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Abstract 

The first chapter of this thesis is to take a piece by piece look at the factors that 

contributed to the experimental evolution study that will be discussed in Chapter 2. 

Behavior, how that can affect experimental studies, and how biases can affect sensory 

systems and preference in subject species. Specifically visual sensory systems are 

described in detail, from the possible evolutionary histories, to major components that 

contribute to eye structure, form, and/or abilities. We discuss how to define color vision, 

and what are the prerequisites for color vision in species. 

Key Words: Bias, Color Vision, Drosophila, Evolutionary Economics, 

Experimental Evolution, Proximate Causation, Ultimate Causation, Vertebrate 
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Definitions 

 

1) Adaptation- When an organism becomes better able to live in its habitats via an 

evolutionary process (Bateson & Laland, 2014; Blackiston, 2007; Dosi & Nelson, 1994; 

Dukas, 2008; Garland & Kelly, 2006; Kuhn, et al., 2003; Shettleworth, 2010). 

2) Color Constancy- A perceived color remains constant despite changing lighting 

environments (Arnold, 2010; Blackiston, 2007; Chittka, et al., 2014; Fischbach, 1979; 

Lotto & Purves 2002). 

3) Color Vision- is the ability of an organism to use its visual sensory organs (which 

contain two or more photoreceptors) and the corresponding neural systems to 

discriminate wavelengths and categorize objects based on color (Chittka, et al., 2014; 

Deeb & Motulsky, 1996; Kelber, Vorobyev & Osorio, 2003; Lunau & Maier, 1995; 

Renoult, Kelber, & Schaefer, 2015; Rushton, 1972). 

4) Discrimination- The ability to distinguish and quantify differences in two or 

more things (Akre & Johnsen, 2014; Bicker & Reichert, 1978; Giurfa, 2004; Pashler & 

Wixted, 2002; Renoult, Kelber, & Schaefer, 2015; Shettleworth, 2010). 

5) Experimental Evolution- Garland & Rose (2009) “research in which populations 

are studied across multiple generations under defined and reproducible conditions, 

whether in the lab or in nature” (Bennett 2003; Chippendale, 2006; Garland, 2003; 

Garland & Kelly, 2006; Kawecki, et al., 2012; Swallow & Garland, 2005). 

6) Evolutionary Economics- the study of the processes that transform the human 

economies (Dosi & Nelson, 1994). 

7) Homeobox- a family of genes (Dictonary.com). 
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8) Ommatidia- Each optical unit of the compound eye (Arnold, 2010; Beersma, 

Stavenga, & Kuiper, 1975; Bicker & Reichert, 1978). 

9) Opsin- The light-sensitive proteins in photoreceptor cells that convert photons to 

electrochemical signals (Kelber, Vorobyev & Osorio, 2003; Surridge, Osorio & Mundy, 

2003). 

10) Perceptual Bias- The innate preference in a signaling system that exists before 

sexual selection occurs, to drive selection and divergent adaptation (Endler & Basolo, 

1998; Raine & Chittka, 2007; Ryan & Cummings, 2013; Shettleworth, 2010). 

11) Phenotypic Plasticity- A single genotype’s ability to express multiple 

phenotypes depending on the environment (Garland & Kelly, 2006; Snell-Rood & Papaj, 

2009; Shettleworth, 2010). 

12) Photopigment- the chemical state of a pigment that changes based on 

illumination (Deeb & Motulsky, 1996; Goyret, et al., 2008; Kelber, Vorobyev & Osorio, 

2003; Rushton, 1972; Ryan & Cummings, 2013; Surridge, Osorio & Mundy, 2003). 

13) Photoreceptor- A specialized neuron that uses the converted photon-

electrochemical signals to simulate biological processes (Bicker & Reichert, 1978; Deeb 

& Motulsky, 1996; Frederiksen, Wcislo & Warrant, 2008; Kelber, Vorobyev & Osorio, 

2003; Lunau & Maier, 1995; Paulk, Millard & von Swinderen, 2013; Renoult, Kelber, & 

Schaefer, 2015; Ryan & Cummings, 2013; Surridge, Osorio & Mundy, 2003). 

14) Phototaxis- The movement of a mobile organism in response to light (Bicker & 

Reichert, 1978; Blackiston, 2007; Gao, et al., 2008; Kelber, Vorobyev & Osorio, 2003; 

Paulk, Millard & von Swinderen, 2013). 
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15) Proximate Causation- The event closest to an end result that is observed to have 

caused the end result (Alcock & Sherman, 1994; Bateson & Laland, 2014; Shettleworth, 

2010). 

16) Psychophysics- The psychological study of the relationships between physical 

stimuli and mental processes (Greenfield, 2014; Pashler & Wixted, 2002; Renoult, 

Kelber, & Schaefer, 2015). 

17) Sensory Ecology- Information obtained by organisms about their environment, 

including how information is obtained, and why the information is useful to the organism 

(Goyret, et al., 2008; Shettleworth, 2010). 

18) Spectral Sensitivity- The ability to detect a signal with relative efficiency and 

frequency (Goyret, et al., 2008; Hernandez de Salomon & Spatz, 1983; Kelber, Vorobyev 

& Osorio, 2003; Lunau & Maier, 1995; Rushton, 1972; Surridge, Osorio & Mundy, 2003; 

Vorobyev & Osorio, 1998). 

19) Ultimate Causation- A higher level cause event that can precipitate an observed 

end event, but is not readily observed as the Proximate Causation (Alcock & Sherman, 

1994; Bateson & Laland, 2014). 
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Chapter 1: Everyone’s a Little Bit Biased: A Review of Experimental Evolution as it 

Relates to Visual Ecology and Color Vision 
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1.0. Introduction 

Over the centuries of vision research, no question has been more vexing to 

scientists than the idea that colors are not perceived the same way among individuals in a 

population. Researchers have been able to document wavelengths of light and record the 

sensitivities of the receptors with the neural processing networks of the eyes across many 

species. The genes that encode the receptors have been mapped and standard tests for 

human color vision are given in schools. Yet, it may never be possible to completely 

document that one person’s “green” is not another’s “red”. The receptor cells can be 

excited by the same wavelength, processed, and interpreted along the same neural 

network, and referenced by previous experiences of the same color; but if somehow the 

receptors switched, or the experiences change, or the brain of one individual processes 

the receptor of the other may see an inverted visual spectrum, or that spectrum may be 

skewed differently. 

The inherent problem with this example is that most humans (and a majority of 

other animals and insects) see colors in novel ways. From color vision defects in humans, 

to sexual dimorphism in new world monkeys (NWM) (Melin, et al., 2006) and insects 

(Hilbrant, et al., 2014; Ogawa, et al., 2012), the world is a different visual experience for 

every being with the ability to see. From the receptors that can detect specific 

wavelengths of light, to the inherent experience by which the wavelength is processed, 

every part of color vision is biased genetically, morphologically, and perceptually. 

While the context of perception of color vision is fascinating, the overall benefit 

of vision and color vision is enhanced by the tonnage of knowledge obtained to 

understand how vision functions, how it evolved, and how vision is defined. This 
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information may someday answer that impossible question. For is it not the creed of 

science to answer those impossible questions?  

 

2.0. Behavior 

An explanation of behavior must include comprehensive arguments of learning, 

cognition, and evolution. Behavior is a direct reflection of an organism’s sensory, motor, 

motivational, and cognitive forces reacting to a signal, a stimuli, or the environment 

(Endler, 1993; Lotto & Chittka, 2005; Rockwell, 1978; Shettleworth, 2010). This 

behavior can be innate, learned (Dukas, 2013; Giurfa, 2004; Weiss & Papaj, 2003), or 

altered based on life history and evolutionary history changes. As an example; an animal 

is hungry, where the internal system of an empty stomach relays a “get sustenance” 

signal, the behavior directly caused by that signal is to “stop being hungry” and the 

individual forages for food of some kind (Shettleworth, 2010).  The direct cost of not 

preforming the behavior is eventual death, but increase in “need to get energy” over the 

short term. So the end goal of a behavior is the continued existence and well-being of the 

individual performing it, and that optimizing the behavior is adaptive.  

The behavioral systems that arise from these co-mingled signal-to-behavior 

events are (theoretically) optimized machines. The system’s function is to complete a 

specialized goal (sex, fear, etc.). These systems are affected by proximal causations, 

stimulants, perceptions, and environmental factors that are prioritized in a centralized 

network to coordinate the appropriate internal and external relays for the behavioral 

system to function. Within each individual there are multiple behavioral systems; and 

each system is affected by varying external and internal cues (Vorobyev, et al., 2001). 
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These multiple systems are prioritized in a “secondary” hierarchy, which further affects a 

single behavioral system by life history biases of one behavior system’s priority over 

another. Which is to say the act of running away from a lion to avoid being eaten would 

take priority over being moderately without food for the moment. These innate biases are 

time dependent, and can be environment dependent (Endler, 1993; Kunze & Gumbert, 

2001; Mery & Kawecki, 2004b; Miller, et al., 2011; Shettleworth, 2010; Tang & Guo, 

2001). This will be further discussed in section 3.2. 

Behavior is a continually shifting, living, and active description of an animal’s 

reaction to environmental cues (Chapman, et al., 2010; Shettleworth, 2010) and to the 

diversification of genes involved in higher behavioral function due to genetic and 

phenotypic plasticity (Chen, et al., 2012).  To understand why behavior is hard to 

compactly define, the general terminology and mechanisms must be observed. 

 

2.1. Proximate & ultimate causations. 

The creation of a bias or a behavior (or generally anything observable in 

evolution) is based on both the most immediate (current) cause, and the overall cause for 

the behavior or bias (Mayr, 1988).  The immediate cause or internal mechanisms of the 

behavior is a Proximate Cause, and the overall consequences or causes of behavior is an 

Ultimate Cause (Alcock-Sherman, 1994; Chittka, et al., 2012). Both of these causes were 

taken from Mayr (1954) and extrapolated to Tinbergen’s four questions of animal 

behavior, which helped translate the confusing sections of Mayr to distinct sections 

moving from past to present events (Bateson & Laland, 2014; Shettleworth, 2010; 

Tinbergen, 1963). These four questions are used to determine if proximate or ultimate 
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causation is being observed and are as follows: What is the causation of the behavior? 

How does the behavior come about from experience and/or genetic makeup? Why/how 

does this behavior increase evolutionary benefit? How did the behavior evolve? These 

questions have been slightly modified to represent modern vocabulary, as Tinbergen’s 

terminology is currently outdated as some terms have changed meaning in the last half 

century (Bateson & Laland, 2010; Stevens, 2013).  

These four questions were grouped in sets of two in each category which could go 

and answer Proximate and Ultimate Causations (Mayr, 1982a; Nesse, 2013), wherein the 

immediate reasoning to an action or behavior is considered a Proximate Causation (Mayr, 

1988). This is as simple to explain as a bias or conditioning event. While there may be 

other reasons for the behavior, the most immediate and obvious bias or cause is the 

proximate. The Functional or Ultimate Causation is the evolutionarily benefit end of the 

behavior (Cuthill, 2005; Hogan, 2005; Stevens, 2013). 

There is an ongoing push by behavior scientist that grouping the four questions to 

two categories loses the process by which Tinbergen meant these questions to be used; to 

explain a behavior entirely (Nesse, 2013). A table has been made combining the original 

four questions with the causation categories; see Nesse, 2013-Figure 1 for an example of 

the chart denoting the categories. This table was created to try and simplify the growing 

evolutionary factors that can shape a species into its current form, current terminology, 

and attempts to reduce future confusion.  

The argument being made is that the key to understanding behavior and the 

Causations, is to answer all of Tinbergen’s questions (and possibly a fifth question 

postulated for culture by Kacelnik (2006) (Bateson & Laland, 2010)). As recent behavior 
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of choice, theory of mind, and decision making experiments offer economic value to a 

multitude of options a species (or individual) may make. This requires a level of 

cognitive ability (Tinbergen, 1951; 1959) - or proximate cause- that necessitates the 

individual to be aware of alternate choices and can weigh the different choices against 

each other for optimal choice selection.  This may also require the individual to 

sometimes be aware of other individuals in the experiment also having the same choices 

available to them and reacting accordingly (Shettleworth, 2010). 

The lesson is to answer all of the questions put forth by Tinbergen before coming 

to a conclusion about a population’s behavior. Additionally, a warning is presented that 

the act of observing a population in the wild may change the behavior of the observed 

population, and that experiments run in a lab may express behaviors that would not be 

observed in the wild (Tinbergen, 1951; 1959). These precautionary examples can 

influence the development of an experimental setup if not properly adhered to. 

The complexity in the studying of behavior and the experimental behaviors 

(Boake, 1994) is that: 1) Behavior is sensitive to small and (sometimes) uncontrollable 

variations in the environment, 2) animals emotional states matter, 3) influenced by 

learning (memory, past experience, past environments, past behaviors) 4) low 

repeatability of behavior (based on ancestral environment and experience), 5) assays to 

fix low reproducibility can have problems on the type of assay chosen to run, 6) assays 

try to reduce starting complexity of behaviors down to a few behaviors that are 

measurable, 7) a highly complex behavior being selected can be assayed in a variety of 

ways (Battesti, et al., 2012; Endler, 1993). “Behavior evolves first” is assumed to predate 

sexual selection and innate biases before complexity of behaviors develop (Bloomberg, 
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Garland & Ives, 2003; Mayr, 1958). Though selecting for preferences in experimental 

evolution experiments can create a problem because changing behavior in one aspect can 

change another because some genetic coupling in behaviors has been observed (Abed-

Vieillard, et al., 2013; Bullock, 1997; Rauser, Mueller, & Rose, 2003; Roff & Fairbairn, 

2001). 

For testing evolution in a lab there are 3 basic approaches of experimental 

methods: 1) artificial selection (Simoes, et al., 2007); this explains proximate and 

ultimate underlying mechanisms in how behavior evolves, but will lack an adaptive 

explanation of the behavior, 2) mass selection; dividing up a population based on 

behavior divergence, or 3) laboratory natural selection (Garland, 2003); no behavior 

directly evolved here yet, but it is implied and inferred for other experiments; 

characteristics are selected to contribute to the next generation over others. 

 

2.2. Experimental evolution. 

Once Tinbergen’s questions have been studied, sometimes (in order to answer 

them to the fullest capacity) an evolutionary experiment has to be performed. 

Evolutionary theories, while supported by literal tons of empirical data, are only one type 

of research model, and experimental evolution studies can attempt to record evolution in 

a smaller time frame than Evolution by Natural Selection (Bullock, 1997; Kawecki, et al., 

2012). Simplified experimental evolution is the controlled experimental environment 

where the study of evolutionary changes on an experimental population can be observed 

in real time once a selective pressure is imposed by the researcher. Kawecki (et al., 2012) 

simplified this as “laboratory natural selection” experiments.  
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To begin an experimental evolution trial, a series of reproducing populations in a 

novel environment (with a control in the ancestral environment) is required (Gould, 

1990). This is structured for a laboratory environment- not the field or real environment; 

with the downsides of this construct being the limiting of which species can be used for 

the experiments (a large, rapidly reproducing population is necessary), and a lack of 

realism to ecological standards will be persistent.  

Populations that are able to be used in these experiments (Endler, 1986) are 

lacking, but those few species have statistical replication benefits. In the event that the 

species are used though, the correlation verses causation fallacy can arise if proper 

methods are not used, or if improper theories have been applied (Garland & Adolph, 

1994). Once the appropriate species/population for the experiment has been chosen, the 

application of the study is usually directed towards four major groupings (Kawecki, et al., 

2012). 

First, there are comparative studies where the experimental population is observed 

against models of evolutionary theories. These ‘proof of principle studies’ (Kawecki, et 

al., 2012) test sexual selection, genetic drift, and reproductive isolation as evolutionary 

processes of speciation against the observed populations being experimented on. This 

system is flawed, as experimental setups to test some theoretical models of evolution do 

not exist, or have not been constructed properly as to answer unequivocally that the 

theoretical model was approved or disproved (Garland & Kelly, 2006; Kawecki, et al., 

2012). 

The second type of experimental evolution study examines traits within a natural 

population. These traits would be quantified into heritable traits, variable traits, traits 
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under selective pressure, and fitness of the traits within and between replicating 

populations. As these traits can be affected by mutations that alter it any of its qualities, 

mutational studies are also considered experimental evolution studies. These mutation 

experiments observe how the mutation(s) alter trait fitness, and other factors. Thus 

mutation rates within an experimental population’s genome are calculated, and observed 

for adaptation effects on the populations (Garland & Kelly, 2006; Kawecki, et al., 2012; 

Morange, 2011). 

Additionally, adaptation effects under specific environmental pressures is the 

third type of experimental evolution category. Generally called adaptive studies that 

observe a population under a controlled ecological constraint (i.e., nutrition, competition, 

stress, etc.), or under no specified constraint with the experimental population having a 

natural allele frequency (random). Either system can be used to do any combination of 

the following: infer the fitness of an adaptive trait, observe how phenotypes drift over 

time, or determine if other traits evolve (those unexpected results) outside of the original 

phenotypic alleles (Garland & Kelly, 2006; Kawecki, et al., 2012). 

The last general category of evolutionary experiments studies the trade-offs of 

adaptations, phenotypic plasticity, and constraints inherent in the experimental 

population. Observing and measuring changes in trait preferences, fitness, or determining 

ecological constraints on learning within and between populations can determine 

behavioral biases, innate learning, or sensory system preferences which further explain 

the life histories of the species (Garland & Kelly, 2006; Kawecki, et al., 2012). 

An extension of the four groups of experimental evolution tests is the “long-term” 

experiments. The length of these experiments are constrained by the type of species being 
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observed, the generational turnover rate of the species, and the resources to maintain the 

experiment and the population (how small an individual is, how quickly the next 

generation will mature and the food needed to maintain it) can cut down the length of an 

experiment from years to months before the research cost is expended (Kawecki, et al., 

2012). 

One long term experimental evolution study has been occurring since 1988 (Fox 

& Lenski, 2015; Kawecki, et al., 2012). E. coli in twelve replicates have been used to 

determine how rates of evolution vary over time; which evolutionary changes are reliable 

in separate populations under identical environments; relation between phenotypic and 

genetic levels over time.  Each of the 12 populations are grown on minimal growth media 

for one day (6.64 generations per day); then every day 1% of the population is transferred 

to fresh media. Every 75 days (500 generations) a large proportion of the population is 

frozen for a “frozen fossil record” (Pennisi, 2013). 

In general these lengthy experiments will usually need to alter their original 

platforms of observations to answer questions as they arise, or handle unforsean 

complications to the original design. Back to the E. coli experiment, in 1988 the initial 

focus of the experiment was to obtain observations for the dynamics of adaptations and 

the likely divergence of the original 12 replicate populations via fitness (Kawecki, et al., 

2012). As the experiment logged observations, and maintained records, new questions 

emerged from ability to observe evolution over such a time scale. New evolutionary 

theories of adaptation were developed, so the original experiment modified its criteria to 

use the new models- some novel like epigenetics. Better observational equipment became 

readily available (and were cheaper), so the methods of the experiment were adapted to 
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use the new inventions and prevent researcher biases. Genomic research and observation 

became easier to preform and was relatively cheap to perform on populations, and, 

additionally, comparison of genomes between populations was more robust as genome 

libraries are being added to constantly. So genetic variation could now be observed on 

top of morphological variations, and mutations could be mapped (Kawecki, et al., 2012). 

Most experiments do not have to alter the methods over time, as they would not run long 

enough to necessitate that need. 

The choice of the organism to study is much more static in the development of an 

evolution experiment. The model species should be assessed on convenience to the 

experimenter; using a model species over a novel species could benefit the researcher due 

to the aviablility of more information from different fields of studies related to the model 

species. Model systems are more likely to have genomic information to share, and 

species mutants could be available to purchase. Though the Wild-type lab population 

could not be reflective of natural populations (Kawecki, et al., 2012). 

After the species for the experiment has been decided upon, the hypothesis testing 

can be constructed. Usually these experiments are structured around multiple population 

sets (replicates) of the base population of the species being tested. The species’ ancestral 

genotype, or starting genotype at the beginning of the experiment is consistent between 

all the replicate populations. Each of these replicates will be subject to different 

treatments or selective regimes. The E. coli experiment from earlier had twelve separate 

bottles at the start of the experiment, and each bottle (replicate) had a population of E. 

coli that was genetically similar to each other. While the E. coli experiment does not 

conduct overt selective pressure on any of the replicate populations, genetic drift will still 
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act on the isolated populations causing genetic divergence between the species, which 

occurs only from the pre-existing genetic variation the base population had to start with 

(Kawecki, et al., 2012). 

Kawecki (et al., 2012) argues that control replicates that are supposed to exist 

under the ancestral base population’s environment rarely do exist under the standard 

conditions, so these controls should be done away with. While they are correct that any 

genomic data can be compared to the base population’s genome at any time (if it’s 

genome was already mapped), thus a comparison of ancestral genomic data that is readily 

handy could coopt the need for a control group in the experiment, and the blanket 

statement of “no controls alongside selection replicates” is flawed. Under the narrow 

scope of the “genetic drift” hypothesis testing, a control replicate would be unnecessary 

as no overt selection pressure is taking place, and a control that would show “No- overt 

selection pressure” results is redundant. However, any other experimental evolution study 

that does exert a selective pressure should have a “Genetic Drift” control. For example, in 

my experiments, as I was selecting for the evolution of color preferences in my 

‘Selection’ replicates, I had two “Control” replicates that would be useful to compare my 

‘Selected’ lines to, so as to disprove that genetic drift is the reason for my end of 

experiment results. To show the selective pressure occurred without genetic drift a 

“genetic drift control” would be worth consulting by experiment’s end. 

And once the experiment is over, the different evolutionary theories should be 

assessed for typical and not typical drives. Unique systems that may arise include 

supernormal stimuli preferences, or phenotypic/behavioral plasticity. 
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2.2.1. Phenotypic plasticity. 

Four hypothesis of directional natural selection on phenotypic plasticity (which 

are not mutually exclusive from each other): 1) if higher quantities of a selected trait are 

favored within a population with additive genetic variance, then the average number of 

individuals with the selected trait will increase steadily from generation to generation, 

excepting traits that are correlated functionally, but selected upon separately. 2) Favored 

alleles would possess pleiotropic effects, and those effects would cascade to influence 

and evolve the components of complex phenotypes. An example of this hypothesis is if 

high energy foraging alleles in individuals were favored by selection to encourage food 

scavenging, the alleles that increased high activity for locomotor function would be 

directly favored, and peripheral alleles that increased high activity would also be favored 

to a lesser extent. The architecture of these traits are directly involved with the favored 

effects, and thus evolves to become more constant (phenotypically and genetically) 

trough multivariate selection, which amplifies the selection on the plastic phenotype to 

further force its evolution to facilitate adaptive radiation. 3) Again, starting with favored 

alleles within a population, the enforcement of directional selection on the genetic trait 

will cause a stepwise phenotypic dominance spectrum in the Direction of the selective 

pressure. Using the example from before, the foraging alleles in individuals would be 

selected upon in an upwards direction towards the high energy phenotype. To simplify 

the negative energy phenotype, the neutral energy phenotype, and the high energy 

phenotypes exist for the foraging alleles, the direction of the selective pressure would 

increase up the phenotypic line for - negative energy phenotype, the neutral energy 

phenotype, and the high energy phenotype- in a spectrum. 4) If a selective agent is 
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imposing ‘stress’ on a population for any recordable amount of time, then the rate of 

plasticity of the population should evolve directionally towards adaptation. The plasticity 

of traits in a population being evolved should become more constant (less variable) as the 

selective agent continues over time (Garland & Kelly, 2006). 

The unique ability for the phenotypes of an individual to be directly altered due to 

the environment without altering the genetic makeup. A somewhat better definition was 

described in Garland & Kelly (2006): “the ability of one genotype to produce more than 

one phenotype when exposed to different environments”. This is also called 

“compensatory phenotypic plasticity” (Chapman, et al., 2010; Miller, et al., 2011). The 

sequence of events that result in the plasticity of the individual can follow the component 

steps of a) a single thing in the environment changes, b) the individual senses (a), c) the 

genes expressed are altered because of (b), and d) (c) produces a phenotype that can be 

observed. This also may require amplification of the genes then being expressed. In 

experimental evolution studies plasticity is heritable, is quick to respond to selective 

pressures, and has multiple loci determining its expression. And, in general, when 

plasticity occurs it cannot be reverted during the lifespan of the individual (Garland & 

Kelly, 2006; Kent, 2009). 

Plasticity is most favored (while adhering to special variability, optimality, 

quantitative genetic and gamic models) when: “1)inter-habitat variability is high, 2) all 

habitats are equally regular, 2) selection acts strongly across habitats, 4) the 

environmental cue dependent  phenotype  is correlated with environment of selection, 

and 5) habitat selection is correlated with trait plasticity” (Garland & Kelly, 2006). 

Plasticity should be most favored when alternative environments occur in a predictable 
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set quantities- if there are five habitats (1 through 5) that individual A from species X can 

survive in with relatively high fitness, and there are 2 additional habitats (6 & 7) that “A” 

could live in with some phenotypic alterations to improve fitness; the predicted quantities 

of the environments would remain the same even if Habitats 1 and 4 took on the 

environments that Habitats 6 & 7 had, the set values would dictate that Habitats 6 & 7 

then take on the original environmental conditions of Habitats 1 & 4, so we have 5 goof 

fit environments and two almost fit environments for Individual “A” no matter what. This 

perfect oscillation of environments is almost impossible to achieve with any habitats in 

the field (Burbridge, et al., 2014; Glanzman, 2010; Snell-Rood & Papaj, 2009; Weiss, 

1997).  

As explained in Garland & Kelly, (2006) above, a plastic phenotype can evolve 

through to adaptive radiation and in constant environments it would be expected that 

plasticity would diminish as variability has a cost to maintain. That cost in a steady 

environment would prefer to refocus that cost to optimizing a constant phenotype to 

match the constant habitat. Yet many studies have shown that even species that live in 

nearly constant environments still retain the plasticity of their phenotypes when 

introduced to a rare or novel environment. This implies that the operating cost to 

maintain plasticity mechanisms is lower than the cost to fix traits under steady 

environmental habitats. Snell-Rood & Papaj, (2009) explained how biases would reduce 

operating costs in a fixed environment, as the bias predisposes the individual to preform 

instinctually according to the set choice in the fixed environment, the operating cost to 

alter this bias –learning- would be the plastic mechanisms if a rare environment is 

encountered (Dukas, 2013). 
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  “Behavioral genetic techniques permit one to study genetic and environmental 

influences on [phenotypes]… as well as the genetic and environmental influence on 

relationships among phenotypes” (Pashler & Wixted, 2002). Schmidt, et al., (2005), may 

have come close in the eventual outcome of selection on phenotypic plasticity. It was 

determined that Drosophila melanogaster expressed diapause (suspended development 

periods in an insect/invertebrate/mammal embryo due to environmental conditions that 

are unfavorable for development – per Dictonary.com) phenotypes that were highly 

variable, and that variation was reflective of the population’s latitudinal location when 

they were collected from the wild. 750 lines were collected and studied to determine each 

population’s diapause phenotype, starvation resistance, and fecundity. Crosses with non-

diapause expressing lines showed in all but one case the offspring of the crosses all 

expressed the parental diapause phenotype- indicating diapause is a dominate phenotype. 

And while the incidence of expression was shown to increase with latitude (the colder the 

environment of collection, the higher rates of expression), this is determined to be the 

population’s evolutionary history, as the environment of colder seasons selecting on the 

diapause alleles to be expressed more than those in warmer climates. While crosses 

occurred, they were only on specific diapause populations and a non-diapause inbred line. 

And no testing for environmental expression of plasticity on the offspring occurred, it 

would be interesting to determine if diapause expression changed from the colder (more 

expressive line) if they were introduced to a warmer climate. Additionally crosses 

between two different populations under both warm and cold climates might have shown 

plasticity. The only conclusion is phenotypic adaptation, and phenotypic adaptation is 

shaped by molecular genetic mechanisms such as changes in gene expression and 
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changes in gene coding (Glanzman, 2010; Hofmann, et al., 2009; Schmidt, et al., 2005). 

These molecular genetic mechanisms of adaptation can shape genotypes (and 

phenotypes), such as sensory adaptations due to key gene coding changes (Dupuis, et al., 

2012; Hofmann, et al., 2009; Laughlin, 1989).  

 

2.3. Economics & utility. 

A unique branch of animal behavior is the descriptive theories surrounding human 

financial markets and the corresponding human decision-making within those markets. 

While these economic decisions can be used to describe costs in any animal, most of the 

published work is on human interactions (Behrens, et al., 2007; de Bondt & Thaler, 1994; 

Dosi & Nelson, 1994; Levitt & List, 2007; Marshall, et al., 2013; Milinski, 2014). These 

markets can be complex, and involve layers of decisions on the individual and corporate 

level. The distinct problem with explaining finance is to explain the optimal choice that 

should be taken, and the realistic choice that must be explained after (de Bondt & Thaler, 

1994).  

The optimal decision making theory (or neoclassical theory of rational decision 

making) (de Bondt & Thaler, 1994; Dosi & Nelson, 1994; Milinski, 2014), assumes that 

humans are rational under all circumstances and because they are rational, humans will 

make rational choices, and those rational choices will be optimized because of both 

rational behavior, and to benefit overall well-being of the human.  Optimal choice and 

rational decision making is theorized but not observed; assumptions made by human 

forecasters are false, and the model of this theory lacks the ability to quantify the 
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components of economic behavior (de Bondt & Thaler, 1994). This is explained in 

greater detail later in the chapter. 

 

 2.3.1. Evolutionary economics. 

The use of evolutionary theory to mediate economics following psychology and 

sociology models (Dosi & Nelson, 1994) is the pioneering idea of economic curves, and 

economic models as they relate to human behavior and the economic markets. The term 

Evolutionary (as explained in Dosi & Nelson, 1994) is the theories/models/arguments 

that 1) describe how something arrived at a specified moment in time, why the something 

exists in its current form, or to explain the something as it moves through time, 2) the 

first parts explanations include random incremental units, how those units interact and 

combine to renew/generate a range on one variable (multiple variables can have their 

own ranges); the mechanisms that produced the ranges must also be included (Dosi & 

Nelson, 1994). In the economic world the four basic components of evolutionary theory 

are; i) the smallest unit that can be acted upon by the selection, ii) the construction of a 

signal entity from those units, and the mechanism to get from those two parts, iii) how the 

entity interacts with selection dynamics in some capacity, iv) detailing how a combined 

set of entities would generate variations among combinations of units. As this is very 

technical to remove the biology and any animal development from the explanation, 

adding back some biological terms clears up the technical confusion: i)smallest possible 

unit by which evolution can act upon (genes/DNA), ii) the combined units that are a set 

structure (genotype of a being w/out any variability) that can produce variations among 

the individuals in a population (phenotypes), which both can undergo environmental 



A REVIEW OF EVOLUTION, BEHAVIOR, AND VISION WITH … 31 
 

selection  iii) the interaction of individuals with their environments, the selective 

pressures, and the transformative mechanism by which the selective pressure causes the 

yielding of a population, and iv) the detailed condensing mechanism of selection that 

produces multiple phenotypes of single genes, as well as altering genes within a 

population. Now these can be used to construct evolutionary economic models with some 

slight alterations (Dosi & Nelson, 1994). So economists, having observed physical 

scientist using experimental modeling to understand the laws of the natural world, they 

assumed that these models could be used to explain and predict economies. Thus 

Experimental Economics (List & Levitt, 2005). 

The distinct problem with explaining finance is to explain the optimal choice- 

touched on above- that should be taken, and the realistic choice that must be explained 

after (de Bondt & Thaler, 1994). 

In economics there is no one simple unit of selection, though under different 

domains a specific unit could be named, but in general a “Fundamental unit” is a 

placeholder until that point arises. Fitness will also depend on the domain it is presented 

in, and would be judged on conflicting criteria dependent on the decision-maker, and 

most of the 4 F’s of evolutionary biology (fighting, fleeing, feeding, and... reproduction) 

do not apply to financial markets. The processes how agents/populations adapt/learn and 

novel agents still retained, for economics can be represented in the decisions and actions 

of either or both individuals and organizational entities. Dosi & Nelson (1994) 

extrapolate this section into their fundamental hypothesis that the agents are not always 

rational actors in economics, and that the agents will follow context-specific rule-guided 

behaviors that will probably not deviate due to small changes in the economic 
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environment, however the agents are not static in mostly constant economic 

environments and will alter their choice behaviors to experiment in known environments 

to observe novel events, or discover novel behaviors (Dosi & Nelson, 1994). This is 

further broken down into the key influences of economic behavior: 1) monetary 

calculations, 2) how an individual’s actions are both scrutinized, and to what extent the 

individual is scrutinized by others, 3) the “context and process by which a decision is 

embedded, and 4) Self-selection of the individuals making the decisions”. The fourth 

component is a key flaw that I enthusiastically encourage can be altered to prevent 

observer bias (List & Levitt, 2005). 

This hypothesis deviates from the standard neoclassical theory of rational 

(optimal) decision making for maximization of optimal responses, though the system 

accounts for errors in the actor/agent’s behavior due to limited information are modeled 

into the theory, but error due to misinformation, or no information is not accounted for.  

Evolutionary theorist have largely abandoned a similar theory of rational acting/behavior 

(except as a teaching aid in classrooms) in biology, and economic evolution is reasonably 

abandoning the Neoclassical theory as well because of its shortcomings in being able to 

accurately describe the evolutionary environment of the real world. And static theories 

(such as the neoclassical theory) do not account for a non-static behaviors, environments, 

and biases, let along learned behaviors, novel choices, and competition between choice 

actors. A theory that can assess these and other novel effects to the system can more 

accurately describe the mechanisms that are occurring within it (Bullock, 1997; Dosi & 

Nelson, 1994; Shettleworth, 2010). 
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 2.3.2. Behavioral economics. 

Economic decision making is the maximizing of utility (not fitness), where utility 

is subjective to the individual and life history events (Bullock, 1997; Glimcher & 

Rustichini, 2004; Sanfey, et al., 2006; Shettleworth, 2010). Simple decision rules of 

thumb, that are naturally fit, but do not optimize utility (Chen, Lakshminarayanan, & 

Santos, 2006; Padoa-Schioppa, Jandolo & Visalbergh, 2006; Todd & Gigerenzer, 2007) 

can be rejected for a more optimal utility; this utility is quantified in a subjective, and 

sometimes individual, basis. Choice in utility is transitive to fitness, and this utility signal 

(example Signal A), is always preferred no matter which other signals are present or 

introduced (Shettleworth, 2010). The Optimal fitness choice may also not be chosen 

when offered due to these extreme situational, and individual, life history events. These 

economic principles were applied to predict optimal environment to produce maximal 

animal choice behaviors. Thus behavioral ecology (Milinski, 2014). 

Levitt & List (2007) hypothesize that human decisions in economic matters are 

influenced by the standard monetary decisions, but also by; 1) if a subjects actions are 

being overtly observed, and the outward signals of emotion the observer is displaying 

about the actions, 2) how the action performed by the subject was activated, and why the 

behavior was expressed, and 3) ‘self-selection of the individuals making decisions’. The 

model explanation begins with an elaboration that this is not an explicit model, but a 

simplified framework to generalize lab experiments in the paper. It then starts in on the 

math. When an individual has a single action choice, the effects of the individual’s wealth 

and the moral cost or benefit will reflect upon the action choices. The moral cost/benefit 

have many distinct factors that could influence the utility of the action across internal 
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perceptions, to external, cultural cues. In this paper the moral determinates focused on 

will be; 1) financial externality of the choice on other individuals, 2) the set norms of the 

society, which may include governmental laws as they apply to the individual’s society or 

the society that the choice is being made in, 3) and increase of the scrutiny of the action 

increases the moral concerns, or the way the decision making process was performed and 

conducted for others. “The decisions that we make are guided by the outcomes of similar 

decisions made in the past. Understanding how we build such associations between 

events, and therefore between actions and their outcomes, has been the principal goal of 

learning theory. According to models of reinforcement learning, when an animal receives 

new information, it updates its belief about the environment in proportion to its prediction 

error, d, which is the difference between the expected and actual outcomes. It is often 

overlooked, however, that d must be multiplied by an additional factor called the learning 

rate, to determine the degree by which the action value is updated.” (Behrens, et al., 

2007) 

de Bont & Thaler (1994) offers some specific behavioral concepts important to 

economic decision making.: 1) Overconfidence; example, people overestimate the 

reliability of their own knowledge (“when people say that they are 90% sure that an event 

will happen/a statement is true, that person may only be correct 70% of the time”) while 

depreciating other’s knowledge, even if the experience of another may be more valuable. 

2) Non- Bayesian rules; humans do not predict or forecast in any Bayesian form of 

decision making: instead Kahneman & Tversky (as described in de Bondt & Thaler, 

1994) outline that people produce their own probability judgements based on 

“representative heuristic.” This Heuristic is how people calculate the probabilities of 
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uncertain events; “by the degree to which it is : i) similar in essential properties to its 

parent population; and ii) reflects the salient features of the process by which it is 

generated”. This model has shortcomings in inducing the Observer-expectancy effect 

(a.k.a. Hawthorn effect; Observer effect- The primary flaw in typical lab experiments is 

the Hawthorn Effect (observational effect), as the observed experimental subjects would 

not face the level of scrutiny in real economic markets so (in this paper) it is more likely 

the lab experiments were influenced towards moral cost/benefit concerns over wealth due 

to the theorized scrutiny affecting moral factors not wealth ones (Levitt & List 2007) on 

the subjects to weight recent observations above collective past prior odds (despite the 

past odds is collectively determined by many observed events). These people would also 

forecast to the outliers rather than average their probabilities. 3) Loss aversion, framing & 

Mental Accounting; describing Markowitz use of semi-variance as a measure of risk, 

which helped develop Kahneman & Tversky’s theory of decision-making under 

uncertainty, or Prospect theory. Losses (or negative changes in wealth) are weighted 

double to any gains. Loss aversion is a step further, using the description of action 

choices (framed) to implicate the sensitivity of decision-making. (“For example, a store 

that offers cash customers a discount is less likely to upset its credit card clientele than 

another store- with the same prices after these events- that imposes a credit card 

surcharge.”) When individuals create their own frames of actions in decision making, it is 

mental accounting. 4) Fashion and fads; people are influenced by others; a simplified way 

of thinking of sociology and social phycology. 5) Regret, responsibility, and prudence; 

Regret is only the remorse of any decision that lead to a bad/undesirable outcome. The 

remorse can influences decision-makers to preform additional actions to avoid regret 
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entirely. Dr. Richard Thaler (1985) explained mental accounting as three behavioral 

variables that translate to the “Transaction Utility” which can be evaluated 

mathematically. The value function which is indicative to each individual- in this case 

humans- which is defined by Thaler as v (.). This value function can be affected by 

psychophysics of quantity, and can be influenced by an “endowment effect” when the 

loss factor is at a greater slope than the gain function. 

These economic values of cost and utility will be used under the context of choice 

selections, and investments in behavior. In order to understand the cost and utility of 

behavior a closer look at sensory systems, signal detection, and biases needs to be 

analyzed.  

 

3.0. Sensory Systems & Signal Detection Theory 

Sensory systems are complex mainframes of receptors that react under different 

environmental signals to stimulate a receptor system that is passed along to a higher 

processing unit to elicit a response (Stevens, 2013). In biofilms or fungi systems, outer 

(external) layer cells sense changes in the environment and transmit via intercellular 

signaling to internal (protected) cells. These internal cells react to this signal and produce 

chemicals required to improve the overall survival of the complex system. In most 

vertebrates these internal signals are processed in the brain. The brain then interprets the 

signal into a reference for reaction. This interpretation can recall past experiences, 

knowledge, and conditioning to show a bias in the response (Ney-Nifle, Keasar & 

Shmida, 2001; Shettleworth, 2010), or a desired behavioral outcome (Stevens, 2013). 

Some general sensory systems are; 
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1) Chemical (or chemo-sensory systems); since chemicals are discrete, compact, and 

limited by structure, these signals are non-continuous; and they can be disrupted by 

special distributions and environmental dispersion events. An example of a specific 

chemo-sensory system is Olfaction and the corresponding odors associated with that 

system. Once the odor (the chemical signal) is detected using the specialized receptors 

that are attached to, and diffuse, the molecules into the lymph fluids and to the olfactory 

receptor neurons, the olfaction system is activated. This detection is then used for 

orientation and localization of the signaler due to the odor disruptions. Chemical sensory 

systems are unique in that orientation towards the signaler is needed.  

2) Light detecting sensory systems have different levels where detection of the 

electromagnetic spectrum is increasing with complexity. In phototaxis the orientation 

towards/away a light source is sensing light, but no vision is required. Adding a 

photoreceptor, a specialized wavelength receptor that can be specialized to specific 

wavelengths of light, creates the situation where vision develops. This vision is limited to 

a described monotone world- however this monotone is not black and white, and can be 

further explained later in the chapter. Color vision can develop from two or more of these 

photoreceptors with different spectral sensitivities within a single visual system of an 

individual.  

3) Mechanical system(s); though only described under sound vibration detection. Though 

visual detection of vibrations is a quality of this sensory model, it is an understudied 

system. Additionally, echolocation sensory systems/organs are unique in that mechanical 

sound is used to determine the environment, this is done by the mind, not by visual 

organs. In general communication/speech research in sound detection is the most studied 
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of the mechanical systems. The signal waves are detected through a space/medium, 

which are categorized by velocity, frequency, intensity, and other significant 

representations (Stevens, 2013). 

Sensory systems are tasked with primarily detecting and discriminating signals 

from background noise and reacting accordingly to the signal (Nilsson & Warrant, 1999; 

Stevens, 2013). The goal of the sensory system, or the receiver, is to optimize their ability 

to correctly identify a signal from background noise, and responding to the detected 

signal; this is known as Signal Detection Theory (SDT). Abdi (2007) explains this theory 

using a face recognition example; if a face had been seen by the recipient before, they 

had to answer if they had (yes response) or never had (no response) seen the face before. 

Each of these answers then has to be analyzed on accuracy- if a face was recognized 

correctly I would be called a hit, but if the responder answered “yes” to a face they had 

not seen before, that would be a false alarm; See Figure 1. Additionally if a face was 

designated as having not been seen before (“no”) and that answer was correct then that 

response would be a “Correct rejection”, alternatively a face that was designated 

incorrectly by the receiver as not having been seen before (but they had seen it) is a 

“miss”. 

The SDT model expands on the above example to analyze the response systems 

that an individual can take, using intensity of a hidden variable and the responses of the 

participant (Abdi, 2007; Akre & Johnsen, 2014; Allemand & Bouletreau-Merle, 1989; 

Bullock, 1997; Goldsmith, 1990; Milinski, 2014; Osorio & Vorobyev, 2008; Pashler & 

Wixted, 2002; Rushton, 1972; Stevens, 2013; Vorobyev & Osorio, 1998; Vorobyev, et 

al., 2001).  
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A system of processing signals can get complicated based on what information is 

valued, which sensory system is preferred, and how that information is obtained (Stevens, 

2013) such as biases for the use of vision over sound senses, and how those signals were 

detected. Energetic tradeoffs for the maintaining and receiving of signals, and the energy 

cost to process the signal, can be inefficient if the signal is interpreted incorrectly, or if 

the signal is missed (Taylor, Gilbert, & Reader, 2013). For example, in a vision system to 

increase the size (surface area) of the eye would collect more light waves, and gain more 

information on general areas, but as the opening increases in size the details become 

blurry without the corresponding increase in photoreceptors. Additionally more receptors 

cost more energy to make and maintain than fewer, but fewer receptors cannot process or 

detect as many light signals (Stevens, 2013). Tradeoff for larger photoreceptors to collect 

more light, but this is a cost of quantity of photoreceptors to resolve an image (Nilsson, 

2009; Stevens, 2013; van Hatteren, 1992).  In the case of flight patterns in flies in low 

light environments, fast flying species had a higher rate of phototransduction 

mechanisms, and the reverse is also true (Chittka & Menzel, 1992; Gomez & Thery, 

2007; Holopainen, 2008; Kevan, 1972; Laughlin & Weckstrom, 1993; Liu, et al., 2006; 

Masland, 2005; Stevens, 2013; Weckstrom, Hardie, & Laughlin, 1991). 

Adding another layer of complexity in sensory systems is the processing and 

interpreting information in tandem. This is the ability to use two or more sensory systems 

(and the multiple signals the systems can interpret), to gain a more robust conclusion of 

the combined information (Guo & Guo, 2005). This conclusion also narrows down 

behavior, and information that may be lacking in the observation. This is not always an 

additive processes, as sometimes the information processed by the different sensory 
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systems can conclude different, and sometimes, contradictory information. Under those 

unique circumstances, which signal (and signal system) should take preference? If there 

is a preference of System A over System X, is there an intensity of Signal X that would 

cause System X to be preferred over System A (Stevens, 2013)? As an example; in a 

surprise system, an expected signal of the environment moving is interpreted to mean the 

resulted signal is an earthquake, but if the furniture is moving without the additional 

movement of the walls/floor, then another conclusion should be reached, but usually is 

this not the case.  The furniture moving is more easily discernable to the human eye than 

the walls of a shelter moving that they are inside of. This is a weighted cost and a visual 

bias of the signal information (Holopainen, 2008; Mayr, 1988; Raguso & Willis, 2002; 

Stevens, 2013). 

 

3.1. Bias.  

The combination of how information from the environment is sensed, and how 

that information is used by an individual is Sensory Bias. This sensory bias is completely 

dependent on genetic history and life history events. At some point during the 

evolutionary history an innate preference for one sensory system over the others, or one 

component of a sense over the others (Arak & Enquist, 1993; Bullock, 1997; Greenfield, 

2014; Lunau & Maier, 1995; Lunau, 2014; Mery & Kawecki, 2004a). After the innate 

preference has occurred, further life history events (such as pain relation or Pavlovian 

conditioning (Shettleworth, 2010)) cause a preference or bias directed at a stimulus that 

either there was no previous cause for bias, or there was a positive preference that was 

conditioned against. As an example: in the case of brood parasites in cuckoos, if a female 
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bird is on her first clutch of eggs and the first hatchling to emerge is the cuckoo, then that 

female is forever conditioned to recognize cuckoo hatchlings as her own, which is a 

negative bias she has developed because of her life experiences (Goulson, et al., 2007; 

Gumbert, 2000; Shettleworth, 2010). 

The broadest definition of a bias is any active or passive prejudice that can cause 

a deviation in an individual’s behavior compared to the standard (non-biased) population. 

However a non-biased population may not exist in nature. Endler (1992) describes the 

events that create biases as “sensory drives” towards evolution, with sensory systems and 

their conditions being the force of evolution. It can be implied that biases should be 

observed within the context of sensory systems and some functional processes of biases 

will be discussed within the context of Sensory Ecology later. However a brief 

explanation of some evolutionary models of bias development are discussed below. 

Endler & Basolo, (1998) lists the types of biases as; “1) biases resulting from 

properties that once had a particular function that is now lost, 2) biases that are incidental 

and even non-functional consequences of how organisms are built, 3) biases that have a 

function outside the context of sexual communication, 4) biases that have a function in 

sexual communication but are so fundamental to the sensory system or brain they bias 

further evolution, and 5) biases that has no previous function but were established by 

mutation and not selected against. The discussed models above emphasize different 

combinations of these biases; Sensory Drives, Sensory Exploitation, and Perceptual Bias 

discuss all five, Sensory trap elaborates on number 3, and sometimes 4. Hidden 

Preference stays with number 2, Receiver Psychology/Perceptual Drive models 

emphasize 2, 3, & 4. And since all but number 4 document evolution of preferences 
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without male signal and it heritability, as these biases can be produced though evolution 

by other means that are not sexual communication. 

 

 3.1.1. Sexual selection. 

 Perception of conspecifics, or of unique characteristics can elicit a sexual 

preference, or sexual signal bias, for the unique signal. Specifically, and generally, a 

perceptual bias in females is determined by unique behaviors or signal systems of the 

male. These unique male developmental characters were described by Darwin (1871) as 

inherently conspicuous, unique, and in direct opposition of natural selection 

(Shettleworth, 2010). These perceptual biases are often explained by colorful bird 

plumages, showy behaviors, or both acting together. Endler & Basolo (1998) and Ryan & 

Cummings (2013) do an exceptional job explaining the many selective models that could 

create a perceptual bias (PB), focusing on the sexual selection scenarios by which those 

can arise. Mate choice (MC) can be assessed under sexually selective pressures, and non-

sexually selective pressures (Alonzo, 2009; Leadbeater & Chittka, 2007; Milinski, 2014; 

Naisbit, Jiggins & Mallet, 2001; Shettleworth, 2010).  

 Initially the signal that communicates the unique characteristic is constrained by 

the sensory system of the receiver, and how that receiver can processes, extract, and asses 

the signal. For Mate Choice (MC) the acting upon the signal is an additional requirement. 

The evolution of the signal to be more conspicuous, and be more receptive to the sensory 

system, is biased towards the receiver’s ability to process the signal (Niesenbaum, 

Patselas & Weiner, 1999; Oberrath & Bohning-Gaese, 1999). And while the signal can 

also be affected by environmental and biophysical constraints, the emphasis on sensory 
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systems and the ability of the signal to even be detected is the focus on this sexual 

selection model known as sensory drive (SD). SD is used by Endler & Basolo (1998) as a 

model that will be translated into other sexual selection models, and Boughman (2002) 

defines sensory drive as “the integrated evolution of communication signals, perceptual 

systems and communication behavior because of the physics of signal production and 

transmission, and the neurobiology of perception”. With sensory drive, the first rule is 

that perceptual biases are not static, as populations have natural variations within sensory 

systems, and signaling capabilities. Since the environment can also cause evolutionary 

changes within the neural networks of sensory systems, the directional evolutionary 

biases would perpetuate the evolution of signals that are louder, more readily processed, 

and conspicuous (Boughman, 2002; Endler, 1992; Endler & Basolo, 1998; Renoult, 

Kelber & Schaefer, 2015). Though this is not the only direction.  

 The emphasis of the sensory systems directing signal evolution is the receiver bias 

models, which have three described categories of initially non-sexual selective systems of 

evolution (Rodd, et al., 2002). First is pre-existing bias (PEB) where a distinct bias for a 

trait is due to some other selective force before it is selected upon by sexual selection. 

Also called the “runaway” hypothesis of sexual selection (Chittka & Menzel, 1992; 

Seehausen, et al., 2008; Shettleworth, 2010). These male traits could have arisen by 

genetic drift and the sensory (or cognitive) system processing the trait signals is biased 

for those different trait qualities. In Endler & Basolo (1998), Basolo lists qualities a male 

trait needs to have to be classified as PEB, which are specific to the trait being present, 

the trait is used in mate choice, the trait evolved from an ancestral species that did not 

have the trait (or the trait existed in a non-modern form), the preference for the modern 
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trait evolved before the specialization of the trait, and that the bias present can be used to 

determine the further direction of evolution. Though these qualities are oddly specific 

they are distinct from the sensory exploitation (SE) model (Endler & Basolo, 1998). 

 The SE model focuses on sensory drive’s ability of a sensory system to detect a 

signal. The properties of a sensory system to detect/process a signal can vary within and 

between species. Not all signals stimulate the system in the same way, and so the traits 

that produce a signal that causes successful stimulation of the sensory system is preferred 

by the female. This could be as simple as the signal being distinct from background 

noises, and the sensory system being uniquely adapted to detect the signal (Chiao, et al., 

2000; Endler & Basolo, 1998; Wakakuwa, et al., 2010).  

 The last of the described receiver bias models is the sensory trap (ST) model. 

Which focuses on the neural responses to the signal once it has been received. This could 

be behavioral output response, or it could be a cognitive association. An example could 

be a behavior that creates fitness benefits that are unique, or neural stimulations that 

create peaceful and non-costly emotions in the receiver (Endler & Basolo, 1998). 

 Hidden preference (HP) models focus on neural networks, their genetic coding, 

and the link to learning and discrimination with the sense organs being experimented on. 

These hidden preferences can be represented in any from, but can be tested and trained 

on, which can result in similar signals being detected. These learning /discrimination/ 

training experiments must first test if a hidden preference exists when a novel signal is 

introduced. If the testing shows a hidden preference related signals to the novel tested 

could also be discriminated against. If the novel signal uncovered a hidden preference, 

other hidden preferences could arise under distinct novel signals. And even two novel 
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signals that produced differing hidden behavioral responses could create a divergent point 

of selection for trait preferences. Though oversimplified for a liner evolution system, it is 

a model of preference (Arak & Enquist, 1993; Endler & Basolo, 1998; Ryan & 

Cummings, 2013).  

 In a more complex case (which can be described within the context of hidden 

preferences); receiver psychology and perceptual drive (RP/PD) models directly uses 

sexual selection as the driving force of evolution. In RP/PD novel stimuli are favored 

under habituation/elaboration systems, and complexity of a signal is favored for its 

additive effects on behavioral responses. A return to the optimal recognition system, 

however these “perfect” systems would never evolve, as it is statistically improbably that 

a sensory system to have experienced every possible stimuli variation within the species 

life history. There are innumerable stimuli to one sensory system, and since selective 

scenarios use behavioral responses to a small number of stimuli, using the evolved 

system, or the behavior, as a predictive system to how an animal will behave under novel 

stimuli is unfounded (Arak & Enquist, 1993).  Peak shifts and supernormal stimuli use 

RP/PD models (Endler & Basolo, 1998; Ryan & Cummings, 2013).  

    

3.1.2. Supernormal stimuli & peak shift displacement. 

In the case of testing evolutionary behavior in a laboratory setting, the use of 

artificial or exaggerated stimuli can cause the evolved behavior to be expressed more 

strongly, or to be expressed in a more efficient way (Barrett, 2010; Rowland, 1989; 

Tinbergen, 1963). This extreme behavior can cause a preference for the artificial stimuli 

over the natural stimuli without training (Shettleworth, 2010). This hijacking of the 
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normal response/ behavior has been shown in repeated experiments (Baerends, 1982; 

Hailman, 1967; Staddon, 1975; Tinbergen, 1951; 59; 63). It is hypothesized that this 

behavior manifests because instincts and behavior have no bounding, or limit in space-

time, represented in nature, and the more general a preferred stimulus is when evolved, 

the greater range the stimulus can take to elicit the same response (Arak & Enquist, 1993; 

Barrett, 2010; de Bluck & du Laing, 2010; McMillen, 2011; Staddon, 1975).  

These unique reactions were first documented by Tinbergen & Perdeck (1950) 

many other hypothesis have emerged and fall into two rough categories of 1) Learning- 

effect hypothesis, or 2) Innate- bias hypothesis (de Bluck & du Laing, 2010). The major 

study of learning- effect is the Peak Shift model (Staddon, 1975); where it is assumed, 

and has been documented, that the individuals in a population are rewarded for signal 

detection on one end of a scale, and punished for reaction to the stimulus from the 

opposite end. In the adaptive gain/loss tradeoff (Frankino, et al., 2005). Darwin explained 

how energy used in one action (behavior, etc.), is energy that cannot be used in another 

action, such as energy being used to hunt for food is energy that must be taken away from 

mating behavior, or parental care.  

Innate- bias hypotheses is used to explain the supernormal reaction as an adaptive 

or exploitive recognition system bias (de Bluck & du Laing, 2010). Arak & Enquist 

(1993) modeled a neural network to test the hypothesis that if perpetual biases exist in 

sensory networks, then the selection pressure would be on the signal, not the receiver. 

This hypothesis has two mainstays: 1) no perfect recognition system can be evolved in 

nature, because 2) there is a nearly infinite number of forms a stimulus can take, so a 

receiver cannot have evolved under all possible variations of the stimulus. So the receiver 
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is evolving under a small number of stimuli, an asymmetric selection pressure, and 

natural variation. This would then allow for coevolution of the signal and receiver 

because Arak & Enquist assume that 1) signals always become more exaggerated past 

what the receiver needs to activate, 2) #1 occurs at a cost to the signaler, 3) as the signal 

continues to be exaggerated the receiver will lose responsiveness to it, and 4) selection 

favors signals that become increasingly exaggerated, to prevent eavesdropping.    

de Bluck & du Laing’s (2010) paper reviewed other Innate-bias experiments 

(including Arak & Enquist’s which was criticized for their neural networking model, but 

it resembled a later study’s results). Non- functional biases have neutral, non-selective 

bias, which would arise under Arak & Enquist’s hypothesis. 

Then there are functional biases; the use of receptors as multi-dimensional 

activation sites for the signal to rearrange itself on. For instance a receptor can sense a 

signal’s shape, color, intensity, size, etc. Each description is a dimension of variation that 

a signal can take, each separate dimension of the signal is activated separately on the 

receptor (at differing levels), and each dimension’s receptor must communicate together, 

where miscommunication can occur (de Bluck & du Laing, 2010).  

Lahti (2015) discusses the limits of artificial stimuli in behavioral experiments, 

noting his own undergraduate failures, but also describing the main pitfalls of the key 

types of experiments, and acknowledging that artificial stimuli still can be used. In the 

case of supernormal stimuli experiments the failure occurs when the design 1) varies 

more than one feature of the stimuli without a control, and/or 2) exaggerates the stimuli 

to the point that the supernormal stimuli is considered a novel stimuli to the subject. In 
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the case of the first if a study uses wood eggs for supernormal stimuli, but the ‘controls’ 

are painted white- this is two trials. 

Under selective conditions to a population, when two stimuli are used as ranges of 

one sense (or variations of a stimuli), the experiment conducts a condition asymmetry to 

occur. Assuming this example is color vision, and the two stimuli are two wavelengths on 

opposite sides of a spectrum (e.g. 440 nm and 600 nm). Assuming the animal being 

trained can see both wavelengths, and in general the peak sensitivity is somewhere 

between the two stimuli, then an experiment where the lower wavelength is selected 

against, and the higher is rewarded, an asymmetric conditioning experiment is occurring. 

In this case the animal is rewarded if it responds to the higher wavelength, and punished 

if it responds to the lower wavelength. This would cause the peak sensitivity to shift 

towards the higher wavelengths, which would create a selective pressure (Staddon, 1975). 

While this type of experiment does not exclude the development of supernormal stimuli, 

the constraints on visual color perception could prevent supernormal stimuli from 

occurring in this specified example.  

 

3.1.3. Weber’s Law. 

The comparison of signals in decision making is not valued in a straight, simple, 

linear slope, where the exact differences between the stimuli are the perceived 

differences. Sensory systems, and nature, are not so simple. Weber’s law postulates that 

the perceptual comparisons are made on a proportional magnitude scale- Proportional 

processing. As an example in female mate choice a just noticeable difference (JND) 

between traits is the threshold by which a difference can be perceived between the traits. 
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In chase-away selection the JND of these sexually selected traits increases due to costs 

incurred by a female when mating with males that have exaggerated traits. As if the 

females are habituating to the signal that stimulated her behavior in the past, the JND 

required to elicit the same level of behavior needs to also increase in orders of magnitude. 

Of course these “habituation” and female costs for selection do not occur within one 

individual, this is predicted to be her daughter’s and future granddaughter’s bias, and 

JND thresholds that are shifting the sexually selected trait towards more loud, more 

intense, more conspicuousness stimuli (Akre & Johnsen, 2014; Ryan & Cummings, 2013; 

Shettleworth, 2010; van Hatteren, 1992).  

 

3.2. Sensory ecology. 

In the broadest definition Sensory Ecology is the study of how sensory systems 

developed, the components of the system, and how the sensory system(s) are used by the 

organism for behavioral or evolutionary purposes (Alcock, 2009; Davis, Krebs & West, 

2012; Dawkins, 1976; Endler, 1992; Raine & Chittka, 2007; Stevens, 2013; Vosshall, 

2000). Barlow (1982) describes all sensory systems as having some basic properties in 

common despite how unique the systems are: all systems share instruments/organs that 

detect specialized physical energies (Shettleworth, 2010; van Hatteren, 1992). Chittka & 

Briscoe (2001) explains that in order for sensory ecology studies to explain evolution 

phylogenetic analysis, molecular studies, variance of these systems between individuals, 

considerations of pleotropic effects, biogeography, consideration of random evolutionary 

effects, fitness tests, and selection experiments need to be included; though hardly any 

experiments will have all of these components in one paper.  
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Not all sensory systems are created equal, nor are they equally sensitive to detect 

small changes in the signal cues. Quality of the stimuli is important to exciting the 

sensory organs, which includes intensity, loudness, sweetness, and/or brightness. These 

qualities affect if a difference between two stimuli can be sensed by the sensory system. 

This Just Noticeable Difference (JND) threshold is Weber’s Law described above (Akre 

& Johnsen, 2014; Henze, et al., 2012; Shettleworth, 2010). Specialized sensory systems 

are used to obtain information from the environment, but there is no absolute threshold of 

response to stimuli, as an extreme ‘no-behavior verses behavior’ thresholds do not exist 

in nature; this can be simplified, since there is a limited amount of stimuli a sensory 

system has experienced in evolutionary history and there are a near infinite number of 

ranges a stimuli can take, the limitations we would predict to occur due to threshold 

constraints, prevent absolute predictive value with novel stimuli- you can never know 

how an animal will behave in response to a novel stimuli until an experiment is 

conducted to determine the behavior response.  

When an individual is observed in nature, how an animal behaves and reacts to its 

environment is a representation of its evolutionary history. However, the systems that the 

individual relies on to sense and obtain information about the environment is also 

indicative of its evolutionary history, especially if some of the sensory systems have 

become vestigial, or if a new niche-sense has been obtained. A butterfly that possesses an 

extra color vision receptor can see UV light and process that information into cues for 

nectar or egg laying sites, depending on what that UV signal indicates, which influences 

how that butterfly will use that information (Cuthill, et al., 2000; Lewis, 1989; McNeely 

& Singer, 2001; Pashler & Wixted, 2002; Ruiz-Dubreuil, Burnet & Connolly, 1994; 
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Shettleworth, 2010; Song, et al., 2012; Waser & Price, 1981; Weiss, 1991, 1995, 1997; 

Weiss & Papaj, 2003). This novel UV sensor is specialized to detect energies humans 

cannot within senses humans have developed. There are sensory systems that have been 

developed that humans do not have, such as echolocation and magnetic fields (Manger & 

Pettigrew, 1995; Shettleworth, 2010; Wiltschko & Wiltschko, 2006). These systems are 

used to detect patterns, find mates, forage for food, discriminate within and between 

signals, and process social information (Alonzo, 2009; Althoff, Segraves, & Johnson, 

2014; Anderson & Dobson, 2003; Bradbury & Vehrencamp, 1998; Bullock, 1997; Clark 

& Evans, 1954; Collett & Collett, 2002; Endler, 1992; Endler & Basolo, 1998; Endler & 

Mielke, 2005; Endler, et al., 2005; Fleishman, Leal & Sheehan, 2006; Frederiksen, 

Wcislo & Warrant, 2008; Ghazanfar & Santos, 2004; Ryan & Cummings, 2005; 

Shettleworth, 2010). Determining the perception of an animal is analyzed by the 

psychophysics of the animal in relation to the signal being perceived (Shettleworth, 

2010). These signals can be tested through 1) electrophysiology, 2) natural behavior 

changes in varying simulations, and 3) learned behavior testing. Shettleworth (2010) 

describes how the first test can determine is a cue/stimuli/signal can be sensed. The 

second is harder to apply to all the ranges the old stimuli can excite behavior, and the 

third is determined by laboratory studies. The third is also cautioned to be hard to 

replicate in the wild, especially if the subjects of learned behavior required training 

before discrimination or learning could occur, but this is not an absolute law.  

In animal behavior, it has been documented that psychophysical trials follow three 

principles: 1) stimuli that are more intense tend to cause sensory neurons to respond as 

physically more intense, 2) sensory systems habituate to unchanged stimulus, and 3) 
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response to stimuli is determined by the contrast to background noise (Maynard Smith & 

Harper, 2003; Mayr, 1954; 1963; 1982b; Platt, 1964; Ryan & Cummings, 2005; 

Shettleworth, 2010; Stevens, 2013). 

Referencing back to evolutionary economics and behavioral economics, the 

ability to obtain information in sensory ecology is to take on a cost to obtain the 

information, and processes it to gain better utility, and in biology, an advantage (usually 

in learning). And since an individual is interacting with individuals within its own 

species/population, and with individuals from other species, changing environmental 

information should be obtained in an “optimal manor”.  The cognitive mechanisms 

(perception and memory) uses this environmental information to result in optimal 

behavior (Shettleworth, 2010).  

Costs in information gain, and cognitive mechanisms, will be classified as the 

energy expended to perform the behavior, with the expected end result of the behavior to 

obtain more energy than was used. Further costs can be quantified depending on 

information gathering systems and models. Uncertainty in the environment can pose 

fitness problems for an animals, so to reduce uncertainty information is gathered (if it can 

be) (Dall, et al., 2005; Keaser, et al., 2006; Lunau & Maier, 1995; Nuzhnova & 

Vasilevskaya, 2013; Partida, Rubalcava & Alarcon, 2010; Raine & Chittka, 2007). 

There is a cost to this information gathering (Mery & Kawecki, 2004a), energy 

and time usually spent on other tasks are re-allocated for information gathering. There are 

direct interactions with the environment (personal information), as opposed to the 

observation- and analysis- of other animal’s behavior within the environment (socially 

acquired information).  
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In marginal value theory (Shettleworth, 2010) the patch foraging of a predator for 

prey/food (birds and seeds were used as an example) has costs expended if the patch is 

constant; the predator finds and eats the prey, so the energy lost to gain the prey is 

maximized for optimal utility. This simplified static environment has its additional costs 

of time spend hunting prey which could be time not spent mating, or finding shelter, or 

looking for predators that are going to eat you. However, in most patches the available 

prey/food depletes over time. So the predator now has to assess when the current patch is 

too depleted to continue foraging, and find a new patch. The act of finding a new patch 

now quantifies additional costs; time spent looking for a new patch is now time not 

foraging for food- which may already be time away from other behaviors. Costs of 

finding a patch that is more depleted than the one left behind, additional travel costs to 

return to a shelter from the new patch, competition for the prey by other predators that 

consume the same prey, and predators could be hunting you during the time finding a 

new patch, and may be waiting at the new patch. These costs are compared to the costs of 

remaining in the original depleted patch, which contains the same costs as the static 

patch, but now the costs of staying as the food depletes, more energy expended for less 

prey gained, and if a home shelter is not nearby, lack of energy to return home is a 

possibility (Goulson & Cory, 1993; Goulson, et al., 2007; Gumbert, 2000; Zimmerman, 

1979).  

Time constraints can add further costs to the optimization systems, where the cost 

to reaming in an open patch after a determined amount of time (say after dark, or being a 

sitting duck in the same place for two hours is asking to be killed), can cause irrational 

behavior where quick choices on prey that are readily available but don’t give much 
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energy, where the assessment of anything is better than starving, and the waiting for 

better prey cannot guarantee that more energy-rich prey will appear within the set time 

constraints (Bell, 1990; Bullock, 1997; Lihoreau, Chittka, & Raine, 2010; Shettleworth, 

2010). 

Learning and memory in the searching of information, can reduce some of the 

costs to information gathering in foraging. If patches replenish over time, or if depleted 

patches can be remembered, then costs expended in returning to a depleted patch reduce. 

And a replenishing patch that has a set cycle under which it will replenish, then the 

ability to learn and perceive when that timing cycle passes will decrease searching costs 

for other patches, and prevent energy being expended when the cycle has not finished, 

and foraging in a depleted patch (Bell, 1990; Kuntz, et al., 2012; Shettleworth, 2010).  

So learning behaviors which obtain and store (in neuronal configurations) new 

information this can be a) spatial environmental configurations, b) sensory information, 

c) associations between perceived stimuli & environmental states, or d) motor patterns 

(Dukas, 2008). Learning models build associations between past and future events, the 

learning rates, and reinforcement using new information to update current knowledge 

about the environment (determined by prediction error) (Behrens, et al., 2007; 

Heisenberg, 1995; Keaser, Motro & Shmids, 2013; Wang, et al., 2008). 

Animals, using selective sign stimulus (signal bias), respond to objects in their 

environments (Evert, 2005; Tinbergen, 1951), where the collective whole of the signal, 

not the individual parts of the signal, are interpreted (Margolis, et al., 1987; Shettleworth, 

2010). 
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3.3. Visual ecology. 

As for visual ecology, the same restrictions apply to discrimination and biases. 

The female sexual selection of a color trait in birds has a proximate causation of the 

signal- intensity of color- representing a male that is best to copulate with. The ultimate 

causation of this behavior is the sexual selection and evolution causing the most intense 

colors to persist in this species. Genetic preferences can be both proximate and ultimate. 

The birds can receive and are biased towards the more intense color signals by having the 

genes necessary to interpret the colors. The visual receptors that can sense the signals and 

the genes that can produce those flashy signals would be classified as an ultimate 

causation (Alcock, 2001; Endler, 1992; Tinbergen, 1963). 

In terms of female choice, the color signal that would excite, or activate, her 

receptors the most would be a preferred choice based on preference bias, and context 

(Endler, 1991; Houde, 1997). As the color signal has to travel some distance to activate 

the visual sensory system, there is also the chance for environmental conditions to affect 

the signal, such as time of day and abundance of overgrowth (Endler, 1992; Endler, 

1993), where the filtered light can create a unique system where male color can me muted 

or enhanced by the environment. Additionally, signals have a greater risk of being 

intercepted and eavesdropped on (Bicker & Reichert, 1978; Brandley, Speiser & Johnsen, 

2013; Osario & Vorobyev, 2008) as the greater distance is covered, and how specialized 

the signal is (Darwin, 1871; Endler, 1992). This is key for co-evolutionary systems. Ryan 

& Cummings, (2013) documents how the perceptual biases are not necessarily or often 

costly to the females due to direct proximate benefits that occur for the females.) 
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By specializing receptors and the signals in co-evolutionary systems, where the 

signal becomes tuned to the receptor, and the receptor more towards the signal gradually.  

The chances of eavesdropping decreases without the specialization of the eavesdropper 

also occurring, which is an evolutionary arms race to specialize the sensory systems. This 

in turn affects behavior (Brandt & Vorobyev, 1997; Endler, 1992; Masland, 2005).  

Wavelength dependent behavior is an indicative mechanism where some colors 

predetermine a behavioral reaction (Lunau, 2014). For example a male displaying, 

causing a female to want to mate. This system, while important, is a hit or miss kind of 

system (Endler, 1992), because the male can either hit the desired threshold or not.  This 

behavior is assumed to have originated with a selectively neutral bias, with a range of 

selective wavelengths, or the behavior would not have persisted, and died out with other 

more costly behaviors.  Additionally, in some cases the wavelength dependent behavior is 

so detrimental to the individual that questions arise on how the behavior persisted, as is 

recorded in the case of flashy and colorful dances to attract mates, which will also attract 

predators (Anderson, 1994; Darwin, 1871; Maynard Smith & Harper, 2003; Millar, et al., 

2006; Searcy & Nowicki, 2005; Skorupski & Chittka, 2011). This is the Sensory Bias 

Hypothesis (Endler & Basolo, 1998; Ryan, 1994) where runaway sexual selection of 

female choice began with females having preexisting preferences of these colorful 

indicators before the males had developed the feature, which behaviorally can be 

expressed in a secondary function (Fuller, Houle, & Travis, 2005; Millar, et al., 2006; 

Rodd, et al., 2002; Searcy & Nowicki, 2005), such as in non-sexual behaviors, where the 

red of a favorite fruit is the red of the male color the females prefer. 
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4.0. The Evolution of Eyes & Their Visual Systems 

 Though visual ecology jumps into describing the processing of visual information 

within the environment (and the behavioral systems in place to respond to unique 

receptions), vision is a diverse sensory system, with highly studied levels of evolution 

and function. In this section the specific structures and process systems that create visual 

systems will be combined with the known evolutionary histories and competing 

hypothesis.  

Roughly 530 million years ago (Mya), during the Cambrian epoch, there is a 

significant amount of fossils that depict many versions of compound and lens-type eyes 

that evolved within a 5 million year window (Cronin, et al., 2014; Fernald, 2004; Fernald, 

2006; Gehring, 2005; Gehring, 2014; Goldsmith, 2013; Land & Nilsson, 2012; Nat Geo 

Evolution, 2016; Parker, 1998; ScienceHook, 2016; TED-Ed, 2015; Yong, 2016). This 

explosive speciation has no defined cause, though many theories have arisen. Such as the 

accelerated eye evolution occurring because light emerged as a behavioral signal- a 

majority of fossils have groves and iridescence that would have been flashy to predators 

and possibly drove them away (Parker described by Fernald, 2000).And however elegant 

this theory is, many selective pressures could have also been occurring, and maybe none 

of the proposed theories reflect the accurate evolutionary selection pressure.  

While there is a ton of fossil evidence of the Cambrian Explosion of eye 

diversification, the precursor to these eyes has little fossil evidence at all. At best the 

evidence is that small, soft bodied creatures left trail marks in the sea floor, indicating 

movement (possibly phototaxis), with the quantity of these grove routes increasing up to 

the Cambrian. As little is known about the exact components of the eyes in the Cambrian 
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(Nat Geo Evolution, 2016)- fossils only preserve (and show) so much- a back tracing of 

simpler and simpler systems of eyes that are still hypothetically useful to the ancestor 

possessing the visual organs.  

In the case of visual systems, a simpler eye would evolve to support more 

complicated tasks without losing the less complicated underlying configuration. In this 

case Nilsson argues (Cronin, et al., 2014; Land & Nilsson, 2012; Nilsson & Arendt, 

2008; Nilsson, 2009) that the evolution and demand of more complex visual tasks lead to 

the evolution of the eye. Since all eyes collect light, using a lens to focus an aperture onto 

specialized photoreceptors and/or photo-transducing cells, and during the Cambrian 

functional eyes emerged in three phyla; chordates, mollusks, and arthropods (Fernald, 

2000). 

  Nilsson (2009) lists the increasing complexity of events of the evolution of the 

eye into four distinct stages: 1) A way of monitoring ambient (non-directional) light that 

controls wavelength dependent behaviors, 2) Directionality of light is obtained, 3) low 

spatial resolution allowing more complex visual tasks, and 4) high resolution vision 

abilities (C0nc0rdance, 2009; Cronin, et al., 2014; DonExodus2, 2008; Land & Fernald, 

1992; Land & Nilsson, 2012; Nat Geo Evolution, 2016; ScienceHook, 2016; Yong, 

2016); see Yong (2016) for an overview and to be consulted during this section. It is also 

of note that in the four stages of increasing complexity, only the first does not need 

opsins to preform, but every other documented case of increased complexity in stage two 

and higher does require an opsin (Cronin, et al., 2014; DNews, 2015; Yong, 2016). What 

an opsin is will be detailed later in this chapter. 
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Then stepwise evolutionary abilities, from opsins, to visual pigment sensors, to 

photoreceptors, to the visual organ (the eye), and beyond. Though mathematical 

representations of the complexity of cognitive models has not been quantified or 

productive (Chittka, et al., 2012). 

 

4.1. Circadian clocks & proto-eyes. 

Internal timing systems that are developed by cellular oscillations, and 

synchronized to some environmental cycle (usually a day-night 24 hour cycle), and this 

mechanism is perpetuated in virtually all organisms that have been tested (Gehring, 2014; 

iBiology, 2014a; Peirson, Halford & Foster, 2009). However these ‘transcriptional-

translational feedback loop’ (TTFL) synchronized systems are not conserved across these 

taxa; the proteins and genes involved with the circadian oscillations are different in 

quantity and type, three proteins are involved with cyanobacteria, and animal clocks use 

only two transcription factors that are very different from the cyanobacteria, and the 

fungus and plant clockworks use two transcription factors too, but those proteins are 

different between each other, and distinct from animals and cyanobacteria (Loudon, 

2012; Ribelayga, Cao, & Mangel, 2008; Vinayak, et al., 2013). This would imply an 

independently evolved emergence, however studies in red blood cells (O’Neill & Reddy, 

2011 as described by Loudon, 2012) determined a second oscillation system in the 

oxidation state of peroxiredoxin (PRX) proteins that is robust. This PRX model is 

strongly conserved across species with red blood cells, and appears to work with the 

TTFL model on other PRX rhythms that appear in other organs. And since PRX 
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oxidation proteins are nice to have to prevent oxygen poisoning, they are found in flies, 

plants, fungi, and cyanobacteria (as described and tested in the paper Loudon, 2012).  

Additional testing occurred to determine oscillation rhythms in the PRX model if 

the TTFL system was turned off. It was observed that the PRX oscillations shortened or 

lengthened depending on the TTFL mutant, so there is some coupling between the two 

circadian systems, but they are not directly tied together (Loudon 2012). Though it is 

assumed that the PRX system arose during the great oxidation event (GOE) 2.5 billion 

years ago, the two systems of circadian clocks are not connected in evolutionary history 

(Loudon, 2012). I would postulate, that since PRX was conserved, that the independent 

evolution of the TTFL systems in the other taxa was possibly due to a duplication of the 

genes, because having two independent clock systems that could communicate would 

prevent miscalculations on a cell, or organism’s part, to miss anything of import.  

Since these clocks are synchronized by environmental signals, which include 

light, but not always, this mechanism can be seen as the first evolutionary step toward 

vision (Gehring, 2014). Since other external factors can regulate the “biological clock’s” 

oscillations, the mechanism’s ability to also use light could be indicative of sensory 

system adaptation to novel stimuli (iBiology, 2014a). Or, the sensory receptors were 

undergoing evolution and were able to cross a threshold to be able to detect light waves, 

and perceive the regular and consistent scheduling of the stimuli. This is only speculation 

on my part, as no paper has described these clocks in this way. 

The detection, perception, and interpretation of light qualities in the context of 

timekeeping is not quite vision, though there have been papers indicating a direct link 

between vision and circadian rhythms. In Drosophila the gene that maintains circadian 
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cells in neurons which are directly linked to photoreceptors (Helfrich-Forster, et al., 

2001; Vinayak, et al., 2013), is directly linked to the strength of rod-cone gap junction 

couplings (Ribelayga, Cao, & Mangel, 2008). 

(Apparently Blue-light reception and circadian clocks coevolved- according to 

Gehring, 2014). 

Under phototaxis, light sensitive molecules can direct an organism toward or 

away from the light source, and phototropism is the plant cell behavior in the presence of 

light, usually growth oriented towards the light source  (Fernald, 2004; Foster, 2009; 

Gehring, 2014; ScienceHook, 2016; Stevens, 2013;  Yamaguchi, Desplan, & Heisenberg, 

2010; Yong, 2016). Basic phototaxis is the use of the whole organism’s response and 

detection, such as in some prokaryotes. These simple light sensing systems have high 

thresholds for behavior activation, and the light source cannot be accurately determined 

in these simple systems. Eukaryotes were able to localize the light sensing receptors into 

an “eye spot” (Shadowing) where direction of light could be determined in water in three 

dimensions (Arendt & Wittbrodt, 2001; Arendt, 2003; Arendt, Hausen, & Purschke, 

2009; DonExodus2, 2008; Fernald, 2006; Gehring, 2014; Nat Geo Evolution, 2016; 

ScienceHook, 2016), and this orientation was directly synapsed to any cilia to produce 

movement (ScienceHook, 2016).  

This is not vision, as detecting the surroundings to form an image would qualify, 

this phototaxis is one step below true vision.  

The selective evolutionary forces on light-sensing receptors to produce 

photosensory proteins is the use of sunlight as energy, and the avoidance of UV 

damaging light (Gehring, 2014). The evolution and development of a sensory spot, or 
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single reception point, to detect light had to form. These cyanobacteria formed “eye 

spots” for a selective advantage to be able to hide from harmful UV light, or orient to a 

light if photosynthesis was the goal. In cyanobacteria circadian clocks, and phototaxis are 

indicative of light sensing ability (Gehring, 2014).  

To correct the DNA damage by the UV radiation, photolyases- a DNA repairing 

enzyme mediated by light- evolved, and must have evolved early in the life history 

record, because these enzymes are found in nearly all species of prokaryotes and 

eukaryotes. Cryptochromes (which can detect blue, red, and far red wavelengths), are 

structurally similar to the photolyases, but they have only been found in most animals, 

higher plant species, and only a few prokaryote/eukaryote. For this spotty diversity to 

arise, then cryptochromes emerged three separate times, in three different clades 

(Gehring, 2014).  

Rhodopsins are trans-membrane proteins that create a pocket for the chromophore 

(retinal) is bound. The diversity of rhodopsins are limited- and will be discussed in 

greater detail with opsins- to two major categories; 1) microbial, and 2) animal (Gehring, 

2014).  

Additional axonal circuits developing (Figure 4) and increase in photoreceptors 

(Arendt & Wittbrodt, 2001; Arendt, 2003; Arendt, Hausen, & Purschke, 2009), further 

diversify and refining visual information processes and the eye. 

 

4.2. Multiple origins hypothesis vs. ‘Master’ regulatory conservation. 

In  von Salvini-Plawen & Mayr’s (1977) paper (as described in Fernald, 2000) 

compared the individual components of the varieties of eyes, such as structure, 
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photoreceptor types, axon positioning, among others, and concluded that eyes had 

evolved 40 different times, and possibly more in evolutionary history (denoted as a 

‘multiple origins hypothesis’). This seminal paper’s evidence has been called in to 

question by Gehring & Ikeo (1999) (reviewed by Fernald, 2000), as they isolated a 

‘master’ regulatory gene for eye development Pax-6 (Arendt & Wittbrodt, 2001; Arendt, 

2003; Arendt, Hausen, & Purschke, 2009; Blanco, et al., 2009; Czerny, et al., 1999; 

Vopalanski & Kozmik, 2009). This ‘master’ gene is perpetuated and conserved across 

many populations, and the cloning of a Drosophila Pax-6 and inserting it into another 

species (and vice versa- Gerhing and his collaborators use many different species 

(Gehring & Ikeo, 1999; Gehring, 2005)), the structural control remains, or is destroyed if 

a mutated Pax-6 gene is used. Gehring even expressed surprise that a Pax-6 gene was 

retained in a nematode that had lost it eyes due to life history evolution. And that 

nematode- Pax-6 was viable when cloned in Drosophila (Gehring, 2005). 

Interestingly in 2008, von Salvini-Plawen published another paper, which 

conceded their previous 1977 paper’s polyphyletic model of eye emergence was a 

shortsighted hypothesis. Yet, von Salvini-Plawen (2008) also rejects Gehring’s two-cell 

proto-eye model, and describes a modified theory which uses eye genes in combination 

with the previous polyphyletic hypothesis components that have not been disproven.  

So if this eye regulation gene is conserved, and detected (sometimes in 

homologue or mutated form) across the different clades of phylogenetic evolution of 

eyes. So Pax-6, by this logic, must have evolved before divergence of humans, mice, 

Drosophila, etc.  
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4.3. Eye divergence & development. 

From the fossil records (and current diversity of eye morphology) it was 

determined that there are two major classifications of eyes: camera-lens and compound. 

The structural composition of these classes are variable, but predictable.  If there were 

other classifications to eye morphology there were too few in number to exist in the fossil 

record, could not be documented in the fossil record, and/or did not sufficiently create 

fitness benefits to pass down hereditarily. There are a further four to five sub-

classifications to indicate complexity levels of the two classifications (Land & Nilsson, 

2012). For example in camera-type eyes, the receptors are located in a concave pit, 

individually specialized to detect wavelengths of light (DonExodus2, 2008; 

ScienceHook, 2016), a focus and lens are sometimes included to add additional 

complexity. And in compound eyes the overall convex structure is broken down into 

individual eye units (facets) called ommatidia, and each facet acts as its own eye with a 

range of separate receptors in each facet, Figure 2B.   

  These two classes of eyes will be further explained below. 

 

4.3.1. Compound eyes. 

  The first eyes in the fossil record were compound eyes from trilobites (Nat Geo 

Evolution, 2016). Some fossils are so well preserved that individual facets from each eye 

can be counted in rows and analyzed. This analysis shows that the trilobite secreted 

calcite (a mineral) to form its ridged outer shell, and its compound eyes, which would be 

designated as rock eyes, for their ridged form and formation through a mineral (Nat Geo 

Evolution, 2016). With contemporary compound eyes the individual facets are called 
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ommatidia and are not usually made up of ‘rock’ (though rock eyes still exist). 

Ommatidia diameter or quantity are the major causes of evolutionary divergence of insect 

species, with species specific specifications developing later (Briscoe & Chittka, 2001; 

Goldsmith, 2013; Gonzalez-Bellido, Wardill, & Juusola, 2011; Harzsch, Melzer & 

Muller, 2007; Posnien, et al., 2012), see Figure 2. 

 Each ommatidia is structured as a ‘mini-eye’ that contains some group of 

photoreceptors (the number varies on species), and usually a lens (Erclik, et al., 2009; 

Goldsmith, 2013; Harzsch, Melzer & Muller, 2007). The photoreceptors found in 

compound eyes are usually classified as rhabdomeric photoreceptors (named for the line 

of evolutionary divergence), which combine this divergence with unique 

phototransduction cascades, opsins and coupled proteins that are distinct from camera-

lens eyes and the ciliary photoreceptors usually attributed to them (Erclik, et al., 2009; 

Gonzalez-Bellido, Wardill, & Juusola, 2011; Harzsch, Melzer & Muller, 2007).  

There are two major optical types of the compound eyes; apposition eyes and 

superposition eyes (Land & Fernald, 1992). These types can be further sub divided into 

specialized forms (Beersma, Stavenga & Kuiper, 1975; Borst, 2009; Eye wiki, 2016; 

Goldsmith, 1990; Goldsmith, 2013; Hardie, 1985; Land & Fernald, 1992; Land & 

Nilsson, 2012; Lunau, 2014), though some debate occurs on a third major type, which I 

am classifying as a sub type here- neural superposition.  

Apposition eyes are classified as the simplest of the compound eyes (and 

potentially the ancestral compound eye), with each ommatidium structured by a lens 

forming an image on a rhabdoms directly under the lens, by light only in one direction for 

each facet (Beersma, Stavenga & Kuiper, 1975; Borst, 2009; Erclik, et al., 2009; Eye 
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wiki, 2016; Goldsmith, 1990; Goldsmith, 2013; Hardie, 1985; Harzsch, Melzer & Muller, 

2007; Land & Fernald, 1992; Land & Nilsson, 2012; Lunau, 2014). These individual 

images are collected by each ommatidia and collectively processed in the brain.  

Superposition eyes are specialized into two sub categories; optical and neural. 

Optical (refracting) superposition eyes have a gap between the rhabdoms and the lenses, 

though the directional light is filtered through many lenses and focused into one set of 

photoreceptors in one ommatidium. The neural (open-rhabdoms) superposition eye is 

structured like the apposition compound eye, but while the photoreceptors are isolated in 

individual ommatidium, the parallel optical axes that the photoreceptors intersect on with 

the neighboring ommatidium to pool collective information into the same neuron (Eye 

wiki, 2016; Goldsmith, 1990; Goldsmith, 2013; Land, 2005; Land & Nilsson, 2012; 

Lunau, 2014), though this is considered a variant of apposition eyes too. 

There is a third mentioned superstition eye (parabolic) that uses refractive mirrors 

to focus the image, though active information was lacking, and many papers did not make 

the distinction between this sub-category and other superposition eyes (Borst, 2009; Eye 

wiki, 2016; Goldsmith, 2013; Hardie, 1985; Land & Fernald, 1992; Land, 2005; Land & 

Nilsson, 2012; Lunau, 2014). And other specialized eyes were mentioned as ‘in-between 

compositions’ of different combinations of the types of compound eyes (Eye wiki, 2016). 

 

4.3.2. Camera-type eyes 

An easier to describe eye is the Camera-lens type, because humans possess two of 

them. It is far easier to understand a sense when it can be easily analogue to a sense the 
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researcher already possesses. Distinct from the convex compound eyes, the Camera-lens 

eyes are concave, and mostly associated with vertebrates.  

Starting from the primitive eyespot, a concave cup-like dip in the photosensitive 

cells creates directional localization of light and shadow, and constricting the opening 

that light can enter and activate those photosensitive cells specializes greater tracking of 

movement, though this image is dim- this eye is considered a pin-hole eye. Once a lens 

develops over the pin-hole/opening, the light can be focused on the retina, and the more 

convex a lens is, the sharper the images becomes. Further developments such as iris 

control, muscles to move the eye, binocular overlap, and neural connectivity 

(C0nc0rdance, 2009; DonExodus2, 2008; Erclik, et al., 2009 Handwritten Tutorials, 

2014; Handwritten Tutorials, 2011b, 2011c; Jean, Ewan, & Gruss, 1998; Lamb, 2009; 

Lamb, 2013; Land & Fernald, 1992; Land & Nilsson, 2012; Martin Shapiro, 2013; Nat 

Geo Evolution, 2016; Poejavlo, 2012; Rich Radke, 2015; Sanes & Zipursky, 2010; 

ScienceHook, 2016; Sinn & Wittbrodt, 2013; TED-Ed, 2015; Williams, de Wit, & 

Ghosh, 2010; Yong, 2016), see Figure 3.  

The architectural ability of one lens which filters to an array of repeating 

photoreceptors in the eye is different from the compound eye of individual facets of 

ommatidium. In the camera-type eye there are two major ciliary-photoreceptor types; 

rods and cones. The number and density of these rods and cones vary with species and 

eye type, but generally rods are correlated with the scotopic visual system for movement, 

circadian, and ‘monotone’ tracking, where cones are the phototropic system which 

includes color vision (Adler & Canto-Soler, 2007; Bowmaker, 2008; CrashCourse, 2015; 

DonExodus2, 2008; Ebrey & Koutalos, 2001; Fernald, 2000; Fernald, 2006; Gehring, 
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2014; Goldsmith, 2013; Imamoto & Shichida, 2014; Jean, Ewan, & Gruss, 1998; Lamb, 

2013; Land & Fernald, 1992; Land, 2005; Land & Nilsson, 2012; Nilsson, 2009; Pichard, 

Briscoe & Desplan, 1999; Rich Radke, 2015; Sanes & Zipursky, 2010; Sinn & Wittbrodt, 

2013; Soloveni, et al., 2009; Volpalensky & Kozmik, 2009; Warrant, 2009; Williams, de 

Wit, & Ghosh, 2010).  Some varying combination of the photoreceptor families dictate 

the varieties of vision that camera eyes have to offer. 

Both of these eye types are distinct because they diverge in the evolution of opsin, 

the opsins activated and used, the photoreceptors accumulated, how the photoreceptors 

are manipulated, and which genes control eye development. 

 

4.4. Opsins. 

The newest branch of vision research has been the opsin documentation and 

discovery. In light sensing systems of animals, it is the opsin protein class that is the root 

of all systems. The opsin is activated by a light sensitive vitamin A derivative (Land & 

Fernald, 1992; Land & Nilsson, 2012; Terakita, 2005). In animals this is a G protein-

coupled reaction - GPCR (or stimulus cell-membrane reaction) - intersecting the 

membrane in seven helical parts. In photoreceptors an opsin is attached to a chromophore 

(a ring molecule attached by a Schiff Base linkage to the opsin protein) is light sensitive, 

and it can alter the shape of the opsin depending on the wavelength of light that has 

activated it (Brown, Salgado & Struts, 2010; Deupi, 2014; Handwritten Tutorials, 2011a; 

Kelber, Vorobyev & Osorio, 2003; Shichida & Matsuyama, 2009; Stevens, 2013; 

Terakita, 2005). This action is phototransduction, which isomerizes (changes the 

arrangement of) the photometer by the photon, causing an enzymatic cascade (forward 
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moving cellular reaction) (Arshavsky, Lamb & Pugh, 2002; Ebrey & Koutalos, 2001; 

Fernald, 2006; Gehring, 2014; Gunkel, et al., 2015; khanacademymedicine, 2013c; 

Lamb, 2013; Porter, et al., 2012; Satoh, et al., 2010; Shichida & Matsuyama, 2009; 

Volpalensky & Kozmik, 2009; Yau & Hardie, 2009; Yildiz & Khanna, 2012; Zucker, 

1996). The altering of the opsin is the transfer of light to neural signals that are processed 

in the brain (Cronin, et al., 2014; Ebrey & Koutalos, 2001; Fernald, 2006; Frentiu, et al., 

2007; Gehring, 2014; Koyanagi & Terakita, 2014; Wernet & Desplan, 2004; Yildiz & 

Khanna, 2012; Yong, 2012).  

While opsins are the most common protein for light sensitivity, they are distinct 

from photoreceptor cells. The opsins are contained within the photoreceptor cells, and 

each photoreceptor cell is generalized or specialized to activate the opsins at different 

wavelengths of light (Ebrey & Koutalos, 2001). In vertebrates the photoreceptor cells are 

generalized into rods and cones, and in invertebrates these cells are called rhabdoms 

(Cronin, et al., 2014). In cones the different types of opsins are separated and then 

grouped together, so only the opsins that are activated by one wavelength range are in 

one cone type, and another opsin class in another. In rhabdoms there are 8 to 9 classes 

(not subfamilies, or sub-groups) of opsins are composed into one ommatidia. That 

ommatidia is repeated in the compound eye of insects in each facet from one to over 

10,000 facets per compound eye (Briscoe & Chittka, 2001). Photoreceptors will be 

discussed in section 4.6. 

 

 4.4.1 Evolution. 
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Morgan’s Cannon (or Last Universal Common Ancestor) (Land & Nilsson, 2012; 

Trezise & Collin, 2005) defines that conservation is more likely than random association- 

the simplest answer is usually correct. A relevant example is that in visual opsin 

evolution the simplest explanation for visual opsins to show up in all vertebrate species is 

for the ancient opsin gene to have existed before vertebrates and invertebrates split into 

separate clades. Since the sequencing of the bovine opsin in 1982 (Shichida & 

Matsuyama, 2009; Terakita, 2005) thousands of opsins have been found, from insects to 

mammals and even fungi (Idnurm & Howlett, 2001).  

While this paper will focus on the role of opsins as light sensors in visual systems, 

it should be noted that there are thousands of sequenced opsin genes, which are 

categorized into two types, and between six to eight sub-families combined in those types 

for opsins. Some of the sub-families have further division into subgroups, and in the 

subgroups of opsins only three directly participate with visual light sensing. Other 

subfamilies and subgroups function in a variety of non-visual ways, such as pigment 

control and circadian rhythm regulation, and some opsins have not been studied enough 

to determine their function (Bao & Friedrich, 2009; Collin, et al., 2004; Craig Blackwell, 

2013h; Ebrey & Koutalos, 2001; Fernald, 2006; Fryxell & Meyerowitz, 1991; Hering, et 

al., 2012; Kattie, et al., 2010; Koyanagi, et al., 2008; Koyanagi & Terakita, 2014; Lamb, 

2013; Land & Nilsson, 2012; Nilsson, 2009; Peirson, Halford & Foster, 2009; Shichida & 

Matsuyama, 2009; Soni & Foster, 1997; Terakita, 2005; Zhang, et al., 2011). Opsin 

subfamilies do have distinct parameters for classification, according to Terakita (2005) 

there are less than 25% similarity in the opsin genes between subfamilies, and greater 

than 40% similarity within subfamilies when seven subfamilies were determined. Soni & 
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Foster (1997) noted that subfamilies of vertebrate opsin had 65% similarity between each 

other and a 95% similarity within. Shichida & Matsuyama (2009) determined that six 

subfamilies of opsins show less than 20% identity between each other. While there is 

some discrepancy as to how many subfamilies opsins should be divided into, there is a 

similarity in the divergence that subfamilies are classified by (Henze, et al., 2012), and 

similar subfamily labels are consistent. 

Type 1 opsins are microbial, and type 2 opsins are (mostly) vision oriented (Craig 

Blackwell, 2013h; Fernald, 2006; Zhang, et al., 2011). Both types are considered to be 

conserved helical homologues, despite functional diversity (Gehring, 2014). Type 1 

opsins (microbial opsins) are the older of the two, found in archaea and eukarya, and 

probably existed before the archaea/ eubacteria /eukaryote divergence, and there is 

evidence suggesting the existence prior to even photosynthesis (Fernald, 2000; Fernald, 

2006; Gehring, 2005; Gehring, 2014; Zhang, et al., 2011).  Type 2 opsins (Animal 

opsins) are mostly attributed to the three phyla of visual light-

detection/sensing/transducing image forming eyes (Frentiu, et al., 2007b).  

With the common chain of opsin conservation, dating its evolution can be inferred 

that the ancient form of opsin existed before the divergence of fungi, and as Lamb (2013) 

argues, even earlier: before the amoeba-like placozoans diverged (Fernald, 2006; Land & 

Nilsson, 2012). The divergence of opsin families is depicted in Lamb (2013) as a 

speciation towards light receptive opsin genes, however it is relevant to opsin history to 

focus on vision evolution as the genetic changes are better known and documented in 

vision than other opsin based expressions (Koyanagi, et al., 2008; Lamb, 2013). As opsin 

expression can vary in sensitivities by single amino acid variations, which those 
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expressions should be taken within the context of the visual system it is being expressed 

in.  

Before vision diverged, it is theorized that opsins that had preferences for 

different membranes and once a genetic shift occurred subfamilies would begin to form.  

These subfamilies would be distinguished by the location of the opsin in a cell; some 

opsin genes remained on the surface of a cell, and others were membrane bound on 

organelles within the cell.  Then a second duplication event occurred specializing the 

opsin further to which surface membranes the opsin would be embedded in (Goldsmith, 

2013; Lamb, 2013; Neitz & Neitz, 2011). It is with further “Division of Labor” that the 

Rhabdomeric (r-opsins) and Ciliary (c-opsins) could diversify again and again 

(Vanfketeren, 1982). 

Ciliary opsins (c-opsins) are the precursor to most deuterostome, light-sensitive 

photopigments, and microvilli are the protostome (Goldsmith 2013). Generally this can 

be taken as the divergence of compound and camera eye types.  And taking the ciliary 

diversification further will help explain. Leading up to the diversification of vertebrate C-

opsins, the ciliary photoreceptors of chordate are classified into gradated groups of 

performance and specialization (Lamb, 2013). This indicates what systems of 

photoreceptors are seen at the different junctions of chordate groups: though the Hagfish 

is more of a “de-evolution” it represents an in-between evolutionary marker. Figure 4 

indicates the morphology of the different cordate photoreceptors. At each stage of 

evolutionary history some system was being altered, form more efficient transmission, to 

the division of labor (Lamb, 2013; Cook & Desplan, 2001).  
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Recent research has indicated that while it is generally assumed that ciliary-opsins 

diverged from rhabdomeric-opsins, there have been cases of ciliary-opsins in 

rhabdomeric eyes, and rhabdomeric structures in lens eyes (Peirson, Halford & Foster, 

2009; Stevens, 2013), though this is not common. Stevens (2013) has indicated that 

categorizing photoreceptors by cascades or opsin families (Lamb, 2013) may be a more 

efficient way to categorize these systems, but has not been used in the past often. In 

vertebrates ciliary-types are more common, and in invertebrates the rhabdomeric 

structures are more pronounced (Stevens, 2013).  

Rods evolved from cones (Collin, et al., 2004; Ebrey & Koutalos, 2001; Lamb, 

2009; Lamb, 2013; Shinhida & Matsuyama, 2009; Warrant, 2009; Yau & Hardie, 2009). 

Rod and cones have the same sensitivity to light, the difference is the prolonged 

sensitivity state of the rods vs. cones. The rods are effected longer then cones by being 

activated by the light. 

Visual pigments are evolutionarily related (Cronin, et al., 2014). In Shinhida and 

Matsuyama (2009) evolution experiments over the opsin where vertebrate and rod opsins 

are different evolutionary histories. In vertebrates a counterion was evolved to stabilize 

the transmembrane of the opsin-retinal attachment, which is unstable normally. This 

counterion has not been proven to exist directly in experiments yet. 

It is assumed a photoreceptor can only express one opsin and one visual pigment 

(this has been proven false, but is a simplified explanation to delve into to build on). 

 

 4.4.2. Structure. 
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 This protein is a 7-transmembrane- amino acid chain, that is depicted Figure 5, 

and directly interacts with wavelengths of light to change structure depending on the 

specific wavelength it is interacting with. 

 

4.5. The genes of eye morphogenesis. 

In the previous section 4.2. Gehring & Ikeo’s (1999) paper was used to discuss 

the isolated “master” gene that controls eye development: Pax-6 (Arendt & Wittbrodt, 

2001; Arendt, 2003; Arendt, Hausen, & Purschke, 2009; Blanco, et al., 2009; Czerny, et 

al., 1999; Vopalanski & Kozmik, 2009), this gene is also written as pax6 (which I will be 

using), Pax6, pax 6, and Pax 6 in other research papers. This gene is conserved across 

many species and phyla (Arendt & Wittbrodt, 2001; Arendt, 2003; Bao & Friedrich, 

2009; Bazin-Lopez, et al., 2015; Blanco, et al., 2009; Fernald, 2006; Gehring & Ikeo, 

1999; Hoshiyama, Iwabe & Miyata, 2007; Kozmik, et al., 2003; Rister, Desplan, & 

Vasiliauskas, 2013; Treisman & Herberlein, 1998; Weasner, et al., 2009; Yang, et al., 

2009a; Yang, et al., 2009b), though there is one paper that debates the last common 

primordial  Pax gene is a PaxB-like gene, due to the PaxB gene being found in jellyfish, 

and the last common ancestor of jellyfish and other eye phyla was when cnidarian and 

triploblasts diverged, the paper argues that Pax6-like genes evolved after the divergence 

in triploblasts, and triploblasts eyes arose independently in cnidarian species (Kozmik, et 

al., 2003).  Despite this paper, the pax6 homeobox (or Pax homeobox) genes are grouped 

to represent the conservation of the pax6 gene in eye development. Drosophila have pax6 

orthologues (called eyeless (ey) and eyegone (eyg)) that are found in the entire eye disk 

formation, and other pax6 orthologues in eye precursor cells (twin of eyeless (Toy), twin 
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of eyegone (toe), eyegone (eyg)) and eye formation, with direct connections to 

photoreceptor cells in some cases. This is probably an evolved function as pax6 family 

genes have been found in non-eye forming species with no photoreceptor connection or 

regulation. Additionally the toy gene is found in the Drosophila genome upstream of the 

ey gene, and toy is necessary to initiate the production of ey transcription factors, which 

have been shown in ancestral like species to exist in a state of redundant control (Arendt, 

2003; Czerny, et al., 1999; Yang, et al., 2009b). 

Though since the Gehring & Ikeo (1999) paper other genes have been found to be 

necessary in eye development, though some genes do vary between phyla and species 

(Adler & Canto-Soler, 2007; Amore & Casares, 2010; Fernald, 2006; Weasner, et al., 

2009).  The six/sine oculus gene family is independent of the pax6 gene family but is 

common in eye development of insects, vertebrates and planetarians (Arendt & 

Wittbrodt, 2001; Arendt, 2003; Hoshiyama, Iwabe & Miyata, 2007), and many six genes 

are found in late stage eye development and are expressed differently across species. 

Six1/2 orthologues for instance are late expressed transcription factors for eye 

development, six2 in vertebrates is specifically expressed in photosensitive cells, and six3 

appears to assist in anterior brain development and work independent of pax6 (Arendt, 

2003), and sine oculis (so) is the Drosophila orthologue to this gene family, which is 

activated by toy (Arendt, 2003; Blanco, et al., 2009; Moses, 2002), and Optix genes 

which are included in eye field specification genes.  

Orthodenticle (otx) genes are expressed differently from the six/sine and pax6 

gene families. The otx genes are part of a larger OAR (Otx/odt, Arx/crx, & Rax/Rx) family 

and appear conserved for photoreceptor and eye development in many, if not all, retinal 
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cells (Adler & Canto-Soler, 2007; Arendt, 2003; Bazin- Lopez, et al., 2015; Blanco, et 

al., 2009; Fernald, 2006; Janssen, Budd & Damen, 2011; Moses, 2002; Rister, Desplan, 

& Vasiliauskas, 2013). Otx2 in early eye development regulates forebrain development 

(where eyes usually develop), Rx3 influences cell migration during optic cell evagination 

(Adler & Canto-Soler, 2007), and help regulate ephs & ephrine gene families, and keep 

eye field and the anterior neural plate segregated (Bazin-Lopez, et al., 2015). Crx and 

Otx2 in later eye formation are directly linked to rod and cone photoreceptor 

determinations in vertebrates (Arendt, 2003). Odt are specific to Drosophila compound 

eye formation, which regulates eya expression through Wingless (Wg) signaling 

inhibition and Hedgehog (hh) signaling expression (Blanco, et al., 2009). Odt in 

Drosophila also regulates the opsin genes rh3 and rh5 by activation (Rister, Desplan, & 

Vasiliauskas, 2013). 

Ski family genes are transcriptional factors that regulate cell transformations in 

vertebrates (Moses, 2002). The dac gene is required for normal eye formation, but is not 

as essential as eya or so in Drosophila, it does show regulation of ommatidium 

segmentation and specification, and works in tandem with ey and toy (Blanco, et al., 

2009; Moses, 2002; Yang, et al., 2009a), and also can be found in helping to form the 

kidney, muscle tissue, and the inner ear (Fernald, 2006). 

The eya gene family, specifically the eya gene is necessary for normal eye 

development, and is usually discussed in tandem with the so gene (even if they are in 

different families). Eya or so deleted mutants are lethal as most of a face is missing 

(usually) from development, additionally any regulatory deletions of genes that go with 

either gene creates an eyeless phenotype, though still living. Ey genes directly regulate 
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eya genes, and if ey is absent then eya will produce an eye larger than normal, but 

overexpression of ey or miss-expression of eya will cause smaller than normal eyes 

(Moses, 2002; Yang, et al., 2009a). So genes are activated by toy genes and then 

dependent on eya genes to properly maintain their feedback loop for production of 

transcription factors (Blanco, et al., 2009).  

Teashirt (TSH) genes in Drosophila are for embryo development for trunk 

segmentations, and produces a transcription factor with zinc-finger motifs that induces 

activation of ey, so, and dac genes, and in a feedback loop ey induces tsh to express 

(Gehring & Ikeo, 1999). Mutant tsh genes in the antennal disk formation cause ey, dac 

and so expression to form eyes on the antennae of Drosophila, but knockout mutants of 

tsh form eyes fine with antennae, so it has been proposed that tsh has no direct link to eye 

formation, however it is also possible that tsh is a redundant gene (Moses, 2002). Though 

not expressly detailed, but from Moses (2002) to Blanco, et al., (2009) tsh is no longer 

discussed in any paper I have read. Moses (2002) speculated that tsh was redundant to the 

transcriptional factor cubitus interriuptus (Ci), which are also zinc-finger motifs. Ci 

transcriptional factors are regulated by the hedgehog signaling pathway, and the full form 

of the Ci (Ci155) activates the eya gene, which causes cell clusters to form with either so 

or eya expression (ocelli primordium). Signaling molecules DPP and Wingless (Wg- 

which works in antiasthma to DPP) assist in segregating the eye field with other genes 

(such as ey) for cell fate determinations. Since the Ci has accumulated in its activator 

form (Ci155) in the primordium, hh then cleaves the transcriptional factor into Ci75, 

which then inhibits DPP and eya so the Ci75 can induce photoreceptor cell 

differentiation (Amore & Casares, 2010; Blanco, et al., 2009). While Blanco, et al. (2009) 
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never mentions tsh, it is possible that tsh has been renamed as one of the two operating 

forms of Ci (I would assume Ci155), but that is only speculation.  

TRX (Iroquois) are a gene complex in Drosophila compound eyes that control the 

transcription factors that regulate the dorsal/ventral fields of the ommatidium in eye 

differentiation (Dominguez & de Celis, 1998). 

These genes and gene families are only reflective of acting in the formation of eye 

morphology, and many genes also are part of the neural network formation and 

differentiation which will be looked at in detail later. 

 

4.6. Photoreceptors. 

While opsins are the most common protein for light sensitivity, they are distinct 

from photoreceptor cells. The opsins are contained within the photoreceptor cells, and 

each photoreceptor cell is generalized or specialized to activate the opsins at different 

wavelengths of light (Ebrey & Koutalos, 2001). In vertebrates the photoreceptor cells are 

generalized into rods and cones, and in invertebrates these cells are called rhabdoms 

(Cronin, et al., 2014). In cones the different types of opsins are separated by activated 

wavelength and grouped together by the same activated wavelength, so only the opsins 

that are activated by one wavelength range are in one cone type, and another opsin class 

in another. In rhabdoms there are 8 to 9 classes of opsins are composed into one 

ommatidia. That ommatidia is repeated in the compound eye of insects in each facet 

(Briscoe & Chittka, 2001). 

As indicated above, increasingly complex tasks in visual behavior would drive the 

evolutionary complexity (Land & Nilsson, 2012). In the case of detecting light intensity 
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and movement, only one type of photoreceptor is necessary, while color vision requires 

two or more types of photoreceptors. In terms of prey (or predator) detection (Arendt & 

Wittbrodt, 2001; Arendt, 2003; Baden, et al., 2013b; Endler, 1991; Houde, 1997), the 

movement of an object can take precedence over what color the object is (Melin, et al., 

2006), whereas determining fruit ripeness, or other food colors indicative of more 

nurturance, it is necessary for survival purposes and would require two or more 

photoreceptor types (Nat Geo Evolution, 2016). Each is a complex component of vision, 

but requires different levels of complexity and bias to function. Further complication 

arises when both signals are received along the same pathway. The innate bias of 

reception of color over movement, or vice versa, is dependent on the evolutionary history 

of the population. 

 

 4.6.1. Evolution. 

For most of photoreceptor evolutionary history, opsin evolutionary history is the 

star. As opsins are a key component of photoreceptors, and their activation by light is the 

highlighting goal of most photoreceptors, the emergence of an opsin gene would predate 

the structure of a photoreceptor. As explained above in the common chain opsin 

evolutionary development, and the conflicting theories in when the two classes 

(rhabdomeric vs ciliary) diverged can carry the evolution of photoreceptors to a common 

point of the deuterostome/protostome divergence (Bao & Friedrich, 2009; Collin, et al., 

2004; Cook & Desplan, 2001; Craig Blackwell, 2013h; Ebrey & Koutalos, 2001; Fernald, 

2006; Fryxell & Meyerowitz, 1991; Gehring, 2014; Hering, et al., 2012; Kattie, et al., 

2010; Koyanagi, et al., 2008; Koyanagi & Terakita, 2014; Lamb, 2009; Lamb, 2013; 
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Land & Nilsson, 2012; Nilsson, 2009; Peirson, Halford & Foster, 2009; Shichida & 

Matsuyama, 2009; Soni & Foster, 1997; Terakita, 2005; Zhang, et al., 2011). In Gehring 

(2005) two major hypothesis for animal photoreceptor origins are put forth; 1) the cell 

differentiation model, and the 2) symbiosis model.  

In the cell differentiation model assumes an ancestral colony of flagellate-like 

cells is the precursor to all animals. This colony has many cells, all of which possess an 

‘eyespot’ (a photoreceptor organelle), this eyespot is used to convert photons to 

mechanical movement, which then uses the connection to a flagella for phototaxis. This 

colony then undergoes a population wide differentiation (through evolutionary time) so 

unicellular photoreceptors are present in a ciliated membrane, with each photoreceptor 

possessing a visual pigment, microvilli, melanin pigment granules, and cilium. After this 

the evolution of the unicellular photoreceptors would differentiate into the two cell types 

(pigment cell and photoreceptor cell) of the proto-eye (Gehring, 2005; Lamb, 2009). 

The symbiosis model (also known as the Russian doll model) goes further back to 

cyanobacteria, and the presumed emergence of light-sensitivity. These light sensitive 

cyanobacteria were (at a random point) eaten but not digested by a red algae (eukaryote) 

that then used the cyanobacteria as a primary chloroplast, surrounded by two membranes. 

Later on a cyanobacteria engulfed by a red algae was taken up by dinoflagellates as 

secondary chloroplasts, which have four membranes surrounding the system. Some 

species of dinoflagellates would take their four membrane secondary chloroplasts and 

evolve/transform the system to a pre-photoreceptor organelle, and the others continued to 

use photosynthesis. The dinoflagellates that had the pre-photoreceptor organelles are 

assumed to have transferred the genes to cnidarians as dinoflagellates are symbionts 
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among cnidarians, which is the most unlikely part of this model. This model uses this 

transfer of genomic information as the explanation for the random emergence of 

photoreception at different points in time among different groups of cnidarians (Gehring, 

2005). 

For simplification, due to genetic analysis and debate, it can be inferred that the 

ciliary and rhabdomeric/microvilli photoreceptor cell types probably emerged from a 

precursor photoreceptor cell (Fain, Hardie, & Laughlin, 2010), and either/both of those 

cell types are described in almost all phyla. Ciliary photoreceptors use either the c-opsins 

or the G (subscript 0)-opsin, and the rhabdomeric photoreceptors exclusively use r-opsin. 

It can be implied that these strict combinations of [photoreceptor + opsin] division 

occurred before the bilaterian/cnidarian split. In most cases once photoreceptor cell type 

will become the sole visual-photoreceptor, while the other will develop into a non-visual 

role, or become a complementary or assessor system to the visual-photoreceptor type 

(Fain, Hardie, & Laughlin, 2010; Lamb, 2009; Vopalensky & Kozmik, 2009). 

In the case of the rhabdomeric-photoreceptor (r-PR) cells, these have become the 

primary visual photoreceptors in most invertebrate species. This may be due to the r-PRs 

high sensitivity, large responses to singular photons, and the outperformance in cascade 

speed in dim and daylight conditions compared to invertebrate ciliary-photoreceptors (c-

PRs). In invertebrates the c-PRs are limited in function, range, intensities, and cannot 

transition from dim to daylight conditions (Ebrey & Koutalos, 2001; Fain, Hardie, & 

Laughlin, 2010; Lamb, 2009; Lamb, 2013). 

However the ciliary-photoreceptors dominated the chordates probably due to the 

development of the ‘rod-like’ photoreceptor. The low-sensitive ‘cone-like’ c-PRs in 
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invertebrates combined with the new highly-sensitive ‘rod’ c-PRs to create a full range of 

sensitivities; the duplex retinae [rods + cones]. Further the duplex c-PRs are cheaper 

energetically over r-PR, because the r-PRs are constantly active and c-PRs can ‘power 

down’ the rods when dim-light is not present, so the low sensitive (low energy) cones are 

active. Ciliary-PRs are cheaper still due to more efficient photon tracking/counting in a 

given space compared to r-PRs, requiring less energy for guessing, and it is possible c-

PRs were bettered suited for shadow detection (Ebrey & Koutalos, 2001; Fain, Hardie, & 

Laughlin, 2010; Lamb, 2013; Nilsson & Arendt, 2008), see Figure 4. 

Rod emergence occurred recently after the four precursor cone opsins had formed 

(Lamb, 2009). This is due to need for high gain in single photon activation, and while this 

emergence occurred recently in vertebrate duplex retina, a duplex in a jawless model 

species for pre- jaw/jawless ancestral divergence, though the lamprey visual system is 

mostly cones, the duplex cone/rod distinctions comes from the single photon activation. 

So it is possible that the duplex ability of the retina emerged and developed before the 

jaw/jawless divergence, though not before rods appeared in the evolutionary record 

(Warrant, 2015). Even more encouraging is that, in fitness standards, the rods cost less 

energy to maintain than cones, and so the selective pressure should have funneled to rod 

formation no matter the species (Warrant, 2009). 

At some point during the improvement of the C-opsin, an even further ancestral 

Cone photoreceptor emerged. This photoreceptor was more efficient and could activate at 

specific wavelengths of light. Before a higher set of changes occurred, and before 

vertebrate diversification, this cone doubled itself into short-wavelength –sensitive 

(SWS) and long-wavelength-sensitive (LWS) photoreceptors. This would have allowed 
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for a greater range of visual perception, and an increased sensitivity to the environment 

(Ebrey & Koutalos, 2001; Goldsmith, 1990; Lamb, 2013; Shichida & Matsuyama, 2009). 

During the Cambrian the two cone photopigments underwent two separate cases 

of full genome duplication. However, when the SWS and LWS duplicated a forking 

phyletic tree should emerge but has not (this tree is most likely monophyletic). Lamb 

(2013) discusses the differing selective pressures that could have caused this odd five 

cone system. For example; the SWS cone peak sensitivity is around 380 nm (violet/UV), 

then a twice doubling (and the division of labor) of the cone genome would grant a UV-

SWS, the original 380 nm-SWS, and a 440 nm-SWS. In this hypothetical system there 

would be greater selective pressure to see more of the visual color spectrum, as (it is 

assumed) one UV receptor will be able to obtain the same amount of information as two 

UV receptors, then the second UV receptor would not be selected for (Lamb, 2013). Now 

that five cones are present in vertebrates (SWS1, SWS2, Rh1, Rh2, and LWS)* then 

color vision can be demonstrated in some narrow scope (Ebrey & Koutalos, 2001; Lamb, 

2009; Nilsson & Arendt, 2008). *exception in crawfish due to the 12 photoreceptors? 

In the fly there are eight photoreceptor cells that are assigned two visual pathways 

(Lunau, 2014; Strausfeld & Lee, 1991) which are processed in parallel. The R7 & R8 are 

uniquely processed, as the R1-R6 are usually combined in the activation. The R7/8 

tandems can be either pale or yellow, and depends on their sensitivity which tandem the 

photopigments are classified on (Bishop, 1974; Hardie, 1985; Horridge & Mimura, 1975; 

Kirschfeld, et al., 1983; Stark, Frayer & Johnson, 1979; Tsukahara & Horridge, 1977; 

Tsukahara, Horridge & Stavenga, 1977; Yamaguchi, Desplan, & Heisenberg, 2010). The 
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pale or yellow determination has to do with which opsins is expressed in the R7/R8 

photoreceptor. 

Recently there have been studies which have mapped the use of non-opsin and 

non-image-forming photoreceptor cells, which are used in C. elegance and D. 

melanogaster (larva) to avoid light. Specifically the ‘non canonical” systems still use a 

G-protein coupled pathway, but in the place of the opsin-gene, anther light sensitive 

protein is used (Lite-1 or Gr28b) which are still activated by light, both lack any 

phosphor-enzymes to induce the depolarization of normal photoreceptor cells. 

Additionally the Gr28b protein cascade is missing an inducing enzyme to start the 

phototransduction cascade (Diaz & Sprecher, 2011). But still a photoreceptor without 

opsins, and without image forming mechanisms is remarkable. Though non visual opsins 

and melanopsin (discussed before) have been coopted for functions not involving light 

detection directly, such as circadian rhythms (Koyangi, et al., 2005; Lucas, 2013; Peirson, 

Halford & Foster, 2009), which may have been the precursor to all visual systems.  

 

 4.6.2. Structure & diversity. 

Tuning of photoreceptor sensitivity requires a change in the opsin gene to change 

the sensitivity of the photoreceptor (Bowmaker, 2008; Collin, et al., 2009; Osorio & 

Vorobyev, 2005; Stevens, 2013). Further tuning can occur due to colored filters or oil 

drops for photoreceptors (Bowmaker, 1980; Goldsmith, 1990; Hart, et al., 2000).  

In the case of oil droplets, these are found in the cones of primitive fish, which 

infer an ancestral/ancient cone composition which includes an oil droplet (Bowmaker, 
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2008). These oil droplets, which are usually colored, filter the light-stimuli to a narrowed 

wavelength before the photoreceptor can be activated by the stimuli (Goldsmith, 2013).  

In Goldsmith (2013) the discussion of an evolutionary end results as mountain 

peaks on a landscape (this landscape is adaptive probabilities given genetic possibilities) 

(poejavlo, 2012). This mountainous peak system described as the evolutionary history of 

any eye system with the end peak resulting as a working eye for the environment it exists 

in. In this case an organism leaping from one peak to another is unlikely. This is his 

explanation for things like oil drops, etc. As these peaks are a result of historical 

evolutionary events imbedded with extinction probabilities and environmental shaping 

unlikely to translate correctly between species.  

Photoreceptor cells have huge membranes folded for layers of perpendicular 

sections. In vertebrates it is ciliary lenin folded photoreceptors, in arthropods it’s 

toothbrush structure of rhabdomeric photoreceptors. Some have filters (Cronin, et al., 

2014; Soloveni, et al., 2009), see Figure 2 and Figure 3. 

Photoreceptor subtype diversification and subtype specification can determine 

which opsin receptors are present in the corresponding photoreceptor, and this can be 

controlled by different transcriptional genes and activations (Arikawa & Stavenga, 1997; 

Ashley & Katz, 1994; Awata, Wakakuwa, & Arikawa, 2009; Beersma, Stavenga & 

Kuiper, 1975; Chiao, et al., 2000; Choe, et al., 2006; Chou, et al., 1996; Chou, et al., 

1999; Clandinin, et al., 2001; Cook & Desplan, 2001; Cook, et al., 2003; Douglas & 

Jeffery, 2014; Dupuis, et al., 2012; Friedrich, 2008; Friedrich, Wood & Wu, 2011; 

Goldsmith, 2013; Heisenberg & Buchner, 1977; Katti, et al., 2010; Kelber, 2005; 

Kitamoto, et al., 1998; Kitamoto, Ozaki, & Arikawa, 2000; Kumar & Ready, 1995; 
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Montell, et al., 1987; Papatsenko, Sheng, & Desplan, 1997; Polaczyk, Gasperini, & 

Gibson, 1998; Soloveni, et al.,  2009). Additionally the rate of transduction of the visual 

information processed can cause an increase in fitness depending on the light qualities or 

environmental optimums (Chittka & Menzel, 1992; Ebrey & Koutalos, 2001; Eckstien, et 

al., 2013; Frederiksen, Wcislo & Warrant, 2008; Goldsmith, 2013; Gomez & Thery, 

2004; Gomez & Thery, 2007; Hofmann, et al., 2009; Juusola & Hardie, 2000; Juusola & 

Hardie, 2001; Katti, et al., 2010; Osorio & Vorobyev, 2005; Stavenga, 1992; Stavenga & 

Arikawa, 2011; van Hatteren, 1992). 

 

4.7. The other genes of vision. 

Though some genes and transcription factors were functionally tuned to eye 

morphological development and structure, as mentioned above, some genes also 

contributed to other tissue development, other sensory systems, and contributing to the 

overall health of the developing embryo (as anything is better than lethal). Otx genes in 

the vertebrates assist in the retinal ganglion development, six3 in vertebrates contributes 

to brain (specifically anterior) development (Ardent, 2003). Early optic vessel neuro-

epithelial cells co-express Rx, Hes1, otx2, pax6, six9, six3 & Lhx2 according to Adler & 

Canto-Soler (2007), where otx2 and Hes1 are non-eye field transcription factors that may 

contribute to the forebrain development in vertebrates. Toy or eyg mutants create a lethal 

(headless) embryo, so contributes to total head structure development in some form 

(Blanco, et al., 2009).  

The hedgehog signaling pathway (hh) was used to regulate and cluster the 

ommatidium subtypes, and this was due to the induction of the hh signal along the 
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photoreceptor neurons, allowing for the activation of the clusters, which is the final cell 

differentiation to then start the neuronal targeting (Huang & Kunes, 1996). 

N-cadherin genes are necessary for neuronal development between photoreceptor 

R-cells to properly target the appropriate brain layer for proper vision-stimuli processing 

and unpacking, to not reach the proper area of the brain could prevent information from 

being relayed properly, or not working at all.  In invertebrates the Liprin-(alpha) is cell-

autonomous in all of the R1-R6 subtypes, which allows the photoreceptor axons to reach 

their proper targets, with assistance from the tyrosine phosphatase LAR receptor (Choe, 

et al., 2006; Clandinin & Zipursky, 2002; Hofmeyer, et al., 2006). And the ninaB and 

ninaD genes are only expressed in the Drosophila brains (Yang & O’Tousa, 2007). 

Runt and breakless genes are not expressed in the same R-cell axons, but work in 

similar regulation signaling systems for cone growth and targeting/recognition of laminal 

glia determinants (Clandinin & Zipursky, 2002). PTP69D genes are also expressed in R-

cell axons and growth cones, but act during embryonic development, guiding most of the 

neurons to the developing central nervous system (Clandinin & Zipursky, 2002). Dock 

and pak genes appear to form an intermediate targeting pathway for axonal targeting of 

the medulla or lamia layers of the brain, and these genes along with the Trio (which has 

not been studied as thoroughly) all assist in conserving the cone R-cell growth and signal 

transduction pathways evolutionarily (Clandinin & Zipursky, 2002). 

The genes found in rhabdomeric photoreceptors could be vertebrate ganglion cells 

with R-opsin expression and the pax6, Math5, Brn3 & BarH transcription factors being 

present in both versions (Fernald, 2006). 
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Drosophila has an additional gene from the WAVE/Scar complex and actin 

family; CYF1P/Sra-1. This member of the remodeling regulation family controls the 

terminal web organization of the rhabdomere, adherens junctions, rhabdomere extension, 

basement membrane integrity, and retina depth. CYF1P-SCAR-ARP2/3 is a pathway that 

controls and moderates the remodeling of specific tissues (such as during morphogenesis) 

(Galy, et al., 2011). Also in Drosophila a nonA gene, is necessary for the 

electrophysiological signaling to remain consistent and strong, lacking nonA could cause 

the electrical impulse to dye before reaching the target layer of the brain for processing, 

and the INAD protein helps regulate the signaling pathways in Drosophila (Jones & 

Rubin, 1990; Liu, et al., 2011). 

There are potentially many other genes that may contribute to proper eye 

development in many different species that are not discussed here. This could be due to 

not finding the correct papers, the selective discussions revolve around the pax6 or opsin 

genes, or the gene has not been isolated and described yet. And a future review should 

discuss these genes in detail. 

 

4.8. The neural network of vision. 

Since the simple ‘proto-eye’ used a simplified system of a single photosensitive 

cell (with a shading cell) to relay light information to a motion system (usually a flagella) 

some assumptions can be made. This transmission system that connects the 

photosensitive cell to the motor cell(s) could be considered a neural network, or a 

primitive neural system preforming axon-like processes (Arendt, Hausen, & Purschke, 

2009). This system would develop in complexity.  
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Any minimal eye structure is dependent on the neural components for visual 

analysis. So in reality there are two minimal components to the eye, plus the neural 

structure to form a complete visual system. Though the evolution of new neural abilities 

and circuits is not required to obtain information from novel photoreceptors if they arise 

(Skorupski & Chittka, 2011), and this will be demonstrated later. 

Neurons will be described in their functional, structural, and co-operative ability 

in the circuitry of visual systems. Neuronal cells that operate/preform the same tasks will 

be grouped together into cell types, and names for these cell types will be classified to the 

best of my ability. However, naming neuron cell types can be complicated, as not every 

cell type may have been found yet, and the same cell types found in different species 

could have been given different names over time, and no consensus naming had yet been 

proposed (Masland & Chittka, 2004).  As mathematical models of neural circuity and its 

complexity have not been described in any papers I have seen, nor has the mathematics to 

describe how a complex system could have come about, there is a hole in theoretical 

modeling. Any mathematical expressions to display neural circuitry could be used in a 

predictive manor for behavioral systems, color vision processing, and cognitive abilities 

(Chittka, et al., 2012).  

Here the Human (Homo sapiens) and Drosophila melanogaster neuronal systems 

will be described in as much detail as is possible.  

 

 4.8.1. Model: Vertebrates. 

 In vertebrate neuronal circuitry, intricacy and precision dominate retinal wiring 

discussions, and can be represented on finer and finer scales of ‘complexity’. Almost all 
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neurons are clumped into three distinct layers, and interconnected by two synaptic layers 

(also called a ‘brain’). Each of these three layers can be further arrayed into sublayers, 

and neuronal cell types that have been specified to preform unique functions will often be 

restricted to one sublayer (Baden, et al., 2013a; Gollisch & Meister, 2010; Masland, 

2012). In vertebrates there have been at least 50 neuronal cell types that have been 

described in the vertebrate neural network (Some papers have implied there are more 

than 60 cell types) (Gollisch & Meister, 2010; Masland, 2012: Seung & Sumbul, 2014). 

Though each of these cell types cannot be analyzed in depth, specific categories of the 

cell types will be.  

 When the vertebrate eye develops, it can be classified in three stages; the first 

phase forms the primary structures of the eye, the second phase is the maturation of these 

eye structures, and the third phase is the neuronal connections that form between the 

retina and the “optic tectum”/”Super colliculus” (Jean, Ewan, & Gruss, 1998; Sanes & 

Zipursky, 2010). Signaling cascades, extracellular signaling systems, and intracellular 

transcription factors and their receptors direct and regulate axonal outgrowth, and cellular 

proliferation and differentiation (Jean, Ewan, & Gruss, 1998; Sinn & Wittbrodt, 2013; 

Williams, de Wit, & Ghosh, 2010).  

 The key neuronal structures that develop in the first phase of eye morphogenesis 

are the optic stalk, the optic nerve tract, and the optic cup. By the second phase the inner 

layer of the optic cup matures into the neuronal and glial cell types. The neuronal cell 

types differentiate into three classes: 1) cones & rods (light sensitive photoreceptor 

neurons), 2) Bipolar/horizontal/amacrine neuron cells (interneurons), or 3) retinal 

ganglion cells (RGCs), with each class developing at specific times during 
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morphogenesis, RGCs first, and photoreceptors last (Jean, Ewan, & Gruss, 1998; Reese, 

2011; Sinn & Wittbrodt, 2013; Williams, de Wit, & Ghosh, 2010). In summary and in 

general there are six cell types in vertebrate retina that develop: 1) the photoreceptors or 

light sensitive receptors, 2) the RGCs also called projection neurons; 3-5) the three 

interneuron types, and 6) glial (Muller glia) cells (Sanes & Zipursky, 2010), see Figure 3. 

 These six cell types are distributed non-randomly within the three ‘nuclear’ layers 

described above. These layers contain only the neuronal cell bodies, no synapse, the 

plexiform layers spate the layers and contain only synapses, and no cell bodies form the 

cell types. The first outer layer contains photoreceptors, the inner layer contains the 

interneurons and glia cells, followed by the ganglion layer (RGCs and some amacrine 

cells). The six major cell types are able to be classified by cell subtype by grouping the 

cells by the analysis of their molecular expressions/compositions, their physiological 

construction/composition, their gene expressions, and/or their cellular structure (Sanes & 

Zipursky, 2010). Photoreceptors primarily from only two subtypes in vertebrates- rods 

and cones, though cones can be further sub-grouped by the spectral sensitives /opsin/ 

visual pigment they express. Approximately there are 12 bipolar cell types in mammals 

(Masland, 2012; Priebe & Ferster, 2012; Reese 2011; Sanes & Zipursky, 2010; Seung & 

Sumbul, 2014), 20 types of RGCs, and 30 types of amacrine cells. 

 In the outer vertebrate retinal synaptic region (the outer plexiform layer) the 

bipolar cells, horizontal cells, and photoreceptors are linked via electrical and chemical 

synapses; usually forming a multiple-connect synapse from the large photoreceptor nerve 

terminals and the photo-synaptic processes in the horizontal and bipolar cells (Sanes & 

Zipursky, 2010). The vertebrate inner retinal layer (inner plexiform layer) contain the 
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synapses of the retinal ganglion, bipolar, and amacrine cells which is indicative of 

laminar specificity (Sanes & Zipursky, 2010). 

The textbook standard visual system partitions visual coding in three stages: 1) 

light sensed by retina, retina translates light to neuro-electro signals, and information is 

standardized with normalized range, 2) the retina divides the primary visual signal (think 

of it as a pixilated photo) into parallel info streams- each stream translates only one 

aspect of the original ‘photo’- only one pathway transmits the red saturation, another 

contains only contrast information, etc. 3) the information is compiled by the cortex 

where it is combined to “determine boarders of objects and visual perceptions” (Masland 

& Martin, 2007; Masland, 2012). Specifically with neuronal cell types, there are three 

stages for the visual processing of the total combined cell types (Masland, 2012; Reese, 

2011). The first stage is information processing by the retina, which is specifically the 

bipolar and horizontal cell types sampling the rod and cone photoreceptors, or the 

photoreceptors when activated by light convert the light energy into electrical signals, 

and those signals are transmitted to bipolar cells (Asari & Meister, 2014; Masland, 2012). 

Rods are outliers in the discussion of development as they evolved much later than cones, 

and their circuitry is not as complex as cones: a bipolar cell that receives information 

form rods only, has a modulated output due to an amacrine cell, a second amacrine cell 

feeds the modulated output of the ‘rod-system’ into the same circuitry that processes cone 

information. Inhibitory feedback in rods and cones is controlled by horizontal cells, to 

gain control of the signals (Asari & Meister, 2014; Masland, 2012; Reese, 2011). Bipolar 

cells transmit the electrical signal obtained from the photoreceptors (and modified by 

bipolar/amacrine interactions) to ganglion cells in the inner retina (Asari & Meister, 



A REVIEW OF EVOLUTION, BEHAVIOR, AND VISION WITH … 93 
 

2014; Masland, 2012). Unless the bipolar cell has been specialized (i.e. rod-only or blue-

cone only) it is a generalized rule that bipolar cells are cross connected to cones of 

different specialized sensitivities, and each cell type is distinct by which information is 

obtained from their cross connected photoreceptors, and sent on (Masland, 2012; Priebe 

& Ferster, 2012; Reese, 2011; Sinn & Wittbrodt, 2013; Williams, de Wit, & Ghosh, 

2010). 

Synaptic neural connections are spontaneously patterned by retinal waves. These 

waves are coupled to visual circuit refinement; the waves disrupt/decouple neuronal 

activity, and new neuronal activity can create new synaptic formations/circuitry rewiring 

after the retinal waves have gone, indicating a synaptic plasticity of neuronal rewiring 

(which is controlled by retinal acetylcholine receptors) (Burbridge, et al., 2014; Janssen, 

Budd & Damen, 2011). 

 There are a small number of isolated retinal ganglia that have been found in 

mammalian’s inner retina that are uniquely photosensitive. When they have been isolated 

from other photosensitive cells (can the corresponding retinal neurons) these ganglion 

still respond to light autonomously; named intrinsically photosensitive retinal ganglion 

(ipRGCs) (Emanuel & Do, 2015; Lucus, 2013).  

 

 4.8.2. Model: Drosophila melanogaster. 

 In general the nervous system of insects is classified into three ganglion segments; 

1) head (usually ‘one head’ also called simply ‘the brain’, which is further portioned into 

the primary sensory centers, the subesophageal ganglion, and the central brain), 2) 

thoracic (usually three separate segments), and 3) abdominal (the segmented quantity 
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varies by species) (Borst, 2009; Clandinin & Zipursky, 2002). Specifically visual ganglia 

in insect nervous systems form three layers: ‘lamina, medulla, and ‘Lobular complex’ 

(Borst, 2009; Clandinin & Zipursky, 2002), see Figure 2. 

 In Drosophila specifically the abdominal ganglia and the three standard thoracic 

ganglia are fused into a combined thoracic ganglion. This thoracic ganglia is connected to 

the head ganglia via a ‘cervical connective’ made up of approximately 3600 axons of the 

combined acceding and descending neurons (Borst, 2009; Clandinin & Zipursky, 2002; 

Mast, et al., 2006; Pecot, et al., 2014; Sato, Suzuki, & Nakai, 2013; Ting & Lee, 2007; 

Velez & Clandinin, 2008). As with all insect systems there are three visual layers formed 

by ganglia into regions; lamina, medulla, and lobular complex- which in dipteran flies is 

two layers, the lobula and the lobula plate (Borst, 2009), another level to the visual 

processing is the compound eye or retina (Sanes & Zipursky 2010). Additionally there 

are two chiasms, one between the medulla and lamina, and the other between the lobula 

complex and the medulla (Borst, 2009; Clandinin & Zipursky, 2002).  

The retina of Drosophila are represented by roughly 750 ommatidia units that 

contain the eight photoreceptor cells (Sanes & Zipursky, 2010; Sato, Suzuki, & Nakai, 

2013; Wernet & Desplan, 2004) The lamina of Drosophila have approximately 6000 

cells, which combine to roughly 13 cell types (L1 - L5 laminar monopolar cells, 1 to 2 

amacrine cells, 3 medulla neurons (C2, C3, & T1), and three glial cells), and contain 750 

units called cartridges of specific cell types (11 classes of neurons per cartridge) and 

connections (Behnia & Desplan, 2015; Belusic, 2011; Morante & Desplan, 2004; Paulk , 

Millard & van Swinderen, 2013; Sanes & Zipursky, 2010; Sato, Suzuki, & Nakai, 2013; 

Ting & Lee, 2007; Velez & Clandinin, 2008; Wernet & Desplan, 2004). The medulla is 
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more complex and dense, with 40,000 cells represented by 70 cell types that can be 

divided in three major layers, and each cell type is confined to units known as columns 

(Behnia & Desplan, 2015; Belusic, 2011; Morante & Desplan, 2004; Sanes & Zipursky, 

2010; Sato, Suzuki, & Nakai, 2013; Ting & Lee, 2007; Velez & Clandinin, 2008; Wernet 

& Desplan, 2004). The lobular complex contains approximately 15,000 neurons, a 

majority are large neurons of the vertical or horizontal systems (Morante & Desplan, 

2004; Ting & Lee, 2007; Velez & Clandinin, 2008), the lobula is theorized to specifically 

process color vision, polarized light vision, and spectral preferences (Behnia & Desplan, 

2015; Belusic, 2011), and the lobular plate is theorized to process motion detection vision 

(Behnia & Desplan, 2015; Belusic, 2011). 

The Drosophila eyes use isolated units of ommatidium, which is described as the 

functional retinal unit containing eight photoreceptors and their neurons (retinula cells- or 

R-cells). The R1, R2, R3, R4, R5, and R6 (R1-R6) photoreceptors express the same opsin 

gene, and are associated with the achromatic and motion detection channels, which can 

be combined to the achromatic motion channel (like rods in vertebrates). The R7 and R8 

photoreceptors express UV- and blue-green sensitive opsins (respectively), which could 

be thought of as the cones in flies (Rister, et al., 2007; Sanes & Zipursky, 2010; Ting & 

Lee, 2007; Velez & Clandinin, 2008). A negative feedback loop of intracellular synapses 

between the photoreceptors and the monopolar cells in the lamina of Drosophila regulate 

responses. Specifically the negative feedback loop affects photoreceptor responses by 

controlling the speed, amplitude and quality of the signals being transmitted (Zheng, et 

al., 2006). 
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The developed lamina, with axonal growth and termination of the R1-R6 

photoreceptor neurons in the structure directly beneath them, is considered to be the first 

level where visual information is integrated by neuronal synapses, also called the first 

optic ganglia (Behnia & Desplan, 2015; Beluisic, 2011; Borst, 2009; Clandinin & 

Zipursky, 2002; Janssen, Budd & Damen, 2011; Mast, et al., 2006, Morante & Desplan, 

2004; Paulk, Millard & van Swinderen, 2013; Pecot, et al., 2014; Rister, et al., 2007; 

Sanes & Zipursky, 2010; Ting & Lee, 2007; Velez & Clandinin, 2008). During eye 

morphogenesis, the R1-R6 photoreceptor neurons are matched to the target layer by 

anterograde signals that control neuronal differentiation and target proliferation, 

additional signals (axon-derived) couple layer specificity with target survival in the 

Drosophila Visual System: N-cadherin is expressed by both the lamina and 

photoreceptors to produce high synapse quality in the lamina core (Schwabe, et al., 

2014). The R1-R6 axons produce a protein Jelly Belly (Jeb), which interacts with a 

receptor (anaplastic lymphoma kinase- Alk) found on the dendrites of a lamina monopolar 

cell (L3). This Jeb-Alk interaction controls the L3 neuron survival, and due to the Jeb-Alk 

interaction, the L3 axons then produce Netrin, which is another layer targeting specific 

signal that regulates a different neuron in the lamina, causing the ‘lamina furrow’ 

(Janssen , Budd & Damen, 2011; Pecot, et al., 2014; Sato, Suzuki, & Nakai, 2013; 

Wernet & Desplan, 2004). The lamina has three major cell types, the monopolar neuron 

cells (five subtypes called L1, L2, L3, L4, and L5, or L1-L5), the wide field neurons 

(three classes, including amacrine cells), and the centrifugal cell fibers from the medulla 

(T1, C1, and C2) (Borst, 2009; Clandinin & Zipursky, 2002; Mast, et al., 2006; Morante 

& Desplan, 2004; Sanes & Zipursky, 2010; Ting & Lee, 2007; Velez & Clandinin, 2008). 
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The units of the lamina are determined by the synapse of the L1-L3 neurons with the 

axons of the R1-R6 in a cartridge, each cartridge receives inputs from the R1-R6 cell 

types, but only the combined R cells that see the same point in space. Since the fly eye is 

convex, and each of the eight photoreceptors in each ommatidium ‘see’ different points 

on the visual axes, the six ommatidium that are next to each other (neighbors) have a 

different R cell that projects to the same cartridge in the lamina; the R1 of the first 

ommatidium, the R2 of the next, the R3 of the next, etc, each ‘see’ the same pint in space, 

so contain the comprehensive information of the same point, each by a different 

photoreceptor, but the same type- this is also called neuronal superposition (Behnia & 

Desplan, 2015; Beluisic, 2011; Borst, 2009; Clandinin & Zipursky, 2002; Mast, et al., 

2006, Morante & Desplan, 2004; Sanes & Zipursky, 2010; Takamura, et al., 2011; Ting 

& Lee, 2007; Velez & Clandinin, 2008). 

Once the photoreceptors R1-R6 create (tetrad) synapses in the lamina to four 

parallel pathways, or postsynaptic elements (PSE) (Morante & Desplan, 2004; Rister, et 

al., 2007; Sanes & Zipursky, 2010; Wernitznig, et al., 2015). These PSEs are the three 

monopolar cells (L1-L3) and an amacrine cell derived pathway (amc/T1). The most 

prominent connections are the L1 and L2 monopolar pathways that are almost invariant 

and are sufficient (and necessary) for motion-dependent behavior in Drosophila. The 

interaction between L1 and L2 will be dependent on the contrast in the level of responses 

to different stimuli between the two pathways. If there is a high contrast, then L1 and L2 

are redundant and either one will be sufficient, while at intermediate contrast levels the 

L1 pathway mediates a back-to-front polarity motion, and L2 mediates the inverse of L1 

(the front-to-back polarity motion), at this intermediate level the amc/T1 pathway 
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enhances the L1 pathway. Finally in low contrast levels the two pathways (L1 and L2) 

are directly dependent on each other to preform motor processing. The L3 monopolar 

pathway does not assist the L1 or L2 pathways and has been studies for its contribution to 

orientation-dependent behaviors, not motion detection (Borst, 2009; Clandinin & 

Zipursky, 2002; Mast, et al., 2006, Morante & Desplan, 2004; Rister, et al., 2007; Sanes 

& Zipursky, 2010; Takamura, et al., 2011; Ting & Lee, 2007; Velez & Clandinin, 2008). 

Another lamina cell type (L4) is also proposed to match with the L2 synaptic outputs 

directly to a transmedulla target neuron for front-to-back motion detection- the 

L2/L4/Tm2 circuit pathway (Takamura, et al., 2011). 

Each lamina pathway will transmit axons to discrete columns within the ten layers 

of the medulla (M1 - M10), and the central photoreceptor cell (R7 and R8) neurons 

bypass the lamina to terminate in the medulla (R7 terminates in the “M6” and R8 in the 

“M3” layers) (Behnia & Desplan, 2015; Beluisic, 2011; Borst, 2009; Clandinin & 

Zipursky, 2002; Mast, et al., 2006, Morante & Desplan, 2004; Sanes & Zipursky, 2010; 

Sato, Suzuki, & Nakai, 2013; Takamura, et al., 2011; Ting & Lee, 2007; Velez & 

Clandinin, 2008; Wernet & Desplan, 2004). In addition to the R7 and R8 terminal 

synapses, the outer six layers (M1-M6) contain the synapses of the L1-L5 monopolar 

pathways, which could synapse on multiple layers of the medulla, but all the axons 

synapse on an interneuron or a transmedulla (Tm) neuron (this synapse is a medulla 

column). The Tm1 and Tm2 receive information from the L2 pathway, and (as discussed 

above) the L4 also connects with the Tm2 if the L2 pathway is synapsed to it (Takamura, 

et al., 2011). Tm neurons connect one or more layers of the medulla to the lobula, a 

subtype of transmedulla neurons projects to the entire lobular complex (TmY), combined 
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with medulla intrinsic neurons (wide field neurons, distal medulla intrinsic neurons), and 

Bushy T cells (T2 and T3) also project to the lobula but the bushy T4 cells are exclusive 

to the lobula plate (Borst, 2009; Clandinin & Zipursky, 2002; Mast, et al., 2006, Morante 

& Desplan, 2004; Sanes & Zipursky, 2010; Ting & Lee, 2007; Velez & Clandinin, 2008).   

The lobula complex processes all the information about the visual world that the 

neuronal system has compiled into distinguishable features. For example the R7 layer M6 

expressly produce distal medulla intrinsic neuron 8 (DM8), which mediates UV-

sensitivity by projecting to T5 neurons, and transmitting to lobula layer 5. The Bushy T5 

cells are the only known cells that connect the two parts of the lobular complex together. 

And while the lamina and medulla neurons have smaller diameters, the neuronal cells 

found in the lobular plate are tangential cells compared to branching trees. The most 

studied of these lobula plate tangential cells are the Horizontal system (HS) and the 

Vertical System (VS) motion cells. For an idea of how large these neurons are; six VS 

cells can cover Drosophila’s visual field with overlapping dendritic fields, connected via 

gap junctions (Borst, 2009; Clandinin, & Zipursky, 2002; Mast, et al., 2006, Morante & 

Desplan, 2004; Sanes & Zipursky, 2010; Ting & Lee, 2007; Velez & Clandinin, 2008). 

Which processes the motion detection features into behaviors if applicable. 

Given this, there is some structural similarities between Drosophila and 

vertebrates. Such as their being a small number of major classes of neuronal cells (six in 

Drosophila, five in vertebrates), there are multiple cellular layers of the neurons on which 

the arrangement of the neurons is predictable and regular, the transition between each 

level is orderly, involving very specific integration and convergence patterns on neuronal 

arrays, and parallel sub-lamina formed from the synaptic segregation of specific 
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subtypes. And these structural similarities can then be compounded with visual function 

produce common design principle between the two systems: there is hierarchical 

processing that are mediated by convergence and lateral interaction, and parallel 

processing is mediated by the layered connections (Sanes & Zipursky, 2010).  

 

5.0. Color Vision 

Color vision has been hinted at in other sections of this chapter, but never fully 

explained. Color vision is complicated, but also has many conflicting sides that 

researchers have created for themselves. How loose or harsh color and color vision is 

defined and expressed in species can directly influence the number of species that have 

color vision. A strict definition would exclude all species except Humans, and too loose a 

definition and then some bacteria would be classified as having color vision. So let’s 

decide on some key structures and systems that would create a comprehensive definition 

of what color vision is.  

 

5.1. Defining color vision. 

When receiving signals from the opsin proteins the receptors transmit contrasting 

information along the same pathways. The key aspect of color vision is the ability to have 

both the neural framework and the receptors for detecting different wavelengths. This 

dependence on the number of photoreceptors dedicated to color and complexity of the 

channels they are interpreted with, can determine how much contrast and information is 

gained (Cronin, et al., 2014). The sensitivity of a photoreceptor can determine how few 

wavelengths it can be activated by, or how many. Intensity and saturation matter, and the 
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ability to discriminate colors without those two qualities affecting wavelength 

determinations is dependent on the number of photoreceptors for color vision there are. 

As Intensity can be the excitability of the photoreceptor, or the brightness of the 

wavelength, with no effect on the wavelength itself. Saturation is quality of the hue of 

color, or whether grey/muddiness of the hue matters, as this should not determine how a 

color is ‘named’ by the visual system- blue is blue no matter if a car hasn’t been washed 

in a while. 

Color vision, in short, is when a species has two or more receptors that are 

sensitive to different wavelengths, and the neural systems to interpret the data obtained 

from the receptors (Briscoe & Chittka, 2001; Desplan, 2004; Goldsmith, 1990; Kelber & 

Henze, 2013; Skorupski & Chittka, 2011).  Pichard, Briscoe & Desplan (1999) attempted 

to specify that color vision must also include the ability to discriminate between 

wavelengths of color without intensity being a factor. The simplest issue with any 

definition of a concept, is that it is hard to define in context- what is color? - When does 

color vision evolve? - Is there a set moment when color vision begins? (Land & Nilsson, 

2012). 

Unlike in other senses, color is based on how much a photoreceptor is stimulated 

in contrast to a second photoreceptor with a sensitivity slightly opponent to the first. This 

is antagonistic color processing, which determines stimulation based on opponent neural 

pathways. Simplified “is this more one color than the other?” (Chatterjee & Calloway, 

2003; Chichilnisky & Wandell, 1999). In most pathways (and is true in humans), “more 

blue not yellow, or more red not green”. 
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However the ability to determine wavelengths of color and discriminate between 

them is something that has been produced in computer systems (Moreno, Grana, & 

d’Anjou, 2010; Swain & Ballard, 1991), and shown to exist in some plants (Skorupski & 

Chittka, 2011). 

The determination of wavelengths by photoreceptors is always described within 

the sensory system of vision, and the sensory system is defined with some type of visual 

organ- an eye, usually two eyes. And then there is the processing of the information 

obtained when discriminating the wavelengths of light. So then a neural network of some 

complexity would be necessary for the discrimination of wavelengths. 

So color vision is the discrimination of wavelengths by more than one 

photoreceptor, which are localized in a visual organ, and processed by a neural network. 

And color vision can only be possible with two or more photoreceptors, and processed by 

a neural network. 

 

5.2. Diversity of color vision. 

Multiple visual pigments are needed to form color vision, all eyes collect and 

absorb light. Hering, et al. (2012) argues the velvet worm as the LCA of arthropod color 

vision, and that color vision evolved with the evolution of compound eyes in arthropods. 

As indicated above, increasingly complex tasks in visual behavior would drive the 

evolutionary complexity (Land & Nilsson, 2012). In the case of detecting light intensity 

and movement, only one type of photoreceptor is necessary, while color vision requires 

two or more types of photoreceptors. In terms of prey (or predator) detection (Endler, 

1991; Houde, 1997), the movement of an object can take precedence over what color the 
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object is (Melin, et al., 2006), whereas determining fruit ripeness is necessary for survival 

purposes and would require two or more photoreceptor types. Each is a complex 

component of vision, but requires different levels of functional mechanisms and bias to 

function. Further complication arises when two signals are received along the same 

pathway. The innate bias of reception of color over movement, or vice versa, is 

dependent on the evolutionary history of the population. 

A major assumption of color vision is that it decreases in quality/ability as night 

vision (rod-predominate achromatic processing in vertebrates) is needed, or that night or 

low light vision cannot process color readily if at all because, at least in vertebrate vision, 

rods do not activate or process wavelength differences (therefore color differences) 

(Gehring, 2014; Yamaguchi, et al., 2008). This is not absolute, but a commonly 

determined rule in vision, a major exception being a study performed by Land & Osorio 

(2003), which described how the elephant hawk moth uses starlight, and can use its 

trichromacy color vision profile to find flowers at night.  

 Color vision is a highly variable system, that can add spectral sensitivities for 

information, gathering and refining absolute sensitivity peaks, and some species have 

unique systems of color vision mechanisms, inference, or filtering processes (Osorio & 

Vorobyev, 2005). 

 

 5.2.1. Between & within species. 

 There is a wide range of color vision variation between humans and mantis 

shrimp, or spiders, or any number of visual sensory systems that is present in the world. 

With humans, in an oversimplified sentence, a trichromatic system of opponent 
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processing can discriminate between long-wavelength sensitive (LWS), middle-

wavelength sensitive (MWS), and short-wavelength sensitive (SWS) stimuli through the 

three corresponding photoreceptors (cones) that are tuned to these three spectral peaks, 

with a rod photoreceptor for achromatic discrimination (Deeb & Motulsky, 1996; Dulia, 

et al., 1999: Imamoto & Shichida, 2014; Johnston, Esposti & Lagnado, 2012; Nathans, et 

al., 1986; Neitz & Neitz, 2008; Neitz & Neitz, 2011; Rushton, 1972; Shichida & 

Matsuyama, 2009). Humans are not the only trichromats, and are not the only species to 

use opponent processing for discrimination. A majority of color vision systems were 

determined through conditioning procedures and behavioral observations (Kelber, 

Vorobyev & Osorio, 2003; Vorobyev & Osorio, 1998; Yamaguchi, et al., 2008). 

 The necessary systems that must be in place for evolution to occur is genetic 

variability of traits within species. So it is not surprising when population species samples 

are assayed for spectral sensitivity, that variations between populations of species dose 

exist- primates, guppies and bees have some variable expression (Briscoe & Chittka, 

2001). 

 In some new world monkeys (NWM) there are three LWS opsins that can be 

expressed, each with a slight variation in spectral sensitivities, and all three regularly are 

present in a population (Melin, et al., 2006; Surridge, Osorio, & Mundy, 2003). Humans 

have variations in color vision, though the most readily understood is the defective 

trichromatic wherein (usually the LWS or MWS) one of the X-chromosome linked opsin 

genes is lost, which does produce a variation in color vision within a species (Deeb & 

Motulsky, 1996; Nathans, et al., 1986; Rushton, 1972), but amino acid substitutions in 

the LWS or MWS opsins can produce spectral peak shifts of 1nm, 5nm, or more, 
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dependent on the amino acid substitution and where within the opsin (Neitz & Neitz, 

2011).  

 Mice have been shown to use cones for achromatic processed, with the use of 

achromatic-contrast-selective channels and receptors (calcium light driven) in tandem 

with the standard dichromatic color vision process system, and rod-achromatic system 

(Baden, et al., 2013b).  

 The Hofmann, et al., (2009) paper is particularly robust in the discussion of 

between-species variation, and gives distinct evolutionary time frames in addition to an 

expressed ecological biases for opsin expression and duplications. Using in total 65 

different cichlid species from two different lakes. And Frentiu, et al., (2007b) condenses 

known opsin gene expression in a variety of Butterfly geneses and species, which are 

theorized to have formed through gene duplication events. Other papers expressly discuss 

specific species and the conditioning experiments that indicate true color vision profiles 

(Behnia & Desplan, 2015; Blackiston, Briscoe & Weiss, 2011; Borst, 2009; Bowmaker, 

2008; Briscoe, 1998; Briscoe & Chittka, 2001; Chittka, et al., 2014; Collin, et al., 2004; 

Deeb & Motulsky, 1996; Desplan, 2004; Dulia, et al., 1999; Fischbach, 1979; Frentiu, 

2007a; Giurfa, 2004; Gumbert, 2000; Hernandez de Salomon & Spatz, 1983; Imamoto & 

Shichida, 2014; Kelber & Pfaff, 1999; Kinoshita, Shimada, & Arikawa, 1999; Koyangi, 

et al., 2008; Lotto & Chittka, 2005; Marshall & Arikawa, 2014; Menne & Spatz, 1977; 

Neitz & Neitz, 2008; Neitz & Neitz, 2011; Ogawa, et al., 2012; Osario & Vorobyev, 

2008; Paulk, Millard & van Swinderen, 2013; Pichard, Briscoe & Desplan, 1999; Sison-

Mangus, et al., 2006; Surridge, Osorio, & Mundy, 2003; Tang & Guo, 2001; Vorobyev, 

et al., 2001; Wakakuwa, et al., 2010; Yamaguchi, Desplan, & Heisenberg, 2010; Yuan, et 
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al., 2010; Zaccardi, et al., 2006). Though each of these papers can sometimes indicate 

that the source of light can sometimes affect processing components of the color vision 

neural pathways.  

 

 5.2.2. Between genders. 

 Sometimes the expressed opsin/visual pigments can be dependent based on 

gender within a species, and can be considered distinct from simple variations in color 

vision and photoreceptor profiles within a species. And while some papers were 

discussed in the context of species variation (Melin, et al., 2006; Nathans, et al., 1986; 

Rushton, 1972); but it is much more complex. Sex/gender dimorphisms in species are 

more readily explained by sexually selective evolution (see section 3.1.3. Sexual selection 

above) on visually conspicuous colors displayed on males of a species. It can be implied 

then that females should be able to react to the color pallets expressed by the males, and 

then there may be a visually dimorphic opsin-expression to discriminate those sexual 

selective colors. This is not a hypothesis that is discussed in sexually dimorphic vision 

papers, and may yet be hard to tests in behavioral simulations. However, there are papers 

that discuss the expression-profiles of opsins as being sexually linked. 

 Drosophila species (three in total) were studied based on the opsin-expressions 

and region-distribution of the ommatidium types. While the frequency of DRA, and pale 

and yellow ommatidium types were variable across all studied species and strains, 

females of all species were determined to have more ‘pale’ and Rh3-expressing 

ommatidium than their corresponding males in the species/strain (Hilbrant, et al., 2014). 

Colias erate (butterfly) determined that while the opsins expressed in photoreceptors 
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were not variant based on gender, the spectral sensitivity of the photoreceptors was 

variant between species due to florescent pigment distribution to create spectral 

sensitivity shifts; so the blue-sensitive receptor in males was violet-sensitive in females 

(Ogawa, et al., 2012). 

 New world monkeys, such as the Capucinus, have three variants of the LWS 

opsins that are expressed on the X-chromosome. And depending on the sexual paring, the 

different spectral sensitivities could be expressed in six genotypic systems (Bowmaker, 

2008; Melin, et al., 2006; Neitz & Neitz, 2011; Surridge, Osorio, & Mundy, 2003). 

Though Melin, et al., (2006) describes how the variations in the sensitivity peaks of the 

three LWS opsins can determine the preferred ripeness of food that the Capucinus hunt 

for, the males that are deficient in trichromacy are shown to be more successful in finding 

insects (probably by movement) under leaves than their trichromatic-females.  

 A less studied model was determined through human color vision deficiencies, 

which are more common in males, though not exclusive. These deficient males and 

females usually have a MWS or LWS deletion (Nathans, et al., 1986; Rushton, 1972; 

Surridge, Osorio, & Mundy, 2003) or other recombinant X-chromosome issue, and as 

males only have one X-chromosome any deletion is more likely to express in males, 

whereas females would need two X-chromosomes that are deficient in either the LWS or 

MWS opsin gene on both chromosomes, though there are sensitivity variations within the 

species. Jordan, et al., (2010) describes how these X-linked deficiencies could select for a 

second duplication event on the opsin-deficient-X-chromosomes. While a majority of the 

participants did not express a unique spectral peak in the LWS or MWS variations, one 

female did show a third sensitivity peak, while a separate LWS, MWS, and SWS peaks 
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were also recorded. This fourth cone peak sensitivity, a tetrachromat, is hypothesized to 

be expressed in females only.  

 

5.3. Color vision in context. 

Earlier, when describing different types of opsin genes, there were opsins 

described that did not have a direct and obvious role in vision, but still retained light 

sensitive receptors. Given the color vision definition above, could a fungus be classified 

as having vision if its opsin is used to determine light from shade? If two distinct 

receptors were detected could color vision be hypothesized? Plants have been 

documented to avoid shade growth by using two red-light receptors, and some machines 

have been developed to sort food on the basis of color (Skorupski & Chittka, 2011). And 

foraging conditions in some experiments show preferences for color but not constancy 

(Pohl, Van Wyk, & Campbell, 2011). 

On the reverse side: there have been humans who have lost color vision, but can 

still discriminate color by wavelength (Douglas & Jeffery, 2014; Skorupski & Chittka, 

2011). Could this be defined as color vision? 

These hypothetical questions can be answered in a lab if context and 

personal/evolutionary history are taken into account. In the grand scheme of these 

questions, we can discard plants and machines as having color vision- even if the 

argument is valid-as plants and machines do not have distinct and discernable visual 

organs that are an assumed first component of color vision. How can color vision be 

determined, and what limits are inherent in color vision? In the definition above, the 

ability to interpret the data the receptors have obtained from wavelengths of light is 
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necessary for color vision. The data received could be directional, intensity, hue, 

polarization of wavelength, which a receptor can be sensitive to, and determine changes 

in the baseline set; in other words the collective components of a light signal and the 

collective components of the light-receptor determine the quantity and quality of the data 

obtained. This sensitivity to changes is wavelength discrimination (Hsu & Yang, 2012; 

Hurlbert, 1996; Schnaitmann, et al., 2013; Skorupski & Chittka, 2011). 

In some papers there are “grades” of color vision given when behavior is 

expressed (Kelber & Osario, 2010; Kelber, Vorobyev & Osorio, 2003; Maximov, 2000) 

these are classified by: 1) color taxes or light environment seeking, 2) wavelength-

specific behavior directed toward objects, 3) color learning through neural representation 

of color, 4) color appearance, including characterization. Each receptor is spectral 

sensitive to a wavelength, which is well spaced from the other receptors.  

Wavelength discrimination is based on the premises that two photoreceptors are 

present and have overlapping sensitive scales. This allows for wavelengths of color to 

excite by differing amounts, two distinct receptors, which are then interpreted by the 

degree of sensitivity and activation. This processing by comparing activations is called 

“opponent processing” (Skorupski & Chittka, 2011). The distinction is key to 

determining how individuals with acquired color-blindness can still discriminate by 

wavelength when tested. However, wavelength discrimination is a facet of color vision, 

and discrimination by wavelength does not represent color vision outright, yet color 

vision cannot exist in a species without discrimination. 

 

6.0. Forward 
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 Given the predominance of color vision to arise for ecological reasons, selective 

reasons, because of biases, or from duplication events and spectral tuning, it is not 

surprising that color vision is being discovered in more species the more studies are done. 

There has been a slight connection between the predominance of color vision and 

cognitive abilities, as the use of more than one photoreceptor is required for color vison, 

it also significantly benefits the species to gain that extra information to increase fitness. 

Though further studies are needed. And cognitive evolution is not an assured end result 

of color vision, or vision at all. Consider that the Dinosaurs and their predecessors 

evolved variations of the eye for over 165 million years, the cognitive abilities- and 

implied intellectual developments, never arose. Yet in the total evolutionary history of 

our own species, which dates back to a maximum of two million years, did develop these 

cognitive abilities in a very short time (Nat Geo Evolution, 2016). That cognitive 

connection should be further studied. 

 Despite the uninvestigated holes in visual sensory development, neural; circuitry, 

and evolutionary models, there is a lot of information that has been empirically studied 

for vision.  And the use of that information in studying ecological systems, and specie’s 

interactions with ecological models could flesh out the missing information later. 
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Chapter 2: An Experimental Evolution Study on Color Vision in Drosophila 

melanogaster 
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1.0. Introduction 

Experimental evolution studies, as discussed in Chapter 1 (Endler, 1986; Fox & 

Lenski, 2015; Garland & Adolph, 1994; Gould, 1990; Kawecki, et al., 2012; Pennisi, 

2013), are typically difficult to perform given the sheer timeframe that an experiment 

must be performed under, and the species to experiment on must be selected carefully 

(Kawecki, et al., 2012). In this experimental evolution study, Drosophila melanogaster is 

our model species, and individual lines were selectively pressured to evolve hue 

preferences across 22 generations. These lines were randomized into three treatment 

groups and two separate control conditions; each of the treatments and each of the 

controls had 12 replicates, for a total of 60 different evolving population lines. 

Drosophila melanogaster was chosen to be the studied population for a number of 

reasons. The color vision system of Drosophila melanogaster is well studied and 

documented (Erclik, et al., 2009; Gonzalez-Bellido, Wardill, & Juusola, 2011; Harzsch, 

Melzer & Muller, 2007). A variety of conditioned discrimination studies have been 

performed for Drosophila melanogaster and other Drosophila species, with regards to 

oviposition and the corresponding behaviors (Allemand & Bouletreau-Merle, 1989; del 

Solar & Palomino, 1966; Hernadez de Salmon & Spatz, 1983; Joseph, et al., 2009; 

Manjunatha, Dass, & Sharma, 2008; Markow, Beall, & Matzkin, 2009; Menne & Spatz, 

1977; Ohnishi, 1977; Rockwell & Grossfield, 1978; Ruiz-Dubrevil, Burnet, & Connolly, 

1994; Takemura & Fuyama, 1980). And they were in readily aviable supply in the 

research lab. 

In some more recent studies of Drosophila melanogaster behavior (usually larval 

wandering) is studied (de Belle, Hilliker & Sokolowski 1989; Riedl, et al., 2007; 
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Schwartz, et al., 2012) genetically, or some other species is studied with respect to light 

and mating /oviposition behavior (Zhang, et al., 2010).  When oviposition are 

documented for Drosophila melanogaster and other Drosophila species, the substrate 

quality is being assessed, how retention /egg size /embryonic development vary between 

species and if they affect oviposition rates (Abed-Vieillard, et al., 2013; Allemand & 

Bouletreau-Merle, 1989; del Solar & Palomino, 1966; Markow, Beall, & Matzkin, 2009; 

Ruiz-Dubrevil, Burnet, & Connolly, 1994; Yang, et al., 2008), and if oviposition is 

studied under a sensory system it is usually olfactory preferences on substrates (Dweck et 

al 2013; Mery & Kawecki 2004a; Mery & Kawecki 2004b; Dunlap & Stephens 2009), 

although enhanced color learning has been shown to evolve under certain conditions 

(Dunlap & Stephens 2014). 

If oviposition behavior has been studied under light environments for Drosophila 

melanogaster, then it is a short term study for patterning of constant day, or day-night 

cyclic systems (Ohnishi, 1977). Hernandez de Salmon & Spatz (1983) determined two 

optima peaks for Drosophila melanogaster wavelength discrimination at 420 nm and 495 

nm. Salcedo, et al., (1999) determined peak absorptions in the UV, at 475 nm and 515 

nm.  

Washington (2010) built upon previous work to determine photo-tactic color vison in 

Drosophila melanogaster. And while conditioning experiments for Drosophila 

melanogaster to determine color vision (Hernadez de Salmon & Spatz, 1983; Menne & 

Spatz, 1977; Rockwell & Grossfield, 1978; Washington, 2010) are readily available, they 

are not experimental evolution studies. Additionally, most light behavior studies directly 
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involved with Drosophila melanogaster, were performed in the 1970s to 1980s, and were 

usually preformed with flight simulators and beams of light. 

Oviposition behavior is key, as the only parental investment that Drosophila 

melanogaster makes is where their eggs are laid, and the direct choice behavior can be 

determined by egg laying. In this study, I used the techniques of experimental evolution 

to test how female color preference for the substrates where they oviposit may evolve 

under different choice contexts. By manipulating the choices females were given 

intensive, one directional selection was induced to produce a hypothesized fast 

experimental evolution study where the choices made by females could be determined in 

a repeatable way. Eggs were quantified in this experiment to determine preferences over 

time and under selective pressure.  

 

2.0. Methods 

2.1. Experimental design & stimuli. 

Disks of hues were produced from previously determined spectrally sensitive 

wavelengths of Drosophila melanogaster (Hernandez de Salmon & Spatz, 1983; Salcedo, 

et al., 1999; Washington, 2010), and were converted to a Red-Green-Blue (RGB) 

hexadecimal input so the wavelengths- now hues, could be printed into re-useable disks 

via a color laser-printer. These wavelengths were converted on the websites: 

www.teachersdomain.org/asset/1sps07_int_wavelength/ and 

https://academo.org/demos/wavelength-to-colour-relationship/ where Wavelengths from 

385 nm to 565 nm were charted in RGB Hexadecimals. See Table 1, which shows the 

hues used in the experiments. 

http://www.teachersdomain.org/asset/1sps07_int_wavelength/
https://academo.org/demos/wavelength-to-colour-relationship/
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At the onset of the experimental evolution study, it was determined that there would 

be three different selection treatments, and two different controls, for a total of five line 

designations. Each line designation would have 12 replicates, for a combined total of 60 

experimental lines. These line designation were used as a short-hand code representing 

the selection treatment, or no-treatment, and the replicate within that treatment (no-

treatment). 

 

2.1.1. Line designations & treatments. 

Initially, wild population eggs were collected in 250 mL milk bottles containing 50 

mL standard fly food in a field in 2012 at Fenn Valley, Michigan.  For a year, each 

generation was inspected to weed out other bugs. The wild lines were then maintained 

until they were collected for my experiment on 7/8/2014. 

The Fenn Valley population (FV) was maintained with twenty milk bottles of fly 

food, with 500 eggs each, which were reared each generation at 18 °C, for 19 days. When 

flies emerged, the bottles were placed in a closed population cage and given 3 standard 

Petri-dishes (10 cm in diameter) filled with 50 mL of standard “Fly Food” each day, for 3 

days. (Recipe for “Fly Food” is documented in Appendix 2).  

For my experiment three-hundred sixty vials, containing eighty eggs each, were 

collected from the wild population on 7/8/2014.  The vials were randomly ordered, then 

grouped into sixty lines with six vials each, collectively known as the “Fenn Valley” 

population.  

Each Line was assigned a number from 1 to 12, and assigned a letter designation A, 

B, or C; the remaining lines were designated Controls 1 through Control 24, the letter 



A REVIEW OF EVOLUTION, BEHAVIOR, AND VISION WITH … 116 
 

designation (A, B, or C) determined the Experimental Evolution Treatment Type the lines 

would be selected under. These Treatment Types and Controls are documented in Figure 

6.  

The controls still had to be randomized because Control 1 through Control 12 were 

given color choices similar to the C- Line Treatment Types, but no selective pressure was 

induced. Control 13 through Control 24 were given Fly Food, so that a second control set, 

where no color hues were introduced during the selective generations, could exist.  

The lines were reared at 24 °C for 10 days (after spending 12 hours at 14 °C). Each 

line was introduced into separate cages with two Petri dishes with 50 mL of standard lab 

Fly Food. The cages were put into a Climate Chamber set at 24 °C, under Hitlights© 

controlled LEDs set to cool white for three days, undisturbed. See Figure 7 for fly cage 

drawings with the Hitlights LED strips. 

For the A Lines (Selection toward a Higher Hue) each generation was given a slide of 

two blue (“B” disks) and two aqua (“A” disks) hues. As shown in Figure 8A, where the 1, 

2, 3, and 4 are representing a location where the color disk hue and agar plate will go. 

a. Agar food recipe is outlined in Appendix 2. For Shorthand this combined 

recipe will be called just “Agar”. 

b. There are four patterns that the A- Lines two hues can be randomized into 

that were used, which are depicted in Figure 8B, 8C, 8D, and 8E. Each 

succeeding generation was cycled through the different patterns. 

For the B Lines (Selection towards Lower Hue) the same setup as the A Lines were 

tested under remained the same, with the hue disks changing slightly, with the Green hue 
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disks (abbreviated to “G”) replacing the “B” disks, and Figure 9 illustrating the four 

pattern combinations, which was designated the same way as the A Lines. 

For the C Lines (Selection towards Middle Hue) each generation is given a slide of 

two B disks, two A disks, and two G disks. The combinations were presented in six 

patterns that were used illustrated in Figure 10. Each line was randomly assigned, via 

computer, which pattern would be presented at generation 1, and each generation 

thereafter was cycled through the five other combinations, then starting the cycle over 

until the experiment ended.  

For the lines designated as Control 01 through Control 12, called the the Color 

Controls collectively, each generation is given a slide of two B disks, two A disks, and 

two G disks. The combinations were presented in six patterns that were used illustrated in 

Figure 10. Each line was randomly assigned, via computer, which pattern would be 

presented at generation 1, and each generation thereafter was cycled through the five 

other combinations, just like the C Lines. Then for the lines designated as Control 13 

through Control 24, which were also called the Food Controls, each generation would be 

given one standard Petri-dish with 50 mL of Fly Food. 

Before the first generation had matured, 700 mini Petri-dishes (4 cm in diameter) 

were labeled in red sharpie along the height edge of the dish so as not to create shadow 

void patterns on the Hue disks. The plates were labeled numerically from 0001 to 0700. 

Every generation used 240 mini Petri-dishes (also called Agar plates) were filled with 1.5 

mL Agar solution. Each mini Petri-dish was compositionally the same, and then each 

plate was recorded on the pre-prepared data sheet to designate which line, position, and 
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hue disk the agar plate rested on. See Appendix 2 for the Agar recipe, see Appendix 3 for 

sample Data Sheets. 

Each line was given as long as necessary to lay enough eggs on the proper hue to 

propagate the next generation, this time frame was altered within the first five generations 

due to an unforeseen experimental flaw. For the first four/five generations this time was 

1.5 hours, the following generations were approximately 3 hours, due to the Lines laying 

less than the needed 480 eggs to perpetuate the next generations during the first five 

generations because of this time constraint. Despite this alteration, each data sheet 

records the start time and end time of the trial, as well as any notable occurances during 

the day- weather, construction, blackouts, etc. 

After a generational selection treatment had occurred, the slides were pulled from the 

cages, and they were photographed in any order, separate from the hue disks, and only 

photographed with Agar plates from the same cage. See Figure 11 to see a demonstration 

of the photographed plates. The position of the photographed plate does not correlate to 

the location of the same agar plate in the cage during the trial. The plate location in the 

photograph was recorded in a separate lab book from the Data Tables where the hue disk 

and location in the cage were recorded. See examples of this in Appendix 3. 

After the photographs were taken in .RAW on a camera, they were downloaded to an 

external hard-drive and converted from .RAW to 16 bit .TIFF, and relabeled from the 

standard photograph number to sW_gY_x00ZZ format; sW: represents the generation (or 

selection) the plate was used in (W), E.g.: s1, s2, s3, s20. gY: denotes the group (or day 

of the week the trial was conducted). Since there are sixty lines, four of each of the A-

Lines, B-Lines, C-Lines, Color Controls, and Food Controls were run on a Tuesday, the 
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next four of each set were run on a Wednesday, and the last four of each set were run on 

a Thursday, for the sake of sanity. The cages that were run on a Tuesday were denoted 

g1, Wednesday was g2, and Thursday was g3. x00ZZ: the photograph number in relation 

to the first two parts of the photograph labels. Photograph s1_g1_x0001= photograph 

number 1 of selection/generation 1, in group 1. 

When the photographs have been taken, the eggs from specific agar plates are 

used to rear the next generation as described in Figure 6. A- Lines (using the hue disk and 

location data sheets) are reared from eggs, removed from plates that were run on Aqua 

hue disks. Each Line gets 80 eggs per vial, at six vials per line (i.e. 480 eggs per line). B-

Lines (using the hue disk and location data sheets) are reared from eggs, removed from 

plates that were run on Aqua hue disks. Each Line gets 80 eggs per vial, at six vials per 

line (i.e. 480 eggs per line). C- Lines (using the hue disk and location data sheets) are 

reared from eggs, removed from plates that were run on Aqua hue disks. Each Line gets 

80 eggs per vial, at six vials per line (i.e. 480 eggs per line). Control Lines 1 through 12 

(also called Color Controls), are reared from eggs removed from all agar plates equally. 

This is either 80 eggs per plate to prevent drift based on location, or 160 eggs (or two 

vials) per hue disk, to minimize selective pressure towards or away from any hue. Control 

Lines 13 through 24 (also called Food Controls) are reared from eggs removed from Fly 

Food only. This is to determine if there is a natural drift towards or away from any hue in 

this experiment, and compare the end results against a isolated control group. 

Each generation was reared at 24 °C for 10 days after spending 12 hours at 14 °C. 

Hatched flies are knocked into clear cages with two petri dishes with 50 mL of Fly Food 

for three days, as shown in Figure 7. 
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2.1.2. General assay procedure. 

Testing, rearing, and selecting on each line was repeated for the next 20 generations 

of selection. After the selection/generation 21 trials, a new Fly Food petri dish with 50 

mL of Fly Food were  given to the A- Lines 1, 5, and 9; B-Lines 1, 5, and 9; C-Lines 1, 5, 

and 9; Control Lines 1, 5, and 9; and Control Lines 13, 17, and 21. The Lines were left 

alone for 12 hours to lay eggs on the new food. After the 12 hours, nine additional 

replicates of the A-lines and B-lines were collected, and twelve additional replicates of 

the C- Lines and Controls were collected. 

After the selection/generation 22 runs normally with agar (alongside the replicates 

collected after generation 21), repeat what happened after generation 21 above, using the 

numerical lines 2, 6, and 10, as well as Control 14, 18, and 22. After generation 23 

numerical lines 3, 7, and 11, as well as Control 15, 19, and 23 were collected following 

the same methods. After generation 24 numerical lines 4, 8, and 12, as well as Control 

16, 20, and 24 were collected following the same steps. 

The additional replicates of the lines collected after Generation 21 (all replicates of all 

Lines collected were called an Assay replicate) would run alongside Generation 22. The 

Assay time duration for testing is set at a strict 1.5 hours, but start and stop time were 

recorded for accuracy. As the eggs to populate the next generations were not taken from 

the Assay replicates, the time limits were short for the sake of sanity in counting the 

replicates.  

The A- Line Assay replicates would get 3 replicate cages of the 2G and 2A slides, 3 

cages of one hue disk of each Violet (V), one B, one A, one G, and One Yellow (Y) hue 
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disk on a slide (Outlined in Figure 6), and 3 replicate cages of 2B, 2A, and 2G on a slide. 

The five choice Assay is depicted in Figure 12, where any combination was randomly 

assigned to any Assay, not all seen in Figure 12.  

The B- Line Assay replicates get 3 cages of 2B, and 2A slides, 3 cages of one hue 

disk of Violet (V), one B, one A, one G, and One Yellow (Y) hue disk on a slide, and 3 

cages of 2B, 2A, and 2G on a slide. 

 The C- Line Assay replicates get 3 cages of 2G, and 2A slides, 3 cages of 2G, and 

2A slides, 3 cages of one hue disk of Violet (V), one B, one A, one G, and One Yellow 

(Y) hue disk on a slide, and 3 cages of 2B, 2A, and 2G on a slide.  

Both the Color Control Line and the Food Control line Assay replicates get 3 cages of 

2G, and 2A slides, 3 cages of 2G, and 2A slides, 3 cages of one hue disk of Violet (V), 

one B, one A, one G, and One Yellow (Y) hue disk on a slide, and 3 cages of 2B, 2A, and 

2G on a slide. 

After every generation, the photographs were labeled and stored in properly labeled 

file designations, and copied onto two other external hard drives. The primary photos 

were stored on the Lab external hard drive that remains in the lab. The first copied 

external drive is stored off sight and never removed. The third external drive is used as a 

go between of drives to transfer photos to the secondary external drive. The third drive is 

portable, and is used to count the eggs on each plate whenever time can be allot to count 

them. All egg counts were recorded on distinct separate data sheets. These sheets group 

plates by line and generation, both hue disk and location were recorded on the data sheet, 

but location of the plate on the photograph does not indicate the location of the plate in 

the cage. An example is shown in Appendix 3. Each generation of each line will be 
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assessed on preference of hue, determined by the equation: [(Total Eggs Laid on Hue 

A)/Total Eggs Laid] = Preference A. Each generation of each line will also be assessed 

on locational preference. Additionally as time is recorded, egg laying rate will be 

calculated as number of eggs laid per minute. 

 

2.2. Selection experiment. 

The treatment that was selecting for the Aqua hue, when given a choice between 

Aqua and Blue hues, were designated as “A Lines”. These lines were attempting to select 

for preferences in color in the higher wavelength-hue graph. It was predicted that after 22 

generations, the preference for Green would be higher than Blue or Aqua in a three 

choice novel designation, Green would be preferred over Aqua in a novel two choice 

designation, and if a novel environment of five choices were offered with the hues of 

Violet, Blue, Aqua, Green, and Yellow then it was predicted that the flies would prefer 

yellow over green, but some eggs would be laid in an ascending scale up the hue-

wavelength chart. See Figure 13 for the predicted preferences of the A Lines. 

The treatment that was selecting for the Aqua hue, when given a choice between 

Aqua and Green hues, were designated as “B Lines”.  The selective pressure treatment 

for these lines was to produce a preference for lower hue-wavelengths. It was predicted 

that these lines, after the 22 generations, would prefer a novel Blue hue over the Aqua 

hue in a two choice model, and prefer Blue over Aqua and Green in a three-choice novel 

environment. Additionally, if the five choice novel environment was introduced (as 

described above), then the preferences should increase as the wavelength-hue decreases. 

These predictive behaviors are shown in Figure 14. 
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The last designation for selective treatments, were named the “C Lines” and these 

lines were selecting for Aqua preference, when the environment offered a choice between 

Blue, Aqua, and Green hues. The selective pressure was predicted to produce preferences 

for ‘middle’ wavelength-hues in the experiment. When the lines had undergone 22 

generations of selective pressure, then the lines would be introduced to novel two choice 

selection, one with Blue and Aqua Hues, and the other with Aqua and Green hues, and a 

novel five hue color choice environment. In all three of these assay tests, the C Lines 

were hypothesized to prefer the middle wavelength hue over all other options. These 

predicted behaviors are depicted in Figure 15. 

The first of the two control designations was a “Color Control”. These Color 

Controls would be given the same three choice environment as the C Lines, however no 

selective pressure would be induced on these lines. Instead an equal number of eggs from 

all hues were used to perpetuate each of the generations. The Color Controls were 

predicted to not prefer any one hue, and should prefer all hues equally after 22 

generations, which is shown in Figure 16. So when novel hues would be introduced to the 

Color Control lines in the assay experiments, they would be preferred in an equal way to 

all the standard hue colors. 

The second set of controls were completely isolated from the Experimental 

Evolution trials. These lines would not see any hue disk or agar plate, and were given 

only the standard fly food plates during the same time that the other treatments received 

their hues and agar plates, though they were knocked into the same type of cage, and 

were given food under the Hitlights LEDs with the other controls and treatment groups 

for the same amount of time. Designated as “Food Controls” they were a backup of 
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controls that were assumed to retain the wild type preferences for the hues, which would 

be documented and seen during the Assay trials. The Food Controls were a secondary 

backup for the Color Controls, as it may have been possible for the Color Controls to 

develop a preference by just being introduced to hue colors, or undergo a genetic drift 

due to equal selective pressures. These Food Control lines were still perpetuated by eggs 

laid during the same time as the other lines, and the lines were living in the same cage 

type as the other lines. This was an attempt to reduce the total differences within all the 

lines to only the changes in food/hue. 

 

2.3. Assay test methods. 

After selection/generation 21 trials, a new Fly Food petri dish with 50 mL of Fly 

Food were  given to the A- Lines, B-Lines, C-Lines, and Control Lines 1, 5, and 9, and 

Control Lines 13, 17, and 21. The lines were left alone for 12 hours to lay eggs on the 

new food. After the 12 hours nine additional replicates of the A-Lines and B-Lines were 

collected, and twelve additional replicates of the C- Lines and Controls. After 

selection/generation 22 runs normally (alongside the replicates collected after 

generation). After generation 23 numerical lines 3, 7, and 11, as well as Control 15, 19, 

and 23 were collected following additional fly food being in cages for 12 hours. After 

generation 24 numerical lines 4, 8, and 12, as well as Control 16, 20, and 24 were 

collected following additional fly food being in cages for 12 hours. Any additionally 

collected lines were labeled as assay lines. 

 Assay lines were run for 1.5 hours, and the time started and finish were recorded 

on data sheets.  
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2.3.1. Data processing. 

After every generation, the photographs were labeled and stored in properly 

labeled file designations, and copied onto two other external hard drives, the primary 

photos were stored on the Lab external hard drive that remains in the lab. The first copied 

external drive is stored off sight and never removed. The third external drive is used as a 

go between of drives to transfer photos to the secondary external drive. The third drive is 

portable, and is used to count the eggs on each plate whenever time can be allot to count 

them. 

All egg counts were recorded on distinct separate data sheets. These sheets group 

plates by line and generation, both hue disk and location were recorded on the data sheet, 

but location of the plate on the photograph does not indicate the location of the plate in 

the cage or the hue disk it was paired with during the selection (Appendix 3). 

Each generation of each line will be assessed on preference of hue, determined by 

the equation: [(Total Eggs Laid on Hue A)/Total Eggs Laid] = Preference A. Each 

generation of each line will also be assessed on locational preference. 

 

3.0 Results 

3.1 Experimental evolution selections. 

For each of the treatments, and their replicates, a series of selection graphs were 

maintained. The graphs were designed to determine the replicate’s individual preference 

over the generations for the Aqua hue. This was calculated by individual generation, and 
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was calculated by the equation: (Total number of eggs laid on Aqua Hue)/ (Total Number 

of eggs laid on all hues) = Preference for Aqua Hue. The y-axis represents the 

preferences for Aqua.  And the x-axis is the generations of the experimental evolution 

treatments, and then connected by a line to each calculated preference.   

 For the A Lines, a graph showing the preference for aqua every five generations is 

shown in Figure 17A. This graph also includes the Null hypothesis line to indicate that in 

a two choice paradigm, that a preference for a choice without an inherent bias/innate 

preference should be equal to 0.5, or that there is a 50% random chance that the eggs will 

be on Aqua without any other factors affecting the choice. This figure combines all of the 

A Line replicate into a single graph. To see all of the individual replicates per generation, 

see Appendix 4. The A Lines were analyzed with the replicate line as a random effect, 

and the individual generations (all of them) as a factor, shown in Table 2. Figure 17C is 

the graphical representation of the Aqua preference for the A Lines for every generation.  

 For the B Lines, a graph representing the preference of Aqua every five 

generation is shown in Figure 17B. Included is a dashed Null hypothesis line, which was 

determined the same way as the Null hypothesis line for the A Lines. Figure 17B 

combines all of the B Line replicates into a single graph, but the separate replicates per 

all generations can be seen in Appendix 3. The B Lines were analyzed using the same 

rules as the A Lines and this can be seen in Table 3. Figure 17D is the graphical 

representation of the Aqua preference for the B Lines for every generation. 

 The C Lines could not be calculated the same way as the A or the B Lines, as the 

Null hypothesis of the C Lines (because of a three-choice treatment), gave the random 

chance of laying eggs on the Aqua Hue at 33% (or 0.33). The graphical representation of 
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the C Lines preference for Aqua over the generations is seen in Figure 18A, which only 

shows the preferences every five generations, with all the replicates combined in a single 

graph. To see each individual replicate over all 25 generations please see Appendix 4. 

Figure 18B represents the same data as Figure 18A, except for the Color Control 

treatments, which individual graphs can be seen in Appendix 4. Figure 18C and Figure 

18D are the C Line and Color Control Aqua preferences calculated across all the selected 

generations (respectively). The y-axis numbers for Figure 18 are calculated the same way 

as the Figure 17 axis for the Aqua Preference per generation, and the x-axis is numerated 

by the generation numbers.  

 It was determined that the Null Hypothesis graphs would not be sufficient for 

both the A/B Lines and the C/Color Control Lines, as the random chance (Null 

Hypothesis) of an egg being laid on any hue could be either 50% or 33%. So Chi squared 

numbers were calculated for each treatment type, and for each replicate within the 

treatments, and for every generation. The Observed (O) number was represented as the 

total number of eggs laid per generation on aqua, the Expected (E) number was 

determined as: (The total number of eggs laid on all hues in the generation)/(The total 

number of hue choices in the treatment). The total number of hue choices was 2 for the A 

Lines and the B Lines, and the total number of color choices was 3 for the C Lines and 

the Color controls, the treatment type was determined as an average of the replicates 

within the treatments and graphed. This can be shown in Figure 19, where the Axis was 

determined as each of the combined treatment types (Observed- Expected)/ (Expected) = 

Aqua Preference per generation, and the x-axis is labeled for each generation. This graph 

indicates the error bars for each generation and treatment type.   
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 An ANOVA for the combined replicates of the treatment types was run, where the 

generations were also combined into a single calculated point. This is shown in Table 4, 

with a graph shown in Figure 19. In Figure 19, the x-axis represents the treatment type, 

where all the replicates were averaged into a single treatment type, and the ANOVA 

combined the total generations of each treatment into a single point, which represents the 

(Observed-Expected)/(Expected) egg numbers for number of eggs laid on Aqua, shown 

on the y-axis. Error bars for each treatment types are included.  

 While the Aqua preferences were being calculated per generation, the egg laying 

rates were being calculated on a per minute basis, as the total number of minutes for each 

trail were recorded. When this data was graphed, a pattern of increasing egg numbers was 

observed. So each replicate was graphed according to the number of eggs laid on each 

hue, and the total eggs laid per treatment over the generations. Once these numbers were 

graphed a linear Trendline was included for the total number of eggs laid per generation 

for each replicate, with the Trendline equation written in the upper right corner of each 

replicate graph. A sample of these graphs is shown in Figure 20, and all of the Egg 

Laying Rate graphs can been seen in Appendix 5. The y-axis shows the number of eggs 

laid per minute, and the x-axis shows the generations. As Figure 20 has only one graph 

per treatment type to save on space, each graph is labeled with the treatment replicate 

numbers.  

 An ANOVA for these egg laying rates was analyzed and is shown in Table 5, 

which indicate a significant of egg laying rates over generations (P<0.0000001), and a 

significant determination when treatments are included (P=0.000347). In Figure 21, the 

replicates of each treatment are averaged into a single line of egg laying rates over the 
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generations. The egg laying rates are determined as: (mean total eggs laid)/ (total minutes 

in trial) as this line is the combined replicates in the treatment, this is graphed on the y-

axis, and the generations are labeled on the x-axis. The error bars for each generation are 

included in the graph.  

 While the preference for Aqua hues did not appear to change over the generations, 

no matter the treatment type, the egg laying rates of all the treatment types and the Color 

Controls did increase over the generations.  

 

3.2. Post selection assays. 

 For the A and B Lines an additional nine repeats of each repliacte were collected 

over four generations, and the C Lines, Color Controls, and Food Controls gained twelve 

repeats of each repliacte over the same four generations. The A and B Lines were not 

given 12 repetes per replicate as the generational selectiion experiment was continuting 

during the assay experiments, and the standard two choice envioronment was continually 

being offered, and those egg totals were used in the assay calculations. 

 With the A Lines, there was the normal  Aqua vs. Blue hue choice selection. Then 

each of the replicates were tested in three repetes for the 2-choice Aqua vs. Green hue 

enviornment, the three choice Blue vs. Aqua vs. Green hue environment, and a five 

choice environement offered two novel hues that had not been used during any slection 

excperiments. See Table 1 for how these hues were determined. The B Lines, had their 

standard selection Aqua vs. Green choice system, and the repeats of the repliactes were 

tested in the two choice environemnt of Blue vs. Aqua, the three choice envioronment of 

Blue vs. Aqua vs. Green hues, and the final five-choice environment. 
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 The C Lines, Color Controls and Food Controls had repeats tested in both of the 

two choice environemnts: Blue vs Aqua, and Aqua vs. Green hues. Additional tests for 

the three choice environemnt Blue vs. Aqua. vs. Green hues, and the five-choice hue 

environmnet was tested, and the total eggs laid per hue was recorded. In Figues 22, 23 

and 24, these tests were graphed by the proportional means of hue preference, where the 

number of repeats were averaged to each repliacte, and each of the repliactes were 

averaged to the Hue’s preference within the treatment types being tested. The choice tests 

graphed the hues in each system along the y-axis.  

 Figure 22 shows how each treatment line, plus the two types of controls, behaved 

in a two choice enviroment when Blue and Aqua hues were avaiable. All but the food 

control lines prefered the Blue hue to the Aqua hue. 

 In Figure 23, another two choice assay of Aqua vs Green hues was given for 

testing across all of the treatment types and the two controls. All of the treatment lines 

and the two controls prefered the Green hue over the Aqua hue. So they like green a lot.  

 Figure 24 graphs the hue preferences of each of the treatment types and the two 

controls. In the A Lines, B Lines, C Lines, and Color Control treatment types there is a 

preference of Green over Blue, and both hues over Aqua. The Food Controls liked the 

Blue hue least, and the Green and Aqua hues about the same (with aqua maybe a tad 

more then green, but within the graphed error bars).  

 For the five-hue-choice assay tests and ANOVA was run to determine if their was 

a significant effect of treatment (F4,55 =1.958, P=0.1139), color(F4,220=1.787, P=0.1324), 

or the interaction of treatment and color (F16,220=1.258, P=0.2267), shown in Table 6. 

None of these effects showed any significance. Figure 25 graphs the mean proportional 
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choice of each hue by treatment type, as was graphed in Figure 22, 23 and 24 according 

to each of the assay choice types.  The A Lines, B Lines and Color Controls in Figure 25 

show no preference for any hue type over another within the error bars, but these lines 

could arguably prefer the Violet hue, then the Green Hue, then the Yellow hue, then the 

Blue hue, and they prefer the Aqua hue the least. When graphing the C Lines, they 

preferred the Hues Violet and Green roughly in the same proportions as the A, B and 

Color Control Lines, but liked Blue less than Aqua, and Aqua was preferred almost as 

much as the Violet hue, and more than the Green hue. However, with the C Lines the 

Yellow hue was preferred more than any other hue, and that was unique to the C Lines 

alone. The Food Controls preferred the Green hue the most, followed by Aqua, Violet, 

Blue and Yellow hues in order. Though the individual mean proportions of the Hue 

preferences can indicate a unique variation in the C Lines and the Food Controls, both 

fall within their combined error bars of the other treatment types. 

 In summary of the assay charts, when a treatment type is graphed and the Green 

Hue is available, they will choose the Green hue in spite of all other choices. The Food 

Controls are the only treatment that do not follow the other treatment preference lines. So 

the introduction of color choice hues (even if the hues are not being used to induce 

selective pressure), in an experimental evolution study does cause some type of 

behavioral change. 

 

3.3. Data summary. 

No change in preference was seen across evolutionary time during the selections. 
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None of the expected/predicted preferences were shown in the Post-Selection Assays. 

For instance, flies evolving in a situation where aqua is better than green don’t show an 

enhanced preference for blue, and not even for the selected aqua over green. 

All of the lines with treatments that included color choices evolved a stronger 

preference for green in comparission to Baseline Data (Appendix 1) and Food Controls. 

Egg laying rates increased over evolutionary time, and the greatest increases occurred 

when more color choices were available, in comparision to Food Controls. 

 

4.0. Discussion 

4.1. Choosing all the options & bet hedging. 

Color preference doesn’t appear to have responded to selection in the way in that 

was predicted. In the assays, aqua should have been preferred over at least one other hue 

disk, and it wasn’t. Everyone seems to like green when that choice is offered in the 

assays. And even going back to look at the selection data, we also don’t see a change 

across generations as predicted (that aqua becomes more preferred as the generations 

continue). All of the flies in the selection treatments did appear to have solved the 

problem of preferential hue selection with a non-behavioral solution: they have increased 

fecundity across evolutionary time. In other words they laid more eggs each generation 

across all the choices presented to them. This egg laying rate increase is affected by the 

treatment, as there is a steady increase in the total number of eggs laid by each line across 

all generations (including the Color Controls).  

  

4.1.1. Why green? 
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When the preliminary testing was done to determine if the flies could undergo 

Discrimination Conditioning based on hue colors, where quinine was used as an 

adverse/punishment phase in one hue of a two choice hue system, which was 

unsuccessful. In addition to the conditioning experiments a set of ‘control” lines were 

given a two choice test with two of six hues, which amounts to six different preference 

tests; Blue vs. Aqua, Aqua vs. Green, Blue vs. Green; and two other hue disks were used 

that were supposed to be closer to the Aqua hue by their wavelength determination, so a 

(Blue-Aqua) vs. Aqua, Aqua vs. (Aqua-Green), and (Blue-Aqua) vs. (Aqua-Green), 

which showed no major preferences towards any one hue in any of the preference testing 

combinations. The general preferences skewed so that at least one hue was preferred 55% 

of the time.  

 However, we do know that they like green. Green is the predominate color of the 

natural ecosystem that fruit flies evolved in. Green is a very common color in a non-

Laboratory setting, and it is possible that when the flies are presented with a novel choice 

paradigm, that their instinct is to go to green. 

 

4.2. Fecundity & egg laying rates. 

 Fecundity is a combination of both the fertility of a species and the fitness of the 

species, as fecundity can be controlled by the genes and the environment. In the case of 

Drosophila melanogaster the fecundity is determined by the total number of eggs a 

female lays in her lifetime, and the environment that those eggs are laid in.  

 In the case of a variable environment, the production of more offspring increases 

the chances of some of the offspring making it to adulthood, and even more so if the 
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number of male partners has increased. This trade of for specialized offspring with 

specific benefits is reduced to attempt to increase the fitness of offspring in multiple 

environments or environments of high selective pressure and variance (Deng, et al., 2012; 

Fox & Rauter, 2003). Foucaud, et al. (2016) conducted an experiment to specifically 

calculate fecundity and learning during an invasion by a novel Drosophila sububscura 

population to a native Drosophila sububscura population. While both species preformed 

roughly the same in cognitive learning abilities, the invasive species had a higher 

fecundity than the native population. 

 

4.3. Why didn’t color preference evolve? 

While it was shown that color preference did not evolve in any of my treatment 

lines, why this happened is unknown at this time. It is possible that the wild type 

population didn’t have the initial genetic variability to allow for color vision preference 

and evolution of preference in these fly lines. 

It is possible that too few generations were under selective pressure for behavioral 

preferences to evolve. While the genetic variation could have change a little it would not 

have been enough to show in significance if there were not enough generations (or time) 

for the behavioral phenotype to be expressed. In Dr. Dunlap’s lab, when Learning Tests 

are being performed, the fly lies are not analyzed for behavioral changes until they have 

undergone at least forty generations of selective pressure.  

However, there is the Russian domesticated fox (fox farm) experiment, where fur 

farm foxes (Vulpes vulpes) underwent strong selective pressure for tameness. In this case 

only the foxes that were the tamest of the lot were allowed to breed, and in the first 
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generation there was nearly all aggressively fearful or avoidant of human contact, but it is 

noted that by the third generation the aggressiveness had been eliminated from the 

breeding population. While this experiment is more complex than described, this is a 

strong selective pressure on a behavior, and by the sixth generation some foxes had 

developed an attractiveness to human contact, seeking it out, and developing behaviors 

that gained it attention from the researchers. These behavioral elite foxes also developed 

morphological changes in ear floppiness and fur color patterns (to become cuter to the 

experimenters), and their sexual behaviors changed, they matured a month faster they had 

a longer breeding season, and on average produced one more pup per litter than the 

standard fur farm fox (Jones, 2016). So if these experimenters could see morphological, 

sexual, and behavioral changes under strong selective pressure in less than 10 

generations, why did my experiment not produce noticeable behavioral preference 

changes at any point in the experiment? Additionally in Mery & Kaweki’s (2002) paper, 

they were able to observe evolution in learning ability in Drosophila within eight 

generation. 

Though a behavior was altered during my experiment; egg laying rate. As the 

Experimental Evolution study progressed on generational time, all of the treatment lines 

and the color control lines showed a significant increase in the number of eggs laid within 

each line. So, each of the lines behaviorally produced more eggs in the same timespan 

than their earlier generational ancestors. It is possible that fecundity responded to the 

selection pressure because it may be the first behavioral trait that could be affected by 

selective pressures. Or the genes that are responsible for fecundity naturally have more 

variability and are more responsive to changes in selective pressure in an environment, or 
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the genes are the most plastic of the Drosophila melanogaster traits, so it is more likely 

to alter phenotype because of selection pressures. And if fecundity is the first behavioral 

trait to be affected by selection pressures, it is possible that if fecundity is being altered 

by the treatments (is responding), then color preference response could be lessened. This 

could mean that if one behavior is taking on the full force of the selective pressure, the 

other behaviors may not alter as readily because the one behavior is responding, even if it 

is not the behavior we hoped to select on. 

There is also the possibility that the genes involved in color vision and color 

preference behavior are pleiotropic, or participate in other behaviors or phenotypic traits. 

These other traits could be highly conserved and even show redundancy to prevent 

variations. Additionally, the genes for color vision could be downstream of other 

activation genes that cannot be altered as readily as fecundity. In Chapter 1 I discussed 

the many genes of eye morphology (Arendt & Wittbrodt, 2001; Arendt, 2003; Bao & 

Friedrich, 2009; Bazin-Lopez, et al., 2015; Blanco, et al., 2009; Fernald, 2006; Gehring 

& Ikeo, 1999; Hoshiyama, Iwabe & Miyata, 2007; Kozmik, et al., 2003; Rister, Desplan, 

& Vasiliauskas, 2013; Treisman & Herberlein, 1998; Weasner, et al., 2009; Yang, et al., 

2009a; Yang, et al., 2009b), and the major gene controlling this is the Pax6 gene, which 

is found in most animals and insects for controlling eye development, with not much 

variations. Additionally, some of the other genes which segment and activate the 

structures of the eye, will sometimes be involved with the development of the heads, 

brains, antennae, ears and nose of their corresponding species. So some genes contribute 

to the development of two or more sensory systems, and that pleiotropy could prevent 
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selection on any of the color genes, if they would alter the formation of another sensory 

system as well. 

Issues with available nutrients could prevent any preferences from developing at 

all. In the case of Drosophila vision if vitamin A is lacking in the media the eggs/larva 

are reared on then vision could not develop because opsins are vitamin A derivatives. So 

it is possible that in tandem with genes that cannot develop specific components of 

vision, those genes could not have the proper materials to work with. This could also 

prevent some genes that are shown to be working properly through sequencing, to not 

function at all.  

There are other genetic restrictions that could have prevented selection. As 

explained in Chapter 1 (Dulia, et al., 1999; Frentiu, et al., 2007b; Zhang, 2003), the 

reason for another species to gain another level of complexity of color vision- dichromats 

to trichromats- is due to a duplication even of one of the genes of opsin, and then the 

specialization of the duplicated gene to another maximum wavelength of light. So before 

the specialization could occur, or evolution of preference, there must first be that 

duplication event. That initial redundancy of opsin genes allows for the threshold of 

signal detection theory to be altered to prevent misses while retaining the original 

threshold criteria on the original gene.  

 

4.4. Other possible explanations. 

 In regards to the increase of Egg Laying Rate over time, there are a few minor 

possibilities for what could have caused this. 
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 The first explanation is the possibility that more eggs were moved every 

generation, getting exactly 80 eggs per vial could be difficult and it is reasonable that a 

few extras could have been added. However as the strict 80 eggs per vial (480 eggs per 

Line) was maintained throughout the Experimental Evolution study, any excess eggs 

would be less than 10 eggs per vial every generation and would not account for the 

drastic increase in the egg laying rate over the generations. 

 It is possible that the ratio of females to males in the Lines was increasing over 

time. In other words the number of females was increasing over time and the number of 

males were decreasing over time. This is possible to account for the number of eggs laid 

per line/ per Treatment type, but I am unable to verify this as I did not determine what the 

female to male ratios were each generation. 

 

4.5. Summary.  

Color vision may be very difficult to change. It could be that color vision itself 

cannot evolve because there is not a selective pressure strong enough to influence it 

without some additional genetic duplication event first. It is also possible that the plastic 

responses to the changes in the environment are more readily apparent in fecundity and 

not in behavior first. So it is possible that by continuing this strong selection pressure on 

color vision preference to 40 or more generations could have indicated a change in that 

color vision preference that the 22 generations of my research did not. 

Additionally, the selective behavior in a two- or three- choice paradigm may not 

be the best conditions of evolution of color vision, so another behavior task that involves 

color vision and selective pressure could have produced a more noticeable change in the 
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behavior than my experiment resulted in. It is also possible that fecundity is the only 

behavioral result that selective pressure on color vision would produce, only because the 

genes that are involved with the development of color vision are directly involved in the 

construction and development of other senses. 

Fecundity research should be investigated more thoroughly, as it appears that in 

the Russian Fox Experiment that sexual behavior evolved with the tameness under their 

strong selective pressures. As sexual behavior was shown in my experiment as one of the 

only significant changes over time, sexual behavior and fecundity may have shown that 

evolution has occurred.  

Any of these reasons would be cause for further study of strong selection 

experiments on color vision preferences to determine the actual behavioral changes that 

develop and are key to determining evolution.  
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Figure 13: A Graphical Assessment of the Predicted Behavior of the A Lines After 22 

Generations of Selection; A)When the A Lines are introduced to a novel hue green, it is 

hypothesized that the preference of the A Lines should increase towards green, shown as 

the dashed line, while the A Lines normal environment of blue and aqua. B) This is a 

similar graph to (A), but with the five hue choices and their predicted preference values 

in the A lines. C) A colored representation of the preferences expected during the Assays. 
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Figure 14: A Graphical Assessment of the Predicted Behavior of the B Lines After 22 

Generations of Selection; A) When the B Lines are introduced to a novel hue blue, it is 

hypothesized that the preference of the B Lines should increase towards blue, shown as 

the dashed line, while the B Lines normal environment of green and aqua. B) This is a 

similar graph to (A), but with the five hue choices and their predicted preference values 

in the B lines. C) A colored representation of the preferences expected during the Assays 
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Figure 15: The Predicted Preferences for the C Lines After 22 Generations of 

Selection; A) When the C Lines are introduced to two choice situations, B) This is a 

similar graph to (A), but with the five hue choices and their predicted preference values 

in the C lines. C) A colored representation of the preferences expected during the Assays 
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Figure 16 
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Figure 17: Preference for Aqua Hue for the A Lines and B Lines; A-B) The preference 

for Aqua was determined by the equation: (Total Eggs Laid on Aqua)/ (Total Eggs Laid 

on all Hues). Each Replicate was graphed for the A and B Lines every five generations. 

The Dashed line represents the Null Hypothesis Line which estimated the Aqua Hue 

preference in a two-choice selection when no preference exists or evolves (0.5). C-D) all 

replicates graphed for every generation, graphed similar to (A & B). 
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Figure 18: Preference for Aqua Hue for the C Lines and Color Controls; A-B) The 

preference for Aqua was determined by the equation: (Total Eggs Laid on Aqua)/ (Total 

Eggs Laid on all Hues). Each Replicate was graphed for the C Lines and Color Controls 

every five generations. The Dashed line represents the Null Hypothesis Line which 

estimated the Aqua Hue preference in a three-choice selection when no preference exists 

or evolves (0.33). C-D) all replicates graphed for every generation, graphed similar to (A 

& B). 
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Appendix 1: Pre-Selection Methods & Data 

 

The Laboratory Wild Type (FV) Drosophila melanogaster eggs were collected 

for discrimination conditioning (adverse) testing. Each line tested, was collected in six 

vials with standard fly food, each vial contained eighty eggs: for a total egg count of 480 

eggs/flies per line.  

The first experiment of discrimination testing was between the corresponding 

RGB hues of the wavelengths: 457.5 nm, 475 nm, and 492.5 nm. Each FV line was tested 

under one of nine conditioning/discrimination sets. All lines were introduced into 

separate cages with two Petri dishes with 50 ml of standard lab fly food. The cages were 

put into a climate chamber set at 24 °C, under Hitlights© LUMA10™ MULTICOLOR 

LED LIGHT STRIPS - SMD 5050 controlled LEDs set to cool white for three days, 

undisturbed. See Figure 7, and Appendix 1 Table 1. 

Each line would be conditioned using [agar + quinine] mixture over the 

discriminated color disk, and a standard agar disk over the non-discriminated hue. Each 

line would be trained with the [quinine + agar] plates for 3 hours, the plates would be 

removed for 30 minutes, and new agar plates [no-quinine in any] would be introduced for 

1.5 hours. 

Under discrimination procedures, a line could be:  

1) Conditioned against the hue 457.5 nm when paired with hue 475 nm. 

2) Conditioned against the hue 475 nm when paired with hue 457.5 nm. 

3) Conditioned against the hue 475 nm when paired with hue 492.5 nm. 

4) Conditioned against the hue 492.5 nm when paired with hue 475 nm. 
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5) Conditioned against the hue 457.5 nm when paired with hue 492.5 nm. 

6) Conditioned against the hue 492.5 nm when paired with hue 457.5 nm. 

For comparison, there were three other sets that measured preferences of the FV lines to 

hue without conditioning: 

7) Preference compared between hue 457.5 nm and hue 475 nm 

8) Preference compared between hue 475 nm and hue 492.5 nm 

9) Preference compared between hue 457.5 nm and hue 492.5 nm 

Each set was run until 17 separate lines were tested under each set. 

 The second experiment of discrimination testing was between the corresponding 

RGB hues of the wavelengths: 440 nm, 475 nm, and 510 nm. This second experiment 

followed the same procedure as the first experiment, substituting the 440 nm hue for the 

457.5 nm hue, and replacing the 492.5 nm hue with the 510 nm hue. These discrimination 

sets were run until 11 separate replicates were tested for each condition or preference. 

 All of the [no-quinine] plates were photographed, and the total eggs counted. 

Results: 

No obvious results from the data but see Appendix 1 Table 2 for further data. The 

greatest oddity is that in some of the discrimination testing, the hue color that had a 

quinine paired in the learning phase, that hue would have a greater number of eggs laid 

on it compared to a control test. As if the flies were using the quinine as an indication 

point of which hue to lay on. This was not constant. 

 

 

 



A REVIEW OF EVOLUTION, BEHAVIOR, AND VISION WITH … 169 
 

Tables: 
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Appendix 2: Food Preparation & Procedure 

Fly Food Recipe: 

Ingredients 

Max Batch 

Size (1 ½ 

+20%) 

% 

Composition Block 

Water (mL) 8000 54.33% 

1 

Agar (g) 164 1.1% 

Molasses 

(mL) 1060 7.2% 

Cornmeal 

(g) 1060 7.2% 

2 Brewer's 

Yeast (g) 840 5.7% 

Water (mL) 3460 23.5% 

Tegosept (g) 23 - 

3 

Ethanol 

(mL) 80 0.5% 

Propionic 

Acid (mL) 40.1 0.3% 

Total (mL)                   14,723.62 

1) Measure out Water and Agar from Block 1 and mix together in Large Soup Pot  

2) Measure out Molasses in separate container  
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3) In third mixing pot measure out and combine all ingredients from Block 2. The 

longer this sits to mix the better. Cover and set aside. 

4) In a 250 mL [G] glass beaker measure out the Tegosept, and set aside. 

5) In separate [G] glass containers (usually Erlenmeyer Flasks are available), 

measure out the Ethanol and Propionic Acid. 

6) Using a Balloon whisk that is large enough to not disappear in the Stock pot, keep 

the agar and water mixture suspended, and turn on the hot plate to setting 5 (out 

of 10). Set the Heating Plate to setting 5.  If setting 8 is used, the pot must be 

watched constantly. 

7) Apply heat until temperature reaches 75 °C.   Use an alcohol thermometer to 

measure the temperature.  

8) Add molasses at 75 °C. If hot plate is not at setting 5, then set to 5.  The Agar-

Molasses-Water mixture must be constantly stirred to prevent the molasses 

burning. 

9) Continue to heat to 80 °C   turn off the Hot plate to prevent molasses burning. 

10) Pour the Cornmeal-Yeast-Water mixture into the Agar-Molasses-Water stock pot. 

Mix thoroughly. 

11) Turn Hot plate back on to setting 5. *At this point the stock pot should be 

CONSTANTLY stirred, using the whisk to get into edges and keeping the 

ingredients suspended* Setting 8 can be used if the constant whisking is vigorous 

enough to prevent burning. 

12) Continue stirring until 80 °C is reached again. 
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13) Pour the premeasured ethanol into it the glass beaker containing the Tegosept. 

The Tegosept should nearly instantly dissolve, and mixing it slightly will dissolve 

the remaining grains. 

14) Once 80 °C is reached, add the ethanol-Tegosept mixture into the Stock pot *The 

Hot plate should remain at setting 5 from this point on*. Mix thoroughly. 

15)  Continuously and vigorously whisk the stock pot For 5 minutes should be, 

without stopping. (Two songs on the radio). 

16) Turn off the hot plate and carefully remove the stock pot from hot plate. 

17) Mix in the Propionic Acid to the stock pot.  

18) Dispense food into determined containers. The food hardens within an hour. 6 mL 

per vial, 50 mL per Large Petri dish, and 50 mL per milk Bottle. 

 

Agar Standard Recipe 

Ingredients 100 mL 

Water (mL) 100 

Agar (g) 1 

Sugar (g) 2 

 

1) Measure out the ingredients in separate containers. 

2) Heat water to boiling on hot plate or in microwave. 

3) While stirring, add agar slowly to hot water. 
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4) Boil water-agar mixture until clear (I.e. Undissolved agar makes the mixture 

cloudy.) 

5) Make sure the water level is the same as the original measured amount, add 

boiling water as necessary. 

6) Using an alcohol thermometer, allow Agar mixture to cool to 70 °C, and then add 

in the measured sugar and stir well. 

7) Dispense agar-sugar solution into containers within the next 30 minutes before it 

solidifies. 

8) * This recipe can be extended. There is 1 g of Agar for every 100 mL of water, 

and 2 g of Sugar for every 100 mL of water.* Example: 600 mL water, 6 g Agar, 

12 g Sugar. 
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Appendix 3: Example Data Table & Counting Sheet 

Generational Data Sheets (Example) 

Generation: ______ Date Run: __________   Time Start: ________   Time End: 

__________ 

Line 

Hue 

1 

Petri 

Dish 

Hue 

2 

Petri 

Dish 

Hue 

3 

Petri 

Dish 

Hue 

4 

Petri 

Dish 

Hue 

5 

Petri 

Dish 

Hue 

6 

Petri 

Dish 

1A  X  X  A    A   B     B    X  X 

2A  X  X  B    A    B    A    X  X 

3A  X  X  B    B    A    A    X  X 

4A  X  X  A    B    A    B    X  X 

1B  X  X  G    G    A    A    X  X 

2B  X  X  A    G    A    G    X  X 

3B  X  X  G    A    G    A    X  X 

4B  X X   A   A     G   G     X X  

1C  B   A    G     B    A   G    

2C  B   G    A     B    G    A   

3C  G    A    B    G    A    B   

4C  G   B    A     G    B    A   

CTRL 

1  A   B    G     A    B    G   

CTRL 

2  A   G    B     A    G    B   
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CTRL 

3  G    B   A     G    B    A   

CTRL 

4  A   B     G    A   B     G   

CTRL 

13  X  X X   X X   X X   X X   X X   X 

CTRL 

14  X  X  X  X  X  X  X  X  X  X  X  X 

CTRL 

15  X  X  X  X  X  X  X  X  X  X  X  X 

CTRL 

16  X X   X X   X X   X X   X X   X X  

 

 

Counting Data Sheet (Example) 

Generation Date: ________________________________ 

Petri Dish Id. 

Egg 

totals Hue 

Hue 

Totals Notes 

Location 

in Cage 

Petri 

Dish 

Number 

Photo 

Number 

    

    

1 xxxx 1   A B=   
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2 xxxx 1   A     

3 xxxx 1   B A=   

4 xxxx 1   B     
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Appendix 4: Selection Preference Graphs 
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Appendix 5: Egg Laying Rate Graphs 
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