University of Missouri, St. Louis IRL @ UMSL

Theses

Graduate Works

10-31-2006

Assessing ecological correlates of avian disease prevalence in the Galapagos Islands using GIS and remote sensing

Shane Robert Siers University of Missouri-St. Louis, shanesiers@gmail.com

Follow this and additional works at: http://irl.umsl.edu/thesis

Recommended Citation

Siers, Shane Robert, "Assessing ecological correlates of avian disease prevalence in the Galapagos Islands using GIS and remote sensing" (2006). *Theses.* 11. http://irl.umsl.edu/thesis/11

This Thesis is brought to you for free and open access by the Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Theses by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.

ASSESSING ECOLOGICAL CORRELATES OF AVIAN DISEASE PREVALENCE IN THE GALÁPAGOS ISLANDS USING GIS AND REMOTE SENSING

Shane R. Siers B.S., Biology, University of Massachusetts – Boston, 2004

A Thesis Submitted to The Graduate School at the University of Missouri – St. Louis in partial fulfillment of the requirements for the degree Master of Science in Biology with an emphasis in Ecology

October 2006

Advisory Committee

Patricia G. Parker, Ph.D. Chairperson

Bette A. Loiselle, Ph.D.

Robert E. Ricklefs, Ph.D.

Copyright, Shane R. Siers, 2006

DEDICATION

This is dedicated to the memory of Robert Duane Siers, or rather to the lack of such a memory; for better or worse, his loss has certainly had profound impacts on the course of my life. To Ardell Marie Ferguson and Frank Ferguson, who have always given me the autonomy and encouragement to make my own mistakes and benefit from my successes. To Lila and Gordon Ellestad, who provided me with fine examples of strength of character. To the Berberichs, who unknowingly fuel my conviction to contribute to the conservation of wild lands and wildlife for future generations. And to my fellow students at UMSL who have helped to smooth my transition to the culture of graduate studies.

TABLE OF CONTENTS

Acknowledgements	
Abstract	6
List of Tables	8
List of Figures	
List of Appendices	12

CHAPTER 1: Assessing Ecological Correlates of Poultry Disease Prevalence in the Galapagos Islands with GIS and Remote Sensing

Abstract
Introduction
Methods 18
Results
Discussion
Conclusion
Literature Cited
Tables
Figures
Appendices

CHAPTER 2: Ecological correlates of microfilarial prevalence and intensity in flightless cormorants (*Phalacocorax harrisi*) and Galápagos penguins (*Spheniscus mendiculus*) with modeling of prevalence distribution.

Abstract
Introduction
Methods
Results
Discussion
Conclusion
Literature Cited
Tables
Figures
Appendices

ACKNOWLEDGEMENTS

Foremost, I would like to acknowledge Dr. Patricia Parker, for the opportunities, support, guidance and frank motivation necessary to rise to the standards of the Biology Program at the University of Missouri-St. Louis. Dr. Bette Loiselle is largely responsible for igniting my interests in GIS and remote sensing, and has provided a fine example of commitment to conservation research. The input and encouragement of Dr. Robert Ricklefs has been highly valued. This work would not have been possible without the dedicated efforts of the highly collaborative Galápagos avian disease surveillance team; grateful acknowledgement goes to the institutional members (University of Missouri-St. Louis, St. Louis Zoo, Charles Darwin Research Station and the Galápagos National Park), supporters (National Science Foundation, National Geographic Society, Saint Louis Zoo's WildCare Institute and Field Research for Conservation Programs, Des Lee Zoological Collaborative, Oklahoma City Zoo, Sigma Xi, and the International Center for Tropical Ecology at the University of Missouri-St. Louis), and individual contributing researchers and field assistants (particularly P. Parker, E. Miller, C. Soos, J. Merkel, L. Padilla, N. Gottdenker, H. Vargas and others too numerous to list). Data on the geographic distribution of flightless cormorants and Galapagos penguins was contributed by Hernan Vargas. Manuscripts were improved through the comments and suggestions of many members of the Parker and Loiselle labs: P. Baiao, N. Whiteman, J. Bollmer, C. Duffie, J. Merkel, D. Santiago-Alarcon, M. Soria, J. Stauber, I. Levin, E. Sari, K. Holbrook, W. Tori, R. Duraes, and C. Cornelius. Much gratitude is owed to the members of the ERDAS ImagineTM Image Analysis Discussion List for their generous contributions of technical knowledge. Additional acknowledgement goes to those who provided guidance, support, and encouragement

for my initial research into lemur population genetics: Dr. Patricia Parker, Dr. Robert Sussman, Ingrid Porton, International Center for Tropical Ecology at University of Missouri-St. Louis, Seneca Park Zoo's Docent Association, Primate Conservation Inc., and Madagascar's national park service (ANGAP).

ABSTRACT

Introduction of exotic species is a major factor contributing to biodiversity loss, particularly in extinction-prone island ecosystems (Vitousek et al. 1997). While the Galapagos archipelago has experienced negative impacts from invasive plants and animals (Snell et al. 2002), its bird community has remained remarkably intact with no recorded extinctions – in contrast to the fate of the avian fauna of other oceanic archipelagos (VanRiper et al. 1986, Savidge 1987, Holdaway 1989, Steadman 1995, Blackburn et al. 2004).

The role of introduced pathogens in species loss is not well understood, but there is evidence that they have contributed to the decline and extinction of species in several island systems (see Wikelski et al. 2004). For island birds in particular, avian malaria and avian poxvirus have contributed to the extinction of several Hawaiian land birds (Warner 1968, Van Riper III et al. 1986, Atkinson et al. 1995). In addition to the other challenges facing island biotas (isolation, various effects of small population size), they may also be more susceptible to introduced pathogens due to immunological naivety (Atkinson et al. 1995).

In recognition of the potential consequences of pathogen introduction to the Galapagos Islands, the Saint Louis Zoo and the University of Missouri–Saint Louis, in cooperation with the Galapagos National Park Service and the Charles Darwin Research Station, implemented an avian disease surveillance program in 2001, with the objective of identifying and monitoring for pathogens that pose risk for native bird populations (Miller et al. 2002, Parker et al. 2006).

The purpose of this thesis is identify environmental factors that might influence the geographic distribution of avian pathogen infection, based on two data sets obtained as a result of these surveillance efforts: 1) seroprevalence data on 10 common poultry pathogens from farm sites within the agricultural zone of Santa Cruz (Chapter 1); and 2) prevalence and intensity

values of microfilarial infections of endangered flightless cormorants and Galápagos penguins (Chapter 2).

Putative correlative factors were obtained from various geographic information system (GIS) and remotes sensing data sets, containing information on temperature, precipitation, water vapor, soil moisture, vegetative density and topography. Results of these analyses provide indications of correlation between pathogen infection measures and various ecological factors which may affect disease transmission. These observations may provide the bases for the formulation of specific hypotheses for more rigorous statistical verification. An understanding of the environmental factors influencing poultry pathogen prevalence may be useful in predicting the consequences of pathogen transmission across the poultry/wildlife interface (Chapter 1). Insight into the geographic distribution of arthropod-vectored microfilarial infections may allow us to predict the spatial distribution of transmission risk should other arthropod-borne pathogens, such as avian malaria or West Nile Virus, be introduced to this ecosystem (Chapter 2).

LIST OF TABLES

CHAPTER 1

1.	Poultry pathogen characteristics, threats to wildlife, and factors affecting likelihood of environmental influence on transmission
2.	Correlates of pathogen prevalence in Santa Cruz, Galapagos, poultry farms42a. Correlates of Mycoplasma gallisepticum prevalence.42b. Correlates of Newcastle disease virus prevalence42c. Correlates of Marek's disease virus prevalence42d. Correlates of infectious laryngotracheitis virus prevalence42e. Correlates of infectious bronchitis virus (Mass. strain) prevalence42f. Correlates of infectious bronchitis virus (Conn. strain) prevalence43g. Correlates of infectious bursal disease virus prevalence43h. Correlates of avian reovirus prevalence43i. Correlates of avian adenovirus I prevalence43j. Correlates of avian adenovirus I prevalence43
3.	Overview of correlations observed

1.	Summary of data sets assessed for correlations with microfilarid infection measures 87
2.	Prevalence and intensity values for microfilariae in flightless cormorants by site for the individual anlyses
3.	Prevalence and intensity values for microfilariae in flightless cormorants by site for the merged analyses
4.	Prevalence and intensity values for microfilariae in Galápagos penguins by site for the individual analyses
5.	Prevalence and intensity values for microfilariae in Galápagos penguins by site for the merged analyses
6.	Statistically significant correlates of microfilarid prevalence in flightless cormorants 89
7.	Statistically significant correlates of microfilarid infection intensity in flightless cormorants
8.	Statistically significant correlates of microfilarid infection prevalence in Galápagos penguins

9.	Statistically significant correlates of microfilarid infection intensity in Galápagos penguins
10.	Correlations between prevalence of filarids in cormorant populations and a) predictive model based on all correlated variables; b) components of the PCA based on all correlated variables; c) predictive model based on correlated principal components
11.	Correlations between intensity of filarid infections in cormorant populations and a) predictive model based on all correlated variables; b) components of the PCA based on all correlated variables; c) predictive model based on correlated principal components
12.	Correlations between prevalence of filarids in penguin populations and a) predictive model based on all correlated variables; b) components of the PCA based on all correlated variables; c) predictive model based on correlated principal components
13.	Correlations between intensity of filarid infections in penguin populations and a) predictive model based on all correlated variables; b) components of the PCA based on all correlated variables; c) predictive model based on correlated principal components
14.	Loading values for significantly correlated components derived from ecological correlates of filarid prevalence in flightless cormorant colonies
15.	Loading values for significantly correlated components derived from ecological correlates of filarid intensity in flightless cormorant colonies
16.	Loading values for significantly correlated components derived from ecological correlates of filarid prevalence in Galápagos penguins colonies
17.	Loading values for significantly correlated components derived from ecological correlates of filarid intensity in Galápagos penguins colonies

LIST OF FIGURES

1.	Distribution of sampled and unsampled broiler, backyard and layer chicken farms throughout the agriculture zone of Santa Cruz. Inset: location of Santa Cruz and its agriculture zone within the Galapagos archipelago
2.	Distribution of prevalence of infectious bursal disease virus predicted by precipitation seasonality throughout agriculture zone
3.	Distribution of prevalence of infectious bursal disease virus predicted by precipitation seasonality throughout archipelago
4.	Distribution of prevalence of Newcastle's disease virus predicted by precipitation seasonality throughout agriculture zone
5.	Distribution of prevalence of Newcastle's disease virus predicted by precipitation seasonality throughout archipelago
6.	Generalized conceptual model of the likelihood of environmental influence on prevalence of a pathogen as a function of the organism's ability to persist outside the host

1.	Geographic distributions of flightless cormorants and Galapagos penguins based on GPS points from all known breeding colonies
2.	Prevalence and intensity values for microfilarid infections in flightless cormorants and Galapagos penguins
3.	Flightless cormorant sites where 5 or more birds were sampled
4.	Flightless cormorant sites merged based on geographic proximity
5.	Galapagos penguin sites where 5 or more birds were sampled
6.	Galapagos penguin sites merged based on geographic proximity
7.	Predicted prevalence of microfilarial infection in flightless cormorants based on observed data and modeled correlations with 11 environmental variables
8.	Cormorant filarid infection prevalence as modeled by a weighted mean of all correlated variables
9.	Cormorant filarid infection prevalence as modeled by a weighted mean of correlated PCA layers
10.	Cormorant filarid infection intensity as modeled by a weighted mean of all correlated variables
11.	Cormorant filarid infection intensity as modeled by a weighted mean of correlated PCA layers
12.	Penguin filarid infection prevalence as modeled by a weighted mean of all correlated variables
13.	Penguin filarid infection prevalence as modeled by PC 17 of the PCA conducted on all significant correlates
14.	Penguin filarid infection intensity as modeled by a weighted mean of all correlated variables
15.	Penguin filarid infection intensity as modeled by PC 01 of the PCA conducted on all significant correlates

LIST OF APPENDICES

I.	Correlations by pathogen	49
II.	Eigen matrix and eigenvalues from the all-layers PCA	59
CH	HAPTER 2	
I.	Satellite data sources.	102
II.	Correlations of environmental variables with microfilarid infection measures	105

CHAPTER 1: Assessing Ecological Correlates of Poultry Disease Prevalence in the Galapagos Islands with GIS and Remote Sensing

ABSTRACT:

The purpose of this investigation is to identify ecological correlates of pathogen prevalence in the poultry industry of the Galapagos Islands, as part of an assessment of the potential for disease transmission across the poultry-wildlife interface. Seroprevalence data for ten common poultry diseases from seven Galapagos chicken farms were evaluated for correlation with geo-referenced data sets describing climatic and landscape variables which might affect disease dynamics. The results of this study indicate that *Mycoplasma gallisepticum*, Marek's disease virus, infectious laryngotracheitis virus, infectious bronchitis virus (Massachusetts & Connecticut strains) and avian reovirus are highly correlated with each other, and some of these diseases exhibit trends with respect to farm type and increasing prevalence with cooler land surface temperature and narrower diurnal temperature range. Newcastle's disease virus, infectious bursal disease virus, avian encephalomyelitis virus, and avian adenovirus-I were likewise highly correlated with each other, and exhibited varying levels of correlation with climatic variables indicative of moderate dry seasons and low levels of atmospheric water vapor. Prevalences of all pathogens were sporadically correlated with satellite-derived measures of vegetation density taken at different times throughout the year, though the patterns of correlation did not support a link to arthropod vectors. Correlations with topographic values were not observed. Deviations of observed results from predictions prompted the construction of a generalized conceptual model for the relationship between pathogen durability and likelihood of environmental influence on disease incidence, in which: 1) very labile organism do not persist outside the host long enough to demonstrate detectible influence of variations in environmental

factors; 2) organisms with moderate environmental stability may differentially achieve sustained transmission in response to variations in environmental factors; and 3) very durable organisms are relatively impervious to the observed levels of environmental variability and therefore are less likely to reveal patterns of correlation with environmental factors. Understanding the role of environmental influences on the prevalence of these or other pathogens may be important in predicting the spread of diseases if they do cross the poultry-wildlife interface.

INTRODUCTION:

Introduction of exotic species is a major factor contributing to biodiversity loss, particularly in extinction-prone island ecosystems (Vitousek et al. 1997). While the Galapagos archipelago has experienced negative impacts from invasive plants and animals (Snell et al. 2002), its bird community has remained remarkably intact with no recorded extinctions – in contrast to the fate of the avian fauna of other oceanic archipelagos (VanRiper et al. 1986, Savidge 1987, Holdaway 1989, Steadman 1995, Blackburn et al. 2004).

The role of introduced pathogens in species loss is not well understood, but there is evidence that they have contributed to the decline and extinction of species in several island systems (see Wikelski et al. 2004). For island birds in particular, avian malaria and avian poxvirus have contributed to the extinction of several Hawaiian land birds (Warner 1968, Van Riper III et al. 1986, Atkinson et al. 1995). In addition to the other challenges facing island biotas (isolation, various effects of small population size), they may also be more susceptible to introduced pathogens due to immunological naivety (Atkinson et al. 1995).

In recognition of the potential consequences of pathogen introduction to the Galapagos Islands, the Saint Louis Zoo and the University of Missouri–Saint Louis, in cooperation with the Galapagos National Park Service and the Charles Darwin Research Station, implemented an avian disease surveillance program in 2001, with the objective of identifying and monitoring for pathogens that pose risk for native bird populations (Miller et al. 2002, Parker et al. 2006).

One of the efforts of this program is to identify the risk of disease transmission across the poultry/wildlife interface. Poultry farming occurs on the five human-inhabited islands (Santa Cruz, Isabela, San Cristobal, Floreana and Baltra). While extensive efforts are underway to eradicate other non-native species in the Galapagos (Snell et al. 2002), the removal of all chickens from the archipelago is unlikely due to their nutritional and economic importance for the local human population and the growing tourist industry. The increasing number of chickens in populated regions is resulting in the expansion of the poultry/wildlife interface and the potential for emergence of infectious disease in native species (Gottdenker et al. 2005, Soos et al. in review). In July of 2005 there were ~700 chickens at 12 backyard farms, ~8600 at 3 layer farms, and ~17,000 at 25 broiler farms on the island of Santa Cruz (Soos et al., unpublished; Figure 1). To assess the potential for transmission of disease to the endemic and native bird fauna, testing of domestic chickens for a panel of pathogens has been conducted (Gottdenker et al. 2005, Soos et al. in review) and is continuing, and will be expanded to include testing of wild birds for the same pathogens.

Soos et al. (in review) compared the pathogens found in small-scale backyard farms to those at larger indoor broiler operations. Thirty chickens from each site of seven farm sites (four backyard sites and three broiler sites; Figure 1) were examined for clinical signs of disease and seroprevalence of 13 common poultry pathogens considered to be of risk to endemic and native birds. While there was no evidence for avian influenza virus, *Salmonella typhimurium* or *S. pullorum*, overall seroprevalence was high across both types of farms for the other 10 pathogens

(Table 1). The results clearly indicated higher prevalence of seroreactivity and clinical signs of disease at backyard farms. Given the relatively nonexistent biosecurity measures at these farms, the integration of the free-ranging chickens into the surrounding landscape, and the observations of native birds foraging with or after the chickens at supplemental feedings, it was concluded that backyard farms constitute a larger poultry-wildlife interface and therefore a higher probability of disease spillover into the native avifauna.

While farm type (backyard vs. broiler) accounted for a large portion of the variation in seroprevalence for several of the pathogens examined (MG, ILTV, IBVM&C, ARV, & MDV), it was not a significant predictor of prevalence for NDV, IBDV, AEV or AAVI (see Table 2 for key to abbreviations). Authors noted that, even after farm type was accounted for, there was considerable residual variation. They suggested that this variation might be related to differences in management practices or environmental factors such as geographic area, altitude, and exposure to potential vectors.

In light of these findings, the present work was conducted to determine whether environmental factors (e.g., climate and land cover) account for variation in seroprevalence at these seven farm sites. To this end, measures of correlation between the seroprevalence data from Soos et al. (in review) and environmental variables were considered for ten poultry diseases and six suites of bioclimatic and landscape variables at seven chicken farms in the agriculture zone of the island of Santa Cruz, with the assumption that environmental factors conducive to successful and sustained transmission will be reflected in higher prevalence values. While seven sites is a small sample size for such a correlative analysis, this approach has been taken to identify possible trends which may form the basis for hypotheses to be more rigorously tested. The discipline of landscape epidemiology seeks to link the spatial distribution of host populations with the transmission dynamics of their pathogens. Spatially variable biotic and abiotic attributes of host and vector habitat, and the distribution of the hosts and vectors themselves, can affect the distribution and abundance of disease-causing organisms. Landscape and climatic factors that can be described in a geo-referenced data set can be assessed for correlation with disease data in a GIS, allowing the identification and mapping of infection risk factors and incidence of disease (Hess et al. 2003).

Climatic factors to be considered in this study include temperature, precipitation, and atmospheric water vapor. Landscape characteristics such as land cover can be an important factor in the distribution of organisms and the dynamics of disease transmission (Curran et al. 2000), and will be considered here through the use of an index of vegetation density (see NDVI in Methods). Topographic variables (elevations, slope & aspect) will also be considered.

Table 2 summarizes the characteristics, threats to wildlife, and factors affecting the likelihood of environmental influence on transmission of the ten pathogens considered in this study. Predictions are made as to the relative likelihood of observing correlations between pathogen prevalence and ecological variables. *These predictions are primarily based on the logic that organisms that are relatively durable outside the host are more likely to be influenced by environmental factors during these periods of horizontal transmission, while more labile organisms are unlikely to survive outside the host long enough to produce a discernable signal of environmental correlation.* Implication of a role for living vectors or reservoirs in transmission also increases the likelihood of environmental influence on prevalence, particularly with respect to landscape variables such as surrounding vegetation density.

METHODS:

Seroprevalence data on the ten pathogens listed in Table 1 were obtained from blood samples of 30 chickens from each of seven farms (Figure 1). See Soos et al. (in review) for a description of collection and serology methods used.

Climate data describing precipitation and atmospheric temperature were obtained from the WorldClim database (<u>http://biogeo.berkeley.edu/gis/data.html</u>; Hijmans et al. 2005), which contains a minimum of 30 years (1960-1990) of monthly temperature (°C) and precipitation (mm) measurements at 30 arc-second resolution (approx. 1km²). From this data set we considered the following 18 bioclimatic variables: annual mean temperature; mean temperature of the driest quarter; mean temperature of the wettest quarter; temperature annual range; minimum temperature of the coldest month; maximum temperature of the warmest month; temperature seasonality; mean diurnal temperature range; mean temperature of the coldest quarter; mean temperature of the warmest quarter; precipitation in the coldest quarter; precipitation in the warmest quarter; precipitation in the driest quarter; precipitation in the wettest quarter; precipitation seasonality; precipitation in the driest month; precipitation in the wettest month; and annual precipitation.

In addition to data based on weather station records, satellite sensor measurements of environmental and landscape variables were also assessed for correlation with prevalence values, including data on land surface temperature, atmospheric water vapor, and vegetation density.

In laboratory tests, relative humidity has proven to be an influential factor on the survival of viruses on environmental surfaces (Buckland & Tyrell 1962, Mbithi et al. 1992, Abad et al. 1994). It has also been suggested that relative humidity may contribute to the seasonality of viral outbreaks (Enright 1954). Therefore, geographic variation in relative humidity may be

correlated with disease prevalences. While remotely sensed data on relative humidity at a meaningful spatial scale are not available, the MODIS sensor aboard the Terra and Aqua satellites provides daily quantification of total precipitable water vapor (amount of water vapor in the atmospheric column, in centimeters), derived from a near-infrared algorithm at 1-km spatial resolution (King et al. 2004). Mean precipitable water vapor was calculated for each of the twelve months preceding the sampling of poultry farms (Aug '04-Jul '05). Pathogen prevalence data were assessed for correlation with the following water vapor values: monthly means; annual minimum (mean of lowest month); annual maximum (mean of highest month signest month divided by mean of lowest month); and standard deviation of monthly means over the year (as a measure of annual heterogeneity).

While the querying of this data set was prompted by the suggestion of a role for relative humidity in viral persistence, we note that total precipitable water vapor is not the same as relative humidity, which has a temperature component not available here. Additionally, these values are for water vapor in the entire atmospheric column beneath the top of the Earth's atmosphere, and not only at the surface – though the algorithm used to produce these data is more sensitive to water vapor at the earth-atmosphere boundary layer (King et al. 2004).

For temperature variables more accurately defined in time and space, we utilized land surface temperature data sets acquired by the MODIS sensor for the year preceding sampling (Aug '04 – Jul '05). Daily day and night land surface temperatures at 1-kilometer spatial resolution are calculated from thermal infrared emissions, and are accurate to 1 Kelvin (King et al. 2004). As frequent cloud cover impedes the ability to retrieve temperature readings, MODIS Land Surface Temperature data products are available as 8-day composites, which take advantage of the few cloudless opportunities. These composites were used to calculate monthly means. Even with compositing, a few monthly averages were not available for some of the farm sites, so seasonal composites were calculated. Disease prevalences were assessed for correlation with: mean day and night land surface temperatures for the 12 months preceding sampling, the warmest six months (Dec '04-May '05), and the coolest six months (Aug '04-Nov '04 and Jun '05-Jul '05); diurnal temperature range (day temperature minus night temperature) from the annual, warm, and cool period means; and seasonality of day and night land surface temperatures (mean of warmest month divided by mean of coolest month).

The primary link between land cover and disease is through the quality and quantity of surrounding arthropod vector habitat. The most important applications of remote sensing to epidemiology have used the Normalized Difference Vegetation Index (NDVI), a measure of the vegetative productivity of an area, as a proxy measure for arthropod vector habitat, with the underlying logic that areas of dense vegetation are likely to provide suitable habitat for arthropod vectors, and that levels of moisture sufficient to support such vegetative structure are also likely to provide the moisture necessary for breeding habitat (for example, of mosquitoes). Similar logic may apply to non-arthropod species which may serve as reservoirs or mechanical vectors, i.e., wild birds may be more abundant in the vicinity of dense vegetative coverage that may serve as refuge. Remotely-sensed NDVI values have been positively correlated with human and veterinary diseases such as: trypanosomiasis through its tsetse fly vector (Rogers 2000); sin nombre virus infections in deer mice (Boone et al. 2000); urinary schistosomiasis via snails (Brooker et al. 2001); Lyme's disease via ticks (Kitron & Kazmierczak 1997); and mosquitovectored malaria, filariasis, rift valley fever, eastern equine encephalitis and leishmaniasis (Hay et al. 2000b, Crombie et al. 1999, Anyamba et al. 1999, Moncaya et al. 2000, Thompson et al.

2002). Hay et al. (2000a), Beck et al. (2000), and Correia et al. (2004) review the use of NDVI and other remotely-sensed data in epidemiology. While arthropod vectors are not implicated as intermediate hosts of the pathogens assessed here, there is some evidence that they may act as mechanical vectors. Correlations of prevalence with surrounding vegetation density may also be indicative of other unanticipated relationships.

NDVI data from the MODIS sensor aboard the Aqua and Terra satellites (King et al. 2004) are available at a moderately coarse spatial resolution (250-meter pixels, ~0.063km²) but with high temporal resolution. Daily measurements are composited and returned every 16 days for nearly continuous monitoring. As the Galapagos archipelago is frequently under cloud cover, compositing is particularly valuable in that it takes advantage of the few clear-sky opportunities. Analyses were conducted on each of the composite datasets for the year preceding the study. Correlations were assessed on the raw pixel values, and on values which were averaged over varying geographic extents, from 0.56 to 22.56 square kilometers surrounding the respective sites. Correlations were also assessed with the mean NDVI for the preceding year, for the wetter months of the preceding year (Jan-May '05), for the drier months (Aug-Dec '04 & Jun-Jul '05), and with an index of seasonality (wet mean / dry mean). These measures were based upon NDVI values averaged over 1.56 square kilometers (an extent similar to the spatial resolution of the other datasets analyzed).

Topographic features may also influence an organism's range. Elevation, slope, and aspect (the direction a slope faces) were assessed for correlation with prevalence data. Elevation may be correlated with prevalence through its links with temperature and precipitation. Slope may affect drainage of surface water. Correlations with aspect may reflect some relationship with exposure to sunlight or winds. These values were based on a digital elevation model (DEM) with 90-meter resolution, produced by the Shuttle Radar Topography Mission (SRTM).

To control for the covariance inherent in the data layers used in this study, they were also submitted to a principal components analysis (PCA), producing derived data layers that are non-correlated and independent. Each of the major data groupings (WorldClim temperature, WorldClim precipitation, SRTM topographic, MODIS NDVI, MODIS land surface temperature, and MODIS water vapor) was subjected to a PCA, with the 2-4 layers representing the majority of the variation being assessed for correlation with disease data. These resulting layers were also submitted to another PCA to diminish redundancy among data sets (hereafter referred to as the "all-layers PCA"), with the resulting principal components also being assessed for correlation with disease prevalence (Appendix II). All components of the all-layers PCA contained significant variation (eigenvalues > 1), so all were considered in the correlative analyses.

WorldClim values were extracted in ESRI ArcGIS 9.1. All MODIS data sets (water vapor, land surface temperature, and NDVI) were obtained from the NASA Land Process Distributed Active Archive Center (LP DAAC), and were pre-processed and interpreted using ERDAS Imagine 9.0. The SRTM digital elevation model was pre-processed in ERDAS Imagine 9.0, and topographic values calculated and extracted in ArcGIS 9.1. PCA was conducted with ERDAS Imagine 9.0.

Additionally, pathogen prevalence was also assessed for correlation with prevalence values of other pathogens recorded in this Soos et al. (in review).

Due to the small number of sample sites (n=7), correlative analysis is necessarily limited to simple bivariate analysis (Pearson's Correlation Coefficient (r), 2-tailed, SPSS). Prevalence values for all ten pathogens were assessed for correlation with all ecological and environmental variables listed above (with the exception of aspect, values of which have a circular distribution and were assessed for fit to a quadratic curve). As no assumptions of directionality in any correlations were made *a priori*, P-values reported here are based on two-tailed tests. Should we modify our hypotheses to correctly predict the nature of the relationships investigated, P-values resulting from one-tailed tests would be one-half of those reported here, exhibiting greater statistical significance. Given the low power of analyses based on the small number of sampling sites and the preliminary nature of this assessment, a relatively liberal α of P \leq 0.10 was set to indicate potential trends. Corrections of P-values for multiple comparisons (i.e. Bonferroni adjustments) were not conducted, as each comparison of ecological variable to prevalence value may be viewed as an independent hypothesis (Perneger 1998). It is possible that some of the observed correlations may be serendipitous, given the large number of tests, and it is felt that the best approach is to merely describe how the analyses were conducted, particularly given the exploratory nature of the study. Trends noted herein may suggest future hypotheses for more rigorous statistical verification.

Comparisons between our a priori predictions of the level of environmental influence on the prevalence value of each pathogen and the amount of correlation actually observed is difficult to conduct objectively. To reduce some of the subjectivity, assignments of pathogens to "observed" categories were based on the number of statistically significant correlations with components of the "all-layers" PCA (with those correlated factors significant at $p \le 0.10$ receiving 1 point and at $P \le 0.05$ receiving 2; scores of 0-1 = Low, 2-3 = Mod., and 4+ = High).

RESULTS:

Results of all correlative analyses are included in Appendix I. Table 3 summarizes the statistically significant relationships observed, with relationships significant at $p \le 0.05$ indicated in boldface. Observed levels of environmental correlation, for comparison with our *a priori* predictions, are reported in the final column of Table 2. A broad overview of the observed correlations is provided in Table 4, accentuating the similarities in correlations within the subsets of pathogens identified as "Grouping 1" and "Grouping 2" (see below), and the differences between them. Appendix II describes the eigen matrix and eigenvalues produced in conducting the all-layers PCA.

Mycoplasma gallisepticum – Prevalence values for MG were not significantly correlated with any of the WorldClim or topographic variables. The only suggestion of a correlation with MODIS-derived climatic variables is a negative correlation with mean daytime land surface temperatures in the cooler 6 months of the preceding year. Within the NDVI data sets, there was some suggestion of positive correlation with vegetation biomass during the period of peak greenness, but the association was negative with measurements taken at other times of the year. There were no significant correlations with any of the principal components layers. These findings are in keeping with our *a priori* prediction that MG would not be likely to be highly correlated with environmental variables due to its poor ability to persist outside the host. MG prevalence was highly correlated with prevalence values for MDV, ILTV, IBVM&C, and ARV. Soos et al. (in review) found that farm type (backyard vs. broiler) explained 22.4% of the variation in MG prevalence.

Newcastle disease virus – NDV seroprevalence exhibited statistically significant correlations with WorldClim precipitation, MODIS temperature, MODIS total precipitable water

vapor, and vegetation density (NDVI) variables. NDV was negatively correlated with precipitation seasonality, and positively correlated with precipitation in the driest month, suggesting increased viral persistence or transmission within geographic areas which undergo more moderate dry seasons. NDV prevalence was negatively associated with mean daytime land surface temperature, particularly during the warmer six-month period within the year prior to sampling (Dec '04-May '05) with a trend toward positive correlation with nighttime temperatures in the cooler periods of the preceding year and negative correlation with diurnal temperature range, suggestive of a positive relationship with moderate and stable temperatures. Total precipitable water vapor values, derived from the MODIS sensor, also exhibited a trend toward negative correlation with NDV prevalence values. Correlations were statistically significant with water vapor measurements taken during several of the months of the year preceding sampling, particularly the month before sampling (Jun '05), and for the mean of the entire preceding year. This association is supported by a significant correlation with the 3rd principal component of the water vapor data (primarily derived from measurements from the drier months of the year). In the all-layers PCA, NDV was correlated with the 14th principal component which was primarily derived from the WorldClim temperature principle components, though this component constitutes only a miniscule fraction of the variance present in the data (Appendix II). There was a trend toward positive correlation with NDVI measurements taken during the wetter portion of the year, and negative correlation with those from drier periods, though this signal is relatively weak. Soos et al. (in review) were able to attribute none of the variation in NDV prevalence to farm type, while prevalence did correlate with several climatic and vegetation values (though we make no assumptions of independence among these variables). This is concordant with our prediction that environmental variables may influence NDV

prevalence, though the "observed" index of correlations rates it as only moderately correlated with the principal components of these data sets. NDV was also significantly correlated with prevalence of the AEV and IBDV pathogens. Topographic variables showed no evidence of correlation with NDV prevalence.

Marek's disease virus – MDV was not correlated with WorldClim variables, topographic factors, MODIS-derived water vapor measures, nor any of the PCA layers. However, there was a negative correlation with diurnal temperature range, specifically during the warmer period, and a trend toward correlation with lower daytime and higher nighttime temperatures. Several of the NDVI data sets showed significant correlation with MDV prevalence, with a pattern of negative correlation with measurements from drier periods and positive correlations with measurements taken at the peak of greenness. We predicted that MDV would be the most likely pathogen to be influenced by environmental factors due to its remarkable ability to persist outside of the host, but for the most part this did not hold true, with only moderate evidence of environmental influence. Soos et al. (in review) demonstrated that MDV prevalence was largely predicted by farm type, with the pathogen present and moderately prevalent at all backyard sites and absent at all of the broiler sites; perhaps the effect of farm type swamps the ability to detect a stronger environmental signal (see also the discussion of a "generalized conceptual model," to follow). Among the other pathogens studied, MDV was very highly correlated with the prevalence of MG, ILTV, IBVM&C, and ARV.

Infectious laryngotracheitis virus – Neither WorldClim, topography, water vapor measures, nor any of the PCA layers correlated significantly with ILTV prevalence. The most detectable effect of daytime land surface temperature was a negative correlation with mean daytime temperature during the cooler six months of the preceding year, with prevalence higher at the cooler locations. There was some evidence of positive correlation with NDVI measurements taken at peak greenness and negative correlation with NDVI data from drier parts of the year. Soos et al. (in review) demonstrated that farm type (backyard vs. broiler) explained 33.5% of the variation in ILTV prevalence. Our *a priori* hypothesis predicted moderate probability of significant influence of environmental variables on prevalence, but only minimal evidence of environmental influence is reflected here. The most significant correlates of ILTV prevalence were the prevalence values of MG, MDV, IBVM&C, and ARV.

Infectious bronchitis virus - The Massachusetts and Connecticut strains of IBV, which are highly associated with each other, logically exhibit similar patterns in correlating variables. Neither strain can be demonstrated as correlated with WorldClim or topographic variables. However, IBV does show a strong trend toward correlation with low daytime land surface temperatures during the cooler months and negative correlation with diurnal temperature range, suggesting enhanced survival and/or transmission in cooler, more temperature-stable environs. These pathogens also exhibited the greatest amount of correlation with NDVI values throughout the preceding year, with evidence for significant positive correlation with measurements taken at wetter times of the year (Feb-Mar) and negative correlation with values from drier times. While there was no notable association of IBV with MODIS water vapor data when examined directly, there was a correlation of both strains with the 2nd principal component of the water vapor data set (derived from values from the end of the wet season and beginning of the dry season), as well as correlation with the 7th principal component of the all-layers PCA which is largely derived from the water vapor components. Other significant correlates of IBVM & IBVC prevalence appear to be farm type (50.3% and 73.2% of variation explained, per Soos et al.) and prevalence

of MG, MDV, and ARV. While the IBV strains were predicted to be highly correlated with environmental variables, they were only moderately so.

Infectious bursal disease virus – Prevalence of IBDV was positively correlated with areas of higher rainfall, particularly in the dry season, being most significantly correlated with lower precipitation seasonality and higher precipitation in the driest month. IBDV is also negatively correlated with water vapor measures from several months of the preceding year, particularly the month prior to sampling (Jun '05), though one of these correlations is anomalously positive. These relationships with precipitation and water vapor are supported by significant correlations with the 1st principal component of the WorldClim precipitation data (derived from annual precipitation and precipitation in the driest month) and the 3rd component of MODIS water vapor data (primarily derived from measurements from the drier months of the year). There was a minimal trend toward negative correlation with NDVI data from drier parts of the year, and positive correlation with values from the wetter period. Consistent with our predictions, IBD exhibits a relatively high number of correlations with climatic variables. Soos et al. were unable to support farm type as an explanatory variable for IBDV. The only pathogens correlated with IBDV prevalence were NDV and ARV.

Avian reovirus – Despite our prediction that ARV's reputation of environmental stability would lend itself to possible ecological correlations, the only observed patterns are: a relatively weak trend toward positive correlation with NDVI measurements from the wet period and negative correlations at drier times; a suggestion of negative correlation with NDVI averaged over the year; and a correlation with the 4th principal component of MODIS water vapor variation, primarily derived from the May '05 measurement, though this measurement itself was not significantly correlated. Soos et al. (in review) attributed 39.8% of the variance in prevalence to farm type, and the prevalences of MG, MDV, IBVM&C were highly linked to ARV prevalence.

Avian encephalomyelitis virus – AEV prevalence exhibited a subtle trend toward positive correlation with precipitation variables and negative correlation with precipitation seasonality within the WorldClim data set. Prevalence was moderately correlated with mean land surface temperature for the year preceding sampling, and there is evidence of an association of prevalence with the 14th component of the all-layers PCA, which is principally derived from the WorldClim temperature components. MODIS water vapor means for four of the preceding twelve months were correlated with prevalence, to include the month before sampling (Jun '05). Given the pathogen's ability to survive outside the host for a moderate period of time, these findings are in keeping with our *a priori* predictions. Soos et al. demonstrated no link between farm type and AEV prevalence. The only correlated pathogen in this data set was NDV.

Avian adenovirus I – With only a weak trend toward negative correlation with NDVI values from drier parts of the year, negative correlation with the 2nd principal component of the WorldClim temperature data (primarily derived from mean temperature of the coldest quarter) and negative correlation with the 4th component of MODIS water vapor data (primarily derived from the May '05 measurements), few ecological variables were found to be correlated with AAVI prevalence, despite our considering a moderate level of correlations likely. Soos et al. (in review) found no link to farm type. The only other correlates of AAVI incidence were prevalence of IBDV and ARV.

DISCUSSION:

These ten pathogens fell into two distinct clusters with respect to correlated factors (Table 4). MG, MDV, ILTV, IBVM&C, and ARV are highly correlated with each other and therefore, logically, demonstrate similar trends toward correlation with possible influencing factors – in this case, MODIS land surface temperature variables, influence of farm type, and pattern of correlation with vegetation indices. On the other hand, NDV, IBDV, AEV, and, to a lesser extent, AAV-I, are likewise highly correlated with each other, and consistent in trends toward correlation with WorldClim precipitation variables, MODIS water vapor variables, patterns of NDVI correlation, and lack of detectable influence of farm type (Soos et al., in review).

Some of these commonalities may lie in viral physiologies. Within the MDV-ILTV-IBV-ARV grouping, all but ARV are enveloped viruses (having a lipid-rich outer covering derived from host cell walls). Of the NDV-IBDV-AEV-AAVI grouping, all but NDV are nonenveloped. Previous laboratory studies demonstrate trends in environmental persistence within enveloped/non-enveloped groupings (Hemmes et al. 1960, Buckland & Tyrell 1962), with some exceptions (Buckland & Tyrell 1962, Mbithi et al. 1992). This seems to be consistent with the evidence here in that, within enveloped/non-enveloped groupings, correlations with environmental variables are similar (and different between groupings) with a few exceptions. The only non-viral pathogen considered here, MG, lacks a cell wall and is bound only by a plasma membrane. Like the majority of the non-enveloped viruses considered here, it appears that this physiology provides little protection in an external environment, as evidenced by little correlation with environmental variables. The highest levels of correlation observed in this study are between the pathogens themselves, within these two groupings, which warrant caution in attributing prevalence of a particular pathogen to ecological variables. It is plausible that a disease of interest may in fact co-vary with another disease which is environmentally correlated. For example, it is possible that prevalence of only one pathogen, such as NDV, may be truly linked to climatic variables, while IBDV, AEV & AAVI are associated with NDV prevalence and are not, in fact, influenced by environmental factors. In the absence of a clear mechanism of cause and effect, it should also be considered that the correlations between disease prevalences and climatic values may be the result of co-variance with some other factor not addressed in this analysis.

Temperature variables as described by the WorldClim data set were not correlated with prevalence of any of the pathogens considered here. WorldClim precipitation variables were influential in the distribution of prevalence for the NDV, IBDV and AEV, but not for others. Topographic factors (elevation, slope, aspect) exhibited no statistically significant relationships with prevalence data. MODIS-derived NDVI values showed sporadic and varying levels of correlation with prevalence of all pathogens considered here, with the relationship being positive in the drier and negative in the wetter times of the year, a pattern not logically consistent with a link to arthropod vector habitat. This signal would be largely lost if not assessed at multiple spatial scales (out to 22.56 km²). MODIS-derived land surface temperature variables were influential on the MG-MDV-ILTV-IBVM grouping, with a trend toward higher prevalence in areas with lower temperatures in cooler seasons, and lower diurnal temperature ranges. Cooler temperatures during the warmer months and throughout the year were also implicated in the prevalence of NDV & AEV. MODIS-derived water vapor measures had no influence on the MG-MDV-ILTV-IBV-ARV group of pathogens, but were correlated with prevalence of NDV,

IBDV and AEV, particularly for the month preceding sampling, with a weak trend toward correlation with mean water vapor for the entire preceding year. Principal components analysis of the factors being assessed occasionally supported the patterns observed when correlating with the raw data, and sporadically suggested relationships not otherwise observed. As per Soos et al. (in review), the prevalences of pathogens in the MG-MDV-ILTV-IBVM&C-ARV group are significantly influenced by farm type, while those in the NDV-IBDV-AEV-AAVI group are not.

Should such correlations prove to have a legitimate cause-effect relationship, applying regression formulas to georeferenced data sets, such as climate data, may allow us to predict the spatial distribution of prevalence values. For example, linear regression of IBDV against precipitation seasonality yields a regression formula with a slope of -0.045 (percent change in prevalence per change in the unitless coefficient of variation of precipitation) and an intercept of 2.181 ($r^2 = 0.794$, P = 0.007, S_E = 0.140). Applying the regression formula to the WorldClim precipitation seasonality data yields a map of predicted prevalence distribution throughout the agriculture zone and the archipelago as a whole (Figures 2 & 3). Similarly, regression of NDV against precipitation seasonality yields a slope of -0.045 and an intercept of 1.785 ($r^2 = 0.593$, P = 0.043, S_E = 0.229), resulting in a predicted distribution reflected in Figures 4 & 5. However, it should be noted that this method assumes that the correlations describe a linear relationship while the true relationship may be non-linear or a threshold response. Certainly it is likely that the relationship is not truly linear in that it is not possible for prevalence to be greater than 1 or less than 0.

If indeed precipitation seasonality is a reliable predictor of the geographic distribution of NDV and IBDV in the Galapagos Islands (and to a lesser extent, AEV and AAVI), it may be encouraging to note that the potential distribution of high prevalences of these diseases appears

to be relatively limited (Figures 3 & 5). It must be remembered, however, that this pattern is observed in poultry populations within the agricultural zone. Transmission dynamics in wild multi-species communities within the protected zone may likely be quite dissimilar. Further caution in accepting these predictions is warranted in that they are based on observations at a small geographic scale are being extrapolated far beyond the area that was sampled.

Generalized Conceptual Model – In general, the relative number of environmental correlates observed per pathogen was only loosely consistent with predictions regarding likelihood of observing such correlations. Predictions were very subjective, primarily based on published references as to durability of the pathogen outside of the host, with observed results being based on number of correlations with components of the "all-layers" PCA. Prevalence of Marek's disease virus, which had one of the strongest records of durability, showed only a moderate level of correlation with environmental variables. Likewise, environmental correlations with NDV prevalence were less than predicted. It is possible that the virions of these viruses are so impervious to the range of environmental values occurring at the sampling sites that there is little detectable signal of impact on prevalence. Another exception, AAVI, was predicted to show moderate correlations with environmental variables but showed relatively few significant relationships. AAVI is non-enveloped, and it is possible that this physiological characteristic, lending to relative lability, led to a diminished influence of environmental factors on prevalence. Perhaps these relationships can be explained by a generalized conceptual model (as illustrated in Figure 6) wherein: 1) very labile organisms fail to persist outside the host long enough to demonstrate any perceptible influence of environmental variation; 2) organisms of intermediate durability persist long enough for environmental variables to differentially affect

transmission dynamics; and 3) highly durable organisms are relatively impervious to the environmental conditions, or at least the ranges of values occurring in the current study.

Several caveats must be considered with these data. "Prevalence" values are based on seroreactivity, which does not necessarily reflect the current disease status of the host, only that the host has been exposed to some form of the pathogen at some point in its life, including vaccines. While vaccination is prohibited in the Galapagos Islands, some imported chicks may have been vaccinated in Ecuador, or surreptitiously vaccinated in the Galapagos Islands (see Soos et al., in review, for more discussion of vaccination and seroreactivity in the Galapagos Islands). As mentioned previously, the WorldClim climatic variables considered here are interpolated from ~30-year averages reported by thousands of weather stations around the world; however, the accuracy of these estimates may be weaker in remote islands (Hijmans et al. 2005). A more thorough assessment of these relationships may require installation of data-logging weather stations at farm sites.

This study is a first attempt to identify relationships between disease prevalence and environmental factors in the Galapagos poultry industry. The patterns observed might only apply to the limited time and geographic space sampled here, but will merit future investigation. The first step in describing a biologically meaningful relationship must be to formulate testable hypotheses for the relationships and to test the repeatability of the results and the range of values over which the relationship holds true. A larger sample may begin to illuminate other relationships with the other diseases considered, and provide the statistical strength needed to take an appropriate multivariate analysis approach.

CONCLUSION:

The results obtained support the hypothesis that environmental variables may explain some of the variation in the observed heterogeneity of pathogen prevalence in Galapagos poultry farms. However, the strongest correlations of the majority of the pathogens considered here were with the other organisms within their respective groupings.

In general, the MG-MDV-ILTV-IBVM&C-ARV grouping (predominantly enveloped viruses, with the exception of ARV and the bacterial MG) tended to exhibit: high correlation with prevalences of other pathogens within this group; more correlation with farm type (Soos et al., in review); correlation with remote sensing-derived temperature variables for the year prior to testing, particularly cooler daytime temperatures and narrower diurnal temperature ranges (most marked in MDV, ILTV, & IBVM&C); and negative correlation with vegetation density measurements taken during dry times of the year, with the relationship being positive only with the data recorded at the peak of greenness.

As for the NDV-IBDV-AEV-AAVI grouping (all non-enveloped viruses except for NDV), prevalences tended to not be correlated with farm type (Soos et al., in prep) but rather exhibited correlations with interpolated climate variables reflective of moderate dry seasons, and negative correlations with water vapor factors. Correlations with these climatic factors were most apparent with NDV, IBDV, and AEV. NDV and AEV also displayed some correlation with cooler daytime temperatures. Sporadic correlations with vegetation density measurements were largely negative with those taken at drier periods and positive during wetter periods (Mar-Jun).

While management practices are likely to be the first and best line of defense against poultry disease spillover into wildlife populations, environmental factors may contribute to the
relative prevalence of diseases, and therefore the likelihood of transmission across the poultry/wildlife interface. Methods such as those described in this paper may prove useful for identifying links between environmental variables and disease processes.

It seems unlikely that the correlations suggested here will have much influence on the management of the poultry industry on Santa Cruz and other Galapagos Islands. While the demand for poultry products is growing, the locations of chicken farming efforts are strictly limited by the boundaries of the National Park (Figure 1). Should the ecological correlates of pathogen prevalence be substantiated as environmental predictors of increased disease risk, management implications might include encouragement of poultry farming in lower-risk areas. However, concentration of poultry-farms in lower-risk zones may also pose new risks as density of farms increases.

Of the pathogens considered here, spillover of Newcastle's disease virus into wild populations appears to have the greatest potential for significant ecological impact. Understanding the role of environmental influences on the prevalence of NDV or other introduced pathogens may be important in predicting and controlling the spread of disease if it does cross the poultry-wildlife interface.

REFERENCES:

- Alexander DJ (1997) Newcastle Disease and other avian *Paramyxoviridae* Infections. In BW Calnek (ed.) *Diseases of Poultry, Tenth Edition*. Iowa State University Press, Ames IA.
- Anyamba A, Linthicum KJ, Mahoney R, Tucker CJ, Kelley PW (1999) Mapping potential risk of rift valley fever outbreaks in African savannas using vegetation index time series data. Photogrammetric Engineering & Remote Sensing 68:137-45.
- Atkinson CT, Woods KL, Dusek RJ, Sileo L, Iko WM (1995) Wildlife disease and conservation in Hawaii: pathogenicity of avian malaria (*plasmodium relictum*) in experimentally infected 'I'iwi (*Vestiaria coccinea*). Parasitology 111:S59-S69.
- Barr DA, Reece RL, O'Rourke D, Button C, Faragher JT (1988) Isolation of infectious bronchitis virus from a flock of racing pigeons. Australia Veterinary Journal 65(7):228.
- Beck LR, Lobitz BM, Wood BL (2000) Remote sensing and human health: new sensors and new opportunities. Emerging Infectious Diseases 6(3):217-227.
- Balckburn TM, Cassey P, Duncan RP, Evans KL, Gaston KJ (2004) Avian extinctions and mammalian introductions on oceanic islands. Science 305:1955-1958.
- Boone JD, McGwire KC, Otteson EW, DeBaca RS, Kuhn EA, Villard P, Brussard PF, St. Jeor SC (2000) Remote sensing and geographic information systems: charting sin nombre virus infections in deer mice. Emerging Infectious Diseases 6(3)248-258.
- Brooker S, Hay SI, Issae W, Hall A, Kihamia CM, Lwambo NJS, Wint W, Rogers DJ, Bundy DAP (2001) Predicting distribution of urinary schistosomiasis in Tanzania using satellite sensor data. Tropical Medicine and International Health 6(12):998-1007.
- Calnek BW, ed. (1997) Diseases of Poultry, Tenth Edition. Iowa State University Press, Ames IA.
- Calnek BW, Witter RL (1997) Marek's Disease. In BW Calnek (ed.) *Diseases of Poultry, Tenth Edition*. Iowa State University Press, Ames IA.
- Chandiramani NK, Van Roekel H, Olesuik OM (1966) Viability studies with Mycoplasma gallisepticum under different environmental conditions. Poult Sci 45:1029-1044.
- Charlton BR, ed. (1990) Avian Disease Manual, Fifth Edition. American Association of Avian Pathologists, Pennsylvania.
- Cho BR, Kenzy SG (1975) Virologic and serologic studies of zoo birds for Marek's Disease Virus infection. Infection and Immunity 11(4):809-814.
- Correia VRM, Carvalho MS, Sabroza PC, Vasconcelos CH (2004) Remote sensing as a tool to survey endemic diseases in Brazil. Cad. Saúde Pública 20(4):891-904.
- Crombie MK, Gillies RR, Arvidson RE, Brookmeyer P, Weil GJ, Sultan M, Harb M (1999) An application of remotely derived climatological firlds for risk assessment of vector-borne diseases: a spatial study of filariasis prevalence in the Nile Delta, Egypt. Photogrammetric Engineering & Remote Sensing 65(12):1401-1409.
- Curran PJ, Atkinson PM, Foody GM, Milton EJ (2000) Linking remote sensing, land cover and disease. Advances in Parasitology 47:37-80.

- Docherty DE, Converse KA, Hansen WR, Norman GW (1994) American woodcock (*Scolopax minor*) mortality associated with a reovirus. Avian Disease 38(4):899-904.
- Gillies RR, Carlson TN (1995) Thermal remote sensing of surface soil water content with partial vegetation coverage for incorporation into climate models. Journal of Applied Meteorology 34:745-756.
- Glaser LC, Barker IK, Weseloh DVC et al. (1992) The 1992 epizootic of Newcastle Disease in double-crested cormorants in North America. Journal of Wildlife Diseases 35(2):319-330.
- Gottdenker NL, Walsh T, Vargas H, Merkel J, Jimenez GU, Miller RE, Dailey M, Parker P (2005) Assessing the risks of introduced chickens and their pathogens to native birds in the Galapagos Archipelago. Biological Conservation 126:429-439.
- Halliwell WH (1971) Lesions of Marek's Disease in a great-horned owl. Avian Diseases 15:49-55.
- Hay SI, Randolph SE Rogers DJ (eds.) (2000a) Advances in Parasitiology 47: Remote Sensing and Geographical Information Systems in Epidemiology. Academic Press, San Diego.
- Hay SI, Omumbo JA, Craig MH, Snow RW (2000b) Earth observation, geographic information systems and *Plasmodium falciparum* Malaria in sub-Saharan Africa. Advances in Parasitology 47:173-215.
- Hess GR, Randolph SE, Arnberg P et al. (2003) Spatial aspects of disease dynamics. In *The Ecology of Wildlife DiseasesI*, Hudson PJ et al. (eds.). Oxford University Press, Oxford UK, pp. 102-118.
- Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978.
- Holdaway RN (1989) New Zealand's pre-human avifauna and its vulnerability. New Zealand Journal of Ecology 12 (Supplement):11-25.
- Howie RI, Thorsen J (1981) Identification of a strain of infectious bursal disease virus isolated from mosquitoes. Canadian Journal of Comparative Medicine 45:315-320.
- Kaleta EF, Baldauf C (1988) Newcastle disease in free-living and pet birds. In D.J. Alexander (ed.) *Newcastle Disease*. Kluwer Academic Publishers, Boston, MA, pp. 197-246.
- King MD, Closs J, Spangler S, Greenstone R, Wharton S, Myers M (2004) EOS Data Products Handbook Vol. I. NASA/Goddard Space Flight Center, MD.
- Kitron U, Kazmierczak JJ (1997) Spatial analysis of the distribution of Lyme Disease in Wisconsin. American Journal of Epidemiology 145(6):558-566.
- Kleven SH (1997) Mycoplasmosis. In BW Calnek (ed.) *Diseases of Poultry, Tenth Edition*. Iowa State University Press, Ames IA.
- Leica Geosystems (2003) *ERDAS Imagine Field Guide*, 7th *Edition*. Leica Geosystems GIS & Mapping, LLC. Atlanta, GA, USA.
- Lesnik F, Pauer T, Vrtiak OJ, Danihel M, Gdovinova A, Gergely M (1981) Transmission of Marek's disease to wild feathered game. Vet. Med. (Praha) 26(10):623-630.

- Lukert PD, Saif YM (1997) Infectious Bursal Disease. In BW Calnek (ed.) *Diseases of Poultry, Tenth Edition*. Iowa State University Press, Ames IA.
- McFerran JB (1997) Adenovirus infections. In BW Calnek (ed.) *Diseases of Poultry, Tenth Edition*. Iowa State University Press, Ames IA.
- Miller GD, Hofkin BV, Snell H, Hahn A, Miller RD (2001) Avian malaria and Marek's disease: potential threats to Galapagos Penguins *Spheniscus mendiculus*. Marine Ornithology 29:43-46.
- Miller RE, Parker P, Duncan M, Merkel J, Vargas H and Snell H (2002) Monitoring avian health in the Galapagos Islands – developing an "early warning system. Proceedings of the American Association of Zoo Vets, Media, Pennsylvania, pp. 233-243.
- Moncayo AC, Edman JD, Finn JT (2000) Application of Geographic Information Technology in determining risk of Eastern Equine Encephalomyelitis virus transmission. Journal of the American Mosquito Control Association 16:28-35.
- Okoye JOA, Uche UE (1986) Empirical evidence of invectious bursal disease virus infection in wild rats. Acta Veterinaria Brno 55:207-209.
- Padilla LR, Huyvaert KP, Merkel J, Miller RE, Parker PG (2003) Hematology, plasma chemistry, serology and *Chlamydophila* status of the waved albatross (*Phoebastria irrorata*) on the Galapagos Islands. Journal of Zoo and Wildlife Medicine 34(3)278-283.
- Palya V, Glavits R, Dobos-Kova M, et al. (2003) Reovirus identified as cause of disease in young geese. Avian Pathology 32:129-138.
- Parker PG, Whiteman NK, Miller ER (2006) Conservation medicine on the Galapagos Islands: partnerships among behavioral, population and veterinary scientists. The Auk 123(3):625-638.
- Purchase HG (1985) Clinical disease and its economic impact. In L.N. Payne (ed.). *Marek's Disease*. Martinus Nijhoff, Boston, MA, pp. 17-24.
- Ritchie BW (1995) Avian Viruses: Function & Control. Blackwell Publishing, Malden MA.
- Rogers DJ (2000) Satellites, space, time and the African trypanosmiases. Advances in Parasitology 47:129-171.
- Savidge JA (1987) Extinction of an island forest avifauna by an introduced snake. Ecology 68(3):660-668.
- Simberloff D (2000) Extinction-proneness of island species causes and management implications. The Raffles Bulletin of Zoology 48(1):1-9.
- Snedeker C, Wills FK, Moulthrop IM (1967) Some studies on the infectious bursal agent. Avian Diseases 11:519-528.
- Snell HL, Tye A, Causton CE, Bensted-Smith R (2002) Current status of and threats to the terrestrial biodiversity of Galapagos. In *A Biodiversity vision for the Galapagos Islands*. Charles Darwin Foundation and World Wildlife Fund, Puerto Ayora, Galapagos, pp. 30-47.
- Soos C, Padilla L, Iglesias A, Gottdenker N, Cruz M, Rios A, Parker PG (in review) Comparisons of pathogens in broiler and backyard chickens on the Galapagos Islands: implications for transmission to wildlife.

- StatSoft, Inc. (2006). *Electronic Statistics Textbook*. Tulsa, OK: StatSoft. WEB: http://www.statsoft.com/textbook/stathome.html.
- Steadman DW (1995) Prehistoric extinctions of Pacific island birds: biodiversity meets zooarchaeology. Science 267:1123-1131.
- Thompson RA, DeOliveira Lima JW, Maguire JH, Braud DH Scholl DT (2002) Climatic and demographic determinants of American visceral leishmaniasis in northeastern Brazil using remote sensing technology for environmental categorization of rain and region influences on leishmaniasis. American Journal of Tropical Medicine and Hygeine 67(6):648-655.
- Van Riper III C, Van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs 56:327-344.
- Van Steenis G (1971) Survey of various species for neutralizing antibody and susceptibility to avian encephalomyelitis virus. Research in Veterinary Science 12:308-311.
- Vitousek PM, D'Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. New Zealand Journal of Ecology 21(1):1-16.
- Whiteman NK, Goodman SJ, Sinclair BJ, Walsh T, Cunningham AA, Kramer LD, Parker PG (2005) Establishment of the avian disease vector *Culex quinquefasciatus* Say, 1823 (Diptera: Culicidae) on the Galapagos Islands, Ecuador. Ibis 147:844-847.
- Wikelski M, Foufopoulos J, Vargas H, Snell H (2004) Galapagos birds and diseases: Invasive pathogens as threats for island species. Ecology and Society 9(1):5.
- Witter RL (1972) Epidemiology of Marek's disease a review. In P.M. Biggs, G. de The, and L.N. Payne (eds.) *Oncogenesis and Herpesvirus*. IARC, Lyon, France, pp. 111-122.

1	1
4	Т

Pathogen 8	Prevalence	Non-poultry	Galapagos	Vectors	Modes & Characteristics	Persistence		
Family Mycoplasma Gallisepticum (MG) Mycoplasmataceae	& Pathogenicity Common bacterial pathogen of poultry, colonizes mucosal surfaces ¹ ; respiratory signs with inflammation and lesions of the respiratory tract ¹ ; may be present but not cause disease until triggered by stress ¹	birds affected Narrow host range ² ; wild Galiformes, ducks & geese ⁴ ; wild passeriformes, piciformes, apodiformes, columbiformes ⁵ . American groundfinches, house sparrows ⁵	species at risk Darwin's finches, mockingbirds, Galapagos doves, dark-billed cickoos and yellow warblers ⁶	& Reservoirs Fomites ^r	of Transmission Vertical transmission possible, but primarily horizontal, via direct contact or contaminated airborne dust, droplets, feathers [†]	Outside Host Devoid of cell wall, bound by plasma membrane only ² ; seldom survives outside host for more than a few days, susceptible to common disinfectants ⁴ ; carrier birds thought to be essential for continued transmission ⁴	Pred. Low	Obs. Low
Newcastle's Disease Virus (NDV) Paramyxoviridae	Respiratory, gastrointestinal and neurological signs ⁷ ; birds may die suddenly, die after prolonged illness, develop disease and recover, or exhibit no signs of infection ⁹ ; sudden deaths often first sign of infection ⁴	Pet birds ⁹ ; anseriformes, psittaciformes, strigiformes, columbiformes, passeriformes ⁹ ; natural or experimental infection demonstrated in +230 species in 27 orders ⁶ ; damage to natural populations of cormorants & pelicans ^d	Flightless cormorants, brown pelicans, Galapagos penguins, lava gulls, finches, mockingbirds, pintails ^e	Some evidence that infected migratory birds may transmit disease ⁸⁰ ; greatest potential for transmission through humans and their equipment such as boots, tools, caging, etc. ⁸ ; insects, rodents and wild birds may act as mechanical vectors ⁶	Shed in feces and respiratory secretions, chronically infected birds may shed for over a year ^b	Enveloped; virions relatively stable, can persist outside host for up to 19 weeks, but can be inactivated at high temps and sunlight ⁹	High	Mod.
Marek's Disease Virus (MDV) Herpesviridae	Occurs worldwide with practially all poultry stocks having been exposed'; tumor inducing virus, infiltration of nerve and organ tissues by lymphoid cellsb; survivors latently infected ^b	Little evidence for transmissibility to non- galliformes ⁹⁷ : lesions suggestive of MDV observed in a great horned owl	Barn owl, short- eared owl, Galapagos penguin ^{sj}	Testing showed darkling beeties may passively carry the virus, but litter mites, mosquitoes & coccidial oocysts did not ^m	Spread via feces or fomites, but / primarily via feather follicle dander ⁵	Enveloped; unusually stable outside the host, particularly for a herpesvirus ⁶ ; can remain infective for several months at 20-28°C and for years at 4°C ^k ; continual shedding and hardiness of virus make it persistent in flock ⁶ ; seasonal variation in incidence, higher in winter, attributed to reduced air circulation ¹	High	Mod.
Infectious Laryngotracheitis Virus (ILTV) Herpesviridae	Difficult breathing, coughing, gasping, expectoration of bloody exudates'; most outbreaks affect broilers 4 weeks or older, but all age groups susceptible ⁵	No information	No information	Fomites ^b	Primarily by inhalation of contaminated respiratory secretions ⁶ ; Survivors resistant, but may become carriers, can shed for long periods ¹ ; latent infection may be reactivated by stress ¹	Enveloped; moderately stable outside host, though susceptible to sunlight and disinfectants ^{or}	Mod.	Low
Infectious Bronchitis Virus - Mass. & Conn Strains (IBVM & IBVC) Coronaviridae	Acute infections characterized by respiratory signs & sever renal disease'; great ability to mutate, strain ID difficult ¹ ;	Racing pigeons ⁿ	Galapagos doves ^e	No information	Highly contagious ⁴ , inhalation of aerosolized respiratory secretions expelled by infected, coughing chickens ⁴ ; infection can occur over long distances and can spread rapidly through a flock ⁴ ; survivors remain carriers for months ⁴	Enveloped; virions may persist on contaminated premises for 4 weeks under favorable conditions, but fairly easily destroyed by disinfectants ¹	High	Mod.
Infectious Bursal Disease (IBDV) Birnaviridae	Highly infectious in young chickens, causing necrosis of bursa resulting in immune suppression ⁶⁷ , anorexia, diarrhea, vent picking, tremiing, loss of coordination ⁶⁷ ; survivors may have permanent immune system damage ⁵⁰	Naturally occurring infections of turkeys and ducks recorded ⁹	ⁱ Lava gulis ^e	Free-ranging birds, rodents, arthropods could be mechanical vectors ⁵ ; isolated from dead rats ⁶ and mealworms ⁹ , isolated from mosquitoes in chicken areas, but isolate noninfective ⁷	Direct contact with feces or ocular and respiratory secretions, or indirect contact via litter, food, water or fomites ¹⁰ ; infected birds shed virus for up to 2 weeks ¹ ; no evidence of a true carrier state in recovered birds ^{bo}	Non-enveloped; hardy & persistent, resistent to most disinfectants and environmental factors'; virions found to remain infectious for 122 days in litter and 52 days in food and water ^b ; sanitation programs rarely successful ⁴	High	High
Avian Reovirus (ARV) Reoviridae	Infections occur worldwide in chickens & turkeys, causing viral arthritis, stunting syndromes, respiratory & enteric disease, & malabsorption syndromes ^{tor}	Geese & mucovy ducks in Hungary ⁴⁷ , woodcocks in North America, though infection not related to poultry strains ⁴	White-heeked pintail ^e	Vectors not implicated on transmission ¹	Shed primarily in feces, has been experimentally transmitted orally, intratracheally & intramuscularly ^b ; survivors latently infected, known to persist in birds for +280 days ^{trl}	Non-enveloped; virions stable in organic matter and respiratory secretions, resistant to many environmental factors ^{of}	Mod.	Low
Avian Encephalomyelitis Virus (AEV) Picornaviridae	Tremors of the head and neck, ataxia progressing to paralysis, outbreaks usually affect 1- to 3-week chicks, adults usually show no signs, multi-age farms more likely to be infected.	Pheasants, quails, turkeys ^w ; experimentally transmitted to ducklings, guinea fowl, & pigeon hatchlings ^f	Uncertain; antibodies found in waved albatross ^w	Fomites	Via feces [†]	Non-enveloped: virions survive in feces for at least 4 weeks, fairly resistant to environmental conditions ⁴	Mod.	Mod.
Avian Adenovirus (AAVI) Adenoviridae	Ubiquitous in fowl, primarily as secondary pathogens causing disease in birds already compromised ^x	Serotypes recovered from turkeys, pigeons, budgerigars, mallards; probable recoveries from guinea fowl, pheasants, kestrels, herring gulls, frogmouths, and several nsittarines ⁶	Flightless cormorants, waved albatross, boobies, pintails, lava gulls and terns ^e	Fomites [¥]	All excretions, titers highest in feces ^x ; mostly by direct fecal/oral contact, but also aerial contact over short distances ^x ; vertical transmission important ^x ; survivors latently infected and may shed intermittently ⁵	Non-enveloped; relatively resistant to physical and chemical environmental factors ⁴	Mod.	Low

Pred. = Prediction of relative likelihood that environmental factors could influence prevalence, largely based on reports of extended persistence outside host.

Obs. = Relative amount of environmental correlations observed, based on statistically significant relationships with all-layers PCA components (see Methods).

† = Fomites are inanimate objects infected with pathogens that may act as agents of transmission

References: a-Alexander 1997; b-Ritchie 1996; c-Kaleta & Baldauf 1988; d-Glaser et al. 1999; e-Gottdenker et al.; f-Charlton 1990; g-Cho & Kenzy 1975; h-Lesnik et al. 1981; i-Halliwell 1971; j-Miller et al. 2001; k-Calnek & Witter 1997; l-Purchase 1985; m-Witter 1972; n-Barr et al. 1988; o-Luikert & Saif 1997; p-Okoye & Uche 1986; q-Snedeker et al. 1987; r-Howie & Thorsen 1981; s-Wobeser 1997; t-Palya et al. 2003; u-Van Steenis 1971; v-Calnek 1997; w-Padilla et al. 2003; x-MoFerren 1997; y-Kleven 1997

Table 2. Correlates of pathogen prevalence in Santa Cruz, Galapagos, poultry farms

a. Correlates of Mycoplasma gallisepticum (MG) prevalence (p<0.10; p<0.05)

Correlated Factors	r	р
Other pathogens		
MDV	0.809	0.005
ILTV	0.841	0.002
IBVM	0.690	0.027
IBVC	0.643	0.045
ARV	0.763	0.010
MODIS Land Surface Temperature Variables		
Daytime mean, cooler months	-0.718	0.069
MODIS NDVI Variables		
NDVI 8/29/04 (10.56-22.56 km2; max=22.56km2)	-0.891	0.007
NDVI 3/6/05 (1.56-10.56 km2; max=5.06km2)	0.833	0.020
NDVI 4/7/05 (0.06-5.06 km2; max=1.56km2)	-0.767	0.044
NDVI 5/9/05 (5.06-10.56 km2; max=5.06km2)	-0.727	0.064
NDVI 5/25/05 (5.06-10.56 km2; max=5.06km2)	-0.738	0.059

b. Correlates of Newcastle disease virus (NDV) prevalence (p<0.10; p<0.05)

Correlated Factors	r	р
Other Pathogens		
AEV	0.830	0.003
IBDV	0.565	0.089
WORLDCLIM Precipitation Variables		
Precipitation seasonality	-0.770	0.043
Precipitation in driest month	0.721	0.068
MODIS Total Precipitable Water Vapor Variables		
Water vapor 8/04	-0.850	0.015
Water vapor 9/04	-0.970	0.000
Water vapor 12/04	-0.693	0.084
Water vapor 1/05	-0.808	0.028
Water vapor 6/05	-0.840	0.018
Water vapor yearly mean	-0.716	0.070
MODIS Land Surface Temperature Variables		
Daytime mean, warmer months	-0.861	0.013
MODIS NDVI Variables		
NDVI 1/1/05 (10.56-22.56 km2; max=10.56km2)	-0.711	0.073
NDVI 3/6/05 (22.56km2)	0.840	0.018
NDVI 4/23/05 (0.06-1.56, 10.56km2; max=1.56km2)	0.801	0.030
NDVI 6/10/05 (0.06-0.56km2; max=0.56km2)	0.882	0.009
Principal Components		
Water vapor PC3	-0.788	0.035
All layers PC6	0.700	0.080
All lavers PC14	-0.877	0.010

c. Correlates of Marek's disease virus (MDV) prevalence (p<0.10; p<0.05)

Correlated Factors	r	р
Other Pathogens		
MG	0.809	0.005
ILTV	0.866	0.001
IBVM	0.952	0.000
IBVC	0.935	0.000
ARV	0.794	0.006
MODIS Land Surface Temperature Variables		
Daytime mean, cooler months	-0.740	0.057
Diurnal temperature range, warmer months	-0.810	0.027
MODIS NDVI Variables		
NDVI 8/13/04 (1.56-22.56km2; max=10.56km2)	-0.710	0.074
NDVI 8/29/04 (22.56km2)	-0.685	0.089
NDVI 9/30/04 (5.06-22.56km2; max=10.56km2)	-0.796	0.032
NDVI 10/16/04 (5.06-22.56km2; max=22.56km2)	-0.749	0.052
NDVI 11/1/04 (1.56-22.56km2; max=22.56km2)	-0.723	0.064
NDVI 11/17/04 (5.06-22.56km2; max=5.06km2)	-0.948	0.001
NDVI 12/19/04 (10.56-22.56km2; max=22.56km2)	-0.714	0.072
NDVI 1/17/05 (22.56km2)	-0.703	0.078
NDVI 2/2/05 (0.06, 10.56-22.56km2; max=22.56km2)	0.803	0.030
NDVI 3/6/05 (0.06-10.56km2; max=0.56km2)	0.981	0.000
NDVI 5/25/05 (22.56km2)	-0.722	0.067
NDVI 7/12/05 (0.56-22.56km2; max=1.56km2)	-0.781	0.038
NDVI 7/28/05 (22.56km2)	-0.762	0.046
NDVI yearly mean	-0.674	0.097
NDVI dry season mean	-0.704	0.077
NDVI seasonality	0.720	0.068
Principal Components		
Water vapor PC2	-0.672	0.098
All-layers PC7	0.766	0.044

d. Correlates of infectious laryngotracheitis virus (ILTV) prevalence

p<0.05)		
Correlated Factors	r	р
Other Pathogens		
MG	0.841	0.002
MDV	0.866	0.001
IBVM	0.802	0.005
IBVC	0.831	0.003
ARV	0.902	0.000
MODIS Land Surface Temperature Variables		
Daytime mean, yearly	-0.783	0.037
Daytime seasonality	0.738	0.059
MODIS NDVI Variables		
NDVI 8/29/04 (10.56-22.56km2; max=10.56km2)	-0.842	0.018
NDVI 9/30/04 (5.06-22.56km2; max=5.06km2)	-0.791	0.034
NDVI 10/16/04 (5.06-22.56km2; max=5.06km2)	-0.734	0.060
NDVI 11/17/04 (5.06-22.56km2; max=5.06km2)	-0.776	0.040
NDVI 1/17/05 (22.56km2)	-0.737	0.059
NDVI 3/6/05 (0.56-10.56km2; max=10.56km2)	0.878	0.009
NDVI 3/22/05 (5.06km2)	-0.705	0.077
NDVI 4/7/05 (1.56km2)	-0.699	0.081
NDVI 5/25/05 (5.06-22.56km2; max=10.56km2)	-0.735	0.060
NDVI 7/28/05 (22.56km2)	-0.766	0.045
NDVI yearly mean	-0.685	0.089

e. Correlates of infectious bronchitis virus - Mass. strain (IBVM) prevalence (p<0.10; p<0.05)

Correlated Factors	r	р
Other Pathogens		
MG	0.690	0.027
MDV	0.952	0.000
ILTV	0.802	0.005
IBVC	0.973	0.000
ARV	0.733	0.016
MODIS Land Surface Temperature Variables		
Daytime land surface temperature, cooler mos.	-0.807	0.028
Nighttime land surface temperature, yearly mean	0.699	0.081
Land surface diurnal temperature range, yearly mean	-0.720	0.068
Land surface diurnal temp. range, warmer mos.	-0.777	0.040
Land surface diurnal temp. range, cooler mos.	-0.799	0.031
MODIS NDVI Variables		
NDVI 8/13/04 (0.06-22.56km2; max=10.56km2)	-0.804	0.029
NDVI 9/30/04 (5.06-22.56km2; max=10.56km2)	-0.877	0.010
NDVI 10/16/04 (1.56-22.56km2; max=22.56km2)	-0.875	0.010
NDVI 11/1/04 (0.56-22.56km2; max=22.56km2)	-0.833	0.020
NDVI 11/17/04 (1.56-22.56km2; max=10.56km2)	-0.973	0.000
NDVI 12/19/04 (5.06-22.56km2; max=22.56km2)	-0.770	0.043
NDVI 1/17/05 (22.56km2)	-0.788	0.035
NDVI 2/2/05 (0.06, 10.56-22.56km2; max=0.06km2)	0.761	0.047
NDVI 3/6/05 (0.06-10.56km2; max=0.56km2)	0.922	0.003
NDVI 5/25/05 (22.56km2)	-0.744	0.055
NDVI 7/12/05 (0.06-22.56km2; max=1.56km2)	-0.833	0.008
NDVI 7/28/05 (22.56km2)	-0.796	0.032
NDVI yearly mean	-0.726	0.065
NDVI dry season mean	-0.802	0.030
NDVI seasonality	0.841	0.018
Principal Components		
NDVI PC1	-0.711	0.073
NDVI PC2	0.676	0.095
Water vapor PC2	-0.788	0.036
All-layers PC1	0.730	0.063
All-lavers PC7	0.857	0.014

(p<0.10;

f. Correlates of infectious bronchitis virus - Conn. strain (IBVC) prevalence $$(p{<}0.10; p{<}0.05)$$

Correlated Factors	r	р
Other Pathogens		
MG	0.644	0.045
MDV	0.935	0.000
ILTV	0.831	0.003
IBVM	0.973	0.000
ARV	0.813	0.004
MODIS Land Surface Temperature Variables		
Mean daytime land surface temperature, cooler mos.	-0.739	0.058
Mean nighttime land surface temperature, yearly	0.690	0.086
Land surface diurnal temp. range, yearly	-0.770	0.040
Land surface diurnal temp. range, warmer mos.	-0.718	0.069
Diurnal land surface temp. range, cooler mos.	-0.794	0.033
MODIS NDVI Variables		
NDVI 8/13/04 (0.06-22.56 km2; max=10.56km2)	-0.761	0.047
NDVI 9/30/04 (0.06, 5.06-22.56 km2; max=10.56km2)	-0.912	0.004
NDVI 10/16/04 (5.06-22.56 km2; max=22.56km2)	-0.853	0.015
NDVI 11/1/04 (0.56-22.56 km2; max=22.56km2)	-0.786	0.036
NDVI 11/17/04 (1.56-22.56 km2; max=5.06km2)	-0.948	0.001
NDVI 12/19/04 (22.56km2)	-0.689	0.087
NDVI 1/17/05 (0.06, 10.56-22.56 km2; max=22.56km2)	-0.876	0.010
NDVI 2/2/05 (0.06, 10.56-22.56 km2; max=22.56km2)	0.777	0.040
NDVI 3/6/05 (0.06-10.56 km2; max=0.56km2)	0.887	0.008
NDVI 5/25/05 (10.56-22.56km2; max=22.56km2)	-0.799	0.031
NDVI 6/10/05 (22.56km2)	-0.682	0.092
NDVI 7/12/05 (0.06-22.56km2; max=0.56km2)	-0.835	0.019
NDVI 7/28/05 (22.56km2)	-0.743	0.055
NDVI yearly mean	-0.724	0.066
NDVI dry season mean	-0.771	0.042
NDVI seasonality	0.800	0.031
Principal Components		
NDVI PC1	-0.696	0.083
Water vapor PC2	-0.766	0.045
All layers PC1	0.714	0.072
All layers PC7	0.811	0.027

g. Correlates of infectious bursal disease virus (IBDV) prevalence

Correlated Factors	r	р
Other Pathogens		
AAVI	0.767	0.010
NDV	0.565	0.089
WORLDCLIM Precipitation Variables		
Precipitation in coldest quarter	0.719	0.069
Precipitation in warmest quarter	0.704	0.078
Precipitation in driest quarter	0.736	0.059
Precipitation in driest month	0.822	0.023
Annual precipitation	0.713	0.072
Precipitation seasonality	-0.891	0.007
MODIS Total Precipitable Water Vapor Variables		
Water vapor 8/04	-0.687	0.088
Water vapor 9/04	-0.772	0.042
Water vapor 12/04	-0.701	0.079
Water vapor 3/05	0.814	0.026
Water vapor 6/05	-0.866	0.012
MODIS NDVI Variables		
NDVI 9/14/04 (0.56-10.56 km2; max=5.06km2)	-0.880	0.009
NDVI 11/17/04 (0.06km2)	0.677	0.095
NDVI 1/1/05 (1.56-10.56 km2; max=10.56km2)	-0.825	0.022
NDVI 3/6/05 (22.56km2)	0.793	0.033
NDVI 4/23/05 (0.06-1.56 km2; max=1.56km2)	0.866	0.012
NDVI 5/9/05 (0.56km2)	0.715	0.071
NDVI 7/28/05 (5.06km2)	0.706	0.076
Principal Components		
WORLDCLIM Precipitation PC1	-0.772	0.042
Water Vapor PC3	-0.855	0.014
All-layers PC6	0.684	0.090
All-layers PC10	0.738	0.058
All-lavers PC14	-0.731	0.062

h. Correlates of avian reovirus (ARV) prevalence (p<0.10; p<0.05)

Correlated Factors	r	р
Other Pathogens		
MG	0.763	0.010
MDV	0.794	0.006
ILTV	0.902	0.000
IBVM	0.733	0.016
IBVC	0.813	0.004
AAVI	0.584	0.077
WORLDCLIM Precipitation Variables		
Precipitation in the wettest quarter	0.669	0.100
MODIS NDVI Variables		
NDVI 8/29/04 (5.06-22.56 km2; max=22.56km2)	-0.904	0.005
NDVI 9/14/04 (22.56km2)	-0.893	0.007
NDVI 9/30/04 (0.06-22.56 km2; max=5.06km2)	-0.871	0.011
NDVI 1/17/05 (22.56km2)	-0.791	0.034
NDVI 2/2/05 (22.56km2)	0.784	0.037
NDVI 3/6/05 (0.06-22.56 km2; max=10.56km2)	0.860	0.013
NDVI 3/22/05 (5.06km2)	-0.799	0.039
NDVI 5/25/05 (0.56-22.56 km2; max=10.56km2)	-0.941	0.002
NDVI 6/10/05 (22.56km2)	-0.774	0.041
NDVI yearly mean	-0.686	0.089
Principal Components		
NDVI PC1	-0.685	0.090
Water vapor PC4	-0.768	0.044
All-layers PC1	0.672	0.098

i. Correlates of avian encephalomyelitis virus (AEV) prevalence (p<0.10; p<0.05)

0.003
0.003
0.087
0.097
0.095
0.072
0.066
0.081
0.022
0.076
0.028
0.049
0.051
0.066
0.025
0.093
0.077
0.010

 Correlates of avian adenovirus I (AAVI) prevalence (p<0.10; p<0.05) 				
Correlated Factors	r	р		
Other Pathogens				
IBDV	0.767	0.010		
ARV	0.584	0.077		
MODIS NDVI Variables				
NDVI 9/14/04 (0.56-22.56 km2; max=10.56km2)	-0.895	0.006		
NDVI 3/22/05 (0.06-1.56 km2; max=1.56km2)	-0.872	0.010		
NDVI 4/23/05 (0.06-0.56 km2; max=0.06km2)	0.724	0.066		
Principal Components				
WORLDCLIM Temperature PC2	-0.816	0.025		
NDVI PC3	0.746	0.054		
Water vapor PC4	-0.856	0.014		
All-layers PC3	0.710	0.074		

44

	Partie	100,000 100	Amulai des la construcción de la	Press Transformer Contractions Press Contraction Contraction Press Manual Contraction Press M	Press, 2000,	Energy Construction of the
	NDV	+ +		+ -	-	
1	BDV	+ +		+++ + + -		
	AEV	+		+ + + + + -	-	
	AAVI	+ +				
	MDV	++++			- •	
	ILTV	+ ++++			- +	
2	IBVM	++ +++			.+	
2	IBVC	+++ ++			.+	
	ARV	+ + + + + +		+		
	MG	+ + + + +			-	
Da	ita Set:	Other Pathogens	WorldClim Temp	WorldClim Precip	MODIS Land Surface Temp	Торо

+ = Positive correlation at $P \le 0.05$; + = positive correlation at $P \le 0.10$; - = negative correlation at $P \le 0.05$; - = negative correlation at $P \le 0.10$ **X** = Significant effect of farm type (higher in backyard than in broiler) per Soos et al. (in review)

FIGURES:

Figure 1. Distribution of sampled and unsampled broiler, backyard and layer chicken farms throughout the agriculture zone of Santa Cruz. Delineations within the agriculture zone represent property lines. Inset: location of Santa Cruz and its agriculture zone within the Galapagos archipelago.

Figure 2. Distribution of prevalence of infectious bursal disease virus predicted by precipitation seasonality (r^2 =0.794, P=0.007, S_E=0.140, m=-0.045, b=2.181) throughout agriculture zone.

Figure 3. Distribution of prevalence of infectious bursal disease virus predicted by precipitation seasonality ($r^2=0.794$, P=0.007, S_E=0.140, m=-0.045, b=2.181) throughout archipelago.

Figure 4. Distribution of prevalence of Newcastle's disease virus predicted by precipitation seasonality ($r^2=0.593$, P=0.043, S_E=0.229, m=-0.045, b=1.785) throughout agriculture zone.

Figure 5. Distribution of prevalence of Newcastle's disease virus predicted by precipitation seasonality ($r^2=0.593$, P=0.043, S_E=0.229, m=-0.045, b=1.785) throughout archipelago.

Figure 6. Generalized conceptual model of the likelihood of environmental influence on prevalence of a pathogen as a function of the organism's ability to persist outside the host.

Table 1. Correlations of Mycoplasma Gallisepticum (MG) prevalence with environmental variables (†)

Pathogen Prevalence	MODIS Water Vapor	Data Set Princ. Comp.	NDVI (sq.km.)	0.063 0.56	1.56 5	.06 10.56	22.56
MG r	Mean, r -0.004	WORLDCLIM r 0.076	August 13, r	-0.490 -0.477	-0.483 -0.5	607 -0.523	-0.500
P	August 2004 P 0.992	Temp PC1 P 0.872	2004 P	0.264 0.2	280 0.273	0.245 0.228	3 0.253
NDV r 0.531 P 0.114	Mean, r -0.395 September 2004 P 0.380	WORLDCLIM r 0.137 Temp PC2 P 0.769	August 29, r 2004 P	0.302 0.013 0.511 0.9	-0.231 -0.5 978 0.618	18790** 0.234 0.034	891*** 4 0.007
MDV r 0.809*** P 0.005	Mean, r -0.304 October 2004 P 0.507	WORLDCLIM r 0.127 Precip PC1 P 0.786	September 14, r 2004 P	-0.297 -0.514 0.518 0.3	-0.506 -0.3 238 0.247	94 -0.384 0.382 0.39	-0.653 5 0.112
ILTV r 0.841*** P 0.002	Mean , r -0.247 November 2004 P 0.593	WORLDCLIM r -0.263 Precip PC2 P 0.569	September 30, r 2004 P	-0.372 -0.343 0.411 0.4	-0.369 -0.5 452 0.416	640 -0.573 0.210 0.179	-0.582 9 0.171
IBVM r 0.690** P 0.027	Mean, r 0.254 December 2004 P 0.582	Topographic r -0.231 Variables PC1 P 0.818	October 16, r 2004 P	0.277 -0.207	-0.331 -0.4 856 0.468	185 -0.511 0.270 0.24	-0.514 1 0.237
IBVC r 0.643** P 0.045	Mean, r -0.473 January 2005 P 0.284	Topographic r 0.003 Variables PC2 P 0.994	November 1, r 2004 P	-0.363 -0.402 0.424 0.3	-0.442 -0.4 371 0.321	157 -0.460 0.303 0.294	-0.455 0.305
IBDV r 0.143 P 0.694	Mean, r 0.027 February 2005 P 0.954	MODIS NDVI r -0.575 PC1 P 0.177	November 17, r 2004 P	0.164 0.069	-0.190 -0.5 883 0.684	80 -0.653 0.172 0.11 [,]	-0.669 1 0.100
ARV r 0.763*** P 0.010	Mean, r -0.014 March 2005 P 0.977	MODIS NDVI r 0.177 PC2 p 0.704	December 3, r 2004 P	0.328 0.153	0.051 0.15 743 0.913	58 0.352 0.736 0.43/	0.313
AEV r 0.514 P 0.128	Mean, r -0.514 April 2005 P 0.238	MODIS NDVI r 0.218 PC3 P 0.638	December 19, r 2004 P	-0.138 0.074 0.768 0.(0.040 -0.2	26 -0.380 0.626 0.407	-0.558 0 0.193
AAVI r 0.153 P 0.673	Mean, r -0.439 May 2005 P 0.324	MODIS NDVI r -0.025 PC4 P 0.957	January 1, 2005 r	0.465 0.570	-0.004 -0.0)71 0.034 0.880 0.94:	0.216
	Mean. r -0.011	MODIS LST r -0.171	Januarv 17. r	0.123 0.218	0.349 0.2	57 -0.019	-0.495
WORLDCLIM Temperature	June 2005 P 0.981	PC1 P 0.714	2005 P	0.793 0.6	339 0.443	0.578 0.967	7 0.259
Annual Mean r -0.257	Mean, r -0.135	MODIS LST r -0.184	February 2, r	0.454 0.333	0.256 0.41	10 0.551	0.625
Temp P 0.578	July 2005 P 0.773	PC2 P 0.693	2005 P	0.306 0.4	465 0.580	0.361 0.200	0.133
Mean Temp, r -0.346 Driest Qtr P 0.447	Mean, r -0.390 12 Months P 0.387	MODIS Water r 0.333 Vapor PC1 P 0.485	February 18, r 2005 P	0.168 0.248	0.271 0.37 592 0.557	73 0.468 0.409 0.290	0.453
Mean Temp, r -0.346 Wettest Qtr P 0.448	Mean, r -0.530 Min Month P 0.221	MODIS Water r -0.405 Vapor PC2 P 0.368	March 6, 2005 <i>r</i> P	0.575 0.720*	.781** .833 068 0.038	3** .798** 0.020 0.03	0.663
Temp Annual r 0.339 Range P 0.457	Mean, r -0.514 Max Month P 0.238	MODIS Water <i>r</i> -0.035 Vapor PC3 P 0.941	March 22, 2205 r P	-0.203 0.152 0.663 0.1	-0.056 -0.7 746 0.906	'06 -0.605 0.076 0.150	-0.642 0 0.120
Min Temp, r -0.285 Coldest Month P 0.535	Mean, r 0.013 Annual Range P 0.977	MODIS Water <i>r</i> -0.302 Vapor PC4 P 0.511	April 7, 2005 r P	756** -0.685* 0.049 0.0	767** -0.6 089 0.044	0.085 0.120	-0.524 0 0.228
Max Temp, r -0.131 Warmest Month P 0.780	Mean r 0.133 Seasonality P 0.777	All-Layers PCA Comp.	April 23, 2005 r P	-0.013 0.084 0.979 0.8	-0.007 -0.2 858 0.988	230 -0.075 0.620 0.874	-0.074 4 0.875
Temp r 0.162 Seasonality P 0.728	12-Month Mean, r -0.052 Std. Dev. P 0.912	PC1 r 0.550 P 0.200	May 9, 2005 r P	-0.317 -0.267 0.488 0.5	-0.572 - 0.7 563 0.180	27* -0.697* 0.064 0.082	-0.508 2 0.244
Mean Diurnal r 0.060 Temp Range P 0.899	MODIS Land Surface Temp	PC2 r -0.082 P 0.862	May 25, 2005 <i>r</i> P	-0.543 -0.563 0.207 0.1	-0.640 - 0.7 188 0.122	38* -0.706* 0.059 0.07/	-0.651 \$0.113
Mean Temp, r 0.267 Coldest Qtr P 0.563	Mean Day LST, r -0.222 12 Months P 0.632	PC3 r 0.056 P 0.905	June 10, 2005 r P	-0.119 0.277 0.800 0.?	0.277 -0.0 548 0.547)81 -0.275 0.862 0.55	-0.438 1 0.325
Mean Temp, r 0.249 Warmest Qtr P 0.591	Mean Day LST, 6 r -0.335 Warmer Mos. P 0.462	PC4 r -0.083 P 0.860	June 26, 2005 r P	-0.351 -0.318 0.440 0./	-0.305 -0.3 487 0.507	328 -0.350 0.473 0.443	-0.384 2 0.396
WORLDCLIM Precipitation	Mean Day LST, 6 <i>r</i> -0.718* Cooler Mos. P 0.069	PC5 r 0.044 P 0.925	July 12, 2005 r P	-0.360 -0.491 0.428 0.2	-0.533 -0.5 264 0.218	05 -0.475 0.247 0.28	-0.458 1 0.301
Precip, r 0.127	Mean Night LST, r 0.065	PC6 r 0.062	July 28, 2005 r	-0.455 -0.417	-0.579 -0.3	374 -0.489	-0.661
Coldest Qtr P 0.786	12 Months P 0.891	P 0.895	P	0.304 0.3	352 0.174	0.409 0.266	3 0.106
Precip, r 0.101 Warmest Qtr P 0.830	Mean Night LST, r 0.470 6 Warmer Mos. P 0.287	PC7 r 0.420 P 0.348	Mean for Year <i>r</i> P		-0.535 0.216		
Precip, r 0.123 Driest Qtr P 0.792	Mean Night LST, r -0.302 6 Cooler Months P 0.511	PC8 r -0.209 P 0.653	Mean, Wet r Season P		-0.368 0.417		
Precip, r 0.386 Wettest Qtr P 0.392	Diumal Range, r -0.214 12 Mos. P 0.645	PC9 r -0.107 P 0.820	Mean, Dry <i>r</i> Season P		-0.479 0.277		
Precip r -0.192 Seasonality P 0.68	Diurnal Range, r -0.529 Warm Mos. P 0.222	PC10 r -0.307 P 0.504	Seasonality r Index P		0.447 0.314		
Precip, r 0.139 Driest Month P 0.766	Diurnal Range, r -0.335 Cool Mos. P 0.462	PC11 r 0.227 P 0.625	Topographic				
Precip, r 0.034 Wettest Month P 0.943	Day LST r 0.650 Seasonality P 0.114	PC12 r 0.315 P 0.491	Elevation r	0.154 0.742			
Annual r 0.107 Precipitation P 0.819	Night LST r 0.470 Seasonality P 0.287	PC13 r -0.118 P 0.801	Slope r	0.567 0.184			
		PC14 r -0.240 P 0.605	Aspect ⁺⁺ r ²	0.255 0.556			
		PC15 r -0.420					
		P 0.348					

† Pearson's Correlation Coefficient (r); †† Quadratic regression (r²)
 * Significant at the 0.10 level (2-tailed); ** Significant at the 0.05 level (2-tailed); *** Significant at the 0.01 level (2-tailed).

PC16 r 0.049 P 0.917

 Table 2. Correlations of Newcastle's disease virus (NDV) prevalence with environmental variables (†)

Table 2. Correlations o	i Newcasile's disease virus	(NDV) prevalence with		s ().
Pathogen Prevalence	MODIS Water Vapor	Data Set Princ. Comp.	NDVI (sq.km.) 0.063	0.56 1.56 5.06 10.56 22.56
MG / 0.531	Mean, r _0.850**	WORLDCLIM 7 -0.050	August 13, r 0.237	0.242 0.231 0.214 0.202 0.212
P 0.114	August 2004 P 0.015	Temp PC1 P 0.915	2004 P 0.609	0.600 0.618 0.644 0.664 0.648
NDV r	Mean, <i>r _</i> 0.970***	WORLDCLIM r -0.260	August 29, r -0.632	-0.609 -0.536 -0.427 -0.509 -0.505
	September 2004 P 0.000	Temp PC2 P 0.573	2004 P 0.127	0.146 0.215 0.339 0.243 0.247
MDV r 0.405	Mean, r -0.547	WORLDCLIM r -0.592	September 14, r -0.193	-0.369 -0.484 -0.487 -0.442 -0.416
P 0.245	October 2004 P 0.203	Precip PC1 P 0.161	2004 P 0.678	0.415 0.272 0.267 0.321 0.353
ILTV r 0.418	Mean , r -0.251	WORLDCLIM r 0.544	September 30, r 0.145	0.152 0.196 0.037 -0.031 -0.079 0.745 0.874 0.938 0.947 0.866
P 0.229	November 2004 P 0.588	Precip PC2 P 0.207	2004 P 0.756	
IBVM r 0.408	Mean, <i>r</i> -0.693*	Topographic r 0.144	October 16, r -0.528	-0.011 0.022 0.042 0.070 0.059
P 0.242	December 2004 P 0.084	Variables PC1 P 0.759	2004 P 0.224	0.982 0.963 0.928 0.882 0.899
IBVC r 0.391	Mean, <i>r -</i> 0.808**	Topographic r 0.090	November 1, r 0.052	0.146 0.182 0.187 0.185 0.178 0.755 0.696 0.689 0.691 0.703
P 0.264	January 2005 P 0.028	Variables PC2 P 0.847	2004 P 0.912	
IBDV / 0.565*	Mean, r -0.151	MODIS NDVI / 0.182	November 17, r 0.387	0.463 0.346 -0.057 -0.394 -0.444 0.296 0.447 0.904 0.381 0.319
P 0.089	February 2005 P 0.747	PC1 P 0.696	2004 P 0.391	
ARV r 0.394	Mean, r 0.559	MODIS NDVI / -0.435	December 3, r -0.469	-0.240 -0.235 -0.453 -0.473 -0.513
P 0.259	March 2005 P 0.192	PC2 P 0.329	2004 P 0.288	0.605 0.612 0.307 0.284 0.239
AEV / 0.830***	Mean, r -0.361	MODIS NDVI 7 0.004	December 19, r 0.593	0.541 0.430 0.281 0.241 0.268
P 0.003	April 2005 P 0.427	PC3 P 0.994	2004 P 0.160	0.210 0.335 0.542 0.603 0.561
AAVI r 0.390	Mean, r -0.311	MODIS NDVI 7 0.301	January 1, 2005 r 0.052	0.171 -0.316 -0.659 -0.711* -0.684*
P 0.265	May 2005 P 0.497	PC4 P 0.513	P 0.912	0.714 0.489 0.108 0.073 0.090
WORLDCLIM Temperature	Mean, <i>r</i> _ 0.840 **	MODIS LST r 0.381	January 17, r -0.102	0.113 0.146 -0.104 -0.286 -0.512
	June 2005 P 0.018	PC1 P 0.399	2005 P 0.828	0.810 0.755 0.825 0.535 0.240
Annual Mean r -0.152	Mean, r 0.286	MODIS LST r 0.368	February 2, r -0.007	-0.040 -0.149 -0.120 -0.046 0.139
Temp P 0.745	July 2005 P 0.533	PC2 P 0.417	2005 P 0.988	0.932 0.750 0.798 0.923 0.766
Mean Temp, <i>r</i> _0.249	Mean, <i>r</i> _0 .716 *	MODIS Water <i>r</i> -0.179	February 18, <i>r</i> -0.157	-0.135 -0.154 -0.172 -0.180 -0.097
Driest Qtr P 0.590	12 Months P 0.070	Vapor PC1 P 0.700	2005 P 0.738	0.773 0.742 0.712 0.699 0.836
Mean Temp, <i>r</i> _{-0.188}	Mean, r -0.369	MODIS Water r 0.094	March 6, 2005 r 0.277	0.170 0.102 0.164 0.360 .840**
Wettest Qtr P 0.686	Min Month P 0.416	Vapor PC2 P 0.841	P 0.548	
Temp Annual r 0.210	Mean, r -0.361	MODIS Water r788**	March 22, 2205 r -0.225	-0.135 -0.139 0.131 0.499 0.477
Range P 0.652	Max Month P 0.427	Vapor PC3 P 0.035	P 0.627	0.772 0.766 0.780 0.255 0.279
Min Temp, r -0.114	Mean, r 0.007	MODIS Water r -0.521	April 7, 2005 r 0.091	0.204 0.124 0.166 0.259 0.471
Coldest Month P 0.808	Annual Range P 0.988	Vapor PC4 P 0.230	P 0.846	0.661 0.791 0.722 0.575 0.286
Max Temp, r 0.118	Mean r 0.093		April 23, 2005 r 0.714*	.798** .801** 0.726* 0.709* 0.641
Warmest Month P 0.802	Seasonality P 0.844	All-Layers PCA Comp.	P 0.071	0.031 0.030 0.085 0.074 0.121
Temp / 0.131	12-Month Mean, r 0.160	PC1 / -0.224	May 9, 2005 r 0.212	0.499 0.398 0.097 0.196 0.356
Seasonality P 0.780	Std. Dev. P 0.732	P 0.630	P 0.647	0.255 0.377 0.836 0.673 0.433
Mean Diurnal r 0.073	MODIS Land Surface Temp	PC2 r -0.454	May 25, 2005 r 0.002	-0.002 -0.040 -0.201 -0.248 -0.191
Temp Range P 0.876		P 0.306	P 0.997	0.997 0.933 0.665 0.592 0.682
Mean Temp, 7 -0.146	Mean Day LST, r -0.595	PC3 / 0.215	June 10, 2005 r .863**	.882*** 0.643 0.168 -0.072 -0.151
Coldest Qtr P 0.754	12 Months P 0.158	P 0.644	P 0.012	0.009 0.120 0.718 0.878 0.747
Mean Temp, r -0.141	Mean Day LST, 6 <i>r</i> - 0.861 **	PC4 r 0.342	June 26, 2005 r 0.213	0.184 0.169 0.157 0.148 0.120
Warmest Qtr P 0.762	Warmer Mos. P 0.013	P 0.453	P 0.847	0.893 0.717 0.736 0.751 0.797
WORLDCLIM Precipitation	Mean Day LST, 6 / -0.176 Cooler Mos. P 0.708	PC5 r 0.062 P 0.895	July 12, 2005 r 0.052 P 0.912	0.116 0.142 0.248 0.302 0.289 0.804 0.761 0.592 0.511 0.530
Precip, r 0.635	Mean Night LST, r 0.200	PC6 r 0.700*	July 28, 2005 r -0.213	0.259 0.352 0.586 0.545 0.206 0.575 0.439 0.167 0.208 0.667
Coldest Qtr P 0.126	12 Months P 0.867	P 0.080	P 0.646	
Precip, r 0.620	Mean Night LST, r -0.180	PC7 r 0.169	Mean for Year <i>r</i>	0.330
Warmest Qtr P 0.138	6 Warmer Mos. P 0.899	P 0.717	P	0.469
Precip, r 0.661	Mean Night LST, r 0.592	PC8 / -0.415	Mean, Wet r	0.365
Driest Qtr P 0.106	6 Cooler Months P 0.161	P 0.355	Season P	0.421
Precip, r 0.215	Diumal Range, r -0.590	PC9 r 0.335	Mean, Dry <i>r</i>	0.249 0.590
Wettest Qtr P 0.643	12 Mos. P 0.163	P 0.463	Season P	
Precip r _0.770**	Diurnal Range, r -0.290	PC10 r 0.604	Seasonality r	-0.161
Seasonality P 0.043	Warm Mos. P 0.528	P 0.151	Index P	0.730
Precip, r 0.721* Driest Month P 0.068	Diurnal Range, r -0.541 Cool Mos. P 0.210	PC11 r -0.047 P 0.920	Topographic	
Precip, r 0.587	Day LST r -0.133	PC12 / -0.551	Elevation r 0.113	
Wettest Month P 0.166	Seasonality P 0.777	P 0.200	P 0.810	
Annual r 0.631	Night LST r -0.578	PC13 / 0.382	Slope r _0.301	
Precipitation P 0.128	Seasonality P 0.174	P 0.398	P 0.513	
		PC14 /877*** P 0.010	Aspect ^{††} r ² 0.098 P 0.813	
		PC15 r 0.522 P 0.229		
		PC16 r 0.681 P 0.092		

† Pearson's Correlation Coefficient (r); †† Quadratic regression (r²)
 * Significant at the 0.10 level (2-tailed); ** Significant at the 0.05 level (2-tailed); *** Significant at the 0.01 level (2-tailed).

Table 3. Correlations of Marek's disease virus (MDV) prevalence with environmental variables (†)

Pathogen Prevalence	MODIS Water Vapor	Data Set Princ. Comp.	NDVI (sq.km.)	0.063 0.56	1.56 5.06	5 10.56 2	2.56
MG / 0.809*** P 0.005	Mean, r 0.113 August 2004 P 0.809	WORLDCLIM r 0.474 Temp PC1 P 0.283	August 13, r 2004 P	-0.586 -0.642 0.167 0.12	-0.676* -0.695 0 0.096 0	* -0.710* -0.6 .083 0.074	593* 0.084
NDV r 0.405 P 0.245	Mean, r -0.185 September 2004 P 0.692	WORLDCLIM r 0.328 Temp PC2 P 0.472	August 29, r 2004 P	0.070 0.148	0.044 -0.163 1 0.926 0.	-0.546 -0.€	585* 0.08
MDV r P	Mean, r 0.066 October 2004 P 0.888	WORLDCLIM r 0.242 Precip PC1 P 0.600	September 14, r 2004 P	0.006 -0.324	-0.389 -0.290 8 0.388 0	-0.327 -0.6	653 0.112
ILTV / 0.866*** P 0.001	Mean , r -0.204 November 2004 P 0.660	WORLDCLIM r -0.414 Precip PC2 P 0.355	September 30, r 2004 P	-0.592 -0.499 0.161 0.25	-0.525 - .766* 4 0.226 0	*796**77 .044 0.032	72** 0.043
IBVM r 0.952*** P 0.000	Mean, r 0.178 December 2004 P 0.703	Topographic r -0.543 Variables PC1 P 0.208	October 16, r 2004 P	0.233 -0.435	-0.526 - 0.681 9 0.225 0	* -0.724* -0.7	749* 0.05
IBVC r 0.935*** P 0.000	Mean, r -0.078 January 2005 P 0.887	Topographic r -0.055 Variables PC2 P 0.907	November 1, r 2004 P	-0.557 -0.623 0.194 0.13	-0.678* -0.696 5 0.094 0	* -0.716* -0.7	723* 0.064
IBDV r 0.245 P 0.495	Mean, r 0.298 February 2005 P 0.517	MODIS NDVI / -0.654 PC1 P 0.111	November 17, r 2004 P	-0.174 -0.410	-0.64 1948 ** 1 0.121 0.	**944***89	96***
ARV / 0.794*** P 0.006	Mean, r 0.392 March 2005 P 0.384	MODIS NDVI 7 0.519 PC2 P 0.233	December 3, r 2004 P	0.318 0.560	0.453 0.435 1 0.308 0.	0.479 0.3	88 0.39
AEV r 0.448 P 0.194	Mean, r -0.009 April 2005 P 0.985	MODIS NDVI / 0.119 PC3 P 0.800	December 19, r 2004 P	-0.428 -0.372	-0.375 -0.589 1 0.408 0.	-0.677* -0.7	714* 0.072
AAVI / 0.189 P 0.601	Mean, <i>r</i> -0.189 May 2005 P 0.684	MODIS NDVI r -0.453 PC4 P 0.307	January 1, 2005 <i>r</i> P	0.025 0.056	-0.440 -0.431 4 0.323 0.	-0.294 0.0	04
WORLDCLIM Temperature	Mean, r -0.114 June 2005 P 0.808	MODIS LST r -0.607 PC1 P 0.148	January 17, <i>r</i> 2005 P	-0.420 -0.258	-0.215 -0.320 6 0.644 0.	-0.444 -0.7	703*
Annual Mean r 0.148	Mean, r -0.097	MODIS LST r -0.611	February 2, r	0.697* 0.560	0.509 0.651	.756** .80	3**
Temp P 0.751	July 2005 P 0.836	PC2 P 0.145	2005 P	0.082 0.19	1 0.243 0.	.114 0.049	0.03
Mean Temp, / 0.013 Driest Qtr P 0.978	Mean, r 0.120 12 Months P 0.797	MODIS Water 7 0.557 Vapor PC1 P 0.194	February 18, r 2005 P	0.405 0.468 0.387 0.28	0.467 0.575 9 0.290 0	0.656 0.6	22 0.130
Mean Temp, r 0.100 Wettest Qtr P 0.831	Mean, r -0.240 Min Month P 0.804	MODIS Water <i>r _</i> 0.672* Vapor PC2 P 0.098	March 6, 2005 r P	.848** .981*** 0.016 0.00	.956*** .953** 0 0.001 0	* .894*** 0.6 .001 0.007	17 0.140
Temp Annual r -0.011 Range P 0.982	Mean, r -0.009 Max Month P 0.985	MODIS Water <i>r -</i> 0.249 Vapor PC3 P 0.590	March 22, 2205 r P	-0.086 0.218 0.854 0.63	0.104 -0.486 9 0.825 0.	-0.573 -0.5 269 0.179	523 0.228
Min Temp, r 0.130 Coldest Month P 0.781	Mean, r 0.165 Annual Range P 0.723	MODIS Water <i>r</i> -0.463 Vapor PC4 P 0.295	April 7, 2005 r P	-0.475 -0.444 0.281 0.31	-0.510 -0.361 8 0.242 0	-0.218 -0.1	188 0.686
Max Temp, r 0.386 Warmest Month P 0.392	Mean r 0.193 Seasonality P 0.879	All-Layers PCA Comp.	April 23, 2005 r P	0.012 0.258	0.230 0.064 7 0.620 0.	0.193 0.0	83 0.850
Temp r -0.205 Seasonality P 0.659	12-Month Mean, r 0.204 Std. Dev. P 0.860	PC1 r 0.660 P 0.107	May 9, 2005 r P	0.141 0.097 0.763 0.83	-0.361 -0.493 6 0.427 0.	-0.505 -0.4 .261 0.248	471 0.286
Mean Diurnal r -0.329		PC2 r 0.263	May 25, 2005 r	-0.298 -0.314	-0.459 -0.627	-0.660 -0.7	722*
Mean Temp r o 444	MODIS Land Surface Temp	P 0.509	P	0.510 0.494	4 0.301 0.	.132 0.107	0.06
Coldest Qtr P 0.144	12 Months P 0.590	PC3 7 -0.229 P 0.622	June 10, 2005 7 P	-0.195 0.208 0.675 0.65	0.150 -0.110 5 0.748 0	-0.319 -0.5 .815 0.486	0.248
Warmest Qtr P 0.684	Wearn Day LST, 6 7 -0.495 Warmer Mos. P 0.259	PC4 7 -0.524 P 0.228	June 26, 2005 / P	-0.579 -0.550 0.173 0.20	-0.520 -0.524 1 0.231 0	-0.552 -0.5 .227 0.199	0.163 0.163
WORLDCLIM Precipitation	Cooler Mos. P 0.057	PC5 7 -0.191 P 0.681	JUIY 12, 2005 P	-0.605 -0.745* 0.150 0.05	/81** -0./34 5 0.038 0	* -0.699* -0.6	575* 0.09(
Precip, r -0.088 Coldest Qtr P 0.851	Mean Night LST, r 0.621 12 Months P 0.138	PC6 r 0.353 P 0.438	July 28, 2005 r P	-0.521 -0.424 0.231 0.34	-0.291 -0.166 4 0.527 0.	-0.37176	52** 0.040
Precip, <i>r</i> -0.088 Warmest Qtr P 0.852	Mean Night LST, r 0.732 6 Warmer Mos. P 0.062	PC7 / .766** P 0.044	Mean for Year r		-0.674* 0.097		
Precip, <i>r</i> -0.077 Driest Qtr P 0.869	Mean Night LST, r 0.111 6 Cooler Months P 0.813	PC8 / -0.422 P 0.346	Mean, Wet r Season P		-0.163 0.728		
Precip, r 0.467 Wettest Qtr P 0.29	Diumal Range, r -0.580 12 Mos. P 0.173	PC9 / -0.301 P 0.512	Mean, Dry r Season P		-0.704* 0.077		
Precip r -0.05 Seasonality P 0.916	Diurnal Range, r -0.810** Warm Mos. P 0.027	PC10 r -0.199 P 0.009	Seasonality r Index P		0.720* 0.068		
Precip, r -0.028 Driest Month P 0.952	Diurnal Range, r -0.637 Cool Mos P 0.124	PC11 r 0.268 P 0.562	Topographic				
Precip, r -0.144 Wettest Month P 0.758	Day LST r 0.591 Seasonality P 0.162	PC12 r 0.169 P 0.718	Elevation r	-0.195 0.674			
Annual r -0.089 Precipitation P 0.849	Night LST r 0.273 Seasonality P 0.553	PC13 r -0.542 P 0.209	Slope r	0.260			
		PC14 r -0.360 P 0.427	Aspect ⁺⁺ r ²	0.242			
		PC15 r _0.309					
		P 0.500					

[†] Pearson's Correlation Coefficient (*r*); ^{††} Quadratic regression (r^2) * Significant at the 0.10 level (2-tailed); ** Significant at the 0.05 level (2-tailed); *** Significant at the 0.01 level (2-tailed).

PC16 r 0.008 P 0.

0.987

Table 4. Correlations of infectious larvngotracheitis virus (ILTV) prevalence with environmental variables (†)

Pathogen Prevalence	MODIS Water Vapor	Data Set Princ. Comp.	NDVI (sq.km.)	0.063 0.	.56 1.56	5.06	10.56	22.56
MG / 0.841***	Mean, r -0.073	WORLDCLIM r 0.158	August 13, r	-0.496 -0.5	30 -0.559	-0.572 -	0.566	-0.531
NDV r 0.418	August 2004 P 0.8/6 Mean, r -0.226	WORLDCLIM r 0.188	August 29, r	0.132 -0.1	0.221 0.193	-0.584 -	0.185	826**
MDV / 0.866***	Mean, r 0.206	WORLDCLIM r -0.040	September 14, r	-0.303 -0.5	53 -0.553	-0.486 -	-0.434	-0.631
ILTV r	Mean, r 0.173	WORLDCLIM r -0.145	September 30, r	-0.472 -0.4	11 -0.488	791** -	786**	-0.682*
IB∨M r 0.802***	Mean, r 0.014	Topographic r -0.316	October 16, r	0.192 -0.5	70 -0.660	-0.734* -	-0.712*	-0.672*
IBVC / 0.831***	Mean, r -0.344	Topographic r 0.158	November 1, r	-0.294 -0.3	74 -0.437	-0.460 -	-0.485	-0.502
IBDV / 0.381	Mean, r -0.229	MODIS NDVI r -0.562	November 17, r	0.154 -0.0	90 -0.357	776** -	-0.741*	-0.721*
ARV / 0.902***	Mean, r 0.353	MODIS NDVI r 0.423	2004 P December 3, r	0.466 0.23	0.848 0.431 30 0.066	0.040	0.057 D.299	0.068
AEV r 0.538	Mean, r -0.481	MODIS NDVI r 0.334	December 19, r	-0.075 0.04	13 0.058	-0.183 -	-0.326	-0.518
AAVI r 0.305	April 2005 P 0.275 Mean, r 0.059	MODIS NDVI r 0.039	January 1, 2005 r	0.279 0.21	0.926 0.903	-0.324 -	-0.225	-0.085
F 0.382	May 2005 P 0.800 Mean, r -0.070	MODIS LST r -0.360	January 17, r	-0.337 -0.2	43 -0.136	-0.217 -	-0.434	-0.737*
Appual Moan r o pos	Moon r 0.202	MODIS IST r 0.004	Eobruary 2 r	0.000 0.46	7 0 000	0.250 /	0.420	0.570
Temp P 0.394	July 2005 P 0.524	PC2 P 0.527	2005 F	0.372 0.15 , 0.411	0.737 0.848	0.206 0.576	0.337	0.572
Mean Temp, r -0.504 Driest Qtr P 0.248	Mean, r -0.114 12 Months P 0.808	MODIS Water / 0.219 Vapor PC1 P 0.637	February 18, r 2005 F	-0.030 0.07 , 0.949	76 0.088 0.872 0.852	0.222 (0.333 0.465	0.328 0.473
Mean Temp, r -0.421 Wettest Qtr P 0.347	Mean, r -0.016 Min Month P 0.972	MODIS Water / -0.431 Vapor PC2 P 0.334	March 6, 2005 <i>r</i> F	0.638 0.73	39* .768** 0.058 0.044	.867** . 0.012	.878*** 0.009	0.642 0.120
Temp Annual r 0.495 Range P 0.259	Mean, r -0.481 Max Month P 0.275	MODIS Water <i>r</i> -0.267 Vapor PC3 P 0.563	March 22, 2205 r F	-0.019 0.31 , 0.968	13 -0.005 0.494 0.992	-0.705* - 0.077	0.652 0.112	-0.555 0.196
Min Temp, r -0.399 Coldest Month P 0.375	Mean, r -0.329 Annual Range P 0.471	MODIS Water 7 -0.534 Vapor PC4 P 0.217	April 7, 2005 r F	-0.613 -0.6 , 0.143	59 - 0.699* 0.107 0.081	-0.632 - 0.128	0.493 0.260	-0.404 0.368
Max Temp, r -0.314 Warmest Month P 0.774	Mean r -0.268 Seasonality P 0.561	All-Lavers PCA Comp.	April 23, 2005 r F	0.199 0.27	76 0.175 0.549 0.708	-0.155 - 0.740	0.110 0.815	-0.208 0.654
Temp r 0.323 Seasonality P 0.480	12-Month Mean, r -0.309 Std. Dev. P 0.500	PC1 r 0.584 P 0.168	May 9, 2005 <i>r</i> F	-0.169 -0.0 0.717	94 -0.374 0.842 0.409	-0.462 0.296	0.453 0.307	-0.330 0.470
Mean Diurnal r 0.201 Temp Range P 0.885	MODIS Land Surface Temp	PC2 r 0.306 P 0.504	May 25, 2005 <i>r</i> F	-0.361 -0.4	14 -0.530 0.356 0.221	-0.709* - 0.074	0.735* 0.060	-0.674* 0.097
Mean Temp, r -0.386 Coldest Qtr P 0.393	Mean Day LST, r -0.515 12 Months P 0.237	PC3 / 0.089 P 0.850	June 10, 2005 r F	-0.236 0.11	0.803 0.833	-0.112 -	0.338	-0.528 0.223
Mean Temp, <i>r</i> -0.351 Warmest Qtr P 0.441	Mean Day LST, 6 r -0.248 Warmer Mos. P 0.592	PC4 / -0.059 P 0.901	June 26, 2005 <i>r</i> F	-0.243 -0.20	06 -0.182 0.658 0.696	-0.201 -	0.243	-0.303
WORLDCLIM Precipitation	Mean Day LST, 6 <i>r</i> _0.783 ** Cooler Mos. P 0.037	PC5 r 0.101 P 0.830	July 12, 2005 r F	-0.570 -0.6	44 -0.619 0.119 0.138	-0.544 -	0.487	-0.445
Precip. r 0.318	Mean Night LST. 7 0.185	PC6 / 0 300	July 28, 2005 r	-0.077 -0.0	53 -0.214	-0.057 -	-0.330	766**
Coldest Qtr P 0.487	12 Months P 0.691	P 0.514	F	0.870	0.911 0.645	0.903	0.470	0.045
Precip, r 0.318 Warmest Qtr P 0.488	Mean Night LST, r 0.358 6 Warmer Mos. P 0.430	PC7 / 0.396 P 0.380	Mean for Year <i>r</i>	2	-0.685* 0.089			
Precip, / 0.311 Driest Qtr P 0.497	Mean Night LST, r -0.055 6 Cooler Months P 0.907	PC8 / -0.611 P 0.145	Mean, Wet <i>r</i> Season P	2	-0.593 0.160			
Precip, r 0.32 Wettest Qtr P 0.483	Diurnal Range, r -0.518 12 Mos. P 0.234	PC9 / -0.046 P 0.923	Mean, Dry r Season F	2	-0.572 0.180			
Precip r -0.342 Seasonality P 0.453	Diurnal Range, r -0.399 Warm Mos. P 0.375	PC10 r -0.249 P 0.590	Seasonality r Index P	3	0.529 0.222			
Precip, r 0.313 Driest Month P 0.494	Diurnal Range, r -0.555 Cool Mos. P 0.198	PC11 r 0.005 P 0.992	Topographic					
Precip, r 0.265 Wettest Month P 0.566	Day LST r 0.738* Seasonality P 0.059	PC12 r -0.023 P 0.000	Elevation r	0.321				
Annual r 0.313 Precipitation P 0.495	Night LST r 0.231 Seasonality P 0.818	PC13 / -0.323 P 0.480	Slope r	0.333				
		PC14 / -0.387 P 0.391	Aspect ⁺⁺ r	2 0.018 0.964				
		PC15 r -0.566 P 0.186						

[†] Pearson's Correlation Coefficient (*r*); ^{††} Quadratic regression (r^2) * Significant at the 0.10 level (2-tailed); ** Significant at the 0.05 level (2-tailed); *** Significant at the 0.01 level (2-tailed).

PC16 r -0.247 P 0.594

Table 5. Correlations of infectious bronchitis virus - Mass. strain (IBVM) prevalence with environmental variables (†).

		mass. strain (iB mi) pr	evalence mar e	in in on internet		
Pathogen Prevalence	MODIS Water Vapor	Data Set Princ. Comp.	NDVI (sq.km.)	0.063 0.56	1.56 5.06	10.56 22.56
MG / 0.690** P 0.027	Mean, r 0.068 August 2004 P 0.884	WORLDCLIM r 0.660 Temp PC1 P 0.107	August 13, r 2004 P	-0.689* -0.753* 0.087 0.051	787**798** 0.036 0.032	804**795** 0.029 0.033
NDV r 0.408 P 0.242	Mean, r -0.098 September 2004 P 0.834	WORLDCLIM r 0.493 Temp PC2 P 0.281	August 29, r 2004 P	-0.086 0.057 0.855 0.903	0.045 -0.105 0.923 0.823	-0.423 -0.563 0.344 0.188
MDV r 0.952*** P 0.000	Mean, r 0.174 October 2004 P 0.708	WORLDCLIM r 0.299 Precip PC1 P 0.515	September 14, r 2004 P	0.281 -0.065 0.542 0.891	-0.149 -0.057 0.751 0.904	-0.107 -0.587 0.819 0.166
ILTV r 0.802*** P 0.005	Mean , r -0.042 November 2004 P 0.929	WORLDCLIM r -0.448 Precip PC2 P 0.313	September 30, r 2004 P	-0.583 -0.476 0.170 0.280	-0.517 - .811 ** 0.234 0.027	877***847** 0.010 0.016
IB∨M r P	Mean, r 0.091 December 2004 P 0.847	Topographic r -0.708* Variables PC1 P 0.075	October 16, r 2004 P	0.082 -0.614	-0.670*807** 0.099 0.028	849**875*** 0.016 0.010
IBVC / 0.973*** P 0.000	Mean, r 0.006 January 2005 P 0.990	Topographic r -0.031 Variables PC2 P 0.947	November 1, r 2004 P	-0.642 -0.713* 0.120 0.072	770**788** 0.043 0.035	816**833** 0.025 0.020
IBDV / 0.211 P 0.559	Mean, r 0.270 February 2005 P 0.559	MODIS NDVI / -0.711* PC1 P 0.073	November 17, r 2004 P	-0.401 -0.590 0.373 0.163	776**972*** 0.040 0.000	973***950*** 0.000 0.001
ARV / 0.733** P 0.016	Mean, r 0.433 March 2005 P 0.332	MODIS NDVI / 0.676* PC2 P 0.095	December 3, r 2004 P	0.423 0.722	0.625 0.561	0.547 0.441
AEV r 0.462	Mean, r 0.077 April 2005 P 0.870	MODIS NDVI r -0.129 PC3 P 0.782	December 19, r 2004 P	-0.441 -0.401 0.322 0.373	-0.461 - 0.701* 0.298 0.079	768**770** 0.044 0.043
AAVI r 0.156	Mean, r -0.014 May 2005 P 0.977	MODIS NDVI r -0.527 PC4 P 0.224	January 1, 2005 r	0.039 0.048	-0.393 -0.446 0.384 0.315	-0.340 -0.071 0.455 0.880
WORLDCLIM Tomporature	Mean, r -0.079 June 2005 P 0.866	MODIS LST r -0.510 PC1 P 0.242	January 17, r 2005 P	-0.613 -0.489 0.143 0.265	-0.437 -0.512 0.327 0.240	-0.620788** 0.137 0.035
Annual Mean r 0.247	Mean, r 0.009	MODIS LST r -0.528 PC2 P 0.224	February 2, r 2005 P	.761** 0.615	0.559 0.662	0.733* 0.751*
Mean Temp, r 0.136 Driest Otr P 0.772	Mean, r 0.240	MODIS Water r 0.618 Vapor PC1 P 0.139	February 18, r 2005 P	0.435 0.494	0.483 0.587	0.658 0.632
Mean Temp, r 0.226	Mean, r -0.059 Min Month P	MODIS Water r788** Vapor PC2_p0036	March 6, 2005 r	0.707* .922***	.858** .811**	0.735* 0.528
Temp Annual r -0.088 Range P 0.852	Mean, r 0.077 Max Month P 0.870	MODIS Water r -0.291 Vapor PC3 P 0.527	March 22, 2205 r	0.112 0.394	0.307 -0.261	-0.478 -0.432 0.278 0.333
Min Temp, r 0.222 Coldest Month P 0.633	Mean, r 0.096 Annual Range P 0.837	MODIS Water r -0.460 Vapor PC4 P 0.299	April 7, 2005 r	-0.203 -0.188	-0.256 -0.112 0.579 0.810	-0.002 -0.049
Max Temp, r 0.501 Warmest Month P 0.252	Mean r 0.095 Seasonality P 0.840		April 23, 2005 r	0.044 0.274	0.282 0.144	0.228 0.065
Temp r -0.266 Seasonality P 0.565	12-Month Mean, r 0.180 Std. Dev. P 0.699	PC1 r 0.730* P 0.063	May 9, 2005 r P	0.129 0.084	-0.351 -0.434 0.440 0.331	-0.421 -0.473 0.347 0.283
Mean Diurnal r -0.393 Temp Range P 0.384	MODIS Land Surface Temp	PC2 r 0.416 P 0.354	May 25, 2005 r P	-0.262 -0.266 0.571 0.564	-0.417 -0.569 0.352 0.182	-0.627 -0.744* 0.132 0.055
Mean Temp, r 0.245 Coldest Qtr P 0.597	Mean Day LST, r -0.368 12 Months P 0.417	PC3 / -0.451 P 0.310	June 10, 2005 r	-0.193 0.144 0.679 0.758	-0.026 -0.270 0.956 0.558	-0.424 -0.596 0.343 0.158
Mean Temp, r 0.290 Warmest Qtr P 0.528	Mean Day LST, 6 r -0.545 Warmer Mos. P 0.208	PC4 r -0.590 P 0.163	June 26, 2005 r P	-0.632 -0.615 0.128 0.142	-0.582 -0.584 0.170 0.169	-0.615 -0.659 0.142 0.107
WORI DCI IM Precipitation	Mean Day LST, 6 <i>r</i> -0.807 ** Cooler Mos. P 0.028	PC5 r -0.047 P 0.921	July 12, 2005 r P	789**872** 0.035 0.011	883***825** 0.008 0.022	786**771** 0.036 0.043
Precip, r -0.120 Coldest Qtr P 0.798	Mean Night LST, r 0.699* 12 Months P 0.081	PC6 r 0.455 P 0.305	July 28, 2005 r	-0.466 -0.320 0.291 0.484	-0.199 -0.075 0.669 0.874	-0.314796** 0.493 0.032
Precip, r -0.102 Warmest Qtr P 0.827	Mean Night LST, r 0.657 6 Warmer Mos. P 0.109	PC7 r .857** P 0.014	Mean for Year <i>r</i>		-0.726* 0.065	
Precip, r -0.106 Driest Qtr P 0.820	Mean Night LST, r 0.273 6 Cooler Months P 0.554	PC8 r -0.564 P 0.188	Mean, Wet r Season P		-0.047 0.920	
Precip, r 0.512 Wettest Qtr P 0.24	Diurnal Range, <i>r</i> _ 0.720* 12 Mos. P 0.068	PC9 r -0.353 P 0.437	Mean, Dry r Season P		802** 0.030	
Precip r 0.025 Seasonality P 0.958	Diurnal Range, r _0.777** Warm Mos. P 0.040	PC10 r -0.252 P 0.586	Seasonality r Index P		.841** 0.018	
Precip, r -0.078 Driest Month P 0.867	Diurnal Range, r _0.799** Cool Mos. P 0.031	PC11 r 0.206 P 0.658	Topographic			
Precip, r -0.119 Wettest Month P 0.799	Day LST r 0.636 Seasonality P 0.125	PC12 r 0.026 P 0.955	Elevation r	0.268		
Annual r -0.11 Precipitation P 0.815	Night LST r 0.103 Seasonality P 0.828	PC13 r -0.430 P 0.336	Slope r	0.034 0.942		
		PC14 r -0.439 P 0.324	Aspect ⁺⁺ r ²	0.235 0.585		
		PC15 r -0.248 P 0.591				
		PC16 r -0.092 P 0.844				

† Pearson's Correlation Coefficient (r); †† Quadratic regression (r²)
* Significant at the 0.10 level (2-tailed); ** Significant at the 0.05 level (2-tailed); *** Significant at the 0.01 level (2-tailed).

Table 6. Correlations of infectious bronchitis virus - Conn. strain (IBVC) prevalence with environmental variables (†)

Path a sen Drevelance	MODIS Weter Verses	- Conn. Suann (IDVC) pr	
Pathogen Prevalence	MODIS Water Vapor	Data Set Princ. Comp.	NDVI (sq.km.) 0.063 0.56 1.56 5.06 10.56 22.56
MG 7 0.644** P 0.045	August 2004 P 0.974	Temp PC1 P 0.239	August 13, 7 -0.653* -0.713* -0.746*757**761** -0.743* 2004 P 0.112 0.072 0.054 0.049 0.047 0.0
NDV / 0.391	Mean, r -0.129	WORLDCLIM / 0.327	August 29, 7 -0.198 -0.093 -0.114 -0.235 -0.522 -0.626
P 0.264	September 2004 P 0.783	Temp PC2 P 0.473	2004 P 0.671 0.843 0.808 0.612 0.230 0.1
MDV r 0.935***	Mean, r 0.306	WORLDCLIM r 0.116	September 14, r 0.148 -0.199 -0.281 -0.196 -0.264 -0.687
P 0.000	October 2004 P 0.505	Precip PC1 P 0.805	2004 P 0.752 0.669 0.541 0.674 0.568 0.0
ILTV r 0.831***	Mean , r 0.062	WORLDCLIM r -0.277	September 30, r -0.674* -0.580 -0.623885***912***876***
P 0.003	November 2004 P 0.895	Precip PC2 P 0.548	2004 P 0.097 0.172 0.135 0.008 0.004 0.0
IBVM / 0.973***	Mean, r -0.047	Topographic r -0.563	October 16, r -0.047 -0.611 -0.657787**828**853**
P 0.000	December 2004 P 0.921	Variables PC1 P 0.188	2004 P 0.921 0.145 0.109 0.036 0.021 0.0
IBVC r	Mean, r -0.004	Topographic r -0.106	November 1, r -0.638 -0.692* -0.732* -0.745*767**786**
	January 2005 P 0.993	Variables PC2 P 0.822	2004 P 0.123 0.085 0.062 0.055 0.044 0.0
IBDV r 0.286	Mean, r 0.150	MODIS NDVI 7 _0.696*	November 17, r -0.256 -0.493 -0.691* -,948*** -,930*** -,890***
P 0.423	February 2005 P 0.748	PC1 P 0.083	2004 P 0.580 0.261 0.086 0.001 0.002 0.0
ARV / 0.813***	Mean, r 0.559	MODIS NDVI / 0.611	December 3, r 0.373 0.589 0.473 0.404 0.388 0.288
	March 2005 P 0.192	PC2 P 0.145	2004 P 0.410 0.164 0.283 0.369 0.390 0.5
AEV r 0.414	Mean, r 0.008	MODIS NDVI r 0.040	December 19, r -0.300 -0.289 -0.307 -0.572 -0.642 -0.689
	April 2005 P 0.986	PC3 P 0.932	2004 P 0.513 0.529 0.503 0.180 0.120 0.0
AAVI r 0.272	Mean, r 0.133 May 2005 P 0.776	MODIS NDVI r -0.388 PC4 P 0.390	January 1, 2005 r 0.064 -0.012 -0.416 -0.497 -0.409 -0.183
WORLDCLIM Temperature	Mean, r -0.122	MODIS LST r -0.502 PC1 P 0.251	January 17, r -0.707* -0.582 -0.524 -0.608 -0.737* -876***
Appual Mean r 0.467	Moon r 0.159		Echrupy 2 r 0 724* 0 555 0 400 0 604 0 606* 777**
Temp P 0.721	July 2005 P 0.735	PC2 P 0.280	2005 P 0.066 0.198 0.255 0.453 0.089 0.001
Driest Qtr P 0.956	Mean, 7 0.258 12 Months P 0.577	Vapor PC1 P 0.341	Pepruary 18, 7 0.384 0.460 0.449 0.548 0.613 0.617 2005 P 0.396 0.298 0.312 0.203 0.143 0.1
Wean Temp, 7 0.152	Mean, 7 0.068	MODIS Water 7766**	March 6, 2005 r 0,748* .887*** .843** .813** .787** 0.602
Wettest Qtr P 0.745	Min Month P 0.885	Vapor PC2 P 0.045	P 0.053 0.008 0.017 0.026 0.036 0.1
Temp Annual r -0.024	Mean, r 0.008	MODIS Water <i>r</i> -0.419	March 22, 2205 r 0.002 0.290 0.142 -0.342 -0.472 -0.385
Range P 0.959	Max Month P 0.986	Vapor PC3 P 0.349	P 0.997 0.529 0.762 0.453 0.285 0.3
Min Temp, r 0.156	Mean, r -0.043	MODIS Water <i>r</i> -0.636	April 7, 2005 r -0.186 -0.221 -0.273 -0.157 -0.024 -0.063
Coldest Month P 0.739	Annual Range P 0.928	Vapor PC4 P 0.125	P 0.660 0.634 0.554 0.737 0.959 0.8
Max Temp, r 0.436	Mean r -0.047	All-Layers PCA Comp.	April 23, 2005 r 0.219 0.412 0.394 0.168 0.192 -0.007
Warmest Month P 0.328	Seasonality P 0.921		P 0.637 0.368 0.362 0.719 0.680 0.9
Temp r -0.196	12-Month Mean, r 0.051	PC1 / 0.714*	May 9, 2005 r 0.115 0.123 -0.269 -0.392 -0.388 -0.422
Seasonality P 0.674	Std. Dev. P 0.913	P 0.072	P 0.807 0.794 0.560 0.385 0.390 0.3
Mean Diurnal r -0.322	MODIS Land Surface Temp	PC2 r 0.377	May 25, 2005 r -0.312 -0.331 -0.477 -0.649 -0.718*799**
Temp Range P 0.481		P 0.405	P 0.466 0.469 0.279 0.115 0.069 0.0
Mean Temp, r 0.170	Mean Day LST, r -0.447	PC3 / -0.282	June 10, 2005 r -0.171 0.098 -0.074 -0.326 -0.521 -0.682*
Coldest Qtr P 0.716	12 Months P 0.314	P 0.541	P 0.713 0.834 0.875 0.475 0.230 0.0
Mean Temp, r 0.205	Mean Day LST, 6 r -0.513	PC4 r -0.466	June 26, 2005 r -0.587 -0.574 -0.549 -0.553 -0.588 -0.639
Warmest Qtr P 0.660	Warmer Mos. P 0.239	P 0.292	P 0.166 0.178 0.202 0.198 0.165 0.1
WORLDCLIM Precipitation	Mean Day LST, 6 r -0.739*	PC5 r 0.041	July 12, 2005 r776**835**812** -0.734* -0.690* -0.672*
	Cooler Mos. P 0.058	P 0.931	P 0.040 0.019 0.027 0.060 0.086 0.0
Precip, r 0.011	Mean Night LST, r 0.690*	PC6 r 0.576	July 28, 2005 r -0.342 -0.171 -0.086 0.059 -0.171 -0.743*
Coldest Qtr P 0.981	12 Months P 0.086	P 0.176	P 0.453 0.714 0.854 0.900 0.713 0.0
Precip, r 0.030	Mean Night LST, r 0.601	PC7 / .811**	Mean for Year / -0.724*
Warmest Qtr P 0.949	6 Warmer Mos. P 0.154	P 0.027	P 0.066
Precip, r 0.017	Mean Night LST, r 0.340	PC8 r -0.662	Mean, Wet r -0.132
Driest Qtr P 0.972	6 Cooler Months P 0.455	P 0.106	Season P 0.777
Precip, r 0.580	Diurnal Range, r _0.777**	PC9 r -0.377	Mean, Dry r771**
Wettest Qtr P 0.172	12 Mos. p 0.040	P 0.404	Season P 0.042
Precip r -0.110	Diurnal Range, r _0.718*	PC10 / -0.205	Seasonality r .800**
Seasonality P 0.814	Warm Mos. P 0.069	P 0.659	Index P 0.031
Precip, r 0.049	Diurnal Range, <i>r</i> -0.794 **	PC11 r 0.242	Topographic
Driest Month P 0.917	Cool Mos. P 0.033	P 0.601	
Precip, r 0.015	Day LST r 0.577	PC12 r -0.078	Elevation r -0.204
Wettest Month P 0.975	Seasonality P 0.175	P 0.867	P 0.660
Annual r 0.019	Night LST r 0.024	PC13 / -0.426	Slope r -0.071
Precipitation P 0.968	Seasonality P 0.959	P 0.341	P 0.880
	-	PC14 r -0.478 P 0.278	Aspect ⁺⁺ r ² 0.258 P 0.551
		PC15 / -0.219	

† Pearson's Correlation Coefficient (r); †† Quadratic regression (r²)
 * Significant at the 0.10 level (2-tailed); ** Significant at the 0.05 level (2-tailed); *** Significant at the 0.01 level (2-tailed).

PC16 / -0.100 P 0.832

Table 7. Correlations of infectious bursal disease virus (IBDV) prevalence with environmental variables (†).

	inteolious baroar alsoase	mas (IBB () provalence		nun vanabios	(1).			
Pathogen Prevalence	MODIS Water Vapor	Data Set Princ. Comp.	NDVI (sq.km.)	0.063 0.56	1.56	5.06	10.56	22.56
MG r 0.143 P 0.694	Mean, r -0.687* August 2004 P 0.088	WORLDCLIM / -0.269 Temp PC1 P 0.559	August 13, r 2004 P	0.439 0.403	0.371 (0.352 0 0.438	.346 0.447	0.376
NDV / 0.565* P 0.089	Mean, <i>r</i> _ 0.772 ** September 2004 P 0.042	WORLDCLIM / -0.494 Temp PC2 P 0.260	August 29, r 2004 P	-0.501 -0.447 0.252 0.31	-0.511 - 15 0.242	0.406 -(0.366	D.571 0.180	-0.464
MDV / 0.245 P 0.495	Mean, r -0.122 October 2004 P 0.794	WORLDCLIM r772** Precip PC1 P 0.042	September 14, r 2004 P	-0.601 - 0.749* 0.154 0.05	836** - 53 0.019	880*** 0.009	.797** 0.032	-0.399
ILTV r 0.381 P 0.277	Mean, <i>r</i> -0.124 November 2004 P 0.790	WORLDCLIM r 0.655 Precip PC2 P 0.110	September 30, r 2004 P	0.009 0.025	0.053 - 58 0.910	0.081 -(0.863	D.030 0.949	0.017
IBVM / 0.211 P 0.559	Mean, <i>r</i> -0 .701* December 2004 P 0.079	Topographic r 0.347 Variables PC1 P 0.445	October 16, r 2004 P	-0.309 0.008 0.500 0.98	0.025 0	0.093 0 0.843	.153 0.743	0.175
IBVC r 0.286 P 0.423	Mean, r -0.605 January 2005 P 0.150	Topographic r 0.131 Variables PC2 P 0.780	November 1, r 2004 P	0.261 0.319 0.572 0.48	0.342 (35 0.453).343 0 0.451	.335 0.462	0.317
IBDV r	Mean, r -0.246 February 2005 P 0.594	MODIS NDVI / 0.330 PC1 P 0.469	November 17, r 2004 P	0.677* 0.507 0.095 0.24	0.353 - 16 0.437	0.165 -(0.723	D.331 0.469	-0.280 0.543
ARV r 0.406 P 0.245	Mean, r 0.814** March 2005 P 0.026	MODIS NDVI / -0.429 PC2 P 0.336	December 3, r 2004 P	-0.542 -0.398 0.209 0.37	-0.454 - 7 0.306	0.641 -(D.620 0.138	-0.592 0.162
AEV r 0.495 P 0.146	Mean, r -0.277 April 2005 P 0.548	MODIS NDVI / 0.537 PC3 P 0.214	December 19, r 2004 P	0.564 0.405 0.187 0.36	0.474 ().453 0 0.307	.424 0.344	0.418
AAVI / 0.767*** P 0.010	Mean, r -0.061 May 2005 P 0.897	MODIS NDVI / 0.380 PC4 P 0.400	January 1, 2005 <i>r</i> P	-0.283 -0.317 0.538 0.48	-0.681* -	824** 0.023	.825** 0.022	786** 0.036
WORLDCLIM Temperature	Mean, <i>r</i> - .866** June 2005 P 0.012	MODIS LST r -0.077 PC1 P 0.869	January 17, <i>r</i> 2005 P	-0.250 0.008 0.588 0.98	-0.034 - 36 0.943	0.290 -(D.364 0.423	-0.477
Annual Mean r -0.308	Mean, r 0.444	MODIS LST r 0.014	February 2, r	-0.200 -0.279	-0.341 -	0.254 -(0.124 0.792	0.138
Mean Temp, r -0.464 Driest Qtr P 0.294	Mean, r -0.453 12 Months P 0.307	MODIS Water r -0.384 Vapor PC1 P 0.395	February 18, r 2005 P	-0.326 -0.290 0.476 0.52	-0.304 - 28 0.507	-0.300 -(0.513	0.292	-0.226
Mean Temp, r _{-0.327} Wettest Qtr P 0.474	Mean, r -0.091 Min Month P 0.848	MODIS Water r 0.270 Vapor PC2 P 0.559	March 6, 2005 <i>r</i> P	0.548 0.235	0.196 (0.355 0 0.435	.601 0.153	.793**
Temp Annual r 0.338 Range P 0.458	Mean, r -0.277 Max Month P 0.548	MODIS Water <i>r</i> 855** Vapor PC3 P 0.014	March 22, 2205 r P	-0.384 -0.337 0.394 0.45	-0.442 -	0.180 0	.302 0.511	0.428
Min Temp, r -0.242 Coldest Month P 0.602	Mean, r -0.131 Annual Range P 0.779	MODIS Water r -0.670 Vapor PC4 P 0.100	April 7, 2005 r P	-0.153 -0.144 0.743 0.75	-0.159 - 58 0.733	0.118 0 0.801	.113 0.809	0.382
Max Temp, r 0.007 Warmest Month P 0.988	Mean r -0.086 Seasonality P 0.855	All-Layers PCA Comp.	April 23, 2005 r P	.764** .866** 0.046 0.01	.814** (12 0.026	0.637 0 0.124	.582 0.171	0.514 0.238
Temp r 0.262 Seasonality P 0.570	12-Month Mean, r 0.019 Std. Dev. P 0.967	PC1 r -0.344 P 0.450	May 9, 2005 <i>r</i> P	0.465 0.715* 0.293 0.07	0.617 (1 0.140	0.338 0 0.458	.345 0.448	0.535
Mean Diurnal r 0.212 Temp Range P 0.648	MODIS Land Surface Temp	PC2 r -0.285 P 0.536	May 25, 2005 <i>r</i> P	0.195 0.146 0.675 0.76	0.089 - 5 0.850	0.154 -0 0.741	D.214 0.644	-0.084
Mean Temp, <i>r</i> -0.295 Coldest Qtr P 0.520	Mean Day LST, r -0.520 12 Months P 0.231	PC3 r 0.583 P 0.169	June 10, 2005 r P	0.648 0.695 0.116 0.08	0.669 (33 0.100	0.413 0 0.357	.092 0.844	-0.006
Mean Temp, <i>r -</i> 0.276 Warmest Qtr P 0.549	Mean Day LST, 6 r -0.568 Warmer Mos. P 0.183	PC4 r 0.370 P 0.414	June 26, 2005 r P	0.369 0.364 0.416 0.42	0.355 (22 0.434	0.351 0 0.441	1.334 0.464	0.303
WORLDCLIM Precipitation	Mean Day LST, 6 r 0.018 Cooler Mos. P 0.969	PC5 r -0.214 P 0.645	July 12, 2005 r P	0.214 0.226	0.269 (0.380 0 0.400	.441 0.323	0.466
Precip, r 0.719*	Mean Night LST, r 0.240	PC6 r 0.684*	July 28, 2005 r	0.082 0.399	0.582 (0.706* 0	.603	0.227
Precip, r 0.704*	Mean Night LST, r -0.118 6 Warmer Mos P 0.801	PC7 r -0.025	Mean for Year r	0.001 0.01	0.300	0.070	0.102	0.021
Precip, / 0.736*	Mean Night LST, r 0.549	PC8 r -0.454	Mean, Wet r		-0.001			
Precip, r 0.030 Wettest Qtr P 0.948	Diurnal Range, r -0.556 12 Mos. P 0.185	PC9 r 0.402	Mean, Dry r Season P		0.338			
Precip <i>r</i> _0.891*** Seasonality P 0.007	Diurnal Range, r -0.192 Warm Mos. P 0.679	PC10 r 0.738*	Seasonality r		-0.303			
Precip, r 0.822** Driest Month P 0.023	Diurnal Range, r -0.365 Cool Mos. P 0.421	PC11 r -0.117 P 0.802	Topographic					
Precip, r 0.624 Wettest Month P 0.134	Day LST r -0.233 Seasonality P 0.616	PC12 r -0.572 P 0.180	Elevation r	0.280				
Annual / 0.713* Precipitation P 0.072	Night LST r -0.491 Seasonality P 0.264	PC13 / -0.122 P 0.795	Slope r	-0.198 0.871				
		PC14 / -0.731* P 0.062	Aspect ⁺⁺ r ²	0.461 0.291				
		PC15 r 0.304 P 0.507						

† Pearson's Correlation Coefficient (r); †† Quadratic regression (r²)
 * Significant at the 0.10 level (2-tailed); ** Significant at the 0.05 level (2-tailed); *** Significant at the 0.01 level (2-tailed).

PC16 r 0.521 P 0.231

Table 8. Correlations of avian reovirus (ARV) prevalence with environmental variables (†).

Dathogon Drovalance	MODIS Water Vener	Data Sat Dring, Comp	ND)/// (og km)	0.062	0.56	4 66	5.06	10.56	22.56
MG / 0.763***	Mean, r 0.028	WORLDCLIM r -0.077	August 13, /	-0.573	-0.572	-0.579 -0	0.599	-0.603	-0.567
NDV r 0.394	Mean, r -0.239	WORLDCLIM r -0.125	August 29, 1	-0.062	-0.304	-0.477 -0	0.150 D.662*	853**	904***
P 0.259 MDV r 0.794***	September 2004 P 0.606 Mean, r 0.262	WORLDCLIM r -0.176	September 14, 1	-0.365	0.508 -0.621	0.279 -0.629 -0	0.105).524	0.015 -0.616	0.005 893***
P 0.006 ILTV r 0.902***	October 2004 P 0.570 Mean, r 0.107	Precip PC1 P 0.707 WORLDCLIM r 0.017	2004 F September 30, 1		0.138 - 0.745 *	0.130 783**	0.228 871**	0.140 - .812 **	0.007 807**
P 0.000	November 2004 P 0.819	Precip PC2 P 0.971	2004 F	0.044	0.055	0.037	0.011	0.027	0.028
P 0.016	December 2004 P 0.928	Variables PC1 P 0.897	2004 F	-0.097	-0.333 0.465	-0.412 -u 0.359	0.179	-0.023 0.135	-0.044 0.118
IBVC / 0.813*** P 0.004	Mean, r -0.199 January 2005 P 0.669	Topographic r -0.293 Variables PC2 P 0.523	November 1, 1 2004 F	-0.553 0.198	-0.566 0.185	-0.563 -0 0.189	0.562 0.189	-0.555 0.196	-0.558 0.193
IBDV r 0.406 P 0.245	Mean, r -0.137 February 2005 P 0.770	MODISNDVI <i>r _</i> 0.685* PC1 P 0.090	November 17, 1 2004 F	0.245	-0.003 0.994	-0.252 -0 0.585	0.662 0.105	-0.623 0.135	-0.578 0.174
ARV r P	Mean, r 0.368 March 2005 P 0.417	MODIS NDVI 7 0.260 PC2 P 0.574	December 3, 7 2004 F	0.316	0.071 _{0.880}	-0.073 -0 0.876	0.006 0.990	0.100 0.831	0.034
AEV r 0.284 P 0.426	Mean, r -0.428 April 2005 P 0.338	MODIS NDVI r 0.501 PC3 P 0.252	December 19, 1 2004 F	0.017	0.115	0.188 -0	0.150	-0.278 0.546	-0.523
AAVI r 0.584* P 0.077	Mean, r 0.118 May 2005 P 0.801	MODIS NDVI r 0.086 PC4 P 0.855	January 1, 2005 /	0.439	0.274	-0.096 -0	0.205	-0.143	-0.041
	Mean, r 0.007	MODIS LST r -0.296	January 17, 1	-0.373	-0.304	-0.177 -0	0.246	-0.515	791**
Annual Mean r -0.213	Mean, r 0.225	MODIS LST r -0.206	February 2, /	0.553	0.372	0.311 0.	.436	0.598	.784**
Mean Temp, r _0.374	Mean, r -0.010	MODIS Water r -0.020	February 18, /	0.234	0.412	0.366 0.	.456	0.522	0.576
Mean Temp, r -0.261	Mean, r -0.013	MODIS Water r -0.578	March 6, 2005	0.697*	0.437	.788** .8	0.304 319**	.860**	0.176
Wettest Qtr P 0.571 Temp Annual r 0.270	Min Month P 0.979 Mean, r -0.428	Vapor PC2 P 0.174 MODIS Water r -0.341	ہ March 22, 2205 <i>،</i>	0.082 -0.378	0.077 -0.025	0.035 -0.341	0.024 779**	0.013 -0.633	0.074 -0.547
Range P 0.559 Min Temp. <i>r</i> -0.211	Max Month P 0.338 Mean, r -0.295	Vapor PC3 P 0.453 MODIS Water r768**	April 7, 2005 /	0.403	0.958 -0.600	0.454 -0.631 -0	0.039 0.611	0.127 -0.515	0.204 -0.483
Coldest Month P 0.650	Annual Range P 0.521	Vapor PC4 P 0.044	April 22, 2005	0.244	0.154	0.129	0.145	0.236	0.272
Warmest Month P 0.911	Seasonality P 0.617	All-Layers PCA Comp.	April 23, 2005 /	0.360	0.398 0.376	0.275 -U 0.551	0.755	-0.170 0.716	-0.322 0.481
Temp r 0.115 Seasonality P 0.806	12-Month Mean, r -0.310 Std. Dev. P 0.498	PC1 r 0.672* P 0.098	May 9, 2005 <i>i</i> F	-0.277 0.548	-0.163 0.726	-0.398 -0 0.377	0.608 0.147	-0.615 0.142	-0.493 0.261
Mean Diurnal r 0.011 Temp Range P 0.982	MODIS Land Surface Temp	PC2 r 0.021 P 0.965	May 25, 2005 <i>i</i>	-0.660	-0.705* 0.077	790** 0.035	922*** 0.003	941*** 0.002	873** 0.010
Mean Temp, r _0.207 Coldest Qtr P 0.857	Mean Day LST, r -0.384 12 Months P 0.385	PC3 r 0.248 P 0.592	June 10, 2005 /	-0.219	-0.030 0.948	-0.092 -0 0.845	0.406 0.366	-0.654 0.111	774** 0.041
Mean Temp, r -0.213 Warmest Otr P 0.846	Mean DayLST, 6 r -0.237 Warmer Mos. P 0.609	PC4 r -0.018	June 26, 2005 /	-0.450	-0.429 0.337	-0.430 -0 0.336	0.452	-0.487	-0.535
WORLDCLIM Presinitation	Mean Day LST, 6 r -0.572 Cooler Mos P 0.180	PC5 r 0.286	July 12, 2005 /	-0.532	-0.593	-0.540 -0	0.465	-0.429	-0.411 0.360
Precip, r 0.250	Mean Night LST, r 0.269	PC6 r 0.438	July 28, 2005 /	-0.173	-0.078	-0.260 -0	0.040	-0.147	-0.629
Precip, r 0.244	Mean Night LST, r 0.461	PC7 r 0.505	Mean for Year		0.000	-0.686*	0.000	0.100	0.100
Precip, r 0.225	Mean Night LST, r -0.007 6 Cooler Months P 0988	PC8 r -0.525	Mean, Wet <i>i</i> Season f	, 5		-0.488			
Precip, r 0.669*	Diurnal Range, r -0.467	PC9 r -0.388	Mean, Dry /			-0.608			
Precip r -0.320	Diurnal Range, r -0.473	PC10 r -0.305	Seasonality /			0.568			
Precip, r 0.248	Diurnal Range, r -0.428	PC11 r 0.401	index -			0.104			
Precip, r 0.211	Cool Mos. P 0.338 Day LST r 0.529	P 0.372 PC12 r 0.055	Topographic Elevation /	0.089					
Wettest Month P 0.649 Annual r 0.233	Seasonality P 0.222 Night LST r 0.237	P 0.906 PC13 r -0.232	slope /	0.850					
Precipitation P 0.616	Seasonality P 0.609	P 0.616 PC14 / _0.282	Aspect ^{††}	2 0 2 3 0					
		P 0.540	Appell I	P 0.593					
		P 0.476							
		PC16 r -0.097 P 0.836							

[†] Pearson's Correlation Coefficient (*r*); ^{††} Quadratic regression (r^2) * Significant at the 0.10 level (2-tailed); ** Significant at the 0.05 level (2-tailed); *** Significant at the 0.01 level (2-tailed).

 Table 9
 Correlations of axian encephalomyelitis virus (AEV) prevalence with environmental variables (†)

Pathogen Prevalence	MODIS Water Vapor	Data Set Princ, Comp.	NDVI (sa.km.) 0.063	0.56 1.56 5.06 10.56 22.56
MG / 0.514	Mean, r827**	WORLDCLIM r 0.257	August 13, r 0.251 0	202 0.162 0.159 0.170 0.182
NDV r 0.830***	Mean, r _0.707*	WORLDCLIM r 0.196	August 29, r -0.304 -(2004 P	0.302 -0.375 -0.319 -0.452 -0.325
MDV r 0.448	Mean, r -0.339	WORLDCLIM r -0.363	September 14, r -0.094 -(0.237 -0.314 -0.374 -0.146 -0.025
	October 2004 P 0.457	Precip PC1 P 0.423	2004 P 0.842	0.608 0.493 0.408 0.755 0.957
ILTV r 0.538	Mean, r 0.045	WORLDCLIM r 0.273	September 30, r 0.434 0	496 0.461 0.022 -0.086 0.034
P 0.109	November 2004 P 0.924	Precip PC2 P 0.553	2004 P 0.330	0.257 0.298 0.963 0.854 0.942
IBVM r 0.462	Mean, r -0.554	Topographic r -0.223	October 16, r -0.096 -0	0.437 -0.417 -0.272 -0.145 -0.061
P 0.179	December 2004 P 0.197	Variables PC1 P 0.631	2004 P 0.838	0.328 0.352 0.554 0.756 0.897
IBVC r 0.414	Mean, <i>r</i> -0.808**	Topographic r 0.679*	November 1, r 0.370 0	349 0.289 0.260 0.213 0.183
P 0.234	January 2005 P 0.028	Variables PC2 P 0.093	2004 P 0.414	0.443 0.530 0.573 0.647 0.694
IBDV r 0.495	Mean, r -0.355	MODIS NDVI / 0.270	November 17, r 0.207 0	229 0.102 -0.247 -0.487 -0.551
P 0.146	February 2005 P 0.435	PC1 P 0.559	2004 P 0.656	0.822 0.827 0.593 0.268 0.200
ARV r 0.284	Mean, r 0.522	MODIS NDVI 7 -0.060	December 3, r -0.107 0	017 -0.031 -0.227 -0.139 -0.052
P 0.426	March 2005 P 0.230	PC2 P 0.899	2004 P 0.820	0.972 0.948 0.625 0.766 0.912
AEV r	Mean, r -0.397	MODIS NDVI 7 -0.158	December 19, r 0.398 0	369 0.220 0.211 0.153 0.214
	April 2005 P 0.378	PC3 P 0.734	2004 P 0.377	0.415 0.635 0.650 0.743 0.645
AAVI r 0.037	Mean, r -0.150	MODIS NDVI 7 0.237	January 1, 2005 <i>r</i> -0.157 0	0.05 -0.517 -0.723* -0.722* -0.677*
P 0.918	May 2005 P 0.748	PC4 P 0.608	P 0.737	0.992 0.235 0.066 0.067 0.095
	Mean, r756**	MODIS LST r 0.195	January 17, r -0.171 0	020 0.029 -0.178 -0.261 -0.438
WORLDCLIM Temperature	June 2005 P 0.049	PC1 P 0.675	2005 P 0.714	0.967 0.962 0.702 0.572 0.325
Annual Mean 7 -0.416 Temp P 0.354	July 2005 P 0.288	PC2 P 0.688	2005 P 0.588	0.358 -0.453 -0.368 -0.283 -0.161 0.430 0.308 0.417 0.538 0.731
Mean Temp, r -0.450	Mean, r -0.635	MODIS Water / 0.103	February 18, <i>r</i> -0.528 -0	0.511 -0.529 -0.474 -0.415 -0.417
Driest Qtr P 0.311	12 Months P 0.126	Vapor PC1 P 0.826	2005 P 0.224	0.241 0.222 0.282 0.354 0.353
Mean Temp, 7 -0.414	Mean, r -0.131	MODIS Water / 0.234	March 6, 2005 r 0.154 0	.181 0.060 0.211 0.344 0.593
Wettest Qtr P 0.356	Min Month P 0.779	Vapor PC2 P 0.813	P 0.742	0.697 0.899 0.650 0.451 0.161
Temp Annual r 0.536	Mean, r -0.397	MODIS Water <i>r</i> -0.598	March 22, 2205 r 0.325 0	.380 0.317 0.159 0.326 0.364
Range P 0.215	Max Month P 0.378	Vapor PC3 P 0.156	P 0.477	0.400 0.488 0.733 0.475 0.423
Min Temp, r -0.403	Mean, r -0.188	MODIS Water <i>r</i> -0.213	April 7, 2005 r -0.035 0	068 0.006 0.087 0.235 0.464
Coldest Month P 0.370	Annual Range P 0.687	Vapor PC4 P 0.647	P 0.941	0.885 0.990 0.852 0.612 0.294
Max Temp, r -0.054	Mean r -0.134	All-Layers PCA Comp.	April 23, 2005 r 0.446 0	.537 0.556 0.551 0.585 0.564
Warmest Month P 0.909	Seasonality P 0.775		P 0.316	0.214 0.195 0.200 0.167 0.187
Temp r 0.450	12-Month Mean, r -0.002	PC1 r -0.245	May 9, 2005 r 0.290 0	488 0.368 0.301 0.397 0.514
Seasonality P 0.311	Std. Dev. P 0.998	P 0.596	P 0.528	0.206 0.417 0.512 0.378 0.238
Mean Diurnal r 0.375	MODIS Land Surface Temp	PC2 / 0.114	May 25, 2005 r 0.385 0	358 0.280 0.070 0.008 0.057
Temp Range P 0.407		P 0.807	P 0.384	0.430 0.543 0.882 0.987 0.904
Mean Temp, 7 -0.418	Mean Day LST, r _0.753*	PC3 / -0.003	June 10, 2005 r 0.611 .8	17** 0.670* 0.455 0.280 0.120
Coldest Qtr P 0.351	12 Months P 0.051	P 0.995	P 0.145	0.025 0.100 0.308 0.543 0.797
Mean Temp, <i>r</i> -0.359	Mean Day LST, 6 r -0.656	PC4 / 0.261	June 26, 2005 r 0.457 0	456 0.477 0.471 0.446 0.398
Warmest Qtr P 0.429	Warmer Mos. P 0.110	P 0.572	P 0.303	0.304 0.279 0.288 0.316 0.376
WORLDCLIM Precipitation	Mean Day LST, 6 r -0.453	PC5 r -0.111	July 12, 2005 r -0.095 -0	0.038 -0.027 0.073 0.153 0.180
	Cooler Mos. P 0.307	P 0.812	P 0.839	0.935 0.954 0.876 0.743 0.699
Precip, r 0.674*	Mean Night LST, r 0.057	PC6 r 0.456	July 28, 2005 r 0.085 0	363 0.422 0.529 0.238 -0.067
Coldest Qtr P 0.097	12 Months P 0.903	P 0.304	P 0.856	0.423 0.345 0.222 0.608 0.886
Precip, <i>r</i> 0.677*	Mean Night LST, r -0.319	PC7 / -0.015	Mean for Year <i>r</i>	0.185
Warmest Qtr P 0.095	6 Warmer Mos. P 0.485	P 0.975		0.891
Precip, <i>r</i> 0.712*	Mean Night LST, r 0.460	PC8 r -0.583	Mean, Wet r	0.047
Driest Qtr P 0.072	6 Cooler Months P 0.299	P 0.169	Season P	0.921
Precip, r -0.261	Diurnal Range, r -0.625	PC9 / 0.704*	Mean, Dry <i>r</i>	0.193
Wettest Qtr P 0.572	12 Mos. P 0.133	P 0.077	Season P	0.879
Precip r -0.699*	Diurnal Range, r -0.081	PC10 r 0.530	Seasonality r	-0.135
Seasonality P 0.081	Warm Mos. P 0.863	P 0.221	Index P	0.772
Precip, r 0.724* Driest Month P 0.066	Diurnal Range, r -0.660 Cool Mos, P 0.107	PC11 r -0.597 P 0.157	Topographic	
Precip, r 0.632	Day LST r 0.220	PC12 r -0.638	Elevation r 0.465	
Wettest Month P 0.127	Seasonality P 0.635	P 0.123	P 0.293	
Annual r 0.690*	Night LST r -0.525	PC13 r 0.160	Slope r -0.042	
Precipitation P 0.087	Seasonality P 0.228	P 0.732	P 0.929	
• •		PC14 r873** P 0.010	Aspect ⁺⁺ r ² 0.193 P 0.651	
		PC15 r 0.039 P 0.934		

† Pearson's Correlation Coefficient (r); †† Quadratic regression (r²)
 * Significant at the 0.10 level (2-tailed); ** Significant at the 0.05 level (2-tailed); *** Significant at the 0.01 level (2-tailed).

PC16 r 0.235 P 0.612

Table 10. Correlations of avian adenovirus I (AAVI) prevalence with environmental variables[†]

Table To: Colleia		us i (AA	vi) prevalence witi	I CHVIN		165.					
Pathogen Prevalence	MODIS Water Vapor		Data Set Princ. Com	ip.	NDVI (sq.km.)	0.063	0.56	1.56	5.06	10.56	22.56
MG / 0.15 P	3 Mean, <i>r</i> 0.873 August 2004 P	-0.216 0.641	WORLDCLIM r -0. Temp PC1 P	.603 0.152	August 13, r 2004 P	0.067	0.101	0.112	0.090 0.849	0.070	0.101
NDV 7 0.39 P	0 Mean, r 0.265 September 2004 P	-0.490 0.265	WORLDCLIM r8 Temp PC2 P	316** 0.025	August 29, r 2004 P	-0.501 0.252	-0.584 2 0.160	-0.574 9 0.178	-0.522 0.229	-0.554 9 0.197	-0.577 0.175
MDV / 0.18 P	9 Mean, r 0.801 October 2004 P	0.079 0.866	WORLDCLIM r -0. Precip PC1 P	.702 0.079	September 14, r 2004 F	-0.616 0.141	-0.733* 0.06	777** 0.040	-0.730* 0.062	895*** 2 0.006	771** 0.043
ILTV r 0.30 P	5 Mean , <i>r</i> 0.392 November 2004 P	-0.127 0.786	WORLDCLIM r 0.6 Precip PC2 P	638 0.123	September 30, r 2004 P	-0.559 0.192	-0.612 2 0.144	-0.551 4 0.200	-0.319 0.486	-0.182 3 0.696	-0.284
IB∨M / 0.15 P	6 Mean, <i>r</i> 0.666 December 2004 P	-0.461 0.297	Topographic r 0.6 Variables PC1 P	630 0.129	October 16, r 2004 P	-0.554 0.197	0.317	0.318 3 0.488	0.208 0.655	0.136	0.064
IBVC r 0.27	2 Mean, <i>r</i> 0.447 January 2005 P	-0.194 0.677	Topographic r -0. Variables PC2 P	.615 0.142	November 1, r 2004 F	-0.269 0.560	-0.147 0.753	-0.040 3 0.933	-0.005 0.991	0.040	0.050
IBDV / 0.76	7*** Mean, r 0.010 February 2005 P	-0.091 0.847	MODIS NDVI 7 -0. PC1 P	.094 0.841	November 17, r 2004 P	0.658	0.487	0.367 7 0.417	-0.023 0.962	-0.081 2 0.864	-0.001
ARV r 0.58	4* Mean, r 0.077 March 2005 P	0.519 0.232	MODIS NDVI 7 -0. PC2 P	.471 0.286	December 3, r 2004 F	-0.459	-0.526	-0.567 5 0.184	-0.609 0.147	-0.650 7 0.114	-0.742
AEV r 0.03	7 Mean, <i>r</i> 0.918 April 2005 P	-0.232 0.617	MODIS NDVI r 0.7 PC3 P	746* 0.054	December 19, r 2004 P	0.485	0.396	0.559	0.354 0.436	0.325	0.168
AAVI r _	Mean, <i>r</i> May 2005 P	0.076 0.871	MODIS NDVI 7 0.3 PC4 P	376 0.406	January 1, 2005 <i>r</i> F	0.176	-0.037	-0.130 0.781	-0.292 0.525	-0.330 5 0.470	-0.360 0.428
	Mean. r	-0.352	MODISLST r -0	023	January 17. r	-0 201	-0.083	-0.052	-0 186	-0.362	-0 458
WORLDCLIM Temperatu	Internet June 2005 P	0.439	PC1 P	0.961	2005 F	0.666	0.850	9 0.912	0.690) 0.425	0.302
Annual Mean 7 -0.06 Temp P	61 Mean, r 0.897 July 2005 P	0.212 0.648	MODISLST 7 0.0 PC2 P	093 0.843	February 2, 7 2005 P	0.187	0.150	0.116 8 0.804	0.140 0.764	0.249 1 0.590	0.509
Mean Temp, 7 -0.24 Driest Qtr P	41 Mean, <i>r</i> 0.602 12 Months P	-0.140 0.765	MODIS Water r _{-0.} Vapor PC1 P	.628 0.131	February 18, r 2005 P	0.178	0.245 0.596	0.247	0.207 0.656	0.166	0.298 0.516
Mean Temp, r -0.10 Wettest Qtr P	0.826 Min Month P	-0.047 0.920	MODIS Water r -0. Vapor PC2 P	.103 0.826	March 6, 2005 <i>r</i> F	0.531	0.194	0.286	0.308 0.502	0.507	0.674
Temp Annual r -0.00 Range P	0.998 Max Month P	-0.232 0.617	MODIS Water r -0. Vapor PC3 P	.621 0.137	March 22, 2005 r F	848** 0.016	-0.720* 6 0.068	872** 8 0.010	-0.454 0.306	0.024	0.105
Min Temp, r 0.00 Coldest Month P	3 Mean, <i>r</i> 0.995 Annual Range P	-0.130 0.780	MODIS Water r8 Vapor PC4 P	356** 0.014	April 7, 2005 r F	-0.129 0.782	-0.219 2 0.63	-0.212 7 0.648	-0.264 0.567	-0.171 7 0.714	-0.073 0.877
Max Temp, r 0.00 Warmest Month P	6 Mean r 0.990 Seasonality P	-0.082 0.861	All-Lavers PCA Com	10.	April 23, 2005 r F	0.724* 0.066	0.713* 0.072	0.607	0.269 0.560	0.132 0.777	0.006
Temp r -0.04 Seasonality P	46 12-Month Mean, <i>r</i> 0.921 Std. Dev. P	-0.120 0.798	PC1 r 0.(034 0.942	May 9, 2005 <i>r</i> F	0.015	0.238	0.227 7 0.624	-0.143 0.760	-0.172	-0.015
Mean Diurnal r -0.06 Temp Range P	0.889 MODIS Land Surfac	e Temp	PC2 r -0. P	.587 0.166	May 25, 2005 <i>r</i> F	-0.461	-0.493	-0.490 1 0.264	-0.585 0.167	-0.603 7 0.150	-0.477
Mean Temp, r -0.04 Coldest Qtr P	41 Mean Day LST, <i>r</i> 0.930 12 Months P	-0.157 0.737	PC3 / 0.7 P	710* 0.074	June 10, 2005 r F	0.309	0.143	0.103	-0.226 0.626	-0.496 3 0.257	-0.474
Mean Temp, <i>r</i> -0.09 Warmest Qtr P	94 Mean Day LST, 6 r 0.841 Warmer Mos. P	-0.266 0.564	PC4 / 0.3	333 0.465	June 26, 2005 <i>r</i> F	-0.120	-0.137	-0.178	-0.192 0.680	-0.198	-0.208
	Mean Day LST, 6 r	0.233	PC5 r 0.1	192	July 12, 2005 r	0.132	0.136	0.214	0.288	0.297	0.287
WORLDCLIM Precipitatio		0.015	5 00	0.078		0.776			0.030		0.000
Precip, r 0.39 Coldest Qtr P	5 Mean Night LST, 7 0.379 12 Months P	0.221 0.634	PC6 / 0.6 P	609 0.147	July 28, 2005 r F	-0.066 0.888	0.191 3 0.68	0.194 1 0.677	0.390 0.388	0.551	0.212
Precip, r 0.37 Warmest Qtr P	5 Mean Night LST, <i>r</i> 0.408 6 Warmer Mos. P	0.146 0.755	PC7 r 0.1	154 0.742	Mean for Year <i>r</i> F			0.041 0.930			
Precip, r 0.37 Driest Qtr P	3 Mean Night LST, r 0.410 6 Cooler Months P	0.291 0.527	PC8 / -0. P	.203 0.663	Mean, Wet <i>r</i> Season P			-0.048 0.919			
Precip, r 0.60 Wettest Qtr P	4 Diurnal Range, r 0.151 12 Mos. P	-0.260 0.574	PC9 r -0. P	.303 0.508	Mean, Dry <i>r</i> Season P			0.063 0.893			
Precip r -0.56 Seasonality P	0.184 Diurnal Range, r Diurnal Range, r Warm Mos. P	-0.245 0.597	PC10 r 0.2	268 0.581	Seasonality r Index P			-0.065 0.889			
Precip, r 0.45 Driest Month P	4 Diurnal Range, r 0.307 Cool Mos. P	-0.024 0.959	PC11 r 0.5 P	565 0.186	Topographic		-				
Precip, r 0.34 Wettest Month P	3 Day LST r 0.452 Seasonality P	-0.326 0.476	PC12 r -0. P	.168 0.719	Elevation r	-0.074 0.875	-				
Annual r 0.36 Precipitation P	9 Night LST r 0.415 Seasonality P	-0.163 0.727	PC13 / _0. P	.006 0.990	Slope r	-0.308	2				
			PC14 <i>r</i> -0. P	.263 0.569	Aspect ⁺⁺ r	0.633 0.134	ł				
			PC15 / 0.3	387 0.391							

† Pearson's Correlation Coefficient (r); †† Quadratic regression (r²)
 * Significant at the 0.10 level (2-tailed); ** Significant at the 0.05 level (2-tailed); *** Significant at the 0.01 level (2-tailed).

PC16 r 0.458 P 0.301

Appendix II. Eigen matrix and eigenvalues from the all-layers PCA.

Table	1. All-Layers I	PCA eig	en matrix (co	mponent	t loadings).	The variar	nce in each coi	mponen	t is based on th	ne loadin	g values listed	below it	; # is the key t	o input v	ariables.
#	PC1	#	PC2	#	PC3	#	PC4	#	PC5	#	PC6	#	PC7	#	PC8
8	0.25989	8	0.94233	9	0.95362	10	0.96581	5	0.34990	1	0.03993	16	0.40330	16	0.80837
10	0.06367	7	0.27197	10	0.20443	13	0.06962	15	0.08661	8	0.00248	13	0.20729	14	0.33317
9	0.06058	9	0.13846	5	0.05236	14	0.02890	16	0.07809	12	0.00121	6	0.11235	3	0.15384
13	0.04240	10	0.13417	7	0.02045	7	0.02293	10	0.05348	11	-0.00083	3	0.09313	4	0.07979
3	0.00288	16	0.02020	4	0.00382	3	0.00963	8	0.01782	14	-0.00316	5	0.02811	1	0.02140
1	0.00095	3	0.01209	12	0.00017	16	0.00776	4	0.00460	2	-0.00431	9	0.02221	9	0.01411
6	0.00037	14	0.00706	11	-0.00014	1	0.00335	12	0.00151	7	-0.00511	4	0.01963	11	0.00119
4	0.00011	6	0.00495	2	-0.00018	4	0.00213	11	-8.83E-05	10	-0.00740	7	0.01954	12	0.00056
12	-1.14E-05	1	0.00109	6	-0.00459	11	0.00034	2	-0.00072	4	-0.00749	10	0.00837	2	-0.00973
2	-2.50E-05	11	0.00049	14	-0.00574	12	2.91E-05	6	-0.00479	9	-0.02122	12	-0.00114	7	-0.01662
15	-0.00016	4	0.00029	1	-0.00625	2	-6.40E-05	1	-0.04143	3	-0.13631	11	-0.00286	10	-0.01669
11	-0.00023	2	4.04E-05	15	-0.00733	6	-0.00380	7	-0.04146	13	-0.19307	1	-0.00341	8	-0.01705
16	-0.00546	12	-0.00031	16	-0.01478	15	-0.01241	3	-0.12004	6	-0.21068	2	-0.00585	15	-0.06145
5	-0.01246	15	-0.00637	3	-0.02890	5	-0.02735	9	-0.13812	16	-0.21385	8	-0.01248	13	-0.08426
14	-0.01582	5	-0.00719	13	-0.11675	8	-0.11202	14	-0.20284	5	-0.27718	15	-0.19156	5	-0.12958
7	-0.96046	13	-0.01230	8	-0.17555	9	-0.21765	13	-0.88469	15	-0.88033	14	-0.85677	6	-0.41981
#	PC9	#	PC10	#	PC11	#	PC12	#	PC13	#	PC14	#	PC15	#	PC16
6	0.86541	5	0.80927	3	0.87820	3	0.18227	11	0.96552	1	0.49989	1	0.85835	11	0.25688
14	0.28179	13	0.31019	5	0.32071	5	0.08011	12	0.25764	5	0.04943	2	0.50234	1	0.02419
16	0.26465	14	0.18001	4	0.19478	16	0.03745	15	0.00421	12	0.03526	5	0.09911	5	0.00760
3	0.14612	16	0.11014	11	0.02756	2	0.02730	16	0.00331	15	0.01163	11	0.02213	16	0.00379
11	0.00878	4	0.02650	14	0.01966	14	0.01975	13	0.00280	6	0.00908	4	0.01705	13	0.00282
4	0.00618	8	0.01184	10	8.49E-05	9	0.00386	9	0.00023	3	0.00376	12	0.01216	14	0.00098
9	0.00089	12	0.01145	9	-0.00108	12	0.00237	7	-5.01E-05	10	0.00018	6	0.00942	10	-6.64E-05
2	-0.00092	7	0.00046	2	-0.00300	10	0.00184	8	-0.00010	9	0.00016	16	0.00416	8	-0.00014
12	-0.00132	11	-0.00434	7	-0.00303	7	-0.00170	10	-0.00026	8	-6.64E-06	15	0.00265	7	-0.00015
1	-0.00220	10	-0.00768	8	-0.00408	8	-0.00278	6	-0.00391	7	-0.00017	13	0.00030	9	-0.00021
10	-0.00634	2	-0.01278	12	-0.01013	13	-0.00350	14	-0.00541	14	-0.00079	9	0.00019	15	-0.00085
8	-0.01313	9	-0.01288	13	-0.02771	1	-0.00399	5	-0.00771	13	-0.00321	10	-4.03E-05	6	-0.00171
7	-0.01349	6	-0.03347	1	-0.03116	11	-0.00678	4	-0.01119	16	-0.00861	8	-0.00019	4	-0.00771
5	-0.05378	1	-0.08776	6	-0.11820	15	-0.04211	1	-0.01559	11	-0.01939	7	-0.00049	3	-0.01888
13	-0.11189	15	-0.29531	15	-0.15270	6	-0.04947	2	-0.02045	4	-0.02250	14	-0.00123	2	-0.03072
16	0.05264	2	0 32697	10	0.24020		0.07647	2	0.00144	2	0.00007	2	0.00557	10	0.06520

= INPUT LAYER 1 = WorldClim Temperature PC1 2 = WorldClim Temperature PC2

- 3 = WorldClim Precipitation PC1 4 = WorldClim Precipitation PC2 5 = Topographic Variables PC1

6 = Topographic Variables PC2 7 = NDVI PC1

- 8 = NDVI PC2

9 = NDVI PC3

10 = NDVI PC4

- 10 = NDV1 PC4 11 = Land Surface Temperature PC1 12 = Land Surface Temperature PC2 13 = Water Vapor PC1 14 = Water Vapor PC2 15 = Water Vapor PC3 16 = Water Vapor PC4

Table 2. Eigen values representing the proportion of variation in input layers described by output components.

decembed by edipat compensition.		
PC	Variance	Prop.
1	23792429.23	0.50022
2	14952370.84	0.31436
3	5058773.43	0.10636
4	3624866.56	0.07621
5	74727.40	0.00157
6	26070.68	0.00055
7	18419.53	0.00039
8	8429.07	0.00018
9	4785.82	0.00010
10	2121.27	4.46E-05
11	890.46	1.872E-05
12	225.13	4.733E-06
13	15.30	3.217E-07
14	8.66	1.82E-07
15	3.73	7.838E-08
16	1.03	2.159E-08
Total	47564138.12	1.00000

CHAPTER 2: Ecological correlates of microfilarial prevalence and intensity in flightless cormorants (*Phalacocorax harrisi*) and Galápagos penguins (*Spheniscus mendiculus*) with modeling of prevalence distribution.

ABSTRACT:

This study assesses the ecological factors associated with variability in prevalence and intensity of microfilarid infections in wild populations of endangered flightless cormorants and Galápagos penguins. Prevalence and intensity values were investigated for correlation with a large number of environmental variables, as modeled from weather station data and as measured by satellite-borne sensors, including data on temperature, precipitation, atmospheric water vapor, soil moisture, vegetation density and topographic variables. Predictions were made based on the expected effects of climatic and landscape variables on sustained populations of arthropod vectors required for transmission of microfilarids. In general, findings were consistent with predictions with respect to infection prevalence in both cormorants and penguins, exhibiting positive correlations with temperature, precipitation and vegetation density variables, and negative correlations with measures of environmental variablility. Correlates of infection intensity were more counter-intuitive, possibly indicating a greater impact of ecological variables on the hosts themselves, as opposed to the arthropod vector community. Resulting correlates were used to derive predictive distributions of prevalence and intensity values in cormorants and penguins throughout the archipelago, though these models remain unvalidated. Ability to utilize environmental variables to predict risk of disease transmission by arthropod vectors may be useful in control measures should novel pathogens be introduced to the ecosystem.

INTRODUCTION:

Emerging infectious diseases of wildlife pose substantial threat to the conservation of global biodiversity (Daszak et al. 2000), and there is evidence for the involvement of pathogens in population declines (Van Riper III et al. 1986, Cooper 1989, Atkinson et al. 1995, Daszak et al. 2003). In recognition of the potential influence of endemic and introduced pathogens on the ecology of Galápagos avifauna, the Saint Louis Zoo and the University of Missouri–Saint Louis, in cooperation with the Galápagos National Park Service and the Charles Darwin Research Station, implemented an avian disease surveillance program in 2001, with the objective of identifying and monitoring for pathogens that pose risk for native bird populations (Miller et al. 2002; Parker et al. 2006), including establishing baseline health parameters for many Galápagos bird species (Padilla et al. 2003, 2004, 2006; Travis et al. 2005).

As part of these efforts, Merkel et al. (in review) assessed the prevalence and intensity of infections of microfilarids, the first-stage larval form of filarioid nematode worms, in multiple colonies of two ecologically similar species of coastal seabird, the flightless cormorant (or "Galápagos cormorant"; Pelecaniformes: *Phalacrocorax harrisi*) and the Galápagos penguin (Sphenisciformes: *Spheniscus mendiculus*). Both species are endemic to the Galápagos (Figure 1) and are of conservation concern, listed as endangered due small population sizes, narrow ranges, and severe population fluctuations which primarily result from marine perturbations (El Niño events) that may be becoming more extreme (IUCN 2006). They are also under pressure from natural and anthropogenic forces such as fishing, ecotourism, oil spills, and volcanic activity (CBSG 2005). Merkel et al. (in review) examined blood smears from 380 flightless cormorants and 298 Galápagos penguins, constituting 22% and 19%, respectively, of the total populations of these two species. Among the findings was a notable heterogeneity in the levels

of prevalence and intensity of microfilarid infections among geographic locations (Figure 2). The purpose of this study is to investigate the climatic and landscape factors that may influence the spatial distribution of microfilarid infection in these two species, potentially providing means of identifying areas of higher likelihood of infection by other arthropod-borne pathogens as well.

Natural History and Pathogenicity of Filarioid Nematodes

Filarioid nematodes are highly-specialized parasites of tissues & tissue spaces of non-fish vertebrates, which have evolved to utilize blood-feeding arthropods as intermediate hosts & vectors (Anderson 2001, Klei & Rajan 2002). These long, thin, tissue-dwelling worms (of the order Onchocercidae, with 80 genera) comprise a minute portion of the phylum Nematoda (Bain 2002). They are believed to have originated 150 million years ago, with crocodilians as the first known definitive host and being vectored by mosquitoes; however, the main expansion of the lineage occurred with the diversification of birds and mammals (Bain 2002), and they have since adapted to a wider range of intermediate hosts/vectors.

The order exhibits the adaptation of mobile embryos, "microfilariae," which migrate in circulating fluids (lymph or blood) to places favorable for ingestion by hematophagous arthropod vectors, such as the peripheral blood or skin (Bain 2002). Upon ingestion, the arthropod serves as an intermediate host where the larvae undergo further development, migrating through the gut wall, into muscle tissues, and eventually into the mouthparts of the vector. At subsequent feedings, the 3rd-stage larvae leave the mouthparts and invade the puncture wound left by the arthropod; alternatively, infective larvae may enter the host through hair follicles, dermal abrasions, or through the salivary secretions of vectors that remain attached, such as ticks. Within the definitive host, filarids undergo two more molts. Adult filarid worms migrate to

specific sites within the host, where they produce microfilariae which migrate to the peripheral blood or skin where they are available to blood-feeding vectors, continuing the cycle of transmission (Anderson 2001, Bain 2002).

Filarial nematodes are important human pathogens (Klei & Rajan 2002). *Wucheria bancrofti* and *Brugia malayi* cause disfiguring and debilitating lymphatic filariases ("elephantiasis"), and *Onchocera volvulus* is the agent of onchoceriasis, or "river blindness." Filarial infections of humans are also associated with chronic conditions such as recurrent fevers, hydrocele, chronic skin disease, chyluria and eosinophilia (Klei & Rajan 2002). Of 120 million humans infected, 1/3 have clinically overt disease (Kazura 1999); however, the majority of filarial infections do not exhibit overt clinical signs (Kazura 2002).

Filarioid nematodes primarily parasitize birds and mammals, which do not differ greatly in biochemical pathways, making host-switching possible (Bain 2002). While birds and mammals typically have different filarial genera, cross-infections between them have occurred (Bain 2002). If vectors have broad feeding preferences, infective larvae can be transmitted to a variety of vertebrate hosts other than those to which they are adapted; however, these events are usually not infective – the larval filariae may not invade or may perish shortly thereafter, being encapsulated and destroyed by host defenses (Anderson 2001). Filarid infestation is documented in nearly all bird orders (Cooper 1973, Ashford et al. 1976, Dharma et al. 1985, Bartlett & Anderson 1986, Echols et al. 2000, Borkent 2005).

The pathogenicity of filarial infections in wildlife is not well known. Infestations of a particular organism may be silent in some hosts, while pathogenic in others (Anderson 2001). Consequences of infection are typically mechanical in nature, resulting from the travel or accumulation of larval and adult filariae through or within host tissues and circulatory systems of

the blood or lymph, including: skin irritations; tissue necrosis; eye irritation and blindness; cardio-pulmonary inflammation and degeneration; occlusion of the lymphatic system; neurological damage; and interference with hepatic and renal functions (Echols et al. 2000, Anderson 2001). Problems may also be associated with the host's immune responses such as allergic reactions and increased white blood cell count (Echols et al. 2000, Anderson 2001). Within birds in particular, filariae have been found in the abdominal wall, air sacs, brain, heart, lungs, crop, subcutaneous tissue, and joints of infected birds, depending on the parasite and host species (Echols et al. 2000). Best-known among filarial infections of wildlife are those caused by *Dirofilaria immitis*, or "heartworm". Infections are common among domestic dogs, and there is evidence that prevalence in wildlife is increasing (Sacks 1998). Even in the absence of clinical signs of disease, there is growing evidence that parasites may affect a great variety of host fitness components such as egg laying rates, reproductive success, parental condition and survivorship (Earle et al. 1993, Korpimaki et al. 1995, Merino et al. 2000, Sacks & Blejwas 2000, Anderson 2001, Votypka et al. 2003, Remple 2004).

Ancestrally, the progenitor of the Onchocercidae was likely vectored by a mosquito ~150mya (Bain 2002); today, microfilariae are primarily transmitted by mosquitoes (Diptera: Culicidae; genera *Aedes, Anopheles, Culex, & Mansonia;* Bartholomay & Christensen 2002), ceratopogonid midges (Diptera: Ceratopogonidae; Borkent 2005), and simuliid black flies (Diptera: Simuliidae; Adler 2005). While filarial infestation of Galápagos avifauna may be the result of natural ecological relationships with native vector populations, the introduction of alien vector species to the Galápagos may be cause for concern (Snell et al. 2002, Wikelski et al. 2004); ceratopogonid midge, simuliid black fly, and mosquito species have been documented as being introduced to the Galápagos Islands (Causton et al. 2006). The mosquito *Culex*

quinquefasciatus, a known vector of human lymphatic filariasis (Eldridge 2005), is among the potential vectors that has been introduced (Whiteman et al. 2005).

Best-studied among the filarial diseases is lymphatic filariasis of humans, caused by *Wucheria bancrofti & Brugia malayi*. The spatial distribution of disease prevalence appears to be bioclimatically structured, and within a given geographic area distribution is highly focal, with local transmission conditions accounting in part for this heterogeneity (Kazura 1999). Transmission is dependent upon the availability of susceptible arthropod hosts (Bartholomay & Christensen 2002), and heterogeneity of infection patterns at local and global levels is due in large part to peculiarities of the ecological relationships between the intermediate and definitive hosts (Kazura 1999). Proportions of individuals in a population infected are remarkably variable in different endemic areas, and proximity of human dwellings to vector breeding sites increases risk of contact with mosquitoes bearing infective larvae (Kazura 1999).

Similarly, the results of Merkel et al. (in review) included findings of a notable heterogeneity of microfilarid prevalence and intensity among sampling sites of flightless cormorants and Galápagos penguins. The purpose of this study is to explore possible ecological correlates of spatial patterns of prevalence and intensity. This analysis will consider a broad suite of ecological variables which may explain a portion of the variance observed in microfilarid infections in colonies of these two species, including climatic factors (describing temperature and precipitation variables) and topographic variables (elevation, slope, and aspect). In addition, remote sensing data is increasingly being recognized as an important source of information about landscape-level biogeophysical properties of the earth's surface and atmosphere. Remote sensing, herein referring to the interpretation of multi-spectral imagery of the Earth obtained by satellite sensors, has been particularly useful in identifying climatic and habitat conditions conducive to the breeding of arthropod vectors of disease. See Hay et al. (2000a), Beck et al. (2000), and Correia et al. (2004) for reviews of applications of remote sensing in parasitology and spatial epidemiology. Remotely-sensed data utilized in this study include land surface temperature, total precipitable water vapor, vegetation density, and soil moisture values. See Appendix I for a description of the characteristics of the satellite sensors from which many of these measures were obtained.

The climatic and landscape factors represented by the variables considered in this study may have direct or indirect impacts on the definitive hosts, intermediate hosts, or the pathogens themselves (Curran et al. 2000). This inquiry is a first attempt to identify relationships between ecological factors and microfilarid prevalence, and the findings may be used to formulate testable hypotheses to further elucidate the causation behind the correlations observed.

METHODS:

Ecological correlates of microfilarial infection measures were sought within data sets based on weather station records and remote sensing data from satellite-borne sensors. Remotely-sensed data used in this study fall loosely into two categories: 1) data with only moderate spatial resolution but with high temporal resolution (from the MODIS sensor); and 2) data with low temporal resolution but high spatial and spectral resolution (from the Landsat 7 ETM+ and ASTER sensors). See Appendix I for a summary of the resolution characteristics of these satellite data sources.

Table 1 summarizes the data sets used in this study, the analytical procedures applied to them, and our *a priori* predictions of the possible effects of these variables on infection measures via influence on arthropod vectors.

Principal Components of Ecological Factors – There is an inherently large amount of covariance among most of the ecological factors considered here. To reduce redundancy among the data layers used in this study, they were submitted to a principal components analysis (PCA), with resulting data layers that are non-correlated and independent. Each of the major data groupings (WorldClim temperature & precipitation; MODIS land surface temperature, water vapor & NDVI; and SRTM topographic variables) was subjected to a PCA, with the resulting layers representing the majority of the variation being assessed for correlation with disease data (Appendix III). These resulting layers were also submitted to another PCA to diminish redundancy among data sets (hereafter referred to as the "all-layers PCA"), with the resulting principal components also being assessed for correlation with disease prevalence. The first four components of the all-layers PCA, describing 99.8% of the variation in the input variables, were considered in the correlative analyses.

Microfilarid Infection Measures – Merkel et al. (in review) collected blood from the 380 cormorants and 298 penguins sampled in this study during four sampling periods (8/8-8/13/03, 3/10-3/16/04, 8/6-8/11/04, and 2/13-2/19/05). Presence of microfilariae was assessed by examining blood smears at 100X for 5 minutes. DNA sequence data from the mitochondrial cytochrome c oxidase subunit I gene confirmed that the microfialriae infecting the flightless cormorants and Galápagos penguins are of the same species, though taxonomic identification was not possible.

Prevalence values describe the proportion of individuals at each sampling site positive for infection. Intensity values are the average number, by sampling site, of filarids seen in 25 100X

fields for infected individuals only. Where birds were re-sampled in the course of the study, only the results of the first testing were used to avoid pseudo-replication. Only sites with five or more sampled individuals are included in the analyses. See Tables 2-5 for a listing of site locations, prevalence and intensity values, and sample sizes.

In this study, environmental variable values were calculated over multiple geographic extents, to identify the scale at which these variables may affect transmission dynamics. Each sampling site is represented by a single geographic location based on GPS points. Independent GPS points are not available for each individual sample; typically, a single GPS point was taken per sampling site, and multiple birds captured and sampled around that point. Where there were multiple GPS points for a site name, coordinates were averaged for a single epicenter of analysis. Around each point, buffer zones for analysis were rendered using ArcGIS 9.1, describing polygons of contiguous landscape within radii of 1, 2, 3, 4, 6, and 8 kilometers around the respective points (see Figures 3 - 6); ERDAS Imagine 9.0 was then used to calculate the values of the environmental factors within these polygons.

As the radii increase, areas of overlap between sites become considerable; to increase independence of data, infection and environmental values at sample collection sites within close geographic proximity were averaged together, resulting in a smaller number of sites with greatly-reduced geographic overlapping. Correlative analyses were then conducted on both data sets: 1) the sites assessed individually; and, 2) the results obtained by merging the proximal localities (hereafter referred to as the "merged" results). Where analyses of the results indicate correlations at wider radii, these results were confirmed or negated by assessing the significance of the merged results. In general, the merged results tended to support the relationships indicated

by the analysis of individually-assessed sites; in some cases, the merged results were statistically significant when the individual results were not. Where the larger geographic areas encompassed sites with too few samples to be included individually, the test results at these sites were included in the merged analysis.

To further assure independence of data, site-specific measures of prevalence and intensity were assessed for spatial autocorrelation using Moran's I in ArcGIS 9.1. Resulting low values of I (prevalence in cormorants, 0.13; intensity in cormorants, 0.15; prevalence in penguins, -0.03; intensity in penguins, 0.06) indicate that prevalence and intensity values were neither clustered nor dispersed, so adjustments were not made for spatial autocorrelation.

SPSS was used to calculate Pearson's correlation coefficients (*r*) for all comparisons. Where directionality of correlative relationships could not be logically predicted *a priori*, 2tailed tests were used; when predictions could be made about the relationship between an environmental factor and microfilarial prevalence, 1-tailed tests were employed (see last column of Table 1 for predictions). In general, unless stated otherwise, predictions about directionality of correlations were guided by the assumptions that measures of warmth, moisture and vegetation (conducive to arthropod vector populations) would be positively correlated with infection measures, and that indices of variability (seasonality, standard deviations of means, etc., which may be detrimental to sustained vector populations) would be negatively correlated.

Each comparison of an infection value (prevalence or intensity) for each species (cormorant or penguin) with an environmental variable, at each of the analysis extents previously mentioned, is considered here as an independent hypothesis. This approach is dictated by the relatively small number of sites for which these values could be calculated (n = 6-14); a strong multivariate approach would require more sites, which may be logistically impossible given the

fact that the sampling reported here covers the majority of the nesting sites of these extremely geographically restricted species. The environmental factors assessed here are also highly correlated with each other, further impeding multivariate approaches. Corrections of P-values for multiple comparisons (i.e. Bonferroni adjustments) were not conducted, as they may not be appropriate when each comparison is viewed as an independent hypothesis (Perneger 1998). It is possible that some of the observed correlations may be serendipitous, given the large number of tests, and it is felt that the best approach is to merely describe how the analyses were conducted, particularly given the exploratory nature of the study. Trends noted herein may suggest future hypotheses for more rigorous statistical verification.

Eleven of the resulting significant correlates of prevalence in cormorant populations (see Results) were used to create a single model predicting distribution of prevalence values throughout the islands of Fernandina and Isabela, comprising the majority of the range of this species (see variables identified by * in Table 6). These variables were subjectively chosen to be representative of the different data sources and reflecting both positive and negative correlations. Equations derived from regressions of observed levels of prevalence against environmental variables were applied to data layers, resulting in layers with predicted levels of prevalence across both islands. The resulting eleven predictive models were averaged for a single "model agreement" data layer describing predicted distribution of prevalence. The final model agreement layer was produced by several methods, in order to find the best fit to observed prevalence: 1) a simple mean derived from the eleven regressed environmental layers; 2) a mean weighted by the correlation coefficients (r) of the individual environmental layers, with the logic that layers with stronger correlations should carry more weight in the resulting model; and 3) a mean weighted by the r^2 values of the regressions of the individual layers, giving even further weight to the more highly-correlated layers.

The resulting predicted values for the sampled sites were compared to the observed levels of prevalence to determine the amount of variation in prevalence data described by the model, and to select the final model agreement weighting scheme with the best fit.

A similar approach was taken to modeling prevalence and intensity in both species across the majority of the Galápagos archipelago. All significantly correlated factors were regressed into predictive data layers, with mean predicted prevalence and intensity obtained by the r²weighted method mentioned above. To reduce possible over-weighting of correlated variables, all predictive layers were also subjected to a principal components analysis, with a similar model-agreement approach being applied to the components which were significantly correlated with the various infection measures. Modeling functions were performed using ERDAS Imagine 9.0.

RESULTS:

Correlation coefficients for all comparisons are included in Appendix II. Significant correlations (p < 0.05, unless otherwise noted) are presented in Tables 6-9, along with indications of predictions of directionality in relationships and whether or not the results were consistent with predictions.

Microfilarid prevalence in flightless cormorants – Positive correlations with WorldClim mean temperatures appear to be consistent with the role of heat in the development of arthropod vectors (Gullan & Cranston 2005), though these correlations are only observed when considering
the larger geographic extent surrounding the sampled sites; these results are supported by similar relationships with MODIS-derived land surface temperature measurements, particularly in the daytime. Negative correlation with temperature annual range at the broader geographic extents is in keeping with predictions about the influence of climatic stability on vector communities; this seems to be contradicted by the positive correlation with temperature seasonality at the 1- and 2-kilometer radii, but the relationship does become negative, as we would have predicted, at the larger geographic scales, though it does not reach statistical significance (r = -0.416, p = 0.070 at 6kmr). A role for temperature stability in influencing prevalence values is also supported by the negative relationship between prevalence and MODIS-derived nighttime temperature seasonality at all spatial extents.

Diurnal temperature range results from WorldClim values (negative relationships at larger extents) and from MODIS data (positive relationships at larger extents) are contradictory, as are potential interpretations of the influence of diurnal temperature range: diurnal temperature stability may be conducive to development of pathogens or vectors, while greater temperature fluctuations may indicate moister soils favorable to arthropod breeding (Thompson et al. 1996). However, WorldClim data describes ambient temperature, while MODIS measures surface temperature; daily fluctuations of ambient temperatures may indicate relative climatic instability, with a negative influence on vector communities and hence prevalence, while fluctuating land surface temperatures may be more indicative of surface moisture conditions lending to increased vector breeding habitat. This interpretation of these results is consistent with our *a priori* expectations.

Precipitation levels from the WorldClim data were positively correlated with prevalence at the smaller spatial scales, which is in keeping with *a priori* expectations based on the role of fresh water in the development of many arthropod vectors. A negative relationship with precipitation seasonality at these same scales seems to indicate that seasonal extremes in rainfall may be detrimental to microfilarid transmission, possibly signifying that a more stable rainfall regime is conducive to sustaining arthropod vector populations.

While measures of NDVI – predicted to be the strongest correlates of arthropod vector breeding habitat – were not consistently correlated with prevalence, there were positive correlations with NDVI measurements in the dry season and the driest quarter, perhaps reflecting the importance of stable, sustained vegetative density, supported by a negative relationship with NDVI seasonality (though the statistical strength of this relationship did not meet our threshold; r= -0.434, p = 0.061). A positive correlation with the tasseled cap greenness index derived from the Landsat image may also lend support to a role for vegetation in explaining variation in prevalence.

Positive correlation between prevalence and the proportion of land surface within larger geographic extent suggests that larger amounts of land surface may provide habitat for vectors effecting transmission, while sites primarily surrounded by water may be relatively poorer in vector abundance leading to reduced prevalence levels.

The observed correlations are largely consistent with expectations for factors which would be conducive to sustained arthropod vector communities, thereby influencing variation in prevalence among sampling sites.

Correlations with results of principal components analyses were generally consistent with these results. PC1 of WORLCLIM temperature variables is primarily derived from maximum temperature of the warmest month, and annual and seasonal mean temperatures. PC1 of WorldClim precipitation variables is largely derived from annual precipitation and precipitation in the warmest, wettest quarter. PC1 of MODIS land surface temperature variables draws on annual and seasonal mean temperatures, primarily daytime temperatures, followed by nighttime temperatures. PC2 of MODIS NDVI data is predominantly loaded by variation in the NDVI measures from the dry season and driest quarter. Elevation is the chief loading factor of PC1 of the topographic variables. In the all-layers PCA, correlation with PC2 results from high loading by PC1 of the topographic data (elevation).

Mean microfilarid intensity in flightless cormorants – Conversely to relationships with prevalence, mean intensity appears to be positively influenced by cooler temperatures, and positively associated with temperature instability, as indicated by positive correlations with the standard deviations of multiple MODIS land surface temperature measurements throughout the year and particularly in the cooler periods. A positive relationship with temperature instability is further evidenced by positive correlations with: MODIS daytime land surface temperature seasonality; land surface temperature heterogeneity during the wet season as measured by ASTER thermal infrared images; and standard deviations of diurnal temperature range means from throughout the year and the cooler periods.

However, strong positive associations with nearly all mean NDVI measures at all temporal and spatial resolutions, as well as positive correlations with tasseled cap greenness indices, reflect that there may indeed be a connection between intensity and surrounding habitat suitable for vector communities.

Mean intensity was also positively correlated with annual and wet period measures of total precipitable water vapor; perhaps the amount of water vapor in the air is correlated with aforementioned temperature instability. Some PCA results were also correlated with infection intensity in cormorants. PC1 of WorldClim temperature variables (primarily maximum temperature of the warmest month and annual and seasonal means) was negatively correlated with intensity. The factor weighted most heavily in deriving PC2 of the water vapor data was the mean of the driest quarter, though this variable itself was not correlated in the individual analyses. PC1 of MODIS NDVI primarily describes the variation contained in the means of the wet periods, followed by annual and dry period means.

It is possible that environmental instability may be prejudicial to sustained vector communities, and thereby prevalence, but may bolster microfilarid intensity in hosts that *are* infected, perhaps by necessity for a host to invest more of its metabolic budget in coping with environmental stress at the expense of suppressing intensity of blood parasite infections. However, differences may also be a statistical artefact resulting from the much smaller sample of individuals included in calculating mean intensity values by location, as only infected individuals are included in these means.

Microfilarid prevalence in Galápagos penguins – While there were no correlations of prevalence in penguins with WorldClim data, there were positive correlations with MODIS-derived land surface temperature variables, including the annual mean and the means for all seasons. Seasonality of nighttime temperatures was negatively correlated with prevalence, suggesting some role of temperature stability in influencing prevalence. Correlations of MODIS land surface diurnal temperature range means with prevalence indicate a possible connection between surface moisture conditions, vectors, and prevalence, though this was not supported by results of tasseled cap wetness or modeled soil surface moisture comparisons. The only principal component associated with prevalence in penguins was PC1 of the MODIS land surface temperature data, which is primarily influenced by daytime mean temperatures, followed by nighttime means. While no other factors considered here were significantly linked with microfilarid prevalence in Galápagos penguins, the observed correlations are consistent with similar associations between climatic factors and prevalence of infection in flightless cormorants.

Microfilarid intensity in Galápagos penguins – The only correlate of microfilard intensity in Galápagos penguins was mean NDVI in the driest quarter; this correlation is in agreement with predictions regarding proximity to possible arthropod vector habitat, and is consistent with similar correlations of microfilarid intensity in cormorants. There was an indication of correlation with standard deviation of the driest quarter mean precipitable water vapor at the 4-km scale, but the merged results did not support these results with sufficient statistical strength.

The modeling of cormorant microfilaria prevalence based on the 11 selected correlations resulted in a distribution of prevalence values which was more closely correlated with observed prevalence levels than any of the individual input variables. The three weighting schemes of these models each provided a progressively better fit to the observed data (though the improvement was not significant), with the r²-weighted mean providing the best fit (r = 0.741, p = 0.001). See Figure 7 for the resulting prevalence distribution model.

As the r²-weighted method provided a better fit to the observed data, this method was used in the subsequent archipelago-wide modeling approaches. Figures 8-15 describe the predicted prevalence and intensity values in both species resulting from the all-correlates and principal components modeling approaches (see Methods). Tables 10-13 describe the fit of the observed prevalence levels to: a) the model derived by the r^2 -weighted mean of all predictive layers based on correlated ecological variables; b) each of the components resulting from the principal components analysis conducted on the input predictive layers; and c) the predictive model derived by applying the r^2 -weighted mean to significantly correlated principal components. See Tables 14-17 for the weightings of the factors contributing to the derivation of principal component layers.

DISCUSSION:

The ecological factors assessed here may impact transmission dynamics by their influences on the host, intermediate hosts, and/or the pathogens themselves; suggestions are made as to possible explanations for the statistical relationships, but these are largely speculative and further work is necessary to illuminate any true cause-effect relationships.

Many of the relationships observed are only significant at the larger geographic extents, while other relationships are only significant at the smaller scales. This may reflect that different processes are indeed affected at different spatial scales. It is conceivable that conditions further inland may be important in the development of arthropod vector communities, or that these larger extents may vary in presence of some reservoir species whose distribution is influenced by the factors being considered. Likewise, conditions more proximal to the hosts may affect their behavior, overall health status, or exposure to other vector species.

In general, factors correlated with prevalence and intensity of microfilarid infections in Galápagos penguins were consistent with respective factors influencing infection measures in flightless cormorant populations. More correlations were noted with infection measures in flightless cormorants than in Galápagos penguins; this may be due to the larger number of cormorant nesting sites sampled, increasing the ability to statistically support relationships with cormorant infection measures while failing to do so with penguin values. However, as reported by Merkel et al. (in review) overall prevalence and intensity levels are higher within cormorant populations, suggesting that cormorants may be a more definitive host, with infections in penguins being relatively more aberrant; if this is indeed the case, it may not be surprising that relationships between infection and ecological variables are less distinct.

The modeling exercises based upon observed correlations with ecological variables may prove useful in describing the distribution of observed prevalence values. While they may have some predictive value, the only validations conducted in this study are assessments of correlations with the observed prevalence data that were used to develop the model. True validation of the predictive value of the model will require more sampling at previously unsampled locations.

Visual assessments of the models derived by different methods (i.e. the all-correlates vs. principal components methods) reflect apparent differences in the predicted distribution of infection measures. However, it should be noted that these models were based on coastal values for nesting sites of coastal birds, so inland differences in predicted distribution are largely irrelevant. It is also possible that the more involved modeling methods, such as those based upon correlations with principal components, may over-fit the model to the observed data and diminish the true predictive ability of the models. Evaluation of relative strengths of these methods would require collection of validating data and is beyond the scope of this study.

It should also be noted that these predictions extend beyond the ranges of these species (refer to Figure 1). However, if one can cautiously accept the logic that geographic variation in prevalence or intensity of this arthropod-borne parasite results from variation in density or

stability of arthropod vector communities, these models may be of interest to those studying other arthropod-borne pathogens in Galápagos seabirds, students of vector ecology, or protected area managers planning emergency control programs should an arthropod-borne pathogen be introduced to the ecosystem. While every pathogen-vector-host system will have varying characteristics, similar models based on prevalence of other pathogens in other taxa may begin to develop a more complete picture of the spatial distribution of risk of transmission by arthropod vector.

Acceptance of such relationships between environmental descriptors and pathogen prevalence also requires acceptance that transmission dynamics are at some sort of equilibrium, and there is some reason to believe that they may not be. Across the four sampling periods within two successive years, Merkel et al. (in review), demonstrated that microfilarid prevalence values in cormorant populations were increasing, while those in penguin populations were decreasing. However, the chronic nature of filarid infections should dampen short-term variability in prevalence values, making correlations with longer-term measures of environmental variability more plausible – supported by Merkel et al.'s findings of very limited seasonality in prevalence. Shorter-term dynamics, stochastic events, peculiarities of the unidentified vector species, and variation in host species factors such as population density may be the sources of some of the variability not explained by the environmental variables. The high temporal resolution of data sets provided by the MODIS sensor, in particular, may be very useful in the study of disease systems with shorter-term variability.

It should also be considered that the observed distribution of infection measures may not actually be influenced by the correlated ecological variables identified here, but rather that the distributions of infection measures and ecological variation may both be driven by some other factor not assessed here, such as wind speed and direction. Wind dynamics may have an important impact on the ability of flying vectors to disperse and feed; however, these data are not available on a meaningful scale.

The "ecological factor \rightarrow vector \rightarrow pathogen" conceptual model (Curran et al. 2000) would greatly benefit from the sampling of putative vector abundances at these and other sites. More direct evidence of correlations between ecological factors and vector abundance, and between vector abundance and infection measures, would strengthen the definitive link in this chain of assumptions.

CONCLUSION:

The findings in this paper support the utility of climate and vegetation indices in identifying the spatial distribution of factors affecting variability in pathogen transmission dynamics. Once correlations such as these are identified and validated, they may be used as predictors for modeling of expected prevalence and intensity levels at other locations.

The most logical connection between environmental factors and microfilarid prevalence is through the obligate arthropod vectors; the correlations observed here are largely consistent with descriptions of what we may consider to be suitable conditions for sustained arthropod vector populations. The most important first step in clarifying these relationships is identifying the single or multiple species that are actually vectoring the microfilarids. Understanding of the natural history of the particular species will be important in identifying the true causes of variation in prevalence and intensity of microfilarid infections.

Given the potential fitness consequences of filarial infestation, whether drastic or subtle, knowledge of the factors contributing to transmission, prevalence, and intensity of infection may prove valuable in the management of populations of these two endangered species. An assessment of ecological correlates of infection may also improve our understanding of the ecology of the vectors and the parasites themselves, as well as the spatial distribution of other arthropod-borne pathogens. With respect to the threat of introduction of potentially devastating exotic pathogens, ability to detect vector habitat may help in response planning, such as guiding spatially and/or temporally precise application of potentially harmful pesticides and minimizing their overuse.

Uses of climate modeling and remotely-sensed data on the earth's dynamic processes, such as presented here, may help to further our understanding of the interplay between ecological factors and the respective natural histories of pathogens, vectors and hosts, with implications for the transmission dynamics of emerging infectious diseases of humans and wildlife. Predictive use of these data may be particularly important in the face of changing climate and land use patterns, and as introductions of non-native organisms continue.

REFERENCES:

- Adler PH (2005) Black flies, the Simuliidae. In Marquardt (ed.) *Biology of Disease Vectors*. Elsevier, MA, USA.
- Altizer S., Harvell D. and Friedle E. 2003. Rapid evolutionary dynamics and disease threats to biodiversity. Trends Ecol. Evol. 18: 589–596.
- Anderson RC (2001) Filarioid nematodes. In Samuel et al., eds., *Parasitic Diseases of Wild Mammals*, 2nd Edition. Iowa State University Press, IA, USA.
- Anyamba A, Linthicum KJ, Mahoney R, Tucker CJ, Kelley PW (1999) Mapping potential risk of rift valley fever outbreaks in African savannas using vegetation index time series data. Photogrammetric Engineering & Remote Sensing 68:137-45.
- Ashford RW, Palmer TT, Ash JS, Bray RS (1976) Blood parasites of Ethiopian birds: 1. general survey. Journal of Wildlife Diseases 12:409-426.
- Atkinson CT, Woods KL, Dusek RJ, Sileo L, Iko WM (1995) Wildlife disease and conservation in Hawaii: pathogenicity of avian malaria (*plasmodium relictum*) in experimentally infected 'I'iwi (*Vestiaria coccinea*). Parasitology 111:S59-S69.
- Bain O (2002) Evolutionary relationships among filarial nematodes. In Klei TR & Rajan TV, eds. *The Filaria,* Kluwer, MA, USA.
- Bartholomay LC, Christensen BM (2002) Vector-parasite interactions in mosquito-borne filariasis. In Klei TR & Rajan TV, eds. *The Filaria*, Kluwer, MA, USA.
- Bartlett CM, Anderson RC (1986) *Paronchocera struthionus* n. sp. (Nematoda: Filaroidea) from ostriches (*Struthio camelus*), with a redescription of *Paronchocerca ciconiarum* Peters, 1936 and a review of the genus. Canadian Journal of Zoology 64:2480–2491.
- Beck LR, Lobitz BM, Wood BL (2000) Remote sensing and human health: new sensors and new opportunities. Emerging Infectious Diseases 6(3):217-227.
- Black WC IV, Moore CG (2005) Population biology as a tool to study vector-borne diseases. In Marquardt (ed.) *Biology of Disease Vectors*. Elsevier, MA, USA.
- Black WC IV, Severson DW (2005) Genetics of vector competence. In Marquardt (ed.) *Biology* of Disease Vectors. Elsevier, MA, USA.
- Boone JD, McGwire KC, Otteson EW, DeBaca RS, Kuhn EA, Villard P, Brussard PF, St. Jeor SC (2000) Remote sensing and geographic information systems: charting sin nombre virus infections in deer mice. Emerging Infectious Diseases 6(3)248-258.
- Borkent A (2005) The biting midges, the Ceratopogonidae (Diptera). In Marquardt (ed.) *Biology* of Disease Vectors. Elsevier, MA, USA.
- Brooker S, Hay SI, Issae W, Hall A, Kihamia CM, Lwambo NJS, Wint W, Rogers DJ, Bundy DAP (2001) Predicting distribution of urinary schistosomiasis in Tanzania using satellite sensor data. Tropical Medicine and International Health 6(12):998-1007.
- Causton CE, Peck SB, Sinclair BJ, Roque-Albelo L, Hodgson CJ Landry B (2006) Alien insects: threats and implications for conservation of the Galapagos Islands. Annals of the Entomological Society of America 99(1):121-143.

- CBSG (2005) Galapagos penguin population and habitat viability assessment: draft report . IUCN/SSC Conservation Breeding Specialists Group, Apple Valley, MN.
- Cooper JE (1973) Blood parasites from a red-chested owlet *Glaucidium tephronotum*. Bulletin of the British Ornithologists' Club 93:25-26.
- Cooper JE, ed. (1989) Disease and Threatened Birds. BirdLife International, Cambridge, UK.
- Correia VRM, Carvalho MS, Sabroza PC, Vasconcelos CH (2004) Remote sensing as a tool to survey endemic diseases in Brazil. Cad. Saúde Pública 20(4):891-904.
- Crist EP, Cicone RC (1984) A physically-based transformation of Thematic Mapper data the TM Tasseled Cap. IEEE Transactions on Geosciences and Remote Sensing 22:256-263.
- Crombie MK, Gillies RR, Arvidson RE, Brookmeyer P, Weil GJ, Sultan M, Harb M (1999) An application of remotely derived climatological firlds for risk assessment of vector-borne diseases: a spatial study of filariasis prevalence in the Nile Delta, Egypt. Photogrammetric Engineering & Remote Sensing 65(12):1401-1409.
- Curran PJ, Atkinson PM, Foody GM, Milton EJ (2000) Linking remote sensing, land cover and disease. Advances in Parasitology 47:37-80.
- Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife threats to biodiversity and human health. Science 287:443-449.
- Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Diversity & Distributions 9:141–150.
- Dharma DN, Purnomo PD, Arsana IB (1985) Filariasis and microfilariasis in parrots in the eastern islands of Indonesia. Avian Diseases 29:881–885.
- Dister SW, Fish D, Bros S, Frank DH, Wood BL (1997) Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. American Journal of Tropical Medicine and Hygiene 57:687-692.
- Duffie C et al. (in review) Populationg genetic structure of the flightless cormorant (*Phalacrocorax harrisi*). Master's thesis. University of Missouri-St. Louis.
- Earle RA, Huchzermeyer FW, Bennett GF, Brossy JJ (1993) *Babesia peircei* sp. nov. from the Jackass penguin. *South African Journal of Zoology*, 28: 88-90.
- Echols MS, Craig TM, Speer BL (2000) Heartworm (*Paronchocerca ciconarum*) infection in 2 saddle-billed storks (*Ephippiorynchus senegalensis*). Journal of Avian Medicine and Surgery 14(1):42-47.
- Eldridge BF (2005) Mosquitoes, the Culicidae. In Marquardt (ed.) *Biology of Disease Vectors*. Elsevier, MA, USA.
- Gao B, Kaufman YJ (2003) Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. Journal of Geophysical Research 108(D13):4389.
- Gillies RR, Carlson TN (1995) Thermal remote sensing of surface soil water content with partial vegetation coverage for incorporation into climate models. Journal of Applied Meteorology 34:745-756.

- Gullan PJ, Cranston PS (2005) *The Insects: An Outline of Entomology 3rd Ed.* Blackwell, Malden, MA, USA.
- Hay SI, Snow RW, Rogers DJ (1998) From predicting mosquito habitat to malaria seasons using remotely sensed data: practice, problems and perspectives. Parasitology Today 14(8):306-313.
- Hay SI, Randolph SE Rogers DJ (eds.) (2000a) Advances in Parasitiology 47: Remote Sensing and Geographical Information Systems in Epidemiology. Academic Press, San Diego.
- Hay SI, Omumbo JA, Craig MH, Snow RW (2000b) Earth observation, geographic information systems and *Plasmodium falciparum* Malaria in sub-Saharan Africa. Advances in Parasitology 47:173-215.
- Higgs S, Beaty BJ (2005) Natural cycles of vector-borne pathogens. In Marquardt (ed.) *Biology* of Disease Vectors. Elsevier, MA, USA.
- Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978.
- Huang C, Wylie B, Yang L, Homer C, Zylstra G (2002) Derivation of a tasseled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing 23(8):1741-1748.
- IUCN 2006. 2006 IUCN Red List of Threatened Species. <u>www.iucnredlist.org</u>. Downloaded on 08 May 2006.
- Jones HI, Shellam GR (1999) Blood parasites in penguins, and their potential impact on conservation. Marine Ornithology 27:181-184.
- Kauth RJ, Thomas GS (1976) The Tasseled Cap a graphic description of the spectral-temporal development of agricultural crops as seen by LANDSAT. Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, IN. pp. 4B41-4B51.
- Kazura JW (1999) Filariasis. In Guerrant et al., eds., *Tropical Infectious Diseases*. Churchill Livingstone, PA, USA.
- Kazura JW (2002) Lymphatic filarial infections: an introduction to the filariae. In Klei TR & Rajan TV, eds. *The Filaria*, Kluwer, MA, USA.
- King MD, Closs J, Spangler S, Greenstone R, Wharton S, Myers M (2004) EOS Data Products Handbook Vol. I. NASA/Goddard Space Flight Center, MD.
- Kitron U, Kazmierczak JJ (1997) Spatial analysis of the distribution of Lyme Disease in Wisconsin. American Journal of Epidemiology 145(6):558-566.
- Klei TR, Rajan TV, eds. (2002) The Filaria. Kluwer, MA, USA.
- Korpimaki E, Tolonen P, Bennett GF (1995) Blood parasites, sexual selection and reproductive success of European kestrels. Ecoscience 2(4):335-343.
- Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (*Parus caeruleus*). Proceedings of Royal Society of London Bulletin 267:2507-2510.

- Merkel J, Jones H, Whiteman N, Gottdenker N, Vargas H, Travis E, Miller E, Parker P (in review) Morphology, preliminary genotyping, seasonal prevalence and intensity of micrifilarea in Galapagos penguins (*Spheniscus mendiculus*) and flightless cormorants (*Nannopterum harrisi*).
- Miller RE, Parker P, Duncan M, Merkel J, Vargas H and Snell H (2002) Monitoring avian health in the Galapagos Islands – developing an "early warning system. Proceedings of the American Association of Zoo Vets, Media, Pennsylvania, pp. 233-243.
- Moncayo AC, Edman JD, Finn JT (2000) Application of Geographic Information Technology in determining risk of Eastern Equine Encephalomyelitis virus transmission. Journal of the American Mosquito Control Association 16:28-35.
- Nims B et al. (in review) Genetic structure and diversity, past and present, in the endangered Galapagos Penguin. Master's thesis. University of Missouri-St. Louis.
- Padilla LR, Huyvaert KP, Merkel J, Miller RE, Parker PG (2003) Hematology, plasma chemistry, serology and *Chlamydophila* status of the waved albatross (*Phoebastria irrorata*) on the Galapagos Islands. Journal of Zoo and Wildlife Medicine 34(3):278-283.
- Padilla LR, Santiago D, Merkel JF, Miller RE, Parker PG (2004) Survey for *Trichomonas gallinae, Chlamydophila psitacci, Salmonella* spp. and *Haemoproteus* organisms in Columbiformes from the Galapagos Islands. Journal of Zoo and Wildlife Medicine 35: 60-64.
- Padilla LR, Whiteman NK, Merkel JF, Huyvaert KP, Parker PG (2005) Health assessment of seabirds on Genovesa, Galapagos Islands (in press, Ornithological Monographs).
- Randolph SE (2001) The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philosophical Transactions of the Royal Society of London B 356:1045-1056.
- Remple JD (2004) Intracellular hematozoa of raptors: a review and update. Journal of Avian Medicine and Surgery 18:75-88.
- Rogers DJ (2000) Satellites, space, time and the African trypanosmiases. Advances in Parasitology 47:129-171.
- Sacks BN (1998) Increasing prevalence of canine heartworm in coyotes from California. Journal of Wildlife Diseases 34(2):386-389.
- Sacks BN, Blejwas KM (2000) Effects of canine heartworm (*Dirofilaria immitis*) on body condition and activity of free-ranging coyotes (*Canis latrans*). Canadian Journal of Zoology 78(6):1042-1051.
- Siers S, Soos C, Padilla, L, Parker P (in prep.) Ecological correlates of poultry disease prevalence in the Galapagos Islands. Chapter 1, Master's Thesis, University of Missouri-St. Louis.
- Snell HL, Tye A, Causton CE, Bensted-Smith R (2002) Current status of and threats to the terrestrial biodiversity of Galapagos. In *A Biodiversity vision for the Galapagos Islands*. Charles Darwin Foundation and World Wildlife Fund, Puerto Ayora, Galapagos, pp. 30-47.

- Soos C, Padilla L, Iglesias A, Gottdenker N, Cruz M, Rios A, Parker PG (in review) Comparisons of pathogens in broiler and backyard chickens on the Galapagos Islands: implications for transmission to wildlife.
- Thompson DF, Malone JB, Harb M, Faris R, Huh OK, Buck AA et al. (1996) Bancroftian filariasis distribution and diurnal temperature differences in the Southern Nile Delta. Emerging Infectious Diseases 2:234-5.
- Thompson RA, DeOliveira Lima JW, Maguire JH, Braud DH Scholl DT (2002) Climatic and demographic determinants of American visceral leishmaniasis in northeastern Brazil using remote sensing technology for environmental categorization of rain and region influences on leishmaniasis. American Journal of Tropical Medicine and Hygeine 67(6):648-655.
- Travis EK, Vargas FH, Merkel J, Gottdenker N, Miller RE, Parker PG (2005) Hematology, plasma chemistry, and serology of the flightless cormorant (*Phalacrocorax harrisi*) in the Galapagos Islands, Ecuador Journal of Wildlife Diseases (in review).
- Travis EK, Vargas FH, Merkel J, Gottdenker N, Miller RE, Parker PG (2005) Hematology, serum chemistry, and disease surveillance of the Galapagos penguin (*Sphenicsus mendiculus*) in the Galapagos Islands, Ecuador Journal of Wildlife Diseases (in review).
- Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8:127-150.
- Van Riper III C, Van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs 56:327-344.
- Van Steenis G (1971) Survey of various species for neutralizing antibody and susceptibility to avian encephalomyelitis virus. Research in Veterinary Science 12:308-311.
- Votypka J, Simek J, Tryjanowski P (2003) Blood parasites, reproduction and sexual selection in the red-backed shrike (*Lanius colllurio*) Annales Zoologici Fennici 40: 431-439.
- Whiteman NK, Goodman SJ, Sinclair BJ, Walsh T, Cunningham AA, Kramer LD, Parker PG (2005) Establishment of the avian disease vector *Culex quinquefasciatus* Say, 1823 (Diptera: Culicidae) on the Galapagos Islands, Ecuador. Ibis 147:844-847.
- Wikelski M, Foufopoulos J, Vargas H, Snell H (2004) Galapagos birds and diseases: Invasive pathogens as threats for island species. Ecology and Society 9(1):5.
- Yarbrough LD, Easson G, Kuszmaul JS (2005) Using at-sensor radiance and reflectance tasseled cap transforms applied to change detection for the ASTER sensor. IEEE 2005 International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, pp. 141-145.

Data Set	Data Description	Analysis Procedures	Anticipated Effect on Vectors or Infection
WorldClim Interpolated Climate Surfaces ²⁴	Climate data describing precipitation and atmospheric temperature (mm and C°) at 30 arc-second resolution (approx.1km ²); interpolated by applying an adaptive-spline algorithm to a minimum of 30 years of weather records (1960-1990) from over 3000 weather stations.	Mean measures of 18 bioclimatic variables describing annual and seasonal temperature and precipitation means, maxima and minima, as well as measures of climatic variability such as temperature ranges and seasonality were assessed for correlation.	Temperature and precipitation measures expected to be positively correlated due to the role of heat in development and water in certain life cycle stages of some potential vectors; measures of variability (ranges and seasonality) expected to be negatively correlated. These data are frequently used in ecological niche modelling applications.
Total Precipitable Water Vapor ²⁵ (TPWV)	The MODIS sensors aboard the Aqua and Terra satellites provide daily quantification of the amount of water vapor in the atmospheric column, in centimeters, derived from a near-infrared algorithm at 1-km spatial resolution ⁷ .	Variables were derived from daily measurements over the three- year period preceding the last sampling effort (Mar '02-Feb'05). Means calculated for wet and dry seasons (Dec-May & Jun-Nov) and wettest and driest quarters (Feb-Apr & Aug-Oct). Seasonality measures are differences between means for wet and dry seasons and wettest and driest quarters.	Contributing factor to humidity, which might affect arthropod vector population growth, longevity, mobility and vector competence ^{1,2,3,4} as well as behaviors such as rate of attack and resting ^{5,5} , areas of lower humidity less likely to have persistent pools of water necessary for life cycles of some potential vectors. However, TPWV is not to be considered an absolute proxy for relative humidity, which has a temperature component not available. Correlations with mean TPWV values are expected to be positive, and with variability measures expected to be not available.
Land Surface Temperature (LST)	Derived from thermal infrared emissions measured by MODIS, Landsat and ASTER sensors. MODIS provides 8-day composites of daytime and nighttime LST at 1- km resolution, accurate to one Kelvin ⁷ . LST from Landsat ETM+ and ASTER imagery are at 60m and 90m resolution.	Mean daytime and nighttime LST, and their standard deviations, calculated for the three-year period including and preceding sampling, warm and cool seasons (Dec-May & Jun-Nov), and warmest and coolest quarters (Feb-Apr & Aug-Oct). Differences between seasonal means assessed as measures of seasonality. Mean LST based on higher-resolution imagery calculated for cloud-free pixels; standard deviation of means was considered as a measure of LST heterogeneity, which at this resolution may indicate patchy moisture.	LST expected to be positively correlated with vector abundance due to the role of heat in development. Measures of variability (standard deviations of means, measures of seasonality) expected to be negatively correlated, with the exception of high- resolution LST heterogeneity, which may be indicative of surface moisture and therefore positively correlated with vector abundance.
Diurnal Temperature Range (DTR)	Derived from differences between MODIS daytime and nightime LST measures (see above)	Measurements from the three years preceding and including the sampling periods used to calculate annual mean, means for the warm and cool seasons (Dec-May & Jun-Nov), and for the warmest and coolest quarters (Feb-Apr & Aug-Oct). Standard deviations of means assessed for same periods, as well as differences between seasonal means as measures of LST DTR seasonality.	DTR increases with increasing surface moisture and standing water, and may therefore be predicted to be positively correlated with infection measures. Thompson et al. (1996) demonstrated a positive correlation between diurnal temperature range and Bancroftian filariasis infections in humans.
Normalized Difference Vegetation Index ²⁶ (NDVI)	Normalized ratio of the reflectance values of the red (R) and near- infrared (NIR) bands of a remotely captured image (NDVI=(NIR- R)/(NIR-R)). High values of NDVI result from high absorption of red and high reflectance of near-infrared characteristic of vegetation, describing regions of denser vegetation.	MODIS NDVI values are generated by the data provider every 16 days; derivation of NDVI from the Landsat and ASTER imagery in this study was conducted by applying the NDVI equation using ERDAS Imagine 9.0. Correlative analyses were conducted on MODIS NDVI datasets for the three-year period including and preceding sampling. Means and standard deviations were derived for the entire period, periods of high and low vegetative density (Jan-Jun & Jul-Dec), and quarters of highest and lowest density (Feb-Apr & Oct-Dec), along with seasonal differences as indices of seasonality. NDVI was calculated from cloud-free portions of the Landsat and ASTER image mosaics (30m & 15m resolutions). Difference between NDVI in the dry- and wet-season ASTER scenes was calculated as a measure of vegetation seasonality.	The most important applications of remote sensing to epidemiology have used NDVI as a proxy for arthropod vector habitat, with the logic that areas of denser vegetation are likely to provide more suitable habitat, and that levels of moisture sufficient to support denser vegetation are more likely to provide the moisture necessary for breeding (i.e., mosquitoes ⁸). NDVI has been positively correlated with human and non-human animal diseases such as: trypanosomiasis through its tests fly vector ⁹ , sin nombre virus infections in deer mice ¹⁰ , urinary schistosomiasis via snails ¹¹ ; tick-borne encephalitis and Lyme's disease ^{12,13} , and mosquito-vectored malaria, filariasis, rift valley fever, eastern equine encephalitis and leishmaniasis ^{14,15,16,17,18} . Correlations of NDVI with microfilarial infection measures are expected to be positive.
Tasseled Cap Transform ²⁷ (TCT)	Method for reducing multispectral satellite imagery into few bands with meaningful physical scene characteristics ¹⁹ : 1) SBI, or Soil Brightness Index; 2) GVI, or Greenness Vegetative Index; and 3) wetness, or relative soil moisture.	TCT coefficients were applied to Landsat 7 ETM+ reflectance values ²⁰ and ASTER radiance values ²¹ . Six visible and infrared bands of Landsat 7 ETM+ images, and nine of ASTER images, are reduced to three 30m resolution principal component layers which describe the majority of the variation in images. Mean brightness, greenness and wetness values were calculated for all cloud-free pixels within the regions of interest.	While there is no clear rationale for a relationship between the brightness index and vector abundance or filarid prevalence, correlations with greenness and wetness indices are expected to be positive. Dister et al. (1997) found tick abundance to be positively correlated with greenness and wetness values derived by a TCT of Landsat TM images.
Modeled Soil Surface Moisture ²² (MSSM)	Technique for modeling the moisture content of soils, utilizing land surface temperature (derived from thermal infrared radiance) and NDVI (calculated from the red and near infrared bands of an image as above).	MSSM was generated using a feature-space classification in ERDAS Imagine 9.0, constructing a 2-D scatter plot with temperature on the x-axis and NDVI on the y-axis. The plot results in a triangular distribution of points, with points along the right edge referred to as the "warm dry edge" and those on the left edge representing the "cold wet edge". Gradations between these edges reflect decreasing soil moisture from left to right. Regions are mapped out on the feature space by manually drawing polygons around them. The exact placement of polygon delineations is somewhat arbitrary, but consistent with decreasing levels of soil moisture ²² . All pixels were assigned to five soil moisture categories. The classification was applied to the wet season ASTER scene, resulting in an image with each 90m pixel classified with a value from 1 to 5, with mean MSSM values calculated for areas of analysis.	A variation of this procedure was used by Crombie et al. (1999) to correlate modeled soil moisture with human filarial infections in the Nile delta. The Galápagos coastline is naturally quite different from most applications of these methods, being mostly lava and poor in soils; however, the relationship between surface temperature and vegetation may be similarly indicative of surface moisture, and worthy of assessment for this preliminary investigation. If correlations of modeled soil surface moisture are observed, we expect them to be positive.
Topographic Factors	Elevation, slope and aspect are based on a 90m-resolution digital elevation model produced by the 2000 Shuttle Radar Topography Mission (SRTM). Proportion of land surface describes the amount of land within the radius of analysis, based on GIS shapefiles.	The digital elevation model was converted to slope and aspect in ERDAS Imagine 9.0. Proportion of land surface was calculated by dividing the area of contiguous land surface by the total area within respective analysis extents.	Elevation is expected to be negatively correlated with vector abundance ^{6,23} . Slope and aspect may affect transmission by influence on surface moisture or exposure to sun or winds. As arthropod vectors require land surface for resting and reproduction, colonies of birds on small islands or points, with little surrounding land surface, may experience less contact with vectors than those within bays, predicting a positive correlation between proportion of land surface and infection measures.

1=Gullan & Cranston 2005; 2=Black & Moore 2005; 3=Higgs & Beaty 2005; 4=Black & Severson 2005; 5=Borkent 2005; 6=Hay et al. 2000; 7=King et al. 2004; 8=Curran et al. 2000; 9=Rogers 2000; 10=Boone et al. 2000; 11=Brooker et al. 2001; 12=Kitron & Kazmierczak 1997; 13=Randolph 2001; 14=Hay et al. 2000b; 15=Crombie et al. 1999; 16=Anyamba et al. 1999; 17=Moncaya et al. 2000; 18=Thompson et al. 2002; 19=Crist & Cicone 1984; 20=Huang et al. 2002; 21=Yarbrough et al. 2005; 22=Gillies & Carlson 1995; 23=VanRiper III et al. 1986; 24=Hijmans et al. 2005; 25=Gao & Kaufman 2003; 26=Tucker 1979; 27=Kauth & Thomas 1976

Table 2. Prevalence and intensity values for microfilariae in flightless cormorants by site for the
individual analyses. ID = Site code used in figures.

		acca in igai					
Site	ID	Lat	Lon	Prev	Ν	Intensity	Ν
Cabo Douglas	CDO	-0.30397	-91.65189	0.046	65	5.00	3
Carlos Valle	CV	-0.26090	-91.45938	0.362	47	2.82	17
Punta Moreno	PMO	-0.71767	-91.33820	0.778	45	29.20	35
Cabo Hammond	CH	-0.46912	-91.61080	0.114	44	4.20	5
Canones Sur	CS	-0.32987	-91.33652	0.828	29	10.67	24
Playa Perros	PPE	-0.78742	-91.42853	0.769	26	23.60	20
Punta Espinosa	PE	-0.26373	-91.44476	0.480	25	15.67	12
El Muneco	EM	0.00757	-91.57812	0.273	22	26.17	6
Elizabeth Norte	EN	-0.58828	-91.09607	0.810	21	23.65	17
Priscilla Sur	PS	-0.37073	-91.38187	0.727	11	5.63	8
Colonia Escondida	CE	-0.26208	-91.46876	0.500	10	3.60	5
Punta Mangle	PMA	-0.45528	-91.38832	0.500	10	34.20	5
Punta Espinosa Sur	PES	-0.27300	-91.43776	0.750	8	7.17	6
Caleta Derek	CDE	-0.63467	-91.08794	0.571	7	5.00	4

 Table 3. Prevalence and intensity values for microfilariae in flightless cormorants by site for the merged analyses.
 ID = Site code used in figures.

Site	ID	Lat	Lon	Prev	Ν	Intensity	Ν
Cabo Douglas	CDO	-0.30397	-91.65189	0.046	65	5.00	3
Punta Moreno	PMO	-0.71767	-91.33820	0.778	45	29.20	35
Cabo Hammond	СН	-0.46912	-91.61080	0.114	44	4.20	5
Canones Sur	CS	-0.32987	-91.33652	0.828	29	10.67	24
Playa Perros	PPE	-0.78742	-91.42853	0.769	26	23.60	20
El Muneco	EM	0.00757	-91.57812	0.273	22	26.17	6
Elizabeth Norte	EN	-0.58828	-91.09607	0.810	21	23.65	17
Caleta Derek	CDE	-0.63467	-91.08794	0.571	7	5.00	4
C1 (Colonia Escondida,	C1	-0.26493	-91.45267	0.444	90	7.43	40
Carlos Valle, Punta							
Espinosa, Punta							
Espinosa Sur)							
C2 (Cactus, Copiano,	C2	-0.34948	-91.38451	0.733	15	5.27	11
Priscilla Sur)							
C3 (Garzas, Punta	C3	-0.44007	-91.38977	0.570	14	26.90	8
Mangle)							

Table 4. Prevalence and intensity values for microfilariae in Galapagos Penguins by site for the individual analyses. ID = Site code used in figures.

Site	ID	Lat	Lon	Prev	Ν	Intensity	Ν
Cabo Douglas	CDO	-0.30397	-91.65189	0.000	5		
Caleta Derek	CDE	-0.63467	-91.08794	0.333	9	8.33	3
Caleta Iguana	CI	-0.97461	-91.44577	0.137	51	8.00	7
El Muneco	EM	0.00757	-91.57812	0.088	57	9.40	5
Las Marielas	LM	-0.59603	-91.09070	0.095	63	7.83	6
Playa Perros	PPE	-0.78742	-91.42853	0.364	11	25.75	4
Puerto Pajo	PPA	-0.75595	-91.37601	0.158	19	39.00	3
Puerto Villamil	PV	-0.96787	-90.96082	0.000	7		
Punta Espinosa	PE	-0.26373	-91.44476	0.333	24	5.38	8
Punta Moreno	PMO	-0.71767	-91.33820	0.053	38	2.00	2

 Table 5. Prevalence and intensity values for microfilariae in Galapagos penguins by site for the merged analyses.

 ID = Site code used in figures.

Site	ID	Lat	Lon	Prev	Ν	Intensity	Ν
Cabo Douglas	CDO	-0.30397	-91.65189	0.000	5		
Caleta Iguana	CI	-0.97461	-91.44577	0.137	51	8.00	7
El Muneco	EM	0.00757	-91.57812	0.088	57	9.40	5
Puerto Villamil	PV	-0.96787	-90.96082	0.000	7		
Punta Espinosa	PE	-0.26373	-91.44476	0.333	24	5.38	8
P1 (Piedras Blancas,	P1	-0.35606	-91.38415	0.500	6	4.33	3
Copiano)							
P2 (Las Marielas, Caleta	P2	-0.61535	-91.08932	0.125	72	8.00	9
Derek)							
P3 (Punta Moreno,	P3	-0.75368	-91.38092	0.130	68	24.90	9
Puerto Pajo, Playa							
Perros)							

Data Source	Variable	Range	Kmr	<u>r</u>	p	n	Tail	Pred	Cons?
WORLDCLIM Temp	Annual Mean Temperature *	6 - 8	8	0.580	0.015 (1)	14	1	+	Y
Workeboeim remp.	Mean Temperature Driest Quarter	6-8	8	0.519	0.029 (1)	14	1	+	Ý
	Mean Temperature, Wettest Quarter	6-8	8	0.592	0.013 (1)	14	1	+	Ý
	Mean Temperature, Coldest Quarter	8	8	0.556	0.019(1)	14	1	+	Ŷ
	Mean Temperature, Warmest Quarter	6-8	8	0.591	0.013(1)	1/	1	+	v.
	Minimum Temperature, Coldest Month	6.8	8	0.575	0.015(1)	14	1	т _	v
	Temperature Annual Dance *	6.8	8	0.575	0.010(0)	14	1	т	v
	Mean Diurnal Temperature Dange	1 8	8	0.620	0.005 (1)	14	1	-	v
	Tomporaturo Soaconality	1-0	1	-0.004	0.003 (7)	14	1	-	I N
WODI DOLIM Precip	Annual Precipitation	1 4	1	0.515	0.031	14	1	-	
WORLDOLIN FIEldp.	Precipitation Warmest Quarter *	1 - 4	1	0.512	0.031	14	1	- -	v
	Precipitation, Wattest Quarter	1-0	1	0.566	0.017	14	1	- -	v
	Precipitation, Wettest Quarter	1-0	1	0.000	0.017	14	1		v
	Precipitation, wellest working	1-2	1	0.495	0.037	14	1	+	T V
MODIS Davi ST	Appual Moon *	6.9	0	-0.497	0.030 (1)	14	1	-	T V
MODIS Day LST	Annual Mean Warm Season Mean	0-0	0	0.000	0.020 (1)	14	1	+	r V
	Cool Coocon Meen	4-0	0	0.091	0.013 (1)	14	1	+	T V
	Cool Season Mean	6-8	0	0.030	0.026 (1)	14	1	+	ř
	Warmest Quarter Mean	4-8	8	0.603	0.011(1)	14	1	+	ř
	Coolest Quarter Mean	6-8	8	0.530	0.026 (1)	14	1	+	Ŷ
MODIO MEREE OT	Standard Deviation of the Coolest Quarter Mean	4	4	0.525	0.027 (1)	14	1	-	N
MODIS NIGHT LST	Annual Mean	8	8	0.485	0.039 (1)	14	1	+	
	Standard Deviation of Annual Mean	1	1	-0.491	0.037	14	1	-	Y
	Warm Season Mean	8	8	0.468	0.046 (1)	14	1	+	Y
	Cool Season Mean	6-8	8	0.506	0.032 (1)	14	1	+	Y
	Standard Deviation of Cool Season Mean	1,6-8	1	-0.522	0.028 (1)	14	1	-	Y
	Coolest Quarter Mean	1, 8	8	0.480	0.041 (1)	14	1	+	Y
	Seasonality (Warm Mean - Cool Mean) *	1 - 8	3	-0.677	0.004 (1)	14	1	-	Y
	Seasonality (Warmest Qtr Mean - Coolest Qtr Mean)	8	8	-0.482	0.040 (1)	14	1	-	Y
MODIS LSDTR	Annual Mean *	8	8	0.495	0.036 (1)	14	1	+	Y
	Warm Season Mean	6 - 8	8	0.543	0.022 (1)	14	1	+	Y
	Warmest Quarter Mean	6 - 8	8	0.627	0.008 (1)	14	1	+	Y
Landsat Temp	No Significant Correlations Observed					14			
ASTER Temp	No Significant Correlations Observed					12-14			
MODIS Water Vapor	No Significant Correlations Observed					14			
MODIS NDVI	Dry Season Mean *	1	1	0.463	0.048	14	1	+	Y
	Standard Deviation of Dry Season Mean	1	1	0.539	0.023	14	1	-	N
	Driest Quarter Mean	1	1	0.468	0.046	14	1	+	Y
	Standard Deviation of Driest Quarter Mean	1	1	0.573	0.016	14	1	-	N
	Seasonality (Wet Season - Dry Season) *	1	1	-0.434	0.061	14	1	-	Y
Landsat NDVI	No Significant Correlations Observed					14	1		
ASTER NDVI	No Significant Correlations Observed					12-14	1		
Topographic	Mean Elevation *	6 - 8	8	-0.621	0.009 (1)	14	1	-	Y
	Mean Slope	8	8	-0.464	0.047 (2)	14	1	-	Y
	Proportion of Land Surface *	4 - 8	6	0.579	0.015 ⁽¹⁾	14	1	+	Y
Tasseled Cap Indices	Landsat Greenness Index	1 - 6	2	0.607	0.011 ⁽¹⁾	14	1	+	Y
	ASTER Wet Season Wetness Index	1	1	-0.474	0.043	14	1	-	N
Modeled Soil Moisture	No Significant Correlations Observed					14	1		
Principal Components	PC1 of WORLDCLIM Temperature Variables	6 - 8	8	0.579	0.015 (1)	14	1	+	Y
	PC1 of WORLDCLIM Precipitation Variables	1 - 4	1	0.525	0.027	14	1	+	Y
	PC1 of MODIS Land Surface Temperature Variables	4 - 8	8	0.579	0.015 (1)	14	1	+	Y
	PC2 of MODIS NDVI Variables	1 - 3	1	0.674	0.004	14	1	+	Y
	PC1 of Topographic Variables	4 - 8	8	-0.537	0.024	14	1	-	Y
	PC2 of All-Layers PCA	2 - 8	8	-0.640	0.014 (1)	14	2		

Range = range of geographic extents (kilometers radius) over which relationship is statistically gignificant (≤0.05); Kmr = radius, in kilometers, of the extent of the most significant correlation; *r* = Pearson's correlation coefficient for most significant correlation; (1) = Correlations at broader extents supported by results of analyses merging geographically proximate sites; (2) = Results of merged analysis not significant; (3) = Results of merged analysis more significant that individual analysis; n = number of site-to-variable comparisons possible with data sets; Tail = 1-tailed or 2-tailed test; Pred = Predicted directionality of the correlation; Cons? = whether or not results are consistent with predictions; * = Variables used in prevalence distribution model.

Table 7. Statistically significant correlates of microfilarid infection intensity in flightless cormorants ($p \le 0.05$)

Data Source	Variable	Range	Kmr	r	р	n	Tail	Pred	Cons?
WORLDCLIM Temp.	Annual Mean Temperature	1	1	-0.582	0.015	14	1	+	Ν
	Mean Temperature, Coldest Quarter	1-2	1	-0.600	0.012	14	1	+	Ν
	Minimum Temperature, Coldest Month	1	1	-0.577	0.015	14	1	+	Ν
	Temperature Annual Range	1	1	0.542	0.023	14	1	-	Ν
WORLDCLIM Precip.	No Significant Correlations Observed					14	1		
MODIS Day LST	Standard Deviation of Annual Mean	6-8	6	0.727	0.002 (1)	14	1	-	Ν
	Standard Deviation of Cool Season Mean	6-8	6	0.697	0.003 (1)	14	1	-	Ν
	Seasonality (Warmest Qtr Mean - Coolest Qtr Mean)	4 - 8	6	0.542	0.023 (1)	14	1	-	Ν
MODIS Night LST	Standard Deviation of Warmest Quarter Mean	6	6	0.459	0.049 (2)	14	1	-	Ν
MODIS LSDTR	Standard Deviation of Annual Mean	6	6	0.620	0.009 (2)	14	1	-	Ν
	Standard Deviation of Warm Season Mean	3	3	-0.530	0.026 (3)	14	1	-	Y
	Standard Deviation of Cool Season Mean	6 - 8	6	0.740	0.001 (1)	14	1	-	Ν
	Standard Deviation of Coolest Season Mean	6 - 8	6	0.702	0.003 (1)	14	1	-	Ν
Landsat Temp	No Significant Correlations Observed					14	1		
ASTER Temp	Dry Season Surface Temperature Heterogeneity	1	1	0.517	0.043	12-14	1	+	Y
	Wet Season Surface Temperature Heterogeneity	1 - 2	1	0.692	0.003	14	1	+	Y
MODIS Water Vapor	Annual Mean	1	1	0.511	0.031	14	1	+	Y
	Wet Season Mean	1	1	0.497	0.035	14	1	+	Y
	Wettest Quarter Mean	1	1	0.517	0.029	14	1	+	Y
MODIS NDVI	Annual Mean	1 - 4	1	0.668	0.004	14	1	+	Y
	Wet Season Mean	1 - 4	1	0.685	0.003	14	1	+	Y
	Dry Season Mean	1 - 4	1	0.631	0.008	14	1	+	Y
	Wettest Quarter Mean	1 - 6	1	0.606	0.011	14	1	+	Y
	Driest Quarter Mean	1, 4 - 6	1	0.600	0.012	14	1	+	Y
	Seasonality (Wettest Season - Driest Season)	3	3	0.458	0.050	14	1	-	N
Landsat NDVI	Mean NDVI	1	1	0.595	0.012	14	1	+	Y
ASTER NDVI	Dry Season Mean NDVI	1	1	0.618	0.009	12-14	1	+	Y
	Wet Season NDVI	1 - 3	1	0.660	0.005	14	1	+	Y
Topographic	No Significant Correlations Observed					14	1		
Tasseled Cap Indices	ASTER Dry Season Greenness Index	1 - 4	1	0.549	0.032	12-14	1	+	Y
	ASTER Wet Season Brightness Index	1 - 3	2	0.570	0.017	14	2		
	ASTER Wet Season Greenness Inex	1 - 4	1	0.601	0.011	14	1	+	Y
	ASTER Wet Season Tasseled Cap Wetness Index	1	1	-0.469	0.045	14	1	+	N
Modeled Soil Moisture	No Significant Correlations Observed					14	1		
Principal Components	PC1 of WORLDCLIM Temperature Variables	1	1	-0.525	0.027	14	1	+	N
	PC2 of MODIS Total Precipitable Water Vapor	1 - 2	1	-0.483	0.040	14	1	+	Ν
	PC1 of MODIS NDVI Variables	1,3-6	1	0.585	0.014	14	1	+	Y

Range = range of geographic extents (kilometers radius) over which relationship is statistically gignificant (0.05); **Kmr** = radius, in kilometers, of the extent of the most significant correlation; r = Pearson's correlation coefficient for most significant correlation; (1) = Correlations at broader extents supported by results of analyses merging geographically proximate sites; (2) = Results of merged analysis not significant; (3) = Results of merged analysis more significant that individual analysis; n = number of site-to-variable comparisons possible with data sets; **Tail** = 1-tailed or 2-tailed test; **Pred** = Predicted directionality of the correlation; **Cons?** = whether or not results are consistent with predictions.

Table 8. Statistically significant correlates of microfilarid infection prevalence in Galapagos penguins ($p \le 0.05$).

Data Courses	Variable	Denma	1/11-11	<u> </u>			Tail	Ducal	0.0.0.0
Data Source	Variable	Range	ĸmr	r	р	n	i ali	Pred	Cons?
WORLDCLIM Temp.	No Significant Correlations Observed					10			
WORLDCLIM Precip.	No Significant Correlations Observed					10			
MODIS Day LST	Annual Mean	3 - 8	4	0.582	0.039 (1)	10	1	+	Y
	Warm Season Mean	4 - 8	8	0.561	0.046 (1)	10	1	+	Y
	Standard Deviation of Warm Season Mean	3	3	0.562	0.045	10	1	-	N
	Cool Season Mean	2 - 8	4	0.593	0.036 (1)	10	1	+	Y
	Warmest Quarter Mean	8	8	0.566	0.044 (1)	10	1	+	Y
	Standard Deviation of Warmest Quarter Mean	2 - 4	3	0.603	0.032	10	1	-	N
	Coolest Quarter Mean	2 - 8	4	0.607	0.031 (1)	10	1	+	Y
	Seasonality (Warmest Qtr Mean - Coolest Qtr Mean)	3	3	-0.533	0.049 (2)	10	1	-	Y
MODIS Night LST	Annual Mean	2 - 3	2	0.574	0.041	10	1	+	Y
-	Standard Deviation of Annual Mean	1 - 4	1	-0.598	0.034	10	1	-	Y
	Cool Season Mean	1 - 8	2	0.615	0.029 (2)	10	1	+	Y
	Coolest Quarter mean	1 - 8	2	0.636	0.024 (2)	10	1	+	Y
	Seasonality (Warm Mean - Cool Mean)	1 - 6	3	-0.579	0.040 (2)	10	1	-	Y
	Seasonality (Warmest Qtr Mean - Coolest Qtr Mean)	3, 6	3	-0.562	0.045 (2)	10	1	-	Y
MODIS LSDTR	Annual Mean	4	4	0.553	0.049 (3)	10	1	+	Y
	Warm Season Mean	4, 8	4	0.554	0.048 (3)	10	1	+	Y
	Warmest Quarter Mean	6 - 8	8	0.568	0.043 (3)	10	1	+	Y
	Coolest Quarter Mean	4	4	0.564	0.045 (3)	10	1	+	Y
Landsat Temp	No Significant Correlations Observed					10			
ASTER Temp	No Significant Correlations Observed					8-10			
MODIS Water Vapor	No Significant Correlations Observed					10			
MODIS NDVI	No Significant Correlations Observed					10			
Landsat NDVI	No Significant Correlations Observed					10			
ASTER NDVI	No Significant Correlations Observed					8-10			
Topographic	Proportion of Land Surface	8	8	0.562	0.045 (2)	10	1	+	Y
Tasseled Cap Indices	No Significant Correlations Observed					8-10			
Modeled Soil Moisture	No Significant Correlations Observed		_			10			
Principal Components	PC1 of MODIS Land Surface Temperature Variables	3-8	4	0.577	0.040 (1)	10	1	+	Y

Range = range of geographic extents (kilometers radius) over which relationship is statistically gignificant (≤0.05); Kmr = radius, in kilometers, of the extent of the most significant correlation; *r* = Pearson's correlation coefficient for most significant correlation; (1) = Correlations at broader extents supported by results of analyses merging geographically proximate sites; (2) = Results of merged analysis not significant; (3) = Results of merged analysis more significant that individual analysis; n = number of site-to-variable comparisons possible with data sets; Tail = 1-tailed or 2-tailed test; Pred = Predicted directionality of the correlation; Cons? = whether or not results are consistent with predictions.

Table 9. Statistically significant correlates of microfilarid infection intensity in Galapagos penguins (p≤ 0.05).

,	· · · · · · · · · · · · · · · · · · ·	1 0 1	U (1	,					
Data Source	Variable	Range	Kmr	r	р	n	Tail	Pred	Cons?
WORLDCLIM Temp.	No Significant Correlations Observed					8			
WORLDCLIM Precip.	No Significant Correlations Observed					8			
MODIS Day LST	No Significant Correlations Observed					8			
MODIS Night LST	No Significant Correlations Observed					8			
MODIS LSDTR	No Significant Correlations Observed					8			
Landsat Temp	No Significant Correlations Observed					8			
ASTER Temp	No Significant Correlations Observed					6-8			
MODIS Water Vapor	Standard Deviation of Driest Quarter Mean	4	4	0.636	0.045 (2)	8	1	-	Ν
MODIS NDVI	Driest Quarter Mean	1	1	-0.635	0.045	8	1	+	Ν
Landsat NDVI	No Significant Correlations Observed					8			
ASTER NDVI	No Significant Correlations Observed					8			
Topographic	No Significant Correlations Observed					8			
Tasseled Cap Indices	No Significant Correlations Observed					6-8			
Modeled Soil Moisture	No Significant Correlations Observed					8			
Principal Components	No Significant Correlations Observed					8			

Range = range of geographic extents (kilometers radius) over which relationship is statistically gignificant (≤0.05); Kmr = radius, in kilometers, of the extent of the most significant correlation; *r* = Pearson's correlation coefficient for most significant correlation; (1) = Correlations at broader extents supported by results of analyses merging geographically proximate sites; (2) = Results of merged analysis not significant; (3) = Results of merged analysis more significant that individual analysis; n = number of site-to-variable comparisons possible with data sets; Tail = 1-tailed or 2-tailed test; Pred = Predicted directionality of the correlation; Cons? = whether or not results are consistent with predictions.

Table 10. Correlations between prevalence of filarids in cormorant populations and a) predictive model based on all correlated variables; b) components of the PCA based on all correlated variables (see Table 13 for component weightings); c) predictive model based on correlated principal components.

a) MODEL	b)	PC01	PC02	PC03	PC04	PC05	PC06	PC07	PC08	PC09	PC10	c)	MODEL
r 0.679	r	0.691	-0.207	-0.439	0.372	0.295	-0.260	0.327	-0.797	-0.355	0.091	r	0.790
P 0.004	P	0.006	0.479	0.117	0.191	0.307	0.370	0.254	0.001	0.213	0.757	P	0.000
			-							-		-	
		PC11	PC12	PC13	PC14	PC15	PC16	PC17	PC18	PC19	PC20		
	r	0.250	0.445	0.125	-0.203	0.148	-0.311	-0.288	-0.044	0.057	-0.180		
	Р	0.389	0.111	0.671	0.487	0.614	0.280	0.318	0.882	0.846	0.538		
		PC21	PC22	PC23	PC24	PC25	PC26	PC27	PC28	PC29	PC30		
	r	0.016	0.484	0.117	0.471	0.263	0.044	0.289	0.168	0.072	-0.089		
	Р	0.956	0.080	0.689	0.089	0.364	0.881	0.316	0.567	0.807	0.762		
		-											
		PC31	PC32	PC33	PC34	PC35	PC36	PC37	PC38	PC39			
	r	-0.076	-0.145	0.017	0.651	-0.021	0.067	-0.101	-0.096	-0.058			
	Р	0.796	0.620	0.953	0.012	0.944	0.819	0.732	0.744	0.844			

Table 11. Correlations between intensity of filarid infections in cormorant populations and a) predictive model based on all correlated variables; b) components of the PCA based on all correlated variables (see Table 14 for component weightings); c) predictive model based on correlated principal components.

a) MOD	EL	b)	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	c)	MODEL
r 0.86	64	r	0.841	0.528	-0.013	-0.295	0.432	0.695	0.436	-0.349	-0.171	0.499	r	0.871
P 0.00	00	Р	0.000	0.052	0.965	0.305	0.123	0.006	0.120	0.221	0.558	0.069	Р	0.000
					-									
			PC11	PC12	PC13	PC14	PC15	PC16	PC17	PC18	PC19	PC20		
		r	0.638	-0.325	-0.059	-0.167	0.191	0.281	0.271	-0.233	0.323	0.150		
		Р	0.014	0.256	0.841	0.568	0.512	0.330	0.348	0.423	0.260	0.608		
			PC21											
		r	-0.165	-										

P 0.574

Table 12. Correlations between prevalence of filarids in penguin populations and a) predictive model based on all correlated variables; b) components of the PCA based on all correlated variables (see Table 15 for component weightings); c) predictive model based on correlated principal components.

a) MODEL	b)	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	c) MODEL	
r 0.554	r	0.516	-0.398	-0.199	0.545	0.527	-0.357	0.163	-0.255	0.014	0.334	r 0.874	
P 0.048	Р	0.127	0.255	0.581	0.103	0.117	0.311	0.653	0.478	0.969	0.346	P 0.000	
	-												Ī
		PC11	PC12	PC13	PC14	PC15	PC16	PC17	PC18	PC19			
	r	-0.488	0.105	-0.135	0.297	0.133	0.128	0.805	-0.430	0.324	, ,		
	Ρ	0.153	0.773	0.711	0.405	0.713	0.724	0.005	0.215	0.360			

Table 13. Correlations between intensity of filarid infections in penguin populations and a) predictive model based on all correlated variables; b) components of the PCA based on all correlated variables (see Table 16 for component weightings); c) predictive model based on correlated principal components.

a)	MODEL	b)	PC1	PC2	c)	MODEL
r	0.634	r	0.650	0.081	r	0.681
Ρ	0.025	P	0.042	0.824	Р	0.011

Table 14.	Loading values for significantly	correlated components	derived from ecological	correlates of filarid prevaler	nce in flightless cormorant
colonies.	The ten highest values are in b	oldface.			

Data Set	Variable	PC01	PC08	PC34
WORLDCLIM Temp.	Annual Mean Temperature	0.070	-0.186	-0.095
	Mean Temperature, Driest Quarter	0.105	-0.090	-0.016
	Mean Temperature, Wettest Quarter	0.060	-0.212	0.019
	Mean Temperature, Coldest Quarter	0.067	-0.195	-0.024
	Mean Temperature, Warmest Quarter	0.073	-0.167	0.074
	Minimum Temperature, Coldest Month	0.071	-0.176	0.045
	Temperature Annual Range	0.099	0.094	-0.028
	Mean Diurnal Temperature Range	0.120	0.150	0.048
	Temperature Seasonality	0.259	0.072	0.009
WORLDCLIM Precip.	Annual Precipitation	0.255	-0.085	0.076
	Precipitation, Warmest Quarter	0.256	-0.095	-0.049
	Precipitation, Wettest Quarter	0.258	-0.093	0.068
	Precipitation, Wettest Month	0.244	-0.102	-0.069
	Precipitation Seasonality	0.249	-0.089	0.015
MODIS Day LST	Annual Mean	0.147	0.026	-0.250
	Warm Season Mean	0.149	0.082	-0.018
	Cool Season Mean	0.145	0.003	-0.178
	Warmest Quarter Mean	0.156	0.125	0.100
	Coolest Quarter Mean	0.140	-0.001	0.309
	Standard Deviation of the Coolest Quarter Mean	0.150	-0.316	0.012
MODIS Night LST	Annual Mean	0.096	0.320	0.260
	Standard Deviation of Annual Mean	0.142	-0.113	0.011
	Warm Season Mean	0.116	0.341	-0.199
	Cool Season Mean	0.080	0.278	0.305
	Standard Deviation of Cool Season Mean	0.133	-0.167	-0.007
	Coolest Quarter Mean	0.084	0.279	-0.345
	Seasonality (Warm Mean - Cool Mean)	0.042	-0.272	-0.008
	Seasonality (Warmest Qtr Mean - Coolest Qtr Mean)	0.079	-0.115	-0.014
MODIS LSDTR	Annual Mean	0.164	-0.077	0.043
	Warm Season Mean	0.161	-0.034	0.149
	Warmest Quarter Mean	0.167	-0.011	-0.148
MODIS NDVI	Dry Season Mean	0.200	0.076	0.058
	Standard Deviation of Dry Season Mean	0.185	0.114	0.043
	Driest Quarter Mean	0.190	0.089	-0.066
	Standard Deviation of Driest Quarter Mean	0.189	0.126	-0.008
	Seasonality (Wet Season - Dry Season)	0.079	0.133	0.036
Topographic	Mean Elevation	0.087	-0.149	-0.020
	Mean Slope	0.145	0.066	-0.023
	Proportion of Land Surface	0.285	0.119	-0.061

 Table 15.
 Loading values for significantly correlated components derived from ecological correlates of filarid intensity in flightless cormorant colonies.

 The ten highest values are in boldface.

Data Set	Variable	PC01	PC02	PC06	PC10	PC11
WORLDCLIM Temp.	Annual Mean Temperature	0.280	-0.181	0.025	0.001	0.114
	Mean Temperature, Coldest Quarter	0.292	-0.183	-0.020	0.029	0.196
	Minimum Temperature, Coldest Month	0.285	-0.196	0.006	0.053	0.179
	Temperature Annual Range	0.245	-0.188	0.054	0.138	-0.084
MODIS Day LST	Standard Deviation of Annual Mean	0.311	-0.039	-0.221	-0.510	-0.562
	Standard Deviation of Cool Season Mean	0.115	0.430	-0.017	0.348	-0.211
	Seasonality (Warmest Qtr Mean - Coolest Qtr Mean)	0.175	0.074	0.478	0.135	-0.208
MODIS Night LST	Standard Deviation of Warmest Quarter Mean	0.104	-0.015	-0.140	0.102	0.490
MODIS LSDTR	Standard Deviation of Annual Mean	0.125	0.368	-0.159	0.099	-0.106
	Standard Deviation of Warm Season Mean	0.179	-0.320	0.227	0.256	-0.021
	Standard Deviation of Cool Season Mean	0.122	0.434	0.075	0.240	0.183
	Standard Deviation of Coolest Season Mean	0.162	0.377	0.580	-0.526	0.244
MODIS Water Vapor	Annual Mean	0.246	0.166	-0.269	-0.025	0.121
	Wet Season Mean	0.235	0.160	-0.233	0.003	0.041
	Wettest Quarter Mean	0.221	0.176	-0.334	0.002	0.049
MODIS NDVI	Annual Mean	0.231	-0.062	0.039	0.019	0.063
	Wet Season Mean	0.245	-0.042	0.078	0.084	-0.025
	Dry Season Mean	0.192	-0.066	-0.048	-0.176	0.133
	Wettest Quarter Mean	0.236	-0.051	0.089	0.096	-0.056
	Driest Quarter Mean	0.171	-0.045	-0.087	-0.230	0.136
	Seasonality (Wettest Season - Driest Season)	0.235	-0.024	0.131	0.238	-0.314

 Table 16.
 Loading values for significantly correlated components derived from ecological correlates of filarid prevalence in Galapagos penguin colonies.

 The ten highest values are in boldface.

Data Set	Variable	PC17
MODIS Day LST	Annual Mean	0.679
	Warm Season Mean	-0.311
	Standard Deviation of Warm Season Mean	-0.005
	Cool Season Mean	-0.176
	Warmest Quarter Mean	0.100
	Standard Deviation of Warmest Quarter Mean	0.002
	Coolest Quarter Mean	-0.212
	Seasonality (Warmest Qtr Mean - Coolest Qtr Mean)	0.052
MODIS Night LST	Annual Mean	-0.108
	Standard Deviation of Annual Mean	0.002
	Cool Season Mean	0.140
	Coolest Quarter mean	-0.047
	Seasonality (Warm Mean - Cool Mean)	-0.046
	Seasonality (Warmest Qtr Mean - Coolest Qtr Mean)	0.036
MODIS LSDTR	Annual Mean	-0.502
	Warm Season Mean	0.129
	Warmest Quarter Mean	0.129
	Coolest Quarter Mean	0.177
Topographic	Proportion of Land Surface	-0.020

 Table 17. Loading values for significantly correlated components derived from ecological correlates of filarid intensity in Galapagos penguin colonies. The highest value is in boldface.

Data Set	Variable	PC01
MODIS Water Vapor	Standard Deviation of Driest Quarter Mean	0.872
MODIS NDVI	Driest Quarter Mean	0.490

FIGURES:

Figure 1. Geographic distributions of flightless cormorants and Galapagos penguins based on GPS points from all known breeding colonies (data provided by H. Vargas). Two-kilometer buffers are drawn around each point for ease of visualization.

Figure 2. Prevalence and intensity values for microfilarid infections in flightless cormorants and Galapagos penguins. See Tables 1 & 2 for keys to site names.

Figure 3. Flightless cormorant sites where 5 or more birds were sampled. See Table 1 for site names, coordinates and sample sizes.

Figure 4. Flightless cormorant sites merged based on geographic proximity. See Table 2 for site names, coordinates and sample sizes.

Figure 5. Galapagos penguin sites where 5 or more birds were sampled. See Table 3 for site names, coordinates and sample sizes.

Figure 6. Galapagos penguin sites merged based on geographic proximity. See Table 4 for site names, coordinates and sample sizes.

Figure 7. Predicted prevalence of microfilarial infection in flightless cormorants based on observed data and modeled correlations with 11 environmental variables (see * in Table 5; r^2 -0.596, p=0.001).

Figure 8. Cormorant filarid infection prevalence as modeled by a weighted mean of all correlated variables (see Table 5).

Figure 9. Cormorant filarid infection prevalence as modeled by a weighted mean of correlated PCA layers (see Table 9).

Figure 10. Cormorant filarid infection intensity as modeled by a weighted mean of all correlated variables (see Table 6).

Figure 11. Cormorant filarid infection intensity as modeled by a weighted mean of correlated PCA layers (see Table 10).

Figure 12. Penguin filarid infection prevalence as modeled by a weighted mean of all correlated variables (see Table 7).

Figure 13. Penguin filarid infection prevalence as modeled by PC 17 of the PCA conducted on all significant correlates (see Table 11).

Figure 14. Penguin filarid infection intensity as modeled by a weighted mean of all correlated variables (see Table 8).

Figure 15. Penguin filarid infection intensity as modeled by PC 01 of the PCA conducted on all significant correlates (see Table 12).

APPENDICES:

Appendix I. Satellite Data Sources

MODIS – The Moderate Resolution Imaging Spectroradiometer (MODIS) is a NASA Earth Observing System (EOS) instrument flown aboard EOS' Terra and Aqua satellites. It is a multidisciplinary instrument, yielding data on atmospheric, oceanic and land surface features. Its spatial resolution varies from 250m to 1km, measuring the electromagnetic spectrum at 36 spectral bands, and viewing the entire Earth's surface every 1 to 2 days. Launched aboard Terra in December of 1999 and aboard Aqua in May of 2002, the MODIS sensors are making major contributions to the understanding of the global Earth system (King et al. 2004). MODIS data used in this study include day and night land surface temperatures, total precipitable water vapor, and a vegetation density index (NDVI).

Landsat – NASA's Landsat Program has been collecting images of the Earth's surface since 1972. Its current sensor, the Landsat 7 Enhanced Thematic Mapper (ETM+) returns 6 visible and infrared spectral bands with spatial resolution of 30 meters, a thermal infrared band with 60m resolution, and a panchromatic band at 15m. For this study, two scenes from the USGS Global Land Cover Facility Orthorectified ETM+ collection, taken on 16 March 2001 (wet season), were obtained, composited (or "mosaicked"), and converted to reflectance values . These are the most cloud-free images available free of charge; however, while the coastlines are relatively cloud-free, inland areas do contain significant cloud coverage, reducing the ability to accurately record values over larger spatial scales. The resulting mosaic was used to assess: vegetative distribution and density through the use of NDVI (see below) at 30m resolution; brightness, greenness and wetness indices as derived by the Tasseled Cap Transform (see below) at 30m resolution; and land surface temperature and temperature heterogeneity at 90m resolution.

ASTER – Further high-resolution images were obtained by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor aboard the EOS' Terra satellite. This sensor has high spatial and spectral resolution with four visible and near-infrared bands at 15m resolution, six shortwave infrared bands at 30m resolution, and five thermal infrared bands at 90m. As with Landsat and other high-spatial, low-temporal resolution imagers, cloud contamination of images, particularly over persistently cloudy regions such as the Galapagos Archipelago, places serious limitations on image availability. For this study, images were acquired from the EOS Land Processes Distributed Active Archive Center (LP DAAC) and composited for a wet season mosaic and a dry season mosaic. Due to high cloud cover, it was necessary to use images from multiple dates, and in the case of the dry season mosaic, across multiple years (the dry-season mosaic was constructed with images from 9/15/01 and 10/30/05, and the wet-season mosaic used scenes from 5/16/03 and 6/10/03). In both cases, however, the majority of sites analyzed fell within image areas captured on the same dates (9/15/01 for the dry season and 5/16/03 for the wet season). These seasonal mosaics were used to calculate intraannual variations in some landscape measures (NDVI, surface temperature) but cannot account for inter-annual variation. Analyses were further complicated by the absence of short-wave and thermal infrared information for the scenes from 10/30/2005, eliminating the possibility of conducting seasonal comparisons of some parameters. These ASTER images were used to assess: dry season and wet season land surface temperature, and temperature seasonality and heterogeneity (90m); dry season and wet season vegetation indices, and vegetation seasonality

103

(15m); brightness, greenness and wetness indices derived by the Tasseled Cap Transform for the wet season only (30m); and modeled soil surface moisture at 90m resolution (see below).

Despite problems of cloud cover and image availability, the spatial and spectral resolution of these Landsat and ASTER images allowed us to assess some of the same factors at higher spatial resolution, and conduct other analyses not possible with the coarser MODIS data.

SRTM – Topographic factors were derived from a global 90-meter resolution digital elevation model (DEM) constructed from remotely-sensed data produced by the Shuttle Radar Topography Mission (SRTM) during an 11-day mission in February of 2000.

Appendix II. Correlations of environmental variables with microfilarid infection measures.

Table 1a. Correlations of microfilarid infection prevalence in flightless cormorants with WorldClim variables

Analysis Extent (Radius)			1km		2km		3km		4km		6km		8km	
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
WorldClim Temperature Variables														
Annual Mean Temperature	14	1	0.014	0.482	0.181	0.267	0.233	0.211	0.347	0.112	.466(*)	0.047	.580(*)	0.015
								Ν	Aerged (n=11	, 1-tailed)	.553(*)	0.039	.665(*)	0.013
Mean Temperature of the Driest Quarter	14	1	0.269	0.176	0.309	0.141	0.387	0.086	0.447	0.055	.500(*)	0.034	.519(*)	0.029
								Ν	/lerged (n=11	, 1-tailed)	.523(*)	0.049	.544(*)	0.042
Mean Temperature of the Wettest Quarter	14	1	0.167	0.284	0.243	0.201	0.272	0.174	0.358	0.104	.462(*)	0.048	.592(*)	0.013
								Ν	/lerged (n=11	, 1-tailed)	.542(*)	0.042	.675(*)	0.011
Mean Temperature of the Coldest Quarter	14	1	-0.181	0.268	0.099	0.368	0.190	0.258	0.316	0.135	0.452	0.053	.556(*)	0.019
								Ν	/lerged (n=11	, 1-tailed)	.549(*)	0.040	.644(*)	0.016
Mean Temperature of the Warmest Quarter	14	1	0.167	0.284	0.243	0.201	0.272	0.174	0.358	0.104	.462(*)	0.048	.591(*)	0.013
								N	/lerged (n=11	, 1-tailed)	.542(*)	0.042	.674(*)	0.011
Minimum Temperature of the Coldest Month	14	1	-0.050	0.433	0.160	0.293	0.242	0.203	0.363	0.101	.484(*)	0.040	.575(*)	0.016
								N	/lerged (n=11	, 1-tailed)	.580(*)	0.031	.661(*)	0.013
Maximum Temperature of the Warmest Month	14	1	-0.256	0.188	-0.034	0.454	0.058	0.422	0.121	0.340	0.281	0.166	0.405	0.075
Temperature Annual Range	14	1	-0.124	0.336	-0.246	0.198	-0.308	0.142	-0.445	0.055	550(*)	0.021	620(**)	0.009
								N	/lerged (n=11	, 1-tailed)	633(*)	0.018	694(**)	0.009
Mean Diurnal Temperature Range	14	1	476(*)	0.043	473(*)	0.044	467(*)	0.046	538(*)	0.024	587(*)	0.014	664(**)	0.005
						Mei	rged (n=11.	1-tailed)	581(*)	0.030	646(*)	0.016	718(**)	0.006
Temperature Seasonality	14	1	.515(*)	0.030	.511(*)	0.031	0.085	0.386	-0.210	0.235	-0.416	0.070	-0.380	0.090
WorldClim Precipitation Variables														
Annual Precipitation	14	1	.512(*)	0.031	.499(*)	0.035	.480(*)	0.041	.462(*)	0.048	0.441	0.057	0.393	0.082
Precipitation in the Coldest Quarter	14	1	0.286	0.161	0.266	0.179	0.225	0.220	0.186	0.262	0.192	0.255	0.086	0.384
Precipitation in the Warmest Quarter	14	1	.566(*)	0.017	.557(*)	0.019	.542(*)	0.023	.522(*)	0.028	.499(*)	0.035	.459(*)	0.050
Merged	11	1	.627(*)	0.020	.617(*)	0.021	.603(*)	0.025	.582(*)	0.030	.558(*)	0.037	0.512	0.054
Precipitation in the Driest Quarter	14	1	0.261	0.184	0.250	0.194	0.217	0.228	0.198	0.249	0.181	0.267	0.021	0.472
Precipitation in the Wettest Quarter	14	1	.566(*)	0.017	.557(*)	0.019	.542(*)	0.023	.522(*)	0.028	.498(*)	0.035	0.449	0.054
Merged	11	1	.627(*)	0.020	.617(*)	0.021	.603(*)	0.025	.581(*)	0.030	.557(*)	0.038	0.502	0.058
Precipitation in the Driest Month	14	1	0.235	0.209	0.189	0.259	0.190	0.257	0.204	0.242	0.168	0.283	-0.095	0.373
Precipitation in the Wettest Month	14	1	.492(*)	0.037	.472(*)	0.044	0.447	0.055	0.422	0.066	0.392	0.083	0.359	0.104
Precipitation Seasonality	14	1	497(*)	0.035	505(*)	0.033	488(*)	0.038	4/9(*)	0.041	465(*)	0.047	-0.435	0.060
Merged	11	1	537(*)	0.044	538(*)	0.044	-0.519	0.051	-0.511	0.054	-0.499	0.059	-0.471	0.072
(*) Correlation is significant at the 0.05 level; (**) Correlation is significant	nt at i	the (0.01 level; n	=number	of sites ass	essed; t=	1-tailed or 2	-tailed tes	t; r=Pearson's	s correlati	ion coefficie	ent		

Table 1b. Correlations of microfilarid infection prevalence in flightless cormorants with MODIS-derived land surface temperature variables.

											-			
Analysis Extent (Radius)			1km	1	2kn	n	3kr	n	4kr	n	6kn	1	8kn	n
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Daytime Land Surface Temperature Variables														
Annual Mean Davtime Land Surface Temperature	14	1	0.253	0.191	0.272	0.173	0.370	0.097	0.454	0.051	.513(*)	0.030	.555(*)	0.020
· · · · · · · · · · · · · · · · · · ·								м	erged (n=1	1 1-tailed)	0.517	0.052	584(*)	0.029
Standard Deviation of Annual Mean	14	4	0.234	0.211	0.125	0 335	0.250	0 105	0.300	0.079	0.223	0.222	-0 154	0.200
Warm Season Mean	14	4	0.267	0.102	0.200	0.000	0.407	0.074	497(#)	0.029	560(#)	0.019	594/#\	0.012
waini season wear	14		0.202	0.103	0.200	0.140	0.407	0.074	.407(7	0.033	.500()	0.015	.331(7)	0.013
Ofenderal Devicing of the Wiener Device Meet			0.000	0.040	0.070	0.407	terged (n=1	1, 1-tailed)	0.984	0.004	.060(^)	0.035	.619(^)	0.021
Standard Deviation of the Warm Season Mean	14	1	0.206	0.240	0.070	0.407	0.102	0.304	0.204	0.181	0.011	0.485	-0.272	0.173
Cool Season Mean	14	1	0.297	0.187	U.200	0.180	0.351	0.109	U.437	0.009	.485(*)	0.039	.530(*)	0.026
								M	erged (n=1	1, 1-tailed)	0.487	0.064	.559(*)	0.037
Standard Deviation of the Cool Season Mean	14	1	0.246	0.198	0.162	0.290	0.265	0.180	0.342	0.116	0.212	0.233	-0.135	0.323
Warmest Quarter Mean	14	1	0.298	0.150	0.316	0.135	0.405	0.076	.527(*)	0.027	.650(**)	0.006	.653(**)	0.006
						N	ferged (n=1	1, 1-tailed)	.534(*)	0.045	.657(*)	0.014	.678(*)	0.011
Standard Deviation of the Warmest Quarter Mean	14	1	0.242	0.202	0.196	0.251	0.276	0.170	0.296	0.152	0.155	0.298	-0.040	0.446
Coolest Quarter Mean	14	1	0.259	0.185	0.224	0.221	0.319	0.133	0.412	0.072	.488(*)	0.038	.530(*)	0.026
								M	erged (n=1	1, 1-tailed)	0.495	0.061	.566(*)	0.035
Standard Deviation of the Coolest Quarter Mean	14	1	0.257	0.188	0.215	0.230	0.415	0.070	.525(*)	0.027	0.322	0.131	-0.023	0.469
						Mei	raed (n=11.	1-tailed)	658(*)	0.014				
Seasonality (Warm Mean - Cool Mean)	14	1	-0.027	0.464	0.191	0.257	0.283	0.164	0.321	0.131	0.442	0.057	0.422	0.067
Seasonality (Warmest Quarter - Coldest Quarter)	14	1	0.082	0.417	0.227	0.217	0.102	0.265	0.290	0.168	0.376	0.007	0.412	0.072
Nighttime Land Surface Temperature Variables	14	<u> </u>	0.002	0.417	0.227	0.217	0.182	0.200	0.200	0.100	0.570	0.000	0.412	0.072
Annual Mean Nighttime Land Surface Temperature	4.4	4	0.250	0.110	0.256	0.108	0.260	0.007	0.200	0.004	0.428	0.060	495/#\	0.020
Annual Mean Nightume Land Surface Temperature	14		0.300	0.110	0.300	0.100	0.506	0.087	0.508	0.004	0.430	0.000	.405(*)	0.039
										M	erged (n=11	, 1-tailed)	.544(^)	0.042
Standard Deviation of Annual Mean	14	1	491(*)	0.037	-0.450	0.053	-0.269	0.177	-0.194	0.253	-0.207	0.239	-0.266	0.179
Warm Season Mean	14	1	0.269	0.176	0.285	0.162	0.301	0.148	0.340	0.117	0.406	0.075	.468(*)	0.046
										M	erged (n=11	l, 1-tailed)	.522(*)	0.050
Standard Deviation of the Warm Season Mean	14	1	-0.309	0.141	-0.303	0.146	-0.036	0.452	0.066	0.412	0.101	0.366	0.026	0.465
Cool Season Mean	14	1	0.411	0.072	0.412	0.072	0.421	0.067	0.430	0.062	.464(*)	0.047	.506(*)	0.032
								M	erged (n=1	1, 1-tailed)	.526(*)	0.048	.567(*)	0.034
Standard Deviation of the Cool Season Mean	14	1	522(*)	0.028	-0.446	0.055	-0.435	0.060	-0.405	0.075	489(*)	0.038	497(*)	0.035
								M	erged (n=1	1, 1-tailed)	-0.516	0.052	-0.511	0.054
Warmest Quarter Mean	14	1	0.299	0.149	0.315	0.136	0.320	0.132	0.345	0.114	0.362	0.101	0.381	0.089
Standard Deviation of the Warmest Quarter Mean	14	1	-0.377	0.092	-0.389	0.084	-0.182	0.266	-0.044	0.441	0.110	0.355	0.075	0.399
Coolest Quarter Mean	14	1	463(*)	0.048	0.452	0.053	0.446	0.055	0.437	0.059	0.448	0.054	480(*)	0 041
ooorest quarter mean								M	erced (n=1	1 1-tailed)	526(*)	0.048	556(*)	0.038
Standard Deviation of the Coelect Quarter Mean	14	4	-0.360	0.007	-0.386	0.086	-0.378	0.001	-0.373	n no4	-0.420	0.040	-0.400	0.000
Seasonality (Warm Mean Cool Mean)	14	4	625(23)	0.007	676(#*)	0.004	677(22)	0.004	626/883	0.000	596(2)	0.014	502(8)	0.010
Seasonality (warm mean - cool mean)	14	5	035()	0.007	0/0()	0.004	6//()	0.004	020(~)	0.000		0.014		0.010
Mergeo	14	1	654(*)	0.015	707(~)	0.007	/54(**)	0.004	/3/(~~)	0.005	663(^)	0.012	633(^)	0.018
Seasonality (Warmest Quarter - Coldest Quarter)	14	1	-0.335	0.121	-0.339	0.118	-0.426	0.064	-0.432	0.062	-0.454	0.051	482(^)	0.040
										M	erged (n=11	, 1-tailed)	-0.503	0.057
Land Surface Diurnal Temperature Range Variables														
Annual Mean Land Surface Diurnal Temperature Range	14	1	0.157	0.296	0.163	0.288	0.266	0.179	0.367	0.098	0.433	0.061	.495(*)	0.036
										M	erged (n=11	l, 1-tailed)	0.512	0.054
Standard Deviation of Annual Mean	14	1	0.011	0.485	-0.145	0.310	-0.007	0.491	0.136	0.322	-0.065	0.412	-0.327	0.127
Warm Season Mean	14	1	0.182	0.267	0.210	0.236	0.331	0.124	0.409	0.073	.477(*)	0.042	.543(*)	0.022
								M	erged (n=1	1, 1-tailed)	0.480	0.068	.561(*)	0.036
Standard Deviation of the Warm Season Mean	14	1	-0.157	0.296	-0.431	0.062	-0.390	0.084	-0.310	0.140	-0.331	0.124	-0.408	0.074
Cool Season Mean	14	1	0.134	0.324	0.126	0.334	0.210	0.236	0.321	0.131	0.373	0.094	0.430	0.062
Standard Deviation of the Cool Season Mean	14	1	0.145	0.311	0.063	0.415	0.186	0.262	0.284	0.163	0.112	0.351	-0.213	0.233
Warmest Quarter Mean	14	1	0.190	0.257	0.198	0.249	0.290	0.157	0.400	0.078	.552(*)	0.020	.627(**)	0.008
		-	-	-	-	-		M	eraed (n=1	1. 1-tailed)	.561(*)	0.036	.638(*)	0.017
Standard Deviation of the Warmest Quarter Mean	14	1	-0.030	0.460	-0.281	0.165	-0.222	0.223	-0.323	0.130	-0.417	0.069	-0.391	0.083
Coolect Ounter Mean	14	1	0.110	0.342	0.084	0.389	0.197	0.261	0.310	0.141	0.300	0.084	0.449	0.054
Choolest Quarter Mean	14		0.146	0.210	0.084	0.300	0.10/	0.201	0.310	0.142	0.060	0.422	0.242	0.004
Standard Deviation of the Coolest Quarter Mean	14	4	0.140	0.010	0.004	0.445	0.101	0.200	0.300	0.172	0.000	0.400	0.420	0.201
Seasonaiity (warm Mean - Cool Mean)	14	-	0.214	0.231	0.304	0.140	0.380	0.06/	0.300	0.100	0.382	0.083	0.407	0.002
Seasonality (warmest ullarter - Coldect Cillarter)	1.44		12 17 4	42210	11 2 2 2 2	11 2 10	11.2112	11 2 2 2	11 2 10	11 11 11	12.010	ALC: 1 1 1 1 1 1	11	11 12 2 2 2 2

(*) Correlation is significant at the 0.05 level; (**) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed or 2-tailed test; r=Pearson's correlation coefficient

Appendix II. Correlations of environmental variables with microfilarid infection measures.

Analysis Extent (Radius)			1km	ı	2kn	n	3kn	n	4kn	ı	6kn	n	8km	n –
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Total Precipitable Water Vapor Variables														
Annual Mean Total Precipitable Water Vapor	14	1	0.059	0.421	0.024	0.467	0.002	0.497	0.059	0.421	0.028	0.462	0.004	0.495
Standard Deviation of Annual Mean	14	1	-0.213	0.232	-0.077	0.397	-0.022	0.470	0.001	0.499	0.072	0.403	0.091	0.379
Wet Season Mean	14	1	-0.037	0.450	-0.074	0.400	-0.095	0.373	-0.044	0.440	-0.074	0.400	-0.108	0.356
Standard Deviation of Wet Season Mean	14	1	-0.033	0.455	0.026	0.464	0.056	0.424	0.062	0.416	0.087	0.384	0.104	0.361
Dry Season Mean	14	1	0.191	0.257	0.176	0.273	0.164	0.288	0.218	0.227	0.182	0.267	0.166	0.286
Standard Deviation of Dry Season Mean	14	1	-0.043	0.443	0.172	0.278	0.209	0.236	0.188	0.260	0.196	0.251	0.195	0.252
Wettest Quarter Mean	14	1	0.106	0.360	0.083	0.389	0.072	0.403	0.121	0.340	0.097	0.371	0.058	0.421
Standard Deviation of Wettest Quarter Mean	14	1	-0.252	0.192	-0.320	0.132	-0.352	0.109	-0.379	0.091	-0.344	0.115	-0.323	0.130
Driest Quarter Mean	14	1	-0.184	0.264	-0.147	0.308	-0.132	0.326	-0.069	0.408	-0.072	0.404	-0.067	0.410
Standard Deviation of Driest Quarter Mean	14	1	-0.261	0.184	-0.214	0.232	-0.220	0.225	-0.203	0.243	-0.147	0.308	-0.125	0.335
Seasonality (Wet Mean - Dry Mean)	14	1	-0.216	0.229	-0.238	0.206	-0.244	0.201	-0.251	0.193	-0.298	0.151	-0.361	0.102
Seasonality (Wettest Mean - Driest Mean)	14	1	0.195	0.252	0.165	0.286	0.169	0.282	0.185	0.264	0.162	D.289	0.117	0.345
NDVI Variables														
MODIS Annual Mean NDVI	14	1	0.389	0.085	0.336	0.120	0.203	0.243	0.127	D.333	0.142	0.314	0.047	0.437
Standard Deviation of Annual Mean	14	1	0.407	0.074	0.184	0.265	0.146	0.309	0.057	0.423	0.202	0.244	0.249	0.195
Wet Season Mean	14	1	0.319	0.134	0.269	0.176	0.139	0.318	0.065	0.413	0.079	0.395	-0.012	0.484
Standard Deviation of Wet Season Mean	14	1	0.257	0.188	0.049	0.434	0.038	0.449	-0.033	0.456	0.097	0.370	0.111	0.353
Dry Season Mean	14	1	.463(*)	0.048	0.408	0.074	0.282	0.164	0.208	0.238	0.229	0.215	0.135	0.323
Standard Deviation of Dry Season Mean	14	1	.539(*)	0.023	0.322	0.131	0.261	0.183	0.178	0.271	0.273	0.172	0.325	0.129
Wettest Quarter Mean	14	1	0.284	0.163	0.249	0.195	0.142	0.314	0.078	0.395	0.104	D.361	0.013	0.482
Standard Deviation of Wettest Quarter Mean	14	1	0.120	0.341	-0.128	0.332	-0.176	0.274	-0.225	0.220	-0.153	0.300	-0.234	0.210
Driest Quarter Mean	14	1	.468(*)	0.046	0.427	0.064	0.330	0.125	0.255	0.190	0.325	0.128	0.280	D.166
Standard Deviation of Driest Quarter Mean	14	1	.573(*)	0.016	0.304	0.145	0.261	0.184	0.157	0.296	0.305	0.145	0.383	0.088
Seasonality (Wet Season - Dry Season)	14	1	-0.434	0.061	-0.360	0.103	-0.344	0.114	-0.326	0.128	-0.230	0.214	-0.259	D.186
Seasonality (Wettest Season - Driest Season)	14	1	-0.352	0.109	-0.242	0.202	-0.251	0.194	-0.215	0.231	-0.149	0.306	-0.208	0.238

Table 1c. Correlations of microfilarid infection prevalence in flightless cormorants with MODIS-derived total precipitable water vapor & NDVI variables.

(*) Correlation is significant at the 0.05 level; (**) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed or 2-tailed test; r=Pearson's correlation coefficient

Table 1d. Correlations of microfilarid intection prevalence	e in flightiess cormorants wi		vith variables base		ed on nigher-resol		solution satellite ima		agery.					
Analysis Extent (Radius)			1km	1 I	2kn	n	3kn	n	4kn	n	6kn	n	8km	n
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Land Surface Temperature Variables (High-Resolution)														
Landsat Land Surface Temperature	14	1	-0.287	0.160	0.019	0.475	0.184	0.264	0.201	0.245	0.127	0.332	0.112	0.352
Landsat Land Surface Temperature Heterogeneity	14	1	-0.096	0.371	-0.102	0.364	-0.234	0.211	-0.197	0.250	-0.064	0.414	-0.080	0.392
ASTER Dry Season Land Surface Temperature	12	1	-0.143	0.329	0.191	0.276	0.334	0.144	0.391	0.104	0.377	0.113	0.228	0.238
ASTER Dry Season Land Surface Temperature Heterogeneity	12	1	0.069	0.415	0.005	0.494	-0.197	0.270	-0.216	0.250	-0.055	0.432	-0.046	0.444
ASTER Wet Season Land Surface Temperature	14	1	-0.364	0.100	-0.064	0.414	0.077	0.396	0.149	0.306	0.147	0.309	-0.025	0.466
ASTER Wet Season Land Surface Temperature Heterogeneity	14	1	-0.031	0.459	-0.138	0.319	-0.271	0.175	-0.286	0.161	-0.232	0.212	-0.281	0.165
ASTER Land Surface Temperature Seasonality	12	1	-0.368	0.120	-0.417	0.089	-0.390	0.105	-0.387	0.107	-0.279	0.190	-0.249	0.218
NDVI Variables (High-Resolution)														
Landsat Mean NDVI, 3/16/01	14	1	0.213	0.232	0.307	0.143	0.238	0.206	0.179	0.270	0.197	0.250	0.059	0.420
ASTER Mean NDVI, Dry Season Composite Image	14	1	0.325	0.129	0.380	0.090	0.307	0.143	0.271	0.175	0.302	0.147	0.188	0.260
ASTER Mean NDVI, Wet Season Composite Image	14	1	0.267	0.178	0.260	0.185	0.154	0.300	0.117	0.345	0.137	0.320	0.069	0.408
ASTER NDVI Seasonality (Wet Season - Dry Season)	14	1	-0.264	0.181	-0.268	0.177	-0.281	0.165	-0.251	0.193	-0.279	0.167	-0.217	0.228
Tasseled Cap Transformation Indices														
Landsat Tasseled Cap Brightness Index, 3/16/01	14	2	-0.310	0.281	-0.047	0.872	-0.070	0.811	-0.095	0.748	-0.054	0.855	-0.171	0.279
Landsat Tasseled Cap Greenness Index, 3/16/01	14	1	.489(*)	0.038	.607(*)	0.011	.582(*)	0.014	.535(*)	0.024	.583(*)	0.014	0.398	0.080
Merged	11	1	.679(*)	0.011	.630(*)	0.019	.613(*)	0.022	.556(*)	0.038	.621(*)	0.021	0.435	0.091
Landsat Tasseled Cap Wetness Index, 3/16/01	14	1	0.037	0.449	-0.104	0.362	-0.059	0.421	-0.029	0.460	-0.092	0.377	0.048	0.435
ASTER Dry Season Tasseled Cap Brightness Index	12	2	-0.240	0.452	-0.028	0.932	-0.165	0.608	-0.207	0.520	-0.153	0.635	-0.182	0.570
ASTER Dry Season Tasseled Cap Greenness Index	12	1	0.184	0.284	0.278	0.191	0.086	0.395	-0.028	0.465	0.049	0.440	-0.079	0.403
ASTER Dry Season Tasseled Cap Wetness Index	12	1	-0.260	0.208	-0.335	0.144	-0.429	0.082	-0.253	0.214	-0.202	0.264	0.032	0.461
ASTER Wet Season Tasseled Cap Brightness Index	14	2	-0.337	0.239	-0.042	0.887	-0.086	0.771	-0.101	0.732	-0.085	0.774	-0.170	0.562
ASTER Wet Season Tasseled Cap Greenness Index	14	1	0.265	0.180	0.262	0.183	0.150	0.304	0.112	0.351	0.128	0.332	0.045	0.439
ASTER Wet Season Tasseled Cap Wetness Index	14	1	474(*)	0.043	-0.399	0.079	-0.297	0.151	-0.247	0.197	-0.276	0.169	-0.160	0.292
Modeled Soil Surface Moisture Index (From ASTER Imagery)														
Modeled Soil Moisture Index	14	1	0 165	0.286	-0.153	0.301	-0.325	0.129	-0.397	0.080	-0.373	0.095	-0.050	0.432

Modeled Soit Moisture Index 14 1 0.100 0.280 -0.103 0.301 -0.325 0.129 -0.397 0.080 -0.333 0.080 -0.000 0.432 (*) Correlation is significant at the 0.05 level; (*) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed test; r=Pearson's correlation coefficient

Table 1e. Correlations of microfilarid infection prevalence in flightless cormorants with topographic variables.

Analysis Extent (Radius)			1km		2km	1	3km		4km		6km		8km	1
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Topographic Variables														
Mean Elevation	14	1	-0.356	0.106	-0.389	0.084	-0.394	0.082	-0.432	0.061	532(*)	0.025	621(**)	0.009
								N	ferged (n=11,	1-tailed)	587(*)	0.029	686(**)	0.010
Mean Slope	14	1	-0.336	0.120	-0.340	0.117	-0.355	0.106	-0.382	0.089	-0.390	0.084	464(*)	0.047
										M	lerged (n=11,	1-tailed)	-0.504	0.057
Mean Aspect	14	1	-0.204	0.243	-0.273	0.172	-0.291	0.156	-0.304	0.146	-0.298	0.150	-0.274	0.172
Proportion of Contiguous Land Surface Within Radius	14	1	-0.064	0.413	0.111	0.352	0.354	0.107	.507(*)	0.032	.579(*)	0.015	.569(*)	0.017
						M	lerged (n=11	1-tailed	0.494	0.061	.584(*)	0.030	.592(*)	0.027

(*) Correlation is significant at the 0.05 level; (**) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed or 2-tailed test; r=Pearson's correlation coefficient

Appendix II. Correlations of environmental variables with microfilarid infection measures.

Table 1f. Correlations of microfilarid infection prevalence in flightless cormorants with principal components.

Analysis Extent (Radius)			1km		2km		3km		4km		6km		8km	
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Data Set Principal Components														
PC1 of WORLDCLIM Temperature Variables (99.8%)	14	1	0.089	0.381	0.229	0.216	0.281	0.165	0.382	0.089	.486(*)	0.039	.579(*)	0.015
								M	erged (n=11	, 1-tailed)	.567(*)	0.034	.655(*)	0.014
PC1 of WORLDCLIM Precipitation Variables (98.3%)	14	1	.525(*)	0.027	.513(*)	0.030	.494(*)	0.036	.476(*)	0.043	0.455	0.051	0.408	0.074
PC1 of MODIS Land Surface Temperature Variables (96.6%)	14	1	0.279	0.167	0.284	0.163	0.381	0.089	.471(*)	0.045	.547(*)	0.021	.579(*)	0.015
								M	/lerged (n=11, 1-tailed)		.553(*)	0.039	.611(*)	0.023
PC1 of MODIS Total Precipitable Water Vapor Variables (64.2%)	14	1	-0.014	0.481	0.083	0.388	0.027	0.464	0.045	0.439	0.032	0.456	0.037	0.450
PC2 of MODIS Total Precipitable Water Vapor Variables (31.5%)	14	1	-0.043	0.442	-0.096	0.373	-0.049	0.434	-0.060	0.419	-0.038	0.449	0.001	0.498
PC1 of MODIS NDVI Variables (87.2%)	14	1	0.378	0.092	0.293	0.155	0.176	0.273	0.097	0.371	0.140	0.316	0.059	0.421
PC2 of MODIS NDVI Variables (6.7%)	14	1	.674(**)	0.004	.498(*)	0.035	.464(*)	0.047	0.390	0.084	0.306	0.144	0.337	0.120
PC1 of Topographic Variables (86.6%)	14	1	-0.305	0.144	-0.407	0.074	-0.429	0.063	471(*)	0.045	537(*)	0.024	596(*)	0.012
						N	lerged (n=11	, 1-tailed)	526(*)	0.048	609(*)	0.023	679(*)	0.011
PC2 of Topographic Variables (13.4%)	14	1	-0.200	0.246	-0.263	0.182	-0.243	0.202	-0.227	0.218	-0.179	0.270	-0.127	0.333
All-Layers PCA Components														
PC1 (88.5%)	14	1	0.270	0.175	0.384	0.088	0.354	0.107	0.317	0.134	0.234	0.211	0.187	0.261
PC2 (7.9%)	14	1	-0.308	0.142	492(*)	0.037	526(*)	0.027	545(*)	0.022	604(*)	0.011	640(**)	0.007
		Μ	erged (n=11,	1-tailed)	525(*)	0.049	557(*)	0.038	575(*)	0.032	631(*)	0.019	667(*)	0.012
PC3 (3.0%)	14	1	-0.374	0.094	-0.456	0.051	480(*)	0.041	510(*)	0.031	511(*)	0.031	494(*)	0.036
		Μ	erged (n=11,	1-tailed)	525(*)	0.049	530(*)	0.047	548(*)	0.040	563(*)	0.036	560(*)	0.037
PC4 (0.4%)	14	1	0.068	0.409	0.151	0.303	0.183	0.265	0.209	0.236	0.234	0.210	0.231	0.214
(*) Correlation is significant at the 0.05 level; (**) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed or 2-tailed test; r=Pearson's correlation coefficient														

Table 2a Correlations of microfilarid intensity in infected flightless corr

Analysis Extent (Radius)			1km		2km		3km		4km		6km		8km	
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
WorldClim Temperature Variables														
Annual Mean Temperature	14	1	582(*)	0.015	-0.440	0.058	-0.411	0.072	-0.362	0.102	-0.212	0.233	0.126	0.334
Mean Temperature of the Driest Quarter	14	1	-0.094	0.374	-0.134	0.324	-0.141	0.315	-0.123	0.338	-0.088	D.383	0.043	0.442
Mean Temperature of the Wettest Quarter	14	1	-0.412	0.072	-0.377	0.092	-0.360	0.103	-0.337	0.119	-0.216	0.229	0.080	0.393
Mean Temperature of the Coldest Quarter	14	1	600(*)	0.012	471(*)	0.044	-0.438	0.059	-0.385	0.087	-0.211	0.235	0.173	0.278
Mean Temperature of the Warmest Quarter	14	1	-0.412	0.072	-0.377	0.092	-0.360	0.103	-0.337	0.119	-0.216	0.229	0.079	0.394
Minimum Temperature of the Coldest Month	14	1	577(*)	0.015	-0.439	0.058	-0.404	0.076	-0.346	0.113	-0.185	0.263	0.178	0.271
Maximum Temperature of the Warmest Month	14	1	-0.441	0.057	-0.454	0.052	-0.438	0.058	-0.424	0.065	-0.281	0.165	0.017	0.477
Temperature Annual Range	14	1	.542(*)	0.023	0.388	0.085	0.365	0.100	0.295	0.153	0.140	0.317	-0.230	0.215
Mean Diurnal Temperature Range	14	1	0.105	0.360	0.124	0.337	0.181	0.268	0.155	0.298	0.061	0.418	-0.193	0.254
Temperature Seasonality	14	1	-0.152	0.301	0.061	0.417	0.414	0.071	0.308	0.142	0.043	0.442	-0.352	0.108
WorldClim Precipitation Variables														
Annual Precipitation	14	1	0.204	0.242	0.218	0.227	0.238	0.206	0.239	0.206	0.222	0.223	0.104	0.361
Precipitation in the Coldest Quarter	14	1	0.104	0.362	0.143	0.313	0.189	0.259	0.189	0.259	0.166	0.285	0.018	0.476
Precipitation in the Warmest Quarter	14	1	0.281	0.165	0.291	0.156	0.307	0.143	0.301	0.148	0.279	0.167	0.178	0.272
Precipitation in the Driest Quarter	14	1	0.047	0.437	0.108	0.357	0.175	0.274	0.174	0.276	0.144	0.312	-0.046	0.437
Precipitation in the Wettest Quarter	14	1	0.281	0.165	0.291	0.156	0.307	0.143	0.303	0.146	0.283	D.163	0.176	0.274
Precipitation in the Driest Month	14	1	-0.020	0.472	0.041	0.444	0.160	0.292	0.235	0.209	0.163	0.289	-0.138	0.319
Precipitation in the Wettest Month	14	1	0.212	0.234	0.235	0.209	0.260	0.185	0.258	0.186	0.240	0.204	0.126	0.334
Precipitation Seasonality	14	1	-0.203	0.243	-0.180	0.270	-0.187	0.261	-0.185	0.263	-0.175	0.274	-0.093	0.376

(*) Correlation is significant at the 0.05 level; (**) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed ro 2-tailed test; r=Pearson's correlation coefficient
Table 2b. Correlations of microfilarid intensity in infected flightless cormorants with MODIS-derived land surface temperature variables.

Analysis Extent (Radius)	-		1km	1	2km		3kn	1	4km	1	6kn	n	8kn	ı
· · · ·	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Daytime Land Surface Temperature Variables														
Annual Mean Daytime Land Surface Temperature	14	1	0.077	0.397	0.000	0.499	-0.047	0.437	-0.107	0.358	-0.135	0.323	-0.107	0.358
Standard Deviation of Annual Mean	14	1	0.180	0.269	0.015	0.480	0.033	0.456	0.289	0.158	.727(**)	0.002	.490(*)	0.038
								M	erged (n=11	, 1-tailed)	.702(**)	0.008	0.412	0.104
Warm Season Mean	14	1	0.112	0.351	0.038	0.449	0.022	0.470	-0.036	0.452	-0.049	0.434	-0.017	0.477
Standard Deviation of the Warm Season Mean	14	1	0.077	0.397	-0.181	0.267	-0.325	0.128	-0.094	0.375	0.337	0.119	0.075	D.399
Cool Season Mean	14	1	0.059	0.420	-0.015	0.480	-0.081	0.392	-0.147	0.308	-0.188	0.260	-0.166	0.286
Standard Deviation of the Cool Season Mean	14	1	0.240	0.204	0.111	0.353	0.134	0.324	0.364	0.101	.697(**)	0.003	.528(*)	0.026
								M	erged (n=11	, 1-tailed)	.680(*)	0.011	0.470	0.072
Warmest Quarter Mean	14	1	0.150	0.304	0.058	0.422	0.052	0.430	0.012	0.484	0.011	0.485	0.027	0.463
Standard Deviation of the Warmest Quarter Mean	14	1	0.028	0.462	-0.194	0.253	-0.233	0.211	-0.042	0.443	0.200	0.246	0.085	0.387
Coolest Quarter Mean	14	1	0.044	0.440	-0.073	0.402	-0.157	0.295	-0.217	0.228	-0.232	0.213	-0.208	0.238
Standard Deviation of the Coolest Quarter Mean	14	1	0.271	0.174	0.207	0.238	0.356	0.106	.617(**)	0.009	.713(**)	0.002	.571(*)	0.017
						M	erged (n=11	l, 1-tailed)	.625(*)	0.020	.695(**)	0.009	0.499	0.059
Seasonality (Warm Mean - Cool Mean)	14	1	0.314	0.137	0.220	0.225	0.356	0.105	0.409	0.073	0.450	0.053	0.452	0.052
Seasonality (Warmest Quarter - Coldest Quarter)	14	1	0.361	0.102	0.340	0.117	0.441	0.057	.528(*)	0.026	.542(*)	0.023	.535(*)	0.024
						M	erged (n=11	l, 1-tailed)	.543(*)	0.042	.584(*)	0.030	.560(*)	0.037
Nighttime Land Surface Temperature Variables														
Annual Mean Nighttime Land Surface Temperature	14	1	-0.146	0.310	-0.182	0.267	-0.189	0.259	-0.181	0.268	-0.132	0.326	-0.018	0.476
Standard Deviation of Annual Mean	14	1	-0.022	0.471	0.122	0.338	0.239	0.206	0.318	0.134	0.330	0.125	0.283	0.163
Warm Season Mean	14	1	-0.187	0.261	-0.214	0.231	-0.207	0.239	-0.192	0.256	-0.135	0.323	0.004	0.495
Standard Deviation of the Warm Season Mean	14	1	0.003	0.495	0.149	0.306	0.308	0.142	0.377	0.092	0.423	0.066	0.399	0.079
Cool Season Mean	14	1	-0.107	0.358	-0.150	0.305	-0.169	0.282	-0.166	0.285	-0.123	0.338	-0.026	0.465
Standard Deviation of the Cool Season Mean	14	1	-0.018	0.476	0.052	0.430	0.035	0.453	0.098	0.370	0.095	0.373	0.105	0.361
Warmest Quarter Mean	14	1	-0.186	0.263	-0.232	0.212	-0.229	0.215	-0.213	0.233	-0.176	0.273	-0.053	0.429
Standard Deviation of the Warmest Quarter Mean	14	1	0.100	0.367	0.239	0.206	0.396	0.081	0.455	0.051	.459(*)	0.049	0.380	0.090
								M	erged (n=11	, 1-tailed)	0.244	0.235		
Coolest Quarter Mean	14	1	-0.095	0.373	-0.150	0.304	-0.184	0.264	-0.200	0.246	-0.175	0.275	-0.089	0.381
Standard Deviation of the Coolest Quarter Mean	14	1	-0.094	0.374	-0.060	0.419	-0.051	0.432	0.028	0.462	0.060	0.420	0.054	0.427
Seasonality (Warm Mean - Cool Mean)	14	1	-0.168	0.283	-0.097	0.370	0.034	0.454	0.076	0.398	0.084	0.387	0.108	0.357
Seasonality (Warmest Quarter - Coldest Quarter)	14	1	-0.172	0.279	-0.153	0.300	-0.020	0.473	0.088	0.383	0.114	0.349	0.125	0.335
Land Surface Diurnal Temperature Range Variables														
Annual Mean Land Surface Diurnal Temperature Range	14	1	0.137	0.321	0.070	0.406	0.016	0.478	-0.068	0.408	-0.134	0.324	-0.154	0.300
Standard Deviation of Annual Mean	14	1	0.186	0.262	0.026	0.465	0.036	0.451	0.357	0.105	.620(**)	0.009	0.318	0.134
								M	erged (n=11	, 1-tailed)	0.517	0.052		
Warm Season Mean	14	1	0.153	0.301	0.093	0.376	0.063	0.415	-0.022	0.470	-0.068	0.409	-0.061	0.418
Standard Deviation of the Warm Season Mean	14	1	0.052	0.430	-0.274	0.172	530(*)	0.026	-0.419	0.068	0.094	0.375	-0.025	0.466
				N	lerged (n=11,	, 1-tailed)	721(**)	0.006	565(*)	0.035				
Cool Season Mean	14	1	0.121	0.341	0.054	0.427	-0.007	0.491	-0.089	0.382	-0.165	0.286	-0.210	0.235
Standard Deviation of the Cool Season Mean	14	1	0.247	0.197	0.160	0.292	0.218	0.227	.491(*)	0.037	.740(**)	0.001	.545(*)	0.022
						M	erged (n=11	, 1-tailed)	0.436	0.090	.722(**)	0.006	0.467	0.074
Warmest Quarter Mean	14	1	0.185	0.263	0.108	0.357	0.056	0.424	-0.021	0.471	-0.049	0.434	-0.035	0.452
Standard Deviation of the Warmest Quarter Mean	14	1	0.185	0.264	-0.018	0.476	-0.229	0.216	-0.098	0.370	0.017	0.478	-0.045	0.439
Coolest Quarter Mean	14	1	0.094	0.375	-0.022	0.470	-0.098	0.369	-0.156	0.297	-0.197	0.250	-0.237	0.207
Standard Deviation of the Coolest Quarter Mean	14	1	0.191	0.257	0.183	0.266	0.381	0.090	.665(**)	0.005	.702(**)	0.003	.510(*)	0.031
						M	erged (n=11	, 1-tailed)	.736(**)	0.005	.702(**)	0.008	0.427	0.095
Seasonality (Warm Mean - Cool Mean)	14	1	0.137	0.321	0.140	0.317	0.222	0.223	0.221	0.224	0.253	0.191	0.324	0.130
Seasonality (Warmest Quarter - Coldest Quarter)	14	1	0.237	0.207	0.273	0.173	0.301	0.148	0.305	0.144	0.314	0.137	0.392	0.083
(*) Correlation is significant at the 0.05 level; (**) Correlation is significant	nt at	the C).01 level; n	=number	of sites asse	ssed; t=1	-tailed or 2-	tailed test	r=Pearson'	s correlati	on coefficie	ent		
Table 2c. Correlations of microfilarid intensity in infected fil	iahtl	ess	cormoran	its with	MODIS-de	rived tot	al precipit	able wa	ter vapor a	and NDV	'l variable	s.		
Analysis Extent (Radius)	<u></u>	T	1km		2km		3kn	1	4km	1	6kr	n	8kn	1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	n	t	r	p	r	p	r	p	r	p	r	р	r	p
Total Precipitable Water Vapor Variables		-												
Annual Mean Total Precipitable Water Vapor	14	1	.511(*)	0.031	0.377	0.092	0.335	0.121	0.305	0.144	0.160	0.292	0.113	0.351
Steadard Deviation of Annual Mana			0.222	0.212	0.241	0.202	0.240	0.408	0.205	0.241	0.205	0.244	0.270	0.187

Annual Mean Total Precipitable Water Vapor	17			0.031	0.377	0.082	0.335	0.121	0.303	0.144	0.100	0.282	0.115	0.55
Standard Deviation of Annual Mean	14	1	0.232	0.212	0.241	0.203	0.249	0.196	0.205	0.241	0.205	0.241	0.279	0.167
Wet Season Mean	14	1	.497(*)	0.035	0.386	0.086	0.362	0.102	0.348	0.111	0.239	0.205	0.200	0.246
Standard Deviation of Wet Season Mean	14	1	0.017	0.476	-0.088	0.383	-0.129	0.330	-0.177	0.272	-0.198	0.248	-0.125	0.335
Dry Season Mean	14	1	0.414	0.071	0.289	0.159	0.230	0.214	0.185	0.263	0.017	0.478	-0.028	0.462
Standard Deviation of Dry Season Mean	14	1	0.093	0.377	0.233	0.212	0.276	0.169	0.280	0.166	0.309	0.141	0.322	0.131
Wettest Quarter Mean	14	1	.517(*)	0.029	0.415	0.070	0.396	0.081	0.370	0.096	0.243	0.201	0.195	0.252
Standard Deviation of Wettest Quarter Mean	14	1	-0.016	0.478	-0.147	0.308	-0.134	0.324	-0.183	0.266	-0.158	0.295	-0.045	0.439
Driest Quarter Mean	14	1	0.265	0.180	0.127	0.333	0.073	0.402	0.024	0.468	-0.164	0.288	-0.199	0.248
Standard Deviation of Driest Quarter Mean	14	1	0.027	0.463	0.025	0.466	0.041	0.445	0.097	0.370	0.208	0.238	0.255	0.189
Seasonality (Wet Mean - Dry Mean)	14	1	0.226	0.219	0.275	0.171	0.301	0.148	0.322	0.130	0.329	0.125	0.344	0.115
Seasonality (Wettest Mean - Driest Mean)	14	1	0.353	0.108	0.416	0.069	0.433	0.061	0.439	0.058	0.412	0.071	0.395	0.081
NDVI Variables														
MODIS Annual Mean NDVI	14	1	.668(**)	0.004	.469(*)	0.045	.465(*)	0.047	.470(*)	0.045	0.445	0.055	0.205	0.241
Standard Deviation of Annual Mean	14	1	0.118	0.344	0.138	0.319	0.233	0.212	0.269	0.176	0.378	0.091	0.344	0.115
Wet Season Mean	14	1	.685(**)	0.003	.502(*)	0.034	.490(*)	0.037	.483(*)	0.040	0.439	0.058	0.194	0.253
Standard Deviation of Wet Season Mean	14	1	0.071	0.405	0.154	0.299	0.294	0.153	0.297	0.151	0.426	0.065	0.330	0.125
Dry Season Mean	14	1	.631(**)	0.008	0.415	0.070	0.419	0.068	0.439	0.058	0.434	0.061	0.212	0.233
Standard Deviation of Dry Season Mean	14	1	0.165	0.287	0.100	0.367	0.111	0.353	0.150	0.304	0.234	0.211	0.274	0.172
Wettest Quarter Mean	14	1	.606(*)	0.011	.482(*)	0.040	.522(*)	0.028	.520(*)	0.028	.460(*)	0.049	0.197	0.250
Standard Deviation of Wettest Quarter Mean	14	1	-0.190	0.258	-0.047	0.437	0.157	0.297	0.222	0.222	0.433	0.061	0.379	0.091
Driest Quarter Mean	14	1	.600(*)	0.012	0.399	0.079	0.435	0.060	.489(*)	0.038	.564(*)	0.018	0.355	0.106
Merged	14	1	.629(*)	0.019	.553(*)	0.039	.527(*)	0.048	.534(*)	0.045	.559(*)	0.037	0.260	0.220
Standard Deviation of Driest Quarter Mean	14	1	0.212	0.234	0.120	0.342	0.184	0.265	0.280	0.166	0.393	0.082	0.362	0.102
Seasonality (Wet Season - Dry Season)	14	1	0.250	0.194	0.383	0.088	0.414	0.070	0.390	0.084	0.279	0.167	0.096	0.373
Secondity (Wettert Secon Drivet Second	14	4	0.220	0.225	0 277	0.002	450/+1	0.050	0.404	0.076	0.205	0.241	0.012	0.491

 Seasonality (Wettest Season - Driest Season)
 14
 0.220
 0.225
 0.377
 0.092
 .458(*)
 0.050
 0.404
 0.076
 0.205
 0.241
 0.013
 0.482

 (*) Correlation is significant at the 0.05 level; (**) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed or 2-tailed test; r=Pearson's correlation coefficient
 0.482

Table 2d. Correlations of microfilarid intensity in infected flightless cormorants with variables from higher-resolution satellite imagery

	-													
Analysis Extent (Radius)			1km	1	2kn	n	3kr	n	4kn	n	6kn	n l	8kn	n
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Land Surface Temperature Variables (High-Resolution)														
Landsat Land Surface Temperature	14	1	-0.064	0.414	-0.083	0.389	-0.244	0.200	-0.290	0.157	-0.285	0.162	-0.316	0.135
Landsat Land Surface Temperature Heterogeneity	14	1	0.392	0.083	0.354	0.107	0.349	0.111	0.240	0.204	0.193	0.254	0.191	0.256
ASTER Dry Season Land Surface Temperature	12	1	-0.172	0.297	0.094	0.385	-0.087	0.394	-0.181	0.286	-0.283	0.186	-0.181	0.286
ASTER Dry Season Land Surface Temperature Heterogeneity	12	1	.517(*)	0.043	0.486	0.055	0.418	0.088	0.398	0.100	0.366	0.121	0.356	0.128
ASTER Wet Season Land Surface Temperature	14	1	0.079	0.394	0.089	0.382	-0.086	0.386	-0.227	0.217	-0.406	0.075	-0.353	0.108
ASTER Wet Season Land Surface Temperature Heterogeneity	14	1	.692(**)	0.003	.532(*)	0.025	0.397	0.080	0.373	0.095	0.288	0.159	0.199	0.248
ASTER Land Surface Temperature Seasonality	12	1	0.192	0.275	0.093	0.387	0.033	0.460	0.009	0.489	-0.055	0.433	-0.106	0.372
NDVI Variables (High-Resolution)														
Landsat Mean NDVI, 3/16/01	14	1	.595(*)	0.012	0.383	0.088	0.365	0.100	0.347	0.112	0.244	0.200	0.030	0.459
ASTER Mean NDVI, Dry Season Composite Image	14	1	.618(**)	0.009	0.434	0.060	0.419	0.068	0.402	0.077	0.353	0.108	0.134	0.324
ASTER Mean NDVI, Wet Season Composite Image	14	1	.660(**)	0.005	.493(*)	0.037	.464(*)	0.047	0.447	0.055	0.377	0.092	0.184	0.265
ASTER NDVI Seasonality (Wet Season - Dry Season)	14	1	0.188	0.260	0.277	0.169	0.266	0.179	0.287	0.160	0.222	0.223	0.168	0.283
Tasseled Cap Transformation Indices														
Landsat Tasseled Cap Brightness Index, 3/16/01	12	1	0.450	0.106	0.394	0.163	0.370	0.192	0.341	0.233	0.203	0.487	-0.016	0.956
Landsat Tasseled Cap Greenness Index, 3/16/01	14	1	0.455	0.051	0.236	0.208	0.223	0.222	0.214	0.231	0.158	0.295	0.025	0.466
Landsat Tasseled Cap Wetness Index, 3/16/01	14	1	-0.400	0.078	-0.354	0.107	-0.370	0.096	-0.358	0.105	-0.260	0.185	-0.055	0.426
ASTER Dry Season Tasseled Cap Brightness Index	12	2	0.486	0.110	0.497	0.101	0.394	0.206	0.322	0.308	0.169	0.600	0.005	0.988
ASTER Dry Season Tasseled Cap Greenness Index	12	1	.549(*)	0.032	.527(*)	0.039	.537(*)	0.036	.536(*)	0.036	0.354	0.130	-0.017	0.479
ASTER Dry Season Tasseled Cap Wetness Index	12	1	-0.254	0.213	-0.042	0.448	-0.049	0.440	-0.235	0.231	-0.165	0.304	0.192	0.276
ASTER Wet Season Tasseled Cap Brightness Index	14	2	0.520	0.057	.570(*)	0.033	0.470	0.090	0.392	0.166	0.210	0.471	0.001	0.998
ASTER Wet Season Tasseled Cap Greenness Index	14	1	.601(*)	0.011	.472(*)	0.044	.468(*)	0.046	.464(*)	0.047	0.403	0.077	0.194	0.253
ASTER Wet Season Tasseled Cap Wetness Index	14	1	469(*)	0.045	-0.339	0.118	-0.402	0.077	-0.439	0.058	-0.420	0.067	-0.204	0.242
Modeled Soil Moisture Index (From ASTER Imagery)														
Modeled Soil Moisture Index	14	1	-0.436	0.060	-0.409	0.073	-0.305	0.145	-0.116	0.347	0.175	0.274	0.281	0.165

(*) Correlation is significant at the 0.05 level; (*) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed or 2-tailed test; r=Pearson's correlation coefficient

Table 2e. Correlations of microfilarid intensity in infected flip	ghtl	ess	cormoran	ts with t	topographi	ic variat	les.							
Analysis Extent (Radius)			1km		2kn	ı	3km	n	4km	ı	6kn	n	8km	n
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Topographic Variables														
Mean Elevation	14	1	0.118	0.345	0.211	0.234	0.255	0.190	0.249	0.195	0.152	0.302	-0.119	0.342
Mean Slope	14	1	0.228	0.216	0.284	0.163	0.304	0.146	0.287	0.159	0.196	0.251	0.084	0.387
Mean Aspect	14	1	-0.031	0.459	0.100	0.367	0.087	0.383	0.073	0.402	0.129	0.330	0.140	0.316
Proportion of Contiguous Land Surface Within Radius	14	1	-0.184	0.265	-0.263	0.182	-0.176	0.274	-0.103	0.363	0.007	0.490	0.038	0.449
(*) Correlation is significant at the 0.05 level; (**) Correlation is significant	nt at	the	0.01 level; n	=number	of sites asse	essed; t='	I-tailed or 2-	tailed test	; r=Pearson'	's correlat	ion coefficie	nt		

Table 2f. Correlations of microfilarid intensity in infected flightless cormorants with results of principal components analyses.

Analysis Extent (Radius)		1km	1	2kn	n	3kn	n	4kn	ı	6kn	n	8kn	n
n	t	r	р	r	р	r	р	r	р	r	р	r	р
Data Set Principal Components													
PC1 of WORLDCLIM Temperature Variables (99.8%) 14	+ 1	525(*)	0.027	-0.430	0.062	-0.398	0.079	-0.358	0.104	-0.216	0.229	0.095	0.373
PC1 of WORLDCLIM Precipitation Variables (98.3%) 14	+ 1	0.222	0.222	0.236	0.208	0.256	0.189	0.255	0.189	0.237	0.207	0.123	0.338
PC1 of MODIS Land Surface Temperature Variables (98.6%) 14	1	0.080	0.392	-0.013	0.482	-0.057	0.424	-0.107	0.358	-0.118	0.344	-0.088	0.383
PC1 of MODIS Total Precipitable Water Vapor Variables (64.2%) 14	+ 1	0.377	0.092	0.293	0.155	0.242	0.202	0.174	0.276	0.033	0.455	-0.002	0.497
PC2 of MODIS Total Precipitable Water Vapor Variables (31.5%) 14	+ 1	483(*)	0.040	469(*)	0.045	-0.456	0.051	-0.420	0.067	-0.347	0.112	-0.313	0.138
PC1 of MODIS NDVI Variables (87.2%) 14	+ 1	.585(*)	0.014	0.451	0.053	.487(*)	0.039	.500(*)	0.034	.494(*)	0.036	0.251	0.193
PC2 of MODIS NDVI Variables (6.7%) 14	+ 1	0.175	0.275	-0.086	0.385	-0.159	0.294	-0.127	0.332	0.012	0.484	0.113	0.350
PC1 of Topographic Variables (86.6%) 14	1	0.030	0.459	0.186	0.262	0.233	0.211	0.230	0.214	0.161	0.292	-0.064	0.414
PC2 of Topographic Variables (13.4%) 14	+ 1	-0.022	0.470	0.089	0.381	0.049	0.434	0.016	0.478	0.091	0.379	0.194	0.254
All-Layers PCA Components													
PC1 (88.5%) 14	+ 1	-0.159	0.294	0.107	0.358	0.212	0.233	0.244	0.200	0.237	0.208	0.067	0.409
PC2 (7.9%) 14	1	0.178	0.272	0.008	0.490	0.033	0.456	0.041	0.445	-0.003	0.496	-0.143	0.313
PC3 (3.0%) 14	1	0.053	0.428	0.085	0.386	0.044	0.440	0.006	0.492	0.053	0.428	0.091	0.378
PC4 (0.4%) 14	+ 1	-0.159	0.294	-0.197	0.250	-0.203	0.243	-0.202	0.244	-0.232	0.213	-0.186	0.262
(*) Correlation is significant at the 0.05 level; (**) Correlation is significant a	t the	0.01 level; n	=number	of sites ass	essed; t='	1-tailed or 2-	tailed test	t; r=Pearson	's correlat	tion coefficie	nt		

Table 3a, Correlations of microfilarid infection prevalence in Galapagos penguins with WorldClim variables.

	- i												
Analysis Extent (Radius)		1km		2kn	n	3kn	n	4kn	n	6kn	n	8kn	1 I
n	t	r	р	r	р	r	р	r	р	r	р	r	р
WorldClim Temperature Variables													
Annual Mean Temperature 10	1	0.166	0.347	0.220	0.301	0.235	0.288	0.230	0.292	0.237	0.286	0.247	0.277
Mean Temperature of the Driest Quarter 10	1	0.293	0.240	0.320	0.220	0.319	0.220	0.308	0.229	0.273	0.256	0.274	0.255
Mean Temperature of the Wettest Quarter 10	1	0.246	0.278	0.249	0.276	0.255	0.271	0.241	0.282	0.246	0.279	0.258	0.268
Mean Temperature of the Coldest Quarter 10	1	0.094	0.412	0.171	0.343	0.204	0.314	0.206	0.312	0.218	0.302	0.229	0.293
Mean Temperature of the Warmest Quarter 10	1	0.246	0.278	0.249	0.276	0.255	0.271	0.244	0.280	0.251	0.274	0.265	0.263
Minimum Temperature of the Coldest Month 10	1	0.138	0.372	0.190	0.326	0.222	0.299	0.220	0.300	0.228	0.294	0.237	0.286
Maximum Temperature of the Warmest Month 10	1	0.003	0.498	0.133	0.377	0.167	0.346	0.177	0.338	0.227	0.294	0.242	0.282
Temperature Annual Range 10	1	-0.225	0.296	-0.214	0.306	-0.241	0.283	-0.232	0.290	-0.227	0.294	-0.236	0.287
Mean Diurnal Temperature Range 10	1	-0.360	0.190	-0.321	0.219	-0.305	0.231	-0.294	0.240	-0.279	0.252	-0.283	0.248
Temperature Seasonality 10	1	0.193	0.324	-0.035	0.467	-0.132	0.378	-0.155	0.357	-0.176	0.339	-0.181	0.334
WorldClim Precipitation Variables													
Annual Precipitation 10	1	0.394	0.167	0.317	0.222	0.216	0.304	0.099	0.408	0.007	0.493	-0.015	0.486
Precipitation in the Coldest Quarter 10	1	0.329	0.213	0.198	0.319	0.068	0.436	-0.038	0.464	-0.082	0.423	-0.108	0.399
Precipitation in the Warmest Quarter 10	1	0.330	0.212	0.274	0.255	0.224	0.297	0.164	0.349	0.092	0.414	0.072	0.433
Precipitation in the Driest Quarter 10	1	0.330	0.212	0.169	0.345	0.047	0.456	-0.046	0.457	-0.085	0.421	-0.113	0.395
Precipitation in the Wettest Quarter 10	1	0.330	0.212	0.274	0.255	0.206	0.312	0.128	0.382	0.052	0.452	0.030	0.472
Precipitation in the Driest Month 10	1	0.327	0.215	0.111	0.397	-0.024	0.478	-0.054	0.449	-0.099	0.407	-0.116	0.392
Precipitation in the Wettest Month 10	1	0.374	0.181	0.313	0.225	0.230	0.292	0.133	0.377	0.044	0.458	0.028	0.474
Precipitation Seasonality 10	1	-0.418	0.151	-0.379	0.177	-0.327	0.215	-0.271	0.258	-0.215	0.305	-0.191	0.325

(*) Correlation is significant at the 0.05 level; (**) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed or 2-tailed test; r=Pearson's correlation coefficient

Table 3b. Correlations of microfilarid infection prevalence in Galapagos penguins with MODIS-derived land surface temperature variables.

Interpretation c n c n <n<n< th=""> n<n<n< th=""> n<n<n< th=""> n<n<n< th=""> n<n<n< th=""> n<n<n< th=""> n<n<n< th=""> n<n<n<n< th=""> n<n<<n< th=""> n<n<<n<n<< th=""> n<n<< th=""> n<n<< th=""> n<n<< th=""> n<n<< th=""> n<n<< th=""> n<n<n<< th=""> n<n<n< th=""><th>Analysis Extent (Padius)</th><th></th><th></th><th>11/00</th><th></th><th>21.00</th><th></th><th>21.0</th><th></th><th></th><th></th><th>Glas</th><th></th><th>Olum</th><th></th></n<n<></n<n<<></n<<></n<<></n<<></n<<></n<<></n<<n<n<<></n<<n<></n<n<n<></n<n<></n<n<></n<n<></n<n<></n<n<></n<n<></n<n<>	Analysis Extent (Padius)			11/00		21.00		21.0				Glas		Olum	
Dytems Lond Survices Encourselines Vertables Image Image <thimage< th=""> Image Image<!--</th--><th>Analysis Extent (Radius)</th><th></th><th></th><th>r IKIII</th><th></th><th>2611</th><th>' n</th><th>JKII F</th><th>" n</th><th>460</th><th>"</th><th>OKI</th><th>"</th><th>o Kil</th><th>1</th></thimage<>	Analysis Extent (Radius)			r IKIII		2611	' n	JKII F	" n	460	"	OKI	"	o Kil	1
Annual Mean Daydine Land States Temperature 0 1 0.302 0.512 0.543 0.6691 0.033 56911 0.035 659111 0.035 65911	Dautime Land Surface Temperature Variables			,	P		P	,	- P	,	P	,	P		P
Marger et 5 5 6 778(1) 0.025 758(1) 0.025 558(1) 0.025 0.551 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521 0.025 0.521	Annual Mean Davtime Land Surface Temperature	10	1	0.390	0 132	0.541	0.053	560(*)	0.046	582(*)	0.039	568(*)	0.043	568(*)	0.043
Standard Deviation of Annual Mass 0 1 2.023 0.242 0.142 0.149 0.141 0.141 0.145 0.141 0.	Merned	8	1	.654(*)	0.039	.702(*)	0.026	.708(*)	0.025	.696(*)	0.028	.664(*)	0.036	.663(*)	0.037
Warm Sesson Mean 0 1 0.34 0.19 0.470 0.025 0.871 0.425 0.871 0.025 0.871 0.025 0.871 0.025 0.871 0.025 0.871 0.025 0.871 0.025 0.871 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.047 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.045 0.571 0.051 0.571 0.051 0.571 0.051 0.571 <t< td=""><td>Standard Deviation of Annual Mean</td><td>10</td><td>1</td><td>0.267</td><td>0.228</td><td>0.422</td><td>0.112</td><td>0.401</td><td>0.125</td><td>0.366</td><td>0.149</td><td>0.196</td><td>0.293</td><td>0.053</td><td>0.442</td></t<>	Standard Deviation of Annual Mean	10	1	0.267	0.228	0.422	0.112	0.401	0.125	0.366	0.149	0.196	0.293	0.053	0.442
Merged i 6587 0.038 706° 0.027 637° 0.039 659° 0.036 657° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036 658° 0.036	Warm Season Mean	10	1	0.343	0.166	0.497	0.072	0.512	0.065	.553(*)	0.049	.553(*)	0.049	.561(*)	0.046
Standard Devisition of the Warm Season Mean 10 0.475 7.013 0.544 0.020 s.021 0.025 5.721 0.042 5.671 0.042 5.671 0.042 5.671 0.042 5.671 0.042 5.680 0.031 6.891 0.027 6.861 0.024 0.246 0.161 5.681 0.030 0.037 0.540 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.163 0.830 0.137 0.16 0.164 0.124 0.164 0.164 0.174 0.083 0.037 0.027 0.028 0.837 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.031 5.897 0.164 0.164	Meraed	8	1	.658(*)	0.038	.709(*)	0.025	.697(*)	0.027	.687(*)	0.030	.665(*)	0.036	.678(*)	0.032
Cool Sesson Mean 10 0 0.10 6.5437 0.048 5797 0.042 5687 0.08 5797 0.042 5687 0.08 5697 0.040 5697 0.040 5697 0.040 5697 0.040 5697 0.040 5697 0.040 6697 0.040 6697 0.040 6697 0.040 6697 0.041 65977 0.041 65977 <td>Standard Deviation of the Warm Season Mean</td> <td>10</td> <td>1</td> <td>0.437</td> <td>0.103</td> <td>0.545</td> <td>0.052</td> <td>.562(*)</td> <td>0.045</td> <td>0.534</td> <td>0.056</td> <td>0.361</td> <td>0.153</td> <td>0.258</td> <td>0.236</td>	Standard Deviation of the Warm Season Mean	10	1	0.437	0.103	0.545	0.052	.562(*)	0.045	0.534	0.056	0.361	0.153	0.258	0.236
Merged 8 1 64.07 0.03 68.97 0.031 68.97 0.030 68.97 0.040 64.07 0.04 Standard Deviation of the Colses Sam Mann 10 0.238 0.177 0.477 0.083 0.183 0.187 0.044 0.144 0.144 0.044 0.042 0.206 0.538 0.040 0.640 0.040 0.040 0.040 0.040 0.041 0.043 0.041 0.042 0.041 0.042 0.041 0.042 0.041 0.042 0.041 0.042 0.042 0.041 0.042 0.041 0.042 0.041 0.042 0.041 0.042 0.041 0.042 0.041 0.042 0.011 0.042 0.011 0.041 0.043 0.041 0.043 0.041 0.042 0.011 0.042 0.011 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.	Cool Season Mean	10	1	0.415	0.116	.555(*)	0.048	.578(*)	0.040	.593(*)	0.036	.572(*)	0.042	.566(*)	0.044
Standard Deviation of the Cool Season Meson 10 1 0.202 0.288 0.147 0.2470 0.148 0.204 0.248 0.838 0.147 0.2470 0.838 0.147 0.2470 0.838 0.147 0.2470 0.838 0.838 0.838 0.831 0.831 6.869(1) 0.028 6.83(1) 0.031 6.86(1) 0.032 5.85(1) 0.041 0.541 0.033 0.020 6.83(1) 0.031 5.86(1) 0.033 0.020 0.645 0.647 0.033 0.020 0.65(1) 0.477 0.332 0.67(1) 0.333 0.021 0.425 0.640 0.033 0.027 0.335 0.021 0.414 0.331 0.022 0.630 0.021 0.414 0.537 0.022 6.860 0.033 0.027 0.335 0.027 0.028 6.87(1) 0.033 0.027 0.028 6.87(1) 0.034 0.577 0.037 0.537 0.237 0.237 0.237 0.23 0.233 0.141 0.476 0.437 </td <td>Merged</td> <td>8</td> <td>1</td> <td>.643(*)</td> <td>0.043</td> <td>.683(*)</td> <td>0.031</td> <td>.699(*)</td> <td>0.027</td> <td>.685(*)</td> <td>0.030</td> <td>.650(*)</td> <td>0.040</td> <td>.640(*)</td> <td>0.044</td>	Merged	8	1	.643(*)	0.043	.683(*)	0.031	.699(*)	0.027	.685(*)	0.030	.650(*)	0.040	.640(*)	0.044
Warnest Quarter Marter 1 0.22 0.177 0.475 0.823 6.8371 0.028 6.8371 0.028 6.8371 0.028 6.8371 0.028 6.8371 0.028 6.8371 0.028 6.8371 0.044 0.421 0.035 0.028 6.8371 0.041 6.9471 0.031 0.001 0.028 6.8371 0.041 6.9471 0.041 0.331 0.001 0.028 6.8717 0.031 6.0301 0.031 6.0371 0.031 6.0371 0.031 6.0371 0.031 6.0371 0.032 6.0371 0.032 6.0371 0.032 6.0371 0.032 6.0371 0.031 6.0371 0.031 6.0371 0.031 6.0371 0.031 6.0371 0.032 6.0371 0.031 6.0371 0.041 6.042 6.141 0.041 6.047 0.041 6.047 0.041 6.047 0.041 6.047 0.041 6.047 0.041 6.047 0.041 6.047 0.041 6.047 0.041<	Standard Deviation of the Cool Season Mean	10	1	0.205	0.285	0.409	0.120	0.383	0.137	0.340	0.168	0.204	0.286	0.076	0.417
Mergel 6 1 690(P) 0.02 693(P) 0.02 693(P) 0.03 690(P) 0.03 690(P) 0.03 690(P) 0.03 690(P) 0.03 690(P) 0.03 690(P) 0.03 693(P) 0.034 693(P) 0.034 693(P) 0.034 693(P) 0.035 67(P) 0.041 674(P) 0.041 674(P) 0.041 674(P) 0.041 674(P) 0.041 674(P) 0.044 675(P) 0.044 675(P) 0.044 675(P) 0.044 675(P) 0.041 674(P)	Warmest Quarter Mean	10	1	0.328	0.177	0.475	0.083	0.480	0.080	0.538	0.054	0.546	0.051	.566(*)	0.044
Standard Deviation of the Warrnest Quarter Marn Io 1 0.408 0.007 0.038 6.807 0.045 6.767 0.033 0.007 0.038 6.707 0.033 6.707 0.035 6.807 0.035 6.807 0.035 6.807 0.035 6.807 0.035 6.807 0.035 6.807 0.035 6.807 0.035 6.807 0.035 6.807 0.035 6.807 0.035 6.807 0.035 6.807 0.035 6.902 0.035 0.140 0.337 0.140 0.326 0.147 0.335 0.140 0.337 0.140 0.337 0.140 0.337 0.140 0.337 0.140 0.337 0.140 0.337 0.140 0.337 0.140 0.337 0.140 0.337 0.140 0.337 0.140 0.337 0.140 0.337 0.140 0.337 0.140 0.337 0.140 0.337 0.107 0.337 0.107 0.337 0.107 0.337 0.107 0.337 0.107	Merged	8	1	.690(*)	0.029	.718(*)	0.023	.693(*)	0.028	.683(*)	0.031	.669(*)	0.035	.690(*)	0.029
Mergeq (res. (+tailed) 0.53 0.60 6.72(7) 0.03 5.87(7) 0.03 5.87(7) 0.03 5.87(7) 0.03 5.87(7) 0.03 5.87(7) 0.03 5.87(7) 0.03 5.87(7) 0.03 5.87(7) 0.03 5.87(7) 0.03 5.87(7) 0.03 5.87(7) 0.03 5.87(7) 0.03 5.87(7) 0.03 5.87(7) 0.041 0.110 0.237 0.141 0.235 0.141 0.235 0.131 0.233 0.213 0.213 0.213 0.213 0.213 0.213 0.213 0.213 0.213 0.213 0.213 0.213 0.213 0.213 0.217 0.246 0.247 0.144 0.247 0.141 0.447 0.11 0.447 0.11 0.447 0.11 0.447 0.11 0.447 0.11 0.447 0.11 0.447 0.11 0.447 0.11 0.447 0.11 0.441 0.447 0.11 0.441 0.437 0.11 0.102 0.111 0.	Standard Deviation of the Warmest Quarter Mean	10	1	0.498	0.071	.590(*)	0.036	.603(*)	0.032	.565(*)	0.044	0.442	0.101	0.371	0.146
Coolest Quarter Maan 10 1 0.404 0.123 557(1) 0.01 582(1) 0.031 577(1) 0.03 Standard Deviation of the Coolest Quarter Maan 10 1 0.271 0.025 5.87(1) 0.037 0.144 0.320 0.176 0.218 0.410 0.121 0.041 0.237 0.144 0.320 0.176 0.218 0.041 0.149 0.021 0.211 0.221 0.211 0.221 0.211 0.221 0.211 0.221 0.211 0.221 0.211 0.221 0.211 0.221 0.211 0.221 0.211 0.221 0.211 0.221 0.211 0.221 0.211 0.221 0.211 0.222 0.23				Merged (n=8, 1	1-tailed)	0.536	0.085	.625(*)	0.049	.676(*)	0.033	0.600	0.058	0.474	0.118
Merged (mel, 1-tailled) 67(P1) 0.03 6.8(P1) 0.028 0.118 0.232 0.116 0.232 0.112 0.118 0.238 0.123 0.213 0.213 0.213 0.213 0.213 0.213 0.213 0.213 0.213 0.235 0.184 0.238 0.183 0.213 0.213 0.215 0.185 0.103 0.114 0.54(P1) 0.444 0.54(P1) 0.446 0.57(P1) 0.404 0.57(P1) 0.404 0.57(P1) 0.404 0.57(P1) 0.404 0.57(P1) 0.414 54(P1) 0.404 0.52(P1) 0.415 0.51(P1) 0.33 54(P1) 0.023 0.51(P1) 0.418 0.428 0.110 0.52(P1) 0.413 0.448 0.103 54(P1) 0.033 54(P1) 0.033 54(P1) 0.033 54(P1)	Coolest Quarter Mean	10	1	0.404	0.123	.557(*)	0.047	.593(*)	0.035	.607(*)	0.031	.582(*)	0.039	.572(*)	0.042
Standard Deviation of the Coolest Quarter Nean 10 1.287 0.228 0.408 0.014 0.425 0.110 0.387 0.144 0.220 0.179 0.018 0.23 0.212 0.042 0.114 0.028 0.237 0.027 0.038 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.040 0.051 0.049 0.043 0.049 0.018 0.049 0.018 0.049 0.018 0.049 0.018 0.049 0.018 0.049 0.018 0.049 0.018 0.499 0.133 0.017 0.013 6.014 0.033 6.0149 0.033 6.0149 0.033 6.0149				Merged (n=8, 1	1-tailed)	.676(*)	0.033	.707(*)	0.025	.696(*)	0.028	.661(*)	0.037	.645(*)	0.042
Seasonaity (Warm Mean - Cool Mean) 10 1 -0.471 0.085 -0.442 0.113 -0.412 0.113 -0.449 0.023 -0.213 0.23 0.213 0.23 0.213 0.23 0.213 0.23 0.223 0.223 0.223 0.223 0.223 0.223 0.223 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.240 0.241 0.246 0.233 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.236 <th< td=""><td>Standard Deviation of the Coolest Quarter Mean</td><td>10</td><td>1</td><td>0.267</td><td>0.228</td><td>0.460</td><td>0.091</td><td>0.425</td><td>0.110</td><td>0.387</td><td>0.134</td><td>0.326</td><td>0.179</td><td>0.198</td><td>0.291</td></th<>	Standard Deviation of the Coolest Quarter Mean	10	1	0.267	0.228	0.460	0.091	0.425	0.110	0.387	0.134	0.326	0.179	0.198	0.291
Seasonality (Warmest Quarter - Coldest Quarter) 10 1 -0.446 0.078 -0.53(°) 0.049 -0.468 0.072 -0.288 0.108 -0.273 0.27 Lightims Land Surface Temperature 10 1 0.547 0.051 574(°) 0.044 .554(°) 0.046 .575(°) 0.040 -0.518 0.025 0.425 0.118 0.425 0.114 .571(°) 0.046 .573(°) 0.046 .573(°) 0.046 .573(°) 0.046 .573(°) 0.046 .0451 0.055 0.423 0.118 0.425 0.114 .026 .0.424 0.026 .0.424 0.026 .0.424 0.026 .0.421 0.027 .0.325 0.425 0.13 .0.460 0.123 .0.425 0.13 .0.465 0.133 .0.465 0.123 0.017 .0.334 0.173 0.303 0.165 0.355 0.167 .0.334 0.173 0.303 0.161 0.345 0.168 0.425 0.173 0.341 .0.335 0.176 <td>Seasonality (Warm Mean - Cool Mean)</td> <td>10</td> <td>1</td> <td>-0.471</td> <td>0.085</td> <td>-0.405</td> <td>0.123</td> <td>-0.412</td> <td>0.118</td> <td>-0.367</td> <td>0.149</td> <td>-0.261</td> <td>0.233</td> <td>-0.213</td> <td>0.278</td>	Seasonality (Warm Mean - Cool Mean)	10	1	-0.471	0.085	-0.405	0.123	-0.412	0.118	-0.367	0.149	-0.261	0.233	-0.213	0.278
Light turne Lance Temperature Variables Annual Mean Nightime Land Surface Temperature 10 1 0.547 0.051 574(*) 0.044 .554(*) 0.048 0.537 0.055 0.509 0.007 0.007 With Subscript and Deviation of Annual Mean 10 1 0.549 0.034 .574(*) 0.044 0.547 0.065 0.429 0.110 0.040 .651(*) 0.005 0.428 0.110 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.041 0.040 0.041 0.041 0.044 0.033 0.61(*) 0.023 0.61(*) 0.033 0.61(*) 0.033 0.61(*) 0.033 0.61(*) 0.033 0.61(*) 0.033 0.61(*) 0.033 0.61(*) 0.033 0.61(*) 0.033 0.61(*) 0.033 0.61(*) 0.033 0.61(*) 0.033 0.61(*) 0.033 0.61(*) 0.033 0.61(*) 0.033 0.	Seasonality (Warmest Quarter - Coldest Quarter)	10	1	-0.446	0.098	-0.485	0.078	553(*)	0.049	-0.498	0.072	-0.385	0.136	-0.273	0.223
Annual Mean Nighttime Land Surface Temperature 10 1 0.647 6.747 0.048 6.5747 0.046 6.5797 0.040 6.5797 0.040 6.5797 0.040 6.5797 0.040 6.5797 0.040 6.5797 0.040 6.5797 0.040 6.5797 0.040 6.517 0.040 6.517 0.040 6.517 0.040 6.517 0.040 6.517 0.040 6.517 0.040 6.517 0.041 6.527 0.041 6.527 0.041 6.527 0.041 6.527 0.041 6.527 0.041 6.527 0.041 6.527 0.041 6.527 0.041 6.527 0.041 6.527 0.041 6.527 0.027	Nighttime Land Surface Temperature Variables											-			
Standard Deviation of Annual Mean 10 1 -588(1) 0.044 -578(1) 0.046 -677(1) 0.440 0.051 0.042 0.110 0.042 0.114 0.478 0.081 0.448 0.101 0.042 0.111 0.042 0.111 0.042 0.111 0.042 0.111 0.042 0.111 0.041 0.051 0.041 0.051 0.042 0.111 0.042 0.111 0.042 0.111 0.042 0.111 0.042 0.111 0.042 0.111 0.042 0.111 0.042 0.011 0.045 0.120 0.021 0.043 0.104 0.133 0.045 0.121 0.045 0.133 0.045 0.133 0.045 0.133 0.045 0.133 0.045 0.133 0.017 0.043 0.141 0.157 0.035 0.141 0.357 0.101 0.031 0.571 0.037 0.571 0.031 571(1) 0.031 571(1) 0.031 571(1) 0.031 571(1) 0.041 571(1) </td <td>Annual Mean Nighttime Land Surface Temperature</td> <td>10</td> <td>1</td> <td>0.547</td> <td>0.051</td> <td>.574(*)</td> <td>0.041</td> <td>.554(*)</td> <td>0.048</td> <td>0.537</td> <td>0.055</td> <td>0.509</td> <td>0.067</td> <td>0.507</td> <td>0.068</td>	Annual Mean Nighttime Land Surface Temperature	10	1	0.547	0.051	.574(*)	0.041	.554(*)	0.048	0.537	0.055	0.509	0.067	0.507	0.068
Warm Season Mean 10 1 0.418 0.011 0.448 0.061 0.461 0.005 0.428 0.101 Standard Deviation of the Warm Season Mean 10 1 6.0047 0.028 6.011 0.033 5.64(1) 0.033 5.64(1) 0.033 5.64(1) 0.033 5.64(1) 0.033 5.64(1) 0.033 5.64(1) 0.033 5.64(1) 0.033 5.64(1) 0.033 5.64(1) 0.033 6.61(1) 0.0345 0.145 0.145 0.133 0.465 0.173 -0.433 0.017 -0.433 0.017 -0.455 0.165 0.157 0.334 0.173 -0.335 0.17 0.334 0.173 -0.220 0.227 6.10(1) 0.031 5.57(1) 0.031 5.57(1) 0.031 5.57(1) 0.031 5.57(1) 0.047 5.55(1) 0.041 -556(1) 0.041 -556(1) 0.041 -556(1) 0.041 -556(1) 0.041 -556(1) 0.041 -556(1) 0.041 -556(1) 0.041 <td>Standard Deviation of Annual Mean</td> <td>10</td> <td>1</td> <td>598(*)</td> <td>0.034</td> <td>579(*)</td> <td>0.040</td> <td>561(*)</td> <td>0.046</td> <td>579(*)</td> <td>0.040</td> <td>-0.519</td> <td>0.062</td> <td>-0.518</td> <td>0.062</td>	Standard Deviation of Annual Mean	10	1	598(*)	0.034	579(*)	0.040	561(*)	0.046	579(*)	0.040	-0.519	0.062	-0.518	0.062
Standard Deviation of the Warms Season Mean 10 1 -0.046 0.008 -0.139 0.109 -0.20 -0.271 0.2.2 -0.273 0.1.73 0.474 0.609 0.033 661(r) 0.033 <	Warm Season Mean	10	1	0.420	0.114	0.478	0.081	0.460	0.091	0.451	0.095	0.428	0.108	0.432	0.106
Cool Season Mean 10 1 600(1) 0.033 6.61(1) 0.033 6.584(1) 0.043 6.584(1) 0.043 6.164 0.4430 0.138 0.465 0.143 0.145 0.4430 0.138 0.465 0.123 0.430 0.113 0.465 0.123 0.430 0.133 0.465 0.133 0.465 0.133 0.465 0.133 0.465 0.133 0.465 0.133 0.465 0.133 0.431 0.133 0.431 0.133 0.431 0.133 0.431 0.133 0.431 0.133 0.431 0.133 0.431 0.133 0.431 0.133 0.434 0.130 0.431 0.133 0.434 0.130 0.434 0.130 0.466 0.122 0.426 0.123 0.466 0.123 0.466 0.123 0.466 0.123 0.466 0.123 0.466 0.123 0.466 0.123 0.466 0.123 0.467 0.123 0.467 0.123 0.464 0.557(1) 0.434 <t< td=""><td>Standard Deviation of the Warm Season Mean</td><td>10</td><td>1</td><td>-0.446</td><td>0.098</td><td>-0.447</td><td>0.098</td><td>-0.389</td><td>0.133</td><td>-0.409</td><td>0.120</td><td>-0.271</td><td>0.225</td><td>-0.373</td><td>0.144</td></t<>	Standard Deviation of the Warm Season Mean	10	1	-0.446	0.098	-0.447	0.098	-0.389	0.133	-0.409	0.120	-0.271	0.225	-0.373	0.144
Merged 8 1 0.334 0.209 0.168 0.412 0.148 0.448 0.123 0.465 0.123 0.463 0.014 Standard Deviation of the Cool Season Mean 10 1 0.232 0.215 0.368 0.147 0.081 0.445 0.157 0.334 0.173 0.037 0.171 Standard Deviation of the Warmest Quarter Mean 10 1 0.027 6.36(?) 0.024 6.26(?) 0.027 6.16(?) 0.026 0.426 0.128 0.422 0.168 0.148 0.399 0.126 -0.222 0.299 -0.237 0.171 0.037 5.77(?) 0.047 0.578(?) 0.047 0.518 0.047 0.518 0.047 0.518 0.044 -557(?) 0.041 -557(?) 0.041 -557(?) 0.041 -557(?) 0.044 -557(?) 0.047 0.518 0.097 -0.490 0.170 0.457 0.127 -0.530 0.088 -0.513 0.097 -0.490 0.11 0.576(?)	Cool Season Mean	10	1	.600(*)	0.033	.615(*)	0.029	.601(*)	0.033	.584(*)	0.038	.559(*)	0.047	.554(*)	0.048
Standard Deviation of the Cool Season Mean 10 1 -0.399 0.126 -0.476 0.081 -0.475 0.073 0.073 0.070 Standard Deviation of the Warmest Quarter Mean 10 1 -0.337 0.171 -0.403 0.124 -0.345 0.165 0.356 0.177 0.045 0.165 0.356 0.177 0.045 0.165 0.356 0.177 0.045 0.150 0.027 6.10(1) 0.037 0.578 0.07 0.424 0.285 0.027 0.042 0.280 0.122 0.420 0.103 .578(1) 0.040 Standard Deviation of the Coolest Quarter Man 10 1 -0.116 0.377 0.207 0.026 -0.226 0.226 0.226 0.207 -0.209 0.207 -0.445 0.130 0.068 -0.530 0.088 -0.530 0.088 -0.530 0.088 -0.530 0.088 -0.518 0.007 -0.457 0.127 -0.500 0.088 -0.518 0.006 .556(1) 0.044 .5	Merged	8	1	0.334	0.209	0.393	0.168	0.426	0.146	0.439	0.138	0.465	0.123	0.493	0.108
Warmest Quarter Mean 10 1 0.232 0.216 0.166 0.465 0.165 0.167 0.334 0.173 0.030 0.171 Standard Deviation of the Warmest Quarter Mean 10 1 6.24(*) 0.027 6.68(*) 0.027 6.10(*) 0.031 5.57(*) 0.03 5.57(*) 0.00 Merged 8 1 0.576 0.170 0.424 0.148 0.436 0.130 0.466 0.122 0.402 0.100 7.0226 0.226 0.226 0.226 0.226 0.226 0.226 0.226 0.220 0.200 7.020 0.00 7.05(*) 0.044 -556(*) 0.044 -557(*) 0.044 -557(*) 0.048 -0.513 0.007 -0.518 0.00 Merged 8 1 -0.209 0.310 -0.255 0.223 0.236 0.216 -0.518 0.00 Merged 8 1 -0.209 0.310 -0.225 0.223 0.226 0.230 0.337 0.217	Standard Deviation of the Cool Season Mean	10	1	-0.399	0.126	-0.463	0.089	-0.479	0.081	-0.495	0.073	-0.531	0.057	-0.530	0.058
Standard Deviation of the Warmest Quarter Mean 10 1 -0.377 0.171 -0.403 0.124 -0.289 0.128 -0.222 0.269 -0.378 0.17 Coolest Quarter Mean 10 1 .624(') 0.027 .636(') 0.027 .610(') 0.031 .597(') 0.00 Marged & 1 0.376 0.179 0.424 0.148 0.433 0.130 0.466 0.122 0.492 0.207 -0.254 0.244 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.247 0.0187 -0.478 0.007 -0.499 0.017 -0.430 0.060 -565(') 0.044 -557(') 0.047 -0.518 0.007 -0.499 0.117 -0.430 0.050 -563(') 0.048 -0.510 0.066 -563(') 0.047 -50.80' 0.047 -5.38' 0.251 0.275 -0.316 0.223 -0.326 0.215 -0.330 0.066 -533(') 0.049 0.538 0.054 0.537 0.215 -0.3	Warmest Quarter Mean	10	1	0.282	0.215	0.356	0.156	0.345	0.165	0.355	0.157	0.334	0.173	0.350	0.161
Coolest Quarter Mean 10 1 624(?) 0.027 6.38(?) 0.024 6.28(?) 0.027 6.410(?) 0.031 5.87(?) 0.037 5.73(?) 0.047 Standard Deviation of the Coolest Quarter Mean 10 1 -0.118 0.375 -0.200 0.290 -0.226 0.265 -0.254 0.240 -0.292 0.207 -0.292 0.207 -0.292 0.207 -0.292 0.207 -0.292 0.207 -0.292 0.207 -0.292 0.207 -0.292 0.207 -0.292 0.207 -0.292 0.207 -0.292 0.207 -0.290 0.207 -0.570 0.044 -557(?) 0.044 -557(?) 0.048 -0.570 0.049 0.107 -0.510 0.050 -556(?) 0.048 -0.500 0.070 -0.217 -0.310 0.217 -0.330 0.215 -0.339 0.236 -0.339 0.236 -0.337 0.236 -0.339 0.236 -0.339 0.236 0.337 0.215 -0.339 0.236<	Standard Deviation of the Warmest Quarter Mean	10	1	-0.337	0.171	-0.403	0.124	-0.368	0.148	-0.399	0.126	-0.222	0.269	-0.378	0.141
Merged 8 1 0.376 0.179 0.448 0.463 0.130 0.466 0.122 0.402 0.109 0.519 0.02 Standard Deviation of the Coolest Quarter Mean 10 1 -574(°) 0.047 -573(°) 0.047 -578(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.044 -558(°) 0.046 -558(°) 0.046 -558(°) 0.045 -533(°) 0.208 -0.339 0.208 -0.339 0.208 -0.339 0.208 -0.339 0.208 -0.339 0.208 -0.339 0.208 -0.339 0.215 -0.339 0.208 -0.339 0.211 .759(°)	Coolest Quarter Mean	10	1	.624(*)	0.027	.636(*)	0.024	.626(*)	0.027	.610(*)	0.031	.587(*)	0.037	.579(*)	0.040
Standard Deviation of the Coolest Quarter Mean 10 1 -0.116 0.375 -0.200 0.226 0.226 0.226 0.226 0.227 0.227 0.228 0.217 0.029 0.027 -0.298 0.027 -0.298 0.044 557(*) 0.044 557(*) 0.044 557(*) 0.044 557(*) 0.044 557(*) 0.049 0.110 Seasonality (Warmest Quarter - Coldest Quarter) 10 1 -0.530 0.056 552(*) 0.045 -0.528 0.026 556(*) 0.046 -0.549 0.020 556(*) 0.049 0.538 0.050 0399 0.208 -0.539 0.028 -0.539 0.021 -0.329 0.208 0.216 -0.329 0.265 0.474 0.023 -0.328 0.216 -0.339 0.054 0.538 0.051 0.049 0.538 0.051 0.049 0.538 0.051 0.049 0.538 0.051 0.049 0.538 0.051 563(*) 0.049 0.538 0.051 563(*) 0.049 0.573 0.620 0.521 0.637 0.630 <	Merged	8	1	0.376	0.179	0.424	0.148	0.453	0.130	0.466	0.122	0.492	0.108	0.519	0.094
Seasonality (Warm Mean - Cool Mean) 10 1 -574(°) 0.041 -558(°) 0.040 -568(°) 0.044 -557(°) 0.047 -0.571 0.000 -557(°) 0.047 -0.571 0.0530 0.058 -0.530 0.088 -0.513 0.097 -0.469 0.11 Seasonality (Warmest Quarter - Coldest Quarter) 10 1 -0.533 0.056 -0.526(°) 0.041 -0.540 0.056 -0.540 0.056 -0.540 0.050 -5.56(°) 0.044 -0.513 0.069 0.010 Merged 8 1 -0.209 0.310 -0.251 0.275 -0.316 0.223 -0.329 0.206 -0.337 0.206 Annual Mean Land Surface Diurnal Temperature Range Variables U 1 0.258 0.235 7.46(°) 0.017 7.55(°) 0.044 0.117 0.224 0.239 0.107 7.35(°) 0.048 0.499 0.513 0.056 0.238 0.049 0.513 0.056 0.238 0.107 0.318	Standard Deviation of the Coolest Quarter Mean	10	1	-0.116	0.375	-0.200	0.290	-0.226	0.265	-0.254	0.240	-0.292	0.207	-0.295	0.204
Merged 8 1 -0.390 0.170 -0.477 0.127 -0.630 0.088 -0.530 0.088 -0.513 0.007 -0.499 0.11 Seasonality (Warmest Quarter - Coldest Quarter) 0 1 -0.533 0.056 -0.526 0.025 -0.549 0.048 -0.513 0.007 -0.499 0.00 Land Surface Diurnal Temperature Range Variables V V -0.221 0.275 -0.316 0.223 -0.320 0.249 0.049 0.538 0.054 -0.537 0.237 Land Surface Diurnal Temperature Range Variables V <td>Seasonality (Warm Mean - Cool Mean)</td> <td>10</td> <td>1</td> <td>574(*)</td> <td>0.041</td> <td>558(*)</td> <td>0.047</td> <td>579(*)</td> <td>0.040</td> <td>565(*)</td> <td>0.044</td> <td>557(*)</td> <td>0.047</td> <td>-0.518</td> <td>0.063</td>	Seasonality (Warm Mean - Cool Mean)	10	1	574(*)	0.041	558(*)	0.047	579(*)	0.040	565(*)	0.044	557(*)	0.047	-0.518	0.063
Seasonality (Warmest Quarter - Coldest Quarter) 10 1 -0.538 0.056 -0.582 0.045 -0.549 0.030 -0.569(*) 0.048 -0.090 0.00 Land Surface Diurnal Temperature Range Variables I 0.209 0.310 0.225 0.017 7.531 0.026 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.058 0.054 0.059 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.053 0.051 0.053 0.051 0.053 0.051 0.533	Merged	8	1	-0.390	0.170	-0.457	0.127	-0.530	0.088	-0.530	0.088	-0.513	0.097	-0.499	0.104
Merged 8 1 -0.209 0.310 -0.251 0.275 -0.316 0.223 -0.320 0.215 -0.339 0.200 -0.337 0.217 Land Surface Diurnal Temperature Range Variables Annual Mean Land Surface Diurnal Temperature Range 10 1 0.237 0.255 0.474 0.083 0.513 0.065 .553(?) 0.049 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.049 0.538 0.054 0.538 0.049 0.538 0.049 0.538 0.049 0.538 0.054 0.033 653(?) 0.049 0.538 0.054 0.029 0.017 .554(?) 0.048 0.549 0.017 .554(?) 0.048 0.569(?) 0.030 658(?) 0.030 658(?) 0.030 658(?) 0.030 658(?) 0.030 658(?) 0.030 658(?) 0.030 658(?) 0.030 658(?) 0.030 658(?) 0.030 658(?) 0.030 658(?)	Seasonality (Warmest Quarter - Coldest Quarter)	10	1	-0.533	0.056	-0.536	0.055	562(*)	0.045	-0.549	0.050	556(*)	0.048	-0.509	0.066
Land Surface Diurnal Temperature Range Vi 0 0 277 0.227 0.225 0.474 0.083 0.513 0.045 .553(°) 0.049 0.538 0.054 0.538 0.054 0.538 0.049 0.538 0.054 0.538 0.049 0.538 0.054 0.538 0.049 0.538 0.054 0.538 0.049 0.538 0.054 0.538 0.049 0.538 0.054 0.538 0.049 0.538 0.054 0.538 0.041 0.117 7.59(°) 0.014 7.74(°) 0.018 6.77(°) 0.033 6.653(°) 0.048 0.449 0.548 0.049 0.548 0.050 6.554(°) 0.048 0.548 0.050 6.564(°) 0.048 0.548 0.051 5.53(°) 0.049 0.548 0.055 0.547(°) 0.035 7.48(°) 0.016 7.47(°) 0.017 7.55(°) 0.019 6.69(°) 0.030 6.514(°) 0.048 0.541 0.054 0.055 0.537 0.621(°)	Merged	8	1	-0.209	0.310	-0.251	0.275	-0.316	0.223	-0.326	0.215	-0.339	0.206	-0.337	0.208
Annual Mean Land Surface Diurnal Temperature Range 10 1 0.237 0.255 0.474 0.083 0.513 0.065 5.53(°) 0.049 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.054 0.538 0.071 0.559(°) 0.014 .742(°) 0.014 0.742(°) 0.014 0.717 0.224 0.239 0.026 0.338 0.124 0.425 0.110 0.414 0.117 0.224 0.239 0.466 0.088 0.499 0.071 .554(°) 0.048 0.568(°) 0.030 680(°) 0.030 680(°) 0.030 680(°) 0.030 680(°) 0.031 0.057 0.513 0.052 0.523 0.061 .551(°) 0.052 0.523 0.061 .551(°) 0.052 0.523 0.061 .551(°) 0.052 0.523 0.061 .551(°) 0.052 0.523 0.051 0.052 0.533 0.052 0.523 0.051 0.0	Land Surface Diurnal Temperature Range Variables														
Merged 8 1 667(°) 0.035 .746(°) 0.017 .759(°) 0.014 .742(°) 0.018 .677(°) 0.033 .653(°) 0.0 Warm Season Mean 10 1 0.256 0.236 0.388 0.144 0.4126 0.110 0.414 0.417 0.254 0.239 0.107 0.33 Warm Season Mean 10 1 0.254 0.239 0.046 0.088 0.449 0.071 .554(°) 0.048 0.552(°) 0.0 Merged 8 1 667(°) 0.035 .748(°) 0.016 .747(°) 0.017 .5513 0.065 0.280 0.217 0.081 0.44 Cool Season Mean 10 1 0.224 0.297 0.462 0.007 0.673 0.652 0.523 0.061 0.514 0.007 0.543 0.052 0.523 0.061 0.543 0.052 0.523 0.061 0.543 0.627 0.076 0.543 0.052 0	Annual Mean Land Surface Diurnal Temperature Range	10	1	0.237	0.255	0.474	0.083	0.513	0.065	.553(*)	0.049	0.538	0.054	0.536	0.055
Standard Deviation of Annual Mean 10 1 0.254 0.236 0.388 0.124 0.426 0.110 0.414 0.117 0.254 0.239 0.107 0.33 Warm Season Mean 10 1 0.254 0.239 0.466 0.468 0.469 0.071 .754(*) 0.019 .686(*) 0.000 .656(*) 0.048 0.548 0.554(*) 0.048 0.548 0.554(*) 0.048 0.548 0.554(*) 0.001 .747(*) 0.017 .735(*) 0.019 .686(*) 0.000 0.507 0.513 0.055 0.280 0.217 0.081 0.514 0.016 .747(*) 0.016 .735(*) 0.019 .662(*) 0.037 .624(*) 0.049 0.543 0.055 0.535 0.061 .054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.046 0.549 0.543 0.055 0.535 0.055 5.535(*) 0.049 0.544 0.549 0.057 0.229 0.217 0.220 0.166 .735(*) 0.019 .624(*) 0.045 0.535 <td< td=""><td>Merged</td><td>8</td><td>1</td><td>.667(*)</td><td>0.035</td><td>.746(*)</td><td>0.017</td><td>.759(*)</td><td>0.014</td><td>.742(*)</td><td>0.018</td><td>.677(*)</td><td>0.033</td><td>.653(*)</td><td>0.040</td></td<>	Merged	8	1	.667(*)	0.035	.746(*)	0.017	.759(*)	0.014	.742(*)	0.018	.677(*)	0.033	.653(*)	0.040
Warm Season Mean 10 1 0.254 0.239 0.466 0.085 0.499 0.071 .554(*) 0.048 0.552(*) 0.005 Merged 8 1 .667(*) 0.035 7.48(*) 0.016 7.47(*) 0.017 7.35(*) 0.019 .686(*) 0.030 .680(*) 0.031 Standard Deviation of the Warm Season Mean 10 1 0.227 0.287 0.422 0.090 0.507 0.543 0.052 0.523 0.081 0.541 0.005 Cool Season Mean 10 1 0.224 0.267 0.422 0.090 0.507 0.057 0.543 0.052 0.523 0.081 0.541 0.00 Merged 8 1 657(*) 0.038 .730(*) 0.020 .752(*) 0.016 .735(*) 0.042 0.220 0.168 0.335 0.055 .553(*) 0.049 .568(*) 0.048 0.220 0.528 0.055 .553(*) 0.049 .568(*) 0.049<	Standard Deviation of Annual Mean	10	1	0.258	0.236	0.388	0.134	0.426	0.110	0.414	0.117	0.254	0.239	0.107	0.385
Merged 8 1 667(°) 0.035 .748(°) 0.016 .747(°) 0.017 .735(°) 0.019 .686(°) 0.030 .680(°) 0.030 Standard Deviation of the Warm Season Mean 10 1 0.177 0.312 0.366 0.149 0.491 0.075 0.513 0.065 0.228 0.217 0.081 0.44 Cool Season Mean 10 1 0.224 0.287 0.482 0.090 0.507 0.067 0.543 0.062 0.523 0.081 0.441 0.49 Merged 8 1 657(°) 0.038 .730(°) 0.020 .752(°) 0.016 .735(°) 0.049 .652(°) 0.020 .624(°) 0.037 .624(°) 0.037 .624(°) 0.049 .652(°) 0.020 .741(°) 0.115 0.455 .0535 .055 .533(°) 0.049 .658(°) 0.04 .658(°) 0.04 .658(°) 0.04 .658(°) 0.04 .658(°) 0.04 .65	Warm Season Mean	10	1	0.254	0.239	0.466	0.088	0.499	0.071	.554(*)	0.048	0.548	0.050	.552(*)	0.049
Standard Deviation of the Warms Season Mean 10 1 0.177 0.312 0.386 0.149 0.075 0.513 0.085 0.280 0.217 0.081 0.44 Cool Season Mean 10 1 0.224 0.287 0.462 0.0260 0.507 0.673 0.543 0.025 0.523 0.081 0.514 0.00 Marged 8 1 657(°) 0.038 .730(°) 0.020 .752(°) 0.016 .735(°) 0.019 .622(°) 0.037 .624(°) 0.04 Standard Deviation of the Cool Season Mean 10 1 0.344 0.197 0.427 0.109 0.428 0.108 0.386 0.129 0.278 0.220 0.168 0.38 Marged 8 1 631(°) 0.047 .730(°) 0.020 .744(°) 0.016 .714(°) 0.023 .712(°) 0.03 Standard Deviation of the Warmest Quarter Mean 10 1 0.296 0.292 0.205 0.555 0.564(°) </td <td>Merged</td> <td>8</td> <td>1</td> <td>.667(*)</td> <td>0.035</td> <td>.748(*)</td> <td>0.016</td> <td>.747(*)</td> <td>0.017</td> <td>.735(*)</td> <td>0.019</td> <td>.686(*)</td> <td>0.030</td> <td>.680(*)</td> <td>0.032</td>	Merged	8	1	.667(*)	0.035	.748(*)	0.016	.747(*)	0.017	.735(*)	0.019	.686(*)	0.030	.680(*)	0.032
Cool Season Mean 10 1 0.224 0.287 0.482 0.090 0.507 0.547 0.562 0.523 0.001 0.514 0.001 Merged 8 1 .657(*) 0.038 .730(*) 0.020 .752(*) 0.016 .735(*) 0.019 .662(*) 0.037 .624(*) 0.0 Standard Deviation of the Cool Season Mean 10 1 0.247 0.197 0.427 0.190 0.428 0.108 .735(*) 0.049 .558(*) 0.048 .558(*) 0.049 .558(*) 0.049 .558(*) 0.020 .744(*) 0.017 .748(*) 0.016 .714(*) 0.023 .712(*) 0.023 .712(*) 0.023 .712(*) 0.021 .744(*) 0.017 .748(*) 0.016 .744(*) 0.017 .748(*) 0.016 .744(*) 0.020 .744(*) 0.017 .748(*) 0.016 .553 0.057 .0.515 0.007 .0290 .0227 .0.027 .0.217 .0.209	Standard Deviation of the Warm Season Mean	10	1	0.177	0.312	0.366	0.149	0.491	0.075	0.513	0.065	0.280	0.217	0.081	0.412
Merged 8 1 657(°) 0.038 .730(°) 0.020 .752(°) 0.016 .733(°) 0.019 .652(°) 0.037 .624(°) 0.037 .624(°) 0.037 .624(°) 0.037 .624(°) 0.037 .624(°) 0.037 .624(°) 0.037 .624(°) 0.037 .624(°) 0.047 .730(°) 0.040 .0186 .0186 0.0385 0.035 0.025 .0220 0.220 0.260 0.018 .0180 0.018 .0120 0.274 0.016 .744(°) 0.017 .748(°) 0.016 .714(°) 0.023 .712(°) 0.03 Standard Deviation of the Warmest Quarter Mean 10 1 0.027 0.477 0.085 0.528 0.055 .056(°) 0.020 .740(°) 0.045 .553(°) 0.227 -0.027 0.47 Coolest Quarter Mean 10 1 0.211 0.279 0.477 .085 0.055 .564(°) 0.045 .553(°) 0.057 .020 .055 <td< td=""><td>Cool Season Mean</td><td>10</td><td>1</td><td>0.224</td><td>0.267</td><td>0.462</td><td>0.090</td><td>0.507</td><td>0.067</td><td>0.543</td><td>0.052</td><td>0.523</td><td>0.061</td><td>0.514</td><td>0.064</td></td<>	Cool Season Mean	10	1	0.224	0.267	0.462	0.090	0.507	0.067	0.543	0.052	0.523	0.061	0.514	0.064
Standard Deviation of the Cool Season Mean 10 1 0.304 0.197 0.427 0.109 0.428 0.108 0.398 0.129 0.276 0.220 0.168 0.38 Warmest Quarter Mean 10 1 0.224 0.287 0.417 0.115 0.456 0.039 0.535 0.557 0.229 0.048 0.38 Marged 8 1 6.31(°) 0.047 .730(°) 0.020 .744(°) 0.016 .714(°) 0.028 .712(°) 0.02 Standard Deviation of the Warmest Quarter Mean 10 1 0.096 0.292 0.205 0.558 0.045 0.733 0.299 0.227 -0.027 0.47 Coolest Quarter Mean 10 1 0.211 0.279 0.471 0.055 0.556 6.54(°) 0.045 0.530 0.057 0.020 0.751 0.00 Marged 8 1 .644(°) 0.042 .744(°) 0.017 .788(°) 0.010 .766(°) 0.013 .633(°) 0.031 .634(°) 0.02 <td>Merged</td> <td>8</td> <td>1</td> <td>.657(*)</td> <td>0.038</td> <td>.730(*)</td> <td>0.020</td> <td>.752(*)</td> <td>0.016</td> <td>.735(*)</td> <td>0.019</td> <td>.662(*)</td> <td>0.037</td> <td>.624(*)</td> <td>0.049</td>	Merged	8	1	.657(*)	0.038	.730(*)	0.020	.752(*)	0.016	.735(*)	0.019	.662(*)	0.037	.624(*)	0.049
Warmest Quarter Mean 10 1 0.224 0.247 0.116 0.405 0.083 0.050 5.53(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.049 5.58(°) 0.023 7.712(°) 0.030 0.220 0.525 0.58(°) 0.045 0.530 0.057 0.229 0.277 0.271 0.027 0.471 0.085 0.536 0.055 564(°) 0.045 0.530 0.057 0.515 0.07 Merged 8 1 6.211 0.279 0.471 0.085 0.536 0.055 564(°) 0.045 0.530 0.057 0.515 0.07 Standard	Standard Deviation of the Cool Season Mean	10	1	0.304	0.197	0.427	0.109	0.428	0.108	0.395	0.129	0.276	0.220	0.186	0.304
Merged 8 1 631(°) 0.047 .730(°) 0.020 .744(°) 0.017 .748(°) 0.016 .714(°) 0.023 .712(°) 0.03 Standard Deviation of the Warmest Quarter Mean 10 1 0.026 0.222 0.202 0.528 0.495 0.073 0.289 0.227 -0.027 0.41 Coolest Quarter Mean 10 1 0.211 0.279 0.471 0.085 0.538 0.055 564(°) 0.045 0.530 0.057 0.209 0.227 -0.027 0.41 Merged 8 1 644(°) 0.047 .788(°) 0.010 .766(°) 0.013 .683(°) 0.031 .634(°) 0.06 Standard Deviation of the Coolest Quarter Mean 10 1 0.042 .744(°) 0.017 .788(°) 0.010 .766(°) 0.013 .683(°) 0.028 0.228 0.188 0.33 Standard Deviation of the Coolest Quarter Mean 10 1 0.052 0.443 0.102	Warmest Quarter Mean	10	1	0.224	0.267	0.417	0.115	0.456	0.093	0.535	0.055	.553(*)	0.049	.568(*)	0.043
Standard Deviation of the Warmest Quarter Mean 10 1 0.096 0.296 0.222 0.005 0.496 0.073 0.290 0.227 -0.027 0.41 Coolest Quarter Mean 10 1 0.211 0.270 0.471 0.085 0.585 0.056 0.564(7) 0.045 0.530 0.057 0.515 0.050 Merged 8 1 .644(°) 0.042 .744(°) 0.017 .788(°) 0.010 .766(°) 0.013 .683(°) 0.031 .634(°) 0.04 Standard Deviation of the Coolest Quarter Mean 10 1 0.304 0.197 .748(°) 0.400 0.126 0.356 0.166 0.226 0.228 0.168 0.33 Standard Deviation of the Coolest Quarter Mean 10 1 0.052 0.443 0.102 0.400 0.126 0.356 0.127 0.107 0.344 0.105 0.334 0.127 0.110 0.327 0.105 0.334 0.127 0.107 0.344 0.105 0.345 0.127 0.140 -0.278 0.218<	Merged	8	1	.631(*)	0.047	.730(*)	0.020	.744(*)	0.017	.748(*)	0.016	.714(*)	0.023	.712(*)	0.024
Coolest Quarter Mean 10 1 0.211 0.279 0.471 0.085 0.085 0.954(?) 0.045 0.530 0.057 0.515 0.01 Merged 8 1 .644(?) 0.042 .744(?) 0.017 .788(?) 0.013 .683(?) 0.031 .634(?) 0.04 Standard Deviation of the Coolest Quarter Mean 10 1 0.034 .0430 0.102 0.400 0.126 0.366 0.268 0.228 0.018 0.33 Seasonality (Warm Mean - Cool Mean) 10 1 -0.052 0.443 -0.108 0.383 -0.119 0.372 -0.107 0.384 -0.105 0.38 Seasonality (Warmest Quarter - Coidest Quarter) 10 1 -0.087 0.406 -0.276 0.229 -0.379 0.140 -0.278 0.218 -0.210 0.24	Standard Deviation of the Warmest Quarter Mean	10	1	0.096	U.396	0.292	0.206	0.528	0.058	0.495	0.073	0.269	0.227	-0.027	0.471
Merged 8 6.64(?) 0.042 .744(?) 0.017 .758(?) 0.013 .683(?) 0.031 .634(?) 0.042 Standard Deviation of the Coolest Quarter Mean 10 1 0.304 0.197 0.439 0.102 0.400 0.128 0.366 0.268 0.228 0.168 0.33 Seasonality (Warm Mean - Cool Mean) 10 1 -0.052 0.443 -0.120 0.383 -0.117 0.372 -0.107 0.384 -0.105 0.33 Seasonality (Warmest Quarter - Coldest Quarter) 1 -0.052 0.443 -0.276 0.229 -0.107 0.384 -0.105 0.344 Seasonality (Warmest Quarter - Coldest Quarter) 1 -0.057 0.406 -0.276 0.229 -0.379 0.140 -0.278 0.218 -0.201 0.24	Coolest Quarter Mean	10	1	0.211	0.279	0.471	0.085	0.536	0.055	.564(*)	0.045	0.530	0.057	0.515	0.064
Standard Deviation of the Coolest Quarter Mean 10 1 0.304 0.197 0.439 0.102 0.400 0.126 0.266 0.228 0.166 0.33 Seasonality (Warmest Quarter - Coldest Quarter) 10 1 -0.052 0.443 -0.127 0.383 -0.119 0.372 -0.107 0.384 -0.127 0.383 -0.119 0.372 -0.107 0.384 -0.126 0.383 -0.127 0.381 -0.119 0.372 -0.107 0.384 -0.127 0.384 -0.119 0.372 -0.107 0.384 -0.119 0.372 -0.107 0.384 -0.126 0.332 0.127 0.110 -0.278 0.218 -0.010 0.334 Seasonality (Warmest Quarter - Coldest Quarter) 10 1 -0.067 0.406 -0.276 0.220 -0.370 0.140 -0.278 0.218 -0.201 0.218	Merged	8	1	.644(*)	0.042	.744(*)	0.017	.788(*)	0.010	.766(*)	0.013	.683(*)	0.031	.634(*)	0.046
Seasonality (warm Mean - Cool Mean) 10 1 -0.052 0.443 -0.108 0.383 -0.127 0.303 -0.119 0.372 -0.107 0.384 -0.105 0.38 Seasonality (Warmest Quarter - Coldest Quarter) 10 1 -0.087 0.406 -0.276 0.220 -0.379 0.140 -0.380 0.140 -0.278 0.218 -0.201 0.22	Standard Deviation of the Coolest Quarter Mean	10	1	0.304	0.197	0.439	0.102	0.400	0.126	0.356	0.156	0.266	0.228	0.168	0.321
Seasonany (warmest quarer - Coldest Quarter) 10 10.087 0.4000.276 0.220 -0.379 0.1400.280 0.1400.278 0.218 -0.201 0.28	Seasonality (Warm Mean - Cool Mean)	10	1	-0.052	0.443	-0.108	0.383	-0.127	0.363	-0.119	0.372	-0.107	0.384	-0.105	0.387
in companies of section at the contract of the contract of the CONTract of the contract of the section of the s	Seasonality (Warmest Quarter - Coldest Quarter)	10	1 the	-U.U8/	0.400	-U.2/10	0.220	-U.3/9	U.140	-0.380	0.140	-U.2/8	0.218	-0.201	0.289

Analysis Extent (Radius)			1km	1	2km	1	3km		4km		6km		8km	ı
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Total Precipitable Water Vapor Variables														
Annual Mean Total Precipitable Water Vapor	10	1	-0.286	0.211	0.099	0.393	-0.381	0.139	-0.365	0.150	-0.310	0.192	-0.261	0.233
									Merged (n=8,	1-tailed))662(*)	0.037	678(*)	0.032
Standard Deviation of Annual Mean	10	1	-0.165	0.325	-0.100	0.392	-0.108	0.383	-0.162	0.328	-0.158	0.331	-0.173	0.316
										1	Merged (n=8.	1-tailed)	625(*)	0.049
Wet Season Mean	10	1	-0.362	0.152	-0.376	0.142	-0.423	0.112	-0.412	0.118	-0.376	0.142	-0.350	0.161
							Merged (n=8,	1-tailed)	627(*)	0.048	673(*)	0.034	699(*)	0.027
Standard Deviation of Wet Season Mean	10	1	-0.046	0.450	-0.001	0.499	-0.001	0.499	-0.007	0.492	0.041	0.455	0.048	0.447
Dry Season Mean	10	1	-0.144	0.345	-0.181	0.308	-0.259	0.235	-0.223	0.268	-0.128	0.362	-0.058	0.437
Standard Deviation of Dry Season Mean	10	1	0.325	0.180	0.406	0.122	0.377	0.142	0.284	0.214	0.201	0.289	0.150	0.340
							Merged (n=8,	1-tailed)	624(*)	0.049	668(*)	0.035	679(*)	0.032
Wettest Quarter Mean	10	1	-0.266	0.229	-0.279	0.217	-0.326	0.179	-0.319	0.185	-0.276	0.220	-0.257	0.237
Standard Deviation of Wettest Quarter Mean	10	1	-0.231	0.261	-0.241	0.251	-0.278	0.219	-0.305	0.195	-0.269	0.226	-0.272	0.223
Driest Quarter Mean	10	1	-0.309	0.193	-0.343	0.166	-0.409	0.120	-0.389	0.134	-0.272	0.223	-0.184	0.306
Standard Deviation of Driest Quarter Mean	10	1	0.157	0.333	0.206	0.284	0.145	0.344	0.089	0.403	-0.077	0.416	-0.209	0.281
							Merged (n=8,	1-tailed)	667(*)	0.035	715(*)	0.023	716(*)	0.023
Seasonality (Wet Mean - Dry Mean)	10	1	-0.432	0.106	-0.401	0.126	-0.414	0.117	-0.417	0.115	-0.430	0.107	-0.442	0.100
Seasonality (Wettest Mean - Driest Mean)	10	1	-0.137	0.353	-0.110	0.382	-0.148	0.342	-0.163	0.326	-0.168	0.322	-0.188	0.302
NDVI Variables														
MODIS Annual Mean NDVI	10	1	-0.013	0.486	-0.134	0.357	-0.174	0.315	-0.205	0.285	-0.221	0.270	-0.279	0.217
Standard Deviation of Annual Mean	10	1	0.006	0.493	-0.148	0.341	-0.186	0.303	-0.208	0.282	-0.212	0.278	-0.223	0.268
Wet Season Mean	10	1	-0.074	0.419	-0.173	0.316	-0.214	0.276	-0.238	0.254	-0.255	0.239	-0.311	0.191
Standard Deviation of Wet Season Mean	10	1	-0.063	0.432	-0.190	0.299	-0.256	0.238	-0.252	0.242	-0.262	0.232	-0.286	0.212
Dry Season Mean	10	1	0.085	0.408	-0.066	0.428	-0.108	0.383	-0.145	0.345	-0.155	0.335	-0.205	0.285
Standard Deviation of Dry Season Mean	10	1	0.111	0.380	-0.078	0.415	-0.079	0.414	-0.123	0.368	-0.120	0.371	-0.107	0.385
Wettest Quarter Mean	10	1	-0.022	0.476	-0.115	0.376	-0.159	0.330	-0.186	0.304	-0.202	0.288	-0.246	0.246
Standard Deviation of Wettest Quarter Mean	10	1	0.131	0.359	0.034	0.463	-0.067	0.428	-0.098	0.393	-0.177	0.312	-0.269	0.226
Driest Quarter Mean	10	1	0.016	0.482	-0.132	0.358	-0.152	0.337	-0.200	0.290	-0.232	0.259	-0.285	0.213
Standard Deviation of Driest Quarter Mean	10	1	-0.009	0.490	-0.184	0.306	-0.135	0.355	-0.181	0.308	-0.168	0.321	-0.120	0.371
Seasonality (Wet Season - Dry Season)	10	1	-0.345	0.165	-0.363	0.151	-0.401	0.125	-0.382	0.138	-0.367	0.149	-0.376	0.142
Seasonality (Wettest Season - Driest Season)	10	1	-0.059	0.436	-0.086	0.407	-0.152	0.338	-0.158	0.332	-0.159	0.330	-0.176	0.313

(*) Correlation is significant at the 0.05 level; (*) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed or 2-tailed test; r=Pearson's correlation coefficient

Table 3d. Correlations of microfilarid infection prevalence in Galapagos penguins with variables from higher-resolution satellite imageny.

Analysis Extent (Radius)		Í	1km	1	2kn	n	3kn	n	4kn	n	6kn	n	8kn	n
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Land Surface Temperature Variables (High-Resolution)														
Landsat Land Surface Temperature	10	1	0.269	0.226	0.359	0.154	0.386	0.135	0.412	0.118	0.479	0.080	0.513	0.065
Landsat Land Surface Temperature Heterogeneity	10	1	-0.007	0.492	-0.130	0.360	-0.191	0.298	-0.213	0.278	-0.258	0.236	-0.205	0.285
ASTER Dry Season Land Surface Temperature	7	1	-0.197	0.336	0.041	0.465	0.131	0.390	0.134	0.388	0.178	0.351	0.281	0.270
ASTER Dry Season Land Surface Temperature Heterogeneity	7	1	0.433	0.166	0.009	0.493	-0.131	0.389	-0.238	0.303	-0.196	0.337	-0.220	0.318
ASTER Wet Season Land Surface Temperature	9	1	0.194	0.309	0.369	0.164	0.412	0.135	0.435	0.121	0.479	0.096	0.472	0.100
ASTER Wet Season Land Surface Temperature Heterogeneity	9	1	-0.045	0.454	-0.324	0.198	-0.353	0.176	-0.409	0.137	-0.387	0.151	-0.342	0.184
ASTER Land Surface Temperature Seasonality	7	1	0.144	0.379	-0.347	0.223	-0.344	0.225	-0.204	0.331	-0.141	0.382	-0.372	0.205
NDVI Variables (High-Resolution)														
Landsat Mean NDVI, 3/16/01	10	1	-0.163	0.327	-0.240	0.253	-0.250	0.243	-0.258	0.236	-0.270	0.225	-0.323	0.181
ASTER Mean NDVI, Dry Season Composite Image	10	1	-0.130	0.360	-0.223	0.268	-0.235	0.257	-0.249	0.244	-0.259	0.235	-0.303	0.198
ASTER Mean NDVI, Wet Season Composite Image	10	1	-0.110	0.381	-0.200	0.290	-0.203	0.287	-0.205	0.285	-0.190	0.299	-0.209	0.281
ASTER NDVI Seasonality (Wet Season - Dry Season)	10	1	-0.024	0.474	0.046	0.449	0.029	0.469	0.007	0.493	0.008	0.491	0.036	0.461
Tasseled Cap Transformation Indices														
Landsat Tasseled Cap Brightness Index, 3/16/01	10	1	-0.348	0.324	-0.354	0.315	-0.346	0.328	-0.339	0.338	-0.344	0.330	-0.380	0.279
Landsat Tasseled Cap Greenness Index, 3/16/01	10	1	0.002	0.497	-0.085	0.407	-0.094	0.398	-0.100	0.392	-0.109	0.383	-0.130	0.360
Landsat Tasseled Cap Wetness Index, 3/16/01	10	1	0.228	0.263	0.195	0.295	0.220	0.270	0.236	0.256	0.205	0.285	0.224	0.267
ASTER Dry Season Tasseled Cap Brightness Index	7	2	-0.039	0.934	-0.021	0.964	-0.087	0.426	-0.109	0.816	-0.105	0.823	-0.130	0.781
ASTER Dry Season Tasseled Cap Greenness Index	7	1	0.054	0.455	-0.066	0.444	-0.083	0.430	-0.101	0.415	-0.128	0.392	-0.172	0.356
ASTER Dry Season Tasseled Cap Wetness Index	7	1	-0.075	0.436	-0.005	0.496	0.013	0.489	0.044	0.462	0.094	0.420	0.144	0.379
ASTER Wet Season Tasseled Cap Brightness Index	10	1	-0.514	0.157	-0.493	0.178	-0.491	0.179	-0.494	0.176	-0.478	0.193	-0.501	0.169
ASTER Wet Season Tasseled Cap Greenness Index	10	1	-0.251	0.257	-0.350	0.178	-0.366	0.166	-0.377	0.158	-0.391	0.149	-0.430	0.124
ASTER Wet Season Tasseled Cap Wetness Index	10	1	0.171	0.330	0.245	0.262	0.281	0.232	0.297	0.219	0.314	0.205	0.359	0.171
Modeled Soil Surface Moisture Index (From ASTER Imagery)														
Modeled Soil Moisture Index	10	1	-0.054	0.445	-0.297	0.219	-0.409	0.137	-0.461	0.106	-0.567	0.056	-0.497	0.087
(*) Correlation is significant at the 0.05 level; (**) Correlation is significant	nt at tł	he C).01 level; n	=number	of sites ass	essed; t=	1-tailed or 2-	tailed tes	t; r=Pearson	's correla	tion coefficie	ent		

Table 3a Correlations of microfilarid infaction provolunce in Colonardos ponquine with topographic variables

Analysis Extent (Radius)			1km	1	2kn	ı	3kn	n	4kn	ı	6km	1 I	8km	n
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Topographic Variables														
Mean Elevation	8	1	-0.066	0.433	-0.103	0.396	-0.125	0.374	-0.129	0.370	-0.140	0.360	-0.131	0.369
Mean Slope	8	1	-0.119	0.380	-0.173	0.328	-0.196	0.307	-0.217	0.287	-0.234	0.272	-0.231	0.275
Mean Aspect	8	1	-0.224	0.281	-0.414	0.134	-0.478	0.096	-0.466	0.103	-0.533	0.070	-0.548	0.063
Proportion of Contiguous Land Surface Within Radius	10	1	0.338	0.170	0.370	0.146	0.436	0.104	0.484	0.078	0.536	0.055	.562(*)	0.045
										1	Merged (n=8	, 1-tailed)	0.495	0.106
(*) Correlation is significant at the 0.05 level; (**) Correlation is significant	t at tł	ne C).01 level; n	=number	of sites asse	essed; t='	I-tailed or 2-	tailed tes	t; r=Pearson'	's correlat	tion coefficier	nt		

Table 3f. Correlations of microfilarid prevalence in Galapagos penguins with results of principal components analyses.

Analysis Extent (Radius)		1km	1	2kn	ı	3kn	n	4kn	n	6kn	n	8km	'n
n	t	r	р	r	р	r	р	r	р	r	р	r	р
Data Set Principal Components													
PC1 of WORLDCLIM Temperature Variables (99.8%) 8	1	0.192	0.324	0.233	0.289	0.245	0.280	0.237	0.286	0.242	0.282	0.252	0.274
PC1 of WORLDCLIM Precipitation Variables (98.3%) 8	1	0.380	0.176	0.307	0.230	0.216	0.304	0.107	0.400	0.018	0.483	-0.004	0.496
PC1 of MODIS Land Surface Temperature Variables (96.6%) 10	1	0.389	0.133	0.534	0.056	.553(*)	0.049	.577(*)	0.040	.566(*)	0.044	.569(*)	0.043
Merged 8	1	.632(*)	0.046	.684(*)	0.031	.689(*)	0.029	.679(*)	0.032	.657(*)	0.038	.662(*)	0.037
PC1 of MODIS Total Precipitable Water Vapor Variables (64.2%) 10	1	-0.280	0.216	-0.337	0.170	-0.406	0.122	-0.377	0.141	-0.271	0.225	-0.179	0.310
PC2 of MODIS Total Precipitable Water Vapor Variables (31.5%) 10	1	0.301	0.199	0.325	0.180	0.361	0.153	0.340	0.168	0.316	0.187	0.301	0.199
PC1 of MODIS NDVI Variables (87.2%) 10	1	-0.022	0.476	-0.141	0.349	-0.183	0.306	-0.213	0.277	-0.233	0.259	-0.287	0.211
PC2 of MODIS NDVI Variables (6.7%) 10	1	0.213	0.278	0.129	0.362	0.191	0.299	0.171	0.319	0.161	0.328	0.159	0.330
PC1 of Topographic Variables (86.6%) 10	1	-0.147	0.343	-0.174	0.315	-0.165	0.324	-0.150	0.340	-0.148	0.342	-0.132	0.358
PC2 of Topographic Variables (13.4%) 10	1	-0.286	0.211	-0.465	0.088	-0.435	0.105	-0.337	0.170	-0.295	0.204	-0.286	0.211
All-Layers PCA Components													
PC1 (88.5%) 8	1	0.436	0.104	0.406	0.122	0.340	0.168	0.274	0.222	0.175	0.314	0.158	0.332
PC2 (7.9%) 8	1	-0.500	0.070	-0.527	0.059	-0.481	0.080	-0.436	0.104	-0.400	0.126	-0.387	0.135
PC3 (3.0%) 8	1	-0.102	0.390	-0.182	0.307	-0.181	0.308	-0.153	0.337	-0.169	0.321	-0.176	0.313
PC4 (0.4%) 9	1	-0.007	0 492	0.166	0.324	0.232	0.259	0.245	0.247	0.290	0.208	0.308	0.193

(*) Correlation is significant at the 0.05 level; (**) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed or 2-tailed test; r=Pearson's correlation coefficient

Table 4a Correlations of microfilarid intensity in infected Galanados Penduins with WorldClim variables

Analysis Extent (Radius)			1km	1	2kn	n	3kn	n	4km		6km		8km	
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
WorldClim Temperature Variables														
Annual Mean Temperature	7	1	0.199	0.334	0.213	0.323	0.225	0.314	0.219	0.318	0.210	0.325	0.194	0.338
Mean Temperature of the Driest Quarter	7	1	-0.047	0.461	0.032	0.473	0.057	0.451	0.078	0.434	0.077	0.435	0.052	0.456
Mean Temperature of the Wettest Quarter	7	1	0.209	0.326	0.222	0.316	0.225	0.314	0.219	0.318	0.216	0.321	0.202	0.332
Mean Temperature of the Coldest Quarter	7	1	0.147	0.377	0.196	0.337	0.217	0.320	0.210	0.325	0.206	0.329	0.189	0.343
Mean Temperature of the Warmest Quarter	7	1	0.209	0.326	0.222	0.316	0.225	0.314	0.219	0.318	0.216	0.321	0.202	0.332
Minimum Temperature of the Coldest Month	7	1	0.176	0.353	0.208	0.327	0.225	0.314	0.215	0.322	0.210	0.326	0.192	0.340
Maximum Temperature of the Warmest Month	7	1	0.075	0.437	0.140	0.382	0.156	0.369	0.155	0.370	0.176	0.353	0.157	0.368
Temperature Annual Range	7	1	-0.234	0.306	-0.237	0.305	-0.249	0.295	-0.232	0.308	-0.217	0.320	-0.199	0.335
Mean Diurnal Temperature Range	7	1	-0.297	0.259	-0.278	0.273	-0.275	0.275	-0.256	0.290	-0.240	0.302	-0.221	0.317
Temperature Seasonality	7	1	-0.045	0.461	-0.155	0.370	-0.194	0.339	-0.196	0.337	-0.192	0.340	-0.171	0.357
WorldClim Precipitation Variables														
Annual Precipitation	7	1	-0.061	0.448	-0.125	0.395	-0.172	0.356	-0.195	0.338	-0.199	0.334	-0.187	0.344
Precipitation in the Coldest Quarter	7	1	-0.265	0.283	-0.342	0.226	-0.356	0.217	-0.308	0.251	-0.258	0.288	-0.242	0.301
Precipitation in the Warmest Quarter	7	1	0.094	0.421	0.040	0.466	0.004	0.497	-0.034	0.471	-0.068	0.442	-0.060	0.449
Precipitation in the Driest Quarter	7	1	-0.276	0.275	-0.341	0.227	-0.337	0.230	-0.284	0.269	-0.248	0.296	-0.237	0.305
Precipitation in the Wettest Quarter	7	1	0.094	0.421	0.040	0.466	-0.010	0.491	-0.059	0.450	-0.095	0.420	-0.090	0.424
Precipitation in the Driest Month	7	1	-0.281	0.271	-0.322	0.241	-0.361	0.213	-0.286	0.267	-0.217	0.320	-0.211	0.325
Precipitation in the Wettest Month	7	1	0.052	0.456	-0.010	0.492	-0.069	0.441	-0.116	0.402	-0.148	0.376	-0.140	0.382
Precipitation Seasonality	7	1	0.211	0.324	0.246	0.297	0.288	0.266	0.294	0.261	0.285	0.268	0.258	0.288

(*) Correlation is significant at the 0.05 level; (**) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed or 2-tailed test; r=Pearson's correlation coefficient

Table 4b. Correlations of microfilarid intensity in infected Galapagos Penguins with MODIS-derived land surface temperature variables.

Analysis Extent (Radius)		Т	1km		2km		3km		4km		6km		8km	
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Daytime Land Surface Temperature Variables														
Annual Mean Daytime Land Surface Temperature	8	1	0.334	0.210	0.312	0.226	0.288	0.245	0.296	0.238	0.301	0.234	0.281	0.250
Standard Deviation of Annual Mean	8	1	0.340	0.205	0.370	0.183	0.366	0.186	0.348	0.199	0.185	0.331	0.062	0.442
Warm Season Mean	8	1	0.425	0.147	0.358	0.192	0.318	0.222	0.316	0.223	0.328	0.214	0.313	0.225
Standard Deviation of the Warm Season Mean	8	1	0.393	0.168	0.444	0.135	0.509	0.099	0.489	0.109	0.242	0.282	0.107	0.400
Cool Season Mean	8	1	0.268	0.261	0.273	0.257	0.262	0.265	0.282	0.249	0.288	0.245	0.263	0.265
Standard Deviation of the Cool Season Mean	8	1	0.277	0.253	0.313	0.225	0.299	0.236	0.275	0.255	0.143	0.368	0.038	0.464
Warmest Quarter Mean	8	1	0.375	0.180	0.313	0.225	0.295	0.239	0.315	0.223	0.334	0.209	0.311	0.227
Standard Deviation of the Warmest Quarter Mean	8	1	0.439	0.138	0.529	0.089	0.543	0.082	0.445	0.134	0.333	0.210	0.290	0.243
Coolest Quarter Mean	8	1	0.278	0.253	0.250	0.275	0.237	0.286	0.264	0.264	0.271	0.258	0.244	0.280
Standard Deviation of the Coolest Quarter Mean	8	1	0.261	0.266	0.355	0.194	0.422	0.149	0.433	0.142	0.304	0.232	0.139	0.371
Seasonality (Warm Mean - Cool Mean)	8	1	0.382	0.175	0.304	0.232	0.269	0.260	0.244	0.280	0.313	0.225	0.317	0.222
Seasonality (Warmest Quarter - Coldest Quarter)	8	1	-0.016	0.485	0.041	0.461	0.102	0.405	0.134	0.376	0.235	0.288	0.236	0.287
Nighttime Land Surface Temperature Variables														
Annual Mean Nighttime Land Surface Temperature	8	1	0.448	0.133	0.429	0.144	0.406	0.159	0.387	0.171	0.352	0.196	0.325	0.216
Standard Deviation of Annual Mean	8	1	-0.205	0.313	-0.352	0.197	-0.449	0.132	-0.525	0.091	-0.459	0.126	-0.345	0.201
Warm Season Mean	8	1	0.409	0.157	0.417	0.152	0.401	0.162	0.389	0.170	0.359	0.191	0.331	0.211
Standard Deviation of the Warm Season Mean	8	1	0.027	0.474	-0.245	0.279	-0.415	0.153	-0.569	0.070	-0.570	0.070	-0.399	0.164
Cool Season Mean	8	1	0.475	0.117	0.438	0.139	0.408	0.158	0.384	0.174	0.346	0.201	0.320	0.219
Standard Deviation of the Cool Season Mean	8	1	-0.284	0.248	-0.306	0.231	-0.332	0.211	-0.343	0.203	-0.359	0.192	-0.359	0.192
Warmest Quarter Mean	8	1	0.341	0.204	0.357	0.193	0.333	0.210	0.317	0.222	0.294	0.240	0.269	0.260
Standard Deviation of the Warmest Quarter Mean	8	1	-0.020	0.481	-0.177	0.337	-0.234	0.288	-0.302	0.233	-0.279	0.252	-0.218	0.302
Coolest Quarter Mean	8	1	0.429	0.144	0.397	0.165	0.371	0.183	0.347	0.200	0.309	0.228	0.283	0.249
Standard Deviation of the Coolest Quarter Mean	8	1	-0.488	0.110	-0.462	0.124	-0.477	0.116	-0.461	0.125	-0.412	0.155	-0.396	0.166
Seasonality (Warm Mean - Cool Mean)	8	1	-0.480	0.114	-0.376	0.179	-0.302	0.234	-0.218	0.302	-0.124	0.385	-0.058	0.446
Seasonality (Warmest Quarter - Coldest Quarter)	8	1	-0.328	0.214	-0.307	0.230	-0.326	0.215	-0.287	0.245	-0.187	0.328	-0.134	0.376
Land Surface Diurnal Temperature Range Variables														
Annual Mean Land Surface Diurnal Temperature Range	8	1	0.213	0.306	0.213	0.307	0.207	0.311	0.240	0.284	0.263	0.264	0.246	0.279
Standard Deviation of Annual Mean	8	1	0.283	0.249	0.345	0.201	0.358	0.192	0.318	0.221	0.136	0.374	0.010	0.491
Warm Season Mean	8	1	0.365	0.187	0.313	0.225	0.288	0.244	0.292	0.241	0.310	0.227	0.291	0.242
Standard Deviation of the Warm Season Mean	8	1	0.370	0.183	0.457	0.127	0.495	0.106	0.366	0.186	-0.021	0.481	-0.126	0.383
Cool Season Mean	8	1	0.121	0.388	0.142	0.369	0.150	0.361	0.203	0.315	0.231	0.291	0.215	0.305
Standard Deviation of the Cool Season Mean	8	1	0.237	0.286	0.303	0.233	0.323	0.218	0.298	0.237	0.193	0.324	0.119	0.390
Warmest Quarter Mean	8	1	0.286	0.246	0.190	0.326	0.203	0.315	0.239	0.284	0.284	0.248	0.272	0.257
Standard Deviation of the Warmest Quarter Mean	8	1	0.187	0.329	0.451	0.131	0.538	0.085	0.381	0.176	0.027	0.475	-0.032	0.470
Coolest Quarter Mean	8	1	0.148	0.364	0.121	0.387	0.137	0.373	0.196	0.321	0.225	0.296	0.208	0.310
Standard Deviation of the Coolest Quarter Mean	8	1	0.232	0.290	0.334	0.210	0.386	0.172	0.373	0.181	0.274	0.256	0.147	0.364
Seasonality (Warm Mean - Cool Mean)	8	1	0.432	0.143	0.395	0.166	0.392	0.168	0.312	0.226	0.265	0.263	0.233	0.289
Seasonality (Warmest Quarter - Coldest Quarter)	8	1	0.140	0.371	0.087	0.419	0.098	0.409	0.035	0.467	0.064	0.440	0.075	0.430
(*) Correlation is significant at the 0.05 level; (**) Co	nt at th	1e 0).01 level; n	=number	of sites asse	essed; t=	1-tailed or 2-	tailed tes	; r=Pearson'	s correlat	ion coefficie	nt		

Analysis Extent (Radius)			1km	1km		2km		n	4km		6km		8km	
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Total Precipitable Water Vapor Variables														
Annual Mean Total Precipitable Water Vapor	8	1	-0.067	0.437	0.164	0.349	0.037	0.465	0.124	0.385	0.325	0.216	0.363	D.188
Standard Deviation of Annual Mean	8	1	0.020	0.482	0.028	0.474	0.013	0.488	0.003	0.497	0.115	0.393	0.113	0.395
Wet Season Mean	8	1	0.058	0.446	0.083	0.422	0.136	0.374	0.195	0.321	0.322	0.218	0.342	0.203
Standard Deviation of Wet Season Mean	8	1	-0.311	0.227	-0.371	0.183	-0.406	0.159	-0.410	0.157	-0.297	0.238	-0.257	0.269
Dry Season Mean	8	1	-0.219	0.302	-0.184	0.331	-0.121	0.388	-0.032	0.470	0.201	0.316	0.245	0.279
Standard Deviation of Dry Season Mean	8	1	0.008	0.492	0.334	0.209	0.379	0.177	0.419	0.150	0.465	0.123	0.481	0.114
Wettest Quarter Mean	8	1	0.025	0.477	0.022	0.479	0.045	0.458	0.077	0.428	0.129	0.381	0.097	0.410
Standard Deviation of Wettest Quarter Mean	8	1	0.156	0.356	0.127	0.382	0.047	0.456	0.022	0.479	0.225	0.296	0.242	0.282
Driest Quarter Mean	8	1	-0.360	0.191	-0.322	0.218	-0.279	0.252	-0.210	0.309	-0.005	0.495	0.042	0.461
Standard Deviation of Driest Quarter Mean	8	1	0.100	0.407	0.419	0.151	0.553	0.077	.636(*)	0.045	0.600	0.058	0.549	0.079
						M	erged (n=6,	1-tailed)	0.698	0.062				
Seasonality (Wet Mean - Dry Mean)	8	1	0.283	0.249	0.268	0.260	0.231	0.291	0.233	0.289	0.179	0.336	0.122	0.387
Seasonality (Wettest Mean - Driest Mean)	8	1	0.259	0.268	0.215	0.305	0.162	0.351	0.145	0.366	0.073	0.432	0.019	0.482
NDVI Variables														
MODIS Annual Mean NDVI	8	1	-0.547	0.080	-0.354	0.195	-0.254	0.272	-0.255	0.271	-0.259	0.268	-0.256	0.271
Standard Deviation of Annual Mean	8	1	-0.512	0.098	-0.446	0.134	-0.338	0.207	-0.363	0.188	-0.401	0.162	-0.386	D.173
Wet Season Mean	8	1	-0.516	0.095	-0.349	0.198	-0.255	0.271	-0.253	0.273	-0.258	0.269	-0.260	0.267
Standard Deviation of Wet Season Mean	8	1	-0.558	0.075	-0.477	0.116	-0.348	0.199	-0.351	0.197	-0.376	0.180	-0.375	0.180
Dry Season Mean	8	1	-0.584	0.064	-0.357	0.192	-0.249	0.276	-0.257	0.269	-0.256	0.270	-0.235	0.288
Standard Deviation of Dry Season Mean	8	1	-0.437	0.140	-0.374	0.180	-0.269	0.260	-0.335	0.209	-0.389	0.170	-0.331	0.211
Wettest Quarter Mean	8	1	-0.493	0.107	-0.344	0.202	-0.259	0.268	-0.257	0.270	-0.260	0.267	-0.265	0.263
Standard Deviation of Wettest Quarter Mean	8	1	-0.566	0.072	-0.415	0.153	-0.201	0.317	-0.228	0.294	-0.301	0.234	-0.328	0.214
Driest Quarter Mean	8	1	635(*)	0.045	-0.392	0.168	-0.261	0.266	-0.278	0.253	-0.265	0.263	-0.216	0.304
Standard Deviation of Driest Quarter Mean	8	1	-0.460	0.126	-0.362	0.189	-0.200	0.317	-0.271	0.258	-0.308	0.229	-0.235	0.287
Seasonality (Wet Season - Dry Season)	8	1	-0.359	0.192	-0.313	0.225	-0.253	0.273	-0.235	0.288	-0.243	0.281	-0.254	0.272
Seasonality (Wettest Season - Driest Season)	8	1	-0.305	0.231	-0.265	0.263	-0.238	0.285	-0.222	0.299	-0.234	0.289	-0.242	0.282
(*) Correlation is significant at the 0.05 level; (**) Correlation is significant	nt at	the	0.01 level; n	=number	of sites ass	essed; t=	1-tailed or 2	tailed tes	t; r=Pearson	's correla	tion coefficie	nt		

Table 4d. Correlations of microfilarid intensity in infected Galapagos Penguins with variables based on higher-resolution satellite imagery.

,				2										
Analysis Extent (Radius)			1km	1	2kn	n	3kn	n	4km		6km		8kn	n
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Land Surface Temperature Variables (High-Resolution)														
Landsat Land Surface Temperature	8	1	0.412	0.155	0.362	0.189	0.316	0.223	0.323	0.218	0.355	0.194	0.379	0.177
Landsat Land Surface Temperature Heterogeneity	8	1	-0.044	0.459	-0.289	0.244	-0.268	0.261	-0.255	0.271	-0.253	0.273	-0.270	0.259
ASTER Dry Season Land Surface Temperature	6	1	0.304	0.279	0.205	0.349	0.189	0.360	0.178	0.368	0.198	0.353	0.149	0.389
ASTER Dry Season Land Surface Temperature Heterogeneity	6	1	-0.589	0.109	-0.481	0.167	-0.351	0.247	-0.319	0.269	-0.312	0.274	-0.399	0.217
ASTER Wet Season Land Surface Temperature	7	1	0.219	0.318	0.149	0.375	0.116	0.402	0.141	0.382	0.173	0.356	0.114	0.403
ASTER Wet Season Land Surface Temperature Heterogeneity	7	1	-0.532	0.109	-0.359	0.214	-0.241	0.302	-0.197	0.336	-0.220	0.318	-0.211	0.325
ASTER Land Surface Temperature Seasonality	6	1	-0.612	0.098	-0.143	0.394	-0.068	0.449	0.193	0.357	0.228	0.332	0.121	0.410
NDVI Variables (High-Resolution)														
Landsat Mean NDVI, 3/16/D1	8	1	-0.482	0.114	-0.282	0.250	-0.213	0.306	-0.199	0.318	-0.187	0.328	-0.187	0.329
ASTER Mean NDVI, Dry Season Composite Image	8	1	-0.380	0.176	-0.205	0.313	-0.149	0.362	-0.138	0.372	-0.148	0.364	-0.145	0.366
ASTER Mean NDVI, Wet Season Composite Image	8	1	-0.368	0.185	-0.264	0.264	-0.218	0.302	-0.210	0.309	-0.202	0.315	-0.191	0.326
ASTER NDVI Seasonality (Wet Season - Dry Season)	8	1	-0.324	0.217	-0.413	0.155	-0.375	0.180	-0.346	0.201	-0.297	0.238	-0.303	0.233
Tasseled Cap Transformation Indices														
Landsat Tasseled Cap Brightness Index, 3/16/01	8	2	-0.490	0.218	-0.323	0.434	-0.283	0.497	-0.253	0.545	-0.234	0.577	-0.241	0.566
Landsat Tasseled Cap Greenness Index, 3/16/01	8	1	-0.296	0.238	-0.186	0.330	-0.137	0.373	-0.145	0.366	-0.141	0.370	-0.129	0.381
Landsat Tasseled Cap Wetness Index, 3/16/01	8	1	0.417	0.152	0.293	0.240	0.260	0.267	0.247	0.277	0.238	0.285	0.242	0.282
ASTER Dry Season Tasseled Cap Brightness Index	6	2	-0.453	0.367	-0.198	0.707	-0.189	0.719	-0.114	0.829	-0.011	0.983	0.018	0.972
ASTER Dry Season Tasseled Cap Greenness Index	6	1	-0.391	0.222	-0.240	0.324	-0.208	0.347	-0.204	0.349	-0.208	0.346	-0.187	D.361
ASTER Dry Season Tasseled Cap Wetness Index	6	1	0.363	0.240	0.223	0.336	0.155	0.385	0.160	0.381	0.192	0.358	0.183	0.364
ASTER Wet Season Tasseled Cap Brightness Index	7	2	-0.427	0.339	-0.232	0.617	-0.205	0.659	-0.149	0.750	-0.069	0.883	-0.033	0.944
ASTER Wet Season Tasseled Cap Greenness Index	7	1	-0.314	0.246	-0.194	0.338	-0.169	0.359	-0.172	0.356	-0.172	0.356	-0.153	0.371
ASTER Wet Season Tasseled Cap Wetness Index	7	1	0.263	0.285	0.149	0.375	0.114	0.404	0.118	0.401	0.125	0.395	0.097	0.418
Modeled Soil Surface Moisture Index (From ASTER Imagery)														
Modeled Soil Moisture Index	7	1	0.017	0.486	0 111	0.406	0.070	0.441	0.017	0.486	-0.066	0.444	0.098	0.417

(*) Correlation is significant at the 0.05 level; (**) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed or 2-tailed test; r=Pearson's correlation coefficient

Table 4e. Correlations of microfilarid intensity in infected Galapagos Penguins with topographic variables.													
Analysis Extent (Radius)	lysis Extent (Radius)		1km		2km		3km		4km		6km		
	n	t	r	р	r	р	r	р	r	р	r	р	
Topographic Variables													
Mean Elevation	7	1	-0.185	0.345	-0.232	0.308	-0.249	0.295	-0.247	0.297	-0.238	0.304	
Mean Slope	7	1	-0.233	0.307	-0.271	0.278	-0.271	0.278	-0.264	0.284	-0.260	0.287	

 Mean Aspect
 7
 1
 0.031
 0.473
 0.111
 0.407
 0.093
 0.421
 0.266
 0.256
 0.328
 0.238

 Proportion of Contiguous Land Surface Within Radius
 8
 1
 0.223
 0.298
 0.218
 0.302
 0.209
 0.310
 0.219
 0.301
 0.229
 0.298

 (*) Correlation is significant at the 0.01 level; n=number of sites assessed; t=1-tailed or 2-tailed test; r=Pearson's correlation coefficient

Table 4f. Correlations of microfilarid intensity in infected Galapagos penguins with results of principal components analyses.

Analysis Extent (Radius)	1km		1	2km		3km		4km		6km		8kn	'n	
	n	t	r	р	r	р	r	р	r	р	r	р	r	р
Principal Components of Data Sets														
PC1 of WORLDCLIM Temperature Variables (99.8%)	7	1	0.121	0.398	0.169	0.358	0.186	0.344	0.187	0.344	0.188	0.343	0.171	0.357
PC1 of WORLDCLIM Precipitation Variables (98.3%)	7	1	-0.017	0.485	-0.079	0.433	-0.128	0.392	-0.162	0.364	-0.177	0.352	-0.167	0.360
PC1 of MODIS Land Surface Temperature Variables (98.6%)	8	1	0.341	0.204	0.314	0.225	0.294	0.240	0.304	0.232	0.311	0.227	0.290	0.243
PC1 of MODIS Total Precipitable Water Vapor Variables (64.2%)	8	1	-0.272	0.257	-0.184	0.332	-0.169	0.345	-0.075	0.430	0.188	0.328	0.211	0.308
PC2 of MODIS Total Precipitable Water Vapor Variables (31.5%)	8	1	-0.130	0.380	-0.137	0.373	-0.114	0.394	-0.156	0.356	-0.150	0.361	-0.150	0.361
PC1 of MODIS NDVI Variables (87.2%)	8	1	-0.553	0.078	-0.380	0.176	-0.274	0.255	-0.279	0.252	-0.294	0.240	-0.300	0.235
PC2 of MODIS NDVI Variables (6.7%)	8	1	0.041	0.462	0.091	0.415	0.134	0.376	0.105	0.402	0.120	0.388	0.139	0.372
PC1 of Topographic Variables (86.6%)	8	1	-0.095	0.411	-0.156	0.356	-0.191	0.325	-0.180	0.335	-0.174	0.340	-0.154	0.358
PC2 of Topographic Variables (13.4%)	8	1	-0.023	0.478	0.056	0.447	0.071	0.434	0.201	0.317	0.207	0.311	0.190	0.326
All-Layers PCA Components														
PC1 (88.5%)	8	1	0.145	0.366	0.067	0.438	0.002	0.498	-0.035	0.467	-0.076	0.429	-0.071	0.434
PC2 (7.9%)	8	1	-0.221	0.299	-0.262	0.266	-0.270	0.259	-0.271	0.258	-0.258	0.268	-0.242	0.282
PC3 (3.0%)	8	1	0.175	0.339	0.201	0.316	0.209	0.310	0.371	0.183	0.400	0.163	0.391	D.169
PC4 (0.4%)	8	1	-0.058	0.446	-0.062	0.442	0.007	0.494	-0.027	0.475	0.028	0.474	0.018	0.483
(*) Correlation is significant at the 0.05 level: (**) Correlation is significant	t at t	he (01 level: n	znumber	of sites ass	essed: t=	1-tailed or 2-	tailed test	- r=Pearson	's correlat	ion coefficie	nt		

8km

0.318

0.292

0.231

0.277

-0.220

-0.253

0.336

0.247