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ABSTRACT 

 

 

Estrada Aguilera, Samantha.  Robustness of Rasch Fit Statistics in Dichotomous and 

Rating Scale Data. Published Doctor of Philosophy dissertation, University of 

Northern Colorado, 2018. 

 

To understand the role of fit statistics in Rasch measurement, it is necessary to 

comprehend why fit is important in measurement. The answer to this question is simple: 

applied researchers can only benefit from the desirable properties of the Rasch model 

when the data fit the model; however, the currently available fit statistics are flawed. A 

problem with fit statistics which are based on residuals is that they are based on unknown 

distributional properties (Masters & Wright, 1997; Ostini & Nering, 2006). Rost and von 

Davier (1994) developed the Q-Index. The Q-Index makes use of the statistical properties 

of the Rasch model, namely, parameter separability and conditional inference. Ostini and 

Nering, as early as 2006, called attention to the fact that little research has been 

performed on the Q-Index and thus there is little knowledge regarding the fit statistic’s 

robustness. To assess the Q-Index robustness, its performance was compared, in the 

present study, to the currently popular fit statistics known as Infit, Oufit, and standardized 

Infit and Oufit (ZSTDs) under varying conditions of test length, sample size, item 

difficulty (normal and uniform), and Rasch model (dichotomous and rating scale). The 

simulation consisted of 128 conditions that varied in sample size, test length, item 

difficulty distribution, and dimensionality. A series of factorial ANOVAs were conducted 

to examine the effect of sample size, test length, item difficulty distribution, and 
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dimensionality on the fit statistics of interest. The results showed the Q-Index had a large 

effect size for dimensionality and for the dichotomous model a medium effect size for 

test length. Factorial ANOVAs for Infit, ZSTD Infit, Outfit, and ZSTD Infit resulted in 

trivial effect sizes for all the variables of interest. Parameter recovery was also examined, 

these findings suggest that the correlation between true and estimated parameters were 

high (r > .930) for both the dichotomous Rasch and the rating scale Rasch model 

indicating good pameter recovery despite the manipulation of test length, sample size, 

item difficulty distribution and dimensionality. Future research may explore the Q-Index 

under different measurement disturbances such as local independence or the robustness 

of the person Q-Index. Overall more research is needed regarding the robustness of the 

Q-Index.  
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CHAPTER I 
 

 

INTRODUCTION 

 

 Mathematical models are beneficial in any field of human inquiry (Ostini & 

Nering, 2006). In their simplest form, mathematical models help to quantify, or measure, 

a phenomenon of interest. However, difficulty with inflexible mathematical models in the 

social sciences led to the development of more appropriate measurement models (Ostini 

& Nering, 2006).  Psychologists, educational researchers, health sciences researchers as 

well as marketing analysts utilize measurement in different contexts whether the 

measurement is in the form of a survey, a test, or an attitude inventory. In the words of 

Allen and Yen (2001): “Measurement is the assigning of numbers to individuals in a 

systematic way as a means of representing the properties of individuals” (p. 2).  

Measurement theory is necessary because the traits researchers try to measure are often 

unobservable or latent.   

 Classical test theory (CTT) was developed to address the problems of 

mathematical models of measurement in the human sciences (Ostini & Nering, 2006). 

CTT was based on the work of Charles Spearman and derived from concepts from the 

physical sciences (Ostini & Nering, 2006). A key concept CTT borrowed from the 

physical sciences is the idea of error in measurement. Traditionally, researchers made use 

of CTT in order to analyze the measurement properties of scores obtained from 
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instruments, such as achievement tests. Unfortunately, CTT has three major limitations. 

First, item statistics are sample dependent. Second, respondents’ observed and true scores 

are test-dependent. Third, CTT is test oriented rather than item oriented; meaning CTT 

cannot predict someone’s ability given performance on a particular item. The limitations, 

as well as the difficulties of testing the assumptions of CTT, led to the development of 

different measurement models (Ostini & Nering, 2006).  

 Item response theory (IRT) is an alternative to CTT with roots in applied 

psychology (Ostini & Nering, 2006). Item-based test theory has its roots in mathematical 

models as well as the work in psychology with gifted children by Jean Binet, Theodore 

Simon, and Lewis Terman in the 1910s (Baker & Kim, 2004). The mathematical 

foundation of IRT is a function that specifies the probability of an examinee’s response to 

an item in a certain manner given the trait level that item is measuring. In other words, 

IRT describes, in probabilistic terms, an examinee with a high level of a certain trait who 

is likely to provide a response in a distinctive response category, which is different from 

that of a person with a low standing on the same trait. Frederic M. Lord and his 

subsequent work with Melvin R. Novick, entitled “Statistical theories of mental test 

scores” in 1968, is credited with the popularization of the IRT model (Ostini & Nering, 

2006). Further, the work by Danish mathematician Georg Rasch in the 1960s played an 

equally influential role by developing separately a distinct class of IRT models which 

showed “a number of highly desirable features” (Ostini & Nering, 2006, p. 2). This 

model is known as the Rasch model.  

Rasch analysis is used in educational and psychological testing as well as the 

measurement of health status and evaluation measures, among other applications 

http://doi.apa.org/psycinfo/1968-35040-000
http://doi.apa.org/psycinfo/1968-35040-000
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(Christensen, 2013). The Rasch model incorporates a method for ordering examinees 

according to their ability as well as ordering items according to their difficulty. An 

important Rasch principle is that interval-level measurement can be derived when the 

level of some attribute increases concurrently with increases in person ability and item 

difficulty (Bond & Fox, 2015). Furthermore, Rasch practitioners and scholars state that in 

objective measurement the measurement estimate stays constant, with permissible error,  

“across the persons measured, across different brands of instruments, and across 

instrument users” (Institute for Objective Measurement, Inc., 2000, para 2).  The degree 

to which the psychometric properties are obtained from responses to a survey or a test 

relies on this objective measurement.  

In measurement, the concept of fit helps researchers identify divergences in the 

data. These divergences force researchers to pause, reflect, and consider what the data 

mean and what the fit indices are indicating. If there is in fact a divergence, the researcher 

is left to question whether the model or the data are at fault (Andrich, 1988). In the 

situation when a discrepancy between the data and the model exists, it is very likely that 

there is an issue with either the data or the data collection (Andrich, 1988). The simplest 

solution could be modifying the data collection process or rewording items rather than 

changing the model. It is important to investigate whether the data fit the Rasch model, or 

any model for that matter. If the data do not fit the model in question, it is not possible to 

benefit from the properties of the Rasch model and the use of this model is pointless (R. 

M. Smith & Suh, 2003).   
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Measurement Disturbances 

 Measurement disturbances are conditions that interfere with the measurement of 

an underlying latent construct. These latent constructs can be, for example, self-efficacy, 

anxiety, ability, or attitude (R. M. Smith, 1991). Latent, or unobserved variables are of 

interest in fields like psychology, marketing, and education. Unfortunately, there exists a 

variety of measurement disturbances and the manner in which they manifest in the data 

varies as well. Guessing, sloppiness, data entry and clerical errors, item bias, test anxiety, 

boredom, distractions, and cheating are a few examples of measurement disturbances. 

The influence of these factors on the probability of a correct response makes it difficult 

for researchers to understand and correctly measure a person’s ability (R. M. Smith & 

Plackner, 2009). The effectiveness of a fit statistic can depend on its ability to detect 

measurement disturbances (Karabatsos, 2000). Minimizing the impact of measurement 

disturbances on the estimates of item difficulty and person ability is vital to objective 

measurement (R. M. Smith & Plackner, 2009). For this reason, there is no single fit 

statistic that will perfectly detect every one of these disturbances (R. M. Smith & 

Plackner, 2009; A. B Smith, Rush, Fallowfield, Velikova, & Sharpe, 2008).   

Item Fit in the Rasch Model  

 

Fit has been studied since the introduction of the Rasch model (Gustafsson, 1980; 

Rasch, 1980). Rasch (1980) suggested a variety of methods to assess the fit of data. These 

methods were graphical and statistical in nature. For Rasch analysis, scholars created 

statistical tests of goodness-of-fit with the purpose of understanding fit (Wright & 

Linacre, 1994).  In practice, misfit is usually determined by mean square fit statistics, 
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which are useful in identifying misfitting items or persons (Linacre, 1995); however, the 

currently available fit statistics are flawed.  

 A problem with many of the current fit measures, which are based on residuals, is 

that they are founded on unknown distributional properties (Masters & Wright, 1997; 

Ostini & Nering, 2006). When distributional properties are unknown, it is difficult for 

researchers and statisticians to justify the critical values for the fit statistic. This in turn, 

causes several different ad hoc cutoffs, or critical values, to be proposed by scholars 

(Smith et al., 2008; Wright & Linacre, 1994). Many Rasch analysis programs make use 

of these residual fit indices, named Infit and Outfit (Bond & Fox, 2015; Wright & 

Panchapakesan, 1969). Infit and Outfit statistics can also be presented in a standardized 

form such as the t distribution (Bond & Fox, 2015). In the United States and Australia, 

the residual-based fit statistics proposed by Wright and Panchapakesan (1969) are quite 

popular due to Rasch software such as Winsteps, ConQuest, and RUMM (Linacre, 2006; 

Smith et al., 2008; R. M. Smith & Plackner, 2009). 

The Q-Index 

 

Rost and von Davier (1994) developed the item Q or Q-Index, which is a response 

function method to assess fit in Rasch modeling. The authors stated that the Q-Index is 

not based on the differences between observed and expected scores as Infit and Outfit. 

For the calculation of the Q-Index the item parameter is conditioned out of the item-fit 

index. The Q-Index takes advantage of the Rasch model property of parameter 

separability. The Q-Index is constructed on the likelihood of observed response patterns; 

however, the fit statistic uses conditional likelihoods. For example, the likelihood of an 

item pattern is conditioned on the item score though an estimate of the item parameter is 
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needed for statistical inference purposes.  Rost and von Davier claimed that this process 

makes the Q-Index “parameter free” with respect to the item parameter (p. 174). 

Additionally, the authors believed this quality makes the Q-Index superior to the 

currently available methods of assessing fit.  Furthermore, Rost and von Davier stated 

that the Q-Index takes into consideration the assumptions of both dichotomous and 

polytomous Rasch models and for this reason it can be utilized with any unidimensional 

dichotomous or polytomous model.   

Statement of the Problem 

 

The currently available fit statistics for the Rasch model are flawed. Karabatsos 

(2000) stated “although the residual-based fit statistics have been of practical use for 

more than 30 years, in many respects they remain unsatisfactory” (p. 159). Karabatsos 

also argued that there has been little research regarding the distributional properties of 

residual-based fit statistics with rating scales possibly due to the complexity of the rating 

scale model. Similarly, Smith (1996) stated that the performance of mean square statistics 

for dichotomous data has been researched for more than 30 years; however, the 

interpretation and study of fit statistics for polytomous items is considered a recent 

development. It is worth noting that Smith’s paper is almost 20 years old to date, yet the 

research for polytomous items and fit continues to be lacking with only work by A. B. 

Smith et al. (2008), Wang and Chen (2005), and Seol (2016) focusing on the issue. 

According to Wu and Adams (2013), practitioners have repeatedly requested guidelines 

for the use of residual fit statistics. Likewise, questions on guidelines are a frequent topic 

in the popular Rasch listserv (Wu & Adams, 2013). Though this dissertation focused on a 

handful of fit statistics, there is a large number of available item fit statistics available in 
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different Rasch software; however, there is a lack of studies comparing the power of item 

fit statistics in a systematic and comprehensive manner which results in uncertainty on 

which fit statistics are the most efficient and/or powerful (Christensen, Kreiner, & 

Mesbah, 2013). Furthermore, Ostini and Nering (2006) considered the response function 

method utilized by the Q-Index to show promise; however, little research has been 

conducted to date. Particularly Ostini and Nering argued that the key disadvantage of the 

Q-Index is the lack of research assessing whether or not it works as intended.  

Purpose of the Study 

 

The purpose of fit statistics is to screen misfitting items or persons. If fit statistics 

are incorrect, a misfitting item or person may not be located correctly, or they may be 

incorrectly identified as misfitting. More importantly, the properties and benefit of using 

a certain model, in this case the Rasch model, will hold if and only if the data fit the 

model. The Q-Index index has desirable characteristics, which could provide a solution to 

applied researchers concerned with the limitations of current fit indices. However, little 

research has been performed regarding the robustness of the Q-Index (Ostini & Nering, 

2006). Due to the lack of research regarding the Q-Index in addition to the limitations of 

residual fit indices, and in order to respond to Ostini and Nering’s (2006) call for research 

on the topic, in this dissertation I studied robustness of the Q-Index under varying 

conditions of sample size, test length, item difficulty distribution along with the 

introduction of the measurement disturbance of multidimensionality. In this study, I 

compared the performance of the Q-Index in contrast with residual fit indices, including 

Infit and Outfit and standardized Infit and Outfit, which are available in the popular 

Rasch software Winsteps (Linacre, 2006).  The results of this study provide applied 
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researchers with evidence regarding the robustness of the Q-Index in contrast with the 

currently available measures of fit (Linacre, 2006; von Davier, 2001). 

The purpose of the current study was to examine how varying conditions of (a) 

sample size, (b) test lengths, (c) item difficulty distribution, and (d) measurement 

disturbance (in the form of multidimensionality) affect the fit estimates and their standard 

errors and Type I error rate. The independent variables were chosen based on previous fit 

statistics literature for the Rasch model. For example, sample sizes of N = 30, 100, 150, 

and 250 for the Rasch dichotomous model and N = 50, 100, 150, and 250 for the Rasch 

rating scale model were chosen based on Linacre’s (1994a) recommendations. Following 

the guidelines of Wright and Douglas (1975) and Linacre (1994a) the test lengths of N = 

10, 20, and 30 were selected.   

Additionally, following the convention for simulation research on the Rasch 

model the item difficulty distributions of interest were normally distributed and 

uniformly distributed. Due to its popularity, the Rasch software Winsteps is commonly 

used for applied research and simulation research (E. V. Smith Jr., 2002; R. M. Smith & 

Suh, 2003; Wang & Chen, 2005; Wolfe & McGill, 2011); thus, it was the choice of 

Rasch software for this dissertation. Additionally, there exists very little research on the 

rating scale model (Seol, 2016; A. B. Smith et al., 2008; Wang & Chen, 2005); thus, 

adding this model as a condition was appropriate.  

Research Questions 

 

The research questions are as follows: 

Q1 For the Rasch dichotomous model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of sample size, in correctly identifying item 

misfit? 
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Q2  For the Rasch dichotomous model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of test length, in correctly identifying item 

misfit?  

 

Q3  For the Rasch dichotomous model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of dimensionality, in correctly identifying item 

misfit? 

 

Q4  For the Rasch dichotomous model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of item difficulty distribution, in correctly 

identifying item misfit? 

 

Q5  What degree of the accuracy of parameter recovery does the Rasch 

dichotomous model provide under various simulation conditions when the 

accuracy is assessed by correlation, root mean square error, and bias 

estimates?  

 

Q6 For the Rasch rating scale model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of sample size, in correctly identifying item 

misfit? 

 

Q7 For the Rasch rating scale model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of test length, in correctly identifying item 

misfit?  

 

Q8  For the Rasch rating scale model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of dimensionality, in correctly identifying item 

misfit? 

 

Q9 For the Rasch rating scale model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of item difficulty distribution, in correctly 

identifying item misfit? 

 

Q10  What degree of the accuracy of parameter recovery does the Rasch rating 

scale model provide under various simulation conditions when the 

accuracy is assessed by correlation, root mean square error, and bias 

estimates? 
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Limitations 

 

As with all simulation studies, there is the inherent limitation of external validity 

due to the “artificial” conditions of the study, making it more difficult to generalize to 

“real life” data. Moreover, no simulation study can take into account all possible data 

conditions that might influence the results. An additional limitation of this dissertation is 

the availability of the Q-Index to applied researchers. When this dissertation was written, 

the Rasch software Winmira was the only available software where the Q-Index was 

available (von Davier, 2001). In fact, Winmira seems to be moderately popular in Europe 

but is less well-known elsewhere. For this reason, the Q-Index may not be readily 

available to applied researchers in the United States; however, further research on the Q-

Index such as this dissertation provides, may encourage the implementation of the Q-

Index and the standardized Q-Index into more popular software such as Winsteps or even 

R packages such as eRm and mIRT.     

Chapter Summary 

 

Rasch modeling is a popular psychometric tool in the educational, social science, 

and health sciences. Research on fit is important because if data do not fit the Rasch 

model, then interpretations based on the model can be incorrect.  The currently available 

fit statistics based on residuals are flawed and more research needs to be performed to 

determine their distributional properties. This study will provide applied researchers 

information on the robustness of the Q-Index as well as a comparison with the currently 

available fit statistics such as Infit, Outfit, standardized Infit, and standardized Outfit. 

In Chapter I, I introduced the rationale, in addition to the need for the study. I also 

briefly described the goals for this study. In Chapter II, I describe the Rasch model in 
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more detail in addition to the Rasch rating scale model and the assumptions for both 

models.  Briefly, I describe the approaches to fit in Rasch analysis, but focus heavily on 

the residual fit statistics which are more popular among Rasch users. Finally, I describe 

Rost and von Davier’s (1994) Q-Index. In Chapter II, I also summarize the relevant 

literature pertaining to the item fit statistics of interest. Next, in Chapter III, I outline how 

the research was accomplished. This chapter includes a description of the manipulated 

variables based on the literature reviewed in Chapter II, in addition to a description on 

how the simulation was performed and in which software each piece was conducted. In 

Chapter IV, I present the results of the study, and finally in Chapter V, I discuss the 

results with recommendations for applied researchers.    
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

This review of literature provides relevant background to support the need, 

purpose, choice of variables, and research questions for the present study. Chapter II 

begins by presenting information on the Rasch model, specifically the dichotomous and 

polytomous models, in addition to the assumptions for each model. Different types of fit 

approaches are summarized. Moreover, past research on fit analysis in the Rasch 

dichotomous model is discussed to understand the current use of rule of thumb critical 

values commonly utilized in today’s applied research. Empirical and simulation research 

reviewing the use of these critical values is discussed for both the Rasch dichotomous and 

polytomous models. Alternatives to the use of rules of thumb critical values are 

discussed.  

Overview of Rasch Analysis 

 

Cognitive abilities, which are often called “latent traits,” cannot be measured 

directly. For this reason, tests, inventories, and surveys are designed to measure these 

traits. In the same manner, different techniques of assessing the psychometric properties 

of scores obtained from these tests have been developed. One such method is the Rasch 

model which was named after Georg Rasch (Rasch, 1980) who developed it in the 1950s 

(Christensen et al., 2013).  The use of Rasch analysis has increased in the past decades. 

Rasch analysis is commonly used in educational and psychological testing. The method is 
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also popular in the measurement of health status and evaluation outcomes (Christensen, 

2013). Rasch (1980) initially developed the model for dichotomous data. Since then, 

different Rasch measurement models have been developed, including the rating scale 

model (Wright & Masters, 1982), partial credit (Masters, 1982), and many facets 

(Linacre, 1994b) models. The Rasch model describes responses to a certain number of 

items for a given number of examinees assuming these responses are stochastically 

independent (Christensen et al., 2013).  

In Rasch analysis, two conditions are part of the model: (a) the trait possessed by 

the person and (b) the difficulty necessary to provide a certain level of response. The 

following function represents the probability of success for an examinee’s response on a 

dichotomous item: 

𝑃(𝑋𝑣𝑖 = 1 | Θ𝑣 = 𝜃𝑣) =  
𝑒(𝜃𝑣−𝛽𝑖)

1+𝑒(𝜃𝑣−𝛽𝑖)
    (2.1) 

 Equation 2.1 is the original formulation of the model according to Rasch (1980). 

Where 𝑋𝑣𝑖 is a random variable indicating success or failure. 𝑋 = 1 indicates success, for 

example, a correct response, while 𝑋 = 0 indicates failure or an incorrect response on the 

item. The subscript 𝜈 represents the person while the subscript 𝑖 represents the item. The 

probability of a correct response increases as the ability parameter increase toward 

infinity. For example, in an educational testing setting the higher the ability of the student 

and the easier the item, the greater the probability of a correct response. Likewise, in a 

health science example, the person parameter could represent the level of depression, or 

pain, while the item parameters would represent the risk of experiencing certain 

symptoms related to the trait.  Consider a dichotomous item constructed to measure 

depression: “Do you have difficulty sleeping in the last two weeks?”. Or, “did your 
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appetite decreased in the last two weeks?”. According to the Rasch model, the level of 

depression measured by these items is measured by the person parameter. The Θ𝑣 

represents an unobservable, or latent, trait and 𝜃 is the person parameter which denotes 

the examinee’s location on the latent trait scale. The 𝛽 represents the item difficulty or 

item location parameter on the same latent trait scale, and is an item parameter. Both 𝜃 

and 𝛽 are on a logit scale (Christensen et al., 2013). Equation 2.1 is a function of the 

difference between the examinee’s ability and the item difficulty (Wu & Adams, 2013). 

Consequently, as an examinee’s ability exceeds the difficulty of a given item, the 

probability of a correct response increases. From Equation 2.1 it follows that: 

𝑃(𝑋𝑣𝑖 = 0 |  Θ𝑣 = 𝜃𝑣) = 1 − 𝑃(𝑋 = 1) =  
1

1+𝑒(𝜃𝑣−𝛽𝑖)
 (2.2) 

 In Equation 2.2 responses are coded as 1 for a correct response and 0 for an 

incorrect response. The logit function of the probability of a positive response is: 

𝑙𝑜𝑔𝑖𝑡(𝑃[𝑋𝑣𝑖 = 1| Θ𝑣 = 𝜃𝑣]) =  𝜃𝑣 − 𝛽𝑖    (2.3) 

For this reason, both 𝜃𝑣 and 𝛽𝑖 are said to be measured on a logit scale (Christensen et al., 

2013). Logit is also known as log-odds. Linacre and Wright (1989) defined logit as “the 

distance along the line of the variable that increases the odds of observing the event 

specified in the measurement model by a factor of 2.718.., the value of ‘e’” (para. 7). The 

Rasch measurements are expressed in logits, but may be re-scaled to suit conventional 

scaling such as 0 to 100 while retaining the properties of the measurement of persons and 

items on the same scale. For example, in a setting such as educational testing the person 

parameter would represent the ability of a student while the item parameter would 

represent the easiness or difficulty of the item. In the health sciences, the person 

parameter could represent the level of a patient’s depression while the item parameter 
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could represent the gravity of the symptoms related to depression (Christensen et al., 

2013). The scale on which 𝛽 is measured is often claimed to be an interval scale 

(Christensen et al., 2013).  

The probabilities in the Rasch model representing a difference between person 

and item parameters as well as the symmetry of the item and person parameters results in 

the item and persons being measured on the same scale. In a situation where the ability is 

the same as the difficulty, the probability of success would equal .50. This value also 

represents an item’s threshold, which is defined as the point on the ability/difficulty 

continuum at which ability and difficulty are the same and where the probability of 

success would equal .50 (Christensen et al., 2013).  

Georg Rasch derived the Rasch model with the purpose of modeling test behavior 

at the item level and for analyzing dichotomous data (1980). In Rasch modeling, the use 

of sufficient statistics when calculating item and person parameters eliminates the 

interdependency between them. The logistic function of the Rasch model provides an 

equal interval, linear scale on which the measurement of items and persons can be 

estimated separately. This is referred to as “specific objectivity” by Rasch (1980).  

Assumptions of Rasch Analysis 

 The following properties must be met for the Rasch model to be appropriate.  

Monotonicity.  Monotonicity refers to the probability of a positive response to an 

item which increases along with the increment in ability. In other words, the higher the 

ability of an examinee the higher the probability that the examinee will positively, or 

correctly, respond to the item.  
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Unidimensionality.  Unidimensionality refers to having a single construct or 

latent trait that accounts for the performance on items (E. V. Smith Jr., 2002). E. V. 

Smith Jr. (2002) discussed that unidimensionality does not necessarily mean that the 

items measure a single psychological concept, rather a variety of psychological processes 

that function together. If the unidimensionality principle is not met, it is not appropriate 

to compute a total score from the measure and use it to compare items or people (Boone, 

Staver, & Yale, 2014). Embretson and Reise (2013) warned that “failing to estimate a 

dimension that is important in the items will lead to local dependency” (p. 189). E. V. 

Smith Jr. further discussed the importance of unidimensionality. First, for a test or survey 

with the purpose of assessing a specific construct it is important that different levels of 

abilities do not influence the assessment. Second, when the researcher’s purpose is to 

order individuals on a given construct it is important that the assessment is 

unidimensional. Otherwise it becomes difficult to determine whether two persons with 

the same score are similar on the construct of interest. 

Local independence. The Rasch model is capable of ordering people according 

to their ability as well as ordering items according to their difficulty (Bond & Fox, 2015). 

Local independence means that the examinee’s response to an item is not related to (or in 

other words is independent of), the response on a different item when the examinee’s 

ability is controlled and the correlation of the residuals should be zero (Embretson & 

Reise, 2013). The item reponses should only be correlated by the latent trait under study. 

Embretson and Reise (2013) explained that “if local independence is violated, then the 

response pattern probabilities will be inappropriately reproduced in standard IRT models” 
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(p. 188). In practice, the assumption of local independence is violated if the item 

responses are linked in some way. For example, in an introduction to statistics exam if an 

item or the response to the item provides a clue that helps the students answer a different 

question on the exam, this would result in violation of local independence.  

Additionally, the following properties are characteristic of the Rasch dichotomous 

and polytomous modes. 

Sufficiency.  The Rasch model has several sufficiency properties which are given 

due to the model’s being part of the exponential family (Christensen et al., 2013). The 

most important sufficiency property is that the total score is a sufficient statistic for 𝜃. 

This property is not shared with any other IRT model though the property of sufficiency 

is common in the field of statistics.  

Invariance of parameters. To understand the concept of invariance of 

parameters it is important to first understand the definition of sample invariant items. 

Sample invariant items are defined as those items which have differences that do not 

depend on the person’s ability used to compare the items. In other words, the item 

difficulty estimates should be essentially the same regardless of the sample of examinees 

(assuming this sample is representative of the population with the trait of interest). For 

example, an examinee’s predicted ability should be the same, provided a reasonable 

measurement error, for any representative sample of items which are designed to measure 

the trait of interest (Christensen et al., 2013; Embretson & Reise, 2013). In the Rasch 

model, the item difficulty represents the “easiness” of the item. The invariance of an item 

is indicated when the item difficulty estimates are not statistically significantly different 

when estimated from separate random samples taken from appropriate populations 
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Rasch Models for Ordered Polytomous Items   

  

Polytomous data refer to items which have more than two responses and are 

“inherently ordered” (De Ayala, 2013, p. 162). In this context, ordered means that there is 

an order to the responses indicating either more (or less) of the trait being measured. 

Polytomous item response models were developed because polytomous items exist 

particularly in the field of applied psychological measurement (Ostini & Nering, 2006). 

In fact, polytomous items can be found everywhere in the education, health sciences, or 

psychological research fields (Ostini & Nering, 2010). Ostini and Nering (2010) declared 

that polytomous items “offer a much richer testing experience for the examinee while 

also providing more psychometric information about the construct being measured” (p. 

3). Polytomous items are also known as rating scale items and/or Likert scales. If the 

response categories work as intended, then the information provided by a polytomously-

scored item is more than that from a dichotomously-scored item. Polytomous items, like 

dichotomous items, are scored categorically. The difference is that polytomous items 

have more than two ordered categories. In practice, researchers go beyond the 

dichotomous possibilities of “yes” or “no” and “agree” or “disagree,” especially, in 

surveys in fields such as education or the psychological sciences, where the response 

options often include four or more ordered responses. For example, an examinee is asked 

to indicate his or her level of agreement on a Likert scale such that 1=Strongly Disagree, 

2 = Disagree, 3 = Uncertain, 4 = Agree, and 5 = Strongly Agree. Another example is an 

examinee’s being asked to rate his level of self-efficacy regarding a certain task (0 = No 

confidence at all to 6 = Complete confidence). In both examples, response options 

represent polytomous scales. In addition to estimating person parameters and difficulty 
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estimates, the polytomous item response model also provides a set of rating scale 

categories, which are the same for all items (Bond & Fox, 2015). Boundaries or 

thresholds separate these ordered categories. 

Rating Scale Model 

One type of Rasch polytomous model is the rating scale model (RSM). The RSM 

is an extension of the Rasch model for dichotomous responses developed by Georg 

Rasch.  The RSM receives its name because of the individual item responses that 

represent the rating scales that constitute a response given by examinees (Andersen, 

1997).  

The RSM is a type of polytomous Rasch model (Bond & Fox, 2015). The 

assumptions of the polytomous Rasch model are: (a) the latent trait 𝜃 is a scalar; thus, the 

latent trait is unidimensional, (b) the examinees are independent, and (c) the items are 

locally independent. In other words, the items are conditionally independent given the 

latent trait. Andersen (1973) defined the RSM as shown in Equation 2.4: 

𝑃(𝑋𝑣𝑖 = 𝑥 |  Θ = 𝜃𝑣) =
 𝑒(𝜃𝑣𝑥+ 𝜓𝑖𝑥)

∑  𝑒(𝜃𝑣ℎ+ 𝜓𝑖ℎ)𝑚𝑖
ℎ=0

  (2.4) 

Where 𝜃𝑣𝑥 is the person parameter and 𝜓𝑖𝑥 is the ith threshold location parameter of item 

x. If the responses by examinees are denoted as 𝑋𝑣𝑖  the possible responses are coded as 

𝑋𝑣𝑖 = 0, 1, 2, … ,𝑚𝑖 where the number of response categories for any given item i is 𝑚𝑖 +

1. Higher ratings should indicate higher levels on the latent trait of interest (Engelhard, 

2013). The scoring of ordered categories, with ordered integers such that 0,1…m, implies 

that the distance between these categories is in equal intervals. For example, the distance 

between 1 and 2 is the same distance as between 2 and 3 (Engelhard, 2013). This is an 

assumption that may or may not be justified for any given dataset.    
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In contrast with assessing proficiency on a task or subject, in practice, the purpose 

of an instrument may focus on assessing an individual’s attitude toward a particular topic, 

or perhaps personality based on traits such as anxiety or confidence. This type of 

instrument utilizes a Likert or Likert-type scale. This Likert-type scale may contain an 

even or an odd number of response categories (ranging from three to five to seven or 

even nine). Linacre (2000) defined the RSM as a model in which all the items, or a group 

of items, have the same rating scale structure. This is the case in attitude surveys or 

inventories where the response choices are the same for several items. For example, a 

self-efficacy scale may ask examinees to rate their confidence from 1 = No Confidence at 

all to 6 = Complete confidence. An attitude scale may ask examinees to rate their 

agreement on a 4-point Likert-type scale from 1 = Strongly Disagree, 2 = Disagree, 3 = 

Agree, 4 = Strongly Agree. This system avoids mental exhaustion from the examinee’s 

having to “figure out” the rating scale for different items in the same survey. Wright 

(1999) wrote, “it is impractical and mentally overwhelming to present a different rating 

scale structure for each item” (para. 4). 

The RSM has an additional feature over the dichotomous Rasch model. The RSM 

also gives information on the number of rating scale thresholds which are shared by all 

the items in the instrument (Bond & Fox, 2015). Bond and Fox (2015) defined a 

threshold as “the level at which the likelihood of being observed in a given response 

category (below the threshold) is exceeded by the likelihood of being observed in the 

next higher category (above the threshold)” (p. 116). In an instrument with dichotomous 

item scores, the examinee’s responses are considered either a success or a failure. 

Likewise, in a rating scale the examinee is thought of as failing to agree or failing to 
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endorse a certain category. In the same way, success is defined as an examinee’s 

endorsement or agreement with a certain category.   

The RSM obtains responses from a series of ordered categories, which are 

separated by ordered thresholds. The RSM does not assume what the size of the step 

would be to move from one category to another, though the threshold pattern is the same 

for all items. An examinee may find it difficult to endorse “6 = Complete Confidence” on 

a self-efficacy scale but choose to select a “5 = Very Confident.” Or perhaps an examinee 

would have small increases in anxiety going from threshold 1 to 2 but greater increases in 

anxiety going from threshold 3 to 4. However, the RSM can detect the threshold structure 

of the Likert or Likert-type scale instrument, and with this information the RSM can 

estimate “a single set of response category threshold values” which would apply to all the 

items in the scale (Bond & Fox, 2015, p. 116).  

For example, in a survey of statistics self-efficacy the examinee is asked to rate 

his or her confidence to “Identify the scale of measurement for a variable.” The response 

categories range from “0 = Total Lack of Confidence” to “4 = Complete Confidence.”  

See Figure 1. Assume the item has a difficulty 𝛽 of value 0. When an examinee of ability 

𝜃 answers this item, the probability of selecting the “Total Lack of Confidence” category 

or the “Not Confident” category depends on whether the person is located above or below 

the threshold 𝜏1. If 𝜃 <  𝜏1  then the person responds, “Total Lack of Confidence.” This 

hypothetical situation assumes that there are no external factors influencing the examinee, 

such as social desirability, for example. This is the same process that occurs at the 

thresholds 𝜏2 or 𝜏3. Thus, the responder “passes through” one or more thresholds to select 

his or her answer. The number of thresholds of the item is represented by 𝑥𝑗, where j 
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equals the number of response categories minus one. In the case where 𝑥𝑗 = 0 the 

examinee did not pass through any thresholds. Likewise, if the examinee has passed 

through all thresholds 𝑥𝑗 = 𝑚 (See Figure 2.1).  

 

Total lack of 

confidence a 

Not Confident Confident Complete 

Confidence 

 𝜏1 𝜏2 𝜏2 

Figure 2.1. Description of thresholds 

Measurement Disturbances 

 A measurement disturbance is a condition that interferes with the measurement of 

an underlying latent construct (R. M. Smith, 1991). Measurement disturbances refer to a 

wide variety of problems, for example, guessing, data entry errors, cheating, test anxiety, 

boredom, external distractions, and sloppiness among others (R. M. Smith & Plackner, 

2009). These are beyond the person’s ability and the item’s difficulty. In Rasch analysis 

only two conditions are part of the model: person ability and item difficulty. Any other 

condition that has an impact on measurement is considered noise and thus a measurement 

disturbance. Therefore, minimizing the influence of measurement disturbances on 

estimation of either item or person parameters is necessary to have objective 

measurement.  

 Historically, Edward Thorndike was the first to enumerate causes for the 

disruption of the measurement process (R. M. Smith & Plackner, 2009). R. M. Smith and 

Plackner (2009) classified the disturbances into three categories: (a) disturbances that are 

the result of a person’s characteristics and independent of the item, (b) disturbances that 
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are a result of an interaction between the person’s characteristics and a property of the 

item, and (c) disturbances that are due to a property of the item and independent of the 

person’s characteristic. This classification allows researchers to detect the source of the 

measurement disturbance and determine which techniques are necessary to detect the 

disturbance.  

Disturbances due to person characteristics. These disturbances result from 

persons’ characteristics and are independent of the item. These types of disturbances are 

also the easiest to understand. For example, the response pattern for a student who is 

easily distracted will be influenced by external sources such as noise outside the 

classroom, extreme temperature in a classroom, and/or noise by other students in the 

classroom. Measurement disturbances that fall into this category are test anxiety, 

excessive cautiousness, copying, sickness, fatigue, boredom, external distractions, and 

guessing, among others. 

Disturbances due to interaction. These measurement disturbances result from 

the interaction between the examinees’ characteristics and item properties. Although the 

characteristics of the examinees and the property of the items are present at every item, 

this type of measurement disturbance does not present itself unless the property of the 

item interacts with the examinee’s characteristic(s).  The following are examples of this 

type of measurement disturbance: guessing, sloppiness/excessive carelessness, item 

content/person interaction, item type/person interaction, and item bias/person interaction. 

Item content/person interaction occurs when the subject matter being tested has been 

under-learned or over-learned and results in an under or overestimation of the examinee’s 

ability. Item type/person interaction occurs when the type of items in the test being used 
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is “differentially familiar or unfamiliar to a person” (R. M. Smith & Plackner, 2009, pp. 

427-428). R. M. Smith and Plackner (2009) argued that the extent to which guessing can 

be found in the data depends on the interaction between the person’s tendency to guess 

and the tendency of the item to “evoke guessing” (p. 427).  Finally, item bias/person 

occurs when an item or subset of items favors a particular gender, age group, educational 

background, ethnicity, or cognitive style. This may cause for the over or underestimation 

of an examinee’s ability.  

Disturbances due to item properties. These measurement disturbances are due 

to item properties and are independent of the person’s characteristic. R. M. Smith and 

Plackner (2009) contended that examples for this type of measurement disturbance are 

difficult to find. However, the authors explained that this type of measurement 

disturbance could occur via a typographical error on the exam though examinees with 

high ability are usually able to overcome this issue. A different reason could be a data 

entry error where an incorrect value is entered instead of an accurate one.  

R. M. Smith and Plackner (2009) categorized the process of detecting 

measurement disturbances into three different categories. The first category is an 

examination of the entire response matrix. This examination relies on the analysis of the 

item and person parameters. A second approach to investigate the fit of the responses to 

individual items is known as item fit. This analysis can primarily focus on the observed 

responses; however, the analysis may be more useful when it is based on characteristics 

of the examinees, such as gender, age, first language, ethnicity, or cognitive style if the 

researcher suspects that a demographic characteristic may be the cause of the 

measurement disturbance. This information can be used to create different groups in 
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order to test the invariance property of the item difficulty parameters. The third approach 

to detecting measurement disturbances is the examination of the fit of responses for 

individual persons. This is known as person fit analysis. This type of analysis can focus 

on the response data; however, it may be useful to identify groups of items by inspecting 

the items. Nevertheless, there exist measurement disturbances that cannot be easily 

identified in either items or examinees (R. M. Smith & Plackner, 2009). 

In summary, measurement disturbances hinder the appropriate measurement of an 

underlying trait. Within the Rasch model, only two conditions should determine the 

outcome of the interaction between a person and the item.  These conditions are the 

person’s ability and the item difficulty (Schumacker, Mount, Dallas, & Marcoulides, 

2005; Smith, 1991). Any other condition, outside the person’s ability and the item 

difficulty, can be considered a measurement disturbance. 

Multidimensionality. In the 1600s, the thermometer measured both temperature 

and atmospheric pressure, which made that type of thermometer multidimensional. When 

scientists were able to separate the two constructs it was considered a major scientific 

advantage. Social scientists utilize the same approach with latent variables and 

unidimensional constructs (Linacre, 2009). 

Multidimensionality is a measurement disturbance at the item level in addition to 

a property of the Rasch model. Item multidimensionality occurs when an item, or a subset 

of items, does not measure the same attributes as the rest of the items in the test 

(Karabatsos, 2000). Stout (1987) listed three reasons why unidimensionality, or absence 

of multidimensionality, is important to the assessment of responses. First, for any tests 

with the purpose of measuring any given ability it is important for the researchers, as well 

http://www.refworks.com/refworks2/default.aspx?r=references%7CMainLayout::init
http://www.refworks.com/refworks2/default.aspx?r=references%7CMainLayout::init
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as the consumers of the results, to know that the measure of the ability is not 

“contaminated by varying levels of one or more other abilities displayed by examinees 

taking the test” (p. 589). Second, it is important that a test that is designed to measure a 

specific construct is in fact measuring a single construct. The scores of a test are more 

meaningful when there is only one range for that specific construct. Additionally, 

identifying the same construct on the same scale allows for the fair comparison of two 

different persons. Stout claimed that in the event where two items are measuring two 

different constructs they should be considered as two different tests. Moreover, item bias 

for two different groups occurs when there is a discrepancy between the latent ability and 

the performance on the item (Mellenbergh, 1989). Violation of the unidimensionality 

assumption can cause item bias in addition to bias in the ability parameter estimation (E. 

V. Smith Jr., 2002; Setzer, 2008; Yu, Popp, DiGangi, & Jannasch-Pennell, 2007) 

The assumption of unidimensionality is at the heart of the Rasch model and other 

IRT models. Reckase (1979) studied the applicability of a unidimensional model such as 

the Rasch model to multidimensional tests. The author generated a two dimensional 

dataset, one dimension with a dominant latent trait and another dimension with multiple 

latent traits. The study findings showed that the Rasch model tended to be robust to minor 

degrees of multidimensionality given the good parameter recovery for both the ability 

and item parameter. Within the IRT framework Drasgow and Parsons (1983) studied 

multidimensionality in unidimensional IRT models. The authors simulated the 

multidimensional data from a hierarchical factor model. In Drasgow and Parsons’ study, 

the authors manipulated the inter-correlations between the factors from strictly 

unidimensional (an inter-correlation of 1.0) to multidimensional (an inter-correlation of 
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0). The authors found that the item and ability parameters were affected by 

multidimensionality when the inter-correlations between the factors were .39 or lower.  

R. M. Smith (1996) stated that Rasch fit statistics have been found to be sensitive to 

multidimensionality in situations when a latent trait for each dimension has an 

approximately equal number of test items and the inter-correlation between the latent 

traits are low. 

Item Fit in Rasch Analysis 

 

Christensen et al. (2013) believed that the parsimonious Rasch model is “too 

simple” for the model to fit real life data (p. 83). For this reason, it is important that 

applied researchers provide “strong empirical evidence” that the Rasch model is 

appropriate for the data (p. 83). In the past, there has been and there continues to be a 

discussion on the issue of which is the most efficient and appropriate fit statistic, or 

combination of fit statistics to use, as well as interpretation of these fit statistics (Masters 

& Wright, 1997; Smith et al., 2008).  

However, the use of fit statistics in the Rasch model does have difficulties. For 

example, Christensen et al. (2013) discussed the technical issues that interfered with the 

use of fit statistics in Rasch modeling. First, the authors acknowledged that most of the fit 

statistics available in Rasch modeling are based on “unquestionable knowledge” of Rasch 

measurement, meaning these statistics are theoretically rather than empirically derived (p. 

100). However, the authors also stated that the application of these methods is often 

limited and lack of knowledge of statistical inference may hinder the application of these 

methods. The authors advised Rasch users to utilize conditional inference, which 

guarantees that the results would be consistent and unbiased with large sample sizes.  
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Person Fit in Rasch Analysis 

 

The concept of fit in Rasch modeling describes how well data adhere to the 

model. Rasch model users often focus on person fit (DeMars, 2010); however, Rasch’s 

(1980) original work does not contain a fit statistic for person fit.Yet, Rasch’s work does 

contain a variety of graphical methods that can be used to assess fit, including person fit. 

In fact, the development of person fit statistics in Rasch analysis parallels that of the 

development of item fit statistics (R. M. Smith & Plackner, 2009). Person fit statistics are 

also calculated based on residuals obtained from subtracting the probability (of obtaining 

a correct item) matrix minus the score matrix. However, a main difference between item 

and person fit is that there are usually more people taking a test or a survey than there are 

items on the test or survey. Similar to item fit there exist total fit statistics, which are both 

unweighted and weighted, between fit statistics, which are also weighted and unweighted, 

and within-groups fit statistics. It is important to note, that most Rasch software does not 

contain a person fit statistic, which can be an important instrument in detecting 

measurement disturbances in data (R. M. Smith & Plackner, 2009).  

Properties of an Effective Fit Statistic  

 

 Karabatsos (2000) described two properties that make a fit statistic effective: (a) 

the null distribution should be invariant across different types of examinations, and (b) 

the fit statistic should be sensitive enough to detect a variety of measurement 

disturbances.  The null distribution for a Rasch fit statistic represents the probability 

distribution when the null hypothesis is true, meaning the data fit the Rasch model. Such 

a null distribution contains all the possible values of the fit statistic stored in a 𝑁𝑥𝐿 

matrix (where 𝑁 is the number of examinees in the data set and 𝐿 is the number of items 
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on the test). This matrix is generated by the Rasch model, and therefore it fits the model 

(Karabatsos, 2000). In order to identify misfit in the Rasch model, the Type I error rate is 

often set to .05 in a one-tailed test; thus, the 95% percentile of the null distribution 

defines the minimum critical value to classify an item or person as misfitting. Karabatsos 

stated that the degree to which a fit statistic consistently detects misfit, in various forms 

of measurement disturbances, depends on the fit statistics’ “stability, or invariance, of its 

null distribution across different test conditions” (p. 158). In other words, the null 

distribution of a fit statistic should not vary as a function of the person or item 

distributions, the number of items, or the number of examinees. In a case where the null 

distribution does vary as a function of arbitrary properties then the critical value used for 

detecting fit (or misfit) needs to change on a case by case basis. For practitioners, a case 

by case fit statistic would be impractical and time consuming and could lead to over or 

under detection of misfit. In contrast, practitioners utilizing a fit statistic with a “stable 

null distribution” would be able to compare the fit between examinees with different 

abilities, as well as between items with different difficulty. Such fit statistics would allow 

for different examinees using the same metric (Karabatsos, p. 158, 2000).  

 Provided with a stable null distribution, and hence a stable critical value, for a fit 

statistic then it is possible to quantify the rate at which a fit statistic correctly identifies 

measurement disturbances.  For example, it is possible to simulate a NR x L data matrix 

where the data fit the Rasch model (where 𝑁𝑅 represents the number of examinees who 

fit the Rasch model and 𝐿 is the number of items on the test); additionally, a simulated 

NAx L matrix with aberrant responses can be created (where 𝑁𝐴 represents the number of 

examinees with aberrant responses).  These aberrant responses can be thought of as 
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responses provided by “cheaters.” These two matrices can be merged into a single data 

set.  

Classification of Fit Statistics in  

Rasch Analysis 

 

There exist different classifications for fit statistics in Rasch modeling. For 

example, Christensen et al. (2013) separated the item fit statistics into two categories. The 

first type of fit statistic takes the fundamental assumptions of the Rasch model for 

granted, and attempts to assess the degree to which “the separate items appear to have 

conditional response probabilities that do no depart from the Rasch model probabilities” 

(p. 83). The second type of fit statistic addresses the assumption of no differential item 

functioning (DIF). DIF is a property of an item which shows to what extent that item may 

be measuring different abilities for members of specific subgroups; for example, an item 

that measures different abilities for native and non-native English speakers. However, 

each item is evaluated one at a time, under the assumption that the rest of the items do not 

violate the assumptions of the Rasch model. A number of fit statistics provide 

information on specific violations to the model, such as violation of unidimensionality or 

violation of local independence between items (Wu & Adams, 2013).  

Rost and von Davier (1994) divided measures of item fit into three categories: 

1. Likelihood approach where standardized Z values are based on item 

patterns or item responses’ likelihood function. 

2. Chi-square statistics which compare observed and expected response 

frequencies in groups of examinees which are defined a priori. 

3. Fit statistics that are based on the averaged deviations of observed and 

expected item responses, also known as score residuals.   
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Likelihood Approach 

The first category Rost and von Davier (1994) identified was the likelihood 

approach. Levine and Rubin (1979) proposed the likelihood approach for testing the fit of 

multiple choice tests. For item fit, the likelihood depends strongly on the difficulty of the 

items. In the case of person fit, the likelihood depends strongly on the ability level. The 

likelihood-based approach to assess item fit, like the chi-square approach, requires the 

estimation of both item and person parameters. Additionally, the likelihood-based 

approach is appropriate to use with any IRT model, in addition to the Rasch model. The 

likelihood 𝐿𝑖 of a dichotomous item for a person 𝑣 is defined in Equation 2.5 as: 

𝐿𝑖 = ∏ 𝑝𝑣𝑖
𝑥𝑣𝑖(1 − 𝑝𝑣𝑖)

1−𝑥𝑣𝑖𝑁
𝑣=1 ,   (2.5) 

Where 𝑥𝑣𝑖 is the dichotomous [0,1] response of the examinee 𝑣 to the item 𝑖. The 𝑝𝑣𝑖 

represents the response probability of examinee 𝑣 to the item 𝑖. 𝐿𝑖 depends strongly on 

either the difficulty of the item or the ability level (in the case of person fit). Drasgow, 

Levine, and Williams (1985) introduced a polytomous likelihood model. This model is a 

standardization of the likelihood which takes advantage of the fact that maximum-

likelihood estimators are normally distributed.  The fit statistic is based on Z values 

defined in Equation 2.6: 

𝑍𝑣𝑖 = 
log (𝐿𝑖−𝐸𝑣𝑖)

(𝑉𝑣𝑖)
1/2

 ,   (2.6) 

Where 𝐿𝑖 is the likelihood of a dichotomous item pattern for a person, 𝐸𝑣𝑖is the expected 

value of the model and 𝑉𝑣𝑖 represents the variance under normal model assumptions. For 

item fit, this fit statistic can be added over examinees for individual items. For person fit, 

the fit statistic can be accumulated over items for a single examinee. These sums are 

considered asymptotically normally distributed. Using data from the verbal portion of the 
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Scholastic Assessment Test (SAT) to illustrate the likelihood approach, where the item 

responses were scored as correct, incorrect, omitted, or not-reached, Drasgow et al. 

(1985) showed that their standardized fit index had higher rates of misfit detection than 

the index developed for the dichotomous model.  

As an alternative to residual fit indices, which are discussed in a later section, 

where the distributional properties are unknown, Andersen (1973) suggested the use of 

the likelihood ratio chi-square test.  

The Chi-Square and Residual Approach 

The first chi-square fit statistic for Rasch analysis was proposed by Wright and 

Panchapakesan (1969). However, this type of fit statistic is not restricted to Rasch or IRT 

(Rost & von Davier, 1994). This item fit statistic is based on person raw score groups 

which in turn focus on the difference between the observed and expected score for a 

group of people which has the same raw score on a test. Additionally, the primary 

difficulty with chi-square tests based on a multinomial distribution is that these kinds of 

tests require a very large sample size of examinees in addition to more than a dozen items 

with at least three or four categories (Ostini & Nering, 2006). If these conditions are not 

met, the expected frequencies of the response patterns are small and there is a poor 

approximation to the chi-square distribution of the test statistic. 

In the chi-square approach, persons are grouped using their test scores or 

estimates of their ability level 𝛽. The chi-square statistic for item 𝑖 is defined in Equation 

2.7: 

𝜒𝑖
2 = ∑

𝑛𝑗(𝑜𝑖𝑗−𝑒𝑖𝑗)
2

𝑒𝑖𝑗(1−𝑒𝑖𝑗)

𝐽
𝑗=1    (2.7) 
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Where 𝑜𝑖𝑗 and 𝑒𝑖𝑗 are the observed and expected proportions of correct responses, 

respectively, to item 𝑖 in group 𝑗. The calculation of 𝜒𝑖
2 requires estimates of the 𝛽 (the 

ability parameters) or a mean estimate for all examinees in a group. Additionally, the 

item parameter estimates are required to calculate the expected proportion of correct 

responses for each group.  

There exist plenty of research regarding the chi-square approach in fit analysis. 

Bock (1972) developed the log likelihood 𝐺2 for dichotomous and polytomous items to 

assess fit for IRT models. The log likelihood 𝐺2 utilizes the natural log of the differences 

between expected and observed proportions to estimate global fit (DeMars, 2010). 𝐺2 is 

available in the IRT software BILOG, MULTILOG, and PARSCALE. Yen’s (1981) 

index is called 𝑄1 and it assumes an approximately chi-square distribution. In Yen’s 

paper, 𝑄1is examined for the 1PL (one parameter logistic model), and other IRT models, 

stating that 𝑄1 was suitable for the 1PL (p. 249). Yen’s original article focused on 

dichotomous data and the appropriate use of  𝑄1 for the 1PL and other IRT models; 

however, the 𝑄1can be calculated for polytomous items (DeMars, 2010). Similar to Yen’s 

𝑄1 the 𝐺2 is expected to follow a chi-square distribution. However, in conditions with 

large sample sizes and short tests these indices have inflated Type I errors (Orlando & 

Thissen, 2000). The chi-square indices that are used to summarize information regarding 

fit can be classified into Pearson 𝜒2 and log likelihood 𝜒2 (DeMars, 2010). The log 

likelihood 𝜒2 is often symbolized as 𝐺2 to avoid confusion with Pearson 𝜒2 (DeMars, 

2010). Bock (1972) and Yen (1981) developed Pearson 𝜒2 indices whereas Orlando and 

Thissen (2000) developed modified 𝜒2 and 𝐺2 statistics, which are labeled 𝑆 − 𝜒2  and 

𝑆 − 𝐺2. These fit statistics were developed for dichotomous data. In a simulation study, 



34 

 

 

 

𝑆 − 𝜒2 maintained an empirical Type I error rate near the 𝛼 = .01 and . 05 levels 

(Orlando & Thissen, 2000). The performance of 𝑆 − 𝜒2 improved with test length; 

however, 𝑆 − 𝐺2 did not improve much compared to the unmodified fit statistic 𝐺2.   

Statistical tests based on grouping data are representative of a basic principle in 

testing statistical models; however, the power of such tests to detect misfit depends on 

whether the grouping selected reflects the type of misfit in the data (Ostini & Nering, 

2006). In terms of item fit, if an item has an observed item response function (IRF) that 

deviates from the expected IRF assumed by the model, then grouping by scores of 

persons would expose this type of misfit. For example, by grouping of the scores by 

whether or not examinees have English as a second language English as a second 

language might expose the reason an item misfits. If there are two or more examinees 

with the same ability, 𝛽, and a different item difficulty holds for each item, the difference 

in item difficulty may not be revealed by different scoring groups (Rost & von Davier, 

1994). For this reason, it is important for researchers to have a hypothesis regarding 

possible reasons for misfit in their data, especially when creating the scoring groups.  It is 

possible that a characteristic or variable may define the sample in such a way that the 

item misfit can only be revealed by separating the scoring groups. Such a variable may be 

observable or not. An example of this occurs when different examinees utilize different 

strategies for the same problem or task; hence, different item parameters hold for these 

examinees.   

R. M. Smith and Plackner (2009) discussed total fit statistics for Rasch analysis as 

the sum of the chi-square resulting from the interaction between any person and any item. 

There exists a weighted and unweighted statistic of this type to analyze fit. In addition to 
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this type of fit statistic, the authors discussed the between groups statistics, which are also 

available in weighted and unweighted versions. The between-groups fit statistic is based 

on a characteristic of the persons, which is used to create separate and meaningful groups. 

The characteristic used to create these groups can be ability; however, it can also be other 

type of characteristics such as gender, ethnicity, or native -language among other 

characteristics. The between-groups fit statistic is useful in detecting differences at the 

item level for groups of persons, which were based on the characteristics previously 

mentioned. This type of fit statistic is the basis for detecting differential item functioning 

(DIF) items. A situation where an item works differently for subgroups is described as a 

measurement disturbance in the psychometric literature (R. M. Smith & Plackner, 2009). 

The between-groups fit statistic is better for detecting item bias than the separate 

calibrations utilizing a multiple t-test method approach (which is regarded as a less 

efficient method; R. M. Smith & Plackner, 2009). 

R. M. Smith and Hedges (1982), using a simulation, compared the likelihood ratio 

chi-square with the Pearson chi-square for fitting the Rasch model. The results of their 

study indicated that both the likelihood ratio and the Pearson chi-squares were highly 

correlated with the data designed to fit the Rasch model, as well as with data that 

simulated measurement disturbances. Gustafsson (1980) and Andersen (1973) suggested 

the likelihood ratio chi-square test should be used as an alternative to Wright and 

Panchapakesan’s (1969) between-groups fit statistic due to the unknown distributional 

properties of the Pearson chi-square. The study by R. M. Smith and Hedges showed that 

in simulated data the distributions of the Pearson chi-square and the likelihood ratio chi-

square were almost identical.  
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Additionally, there exist within-group fit statistics. This type of statistic is often 

utilized with the between-groups fit statistics and is calculated similarly to the between-

groups fit statistics. The difference is that the within-groups fit statistic is summed over 

the persons included in specific subgroups (as opposed to summing over all the persons 

responding to an item). The within-group statistic can be weighted or unweighted. 

Furthermore, the benefit of the within-group fit statistic is that it is able to detect aberrant 

response patterns within subgroups which could be difficult to identify in a complete 

sample (R. M. Smith & Plackner, 2009). In general, a disadvantage of the chi-square 

approach for testing item fit is that it is not easy to generalize to the polytomous IRT 

models. The reason for this disadvantage is that the chi-square approach is frequency 

based and thus has additional assumptions that must be met to handle disordered 

categories. 

Residual Approach 

 In statistics, residuals are defined as the difference between observed and 

expected values under a specific hypothesis. Rost and von Davier (1994) referred to the 

approach as the “score residual approach” (p. 174) which was developed within the 

Rasch measurement framework. Christensen et al. (2013) separated residuals within the 

Rasch framework into two categories: individual response residuals and group residuals. 

The score residual approach also requires that item and person parameters are estimated. 

In this approach, item fit is evaluated through the deviation of observed and expected 

item responses (Ostini & Nering, 2006).  

The standardized residuals can be formed by summing squared residuals for 

persons or items (Rost & von Davier, 1994). These mean squared residuals can be 
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transformed into t statistics which are approximately normally distributed. Masters and 

Wright (1982) generalized this approach to polytomous ordinal responses. 

In Rasch modeling, the raw residuals or response residuals are as follows in 

Equation 2.8. 

𝑅𝑣𝑖 = 𝑋𝑣𝑖 − 𝐸𝑣𝑖 ,                 (2.8) 

Where 𝑋𝑣𝑖 represents the score for person 𝑣 and item 𝑖, and 𝐸𝑣𝑖 = E(𝑋𝑣𝑖) represents the 

expected value of the residuals. However, in practice 𝐸𝑣𝑖 is often repleaced by 𝐸𝑣�̂� the 

estimates of the expected item scores given that both the item and person parameters are 

unknown (Christensen et al., 2013).  

Additionally, the standardized residuals are 

𝑍𝑣𝑖 = 
𝑅𝑣𝑖

√𝑉𝐴𝑅(𝑋𝑣𝑖− 𝐸𝑣𝑖)
,                (2.9) 

Thus, the squared residuals are  

𝑍𝑣𝑖
2 = 

𝑅𝑣𝑖

𝑉𝐴𝑅(𝑋𝑣𝑖)
 ,   (2.10) 

The fit index called Outfit is based on the sum of squared standardized residuals. 

For 𝑛 examinees each standardized residual is squared. For every item the examinee 

answered the squared residuals are added and the average is taken by dividing by the 

number of items. Thus, Outfit is also called Mean Squared Outfit and is computed as 

shown in Equation 2.11 (Bond & Fox, 2015).  

𝑂𝑢𝑡𝑓𝑖𝑡𝑖 = 
1

𝑛
∑ 𝑍𝑣𝑖

2𝑛
𝑣=1  ,  (2.11) 

Research experience with Outfit has indicated that Outfit is particularly sensitive 

to outliers, in particular, with tests that have a broad range of item difficulties and person 

abilities (R. M. Smith & Plackner, 2009). For this reason, the weighted version of the fit 
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statistic was developed, called Infit, which is an “information weighted sum” (Bond & 

Fox, 2015, p. 269). Infit is referred to as the weighted mean square and is calculated as 

shown in Equation 2.12, where each squared standardized residual is divided by the sum 

of the variances.   

𝐼𝑛𝑓𝑖𝑡 =
∑ 𝑅𝑣𝑖

2𝑛
𝑣=1

∑ 𝑉𝐴𝑅(𝑋𝑣𝑖)
𝑛
𝑣=1

,   (2.12) 

The range of Infit and Outfit consists of non-negative real numbers. Under the 

Rasch model Infit or Outfit have an expected value of 1.0 and range from 0 to infinity 

(Christensen et al., 2013; Wright & Linacre, 1994). For this reason, values of Infit or 

Outfit which are close to zero or higher than one indicate lack of item fit. Mean squares 

which are greater than 1.0 indicate underfit to the Rasch model; on the other hand, mean 

square values less than 1.0 indicate overfit or redundancy to the Rasch model (Wright & 

Linacre, 1994; Linacre, 2002). Underfit would signal the Rasch model does not 

adequately capture the underlying structure of the data.  

Multiple proposed corrections to the residual fit statistics have been developed; 

however, the fact that the residual fit statistics require such corrections indicate they are 

flawed from the start (Karabatsos, 2000; Wright & Linacre, 1994). Christensen et al., 

(2013) indicated that it is difficult to know “exactly when these statistics are too small or 

too large to be acceptable is, however, a difficult question and the established practice 

surrounding these fit statistics is infested with a number of misunderstandings and 

misconceptions” (p. 86). Wright and Linacre (1994) recommended a cutoff of 0.6 to 1.4 

logits for Infit and Outfit for the rating scale model; however, A. B. Smith et al. (2008) 

stated that most methodological studies utilize a range of 0.7 to 1.3 logits. In contrast, 

Linacre (2002) suggested a range of .5 to 1.5 as “productive for measurement” indicating 
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that values in this range should aid the researcher in determining which items are 

misfitting and thus should be removed from the scale. Additionally, anything below .5 is 

less productive for measurement, though Linacre did not consider it degrading. In some 

occasions the value of .5 could produce misleadingly high reliability and separation 

coefficients. Linacre also called the range of .5 to 2.0 unproductive for the construction of 

measurement (para. 10).   

Both Infit and Outfit can be described as mean squares, and can be converted to 

an approximate unit normal utilizing a cube root transformation. This transformation is 

called the t-transformation, producing t-Infit and t-Outfit, or simply ZSTD Infit and 

ZSTD Outfit. This transformation was developed by Wilson and Hilferty (1931), though 

not for Rasch fit statistics, and is presented in Equation 2.13:  

𝑡 =  [(𝑀𝑆1/3 − 1)(
3

𝑠
)]+ (

3

𝑠
)   (2.13) 

Where S is the standard deviation of the mean square calculated for each item, 

within or between groups.  MS can represent either mean square Outfit or mean square 

Infit. In most software, the transformation applied to the mean squares is a cube root 

transformation. This transformation converts the mean square to an approximation of the 

t-statistic. In Rasch software such as Winsteps it is commonly referred as the 

standardized fit index ZSTD. For this type of statistic, common critical values have been 

developed which have very similar Type I error rates across a variety of conditions, 

however, the interpretation of the critical value for a t-transformation fit statistic is 

sensitive to sample size. Linacre (2002) provided ranges for the ZSTD values for 

measurement purposes and indicated that values greater than or equal to 3.0 suggest that 

the data are most likely not going to fit the Rasch model, though with a large sample size 
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“substantive misfit may be small” (para. 11). R. M. Smith, Schumacker and Bush (1998) 

showed that, with varying sample sizes, the standardized fit indices have more consistent 

distributional properties than mean square statistics. For this reason, the authors 

considered that the standardized fit indices were a better choice than mean square 

statistics when it comes to assessing fit to the measurement model.  

Problems with Residual-Based 

Fit Indices  

 

Many researchers have raised questions regarding the distribution of Infit and 

Outfit. Though Infit and Outfit can be thought of as a chi-square statistic for each degree 

of freedom there is a different critical value (which can be found in any chi-square 

distribution table). The transformation of the chi-square into a mean square divides the 

chi-square by its degrees of freedom. However, the chi-square distribution is not 

symmetrical about the mean; thus, a fit rule such that mean square < .7 and mean square 

> 1.3 has a different Type I error rate for the upper and lower tails (R. M. Smith & 

Plackner, 2009; Wu & Adams, 2013). Wu and Adams (2013) and Christensen et al. 

(2013) expanded on this issue. First, the method assumes that the distribution of Outfit is 

a chi-square, which makes an implicit assumption that 𝒁𝒗𝒊 is also normally distributed. 

However, the standardized residuals, 𝒁𝒗𝒊, are a discrete random variable which in the 

dichotomous Rasch model, can only take on the values of [0,1]. Second, the sample size 

of 𝒁𝒗𝒊 is N = 1 since 𝒁𝒗𝒊 is calculated for each person-item interaction and then is 

averaged over persons to assess item fit (and over item to asses person fit; George, 1979). 

Consequently, it follows that the test of fit based on 𝒁𝒗𝒊 will be conservative; therefore, 

the risk of Type II error is greater.  Christensen et al. showed mathematically that the 

result of the test of fit for an item would depend significantly on the targeting of the items 
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to the population. Creating well targeted items for examinees with probabilities of correct 

responses close to .5 (for the dichotomous Rasch model) would result in items which will 

most likely fit the Rasch model. If the items are mistargeted to examinees shown by low 

probability of correct responses, then the items would most likely misfit the Rasch model. 

A second problem that Christensen et al. (2013) identified is as follows:  the 

expected value under the Rasch model is denoted by, 𝐸𝑣𝑖 , where person is denoted by 𝑣 

and item is denoted by 𝑖. The estimates of expected item scores �̂�𝑣𝑖 are based on 

parameter estimates rather than known parameters. Traditionally, in analyses such as 

linear regression �̂�𝑣𝑖 can replace 𝐸𝑣𝑖. In practice, and utilizing an analysis such as linear 

regression, the replacement is not an issue due to the use of consistent estimates of 

unknown parameters, because in this situation, the bias and standard errors converge 

when the sample size becomes larger. This does not occur with the Rasch model. The 

problem is that  �̂�𝑣𝑖 depends on two different types of parameters: item parameters and 

person parameters. Consistent estimates may be available for one, but not for both types 

of parameters. Christensen et al. maintained that item parameters may be assumed to be 

consistent “except for the so-called joint estimates that are known to be inconsistent” (p. 

88). In the same manner, person parameter estimates can be considered consistent if the 

number of items is large. Although Christensen et al. argued that this is rarely the case, at 

least in the health sciences where the number of items often ranges from five to 25. In 

addition, Wu and Adams (2013) argued that when �̂�𝑣𝑖 replaces 𝐸𝑣𝑖 it assumes Outfit 

follows a chi-square distribution; however, this only occurs if Outfit is estimated using 

best asymptotically normal (BAN) estimators. This would not occur when the 

unconditional maximum likelihood (UCON) estimation method is used to estimate the 
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Rasch parameters. Christensen et al. detailed that the bias of the person parameter 

depends on the choice of estimating procedure, for example, maximum likelihood (ML), 

weighted maximum likelihood (WML), joint maximum likelihood (JML), or Bayesian.  

Karabatsos (2000) outlined six problems with commonly used Rasch residual fit 

statistics. The first issue is that the standardized residual, 𝑍𝑣𝑖, is nonlinear. Thus, all 

Rasch fit statistics are nonlinear. The true distance between two numbers can only be 

measured when both numbers are on an interval or ratio scale. However, 𝑍𝑣𝑖 utilizes the 

subtraction of nonlinear ordinal scores: 𝑅𝑣𝑖 = 𝑋𝑣𝑖 − 𝐸𝑣𝑖. When two 𝑍𝑣𝑖 functions are 

plotted against the logit difference, 𝜃𝜈 − 𝛽𝑖, the observed responses, 𝑋𝑣𝑖, differ for each 

𝑍𝑣𝑖 . One function utilizes 𝑋𝑣𝑖 = 1  and the other 𝑋𝑣𝑖 = 0 as a constant. In the case of the 

𝑋𝑣𝑖 = 0 function the logit changes from   𝜃𝜈 − 𝛽𝑖 = 0 to 𝜃𝜈 − 𝛽𝑖 = 2 which results in  

𝑍𝑣𝑖 = 1.7; however, the change from 𝜃𝜈 − 𝛽𝑖 = 2 to 𝜃𝜈 − 𝛽𝑖 = 4 results in 𝑍𝑣𝑖 = 4.7 

which is almost three times larger. Karabatsos concluded, “it appears that, within the 

residual framework, only nonlinear judgements can be made about fit to linear 

measurement models” (p. 159).  

 For Rasch modeling to be effective the local independence assumption must be 

met. Unidimensionality is met if there is local independence, but local independence is 

not the only requirement for unidimensionality (Wright, 1996). Wright (1996) suggested 

an approach to identifying subsets of constructs in the Rasch model is principal 

components analysis of the residuals 𝑍𝑣𝑖  which requires several steps to check for local 

independence in the data. He argued that the successful implementation of the Rasch 

model depends on this check. Additionally, Linacre (1998) believed that principal 

components of the Rasch residuals is an effective way of identifying multidimensionality. 
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On this topic, Karabatsos (2000) argued that the usefulness of the procedure is limited by 

the assumption that 𝑍𝑣𝑖 are measured on an interval scale; however, according to 

Karabatsos 𝑍𝑣𝑖 is an ordinal z-score. Finally, Karabatsos argued that even transforming 

𝑍𝑣𝑖 would not help because the transformation results in an “even sharper non-linear 

function” (p. 160). Karabatsos suggested a different transformation named Model 

Deviance Residual and argued that the factor analysis of these residuals would be more 

useful. Finally, Karabatsos concluded that the detection of misfit is basically categorizing 

and the linearity of 𝑍𝑣𝑖 should not matter if the null distribution is known and stable.  

 The second problem Karabatsos (2000) outlined in his paper relates to the 

responses used for both parameter estimation and fit analysis. In Rasch analysis the 

observed response, 𝑋𝑣𝑖, is utilized to estimate both the item and person parameters. The 

expected value of the raw residuals, 𝐸𝑣𝑖, is a direct function of these estimated 

parameters. This dependency may cause the 𝑍𝑣𝑖 to decrease which results in an under-

detection of misfit. Karabatsos stated that there has been no attempt to research this issue; 

however, the author also speculated that it may be difficult to do so in the framework of 

residual fit analysis.  

 The third problem outlined by Karabatsos focuses on a “chain-like dependence” 

among the residual fit statistics (Karabatsos, 2000, p. 161). The t distribution of residuals 

depends on the mean square distribution, which depends on the standardized residuals, 

𝑍𝑣𝑖, distribution. The stability of both the Infit and Outfit distributions depends on the 

stability of the 𝑅𝑣𝑖, the response residuals, distribution. The stability of the ZSTD Outfit 

null distribution and the ZSTD Infit null distribution depends on the stability of both 

Outfit and Infit. The dependency among these distributions causes multiple problems. For 
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example, in the case where a fit statistic does not meet the distributional assumptions for 

any given test, other statistics will depend on the information and will also fail to meet 

their distributional assumptions (Karabatsos, 2000). Once one distributional assumption 

is not met, it follows that the rest of the fit statistics and other statistics of interest will 

also fail to meet the assumptions. This can cause both the under- or over-detection of 

misfit in Rasch analysis.   

 The fifth issue outlined by Karabatsos (2000) is that the null distributions of the 

standardized residuals, 𝑍𝑣𝑖, Infit, and Outfit vary as a function of arbitrary factors. 

Utilizing dichotomous data of a 10 and 20 item test in a simulation, along with sample 

sizes ranging from N = 30 to N = 2,000, with the ability, 𝜃, distributed as 𝑁(0,1) and 

difficulty, 𝛽, distributed as 𝑈(-1, 1), Karabatsos discussed how changing one of the 

sample size test conditions would cause the null distribution to vary. The author noted, 

that for a longer test, utilizing the same conditions the null distribution holds. However, 

for the 10-item test, the standard deviation of the standardized residuals, 𝑍𝑣𝑖 , decreased as 

the sample size decreased. Additionally, as the difficulty range of the items increased the 

standard deviation of the standardized residuals, 𝑍𝑣𝑖 , decreased. Similarly, zero is 

considered the center of the item scale; however, when the mean of the ability, 𝜃, 

distribution increasingly deviates from zero the standard deviation of the standardized 

residuals, 𝑍𝑣𝑖 , decreases. Karabatsos noted that this result is expected given that the 

standard deviation of the standardized residuals, 𝑍𝑣𝑖 , decreases as a function of the 

decreasing sample size.  

  In addition to these findings, Karabatsos (2000) discussed “lucky” guessing and 

item bias as well as the artificial conditions set by simulation conditions. The term 
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“lucky” guessing simply refers to a person’s guessing the correct response on an item 

simply by luck while item bias means that for two different groups of examinees there is 

a discrepancy between the latent ability and the performance on the item (Mellenbergh, 

1989). Karabatsos discussed that lucky guessing and item bias can affect the mean and 

standard deviation of the standardized residuals, 𝑍𝑣𝑖; this in turn, decreases the power of 

standardized residuals, 𝑍𝑣𝑖 ,  in detecting measurement disturbances. This results in the 

data not meeting the properties of the Rasch model. Additionally, Karabatsos focused on 

the artificial conditions of simulation studies. He argued that in testing practice it is 

difficult for the researcher to have control over all the different conditions (sample size, 

test length, the ability and difficulty distributions, item bias, and lucky guessing, as well 

as whether the data fit the Rasch model) at once. In fact, in a real testing situation only a 

few of these conditions would be present. For example, in the case of an attitude survey, 

it is hard to imagine a participant would guess any attitude; though, item bias is possible. 

For these reasons, Karabatsos concluded that cut scores for the standardized residuals, 

𝑍𝑣𝑖 ,  cannot be “used for arbitrary testing conditions to classify a response as fitting or 

misfitting the model” (Karabatsos, 2000, p. 164).  

Karabatsos (2000) performed a simulation with the ability, 𝜃, distributed as 

𝑁(0,1) and difficulty, 𝛽, distributed as 𝑈(-2, 2), using test length sizes of 20 and 50, and 

sample sizes of N = 150, 500 and 1,000. The author compared the Type I error rates in 

detecting misfit for the Infit and Outfit fit statistic across three commonly used critical 

values of 1.1, 1.2 and 1.3 for the upper level. In this simulation, Karabatsos showed that 

Outfit was a function of sample size and test size. Depending on a variety of conditions, 

the Type I error rates of misfit for Outfit ranged from .00 to .21. Thus, Karabatsos 
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concluded that a single critical value for Outfit cannot be used across “different arbitrary 

conditions of test length and sample size to make a misfit classification of an item” (p. 

165). To this conclusion, Karabatsos added that the issue is even more important in 

person fit given that normally, there are fewer observations for a person than there are 

items. Regarding Infit, Karabatsos’ simulation showed that utilizing a critical value of 1.1 

for Infit resulted in a “large difference” between the Type I  error rates when comparing 

smaller sample sizes (N < 500) to the larger sample sizes (N > 500). Utilizing a critical 

value of 1.1 for Infit for large sample sizes resulted in a Type I error rate that was close to 

zero, that is, the critical value under-detects measurement disturbances. However, the 

critical value of 1.3 for Infit, resulted in an even greater under-detection of measurement 

disturbances (p. 165). R. M. Smith et al. (1998) performed a similar study with almost 

identical conditions which demonstrated that the null distributions of the t-transformed 

standardized Infit and Outfit (ZSTD) are more stable than the distributions of non-

standardized Infit and Outfit.  

Additionally, the sample size and the length of the test had a “small influence” on 

Outfit (p. 7). For Infit, utilizing the critical value of 1.2 to flag for misfit, the Type I error 

rate approximated .005 across conditions. For Outfit, the percent of misfitting items 

greater than the critical value was too small. Further, the authors stated that the 

simulation work showed that “no single critical value will work with both weighted and 

unweighted mean squares” (p. 10). The results of Smith et al.’s simulation showed that 

Infit and Outfit are more sensitive to sample size compared to the standardized versions. 

In addition to this issue, the use of a critical value for Infit and Outfit can result in the 

under-detection of misfitting items. 
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Karabatsos (2000) demonstrated that the distribution of item difficulties affects 

the null distributions of Infit and Outfit fit statistics. In a mathematical demonstration, 

Karabatsos varied the distribution of item difficulties while holding the ability of the 

examinees constant across six different exams. Each successive exam was more difficult 

than the previous. Although the examinees in this hypothetical situation only answered 

one response incorrectly the fit statistics differed systematically across the six different 

tests. Outfit failed to detect the unexpected response in the tests; furthermore, in four out 

of six tests Outfit indicated that the responses fit the Rasch model. Karabatsos concluded 

that the response residuals and Outfit increased as a function of the test difficulty. 

Additionally, Infit also displayed test dependency, meaning these statistics are tied to a 

specific form of the test. Despite the unexpected incorrect response, Infit found that the 

responses fit the Rasch model in tests 2 to 5 while flagging the misfit response for tests 1 

and 6. Karabatsos argued that a similar demonstration was possible when the distribution 

of person abilities varies while holding the item difficulty distribution constant. Finally, 

Karabatsos concluded, “it is difficult to directly compare mean-square fit between 

individuals with differing ability, and mean-square fit between items differing in 

difficulty, with the same ‘metric’” (p. 167). Karabatsos’s results suggest that a minimum 

critical value of Infit and Outfit should be used across different distributions of item 

difficulty and person ability; however, the author did not provide this cutoff value.  

 

Karabatsos (2000) focused on the “illogic” of the ZSTD Infit and the ZSTD 

Outfit.  Authors such as R. M. Smith et al. (1998) believed that the null distributions of 

the ZSTD Infit and the ZSTD Outfit were more stable than those of Infit and Outfit. 
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However, work by R. M. Smith (1991) showed that the null distributions of the ZSTD 

Infit and the ZSTD outfit can vary as a function for test length, the person ability 

distribution, and the item difficulty distribution. In addition to the simulation study in his 

paper, Karabatsos (2000) utilized data from a cognitive ability test named the Knox Cube 

Test (KCT). The KCT analysis consisted of a sample size of N=34 and 11 items. Within 

this data set all items fit the Rasch model and the item fit range was -1.5 ≤ standardized 

Outfit and standardized Infit ≤ 1.5. However, Karabatsos duplicated the dataset several 

times to increase the sample size resulting in 10 different data sets each with twice as 

many subjects as the prior data set. The sample size increased while holding constant the 

response patterns and distribution of persons’ ability and difficulty the range for the 

standardized Infit increased from -1.5 ≤ ZSTD Infit ≤ 1.5 to -.9.9 ≤ ZSTD Infit ≤ 9.9.  

However, Wu and Adams (2013) believed that by duplicating the data, 

Karabatsos introduced interdependencies between the cases, which resulted in violating 

the independence assumption utilized for deriving parameter estimators and fit statistics. 

In order to test their hypothesis regarding problems introduced by duplication of cases, 

Wu and Adams decided to create two datasets, (a) the first data set was constructed by 

duplicating 50 cases 20 times resulting in 1,000 cases and 40 items which fit the Rasch 

model, and (b) the second data set was created by simulating 1,000 independent cases 

with 40 items which fit the Rasch model. The results for the duplicated dataset showed 

that the fit of the standardized t statistics ranged from -10 to 10 and did not fit the Rasch 

model. In contrast, the second dataset had t statistics that ranged from -2 to 2. 

Additionally, Wu and Adams selected three random samples from the Programme for 

International Student Assessment (PISA) with N = 300, 2,500, and the total sample size N 
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= 21,259. The authors found that as the sample size increased the t statistics flagged more 

items with misfit. The authors stated, “This does not mean that t statistics provide 

erroneous results. On the contrary, fit t statistics tells us the truth that the items are really 

misfitting the model when the sample size is large enough to detect (true) misfit” (p. 

347). Wu and Adams argued that Karabatsos’ statement that the t statistics diverge as the 

samples are duplicated actually demonstrates that when the sample size is large enough 

true misfit can be identified.    

Karabatsos’ (2000) sixth and final criticism of residual fit analysis is more 

general. The Rasch model is a type of numerical conjoint measurement. Conjoint 

measurement offers methods to analyze composition rules, which are rules or theories 

that describe the relationship among a variety of measurable variables, but utilize only 

ordinal information (Krantz & Tversky, 1971).  For this type of measurement, residual-

based fit tests often fail to locate “crucial data-model discrepancies” (Karabatsos, 2000, 

p. 170). Residual fit tests often find perfect or excellent fit even in the presence of 

conjoint measurement violations which results in the under-detection of misfit.  

R. M. Smith and Suh (2003) studied the degree to which the Infit and Outfit item 

fit statistics could detect violations of the invariance property in Rasch. The researchers 

used the software Winsteps to calibrate items and utilized data from a multiple-choice 

mathematics competency exam. Additionally, the authors followed the cutoffs 

recommended by Wright and Linacre (1994) and concluded that Infit and Outfit were 

insensitive to the lack of invariance in the item parameters. Finally, the authors urged 

researchers to not rely solely on mean square Infit and Outfit, and stated that using mean 
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square statistics may cause researchers to skip a significant number of misfitting items. 

This may impact how researchers view the unidimensionality of the measure. 

R. M. Smith and Plackner (2009) conducted a simulation to show the need for the 

use of the family of fit statistics, which they considered to include Infit, Outfit, the 

between and within fit statistics, and the standardized t-transformations (ZSTD). The 

purpose of their study was to test the power of these statistics in detecting fit to detect 

both random and systematic measurement disturbances. They defined random 

measurement disturbance as guessing when the answer is unknown, while they defined 

systematic measurement disturbance as differential item functioning (DIF), meaning the 

items work differently for different subgroups. The results of R. M. Smith and Plackner’s 

simulation showed that the total item fit statistics, both weighted and unweighted, are 

insensitive to bias, specifically DIF, in the data. Regarding the between-items fit statistic, 

the statistic was able to detect 36% of the misfitting items, which had a small bias. This 

indicates that if bias detection is a priority when assessing fit, then the bias must be large 

in order for the statistic to detect the bias. As the bias increased so did the statistic’s 

ability to detect misfit. The authors concluded that “the bias would have to be extremely 

large before it could be detected by either of the total fit statistics” (p. 433). More 

importantly, the authors stated that a combination of fit statistics was necessary to detect 

a variety of common measurement disturbances. Additionally, the authors established 

that random types of measurement disturbances are better detected by total fit statistics 

while systematic types of measurement disturbances are better detected by between fit 

statistics.  
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Khan (2014) discussed global fit in the Rasch model and studied parameter 

recovery and stability and model fit across a variety of sample sizes and test lengths. The 

data were calibrated in the R package Itm. The conditions for Khan’s research included 

four test lengths (10, 20, 30, and 50) and two sample sizes (N = 50 and N = 80). These 

samples were subsamples from a dataset of 88 male examinees who responded to a non-

verbal cognitive ability test. Khan focused on model fit, rather than item fit. In the Itm 

package, model fit is calculated by utilizing Pearson’s chi-square statistic. The author 

concluded that it is possible to fit the Rasch model to small sample sizes and short tests, 

such as those utilized in this study; however, this may result in unstable item parameters 

and poor item parameter recovery.  

Most research discussed so far discourages the use of the cutoffs suggested by 

Wright and Linacre (1994); however, work by Wu and Adams (2013), Wolfe (2008) and 

Wolfe and McGill (2011) provide alternatives to common cutoff values. Wu and Adams 

suggested a new approach to find finding critical values or cutoffs for identifying misfit 

in the data. The authors conducted empirical and simulation research to establish the 

properties of the residual-based fit statistics. Wu and Adams’ research focused on the 

dichotomous Rasch model. The authors derived a formula for the variance of the 

unweighted fit mean square statistic (Outfit). In this formula, the asymptotic variance 

derived by the authors depends only on the sample size, N, i.e., the variance is denoted by 

2

𝑁
. Wu and Adams identified two advantages to utilizing this asymptotic formula for the 

variance: (a) the formula makes it clear that the variance of Outfit is inversely 

proportional to the sample size, (b) the simplicity of the formula. Wu and Adams argued 

that instead running “lengthy simulations to establish the null distribution” of the residual 
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fit statistics for multiple real life scenarios the mean square can be assumed to have a 

“scaled” chi-square distribution and the variance approximately equal to 
2

𝑁
 (p. 343). The 

authors suggested utilizing Equation 2.14 to calculate a range for the critical values to 

obtain acceptable fit as opposed to utilizing conventional critical values:  

1 ± 2√
2

𝑁
,  (2.14) 

Wu and Adams (2013) created a small-scale simulation with data that fit the 

Rasch model based on 20 items and a sample size of N = 100. For this condition, the 

authors found that the mean square values generally fell between .7 and 1.3. However, 

when the same 20 items were used, but the sample size was increased to N = 800 the 

values ranged from .9 to 1.1. The authors suggested that the most important takeaway 

from their paper is that, since the variance of the mean square statistic depends on the 

sample size, then it is illogical to suggest cutoff values for the mean square statistics that 

do not take into consideration the sample size. It is important to note that a variation of 

this formula is discussed in the simulation study conducted by R. M. Smith et al. (1998) 

which in turn states the formula was first suggested via Wright’s personal communication 

with the authors.  

As Karabatsos (2000) discussed, an issue with Infit and Outfit is that the 

distributions of these fit statistics are unknown which makes it difficult to determine the 

critical values necessary to identify misfit. Besides Wu and Adams’ (2013) asymptotic 

formula for the variance there exist bootstrap procedures for identifying critical values for 

fit statistics such as Infit and Outfit (Seol, 2016; Wolfe, 2008; Wolfe & McGill, 2011). 

Bootstrap procedures are easy to implement and are readily available. In fact, Wolfe 
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(2008) developed a SAS macro (Statistical Analysis System) named Rasch bootstrap fit 

(RBF). Wolfe and McGill (2011) explained that bootstrapping works by constructing “an 

empirical estimate of the unknown sampling distribution by generating a probability 

distribution of the statistic across a large number of resamplings of an original sample via 

sampling with replacement” (p. 7). Then, the discrete and empirically estimated 

distribution originated by bootstrapping is considered the population from which a 

number of resamples of size N are drawn. In the case of fit statistics, a fit statistic is 

computed for each sample drawn and the distribution of these statistics plays the role of 

the “empirical estimate” of the sampling distribution for the fit statistic (p. 7).  

Wolfe and McGill (2011) focused on the dichotomous Rasch model and 

manipulated the test length (20, 40, 80, 160) and the sample size (N = 100, 200, 500, 

1,000). The authors also varied the offset distributions, that is, difference in means for the 

simulated item and person distributions. Person ability was distributed 𝑁(0,1) while item 

difficulty was distributed 𝑁(𝜇, 1) where 𝜇 varied depending on the level of the offset 

distribution. For every item, the item slope could take three different values and the lower 

asymptote could take two different conditions. This condition determined the nature of 

misfit for the item. Data were calibrated using the Winsteps Rasch software. In Wolfe 

and McGill’s study, the Type I error rate was defined as the proportion of items which 

were incorrectly identified as misfitting while Type II error was defined as the proportion 

of items which were not flagged as misfitting but should have been. The results of their 

research showed that the Type II error rate was lower for the critical values developed 

utilizing the bootstrapping method compared to the rule of thumb critical values set by 

Wright and Linacre (1994) which were generally wider in comparison. As with research 
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by Wang and Chen (2005), Karabatsos (2000), and R. M. Smith (1988) among others, the 

validity of the rule of thumb critical values in Wolfe and McGill’s study varied as a 

function of sample size and test length.  

Rating Scale Fit Research 

 

In this section, research focused solely on the rating scale model (RSM), as 

opposed to the dichotomous Rasch model, is discussed. Research that focuses on the 

RSM is scarce. Thus, in this section work by E. V. Smith Jr. (2002), Wang and Chen 

(2005), A. B. Smith et al. (2008), and Seol (2016) is reviewed.  

E. V. Smith Jr. (2002) conducted a simulation of rating scale data comparing 

principal components analysis (PCA) and fit statistics focusing on the unidimensionality 

of the data. The conditions for E.V. Smith Jr.’s simulation was sample size of N = 500, 

test length of 30, and a 5-point rating scale. In addition to two levels of ability, E.V. 

Smith Jr. also varied the degree of common variance between two components to assess 

multidimensionality. The Rasch software Winsteps was utilized to analyze the data. E.V. 

Smith Jr. focused on the standardized Infit and Outfit (ZSTD Infit, and ZSTD Outfit) 

rather than the mean square fit statistics. In order to interpret the ZSTD Infit and ZSTD 

Outfit, E.V. Smith Jr. compared them to the critical value of ±2. The presence of 

multidimensionality was determined by the percentage of items with fit values greater 

than ±2. The results of the study showed that fit statistics, namely the standardized Infit 

and Outfit, were as effective as PCA in detecting multidimensional items.   

Research by Wang and Chen (2005) focused on the item parameter recovery and 

the standard error of fit estimates under varying conditions of sample size and test length. 

Parameter recovery refers to a computer program’s ability to “recover the generating 
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parameters accurately” (p. 377). In order to study parameter recovery, data sets with 

known parameters must be created; however, the data can be calibrated under different 

conditions of sample size, test length, IRT model, or software. The parameters from the 

calibration are compared to the known parameters.  Parameter recovery refers to when 

the calibrated parameters are similar to the known parameters. If there exists a 

statistically significant difference then the estimation is said to be biased.  In their 

research, Wang and Chen manipulated three independent variables: (a) the type of model 

(Rasch dichotomous model and rating scale model), (b) sample size which ranged from 

100 to 2,000, and (c) the test length 10, 20, 40, and 60 for the Rasch RSM model and 5, 

10, and 20 items for the rating scale model. The rating scale model utilized a five-point 

scale. For the Rasch model the item difficulty was 𝑁(0,1); however, for the rating scale 

model the “overall difficulties” or the location of the difficulty parameters were -1.0, -

0.5, 0, 0.5, and 1.0. The person abilities had a distribution of 𝑁(0,1). The researchers 

utilized the programming language FORTRAN 90 to generate the data and Winsteps to 

analyze, or calibrate, the data.  

 The fit statistics of interest for Wang and Chen were Outfit and Infit, along with 

the t-transformed statistics (ZSTD). Test length did not affect the standard deviations of 

Infit and Outfit; however, the standard deviations of Infit and Outfit became smaller for 

larger sample sizes. In their results, Wang and Chen found that as the item difficulties 

became extreme the standard deviations of the fit statistics became smaller, particularly 

for Infit ZSTD. For this reason, the authors believed it is “safe” to utilize the common 

critical values of ±2 to identify misfitting items only for moderate difficulties (p 387). In 

the case of extreme difficulties, these common critical values may be too conservative, 
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which would cause poorly fitting items to be flagged as fitting. Additionally, for smaller 

sample sizes in the study (N = 200) Outfit was as large as 2.54 which would cause the 

common critical values to flag as misfitting many items the authors considered to be 

“good” items.  The authors remarked that the common critical value for the mean square 

fit statistics are not appropriate. In fact, they suggested that the critical values should be 

adjusted according to the sample sizes, consistent with the recommendation shared by 

Wu and Adams (2013). 

Seol’s (2016) work focused on evaluating a bootstrap method to examine the 

critical range of misfit for the rating scale model. Seol focused on bootstrapped 

confidence intervals (CIs) utilizing simulated data with the following conditions: 

polytomous data on a 5-point scale, five different test lengths (10, 20, 40, 60, 80), and 

five different sample sizes (N = 200, 400, 600, 800, 1,000). Additionally, the person 

ability and item difficulty were generated with a distribution of 𝑁(0,1), and the difficulty 

of the threshold from one category to another was generated with a uniform distribution 

𝑈(−2,2). The data were simulated utilizing the software WinGen3 and the calibration 

was performed using the Rasch bootstrap fit (RBF) macro by Wolfe (2008). The results 

of Seol’s study showed that the critical values developed via the RBF differ from those 

suggested by Wright and Linacre (1994) and commonly used by researchers. One of the 

findings from Seol’s study partially aligns with findings by Wang and Chen (2005) that 

Infit and Outfit varied over different sample sizes. In Seol’s study, as the sample size 

became larger the 95% CI for Infit and Outfit became narrower as would be expected. 

The author concluded that for the RBF method, it would be inappropriate to utilize the 

same critical values for both persons and items; rather, sample size and/or test length 
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should be considered when deriving these critical values. Further, the bootstrap CI 

method can be used as an alternative to Infit and Outfit particularly when the distributions 

of these fit indices are not well known and depend on the sample size.  

Infit and Outfit are the most commonly used fit statistics in health research which 

explains the research on a “real” life data set conducted by A. B. Smith et al. (2008). The 

work by Smith et al. focused on the impact of sample size on four commonly used fit 

statistics. These four fit statistics of interest were Infit and Outfit and the t 

transformations of these (ZSTD). The authors utilized data from the Hospital Anxiety & 

Depression Scale (HADS) and the Patient Health Questionnaire (PHQ-9). The HADS 

consists of seven items on a 4-point scale while the PHQ-9 is a nine item survey on a 4-

point scale. Eight sample sizes were of interest: N = 25, 50, 100, 200, 400, 800, 1,600, 

and 3,200. Smith et al. drew 10 samples with replacement for each sample size for the 

two instruments. For the HADS there were 1,120 cases and for the PHQ-9 there was a 

total of 720 cases used in the study.  For the calibration of the items the authors used 

Winsteps. Results indicated that while Infit and Outfit remained consistent across sample 

sizes, the ZSTD Infit and ZSTD Outfit became increasingly negative beyond N = 200. 

The results of Smith et al.’s (2008) study showed that t statistics were very sensitive to 

sample size which corroborates results by Wang and Chen (2005) and later Wu and 

Adams (2013), though these latter two studies utilized dichotomous data. In contrast, Infit 

and Outfit remained relatively stable for rating scale data. 

The Q-Index 

 

Tarnai and Rost (1990; as cited by Rost & von Davier, 1994) originally developed 

a Person-Q index for the purpose of identifying misfitting persons in the Rasch model. 
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Rost and von Davier (1994) subsequently developed the Q-Index in similar fashion as the 

Person-Q. There exist no methodological studies regarding the Q-Index compared to 

current item fit statistics in the Rasch model. However, researchers have utilized the Q-

Index in a variety of applied studies, including using the Q-Index in addition to Infit and 

Outfit in their studies regarding superitems (items where participants must fill in the 

blanks in a text; Eckes, 2011); as a standalone fit statistic for studying motor competence 

in early childhood (Utesch et al., 2016); fitting the mixed Rasch model to a reading 

comprehension test in order to identify types of readers (Baghaei & Carstensen, 2013); 

and assessing the psychometric properties of a sleeping deprivation measure (Janssen, 

Phillipson, O'Connor, & Johns, 2017). Yet, Ostini and Nering, as late as 2006, called 

attention to the fact that little research has been performed on the Q-Index and thus there 

is little knowledge regarding the fit statistic’s robustness.  

The Q-Index makes use of the statistical properties of the Rasch model, namely, 

parameter separability and conditional inference. Parameter separability refers to the 

form in which the parameters in the Rasch model occur linearly and without interactions 

(See Equation 2.3). The likelihood equations in which the relation between the person 

ability and data are contained are separate from an equation which contains the data and 

item difficulty parameters. This occurs due to the algebraic separation of parameters 

specified within the Rasch model. This in turn, allows “derivation of conditional 

estimation equations” for either item difficulty or person ability (Wright & Stone, 1999, 

p. 27). In other words, the equations used to estimate item difficulties do not involve the 

person abilities’ parameters and vice versa (Wright & Stone, 1999).  
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The Q-Index does not require estimation of the item parameters for any given 

item but it is conditioned on the score distribution of said item (Rost & von Davier, 

1994). In other words, the fit of an item, 𝑖, is evaluated with regard to the conditional 

probability of its observed response vector. Rost and von Davier’s Q-Index is currently 

available in the Rasch software Winmira (von Davier, 2001). The Q-Index can be utilized 

with any unidimensional Rasch model, for example, the Rasch dichotomous model, the 

rating scale model (Wright & Masters, 1982), the equidistance model (Andrich, 1982), 

the partial credit model (Masters, 1982), continuous rating scale model (Müller, 1987),  

or the dispersion model (Rost, 1988).   

When testing the significance of the fit of an item, the item parameters are 

estimated first and then utilized to derive the sampling distribution for the item parameter 

(Rost & von Davier, 1994). Unlike the chi-square fit statistics, the Q-Index is not based 

on the differences between observed and expected response scores. For this reason, the 

Q-Index does not suffer from problems caused by the discrete nature of the response 

scores (Rost & von Davier, 1994). Furthermore, the Q-Index is based on the likelihood of 

observed response patterns and utilizes the likelihood of an item pattern conditioning on 

the score of the item. This results in an item fit index that is essentially free of the item 

parameter. 

Additionally, the Q-Index utilizes the concept behind a Guttman pattern. The 

Guttman pattern was named after sociologist Louis Guttman and is sometimes called the 

dominance model (Van Schuur, 2011). The dominance model is also known as 

cumulative scale analysis, implicational scale analysis, and Guttman scaling. Guttman 

scaling is a type of unidimensional measurement. Louis Guttman’s purpose for this type 
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of scale was to assess “attitudes,” more specifically the morale of American soldiers in 

World War II (Van Schuur, 2011). Currently, Guttman scaling is still used for attitude 

scales. The idea behind Guttman scaling is to have a scale with dichotomous Yes/No 

answers to a set of questions which increase in specificity; in other words, the difficulty 

or the ease of endorsement increases with each question. The person answering the 

questions would advance to a certain question and then stop when he or she no longer 

agrees (or disagrees) with the topic. For example, in a five-item questionnaire regarding 

attitudes towards statistics, if a person reaches question three and then stops answering 

the next question the implication is that the person does not agree with questions four and 

five. Thus, the Guttman pattern produced by this hypothetical examinee would appear as 

follows: 11100. In a sample, people will choose different stopping points in the survey, 

which allows the ranking of their attitudes toward statistics.  

 Finally, the equation for the Q-Index index is as follows: 

𝑄𝑖 = 
∑ (𝑥𝑣𝑖−𝑥𝑣.𝐺)𝑣 𝜃𝑣

∑ (𝑥𝑣.𝐴−𝑥𝑣.𝐺)𝑣 𝜃𝑣
,  (2.15) 

Where 𝜃 is the person parameter which denotes the examinee’s location on the 

latent trait scale and can be estimated three different ways: (a) estimated by using all 

items, (b) estimated by using all items except 𝑖, or (c) using other tests which measure the 

same trait.  The Guttman 𝐺 and anti-Guttman 𝐴 pattern response for each examinee, 𝑣, 

conditioned on the given item score distribution, is obtained by ordering examinees 

according to their ability level, 𝜃, as well as assigning the 𝑛𝑜 , 𝑛1, … 𝑛𝑚  response 

categories 0, 1. … ,𝑚 to the examinees in either ascending if the ability increases or 

descending order if the ability decreases for the anti-Guttman (Rost & von Davier, 1994).  
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The Q-Index is available in the Rasch software Winmira and the Continuous 

Rating Scale Model program (CRSM; version 1.3; von Davier, 2001; Müller, 1999). 

However, the Winmira software has not been updated since 2001, and the CRSM 

program is only available upon request from the author (Müller, 1999). The Q-Index is 

standardized, and ranges from 0 to 1 with a midpoint of .5. A value of 0 indicates perfect 

fit while a value of 1 indicates the item is misfitting (Rost & von Davier, 1994). The 

midpoint of .5 indicates the independence of the item and the latent trait, or as Rost and 

von Davier (1994) called it, random response behavior which indicates that the person is 

answering the items at random. Rost and von Davier stated that Q-Index is “derived for 

the ordinal Rasch model” unlike most of the current fit statistics which were developed 

for the dichotomous Rasch model (p. 174).  

The Q-Index has desirable properties that can make the index superior to the 

popular residual fit statistics such as Infit, Outfit, and their standardized versions. The 

index was developed for the ordinal Rasch model, unlike the residual fit statistics. For 

this reason, I anticipate the performance of the Q-Index to be superior to that of Infit, 

Outfit, and the standardized forms when identifying misfit for the rating scale model. 

Further, residual fit statistics make use of a number of potential cutoff values causing 

confusion among applied researchers who utilize them. The Q-Index may provide a more 

clear-cut solution to identifying misfit for applied researchers.   
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Chapter Summary 

 

This chapter focused on the currently available fit statistics for Rasch analysis. 

Table 2.1 below summarizes the different findings regarding Infit, Outfit and ZSTD Infit 

and ZSTD Outfit reviewed in this chapter. The major approaches to assessing fit in IRT 

and Rasch models, including likelihood, chi-square, and the residual approach, were 

evaluated in terms of their strengths and weaknesses. Most of the research on fit statistics 

in the Rasch analysis is based on the residual fit statistics. Namely, Infit and Outfit are 

two of the most popular fit statistics, and most of the methodological research where 

there are comparisons of fit statistics includes these fit statistics and their standardized 

form (R. M. Smith et al., 1998; A. B. Smith et al., 2008; R. M. Smith & Suh, 2003; Wang 

& Chen, 2005). Additionally, researchers suggest the cutoff values for Infit and Outfit 

should be reevaluated according to sample size (Wang & Chen, 2005; Wu & Adams, 

2013). More importantly, there is very little research regarding fit statistics as a whole 

utilizing rating scale data (Seol, 2016; A. B. Smith et al., 2008; Wang & Chen, 2005); 

however, a quick search online would show that currently Rasch analysis is popularly 

utilized for such data for a variety of topics including mindfulness awareness, coping, 

independent living and rehabilitation, and sleepiness, among others (Goh, Marais, & 

Ireland, 2017; Janssen, et al., 2017; López-Pina et al., 2016; Pretz et al., 2016). 

Additionally, while the Q-Index takes advantage of Rasch properties such as parameter 

separability, currently, there is no research regarding the robustness of the fit statistic. 
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Table 2.1  

Summary of literature review findings for Infit, Outfit, ZSTD Infit and ZSTD Outfit 

Author(s) Findings 

Wright and Linacre (1994)  Suggest cutoff for Infit and Outfit 

Karabatsos (2000) - The stability of the ZSTD Outfit null distribution and 

the ZSTD Infit null distribution depends on the 

stability of both Outfit and Infit. 

The null distributions of the standardized residuals, 𝑍𝑣𝑖, 

Infit, and Outfit vary as a function of arbitrary factors. 

- Infit and Outfit distributions are unknown which 

makes it difficult to determine the critical values 

necessary to identify misfit. 

- The distribution of item difficulties affects the null 

distributions of Infit and Outfit fit statistics 

Smith and Suh (2003) - Studied the degree to which the Infit and Outfit item 

fit statistics could detect violations of the invariance 

property in Rasch.  

- Support the  2.00 cutoff for ZSTD Infit and ZSTD 

Outfit. 

- Concluded that Infit and Outfit were insensitive to the 

lack of invariance in the item parameters 

Wang and Chen (2005) 

Smith et al. (2008) 

Wu and Adams (2013) 

Suggested that critical values should be adjusted 

according to the sample sizes. 

Smith et al. (2008) Suggested a different cutoff from Wright and Linacre 

(1994) for polytomous data  

R. M. Smith and Plackner 

(2009) 

The results of the simulation showed that the total item 

fit statistics, both weighted and unweighted, are 

insensitive to bias, specifically DIF, in the data. 

Khan (2014) Found that it was possible to fit the Rasch model to 

small sample sizes and short tests, such as those 

utilized in this study; however, this may result in 

unstable item parameter recovery 
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Table 2.1 Continued  

Summary of literature review findings for Infit, Outfit, ZSTD Infit and ZSTD Outfit 

Author(s) Findings 

Rost and von Davier (1994) 

Wu and Adams (2013) 

Wolfe (2008); Wolfe and 

McGill (2011) 

Seol (2016) 

Developed alternated methods to Infit, Outfit and 

ZSTD Infit and ZSTD Outfit 
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CHAPTER III 

 

 

METHODS 

 

The design, data generation, variables, procedures, and analysis for this 

dissertation study are described within this chapter including a detailed description of the 

Monte Carlo simulation procedures and Rasch analysis. A Monte Carlo simulation was 

used to answer the research questions posed in Chapter I.  Recall the purpose of this 

proposed study is to examine performance of item fit analysis for the Rasch model. In 

this study, the following Rasch model-based fit indices are examined: Q-index, mean 

square Infit, mean square Outfit, and standardized Infit and Outfit in terms of their 

sensitivity to various data conditions (sample size, number of items, and difficulty 

distribution) and one specific type of measurement disturbance: namely 

multidimensionality. To reiterate from Chapter I, the following research questions were 

used to guide the proposed study. 

Q1 For the Rasch dichotomous model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of sample size, in correctly identifying item 

misfit? 

 

Q2  For the Rasch dichotomous model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of test length, in correctly identifying item 

misfit?  

 

Q3  For the Rasch dichotomous model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 
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under varying conditions of dimensionality, in correctly identifying item 

misfit? 

 

Q4  For the Rasch dichotomous model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of item difficulty distribution, in correctly 

identifying item misfit? 

 

Q5  What degree of the accuracy of parameter recovery does the Rasch 

dichotomous model provide under various simulation conditions when the 

accuracy is assessed by correlation, root mean square error, and bias 

estimates?  

 

Q6 For the Rasch rating scale model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of sample size, in correctly identifying item 

misfit? 

 

Q7 For the Rasch rating scale model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of test length, in correctly identifying item 

misfit?  

 

Q8  For the Rasch rating scale model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of dimensionality, in correctly identifying item 

misfit? 

 

Q9 For the Rasch rating scale model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of item difficulty distribution, in correctly 

identifying item misfit? 

 

Q10  What degree of the accuracy of parameter recovery does the Rasch rating 

scale model provide under various simulation conditions when the 

accuracy is assessed by correlation, root mean square error, and bias 

estimates? 

Design Factors 

 

A 4 𝑥 4 𝑥 2 𝑥 2 𝑥 2 = 128 design was based on four different sample sizes (N = 

50, 100, 150, 250), four test lengths (10, 20, 30, and 50 items), and two different Rasch 

models (dichotomous and rating scale). In addition to these conditions, a measurement 

disturbance in the form of multidimensionality was studied (unidimensional model and 
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multidimensional model). As well, two item difficulty distributions (normal and uniform) 

were examined.  

Data Generation 

 

Simulated datasets were generated for this study using Monte Carlo simulation 

procedures. When using Monte Carlo methods, multiple replications generate an 

empirical sampling distribution (Paxton, Curran, Bollen, Kirby, & Chen, 2001), which 

allows researchers to assess the average random sampling error. The dichotomous data 

for the proposed study was generated using R (version 3.4.3) and the eRm package within 

R (Mair & Hatzinger, 2007). Specifically, the functions sim.rasch and sim.xdim were  

used for the data generation phase. The first function is used to generate dichotomous 

unidimensional data and the second function generates two-factor dichotomous data. 

The unidimensional rating scale data were generated by an R function which can 

be found in Appendix A and the multidimensional rating scale data were generated using 

an R script which also can be found in Appendix A. The multidimensional model for both 

dichotomous and rating scale models had two factors. Specifications on the covariance 

matrix were similar to those in Setzer’s work (2008).  

Sample Size 

The sample sizes were set to N = 50, 100, 150, and 250 for the dichotomous data. 

These sample sizes are commonly used in the handful of Rasch simulation studies 

reviewed in Chapter II (Karabatsos, 2000; Wang & Chen, 2005; Wolfe & McGill, 2011; 

Wu & Adams, 2013). Additionally, Linacre (1994b) suggested that for a high stakes 

situation a sample size of N = 250 in combination with a test length of 20 would be 

necessary to yield stable estimates with a 99% confidence. Linacre suggested that for a 
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95% confidence interval with stable values within ± 1 logit, a minimum sample size of N 

= 30 is necessary for dichotomous data. 

The following sample size recommendations apply to the Rasch rating scale 

model. Green and Frantom (2002) recommended a sample size of at least 100 and a 

minimum of at least 20 items for obtaining stable indices when using Rasch rating scale 

model analysis. A minimum of N = 50 is needed for polytomous data to obtain a 95% 

confidence interval with stable values within ± 1 logit. As well, a sample of N = 150 can 

yield stable values with 99% confidence though Linacre (1994a) did not specify for what 

type of Rasch model this is true. Consequently, the sample sizes were N = 50, 100, 150, 

and 250 based on Linacre’s (1994a) recommendations for polytomous models.  

Test Length 

The test lengths for this study were I = 10, 20, 30, and 50 items. Wright and 

Douglas (1975) stated that as “test length increases above 30 items, virtually no 

reasonable testing situation risks a measurement bias large enough to notice” (p. 38). 

Further, the authors suggested that “only” when using a test length of 10 items may a 

researcher see measurement bias large enough that the item calibration is unstable. 

Through personal communication Linacre (October 25, 2017) suggested that 30 items 

should be enough provided there are at least 30 persons in the sample. 

Item Difficulty 

For this study, the item difficulty distributions were manipulated. The person 

ability parameters were distributed 𝑁(0,1). Additionally, the item difficulty parameters 

were manipulated and distributed 𝑁(0,1) and 𝑈(−2,2) in the same manner as research 

by R. M. Smith et al. (1998), Karabatsos (2000), and Seol (2016). Linacre (personal 
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communication, October 25, 2017) explained that regarding this choice, “usually we 

think of the items measuring ability as equivalent to a tape measure height. The marks on 

a tape measure are uniformly distributed - so a uniform distribution.”  In the case where 

the items are anticipated to support a pass or fail decision, then item difficulties should be 

normally distributed around the pass-fail point. It is important to note that both 𝑁(0,1) 

and 𝑈(−2,2) can be considered artificial for applied researchers; however, these 

distributions align with the majority of the simulation research 

Dimensionality  

Finally, dimensionality was manipulated in this study with two levels: 

unidimensional and multidimensional. Multidimensionality introduces a measurement 

disturbance to the simulation which was intended to help assess the sensitivity of the fit 

statistics. The functions utilized are available in eRm within the R software, namely the 

sim.rasch and sim.xdim functions. The function sim.xdim requires arguments for the 

variance-covariance matrix which determines the relationship between the two 

dimensions for the multidimensional condition. The following variance-covariance 

matrix based on the work by Setzer (2008) and Suarez-Falcon and Glas (2003) were 

used:   

𝑆𝑖𝑔𝑚𝑎 = [
1 0.5

0.5 1
],  (3.1) 

To summarize, the conditions representing four different sample sizes, three 

different levels of test length, two levels of item difficulty distribution, and two levels of 

dimensionality were crossed. Table 3.1 represents the design for the Rasch dichotomous 

model, for the Rasch rating scale model see Table 3.2. The four digit numbers (e.g., 1111, 

1112, etc.) indicate the level of each factor.  
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Table 3.1  

The 4 x 4 x 2 x 2 Factorial Design for Rasch Dichotomous Scale Model  

    Sample Size  

Test   1 2 3 4 

Length     Factor Level Combination 

1=10 1= Normal 1=Unidimensional 1111 1112 1113 1114 

1=10 2=Uniform 2=Multidimensional 1221 1222 1223 1224 

1=10 1= Normal 2=Multidimensional 1121 1122 1123 1124 

1=10 2=Uniform 1=Unidimensional 1211 1212 1213 1214 
  

     

2=20 1= Normal 1=Unidimensional 2111 2112 2113 2114 

2=20 2=Uniform 2=Multidimensional 2221 2222 2223 2224 

2=20 1= Normal 2=Multidimensional 2121 2122 2123 2124 

2=20 2=Uniform 1=Unidimensional 2211 2212 2213 2214 
 

      

3=30 1= Normal 1=Unidimensional 3111 3112 3113 3114 

3=30 2=Uniform 2=Multidimensional 3221 3222 3223 3224 

3=30 1= Normal 2=Multidimensional 3121 3122 3123 3224 

3=30 2=Uniform 1=Unidimensional 3211 3212 3213 3214 

       

5=50 1= Normal 1=Unidimensional 5111 5112 5113 5114 

5=50 2=Uniform 2=Multidimensional 5221 5222 5223 5224 

5=50 1= Normal 2=Multidimensional 5121 5122 5123 5224 

5=50 2=Uniform 1=Unidimensional 5211 5212 5213 5214 

 

Note. Sample sizes: (1) N=30, (2) N=100, (3) N=150, (4) N=250; Test lengths (1) I =10, 

(2) I =20, I =30, I =50; Item difficulty distribution (1) Normal, (2) Uniform; 

Dimensionality (1) Unidimensional, (2) Multidimensional. 

 

Similarly, to the Rasch dichotomous model, the ability was distributed 𝑁(0,1) 

and the item difficulties were manipulated based on two different distributions: 𝑁(0,1) 

and 𝑈(−2,2).  In addition, the thresholds were distributed 𝑈(−2, 2) following the work 

by Seol (2016). Additionally, both Wang and Chen (2005) and Seol (2016) utilized a 5-

point Likert scale; thus, considering the lack of research for the Rasch rating scale model, 



71 

 

 

 

a 5-point Likert scale seemed an appropriate choice point for the current study. The script 

to generate multidimensional rating scale data can be found in Appendix A. 

Table 3.2 

The 4 x 4 x 2 x 2 Factorial Design for Rasch Rating Scale Model  

    Sample Size  

Test   1 2 3 4 

Length     Factor Level Combination 

1=10 1= Normal 1=Unidimensional 1111 1112 1113 1114 

1=10 2=Uniform 2=Multidimensional 1221 1222 1223 1224 

1=10 1= Normal 2=Multidimensional 1121 1122 1123 1124 

1=10 2=Uniform 1=Unidimensional 1211 1212 1213 1214 
  

     

2=20 1= Normal 1=Unidimensional 2111 2112 2113 2114 

2=20 2=Uniform 2=Multidimensional 2221 2222 2223 2224 

2=20 1= Normal 2=Multidimensional 2121 2122 2123 2124 

2=20 2=Uniform 1=Unidimensional 2211 2212 2213 2214 
 

      

3=30 1= Normal 1=Unidimensional 3111 3112 3113 3114 

3=30 2=Uniform 2=Multidimensional 3221 3222 3223 3224 

3=30 1= Normal 2=Multidimensional 3121 3122 3123 3224 

3=30 2=Uniform 1=Unidimensional 3211 3212 3213 3214 

       

5=50 1= Normal 1=Unidimensional 5111 5112 5113 5114 

5=50 2=Uniform 2=Multidimensional 5221 5222 5223 5224 

5=50 1= Normal 2=Multidimensional 5121 5122 5123 5224 

5=50 2=Uniform 1=Unidimensional 5211 5212 5213 5214 

Note. Sample sizes (1) N=50, (2) N=100, (3) N=150, (4) N=250; Test lengths (1) I =10, 

(2) I =20, I =30, I =50; Item difficulty distribution (1) Normal, (2) Uniform; 

Dimensionality (1) Unidimensional, (2) Multidimensional.  
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Number of Replications 

 

Consistent with other simulation studies investigating item fit in the Rasch model 

(Seol, 2016; R. M. Smith et al., 1998; Wang & Chen, 2005) the current study used 1,000 

replications per design condition. The nominal level of α = .05 was used for this study. 

Rasch Analysis 

 

Rasch analysis was performed in Winsteps (version 3.91.0; Linacre, 2006) 

Winsteps was developed by Linacre (2006) and is a popular software package among 

Rasch users. Winsteps utilizes the Joint Maximum Likelihood (JML) estimation method, 

which allows estimation of the item and person parameters to occur simultaneously. The 

item level fit statistics used in Winsteps are based on the chi-square fit statistics proposed 

by Wright and Panchapakesan (1969). The standardized fit statistics, also known as t-

transformations (ZSTD), are also available in Winsteps. The RWinsteps package in the R 

software facilitates communication between R and the Rasch modeling software 

Winsteps. This package will also facilitated the retrieval of information produced from 

the Rasch analysis, such as mean square Infit, mean square Outfit, and standardized Infit 

and Outfit from Winsteps (Albano & Babcock, 2015). During this process, the ability 

estimates generated by Winsteps were also retrieved in order to utilize them for the 

calculation of the Q-Index. 

 I programmed the Q-Index in R. The function to calculate the Q-Index followed 

the description of Equation 2.15 in Chapter II based on Rost and von Davier’s (1994) 

work. The R code to calculate this function can be found in Appendix B. To verify the 

calculation of the Q-Index was correct, the person abilities were retrieved from Winmira 

and imported into R to be used in the calculation of the Q-Index. Table 3.3 represents the 
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comparison of the Q-Index item fit statistics produced by Winmira, the Q-Index item fit 

statistic produced by R utilizing the person abilities from Winmira, and the results of the 

R function using the person abilities produced by Winsteps. It is important to note that 

Winmira utilizes the conditional maximum likelihood estimator (CML) while Winsteps 

utilizes joint maximum likelihood (JML) to estimate the item difficulty and person ability 

parameters.  In Table 3.3, it can be seen that the Q-Index item fit statistics from Winmira 

and R (utilizing the person abilities available in Winmira) are identical. In the third 

column, the Q-Index item fit statistics are calculated utilizing the person abilities from 

Winsteps which utilizes JML estimation which are not too different from those estimated 

from Winmira. In Table 3.4, a similar comparison is made for the Rasch rating scale 

model, where the estimation of the Q-Index item fit statistic by the three different 

approaches appears to differ even less.   
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Table 3.3 

 

Dichotomous Rasch Model, Q-Index Calculation  

 

 Q-Index 

 

Item Winmira 

R (Winmira person 

abilities) 

R (Winsteps person 

abilities) 

1 0.1847 0.1847 0.1776 

2 0.2299 0.2299 0.2213 

3 0.1462 0.1462 0.1410 

4 0.2217 0.2217 0.2146 

5 0.3773 0.3773 0.3668 

6 0.1563 0.1563 0.1518 

7 0.1357 0.1357 0.1322 

8 0.1850 0.1850 0.1814 

9 0.2227 0.2227 0.2191 

10 0.2020 0.2020 0.2012 

11 0.1383 0.1383 0.1369 

12 0.1843 0.1843 0.1828 

13 0.1334 0.1334 0.1351 

14 0.2511 0.2511 0.2550 

15 0.2486 0.2486 0.2530 

 

 

Table 3.4  

Rasch Rating Scale Model, Q-Index Calculation 

 

 Q-Index 

Item 

Winmira 

R (Winmira person 

abilities) 

R(Winsteps person 

abilities) 

1 0.1751 0.1751 0.1756 

2 0.1138 0.1137 0.1137 

3 0.1257 0.1257 0.1260 

4 0.1236 0.1235 0.1236 

5 0.0848 0.0847 0.0848 

6 0.1034 0.1033 0.1035 

7 0.1205 0.1204 0.1204 

8 0.1216 0.1215 0.1215 

9 0.1146 0.1146 0.1144 

10 0.0985 0.0984 0.0982 

Note: The range of the Q-Index is [0,1]  
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Empirical Type I Error 

 One of the outcomes that was analyzed is the empirical Type I  error rates across 

conditions for all five item fit indices. The Type I error rate was computed as the 

proportion of correctly fitting items that were falsely rejected based on the item fit 

statistics recommended cutoffs. For this purpose a series of “if else” statements were 

written in the R program to implement the criterion for misfit for mean square Infit, mean 

square Outfit, standardized Infit, standardized Outfit, and the Q-Index. Equation 3.2 

illustrates how the Type I error rate was calculated. 

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 =  
𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑓𝑙𝑎𝑔𝑔𝑒𝑑 𝑎𝑠 𝑚𝑖𝑠𝑓𝑖𝑡𝑡𝑖𝑛𝑔 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
  (3.2) 

Mean Square Infit and Outfit 

First, I estimated the mean square Infit and Outfit item fit indices for the Rasch 

dichotomous model and the rating scale model when all assumptions of the Rasch model 

were met. The criteria utilized for the Infit and Outfit fit indices were those suggested by 

Wright and Linacre (1994). In their paper, Wright and Linacre suggested that for a (non-

high stakes) multiple choice questionnaire, which would produce dichotomous (correct 

versus incorrect) data, the criterion range would be 0.7 to 1.3 for both Infit and Outfit, 

which indicates item misfit Additionally, Wright and Linacre suggested the criterion 

range of 0.6 to 1.4 for rating scale survey data. The proportion of misfit was recorded at 

each replication of the simulation, for example, recording a 1 indicating item misfit if the 

estimated item fit statistic fell outside the recommended range by Wright and Linacre and 

0 if the estimated item fit statistic fell within the range. In addition to proportions of 
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misfitting items, descriptive statistics such as means, minimum, maximum and standard 

deviation of the estimates were examined.  

Standardized Infit and Standardized Outfit 

The criterion range used in the current study for evaluating the standardized Infit 

and Outfit was ±2 (R. M. Smith et al., 1998; R. M. Smith & Suh, 2003; Wang & Chen, 

2005). Similar to Infit and Outfit, the proportion of misfit was recorded at every 

replication of the simulation. A new dichotomous variable was created, as follows, if an 

estimated item fit statistic fell outside the range of ±2 a value of 1 indicated misfit while 

0 indicated the estimated fit statistic was within the criterion range of good fit.  

The Q-Index 

 In addition to the outcome variables described above, I studied the criterion for 

the Q-Index specified by Rost and von Davier (1994). Recall the Q-Index ranges from 0 

to 1 with a midpoint of .5. A value of 0 indicates perfect fit while a value of 1 indicates 

misfit. Currently, there is no specified critical value for the Q-Index, though Rost and von 

Davier (2001) claimed that .5 indicates random response behavior. For this study, .5 was 

the critical value to assess misfit at the item level. A value equal to or greater than .5 

indicates misfit while below .5 indicates good fit.  Table 3.5 indicates the item fit 

statistics of interest along with the possible range of the fit statistics and the 

recommended cutoff values from the literature. 
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Table 3.5  

Fit Indices and Recommended Critical Values 

Fit Statistic Range  Cutoff Values 

Infit, Outfit 
𝑂𝑢𝑡𝑓𝑖𝑡𝑖 = 

1

𝑛
∑ 𝑍𝑣𝑖

2

𝑛

𝑣=1

 

𝐼𝑛𝑓𝑖𝑡 =
∑ 𝑅𝑣𝑖

2𝑛
𝑣=1

∑ 𝑉𝐴𝑅(𝑋𝑣𝑖)
𝑛
𝑣=1

 

Chi-Square 

Distribution 

[0, +∞] 

0.7 − 1.3 

0.6 − 1.4 ∗ 

Standardized Infit 

and Outfit 

(ZSTDs) 

𝑡 =  [(𝑀𝑆1/3 − 1)(
3

𝑠
)]+ (

3

𝑠
) t-distribution 

[-∞, +∞] 

±2.00 

Q-Index 
𝑄𝑖 = 

∑ (𝑥𝑣𝑖 − 𝑥𝑣.𝐺)𝑣 𝜃𝑣

∑ (𝑥𝑣.𝐴 − 𝑥𝑣.𝐺)𝑣 𝜃𝑣
 

0-1 0.5 

Note. The * indicates the cutoff is specifically for rating scale data 

Parameter Recovery  

 In multiparameter item response theory, and Rasch modeling, parameter recovery 

refers to whether the computer program can recover the generating parameters accurately. 

An estimator is said to be biased if the empirical mean of the estimates across replications 

is statistically significantly different than the generating parameter. If the variability of 

the estimates across replications is insignificant, then it can be said that the bias in the 

estimation is minor (Wang & Chen, 2005). In item response theory, the accuracy of 

parameter recovery is shown by computing bias and root mean square error (RMSE).  
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Bias 

To assess the estimation bias, the difference between the mean across 1,000 

replications and the value generated by the software was used (Wang & Chen, 2005). See 

Equation 3.3. 

𝐵𝑖𝑎𝑠(𝛽) = (∑
�̂�𝑘 −𝛽

1000

1000
𝑘=1 ),  (3.3) 

In Equation 3.3, 𝛽 represents the generating, or population item difficulty value and �̂�𝑘 

denotes the estimate for the kth replication which is generated by Winsteps. In general, 

the longer the test the smaller the bias should be (Wang & Chen, 2005).  In addition to 

this calculation, relative bias can be calculated using the following equation:  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑎𝑠 =
𝐵𝑖𝑎𝑠(𝛽)

𝛽
∗ 100% (3.4) 

Where the numerator of the equation is obtained by Equation 3.3 and the denominatior is 

the “true” population item difficulty. The root mean square error has the advantage of 

being in the same metric as the item parameter and it is calculated as Equation 3.5 shows:  

𝑅𝑆𝑀𝐸 = √
(�̂�𝑘−𝛽)2

1000
,  (3.5) 

The sampling variance of the estimates across the 1,000 replications utilizes Equation 3.6 

𝑆𝑉(�̂�) = ∑
(�̂�𝑘− �̂�𝑘

̅̅ ̅̅ )2

1000
1000
𝑘=1 , (3.6) 

Where �̂�𝑘
̅̅ ̅ represents the mean of the estimates over 1,000 replications and �̂�𝑘 denotes the 

estimate for the kth replication over the total number of replications (Wang & Chen, 

2005).  

  



79 

 

 

 

Simulation Procedure  

 

First, I describe the statistical and measurement software to complete the Monte 

Carlo simulation. Next, I describe how this software was used in the process of the 

simulation procedure. 

Extended Rasch Modeling (eRm) 

The extended Rasch modeling (eRm) package is available in the open source 

software R. The eRm package can fit the Rasch model such as the rating scale model and 

partial credit model. The package also provides a simulation module for various types of 

binary data matrices. This package was used for data generation of the dichotomous 

Rasch model and its multidimensional condition.  

Winsteps 

The Rasch modeling software Winsteps was developed by Linacre (2006). The fit 

indices available in Winsteps are mean square Infit, mean square Oufit, standardized 

Infight, and Ouftit. Additionally, the ability estimates, which were used for estimating the 

Q-Index, were obtained from Winsteps.  

Winmira 

The Winmira Rasch software developed by von Davier (2001) was utilized to 

compute the beginning stages of building the Monte Carlo simulation for this dissertation 

with the purpose of verifying the accuracy of the Q-Index.  

RWinsteps 

RWinsteps is a package available in the statistical software R. The RWinsteps 

package facilitates communication between R and the Rasch modeling software Winsteps 

(Albano & Babcock, 2015). 
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Steps in Simulation 

Finally, the simulation process was as follows: 

Step 1. Generate Rasch dichotomous or rating scale data via the R software. The 

Rasch dichotomous data were generated utilizing the R package eRm 

while the rating scale data were generated with an R function available in 

Appendix A.  These data may be unidimensional or multidimensional 

depending on the condition. The files were saved in a text (.txt) form and 

were labeled with the condition and file number. To generate 

multidimentional dichotomous data the function sim.xdim from eRm was 

used within R in order to create a two-factor dataset that violates the 

unidimensionality assumption of the Rasch model. The covariance matrix 

given to the sim.xdim was that of Equation 3.1.  

Step 2. Utilize the RWinsteps package to retrieve the mean square Infit, mean 

square Outfit, standardized Infit, and standardized Outfit fit indices along 

with the person ability measures which were used in the calculation of the 

Q-Index.  

In this step, files labeled ifile (which stands for item file and 

contains item information) and pfile (for person file and contains person 

information) were saved in a text (.txt) form. For example, for the sample 

size condition of N=100, this step resulted in 100 ifiles and 100 pfiles. 

Among the contents of the ifile were the item difficulty parameter 𝛽, mean 

square Infit, mean square Outfit, ZSTD Infit, and ZSTD Outfit. The pfile 

contains the person information including the person ability parameter 𝜃. 
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Step 3. Next, the data generated in Step 1 were read into the R software, along 

with the information in the pfile and ifile.  

Step 4. From the pfile, the person abilities were stripped and used in the 

calculation of the Q-Index utilizing an R function I coded myself which 

was previously discussed in this chapter. From the ifile, Infit, Outfit, 

ZSTD Infit and ZSTD Outfit were retrieved. 

Step 5. Within R, the calculated Q-Index was merged with Infit, Outfit, ZSTD 

Infit, and ZSTD Outfit by item and replication number. 

Step 6. The output file contained all fit statistics for all replications along with an 

identifier of whether misfit was detected based on the previously 

mentioned cutoffs (0=No item misfit, 1=Item is misfitting).  

Step 7. All conditions were merged into a single dataset in SPSS in order to 

perform further analyses.  

Pilot Study 

 

A pilot simulation study was conducted to test the quality of the data generation 

process and estimate computing time. When utilizing simulated data, it is always a 

concern that the data generated are indeed following the desired specifications. For this 

reason, prior to running the actual simulation, validation of the data in the form of a pilot 

study was performed.  

First, a unidimensional Rasch dichotomous model with an item difficulty of 

𝑁(0,1), sample size of N = 100, and a test length of I = 10 was examined. To generate the 

data the function sim.rasch was utilized from the eRm package. To assess for 

unidimensionality a confirmatory factor analysis (CFA) with robust maximum likelihood 
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estimation using tetrachloric correlations was also conducted in the R package lavaan, 

assuming a congeneric measurement model with one factor. Five different replications 

were chosen randomly to assess their unidimensionality, namely replications 38, 11, 15, 

5, and 100. Global model fit was evaluated for the above-mentioned replications using 

multiple numeric indices including comparative fit index (CFI; Bentler, 1990), Tucker-

Lewis index (TLI; Tucker & Lewis, 1973), root mean squared error of approximation 

(RMSEA; Steiger & Lind, 1980), and standardized root mean squared residual (SRMR; 

Bentler, 1995). For the majority of the replications except for dataset 15 and 200, the 

values of TLI ≥ .95. The majority of the datasets also had a CFI ≥ .95 except for dataset 

15. The RMSEA ≤ .06 for all datasets examined and SRMR ≤ .08 (Hu & Bentler, 1999), 

which indicated adequate model fit. Tables B1-1 to B1-4 in Appendix B show the results 

of these CFAs.  

Additionally, Appendix B contains descriptive information for Rasch fit statistics 

of interest: Q-Index, Infit, Outfit, ZSTD Infit, and ZSTD Outfit from the dichotomous 

model with an item difficulty of 𝑁(0,1). For the Q-Index the majority of the 10 items 

ranged from .01 to .46 indicating good item fit according to Rost and von Davier’s (1994) 

criterion, which was anticipated in this condition. Table B2 in Appendix B shows the 

descriptive information for all fit statistics of interest: Q-Index, Infit, Outfit, ZSTD Infit, 

and ZSTD Outfit with a test length of I=10. Tables B4- B7 show test lengths I=20 and 

I=30 along with all sample sizes while Tables B8-B26 show each item fit statistic 

individually by test length. Table B12 shows the descriptive statistics for Infit, Outfit, and 

ZSTDs. The means for Infit and Outfit were exactly, or close to 1.00.  For the ZSTDs 

mean values were above or below zero. Finally, to assess if the item difficulties were 
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normally distributed, under the condition where item difficulties were generated to be 

normally distributed, QQ Plots were graphed in R. For the files under examination the 

item difficulties looked roughly normally distributed.   

Second, a multidimensional condition with 100 persons and 10 items was 

examined with an item difficulty of 𝑁(0,1) for the Rasch dichotomous model. To 

generate multidimensional dichotomous data the function sim.xdim from eRm was used 

in order to create a two-factor dataset that violates the unidimensionality assumption of 

the Rasch model. The variance-covariance matrix given to the sim.xdim was the same as 

the one specified by Setzer (2008) and seen in Equation 3.1.  Moreover, for the pilot 

study where the test length was I = 10, for example, the weights of the items, which 

indicate to what factor the items will belong, were based on a 10 x 2  matrix with the 

purpose of having items 1-3 pertain to a different factor than items 4-10. See Equation 

3.9. A similar pattern was used for conditions where the test length was I = 20 and I = 30. 

𝐼𝑡𝑒𝑚 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 =  

[
 
 
 
 
 
 
 
 
 

1 0.1
1 0.1
1 0.1

0.1 1
0.1 1
0.1 1
0.1 1
0.1 1
0.1 1
0.1 1 ]

 
 
 
 
 
 
 
 
 

 (3.9) 

To assess the multidimensionality of the replications a CFA was conducted in R 

lavaan. A two-factor model fit was evaluated for the above-mentioned replications using 

the same indices as with the Rasch dichotomous unidimensional model.  The datasets or 

replications selected to examine the multidimensionality were 86, 8, 25, 61 and 1. Table 

B1-2 in Appendix B shows the results of these CFAs. The values of TLI ≥ .95 except for 
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replications 8 and 61. Similarly CFI ≥ .95 except for replications 8 and 61, RMSEA ≤ 

.06, though for replication 61 the RMSEA was .607, and SRMR ≤ .08 except for 

replication 61. However, it is important to consider the pilot study generated replications 

of N = 100 persons as opposed to the recommended sample sizes of N = 200 (DiStefano 

& Morgan, 2014).  

The Q-Index information for this model (N=100 and I=10) for the dichotomus 

Rasch model can be found in Table B11. The maximum exceeded the critical value for 

Items 1-3 (Q=.55; Q=.62; Q=.51) which is a good sign the data were generated as 

specified since Items 1-3 were expected to show misfit. However, Item 9 also showed a 

high Q-Index value (.54) which could be flagged as misfitting according to Rost and von 

Davier’s (1994) specifications. Additionally, the mean for the Q-Index across replications 

ranged from 0.18-0.27. For Infit across replications, once again examining the maximum 

for Items 1-3 (1.43, 1.63, 1.52, respectively) it is clear they are all above the 

recommended cutoff of 1.4 suggesting poor fit. This pattern is present in Outfit as well. 

Additionally, for the ZSTD Infit, Item 1-3 have maximum values across replications that 

exceed the recommended cutoff of ±2, which also correctly suggest these three items are 

misfitting.      

Third, descriptive information for the fit statistics for the Rasch rating scale model 

for the unidimensional condition can be found in Table B3 for N = 100 and I = 10. Once 

again, a CFA was conducted for the N = 100 and I = 10 condition, based on five 

replications selected at random, and the results can be found in B1-3. These replications 

were 10, 19, 38, 44, and 47. Adequate model fit was shown by these replications 

individually by examining different fit indices: TLI ≥ .95, CFI ≥ .95, SRMR ≤ .08, and 
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RMSEA ≤ .06 excluding replications 19 and 44. Furthermore, descriptive information 

can be found in Appendix B. Tables B2- B7 list the mean and standard deviation along 

with minimum and maximum for all the fit statistics of interest: Q-Index, Infit, Outfit, 

ZSTD Infit, and ZSTD Outfit across the 100 replications of the pilot study. All the means 

for Infit and Outfit were close to unity (one) for the unidimensional Rasch rating scale 

model.   

Fourth, descriptive information for the item fit statistics for a multidimensional, 

two factor Rasch rating scale model can be found in Table B1-4 for I = 50 and N = 250.  

Once the data were generated the datasets were visually examined to confirm the data 

were generated appropriately with a 5-point Likert scale. The data quality examined was 

to assess if the data in fact had two factors to violate the unidimensional assumption of 

the Rasch model. Five different replications were chosen randomly, which were 19, 52, 

56, 70, and 98.  Once the replications were selected global fit was evaluated utilizing the 

same numeric indices as above, which were the comparative fit index (CFI; Bentler, 

1990), Tucker-Lewis index (TLI; Tucker & Lewis, 1973), root mean squared error of 

approximation (RMSEA; Steiger & Lind, 1980), and standardized root mean squared 

residual (SRMR; Bentler, 1995). The TLI and CFI  ≥ .95 for all datasets, with the 

replication 98 being the lowest in CFI = .962. Further, RMSEA ≤ .06 for all datasets 

examined and SRMR ≤ .08 (Hu & Bentler, 1999), which indicated adequate model fit.  

Data Analysis 

 

IBM SPSS v23 was used to analyze the data. Descriptive and inferential statistics 

were utilized to study the effects of the independent variables: test length, sample size, 

and difficulty distribution. In order to achieve this, the data needed to be transformed into 
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a “wide” format in SPSS. However, the two models of interest, the dichotomous and 

rating scale, were studied separately. That is, an analysis was performed for each model. 

For inferential analyses, factorial ANOVAs were performed utilizing the item fit statistics 

as dependent variables and test length, sample size, dimensionality, and difficulty 

distribution as independent variables. Interactions between the independent variables 

were also examined. In terms of parameter recovery, the bias calculated with Equation 

3.3 was used to calculate the root mean square error and the relative bias..  

In factorial ANOVAs, eta-squared (𝜂2) is commonly useddue to the overlapping 

variance from the interaction effects requires an adjustment to eta squared known as 

partial eta-square 𝜂𝑝
2 (Tabachnick & Fidell, 2007). Partial 𝜂2 is calculated as follows:  

𝜂𝑝
2 = 

𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡

𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡+ 𝑆𝑆𝑒𝑟𝑟𝑜𝑟
,   (3.10) 

The range of 𝜂𝑝
2 is from 0 to 1 (Tabachnick & Fidell, 2007).  Cohen (1988) 

deemed 𝜂𝑝
2 ≥ .0099 a small effect, 𝜂𝑝

2 ≥ .0588 a medium effect, and 𝜂𝑝
2 ≥.1379 a large 

effect. Where there were statistically significant interactions, tests of simple effects and 

interaction plots were conducted as a follow-up.  

Chapter Summary 

 

In summary, the simulation described in this chapter was programmed to calculate 

the Q-Index in addition to examining its performance and the performance of other 

popular item fit statistics such as Infit, Outfit, ZSTD Outfit, and ZSTD Infit. In this 

chapter the operational definitions of the dependent and independent variables were 

described and the variables selected due to their relevance to the literature and applied 

studies. Moreover, I described the different software utilized for the simulation in 

addition to the sequence of steps to complete the simulation. The Q-Index was 
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specifically programmed for this simulation and a comparison of the Q-Index 

programmed in R to the one produced by the Rasch specialized software Winmira was 

described in order to demonstrate the results from my program were equivalent to those 

of Winmira. The data conditions were assessed for the specific conditions to verify the 

programs were generating data with the correct specifications. For example, 

dimensionality of the data was assessed utilizing a confirmatory factor analysis in order 

to determine correct data generation for the multidimensional conditions. The distribution 

of the item difficulties was also assessed in order to verify that normal and uniform item 

difficulties were generated.  
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CHAPTER IV 

 

 

RESULTS 

 

 

This chapter presents the results of the analyses proposed in Chapter III. The 

organization of the results presentation follows the order of the item fit statistics, which 

were the Q-Index, Infit, Outfit, ZSTD Infit, and ZSTD Outfit. Next, analysis of parameter 

recovery for the item difficulty parameter is presented.  

Data Conditions for the Dichotomous 

Rasch Model 

 

Recall that the research questions are divided by Rasch model (dichotomous vs. 

rating scale); thus, the results for the dichotomous model are discussed first and the rating 

scale results afterwards. The effects of the main factors of interest were investigated by 

five factorial ANOVAs and the examination of effect sizes per model. The analyses were 

performed in IBM SPSS version 24, using the General Linear Model (GLM) procedure. 

Sample size (N = 50, 100, 150, and 250), test length (I = 10, 20, 30, and 50), difficulty 

distribution (Uniform vs. Normal), and dimensionality (one factor vs. two factors) were 

between-subject factors. The dependent variables were the fit statistics themselves: the Q-

Index, Infit, Outfit, ZSTD Infit, and ZSTD Outfit. Once the ANOVA procedure was 

completed in SPSS, the calculation of partial eta-squared (𝜂𝑝
2) was conducted separately 

in an Excel spreadsheet. The order of the factorial ANOVAs was as follows: Q-Index, 



89 

 

 

 

Infit, Outfit, ZSTD Infit, and ZSTD Outfit. Research questions one to five concern the 

dichotomous Rasch model 

Research Questions for the  

Dichotomous Rasch Model 

 

The research questions for the Rasch dichotomous model are as follows: 

Q1 For the Rasch dichotomous model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of sample size, in correctly identifying item 

misfit? 

 

Q2  For the Rasch dichotomous model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of test length, in correctly identifying item 

misfit?  

 

Q3  For the Rasch dichotomous model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of dimensionality, in correctly identifying item 

misfit? 

 

Q4  For the Rasch dichotomous model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of item difficulty distribution, in correctly 

identifying item misfit? 

 

Q5  What degree of the accuracy of parameter recovery does the Rasch 

dichotomous model provide under various simulation conditions when the 

accuracy is assessed by correlation, root mean square error, and bias 

estimates?  

 

Descriptive information for the dichotomous data can be found in Appendix C 

Tables C1 to C9 shows the descriptive information such as the minimum, maximum, 

mean and standard deviation for the five item fit indices across all test lengths. Values for 

the item fit statistics appeared reasonable, though ZSTD Infit had very low and high 

values across all conditions of test length ranging from -4.00 to 6.00. Additionally, Figure 

4.1 and 4.2 below illustrate the standard deviation of the item fit statistics across sample 
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sizes. Figure 4.1 illustrates both Infit and ZSTD Infit with ZSTD Infit standard deviation 

growing larger as the sample size increases, while Infit remains constant. This pattern can 

be seen again for ZSTD Outfit and Outfit, though Outfit shows a clearer trend for values 

closer to zero than Infit did. Finally, the standard deviation of the Q-Index grows smaller 

as the sample size increases.  

 

Figure 4.1. Standard deviation across sample sizes for Infit, ZSTD Infit, and Outfit, 

ZSTD Outfit.  
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Figure 4.2. Standard deviation across sample sizes for the Q-Index 

 

Q-Index for Dichotomous Rasch Model 

 

A factorial ANOVA was conducted utilizing test length, sample size, difficulty 

distribution, and dimensionality as independent variables and the Q-Index as the 

dependent variable. Table 4.1 displays the main effects and two-way interaction effects of 

the four factors on the Q-Index for the dichotomous Rasch model. All main effects were 

statistically significant at 𝛼 =.01; however, due to the large number of simulated 

observations the effect size, partial eta squared 𝜂𝑝
2, was examined. As previously 

mentioned in Chapter III, 𝜂𝑝
2 ranges from 0 to 1 (Tabachnick & Fidell, 2007).  

Additionally, Cohen (1988) deemed 𝜂𝑝
2 ≥ .0099 a small effect, 𝜂𝑝

2 ≥ .0588 a medium 

effect, and 𝜂𝑝
2 ≥.1379 a large effect.  
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Table 4.1 

Factorial ANOVA of Q-Index on Test Length, Sample Size, Difficulty Distribution, and 

Dimensionality   

 

Effect SS df MS F p-value  𝜂𝑝
2 a 

Test Length 556.24 3.00 185.42 40887.94 < .001* .0652 

Sample Size 0.27 3.00 0.09 19.94 < .001* .0001 

Distribution 0.06 1.00 0.06 12.50 < .001* .0001 

Dimensionality 855.09 1.00 855.09 188566.50 < .001* .0968 

TL * N 0.06 9.00 0.01 1.50 .140 .0001 

TL * Dist 0.21 3.00 0.07 15.27 < .001* .0001 

TL * Dim 6.98 3.00 2.33 512.73 < .001* .0009 

N * Dist 0.02 3.00 0.01 1.71 .160 .0001 

N * Dim 0.04 3.00 0.01 2.56 .050 .0001 

Dist * Dim 0.00 1.00 0.00 0.73 .390 .0001 

Error 7,980.824 1,759,945 0.005    

Total 115,160.9 1,759,976     

Note. SS = Type III Sums of Squares; df = degrees of freedom; MS = Mean Square; Test 

Length (TL); Sample Size (N); Item Difficulty Distribution (Dist); Dimensionality (Dim).  
a partial  𝜂𝑝

2  ≥ .0099 is a small effect, ≥ .0588 is a moderate effect, and ≥ .1379 is a large 

effect 

 

All four main effects (test length, dimensionality, distribution, and sample size) 

and two of the six interactions were statistically significant at p < .001; however, all of 

the effect sizes for the interactions were negligible, i.e., 𝜂𝑝
2 < .001. Consequently, only 

main effects are interpreted for the Q-Index. Two factors produced non-trivial effect 

sizes: test length and dimensionality. Dimensionality had a large effect (𝜂𝑝
2 = .0968) on 

the Q-Index. The remaining main effects of sample size, difficulty distribution, and test 

length can be considered small according to effect size cutoffs suggested by Cohen 

(1988). The effect sizes for the main effects of sample size and difficulty distribution, 

using partial eta squared, 𝜂𝑝
2, were close to zero, but the effect size for test length (𝜂𝑝

2= 

.0652) is considered medium. Test length I = 10 had the lowest values of the Q-Index 

while there was little different between I = 20, 30 and 50. Table 4.2 displays the average 
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for the Q-Index for the unidimensional and multidimensional models. As expected the 

average Q-Index was larger for the multidimensional condition indicating poorer fit. 

Recall, that Rost and von Davier (1994) suggested that values larger than .5 indicate 

misfit; thus, larger values of the Q-Index should appear in a condition where the 

unidimensional property is violated.  

Table 4.2 

Descriptive Statistics across Conditions for the Unidimensional and Multidimensional 

Dichotomous Rasch Models 

 

 Minimum Maximum Mean 
Standard 

Deviation 

Unidimensional 0.0000 0.8952 0.2172 0.0554 

Multidimensional: Two 

Factors 
0.0000 0.8116 0.2720 0.0816 

 

Additional descriptive information can be found in Appendix C. Specifically, 

Tables C9 to C12 show the mean and standard deviation for all test lengths, sample sizes, 

item difficulty distributions and dimensionality. Across test lengths and sample sizes the 

average Q-Index was higher for the multidimensional condition. Further, Figure 4.3 

displays the means plot for test length against the item difficulty distribution and Figure 

4.4 shows the interaction plot for test length against dimensionality. Examining these 

plots, it is clear that the average values of the Q-Index are higher for conditions where 

unidimensionality is violated and that these values also increase as the test length 

increases. However, despite the effect of multidimensionality and increasing test length, 

average values of the Q-Index did not exceed the .50 cutoff, suggesting the Q-Index 

appears to be only slightly sensitive to violation of the unidimensionality assumption but 

not to the point of indicating poor model fit. An explanation could be that the .50 cutoff 
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suggested by Rost and von Davier (1994) is too liberal. A second explanation could be 

that the degree of multidimensionality created for this study was not severe enough to 

produce higher values of the Q-Index. A third explanation could be that the Rasch model 

is robust to the violation of the assumption of multidimensionality (Anderson, Kahn, & 

Tindal, 2017; Drasgow & Parsons, 1983; Harrison, 1986; Reckase, 1979; R. M. Smith, 

1996). 

  

Figure 4.3. Item difficulty distribution vs. test length for the dichotomous Rasch model 

under the Q-Index 

 
Figure 4.4. Dimensionality vs. test length for thee Rasch dichotomous model under the 

Q-Index.  
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Infit for the Dichotomous Rasch Model 

 

The second item fit statistic examined was Infit based on the same independent 

variables of test length, sample size, item difficulty distribution, and dimensionality. In 

the case of Infit, two of the interaction effects were statistically significant: test length by 

dimensionality and test length by distribution; however, the effect sizes were not of 

substance, i.e., 𝜂𝑝
2 < .0001. Regarding the main effects, test length and sample size were 

statistically significant (𝑝 < .001) with 𝜂𝑝
2 values that did not even reach a small effect 

(𝜂𝑝
2 = .0001). Consequently, it appears that for the dichotomous model, Infit is not 

impacted by test length, sample size, dimensionality, or difficulty distribution. Table 4.3 

displays the results of this factorial ANOVA. Means and standard deviations for Infit can 

be found in Appendix C, specifically Tables C13 to C16. In general, there was no great 

difference in the averages between the unidimensional and multidimensional model, or 

the two different item difficulty distributions. Also, the average value for Infit across test 

length and sample sizes remained stable. 
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Table 4.3 

Factorial ANOVA of Infit on Test Length, Sample Size, Difficulty Distribution, and 

Dimensionality 

   

Effect SS df MS F p-value  𝜂𝑝
2 a 

Test Length 0.466 3 0.155 17.438 < .001* .0001 

Sample Size 0.868 3 0.289 32.457 < .001* .0001 

Distribution 0.074 1 0.074 8.262 .004 .0001 

Dimensionality 0.001 1 0.001 0.081 .776 .0001 

TL * N 0.085 9 0.009 1.054 .394 .0001 

TL * Dist 0.111 3 0.037 4.137 .006 .0001 

TL * Dim 0.236 3 0.079 8.833 < .001* .0001 

N * Dist 0.037 3 0.012 1.366 .251 .0001 

N * Dim 0.016 3 0.005 0.616 .605 .0001 

Dist * Dim 0.006 1 0.006 0.618 .432 .0001 

Error 15,693.25 1,759,969 0.009    

Total 1,770,487 1,760,000     

Note. SS = Type III Sums of Squares; df = degrees of freedom; MS = Mean Square; Test 

Length (TL); Sample Size (N); Item Difficulty Distribution (Dist); Dimensionality (Dim).  
a partial  𝜂𝑝

2  ≥ .0099 is a small effect, ≥ .0588 is a moderate effect, and ≥ .1379 is a large 

effect 

 

Outfit for the Dichotomous Rasch Model 

 

The third item fit statistic examined via a factorial ANOVA was Outfit. A similar 

pattern as that of Infit followed; for example, several interactions were statistically 

significant. The third item fit statistic examined via a factorial ANOVA was Outfit. For 

example, several interactions were statistically significant such as test length against 

sample size, item difficulty distribution, and dimensionality (𝑝 <  .001), though with 

trivial effect size estimates (𝜂𝑝
2 ≤ .0001). Once more, the main effects were statistically 

significant but 𝜂𝑝
2 was simply too small to merit further interpretation. Results of this 

factorial ANOVA can be seen in Table 4.4. Tables C17 to C21 in Appendix C show the 

mean and standard deviation for Outfit across all conditions of sample size, test length, 
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item difficulty distribution, and dimensionality. Across test lengths and sample size 

conditions the average value of Outfit was close to one.   

Table 4.4 

Factorial ANOVA of Outfit on Test Length, Sample Size, Difficulty Distribution, and 

Dimensionality 

   

Effect SS df MS F p-value  𝜂𝑝
2 a 

Test Length 7.082 3 2.361 63.571 < .001* .0001 

Sample Size 1.097 3 0.366 9.849 < .001* .0001 

Distribution 7.246 1 7.246 195.125 < .001* .0001 

Dimensionality 1.269 1 1.269 34.158 < .001* .0001 

TL * N 1.972 9 0.219 5.901 < .001* .0001 

TL * Dist 7.843 3 2.614 70.394 < .001* .0001 

TL * Dim 2.28 3 0.76 20.468 < .001* .0001 

N * Dist 0.408 3 0.136 3.658 .012 .0001 

N * Dim 0.236 3 0.079 2.121 .095 .0001 

Dist * Dim 3.495 1 3.495 94.108 < .001* .0001 

Error 65,359.95 1,759,969 0.037    

Total 18,29033 1,760,000     

Note. SS = Type III Sums of Squares; df = degrees of freedom; MS = Mean Square; Test 

Length (TL); Sample Size (N); Item Difficulty Distribution (Dist); Dimensionality (Dim).  
a partial  𝜂𝑝

2  ≥ .0099 is a small effect, ≥ .0588 is a moderate effect, and ≥ .1379 is a large 

effect 

 

Standarized Infit for the  

Dichotomous Rasch 

Model 

 

The next item fit statistic that was examined using factorial ANOVA was the 

standardized Infit (ZSTD Infit). A similar pattern as with mean square Infit and Outfit 

occurred. Interactions such as test length against sample size, item difficulty distribution, 

and dimensionality, in addition to the interaction between sample size and 

dimensionality, and item difficulty distribution by dimensionality were statistically 

significant just as the main effects were (𝑝 <  .001). However, 𝜂𝑝
2 resulted in effect sizes 
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that cannot even be considered small, 𝜂𝑝
2 ≤ .0001. Table 4.5 shows the results of this 

factorial ANOVA. As with the previous item fit statistics, descriptive information can be 

found in Appendix C, specifically Tables C21 to C24. The average value for ZSTD Infit 

was close to zero, as anticipated particularly in the unidimensional condition across test 

lengths and sample sizes. While the average value of ZSTD Infit for the multidimensional 

model was close to zero, the standard deviation was higher than that of the 

unidimensional model across sample sizes and test lengths  

Table 4.5 

Factorial ANOVA of ZSTD Infit on Test Length, Sample Size, Difficulty Distribution, and 

Dimensionality   

 

Note. SS = Type III Sums of Squares; df = degrees of freedom; MS = Mean Square; Test 

Length (TL); Sample Size (N); Item Difficulty Distribution (Dist); Dimensionality (Dim).  
a partial  𝜂𝑝

2  ≥ .0099 is a small effect, ≥ .0588 is a moderate effect, and ≥ .1379 is a large 

effect 

Standarized Outfit for the  

Dichotomous Rasch 

Model 

 

The analysis continued with the last item fit statistic, utilizing the standardized 

Outfit (ZSTD Outfit) as the dependent variable in a factorial ANOVA with test length, 

Effect SS df MS F p-value  𝜂𝑝
2 a 

Test Length 227.14 3 75.71 74.05 < .001* .0001 

Sample Size 250.26 3 83.42 81.59 < .001* .0001 

Distribution 120.04 1 120.04 117.42 < .001* .0001 

Dimensionality 232.76 1 232.76 227.68 < .001* .0001 

TL * N 152.30 9 16.92 16.55 < .001* .0001 

TL * Dist 168.26 3 56.08 54.86 < .001* .0001 

TL * Dim 162.74 3 54.24 53.06 < .001* .0001 

N * Dist 9.49 3 3.16 3.09 .026 .0001 

N * Dim 115.57 3 38.52 37.68 < .001* .0001 

Dist * Dim 49.94 1 49.94 48.85 < .001* .0001 

Error 1,799,276 1,759,969 1.022    

Total 1,801,226 1,760,000     
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sample size, item difficulty distribution, and dimensionality as independent variables. 

Table 4.6 shows the results of this factorial ANOVA. Moreover, ZSTD Outfit followed 

the same pattern as Infit, Outfit, and ZSTD Infit. Four of the six interactions were 

statistically significant as were the main effects of test length and sample size, item 

difficulty distribution, and dimensionality, yet none of these yielded a medium or even a 

small effect as 𝜂𝑝
2 ranged from .0000 to .0001. This scenario repeated itself for the main 

effects of test length, sample size, and dimensionality which were all statistically 

significant (𝑝 <  .001); however, 𝜂𝑝
2 did not reach a small effect size. Descriptive 

information regarding the ZSTD Outfit can be found in Appendix C, the mean and 

standard deviation are presented in Tables C25 to C29. These descriptive statistics 

showed a similar pattern to ZSTD Infit where the average value was close to zero across 

test lengths, sample size, item difficulty distribution, and dimensionality. However, the 

standard deviation for the multidimensional condition had a larger standard deviation 

compared the unidimensional conditions. 
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Table 4.6   

Factorial ANOVA of ZSTD Outfit on Test Length, Sample Size, Difficulty Distribution, 

and Dimensionality   

 

Effect SS df MS F p-value  𝜂𝑝
2 a 

Test Length 215.604 3 71.868 64.772 < .001* .0001 

Sample Size 162.984 3 54.328 48.964 < .001*    .0001 

Distribution 2.506 1 2.506 2.258 .133 .0001 

Dimensionality 170.172 1 170.172 153.369 < .001* .0001 

TL * N 57.173 9 6.353 5.725 < .001* .0001 

TL * Dist 74.096 3 24.699 22.26 < .001* .0001 

TL * Dim 192.743 3 64.248 57.904 < .001* .0001 

N * Dist 5.525 3 1.842 1.66 .173 .0001 

N * Dim 60.238 3 20.079 18.097 < .001* .0001 

Dist * Dim 1.36 1 1.36 1.226 .268 .0001 

Error 1,952,793 1,759,969 1.11    

Total 1,954,005 1,760,000     

Note. SS = Type III Sums of Squares; df = degrees of freedom; MS = Mean Square; Test 

Length (TL); Sample Size (N); Item Difficulty Distribution (Dist); Dimensionality (Dim).  
a partial  𝜂𝑝

2  ≥ .0099 is a small effect, ≥ .0588 is a moderate effect, and ≥ .1379 is a large 

effect 

Type I and II Errors for the Item Fit 

 Statistics for Dichotomous  

Rasch Model  

 

Misfit decisions for the items were coded “0” if no misfit was detected by the 

guidelines specified in Chapter III, and “1” if the fit statistic was outside the boundaries 

of the specified cutoffs for items not expected to misfit. These codes were averaged 

within each cell and across items to determine the Type I error rate. Similarly, the 

number of items which were not flagged as misfitting compared to the number expected 

to be flagged as misfitting was calculated to identify Type II error. For example, for I = 

10 the first three items are placed on one factor and are expected to be the misfitting 

items, while the rest of the items are placed in the second factor. Table 4.7 below shows 
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the recommended cutoff values which were used in the simulation to flag for misfitting 

items for each item’s fit statistic.  

Table 4.7 

 

Recommended Cutoff Values for Each Item Fit Statistics of Interest 

 

Item Fit Statistic 

 
Recommended Cutoff 

Infit, Outfit (Dichotomous Rasch Model) 0.7-1.3 

Infit, Outfit (Rating Scale Model) 

 

0.6-1.4 

 

Standardized Infit and Outfit (ZSTDs)  2.00 

 

Q-Index 
0.5 

 

The critical values produced by the recommended cutoffs from Chapter III were 

used to compute Type I and II error rates which are shown in Table 4.8. A Type I error 

rate higher than 𝛼 = .05  and a Type II error rate larger than 𝛽 = .20 would be of 

concern. Table 4.8 shows how the Type I error for the Q-Index was low, ranging from 

.0001 to .0018 across all sample sizes and test lengths. Infit and ZSTD Infit also had low 

Type I error rates whereas Outfit exceeded the typical error 𝛼 = .05 being as high as 

.1395 for the most extreme condition of for N = 50 and I = 10. Examining Figure 4.8 it is 

clear that Outfit tends to have higher Type I error particularly for test lengths (I = 10, 20, 

30) with the highest Type I error occurring at the smallest sample size of N = 50. More 

importantly, Type I error rates were noticeably lower when the test length was long I = 

50. Figure 4.8 presents the Type I error for the cell conditions which meet all the Rasch 

model requirements, specifically unidimensionality. In the same figure the Type II error 

rate for the cell conditions where unidimensionality was violated is presented. 
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Additionally, the Q-Index has lower Type I error rates compared to the rest of the fit 

statistics across test lengths and sample sizes when the unidimensionality assumption of 

the Rasch model was met. For the item fit statistic Outfit the Type I error rate seems to be 

large particularly when the test length was small, I = 10 and I = 20, though for the rest of 

the item fit statistics the Type I error rate appears negligible. 
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Table 4.8 

Type I and II Error Rates for the Rasch Dichotomous Model  

 

Dimensionality: One Factor 

Type I Error 

 
 

 Dimensionality: Two Factor 

Type II Error 
 

 

  Q INFIT ZSTD Infit OUTFIT 

ZSTD 

Outfit 

 

Q INFIT ZSTD Infit OUTFIT 

ZSTD  

Outfit 

Test Length 

Sample 

Size      

 

      

10 50 .0003 .0068 .0199 .1395 .0290  
 .2972 .0015 .0287 .0744 .0625 

 100 .0001 .0002 .0189 .0631 .0280  
 .3001 .2999 .2445 .2466 .2334 

 150 .0001 .0001 .0203 .0385 .0300  
 .3003 .3003 .2251 .2655 .2152 

 250 .0001 .0001 .0180 .0161 .0287  
 .3002 .3002 .1762 .2818 .1670 

       
 

      

20 50 .0016 .0046 .0187 .1258 .0262  
 .2848 .2972 .2662 .2163 .2628 

 100 .0001 .0001 .0192 .0327 .0277  
 .2976 .3000 .2470 .2578 .2427 

 150 .0001 .0001 .0166 .0162 .0294  
 .2993 .3001 .2252 .2731 .2211 

 250 .0012 .0026 .0212 .0874 .0268  
 .3002 .3003 .1654 .2765 .1529 

       
 

      

30 50 .0001 .0001 .0206 .0330 .0279  
 .2765 .2978 .2576 .2437 .2555 

 100 .0001 .0001 .0205 .0175 .0287  
 .2939 .2999 .2295 .2740 .2275 

 150 .0001 .0001 .0207 .0062 .0278  
 .2983 .3001 .1989 .2837 .1987 

 250 .0018 .0018 .0208 .0780 .0254  
 .2997 .3001 .1366 .2919 .1347 

       
 

      

50 50 .0001 .0001 .0200 .0310 .0266  
 .2715 .2988 .2594 .2578 .2571 

 100 .0001 .0001 .0200 .0310 .0266  
 .2923 .3000 .2294 .2841 .2293 

 150 .0001 .0001 .0205 .0155 .0271  
 .2971 .3000 .1953 .2913 .1963 

 250 .0001 .0001 .0210 .0064 .0284  
 .2997 .3001 .1324 .2959 .1348 

1
0
3
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Figure 4.5. Type I error rate for the unidimensional dichotomous Rasch model. 
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In this dissertation, Type II error rate is defined as the proportion of items which 

were not flagged as misfitting by the item fit statistics being studied when they should 

have been flagged as misfitting. Type II error rates were computed for the cell conditions 

where the violation of unidimensionality is present and are shown in Table 4.8 for the 

dichotomous model.  Additionally, a graphical representation of the Type II error can be 

found in Figure 4.6 for every test length studied. Overall, all conditions examined showed 

a Type II error rate greater than .20. Table 4.8 shows that for the Q-Index Type II error 

rate ranged from .2715 for the N = 50 and I = 50 condition to .3003 for the N = 30 and I = 

10. In Figure 4.6, across conditions the Type II error rate for the Q-Index appears stable 

across sample sizes for I = 10, but for the rest of the test lengths the Type II error rate 

remained stable though still always above .20. Infit’s Type II error rate was generally 

consistent across sample sizes and tests lengths at roughly .30. Likewise, ZSTD Infit 

followed a similar pattern. Outfit’s Type II error rate, though it did not reach .30, 

remained stable across sample size and test length. Moreover, none of the 65 conditions 

for the dichotomous Rasch model was able to achieve power of .80. Hence, none of the 

item fit statistics were able to correctly flag all the items that were expected to be flagged 

as misfitting.  
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Figure 4.6. Type II error rate for all item fit statistics for the dichotomous multidimensional Rasch model
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Parameter Recovery of Dichotomous Rasch Model  

 

Recall that four test lengths, four sample sizes, two difficulty distributions, and 

two levels of dimensionality were utilized for a total of 128 conditions. Bias and root 

mean square error (RMSE) were used to assess the lack of recovery, in terms of error, of 

the item parameters in this study.  

Recommended cutoffs utilized in assessing parameter recover are shown in Table 

4.9. 

Table 4.9  

Parameter Recovery Recommended Cutoffs  

Assessment  Recommended Cutoffs 

Bias .05 (Zhang, 2015). 

Relative Bias .05  (Hoogland & Boomsma, 1998; 

Zhang, 2015) 

Root Mean Square Error (RMSE) .3 (Choi & Swartz, 2009). 

 

Bias of Item Difficulty Estimates for the 

Dichotomous Rasch Model 

 

Bias of the item difficulty estimates was examined to assess parameter recovery. 

Raw bias with a magnitude greater than .05 was considered practically significant 

(Zhang, 2015). Table 4.10 displays the minimum, maximum, mean, and standard 

deviation for bias. The largest magnitudes of bias, in the absolute value, were .0357 and 

.0355 for the N = 50 and I = 30 and the N = 50 and I = 20 conditions, respectively. All of 

these fell below the absolute bias cutoff of .05 and therefore would not be considered of 
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concern. Overall, when N = 30 mean bias across test lengths was smaller than the rest of 

the sample sizes; in contrast, I = 10 had the largest mean bias across sample sizes. 

Additionally, Figure 4.5 represents the relationship between bias and the “true” item 

difficulty by Winsteps. A positive bias indicates overestimation in contrast to a negative 

bias which indicates underestimation of the item parameter (Dawber, Rogers, & 

Carbonaro, 2009). It is important to note that this relationship is monotonically 

increasing, where a linear bias would indicate the underestimation of the default of 

“easy” items and the overestimation in the difficulty of harder items. However, this 

pattern of the bias against the difficulty indicates that as the item difficulty increases the 

bias remains stable. Further, Figure 4.5 shows that the greatest magnitude for bias can be 

found in the cell of N = 50 and I = 10 which represents the smallest sample size and 

fewest number of test items, yet can be considered minor. However, for I = 20 to I = 50 

the bias is very close to zero and can also be considered negligible.   
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Table 4.10 

Maximum, Minimum, Mean, and Standard Deviation of the Bias in the Absolute Value 

under the Dichotomous Rasch Model 

 

Item/Persons Minimum Maximum Mean 
Standard 

Deviation 

10/50 0.0308 0.0246 0.0034 0.0039 

10/100 0.0161 0.0116 0.0034 0.0028 

10/150 0.0154 0.0113 0.0034 0.0023 

10/250 0.0121 0.0081 0.0034 0.0019 

 

20/50 0.0378 0.0355 0.0015 0.0039 

20/100 0.0186 0.0155 0.0015 0.0027 

20/150 0.0145 0.0124 0.0015 0.0023 

20/250 0.0075 0.0104 0.0019 0.0018 

 

30/50 0.0257 0.0357 0.0008 0.0035 

30/100 0.0155 0.0144 0.0008 0.0025 

30/150 0.0129 0.0108 0.0008 0.0021 

30/250 0.0086 0.0076 0.0008 0.0016 

 

50/50 0.0296 0.0330 0.0020 0.0036 

50/100 0.0194 0.0139 0.0025 0.0026 

50/150 0.0181 0.0113 0.0020 0.0022 

50/250 0.0123 0.0089 0.0020 0.0018 
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Figure 4.7. Relationship between the bias and the generating item parameter under the dichotomous Rasch model. 
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Corrected bias. As referenced in Chapter II, Winsteps utilizes a Joint Maximum 

Likelihood (JML) method to estimate ability. The JML method is known to result in item 

parameter estimates which are biased. For this reason, Wright and Douglas (1977) 

developed a correction factor: 

(𝐿−1)

𝐿
   Equation 4.1 

Where L represents the test length. This correction procedure was implemented in SPSS 

after the parameter estimation was complete. Figure 4.6 in which the extreme conditions 

of sample size and test length are illustrated shows that the correction is minimal 

supporting the claim that the original bias was not large. However, when examining 

Figures 4.5 and 4.6 the small variability for I = 10 has diminished indicating the 

correction was effective. Yet, this correction might be more useful in a situation where 

bias is larger.   
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Figure 4.8. Relationship between the corrected bias and the generated item difficulty for the dichotomous Rasch model.
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Roor Mean Square Error of 

Item Difficulty Estimates  
 

To complement the information provided by estimates of bias, the root mean 

square error (RMSE) was calculated given that authors have suggested “bias is not a 

sound measure of error in measurement” (Khan, 2014, p. 54).  By examining both bias 

and RMSE both accuracy and variability of the item estimates. RMSE ranges from 0 to 1 

with values closer to zero or lower to .3 indicating that the parameter estimate is more 

accurate (Choi & Swartz, 2009). Table 4.11 displays the minimum, maximum, mean, and 

standard deviation of the RMSE of the item difficulty estimates for the Rasch 

dichotomous model under all conditions of test length and sample size. The average 

RMSE was well below .3 for all conditions. The average RMSE value was well below 

the .3 recommended cutoff for all conditions. However, sample size N = 100 displayed 

the highest values for RMSE ranging from .33 to .38 for all test lengths, barely surpassing 

the recommended cutoff. As expected, the most extreme condition of N = 50 and I = 10 

showed the highest RMSE of .38. Additionally, the magnitude of the RMSE for 

individual items was plotted against the generating item difficulty shown in Figure 4.7. In 

this side by side plot, it is clear that while the relationship appears constant for (I = 20, 

30, 50) there is more variability when I = 10. 
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Table 4.11 

Maximum, Minimum, Mean, and Standard Deviation of the RSME under the 

Dichotomous Rasch Model 

 

Item/Persons Minimum Maximum Mean 
Standard 

Deviation 

10/50 0.0001 0.3800 0.0300 0.0200 

10/100 0.0001 0.3100 0.0400 0.0300 

10/150 0.0001 0.1600 0.0400 0.0200 

10/250 0.0001 0.1500 0.0400 0.0200 

     
20/50 0.0001 0.1200 0.0300 0.0200 

20/100 0.0001 0.3800 0.0300 0.0300 

20/150 0.0001 0.1900 0.0300 0.0200 

20/250 0.0001 0.1400 0.0200 0.0200 

     

     
30/50 0.0001 0.1000 0.0200 0.0100 

30/100 0.0001 0.3600 0.0300 0.0200 

30/150 0.0001 0.1500 0.0200 0.0200 

30/250 0.0001 0.1300 0.0200 0.0100 

     
50/50 0.0001 0.0900 0.0100 0.0100 

50/100 0.0001 0.3300 0.0300 0.0300 

50/150 0.0001 0.1900 0.0300 0.0200 

50/250 0.0001 0.1200 0.0200 0.0200 
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Figure 4.9. Relationship between RMSE of item difficulty estimates and the generated difficulty. 

 

1
1
5
 



116 

 

 

 

Relative Bias for Dichotomous 

Rasch Model 

 

 Bias provides information on the magnitude of difference between the estimated 

parameter and the known, or true, parameter. Values of zero for relative bias indicate that 

the estimation of the generated parameter is unbiased. The sign in the values of relative 

bias indicate under- or over-estimation (Choi, 2010). Table 4.12 displays the relative bias 

before the Wright and Douglas correction (1977). Next, Table 4.13 displays the relative 

bias for the dichotomous model by test length and sample size after the correction. 

Practical significance and acceptable relative bias is established at a magnitude of .05 

(Hoogland & Boomsma, 1998; Zhang, 2015). 

Table 4.12 

Relative Bias of the Dichotomous Rasch Model 

Item/Persons  Minimum Maximum Mean 
Standard 

Deviation 

10/50  -0.0900 0.1400 0.0012 0.0144 

10/100  0.0000 0.0943 0.0126 0.0123 

10/150  -0.0400 0.1000 0.0010 0.0119 

10/250  -0.0400 0.0800 0.0010 0.0112 

 

20/50 

 

-15.8800 13.5000 -0.0259 0.6817 

20/100  -9.8500 9.4300 -0.0261 0.4861 

20/150  -10.1100 6.4200 -0.0219 0.4022 

20/250  -7.6200 5.6300 -0.0097 0.2296 

 

30/50 

 

-1.3700 1.4600 -0.0004 0.0568 

30/100  -1.0700 0.9100 -0.0002 0.0399 

30/150  -0.8500 0.7100 -0.0003 0.0320 

30/250  -0.7100 0.6600 -0.0003 0.0261 

 

50/50 

 

-5.5900 3.0300 -0.0130 0.1667 

50/100  -4.8200 1.6800 -0.0192 0.1765 

50/150  -3.7000 1.2600 -0.0131 0.1330 

50/250  -3.2000 0.9100 -0.0131 0.1253 
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Table 4.13 

 

Relative Bias of the Dichotomous Rasch Model after Wright and Douglas (1977) 

Correction 

 

Item/Persons Minimum Maximum Mean 
Standard 

Deviation 

10/50 -1.0100 1.0300 -0.0010 0.0500 

10/100 0.0000 0.0940 0.0130 0.0120 

10/150 0.0000 0.0100 0.0000 0.0010 

10/250 0.0000 0.0100 0.0000 0.0010 
 

    
20/50 -1.5100 1.2800 -0.0030 0.0650 

20/100 -0.9400 0.9000 -0.0030 0.0460 

20/150 -0.9600 0.6100 -0.0020 0.0380 

20/250 -0.7200 0.5300 -0.0010 0.0220 
 

    
30/50 -0.1300 0.1400 0.0000 0.0050 

30/100 -0.1000 0.0900 0.0000 0.0040 

30/150 -0.0800 0.0700 0.0000 0.0030 

30/250 -0.0700 0.0600 0.0000 0.0030 
 

    
50/50 -0.5100 0.2800 -0.0010 0.0160 

50/100 -0.3900 0.2100 -0.0010 0.0140 

50/150 -0.3300 0.1300 -0.0010 0.0130 

50/250 -0.3200 0.0400 -0.0010 0.0120 

 

Examining the relative bias post correction, it is clear the majority of the 

conditions are exceeding the recommended cutoff of .05. The conditions I = 10 and N = 

150 and 250 which did not exceed the .05 cutoff in any direction indicating good 

parameter recovery. Further, the I = 10 and N =50, and I = 20 and N = 50 have the largest 

maximum and minimum values for the relative bias. Table 4.14 shows the results of an 

ANOVA with the relative bias, after the correction, as a dependent variable and test 

length, sample size, distribution, and dimensionality as independent variables. It is clear 

that a number of these values suggested that while statistical significance existed for the 
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interactions of test length and sample size, item difficulty distribution, dimensionality, 

sample size and item difficulty distribution, item difficulty distribution and 

dimensionality in addition to the main effects of test length, sample size, and item 

difficulty distribution the effect sizes were trivial ranging from 𝜂𝑝
2 = .0001 to .0010.   

Table 4.14  

Factorial ANOVA of Relative Bias on Test Length, Sample Size, Difficulty Distribution, 

and Dimensionality.   

 

Effect SS df MS F p-value  𝜂𝑝
2 a 

Test Length 1.037 3 0.346 743.712 < .001* .0010 

Sample Size 0.019 3 0.006 13.567 < .001* .0001 

Distribution 0.532 1 0.532 1145.145 < .001* .0010 

Dimensionality 0.002 1 0.002 4.86 .027 .0001 

TL * N 0.134 9 0.015 32.066 < .001* .0001 

TL * Dist 1.119 3 0.373 801.942 < .001* .0010 

TL * Dim 0.035 3 0.012 25.385 < .001* .0001 

N * Dist 0.052 3 0.017 37.353 < .001* .0001 

N * Dim 0.000 3 0.000 0.230 .876 .0001 

Dist * Dim 0.027 1 0.027 57.294 < .001* .0001 

Note. SS = Type III Sums of Squares; df = degrees of freedom; MS = Mean Square; Test 

Length (TL); Sample Size (N); Item Difficulty Distribution (Dist); Dimensionality (Dim).  
a partial  𝜂𝑝

2  ≥ .0099 is a small effect, ≥ .0588 is a moderate effect, and ≥ .1379 is a large 

effect 

 

Appendix C.2 contains detailed relative bias information separated by item 

difficulty distribution and dimensionality. Table C2.1 to C2.2 show the relative bias, after 

the implementation of the Wright and Douglas (1977) correction, for the uniform and 

normal item difficulty distribution, the four different test lengths and sample sizes, and 

levels of dimensionality.  Table C2.1 shows the corrected relative bias for the uniform 

item difficulty distribution. In this table it is clear that the relative bias is well below the 

.05 recommended cutoff; however, I = 20 for all sample sizes has extreme minimal 

values. Table C2.2 shows the corrected relative bias for the normal item difficulty 
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distribution where all values are below the recommended cutoff and there is no sign of 

extreme minimum or maximum values. 

Correlation between True and Estimated  

Item Parameters 

 

Finally, a correlation between the true and estimated parameters was performed to 

assess the measure of accuracy and parameter recovery. This correlation was very high r 

= .950 .  In general, the correlations by condition were all high (r > .940) as can be seen 

in Table 4.15 once again indicating good parameter recovery.  

Table 4.15 

Bivariate Correlations between the True and Estimated Parameters  

Item/Persons 
Uniform Item Difficulty Distribution  Random Item Difficulty Distribution 

Unidimensional 
Multidimensional: 

Two Factor 
 Unidimensional 

Multidimensional: 

Two Factor 

10/50 .957 .952  .939 .931 

10/100 .978 .977  .968 .965 

10/150 .985 .984  .978 .976 

10/250 .991 .990  .987 .985 
 

     

20/50 .961 .958  .951 .947 

20/100 .981 .979  .975 .974 

20/150 .987 .986  .983 .982 

20/250 .992 .989  .990 .989 
 

     

30/50 .955 .952  .924 .918 

30/100 .977 .975  .961 .958 

30/150 .985 .984  .972 0.97 

30/250 .991 .990  .983 .982 
 

     

50/50 .946 .942  .944 .941 

50/100 .972 .970  .973 .969 

50/150 .982 .979  .981 .979 

50/250 .989 .988  .988 .987 
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Supplementary Analysis 

 

Because the items were aggregated when performing the factorial ANOVAs 

analyses it is possible that the aggregation of the items masked the findings for individual 

items. Exploring item by item descriptive information was important in order to assess if 

the items that were intended to misfit were actually placed in the first factor for the 

condition where violation of unidimensionality exists. For example, for the I = 10 

condition, Items 1-3 were specified to belong to one factor, while Items 4-10 were 

specified to belong to a second factor. Table 4.14 shows the I = 10 multidimensional 

condition with uniform item difficulty distribution. The bolded items indicate values that 

are above the .5 recommended cutoff by Rost and von Davier (1994). In this table for the 

N = 50 condition, Items 1-3 are clearly misfitting if the focus is on the maximum values. 

In addition to this, the mean values are higher for Items 1-3 than they are for Itesm 4-7. 

However, examining the maximum values Item 6, 7 and 9 would be flagged as misfitting, 

however this finging is masked when focusing on the mean across all items. Similar 

descriptive information can be found for Infit, Outfit and ZSTD Infit and ZSTD Outfit in 

Appendix D in Tables D1 to D8.  
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Table 4.16  

Q-Index values for I = 10 for the Two Factor (Multidimensional) Condition under the 

Uniform Difficulty Distribution for N =50 and N = 100 

 

   Q-Index Dichotomous Rasch Model 

   Minimum Maximum Mean SD 

 1 * .05 .56 .27 .08 

 2 * .03 .65 .28 .09 

 3 * .07 .56 .27 .07 

 4  .03 .48 .19 .07 

50 5  .02 .43 .18 .06 

 6  .00 .57 .19 .08 

 7  .01 .54 .19 07 

 8  .03 .46 .20 .07 

 9  .00 .58 .20 08 

 10  .04 .49 .19 07 

 1 * .10 .45 .27 06 

 2 * .12 .54 .28 .07 

 3 * .12 .45 .27 05 

 4  .06 .35 .19 .05 

100 5  .07 35 .19 05 

 6  .03 .38 .20 .05 

 7  .06 .36 .19 .05 

 8  .04 .39 .20 .05 

 9  .04 .41 .20 .06 

 10  .06 .34 .19 .05 

Note: Bolded values represent those that go above the recommended .50 cutoff. The * 

represents items that were designed to misfit. 
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Table 4.16 Continued 

 

Q-Index values for I = 10 for the Two Factor (Multidimensional) Condition under the 

Uniform Difficulty Distribution for N =150 and N = 250 

 

   Q-Index Dichotomous Rasch Model 

   Minimum Maximum Mean SD 

 1 * .13 .43 .27 .05 

 2 * .14 .45 .28 .05 

 3 * .14 .39 .27 .04 

 4  .07 .36 .19 .04 

150 5  .07 .35 .19 .04 

 6  .08 .37 .19 .05 

 7  .07 .37 .19 .04 

 8  .07 .37 .19 .04 

 9  .05 .35 .20 .05 

 10  .08 32 .19 .04 

 1 * .16 .39 .27 .04 

 2 * .15 .40 .28 .04 

 3 * .18 .38 .27 .03 

 4  .11 .28 .19 .03 

250 5  .10 .30 .19 .03 

 6  .08 .33 .19 .03 

 7  .11 32 .20 .03 

 8  .11 .32 .19 .03 

 9  .09 .35 .20 .04 

 10  .11 .31 .19 .03 

Note: Bolded values represent those that go above the recommended .50 cutoff. The * 

represents items that were designed to misfit. 
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Rating Scale Model 

 

Recall that the research questions of this dissertation are divided by the type of 

Rasch model. In this section, the results for the rating scale model are presented. There 

were four test lengths, three sample sizes, two distributions, and two factor dimensions 

leading to 65 conditions. Five factorial ANOVAs were also performed for the Rasch 

rating scale model. In similar fashion as with the Rasch dichotomous model, the order of 

the factorial ANOVAs is presented by fit index as follows: Q-Index, Infit, Outfit, ZSTD 

Infit and ZSTD Outfit.  

Research Questions for the  

Rasch Rating Scale Model 

 

The research questions for the rating scale Rasch model are: 

 

Q6 For the Rasch rating scale model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of sample size, in correctly identifying item 

misfit? 

 

Q7 For the Rasch rating scale model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of test length, in correctly identifying item 

misfit?  

 

Q8  For the Rasch rating scale model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of dimensionality, in correctly identifying item 

misfit? 

 

Q9 For the Rasch rating scale model, do fit indexes (mean square Infit, mean 

square Outfit, Standardized Infit, Standardized Outfit, and Q-index) differ 

under varying conditions of item difficulty distribution, in correctly 

identifying item misfit? 

 

Q10  What degree of the accuracy of parameter recovery does the Rasch rating 

scale model provide under various simulation conditions when the 

accuracy is assessed by correlation, root mean square error, and bias 

estimates? 
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First before any analysis was performed, along with the descriptive information 

for the dichotomous Rasch model, the descriptive statistics for the Rasch rating scale 

model can be found in Appendix C. Tables C5 to C8 show the minimum, maximum, 

mean, and standard deviation for all the item fit statistics under the Rasch rating scale 

model. It is noteworthy, that for the I = 10 condition, ZSTD Infit and ZSTD Outfit had 

averages close to zero, but still had extreme minimum and maximum values. The average 

value for Infit and Outfit was close to one across test lengths. Also, the average value of 

the Q-Index ranged from .11 to .13. In Figure 4.10 shows the standard deviation of Infit 

and ZSTD Infit across the four different sample sizes, and the standard deviation across 

sample size for Outfit and ZSTD Outfit while Figure 4.11 shows the standard deviation 

across sample size for the Q-Index. Evidently, the standard deviation increases as the 

sample size increases for the ZSTD Infit and ZSTD Outfit. This finding is consistent with 

A. B. Smith et al. (2008). 
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Figure 4.10. Standard deviation across sample size for Infit, ZSTD Infit and Outfit, 

ZSTD Outfit 

 
Figure 4.11. Standard deviation trends for all item fit statistics. 

 

Q-Index for the Rasch Rating Scale Model 

  

A factorial ANOVA was conducted that utilized the Q-Index as a dependent 

variable and test length, sample size, item difficulty distribution, and dimensionality as 

the independent variables. The results of this analysis are shown in Table 4.17. While 
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interaction effects were statistically significant, the effect sizes were not substantial and  

𝜂𝑝
2 ranged from .0001 to .0030. Consequently, only main effects are interpreted here. 

There was statistical significance for all main effects, yet only dimensionality yielded at 

least a medium effect size (F(1, 1,759,969) = 1179.64, p < .001, 𝜂𝑝
2 = .1006). Due to the 

dimensionality factor only having two conditions a post hoc multiple comparison test was 

not possible. However, Figure 4.12 displays the average Q-Index values by test length for 

the two dimensionality conditions: unidimensional and multidimensional with two 

factors. In this figure, it is easy to see the difference between the average Q-Index for the 

unidimensional and multidimensional conditions with the unidimensional condition 

yielding higher values for the Q-Index. 

Table 4.17 

Factorial ANOVA of Q-Index on Test Length, Sample Size, Difficulty Distribution, and 

Dimensionality   

 

Effect SS df MS F p-value 𝜂𝑝
2 

Test Length 24.68 3 8.23 1372.71 < .001* .0023 

Sample Size 0.51 3 0.17 28.40 < .001* .0001 

Distribution 0.52 1 0.52 86.64 < .001* .0001 

Dimensionality 1179.64 1 1179.64 196,877.11 < .001* .1006 

TL * N 0.04 9 0.00 0.70 .710 .0001 

TL * Dist 3.20 3 1.07 178.07 < .001* .0003 

TL * Dim 31.32 3 10.44 1742.36 < .001* .0030 

N * Dist 0.01 3 0.00 0.54 .650 .0001 

N * Dim 0.17 3 0.06 9.58 < .001* .0001 

Dist * Dim 0.13 1 0.13 22.02 < .001* .0001 

Error 10,545.26 1,759,969 0.01    

Total 42,080.7 1,760,000     

Note. SS = Type III Sums of Squares; df = degrees of freedom; MS = Mean Square; Test 

Length (TL); Sample Size (N); Item Difficulty Distribution (Dist); Dimensionality (Dim).  
a partial  𝜂𝑝

2  ≥ .0099 is a small effect, ≥ .0588 is a moderate effect, and ≥ .1379 is a large 

effect 
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Recall, that Rost and von Davier (1994) suggested that 0 indicate perfect fit, .5 

indicates random response behavior, and 1 indicates misfit for the Q-Index. In theory, 

larger values of Q-Index should be found in the multidimensional condition. Surprisingly, 

the unidimensional condition displayed a larger mean for the Q-Index = .162 compared to 

the mean of the multidimensional two factor model: Q-Index = .097. Yet, descriptive 

information for the Q-Index shows that the maximum value for the unidimensional Rasch 

model (.451) was lower than the maximum value for the multidimensional (or two-factor 

model) where the maximum Q-Index was .709. In addition, the standard deviation for the 

multidimensional two-factor model was the larger of the two models, SD = .105. In 

Appendix C2, Table C29 to C32 show the mean and standard deviation for the Q-Index 

by sample size, test length, dimensionality, and item difficulty distribution. Across test 

lengths, the average value of the Q-Index was lower for the multidimensional conditions 

than for the unidimensional condition. Below, Table 4.18 shows the descriptive statistics 

for the unidimensional and two factor conditions.  

Table 4.18 

Descriptive Statistics for the Unidimensional and Multidimensional Rasch Rating Scale 

Models 

 

 Minimum Maximum Mean 
Standard 

Deviation 

Unidimensional 0.014 0.462 0.162 0.033 

 

Multidimensional: Two 

Factors 

0.000 0.709 0.097 0.105 
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Figure 4.12. Average Q-Index by Dimensionality by Test Length. 

 

Infit for the Rasch Rating Scale Model 

 

In similar fashion as the Q-Index, Infit was utilized as a dependent variable in a 

factorial ANOVA. The effect size 𝜂𝑝
2 ranged from .0009 to .0044. Interaction effects for 

test length by item difficulty distribution in addition to test length by dimensionality and 

item difficulty distribution by dimensionality were statistically significant (𝑝 <  .001), 

but based on the negligible effect sizes, they were not examined further. However, though 

dimensionality had the largest effect size of this analysis in comparison to the rest of the 

design variables (F(1,1759969) = 2741.69, p < .001, 𝜂𝑝
2 = . 0044) it was not large enough to 

be considered a small effect size. 
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Table 4.19  

Factorial ANOVA of Infit on Test Length, Sample Size, Difficulty Distribution, and 

Dimensionality 

   

Effect SS df MS F p-value  𝜂𝑝
2 a 

Test Length 593.65 3 197.88 565.83 < .001* .0010 

Sample Size 1.46 3 0.48 1.39 .241 .0001 

Distribution 56.19 1 56.19 160.67 < .001* .0001 

Dimensionality 2741.69 1 2741.69 7839.68 < .001* .0044 

TL * N 0.15 9 0.01 0.048 1.000 .0001 

TL * Dist 546.15 3 182.05 520.56 < .001* .0009 

TL * Dim 573.92 3 191.30 547.03 < .001* .0009 

N * Dist 0.01 3 0.00 0.01 .997 .0001 

N * Dim 0.50 3 0.16 0.47 .698 .0001 

Dist * Dim 24.48 1 24.48 70.02 < .001* .0001 

Error 615,497 1,759,969 0.35    

Total 2,551,421 1,760,000     

Note. SS = Type III Sums of Squares; df = degrees of freedom; MS = Mean Square; Test 

Length (TL); Sample Size (N); Item Difficulty Distribution (Dist); Dimensionality (Dim).  
a partial  𝜂𝑝

2  ≥ .0099 is a small effect, ≥ .0588 is a moderate effect, and ≥ .1379 is a large 

effect 

 

The descriptive information for Infit can be found in Appendix C. Tables C33 to 

C37, show that the average value for Infit for the unidimensional condition across test 

length and sample size was close to one, and the average values for Infit was only slightly 

higher for the multidimensional condition. The closeness of these values indicates that 

Infit did not distinguish between the unidimensional and multidimensional conditions 

across sample size, test length, and item difficulty distribution which is corroborated by 

the results of the ANOVA.  

  



130 

 

 

 

 

Outfit for the Rasch Rating Scale Model 

 

The next item fit statistic studied was Outfit. The interaction effects of test length 

and item difficulty distribution, as well as test length and dimensionality again 

approached a small effect When exploring the main effects, statistically significant 

findings werepresent for test length, item difficulty distribution, and dimensionality (F (3, 

1,759,969) = 2333.47, p < .001,  𝜂𝑝
2 = .0024; F (1, 1,759,969) = 1263.76, p < .001, 𝜂𝑝

2 = .0013 

and F(1, 1,759,969)  = 1450.11, p < .001, 𝜂𝑝
2 = .0015). Consistent with findings on Infit, the 

effect sizes for these main effects did not reach the cutoff for a small effect size. Results 

can be seen in Table 4.20.  

Table 4.20  

Factorial ANOVA of Outfit on Test Length, Sample Size, Difficulty Distribution, and 

Dimensionality.   

 

Effect SS df MS F p-value  𝜂𝑝
2 a 

Test Length 2333.47 3 777.82 1406.63 < .001* .0024 

Sample Size 0.13 3 0.04 0.07 .972 .0001 

Distribution 1263.76 1 1263.76 2285.41 < .001* .0013 

Dimensionality 1450.11 1 1450.11 2622.42 < .001* .0015 

TL * N 1.04 9 0.11 0.21 .993 .0001 

TL * Dist 3074.92 3 1024.97 1853.58 < .001* .0031 

TL * Dim 2365.95 3 788.65 1426.21 < .001* .0024 

N * Dist 0.17 3 0.06 0.10 .955 .0001 

N * Dim 0.41 3 0.14 0.25 .860 .0001 

Dist * Dim 797.20 1 797.20 1441.67 < .001* .0008 

Error 973,207.4 1,759,969 0.553    

Total 28,07,673 1,760,000     

Note. SS = Type III Sums of Squares; df = degrees of freedom; MS = Mean Square; Test 

Length (TL); Sample Size (N); Item Difficulty Distribution (Dist); Dimensionality (Dim).  
a partial  𝜂𝑝

2  ≥ .0099 is a small effect, ≥ .0588 is a moderate effect, and ≥ .1379 is a large 

effect 
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 The mean and standard deviations for Outfit can be found in Appendix B2. In 

Tables C37 to C41 can be seen that the average value for Outfit is close to one and the 

standard deviation tends to be larger for the multidimensional conditions across sample 

size, test length, and item difficulty distribution.  

 

Standarized Infit and Standarized 

Outfit for the Rasch Rating 

Scale Model 

 

Finally, the standardized forms of Infit and Outfit were used as dependent 

variables in two separate factorial ANOVAs. ZSTD Infit and ZSTD Outfit showed 

statistical significance for all interactions and main effects (p < . 001). Dimensionality in 

both ZSTD Infit and ZSTD Outfit had a small effect. Dimensionality almost approached 

a small effect size 𝜂𝑝
2 = .0042. Similarly, ZSTD Outfit dimensionality displayed a small 

effect size 𝜂𝑝
2 = .0070 that suggested an effect close to zero. The results for these 

factorial ANOVAs can be found in Tables 4.21 and 4.22.  
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Table 4.21 

 

Factorial ANOVA of ZSTD Infit on Test Length, Sample Size, Difficulty Distribution, and 

Dimensionality 

   

Effect SS df MS F p-value  𝜂𝑝
2 a 

Test Length 10719.1 3 3573.03 309.50 < .001* .0005 

Sample Size 15923.23 3 5307.74 459.76 < .001* .0008 

Distribution 8000.09 1 8000.09 692.98 < .001* .0004 

Dimensionality 85184.12 1 85184.12 7378.84 < .001* .0042 

TL * N 1589.84 9 176.65 15.30 < .001* .0001 

TL * Dist 24939.19 3 8313.06 720.09 < .001* .0012 

TL * Dim 10334.32 3 3444.77 298.39 < .001* .0005 

N * Dist 1442.89 3 480.96 41.66 < .001* .0001 

N * Dim 13413.44 3 4471.14 387.30 < .001* .0007 

Dist * Dim 14146.5 1 14146.5 1225.40 < .001* .0007 

Error 20,317,732 1,759,969 11.54    

Total 20,692,987 1,760,000     

Note. SS = Type III Sums of Squares; df = degrees of freedom; MS = Mean Square; Test 

Length (TL); Sample Size (N); Item Difficulty Distribution (Dist); Dimensionality (Dim).  
a partial  𝜂𝑝

2  ≥ .0099 is a small effect, ≥ .0588 is a moderate effect, and ≥ .1379 is a large 

effect 
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Table 4.22 

 

Factorial ANOVA of ZSTD Outfit on Test Length, Sample Size, Difficulty Distribution, 

and Dimensionality 

   

Effect SS df MS F p-value  𝜂𝑝
2 a 

Test Length 4152.154 3 1384.05 153.887 < .001* .0003 

Sample Size 24486.78 3 8162.25 907.53 < .001* .0015 

Distribution 2477.953 1 2477.95 275.514 < .001* .0002 

Dimensionality 111932.5 1 111932.50 12445.35 < .001* .0070 

TL * N 705.437 9 78.38 8.715 < .001* .0001 

TL * Dist 40563.35 3 13521.12 1503.361 < .001* .0026 

TL * Dim 4086.979 3 1362.32 151.472 < .001* .0003 

N * Dist 705.369 3 235.12 26.142 < .001* .0001 

N * Dim 29305.49 3 9768.49 1086.121 < .001* .0018 

Dist * Dim 4374.072 1 4374.07 486.336 < .001* .0003 

Error 15,829,031 1,759,969 8.99    

Total 16,408,256 1,760,000     

Note. SS = Type III Sums of Squares; df = degrees of freedom; MS = Mean Square; Test 

Length (TL); Sample Size (N); Item Difficulty Distribution (Dist); Dimensionality (Dim).  
a partial  𝜂𝑝

2  ≥ .0099 is a small effect, ≥ .0588 is a moderate effect, and ≥ .1379 is a large 

effect. 

 The descriptive information for both ZSTD Infit and ZSTD Outfit can be found in 

Appendix B. The average value for both ZSTD Infit and ZSTD Outfit was close to zero. 

For both ZSTD Infit and ZSTD Outfit, the standard deviation for the multidimensional 

condition appears larger than for the unidimensional condition across sample size, test 

length, and item difficulty distribution.  

Type I and II Errors for the Item Fit 

Statistics for Rasch Rating 

Scale Model  

 

The coding to indicate misfit was similar to that used with the Rasch dichotomous 

model. A separate variable was created where after a series of “if else” statements items 

were coded “0” if no misfit occurred, and “1” if the item fit statistic was larger than the 

cutoff specified in Chapter III. Separately, a different variable was created when 
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generating the data for the items which were expected to misfit were also coded as “1.” 

Items which falsely identified as misffiting were averaged within each cell in order to 

determine the Type I error. The Type II error was calculated by counting the number of 

items which were not flagged as misfitting and compared to the number of items which 

were expected to misfit.  

 The trend of the Type I error rates remained constant across test lengths, though 

the error rates appeared slightly higher for test lengths of I = 30 and I = 50 for ZSTD Infit 

across sample sizes. Additionally, the Type I error rate for Outfit decreased as the sample 

size increased. This negative trend appears for all test lengths. More importantly, the Q-

Index had the lowest Type I error rate across all sample sizes. The graphical 

representation of the Type I error rates can be seen in Figure 4.16 in addition to this 

visual information Table 4.23 shows the rates for Type I error. 

The Type II error rates are displayed in Table 4.23. Type II error rates were the 

highest for Outfit, specifically for the test lengths I = 20 and I = 30. Surprisingly, for both 

ZSTD Outfit and ZSTD Infit the Type II error increased with the sample size. 

Interestingly, the Type II error for the Q-Index remained constant across sample sizes and 

across test lenghts. Yet, none of the 65 conditions  achieved a power of .80, in other 

words, Type II error was extremely high, which can indicate that none of the item fit 

statistics were able to correctly identify the items which should have been flagged as 

misfitting.  
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Figure 4.13. Type I Error rate for the Rasch rating scale model.
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Figure 4.14. Type II Error rate for the Rasch rating scale model 
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Table 4.23 

Type I and II Error Rates for the Rasch Rating Scale Model  

 Dimensionality: One Factor 

Type I Error 

 

  Dimensionality: Two Factor 

Type II Error 

 
  Q INFIT 

ZSTD 

Infit 
OUTFIT 

ZSTD 

Outfit 
 Q INFIT 

ZSTD 

Infit 
OUTFIT 

ZSTD 

Outfit 

Test 

Length 

Sample 

Size      

 

     

10 50 .0001 .0249 .0319 .0289 .0306  
 

.3000 .3542 .2696 .5678 .2943 

 100 .0001 .0020 0312 .0038 .0305  
 

.3000 .3458 .4185 .5622 .5199 

 150 .0001 .0001 .0315 .0013 .0310  
 

.3000 .3436 .5151 .5651 .5880 

 250 .0001 .0001 .0343 .0003 .0337  
 

.3000 .3370 .5767 .5690 .6053 

        
 

     

20 50 .0001 .0296 .0364 .0335 .0346  
 

.2961 .4289 .4074 .6742 .3530 

 100 .0001 .0027 .0380 .0047 .0348  
 

.2992 .4294 .4981 .6914 .5606 

 150 .0001 .0002 .0373 .0010 .0363  
 

.2999 .4327 .5257 .6963 .6375 

 250 .0001 .0001 .0362 .0001 .0345  
 

.3000 .4311 .5565 .6988 .6975 

        
 

     

30 50 .0001 .0310 .0410 .0328 .0402  
 

.2989 .4646 .4451 .6869 .3614 

 100 .0001 .0027 .0394 .0036 0381  
 

.2998 .4627 .5089 .6957 .6120 

 150 .0001 .0003 .0407 .0005 .0405  
 

.3000 .4621 .5264 .6970 .6793 

 250 .0001 .0001 .0402 .0001 .0391  
 

.3000 .4657 .5437 .6983 .6990 

        
 

     

50 50 .0001 .0326 .0418 .0343 .0401  
 

.3000 .3962 .3146 .6475 .0607 

 100 .0001 .0029 .0413 .0039 .0402  
 

.3001 .4063 .5058 .6535 .5647 

 150 .0001 .0005 .0408 .0008 .0396  
 

.3000 .4083 .5626 .6529 .6727 

 250 .0001 .0001 .0420 .0001 .0403  
 

.3000 .4137 .6103 .6509 .6980 

 

1
3
7
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Parameter Recovery of Rasch 

Rating Scale Model 

 

Parameter recovery was assessed for the Rasch rating scale model in similar 

fashion as with the dichotomous Rasch model. The rationale for examining parameter 

recovery is to assess to what extent the known item difficulty parameters which are 

calibrated under different conditions of sample size, test length, item difficulty 

distribution, and dimensionality differed from the estimated item difficulty parameters. If 

the difference between the calibrated and original parameter is negligible then it can be 

said that the parameter has been “recovered.”  Once again bias and root mean square 

error (RMSE) were used to assess the lack of recovery, in terms of error, of the item 

parameters in this study.  

Bias of Item Difficulty Estimates for the 

Rasch Rating Scale Model 

 

The magnitude of the bias was plotted against the overall difficulties for the 

extreme conditions of sample size for all levels of test length (a) N =50, I = 10 and N = 

250, I = 10, (b) N =50, I = 20 and N = 250, I = 20 (c) N =50, I = 30 and  N = 250, I = 30 

(d) N =50, I = 50 and N = 250, I = 50 which can be seen in Figure 4.13. The rest of the 

conditions can be inferred because the patterns are similar to those in Figure 4.13.  

Additionally, Table 4.24 shows the maximum, mean, and standard deviation for 

bias in the rating scale model. In examining Table 4.24 it can be seen the mean bias is 

negligible for all test lengths. The largest magnitude of the bias was 0.0328 for the test 

length I = 20. Even in the most extreme condition of small sample size and short test 

length (N = 50 and I = 10) one can see the mean bias estimates are very close to zero in 



139 

 

 

 

Figure 4.13. In contrast, bias was more clearly visible in this condition for the 

dichotomous Rasch model.
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Figure 4.15.Bias vs item difficulty for extreme conditions for the Rasch rating scale model. 
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Table 4.24  

Maximum, Mean, and Standard Deviation of the Bias in the Absolute Value under the 

Rating Rasch Model after Wright and Douglas (1977) correction 

 

Item/Persons Maximum Mean Standard 

Deviation 

10/50 0.020 0.004 0.002 

10/100 0.020 0.004 0.002 

10/150 0.020 0.003 0.002 

10/250 0.010 0.003 0.002     

20/50 0.030 0.002 0.002 

20/100 0.030 0.002 0.002 

20/150 0.020 0.002 0.002 

20/250 0.010 0.002 0.002     

30/50 0.030 0.002 0.002 

30/100 0.020 0.002 0.001 

30/150 0.010 0.001 0.001 

30/250 0.010 0.001 0.001     

50/50 0.020 0.002 0.002 

50/100 0.010 0.002 0.001 

50/150 0.010 0.002 0.001 

50/250 0.010 0.002 0.001 

Note. The minimum was zero 

 

Corrected bias. The corrected bias descriptive information can be found in Table 

4.24. The corrected bias was calculated in similar fashion as with the dichotomous Rasch 

model using Equation 4.1.  Recall that Winsteps utilizes the Joint Maximum Likelihood 

method to estimate the ability parameter. Research suggests that without this correction 

the parameter estimates may be biased (Wright & Douglas, 1977). Additionally, Figure 

4.14 shows the relationship of the corrected bias against the item difficulty. Once again in 

the most extreme condition of N = 50 and I = 10 is where the correction of the bias can be 

seen more clearly as the plotting of the item difficulty against the bias is closer to zero. 
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However, unlike with the dichotomous Rasch the bias correction was not as obvious for 

the rest of the conditions given that the initial bias was already very close to zero.  

Table 4.25  

Maximum, Minimum, Mean, and Standard Deviation of the Corrected Bias in the 

Absolute Value under the Rating Scale Rasch Model  

 

Item/Persons Maximum Mean Standard 

Deviation 

10/50 0.020 0.003 0.002 

10/100 0.010 0.003 0.002 

10/150 0.010 0.003 0.002 

10/250 0.010 0.003 0.002     

20/50 0.030 0.002 0.002 

20/100 0.020 0.002 0.002 

20/150 0.020 0.002 0.002 

20/250 0.010 0.002 0.002     

30/50 0.030 0.002 0.002 

30/100 0.020 0.001 0.001 

30/150 0.010 0.001 0.001 

30/250 0.010 0.001 0.001     

50/50 0.020 0.002 0.002 

50/100 0.010 0.002 0.001 

50/150 0.010 0.002 0.001 

50/250 0.010 0.002 0.001 

Note. The minimum was zero. 
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Figure 4.16. Corrected bias vs. item difficulty for Rasch rating scale model.
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Relative Bias for Rasch  

Rating Scale Model  

 

 Recall that relative bias provides information as to the proportional difference 

between the estimated and the true parameter. For relative bias, values of zero indicate 

that the parameter is unbiased. Further, the sign of the value provides information 

regarding whether the parameter has been over or under estimated. Table 4.23 displays 

the values for relative bias by test length and sample size averaged across items; 

however, these values were calculated after performing the correction factor 

recommended by Wright and Douglas (1977). As with the dichotomous Rasch model, 

practical and acceptable significance was set at a magnitude of .05 (Hoogland & 

Boomsma, 1998; Zhang, 2015). Though the average value for relative bias was well 

below the recommended cutoff of .05 the maximum and minimum values of relative bias 

indicate there exist values that are well above this cutoff particularly for the I = 20 

condition. The I = 20 condition was also the most problematic condition for the 

dichotomous model in terms of relative bias, meaning it yielded large negative values for 

the conditions indicating the parameter was being underestimated. Minimal values for the 

I = 50 condition showed potential outliers, though the average value of relative bias for 

the different test lengths across the I = 50 condition was below .05. 

 Detailed information about the relative bias by dimensionality and item difficulty 

distribution can be found in Appendix C2. From Table C2.3 it is clear that the large 

values of relative bias are in the uniform item difficulty distribution where I = 20 for all 

sample sizes. Though the average value of the relative bias is below or slightly above the 

.05 cutoff the I = 20 condition under a uniform item difficulty distribution has extreme 

minimal values which indicate that the parameter was being underestimated for this 
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condition. A further examination was warranted. For this reason, C2.5 details the relative 

bias by item, in this further exploration it is clear that Item 9 is an outlier quite possibly 

due to the “true” item difficulty distribution utilized when generating the data. Table C2.4 

shows the relative bias for all conditions when the item difficulty distribution is randomly 

distributed. The relative bias after correction can be found in Table 4.27. Here it is clear 

that some of the bias has been removed (Table 4.26 shows the relative bias before the 

correction).  Yet, there exist many conditions where the relative bias exceeds the 

recommended cutoff of .05. For example, when I = 30 across test lengths under the 

normal item difficulty distribution, the average value was below .05 but many of the 

minimum and maximum values exceeded the cutoff. In contrast, under the uniform item 

difficulty distribution on average the corrected relative bias value was below .05, except 

for I = 20 and N = 50; however, many of the minimum and maximum values exceeded 

the recommended cutoff. 
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Table 4.26 

Relative Bias for the Rasch Rating Scale Model before Wright and Douglas (1977) 

Correction 

Item/Persons Minimum Maximum Mean 
Standard 

Deviation 

10/50 -0.0900 0.1000 -0.0019 0.0125 

10/100 0.0000 0.0640 0.0093 0.0102 

10/150 -0.0700 0.0700 -0.0020 0.0117 

10/250 -0.0600 0.0600 -0.0020 0.0116 

 

20/50 -9.5800 6.5500 -0.0004 0.3562 

20/100 -6.7000 4.3200 0.0003 0.2595 

20/150 -5.2600 3.6600 -0.0008 0.2221 

20/250 -4.3400 2.3500 -0.0002 0.1946 

 

30/50 -0.7700 0.6200 0.0004 0.0271 

30/100 -0.6500 0.5100 0.0004 0.0211 

30/150 -0.4600 0.3600 0.0003 0.0176 

30/250 -0.3700 0.3100 0.0003 0.0155 

 

50/50 -3.7000 1.4100 -0.0152 0.1529 

50/100 -2.7800 0.5700 -0.0151 0.1450 

50/150  -2.5900       0.1400 -0.0151 0.1426 

50/250       -2.1600 0.1100 -0.0149 0.1387 
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Table 4.27  

Relative Bias of the Rasch Rating Scale Model after Wright and Douglas (1977) 

Correction 

Item/Persons Minimum Maximum Mean 
Standard 

Deviation 

10/50 -0.0800 0.0900 -0.0017 0.0112 

10/100 0.0000 0.0640 0.0093 0.0102 

10/150 -0.0600 0.0600 -0.0018 0.0105 

10/250 -0.0500 0.0500 -0.0018 0.0104 
 

    
20/50 -9.1000 6.2200 -0.0004 0.3384 

20/100 -6.3600 4.1000 0.0003 0.2465 

20/150 -4.9900 3.4800 -0.0007 0.2110 

20/250 -4.1200 2.2300 -0.0002 0.1849 
 

    
30/50 -0.7500 0.6000 0.0004 0.0262 

30/100 -0.6300 0.4900 0.0003 0.0204 

30/150 -0.4500 0.3500 0.0003 0.0170 

30/250 -0.3600 0.3000 0.0003 0.0150 
 

    
50/50 -3.6300 1.3800 -0.0149 0.1499 

50/100 -2.7200 0.5600 -0.0148 0.1421 

50/150 -2.5400 0.1300 -0.0148 0.1398 

50/250 -2.1200 0.1100 -0.0146 0.1359 

 

Moreover, a factorial ANOVA was conducted utilizing relative bias (after 

correction) as the dependent variable and test length, sample size, item difficulty 

distribution, and dimensionality as independent variables. The results of this ANOVA are 

found in Table 4.28, and suggested that the interaction between test length and 

dimensionality was statistically significant (𝑝 <  .001) and the effect size was the highest 

among all the effect sizes in this analysis, yet it would still be considered a small effect 
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(𝜂𝑝
2 = .0040). Examining the main effects, test length showed statistical significance 

𝑝 <  .001) but the effect size was also trivial (𝜂𝑝
2 = .0030). 

Table 4.28 

Factorial ANOVA of (Corrected) Relative Bias on Test Length, Sample Size, Difficulty 

Distribution, and Dimensionality   

 

Effect SS df MS F p-value  𝜂𝑝
2 a 

Test Length 92.972 3 30.991 1501.459 < .001* .0030 

Sample Size 0.014 3 0.005 0.234 .873 .0001 

Distribution 16.792 1 16.792 813.542 < .001* .0001 

Dimensionality 25.954 1 25.954 1257.423 < .001* .0010 

TL * N 0.04 9 0.004 0.216 .992 .0001 

TL * Dist 83.967 3 27.989 1356.04 < .001* .0020 

TL * Dim 158.055 3 52.685 2552.522 < .001* .0040 

N * Dist 0.019 3 0.006 0.300 .826 .0001 

N * Dim 0.035 3 0.012 0.560 .641 .0001 

Dist * Dim 13.916 1 13.916 674.226 < .001* .0001 

Note. SS = Type III Sums of Squares; df = degrees of freedom; MS = Mean Square; Test 

Length (TL); Sample Size (N); Item Difficulty Distribution (Dist); Dimensionality (Dim).  
a partial  𝜂𝑝

2  ≥ .0099 is a small effect, ≥ .0588 is a moderate effect, and ≥ .1379 is a large 

effect 
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Roor Mean Square Error of  

Item Difficulty Estimates 

 

Recall that a smaller value of RMSE indicates more accuracy of the item 

difficulty parameter. As summarized in Table 4.29 and illustrated in Figure 4.15 the 

average RMSE was small, ranging from .0362 to .0126 across conditions. However, a 

closer examination reveals that the largest values for RMSE appeared in the condition 

with shortest test length (I = 10) across all sample sizes, while the smallest RMSE values 

appear in the longer test length (I = 30) condition for sample sizes (N = 100, 150, and 

250). Indicating that the RMSE becomes smaller as the test length increases as 

anticipated.  

Table 4.29  

Maximum, Minimum, Mean, and Standard Deviation of the RSME under the Rating Scale 

Rasch Model 

Item/Persons Minimum Maximum Mean 
Standard 

Deviation 

10/50 0.0001 0.2350 0.0362 0.0227 

10/100 0.0001 0.1510 0.0349 0.0201 

10/150 0.0001 0.1540 0.0343 0.0194 

10/250 0.0001 0.1360 0.0340 0.0186 

 

20/50 0.0001 0.3284 0.0223 0.0218 

20/100 0.0001 0.2621 0.0194 0.0184 

20/150 0.0001 0.1911 0.0183 0.0169 

20/250 0.0001 0.1481 0.0175 0.0159 

 

30/50 0.0001 0.2618 0.0181 0.0165 

30/100 0.0001 0.1778 0.0149 0.0130 

30/150 0.0001 0.1168 0.0136 0.0117 

30/250 0.0001 0.0888 0.0126 0.0107 

 

50/50 0.0001 0.2156 0.0239 0.0164 

50/100 0.0001 0.1216 0.0216 0.0138 

50/150 0.0001 0.1011 0.0207 0.0128 

50/250 0.0001 0.0669 0.0201 0.0120 
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Figure 4.17. RMSE for Rasch Rating Scale for the extreme conditions.
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Correlation between True and Estimated  

Item Parameters  
 

One final assessment of parameter recovery was performed via a Pearson 

bivariate correlation which yielded a high correlation between the true parameter and the 

estimated item difficulty parameter generated by Winsteps. The correlation for all 

conditions between the true and estimated parameter was r = .967. Additionally, the 

correlations by condition were high, i.e., r   .918, for all conditions as shown in Table 

4.30.  

Table 4.30 

Bivariate Correlation between the True and Estimated Parameters for All Conditions  

  Uniform Item Difficulty Distribution  Random Item Difficulty Distribution 

Item /Persons  Unidimensional 
Multidimensional: 

Two Factor 
 Unidimensional 

Multidimensional: 

Two Factor 

10/50  .939 .968  .979 .968 

10/100  .968 .965  .990 .977 

10/150  .978 .976  .993 .982 

10/250  .987 .985  .996 .984 
 

      

20/50  .951 .947  .985 .966 

20/100  .975 .974  .993 .976 

20/150  .983 .982  .995 .980 

20/250  .990 .989  .997 .983 
 

      

30/50  .924 .918  .976 .970 

30/100  .961 .958  .987 .982 

30/150  .972 .970  .992 .986 

30/250  .983 .982  .995 .988 
 

      

50/50  .944 .941  .983 .971 

50/100  .973 .969  .992 .982 

50/150  .981 .979  .994 .987 

50/250  .988 .987  .997 .989 
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Supplementary Analysis 

 

It is possible that the aggregation of the items masked the findings for individual 

items. In addition to this, it was important to know, beyond the confirmatory factor 

analyses performed on the pilot data. For example, for the I = 10 condition, Items 1-3 

were specified to belong to one factor, while Items 4-10 were specified to belong to a 

second factor. If the fit indices perform correctly, we would expect to see poorer fit for 

the three items specified on the secondary factor than we would for the other seven items 

specified to measure the dominant, primary factors. Table 4.31 shows Q-Index values for 

the I = 10 condition, with a uniform item difficulty distribution, and under the violation 

of unidimensionality. It is important to note that the suggested cutoff of .5 from Rost and 

von Davier (1994) is not reached for this condition. However, it is clear that Items 1-3 

have higher Q-Index values. For example for N = 50, the mean values are .22 and .23 

while for Items 4-10 the Q-Index values range from .05 to .03 which is considerably 

lower than those of Items 1-3, suggesting the Q-Index was able to distinguish between 

those items on the secondary factor that should fit more poorly and those items on the 

larger, primary factor that should fit the data well. This pattern is similar across all 

sample sizes for the Q-Index and can be found for the rest of the item fit statistics though 

the pattern becomes less clear for ZSTD Infit and ZSTD Outfit which can be due to the 

recommended cutoffs. This information can be found in Appendix D in Tables D1 to D8.  
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Table 4.31 

Q-Index values for I = 10 for the Two Factor (Multidimensional) Condition under the 

Uniform Difficulty Distribution for N =50 and N = 100 

 
   Q-Index Rating Scale Model 
   Minimum Maximum Mean SD 
 1 * .10 .40 .23 .05 
 2 * .09 .40 .22 .05 
 3 * .09 .40 .22 .05 
 4  .00 .18 .05 .02 

50 5  .00 .06 .03 .01 
 6  .01 .07 .03 .01 
 7  .01 .07 .03 .01 
 8  .01 .09 .04 .01 
 9  .01 .07 .03 .01 
 10  .00 .07 .03 .01 
 1 * .14 .35 .23 .03 
 2 * .13 .33 .22 .03 
 3 * .13 .34 .22 .03 
 4  .01 .12 .06 .02 

100 5  .02 .05 .03 .01 
 6  .02 .06 .03 .01 
 7  .02 .06 .03 .01 
 8  .02 .07 .04 .01 
 9  .02 .06 .04 .01 
 10  .02 .05 .03 .01 

Note: Bolded values represent those that go above the recommended .50 cutoff. The * 

represents items that were designed to misfit. 
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Table 4.31 Continued 

Q-Index values for I = 10 for the Two Factor (Multidimensional) Condition under the 

Uniform Difficulty Distribution for N =150 and N = 250 

 
   Q-Index Rating Scale Model 
   Minimum Maximum Mean SD 
 1 * .15 .32 .23 .03 
 2 * .13 .32 .22 .03 
 3 * .13 .32 .22 .03 
 4  .02 .11 .06 .01 

150 5  .02 .05 .03 .00 
 6  .02 .05 .03 .01 
 7  .02 .06 .04 .01 
 8  .02 .06 .04 .01 
 9  .02 .06 .04 .01 
 10  .02 .05 .03 .00 
 1 * .16 .32 .23 .02 
 2 * .15 .29 .22 .02 
 3 * .15 .29 .21 .02 
 4  .03 .10 .06 .01 

250 5  .02 .05 .03 .00 
 6  .02 .05 .03 .00 
 7  .02 .05 .04 .00 
 8  .03 .06 .04 .01 
 9  .02 .06 .04 .00 
 10  .02 .05 .03 .00 

Note: Bolded values represent those that go above the recommended .50 cutoff. The * 

represents items that were designed to misfit. 

 

Chapter Summary 

 

Descriptive and inferential analyses were used to answer the research questions of 

interest.  To understand the differences among the five item fit statistics a series of 

factorial ANOVAs was performed. Parameter recovery was also studied in order to 

determine if the item difficulty parameters had been estimated correctly. Table 4.32 

summarizes the results for the dichotomous Rasch model.  
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Conclusions Regarding the  

Dichotomous Rasch Model  

 

 Sample size. ANOVAs were conducted to answer research questions 1 through 4. 

For the Rasch dichotomous model, the item fit statistics (Q-Index, Infit, ZSTD Infit, 

Outfit, ZSTD Outfit) did not vary under the different conditions of sample size (N = 50, 

100, 150, and 250). Though tests of sample size were statistically significant, the 

statistical significance could be an artifact of the large number of data sets generated for 

the simulation. In addition, partial eta squared, used as an estimate of effect size, did not 

reach the cutoff to be deemed a small effect for any of the item fit statistics studied under 

varying conditions of sample size. 

 Test length. For the Rasch dichotomous model, the item fit statistics (Q-Index, 

Infit, ZSTD Infit, Outfit, ZSTD Outfit) did not vary under the different conditions of test 

length (I = 10, 20, 30, and 50). While statistical significance was present (p < .001) the 

effect sizes for all the item fit indices were trivial (𝜂𝑝
2  ranged from .0001 to .0652).  

However, for the Q-Index the second highest effect size was for test length at 𝜂𝑝
2 = .0652.

 Dimensionality. When differences in fit based on dimensionality (unidimensional 

versus multidimensional) were examined, the factorial ANOVAs showed that the Q-

Index was the only item fit statistic to detect the departure from unidimensionality (𝜂𝑝
2 = 

.0968). (𝜂𝑝
2 = .0968) from the conditions where the data were purposely generated to have 

two dimensions. The traditional item fit statistics (Infit, ZSTD Infit, Outfit, and ZSTD 

Outfit), while showing statistical significance, exhibited only a trivial effect (𝜂𝑝
2 = .0001) 

when comparing unidimensional and multidimensional conditions.  
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 Item difficulty distribution. The item difficulty parameters were manipulated 

and distributed 𝑁(0,1) and 𝑈(−2,2). The effect sizes for the item difficulty distribution 

were essentially zero for all the item fit statistics (𝜂𝑝
2 = .0001).   

Type I and Type II Error Rates. Overall, the Type I error rate for Q-Index and 

Infit was very low. The Type I error rate for ZSTD Infit and ZSTD Outfit had similar 

rates, though both were still below .05. Outfit demonstrated high Type I error rate in case 

of I = 10 and I = 20. Type II error rate was above the .20 recommended cutoff for all the 

item fit statistics, however the Type II error rate remained consistently below .30.    

Table 4.32 

Summary for Dichotomous Rasch Model and Rating Scale Rasch Model 

Item Fit Statistic Test Length Sample Size 
Item Difficulty 

Distribution 
Dimensionality 

Q-Index  Medium Trivial Trivial  Large  

Infit Trivial Trivial  Trivial  Trivial 

ZSTD Infit Trivial Trivial  Trivial  Trivial 

Outfit Trivial Trivial  Trivial  Trivial 

ZSTD Outfit Trivial Trivial  Trivial  Trivial 

 

 Parameter recovery was assessed by correlations, and examining bias, and relative 

bias of the dichotomous data conditions in order to answer the fifth research question. 

Literature suggests that parameter recovery can be affected by a number of conditions 

such test length, sample size, and the number of parameters whose true values are 

extreme (Le & Adams, 2013). Because this study varied both sample size and test length 

it was important to assess whether the item difficulty parameter was recovered 

accurately. Correlations between the true parameter and the generated parameter were 
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high for all conditions. Overall the correlation was 𝑟 =  .950 and was high across all 

conditions (r > .940). Further, bias was negligible across conditions; however, the 

correction factor developed by Wright and Douglas (1977) was still applied to the 

dichotomous data. The correction factor only reduced the already negligible bias. Next, 

relative bias was examined, it was in this exploration that the condition of I = 20, with 

uniform item difficulty distribution showed extreme values of relative bias, larger than 

the recommended cutoff of .05. However, the average value of relative bias for this 

condition was still well below .05. Overall, parameter recovery was accurate for all 

conditions despite the manipulation of test lengths, sample size, item difficulty 

distribution, and dimensionality. This indicates that the Rasch model is robust enough to 

endure such manipulation of data.  

Conclusions Regarding the Rasch 

Rating Scale Model  

 

  A summary of the results for the Rasch Rating Scale Model follows. Table 4.33 

summarizes the findings.  

Sample size. A series of factorial ANOVAs was conducted for the Rasch rating 

scale model. Across the item fit statistics, the effect sizes were trivial with the values of 

partial eta square ranging from .0001 to .0015. 

Test length. For the Q-Index the second highest effect size was for the main 

effect of test length, however, the effect size was not large enough to be considered a 

small effect size (𝜂𝑝
2 = .0023). The values of partial eta square 𝜂𝑝

2  for test length across 

all the item fit statistics ranged from .0003 to .0030.  

Dimensionality. Similarly, to the dichotomous Rasch model, dimensionality was 

the only main effect that had a non-trivial effect size for the Q-Index. It is important to 
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note that the effect size for the interaction of test length and dimensionality for the Q-

Index was one of the highest in the analysis but failed to reach the cutoff for a small 

effect size 𝜂𝑝
2 =  0030. The dimensionality main effect was one of the largest effect sizes 

for Infit, but not large enough to be labeled a small effect size. ZSTD Outfit also showed 

an effect size that failed to reach the cutoff for small effect (𝜂𝑝
2 = . 0070). 

Item difficulty distribution. Across the all item fit statistics, the item difficulty 

distribution showed statistical significance; however, following the same pattern as the 

sample size and test length main effects the values of partial eta squared were trivial. The 

values of partial eta square ranged from .0001 to .0013.  

Type I and Type II Error. The Type I error rate for the Rasch rating scale for 

the Q-Index was low, as it was for Infit. However, for both ZSTD Infit and ZSTD Outfit 

the Type I error rate was close to .30 though still under the .05 cutoff. Outfit, had a high 

Type I error particularly for N = 50 across all test lengths though not surpassing the .05 

cutoff. Finally, the Type II error rate for the rating scale was unfortunaly very high, in all 

cases exceeding the .20 recommended cutoff, though the Q-Index and Infit had the lowest 

Type II error rates.   
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Table 4.33 

Summary Table for the Rating Scale Rasch Model 

Item Fit Statistic Test Length Sample Size 
Item Difficulty 

Distribution 
Dimensionality 

Q-Index  Trivial Trivial  Trivial  Large 

Infit Trivial Trivial  Trivial  Trivial 

ZSTD Infit Trivial Trivial  Trivial  Trivial 

Outfit Trivial Trivial  Trivial  Trivial 

ZSTD Outfit Trivial Trivial  Trivial  Trivial 

 

Finally, parameter recovery was assessed in a variety of manners to answer the 

tenth research question. The Rasch rating scale data were examined by correlating the 

true and estimated item difficulty parameters, and by examining the bias and relative bias 

as well as the RMSE. The correlation between the true and estimated parameters was 

high across conditions (r = .967). However, when examining the bias and relative bias, 

even after performing the Wright and Douglas (1977) correction all the conditions had an 

average value below the recommended cutoff. Overall, parameter recovery for the Rasch 

rating scale condition was good considering the manipulation of sample size, test length, 

and item difficulty distribution in the data. 
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CHAPTER V 

 

 

DISCUSSION 

 

This dissertation study focused on the differences among the item fit statistics for 

the dichotomous Rasch model and the Rasch rating scale model under varying conditions 

of sample size, test length, dimensionality, and item difficulty distribution. This chapter 

summarizes and discusses the findings in the context of the existing literature on the topic 

of Rasch fit indices. First, the performance of the item fit statistics is discussed, followed 

by the findings regarding parameter recovery. The importance of the findings follows the 

results discussion. Finally, implications for applied researchers, the limitations of the 

study, and recommendations for future research are discussed.  

Performance of Fit Statistics 

 

Ostini and Nering (2006) called attention to the fact that little to no research has 

been performed utilizing the Q-Index regarding this as the key disadvantage of the fit 

statistic. Largely, the results of this dissertation provide information regarding the Q-

Index which was previously non-existent. The results of this study provide applied 

researchers with evidence regarding the robustness of the Q-Index in both dichotomous 

and rating scale data and in contrast with the currently available measures of fit in 

popular software such as Winsteps and Winmira (Linacre, 2006; von Davier, 2001). 
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Dichotomous Rasch Model  

 

Among the manipulated variables of interest (sample size, test length, 

dimensionality, and item difficulty distribution) for the dichotomous Rasch model, the 

only variable with a large effect on the Q-Index was dimensionality. As anticipated the 

condition where unidimensionality was violated reported a higher mean value of Q-

Index. Additionally, test length had a medium effect on the Q-Index.  However, for the 

rest of the item fit statistics none of the interactions or main effects yielded a non-trivial 

effect. Similarly, for the Rasch rating scale model, the only main effect which showed at 

least a medium effect was dimensionality. Once again, all the interactions and main 

effects for the rest of the item fit indices were small to trivial. This was a surprising 

finding considering the literature suggests that the Infit and Outfit behave as a function of 

sample size (Wang & Chen, 2005; Wu & Adams, 2013).   

Next the Type I and II error rates were examined. The Type I error rate was 

defined as falsely rejecting an item as not fitting the Rasch model. In terms of Type I 

error rates, the Q-Index for the dichotomous Rasch model showed rates well below 𝛼 =

 .05 as did Infit, ZSTD Infit, and ZSTD Outfit consistent with Karabatsos work (2000); 

however, Outfit displayed Type I error rates which were slightly higher than 𝛼 = .05, 

except when test length had 50 items. For the rating scale Rasch model, the Type I error 

rates for the Q-Index were low but were higher for ZSTD Infit and ZSTD Outfit across 

all test lengths though these rates did not exceed 𝛼 = .05.  
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Summary of Parameter Recovery 

Findings for the Dichotomous 

Rasch Model 

 

In terms of parameter recovery in this study the analysis indicated that there was 

good recovery. In other words, the “true” parameters were estimated accurately by the 

Winsteps software even when considering the data were generated with a variety of 

conditions such as four different test lengths and sample sizes, two item difficulty 

distributions, and two dimensionalities. There was a slight bias for the extreme condition 

of short test length (I =10) and small sample size (N = 50) for the dichotomous Rasch 

model; however, after correcting the bias with the method suggested by Wright and 

Douglas (1977) this bias disappeared. A very important, and surprising, finding was the 

good parameter recovery for such small sample sizes as those used in this study. This was 

an unexpected finding considering Khan’s (2014) studied also focused on small sample 

sizes and test lengths and resulted in poor parameter recovery. However, my study used 

the Rasch software Winsteps for parameter estimation; in contrast, Khan’s study utilized 

the R package Itm. Khan found that while it was possible to utilize small samples for 

Rasch model fit the parameter recovery was not stable. More importantly, in this 

dissertation study parameter recovery was accurate after utilizing the Wright and Douglas 

(1977) correction (which Khan’s study did not utilize given that Itm uses Maximum 

Likelihood Estimation rather than Joint Maximum Likelihood). Another important detail 

in the differences in the studies is that Khan did not provide the cutoffs utilized for 

determining out of range bias and RMSE values.   
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Rating Scale Rasch Model  

 

Similar to the dichotomous Rasch model, a series of factorial ANOVAs for the 

Rasch rating scale model was conducted. Consistent with the results of the Q-Index for 

the dichotomous model an effect existed for the Q-index for dimensionality. In one of the 

most unexpected results, the mean value for the Q-Index for the unidimensional condition 

was higher. Moreover, for the remaining item fit statistics Infit, Outfit, ZSTD Infit, and 

ZSTD Outfit the effect sizes were often small and, in many times, trivial. This may 

indicate that Infit, Outfit, ZSTD Infit, and ZSTD Outfit are robust to violations of 

unidimensionality (Reckase, 1979) given that parameter recovery was also high in the 

current study across all conditions where unidimensionality was violated. When 

examining the Type I error rates for the Rasch rating scale model, a positive finding was 

discovering that the Q-Index had a Type I error rate well below 𝛼 = .05. The 

standardized forms of Infit and Outfit had higher error rates than the non-standardized 

versions similar to what A. B. Smith et al. (2008) found in their study.  

One of the most unexpected results was in the analysis of the rating scale model 

data where the average values of the Q-Index were higher (suggesting greater misfit) 

under unidimensionality than under the multidimensional condition. In contrast, one 

would anticipate high values of the Q-Index in a condition where the property of 

unidimensionality is violated. Initially, I considered this could be a mistake in the code, 

or in the coding of the data. However, the values of the Q-Index struggled to reach the .5 

cutoff criteria. This can be seen in Appendix C2 in Tables C2.20 to C2.28. These tables 

present findings for the I = 10 multidimensional condition for the rating scale model with 

uniform item difficulty distribution. For the Q-Index, the .5 cutoff is not reached. This 
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finding may indicate that the .5 cutoff suggested by Rost and von Davier (1994) may 

need optimization, particularly for the rating scale model. Another indication that the 

code worked as anticipated is the high values of the correlations between the true and 

estimated parameters indicating good parameter recovery.   

Summary of Parameter Recovery  

Findings for Rating Scale 

Rasch Model 

 

For the rating scale Rasch model the bias was negligible even before the 

correction factor. Overall, the results of the simulation had a mean bias of zero indicating 

that the item difficulty parameters were unbiased. Further, the high correlations between 

the “true” item difficulty parameter and the estimated item difficulty parameter for the 

rating scale Rasch model (𝑟 =  .967) provides evidence of the calibration accuracy. 

Based on further analysis, correlations between the “true” and estimated item difficulty 

parameters for each of the 128 conditions in this dissertation also yielded high 

correlations. Regarding RMSE, increasing the test length did not always help reduce that 

mean value of the RMSE 

When examining bias and relative bias, first a correction factor as suggested by 

Wright and Douglas (1977) was calculated. After the correction factor was applied, 

examining the table values along with plots of bias against the item difficulty distribution 

it was easy to see how bias was minimal. However, a very different story was told by the 

relative bias values. Large values of relative bias for the I = 20 condition for both the 

dichotomous and rating scale Rasch models, as well as extremely low values relative bias 

indicated that the item difficulty parameters were being underestimated. Supplementary 

analysis by item for the I = 20 conditions indicated that many of the outliers of this 
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conditions came from Item 9 when the item difficulty distribution was normal and under 

the multidimensional condition. The item difficulty distribution of Item 9 utilized in the 

simulation was extremely small -.0007. Item by item information can be found in 

Appendix C in Tables C2.15 and C2.16. 

Wang and Chen’s (2005) parameter recovery study is one of the few papers 

available utilizing rating scale data. In their study, the authors estimated the difficulty in 

Winsteps which utilizes Joint Maximum Likelihood (JML) and successfully corrected the 

biased estimates with the Wright and Douglas (1977) function available in Winsteps. The 

biased estimation for the item difficulty distribution in this dissertation study was 

corrected after the item parameters were estimated but the correction was performed in 

SPSS. Similarly, to the Wang and Chen’s study, the biased estimation for the item 

difficulty for the rating scale model was removed using the Wright and Douglas 

correction.  

General Discussion 

 

Rost and von Davier (1994) claimed that the Q-Index was designed specifically 

for rating scale data. For the conditions where the data met all the properties of the Rasch 

model the Q-Index showed a low Type I error rate. However, while the factorial ANOVA 

detected an effect for dimensionality, that is, the difference between the unidimensional 

and multidimensional conditions, the direction of the average Q-Index was puzzling 

when considering results aggregated across all items where fit appeared to be worse for 

the unidimensional than for the multidimensional data. When examining results from the 

supplementary, item-level analyses, however, performance of the Q-Index appears to be 

more consistent with expectations. At the item-level, Q-Index values were noticeably 
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higher for items on the smaller, secondary factor than on the larger, dominant factor 

which suggests the Q-Index was able to distinguish items that should versus should not fit 

the Rasch model. In contrast, when data were dichotomous the Q-Index was less 

successful in distinguishing items on the dominant versus secondary factors. The 

sensitivity of the Q-Index was generally masked in the original results based on 

aggregating fit values across all items. 

It should be noted that the multidimensional conditions for the dichotomous and 

rating scale Rasch models were generated utilizing two different R codes which can be 

found in Appendix A3 and Appendix A4, respectively. Initially, I suspected that when 

analyzing the data, the Rasch rating scale model was detecting the differences in how the 

program to generate the data was coded. However, the supplementary analysis resported 

in Chapter IV (see Appendix D in Tables D1 to D8) shows that for the most part the fit 

statistics detected the items which were meant to misfit. This is clearer for the Q-Index 

than with the rest of the item fit indices (this makes sense given that the Q-Index was the 

most sensitive to the violation of dimensionality based on the ANOVA results). However, 

the pattern is also clear for Infit and Outfit. For both Rasch models, with two factors and 

uniform item difficulty distribution the I = 10 condition had Q-Index values which were 

higher for the three items which were meant to misfit; unfortunately, for the rating scale 

model though the Q-Index values were higher for the intentionally misfitting items the 

value of the Q-Index did not reach .5. 

A second puzzling result occurred in the rating scale Rasch model, and again for 

the Type II error rates under the multidimensional condition. Overall, the Type II error 

rates were higher compared to those in the Rasch dichotomous model contradicting Rost 
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and von Davier’s (1994) claims that the Q-Index might work better for the rating scale 

Rasch model. Recall that Setzer (2008) and Suarez-Falcon and Glas (2003) recommended 

that the correlation between factors should be set to .5; however, no guidelines were 

provided on how the items should be weighted or separated into the factors. When 

selecting the number of items, the argument was that an instrument that is expected to be 

unidimensional should probably not have 50% of the items belong to one factor and 50% 

of the items belong to a different factor. Due to this reasoning in the current study when 

the number of items was 10, three items were set up to belong to one factor while the rest 

were generated to correlate with a second factor. The multidimensional data were 

evaluated to check if the two factor dimensions were generated correctly by utilizing a 

confirmatory factor analysis and the item grouping was checked manually. Another 

possible explanation is provided by the work of Drasgow and Parsons (1983), who 

concluded that when the correlation between factors was less than r = .39, item response 

theory analyses were not sensitive to multidimensionality. Perhaps, setting the correlation 

between the two factors at .5 was too high to find an effect.  

In summary, the Q-Index in the dichotomous Rasch model showed a large effect 

for dimensionality and a medium effect for test length.  For the rest of the conditions 

(item distribution difficulty, sample size) the effect sizes were trivial. Further, the other 

fit statistics yielded trivial effect sizes as well. It is important to note that the analysis was 

performed by aggregating fit indices across all items, which may have led to the 

attenuation of the effect sizes. Similarly, in the Rasch rating scale model for the Q-Index 

only dimensionality showed a large effect size, while the rest of the conditions had trivial 

effect sizes. The other item fit statistics had trivial effect sizes for all conditions studied.  



168 

 

 

 

Again, this could be due to the aggregation of the fit indices across all items for the 

factorial ANOVA analysis. In the supplementary analysis performed, which can be found 

in Chapter IV for the Q-Index and Appendix D for all item fit statistics and Rasch models 

it is possible to observe the patterns where one can spot minimum and maximum values 

which exceed the recommended cutoffs, but when examining the mean value for the 

same item the recommended cutoff is not reached.   

Most of the Rasch model literature focuses on the difficulty of having different 

cutoffs for the item fit statistics Infit, Outfit, ZSTD Infit and ZSTD Outfit. For this 

analysis, the criterion provided by Wright and Linacre (1994) for Infit and Outfit, and 

Smith and Suh (2003) for ZSTD Infit and ZSTD Outfit was used. However, work by Wu 

and Adams (2013) suggests that the cutoffs need to be calculated for the researcher’s 

specific sample size utilizing the equation in Chapter II. It is possible that the Type I and 

Type II errors may change if the cutoffs are determined by utilizing the guidelines of Wu 

and Adams (2013) which utilize a different procedure that is more specific to the 

researcher’s sample size. Similarly, A. B. Smith et al. (2008) suggest different cutoffs for 

rating scale than those suggested by Wright and Linacre (1994); perhaps the change in 

cutoffs may change the extreme values for the Type II error for the rating scale model.     

Limitations 

  

As with any study, this one is limited by the specific conditions manipulated and 

studied in the simulation. Simulation studies have inherent limitations of applicability in 

real life settings given the data conditions. In addition, the sampling design can be 

artificial such as the degree of multidimensionality utilized in this dissertation.  For this 

reason, the findings of this study may not generalize to all Rasch applications. For 
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example, the current study explored the Q-Index and other item fit statistics in the context 

of violation of unidimensionality. In addition to violation of the unidimensionality 

assumption, there exist many different factors which can affect how the item fit statistics 

behave under the Rasch model such as violations of local independence and presence of 

socially desirable responding. 

Recommendations for Future Research 

 

The focus of this dissertation was on the Q-Index specifically with item fit; thus, 

future research can focus on person fit. The person Q-Index can be found in the pairwise 

R package or my existing code can be easily modified to assess person rather than item 

fit. The analysis for both the dichotomous Rasch and the rating scale Rasch model 

showed an effect for the violation of dimensionality. The degree of multidimensionality 

simulated in the current study was chosen based on Setzer’s (2008) recommendations. 

Studying the degrees of multidimensionality to understand to what extent it can affect 

item calibration would be helpful to applied researchers. Further, the most popular item 

fit statistics are currently Infit, Outfit, ZSTD Infit, and ZSTD Outfit (Linacre, 2006; A. B. 

Smith et al., 2008; R. M. Smith & Plackner, 2009); however, other item fit statistics such 

as the Logit Residual Index could be compared to the Q-Index (Mount & Schumacker, 

1998). Additionally, this study focused on two Rasch models, the dichotomous model 

and the rating scale model. There exist a variety of Rasch models such as the partial 

credit model (Masters & Wright, 1997), many facets model among others in which the 

robustness of the Q-Index can be studied (Linacre, 1994b). Likewise, the Rasch model 

has three core properties: local independence, unidimensionality, and monotonicity. In 

this study, my focus was only on the violation of unidimensionality, but the study of the 
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robustness of the Q-Index to violations of local independence and monotonicity can be 

another path for future research. There are also several other measurement disturbances 

that can be studied with the dichotomous Rasch model such as guessing, which has been 

studied in conjunction with item fit indices, but not the Q-Index (Schumacker, et al., 

2005). In regard to the rating scale Rasch model, while guessing may not be a viable 

option (respondents on an attitude measure or survey, may not be inclined to “guess” the 

answer), respondents may provide socially desirable responses. Thus, a different path to 

study the properties of the Q-Index and the popular item fit statistics might be to study 

social desirability as a measurement disturbance.  

Another avenue for future research could be optimizing the criteria for identifying 

item misfit. Rost and von Davier (1994) recommended a cutoff of .5 to identify misfit in 

a dataset based on the Q-Index. However, it would be interesting to investigate what 

would happen to the rates of misfit and Type I and Type II error rates with cutoffs above 

and below the recommended .5 mark. For example, lowering the cutoff below .5 might 

optimize the Type II error rate, particularly for the rating scale model. Finally, future 

research could focus on studying the standardized form of the Q-Index. It could be that 

the combination of both the Q-Index and the standardized form of this index may be 

more helpful in identifying misfit as well as measurement disturbances than the Q-Index 

alone. However, the implementation of the standardized form of the Q-Index may require 

expertise in mathematical statistics.  

A combination of item fit statistics may also be of interest for future research. In 

fields such as Structural Equation Modeling, researchers often utilize the combination of 

two or more fit indices to guide their research (Hu & Bentler, 1999). In this dissertation 
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study, Infit and the Q-Index had very similar low Type I error rates, as was found by 

Karabatsos (2000) for Infit. The Q-Index and Infit had similar Type II error rates. Future 

research may focus on what possible combinations of item fit statistics for Rasch analysis 

can better inform applied researchers.  

Finally, item fit provides evidence of accuracy of the measurement model in the 

variable of interest to the researcher; however, targeting can provide evidence of 

precision. For example, if the range of the latent trait is different to that of the persons 

then the item and person parameters can be said to lack precision and have large standard 

errors, in other words, they are mistargeted (Salzberger, 2003). A. B. Smith et al. (2008) 

studied Infit, Outfit, ZSTD Infit, and ZSTD Outfit in addition to targeting for the rating 

scale model though focusing on real data. Future research may focus on replicating Smith 

et al.’s (2008) work with simulated data in addition to examining the Q-Index targeting’s 

precision.  

Implications for Practice 

 

In the light of the current findings of this study and considering the limitations of 

the study, the following recommendations may be useful for applied researchers utilizing 

the item fit indices from this study. The Q-Index was capable of identifying measurement 

disturbances in the form of unidimensionality violation more so than item fit statistics 

such as Infit, Outfit, ZSTD Infit, and ZSTD Outfit. Thus, a recommendation for applied 

researchers would be to utilize the Q-Index when they suspect items on their instrument 

are not unidimensional given that the Q-Index may be more likely to “pick up” this 

measurement disturbance. Further, when examining parameter recovery, Winsteps 

showed accuracy in recovering the item difficulty parameters for both the dichotomous 
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and rating scale Rasch models. These findings are consistent with those by Wang and 

Chen (2005) which should help applied researchers feel comfortable utilizing Winsteps 

for their Rasch analysis research. This is good news for Rasch users, indicating that the 

model is robust to violations of unidimensionality (Anderson, Kahn, & Tindal, 2017; 

Harrison, 1986). These findings coincide with Reckase’s (1979) study where the Rasch 

model tended to be robust to minor degrees of multidimensionality given the good 

parameter recovery for both the ability and item parameter. Furthermore, applied 

researchers should practice testing the unidimensionality of the Rasch model. In fact, E. 

V. Smith Jr. (2002) study provides strategies on how to utilize item fit indices as a tool 

for detecting multidimensionality particularly in combination with a principal component 

analysis (PCA) of residuals.     

One of the advantages of the Rasch model is that practitioners can utilize the 

model for small sample sizes. For example, Linacre (1994a) suggested that a sample size 

of N = 50 can be used for the Rasch model. In this dissertation, I focused on extremely 

small sample sizes (N = 50, 100, 150, 250) for simulation standards, and test lengths (I = 

10, 20, 30, 50) and yet parameter recovery was still acceptable. These findings contradict 

those of Khan (2014) though his study and this dissertation share similar test lengths. 

Thus, applied researchers may find the available literature is inconclusive regarding the 

adequate test length and sample size in the context of Rasch modeling despite the 

emphasis on the requirement of a specific sample size.  

Conclusions 

 

The aims of this dissertation were to study the robustness of the Q-Index when the 

property of unidimensionality was violated, and to examine how the performance of the 
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Q-Index compared to the more popular item fit statistics for the dichotomous and rating 

scale Rasch models. While a number of studies have focused on the properties of the 

Infit, ZSTD Infit, Outfit, and ZSTD this study was the first to examine the properties of 

the Q-Index in comparison with those item fit statistics (Karabatsos, 2000; Seol, 2016; A. 

B. Smith et al., 2008; R. M. Smith & Plackner, 2009; Wang & Chen, 2005). The most 

striking finding was that of the Q-Index outperforming the rest of the item fit statistics in 

correctly identifying misfit when unidimensionality was violated in both the dichotomous 

and rating scale models.  In any type of test, or survey analysis involving the Rasch 

model the focus is placed on the measurement of individual respondents’ abilities and 

item difficulties. The degree to which these properties are obtained depends in large part 

on the degree in which the data fit the Rasch model. For this reason, it is important to 

utilize item fit statistics that accurately and reliably detect the measurement disturbances 

that could interfere with the appropriate measurement of persons and items.  
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A.1 SIMULATION CODE FOR UNIDIMENSIONAL RATING SCALE DATA 
###################################################################
###### 
IRsim <- function(n_persons = NULL, n_questions = NULL, data_type = NULL, 
thresholds = NULL, Sigma, weightmat) { 
   
  n = n_persons # Number of persons 
  q = n_questions # Number of question 
   
  person <- seq(from = -2, to = 2, length.out = n)  # Person ability range 
  item <- seq(from = -2, to = 2, length.out = q)   # Item difficulty range 
  data <- matrix(nrow = n, ncol = q)    # Simulated data frame 
   
  # Dichotomous data############## 
  if(data_type == "dich") { 
     
    for(i in 1:q) { 
      for(j in 1:n) { 
        data[j,i] <- rbinom(1, 1, prob = (exp(1) ^ (person[j] - item[i])) / (1 + exp(1) ^ 
(person[j] - item[i]))) 
      } 
    }  
  }#endif 
   
  # Polytonomous data############## 
   
  if(data_type == "poly") { 
     
    thresholds <- thresholds 
    thresh_var <- 1 
     
    item_thresh <- sapply(item, function(x) x + thresh_var * seq(from = -2, to = 2, 
length.out = thresholds)) 
    for(i in 1:n) { 
      for(j in 1:q) { 
        den <- vector() 
        temp_prob <- vector() 
         
        for(z in 1:thresholds) { 
          den[z] <- exp(1) ^ sum(person[i] - item_thresh[1:z, j]) 
        } 
        den <- 1 + sum(den) 
         
        for(z in 1:thresholds) { 
          temp_prob[z] <- (exp(1) ^ sum(person[i] - item_thresh[1:z, j])) / den 
        } 
         
        temp_prob <- append(1 - sum(temp_prob), temp_prob) 
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        data[i,j] <- sample(1:(thresholds + 1), 1, prob = temp_prob) 
      } 
    } 
  } 
   
  if(data_type == "dichmulti"){ 
    require(eRm) 
    sim.xdim(n, q, Sigma, weightmat, seed=NULL, cutpoint="randomized") 
     
  }#end of rmultidimensional 
   
  mydata<-data.frame(data) 
  mydata 
   
   
} 
 
###################################################################
###### 
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A.2 SIMULATION CODE FOR CALCULATING Q-INDEX 
###################################################################
###### 
 
items<- 10 
samplesizec<-1 # 1 - n=100 
testlengthc<-1 # 1 - n=10 
 
 
#pattern="data" 
files2<- list.files(pattern="data") 
 
 
for (i in 1:length(files2)) 
{ 
  # Winsteps file with person information, this is needed to get person ability 
  wp<-data.frame(read.table(paste0("pfile_",i,"_.txt"),header=TRUE, sep=",", skip=1)) 
   
  # Winsteps file with item information. this is needed to get infit, outfit, zinfit and 
zoutfit 
  wi<-data.frame(read.table(paste0("ifile_",i,"_.txt"),header=TRUE, sep=",", skip=1)) 
   
  # original data to be used to calculate Q  
   
  wdat <- data.frame(read.table(paste0("data_",i,"_.txt"), colClasses="character", 
header=FALSE, sep="")) 
   
  dat <- do.call(rbind.data.frame, strsplit(wdat$V1, "")); colnames(dat) <- 
paste0("item", seq(1,ncol(dat))) 
   
  wsf <- wi[,c("ENTRY", "IN.MSQ", "IN.ZSTD", "OUT.MSQ", "OUT.ZSTD")] 
 
  #get betas from wp file 
  betas <- as.vector(wp[,"MEASURE"]) 
   
  #merge data with person ability 
   
  mergedat<-cbind(dat,betas) 
   
  #orders data set by ability  
  dat2=dat[order(betas, na.last = NA),] 
   
  indx <- sapply(dat2, is.factor) 
  dat2[indx] <- lapply(dat2[indx], function(x) as.numeric(as.character(x))) 
   
  #orders betas from smallest to largest  
  betas=betas[order(betas, na.last = NA)] 
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  #Guttman pattern 
   
  G=data.frame(apply(dat2,2,function(x) x[order(x, na.last = NA)])) 
   
   
  AG=data.frame(apply(dat2,2,function(x) x[order(x, na.last = NA, decreasing = 
TRUE)])) 
   
  Q=apply((dat2-G)*betas,2,sum)/apply((AG-G)*betas,2,sum) 
   
  
  #merge Q with Winsteps fit stats: infit, outfit, zinfit, zOutfit 
   
  fdata<-data.frame(cbind(Q,wsf)) 
   
  attach(fdata) 
  
   
  misfitIN.MSQ<-ifelse(IN.MSQ<= .6 & IN.MSQ>=1.4,1,0) 
  propmisfit1 <- as.numeric(misfitIN.MSQ==1) 
   
  misfitIN.ZSTD<-ifelse(IN.ZSTD>= 2 & IN.ZSTD<=-2,1,0) 
  propmisfit2 <- as.numeric((misfitIN.ZSTD==1)) 
   
  mOUT.MSQ<-ifelse(OUT.MSQ<= .6 & OUT.MSQ>=1.4,1,0) 
  propmisfit3 <- as.numeric(mOUT.MSQ==1) 
   
  mOUT.ZSTD<-ifelse(OUT.ZSTD<= .6 & OUT.ZSTD>=1.4,1,0) 
  propmisfit4 <- as.numeric(mOUT.ZSTD==1) 
  
  mQ<-ifelse(Q>= .5,1,0) 
  propmisfit5 <- as.numeric(mQ==1) 
  
  result <- matrix(0,nrow=length(items),ncol=13) 
  result<-cbind(fdata, propmisfit1, propmisfit2, propmisfit3, propmisfit4, propmisfit5,  
                samplesizec, testlengthc, i) 
  colnames(result)<- c("Q", "ENTRY", "IN.MSQ", "IN.STD", "OUT.MSQ", 
"OUT.ZSTD", "IN.MSQ Misfit", 
                      "IN.ZSTD MISFIT", "OUT.MSQ MISFIT", 
                       "OUT.ZTSD MISFIT", "Q MISFIT", "Sample Size", "Test Length", 
"Iteration") 
   
  write.table(result, sep = ",", file="result2.csv", append=TRUE, col.names =FALSE, 
row.names = FALSE) 
   
} 
   
###################################################################
###### 
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A.3 RWinsteps CODE 
###################################################################
###### 
 

library(RWinsteps) 

setwd("C:/Desktop/RSM/") 

 

 

#the rWinsteps package Winsteps fucntion doesn;t work so I have to run this one 

"Winsteps2" after i load the library RWinsteps 

Winsteps2=function (cmd, cmdfile = "cmdfile", outfile = "outfile", ifile = "ifile",  

                    pfile = "pfile", newdir = getwd(), run = TRUE, windir = "Winsteps")  

{ 

  olddir <- getwd() 

  setwd(newdir) 

  if (run) { 

    if (!missing(cmd))  

      write.wcmd(cmd, filename = cmdfile) 

    systemcommand <- paste(windir, "BATCH=YES", cmdfile,  

                           outfile, paste("PFILE=", pfile, sep = ""), paste("IFILE=",  

                                                                            ifile, sep = "")) 

    gc(FALSE) 

    time1 <- proc.time() 

    outval <- system(systemcommand) 

    time2 <- proc.time() 

    if (outval != 0)  

      stop("Winsteps not run - error sending command file") 

    else cat("\nCommand file sent to Winsteps\n\n") 

  } 

  out <- as.Winsteps(cmd = read.wcmd(cmdfile), ifile = read.ifile(ifile,header=TRUE),  

                     pfile = read.pfile(pfile,header=TRUE), daterun = date(), comptime = time2 

-  

                       time1) 

  if (cmdfile == "cmdfile")  

    unlink("cmd") 

  if (pfile == "pfile")  

    unlink("pfile") 

  if (ifile == "ifile")  

    unlink("ifile") 

  if (outfile == "outfile")  

    unlink(outfile) 

  setwd(olddir) 

  return(out) 

} 

 

write.ifile=function(ifile,filename, title){ 
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  write.table(paste(c(";ITEM  ",title, 

date()),collapse=""),filename,row.names=FALSE,col.names=FALSE, quote=FALSE)  

  write.csv(ifile,"temp.csv",row.names=FALSE) 

  file.append(filename,"temp.csv") 

} 

 

############################# 

############################# 

############################# 

 

#the working directory needs to be set for this to work properly 

files <- list.files() 

i=1 

 

for(i in 1:length(files)) 

{ 

  data <- read.table(paste0("dataP",i,".txt", sep=""), sep=",", header=TRUE) 

  Winstepsdat <- data.frame(data) 

   

  num_col<-ncol(Winstepsdat) 

  num_row<-nrow(Winstepsdat) 

 

  colnames(Winstepsdat) <- paste("i", 1:num_col, sep="") 

  Winstepsdat$name<- paste ("p", 1:num_row, sep="") 

 

#must change ni and labels for 1:n?? 

cmd <- wcmd(title = "R2Winsteps Example", data=paste0("data[",i,"].txt"),item1 = 1, ni 

=num_col , name1 = 16, namelen = 5,labels = 

paste('i',                                                                                                                                

1:num_col, sep = ""), hlines = "Y") 

 

write.wdat(Winstepsdat, cmd) 

 

write.wcmd(cmd, paste0("CMFILE[",i,"].cmd") ) 

 

Winsteps2(cmd, outfile=paste0("outfile[",i,"].txt"), pfile=paste0("pfile[",i,"].txt"), 

ifile=paste0("ifile[",i,"].txt"), windir="C:/Winsteps/Winsteps.exe") 

 

} #end for 

 
###################################################################
###### 
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A.4 DICHOTOMOUS RASCH TWO FACTOR CODE 

 

library(MASS) 

setwd("C:/Users/Samantha/ ") 

 

bb <- 2111 # 1=unidimensional, 2=xdimention 

items<- 20 

samplesizec<-50 

testlengthc<- 20 

model<-"dichxdim" #1= dichotomous 2=RSM 

diffic<- "normal" #1=normal, 2=unif 

#expected<-c(1,1,1,0,0,0,0,0,0,0) 

#expected<-c(1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

#expected<-c(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

 

########################## 

# rnorm(items, 0, 1) when items=10 

# difficulty <- c(-1.13311593714934, -0.657608666276055, -0.53926182924033, 

0.208444157322883, 0.245480451757047, 0.684659759118926, 0.8137329775945, 

0.816576034607971, 1.02494320312713, 1.94022300232108) 

 

#runif(items, -2,2) 

#  difficulty<-c(-0.534781119786203, 1.6149033755064, -0.102776566520333, 

0.770066530443728, -0.595211785286665, 1.70224438887089, -0.979478074237704, -

1.26404601894319, 1.7812423678115, 0.99497449118644)  

 

###################### 

 

#set.seed(1252018) 

#unif(items, -2,2) 

# difficulty<-c(-0.669842924922705, -1.03883897792548, -0.682522865943611,  

#   1.79676713887602, 0.326320451684296, 0.261334848590195, 1.85442680027336,  

#   -0.85601759981364, -0.000762567855417728, 1.66825598943979, 

0.418984369374812,  

#   0.731618182733655, -1.26276763994247, -0.394480818882585, -1.70098367054015,  

#   -1.95426258631051, -1.97005556803197, 1.62258387543261, 1.22193742077798,  

#   -0.766107716597617) 

 

########################## 

 

#difficulty<-rnorm(items, 0,1) 

 difficulty<-c(-1.13300159493701, -1.8240610259318, -0.823350290851456, 

1.2863720688656,  

-1.55483801794617, 1.33937237993462, 0.41155668341638, 1.26986720072675,  

-0.376971962663696, 0.707573254864918, -0.289845317824334, 0.131793555305804,  

-2.49334774512363, 0.804778851034781, -0.722545770921736, -1.24598836537037,  
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-0.199914739572402, 0.433193838716933, -0.758316689325216, 0.445077709786044 

) 

 

########################################################################

#30 

#rnorm  

# difficulty<-c(-0.657608666276055, 1.94022300232108, 0.816576034607971, -

1.13311593714934,  

#   0.245480451757047, 0.208444157322883, -0.53926182924033, 1.02494320312713,  

#   0.8137329775945, 0.684659759118926, -0.147512576717701, 1.78796572032606,  

#   -0.786254282076577, -0.637086095709209, -0.178950761811562, -

0.366454770330795,  

#   0.00747579236173547, -0.905863155360567, -0.759943568274668,  

#   0.243486779016325, -0.790274964498422, -1.1865837977366, -0.529887122046855,  

#   0.460418072938017, 0.420184634457039, -0.291864820646343, 0.98651189489772,  

#   0.191064232442524, 0.122874313228401, -0.0314796351296583) 

 

# difficulty<-c(-0.97842076048255, -0.257414720021188, 1.89529479295015, 

1.50441632419825,  

#   1.17165851499885, -1.56361967884004, -1.48566885571927, -1.08487837202847,  

#   0.387831119820476, 1.12009734660387, 0.330235633067787, -0.92962718103081,  

#   -0.82058759778738, -0.493985760957003, 1.38922001235187, 1.36962558608502,  

#   1.16840412467718, 0.962263827212155, 1.01288269460201, 1.32349698618054,  

#   -0.23454509768635, 0.514117700047791, 1.85243690386415, 1.05278060771525,  

#   -1.13656293042004, -1.38761967886239, -0.95186245534569, -0.122846701182425,  

#   -0.284047249704599, -1.52429531887174) 

############# 

 

dim(weightmat) 

length(expected) 

 

dichrasch.sim (reps=100,samplesize = samplesizec, items = testlengthc, data_type = 

"dichxdim", thresholds = NULL, Sigma, weightmat) 

 

sim.xxdim<-function (persons, items, Sigma, weightmat, seed = NULL, cutpoint = 

"randomized")  

{ 

  if (missing(Sigma)) { 

    ndim <- ncol(persons) 

  } 

  else { 

    ndim <- nrow(Sigma) 

  } 

  if (length(persons) == 1) { 

    if (!is.null(seed))  

      set.seed(seed) 
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    faehig <- mvrnorm(persons, mu = rep(0, nrow(Sigma)),  

                      Sigma = Sigma) 

  } 

  else { 

    faehig <- persons 

  } 

  if (length(items) == 1) { 

    if (!is.null(seed))  

      set.seed(seed) 

    ################################################# 

    ################################################# 

    ################################################# 

    schwierig <- difficulty#rnorm(items,0,1)#runif(items, -2,2)# 

  } 

  else { 

    schwierig <- items 

  } 

  n.persons <- nrow(faehig) 

  n.items <- length(schwierig) 

  if (missing(weightmat)) { 

    weightmat <- matrix(0, ncol = ndim, nrow = n.items) 

    if (!is.null(seed))  

      set.seed(seed) 

    indvec <- sample(1:ndim, n.items, replace = TRUE) 

    for (i in 1:n.items) weightmat[i, indvec[i]] <- 1 

  } 

  Wp <- apply(weightmat, 1, function(wi) { 

    Xw <- t(wi) %*% t(faehig) 

  }) 

  psolve <- matrix(0, n.persons, n.items) 

  for (j in 1:n.items) for (i in 1:n.persons) psolve[i, j] <- exp(Wp[i,  

                                                                     j] - schwierig[j])/(1 + exp(Wp[i, j] - 

schwierig[j])) 

  if (cutpoint == "randomized") { 

    if (!is.null(seed))  

      set.seed(seed) 

    R <- (matrix(runif(n.items * n.persons), n.persons, n.items) <  

            psolve) * 1 

  } 

  else { 

    R <- (cutpoint < psolve) * 1 

  } 

  return(R) 

}  
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A.5 RASCH RATING SCALE TWO FACTOR CODE 

setwd("C:/Users/Samantha") 

set.seed(125221) 

newdiff<- pnorm(difficulty) #from matrix of item diff dist 

mmm<- (1-newdiff)/4 

matrixxx<- matrix(mmm, nrow=10, ncol=4) 

prop<-cbind(newdiff, matrixxx) 

bb <- 1121 # 1=unidimensional, 2=xdim 

items<- 10 #20, 30, 50 

samplesizec<-50 #100, 150, 250 

persons = samplesizec 

testlengthc<- 10 

model<-"rsmxdim" #dichxdim #dich #rsm #rsmxdim 

diffic<- "normal" #1=normal, 2=uniform 

expected<-c(0,0,0,0,0,0,0,0,0,0) 

dim<- "xdim" #1= unidim 2=xdim 

#expected<-c(1,1,1,0,0,0,0,0,0,0) 

#expected<-c(1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

#expected<-c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

#expected<-c(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

 

weightmat = matrix(  

  c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 

    0, 0, 0, 1, 1, 1, 1, 1, 1, 1),  

  nrow=10,  

  ncol=2) 

 

weights <- weightmat #readxl::read_excel("newpesos.xlsx", col_names = FALSE) 

proporciones <- prop #readxl::read_excel("proporciones (1).xlsx", col_names = FALSE) 

 

sim.RSMxdim<-function (samplesize, items, weightmat, seed = 125221)   

{ 

weight=as.matrix(weights) 

proporciones=as.matrix(proporciones) 

if(nrow(weights)!=nrow(proporciones)) print("no coinciden la cantidad de variables de 

los archivos") 

nfactores=ncol(weights) 

nvarX=nrow(weights) 

ncatego= ncol(proporciones) 

 

rowSums(proporciones) 

F=MASS::mvrnorm(n=samplesize,mu=rep(0,nfactores),Sigma=diag(nfactores)) 
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X=F%*%t(weights) 

X=scale(X) 

apply(X,2,mean) 

round(var(X),2) 

#GGally::ggpairs(as.data.frame(X)) 

 

categorica=matrix(1,nrow=samplesize,ncol=nvarX) 

acumulado=t(apply(proporciones,1,cumsum)) 

thresh=t(apply(acumulado[,-nvarX],1,qnorm)) 

#View(thresh) 

for (i in 1:(ncatego-1)) 

{ 

categorica=categorica + (X>rep(1,samplesize)%*%t(thresh[,i]))   

} 

categoricac=as.data.frame(apply(categorica,2,as.factor)) 

categoricac 

 

} #end function 
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APPENDIX B 

 

DESCRIPTIVE INFORMATION FOR SIMULATION STUDY 
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B.1 PILOT STUDY DESCRIPTIVE INFORMATION 

FOR ITEM FIT STATISTICS  

 

Table B1-1 

Global Fit for Unidimensional Condition 

 Dataset 38 Dataset 11 Dataset 15 Dataset 5 Dataset 100 

CFI 1.000 1.000 0.864 0.964 0.918 

TLI 1.000 1.153 0.825 0.954 0.895 

RMSEA 0.000 0.000 0.065 0.025 0.036 

SRMR 0.078 0.061 0.076 0.047 0.048 

 

 

Table B1-2 

Global Fit for Rasch Dichotomous Multidimensional Model  

 Dataset 86 Dataset 8 Dataset 25 Dataset 61 Dataset 1 

CFI 0.973 0.883 0.788 0.703 0.962 

TLI 0.965 0.845 0.720 0.607 0.950 

RMSEA 0.055 0.051 0.048 0.069 0.021 

SRMR 0.050 0.070 0.073 0.083 0.046 

 

 

Table B1-3 

Global Fit for Rasch Rating Scale Model Condition 

 Dataset 10 Dataset 19 Dataset 38 Dataset 44 Dataset 47 

CFI 1.000 0.964 1.000 0.952 1.000 

TLI 1.151 0.953 1.001 0.938 1.151 

RMSEA 0.000 0.063 0.000 0.074 0.000 

SRMR 0.054 0.052 0.042 0.053 0.054 

 

 

Table B1-4  

Global Fit for Rasch Rating Scale Two Factor Condition  

  Dataset 70 Dataset 56 Dataset 52 Dataset 19 Dataset 98 

CFI 0.990 0.980 0.985 0.990 0.962 

TLI 0.990 0.980 0.984 0.990 0.960 

RMSEA 0.013 0.019 0.017 0.014 0.024 

SRMR 0.037 0.038 0.037 0.036 0.042 
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Table B2  

Maximum, Minimum, Mean and Standard Deviation of the Fit Statistics for All 

Replications for I = 10 and Rasch Dichotomous Model 

 

Item/ 

Persons Fit Statistic Minimum Maximum Mean 

Standard 

Deviation 

10/50 Q 0.0001 0.6213 0.1954 0.0813 

 
MSQ INFIT 0.5449 1.6266 0.9951 0.1422 

 
ZSTD INFIT -2.9794 3.3415 -0.0092 0.8832 

 
MSQ OUTFIT 0.0905 6.5624 1.0049 0.3436 

 
ZSTD OUTFIT -2.5495 4.2122 0.0319 0.9354 

 
     

10/100 Q 0.0512 0.4716 0.1959 0.0602 

 
MSQ INFIT 0.6981 1.4152 0.9967 0.1027 

 
ZSTD INFIT -3.1992 3.9014 -0.0125 0.9360 

 
MSQ OUTFIT 0.4629 2.6006 1.0043 0.2193 

 
ZSTD OUTFIT -2.9693 4.3318 0.0344 0.9822 

 
     

10/150 Q 0.0620 0.4129 0.1973 0.0538 

 
MSQ INFIT 0.7482 1.2903 0.9975 0.0875 

 
ZSTD INFIT -3.7692 3.7413 -0.0155 0.9971 

 
MSQ OUTFIT 0.5172 2.0802 1.0049 0.1865 

 
ZSTD OUTFIT -3.3693 4.8518 0.0282 1.0687 

 
     

10/250 Q 0.0882 0.4402 0.1953 0.0464 

 
MSQ INFIT 0.7851 1.2466 0.9980 0.0741 

 
ZSTD INFIT -4.2492 4.0912 -0.0223 1.0916 

 
MSQ OUTFIT 0.6197 2.0500 1.0033 0.1523 

 
ZSTD OUTFIT -3.8293 4.7114 0.0245 1.1675 
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Table B3 

Maximum, Minimum, Mean and Standard Deviation of the Fit Statistics for All 

Replications for I = 10 and Rasch Rating Scale Model 

 

Items/Persons 
Item Fit 

Statistic 
Minimum Maximum Mean 

Standard 

Deviation 

10/50 Q 0.0453 0.3544 0.1441 0.0428 

 MSQ INFIT 0.4847 1.6487 0.9880 0.1784 

 ZSTD INFIT -3.3195 2.8816 -0.0513 0.9208 

 MSQ OUTFIT 0.4975 2.2662 0.9918 0.1908 

 ZSTD OUTFIT -3.2195 3.6422 -0.0346 0.9262 

 
     

10/100 Q 0.0637 0.2703 0.1452 0.0300 

 MSQ INFIT 0.6364 1.6429 0.9893 0.1306 

 ZSTD INFIT -3.0394 4.0516 -0.0734 0.9545 

 MSQ OUTFIT 0.6298 1.6596 0.9919 0.1342 

 ZSTD OUTFIT -2.9494 4.0116 -0.0541 0.9393 

 
     

10/150 Q 0.0776 0.2531 0.1465 0.0244 

 MSQ INFIT 0.6594 1.3762 0.9904 0.1040 

 ZSTD INFIT -3.4993 2.9614 -0.0805 0.9334 

 MSQ OUTFIT 0.6600 1.3636 0.9917 0.1063 

 ZSTD OUTFIT -3.5093 2.7714 -0.0685 0.9270 

 
     

10/250 Q 0.0909 0.2159 0.1459 0.0185 

 MSQ INFIT 0.7184 1.2648 0.9904 0.0813 

 ZSTD INFIT -3.5693 2.8513 -0.1069 0.9387 

 MSQ OUTFIT 0.7212 1.2808 0.9912 0.0830 

 ZSTD OUTFIT -3.5293 2.9813 -0.0956 0.9275 
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Table B4 

Maximum, Minimum, Mean and Standard Deviation of the Fit Statistics for All 

Replications for I = 20 and Rasch Dichotomous Model  

 

Items/Persons Item Fit 

Statistic 

Minimum Maximum Mean Standard 

Deviation 

10/50 Q 0.0001 0.8761 0.2315 0.0912 

 MSQ INFIT 0.5331 1.5934 0.9970 0.1307 

 ZSTD INFIT -3.5893 3.4014 0.0001 0.8562 

 MSQ OUTFIT 0.1468 6.2319 0.9988 0.3041 

 ZSTD OUTFIT -2.9894 5.6226 0.0162 0.8932 

 
     

10/100 Q 0.0619 0.5490 0.2337 0.0712 

 MSQ INFIT 0.7275 1.3736 0.9989 0.0970 

 ZSTD INFIT -4.0693 3.9013 -0.0118 0.9157 

 MSQ OUTFIT 0.3261 6.3576 0.9982 0.2155 

 ZSTD OUTFIT -3.8993 5.7629 -0.0085 0.9651 

 
     

10/150 Q 0.0702 0.5180 0.2331 0.0626 

 MSQ INFIT 0.7569 1.3676 0.999115 0.0825 

 ZSTD INFIT -3.8692 3.9213 -0.02181 0.9603 

 MSQ OUTFIT 0.4031 3.8914 1.001475 0.1804 

 ZSTD OUTFIT -3.2692 5.3217 -0.01214 1.0224 

 
     

10/250 Q 0.1085 0.4903 0.2335 0.0559 

 MSQ INFIT 0.8063 1.2981 0.9990 0.0714 

 ZSTD INFIT -3.7092 4.5012 -0.0383 1.0834 

 MSQ OUTFIT 0.5279 2.1292 1.0029 0.1476 

 ZSTD OUTFIT -3.3592 4.8613 -0.0185 1.1400 
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Table B5 

Maximum, Minimum, Mean and Standard Deviation of the Fit Statistics for All 

Replications for I = 20 and Rasch Rating Scale Model  

 

 

 

Items/Persons 

Item Fit 

Statistic Minimum Maximum Mean 

Standard 

Deviation 

20/50 Q 0.0370 0.4188 0.1589 0.0447 

 MSQ INFIT 0.4359 1.8163 0.9881 0.1855 

 ZSTD INFIT -3.8096 3.4518 -0.05459 0.9629 

 MSQ OUTFIT 0.4412 2.2085 0.9883 0.1896 

 ZSTD OUTFIT -3.7696 3.9121 -0.0494 0.9443 

 
     

20/100 Q 0.0698 0.3128 0.1610 0.0324 

 MSQ INFIT 0.6190 1.5301 0.9889 0.1313 

 ZSTD INFIT -3.2294 3.4415 -0.0763 0.9603 

 MSQ OUTFIT 0.6162 1.9512 0.9896 0.1349 

 ZSTD OUTFIT -3.2394 4.812 -0.0683 0.9525 

 
     

20/150 Q 0.0878 0.2807 0.1608 0.0256 

 MSQ INFIT 0.6471 1.4409 0.9898 0.1062 

 ZSTD INFIT -3.6094 3.5514 -0.08692 0.9510 

 MSQ OUTFIT 0.6418 1.4716 0.9900 0.1085 

 ZSTD OUTFIT -3.6394 3.4515 -0.0822 0.9415 

 
     

20/250 Q 0.0953 0.2455 0.1598 0.0202 

 MSQ INFIT 0.7097 1.3253 0.9900 0.0810 

 ZSTD INFIT -3.7793 3.3913 -0.1107 0.9372 

 MSQ OUTFIT 0.7129 1.3359 0.9911 0.0829 

 ZSTD OUTFIT -3.7293 3.3813 -0.0955 0.9297 
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Table B6 

Maximum, Minimum, Mean and Standard Deviation of the Fit Statistics or All 

Replications for I = 30 and Rasch Dichotomous 

 

Items/Persons 

 

 Minimum Maximum Mean 

Standard 

Deviation 

30/50  Q 0.0001 1.0001 0.2444 0.0932 

  MSQ INFIT 0.6182 1.6374 0.9977 0.1268 

  ZSTD INFIT -3.5193 4.1615 -0.0100 0.9063 

  MSQ OUTFIT 0.2279 7.7997 1.0035 0.2766 

  ZSTD OUTFIT -3.2694 5.0626 0.0096 0.9382 

       
30/100  Q 0.0554 0.6073 0.2479 0.0728 

  MSQ INFIT 0.7025 1.4350 0.9989 0.0918 

  ZSTD INFIT -4.0893 4.2413 -0.0194 0.9566 

  MSQ OUTFIT 0.4763 3.3678 1.0032 0.1813 

  ZSTD OUTFIT -3.2993 6.0334 -0.0018 1.0090 

       
30/150  Q 0.0729 0.5688 0.2467 0.0653 

  MSQ INFIT 0.7523 1.3412 0.9992 0.0809 

  ZSTD INFIT -3.9592 5.1113 -0.0249 1.0372 

  MSQ OUTFIT 0.4724 2.4439 1.0016 0.1481 

  ZSTD OUTFIT -3.6592 5.2924 -0.0118 1.0667 

       
30/250  Q 0.1103 0.5022 0.2470 0.0593 

  MSQ INFIT 0.8032 1.2719 0.9994 0.0707 

  ZSTD INFIT -4.5392 5.3512 -0.0344 1.1891 

  MSQ OUTFIT 0.5768 2.1369 1.0005 0.1256 

  ZSTD OUTFIT -4.4892 5.1514 -0.0316 1.2132 
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Table B7 

Maximum, Minimum, Mean and Standard Deviation of the Fit Statistics for All 

Replications for I = 30 and Rasch Rating Scale Model 

 

Items/Persons 
Fit 

Statistic 
Minimum Maximum Mean 

Standard 

Deviation 

30/50 Q 0.0505 0.4398 0.1619 0.0447 

 INFIT 0.4752 1.7798 0.9899 0.1881 

 ZSTD INFIT -3.4095 3.3618 -0.0489 0.9818 

 OUTFIT 0.4656 2.2039 0.9910 0.1905 

 ZSTD OUTFIT -3.3295 4.5322 -0.0418 0.9736 

      
30/100 Q 0.0507 0.3045 0.1620 0.0313 

 INFIT 0.5503 1.4986 0.9910 0.1320 

 ZSTD INFIT -3.9694 3.2315 -0.0631 0.9767 

 OUTFIT 0.5639 1.5749 0.9911 0.1336 

 ZSTD OUTFIT -3.8594 3.4516 -0.0611 0.9718 

      
30/150 Q 0.0858 0.2734 0.1627 0.0248 

 INFIT 0.6521 1.4354 0.9910 0.1059 

 ZSTD INFIT -3.5493 3.3914 -0.0773 0.9577 

 OUTFIT 0.6547 1.6152 0.9913 0.1071 

 ZSTD OUTFIT -3.5793 4.2616 -0.0728 0.9529 

      
30/250 Q 0.1045 0.2474 0.1643 0.0198 

 INFIT 0.7441 1.3481 0.9912 0.0837 

 ZSTD INFIT -3.2993 3.6213 -0.1001 0.9771 

 OUTFIT 0.7445 1.3321 0.9920 0.0848 

 ZSTD OUTFIT -3.2993 3.4713 -0.0894 0.9762 
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Table B8 

Descriptive Statistics for Infit and Infit ZSTD the Unidimensional Rasch Dichotomous 

Model for N = 100 Replications for I=10 

 

Infit Minimum Maximum Mean 
Standard 

Deviation 

1 0.64 1.55 1.00 0.10 

2 0.62 1.47 1.00 0.10 

3 0.70 1.34 0.99 0.10 

4 0.64 1.35 0.99 0.10 

5 0.66 1.38 0.99 0.10 

6 0.65 1.32 0.99 0.10 

7 0.68 1.30 1.00 0.09 

8 0.68 1.57 1.01 0.10 

9 0.63 1.52 1.00 0.11 

10 0.66 1.41 1.00 0.11 

     

ZSTD Infit Minimum Maximum Mean 
Standard 

Deviation 

     

1 -3.13 3.12 0.05 0.85 

2 -2.63 2.35 0.05 0.77 

3 -3.17 2.60 -0.10 0.98 

4 -3.44 2.83 -0.10 0.95 

5 -2.70 2.87 -0.06 0.95 

6 -2.83 2.17 -0.05 0.78 

7 -2.40 2.62 0.00 0.80 

8 -2.38 2.74 0.08 0.80 

9 -2.55 2.32 -0.02 0.74 

10 -2.50 2.17 0.02 0.73 
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Table B9  

Descriptive Statistics for Infit and Infit ZSTD the Multidimensional Rasch Dichotomous 

Model for N = 100 Replications for I = 10 

 

Item Fit 

Statistic 
Minimum Maximum Mean 

Standard 

Deviation 

INFIT 1 0.81 1.43 1.09 0.09 

INFIT 2 0.74 1.63 1.09 0.10 

INFIT 3 0.82 1.52 1.10 0.09 

INFIT 4 0.71 1.27 0.95 0.08 

INFIT 5 0.69 1.37 0.95 0.08 

INFIT 6 0.57 1.31 0.95 0.09 

INFIT 7 0.69 1.30 0.96 0.08 

INFIT 8 0.68 1.40 0.96 0.08 

INFIT 9 0.69 1.45 0.96 0.09 

INFIT 10 0.54 1.38 0.96 0.09 

INFIT ZSTD 1 -1.72 3.96 1.00 0.92 

INFIT ZSTD 2 -2.10 3.99 0.92 0.87 

INFIT ZSTD 3 -1.87 4.09 1.24 1.05 

INFIT ZSTD 4 -3.77 2.10 -0.68 0.90 

INFIT ZSTD 5 -4.25 2.35 -0.64 0.97 

INFIT ZSTD 6 -2.94 2.24 -0.45 0.75 

INFIT ZSTD 7 -2.79 1.99 -0.45 0.77 

INFIT ZSTD 8 -2.69 2.09 -0.40 0.76 

INFIT ZSTD 9 -2.65 1.47 -0.36 0.67 

INFIT ZSTD 10 -2.77 1.51 -0.33 0.66 
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Table B10 

Descriptive Statistics for the Q-Index the Unidimensional Rasch Dichotomous Model for 

N = 100 Replications for I = 10 

 

 Minimum Maximum Mean 
Standard 

Deviation 

1 0.0327 0.3595 0.1720 0.0443 

2 0.0369 0.3850 0.1763 0.0471 

3 0.0467 0.3496 0.1681 0.0437 

4 0.0306 0.3512 0.1702 0.0446 

5 0.0503 0.3886 0.1710 0.0446 

6 0.0234 0.3992 0.1740 0.0492 

7 0.0419 0.3366 0.1716 0.0427 

8 0.0522 0.4029 0.1756 0.0449 

9 0.0177 0.3917 0.1770 0.0506 

10 0.0238 0.4691 0.1797 0.0537 

 

Table B11. 

Descriptive Statistics for the Q-Index the Multidimensional Rasch Dichotomous Model 

for N=100 Replications for I = 10. 

Q-Index Minimum Maximum Mean 
Standard 

Deviation 

1 0.0970 0.5550 0.2727 0.0587 

2 0.0685 0.6213 0.2804 0.0650 

3 0.0842 0.5102 0.2729 0.0579 

4 0.0580 0.4166 0.1883 0.0469 

5 0.0447 0.4150 0.1895 0.0495 

6 0.0001 0.4112 0.1925 0.0553 

7 0.0331 0.3922 0.1951 0.0480 

8 0.0216 0.4719 0.1943 0.0526 

9 0.0001 0.5454 0.1987 0.0587 

10 0.0191 0.4530 0.2003 0.0568 
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Table B12 

Descriptive Statistics for Infit the Unidimensional Rasch Dichotomous Model for N = 

100 Replications for I = 20 

 

Infit Minimum Maximum Mean 
Standard 

Deviation 

1 0.6800 1.4200 1.0000 0.1000 

2 0.6900 1.4500 1.0000 0.0900 

3 0.6800 1.4000 1.0000 0.0900 

4 0.6500 1.4700 0.9900 0.1000 

5 0.6700 1.4000 1.0000 0.1000 

6 0.5300 1.3900 1.0000 0.1000 

7 0.7000 1.4300 1.0000 0.0900 

8 0.6700 1.3400 0.9900 0.0900 

9 0.6900 1.4100 0.9900 0.0900 

10 0.7200 1.3600 1.0000 0.0900 

11 0.5400 1.3900 1.0000 0.1000 

12 0.6800 1.3900 1.0000 0.0900 

13 0.5400 1.5200 1.0000 0.1000 

14 0.6900 1.3300 1.0000 0.1000 

15 0.6300 1.3800 0.9900 0.0900 

16 0.6900 1.5900 1.0000 0.0900 

17 0.6100 1.3800 1.0000 0.0900 

18 0.6700 1.3800 1.0000 0.0900 

19 0.6800 1.3700 1.0000 0.0900 

20 0.6900 1.4500 1.0000 0.0900 
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Table B13. 

Descriptive Statistics for ZSTD Infit the Unidimensional Rasch Dichotomous Model or N 

= 100 Replications for I = 20 

 

ZSTD Infit Minimum Maximum Mean 

Standard 

Deviation 

1 -2.4900 2.6500 0.0400 0.7700 

2 -2.7700 2.8000 -0.0100 0.7200 

3 -2.5000 2.8400 0.0000 0.7600 

4 -2.4800 2.8700 -0.0300 0.7500 

5 -2.8700 3.3900 0.0100 0.8100 

6 -3.0000 2.7200 0.0300 0.7600 

7 -2.5300 2.7700 0.0000 0.8100 

8 -2.3900 2.3400 -0.0200 0.7100 

9 -2.5800 2.9300 -0.0600 0.8800 

10 -2.4800 3.1700 0.0400 0.7200 

11 -2.9200 2.5800 0.0200 0.8400 

12 -2.8900 2.9000 -0.0500 0.8900 

13 -2.4100 2.4700 0.0000 0.7600 

14 -2.8200 3.1000 0.0100 0.8000 

15 -3.4200 2.3300 -0.0400 0.7800 

16 -2.6700 2.3000 0.0100 0.7600 

17 -3.1800 3.9100 -0.0100 0.9200 

18 -2.2600 2.7000 0.0100 0.7900 

19 -2.4700 2.2100 0.0400 0.7000 

20 -3.1800 2.8600 -0.0500 0.8900 

 

 

  



213 

 

 

 

Table B14. 

Descriptive Statistics for Outfit the Unidimensional Rasch Dichotomous Model for N = 

100 Replications for I = 20 

 

Outfit Minimum Maximum Mean 

Standard 

Deviation 

1 0.3500 2.5500 1.0100 0.2200 

2 0.3800 3.0200 1.0000 0.2500 

3 0.4500 2.8400 1.0000 0.2400 

4 0.2400 6.2300 0.9900 0.2800 

5 0.3800 2.5000 1.0000 0.2200 

6 0.4500 3.2300 1.0000 0.2400 

7 0.4000 3.7600 1.0100 0.2400 

8 0.3700 2.8900 0.9900 0.2600 

9 0.5500 2.3500 0.9900 0.1700 

10 0.3700 3.9000 1.0200 0.3000 

11 0.3400 3.2500 1.0000 0.2300 

12 0.5600 2.4100 1.0000 0.1800 

13 0.1500 6.3600 1.0000 0.3500 

14 0.4300 2.3900 1.0100 0.2100 

15 0.3900 2.0700 0.9900 0.2000 

16 0.3700 2.5700 1.0000 0.2200 

17 0.2900 3.2900 1.0000 0.2200 

18 0.2300 4.5000 1.0000 0.2500 

19 0.3200 2.7200 1.0100 0.2500 

20 0.5400 2.6500 0.9900 0.1700 
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Table B15. 

Descriptive Statistics for ZSTD Outfit the Unidimensional Rasch Dichotomous Model for 

N = 100 Replications for I = 20 

 

ZSTD Outfit Minimum Maximum Mean 

Standard 

Deviation 

1 -2.1600 4.1700 0.0700 0.8500 

2 -2.1500 3.8900 0.0300 0.8400 

3 -2.0900 3.5300 0.0300 0.8300 

4 -2.2300 4.8200 0.0100 0.8100 

5 -2.5000 3.3100 0.0200 0.8500 

6 -2.8000 3.7500 0.0300 0.8000 

7 -2.1000 4.3500 0.0400 0.8500 

8 -2.0700 5.7600 0.0000 0.8700 

9 -2.2100 4.2800 -0.0700 0.8500 

10 -2.4100 4.7400 0.0700 0.8300 

11 -2.7000 5.3000 0.0200 0.8900 

12 -2.4400 4.0900 -0.0200 0.8900 

13 -2.0000 4.2700 0.0100 0.8700 

14 -2.2800 3.4800 0.0500 0.8500 

15 -2.3700 3.1800 -0.0100 0.8200 

16 -2.2200 3.6700 0.0200 0.8300 

17 -2.5800 4.1500 0.0300 0.9500 

18 -2.2800 3.9500 0.0300 0.8500 

19 -2.0100 3.3100 0.0700 0.8300 

20 -2.7100 3.9200 -0.0500 0.8700 
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Table B16. 

Descriptive Statistics for the Infit the Multidimensional Rasch Dichotomous Model for N 

= 100 Replications for I = 20 

 

Infit Minimum Maximum Mean 

Standard 

Deviation 

1 0.8400 1.4500 1.1000 0.0800 

2 0.8200 1.3600 1.0900 0.0800 

3 0.8200 1.3900 1.1100 0.0800 

4 0.8200 1.4000 1.1000 0.0800 

5 0.8200 1.4700 1.1000 0.0800 

6 0.8200 1.4100 1.1100 0.0800 

7 0.8200 1.3500 0.9600 0.0700 

8 0.8200 1.2500 0.9500 0.0700 

9 0.8200 1.3000 0.9500 0.0700 

10 0.8200 1.1600 0.9600 0.0700 

11 0.8200 1.2400 0.9500 0.0700 

12 0.8200 1.2400 0.9600 0.0700 

13 0.8200 1.2000 0.9600 0.0700 

14 0.8200 1.2400 0.9500 0.0700 

15 0.8200 1.2600 0.9500 0.0700 

16 0.8200 1.1600 0.9600 0.0700 

17 0.8200 1.2700 0.9500 0.0700 

18 0.8200 1.2800 0.9600 0.0700 

19 0.8200 1.2400 0.9500 0.0700 

20 0.8200 1.2200 0.9500 0.0700 
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Table B17.  

Descriptive Statistics for ZSTD Infit the Multidimensional Rasch Dichotomous Model for 

N = 100 Replications for I = 20 

 

ZSTD Infit Minimum Maximum Mean 

Standard 

Deviation 

1 0.8200 3.8800 1.1700 0.8300 

2 0.8200 3.5500 0.8000 0.6800 

3 0.8200 3.9200 1.3000 0.9000 

4 0.8200 3.4100 0.8000 0.6200 

5 0.8200 4.3000 1.1000 0.9100 

6 0.8200 4.5000 1.2700 0.8900 

7 0.8200 2.4200 -0.4100 0.7700 

8 0.8200 1.5500 -0.4900 0.7100 

9 0.8200 2.2200 -0.8000 0.9500 

10 0.8200 1.4200 -0.4000 0.6700 

11 0.8200 2.3900 -0.6500 0.9200 

12 0.8200 1.7600 -0.6000 0.8600 

13 0.8200 1.5600 -0.2600 0.5200 

14 0.8200 1.8200 -0.6000 0.8800 

15 0.8200 1.9400 -0.4500 0.6800 

16 0.8200 1.1400 -0.2600 0.5200 

17 0.8200 2.2000 -0.4400 0.7800 

18 0.8200 1.7500 -0.4100 0.7500 

19 0.8200 1.9600 -0.5200 0.7400 

20 0.8200 1.7200 -0.6200 0.8300 
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Table B18. 

Descriptive Statistics for Outfit the Multidimensional Rasch Dichotomous Model for N = 

100 Replications for I = 20. 

 

Outfit Minimum Maximum Mean 
Standard 

Deviation 

1 0.7600 1.9000 1.1700 0.1600 

2 0.5700 3.2000 1.1900 0.2400 

3 0.6400 1.7300 1.1600 0.1500 

4 0.6700 2.8700 1.2000 0.2200 

5 0.5800 3.2000 1.1700 0.2100 

6 0.5700 2.0300 1.1800 0.1700 

7 0.6000 2.4400 0.9200 0.1500 

8 0.4000 1.8800 0.9200 0.1200 

9 0.6800 1.7400 0.9300 0.0900 

10 0.5700 1.6300 0.9200 0.1200 

11 0.6200 1.4500 0.9400 0.1000 

12 0.6600 1.3900 0.9300 0.1000 

13 0.3000 2.2000 0.9100 0.2300 

14 0.6300 1.5900 0.9400 0.1100 

15 0.5500 1.6300 0.9200 0.1300 

16 0.4300 2.0000 0.9200 0.1700 

17 0.4800 1.5000 0.9100 0.1300 

18 0.5900 1.5800 0.9300 0.1300 

19 0.6300 1.5400 0.9300 0.1300 

20 0.6400 1.5400 0.9300 0.1000 
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Table B19  

Descriptive Statistics for Outfit ZSTD the Multidimensional Rasch Dichotomous Model 

for N = 100 Replications for I = 20 

 

ZSTD Outfit Minimum Maximum Mean 
Standard 

Deviation 

1 -1.2400 3.8200 1.1300 0.9000 

2 -1.7100 4.5000 0.9100 0.8600 

3 -1.6200 4.7100 1.2100 0.9700 

4 -1.1300 5.1200 0.9200 0.8300 

5 -1.2300 4.9400 1.1100 0.9700 

6 -1.2600 5.3200 1.2600 0.9800 

7 -3.0100 4.3000 -0.4800 0.8400 

8 -2.5600 1.9900 -0.5100 0.7300 

9 -3.2700 2.7700 -0.7500 0.8900 

10 -2.6100 2.3000 -0.4400 0.7300 

11 -3.9000 2.7300 -0.5900 0.8900 

12 -3.0200 2.2200 -0.5900 0.8400 

13 -2.1000 2.6900 -0.3400 0.7200 

14 -3.0600 2.8000 -0.5400 0.8800 

15 -2.5900 3.1100 -0.4600 0.7500 

16 -2.3400 3.8100 -0.3300 0.7100 

17 -2.9400 2.7500 -0.5000 0.8000 

18 -2.7400 3.6000 -0.4400 0.8400 

19 -2.8300 3.1600 -0.4800 0.8400 

20 -2.5700 3.4400 -0.5900 0.8500 
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Table B20 

Descriptive Statistics for the Q-Index the Unidimensional Rasch Dichotomous Model for 

N = 100 Replications for I = 20 

 

Q-Index Minimum Maximum Mean 
Standard 

Deviation 

1 0.0292 0.4227 0.2086 0.0528 

2 0.0307 0.4927 0.2084 0.0537 

3 0.0437 0.4491 0.2074 0.0525 

4 0.0170 0.4997 0.2046 0.0542 

5 0.0367 0.4212 0.2070 0.0549 

6 0.0335 0.4683 0.2115 0.0591 

7 0.0320 0.5305 0.2069 0.0534 

8 0.0457 0.4432 0.2049 0.0546 

9 0.0561 0.4804 0.2009 0.0482 

10 0.0391 0.5076 0.2128 0.0579 

11 0.0060 0.4884 0.2065 0.0538 

12 0.0485 0.4367 0.2031 0.0484 

13 0.0001 0.5100 0.2119 0.0651 

14 0.0534 0.4422 0.2073 0.0518 

15 0.0423 0.4708 0.2037 0.0516 

16 0.0516 0.5374 0.2075 0.0528 

17 0.0293 0.4790 0.2047 0.0508 

18 0.0428 0.4367 0.2055 0.0527 

19 0.0373 0.4320 0.2107 0.0550 

20 0.0498 0.4129 0.2019 0.0472 
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Table B21 

Descriptive Statistics for the Q-Index the Multidimensional Rasch Dichotomous Model 

for N = 100 Replications for I = 20 

 

Q-Index Minimum Maximum Mean 
Standard 

Deviation 

1 0.1565 0.5886 0.3312 0.0608 

2 0.0924 0.6980 0.3332 0.0711 

3 0.1007 0.5276 0.3309 0.0604 

4 0.1532 0.5556 0.3456 0.0672 

5 0.0707 0.5504 0.3295 0.0638 

6 0.1127 0.6477 0.3394 0.0666 

7 0.0894 0.5046 0.2313 0.0554 

8 0.0370 0.5406 0.2257 0.0532 

9 0.0897 0.4727 0.2179 0.0455 

10 0.0765 0.3924 0.2300 0.0505 

11 0.0811 0.4381 0.2237 0.0484 

12 0.0963 0.4128 0.2248 0.0474 

13 0.0001 0.5000 0.2310 0.0654 

14 0.0867 0.4128 0.2249 0.0499 

15 0.0430 0.4326 0.2264 0.0555 

16 0.0222 0.4599 0.2327 0.0568 

17 0.0322 0.4360 0.2266 0.0546 

18 0.0571 0.4608 0.2317 0.0553 

19 0.0763 0.4233 0.2238 0.0517 

20 0.0668 0.4090 0.2224 0.0473 
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Table B22  

Descriptive Statistics for the Infit the Unidimensional Rasch Dichotomous Model for N = 

100 Replications for I = 30 

  

Infit Minimum Maximum Mean 
Standard 

Deviation 

1 0.7400 1.4400 1.0000 0.0900 

2 0.7200 1.3900 0.9900 0.0800 

3 0.6500 1.4000 1.0000 0.0900 

4 0.7100 1.3700 1.0000 0.0800 

5 0.6700 1.2800 0.9900 0.0800 

6 0.7500 1.3800 1.0000 0.0900 

7 0.7600 1.3700 1.0000 0.0800 

8 0.7200 1.3200 0.9900 0.0800 

9 0.7200 1.3500 1.0000 0.0800 

10 0.7200 1.3400 1.0000 0.0800 

11 0.7400 1.3600 1.0000 0.0800 

12 0.6400 1.3100 1.0000 0.0900 

13 0.6300 1.2900 1.0000 0.0800 

14 0.6800 1.3300 1.0000 0.0800 

15 0.7500 1.5500 0.9900 0.0800 

16 0.6400 1.2700 1.0000 0.0800 

17 0.7200 1.3500 1.0000 0.0800 

18 0.7000 1.4400 1.0000 0.0800 

19 0.7400 1.3700 1.0000 0.0800 

20 0.6800 1.4100 1.0000 0.0900 

21 0.7200 1.3400 1.0000 0.0800 

22 0.6900 1.4100 1.0000 0.0800 

23 0.6700 1.4000 1.0000 0.0900 

24 0.6700 1.3000 0.9900 0.0800 

25 0.6600 1.3900 1.0000 0.0800 

26 0.7700 1.3800 1.0000 0.0800 

27 0.7300 1.3500 1.0000 0.0800 

28 0.7200 1.3700 1.0000 0.0800 

29 0.6700 1.3400 1.0000 0.0800 

30 0.7300 1.4200 1.0000 0.0800 
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Table B23 

Descriptive Statistics for the Infit the Multidimensional Rasch Dichotomous Model for N 

= 100 Replications for I = 30 

  

Infit Minimum Maximum Mean 
Standard 

Deviation 

1 0.7600 1.4700 1.1100 0.0800 

2 0.8500 1.5100 1.0900 0.0800 

3 0.8500 1.4300 1.1000 0.0800 

4 0.7900 1.4500 1.1100 0.0800 

5 0.7800 1.5000 1.1100 0.0800 

6 0.7300 1.4100 1.1000 0.0700 

7 0.8500 1.4000 1.1100 0.0800 

8 0.8500 1.3900 1.1000 0.0700 

9 0.8900 1.4200 1.1100 0.0800 

10 0.7100 1.2700 0.9500 0.0700 

11 0.6600 1.2100 0.9500 0.0700 

12 0.6900 1.3100 0.9600 0.0700 

13 0.7200 1.2400 0.9600 0.0700 

14 0.7200 1.2100 0.9500 0.0600 

15 0.7100 1.2200 0.9500 0.0700 

16 0.6800 1.2300 0.9600 0.0700 

17 0.6400 1.2300 0.9500 0.0700 

18 0.7000 1.2500 0.9500 0.0700 

19 0.7100 1.1700 0.9500 0.0700 

20 0.7500 1.3200 0.9600 0.0700 

21 0.7300 1.2600 0.9500 0.0600 

22 0.7000 1.2400 0.9500 0.0700 

23 0.6700 1.2400 0.9500 0.0700 

24 0.6700 1.2800 0.9600 0.0700 

25 0.7000 1.2700 0.9500 0.0600 

26 0.7200 1.1900 0.9500 0.0600 

27 0.7600 1.2800 0.9500 0.0700 

28 0.7000 1.2700 0.9500 0.0700 

29 0.6500 1.2600 0.9500 0.0700 

30 0.7000 1.2800 0.9500 0.0700 
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Table B24 

Descriptive Statistics for the ZSTD Infit the Unidimensional Rasch Dichotomous Model 

for N = 100 Replications for I = 30 

  

ZSTD Infit Minimum Maximum Mean 
Standard 

Deviation 

1 -2.4800 3.1600 0.0400 0.8800 

2 -2.3300 3.1100 -0.0300 0.7500 

3 -2.7600 2.3500 0.0100 0.7500 

4 -2.1100 1.9500 -0.0200 0.6900 

5 -3.1400 2.2400 -0.0600 0.8600 

6 -3.0900 3.1700 -0.0100 0.8700 

7 -2.4400 2.5800 0.0100 0.8200 

8 -2.9800 2.3300 -0.0300 0.7600 

9 -2.7400 2.5300 -0.0200 0.8700 

10 -2.4900 2.2200 -0.0200 0.8100 

11 -2.3500 3.0800 -0.0100 0.9700 

12 -1.8500 1.9300 0.0300 0.6500 

13 -3.0800 3.2100 0.0500 0.8600 

14 -2.6100 2.7200 0.0100 0.9200 

15 -3.0300 3.8400 -0.0400 0.8600 

16 -2.9500 2.7300 0.0300 0.8400 

17 -2.9200 2.9100 0.0400 0.8600 

18 -2.2900 2.3800 0.0100 0.7800 

19 -2.8100 2.8300 0.0500 0.8400 

20 -3.2700 2.9000 0.0100 0.9300 

21 -2.7300 2.6800 0.0200 0.9200 

22 -3.0500 2.7900 -0.0200 0.8100 

23 -2.7700 2.7600 -0.0200 0.8200 

24 -2.5700 2.6700 -0.0500 0.8400 

25 -3.0000 2.9200 -0.0100 0.8900 

26 -2.5400 2.7400 0.0000 0.8500 

27 -2.5500 2.5000 0.0500 0.7900 

28 -2.7500 2.9200 0.0000 0.9900 

29 -3.1800 3.4100 -0.0600 1.0000 

30 -2.7700 2.9600 0.0100 0.8500 
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Table B25 

 

Descriptive Statistics for the ZSTD Infit the Multidimensional Rasch Dichotomous Model 

for N = 100 Replications for I = 30  

 

ZSTD Infit Minimum Maximum Mean 
Standard 

Deviation 

1 -2.2100 4.1300 1.3600 0.9100 

2 -0.6700 5.3300 1.0700 0.9900 

3 -0.9800 4.6100 1.0200 0.8100 

4 -0.9900 3.8500 1.0000 0.6600 

5 -1.4000 4.7200 1.4700 0.9900 

6 -2.7100 5.3500 1.3200 1.0200 

7 -0.9800 4.5300 1.2900 0.9600 

8 -1.6400 3.8200 1.1100 0.7800 

9 -1.1600 5.2100 1.4800 0.9700 

10 -3.0000 1.8300 -0.5700 0.7800 

11 -3.5200 2.3300 -0.7900 0.9700 

12 -2.9400 1.5400 -0.3600 0.6100 

13 -4.0900 1.7400 -0.5800 0.8000 

14 -3.5400 1.6400 -0.6500 0.8200 

15 -3.3600 1.9400 -0.6100 0.8200 

16 -3.5600 2.5400 -0.5400 0.8400 

17 -3.5200 1.8000 -0.6300 0.8500 

18 -3.2000 2.0100 -0.5500 0.7300 

19 -3.4300 1.8500 -0.5300 0.7600 

20 -4.5400 2.0400 -0.5900 0.8700 

21 -3.5200 2.2200 -0.6500 0.8300 

22 -3.6900 1.9600 -0.5700 0.7900 

23 -3.4100 1.7000 -0.5000 0.7500 

24 -3.4000 2.0400 -0.5900 0.8600 

25 -4.3200 2.5900 -0.5800 0.8000 

26 -3.5000 1.9300 -0.5700 0.8100 

27 -2.6800 1.8500 -0.5300 0.7100 

28 -3.9600 2.4700 -0.7600 0.9500 

29 -3.3100 2.6500 -0.7200 0.9800 

30 -3.1700 1.7100 -0.5900 0.8500 
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Table B26 

Descriptive Statistics for Outfit the Unidimensional Rasch Dichotomous Model for N = 

100 Replications for I = 30 

  

Outfit Minimum Maximum Mean 
Standard 

Deviation 

1 0.5900 2.9600 1.0100 0.1800 

2 0.4200 7.8000 1.0000 0.3500 

3 0.4700 2.5800 1.0000 0.2100 

4 0.4800 2.4400 1.0100 0.2200 

5 0.5800 1.6200 0.9900 0.1400 

6 0.6400 1.8700 1.0000 0.1800 

7 0.5400 1.8400 1.0000 0.1700 

8 0.4900 2.1300 0.9800 0.1600 

9 0.6100 2.8700 1.0000 0.1700 

10 0.5600 2.4000 1.0000 0.1700 

11 0.6600 1.6100 1.0000 0.1300 

12 0.2300 3.6900 1.0000 0.2600 

13 0.5300 2.4200 1.0000 0.1600 

14 0.5500 1.6100 1.0000 0.1400 

15 0.6200 3.3700 1.0000 0.1900 

16 0.5400 2.3500 1.0000 0.1600 

17 0.6100 2.8200 1.0100 0.1700 

18 0.5900 1.7300 1.0000 0.1500 

19 0.6500 1.8900 1.0000 0.1600 

20 0.5800 2.4900 1.0000 0.1700 

21 0.6400 2.5400 1.0100 0.1600 

22 0.5500 1.8900 0.9900 0.1600 

23 0.5500 3.0700 0.9900 0.2000 

24 0.6000 1.9700 0.9900 0.1500 

25 0.5800 2.2100 1.0000 0.1600 

26 0.5000 2.2000 1.0000 0.1700 

27 0.5500 1.9700 1.0000 0.1700 

28 0.6200 1.8300 1.0000 0.1400 

29 0.5800 1.5600 1.0000 0.1300 

30 0.6200 2.0300 1.0000 0.1700 
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Table B27 

Descriptive Statistics for Outfit the Multidimensional Rasch Dichotomous Model for N = 

100 Replications for I = 30 

  

Outfit Minimum Maximum Mean 
Standard 

Deviation 

1 0.6600 1.8200 1.1600 0.1400 

2 0.5200 3.2400 1.1800 0.1900 

3 0.5900 4.9200 1.1900 0.2400 

4 0.7600 3.8500 1.1900 0.2000 

5 0.6600 2.8100 1.1600 0.1400 

6 0.6700 2.5800 1.1700 0.1600 

7 0.7900 2.8500 1.1900 0.1800 

8 0.7700 1.9300 1.1800 0.1500 

9 0.8300 2.0700 1.1600 0.1200 

10 0.5600 1.8300 0.9300 0.1100 

11 0.6100 1.7100 0.9400 0.0900 

12 0.4900 1.8600 0.9200 0.1400 

13 0.6200 1.5300 0.9300 0.1100 

14 0.6200 1.4500 0.9400 0.0900 

15 0.5300 1.6400 0.9300 0.1100 

16 0.4800 1.4800 0.9300 0.1100 

17 0.5500 1.5900 0.9400 0.1100 

18 0.5700 1.3100 0.9200 0.1100 

19 0.6000 1.8800 0.9300 0.1100 

20 0.6000 1.8500 0.9300 0.1200 

21 0.6800 1.4700 0.9400 0.1000 

22 0.5200 1.4400 0.9300 0.1100 

23 0.4200 3.0800 0.9200 0.1500 

24 0.5200 1.3800 0.9400 0.1000 

25 0.6200 1.3600 0.9300 0.1000 

26 0.5300 1.5400 0.9300 0.1100 

27 0.6200 1.7000 0.9300 0.1100 

28 0.6600 1.3600 0.9400 0.0900 

29 0.5700 1.3500 0.9400 0.0900 

30 0.5500 1.5700 0.9300 0.1200 
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Table B28  

Descriptive Statistics for the ZSTD Outfit the Unidimensional Rasch Dichotomous Model 

for N = 100 Replications for I = 30 

  

ZSTD Outfit Minimum Maximum Mean 
Standard 

Deviation 

1 -2.0200 4.7100 0.0600 0.9200 

2 -2.4400 3.9400 -0.0200 0.8600 

3 -2.7800 3.7100 0.0100 0.8600 

4 -1.8300 4.8800 0.0400 0.8900 

5 -2.5200 2.7300 -0.0700 0.8400 

6 -2.4700 2.9300 0.0200 0.9400 

7 -2.2500 3.1700 0.0300 0.8800 

8 -2.1700 3.4700 -0.0700 0.8100 

9 -2.3800 4.3600 -0.0300 0.8900 

10 -2.1500 4.0600 0.0100 0.8800 

11 -2.1400 3.8700 0.0100 0.9800 

12 -1.8700 3.6800 0.0200 0.7800 

13 -2.3800 5.2900 0.0500 0.9000 

14 -2.4400 3.2600 -0.0100 0.8900 

15 -2.6100 6.0300 -0.0200 0.9300 

16 -2.5500 3.2400 0.0300 0.8700 

17 -2.6300 4.8700 0.0500 0.9200 

18 -2.0200 3.2600 0.0000 0.7900 

19 -2.2900 3.7600 0.0500 0.8600 

20 -2.4800 4.0500 0.0300 0.9400 

21 -2.5200 3.4700 0.0400 0.9600 

22 -2.4200 3.0900 -0.0200 0.8400 

23 -2.0800 3.7400 -0.0100 0.8800 

24 -2.2800 3.8200 -0.0500 0.8900 

25 -2.4500 4.1400 0.0000 0.9200 

26 -2.5400 3.6100 0.0300 0.9200 

27 -2.4500 2.9700 0.0200 0.8500 

28 -2.6100 3.3900 0.0000 0.9600 

29 -2.5200 3.5900 -0.0200 0.9900 

30 -2.4900 3.9300 0.0200 0.9100 
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Table B29 

Descriptive Statistics for ZSTD Outfit the Multidimensional Rasch Dichotomous Model 

for N = 100 Replications for I = 30 

 

ZSTD Outfit Minimum Maximum Mean 
Standard 

Deviation 

1 -2.1000 4.3600 1.2800 0.9600 

2 -1.1000 5.1100 1.1900 0.9700 

3 -1.2500 5.0800 1.1300 0.9000 

4 -1.2100 4.1500 1.0900 0.7900 

5 -1.2900 5.3700 1.3900 1.0100 

6 -2.6100 5.1500 1.3400 1.0000 

7 -0.9400 4.9300 1.3200 0.9400 

8 -1.4400 3.7500 1.2100 0.8900 

9 -1.2500 4.5300 1.4000 0.9700 

10 -2.7900 2.6500 -0.5500 0.8300 

11 -3.2700 4.5500 -0.7400 0.9500 

12 -2.7700 2.9200 -0.4700 0.7100 

13 -3.3000 2.2200 -0.5800 0.8300 

14 -3.0800 2.2700 -0.6100 0.8400 

15 -3.0600 2.5400 -0.6000 0.8600 

16 -3.3700 2.7600 -0.5500 0.8700 

17 -3.0100 2.9200 -0.5900 0.8800 

18 -3.1200 2.6500 -0.5600 0.7700 

19 -3.1400 2.1600 -0.5200 0.8000 

20 -4.4900 3.2900 -0.5900 0.8800 

21 -3.0600 2.4200 -0.5900 0.8500 

22 -2.9800 2.7200 -0.5900 0.8100 

23 -3.1900 2.8500 -0.5500 0.7800 

24 -3.4700 2.3500 -0.5700 0.8500 

25 -4.1600 2.7500 -0.5700 0.8100 

26 -2.7400 3.7700 -0.5600 0.8300 

27 -2.7400 2.1000 -0.5500 0.7800 

28 -3.6600 2.0600 -0.7000 0.9100 

29 -3.1400 2.7500 -0.6700 0.9500 

30 -2.8800 3.3200 -0.5700 0.8800 
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Table B30 

Descriptive Statistics for the Q-Index the Unidimensional Rasch Dichotomous Model for 

N = 100 Replications for I = 30 

  

Q-Index Minimum Maximum Mean 
Standard 

Deviation 

1 0.0800 0.4200 0.2201 0.0489 

2 0.0600 1.0001 0.2216 0.0629 

3 0.0600 0.4600 0.2227 0.0518 

4 0.0800 0.4500 0.2200 0.0502 

5 0.0600 0.3700 0.2144 0.0448 

6 0.0900 0.4100 0.2205 0.0495 

7 0.0800 0.4500 0.2199 0.0501 

8 0.0500 0.4100 0.2164 0.0476 

9 0.0600 0.4600 0.2161 0.0460 

10 0.0700 0.3600 0.2163 0.0443 

11 0.0900 0.4100 0.2149 0.0434 

12 0.0001 0.4800 0.2252 0.0570 

13 0.0400 0.4300 0.2192 0.0487 

14 0.0700 0.4000 0.2171 0.0457 

15 0.0900 0.5300 0.2160 0.0483 

16 0.0400 0.3800 0.2193 0.0467 

17 0.0800 0.3800 0.2197 0.0446 

18 0.0800 0.4100 0.2183 0.0463 

19 0.0800 0.4300 0.2189 0.0464 

20 0.0500 0.4200 0.2190 0.0512 

21 0.0700 0.4300 0.2179 0.0477 

22 0.0500 0.4400 0.2174 0.0488 

23 0.0500 0.4200 0.2193 0.0506 

24 0.0700 0.4000 0.2151 0.0460 

25 0.0500 0.4300 0.2177 0.0464 

26 0.0800 0.4100 0.2184 0.0473 

27 0.0300 0.4200 0.2216 0.0485 

28 0.0700 0.4600 0.2158 0.0456 

29 0.0600 0.3800 0.2138 0.0444 

30 0.0800 0.4100 0.2201 0.0473 
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Table B31 

Descriptive Statistics for the Q-Index the Multidimensional Rasch Dichotomous Model 

for N = 100 Replications for I = 30 

  

Q-Index Minimum Maximum Mean 
Standard 

Deviation 

1 0.0800 0.7500 0.3579 0.0659 

2 0.0700 0.6400 0.3573 0.0642 

3 0.1400 0.8100 0.3636 0.0692 

4 0.1500 0.6500 0.3686 0.0671 

5 0.1100 0.6100 0.3587 0.0622 

6 0.1000 0.5900 0.3570 0.0615 

7 0.1800 0.6200 0.3632 0.0641 

8 0.1400 0.6300 0.3565 0.0632 

9 0.1700 0.6100 0.3567 0.0591 

10 0.0600 0.4600 0.2373 0.0548 

11 0.0400 0.4600 0.2333 0.0506 

12 0.0400 0.5900 0.2428 0.0601 

13 0.0700 0.4500 0.2395 0.0539 

14 0.0800 0.4400 0.2375 0.0481 

15 0.0500 0.4400 0.2367 0.0526 

16 0.0300 0.5500 0.2413 0.0549 

17 0.0300 0.4600 0.2386 0.0520 

18 0.0500 0.4700 0.2374 0.0535 

19 0.0700 0.4700 0.2398 0.0545 

20 0.0800 0.5000 0.2392 0.0540 

21 0.1000 0.4600 0.2385 0.0490 

22 0.0600 0.4800 0.2378 0.0556 

23 0.0500 0.5600 0.2417 0.0601 

24 0.0200 0.5100 0.2389 0.0541 

25 0.0600 0.5000 0.2376 0.0491 

26 0.0600 0.4400 0.2384 0.0509 

27 0.0900 0.4600 0.2368 0.0522 

28 0.0600 0.4400 0.2343 0.0509 

29 0.0500 0.5000 0.2367 0.0542 

30 0.0600 0.4500 0.2393 0.0549 
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Table B32-1  

Relative Bias of Parameter Recovery for Rasch Dichotomous Model 

 

 

Minimum Maximum Mean 

Standard 

Deviation 

10/50 -1.06 -0.86 -0.99 0.01 

10/100 -1.04 -0.86 -0.99 0.01 

10/150 -1.05 -0.90 -0.99 0.01 

10/250 -1.03 -0.91 -0.99 0.01 

     
20/50 -12.15 9.36 -1.02 0.70 

20/100 -10.70 6.47 -1.02 0.53 

20/150 -8.21 3.72 -1.01 0.37 

20/250 -7.56 1.88 -1.01 0.32 

     
30/50 -1.90 -0.12 -0.99 0.05 

30/100 -1.99 -0.25 -0.99 0.04 

30/150 -1.64 -0.37 -0.99 0.03 

30/250 -1.78 -0.55 -0.99 0.03 

 

Table B32-2  

Relative Bias of Parameter Recovery of Rasch Rating Scale Model 

 

 

Minimum Maximum Mean 

Standard 

Deviation 

10/50 -1.02 -0.90 -0.99 0.01 

10/100 -1.02 -0.92 -0.99 0.01 

10/150 -1.02 -0.93 -0.99 0.01 

10/250 -1.02 -0.93 -0.99 0.01 

     
20/50 -9.00 2.67 -1.02 0.41 

20/100 -5.98 1.88 -1.01 0.29 

20/150 -5.20 1.36 -1.01 0.27 

20/250 -4.02 0.70 -1.01 0.22 

     
30/50 -1.49 -0.49 -0.99 0.03 

30/100 -1.41 -0.64 -0.99 0.02 

30/150 -1.33 -0.69 -0.99 0.02 

30/250 -1.36 -0.75 -0.99 0.02 
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Table C1 

 

Descriptive Information for All Item Fit Statistics under the Rasch Dichotomous Model 

for I = 10 

 

Item/ 

Persons 

Item Fit 

Statistic 
Minimum Maximum Mean 

Standard 

Deviation 

10/50 Q-Index 0.0000 0.6464 0.1952 0.0793  
Infit 0.4740 1.6549 0.9952 0.1397  
ZSTD Infit -3.0000 5.0000 -0.0066 0.8775  
Outfit 0.0718 6.3915 1.0040 0.3291  
ZSTD Outfit -3.0600 4.9400 0.0346 0.9247  

     
10/100 Q-Index 0.0275 0.5360 0.1959 0.0601  

Infit 0.6227 1.4346 0.9970 0.1025  
ZSTD Infit -4.0000 5.0000 -0.0128 0.9333  
Outfit 0.3691 3.6941 1.0049 0.2247  
ZSTD Outfit -3.3300 5.3500 0.0314 0.9962  

     
10/150 Q-Index 0.0417 0.4712 0.1959 0.0525  

Infit 0.7004 1.4621 0.9976 0.0878  
ZSTD Infit -4.0000 4.0000 -0.0145 0.9865  
Outfit 0.4036 2.8227 1.0043 0.1874  
ZSTD Outfit -3.6100 5.5600 0.0294 1.0552  

     
10/250 Q-Index 0.0738 0.4031 0.1965 0.0460  

Infit 0.7611 1.3033 0.9979 0.0736  
ZSTD Infit -4.0000 5.0000 -0.0244 1.0910  
Outfit 0.4573 2.2980 1.0049 0.1522  
ZSTD Outfit -4.0900 5.2800 0.0319 1.1651 
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Table C2  

 

Descriptive Information for All Item Fit Statistics under the Rasch Dichotomous Model 

for I = 20 

  

Item/ 

Persons 

Item Fit 

Statistic 
Minimum Maximum Mean 

Standard 

Deviation 

20/50 Q-Index 0.0000 0.8952 0.2322 0.0913  
Infit 0.4330 1.6607 0.9969 0.1309  
ZSTD Infit -4.0000 4.0000 -0.0044 0.8569  
Outfit 0.0403 9.9000 1.0007 0.3136  
ZSTD Outfit -3.2200 5.5100 0.0174 0.8985  

     
20/100 Q-Index 0.0000 0.6132 0.2332 0.0706  

Infit 0.6087 1.4922 0.9986 0.0969  
ZSTD Infit -4.0000 4.0000 -0.0157 0.9146  
Outfit 0.0742 4.8957 1.0016 0.2139  
ZSTD Outfit -3.5200 5.5700 -0.0003 0.9702  

     
20/150 Q-Index 0.0621 0.5481 0.2336 0.0629  

Infit 0.7156 1.3762 0.9990 0.0833  
ZSTD Infit -4.0000 5.0000 -0.0232 0.9713  
Outfit 0.3012 5.1170 1.0022 0.1804  
ZSTD Outfit -3.6200 6.4100 -0.0090 1.0299  

     
20/250 Q-Index 0.0921 0.5179 0.2337 0.0591  

Infit 0.7725 1.3546 0.9997 0.0748  
ZSTD Infit -4.0000 5.0000 -0.0868 1.1110  
Outfit 0.5136 3.4644 1.0080 0.1544  
ZSTD Outfit -4.0600 6.0300 -0.0434 1.1764 
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Table C3 

 

Descriptive Information for All Item Fit Statistics under the Rasch Dichotomous Model 

for I = 30 

 

Item/ 

Persons 

Item Fit 

Statistic 
Minimum Maximum Mean 

Standard 

Deviation 

30/50 Q-Index 0.0000 0.7683 0.2452 0.0924  
Infit 0.5121 1.6647 0.9977 0.1250  
ZSTD Infit -4.0000 5.0000 -0.0080 0.8967  
Outfit 0.1419 7.7055 1.0007 0.2522  
ZSTD Outfit -3.7700 5.8900 0.0080 0.9260  

     
30/100 Q-Index 0.0298 0.6315 0.2467 0.0732  

Infit 0.6456 1.4543 0.9988 0.0939  
ZSTD Infit -4.0000 5.0000 -0.0196 0.9756  
Outfit 0.3630 5.6219 1.0029 0.1822  
ZSTD Outfit -3.5800 6.6100 -0.0017 1.0145  

     
30/150 Q-Index 0.0779 0.6158 0.2465 0.0655  

Infit 0.7292 1.4317 0.9993 0.0816  
ZSTD Infit -4.0000 5.0000 -0.0262 1.0480  
Outfit 0.4736 3.9703 1.0022 0.1524  
ZSTD Outfit -3.8700 5.9300 -0.0126 1.0837  

     
30/250 Q-Index 0.0892 0.5297 0.2466 0.0592  

Infit 0.7903 1.3277 0.9993 0.0705  
ZSTD Infit -5.0000 7.0000 -0.0398 1.1860  
Outfit 0.5525 2.6192 1.0019 0.1268  
ZSTD Outfit -4.1700 7.1200 -0.0257 1.2165 
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Table C4 

 

Descriptive Information for All Item Fit Statistics under the Rasch Dichotomous Model 

for I = 50 

 

Item/ 

Persons 

Item Fit 

Statistic 
Minimum Maximum Mean 

Standard 

Deviation 

50/50 Q-Index 0.0000 0.8300 0.2575 0.0939  
Infit 0.5610 1.7010 0.9978 0.1188  
ZSTD Infit -4.0000 5.0000 0.0066 0.8855  
Outfit 0.1089 9.9000 0.9981 0.2411  
ZSTD Outfit -3.4500 6.8400 0.0134 0.9214  

     
50/100 Q-Index 0.0292 0.6948 0.2579 0.0742  

Infit 0.6535 1.4333 0.9988 0.0894  
ZSTD Infit -4.0000 5.0000 -0.0006 0.9669  
Outfit 0.3011 6.2071 0.9988 0.1698  
ZSTD Outfit -3.9000 7.3500 0.0019 1.0074  

     
50/150 Q-Index 0.0522 0.6225 0.2581 0.0665  

Infit 0.7110 1.4185 0.9991 0.0775  
ZSTD Infit -5.0000 5.0000 -0.0059 1.0400  
Outfit 0.4200 3.8738 0.9995 0.1433  
ZSTD Outfit -4.3500 7.3800 -0.0037 1.0811  

     
50/250 Q-Index 0.0905 0.5550 0.2582 0.0596  

Infit 0.7815 1.2877 0.9991 0.0667  
ZSTD Infit -4.0000 6.0000 -0.0138 1.1760  
Outfit 0.4997 2.9913 0.9994 0.1188  
ZSTD Outfit -4.2000 7.4000 -0.0128 1.2122 
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Table C5  

 

Descriptive Information for All Item Fit Statistics under the Rasch Rating Scale Model 

for I = 10 

 

Item/ 

Persons 

Item Fit 

Statistic 
Minimum Maximum Mean 

Standard 

Deviation 

10/50 Q-Index 0.0000 0.4546 0.1171 0.0746 

 Infit 0.2044 3.4426 0.9904 0.4548 

 ZSTD Infit -5.0000 6.0000 -0.2230 2.0870 

 Outfit 0.0774 4.3535 0.9988 0.6034 

 ZSTD Outfit -4.0000 7.0000 -0.1320 2.0200 

      
10/100 Q-Index 0.0012 0.3513 0.1184 0.0691 

 Infit 0.3132 2.5617 0.9910 0.4410 

 ZSTD Infit -7.0000 8.0000 -0.3340 2.8540 

 Outfit 0.1571 3.5637 0.9992 0.5884 

 ZSTD Outfit -6.0000 9.0000 -0.2220 2.7750 

      
10/150 Q-Index 0.0043 0.3233 0.1189 0.0678 

 Infit 0.3390 2.4835 0.9917 0.4372 

 ZSTD Infit -8.0000 9.0000 -0.4160 3.4620 

 Outfit 0.1959 3.3858 1.0008 0.5870 

 ZSTD Outfit -7.0000 10.0000 -0.2850 3.3780 

      
10/250 Q-Index 0.0077 0.3152 0.1192 0.0661 

 Infit 0.3660 2.4185 0.9918 0.4331 

 ZSTD Infit -10.0000 10.0000 -0.5590 4.3830 

 Outfit 0.2048 3.0461 1.0001 0.5816 

 ZSTD Outfit -8.0000 10.0000 -0.3880 4.3020 
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Table C6  

 

Descriptive Information for All Item Fit Statistics under the Rasch Rating Scale Model 

for I = 20 

 

Item/ Persons Item Fit 

Statistic 
Minimum Maximum Mean 

Standard 

Deviation 

20/50 Q-Index 0.0000 0.7092 0.1313 0.0932 

 Infit 0.1951 6.2674 1.0427 0.5747 

 ZSTD Infit -6.0000 7.0000 -0.1900 2.1680 

 Outfit 0.0659 9.9000 1.0702 0.9493 

 ZSTD Outfit -5.0000 9.0000 -0.1750 2.1220 

      
20/100 Q-Index 0.0009 0.5914 0.1320 0.0868 

 Infit 0.2957 4.8263 1.0452 0.5578 

 ZSTD Infit -7.0000 9.0000 -0.2800 2.9570 

 Outfit 0.1202 9.9000 1.0678 0.9030 

 ZSTD Outfit -6.0000 10.0000 -0.2910 2.8870 

      
20/150 Q-Index 0.0050 0.5467 0.1327 0.0850 

 Infit 0.3259 4.8403 1.0462 0.5519 

 ZSTD Infit -9.0000 10.0000 -0.3490 3.5820 

 Outfit 0.1754 9.9000 1.0693 0.8930 

 ZSTD Outfit -7.0000 10.0000 -0.3810 3.4750 

      
20/250 Q-Index 0.0072 0.4760 0.1333 0.0836 

 Infit 0.3523 4.3608 1.0466 0.5481 

 ZSTD Infit -10.0000 10.0000 -0.4650 4.5540 

 Outfit 0.2119 8.4457 1.0701 0.8872 

 ZSTD Outfit -8.0000 10.0000 -0.6140 4.1660 
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Table C7 

Descriptive Information for All Item Fit Statistics under the Rasch Rating Scale Model 

for I = 30 

  

Item/ 

Persons 

Item Fit 

Statistic 
Minimum Maximum Mean 

Standard 

Deviation 

30/50 Q-Index 0.0000 0.6574 0.1310 0.0945 

 Infit 0.2171 7.0319 1.0582 0.6619 

 ZSTD Infit -6.0000 7.0000 -0.2340 2.3630 

 Outfit 0.0466 9.9000 1.0503 0.8310 

 ZSTD Outfit -5.0000 9.0000 -0.2330 2.0750 

      
30/100 Q-Index 0.0009 0.5887 0.1318 0.0884 

 Infit 0.2598 5.4302 1.0603 0.6482 

 ZSTD Infit -7.0000 9.0000 -0.3420 3.2410 

 Outfit 0.1553 9.2924 1.0481 0.7989 

 ZSTD Outfit -5.0000 10.0000 -0.3710 2.8240 

      
30/150 Q-Index 0.0017 0.4785 0.1318 0.0861 

 Infit 0.3015 4.7867 1.0611 0.6427 

 ZSTD Infit -8.0000 10.0000 -0.4230 3.9290 

 Outfit 0.1742 8.6836 1.0477 0.7882 

 ZSTD Outfit -6.0000 10.0000 -0.4710 3.4200 

      
30/250 Q-Index 0.0051 0.4634 0.1322 0.0849 

 Infit 0.3226 4.5689 1.0616 0.6389 

 ZSTD Infit -10.0000 10.0000 -0.6400 4.8290 

 Outfit 0.2081 5.7990 1.0477 0.7817 

 ZSTD Outfit -8.0000 10.0000 -0.6700 4.2640 
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Table C8 

Descriptive Information for All Item Fit Statistics under the Rasch Rating Scale Model 

for I = 50 

  

Item/Persons 
Item Fit 

Statistic 
Minimum Maximum Mean 

Standard 

Deviation 

50/50 Q-Index 0.0000 0.5354 0.1286 0.0880 

 Infit 0.2450 6.3024 1.0489 0.6150 

 ZSTD Infit -5.0000 6.0000 -0.1290 2.0650 

 Outfit 0.0551 6.6420 0.9821 0.6827 

 ZSTD Outfit -4.0000 9.0000 -0.2090 1.7620 

      
50/100 Q-Index 0.0000 0.4188 0.1296 0.0827 

 Infit 0.3093 4.6915 1.0503 0.6008 

 ZSTD Infit -7.0000 8.0000 -0.1990 2.8050 

 Outfit 0.1366 4.7299 0.9831 0.6661 

 ZSTD Outfit -5.0000 10.0000 -0.3430 2.3830 

      
50/150 Q-Index 0.0000 0.3812 0.1300 0.0809 

 Infit 0.3098 4.7313 1.0513 0.5981 

 ZSTD Infit -8.0000 10.0000 -0.2490 3.3900 

 Outfit 0.1606 3.9677 0.9827 0.6583 

 ZSTD Outfit -6.0000 10.0000 -0.4420 2.8640 

      
50/250 Q-Index 0.0033 0.3572 0.1303 0.0796 

 Infit 0.3889 3.8971 1.0513 0.5934 

 ZSTD Infit -9.0000 10.0000 -0.3450 4.2870 

 Outfit 0.1778 3.8505 0.9832 0.6549 

 ZSTD Outfit -7.0000 10.0000 -0.6070 3.6000 
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Table C9  

 

Mean and Standard Deviation of Q-Index for the Rasch Dichotomous Model when I = 10  

  Unidimensional  Multidimensional 

  
Mean 

Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.1741 0.0662  0.2180 0.0833 
 Uniform 0.1724 0.0682  0.2163 0.0853 
       

100 Normal 0.1734 0.0453  0.2181 0.0636 
 Uniform 0.1743 0.0469  0.2176 0.0651 
       

150 Normal 0.1742 0.0369  0.2179 0.0547 
 Uniform 0.1746 0.0390  0.2170 0.0574 
       

250 Normal 0.1750 0.0286  0.2193 0.0483 
 Uniform 0.1747 0.0298  0.2171 0.0505 

 

Table C10 

  

Mean and Standard Deviation of Q-Index for the Rasch Dichotomous Model when I = 20  

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.2063 0.0750  0.2586 0.1003 
 Uniform 0.2057 0.0763  0.2582 0.0954 
       

100 Normal 0.2067 0.0517  0.2581 0.0806 
 Uniform 0.2073 0.0532  0.2607 0.0720 
       

150 Normal 0.2065 0.0418  0.2602 0.0732 
 Uniform 0.2078 0.0432  0.2599 0.0636 
       

250 Normal 0.2073 0.0326  0.2593 0.0671 
 Uniform 0.2082 0.0336  0.2600 0.0675 
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Table C11  

 

Mean and Standard Deviation of Q-Index for the Rasch Dichotomous Model when I = 30  

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.2163 0.0725  0.2727 0.0982 
 Uniform 0.2186 0.0762  0.2732 0.1017 
       

100 Normal 0.2178 0.0504  0.2739 0.0789 
 Uniform 0.2197 0.0531  0.2753 0.0819 
       

150 Normal 0.2179 0.0413  0.2737 0.0718 
 Uniform 0.2198 0.0429  0.2746 0.0734 
       

250 Normal 0.2176 0.0317  0.2738 0.0661 
 Uniform 0.2201 0.0334  0.2750 0.0667 

 

Table C12 

  

Mean and Standard Deviation of Q-Index for the Rasch Dichotomous Model when I = 50  

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.2289 0.0765  0.2858 0.1003 
 Uniform 0.2293 0.0771  0.2859 0.1008 
       

100 Normal 0.2288 0.0532  0.2867 0.0808 
 Uniform 0.2289 0.0534  0.2872 0.0801 
       

150 Normal 0.2293 0.0434  0.2864 0.0727 
 Uniform 0.2290 0.0436  0.2877 0.0724 
       

250 Normal 0.2296 0.0336  0.2868 0.0657 
 Uniform 0.2295 0.0340  0.2869 0.0652 
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Table C13  

 

Mean and Standard Deviation of Infit for the Rasch Dichotomous Model when I = 10  

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.9971 0.1405  0.9935 0.1346 
 Uniform 0.9947 0.1448  0.9954 0.1386 
       

100 Normal 0.9986 0.0983  0.9946 0.1046 
 Uniform 0.9972 0.0996  0.9974 0.1072 
       

150 Normal 0.9995 0.0800  0.9953 0.0910 
 Uniform 0.9977 0.0833  0.9982 0.0958 
       

250 Normal 0.9996 0.0614  0.9957 0.0812 
 Uniform 0.9980 0.0633  0.9982 0.0854 

 

Table C14  

 

Mean and Standard Deviation of Infit for the Rasch Dichotomous Model when I = 20  

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.9966 0.1327  0.9987 0.1314 
 Uniform 0.9957 0.1360  0.9964 0.1232 
       

100 Normal 0.9987 0.0915  1.0000 0.1067 
 Uniform 0.9980 0.0941  0.9977 0.0945 
       

150 Normal 0.9989 0.0748  1.0004 0.0956 
 Uniform 0.9986 0.0764  0.9981 0.0847 
       

250 Normal 0.9992 0.0573  1.0006 0.0884 
 Uniform 0.9987 0.0589  1.0004 0.0884 
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Table C15  

 

Mean and Standard Deviation of Infit for the Rasch Dichotomous Model when I = 30  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.9979 0.1254  0.9988 0.1241 
 Uniform 0.9963 0.1276  0.9976 0.1226 
       

100 Normal 0.9992 0.0872  0.9996 0.0998 
 Uniform 0.9979 0.0887  0.9988 0.0993 
       

150 Normal 0.9994 0.0710  0.9997 0.0915 
 Uniform 0.9986 0.0721  0.9993 0.0896 
       

250 Normal 0.9996 0.0548  0.9997 0.0845 
 Uniform 0.9988 0.0558  0.9992 0.0816 

 

Table C16 

 

Mean and Standard Deviation of Infit for the Rasch Dichotomous Model when I = 50  

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.9979 0.1223  0.9981 0.1148 
 Uniform 0.9975 0.1221  0.9975 0.1160 
       

100 Normal 0.9990 0.0850  0.9989 0.0936 
 Uniform 0.9989 0.0856  0.9986 0.0930 
       

150 Normal 0.9992 0.0693  0.9991 0.0850 
 Uniform 0.9991 0.0698  0.9988 0.0845 
       

250 Normal 0.9990 0.0535  0.9990 0.0775 
 Uniform 0.9992 0.0539  0.9989 0.0771 
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Table C17  

 

Mean and Standard Deviation of Outfit for the Rasch Dichotomous Model when I = 10  

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 1.0003 0.3193  1.0185 0.2966 
 Uniform 1.0063 0.3967  0.9908 0.2925 
       

100 Normal 1.0023 0.2117  1.0201 0.2223 
 Uniform 1.0075 0.2532  0.9896 0.2075 
       

150 Normal 1.0013 0.1680  1.0184 0.1882 
 Uniform 1.0076 0.2079  0.9898 0.1820 
       

250 Normal 1.0019 0.1295  1.0184 0.1639 
 Uniform 1.0074 0.1584  0.9917 0.1535 

 

Table C18 

  

Mean and Standard Deviation of Outfit for the Rasch Dichotomous Model when I = 20  

  Unidimensional  Multidimensional 

  
Mean 

Standard 

Deviation  
Mean 

Standard 

Deviation 

50 Normal 1.0000 0.3371  1.0134 0.2721 

 Uniform 1.0014 0.3739  0.9882 0.2560 

       

100 Normal 0.9996 0.2166  1.0146 0.2095 

 Uniform 1.0022 0.2426  0.9899 0.1820 

       

150 Normal 1.0007 0.1793  1.0136 0.1828 

 Uniform 1.0040 0.1986  0.9905 0.1578 

       

250 Normal 1.0026 0.1381  1.0130 0.1636 

 Uniform 1.0031 0.1495  1.0133 0.1644 
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Table C19 

 

Mean and Standard Deviation of Outfit for the Rasch Dichotomous Model when I = 30  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 1.0004 0.2628  1.0042 0.2066 
 Uniform 0.9950 0.2910  1.0034 0.2407 
       

100 Normal 1.0005 0.1729  1.0048 0.1588 
 Uniform 1.0009 0.2099  1.0054 0.1835 
       

150 Normal 1.0000 0.1398  1.0042 0.1421 
 Uniform 0.9998 0.1636  1.0051 0.1625 
       

250 Normal 0.9995 0.1070  1.0045 0.1286 
 Uniform 0.9992 0.1254  1.0046 0.1436 

 

Table C20  

 

Mean and Standard Deviation of Outfit for the Rasch Dichotomous Model when I = 50  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.9974 0.2669  0.9976 0.2005 
 Uniform 0.9980 0.2794  0.9993 0.2073 
       

100 Normal 0.9989 0.1797  0.9983 0.1529 
 Uniform 0.9987 0.1876  0.9995 0.1565 
       

150 Normal 0.9999 0.1472  0.9986 0.1364 
 Uniform 1.0000 0.1505  0.9995 0.1387 
       

250 Normal 0.9999 0.1140  0.9990 0.1228 
 Uniform 0.9997 0.1155  0.9996 0.1242 
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Table C21 

 

Mean and Standard Deviation of ZSTD Infit for the Rasch Dichotomous Model when I = 

10  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal -0.0045 0.8649  -0.0280 0.9427 
 Uniform -0.0110 0.8138  0.0172 0.8832 
       

100 Normal -0.0078 0.8643  -0.0530 1.0520 
 Uniform -0.0144 0.8004  0.0239 0.9936 
       

150 Normal -0.0064 0.8693  -0.0606 1.1280 
 Uniform -0.0194 0.8204  0.0284 1.0900 
       

250 Normal -0.0139 0.8621  -0.0852 1.3130 
 Uniform -0.0283 0.8145  0.0298 1.2760 

 

Table C22 

 

Mean and Standard Deviation of ZSTD Infit for the Rasch Dichotomous Model when I = 

20  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.0014 0.8313  -0.0515 0.9247 
 Uniform 0.0009 0.8043  0.0316 0.8608 
       

100 Normal -0.0002 0.8279  -0.0896 1.0460 
 Uniform -0.0061 0.7964  0.0330 0.9616 
       

150 Normal -0.0031 0.8279  -0.1150 1.1420 
 Uniform -0.0092 0.7980  0.0348 1.0650 
       

250 Normal -0.0115 0.8225  -0.1610 1.3430 
 Uniform -0.0151 0.7947  -0.1600 1.3440 
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Table C23  

 

Mean and Standard Deviation of ZSTD Infit for the Rasch Dichotomous Model when I = 

30  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.0004 0.8825  -0.0250 1.0230 
 Uniform 0.0037 0.7930  -0.0111 0.8723 
       

100 Normal -0.0015 0.8857  -0.0443 1.1770 
 Uniform -0.0025 0.7881  -0.0300 1.0070 
       

150 Normal -0.0029 0.8886  -0.0587 1.3230 
 Uniform -0.0037 0.7860  -0.0395 1.1110 
       

250 Normal -0.0042 0.8864  -0.0847 1.5790 
 Uniform -0.0092 0.7885  -0.0609 1.3100 

 

Table C24 

  

Mean and Standard Deviation of ZSTD Infit for the Rasch Dichotomous Model when I = 

50  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.0076 0.8413  0.0101 0.9493 
 Uniform 0.0079 0.8209  0.0007 0.9240 
       

100 Normal 0.0035 0.8356  0.0023 1.1140 
 Uniform 0.0049 0.8204  -0.0130 1.0620 
       

150 Normal -0.0010 0.8403  -0.0016 1.2430 
 Uniform 0.0003 0.8225  -0.0212 1.1830 
       

250 Normal -0.0069 0.8406  -0.0216 1.4400 
 Uniform -0.0052 0.8236  -0.0338 1.3940 
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Table C25 

 

Mean and Standard Deviation of ZSTD Outfit for the Rasch Dichotomous Model when I 

= 10  

 

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.0193 0.8827  0.0586 1.0324 
 Uniform 0.0348 0.8510  0.0258 0.9222 
       

100 Normal 0.0115 0.9020  0.0716 1.1704 
 Uniform 0.0327 0.8691  0.0099 1.0141 
       

150 Normal 0.0040 0.9109  0.0828 1.2558 
 Uniform 0.0307 0.8995  0.0001 1.1109 
       

250 Normal -0.0035 0.9173  0.1002 1.4618 
 Uniform 0.0294 0.9126  0.0016 1.2697 

 

Table C26 

 

Mean and Standard Deviation of ZSTD Outfit for the Rasch Dichotomous Model when I 

= 20  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.0307 0.8595  -0.0139 0.9708 
 Uniform 0.0355 0.8390  0.0175 0.9181 
       

100 Normal 0.0121 0.8732  -0.0440 1.0959 
 Uniform 0.0220 0.8659  0.0088 1.0245 
       

150 Normal 0.0093 0.8841  -0.0650 1.2027 
 Uniform 0.0196 0.8785  0.0001 1.1130 
       

250 Normal 0.0103 0.8952  -0.1034 1.3962 
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Table C27 

 

Mean and Standard Deviation of ZSTD Outfit for the Rasch Dichotomous Model when I 

= 30  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.0184 0.8913  -0.0107 1.0328 
 Uniform 0.0223 0.8282  0.0020 0.9394 
       

100 Normal 0.0105 0.9076  -0.0285 1.1710 
 Uniform 0.0213 0.8611  -0.0102 1.0859 
       

150 Normal 0.0033 0.9148  -0.0434 1.3094 
 Uniform 0.0115 0.8612  -0.0219 1.1844 
       

250 Normal -0.0016 0.9195  -0.0636 1.5429 
 Uniform 0.0020 0.8750  -0.0395 1.3876 

 

Table C28 

  

Mean and Standard Deviation of ZSTD Outfit for the Rasch Dichotomous Model when I 

= 50  

 

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.0166 0.8644  0.0080 0.9860 
 Uniform 0.0203 0.8543  0.0085 0.9729 
       

100 Normal 0.0102 0.8780  -0.0046 1.1404 
 Uniform 0.0119 0.8731  -0.0098 1.1070 
       

150 Normal 0.0065 0.8947  -0.0125 1.2639 
 Uniform 0.0105 0.8856  -0.0195 1.2215 
       

250 Normal 0.0031 0.9015  -0.0284 1.4612 
 Uniform 0.0023 0.8911  -0.0335 1.4308 
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Table C29 

Mean and Standard Deviation of the Q-Index for the Rasch Rating Scale Model When I = 

10  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

10/50 Normal .1444 .0418  .0885 .0883 

 Uniform .1436 .0416  .0920 .0901 

       
10/100 Normal .1452 .0291  .0891 .0835 

 Uniform .1463 .0291  .0929 .0861 

       
10/150 Normal .1458 .0235  .0901 .0833 

 Uniform .1461 .0241  .0936 .0859 

       
10/250 Normal .1462 .0187  .0904 .0820 

 Uniform .1471 .0189  .0929 .0838 

 

Table C30 

Mean and Standard Deviation of the Q-Index for the Rasch Rating Scale Model When I = 

20  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal .1562 .0443  .1086 .1393 
 Uniform .1603 .0455  .1003 .0914 
       

100 Normal .1590 .0315  .1084 .1330 
 Uniform .1595 .0314  .1012 .0865 
       

150 Normal .1594 .0258  .1088 .1313 
 Uniform .1610 .0259  .1016 .0852 
       

250 Normal .1602 .0202  .1092 .1304 
 Uniform .1611 .0204  .1025 .0843 
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Table C31  

Mean and Standard Deviation of the Q-Index for the Rasch Rating Scale Model When I = 

30  

 

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

30/50 Normal .1599 .0441  .0968 .1170 
 Uniform .1621 .0454  .1052 .1201 
       

30/100 Normal .1621 .0306  .0966 .1121 
 Uniform .1640 .0315  .1046 .1133 
       

30/150 Normal .1619 .0248  .0964 .1099 
 Uniform .1639 .0255  .1050 .1114 
       

30/250 Normal .1623 .0193  .0969 .1095 
 Uniform .1647 .0200  .1051 .1102 

 

Table C32 

Mean and Standard Deviation of the Q-Index for the Rasch Rating Scale Model When I = 

50  

 

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50/50 Normal .1659 .0465  .0910 .1018 
 Uniform .1647 .0459  .0929 .1048 
       

50/100 Normal .1669 .0320  .0915 .0977 
 Uniform .1665 .0321  .0934 .1011 
       

50/150 Normal .1673 .0263  .0919 .0967 
 Uniform .1678 .0259  .0930 .0990 
       

50/250 Normal .1669 .0204  .0923 .0958 
 Uniform .1678 .0205  .0942 .0993 
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Table C33 

Mean and Standard Deviation of Infit for the Rasch Rating Scale Model when I = 10  

 

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.9897 0.1818  0.9057 0.3748 
 Uniform 0.9877 0.1795  1.0785 0.7790 
       

100 Normal 0.9906 0.1272  0.9040 0.3559 
 Uniform 0.9889 0.1252  1.0806 0.7770 
       

150 Normal 0.9914 0.1040  0.9050 0.3525 
 Uniform 0.9889 0.1040  1.0812 0.7766 
       

250 Normal 0.9912 0.0805  0.9056 0.3495 
 Uniform 0.9893 0.0813  1.0809 0.7745 

 

Table C34 

Mean and Standard Deviation of Infit for the Rasch Rating Scale Model when I = 20  

 

  Unidimensional  Multidimensional 

  
Mean 

Standard 

Deviation  
Mean 

Standard 

Deviation 

50 Normal 0.9888 0.1868  1.0812 0.9274 

 Uniform 0.9870 0.1844  1.1140 0.6162 

       
100 Normal 0.9900 0.1307  1.0856 0.9144 

 Uniform 0.9881 0.1305  1.1169 0.6012 

       
150 Normal 0.9904 0.1067  1.0868 0.9084 

 Uniform 0.9886 0.1069  1.1191 0.5975 

       
250 Normal 0.9909 0.0818  1.0869 0.9070 

 Uniform 0.9891 0.0828  1.1196 0.5935 
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Table C35 

Mean and Standard Deviation of Infit for the Rasch Rating Scale Model when I = 30 

  

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.9912 0.1867  1.1384 0.9819 
 Uniform 0.9883 0.1870  1.1150 0.8365 
       

100 Normal 0.9919 0.1319  1.1427 0.9767 
 Uniform 0.9893 0.1314  1.1173 0.8201 
       

150 Normal 0.9923 0.1075  1.1439 0.9733 
 Uniform 0.9897 0.1077  1.1187 0.8135 
       

250 Normal 0.9926 0.0834  1.1446 0.9722 
 Uniform 0.9901 0.0828  1.1192 0.8085 

 

Table C36 

Mean and Standard Deviation of Infit for the Rasch Rating Scale Model when I = 50  

 

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.9905 0.1888  1.1422 0.8674 
 Uniform 0.9899 0.1881  1.0730 0.8206 
       

100 Normal 0.9911 0.1324  1.1446 0.8575 
 Uniform 0.9907 0.1330  1.0748 0.8108 
       

150 Normal 0.9913 0.1082  1.1454 0.8548 
 Uniform 0.9912 0.1079  1.0772 0.8125 
       

250 Normal 0.9916 0.0837  1.1451 0.8504 
 Uniform 0.9916 0.0840  1.0768 0.8090 
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Table C37 

Mean and Standard Deviation of Outfit for the Rasch Rating Scale Model when I = 10  

 

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.9914 0.1875  1.0360 0.9105 
 Uniform 0.9888 0.1848  0.9787 0.7457 
       

100 Normal 0.9919 0.1295  1.0346 0.8922 
 Uniform 0.9899 0.1297  0.9799 0.7439 
       

150 Normal 0.9920 0.1064  1.0391 0.8953 
 Uniform 0.9918 0.1090  0.9803 0.7425 
       

250 Normal 0.9924 0.0830  1.0372 0.8888 
 Uniform 0.9917 0.0846  0.9788 0.7396 

 

Table C38 

Mean and Standard Deviation of Outfit for the Rasch Rating Scale Model when I = 20  

 

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.9901 0.1923  1.3721 1.7055 
 Uniform 0.9893 0.1908  0.9291 0.7063 
       

100 Normal 0.9910 0.1339  1.3633 1.6194 
 Uniform 0.9897 0.1340  0.9272 0.6958 
       

150 Normal 0.9915 0.1097  1.3658 1.6003 
 Uniform 0.9902 0.1104  0.9296 0.6964 
       

250 Normal 0.9915 0.0836  1.3694 1.5912 
 Uniform 0.9905 0.0848  0.9289 0.6931 
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Table C39 

Mean and Standard Deviation of Outfit for the Rasch Rating Scale Model when I = 30 

  

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.9919 0.1882  1.1164 1.1667 
 Uniform 0.9895 0.1901  1.1034 1.1468 
       

100 Normal 0.9926 0.1325  1.1097 1.1344 
 Uniform 0.9899 0.1330  1.1002 1.1037 
       

150 Normal 0.9925 0.1080  1.1060 1.1210 
 Uniform 0.9907 0.1090  1.1014 1.0919 
       

250 Normal 0.9927 0.0837  1.1066 1.1175 
 Uniform 0.9910 0.0839  1.1007 1.0811 

 

Table C40 

Mean and Standard Deviation of Outfit for the Rasch Rating Scale Model when I = 50  

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal 0.9912 0.1908  0.9719 0.9246 
 Uniform 0.9910 0.1906  0.9742 0.9678 
       

100 Normal 0.9912 0.1335  0.9736 0.9111 
 Uniform 0.9909 0.1344  0.9767 0.9533 
       

150 Normal 0.9917 0.1093  0.9735 0.9077 
 Uniform 0.9915 0.1087  0.9743 0.9410 
       

250 Normal 0.9920 0.0845  0.9728 0.9026 
 Uniform 0.9918 0.0847  0.9763 0.9414 

 

  



257 

 

 

 

Table C41 

Mean and Standard Deviation of ZSTD Infit for the Rasch Rating Scale Model when I = 

10  

 

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal -0.0459 0.9461  -0.2600 1.6190 
 Uniform -0.0534 0.9266  -0.5320 3.5900 
       

100 Normal -0.0624 0.9332  -0.4080 2.1760 
 Uniform -0.0726 0.9129  -0.7930 5.0780 
       

150 Normal -0.0715 0.9335  -0.5120 2.6430 
 Uniform -0.0932 0.9268  -0.9860 6.2180 
       

250 Normal -0.0973 0.9330  -0.6760 3.3890 
 Uniform -0.1190 0.9373  -1.3400 7.9100 

 

Table C42 

Mean and Standard Deviation of ZSTD Infit for the Rasch Rating Scale Model when I = 

20  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal -0.0526 0.9678  -0.6650 3.1570 
 Uniform -0.0601 0.9527  0.0163 2.5860 
       

100 Normal -0.0687 0.9586  -0.9680 4.4220 
 Uniform -0.0810 0.9516  -0.0019 3.6020 
       

150 Normal -0.0822 0.9579  -1.2000 5.3900 
 Uniform -0.0972 0.9558  -0.0164 4.4110 
       

250 Normal -0.1020 0.9468  -1.6000 6.8850 
 Uniform -0.1220 0.9555  -0.0336 5.6590 
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Table C43 

Mean and Standard Deviation of ZSTD Infit for the Rasch Rating Scale Model when I = 

30  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal -0.0424 0.9804  -0.6090 3.5550 
 Uniform -0.0560 0.9719  -0.2290 2.7540 
       

100 Normal -0.0568 0.9793  -0.8830 4.9890 
 Uniform -0.0743 0.9661  -0.3530 3.8470 
       

150 Normal -0.0671 0.9775  -1.0900 6.0920 
 Uniform -0.0894 0.9701  -0.4440 4.6970 
       

250 Normal -0.0845 0.9797  -1.7000 7.4130 
 Uniform -0.1110 0.9626  -0.6680 5.8950 

 

Table C44 

Mean and Standard Deviation of ZSTD Infit for the Rasch Rating Scale Model when I = 

50  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal -0.0464 0.9866  -0.2200 3.0170 
 Uniform -0.0492 0.9808  -0.2000 2.4490 
       

100 Normal -0.0624 0.9786  -0.3440 4.2230 
 Uniform -0.0650 0.9792  -0.3240 3.4140 
       

150 Normal -0.0756 0.9795  -0.4340 5.1600 
 Uniform -0.0760 0.9745  -0.4100 4.1610 
       

250 Normal -0.0954 0.9773  -0.6220 6.5590 
 Uniform -0.0959 0.9780  -0.5690 5.3230 
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Table C45 

Mean and Standard Deviation of ZSTD Outfit for the Rasch Rating Scale Model when I = 

10  

 

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal -0.0364 0.9395  0.2660 2.5150 
 Uniform -0.0432 0.9052  -0.7160 2.7900 
       

100 Normal -0.0526 0.9223  0.3000 3.5380 
 Uniform -0.0620 0.9030  -1.0700 3.9450 
       

150 Normal -0.0673 0.9303  0.3380 4.3670 
 Uniform -0.0668 0.9280  -1.3400 4.8200 
       

250 Normal -0.0835 0.9336  0.3800 5.6070 
 Uniform -0.0896 0.9348  -1.7600 6.1810 

 

Table C46 

Mean and Standard Deviation of ZSTD Outfit for the Rasch Rating Scale Model when I = 

20  

 

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal -0.0437 0.9567  -0.2090 3.3320 
 Uniform -0.0468 0.9436  -0.4010 2.2400 
       

100 Normal -0.0604 0.9518  -0.3870 4.6480 
 Uniform -0.0671 0.9384  -0.6480 3.1170 
       

150 Normal -0.0731 0.9526  -0.5460 5.6000 
 Uniform -0.0814 0.9502  -0.8240 3.8370 
       

250 Normal -0.0930 0.9393  -1.1600 6.4970 
 Uniform -0.1040 0.9456  -1.1000 4.9360 
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Table C47 

Mean and Standard Deviation of ZSTD Outfit for the Rasch Rating Scale Model when I = 

30  

 
  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal -0.0377 0.9735  -0.5950 2.6750 
 Uniform -0.0475 0.9600  -0.2510 2.8260 
       

100 Normal -0.0515 0.9751  -0.9340 3.7190 
 Uniform -0.0678 0.9548  -0.4330 3.9610 
       

150 Normal -0.0645 0.9740  -1.1800 4.5260 
 Uniform -0.0788 0.9611  -0.5600 4.8570 
       

250 Normal -0.0834 0.9751  -1.6600 5.6430 
 Uniform -0.0998 0.9560  -0.8390 6.1120 

 

Table C48 

Mean and Standard Deviation of ZSTD Outfit for the Rasch Rating Scale Model when I = 

50  

 

  Unidimensional  Multidimensional 

  Mean 
Standard 

Deviation 
 Mean 

Standard 

Deviation 

50 Normal -0.0412 0.9761  -0.5260 2.2290 
 Uniform -0.0413 0.9711  -0.2280 2.3220 
       

100 Normal -0.0600 0.9705  -0.8310 3.1100 
 Uniform -0.0609 0.9693  -0.4190 3.2810 
       

150 Normal -0.0710 0.9729  -1.0600 3.8040 
 Uniform -0.0722 0.9650  -0.5620 3.9730 
       

250 Normal -0.0897 0.9711  -1.4300 4.8230 
 Uniform -0.0915 0.9690  -0.8130 5.0440 
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C.2 RELATIVE BIAS FOR DICHOTOMOUS MODEL 

  

Table C2.1  

Relative Bias after Wright and Douglas (1977) Correction by Condition for Rasch Dichotomous Model for Uniform Item Difficulty 

Distribution 

 
 Unidimensional  Multidimensional 

 Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

10/50 -0.0100 0.0100 0.0005 0.0015  -0.0100 0.0100 0.0004 0.0014 

10/100 0.0000 0.0100 0.0005 0.0013  0.0000 0.0100 0.0004 0.0012 

10/150 0.0000 0.0100 0.0005 0.0012  0.0000 0.0100 0.0004 0.0012 

10/250 0.0000 0.0100 0.0005 0.0012  0.0000 0.0100 0.0004 0.0011 
          

20/50 -1.5100 1.2800 -0.0050 0.0968  -1.2800 1.1200 -0.0049 0.0858 

20/100 -0.9400 0.8600 -0.0054 0.0674  -0.9400 0.9000 -0.0045 0.0629 

20/150 -0.9600 0.6100 -0.0045 0.0559  -0.9200 0.5000 -0.0039 0.0519 

20/250 -0.7200 0.5300 -0.0037 0.0435  0.0000 0.0000 0.0000 0.0006 
          

30/50 -0.0100 0.0100 0.0001 0.0008  -0.0100 0.0100 0.0000 0.0007 

30/100 0.0000 0.0100 0.0001 0.0006  0.0000 0.0100 0.0000 0.0006 

30/150 0.0000 0.0100 0.0001 0.0005  0.0000 0.0100 0.0000 0.0005 

30/250 0.0000 0.0000 0.0001 0.0004  0.0000 0.0000 0.0000 0.0004 
          

50/50 -0.5100 0.2800 -0.0023 0.0228  -0.4600 0.2500 -0.0022 0.0215 

50/100 -0.3900 0.2100 -0.0026 0.0205  -0.3600 0.1800 -0.0023 0.0186 

50/150 -0.3300 0.0900 -0.0025 0.0190  -0.3200 0.1300 -0.0024 0.0180 

50/250 -0.3200 0.0400 -0.0024 0.0176  -0.3300 0.1900 -0.0022 0.0189 
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Table C2.2  

Relative Bias after Wright and Douglas (1977) Correction by Condition for Rasch Dichotomous Model for Random Item Difficulty 

Distribution 

 
 Unidimensional  Multidimensional 

 Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

10/50 -0.0100 0.0000 -0.0002 0.0010  -0.0100 0.0000 -0.0003 0.0010 

10/100 0.0000 0.0000 -0.0002 0.0009  0.0000 0.0000 -0.0003 0.0008 

10/150 0.0000 0.0000 -0.0002 0.0008  0.0000 0.0000 -0.0003 0.0008 

10/250 0.0000 0.0000 -0.0002 0.0008  0.0000 0.0000 -0.0003 0.0007 
          

20/50 -0.0100 0.0100 0.0001 0.0010  -0.0100 0.0100 0.0000 0.0010 

20/100 0.0000 0.0100 0.0001 0.0008  0.0000 0.0100 0.0000 0.0008 

20/150 0.0000 0.0100 0.0001 0.0008  0.0000 0.0100 0.0000 0.0007 

20/250 0.0000 0.0000 0.0001 0.0007  0.0000 0.0100 0.0000 0.0006 
          

30/50 -0.1300 0.1400 -0.0001 0.0080  -0.1300 0.1400 -0.0001 0.0074 

30/100 -0.1000 0.0900 -0.0001 0.0057  -0.0800 0.0900 -0.0002 0.0052 

30/150 -0.0800 0.0600 -0.0001 0.0044  -0.0700 0.0700 -0.0002 0.0043 

30/250 -0.0700 0.0600 -0.0001 0.0037  -0.0600 0.0400 -0.0002 0.0034 
          

50/50 -0.0100 0.0100 -0.0001 0.0012  -0.0100 0.0100 -0.0002 0.0011 

50/100 -0.0100 0.0100 -0.0001 0.0009  -0.0100 0.0100 -0.0002 0.0008 

50/150 -0.0100 0.0100 -0.0001 0.0007  -0.0100 0.0100 -0.0002 0.0007 

50/250 -0.0100 0.0000 -0.0001 0.0006  -0.2900 0.0400 -0.0013 0.0120 
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Table C2.3 

 

Relative Bias after Wright and Douglas (1977) by Condition for Rasch Rating Scale Model for Uniform Item Difficulty Distribution 

 
 Unidimensional  Multidimensional: Two Factors 

 Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

10 /50 -0.0200 0.0900 0.0050 0.0120  -0.0800 0.0300 -0.0093 0.0129 

10/100 -0.0100 0.0800 0.0048 0.0112  -0.0600 0.0200 -0.0093 0.0125 

10/150 -0.0100 0.0600 0.0048 0.0108  -0.0600 0.0200 -0.0094 0.0125 

10/250 -0.0100 0.0500 0.0048 0.0108  -0.0500 0.0200 -0.0094 0.0124 

          

20/50 -9.1000 6.0900 -0.0506 0.5847  -2.2500 6.2200 0.0456 0.3341 

20/100 -6.3600 4.1000 -0.0466 0.4075  -1.3800 3.6000 0.0447 0.2699 

20/150 -4.9900 2.7300 -0.0460 0.3479  -1.5000 3.4800 0.0401 0.2309 

20/250 -4.1200 1.9800 -0.0454 0.2963  -0.6300 2.2300 0.0417 0.2124 

          

30/50 -0.0300 0.0500 0.0010 0.0048  -0.0100 0.0500 0.0026 0.0048 

30/100 -0.0200 0.0400 0.0009 0.0039  -0.0100 0.0400 0.0025 0.0042 

30/150 -0.0200 0.0400 0.0009 0.0036  -0.0100 0.0300 0.0024 0.0039 

30/250 -0.0100 0.0300 0.0009 0.0033  -0.0100 0.0300 0.0024 0.0038 

          

50/50 -3.6300 1.3800 -0.0242 0.1857  -3.6300 0.1700 -0.0333 0.2333 

50/100 -2.6100 0.5600 -0.0243 0.1724  -2.7200 0.1400 -0.0327 0.2238 

50/150 -2.3500 0.1200 -0.0243 0.1678  -2.5400 0.1300 -0.0327 0.2216 

50/250 -1.9700 0.1100 -0.0241 0.1623  -2.1200 0.1100 -0.0321 0.2161 
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Table C2.4 

 

Relative Bias after Wright and Douglas (1977) by Condition for Rasch Rating Scale Model for Random Item Difficulty Distribution 

 
 Unidimensional  Multidimensional 

 Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

10/50 -0.0400 0.0200 -0.0023 0.0081  -0.0200 0.0100 -0.0002 0.0045 

10/100 -0.0300 0.0200 -0.0023 0.0075  -0.0200 0.0100 -0.0002 0.0041 

10/150 -0.0300 0.0100 -0.0024 0.0074  -0.0200 0.0100 -0.0003 0.0038 

10/250 -0.0300 0.0100 -0.0024 0.0072  -0.0100 0.0100 -0.0003 0.0037 
          

20/50 -0.0400 0.0600 0.0008 0.0074  -0.0300 0.0400 0.0026 0.0043 

20/100 -0.0300 0.0500 0.0007 0.0066  -0.0200 0.0200 0.0025 0.0037 

20/150 -0.0300 0.0500 0.0006 0.0064  -0.0200 0.0200 0.0024 0.0034 

20/250 -0.0200 0.0400 0.0006 0.0062  -0.0100 0.0200 0.0024 0.0032 
          

30/50 -0.7500 0.6000 -0.0010 0.0448  -0.5300 0.1600 -0.0011 0.0260 

30/100 -0.6300 0.4900 -0.0009 0.0331  -0.3200 0.0900 -0.0012 0.0228 

30/150 -0.4500 0.3500 -0.0010 0.0260  -0.3100 0.0800 -0.0011 0.0211 

30/250 -0.3600 0.3000 -0.0008 0.0214  -0.2200 0.0500 -0.0012 0.0203 
          

50/50 -0.0900 0.0600 -0.0010 0.0071  -0.0700 0.1100 -0.0010 0.0105 

50/100 -0.0600 0.0400 -0.0011 0.0054  -0.0600 0.0800 -0.0011 0.0100 

50/150 -0.0500 0.0300 -0.0011 0.0048  -0.0500 0.0700 -0.0011 0.0096 

50/250 -0.0400 0.0200 -0.0011 0.0043  -0.0400 0.0600 -0.0012 0.0094 
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Table C2.5 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Dichotomous Rasch Model with Uniform Item 

Difficulty Distribution and Unidimensionality.  

 

  
Minimum Maximum Mean 

Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N = 50  N = 100 

1  0.0000 0.0000 0.0000 0.0005  0.0000 0.0000 0.0000 0.0003 

2  0.0000 0.0000 0.0000 0.0003  0.0000 0.0000 0.0000 0.0002 

3  0.0000 0.0000 0.0000 0.0005  0.0000 0.0000 0.0000 0.0003 

4  0.0000 0.0000 0.0001 0.0002  0.0000 0.0000 0.0001 0.0002 

5  0.0000 0.0000 0.0003 0.0010  0.0000 0.0000 0.0003 0.0007 

6  0.0000 0.0000 0.0003 0.0012  0.0000 0.0000 0.0003 0.0009 

7  0.0000 0.0000 0.0001 0.0002  0.0000 0.0000 0.0001 0.0002 

8  0.0000 0.0000 0.0000 0.0004  0.0000 0.0000 0.0000 0.0003 

9  -1.5100 1.2800 -0.1025 0.4216  -0.9400 0.8600 -0.1103 0.2817 

10  0.0000 0.0000 0.0001 0.0002  0.0000 0.0000 0.0001 0.0002 

11  0.0000 0.0000 0.0002 0.0008  0.0000 0.0000 0.0002 0.0005 

12  0.0000 0.0000 0.0002 0.0004  0.0000 0.0000 0.0002 0.0003 

13  0.0000 0.0000 0.0000 0.0003  0.0000 0.0000 0.0000 0.0002 

14  0.0000 0.0000 -0.0002 0.0008  0.0000 0.0000 -0.0001 0.0006 

15  0.0000 0.0000 0.0000 0.0002  0.0000 0.0000 0.0000 0.0002 

16  0.0000 0.0000 0.0001 0.0002  0.0000 0.0000 0.0000 0.0002 

17  0.0000 0.0000 0.0001 0.0002  0.0000 0.0000 0.0000 0.0001 

18  0.0000 0.0000 0.0001 0.0002  0.0000 0.0000 0.0001 0.0002 

19  0.0000 0.0000 0.0001 0.0003  0.0000 0.0000 0.0001 0.0002 

20  0.0000 0.0000 0.0000 0.0004  0.0000 0.0000 0.0000 0.0003 
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Table C2.6 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Dichotomous Rasch Model with Uniform Item 

Difficulty Distribution and Unidimensionality.  

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item   N = 150  N = 250 

1  0.0000 0.0000 0.0000 0.0003  0.0000 0.0000 0.0000 0.0002 

2  0.0000 0.0000 0.0000 0.0002  0.0000 0.0000 0.0000 0.0001 

3  0.0000 0.0000 -0.0001 0.0003  0.0000 0.0000 -0.0001 0.0002 

4  0.0000 0.0000 0.0001 0.0001  0.0000 0.0000 0.0001 0.0001 

5  0.0000 0.0000 0.0003 0.0005  0.0000 0.0000 0.0003 0.0004 

6  0.0000 0.0000 0.0003 0.0007  0.0000 0.0000 0.0003 0.0005 

7  0.0000 0.0000 0.0001 0.0001  0.0000 0.0000 0.0001 0.0001 

8  0.0000 0.0000 0.0000 0.0002  0.0000 0.0000 0.0000 0.0002 

9  -0.9600 0.6100 -0.0916 0.2337  -0.7200 0.5300 -0.0762 0.1797 

10  0.0000 0.0000 0.0001 0.0001  0.0000 0.0000 0.0001 0.0001 

11  0.0000 0.0000 0.0002 0.0005  0.0000 0.0000 0.0002 0.0003 

12  0.0000 0.0000 0.0002 0.0003  0.0000 0.0000 0.0002 0.0002 

13  0.0000 0.0000 0.0000 0.0002  0.0000 0.0000 0.0000 0.0001 

14  0.0000 0.0000 -0.0001 0.0005  0.0000 0.0000 -0.0001 0.0004 

15  0.0000 0.0000 0.0000 0.0001  0.0000 0.0000 0.0000 0.0001 

16  0.0000 0.0000 0.0000 0.0001  0.0000 0.0000 0.0000 0.0001 

17  0.0000 0.0000 0.0000 0.0001  0.0000 0.0000 0.0000 0.0001 

18  0.0000 0.0000 0.0001 0.0001  0.0000 0.0000 0.0001 0.0001 

19  0.0000 0.0000 0.0001 0.0002  0.0000 0.0000 0.0001 0.0001 

20  0.0000 0.0000 0.0000 0.0002  0.0000 0.0000 0.0000 0.0002 
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Table C2.7 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Dichotomous Rasch Model with Uniform Item 

Difficulty Distribution and Multidimensional.  

 

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N = 50  N = 100 

1  0.0000 0.0000 -0.0002 0.0003  0.0000 0.0000 -0.0002 0.0003 

2  0.0000 0.0000 -0.0001 0.0002  0.0000 0.0000 -0.0001 0.0002 

3  0.0000 0.0000 -0.0003 0.0004  0.0000 0.0000 -0.0003 0.0004 

4  0.0000 0.0000 0.0002 0.0003  0.0000 0.0000 0.0002 0.0003 

5  0.0000 0.0000 -0.0001 0.0002  0.0000 0.0000 -0.0001 0.0002 

6  0.0000 0.0000 0.0002 0.0003  0.0000 0.0000 0.0002 0.0003 

7  0.0000 0.0000 0.0006 0.0007  0.0000 0.0000 0.0006 0.0007 

8  0.0000 0.0000 0.0002 0.0003  0.0000 0.0000 0.0002 0.0003 

9  0.0000 0.0000 -0.0006 0.0008  0.0000 0.0000 -0.0006 0.0008 

10  0.0000 0.0000 0.0003 0.0005  0.0000 0.0000 0.0003 0.0005 

11  0.0000 0.0000 -0.0007 0.0010  0.0000 0.0000 -0.0007 0.0010 

12  0.0000 0.0100 0.0017 0.0022  0.0000 0.0100 0.0017 0.0022 

13  0.0000 0.0000 -0.0001 0.0002  0.0000 0.0000 -0.0001 0.0002 

14  0.0000 0.0000 0.0003 0.0004  0.0000 0.0000 0.0003 0.0004 

15  0.0000 0.0000 -0.0003 0.0004  0.0000 0.0000 -0.0003 0.0004 

16  0.0000 0.0000 -0.0002 0.0003  0.0000 0.0000 -0.0002 0.0003 

17  -0.0100 0.0000 -0.0011 0.0015  -0.0100 0.0000 -0.0011 0.0015 

18  0.0000 0.0000 0.0005 0.0007  0.0000 0.0000 0.0005 0.0007 

19  0.0000 0.0000 -0.0003 0.0004  0.0000 0.0000 -0.0003 0.0004 

20  0.0000 0.0000 0.0005 0.0007  0.0000 0.0000 0.0005 0.0007 
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Table C2.8 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Dichotomous Rasch Model with Uniform Item 

Difficulty Distribution and Multidimensional.  

 

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N = 150  N = 250 

1  0.0000 0.0000 -0.0002 0.0002  0.0000 0.0000 -0.0002 0.0001 

2  0.0000 0.0000 -0.0001 0.0001  0.0000 0.0000 -0.0001 0.0001 

3  0.0000 0.0000 -0.0003 0.0002  0.0000 0.0000 -0.0003 0.0002 

4  0.0000 0.0000 0.0002 0.0002  0.0000 0.0000 0.0001 0.0001 

5  0.0000 0.0000 -0.0002 0.0001  0.0000 0.0000 -0.0002 0.0001 

6  0.0000 0.0000 0.0001 0.0002  0.0000 0.0000 0.0001 0.0001 

7  0.0000 0.0000 0.0005 0.0004  0.0000 0.0000 0.0005 0.0003 

8  0.0000 0.0000 0.0002 0.0001  0.0000 0.0000 0.0002 0.0001 

9  0.0000 0.0000 -0.0006 0.0005  0.0000 0.0000 -0.0006 0.0004 

10  0.0000 0.0000 0.0003 0.0002  0.0000 0.0000 0.0003 0.0002 

11  0.0000 0.0000 -0.0008 0.0006  0.0000 0.0000 -0.0008 0.0005 

12  0.0000 0.0100 0.0016 0.0013  0.0000 0.0100 0.0016 0.0010 

13  0.0000 0.0000 -0.0001 0.0001  0.0000 0.0000 -0.0001 0.0001 

14  0.0000 0.0000 0.0003 0.0002  0.0000 0.0000 0.0002 0.0002 

15  0.0000 0.0000 -0.0003 0.0003  0.0000 0.0000 -0.0003 0.0002 

16  0.0000 0.0000 -0.0002 0.0001  0.0000 0.0000 -0.0002 0.0001 

17  0.0000 0.0000 -0.0011 0.0009  0.0000 0.0000 -0.0011 0.0006 

18  0.0000 0.0000 0.0005 0.0004  0.0000 0.0000 0.0005 0.0003 

19  0.0000 0.0000 -0.0003 0.0002  0.0000 0.0000 -0.0003 0.0002 

20  0.0000 0.0000 0.0005 0.0004  0.0000 0.0000 0.0005 0.0003 
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Table C2.9 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Dichotomous Rasch Model with Random Normal Item 

Difficulty Distribution and Multidimensional.  

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N = 50  N = 100 

1  0.0000 0.0000 -0.0001 0.0005  0.0000 0.0000 -0.0001 0.0003 

2  0.0000 0.0000 -0.0001 0.0003  0.0000 0.0000 -0.0001 0.0002 

3  0.0000 0.0000 -0.0001 0.0005  0.0000 0.0000 -0.0001 0.0004 

4  0.0000 0.0000 0.0000 0.0002  0.0000 0.0000 0.0000 0.0002 

5  0.0000 0.0000 0.0002 0.0010  0.0000 0.0000 0.0002 0.0007 

6  0.0000 0.0000 0.0002 0.0012  0.0000 0.0000 0.0002 0.0009 

7  0.0000 0.0000 0.0000 0.0002  0.0000 0.0000 0.0000 0.0001 

8  0.0000 0.0000 -0.0001 0.0004  0.0000 0.0000 -0.0001 0.0003 

9  -1.2800 1.1200 -0.0986 0.3716  -0.9400 0.9000 -0.0908 0.2671 

10  0.0000 0.0000 0.0000 0.0002  0.0000 0.0000 0.0000 0.0002 

11  0.0000 0.0000 0.0002 0.0007  0.0000 0.0000 0.0001 0.0005 

12  0.0000 0.0000 0.0001 0.0004  0.0000 0.0000 0.0001 0.0003 

13  0.0000 0.0000 -0.0001 0.0003  0.0000 0.0000 -0.0001 0.0002 

14  0.0000 0.0000 -0.0002 0.0007  0.0000 0.0000 -0.0002 0.0005 

15  0.0000 0.0000 -0.0001 0.0002  0.0000 0.0000 0.0000 0.0002 

16  0.0000 0.0000 0.0000 0.0002  0.0000 0.0000 0.0000 0.0001 

17  0.0000 0.0000 0.0000 0.0002  0.0000 0.0000 0.0000 0.0001 

18  0.0000 0.0000 0.0001 0.0002  0.0000 0.0000 0.0000 0.0002 

19  0.0000 0.0000 0.0000 0.0003  0.0000 0.0000 0.0000 0.0002 

20  0.0000 0.0000 -0.0001 0.0004  0.0000 0.0000 -0.0001 0.0003 
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Table C2.10 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Dichotomous Rasch Model with Random Normal Item 

Difficulty Distribution and Multidimensional.  

 

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N = 150  N = 250 

1  0.0000 0.0000 -0.0001 0.0003  0.0000 0.0000 -0.0002 0.0001 

2  0.0000 0.0000 -0.0001 0.0002  0.0000 0.0000 -0.0001 0.0001 

3  0.0000 0.0000 -0.0001 0.0003  0.0000 0.0000 -0.0003 0.0002 

4  0.0000 0.0000 0.0000 0.0001  0.0000 0.0000 0.0001 0.0001 

5  0.0000 0.0000 0.0002 0.0005  0.0000 0.0000 -0.0002 0.0001 

6  0.0000 0.0000 0.0003 0.0007  0.0000 0.0000 0.0002 0.0001 

7  0.0000 0.0000 0.0000 0.0001  0.0000 0.0000 0.0005 0.0003 

8  0.0000 0.0000 -0.0001 0.0002  0.0000 0.0000 0.0002 0.0001 

9  -0.9200 0.5000 -0.0775 0.2194  0.0000 0.0000 -0.0006 0.0003 

10  0.0000 0.0000 0.0000 0.0001  0.0000 0.0000 0.0003 0.0002 

11  0.0000 0.0000 0.0001 0.0004  0.0000 0.0000 -0.0008 0.0005 

12  0.0000 0.0000 0.0001 0.0002  0.0000 0.0000 0.0016 0.0010 

13  0.0000 0.0000 -0.0001 0.0002  0.0000 0.0000 -0.0001 0.0001 

14  0.0000 0.0000 -0.0002 0.0004  0.0000 0.0000 0.0002 0.0002 

15  0.0000 0.0000 -0.0001 0.0001  0.0000 0.0000 -0.0003 0.0002 

16  0.0000 0.0000 0.0000 0.0001  0.0000 0.0000 -0.0002 0.0001 

17  0.0000 0.0000 0.0000 0.0001  0.0000 0.0000 -0.0011 0.0006 

18  0.0000 0.0000 0.0000 0.0001  0.0000 0.0000 0.0005 0.0003 

19  0.0000 0.0000 0.0000 0.0002  0.0000 0.0000 -0.0003 0.0002 

20  0.0000 0.0000 -0.0001 0.0002  0.0000 0.0000 0.0005 0.0003 
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Table C2.11 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Dichotomous Rasch Model with Random Normal Item 

Difficulty Distribution and Multidimensional.  

 

 

  
Minimum Maximum Mean 

Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N = 150  N = 250 

1  0.0000 0.0000 -0.0001 0.0002  0.0000 0.0000 -0.0001 0.0001 

2  0.0000 0.0000 -0.0001 0.0001  0.0000 0.0000 -0.0001 0.0001 

3  0.0000 0.0000 -0.0002 0.0002  0.0000 0.0000 -0.0002 0.0002 

4  0.0000 0.0000 0.0002 0.0002  0.0000 0.0000 0.0002 0.0001 

5  0.0000 0.0000 -0.0001 0.0001  0.0000 0.0000 -0.0001 0.0001 

6  0.0000 0.0000 0.0002 0.0002  0.0000 0.0000 0.0002 0.0001 

7  0.0000 0.0000 0.0006 0.0004  0.0000 0.0000 0.0006 0.0003 

8  0.0000 0.0000 0.0003 0.0002  0.0000 0.0000 0.0002 0.0001 

9  0.0000 0.0000 -0.0006 0.0005  0.0000 0.0000 -0.0006 0.0004 

10  0.0000 0.0000 0.0004 0.0003  0.0000 0.0000 0.0004 0.0002 

11  0.0000 0.0000 -0.0007 0.0006  0.0000 0.0000 -0.0008 0.0005 

12  0.0000 0.0100 0.0018 0.0014  0.0000 0.0000 0.0018 0.0010 

13  0.0000 0.0000 0.0000 0.0001  0.0000 0.0000 0.0000 0.0001 

14  0.0000 0.0000 0.0004 0.0002  0.0000 0.0000 0.0004 0.0002 

15  0.0000 0.0000 -0.0003 0.0003  0.0000 0.0000 -0.0003 0.0002 

16  0.0000 0.0000 -0.0001 0.0002  0.0000 0.0000 -0.0001 0.0001 

17  0.0000 0.0000 -0.0011 0.0009  0.0000 0.0000 -0.0011 0.0007 

18  0.0000 0.0000 0.0006 0.0004  0.0000 0.0000 0.0006 0.0003 

19  0.0000 0.0000 -0.0002 0.0002  0.0000 0.0000 -0.0002 0.0002 

20  0.0000 0.0000 0.0006 0.0004  0.0000 0.0000 0.0006 0.0003 
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Table C2.12 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Rasch Rating Scale Model with Uniform Item 

Difficulty Distribution and Multidimensional.  

 

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N = 50  N = 100 

1  -0.0100 0.0100 -0.0003 0.0026  -0.0100 0.0100 -0.0005 0.0018 

2  -0.0100 0.0100 -0.0001 0.0018  0.0000 0.0000 -0.0001 0.0012 

3  -0.0100 0.0100 -0.0004 0.0026  -0.0100 0.0100 -0.0005 0.0019 

4  0.0000 0.0100 0.0010 0.0012  0.0000 0.0000 0.0009 0.0008 

5  -0.0100 0.0300 0.0030 0.0054  -0.0100 0.0200 0.0026 0.0038 

6  -0.0200 0.0300 0.0030 0.0068  -0.0100 0.0200 0.0031 0.0047 

7  0.0000 0.0100 0.0011 0.0012  0.0000 0.0000 0.0009 0.0008 

8  -0.0100 0.0100 -0.0002 0.0022  -0.0100 0.0100 -0.0004 0.0015 

9  -9.1000 6.0900 -1.0259 2.4167  -6.3600 4.1000 -0.9425 1.5745 

10  0.0000 0.0000 0.0010 0.0012  0.0000 0.0000 0.0009 0.0009 

11  -0.0100 0.0100 0.0023 0.0040  -0.0100 0.0100 0.0022 0.0031 

12  -0.0100 0.0100 0.0016 0.0025  0.0000 0.0100 0.0015 0.0017 

13  0.0000 0.0000 0.0001 0.0015  0.0000 0.0000 0.0000 0.0010 

14  -0.0200 0.0100 -0.0011 0.0044  -0.0100 0.0100 -0.0011 0.0031 

15  0.0000 0.0000 0.0002 0.0012  0.0000 0.0000 0.0001 0.0008 

16  0.0000 0.0000 0.0003 0.0011  0.0000 0.0000 0.0001 0.0008 

17  0.0000 0.0000 0.0002 0.0011  0.0000 0.0000 0.0001 0.0008 

18  0.0000 0.0000 0.0010 0.0012  0.0000 0.0000 0.0009 0.0009 

19  0.0000 0.0100 0.0013 0.0016  0.0000 0.0000 0.0011 0.0011 

20  -0.0100 0.0100 -0.0003 0.0024  -0.0100 0.0100 -0.0004 0.0017 
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Table C2.13 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for  

Rasch Rating Scale Model with Uniform Item Difficulty Distribution and Multidimensional.  

 

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N = 150  N = 250 

1  -0.0100 0.0100 -0.0005 0.0016  0.0000 0.0000 -0.0005 0.0012 

2  0.0000 0.0000 -0.0002 0.0010  0.0000 0.0000 -0.0002 0.0008 

3  -0.0100 0.0000 -0.0005 0.0015  0.0000 0.0000 -0.0006 0.0011 

4  0.0000 0.0000 0.0009 0.0007  0.0000 0.0000 0.0009 0.0005 

5  -0.0100 0.0100 0.0027 0.0031  -0.0100 0.0100 0.0027 0.0024 

6  -0.0100 0.0100 0.0033 0.0039  -0.0100 0.0100 0.0030 0.0030 

7  0.0000 0.0000 0.0009 0.0007  0.0000 0.0000 0.0008 0.0005 

8  0.0000 0.0000 -0.0004 0.0012  0.0000 0.0000 -0.0003 0.0009 

9  -4.9900 2.7300 -0.9316 1.2634  -4.1200 1.9800 -0.9187 0.9765 

10  0.0000 0.0000 0.0009 0.0007  0.0000 0.0000 0.0009 0.0005 

11  0.0000 0.0100 0.0022 0.0024  0.0000 0.0100 0.0022 0.0018 

12  0.0000 0.0100 0.0014 0.0014  0.0000 0.0000 0.0014 0.0011 

13  0.0000 0.0000 0.0000 0.0009  0.0000 0.0000 -0.0001 0.0007 

14  -0.0100 0.0100 -0.0012 0.0025  -0.0100 0.0000 -0.0013 0.0019 

15  0.0000 0.0000 0.0001 0.0007  0.0000 0.0000 0.0001 0.0006 

16  0.0000 0.0000 0.0001 0.0006  0.0000 0.0000 0.0001 0.0005 

17  0.0000 0.0000 0.0001 0.0006  0.0000 0.0000 0.0001 0.0005 

18  0.0000 0.0000 0.0009 0.0007  0.0000 0.0000 0.0009 0.0006 

19  0.0000 0.0000 0.0010 0.0009  0.0000 0.0000 0.0010 0.0007 

20  0.0000 0.0000 -0.0004 0.0013  0.0000 0.0000 -0.0004 0.0010 
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Table C2.14 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for  

Rasch Rating Scale Model with Uniform Item Difficulty Distribution and Multidimensional.  

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item   N = 50  N = 100 

1  0.0000 0.0100 0.0004 0.0017  0.0000 0.0100 0.0003 0.0012 

2  0.0000 0.0100 0.0000 0.0016  0.0000 0.0100 -0.0001 0.0011 

3  0.0000 0.0100 0.0017 0.0021  0.0000 0.0100 0.0016 0.0015 

4  0.0000 0.0200 0.0054 0.0034  0.0000 0.0200 0.0052 0.0023 

5  0.0000 0.0100 0.0007 0.0018  0.0000 0.0100 0.0006 0.0012 

6  0.0000 0.0200 0.0056 0.0034  0.0000 0.0200 0.0054 0.0023 

7  -0.0100 0.0100 0.0011 0.0025  0.0000 0.0100 0.0010 0.0017 

8  0.0000 0.0200 0.0054 0.0032  0.0000 0.0100 0.0052 0.0022 

9  0.0000 0.0200 0.0050 0.0031  0.0000 0.0100 0.0049 0.0022 

10  0.0000 0.0100 0.0032 0.0026  0.0000 0.0100 0.0032 0.0018 

11  0.0000 0.0200 0.0063 0.0037  0.0000 0.0200 0.0061 0.0026 

12  -0.0300 0.0200 -0.0063 0.0060  -0.0200 0.0100 -0.0064 0.0041 

13  0.0000 0.0100 0.0038 0.0026  0.0000 0.0100 0.0037 0.0019 

14  0.0000 0.0200 0.0037 0.0027  0.0000 0.0100 0.0036 0.0018 

15  0.0000 0.0100 0.0023 0.0021  0.0000 0.0100 0.0022 0.0014 

16  0.0000 0.0100 0.0000 0.0015  0.0000 0.0000 -0.0002 0.0010 

17  0.0000 0.0400 0.0085 0.0050  0.0000 0.0200 0.0084 0.0035 

18  -0.0100 0.0100 0.0013 0.0025  0.0000 0.0100 0.0013 0.0017 

19  0.0000 0.0100 0.0021 0.0021  0.0000 0.0100 0.0020 0.0014 

20  0.0000 0.0100 0.0014 0.0025  0.0000 0.0100 0.0014 0.0017 
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Table C2.15 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Rasch Rating Scale Model with Uniform Item 

Difficulty Distribution and Multidimensional.  

 

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N =150  N = 250 

1  0.0000 0.0100 0.0003 0.0012  0.0000 0.0000 0.0002 0.0009 

2  0.0000 0.0100 -0.0001 0.0011  0.0000 0.0000 -0.0001 0.0009 

3  0.0000 0.0100 0.0016 0.0015  0.0000 0.0100 0.0016 0.0011 

4  0.0000 0.0200 0.0052 0.0023  0.0000 0.0100 0.0050 0.0018 

5  0.0000 0.0100 0.0006 0.0012  0.0000 0.0000 0.0005 0.0010 

6  0.0000 0.0200 0.0054 0.0023  0.0000 0.0100 0.0052 0.0018 

7  0.0000 0.0100 0.0010 0.0017  0.0000 0.0100 0.0011 0.0014 

8  0.0000 0.0100 0.0052 0.0022  0.0000 0.0100 0.0050 0.0017 

9  0.0000 0.0100 0.0049 0.0022  0.0000 0.0100 0.0048 0.0017 

10  0.0000 0.0100 0.0032 0.0018  0.0000 0.0100 0.0031 0.0014 

11  0.0000 0.0200 0.0061 0.0026  0.0000 0.0200 0.0060 0.0021 

12  -0.0200 0.0100 -0.0064 0.0041  -0.0200 0.0100 -0.0060 0.0032 

13  0.0000 0.0100 0.0037 0.0019  0.0000 0.0100 0.0036 0.0015 

14  0.0000 0.0100 0.0036 0.0018  0.0000 0.0100 0.0036 0.0015 

15  0.0000 0.0100 0.0022 0.0014  0.0000 0.0100 0.0021 0.0012 

16  0.0000 0.0000 -0.0002 0.0010  0.0000 0.0000 -0.0002 0.0008 

17  0.0000 0.0200 0.0084 0.0035  0.0000 0.0200 0.0082 0.0029 

18  0.0000 0.0100 0.0013 0.0017  0.0000 0.0100 0.0013 0.0014 

19  0.0000 0.0100 0.0020 0.0014  0.0000 0.0100 0.0019 0.0011 

20  0.0000 0.0100 0.0014 0.0017  0.0000 0.0100 0.0014 0.0014 
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Table C2.16 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Rasch Rating Scale Model with Random Normal Item 

Difficulty Distribution and Multidimensional.  

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N = 50  N = 100 

1  0.0000 0.0100 0.0003 0.0018  0.0000 0.0000 0.0002 0.0013 

2  0.0000 0.0000 -0.0010 0.0014  0.0000 0.0000 -0.0011 0.0010 

3  0.0000 0.0100 0.0002 0.0018  0.0000 0.0000 0.0001 0.0013 

4  -0.0200 0.0400 0.0071 0.0082  -0.0100 0.0200 0.0069 0.0059 

5  -0.0100 0.0100 -0.0001 0.0033  -0.0100 0.0100 -0.0003 0.0023 

6  -0.0100 0.0100 -0.0007 0.0039  -0.0100 0.0100 -0.0010 0.0026 

7  0.0000 0.0200 0.0038 0.0028  0.0000 0.0100 0.0036 0.0019 

8  0.0000 0.0100 -0.0004 0.0017  0.0000 0.0000 -0.0005 0.0011 

9  -2.2500 6.2200 0.8930 1.2156  -1.3800 3.6000 0.8768 0.8535 

10  0.0000 0.0200 0.0035 0.0026  0.0000 0.0100 0.0033 0.0018 

11  -0.0100 0.0100 0.0003 0.0026  0.0000 0.0100 0.0003 0.0020 

12  0.0000 0.0100 0.0018 0.0023  0.0000 0.0100 0.0018 0.0016 

13  0.0000 0.0000 -0.0016 0.0013  0.0000 0.0000 -0.0017 0.0009 

14  -0.0100 0.0100 0.0016 0.0028  0.0000 0.0100 0.0016 0.0020 

15  0.0000 0.0000 -0.0017 0.0013  0.0000 0.0000 -0.0018 0.0009 

16  0.0000 0.0100 -0.0010 0.0015  0.0000 0.0000 -0.0011 0.0010 

17  0.0000 0.0100 0.0007 0.0021  0.0000 0.0100 0.0006 0.0015 

18  0.0000 0.0200 0.0029 0.0024  0.0000 0.0100 0.0028 0.0017 

19  0.0000 0.0200 0.0037 0.0027  0.0000 0.0100 0.0035 0.0018 

20  0.0000 0.0100 0.0000 0.0018  0.0000 0.0000 -0.0002 0.0012 
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Table C2.17 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Rasch Rating Scale Model with Random Normal Item 

Difficulty Distribution and Multidimensional.  

 

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N = 150  N = 250 

1  0.0000 0.0000 0.0001 0.0010  0.0000 0.0000 0.0000 0.0008 

2  0.0000 0.0000 -0.0011 0.0007  0.0000 0.0000 -0.0012 0.0006 

3  0.0000 0.0000 0.0000 0.0010  0.0000 0.0000 0.0000 0.0008 

4  -0.0100 0.0200 0.0064 0.0046  0.0000 0.0200 0.0063 0.0037 

5  -0.0100 0.0100 -0.0003 0.0020  0.0000 0.0100 -0.0004 0.0016 

6  -0.0100 0.0100 -0.0010 0.0023  -0.0100 0.0100 -0.0010 0.0018 

7  0.0000 0.0100 0.0034 0.0015  0.0000 0.0100 0.0034 0.0011 

8  0.0000 0.0000 -0.0006 0.0009  0.0000 0.0000 -0.0006 0.0007 

9  -1.5000 3.4800 0.7866 0.6927  -0.6300 2.2300 0.8199 0.5144 

10  0.0000 0.0100 0.0032 0.0014  0.0000 0.0100 0.0031 0.0011 

11  0.0000 0.0100 0.0003 0.0016  0.0000 0.0000 0.0002 0.0012 

12  0.0000 0.0100 0.0017 0.0013  0.0000 0.0000 0.0016 0.0010 

13  0.0000 0.0000 -0.0018 0.0007  0.0000 0.0000 -0.0018 0.0005 

14  0.0000 0.0100 0.0014 0.0016  0.0000 0.0100 0.0014 0.0012 

15  0.0000 0.0000 -0.0018 0.0007  0.0000 0.0000 -0.0019 0.0005 

16  0.0000 0.0000 -0.0012 0.0008  0.0000 0.0000 -0.0012 0.0006 

17  0.0000 0.0100 0.0005 0.0012  0.0000 0.0000 0.0005 0.0009 

18  0.0000 0.0100 0.0027 0.0013  0.0000 0.0100 0.0026 0.0010 

19  0.0000 0.0100 0.0033 0.0015  0.0000 0.0100 0.0033 0.0011 

20  0.0000 0.0000  0.0010  0.0000 0.0000 -0.0003 0.0007 
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Table C2.18 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Rasch Rating Scale Model with Random Normal Item 

Difficulty Distribution and Unidimensional.  

 

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N = 50  N = 100 

1  -0.0100 0.0000 -0.0014 0.0017  0.0000 0.0000 -0.0015 0.0011 

2  0.0000 0.0000 -0.0006 0.0011  0.0000 0.0000 -0.0007 0.0008 

3  -0.0100 0.0100 -0.0022 0.0022  -0.0100 0.0000 -0.0023 0.0015 

4  0.0000 0.0100 0.0025 0.0016  0.0000 0.0100 0.0023 0.0010 

5  0.0000 0.0100 -0.0008 0.0013  0.0000 0.0000 -0.0010 0.0009 

6  0.0000 0.0100 0.0023 0.0015  0.0000 0.0100 0.0023 0.0010 

7  -0.0100 0.0200 0.0065 0.0043  0.0000 0.0200 0.0059 0.0029 

8  0.0000 0.0100 0.0025 0.0016  0.0000 0.0100 0.0023 0.0011 

9  -0.0200 0.0100 -0.0056 0.0047  -0.0200 0.0000 -0.0055 0.0032 

10  0.0000 0.0100 0.0040 0.0026  0.0000 0.0100 0.0037 0.0018 

11  -0.0300 0.0100 -0.0071 0.0061  -0.0200 0.0100 -0.0075 0.0042 

12  -0.0200 0.0600 0.0185 0.0132  -0.0100 0.0500 0.0179 0.0090 

13  0.0000 0.0000 -0.0003 0.0010  0.0000 0.0000 -0.0005 0.0007 

14  0.0000 0.0100 0.0036 0.0022  0.0000 0.0100 0.0033 0.0016 

15  -0.0100 0.0100 -0.0026 0.0024  -0.0100 0.0000 -0.0027 0.0017 

16  -0.0100 0.0000 -0.0012 0.0015  0.0000 0.0000 -0.0014 0.0011 

17  -0.0400 0.0200 -0.0109 0.0085  -0.0300 0.0100 -0.0109 0.0060 

18  -0.0100 0.0200 0.0061 0.0039  0.0000 0.0200 0.0060 0.0029 

19  -0.0100 0.0100 -0.0025 0.0023  -0.0100 0.0000 -0.0025 0.0016 

20  -0.0100 0.0200 0.0056 0.0040  0.0000 0.0100 -0.0015 0.0029 

 

2
7
8
 



279 

 

 

 

 

Table C2.19 

 

Relative Bias after Wright and Douglas (1977) correction by Item for I = 20 for Rasch Rating Scale Model with Random Normal Item 

Difficulty Distribution and Unidimensional.  

 

  Minimum Maximum Mean 
Standard 

Deviation 
 Minimum Maximum Mean 

Standard 

Deviation 

Item  N = 150  N = 250 

1  0.0000 0.0000 -0.0015 0.0009  0.0000 0.0000 -0.0015 0.0007 

2  0.0000 0.0000 -0.0007 0.0007  0.0000 0.0000 -0.0008 0.0005 

3  -0.0100 0.0000 -0.0023 0.0012  -0.0100 0.0000 -0.0023 0.0010 

4  0.0000 0.0100 0.0023 0.0009  0.0000 0.0000 0.0023 0.0007 

5  0.0000 0.0000 -0.0010 0.0007  0.0000 0.0000 -0.0010 0.0006 

6  0.0000 0.0100 0.0022 0.0009  0.0000 0.0000 0.0022 0.0007 

7  0.0000 0.0100 0.0059 0.0024  0.0000 0.0100 0.0061 0.0019 

8  0.0000 0.0000 0.0023 0.0009  0.0000 0.0000 0.0023 0.0007 

9  -0.0100 0.0000 -0.0056 0.0027  -0.0100 0.0000 -0.0056 0.0020 

10  0.0000 0.0100 0.0037 0.0014  0.0000 0.0100 0.0037 0.0011 

11  -0.0200 0.0000 -0.0075 0.0034  -0.0100 0.0000 -0.0073 0.0026 

12  -0.0100 0.0500 0.0177 0.0077  0.0000 0.0400 0.0181 0.0059 

13  0.0000 0.0000 -0.0005 0.0006  0.0000 0.0000 -0.0004 0.0004 

14  0.0000 0.0100 0.0033 0.0013  0.0000 0.0100 0.0033 0.0010 

15  -0.0100 0.0000 -0.0027 0.0014  -0.0100 0.0000 -0.0027 0.0010 

16  0.0000 0.0000 -0.0014 0.0008  0.0000 0.0000 -0.0014 0.0006 

17  -0.0300 0.0000 -0.0110 0.0049  -0.0200 0.0000 -0.0109 0.0038 

18  0.0000 0.0100 0.0059 0.0023  0.0000 0.0100 0.0057 0.0018 

19  -0.0100 0.0000 -0.0025 0.0013  -0.0100 0.0000 -0.0025 0.0011 

20  0.0000 0.0100 0.0057 0.0022  0.0000 0.0100 0.0056 0.0017 
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Table D1 

 

Infit values for the rating scale and dichotomous Rasch models for I = 10 for the two 

factor (multidimensional) condition under the uniform difficulty distribution for N = 50 

and N =100 

 
   Infit RSM  Infit Dichotomous 
   Minimum Maximum Mean SD  Minimum Maximum Mean SD 

 1 * 1.69 2.45 2.08 0.12  -2.49 2.45 -0.28 0.77 
 2 * 1.74 2.57 2.21 0.10  0.73 1.61 1.11 0.14 
 3 * 1.75 2.58 2.24 0.12  -2.00 4.00 0.77 0.95 
 4  0.65 3.44 1.41 0.32  0.57 2.75 1.17 0.26 

50 5  0.36 0.73 0.52 0.05  -2.10 4.72 0.75 0.99 
 6  0.34 0.63 0.48 0.05  0.73 1.46 1.08 0.14 
 7  0.32 0.58 0.45 0.04  -1.00 2.00 0.42 0.61 
 8  0.23 0.65 0.44 0.06  0.39 3.39 1.15 0.39 
 9  0.31 0.59 0.44 0.04  -1.50 3.48 0.43 0.80 
 10  0.35 0.69 0.53 0.05  0.75 1.54 1.11 0.12 
 1 * 1.81 2.34 2.08 0.08  -2.00 4.00 0.84 0.95 
 2 * 1.97 2.43 2.21 0.07  0.65 2.85 1.15 0.22 
 3 * 1.98 2.56 2.24 0.09  -1.92 3.96 0.78 0.99 
 4  0.85 2.41 1.43 0.22  0.62 1.42 0.95 0.11 

100 5  0.42 0.63 0.52 0.03  -3.00 2.00 -0.34 0.80 
 6  0.36 0.59 0.47 0.03  0.45 1.89 0.93 0.19 
 7  0.36 0.54 0.44 0.03  -2.60 2.58 -0.30 0.81 
 8  0.31 0.58 0.44 0.04  0.61 1.34 0.94 0.11 
 9  0.33 0.57 0.44 0.03  -3.00 3.00 -0.41 0.84 
 10  0.43 0.64 0.53 0.04  0.43 1.88 0.91 0.17 

Note: Bolded values represent those that go above the recommended cutoff. The * 

represents items that were designed to misfit. 
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Table D2 

 

Infit values for the rating scale and dichotomous Rasch models for I = 10 for the two 

factor (multidimensional) condition under the uniform difficulty distribution for N = 150 

and N =250 

 

   Infit RSM  Infit Dichotomous 

   Minimum Maximum Mean SD  Minimum Maximum Mean SD 

 1 * 1.85 2.36 2.08 0.07  -2.48 3.62 -0.37 0.80 

 2 * 2.01 2.41 2.21 0.06  0.58 1.33 0.95 0.12 

 3 * 2.04 2.48 2.25 0.07  -2.00 2.00 -0.18 0.59 

 4  1.03 2.21 1.44 0.17  0.11 2.96 0.90 0.32 

150 5  0.44 0.63 0.52 0.03  -1.91 2.95 -0.19 0.72 

 6  0.38 0.55 0.47 0.03  0.61 1.38 0.95 0.12 

 7  0.37 0.53 0.44 0.02  -3.00 2.00 -0.28 0.78 

 8  0.35 0.54 0.44 0.03  0.45 2.23 0.93 0.23 

 9  0.34 0.51 0.44 0.03  -2.43 3.17 -0.23 0.80 

 10  0.44 0.63 0.53 0.03  0.64 1.34 0.96 0.12 

 1 * 1.92 2.24 2.08 0.05  -3.00 2.00 -0.19 0.69 

 2 * 2.09 2.40 2.21 0.04  0.47 3.32 0.93 0.27 

 3 * 2.02 2.42 2.25 0.05  -2.16 3.81 -0.19 0.73 

 4  1.04 1.88 1.43 0.13  0.62 1.43 0.95 0.12 

250 5  0.43 0.62 0.52 0.02  -2.00 2.00 -0.14 0.55 

 6  0.42 0.53 0.47 0.02  0.26 4.17 0.91 0.36 

 7  0.39 0.52 0.44 0.02  -1.79 3.07 -0.14 0.72 

 8  0.37 0.53 0.44 0.02  0.65 1.31 0.95 0.11 

 9  0.38 0.52 0.44 0.02  -3.00 2.00 -0.31 0.73 

 10  0.44 0.62 0.53 0.02  0.44 2.03 0.92 0.21 

Note: Bolded values represent those that go above the recommended cutoff. The * 

represents items that were designed to misfit. 
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Table D3 

 

Outfit values for the rating scale and dichotomous Rasch models for I = 10 for the two 

factor (multidimensional) condition under the uniform difficulty distribution for N = 50 

and N =100 

 

   Outfit RSM  Outfit Dichotomous 

   Minimum Maximum Mean SD  Minimum Maximum Mean SD 

 1 * 1.52 2.68 2.11 0.16  0.83 1.41 1.11 0.09 
 2 * 1.60 2.48 2.08 0.13  -2.00 4.00 1.11 0.93 
 3 * 1.59 2.60 2.10 0.15  0.71 1.87 1.16 0.16 
 4  0.35 1.32 0.75 0.15  -1.82 4.16 1.01 0.93 

50 5  0.35 0.67 0.48 0.04  0.80 1.42 1.09 0.09 
 6  0.34 0.62 0.45 0.04  -2.00 3.00 0.58 0.60 
 7  0.32 0.54 0.42 0.04  0.64 2.82 1.16 0.27 
 8  0.30 0.74 0.47 0.08  -1.15 3.59 0.59 0.82 
 9  0.31 0.58 0.42 0.04  0.82 1.43 1.11 0.09 
 10  0.35 0.65 0.49 0.04  -2.00 5.00 1.21 0.99 
 1 * 1.79 2.54 2.11 0.12  0.79 1.68 1.15 0.15 
 2 * 1.73 2.44 2.09 0.10  -1.82 4.51 1.09 1.01 
 3 * 1.81 2.58 2.11 0.11  0.71 1.22 0.95 0.08 
 4  0.45 1.11 0.76 0.10  -3.00 2.00 -0.50 0.81 

100 5  0.40 0.58 0.48 0.03  0.58 1.47 0.93 0.14 
 6  0.35 0.55 0.45 0.03  -2.87 2.16 -0.43 0.86 
 7  0.35 0.51 0.42 0.03  0.70 1.20 0.95 0.08 
 8  0.33 0.64 0.47 0.05  -3.00 2.00 -0.54 0.85 
 9  0.34 0.53 0.42 0.03  0.59 1.62 0.92 0.12 
 10  0.41 0.59 0.49 0.03  -2.60 2.52 -0.50 0.81 

Note: Bolded values represent those that go above the recommended cutoff. The * 

represents items that were designed to misfit. 
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Table D4 

 

Outfit values for the rating scale and dichotomous Rasch models for I = 10 for the two 

factor (multidimensional) condition under the uniform difficulty distribution for N = 150 

and N = 250 

 

   Outfit RSM  Outfit Dichotomous 

   Minimum Maximum Mean SD  Minimum Maximum Mean SD 

 1 * 1.81 2.48 2.12 0.09  0.65 1.23 0.96 0.08 
 2 * 1.84 2.35 2.08 0.08  -2.00 1.00 -0.22 0.52 
 3 * 1.87 2.34 2.10 0.09  0.40 2.00 0.91 0.21 
 4  0.53 1.04 0.77 0.08  -2.07 3.26 -0.26 0.70 

150 5  0.42 0.57 0.48 0.02  0.75 1.35 0.96 0.08 
 6  0.35 0.51 0.44 0.02  -3.00 3.00 -0.39 0.75 
 7  0.36 0.49 0.42 0.02  0.58 1.74 0.93 0.15 
 8  0.35 0.63 0.47 0.04  -2.38 3.10 -0.36 0.77 
 9  0.34 0.49 0.42 0.02  0.70 1.29 0.96 0.08 
 10  0.42 0.57 0.49 0.02  -3.00 2.00 -0.29 0.67 
 1 * 1.88 2.36 2.12 0.07  0.53 1.89 0.93 0.17 
 2 * 1.90 2.30 2.08 0.06  -2.01 2.51 -0.29 0.74 
 3 * 1.91 2.37 2.10 0.07  0.68 1.25 0.96 0.08 
 4  0.57 1.03 0.76 0.06  -2.00 2.00 -0.24 0.54 

250 5  0.42 0.55 0.48 0.02  0.37 2.14 0.90 0.22 
 6  0.40 0.50 0.45 0.02  -2.19 2.43 -0.30 0.71 
 7  0.37 0.48 0.42 0.02  0.73 1.22 0.95 0.08 
 8  0.38 0.58 0.47 0.03  -3.00 2.00 -0.48 0.76 
 9  0.37 0.50 0.42 0.02  0.56 1.49 0.92 0.14 
 10  0.43 0.55 0.49 0.02  -2.75 2.24 -0.45 0.79 

Note: Bolded values represent those that go above the recommended cutoff. The * 

represents items that were designed to misfit. 
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Table D5 

 

ZSTD Infit values for the rating scale and dichotomous Rasch models for I = 10 for the 

two factor (multidimensional) condition under the uniform difficulty distribution for N = 

50 and N =100 

 
   ZSTD Infit RSM  ZSTD Infit Dichotomous 
   Minimum Maximum Mean SD  Minimum Maximum Mean SD 

 1 * 3.00 6.00 4.32 0.39  0.88 1.39 1.10 0.08 
 2 * 3.00 5.00 4.56 0.31  -2.00 4.00 1.32 0.96 
 3 * 3.00 5.00 4.57 0.35  0.80 1.63 1.15 0.13 
 4  -1.00 4.00 1.27 0.83  -1.75 4.47 1.22 0.98 

50 5  -4.00 -1.00 -2.99 0.42  0.86 1.34 1.09 0.08 
 6  -5.00 -2.00 -3.35 0.41  -1.00 3.00 0.74 0.60 
 7  -5.00 -2.00 -3.58 0.42  0.76 2.66 1.17 0.22 
 8  -5.00 -2.00 -3.60 0.56  -1.43 4.32 0.73 0.82 
 9  -5.00 -2.00 -3.62 0.44  0.90 1.33 1.10 0.07 
 10  -5.00 -2.00 -2.92 0.44  -2.00 4.00 1.47 0.97 
 1 * 5.00 7.00 6.08 0.39  0.81 1.57 1.14 0.12 
 2 * 5.00 7.00 6.43 0.31  -1.54 4.25 1.32 1.01 
 3 * 5.00 8.00 6.45 0.34  0.73 1.15 0.95 0.06 
 4  -0.50 4.00 1.85 0.79  -3.00 2.00 -0.65 0.83 

100 5  -6.00 -3.00 -4.25 0.40  0.60 1.32 0.92 0.11 
 6  -6.00 -3.00 -4.80 0.40  -3.22 2.35 -0.59 0.85 
 7  -6.00 -4.00 -5.15 0.40  0.75 1.18 0.95 0.07 
 8  -7.00 -3.00 -5.17 0.56  -4.00 2.00 -0.62 0.88 
 9  -7.00 -4.00 -5.20 0.41  0.64 1.43 0.93 0.10 
 10  -5.00 -3.00 -4.17 0.42  -3.12 2.71 -0.56 0.86 

Note: Bolded values represent those that go above the recommended cutoff. The * 

represents items that were designed to misfit. 
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Table D6 

 

ZSTD Infit values for the rating scale and dichotomous Rasch models for I = 10 for the 

two factor (multidimensional) condition under the uniform difficulty distribution for N 

=150 and N = 250 

 

   ZSTD Infit RSM  ZSTD Infit Dichotomous 

   Minimum Maximum Mean SD  Minimum Maximum Mean SD 

 1 * 6.00 9.00 7.43 0.39  0.75 1.24 0.96 0.07 
 2 * 7.00 9.00 7.84 0.32  -2.00 1.00 -0.32 0.55 
 3 * 7.00 9.00 7.90 0.34  0.49 1.89 0.90 0.17 
 4  0.30 5.00 2.30 0.78  -2.22 2.32 -0.40 0.72 

150 5  -6.00 -3.00 -5.20 0.42  0.76 1.21 0.96 0.07 
 6  -7.00 -5.00 -5.94 0.41  -3.00 2.00 -0.48 0.78 
 7  -7.00 -5.00 -6.34 0.40  0.65 1.95 0.93 0.13 
 8  -8.00 -5.00 -6.35 0.55  -2.76 3.88 -0.45 0.84 
 9  -8.00 -5.00 -6.41 0.43  0.72 1.22 0.96 0.07 
 10  -6.00 -4.00 -5.08 0.42  -3.00 2.00 -0.34 0.66 
 1 * 8.00 10.00 9.52 0.33  0.56 1.75 0.93 0.14 
 2 * 9.00 10.00 9.85 0.12  -2.87 3.20 -0.37 0.75 
 3 * 9.00 10.00 9.86 0.12  0.71 1.17 0.96 0.07 
 4  0.30 6.00 2.90 0.76  -2.00 1.00 -0.29 0.53 

250 5  -9.00 -5.00 -6.74 0.43  0.51 1.96 0.90 0.18 
 6  -9.00 -6.00 -7.61 0.42  -2.47 2.77 -0.36 0.72 
 7  -9.00 -7.00 -8.15 0.40  0.76 1.21 0.95 0.06 
 8  -10.00 -6.00 -8.20 0.54  -3.00 2.00 -0.55 0.72 
 9  -9.00 -7.00 -8.25 0.43  0.65 1.36 0.92 0.11 
 10  -9.00 -5.00 -6.60 0.44  -2.69 1.81 -0.54 0.76 

Note: Bolded values represent those that go above the recommended cutoff. The * 

represents items that were designed to misfit. 
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Table D7 

 

ZSTD Outfit values for the rating scale and dichotomous Rasch models for I = 10 for the 

two factor (multidimensional) condition under the uniform difficulty distribution for N 

=50 and N = 100 

 

   ZSTD Outfit RSM  ZSTD Outfit Dichotomous 

   Minimum Maximum Mean SD  Minimum Maximum Mean SD 

 1 * 2.00 5.00 3.58 0.45  0.93 1.28 1.11 0.06 

 2 * 2.00 5.00 3.28 0.43  -1.00 5.00 1.78 0.94 

 3 * 2.00 5.00 3.23 0.46  0.84 1.56 1.16 0.10 

 4  -2.00 0.90 -0.47 0.39  -1.45 4.88 1.60 1.00 

50 5  -4.00 -1.00 -2.61 0.30  0.89 1.26 1.09 0.06 

 6  -4.00 -2.00 -2.87 0.29  -1.00 3.00 0.96 0.60 

 7  -4.00 -2.00 -3.03 0.31  0.79 1.85 1.17 0.16 

 8  -4.00 -0.90 -2.68 0.57  -1.26 3.59 0.94 0.80 

 9  -4.00 -2.00 -3.03 0.34  0.94 1.30 1.10 0.06 

 10  -4.00 -2.00 -2.56 0.31  -1.00 5.00 1.89 1.00 

 1 * 4.00 6.00 5.02 0.47  0.87 1.45 1.14 0.09 

 2 * 3.00 6.00 4.62 0.45  -1.64 4.78 1.71 1.04 

 3 * 3.00 6.00 4.54 0.46  0.82 1.11 0.95 0.05 

 4  -2.00 0.50 -0.74 0.37  -3.00 2.00 -0.85 0.82 

100 5  -5.00 -3.00 -3.74 0.28  0.67 1.22 0.92 0.08 

 6  -5.00 -3.00 -4.13 0.29  -2.94 2.15 -0.76 0.85 

 7  -5.00 -3.00 -4.36 0.30  0.76 1.12 0.95 0.05 

 8  -6.00 -2.00 -3.89 0.60  -4.00 2.00 -0.83 0.85 

 9  -6.00 -3.00 -4.36 0.32  0.68 1.24 0.93 0.08 

 10  -5.00 -3.00 -3.68 0.29  -4.09 2.46 -0.75 0.86 

 

Note: Bolded values represent those that go above the recommended cutoff. The * 

represents items that were designed to misfit. 
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Table D8 

 

ZSTD Outfit values for the rating scale and dichotomous Rasch models for I = 10 for the 

two factor (multidimensional) condition under the uniform difficulty distribution for N 

=150 and N = 250 

 

   ZSTD Outfit RSM  ZSTD Outfit Dichotomous 

   Minimum Maximum Mean SD  Minimum Maximum Mean SD 

 1 * 5.00 8.00 6.16 0.45  0.80 1.13 0.96 0.05 

 2 * 4.00 7.00 5.59 0.45  -2.00 1.00 -0.42 0.53 

 3 * 4.00 7.00 5.50 0.47  0.61 1.48 0.91 0.13 

 4  -2.00 0.30 -0.92 0.37  -2.52 2.27 -0.47 0.76 

150 5  -5.00 -4.00 -4.59 0.30  0.80 1.12 0.96 0.05 

 6  -6.00 -4.00 -5.12 0.30  -3.00 2.00 -0.62 0.74 

 7  -6.00 -4.00 -5.39 0.30  0.69 1.43 0.93 0.10 

 8  -7.00 -3.00 -4.78 0.56  -2.74 2.76 -0.57 0.82 

 9  -7.00 -4.00 -5.39 0.34  0.80 1.13 0.96 0.05 

 10  -5.00 -4.00 -4.50 0.29  -3.00 2.00 -0.51 0.66 

 1 * 6.00 9.00 7.88 0.46  0.67 1.39 0.92 0.10 

 2 * 6.00 9.00 7.15 0.44  -2.67 2.44 -0.54 0.74 

 3 * 6.00 9.00 7.05 0.45  0.76 1.13 0.96 0.05 

 4  -2.00 0.20 -1.27 0.37  -2.00 1.00 -0.36 0.53 

250 5  -7.00 -5.00 -5.95 0.29  0.54 1.47 0.91 0.14 

 6  -7.00 -6.00 -6.57 0.30  -2.45 1.99 -0.44 0.73 

 7  -8.00 -6.00 -6.93 0.30  0.81 1.14 0.95 0.05 

 8  -8.00 -4.00 -6.16 0.58  -3.00 2.00 -0.76 0.71 

 9  -8.00 -6.00 -6.94 0.32  0.71 1.33 0.92 0.09 

 10  -7.00 -5.00 -5.85 0.30  -2.69 2.68 -0.69 0.78 

 

Note: Bolded values represent those that go above the recommended cutoff. The * 

represents items that were designed to misfit. 
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