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ABSTRACT

Saidi, Hasni Idayu Binti. Power Comparisons of the Rician and Gaussian Random
Fields Tests for Detecting Signal from Functional Magnetic Resonance
Images. Published Doctor of Philosophy dissertation, University of Northern
Colorado, 2018.

The functional magnetic resonance imaging (fMRI) data are known to be

complex valued. The real and imaginary components are assumed to be

independently and normally distributed. After image reconstructions, these

components are separated into two components, namely magnitude and phase.

Usually, only the magnitude component is used in the analysis and it is assumed to

be normally, or Gaussian, distributed. The statistical analysis of fMRI data using

random field theory also assumed that the data are Gaussian distributed. However,

the magnitude component is actually Rician distributed and no work has been

found on the Rician random field. In this dissertation, Rician random field was

defined, in general, and simulated in a two-dimensional image. A new test statistic

to detect a signal from the functional magnetic resonance image, Rmax, which

follows the Rician random field, was introduced. The power of Rmax was calculated

using Monte Carlo simulation, and compared to the Gaussian test statistic, Zmax.

The effects of factors known to influence the power of Rmax, namely amplitude, scale

and location of the signal, were also studied. The amplitude was shown to be the

most influencing factor on the power of Rmax, followed by the scale of the signal.

iii



The location of the signal did not seem to affect the power of the Rmax. However,

the power of Rmax did not outperform the power of Zmax. Future studies are

required to provide more information on the properties and behaviors of Rmax.
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CHAPTER I

INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique

to study neural activity in the brain using an indirect measure called blood

oxygenation level-dependent (BOLD). The fMRI can be used to identify location of

activation due to certain activities, to determine functional networks that

correspond to brain function, and to predict a person’s disease or psychological state

(Ashby, 2011; Lindquist, 2008). The fMRI uses the magnetic resonance imaging

(MRI) scanner to scan and produce images of the brain at different time points

while performing the tasks. The series of functional images produced contain the

functional data (BOLD signals) and have high temporal resolution but low spatial

resolution (Ashby, 2011).

An fMRI experiment can include single or multiple participants, and each

participant is typically scanned across several sessions. Each session can consists of

several runs, and each run consists of a series of whole brain images at the

designated time points. Each three-dimensional whole brain image consists of units

called voxels, which is equivalent to pixels if the image is a two-dimensional image.

Each voxel consists of a time series of functional data at the specific scanned time

(Lindquist, 2008).
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The fMRI data are also noisy from various nuisance factors, which makes it

harder to detect the signal (Lindquist, 2008). As such, the fMRI data have to

undergo preprocessing steps to clean and prepare the data for statistical analysis.

One of the steps is spatial smoothing. Spatial smoothing increases the

signal-to-noise ratio (SNR). However, the fMRI image becomes blurry and the

neighboring voxels become dependent on each other. The huge and autocorrelated

nature of fMRI data poses challenges in the statistical analysis of fMRI data.

Functional Magnetic Resonance Imaging
Statistical Analysis

The approach in modeling huge fMRI data is to model the BOLD signal at

each voxel. This approach is called massive univariate approach. The idea is to fit a

general linear model (GLM) to the BOLD signal at every voxel. As such, each voxel

will have a statistic, for example a z-score or a t-statistic. These statistics are then

constructed into an image called a statistical parametric map (SPM). The SPM

displays the value of the statistic at each voxel using a range of colors (see Figure 1).

Since there are thousands of statistics, a problem known as multiple

comparisons arises. Therefore, a strategy to avoid inflation of the Type I error rate

while determining significance needs to be employed. Random field theory (RFT) is

one of the methods that can be used to control the Type I error rate. One of the

advantages of using random field theory is that it takes care of the spatial

dependence of the voxels due to spatial smoothing.

The raw fMRI data are complex valued due to the nature of collecting the

magnetic resonance signal (Lindquist, 2008). The real and imaginary components



3

Figure 1. A Statistical Parametric Map (SPM) for a visual recognition experiment.
The data used to generate the image were retrieved from
https://openfmri.org/dataset/ds000105/.

are assumed to be independently and normally distributed. After image

reconstruction, these components are separated into magnitude and phase

components. The magnitude component of the signal is used in the analysis while

the phase component is discarded. The magnitude component is not normally

distributed. It follows the Rician distribution (Gudbjartsson & Patz, 1995). When

the signal-to-noise ratio is high, the Rician distribution is approximately normally

distributed. Statistical analysis of fMRI data usually assumes that the data will

follow the normal distribution.

https://openfmri.org/dataset/ds000105/
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Problem Statement

The magnitude component of the fMRI data is the data that are usually

used for statistical analysis. The data are assumed to be normally distributed.

However, this assumption may not hold due to the commonly low signal-to-noise

ratio in the data. Furthermore, the data are actually complex valued and follow

Rician distribution (Gudbjartsson & Patz, 1995). As such, some researchers have

proposed methods to analyze the complex-valued fMRI data. Rowe and Logan

(2004), Rowe (2005a), Rowe (2005b), and Adrian, Maitra, and Rowe (2013) were

among the studies that focused on the analysis of complex-valued fMRI data. In

these studies, the researchers used another method to handle multiple comparisons

problem. The method is known as false discovery rate (FDR).

Controlling the Type I error rate using random field theory such as Gaussian

random field and χ2 random field was established by the late Keith Worsley and his

colleagues in various papers (Worsley, 1994, 2001; Worsley, Evans, Marrett, &

Neelin, 1992; Worsley, Taylor, Tomaiuolo, & Lerch, 2004). However, no work has

been found on Rician random field. Usually, Gaussian random field is assumed to be

the distribution of the fMRI data. Since the actual data is Rician distributed, there

is a need to define Rician random field.

Purpose of the Study

To the author’s knowledge, there are no published studies on power

comparisons of Gaussian and Rician random fields tests to detect signals from fMRI

images. As such, the current study proposed a definition of a Rician random field

and simulated data that follows Rician random field. Then, power comparisons
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between the Gaussian and the Rician random fields tests under various conditions,

namely location, amplitude and scale of the signals, were conducted in the current

study.

Research Questions

Q1 How is Rician random field defined in general, and simulated
in two-dimensional image?

Q2 How can the power of the Rician test statistic, Rmax, be
calculated using Monte Carlo simulation?

Q3 How does the amplitude of the signal affect the power of the
Rician test statistic?

Q4 How does the scale of the signal affect the power of the Rician
test statistic?

Q5 How does the location of the signal affect the power of the
Rician test statistic?

Q6 How is the power of the Rician test statistic as compared to
the Gaussian test statistic under the conditions specified in
previous research questions?

Delimitation of the Study

The current study was limited to certain conditions. First, the simulated

error fields were assumed to be Rician random field, which was defined in the

current study. Second, only one signal was assumed to exist in the data. Third, the

simulation only used two-dimensional images. Finally, the critical value and the

power for the Rician random field test statistic were determined from the Monte

Carlo simulation method. As such, the results from the current study needed to be

used with caution and might not be generalized to all conditions in fMRI studies.
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Definition of Terms

Blood oxygenation level-dependent (BOLD) contrast. A measure of

the ratio of oxygenated hemoglobin to deoxygenated hemoglobin.

Euler characteristic (EC). A topological measure of the statistical

parametric map after thresholding.

Excursion set. A set of points where a random field exceeds a fixed

threshold value.

Finite dimensional distributions. A collection of distribution functions

for a random field.

Full width at half maximum (FWHM). A measure of the width of the

smoothing kernel when the maximum height of the kernel is equal to half.

Functional magnetic resonance imaging (fMRI). A neuroimaging

technique used to study brain functions.

Gaussian kernel. A smoothing kernel used to smooth data.

Gaussian random field. A type of random field where all of the finite

dimensional distributions are multivariate joint Gaussian (normal) distributions.

Pixel. A measure of unit in a two-dimensional image.

Random fields. A collection of random variables defined over a subset of

N -dimensional Euclidean space.

Rician random field. A type of random field where all of the finite

dimensional distributions are multivariate joint Rician distribution.

Spatial smoothing. A procedure that replaces the BOLD signal in a voxel

with the average of BOLD signals from neighboring voxels.
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Statistical parametric map (SPM). A color-coded brain map that

represents the numerical value of the test statistics at each voxel.

Voxel. A measure of unit in a three-dimensional image.

Dissertation Structure

This dissertation is organized in chapters. Chapter I is an introduction to the

functional magnetic resonance imaging and its statistical analysis. It also includes

problem statement, purpose of the study, research questions, delimitation of the

study, and the definition of terms. Chapter II is the review of the literature, where

the author studied the fMRI and its statistical data analysis, the random field

theory including Gaussian, Chi-square, and Rician random fields, the modeling of

the fMRI using random fields, the modeling of the complex valued fMRI data, and

the power calculation and comparison in fMRI. Chapter III describes the

methodology used in the study, which includes data generation, the test statistics,

the power calculation and the schemes of the parameters. Chapter IV presents the

results of the study. Chapter V includes brief discussions on the results of the study,

conclusions and suggestions for future research. Finally, the list of references and

the R code for simulation are documented.
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CHAPTER II

REVIEW OF LITERATURE

This chapter begins with an introduction to functional magnetic resonance

imaging (fMRI). It is followed by brief information on fMRI preprocessing, and then

on the fMRI statistical analysis. The next section discusses the random field theory,

including Gaussian random fields and Rician random fields. The following section

explores on the topic of modeling fMRI using random field theory, and modeling

fMRI as complex valued data. Afterwards, a section on power calculation and

comparison in fMRI is presented. Finally the chapter is concluded with a summary

of the literature review.

Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique

used to study neural activity in the brain. The most common use of fMRI is for

localization, which is to identify location of activation due to certain tasks or

activities. FMRI is also used to determine functional networks that correspond to

brain function using connectivity analysis, and to predict a person’s disease or

psychological state (Ashby, 2011; Lindquist, 2008). The use of fMRI for localization

of activation is the focus of this dissertation.

FMRI uses the blood oxygenation level-dependent (BOLD) signal proposed

by Ogawa, Lee, Kay, and Tank (1990) as an indirect measure of neural activity.
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BOLD signal is a measure of blood flow changes in the brain. FMRI is a

noninvasive procedure and does not involve harmful materials. Other neuroimaging

techniques namely computed tomography (CT) uses x-rays while positron emission

tomography (PET) uses radioactive drugs to scan the brain, which pose some health

risks to the participants (Ashby, 2011). As such, fMRI is becoming a popular

technique in the neuroimaging field. Additionally, fMRI provides images with high

temporal and spatial resolutions as compared to other techniques (Ashby, 2011;

Bullmore & Suckling, 2001; Matthews & Jezzard, 2004).

In a typical fMRI study, each participant will alternately rest and perform

tasks, such as tapping fingers and viewing pictures, while lying down inside the

magnetic resonance imaging (MRI) scanner for a duration of time. The MRI

scanner will scan each participant’s brain and produce a structural brain image and

a series of functional brain images. The functional images are images that contain

the BOLD signal information (Ashby, 2011). Figure 2 shows an example of

functional images from a visual recognition experiment. It can be seen that

functional images have low spatial resolution but high temporal resolution.

The functional brain images for one whole brain are usually collected in slices

(Lindquist, 2008). Each slice is divided into cubes called voxels (volume elements)

for a three-dimensional image, or pixels (picture elements) for a two-dimensional

image. Each voxel (or pixel) contains a BOLD signal at a specific repetition time

(TR). Repetition time is the time between two consecutive whole brain scans

(Ashby, 2011). As such, one whole brain image contains thousands of voxels. For a

single run of an experiment, there will be a time series of BOLD signals at each of
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Figure 2. A series of functional brain images from one subject over one run for a
visual recognition experiment. The data used to generate the image were retrieved
from https://openfmri.org/dataset/ds000105/.

the voxels for each of the subjects. These huge amounts of autocorrelated data

impose difficulties in data analysis.

Functional Magnetic Resonance
Imaging Preprocessing

Preprocessing involves some procedures conducted prior to statistical

analysis to remove artifacts and reduce noise that are inherited in the fMRI data

during data collection. It is an important step to prepare the data set for statistical

https://openfmri.org/dataset/ds000105/
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analysis. Common preprocessing procedures are slice timing correction, head

motion correction, coregistration, spatial normalization, and spatial smoothing

(Ashby, 2011).

Slice timing correction is a procedure to correct slight time differences due to

collecting brain images in slices. This procedure is crucial in fMRI study that uses

event-related design, where the rests and the tasks are alternated quickly. In an

fMRI study that uses block design, where the rests and tasks are alternated in a

block duration, the slice timing correction is not as crucial since the participants are

doing the same thing in each block for a certain amount of time (Ashby, 2011).

Head motion correction is conducted to correct the head movement effect on

the fMRI data. As an fMRI experiment could be running for a certain amount of

time, the participants are bound to move their heads while lying down in the MRI

scanner. A slight movement can greatly affect the location of the BOLD signals.

Thus, this is a critical step in preprocessing (Poldrack, Mumford, & Nichols, 2011).

Coregistration means alignment of the functional and structural brain

images. It is conducted so that we can localize the BOLD signal to its anatomical

location. Functional brain images is known to have poor spatial resolution (Ashby,

2011). As such, even if we found significant signals in the voxel, we could not be

certain of its anatomical location. Therefore, coregistration needs to be conducted

on these images.

The shape and size of human brains vary across individuals. In order to

make comparisons between individuals, the brain images should be standardized.

Spatial normalization is a preprocessing procedure to ‘standardize’ every brain



12

image to templates. The most common templates are known as the MNI templates,

which were developed at the Montreal Neurological Institute (Poldrack et al., 2011).

Smoothing means averaging BOLD signal in a voxel using signals from

neighboring voxels (Ashby, 2011). It is done by convolving the BOLD signals with a

Gaussian kernel. This consequently blurs the image and improves the signal-to-noise

ratio (SNR). To determine the neighboring voxels, a full width at half maximum

(FWHM) is used. It is a measure of the width of the Gaussian kernel at half

maximum (Ashby, 2011). The SNR is maximized when the size and shape of the

kernel is the same as the BOLD signal. This is known as the matched filter theorem

of signal processing.

Functional Magnetic Resonance Imaging
Statistical Data Analysis

Statistical analysis of fMRI data is conducted after preprocessing to

determine significance of signals in the brain. The most common method is using a

general linear model (GLM) to test the hypothesis of no activation in the whole

brain against the hypothesis of activation in any location of the brain. The fMRI

data can be modeled as

Y = Xβ + ε,

where Y is an (IJ ×K) matrix of BOLD signals, X is the design matrix, β is the

vector of parameters and ε is a matrix of errors. The errors are assumed to be

distributed as Gaussian with mean zero and variance-covariance matrix Σ. Each

element in Y, say Yij,k, represents the BOLD signal for subject i at time j and voxel

k, where i = 1, 2, ..., I, j = 1, 2, ..., J and k = 1, 2, ..., K (Ashby, 2011).
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The fMRI data are massive and autocorrelated across times and voxels.

However, it is a common practice in fMRI to analyze the data separately at each

voxel by assuming that the voxels are independent. This is known as the massive

univariate approach. It is also common for the analysis to be conducted in two

levels, where the first level deals with each subject and the second level deals with

groups of subjects (Lindquist, 2008), as shown in Figure 3. Nevertheless,

multivariate approaches have also been proposed, such as multivariate analysis of

covariance (MANCOVA), principal components analysis (PCA) and independent

component analysis (ICA) (Ashby, 2011; Friston, Frith, Frackowiak, & Turner,

1995; McKeown & Sejnowski, 1998).

Using the massive univariate approach, we calculate a test statistic at each

voxel, Uk. All of the calculated test statistics can be presented visually through the

statistical parametric map (SPM). The map is color-coded according to the

numerical value of the test statistics (see Figure 1 in the previous chapter). To

determine statistical significance, we look for voxels that have large test statistics

and try to find a height threshold, u, that will control a family of Type I error rates

known as family-wise error rate (FWER) (Brett, Penny, & Kiebel, 2004). This is

known as the multiple comparisons problem. The two known methods for controlling

the FWER in fMRI are Bonferroni correction and random field theory (RFT).

Another method to deal with the multiple comparisons problem is by controlling the

false positives rate. This method is known as false discovery rate (FDR).

Bonferroni correction uses probability rules to calculate the P -value. For

example, say that we have 10,000 test statistics to compare and we want to have a
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Figure 3. A common statistical analysis approach for fMRI data. The analysis is
conducted in two levels; within each subject and between groups of subjects.

FWER of 5%. Therefore at every voxel, the test statistic is significant if its P -value

is less than 0.05/10000 = 0.000005. This is usually called corrected P -value.

However, Bonferroni correction assumes that each of the test statistics is

independent of each other. This is not the case in fMRI since spatial correlation is

embedded in the data due to spatial smoothing during preprocessing. As such,

Bonferroni correction is a very conservative method of multiple comparisons for

fMRI studies.

Random field theory (RFT) is an alternative to Bonferroni correction. It

uses the smoothness and the number of resolution elements (resels) in the statistical

parametric map to approximately determine the P -value, which happens to be the
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expected value of Euler characteristic (EC) (Worsley, Evans, Marrett, & Neelin,

1992). We will discuss this in detail in the next section.

Another multiple comparisons procedure that is popular in fMRI is called

false discovery rate (FDR). FDR controls the expected value of the number of

falsely rejected tests (false positives) over the total number of rejected tests

(Benjamini & Hochberg, 1995). The use of FDR in fMRI studies was introduced by

Genovese, Lazar, and Nichols (2002). They defined FDR as the “proportion of

declared-active voxels which are false positives” (Genovese, Lazar, & Nichols, 2002,

p.7). The FDR is zero if we fail to declare any activation in any voxels.

Random Field Theory

A random field or a stochastic process is a collection of random variables, U ,

defined over a parameter space, T , where T is a subset of N -dimensional Euclidean

space, <N (Adler, 1981). Any point in T is denoted by t. As such, an

N -dimensional random field can be denoted as U(t), t ∈ T , where T is a subset of

<N , N ≥ 1. When N = 1, the random field is defined over the real line, <. For

example, a random field defined over time is called stochastic process. When N = 2,

the random field is defined over a surface and is known as random surface. When

N = 3, the random field is defined over a volume and commonly known as spatial

process (Worsley, 2006).

Random field theory was brought to popularity by Adler (1981) through his

book, which is a continuity from his doctoral dissertation. However, random field

theory was first seen being applied in ocean waves study by Longuet-Higgins (1952).

Since then, random field theory has been applied in various fields including
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neuroimaging (Friston, Jezzard, & Turner, 1994; Worsley, 2001, 2007), earth

sciences (Christakos, 1992), and astrophysics (Bertschinger, 2001).

A random field U has a few unique characteristics. As mentioned, random

field is a collection of random variables. Each of the random variables corresponds

to a distribution function (Adler, 1981). The collection of the distribution functions

is called the finite dimensional distributions for the random field U . The finite

dimensional distributions determine the distributional properties of the random field

U and are summarized usually by the mean function

µ(t) = E[U(t)],

and the covariance function

Q(s, t) = Cov[U(s), U(t)] = E([U(s)− µ(s)]′[U(t)− µ(t)]).

Besides that, another characteristic of random field is homogeneity, or

commonly known in stochastic process as stationarity. A random field is strongly

homogeneous, or strongly stationary, when the joint distributions do not change

with any shift in points t (Adler, 1981). A random field is weak or second-order

stationary when the random field has a constant mean function and the covariance

function only depends on the difference between two points (s− t). If the random

field is stationary and the covariance function depends only on the Euclidean

distance between two points ‖s− t‖, the random field is isotropic.
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There are several specific types of random fields that have been recognized

by researchers. Only those which are relevant to this dissertation are discussed here.

Random fields are recognized by their finite dimensional distributions. In general, a

random field that is commonly used to deal with fMRI data is either Gaussian

random field or Gaussian-related random field.

Gaussian Random Fields

A specific type of random field is Gaussian random field. By definition, an

N -dimensional random field is called a Gaussian field when the finite dimensional

distributions are all multivariate joint Gaussian distributions. Gaussian field is

completely determined by its mean function and its covariance function. This

means that once the mean and the covariance functions are specified, all the finite

dimensional distributions of a real-valued Gaussian field is determined (Adler,

1981). For example, let

Y (t) = µ(t) + e(t),

where e(t) is a Gaussian field with mean zero and covariance function

Cov[e(s), e(t)] = exp

(
−‖s− t‖2

2σ2

)
.

Since e(t) has constant mean and its covariance function depends only on the

Euclidean distance between two points, ‖s− t‖, e(t) is a stationary and isotropic

Gaussian field.
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χ2 Random Fields

χ2 random field, or simply χ2 field, is an example of Gaussian-related

random fields. Let X1(t), X2(t), ..., Xn(t), t ∈ <N , each be a stationary and

independent Gaussian random field with mean zero and covariance function, R(t),

with variance σ2 = 1. Now, let

Y (t) = [X1(t)]2 + [X2(t)]2 + ...+ [Xn(t)]2.

For each fixed t ∈ <N , Y (t) has a χ2 distribution with n degrees of freedom.

Also, for each t ∈ <N , the mean function is

µ(t) = n,

and the covariance function is

Q∗(s, t) = Cov[Y (s), Y (t)] = 2nR2(s, t),

where Q(s, t) is the common covariance function of the Xi (Adler, 1981).

Rician Random Fields

The Rice distribution was derived by Rice (1944, 1945, 1948) to describe a

sine wave plus random noise. Sometimes, Rice distribution is also known as Rician

or Ricean distribution. Let X and Y be two independent random variables, each

follows a normal distribution with respective mean, µX and µY , and same variance,
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σ2. Now let R be defined as

R =
√
X2 + Y 2 ≥ 0.

Thus, R follows a Rician distribution and the probability density function (PDF) is

given by

fR(r) =
re−(r

2+µ2)/2σ2

2πσ2
I0

(rµ
σ2

)
, r ≥ 0,

where

I0(x) =
1

π

∫ π

0

ex cosφdφ, −∞ < x <∞

is the modified Bessel function of the first kind and zeroth order. Also the

parameter µ, where

µ =
√
µ2
X + µ2

Y ,

is the distance between the center of the bivariate normal distribution (µX , µY ) and

the origin (0, 0). For the case where both X and Y have mean zero, R follows a

Rayleigh distribution (Kobayashi, Mark, & Turin, 2011).

We can extend this definition to random field. Let X(t) and Y (t) be two

independent Gaussian fields, with respective mean functions, µX(t) and µY (t), and

same covariance functions, Q(s, t). Thus for each t ∈ <N ,

R(t) =
√
X2(t) + Y 2(t) ≥ 0 (1)

is a Rician field. When both X(t) and Y (t) have mean zero, R(t) is a Rayleigh field.
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Other Random Fields

Other Gaussian-related fields that have been identified are t and F fields

(Worsley, 1994). A random field which the marginal distribution for fixed t ∈ <N

follows a t-distribution with degrees of freedom m is called t field and can be

denoted by Tm(t). A random field which the marginal distribution for fixed t ∈ <N

follows an F -distribution with degrees of freedom m and n, m+ n > N , is defined

as F field, F (t).

Modeling Functional Magnetic Resonance
Imaging using Random Fields

General linear model is the most commonly used method in fMRI modeling

to determine significant local activation in the brain. Most of the time, we do not

know the location of the task-related activation. Therefore, we are searching for

task-related activation in the whole brain. The statistical model at each voxel t in a

D-dimensional brain region C can be written as

Y(t) = Xβ(t) + ε(t),

where Y(t) is a vector of BOLD signals, X is the design matrix, β(t) is the vector

of regression coefficients, and ε(t) is a vector of errors. The columns of X are the

predictor variables while the β(t) represents the average changes in Y(t) with a

unit change in X. Also, we assume that the errors, ε(t), are independent and

identically distributed isotropic Gaussian field with zero mean and variance σ2 (Cao

& Worsley, 2001).
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At each voxel t, we calculate a statistic, say U(t). Since we calculate a

statistic at each voxel, we have thousands of statistics in an SPM. Thus, the

question arises on which statistics should be chosen as the test statistic to assess the

significant effects of the predictors. Worsley et al. (1992) proposed the maximum of

the statistics across all t voxels in the search region, Umax, as the test statistic so

that we can threshold the statistical parametric map at height threshold u. The

distribution of this random variable depends on several criteria, namely the number

of responses, the knowledge on standard deviation, and the number of contrasts

being tested (Cao & Worsley, 2001).

Now that we have established the test statistic and its distribution, we need

to find the height threshold u such that the P -value takes care of the multiple

comparisons problem. The P -value can be approximated by the expected value of

Euler characteristic of the excursion set of the random field U above u, E[χ(Au)]

(Adler, 2000). Excursion set, Au, is a set of voxels t where the random field U is

above the threshold u (Cao & Worsley, 2001). Euler characteristic (EC) is a

topological measure of the statistical parametric map after thresholding (Brett et

al., 2004). The P -value for a smooth statistical parametric map is given by

P (Umax ≥ u) ≈ E[χ(Au)] =
D∑
d=0

Reseld(C)ECd(u),

where D is the dimension of the search region C, Reseld(C) is the number of

d-dimensional resels in the search region C, and ECd(u) is the d-dimensional EC
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density of the statistical parametric map (Worsley, 2004; Worsley, Taylor,

Tomaiuolo, & Lerch, 2004).

Resel measures the resolution elements of a smoothed statistical parametric

map (Brett et al., 2004). In a three-dimensional SPM, resel is “a block of voxels

with dimensions equal to the effective FWHM” of the SPM (Worsley et al., 1992, p.

901). In a two-dimensional SPM, resel is a block of pixels. For example, the number

of resel in a three-dimensional search region C when d = 3 can be calculated as

Resel3 =
V

FWHMx × FWHMy × FWHMz

,

where V is the volume of the search region C, and FWHMx,FWHMy, and FWHMz

are the effective full width at half maximum of the Gaussian kernel in direction x, y,

and z, respectively. The Gaussian kernel is the kernel that is used to smooth the

statistical parametric map (Worsley, 2004).

The FWMH has relationship with the variance matrix Λ (Worsley et al.,

1992). Under the assumption that the SPM has no activation, the smoothed SPM

can be generated by convolving a white noise Gaussian random field with a

Gaussian kernel in the form of k(x) ∝ exp[−xTΣ−1x/2]. This gives

Λ = Σ−1/2 =

(
1/FWHM2

x 0 0

0 1/FWHM2
y

0 0 1/FWHM2
z

)
(4 ln 2).

The EC density depends on the type of random field for the SPM and the

threshold u. As an example, the EC density for a Gaussian random field when d = 3
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given by Worsley et al. (1996) is

EC3(x) =
(4 loge 2)3/2

(2π)2
e−x

2/2(x2 − 1).

A list of Reseld(C) and the ECd(x) for d = 0, 1, 2, 3 for Gaussian, χ2 and F fields

can be found in Worsley et al. (1996).

Modeling Complex Valued Functional
Magnetic Resonance Imaging Data

FMRI raw data are complex valued due to data acquisition using the MRI

scanner. This means that fMRI data consist of real and imaginary components.

Moreover, the raw data are collected in a frequency domain known as k-space. As

such, inverse Fourier transformation (IFT) has to be applied to the raw data in

k-space to reconstruct an fMRI image in image space, where the data are analyzed.

The IFT is a linear transformation. As such, the reconstructed fMRI image will also

be complex valued. These processes are repeated until a sequence of brain images

are collected (Lindquist, 2008).

Rowe and Logan (2004) were among the first to propose a complex model for

fMRI data analysis. They believed that since the reconstructed fMRI images

contain complex valued data, both the real and imaginary information should be

modeled. They defined the complex valued image measured over time j at a

particular voxel as

ρmj = [x′jβ cos θj + ηRe,j] + i[x′jβ sin θj + ηIm,j], (2)
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where i2 = −1, x′jβ = β0 + β1x1j + ...+ βqxqj, x′j is the jth row, j = 1, 2, ..., J , of a

J × (q + 1) design matrix X, θj represents the phase imperfection at time j,

(ηRe,j, ηIm,j)
′ ∼ N(0,Σ) and Σ = σ2I2 (Adrian, Maitra, & Rowe, 2013; Rowe &

Logan, 2004).

The model in Equation 2 can also be written in a vector form as

yRe,j
yIm,j

 =

x′jβ cos θj

x′jβ sin θj

+

ηRe,j
ηIm,j

 , j = 1, ..., J,

and further into

y =

X 0

0 X


β cos θj

β sin θj

+ η, (3)

where the observed vector of data y = (y′Re,y
′
Im) is the vector of observed real

values stacked on the vector of observed imaginary values, and the vector of errors

η = (η′
Re, η

′
Im) ∼ N(0,Σ ⊗ Φ) is the vector of observed real errors stacked on the

vector of imaginary errors. It is assumed that Σ = σ2I2 and Φ = In (Rowe &

Logan, 2004). The ⊗ is called the Kronecker product operation, which means every

element of Σ is multiplied to the entire Φ (Rowe, 2005a).

Most of the fMRI data analyses only model the magnitude of the complex

valued image, |ρmj|, defined as

rj = |ρmj| =
√

(x′jβ cos θj + ηRe,j)2 + (x′jβ sin θj + ηIm,j)2,
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while the phase component, defined as

φj = tan−1
[
yIm,j
yRe,j

]
= tan−1

[
x′jβ sin θj + ηIm,j

x′jβ cos θj + ηRe,j

]
,

is discarded because the phase component has not been considered to contain

relevant signal information (Lindquist, 2008; Rowe & Logan, 2004). The magnitude

component, rj, is known to follow a Rician distribution, rj ∼ Rician(x′jβ, σ), where

x′jβ represents the signal and σ represents the noise (Adrian, Maitra, & Rowe,

2013). The PDF for the Rician distribution is given by

f(rj|xj,β, σ
2) =

rj
σ2

exp

(
− 1

2σ2

[
r2j + (x′jβ)2

])
×
∫ π

−π

1

2π
exp

(
rjx
′
jβ

σ2
cos(φj − θj)

)
dφj

(4)

for rj ≥ 0,x′jβ ≥ 0, σ2 > 0 (Adrian, Maitra, & Rowe, 2013; Rowe, 2005b). The

integral factor is the modified zeroth order Bessel function of the first kind and is

usually denoted as IO(rjx
′
jβ/σ

2) (Gudbjartsson & Patz, 1995). The log-likelihood

function of the Rician distribution is given as

LLR(β, σ2|r) =
J∑
j=1

[
log(rj/σ

2)−
r2j + (x′jβ)2

2σ2
+ log I0

(
rjx
′
jβ

σ2

)]
, (5)

where r = [r1, r2, ..., rJ ]′ and J is the number of scans (Adrian, Maitra, & Rowe,

2013; Rowe, 2005b).

The signal-to-noise ratio (SNR) within the voxel, x′jβ/σ, determines the

shape of the Rician distribution. If there is no signal or activation (SNR=0), then
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the magnitude component rj follows a Rayleigh distribution (Lindquist, 2008; Rowe,

2005b). When the SNR is large enough, the magnitude component rj is

approximately Gaussian distributed, rj ∼ N(x′jβ, σ
2), with PDF

f(rj|xj,β, σ
2) =

1√
2πσ2

exp

(
− 1

2σ2

[
rj − (x′jβ)

]2)
(6)

(Gudbjartsson & Patz, 1995; Lindquist, 2008; Rowe, 2005b).

Since the magnitude component rj is approximately Gaussian only at high

SNRs, Rowe (2005b) argued that it is not appropriate to assume a Gaussian

distribution for low SNRs, which is the case in fMRI data. Rowe (2005b) mentioned

that it was difficult to maximize the log-likelihood function of Rician distribution in

Equation 5. Thus, he proposed a model that approximates the magnitude

component using a truncated Taylor series expansion (Rowe, 2005b),

f(rj|xj,β, σ
2) =

√
rj

x′jβ

1√
2πσ2

× exp

(
− 1

2σ2
[rj − (x′jβ)]2

)
, (7)

which he found by replacing the cosine term in Equation 4 with the first two terms

of its Taylor series expansion, cos(φj − θ) = 1− (φj − θ)2/2. Nevertheless, Rowe’s

proposed Taylor model in Equation 7 has been argued to not give optimal test by

Adrian and his colleagues (Adrian, Maitra, & Rowe, 2013).

Adrian, Maitra, and Rowe (2013) further proposed to use the exact Rician

distribution by maximizing the log-likelihood of Rician distribution in Equation 5

using Expectation Maximization (EM) and Newton-Raphson (NR) iterations, with
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the Gaussian-model estimates as starting values. For test of no activation,

H0 : Cβ = 0, against activated, H1 : Cβ 6= 0, they calculated the restricted and

unrestricted maximum likelihood estimators (MLEs) for the Rician log-likelihood in

Equation 5.

Under unrestricted maximization, their EM method gave the (k + 1)th step

estimates of β̂
(k)

R and σ̂
2(k)
R respectively as

β̂
(k+1)

R = (X′X)−1X′û(k),

and

σ̂
2(k+1)
R = [r′r− (X′û

(k)
)′(X′X)−1(X′û

(k)
)]/(2n),

where û(k) is a vector of length J with jth entry û
(k)
j = rjA(x′jβ̂

(k)

R rj/σ̂
2(k)
R ),

j = 1, 2, ..., J and A(·) = I1(·)/I0(·). Under restricted maximization, their method

gave

β̃
(k+1)

R = Ψ(X′X)−1X′ũ(k),

and

σ̃
2(k+1)
R = [r′r− (X′ũ

(k)
)′Ψ(X′X)−1(X′ũ

(k)
)]/(2n),

where Ψ = Iq − (X′X)−1C′[C(X′X)−1C′]−1C and ũ(k) is a vector of length J with

jth entry ũ
(k)
j = rjA(x′jβ̃

(k)

R rj/σ̃
2(k)
R ), j = 1, 2, ..., J (Adrian, Maitra, & Rowe, 2013).

Hence, the likelihood ratio test (LRT) statistic for the Rician model in Equation 4 is

given by

ΛR = 2[LLR(β̂R, σ̂
2
R)− LLR(β̃R, σ̃

2
R)]. (8)
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Power Calculation and Comparison in
Functional Magnetic Resonance

Imaging

Power is defined as the probability of rejecting null hypothesis when the

alternative hypothesis is true. In fMRI context, “power is the probability of

detecting a true task-related activation” (Ashby, 2011, p. 178). Power is also known

as sensitivity, which is the probability of accepting the alternative hypothesis

correctly for a given specificity. Specificity can be defined as the probability of

rejecting the null hypothesis correctly (Friston, Holmes, Poline, Price, & Frith,

1996).

Usually the receiver operator characteristic (ROC) curve is used to display

power, either against sample size (Desmond & Glover, 2002; Hayasaka, Peiffer,

Hugenschmidt, & Laurienti, 2007) or against (1− specificity) (Friston et al., 1996).

Power of a model has been shown to be influenced by several factors, namely the

width of the kernel (FWHM) and the smoothness, the standard deviation and the

amplitude of the signal (Friston et al., 1996), and the signal-to-noise ratio (SNR)

(Rowe, 2005b).

Studies on power analysis for fMRI have been conducted through various

approaches. Some focused on the Gaussian random field theory models (Friston et

al., 1996; Hayasaka et al., 2007), while some focused on other approaches such as

non-central distributions at each voxel (Van Horn, Ellmore, Esposito, & Berman,

1998; Zarahn & Slifstein, 2001) and simulation and resampling (Desmond & Glover,

2002; Murphy & Garavan, 2004). The power analysis studies have also been
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extended to complex models (Adrian, Maitra, & Rowe, 2013; Rowe, 2005a, 2005b;

Rowe & Logan, 2004).

Rowe and Logan (2004) compared the power of their proposed complex

valued model (Equation 3) against the power of the Gaussian approximated

magnitude model (Equation 6). They showed that their complex model had

constant power regardless of the SNR, while the power for the normal approximate

magnitude model reduced as SNR decreased. They compared the power curves

using three thresholding procedures, which are unadjusted threshold (Type I error

rate), false discovery rate (FDR), and Bonferroni procedure.

In a subsequent paper, Rowe (2005b) investigated the estimators for the

magnitude and the complex-valued models. This time around, he introduced the

Taylor approximated magnitude model (Equation 7) and compared it to the

Gaussian approximated magnitude model (Equation 6) and the complex valued

model (Equation 3). His results showed that the Gaussian approximated magnitude

model (Equation 6) failed to achieve unbiasedness when SNR is lower than 10, while

the estimators for the Taylor approximated magnitude model (Equation 7) were

unbiased until about SNR of 7.5.

Nevertheless, Adrian et al. (2013) were able to show that the Rowe’s Taylor

magnitude model (Equation 7) was not usable due to the incompatibility between

its false detection rate and its desired significance level. Instead of approximating

the Rician magnitude model, Adrian et al. (2013) used the Expectation

Maximization (EM) and Newton-Raphson (NR) iterations to calculate the MLEs

for the Rician magnitude model (Equation 4) and used the LRT statistic (Equation
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8), as shown in previous section. Then they compared the area under the receiver

operating characteristic curve (AUC) of their Rician magnitude model (Equation 4)

to the Gaussian approximated magnitude model (Equation 6). They showed that

the Rician magnitude model (Equation 4) had better performance, in terms of AUC,

than the Gaussian magnitude model (Equation 6) only when the SNR is about 0.6.

This SNR was too low and not common in fMRI studies. Thus, they argued that

the Gaussian approximation of the noise was appropriate in fMRI studies.

Rowe (2005b) and Adrian et al. (2013) compared the power of Rician

magnitude model to the power of Gaussian magnitude model and used false

discovery rate (FDR) to correct for multiple comparisons. Currently, there is no

published study that compares the power of the Rician magnitude model to the

Gaussian magnitude model using random field theory. This is the motivation for

this dissertation. In this dissertation, a new test statistic using Rician random field

was proposed. Then, using simulation data, the power of the Rician test in

detecting a signal from functional magnetic resonance images was compared to the

power of Gaussian random fields test.

Summary

BOLD fMRI is becoming a popular neuroimaging method. The fMRI data

are known to be huge, complex valued and autocorrelated. These impose a difficulty

in analyzing the data. Nevertheless, statistical methods have been proposed to cater

to these demands. The most common statistical analysis method is using general

linear model at each voxel with application of random field theory. It is assumed

that the magnitude component of the fMRI data is Gaussian distributed, while the
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phase component is discarded. However, the magnitude component is actually

following Rician distribution. As such, Rowe (2005b) suggested a

Taylor-approximated Rician model and showed that it was a better model than the

Gaussian-approximated Rician model. However, a later study by Adrian et al.

(2013) proved that the Taylor-approximated model was only better than the

Gaussian-approximated model under unusually low value of SNRs. Both studies

used the FDR method to handle the multiple comparisons problem. To the author’s

knowledge, a similar approach has not been studied in random field theory setting.

As such, the current study proposed a new test statistic using Rician random field,

and, using simulation, compared its power in detecting a signal from functional

magnetic resonance images to the power of the Gaussian field test.
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CHAPTER III

METHODOLOGY

The objectives of the current study were to propose a new test statistic using

Rician random field, Rmax, in detecting a signal from functional magnetic resonance

images, and to compare its power to the power of the Gaussian random field test,

Zmax, using simulation. Factors that might affect the performance of the Rician test

statistic, Rmax, namely the location, amplitude, and the scale of the signal, were also

investigated.

This chapter outlines the methodology that was used to answer the following

research questions:

Q1 How is Rician random field defined in general, and simulated in
two-dimensional image?

Q2 How can the power of the Rician test statistic, Rmax, be calculated
using Monte Carlo simulation?

Q3 How does the amplitude of the signal affect the power of the Rician
test statistic?

Q4 How does the scale of the signal affect the power of the Rician test
statistic?

Q5 How does the location of the signal affect the power of the Rician test
statistic?
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Q6 How is the power of the Rician test statistic as compared to the
Gaussian test statistic under the conditions specified in previous
research questions?

This chapter starts with the explanation on data generation. Then the

Rician test statistic, Rmax, and the Gaussian test statistic, Zmax, is determined. For

a specified α, the critical value to test the significance of the Rician test statistic is

obtained using simulation, while the critical value to test the significance of the

Gaussian test statistic is calculated using approximation as described by Adler

(1981). Later, the power for each of the test statistics is calculated and compared.

Data Generation

In the current study, the smoothed Rician random field with signal was

generated as

R(t) =
√

[µ(t) + εRe(t)]2 + [µ(t) + εIm(t)]2. (9)

As can be seen in Equation 9, Rician random field at location t is comprised of a

smoothed signal, µ(t), a smoothed Gaussian white noise for the real component,

εRe(t), and a smoothed Gaussian white noise for the imaginary component, εIm(t).

Lu (2015) wrote a detailed explanation on how to generate a smoothed Gaussian

white noise and two smoothed signals in a two-dimensional image. The current

study used the same method but two smoothed Gaussian white noise and one

smoothed signal were generated instead.

The simulation started with generating two two-dimensional independent

Gaussian white noise images, each with mean zero and variance one, using rnorm()

function in R Version 3.4.2.. The two Gaussian noise images represented the real
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and imaginary component of an fMRI data. Each noise image was Fourier

transformed using fft() function. Then, the Gaussian kernel, defined as

f

(
t− t0
σ

)
= exp

(
−‖t− t0‖2

2σ2

)
, (10)

was used to smooth the noise. The noise was also centered. An example of a

two-dimensional Gaussian white noise image is shown in Figure 4.

Figure 4. Two-dimensional 128 × 128 smoothed Gaussian white noise image.

The next part was to generate a smoothed signal with specified amplitude

(ξ), scale (σ), and location (t). Lu (2015, p. 39) defined the mean of a smoothed
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signal for a Gaussian scale space random field as

µ(t, σ) =
2ξσσ0
σ2 + σ2

0

exp

(
−‖t− t0‖2

2(σ2 + σ2
0)

)
. (11)

Simplifying Equation 11 for a fixed scale, where σ0 = σ, the mean of a smoothed

signal for a Gaussian random field, µ(t), was calculated as

2ξσσ0
σ2 + σ2

0

exp

(
−‖t− t0‖2

2(σ2 + σ2
0)

)
=

2ξσ2

2σ2
exp

(
−‖t− t0‖2

2(2σ2)

)
= ξ exp

(
−‖t− t0‖2

4σ2

)
.

(12)

Based on previous studies by Rowe and Logan (2004) and Rowe (2005a), the signals

from the real and imaginary component were assumed to be the same in the current

study. An example of the two-dimensional signal is shown in Figure 5.

Finally, the smoothed signal was added to each of the smoothed noise. Then

following Equation 9, a smoothed Rician random field with signal was generated.

An example of a two-dimensional 128 × 128 smoothed Rician random field with

signal is shown in Figure 6. The maximum of the Rician random field image, as

proposed by Worsley et al. (1992), was used as the test statistic to test

H0 : ξ = 0

H1 : ξ > 0.
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Figure 5. Two-dimensional smoothed signal image with amplitude ξ = 4 and scale
σ = .02 at location t = (0, 0).

Rician Test Statistic, Rmax

Rician test statistic was defined as

Rmax = max
t
R(t).

To determine the significance of Rmax, a critical value needs to be determined from

the empirical distribution of Rmax under the null hypothesis. To do so, a smoothed
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Figure 6. Two-dimensional 128 × 128 smoothed Rician random field with
amplitude ξ = 4 and scale σ = .02 at location t = (0, 0).

Rician random field with no signal was generated as

R0(t) =
√

[εRe(t)]2 + [εIm(t)]2. (13)

The generation of the smoothed Rician random field with no signal was replicated

for 5,000 times to create the empirical distribution of test statistics under null

hypothesis, say Rmax0 . Then, the critical value was determined as the (1− α)th

percentile of the empirical distribution of Rmax0 . The same approached was used by

Lu (2015).
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Gaussian Test Statistic, Zmax

In this study, the Gaussian test statistic was defined as

Zmax = max
t
R(t).

To determine the significance of Zmax, the critical value was obtained by equating

the two-dimensional result for the P -value of the maximum of a Gaussian random

field defined by Worsley et al. (1992, p. 906) to the alpha (α) value,

P (Zmax > z) = R(4 ln 2)(2π)−3/2ze−
1
2
z2 = α, (14)

where R is the number of resels in the search area,

R =
SearchArea

FWHMm ∗ FWHMn

. (15)

The sigma of the kernel at direction m, σm, has a relationship with the FWHM at

direction m (Worsley, 1995), where

FWHMm = σm
√

8 ln 2. (16)

Using Equation 16 into Equation 15, the z value in Equation 14 was determined.

Power of the Random Field Test Statistic

Empirical power was defined as the number of times the null hypothesis is

rejected when the alternative is true divided by the number of replications. Power
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for the Rician test statistic and the Gaussian test statistic was calculated for every

combination of amplitude (ξ), scale (σ), and location (t) of the signal, as shown in

Table 1. Also, the current study considered three values of alpha (α), 0.01, 0.05 and

0.10, for image resolution 128× 128. Hence, the total combinations became 126.

Each combination was replicated for 5,000 times. The 5,000 replications was chosen

based on study by Lu (2015). The power for Rician and Gaussian test statistics was

then compared and presented for each of the combinations.

The amplitude (ξ), scale (σ), and location (t) of the signal were used in

calculating the mean of the smoothed signal, as was seen in Equation 12. Thus,

these factors influenced the size of the mean signal. The amplitude (ξ) and scale (σ)

values were chosen based on the previous study by Lu (2015). In the current study,

the three values of amplitude (ξ) were considered as small amplitude (ξ = 0.5),

medium amplitude (ξ = 2) and large amplitude (ξ = 4). The location (t) of the

signal were chosen arbitrarily such that the center of the image and the points

around the center of the image were included but the points did not touch the

border of the image. These locations were chosen to resemble the locations of the

signal used by Rowe and Logan (2004) and Rowe (2005a).
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Table 1

Schemes of the Parameters

Scheme No. Amplitude (ξ) Signal Location Scale (σ)
1 0.5 (0, 0) 0.02
2 0.04
3 (0.3, 0) 0.02
4 0.04
5 (-0.3, 0) 0.02
6 0.04
7 (0.2, 0.3) 0.02
8 0.04
9 (-0.2, 0.3) 0.02
10 0.04
11 (0.2, -0.3) 0.02
12 0.04
13 (-0.2,-0.3) 0.02
14 0.04
15 2 (0, 0) 0.02
16 0.04
17 (0.3, 0) 0.02
18 0.04
19 (-0.3, 0) 0.02
20 0.04
21 (0.2, 0.3) 0.02
22 0.04
23 (-0.2, 0.3) 0.02
24 0.04
25 (0.2, -0.3) 0.02
26 0.04
27 (-0.2,-0.3) 0.02
28 0.04
29 4 (0, 0) 0.02
30 0.04
31 (0.3, 0) 0.02
32 0.04
33 (-0.3, 0) 0.02
34 0.04
35 (0.2, 0.3) 0.02
36 0.04
37 (-0.2, 0.3) 0.02
38 0.04
39 (0.2, -0.3) 0.02
40 0.04
41 (-0.2,-0.3) 0.02
42 0.04
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CHAPTER IV

RESULTS

This chapter presents the result of the simulation study as proposed in

Chapter III. The main objective of the study was to compare the power of Rician

test statistic, Rmax, to the power of Gaussian test statistic, Zmax. The empirical

distribution of Rmax under each condition in Table 1 of Chapter III, for each of the

three α values, was examined. The power of Rmax under each condition was

calculated and the effects of amplitude, scale and location of the signal on the power

of Rmax were investigated. The power of Rmax was then compared to the power of

Zmax.

The chapter begins with the discussion on empirical distribution of Rmax.

The following section is focused on the power of Rmax, which includes the effects of

amplitude, scale and location of the signal on the power of Rmax. The next section

is focused on the power comparisons between Rmax and Zmax.

The first research question is answered as follows:

Q1 How is Rician random field defined in general, and simulated in
two-dimensional image?

Rician random field is defined, in general, in Equation (1). The simulation

procedure of two-dimensional Rician random field is explained in Chapter III under

section Data Generation. The simulation code is given in Appendix A.
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Empirical Distribution of the Rmax

Under H0 : ξ = 0

Under the null hypothesis, the Rician random field with no signal (Equation 13) was

generated and replicated for 5000 times to create the empirical distribution of test

statistics under the null hypothesis, Rmax0 . This was done for every condition in

Table 1 of Chapter III. The 5000 values of Rmax0 were sorted into an empirical

distribution, where the (1− α)th percentile of the empirical distribution was taken

as the critical value, Rα
max0

, to determine significance of the test statistic Rmax.

Figure 7 shows the empirical distributions of Rmax0 for different amplitudes (ξ) and

signal locations (t) when the scale (σ) is 0.02 at α = 0.01. The empirical

distributions were slightly skewed to the right regardless of amplitudes and

locations. The critical values, R0.01
max0

, were above 5.04 for all locations.
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Figure 7. The empirical distributions of Rmax0 for different ξ and t when σ = 0.02 at α = 0.01.
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The empirical distributions of Rmax0 for different ξ and t when σ = 0.04 at

α = 0.01 are shown in Figure 8. The empirical distributions were slightly skewed to

the right regardless of ξ and t. However the Rmax0 values were slightly lower than

the Rmax0 when σ = 0.02 (Figure 7), which resulted in the slight shift of the

distributions to the left and lower critical values. The critical values, R0.05
max0

, were

above 4.71 for all locations.
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Figure 8. The empirical distributions of Rmax0 for different ξ and t when σ = 0.04 at α = 0.01.
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The empirical distributions of Rmax0 for different ξ and t values when

σ = 0.02 at α = 0.05 are shown in Figure 9, while the empirical distributions of

Rmax0 when σ = 0.04 are shown in Figure 10. All the distributions were skewed to

the right across amplitudes and locations. The Rmax0 when σ = 0.02 were bigger

than the Rmax0 when σ = 0.04. The critical values when σ = 0.02 were larger than

4.71, whereas the critical values when σ = 0.04 were larger than 4.40.
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Figure 9. The empirical distributions of Rmax0 for different ξ and t when σ = 0.02 at α = 0.05.
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Figure 10. The empirical distributions of Rmax0 for different ξ and t when σ = 0.04 at α = 0.05.
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The empirical distributions of Rmax0 for different ξ and t values when

σ = 0.02 at α = 0.10 are shown in Figure 11, while the empirical distributions of

Rmax0 when σ = 0.04 are shown in Figure 12. The distributions were skewed to the

right across amplitudes and locations. The Rmax0 when σ = 0.02 were larger than

the Rmax0 when σ = 0.04. The critical values when σ = 0.02 were larger than 4.54,

while the critical values when σ = 0.04 were larger than 4.20.
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Figure 11. The empirical distributions of Rmax0 for different ξ and t when σ = 0.02 at α = 0.10.
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Figure 12. The empirical distributions of Rmax0 for different ξ and t when σ = 0.04 at α = 0.10.
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Under H1 : ξ > 0

Figure 13 shows the histograms and density plots of Rmax for different ξ and t when

σ = 0.02 at α = 0.01. The empirical distributions of Rmax across the three

amplitudes at t = (0, 0) and t = (0.3, 0) looked very much alike. The empirical

distributions were slightly skewed to the right when the amplitude was small

(ξ = 0.5) and medium (ξ = 2). The empirical distributions became symmetrical and

wider when the amplitude was large (ξ = 4). The critical values to determine

significance of Rmax for these particular conditions ranged between 5.07 and 5.14.
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Figure 13. The empirical distributions of Rmax for different ξ and t when σ = 0.02 at α = 0.01.
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When σ = 0.04 and α = 0.01, the histograms and density plots of Rmax for

the three amplitudes (ξ) at two signal locations, t = (0, 0) and t = (0.3, 0), are

shown in Figure 14. For both locations, the distributions were slightly skewed to the

right when ξ = 0.5 and when ξ = 2, but were symmetrical and wider when ξ = 4.

The empirical distributions of Rmax when σ = 0.04 (Figure 14) were very similar to

the distributions of Rmax when σ = 0.02 (Figure 13). Nevertheless, the critical

values had wider range between 4.75 and 5.15.
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Figure 14. The empirical distributions of Rmax for different ξ and t when σ = 0.04 at α = 0.01.
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At α = 0.05, the histograms and density plots of Rmax for the three

amplitudes (ξ) at two signal locations, t = (0, 0) and t = (0.3, 0), when σ = 0.02 are

shown in Figure 15. For the same parameters but when σ = 0.04, the histograms

and density plots of Rmax are shown in Figure 16. Both figures display similar

patterns in the distribution of Rmax. The distributions were slightly skewed to the

right when ξ = 0.5 and when ξ = 2, but were symmetrical and wider when ξ = 4.

The critical values for Rmax when σ = 0.02 were around 4.70. These were slightly

higher than the critical values for Rmax when σ = 0.04, which were around 4.40.
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Figure 15. The empirical distributions of Rmax for different ξ and t when σ = 0.02 at α = 0.05.
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Figure 16. The empirical distributions of Rmax for different ξ and t when σ = 0.04 at α = 0.05.
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At α = 0.10, Figure 17 shows the histogram and density plots of Rmax for the

three amplitudes (ξ) at two signal locations, t = (0, 0) and t = (0.3, 0), when

σ = 0.02, while Figure 18 shows the histogram and density plots of Rmax for the

same parameters when σ = 0.04. In both figures, the distributions were slightly

skewed to the right when ξ = 0.5 and when ξ = 2, but were symmetrical and wider

when ξ = 4. The critical values for Rmax when σ = 0.02 were either 4.56 or 4.57,

whereas the critical values for Rmax when σ = 0.04 ranged between 4.21 to 4.26.
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Figure 17. The empirical distributions of Rmax for different ξ and t when σ = 0.02 at α = 0.10.
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Figure 18. The empirical distributions of Rmax for different ξ and t when σ = 0.04 at α = 0.10.
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For all three α values chosen in this study, the empirical distributions of

Rmax at similar amplitude showed similar behavior across both locations and scale

of the signal. This suggests that amplitude plays a big role in controlling the

distribution of Rmax. The distribution of Rmax becomes less skewed, symmetrical

and has a bell shaped curve as the amplitude becomes larger.

Empirical Power of the Rician Test
Statistic, Rmax

Q2 How can the power of the Rician test statistic, Rmax, be calculated using
Monte Carlo simulation?

The empirical power of the Rician test statistic was calculated as the number

of times the test statistic, Rmax, is greater than the critical value at a specified

significance level α, Rα
max0

, divided by the number of replications. Tables 2, 3, and 4

show the empirical power of Rmax and Zmax under various σ, ξ, and t at α of 0.01,

0.05 and 0.10, respectively. From these tables, it can be seen that the amplitude,

the scale and the location of the signal have their own effects on the power of Rmax.

In this dissertation, the power of Rmax at α = 0.01 is labeled Rmax99, the power of

Rmax at α = 0.05 is labeled Rmax95, and the power of Rmax at α = 0.10 is labeled

Rmax90. Also, the power of Zmax at α = 0.01 is labeled Zmax99, the power of Zmax at

α = 0.05 is labeled Zmax95, and the power of Zmax at α = 0.10 is labeled Zmax90.
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Table 2

Power Table at α = 0.01

σ ξ t Rmax99 Zmax99
0.02 0.5 (0, 0) 0.0102 0.0934

(0.3, 0) 0.0104 0.0914
(-0.3, 0) 0.0100 0.0896
(0.2, 0.3) 0.0100 0.0980
(-0.2, 0.3) 0.0102 0.0926
(0.2, -0.3) 0.0102 0.0894
(-0.2, -0.3) 0.0104 0.0952

2 (0, 0) 0.0452 0.1818
(0.3, 0) 0.0404 0.1742
(-0.3, 0) 0.0352 0.1788
(0.2, 0.3) 0.0404 0.1786
(-0.2, 0.3) 0.0370 0.1726
(0.2, -0.3) 0.0344 0.1760
(-0.2, -0.3) 0.0402 0.1782

4 (0, 0) 0.8106 0.9200
(0.3, 0) 0.7978 0.9230
(-0.3, 0) 0.7908 0.9130
(0.2, 0.3) 0.7926 0.9210
(-0.2, 0.3) 0.7822 0.9206
(0.2, -0.3) 0.7956 0.9212
(-0.2, -0.3) 0.7970 0.9212

0.04 0.5 (0, 0) 0.0100 0.0950
(0.3, 0) 0.0102 0.0958
(-0.3, 0) 0.0104 0.0974
(0.2, 0.3) 0.0106 0.0992
(-0.2, 0.3) 0.0096 0.0984
(0.2, -0.3) 0.0098 0.1044
(-0.2, -0.3) 0.0100 0.0920

2 (0, 0) 0.0712 0.2630
(0.3, 0) 0.0770 0.2564
(-0.3, 0) 0.0596 0.2434
(0.2, 0.3) 0.0684 0.2482
(-0.2, 0.3) 0.0754 0.2508
(0.2, -0.3) 0.0712 0.2560
(-0.2, -0.3) 0.0744 0.2472

4 (0, 0) 0.8738 0.9618
(0.3, 0) 0.8794 0.9656
(-0.3, 0) 0.8754 0.9624
(0.2, 0.3) 0.8712 0.9578
(-0.2, 0.3) 0.8792 0.9636
(0.2, -0.3) 0.8750 0.9620
(-0.2, -0.3) 0.8818 0.9642
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Table 3

Power Table at α = 0.05

σ ξ t Rmax95 Zmax95
0.02 0.5 (0, 0) 0.0496 0.3672

(0.3, 0) 0.0504 0.3648
(-0.3, 0) 0.0504 0.3698
(0.2, 0.3) 0.0502 0.3536
(-0.2, 0.3) 0.0498 0.3548
(0.2, -0.3) 0.0504 0.3614
(-0.2, -0.3) 0.0506 0.3754

2 (0, 0) 0.1186 0.4796
(0.3, 0) 0.1224 0.4742
(-0.3, 0) 0.1140 0.4902
(0.2, 0.3) 0.1208 0.4816
(-0.2, 0.3) 0.1168 0.4700
(0.2, -0.3) 0.1236 0.4784
(-0.2, -0.3) 0.1144 0.4786

4 (0, 0) 0.8942 0.9764
(0.3, 0) 0.8892 0.9740
(-0.3, 0) 0.8902 0.9748
(0.2, 0.3) 0.8948 0.9736
(-0.2, 0.3) 0.8914 0.9760
(0.2, -0.3) 0.8898 0.9766
(-0.2, -0.3) 0.9014 0.9756

0.04 0.5 (0, 0) 0.0516 0.3670
(0.3, 0) 0.0514 0.3678
(-0.3, 0) 0.0516 0.3564
(0.2, 0.3) 0.0508 0.3678
(-0.2, 0.3) 0.0522 0.3652
(0.2, -0.3) 0.0524 0.3682
(-0.2, -0.3) 0.0520 0.3708

2 (0, 0) 0.1664 0.5544
(0.3, 0) 0.1662 0.5604
(-0.3, 0) 0.1650 0.5448
(0.2, 0.3) 0.1752 0.5718
(-0.2, 0.3) 0.1666 0.5664
(0.2, -0.3) 0.1710 0.5608
(-0.2, -0.3) 0.1838 0.5568

4 (0, 0) 0.9462 0.9894
(0.3, 0) 0.9436 0.9900
(-0.3, 0) 0.9434 0.9924
(0.2, 0.3) 0.9494 0.9924
(-0.2, 0.3) 0.9436 0.9924
(0.2, -0.3) 0.9446 0.9922
(-0.2, -0.3) 0.9384 0.9916
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Table 4

Power Table at α = 0.10

σ ξ t Rmax90 Zmax90
0.02 0.5 (0, 0) 0.0998 0.5918

(0.3, 0) 0.1002 0.5860
(-0.3, 0) 0.1012 0.5908
(0.2, 0.3) 0.1014 0.5904
(-0.2, 0.3) 0.1008 0.5792
(0.2, -0.3) 0.1016 0.5754
(-0.2, -0.3) 0.1004 0.5890

2 (0, 0) 0.1838 0.6794
(0.3, 0) 0.1872 0.6770
(-0.3, 0) 0.1908 0.6804
(0.2, 0.3) 0.1808 0.6924
(-0.2, 0.3) 0.1914 0.6916
(0.2, -0.3) 0.1890 0.6946
(-0.2, -0.3) 0.1846 0.6756

4 (0, 0) 0.9200 0.9866
(0.3, 0) 0.9290 0.9880
(-0.3, 0) 0.9252 0.9926
(0.2, 0.3) 0.9206 0.9892
(-0.2, 0.3) 0.9158 0.9904
(0.2, -0.3) 0.9288 0.9906
(-0.2, -0.3) 0.9312 0.9880

0.04 0.5 (0, 0) 0.1020 0.5800
(0.3, 0) 0.1020 0.5752
(-0.3, 0) 0.1034 0.5782
(0.2, 0.3) 0.1020 0.5734
(-0.2, 0.3) 0.1014 0.5846
(0.2, -0.3) 0.1028 0.5748
(-0.2, -0.3) 0.1022 0.5858

2 (0, 0) 0.2548 0.7260
(0.3, 0) 0.2648 0.7396
(-0.3, 0) 0.2562 0.7358
(0.2, 0.3) 0.2604 0.7424
(-0.2, 0.3) 0.2578 0.7370
(0.2, -0.3) 0.2536 0.7384
(-0.2, -0.3) 0.2624 0.7398

4 (0, 0) 0.9642 0.9970
(0.3, 0) 0.9682 0.9966
(-0.3, 0) 0.9666 0.9978
(0.2, 0.3) 0.9616 0.9978
(-0.2, 0.3) 0.9640 0.9964
(0.2, -0.3) 0.9612 0.9964
(-0.2, -0.3) 0.9624 0.9972
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Figure 19 illustrates Rmax99, Rmax95 and Rmax90 at every location (t)

against amplitude (ξ), for both scale of the signal, σ = 0.02 and σ = 0.04. This

figure is used to show the effect of amplitude, scale and location of the signal on the

power of Rmax.

The Effect of Amplitude on the
Power of Rmax

Q3 How does the amplitude of the signal affect the power of the Rician test
statistic?

The figure shows that the power of Rmax increases as the amplitude is

increased. Rmax99 was around 0.01 when the amplitude was 0.5. Rmax99 increased

to between 0.03 to 0.07 when ξ = 2. When ξ = 4, Rmax99 ranged between 0.78 to

0.88. Rmax95 was around 0.5 when ξ = 0.5. When ξ = 2, Rmax95 ranged between

0.10 and 0.20. Rmax95 ranged between 0.88 to 0.95 when ξ = 4. Rmax90 was around

0.10 when ξ = 0.5. Rmax90 increased to between 0.18 to 0.26 when ξ = 2. Rmax90

increased again to between 0.91 to 0.97 when ξ = 4.
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Figure 19. Empirical power of Rmax at every location vs. amplitude for both scale of the signal (σ).
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The Effect of Scale on the Power of
Rmax

Q4 How does the scale of the signal affect the power of the Rician test statistic?

Figure 19 also shows that the power of Rmax barely increases when the scale

of the signal (σ) is increased from 0.02 to 0.04. When σ = 0.02, Rmax99 ranged from

0.01 to 0.80. When σ = 0.04, Rmax99 ranged from 0.01 to 0.89. At α = 0.05, Rmax95

ranged from 0.05 to 0.89 when σ = 0.02, while Rmax95 ranged from 0.05 to 0.95

when σ = 0.04. Rmax90 ranged from 0.10 to 0.92 when σ = 0.02, whereas Rmax90

ranged from 0.10 to 0.97 when σ = 0.04.

The Effect of Location on the Power
of Rmax

Q5 How does the location of the signal affect the power of the Rician test
statistic?

The power of Rmax at every location (t) against amplitude is plotted in

Figure 19. The Rmax99, Rmax95, and Rmax90 did not differ much from one location

to another when the amplitude (ξ) and scale (σ) were held constant. As an

example, Table 5 shows Rmax99, Rmax95 and Rmax90 at all six locations when

ξ = 0.5, for both σ = 0.02 and σ = 0.04. When σ = 0.02, Rmax99 at t = (0, 0) was

0.0102, whereas at t = (−0.3, 0) Rmax99 was 0.0100. Rmax99 at t = (0.2, 0.3) was

0.0100 and at t = (−0.2,−0.3) Rmax99 was 0.0104. Even when σ = 0.04, Rmax99 did

not change much either. When σ = 0.04, Rmax99 at t = (0, 0) was 0.0102 while

Rmax99 at t = (0.2,−0.3) was 0.0096.
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Table 5

Power Table of Rmax when ξ = 0.5

σ ξ t Rmax99 Rmax95 Rmax90
0.02 0.5 (0, 0) 0.0102 0.0496 0.0998

(0.3, 0) 0.0104 0.0504 0.1002
(-0.3, 0) 0.0100 0.0504 0.1012
(0.2, 0.3) 0.0100 0.0502 0.1014
(-0.2, 0.3) 0.0102 0.0498 0.1008
(0.2, -0.3) 0.0102 0.0504 0.1016
(-0.2, -0.3) 0.0104 0.0506 0.1004

0.04 0.5 (0, 0) 0.0100 0.0516 0.1020
(0.3, 0) 0.0102 0.0514 0.1020
(-0.3, 0) 0.0104 0.0516 0.1034
(0.2, 0.3) 0.0106 0.0508 0.1020
(-0.2, 0.3) 0.0096 0.0522 0.1014
(0.2, -0.3) 0.0098 0.0524 0.1028
(-0.2, -0.3) 0.0100 0.0520 0.1022

Power Comparisons between the Rmax and
the Zmax

Q6 How is the power of the Rician test statistic as compared to the Gaussian
test statistic under the conditions specified in previous research questions?

Tables 2, 3, and 4 which are mentioned earlier in this chapter show the

empirical power of Rmax and Zmax under various ξ, σ, and t at α of 0.01

(Rmax99, Zmax99), 0.05 (Rmax95, Zmax95), and 0.10 (Rmax90, Zmax90), respectively.

From these tables, it can be seen that the empirical power of Rmax is lower than the

empirical power of Zmax at every condition. To illustrate this, the plot of power of

Rmax and power of Zmax for each three alpha values (i.e. Rmax99, Zmax99, Rmax95,

Zmax95, Rmax90, and Zmax90) at t = (0, 0) is shown in Figure 20. Similar plots but

at another three signal locations, namely at t = (0.3, 0) (Figure 21), at

t = (−0.2, 0.3) (Figure 22), and at t = (−0.2,−0.3) (Figure 23), are also presented.
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Figure 20. Empirical power vs. amplitude at t = (0, 0).

Figure 21. Empirical power vs. amplitude at t = (0.3, 0).
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Figure 22. Empirical power vs. amplitude at t = (−0.2, 0.3).

Figure 23. Empirical power vs. amplitude at t = (−0.2,−0.3).
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From these plots, it can be seen that the power of Rmax is always lower than

the power of Zmax. In fact, when the amplitude was small (ξ = 0.5) or medium

(ξ = 2), the power of Rmax was extremely low. The power of Rmax and Zmax were

closer to each other only when the amplitude was high (ξ = 4). When the scale of

the signal (σ) changed from 0.02 to 0.04, the power of both Rmax and Zmax

increased a little. Also, the power of Rmax and Zmax at different signal location (t)

were very close to each other. These suggest that the power of Rmax and the power

of Zmax do not change much from one signal location to the other.

Critical Values of Rmax and Zmax

Figure 24 shows the critical values for Rmax and Zmax at every location (t)

against amplitude (ξ) for both scale of the signal, σ = 0.02 and σ = 0.04. It can be

seen in the plot that the critical values for each of the Rmax did not change much

when ξ is increased, or when t is changed. However, the critical values for Rmax

were higher when σ = 0.02 than when σ = 0.04. The critical value for Zmax only

depends on the scale of the signal (σ) and the significance level (α), as shown in

Equation (14), Equation (15) and Equation (16) of Chapter III. As such, there is

only one critical value for the same σ and α. The exact critical values for Rmax at

α = 0.01, 0.05 and 0.10 are listed in Table 6, whereas the exact critical values for

Zmax at α = 0.01, 0.05 and 0.10 are listed in Table 7.
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Figure 24. Critical values for Rmax and Zmax at every location vs. amplitude for both scale of the signal (σ).
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Table 6

Critical Values for Rmax

α
σ ξ t 0.01 0.05 0.10
0.02 0.5 (0, 0) 5.0665 4.7280 4.5553

(0.3, 0) 5.1379 4.7462 4.5693
(-0.3, 0) 5.0639 4.7150 4.5564
(0.2, 0.3) 5.0498 4.7208 4.5452
(-0.2, 0.3) 5.1166 4.7464 4.5722
(0.2, -0.3) 5.0613 4.7430 4.5731
(-0.2, -0.3) 5.1209 4.7241 4.5461

2 (0, 0) 5.0854 4.7357 4.5680
(0.3, 0) 5.0733 4.7373 4.5704
(-0.3, 0) 5.0963 4.7281 4.5739
(0.2, 0.3) 5.0837 4.7320 4.5597
(-0.2, 0.3) 5.1199 4.7541 4.5640
(0.2, -0.3) 5.0889 4.7463 4.5702
(-0.2, -0.3) 5.0479 4.7209 4.5784

4 (0, 0) 5.0610 4.7304 4.5715
(0.3, 0) 5.1211 4.7168 4.5622
(-0.3, 0) 5.1105 4.7204 4.5658
(0.2, 0.3) 5.1408 4.7506 4.5459
(-0.2, 0.3) 5.1097 4.7223 4.5666
(0.2, -0.3) 5.1076 4.7260 4.5556
(-0.2, -0.3) 5.1527 4.7260 4.5543

0.04 0.5 (0, 0) 4.7942 4.4107 4.2098
(0.3, 0) 4.7488 4.4231 4.2556
(-0.3, 0) 4.8160 4.4161 4.2459
(0.2, 0.3) 4.8367 4.4162 4.2222
(-0.2, 0.3) 4.7602 4.4064 4.2361
(0.2, -0.3) 4.7988 4.4271 4.2299
(-0.2, -0.3) 4.8177 4.4184 4.2566

2 (0, 0) 4.8105 4.4028 4.2341
(0.3, 0) 4.8016 4.4296 4.2358
(-0.3, 0) 4.7575 4.4405 4.2232
(0.2, 0.3) 4.8174 4.4427 4.2379
(-0.2, 0.3) 4.7964 4.4422 4.2695
(0.2, -0.3) 4.7718 4.4269 4.2333
(-0.2, -0.3) 4.8236 4.4316 4.2499

4 (0, 0) 4.8243 4.4266 4.2138
(0.3, 0) 4.8460 4.4323 4.2410
(-0.3, 0) 4.7668 4.4145 4.2500
(0.2, 0.3) 4.8118 4.4369 4.2347
(-0.2, 0.3) 4.8064 4.4458 4.2325
(0.2, -0.3) 4.7537 4.4524 4.2525
(-0.2, -0.3) 4.8640 4.4352 4.2409
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Table 7

Critical Values for Zmax

α
σ ξ t 0.01 0.05 0.10
0.02 0.5 (0, 0)

4.5829 4.1962 4.0168

(0.3, 0)
(-0.3, 0)
(0.2, 0.3)
(-0.2, 0.3)
(0.2, -0.3)
(-0.2, -0.3)

2 (0, 0)
(0.3, 0)
(-0.3, 0)
(0.2, 0.3)
(-0.2, 0.3)
(0.2, -0.3)
(-0.2, -0.3)

4 (0, 0)
(0.3, 0)
(-0.3, 0)
(0.2, 0.3)
(-0.2, 0.3)
(0.2, -0.3)
(-0.2, -0.3)

0.04 0.5 (0, 0)

4.2522 3.8277 3.6274

(0.3, 0)
(-0.3, 0)
(0.2, 0.3)
(-0.2, 0.3)
(0.2, -0.3)
(-0.2, -0.3)

2 (0, 0)
(0.3, 0)
(-0.3, 0)
(0.2, 0.3)
(-0.2, 0.3)
(0.2, -0.3)
(-0.2, -0.3)

4 (0, 0)
(0.3, 0)
(-0.3, 0)
(0.2, 0.3)
(-0.2, 0.3)
(0.2, -0.3)
(-0.2, -0.3)
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CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

Conclusions

In this dissertation, Rician random field was defined in general, and

simulated in a two-dimensional image. The empirical power of the Rician test

statistic, Rmax, were also calculated using Monte Carlo simulation study of 5000

replicates under different values of amplitude (ξ), scale (σ), and location (t) of the

signal, at three different α values. The effect of amplitude, scale, and location of the

signal on the power of Rmax were investigated. The empirical power and the critical

values of Rmax were also compared to the empirical power and the critical values of

Gaussian test statistic, Zmax, respectively.

The simulation study showed that the power of Zmax outperformed the power

of Rmax at every condition studied. This suggests that the use of Zmax is sufficient

and should be preferred over Rmax. This result is unexpected given that the data

were Rician distributed. Moreover, this finding is contrary to the results on the LRT

statistics by Rowe (2005b) and Adrian et al. (2013), where the power of Rician LRT

outperformed the power of Gaussian LRT when SNR was small.

However Adrian et al. (2013) also found that for the power of Rician LRT to

outperform the power of Gaussian LRT, the SNR needed to be smaller than the
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ones usually found in fMRI data. Hence, they preferred the Gaussian LRT for its

simplicity rather than the Rician LRT. This seems to be true for Rmax too, as shown

in the current study. Therefore, the use of Zmax should be preferred than Rmax,

given similar conditions as in the current study.

As shown in the result chapter, amplitude has the biggest effect on the power

of Rmax, followed by the scale of the signal. High power is observed when both the

amplitude and the scale of the signal are high. Unfortunately, change in the location

of the signal, while holding the amplitude and scale constant, does not have much

effect on the power of Rmax. This could be because there was only one signal

generated at one location in each replication. Thus, the power of the test statistic to

detect the signal is the same regardless of the location.

The empirical distributions of Rmax show that Rmax is slightly right skewed

distributed. The empirical distribution of Rmax becomes more symmetrical as the

amplitude increases. This is similar to the findings on Rician distribution of noisy

MRI data by Gudbjartsson and Patz (1995), where it was right skewed and as the

SNR is increased the distribution approximated the Gaussian distribution. This

convinces the author that the simulated data were following Rician distribution.

The critical value at a specific α, Rα
max, to determine significance of Rmax was

obtained from the 5000 replicates of the Monte Carlo simulation study at each

combination of amplitude, scale, and location of the signal. As such, the critical

value changes accordingly. Nevertheless, the critical values at the same α and σ

were very close to each other. Since the critical value for Zmax only depends on α

and σ, it might be the same case for Rmax.
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In conclusion, the current study has defined a new random field named

Rician random field. From there, a new test statistic named Rician test statistic,

Rmax, was defined and introduced as the test statistic to detect signal in fMRI

images. The empirical distribution of the Rmax under several conditions were

examined. This study showed that Rmax is not as powerful in detecting a signal in

an fMRI image as compared to the Gaussian test statistic, Zmax. As such, it is

suggested to use Zmax in detecting a signal in an fMRI image. Nevertheless, an

insight on the effect of amplitude, scale and location of the signal on Rmax was

investigated and the power of Rmax was compared to the power of Zmax. Also, the

critical value to determine significance of Rmax was examined and compared to the

critical value for Zmax. The current study could be regarded as the first step into a

more in depth study of Rmax as a test statistic to detect signal in fMRI images.

Future Research and Limitations

In this dissertation, the Rician random field was defined, in general, and

simulated in a two-dimensional image. The Rician test statistic, Rmax, was also

defined and introduced. This was the first attempt to use Rmax as a test statistic to

detect signal in an image. Therefore, this study only focused on the power of Rmax

under several levels of amplitude, scale and location of the signal. This might be the

reason for the extremely low power of the Rmax as compared to the Gaussian test

statistic, Zmax. It is of future interest to investigate other levels of amplitude, scale

and location of the signal that might be able to show the true power of Rmax.

Furthermore, studies on the critical value and the probability of Type I error are

also of future interest, especially since the power of Rmax has been shown to be low.
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The current study was mainly focused on simulation rather than the

theoretical aspects of the Rician random field and the Rician test statistic. This is

due to the fact that there are limited literatures on Rician random field and Rician

test statistic. As such, a simulation study was considered for the current

dissertation. Future studies that focus on the theoretical parts are highly suggested.

For example, a study on whether the Rmax is a likelihood ratio test statistic will be

much appreciated to further explore and investigate the properties of the Rician test

statistic.

Moreover, the Rician test statistic in this dissertation was used only in a

fixed kernel width scenario. It is of interest to know if the Rician test statistic can

be used in scale space setting, or even rotation space, as was done for the Gaussian

test statistic (Shafie, Sigal, Siegmund, & Worsley, 2003; Siegmund & Worsley,

1995). In this dissertation, the study on the power of Rmax was conducted with the

assumption that only one signal occurred in the image. Further works in cases

where multiple signals occurred in the image can be conducted, such as the work

done by Lu (2015) for Gaussian test statistic.
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APPENDIX A

R CODE FOR SIMULATION
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#######################################################

#install.packages(’fields ’)

#install.packages(’rootSolve ’)

library(fields)

library(rootSolve)

library(gsubfn)

set.seed (98765)

data.generate <- function(nsim ,N,sigma ,t1,t2,amp){

data <- matrix(0,nrow=nsim ,ncol =2)

for (i in 1:nsim){

#### Gaussian noises; real and imaginary part

noise1 <- matrix(rnorm(N*N),N,N)

fnoise1 <- fft(noise1)

noise2 <- matrix(rnorm(N*N),N,N)

fnoise2 <- fft(noise2)

#### Generate Gaussian smoothing kernel: filter

x <- ((row(noise1 )-1)/(N-1)) - 0.5

y <- ((col(noise1 )-1)/(N-1)) - 0.5

Q <- exp(-0.5*(x^2+y^2)/sigma ^2)

filter <- Q/sqrt(sum(Q^2))

ffilter <- Mod(fft(filter ))

#### Smoothing Gaussian noise

sz1 <- Re(fft(fnoise1*ffilter ,inverse=T))/N/N

sz2 <- Re(fft(fnoise2*ffilter ,inverse=T))/N/N

#### Smoothed signal

mu <- amp*exp(-1/4*((x-t1)^2+(y-t2)^2)/(sigma ^2))

#### Rician+signal

rice <- sqrt((sz1+mu )^2+( sz2+mu)^2)

Rmax <- max(rice)

#### Rician CV under null hypothesis: no signal

rice0 <- sqrt(sz1^2+ sz2^2)

Rmax0 <- max(rice0)

data[i,1] <- Rmax

data[i,2] <- Rmax0

}

return(data)

}
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nsim <- 5000

N <- 128

alpha <- rep(c(0.01 ,0.05 ,0.10) , each =42)

amp <- rep(c(0.5,2,4), each =14)

sigma <- rep(c(0.02 ,0.04) , each=7,times =3)

location <- matrix(c(0,0,0.3,0,-0.3,0,0.2,0.3,-0.2,0.3,

0.2,-0.3,-0.2,-0.3), nrow=7,ncol=2,byrow=T)

colnames(location) <- c("t1", "t2")

condition = cbind(data.frame(alpha ,amp ,sigma),location)

maxR <- array(0,c(nrow(condition),nsim ,2))

strt <- Sys.time()

output <- matrix(0,nrow=nrow(condition),ncol =9)

colnames(output) <- c("alpha","amplitude","scale","t1",

"t2","CVRician","PowerR","CVGaussian","PowerZ")

for (j in 1:nrow(condition )){

alpha <- condition[j,1]

amp <- condition[j,2]

sigma <- condition[j,3]

t1 <- condition[j,4]

t2 <- condition[j,5]

data <- data.generate(nsim ,N,sigma ,t1 ,t2,amp)

colnames(data) <- c("Rmax", "Rmax0")

maxR[j,,] <- data

#### CV at alpha: Simulation

CVr <- quantile(sort(data[,2]), probs=1-alpha)

#### Gaussian CV under null hypothesis: no signal

FWHM <- sigma*sqrt(8*log (2))

resel <- 1/(FWHM*FWHM) #Search area=1

ttW2 <- seq(from=-6,to=6,by =0.001)

ffW2 <- function(t)

resel*4*log(2)*(2*pi)^(-3/2)*t*exp(-0.5*t^2)- alpha

CVzF <- max(uniroot.all(ffW2 , c(0 ,10)))

#### Power

PowerR <- sum(data[,1]>CVr)/nsim

PowerZF <- sum(data[,1]>CVzF)/nsim

output[j,1] <- alpha

output[j,2] <- amp

output[j,3] <- sigma
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output[j,4] <- t1

output[j,5] <- t2

output[j,6] <- CVr

output[j,7] <- PowerR

output[j,8] <- CVzF

output[j,9] <- PowerZF

}

print(Sys.time()-strt)
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