weiss 1995). These changes differ in the locations which they affect and may take place 

in any of the four floral whorls. It may affect the entire whorl, several whorls or parts of 

whorls in combination, or it may be completely localized to specific areas (Weiss 1995).  

The location of colour changes in Angiosperms are dependent on pollinator type, for 

example, plants pollinated by bats or moths generally have colour changes in the entire 
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flower while those that are butterfly, bee and fly pollinated usually have localized 

changes to specific floral parts, whereas bird pollinated flowers can encompass both 

types of changes (Weiss 1995).  However, regardless of area affected it provides 

important information for pollinators that benefit both plants (communicator) and animals 

(receiver)—with pre-change flowers signalling the provision of rewards and the 

availability of receptive stigmas (Weiss 1991; Kudo et al. 2007). While post change 

flowers, are often retained though unrewarding and sexually inviable as plants benefit 

from larger floral displays that attract pollinators over long distances and indicating, at 

close range, pre-change flowers that are still viable (Gori 1989; Weiss 1991; Weiss 1995; 

Willmer et al. 2009, Ida & Kudo 2010).  

Flower colour and sucrose measurements 

When we examined flowers for three consecutive days our results, (pre-change) flower 

higher sucrose concentration and volume in comparison to day 2, orange, and day 3, 

scarlet, (post-change) flowers,  mirrored that of Fritz Müller who reported to Charles 

Darwin (1877) that Lantana camara flowers in Brazil are viable for three days, changing 

from yellow on day−one, to orange on day− two, and scarlet on day−three with these 

floral colour signals correlating with nectar volume and sucrose concentration in many 

varieties (Darwin 1877). Thus L. camara flowers signal honestly to their pollinator as 

each colour stage reliably conveys information about an associated reward.   However, 

when we examined nine colour stages (Figs 4 and 5) we noticed that as time progressed 

i.e., as the flowers aged, there was a no significant change in sucrose volume, although 

we noted earlier stages 1-3 having lower volumes than the later 5 stages with the 

exception of stage 9 that did not offer sucrose. This was also evident for concentration 
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with stages 1-5 having higher mean concentration than the later 4 stages including the 

final scarlet stage when no reward was offered.  Additionally, although we were able to 

distinguish a colour change using the colour swatches in the first three stages they offered 

statistically indistinguishable rewards. However, when we only examined three colour 

stages (Figs. 2 & 3) we noted a decrease in both sucrose volume and concentration. The 

lower nectar volumes noted for initial stages of these the nine stages could be caused by 

environmental differences in temperature, relative humidity and soil moisture (Wolff 

2006) between the two field seasons as we were unable to control for these factors at our 

study site.  In addition, although Carrión-Tacuri et al. (2012), showed that the nectar 

volumes of bagged L. camara flowers did not change significantly throughout the day, 

they presented evidence that volumes oscillated between 0.9 and 1.1 μl. These variations 

were probably reflected in the measurements of the 9-stage L. camara readings but not in 

the 3-stage because these readings were only taken once per day.   

Pollinator species & fruit set 

Colour change in L. camara occurs for several reasons, these include attraction of 

pollinators such as hummingbirds, bees, wasps, ants, but especially butterflies (G.R. 

Bourne and G. Maharaj unpubl. data). The pollination syndrome hypothesis posits that 

different pollinators prefer different floral cues, with butterflies and bees preferring 

colours ranging from ultraviolet to yellow or red coloured flowers, and birds, orange, 

deep-pink and red flowers (Proctor et al. 1996; Weiss 1997; Johnson & Steiner 2000; 

Graham et al. 2003). Therefore, the presence of different colours on individual 

inflorescences served to attract the high taxon diversity of pollinators observed (Ostler & 

Harper 1978; Kampny 1995; Campbell & Hanula 2007; Suzuki & Oashi 2014). We do 
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acknowledge that in order to test the direct effect of colour on diversity we would have to 

manipulate inflorescences to reflect individual colour morphs and observe changes in 

visit diversity. However, from our study we did observe that inflorescences with all 

colour morphs were visited more often by all pollinators, although butterflies, carpenter 

bees and hummingbirds were the main visitors and most effective pollinators. The fact 

that this plant attracts these three ubiquitous taxonomic groups, may account for its 

spread globally.   

Flower colour preference and billboard effect 

Our findings suggested that L. camara signals honestly as their colour cues correlated 

with nectar rewards, with early more receptive yellow stages offering better rewards 

(higher concentration of sucrose, although volume was variable). While sexually inviable 

stages such as final stage scarlet flowers offered no reward (Oberrath & Bohning-Gaese 

1999; Keasar et al. 2006). Therefore, this floral colour change is an adaptive trait that 

benefits both the plant and its insect pollinators by cuing the insects to visit the flowers at 

the optimal reproductive stage and thus minimizing the probability of illegitimate visits to 

non-reproductive flowers by changing colour and reward value, as we have seen with 

yellow, orange and scarlet flowers in our experiments (Willmer et al. 2009). Our 

evidence clearly supported prediction one (P1) that first stage yellow flowers attract more 

pollinators as they contain greater quality of rewards (greatest concentration of sucrose) 

than later orange stages (lower quality reward) and scarlet stages (no reward). Thus the 

pollinators of L. camara displayed a greater preference for these pre-change yellow 

flowers than orange or scarlet flowers. We do acknowledge that our results may represent 

a combination of innate and learned preferences since many pollinators are able to 
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associate colour with reward (Menzel 1967, 1985; Waser & Price 1985; Weiss 1991; 

Waser et al. 1996; Weiss 1997; Campbell et al. 2012). In order to determine whether our 

pollinators have innate colour biases for these colours we would have to test naïve 

pollinator or carry out experiments in which post-change flowers offer greater rewards 

than pre-change flowers (Lanau & Maier 1995; Weiss 1997). 

When we tested for the billboard effect we noted that although pollinators were 

more attracted to yellow flowers there were other factors that also affected visitations 

rates. While foraging, pollinators increase foraging efficiency by making two decisions 

based on distance—at long distances pollinators decide: 1) which plants should be 

approached, and at shorter distances, i.e., when they are on the plant, and 2) which 

flower(s) should be visited. Both of these decisions are based on visual attractiveness of 

plants and flowers, respectively (Oberrath & Böhning-Gaese 1999). Work by Gori 

(1989), Weiss (1995) and Willmer et al. (2009) also demonstrate that plants benefit from 

larger floral displays that attract pollinators over long distances. Plants offering both 

rewarding pre-change flowers and provision less post-change flowers served as a superior 

attractant to pollinators at greater distances—a strategy that results in increased pollinator 

visitation (Barrows 1976; Weiss 1991; Nuttman et al. 2005). These results corroborated 

our findings and supported our second and third predictions. We observed inflorescences 

with greater proportions of yellow and orange flowers i.e., small yellow, 25:25:50 

(yellow: orange: red), 50:50 (yellow: orange), control and large mixed were more 

attractive over short distances (P2) as this resulted in multiple visits to individual flowers 

on each because butterflies learned to associate colour with reward, thus pre-change 

yellow flowers were favoured at close range (Gori 1989; Weiss 1995; Willmer et al. 
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2009). Inflorescences with unrewarding red flowers were found to be most attractive to 

pollinators over long distances, as inflorescences on these plants were only visited once, 

however overall, most visits to plants were made to large mixed and control due to the 

billboard effect that results from larger multi-coloured displays (P3) (Barrows 1976; Gori 

1989; Weiss 1991; Weiss1995; Nuttman et al. 2005; Willmer et al. 2009). The retention 

of provision less scarlet flowers function to increase the inflorescence size, and 

advertisement attractiveness so making a bigger landing platform for large butterflies 

(Barrows 1976), thereby making these inflorescences more attractive than just small 

yellow all rewarding inflorescences of our focal plant system. Although we found that 

retention of scarlet flowers benefitted our study plants Ida and Kudo (2003) demonstrated 

that this is not case for all colour change plants i.e. Weigela middendorffiana.   It was also 

noted that although the size of the landing platform and its effect on proclivity to land 

was not measured, it was noted that D. iulia, a medium sized butterfly, as is H. 

melpomene, preferred both large mixed and small yellow to large red, whereas H. 

melpomene preferred large red to large mixed. This suggests, although not conclusively 

that butterflies will feed on inflorescences of both sizes.  

Overall we found differential preferences by our two focal species, with D. iulia visiting 

inflorescences many yellow flowers, viz. small yellow, 50:50 (yellow: orange) or control, 

more frequently while H. melpomene tended to frequent inflorescences with many red 

flowers; large red, large mixed, 25:25:50 (yellow: orange: red) and all red treatments. We 

also noted that when presented with small yellow, large mixed and large red 

inflorescences butterflies were more likely to visit the flowers of large red inflorescences 

only once. Similarly, when presented with control plants, 25:25:50 (yellow: orange: red), 
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50:50 (yellow: orange) and all red plants butterflies visited single flowers on all red 

inflorescences. Therefore, although red flowers draw in pollinators from a long distance, 

only plants with rewarding flowers facilitate short distance feeding behaviours.  

  In summary our results suggested that L. camara incorporates two main 

strategies to visually attract pollinators at long and short distances. First, they signal 

honestly as the rewards offered reliably correlated with colour stage.  Secondly, by 

offering multiple coloured inflorescences with centrally located scarlet flower buds 

surrounded by pre-change yellow flowers and older post-change orange and older scarlet 

flowers, plants behave like billboards communicating their attractiveness to pollinators at 

greater distances; a strategy that resulted in visitations by a diversity of pollinators at both 

long and short distances (Weiss 1991; Nuttman et al. 2005), the overall effect being that 

individual L. camara plants have increased fitness. Our study also highlighted species 

specific visitation preferences based on flower colour morphs presented, although both 

study species exhibit generalized learned preferences when it came to feeding, i.e., 

choosing flowers with greatest rewards. These visitation preferences may be due to 

inherent colour preferences of each butterfly species and linked to their abilities and 

genetic mechanisms to decipher colour (Hsu et al. 2001; Briscoe 2008). This study 

further identified areas of future work as we try to tease apart the specific visual signals 

that are used by each butterfly species and its impacts on pollination efficacy.  
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Figures 

 

Figure 1. Manipulated treatments of flower colour preference & billboard effect 

experiments  

 

Figure 2.  Sucrose (nectar) volumes for the three gross colour stages indicated declining 

production with time. 
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Figure 3. Comparisons of percentages of sucrose concentrations for the three gross colour 

stages, these comparisons also indicated reduced quality with time. 
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Figure 4. Comparison of sucrose volumes for fine temporal colour stages (1= Stage 1 

etc.) showing an increase in volume after stage 3 and no reward offered in stage 9. 

 

Figure 5. Comparisons of sucrose concentrations by colour stage showing a decrease in 

concentration in later stages (5-9). 
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Pollinator assemblage treatments
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Figure 6.  Pollinator taxa and effectiveness of visits on the percentage of fruit set in 

Lantana camara. The Control variable consists of the effects of all pollinating taxa visits 

on fruit set. Note that butterflies were as effective as the combined control taxa. 

 

 

Figure 7. Frequency of Lepidopteran pollinators observed foraging on L. camara. 
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Table 1. Frequency of visits by H. melpomene and D. iulia to treatments of same size 

different colours.  

Variables 

                    

Frequency 

Treatment 25:25:50 272 

Control 307 

50:50 238 

All Red 237 

Table 2. Frequency of visits by H. melpomene and D. iulia to treatments of different sizes 

different colours. 

Variables 
                       

Frequency 

Treatment Large Mixed 305 

Large Red 283 

Small Yellow 235 

Species  D. iulia 190 

 H. melpomene 633 

Table 3. The Wald criterion identified treatment (Small Yellow, Large Mixed and Large 

Red) as a significant predictors of the likelihood that our focal butterflies visited either 

single or multiple inflorescences on a single plant.   

 

Variables B S.E. Wald            df          Sig.         Exp(B) 

95% C.I. for EXP(B) 

          Lower         Upper 

Step 1a SP(1) −0.060 0.173 0.121 1 0.728 0.942 0.672 1.321 

Treat   39.235 2 0.000    

Treat(1) 0.578 0.181 10.197 1 0.001 1.783 1.250 2.544 

Treat(2) −0.505 0.179 7.984 1 0.005 0.603 0.425 0.857 

Constant 0.291 0.181 2.591 1 0.108 1.338   
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a Variable(s) entered on step 1: SP = Species, Treat = Treatments (viz. Small Yellow, 

Large Red and Large Mixed). 

Table 4. The Wald criterion identified treatment (Control, 25:25:50 (yellow: orange: red), 

50:50 (red and orange) and All Red) and species (D. iulia and H. melpomene) as a 

significant predictors of the likelihood that our focal butterflies visited either single or 

multiple inflorescences on a single plant.   

 

Variables 

B S.E. Wald Df Sig. Exp(B) 95% C.I. for EXP(B) 

Lower Upper 

Step 1a Sp(1) 0.358 0.154 5.386 1 0.020 1.430 1.057 1.935 

Treat   57.113 3 <0.001    

Treat(1) 0.962 0.185 27.072 1 <0.001 2.618 1.822 3.761 

Treat(2) 1.270 0.188 45.662 1 <0.001 3.562 2.464 5.148 

Treat(3) 1.271 0.195 42.609 1 <0.001 3.563 2.433 5.219 

Constant −1.002 0.198 25.673 1 <0.001 0.367   

aVariable(s) entered on step 1: Sp = Species, Treat = Treatment (viz. 50:50 (yellow and 

orange), All Red only, 25:25:50 (yellow: orange: red) and Control). 

 

  



123 

 

Chapter 4 

Butterfly foraging patterns disrupted by the presence of heterospecific butterflies 

and hummingbirds 

Chapter draft to be submitted to Journal of Behavioral Ecology with Yeufeng Wu and 

Godfrey R. Bourne.  

 

Lay Summary 

When organisms share a limiting resource at the same time and in the same habitat it is 

best to either avoid each other or feed differently. Butterfly types divided feeding areas 

spatially from each other, and from aggressive territorial hummingbirds. When food 

types were shared butterflies fed at different times and on different plants. Additionally, 

the different butterfly species changed the number of visits to plants, number of plants 

visited, and time spent foraging thereby achieving successful coexistence. 
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Abstract 

We determined whether freely foraging passionflower butterflies, postman (Heliconius 

melpomene) and flambeau (Dryas iulia) established regular foraging routes that matched 

the geometry of arrays created by covering and uncovering naturally blooming sweet 

sage shrubs (Lantana camara). They did not, but we traced movement patterns that 

minimized interplant flight distances influenced by the presence of heterospecific 

butterflies and very aggressive hummingbirds (Trochilidae). Both butterfly species 

exhibited territoriality that excluded each other. When hummingbirds defended L. 

camara flower patches both butterfly species divided flower resources spatially and 

temporally. Butterflies exhibited both similar and dissimilar foraging behaviors to solve 

problems associated with changing nectar resources. Heliconius melpomene was more 

sensitive to nectar availability than D. iulia, and responded by exhibiting two foraging 

tactics. One was unique, increasing the number of visits and foraging times, and the 

other, also exhibited by D. iulia, increasing the number of visits and decreasing foraging 

times. In addition, both species varied their feeding repertoire, incorporating new plants 

when current feeding plants were covered but continued to visit these new foraging 

locations even when access to previously covered plants were available again. Our results 

suggested that foraging patterns differed by species but were modified by the presence of 

heterospecific animals competing for the same flower resources with fluctuating rewards. 

Yet, movement patterns by the butterflies always minimized interplant flight distances. 

Keywords: Dryas iulia, Heliconius melpomene, Guyana, Lantana camara, foraging 

patterns, passionflower butterfly, resource partition, heterospecific competition  
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Introduction 

Individual organismal movement is a critical element of most evolutionary and ecological 

processes that are now attracting focused research attention (Holyoak et al. 2008; Nathan 

2008). But few studies investigate movement relationships of invertebrates among plants 

at the individual level (Holyoak et al. 2008). Spatial-use strategies by foragers are key 

factors in their fitness, as they must move to locate and acquire their food (Ohashi et al. 

2007). When using pollinators as model organisms, for example, researchers usually 

assume that they are choosing each flower from which they imbibe nectar naïvely, that is, 

foragers tend to ‘meander’ until an appropriate flower is encountered. However, 

Zimmerman (1979) indicated that foragers have prior knowledge of the locations and 

values of rewards(Zimmerman 1979; Zimmerman 1981). Pioneering studies of pollinator 

movement tended to model foraging patterns as outcomes of simple movement rules 

between successively visited flowers or plants as choices of ‘‘movement distance’’ and 

‘‘turning angle’’ (Zimmerman 1979; Waddington 1980; Cresswell 2000; Ohashi et al. 

2007).  This approach, however, may not be sufficient to describe spatial use by 

pollinators given competitive interactions. Bees, for example, sometimes establish small 

foraging areas to which they return faithfully over many days (Thomson 1996; Williams 

and Thomson 1998; Ohashi et al. 2007). Similarly, leking species of hermit 

hummingbirds (Phaethornis spp.) repeatedly visit isolated and undefended flowers 

offering large rewards (Gill 1988). These pollinators are not only remembering the 

locations of resource sites, they also trapline, employing a foraging strategy in which the 

individual animals travel among food resources in a stable repeatable sequence in order 
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to gain optimal profit which reflects knowledge of reward (Heinrich 1976, Gill 1988, 

Thomson 1996). 

Traplining is an efficient method of collecting food at steady intervals from 

renewable isolated resource locations, as is used by many species (Heinrich 1976; Gill 

1988). Due to local knowledge, trapliners that learn locations of most rewarding 

resources can more efficiently exploit these resources. In the case of flowers, many 

animals are able to track nectar-refilling schedules and can outcompete ‘naïve’ 

conspecifics for resources (Williams and Thomson 1998; Ohashi and Thomson 2005; 

Ohashi et al. 2008; Ohashi and Thomson 2009; Lihoreau et al. 2010 and citations 

therein). Traplining behaviors are documented for many taxa such as bees, birds, and 

mammals (Thomson, Slatirin, Thomson, et al. 1997; Lihoreau et al. 2010). Yet very little 

work has statistically tracked feeding patterns of butterflies (Gill 1988). Gilbert (1980) 

indicated that Heliconius butterflies trapline (Gilbert 1980, Heliconius Genome 

Consortium 2012). However, little is known about their traplining behavior, i.e., whether 

they established regular foraging routes that confirm to the geometry of distributional 

patterns of plants, and how butterflies adjust in response to perturbations such as the loss 

of plants, and the presence of territorial competitors in their feeding circuits (Ohashi and 

Thomson 2005; Ohashi and Thomson 2009). Our aim was to document whether 

movements of two heterospecific passionflower butterflies conformed to the geometries 

of arrays created by covering and uncovering naturally blooming sweet sage Lantana 

camara. 

 We initially intended to document traplining behaviors in our study species 

because preliminary observations provided evidence of this behavior. However, during 
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our latest study season we noted that our butterflies visited far fewer plants, and did not 

establish regular foraging routes that matched the geometries of the treatment arrays, as 

such we were unable to statistically test for traplining behaviors as described in Thomson 

et al.(1997). Instead, we investigated short-distance foraging and movement patterns used 

by the two sympatric passionflower butterflies, H. melpomene and D. iulia at a long term 

feeding patch where they faithfully feed on Lantana camara. Specifically, we focused on 

changes to the feeding patch by two perturbations: 1) changes in nectar availability; and 

2) presence of heterospecific competitors, both exploitative competitors (butterflies) that 

consume nectar thereby making it unavailable to other butterflies and interference 

competitors (hummingbirds) that aggressively exclude butterflies from nectar sources. 

Although early research focused on factors affecting nectar feeders at established feeding 

areas (Gill 1988; Heinrich 1976; Thomson 1996; Ohashi et al. 2007), the presence of 

competitors (Ackerman et al. 1982; Thomson et al. 1987; Ohashi et al. 2007) and changes 

in nectar availability (Goulson et al. 2007; Lihoreau et al. 2010), they focused on 

hymenopteran groups. Therefore, our study was unique as we focused on topics such as 

resource partitioning, foraging behavior, and competition in the understudied Lepidoptera 

as we investigated short-distance foraging, movement patterns and competitor 

interactions.  

We began our research by observing interplant movement and foraging by 

passionflower butterflies, postman (H. melpomene) and flambeau (D. iulia) under natural 

conditions (no resource restriction with competitor). Subsequently we investigated 

interplant movement, foraging patterns and competitor interaction (butterflies and 

hummingbirds) when the numbers of flowers available were reduced and then made 
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available again. For these experiments, we posited the following hypotheses: (H1) if 

resources in an established feeding patch are reduced butterflies will adjust their existing 

movement patterns to accommodate for this change. The predictions generated are that 

butterflies will: (P1) include more plants in their feeding circuit; (P2) increase number of 

floral visits; and (P3) increase time spent in order to acquire sufficient nectar to meet their 

caloric needs. (H2) when previously unavailable plants become available again butterflies 

will include them in their feeding circuits. Thus, we predict that: (P1) butterflies will 

return to previously established routes when plants in these locations were available 

again. Finally: (H3) that the presence of competitors, butterflies (exploitative competitors) 

and hummingbirds (interference competitors), in a feeding patch will affect the feeding 

patterns of butterflies. We predicted that: (P1) the two butterfly species will partition their 

resources spatially in order to avoid confrontation with the larger hummingbirds, which 

aggressively displace them, butterflies should avoid patches defended by territorial 

hummingbirds and (P2) when hummingbird defended plants are unavailable 

hummingbirds will establish new territories within the feeding habitat, thereby displacing 

butterflies from their established feeding plants.  

Method 

Plant  

Lantana camara L. (Verbenaceae) is a readily available, easily tractable common shrub 

found in open habitats in the CEIBA area that provides food to a variety of pollinators 

including our study species, which are among the top three foragers as characterized by 

frequency of visits (G. Maharaj manuscript in preparation). This shrub has multiple 

inflorescences with 20–25 flowers per inflorescence placed in whorls (G.R. Bourne 
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unpublished data). There are many horticulture varieties of Lantana that have small 5-

lobed flowers in a variety of colors which include white, yellow, orange, red and purple 

that are often mixed in the same cluster. Wild-type L. camara used in this study presented 

potential visitors with day-1 yellow flowers, day-2 orange flowers and day-3 flame 

scarlet flowers that then become scarlet until abscission. 

Pollinators 

We focus on Heliconius melpomene (black wings with red a blurred patch on forewing 

and a yellow line on underside of hind wing curves towards the posterior) and Dryas iulia 

(bright orange wings with black margins, forewings elongate with dorsal fore and hind 

wing surface brighter than ventral side). Both butterflies are members of the 

Nymphalidae family and are common pollinators/foragers of Lantana camara present at 

our study site (G. Maharaj and G.R. Bourne unpublished data). We have chosen to work 

with these butterflies because they are easily tractable in the wild, and have been the 

focus of a large body of work in evolutionary biology and animal behavior (Hsu et al. 

2001).  

Site  

We conducted our field studies at CEIBA Biological Center, N 06° 29/.945//, W 058° 

13/.106//), on the Soesdyke−Linden Highway, Madewini, Guyana. Observations were 

carried out in a sustainable demonstration farm site (320m2) comprised of numerous L. 

camara plants. Surrounding this site is a white sand area is comprised of low seasonal 

forest dominated by the fast-growing Eperua falcate (Caesalpiniaceae), and tall primary 
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growth flooded forests dominated by Mora excelsa (Fabaceae) (Bourne and Bourne 

2010). 

Procedures 

We spent two days (23-24 June 2015) hand netting and marking butterflies with small 

round unique color combination tags (Ehrlich and Gilbert 1973, Gill 1988). To reduce 

butterfly stress, we released them within 60 s of capture to a foraging plant. With the help 

of University of Missouri St. Louis and University of Guyana field assistants we 

observed all marked butterflies but noted that only a few marked H. melpomene 

butterflies and no marked D. iulia butterflies survived through every day of each 

experimental treatment listed below. Therefore, we continued to mark new butterflies as 

needed for the duration of the study to reduce identification errors and ensure we were 

tracking the same individual for their entire feeding bout.    

We also marked by color flagging and mapped positions of all flowering L. 

camara plants in study area using a Garmin eTrex 10 Worldwide Handheld GPS 

Navigator (N = 25). We also calculated the size of the average crown spread of each plant 

using the cross-method by measuring the longest spread (drip-tip to drip-tip) and the 

longest cross-spread perpendicular to the first cross-section through the central mass of 

the crown (Blozan 2006). This produced the variable, average crown spread = (longest 

spread + longest cross-spread)/2. The crown density of each plant was also determined by 

using Crown density-foliage transparency cards to estimate the percentage of light that 

was being blocked by the crown mass. These estimates were based on measurements 
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made from two directions at right angles to each other and reconciled to determine the 

amount of branches, foliage and flowers on each plant (USDA Forest Service 2010).  

Foraging patterns of butterflies under natural conditions – Control 

We monitored inter-plant movement and foraging times by individually marked 

butterflies and we observed plants that were used by butterflies only, those shared with 

hummingbirds and those used by hummingbirds only (Fig. 1.1). These observations were 

made for 3-hours, 08:00-11:00 h, and 14:00-17:00 h for 6 days, 25-29 June 2015. We 

also recorded movement sequences at plants visited by butterflies, number of plants 

visited, time spent foraging at each plant, and duration of entire foraging bouts. We used 

these measurements to indicate changes in forging patterns as an expression of the 

distribution of number of visits and foraging time per visit. 

Reduction and subsequent return of food resources – Treatment 1  

After identifying the plants fed on by butterflies and hummingbirds, we chose “shared” 

plants (fed on > five times by both butterflies and hummingbirds) and covered 50% of 

these plants, (Treatment 1a, Fig.1.2) from 30 June –4 July 2015. These were later 

completely covered (100%; Treatment 1b, Fig. 1.3) form 5–9 July 2015 with fine gauge 

mosquito mesh (3000 holes per cm) to prevent butterfly access and observed plants 

visited and time spent foraging. All “shared” plants were then made available again 

(Treatment 1c, Fig. 1.4) from 10–14 July 2015, and inter-plant foraging movement and 

time spent foraging were observed for another five days.  

Interference competitor presence on feeding behaviors – Treatment 2  
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In addition to observing butterfly/hummingbird interactions in natural un-manipulated 

and manipulated treatment 1 settings, to investigate the effect of competitor presence on 

feeding behaviors we also covered hummingbird plants (>10 hummingbird feedings) by 

the three territorial species of the Trochilidae family, Chlorostilbon mellisugus, Amazilia 

fimbriata and A. leucogaster. We subsequently observed and recorded any reciprocal 

changes in hummingbird and butterfly feeding plants, and time allocated by each species 

to foraging (Fig. 1.5) from 15–21 July 2015.  

Analyses  

Due to the low number of survivors of marked butterflies in all treatments we did not 

analyze foraging times and number of visits to individual plants by individual butterflies. 

Instead, we grouped individuals into three broad categories viz. H. melpomene, D. iulia 

and territorial hummingbirds (Chlorostilbon mellisugus, Amazilia fimbriata and A. 

leucogaster). We employed IBM SPSS Version 23 (IBM Corporation 2015), R version 

3.2.5 (2016), and Microsoft Excel (2016) programs to analyze data sets, and to generate 

graphs and tables. To determine whether there were relationships among specific plants 

and animal species we used a Fisher’s Exact Test. A two-way factorial ANOVA with 

post-hoc analyses Tukey’s HSD was used to compare the average time spent between 

treatment by species, and a Pearson Chi-square was used to investigate how well the 

observed distribution of the total number of visits by each species per treatment fitted its 

expected distribution. In order to test for overlap in forging time we used the formula 

(Start time butterfly/hummingbird 1 <= End time butterfly/hummingbird 2) and 

(End time butterfly/hummingbird 1 >= Start time butterfly/humming bird 2). 
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Finally, we created a model that described the visiting and feeding pattern for the 

butterflies and hummingbirds in our study site:  

Model 

Yi,j,k ~ Poisson (λi,j,k),                                          (1) 

Where i = 1, 2, 3, …, 25 – 25 different plants, j = 1, 2 - two species, k = 1, 2, …, 5 – five 

treatments, 

then 

Log λi,j,k= β0j,h + β1j,h* resourcei        (2) 

where h denotes the “zone” and h itself is a function of plants and treatments: 

h=h(i,k)          (3)  

Priors on the parameters: 

Β0,β1~normal (0, 10000000) which means we give almost 0 prior information on these 

parameters 

h~ unif (1,2,3), we tried 1234 or 1,2 for different number of zones, but 3 is the best. 

The model assumes almost no prior information on feeding behaviors such as preferences 

for a specific plant. The expected times of foraging bouts were determined by the 

resource (linearly), and the intercept and the slope differed not only between species but 

also among different plants that belong to different “zones”. With h changes for the same 
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L. camara plant under different treatments, which reflects the change of the feeding 

pattern due to the presence of hummingbirds and available resources. 

Results  

Foraging patterns of butterflies under natural conditions – Control 

Under unmanipulated conditions (control) we observed that plants 1-5 and 22-25 are 

shared by both butterflies and the hummingbirds (Fig. 2). Those shared by a particular 

species of butterfly and hummingbird included (hummingbirds + H. melpomene = 6 and 

14-17, hummingbirds + D. iulia = 7 and 19), while there were others that were visited 

exclusively by hummingbirds (9, 10, 11 and 21) or butterflies (8 butterflies only, 12 and 

13 H. melpomene only). Number of visits to these plants and time spent on each plant 

changed depending on the treatment. However, although H. melpomene and D. iulia 

shared the same some resources we observed in control conditions that H. melpomene 

occupied the upper right portion of the study site and focusing on plants 1, 3, 4, 5, 12 and 

13. Here, we observed 69% of their feeding bouts. Whereas, D. iulia feed mostly (64% 

feedings) in the lower left focusing on plants 19, 22, 23, 24 and 25 (p<0.01, Fisher’s 

Exact Test). Hummingbirds defended territories in the center of the farm on plants 9, 10, 

11 and 21.  This behavior therefore facilitated very little overlap with each other and 

hummingbirds as shown in Fig. 3.   

Reduction and subsequent return of food resources – Treatment 1  

When the “shared” plants (1, 5, 22 and 24) were covered by 50%, time spent on these 

plants varied from the control with H. melpomene spending more time on these plants, 

and included new plants 9 and 10 in their feeding territories. Dryas iulia spent less time 
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on plants 22 and 24 and did not feed at all on plant 1 or 5. Like H. melpomene, D. iulia 

increased time spent on surrounding plants such as 3, 4, 6 and included a hummingbird 

defended plants 10, 14,15, and 17. Hummingbirds spent more time on plants such as 

plants number 11, 12, 13, 14, 15, 16, 17, and 18.  

When all “shared” plants (1, 5, 22 and 24) were covered completely (100%) 

hummingbirds, H. melpomene and D. iulia displayed a “hold over” behavior where they 

revisited many of these plants after they were covered (Total number of visits observed = 

34) although no reward was provided. We also observed that H. melpomene’s feeding 

trend was similar to when plants were covered by 50% with plants 3, 4, 12, 13, 15, 18 

and 23-25 being popular. Dryas iulia, interestingly, returned to many of the plants that 

they feed on in the control but later abandoned when 50% of these plants were covered. 

Hummingbirds fed more frequently on the plants that they had moved to when shared 

plants were covered by 50%.  When all shared plants were reopened H. melpomene, D. 

iulia and hummingbirds incorporated both old and new plants into their feeding 

repertoires. Thus, there was a great amount of overlap, Fig. 3, however, there was still a 

significant relationship with species and various plants (p<0.01, Fisher’s Exact Test). We 

observed that H. melpomene fed on 1, 3, 4, 5 12 and 13 (52%) and also started to 

incorporate plants 2, 10 and 22-25. Dryas iulia feed on 19, 22-25 (40%) but also 

depended on many other plants such as 1,2,3,5,7,8,10,11,15,16, and 18 (both H. 

melpomene and hummingbird frequented plants).  

Table I shows that D. iulia increased the number of visits and reduced time spent 

when shared plants were completely covered. When all plants were again available D. 

iulia increased their visits and reduced time spent foraging. Heliconius melpomene, 
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however, increased visits and time spent when only 50% of plants were covered but 

increased visits and reduced time when 100% were covered. Additionally, when plants 

became available again we observed that H. melpomene returned to the approximate 

number of visits and time spent as in the control treatment. 

Interference competitor presence on feeding behaviors – Treatment 2  

When hummingbird plants were covered, and shared plants were left open, H. 

melpomene increased feeding on shared plants, 1 and 25, D. iulia continued feeding on 

new and old plants as they did in the open treatment, as the overlap continued, Fig. 3, and 

there was a marked decrease in time spent by hummingbirds on the study area.  

From our two-way factorial ANOVA (Table II) based on mean time spent 

presented in Table I, the mean time/s spent foraging in each did change, however those 

changes were not statically significant. The p-value for species is however significant. 

Tukey’s HSD, Table III, shows there was no significant difference in the time spent 

foraging by hummingbirds and the D. iulia butterflies. However, there was a difference in 

both groups compared to H. melpomene butterflies, which on average spent more time 

foraging on plants in comparison to the very short feeding bouts noted for D. iulia and 

hummingbirds. This is in keeping with the slower flight observed for H. melpomene in 

comparison to faster erratic flight pattern of D. iulia, and the more focused speedy darting 

flight of hummingbirds. Our χ2 test on total number of visits by each species per 

treatment, however, revealed a significant relationship (χ2 = 79.623, df = 8, p < 0.01) N = 

1724). Therefore, although the time spent foraging does not change statically with 

varying treatments the number of visits to plants is statically different.  
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However, when individual plants were examined (Fig. 4) the number of visits by 

butterflies did not change regardless of the treatment. We noted that plants on which 

butterflies feed were located on the periphery of the farm whereas plants unaffected by 

treatments were located in a central zone of the study site. In this zone there was an 

abundance of hummingbird feeding plants. As we examined this concept of various zones 

seen in Figures 5a and 5b we noticed that H. melpomene exhibited feeding in three 

separate zones, i.e., Interaction Zone (Hummingbirds + Butterflies Share), No Interaction 

Zone (Butterfly Safe, Hummingbirds absent) and Hummingbird Defended Zone 

(Butterflies unsafe, Hummingbirds territorial). However, when we looked at D. iulia 

there was a cross over from the interaction zone and the no interaction zone, caused by 

the high number of interactions between D. iulia and hummingbirds. In addition, we 

found that individual plants were not fixed in particular zones but changed zone 

assignment in response to treatments, (see Fig. 6―Class 1 – Interaction Zone, Class 2 – 

No interaction Zone, Class 3 – HBD Zone). 

Discussion 

When foraging, movement patterns of nectarivores are dependent on resource availability 

i.e. the plant itself through spacing, floral density and nectar production (Levin and 

Kerster 1969; Scott 1975; Cresswell 2000, Fermon et al. 2003), and on exploitative and 

interference competitors (Milinski 1982; Belovsky 1997), as all of these factors places 

limits on nectar intake per visit. Therefore, it is necessary for foragers to adopt spatial use 

strategies i.e. foraging movement patterns and behaviors, that facilitate maximum nectar 

intake from available resources while simultaneously reducing competition. We found 

that our study species, D. iulia and H. melpomene, varied their foraging patterns by 
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adjusting the location of their feeding plants, feeding times, the number of visits to plants, 

number of plants visited, and time spent foraging, in order to satisfy their caloric needs 

and to avoid being outcompeted by heterospecifics.   

Foraging patterns of butterflies under natural conditions – Control 

Our results show, that initially, when resources were available but competitors limited 

nectar intake, D. iulia and H. melpomene butterflies use a variety of resource partitioning 

feeding patterns in order to promote a long term coexistence with each other and other 

nectar feeders such as hummingbirds (Graham and Jones 1996). This is not surprising as 

it is advantageous for sympatric species that share food resources to avoid each other 

whenever possible. This in turn promotes the use of different resources or the use of 

resources differently, i.e. resource partitioning, which facilitates reduced competition and 

increased food intake  (Pianka 1981; Walter 1991; Graham and Jones 1996).  

Resource partitioning methods used, included spatial partitioning of feeding 

plants by location, where butterflies mainly fed on the periphery of the farm, with H. 

melpomene concentrating its feeding in the upper right portion of the farm while D. iulia 

focused in the lower left, while humming birds fed in the center (Fig. 4). Thus, we found 

very little overlap for feeding times (Fig. 3). Our results, although novel for Lepidoptera, 

are also known for other taxa such as fishes (Ross 1986; Sala and Ballesteros 1997), reef-

building corals (Porter 1976), and even other insects such as ants (Albrecht and Gotelli 

2001), and bees (Graham and Jones 1996) which also spatially partition resources in 

order to successfully coexist with competitors.    
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Although we observed overall spatial partitioning among both butterflies and 

hummingbirds we noted that the extent of this behavior was species specific, with D. 

iulia having more interactions with hummingbirds in comparison to H. melpomene, i.e. 

D. iulia foraging movement patterns intersected more with hummingbirds than did H. 

melpomene (Figs. 5a, and 5b). This may be attributed to D. iulia’s faster flight, 

statistically similar to the feeding bouts times of Hummingbirds, which permitted it to 

feed on some hummingbird defended plants and escape attacks unscathed. This 

contrasted with H. melpomene, which is a slower flyer and slower feeder, thus, making it 

more susceptible to hummingbird attacks.  These species specific behaviors are in 

keeping with the findings of Toft (1985) where she concluded that resource partitioning 

varies in organisms as factors that contribute to partitioning operate independently on 

individual species.  

Whenever, the butterfly species shared plants with each other, and/or 

hummingbirds, they utilized two additional partitioning strategies to reduce encounters, 

i.e.,: i) they fed at mutually exclusive times, as seen in bats which use temporal resource 

partitioning when feeding  at water holes (Kunz 1973; Adams and Thibault 2006 ). Or, ii) 

when feeding at the same time they feed on spatially different parts of the plants. Similar 

to Anolis lizards that occupy various spatial arrangements on plants (Schoener 1974).  

These results support our hypothesis that the presence of competitors, butterflies 

(exploitative) and hummingbirds (interference/exploitive), in a feeding patch will affect 

the feeding patterns of butterflies. Specifically, our findings prove our prediction that the 

two butterfly species will partition their resources spatially to avoid patches defended by 

larger aggressive hummingbirds in order to reduce confrontation and displacement. 
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However, our results also show that our butterfly species partition resources 

spatially―by feeding on different parts of the plants and temporally―by feeding at 

different times (Pianka 1967; Case and Gilpin 1974; Pianka 1981). Therefore, by 

employing a combination of these strategies each butterfly species is able to reduce 

exploitative and interference competition. 

Reduction and subsequent return of food resources – Treatment 1  

As the resource availability changed, we found that butterflies used different foraging 

patterns when adjusting to these changes. This is not surprising as resource availability 

directly affects behavior of consumers, which try to balance the benefit and cost of 

feeding on specific items (Justino et al. 2011). Therefore, use of select foraging behaviors 

play a key role in nectarivore fitness as it reduces time and energy spent acquiring their 

food (Ohashi and Thomson 2005; Ohashi et al. 2007).  

Dryas iulia adopted an “increase number of visits and reduce time spent” foraging 

pattern but only when the resources were very limited, i.e. 100% of shared plants were 

covered. When plants were again available D. iulia retained this pattern (Table I), and 

included both old and new plants into their feeding route (Fig 1). In comparison, the more 

sensitive H. melpomene used multiple patterns depending on the resource availability. At 

first, they used an “increase visits increase time spent foraging” strategy when only 50% 

of shared plants were covered. Then they adopted the “increase visits and reduce time 

spent” foraging strategy similar to that of D. iulia when 100% of the shared plants were 

covered. However, they subsequently returned to their initial forging movement patterns 

i.e. similar number of plants visited and time spent as in the control treatment when 
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plants became available again (Table I). Heliconius melpomene behaved similar to D. 

iulia in that they incorporated both old and new plants into their feeding patches, thus, 

although there was a noted difference in time spent foraging in each treatment it was not 

statistically significant as was the number of visits to plants due to the inclusion of new 

plants which resulted in more overlaps in butterfly foraging bouts as seen in comparison 

to the control treatment (Fig 3). These differing foraging movement patterns could be 

owing to a partial break down in the spatial habitat partition patterns used initially, as 

more “designated” feeding areas now were shared, because butterflies included new 

plants as their feeding patches as productive flowers became limiting resources. 

Heliconius melpomene may have also switched between patterns to reduce competition 

and to avoid being out-competed by D. iulia, as dictated by the competitive exclusion 

principle (Zaret and Rand 1971), as flight speed constraints prevented it from sharing 

plants with hummingbirds as seen in D. iulia (Fig. 5a and 5b).  

In addition to the adjusting number of visits and time spent per visit we also found 

that each butterfly species exhibited visit consistency to specific plants. In the beginning 

of this study as butterflies spatially partitioned plants based on location they showed visit 

consistency to specific plants and this changed to some extent with resource availability 

(Fig. 6). However, although they started to include more plants into their feeding routes 

as resources decreased, many butterflies of both species exhibited a “hold over” behavior 

where they revisited plants for a few days before moving on to new plants and they 

returned to some of these plants after they were made available again. Early researchers 

believed that visit consistency only existed in hymenopterans (Bennett 1883; Christy 

1883), specifically bee species because of their eusociality and learning abilities (Lewis 
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1989). However, Gilbert (1980) and Lewis (1989), showed that butterflies such as 

Heliconiids and Pieris rapae, support our findings of visit consistency, where they not 

only establish constant feeding areas but faithfully visit specific plants within these areas, 

bypassing potentially rewarding plants, in an attempt to reduce search and handling times 

and outcompete naïve foragers (Lewis, 1989; Laverty 1994; Laverty 1994b; Raine and 

Chittka 2007).  

We also noted that both butterfly species also visited many inflorescences on the 

same plant and plants in close proximity to each other (Fig. 1). In addition, butterflies 

increased visits to plants close to their primary food source when resources were reduced 

(Fig 1). This behavior is also observed in many floral foragers that move only short 

distances between plant visits by mainly visiting flowers on the same plant or 

neighboring plants in an attempt to minimize time travelling and reduce energy costs 

incurred (Waser 1982; Cresswell 2000).  

Overall all our findings supported our predictions of our first hypothesis, if 

resources in an established feeding patch are reduced butterflies will adjust their existing 

movement patterns to accommodate for this change thus they will; (P1) include more 

plants in their feeding circuit; (P2) increase number of floral visits; and (P3) increase time 

spent in order to acquire sufficient nectar to meet their caloric needs when resource 

availability changed. However, these behaviors varied by species depending on resources 

available. In addition, although butterflies demonstrated plant consistency behaviors 

overall, our second hypothesis, when previously unavailable plants become available 

again butterflies will include them in their feeding circuits, and its prediction of 

butterflies returning to previously established feeding routes, was not supported, as 
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butterflies adopted new feeding routes by including new plants into their feeding 

repertoire, many of which were located in close vicinity to abandoned plants.   

Interference competitor presence on feeding behaviors – Treatment 2  

Many animals use territoriality in order to exploit limiting resources such as food, 

breeding sites and mates. However, territoriality is only economical when the benefits of 

exclusive use of a resource outweigh the costs of its defense (Kodric-Brown and Brown 

1978). For territorial hummingbirds, which actively defended clumped flower resources 

in the center of the farm for their own use, we found a significant difference in number of 

visits and time spent of each plant due to treatment. This differed for the butterflies that 

exhibited only significant difference in number of plants visits due to treatments because 

they included previously unexploited plants into their feeding repertoires to compensate 

for a decrease in flower resource quantities. The effect of treatment on hummingbirds 

was especially apparent when we considered the drastic decrease (>50%) in number in 

visits when the hummingbird plants covered in comparison to the other treatments and 

control. This may be explained by the small size and high metabolic demands of 

hummingbirds that caused them to respond quickly to changes in resource availability at 

a given site because they cannot sustain a negative energy budget for a long period of 

time, and must secure high quality nectar at low costs (Wolf and Hainsworth 1971; 

Justino et al. 2011). Therefore, when hummingbirds can no longer economically defend 

territories due to increasing numbers of potential interlopers driving up costs per intruder, 

they then abandon uneconomical territories and seek nectar resources away from the 

study area (Wolf and Hainsworth 1971; Justino et al. 2011). Although we have found 

evidence to support our hypothesis that the presence of competitors, butterflies 
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(exploitative) and hummingbirds (interference/exploitive), in a feeding patch will affect 

the feeding patterns of butterflies our findings when hummingbird plants are covered are 

not congruent with our prediction that when hummingbird defended plants are 

unavailable they will displace butterflies as in our study they abandoned the feeding 

habitat.   

We conclude that our study species adjusted their feeding times, movements, and 

even plant visit consistency when resource availability was experimentally changed. This 

is strong evidence in support of hypothesis one. However, we note that behaviors were 

species specific. When previously unavailable resources were made available again both 

butterfly species included only some of these resources into their feeding circuit—they 

tended to adopt a new feeding pattern where they incorporated newly discovered plants 

and older plants—therefore hypothesis two was not corroborated. This is especially so 

because the butterflies did not return to their previously established feeding patterns.  

Finally, in response to competitors, we presented evidence that butterflies partitioned 

floral resources spatially. Thus, lending support for hypothesis three. However, they also 

partitioned resources temporally to reduce the use of the same plants by sympatric 

butterflies, and aggressive encounters with hummingbirds dictated plant visit consistency.  

In the near future, we intend to investigate the effects of exploitative and 

interference competition on nectar availability, by removal and/or introductions 

(Schoener 1983) of both butterflies and hummingbirds. We also plan to conduct 

controlled foraging experiments, such as those described by Thomson et al. (1997), 

Ohashi et al. (2007) and Lihoreau et al. (2010) to better describe optimal flight paths and 

movement among patches, and holdover patterns of individuals of each butterfly species.  
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Figure legends  

Figure 1.1: Feeding patterns for Heliconius melpomene, Dryas iulia, and hummingbirds 

in control (un-manipulated) environment. Each plant was uniquely numbered, and the 

color of the dots around the number denotes the total number of flowers of this plant. 

There were more flowers on the purple side and fewer on the red side. Each dot 

represents a single visit to a plant. The circle corresponded to D. iulia butterfly visits, the 

triangle to H. melpomene butterfly, and the cross to hummingbird visits. The sizes of 

these symbols corresponded to the time spent for each visit.  

Figure 1.2: Feeding patterns for H. melpomene, D. iulia, and hummingbirds when 50% of 

the resource from “shared” plants were covered, and made unavailable as foraging sites.  

Each plant was assigned a unique number. See Figure 1.1 legend for details and 

explanations of symbols. 

Figure 1.3: Feeding patterns for H. melpomene, D. iulia and hummingbirds when 100% 

of the resource from the “shared” plants were covered. Detailed explanations for symbols 

are available in Figure 1.1 legend. 

 

Figure 1.4: Feeding patterns for H. melpomene, D. iulia and hummingbirds when covers 

on the “shared” plants were removed. Details are provided in Figure 1.1 legend. 

 

Figure 1.5: Feeding patterns for H. melpomene, D. iulia and hummingbirds when 

uniquely numbered “hummingbird bushes” were covered. See Figure 1.1 legend for 

details. 

 

Figure 2a: Individual plants visited and time spent on each plant by focal butterflies and 

hummingbirds varied each treatment as both species abandoned old feeding plants and 

incorporated new plants in their feeding repertoires.  

 

Figure 3: Overlap interactions between each butterfly and hummingbirds increased as 

resources decreased. 

 

Figure 4: Number of visits by butterflies per treatment remained unchanged. Note that 

butterflies fed on the periphery of the farm while hummingbirds fed in center.  

 

Figure 5a and 5b: Heliconius melpomene and D. iulia butterflies respectively, exhibited 

feeding in three zones, i.e., Blue line-Interaction Zone, Red line-No Interaction Zone, 

Green line-Hummingbird Defended Zone. 

Figure 6: Resource availability affected hummingbird and in turn butterfly plant choices. 

The three classes represent feeding zones: Class 1, Interaction Zone; Class 2, Non- 

interaction Zone; and Class 3, Hummingbird Zone. 

  



153 

 

Table I: Total number of visits (count) with mean time spent (s) for each treatment for all 

plants.  

 

 

 

 

 

 

Treatment  Species 

D. iulia H. melpomene Hummingbirds 

Count Mean Count Mean Count Mean 

Control 

50cover 

100cover 

Open 

Hbplants 

28 40.89 

34.65 

36.89 

28.75 

33.26 

119 58.85 

61.60 

51.38 

60.27 

48.99 

101 42.33 

38.19 

29.87 

28.90 

27.37 

23 183 171 

69 192 177 

52 124 159 

58 196 70 
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Table II: Time spent on individual plants varies by species by not treatment. 

 

Source Type III Sum 

of Squares 

df Mean Square F Sig. 

Corrected Model 247406.729a 14 17671.909 5.445 .000 

Intercept 1856560.881 1 1856560.881 571.99

9 

.000 

Treatment 15289.536 4 3822.384 1.178 .319 

Species 192279.757 2 96139.878 29.620 .000 

Treatment * Species 12457.849 8 1557.231 .480 .871 

Error 5397670.663 1663 3245.743   

Total 8902227.000 1678    

Corrected Total 5645077.393 1677    
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Table III: D. iulia and hummingbirds differ from H. melpomene in the amount of time 

spent per plant.   

 
(I) Species (J) Species Mean 

Difference (I-J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

D. iulia H. melpomene -21.34* 4.311 .000 -31.46 -11.23 

Hummingbirds .88 4.404 .978 -9.45 11.21 

H. melpomene D. iulia 21.34* 4.311 .000 11.23 31.46 

Hummingbirds 22.22* 3.000 .000 15.18 29.26 

Hummingbirds D. iulia -.88 4.404 .978 -11.21 9.45 

H. melpomene -22.22* 3.000 .000 -29.26 -15.18 
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Fig. 1.2 

 



157 

 

  

 

 

 

 

 

 

Fig. 1.3 

 

 

 

 

 

 

 

 

Fig. 1.4 
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Fig. 1.5 
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Fig. 3 
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Fig. 4 

 

 

Fig. 5a and 5b  
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Fig. 6 
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