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Abstract

Image inpainting process is used to restore the damaged image or miss-

ing parts of an image. This technique is used in some applications, such

as removal of text in images and photo restoration. There are differ-

ent types of methods used in image inpainting, such as non-inear par-

tial differential equations(PDEs), wavelet transformation and framelet

transformation.

We studied the usage of the current image inpainting methods and

solved the Poisson equation using a five-point stencil method. We used

a modified five-point stencil method to solve the same equation. It gave

better results than the standard five-point stencil method. Using modi-

fied five-point stencil method results as the initial condition, we solved

the iterative linear and non-linear diffusion PDE. We considered differ-

ent types of diffusion conductivity and compared their results. When

compared with PSNR values, the iterative linear diffusion PDE method

gave the best results where as constant diffusion conductivity PDE gave

the worst result. Furthermore, inverse diffusion conductivity PDE had

given better results than that of the constant diffusion PDE. However, it

was worse than the Gaussian and Lorentz diffusion conductivity PDE.

Gaussian and Lorentz diffusion conductivity iterative linear PDE had

given a better result for image inpainting.

When we use any inpainting technique, we cannot restore the orig-
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inal image. We studied the relationship between the error of the image

inpainting and the inpainted domain. Error is proportional to the value

of the Greens function. There are two types of methods to find the

Greens function. The first method is solving a Poisson equation for a

different shape of domain, such as a circle, ellipse, triangle and rectan-

gle. If the inpainting domain has a different shape, then it is difficult to

find the error. We used the conformal mapping method to find the error.

We also developed a formula for transformation from any polygon to the

unit circle. Moreover, we applied the Schwarz Christoffel transformation

to transform from the upper half plane to any polygon.
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6.3.1 Möbius Transformation . . . . . . . . . . . . . . . 33

6.3.2 Joukowski Transformation . . . . . . . . . . . . . 35



Kalubowila, Sumudu Samanthi , 2017, UMSL, p. vii

6.4 Schwarz Christoffel Mapping . . . . . . . . . . . . . . . . 37

6.4.1 Schwarz Christoffel Mapping for a Triangle . . . . 39

6.5 Application of Conformal Mapping . . . . . . . . . . . . 43

7 Multi Resolution Approximation for Image Inpainting 44

7.1 Process of MRA . . . . . . . . . . . . . . . . . . . . . . 48

8 Mathematical Approaches 51

8.1 Image Inpainting Methods . . . . . . . . . . . . . . . . . 51

8.1.1 Initial Value . . . . . . . . . . . . . . . . . . . . . 51

8.1.2 Non-Linear Diffusion PDE and Iterative Linear

Diffusion PDE . . . . . . . . . . . . . . . . . . . . 58

8.2 Error Analysis of Image Inpainting . . . . . . . . . . . . 68

8.3 Error using Poisson Equation . . . . . . . . . . . . . . . 69

8.3.1 Circle,[20] . . . . . . . . . . . . . . . . . . . . . . 70

8.3.2 Ellipse . . . . . . . . . . . . . . . . . . . . . . . . 71

8.3.3 Triangle . . . . . . . . . . . . . . . . . . . . . . . 73

8.3.4 Rectangle . . . . . . . . . . . . . . . . . . . . . . 76

8.4 Schwarz Christoffel Transformation from any polygon to

unit disk . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4.1 Erros using conformal mapping . . . . . . . . . . 84

9 Future Work 86



List of Figures

1.1 u
∣∣∣∣
Dc

is the known data and D is the inpainting domain D

[28] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Texture Oriented Image Inpainting Algorithm [19, 42] . 5

2.2 Application of Texture Oriented Image Inpainting [19, 42] 5

2.3 Inpainting domain (left bottom). Result of diffusion pro-

cess without barriers. It has blury edges (left top). De-

fine diffusion barriers (right bottom). Result of diffusion

process with barriers. It has sharp edges (right top). [17] 7

2.4 Line is the inpainting domain (left). Define two diffusion barriers

at the end of hair (middle). Result of fast digital image

inpainting (right) [17] . . . . . . . . . . . . . . . . . . . 7

2.5 (a) the original image; (b) damaged image; (c) the result

of discrete cosine transformation decomposition ; (d) the

result of wavelet decomposition. [11] . . . . . . . . . . . 9

2.6 (a) Damage image, (b) results of method [39], (c) results

of method [40], (d) results of method [12]. . . . . . . . . 10

2.7 (a) The damage image. (b) Inpainted image by using

DWT (c) Inpainted image by using framelet(d) Inpainted

image by using the [16] . . . . . . . . . . . . . . . . . . 11

viii



Kalubowila, Sumudu Samanthi , 2017, UMSL, p. ix

2.8 Left: original image. Middle: inpainting mask. Right:

result of image ipainting [13] . . . . . . . . . . . . . . . . 13

2.9 The Commissar vanishes in second picture. [43] . . . . . 14

2.10 Left: damage picture of Cornelia, Mother of the Gracchi,

Right: result of image inpainting. [43] . . . . . . . . . . 14

2.11 Left: damage photo, Right: result of image inpainting.

[43] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.12 Left :Original Image. Right: After removal of text [28] . 15

2.13 1st row: damage images. 2nd row: inpainted result [23] . 15

2.14 1st row: frames of video. 2nd row: user-defned mask in

black. 3rd row: results video inpainting using method [42] 16

2.15 3D inpainting . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Finite Difference along x-axis . . . . . . . . . . . . . . . 18

3.2 5-point stencil for Laplace equation . . . . . . . . . . . . 20

3.3 2D Grid with boundary conditions . . . . . . . . . . . . 20

4.1 Isotropic Diffusion PDE Inpainting . . . . . . . . . . . . 24

4.2 TV Inpainting method. Top: Orginal Image and Bottom

: Inpainted Image . . . . . . . . . . . . . . . . . . . . . . 25

4.3 CDD Inpainting method. Top: Orginal Image and Bot-

tom : Inpainted Image . . . . . . . . . . . . . . . . . . . 25

6.1 simply connected domain . . . . . . . . . . . . . . . . . . 30

6.2 Compostion of Function, from A to C. g ◦ f : A→ C . . 31

6.3 preserves angle . . . . . . . . . . . . . . . . . . . . . . . 32

6.4 Transformation from upper half plane to the unit circle . 33

6.5 Transformation from any circle to ellipse . . . . . . . . . 35

6.6 Transformation from upper half plane to any polygon . . 37

6.7 Sum of the angles on the straight line is eqaul to the π . 38



Kalubowila, Sumudu Samanthi , 2017, UMSL, p. x

6.8 Schwarz Christoffel Mapping form upper Half plane to

Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.1 General 2D Grid with n rows and m column . . . . . . . 51

8.2 5-Point apply Level by level . . . . . . . . . . . . . . . . 53

8.3 5-Point apply to Level 1 . . . . . . . . . . . . . . . . . . 53

8.4 5-Point apply to Level 2 . . . . . . . . . . . . . . . . . . 55

8.5 Apply 5-point method level by level. Purple is the Bound-

ary data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.6 Standard 5-Point Stencil method and Modified 5-point

Stencil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.7 Image Inpainting methods with Constant Diffusion . . . 61

8.8 Image Inpainting methods with inverse proportional dif-

fusion conductivity . . . . . . . . . . . . . . . . . . . . . 63

8.9 Image Inpainting methods with inverse proportional dif-

fusion conductivity . . . . . . . . . . . . . . . . . . . . . 63

8.10 Image Inpainting methods with Gaussian Diffusion Con-

ductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.11 Image Inpainting methods with Gaussian Diffusion Con-

ductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.12 Image Inpainting methods with Lorentz Diffusion Con-

ductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.13 Image Inpainting methods with Lorentz Diffusion Con-

ductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.14 circle with center zero and radius r . . . . . . . . . . . . 70

8.15 Ellipse with center zero and a > b . . . . . . . . . . . . . 72

8.16 Triangle with each side is 2a . . . . . . . . . . . . . . . . 74

8.17 Rectangle with a>b . . . . . . . . . . . . . . . . . . . . . 77



Kalubowila, Sumudu Samanthi , 2017, UMSL, p. xi

8.18 Schwarz Christoffel Transformation from any unit disk to

polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



List of Tables

2.1 PSNR values and processing times for each methods . . . 11

8.1 PSNR value for Standard 5-Point Stencil method and

Modified 5-point Stencil . . . . . . . . . . . . . . . . . . 57

8.2 PSNR value for Iterative Linear and Non-Linear Image

Inpainting PDE with Constant Diffusion Conductivity . 61

8.3 PSNR value for Iterative Linear and Non-Linear Image

Inpainting PDE with Inverse Proportional Diffusion Con-

ductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.4 PSNR value for Iterative Linear and Non-Linear Image

Inpainting PDE with Inverse Proportional Diffusion Con-

ductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.5 PSNR value for Iterative Linear and Non-Linear Image

Inpainting PDE with Gaussian Proportional Diffusion Con-

ductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.6 PSNR value for Iterative Linear and Non-Linear Image

Inpainting PDE with Gaussian Proportional Diffusion Con-

ductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.7 PSNR value for Iterative Linear and Non-Linear Image

Inpainting PDE with Lorentz Proportional Diffusion Con-

ductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xii



Kalubowila, Sumudu Samanthi , 2017, UMSL, p. xiii

8.8 PSNR value for Iterative Linear and Non-Linear Image

Inpainting PDE with Lorentz Proportional Diffusion Con-

ductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



List of Abbreviation

PDE : Partial Differential Equation

MRA: Multi Resolution Approximation

TV : Total Variation

FD : Finite Difference

CDD : Curvature Driven Diffusion

CWT : Complex Wavelet Transformation

DWT : Discreate Wavelet Transformation

PSNR : Peak Signal Noise Ratio

FDM : Finite Difference Method

MAX : MAXimum posible pixel value of the image

MSE : Mean Square Error

xiv



Chapter 1

Introduction

Inpainting has been carried out by professional artists for many years.

When done manually, it is a very time-consuming process. The basic

idea of this process is to reconstruct damaged or missing parts of an

image. It has important value in restoration of old photographs, the

removal of artifacts in a film, the removal of red eye, the removal of

superimposed text, and the removal of redundant objects. At the 2000

SIGGRAPH conference, the idea of digital inpainting was established

by Bertalmio-Sapiro-Caselles-Ballester [13]. Image inpainting has been

expanding very fast. It is a very important topic in the field of Digital

Image Processing.

Nowadays, data exchange has become popular. Since time and

skill are required to do image inpainting manually, it is important to

find an automatic and efficient method. Therefore, different types of

successful inpainting techniques were developed in the last few yaers.

The idea of the computer algorithm of image inpainting is to fill the

missing data with known data surrounding D. D is the inpainting domain.

1
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Figure 1.1: u
∣∣∣∣
Dc

is the known data and D is the inpainting domain D
[28]

Our first approach is to solve linear diffusion PDE. When we solve

this, we need the initial values as boundary conditions. We have to solve

the Laplace equation for Dirichlet boundary conditions in the rectangu-

lar domain. We use the five-point stencil method to find them. Also,

we did some modifications of the five-point stencil method. Using this

solution, we solved the linear PDE. We have a numerical method to

solve non-linear PDE. Here we develop that technique to solve linear

diffusion PDE. In 1990, Perona and Malik considered the non-constant

diffusion conductivity; we extended our PDE method for constant and

non-constant diffusion conductivity. We wrote a MATLAB program for

these linear and non-linear PDE with different diffusion conductivity.

We took an original image and removed small areas; then, using these

inpainting methods tried to inpaint them. After that, we compared each

method outputs with the original image.

Normally, we can’t get the original image; we try to find the rela-

tionship between inpainting domain and error of the image inpainting.

Here, we consider two different methods. For a specific shape of domain,

such as circle, ellipse, triangle and rectangle, I solve Poisson PDE to es-

timate the error of image inpaiting. If we have a different shape, such

as a polygon, we consider conformal mapping method to solve PDE. We

extend the Schwarz Christoffel method to find a conformal map from

polygon to unit disk. Using this method, we can also develop a relation-



Chapter 1 Kalubowila, Sumudu Samanthi , 2017, UMSL, p. 3

ship between the error and the inpainting domain.

This dissertation is organized in nine sections. Chapter 2 describes

the background of image inpainting. In this chapter, we can get an idea

about current methods of image inpainting. Also here we explain ap-

plication of image inpainting. When we use inpainting methods, we

can’t get the original image. So in chapter 2, we discussed the error of

the image inpainting. We can develop this inpainting technique for 3D

inpainting and video inpainting. Chapter 3 reviews the elliptic partial

differential equation. Here we can get an idea about solving the Poisson

equation with Dirichlet boundary conditions. When we solve PDE, we

use FDM(Finite Difference method). In chapter 4, we discuss the Dif-

fusion PDE(Partial Differential Equation). In that section, we can get

an idea of linear and non-linear diffusion PDE and numerical methods

of solving non-linear diffusion PDE. We also discuss different types of

diffusion conductivity.

The next three chapters(5, 6 and 7) are important for calculation

of error analysis of image inpainting. In chapter 5, we consider the rela-

tionship between green function and PDE. Different types of conformal

mapping details are presented in chapter 6. In chapter 7, we discuss

the process of the Multi Resolution Approximation method in image

inpainting. In Chapter 8, we explain our methods of image inpainting

and their outputs, and Chapter 9 has final remarks and our conclusions.



Chapter 2

Background

The success of the image inpainting techniques depend on type of image,

size of image, and characteristics of the lost data. A lot of appropriate

techniques have been developed in recent years.

2.1 Texture Image inpainting

In a 1995 paper, Heeger and Bergen [25] proposed a method related

to the texture of image inpainting by matching marginal histograms of

subband transformation. Efros and Leung[27] developed a technique

for texture synthesis in 1999. In this method, they tried to find an

approximately similar part of the image to fill the missing area. First,

they chose a small part of the missing area, close to the boundary of D

(Figure 1). Then they considered the known data closer to that pixel.

Then they scanned the whole image to find similar data matching that

information. They used that known data to fill that missing information.

This technique is perfect when the image has patterns[35].

4
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Figure 2.1: Texture Oriented Image Inpainting Algorithm [19, 42]

Figure 2.2: Application of Texture Oriented Image Inpainting [19, 42]

2.2 Local non-linear PDE image

inpainting

In local inpainting, the missing data is to be inpainted by using im-

age data available in the neighborhood of the missing area[1]. Heat,

gas and fluid are immediately moved from the area of higher concen-

tration to the area of lower concentration.Therefore, we can compare

them with the process of image inpainting. The major idea of image in-

painting is the numerical result of partial differential equation, such as

Isotropic Diffusion, TV(Total variation) inpainting [28, 15, 29, 30, 1]

and CDD(Curvature-Driven Diffusion) [15, 1], or Navier-Stokes equa-

tion for incompressible fluids [18].
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2.3 Digital Image de-noising usingWavelet

based minimal energy

In 2007, Charles K. Chui and J. Wang considered the total energy func-

tion in the wavelet domain. Total energy is the sum of internal energy

and external energy. Internal energy describes the quality of image.( i.e

smoothness and feature of the image.)

TotalEnergy = Ei +λEe =
∫

Ω
ρ(| 5u |) dx+ λ

2

∫
Ω
(u−u0)2 dx (2.3.0.1)

Where λ is the adjusting term between internal energy and exter-

nal energy. In this paper [21], Charles K. Chui and J. Wang used some

wavelet transformation as a gradient operator in the internal energy.

Using that, they got a better feature. They considered constant weight,

soft wavelet thresholding and hard thresholding as energy density func-

tions.

2.4 Tensor product complex tight framelets

Bin Han discussed a comprehensive theory and construction of direc-

tional complex tight framelets. To increase directionality, he used a

family of tensor product complex tight framelets. Also, he considered

orthogonal wavelet filter banks. He used this technique for image de-

noising and got very good output.

2.5 Fast Digital Image inpainting

We can reconstruct a damaged image quickly by using a fast digital

image inpainting algorithm [17]. This method can be used to get perfect
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edge reconnection. Here we used diffusion barriers, which are used to

separate two different areas. It is a very tiny line, only two pixels wide.

First we want to put diffusion barriers to our image. Then we can

apply a diffusion process for each component separately. The process

stops when it is close to diffusion barriers . Finally, we use the diffusion

process to fill that line segment of diffusion barriers. If we apply the

diffusion process without diffusion barriers, then we have blury edges.

Figure 2.3: Inpainting domain (left bottom). Result of diffusion process
without barriers. It has blury edges (left top). Define diffusion barriers
(right bottom). Result of diffusion process with barriers. It has sharp
edges (right top). [17]

Application of fast digital image inpainting with two barriers are

shown below.

Figure 2.4: Line is the inpainting domain (left). Define two
diffusion barriers at the end of hair (middle). Result of fast digital
image inpainting (right) [17]
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2.6 Anisotropic Diffusion Linear PDE

In 2009, [20] C. K. Chui developed a multi-resolution approximation

method for image inpainting and surface completion. Here he use partial

differential equation of anisotropic diffusion to known data .

∂

∂t
uj = 5 · (c(| 5uj−1 |)5 uj) in D, t ≥ 0

∂

∂n
uj

∣∣∣∣
∂D

= 0

uj(z, 0) = u0(z), z ∈ D


where j=1, 2, ..... and u0 = u0

Here we have a set of linear partial differential equations. This is also a

local image inpainting method.

In that paper, they set up an error of inpainting using the heat

kernels.

2.7 Domain Transformation

We can transform image data into a different domain by using a trans-

formation method such as orthonormal wavelet transformation, discrete

Fourier transformation, discrete cosine transformation, discrete sine trans-

formation, and tight framelets transformation. Then, we apply any in-

painting technique for that transformed data. Finally, we apply the

inverse transformation for that corresponding transformation method

to get back the original data.

2.7.1 Wavelet Decomposition

In 2012, [11] Hongying Zhang and Shimei found a method for image

inpainting by using wavelet decomposition. It had three steps, namely
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Image decomposition, structure inpainting, and texture inpainting. In

the first step, they decomposed the original image into four parts. They

used the wavelet transformation for this process because it was not losing

image information and it was reconstructing quality data. They used

those four parts as one section for texture inpainting and three sections

for structure inpainting. Here they used a texture synthesis algorithm

for inpainting texture parts. We can use Chan T F.and Shen J H’s. [15]

method for structure inpainting. We apply it for three directions, such

as horizontal, vertical and diagonal. Finally, we apply inverse wavelet

transformation to get back the original image.

We can use discrete cosine transformation for image decomposi-

tion. Here they decomposed images in frequency domains. In figure 6,

we compare these two decomposition methods.

Figure 2.5: (a) the original image; (b) damaged image; (c) the result of
discrete cosine transformation decomposition ; (d) the result of wavelet
decomposition. [11]

Projected Onto Convex Sets (POCS)

In 2009, [39] Hirani and Totsuka developed a technique for image denois-

ing and removal of scratches in the image. Here they joined frequency

and spatial domain data. In 2003, [40] Patwardhan and Sapiro devel-

oped a method for image inpainting using the wavelet transformation.

In both methods, they used the idea of Projected Onto Convex Sets. It
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helps to improve the texture of the image. Fast marching method can

restore the known image data first. In a 2001 [12] paper, Patwardhan

and Sapiro considered fast marching method and Patwardhan, Sapiro’s

method [40]. In that paper, they mentioned their method processing

time is less than half of Patwardhan, Sapiro’s method [40].

Here we compare three inpainting methods outputs,

Figure 2.6: (a) Damage image, (b) results of method [39], (c) results of
method [40], (d) results of method [12].

2.8 Transformation and Optimization

The out-put of a wavelet transformation or framelet transformation is

not absolutely sparse. It becomes sparse after thresholding, in the sense

that most of the elements of the vectors recieved from such a transfor-

mation become zero when the small values are replaced by zero.

2.8.1 Complex wavelet transformation

The Complex Wavelet Transformation(CWT) and real wavelet transfor-

mation are different because they have different shift-invariance (small

shift into input signal) , anti-aliasing and directional selectivity [31]. The

dual tree CWT method can be used for image denoising, classification

and segmentation. CWT is faster than other methods, when CWT and

other wavelet-based image processing methods have the same wavelet

[16].

In figure 2.7 and table, we can compare different methods with their
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processing time, number of iterations and PSNR values [16].

image number of
iterations

PSNR processing
time(seconds)

b 500 30.56 18.00
c 213 32.06 86.29
d 271 32.124 38.10

Table 2.1: PSNR values and processing times for each methods

Figure 2.7: (a) The damage image. (b) Inpainted image by using DWT
(c) Inpainted image by using framelet(d) Inpainted image by using the
[16]

2.8.2 Framelet transformation

When we are doing tight frame transformation for image inpainting, we

assume images have sparse approximation.

Simultaneous cartoon and texture inpainting

There are two different characteristic layers in images. They are

the cartoon layer and the texture layer. Cartoon layers have piecewise

smooth function, and texture layers have oscillating function. Both of
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them have sparse representation when we use framelet transformation.

In [32], Z.Shen applied tight framelet transformations for both cartoon

and texture layers separately. In their paper, they developed algorithms

to find solutions of minimization problems. Also, they proved those

algorithms were convergent They used the proximal forward-backward

splitting method , when they found numerical solutions of the minimiza-

tion problem.

Split Bregman methods

We can use L1 regularization for signal processing, statistics and

computer science. Compressed sensing, wavelet thresholding and sig-

nal recovering are the applications of signal processing. Normally, L1-

regularized optimization problems are hard to solve. In 2009 [33], S.

Osher and T. Goldsten used the "split bregman" method to solve these

type of problems.

In [14] used Split Bregman was udes method for image inpainting.

First, they transform the known data into the framelet domain,

fn+1 = PΛg + (I − P )A∗AAfn (2.8.2.1)

Then they applied the soft thresholding operator τλ to our equation

to get the framelet inpainting algorithm:

fn+1 = PΛg + (I − P )A∗Aτλ(Afn) (2.8.2.2)

Now data is in the framelet domain. They have an optimization

problems, when they are transforming data into framelet domain to

image domain. Different types of methods were used to solve this opti-

mization problem such as Bergman and split Bergman methods [8, 9].

This is a convergent algorithm. It is proved in [7, 34, 36].



Chapter 2 Kalubowila, Sumudu Samanthi , 2017, UMSL, p. 13

There are two types of thresholding methods. They are soft-

thresholding and hard-thresholding. Normally we use hard-thresholding

for linear approximation schemes and soft thresholding for nonlinear ap-

proximation schemes. Thresholding operators can remove noise in the

image and distribute the framelet coefficient.

2.9 Applications

A few applications of image inpainting are restoration of damaged film,

removal of dust spots in films, removal of scratches from old photographs,

removal of red eye, removal of superimposed text and the removal of

entire objects .

2.9.1 Object Removal

Figure 2.8: Left: original image. Middle: inpainting mask. Right: result
of image ipainting [13]
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Figure 2.9: The Commissar vanishes in second picture. [43]

2.9.2 Photo Restoration

Figure 2.10: Left: damage picture of Cornelia, Mother of the Gracchi,
Right: result of image inpainting. [43]

Figure 2.11: Left: damage photo, Right: result of image inpainting. [43]
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2.9.3 Text Removal

Figure 2.12: Left :Original Image. Right: After removal of text [28]

2.10 Error of Image Inpainting

Error of the image inpainting depends on the width of the inpainting

domain. A lot of inpainting methods give perfect output when the in-

paiting domain is narrow. In figure 14, both inpainting images and total

area of inpainting domain are the same. But we have different outputs.

Figure 2.13: 1st row: damage images. 2nd row: inpainted result [23]
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In [23],Tony F. Chan and Sung Ha Kang find the error using this

formula.

error ≤ kd2 (2.10.0.1)

where d is the radius of a disk covering the inpainting domain D

and k is a constant .

In 2010 [22], Charles K. Chui developed a formula for the error in

terms of the local volume (i.e.Width of the inpainting domain).

2.11 Extension of Digital image inpainting

2.11.1 Video Inpainting

First we separate video into frames and apply image inpainting technique

for each frame. Finally, we add those frames together [18].

Figure 2.14: 1st row: frames of video. 2nd row: user-defned mask in
black. 3rd row: results video inpainting using method [42]
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2.11.2 Inpainting in 3 dimensions

The surface Inpanting algorithm is the same as Image Inpainting algo-

rithm. The only difference is, surface inpainting has 3 dimensions.[41]

Figure 2.15: 3D inpainting



Chapter 3

Finite Difference

Method(FDM)

We consider the Laplace equation with Dirichlet boundary condition.

52u(z) = ∂2u

∂x2 + ∂2u

∂y2 = 0 u ∈ D

u = f on ∂D

(3.0.2.1)

Consider any three points on the x-axis with distance h, such as

Figure 3.1: Finite Difference along x-axis

We use the taylor series expansion for x at xi. Consider the

centered-difference formula,

∂2u

∂x2 = u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)
h2 (3.0.2.2)

Consider any three points on the y-axis with distance h.

Similarly we can write,

18
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∂2u

∂y2 = u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)
h2 (3.0.2.3)

adding equation( 3.0.2.2 )and equation( 3.0.2.3),

∂2u

∂y2 + ∂2u

∂y2 = u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)
h2

+ u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)
h2

Substitute this values into the equation( 3.0.2.1),

u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)
h2 +

u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)
h2 = 0

u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)+

u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1) = 0

4u(xi, yj) = u(xi+1, yj) + u(xi−1, yj)

+ u(xi, yj+1) + u(xi, yj−1)

u(xi, yj) = u(xi+1, yj) + u(xi−1, yj) + u(xi, yj+1) + u(xi, yj−1)
4

Now consider the square domain with boundary conditions.,

Apply the 5-point stencil method for each ui, where i=1,2,3,...,9.

For the first row,
−4u1 + u2 + u4 = −F1 − F4

u1 − 4u2 + u3 + u5 = −F2

u2 − 4u3 + u6 = −F3 − F5
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Figure 3.2: 5-point stencil for Laplace equation

Figure 3.3: 2D Grid with boundary conditions

For the second row,
u1 − 4u4 + u5 + u7 = −F6

u2 + u4 − 4u5 + u6 + u8 = 0

u3 + u5 − 4u6 + u9 = −F7

For the third row,
u4 − 4u7 + u8 = −F8 − F10

u5 + u7 − 4u8 + u9 = −F11

u6 + u8 − 4u9 = −F9 − F12

Now we can convert this system of linear equations into the matrix.
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−4 1 0

1 −4 1

0 1 −4

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

−4 1 0

1 −4 1

0 1 −4

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

−4 1 0

1 −4 1

0 1 −4





u1

u2

u3

u4

u5

u6

u7

u8

u9



=



−F1 − F4

−F2

−F3 − F5

−F6

0

−F7

−F8 − F10

−F11

−F9 − F12



Au = F

Where A is a invertible square matrix. Therfore value of ui is given by,

u = A−1F

Also A is a block matrix. We can rewrite this matix as,

A =


B I O

I B I

O I B


where,

B =


−4 1 0

1 −4 1

0 1 −4

 I =


1 0 0

0 1 0

0 0 1

 O =


0 0 0

0 0 0

0 0 0





Chapter 4

Diffusion Partial Differential

Equation

Diffusion equation is a partial differential equation(PDE). It is used to

understand the density fluctuation in a material.

∂

∂t
u = 5 · (c(| 5u |)5 u) in D, t ≥ 0

where, c(| 5u |) is the diffusion coefficient.

If the diffusion coefficient is a constant then it is called Isotropic diffusion PDE.

If the diffusion coefficient is non constant then it is calledAnisotropic diffusion PDE.

In 1990, Perona and Malik introduced the non-constant diffusion con-

ductivity [24].

Consider the anisotropic diffusion equation,

5 · (c(| 5u |)5 u) = 5(c(| 5u |)) · 5u+ c(| 5u |)∆u (4.0.2.1)

22
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4.1 Non Linear Diffusion PDE

Here, we consider the PDE with Neumann boundary condition.

∂u

∂t
= −f(u), in D t ≥ 0,

u(z, 0) = u0(z), z in D,

∂u

∂n

∣∣∣∣∣∣
∂D

= 0,

Here, n is the unit inner normal vector.

Therefore, numerical solution of this PDE is,

u(z, tk+1) = u(z, tk)− τkf(u(z, tk)) k = 0, 1, 2, 3, ... (4.1.0.2)

where τk is the step size.

Now we consider the heat diffusion equation with heat conductivity

c(| 5u |).

∂

∂t
u = 5 · (c(| 5u |)5 u) in D, t ≥ 0

∂

∂n
u

∣∣∣∣
∂d

= 0

u(z, 0) = u0(z), z ∈ D

Now apply the equation( 4.0.2.1) for this equation,

5 · (c(| 5u |)5 u) = 5(c(| 5u |) · 5u+ c(| 5u |)∆u

u0(z) is given by the solution of this PDE,

52u(z) = 0 u ∈ D

u = f on ∂D
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Now we are going to solve this non-linear diffusion PDE using equation( 4.1.0.2).

Therefore,

u(z, tk+1) = u(z, tk)− τk5 ·(c(| 5u(z, tk) |)5 u(z, tk)) k = 0, 1, 2, 3, ...

when k = 0 ; u(z, t1) = u(z, t0)− τ05 ·(c(| 5u(z, t0) |)5 u(z, t0))

when k = 1 ; u(z, t2) = u(z, t1)− τ15 ·(c(| 5u(z, t1) |)5 u(z, t1))

when k = 2 ; u(z, t3) = u(z, t2)− τ25 ·(c(| 5u(z, t2) |)5 u(z, t2))

....

We can continue this process and get a value of u.

4.2 Diffusion Conductivity

Diffusion conductivity can be a constant or non-constant. Here, we

consider PDE with different type of diffusion conductivities.

1. Linear Conductivilty.[21]

c(| 5u |) = c, where c is a positive constant.

∂

∂t
u = 5 · (c(| 5u |)5 u) = 5 · (c5 u) = c5 · 5 u = c∆u

Figure 4.1: Isotropic Diffusion PDE Inpainting
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2. Inverse proportional conductivity / TV Inpainting [21]

c(| 5u |) = 1
|5u| ,

∂

∂t
u = 5 · (c(| 5u |)5 u) = 5 ·

 1
| 5u |

5 u

 = 5 ·
 5u
| 5u |



Figure 4.2: TV Inpainting method. Top: Orginal Image and Bottom :
Inpainted Image

3. Curvature Driven Diffusion (CDD)Inpainting

c(| 5u |) = 5u
|5u| ,

∂

∂t
u = 5 · (c(| 5u |)5 u) = 5 ·

 5u
| 5u |

5 u



Figure 4.3: CDD Inpainting method. Top: Orginal Image and Bottom
: Inpainted Image
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4. Gaussian Conductivity.[21]

c(| 5u |) = e−( |5u|
k

)2 , where k is a constant.

∂

∂t
u = 5 · (c(| 5u |)5 u) = 5 ·

e−( |5u|
k

)2 5 u



5. Lorentz conductivity.[21]

c(| 5u |) = 1
1+( |5u|

k
)2 , where k is a constant.

∂

∂t
u = 5 · (c(| 5u |)5 u) = 5 ·

 1
1 + ( |5u|

k
)2
5 u





Chapter 5

The Green Function of a

Boundary Value problem

When we solve differential equation of the form Lu=f, with homoge-

neous boundary conditions, we use Green’s function where L is a linear

diffrentiable operator. This is a very important method to solve diffu-

sion equation and wave equation.

Theorem : 5.1 [45]

Consider a continuous function f in [ 0, l ]. Then u(z) satifies the

that satisfies

Lu=f

Bu=0

also, is can be written by

u(z0) =
∫ l

0
f(z)G(z0, z)dz

where

G( z0,z) is a Green’s function and is satisfied by the following conditions:

27
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a) G( z0,z) is a continuous in z and z0

b) G( z0,z) = 0 whenever z0 6= z,

c) G( z0,z) does satisfy the given boundary conditions at each end point

d)Symmentry: G( z0,z) = G(z,z0)

L is the Sturm-Liouville operator, it is a linear differential opera-

tor of the form.

L = d

dz

c(z) d
dz


In [28], Tony F. Chan and J. Shen used the Green’s second function

for 2-D smooth image inpainting.

Consider the Green’s second formula,∫
D

(u∆v − v∆u)dxdy =
∫
∂D

u∂v
∂n
− v ∂u

∂n

ds (5.0.0.1)

where

a) The outward normal of ∂D, n

b) The length parameter, s

c) u and v are any complex function.

d) ∆ denote the Laplacian operator such that

∆u := ∂2u

∂x2 −
∂2u

∂y2

Consider z, z0 ∈ D. Where z0 is a source point and z is a field point on

D.

Consider u = f(z) and v = - G(z0,z)

where

G( z0,z) is the Green’s function.
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−∆G = δ(z − z0)

G

∣∣∣∣
∂D

= 0

where f(z) is a image function defne on 2-D domain D.

∫
D

(u∆v − v∆u)dxdy =
∫
∂D

u∂v
∂n
− v ∂u

∂n

ds
∫
D

(
f(z)∆G(z0, z) +G(z0, z)∆f(z)

)
dz =

∫
∂D

f(z)∂G(z0, z)
∂n

+G(z0, z)
∂f(z)
∂n

ds
−
∫
D
f(z)δ(z0 − z)dz +

∫
D
G(z0, z)∆f(z)dz =

∫
∂D
f(z)∂G(z0, z)

∂n
ds+

∫
∂D
G(z0, z)

∂f(z)
∂n

ds

But we know that G
∣∣∣∣
∂D

= 0 and

δ(z0 − z) =


1 if z0 = z

0 if z0 6= z

Therefore

−
∫
D
f(z0)dz +

∫
D
G(z0, z)∆f(z)dz =

∫
∂D
f(z)∂G(z0, z)

∂n
ds∫

D
f(z0)dz =

∫
D
G(z0, z)∆f(z)dz −

∫
∂D
f(z)∂G(z0, z)

∂n
ds

f(z0) =
∫
D
G(z0, z)∆f(z)dz +

∫
∂D
f(z)−∂G(z0, z)

∂n
ds

First term of this expression is called the anti-harmonic inpainting, also

this is called error term. Second term is called the Harmonic inpainting.



Chapter 6

Mapping

6.1 Harmonic Function

A function u(x, y) is said to be harmonic in a domain D

if the partial derivatives, ∂u
∂x

, ∂u
∂y

, ∂2u
∂x2 , ∂2u

∂y2 exist and continue,

and if ∆u = ∂2u
∂x2 + ∂2u

∂y2 = 0 at all points of D.

6.1.1 Simply connected domain

A region D is said to be a simply connected domain when we consider

any simple closed curve which is keep in D. For a two dimentional region,

if there is no holes then we consider it is a simply connected domain.

Figure 6.1: simply connected domain

30
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6.1.2 Analytic Function

If the function f has a derivative at each point in some neighborhoods

of z0 then it is analytic at z0.[3], [4], [5], [6]

6.2 Composition of Function

If there is a function f : A→ B and g : B → C then there is a function

from A to B. We can write it as g◦f : A→ C. This is called composition

of function.[3], [4], [5]

Figure 6.2: Compostion of Function, from A to C. g ◦ f : A→ C

6.2.1 Chain Rule

Suppose that a function f(z) is analytic on domain A and function g

is analytic on domain A. We know that composition of two analytic

functions is analytic. Therefore g[f(z)] is analytic on domain A.[3], [4]
d

dz
g[f(z)] = g′[f(z)]f ′(z)
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6.3 Conformal Mapping

If α1 and α2 are the angle of arc A1 and A2, which goes through z0, and

if β1 and β2 are the angles of arc B1 and B2, which goes through w0

then,

Figure 6.3: preserves angle

α2 - α1 = β2 - β1 = θ. The angel from B1 to B2 is the same as the

angle from A1 and A2. This is called preserves angle.

A mapping that preserves an angle in that manner between every

pair of curves at each point of some domain is said to be conformal in

the domain.

Theorem:

At each point z of a domain where f is analytic and f’(z)6=0 the

mapping w=f(z) is conformal.

Therefore, conformal mapping and conformal transformation will

be used for transformation of analytic function.[3], [4], [5], [6]

Riemann Mapping Theorem

Suppose that D is a simply connected domain on the z-plane, which

contains neither the point at ∞ nor a given finite point a. Let z0 ∈

D. Then there exists a univalent analytic function w=f(z) which satisfies

the following conditions:[3], [4], [5], [6]

1) w= f(z) conformally maps D onto the unit disk G ≡ {|w| < 1 }

2) f(z0) = 0, f́ (z0) > 0
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6.3.1 Möbius Transformation

The linear fractional transformation,

w = az + b

cz + d
, such that (ad− bc 6= 0) (6.3.1.1)

a,b,c and d are complex constant [47].

Consider, the special case of transformation from upper half plane to

unit circle.

Figure 6.4: Transformation from upper half plane to the unit circle

Consider the mapping points,

z1 = −1, z2 = 0 and z3 = 1

onto the points

w1 = −i, w2 = 1 and w3 = i

Consider the, z2 = 0 and w2 = 1 and substitute them into the

equation ( 6.3.1.1) then we can find,

1 = b
d

∴ b=d.

w = az + b

cz + b
(b(a− c) 6= 0) (6.3.1.2)

Consider the, z1 = −1 and w1 = −i,

−i = −a+ b

−c+ b

ic− ib = −a+ b

(6.3.1.3)
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Now consider the, z3 = 1 and w3 = i,

i = a+ b

c+ b

ic+ ib = a+ b

(6.3.1.4)

adding equations ( 6.3.1.3) and ( 6.3.1.4) are given by, c=-ib.

Substracting equations ( 6.3.1.3) and ( 6.3.1.4) are given by, a=ib.

Substitute both values into the equation ( 6.3.1.2)

∴ w = ibz + b

−ibz + b

= b(iz + 1)
b(−iz + 1)

= (iz + 1)
(−iz + 1)

= (iz + 1)
(−iz + 1)

i

i

= i− z
i+ z

Therefore, transformation from upper halp plane to unit circle is,

w = i− z
i+ z

(6.3.1.5)

Using equation ( 6.3.1.5) we can find transformation from unit

circle to upper half plane.

w = i− z
i+ z

w(i+ z) = i− z

iw + zw = i− z

zw + z = i− iw

z(w + 1) = i− iw

z = i
1− w
1 + w
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Therefore, transformation from unit circle to upper halp plane is,

z = i
1− w
1 + w

(6.3.1.6)

6.3.2 Joukowski Transformation

Transformation from any circle to ellipse is define by Joukowski Trans-

formation.

Figure 6.5: Transformation from any circle to ellipse

w = z + k2

z
, k is a constant (6.3.2.1)

z = reiθ w = ζ+iη substitute them in to the equation ( 6.3.2.1).

ζ + iη = reiθ + k2

reiθ

= reiθ + k2re−iθ

= r(cosθ + isinθ) + k2

r
(cosθ − isinθ)

=
r + k2

r

cosθ + i
r − k2

r

sinθ
On both sides we have comlex numbers. Then, their real parts and

imaginary parts are equal separately.

Therfore,
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ζ =
r + k2

r

cosθ, cosθ = ζr + k2

r


η =

r − k2

r

sinθ, sinθ = ηr − k2

r


(6.3.2.2)

Also, we know that,

cos2θ + sin2θ = 1

Substitute into the ( 6.3.2.2). Therfore,

ζ2r + k2

r

2 + η2r − k2

r

2 = 1
(6.3.2.3)

when, r = b, euqation ( 6.3.2.2) becomes,

ζ = 2rcosθ

η = 0
We have,
z = x+ iy

z = rcosθ + irsinθ where, x = rcosθ and y = rsinθ

Therefor, x = ζ
2 .

Consider, r + k2

r
= A and r − k2

r
= B Therfore,

ζ2

A2 + η2

B2 = 1
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Now consider,

A2 −B2 =
r + k2

r

2

−

r − k2

r

2

= r2 + 2k2 + k4

r2 − r
2 + 2k2 − k4

r2

= 4k2

We know that A2 −B2 = C2 where C is a foci of the ellipse. Therefore,

we can find, k2 = C2

4 . We can rewrite the transformation from any circle

to ellipse,

w = z + c2

4z

6.4 Schwarz Christoffel Mapping

Schwarz Christoffel Mapping is the mapping for the real axis onto a

polygon. This method was founded by ElwinBrunoChristoffel and

HermannAmandusSchwarz [44]. Consider any points t1, t2, . . . ,tn
on the x-axis. Now we can map these points onto a polygon with points

w1, w2, . . . ,wn.

Figure 6.6: Transformation from upper half plane to any polygon

Theorem

Let P be the interior of a polygon Γ having vertices w1,w2, . . . ,wn
and interior angles α1 π, α2 π, α3 π, . . . , αn π in counter clockwise
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order. Let f be any conformal map from the upper half plane H+ to P.

Then [3], [4]

S ′(t) = A(t− t1)−β1(t− t2)−β2 ...(t− tn)−βn (6.4.0.4)

We can write this as,

S(t) = A
∫ t

t0
(t′ − t1)−β1(t′ − t2)−β2 ...(t′ − tn)−βndt′ +B (6.4.0.5)

where βkπ is the exterior angle of polygon such that,

Figure 6.7: Sum of the angles on the straight line is eqaul to the π

Therfore,
παk + πβk = π, k = 1, 2, 3, ..., n

αk + βk = 1

βk = 1− αk

Also we know that any closed polygon sum of the exterior angle of is

equal to 2π.

πβ1 + πβ2 + ...+ πβn = 2π

β1 + β2 + ...+ βn = 2
n∑
k=1

βk = 2

use the previouse equations answer here. Then, we have
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n∑
k=1

1− αk = 2 where − 1 < αk < 1 (6.4.0.6)

6.4.1 Schwarz Christoffel Mapping for a Triangle

[3]

Consider the transformation from upper half plane to any triangle.

Figure 6.8: Schwarz Christoffel Mapping form upper Half plane to Tri-
angle

Using Schwarz Christoffel Mapping equation ( 6.4.0.5), we can can

write,

ω = A
∫ t

t0
(t′ − x1)−β1(t′ − x2)−β2(t′ − x3)−β3dt′ +B

Consider the outside angles are β1π, β2π and β3π.

β1π + β2π + β3π = 2π

β1 + β2 + β3 = 2

We can consider the w3 is an infinite point. Then we can rewrite the

transformation,

ω = A
∫ t

t0
(t′ − x1)−β1(t′ − x2)−β2dt′ +B
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When we consider the equilateral triangle,

β1π = β2π = β3π = 2π
3

β1 = β2 = β3 = 2
3

Therefore we can write,

ω = A
∫ t

t0
(t′ − x1)− 2

3 (t′ − x2) 2
3dt′ +B

Substitute x1 = −1 and x2 = 1 . Also t0 = 1 when A=1 and B=0.

ω =
∫ t

1
(t′ + 1)− 2

3 (t′ − 1) 2
3dt′ (6.4.1.1)

When we are finding the position of the w1, w2 and w3

Case 1: t=1;

Now we have ω = 0, therefore ω2 = 0.

Case 2: t=-1;

Now our integral limit t=-1,

We know that when the points of x-axis map to points of polygon,

it satisfies the ,

(t− tk)−βk = |(t− tk)|−βke−iβkγkπ

where γk = arg(t− tk)

consider the point, x1 = -1, then arg(t+1) = 0 and x2 = 1, then

arg(t-1) = π. Therfore,

(t+ 1)− 2
3 = |(t+ 1)|− 2

3 e−i(
2
3 )(0)

= |(t+ 1)|− 2
3
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(t− 1)− 2
3 = |(t− 1)|− 2

3 e−i(
2
3 )(π)

= |(t− 1)|− 2
3 e−

2
3πi

Now rewrite the equation ( 6.4.1.1) with these information,

ω1 =
∫ −1

1
|(t+ 1)|− 2

3 |(t− 1)|− 2
3 e−

2
3πidt

=
∫ −1

1
(1 + t)− 2

3 (1− t)− 2
3 e−

2
3πidt

= e−
2πi

3

∫ 1

−1

dt

(1− t2)2/3

= 2e 1πi
3

∫ 1

0

dt

(1− t2)2/3

Subsitute y = t2

1− t2=1-y, if t=0 then y=0 and if t=-1then y=1.

dy=2t dt, dt=dy
2t=

dy

2y
1
2

w1 = 2e 1πi
3

∫ 1

0

dy

2y
1
2

(1− y)2/3

= e
1πi

3

∫ 1

0

dy

(1− y)2/3y
1
2

When we solve this equation, we can use Beta function,

B(g, h) =
∫ 1

0
yg−1(1− y)h−1dy

Consider, g = 1
2 and h = 1

3 then,

B

1
2 ,

1
3

 =
∫ 1

0
t

1
2−1(1− t) 1

3−1dy

=
∫ 1

0
t−

1
2 (1− t)− 2

3dt

Consider this B(1
2 ,

1
3) = a, then we have,
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w1 = ae
1πi

9

Case 3: t=infinity

Case 3a: t=∞ limit t=∞, if w3 is in positive infinity then the

equation ( 6.4.1.1) can write as,

w3 =
∫ ∞

1
|(t+ 1)|−2

3 |(t− 1)|−2
3 dx

=
∫ ∞

1
(t+ 1)−2

3 (t− 1)−2
3 dx

=
∫ ∞

1

dx

(x2 − 1)2/3

Case 3b: t=−∞ if w3 is in negative infinity then the equation ( 6.4.1.1)

limit t=−∞ . Now we can write that equation,

ω3 =
∫ −1

1
|(t+ 1)|− 2

3 e−
2
3πi|(t− 1)|− 2

3dt+
∫ −∞
−1
|(t+ 1)|− 2

3 e−
4
3πi|(t− 1)|− 2

3dt

We can solve this similarly as w1 and also first part of this integral is

equal to exactly the w1. So we can rewite our equation as,

ω3 = w1 + e−
4
3πi
∫ −∞
−1

(t+ 1)− 2
3 (t− 1)− 2

3dt

= w1 + e−
1
3πi
∫ −∞
−1

(t2 − 1)− 2
3dt

second integral is an even function, so we can change the integral limits.

w3 = w1 + e−
1
3πi
∫ ∞

1
(t2 − 1)− 2

3dt

Use the answer of case 1 value of w3,

w3 = ae
πi
3 + e−

1
3πiw3
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Now solve for w3, consider

eiθ = cos(θ) + isin(θ)

w3 = a

cosπ3 + isin
π

3

+ w3

cos−π3 + isin
−π
3


= a

1
2 + i

√
3

2

+ w3

1
2 − i

√
3

2


w3 = a

6.5 Application of Conformal Mapping

The Dirichlet and Neumann problems can be solved for any simply con-

nected domain D, which can be mapped conformally by an analytic func-

tion on to the interior of a unit circle or half plane. Schwarz Christoffel

Mapping is used for magnetic motors, crack detection, microwave waveg-

uides, etc [2].



Chapter 7

Multi Resolution

Approximation for Image

Inpainting

In [20] this paper, Charles K. Chui introduced a new method for image

inpainting.

Let Ω be the simply connected domain in IR2. Here, we consider in-

painting domain D be a simply connected domain of Ω.

His method is called MRA.

un = u0 + w1 + ...+ wn in D (7.0.0.1)

where u0 = P0(F |∂D) and w = wi is a solution of the PDE

L0w = (T1...Ti−1Pi)(di(F )) in D

w|∂D = 0


wi = Ei(di(F )) i = 1, ..., n (7.0.0.2)

44



Chapter 7 Kalubowila, Sumudu Samanthi , 2017, UMSL, p. 45

Ei = T0T1...Ti−1Pi, i = 1, ..., n (7.0.0.3)

di(F ) := Li−1...L0F on ∂D (7.0.0.4)

Where L is the lagged diffucivity operator.

(Lif)(z1) = 5 · (ci−1(z1)5 f(z1)), z1 ∈ D (7.0.0.5)

Where ci(z1) = c(| 5 ui(z1)|), z1 ∈ D

These are called the data propoagation operators,

(Tif)(z0) =
∫
D
f(z)Gi(z0, z)dz (7.0.0.6)

(Piv)(z0) =
∫
∂D
v(z(s))gi(z0, z(s))ds (7.0.0.7)

gi(z0, z) = −ci−1(z)
(
∂Gi(z0, .)

∂n

)
(z) (7.0.0.8)

∂h(z)
∂n

= (5h(z)) · n, since h|∂D = 0 (7.0.0.9)

Lemma 7.1[20] For a smooth function f,h,ci−1 ∈ D

∫
D
f(z)(Lih)(z)dz =

∫
D
h(z)(Lif)(z)dz −

∫
∂D
c−1(z)f(z)

(
∂h(z)
∂n

)
(z)ds
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Theorem 7.1[20]: Let F be a sufficiently smooth function in Ω

with missing section FD := F |D, and let wi be the ith level details with

boundary data di(F ). Then the error of the recovery portion of FD by

un is given by

FD(z0)− un(z0) = (T0T1...Tn−1)(LnLn−1...L0FD)(z0) z1 ∈ D

(7.0.0.10)

Proof:

Consider,
LiGi(z0, z) = δ(z0, z), z0, z ∈ D

Gi(z0, z)|z∈∂D = 0


δ(z0 − z) =


1 if z0 = z

0 if z0 6= z

consider, ∫
D
FD(z)L0G0(z0, z)dz =

∫
D
FD(z)δ(z0, z)dz

if z = z0 then δ(z0, z) = 1

=
∫
D
FD(z0)dz

= FD(z0)
Therefore

FD(z0) =
∫
D
FD(z)L0G0(z0, z)dz (7.0.0.11)

Use the Lemma 7.1 such that h(z0) = G0(z0, z) and z0 ∈ D. Now

we have

∫
D
FD(z)L0G0(z0, z)dz =

∫
D
G0(z0, z)(L0FD(z))dz−

∫
∂D
c−1(z)F (z)

(
∂Gi(z0, .)

∂n

)
(z)ds
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which replaced the left hand side of the equation using the value of the

equation ( 7.0.0.11)

FD(z0) =
∫
D
G0(z0, z)(L0FD(z))dz −

∫
∂D
c−1(z)F (z)

(
∂Gi(z0, .)

∂n

)
(z)ds

=
∫
D

(L0FD(z))G0(z0, z)dz +
∫
∂D
F (z)(−c−1(z)

(
∂Gi(z0, .)

∂n

)
(z))ds

(7.0.0.12)

use the equation ( 7.0.0.6)

T0(L0FD))(z0) =
∫
D

(L0FD(z))G0(z0, z)dz (7.0.0.13)

Also consider the equation ( 7.0.0.8)

g0(z0, z) = −c−1(z)
(
∂Gi(z0, .)

∂n

)
(z)

Therefore,∫
∂D
F (z)(−c−1(z)

(
∂Gi(z0, .)

∂n

)
(z))ds =

∫
∂D
F (z)(g0(z0, z))ds

Also consider definition of

(P0F )(z0) =
∫
∂D
F (z)(g0(z0, z))ds

Therfore,

(P0F )(z0) =
∫
∂D
F (z)(−c−1(z)

(
∂Gi(z0, .)

∂n

)
(z))ds (7.0.0.14)

Substitute equation ( 7.0.0.13) and ( 7.0.0.14) into the equation

( 7.0.0.12)
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FD(z0) = (T0(L0FD))(z0) + (P0F )(z0)

use the definition of u0=(P0F )(z0)

FD(z0) = (T0(L0FD))(z0) + u0(z0)

FD(z0)− u0(z0) = (T0(L0FD))(z0) (7.0.0.15)

Therfore, when i=0, we prove equation ( 7.0.0.10)

For 1 ≤ i ≤ n, we can do this calculation the same as we did earlier

. We can prove the error formula.

7.1 Process of MRA

u1 = u0 + w1

u2 = u0 + w1 + w2

u3 = u0 + w1 + w2 + w3

.

un = u0 + w1 + ...+ wn

by the definition of wi in the equation ( 7.0.0.2)

w1 = E1(d1(F ))

w2 = E2(d2(F ))

w3 = E3(d3(F ))

.

wn = En(dn(F ))

by the definition of di(F ) in the equation ( 7.0.0.4)

w1 = E1L0F
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w2 = E2L1L0F

w3 = E3L2L1L0F

.

wn = EnLn−1...L0F

by the definition of Ei in the equation ( 7.0.0.3)

E1 = T0P1

E2 = T0T1P2

E3 = T0T1T2P3

.

En = T0T1...Tn−1Pn

apply this is for wi.

by the definition of MRA details extension

w1 = T0P1L0F

w2 = T0T1P2L1L0F

w3 = T0T1T2P3L2L1L0F

.

wn = T0T1...Tn−1PnLn−1...L0F

We consider special case such that

1.ci−1(z0) = 1 then

(Lif)(z0) = ∆f(z0), z0 ∈ D

2. Gi(z0, z) = G(z0, z) then

(Tif)(z0) = (Tf)(z0) =
∫
D
f(z)G(z0, z)dz and

gi(z0, z) = g(z0, z) = −
(
∂G(z0, .)
∂n

)
(z) and
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(Piv)(z0) = (Pv)(z0) =
∫
∂D
v(z(s))g(z0, z(s))ds

3. G(z0, z) = G(z, z0)

Therefore,
w1 = TP∆F =TP∆F

w2 = TTP∆∆F =TTP∆2F

w3 = TTTP∆∆∆F =TTTP∆3F

.

wn = TT...TP∆...∆F =TT...TP∆nF

apply equation (6) and (7) for these
w1 = TP∆F (z)

=
∫
D
P∆F (z1)G(z0, z)dz

=
∫
D

∫
∂D

∆F (z(s))g(z0, z(s))dsG(z0, z)dz0

w2 = TTP∆2F (z)

=
∫
D
TP∆2F (z0)G(z0, z)dz0

=
∫
D

∫
D
P∆2F (z)G(z0, z)dzG(z0, z)dz0

=
∫
D

∫
D

∫
∂D

∆2F (z0(s))g(z0, z)dsG(z0, z)dzG(z0, z)dz0

w3 = TTTP∆3F (z)

=
∫
D
TTP∆3F (z0)G(z0, z)dz

=
∫
D

∫
D
TP∆3F (z)G(z0, z)dzG(z0, z)dz0

=
∫
D

∫
D

∫
D
P∆3F (z0)G(z0, z)dz0G(z0, z)dzG(z0, z)dz0

=
∫
D

∫
D

∫
D

∫
∂D

∆3F (z(s))g(z0, z(s))dsG(z0, z)dz0G(z0, z)dzG(z0, z)dz0

and continue this process.



Chapter 8

Mathematical Approaches

8.1 Image Inpainting Methods

8.1.1 Initial Value

When we find the initial value of the inpainting domain, we use a five-

point stencil method. So the inpainting domain has m rows and n

colums. Then our image looks like this.

Figure 8.1: General 2D Grid with n rows and m column

51



Chapter 8 Kalubowila, Sumudu Samanthi , 2017, UMSL, p. 52

Now consider the general matrix for A for the size of inpainting

domain.

A =



B I O ... O

I B I ... O

O I B ... O

O ... ... ... O

... ... ... ...

... ... ... ...

... I B I

... ... ...B I


where A is a matrix with nm × nm. It has n number of block

martix in each row and column.

B =



−4 1

1 −4 1

0 1 −4 1
. . .

1 −4 1

1 −4


B is a m × m matrix. Where m is a number of columns in inside

of the grid.

I =



1 0

0 1 0
. . .

0 1 0

0 1


O =



0 0

0 0 0
. . .

0 0 0

0 0
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When we apply this method to our image, we did some changes. I

copleted image inpainting technique level by level. That is,

Figure 8.2: 5-Point apply Level by level

We have the boundary information and we have to find u1, . . . ,

u9. Normally in a 5-point method we need only one adjacent bounday

level data. But in this method, we need two adjacent bondary level data

to fill inside date.

Step 1:

Figure 8.3: 5-Point apply to Level 1

Using the boundary data (red data) we can find adjacent level

data (green data). Here we apply the 5-point stencil method in differ-

ent way.
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For U2

U2 = 4B11 −B4 −B10 −B12

For U4

U4 = 4B20 −B16 −B19 −B24

For U6

U6 = 4B21 −B17 −B22 −B25

For U8

U8 = 4B30 −B29 −B31 −B37

Step 2:

We write two different formulas for corner points and consider the

average value. Such as,

For U1

U1
1 = 4B16 −B9 −B15 −B20

U2
1 = 4B10 −B3 −B9 −B11

U1 = U1
1 + U2

1
2

For U3

U1
3 = 4B12 −B5 −B11 −B13

U2
3 = 4B17 −B13 −B18 −B21

U3 = U1
3 + U2

3
2

For U7

U1
7 = 4B24 −B20 −B23 −B28

U2
7 = 4B29 −B28 −B30 −B36

U7 = U1
7 + U2

7
2
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For U9

U1
9 = 4B25 −B21 −B26 −B32

U2
9 = 4B31 −B30 −B32 −B38

U9 = U1
9 + U2

9
2

Step 3:

When we are finding the next level of data (blue data), we use

the adjacent level data (green data)

U5 = U2 + U4 + U6 + U8

4

Figure 8.4: 5-Point apply to Level 2

Number of iterations

Figure 8.5: Apply 5-point method level by level. Purple is the Boundary
data.
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niter =
⌊
min(nrows,mcolms)

2

⌋
if niter is odd and nrows >mcolms

niter1 = niter

niter2 = niter + 1

niter3 = niter + 1
if niter is odd and nrows<mcolms

niter1 = niter + 1

niter2 = niter

niter3 = niter + 1
if niter is even and nrows>mcolms

niter1 = niter − 1

niter2 = niter

niter3 = niter

if niter is even and nrows<mcolms
niter1 = niter

niter2 = niter − 1

niter3 = niter

Where ,

niter : Number of iterartions

nrows :Number of rows in the domain

mcolms : Number of colums in the domain

niter1: Number of iterartions from left side or right side of the domain

niter2 : Number of iterartions from top side or bottom side of the do-

main

niter3 : Number of iterartions from corners of the domain
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Figure 8.6: Standard 5-Point Stencil method and Modified 5-point Sten-
cil

Inpainting
Methods

Standard 5-point
Stencil

Modified 5-point
Stencil

PSNR 29.1787 39.2958

Table 8.1: PSNR value for Standard 5-Point Stencil method and Modi-
fied 5-point Stencil

When we compare the inpainted image with the original image, we

use PSNR values. This is Peak Signal Noise Ratio. We define PSNR

using mean squared error (MSE) and formula is given by, [46]

PSNR = 20 · log10
MAX√
MSE

Where MAX is the maximum posible pixel value of the image.

When we check the two different approach of 5-point stancil meth-

ods. We can see modified method PSNR value is larger than the stan-

dard 5-point stencil method. So we use the modified the 5-point stancil

method values for our further calculations.
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8.1.2 Non-Linear Diffusion PDE and Iterative Lin-

ear Diffusion PDE

In 2009, [20] C. K. Chui used a partial differential equation of anisotropic

diffusion to known data .

∂

∂t
uj = 5 · (c(| 5uj−1 |)5 uj) in D, t ≥ 0

∂

∂n
uj

∣∣∣∣
∂D

= 0

uj(z, 0) = u0(z), z ∈ D


where j=1, 2, ..... and c(| 5uj(z) | is the diffusion conductivity.

Here we have a set of linear partial differential equations. This is also

local image inpainting method.

Now we are going to solve this linear equation.

when j=1;
∂

∂t
u1 = 5 · (c(| 5u0 |)5 u1) in D, t ≥ 0

∂

∂n
u1

∣∣∣∣
∂d

= 0

u1(z, 0) = u0(z), z ∈ D

Now apply the equation (6.3.2.1) for this PDE,

u1(z, tk+1) = u1(z, tk) + τkf(u1(z, tk)) k = 0, 1, 2, 3, ...

Now f(u1(z, tk)) = 5 · (c(| 5u0(z) |)5 u1(z, tk))

Therefore,

u1(z, tk+1) = u1(z, tk)+ τk5·(c(| 5u0(z) |)5u1(z, tk)) k = 0, 1, 2, 3, ...
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when k = 0 ; u1(z, t1) = u1(z, t0) + τ05 ·(c(| 5u0(z) |)5 u1(z, t0))

when k = 1 ; u1(z, t2) = u1(z, t1) + τ15 ·(c(| 5u0(z) |)5 u1(z, t1))

when k = 2 ; u1(z, t3) = u1(z, t2) + τ25 ·(c(| 5u0(z) |)5 u1(z, t2))

.

.

.

when k = N − 1 ; u1(z, tN) = u1(z, tN−1) + τN−15 ·(c(| 5u0(z) |)5 u1(z, tN−1))

We can get a value of u1(z, tN) and use this value to find u2.

when j=2;
∂

∂t
u2 = 5 · (c(| 5u1(z, tN) |)5 u2) = in D, t ≥ 0

∂

∂n
u2

∣∣∣∣
∂d

= 0

u2(z, 0) = u0(z), z ∈ D

Now consider f(u2) = 5 · (c(| 5u1(z, tN) |)5 u2)

Therefore,

u2(z, tk+1) = u2(z, tk)+τk5·(c(| 5u1(z, tN) |)5u2(z, tk)) k = 0, 1, 2, 3, ...

when k = 0 ; u2(z, t1) = u2(z, t0) + τ05 ·(c(| 5u1(z, tN) |)5 u2(z, t0))

when k = 1 ; u2(z, t2) = u2(z, t1) + τ15 ·(c(| 5u1(z, tN) |)5 u2(z, t1))

when k = 2 ; u2(z, t3) = u2(z, t2) + τ25 ·(c(| 5u1(z, tN) |)5 u2(z, t2))
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.

.

.

when k = N − 1 ; u2(z, tN) = u2(z, tN−1) + τN−15 ·(c(| 5u1(z, tN) |)5 u2(z, tN−1))
We can get a value of u2(z, tN) and use this value to find u3.

When j=3;
∂

∂t
u3 = 5 · (c(| 5u2(z, tN) |)5 u3) = in D, t ≥ 0

∂

∂n
u3

∣∣∣∣
∂d

= 0

u3(z, 0) = u0(z), z ∈ D

Now consider f(u3) = 5 · (c(| 5u2(z, tN) |)5 u3)

Therefore,

u3(z, tk+1) = u3(z, tk)+τk5·(c(| 5u2(z, tN) |)5u3(z, tk)) k = 0, 1, 2, 3, ...

when k = 0 ; u3(z, t1) = u3(z, t0) + τ05 ·(c(| 5u2(z, tN) |)5 u3(z, t0))

when k = 1 ; u3(z, t2) = u3(z, t1) + τ15 ·(c(| 5u2(z, tN) |)5 u3(z, t1))

when k = 2 ; u3(z, t3) = u3(z, t2) + τ25 ·(c(| 5u2(z, tN) |)5 u3(z, t2))

.

.

.

when k = N − 1 ; u3(z, tN) = u3(z, tN−1) + τN−15 ·(c(| 5u2(z, tN) |)5 u3(z, tN−1))

We can get a value of u3(z, tN).

Using this method, we can solve iterative linear PDE.
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Initial value of the non-Linear and iterative linear PDE method

is the 5-point stencil method values. Using a MATLAB program we

inpainted the damaged image. Here we comapre MATLAB outputs dif-

ferent inpainting methods with different diffusion conductivity.

Case 1: Iterative Linear and Non-Linear Image Inpainting PDE with

Constant Diffusion Conductivity

Figure 8.7: Image Inpainting methods with Constant Diffusion

Inpainting
Methods

5-point Stencil Constant
conductivity PDE 3

PSNR 35.5747 29.9493

Table 8.2: PSNR value for Iterative Linear and Non-Linear Image In-
painting PDE with Constant Diffusion Conductivity

Here, we consider the constant conductivity. That is,

c(p)= c. When c is a constant, there is a no difference between

linear and non-linear PDE.

That is, Linear PDE,
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∂

∂t
ui = 5 · (c)5 ui) = c∆ui

Non-Linear PDE,

∂

∂t
u = 5 · (c)5 u) = c∆u

When c is a constant, we have worst inpainted image. Therefore,

the 5-point stencil method is better than the constant diffusion conduc-

tivity PDE.



Chapter 8 Kalubowila, Sumudu Samanthi , 2017, UMSL, p. 63

Case 2: Iterative Linear and Non-Linear Image Inpainting PDE with

Inverse Proportional Diffusion Conductivity

Figure 8.8: Image Inpainting methods with inverse proportional diffu-
sion conductivity

Inpainting
Methods

5-point Stencil Standard PDE Iterative
Linear PDE

PSNR 30.3192 32.8715 32.9496

Table 8.3: PSNR value for Iterative Linear and Non-Linear Image In-
painting PDE with Inverse Proportional Diffusion Conductivity

Figure 8.9: Image Inpainting methods with inverse proportional diffu-
sion conductivity
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Inpainting
Methods

5-point Stencil Standard PDE Iterative
Linear PDE

PSNR 27.7033 29.1043 29.5152

Table 8.4: PSNR value for Iterative Linear and Non-Linear Image In-
painting PDE with Inverse Proportional Diffusion Conductivity

Here, we consider the inverse proportional conductivity. That is,

c(p)= 1
p
.

With this diffusion conductivity,diffusion PDE is called TV in-

painting method.

When we use this in MATLAB , we consider

c(p)= 1
ε+p . Because we want to ignore the value of p=0.

We use the 5-point stencil values as a initial value of iterative linear

and non-linear PDE. When we study this table, we can see the PSNR

value increases to 5-point stencil method to iterative linear PDE method.

Also PSNR value of the standard PDE method to iterative linear PDE

method is increases. Therefore, iterative linear PDE method generates

better inpainted image.
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Case 3: Iterative Linear and Non-Linear Image Inpainting PDE with

Gaussian Diffusion Conductivity

Figure 8.10: Image Inpainting methods with Gaussian Diffusion Con-
ductivity

Inpainting
Methods

5-point Stencil Standard PDE Iterative
Linear PDE

PSNR 31.5166 33.5207 34.6632

Table 8.5: PSNR value for Iterative Linear and Non-Linear Image In-
painting PDE with Gaussian Proportional Diffusion Conductivity

Figure 8.11: Image Inpainting methods with Gaussian Diffusion Con-
ductivity
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Inpainting
Methods

5-point Stencil Standard PDE Iterative
Linear PDE

PSNR 28.8209 31.0668 32.0291

Table 8.6: PSNR value for Iterative Linear and Non-Linear Image In-
painting PDE with Gaussian Proportional Diffusion Conductivity

Here, we consider the Gaussian Diffusion Conductivity. That is,

c(p)= e−
p2

k2 .

Here also, we use the 5-point stencil values as the initial value of

iterative linear and non-linear PDE.

When we study this table, we can see PSNR value is increasing to

the 5-point stencil method to iterative linear PDE method. But PSNR

value of 5-point stencil method is decreasing in the non-Linear PDE

method. That is the non-linear method offer the worst inpainted image.

Therefore iterative linear PDE method generates best inpainted image.
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Case 4: Iterative Linear and Non-Linear Image Inpainting PDE with

Lorentz Diffusion Conductivity

Figure 8.12: Image Inpainting methods with Lorentz Diffusion Conduc-
tivity

Inpainting
Methods

5-point Stencil Standard PDE Iterative
Linear PDE

PSNR 29.5464 32.3549 34.0114

Table 8.7: PSNR value for Iterative Linear and Non-Linear Image In-
painting PDE with Lorentz Proportional Diffusion Conductivity

Figure 8.13: Image Inpainting methods with Lorentz Diffusion Conduc-
tivity
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Inpainting
Methods

5-point Stencil Standard PDE Iterative
Linear PDE

PSNR 29.6713 31.5952 32.7003

Table 8.8: PSNR value for Iterative Linear and Non-Linear Image In-
painting PDE with Lorentz Proportional Diffusion Conductivity

Here we consider the Lorentz Diffusion Conductivity. That is,

c(p)= 1
1+ p2

k2
.

Here also, we use the 5-point stencil values as a initial value of

iterative linear and non-linear PDE.

When we study this table, we have same idea of previous methods.

That is, the iterative linear PDE method gives the best inpainted image.

8.2 Error Analysis of Image Inpainting

When we use the inpainting method to inpaint a damage image, our

final result is not exactly same as the original image. In this section, we

are trying to find a relationship between error of the image inpainting

with the inpainting domain.

Consider the Theorem 7.1,

‖FD(z0)− un(z0)‖D = ‖(T0T1...Tn−1)‖‖(LnLn−1...L0FD)‖D z1 ∈ D

Now, apply the diffusion conductivity ,c(p)=1, then,

Lagged Diffusivity operator , Li=∆ ,

Ti=T and

Gi(x, y)=G(x,y)
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‖FD(z0)− un(z0)‖D = ‖(T0T1...Tn−1)‖ ‖(LnLn−1...L0FD)‖D

= ‖(TT...T )‖ ‖(∆∆...∆)FD)‖D

= ‖(TT...T )‖ ‖∆n+1FD)‖D

≤ ‖T‖n+1 ‖∆n+1FD)‖D

‖FD − un‖D ≤ ‖∆n+1FD‖D ‖T‖n+1

‖T‖ = sup
x∈D

∫
D
|G(z, z0)dz0| = sup

x∈D

∣∣∣∣∣∣
∫
D
G(z, z0)dz0

∣∣∣∣∣∣
If we can find a value for Green’s function then we can find a

estimator for error of the image inpainting. In the next two sections, we

use two different methods to find a Green’s function.

8.3 Error using Poisson Equation

Consider the solution of Poisson equation,

∆u(z) = 1, z ∈ D

u(z) = 0, z ∈ ∂D
We know that solution is given by,

u(z) =
∫
D
G(z, z0)dz0

Now we are solve this Poisson equation for different types of do-

main.
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8.3.1 Circle,[20]

Where D is a circle with center zero and radius r

Consider the equation of the circle. It is,

Figure 8.14: circle with center zero and radius r

x2 + y2 = r2

We can guess the solution is,

u(z) = c(x2 + y2 − r2)

This satisfies the boundary condition. Now we can find the con-

stant c,

∂u

∂x
= 2cx ,

∂2u

∂x2 = 2c

∂u

∂y
= 2cy ,

∂2u

∂y2 = 2c

∆u(z) = 1
∂2u

∂x2 + ∂2u

∂y2 = 1

2c+ 2c = 1

c = 1
4
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Therefore,

u(z) = x2 + y2 − r2

4

u(z) = |z|
2 − r2

4

Consider Green’s second formula,

u(z0) =
∫
D
G(z0, z)(∆u(z))dxdy =

∫
D
G(z0, z)dxdy

= |z|
2 − r2

4

∴ ‖T‖ = sup
x∈D

∣∣∣∣∣∣
∫
D
G(z, z0)dz0

∣∣∣∣∣∣ =

∣∣∣∣∣∣ |z|
2 − r2

4

∣∣∣∣∣∣ ≤ r2

4

∴ ‖FD − un‖D ≤ ‖∆n+1FD‖D ‖T‖n+1

≤ ‖∆n+1FD‖D

r2

4

n+1

8.3.2 Ellipse

Theorem 8.3.2

Suppose D(a,b), where a ≥ b, is an ellipse centered at zero, Then,

‖FD − un‖D ≤ ‖∆n+1FD‖D

1
2

 a2b2

a2 + b2

n+1

Proof: Consider the poisson equation on the ellipse,

∆u(z) = 1 z ∈ D

u(z) = 0 z ∈ ∂D
Where D is an ellipse with center zero and (a, b) such that a ≥ b.
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Consider the equation of the ellipse. It is,

x2

a2 + y2

b2 = 1

Figure 8.15: Ellipse with center zero and a > b

We can guess the solution is,

u(z) = c(1− x2

a2 −
y2

b2 )

This satisfies the boundary condition. Now we can find the con-

stant c,

∂u

∂x
= −2cx

a2 ,
∂2u

∂x2 = −2c
a2

∂u

∂y
= −2cy

b2 ,
∂2u

∂y2 = −2c
b2

∆u(z) = 1
∂2u

∂x2 + ∂2u

∂y2 = 1

−2c
a2 −

2c
b2 = 1

c = 1
− 2
a2 − 2

b2

Therefore,

u(z) =
1− x2

a2 − y2

b2

− 2
a2 − 2

b2

Consider Green’s second formula,
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u(z0) =
∫
D
G(z0, z)(∆u(z))dxdy =

∫
D
G(z0, z)dxdy

=
1− x2

a2 − y2

b2

− 2
a2 − 2

b2

∴ ‖T‖ = sup
x∈D

∣∣∣∣∣∣
∫
D
G(z, z0)dz0

∣∣∣∣∣∣ =

∣∣∣∣∣∣1−
x2

a2 − y2

b2

− 2
a2 − 2

b2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
− 2
a2 − 2

b2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
2
a2 + 2

b2

∣∣∣∣∣∣ =

∣∣∣∣∣∣ a2b2

2(a2 + b2)

∣∣∣∣∣∣
∴ ‖FD − un‖D ≤ ‖∆n+1FD‖D ‖T‖n+1

≤ ‖∆n+1FD‖D

1
2

 a2b2

a2 + b2

n+1

8.3.3 Triangle

Theorem 8.3.3

Suppose D is an equilateral triangle with each side 2a, then

‖FD − un‖D ≤ ‖∆n+1FD‖D

3a2

4

n+1

Proof

Consider the equation of each side. They are ,

y = 0

y =
√

3x+
√

3a

y = −
√

3x+
√

3a
We can guess the solution is,
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Figure 8.16: Triangle with each side is 2a

u(z) = cy(y −
√

3x−
√

3a)(y +
√

3x−
√

3a)

This satisfies the boundary condition. Now we can find the con-

stant c,

u(z) = cy((y −
√

3a)−
√

3x)((y −
√

3a) +
√

3x)

= cy((y −
√

3a)2 − (
√

3x)2)

= cy(y2 − 2
√

3ay + 3a2 − 3x2)

= cy3 − 2c
√

3ay2 + 3ca2y − 3cx2y

∂u

∂x
= −6cxy ,

∂2u

∂x2 = −6cy

∂u

∂y
= 3cy2 − 4c

√
3ay + 3ca2 − 3cx2 ,

∂2u

∂y2 = 6cy − 4ca
√

3

∆u(z) = 1
∂2u

∂x2 + ∂2u

∂y2 = 1

−6cy + 6cy − 4ca
√

3 = 1

−4ca
√

3 = 1

c = −
√

3
12a
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Therefore,

u(z) = −
√

3
12ay(y −

√
3x−

√
3a)(y +

√
3x−

√
3a)

Consider Green’s second formula,

u(z0) =
∫
D
G(z0, z)(∆u(z))dxdy =

∫
D
G(z0, z)dxdy

= −
√

3
12ay(y −

√
3x−

√
3a)(y +

√
3x−

√
3a)

∴ ‖T‖ = sup
x∈D

∣∣∣∣∣∣
∫
D
G(z, z0)dz0

∣∣∣∣∣∣ =

∣∣∣∣∣∣−
√

3
12ay(y −

√
3x−

√
3a)(y +

√
3x−

√
3a)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
√

3
12ay[(y −

√
3a)2 − (

√
3x)2]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
√

3
12ay[(y −

√
3a)2 − 3x2]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
√

3
12ay[(y −

√
3a)2]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
√

3
12ay

3

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
√

3
12a(
√

3a)3

∣∣∣∣∣∣ where 0 ≤ y ≤
√

3a

= 9a3

12a = 3a2

4

∴ ‖FD − un‖D ≤ ‖∆n+1FD‖D ‖T‖n+1

≤ ‖∆n+1FD‖D

3a2

4

n+1
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8.3.4 Rectangle

Theorem 8.3.4

Suppose D(a,b), where a ≥ b, is a rectangel. Then,

‖FD − un‖D ≤ ‖∆n+1FD‖D

abN2

2

n+1

where,

N2 =
∞∑
k=1

1
k2

Proof

Consider the poisson equation on rectangle,

∆u(z) = f(z) z ∈ D

u(z) = 0 z ∈ ∂D
(8.3.4.1)

First, we have to solve eigenvalue problem when we are solving

this equation. Here we are finding function v(z), and and constant λ

such that

∆v(z) = λv(z) z ∈ D

v(z) = 0 z ∈ ∂D
When we solve this problem, we use the separation of variables

method.

v(z) = v(x, y) = X(x)Y (y)

consider the boundary condition for ractangle D = [0, a] × [0, b]

such that a > b,
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Figure 8.17: Rectangle with a>b

v(x, y) = 0

X(x)Y (y) = 0

X(0)Y (x) = 0 X(x)Y (0) = 0 X(a)Y (y) = 0 X(x)Y (b) = 0
X(x) or Y(y) can not be equal to zero. Therefore,

X(0) = 0, Y (0) = 0, X(a) = 0, Y (b) = 0

∆v(z) = λv(z)

vxx(x, y) + vyy(x, y) = λv(x, y)

X ′′(x)Y (y) +X(x)Y ′′(y) = λX(x)Y (y)
X ′′(x)
X(x) + Y ′′(y)

Y (y) = λ

X′′(x)
X(x) depends on x and Y ′′(y)

Y (y) depends on y. Therefore, they must

be a constant.

X ′′(x)
X(x) = α,

Y ′′(y)
Y (y) = β, α + β = λ

X ′′(x) = αX(x), Y ′′(y) = βY (y)
Consider each equation with boundary conditions,
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X ′′(x) = αX(x), X(0) = 0, X(a) = 0

Xm(x) = sin

mπx
a

 where αm =
mπ

a

2

m = 1, 2, 3, 4, ...

similarly we can find Y(y),

Y ′′(y) = βY (y), Y (0) = 0, Y (b) = 0

Yn(y) = sin

nπy
b

 where βn =
nπ
b

2

n = 1, 2, 3, 4, ...

Therefore, the solution of the Poisson equation on a rectangle is,

u(z) = u(x, y) =
∞∑
m=1

∞∑
n=1

umnvmn(x, y)

where,

umn := λ−1
mn

〈f, vmn〉
〈vmn, vmn〉

vmn(x, y) := Xm(x)Yn(y) λmn := αm + βn

Consider our problem

∆u(z) = 1 z ∈ D

u(z) = 0 z ∈ ∂D
Here, we consider , f = 1.
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〈vmn, vmn〉 =
∫ a

0

∫ b

0
Xm(x)2Yn(y)2 dx dy

=
∫ a

0
Xm(x)2dx

∫ b

0
Yn(y)2dy

=
∫ a

0
sin2

mπx
a

dx ∫ b

0
sin2

nπy
b

dy
= 1

2

∫ a

0
1− cos

2mπx
a

dx 1
2

∫ b

0
1− cos

2nπy
b

dy
= 1

2

x− a

2mπsin
2mπx

a

a
0

1
2

y − b

2nπsin
2nπy

b

b
0

= 1
2

a− a

2mπsin(2mπ)
 1

2

b− b

2nπsin(2nπ)


= a

2
b

2 = ab

4
〈f, vmn〉 = 〈1, vmn〉 =

∫ a

0

∫ b

0
1Xm(x)Yn(y) dx dy

=
∫ a

0
Xm(x)dx

∫ b

0
Yn(y)dy

=
∫ a

0
sin

mπx
a

dx ∫ b

0
sin

nπy
b

dy
=
− a

mπ
cos

mπx
a

a
0

− b

nπ
cos

nπy
b

b
0

=
 a

mπ
(cos(mπ)− 1)

  b

nπ
(cos(nπ)− 1)


Consider one of these,

(cos(mπ)− 1) =


−2 if m is odd

0 if m is even

Therefore,

〈f, vmn〉 = 〈1, vmn〉 =


2a
mπ

2b
nπ

if m,n are odd

0 if m,n are even

= 4ab
mnπ2 , when m, n are odd
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λmn = αm + βn

=
mπ

a

2

+
nπ
b

2

=
m2

a2 + n2

b2

π2

∴ umn = λ−1
mn

〈f, vmn〉
〈vmn, vmn〉

= 1m2

a2 + n2

b2

π2

4ab
mnπ2

ab
4

= 16m2

a2 + n2

b2

mnπ4

Therefore, the solution is given by,

u(z) = u(x, y) =
∞∑
m=1

∞∑
n=1

umnvmn(x, y)

=
∞∑

m=1,3,5,...

∞∑
n=1,3,5,...

16m2

a2 + n2

b2

mnπ4

sin

mπx
a

sin
nπy

b



Consider Green’s second formula,

u(z0) =
∫
D
G(z0, z)(∆u(z))dxdy =

∫
D
G(z0, z)dxdy

=
∞∑

m=1,3,5,...

∞∑
n=1,3,5,...

16m2

a2 + n2

b2

mnπ4

sin

mπx
a

sin
nπy

b

, a > b

≤
∞∑

m=1,3,5,...

∞∑
n=1,3,5,...

16m2

a2 + n2

b2

mnπ4
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≤
∞∑

m=1,3,5,...

∞∑
n=1,3,5,...

1

mn

m2

a2 + n2

b2


≤

∞∑
m=1,3,5,...

∞∑
n=1,3,5,...

1
mn

1
2mn
ab

≤ ab

2

∞∑
m=1,3,5,...

1
m2

∞∑
n=1,3,5,...

1
n2

≤ ab

2

∞∑
m=1

1
m2

∞∑
n=1

1
n2

≤ abN2

2 , where M,N are constant

Note:

(1)
1

2AB −
1

A2 +B2 = A2 +B2 − 2AB
2(A2 +B2)AB

= (A−B)2

2(A2 +B2)AB ≥ 0

∴
1

2AB −
1

A2 +B2 ≥ 0
1

2AB ≥
1

A2 +B2

(2)
∞∑
k=1

1
k2 = π2

6

It is a convergent series.

∴ ‖T‖ = sup
x∈D

∣∣∣∣∣∣
∫
D
G(z, z0)dz0

∣∣∣∣∣∣
≤ |abN

2

2 |

∴ ‖FD − un‖D ≤ ‖∆n+1FD‖D ‖T‖n+1

≤ ‖∆n+1FD‖D

abN2

2

n+1
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8.4 Schwarz Christoffel Transformation from

any polygon to unit disk

Figure 8.18: Schwarz Christoffel Transformation from any unit disk to
polygon

First, we consider the transformation from unit disk to upper half

plane. In this transformation, we consider the Mobius Transformation

G(z) and then we consider the Schwarz Christoffel Transformation for

upper half plane to polygon. In these two transformations, we apply

composition function. But we have Schwarz Christoffel Transformation

for derivative of the transformation. So, first we consider the deriva-

tive of composite function. Here we apply chain rule of the composite

function.

We know the transformation from unit disk to upper-half plane is,

G(z) = i
1− z
1 + z

G′(z) = i
(1 + z)(−1)− (1− z)(1)

(1 + z)2

= i
−1− z − 1 + z

(1 + z)2

= i
−2

(1 + z)2
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H(z) = S(G(z))

H ′(z) = G′(z)S ′(G(z))

= G′(z)C0

n∏
k=1

G(z)−G(zk)
αk−1

= −2
(1 + z)2C0

n∏
k=1

i1− z1 + z
− i1− zk1 + zk

αk−1

= −2C0

(1 + z)2

n∏
k=1

i1− z1 + z
− i1− zk1 + zk

αk−1

= −2C0

(1 + z)2

n∏
k=1

i

(1 + zk)(1− z)− (1− zk)(1 + z)
(1 + z)(1 + zk)

αk−1

= −2C0

(1 + z)2

n∏
k=1

i

1 + zk − z − zzk − 1− z + zk + zzk
(1 + z)(1 + zk)

αk−1

= −2iC0

(1 + z)2

n∏
k=1

 −2(zk − z)
(1 + z)(1 + zk)

αk−1

= 4iC0

(1 + z)2

n∏
k=1

 1
1 + z

αk−1
n∏
k=1

(zk − z)αk−1
n∏
k=1

 1
1 + zk

αk−1

= 4iC0

(1 + z)2

 1
1 + z


∑n

k=1 αk−1
n∏
k=1

(zk − z)αk−1
n∏
k=1

 1
1 + zk

αk−1

= 4iC0

(1 + z)2

 1
1 + z

2
n∏
k=1

(zk − z)αk−1
n∏
k=1

 1
1 + zk

αk−1

= C
n∏
k=1

(zk − z)αk−1
n∏
k=1

 1
zk

αk−1

= C
n∏
k=1

zk − z
zk

αk−1

= C
n∏
k=1

1− z

zk

αk−1

(8.4.0.2)
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dw

dz
= H ′(z) = C

n∏
k=1

1− z

zk

αk−1

H(z) = A+ C
∫ z

z0

n∏
k=1

1− ζ

ζk

αk−1

dζ

(8.4.0.3)

Here, A and C are complex constant. This is conformal mapping from

unit disc to unit circle.

Consider the inverse of equation (6.3.2.1). It is possible, because w=

w(z) is a conformal mapping .That is |dw
dz
| > 0 , everywhere [38].

dz

dw
= 1
C

n∏
k=1

1− z

zk

1−αk

Therefore, conformal mapping from polygon to unit disc is

B + 1
C

∫ z

z0

n∏
k=1

1− ζ

ζk

1−αk

dζ

8.4.1 Erros using conformal mapping

When we calculate the error, we have to find Green’s function. Now we

try to define Green’s function using conformal mapping, such that,[20]

G(z0, z) = 1
2π ln|Hz0(z)|

Where Hz0(z) is a conformal mapping from any polygon to unit

disk, such that

a) D is a one-to-one and onto onto map in the unit disk with center

at origin

b) Hz0(z0)=0

Use the error formula,
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F (z0)− un(z0) =
∫
D
Kn+1(z0, z)∆n+1F (z)dz, z0 ∈ D

Where, [20]
K1(z0, z) = G(z0, z) and

Ki(z0, z) =
∫
Di
G(z0, z1)...G(z0, zi+1)dz1...dzi+1



Chapter 9

Future Work

In this reaserch work, we were able to form a formula for a transforma-

tion from any polygon to unit circle. In future work, we can find the

error of image inpainting by using this result. Going foraward here, a

reasercher can extend this result to image inapinting on manifolds.
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