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ABSTRACT 

Introduction of exotic species is a major factor contributing to biodiversity loss, 

particularly in extinction-prone island ecosystems (Vitousek et al. 1997).  While the Galapagos 

archipelago has experienced negative impacts from invasive plants and animals (Snell et al. 

2002), its bird community has remained remarkably intact with no recorded extinctions – in 

contrast to the fate of the avian fauna of other oceanic archipelagos (VanRiper et al. 1986, 

Savidge 1987, Holdaway 1989, Steadman 1995, Blackburn et al. 2004).   

 The role of introduced pathogens in species loss is not well understood, but there is 

evidence that they have contributed to the decline and extinction of species in several island 

systems (see Wikelski et al. 2004).  For island birds in particular, avian malaria and avian 

poxvirus have contributed to the extinction of several Hawaiian land birds (Warner 1968, Van 

Riper III et al. 1986, Atkinson et al. 1995).  In addition to the other challenges facing island 

biotas (isolation, various effects of small population size), they may also be more susceptible to 

introduced pathogens due to immunological naivety (Atkinson et al. 1995). 

 In recognition of the potential consequences of pathogen introduction to the Galapagos 

Islands, the Saint Louis Zoo and the University of Missouri–Saint Louis, in cooperation with the 

Galapagos National Park Service and the Charles Darwin Research Station, implemented an 

avian disease surveillance program in 2001, with the objective of identifying and monitoring for 

pathogens that pose risk for native bird populations (Miller et al. 2002, Parker et al. 2006).  

 The purpose of this thesis is identify environmental factors that might influence the 

geographic distribution of avian pathogen infection, based on two data sets obtained as a result of 

these surveillance efforts: 1) seroprevalence data on 10 common poultry pathogens from farm 

sites within the agricultural zone of Santa Cruz (Chapter 1); and 2) prevalence and intensity 
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values of microfilarial infections of endangered flightless cormorants and Galápagos penguins 

(Chapter 2).   

 Putative correlative factors were obtained from various geographic information system 

(GIS) and remotes sensing data sets, containing information on temperature, precipitation, water 

vapor, soil moisture, vegetative density and topography.  Results of these analyses provide 

indications of correlation between pathogen infection measures and various ecological factors 

which may affect disease transmission.  These observations may provide the bases for the 

formulation of specific hypotheses for more rigorous statistical verification.  An understanding 

of the environmental factors influencing poultry pathogen prevalence may be useful in predicting 

the consequences of pathogen transmission across the poultry/wildlife interface (Chapter 1).  

Insight into the geographic distribution of arthropod-vectored microfilarial infections may allow 

us to predict the spatial distribution of transmission risk should other arthropod-borne pathogens, 

such as avian malaria or West Nile Virus, be introduced to this ecosystem (Chapter 2). 
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CHAPTER 1: Assessing Ecological Correlates of Poultry Disease Prevalence in the 
Galapagos Islands with GIS and Remote Sensing 

 

ABSTRACT: 

The purpose of this investigation is to identify ecological correlates of pathogen 

prevalence in the poultry industry of the Galapagos Islands, as part of an assessment of the 

potential for disease transmission across the poultry-wildlife interface.  Seroprevalence data for 

ten common poultry diseases from seven Galapagos chicken farms were evaluated for correlation 

with geo-referenced data sets describing climatic and landscape variables which might affect 

disease dynamics.  The results of this study indicate that Mycoplasma gallisepticum, Marek’s 

disease virus, infectious laryngotracheitis virus, infectious bronchitis virus (Massachusetts & 

Connecticut strains) and avian reovirus are highly correlated with each other, and some of these 

diseases exhibit trends with respect to farm type and increasing prevalence with cooler land 

surface temperature and narrower diurnal temperature range.  Newcastle’s disease virus, 

infectious bursal disease virus, avian encephalomyelitis virus, and avian adenovirus-I were 

likewise highly correlated with each other, and exhibited varying levels of correlation with 

climatic variables indicative of moderate dry seasons and low levels of atmospheric water vapor.   

Prevalences of all pathogens were sporadically correlated with satellite-derived measures of 

vegetation density taken at different times throughout the year, though the patterns of correlation 

did not support a link to arthropod vectors.  Correlations with topographic values were not 

observed.  Deviations of observed results from predictions prompted the construction of a 

generalized conceptual model for the relationship between pathogen durability and likelihood of 

environmental influence on disease incidence, in which: 1) very labile organism do not persist 

outside the host long enough to demonstrate detectible influence of variations in environmental 
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factors; 2) organisms with moderate environmental stability may differentially achieve sustained 

transmission in response to variations in environmental factors; and 3) very durable organisms 

are relatively impervious to the observed levels of environmental variability and therefore are 

less likely to reveal patterns of correlation with environmental factors.  Understanding the role of 

environmental influences on the prevalence of these or other pathogens may be important in 

predicting the spread of diseases if they do cross the poultry-wildlife interface.     

 

INTRODUCTION: 

Introduction of exotic species is a major factor contributing to biodiversity loss, 

particularly in extinction-prone island ecosystems (Vitousek et al. 1997).  While the Galapagos 

archipelago has experienced negative impacts from invasive plants and animals (Snell et al. 

2002), its bird community has remained remarkably intact with no recorded extinctions – in 

contrast to the fate of the avian fauna of other oceanic archipelagos (VanRiper et al. 1986, 

Savidge 1987, Holdaway 1989, Steadman 1995, Blackburn et al. 2004).   

 The role of introduced pathogens in species loss is not well understood, but there is 

evidence that they have contributed to the decline and extinction of species in several island 

systems (see Wikelski et al. 2004).  For island birds in particular, avian malaria and avian 

poxvirus have contributed to the extinction of several Hawaiian land birds (Warner 1968, Van 

Riper III et al. 1986, Atkinson et al. 1995).  In addition to the other challenges facing island 

biotas (isolation, various effects of small population size), they may also be more susceptible to 

introduced pathogens due to immunological naivety (Atkinson et al. 1995). 

 In recognition of the potential consequences of pathogen introduction to the Galapagos 

Islands, the Saint Louis Zoo and the University of Missouri–Saint Louis, in cooperation with the 
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Galapagos National Park Service and the Charles Darwin Research Station, implemented an 

avian disease surveillance program in 2001, with the objective of identifying and monitoring for 

pathogens that pose risk for native bird populations (Miller et al. 2002, Parker et al. 2006).  

One of the efforts of this program is to identify the risk of disease transmission across the 

poultry/wildlife interface.  Poultry farming occurs on the five human-inhabited islands (Santa 

Cruz, Isabela, San Cristobal, Floreana and Baltra).  While extensive efforts are underway to 

eradicate other non-native species in the Galapagos (Snell et al. 2002), the removal of all 

chickens from the archipelago is unlikely due to their nutritional and economic importance for 

the local human population and the growing tourist industry.  The increasing number of chickens 

in populated regions is resulting in the expansion of the poultry/wildlife interface and the 

potential for emergence of infectious disease in native species (Gottdenker et al. 2005, Soos et al. 

in review).  In July of 2005 there were ~700 chickens at 12 backyard farms, ~8600 at 3 layer 

farms, and ~17,000 at 25 broiler farms on the island of Santa Cruz (Soos et al., unpublished; 

Figure 1).  To assess the potential for transmission of disease to the endemic and native bird 

fauna, testing of domestic chickens for a panel of pathogens has been conducted (Gottdenker et 

al. 2005, Soos et al. in review) and is continuing, and will be expanded to include testing of wild 

birds for the same pathogens. 

 Soos et al. (in review) compared the pathogens found in small-scale backyard farms to 

those at larger indoor broiler operations.  Thirty chickens from each site of seven farm sites (four 

backyard sites and three broiler sites; Figure 1) were examined for clinical signs of disease and 

seroprevalence of 13 common poultry pathogens considered to be of risk to endemic and native 

birds.  While there was no evidence for avian influenza virus, Salmonella typhimurium or S. 

pullorum, overall seroprevalence was high across both types of farms for the other 10 pathogens 
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(Table 1).  The results clearly indicated higher prevalence of seroreactivity and clinical signs of 

disease at backyard farms.  Given the relatively nonexistent biosecurity measures at these farms, 

the integration of the free-ranging chickens into the surrounding landscape, and the observations 

of native birds foraging with or after the chickens at supplemental feedings, it was concluded that 

backyard farms constitute a larger poultry-wildlife interface and therefore a higher probability of 

disease spillover into the native avifauna. 

 While farm type (backyard vs. broiler) accounted for a large portion of the variation in 

seroprevalence for several of the pathogens examined (MG, ILTV, IBVM&C, ARV, & MDV), it 

was not a significant predictor of prevalence for NDV, IBDV, AEV or AAVI (see Table 2 for 

key to abbreviations).  Authors noted that, even after farm type was accounted for, there was 

considerable residual variation.  They suggested that this variation might be related to differences 

in management practices or environmental factors such as geographic area, altitude, and 

exposure to potential vectors.   

In light of these findings, the present work was conducted to determine whether 

environmental factors (e.g., climate and land cover) account for variation in seroprevalence at 

these seven farm sites.  To this end, measures of correlation between the seroprevalence data 

from Soos et al. (in review) and environmental variables were considered for ten poultry diseases 

and six suites of bioclimatic and landscape variables at seven chicken farms in the agriculture 

zone of the island of Santa Cruz, with the assumption that environmental factors conducive to 

successful and sustained transmission will be reflected in higher prevalence values.  While seven 

sites is a small sample size for such a correlative analysis, this approach has been taken to 

identify possible trends which may form the basis for hypotheses to be more rigorously tested.   
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The discipline of landscape epidemiology seeks to link the spatial distribution of host 

populations with the transmission dynamics of their pathogens.  Spatially variable biotic and 

abiotic attributes of host and vector habitat, and the distribution of the hosts and vectors 

themselves, can affect the distribution and abundance of disease-causing organisms.  Landscape 

and climatic factors that can be described in a geo-referenced data set can be assessed for 

correlation with disease data in a GIS, allowing the identification and mapping of infection risk 

factors and incidence of disease (Hess et al. 2003). 

Climatic factors to be considered in this study include temperature, precipitation, and 

atmospheric water vapor.  Landscape characteristics such as land cover can be an important 

factor in the distribution of organisms and the dynamics of disease transmission (Curran et al. 

2000), and will be considered here through the use of an index of vegetation density (see NDVI 

in Methods).  Topographic variables (elevations, slope & aspect) will also be considered. 

Table 2 summarizes the characteristics, threats to wildlife, and factors affecting the 

likelihood of environmental influence on transmission of the ten pathogens considered in this 

study.  Predictions are made as to the relative likelihood of observing correlations between 

pathogen prevalence and ecological variables.  These predictions are primarily based on the 

logic that organisms that are relatively durable outside the host are more likely to be influenced 

by environmental factors during these periods of horizontal transmission, while more labile 

organisms are unlikely to survive outside the host long enough to produce a discernable signal 

of environmental correlation.  Implication of a role for living vectors or reservoirs in 

transmission also increases the likelihood of environmental influence on prevalence, particularly 

with respect to landscape variables such as surrounding vegetation density. 
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METHODS: 

 Seroprevalence data on the ten pathogens listed in Table 1 were obtained from blood 

samples of 30 chickens from each of seven farms (Figure 1).  See Soos et al. (in review) for a 

description of collection and serology methods used. 

Climate data describing precipitation and atmospheric temperature were obtained from 

the WorldClim database (http://biogeo.berkeley.edu/gis/data.html; Hijmans et al. 2005), which 

contains a minimum of 30 years (1960-1990) of monthly temperature (°C) and precipitation 

(mm) measurements at 30 arc-second resolution (approx. 1km2).  From this data set we 

considered the following 18 bioclimatic variables:  annual mean temperature; mean temperature 

of the driest quarter; mean temperature of the wettest quarter; temperature annual range; 

minimum temperature of the coldest month; maximum temperature of the warmest month; 

temperature seasonality; mean diurnal temperature range; mean temperature of the coldest 

quarter; mean temperature of the warmest quarter; precipitation in the coldest quarter; 

precipitation in the warmest quarter; precipitation in the driest quarter; precipitation in the 

wettest quarter; precipitation seasonality; precipitation in the driest month; precipitation in the 

wettest month; and annual precipitation.   

In addition to data based on weather station records, satellite sensor measurements of 

environmental and landscape variables were also assessed for correlation with prevalence values, 

including data on land surface temperature, atmospheric water vapor, and vegetation density. 

In laboratory tests, relative humidity has proven to be an influential factor on the survival 

of viruses on environmental surfaces (Buckland & Tyrell 1962, Mbithi et al. 1992, Abad et al. 

1994).  It has also been suggested that relative humidity may contribute to the seasonality of viral 

outbreaks (Enright 1954).  Therefore, geographic variation in relative humidity may be 
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correlated with disease prevalences.  While remotely sensed data on relative humidity at a 

meaningful spatial scale are not available, the MODIS sensor aboard the Terra and Aqua 

satellites provides daily quantification of total precipitable water vapor (amount of water vapor 

in the atmospheric column, in centimeters), derived from a near-infrared algorithm at 1-km 

spatial resolution (King et al. 2004).  Mean precipitable water vapor was calculated for each of 

the twelve months preceding the sampling of poultry farms (Aug ’04-Jul ‘05).  Pathogen 

prevalence data were assessed for correlation with the following water vapor values: monthly 

means; annual mean; annual minimum (mean of lowest month); annual maximum (mean of 

highest months); range (mean of highest month minus mean of lowest month); index of 

seasonality (mean of highest month divided by mean of lowest month); and standard deviation of 

monthly means over the year (as a measure of annual heterogeneity).     

While the querying of this data set was prompted by the suggestion of a role for relative 

humidity in viral persistence, we note that total precipitable water vapor is not the same as 

relative humidity, which has a temperature component not available here.  Additionally, these 

values are for water vapor in the entire atmospheric column beneath the top of the Earth’s 

atmosphere, and not only at the surface – though the algorithm used to produce these data is 

more sensitive to water vapor at the earth-atmosphere boundary layer (King et al. 2004).  

For temperature variables more accurately defined in time and space, we utilized land 

surface temperature data sets acquired by the MODIS sensor for the year preceding sampling 

(Aug ‘04 – Jul ‘05).  Daily day and night land surface temperatures at 1-kilometer spatial 

resolution are calculated from thermal infrared emissions, and are accurate to 1 Kelvin (King et 

al. 2004).  As frequent cloud cover impedes the ability to retrieve temperature readings, MODIS 

Land Surface Temperature data products are available as 8-day composites, which take 
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advantage of the few cloudless opportunities.  These composites were used to calculate monthly 

means.  Even with compositing, a few monthly averages were not available for some of the farm 

sites, so seasonal composites were calculated.  Disease prevalences were assessed for correlation 

with:  mean day and night land surface temperatures for the 12 months preceding sampling, the 

warmest six months (Dec ’04-May ‘05), and the coolest six months (Aug ’04-Nov ‘04 and Jun 

’05-Jul ‘05); diurnal temperature range (day temperature minus night temperature) from the 

annual, warm, and cool period means; and seasonality of day and night land surface temperatures 

(mean of warmest month divided by mean of coolest month). 

The primary link between land cover and disease is through the quality and quantity of 

surrounding arthropod vector habitat.  The most important applications of remote sensing to 

epidemiology have used the Normalized Difference Vegetation Index (NDVI), a measure of the 

vegetative productivity of an area, as a proxy measure for arthropod vector habitat, with the 

underlying logic that areas of dense vegetation are likely to provide suitable habitat for arthropod 

vectors, and that levels of moisture sufficient to support such vegetative structure are also likely 

to provide the moisture necessary for breeding habitat (for example, of mosquitoes).  Similar 

logic may apply to non-arthropod species which may serve as reservoirs or mechanical vectors, 

i.e., wild birds may be more abundant in the vicinity of dense vegetative coverage that may serve 

as refuge.  Remotely-sensed NDVI values have been positively correlated with human and 

veterinary diseases such as: trypanosomiasis through its tsetse fly vector (Rogers 2000); sin 

nombre virus infections in deer mice (Boone et al. 2000); urinary schistosomiasis via snails 

(Brooker et al. 2001); Lyme’s disease via ticks (Kitron & Kazmierczak 1997); and mosquito-

vectored malaria, filariasis, rift valley fever, eastern equine encephalitis and leishmaniasis (Hay 

et al. 2000b, Crombie et al. 1999, Anyamba et al. 1999, Moncaya et al. 2000, Thompson et al. 
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2002).  Hay et al. (2000a), Beck et al. (2000), and Correia et al. (2004) review the use of NDVI 

and other remotely-sensed data in epidemiology.  While arthropod vectors are not implicated as 

intermediate hosts of the pathogens assessed here, there is some evidence that they may act as 

mechanical vectors.  Correlations of prevalence with surrounding vegetation density may also be 

indicative of other unanticipated relationships. 

NDVI data from the MODIS sensor aboard the Aqua and Terra satellites (King et al. 

2004) are available at a moderately coarse spatial resolution (250-meter pixels, ~0.063km2) but 

with high temporal resolution.  Daily measurements are composited and returned every 16 days 

for nearly continuous monitoring.  As the Galapagos archipelago is frequently under cloud cover, 

compositing is particularly valuable in that it takes advantage of the few clear-sky opportunities.  

Analyses were conducted on each of the composite datasets for the year preceding the study.  

Correlations were assessed on the raw pixel values, and on values which were averaged over 

varying geographic extents, from 0.56 to 22.56 square kilometers surrounding the respective 

sites.  Correlations were also assessed with the mean NDVI for the preceding year, for the wetter 

months of the preceding year (Jan-May ‘05), for the drier months (Aug-Dec ‘04 & Jun-Jul ‘05), 

and with an index of seasonality (wet mean / dry mean).  These measures were based upon 

NDVI values averaged over 1.56 square kilometers (an extent similar to the spatial resolution of 

the other datasets analyzed).    

 Topographic features may also influence an organism’s range.  Elevation, slope, and 

aspect (the direction a slope faces) were assessed for correlation with prevalence data.  Elevation 

may be correlated with prevalence through its links with temperature and precipitation.  Slope 

may affect drainage of surface water.  Correlations with aspect may reflect some relationship 



  22 

   

with exposure to sunlight or winds.  These values were based on a digital elevation model 

(DEM) with 90-meter resolution, produced by the Shuttle Radar Topography Mission (SRTM). 

 To control for the covariance inherent in the data layers used in this study, they were also 

submitted to a principal components analysis (PCA), producing derived data layers that are non-

correlated and independent.  Each of the major data groupings (WorldClim temperature, 

WorldClim precipitation, SRTM topographic, MODIS NDVI, MODIS land surface temperature, 

and MODIS water vapor) was subjected to a PCA, with the 2-4 layers representing the majority 

of the variation being assessed for correlation with disease data.  These resulting layers were also 

submitted to another PCA to diminish redundancy among data sets (hereafter referred to as the 

“all-layers PCA”), with the resulting principal components also being assessed for correlation 

with disease prevalence (Appendix II).  All components of the all-layers PCA contained 

significant variation (eigenvalues > 1), so all were considered in the correlative analyses.   

WorldClim values were extracted in ESRI ArcGIS 9.1.  All MODIS data sets (water 

vapor, land surface temperature, and NDVI) were obtained from the NASA Land Process 

Distributed Active Archive Center (LP DAAC), and were pre-processed and interpreted using 

ERDAS Imagine 9.0.  The SRTM digital elevation model was pre-processed in ERDAS Imagine 

9.0, and topographic values calculated and extracted in ArcGIS 9.1.  PCA was conducted with 

ERDAS Imagine 9.0. 

Additionally, pathogen prevalence was also assessed for correlation with prevalence 

values of other pathogens recorded in this Soos et al. (in review).   

Due to the small number of sample sites (n=7), correlative analysis is necessarily limited 

to simple bivariate analysis (Pearson’s Correlation Coefficient (r), 2-tailed, SPSS).  Prevalence 

values for all ten pathogens were assessed for correlation with all ecological and environmental 
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variables listed above (with the exception of aspect, values of which have a circular distribution 

and were assessed for fit to a quadratic curve).  As no assumptions of directionality in any 

correlations were made a priori, P-values reported here are based on two-tailed tests.  Should we 

modify our hypotheses to correctly predict the nature of the relationships investigated, P-values 

resulting from one-tailed tests would be one-half of those reported here, exhibiting greater 

statistical significance.  Given the low power of analyses based on the small number of sampling 

sites and the preliminary nature of this assessment, a relatively liberal α of P ≤ 0.10 was set to 

indicate potential trends.  Corrections of P-values for multiple comparisons (i.e. Bonferroni 

adjustments) were not conducted, as each comparison of ecological variable to prevalence value 

may be viewed as an independent hypothesis (Perneger 1998).  It is possible that some of the 

observed correlations may be serendipitous, given the large number of tests, and it is felt that the 

best approach is to merely describe how the analyses were conducted, particularly given the 

exploratory nature of the study.  Trends noted herein may suggest future hypotheses for more 

rigorous statistical verification. 

 Comparisons between our a priori predictions of the level of environmental influence on 

the prevalence value of each pathogen and the amount of correlation actually observed is 

difficult to conduct objectively.  To reduce some of the subjectivity, assignments of pathogens to 

“observed” categories were based on the number of statistically significant correlations with 

components of the “all-layers” PCA (with those correlated factors significant at p ≤ 0.10 

receiving 1 point and at P ≤ 0.05 receiving 2; scores of 0-1 = Low, 2-3 = Mod., and 4+ = High).   
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RESULTS: 

 Results of all correlative analyses are included in Appendix I.  Table 3 summarizes the 

statistically significant relationships observed, with relationships significant at p ≤ 0.05 indicated 

in boldface.  Observed levels of environmental correlation, for comparison with our a priori 

predictions, are reported in the final column of Table 2.  A broad overview of the observed 

correlations is provided in Table 4, accentuating the similarities in correlations within the subsets 

of pathogens identified as “Grouping 1” and “Grouping 2” (see below), and the differences 

between them. Appendix II describes the eigen matrix and eigenvalues produced in conducting 

the all-layers PCA.   

Mycoplasma gallisepticum – Prevalence values for MG were not significantly correlated 

with any of the WorldClim or topographic variables.  The only suggestion of a correlation with 

MODIS-derived climatic variables is a negative correlation with mean daytime land surface 

temperatures in the cooler 6 months of the preceding year.  Within the NDVI data sets, there was 

some suggestion of positive correlation with vegetation biomass during the period of peak 

greenness, but the association was negative with measurements taken at other times of the year.  

There were no significant correlations with any of the principal components layers.  These 

findings are in keeping with our a priori prediction that MG would not be likely to be highly 

correlated with environmental variables due to its poor ability to persist outside the host.  MG 

prevalence was highly correlated with prevalence values for MDV, ILTV, IBVM&C, and ARV.  

Soos et al. (in review) found that farm type (backyard vs. broiler) explained 22.4% of the 

variation in MG prevalence. 

Newcastle disease virus – NDV seroprevalence exhibited statistically significant 

correlations with WorldClim precipitation, MODIS temperature, MODIS total precipitable water 
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vapor, and vegetation density (NDVI) variables.  NDV was negatively correlated with 

precipitation seasonality, and positively correlated with precipitation in the driest month, 

suggesting increased viral persistence or transmission within geographic areas which undergo 

more moderate dry seasons.  NDV prevalence was negatively associated with mean daytime land 

surface temperature, particularly during the warmer six-month period within the year prior to 

sampling (Dec ’04-May ‘05) with a trend toward positive correlation with nighttime 

temperatures in the cooler periods of the preceding year and negative correlation with diurnal 

temperature range, suggestive of a positive relationship with moderate and stable temperatures.  

Total precipitable water vapor values, derived from the MODIS sensor, also exhibited a trend 

toward negative correlation with NDV prevalence values.  Correlations were statistically 

significant with water vapor measurements taken during several of the months of the year 

preceding sampling, particularly the month before sampling (Jun ‘05), and for the mean of the 

entire preceding year.  This association is supported by a significant correlation with the 3rd 

principal component of the water vapor data (primarily derived from measurements from the 

drier months of the year).  In the all-layers PCA, NDV was correlated with the 14th principal 

component which was primarily derived from the WorldClim temperature principle components, 

though this component constitutes only a miniscule fraction of the variance present in the data 

(Appendix II). There was a trend toward positive correlation with NDVI measurements taken 

during the wetter portion of the year, and negative correlation with those from drier periods, 

though this signal is relatively weak.  Soos et al. (in review) were able to attribute none of the 

variation in NDV prevalence to farm type, while prevalence did correlate with several climatic 

and vegetation values (though we make no assumptions of independence among these variables).  

This is concordant with our prediction that environmental variables may influence NDV 



  26 

   

prevalence, though the “observed” index of correlations rates it as only moderately correlated 

with the principal components of these data sets.  NDV was also significantly correlated with 

prevalence of the AEV and IBDV pathogens.  Topographic variables showed no evidence of 

correlation with NDV prevalence.   

Marek’s disease virus – MDV was not correlated with WorldClim variables, topographic 

factors, MODIS-derived water vapor measures, nor any of the PCA layers.  However, there was 

a negative correlation with diurnal temperature range, specifically during the warmer period, and 

a trend toward correlation with lower daytime and higher nighttime temperatures.  Several of the 

NDVI data sets showed significant correlation with MDV prevalence, with a pattern of negative 

correlation with measurements from drier periods and positive correlations with measurements 

taken at the peak of greenness.  We predicted that MDV would be the most likely pathogen to be 

influenced by environmental factors due to its remarkable ability to persist outside of the host, 

but for the most part this did not hold true, with only moderate evidence of environmental 

influence.  Soos et al. (in review) demonstrated that MDV prevalence was largely predicted by 

farm type, with the pathogen present and moderately prevalent at all backyard sites and absent at 

all of the broiler sites; perhaps the effect of farm type swamps the ability to detect a stronger 

environmental signal (see also the discussion of a “generalized conceptual model,” to follow).  

Among the other pathogens studied, MDV was very highly correlated with the prevalence of 

MG, ILTV, IBVM&C, and ARV.   

Infectious laryngotracheitis virus – Neither WorldClim, topography, water vapor 

measures, nor any of the PCA layers correlated significantly with ILTV prevalence.  The most 

detectable effect of daytime land surface temperature was a negative correlation with mean 

daytime temperature during the cooler six months of the preceding year, with prevalence higher 
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at the cooler locations.  There was some evidence of positive correlation with NDVI 

measurements taken at peak greenness and negative correlation with NDVI data from drier parts 

of the year.  Soos et al. (in review) demonstrated that farm type (backyard vs. broiler) explained 

33.5% of the variation in ILTV prevalence.   Our a priori hypothesis predicted moderate 

probability of significant influence of environmental variables on prevalence, but only minimal 

evidence of environmental influence is reflected here.  The most significant correlates of ILTV 

prevalence were the prevalence values of MG, MDV, IBVM&C, and ARV. 

Infectious bronchitis virus – The Massachusetts and Connecticut strains of IBV, which 

are highly associated with each other, logically exhibit similar patterns in correlating variables.  

Neither strain can be demonstrated as correlated with WorldClim or topographic variables.  

However, IBV does show a strong trend toward correlation with low daytime land surface 

temperatures during the cooler months and negative correlation with diurnal temperature range, 

suggesting enhanced survival and/or transmission in cooler, more temperature-stable environs.  

These pathogens also exhibited the greatest amount of correlation with NDVI values throughout 

the preceding year, with evidence for significant positive correlation with measurements taken at 

wetter times of the year (Feb-Mar) and negative correlation with values from drier times.  While 

there was no notable association of IBV with MODIS water vapor data when examined directly, 

there was a correlation of both strains with the 2nd principal component of the water vapor data 

set (derived from values from the end of the wet season and beginning of the dry season), as well 

as correlation with the 7th principal component of the all-layers PCA which is largely derived 

from the water vapor components.  Other significant correlates of IBVM & IBVC prevalence 

appear to be farm type (50.3% and 73.2% of variation explained, per Soos et al.) and prevalence 
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of MG, MDV, and ARV.  While the IBV strains were predicted to be highly correlated with 

environmental variables, they were only moderately so.   

Infectious bursal disease virus  – Prevalence of IBDV was positively correlated with 

areas of higher rainfall, particularly in the dry season, being most significantly correlated with 

lower precipitation seasonality and higher precipitation in the driest month.  IBDV is also 

negatively correlated with water vapor measures from several months of the preceding year, 

particularly the month prior to sampling (Jun ‘05), though one of these correlations is 

anomalously positive.  These relationships with precipitation and water vapor are supported by 

significant correlations with the 1st principal component of the WorldClim precipitation data 

(derived from annual precipitation and precipitation in the driest month) and the 3rd component 

of MODIS water vapor data (primarily derived from measurements from the drier months of the 

year).  There was a minimal trend toward negative correlation with NDVI data from drier parts 

of the year, and positive correlation with values from the wetter period.  Consistent with our 

predictions, IBD exhibits a relatively high number of correlations with climatic variables.  Soos 

et al. were unable to support farm type as an explanatory variable for IBDV.  The only pathogens 

correlated with IBDV prevalence were NDV and ARV.   

Avian reovirus – Despite our prediction that ARV’s reputation of environmental stability 

would lend itself to possible ecological correlations, the only observed patterns are: a relatively 

weak trend toward positive correlation with NDVI measurements from the wet period and 

negative correlations at drier times; a suggestion of negative correlation with NDVI averaged 

over the year; and a correlation with the 4th principal component of MODIS water vapor 

variation, primarily derived from the May ’05 measurement, though this measurement itself was 

not significantly correlated.  Soos et al. (in review) attributed 39.8% of the variance in 
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prevalence to farm type, and the prevalences of MG, MDV, IBVM&C were highly linked to 

ARV prevalence.      

Avian encephalomyelitis virus – AEV prevalence exhibited a subtle trend toward positive 

correlation with precipitation variables and negative correlation with precipitation seasonality 

within the WorldClim data set.  Prevalence was moderately correlated with mean land surface 

temperature for the year preceding sampling, and there is evidence of an association of 

prevalence with the 14th component of the all-layers PCA, which is principally derived from the 

WorldClim temperature components.  MODIS water vapor means for four of the preceding 

twelve months were correlated with prevalence, to include the month before sampling (Jun ‘05).  

Given the pathogen’s ability to survive outside the host for a moderate period of time, these 

findings are in keeping with our a priori predictions.  Soos et al. demonstrated no link between 

farm type and AEV prevalence.  The only correlated pathogen in this data set was NDV.   

Avian adenovirus I – With only a weak trend toward negative correlation with NDVI 

values from drier parts of the year, negative correlation with the 2nd principal component of the 

WorldClim temperature data (primarily derived from mean temperature of the coldest quarter) 

and negative correlation with the 4th component of MODIS water vapor data (primarily derived 

from the May ’05 measurements), few ecological variables were found to be correlated with 

AAVI prevalence, despite our considering a moderate level of correlations likely.  Soos et al. (in 

review) found no link to farm type.  The only other correlates of AAVI incidence were 

prevalence of IBDV and ARV. 
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DISCUSSION: 

These ten pathogens fell into two distinct clusters with respect to correlated factors 

(Table 4).   MG, MDV, ILTV, IBVM&C, and ARV are highly correlated with each other and 

therefore, logically, demonstrate similar trends toward correlation with possible influencing 

factors – in this case, MODIS land surface temperature variables, influence of farm type, and 

pattern of correlation with vegetation indices.  On the other hand, NDV, IBDV, AEV, and, to a 

lesser extent, AAV-I, are likewise highly correlated with each other, and consistent in trends 

toward correlation with WorldClim precipitation variables, MODIS water vapor variables, 

patterns of NDVI correlation, and lack of detectable influence of farm type (Soos et al., in 

review).   

Some of these commonalities may lie in viral physiologies.  Within the MDV-ILTV-

IBV-ARV grouping, all but ARV are enveloped viruses (having a lipid-rich outer covering 

derived from host cell walls).  Of the NDV-IBDV-AEV-AAVI grouping, all but NDV are non-

enveloped.  Previous laboratory studies demonstrate trends in environmental persistence within 

enveloped/non-enveloped groupings (Hemmes et al. 1960, Buckland & Tyrell 1962), with some 

exceptions (Buckland & Tyrell 1962, Mbithi et al. 1992).  This seems to be consistent with the 

evidence here in that, within enveloped/non-enveloped groupings, correlations with 

environmental variables are similar (and different between groupings) with a few exceptions.  

The only non-viral pathogen considered here, MG, lacks a cell wall and is bound only by a 

plasma membrane.  Like the majority of the non-enveloped viruses considered here, it appears 

that this physiology provides little protection in an external environment, as evidenced by little 

correlation with environmental variables.  
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The highest levels of correlation observed in this study are between the pathogens 

themselves, within these two groupings, which warrant caution in attributing prevalence of a 

particular pathogen to ecological variables.  It is plausible that a disease of interest may in fact 

co-vary with another disease which is environmentally correlated.  For example, it is possible 

that prevalence of only one pathogen, such as NDV, may be truly linked to climatic variables, 

while IBDV, AEV & AAVI are associated with NDV prevalence and are not, in fact, influenced 

by environmental factors.   In the absence of a clear mechanism of cause and effect, it should 

also be considered that the correlations between disease prevalences and climatic values may be 

the result of co-variance with some other factor not addressed in this analysis.   

Temperature variables as described by the WorldClim data set were not correlated with 

prevalence of any of the pathogens considered here.  WorldClim precipitation variables were 

influential in the distribution of prevalence for the NDV, IBDV and AEV, but not for others.  

Topographic factors (elevation, slope, aspect) exhibited no statistically significant relationships 

with prevalence data.  MODIS-derived NDVI values showed sporadic and varying levels of 

correlation with prevalence of all pathogens considered here, with the relationship being positive 

in the drier and negative in the wetter times of the year, a pattern not logically consistent with a 

link to arthropod vector habitat.  This signal would be largely lost if not assessed at multiple 

spatial scales (out to 22.56 km2).  MODIS-derived land surface temperature variables were 

influential on the MG-MDV-ILTV-IBVM grouping, with a trend toward higher prevalence in 

areas with lower temperatures in cooler seasons, and lower diurnal temperature ranges.  Cooler 

temperatures during the warmer months and throughout the year were also implicated in the 

prevalence of NDV & AEV.  MODIS-derived water vapor measures had no influence on the 

MG-MDV-ILTV-IBV-ARV group of pathogens, but were correlated with prevalence of NDV, 
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IBDV and AEV, particularly for the month preceding sampling, with a weak trend toward 

correlation with mean water vapor for the entire preceding year.  Principal components analysis 

of the factors being assessed occasionally supported the patterns observed when correlating with 

the raw data, and sporadically suggested relationships not otherwise observed.  As per Soos et al. 

(in review), the prevalences of pathogens in the MG-MDV-ILTV-IBVM&C-ARV group are 

significantly influenced by farm type, while those in the NDV-IBDV-AEV-AAVI group are not.    

 Should such correlations prove to have a legitimate cause-effect relationship, applying 

regression formulas to georeferenced data sets, such as climate data, may allow us to predict the 

spatial distribution of prevalence values.  For example, linear regression of IBDV against 

precipitation seasonality yields a regression formula with a slope of -0.045 (percent change in 

prevalence per change in the unitless coefficient of variation of precipitation) and an intercept of 

2.181 (r2 = 0.794, P = 0.007, SE = 0.140).  Applying the regression formula to the WorldClim 

precipitation seasonality data yields a map of predicted prevalence distribution throughout the 

agriculture zone and the archipelago as a whole (Figures 2 & 3).  Similarly, regression of NDV 

against precipitation seasonality yields a slope of -0.045 and an intercept of 1.785 (r2 = 0.593, P 

= 0.043, SE = 0.229), resulting in a predicted distribution reflected in Figures 4 & 5.  However, it 

should be noted that this method assumes that the correlations describe a linear relationship 

while the true relationship may be non-linear or a threshold response.  Certainly it is likely that 

the relationship is not truly linear in that it is not possible for prevalence to be greater than 1 or 

less than 0.    

 If indeed precipitation seasonality is a reliable predictor of the geographic distribution of 

NDV and IBDV in the Galapagos Islands (and to a lesser extent, AEV and AAVI), it may be 

encouraging to note that the potential distribution of high prevalences of these diseases appears 
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to be relatively limited (Figures 3 & 5).  It must be remembered, however, that this pattern is 

observed in poultry populations within the agricultural zone.  Transmission dynamics in wild 

multi-species communities within the protected zone may likely be quite dissimilar.  Further 

caution in accepting these predictions is warranted in that they are based on observations at a 

small geographic scale are being extrapolated far beyond the area that was sampled. 

Generalized Conceptual Model – In general, the relative number of environmental 

correlates observed per pathogen was only loosely consistent with predictions regarding 

likelihood of observing such correlations.   Predictions were very subjective, primarily based on 

published references as to durability of the pathogen outside of the host, with observed results 

being based on number of correlations with components of the “all-layers” PCA.  Prevalence of 

Marek’s disease virus, which had one of the strongest records of durability, showed only a 

moderate level of correlation with environmental variables.  Likewise, environmental 

correlations with NDV prevalence were less than predicted.  It is possible that the virions of 

these viruses are so impervious to the range of environmental values occurring at the sampling 

sites that there is little detectable signal of impact on prevalence.  Another exception, AAVI, was 

predicted to show moderate correlations with environmental variables but showed relatively few 

significant relationships.  AAVI is non-enveloped, and it is possible that this physiological 

characteristic, lending to relative lability, led to a diminished influence of environmental factors 

on prevalence.  Perhaps these relationships can be explained by a generalized conceptual model 

(as illustrated in Figure 6) wherein: 1) very labile organisms fail to persist outside the host long 

enough to demonstrate any perceptible influence of environmental variation; 2) organisms of 

intermediate durability persist long enough for environmental variables to differentially affect 
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transmission dynamics; and 3) highly durable organisms are relatively impervious to the 

environmental conditions, or at least the ranges of values occurring in the current study.   

Several caveats must be considered with these data.  “Prevalence” values are based on 

seroreactivity, which does not necessarily reflect the current disease status of the host, only that 

the host has been exposed to some form of the pathogen at some point in its life, including 

vaccines.  While vaccination is prohibited in the Galapagos Islands, some imported chicks may 

have been vaccinated in Ecuador, or surreptitiously vaccinated in the Galapagos Islands (see 

Soos et al., in review, for more discussion of vaccination and seroreactivity in the Galapagos 

Islands).  As mentioned previously, the WorldClim climatic variables considered here are 

interpolated from ~30-year averages reported by thousands of weather stations around the world; 

however, the accuracy of these estimates may be weaker in remote islands (Hijmans et al. 2005).  

A more thorough assessment of these relationships may require installation of data-logging 

weather stations at farm sites.   

This study is a first attempt to identify relationships between disease prevalence and 

environmental factors in the Galapagos poultry industry.  The patterns observed might only 

apply to the limited time and geographic space sampled here, but will merit future investigation. 

The first step in describing a biologically meaningful relationship must be to formulate testable 

hypotheses for the relationships and to test the repeatability of the results and the range of values 

over which the relationship holds true.   A larger sample may begin to illuminate other 

relationships with the other diseases considered, and provide the statistical strength needed to 

take an appropriate multivariate analysis approach.             
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CONCLUSION: 

The results obtained support the hypothesis that environmental variables may explain 

some of the variation in the observed heterogeneity of pathogen prevalence in Galapagos poultry 

farms.  However, the strongest correlations of the majority of the pathogens considered here 

were with the other organisms within their respective groupings.   

In general, the MG-MDV-ILTV-IBVM&C-ARV grouping (predominantly enveloped 

viruses, with the exception of ARV and the bacterial MG) tended to exhibit: high correlation 

with prevalences of other pathogens within this group; more correlation with farm type (Soos et 

al., in review); correlation with remote sensing-derived temperature variables for the year prior 

to testing, particularly cooler daytime temperatures and narrower diurnal temperature ranges 

(most marked in MDV, ILTV, & IBVM&C); and negative correlation with vegetation density 

measurements taken during dry times of the year, with the relationship being positive only with 

the data recorded at the peak of greenness.  

As for the NDV-IBDV-AEV-AAVI grouping (all non-enveloped viruses except for 

NDV), prevalences tended to not be correlated with farm type (Soos et al., in prep) but rather 

exhibited correlations with interpolated climate variables reflective of moderate dry seasons, and 

negative correlations with water vapor factors.  Correlations with these climatic factors were 

most apparent with NDV, IBDV, and AEV.  NDV and AEV also displayed some correlation 

with cooler daytime temperatures.  Sporadic correlations with vegetation density measurements 

were largely negative with those taken at drier periods and positive during wetter periods (Mar-

Jun).   

While management practices are likely to be the first and best line of defense against 

poultry disease spillover into wildlife populations, environmental factors may contribute to the 
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relative prevalence of diseases, and therefore the likelihood of transmission across the 

poultry/wildlife interface.  Methods such as those described in this paper may prove useful for 

identifying links between environmental variables and disease processes.   

It seems unlikely that the correlations suggested here will have much influence on the 

management of the poultry industry on Santa Cruz and other Galapagos Islands.  While the 

demand for poultry products is growing, the locations of chicken farming efforts are strictly 

limited by the boundaries of the National Park (Figure 1).  Should the ecological correlates of 

pathogen prevalence be substantiated as environmental predictors of increased disease risk, 

management implications might include encouragement of poultry farming in lower-risk areas.  

However, concentration of poultry-farms in lower-risk zones may also pose new risks as density 

of farms increases. 

Of the pathogens considered here, spillover of Newcastle’s disease virus into wild 

populations appears to have the greatest potential for significant ecological impact.  

Understanding the role of environmental influences on the prevalence of NDV or other 

introduced pathogens may be important in predicting and controlling the spread of disease if it 

does cross the poultry-wildlife interface.     
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FIGURES:  

 
Figure 1.  Distribution of sampled and unsampled broiler, backyard and layer chicken farms 
throughout the agriculture zone of Santa Cruz.  Delineations within the agriculture zone 
represent property lines.  Inset:  location of Santa Cruz and its agriculture zone within the 
Galapagos archipelago. 
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Figure 2.  Distribution of prevalence of infectious bursal disease virus predicted by precipitation 
seasonality (r2=0.794, P=0.007, SE=0.140, m=-0.045, b=2.181) throughout agriculture zone. 
 

 
Figure 3.  Distribution of prevalence of infectious bursal disease virus predicted by precipitation 
seasonality (r2=0.794, P=0.007, SE=0.140, m=-0.045, b=2.181) throughout archipelago. 
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Figure 4.  Distribution of prevalence of Newcastle’s disease virus predicted by precipitation 
seasonality (r2=0.593, P=0.043, SE=0.229, m=-0.045, b=1.785) throughout agriculture zone. 

 
Figure 5.  Distribution of prevalence of Newcastle’s disease virus predicted by precipitation 
seasonality (r2=0.593, P=0.043, SE=0.229, m=-0.045, b=1.785) throughout archipelago. 
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Figure 6.  Generalized conceptual model of the likelihood of environmental influence on 
prevalence of a pathogen as a function of the organism’s ability to persist outside the host.   
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CHAPTER 2: Ecological correlates of microfilarial prevalence and intensity in flightless 
cormorants (Phalacocorax harrisi) and Galápagos penguins (Spheniscus 
mendiculus) with modeling of prevalence distribution. 

 
 
ABSTRACT: 

 This study assesses the ecological factors associated with variability in prevalence and 

intensity of microfilarid infections in wild populations of endangered flightless cormorants and 

Galápagos penguins.  Prevalence and intensity values were investigated for correlation with a 

large number of environmental variables, as modeled from weather station data and as measured 

by satellite-borne sensors, including data on temperature, precipitation, atmospheric water vapor, 

soil moisture, vegetation density and topographic variables.  Predictions were made based on the 

expected effects of climatic and landscape variables on sustained populations of arthropod 

vectors required for transmission of microfilarids.  In general, findings were consistent with 

predictions with respect to infection prevalence in both cormorants and penguins, exhibiting 

positive correlations with temperature, precipitation and vegetation density variables, and 

negative correlations with measures of environmental variablility.  Correlates of infection 

intensity were more counter-intuitive, possibly indicating a greater impact of ecological variables 

on the hosts themselves, as opposed to the arthropod vector community.  Resulting correlates 

were used to derive predictive distributions of prevalence and intensity values in cormorants and 

penguins throughout the archipelago, though these models remain unvalidated.  Ability to utilize 

environmental variables to predict risk of disease transmission by arthropod vectors may be 

useful in control measures should novel pathogens be introduced to the ecosystem. 
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INTRODUCTION: 

 Emerging infectious diseases of wildlife pose substantial threat to the conservation of 

global biodiversity (Daszak et al. 2000), and there is evidence for the involvement of pathogens 

in population declines (Van Riper III et al. 1986, Cooper 1989, Atkinson et al. 1995, Daszak et 

al. 2003).  In recognition of the potential influence of endemic and introduced pathogens on the 

ecology of Galápagos avifauna, the Saint Louis Zoo and the University of Missouri–Saint Louis, 

in cooperation with the Galápagos National Park Service and the Charles Darwin Research 

Station, implemented an avian disease surveillance program in 2001, with the objective of 

identifying and monitoring for pathogens that pose risk for native bird populations (Miller et al. 

2002; Parker et al. 2006), including establishing baseline health parameters for many Galápagos 

bird species (Padilla et al. 2003, 2004, 2006; Travis et al. 2005).  

As part of these efforts, Merkel et al. (in review) assessed the prevalence and intensity of 

infections of microfilarids, the first-stage larval form of filarioid nematode worms, in multiple 

colonies of two ecologically similar species of coastal seabird, the flightless cormorant (or 

“Galápagos cormorant”; Pelecaniformes: Phalacrocorax harrisi) and the Galápagos penguin 

(Sphenisciformes: Spheniscus mendiculus).  Both species are endemic to the Galápagos (Figure 

1) and are of conservation concern, listed as endangered due small population sizes, narrow 

ranges, and severe population fluctuations which primarily result from marine perturbations (El 

Niño events) that may be becoming more extreme (IUCN 2006).  They are also under pressure 

from natural and anthropogenic forces such as fishing, ecotourism, oil spills, and volcanic 

activity (CBSG 2005).  Merkel et al. (in review) examined blood smears from 380 flightless 

cormorants and 298 Galápagos penguins, constituting 22% and 19%, respectively, of the total 

populations of these two species.  Among the findings was a notable heterogeneity in the levels 
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of prevalence and intensity of microfilarid infections among geographic locations (Figure 2).  

The purpose of this study is to investigate the climatic and landscape factors that may influence 

the spatial distribution of microfilarid infection in these two species, potentially providing means 

of identifying areas of higher likelihood of infection by other arthropod-borne pathogens as well.   

 

Natural History and Pathogenicity of Filarioid Nematodes 

 Filarioid nematodes are highly-specialized parasites of tissues & tissue spaces of non-fish 

vertebrates, which have evolved to utilize blood-feeding arthropods as intermediate hosts & 

vectors (Anderson 2001, Klei & Rajan 2002).  These long, thin, tissue-dwelling worms (of the 

order Onchocercidae, with 80 genera) comprise a minute portion of the phylum Nematoda (Bain 

2002).  They are believed to have originated 150 million years ago, with crocodilians as the first 

known definitive host and being vectored by mosquitoes; however, the main expansion of the 

lineage occurred with the diversification of birds and mammals (Bain 2002), and they have since 

adapted to a wider range of intermediate hosts/vectors.   

 The order exhibits the adaptation of mobile embryos, “microfilariae,” which migrate in 

circulating fluids (lymph or blood) to places favorable for ingestion by hematophagous arthropod 

vectors, such as the peripheral blood or skin (Bain 2002).  Upon ingestion, the arthropod serves 

as an intermediate host where the larvae undergo further development, migrating through the gut 

wall, into muscle tissues, and eventually into the mouthparts of the vector.  At subsequent 

feedings, the 3rd-stage larvae leave the mouthparts and invade the puncture wound left by the 

arthropod; alternatively, infective larvae may enter the host through hair follicles, dermal 

abrasions, or through the salivary secretions of vectors that remain attached, such as ticks.  

Within the definitive host, filarids undergo two more molts.  Adult filarid worms migrate to 
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specific sites within the host, where they produce microfilariae which migrate to the peripheral 

blood or skin where they are available to blood-feeding vectors, continuing the cycle of 

transmission (Anderson 2001, Bain 2002). 

 Filarial nematodes are important human pathogens (Klei & Rajan 2002).  Wucheria 

bancrofti and Brugia malayi cause disfiguring and debilitating lymphatic filariases 

(“elephantiasis”), and Onchocera volvulus is the agent of onchoceriasis, or “river blindness.”  

Filarial infections of humans are also associated with chronic conditions such as recurrent fevers, 

hydrocele, chronic skin disease, chyluria and eosinophilia (Klei & Rajan 2002).  Of 120 million 

humans infected, 1/3 have clinically overt disease (Kazura 1999); however, the majority of 

filarial infections do not exhibit overt clinical signs (Kazura 2002). 

Filarioid nematodes primarily parasitize birds and mammals, which do not differ greatly 

in biochemical pathways, making host-switching possible (Bain 2002).  While birds and 

mammals typically have different filarial genera, cross-infections between them have occurred 

(Bain 2002).  If vectors have broad feeding preferences, infective larvae can be transmitted to a 

variety of vertebrate hosts other than those to which they are adapted; however, these events are 

usually not infective – the larval filariae may not invade or may perish shortly thereafter, being 

encapsulated and destroyed by host defenses (Anderson 2001).  Filarid infestation is documented 

in nearly all bird orders (Cooper 1973, Ashford et al. 1976, Dharma et al. 1985, Bartlett & 

Anderson 1986, Echols et al. 2000, Borkent 2005).   

The pathogenicity of filarial infections in wildlife is not well known.  Infestations of a 

particular organism may be silent in some hosts, while pathogenic in others (Anderson 2001).  

Consequences of infection are typically mechanical in nature, resulting from the travel or 

accumulation of larval and adult filariae through or within host tissues and circulatory systems of 
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the blood or lymph, including: skin irritations; tissue necrosis; eye irritation and blindness; 

cardio-pulmonary inflammation and degeneration; occlusion of the lymphatic system; 

neurological damage; and interference with hepatic and renal functions (Echols et al. 2000, 

Anderson 2001).  Problems may also be associated with the host’s immune responses such as 

allergic reactions and increased white blood cell count (Echols et al. 2000, Anderson 2001).  

Within birds in particular, filariae have been found in the abdominal wall, air sacs, brain, heart, 

lungs, crop, subcutaneous tissue, and joints of infected birds, depending on the parasite and host 

species (Echols et al. 2000).  Best-known among filarial infections of wildlife are those caused 

by Dirofilaria immitis, or “heartworm”.  Infections are common among domestic dogs, and there 

is evidence that prevalence in wildlife is increasing (Sacks 1998).  Even in the absence of clinical 

signs of disease, there is growing evidence that parasites may affect a great variety of host fitness 

components such as egg laying rates, reproductive success, parental condition and survivorship 

(Earle et al. 1993, Korpimaki et al. 1995, Merino et al. 2000, Sacks & Blejwas 2000, Anderson 

2001, Votypka et al. 2003, Remple 2004).   

 Ancestrally, the progenitor of the Onchocercidae was likely vectored by a mosquito 

~150mya (Bain 2002); today, microfilariae are primarily transmitted by mosquitoes (Diptera: 

Culicidae; genera Aedes, Anopheles, Culex, & Mansonia; Bartholomay & Christensen 2002), 

ceratopogonid midges (Diptera: Ceratopogonidae; Borkent 2005), and simuliid black flies 

(Diptera: Simuliidae; Adler 2005).  While filarial infestation of Galápagos avifauna may be the 

result of natural ecological relationships with native vector populations, the introduction of alien 

vector species to the Galápagos may be cause for concern (Snell et al. 2002, Wikelski et al. 

2004); ceratopogonid midge, simuliid black fly, and mosquito species have been documented as 

being introduced to the Galápagos Islands (Causton et al. 2006).  The mosquito Culex 



  65 

 

quinquefasciatus, a known vector of human lymphatic filariasis (Eldridge 2005), is among the 

potential vectors that has been introduced (Whiteman et al. 2005). 

 Best-studied among the filarial diseases is lymphatic filariasis of humans, caused by 

Wucheria bancrofti & Brugia malayi.  The spatial distribution of disease prevalence appears to 

be bioclimatically structured, and within a given geographic area distribution is highly focal, 

with local transmission conditions accounting in part for this heterogeneity (Kazura 1999).  

Transmission is dependent upon the availability of susceptible arthropod hosts (Bartholomay & 

Christensen 2002), and heterogeneity of infection patterns at local and global levels is due in 

large part to peculiarities of the ecological relationships between the intermediate and definitive 

hosts (Kazura 1999).  Proportions of individuals in a population infected are remarkably variable 

in different endemic areas, and proximity of human dwellings to vector breeding sites increases 

risk of contact with mosquitoes bearing infective larvae (Kazura 1999).   

 Similarly, the results of Merkel et al. (in review) included findings of a notable 

heterogeneity of microfilarid prevalence and intensity among sampling sites of flightless 

cormorants and Galápagos penguins.  The purpose of this study is to explore possible ecological 

correlates of spatial patterns of prevalence and intensity.  This analysis will consider a broad 

suite of ecological variables which may explain a portion of the variance observed in microfilarid 

infections in colonies of these two species, including climatic factors (describing temperature 

and precipitation variables) and topographic variables (elevation, slope, and aspect).  In addition, 

remote sensing data is increasingly being recognized as an important source of information about 

landscape-level biogeophysical properties of the earth’s surface and atmosphere.  Remote 

sensing, herein referring to the interpretation of multi-spectral imagery of the Earth obtained by 

satellite sensors, has been particularly useful in identifying climatic and habitat conditions 
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conducive to the breeding of arthropod vectors of disease.  See Hay et al. (2000a), Beck et al. 

(2000), and Correia et al. (2004) for reviews of applications of remote sensing in parasitology 

and spatial epidemiology.  Remotely-sensed data utilized in this study include land surface 

temperature, total precipitable water vapor, vegetation density, and soil moisture values.  See 

Appendix I for a description of the characteristics of the satellite sensors from which many of 

these measures were obtained. 

 The climatic and landscape factors represented by the variables considered in this study 

may have direct or indirect impacts on the definitive hosts, intermediate hosts, or the pathogens 

themselves (Curran et al. 2000).  This inquiry is a first attempt to identify relationships between 

ecological factors and microfilarid prevalence, and the findings may be used to formulate 

testable hypotheses to further elucidate the causation behind the correlations observed.         

 

METHODS: 

Ecological correlates of microfilarial infection measures were sought within data sets 

based on weather station records and remote sensing data from satellite-borne sensors.   

Remotely-sensed data used in this study fall loosely into two categories:  1) data with only 

moderate spatial resolution but with high temporal resolution (from the MODIS sensor); and 2) 

data with low temporal resolution but high spatial and spectral resolution (from the Landsat 7 

ETM+ and ASTER sensors).  See Appendix I for a summary of the resolution characteristics of 

these satellite data sources. 

Table 1 summarizes the data sets used in this study, the analytical procedures applied to 

them, and our a priori predictions of the possible effects of these variables on infection measures 

via influence on arthropod vectors.  
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Principal Components of Ecological Factors – There is an inherently large amount of 

covariance among most of the ecological factors considered here.  To reduce redundancy among 

the data layers used in this study, they were submitted to a principal components analysis (PCA), 

with resulting data layers that are non-correlated and independent.  Each of the major data 

groupings (WorldClim temperature & precipitation; MODIS land surface temperature, water 

vapor & NDVI; and SRTM topographic variables) was subjected to a PCA, with the resulting 

layers representing the majority of the variation being assessed for correlation with disease data 

(Appendix III).  These resulting layers were also submitted to another PCA to diminish 

redundancy among data sets (hereafter referred to as the “all-layers PCA”), with the resulting 

principal components also being assessed for correlation with disease prevalence.  The first four 

components of the all-layers PCA, describing 99.8% of the variation in the input variables, were 

considered in the correlative analyses.   

 

Microfilarid Infection Measures – Merkel et al. (in review) collected blood from the 380 

cormorants and 298 penguins sampled in this study during four sampling periods (8/8-8/13/03, 

3/10-3/16/04, 8/6-8/11/04, and 2/13-2/19/05).  Presence of microfilariae was assessed by 

examining blood smears at 100X for 5 minutes.  DNA sequence data from the mitochondrial 

cytochrome c oxidase subunit I gene confirmed that the microfialriae infecting the flightless 

cormorants and Galápagos penguins are of the same species, though taxonomic identification 

was not possible.     

 Prevalence values describe the proportion of individuals at each sampling site positive for 

infection.  Intensity values are the average number, by sampling site, of filarids seen in 25 100X 
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fields for infected individuals only.  Where birds were re-sampled in the course of the study, only 

the results of the first testing were used to avoid pseudo-replication.  Only sites with five or more 

sampled individuals are included in the analyses.  See Tables 2-5 for a listing of site locations, 

prevalence and intensity values, and sample sizes. 

 

 In this study, environmental variable values were calculated over multiple geographic 

extents, to identify the scale at which these variables may affect transmission dynamics.  Each 

sampling site is represented by a single geographic location based on GPS points.  Independent 

GPS points are not available for each individual sample; typically, a single GPS point was taken 

per sampling site, and multiple birds captured and sampled around that point.  Where there were 

multiple GPS points for a site name, coordinates were averaged for a single epicenter of analysis.  

Around each point, buffer zones for analysis were rendered using ArcGIS 9.1, describing 

polygons of contiguous landscape within radii of 1, 2, 3, 4, 6, and 8 kilometers around the 

respective points (see Figures 3 – 6); ERDAS Imagine 9.0 was then used to calculate the values 

of the environmental factors within these polygons.   

 As the radii increase, areas of overlap between sites become considerable; to increase 

independence of data, infection and environmental values at sample collection sites within close 

geographic proximity were averaged together, resulting in a smaller number of sites with greatly-

reduced geographic overlapping.  Correlative analyses were then conducted on both data sets: 1) 

the sites assessed individually; and, 2) the results obtained by merging the proximal localities 

(hereafter referred to as the “merged” results).  Where analyses of the results indicate 

correlations at wider radii, these results were confirmed or negated by assessing the significance 

of the merged results.  In general, the merged results tended to support the relationships indicated 
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by the analysis of individually-assessed sites; in some cases, the merged results were statistically 

significant when the individual results were not.  Where the larger geographic areas 

encompassed sites with too few samples to be included individually, the test results at these sites 

were included in the merged analysis.   

 To further assure independence of data, site-specific measures of prevalence and intensity 

were assessed for spatial autocorrelation using Moran’s I in ArcGIS 9.1.  Resulting low values of 

I (prevalence in cormorants, 0.13; intensity in cormorants, 0.15; prevalence in penguins, -0.03; 

intensity in penguins, 0.06) indicate that prevalence and intensity values were neither clustered 

nor dispersed, so adjustments were not made for spatial autocorrelation. 

 SPSS was used to calculate Pearson’s correlation coefficients (r) for all comparisons.  

Where directionality of correlative relationships could not be logically predicted a priori, 2-

tailed tests were used; when predictions could be made about the relationship between an 

environmental factor and microfilarial prevalence, 1-tailed tests were employed (see last column 

of Table 1 for predictions).  In general, unless stated otherwise, predictions about directionality 

of correlations were guided by the assumptions that measures of warmth, moisture and 

vegetation (conducive to arthropod vector populations) would be positively correlated with 

infection measures, and that indices of variability (seasonality, standard deviations of means, 

etc., which may be detrimental to sustained vector populations) would be negatively correlated.   

 Each comparison of an infection value (prevalence or intensity) for each species 

(cormorant or penguin) with an environmental variable, at each of the analysis extents previously 

mentioned, is considered here as an independent hypothesis.  This approach is dictated by the 

relatively small number of sites for which these values could be calculated (n = 6-14); a strong 

multivariate approach would require more sites, which may be logistically impossible given the 
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fact that the sampling reported here covers the majority of the nesting sites of these extremely 

geographically restricted species.  The environmental factors assessed here are also highly 

correlated with each other, further impeding multivariate approaches.  Corrections of P-values 

for multiple comparisons (i.e. Bonferroni adjustments) were not conducted, as they may not be 

appropriate when each comparison is viewed as an independent hypothesis (Perneger 1998).  It is 

possible that some of the observed correlations may be serendipitous, given the large number of 

tests, and it is felt that the best approach is to merely describe how the analyses were conducted, 

particularly given the exploratory nature of the study.  Trends noted herein may suggest future 

hypotheses for more rigorous statistical verification.   

 Eleven of the resulting significant correlates of prevalence in cormorant populations (see 

Results) were used to create a single model predicting distribution of prevalence values 

throughout the islands of Fernandina and Isabela, comprising the majority of the range of this 

species (see variables identified by * in Table 6).  These variables were subjectively chosen to be 

representative of the different data sources and reflecting both positive and negative correlations.  

Equations derived from regressions of observed levels of prevalence against environmental 

variables were applied to data layers, resulting in layers with predicted levels of prevalence 

across both islands.  The resulting eleven predictive models were averaged for a single “model 

agreement” data layer describing predicted distribution of prevalence.  The final model 

agreement layer was produced by several methods, in order to find the best fit to observed 

prevalence: 1) a simple mean derived from the eleven regressed environmental layers; 2) a mean 

weighted by the correlation coefficients (r) of the individual environmental layers, with the logic 

that layers with stronger correlations should carry more weight in the resulting model; and 3) a 
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mean weighted by the r2 values of the regressions of the individual layers, giving even further 

weight to the more highly-correlated layers.   

 The resulting predicted values for the sampled sites were compared to the observed levels 

of prevalence to determine the amount of variation in prevalence data described by the model, 

and to select the final model agreement weighting scheme with the best fit.  

 A similar approach was taken to modeling prevalence and intensity in both species across 

the majority of the Galápagos archipelago.  All significantly correlated factors were regressed 

into predictive data layers, with mean predicted prevalence and intensity obtained by the r2-

weighted method mentioned above.   To reduce possible over-weighting of correlated variables, 

all predictive layers were also subjected to a principal components analysis, with a similar 

model-agreement approach being applied to the components which were significantly correlated 

with the various infection measures.  Modeling functions were performed using ERDAS Imagine 

9.0.   

 

RESULTS:  

 Correlation coefficients for all comparisons are included in Appendix II.  Significant 

correlations (p < 0.05, unless otherwise noted) are presented in Tables 6-9, along with 

indications of predictions of directionality in relationships and whether or not the results were 

consistent with predictions.   

 

Microfilarid prevalence in flightless cormorants – Positive correlations with WorldClim mean 

temperatures appear to be consistent with the role of heat in the development of arthropod 

vectors (Gullan & Cranston 2005), though these correlations are only observed when considering 
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the larger geographic extent surrounding the sampled sites; these results are supported by similar 

relationships with MODIS-derived land surface temperature measurements, particularly in the 

daytime.  Negative correlation with temperature annual range at the broader geographic extents 

is in keeping with predictions about the influence of climatic stability on vector communities; 

this seems to be contradicted by the positive correlation with temperature seasonality at the 1- 

and 2-kilometer radii, but the relationship does become negative, as we would have predicted, at 

the larger geographic scales, though it does not reach statistical significance (r = -0.416, p = 

0.070 at 6kmr).  A role for temperature stability in influencing prevalence values is also 

supported by the negative relationship between prevalence and MODIS-derived nighttime 

temperature seasonality at all spatial extents.   

 Diurnal temperature range results from WorldClim values (negative relationships at 

larger extents) and from MODIS data (positive relationships at larger extents) are contradictory, 

as are potential interpretations of the influence of diurnal temperature range: diurnal temperature 

stability may be conducive to development of pathogens or vectors, while greater temperature 

fluctuations may indicate moister soils favorable to arthropod breeding (Thompson et al. 1996).  

However, WorldClim data describes ambient temperature, while MODIS measures surface 

temperature; daily fluctuations of ambient temperatures may indicate relative climatic instability, 

with a negative influence on vector communities and hence prevalence, while fluctuating land 

surface temperatures may be more indicative of surface moisture conditions lending to increased 

vector breeding habitat.  This interpretation of these results is consistent with our a priori 

expectations. 

 Precipitation levels from the WorldClim data were positively correlated with prevalence 

at the smaller spatial scales, which is in keeping with a priori expectations based on the role of 
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fresh water in the development of many arthropod vectors.  A negative relationship with 

precipitation seasonality at these same scales seems to indicate that seasonal extremes in rainfall 

may be detrimental to microfilarid transmission, possibly signifying that a more stable rainfall 

regime is conducive to sustaining arthropod vector populations. 

 While measures of NDVI – predicted to be the strongest correlates of arthropod vector 

breeding habitat – were not consistently correlated with prevalence, there were positive 

correlations with NDVI measurements in the dry season and the driest quarter, perhaps reflecting 

the importance of stable, sustained vegetative density, supported by a negative relationship with 

NDVI seasonality (though the statistical strength of this relationship did not meet our threshold; r 

= -0.434, p = 0.061).  A positive correlation with the tasseled cap greenness index derived from 

the Landsat image may also lend support to a role for vegetation in explaining variation in 

prevalence. 

 Positive correlation between prevalence and the proportion of land surface within larger 

geographic extent suggests that larger amounts of land surface may provide habitat for vectors 

effecting transmission, while sites primarily surrounded by water may be relatively poorer in 

vector abundance leading to reduced prevalence levels. 

 The observed correlations are largely consistent with expectations for factors which 

would be conducive to sustained arthropod vector communities, thereby influencing variation in 

prevalence among sampling sites.   

 Correlations with results of principal components analyses were generally consistent with 

these results.  PC1 of WORLCLIM temperature variables is primarily derived from maximum 

temperature of the warmest month, and annual and seasonal mean temperatures.  PC1 of 

WorldClim precipitation variables is largely derived from annual precipitation and precipitation 
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in the warmest, wettest quarter.  PC1 of MODIS land surface temperature variables draws on 

annual and seasonal mean temperatures, primarily daytime temperatures, followed by nighttime 

temperatures.  PC2 of MODIS NDVI data is predominantly loaded by variation in the NDVI 

measures from the dry season and driest quarter.  Elevation is the chief loading factor of PC1 of 

the topographic variables.  In the all-layers PCA, correlation with PC2 results from high loading 

by PC1 of the topographic data (elevation). 

 

Mean microfilarid intensity in flightless cormorants – Conversely to relationships with 

prevalence, mean intensity appears to be positively influenced by cooler temperatures, and 

positively associated with temperature instability, as indicated by positive correlations with the 

standard deviations of multiple MODIS land surface temperature measurements throughout the 

year and particularly in the cooler periods.  A positive relationship with temperature instability is 

further evidenced by positive correlations with: MODIS daytime land surface temperature 

seasonality; land surface temperature heterogeneity during the wet season as measured by 

ASTER thermal infrared images; and standard deviations of diurnal temperature range means 

from throughout the year and the cooler periods.   

 However, strong positive associations with nearly all mean NDVI measures at all 

temporal and spatial resolutions, as well as positive correlations with tasseled cap greenness 

indices, reflect that there may indeed be a connection between intensity and surrounding habitat 

suitable for vector communities.  

 Mean intensity was also positively correlated with annual and wet period measures of 

total precipitable water vapor; perhaps the amount of water vapor in the air is correlated with 

aforementioned temperature instability. 
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 Some PCA results were also correlated with infection intensity in cormorants.  PC1 of 

WorldClim temperature variables (primarily maximum temperature of the warmest month and 

annual and seasonal means) was negatively correlated with intensity.  The factor weighted most 

heavily in deriving PC2 of the water vapor data was the mean of the driest quarter, though this 

variable itself was not correlated in the individual analyses.  PC1 of MODIS NDVI primarily 

describes the variation contained in the means of the wet periods, followed by annual and dry 

period means.   

 It is possible that environmental instability may be prejudicial to sustained vector 

communities, and thereby prevalence, but may bolster microfilarid intensity in hosts that are 

infected, perhaps by necessity for a host to invest more of its metabolic budget in coping with 

environmental stress at the expense of suppressing intensity of blood parasite infections.  

However, differences may also be a statistical artefact resulting from the much smaller sample of 

individuals included in calculating mean intensity values by location, as only infected individuals 

are included in these means. 

 

Microfilarid prevalence in Galápagos penguins – While there were no correlations of prevalence 

in penguins with WorldClim data, there were positive correlations with MODIS-derived land 

surface temperature variables, including the annual mean and the means for all seasons.  

Seasonality of nighttime temperatures was negatively correlated with prevalence, suggesting 

some role of temperature stability in influencing prevalence.  Correlations of MODIS land 

surface diurnal temperature range means with prevalence indicate a possible connection between 

surface moisture conditions, vectors, and prevalence, though this was not supported by results of 

tasseled cap wetness or modeled soil surface moisture comparisons.  The only principal 
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component associated with prevalence in penguins was PC1 of the MODIS land surface 

temperature data, which is primarily influenced by daytime mean temperatures, followed by 

nighttime means.  While no other factors considered here were significantly linked with 

microfilarid prevalence in Galápagos penguins, the observed correlations are consistent with 

similar associations between climatic factors and prevalence of infection in flightless cormorants.   

 

Microfilarid intensity in Galápagos penguins – The only correlate of microfilard intensity in 

Galápagos penguins was mean NDVI in the driest quarter; this correlation is in agreement with 

predictions regarding proximity to possible arthropod vector habitat, and is consistent with 

similar correlations of microfilarid intensity in cormorants.  There was an indication of 

correlation with standard deviation of the driest quarter mean precipitable water vapor at the 4-

km scale, but the merged results did not support these results with sufficient statistical strength. 

 

 The modeling of cormorant microfilaria prevalence based on the 11 selected correlations 

resulted in a distribution of prevalence values which was more closely correlated with observed 

prevalence levels than any of the individual input variables.  The three weighting schemes of 

these models each provided a progressively better fit to the observed data (though the 

improvement was not significant), with the r2-weighted mean providing the best fit (r = 0.741, p 

= 0.001).  See Figure 7 for the resulting prevalence distribution model. 

 As the r2-weighted method provided a better fit to the observed data, this method was 

used in the subsequent archipelago-wide modeling approaches.  Figures 8-15 describe the 

predicted prevalence and intensity values in both species resulting from the all-correlates and 

principal components modeling approaches (see Methods).  Tables 10-13 describe the fit of the 
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observed prevalence levels to: a) the model derived by the r2-weighted mean of all predictive 

layers based on correlated ecological variables; b) each of the components resulting from the 

principal components analysis conducted on the input predictive layers; and c) the predictive 

model derived by applying the r2-weighted mean to significantly correlated principal 

components.  See Tables 14-17 for the weightings of the factors contributing to the derivation of 

principal component layers. 

 

DISCUSSION: 

 The ecological factors assessed here may impact transmission dynamics by their 

influences on the host, intermediate hosts, and/or the pathogens themselves; suggestions are 

made as to possible explanations for the statistical relationships, but these are largely speculative 

and further work is necessary to illuminate any true cause-effect relationships.   

 Many of the relationships observed are only significant at the larger geographic extents, 

while other relationships are only significant at the smaller scales.  This may reflect that different 

processes are indeed affected at different spatial scales.  It is conceivable that conditions further 

inland may be important in the development of arthropod vector communities, or that these 

larger extents may vary in presence of some reservoir species whose distribution is influenced by 

the factors being considered.  Likewise, conditions more proximal to the hosts may affect their 

behavior, overall health status, or exposure to other vector species.   

 In general, factors correlated with prevalence and intensity of microfilarid infections in 

Galápagos penguins were consistent with respective factors influencing infection measures in 

flightless cormorant populations.  More correlations were noted with infection measures in 

flightless cormorants than in Galápagos penguins; this may be due to the larger number of 
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cormorant nesting sites sampled, increasing the ability to statistically support relationships with 

cormorant infection measures while failing to do so with penguin values.  However, as reported 

by Merkel et al. (in review) overall prevalence and intensity levels are higher within cormorant 

populations, suggesting that cormorants may be a more definitive host, with infections in 

penguins being relatively more aberrant; if this is indeed the case, it may not be surprising that 

relationships between infection and ecological variables are less distinct.   

 The modeling exercises based upon observed correlations with ecological variables may 

prove useful in describing the distribution of observed prevalence values.  While they may have 

some predictive value, the only validations conducted in this study are assessments of 

correlations with the observed prevalence data that were used to develop the model.  True 

validation of the predictive value of the model will require more sampling at previously 

unsampled locations.   

 Visual assessments of the models derived by different methods (i.e. the all-correlates vs. 

principal components methods) reflect apparent differences in the predicted distribution of 

infection measures.  However, it should be noted that these models were based on coastal values 

for nesting sites of coastal birds, so inland differences in predicted distribution are largely 

irrelevant.  It is also possible that the more involved modeling methods, such as those based upon 

correlations with principal components, may over-fit the model to the observed data and 

diminish the true predictive ability of the models.  Evaluation of relative strengths of these 

methods would require collection of validating data and is beyond the scope of this study.  

 It should also be noted that these predictions extend beyond the ranges of these species 

(refer to Figure 1).  However, if one can cautiously accept the logic that geographic variation in 

prevalence or intensity of this arthropod-borne parasite results from variation in density or 
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stability of arthropod vector communities, these models may be of interest to those studying 

other arthropod-borne pathogens in Galápagos seabirds, students of vector ecology, or protected 

area managers planning emergency control programs should an arthropod-borne pathogen be 

introduced to the ecosystem.  While every pathogen-vector-host system will have varying 

characteristics, similar models based on prevalence of other pathogens in other taxa may begin to 

develop a more complete picture of the spatial distribution of risk of transmission by arthropod 

vector.     

 Acceptance of such relationships between environmental descriptors and pathogen 

prevalence also requires acceptance that transmission dynamics are at some sort of equilibrium, 

and there is some reason to believe that they may not be.  Across the four sampling periods 

within two successive years, Merkel et al. (in review), demonstrated that microfilarid prevalence 

values in cormorant populations were increasing, while those in penguin populations were 

decreasing.  However, the chronic nature of filarid infections should dampen short-term 

variability in prevalence values, making correlations with longer-term measures of 

environmental variability more plausible – supported by Merkel et al.’s findings of very limited 

seasonality in prevalence.  Shorter-term dynamics, stochastic events, peculiarities of the 

unidentified vector species, and variation in host species factors such as population density may 

be the sources of some of the variability not explained by the environmental variables.   The high 

temporal resolution of data sets provided by the MODIS sensor, in particular, may be very useful 

in the study of disease systems with shorter-term variability.   

 It should also be considered that the observed distribution of infection measures may not 

actually be influenced by the correlated ecological variables identified here, but rather that the 

distributions of infection measures and ecological variation may both be driven by some other 
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factor not assessed here, such as wind speed and direction.  Wind dynamics may have an 

important impact on the ability of flying vectors to disperse and feed; however, these data are not 

available on a meaningful scale. 

 The “ecological factor→vector→pathogen” conceptual model (Curran et al. 2000) would 

greatly benefit from the sampling of putative vector abundances at these and other sites.  More 

direct evidence of correlations between ecological factors and vector abundance, and between 

vector abundance and infection measures, would strengthen the definitive link in this chain of 

assumptions. 

 

CONCLUSION: 

 The findings in this paper support the utility of climate and vegetation indices in 

identifying the spatial distribution of factors affecting variability in pathogen transmission 

dynamics.  Once correlations such as these are identified and validated, they may be used as 

predictors for modeling of expected prevalence and intensity levels at other locations.   

 The most logical connection between environmental factors and microfilarid prevalence 

is through the obligate arthropod vectors; the correlations observed here are largely consistent 

with descriptions of what we may consider to be suitable conditions for sustained arthropod 

vector populations.  The most important first step in clarifying these relationships is identifying 

the single or multiple species that are actually vectoring the microfilarids.  Understanding of the 

natural history of the particular species will be important in identifying the true causes of 

variation in prevalence and intensity of microfilarid infections.   

 Given the potential fitness consequences of filarial infestation, whether drastic or subtle, 

knowledge of the factors contributing to transmission, prevalence, and intensity of infection may 
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prove valuable in the management of populations of these two endangered species.  An 

assessment of ecological correlates of infection may also improve our understanding of the 

ecology of the vectors and the parasites themselves, as well as the spatial distribution of other 

arthropod-borne pathogens.  With respect to the threat of introduction of potentially devastating 

exotic pathogens, ability to detect vector habitat may help in response planning, such as guiding 

spatially and/or temporally precise application of potentially harmful pesticides and minimizing 

their overuse.  

 Uses of climate modeling and remotely-sensed data on the earth’s dynamic processes, 

such as presented here, may help to further our understanding of the interplay between ecological 

factors and the respective natural histories of pathogens, vectors and hosts, with implications for 

the transmission dynamics of emerging infectious diseases of humans and wildlife.  Predictive 

use of these data may be particularly important in the face of changing climate and land use 

patterns, and as introductions of non-native organisms continue. 
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FIGURES: 

 
Figure 1.  Geographic distributions of flightless cormorants and Galapagos penguins based on 
GPS points from all known breeding colonies (data provided by H. Vargas).  Two-kilometer 
buffers are drawn around each point for ease of visualization. 

 

 
Figure 2.  Prevalence and intensity values for microfilarid infections in flightless cormorants and 
Galapagos penguins.  See Tables 1 & 2 for keys to site names.
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Figure 3.  Flightless cormorant sites where 
5 or more birds were sampled.  See Table 1 
for site names, coordinates and sample sizes. 

 
Figure 4.  Flightless cormorant sites merged 
based on geographic proximity.  See Table 2 
for site names, coordinates and sample sizes. 

 
Figure 5.  Galapagos penguin sites where 5 
or more birds were sampled.  See Table 3 
for site names, coordinates and sample sizes. 

 
Figure 6.  Galapagos penguin sites merged 
based on geographic proximity.  See Table 4 
for site names, coordinates and sample sizes.
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Figure 7.  Predicted prevalence of microfilarial infection in flightless cormorants based on 
observed data and modeled correlations with 11 environmental variables (see * in Table 5; r2-
0.596, p=0.001).
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Figure 8.  Cormorant filarid infection prevalence as modeled by a weighted mean of all 
correlated variables (see Table 5). 

 
Figure 9.  Cormorant filarid infection prevalence as modeled by a weighted mean of correlated 
PCA layers (see Table 9). 
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Figure 10.  Cormorant filarid infection intensity as modeled by a weighted mean of all correlated 
variables (see Table 6). 

 
Figure 11.  Cormorant filarid infection intensity as modeled by a weighted mean of correlated 
PCA layers (see Table 10). 
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Figure 12.  Penguin filarid infection prevalence as modeled by a weighted mean of all correlated 
variables (see Table 7). 

 
Figure 13.  Penguin filarid infection prevalence as modeled by PC 17 of the PCA conducted on 
all significant correlates (see Table 11). 
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Figure 14.  Penguin filarid infection intensity as modeled by a weighted mean of all correlated 
variables (see Table 8). 

 
Figure 15.  Penguin filarid infection intensity as modeled by PC 01 of the PCA conducted on all 
significant correlates (see Table 12). 
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APPENDICES: 

Appendix I.  Satellite Data Sources 

MODIS – The Moderate Resolution Imaging Spectroradiometer (MODIS) is a NASA Earth 

Observing System (EOS) instrument flown aboard EOS’ Terra and Aqua satellites.  It is a 

multidisciplinary instrument, yielding data on atmospheric, oceanic and land surface features.  Its 

spatial resolution varies from 250m to 1km, measuring the electromagnetic spectrum at 36 

spectral bands, and viewing the entire Earth’s surface every 1 to 2 days.  Launched aboard Terra 

in December of 1999 and aboard Aqua in May of 2002, the MODIS sensors are making major 

contributions to the understanding of the global Earth system (King et al. 2004).  MODIS data 

used in this study include day and night land surface temperatures, total precipitable water vapor, 

and a vegetation density index (NDVI). 

Landsat – NASA’s Landsat Program has been collecting images of the Earth’s surface since 

1972.  Its current sensor, the Landsat 7 Enhanced Thematic Mapper (ETM+) returns 6 visible 

and infrared spectral bands with spatial resolution of 30 meters, a thermal infrared band with 

60m resolution, and a panchromatic band at 15m.  For this study, two scenes from the USGS 

Global Land Cover Facility Orthorectified ETM+ collection, taken on 16 March 2001 (wet 

season), were obtained, composited (or “mosaicked”), and converted to reflectance values .  

These are the most cloud-free images available free of charge; however, while the coastlines are 

relatively cloud-free, inland areas do contain significant cloud coverage, reducing the ability to 

accurately record values over larger spatial scales.  The resulting mosaic was used to assess: 

vegetative distribution and density through the use of NDVI (see below) at 30m resolution; 

brightness, greenness and wetness indices as derived by the Tasseled Cap Transform (see below) 
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at 30m resolution; and land surface temperature and temperature heterogeneity at 90m 

resolution. 

ASTER – Further high-resolution images were obtained by the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) sensor aboard the EOS’ Terra satellite.  This 

sensor has high spatial and spectral resolution with four visible and near-infrared bands at 15m 

resolution, six shortwave infrared bands at 30m resolution, and five thermal infrared bands at 

90m.  As with Landsat and other high-spatial, low-temporal resolution imagers, cloud 

contamination of images, particularly over persistently cloudy regions such as the Galapagos 

Archipelago, places serious limitations on image availability.  For this study, images were 

acquired from the EOS Land Processes Distributed Active Archive Center (LP DAAC) and 

composited for a wet season mosaic and a dry season mosaic.  Due to high cloud cover, it was 

necessary to use images from multiple dates, and in the case of the dry season mosaic, across 

multiple years (the dry-season mosaic was constructed with images from 9/15/01 and 10/30/05, 

and the wet-season mosaic used scenes from 5/16/03 and 6/10/03).  In both cases, however, the 

majority of sites analyzed fell within image areas captured on the same dates (9/15/01 for the dry 

season and 5/16/03 for the wet season).  These seasonal mosaics were used to calculate intra-

annual variations in some landscape measures (NDVI, surface temperature) but cannot account 

for inter-annual variation.   Analyses were further complicated by the absence of short-wave and 

thermal infrared information for the scenes from 10/30/2005, eliminating the possibility of 

conducting seasonal comparisons of some parameters.  These ASTER images were used to 

assess: dry season and wet season land surface temperature, and temperature seasonality and 

heterogeneity (90m); dry season and wet season vegetation indices, and vegetation seasonality 
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(15m); brightness, greenness and wetness indices derived by the Tasseled Cap Transform for the 

wet season only (30m); and modeled soil surface moisture at 90m resolution (see below). 

Despite problems of cloud cover and image availability, the spatial and spectral resolution of 

these Landsat and ASTER images allowed us to assess some of the same factors at higher spatial 

resolution, and conduct other analyses not possible with the coarser MODIS data. 

SRTM – Topographic factors were derived from a global 90-meter resolution digital elevation 

model (DEM) constructed from remotely-sensed data produced by the Shuttle Radar Topography 

Mission (SRTM) during an 11-day mission in February of 2000. 
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