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ABSTRACT 

 

Najar, Nadje Amal. Geographic variation in rock wren (Salpinctes obsoletus) song 

complexity. Published Doctor of Education dissertation, University of Northern 

Colorado, 2018. 

 

 Birds sing to advertise for mates and repel rivals, but there is enormous variety in 

how they do this. One of the best-studied and most intriguing questions in the field is 

how song varies in complexity from one bird to the next, at all taxonomic levels. Several 

studies have found associations between migratory behavior or latitudinal gradients and 

song complexity, but it remains unclear how universal this pattern is or what factors may 

be driving it. This small body of literature suffers from several problems, perhaps the 

most glaring of which is the lack of systematic, population-level studies. The main goals 

of this dissertation were to determine what evidence there is for the hypothesis that song 

complexity is influenced by latitude and/or migratory behavior and whether such a 

pattern can be detected in a single species, the rock wren (Salpinctes obsoletus). I 

recorded rock wren song at 11 sites in a latitudinal transect with both migratory and 

sedentary populations, and used morphological measurements and genome-level SNP 

scans to test my classification scheme of migratory versus sedentary populations. Song 

repertoire size was larger in sedentary rock wrens but did not vary with latitude, while 
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migratory wrens had smaller mean repertoire sizes which increased with increasing 

latitude. Morphological measurements differed between migratory and sedentary 

populations, suggesting life history differences between these two groups. Population 

genetic structure was only apparent using outlier loci, but the resulting structure was not 

concordant with migratory behavior or site membership. Taken together, these results 

suggest migration does not pose a barrier to gene flow between migratory and sedentary 

populations, and that migratory and sedentary behavior is associated with differences in 

song complexity and morphology, although in a way inconsistent with any previously 

published hypotheses. 

  

  



 
 

v 
 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

 It’s been a long time coming, but we’re finally here. While it’s my name on the 

front page of this document, and I’ve certainly spent blood, sweat, and tears (both literal 

and metaphorical) assembling it, this dissertation exists as the result of the efforts of a lot 

of people whose contributions I am happy to acknowledge. 

  I couldn’t have done this project without the aid of several people who helped me 

with the nuts and bolts of data collection and analysis. I’d like to thank the people who 

assisted me in the field: Charmaine Holloway, Carissa King, and Sami Piper. Dr. Mit 

McGlaughlin taught me all the basics of genetics lab work, and Jenna McCullough gave 

me a crash course in target sequence capture. Sami Naibauer helped me get started 

learning Linux. Dr. Garth Spellman was absolutely essential to the genetics portion of 

this project, and served as a sort of ghost member of my committee. He persuaded us to 

go with targeted sequence capture, paid for the reagents, and was my lifeline in the 

analysis of the genetics data, and I can’t thank him enough for volunteering to jump on 

board the rock wren project.  

 Most of the people who helped me through this project did so just by being there 

when I needed them. To talk to, bounce ideas off of, philosophize with, rant at, or just to 

be shoulders to lean on, I think I’ve had interesting, existential, sanity-rescuing 

conversations with most of the people in the department. In particular, I’d like to thank 

Tom McCabe, Stephanie Pitt, Karina Sanchez, and Cara Smith, all of whom probably 

know as much about my project as my committee does. My discussions with them were 



 
 

vi 
 

just as therapeutic as they were intellectual, and I’m grateful for their patience and 

interest. I’d also like to thank the other members of the Benedict lab, my committee, my 

longtime (and long suffering) partner, Jordan Rose, and my bestest birdy friends Ilse, 

Baudelaire, and the dozen other birds that keep me company. 

 Finally, I’d like to thank my research advisor, Dr. Lauryn Benedict. She was the 

best mentor I could have had. She patiently helped me navigate the perils of graduate 

school, professional societies, acquiring funding, and my dissertation project. Dr. 

Benedict was always there to (very tactfully) poke, prod, and encourage me to go on. I’m 

a better student, writer, scientist, and human being as a result of her time spent mentoring 

me.  

 Thank you all so, so much, 

 Nadje  



 
 

vii 
 

 

 

 

TABLE OF CONTENTS 

 

CHAPTER 

 

 I INTRODUCTION TO ANIMAL SIGNALING, SEXUAL 

SELECTION, BIRD SONG, AND BIRD MIGRATION…………           1 

 Introduction 

 Animal Communication 

 Signals and Sexual Selection 

 Bird Song as a Signal 

 Migration 

 Study Species – Rock Wrens 

 II THE RELATIONSHIP BETWEEN LATITUDE, MIGRATION, 

  AND THE EVOLUTION OF BIRD SONG COMPLEXITY ……         29 

   Abstract 

   Introduction 

   Latitude, Migration, and Song Complexity 

   Methods 

   Results 

   Discussion 

   Conclusions 

  

 III GEOGRAPHIC PATTERN OF ROCK WREN SONG 

  REPERTOIRE SIZE ………………………………………………         53 

   Abstract 

   Introduction 

   Methods 

   Results 

   Discussion 

 

 IV MIGRATORY MORPHOLOGY AND POPULATION 

  GENETICS OF ROCK WRENS ………………………………….         78 

   Abstract 

   Introduction 

   Methods 

   Results 

   Discussion 

 

 



 
 

viii 
 

 V SYNTHESIS AND CONCLUSIONS ……………………………..      105 

   Song Complexity 

   Pattern of Repertoire Size 

   Migratory Syndrome…? 

   Summary 

 

REFERENCES …………………………………………………………………….       115 

 

APPENDIX 

A. INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE  

APPROVAL ……………………………………………………………     144 

B. TERRITORY MAPS …………………………………………………...     146 

C. TARGETED LOCI ……………………………………………………..     154 

D. DISCRIMINANT ANALYSIS OF PRINCIPAL COMPONENTS 

POPULATION ASSIGNMENTS ………………………………………    160 

 

  



 
 

ix 
 

 

 

 

 

LIST OF TABLES 

 

CHAPTER II 

 2.1 Summary of studies …………………………………………..........         33   

 2.2 Summary of hypotheses …………………………………………....         37 

CHAPTER III 

 3.1 Study sites ……….……………………………………………........         58 

 3.2 Wren captures ……………………………………………………...         63 

 3.3 Recording effort ……………………………………………………         64 

 3.4 Modeling repertoire size …………………………………………...         69 

 3.5 Territory sizes ……………………………………………………...         69 

CHAPTER IV 

 4.1 Capture demographics ……………………………………………..         84 

 4.2 Morphological measurements ……………………………………...         92 

 4.3 Morphological predictions …………………………………………         92 

CHAPTER V 

 5.1 Support for hypotheses……………………………………………..       108 

 5.2 Morphological summary …………………………………………...       111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

x 
 

 

 

 

 

 

 

 

 

 

 

LIST OF FIGURES 

 

CHAPTER I 

1.1 Song sparrow spectrogram ……………………………………........         14 

 1.2 Songbird brain ……………………………………………………...         16 

 1.3 Wren distribution map ………………………………………….......         24 

 1.4 Rock wren songs ……………………………………………………         25 

CHAPTER III 

 3.1 Study sites ……………………………………………………..........         58 

 3.2 Accumulation curves ……………………………………………….         66 

 3.3 Wilcoxon signed rank test ………………………………………….         67 

 3.4 Song scatterplot …………………………………………………….         68 

 3.5 Territory map ……………………………………………………….         70 

CHAPTER IV 

 4.1 Migratory strategies ………………………………………………...         83 

 4.2 Target sequence capture ……………………………………………         88 

 4.3 Outlier loci ………………………………………………………….         93 

 4.4 Population assignment likelihoods …………………………………         94 

 4.5 FASTSTRUCTURE plots ………………………………………….         95 

 4.6 dapc assignments …………………………………………………...         97 

 



1 
 

 
 

 

 

 

 

CHAPTER I 

 

INTRODUCTION TO ANIMAL SIGNALING,  

SEXUAL SELECTION, BIRD SONG,  

AND BIRD MIGRATION 

 

Introduction 

Bird song has long been used to study how various selection pressures affect 

signal evolution, with particular emphasis on the role of sexual selection in generating 

signal complexity. Complexity in bird song, while widely studied (Catchpole and Slater 

2008), is poorly-defined, but arguably the two best-accepted indicators of more complex 

songs are having larger syllable or song repertoires (Searcy and Nowicki 2005).  

However, “complexity” in bird song has a myriad of associations. Examples of variables 

associated with increased song complexity include higher habitat complexity (i.e. more 

vegetation structure, Hill et al. 2017), female fertility (Zhang et al. 2015), early male 

developmental experience (Schmidt et al. 2014), male breeding experience (Motes-

Rodrigo et al. 2016), female investment in egg components (Krištofík et al. 2014), and 

ecological generalism (Gomes et al. 2017).  

Many studies of bird song complexity literature explore the effects complexity 

has on features related directly to reproduction (Soma and Garamszegi 2011), such as age 

and experience (Nemeth et al. 2012) and aggression levels (Poot et al. 2012). However, a 

small corner of the literature has slowly been exploring the possible effects migratory 

behavior and high latitudes may have on complexity (Read and Weary 1992, Weir and 
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Wheatcroft 2011). The effect of migratory status on song complexity in birds has been 

the subject of some debate in the literature and is currently unresolved. Studies have 

alternatively found that migratory status is correlated with increased song complexity 

(Mountjoy and Leger 2001, Kroodsma et al. 2001, Collins et al. 2009), decreased song 

complexity (Ewert and Kroodsma 1994, Tietze et al. 2015), or not correlated with song 

complexity at all (Kroodsma and Verner 1987, Xing et al. 2017, Medina and Francis 

2012), possibly reflecting taxon-specific patterns.  Additionally, song complexity has 

been found to both increase with latitude (Cardoso et al. 2012, Irwin 2000, Read and 

Weary 1992, Weir and Wheatcroft 2011), and decrease with latitude (de Oliveira 

Gordinho et al. 2015, Ödeen and Björklund 2003, Pieplow and Francis 2011). Why song 

complexity changes with latitude is a fascinating question that requires closer 

examination. Most of these studies cite differing sexual selection pressures in migrants 

versus non-migrants and high-latitude vs low-latitude breeders, and make general 

predictions about what patterns should result. They posit there is some relationship 

between migration, latitude, sexual selection, and song complexity (although see Byers 

2015), but few studies have attempted to test multiple hypotheses (Mountjoy and Leger 

2001, Irwin 2000, Singh and Price 2015). It is important to try and resolve this issue to 

better understand how signals evolve in response to ecology and sexual selection. 

My project’s goal was to measure the differences in song repertoire size between 

migratory and non-migratory populations of a single passerine species across a latitudinal 

transect. I used recordings, morphology, genetics, and GIS to relate repertoire size to 

ecologically- and sexually-selected traits. Overall, I was interested in the posited 

relationship between migratory status, latitude, and repertoire size. My specific objectives 
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were to 1) thoroughly investigate the literature to assess the nature of the evidence for 

and against the hypothesis that song complexity is associated with latitude and migratory 

status (Chapter II), 2) determine the song repertoires of migratory and sedentary 

populations (Chapter III), 3) determine population structure and gene flow among 

migratory and sedentary birds (Chapter IV), and to 4) use morphological measurements 

as proxy measures of the strength of selection for a migratory phenotype (Chapter IV), to 

assess whether song repertoire size in a single species is associated with migratory status, 

latitude, morphology, and/or genetic population membership. These topics are broad and 

not often discussed together. In this chapter I will provide background information on 

subjects related to signals and breeding ecology since this project is focused on how these 

forces interact.   

Animal Communication 

 Animals are constantly making decisions (McFarland 1977). They choose where 

and how much time to spend foraging, hiding, and sleeping, whether to flee at any given 

instance of the threat of a predator, if it’s worth it to engage in territorial disputes, which 

individuals to pursue and/or mate with, how many young to rear and which should be 

prioritized or abandoned. The cost of making bad decisions can be very high, and 

evolution should favor the optimization of decision-making. Nearly all decisions animals 

make are, to some extent, mediated by both con- and heterospecifics. Animals 

communicate to influence the decision-making of or to gain some inference about the 

state of other individuals to make their own decisions (Endler 1993, Bradbury and 

Vehrencamp 1998).  
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Animals use a multitude of signals to communicate. From the rhythmic croaking 

of a frog and the drumming of a woodpecker, to the colorful flash of a lizard’s dewlap 

and the deposition of a trail of pheromones by ants, these disparate traits are all linked by 

their similar functions as signals. The diversity and particulars of their modes of 

communication are the product of many selective pressures. Communication occurs when 

one individual (the sender or signaler) generates a cue or signal that is perceived by and 

influences the behavior of another individual (the receiver) (Endler 1993). This is an idea 

similar (but not identical) to modern conceptions of information transfer (Shannon and 

Weaver 1949, Owren et al. 2010). Information transfer occurs when data originating in 

one place (e.g. the photo you took of the peacock at the zoo) are faithfully recreated in 

another place (e.g. my computer screen). Barring digital applications however, this is not 

how ‘information’ goes from one individual to another in the real world. What happens is 

more akin to you describing the peacock while I form a mental picture of what it might 

have looked like. This would, by no definition, be a ‘faithful’ reproduction of the bird’s 

features, and could result in me incorrectly identifying a difference species as a peacock. 

This distinction is not a semantic one. Given our reliance on modern computing it is easy 

to conflate the attempt to portray an idea with ‘information transfer,’ and it is important 

to remember that, for animals (including humans!) communication is not the latter. 

Despite this, discussing ‘information transfer’ is a useful metaphor and shorthand for 

what transpires during animal communication. It is important to remember that the 

transfer is imperfect and subject to outside forces and individual interpretation. So, when 

a frog croaks, the sound does not carry some information or meaning inherent to it. 

Rather, any sense of meaning comes from the interpretation of the signal by a receiver’s 
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nervous system (Ruxton and Schaefer 2011). This could be a rival frog, who interprets 

the croak as signaling his neighbor’s claim to a spot on the pond, it could be a female 

frog who finds the croak appealing or another female who finds it unappealing, and it 

could even be a predatory bat who interprets the croak to mean a meal is nearby.  

 Thus, it is apparent that signals are highly constrained by a myriad of problems, 

the least of which is the inability of the signaler to transfer information directly to some 

intended target (Endler 1993). Animals have evolved to produce signals detectable by the 

sense organs of other animals – visual, olfactory, auditory, etc. Many animals possess 

multiple sensory organs, so the particular modality of the signal is very important and 

depends on several factors. Is the signaler in water or on land? Are potential recipients 

nearby or far away and how often does the signaler encounter them? What are the 

possible obstructions to the signal in the environment? How important is it to avoid 

detection by eavesdroppers? Each potential signaling modality has both pros and cons. 

For example, a visual signal (e.g. a hand wave, a courtship dance, the color of a wattle) is 

transmitted essentially instantly, but it requires ambient light and line of sight to be 

perceived. Depending on the type of visual signal, it may or may not be able to be ‘turned 

off’ – a bright orange cock-of-the-rock cannot disguise his bright plumage but, a lizard 

can stop doing push-ups. Auditory signals, on the other hand, do not require light or line 

of sight to be detected, and they only persist for as long as they are actively produced. 

This means the signal’s effective radius is larger, both for intended and unintended 

recipients. Auditory signals may have to compete with other sources of noise, resulting in 

distortion, or travel through obstructions, resulting in degradation or attenuation, and by 

their very nature serve to help you locate the signaler. Chemical signals are emitted from 
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the signaler, hanging about the emitter or being deposited directly onto a surface. A 

chemical signal can persist in the environment, allowing the animal to communicate 

without physically being present, and the variety of chemicals allows for highly specific 

signals. However, it may take some time for the signal to be received, and chemical 

signals may be difficult to track (both a pro and con depending on the recipient) (Endler 

1993). 

 Signals are generated by the signaler for the purpose of communication. This is in 

contrast to cues, which are not deliberately generated as signals but are rather inherent to 

the animal’s physiology or are byproducts of some other activity. For example, a pig 

digging up roots in the forest makes noise as it walks about and moves leaves and dirt. 

The sound being made can be heard by others and may be used to locate or avoid the pig, 

thereby influencing the behavior of another individual as if it were a signal. The pig, 

however, is not kicking up leaves specifically to attract attention but rather to forage, and 

the rustling is an unavoidable byproduct of this behavior, making it a cue. Cues benefit 

the receivers only, whereas signals benefit both signalers and receivers (Bradbury and 

Vehrencamp 1998).  

 Signals must be produced such that the signaler optimizes the energy spent on the 

signal versus its ability to transmit through a medium and be detected by intended 

recipients. Signals can be costly to produce, either in the production of the signal itself, 

the time spent signaling that could be used to do other things, or the risk of a predatory 

eavesdropper detecting it (Zahavi 1975). However, a signal needs to travel far or persist 

long enough and with enough intensity as to be detectable for communication to be 

effective. There are many sources of interference in a receiver’s environment. Sound is 
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attenuated and degraded by objects in the environment and masked by other sources of 

noise, visual displays require the receiver’s direct attention, electrical and tactile signals 

require very close contact, and chemicals can fade over time or be masked with other 

chemicals. Thus, selection against energy expenditure conflicts with selection for signal 

detectability. The cost of a signal versus the potential benefit of signaling will influence 

the frequency and intensity with which it is given.  

Signals and Sexual Selection 

 Many animal signals do not appear to be optimal, despite strong selection for 

efficient generation, propagation, and reception of signals. Gazelles will frequently jump 

very high in the presence of predators, termed stotting or pronking (FitzGibbon and 

Fanshawe 1988), male stalk-eyed flies have massive eye spans placing their eyes in a 

precarious position (Wilkinson and Reillo 1994), and túngara frogs call for mates with a 

chuck call that is especially audible to their main predator, bats (Ryan 1985). Perhaps the 

classic example of an incredibly exaggerated and seemingly paradoxical signal is the 

peacock’s train, which consists of ~200 elongated back covert feathers, each ending in a 

round eyespot. Peacocks slowly molt their trains from September to February, although 

adult males are never completely without some sort of train on their backs. The train can 

be as long as 1.5m, up to 60% of the body length of the peacock (Ragupathy and James 

1998). Males display by facing another individual and shaking out and erecting the train, 

using their tails to stridulate the feathers, causing the train to vibrate (Dakin et al. 2016). 

Clearly the train is used to communicate, but it would seem to come at a huge cost to 

personal survival. Males spend around six months growing their elaborate train, 

estimated to cost them ~10% of their basal metabolic rate (Lasiewski and Dawson 1967) 
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and ~3% of total metabolic rate (Nagy et al. 1999) each day. It would appear that such a 

large trailing appendage would make them more conspicuous to predators and make 

flight more difficult. Peahens display their back coverts in much the same manner as 

males, vibrating the feathers, yet they are drab brown and do not bear the exaggerated 

trains of the males (Dakin et al. 2016). Charles Darwin, in a letter to Asa Gray 

responding to Gray’s review of On the Origin of Species (Darwin 1859), wrote “The 

sight of a feather in a peacock’s tail, whenever I gaze at it, makes me sick!” (Darwin 

Correspondence Project 2018), acknowledging that his newly published theory of natural 

selection alone could not adequately explain this trait.  

 It was, in part, this problematic bird that led to the publication of The Descent of 

Man, and Selection in Relation to Sex (Darwin 1871). From his theory of natural 

selection, in which the best adapted individuals leave the most offspring, Darwin 

postulated a subsidiary force: sexual selection. He wrote that “… the advantages which 

favoured males derive from conquering other males in battle or courtship, and thus 

leaving a numerous progeny, are in the long run greater than those derived from rather 

more perfect adaptation to their conditions of life.” (Darwin 1871, p. 227). If females 

prefer trains during courtship, then no matter how much better-adapted the train-less 

males are for surviving in their environment, they will leave fewer offspring. Thus, the 

reproductive benefits imposed by female choice will start to overcome the survival 

benefits imposed by natural selection. ‘Fitness’ was coined by Herbert Spencer (1864 p. 

444) as a way to describe this intersection of the forces of natural and sexual selection. In 

this view, the “favoured race,” as Darwin put it, is not the one that can survive the longest 

in an absolute sense but is the one that leaves the most descendants. Today, fitness is 
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usually thought of as a probability or propensity of a group rather than an absolute 

property of an individual (Maynard-Smith 1989). Thus, selection will, in general, favor 

higher fitness over superior survival.   

Darwin’s theory of sexual selection went a long way towards explaining the 

existence of seemingly paradoxical signals and traits, but there were many details which 

remained unclear and not satisfactorily explained. The most glaring problem lay in the 

existence of the preference itself. Darwin suggested that it is obvious that females should 

prefer ornamentation to plainness out of some inherent appreciation for beauty, which is 

none more apparent than in the birds (Darwin 1871, p. 359). The anthropomorphic, ‘just 

so’ nature of this rationale does not really offer an explanation for what maintains a 

preference for signals that render the signaler more vulnerable to predation. The concept 

of mate choice was not widely accepted by biologists, in no small part because of an 

active attempt by Alfred Russell Wallace to denounce it, until after R.A. Fisher 

championed the idea in his seminal work, The Genetical Theory of Natural Selection 

(Gayon 2010). Fisher proposed a new mechanism, termed ‘runaway’ selection, to explain 

features like the peacock’s train. The preference for a trait, and the trait itself, are linked, 

such that successive generations will both have and prefer the trait more and more; this 

process only stops when natural selection imposes a wall against which the trait can no 

longer be exaggerated (Fisher 1930). Fisher’s runaway model suggests a mechanism, 

namely that random mutations in sexual organisms provide the variation in physical 

traits, but, like Darwin, maintains that the ‘aesthetic faculty’ in females may confer 

nothing more than the arbitrary advantage of being more attractive to their sons (Fisher 

1930, p. 145).  
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Today, the notion that females prefer beautiful males ‘just because’ has been 

overtaken by the theory that these traits are actually functional signals. Zahavi (1975) 

proposed a new idea, termed the ‘handicap principle,’ that traits which seem to lower the 

survival of the animal are actually a sort of quality test. Those individuals that can 

survive with the greatest handicap must be somehow better than their peers. Crucially, 

the handicap must honestly convey their quality – they must not be able to bluff the 

signal or it will not be useful to the selecting sex. In this view, the peacock’s train 

evolved not because peahens love long iridescent feathers, but because the train signals 

something about the peacock as a potential mate: he invested all this energy into growing 

and displaying a ridiculous appendage and survived in spite of it. The train cannot be 

bluffed; when a male erects and displays his feathers he is signaling to the female that 

what she sees is what she gets. Since peafowl are a lekking species with precocial chicks 

(i.e. they hatch well-developed and able to feed themselves) the male does not provide 

any parental care. What she ‘gets’ is the father’s genes for her offspring. Grafen’s (1990) 

model of how costly signals can exist as an evolutionarily stable strategy went a long way 

to convincing the scientific community of the validity of the handicap principle. 

Not everyone agreed with Zahavi’s (1975) key assumption that all signals (not 

just courtship displays) must be costly to produce to maintain their honesty. Work by 

Számadó (Számadó 1999, Számadó 2003, Számadó 2011), particularly with reference to 

threat displays, demonstrated that, at least theoretically, the potential cost of being caught 

at cheating is sufficient to maintain honesty at no cost to the signaler, and if signalers 

spend less energy to produce the same signal as another individual, they are not cheating, 

they are efficient. A good example might be elk sizing each other up for combat by 
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lowering their heads and pointing their racks at each other. The outcome of the contest 

should be the same regardless of whether the signaling took place – the same elk will 

lose, possibly badly. In this case, the signal would have been more valuable to the loser 

since that elk would not have had to incur the cost of losing the fight. If the losing elk had 

been able to bluff he would stand to gain quite a lot, but the risk of his bluff being called 

is enough to prevent bluffing in the first place. Not to say that bluffing does not exist; but 

most cases of animal bluffing seem to be when the animal is very weak (e.g. molting 

mantis shrimp, Steger and Caldwell 1983) so the bluff is more of a defensive strategy 

than an offensive one. 

What about courtship displays? Males are not displaying to each other, they 

display to females. If a male is ‘cheating,’ the honest male and the female lose out on 

potential fitness gains, but there is no potential cost to the cheater. Indeed, he has 

everything to gain since he would not otherwise get to mate. This sets up a major conflict 

between male signalers and female choosers: males always want to seem better than they 

are and females always want the (truly) best individual. It behooves the females 

particularly to select males who accurately convey their quality in a way that cannot be 

bluffed, and high quality males benefit from the extra matings they would get, making 

cheating an unstable strategy. This situation would seem to support Zahavi’s (1975), and 

not Számadó’s (1999), position on the necessity of handicaps to explain elaborate 

ornaments like the peacock’s train.  

Handicaps are not the end-all, however. As Grafen (1990) was defending 

Zahavi’s (1975) hypothesis, Endler and McLellan (1988) were developing a new one. 

While the adaptive value of signaling in mate choice is well-accepted, it is not obvious 
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why those signals should be so ostentatious. If the peacock’s train is so long because he 

needs to demonstrate how much energy he put into it and how skilled he is at vibrating it, 

why does it need to be iridescent and brightly colored? Could he not accomplish the same 

signaling feat with a drab gray or brown train, like a peacock pheasant does? Is his bright, 

shimmery train a signal to predators, or to the females he is displaying to? Endler and 

McLellan (1988) and Endler (1992) proposed it is the latter, with the bright, shiny, 

shimmery colors tuned to the sensory systems of the females the male is trying to attract. 

He dazzles her and holds her attention by presenting her nervous system with a set of 

colors and patterns and movements it is particularly biased at perceiving, and making 

diverting attention difficult. The evolution of displays along these lines is termed 

‘sensory drive’ (Endler and McLellan 1988). Sensory drive is, perhaps ironically, not that 

different from Darwin’s (1871) original suggestion that ‘aesthetic appeal’ is what leads 

females to choose ornamented males, and on the surface the net effect is just that. Unlike 

Darwin, the sensory drive hypothesis makes testable predictions about the mechanisms 

generating and maintaining signal ornamentation. Examples of sensory drive mediating 

mate choice and ornamentation include Lake Malawi cichlids (Seehausen et al. 2008), 

Anolis lizards (Ng et al. 2012), and great bowerbirds (Kelley and Endler 2012). 

It is becoming clearer that no one mechanism can be held entirely responsible for 

the incredible diversity of animal signals (Bradbury and Vehrencamp 1998). Runaway 

selection, while difficult to definitively document, is theoretically possible (Bailey and 

Moore 2012). Conspicuous sexual signals may have evolved to be attuned to the 

receiver’s sensory systems, but predators are under selection to detect these conspicuous 

signals, so it is difficult to discount a handicapping effect (Zahavi 1975, Számadó 1999). 
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Many species do not acquire their conspicuous signals until they are sexually mature, 

highlighting the apparent disadvantage, in terms of pure survivorship, these signals can 

confer.  

Bird Song as a Signal 

 While the peacock’s train is perhaps the most famous of elaborate signals, it is not 

the best-studied. That honor almost certainly goes to the song of songbirds (Searcy and 

Nowicki 2005). The extremely elaborate and varied acoustic displays of some birds have 

been described as the ‘acoustic equivalent of the peacock’s tail’ (Catchpole 1996). Song 

is used in communicating species identity and individual identity and is regarded today as 

a trait that functions mainly for attracting mates and repelling conspecific invaders. As 

such, the major hypotheses attempting to explain why species may have complex songs 

and/or large repertoires generally invoke sexual selection (Bradbury and Vehrencamp 

1998, Searcy and Nowicki 2005, Catchpole and Slater 2008). An individual’s song 

repertoire is the essential unit I studied for my project, below I define exactly how I used 

songs and song repertoires.  

In general, birds are considered to produce two classes of vocalizations, songs and 

calls (Catchpole and Slater 2008). Calls are relatively short and simple, while songs are 

longer and more elaborate (Catchpole and Slater 2008). Songs are made up of notes and 

syllables (Catchpole and Slater 2008). A note is a continuous trace on a spectrogram, and 

a syllable is a grouping of notes. A song type is a stereotyped grouping of notes and 

syllables, such that each time it is produced it can be recognized as the same song type 

(Borror 1961). For example, a typical song sparrow (Melospiza melodia) sings one song 

made up of many notes arranged into syllables (Fig. 1.1). Some notes commonly appear 
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grouped together, either as a trill like notes c and i, or not trilled, like notes d and e. This 

particular arrangement of notes is a song type. Other song types from the same bird may 

or may not include these notes or syllables. (Searcy and Nowicki 2005).  

 

 

 

Figure 1.1. Typical song of a song sparrow (Melospiza melodia). Each letter represents a 

note type. Two syllables, c and i, are made up of repeated notes. Spectrogram from 

Wilson and Vehrencamp (2001).  

 

A song repertoire is all of the unique song types an individual can produce. Song 

repertoires are commonly distinguished in the literature from syllable repertoires (all of 

the unique syllable types an individual can produce), and most authors choose to measure 

one or the other, but not typically both (Catchpole and Slater 2008). Many species of 

birds sing songs that seem to be virtually infinitely variable but are constructed from a 

limited repertoire of syllable types. Yet others sing songs according to a basic pattern, but 

with no two songs ever exactly alike (Catchpole and Slater 2008). It is unclear just how 

song and syllable repertoires relate to each other in terms of apparent complexity (and 

this division may or may not be biologically relevant) but is a way for us as observers to 

categorize song complexity. My focal species (rock wren) sings discrete song types and 

thus has a song repertoire, so song repertoires will be the focus of my project. 
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The size of a bird’s song repertoire is considered by some to represent the quality 

of that individual, with larger repertoires indicating birds with higher fitness (Catchpole 

1982, Peters et al. 2000). Since song is controlled by special centers in the brain, 

repertoire size may be the downstream result of an individual’s brain development in 

infancy (Buchanan et al. 2004) as well as an indicator of current health (age/experience – 

Howard 1974, parasite resistance – Spencer et al. 2005). Song repertoire size has been 

shown to be positively correlated with brain nucleus HVC (formerly an abbreviation for 

Higher Vocal Center, now used as a proper noun) and the Robust nucleus of the 

Acropallium (RA) volume (two nuclei involved in song learning and song production) 

(Pfaff et al. 2007) (Fig. 1.2). Nutritionally stressed birds have smaller HVCs than non-

stressed birds (Schmidt et al. 2013). Thus, there appears to be a cost associated with 

investing in song control nuclei. Territory size and nest provisioning rate are both 

positively correlated with repertoire size in male sedge warblers (Buchanan and 

Catchpole 1997), so females may be directly benefiting by pairing with such males. 

Additionally, isolation experiments on sedge warblers have shown that HVC size and 

song structure are under genetic control (Leitner et al. 2002).  Hasselquist et al. (1996) 

found that female Acrocephalus warblers preferentially seek out extra-pair copulations 

with males that have larger repertoires, so females may use repertoire size to assess some 

indirect benefit they could gain for their offspring.  
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Figure 1.2. Regions and nuclei of a songbird’s brain important in song learning and 

production. All regions are present in both hemispheres. Nucleus HVC (abbreviation 

used as a proper noun) directs both the learning and production pathways. Lesioning the 

HVC renders the bird mute. Nucleus Uva (uvaeformis) projects bilaterally across the 

hemispheres and has a role in interhemispheric coordination. HVC projects directly to 

RA (robust nucleus of the arcopallium) and indirectly via Area X (similar to mammal 

basal ganglia), DLM (dorsolateral anterior thalamic nucleus in the thalamus) and LMAN 

(lateral magnocellular nucleus of the nidopallium). RA projects to nXIIts 

(tracheosyringeal half of the hypoglossal nucleus), which projects to muscles in the 

syrinx controlling vocalizations. From Nottebohm (2005). 

 

As such, song repertoire size and sexual selection are (theoretically) inextricably 

linked. One review of over 40 field and lab studies looking for evidence of female choice 

for males with larger repertoires found mixed results: lab studies almost always find 

evidence of female preference for larger repertoires while field studies almost never find 

such evidence (Byers and Kroodsma 2009). However, Soma and Garamszegi (2011) note 

several problems with Byers and Kroodsma (2009), including the omission of many 

relevant field studies and their method of simple paper-counting to determine whether 

there is an effect. Soma and Garamszegi (2011) take a model-based meta-analytic 
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approach and conclude that while there is a positive association with song complexity 

and reproductive success, the effect is weak and is likely species-specific and modulated 

by many factors. There are many ways to interpret this sort of finding (too many 

variables in field studies, poor choice of proxies for female preference, preference is an 

artefact of lab studies, there are taxon-specific preferences, song is more important in 

male-male interactions, etc.), but most importantly it illustrates that we still do not 

completely understand what song repertoires or complex songs are useful for, or how 

they get large and elaborate. However, the prevailing idea is that while song features can 

be selected for as non-sexual signals (like species identity or audibility in a particular 

habitat), songs as a whole (and thus song repertoires) are frequently under sexual 

selection as they primarily function in conspecific communication (Catchpole and Slater 

2008).  This supposition is supported by the facts that songs are known to be produced 

more 1) in the presence of rivals, 2) in the presence of potential mates, 3) at the nest, 4) 

while feeding chicks, 5) before mating, and 6) during other breeding season-associated 

behaviors (Searcy and Nowicki 2005, Catchpole and Slater 2008). 

Alternatively, it is possible that repertoire size is the result of cultural evolution 

via drift and is not necessarily under direct selection. Most oscine passerines learn their 

songs as chicks from adult tutors, resulting in the formation of local dialects that may 

span only a few dozens to a few hundred kilometers before reaching another dialect. 

Without direct selection for or against certain song types or repertoire sizes, local song 

characteristics can fluctuate in time. A species with populations that lack large 

geographic divisions may have dialects that blend into one another, while geographic 
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barriers can produce distinct ‘song lineages’ as characteristics drift over time (Searcy and 

Nowicki 2005). 

Migration 

 The seasonal disappearance and reappearance of migratory birds has fascinated 

people for millennia. Perhaps the earliest written account of bird migration was by 

Aristotle, who said in his History of Animals, Vol. VIII, “Of birds, the following are 

migratory – the crane, the swan, the pelican, and the lesser goose.” The rest he thought 

“go into hiding” to escape the winter, such as the swallow, which hides in holes “…quite 

denuded of its feathers…” For most of human history we have not been nearly as mobile 

as birds, so what happens to birds when they disappear for part of the year remained a 

mystery until relatively recently. People in Europe had known that large birds, like 

falcons and herons, could make long journeys for centuries. Indeed, the pigeon has been 

kept for millennia, at least as far back as the ancient Romans, for the purpose of long-

distance communication. An early record of a metal band identifying an individual bird 

was from 1595 – a peregrine falcon belonging to Henry IV took off from England and 

showed up the next day in Malta, Spain, 1350 miles away (Wood 1945). Thomas 

Bewick’s A History of British Birds (1797) supported the idea that birds, in general, 

migrate using accounts of people seeing the birds in faraway lands and debunked the 

long-standing myth that swallows hibernate in wetlands. In 1803, John James Audubon 

made the first attempt to deliberately study migratory birds by tying strings around the 

legs of eastern phoebe chicks and recovering two of them in his neighborhood the 

following year (Craves 2010). 
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 Modern study of bird migration has begun to reveal how even some of the 

smallest birds make incredible, continent-crossing journeys twice a year. The advent of 

the banding or ringing station has been the main source of information on the destinations 

and longevity of migratory birds. Paul Bartsch pioneered the use of numbered bands 

when he banded black-crowned night herons from 1902-03 in Washington, DC (Tautin 

2005). Bartsch’s work inspired many other groups to start banding birds with serial 

numbers and instructions (e.g. “return to …”), and led to the founding of the American 

Bird Banding Association which oversaw banding activities until the federal government 

took over in 1920 (Tautin 2005). There, the modern banding system was developed by 

Frederick Lincoln and purpose-built banding stations began to pop up all over the country 

(Wood 1945).  

 Banding recoveries rapidly revealed the elusive wintering locations of many small 

temperate-breeding migratory birds. A press release published in 1944 documented the 

discovery of the wintering grounds of chimney swifts in Peru, the last North American 

bird for whom no wintering grounds had been known (Lincoln 1944). By this time, it was 

well-acknowledged that even tiny birds fly hundreds to thousands of miles each year. 

However, the reality of these massive flights in small birds raised many more questions: 

how is it possible to fuel such a long journey? How do they know where to go? What 

causes this behavior in the first place? Answering these questions has been the focus of 

modern migration studies.  

 While we commonly describe the mass migrations of birds as if it were a singular 

behavior where species are either migrants or non-migrants, this is not really accurate 

(Zink 2002). Migratory behavior is the cumulative effect of several adaptations, each of 
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which seems necessary for successful migrations. First and foremost, migratory birds 

need to want to migrate. This desire to migrate, termed migratory restlessness, or 

zugunruhe, has been observed in caged individuals when it is the appropriate time of year 

to migrate (Kramer 1949). During zugunruhe, caged birds show a sudden and pronounced 

desire to get out of their cage that coincides with the time they would have spent 

migrating. The ‘appropriate’ time is usually determined by photoperiod or ambient 

temperature (Farner 1950). This is also associated with the onset of hyperphagy and the 

deposition of fat reserves in many birds (Wolfson 1945). Once they begin their migration, 

they must know how to get to their destination. Methods for navigating include using the 

path of the sun (Kramer 1957, Alerstam et al. 2001), stars and constellations (Emlen 

1967, Wiltschko et al. 1987), polarized light (Moore 1986, Horváth et al. 2009), 

landmarks like mountain ranges and rivers (Bingman et al. 1982, Williams et al. 2001), 

and the earth’s magnetic field (Keeton 1971, Walcott et al. 1979, Beason and Nichols 

1984, Wu and Dickman 2012), and many birds use multiple compasses (Mehlhorn and 

Rehkämper 2009). Many species alter the sizes of their organs, with species that stop 

frequently investing more in their digestive tracts, facilitating rapid acquisition of new fat 

reserves (Lindström et al. 1999, Guglielmo and Williams 2003), and species with few or 

no stopovers exhibiting atrophy of digestive organs and hypertrophy of muscle mass (Jehl 

1997, Piersma and Gill 1998). It is this combination of restlessness, hyperphagy, internal 

map, navigational compass and metabolic changes, that results in the migratory 

phenotype. 

 This description of migratory behavior is typical for obligate migrants, birds for 

whom migration seems ‘programmed’ and is highly consistent and predictable in its 
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timing and path (e.g. Wilson’s warblers (Clegg et al. 2003), Swainson’s thrushes (Ruegg 

and Smith 2002), and black swifts (Beason et al. 2012)). However, migration is not all-

or-nothing. There are many species where some populations always migrate but others 

never do, such as the yellow-rumped warbler (Setophaga coronata) (Hunt and Flaspohler 

1998). In other species individuals do not always migrate or migrate to the same place 

and are better described as facultative migrants.  For example, American robins (Turdus 

migratorius) breed throughout North America and only retreat from Canada and Alaska 

in the winter and leave central Mexico to breed in the summer, with robins present in 

most of the United States year-round. Some robins overwinter at their breeding grounds, 

while others travel up to 1200km to reach wintering grounds. This behavior is not fixed – 

an individual who overwinters in place one year may migrate the next year (Vanderhoff 

et al. 2016). The most extreme manifestation of facultative behavior is irruption, where 

poor local conditions force masses of birds to move to find food (Koenig and Knops 

2001). Commonly irrupting species in the United States include the pine siskin (Spinus 

pinus), common redpoll (Carduelis flammea), and short-eared owl (Asio flammeus) 

(Newton 2012), and whether and which species will irrupt in a given year can usually be 

predicted based on projections of winter weather and food conditions (Koenig and Knops 

2001). Another term for species where not every individual migrates is ‘partial’ 

migration, which was originally defined in two ways: 1) migration is facultative in all 

individuals (like the robin) or 2) migration is obligate in some individuals but not others 

(like the yellow-rumped warbler) (Berthold 2001), although the term has since been most 

commonly used to refer only to the first definition (Pulido 2011). 
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Migratory behavior is thought to be endogenously controlled and highly heritable 

(Berthold 1996). In a seminal experiment on blackcaps (Sylvia atricapilla), Berthold and 

Querner (1982) crossed migratory with sedentary blackcaps and were able to selectively 

breed for entirely migratory or entirely sedentary behavior in successive generations. 

More recently Pulido and Berthold (2010) were able to generate entirely sedentary 

individuals from completely migratory ancestors, indicating that no cross-breeding is 

necessary and that migration and residency is highly evolutionarily labile. These results 

suggest that there is not one gene or allele that governs migratory behavior but rather a 

suite of genes, the particular combination of which determines whether the threshold for 

migratoriness is exceeded (Pulido 2011). Thus, facultative or partial migrants are those 

individuals who sit in an intermediate sweet spot between ‘always migrate’ and ‘never 

migrate.’ 

  It is a mischaracterization of migrant birds to suggest the adaptations that enable 

them to embark on their journeys must have evolved in birds for that purpose (Zink 

2002). Zugunruhe has been reported in at least one sedentary species (Saxicola torquata, 

Helm and Gwinner 2006) and hyperphagy is common in sedentary birds preparing for the 

winter (Farner 1950). Photoperiod as a cue regulating annual rhythms probably evolved 

very early on and is vitally important to virtually all life (Hut and Beersma 2011). 

Internal compasses are not the sole purview of the birds: alligators orient using solar, 

stellar, and lunar cues (Murphy 1981), sea turtles use solar, stellar, and magnetic cues 

(Lohmann et al. 2004), monarch butterflies use solar and magnetic cues (Guerra et al. 

2014), and newts can use the polarization of the earth’s magnetic field (Wiltschko and 

Wiltschko 1995) to orient and navigate. Migration does not require massive physiological 
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changes for all birds; for example, species that can forage on the wing (swallows, swifts, 

nightjars) or species that don’t exert much effort in flying (hawks, vultures, falcons) do 

not need to reorganize their organs or spend huge amounts of extra energy to get to their 

destination (Newton 2010)  

That being said, birds hold the record for the longest migrations, both in absolute 

distance and number of body lengths travelled (Alerstam et al. 2003), and long-distance 

migration in birds is one of the most extreme physiological challenges undertaken by any 

animals (Weber 2008). Migration poses a huge risk, not only because it is energetically 

taxing, but because the mass movement of birds attracts many predators (Ydenberg et al. 

2004). Annual mortality in migrating birds has been measured to be up to 15x higher than 

during breeding or overwintering, with 85% of all mortality occurring on migration 

(Sillett and Holmes 2002). Any given individual is not likely to return the next year 

(particularly the case for small passerines), showcasing the strong pressure to maximize 

reproduction in the first breeding season since they are not likely to get another chance 

(Sillett and Holmes 2002, Alerstaam 2011, Klaassen et al. 2014). 

Study Species - Rock Wrens 

The rock wren (Salpinctes obsoletus) is a small, enigmatic passerine native to 

western North America, ranging from British Columbia and Saskatchewan to Nicaragua 

and Costa Rica (Fig 1.3). (Lowther et al. 2000). Males and females look almost exactly 

alike, and although females are slightly smaller than males, there is wide overlap in their 

morphological measurements (Fig. 1) (Pyle 1997). Males are only reliably distinguished 

from females in the field by their song (females are not known to sing). These birds are 

aptly named and are generally found on rocky, talus slopes and cliffs, although they are 
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not obligate rock-dwellers and may be found anywhere where crevices and cavities exist 

(such as a sand bank) (Lowther et al. 2000). Rock wrens are fairly common in suitable 

habitat.  

 
Figure 1.3. Rock wren distribution map. Map from Lowther et al. (2000), citing 

Christmas Bird Count data from 1992 and focusing on rock wren presence in California 

(National Audubon Society 2010). Adult rock wren photographed by me at Fort Davis 

National Historic Site, Jefferson County, Texas. 

 

Despite this, rock wrens are one of the least-studied North American birds and are 

generally poorly known (Lowther et al. 2000). The best-studied aspect of rock wren life 

history is their nesting habits. Rock wrens build cup nests in rock cavities and pave the 

opening and front entrance with small flat stones. The function of this stone ‘patio’ has 

been the subject of several studies (Bailey 1904, Ray 1904, Peabody 1907, Merola 1995, 

Oppenheimer 1995, Warning and Benedict 2014, Warning and Benedict 2016). 

Otherwise there is very little known about this species’ biology, and much of our 

understanding is anecdotal. Before 2017 only one study explicitly examined rock wren 
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song features (Kroodsma 1975, Benedict and Warning 2017), leaving open what could 

potentially be an extremely fruitful avenue of research of behavioral ecology and animal  

communication.  

Figure 1.4. Six example spectrograms (visualization of sound) of typical song recorded 

from one rock wren at Devils Tower National Monument. The x-axis is time 

(minutes:seconds), the y-axis is frequency (kHz). The amplitude is visually represented 

by how dark the trace is – the darker the trace, the louder the sound. Rock wrens sing 

songs consisting of one syllable repeated several times. Each of the six spectrograms is 

one song, syllables are indicated by red boxes, and the notes making up each syllable is 

indicated by blue boxes.  

 

Male rock wrens can be commonly found singing from exposed perches on the 

tops of cliffs, rocks, and trees. Most singing is done just before dawn and in the dawn 

twilight, although song bouts are given sporadically throughout the day (pers. obs.). Rock 

wren song is highly stereotyped, and individuals perform faithful renditions of the same 

song types. Individual song is generally constructed of a single syllable repeated 2-6 

times, or a short trill, making each song type fairly simple to identify (Fig. 1.4), and 

resulting in the added bonus that rock wren song and syllable repertoires are almost 

equivalent. Individual males can have repertoires from 50 to 120 different song types 

(Benedict and Warning 2017). Rock wrens sing discrete song types with ‘intermediate 
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variety’ a rare (and possibly unique) pattern of singing where a few song types are 

repeated several times before a new set of song types are switched to, as opposed to 

singing with ‘immediate variety’ where song types are switched after one repetition, or 

eventual variety, where one song type is repeated several times before switching to a 

second song type (Kroodsma 1975). This means rock wrens do not present their 

repertoire in a predictable way, therefore, making statistical inference of their repertoire 

size from a small song sample difficult.  

Rock wrens are insectivores, using their long bills to probe for arthropods in 

cracks and crevices. They are not limited to foraging in rocks – rock wrens will climb up 

tree trunks, walk through short grass and into burrows, and flycatch to forage for insects 

(Lowther et al. 2000). Rock wrens mostly eat terrestrial arthropods like grasshoppers, 

crickets, spiders, ants, and beetles (Lowther et al. 2000). The annual cycle of the rock 

wren is similar to many North American passerines. The breeding season begins in April 

and continues until August, with high latitude birds starting and ending their breeding 

season later than low latitude birds (Lowther et al. 2000). Males advertise for mates and 

compete with neighboring males. Once paired, males and females choose a nest site 

together, almost always a cavity in a rock, and build a cup nest. Females may carry small 

stones to the cavity entrance, piling them up into a ‘patio’ or ‘pavement’ occluding the 

entrance and cascading down the hillside (Warning and Benedict 2014). Rocks are 

sometimes included in the nest cup as well (pers. obs.). Females brood the eggs 

(Oppenheimer 1995), and both males and females assist in feeding chicks until they 

fledge, after which the female will often build a new nest elsewhere and lay a new clutch 

of eggs, while the male continues to feed the fledglings (Merola 1995). Pairs will often 



27 
 

 
 

produce two, sometimes three, clutches in a given breeding season (Merola 1995). 

Migrants depart in September and October for their wintering grounds, where they 

remain until March (Lowther et al. 2000).  

Rock wrens are highly territorial during the breeding season, defending areas 

approximately 200m across (mean territory area 0.53±0.21 ha - 50% fixed kernel, 

4.1±1.2 ha - 95% fixed kernel, Warning and Benedict 2015). Both males (Merola 1995) 

and females (pers. obs.) will vigorously defend territories from intrusion by members of 

the same sex (i.e. females will not chase away males but will chase and fight other 

females). Rock wrens in western Kansas do not appear to do defend territories during the 

winter and instead range more widely (Lowther et al. 2000). As insectivores, their 

wintering range and roaming behavior is likely driven by the distribution and relatively 

low abundance of insects during the winter. It should be noted that almost nothing is 

known of rock wrens in the winter, and Kansas is on the edge of their range and has very 

low numbers of rock wrens.  

 Unlike most wrens, which do not migrate, northern populations of rock wrens are 

migratory (Fig. 1, Lowther et al. 2000). Rock wrens do not migrate south of central Utah 

and southern Colorado. Whether rock wrens south of this divide are also migratory is 

unknown – it may be that these populations are sedentary and northern birds ‘leapfrog’ 

over them and reside further south, or it may be that these populations migrate south and 

wintering birds are actually northern migrants.  

 As a monomorphic partial migrant with large, discrete song repertoires, rock 

wrens are an excellent model with which to study the possible effects of latitude and 

migration on song complexity. The literature on this subject is populated by fairly diverse 
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taxa and methodologies, despite being relatively sparse. Few studies examine the effects 

of both latitude and migration in birds, and no study has assessed this in a single species 

(Chapter II). Using this species as a launching point, I will start to address the question of 

whether and how latitude and migration influence the evolution of complex songs. 
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Abstract 

 

For the last several decades it has been proposed that birds show latitudinal 

variation in song complexity. How universal this variation may be and what factors 

generate it, however, is still largely unknown. Furthermore, while migration is 

confounded with latitude, migratory behavior alone may also be associated with variation 

in song complexity. In this paper we review the literature to assess current ideas on how 

latitude and migratory behavior may drive large-scale geographic patterns of song 

complexity. At least seven distinct hypotheses have been proposed in 29 studies of the 

topic. Four of these hypotheses posit that sexual selection pressures co-vary with latitude 

and/or migration, resulting in concordant changes in song. Other hypotheses suggest that 

mechanisms other than sexual selection, such as large-scale changes in environmental 

sound transmission properties, may be at play. Sixteen studies found support for 

increased song complexity with increased latitude and/or migration, while 13 did not. 

Relatively few studies exist on this topic, and methodological differences between them 

and variable definitions of “complexity” make it difficult to determine whether results are 

comparable and concordant. At a minimum, it is possible to conclude there is no strong 

evidence that song complexity increases with latitude and/or migration in all birds. Future 

work should focus on examining multiple hypotheses at once to further advance our 

understanding of how latitude, migration, and song complexity may or may not be 

related. 
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Introduction 

Bird song has served as an excellent model for understanding how acoustic signal 

complexity evolves. There is copious research on the subject of what promotes and 

constrains song complexity in birds (Andersson 1994, Irwin 2000, Nowicki and Searcy 

2004, Catchpole and Slater 2008, Freeberg et al. 2012). Across these studies and others, 

song “complexity” is a variably defined concept which typically incorporates 

combinations of measurements of song repertoire size, acoustic frequency, timing, and 

structure (Nowicki and Searcy 2004). 

Several authors have suggested that large-scale patterns of bird song variation 

evolve in high latitude temperate regions because the conditions there are conducive to 

increases in song complexity. The idea that high latitude breeding may relate to song 

complexity was first advanced when Catchpole (1982) noted that migratory Acrocephalus 

warblers have larger repertoires than sedentary congeners. He suggested that migrants 

have less time to pair and breed, increasing pre-breeding sexual selection pressures which 

promote vocal complexity. A subsequent comparative analysis by Read and Weary 

(1992) found the connection between song complexity and migratory behavior may be 

widespread in passerines and may represent common selective pressures acting on 

migrants. Of course, the propensity to migrate is confounded with breeding latitude and 

all its associated environmental variables, potentially complicating interpretation of Read 

and Weary’s (1992) findings. Irwin (2000) found that song complexity increased with 

latitude in Greenish Warblers Phylloscopus trochiloides, a species with no sedentary 

populations, which suggested migration alone is not sufficient to explain an apparent 

propensity for signals to get more elaborate towards the poles. Since then, many studies 
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have attempted to re-evaluate how latitude and/or migration may influence the evolution 

of song complexity.  However, few studies explicitly test or consider more than a single 

hypothesis, and the field as a whole lacks cohesion.  

Geographic variation in bird song has been well studied with regard to song 

learning, dialect formation and functions, variability in song form and frequencies, and 

patterns of song sharing among individuals (Podos and Warren 2007). Far fewer studies 

have compared song complexity among multiple latitudinally widespread conspecific 

populations or different species (Table 2.1). Nevertheless, this is an important topic if we 

wish to understand the processes that drive species-, family-, and higher-level variation. 

The few geographically large-scale studies of this topic illustrate some interesting 

patterns and propose a multitude of ideas to explain them (Table 2.2). However, aside 

from an oft-cited emphasis on sexual selection, those patterns and ideas have not been 

discussed within a single theoretical framework. These studies cover a wide range of 

passerine diversity and nearly every author has their own definition of “complexity”, a 

problem in itself that makes collective discussion and analysis difficult at best for any 

studies of bird song. This paper will review the available evidence to address an open 

question: does song complexity vary consistently across avian groups in relation to 

latitude and migratory behavior, and if it does, what processes drive that variation?  
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Table 2.1. Summary of studies examining variation in bird song complexity in relation to latitude and migratory behavior. The 

‘measure of complexity’ is reported as the authors themselves report it in their respective studies.  Unless otherwise noted, song 

measurements were made by the authors. Abbreviations used: M = migration comparison, L = latitudinal comparison, M & L = both 

migration and latitude considered, W = within species, B = between species, ind. = individuals, pop. = populations, subsp. = 

subspecies, sp. = species. 
 

Study 
Design 

Study System Breeding Range 
More Complexity: 

Migratory or Sedentary 

More Complexity: 

Higher or Lower 

Latitude 

Measure of Complexity Reference 

M & L: 

W 

Common Yellowthroat 

Geothlypis trichas – 9 subsp. 
North temperate Sedentary1 No pattern # notes/phrase, # elements/note Bolus (2014) 

M & L: 
W 

Marsh Wren Cistothorus 
palustris – 18 ind. 

North temperate No pattern1 No pattern song repertoire size 
Kroodsma and Verner 

(1987) 

M & L: 

W 

Marsh Grassbird Locustella 

pryeri – 7 pop. 
North temperate No pattern Lower2 

# element types, element rate, song 

length, 3 frequency traits 
Xing et al. (2017) 

M & L: 
B 

“Fringillidae”3 – 65 pop. Worldwide Sedentary Lower 
song/syllable repertoire size (from Read 

& Weary 1992) 
Handley and Nelson 

(2005) 

M & L: 

B 
Troglodytidae – 3 sp. 

North temperate, 

neotropical 
Migratory Higher song repertoire size Kroodsma et al. (2001)4 

M & L: 

B 
Passeriformes – 44 sp. North temperate No pattern No pattern 

PCA: 3 element diversity traits and 1 

frequency trait 

Medina and Francis 

(2012) 

M & L: 

B 
Vireo – 18-28 sp. 

North temperate, 

neotropical 
Migratory Higher repertoire size (from the literature) 

Mountjoy and Leger 

(2001) 

M & L: 
B 

Phylloscopus – 80 sp. Worldwide No pattern Lower5 3 traits derived from element, 
frequency, and tempo measures 

Tietze et al. (2015) 

M & L: 

B 
Cettidae – 30 sp. Worldwide No pattern Higher 

# notes, strophe duration, longest note 

duration, 4 frequency traits 
Wei et al. (2017) 

M: W 
Blackcap Sylvia atricapilla – 4 

pop. 
North temperate Migratory Not tested 

song length, # note types/# notes in 
song 

Collins et al. (2009)6 

M: W 
Eastern Towhee Pipilo 

erythrophthalmus – 2 pop. 
North temperate Sedentary Not tested song repertoire size 

Ewert and Kroodsma 

(1994) 

M: W 
Red-winged Blackbird Agelaius 

phoeniceus – 5 pop. 
North temperate Migratory Not tested song repertoire size (from the literature) Morton (1986)7 

M: W 

White-crowned Sparrow 

Zonotrichia leuchophrys – 3 
subsp. 

North temperate Migratory Not tested repertoire size, # complex syllables Nelson et al. (1996) 

M: W 
Song Sparrow Melospiza 

melodia – 5 pop. 
North temperate Sedentary Not tested 

repertoire size, minimal units of 

production 
Peters et al. (2000) 

M: B Mimidae – 29 sp. 
North temperate, 

neotropical 
Migratory Not tested 

song duration, syllable duration, 
syllable types/song 

Botero et al. (2009) 
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Table 2.1, continued. 

Study Design Study System Breeding Range 

More Complexity: 

Migratory or 

Sedentary 

More Complexity: 

Higher or Lower 

Latitude 

Measure of Complexity Reference 

M: B Geothlypis – 9 sp. 
North temperate, 

neotropical 
No pattern Not tested 

song duration, # notes/song, # 

elements/note, # note types/song 
Byers (2015) 

M: B Acrocephalus – 6 sp. North temperate Migratory Not tested (full) syllable repertoire Catchpole (1982) 

M: B Passeriformes – 165 sp. Worldwide* Migratory Not tested 
Song/syllable repertoire size, versatility 

(from the literature) 

Read and Weary 

(1992) 

L: W 

Red-faced Cisticola, 

Cisticola erythrops - 

rangewide 

Paleotropical Not applicable8 No pattern # unique syllables 
Benedict and Bowie 

(2009) 

L: W 

Common Reed Bunting, 

Emberiza schoeniclus – 3 

subsp. 

North temperate Not tested Lower # unique syllables/song 
de Oliveria Gordinho 

et al. (2015) 

L: W 
Greenish Warbler, 

Phylloscopus trochiloides – 

5 subsp. 

North temperate Not applicable Higher 
PCA: song length, # units/song, # unit 

types/song, bandwidth, # units/unit song 

length 

Irwin (2000) 

L: W 
House Wrens Troglodytes 

aedon - rangewide 
North temperate, 

neotropical 
Not tested Higher 

5 note traits, 8 tempo traits, 3 frequency 
traits 

Kaluthota et al. (2016) 

L: W 
Yellow Wagtail, Motacilla 

flava – 5 subsp. 
North temperate Not tested Lower # elements/syllable 

Ödeen and Björklund 

(2003) 

L: W 
3 subspecies of Yellow-

eyed Junco, Junco 

phaeonotus – 3 subsp. 

North temperate, 

paleotropical 
Not applicable Lower # unique syllables, #unique notes/trill 

Pieplow and Francis 

(2011) 

L: B 
Serinus and Carduelis – 44 

sp. 

North temperate, 
neotropical, 

paleotropical 

Not tested Higher 
PCA: frequency range, two-voiced 

syllables, buzzy syllables, song duration, # 

syllables/song 

Cardoso et al. (2012) 

L: B Maluridae – 16 sp. Paleotropical Not applicable Higher song versatility, note variety Greig et al. (2013) 

L: B Phylloscopus – 30 sp. 
North temperate, 

paleotropical 
Not tested Higher 

PCA: song duration, # song types, # 
syllable types, # element types, # 

elements/song, # syllables/song 

Mahler and Gil (2009) 

L: B Phylloscopus – 2 sp. North temperate Not applicable Higher song repertoire, song rate, repetition rate Singh and Price (2015) 

L: B Passeriformes – 232 sp. 
North temperate, 

neotropical 
Not tested Higher9 # syllable types/song 

Weir and Wheatcroft 
(2011) 

 

*Heavily biased to temperate breeders 
1Found pattern of complexity difference between eastern and western lineages. 
2Xing et al. (2017) note that, counter to their expectations, song duration decreased with latitude.  
3Major revisions have since been made to this group. 
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4Song length, however, does increase with latitude, and this trait is associated with increased extra-pair paternity (Gil et al., 2007) (and 

may therefore be more informative than song “complexity”). 
5This paper does not explicitly compare these three wren species in terms of migration, latitude, and complexity, but it has been 

referred to in Byers (2015) as such an example. 
6See Byers (2011) and Collins et al. (2011) for further discussion of the limitations of this study. 
7Only one published study is referenced in this example (Yasukawa 1981), the rest are personal communications. 
8Refers to either completely migratory or sedentary species so differences among these classes cannot be compared. 
9Complexity increases for oscines but not for suboscines, which have no pattern.
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Latitude, Migration, and Song Complexity 

Latitudinal Effects 

Several studies have found latitudinal variation in song complexity that is not 

necessarily related to migratory behavior (e.g. Irwin 2000, Mahler and Gil 2009, Weir 

and Wheatcroft 2011, Cardoso et al. 2012, Table 2.1). Hypotheses proposed to explain 

this variation invoke both ecological selection (Weir et al. 2012) and sexual selection 

(Catchpole 1982) as the causes of these patterns (Table 2.2). 

Ecological hypotheses. Bird vocalizations are signals adapted to propagate 

through an environment (Brumm and Naguib 2009) and as more sound space becomes 

available over a latitudinal gradient, songs may become more complex (Weir et al. 2012). 

The availability of sound space is negatively influenced by the amount of background 

noise generated by other animals (especially insects), the closeness of habitat (i.e. forests 

versus grasslands), and the sound-attenuating properties of the vegetation (Morton 1975). 

Overall, habitat does become more open as one moves away from the equator, with larger 

frequency windows and less sound attenuation in the predominantly evergreen forests of 

high latitudes and elevations (as compared with the tropical forests of lower latitudes and 

elevations) (Weir et al. 2012). There are both fewer bird species (Botero et al. 2014, Weir 

and Lawson 2015) and less background noise from insects (Weir et al. 2012) at higher 

latitudes, potentially freeing bird song to evolve more complex forms.   Irwin (2000), 

Singh and Price (2015), and Wei et al. (2017) suggest latitudinal variation in sound space 

may explain some or most of the variation in song form detected in their respective 

studies. 
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Table 2.2. Published hypotheses on how latitude and migration may drive song complexity. 
Hypothesis Reference Synopsis Predictions 

Sound space Weir et al. (2012) Songs becomes more complex with 

more available frequency windows. 

Background noise and habitat features vary with 

latitude. 

↑Latitude → ↑Complexity 

Rapid pairing Catchpole (1982) At high latitudes birds have less time to 

pair and breed. Increased sexual 

selection drives elaboration of signals. 

Elaboration varies with latitude and/or migratory 

distance 

↑Latitude/↑Migration → ↑Complexity 

Temporal isolation Bolus (2014) Migration isolates metapopulations both 

temporally and spatially, decreasing 

genetic/cultural transmission between 

them. 

Migrants have greater variability in song via 

isolation by distance 

↑Migration → ↑Complexity 

Panmictic migrants Bolus (2014) Migrants disperse farther than residents, 

leading to greater mixing. 

Migrants have less variation than residents 

↑Migration → ↓Complexity 

Good migrations  Fitzpatrick (1994) Migrants are under strong selection to 

find good wintering grounds. Females 

will choose males whose genes can 

guide offspring to these places. 

Signal elaboration and genetic variation greater in 

migrants2 

Migration → ↑Complexity 

Ranging  Morton (1986) Dialects exist in sedentary birds to 

assess sound degradation and threat 

level, migrants have no dialects and 

larger repertoires to disrupt this process. 

Sedentary birds form small dialects, migrants 

have larger repertoires with no dialects 

Migration → ↑Complexity 

Territory lottery Mountjoy and Leger 

(2001) 

Sedentary birds acquire territories by 

chance; selection is lower in these 

populations. 

Signal elaboration higher in migrants 

Migration → ↑Complexity 

1Fitzpatrick (1994) is discussing plumage elaboration and moult as a mechanism for determining how well an individual did on their 

wintering grounds. Mountjoy and Leger (2001) argue this could also apply to song complexity.  
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Sexual selection hypotheses. Catchpole (1982) theorized that short breeding 

seasons offer birds less time to pair and breed, so there may be greater selection on traits 

that quickly allow a bird to choose the best mate available. This rapid pairing hypothesis 

was first suggested for migratory birds, but the effect is correlated with latitude and 

would hold true for non-migrants that do not retain their pair bond from year to year. 

Both migrant and non-migrant species breeding at high latitudes have shorter breeding 

seasons than most of their low latitude counterparts, with this effect being more 

pronounced at the highest latitudes (Wyndham 1950).  On the other hand, it is possible 

that the need to pair rapidly would result in birds making worse choices, on average, than 

those birds breeding at lower latitudes. It is not well-known how long an individual bird 

spends assessing potential partners or what the consequences are of having more or less 

time to pair (but see Sullivan 1994).  

Migration Effects 

While both non-migrant and migrant birds may breed in the same habitats at the 

same time, migrants face unique challenges. For clarity, we refer to “migratory species” 

as any birds that make seasonal movements such that there is a distinct and different 

breeding and non-breeding location for a particular individual tens to thousands of 

kilometers apart, even if not all members of the species make such a movement (Newton 

2010). The ability to migrate requires physiological and navigational adaptations that 

may be absent in non-migrants (Hedenström 2008). The potentially long distance 

travelled and the fact that migrants reside in at least two often dramatically different 

locations confers different selective pressures on them irrespective of breeding latitude. A 
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number of hypotheses have been advanced to explain how these pressures might affect 

song complexity.  

Ecological hypotheses. Bolus (2014) recently proposed two hypotheses to 

explain how migrant dispersal patterns may influence song evolution in migrants 

compared with non-migrants. Because they move away from their breeding grounds each 

year, migrants are likely to vary more in both the timing and location of their subsequent 

nesting than non-migrants. The temporal isolation hypothesis posits that if individuals 

return to a particular location on different schedules, the staggering of their arrivals could 

isolate sub-populations breeding in the same place (e.g. Bearhop et al. 2005). Migrants 

would exhibit greater song variation through a mechanism similar to the one that drives 

sedentary populations to form local dialects, and this variation would be generated 

mainly via drift rather than as a result of selection for variability per se. The panmictic 

migrants hypothesis suggests the opposite: if migrants disperse further than non-migrants, 

song variation in migrants is expected to be less than that of non-migrants. Bolus (2014) 

found support for this latter hypothesis in her study of Common Yellowthroats 

Geothlypis trichas. 

Sexual selection hypotheses. Migrants must successfully navigate to their 

breeding and wintering grounds each year, a process thought to be largely under genetic 

control (Pulido 2007). The good migrations hypothesis posits that molt taking place on 

the wintering grounds indicates the condition of the bird, and individuals with the genetic 

propensity to find the best wintering grounds will have the highest quality plumage for 

the following breeding season (Fitzpatrick 1994). Mountjoy and Leger (2001) suggest 

this mechanism may extend to song complexity, although they do not propose a 
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mechanism. Perhaps birds that migrate to the best wintering grounds have more time, 

energy, and resources to devote to crystallizing a large song repertoire (Brainard and 

Doupe 2002), possibly by devoting more resources to growth of the song nuclei in the 

brain during their first winter. Females that then choose to mate with those males acquire 

“good migration” genes for their offspring.  

Sedentary species or populations are more likely to have dialects, which often 

include only a small number of song types (Podos and Warren 2007). The ranging 

hypothesis (Morton 1986) posits that dialects evolved in sedentary birds to more 

accurately convey the location of the singer to its neighbors. Because birds within a 

dialect zone are all familiar with the common song type(s), they can compare songs that 

they hear with their own song in order to assess the amount of degradation and thus how 

far away the song originates and whether it constitutes a threat. Morton (1986) proposed 

that migratory species evolved repertoires to disrupt this ranging function of song. 

Unfamiliar, unrangeable songs could lead a neighbor to waste time and energy searching 

for a far-away signal or ignore a song that was actually a threat. This benefit would drive 

the evolution of constantly changing or larger repertoires in all individuals. There is 

evidence that birds are better able to range songs that are in their own repertoire 

(McGregor et al. 1983, Morton et al. 2006) and respond to unfamiliar song types from 

outside their territory more strongly than familiar songs (Shy and Morton 1986). 

However, this hypothesis makes no inference as to whether the territory holder 

recognizes the song as coming from a new rival or a familiar neighbor, factors which are 

known to affect a bird’s singing response (e.g. Stoddard et al. 1991, Stoddard et al. 1992). 

It is not clear what benefit neighbors gain from this disruption or how they avoid it, and 
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does not satisfactorily explain the propensity for sedentary species to form dialects as 

there is no reason why they should not also benefit from repertoire ‘disruption.’ 

Regardless of how far migrants travel, the fact that they do not overwinter in their 

breeding territory obliges them to reacquire a territory the following year. The authors of 

the territory lottery hypothesis suggest this should manifest as greater elaboration of traits 

in migrants irrespective of migration distance (Mountjoy and Leger 2001). This ignores 

reports of winter territoriality in some migratory species (Marra et al. 1993, Cuadrado 

1994, Stutchbury 1994). Then again, it is just as plausible to predict elaboration in the 

opposite direction: if sedentary birds must continuously defend their territories from 

intruders (e.g. Salomonson and Balda 1977, Kraaijeveld and Dickinson 2001), while 

migrants do not, sedentary birds could evolve more elaborate traits to honestly advertise 

their ability to defend that territory. Winter singing or territorial behavior is poorly 

understood, while the relationship between either serial acquisition or continuous defense 

of a territory and song evolution is even less so. These subjects present an interesting 

avenue for future research.  

Methods 

We used Google Scholar, Semantic Scholar and Web of Science to search for 

combinations of variations of key terms:  migration (e.g. migrate, migratory, migrating), 

latitude (latitudinal), geographic variation (variability), (bird) song complexity, 

repertoire, and song evolution (elaboration). At a minimum we read the first 200 hits for 

each combination of terms. We also searched through all the citations of the papers found 

studying this topic and papers that present relevant hypotheses. Our goal was not to 

conduct a meta-analytic review of all studies of the song characteristics of a species or 
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group to search for geographic patterns, but to review studies where bird song complexity 

was explicitly considered in relation to latitude and/or migration. We did not consider 

studies featuring relatively short migratory distances (i.e. overall geographic extent < 500 

km). 

Results 

Our search of the literature discovered 29 papers that report the presence or 

absence of a latitudinal trend or a difference between migrants and non-migrants in some 

measure of song complexity. Measures of complexity were defined by the authors in 

most studies. Several studies of repertoire size were included because, despite the authors 

of these studies not characterizing this metric as “complexity,” repertoire size is often 

used as a complexity metric.  

Of the 29 papers, 15 are comparisons between species and 14 are comparisons 

among subspecies or populations within one species. All of the studies are of passerines, 

only one of which considers suboscines. Nine studies looked for differences between 

migrants and non-migrants, 11 studies looked for latitudinal patterns, and nine studies 

considered both latitude and migratory strategy. Song complexity was assessed in many 

ways, mostly by measuring song repertoire size, counting and/or measuring the number 

and duration of elements, notes, syllables, or phrases per unit, estimating song versatility 

or variety, or consulting previously published metrics (summarized in Table 2.1).  

Increased song complexity was associated with migratory behavior in eight 

studies, decreased song complexity in four studies, there was no pattern in six studies 

(Table 2.1). When considering potential effects of latitude, the outcomes are similarly 

variable: song complexity increased towards the poles in ten studies but decreased in six 
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studies, and four studies found no pattern (Table 2.1). Overall, more studies found a 

relationship between migration and/or latitude and increased song complexity (16) than 

with decreased song complexity (9), but this is not significantly different from an 

expected proportion of 0.50 (two-tailed binomial test p = 0.59). Most studies do, 

however, find an effect of latitude and/or migration (25) rather than no pattern at all (4) 

(expected proportion 0.50, two-tailed binomial test p < 0.001). Because patterns may vary 

with taxonomic level, we also asked how studies comparing populations of a single 

species might differ from studies comparing multiple species. Of the within-species 

studies, five found support for complexity increasing with latitude (2) or migratory 

behavior (3), seven found support for complexity decreasing with latitude (4) or 

migratory behavior (3), and two studies found no pattern (Table 2.1). Of the between-

species studies, 11 found support for complexity increasing with latitude (6) or migratory 

behavior (5), two found support for complexity decreasing with migratory behavior, and 

two studies reported no pattern (Table 2.1). 

Discussion 

Seven of the hypotheses discussed here predict and 16 studies found positive 

correlations between avian song complexity and latitude and/or migration, while only one 

hypothesis predicts and nine studies found negative correlations. Four studies reported no 

pattern. This may be an underestimate due to publication bias, or may signal that in most 

species latitude and migration influence song complexity, but do so variably. 

With only 29 studies considering such a broad topic it is difficult to reach general 

conclusions. Nevertheless, it is clear that not all existing studies draw similar conclusions 

(Table 2.1). Additionally, the many hypotheses imply that the field is nowhere near 
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consensus on how latitude and migratory behavior might affect song complexity. Six 

different hypotheses are similar in that they broadly associate complexity with increases 

in migration or movement towards the poles, but the existing research does not 

overwhelmingly support this predicted pattern. Moreover, the studies reviewed here 

suggest (and some support) five fairly distinct biological drivers of any proposed 

patterns: acoustic adaptation, rapid mate choice, cultural drift versus mixing, navigational 

abilities, and resource defense (Table 2.2). The authors of these hypotheses discuss these 

drivers as either ecological or sexual, but at least two (territory lottery and ranging) may 

be better characterized as socially selected since they describe competition for territories, 

not mates (West-Eberhard 1983). Considering the results of published studies, it seems 

highly unlikely that only one mechanism is at play or that all species would exhibit 

similar patterns in geographic variation in song complexity. Different selection pressures 

may result in similarly increased or decreased song complexity in different species, 

further complicating our understanding of causes. This should be evident simply by 

noting that not all species are suitable for studying all hypotheses (e.g. species that are 

entirely sedentary or migratory) but the effects of latitude or migration are still apparent. 

Additionally, different methodological approaches may be appropriate for different 

species, and comparisons between studies that use these different measures may not 

always be valid (see below).  

Song Complexity 

Thus far, in our discussions of song “complexity”, we have neglected to define 

the term. We are not alone in this: many authors do not precisely define (if at all) what 

constitutes complexity, or they may use statistical analysis to define complexity post-hoc. 
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It is generally agreed that increases in song and syllable repertoire size as well as 

increases in note variability represent complexity (Catchpole and Slater 2008), but each 

study may define complexity in different ways. For example, Irwin (2000) states 

“Females… prefer greater song complexity and repertoire size…” implying complexity 

and repertoire size are conceptually different (albeit both influenced by sexual selection), 

while Peters et al. (2000) note that “Song complexity is most often measured as song 

repertoire size…” This difference often stems from the different samples available to 

researchers and song differences between species. Studies that measure sound files 

obtained from sound libraries or using published estimates are limited in how many songs 

from a single individual they can acquire, and cannot measure repertoires or structural 

elements in the same way that studies which collect their own recordings can. Similarly, 

studies examining species that sing only a single song type might measure complexity in 

terms of the structure of the song, making those studies difficult to compare with studies 

of species whose complexity is largely characterized by having a song or syllable 

repertoire. Multi-species studies face additional challenges in choosing song complexity 

metrics. The more divergent the species are taxonomically, the fewer homologous 

measures are available for comparison. Studies that examine one species or genus often 

include many taxonomically-specific measurements (such as whether a syllable uses two 

voices or the length of an introductory phrase common to the study species).  

Of the studies in Table 2.1, four do not offer any definition of complexity or 

describe their measurements as reflecting song elaboration. Instead they are focused on 

the functions of repertoire size specifically, irrespective of the identity or features of the 

song types. Thirteen publications do offer an explicit definition, ranging from general 
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(e.g. “Complexity… generally includes a measure of note, syllable or song variety…” 

(Singh and Price 2015) to more specific (e.g. “… and complexity (note variety and song 

versatility)” (Greig et al. 2013). Twelve studies mention complexity but do not offer 

explicit definitions or are vague in their use of the term; complexity is instead defined 

implicitly using statistics (e.g. Cardoso et al. 2012) or in the text (e.g. “complex 

syllables” in Nelson et al. 1996). Despite this lack of consensus, there is a general pattern 

of agreement in what an author measures as “complexity”. All of the listed studies 

include some count of unique elements per unit song length or among different songs as 

their key metric for complexity, suggesting that diversity in element structure is 

fundamental to defining “complex” songs among song researchers. 

If hypotheses that sexual selection pressure increases with latitude or migratory 

behavior are largely correct, then we might also expect performance (the ability to sing 

physically challenging songs) to vary with these factors (Gil and Gahr 2002). Complexity 

may even be traded off for performance; in cases where complexity does not seem to 

vary geographically it may be that performance does. Performance is not commonly 

discussed specifically in the reviewed studies, and the one study that refers to it explicitly 

lumps it together with complexity (Kaluthota et al. 2016). This suggests that researchers 

either do not generally consider performance to be directly related to complexity, or think 

it is perfectly correlated and complexity is simply easier to measure (although this is 

unlikely given the lack of supporting evidence). Performance in bird song is a 

comparatively new idea and there simply may not be enough research yet to draw 

conclusions one way or the other. It may be interesting to consider performance in future 
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studies to help determine whether and how estimates of performance co-vary with song 

complexity and geography overall.  

Study System and Data  

The studies referenced in this review considered their questions in many ways: 

they may have studied populations of one species or compared multiple species, they 

used variable numbers of populations or species, and they may or may not have corrected 

for phylogeny. Song complexity analyses varied from comparisons of one or a few song 

measurements using t-tests and correlations, to principal coordinate analysis and model-

based analyses of many song measurements. All of these studies were designed and 

analyzed in different ways and are taxonomically diverse, making comparisons imperfect 

(Table 2.1). While there is no way to completely circumvent this comparability problem, 

it is important to note these methodological differences so they can be considered in 

comparisons. 

Studies conducted between species seem to find support for increased complexity 

with latitude or migration more frequently than within-species studies, which are more 

equivocal in their results (Table 2.2). This could be a telling symptom of an ecological 

fallacy, where this apparent “effect of scale” could be due to one or several causal 

variables going unmeasured (Simpson 1951, Selvin 1958). It is also possible that this is 

an illustration of the comparability problem (Read and Weary 1992), whereby studies 

between distantly related species must necessarily use fewer metrics to compare them, 

although many within-species studies also use only one or a few metrics. Alternatively, 

multiple metrics may evolve along different trajectories, following different hypotheses. 

Of the 11 studies that examined repertoire size, seven find complexity to be correlated 
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with latitude or migration, but four do not. Of the eight studies that use only song or 

syllable repertoire size, or both, as their metrics of complexity, four find increases, three 

find decreases, and one finds no pattern of song complexity related to latitude or 

migration. Collectively, these studies use ten different bird “groups” (e.g. Old World 

warblers, New World sparrows), making it difficult to assign differences in results to 

differences in life history. Thus, while most studies do find an effect of latitude or 

migration, either positive or negative, there is no clear indication that certain methods of 

comparison or measures of complexity show more or less tendency to vary with latitude. 

Data sources for song features also varied widely for these studies; some gleaned 

song measurements from the literature, while others measured them from sound 

recordings. Those studies using sound recordings varied in the number and geographic 

distribution of recordings available to them depending on whether they used archived 

recordings from sound libraries or made their own field recordings. Some studies 

generated new measurement practices, and others relied on applying approaches or 

reanalyzing data previously described in the literature. While using previously published 

descriptions is not a bad practice, care must be taken in their use. This is particularly true 

when discussing variation in structural elements because different people may have 

different tolerances as to when to call something the same or not. A good example of this 

was discussed in Ewert and Kroodsma’s (1994) study of Eastern Towhee Pipilo 

erythrophthalmus song. They found that their method of classifying towhee song types 

differed significantly from a previous author’s classification scheme, and identified fewer 

song types. Clear description of methods for defining structural elements is vitally 

important to facilitate comparisons. 
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Future Directions 

Comparative analyses by Read and Weary (1992), and later Weir and Wheatcroft 

(2011), seem largely responsible for popularizing the idea that migration and latitude may 

play a role in the evolution of complex bird song, specifically that song complexity 

increases with being migratory and with increasing latitude of breeding. However, not all 

studies agree with this assessment and even those that do are difficult to compare in order 

to determine the underlying mechanism(s) at play. While the idea that there is an 

“expected outcome” of increasing complexity towards the poles has become common, 

this review of the empirical literature finds that there is no broad consensus and no 

expectation to be violated. Rather, more research is needed to better demonstrate whether 

patterns exist and, if so, what the possible mechanisms generating them are.  

Future studies of a variety of species that measure song complexity in conjunction 

with relevant ecological or sexual selection variables will go a long way towards 

advancing our understanding of the relationships between latitude, migration, and song 

elaboration. Table 2.1 is dominated by old world warblers, new world sparrows, and new 

world wrens. More diversity of study species would indicate whether these hypotheses 

hold up for other groups of birds. For example, broadly distributed non-passerines with 

vocalizations much like passerine song such as members of the Columbidae, Trochilidae, 

or Cuculidae may prove to be interesting groups for study. Noticeably missing from these 

studies are suboscines. Studying species that do not learn their songs would be 

informative both as controls for hypotheses where song learning is part of the proposed 

mechanism and as parallel comparisons for hypotheses where song learning is 

inconsequential.  
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Most hypotheses included here made (or implied) predictions about the breeding 

biology of tropical and temperate-zone species, but few quantified traits of tropical 

breeders. While theory predicts certain characteristics of tropical species, such as low 

rates of extra-pair paternity and long breeding seasons, there is not enough data to 

confidently conclude this (e.g. Macedo et al. 2008, Cramer et al. 2011, Ferretti et al. 

2016). More study is needed to assess the ecological correlates of sexual selection in 

tropical regions, and more studies of tropical species are needed to characterize patterns 

of song complexity at all latitudes. 

Both ecology and sexual selection are often cited as factors driving geographic 

patterns of song complexity, but it is rare for researchers to measure their effects in this 

context. While many studies do attempt to take the environment into account in some 

way (such as by classifying them as ‘boreal’ vs. ‘tropical’ forest or ‘open’ vs. ‘closed’ 

species), only two studies included here actually measured the habitat and acoustic 

features at their study sites (Irwin 2000, Singh and Price 2015), while another three used 

mean climate measures (Botero et al. 2009, Medina and Francis 2012, Xing et al. 2017). 

To fully test the ecological hypotheses included in this review the field needs more 

studies that explicitly quantify the sound space available at varying latitudes and whether 

more complex songs fill a wider swath of that space.  

The underlying assumption of sexual selection hypotheses is that song complexity 

or song repertoire size is a good proxy for the strength of sexual selection and that given 

a choice, birds will choose to mate with individuals that have a more elaborate or 

complex song. However, this is often not explicitly tested and there is debate in the 

literature about how this should be done (Wilkins et al. 2013, Byers 2015, Price 2017). 
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None of the studies included here measured proxies of sexual selection, such as time to 

pairing, reproductive success, or level of parasite or disease infection, leaving room for 

improvement in future studies. Researchers positing connections between song 

complexity and female choice should test whether females actually prefer the ‘complex’ 

traits in question. Additionally, several hypotheses mention resource defense in the 

context of sexual selection, but which could be more accurately described as being 

mediated by social selection. None of the studies reviewed here invoke social selection 

(i.e. selection for competition for resources other than mates, such as nesting sites, food, 

or space, West-Eberhard 1983) as a force driving changes in song complexity. Future 

studies considering both social and sexual selection would be valuable. 

Conclusions 

The studies reviewed here attempted to document latitudinal patterns of avian 

song complexity. Despite a variety of hypotheses mostly rooted in sexual selection 

theory, it is still unclear whether and to what extent song complexity may be influenced 

by latitude and its correlate, migration.  Certainly there is no overarching theory on the 

topic beyond the observation that vegetation is different at high latitudes or a weak appeal 

to ‘higher sexual selection pressures’ assumed to exist in these places. What we can 

clearly conclude is that latitude and migration do not universally affect song complexity 

in the same way among birds, and that increased latitude or migratory behavior is not 

always associated with increased complexity. This is perhaps an unsurprising result but 

an important one to acknowledge given the overwhelming bias in the theoretical literature 

towards predicting a universal directional trend. High latitudes and migration affect birds 

in a multitude of ways, and it is unrealistic to expect one hypothesis to explain all or even 
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most of the variation observed in bird song features. Many of the studies discussed here 

are observational and correlational, an excellent approach for initial studies, but none go 

any further. That being said, many studies cited in this review do find an effect of latitude 

or migration in their study system and future studies should explicitly test the hypotheses 

that offer the most potential to explain these outcomes.   

 

 

 

  



53 
 

 
 

 

 

 

 

 

CHAPTER III 

 

GEOGRAPHIC PATTERN OF ROCK WREN  

SONG REPERTOIRE SIZE 

 

Contribution of Authors and Co-Authors 

 

Manuscript in Chapter III 

 

Author: Nadje A. Najar 

 

Contributions: Conceived the study topic and design, collected song recordings and 

measured territories at 10 sites, analyzed the data, and wrote the manuscript. 

 

Co-Author: Dr. Lauryn Benedict 

 

Contributions: Collected song recordings at one site, assisted analyzing the data, and 

edited drafts of the manuscript. 

 

 

  



54 
 

 
 

 

 

 

 

 

Abstract 

 

 A small body of literature devoted to studying the possible effects of latitude, 

migration, and song complexity has resulted in a number of hypotheses despite 

inconsistent and inconclusive results (see Chapter II). A variety of problems remain 

unsolved, such as how to meaningfully compare the songs of different species or the fact 

that studies of single species tend to focus on only a few populations. The goal of this 

study was to examine the pattern of song repertoire size within a single, geographically 

widespread species consisting of both migratory and sedentary populations. Rock wren 

song repertoire size was measured and compared amongst five migratory and six 

sedentary populations along a latitudinal transect spanning northern Montana to west 

Texas. Repertoire size was significantly larger in sedentary (mean 102.6±20.8) versus 

migratory (mean 87±23) rock wrens, but latitude was only significantly correlated with 

song repertoire size in migratory (R2=0.30, p=0.006, F23=9.2) and not sedentary 

(R2=0.013, p=0.63, F23=0.23) populations. This is a pattern of song complexity that has 

not been previously predicted and suggests our understanding of the factors governing 

geographic patterns of song complexity is still in its infancy. 

Introduction 

 

 Bird vocalizations continue to fascinate and intrigue, motivating the publication 

of hundreds of studies dedicated to unraveling the evolution, ontogeny, and functions of 

complex songs. Broadly speaking, the main factors proposed to drive the evolution of 

song complexity are ecological (Morton 1975), sexual (Andersson 1994), and social 
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selection (Freeberg et al. 2012). Some patterns of evolution are thought to have resulted 

from the interaction of these three forces at large scales. Such broad scale interactions of 

evolutionary forces have likely driven latitudinal gradients and migratory divides in the 

elaboration of bird song. 

 At least 29 studies have explored the possible link between migration, latitude, 

and song complexity at both the species- and population-levels, considering wholly, 

partially, and non-migratory groups (Chapter II). Collectively, this small body of 

literature has given rise to at least eight hypotheses focused largely on sexual, and to a 

lesser extent, ecological selection. These hypotheses may be best summarized as 

predicting that song complexity will increase with latitude and that migrants will have 

more complexity than non-migrants (Read and Weary 1992, Irwin 2000, Peters et al. 

2000, Kaluthota et al. 2016). 

 The plethora of hypotheses is not matched by an abundance of evidence, however, 

and these studies are plagued by a number of problems outlined in a previous chapter, 

which may be best summarized as issues with sampling and comparability. About half of 

the studies examining these relationships find no pattern or one not consistent with prior 

predictions (Chapter II). Considering the large-scale nature of the patterns being 

discussed and the varied nature of the studies addressing them, 29 publications is a 

meager number.  

 Support for the basic hypothesis that latitude and/or migration lead to increased 

song complexity remains mixed. The studies comparing the most species and/or covering 

the greatest geographic extent generally draw on (and are therefore limited by) archived 

recordings and must often reduce their song analyses to one or a few comparisons (e.g. 
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Read and Weary 1992, Mountjoy and Leger 2001, Weir and Wheatcroft 2011, Medina 

and Francis 2012).  Studies focusing on a single species often have poor sampling, 

examining only a few individuals or populations (e.g. Ewert and Kroodsma 1994, Nelson 

et al. 1996, Morton 1986, Ödeen and Björklund 2003, Collins et al. 2009). Only eight 

studies attempted to examine the effects of both latitude and migration (Kroodsma and 

Verner 1987, Kroodsma et al. 2001, Mountjoy and Leger 2001, Handley and Nelson 

2005, Medina and Francis 2012, Bolus 2014, Tietze et al. 2015, Wei et al. 2017, Xing et 

al. 2017). Finally, some authors have called into question the logic of continuing to cite a 

phenomenon that has not been convincingly demonstrated to exist (e.g. Byers 2011, 

Byers 2015).  

I sought to add to this discussion by comprehensively studying the interaction of 

latitude, migration, and song complexity in a single species, the rock wren (Salpinctes 

obsoletus). By examining populations of a single species across a latitudinal gradient, I 

examined whether any pattern of song complexity exists, and depending on the pattern, 

what hypotheses might be supported. I predicted that I would see both a latitudinal 

gradient and a migratory divide in song repertoire size. That is, my southernmost 

population will have the smallest repertoire size, my northernmost population will have 

the largest repertoire size, and there will be a significant difference between the 

populations closest to the migratory divide. 

Methods 

Study Species 

 Rock wrens are drab, monomorphic passerines in the family Troglodytidae with a 

large range in western north and middle America. Males and females are nearly 
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indistinguishable except that only males are known to sing. Rock wren song is 

characterized by the repetition of a single syllable 2-8 times followed by a silence of 6-10 

seconds, making song types easy to identify. This also results in a strong correlation 

between an individual’s song and syllable repertoire. Individual males have repertoires 

ranging from 50-130 song types. Rock wrens are unusual among wrens in that northern 

populations are migratory. This combination of large, variable, easily characterized song 

repertoires, a large geographic range, and migratory and sedentary populations make rock 

wrens almost uniquely suited to studying how latitude and migration influence the 

evolution of bird song complexity. 

Site Selection 

 Rock wrens are resident throughout the United States, and migratory in the 

northern half of that range. I was able to choose multiple study sites that varied in latitude 

and migratory status. Initially, site selection was carried out remotely. I used recently 

surveyed high density (>25 rock wrens counted) Breeding Bird Survey tracks (Sauer et 

al. 2013) as candidate sites in Montana, Wyoming, Colorado, New Mexico, and Texas. 

Of these, I selected tracks occurring on or near public lands and narrowed these sites to 

those occurring approximately 300 kilometers apart in a longitudinal transect.  
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Table 3.1. Study site locations and abbreviations. 
Abbreviation Locality County State GPS N GPS W 

CBL Coal Banks Landing Chouteau MT 48.037616 -110.229292 

MC Milligan Canyon Road Jefferson MT 45.881958 -111.683048 

DETO Devils Tower National Monument Crook WY 44.588621 -104.714628 

BSP Boysen State Park Fremont WY 43.419939 -108.092617 

FOCO Horsetooth Reservoir Larimer CO 40.589961 -105.183689 

CNG Comanche National Grasslands Baca CO 37.012971 -102.746630 

RGG Rio Grande Gorge Taos NM 36.290282 -105.779375 

BOX The Box National Recreation Area Socorro NM 34.002822 -106.991115 

OM Desert Peaks National Monument Dona Ana NM 32.323647 -106.991115 

FODA Fort Davis National Historic Site Jefferson Davis TX 30.598757 -103.892149 

BBR Big Bend Ranch State Park Presidio TX 29.475857 -103.964853 

 

. 

Figure 3.1. Map of study sites with approximate locations and population name 

abbreviations. Red populations are migratory, purple populations sedentary. The colored 

rectangle indicates the location of the migratory divide. Inset map indicates location of 

transect in the USA. 

  

This method was sufficient for most sites. Upon arriving I found a few sites either to not 

be accessible (2 sites) or not to have rock wrens present (1 site); I used ebird.org to find a 

nearby site with rock wrens to replace them. The number of sites I chose were such that I 
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could visit half of my sites for two weeks each in one field season. The final list of study 

site locations is outlined in Table 3.1 and graphically illustrated in Figure 3.1.  

Populations were determined to be either migratory or sedentary by comparing 

presence during summer (as determined by Breeding Bird Survey reports) with presence 

or absence during the winter (using Christmas Bird Count reports) from 10 recent years 

(2003-2013) (National Audubon Society 2010). A site was considered sedentary if it (or 

nearby count locations) had at least 6 rock wrens detected in the area for at least 7 of the 

10 count years. From these criteria, I determined that the point at which rock wrens cease 

to be migratory and overwinter was south of Denver and north of Colorado Springs in 

Colorado. The region between Boulder and Colorado Springs had many singular 

sightings of overwintering rock wrens, with some years or sites having many more rock 

wrens than others. This region of variable migrator behavior constitutes a fairly wide 

(~70 miles) cline in central Colorado, and my data may underestimate its true size given 

singular reports of overwintering rock wrens as far north as Lander, Wyoming. To avoid 

this region of migratory and sedentary overlap I chose a site in the far south (CNG) and 

in the far north (FOCO) of Colorado. To check the assumption that sites north of Denver 

were migratory I looked for reports of wintering northern rock wrens on ebird.org, and I 

returned to each of my northern populations in early December 2014 and surveyed for 

rock wrens. I conducted at least one playback survey at each of the locations where I had 

previously recorded rock wrens by playing conspecific song. No rock wrens were 

detected in the winter, either during my visit or reported online. Populations south of 

Denver were considered to be sedentary. A banded population of rock wrens observed 

over three years were seen to remain on their territories in successive breeding seasons in 



60 
 

 
 

northern New Mexico (Merola 1995), suggesting those birds were sedentary. To test 

whether birds at my study sites were sedentary, I banded rock wrens at each site during 

the breeding season. I was unable to search for banded rock wrens in the winters 

following my field work, but locals at some sites were able to sight banded rock wrens 

and report their color combinations (FODA, OM). I returned to two field sites (FODA, 

BOX) in the summer the year after I banded there and was able to re-sight just over half 

of my banded rock wrens. This is a recovery rate consistent with these populations being 

completely sedentary. Only three rock wrens were re-sighted over the course of this study 

at northern sites, two at Horsetooth Reservoir and one at Devils Tower National 

Monument. The poor re-sight rate for northern rock wrens could be due to higher 

mortality and/or a lack of site fidelity, and is consistent with these birds being migrants.  

Recording Protocol 

 Rock wrens at all sites were audio recorded from 30 minutes before civil sunrise 

until 14:00 each day until 2000 songs had been recorded or for three days, whichever 

came first. Repertoire curves previously generated for rock wrens (as in Kroodsma 1975) 

indicate that 1000 to 2000 songs reliably estimate a bird’s repertoire. Two recordists 

(myself and an assistant) followed and recorded one male rock wren each until it was 

time to move onto another one.  Rock wrens were not banded during recording efforts, 

but each pair is highly territorial and males can be recognized by the perches they sing 

from. After audio recording an individual, we recorded GPS coordinates from each of the 

locations it was observed singing or foraging. We recorded up to 12 rock wrens for a total 

of two weeks at each site. Recordings were made using a Sennheiser short shotgun 

microphone (MKH 60 P48) with a windscreen (MZW 60-1) and Marantz handheld PMD 
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solid state recorder (PMD661 MKII, mono input, 48KHz, 768 kbps). Memory and battery 

power in the field was limited; to maximize the number of songs recorded we did not 

record continuous song bouts but rather one song at a time using the record/pause 

function. This eliminated periods of silence and resulted in tracks with one song every 

three seconds. While recordings were made throughout four field seasons (2013 – 2016) 

of work, the majority were made during the summers of 2013 and 2014. 

Song Analysis 

 For the purposes of this study, rock wren song complexity is measured as song 

repertoire size (Chapter I). Songs were visualized in RAVEN PRO (version 1.3, 

Bioacoustics Research Program 2008) where I identified song types by eye following 

Borror (1967) and Kroodsma (1975). Reference pictures and sound files of each song 

type were kept as libraries for each individual wren. Song repertoire size was determined 

visually by generating a repertoire curve for each individual. Repertoire size was used as 

the main data point for subsequent analyses. General linear mixed models were used to 

account for potentially confounding variables to see if there was any correlation between 

repertoire size (total song types identified, song types at 500th song), migratory status 

(migratory, sedentary), and latitude (site membership) among sampled rock wrens. For 

analyses using total number of song types identified, number of songs sampled was 

included as a random effect. I used a stepwise linear regression to identify the 

combination of model effects that best describe the data.  

Measuring Territories 

 All points were collected on a Garmin GPSMAP 60 using the NAD83 datum then 

transformed to WGS84. I used the “aggregate points” function in ArcMap 10.5 to 
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estimate rock wren territory sizes. I grouped points using an aggregation distance of 

200m, then calculated the area of the resultant polygon in hectares. Territory size was 

significantly correlated with number of GPS points up to five points (5 or more points 

p<0.001, R2=0.44, 6 or more points p=0.12, R2=0.04) so I only used territories estimated 

with at least six points in subsequent analyses (n=53). I used a stepwise linear regression 

to identify the model effects that best fit the data (population membership or migratory 

strategy, with year and number of points included as random effects) as well as individual 

analyses using one-way analysis of variance. All analyses were conducted in JMP 9.0. 

Territory sizes were not directly correlated with repertoire size because very few 

individuals with repertoires included in the analysis also had territory sizes measured. 

Not all individuals recorded or captured had territories accessible to logging GPS points 

from. This was particularly true of individuals occupying highly vertical rock formations 

or whose territories crossed rivers or onto land I was not permitted to access. 

Capture and Handling  

 Rock wrens were captured using mist nets in 2015 and 2016. Birds were lured 

into the net with playback of conspecific song and, on occasion, a taxidermied rock wren 

mount. Each wren was marked with a unique combination of plastic color bands and a 

USFWS metal band. Mass and the lengths of the culmen, tarsus, wing chord, first 

secondary, and tail were measured. Approximately 15µl of blood was collected by 

puncturing the brachial vein with a 26-gauge hypodermic needle and drawing blood with 

a capillary tube. Blood was stored in Longmire’s solution without refrigeration in a chest 

cooler until the end of the field season, after which samples were frozen at -20°C. Finally, 
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a photograph of the outstretched wing was taken against a 1cmx1cm grid. The bird was 

then released.  

 I was able to capture 109 rock wrens. Of these, 107 were adults and 2 were 

juveniles. Of the 107 adults, 96 were males and 11 were females. The Horsetooth 

Reservoir site was managed by Dr. Benedict, who captured 15 individuals in 2015 and 

2016. Capture locations and totals are outlined in Table 3.2. 

Table 3.2. Capture localities and demographics. 
Abbreviation Locality Total 

captures 

Males Females Juveniles 

CBL Coal Banks Landing, MT 9 7 1 1 

MC Milligan Canyon, MT 12 12 0 0 

DETO Devils Tower, WY 12 9 3 0 

BSP Boysen State Park, WY 12 12 0 0 

FOCO Horsetooth Reservoir, CO 15 14 1 0 

CNG Comanche National Grasslands, CO 12 9 3 0 

RGG Rio Grande Gorge, NM 12 11 1 0 

BOX The Box National Recreation Area, 

NM 

12 11 1 0 

OM Desert Peaks National Monument, NM 9 9 0 0 

FODA Fort Davis National Historic Site, TX 13 10 2 1 

BBR Big Bend Ranch State Park, TX 6 5 1 0 

 

Results 

 My colleague and I assessed the repertoires of a total of 60 individuals from 

eleven sites. The mean number of songs recorded per individual was 909.6 ± 630.9 songs 

(range 17-2105) (Table 3.3). Of these, 42 individuals had over 500 songs recorded. All 

individuals with very low numbers of songs recorded (<500) were monitored for at least 

three consecutive days for 10 hours per day, indicating that some rock wrens sing very 

infrequently, even during the peak of the breeding season. Of the 18 individuals that sang 

fewer than 500 songs, five sang fewer than 200 songs and 13 individuals sang only 200-

400 songs over three consecutive days totaling 28-30 recording hours. Observations of 

their behavior did not yield any obvious clues as to why they were not singing. These 
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individuals (n=18) were excluded from all analyses. In the two weeks spent recording a 

given population, rock wren song production did not vary day-to-day. Individuals were 

fairly consistent in their singing rates from day to day, but varied in their singing rates 

relative to each other (e.g. one bird sings five minutes of every hour and his neighbor 

sings 25 minutes of every hour). However, individuals that were relatively quiet did not 

pick up their singing, even when stimulated with conspecific playback. Since nearly all 

birds recorded were clearly paired and engaged in breeding activities (e.g. nest building, 

incubation, feeding chicks) this difference cannot be broadly attributed to pairing or 

nesting status. 

Table 3.3. Summary of recording effort and repertoire size for each population. Migrants 

in red and residents in blue. 

pop # inds # songs 

mean 

songs / ind 

mean 

rep size 

# inds 

over 500 

mean rep size 

at 500th song sd 

CBL 4 2436 609.0 82.3 3 83.7 2.9 

MC 4 2688 672.0 96.8 3 80.0 18.9 

DETO 7 3169 452.7 61.3 3 78.0 11.3 

BSP 5 2060 412.0 52.2 2 59.3 35.2 

FOCO 12 19376 1614.7 76.8 12 59.0 14.5 

subtotal 32 29729 929.0 87 23 68 18.8 

CNG 7 6711 958.7 78.4 5 80.4 9.1 

RGG 5 4550 910.0 52.0 3 86.3 19.6 

BOX 4 3341 835.3 108.8 2 63.5 11.3 

OM 4 3552 888.0 103.5 4 96.8 19.6 

FODA 3 2622 874.0 126.3 2 68.5 7.8 

BBR 5 4059 811.8 90.6 3 90.3 31.1 

subtotal 28 24835 887.0 102.6 19 83.3 17.2 

totals 60 54564 909.4 80.3 42 76.1 20 

 

Individuals differed in their singing behavior seemingly without respect to site 

membership or nesting state (building, incubation, nestlings). Some birds that sang 

copiously (1500+ songs in one day) were not observed to feed any chicks, indicating they 

are in an intermediate stage of breeding where the last nest’s chicks are independent but 
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the next one has not hatched yet, or, less likely, that they are unpaired and still attempting 

to advertise for a mate. Feeding chicks did not preclude singing, however, and many 

males gave songs either immediately before or after delivering food to the nest. 

 Song accumulation curves (Fig 3.2) show that the number of new song types 

discovered levels off sharply after 500 songs. Rock wrens still introduce new song types 

sporadically up to 2000 songs but relative repertoire size remains constant at almost any 

number of songs after ~300, implying individual rock wrens introduce new song types at 

a fairly constant rate and do not sporadically increase or decrease this rate. Additionally, 

rock wrens sing ~10 songs per minute, so 500 songs represent nearly an hour of 

continuous singing. Most wrens do not sing continuously for this long, so this represents  

over an hour of assessment from an individual in the field. 
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Figure 3.2. Song repertoire accumulation curves for individual rock wrens recorded in 

northern, migratory sites (a) and southern, sedentary sites (b).  

 

The number of songs recorded is strongly correlated to the number of song types 

introduced (p<0.0001, R2=0.21) up to approximately 300 songs, after which this 

correlation is not significant (p=0.17, R2=0.01). After 500 songs the p-value grows to 

0.74. Therefore, only birds with at least 500 songs (n=42) analyzed were included in 

a 

 b 



67 
 

 
 

subsequent analyses. I used two main song comparisons: song repertoire size at the 500th 

song and total song repertoire size. 

 Taken as a group, the southern, sedentary populations have significantly larger 

mean repertoires (mean total repertoire size=102.6±20.8, mean repertoire size at 500th 

song=83.3±17.2) than northern, migratory populations (mean total repertoire 

size=87±23.0, mean repertoire size at 500th song=68.0±18.8) (Wilcoxon signed rank test 

p=0.023) (Fig 3.3).  

 

Figure 3.3. Wilcoxon signed rank test of difference in (a) mean total song repertoire size 

(number of song types a bird can sing) between migratory (87±23) and sedentary 

(102.6±20.8) birds, and (b) mean repertoire size (number of song types) at the 500th song 

between migratory (68±18.8) and sedentary (83.3±17.2) birds.  

 

Latitude is correlated with repertoire size in migratory populations (R2=0.30, 

p=0.006, F23=9.2) but not sedentary populations (R2=0.013, p=0.63, F23=0.23) (Fig 4). 

This is not due to a difference in the distances between northern and southern sites (mean 

northern site distance 1.5° latitude, mean southern site distance 2.2° latitude, p=0.33, 

two-tailed t-test). Generalized linear mixed modeling also supports a relationship  

a b 
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Figure 3.4. Scatterplot of latitude versus total repertoire size at three days for all 

individuals with at (a) least 500 songs recorded and (b) repertoire size at the 500th song. 

 

between migratory strategy and latitude and song repertoire size (Table 3.4). 

Interestingly, mean migratory repertoire size does not catch up with mean sedentary 

repertoire size until 48° latitude (Coal Banks Landing, MT). 
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Table 3.4. General linear mixed model of number of song types at 500th song with 

strategy (migratory or sedentary), site, and strategy x population as fixed effects. 

 
Rank Model variables P AICc 

1 strategy x population, strategy 0.0042 376.3 

1 strategy x population, population 0.0042 376.3 

2 strategy x population, strategy, population 0.0042 376.3 

3 strategy 0.0012 379.5 

3 population 0.0015 389.6 

4 strategy, population 0.0015 389.6 

 

 Overall mean territory size ranged from 0.6-2.3 ha per site (10 sites, 53 territories, 

Table 3.5). Territory size was not significantly associated with strategy (one-way 

ANOVA, p=0.46, F44=0.54), site membership (one-way ANOVA, p=0.50, F44=0.92), 

year (one-way ANOVA, p=0.11, F44=2.28), or number of points used to estimate territory 

size (p=0.30, F44=1.09). Using a stepwise linear regression, no combination of model 

effects resulted in a better model than the null model. The territories measured at one site, 

Fort Davis National Historic Site, are illustrated in Figure 3.6 as an example of how rock 

wrens space themselves. Not all rock wrens present at Fort Davis are represented on the 

map. More territory maps are presented in Appendix B. 

Table 3.5. Mean territory sizes from 10 populations. I measured three populations in two 

different years, indicated in gray.  
Population # individuals mean area (ha) median area (ha) 

CBL 8 2.24 2.14 

2014 4 2.96 3.25 

2016 4 1.52 1.37 

MC 7 1.88 1.77 

DETO 2 0.49 0.49 

BSP 3 1.29 1.21 

CNG 5 1.77 1.73 

RGG 1 1.32 1.32 

BOX 7 2.37 1.83 

2014 3 2.86 1.92 

2015 4 2.01 1.81 

OM 2 0.64 0.64 

FODA 15 1.91 1.52 

2014 8 2.55 2.88 

2015 7 1.18 1.34 

BBR 3 1.42 1.52 

northern 20 1.48 1.49 

southern 33 1.57 1.52 
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Figure 3.5. Exemplar rock wren territories from Fort Davis National Historic Site, 

Jefferson County, Texas, April 2014.  

 

Discussion 

 My results are broadly consistent with the hypothesis that migrants experience 

different selection pressures than non-migrants. If latitude is a good proxy of migratory 

distance in rock wrens, then repertoire size seems to be correlated with distance migrated. 

However, it is not commonly predicted that sedentary populations will have larger 

repertoires than migratory ones.  

 Song must transmit through its environment in order to function effectively as a 

signal. The observed patterns of repertoire size change may therefore be indicative of 

concordant changes in habitat. While trees can be present in rock wren habitat, in general 

rock wrens are thought to live in “open” (as opposed to “closed,” i.e. forested or covered) 



71 
 

 
 

habitats.  I did not explicitly test the acoustic properties of my study sites in large part 

because they seem unlikely to play a major role in shaping the size of the song repertoire. 

Rock wrens sing from the tops of rock formations, cliffs, hills, and short trees and do not 

generally live in forested areas. The lack of sound attenuating barriers means that rock 

wren song can be fairly complex without compromising its integrity. Even at high 

latitudes rock wrens do not live in forests but rather near forests on rocky slopes and 

canyons. The acoustic adaptation hypothesis (Morton 1975) predicts that each song type 

is adapted to transmit well through their habitat. Why this would result in smaller or 

larger repertoires is less clear. Perhaps birds with “small” repertoires appear to be so 

because they sing only the subset of song types that are best adapted for the habitat they 

are in. If this is the case, it’s not obvious why they wouldn’t sing other, different song 

types that do transmit well but preserve whatever signal that repertoire size conveys 

(condition, genetics, etc.). 

A key assumption uniting most hypotheses on the relationship between song 

complexity, latitude, and migration is that sexual selection pressures are more 

pronounced at high latitudes and in migrants than at low latitudes or among residents 

(Catchpole 1982, Morton 1986, Fitzpatrick 1994, Mountjoy and Leger 2001, Weir et al. 

2012, Bolus 2014). My results simultaneously agree and disagree with the basic 

predictions these authors have laid out. Rock wren song repertoire size does seem to 

increase with latitude in migrants, a prediction made in seven of eight hypotheses (only 

Bolus’s (2014) panmictic migrants hypothesis predicts otherwise), but sedentary rock 

wrens have the largest song repertoires overall, a prediction not explicitly made by any 

authors (Chapter II). Other species where sedentary populations had more song 
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complexity than migratory ones are common yellowthroats (Geothlypis trichas, Bolus 

2014), eastern towhees (Pipilo erythrophthalmus, Ewert and Kroodsma 1994), song 

sparrows (Melospiza melodia, Peters et al. 2000) and fringillid finches (Handley and 

Nelson 2005, but see Cardoso et al. (2012) who examined the same group and found the 

opposite pattern). 

Sedentary rock wrens have longer breeding seasons, initiating nesting up to two 

months earlier than migratory wrens. Sedentary populations regularly fledge three 

successive nests, while migratory wrens are fairly consistently constrained to fledging 

two (Lowther et al. 2010). This may impose differential selection pressure on migratory 

and sedentary populations. An extra clutch may alleviate some of the pressure from nest 

failure or fledgling mortality. The length of the breeding season is inversely correlated 

with latitude, so the most northern birds are under the greatest pressure to successfully 

raise their offspring and the loss of a nest may be even more punishing. Without 

population-level data on clutch size, it’s not clear whether the number of offspring reared 

per nest is similar among migratory and sedentary wrens. 

 How this pressure translates to repertoire size is an open question that cannot be 

successfully answered without understanding the signal a large or small repertoire 

conveys. Recent research suggests repertoire size is more important as a signal between 

males than as a signal to females (Pitt 2018). Among migratory populations, the expected 

trend holds. Perhaps larger song repertoires at high latitudes indicate that acquiring and 

defending a territory is somehow more difficult for migrants at high latitudes. Territorial 

intrusions may be more common and carry greater risk to the territorial male (e.g. not 

enough insects available for chicks since neighbors are pilfering them). Song repertoire 



73 
 

 
 

size may be indicative of some measure of quality in the bird (e.g. condition as a chick, 

current nutritional status) and is therefore communicating something about the territorial 

male’s ability to fend off intruders (Nowicki et al. 2002). Only the individuals in the best 

condition can successfully migrate long distances, maintain a territory, and find enough 

food to fledge offspring.  

 However, sedentary populations had larger repertoires than migratory ones with 

no latitudinal gradient, suggesting sedentariness alone is sufficient to maintain this 

difference. This is contrary to most discussion of this subject (Chapter II) and, 

consequently, there has been very little literary space dedicated to exploring this idea. If 

song repertoire size is a largely male-to-male signal, perhaps sedentary individuals face 

even more challenges acquiring and defending a territory than migrants. Sedentary 

songbirds vary in their winter territoriality, from highly territorial males and females 

defending a space with song (e.g. Salomonson and Balda 1977) to nomadic mixed 

species flocks roaming about a landscape (e.g. Gram 1998). The only mention of rock 

wren wintering behavior suggests rock wrens become less territorial overwinter (Lowther 

et al. 2010), although these observations are limited to Kansas where wintering rock 

wrens are rare and are likely overwintering migrants. Habitually sedentary populations 

are essentially unstudied. Perhaps sedentary populations aggressively defend their 

territories year-round, something only the highest quality individuals can do (e.g. Young 

1996). This is in direct contrast to a hypothesis put forth by Mountjoy and Leger (2001) 

who suggested that sedentary individuals acquire their territories largely by chance and 

that once a territory is acquired it will belong to that male indefinitely. The reality is there 
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are still very few data on how “hard” it is for sedentary birds to acquire and keep their 

territories, or whether territorial males can be ousted.  

 Territory size was not different between migratory and sedentary sites, suggesting 

it is not an important factor determining song repertoire size (Table 3.5). I did not 

measure any other aspects of territoriality, such as the time to acquire a territory, tenure, 

or quality in terms of nest site or food availability. One or several of these aspects may be 

a more important predictor of song repertoire size in rock wrens.  

 A study of one population did not find that mate choice is influenced by male 

repertoire size, but inter-sexual selection may be present via other mechanisms. Rates of 

extra-pair paternity in rock wrens are completely unknown, but sexually-selected signals 

are thought to be influential in the choosing of extra-pair mates or guarding ones’ mate 

against them (Spottiswoode and Møller 2004). If repertoire size indicates something 

about a male’s genetic quality, females may be more likely to seek extra-pair 

fertilizations with large repertoire males. This could also be threatening to other males 

who are at risk of losing some or all of their paternity. Repertoire size would thus be a 

dual signal to both males and females about a male’s genotype, and may not be signaling 

ability to defend a territory.  

 While oscine passerines like rock wrens are thought to be fairly flexible in their 

learning of song, there are many aspects of oscine passerine song that is partially or 

entirely innate (Beecher and Brenowitz 2005). For example, western marsh wrens 

(Cistothorus palustris) have larger repertoires and HVC1 volumes than eastern marsh 

wrens, and this size difference is present at hatching (Kroodsma and Verner 2013). It may 

be that while individual song types are learned, the number of song types an individual 
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can know is inherently constrained. Migration in passerines is also thought to be largely 

under genetic control (Pulido 2007). Perhaps the suites of genes controlling migration 

and song are somehow linked such that migration alleles also tend to be inherited with a 

particular set of song alleles. Some amount of linkage equilibrium could result in 

repertoire size being more constrained in migrants. Many genes are thought to be 

associated with migration and song and it is unlikely that some or even most of them only 

have two alleles, “migratory vs sedentary” or “large repertoire or small repertoire.” Thus 

any connection between migration and song alleles will be complicated, but potentially 

highly informative. 

 Understanding rock wren migratory behavior is further complicated by the fact 

that migration is probably not an all-or-nothing trait, and some individuals may 

overwinter in a place vacated by their migratory conspecifics. Overwintering rock wrens 

from the migratory part of their range have been reported (eBird 2018), but nothing is 

known about why these individuals did not migrate. They may have inherited alleles that 

resulted in the “sedentary” phenotype, they may be flexible in deciding whether to leave 

or stay, or these individuals might have dispersed from a faraway sedentary population 

and be inherently sedentary themselves. Future work could attempt to elucidate the 

genetic connections between migration and song via genome-level sequencing to find the 

similarities and differences among behavioral types.  

 This study attempted to document if a migratory or latitudinal gradient in song 

complexity exists within a species, and whether any observed patterns of song 

complexity conform to the basic prediction that high latitudes and/or being migratory will 

result in greater complexity. The results are unexpected – latitude correlates with song 
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repertoire size in migratory, but not sedentary, rock wrens, while sedentary individuals 

have larger repertoires than most migrants. These results are novel and shine a light on 

our poor understanding of the life history of passerines in general, their annual cycles in 

particular, and how these relate to behavior. The best avian species models for song are 

not models for migration, which are not models of territoriality, which creates difficulty 

in answering questions that unite these topics. Our expectations of a passerine’s life 

history are based on a theoretical composite bird whose traits come from studies of 

disparate groups like the sparrows, warblers, and thrushes. It should not be a surprise that 

studying any one species will result in findings different from our “expectation.”. 

However, such studies are valuable because they increase our understanding of how 

functional traits actually interact in a species, how they might interact differently among 

species, and help to dispel the myth of the “average bird.” 

 I have documented a novel pattern of song repertoire size change in rock wren 

populations that cross a migratory divide. While I have offered some thoughts on what 

might be driving the observed patterns, much more research is needed to truly begin to 

unpack and understand these results. Past studies of song complexity within a species 

almost all suffer from the same problem: Only a few populations are assessed, no patterns 

are found, and claims are then made that latitudinal gradients and migratory divides are 

not associated with song complexity. Better study design and sampling may reveal a 

different scenario for each of the previously studied species. A conservative view on the 

state of the literature is that we have only just begun to understand how migration and 

latitude might interact with song complexity in any given species. 
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Many assumptions of these hypotheses turn on our understanding of a species’ 

migratory behavior. Rock wrens are not well-studied and almost nothing is known about 

their migration. While some populations disappear over winter and are clearly migratory, 

it is not known where they go, whether they are philopatric, or if all regions with year-

round populations are indeed inhabited by the same individuals year-round. Only 1,093 

rock wrens have been captured at banding stations in Canada, the USA, or Mexico since 

1960 and none have been recovered (USGS 2018). Any discussion on rock wren life 

history and song complexity must be tempered by an acknowledgment that we have very 

little definitive information on their migratory habits. That being said, it is nevertheless 

interesting to speculate on the potential causes of the differences in repertoire size among 

migrants and non-migrants.  
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Abstract 

 Song repertoire size varies with both latitude and migratory status in rock wrens, 

but very little is known about their migration. Migration and geography are thought to 

impose strong selection pressures on bird morphology, physiology, genetics, and 

behavior. The goal of this study was to test whether prior classification of rock wren 

populations as migratory or sedentary is supported by morphological or genetic data. We 

sampled rock wrens at 11 sites along a latitudinal transect spanning a migratory divide 

and measured hand-wing index, mass, and the lengths of the tarsus, culmen, wing chord, 

the first secondary, and tail. DNA was collected for genome scans for SNPs using 

targeted sequence capture to assess population genetic structure. Putatively migratory 

populations had smaller wing chords, tails, and culmens, and larger tarsi than putatively 

sedentary populations. Some population genetic structure was resolvable using outlier 

loci, but did not yield groups consistent with prior predictions. The combination of 

morphological traits diverging along a migratory divide without corresponding genetic 

structure suggests migration does not pose a barrier to gene flow.  

Introduction 
 

 In the previous chapter, I focused on the relationship between song repertoire size, 

latitude, and migration in rock wrens. Because few wren species migrate (del Hoyo et al. 

2018), we know very little about the routes taken by those that do (Taylor et al. 1983, 

Johnson and Wise 1999) and essentially nothing is known about rock wren migration 

(Lowther et al. 2000). However, the ecological and sexual selection pressures imposed by 
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migratory behavior and high-latitude living are the cornerstones of nearly every 

hypothesis proposed to explain why these forces should shape song complexity (Chapter 

II). If the assumptions of these hypotheses are correct, then we should expect to see the 

effects of selection for migratory or sedentary behavior in rock wrens. 

 Adaptation for migration is fundamentally adaptation for efficient locomotion. In 

birds, this generally means the flight apparatus (wings and tail) is modified in some way. 

Migratory species are most often characterized by wing morphology with long distal 

primaries, short proximal primaries, and short secondaries (Rayner 1988, Winkler and 

Leisler 1992, Egbert and Belthoff 2003) and shorter, more squared tails (Leisler and 

Winkler 2003, Hedenström 2008). Wing shape and size can directly impact factors 

associated with flight efficiency, such as wing loading and drag (Hedenström 2008).  

 Body size and mass are critical to volant species, although the relationships 

between migratory behavior, latitude, and body size are not as clear cut. Migratory 

species are generally larger and occur farther north than sedentary species, which are 

smaller-bodied, a pattern held up by many studies and between many taxa, including 

North American birds (Blackburn and Gaston 1996b). A variety of hypotheses have been 

proposed to explain this observation (Blackburn et al. 2008). Larger bodied birds may be 

less susceptible to starvation (Lindstedt and Boyce 1985), better able to conserve heat in 

typically cooler environments (Bergmann 1847), or are better able to disperse long 

distances (Newton and Dale 1996). Of course, it is always possible that mass is linked to 

some other trait that is advantageous at high latitudes or in migratory species (Blackburn 

and Gaston 1996a) and within-species or phylogenetically controlled comparisons do not 
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always find this pattern (Blackburn et al. 2008), making it difficult to predict what effect, 

if any, migration or latitude will have on body size within a given species.  

 Migration requires a suite of adaptations for navigation, efficient metabolism, and 

flight (Chapter I). These requirements may impose a barrier to reproduction between 

migratory and sedentary birds since the “wrong” alleles could result in a costly, possibly 

fatal, phenotype in offspring (Berthold 1990). That being said, it is also possible that 

most, if not all individuals, migrant or not, have the required genetic background to 

migrate given certain environmental triggers, and migratory or sedentary behavior can 

evolve rapidly in birds (Berthold and Helbig 1992, Pulido and Berthold 2010). Partially 

migratory species, where not all individuals migrate, are particularly interesting to study 

because they may represent an evolutionary transition from one state to the other (Pulido 

2011). Pulido et al. (1996) proposed a threshold model of genetic variation to explain the 

amazing lability of this behavior given the frequently uniform expression of the 

phenotype (i.e. all birds in a region do or do not migrate), wherein migratory “liability” is 

a normally distributed continuous trait tied to a gene, such as hormone concentration. A 

bird exhibits migratory behavior once the liability concentration exceeds some threshold. 

Pulido (2011) expanded on this model to allow environmental variation to raise or lower 

the threshold, although what exactly is the liability is presently unknown. 

While obligate migrants can show strong genetic differentiation along migratory 

divides or between migratory flyways (e.g. Kelly et al. 2005, Rolshausen et al. 2009), this 

is not always the case (Linossier et al. 2016). Differences in song may (MacDougall-

Shackleton and MacDougall-Shackleton 2001) or may not (Lougheed and Handford 

1992, Wright and Wilkinson 2001) be associated with genetic population structure, a 
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situation likely influenced (and confounded) by the fact that song is learned in oscines. 

The interaction among genetics and song in a facultative migrant may be even more 

complicated and difficult to predict. 

 Rock wrens disappear each winter from most of the northern half of their range, 

their destinations remaining a mystery (Lowther et al. 2000). Rock wrens are rarely 

banded and have never been recovered at a location other than where they were initially 

marked (USGS 2018 pers. obs.). Without knowing the specifics of their migrations, it is 

difficult to estimate just how strong of a selective force migratory behavior imposes. At 

least three scenarios could result in the observed breeding and wintering distributions of 

rock wrens. Migrant rock wrens could be dispersing evenly throughout the wintering 

distribution, such that migrants and residents are intermixed (Fig 4.1a). Rock wrens could 

be ‘leapfrog’ migrants, where the southernmost migrants travel a very short distance to 

mix with residents, and the northernmost migrants travel very far south (Fig 4.1c). 

Perhaps most rock wrens are migratory and they all migrate some short or intermediate 

distance, so that northern birds displace southern birds (Fig 4.1b). For any migratory 

route scenario, rock wrens may be highly facultative migrants and any given individual 

may or may not migrate in a given year.  
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Figure 4.1. Three possible strategies for migration in rock wrens. Even mixing of 

residents and migrants (a), universal equidistant migration (b), and leapfrog migration (c). 

Rock wren range map modified from the Birds of North America online (birdsna.org). 

  

 I attempted to determine whether the classification of migratory and sedentary 

rock wrens I outlined in Chapter IV was concordant with the expectations outlined in 

previously published literature. To that end, I used morphological measurements and 

SNP data from individuals captured at the same 11 populations in which I recorded rock 

wren song (see Chapter II). If migratory strategy imposes differential selection pressures 

on migratory versus sedentary birds, then I expect that migratory rock wrens and 

sedentary rock wrens will be morphologically and genetically distinct. Specifically, I 

predict that migratory, high-latitude rock wrens will have longer wing chords, larger 

hand-wing indices, longer tarsi, larger masses, and shorter tails than sedentary, low-

latitude rock wrens. Migratory and sedentary rock wrens will be identifiable as separate 

genetic clusters using population genetics approaches, and the migratory divide will be 

located in central Colorado between Comanche National Grasslands and Horsetooth 

Reservoir.  
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Methods 

Handling 

 Rock wrens were captured using mist nets in 2015 and 2016. Birds were lured 

into the net with playback of conspecific song and, on occasion, a taxidermied rock wren 

mount. Each wren was marked with a unique combination of plastic color bands and a 

USFWS metal band. Mass and the lengths of the culmen, tarsus, wing chord, first 

secondary, and tail were measured. Approximately 15µl of blood was taken by 

puncturing the brachial vein with a 26-gauge hypodermic needle and drawing blood with 

a capillary tube. Blood was stored in Longmire’s solution without refrigeration in a chest 

cooler until the end of the field season, after which samples were frozen at -20°C. Finally, 

a photograph of the outstretched wing was taken against a 1cmx1cm grid. The bird was 

then released.  

 I was able to capture 109 rock wrens. Of these, 107 were adults and 2 were 

juveniles. Of the 107 adults, 96 were males and 11 were females. The Horsetooth 

Reservoir population was managed by Dr. Benedict, who captured 15 individuals in 2015 

and 2016 (Table 4.1). 

Table 4.1. Demographics of captured rock wrens. 
Abbreviation Locality Total 

captures 

Males Females Juveniles 

CBL Coal Banks Landing, MT 9 7 1 1 

MC Milligan Canyon, MT 12 12 0 0 

DETO Devils Tower, WY 12 9 3 0 

BSP Boysen State Park, WY 12 12 0 0 

FOCO Horsetooth Reservoir, CO 15 14 1 0 

CNG Comanche National Grasslands, CO 12 9 3 0 

RGG Rio Grande Gorge, NM 12 11 1 0 

BOX The Box National Recreation Area, 

NM 

12 11 1 0 

OM Desert Peaks National Monument, NM 9 9 0 0 

FODA Fort Davis National Historic Site, TX 13 10 2 1 

BBR Big Bend Ranch State Park, TX 6 5 1 0 
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Hand-Wing Index 

 As flight is the means by which migrants reach their breeding sites and reproduce, 

migration is thought to represent a strong selection pressure on the morphology of bird 

wings. It has long been noted that migratory birds have “pointier” wings (i.e. the feathers 

proximal to the leading edge of the wing are longer than those distal to it, like a dove or 

falcon wing) than non-migrants (Swaddle and Lockwood 1998, Hedenström 2008). 

Wing-pointedness is highly correlated with migratory distance and can be used to infer 

whether one population migrates farther than another population. To infer wing-

pointedness, I visualized photographs of outstretched rock wren wings and measured the 

lengths of the wing chord and first secondary in imageJ (version 1.8 Schneider et al. 

2012) using the line measure tool after scaling. Each feather was measured three times 

and the average was used as the final measurement. Kipp’s hand-wing index (Kipp’s 

index, Kipp 1959) was calculated using the following formula: ((Wing length-1st 

secondary length)/1st secondary length)*100. While numerous indices have been 

proposed to describe wing shape, and in particular, wing pointedness, Kipp’s index is 

most suited to measuring overall proportions of the handwing and is closely correlated 

with aspect ratio (Lockwood et al. 1998). Kipp’s index is significantly confounded with 

body size, but this is largely a problem for interspecific comparisons (Lockwood et al. 

1998), whereas I am comparing measurements among individuals from the same species 

and largely from the same age and sex class. 
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Statistical Analysis of Morphology 

 I used bivariate analysis and one-way ANOVA to identify significant associations 

between morphological measurements and migration strategy (alpha=0.05). To correct 

for multiple comparisons I used the Benjamini-Hochberg procedure with a false-positive 

rate set at 10% (Q=0.1).  

Deoxyribonucleic Acid (DNA) 

Enrichment 

 

 DNA was extracted from blood samples with DNeasy kits using the tissue 

protocol (Qiagen, Inc.). Whole, extracted DNA was prepared for target sequence capture 

using a MyBaits kit (MYcroarray, Inc.) (Fig 4.2) containing both custom and pre-

designed ultraconserved element (UCE) probes. Genes thought to be associated with 

migration, morphology, and song were discovered via literature search (Appendix C). 

Probes to capture the custom exons were designed and manufactured for this project by 

MycroArray using the annotated zebra finch genome (Taeniopygia guttata) as a 

reference. A total of 3,000 randomly selected UCE loci and 246 custom loci using 

~12,000 unique probes were included in the final probe set. This project was conducted 

in collaboration with Dr. Garth Spellman at the Denver Museum of Nature and Science, 

who contributed 56 samples and funding while we (myself and Dr. Benedict) contributed 

118 samples, funding, and lab work. While Dr. Spellman was working on a different rock 

wren project, the following steps were performed on all 174 samples together. 

 Whole genomic DNA was sheared on a Covaris M220 focused-ultrasonicator to 

generate approximately 500bp sized fragments at 10ng/µl. All sample concentrations 

were determined with a Qubit fluorometer using the high-sensitivity kit (Life 

Technologies, Inc.). Samples were end-repaired, adenylated, and dual-indexed following 
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a KAPA Hyper Prep kit protocol (KAPA Biosystems) using 0.8X SPRI bead clean-ups 

and Illumina TruSeq adapters (Illumina, Inc.). Each sample was dual-indexed with a 

unique combination of iTru5 and iTru7 series adapters using the following PCR protocol: 

98°C for 45s; 10 cycles of 98°C for 15s, 60°C for 30s, 72°C for 30s, with a final 

extension of 72°C for 1 minute. 

 Libraries were pooled in lots of 8 individuals for up to 500ng of total DNA (up to 

62.5ng per individual) and concentrated to 7 µl in ddH2O using a SpeedVac. Blocking 

mix was assembled according to the MyBaits protocol, with the exception of the 

substitution of block 1 (which was provided in the kit) with Chicken COT-1. 

Hybridization mix was assembled according to the protocol. Samples were incubated at 

65°C for 24 hours and then bound to streptavidin dynabeads (Invitrogen, Inc.). Beads 

were washed and then 15µl captured DNA was amplified with 25µl KAPA HiFi HotStart 

ReadyMix, 5µl ddH2O, 2.5µl each of Illumina library primer (at 10µM) using the 

following PCR protocol: 98°C for 2 minutes; 16 cycles of 98°C for 20s, 60°C for 30s, 

and 72°C for 60s, with a final extension of 72°C for 5 minutes. After a final 1.2X SPRI 

bead clean-up, 2µl of sample was used to quantify the concentration with a Qubit 

fluorometer. Small (<150bp) fragments were removed using a GeneRead Size Selection 

kit (Qiagen, Inc.). Of 174 starting samples, 167 were successfully amplified and pooled. 

These samples were shipped to the Oklahoma Genomics Resource Facility for 

sequencing on an Illumina HiSeq 3000 on one lane.  
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Figure 4.2. Summary of the target capture process. Blockers are hybridized to library 

adapters, then baits hybridized to their targets for 24 hours. Streptavidin-coated beads 

bind to biotinylated baits and non-bound DNA is washed away. Captured DNA is 

amplified via PCR. From the MYbaits Manual v. 3.02 (MYcroarray, Inc.).  

 

Genetics Analysis 

 A total of 158 samples were successfully sequenced. Demultiplexed FASTQ 

sequences were cleaned for adapter contamination and low quality sequences using 

ILLUMIPROCESSOR (Faircloth 2013) and TRIMMOMATIC (Bolger et al. 2014). 

Cleaned sequences were assembled into contigs using the ABYSS program (Simpson et 
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al. 2009) executed in the PHYLUCE package (Faircloth 2015), which removes low 

quality sites in addition to assembling contigs. We generated 75% and 95% complete 

matrices in PHYLUCE using the ‘match contigs to probes’ function to identify the four 

individuals with the best coverage. These individuals were aligned to the UCE and exon 

probes sets in GENEIOUS (version 11.1.4., Kearse et al. 2012) to generate 

pseudoreferences. All other individuals were mapped to the psuedoreferences to identify 

variable sites for the UCE and exon probe sets using BWA and SAMTOOLS. Variants 

were called in GATK (version 4.0, Van der Auwera et al. 2013) to output two single-

nucleotide polymorphism (SNP) datasets, a 75% and a 95% set (i.e. 95% or 75% of 

individuals share that variable site). At least three individuals had to have a polymorphic 

site relative to the pseudoreference for a locus to be called as a SNP. 

 The rest of the analyses are on the subset of 96 individuals sequenced from my 

focal transect of 11 populations. I used the R package OutFLANK (Whitlock and 

Lotterhos 2015) to identify outlier loci with the minimum heterozygosity of an allele set 

at 10% and the q threshold (false positive rate) set at 0.05. Outlier analysis is extremely 

sensitive to the number of populations you specify so I varied the number of 

“populations,” with two (i.e. migratory vs sedentary), three (migratory, sedentary, 

intermediate), and eleven (site membership) groups. I noted which SNPs were identified 

as outliers in multiple grouping schemes. I used the output from OutFLANK to identify 

which loci had any outlier SNP, which loci had multiple SNPs, and which loci were 

marked as outliers in multiple population classification schemes. I also used the output of 

the eleven population outlier analysis to generate a new SNP dataset consisting only of 
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outliers. Outlier loci are interesting to study because they are likely under some selective 

pressure (Storz 2005). 

 I used FASTSTRUCTURE (Raj et al. 2014), which implements a variational 

Bayesian method, to assess genetic population membership among my eleven sampled 

populations. Using the full 75% data set and the outlier set I ran K=1 through K=15 with 

a logistic prior and used the built-in cross-validation function to identify the best 

supported value of K. I used the R package ADEGENET (Jombart and Ahmed 2011) to 

run discriminant analysis of principal components (dapc) on the full and outlier data sets 

as an alternative method to identify the best supported group number. For each dapc, I 

chose the number of principal components that describes ~95% of the data since this 

analysis is susceptible to overfitting. I used VCFTOOLS (Danecek et al. 2011), 

SAMTOOLS (Li et al. 2009), and PLINK (version 1.9, Purcell et al. 2007) throughout 

the data analysis process to convert amongst data input formats and rename and remove 

samples as needed.   

Ethics and Permitting 

 All research was conducted with institutional, federal, and state permissions as 

required, and permitting agencies were accordingly reported to. All birds were handled 

according to Guidelines to the Use of Wild Birds in Research (Fair et al. 2010). The 

following is a list of permits received: 

Federal – 23741 B Najar 

IACUC – UNCO: 1105C-LB-Birds 

NPS: IMR_FODA_Najar_RockWren_2015.A2, 

IMR_DETO_Najar_RockWren_2016.A2 
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Montana – 2016-040 

Wyoming – 33-1005 

Colorado – trB2041 

New Mexico – Najar 3582 

Texas – SPR-0315-031 

Results 

Morphology 

 The results of morphological analyses are presented in Table 4.2. Tail length was 

correlated with migration strategy (p=0.0001, F107=18.02, one-way ANOVA) and latitude 

(p=0.0003, F107=9.64, R2
adj=0.10); birds at higher latitudes had shorter tails. Tail length 

was associated with the other direct feather measurement, wing chord (p=0.0001 

F107=63.23, R2
adj=0.34), so that birds at high latitudes had both shorter tails and smaller 

wing chords. Wing chord was correlated with migration strategy (p=0.05, F128=4.64, one-

way ANOVA) and latitude (migrants have shorter wing chords, p=0.03, F128=4.64, 

R2
adj=0.028). Tarsus was significantly associated with migration strategy (p=0.0001, 

F127=18.75, one-way ANOVA) and overall latitude (migrants have larger tarsi, p=0.024, 

F127=5.l9, R2
adj=0.032). Mass and hand-wing index were not associated with any other 

metrics after correcting for multiple comparisons using the Benjamini-Hochberg 

procedure. 
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Table 4.2. Summary of morphological measurements of migratory and sedentary rock 

wrens. All measurements are of adult males. WC = wing chord length, S1 = first 

secondary length, HWI = hand-wing index. 

 
Migratory Sedentary Strategy Latitude 

 
mean (n) mean (n) P Fcrit P Fcrit 

WC 70.1 (72) 70.7 (56) 0.05 3.89 0.03 4.64 

S1* 59.8 (46) 60.1 (55) 0.57 0.31 0.97 0.0008 

HWI* 16.46 (46) 15.44 (55) 0.13 2.3 0.24 1.39 

Tail 50.5 (52) 52.7 (55) 0.0001 18.02 0.0003 13.69 

Tarsus 21.9 (71) 20.7 (56) 0.0001 18.75 0.024 5.19 

Mass 15.8 (69) 15.6 (56) 0.18 1.81 0.25 1.31 

Culmen 18.4 (72) 19.1(56) 0.0048 8.23 0.77 0.08 

*measured digitally using imageJ. 

Table 4.3. Predictions versus outcomes for morphological measurements. Predictions are 

on the left column with a gray background and outcomes are on the right with a white 

background. WC = wing chord length, S1 = first secondary length, HWI = hand-wing 

index. 

 
Migratory Sedentary Latitude 

As 

Predicted? 

WC larger smaller smaller larger increases Decreases no 

S1* no diff no diff no diff no diff no diff no diff yes 

HWI larger no diff smaller no diff increases no diff no 

Tail smaller smaller larger larger decreases decreases yes 

Tarsus larger larger smaller smaller increases increases yes 

Mass larger no diff smaller no diff increases no diff no 

Culmen no diff smaller no diff larger no diff no diff no/yes 

 

SNP Discovery and Outlier Analysis 

 Two datasets were generated using the pipeline described in the methods, a 95% 

completeness set with 32,478 SNPs, and a 75% completeness set with 185,504 SNPs. No 

rock wren in the transect had more than 3% overall missing data (n=96), so I used the 

larger SNP set for subsequent analyses.  

 OutFLANK identified 636 SNPs out of 185,504 (0.3%) as candidate outliers 

using a prior population assignment of 11 (each sampled population is a separate 

comparison group) (Table 4.4). I used the outliers identified from this “sampling 
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location” grouping for subsequent analyses, in large part because this assignment scheme 

is a natural one and resulted in a moderate number of outlier loci. Other schemes resulted 

in 18-5313 outliers (Table 4.4). Of the “sampling location” outliers, 358 (57%) were 

located on targeted sequences (e.g. exons and introns) and 278 (43%) were located on 

UCEs. A total of 98 targeted genes had at least one outlier locus (39.8%), and the 

distribution of outliers is laid out in Figure 4.3. Of 3,000 UCEs sequenced, 216 had at 

least one outlier (7.2%). 

 

Figure 4.3. Proportions of genes with outliers versus number of genes sequenced for a 

given function. The number on the bottom, green portion of a bar is how many genes had 

outliers, the number on the top, gray portion of the bar is how many genes did not have 

outliers. This distribution is for outliers identified from population assignment A. 

  

Population Assignment 

 I ran FASTSTRUCTURE on two datasets; the full SNP set with 185,504 loci and 

the reduced set with 636 outliers. The best supported K for the full set was K=1, 

suggesting panmixia. The best supported K for the reduced outlier set is K=10 (marginal 
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likelihood=-0.263), closely followed by K=3 (marginal likelihood=0.269) and K=2 

(marginal likelihood=0.279) (Figure 4.4).  

 

Figure 4.4. Summary of marginal likelihoods for each prior population assignment (i.e. 

K) for FASTSTRUCTURE assignments using outlier loci. 

 

 Population structure elucidated from the outlier dataset is illustrated in Figure 4.5. 

At K=2, the largest group includes all individuals except three (two FODA and one 

CBL), and 10 individuals are classified as “admixed,” mostly belonging to the southern, 

sedentary end of the transect, and seems to be dominated by individuals from Fort Davis 

National Historic Site. At K=3, the group split from K=2 remains, but a new group 

containing all of Big Bend Ranch, two individuals from Horsetooth Reservoir, one 

individual from Boysen State Park, and all of Coal Banks Landing is resolved. At K=10, 

there are four main groups, not ten. The largest group includes all of The Box, Comanche 

National Grasslands, Horsetooth Reservoir, and Devils Tower, and all but one individual 

from each of Milligan Canyon and Boysen State Park. The second largest group includes 

all but one individual from each of Rio Grande Gorge and Coal Banks Landing, the third 
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group includes all but one individual from Big Bend Ranch, and the fourth group is 

highly admixed but is mostly represented by individuals from Fort Davis.  

 

 

 

Figure 4.5. FASTSTRUCTURE plots for K=2, K=3, and K=10. Organized by 

population, with the populations progressing from south to north going left to right. 

Colors represent group assignment. I hypothesized the migratory divide is between CNG 

and FOCO (SO) in the middle of the plots. 

 

 The best groupings from discriminant analysis of principal components (dapc) 

were K=3 and K=4 (Figure 6, Appendix D). At K=3, dapc recovers BBR, CBL, MC, 

K=2 

K=3 

K=10 
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RGG, most of BOX, and three individuals from CNG as belonging to one group (group 1, 

green), the rest of the BOX, MC, and CNG, BSP, DETO, OM, and all but one individual 

from FOCO, and a few individuals from FODA, and one RGG bird as belonging to group 

2 (navy blue). Group 3 is comprised mostly of FODA along with one individual from 

each of BBR, BOX, BSP, CBL, OM, and FOCO.  

 At K=4 all of BBR, all but one CBL, and one RGG individual are separated as a 

group (group 8, purple). The largest group is comprised of all of the BOX, BSP, CNG, 

DETO, MC, OM, RGG, and all but one FOCO along with three FODA individuals 

(group 7, sky blue). The smallest group is only two individuals from FODA (FODA5 and 

FODA8) (group 5, orange), and the final group is comprised of the same individuals as 

K=3 group 3 and contains the other half of FODA along with one individual from each of 

BBR, BOX, BSP, CBL, OM, and FOCO (group 6, brown). 
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Figure 4.6. Graphical illustration of population assignments by dapc. K=3 (groups 1-3) 

on the left, K=4 (groups 5-8), on the right.  

 

 There is no clearly identifiable split between migrants and residents (statistically 

or otherwise) and no analysis recovered a purely sedentary or migrant group (with the 

exception of dapc K=4 group 5, which only includes two FODA birds). Groups are also 

not generally defined by their geographic locations, and even at K=10 I did not recover 

10 populations but rather four larger groups that span the entirety of the transect.  

Discussion 

Migratory Morphology 

Migrants are thought to be under strong selective pressure to optimize their flight 

efficiency, and common adaptations in migrants are longer, pointier wings, shorter tails, 

and larger body sizes (Pulido 2007, Hedenstöm 2008). Migration is thought to be largely 
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genetically controlled (Berthold 1990), although environmental factors may play a major 

role in whether an individual will migrate (Pulido 2011). Rock wren morphology and 

population genetics are partially consistent with these predictions. In practice, however, 

which genes are most important, how heritable they are, and the conditions that regulate 

them are effectively unknown. Migratory status or latitude predicts some morphological 

measurements in rock wrens. The two direct feather measurements, wing chord and tail, 

are most strongly associated with both migratory status and latitude (Table 4.1). Tail and 

wing chord length are also very strongly associated with each other, suggesting the same 

mechanism controls overall feather length. Hand-wing index was not correlated with 

strategy or latitude.  

Of the two body size measurements (tarsus and mass), tarsus was significantly 

correlated with both latitude and strategy, while mass was not significantly correlated 

with either. Overall, the difference between migratory and sedentary tarsus size is 

associated with latitude, it is much more strongly correlated with strategy alone (Table 

4.1). Looking within each group (migratory versus sedentary), tarsus increases with 

latitude in residents (although not significantly so) but is essentially constant among 

migrants. This is only partially in line with my prediction that tarsus will be most strongly 

predicted by latitude, and as a consequence will also be associated with strategy. These 

results suggest a divide between migratory and sedentary individuals. While latitudinal 

gradients in mass are commonly studied (Blackburn et al. 2008), mass is not as good an 

indicator of body size in birds because it can fluctuate from day to day, while the tarsus is 

a bone and highly correlated with the overall size of the skeleton (Senar and Pascual 

1997).  



99 
 

 
 

 Feather measurements, while associated with migration and latitude, were not 

correlated in the direction I predicted. Migrants have smaller tails and wing chords than 

residents, despite having larger tarsi. While I predicted migrants should have smaller 

tails, I also predicted they should have longer wing chords. I did not measure wing area, 

but the combination of shorter wing chords and secondary feathers (Table 4.1) strongly 

suggests that wing area is smaller in migrants. Even if migrants did not gain mass to 

migrate, they would have higher wing loading (mass per wing area) than sedentary birds. 

Most notably, hand-wing index does not differ at all between migrants and residents, 

suggesting wing size but not wing shape is under selection.  

 This is a peculiar state completely contrary to my predictions about how wing 

shape should change with migratory strategy. Wing shape is most often studied in species 

that undertake long distance and/or non-stop migrations (e.g. Phylloscopus warblers, 

Marchetti et al. 1995, Acrocephalus warblers, Peiró 2003), although some short distance 

migrants have been studied as well (e.g. dark-eyed juncos, Mulvihill and Chandler 1990). 

Overall, it is most common to find that migrants have longer and/or pointier wings than 

sedentary birds (Hedenström 2008). Most wrens are not migratory and morphologically 

are classic examples of adaptation to terrestrial, closed environments requiring 

maneuverability and rapid take-off (Norberg 1995). Rock wrens are almost certainly not 

making flights over open water or through vast stretches of inhospitable habitat since 

they are adapted to forage in rocky hills, plains, and desert with little regard for tree cover 

or water (Lowther et al. 2000). In that case, they may be less constrained by the need to 

reach particular stopover sites than other migratory species, resulting in little to no 

selection for the typical migratory wing phenotype.  
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Genetic Structure 

 In contrast to morphology, genetics do not seem to predict migratory behavior in 

any manner. Neither program (FASTSTRUCTURE or ADEGENET) clustered 

individuals by sampling location or (presumed) migratory behavior. The full data set 

consisting of 185,504 loci could not resolve any population structure (best K=1), and 

only by reducing the data set to outlier loci could any structure be found. Both programs 

broadly agree in their assignment of groups, with BBR and CBL falling out as one 

population, FODA comprising another, highly admixed population, and the rest 

belonging to one or two very large populations. Critically, there is no switch or transition 

from one population assignment to another in either Colorado population (CNG or 

FOCO) that would correspond with a switch in migratory strategy. These programs 

cluster genetic data in very different ways, with FASTSTRUCTURE using a Bayesian 

method to generate an optimized model of evolution, and ADEGENET using 

discriminant function analysis of the principal components of the data, which has no a 

priori model of evolution. This suggests these results are not an artifact of the 

methodology employed but rather accurate reflections of genetic similarity.  

 The inability of these programs to resolve population structure from the full data 

set, and only detecting structure using outlier loci presumably under selection, strongly 

suggests that all 11 rock wren populations in my transect are highly admixed and 

effectively constitute one large population. If migration indeed imposes a selective filter 

such that only certain migratory alleles can pass through, then I can only conclude that I 

did not find those alleles.  
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 The structure resolved from outlier loci could be indicative of several 

possibilities. First, the more isolated and sedentary a population is, the more divergent we 

expect it to be from other populations. This could mean FODA, BBR, and CBL, are 

short-distance/poor dispersers while the other populations are all migratory and/or long-

distance dispersers. This scenario would suggest the migratory divide is actually further 

south than I assumed, and birds overwintering in New Mexico and southern Colorado are 

migrants from further north (similar to the possibility depicted in Fig 4.1b). This could 

explain why FODA is the most admixed population, with individuals assigned to all other 

groupings present. I did not sample birds in the winter so I could not test the potential 

migratory connectivity of wintering and breeding populations.  

 Second, if outliers are under selection, then CBL and BBR might be grouping 

together because they share alleles adapted for some common selective pressure. I have 

assumed that, as my northernmost population, CBL birds are migrating the farthest. It is 

possible that these individuals are not migrating very far or at all. There are not many 

rock wrens in central Montana, and most of them are concentrated on the sand banks of 

the Missouri River (eBird 2018). This particular spot is not commonly visited by 

birdwatchers in the winter and even common winter birds are not reported here. While it 

is not very likely that these birds are sedentary in Montana in general since they are 

insectivorous, it is possible that they are wintering along the river where it is slightly 

warmer or migrating a relatively short distance to Idaho or Washington where rock wrens 

are regularly documented to overwinter along rivers (eBird 2018). However, 

FASTSTRUCTURE clusters CBL with RGG and OM at K=10 and not BBR. 
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 Perhaps CBL and BBR are grouped together by the chance sharing of alleles that 

are under selection for something other than migration. CBL birds had among the largest 

song repertoires of any migratory population, so perhaps it is similarity in alleles on 

genes associated with song that is driving this grouping. We also sequenced a random 

assortment of 3000 UCEs, some of which had outlier loci. It could be these UCE outliers 

that are driving the grouping of CBL and BBR. 

 While the ends of the transect keep falling out as somewhat unique, the analyses 

consistently had difficulty differentiating among sampling locations in the middle. 

Bayesian assignment generally did not split up sampling populations (i.e. all individuals 

from DETO were classified in the same group) suggesting that individuals from any 

given sampling location are relatively indistinguishable from their neighbors, but that 

they are also indistinguishable from individuals sampled over 1500 km away. This 

pattern suggests high levels of gene flow among these populations, even more so than 

amongst all rock wrens in the transect, and possibly common selective pressures. 

Migratory Syndrome in Rock Wrens 

 While the pattern of morphological measurements is, overall, consistent with the 

hypothesis that there is some ecological difference between migratory and sedentary rock 

wrens, the genetic population structure does not support this idea. If I have misclassified 

which populations are migratory and which are sedentary, then it is difficult to explain 

the pattern of both song repertoire size (Chapter IV) and morphology. I suspect my 

classification of migratory and sedentary individuals is largely correct, but that the 

assumption that migration is so strongly genetically controlled that it is sufficient to 

isolate these two groups is not. We cannot rule out the possibility that migration is 
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entirely facultative in rock wrens and that any rock wren, even one transported from a 

southern site, could successfully navigate to suitable wintering grounds. It is fairly well 

established now that migration is not all-or-nothing and can be highly influenced by local 

environmental conditions. Many factors, such as local food availability, competition, or 

physical condition, may influence whether a given individual will migrate or not (Pulido 

2011). There are many reports of rock wrens overwintering even at high latitudes 

(Lowther et al. 2000, eBird 2018) and it is entirely possible that this is a common 

occurrence.  

 I set out to assess whether I would see a pattern of morphological measurements 

and genetic structure concordant with my predictions of how they should be influenced 

by migration. The reality is more complicated than I expected. This may be due, in part, 

because we tend to study mostly obligate migrants with discrete wintering and breeding 

ranges, like thrushes (Ruegg et al. 2006, Ruegg et al. 2014) and warblers (Paxton et al. 

2007, Ruegg et al. 2014). These are the species most likely to exhibit more extreme 

adaptations for migration, probably because they have been obligate migrants for a long 

time. Warblers, for example, are thought to have evolved in North America from 

migratory ancestors, with sedentariness being a derived state (Winger et al. 2014). In 

contrast, the position of rock wrens in the most recent wren phylogeny is somewhat 

ambiguous, with rock wrens either the most basal wren, or sister to the most basal wren 

(Barker 2017). This makes interpreting the origins of migration in wrens more difficult, 

although given the rapid modern expansion of rock wrens (eBird 2018) and the general 

lack of migratory wren species (del Hoyo et al. 2018) I suspect that rock wren migration 

is derived. While rock wren tail and tarsus length change with latitude and migratory 
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status as I expected, wing length and hand-wing index do not. The overall lack of 

population genetic structure reveals a highly admixed population, and even reduction of 

the data set to outlier loci does not seem able to resolve migrants from residents, possibly 

suggesting a relatively recent gain of migratory behavior.  
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CHAPTER V 

 

SYNTHESIS AND CONCLUSIONS 

 

Song Complexity 

 Examples of complex signaling systems are all around us. Even seemingly simple 

signals, like chickadee alarm calls, have hidden depths of meaning that only recently 

have we started to understand (Ficken 1990, Templeton et al. 2005). Despite several 

decades of work (Searcy and Nowicki 2005), research of signal complexity is still 

essentially in its infancy. The best-studied signals are unimodal and naturally selected, 

like alarm or feeding calls (Hebets and Papaj 2005). Many studies are correlative, and we 

as a community of scientists are still searching for patterns – we are far from fully 

understanding the processes that generate them. Multi-modal and/or sexually selected 

signals are, by their nature, even more difficult to pick apart and only very recently have 

researchers attempted to tackle them (Hebets et al. 2016). For example, scientists do not 

fully understand all the factors influencing the evolution of the peacock’s courtship 

display, perhaps the most famous of all complex signals (e.g. Thavarajah et al. 2016).  

 Many hypotheses have been proposed to explain variation in signal complexity in 

birds: sociality (Freeberg et al. 2012) and social rank (Spencer et al. 2004a), 

developmental conditions (Spencer et al. 2004b), habitat structure (Briefer et al. 2010), 

and signaling efficacy (Galván 2008) are a few examples. Social signals are those that are 

not adapted for mate attraction, such as territorial soft song (Searcy et al. 2006) or 

feeding calls (Elgar 1986). Sexual signals, where reproductive opportunities are at stake, 
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can be so diverse and elaborate that many hypotheses deal only with this “special case” 

of communication (displays as handicaps – Zahavi 1975, nutritional stress – Nowicki et 

al. 2002, good genes – Fitzpatrick 1994, parasite resistance – Hamilton and Zuk 1982, 

etc.).  

 Bird song is the best studied signal, both social and sexual. Perhaps we can relate 

to the birds – they are largely diurnal and social, using vocal and visual communication 

like us. Their sounds are mostly described as pleasant and musical, and we often 

remember their vocalizations by pretending they are saying some phrase. White-winged 

doves ask “Who cooks for you?” while mountain chickadees really want a 

“Cheeseburger!” and white-throated sparrows proclaim their love for “Oh sweet Canada 

Canada Canada Canada!” Barring the great apes, birds come the closest to human speech 

and language abilities. African grey parrots have famously been taught the meanings of 

hundreds of words and can use them in simple sentences (Pepperberg 1987). We strongly 

associate birds and their songs with feelings and places: how many movies have you seen 

where the yodel of a loon, the scream of a piha, the chirps of a house sparrow, or the 

croak of a raven sets the scene without any other cues?  

 Perhaps we can best sum up the main question we are asking like this: why do 

birds sound so different from each other? There are so many possible factors influencing 

bird vocalizations: phylogeny, environment, sociality, learning mechanism, mating 

system, drift, none of which are mutually exclusive with each other. A small backwater 

field of bird song complexity research has looked at this question from a very large scale, 

suggesting the selection pressures associated with high latitude, temperate habitats may 

ultimately be responsible for major differences both among and within species (Chapter 
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II). These are fairly grand claims, supported mostly by observations of correlations with 

song complexity and latitude or migratory behavior between species. Whether this is 

universally (or even mostly) true for birds remains an open question, and some have 

justifiably called into question the fairly well-accepted expectation that bird song 

complexity increases with latitude. Many studies suffer from poor geographic coverage 

and problems with comparability, and I think it is fair to say that we still have not 

documented this pattern very well, if it exists at all. The same processes that are 

hypothesized to drive the evolution of complexity at high latitudes between species 

should theoretically operate within species. However, single species studies are often 

poorly designed, with few individuals or populations for comparison (Chapter II). In this 

dissertation, I used a more systematic approach to studying latitudinal gradients and 

migratory splits in song complexity in a single species to document whether such a 

pattern exists and what hypotheses the results are consistent with.  

Pattern of Repertoire Size 

 Rock wrens are small, monomorphic, partially migratory passerines with large, 

variable song repertoires. Despite high variance within any given population, there is a 

fairly large difference in repertoire size between migratory (87±23) and sedentary 

(102.6±20.8) rock wrens and repertoire size is correlated with latitude in migrants but not 

residents (Fig 3.3). This outcome has never been explicitly predicted before, probably in 

large part because of a systematic bias towards predicting sedentary populations or 

species are somehow lower quality or experience less intense selection pressure.  

That being said, this pattern is partially consistent with some of the hypotheses 

described in Table 2.1. The only hypothesis that predicts sedentary birds will have higher 
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song complexity is the panmictic migrants hypothesis (Bolus 2014). This hypothesis 

posits that higher dispersal in migrants renders them more similar to each other than 

residents are. Increased complexity in residents comes from local dialect formation. I did 

not assess whether the identities of the song types in migratory populations were more 

similar to each other than among resident populations, so I will not rule out this 

hypothesis as a possible mechanism generating song complexity in rock wrens. However, 

increased local dialect formation does not necessarily translate to more song types. 

Looking for cultural similarities in lieu of genetic ones is an avenue of research I will 

pursue in the future. 

Table 5.1. Summary of support for published hypotheses (from Chapter II).  

 

Two hypotheses are partially consistent with my findings in that they predict a 

correlation between latitude and song complexity. The sound space hypothesis proposes 

that changes in habitat type along a latitudinal gradient will result in more complex song 

in birds since more ‘sound space’ is available at high latitudes (Weir et al. 2012). This 

Hypothesis Prediction Support 

Sound space Latitude: complexity increases 

Migration: no prediction 

Partial – complexity increases with 

latitude, but only in migrants 

Rapid 

pairing 

Latitude: complexity increases 

Migration: complexity higher 

Partial – complexity increases with 

latitude, but only in migrants 

Temporal 

isolation 

Latitude: no prediction 

Migration: complexity higher 

Not supported 

Panmictic 

migrants 

Latitude: no prediction 

Migration: complexity lower 

Partial – complexity lower in 

migrants, but latitude important as 

well 

Good 

migrations 

Latitude: no prediction 

Migration: complexity higher 

Not supported 

Ranging Latitude: no prediction 

Migration: complexity higher 

Not supported 

Territory 

Lottery 

Latitude: no prediction 

Migration: complexity higher 

Not supported 
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hypothesis predicts a fairly gradual cline in complexity from tropical to temperate habitat. 

The rapid pairing hypothesis suggests that shorter breeding seasons at higher latitudes 

result in selection for increased song complexity as a cue for quick assessment of 

potential mates (Catchpole 1982). Fundamentally this hypothesis is driven by latitude, 

and migrants are affected because they breed in places that have shorter breeding seasons. 

The outcome that song complexity increases with latitude is consistent with these two 

hypotheses, but the higher song complexity of residents is not. Given the proposed 

mechanisms of these two hypotheses (habitat structure and length of the breeding season) 

this result seems to exclude them as real possible explanations.  

The remaining four hypotheses all make the same basic prediction that migrants 

should have higher song complexity than residents, albeit for different reasons. They 

make no prediction about the effects of latitude. Since I did not find that migrants have 

higher song complexity than residents it is fairly simple to reject these hypotheses. The 

predilection towards predicting migrants have higher complexity reveals how pervasive 

this paradigm is among researchers studying this. Half of the hypotheses suggest 

increased sexual selection pressure in migrants should render “better” sexual signals 

adaptive, while only one surmises the opposite. Within this small body of literature there 

is almost no way to explain how sedentary populations or species evolve more complex 

songs, despite this pattern being found repeatedly in past study (Chapter II). 
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Migratory Syndrome…? 

 Essentially nothing is known about rock wren migrations beyond the observation 

that the populations of some northern areas disappear in the winter (Lowther et al. 2000). 

Since the breeding and wintering distributions for rock wrens are contiguous, it is 

impossible to know without more explicit testing what routes rock wrens take on 

migration, and therefore how difficult that migration is in terms of distance travelled, 

longest nonstop flights, overall time spent travelling, etc. However, this information is 

critical to these hypotheses. While only the good migrations hypothesis explicitly cites 

selection for “ability to migrate” as the key driver of increased sexual selection, this 

philosophy seems to be governing the song complexity zeitgeist. Authors don’t explicitly 

predict residents will have increased song complexity because how can they? Not when 

migration is such a powerful selective force. Thus, it is useful to try and assess somehow 

whether we can detect any of the telltale signs of selection for better migration on rock 

wrens to satisfy this basic premise. 

Rock wrens in the northern, putatively migratory, half of the transect have larger 

tarsi, smaller tails, and smaller wing chords than birds in the southern half of the transect 

(Table 5.2). This is partially consistent with the expectations for migratory morphology in 

passerines. Past research has noted both larger tarsi and smaller tails in migratory birds, 

but the smaller wing chord and unchanging hand-wing index is unexpected (Hedenström 

2008), although not unique (Huber et al. 2017). Generally, the “more migratory” a 

species is (i.e. the farther it travels), the longer the wing chord is relative to the length of 

the secondary feathers, a pattern found in many species (MacPherson 2017). Taken out of 

any context, the shorter wing chord of migrants would seem to imply that “residents” are 
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actually flying more. I think this highly unlikely, particularly given the other 

measurements that are concordant with expectations of migration. I think it more likely 

that selection on wing length in rock wrens is mediated by some other factor I didn’t 

measure.   

Table 5.2. Summary statistics of measured features for each population. Red populations 

are migratory, blue populations are sedentary. Adult males only. Rep @ 500 = number of 

song types in an individual’s song repertoire at the 500th song; Tarsus = tarsus length, 

Tail = tail length, WC = wing chord, HWI = hand-wing index. Mean, standard deviation, 

and sample size (in parentheses) reported. Data from Chapter IV. 

 
Rep @ 

500 

Tarsus 

(mm) 
Mass (g) 

Tail 

(mm) 

WC 

(mm) 
HWI 

CBL 
101.7±2.9 

(3) 

21.1±0.8 

(7) 

15.1±2.1 

(7) 

51.1±2.0 

(7) 

69.6±2.1 

(7) 

18.3±1.4 

(6) 

MC 
102±3.0 

(3) 

20.7±0.9 

(12) 

15.5±0.7 

(12) 

51.1±2.5 

(12) 

69.3±1.7 

(12) 

15.4±1.8 

(12) 

DETO 
86.0±11.3 

(3) 

21.2±1.0 

(9) 

16.2±1.5 

(9) 

50.6±3.3 

(9) 

71.0±2.5 

(9) 

17.9±4.1 

(9) 

BSP 
61.7±47.4 

(3) 

21.0±0.4 

(12) 

15.7±0.7 

(12) 

50.3±2.5 

(12) 

69.7±1.1 

(12) 

16.3±1.8 

(12) 

FOCO 
76.8±15.6 

(12) 

23.8±2.0 

(32) 

16.4±1.0 

(29) 

51.3±2.7 

(12) 

70.4±1.7 

(32) 

15.8±2.8 

(7) 

CNG 
104.6±8.5 

(5) 

21.5±0.8 

(12) 

15.7±0.9 

(12) 

53.3±2.4 

(12) 

70.5±1.7 

(12) 

15.8±3.9 

(12) 

RGG 
114.7±19.6 

(3) 

21.2±0.8 

(9) 

15.9±0.9 

(9) 

50.9±2.3 

(9) 

70.7±1.4 

(9) 

14.3±2.9 

(9) 

BOX 
79.0±0.7 

(2) 

20.3±1.3 

(11) 

15.5±1.0 

(11) 

53.3±2.3 

(11) 

71.2±1.5 

(11) 

13.4±3.8 

(11) 

OM 
121.5±11.3 

(4) 

20.9±0.7 

(9) 

15.6±0.9 

(9) 

50.9±3.1 

(9) 

69.9±2.3 

(9) 

16.2±2.0 

(9) 

FODA 
89.5±7.8 

(2) 

19.9±0.5 

(10) 

15.7±0.7 

(10) 

54.7±2.1 

(9) 

71.8±1.9 

(10) 

18.7±3.4 

(9) 

BBR 
90.3±28.4 

(3) 

20.9±1.2 

(5) 

15.5±0.5 

(5) 

53.6±3.9 

(5) 

69.8±1.6 

(5) 

13.9±5.3 

(5) 

 

 Migration is thought to be largely genetically controlled (Pulido et al. 1996), so 

there should be selection against migrants and residents interbreeding (Berthold and 

Helbig 1992). Such mixing could lead to an intermediate, less fit phenotype. I did not 

detect any genetic differences between migrants and residents, both using a large SNP 
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dataset of mostly neutral variation and a reduced SNP dataset of loci under selection. 

What genetic structure I could resolve suggests that the ends of the transect are distinct 

from the middle (Chapter IV). Taken together this indicates there is high amounts of gene 

flow among populations, suggesting rock wrens (both migrants and residents) may be 

relatively good dispersers and are probably facultative migrants.  

This situation is consistent with Pulido’s (2011) environmental threshold model 

for migration, where “migration” alleles are present in the majority of the species but 

only expressed in populations living in certain environments. Recent phylogenies reveal 

that migration is a highly labile trait, with species rapidly gaining and losing migration 

(Barker et al. 2015), supporting Pulido’s (2011) hypothesis that there exists high 

intraspecific variation in migration alleles. Even obligate migrants with fixed pathways 

can be somewhat flexible. While coastal and inland subspecies of Swainson’s thrushes 

(Catharus undulatus) take different migratory routes, hybrids do exist and have been 

documented to survive the round-trip (Delmore and Irwin 2014). Their path takes them 

directly in between the two main flyways across huge swathes of desert, unsuitable 

habitat for a Swainson’s thrush. This is in contrast to the stark predictions of hybrid death 

based on lab experiments (Berthold 1992).  

Summary 

Despite not finding population-level genetic differences between migratory and 

sedentary rock wrens, it does not rule out migration as a selective force per se. The 

combination of a lack of genetic structure, and morphological and song features that are 

together best explained by grouping populations by migratory strategy, suggest that 

morphological and behavioral changes in rock wrens have evolved recently and rapidly. 
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While rock wrens are thought to be the most basal wren (Barker 2017), it’s possible that 

they have recently expanded their range northward, resulting in limited genetic 

divergence, and making migration a relatively new behavior. Additionally, it’s entirely 

possible that the most important genes regulating morphology and migration behavior 

were not included in the set we targeted.  

Rapid changes in behavioral and morphological traits in birds have been 

documented occurring over time frames as short as decades. The evolution of beak size in 

the medium ground finch (Geospiza fortis) is perhaps the most well-known example 

(Grant and Grant 2002). A combination of selection imposed by drought-mediated seed 

availability and random oscillating drift have influenced beak phenotypes over several 

decades. Many bird species have responded to noise pollution in cities by altering the 

spectral characteristics of their song, generally by raising the overall frequency (Ortega 

2012). Blackcap warblers evolved an entirely new migratory route and wintering 

distribution, a feat that astonished the ornithological community when it was first 

documented by Langslow (1979).  

I have documented fairly concordant differences in song and morphology between 

migratory and sedentary populations of a single species. While researchers have long 

hypothesized differential selection on migrants and residents, our propensity to predict 

that trait elaboration will occur in migrants versus these results suggest we still don’t 

fully understand the tradeoffs associated with these different strategies. For example, 

year-round territoriality has been characterized as almost simple and carefree for those 

individuals lucky enough to live in the wonderful places that support it (e.g. Mountjoy 

and Leger 2001). This view seems almost comically simplistic and wrong – tropical 
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rainforests, where most species are residents, are among the most competitive places on 

earth (Morris et al. 2004). Rock wrens defend relatively large territories for a small 

passerine (Warning and Benedict 2015) and are described as “uncommon” in field guides 

because they are fairly widely spaced. This behavior suggests space might be a key 

limiting factor among breeding wrens, so ousting a territory holder could be hugely 

beneficial.  

We have barely scratched the surface of the possible migratory and song 

phenotypes of birds, much less the mechanisms generating and maintaining these 

phenotypes. With approximately 10,000 species of birds, nearly half of which are 

passerines, a few studies of sparrows or warblers are not going to reveal everything there 

is to know. However, rapid advances in tools for song analysis, genetics, tracking, and 

monitoring of birds are making it possible to understand these traits in any species 

cheaply and easily. In 2013 a single light-level tracking device cost $500, a prohibitive 

cost when at least ten are necessary to have a reasonable chance of recapturing one 

tracked bird. The cost of sequencing a genome’s worth of DNA cost ~$10,000, 

notwithstanding the additional costs associated with preparing that DNA (Wetterstrand 

2018). Now, in 2018, for $5000 you can buy around 40 geolocators and almost guarantee 

at least a few returns. For $10,000 you can prepare and sequence 9-10 genomes worth of 

DNA. In the next decade many things we thought we understood about bird migration in 

particular will change as the cost to study more species goes down.  

There remains a huge amount of work to do to better understand partial migration, 

breeding ecology, and song complexity. My project has been a small part of the push 

towards understanding not only patterns but the processes underlying them.  
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Appendix B-1. CBL 2014. 

 
Appendix B-2. DETO 2015. 
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Appendix B-3. BSP 2016. 
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Appendix B-4. CNG 2014. 
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Appendix B-5. BOX 2014. 



151 
 

 
 

 
Appendix B-6. BOX 2015. 

 
Appendix B-7. OV 2014. 
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Appendix B-9. FODA 2015. 
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Appendix C. Loci targeted for this project.  
Locus name Function Chr Strand Start End 

FBXL3 CLOCK 1 -1 70,009,422 69,998,367 

PHLPP1 CLOCK 2 1 41,293,490 41,356,772 

ID2 CLOCK 3 1 98,432,467 98,434,469 

PPP1CB CLOCK 3 1 7,789,309 7,803,934 

CRY2 CLOCK 5 -1 22,688,019 22,663,773 

ATOH7 CLOCK 6 -1 1,416,252 1,415,797 

PER2 CLOCK 9 1 1,071,103 1,097,729 

SOX14 CLOCK 9 1 5,492,381 5,493,103 

BHLHE40 CLOCK 12 1 20,332,562 20,336,907 

PPP1CC CLOCK 15 -1 3,610,234 3,596,239 

USP2 CLOCK 24 -1 2,003,693 1,992,120 

CRTC1 CLOCK 28 1 4,881,931 4,907,826 

CRY1 CLOCK 1A -1 53,504,662 53,488,115 

NR2F6 CLOCK Un 1 56,205,335 56,207,348 

GNAQ CLOCK Z 1 54,689,551 54,800,225 

GNAQ CLOCK Z 1 54,800,035 54,800,225 

DCT color 1 1 41,739,696 41,758,139 

EDNRB color 1 -1 70,491,343 70,477,329 

OCA2 color 1 -1 33,100,570 32,957,625 

TYR color 1 -1 82,044,800 82,001,752 

BCL2 color 2 -1 41,520,568 41,427,386 

MC4R color 2 1 40,245,711 40,246,706 

GSTA2 color 3 1 90,760,574 90,769,559 

KITLG color 4 -1 43,668,592 43,633,016 

HPS6 color 6 -1 21,810,043 21,807,911 

FAP color 7 -1 11,909,785 11,873,282 

MREG color 7 1 3,447,782 3,461,060 

ZEB2 color 7 -1 36,173,271 36,138,512 

APOD color 9 1 14,320,362 14,324,106 

TRPC1 color 9 1 11,925,313 11,941,925 

MYO5A color 10 1 8,523,659 8,598,997 

PLIN color 10 1 12,853,132 12,853,570 

RAB27A color 10 1 7,711,439 7,717,132 

SLC24A5 color 10 1 9,926,860 9,934,773 

STARD5 color 10 1 11,998,207 12,002,087 

BCO1 color 11 -1 2,500,189 1,529,923 

MC1R color 11 1 11,645,486 11,646,430 

ADAMTS9 color 12 -1 14,749,614 14,670,362 

WNT5A color 12 -1 7,954,719 7,946,133 

SCARB1 color 15 1 1,818,382 1,833,367 

ASIP color 20 -1 1,865,428 1,861,698 

MC3R color 20 -1 13,443,407 13,442,523 

STARD1 color 22 -1 2,795,308 2,793,195 
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Appendix C, continued. 
Locus name Function Chr Strand Start End 

STARD3 color 27 1 1,747,593 1,761,686 

GNA11 color 28 -1 2,747,647 2,740,933 

ADAMTS20 color 1A -1 29,301,663 29,215,410 

CD-36* color 1A -1 10,156,980 10,137,192 

KITLG color 1A -1 42,338,833 42,312,985 

PMCH color 1A 1 55,305,965 55,307,397 

SOX10 color 1A 1 50,801,260 50,808,581 

MEF2C color Z -1 12,221,410 12,150,796 

STARD4 color Z -1 20,762,542 20,755,392 

TYRP1 color Z -1 60,977,573 60,967,774 

TBX15 cranial skeleton 1 1 91,009,635 91,037,405 

CTNNB1 cranial skeleton 2 -1 64,389,067 64,381,473 

EXOC2 cranial skeleton 2 1 42,817,144 42,930,716 

KIAA1429 cranial skeleton 2 -1 132,589,247 132,563,026 

MMP16 cranial skeleton 2 -1 130,161,393 130,000,343 

SETD2 cranial skeleton 2 1 915,431 950,540 

SHH cranial skeleton 2 -1 8,970,941 8,961,117 

TGFBR1 cranial skeleton 2 -1 75,667,046 75,644,138 

TGFBR2 cranial skeleton 2 1 60,123,444 60,183,464 

BMP2 cranial skeleton 3 -1 25,964,692 13,034,747 

EIF4A3 cranial skeleton 3 -1 330,900 325,675 

RUNX2 cranial skeleton 3 -1 108,943,040 108,793,102 

SIX2 cranial skeleton 3 -1 17,205,719 17,202,350 

PDGFRA cranial skeleton 4 -1 43,801,290 43,777,990 

WDR19 cranial skeleton 4 -1 48,240,398 48,204,115 

CALM1 cranial skeleton 5 1 44,694,192 44,703,366 

DKK3 cranial skeleton 5 1 1,621,546 1,645,796 

DLK1 cranial skeleton 5 1 50,244,126 50,254,271 

SIX4 cranial skeleton 5 1 56,478,911 56,483,811 

FGF8 cranial skeleton 6 1 22,049,471 22,153,810 

FGFR2 cranial skeleton 6 -1 31,392,609 31,316,475 

ALDH1A2 cranial skeleton 10 1 6,786,365 6,838,567 

ALDH1A3 cranial skeleton 10 1 17,976,236 18,007,605 

SMAD3 cranial skeleton 10 1 19,539,755 19,604,218 

FOXC2 cranial skeleton 11 1 324,456 325,922 

PLEKHF1 cranial skeleton 11 1 14,547,970 14,548,791 

WNT9B cranial skeleton 27 -1 915,456 903,982 

SLC39A3 cranial skeleton 28 -1 4,019,922 4,018,363 

AKR1D1 cranial skeleton 1A 1 66,994,762 67,029,500 

ALX1 cranial skeleton 1A 1 41,176,098 41,194,161 

MGAT4C cranial skeleton 1A -1 41,522,572 41,515,203 

RASSF9 cranial skeleton 1A -1 41,454,577 41,430,374 

PAX5 cranial skeleton Z 1 72,604,672 72,742,717 

SMAD2 cranial skeleton Z -1 447,313 407,582 

SV2C cranial skeleton Z -1 57,264,946 57,181,716 

C2CD3 limb development 1 -1 97,789,427 97,759,187 

FGF9 limb development 1 1 46,863,157 46,889,606 

GJA5 limb development 1 -1 103,330,387 103,329,275 

TULP3 limb development 1 1 88,541,725 88,559,710 

NR2F2 limb development 10 1 16,269,224 16,276,151 
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Appendix C, continued. 
Locus name Function Chr Strand Start End 

SALL1 limb development 11 1 9,790,180 9,802,832 

IFT122 limb development 12 1 21,182,241 21,209,637 

ATP1A1 migration 1 -1 92,650,502 92,632,416 

DCUN1D5 migration 1 1 76,647,200 76,657,497 

NHLRC3 migration 1 1 54,040,201 54,046,033 

NPAS2 migration 1 -1 30,384,984 30,323,145 

ADCYAP1 migration 2 -1 107,405,076 107,400,822 

ADCYAP1R1 migration 2 -1 3,466,540 3,349,852 

ARPP21 migration 2 -1 28,961,874 28,858,378 

COL1A2 migration 2 1 25,921,531 25,964,644 

CPNE4 migration 2 -1 62,575,299 62,394,091 

HRSP12 migration 2 -1 134,101,651 134,093,022 

NRSN1 migration 2 1 73,823,245 73,824,834 

PMP2 migration 2 -1 127,674,421 127,670,401 

TTR migration 2 1 111,938,264 111,946,440 

FAM49A migration 3 -1 102,394,341 102,376,601 

NEK2 migration 3 1 13,333,421 13,341,138 

NRXN1 migration 3 -1 22,789,593 22,119,248 

CLOCK migration 4 1 43,426,057 43,442,175 

CREB1 migration 7 1 21,302,445 21,317,966 

BRINP3 migration 8 1 649,867 833,451 

PARL migration 9 1 2,355,875 2,368,301 

CREBRF migration 13 1 2,399,119 2,417,215 

FSCN1 migration 14 -1 11,359,303 11,353,084 

C8G migration 17 -1 263,048 256,501 

HSPA5 migration 17 -1 10,813,273 10,809,175 

AANAT migration 18 -1 7,913,150 7,911,249 

TEKT1 migration 19 -1 11,557,916 11,553,528 

PER3 migration 21 -1 1,871,191 1,854,675 

SLC2A1 migration 21 1 565,487 573,418 

HSPA8 migration 24 -1 3,519,892 3,515,929 

CSNK1E migration 1A 1 50,664,894 50,676,441 

GRP94 migration 1A -1 54,684,558 54,674,742 

PLEKHA5 migration 1A -1 67,944,951 67,772,119 

SRPK2 migration 1A -1 12,966,067 12,874,109 

bmal1 migration 5_random -1 1,014,634 990,870 

DRD4 migration 5_random 1 7,465,884 7,474,708 

Hsp90 migration 5_random -1 50,813,587 50,806,609 

PER2 migration Un 1 4,296,515 4,299,578 

NFIL3 migration Z 1 6,413,742 6,415,115 

SLC1A3 migration Z 1 41,845,197 41,905,911 

TLE4 migration Z -1 54,144,138 54,049,308 

INHBA oxygen transport 2 1 33,558,179 33,570,469 

ADD1 oxygen transport 4 -1 62,182,065 62,119,898 

TET2 oxygen transport 4 1 22,162,473 22,181,744 

CAT oxygen transport 5 1 6,271,419 6,285,186 

HIF1A oxygen transport 5 -1 56,034,204 56,019,200 

INHA oxygen transport 7 1 10,772,704 10,774,697 

EIF2AK1 oxygen transport 14 -1 15,120,965 15,108,765 

HBAA oxygen transport 14 -1 2,980,020 2,979,229 

HBAD oxygen transport 14 -1 2,983,107 2,982,248 
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Appendix C, continued. 
Locus name Function Chr Strand Start End 

HBZ oxygen transport 14 -1 2,987,641 2,985,737 

EPB42 oxygen transport 20 1 7,245,443 7,260,280 

MB oxygen transport 1A 1 51,871,350 51,874,513 

GAP43 song 1 -1 94,891,566 94,867,610 

VEGFD song 1 1 16,956,279 16,985,864 

ARC song 2 -1 155,072,629 155,071,445 

CNTNAP2 song 2 -1 30,635,452 30,184,705 

HIVEP1 song 2 1 68,815,057 68,914,507 

NOD1 song 2 1 61,687,899 61,705,843 

RIPK2 song 2 1 130,575,920 130,604,795 

MAP3K7 song 3 1 77,416,948 77,461,643 

NAPB song 3 1 29,013,677 29,020,672 

RPS27A song 3 -1 28,390,875 28,389,344 

SNAP25 song 3 -1 24,657,667 24,595,900 

TAB2 song 3 -1 47,349,347 47,330,741 

GRIA2 song 4 1 29,268,697 29,316,975 

MAPK10 song 4 -1 13,298,023 13,158,992 

UCHL1 song 4 -1 47,443,659 47,439,512 

FOS song 5 1 38,401,322 38,403,217 

MAPK8IP1 song 5 -1 22,657,931 22,633,421 

TH song 5 1 13,590,579 13,606,604 

TRAF6 song 5 -1 17,580,941 17,570,627 

novel gene song 5 song 6 1 17,318,879 17,337,895 

ARPC5 song 8 1 3,048,560 3,051,309 

JUN song 8 -1 24,262,555 24,261,611 

novel gene song 6 song 9 1 981,142 1,023,985 

ALDH1A2 song 10 1 6,786,365 6,838,567 

ALDH1A3 song 10 1 17,976,236 18,007,605 

Novel gene song 1 song 12 1 21,141,673 21,151,763 

DRD1 song 13 -1 3,304,109 3,302,748 

EGR1 song 13 -1 21,075 18,142 

MAPK9 song 13 1 7,794,999 7,811,397 

ARPC1A song 14 -1 11,171,215 11,159,703 

MAPK8IP3 song 14 -1 169,558 96,425 

novel gene song 2 song 14 1 15,035,480 15,038,080 

novel gene song 3 song 14 1 15,054,873 15,057,546 

MED15 song 15 -1 12,048,171 12,022,466 

BRINP1 song 17 -1 4,368,423 4,306,078 

CACNA1B song 17 1 2,170,313 2,361,057 

CACNA1G song 18 1 9,311,783 9,410,030 

MAP2K4 song 18 -1 5,450,029 5,386,249 

AUTS2 song 19 -1 2,093,355 1,465,187 

novel gene song 4 song 19 1 8,088,812 8,089,895 

STX1A song 19 -1 3,112,218 3,056,752 

TRPV1 song 19 1 8,167,455 8,175,198 

NEFM song 22 -1 1,910,169 1,905,167 

ALDH1L2 song 1A 1 54,246,635 54,269,122 

FOXP2 song 1A -1 25,773,703 25,373,922 

KCNC2 song 1A -1 37,056,631 36,960,718 

PVALB song 1A 1 51,421,774 51,430,291 

TAB1 song 1A -1 50,327,922 50,294,874 
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Appendix C, continued. 
Locus name Function Chr Strand Start End 

TAB3 song 1A 1 10,283,061 10,297,852 

GRIA3 song 4A 1 10,072,724 10,184,428 

NLGN3 song 4A -1 19,983,222 19,964,176 

SRPX2 song 4A -1 884,702 881,927 

novel gene song 7 song un -1 2,149,195 2,144,414 

novel gene song 8 song un -1 21,903,087 21,899,075 

ALDH1A1 song Z 1 16,195,088 16,218,427 

EDAR wing length 1 1 27,189,227 27,214,190 

EGFL6 wing length 1 -1 17,947,750 17,923,016 

FGF14 wing length 1 1 38,142,274 38,522,023 

FSTL1 wing length 1 1 92,211,856 92,321,140 

FZD4 wing length 1 1 82,859,635 82,860,975 

TSC22D1 wing length 1 1 57,934,978 58,022,594 

WNT-NovelA wing length 1 -1 90,154,374 90,152,358 

ARMC3 wing length 2 -1 19,303,049 19,248,903 

COL1A2 wing length 2 1 25,921,531 25,964,644 

DLX5 wing length 2 -1 26,877,661 26,874,520 

DLX6 wing length 2 1 26,862,169 26,865,657 

EGFR wing length 2 1 32,242,358 32,284,289 

EN1 wing length 2 1 8,697,342 8,699,687 

FZD1 wing length 2 1 24,429,242 24,431,067 

FZD6 wing length 2 1 136,145,668 136,179,811 

FZD7 wing length 2 1 21,851,851 21,850,142 

FZD8 wing length 2 1 14,258,364 14,259,142 

HOXA2 wing length 2 -1 52,557,425 52,555,610 

WNT3a wing length 2 1 2,089,241 2,092,721 

WNT9a wing length 2 -1 1,888,001 1,871,851 

DLK2 wing length 3 -1 36,936,738 36,931,970 

DLL1 wing length 3 -1 41,905,632 41,897,719 

EDARADD wing length 3 1 45,168,656 45,183,126 

EYS wing length 3 1 87,850,683 87,938,554 

FZD3 wing length 3 -1 112,516,044 112,498,936 

novel-notch wing length 3 1 87,272,324 87,445,154 

novel-notchB wing length 3 1 87,507,474 87,557,778 

RHOB wing length 3 1 104,625,772 104,626,362 

RHOU wing length 3 -1 43,027,394 43,022,926 

TCF21 wing length 3 -1 58,518,539 58,516,413 

TGFB2 wing length 3 -1 10,312,880 10,254,830 

FGF19 wing length 5 -1 5,283,601 5,279,974 

FGF3 wing length 5 -1 5,349,059 5,343,340 

RHOV wing length 5 -1 23,082,375 23,078,064 

BMPR2 wing length 7 -1 21,657,354 21,610,072 

DLX1 wing length 7 1 15,276,976 15,278,610 

DLX3 wing length 7 -1 15,288,523 15,287,457 

FZD5 wing length 7 -1 21,384,847 21,383,282 

TWIST2 wing length 7 1 1,558,575 1,559,057 

WNT6 wing length 7 1 10,265,488 10,277,806 

CRELD1 wing length 12 1 12,104,383 12,104,853 

WNT7a wing length 12 1 793,550 826,577 

FZD9 wing length 19 -1 188,226 186,664 

FST  wing length Z 1 46,604,913 46,610,442 
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APPENDIX D 

 

DISCRIMINANT ANALYSIS OF PRINCIPAL 

 COMPONENTS POPULATION 
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Appendix D. Population assignments for all individuals from dapc K=3 and dapc K=4. 

Colors match Figure 4.6.
Population K=3 K=4 

BBR1 1 2 

BBR2 1 2 

BBR4 1 2 

BBR5 1 2 

BBR6 1 2 

BOX1 1 1 

BOX11 1 1 

BOX2 1 1 

BOX4 1 1 

BOX7 1 1 

BSP9 1 1 

CBL1 1 2 

CBL3 1 2 

CBL4 1 2 

CBL5 1 2 

CBL6 1 2 

CBL7 1 2 

CBL8 1 2 

CNG11 1 1 

CNG2 1 1 

CNG4 1 1 

MC1 1 1 

MC10 1 1 

MC11 1 1 

MC12 1 1 

MC5 1 1 

MC7 1 1 

MC9 1 1 

RGG1 1 1 

RGG10 1 1 

RGG12 1 1 

RGG3 1 1 

RGG4 1 1 

RGG6 1 1 

RGG8 1 1 

RGG9 1 2 

BOX10 2 1 

BOX3 2 1 

BOX8 2 1 

BOX9 2 1 

BSP1 2 1 

BSP10 2 1 

BSP11 2 1 

BSP12 2 1 

BSP3 2 1 

BSP4 2 1 

BSP7 2 1 

BSP8 2 1 

CNG1 2 1 

CNG5 2 1 

Population K=3 K=4 

CNG6 2 1 

CNG8 2 1 

CNG9 2 1 

DETO1 2 1 

DETO11 2 1 

DETO12 2 1 

DETO2 2 1 

DETO3 2 1 

DETO6 2 1 

DETO7 2 1 

DETO8 2 1 

DETO9 2 1 

FODA4 2 1 

FODA6 2 1 

FODA7 2 1 

MC2 2 1 

MC4 2 1 

MC6 2 1 

OM3 2 1 

OM4 2 1 

OM5 2 1 

OM6 2 1 

OM7 2 1 

OM8 2 1 

OM9 2 1 

OV5 2 1 

SOA 2 1 

SOC 2 1 

SOD 2 1 

SOE 2 1 

SOF 2 1 

SOG 2 1 

SOH 2 1 

BBR3 3 3 

BOX5 3 3 

BSP6 3 3 

CBL2 3 3 

FODA1 3 3 

FODA10 3 3 

FODA11 3 3 

FODA12 3 3 

FODA3 3 3 

FODA5 3 4 

FODA8 3 4 

OM2 3 3 

SOB 3 3 



 
 

 
 

 


	Geographic Variation in Rock Wren (Salpinctes Obsoletus) Song Complexity
	Recommended Citation

	tmp.1536165041.pdf.Or6JW

