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PROPERTIES OF THE SECONDARY HOCHSCHILD HOMOLOGY

JACOB LAUBACHER

Abstract. In this paper we study properties of the secondary Hochschild homology of the
triple (A,B, ε) with coefficients in M . We establish a type of Morita equivalence between
two triples and show that H•((A,B, ε);M) is invariant under this equivalence. We also
prove the existence of an exact sequence which connects the usual and the secondary
Hochschild homologies in low dimension, allowing one to perform easy computations. The
functoriality of H•((A,B, ε);M) is also discussed.

Introduction

Hochschild cohomology was introduced by Hochschild in [4] as a method to study exten-
sions of an associative algebra A over a field k. Later Gerstenhaber exploited this to study
deformations in [3]. It’s dual, the Hochschild homology, is used as both a stepping stone
towards cyclic homology and a generalization of the modules of differential forms for non-
commutative k-algebras A. The groups H•(A,M) (where M is an A-bimodule) are Morita
invariant.

Secondary Hochschild homology was introduced in [7] through the use of simplicial
algebras and simplicial modules. The main ingredient was the bar simplicial module
B(A,B, ε) which behaves similar to the bar resolution associated to an algebra. The groups
H•((A,B, ε);M) involve a triple (A,B, ε) which consists of a commutative k-algebra B in-
ducing a B-algebra structure on A by way of a morphism ε : B −→ A. Just as in the usual
Hochschild homology, M is taken to be an A-bimodule, but here we add the restriction that
M is also B-symmetric. One goal of this paper is to show that the secondary Hochschild
homology has a type of Morita invariance.

This paper is organized as follows: in the first section we recall the secondary Hochschild
homology. We also review some basic results so as to keep this paper self-contained. In the
second section we introduce the notion of Morita equivalence between two triples (A,B, ε)
and (A′, B′, ε′). Here we require two additional conditions to the usual definition of Morita
equivalence between two k-algebras. With this in hand, we prove that the secondary
Hochschild homology is Morita invariant (see Theorem 2.7). In particular, we show that
H•((A,B, ε);M) ∼= H•((Mn(A), In(B), ε∗);Mn(M)). In the final section we give some com-
putations of the secondary Hochschild homology in low dimension. When A is commutative
we give the relation between H1((A,B, ε);M) and Kähler differentials (see Proposition 3.2).
We also introduce an exact sequence (3.2) which connects Hi((A,B, ε);M), Hi(A,M), and
H1(B,M) (for i = 1, 2). We conclude with a discussion about functoriality.
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2 JACOB LAUBACHER

1. Preliminaries

In this paper we fix k to be a field. We let all tensor products be over k unless otherwise
stated (that is, ⊗ = ⊗k). Furthermore, all k-algebras have multiplicative unit.

Fix A to be an associative k-algebra, B a commutative k-algebra, and ε : B −→ A a
morphism of k-algebras such that ε(B) ⊆ Z(A). By referring to a triple (A,B, ε), we are
invoking the above conditions. To say that a triple (A,B, ε) is commutative corresponds to
taking A commutative. Finally, we let M be an A-bimodule which is B-symmetric (that is,
mε(α) = ε(α)m for all m ∈M and α ∈ B).

1.1. The Hochschild homology. Recall from [4], [8], or [15] the Hochschild homology.
Define Cn(A,M) =M ⊗A⊗n and dn : Cn(A,M) −→ Cn−1(A,M) determined by

dn(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2 ⊗ · · · ⊗ an

+
n−1
∑

i=1

(−1)im⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an + (−1)nanm⊗ a1 ⊗ · · · ⊗ an−1,

where m ∈M and ai ∈ A. One can show that dndn+1 = 0. We denote the chain complex

. . .
dn+1
−−−→M ⊗A⊗n dn

−−−→M ⊗A⊗n−1 dn−1
−−−→ . . .

d3
−−→M ⊗A⊗2 d2

−−→M ⊗A
d1

−−→M −→ 0

by C•(A,M).

Definition 1.1. ([4]) The homology of the complex C•(A,M) is called the Hochschild

homology of A with coefficients in M and is denoted by H•(A,M).

Of particular interest is the case when one takes M = A where A is commutative. As
seen in most homological algebra texts (such as [8] or [15]), one can connect the Hochschild
homology with Kähler differentials.

Proposition 1.2. ([8],[15]) For a commutative k-algebra A and an A-symmetric A-bimodule
M , we have that

H1(A,M) ∼=M ⊗A Ω1
A|k,

and in particular H1(A,A) ∼= Ω1
A|k.

Theorem 1.3. ([8],[11]) If (P,Q) gives a Morita equivalence of k-algebras between A and
A′, then there is a natural isomorphism

H•(A,M) ∼= H•(A
′, Q⊗A M ⊗A P ).

1.2. The secondary Hochschild homology. Recall the secondary Hochschild homology

from [7]. Define Cn((A,B, ε);M) = M ⊗ A⊗n ⊗ B⊗
n(n−1)

2 and ∂εn : Cn((A,B, ε);M) −→

Cn−1((A,B, ε);M) determined by

∂εn























m⊗























a1 b1,2 b1,3 · · · b1,n−2 b1,n−1 b1,n
1 a2 b2,3 · · · b2,n−2 b2,n−1 b2,n
1 1 a3 · · · b3,n−2 b3,n−1 b3,n
...

...
...

. . .
...

...
...

1 1 1 · · · an−2 bn−2,n−1 bn−2,n

1 1 1 · · · 1 an−1 bn−1,n

1 1 1 · · · 1 1 an












































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= ma1ε(b1,2b1,3 · · · b1,n−2b1,n−1b1,n)⊗



















a2 b2,3 · · · b2,n−2 b2,n−1 b2,n
1 a3 · · · b3,n−2 b3,n−1 b3,n
...

...
. . .

...
...

...
1 1 · · · an−2 bn−2,n−1 bn−2,n

1 1 · · · 1 an−1 bn−1,n

1 1 · · · 1 1 an



















+

n−1
∑

i=1

(−1)im⊗























a1 b1,2 · · · b1,ib1,i+1 · · · b1,n−1 b1,n
1 a2 · · · b2,ib2,i+1 · · · b2,n−1 b2,n
...

...
. . .

...
. . .

...
...

1 1 · · · aiε(bi,i+1)ai+1 · · · bi,n−1bi+1,n−1 bi,nbi+1,n
...

...
. . .

...
. . .

...
...

1 1 · · · 1 · · · an−1 bn−1,n

1 1 · · · 1 · · · 1 an























+(−1)nanε(bn−1,nbn−2,n · · · b3,nb2,nb1,n)m⊗



















a1 b1,2 b1,3 · · · b1,n−2 b1,n−1

1 a2 b2,3 · · · b2,n−2 b2,n−1

1 1 a3 · · · b3,n−2 b3,n−1
...

...
...

. . .
...

...
1 1 1 · · · an−2 bn−2,n−1

1 1 1 · · · 1 an−1



















,

where m ∈ M , ai ∈ A, and bi,j ∈ B. It was shown in [7] that ∂εn∂
ε
n+1 = 0. We denote the

chain complex

. . .
∂ε
n+1

−−−→M ⊗A⊗n ⊗B⊗n(n−1)
2

∂ε
n

−−−→M ⊗A⊗n−1 ⊗B⊗ (n−1)(n−2)
2

∂ε
n−1

−−−→ . . .

. . .
∂ε
5

−−→M⊗A⊗4⊗B⊗6 ∂ε
4

−−→M⊗A⊗3⊗B⊗3 ∂ε
3

−−→M⊗A⊗2⊗B
∂ε
2

−−→M⊗A
∂ε
1

−−→M −→ 0

by C•((A,B, ε);M).

Definition 1.4. ([7]) The homology of the complex C•((A,B, ε);M) is called the sec-

ondary Hochschild homology of the triple (A,B, ε) with coefficients in M and is
denoted by H•((A,B, ε);M).

Example 1.5. ([7]) Notice that when B = k, we get the usual Hochschild homology. That
is, H•((A, k, ε);M) = H•(A,M), and so Hn((A, k, ε);M) ∼= Hn(A,M) for all n ≥ 0.

Example 1.6. ([7]) Observe that H0((A,B, ε);M) = H0(A,M) = M
[M,A] .

2. Morita Equivalence of Triples

The classical result of the usual Hochschild homology preserving Morita equivalence is
well-known (see [5], [8], [11], or [15]). In this section we establish the theory behind two
triples being Morita equivalent and produce a similar result. Recall thatM is an A-bimodule
which is B-symmetric.

Definition 2.1. Let (A,B, ε) and (A′, B′, ε′) be two triples. We say that (A,B, ε) and
(A′, B′, ε′) are Morita equivalent as triples if

(i) there exists an A − A′-bimodule P and an A′ − A-bimodule Q such that there is
an isomorphism of A-bimodules f : P ⊗A′ Q −→ A as well as an isomorphism of
A′-bimodules g : Q⊗A P −→ A′,
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(ii) there is an isomorphism of k-algebras η : B −→ B′, and
(iii) both P and Q are symmetric with respect to B and B′ under η. That is,

ε(α)p = pε′
(

η(α)
)

and qε(α) = ε′
(

η(α)
)

q

for all p ∈ P , q ∈ Q, and α ∈ B.

Remark 2.2. Condition (i) above says that A and A′ are Morita equivalent as k-algebras.
Condition (ii) says the same thing for B and B′ since both are commutative.

Remark 2.3. When B and B′ are both equal to k, Definition 2.1 reduces to the usual
definition of Morita equivalence of k-algebras between A and A′.

Example 2.4. Consider the triple (A,B, ε). Let e be an idempotent in A such that A =
AeA. Then (A,B, ε) and (eAe,B, εe) are Morita equivalent as triples where εe : B −→ eAe

is given by εe(α) = eε(α)e for all α ∈ B.
It is easy to verify that (eAe,B, εe) is a triple, and one can check the equivalence by

setting P := Ae, Q := eA, and η := idB.

Proposition 2.5. Morita equivalence of triples defines an equivalence relation.

Proof. Morita equivalence of triples is clearly both reflexive and symmetric. We need only
show that it is transitive.

Suppose that (P1, Q1, η1) gives a Morita equivalence of triples between (A,B, ε) and
(A′, B′, ε′), and that (P2, Q2, η2) gives a Morita equivalence of triples between (A′, B′, ε′)
and (A′′, B′′, ε′′). We will show that (A,B, ε) and (A′′, B′′, ε′′) are Morita equivalent as
triples.

Setting P := P1 ⊗A′ P2 and Q := Q2 ⊗A′ Q1, we get the isomorphisms P ⊗A′′ Q ∼= A and
Q ⊗A P ∼= A′′. Thus, (i) is satisfied. For (ii), η : B −→ B′′ is defined by the composition
η := η2 ◦ η1, which is still an isomorphism. Finally for (iii) we have that

ε(α)p = ε(α)(p1 ⊗A′ p2)

= ε(α)p1 ⊗A′ p2

= p1ε
′
(

η1(α)
)

⊗A′ p2

= p1 ⊗A′ ε′
(

η1(α)
)

p2

= p1 ⊗A′ p2ε
′′
(

η2 ◦ η1(α)
)

= (p1 ⊗A′ p2)ε
′′
(

η(α)
)

= pε′′
(

η(α)
)

.

Notice that qε(α) = ε′′
(

η(α)
)

q in a similar way. Thus, transitivity follows and we have that
Morita equivalence of triples defines an equivalence relation. �

Remark 2.6. Suppose (P,Q, η) gives a Morita equivalence of triples between (A,B, ε) and
(A′, B′, ε′). Then Q⊗A M ⊗A P is clearly an A′-bimodule, and is also B′-symmetric since

α′ · (q ⊗A m⊗A p) = ε′(α′)q ⊗A m⊗A p

= qε(α) ⊗A m⊗A p

= q ⊗A ε(α)m ⊗A p

= q ⊗A mε(α) ⊗A p

= q ⊗A m⊗A ε(α)p
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= q ⊗A m⊗A pε
′(α′)

= (q ⊗A m⊗A p) · α
′,

where η−1(α′) = α and thus η(α) = α′.

Theorem 2.7. If (P,Q, η) gives a Morita equivalence of triples between (A,B, ε) and
(A′, B′, ε′), then there is a natural isomorphism

H•((A,B, ε);M) ∼= H•((A
′, B′, ε′);Q⊗A M ⊗A P ).

Proof. For ease of notation, throughout this proof we denote ⊖ := ⊗A and ⊙ := ⊗A′ where
appropriate. We will follow the line of proof from [8] and recall that f : P ⊙Q −→ A and
g : Q⊖ P −→ A′ are bimodule isomorphisms. Observe that f and g satisfy

(2.1) q1f(p1 ⊙ q2) = g(q1 ⊖ p1)q2 and p1g(q1 ⊖ p2) = f(q1 ⊙ q1)p2

for all p1, p2 ∈ P and q1, q2 ∈ Q. One can then view f and g as ring homomorphisms with
the product defined as follows:

(p1 ⊙ q1)(p2 ⊙ q2) = p1 ⊙ g(q1 ⊖ p2)q2 and (q1 ⊖ p1)(q2 ⊖ p2) = q1 ⊖ f(p1 ⊙ q2)p2.

Next, because f and g are isomorphisms, there exists p1, . . . , ps ∈ P and q1, . . . , qs ∈ Q,
as well as p′1, . . . , p

′
t ∈ P and q′1, . . . , q

′
t ∈ Q, such that

f





s
∑

j=1

pj ⊙ qj



 = 1A and g

(

t
∑

m=1

q′m ⊖ p′m

)

= 1A′ .

For every n ≥ 0 define ψn :M ⊗A⊗n⊗B⊗n(n−1)
2 −→ (Q⊗AM ⊗A P )⊗A

′⊗n
⊗B′⊗

n(n−1)
2

by

ψn















m⊗















a1 b1,2 · · · b1,n−1 b1,n
1 a2 · · · b2,n−1 b2,n
...

...
. . .

...
...

1 1 · · · an−1 bn−1,n

1 1 · · · 1 an





























=
∑

qj0 ⊗A m⊗A pj1

⊗















g(qj1 ⊖ a1pj2) η(b1,2) · · · η(b1,n−1) η(b1,n)
1 g(qj2 ⊖ a2pj3) · · · η(b2,n−1) η(b2,n)
...

...
. . .

...
...

1 1 · · · g(qjn−1 ⊖ an−1pjn) η(bn−1,n)
1 1 · · · 1 g(qjn ⊖ anpj0)















,

where the sum is taken over all sets of indices (j0, j1, . . . , jn) such that 1 ≤ ji ≤ s for 0 ≤

i ≤ n. Furthermore define ϕn : (Q⊗AM⊗AP )⊗A
′⊗n

⊗B′⊗
n(n−1)

2 −→M⊗A⊗n⊗B⊗
n(n−1)

2

determined by

ϕn















q ⊗A m⊗A p⊗















a′1 b′1,2 · · · b′1,n−1 b′1,n
1 a′2 · · · b′2,n−1 b′2,n
...

...
. . .

...
...

1 1 · · · a′n−1 b′n−1,n

1 1 · · · 1 a′n





























=
∑

f(p′m0
⊙ q)mf(p⊙ q′m1

)
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⊗















f(p′m1
⊙ a′1q

′
m2

) η−1(b′1,2) · · · η−1(b′1,n−1) η−1(b′1,n)
1 f(p′m2

⊙ a′2q
′
m3

) · · · η−1(b′2,n−1) η−1(b′2,n)
...

...
. . .

...
...

1 1 · · · f(p′mn−1
⊙ a′n−1q

′
mn

) η−1(b′n−1,n)

1 1 · · · 1 f(p′mn
⊙ a′nq

′
m0

)















,

where the sum is taken over all sets of indices (m0,m1, . . . ,mn) such that 1 ≤ mi ≤ t for
0 ≤ i ≤ n. Both ψ and ϕ are morphisms of complexes due to (2.1).

There is a presimplicial homotopy h between the composite ϕ ◦ ψ and idC•((A,B,ε);M)

given by

hi















m⊗















a1 b1,2 · · · b1,n−1 b1,n
1 a2 · · · b2,n−1 b2,n
...

...
. . .

...
...

1 1 · · · an−1 bn−1,n

1 1 · · · 1 an





























=
∑

mf(pj0 ⊙ q′m0
)

⊗

























f(p′m0
⊙ qj0)a1f(pj1 ⊙ q′m1

) · · · b1,i 1 b1,i+1 · · · b1,n
...

. . .
...

...
...

. . .
...

1 · · · f(p′mi−1
⊙ qji−1)aif(pji ⊙ q′mi

) 1 bi,i+1 · · · bi,n
1 · · · 1 f(p′mi

⊙ qji) 1 · · · 1
1 · · · 1 1 ai+1 · · · bi+1,n
...

. . .
...

...
...

. . .
...

1 · · · 1 1 1 · · · an

























where the sum is taken over all sets of indices (j0, . . . , ji) and (m0, . . . ,mi) such that 1 ≤

j∗ ≤ s and 1 ≤ m∗ ≤ t. Likewise, there is a presimplicial homotopy l between ψ ◦ ϕ and
idC•((A′,B′,ε′);Q⊗AM⊗AP ) given by

li















q ⊗A m⊗A p⊗















a′1 b′1,2 · · · b′1,n−1 b′1,n
1 a′2 · · · b′2,n−1 b′2,n
...

...
. . .

...
...

1 1 · · · a′n−1 b′n−1,n

1 1 · · · 1 a′n





























=
∑

q ⊗A m⊗A pg(q
′
m0

⊖ pj0)

⊗

























g(qj0 ⊖ p′m0
)a′1g(q

′
m1

⊖ pj1) · · · b′1,i 1 b′1,i+1 · · · b′1,n
...

. . .
...

...
...

. . .
...

1 · · · g(qji−1 ⊖ p′mi−1
)a′ig(q

′
mi

⊖ pji) 1 b′i,i+1 · · · b′i,n
1 · · · 1 g(qji ⊖ p′mi

) 1 · · · 1
1 · · · 1 1 a′i+1 · · · b′i+1,n
...

. . .
...

...
...

. . .
...

1 · · · 1 1 1 · · · a′n

























where the sum is taken over all sets of indices (j0, . . . , ji) and (m0, . . . ,mi) such that 1 ≤

j∗ ≤ s and 1 ≤ m∗ ≤ t.
One can verify that both the hi’s and li’s form a presimplicial homotopy. Thus, ϕ ◦ ψ is

homotopic to the identity on the complex C•((A,B, ε);M), and ψ ◦ ϕ is homotopic to the
identity on the complex C•((A

′, B′, ε′);Q⊗A M ⊗A P ).
Hence, our desired isomorphism at the level of homology follows. �
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Consider a triple (A,B, ε). Define

In(B) := B · In =

















α · · · 0
...

. . .
...

0 · · · α






: α ∈ B











.

Notice that Mn(A) is an associative k-algebra and In(B) is a commutative k-algebra, both
with multiplicative unit. Furthermore, ε : B −→ A induces the map ε∗ : In(B) −→Mn(A)
given by

ε∗













α · · · 0
...

. . .
...

0 · · · α












=







ε(α) · · · 0
...

. . .
...

0 · · · ε(α)






.

Oberve ε∗(In(B)) ⊆ Z(Mn(A)) and hence (Mn(A), In(B), ε∗) is a triple.

Proposition 2.8. We have that (A,B, ε) and (Mn(A), In(B), ε∗) are Morita equivalent as
triples. In particular,

H•((A,B, ε);M) ∼= H•((Mn(A), In(B), ε∗);Mn(M)).

Proof. Let P be the module of row vectors
(

a1 a2 · · · an
)

of length n, and Q be the

module of column vectors
(

a1 a2 · · · an
)T

of length n, both with entries from A. Note
that P is an A −Mn(A)-bimodule and Q is an Mn(A) − A-bimodule with the actions of
matrix multiplication. This yields natural bimodule isomorphisms f : P ⊗Mn(A) Q −→ A

and g : Q ⊗A P −→ Mn(A). This is condition (i), which is the usual Morita equivalence
between A and Mn(A). One can see [8] or [15] for more details.

Next, there is a natural isomorphism η : B −→ In(B) given by

η(α) =







α · · · 0
...

. . .
...

0 · · · α







for all α ∈ B. This establishes (ii).
For (iii) we have that

ε(α)p = ε(α)
(

a1 a2 · · · an
)

=
(

ε(α)a1 ε(α)a2 · · · ε(α)an
)

=
(

a1ε(α) a2ε(α) · · · anε(α)
)

=
(

a1 a2 · · · an
)











ε(α) 0 · · · 0
0 ε(α) · · · 0
...

...
. . .

...
0 0 · · · ε(α)











=
(

a1 a2 · · · an
)

ε∗





















α 0 · · · 0
0 α · · · 0
...

...
. . .

...
0 0 · · · α





















=
(

a1 a2 · · · an
)

ε∗
(

η(α)
)

= pε∗
(

η(α)
)

.



8 JACOB LAUBACHER

Observe qε(α) = ε∗
(

η(α)
)

q follows identically. Thus, (A,B, ε) and (Mn(A), In(B), ε∗) are
Morita equivalent as triples.

For the isomorphism we invoke Theorem 2.7 where Q⊗AM⊗AP reduces toMn(M). �

Remark 2.9. One can also apply this concept of Morita equivalence of triples to the sec-
ondary Hochschild cohomology H•((A,B, ε);M), which was introduced in [13] and studied
more extensively in [2], [7], and [14].

3. Computations and Functoriality

Our goal in this section is to establish some computations of H•((A,B, ε);M) in low
dimension, along with basic properties of its functoriality. The cohomology analogue of
this section was done in [14]. First, recall the following maps used to define the secondary
Hochschild homology.

Remark 3.1. We have that
∂ε1(m⊗ a) = ma− am,

∂ε2

(

m⊗

(

a α

1 b

))

= maε(α) ⊗ b−m⊗ aε(α)b + bε(α)m⊗ a,

and

∂ε3



m⊗





a α β

1 b γ

1 1 c







 = maε(αβ) ⊗

(

b γ

1 c

)

−m⊗

(

aε(α)b βγ

1 c

)

+m⊗

(

a αβ

1 bε(γ)c

)

− cε(βγ)m ⊗

(

a α

1 b

)

.

3.1. Low-level computations. We’ve seen that H•(A,M) relates to k-linear Kähler dif-
ferentials (see Proposition 1.2). It turns out that H•((A,B, ε);M) also corresponds to
differentials, but in this case are B-linear.

Proposition 3.2. For a commutative triple (A,B, ε) and an A-symmetric A-bimodule M ,
we have that

H1((A,B, ε);M) ∼=M ⊗A Ω1
A|B,

and in particular H1((A,B, ε);A) ∼= Ω1
A|B.

Proof. SinceM is A-symmetric, we get that the map ∂ε1 :M⊗A −→M is trivial. Therefore
H1((A,B, ε);M) is the quotient of M ⊗A by the relation

(3.1) maε(α)⊗ b−m⊗ aε(α)b + bε(α)m ⊗ a = 0.

The map H1((A,B, ε);M) −→ M ⊗A Ω1
A|B sends the class of m⊗ a to m⊗A d(a). Notice

this is well-defined because (3.1) maps to

maε(α)⊗A d(b)−m⊗A d(aε(α)b) + bε(α)m ⊗A d(a) = 0

due to B-linearity.
Moreover, the map M ⊗A Ω1

A|B −→ H1((A,B, ε);M) sends m ⊗A ad(b) to the class of

ma ⊗ b, which is a cycle because A is commutative and M is A-symmetric. This is well-
defined because m⊗A d(ab) −m⊗A ad(b)−m⊗A bd(a) maps to

m⊗ ab−ma⊗ b−mb⊗ a = 0

when we take α = 1B in (3.1).
Finally observe the two maps are inverses of each other, and the isomorphism follows. �
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Remark 3.3. When B = k, Proposition 3.2 reduces to Proposition 1.2.

Example 3.4. With B = A (and in particular, A is commutative and ε = id), we have
that H1((A,A, id);M) = 0 as consequence of Proposition 3.2.

3.2. An exact sequence. Next we show that the following sequence is exact for a triple
(A,B, ε):

(3.2)
H2(A,M)

Φ2

−−−→ H2((A,B, ε);M)
Ψ

−−→ H1(B,M)
ε∗

−−→ H1(A,M)

Φ1

−−−→ H1((A,B, ε);M) −→ 0.

Define the above maps as follows:

Φ2(m⊗ a⊗ b) = m⊗

(

a 1B
1 b

)

,

Ψ

(

m⊗

(

a α

1 b

))

= bma⊗ α,

ε∗(m⊗ α) = m⊗ ε(α),

and
Φ1(m⊗ a) = m⊗ a.

One can verify that these maps are well-defined.

Proposition 3.5. Concerning the chain (3.2),

(i) Im(Φ2) ⊆ Ker(Ψ),
(ii) Ker(Ψ) ⊆ Im(Φ2),
(iii) Im(Ψ) ⊆ Ker(ε∗),
(iv) Ker(ε∗) ⊆ Im(Ψ),
(v) Im(ε∗) ⊆ Ker(Φ1),
(vi) Ker(Φ1) ⊆ Im(ε∗), and
(vii) Φ1 is surjective.

In particular,

H2(A,M)
Φ2

−−−→ H2((A,B, ε);M)
Ψ

−−→ H1(B,M)
ε∗

−−→ H1(A,M)

Φ1

−−−→ H1((A,B, ε);M) −→ 0

is exact.

Proof. First observe that the class of elements of the form m ⊗ 1 is zero in H1(A,M),
H1(B,M), and H1((A,B, ε);M). Parts (i), (v), and (vii) are clear.

For (ii), we take m ⊗

(

a α

1 b

)

∈ H2((A,B, ε);M) such that bma ⊗ α = 0 in H1(B,M)

(that is, m⊗

(

a α

1 b

)

∈ Ker(Ψ)). This means that our element is a boundary, and so there

exists n ∈M and β, γ ∈ B such that dB2 (n⊗ β ⊗ γ) = bma⊗ α. Thus, we get that

bma⊗ α = nε(β)⊗ γ − n⊗ βγ + ε(γ)n ⊗ β.

Tensoring by ⊗1A ⊗ 1A we now have

(3.3) bma⊗

(

1A α

1 1A

)

= nε(β)⊗

(

1A γ

1 1A

)

− n⊗

(

1A βγ

1 1A

)

+ ε(γ)n ⊗

(

1A β

1 1A

)

.
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Further, we observe the following boundaries:

(3.4)

∂ε3



n⊗





1A 1B β

1 1A γ

1 1 1A







 = nε(β)⊗

(

1A γ

1 1A

)

− n⊗

(

1A βγ

1 1A

)

+n⊗

(

1A β

1 ε(γ)

)

− ε(β)ε(γ)n ⊗

(

1A 1B
1 1A

)

,

and

(3.5)

∂ε3



n⊗





1A β 1B
1 1A 1A
1 1 ε(γ)







 = nε(β)⊗

(

1A 1B
1 ε(γ)

)

− n⊗

(

ε(β) 1B
1 ε(γ)

)

+n⊗

(

1A β

1 ε(γ)

)

− ε(γ)n ⊗

(

1A β

1 1A

)

.

Thus, we have that

bma⊗

(

1A α

1 1A

)

= nε(β) ⊗

(

1A γ

1 1A

)

− n⊗

(

1A βγ

1 1A

)

+ ε(γ)n ⊗

(

1A β

1 1A

)

by (3.3)

= ε(β)ε(γ)n ⊗

(

1A 1B
1 1A

)

− n⊗

(

1A β

1 ε(γ)

)

+ ε(γ)n ⊗

(

1A β

1 1A

)

by (3.4)

= ε(β)ε(γ)n ⊗

(

1A 1B
1 1A

)

− n⊗

(

ε(β) 1B
1 ε(γ)

)

+ nε(β) ⊗

(

1A 1B
1 ε(γ)

)

by (3.5).

We want to keep track of this, so formally observe from above,

(3.6)

bma⊗

(

1A α

1 1A

)

= ε(β)ε(γ)n ⊗

(

1A 1B
1 1A

)

− n⊗

(

ε(β) 1B
1 ε(γ)

)

+ nε(β)⊗

(

1A 1B
1 ε(γ)

)

.

Next we will employ the two boundaries

(3.7)

∂ε3



m⊗





a α 1B
1 1A 1B
1 1 b







 = maε(α)⊗

(

1A 1B
1 b

)

−m⊗

(

aε(α) 1B
1 b

)

+m⊗

(

a α

1 b

)

− bm⊗

(

a α

1 1A

)

,

and

(3.8)

∂ε3



bm⊗





a 1B 1B
1 1A α

1 1 1A







 = bma⊗

(

1A α

1 1A

)

− bm⊗

(

a α

1 1A

)

+bm⊗

(

a 1B
1 ε(α)

)

− ε(α)bm ⊗

(

a 1B
1 1A

)

.

So in H2((A,B, ε);M), we have that

m⊗

(

a α

1 b

)

= bm⊗

(

a α

1 1A

)

−maε(α)⊗

(

1A 1B
1 b

)

+m⊗

(

aε(α) 1B
1 b

)

by (3.7)
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= bma⊗

(

1A α

1 1A

)

− ε(α)bm ⊗

(

a 1B
1 1A

)

+ bm⊗

(

a 1B
1 ε(α)

)

−maε(α)⊗

(

1A 1B
1 b

)

+m⊗

(

aε(α) 1B
1 b

)

by (3.8)

= ε(β)ε(γ)n ⊗

(

1A 1B
1 1A

)

− n⊗

(

ε(β) 1B
1 ε(γ)

)

+ nε(β)⊗

(

1A 1B
1 ε(γ)

)

− ε(α)bm⊗

(

a 1B
1 1A

)

+ bm⊗

(

a 1B
1 ε(α)

)

−maε(α)⊗

(

1A 1B
1 b

)

+m⊗

(

aε(α) 1B
1 b

)

by (3.6).

Notice that we have expressed m⊗

(

a α

1 b

)

as a sum of seven elements with 1B in the upper

right of the matrix. So formally, we note

(3.9)

m⊗

(

a α

1 b

)

= ε(β)ε(γ)n ⊗

(

1A 1B
1 1A

)

− n⊗

(

ε(β) 1B
1 ε(γ)

)

+nε(β)⊗

(

1A 1B
1 ε(γ)

)

− ε(α)bm ⊗

(

a 1B
1 1A

)

+ bm⊗

(

a 1B
1 ε(α)

)

−maε(α)⊗

(

1A 1B
1 b

)

+m⊗

(

aε(α) 1B
1 b

)

.

Next we see that

Φ2
(

ε(β)ε(γ)n ⊗ 1A ⊗ 1A − n⊗ ε(β) ⊗ ε(γ) + nε(β)⊗ 1A ⊗ ε(γ)

− ε(α)bm ⊗ a⊗ 1A + bm⊗ a⊗ ε(α)−maε(α) ⊗ 1A ⊗ b+m⊗ aε(α)⊗ b
)

= ε(β)ε(γ)n ⊗

(

1A 1B
1 1A

)

− n⊗

(

ε(β) 1B
1 ε(γ)

)

+ nε(β)⊗

(

1A 1B
1 ε(γ)

)

− ε(α)bm ⊗

(

a 1B
1 1A

)

+ bm⊗

(

a 1B
1 ε(α)

)

−maε(α)⊗

(

1A 1B
1 b

)

+m⊗

(

aε(α) 1B
1 b

)

= m⊗

(

a α

1 b

)

by (3.9).

Thus, we will have that Ker(Ψ) ⊆ Im(Φ2) if only we can show that

ε(β)ε(γ)n ⊗ 1A ⊗ 1A − n⊗ ε(β) ⊗ ε(γ) + nε(β)⊗ 1A ⊗ ε(γ)

−ε(α)bm⊗ a⊗ 1A + bm⊗ a⊗ ε(α) −maε(α) ⊗ 1A ⊗ b+m⊗ aε(α) ⊗ b

is in H2(A,M). For that, we need to show that it goes to zero under the map dA2 .

Since m⊗

(

a α

1 b

)

∈ H2((A,B, ε);M), we have that

maε(α)⊗ b−m⊗ aε(α)b + bε(α)m ⊗ a = 0.(3.10)
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Moreover, by applying ∂ε2 to both sides of (3.3), we get

bmaε(α)⊗ 1A − bma⊗ ε(α) + ε(α)bma ⊗ 1A

= nε(β)ε(γ) ⊗ 1A − nε(β)⊗ ε(γ) + ε(γ)nε(β) ⊗ 1A − nε(β)ε(γ) ⊗ 1A

+n⊗ ε(β)ε(γ) − ε(β)ε(γ)n ⊗ 1A + ε(γ)nε(β) ⊗ 1A − ε(γ)n ⊗ ε(β) + ε(β)ε(γ)n ⊗ 1A,

which simplifies to

(3.11)
bmaε(α)⊗ 1A − bma⊗ ε(α) + ε(α)bma⊗ 1A =

nε(β)ε(γ) ⊗ 1A − nε(β)⊗ ε(γ) + n⊗ ε(β)ε(γ) − ε(γ)n ⊗ ε(β) + ε(β)ε(γ)n ⊗ 1A.

Thus we have that

dA2

(

ε(β)ε(γ)n ⊗ 1A ⊗ 1A − n⊗ ε(β)⊗ ε(γ) + nε(β)⊗ 1A ⊗ ε(γ)

− ε(α)bm ⊗ a⊗ 1A + bm⊗ a⊗ ε(α)−maε(α) ⊗ 1A ⊗ b+m⊗ aε(α)⊗ b
)

= ε(β)ε(γ)n ⊗ 1A − ε(β)ε(γ)n ⊗ 1A + ε(β)ε(γ)n ⊗ 1A − nε(β)⊗ ε(γ)

+ n⊗ ε(β)ε(γ) − ε(γ)n ⊗ ε(β) + nε(β)⊗ ε(γ)− nε(β)⊗ ε(γ)

+ ε(γ)nε(β) ⊗ 1A − ε(α)bma ⊗ 1A + ε(α)bm ⊗ a− ε(α)bm ⊗ a

+ bma⊗ ε(α) − bm⊗ aε(α) + ε(α)bm⊗ a−maε(α) ⊗ b

+maε(α) ⊗ b− bmaε(α) ⊗ 1A +maε(α) ⊗ b−m⊗ aε(α)b + bm⊗ aε(α)

= nε(β)ε(γ) ⊗ 1A − nε(β)⊗ ε(γ) + n⊗ ε(β)ε(γ) − ε(γ)n ⊗ ε(β)

+ ε(β)ε(γ)n ⊗ 1A − bmaε(α) ⊗ 1A + bma⊗ ε(α) − ε(α)bma ⊗ 1A

+maε(α) ⊗ b−m⊗ aε(α)b + ε(α)bm⊗ a by simplifying

= bmaε(α) ⊗ 1A − bma⊗ ε(α) + ε(α)bma ⊗ 1A − bmaε(α) ⊗ 1A + bma⊗ ε(α)

− ε(α)bma ⊗ 1A +maε(α) ⊗ b−m⊗ aε(α)b + ε(α)bm⊗ a by (3.11)

= maε(α) ⊗ b−m⊗ aε(α)b + ε(α)bm ⊗ a by simplifying

= 0 by (3.10),

which was what we wanted. Hence Ker(Ψ) ⊆ Im(Φ2).

For (iii), it suffices to show that ε∗ ◦ Ψ = 0. We begin by taking m ⊗

(

a α

1 b

)

∈

H2((A,B, ε);M), and we want to conclude that bma⊗ ε(α) = 0 in H1(A,M). Notice:

maε(α) ⊗ b−m⊗ aε(α)b + bε(α)m⊗ a = 0(3.12)

since m⊗

(

a α

1 b

)

∈ H2((A,B, ε);M), as well as the two boundaries in H1(A,M):

dA2 (bm⊗ a⊗ ε(α)) = bma⊗ ε(α) − bm⊗ aε(α) + ε(α)bm⊗ a,(3.13)

and

dA2 (m⊗ aε(α) ⊗ b) = maε(α) ⊗ b−m⊗ aε(α)b + bm⊗ aε(α).(3.14)

Now we note that

bma⊗ ε(α) = bm⊗ aε(α) − ε(α)bm ⊗ a by (3.13)

= −maε(α) ⊗ b+m⊗ aε(α)b − ε(α)bm⊗ a by (3.14)

= 0 by (3.12).
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This establishes (iii), and so Im(Ψ) ⊆ Ker(ε∗).
For (iv), we take m⊗ α ∈ H1(B,M) such that m⊗ ε(α) = 0 in H1(A,M). We want to

show that m⊗α is the image of some element under Ψ. Since mε(α)⊗1A = 0 in H1(A,M),
we have that

mε(α)⊗ 1A −m⊗ ε(α) + ε(α)m ⊗ 1A

also equals zero in H1(A,M). Thus, this element is a boundary, which means there exists
some a, b ∈ A and n ∈M such that

dA2 (n⊗ a⊗ b) = mε(α) ⊗ 1A −m⊗ ε(α) + ε(α)m⊗ 1A.

Next note that

∂ε2

(

m⊗

(

1A α

1 1A

))

= mε(α) ⊗ 1A −m⊗ ε(α) + ε(α)m⊗ 1A

= dA2 (n ⊗ a⊗ b)

= ∂ε2

(

n⊗

(

a 1B
1 b

))

.

Since ∂ε2

(

m⊗

(

1A α

1 1A

)

− n⊗

(

a 1B
1 b

))

= 0, we have m⊗

(

1A α

1 1A

)

−n⊗

(

a 1B
1 b

)

∈

H2((A,B, ε);M). Finally notice that

Ψ

(

m⊗

(

1A α

1 1A

)

− n⊗

(

a 1B
1 b

))

= m⊗ α− bna⊗ 1B = m⊗ α.

Hence Ker(ε∗) ⊆ Im(Ψ).
For (vi), we take m⊗a ∈ H1(A,M) such that m⊗a = 0 in H1((A,B, ε);M). We want to

show that m⊗a is the image of some element under ε∗. Sincem⊗a = 0 in H1((A,B, ε);M),
this means that it is a boundary. Therefore, there exists some b, c ∈ A, n ∈M , and α ∈ B

such that

∂ε2

(

n⊗

(

b α

1 c

))

= m⊗ a.

Observe:

nbε(α) ⊗ c− n⊗ bε(α)c + cε(α)n ⊗ b = m⊗ a(3.15)

by above, as well as the two boundaries in H1(A,M):

dA2 (cn⊗ b⊗ ε(α)) = cnb⊗ ε(α) − cn⊗ bε(α) + ε(α)cn ⊗ b,(3.16)

and

dA2 (n⊗ bε(α) ⊗ c) = nbε(α) ⊗ c− n⊗ bε(α)c + cn⊗ bε(α).(3.17)

Now we note that

−cnb⊗ ε(α) = −cn⊗ bε(α) + ε(α)cn ⊗ b by (3.16)

= nbε(α) ⊗ c− n⊗ bε(α)c + ε(α)cn ⊗ b by (3.17)

= m⊗ a by (3.15).

Thus, we notice that −cnb⊗α ∈ H1(B,M) because −cnbε(α)+ε(α)cnb = 0 due to the fact
that M is B-symmetric, and

ε∗(−cnb⊗ α) = −cnb⊗ ε(α) = m⊗ a.

This establishes Ker(Φ1) ⊆ Im(ε∗) and completes our proof. �
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Corollary 3.6 (First Fundamental Exact Sequence for Ω). ([10],[15]) Let k −→ B −→ A

be morphisms of commutative algebras. Then there is an exact sequence of A-modules:

A⊗B Ω1
B|k −→ Ω1

A|k −→ Ω1
A|B −→ 0.

Proof. Notice that we have the morphisms k −→ B −→ A, the first coming from B being a
k-algebra, and the second being ε. Apply Propositions 1.2, 3.2, and 3.5 with A commutative
and M = A. �

Example 3.7. Since Hn(k,M) = 0 for all n > 0, note that H1((k,B, ε);M) = 0 and
H2((k,B, ε);M) ∼= H1(B,M) ∼= M ⊗B Ω1

B|k as consequence of Propositions 1.2 and 3.5.

Again using the exact sequence (3.2), one has H1((A,A, id);M) = H2((A,A, id);M) = 0.

3.3. Functoriality. Recall that for the usual Hochschild homology, H•(A,M) is a covariant
functor in M . It can also be seen as functorial in A in a certain sense. In this section we
establish similar results for the secondary Hochschild homology.

First we introduce the category of triples (A,B, ε) over k, denoted Trip−k. Here the
objects are triples (A,B, ε), and a morphism between two triples (A,B, ε) and (A′, B′, ε′)
is a pair (f, g) where f : A −→ A′ and g : B −→ B′ are morphisms of k-algebras such that
f ◦ ε = ε′ ◦ g. In other words, the following diagram commutes:

(3.18)

B′ A′

B A

ε′

fg

ε

Composition is done in the natural way, and it is easy to verify that Trip−k is a category.

Remark 3.8. Secondary Hochschild homology is functorial inM since f :M −→M ′ induces
a map

f∗ : H•((A,B, ε);M) −→ H•((A,B, ε);M
′)

where

f∗















m⊗















a1 b1,2 · · · b1,n−1 b1,n
1 a2 · · · b2,n−1 b2,n
...

...
. . .

...
...

1 1 · · · an−1 bn−1,n

1 1 · · · 1 an





























= f(m)⊗















a1 b1,2 · · · b1,n−1 b1,n
1 a2 · · · b2,n−1 b2,n
...

...
. . .

...
...

1 1 · · · an−1 bn−1,n

1 1 · · · 1 an















.

Secondary Hochschild homology is also functorial in (A,B, ε) in a certain way. Let the pair
(f, g) : (A,B, ε) −→ (A′, B′, ε′) be a morphism of triples. Furthermore, let M ′ be an A′-
bimodule which is B′-symmetric. Notice that M ′ can be considered an A-bimodule under
the rule

a ·m′ = f(a)m′ and m′ · a = m′f(a).

It can also be considered B-symmetric by using (3.18) because

α ·m′ = f(ε(α))m′ = ε′(g(α))m′ = m′ε′(g(α)) = m′f(ε(α)) = m′ · α.

Thus (f, g) induces a map

(f, g)∗ : H•((A,B, ε);M
′) −→ H•((A

′, B′, ε′);M ′)



PROPERTIES OF THE SECONDARY HOCHSCHILD HOMOLOGY 15

where

(f, g)∗











m′ ⊗











a1 b1,2 · · · b1,n
1 a2 · · · b2,n
...

...
. . .

...
1 1 · · · an





















= m′ ⊗











f(a1) g(b1,2) · · · g(b1,n)
1 f(a2) · · · g(b2,n)
...

...
. . .

...
1 1 · · · f(an)











.

Remark 3.9. Notice that when one takes B = k, this reduces to the usual case where the
Hochschild homology is functorial in M and can be viewed as functorial in A.
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