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Abstract 

Magnesium (Mg2+) is essential for all life, and is utilized for many important 

biological processes. All cells must maintain an appropriate concentration of Mg2+ in the 

cytosol and within organelles in order to maintain key biological processes such as 

transcription and translation. Despite the fundamental importance of Mg2+ homeostasis, 

relatively little is known about homeostasis in eukaryotic cells. The goal of this work was 

to identify membrane transport systems that may be involved in the active transport of 

Mg2+, using Saccharomyces cerevisiae as a model organism. Although a variety of Mg2+ 

influx systems have been described, proteins mediating active transport of Mg2+ (which 

are essential to prevent the overaccumulation of cytosolic Mg2+) have not been identified 

from any organism. In yeast, a vacuolar Mg2+/H+ exchange activity has been described, 

but the molecular identify of this protein is not known. To try and identify this activity, a 

candidate gene approach was used. Four yeast genes of unknown function (PER1, 

YNL321w, YDL206w, and YJR106w) were screened for phenotypic effects on Mg2+ 

homeostasis when overexpressed or deleted. PER1 encodes a membrane protein that is 

essential for growth in high Mg2+ concentrations. YNL321w, YDL206w, and YJR106w are 

members of the CaCA (calcium/cation antiporter) superfamily, members of which 

transport a variety of divalent metal cations via a cation/proton exhange mechanism. 

Experiments to determine the function of Per1 showed that overexpression of this gene 

did not affect the Mg2+ content of yeast, but the per1 mutation did reduce Mg2+ content. 

However, information communicated from another research group indicated that this 

effect was not specific to Mg2+. In addition, Per1 was subsequently identified by another 

research group as an ER protein mediating a step in the pathway for 
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glycosylphosphatidylinositol (GPI) anchor synthesis. Of the three remaining candidate 

proteins, only one (Ynl321w) produced a significant increase in intracellular Mg2+ 

content when overexpressed. However, the ynl321w deletion mutation did not alter Mg2+ 

accumulation, Mg2+ tolerance, or tolerance to a range of other potentially toxic cations. 

Combining the ynl321w mutation with knockout mutations in the other two CaCA 

proteins also did not affect metal tolerance, indicating that these proteins do not have a 

redundant function. However, the ynl321w mutant did show a slight sensitivity to a high 

Ca2+ concentration (700 mM). As a result of this, I screened for other Ca2+ related 

phenotypes in ynl321w mutants, alone and when combined with other mutations that 

disrupt Ca2+ homeostasis. I observed that when combined with ynl321w, vcx1 and pmc1 

mutations displayed synthetic Ca2+ sensitivity phenotypes. Measurement of cellular Ca2+ 

content with AAS showed that the ynl321w mutation was associated with an increase in 

Ca2+ content, and that this effect that was still observed in vcx1 or pmc1 backgrounds, 

indicating it was independent of vacuolar Ca2+ storage. Thus, these findings suggest a 

role for Ynl321w in Ca2+ secretion from the cell via the secretory pathway or plasma 

membrane.  Localization studies using fluorescence microscopy and sucrose gradient 

fractionation showed that Ynl321wp to be localized to the ER membrane. As a 

consequence of these observations, I propose that Ynl321w may perform a similar 

function to Pmr1p, a P-type ATPase that transports Ca2+ and Mn2+ into the Golgi (and 

eventually, releases the ion to the external environment). Therefore, I renamed the 

Ynl321w protein Ecx1 (for ER calcium exchanger). The identification of Ecx1 is the first 

described example of a CaCA protein participating in Ca2+ homeostasis within the 

secretory pathway. Although the work did not provide insight into the molecular 
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mechanisms of Mg2+, it did identify a factor in Ca2+ homeostasis. 
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Chapter 1 Introduction 

The divalent cation magnesium (Mg2+) is essential for all life, and is utilized for 

many important biological processes [reviewed in (Rude, 2000)]. Mg2+ is a cofactor and 

structural stabilizer for many proteins [reviewed in (Sreedhara and Cowan, 2002)] and 

nucleic acids [reviewed in (Sreedhara and Cowan, 2002)]. All cells must maintain an 

appropriate concentration of Mg2+ in the cytosol and within organelles to maintain key 

biological processes such as transcription and translation (Sreedhara and Cowan, 2002). 

Suboptimal or abnormally high concentrations of Mg2+ can inhibit these essential 

biological functions. Thus, biological systems must maintain free ionized Mg2+ (Mg2+ 

that is not bound to proteins ligands or small molecules) within a narrow concentration 

range. 

Surprisingly, despite the fundamental importance of Mg2+ homeostasis, relatively 

little is known about the molecular basis of Mg2+ homeostasis in eukaryotes. For other 

biologically important cations, this regulation is primarily mediated by specific transport 

systems in the plasma and organelle membranes of living cells. Many key questions 

about Mg2+ homeostasis, such as how cells respond to changes to environmental or 

intracellular [Mg2+], remain unanswered. Although a variety of Mg2+ influx systems have 

been described, proteins mediating active transport of Mg2+ (which is essential to prevent 

the over-accumulation of Mg2+ within the cytosol) have yet to be identified from any 

eukaryotic organism. Studies of transport systems have been the first step in 

understanding the mechanisms of ion homeostasis in eukaryotes. Thus, research into the 

molecular identity of Mg2+ transporters is of fundamental importance. 
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This thesis describes my research into several putative membrane transport 

systems that may be involved in the active transport of Mg2+. I used the model eukaryotic 

organism Saccharomyces cerevisiae (Bakers' yeast) to investigate the role of these genes 

in magnesium homeostasis. The first part of this introduction describes the role of Mg2+ 

in biology, and the known mechanisms of homeostasis. As my results will illustrate, as a 

consequence of my early observations, the focus of my work began to shift from 

magnesium to the regulation of other metal ions. For this reason, in addition to describing 

the state of knowledge of magnesium transport and homeostasis in eukaryotes, the 

introductory section will also provide a general summary of metal homeostasis and cation 

transporters, in particular focusing on calcium homeostasis. 
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1.1 Mg2+ in biology 

Mg2+ is distinguished from other biologically important metal cations by its 

relatively small ionic radius and consequent high charge density, and its relatively high 

affinity for water molecules and other oxygen-containing ligands [reviewed in (Wolf and 

Cittadini, 2003; Wolf et al., 2003)]. As a consequence of these properties, Mg2+ interacts 

strongly with phosphate in biological systems. All enzymes that transfer phosphate from 

ATP require Mg2+-activated ATP for function [reviewed in (Barbagallo et al., 2003; Wolf 

and Cittadini, 2003; Wolf et al., 2003)]. RNA and DNA polymerases require Mg2+ as a 

cofactor to mediate nucleotidyl and phosphoryl transfer [reviewed in (Wolf and Cittadini, 

2003)]. Other enzymes that require Mg2+ for their function include kinases, enolase (and 

other enzymes of glycolysis), adenylate cyclase, and nucleases [reviewed in (Barbagallo 

et al., 2003; Sreedhara and Cowan, 2002; Wolf and Cittadini, 2003)]. Mg2+ also interacts 

with nucleic acids to stabilize base pairing and other interactions [(Heus and Pardi, 1991) 

and reviewed in (Sreedhara and Cowan, 2002)], and affects the physiology of other ions 

by modulating the activity of ion channels (Perez-Vazquez et al., 2003; Tang et al., 2000; 

Wei et al., 2002). A consequence of the high charge density on Mg2+ ions is the large 

water shell that surrounds the ions in solution. Hydrated Mg2+ ions are much larger than 

the naked ion, and the water shell requires a large input of energy to remove. 

Nevertheless, most Mg2+ in cells is bound to small molecules or protein ligands: less than 

1% is free ionized Mg2+ in the cytoplasm (Millart et al., 1995). 

1.1.1 Magnesium and human health 

Acute magnesium deficiency can occur as the consequence of a severely Mg2+-

deficient diet, various genetic disorders of magnesium homeostasis, or as a secondary 
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effect of major illnesses (e.g., bacterial or viral infections and kidney diseases) or certain 

drugs (e.g. diuretics and alcohol) (Meij et al., 2002; Tahara and Nishizawa, 2007; Tong 

and Rude, 2005). Symptoms of acute Mg2+ deficiency include muscle spasms (tetany) 

and neurological symptoms. Research has shown that Mg2+ supplements can have a 

therapeutic effect for people with Mg2+ deficiency symptoms [(Kawano et al., 1998) and 

reviewed in (Gums, 2004)]. Due to the efficiency of magnesium homeostasis in healthy 

patients, the occurrence of such acute magnesium deficiency is relatively rare. However, 

there is increasing concern about the occurrence of low-grade Mg2+ deficiency 

contributing to the longer-term development of various pathological conditions. In 

developed countries, processing of foods has greatly decreased the average dietary intake 

of Mg2+ [reviewed in (Kimura, 2007)]. There is evidence that the majority of people in 

developed countries do not consume the recommended daily allowance of Mg2+ (Kimura, 

2007). Sub-acute Mg2+ deficiency has been associated with the development of many 

diseases, including cardiovascular disorders and diabetes [reviewed in (Barbagallo et al., 

2003; Gums, 2004; McGuigan et al., 2002)].  

1.1.2 Magnesium and agriculture 

One important role of Mg2+ in plants is as a co-factor in chlorophyll. Mg2+ ions are 

thus essential for photosynthesis and primary production, and Mg2+ deficiency can 

negatively impact agricultural yield. The primary symptoms of deficiency are leaf 

yellowing (chlorosis), initially of the older leaves. In more severe cases, the older leaves 

will die (Hermans and Verbruggen, 2005). Mg2+ deficiency is commonly encountered in 

plants, particularly when grown in acidic soils. Since Mg2+ is very soluble, it is rapidly 

leached from acidic soils in regions with high rainfall. Acidic soils make up the majority 
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of arable land in tropical regions, and are also found in many locations in the USA 

(Altura and Altura, 1996). Mg2+ deficiency can also be exacerbated as a consequence of 

aluminum toxicity, which is also promoted by acidic soils. Al3+ ions retard growth of the 

root system and have a general inhibitory effect on nutrient uptake. In addition, Al3+ ions 

may directly prevent Mg2+ accumulation by blocking the transport systems responsible 

for uptake (Delhaize and Ryan, 1995; Kochian, 1995). Mg2+ can be supplemented to 

alleviate deficiency, although this strategy may not be economically viable, particularly 

in developing nations. 

1.2 Physiology of cation transport 

The tight regulation of metal cation concentrations in the cytosol and organelles 

of living cells is accomplished by the action of specific transport proteins, which allow 

processes of influx, efflux, and sequestration to occur [reviewed in (Nelson, 1999)]. The 

transport of cations can be classified as passive or active. Passive transport via ion-

specific channels is driven by the electrochemical gradients of these ions. Due to the 

action of ATP-dependent proton or Na+ pumps in the plasma membrane, the cytosol is 

negatively charged relative to the external environment. This charge difference provides a 

major driving force for the influx of cations. In addition, the lumen of organelles such as 

mitochondria and chloroplasts are negatively charged relative to the cytosol, as a 

consequence of the proton gradient generated by oxidative phosphorylation or 

photosynthesis within these organelles. In contrast, endosomal compartments such as the 

yeast vacuole are positively charged relative to the cytosol, as ATP-dependent proton 

pumps generate a proton concentration gradient over the membranes of these 

compartments.  
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For these reasons, in contrast to passive influx, efflux of most cations from the 

cytosol into the vacuole or over the plasma membrane requires energy input. This energy 

is provided by systems which directly use the energy from ATP hydrolysis to pump 

cations (primary active transport systems), or which take advantage of the energy stored 

in ion gradients to drive the exchange of ions over the membrane (secondary active 

transport systems).  

1.3 Identification and characterization of cation transporters 

In general, the low expression of membrane transport proteins and their relative 

hydrophobicity has hindered their identification by biochemical methods. Genetic 

methods to identify novel strains with altered homeostasis have proven to be very useful 

in understanding ion homeostasis. For example, genetic screens have been used to 

identify mutants with altered expression of nutrient-regulated genes (Persson et al., 

2003), altered growth under nutrient-deficient conditions (Dancis et al., 1994), or 

tolerance to an excess of toxic cations (Conklin et al., 1993). Due to the facile genetics of 

these organisms and the availability of complete genome sequences, bacterial and yeast 

systems have proven to be very useful for these studies. These studies have revealed 

many different families of cation transporters with members in higher eukaryotes 

(Hanikenne et al., 2005; Maser et al., 2001; Nelson, 1999). The members of each family 

diverge significantly in sequence and even in structure, but share recognizable conserved 

sequence motifs and perform similar functions in species ranging from bacteria to 

humans. Some genomes contain several members of the same gene family: these 

orthologous proteins are often adapted to perform specific roles under differing 

environmental conditions or in different cellular compartments. Thus, studies in microbes 
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have been instrumental in identifying novel transporters and related proteins from more 

complex organisms.  

1.4 Yeast as a model for analysis of eukaryotic cation homeostasis 

Yeast is an excellent model organism to study metal ion transport in eukaryotes 

(Perego and Howell, 1997). As discussed below, Baker's yeast was the organism from 

which the first Mg2+ transporter was identified, and Mg2+ homeostasis is still best 

understood in this organism. Yeast can be propagated as haploid strains to determine the 

phenotype of recessive alleles, or they can be mated to form diploids in order to study 

allelic interactions. As a consequence of the ability to efficiently perform homologous 

recombination, the yeast genome can be easily manipulated: genes can be modified in 

situ or eliminated from the genome, and mating or transformation can rapidly generate 

strains with multiple mutations. Genes can also be introduced on plasmids, which 

replicate independently of the chromosome. Plasmids with different replication origins 

allow us to vary gene copy number, providing a simple way to alter the level of gene 

expression. Genes discovered in yeast often have homologs with conserved functions in 

higher eukaryotes, and in some cases the function of these proteins can be determined 

and studied in the yeast system. In addition, yeast has proven to be an excellent system 

for biochemical analysis of transporters and other enzymes. Since proteins with 

conserved motifs can have similar functions, putative metal cation transporters may be 

identified by the use of search algorithms such as BLAST, using a known transporter as a 

query sequence. Putative transporter genes can then be screened for metal homeostasis-

related phenotypes when the protein is overexpressed or deleted, such as metal tolerance 

or sensitivity and changes in metal content (using a "candidate gene" approach to the 
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reverse genetic analysis of putative transporters). For these and other reasons, yeast was 

selected to perform the research described in this thesis. 

1.5 Mg2+ transport systems 

1.5.1 Mg2+ transport systems in prokaryotes  

The best characterized Mg2+ transporters in bacteria and Archaea are members of 

the CorA family, named after the first identified protein in this family, CorA (Cobalt 

resistance), isolated from Salmonella typhimurium (Hmiel et al., 1986). Mutants in this 

gene were isolated by their tolerance to toxic environmental levels of cobalt, as this 

protein also transports other divalent metal cations (Co2+ and possibly Ni2+) with low 

affinity (Gibson et al., 1991). CorA also mediates the efflux of Mg2+ when high 

extracellular concentrations of Mg2+ are present (Snavely et al., 1989). In contrast to 

CorA, the MgtA and MgtB transport systems are ATPases that are involved in the influx 

of Mg2+ in low extracellular concentrations of Mg2+ (Snavely et al., 1989). These 

transporters are regulated by the PhoP/PhoQ two-component sensory system, which 

monitors the availability of extracellular Mg2+ (Tao et al., 1998). The PhoQ protein acts 

as a sensor to monitor the extracellular Mg2+ concentration, and in the presence of low 

(µM) concentrations it phosphorylates the PhoP protein. Phosphorylated PhoP activates 

transcription of many genes, including MgtA and MgtB. In some bacteria, a fourth 

protein (MgtE) is also involved in Mg2+ uptake. MgtE was originally discovered by 

screening a genomic library screen from Bacillus firmus OF4 for clones that could restore 

the ability of a corA, mgtA, and mgtB triple mutant to grow in minimal media without 

supplemental Mg2+ (Smith and Maguire, 1995). However, it is not clear at this time if 

Mg2+ transport is the primary function of this protein, as it has been shown to transport a 
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variety of metal cations (Mg2+, Ni2+, Zn2+, and Co2+) with the highest affinities for Mg2+ 

and Co2+ (Smith and Maguire, 1995). The crystal structure of a bacterial MgtE protein 

was recently solved (Hattori et al., 2007), which should provide many insights into the 

function of these important proteins. Eukaryotic homologs of MgtE exist in vertebrates 

and appear to mediate Mg2+ influx (Sahni et al., 2007), although their physiological 

function is still unclear. 

1.5.2 Mg2+ transport systems in eukaryotes 

1.5.2.1 CorA family 

 Genetic studies in yeast identified the first eukaryotic Mg2+ transporter (Alr1p), 

named for its resistance to high concentrations of Al3+ (MacDiarmid and Gardner, 1998). 

Alr1p is a plasma membrane protein that is distantly related to the bacterial CorA protein. 

The Alr1 protein forms a Mg2+ channel located on the plasma membrane, which allows 

the entry of Mg2+ to the cytoplasm [reviewed in (Gardner, 2003)]. Alr1p is required for 

growth at normal Mg2+ concentrations (4 mM) (MacDiarmid and Gardner, 1998) and 

deletion of the gene reduces cellular Mg2+ content (Da Costa et al., 2007; Graschopf et 

al., 2001). Overexpression of the 

bacterial CorA protein in an alr1 

mutant partly restored growth 

(Graschopf et al., 2001), indicating 

functional conservation of CorA and 

Alr1. It was previously demonstrated 

that Mg2+ influx in yeast occurs 

through a high capacity transport 
 

 
Figure 1 Mg2+ homeostasis in yeast. 
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system that can also accumulate Mn2+, Co2+, Ni2+, and Zn2+ ions with low affinity 

(Conklin et al., 1993; Fuhrmann and Rothstein, 1968; MacDiarmid and Gardner, 1998; 

Okorokov et al., 1977). This observation suggests that Alr1 can transport other divalent 

cations in addition to Mg2+. This idea is supported by studies showing an increase in 

sensitivity to and transport of Co2+, as well increased sensitivity to other divalent cations 

as a consequence of Alr1 overexpression (MacDiarmid and Gardner, 1998). Evidence has 

shown that Mg2+ influx by Alr1 is driven by the electrochemical gradient, as 

demonstrated by using the patch-clamp method to measure whole-cell ion currents in a 

wild type and an alr1 alr2 strain that overexpressed ALR1 (Liu et al., 2002). The 

overexpressing strain demonstrated a five-fold increase in current compared to the wild 

type in a bathing solution containing 50 mM Mg2+. Interestingly, when the pipette 

solution contained mostly Mg2+, an outward current was also detected in the 

overexpressing strain: this observation suggests that when external Mg2+ concentrations 

are high, Alr1p may also participate in Mg2+ efflux, revealing another functional 

similarity to CorA.  

A closely related ortholog of Alr1, Alr2, has also been shown to be involved in 

the uptake of Mg2+ in yeast (MacDiarmid and Gardner, 1998; Wachek et al., 2006). In 

experiments to measure low-affinity divalent cation uptake via the Alr proteins using the 

isotope 57Co2+, an alr2 mutant did not show a noticeable reduction in Co2+ uptake 

compared to wild type, but an alr1 alr2 double mutant showed a reduction compared to 

an alr1 single mutant. This observation suggested that the Alr2 protein could also 

contribute to divalent cation uptake (including, presumably, Mg2+ uptake), but that it 

plays a role secondary to Alr1 in this process. Recent work in this laboratory to determine 
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the Mg2+ content of alr1 and alr2 mutants supports this interpretation (N. Pisat, personal 

communication). ALR2 overexpression suppressed the Mg2+-dependent phenotype of an 

alr1 mutant (MacDiarmid and Gardner, 1998), indicating that this protein is capable of 

mediating sufficient Mg2+ uptake to support maximal growth. This and other observation 

lead to the proposal that the relatively low expression of Alr2 may explain its low activity 

(MacDiarmid and Gardner, 1998). However, the Alr2 protein also displays an altered 

sequence to Alr1 in the extracellular domain, a change which may contribute to its low 

activity (Wachek et al., 2006). It has recently been shown that Alr1 and Alr2 can interact 

and form homo and hetero-oligomers (Wachek et al., 2006), although the functional 

significance of this interaction is unknown. 

More recently, two other CorA transporters were identified in yeast. Mrs2p and 

Lpe10p are located on the inner mitochondrial membrane, and are both essential for the 

influx of Mg2+ into the mitochondrial matrix (Gregan et al., 2001a; Kolisek et al., 2003). 

Mitochondrial Mg2+ is essential for group II intron splicing in yeast (Gregan et al., 

2001b). Overexpression of either of the Mrs2 or Lpe10 proteins leads to an increase in 

the accumulation of Mg2+ by mitochondria (Gregan et al., 2001a; Kolisek et al., 2003), 

whereas reduced concentrations of Mg2+ were seen in the absence of these proteins 

(Gregan et al., 2001a; Kolisek et al., 2003). Recently, single channel patch-clamp 

experiments have shown that Mrs2p is highly selective for Mg2+ as opposed to other 

cations (Ca2+, Mn2+, Co2+) (Schindl et al., 2007), although the channel was also observed 

to be permeable to Ni2+ to a smaller extent. The requirement of both Mrs2p and Lpe10p 

for the influx of Mg2+ into mitochondria, suggests that they interact to form a hetero-

oligomer. The function of these proteins is conserved in eukaryotes from yeast to 



Franklin, Andrew J. 2007, UMSL, 12 

humans. In fact, the human gene that encodes the hsaMrs2 protein can suppress the mrs2 

mutation when expressed in yeast (Zsurka et al., 2001). 

1.5.2.2 Biochemistry of Mg2+ active transport systems  

Mg2+ transport by the CorA family of the proteins is driven by the charge 

difference over either the plasma membrane or the inner mitochondrial membrane. 

Transport of cations out of these compartments is important for maintaining the 

appropriate concentration, and these processes require energy input, via a mechanism for 

the active transport of this ion. Thus far, active transport systems for Mg2+ have only been 

identified in bacteria (the Mgt systems), which are responsible for the movement of Mg2+ 

ions into (rather than out of) the cell (Snavely et al., 1989). The Mgt proteins are likely to 

contribute to Mg2+ uptake under conditions of extreme deficiency (e.g., the survival of 

pathogenic phagocytosed bacteria is dependent on these systems) (Garcia-del Portillo et 

al., 1992). It is currently unclear what proteins are responsible for the efflux of Mg2+ from 

the cytosol in eukaryotes. One study provided evidence that Mg2+ may be sequestered 

into vacuoles or the secretory pathway via a Mg2+/H+ exchange mechanism (Borrelly et 

al., 2001). Similar systems are known to play a role in the maintenance of cytosolic Mg2+ 

homeostasis in higher eukaryotes (e.g., a Na+/Mg2+ antiport system is present in the 

plasma membranes of a variety of cell types) (Ferreira et al., 2004; Gonzalez-Serratos 

and Rasgado-Flores, 1990; Ikari et al., 2003; Picado et al., 1994; Wisdom et al., 1996). 

However, despite the widespread occurrence of these systems in eukaryotes, and their 

demonstrated importance for homeostasis, definitive evidence implicating a specific 

protein from any organism in Mg2+/H+ (or Mg2+/Na+) exchange has yet to be reported. 

1.6 Ca2+ transport in yeast 
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Calcium (Ca2+) is similar to Mg2+ in many aspects: both are alkali metals that are 

relatively "hard" divalent cations (i.e., they prefer to associate with oxygen-containing 

ligands). Thus, Ca2+ and Mg2+ transport systems might be expected to be similar in 

structure and function. Ca2+ transport has been very well studied in yeast, and many 

calcium transport proteins have been identified. High affinity uptake of Ca2+ from the 

environment is mediated by the Cch1 and Mid1 proteins, which interact to form a 

channel in the plasma membrane (Fischer et al., 1997; Iida et al., 1994). Excess Ca2+ 

entering the cell is sequestered in the vacuole. Pmc1p is a primary Ca2+ pump (related to 

P-type ATPases) located in the vacuole membrane (Marchi et al., 1999), which removes 

Ca2+ from the cytosol (Cunningham and Fink, 1994; Marchi et al., 1999). The 

inactivation of this protein causes a reduction in Ca2+ tolerance as a consequence of 

reduced vacuolar storage. Another important transport system in the vacuole is the Vcx1 

protein, a Ca2+/H+ exchanger (Pozos et al., 1996). Vcx1 is a member of the CaCA 

(calcium/cation exchanger) family, examples of which are found in all phylogenic groups 

(Hanikenne et al., 2005; Maser et al., 2001). The human Ca2+/Na+ exchanger was the first 

member of this family to be identified at the molecular level (Nicoll et al., 1990). CaCA 

family proteins contain 10 to 14 putative transmembrane domains, and contain two or 

more repeats of a conserved domain (the α-repeat) (Philipson and Nicoll, 2000). Calcium 

transport via CaCA proteins is driven by exchange with protons (in yeast and plants) or 

Na+ ions (in animal cells) (Philipson et al., 2002), and is thus dependent on the primary 

ATPase enzymes required to generate proton and Na+ concentration gradients.  

Another mechanism for removal of Ca2+ from the cytosol in yeast is via 

sequestration in the secretory pathway. The ER and Golgi require Ca2+ and Mn2+ for 
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glycosylation of proteins and other biochemical functions (Durr et al., 1998). Transport 

of Ca2+ into the Golgi is mediated by the Pmr1 protein, a P-type ATPase related to Pmc1. 

Spf1, also a P-type ATPase, performs a similar function for the ER. In addition to their 

role in supplying Ca2+ and Mn2+ to these organelles, the Pmr1, Spf1 and Pmc1 are high 

affinity Ca2+ pumps that maintain the low levels of cytosolic Ca2+ required for signal 

transduction processes. Studies have shown that pmr1 and spf1 deletion mutants are 

sensitive to Ca2+ (Cronin et al., 2002), and combining the pmr1 and spf1 mutations 

resulted in an even greater sensitivity. pmr1 mutants display an increase in intracellular 

Ca2+ content (presumably as a consequence of reduced Ca2+ efflux via the secretory 

pathway); in contrast, the spf1 mutation had little effect on Ca2+ content in isolation, but 

there was a synergistic increase in the Ca2+ content of the pmr1 spf1 double mutant 

(Cronin et al., 2002).  

1.7 Aims of this research 

The facile genetics and molecular tools available for yeast make this organism 

ideal for studying the molecular components that maintain Mg2+ homeostasis. As has 

been demonstrated for other metal ions, it is possible to characterize novel genes via 

phenotypes produced by overexpression from multicopy plasmids, as well as by 

inactivating gene function. It is also possible to systematically examine genes of 

unknown function for those with features suggesting that they may perform a particular 

function of interest. The goal of the work described here was to identify and characterize 

a yeast gene encoding the Mg2+/H+ exchange activity in the vacuole membrane. The 

importance of this work is that if successful, it would represent the first molecular 
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identification of a protein capable of the active efflux of Mg2+ ions. The specific aims of 

this work are as follows: 

1) To determine the role of the Per1 protein, a candidate Mg2+ transporter, in Mg2+ 

homeostasis. In a previous screen, Per1 was shown to be required for tolerance to high 

Mg2+ concentrations, implicating this protein in Mg2+ storage.  

2) To determine if any yet uncharacterized members of the CaCA gene family in 

yeast play a role in the sequestration of Mg2+ in the vacuolar compartment. The vacuolar 

Mg2+/H+ exchanger may be related in sequence to CaCA proteins that transport other 

divalent cations, such as the vacuolar Ca2+/H+ exchanger Vcx1p. Strains lacking or 

overexpressing each candidate gene will be screened for Mg2+ related phenotypes, 

including changes in Mg2+ content, as well as resistance to excess Mg2+ and other cations. 

3) If the above aims are unsuccessful in identifying a candidate for a Mg2+ 

transporter in the vacuole, I will determine if these genes play a role in the homeostasis of 

other divalent cations. 
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Chapter 2: Materials and Methods 

2.1 Yeast and bacterial strains 

2.1.1 Saccharomyces cerevisiae strains  

Yeast strains used or generated in this work are detailed in Table 2.1. 

Table 2.1 Yeast strains 
Strain Genetic 

background 
Genotype Source/ref 

DY1457 W303 MATα  ade6 can1-100oc his3-11,15 leu2-3,112 
trp1-1 ura3-52 

David Eide 

DY1456 W303 MATa ade6 can1-100oc his3-11,15 leu2-3,112 
trp1-1 ura3-52 

David Eide 

DY1514 W303 MATa/α ade2/+ ade6/+ can1-100oc/- his3-11,15/- 
leu2-3,112/- trp1-1/- ura3-52/- 

David Eide 

BY4743 S288C MATa/α his3Δ1/- leu2Δ0/- met15Δ0/+ lys2Δ0/+ 
ura3Δ0/- 

Open Biosystems1 

BY4741 S288C MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Open Biosystems1 
YNL321wΔ S288C MATa/α his3Δ1/- leu2Δ0/- met15Δ0/+ lys2Δ0/+ 

ura3Δ0/- ynl321w::KANR/- 
Open Biosystems1 

YDL206wΔ S288C MATa/α his3Δ1/- leu2Δ0/- met15Δ0/+ lys2Δ0/+ 
ura3Δ0/ -ydl206w::KANR/- 

Open Biosystems 1 

YJR106wΔ S288C MATa/α his3Δ1/- leu2Δ0/- met15Δ0/+ lys2Δ0/+ 
ura3Δ0/- yjr106w::KANR/- 

Open Biosystems1 

YCR044cΔ S288C MATa/α his3Δ1/- leu2Δ0/- met15Δ0/+ lys2Δ0/+ 
ura3Δ0/- ycr044c::KANR/- 

Open Biosystems1 

B31 W303 MATα ade2-1 can1-100 his3-11,15 leu2-3, 112 
trp1-1 ura3-1 mall0 ena1Δ::HIS3::ena4Δ 
nha1Δ::LEU2 

Kendal Hirschi2 

WX1 W303 MATα ade2-1 can1-100 his3-11,15 leu2-3,112 
trp1-1 ura3-1 mall0 nhx1::TRP1 

Kendal Hirschi2 

SEY6210 SEY6210 MATα ura3-52 leu2-3 his3Δ200, trp1-Δ901 lys2-
800 suc2-Δ9 

David Bedwell3 

YDB224 SEY6210 MATα ura3-52 leu2-3 his3Δ200, trp1-Δ901 lys2-
800 suc2-Δ9 pmc1::TRP1 

David Bedwell3 

YDB225 SEY6210 MATα ura3-52 leu2-3 his3Δ200, trp1-Δ901 lys2-
800 suc2-Δ9 vcx1::URA3 

David Bedwell3 

YDB254 SEY6210 MATa ura3-52 leu2-3 his3Δ200, trp1-Δ901 lys2-
800 suc2-Δ9 pmc1::TRP1 vcx1::URA3 

David Bedwell3 

AJF01 W303 MATα, ade6 can1-100oc his3-11,15 leu2-3,112 
trp1-1 ura3-52 ynl321w::KANR 

This study 

AJF02 W303 MATa ade6 can1-100oc his3-11,15 leu2-3,112 
trp1-1 ura3-52 ynl321w::LEU2 

This study 

AJF03 W303 MATα ade6 can1-100oc his3-11,15 leu2-3,112 
trp1-1 ura3-52 ydl206w::KANR 

This study 

AJF04 W303 MATα ade6 can1-100oc his3-11,15 leu2-3,112 
trp1-1 ura3-52 yjr106w::KANR 

This study 

AJF05 W303 MATa ade6 can1-100oc his3-11,15 leu2-3,112 
trp1-1 ura3-52 ynl321w::LEU2 ydl206w::KANR 

This study 
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AJF06 W303 MATa ade6 can1-100oc his3-11,15 leu2-3,112 
trp1-1 ura3-52 ynl321w::LEU2 yjr106w::KANR 

This study 

AJF07 W303 ade6 can1-100oc his3-11,15 leu2-3,112 trp1-1 
ura3-52 ynl321w::LEU2 ydl206w::KANR 
yjr106w::KANR 

This study 

AJF08 W303/ 
SEY6210 

leu2-3,112 ura3-52 his3 trp1 This study* 

AJF09 W303/ 
SEY6210 

leu2-3,112 ura3-52 his3 trp1 ynl321w::KANR This study* 

AJF10 W303/ 
SEY6210 

leu2-3,112 ura3-52 his3 trp1 vcx1::URA3 This study* 

AJF11 W303/ 
SEY6210 

leu2-3,112 ura3-52 his3 trp1 pmc1::TRP1 This study* 

AJF12 W303/ 
SEY6210 

leu2-3,112 ura3-52 his3 trp1 vcx1::URA3 
pmc1::TRP1 

This study* 

AJF13 W303/ 
SEY6210 

leu2-3,112 ura3-52 his3 trp1 ynl321w::KANR 
vcx1::URA3 

This study* 

AJF14 W303/ 
SEY6210 

leu2-3,112 ura3-52 his3 trp1 ynl321w::KANR 
pmc1::TRP1 

This study* 

AJF15 W303/ 
SEY6210 

leu2-3,112 ura3-52 his3 trp1 ynl321w::KANR 
vcx1::URA3 pmc1::TRP1 

This study* 

AJF16 W303 ade6 can1-100oc his3-11,15 leu2-3,112 trp1-1 
ura3-52 nhx1::TRP1 ynl321w::LEU2 

This study 

 1(Winzeler et al., 1999), 2(Banuelos et al., 1998), 3(Miseta et al., 1999).  
*Complete genotypes of these strains were not determined: they carry either the his3-Δ200 or his3-11,15 
allele, and the trp1-Δ901 or trp1-1 allele. In addition, they may possess the additional markers lys2-801, 
suc2-Δ9, ade6, and can1-100oc. 

 

2.1.2 Bacterial strains 

E. coli DH10βTM [genotype F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 

ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 galU galK λ- rpsL nupG] was used for 

transformation by electroporation and for preparation of plasmid DNA. 

2.2 Commonly used solutions 

All percentages are weight/volume unless otherwise stated. 

TE buffer: 10 mM Tris-Cl pH 7.5, 1 mM Na-EDTA. 

Antibiotics: Ampicillin (Fisher Scientific) was included in LB medium to select 

ampicillin resistant E. coli. After the medium was autoclaved and cooled to 50° C, a filter-

sterilized solution of ampicillin was added to give a final concentration of 100 mg/L. To 
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select for the KANR marker in yeast strains, Geneticin (G418, Invitrogen) was included in 

YPD at a concentration of 150 mg/L.  

Bacterial growth media: LB: (Luria-Bertani broth) 1% tryptone, 0.5% yeast 

extract, 172 mM NaCl. A commercial preparation of LB broth (Fisher) was obtained as a 

pre-mixed powder: 20 g powder was dissolved in 1 L deionized water and autoclaved. As 

a gelling agent for plates, agar (Difco) was added before autoclaving to a final 

concentration of 1.5%. SOB: 2% Tryptone, 0.5% Yeast extract, 10 mM NaCl, 2.5 mM 

KCl, 10 mM MgCl2, and 10 mM MgSO4, pH 7.0. SOC: SOB with 20 mM glucose. 

Zymolyase 20T: Zymolyase 20T (Seikagaku, Tokyo) was dissolved in 50% 

glycerol/50 mM KPO4 pH 7.4, at a concentration of 110 U/ml, and stored at -20. 

2.3 Preparation of reagents 

2.3.1 Tris-saturated phenol 

One hundred g of solid phenol (Sigma) was mixed with 100 ml of 50 mM Tris-Cl 

pH 8.0, and allowed to stand at RT until the phenol liquefied. The layer of Tris was 

removed with a pipette, the phenol layer mixed with an equal volume of fresh Tris 

solution, and the mixture left for 20 min to separate the phases. This procedure was 

repeated twice more until the pH of the solution was between 7 and 8. Tris-saturated 

phenol was stored in the dark at 4° C.  

2.3.2 Phenol/chloroform/isoamyl-alcohol (PCA) 

Chloroform (96 ml) was mixed with 4 ml of isoamyl-alcohol in a glass measuring 

cylinder. The mixture was divided into 10 ml aliquots, and 10 ml of phenol and 10 ml 50 

mM Tris-Cl pH 8 was added to each. The aliquots were stored at -20 until required. 
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2.3.3 Taq polymerase 

Thermus aquaticus (Taq) DNA polymerase was prepared essentially as previously 

described by (Pluthero, 1993). DH10β E. coli cells were transformed with the plasmid 

pTTQ18, which contains the gene for Taq polymerase under the control of a synthetic tac 

promoter and the LacI repressor. One liter of LB+Amp medium was inoculated with 0.5 

ml of an overnight culture of this strain, and grown to an A600 of 0.8 at 37° C. 

Transcription of the Taq polymerase gene was induced with the addition of 10 ml of 

1.25% IPTG, and the cells were grown for 12 hours at 37° C with agitation. After 

induction, the cells were collected (3,000x g/10 min) and washed with 100 ml Buffer A 

(50 mM Tris pH 7.9, 50 mM Dextrose, 1 mM EDTA). The cells were resuspended in 50 

ml Buffer A and transferred to a 250 ml flask. Lysozyme (250 mg) was added and the 

cells were incubated at room temperature for 15 min. Buffer B (10 mM Tris pH 7.9, 50 

mM KCl, 1 mM EDTA, 1 mM PMSF, 0.5% Tween-20, 0.5% Nonidet P40) (50 ml) was 

added and the cell solution was incubated for 1 hour in a 75° C water bath to denature all 

other proteins. These conditions do not inactivate Taq polymerase, as it is a thermostable 

protein. The solution was transferred to centrifuge tubes and centrifuged (12,000x g/10 

min). The supernatant was transferred to a fresh 250 ml flask and 30 g of powdered 

ammonium sulfate was added with stirring. The solution was transferred to a new 

centrifuge tube and collected by centrifugation (12,000x g/10 min). The pellet was 

resuspended in 20 ml of Buffer A, transferred to a dialysis bag, and dialyzed for 24 hours 

in 2 changes of 1 L storage buffer (50 mM Tris pH 7.9, 50 mM KCl, 0.1 mM EDTA, 1 

mM DTT, 0.5 mM PMSF, 50% Glycerol) at 4° C. The concentrated protein solution was 

removed from the dialysis bag, aliquoted into microfuge tubes, and stored at -80° C. 
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Approximate activity of the Taq solution was determined via comparison with a 

commercial preparation of Taq of known activity (iTaq, Bio-Rad).  

2.4 Yeast Growth Media 

2.4.1 Complex yeast media 

Yeast cells were routinely grown in YPD (Yeast extract, Peptone, Dextrose) 

medium containing 1% Yeast extract (Fisher Scientific), 2% Peptone (Fisher), and 0.1 M 

glucose or glycerol. To gel plates, agar was added to a final concentration of 1.5%.  

2.4.2 Synthetic media 

2.4.2.1 SD and SC minimal media 

Yeast were routinely grown in synthetic dextrose (SD) media in order to maintain 

plasmids or test for the presence of selectable markers. SD media contained 6.7% Yeast 

Nitrogen Base (YNB) without amino acids (Q-Biogene), a carbon source (2% glucose or 

3% glycerol), 0.01% Adenine, 0.01% Uracil, 0.01% L-Tryptophan, 0.01% L-Leucine, 

0.01% L-Lysine-HCl, 0.01% L-Histidine-HCl, and 0.01% L-Methionine. Nutrients were 

omitted as necessary for selection. To maintain selection of URA3-expressing plasmids 

during routine growth, a simpler medium (SC) was used that contained 6.7% YNB, 

0.01% Casamino acids (Difco), 0.01% Adenine, 0.01% Tryptophan, and 0.1 M glucose. 

2.4.2.2 Low Magnesium Medium (LMM) 

LMM was used for experiments in which the amount of available Mg2+ in 

synthetic medium needed to be precisely controlled. For routine preparation of LMM, a 

commercial YNB mix without amino acids and divalent cations was used (Q-Biogene). 

YNB was prepared as normal from this mix, except that divalent cations were added to 

concentrations of 0.5 mM CaCl2, 5 µM CuCl2, 5 µM FeSO4, 5 µM MnCl2, and 5 µM 
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ZnCl2. The final medium was identical to normal YNB except for the absence of Mg2+. 

To avoid background contamination with environmental Mg2+, the medium was filter 

sterilized into sterile polycarbonate flasks that had been washed using Citronox metal-

free acidic detergent (Alconox). Analysis with AAS indicated that Mg2+ was undetectable 

in this medium. 

For some applications, LMM was assembled from simple inorganic and organic 

components. Sterile solutions of major salts (10x concentration), trace elements (1000x), 

and vitamins (1000x) were prepared and mixed to assemble the final medium. The 

composition of these solutions was as follows: 

10x Major salts: 400 mM NH4SO3, 50 mM KCl, 20 mM NaCl, 1 mM CaCl2, 1 

mM KH2PO4).  

1000x Trace elements: 0.2 mM CuSO4, 2.5 mM MnSO4, 10 mM H3BO3, 0.5 mM 

KI 1 mM Na2MoO4, 1.5 mM ZnSO4, 1 mM FeCl3.  

1000x Vitamins: 0.0002% Folic acid, 0.04% Niacin, 0.0002% Biotin, 0.04% 

Calcium Pantothenate, 0.02% Riboflavin, 0.02% p-Aminobenzoic acid, 0.04% 

Pyridoxine Hydrochloride, 0.04% Thiamine Hydrochloride.  

Major salts and trace element solutions were autoclaved, and the vitamin solution 

was filter sterilized to avoid hydrolysis of heat-sensitive components. Sterile solutions of 

carbon sources, amino acids and bases were added as needed at the same concentrations 

used for standard SD medium. After assembling the sterile Mg-free medium, sterile 

MgCl2 solutions were added to give the appropriate concentration of this element for the 

experiment performed. 
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2.4.2.3 Low sulfate medium 

In order to prevent Ca2+ and Zn2+ from precipitating when included at high 

concentrations in synthetic medium, a low-sulfate medium was used. This medium 

included 1.7% YNB without ammonium sulfate, dextrose, and zinc (Q-Biogene), 2 µM 

ZnCl2 and 75 mM NH4Cl. Carbon sources, amino acids and organic bases were also 

added as required. 

2.4.2.4 Low pH phosphate-buffered medium 

To determine tolerance to low pH conditions, a synthetic minimal medium was 

prepared as previously described (Nass et al., 1997). The medium contained 10 mM 

arginine, 8 mM phosphoric acid, 1 mM KCl, 0.2 mM CaCl2, 2 mM MgSO4, 2% glucose, 

and trace minerals and vitamins. The pH was adjusted to the required value using 

phosphoric acid.  

2.4 Sporulation and Spore Isolation 

For strains of the easily sporulated W303 genetic background, the following 

method of sporulation was used. Sterile YPD medium (5 ml) was inoculated with a single 

colony of a diploid strain and grown to saturation. Cells were collected by centrifugation 

(2,000x g/5 min) and washed twice with 5 ml sterile deionized water. 5 ml of Spo 

medium 1 (1% yeast extract, 10% potassium acetate, 0.05% glucose, 0.01% adenine, 

0.005% arginine, 0.005% histidine, 0.005% leucine, 0.005% lysine, 0.005% methionine, 

0.025% phenylalanine, 0.001% tryptophan, and 0.01% uracil) was inoculated with 100 µl 

of the washed cell sample, and the culture was incubated at 30° C with agitation (260 

RPM) for 3-7 days. Sporulation was verified by observation with a light microscope. 

To sporulate strains of the genetic background S288C (for example, the BY 
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strains obtained from Research Genetics), strains were patched to YPD plates and grown 

for 1 day at 30° C, then replica plated to freshly made GNA presporulation plates (5% 

glucose, 3% Difco nutrient broth, 1% Difco yeast extract, 2% Bacto agar) and incubated 

for 1 day at 30° C. This process was repeated with a fresh GNA presporulation plate, and 

the resulting cells were scraped off the plate and transferred to 2 ml supplemented liquid 

sporulation medium (1% potassium acetate, 0.005% zinc acetate, 0.002% uracil, 0.004% 

histidine, 0.004% leucine). The suspensions were incubated on a roller wheel for 5 days 

at RT, then 3 days at 30° C. Sporulation was monitored via microscopy. 

To isolate purified spore suspensions, sporulated cultures were washed twice with 

5 ml of sterile deionized water and suspended in softening buffer (10 mM dithiothreitol, 

100 mM Tris-SO4 pH 9.4) to a final A600 of 5.0. Each sample was incubated at 30° C for 

10 min with agitation, then collected by centrifugation (2,000x g/5 min) and resuspended 

in spheroplasting buffer (2.1 M sorbitol, 10 mM potassium phosphate, pH 7.2) to give a 

final A600 of 25. Zymolyase 20T (Seikagaku, Tokyo) was added at a concentration of 1 

U/A600 unit of cells, and the suspension incubated at 30° C with agitation for 1 hour. The 

suspension was washed once with 4 ml of 0.5% Triton X-100 and resuspended in 1 ml of 

0.5% Triton X-100. The suspension was then sonicated until only single spores remained 

(no tetrads or intact diploid cells), as determined by microscopic examination. Dilutions 

of each spore sample were plated onto YPD plates, allowed to grow for 2-3 days at 30° C, 

and replica plated to selective media to determine genotype of each spore clone. 

2.5 Oligonucleotides 

All oligonucleotides were obtained from Sigma-Genosys. Oligonucleotide 

sequences were selected using the ApE sequence editing software, and tested in silicio 
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prior to synthesis, using the Amplify 3X software.  

Table 2.2 Oligonucleotides used in this study  

Name Sequence 5’-3’ Description/purpose 

YNL321wF CGTTGTAAAACGACGGCCAGTGAATTC
GAGCTATGTAATAGCGTGCGACG 

YNL321w (Forward) for cloning into 
pFL vectors 

YNL321wR GACCATGATTACGCCAAGCTTGCATGC
CTGCACAGTGCAATTGACGGAGA 

YNL321w (Reverse) for cloning into 
pFL vector series 

YDL206wF CGTTGTAAAACGACGGCCAGTGAATTC
GAGCTAATATGTGGGTGCTGCGA 

YDL206w (F) for cloning into pFL 
vector series 

YDL206wR GACCATGATTACGCCAAGCTTGCATGC
CTGCAGAAGATTCCATGGCGTGT 

YDL206w (R) for cloning into pFL 
vector series 

ECM27-5 CGTTGTAAAACGACGGCCAGTGAATTC
GAGCTGCTGGTGGCTTTATGGCT 

YJR106w (F) for cloning into pFL 
vector series 

ECM27-3 GACCATGATTACGCCAAGCTTGCATGC
CTGCAAAAGTCTGGCAGGCATCA 

YJR106w (R) for cloning into pFL 
vector series 

Per1-5 CGTTGTAAAACGACGGCCAGTGAATTC
GAGCTCCACGCGTAATGTTTTCC 

YCR044c (F) for cloning into pFL 
vector series 

Per1-3 GACCATGATTACGCCAAGCTTGCATGC
CTGCAGGAAGCATCAAGTGGAGC 

YCR044c (R) for cloning into pFL 
vector series 

YNL3xHA-tag TAGCCCGCATAGTCAGGAACATCGTAT
GGGTACTCCGAAAGAGCTCCCTG 

YNL321w primer (R) with homology to 
the HA epitope at the 5' end. 

5’leu2 TTTAGAGCACCACCGCACATGGACAGA
CCTGGAGCAGATCTGGTACTTTG 

LEU2 (F) with 5' YNL321w homology 

3’leu2 ATTAGTATGCAGCAATTCTACAATTGGG
TGACGCCAGCAGATCTATTACA 

LEU2 (R) with 5' YNL321w homology 

YNL321w test1 GACAGCATCAACACAGGA To verify correct insertion of 
ynl321w::LEU2 marker (F) 

YNL321w test2 TTGATGTGAGCTTGGTCG To verify correct insertion of 
ynl321w::LEU2 marker (R) 

5’ universal FP TATTGTTGTAGGATTCTACTTCCAGGGA
GCTCTTTCGGAGGACGGTGCTGGTTTAA
TT 

Universal primer (F) for generation of 
YNL321w-fluorescent protein fusions 

3’ universal FP ATTGGTAGGTATCCAGGTGAAAAGCGG
GGACAGTTGCTTTCCACTAGTGGATCTG
ATA 

Universal primer (R) for generation of 
YNL321w-fluorescent protein fusions 

 

2.6 Plasmids 

Plasmids used in this work are listed in Table 2.3. 
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Table 2.3 Plasmids used or generated during this study 

Plasmid Yeast selectable 
marker 

Insert/description Reference 

pFL38 URA3 Low copy shuttle vector 1 
pFL44-S URA3 Multiple copy shuttle vector 1 
pFL46-S LEU2 Multiple copy shuttle vector 1 
YEpZRC1-HA URA3 ZRC1 with C-terminal triple HA tag 2 
YCpZRC1-HA URA3 ZRC1 with C-terminal triple HA tag 2 
pKT211 SpHIS5 YFP and SpHIS5 cassette 3 
pTTQ18 none Taq DNA Polymerase 4 
pFL38YNL URA3 YNL321w genomic clone This study 
pFL38YNLHA URA3 YNL321w tagged with triple HA at C-terminus This study 
pFL44YNL URA3 YNL321w genomic clone This study 
pFL44YNLHA URA3 YNL321w tagged with triple HA at C-terminus  This study 
pFL44YDL URA3 YDL206w genomic clone This study 
pFL44ECM27 URA3 ECM27 genomic clone This study 
pFL44PER1 URA3 PER1 genomic clone This study 
211YNL44 URA3, SpHIS5 YNL321w-YFP C-terminal fusion via SpHIS5 

insertion. 
This study 

211YNL38 URA3, SpHIS5 YNL321w-YFP C-terminal fusion via SpHIS5 
insertion. 

This study 

ynl321w::LEU2 URA3 Alternative LEU2 knockout allele of YNL321w This study 
References: 1(Bonneaud et al., 1991), 2(MacDiarmid et al., 2002), 3(Sheff and Thorn, 2004) 4(Stark, 1987). 

2.7 Plasmid construction by homologous recombination 

Plasmids in this study were constructed by utilizing homologous recombination in 

yeast (Hua et al., 1997; Ma et al., 1987). This method provided a very accurate, versatile 

and reliable method of constructing yeast shuttle vectors. In general, a WT yeast strain 

was co-transformed with a mixture of linearized DNA of a yeast shuttle vector, and a 

PCR product with termini homologous to the vector (Figure 2.3). The PCR products 

were generated using oligonucleotides that included 32 bp of sequence at the 5' end, and 

were thus homologous to two regions of the vector separated by a restriction site or sites. 

Amplification of a PCR product from genomic DNA or plasmid templates using such 

primers generated a DNA fragment capable of mediating gap repair of the linearized 

vector. After transformation, cells that successfully recombined the two fragments 

expressed the URA3 gene associated with the plasmid (or an alternative selectable 

marker), enabling selection for recombinant clones. Control transformations were 
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performed using the vector 

fragment alone to enable an 

estimation of the success of the 

experiment by comparison of 

transformation frequency. To 

verify the structure of the new 

plasmids, plasmid DNA was 

extracted from yeast strains and 

transferred to E. coli by 

electroporation, followed by 

purification via standard methods. 

Correct construction of the new plasmids was verified by restriction digestion or 

sequencing. Specific details of the construction of the various plasmids used in this work 

are given below. 

2.7.1 Multicopy overexpression vectors 

To generate constructs for gene overexpression, three CaCA genes (YNL321w, 

YDL206w, and YJR106w) and the PER1 gene were amplified with the appropriate 

oligonucleotides (for example, YNL321w was amplified with YNL321wF and YNL321wR, 

Table 2.2). The resulting products included homology to the polylinker of the yeast 

vector pFL44-S, which contains the replication origin of the 2µ yeast vector (Bonneaud 

et al., 1991). pFL44 was linearized by digestion with BamHI and HindIII restriction 

enzymes, and a mixture of the vector and PCR product was used to transform DY1457 

(Figure 2.1). Recombinant plasmids were rescued from yeast and the identity of the 

 
Figure 2.1 Construction of yeast shuttle vectors using 
homologous recombination. In general, yeast plasmids 
were constructed by generating a PCR product using two 
50-mer oligonucleotide primers. The primers included 18 
bases of homology to the gene of interest (YGF1, Your 
Favorite Gene 1) at the 3' end, and 32 bases of homology to 
the target vector at the 5' end. The vector DNA was cleaved 
with a restriction enzyme, and the PCR product and vector 
were used to transform a ura3- strain to URA3+. 
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insert verified by restriction digestion. pFL38YNL is a low-copy version of the 

pFL44YNL plasmid with the identical insert, and was constructed by combining the PCR 

product with the pFL38 vector after digestion with the same enzymes. 

pFL38YNLHA and pFL44YNLHA are low and high copy vectors containing the 

YNL321w gene fused to a triple repeat of the HA epitope: they were constructed by first 

amplifying the YNL321w gene from genomic DNA of the DY1457 strain using the 

YNL321wF and YNL3xHA-tag oligonucleotides. The YEpZRC1-HA and YCpZRC1-

HA vectors (MacDiarmid et al., 2002) were cleaved with the restriction enzymes BamHI 

and BstXI to linearize the vector within the insert of the ZRC1 gene. This PCR product 

was inserted into the cut vector via homologous recombination. In the resulting plasmids, 

the ZRC1 gene was replaced with YNL321w so that the HA tag was fused to the 

YNL321w C-terminus. Correct fusion to the HA epitope tag was verified by restriction 

digestion and DNA sequencing.  

The 211YNL44 and 211YNL38 vectors are derivatives of pFL44YNL and 

pFL38YNL in which the C-terminus of Ynl321w was fused to the YFP protein sequence 

derived from the pKT211 vector (Table 2.3). The pKT vectors contain promotorless 

coding sequences for fluorescent proteins, cloned next to a selectable marker for yeast 

(the KANR gene, which confers resistance to Geneticin, or the HIS5 gene from S. pombe, 

which complements the his3 mutation in S. cerevisiae) (Sheff and Thorn, 2004). Two 

oligonucleotides (5’ and 3' universal FP) were designed to allow amplification of the YFP 

and selectable marker combination and include homology to sequences flanking the 

unique SacI restriction site at the 3' end of the Ynl321w coding sequence. To fuse YFP to 

the Ynl321w ORF, the pFL44YNL plasmid was digested with SacI, and the PCR product 
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and vector were recombined in yeast as described previously. Correct insertion of the 

PCR product was ensured by selection for the expression of the novel SpHIS5 marker as 

well as URA3 in the yeast clones, and verified by restriction digestion after plasmid 

rescue through E. coli.  

The ynl321w::LEU2 plasmid is a derivative of pFL44YNL in which part of the 

YNL321w coding sequence is replaced with the LEU2 gene. To construct this plasmid, a 

PCR product including the LEU2 gene was amplified from genomic DNA using the 

5’leu2 and 3' leu2 oligonucleotides. pFL44YNL was digested with BamHI and BstXI, 

and DY1457 was co-transformed with the cut vector and PCR product. Strains expressing 

both URA3 and LEU2 were selected from the transformation, and the plasmid was 

rescued through E. coli and verified by digestion with restriction enzymes. To delete 

YNL321w from the genome, the insert of ynl321w::LEU2 was excised by digestion with 

EcoRI and SacI, gel purified, and used to transform WT yeast to LEU2+. Correct 

insertion of the new allele was verified by amplifying the correct product from yeast 

genomic DNA, using the YNL321w test1 and YNL321w test2 oligonucleotides. 

2.8 DNA Isolation and Purification 

2.8.1 Plasmid Isolation and Purification from E. coli 

2.8.1.1 Plasmid purification from E. coli for routine use 

Plasmid DNA was routinely isolated using a modification of a previously 

described protocol (Sambrook et al., 1989). Single colonies of E. coli were used to 

inoculate 5 ml LB containing the appropriate antibiotic, and cultures incubated overnight 

at 37° C. Cells were collected by centrifugation (5000 x g/10 min at 4° C), and the cell 

pellet resuspended in 200 µl Solution I (25 mM Tris-Cl pH 8.0, 10 mM EDTA, 50 mM 
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glucose); 400 µl of Solution II (0.2 N NaOH, 1% SDS) was then added and the 

suspension gently mixed until it cleared, indicating complete lysis. 300 µl of ice cold 

Solution III (3 M potassium acetate, adjusted to pH 4.8 with glacial acetic acid) was then 

added, and the mixture was agitated gently until a precipitate was observed. The mixture 

was then chilled on ice for 20 min. The white precipitate of genomic DNA and other 

contaminates were separated by centrifugation (12,000x g/10 min at 4° C). The 

supernatant was recovered and transferred to a new tube, and the plasmid DNA was 

precipitated by the addition of 1 volume isopropanol (600 µl), and collected by 

centrifugation (12,000x g/10 min). The supernatant was discarded, and the pellet was 

washed with 1 ml 80% ethanol, dried under vacuum for 10 min in a Speed-Vac, and 

dissolved in 0.3 ml TE. To degrade residual RNA, 2 µl of 1 mg/ml RNase A (Fisher 

Scientific) was added and the solution was incubated at 65° C for 15 min. PCA (0.3 ml) 

was then added, and the mixture was vortexed for 30 s, then centrifuged (12,000x g/5 

min) to separate the phases. The aqueous layer was recovered and transferred to a new 

tube. One volume of isopropanol and 1/10 volume of 3 M sodium acetate pH 5.2 was 

added to precipitate the DNA. The mixture was allowed to incubate at room temperature 

for at least 15 min. The DNA was collected by centrifugation, washed once with 80% 

ethanol, dried, and redissolved in 50 µl sterile deionized water for storage at -20°C. This 

protocol was scaled appropriately when larger yields were required. 

2.8.1.2 Plasmid Isolation and Purification for Sequencing 

Plasmid DNA intended for sequencing reactions was purified using a Wizard Plus 

SV Miniprep kit (Promega) according to the manufacturers instructions.  
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2.8.2 Genomic and plasmid DNA isolation from Yeast 

Cultures of yeast (5 ml) were grown to saturation at 30° C in synthetic medium 

(SC). Cells were collected by centrifugation (2,000x g/5 min), washed with 5 ml of sterile 

water, and resuspended in 1 ml of sterile deionized water. The suspension was transferred 

to a 1.5 ml microfuge tube and centrifuged for 1 minute to collect the cells. The cells 

were resuspended in 200 µl of genomic DNA buffer (2% Triton X-100, 1% SDS, 0.1 M 

NaCl, 1 mM EDTA, 1 mM Tris pH 8.0), and 200 µl of PCA was added, followed by 0.3 

g of glass beads (425-600 mesh size, Sigma). The cells were broken by vortexing for 10 

min at 4°C. TE buffer (200 µl) was then added and the mixture was centrifuged at high 

speed (12,000x g/5 min) in a microfuge. The aqueous layer was transferred to a new 

microfuge tube, and 1 ml of isopropanol and 140 µl of 3 M sodium acetate were added. 

The mixture was left at room temperature for at least 1 hour to allow precipitation, then 

centrifuged at high speed (12,000x g/10 min) to collect the DNA. The supernatant was 

removed and the pellet was washed twice with 70% ethanol (1 ml). The ethanol was 

removed, and the pellet was dried in a Speed-Vac (Savant). The pellet was dissolved in 

200 µl TE and 1 µl of 10 mg/ml of RNase A was added, followed by incubation at 65° C 

for 15 min to degrade RNA. The sample was then extracted with an equal volume of 

PCA and the aqueous layer transferred to a new tube. The DNA was precipitated by 

addition of 1 volume isopropanol and 1/10 volume 3M NaOAc, collected by 

centrifugation, washed twice with 70% ethanol, and dissolved in 50 µl of sterile 

deionized water. The same protocol was used for the isolation of plasmid DNA from 

yeast, with the exception that cells were grown in a medium suitable for retention of 

plasmids (usually SC medium without uracil).  
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2.9 Polymerase Chain Reaction 

PCR reactions performed for analytical purposes utilized Taq polymerase 

prepared in this laboratory (see above). Standard reactions contained 20 mM Tris-HCl pH 

8.4, 50 mM KCl, 0.5 mM MgCl2, 0.2 mM of each dNTP, 1 µM of each primer, 1-2 units 

of Taq DNA polymerase, and approximately 1 ng of plasmid or 100 ng of genomic DNA 

template, in a total volume of 50 µl. Reactions were carried out in a MyCycler thermal 

cycler (Bio-Rad). Reactions consisted of a 30 second denaturing step at 94° C, a 30 

second annealing step at the relevant temperature, and extension at 72° C for 1 minute per 

kb of the expected product. PCR products suitable for cloning were obtained using the 

Easy-A High Fidelity DNA Polymerase (Stratagene) or Platinum Taq DNA Polymerase 

High Fidelity (Invitrogen) with the included buffer, according to the manufacturers 

instructions. For subsequent manipulations, PCR products were purified using a Wizard-

SV Gel and PCR Clean up system (Promega) according to the manufacture’s instructions, 

or precipitated via the addition of 3 M NaOAc and isopropanol as described previously. 

2.10 Restriction endonuclease digestion 

Plasmid DNA was digested by incubation in the appropriate NEB (New England 

Biolabs) buffer according to manufacture’s recommendations (usually 5 U of enzyme per 

µg DNA at 37° C for 3 hours). 

2.11 Bacterial and yeast transformation procedures 

2.11.1 Transformation of E. coli using electroporation 

2.11.1.1 Preparation of electrocompetent cells 

A single colony of DH10β was used to inoculate 25 ml of LB, and the culture was 

grown to saturation overnight at 37° C with agitation (260 RPM). 1 L of LB media pre-
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warmed at 37° C was inoculated with 10 ml of the overnight culture and incubated at 37° 

C with agitation. In some cases, 1% glucose was added to aid growth. Cells were grown 

to an A600 of 0.6 and quickly chilled in an ice water bath. During subsequent 

manipulations, all solutions were chilled to 0° C, and the cells were stored on ice. The 

cells were centrifuged in a pre-chilled rotor using a Sorvall RC5B Plus refrigerated 

centrifuge (5000g/10 min at 4° C). The media was discarded and the cells gently 

resuspended in 50 ml sterile deionized water. A 450 ml volume of sterile deionized water 

was added and the cells were collected as described above. This wash process was 

repeated 4 times with 500 ml volumes, once with a 200 ml volume, and once with a 50 

ml volume. The cells were then washed twice with 50 ml of sterile 10% glycerol, and 

resuspended in a volume of 10% glycerol sufficient to contain the cells (about 2 ml). 

Aliquots of cells (100 µl) were distributed into sterile 1.5 ml microfuge tubes, frozen on a 

dry ice/ethanol bath, and stored at -80°C. Transformation efficiency was determined by 

electroporation with 10 pg of pUC19 DNA, as described below.  

2.11.1.2 Electroporation of competent cells 

An aliquot of cells (25 µl) was thawed on wet ice, mixed with plasmid (1 ng) or 

yeast genomic DNA (100 ng), and immediately transferred to an ice-cold electroporation 

cuvette with an electrode gap width of 1 mm. The cuvette was subjected to a voltage 

pulse of 1.8 kV using an Eppendorf Electroporater model 2510. SOC media (1 ml) was 

immediately mixed with the cells, and the suspension incubated with shaking for 1 hour 

at 37°C. Transformed cells were plated onto LB+Amp plates and incubated at 37°C 

overnight.  
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2.11.2 Yeast Transformation 

Yeast strains were transformed with plasmids using a modification of a published 

protocol (Schiestl and Gietz, 1989). YPD media (50 ml) was inoculated with 2 ml of a 

saturated overnight culture of yeast, and the culture incubated at 30° C with shaking until 

it reached log phase (A600 of 0.5-0.7). The cells were collected by centrifugation (2,000x 

g/5 min in a Beckman GPR centrifuge) and washed with sterile deionized water (40 ml). 

The pellet was resuspended in 1 ml of TE/LiOAc buffer (0.1 M LiOAc, 0.01 M Tris-Cl 

pH 7.5, 1 mM EDTA), transferred to a sterile 1.5 ml microfuge tube, and centrifuged as 

before. The cells were resuspended in the minimal volume of TE/LiOAc buffer required 

(approximately 1/3 of the pellet volume), and distributed into 50 µl aliquots. Salmon 

sperm carrier DNA was prepared as follows: 200 mg of genomic DNA (Type III from 

Salmon Testes, Sigma D1626) was added to 100 ml of TE buffer and dispersed by 

repeatedly drawing into a 10 ml pipette. The solution was agitated on a magnetic stirrer 

until dissolved, dispersed into 0.5 ml aliquots and stored at -20. Before use, an aliquot of 

carrier DNA was boiled for 10 min and immediately cooled on ice. Ten µl of carrier 

DNA was added to each 50 µl aliquot of cells, and immediately mixed in to prevent 

gelling of the DNA. Plasmid DNA (1 µl) was then added to the cells, followed by 300 µl 

of 40% PEG/TE/LiOAc buffer (40% Polyethylene glycol, 0.1 M Lithium Acetate, 0.01 M 

Tris-Cl pH 7.5, 1 mM Na-EDTA). The mixture was incubated at 30° C for 30 min, then 

subjected to a 15 minute heat shock at 42°C. The cells were collected by centrifugation at 

low speed (2,000x g/2 min), washed once with 1 ml of deionized water, and resuspended 

in 0.5 ml of deionized water. Aliquots of each transformation were plated onto selective 

medium and incubated for 2-3 days at 30° C. 
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2.12 Protein extraction and manipulation 

2.12.1 Protein Extraction using TCA 

To isolate total protein from yeast, 5-10 ml overnight cultures were grown to log 

phase (A600 0.5-1.0) in the appropriate medium. The cells were pelleted by centrifugation 

(2,000x g/5 min) and washed once with 10 mM Na2EDTA (5 ml). Cell pellets were 

resuspended in 1 ml of 10 mM Na2EDTA, transferred to a 1.5 ml microfuge tube, and 

collected by centrifugation. The cells were resuspended in 400 µl cold extraction buffer 

(10% TCA, 20 mM Tris pH 8.0, 50 mM ammonium acetate, 2 mM Na2EDTA, 2 mM 

PMSF) and placed on ice. After the addition of 3 g of glass beads (Sigma), the tube was 

vortexed at 4° C for 10 min. The glass beads were allowed to settle, and the buffer 

suspension containing lysed cells were removed. Another aliquot of extraction buffer 

(200 µl) was added to the glass beads, the mixture was briefly vortexed, and the 

supernatant was removed. The supernatant recovered at each step was pooled and 

centrifuged at high speed (12,000x g/5 min) at 4°C. The supernatant was discarded and 

the pellet (containing broken cells and precipitated protein) was resuspended in protein 

buffer (100 mM Tris-base, 3% SDS, 1 mM PMSF) and boiled for 5 min. The insoluble 

debris was removed by high-speed centrifugation (12,000g/5 min) and the supernatant 

(containing the protein) was retained and stored at -80° C. Protein content was assayed by 

using a DC protein assay kit (Bio-Rad) according the manufactures instructions. 

Colorometric reactions were quantified using an ELX800 Universal Microplate Reader at 

a wavelength of 750 nm. Absorbance was converted to concentration by use of a standard 

curve generated from a BSA standard.  
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2.12.2 SDS-Polyacrylamide gel electrophoresis (PAGE) 

SDS-PAGE was used to separate proteins by molecular weight prior to Western 

blotting. The resolving gel was composed of 375 mM Tris-Cl pH 8.8, 0.1% SDS, 10% 

acrylamide mix (29.2 acrylamide:0.8 bis-acrylamide (Fisher), 0.1% ammonium 

persulfate, and 0.1% TEMED. The stacking gel layer was composed of 125 mM Tris-Cl 

pH 6.8, 4.5% acrylamide mix, 0.1% SDS, 0.1% ammonium persulfate, and 0.1% 

TEMED. Generally, 10 µg of protein was boiled in loading buffer (25 mM Tris-Cl pH 

6.8, 2% SDS, 5% glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue) prior to 

loading. Electrophoresis was performed at 200V for approximately 30 min in a Mini-

PROTEAN III gel rig (Bio-Rad laboratories), using a Tris-glycine buffer system (25 mM 

Tris-base, 20 mM glycine, 0.1% SDS). To visualize proteins when required, gels were 

stained with Coomassie Brilliant Blue R250 (Sigma). The gel was immersed in an 

aqueous solution of 0.025% Coomassie blue, 40% methanol and 7% acetic acid, and 

incubated until the gel was no longer visible in the stain. The gel was then destained for 

30 min-2 h in the same solution lacking dye. 

2.12.3 Electroblotting and immunodetection of proteins 

Proteins contained in PAGE gels were blotted to Hybond-N nitrocellulose 

membranes (Amersham Biosciences) by electrophoretic wet transfer, using a Mini Trans-

Blot Electrophoretic Transfer Cell (Bio-Rad). A gel and membrane sandwich was 

assembled, inserted in an electrode module, and immersed in a tank containing transfer 

buffer (50 mM Tris-base, 380 mM Glycine, 0.1% SDS, and 20% methanol). Transfer was 

performed at 63V for 3 hours, with the entire transfer cell placed on ice to prevent 

overheating. 
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To detect proteins transferred to nitrocellulose membranes, the membranes were 

rinsed twice in TBST buffer (50 mM Tris-Cl pH 8.0, 150 mM NaCl, 0.05% Tween 20) 

and incubated in blocking buffer (1% fat free dried milk in TBST) overnight to prevent 

non-specific antibody binding. The membranes were washed in TBST with gentle 

agitation (twice for 10 seconds each, once for 20 min, and then twice for 5 min each). 

Primary antibodies (obtained from Molecular Probes or Abcam) were added to 10 ml of 

blocking buffer at the appropriate concentrations, added to the membranes, and incubated 

with gentle agitation for 2 hours at room temperature. The previous washing procedure 

was repeated, and then a secondary antibody coupled to horseradish peroxidase (Pierce) 

was added and incubated for 2 hours at room temperature. The antibodies were then 

removed, and the membranes washed with TBST as described above. To detect 

horseradish peroxidase activity, the ECL (Enhanced Chemiluminescence) detection 

system (Pierce) was used according to the manufacturers instructions. Light emission was 

detected using BioMax scientific imaging film (Kodak), developed and fixed with GBX 

developer and fixer (Kodak).  

2.13 Sucrose gradient fractionation of yeast organelles 

To localize intracellular proteins in yeast, sucrose gradient fractionation of 

organelles was performed. Yeast cultures (200-300 ml) were grown to log phase in an 

appropriate minimal medium. The cells were collected via centrifugation, washed twice 

with sterile deionized water (25 ml), and resuspended in 10 ml of sorbitol buffer (10 mM 

potassium phosphate buffer pH 7.4, 1.2 M sorbitol) containing 10 mM DTT (added 

fresh). By measurement of the A600 of a dilution of the cells, the total number of A600 units 

of cells was determined. Zymolyase 20T (Seikagaku, Tokyo) was then added to the cells 
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in the ratio of 1 U/A600 unit, and the mixture was incubated for 1 hour at 30° C in a shaker 

with gentle agitation (100 RPM). To remove the Zymolyase, the spheroplasts were 

washed twice in 25 ml of ice-cold sorbitol buffer: to avoid breakage, spheroplasts were 

gently resuspended in a small volume of buffer by gently drawing up and down with a 5 

ml autopipette, then collected by centrifugation in a Beckman GPR centrifuge (2,000x 

g/5 min). After the last wash, all residual supernatant was removed with a pipette, and the 

cells were resuspended in 2 ml of ice-cold lysis buffer (10 mM Tris-Cl pH 7.6, 2 mM 

MgCl2, 10% sucrose, 10 mM DTT). The suspension was homogenized using 20 strokes 

of a 5 ml Dounce homogenizer, and the extent of cell lysis was checked with the use of a 

light microscope. If lysis was incomplete, a one third volume of glass beads (Sigma) was 

added to the mixture, and the tube was vortexed at full speed for 30 seconds. The lysate 

was spun at low speed at 4° C (200x g/3 min) to pellet any unbroken cells and nuclei, and 

the upper layer containing the free organelles was removed. One ml of the organelle 

suspension was loaded on top of a 20-60% continuous sucrose gradient (from top to 

bottom). Depending on the experiment, two gradient systems were used: a buffer with 2 

mM MgCl2 (10 mM Tris-Cl pH 7.6, 10 mM DTT), and another that contained the same 

buffer, except the MgCl2 was replaced with 1 mM EDTA. The gradients were generated 

from 20% and 60% sucrose + buffer solutions using a gradient maker. After loading the 

organelles, the gradients were centrifuged at 95,000x g for 2 hours at 4° C in an OTD70B 

Ultracentrifuge (Sorvall) using the AH629 rotor. Fractions (1 ml) were collected drip-

wise by puncturing the bottom of the ultracentrifuge tube with a needle. An equal volume 

of each fraction was then separated by SDS-PAGE and subjected to immunoblotting to 

detect marker proteins associated with each fraction. When required to increase 
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sensitivity, the proteins were concentrated from the fractions using TCA precipitation. An 

equal volume of a 20% solution of ice-cold trichloroacetic acid (TCA) was added to the 

fraction and the mixture placed on ice for 2-3 hours, then centrifuged at high speed 

(16,000x g/30 min) at 4° C to collect the protein. The pellet was washed once with cold 

acetone (200 µl) to remove residual TCA, then dried in a vacuum chamber. Samples were 

resuspended in 100 µl of protein buffer (Tris-base, 3% SDS, 1 mM PMSF) and boiled for 

5 min in a water bath. Prior to TCA precipitation, dense fractions (>30% sucrose) were 

diluted 4-fold with gradient buffer lacking sucrose, to enable collection of the precipitates 

by centrifugation. 

2.14 Immunofluorescence 

Indirect immunofluorescence was used to detect protein location in whole yeast 

cells via fluorescence microscopy. Yeast cells expressing epitope-tagged proteins were 

grown in selective medium (25 ml) to an A600 of approximately 1.0. The cells were 

collected by centrifugation (2,000x g/5 min), washed twice with 10 ml of 1x PBS (140 

mM NaCl, 2.7 mM KCl, 10 mM Na2PHO4, 2 mM NaH2PO4), and fixed by addition of 1 

ml of 37% w/w formaldehyde, followed by incubation for 2 hours at 30° C with agitation 

(260 RPM). Fixed cells were washed twice with ice-cold Solution A (100 mM KHPO4 

pH 7.0, 1.2 M sorbitol) and resuspended in 2 ml of Solution A containing 10 mM DTT 

(added from a 1 M solution). The A600 was determined, and a solution of Zymolyase 20T 

was added at a ratio of 2 U/A600 unit of cells to digest the cell wall. The cells were 

incubated for 2 hours at 30° C with gentle agitation (100 RPM), then collected by 

centrifugation (200x g/5 min), washed twice with Solution A (10 ml), resuspended in 

cold methanol (-20°C), and stored for 1 hour at -20°C. This step permeabilized the cell 
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membrane, allowing subsequent entry of antibodies. The cells were washed twice with 5 

ml cold PBS and resuspended in 100 µl cold PBS. To promote adherence of the yeast 

cells, microscope slides with paint wells (Fluorescent Antibody Rite-On Slides, Fisher) 

were treated with poly-L-lysine (PLL) by the application of 40 µl of 0.1% PLL (Sigma) 

to the well of the slide for 10 min. The excess PLL was removed (leaving a layer on the 

slide), and the slides were allowed to air dry. The slides were washed with deionized 

water, the excess PLL was removed by gently scrubbing with a wet Kimwipe, and the 

slides were allowed to dry. To affix cells to the slides, 50 µl of cells were applied to the 

well of the slide, and the slide was placed on a wet Kimwipe inside a Petri plate. The 

slides were then left at 4° C for 1 hour to allow the cells to adhere, then washed twice 

with 1x PBS to remove unbound cells. The slides were covered with blocking buffer (1x 

PBS, 5% non-fat dried milk, 0.1% Tween-20) and incubated overnight at room 

temperature. An appropriate concentration of the primary antibody in blocking buffer was 

added to the well and the slides were incubated at room temperature for 1 hour. The 

slides were washed 5 times with 1x PBS containing 1% Tween-20 with gentle agitation 

for 10 min in a slide bath. This procedure was repeated with the appropriate fluorescently 

labeled secondary antibody, except that the incubation was performed in a slide bath that 

was masked with aluminum foil to prevent bleaching of the fluorescent dye. After the last 

wash, 1 drop (20 µl) of Mowiol solution was added to the slide, and a cover slip was 

placed over the well. (To prepare Mowiol solution, 2.4 g Mowiol [Calbiochem] was 

added to 6 g glycerol, 12 ml 0.2 M Tris-Cl pH 8.5, and 6 ml H2O; the mixture was heated 

until the Mowiol dissolved, then stored in 1 ml aliquots at -20° C.) Slides were allowed to 

harden during storage overnight at 4° C. For fluorescence microscopy, slides were viewed 
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with an Olympus 1X70 microscope using a Chroma 41028 filter set and a Cool Snap 

Mono HQ camera (Roper Scientific). Images were captured using QED in vivo software 

(Media Cybernetics) and manipulated with Adobe Photoshop (Adobe).  

2.15 Atomic Absorbance Spectroscopy (AAS) 

To determine the elemental content of yeast cells, AAS was performed as 

described below. Yeast cells were grown to log phase in selective medium with a range 

of metal ion concentrations. Cells were collected by centrifugation, then washed twice in 

200 ml 1 mM Na2-EDTA pH 8.0 to remove externally bound divalent cations, and twice 

with deionized water to remove the EDTA. For cells grown in supplemental Na+, an extra 

wash with 50 mM KCl was performed after the EDTA washes to remove any externally 

bound Na+. The final cell pellet was resuspended in 1 ml of purified water, and the A600 

of 1:20 dilutions of each sample was recorded. After measurement of cell density, 1 ml of 

each undiluted suspension was transferred to 13 ml glass tubes, mixed with 1 ml of 

concentrated nitric acid, and digested by overnight incubation at 95° C.  

For magnesium and calcium measurements, 2 ml of 1x La buffer (10 mM LaCl, 

240 mM HCl) was added to each digest, and each sample was then adjusted to a total 

volume of 4 ml with purified water (to adjust for evaporation during the digest). By 

binding P, La3+ ions act as a "releasing agent", preventing its interaction with divalent 

metal cations: this interaction can lead to an underestimation of the Mg2+ and Ca2+ 

concentration. Samples were diluted 5-fold in 0.5x LaCl Buffer before measurement. 

For determination of Na+ content, 2 ml of 1x KCl buffer (25 mM KCl, 240 mM 

HCl) was added to each digest, and each sample was adjusted to a total volume of 4 ml 

with purified water. Before measurement, samples were diluted 10-fold in 0.5x KCl 
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Buffer.  

Ion concentration was measured using an Atomic Absorbance Spectrophotometer 

(GBC 904AA) according to the manufacture’s recommendations. The instrument was 

calibrated using a set of MgCl2, CaCl2, or NaCl solutions of known concentration (0 - 60 

µM MgCl2, 0 - 50 µM CaCl2, and 0 - 25 µM NaCl). To convert the concentrations to 

values of cation mass/cell, the concentration was multiplied by the dilution factor and 

volume of the digested cells to obtain the total cation content of the sample, which was 

then divided by the number of cells in the suspension. The absorbance values of each 

sample were converted into cell number using a standard curve, which was generated as 

described below. The cell density (A600) of a culture of actively growing yeast cells was 

measured using an ELX800 Microplate Reader (Bio-Tek). Serial dilutions of the culture 

were plated on YPD medium to determine the number of viable cells in the suspension. A 

standard curve was then generated relating the number of viable cells to the A600 of each 

dilution. The curve was linear up to an A600 of 1.0, indicating good accuracy over this 

range. 
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Chapter 3: Results 

3.1 YCR044c/PER1 encodes a putative Mg2+ transporter 

My interest was to identify novel membrane proteins capable of actively transporting 

Mg from the cytosol to other compartments. The first possible candidate for such a 

transporter examined was the Per1 protein, which was of interest because it had 

previously been implicated in ion homeostasis. Per1p was identified in a screen for 

mutations that suppressed the manganese sensitivity of a cdc1 mutant (cos16) 

(Paidhungat and Garrett, 1998). Although the mechanism of this suppression was unclear, 

the phenotype implicated this protein in the regulation of divalent cation homeostasis. For 

three reasons, I suspected that Per1 might also be involved in Mg2+ homeostasis: first, 

Per1 encodes an apparent membrane protein with several transmembrane domains; 

second, an early study indicated that Per1 was located in the vacuole membrane, and 

third, mutants lacking the Ycr044cp/Per1p protein were sensitive to high Mg2+ 

concentrations (Paidhungat and Garrett, 1998). These observations suggested that Per1 

was required for the regulation of cytosolic Mg2+ concentration, perhaps via the 

sequestration of Mg2+ in the vacuole. An alternative explanation for the Mg sensitivity of 

per1 strains might be that Per1 is required for vacuolar function or formation. However, 

unlike mutations that compromise vacuolar function (e.g. pep3, pep5, and vps4), per1 

displayed normal tolerance to excess Na+, Li+, Ca2+, Mn2+, Ni2+ and Zn2+ ions 

[(Paidhungat and Garrett, 1998) and data not shown]. In addition, I observed no gross 

morphological changes in per1 vacuoles indicative of a major defect in vacuole formation 

or maintenance (data not shown).  

While this work was in progress, a large-scale survey of protein location in yeast 
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(Huh et al., 2003) showed that a Per1-green fluorescent protein (GFP) fusion was located 

in the ER membrane. I obtained the yeast strain used and determined that the Per1-GFP 

fusion was functional, as the strain did not display the inability to utilize non-fermentable 

carbon sources (a "petite" phenotype) that is associated with this mutation (Steinmetz et 

al., 2002) (data not shown). This location for Per1 suggested that the protein may play a 

role in ER function, perhaps by mediating the supply of Mg2+ to the lumen. If so, I 

reasoned that the phenotypes of the per1 mutant might be a consequence of a decreased 

supply of Mg2+ to the ER, and that increasing the Mg2+ supply to the cell might suppress 

these phenotypes. To test this prediction, I examined the effect of Mg2+ on the petite 

phenotype of the per1 mutant and observed that it was conditional on Mg2+ availability; a 

small but significant increase in growth was observed when the YPGly medium was 

supplemented with 5-10 mM extra Mg2+ (Figure 3.1A), although this effect was 

eliminated at higher Mg2+ concentrations (where the Mg2+ sensitivity of per1 was 

observed). In addition to partial suppression of this petite phenotype by Mg2+, per1 also 

showed Mg2+-dependent phenotypes in glucose-containing medium. Cells of per1 grown 

under deficient conditions (5 µM Mg2+) had a reduced growth rate (data not shown), and 

displayed an aberrant 

morphology; in 

Mg2+-deficient 

conditions, per1 

daughter cells failed 

to completely 

separate after cell 

 
Figure 3.1 Effects of Mg2+ on growth and morphology of a per1 
mutant. A: Effect of Mg2+ and carbon source on growth of per1 on YPD 
(2% glucose) and YPGly (3% glycerol). B: WT and per1 mutant strains 
were grown for 12 hours in synthetic medium with 5 µM or 5 mM Mg2+ as 
indicated, and examined with bright field illumination. 
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division and had a filamentous shape (Figure 3.1B). Hence, the per1 mutant exhibited 

both an increased requirement for Mg2+ and Mg2+-sensitivity phenotypes, further 

implicating this gene in Mg2+ homeostasis. The Mg2+-dependent phenotypes are 

consistent with the per1 mutation blocking the supply of Mg2+ to some essential 

compartment, and the ER location of Per1 suggests that this compartment may be the one 

affected. 

To further analyze the effect of Per1 on Mg2+ homeostasis, I examined the effect of 

altered Per1 expression on the Mg2+ content of yeast cells. If Per1 was required for the 

intracellular storage of Mg2+, I reasoned that the deletion of this gene might affect Mg2+ 

content by reducing vacuolar storage. To determine if this was the case, I measured Mg2+ 

accumulation in WT and per1 mutant cells grown with a range of Mg2+ concentrations, 

from deficient (<100 µM) to excess. Cell samples were digested with acid and Mg2+ 

content measured with atomic absorption spectroscopy (AAS). Notably, per1 mutant 

cells showed a significant decrease in intracellular Mg2+ content at all concentrations 

tested (Figure 3.2A). This observation suggested that Per1 might contribute to the 

intracellular storage of Mg2+. However, subsequent experiments did not support this 

hypothesis. If Per1 was responsible for Mg2+ storage in the vacuole, the overexpression 

of PER1 from a multicopy plasmid (pFL44) in a WT strain would be expected to increase 

cellular Mg2+ content. However, when I constructed a multicopy version of PER1 and 

introduced this into a WT strain, no significant change in intracellular Mg2+ content was 

observed (Figure 3.2B).  
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Figure 3.2. Effect of PER1 deletion and overexpression on Mg2+ content. 
Mg2+ content of WT (BY4743) and per1 (YCR044cΔ) mutant strains (A) or 
Control (DY1457/pFL44-S) and PER1 overexpressing 
(DY1457/pFL44PER1) strains (B) was assayed with AAS after growth in 
medium with the indicated Mg2+ concentration. Data points indicate the 
mean of four (for A) or five (for B) independent experiments, error bars 
indicate 95% confidence limits. 

The above 

results seem to 

provide indirect 

support for the 

hypothesis that Per1 

is a Mg2+ 

transporter with 

effects on 

homeostasis: 

however, my results do not seem consistent with a role in supplying Mg2+ to the ER. The 

alternative explanation, that Per1 is a transporter active in a different compartment to the 

ER, seems unlikely: a recent study also showed Per1-GFP to be located in the ER 

membrane (Fujita et al., 2006), and the UPR-related phenotypes of the mutant strain (Ng 

et al., 2000) also implicates this protein in ER function. One explanation for the Mg2+-

related phenotypes of per1 mutants may be that this protein is responsible for some very 

general aspect of ion homeostasis: for example, the maintenance of cell membrane 

integrity. As discussed further in the final section of this chapter, recent results from other 

research groups communicated or published during this work support this idea by 

providing strong evidence for a general role of Per1 in protein processing and GPI anchor 

synthesis (Fujita et al., 2006). Since the focus of this work was on identifying Mg2+ 

transporters, when this information became available, I shifted my attention to other 

proteins that might prove to be better candidates. 
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3.2 Identification of new members of the calcium/cation exchanger family 

As discussed in Chapter 1, a Mg2+/H+ exchanger activity is present in membranes 

of the yeast secretory pathway and vacuole, but the molecular identity of this protein has 

yet to be determined. Members of the calcium/cation antiporter (CaCA) superfamily 

transport a variety of divalent metal cations, using the energy stored in the H+ or Na+ 

gradients generated by primary ATPase pumps (Maser et al., 2001; Shigaki and Hirschi, 

2006). It is possible that an uncharacterized member of this group could be responsible 

for Mg2+/H+ exchange activity. At the start of this work, I identified three yeast proteins 

of unknown function (Ynl321wp, Ydl206w, and Yjr106w) that were weakly related to 

the previously characterized Ca2+/H+ exchanger Vcx1p (Maser et al., 2001). All three 

proteins contain a conserved motif (PFAM motif PF01699.12) also found in Ca2+/H+ 

exchangers [the α-repeats, reviewed in (Philipson and Nicoll, 2000)]. This motif is 

repeated at least twice in all CaCA proteins; a region of poorly conserved sequence, 

which varies widely in length, normally separates the repeats. All three novel yeast 

proteins share this general structure (Figure 3.3A). Using the computer program ClustalX 

(Thompson et al., 1997), I generated an alignment of the most C-terminal conserved 

motif in previously characterized or closely related calcium exchangers (including yeast, 

Arabidopsis, rat and mouse examples) (Figure 3.3B). The alignment shows significant 

conservation between these proteins and the yeast proteins, concentrated in the regions 

that include the α-repeats. Thus, all three of these proteins are members of the CaCA 

superfamily, as previously reported for YNL321w and YDL206w (Maser et al., 2001). 
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One of the novel CaCA proteins, Ynl321w, differed somewhat in structure and 

sequence from the other two proteins. Ynl321w is a member of the CAX (cation 

exchanger) subfamily of the CaCA group (Shigaki and Hirschi, 2006), which also 

 
 
Figure 3.3 Structure and sequence of CaCA family members. A: Comparison of Vcx1 and related 
yeast proteins, showing the location of the PF01699.12 domains characteristic of Ca2+/Na+ and 
Ca2+/H+ exchangers, as well as a domain of unknown function (PF03733.3) unique to Ynl321w. Each 
tick on the lines indicates 100 residues. B: Sequence alignment of the most C-terminal conserved 
domains (Pfam 01699.12) of several CaCA family members. Proteins closely related to Vcx1 and the 
yeast CaCA proteins were identified using Blast and aligned using the program ClustalX (Thompson 
et al., 1997). GenBank accession numbers for each of the sequences shown are: CAX2, A. thaliana 
NP566452; spombe - S. pombe CAB86468; Mouse, M. musculus Slc24a6 protein; CAX7, A. thaliana 
NP197288; Rnor, R. norvegicus NP511174; Atmhx1, A. thaliana NP566105. Residues identical in 
three or more sequences are boxed. Color shading indicates relative hydrophobicity at each residue 
(red = hydrophobic, blue = hydrophilic), as calculated with a window size of 7 residues and displayed 
using the program Seqview (Riek et al., 1995). Putative transmembrane domains are indicated, based 
on the extent of the hydrophobic regions (numbered lines).  
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includes Vcx1. The most well characterized members of this subfamily are 

calcium/proton exchangers, found predominantly in the endosomal compartments of 

fungi and plant cells (e.g. Vcx1) (Shigaki and Hirschi, 2006). Figure 3.4A shows a Kyte-

Doolittle hydropathy plot of Ynl321w, showing the relative positions of thirteen regions 

of hydrophobic sequence that probably function as transmembrane domains (numbered 1-

13). Most of these domains are found in the PF01699.12 motifs: however, domains 1, 2 

and 8 are found only in a small subgroup of CaCA proteins. Members of this group also 

differ from the bulk of the CaCA superfamily in their possession of an extended N-

terminal domain. Blast searches with this region against the non-redundant GenBank 

database revealed the presence of a conserved motif (positions 238-301, Pfam motif 

PF03733.3) that is also found in a small family of prokaryotic proteins of unknown 

function. This motif contains predicted hydrophobic domain 1, perhaps indicating that it 

forms a transmembrane domain. Alternatively, this region could perform the function of a 

cleaved leader sequence, analogous to sequences present at the N-termini of many 

mammalian CaCA proteins (Philipson and Nicoll, 2000). A recent phylogenetic analysis 

of the CaCA family confirmed these observations of Ynl321w structure, and placed 

Ynl321w in a separate subgroup of CAX proteins (designated Type II) to reflect the 

unique features described above (Shigaki and Hirschi, 2006).  

The other two yeast proteins (YDL206w and YJR106w, or ECM27) are not 

members of the CAX subfamily: the above phylogenetic analysis showed that these 

proteins are most similar to the Arabidopsis CCX1-5 and mammalian NCKX6 proteins 

(Cai and Lytton, 2004). NCKX6 is believed to be a K+-dependent Na+/Ca2+ antiporter 

system, and is the founder member of a new group of proteins termed the Cation Calcium 
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eXchanger (CCX) family. As yet, the members of this subfamily of the CaCA group are 

only poorly characterized.  

In summary, the above analysis indicated that the three yeast proteins of unknown 

function were members of the CaCA superfamily, suggesting that they may play a role in 

divalent cation transport. Monovalent cation transporters such as the Nhx1 Na+ 

transporter are also members of this group, but are separated by a much greater 

evolutionary distance (Hanikenne et al., 2005; Maser et al., 2001). The yeast proteins did 

not align well with representative examples of these transporters (e.g., yeast Nhx1 and 

Nha1, data not shown). Thus, it appears more likely that the three yeast proteins 

participate in divalent cation homeostasis. Nevertheless, I could not rule out a role for the 

novel proteins in monovalent cation transport or pH regulation, and this possibility was 

 
 
Figure 3.4 Structural features of Ynl321w. A. Hydropathy plot of the YNL321w protein generated 
using the Kyte-Doolittle algorithm. Positions of putative transmembrane domains are indicated (black 
bars). "Certain" and "Putative" lines indicate cutoff values for prediction of transmembrane domains. B: 
Sequence alignment of the novel conserved domain found in Ynl321w (Pfam 03733.3) with related 
hydrophobic domains found in fungal type II CAX proteins, and the most C-terminal Pfam 03733.3 
domain, found in many prokaryotic proteins of unknown function. The alignment was generated and 
displayed as described for Figure 3.3B. Genbank accession numbers for the sequences shown are: 
Ynl321w, gi 11544693; N. crassa, gi 7529641; S. pombe, gi 2506635; E. coli, gi 2506635; P. multocida, 
gi 12720641; S. coelicolor, gi 10129706; M. tuberculosis, gi 2916929; V. cholerae, gi 9658495; and C. 
crescentus, gi 13423598. 
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examined later in this work. 

3.3 Reverse genetic analysis of CaCA gene function 

To find phenotypes that might provide evidence for the function of the three 

CaCA proteins, I analyzed the effects of altered CaCA gene expression in strains either 

lacking or overexpressing the three genes. Since I was primarily interested in determining 

if the novel genes were potential Mg2+ transporters, I first examined the effect of 

overexpressing the genes on the Mg2+ content of yeast. The rationale for these 

experiments was that the overexpression of a Mg2+ transporter may alter 

compartmentalization or uptake of Mg2+, generating a difference in the total Mg2+ content 

of the strain. If the transporter was responsible for sequestration in a storage compartment 

like the vacuole, overexpression might result in a significant increase in total cellular ion 

content, as has been observed for other vacuolar cation sequestration systems. For 

example, overexpression of the vacuolar zinc transporter Zrc1 increased Zn2+ 

accumulation (MacDiarmid et al., 2003). However, Mg2+ content might also be reduced 

by CaCA gene overexpression, for example if the transporter mediated efflux from the 

cell, via the plasma membrane or secretory pathway. CaCA gene overexpression was 

achieved by cloning the complete coding sequence and regulatory regions of the genes 

into a multicopy yeast shuttle vector (see Chapter 2.7.1). A WT strain was then 

transformed with the three overexpression constructs and the original control vector. To 

maximize the possibility of detecting a change in Mg2+ content, I supplied the cells with a 

range of Mg2+ concentrations, from deficient (1 µM) to well in excess of normal 

requirements (conditions in which Mg2+ sequestration would be essential for tolerance).  
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The results 

(Figure 3.5) 

indicated that only 

one of the three 

genes, YNL321w, 

caused a significant 

alteration in 

cellular Mg2+ 

content: Ynl321w 

overexpression 

increased Mg2+ content of cells at all concentrations tested, and the difference was highly 

significant at most concentrations tested (Figure 3.5A and data not shown). This increase 

in Mg2+ content suggested that Ynl321w might be involved in the intracellular 

sequestration of Mg2+ in a storage compartment, directing the focus of my subsequent 

research towards this protein. 

3.4 Effect of YNl321w overexpression on Ca2+ and Na+ content 

Ynl321w is related to Vcx1, which mediates Ca2+ storage in the vacuole, and very 

weakly related to monovalent cation transporters involved in organelle metal transport. 

This relationship suggested that Ynl321w might have effects on the homeostasis of other 

cations in addition to Mg2+. To determine if the effect of YNL321w overexpression was 

specific to Mg2+ ions, intracellular concentrations of Ca2+ and Na+ were determined in a 

strain overexpressing this gene. As for Mg2+, Ca2+ and Na+ accumulation was measured 

after growth of the strains over a range of cation concentrations. As shown in Figure 

 
Figure 3.5 Effect of CaCA gene overexpression on cellular Mg2+ content. 
Strains carrying a control or the indicated CaCA gene overexpression vector 
were grown to log phase in LMM with the indicated Mg2+ concentration, and 
Mg2+ content determined using AAS, as described in Chapter 2. A. Effect of 
the pFL44YNL overexpression vector (YNL321w) vs a control vector 
(pFL44-S) in DY1457; B. Effect of the pFL44YDL  (YDL206w) and 
pFL44ECM27 (YJR106w) overexpression vectors vs a control (pFL44-S). For 
A, data points display the average of 9 independent replicates; for B, data 
points display the average of three independent replicates. Error bars indicate 
95% confidence limits. 
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3.6A, overexpression of 

YNL321w had no effect on 

Na+ content. There was 

however a small increase in 

Ca2+ content (Figure 3.6B). 

Although this increase was 

not significant at the 95% 

level, the trend was 

consistent within the 

experiment, suggesting that 

the difference was reproducible. The limitations of the AAS method used may have 

contributed to the large error observed in these experiments. Despite this uncertainty, the 

result did hint at a role for YNL321w in Ca2+ homeostasis: this possibility was examined 

in more detail later in this work. 

3.5 Effect of single CaCA gene deletions on Mg2+ accumulation 

If the CaCA genes played an important role in Mg2+ homeostasis, I expected that 

eliminating their function would have an effect on the level of Mg2+ accumulation by 

these strains. Accordingly, I tested the effect of deleting each of these genes on Mg2+ 

accumulation (Figure 3.7). Deletion mutants in the BY4743 genetic background were 

obtained from a commercially available collection (Kelly et al., 2001) (Table 2.1). I 

observed no effect of deleting either YNL321w (Figure 3.7A) or the other two CaCA 

genes (Figure 3.7B) on Mg2+ content. Thus, this experiment did not support a significant 

role for any of these genes in isolation. In particular, since deletion of YNL321w did not 

 
Figure 3.6 Effect of YNL321w overexpression on cellular 
sodium and calcium content. Control and YNL321w 
overexpressing strains (see Figure 3.5) were grown in synthetic 
medium with the indicated concentration of either Na+ (A) or 
Ca2+ (B) ions. Ion content of the cells was determined using AAS. 
For A, data points for control or YNL321w overexpression 
indicate the means of 6 or 8 independent experiments 
respectively. For B, data points for control or YNL321w 
overexpression indicate the means of 9 or 12 independent 
experiments respectively. For all data, error bars indicate 95% 
confidence limits.  
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Figure 3.7 Intracellular Mg2+ content of ynl321w, ydl206w and yjr106w 
deletion mutations. WT (BY4743), YNL321wΔ (A), YDL206wΔ, and 
YJR106wΔ (B) strains were grown in LMM with the indicated Mg2+ 
concentrations, and total cellular Mg2+ content measured with AAS. Data 
points are the average of 3 independent experiments, error bars show 
standard deviation of the mean. 

affect either Mg2+ 

tolerance or Mg2+ 

accumulation, I 

consider it unlikely 

that this gene is 

required for 

intracellular Mg2+ 

storage or efflux in 

isolation. However, a possibility remained that the three CaCA genes overlapped in 

function, and that their redundant function masked any effect of their individual deletion.  

3.6 Screening for CaCA gene mutant phenotypes 

3.6.1 Metal tolerance of single CaCA mutants 

Since I observed that the Ynl321w protein was not a major contributor to Mg2+ 

homeostasis, I reasoned that it may be involved in the homeostasis of another cation. 

Many CaCA proteins have been shown to be required for the removal of various divalent 

and monovalent ions from the cytosol: this function contributes to the normal regulation 

of the cytosolic concentration of these cations, and (as a consequence of this) tolerance to 

excess cations in the environment (for example, Nha1p and Vcx1p, which regulate Na+ 

and Ca2+ respectively) (Banuelos et al., 1998; Pozos et al., 1996). If the three novel CaCA 

proteins were required for homeostasis of cations other than Mg2+, deletion of these genes 

might be expected to confer altered sensitivity to these cations. To investigate this 

possibility, I tested the sensitivity of the three CaCA deletion mutants to various metal 

cations, including Mg2+, Ca2+, Mn2+, Co2+, Ni2+, Zn2+, Na+, and Li+ (data not shown). 
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Wide ranges of cation concentrations were tested, up to levels that inhibited the growth of 

WT strains (data not shown). In these experiments, I did not observe significant 

sensitivity of any of the mutants to most of the cations tested, even at very high 

concentrations (data not shown). However, a slight sensitivity of the ynl321w mutant to 

very high Ca2+ (700 mM) was observed (data not shown). Together with our previous 

observation of increased Ca2+ content in strains overexpressing YNL321w, this result was 

further evidence for a role of this protein in Ca2+ homeostasis. Again however, I did not 

observe an effect of any of the mutations on tolerance to high Mg2+ concentrations. Very 

high concentrations of Mg2+ ions (>500 mM) inhibited the growth of WT strains, and 

lower concentrations prevented the growth of mutants lacking V-ATPase activity (data 

not shown), indicating that an appropriate range of Mg2+ concentrations was used to 

screen for growth phenotypes. Overall, my results indicated that the three CaCA genes 

were not required for Mg2+ tolerance in isolation, and did not reveal a major role in 

tolerance to any other metal ions tested. 

3.6.2 Metal Tolerance of double and triple CaCA mutants  

As discussed above, it is possible that the CaCA proteins overlap in function, and 

that the elimination of each gene in isolation was not sufficient to produce an effect on 

yeast physiology. For this reason, I decided to construct a set of mutant strains lacking 

two or all three of the novel CaCA genes, and to screen these strains for new cation 

tolerance phenotypes. Deletions of had already been constructed as part of the yeast gene 

deletion collection (Winzeler et al., 1999). To facilitate this process, I wanted to transfer 

ynl321w, ydl206w and yjr106w knockout alleles marked with KANR into the more easily 

manipulated W303 genetic background. For this reason, I designed PCR primers to 
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amplify the sequence flanking the deletions, together with the inserted KANR gene, from 

genomic DNA of the deletion mutants. These PCR products were then used to transform 

the W303-based DY1456 and DY1457 strains with selection for Geneticin resistance, 

separately deleting the three genes in these strains. In order to more easily follow the 

ynl321w marker in crosses, a ynl321w::LEU2 allele was also constructed and introduced 

into DY1457. The resulting MATa single mutant strain (AJF02) was then crossed with 

the isogenic haploid mutants AJF03 (ydl206w::KANR), and AJF04 (yjr106w::KANR) to 

obtain double mutants in each case. To obtain the triple mutant strain, I then crossed a 

ynl321w::LEU2 ydl206w::KANR double mutant (AJF05) with a ynl321w::LEU2 

yjr106w::KANR double mutant (AJF06). Spore clones were then screened for specific 

knockout alleles by using PCR with the oligonucleotides YDL206wF and YDL206wR to 

detect ydl206w::KANR, or the primers ECM27-5 and ECM27-3 to detect yjr106w::KANR.  

The complete set of 7 mutants and an isogenic WT strain was then screened for 

altered sensitivity to metal cations (Mg2+, Ca2+, Mn2+, Co2+, Ni2+, Zn2+, Na+, and Li+). 

Tolerance was determined by spot assays using SD medium plates. Again, the only 

phenotype observed was a slight sensitivity of strains carrying the ynl321w::LEU2 

mutation to 700 mM CaCl2 (data not shown). There was no noticeable increase in Ca2+ 

sensitivity of the double and triple mutants over ynl321w alone (data not shown). I 

concluded that despite their membership of the CaCA family, only one of the three CaCA 

genes had an effect on metal homeostasis in isolation, and that there was no obvious 

overlap in function between these three genes. Since I could not identify a reproducible 

effect of ydl206w or yjr106w mutation, for the remainder of this work, I focused on 

trying to understand the function of the Ynl321w protein in cation homeostasis. 
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3.6.3 Genetic interaction of YNL321w, VCX1 and PMC1. 

3.6.3.1 Construction of double and triple mutants 

Two lines of evidence (the Ca2+ content of overexpressing strains, and the Ca2+ 

sensitivity of the deletion mutant) suggested that Ynl321w might be required for calcium 

homeostasis. To further investigate this possibility, I decided to examine the effect of 

combining the ynl321w mutation with deletions of other genes required for Ca2+ 

homeostasis. The rationale behind this experiment was that in the absence of other 

mechanisms of Ca2+ homeostasis, the effect of the ynl321w mutation may be enhanced: 

double or triple mutant strains may be more sensitive to Ca2+, and may exhibit a 

difference in Ca2+ content, as a consequence of a stronger disruption in homeostasis. 

Accordingly, I constructed a set of strains combining ynl321w with deletion mutations of 

two known vacuolar calcium transporters, the CAX protein Vcx1p and the P-type 

ATPase Pmc1p. Vcx1 is a CaCA family member, and Pmc1p is a primary Ca2+ pump of 

the P-type ATPase family (Cunningham and Fink, 1994). Both proteins are believed to 

participate in the storage of excess Ca2+ in the vacuole: loss of both proteins caused a 

reduction in Ca2+ tolerance and intracellular calcium content (Cunningham and Fink, 

1996). I decided to examine the interaction of these two genes with YNL321w for two 

reasons: first, Vcx1 is related to Ynl321w, suggesting that these proteins overlap in 

function; and second, the vcx1 and pmc1 mutant phenotypes of altered calcium sensitivity 

and cellular calcium content are easily assayed. Mutant strains were generated by mating 

the W303-derived strain YDB254 (vcx1::URA3 pmc1::TRP1) (Miseta et al., 1999) with 

the AJF01 ynl321w::KANR single mutant. Spore clones from the cross were replica-

plated to marker test plates (YPD+Geneticin, SC-uracil and SC-trptophan) to determine 
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Figure 3.8 Interaction of ynl321w, vcx1 and 
pmc1 mutations. A: Ca2+ sensitivity of pmc1, 
vcx1 and ynl321w mutants (strains AJF08-
AJF15). Serial dilutions of cells (10-fold, 
bottom-top) were applied to low-sulfate 
synthetic medium containing the indicated Ca2+ 
concentration. Plates were incubated for three 
days at 30°C. B: Ca2+ content of mutants (strains 
AJF08-AJF15). Strains of the indicated 
genotypes were grown for 20 hours in low-
sulfate synthetic medium containing 400 mM 
Ca2+. Total cellular Ca2+ content was measured 
with AAS. Error bars represent 95% confidence 
limits (mean of four independent experiments).  

which mutations were present. This analysis indicated that all combinations of the three 

mutations were viable on normal YPD and SD medium, and showed no obvious growth 

phenotypes in standard media (data not shown). Two sets of eight strains carrying all 

possible combinations of the three 

mutations were isolated for study. 

3.6.3.2 Ca2+-related phenotypes of 

ynl321w, vcx1 and pmc1 mutants 

I compared the Ca2+ sensitivity of 

two sets of the seven possible mutant 

strains and the WT. As previously 

observed, ynl321w mutants were slightly 

sensitive to Ca2+ ions (Figure 3.8A). 

Despite their well-defined importance for 

Ca2+ homeostasis, inactivation of the other 

two genes had no reproducible effect on 

Ca2+ tolerance in isolation. However, as 

previously reported, (Marchi et al., 1999) 

combining these two mutations strongly 

reduced tolerance. In addition, combining 

vcx1 or pmc1 mutations with the ynl321w 

deletion caused an increase in Ca2+ 

sensitivity over ynl321w alone, with the 

pmc1 mutation showing the strongest 
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effect. These findings are consistent with a role for Ynl321w in removal of excess Ca2+ 

from the cytosol. The observation that Ynl321w appeared to have a stronger effect on 

tolerance in isolation than either of the other two previously characterized vacuolar 

transporters suggests this novel protein plays an important role in Ca2+ homeostasis. 

I then examined the effect of the three mutations on intracellular Ca2+ content in 

the same set of deletion mutants. The strains were grown to log phase in medium 

supplemented with 400 mM CaCl2, a concentration that did not substantially inhibit the 

growth of the strains (data not shown). The results are shown in Figure 3.8B. Previous 

studies have shown that vcx1 and pmc1 mutations independently reduce intracellular 

calcium accumulation, and my results agree with these reports: although the difference 

between vcx1 and WT strains was not significant, the pmc1 mutation significantly 

reduced accumulation in isolation, and the vcx1 pmc1 double accumulated less than either 

single mutant, consistent with the overlapping function of these two transporters. 

Strikingly however, the ynl321w mutation was associated with a significant increase in 

cellular Ca2+ content, the opposite effect to that of the vcx1 and pmc1 mutations. This 

effect of the ynl321w mutation was seen in all combinations of the mutations that we 

tested, including the triple mutant strain. 

3.7 Preliminary model for Ynl321w function 

These results strongly suggest that the Ynl321wp is required for Ca2+ 

homeostasis, but are not consistent with a role in Ca2+ sequestration in the vacuole. In 

contrast, the results strongly suggest that Ynl321w is required for the efflux of Ca2+ from 

the cell. If Ynl321w is directly responsible for Ca2+ transport, this model predicts that 

Ynl321w is located on the plasma membrane and mediates efflux directly across the 
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plasma membrane, or that it is located in the secretory pathway and loads Ca2+ into the 

lumen of secretory organelles. From the latter location, Ca2+ ions could be released to the 

outside of the cell via the normal process of vesicle transport and exocytosis.  

3.8 Determination of Ynl321w subcellular location 

3.8.1 Detection of Ynl321w using epifluorescence microscopy 

To test the above predictions about Ynl321w location, I constructed a version of 

Ynl321w fused to three copies of the HA (Influenza hemagglutinin) epitope at the C-

terminus (Chapter 2.7.1), which was inserted in both single copy and multicopy shuttle 

vectors. Upon construction of these vectors, I utilized the previously described phenotype 

associated with Ynl321w overexpression (higher Mg accumulation) to determine if the 

modified version of Ynl321w retained function. The modified Ynl321w protein was 

expressed in a wild-type yeast strain, and the resulting strain grown over a range of Mg2+ 

concentrations, as previously described (Figure 3.2). As positive and negative controls, I 

included a strain carrying an empty control vector, and a strain overexpressing the 

untagged Ynl321w. The results (Figure 3.9A) indicate that both the tagged and untagged 

proteins conferred the same phenotype of increased Mg2+ accumulation, indicating that 

the tagged protein was functional. 

To determine the subcellular location of YNL321w-HA, I performed a series of 

immunofluorescence experiments to detect the HA tag. A diploid strain (DY1514) was 

transformed with pFL44YNLHA or a control (empty) vector. Using whole cells, the 

epitope-tagged protein was labeled with a fluorescent dye by using an indirect 

immunofluorescence protocol (see Chapter 2.12.5). The labeled cells were examined 

using epifluorescence microscopy. In most cells of the cultures expressing the tagged 
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protein, I did not detect Ynl321w-HA: however, a small minority of cells (about 1/100) 

stained brightly. In these cells, the signal appeared to outline the vacuole membrane, as 

revealed by Nomarski differential intereference contrast optics (DIC), but additional 

signal was also present in a compartment adjacent to the vacuole, which based on its 

location and morphology is most likely the ER/nuclear membrane. No corresponding 

signal was observed in the negative control cells. Although these results suggest a 

vacuolar and/or ER location, the absence of signal in most cells suggested that the 

brightly staining cells did not provide definitive evidence for the normal location of 

Ynl321w.  

To ensure that the immunofluorescence technique was performing adequately, I 

also included a positive control in these experiments, by staining untagged cells with an 

antibody to the vacuolar membrane protein Vma1p. Vma1p was successfully detected in 

most cells (Figure 3.9B), indicating that there was no fundamental flaw in the protocol. I 

concluded that even though the Ynl321w-HA protein was expressed from a multicopy 

vector, it was possible that its expression was too low to be detectable in most cells. 

As an alternative approach towards the detection of Ynl321w by fluorescence 

microscopy, I constructed a version of Ynl321w C-terminally tagged with the citrine 

variant of the yellow fluorescent protein (YFP), which has an excellent signal/noise ratio 

when expressed in yeast (Sheff and Thorn, 2004). Diploid yeast strains that were 

transformed with the high copy 211YNL44 plasmid (and consequently overexpressed the 

fusion protein) were examined using epifluorescence microscopy. As shown in Figure 

3.9C, control cells that did not express the fusion protein showed a low level of diffuse 

background autofluorescence, which was detectable using the sensitive equipment used. 
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Figure 3.9 Localization of Ynl321w by epifluorescence microscopy. 
A. Mg2+ content of DY1457 cells transformed with pFL44YNL 
(Ynl321w UT), pFL44YNLHA (YNL321w-HA, two replicate strains) 
or a control vector (pFL44-S) were grown in synthetic medium 
containing the indicated concentration of Mg. Error bars represent the 
standard deviation of two independent experiments. B. 
Immunofluorescence microscopy of DY1457 cells expressing 
YNL321w-HA (pFL44YNLHA plasmid), negative control cells 
transformed with pFL44-S, and negative control cells stained with 
antibodies to the vacuolar membrane protein Vma1. These cells are 
examples of the small number of cells that stained brightly: unstained 
cells, which made up the bulk of the preparation, are not shown. C. A 
YNL321w-citrine fusion protein was overexpressed in diploid yeast 
(BY4743) transformed with 211YNL44. Cells representative of typical 
observations are shown. Negative control cells (untagged) were 
transformed with pFL44YNL.  

Cells expressing YFP-

Ynl321w however 

showed a brighter signal, 

with a pattern 

characteristic of an ER 

membrane protein. 

Signal was observed as a 

ring structure 

surrounding an organelle 

located at one pole of the 

diploid cell, and also 

occasionally as thread-

like structures below the 

cell periphery. Dividing 

cells showed signal at 

the bud neck, again 

indicating an ER/nuclear 

location. Unlike the 

results observed with 

immunofluorescence, 

almost all cells examined 

showed a similar pattern 

of fluorescence. 
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3.8.2 Cell fractionation 

3.8.2.1 Detection of epitope-tagged Ynl321w by immunoblotting 

To examine Ynl321w location using an independent method, I wanted to perform 

cell fractionation experiments. Prior to these experiments, I performed Western blotting 

analysis to determine if the expression of the epitope-tagged Ynl321w protein (Ynl321w-

HA) could be detected via this method. When Ynl321w-HA was expressed from a single-

copy vector, no expression was detected on Western blots of total protein extracts. 

However, when Ynl321w-HA was overexpressed from a 2µ vector, the protein was 

detectable (data not shown). The protein was seen as two bands: one had an apparent 

molecular weight of approximately 100 kDa, which was similar to its predicted molecular 

weight of 102.5 kDa. The other had a substantially lower mobility, and was too large to 

be estimated due to the resolution limit of the PAGE system used. The low-mobility band 

may represent a portion of Ynl321w crosslinked to itself or other proteins, via a bond 

resistant to the standard concentrations of reducing agent and detergent used in SDS-

PAGE. This suggestion is supported by a reduction in the abundance of this band when 

the SDS concentration in the gel-loading buffer was increased (data not shown). These 

observations indicated that although Ynl321w-HA needed to be overexpressed, the 

protein could be detected via Western blotting, which enabled me to perform cell 

fractionation experiments to determine its location in yeast. 

3.8.2.2 Sucrose gradient cell fractionation 

To separate yeast organelles based on their buoyant density, I used a sucrose 

gradient cell fractionation technique, as described in Chapter 2.12.4. A strain 

overexpressing Ynl321w-HA was grown in synthetic medium, and an organelle fraction 
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Figure 3.10 Localization of Ynl321w-HA by cell fractionation. Organelles isolated from 
DY1457/pFL44YNLHA were separated by sucrose gradient fractionation in buffer without (A) or 
with (B) Mg2+ and protein content analyzed with Western blotting. Primary antibodies for marker 
proteins were α−ΗΑ (Ynl321w-HA), α-Vma1 (vacuole), α-Dpm1 (ER), α-Pep12 (early endosome), 
α-Vps10 (Golgi), α-Vma1 (plasma membrane) and α-Por1 (mitochondria). Control samples 
included the unfractionated organelle mixture (lane O, in B) and total protein extracted from 
DY1457/pFL44YNL (untagged -ve control, in A and B). 

was obtained via cell lysis and differential centrifugation. The organelles were loaded on 

a 20% to 60% sucrose gradient and subjected to ultracentrifugation. One ml fractions 

were collected drip-wise after puncturing the bottom of the tube. Samples of each 

gradient fraction, a sample of the original organelle suspension, and a negative control 

(total protein extracted from a strain expressing untagged YNL321w) were separated by 

SDS-PAGE and blotted to nitrocellulose membranes. To determine which organelles co-

fractionated with the Ynl321w-HA protein, I probed the blots with primary antibodies for 

known organelle-associated marker proteins, and detected Ynl321w-HA using an anti-

HA antibody.  

The results of a typical experiment (Figure 3.10A) are shown. Effective 

separation of the different organelles was obtained, and the lighter organelles (the 
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vacuole and prevacuolar compartment) were located at the top of the gradient as 

expected. The Ynl321w-HA protein was again detected as two bands, with the lower 

band corresponding to the expected molecular weight of the protein. Both bands were 

absent from protein extracted from the control (untagged) strain. The pattern of 

distribution of Ynl321w-HA in the fractions was most similar to Dpm1 (an ER protein) 

and Por1 (a mitochondrial protein). In particular, the epitope-tagged protein was not 

observed in the light fractions (10 and 11), as would be expected if this protein 

accumulated in the vacuole membrane. In addition, there was very little overlap between 

the fractions containing Ynl321w and those containing the plasma membrane marker 

Pma1 and the Golgi marker Vps10p. Ynl321w was found in fraction 7, where it co-

localized with a large portion of the pre-vacuolar marker Pep12: however, in general 

these markers were widely separated in the gradient. Because of the overlap of the Dpm1 

and Por1 markers, I could not discriminate between ER and mitochondrial locations 

based on this experiment. Other fractionation experiments that I performed using the 

same technique gave similar results for these markers: the similar density of the two 

organelles makes it very difficult to separate them using a cell fractionation technique 

based on differences in buoyant density.  

One method suggested to identify ER-localized proteins is to perform cell 

fractionation in the presence and absence of Mg2+ ions (Roberg et al., 1997). The 

rationale behind this approach is that the removal of Mg2+ from the organelle suspensions 

results in the dissociation of ribosomes from the rough ER, reducing the buoyant density 

of these membranes. Thus, proteins associated with the ER should shift position in Mg2+-

containing vs. Mg2+-free density gradients, while other organelles will retain their 
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original density and position. However, when I performed experiments to compare Mg2+-

free and Mg2+-containing gradients, this technique did not provide any addition 

information: a shift in the density of the ER compartment was observed in the presence of 

Mg2+, but the density of some other organelles (including the mitochondria) was also 

shifted. Thus, the ER and mitochondrial compartments were still co-localized in the 

presence of Mg2+ ions (Figure 3.10B). The several published reports of the use of this 

technique to demonstrate an "ER" location did not consider the possibility of a 

mitochondrial location for the protein of interest, because in their experiments the 

distribution of mitochondria in the gradients was not determined (Roberg et al., 1997). 

In summary, these results are consistent with an ER location for Ynl321w, which 

may explain the effect of the ynl321w mutation on intracellular Ca2+ content: a reduction 

of the Ca2+ content of the ER might result in reduced Ca2+ efflux and increased Ca2+ 

content, as has been observed for other mutations that block the supply of divalent 

cations to the secretory pathway (e.g. pmr1, see Chapter 1.6). Thus, the majority of this 

evidence supports a model whereby Ynl321w is required for the removal of Ca2+ from 

the cell via the secretory pathway, in a similar manner to its closest analog in yeast, the 

Pmr1 protein (Vashist et al., 2002). To reflect this conclusion, Ynl321w was assigned the 

name Ecx1 (for ER calcium exchanger). 

I considered the possibility that the observed location of Ecx1 was a consequence 

of the overexpression of this protein, and did not reflect its predominant location when 

expressed at a normal level. Due to the low expression of the protein from the native 

promoter, this issue may be very difficult to resolve: however, the relatively low 

expression observed even with a high copy vector may also indicate that overexpression 
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Figure 3.11 pH tolerance of ecx1 (ynl321w) and 
nhx1 mutant strains. Low pH phosphate-buffered 
medium adjusted to the indicated pH was inoculated 
with cells of the indicated genotypes (DY1457, WX1, 
AJF02, and AJF16) to give an initial cell density of 
0.01. After 16 hrs growth, A600 was determined. Data 
points indicate the mean of three experiments: error 
bars represent 95% confidence limits. 

artifacts are unlikely in this particular case. Although I have not ruled out the possibility 

of obtaining further localization data (see Chapter 4.4), obtaining independent 

phenotypic evidence for a role of Ecx1p in ER function may be the best strategy to 

confirm a function of Ecx1p in this compartment.  

3.9 pH sensitivity of ecx1 mutants 

CaCA proteins are involved in transporting cations against an electrochemical 

gradient in exchange for protons entering the cytosol, and this proton transport would be 

expected to lower the cytosolic pH to some degree. Thus, cation exchangers may also 

play a role in the regulation of cytosolic or organelle pH: their roles in cation transport 

may even be of secondary importance to this role. This concept may be one way to 

explain the apparent redundancy of ER Ca2+ transporters that I have identified. Previous 

work has identified another transporter, Cod1, that supplies Ca2+ to the ER compartment, 

and the Pmr1 protein may also contribute to this supply (Cronin et al., 2002). As an 

exchanger, Ecx1 could play a role in 

ER pH homeostasis, a function that 

could not be performed by a primary 

ATPase pump such as Cod1p or 

Pmr1p.  

The yeast proteins Nhx1p and 

Nha1p appear to fall into this category: 

as discussed in Chapter 1, these 

proteins resemble mammalian Na+/H+ 

exchangers, but they appear to play a 



Franklin, Andrew J. 2007, UMSL, 67 

role in the regulation of organelle and cytosolic pH. Recently, Nhx1p was shown to be an 

endosomal Na+/H+ exchanger, involved in the intracellular sequestration of Na+ and the 

regulation of luminal pH in the secretory pathway. Consistent with this function, the nhx1 

mutation was reported to confer sensitivity to low pH (Brett et al., 2005), and was also 

associated with the secretion of the vacuolar protein carboxypeptidase Y (CpY), 

indicating a disruption of normal protein targeting mechanisms. This effect could be due 

to perturbed pH homeostasis within the secretory pathway, or a disruption in the supply 

of essential Na+ ions to the lumen of the compartment defined by Nhx1p (the late 

endosome or PVC).  

To investigate if Ecx1p also plays a role in the regulation of cytosolic or organelle 

pH, I constructed a set of ecx1, nhx1 and double mutant strains, then tested sensitivity to 

low pH (3-4) by growth in liquid medium, prepared using a method suitable for 

expression of the pH sensitivity of nhx1 single mutant strains (Brett et al., 2005). In my 

experiments, both single mutants showed only a mild pH sensitivity, which was not 

significantly different from the WT (Figure 3.11). However, the double mutant showed a 

significant increase in sensitivity from WT at the 95% confidence level. These results 

were not consistent with previous reports of the effect of the nhx1 mutation, in which this 

mutation had a much stronger effect in isolation (Brett et al., 2005). I used the exact 

conditions and media described in this work, but despite several experiments, I could not 

repeat the published observations. Other workers have also encountered difficulty 

reproducing this phenotype of nhx1 (K. Hirshi, personal communication). Nevertheless, 

the observation that an effect of the nhx1 mutation on tolerance was observed in 

combination with ecx1 suggests that both proteins do have a role to play in pH 



Franklin, Andrew J. 2007, UMSL, 68 

homeostasis. The implications of this observation will be discussed further in Chapter 4. 

3.10 Summary and discussion 

The purpose of this work was to identify candidate genes encoding putative active 

transport systems for magnesium ions, and to determine their role (if any) in magnesium 

homeostasis. I identified several genes as putative transporters, including Per1 and 

YNL321w. These proteins were chosen for study on the basis of such criteria as their 

possession of multiple putative transmembrane domains, previous and novel observations 

of mutant phenotypes suggesting a function in magnesium homeostasis, or membership 

in a family of transporters known to play diverse roles in ion homeostasis. In general 

however, my analysis of these genes did not provide strong evidence for a role of any of 

these proteins in Mg homeostasis. However, I did identify a novel and important role for 

one protein, Ynl321w, in calcium homeostasis. My findings are summarized below. 

3.10.1 The Per1 protein 

Per1 was originally identified in a screen for genes that altered ion homeostasis: 

the per1 mutation suppressed the manganese-sensitive phenotype of a mutant strain 

(Paidhungat and Garrett, 1998). These studies also revealed an interesting phenotype of 

per1 mutants, a relatively specific sensitivity to high magnesium concentrations. A recent 

large-scale study of protein location revealed that Per1 was associated with the ER 

membrane (Fujita et al., 2006), suggesting the involvement of Per1 in ER function. 

Additional evidence for this view came from studies showing that per1 mutation showed 

a synthetic interaction with the ire1 and hac1 mutations, which inactivate genes required 

for the induction of the unfolded protein response (UPR) (Ng et al., 2000). The UPR is 

induced by the accumulation of unfolded proteins in the ER lumen, which occurs as a 
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result of defective protein processing (Rutkowski and Kaufman, 2004). These 

observations suggest per1 mutants have a defect in ER function, and must induce the 

UPR in order to compensate for this defect. 

Because the above observations implicated Per1 in ER function and Mg2+ 

homeostasis, I hypothesized that Per1 might play a role in magnesium transport into this 

compartment. By this model, the loss of Per1 function would result in a higher cytosolic 

magnesium concentration (due to reduced efflux into the secretory pathway), possibly 

resulting in magnesium sensitivity. In addition, the loss of Per1 function might deprive 

the ER of this essential cation, resulting in an increased level of unfolded proteins, and 

the consequent induction of the UPR.  

The above model predicted that overexpression and mutation of PER1 would 

result in measurable changes in various parameters of Mg2+ homeostasis, including Mg2+ 

accumulation, ability to grow in deficient conditions, and Mg2+ sensitivity under different 

media conditions. For example, if the primary role of Per1 was to supply Mg2+ to the ER, 

I expected that the overexpression of this protein might result in a reduction in cellular 

Mg2+ accumulation, just as the effect of ER and Golgi calcium transporters is to reduce 

cellular calcium accumulation (as a consequence of efflux via the secretory pathway). 

Conversely, the inactivation of Per1 might result in higher Mg2+ accumulation by the 

mutant, as Mg2+ that might normally be lost from the cell is instead sequestered in 

intracellular compartments.  

However, my results did not support this model. When the Per1 mutant was 

grown over a range of Mg2+ concentrations, this strain showed a large and significant 

decrease in Mg2+ content. This observation may indicate a potential role for Per1 in Mg2+ 
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sequestration into an internal compartment within the cell. However, if this alternative 

model was correct, I expected that the overexpression of Per1 would increase cellular 

Mg2+ content: my studies show this is not the case, as overexpression had no significant 

effect. Thus it appears that Per1 does not show the phenotypic effects expected of a 

protein that sequesters Mg2+ in the ER (or vacuole) compartment.  

During this work I learned from another research group that the per1 mutation 

reduced the accumulation of several other ions in addition to Mg2+ (personal 

communication, R. Schweyen). This effect suggests that Per1p might be required for 

some general aspect of ion homeostasis, for example by contributing to the integrity of 

the cell membrane. Such a function would fit with the location of Per1 in the ER, which 

is a site of lipid biosynthesis. Another essential process that may be defective in per1 

mutants is the addition of glycophosphatidylinositol (GPI) anchors to yeast proteins 

during transit through the ER. GPI is a complex glycolipid that acts as a membrane 

anchor point for many cell-surface glycoproteins (Ferguson, 1999; Ikezawa, 2002). 

Consistent with this observation, per1 mutants showed defective processing of the GPI-

linked cell wall protein Gas1, but did not show altered processing of Cpy, which is 

glycosylated in the ER but not GPI-anchored (Ng et al., 2000). Finally, recently 

published work confirmed a defect in GPI anchor synthesis in per1, and suggested that 

Per1 represents the GPI-phospholipase A2 enzyme of the GPI-anchor remodeling pathway 

(Fujita et al., 2006), as this step in the synthesis pathway was blocked in a per1 mutant.  

Given these observations supporting a biosynthetic role for Per1p in lipid 

metabolism and protein processing, it is unclear why the per1 mutant displays relatively 

Mg2+-specific phenotypes, such as sensitivity to this cation. One possible explanation is 
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that these phenotypes reflect a toxic effect of Mg when combined with a general defect in 

cell integrity or cell wall strength. GPI anchoring of proteins is thought to enable the 

delivery of proteins to their final sites in the cell wall, by ensuring their temporary tight 

association with the surface of the plasma membrane. Cells lacking important GPI-linked 

cell wall proteins (e.g. Gas1) are hypersensitive to agents that disrupt the cell wall, such 

as calcofluor white (Ram et al., 1995). per1 mutants also show a cell wall defect and 

consequent calcofluor sensitivity (Fujita et al., 2006). If high concentrations of Mg had 

the effect of somehow disrupting the structure of the cell wall, or preventing certain 

biochemical reactions from occurring within it, per1 mutants might show a Mg2+ 

sensitivity as a consequence of their existing defect in cell wall function. This model 

implies that Mg2+ has some special properties not shared by other divalent cations that do 

not affect the growth of per1 (or other cell wall mutants), but what these properties might 

be is unclear. 

3.10.2 Putative cation transporters of the CaCA superfamily 

The CaCA superfamily of proteins includes transporters with a range of 

substrates, including Ca2+, Mn2+, Cd2+, and various monovalent cations. One member of 

this family from Arabidopsis (AtMHX1) has previously been implicated in Mg2+ 

transport, although the evidence presented to support this function was very inconclusive. 

However, given this diversity of substrates and functions for CaCA members, it seemed 

possible that uncharacterized members of this superfamily could potentially mediate 

active transport of Mg2+ ions. In addition, studies of Mg2+ transport by the yeast 

endosomal vesicles have shown that this cation is accumulated in the vacuole via a 

Mg2+/H+ exchange mechanism (Borrelly et al., 2001), which is consistent with the 
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involvement of a member of the CaCA family. Thus, using a candidate gene approach to 

this question was an appropriate strategy to identify this transport system. 

I was however, unsuccessful at identifying a CaCA-family Mg2+ transport system 

in yeast, as my results did not provide evidence for a large effect on Mg2+ homeostasis of 

deleting any of the three genes examined. There was no effect of the deletions on Mg2+ 

sensitivity, either alone or when combined. Thus, the three genes do not appear to have 

any redundant function in Mg2+ homeostasis. However, it is still possible that one of the 

three genes is redundant with some other yeast transport system.  

When I looked directly at another measure of Mg2+ homeostasis, Mg2+ 

accumulation by cells, I also did not see any major effects of the three CaCA genes. Only 

the overexpression of Ynl321w had any significant effect on Mg2+ accumulation, and this 

effect was relatively small and highly variable: many replications of the experiments 

were required to be sure that it was statistically significant. In contrast, deletion of 

YNL321w did not affect Mg2+ accumulation, even at high Mg2+ concentrations where 

vacuolar storage should be most obvious. Thus, this evidence does not support a major 

role for Ynl321w in Mg2+ homeostasis.  

Since my work did not provide strong evidence for Ynl321w function in Mg2+ 

homeostasis, I looked for evidence for other Ynl321w functions. The ynl321w mutant 

showed a weak calcium-sensitive phenotype, and overexpression of this gene gave a 

slight (although not significant) increase in calcium accumulation. These observations, 

and its membership with Vcx1 of the CAX subgroup of the CaCA superfamily, motivated 

me to search for a possible role of Ynl321w in calcium homeostasis. I reasoned that 

because of the redundancy of calcium homeostasis mechanisms in yeast, combining the 
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ynl321w mutation with mutations in other known Ca2+ transporters might amplify the 

effect of this gene on simple parameters of calcium homeostasis, such as tolerance and 

accumulation. These experiments did in fact provide evidence for a role of Ynl321w in 

calcium homeostasis. Combining ynl321w with mutations inactivating the vacuolar 

calcium transporters Vcx1p and Pmc1p accentuated the calcium sensitive phenotype, 

consistent with all three of these proteins contributing to the removal of calcium from the 

cytosol. In particular, combining ynl321w with the pmc1 mutation, which inactivates the 

major primary ATPase pump in the vacuole, gave rise to a strong synthetic sensitivity 

phenotype. The significance of this effect is made clear when comparing the effect of 

combining the effect of the most well characterized calcium exchanger in yeast, Vcx1, 

with the effect of Ynl321w: combining the vcx1 and pmc1 mutations reduced calcium 

tolerance to approximately the same level as combining the ynl321w and pmc1 mutations. 

This result indicates that Ynl321w is as important to calcium homeostasis as Vcx1: given 

the large number of genetic studies performed on yeast calcium transport, this was a very 

surprising result. Combining mutations of all three genes led to a very strong calcium 

sensitivity phenotype, completely preventing growth on medium with 600 mM calcium 

(the lowest concentration tested, data not shown). Thus, it appears that Ynl321w plays a 

relatively important role in calcium homeostasis. 

3.10.3 Model for Ynl321w function 

The apparently similar effect of ynl321w and vcx1 mutations on tolerance led me 

to compare their effects on calcium accumulation: surprisingly, I found that in contrast to 

vcx1, the ynl321w mutation was associated with higher calcium accumulation in cells 

grown in a medium with a high calcium concentration (400 mM). This finding indicates 
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that Ynl321w and Vcx1 proteins perform different functions in the cell, and that 

Ynl321w is unlikely to participate in calcium sequestration in the vacuole. In contrast, 

this protein may act to efflux calcium from the cytosol to the outside of the cell. Efflux 

systems located in the plasma membrane (the mammalian Na+/Ca2+ exchangers like 

Ncx1) or secretory pathway (e.g. the yeast Pmr1 protein) are known to perform a similar 

function. The ER location determined for Ynl321w is consistent with a role in the efflux 

of Ca2+ ions into the lumen of the ER compartment (leading to its eventual release from 

the cell via exocytosis). This location might also explain the synthetic calcium sensitivity 

phenotype of mutations in the three transporters studied. If all three proteins contribute to 

the depletion of cytosolic calcium by sequestration in the vacuole or the secretory 

pathway, eliminating all three would be predicted to significantly increase the cytosolic 

Ca2+ concentration and consequently, enhance calcium toxicity.  

In summary, I propose that Ynl321w represents a novel and important 

calcium/proton exchanger that is most likely located in the secretory pathway, where it 

serves to efflux excess calcium from the yeast cell. The specific physiological role of 

Ynl321w is currently unclear: for example, it may primarily play a role in maintaining 

the cytosolic calcium concentration at an ideal level, or it may function to deliver calcium 

to an internal compartment to support the functions of enzymes within that space. This 

model is useful because it allows us to make many testable predictions, providing ideas 

for many different experiments. Some of these predictions and experiments will be 

discussed in more detail in Chapter4. 
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Chapter 4 Conclusions 

4.1 Strategy for identification of a Mg2+/H+ exchanger 

The goal of my experiments was to identify a novel a Mg2+/H+ exchanger in yeast. 

This goal was pursued using a candidate gene approach, rather than a genetic screen: 

several uncharacterized genes were selected for analysis, based on a variety of criteria. 

These criteria were: a) genes with previously described mutant phenotypes suggesting a 

role in Mg2+ homeostasis (e.g. Mg2+ sensitivity), b) genes that encoded apparent 

membrane proteins (possessing multiple hydrophobic regions with characteristics of 

transmembrane domains), and c) genes that encoded proteins related to known divalent 

cation transporters.  

The first candidate identified, PER1, was selected because the per1 mutation was 

previously described to specifically reduce Mg2+ tolerance (Paidhungat and Garrett, 

1998), and there was good evidence that Per1 was an integral membrane protein 

(Paidhungat and Garrett, 1998). However, during this work, a different research group 

identified Per1 as an ER-localized enzyme involved in the processing of GPI-anchors 

prior to their addition to proteins in the ER (Fujita et al., 2006). The per1 mutation had a 

variety of phenotypes consistent with this role, including inducing a dependence on the 

function of the unfolded protein response (UPR) (Fujita et al., 2006). Thus it appears that 

Mg2+ sensitivity can arise as a consequence of a variety of physiological defects, and not 

simply a consequence of altered Mg2+ homeostasis. For example, mutation of vacuolar 

ATPase subunits can produce sensitivity to excess Mg2+ ions (presumably because of an 

inability to sequester Mg2+ in the vacuole), but the inactivation of proteins that do not 

mediate Mg2+ transport can have similar effects (the nhx1 mutation, which inactivates an 
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endosomal Na+/H+ exchanger, also reduces Mg2+ tolerance, as do mutations in the pmr1 

Ca2+-ATPase [R. Gardner, personal communication]. Any future strategies to isolate 

Mg2+ transporters in yeast via the identification of Mg2+-sensitive mutants will need to 

take this limitation into account. However, it is possible that the genes identified using 

such a screen could be further analyzed using an overexpression strategy. A transporter 

that was genuinely involved in the regulation of Mg2+ storage would reasonably be 

expected to have an effect on Mg2+ content when overexpressed. I found that the 

overexpression of PER1 had no such effect on the Mg2+ content of yeast, which is 

consistent with this gene having only an indirect effect on Mg2+ tolerance.  

4.2 CaCA genes and Mg2+ homeostasis. 

The second group of candidate Mg2+ transporter genes selected for my 

experiments was related to known divalent cation transporters. Since Mg2+ is a positively 

charged ion, removal of Mg2+ from the cytosol (and efflux from the cell or intracellular 

storage) is expected to require energy input. The CaCA superfamily is a group of proteins 

that mediate transport of other positively charged divalent ions. Three of these proteins 

were present in the yeast genome, and had not been characterized when this work began. 

These proteins were good candidates for the Mg2+/H+ exchange system that has been 

described in the yeast secretory pathway and vacuole (Borrelly et al., 2001). I 

systematically examined these three proteins to determine if they affected Mg 

homeostasis. 

If a putative divalent cation/H+ exchanger were to be involved in the transport of 

Mg2+, one might expect to see Mg2+ related phenotypes, such as sensitivity or tolerance to 

Mg2+, and a change in metal ion content when the protein is overexpressed or deleted. 
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The effect of a putative cation/H+ exchanger on cation content would depend on its 

cellular location. For example, if the transporter was responsible for sequestration in a 

storage compartment like the vacuole, overexpression might result in a significant 

increase in total cellular content of that particular ion which it transports, as has been 

observed for other vacuolar cation transport systems [e.g., Zrc1p, (MacDiarmid et al., 

2000)]. If the transporter mediated efflux from the cell, via the plasma membrane or 

secretory pathway, one would expect to observe an increase in ion content if the gene is 

deleted, and a decrease if the gene is overexpressed. In addition, since a cation/proton 

exchanger would most likely remove cations from the cytosol, one would most likely 

observe a sensitivity phenotype upon deletion of the gene, and resistance upon 

overexpression: as a consequence of overexpression, metals would be removed from the 

cytosol before they could accumulate to toxic levels.  

To test if any of the uncharacterized CaCA genes had effects on Mg content or 

tolerance when overexpressed, I cloned the entire gene into a high copy vector, which 

resulted in moderate overexpression of the gene. My experiments showed that one of the 

three genes, ECX1, produced an increase in Mg2+ content when it was overexpressed, and 

other two CaCA genes had no effect. This initial promising result, which suggested a role 

for ECX1 in Mg2+ homeostasis, was not supported by subsequent experiments however. 

In particular, deletion of ECX1 did not affect Mg content or tolerance, even when the 

strain was grown in medium with a very high concentration of Mg2+. This observation is 

not consistent with an essential role for ECX1 in sequestration of Mg2+ in the vacuole, or 

the efflux of Mg2+ from the cell.  

Since I was not successful in identifying a gene that encoded the vacuolar 



Franklin, Andrew J. 2007, UMSL, 78 

Mg2+/H+ exchanger using a candidate gene approach, it might have been worthwhile to 

do a genetic screen for proteins that suppress the Mg2+ sensitivity of mutants with 

vacuolar Mg2+ storage defects, such as vma1. Mutants lacking V-H+-ATPase activity are 

unable to accumulate Mg2+ in the vacuole, and are sensitive to high Mg2+ concentrations 

(R. Gardner, personal communication). This screen could be performed by using an 

overexpression library (a library of genomic fragments in a high-copy vector) to 

overexpress genes at random, then select for transformed cells that are resistant to high 

Mg2+ concentrations, but not to other toxic cations such as Na+ (which vma1 mutants are 

also sensitive to). The reasoning behind this screen would be that that the small amount 

of residual transport activity seen in these mutants might have been increased by 

transporter overexpression, leading to increased vacuolar Mg2+ storage and tolerance. 

4.3 Role of ECX1 in calcium homeostasis 

Studies of the effect of ECX1 on cation content and sensitivity when 

overexpressed or deleted provided evidence that Ecx1 is involved in Ca2+ homeostasis. 

Mutation of this gene induced a minor sensitivity to high Ca2+ concentrations, which was 

enhanced by combining the ecx1 mutation with inactivating mutations in other Ca2+ 

transporters (vcx1 and pmc1) that are required for Ca2+ sequestration in the vacuole. It is 

possible that this sensitivity to Ca2+ is the result of a reduced ability to remove Ca2+ from 

the cytosol into the secretory pathway. In addition, the ecx1 mutation increased calcium 

accumulation by yeast, both in isolation and when combined with the other two 

mutations. These observations suggest that ECX1 is involved in Ca2+ efflux from the cell, 

which is consistent with its membership in the CaCA family of efflux systems.  

If ECX1 is involved in Ca2+ efflux or sequestration, I would expect Ca2+ content 
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to be altered when this gene is overexpressed. However, although a slight increase in 

Ca2+ content was observed in these experiments, it was not significant (Figure 3.6B). 

However, the maximum Ca2+ concentration used in these experiments was quite low, and 

a more significant effect might have been observed if the cells were grown at higher 

concentrations. Further experiments need to be performed to address this possibility. In 

addition, in order to more extensively test for effects of ECX1 overexpression and 

deletion on yeast physiology, it would have been worthwhile to determine the content of 

a range of other elements. This experiment could have been done using AAS, but at the 

time of these experiments I only had the ability to measure Mg2+, Ca2+, and Na+ content 

using this method. An alternative way to determine the levels of many elements in one 

sample is by the use of inductively coupled plasma mass spectrometry (ICP-MS). This 

method can measure the concentrations of up to 75 elements at once, and is now routinely 

used to determine the composition of the yeast "ionome" in different strains (Eide et al., 

2005). 

4.4 Subcellular location of Ecx1 

There are two basic ways in which efflux of Ca2+ from the cell could be mediated 

by the Ecx1 protein. First, Ecx1 may perform a similar function to Pmr1 (Vashist et al., 

2002), a P-type ATPase that transports Ca2+ and Mn2+ into the Golgi (and eventually, 

releases the ion to the external environment). If Ecx1 transports Ca2+ into the ER or 

Golgi, it could then enter the secretory pathway and eventually be extruded from the cell 

via exocytosis. However, an alternative model is that Ecx1 is a plasma membrane protein 

that directly effluxes Ca2+ ions from the cytosol to the external environment. To 

discriminate between these two models for Ecx1 function, I determined its location using 
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two independent techniques, epifluorescent microscopy of cells expressing YFP-tagged 

Ecx1, and cell fractionation with an epitope-tagged version. Microscopy of the YFP-

tagged version of Ecx1 provided clear evidence for an intracellular location (the 

ER/nuclear membrane), and did not reveal any strong signal at the plasma membrane. 

While the results of cell fractionation studies were not definitive, they confirmed that 

Ecx1 could be located in the ER or mitochondria. The YFP-tagged Ecx1 was clearly not 

located in the mitochondrial compartment however, as the distinctive morphology of this 

compartment in yeast (thread-like bodies distributed throughout the cell) was not 

observed. Hence the results of the two techniques point towards an ER-membrane 

location for the Ecx1 protein. 

One drawback of the above studies was that the very low expression of the Ecx1 

protein made it impossible to detect by Western blotting or microscopy of tagged 

versions. Ecx1 expression had to be increased significantly (by the use of multicopy yeast 

vectors) in order to perform the localization studies. Since it is formally possible that the 

protein may be mislocalized when overexpressed, this was not an ideal solution. If 

detection of normal expression of Ecx1 is required, one strategy may be to try and 

increase the signal without increasing the protein level. Although the version of Ecx1 that 

was used had three HA tags, addition of more repeats of this epitope could potentially 

increase the sensitivity of detection in Western blotting experiments. However, it must be 

determined whether these tagged versions of the protein are functional. I obtained 

evidence that the HA tagged version of the protein is functional by its magnesium-related 

phenotype when overexpressed. Both the tagged and WT versions of Ecx1 produced an 

increase in Mg2+ accumulation when overexpressed (the only known phenotype of Ecx1 
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when these experiments were performed). Better evidence that the modified versions are 

functional could be obtained via complementation of the Ca2+ related phenotypes of ecx1 

mutants. For example, expression of these versions should complement the Ca2+-sensitive 

phenotype of the ecx1 pmc1 mutant (Figure 3.8).  

In summary, I found evidence that the Ecx1 protein was involved in regulating 

cytosolic Ca2+ concentration in concert with other Ca2+ transporters, such as Vcx1 and 

Pmc1. The location of Ecx1 and the mutant phenotype of higher Ca2+ content suggested 

that this protein was involved in mediating Ca2+ efflux via the secretory pathway. This 

model for Ecx1 function is summarized in Figure 4.1. 

4.5 Predictions of the model for Ecx1 function 

4.5.1 Possible role of Ecx1 in the ER/secretory pathway 

Prior to these experiments, the only proteins known to be involved in the transport 

of Ca2+ into the secretory pathway were Pmr1p and Spf1p/Cod1p (a related P-type 

ATPase) (Cronin et al., 2002; Vashist et al., 2002). As discussed previously, Pmr1p is a 

P-type ATPase localized to the medial-Golgi, which performs high-affinity Ca2+ and 

Mn2+ transport required for entry of these cations into the Golgi compartment (and 

possibly the ER) (Durr et al., 1998). Spf1p (Cod1p) is a protein that partially overlaps in 

function with Pmr1, but is localized to the ER membrane. Mutation of pmr1 increases 

Ca2+ content of yeast cells as a consequence of decreased efflux (Cronin et al., 2002). The 

strong effect of the ecx1 mutation on Ca2+ content of yeast suggests that it overlaps in 

function with Pmr1, and contributes significantly to Ca2+ secretion from yeast. The Ca2+-

sensitivity of the mutant indicates that this process may be important for the maintenance 

of cytosolic Ca2+ homeostasis. The potential overlap in the function of Ecx1 and the P-
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type ATPases suggests several 

experiments that could be 

performed to determine the 

contribution of Ecx1 to 

homeostasis. First, it may be 

possible to test for an effect of 

ecx1 mutation on metal 

sensitivity. Previous studies have 

shown that both pmr1 and spf1 

single mutants are sensitive to 

excess Ca2+ (Cronin et al., 2002). 

The same study showed that 

combining the pmr1 and spf1 

mutations resulted in an even 

greater sensitivity. Although the 

spf1 single mutant did not display 

an increase in intracellular Ca2+ 

content, the pmr1 mutant did, and 

there was a synergistic increase in 

Ca2+ content in a pmr1 and spf1 

double mutant. Similar results may be observed if the ecx1 deletion was combined with 

the pmr1 and spf1 markers. If so, this interaction would support a role for Ecx1 in the 

efflux of cytosolic Ca2+ via the secretory pathway.  

 
 
Figure 4.1 Model for Ecx1 function. This figure provides 
an overview of the transporters known to be required for 
Ca2+ homeostasis in yeast. Cytosolic Ca2+ concentration 
([Ca2+]) must be maintained at a low level to allow signal 
transduction. Loss of this regulation results in Ca2+ 
sensitivity due to a higher resting cytosolic Ca2+ 
concentration. Entry of Ca2+ to the cell is mediated by the 
Cch1/Mid1 heteromeric Ca2+ channel. Removal of excess 
Ca2+ from the cytosol is achieved in part via sequestration 
in the vacuole, which is mediated by Vcx1 and Pmc1. This 
process adds to the Ca2+ content of the cell by increasing 
vacuolar stores. Pmr1p, Spf1p and Pmc1p are high affinity, 
low capacity systems responsible for maintaining very low 
levels of cytosolic Ca2+. Pmr1p is a P-type ATPase that 
transports Ca2+ and Mn2+ to the Golgi, while Spf1p is a 
homologous Ca2+ transporter localized to the ER. In 
contrast to vacuolar storage, removal of Ca2+ to the ER and 
secretory pathway via Pmr1 and Spf1 ultimately leads to 
the loss of Ca2+ from the cell via secretory vesicle 
exocytosis. This model suggests that Ecx1 is also involved 
in the export of Ca2+ via the ER and secretory pathway, 
based on the observation that Ca2+ content increased when 
the protein was inactivated. The model shows that Ca2+ is 
transported into the ER via Ecx1, and moves into the Golgi 
via vesicular trafficking. From that location, Ca2+ can be 
secreted via vesicles that fuse with the cell membrane, 
releasing their contents to the external environment. 
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If Ecx1 does in fact remove Ca2+ from the cytosol, I would expect to see not just 

an increase in total intracellular Ca2+, but also an increase in cytosolic Ca2+ concentration 

in the deletion mutant (especially under conditions of Ca2+ toxicity). One way to test this 

prediction might be to directly measure the cytosolic Ca2+ concentration using AAS, after 

all organelles are removed from a cell suspension via centrifugation. However, this 

method may not give accurate results. For example, organelles may be damaged in the 

fractionation process, releasing their contents; or all of the organelles may not be 

removed from the suspension. A better way to determine cytosolic Ca2+ concentration 

might be to use the Ca2+ chelating fluorescent dye Fura-2 (O'Connor and Silver, 2007). 

Fura-2 binds Ca2+ ions, which alters the fluorescent properties of the dye. The relative 

fluorescence intensity of the dye at particular wavelengths thus depends on the 

concentration of Ca2+. Fura-2 has been shown to be an effective method to directly 

measure the cytosolic Ca2+ concentration in yeast (Iida et al., 1990). However, the use of 

fluorescent indicators is technically difficult and must be carefully controlled to avoid 

artifactual results. Another problem with these compounds is that they may accumulate 

within organelles such as the vacuole in yeast (MacDiarmid et al., 2000), and report 

incorrect cytosolic concentrations as a result. To avoid these problems, Ca2+-sensitive 

fluorescent reporters have been developed based on proteins that can be expressed in 

specific cellular compartments (e.g. the cytosol). These include the luminescent protein 

Aequorin (Chiesa et al., 2001), which produces light emission upon binding Ca2+, and the 

ratiometric fluorescent indicator Cameleon (Miyawaki et al., 1997), which directly binds 

Ca2+ and alters its conformation, causing an increase in the intensity of fluorescence 

resonant energy transfer (FRET) between two different fluorescent proteins. Both 
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Aequorin (Kellermayer et al., 2003) and Cameleon (Facanha et al., 2002) have been used 

to measure cytosolic Ca2+ in yeast, and either might be suitable to study the effect of 

Ecx1. 

Another more indirect, but widely used method to measure changes in cytosolic 

Ca2+ utilizes Ca2+-sensitive reporter genes. An increased abundance of cytosolic Ca2+ 

triggers an increase in the activity of the calmodulin cytosolic Ca2+-sensor, and a 

consequent induction of genes regulated by this pathway (via the Tcn1/Crz1 transcription 

factor) (Stathopoulos and Cyert, 1997). β-galactosidase reporter genes are available 

which measure Tcn1 activity in yeast (Stathopoulos and Cyert, 1997), and the expression 

of these is altered in other Ca2+-transporter mutants (Muller et al., 2001), and induced 

under conditions that increase cytosolic Ca2+ [e.g. (Viladevall et al., 2004)]. Alterations 

in the expression of such a reporter gene in an ecx1 mutant would provide good evidence 

for a role of Ecx1 in maintaining cytosolic Ca2+ homeostasis. 

If the ecx1 mutation has no apparent effect on Ca2+ sensitivity of pmr1 and spf1 

strains, or on steady-state cytosolic Ca2+ concentration as measured by reporters, this does 

not necessarily indicate that this protein plays no role in the regulation of cytosolic Ca2+. 

It is also possible that Ecx1 has a more specialized role in quickly removing Ca2+ from 

the cytosol under conditions of rapid influx. CaCA proteins differ from P-type ATPases 

in having a high capacity but a relatively low affinity for their substrates. Thus, CaCA 

proteins can transport particular cations to their destination relatively fast, but cannot 

contribute to fine regulation of cytoplasmic concentration. ATPases in contrast can 

contribute to more stringent control of cytosolic concentrations of their substrates. For 

this reason, it is possible that an effect of the ecx1 mutation on cytosolic Ca2+ might only 
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be seen under conditions in which cells receive a "pulse" of external Ca2+, which results 

in a rapid elevation of cytosolic concentration. This increase could trigger an increase in 

Ecx1 activity sufficient to help rapidly clear the cytosol of Ca2+. When the cytosolic 

concentration dropped to a low enough level, Ecx1 would be unable to reduce it further: 

Pmr1 and Spf1 would then contribute to further reducing the concentration to the normal 

low level. This hypothesis could be tested by using a Ca2+-sensitive reporter gene or 

fluorescent reporter to measure dynamic changes in cytosolic Ca2+ in various mutants 

exposed to a Ca2+-pulse. 

4.5.2 Other models for Ecx1 function 

It is believed that Ca2+ transport into the secretory pathway via Pmr1 and Spf1 not 

only maintains cytosolic Ca2+ homeostasis, but also supplies the secretory pathway with 

Ca2+ to support essential biological functions. Both Ca2+ and Mn2+ are required for proper 

processing of proteins through the secretory pathway (Durr et al., 1998). Ca2+ is required 

for sorting, and Mn2+ is required for glycosylation (Durr et al., 1998). In addition, ER 

Ca2+ is involved in protein folding, ER-associated protein degradation (ERAD), ER-

resident protein retention, and protein targeting to organelles (Booth and Koch, 1989; 

Durr et al., 1998; Lodish and Kong, 1990; Sambrook, 1990; Wileman et al., 1991). 

Pmr1p/Spf1 and Ecx1p may all contribute to the maintenance of proper calcium levels in 

the secretory pathway. When ER function is impaired, unfolded proteins build up in the 

lumen, with potentially harmful effects for the cell. For this reason, yeast has a signaling 

pathway that turns on a set of genes in response to defective ER function. This pathway 

consists of two components, the integral ER membrane protein Ire1, and the 

transcriptional activator Hac1 (Cox and Walter, 1996). The Ire1 protein has a cytosolic 
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domain with a specific RNA-splicing activity, which is activated by unfolded proteins in 

the ER lumen. The precursor of the HAC1 mRNA has an intron that must be removed by 

Ire1 to allow the translation of Hac1 and its function in activating gene expression. For 

this reason, mutation of either component of this pathway prevents the induction of UPR-

regulated genes. Several workers have shown that non-lethal mutations in genes which 

are required for some aspect of ER function are synthetic lethal, or show synthetic slow-

growth phenotypes when combined with the ire1 or hac1 mutations. This is because 

when important of ER functions are inhibited by mutation, the UPR becomes essential for 

normal cell function. One such study showed that the spf1 and hac1 mutations are 

synthetically lethal (Ando and Suzuki, 2005) probably because Spf1 is essential for 

supplying ER Ca2+. To determine if the ecx1 mutation affects ER function, similar 

experiments could be performed: for example, an ecx1 hac1 double mutant might exhibit 

synthetic lethality (or slow growth) phenotypes, providing support for this model. An 

ecx1 ire1 double mutant would likewise be expected to show this phenotype. If the 

mutations are not synthetically lethal, growth sensitivity studies could be performed to try 

and identify a subtler growth defect. For example, the growth rate of the double mutant 

may be reduced at high temperature (37°), or it may be sensitive to an excess or 

deficiency of Ca2+ in the medium.  

4.6 Expression and regulation of Ecx1 

As yet, it is not clear if or how Ecx1 expression and activity is regulated. Many 

Ca2+ transporters in yeast are regulated according to the cytosolic Ca2+ concentration. 

This concentration is directly sensed by the cytosolic protein Calcineurin, which 

transmits this signal to a transcriptional activator called Tcn1/Crz1 (Matheos et al., 1997; 
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Stathopoulos and Cyert, 1997). Genes regulated transcriptionally by Tcn1 include PMR1 

and PMC1, both of which encode transporters required for Ca2+ efflux and tolerance 

(Matheos et al., 1997; Stathopoulos and Cyert, 1997; Yoshimoto et al., 2002). These 

genes possess regulatory sequences that are bound by Tcn1 in order to activate 

transcription. To determine if Ca2+ concentrations have an effect on ECX1 transcription, I 

could perform Northern analysis of total RNA from cells grown in media of varying Ca2+ 

concentration. However, the ECX1 promoter region (like VCX1) does not possess any 

consensus sites for Tcn1 regulation (data not shown), and publicly available data from 

microarray experiments indicate that induction of ECX1 mRNA does not occur in 

response to Ca2+ treatment (Yoshimoto et al., 2002). However, it is possible that ECX1 

shows translational or post-translational Ca2+-dependent expression, and that this feature 

might partly explain the low level of expression that was observed under normal 

conditions. To test if increased Ca2+ levels increased the level of Ecx1 present in cells, 

Western analysis could be performed with cells grown over a range of Ca2+ 

concentrations. Performing these experiments may provide evidence supporting a role for 

Ecx1 in Ca2+ homeostasis. 

4.7 Structural features of the Ecx1 protein 

One question raised by this work is why Ecx1 affects Ca2+ content, while the 

related proteins Ydl206wp and Yjr106wp had no effect. Ecx1 possesses a novel 

conserved motif (Pfam PF03733.3) that is not shared with other CaCA family members, 

but is found in a small family of prokaryotic proteins of unknown function. This motif is 

located at position 238-301 in the protein sequence, within a relatively hydrophobic 

region of the protein (Figure 3.4). As yet it is still unclear what function this motif may 
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perform, but its hydrophobicity suggests that it forms a transmembrane domain. This 

motif may also play a role in determining the ER location of the protein, as the related 

Vcx1 protein, which accumulates in the vacuole membrane, does not have an equivalent 

domain. Other possible roles for this domain include participation in the regulation of 

Ecx1 activity. The CAX1 protein from Arabidopsis thaliana has an N-terminal domain 

that is dispensable for function, but inhibits CAX1 activity (Pittman and Hirschi, 2001). 

Deletion of this domain is required for the protein to function when expressed in 

heterologous systems such as yeast. It is believed that the N-terminal domain interacts 

with another Arabidopsis protein in order to regulate CAX1 activity (Cheng and Hirschi, 

2003). Function of the N-terminal domain could be tested by making deletions of the 

coding region, then expressing the protein in WT stains and an ecx1 mutant to determine 

if any of the Ecx1 phenotypes (for example, Ca2+ accumulation) were altered. 

4.8 Role of Ecx1 in pH regulation 

In addition to its role in Ca2+ homeostasis, my work also seems to indicate that 

Ecx1 plays some role in pH regulation. Nhx1 is an endosomal Na+/H+ exchanger that is 

thought to be involved in regulating endosomal pH. Studies of nhx1 null mutants have 

demonstrated a sensitivity to low pH (Brett et al., 2005), along with a defect in vacuolar 

protein sorting. Proteins destined for vacuoles in yeast must first enter the ER and then be 

delivered to the Golgi and pre-endosome (Bryant et al., 1998). The authors reasoned that 

the nhx1 mutation reduced the flow of protons from the endosomal compartment to the 

cytosol, altering the ability of this compartment to sort proteins correctly. This pH-

sensitivity phenotype was also seen in the nhx1 single mutant in my hands, although I did 

not observe as high of a sensitivity as previously reported. Likewise, in my experiments, 
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the ecx1 mutant AJF02 also demonstrated a slight sensitivity to low pH. When the ecx1 

and nhx1 mutations were combined, the double mutant exhibited an enhanced sensitivity 

to pH (greater than the sensitivity conferred by either single mutant allele). This 

synergistic interaction suggests that Ecx1 could also possibly have a role in controlling 

the pH of the ER lumen by removing protons, thus making it more alkaline. This 

sensitivity to low pH is also consistent with the model proposing that Ecx1 is a Ca2+/H+ 

exchanger.  

4.9 Recent publications on ECX1 

After this work was completed, an independent analysis of ECX1 function was 

reported (Cagnac et al., 2007). In contrast to my results, the authors concluded that ECX1 

did not affect Ca2+ homeostasis. Instead, they presented evidence that the ecx1 mutation 

eliminated a Na+/H+ exchange activity from the vacuolar membrane. Data was presented 

showing that in vacuolar membranes from WT strains, Na+ ions dissipated the proton 

gradient generated by the V-ATPase, but that in ecx1 mutants this activity was absent. In 

addition, the authors presented evidence that ecx1 strains were sensitive to the antibiotic 

hygromycin, which is though to be more toxic to strains with disrupted pH homeostasis. 

However, their results revealed only a very minor sensitivity to Na+ associated with ecx1 

mutation, and only in a very Na+-sensitive genetic background. In addition, while they 

also presented evidence that GFP-tagged Ecx1 was located in the ER membrane (rather 

than the vacuole), they did not present any evidence showing complementation of the 

mutant phenotype by their tagged versions of Ecx1. Clearly, more work needs to be done 

to unequivocally establish a function for the Ecx1 protein in yeast, and to resolve these 

conflicting observations. 
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4.10 Conclusion 

The initial aim of this study (to identify a novel Mg2+/H+ vacuolar exchanger in 

yeast) was not achieved. However, I have apparently identified a protein that is involved 

in the transport of Ca2+ to the ER lumen. Future work to more clearly identify the 

physiological role of this protein is required to understand the role that Ecx1 and related 

proteins play in secretory pathway function and overall yeast physiology. 
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