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ABSTRACT 
 
 

Hancock, Brent Allen. Undergraduates’ Collective Argumentation Regarding Integration 
of Complex Functions within Three Worlds of Mathematics. Published Doctor of 
Philosophy dissertation, University of Northern Colorado, 2018. 

 

 Although undergraduate complex variables courses often do not emphasize 

formal proofs, many widely-used integration theorems contain nuanced hypotheses. 

Accordingly, students invoking such theorems must verify and attend to these hypotheses 

via a blend of symbolic, embodied, and formal reasoning. Using Tall’s three worlds of 

mathematics as a theoretical lens, this research explores undergraduate student pairs’ 

collective argumentation about integration of complex functions, with emphasis placed 

on students’ attention to the hypotheses of integration theorems.  

Data consisted of videotaped, semistructured interviews with two pairs of 

undergraduates, during which they collectively reasoned about thirteen integration tasks. 

Videotaped classroom observations were also conducted during the integration unit of the 

course in which these students were enrolled. Interview data were analyzed by 

categorizing participants’ responses according to Toulmin’s argumentation scheme, as 

well as classifying each statement as embodied, symbolic, formal, or blends of the three 

worlds. The student pairs’ responses were further coded according to Levinson’s four 

speaker roles in order to document how individuals contributed socially to the collective 

arguments, and backing statements were identified as either supporting a warrant’s 

validity, correctness, or field.  
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Findings revealed that participants’ nonverbal modal qualifiers and explicit 

challenges to each other’s assertions catalyzed new arguments allowing students to reach 

consensus, verify conjectures, or revisit prior assertions. Hence, while existing 

frameworks identify two types of participation in collective argumentation, the 

aforementioned challenges suggest an important third type of participation. Although 

participants occasionally conflated certain formal hypotheses from the integration 

theorems, their arguments married traditional integral symbolism with dynamic gestures 

and clever embodied diagrams. Participants also attended to a phenomenon, referred to in 

the literature as thinking real, doing complex, in three distinct manners. First, they took 

care to avoid invoking attributes of real numbers that no longer apply to the complex 

setting. Second, they intermittently extended their real intuition to the complex setting 

erroneously. Third, they deliberately called upon attributes of the real numbers that were 

productive in describing analogous complex number operations. This three-tiered 

attention to the thinking real, doing complex phenomenon is notable because only the 

second type is currently documented in existing literature. Collectively, the findings 

suggest that instructors of complex analysis courses might wish to heavily underscore the 

importance of geometric interpretations of complex arithmetic early in the course and 

avoid utilizing acronyms that de-emphasize individual theorem hypotheses. The results 

also indicate that a more multimodal stance is needed when studying collective 

argumentation in order to capture covert aspects of students’ communication. 
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CHAPTER I 

 

INTRODUCTION 

 

 Part of the inherent beauty of mathematics lies in the coherent interplay between 

intuitive, experientially-rooted notions, predictable symbolized manipulations, and formal 

axiomatic structures. Often, generalization proves to be powerful and intuitive, as one’s 

experience with 2 + 2 = 4 can be abstracted to tackle situations such as 27 + 27 = 47 

and even (2 + 28) + (2 + 28) = 4 + 48. In the world of analysis, such natural abstraction 

can afford students with helpful intuition during the transition from real to complex 

numbers. For instance, a function of one complex variable 9(:) is continuous if and only 

if its real and imaginary component functions are continuous. Additionally, familiar rules 

for differentiation of real-valued functions such as ;
;< =9(7) + >(7)? = 9@(7) + >′(7) 

generalize rather effortlessly to become analogous rules in ℂ such as ;
;C =9(:) + >(:)? =

9@(:) + >′(:). 

 However, not all mathematical concepts are as easy to generalize. As Tall (2013) 

discussed, “Mathematics is often considered to be a logical and coherent subject, but the 

successive developments in mathematical thinking may involve a particular manner of 

working that is supportive in one context but becomes problematic in another” (p. xv). He 

exemplifies this claim by illustrating how in one’s everyday experiences with whole 
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numbers, taking something away leaves him or her with less; yet subtracting a negative 

integer leaves one with more than he or she started with. As the mathematics education 

literature on the teaching and learning of complex numbers reveals, analogous difficulties 

are still prevalent when learning complex analysis. For instance, Danenhower (2000) 

identified a theme of “thinking real, doing complex” (p. 101) wherein individuals 

demonstrated a proclivity towards invoking attributes of real numbers that do not 

necessarily apply in the complex setting. For instance, one participant concluded that the 

function 9(:) = (2: − 7)E was differentiable everywhere because it was a polynomial. 

Additionally, Troup (2015) found further evidence of this phenomenon when 

undergraduates reasoned about derivatives of complex functions. For instance, 

participants attempted to apply the familiar conception of the derivative of a real-valued 

function as the slope of a tangent line to the context of the complex derivative. 

It is possible, then, that undergraduates might be tempted to initially reason about 

integration of complex functions as area under a curve, as this is one common 

interpretation in the setting of certain real-valued functions. This could be especially 

prevalent given that even within the context of real-valued functions, the literature 

reveals numerous examples of students’ difficulties with integration (Grundmeier, 

Hansen, & Sousa, 2006; Judson & Nishimori, 2005; Mahir, 2009; Orton, 1983; Palmiter, 

1991; Rasslan & Tall, 2002). However, many of these studies are now more than ten 

years old, and many of these studies documented the product of students’ deficiencies 

and misconceptions rather than the process of students’ reasoning. As such, while 

students might end up with faulty conclusions about integration and other subjects, their 

process of reasoning might actually be teeming with healthy connections to intuition or 
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past experiences. Indeed, if nurtured properly, such connections between experientially-

based intuition and formal mathematics could benefit students’ reasoning in courses such 

as complex variables or analysis (Soto-Johnson, Hancock, & Oehrtman, 2016).  

Moreover, by carefully documenting students’ successful reasoning about 

undergraduate mathematics topics, we are able to gain insight into “what deep 

understanding and complex justifications are possible for students as they engage in 

mathematics” (Wawro, 2015, p. 355). Students’ reasoning within the subject of complex 

variables could particularly benefit from such an investigation, as the activity within this 

course is often situated somewhere between formal proof and symbolic calculation. In 

particular, students that integrate complex functions often invoke powerful theorems, 

which rely on idiosyncratic hypotheses and draw on ideas from topology and real 

analysis. For instance, Cauchy’s Integral Formula relies on the hypotheses that the 

function in question is analytic in a simply connected domain, and that the path used for 

integration is simple, closed, and positively oriented. While formal proof is typically not 

the focus of undergraduate courses in complex variables (Committee on the 

Undergraduate Program in Mathematics, 2015), application of such theorems requires 

that students at least recognize when these hypotheses apply. Hence it is possible that 

students might draw upon a combination of intuition, visualization, symbolic 

manipulation, and formal deduction when integrating complex functions. Accordingly, 

integration of complex functions serves as an appropriate topic to elicit the complex 

justifications that Wawro advocated for.  

 Integration of complex functions is also an important topic for undergraduates 

with respect to practical applications. For instance, it is extensively used in physics and 
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engineering to analyze and compute flux and potential. Moreover, one can apply 

techniques using integration of complex functions in order to drastically simplify or 

enable evaluation of certain real-valued integrals. For example, one can prove 

∫ GHI <
< J7K

L = M
E by reformulating the problem in terms of an integral of a complex 

function and applying a combination of Cauchy’s Theorem and other techniques similar 

to those used in residue theory. Accordingly, integration of complex valued functions is a 

particularly useful and important branch of mathematics, and is a major focus of 

undergraduate courses on complex variables.  

Despite the aforementioned practical and theoretical assets inherent to integration 

of complex functions, there exists no educational research regarding undergraduates’ 

reasoning in this mathematical domain. This study serves to ameliorate this gap in the 

literature and to inform the teaching and learning of complex variables by investigating 

undergraduates’ multifaceted argumentation about integration of complex functions. In 

the remainder of this chapter, I further detail the research problem, present the purpose of 

my study, and state my guiding research questions. I also define several important terms 

utilized throughout this document, and reveal the significance of my research. 

Statement of the Problem 

Although no educational research exists regarding students’ reasoning about 

integration of complex functions, the literature contains several studies relevant to 

integration of real-valued functions. As mentioned previously, these studies primarily 

focus on students’ various difficulties with respect to integration of real-valued functions 

(Grundmeier et al., 2006; Judson & Nishimori, 2005; Mahir, 2009; Orton, 1983; Palmiter, 

1991; Rasslan & Tall, 2002). For instance, when asked to provide a definition of a 
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definite integral, research participants gave examples, recited the definition of derivative, 

or stated some version of the Fundamental Theorem of Calculus (Grundmeier et al.; 

Rasslan & Tall). Grundmeier et al. and Orton also found that students struggled to 

connect the idea of a definite integral to a limiting process, unsure of which objects tend 

to zero or infinity. Participants from several studies also did not recognize when area 

should be counted as a negative contribution to a definite integral (Grundmeier et al.; 

Mahir; Rasslan & Tall). Finally, some participants attempted to translate graphs of 

provided functions into messy formulas and evaluate tedious antiderivatives instead of 

employing basic area properties from the graph (Judson & Nishimori; Mahir). 

 Although these studies illuminated problematic conceptions students held about 

real-valued integration, it is unclear to what extent such difficulties might manifest when 

integrating complex functions. More generally, the study of complex numbers and 

variables is one of the undergraduate mathematical domains that have not received much 

attention from mathematics education researchers. The few studies that do exist in the 

domain of complex variables have focused primarily on complex arithmetic and forms of 

a complex number (Danenhower, 2006; Karakok, Soto-Johnson, & Anderson-Dyben, 

2014;  Nemirovsky, Rasmussen, Sweeney, & Wawro, 2012; Panaoura, Elia, Gagatsis, & 

Giatilis, 2006; Soto-Johnson & Troup, 2014). Earlier research in this area by 

Danenhower and Panaoura et al. suggested that students struggled with when and how to 

use specific forms of complex numbers such as the polar form; these studies also stressed 

the importance of representational fluency when working with complex numbers. More 

recent literature in this domain has extended these findings to different populations. For 

instance, Karakok et al. found that a sample of in-service secondary teachers favored the 
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Cartesian form while working with arithmetic tasks involving complex numbers. On the 

other hand, undergraduates with Dynamic Geometry Environment (DGE) experience 

were proficient with the polar form, knew when to employ it, and could connect their 

algebraic and geometric reasoning (Troup, 2015).  

 Moving forward, a couple of recent studies have regarded more advanced topics 

in complex analysis such as continuity (Soto-Johnson, Hancock, & Oehrtman, 2016) and 

differentiation (Troup, 2015). Soto-Johnson, Hancock, and Oehrtman investigated how 

mathematicians reconciled formal Conceptual Mathematics (CM), as found in textbooks, 

with their own personal interpretations, or Ideational Mathematics (IM) (Schiralli & 

Sinclair, 2003), of continuity of complex functions. The authors found that 

mathematicians’ IM incorporated domain-first reasoning that was difficult to connect 

rigorously to formal CM statements and definitions of continuity. This domain-first 

reasoning was comprised of statements articulating preservation of closeness from the 

domain into the codomain of a function and did not fully capture the formal definition of 

continuity.  

In another study addressing more advanced topics in complex analysis, Troup 

(2015) investigated undergraduates’ reasoning about the derivative of a complex 

function, both generally and when using the dynamic geometry software Geometer’s 

Sketchpad (GSP). Troup found that through their use of GSP, participants noticed and 

resolved discrepancies between reasoning methods. Initially focusing on the special case 

of a linear function, participants discovered that linear functions always rotate and dilate 

circles by the same amount, regardless of location. Using GSP, they then investigated 

more complicated functions such as 9(:) = :E and 9(:) = NC to explore the rotation and 
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dilation transformations inherent in differentiation. Studying the images of circles of 

varying center and radius under these two functions helped participants conclude that 

applying the function 9 to a small circle about a particular point :L dilated this circle by a 

factor of |9@(:L)| and rotated it by PQ>(9@(:L)). Thus participants were able to 

successfully develop a geometric interpretation of the derivative of a complex function 

using GSP. 

 As mentioned previously, my study strove to investigate students’ multifaceted 

mathematical reasoning, particularly within the domain of integration of complex 

functions. This required a careful consideration about what constitutes mathematical 

reasoning. According to the National Council of Teachers of Mathematics (NCTM), 

reasoning is characterized as “the process of drawing conclusions on the basis of 

evidence or stated assumptions” (NCTM, 2009; p. 4). Hence, because reasoning is not 

directly observable as a mental process, researchers can use individuals’ argumentation, 

including the components mentioned by the NCTM, as a window into the mind. As I 

detail later, such mathematical argumentation is often nuanced and can be expressed 

through verbal, pictorial, symbolic, and various other means (Tall, 2013). 

 A common model used to document individuals’ argumentation was formulated 

by Toulmin (2003) and consists of six components: data, warrant, backing, qualifier, 

rebuttal, and claim. According to Toulmin, any argument is based upon the arguer 

attempting to convince his or her audience of some claim (C), or asserted conclusion. 

This claim is necessarily grounded in foundational evidence, or data (D), on which the 

claim is based. The arguer can then supply a warrant (W) justifying the link between the 

given data and the purported claim. A modal qualifier (Q) is often necessary to explicitly 
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reference “the degree of force which our data confer on our claim in virtue of our 

warrant” (p. 93). Depending on the warrant provided, there might also be circumstances 

in which the intended claim does not hold; in this case, conditions of rebuttal (R) are 

needed to indicate when the “general authority of the warrant would have to be set aside” 

(p. 94).  

 In the mathematics education literature, participants’ mathematical argumentation 

has been analyzed with the aid of Toulmin’s model in several different contexts. For 

instance, while some researchers have chosen to analyze students’ or instructors’ 

mathematical arguments during an actual class session (Krummheuer, 1995, 2007; 

Rasmussen, Stephan, & Allen, 2004; Stephan & Rasmussen, 2002), others have used 

Toulmin’s framework to discuss how students examine the validity of purported written 

mathematical proofs (Alcock & Weber, 2005). The literature also includes studies 

investigating students’ argumentation in responses to written examinations (Evens & 

Houssart, 2004) or task-based interviews (Hollebrands, Conner, & Smith, 2010). Finally, 

Wawro (2015) used both in-class observations and task-based interviews to comprise a 

thorough case study of one student’s reasoning in linear algebra. 

In the in-class setting, some researchers (Krummheuer, 1995, 2007; Rasmussen et 

al., 2004; Stephan & Rasmussen, 2002) felt that a reduced Toulmin model omitting the 

qualifier and rebuttal was appropriate, and rarely found evidence of explicit backing. 

Moreover, Krummheuer (2007) illuminated warrants invoked by the participants that did 

not even relate to the mathematical content directly, such as an appeal to the teacher’s 

perceived authority. However, when more formal arguments such as proofs are 

concerned, researchers (Alcock & Weber, 2005; Inglis, Mejia-Ramos, and Simpson, 
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2007; Simpson, 2015; Troudt, 2015) argued for the use of the full Toulmin model. They 

also mentioned that simply reading the finished product of a purported proof is inherently 

difficult because some of the components of the Toulmin model, such as backing and 

sometimes even the warrants, are implicit and cannot be elicited through real-time social 

discourse with the proof author. Thus it would appear that an investigation into 

undergraduates’ nuanced argumentation about integration of complex functions should 

adopt the full Toulmin model and incorporate opportunities for clarification, as in an 

interview setting. 

 In order to investigate students’ treatment of the idiosyncratic hypotheses from 

integration theorems, one needs a theoretical lens through which to rigorously study 

individuals’ formal reasoning. However, according to the Committee on the 

Undergraduate Program in Mathematics (CUPM) (2015), the prerequisites for 

undergraduate complex variables courses “vary wildly” (p. 1) and do not necessarily 

include real analysis. Moreover, such courses are “typically taught without a strong 

emphasis on proofs” (p. 1). Thus, my lens accounted for other forms of argumentation. In 

particular, I adopted Tall’s (2013) three worlds of mathematics as a way to theoretically 

orient my inquiry into undergraduates’ reasoning pertaining to integration of complex 

functions. This perspective traces all mathematical knowledge back to three distinct but 

interrelated forms of thought: conceptual embodied, operational symbolic, and axiomatic 

formal. 

 According to Tall (2013), conceptual embodiment begins with the study of 

objects and their properties, progressing towards mental visualization and eventually 

description through increasingly subtle language. The second world of operational 
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symbolism grows out of actions on objects and is symbolized via thinkable concepts such 

as number. In this world, it is possible for individuals to “conceive the symbols flexibly 

as operations to perform and also to be operated on through calculation and 

manipulation” (p. 17). This flexibility evidences what Tall describes as proceptual 

thinking, where a procept is a symbol operating dually as process and concept (Tall, 

2008). Tall’s (2013) third world is that of axiomatic formalism, wherein individuals build 

“formal knowledge in axiomatic systems specified by set-theoretic definition, whose 

properties are deduced by mathematical proof” (p. 17). These three worlds can also 

combine to form embodied symbolic or symbolic formal reasoning, as I detail in the third 

chapter.  

 As I illustrated at the beginning of this chapter, our previous experiences with 

mathematics can either support or create conflict with new and abstracted mathematical 

notions. Tall (2013) referred to the knowledge structures predicated on these prior 

experiences as met-befores. He also argued that mathematical growth can be traced back 

to three innate set-befores of recognition, repetition, and language. These set-befores 

foster three forms of compression: categorization, encapsulation, and definition. Through 

this compression, individuals build so-called crystalline structures, which incorporate 

many equivalent formulations of a mathematical object and can be unpacked in various 

worlds. Hence the three-worlds perspective posits that our propensity as humans for 

recognition, repetition, and language allows us to crystalize mathematical concepts by 

building upon met-befores via categorization, encapsulation, and definition. With this 

theoretical orientation in mind, I now explicate my study’s purpose and research 

questions. 
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 Despite recent research involving more advanced topics in complex analysis 

(Soto-Johnson et al., 2016; Troup, 2015), there remains no existing education literature 

regarding integration of complex functions, even though it is a central topic of any 

complex analysis course for undergraduates. In particular, it is unclear as of yet how 

undergraduate students reason algebraically, geometrically, and formally with the notion 

of integration of complex functions. The purpose of my qualitative research study was to 

explore undergraduates’ multifaceted reasoning about integration of complex functions. 

My guiding research questions were: 

Q1 How do pairs of undergraduate students attend to the idiosyncratic 
assumptions present in integration theorems, when evaluating specific 
integrals? 

 
Q2 How do pairs of undergraduate students invoke the embodied, symbolic, 

and formal worlds during collective argumentation regarding integration 
of complex functions? 

  
In order to rigorously address my research questions, I enlisted the help of two pairs of 

undergraduate students to partake in a videotaped, semistructured (Merriam, 2009), task-

based interview comprised of two 90-minute portions. To obtain a rich understanding of 

the context in which these participants learned about integration of complex functions, I 

observed and videotaped six class sessions at participants’ undergraduate institution. 

These observations and ensuing field notes allowed me to document what mathematical 

content was introduced and emphasized during the integration unit in the complex 

variables course. They also allowed me to discern the nature of mathematical 

argumentation that was deemed appropriate for the complex variables course. A thorough 

description of my data collection and analysis procedures resides in Chapter III of this 
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document. Next I clarify the definitions and assumptions pertinent to the formulation and 

investigation of my research questions. 

Definitions 

Notice that the purpose and research questions pertaining to this study refer to 

individuals’ mathematical “reasoning.” I also assumed that undergraduates’ reasoning 

about integration of complex functions could be “multifaceted.” In this subsection I 

elaborate on my chosen meanings for these and related terms within the context of this 

study. These meanings are either based upon constructs established by prior mathematics 

education researchers, or are derived from aspects of my chosen theoretical framework. 

Recall from earlier in this chapter that the NCTM (2009) characterized reasoning 

as “the process of drawing conclusions on the basis of evidence or stated assumptions” 

(p. 4). Hence, this definition underscores the dynamic and temporal nature of reasoning 

as a process rather than a product. The NCTM definition also incorporates what 

Krummheuer (1995) named the “core” components of the Toulmin (2003) model for 

argumentation, namely the claim (“conclusions”), data (“stated assumptions”), and 

warrant (“evidence”). Given that researchers (Alcock & Weber, 2005; Inglis et al., 2007; 

Simpson, 2015; Troudt, 2015) have argued for the adoption of the full Toulmin model 

when analyzing individuals’ argumentation in more advanced or formal mathematical 

contexts, I characterized argumentation according to all five Toulmin components. 

Hence, in this study, I defined argumentation to be the process of drawing conclusions 

based on data, warrants, backing, and modal qualifiers. Given that my interviews were 

paired, each participant’s responses were heavily influenced by the other’s, as well as 

probing from myself as the interviewer. Thus the process of argumentation during these 
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interviews was often collective (Krummheuer, 1995) in the sense it emerged from the 

social interaction of multiple participants. Research question 1b therefore served as an 

inquiry into how individual students contributed socially to such collective 

argumentation.     

 As detailed in Chapter III, Tall’s (2013) three-world framework posits that 

mathematical argumentation is supported differently within each world. For instance, in 

the conceptual-embodied world, truth is initially established in elementary geometry 

based on what is seen to be true by the learner visually. In contrast, within the 

operational-symbolic world, truth is established in arithmetic based on calculation. 

Finally, in the axiomatic-formal world, a statement is true either by assumption as an 

axiom, or because it can be proved formally from the axioms. Hence the three-world 

framework complements the Toulmin analysis of a mathematical argument by adding 

specificity with regard to the types of backing and warrants used. As such, I classified 

participants’ Toulmin components as embodied, symbolic, formal, or various mixtures of 

these, as viewed through Tall’s three-world lens. Therefore, in the context of this study I 

defined reasoning as mathematical argumentation within one or more of the three worlds. 

It is this additional world-oriented property that makes participants’ reasoning 

“multifaceted” in the sense that I used previously.   

 It should also be noted that while Tall discusses many of his constructs in the 

context of thinking, my study focuses more on how individuals employ such thinking in 

an externally observable process of argumentation. Hence, I adopted Tall’s work in the 

setting of reasoning as opposed to thinking. In this report, I identify participants’ 

reasoning as embodied, symbolic, and formal to signify that they are operating within the 
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conceptual-embodied, operational-symbolic, and axiomatic-formal worlds, respectively. 

When participants’ reasoning incorporates multiple worlds, I hyphenated two or more of 

these labels. For instance, embodied-symbolic reasoning attends to aspects of both Tall’s 

conceptual-embodied and operational-symbolic worlds, and symbolic-formal reasoning 

attends to the operational-symbolic and axiomatic-formal worlds. 

 At some points in this report, I also refer to several different symbolic 

interpretations of a complex number. For instance, a complex number can be expressed 

as : = 7 + 8R, : = QNST,	in polar form as an ordered pair (Q, V), as a vector, or simply as 

the symbol :. In the educational literature regarding complex number arithmetic, there is 

not necessarily a consensus regarding what word is attached to such a symbolic 

characterization. For instance, Danenhower (2006) used the words “representation” and 

“form” interchangeably to denote each of these four ways of symbolically denoting a 

complex number. On the other hand, Panaoura et al. (2006) used the word “form” for 

these notations, and used the word “representation” as a more general classification to 

denote an inscription as either algebraic or geometric. For the purposes of clarity and 

consistency, I use form in this context to denote the symbolic manner in which a complex 

number is used, and thus I characterize : = 7 + 8R as the Cartesian form, : = QNST as the 

exponential form, : = (Q, V) as the polar form, and so on. Following Panaoura et al., I 

reserve the word representation to denote either an algebraic or geometric portrayal of a 

complex number.  

Significance of the Research 

Recently, Soto-Johnson et al. (2016) found that mathematicians drew upon a 

wealth of personal embodied experiences when discussing their conceptions of continuity 
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of complex functions. Although their study pertained to the population of 

mathematicians, Soto-Johnson et al. hypothesized that meaningfully connecting 

experientially-based intuition and formal mathematics could also benefit students’ 

reasoning in courses such as complex variables. In part, my research served to reveal how 

undergraduates might reconcile their met-befores with the formal idiosyncrasies present 

in integration theorems. One respect in which participants instantiated such 

reconciliations was in how they attended to the thinking real, doing complex 

phenomenon. For instance, the student pairs explicitly referenced situations in which they 

were purposeful about avoiding inappropriately applying attributes of real-valued 

functions to the structure of the complex numbers. On the other hand, they invoked 

productive geometric properties of vectors from multivariable calculus to enact vector 

addition, visualize tangent vectors, and perform other related operations in response to 

the tasks.  

As I discuss in Chapter V, the professor of the participants’ complex variables 

course may have contributed to the students’ attention to thinking real, doing complex via 

his explicit statements referencing definitions and intuition from notions such as 

differentiation and integration of real functions when defining their complex analogs. 

However, his adoption of various acronyms in order to succinctly state multiple theorem 

premises might have inadvertently allowed students to not carefully attend to and 

separate out these individual hypotheses while evaluating integrals in practice. Hence, my 

inquiry into students’ reasoning about integration illuminates several ways in which 

instructors might cultivate healthy connections between students’ embodied intuition and 
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rigorous, formal mathematics, as well as potential pitfalls to avoid in the pursuit of such 

endeavors. 

  Additionally, my study complements and extends the mathematics education 

literature regarding students’ collective argumentation. Specifically, I illustrate proposed 

addendums to how collective argumentation is currently framed theoretically. One such 

addition is the careful consideration of students’ challenges to both each other’s and their 

own contributions in a collective argument. As I detail in Chapters IV and V, both types 

of challenges catalyzed students’ corrections, modifications, or retractions of prior 

statements. Another feature of students’ argumentation that shaped their collective 

reasoning process was students’ nonverbal qualifiers, such as providing a look to either 

me or the other participant within a pair in order to seek validation of a particular 

assertion.  

As such, I contend that these qualifiers, along with several other nonverbal 

features of communication that influenced the trajectory of the students’ argumentation, 

suggest the need for a more multimodal framing of argumentation that transcends 

verbiage and inscriptions. Such attention to nonverbal aspects such as eye gaze and 

gesture is consistent with Nemirovsky and Ferrara’s (2009) notion of a multimodal 

utterance. As I describe in Chapter V, I suggest that attending to these more covert 

aspects of communication could additionally shed light on K-12 students’ backing, a 

Toulmin component that has largely been omitted from researchers’ analysis involving 

this population of students (Krummheuer, 1995, 2007; Rasmussen, Stephan, & Allen, 

2004; Stephan & Rasmussen, 2002. The importance of nonverbal and explicit verbal 

qualifiers in my results also corroborates previous researchers’ (Alcock & Weber, 2005; 
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Inglis, Mejia-Ramos, & Simpson, 2007; Simpson, 2015; Troudt, 2015) contention that 

one should consider the full Toulmin (2003) model when analyzing undergraduate level 

mathematical arguments. I discuss these and other considerations in full in Chapter V. 

Outline of Dissertation 

In this first chapter, I motivated the rationale for and importance of my study. I 

also provided a brief overview of select literature that informed my research, and 

articulated the purpose and research questions pertinent to my work. In the next chapter, I 

supply a thorough review of the relevant mathematics education literature that informed 

my study. The third chapter begins with my researcher stance, designed to motivate my 

personal interest in this work and expose potential biases relevant to my experiences as a 

student and researcher. This third chapter also includes a detailed account of my 

theoretical orientation, Tall’s (2013) three worlds, and its relationship to the Toulmin 

(2003) model of argumentation within the context of my research. A thorough description 

of my research methods including setting, participants, data collection and analysis 

procedures is also supplied in the third chapter of this document. In Chapter IV, I detail 

the results from the interviews conducted with both pairs of participants. Finally, in 

Chapter V, I situate these findings within the existing pertinent literature, proffer teaching 

implications and addendums for framing collective argumentation, and discuss potential 

avenues for future research. 
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CHAPTER II 

 
 

LITERATURE REVIEW 

 

 Recall from the last chapter that the purpose of my research was to explore 

undergraduates’ multifaceted reasoning about integration of complex functions. My 

guiding research questions were: 

Q1 How do pairs of undergraduate students attend to the idiosyncratic 
assumptions present in integration theorems, when evaluating specific 
integrals? 

 
Q2 How do pairs of undergraduate students invoke the embodied, symbolic, 

and formal worlds during collective argumentation regarding integration 
of complex functions? 

 
In this chapter, I synthesize the existing mathematics education literature pertinent to my 

research. In doing so, I discuss how this literature informed my current work, what was 

missing from prior research in related fields, and how my study complements and extends 

the existing literature. Because my study involved undergraduates’ reasoning and 

argumentation about integration, I first review the literature involving students’ reasoning 

about integration of real-valued functions. Next, I discuss the existing research involving 

the teaching and learning of complex variables and analysis, given that my work 

specifically focused on integration of complex functions and involved participants from a 

complex variables course. Finally, because I was interested in how students collectively 

communicate their reasoning through a mathematical argument, I discuss the literature 
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involving Toulmin’s (2003) model of argumentation, my chosen framework for data 

analysis.  

Integration of Real-Valued Functions 

While no mathematics education research exists in the domain of integration of 

complex functions, several researchers have investigated students’ understanding of 

integration with respect to real-valued functions (Grundmeier, Hansen, & Sousa, 2006; 

Judson & Nishimori, 2005; Mahir, 2009; Orton, 1983; Palmiter, 1991; Rasslan & Tall, 

2002). Note that the newest such study was published in 2009, so recent research has not 

considered such issues. I verified this by conducting a thorough search on online 

databases such as JSTOR, ERIC, Academic Search Premier, and PsycINFO. 

Nevertheless, many of these studies considered student participants from several different 

populations or groups. For instance, Judson and Nishimori (2005) compared calculus 

students’ responses to definite integral tasks from the United States to those in Japan, and 

Orton (1983) solicited both high school and postsecondary participants in his study. 

Palmiter (1991) compared responses to definite integral tasks from calculus students who 

used a computer algebra system in their course to those from students in the same 

university who took a more traditional paper and pencil course. In this section, I review 

these studies and discuss how they inform my current work. 

As alluded to above, nearly all of the research related to students’ conceptions of 

integration of real-valued functions focuses on calculus students. For instance, Orton’s 

(1983) study involved task-based clinical interviews with 110 students, aged 16-22 years 

from six different schools. Although the tasks represented topics from most of elementary 

calculus, the focus of Orton’s paper was specifically the items that involved integration 
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topics. Numerical scores, ranging from 0 to 5, were assigned to students’ responses to 

each task in order to garner summary statistics as a representation of the 110 students’ 

collective level of understanding. Although Orton described students’ general tendencies 

in responding to certain tasks, he did not include any actual sample student responses. 

One of Orton’s (1983) primary findings was that students at both the secondary 

and postsecondary education levels exhibited great difficulty connecting integrals to the 

notion of limits. For instance, Orton scaffolded one task to help students construct a 

sequence of Riemann sum approximations to the area bounded by a given curve and the 

x-axis. A majority of students were able to recognize that their approximations were 

approaching a particular value yet they were unable to conclude that the limit of this 

sequence would yield the exact area of interest. Even though they were able to 

proficiently find formulas for the general term and calculate limits of explicitly provided 

sequences in previous tasks, students did not know to apply their knowledge about limits 

to the aforementioned Riemann sum task.  

Interested in building upon Orton’s (1983) work, Grundmeier et al. (2006) 

administered a written survey to 52 college students that had recently completed a 

calculus course covering integration theory and techniques. Grundmeier et al. 

investigated students’ understanding of integration with respect to several criteria. For 

example, each student provided a formal, symbolic definition for the definite integral, as 

well as his or her own personal explanation of the definite integral in words. The 

researchers also examined students’ ability to interpret and represent the graphical 

meaning of integration, and had students evaluate several specific definite integrals. 

Finally, Grundmeier et al. assessed students’ ability to recognize real-world applications 
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of integration, in the form of a true/false section, though they did not discuss any results 

from this portion of their survey. Ultimately, as Orton discovered, Grundmeier et al. 

found that students could procedurally integrate a specific function correctly, but had 

difficulty explaining what a definite integral is in general and how to formally define it 

with limits. 

Unsurprisingly, the most common verbal definition of a definite integral provided 

by students included some mention of area under a curve, although some students 

confused some of the limiting aspects of this process. For instance, one sample student 

response was, “A definite integral is the area underneath a curve that is achieved through 

slicing areas and allowing ∆7 → ∞” (Grundmeier et al., p.183). Five of the students made 

connections to antiderivatives, describing integration as reversing the process of 

differentiation. Others simply mentioned that a definite integral is a bounded quantity, but 

did not specify what the actual integral represents, and four students left the problem 

blank.  

When asked to provide the symbolic definition of a definite integral, only one out 

of the 52 participants provided a complete and correct definition (Grundmeier et al., 

2006). More troubling was that only 12 of the other 51 participants included some 

components of the correct definition, with responses such as “∫ 9(7)J7Z
[ = ∑9(7)∆7” 

(p. 184). Other students merely gave an example of a definite integral of a specific 

function, and even more worryingly, 3 participants gave the definition of derivative 

instead. Finally, 9 of the 52 participants stated some interpretation of the Fundamental 

Theorem of Calculus, such as “∫ 9(7)	J7 = ](^) − ](_)Z
[ ” (p. 184). 
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On the computational portion of the survey, students were asked to find the 

definite integral of the sine function over two intervals, [0, b] and [0, 2b]. Grundmeier et 

al. (2006) found that 20 of the 52 participants did not provide correct answers to either 

task. This was largely due to students evaluating a trigonometric function incorrectly, 

such as giving the wrong value for cos(b), or finding the wrong antiderivative. Other 

students broke up the second integral over [0, 2b] into two pieces, but failed to recognize 

that one of these pieces contributes area negatively since the function lies below the x-

axis. This trouble with identifying some area contributions in the definite integral as 

negative was also prevalent amongst Mahir’s (2009) participants, as discussed below. 

Mahir (2009) examined 62 university calculus students’ procedural and 

conceptual knowledge related to integration of real-valued functions. According to 

Mahir, procedural knowledge corresponds to the use of rules, algorithms, or procedures 

to solve problems, while conceptual knowledge requires one to make connections 

between other pieces of existing knowledge and be cognizant of this connection. Students 

were assessed via a five-item questionnaire, which Mahir described as having two 

procedural questions, two questions that could be solved using either procedural or 

conceptual knowledge, and one purely conceptual question. In the context of this 

questionnaire, Mahir characterized procedural questions as ones that simply asked 

students to evaluate a definite integral using standard integration techniques such as 

trigonometric substitution. On the other hand, conceptual questions allowed students to 

relate the definite integral to area via an “integral-area relation” (p. 204). The purely 

conceptual question had students relate the graph of a derivative function 9′(7) to 
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specific values of 9(7) using both integral-area relations and the Fundamental Theorem 

of Calculus.  

Perhaps unsurprisingly, the participants excelled at the purely procedural 

questions, as 92% and 74% of the students solved these two questions correctly, 

respectively. However, in the two questions that could be solved using either procedural 

or conceptual knowledge, the students who used a procedural method tended to make 

computational errors, while the students who recognized a connection to area typically 

arrived at the correct answer and in fewer steps. Moreover, 40% of the participants did 

not even respond to the purely conceptual question, and the students who did respond had 

trouble recognizing when areas should be treated as negative contributions to the definite 

integral, as was the case in Grundmeier et al.’s (2006) study.  

Similar to Grundmeier et al.’s (2006) results, Rasslan and Tall (2002) found that 

only 7 out of 41 high school participants were able to correctly state the definition of 

definite integral. These authors investigated English high school calculus students’ 

concept images and concept definitions (Tall & Vinner, 1981) of the definite integral, and 

explored how students instantiated various concept images when evaluating specific 

definite integrals. As exemplified previously, students’ responses to the question asking 

for the definition of the definite integral mostly mirrored those of Grundmeier et al.’s 

(2006) participants. For instance, some students substituted specific functions and 

evaluated their definite integrals, and others stated the Fundamental Theorem of Calculus 

as a procedure for calculation. Unlike Grundmeier et al.’s study, however, more than half 

of Rasslan and Tall’s participants did not even attempt to state the definition of a definite 

integral. One should note that in the U.K.., the formal definition given in the participants’ 
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textbook only mentioned the definite integral as the precise area under the graph of a 

function, between two particular x-values. In particular, there was no mention of a limit 

of Riemann sums, as found in U.S. textbooks. Accordingly, no students provided an 

answer that alluded to this formulation of the definite integral. 

Another difference between Rasslan and Tall’s (2002) study and Grundmeier et 

al.’s (2006) was that Rasslan and Tall asked students to evaluate definite integrals with 

more difficult functions. For instance, one function contained the absolute value of an 

expression and another function was defined piece-wise. Yet still, participants made 

many of the same errors as Grundmeier et al.’s participants when evaluating definite 

integrals. Such errors included taking a derivative instead of an antiderivative, leaving the 

problem completely blank, or neglecting to account for the negativity of certain area 

contributions. As I illustrate below, such difficulties are not limited to American learners. 

Judson and Nishimori (2005) administered a two-part exam, and conducted 

interviews with, 18 American and 26 Japanese high-school students in order to determine 

whether there were differences in these students’ conceptual knowledge of calculus. 

Moreover, the authors wished to investigate any differences between the two populations’ 

abilities to utilize algebra to solve traditional calculus problems. Judson and Nishimori 

deliberately picked participants in each country that represented the best high school 

students each country had to offer; for instance, the American students were selected 

from above-average high schools and from AP Calculus BC courses. AP Calculus BC is 

a nationally offered yearlong college-level course that provides a thorough treatment of 

limits, differentiation, integration, and series. In fact, passing the associated AP exam in 
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this subject grants students college credit for a full year of calculus at most American 

institutions.  

The authors found that American students tended to rely on calculators for 

computations when possible, whereas Japanese students were largely unfamiliar with 

using them. All students had difficulty relating definite integrals to Riemann sums, and 

part of the difficulty was due to students’ comfort level with summation notation. This 

was especially the case amongst the American participants. Some of the Japanese 

students, similar to Mahir’s (2009) participants, had difficulty finding the definite 

integrals of certain functions given their graph. This was primarily because they 

attempted to find formulas for functions depicted in the graph, rather than calculate areas 

of familiar shapes. Overall, Judson and Nishimori (2005) found that the American and 

Japanese students displayed similar levels of conceptual calculus knowledge, but the 

Japanese students demonstrated a stronger grasp of algebraic skills than the Americans. 

 In another study comparing two groups of calculus students, Palmiter (1991) 

found that university students that used the computer algebra system MACSYMA during 

their course outperformed, on a test of computational and conceptual calculus knowledge, 

students whose course did not use such a system. Palmiter concurred with several 

previous studies (Hawker, 1986; Heid, 1988; Judson, 1988) that the use of such computer 

algebra systems in class allows instructors to deemphasize some of the hand-calculations 

of limits, derivatives, and integrals, therefore freeing up class time to explore more 

conceptual terrain. However, while these previous studies all focused on business 

calculus students, Palmiter’s study was concerned with students in engineering calculus.  
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 Calculus students from Palmiter’s (1991) study were randomly assigned to either 

a control class learning traditional paper-and-pencil calculus concepts throughout the 

entire 10-week quarter, or to an experimental class that used MACSYMA. Any students 

assigned to the experimental group, however, covered the course material in 5 weeks and 

were not presented the traditional techniques of integration such as integration by parts. 

Instead, these students had access to the MACSYMA program for homework and exams, 

but did not have computer access in the lecture hall during class. At the end of the 5-week 

period for the experimental group, and at the end of the 10-week quarter for the control 

group, all students took a two-part written exam testing computational calculus 

knowledge in one part and conceptual knowledge in the other part. Students in the 

experimental group were allowed to use MACSYMA during the computational portion of 

the exam. Following the 5-week experimental class, which used the computer algebra 

system, and the exam, these students learned traditional paper-and-pencil integration 

techniques in the final 5 weeks of the quarter. The authors believed this would ensure 

students would be prepared for any subsequent courses in which they did not necessarily 

have access to MACSYMA. 

 Because the analysis presented in Palmiter’s (1991) article is only quantitative in 

nature, it is unclear whether either group of students shared the difficulty with connecting 

limiting procedures to the definite integral as in Orton’s (1983) study. Rather, Palmiter 

concluded that the experimental class of students using MACSYMA performed 

significantly higher on both portions of the exam compared to the students from the 

control class. Palmiter admitted that the students in the experimental group might have 

outperformed the control group partly due to the fact that the experimental and control 
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classes were taught by different instructors. Aside from having significantly higher test 

scores, the experimental class reported more positive affective traits than the traditional 

class on a post-course evaluation form given at the end of the 10-week quarter to both 

groups. Specifically, 85% of the students using the computer algebra system, compared 

with 68% of the traditional group, reported that they were confident in continuing the 

calculus sequence. Moreover, 95% of the students in the experimental group reported that 

they would sign up for another course using a computer algebra system.  

Curiously, although students in the experimental course identified “concepts of 

calculus” as the most important idea they learned, a very close second was “techniques of 

integration”. Recall that the experimental group completed the techniques of integration 

portion of the course after the 5-week experimental portion of the course, and did not use 

MACSYMA during this time. This means that the students in the experimental group 

found the traditional computational integration techniques taught after their exam to be 

nearly as important as the conceptual ideas taught during the MACSYMA portion of the 

class. This suggests that, at least affectively, students exposed to computer algebra 

systems in a calculus course might still perceive traditional computations as equally 

important as concepts discussed in conjunction with a program such as MACSYMA. 

Looking at the aforementioned studies holistically, it is evident that calculus 

students from many different populations struggled with the same ideas related to the 

definite integral. For instance, when asked to provide a definition of a definite integral, 

participants tended to instead give examples, recite the definition of derivative, or some 

version of the Fundamental Theorem of Calculus (Grundmeier et al., 2006; Rasslan & 

Tall, 2002). Many students also struggled to connect the idea of definite integral to a 
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limiting process, often mixing up which objects tended to zero or infinity (Grundmeier et 

al., 2006; Orton, 1983). Participants from several of these studies also did not recognize 

when area should be counted as a negative contribution to a definite integral (Grundmeier 

et al., 2006; Mahir, 2009; Rasslan & Tall, 2002). Finally, when faced with a problem 

allowing them to either employ basic area properties from the graph of a given function 

or attempt to translate graphs into function formulas and evaluate tedious antiderivatives, 

students tended to pursue the latter, often unsuccessfully (Judson & Nishimori, 2005; 

Mahir, 2009).  

Many of the existing studies reviewed in this section were also limited by their 

data collection methods. For instance, although the idea of determining students’ ability 

to recognize applications of integration was pertinent, Grundmeier et al. (2006) only 

assessed this via a true/false section of a written survey, and did not even include this 

portion of the survey in their analysis. In fact, all of these studies make use of written 

surveys as the primary source of data in assessing students’ knowledge. Accordingly, 

even though some of the studies reported results from rather large sample sizes, there are 

a lot of missing data. For example, as many as 40% of the participants left certain 

problems completely blank (Mahir, 2009). Or in the case of Rasslan and Tall’s (2002) 

study, some students reported a correct answer to a definite integral but did not show any 

work. This left the authors unsure about whether the participants knew how to properly 

calculate definite integrals, or just used the calculator they had access to during the 

survey.  

With the aforementioned student difficulties in mind, I was curious whether my 

study would illuminate similar or generalized versions of these problems with respect to 
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integration of complex functions. For instance, if students have difficulty with limiting 

processes that are embedded in the definition of definite integral for a real-valued 

function, it is entirely plausible that they might still struggle with this idea in a more 

generalized and complicated setting. Moreover, when faced with the decision to either 

pursue a more concise and conceptual geometric solution or a tedious algebraic and 

procedural solution, students in a complex variables course might still be tempted to 

instantiate the latter. I return to these considerations in Chapter V. My research 

additionally had the advantage of asking participants in real time about their reasoning 

and having them clarify statements, so that I could ascertain their complete reasoning 

process. Because my study investigated participants’ reasoning and argumentation with 

respect to integration of complex functions, I next review the mathematics education 

literature pertinent to the teaching and learning of complex numbers and variables.  

The Teaching and Learning of Complex 
 Numbers and Variables 

 
Given that research in undergraduate mathematics education is a relatively young 

field, it is not surprising that the educational literature on the teaching and learning of 

complex variables and analysis is sparse. The few studies that do exist in this domain 

have primarily attended to complex arithmetic and forms of a complex number 

(Danenhower, 2006; Karakok, Soto-Johnson, & Anderson-Dyben, 2014; Nemirovsky, 

Rasmussen, Sweeney, & Wawro, 2012; Panaoura, Elia, Gagatsis, & Giatilis, 2006; Soto-

Johnson & Troup, 2014). I begin this section with a review of these studies. Next, I 

discuss recent studies investigating more advanced topics such as continuity (Soto-

Johnson, Hancock, & Oehrtman, in 2016) and differentiation (Troup, 2015). However, 

there is no existing literature regarding students’ integration of complex functions, 
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despite the fact that it is a central topic of any complex analysis course for 

undergraduates, and despite its applicability to flux and potential for physics majors 

(CUPM, 2015). In particular, it is unclear how undergraduate students reason and argue 

about the notion of integration of complex functions. Therefore, my current work stands 

to contribute to the mathematics education literature about students’ reasoning in the field 

of complex analysis.  

Complex Arithmetic and Forms 
of a Complex Number 
 

Panaoura et al. (2006) investigated Greek high school students’ ability to solve 

complex arithmetic tasks using either a primarily algebraic or primarily geometric 

approach. The authors indicated that complex numbers are particularly appropriate in a 

study about multiple representations of a mathematical concept since complex numbers 

inherently possess both algebraic and geometric attributes that are vital to the 

understanding of the subject as a whole. One of their tasks sought to determine whether 

students would recognize the symbolic equation |: − 1 + 8| = √2 as a semicircle. 

Another task asked students to produce an equation that defined a particular semicircle. 

Panaoura et al. found that students who used a geometric approach were more successful 

at correctly completing tasks than those who used an algebraic approach. However, 

students who exhibited primarily geometric representations occasionally ran into 

difficulties with compartmentalization. These students struggled viewing the same 

complex numbers with the two different representations, yet they experienced minimal 

difficulty working with several different complex numbers via the same geometric 

representation. This indicates students’ inflexibility towards using more than one type of 

representation in complex arithmetic tasks. 
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Seeking to identify potential student difficulties in a preliminary complex 

variables course in British Columbia, Danenhower (2006) investigated undergraduate 

students’ willingness and ability to switch between four forms used for expressing 

complex numbers. Specifically, Danenhower investigated the prevalence of students’ use 

of complex numbers in algebraic/Cartesian form : = 7 + 8R, vector form : = (7, R), 

exponential form : = QNST, and symbolic form (recognizing a complex number simply by 

:). Note that Danenhower used the words “representation” and “form” interchangeably to 

denote each of these four ways of symbolically denoting a complex number, but for 

clarity and consistency I discuss these as forms in accordance with my definition from 

Chapter I.  

Danenhower characterized students’ level of understanding with respect to each 

form by adopting a combination of the well-established Action, Process, Object, Schema 

(APOS) (Breidenbach, Dubinsky, Hawks, & Nichols 1992) and reification (Sfard, 1991) 

frameworks. These characterizations were based, in large part, upon students’ ability to: 

use a single form, represent an expression in different forms, translate between forms, 

and judge when to shift from one form to another. One pertinent result from this study 

was that the students held an object understanding of the algebraic and vector forms, but 

only a process understanding of the exponential form. In particular, Danenhower found 

that students tended not to employ the exponential form in multiplication, but rather 

persisted to use another form such as Cartesian. This is noteworthy because the 

exponential form lends itself naturally to a geometric interpretation of multiplication of 

complex numbers, as QhNSTiQENSTj = QhQENS(TikTj). As such, this result suggested that 

students had difficulty judging when to shift to the exponential form.  
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In another study regarding complex number arithmetic, Nemirovsky et al. (2012) 

investigated American preservice secondary teachers’ geometric interpretations of the 

addition and multiplication of complex numbers. The instructor in this study provided 

participants with tape, string, and stick-on dots, and challenged them to use these items 

on a tiled floor in order to invent ways to perform complex addition and multiplication 

tasks. Students in the study expanded their own “realm of possibilities,” (p. 291), or the 

collection of all possible outcomes associated with some perceptuo-motor activity 

(combining perception and movement), for complex number arithmetic as they utilized 

their environment to enact specific operations, such as multiplication by 8. Accordingly, 

their gestures reflected an increasingly generalized conception of complex arithmetic, 

liberating students from a reliance on algebraic manipulation of specific examples. 

Moreover, these gestures allowed participants to recognize errors in their algebraic work. 

Studying a different population than the aforementioned research, Karakok et al. 

(2014) explored three in-service high school teachers’ conceptions of different forms of 

complex numbers as well as their ability to transition between different representations 

(e.g. algebraic and geometric) of these forms. These teachers, after completing three four-

hour sessions of professional development on complex numbers, demonstrated an 

operational conception, but not a structural conception (Sfard, 1991), of the exponential 

form of complex numbers. According to Sfard, a conception is operational if it focuses 

on “processes, algorithms, and actions” (p.3) and structural if it treats a mathematical 

idea as an abstract object that can be manipulated in its own right. Karakok et al. also 

found that two of the three participants evidenced cognitive conflict when conceiving of 

complex numbers as vectors, particularly when treating one complex number as an 



 33 

 

operator and the other as a vector in the product of complex numbers. However, the high 

school teachers were more comfortable with the Cartesian form and demonstrated an 

ability to proficiently switch between different representations, illustrating a 

process/object dual conception of this form (Sfard, 1991).  

In another study regarding operations on complex numbers, Soto-Johnson and 

Troup (2014) studied undergraduate students’ diagrammatic reasoning, inscriptions, and 

gestures during task-based interviews involving equations with complex expressions. 

These students had recently completed a course in complex variables that incorporated 

GeoGebra (dynamic geometry software) labs designed to elicit a geometric 

understanding of arithmetic operations and conjugation of complex numbers. Findings 

indicated that participants tended to initially reason with algebraic inscriptions, but later 

proficiently switched to geometric reasoning. Moreover, these students often produced 

inscriptions on the board when their verbalized statements could not suffice in 

articulating their geometric reasoning. Finally, the nature of their gestures transformed 

from primarily iconic when reasoning about their geometric inscriptions, to primarily 

deictic when evoking previously developed reasoning. The aforementioned studies from 

this subsection illuminate important qualities of individuals’ arithmetic and algebraic 

reasoning about complex numbers, but they reveal less about the axiomatic formal world 

(Tall, 2013). In the next subsection I discuss two studies which delve into the latter.  

Continuity and Differentiation 

Although much of the pertinent research in complex variables has dealt with 

various individuals’ algebraic and geometric reasoning about the arithmetic of complex 

numbers, recent studies have explored more advanced topics. For instance, Soto-Johnson 
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et al. (2016) explored the nature of, and interplay between, mathematicians’ informal and 

formal mathematical reasoning, or Ideational Mathematics (IM) and Conceptual 

Mathematics (CM) (Schiralli & Sinclair, 2003), respectively, about the continuity of 

complex valued functions. These mathematicians evoked IM in the form of numerous 

metaphors capturing ideas of control and preservation of closeness, but sometimes their 

IM was incomplete in capturing the rigor of the precise epsilon-delta definition of 

continuity. In particular, these mathematicians tended to employ domain-first IM with 

respect to continuity, in the sense that their IM reasoning often began by considering 

objects in the domain of a function, followed by determining what happened to those 

objects in the codomain. This type of reasoning, such as preservation of closeness 

descriptions of continuity, contrasts with the formal epsilon-delta definition of continuity 

in the sense that the latter necessitates that one starts with an acceptable tolerance l 

controlling closeness in the codomain before anything in the domain is considered. 

 In fact, when explicitly asked by the researchers, participants often did not 

adequately find ways to reconcile their domain-first IM with their formal CM statements. 

Hence this work suggests that while IM metaphors and descriptions can serve as helpful 

pedagogical tools, instructors need to be careful to be explicit about when this IM fails to 

fully capture the intended CM definition or concept. Although IM and CM were not the 

focus of my current study, my participants did exemplify IM and CM related to the 

continuity of complex functions, as it pertained to integration of given functions during 

their interviews. In doing so, these students might have alluded to some similar ideas 

indicating domain-first reasoning in the sense mentioned above, suggesting that this issue 

might not be unique to mathematicians like those in Soto-Johnson et al.’s (2016) study.  
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 In another study addressing more advanced topics in complex analysis, Troup 

(2015) investigated the nature of undergraduates’ reasoning about the derivative of a 

complex function. Specifically, he studied how participants expressed differentiation 

ideas via gesture, speech, inscriptions, and interaction with the dynamic geometry 

software Geometer’s Sketchpad (GSP). Through their use of GSP, participants noticed 

and resolved discrepancies between reasoning methods. In particular, participants 

initially tended to instantiate Danenhower’s (2000) “thinking real, doing complex” (p. 

101) theme when reasoning about the derivative of a complex function. That is, they 

attempted to apply the familiar conception of derivative as the slope of a tangent line to 

the context of complex derivatives. When asked to describe the derivative of a complex 

function geometrically, participants initially tried to revert back to their understanding of 

the derivative of a real-valued function as slope or rate of change, but quickly found that 

they did not “know what slope means in complex world” (p. 178) once they started using 

GSP in their investigations. 

 One way in which Troup’s (2015) participants were able to correctly reason about 

the geometric behavior of complex derivatives was to focus on the special case of a linear 

complex function. In doing so, participants discovered that linear functions always rotate 

and dilate circles by the same amount, regardless of location. Using GSP, they 

investigated more complicated functions such as 9(:) = :E and 9(:) = NC to explore the 

rotation and dilation transformations inherent in differentiation. Studying the images of 

circles of varying center and radius under these two functions helped participants 

conclude that the modulus of the derivative represents a local dilation factor. Specifically, 

if one considers a small circle about a particular point :L, then applying the function 9 to 
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the radius of this circle dilates this radius by a factor of |9@(:L)|. Participants also 

eventually conceived of the argument of the derivative as a rotation angle, so that 

applying 9 to the radius of a small circle about :L resulted in a rotation by PQ>(9@(:L)). 

Together these properties comprise what Needham (1997) refers to as an amplitwist, and 

provide a geometric interpretation of the derivative of a complex function. Moreover, this 

interpretation can reveal the derivative 9′(:L) as an approximation of the image 9(:L).  

Although mathematics education research regarding the teaching and learning of 

complex variables and analysis has been scarce, several aspects of the studies mentioned 

in this section informed my current work. Earlier research (Danenhower, 2006; Panaoura 

et al., 2006) suggested that students struggled with when and how to use specific forms of 

complex numbers, such as the polar form. These studies also stressed the importance of 

representational fluency with respect to working with complex numbers. More recently, 

in-service secondary teachers (Karakok et al., 2014) tended to favor the Cartesian form, 

while undergraduates with DGE experience (Troup, 2015) were more proficient with the 

polar form, knew when to employ it, and could connect their algebraic and geometric 

reasoning. Although mathematicians presumably do not struggle with transitioning 

between various forms and representations, Soto-Johnson, Hancock, and Oehrtman 

(2016) found that mathematicians’ IM incorporated domain-first reasoning that was 

difficult to connect rigorously to formal CM statements and definitions of continuity. 

Though participants’ choice and use of various forms of complex numbers were not 

central foci of my work, my study peripherally considered these aspects as part of 

undergraduates’ argumentation about integration of complex functions. For instance, a 

student might choose to invoke the exponential form of a complex number when 
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parametrizing a circular path, but might use the Cartesian form when verifying that the 

Cauchy-Riemann equations are satisfied for a particular function.   

Another important aspect of the existing literature involves Danenhower’s (2000) 

theme of students falling victim to “thinking real, doing complex” (p. 101). Troup (2015) 

also found that students succumb to this type of behavior, suggesting that it could indeed 

be a characteristic students instantiate when working with complex numbers and complex 

analysis in general. As discussed in Chapter V, my study illuminates three distinct 

manners in which participants attended to this phenomenon, two of which were 

productive to their reasoning. In order to analyze students’ mathematical reasoning via an 

appropriate grain size, I adopted Toulmin’s (2003) model of argumentation, which I 

discuss in the next section, along with the mathematics education literature relevant to 

this model. 

Toulmin’s Model of Argumentation 

In this section, I review mathematics education literature relevant to Toulmin’s 

(2003) model of argumentation. First, I discuss the components of the model itself, along 

with motivation for using such a model for analysis purposes. Next, I outline 

mathematics education researchers’ various adaptations of this model in recent research 

studying mathematical argumentation at the K-12 and undergraduate levels. Finally, I 

review literature setting forth general model considerations pertinent to adopting 

Toulmin’s Framework.  

Recall from Chapter I that the NCTM (2009) characterized reasoning as “the 

process of drawing conclusions on the basis of evidence or stated assumptions” (p. 4). 

Hence, I argued that reasoning is intimately connected to the process of mathematical 
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argumentation. One established scheme for analyzing any argument, mathematical or 

otherwise, was proposed by Toulmin (1958). Investigating the layout of a valid argument, 

according to Toulmin, requires the sophistication and attention to detail that is present in 

everyday legal utterances, but not necessarily the structure of formal logic. In particular, 

this means that mathematical arguments other than formal proof can be analyzed using 

Toulmin’s model. Because it is tempting to associate argumentation in the field of 

mathematics with the notion of proof,  

The analysis of argumentation in a classroom, then, could be misleadingly 
understood as a treatise on proof. Therefore, one should notice that both the 
concept of an argument and that of argumentation need not be exclusively 
connected with formal logic as we know it from such proofs or as the subject 
matter of logic (Krummheuer, 1995, p. 235). 
 
However, while dissecting arguments with this fine-grained lens, Toulmin 

stressed it is important not to lose sight of the more macro-level context in which the 

argument takes place. He likened an argument to a living organism with both a gross 

anatomical structure and a finer physiological one. As such, analyzing the finer 

physiological processes is most interesting and effective when this analysis is mindful of 

the larger organs that these finer processes take place within. Analogously, micro-

arguments  

need to be looked at from time to time with one eye on the macro-arguments in 
which they figure; since the precise manner in which we phrase them and set them 
out […] may be affected by the role they have to play in the larger context 
(Toulmin, 2003, p. 87). 
 

 According to Toulmin (2003), any argument is based upon the arguer attempting 

to convince his or her audience of some claim (C), or asserted conclusion. This claim is 

necessarily grounded in foundational evidence, or data (D), which serves as the 

information on which the claim is based. However, producing these data alone often 
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cannot convince one’s audience that the conclusion holds. In this case, the arguer can 

supply a warrant (W) that justifies the link between the given data and the purported 

claim. While Toulmin mostly treated warrants as hypothetical, bridge-like statements, or 

general laws within specific disciplines, mathematics educators have broadened the scope 

of what can be classified as a warrant in mathematical discourse. I will discuss 

researchers’ various modifications and adaptations of Toulmin’s work in the next 

subsection of this literature review. 

 Because warrants can take on different forms and engender different levels of 

certainty regarding the implication of a claim based on given data, Toulmin (2003) 

proposed that a modal qualifier (Q) is often necessary to explicitly reference “the degree 

of force which our data confer on our claim in virtue of our warrant”(p. 93). For instance, 

the arguer may not be entirely confident that the claim follows necessarily from the data 

provided. Depending on the warrant provided, there might also be circumstances in 

which the intended claim does not hold; in this case, conditions of rebuttal (R) are needed 

to indicate when the “general authority of the warrant would have to be set aside” (p. 94). 

 According to Toulmin (2003), another potential issue surrounding an arguer’s 

warrants is that the audience might challenge the general legitimacy of the warrant 

provided, or may call into question whether this warrant is actually applicable in the 

present context. Therefore, the warrants provided in an argument might need additional 

backing (B), or assurances confirming the warrant’s authority and/or authenticity. 

Toulmin emphasized that the nature of the backing needed for one’s warrants varies 

greatly depending on the field of argument, again underscoring the importance of the 

macro-level context in which an argument takes place. I will return to the notion of 
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backing in the General Model Considerations subsection to highlight the various ways in 

which mathematics education researchers have characterized the backing of mathematical 

warrants. Collectively, the aforementioned components D, C, W, Q, R, and B constitute 

Toulmin’s so-called “argument pattern,” which is illustrated below in Figure 1.   

 
Figure 1. Toulmin’s argument pattern. 

 
 With this framework in mind, I will next outline the various settings in which 

Toulmin’s (2003) argumentation pattern has been applied to mathematics education 

research, and discuss how my current research fits within this context. 

Toulmin’s Model in Mathematics 
Education Research 
 

Since the mid 1990s, Toulmin’s framework has gained much popularity amongst 

mathematics education researchers as a way of analyzing mathematical arguments in 

various settings. The mathematical arguments of participants from numerous educational 

backgrounds have been analyzed in several different contexts. For instance, while some 

researchers have chosen to analyze students’ or instructors’ mathematical arguments 

during an actual class session (Krummheuer, 1995, 1997; Rasmussen, Stephan, & Allen, 
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2004; Stephan & Rasmussen, 2002; Wawro, 2015), others have used Toulmin’s 

framework to discuss how students examine the validity of purported written 

mathematical proofs (Alcock & Weber, 2005). The literature also includes studies 

investigating students’ argumentation in responses to written examinations (Evens & 

Houssart, 2004) or task-based interviews (Hollebrands, Conner, & Smith, 2010). Below I 

discuss the various educational settings in which Toulmin’s pattern has been utilized in 

mathematics education research; this will allow me to illustrate how my current research 

complements the existing literature. 

K-12 applications. Because the Toulmin model can be adapted to arguments 

using any level of mathematical content, researchers can examine how students argue 

mathematically at various points in their educational career. At the elementary school 

level, Krummheuer (1995) imparted Toulmin’s model to investigate students’ collective 

argumentation, which he characterized as “a social phenomenon when cooperating 

individuals tried to adjust their intentions and interpretations by verbally presenting the 

rationale of their actions”(p. 229), about basic arithmetic operations and properties. 

However, Krummheuer’s study, like many others that followed, did not incorporate 

Toulmin’s full model, as it ignores the modal qualifier (Q) and rebuttal (R) components. 

In fact, Krummheuer’s analysis focused primarily on just the data (D), warrant (W), and 

conclusion (C), a subset of the model, which he referred to as the “core” of an 

argumentation, which serves as the “minimal form of an argumentation” (p.243).  I will 

discuss the implications of adopting this type of a reduced model in certain settings in the 

General Model Considerations subsection below.  
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 Evens and Houssart (2004) also investigated young students’ argumentation 

without referring to qualifiers or rebuttals, citing Krummheuer’s (1995) work and other 

similar studies as justification for not needing to adopt Toulmin’s (2003) full model. 

Their research considered 441 11-year-olds’ written responses to a single question on an 

assessment. This question asked students to evaluate the correctness of a hypothetical 

child’s claim that the sequence of numbers {1, 4, 7, 10, 13, 16, …} will never contain a 

number that is a multiple of 3. The students were prompted to circle “yes” or “no” to 

indicate whether or not the hypothetical student was correct, and also provide a written 

explanation for their choice. Therefore, the written test question contained the data (D) as 

well as a potential claim (C) about the data, but the students in the study had to supply the 

warrants (W) and backing (B) in order to argue for or against the hypothetical child’s 

claim.  

 Some participants’ justifications in the aforementioned written task contained no 

warrants whatsoever, and merely restated the data as justification of the claim. Others 

contained explicit warrants that only constituted examples but not general statements. For 

instance, some responses indicated that there was a 7 in the given sequence, and provided 

no backing for their warrants. Still others provided explicit warrants similar to the 

example above, but also backed these warrants with an additional statement such as “7 is 

not a multiple of 3” (p. 276). There were students who provided a complete justification 

using two warrants, one containing reasoning about the starting point of the sequence, 

and another stating that each number in the sequence would be one more than some 

multiple of 3. However, the majority of students who provided any legitimate 

justification omitted one of these two warrants. Hence Evens and Houssart (2004) 
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concluded that teachers should build on the answers that children provide, rather than 

modeling complete solutions to the types of problems in their study. 

Krummheuer (2007) extended his prior work by elucidating specific social 

features inherent in the elementary mathematics classroom that thwarted the presence of 

mathematically based warrants and/or backing in classroom argumentation. For instance, 

the ways in which one teacher communicated with students as they arithmetically 

decomposed the number 13 resulted in a complete lack of content-related warrants on the 

students’ part. Instead, the students’ warrants supporting their claims were solely 

constituted by whether or not the teacher intervened after a student offered a potential 

solution. If the teacher did not intervene, the students used this as evidence that a 

student’s claim followed from the data provided. In the other classroom Krummheuer 

analyzed, even though students were able to provide warrants to support their claims, 

they never explicitly backed these warrants. Thus only the aforementioned “core” version 

of Toulmin’s model could be used to analyze students’ argumentation. According to 

Krummheuer, this lack of backing happens often in the primary mathematics classroom. 

Naturally, then, the question arises as to whether the aforementioned issues involving 

backing and warrants are also prevalent in higher grade levels.  

Fortunately, researchers have also investigated middle school and high school 

students’ mathematical argumentation, though not necessarily during similar conditions. 

For instance, Weber, Maher, Powell, and Stohl Lee (2008) investigated eight middle 

school students’ arguments about whether various hypothetical companies produced fair 

six-sided dice. During a summer session and as part of a larger longitudinal study, pairs 

of participants ran computer simulations of several companies’ dice being rolled, and 
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used the resulting output as data for their claim that either the dice were fair or unfair. 

The students constructed a poster with any data and written arguments they could think of 

in support of their claim. After a viewing period of all posters, the eight students came 

together to debate their conclusions. During this debate, the students initially based their 

conclusions on whether or not the two posters for a given company reflected the same 

conclusion about that company’s dice, rather than the data provided by the simulation. 

Eventually, some students called this type of reasoning into question, and this prompted 

additional debate about students’ warrants and backing based on ideas such as the sample 

size from the simulation. 

Ultimately, Weber et al. (2008) hypothesized that:  

learning environments where student contributions are encouraged and not 
judged, sense making is encouraged and students are arbiters of what makes sense 
[…] will invite students to attend to and challenge the arguments of others, which 
can make the warrants in students’ discussion the objects of debate (p. 260). 
 

Thus, the social context in which the argumentation takes place, including any classroom 

norms established, can influence the nature of students’ justification, especially with 

respect to backing warrants. I return to this point in the theoretical perspective section in 

the next chapter. 

Undergraduate applications. Given the difficulty some of the K-12 participants 

from the aforementioned studies displayed in constructing valid warrants and backing, 

perhaps a Toulmin analysis might be aided by the presence of more advanced 

mathematical content. At the college level, Hollebrands, Conner, and Smith (2010) 

explored eight students’ mathematical arguments as they solved problems involving 

relationships about quadrilaterals in hyperbolic geometry. During each task-based 

interview with an individual participant, the student was given access to the dynamic 
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geometry software NonEuclid. The authors found that when students provided explicit 

warrants, they did not use the technology provided. However, when students did not 

explicitly provide warrants for their claims, they did utilize the program. According to 

Hollebrands et al., one potential reason for this theme is that the students saw the 

technology as a warrant in itself.  

Unlike a majority of the participants from the aforementioned K-12 studies, these 

geometry students additionally expressed modal qualifiers (Q) in their responses when 

they were uncertain about a claim. In these instances, participants tended to turn to the 

technology as a means of determining the correctness of a stated claim, and either 

accepted the claim as true or abandoned the claim, based on technological outcomes. The 

presentation of results in Hollebrands et al.’s (2010) study is also particularly clear, in 

that diagrams illustrating a participant’s argument indicate when a sub-argument was 

prompted by the interviewer, and when a warrant was implicit as opposed to explicit. 

Undertaking an emergent perspective (Cobb & Yackel, 1996) lens, Stephan and 

Rasmussen (2002) also studied undergraduate-level mathematical argumentation using 

Toulmin’s (2003) model. These authors documented the emergence of several 

mathematical practices in a differential equations course. One key aspect of this research 

was that the authors argued that students’ argumentation showed evidence of 

mathematical ideas becoming taken-as-shared. For instance, the explicit mention of 

certain warrants or backing in students’ arguments sometimes disappeared because the 

underlying mathematical idea eventually stood as self-evident within the classroom 

culture. In other instances, components of students’ argumentation shifted their role or 
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function, yet were unchallenged by other students. For instance, a previous claim became 

data for a later argument during a future class session.  

Building upon Stephan and Rasmussen’s (2002) work, Rasmussen, Stephan, and 

Allen (2004) chose to re-analyze the data from the 2002 study, with a new goal of 

investigating how gesture and argumentation can work together to establish taken-as-

shared mathematical ideas. Rasmussen et al. found that certain gesture/argument dyads 

not only appeared as certain mathematical practices were formed, but also reappeared at 

later class sessions when an older practice had to be renegotiated and different data were 

used in the argumentation They also found that certain dyads that began as data in one 

argument were used as warrants when negotiating taken-as-shared ideas such as an exact 

solution representing instantaneous rates of change. Given the relationship between 

gesture and argumentation established by Rasmussen et al., the results of my study shed 

light on what gesture/argumentation dyads exist in the subject area of complex analysis, 

as well as how they support one another. I discuss this point in detail in Chapter V. 

 In an in-depth case study of an undergraduate linear algebra student, Wawro 

(2015) applied a Toulmin analysis to investigate the ways in which this student reasoned 

about solutions to Pm = n and Pm = o. Through videotaped observations during whole-

class discussion and small group work, as well as individual interviews, she documented 

this student’s mathematical argumentation regarding various equivalences in the 

Invertible Matrix Theorem. This consisted of microgenetic (Saxe, 2002) analysis of the 

structure of individual arguments, as well as ontogenetic (Saxe, 2002) analysis of a larger 

progression of argumentation over time. Wawro found that the student was primarily 

successful in his argumentation because he was “flexible in his use of symbolic 
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representations, proficient in navigating the various interpretations of matrix equations, 

and explicit in referencing concept definitions within his justifications” (p. 336). Hence 

this study suggests an important link between representational fluency and effective 

mathematical argumentation. As I detail in the next chapter, this relationship between 

representations and argumentation is an important component of my theoretical 

perspective.  

Research has also considered undergraduates’ understanding of argumentation in 

formal proofs. For instance, Alcock and Weber (2005) conducted individual tasked-based 

interviews with thirteen undergraduate students in real analysis, and asked each student to 

identify a proof containing flawed argumentation as valid or invalid. The last line of this 

purported proof represented a true statement, but the statement did not legitimately 

follow from the previous lines in the proof. In other words, although the data and claim of 

the argument were true, the warrant provided did not connect the data to the claim in a 

valid manner. Specifically, the warrant implied that all increasing sequences diverge. 

Alcock and Weber found that only six of the thirteen participants identified the argument 

as invalid, and only two of these students did so based on legitimate mathematical 

reasoning. The authors mentioned that one potential difficulty in assessing the validity of 

a formal proof is that written proofs rarely explicitly state all data and warrants. Instead, 

the reader must often infer these details, and an unassuming reader might focus on the 

correct claim in the last sentence, but not notice that the implicit warrant put forth is 

invalid.  

 Originally, only six of thirteen participants rejected the proof as invalid. But when 

the interviewer prompted the students to reflect upon their critique and directed their 
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attention to the last two lines of the proof, ten of the thirteen students ultimately identified 

the false warrant. This finding indicates that “the ability to validate proofs may be in 

many students’ zone of proximal development and that students’ abilities in this regard 

might improve substantially with relatively little instruction” (p. 133). Given that my 

study incorporated paired task-based interviews, I anticipated that one student in each 

group might take on the role of the “more knowledgeable other” (Vygotsky, 1978) 

relative to the other student. As such, the ability to validate arguments, especially 

assessing the validity of each other’s warrants and/or appropriate backing, could 

potentially lie within student pairs’ zone of proximal development. I briefly return to 

related considerations about students’ zone of proximal development in Chapter V. 

In the above instantiations of Toulmin’s framework, it appears that the elementary 

nature of the mathematics content from the K-12 studies made it difficult for researchers 

to capture students’ argumentation with the complete Toulmin model. On the other hand, 

when researchers studied students’ conceptions regarding formal proof validity, these 

students had difficulty parsing the implicit warrants of proofs and therefore misclassified 

flawed proofs as valid (Alcock & Weber, 2005). Hence, Toulmin’s model might be 

especially well suited for analyzing undergraduates’ argumentation in courses such as 

complex analysis or differential equations. In such courses, students are exposed to 

somewhat advanced theory that they can employ as warrants and backing, but are not 

often required to write formal proofs. Accordingly, my work serves to complement the 

existing literature about undergraduates’ argumentation in these types of courses that 

transcend elementary topics but are not proof-intensive. It is also clear from an 

examination of the existing literature that there is no general consensus regarding which 
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components of Toulmin’s model should be, or can be, considered in analyzing individual 

or collective mathematical argumentation. As such, it is worth discussing some general 

guidelines as to how Toulmin’s model should be implemented in both the analysis and 

presentation of results in mathematics education studies. Finally, Wawro’s (2015) study 

illuminates a potentially strong connection between representational fluency and effective 

argumentation.  

General Model Considerations 

As discussed at the beginning of this section, although the general structure of 

Toulmin’s (2003) model of argumentation is applicable to a wide variety of disciplines, 

what constitutes appropriate justification in a given argument depends on the field and 

setting in which the argument is made. For instance, what suffices as a valid warrant or 

backing is largely field-dependent. Because of this somewhat delicate dependency, some 

researchers have argued that the classification of a particular statement as data, warrant, 

or backing within an argument is not always well defined (Simpson, 2015; Weinstein, 

1990). In particular, when sub-arguments are considered together as one larger argument, 

a statement can take on dual meanings: the claim from one sub-argument can become the 

data for the next. 

 This field-dependency also dictates what sort of objects can be treated as warrants 

or backing within an argument. For instance, we have already seen an example 

(Krummheuer, 2007) where warrants were not content related, but rather relied upon 

whether or not the teacher intervened after a claim was made. Forman, Larreamendy-

Joerns, Stein, and Brown (1998) contend that warrants can take the form of algorithms or 

formulas, such as area = length times width. Moreover, they argued that backing can take 
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the form of convincing someone that length times width is indeed the correct algorithm 

for computing area of a parallelogram. However, Forman et al. accompany the plethora 

of other researchers (Evens & Houssart, 2004; Krummheuer, 1995, 2007; Stephen & 

Rasmussen, 2002; Rasmussen et al., 2004) in only adopting a partial Toulmin scheme, in 

the sense that they do not consider such elements as modal qualifiers (Q) and rebuttals 

(R). 

 Although Krummheuer (1995) identified the subset {D, C, W} of Toulmin’s 

model as the core of the argument, some researchers have criticized the absence of the 

remaining components of the full model. According to Inglis, Mejia-Ramos, and Simpson 

(2007), utilizing the full Toulmin model is especially imperative when analyzing 

mathematical reasoning about more advanced content. They argued that modal qualifiers, 

in particular, play an important yet largely unrecognized role in careful mathematical 

argumentation, since “omitting the role of the modal qualifier in models of mathematical 

arguments constrains us to consider only arguments with absolute conclusions, and, 

consequently, to undervalue non-deductive warrants in advanced mathematics”(p. 19). 

Through task-based interviews with successful postgraduate mathematics students, Inglis 

et al. established that advanced mathematical argumentation relies heavily on these non-

deductive warrants. Moreover, these warrants are themselves used to arrive at non-

absolute conclusions on a regular basis. Similarly, Troudt (2015) corroborated these 

claims by arguing that researchers’ use of the reduced model tends to “incorporate the 

backing into the warrant” (p. 249). In her study, Troudt additionally found that her 

mathematician participants’ explicit modal qualifiers and backing statements provided 

valuable insight into the process by which their mathematical proofs unfolded. 
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Specifically, she concluded that the inclusion of qualifying and backing statements could 

“illuminate more patterns explaining the participants’ decisions and thinking at various 

moments while constructing proof” (p. 251).  

 Aside from considering which components of the Toulmin model to include in an 

analysis of an argument, one must also be mindful of how such analyses are presented. 

For instance, when several sub-arguments are made within a larger proof, Aberdein 

(2005) suggested that the overall structure of the proof is more clearly elucidated when 

these sub-arguments are chained together in “data-conclusion pairs” (Simpson, 2015). 

The claim of one sub-argument in such chains becomes the data for the next. In 

circumstances where each sub-argument has the same modal qualifier, Aberdein 

suggested placing a single qualifier in the diagram rather than creating a cluttered 

representation with copies of the same qualifier. These examples point to a larger 

potential concern with adopting Toulmin’s (2003) model in the analysis of mathematical 

argumentation. Namely, “an analysis of an argument using Toulmin’s scheme does not 

result in a unique structure. That is, a single written proof […] might be interpreted in 

such a way as to produce quite different Toulmin diagrams” (Simpson, 2015, p. 7).  

 One way to potentially add clarity to a Toulmin analysis is to characterize specific 

types of warrants used in participants’ argumentation. For instance, Inglis et al. (2007) 

classified participants’ warrants under three categories: inductive, structural-intuitive, and 

deductive. Specifically, an inductive warrant involves evaluating one or more specific 

cases. Participants instantiated the structural-intuitive type of warrant via observing or 

experimenting with a mental structure, visual or otherwise, in the service of persuasion. 

Finally, a deductive warrant involved formal deductions from axioms or the use of 
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counterexamples to argue a claim. As I discuss in the next chapter, these three types of 

warrants not only provide added specificity to the Toulmin analysis, but they also align 

with important constructs from my theoretical lens. 

 Mejia-Ramos (2008) also advocated for the use of the full Toulmin (2003) model 

when analyzing mathematical argumentation. He provided participants with conjectures 

including: (1) The derivative of an even function is an odd function, and (2) The product 

of two diagonal matrices is diagonal. Mejia-Ramos ultimately found that participants’ 

arguments fell under three categories. The first, inductive arguments, included attention 

to special cases, much like the inductive warrants in Inglis et al.’s (2007) study. The 

second type of argument was informal deductive, and incorporated informal and 

sometimes pictorial justification. Finally, formal deductive arguments incorporated 

rigorous proof and are analogous to Inglis et al.’s deductive warrant classification.   

Given the lack of backing discussed in many of the articles mentioned in the 

previous subsections, Simpson (2015) decided to more thoroughly investigate the role(s) 

that backing can play within the Toulmin model. By examining how earlier papers (e.g. 

Evens & Houssart, 2004; Inglis et al., 2007; Stephan & Rasmussen, 2002) reported the 

use of backing, Simpson found that there were three distinct roles for backing of warrants 

within an argument. Simpson denoted the first as backing for the warrant’s validity (p. 

10). This type of backing, evidenced by Evens and Houssart (2004), was invoked to 

explain why the warrant applies to a given argument. A second type of backing served to 

“highlight the logical field in which the warrants are acceptable,” which Simpson 

characterized as backing for the warrant’s field (p. 12). Finally, a third role of backing 
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has been to illustrate that a given warrant is actually correct. Simpson refers to this form 

of backing as backing for the warrant’s correctness (p.12).  

 One of the reasons why this backing characterization is important to research in 

the field of mathematical argumentation is that prior researchers might not have given 

enough attention to the reasons for which participants were not able to provide 

appropriate backing for their warrants. Rather, they have tended to simply note the 

absence of backing. In particular, as Simpson (2015) explains,  

A teacher may be asking a pupil to explain why their warrant applies to the 
situation, but the pupil may defend themselves by giving evidence that their 
warrant is correct. This need not mean that a student is not capable of giving an 
appropriate form of backing for the validity of their warrant, just that they took 
the enquiry to be a challenge to its correctness (p.15).  
 

Such considerations could be especially important in real-time classroom interactions, 

provided that instructors are cognizant of these various types of backing. 

In any case, many of the aforementioned studies using Toulmin’s (2003) model of 

argumentation focused on in-class interactions and participation (Evens & Houssart, 

2004; Krummheuer, 1995, 2007; Rasmussen et al., 2004; Stephan & Rasmussen, 2002), 

or assessment of purported written arguments written by someone else (Alcock & Weber, 

2005; Evens & Houssart, 2004). In the in-class setting, some researchers (Krummheuer, 

1995, 2007; Rasmussen et al., 2004; Stephan & Rasmussen, 2002) felt that the reduced 

Toulmin model was appropriate, and rarely found evidence of explicit backing, or even 

content-related warrants (Krummheuer, 2007). In the formal proof literature, researchers 

(Alcock & Weber, 2005; Inglis et al., 2007; Simpson, 2015) argued that it is important to 

utilize the full Toulmin model, including modal qualifiers and rebuttals. But just reading 

the finished product of a purported proof is inherently difficult because some of the 
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components of the Toulmin model, such as backing and sometimes even the warrants, are 

implicit and cannot be elicited through real-time social discourse with the proof author. 

In my research, each pair of participants had the opportunity to challenge each 

other’s warrants, but also work together to come up with potential rebuttals. As the 

interviewer, I also asked probing questions with the intent of targeting specific 

components of the Toulmin model. For instance, I explicitly asked participants about how 

sure they are about a claim, hence eliciting modal qualifiers. Sometimes I also asked for 

clarification when an implicit warrant was called upon. Therefore, as I will discuss in the 

Theoretical Perspective section, the inherent social nature of my interview setting 

required that I adopt a theoretical lens which takes advantage of both the fact that 

students worked collaboratively, and the fact that I intervened, mediated, and provided 

scaffolding during the interview process. In the next chapter, I motivate and outline my 

chosen theoretical perspective as well as my methods, and discuss how the former 

influenced the latter.   
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CHAPTER III 

 

METHODOLOGY 

 

 Recall that the purpose of this qualitative research was to explore undergraduates’ 

multifaceted reasoning about integration of complex functions. My guiding research 

questions were: 

Q1 How do pairs of undergraduate students attend to the idiosyncratic 
assumptions present in integration theorems, when evaluating specific 
integrals? 

 
Q2 How do pairs of undergraduate students invoke the embodied, symbolic, 

and formal worlds during collective argumentation regarding integration 
of complex functions? 

 
In order to address my research questions, I observed six class sessions of an 

undergraduate complex variables course and conducted task-based, videotaped interviews 

with two pairs of students from this course. In this chapter, I first motivate my chosen 

theoretical orientation by providing my research stance, which conveys my personal 

experiences and beliefs regarding integration of complex functions, and their connection 

to my work. Then I detail my chosen framework of Tall’s (2013) three worlds, comparing 

aspects to other relevant theories and frameworks. I next discuss the connection between 

Tall’s three-world framework and Toulmin’s (2003) model of argumentation, and how 

these molded together to comprise my theoretical lens. Subsequently, I discuss how this 

lens informed my coding and data analysis, and how it assisted me in answering my 
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research questions. I then detail the methods of data collection, including a description of 

my participants and setting. Finally, I outline my proposed methods for data analysis, 

including measures taken to ensure credibility and trustworthiness of my findings.  

Researcher Stance 

 As an undergraduate mathematics major, I took a complex analysis course not 

quite knowing what to expect from it. I had recently completed a course in real analysis, 

where we primarily focused on formal epsilon-delta proofs regarding continuity, 

differentiation, and Riemann integration. Accordingly, I had assumed we would approach 

these subjects in complex analysis with the same level of rigor and abstraction. However, 

to my surprise, the complex analysis course did not list real analysis as a prerequisite, and 

I shortly discovered that much of the class would focus more on calculation than proof. 

When it came time to learn integration, I found that many of the assumptions of major 

theorems were motivated in our textbook in a rather “hand-wavy” manner, and I did not 

have the intuition to visualize some concepts. 

 In class we sketched proofs to these theorems, and I could reproduce these basic 

proofs or similar ones on exams, but I rarely understood precisely why certain 

assumptions needed to be met in order for the theorem to apply. Moreover, many of the 

integration examples we worked through were “nice” in one way or another, so that is 

was not really necessary to examine all the assumptions of theorems that I applied 

regularly. In essence, these assumptions nearly always applied, in my experience, and 

thus I did not attribute much significance to them. By the end of the integration unit, I 

was proficient with the procedures of parametrization, partial fractions decomposition, 

rearranging a function to apply Cauchy’s Integral Formula. But if pressed, I probably 
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would not be able to craft a cogent argument that would justify the procedures used or 

theorems applied.  

 As a graduate student and mathematics education researcher, I have more recently 

had the opportunity to think more deeply about and prove the results in complex analysis 

that I previously took for granted. Thus, I developed an interest in how undergraduate 

students might argue or reason through integration problems, and what would happen if 

they were pressed about assumptions, warrants, and the like. Moreover, as someone who 

ultimately would like to teach classes such as complex variables, I had a vested interest in 

how instructors can help students strengthen their mathematical argumentation, even 

without formally proving results. In particular, I wished to discover ways that embodied, 

symbolic, and formal reasoning can work together to further an integration argument. 

Recall that embodied reasoning attends to the study of objects and their geometric 

properties, as well as mental visualization and description through language. On the other 

hand, symbolic reasoning grows out of actions on objects and is symbolized via thinkable 

concepts such as number. When reasoning in this world, it is possible for individuals to 

conceive of symbols as procepts, operating dually as process and concept (Tall, 2008). 

Formal reasoning attends to axiomatic systems articulated via set-theoretic definition, or 

properties that can be deduced by proof. 

 When I reflected on my personal experiences with evaluating integrals of 

complex functions, I noticed that I often drew diagrams, performed some sort of 

symbolic manipulations, and attended to other related theorems, all within the same 

problem. For instance, when faced with a particular integral, I would start by sketching a 

picture of the region, the contour, and any points of discontinuity for the given integrand. 
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I would also determine if the integrand was an analytic function, so that I could 

potentially apply the Cauchy-Goursat Theorem (see Appendix A). But analyticity can be 

determined symbolically via the Cauchy-Riemann equations, and I would compute and 

compare the requisite partial derivatives. I would also inspect my picture to ascertain 

whether other important properties held for the given contour and/or region. For instance, 

sometimes I needed my contour to be closed in order to apply a theorem, and I visually 

inspected my picture to verify that the contour started and ended at the same point. If 

ultimately the Cauchy-Goursat Theorem applied, I could conclude that the integral was 

zero.  

 Notice that even in this simple example, I attended to pictorial and symbolic 

representations, as well as the hypotheses and conclusions of major theorems. Moreover, 

these embodied, symbolic, and formal aspects intertwined in various ways. In order to 

use the Cauchy-Goursat Theorem, my contour had to be simple and closed, and this 

required visual inspection of my picture. Using this theorem also required that the 

integrand represented an analytic function, and verifying analyticity amounted to 

performing several symbolic manipulations.  

 The above example illustrates a belief I hold that even a seemingly uncomplicated 

integration problem can lend itself to a combination of embodied, symbolic, and formal 

reasoning. As a mathematics education researcher, the projects I have been involved with 

have all involved some level of concern for geometric, algebraic, and formal reasoning, 

but at times I struggled to theoretically fit each of these pieces into a cohesive whole. In 

the next section, I detail my choice of theoretical lens for this study, Tall’s (2013) three 



 59 

 

worlds of mathematics, which I feel accomplishes such cohesion and helped me address 

my research questions. 

Theoretical Perspective  

 As discussed in the introductory chapter, my study was at least partially motivated 

by the premise that students’ prior experiences with mathematics inevitably influence 

how they conceive of newer and more general mathematical topics. As I alluded to 

previously, Tall (2013) discussed how some of these prior experiences can support 

students’ reasoning in new situations, while others can engender cognitive dissonance. 

An important construct related to prior experiences is what he refers to as a met-before, or 

“a structure we have in our brains now as a result of experiences we have met before” (p. 

23, italics in original). For instance, when we study complex numbers for the first time 

we are immediately introduced to a number 8 whose square is negative. At this point, “we 

experience the met-before that tells us that ‘a (non-zero) square must be positive’. This 

‘met-before,’ which is true for real numbers, forms part of our selective binding of the 

notion of ‘number’ and is usually problematic” (p. 88). Though this is merely an 

elementary example, similar difficulties can arise from met-befores when studying 

complex analysis, as with the phenomenon of thinking real, doing complex (Danenhower, 

2000; Troup, 2015).  

 Such a concern for the effects of prior mathematical experiences is well 

documented in the mathematics education literature. For instance, a central tenet of 

constructivism is equilibration resulting from the marriage of prior knowledge and new 

mathematical experiences. When faced with an unfamiliar notion, one may either 

assimilate this idea into a more familiar category or accommodate his or her existing 
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mental schema through a process of cognitive reorganization (Miller, 2009). 

Additionally, researchers have studied transfer of knowledge by investigating how 

aspects from prior experiences with mathematics carry over to new tasks or situations 

(Lobato, 2006; Lobato & Seibert, 2002; Wagner, 2006). But perhaps most importantly, 

the original formulation of met-before was influenced by the notion of metaphor, which 

several researchers have argued is central to our mathematical knowledge construction 

(Lakoff & Johnson, 1980; Lakoff & Nuñez, 2000; Sfard, 1994). Tall (2013) elaborated on 

the connection between these two ideas as follows: 

 The philosophical notion of ‘metaphor’ and the cognitive notion of ‘met-before’ 
have much in common. Both link a new experience to an experience that is 
already familiar. However, the notion of ‘metaphor’ offers a high-level analogy to 
formulate a theory while the notion of ‘met-before’ is formulated to focus on the 
development of ideas from the viewpoint of the learner (p. 88, italics in original). 
 

Hence Tall views metaphor as a top-down expert viewpoint of another’s previous 

experience, whereas a met-before is a bottom-up development from the learner’s 

perspective.  

 While met-befores are central to our development of mathematical knowledge, 

Tall (2013) also stresses the importance of three basic innate principles that guide our 

growth within and between three worlds of mathematical thought. I identify and describe 

these worlds in the next subsection, but first I detail the aforementioned innate principles. 

These are the set-befores of recognition, repetition, and language. Though animals also 

share the first two attributes, Tall points out that language is a uniquely human construct 

and is a primary means of developing formal mathematical thinking. In my study, I 

focused on the argumentation of multiple individuals who interact and guide each other’s 
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arguments via verbal language, written inscriptions, and gestures. As such, my study 

adopted a unit of analysis of student pairs.  

 According to Tall (2013), the aforementioned set-befores of recognition, 

repetition, and language enable three forms of knowledge compression: categorization, 

encapsulation, and definition. Through this compression, individuals build so-called 

crystalline structures, which incorporate many equivalent formulations of a mathematical 

object and can be unpacked in various worlds. Thus the three-worlds perspective posits 

that our propensity as humans for recognition, repetition, and language allows us to 

crystalize mathematical concepts by building upon met-befores via categorization, 

encapsulation, and definition. This general process of crystallization manifests itself 

differently within each world and between multiple worlds, as I illustrate in the next 

subsection. But first I outline each of the three worlds and orient them with respect to 

existing mathematics education frameworks. 

Three Worlds of Mathematics  

 According to Tall (2013), by building upon our met-befores, we navigate through 

three distinct but interrelated worlds of mathematical thought. The first is the world of 

conceptual embodiment, which begins with the study of objects and their properties, 

progressing towards mental visualization and eventually description through increasingly 

subtle language. Because the term ‘embodiment’ can have many varied meanings 

(Wilson, 2002), Tall (2004a) immediately contrasted his version of embodiment against 

that of Lakoff and colleagues. He mentioned that Lakoff and others have argued that all 

mathematical knowledge is embodied, but this cannot be the case in Tall’s framework if 

the embodied world is but one of three distinct forms of mathematical knowledge. In 
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particular, Lakoff (1987) distinguished between two different types of embodiment: 

conceptual and functional. The former involves conceiving of concepts via mental 

images, i.e. visuo-spatially. On the other hand, functional embodiment refers to a more 

automatic and possibly unconscious use of concepts requiring less effort and more 

closely resembling “normal functioning” (p. 13). Of these two types of embodiment, Tall 

(2013) chose to only consider conceptual embodiment in his three-world framework, as 

the name of the first world suggests. Functional embodiment, then, is reserved for the 

interaction between the first and second worlds, which I discuss later. 

 Ultimately, Tall (2013) refined Lakoff’s (1987) previous description of 

conceptual embodiment to refer to “the use of mental images, both static and dynamic, 

that arise from physical interaction with the world and become part of increasingly 

sophisticated human imagination” (p. 12). As such, this world includes using physical 

manipulatives such as base blocks, drawing geometric inscriptions that become mental 

pictures, and graphing functions as static images on paper. Moreover, it subsumes any 

dynamic visual imagery either visualized in the mind or using computer software.   

 This aspect involving visualization is also consistent with other researchers’ 

characterization of visual reasoning. For instance, Zazkis, Dubinsky, and Dautermann 

(1996) describe visualization as the mental construction of objects or processes 

associated with external objects or events. While there is no general consensus as to what 

exactly constitutes visualization in mathematics education research, most definitions 

incorporate aspects of the following definition by Presmeg (2006): “visualization is taken 

to include processes of constructing and transforming both visual mental imagery and all 

of the inscriptions of a spatial nature that may be implicated in doing mathematics”(pp. 
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206-207). Thus Tall’s (2013) characterization of the embodied world has a visualized 

aspect that is well established in the literature. 

 Language also remains an important aspect of the embodied world, as this set-

before allows for the articulation of increasingly formalized embodiments. Tall (2004b) 

emphasized that “A visual picture is nothing without meaning being given to what it 

represents. While embodiment is fundamental to human development, language is 

essential to give the subtle shades of meaning that arise in human thought” (p. 284). As 

discussed previously, language allows for definition of concepts, which is a form of 

compression and underpins crystallization within the embodied world.  

 The second world in Tall’s (2013) framework is operational symbolism, which 

grows out of actions on objects and is symbolized via thinkable concepts such as number. 

A thinkable concept is attached to a specific name through the set-before of language, 

and over time its meaning can be refined and incorporated into knowledge structures. 

According to Tall, in this symbolic world, “Whereas some learners may remain at a 

procedural level, others may conceive the symbols flexibly as operations to perform and 

also to be operated on through calculation and manipulation” (pp. 16-17). When the latter 

is accomplished, Tall characterizes this flexibility as evidence of proceptual thinking, 

where a procept is a symbol operating dually as a process and as a concept (Tall, 2008). 

For example, consider the arithmetic expression 7 + 3. On one hand, a child might 

interpret this expression as instructions for a process of addition to be carried out. 

However, the student might instead view 7 + 3 as the number 10, the resultant concept of 

the sum. Over time, and using the set-befores of recognition and repetition, the child 

might flexibly conceive of the number 10 in many equivalent ways such as 5 × 2, 12 −
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2, 5 + 4 + 3 − 2, 20 ÷ 2, and even −108E. Similarly, one can conceive of an algebraic 

expression such as 27 + 6 as either a procedural operation to be carried out, i.e. double 

the value of 7 and then add 6, or as a concept that can be operated on in its own right. For 

instance, one might multiply this concept 27 + 6 by the aforementioned concept 10. 

Hence development within this world is analogous to Dubinsky’s APOS framework 

(Breidenbach et al., 1992) and Sfard’s duality principle (Sfard, 1991) in which actions are 

condensed into processes, which then are encapsulated into objects in their own right. In 

particular, Tall’s crystallization within the operational symbolic world is analogous to 

Sfard’s notion of reification.  

 Although the aforementioned embodied and symbolic worlds represent distinct 

ways of thinking, the two often interact throughout an individual’s development. For 

instance, Tall (2013) argued that “In school mathematics, embodiment and symbolism 

develop in parallel, where embodied actions give rise to symbolic operations and 

symbolism has embodied representations” (p. 17). Tall classifies this intersection 

between the operational symbolic and conceptual embodied worlds as embodied symbolic 

mathematics. Subsequently, as the learner defines and deduces properties either 

geometrically or symbolically, he or she begins to formally think about the first two 

worlds. Tall argues that these intermediate territories of embodied formal thinking and 

symbolic formal thinking may later propel the learner into a third world of formalism. 

Figure 2 is a visual representation of the interactions between all three worlds.  
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Figure 2. Tall’s three worlds perspective. Taken from Tall (2013) p. 17. 

 A natural setting to consider the interplay between the embodied and symbolic 

worlds is the definite integral of a real-valued function R = 9(7). Following Leibniz’s 

vision, we tend to conceive of the definite integral as the precise area under the graph of 

9(7) from the point 7 = ^ to the point 7 = _. This area is a quantity that we can see and 

imagine, and it can be approximated to varying degrees of accuracy by adding up the 

areas of rectangular strips. Leibniz eventually “envisaged the area as the sum of 

infinitesimally thin strips of height R and width J7 and wrote the area as ∫ R J7 where 

the symbol ∫ 	is an elongated S for the Latin word ‘summa’” (Tall, 2009, p. 8).  

Therefore, according to Tall (2009), this area is embodied as an object that can be 

visualized, and we can act upon this object by calculating its size using symbolism. We 

can blend the embodied and symbolic worlds even further by considering the area under 

9(7) as follows. First, we can calculate the area P(^, 7) from some point ^ to a point 7. 

In the second stage, we allow 7 to increase and plot the resulting area against 7. If we 
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allow the strips used to calculate P(^, 7) to become arbitrarily thin, we obtain a graph as 

in Figure 3. Figure 3 also depicts a magnification of the graph P(^, 7) to illustrate its 

local straightness. Notice that this approach ultimately involves sensing an embodied 

base object (the graph of 9(7)), acting upon it (by calculating P(^, 7)), and representing 

the effect of that action as another embodied object (the graph of P(^, 7)). Thus the 

definite integral concept for real-valued functions lends itself to an intimate blend of 

embodiment and symbolism.  

 

Figure 3. Graph of P(^, 7) and a local magnification. Taken from Tall (2009) p. 8. 

 Tall’s (2013) third world is that of axiomatic formalism, wherein individuals build 

“formal knowledge in axiomatic systems specified by set-theoretic definition, whose 

properties are deduced by mathematical proof” (p. 17). In this world of thought, learners 

can quantify statements involving general objects and deduce further properties from a 

selection of axioms defining the system. Thus the individual’s focus shifts from 

definitions based on known objects towards formal objects based on the prior definitions. 

For example, in symbolic formal reasoning, an individual might prove an algebraic 
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argument or identity by simply employing rules of arithmetic. However, in the axiomatic 

formal world, algebraic proof would appeal to the formal group or field axioms and other 

results already deduced from those axioms in order to obtain the desired result.  

 Importantly, though it carries great utility and power, the third world is not 

necessarily the ultimate destination for mathematical thinking. For instance, Tall (2013) 

discussed how so-called structure theorems end up informing embodiment and 

symbolism in meaningful ways. For example, the structure theorem that any finite-

dimensional vector space over a field ] is isomorphic to ]t can be proven within the 

axiomatic formal world. However, as a consequence of the theorem, one can represent 

vectors in finite-dimensional spaces as column vectors and in turn linear maps can be 

expressed visually as matrices. Such matrices can then be multiplied symbolically in the 

usual way. Accordingly, Tall argues that such structure theorems establish single 

crystalline structures despite being rooted in many seemingly disparate topics. In the next 

subsection, I detail how Tall’s three worlds framework complements Toulmin’s (2003) 

model of argumentation, and thus how it informed my data analysis.  

Connection to Toulmin’s 
Framework 
  
 Recall from the last chapter that Toulmin’s (2003) model of argumentation relies 

upon warrants whose role is to connect the initial data to an asserted claim. In the 

previous subsection, I detailed Tall’s three worlds of mathematics as a theoretical 

framework through which mathematical development can viewed. Fortunately, these 

worlds can also lend additional specificity to a mathematical argument, in that “each 

world develops its own ‘warrants for truth’” (Tall, 2004b, p. 287) in a distinctive manner. 

For instance, in the embodied world, truth is initially established in elementary geometry 
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based on what is seen to be true by the learner visually. As the individual progresses 

towards more formal geometric arguments in the embodied formal world, he or she 

develops Euclidean proof, “which is supported by a visual instance and proved by agreed 

conventions, often based on the idea of ‘congruent triangles’” (p.287). In contrast, within 

the operational symbolic world, truth is established in arithmetic based on calculation. In 

elementary algebra, a statement is true if one can produce the appropriate symbolic 

manipulations such as (^ − _)(^ + _) = (^ − _)^ + (^ − _)_ = ^E − _^ + ^_ − _E =

^E − _E. Finally, in the axiomatic formal world, a statement is true either by assumption 

as an axiom, or because it can be proved formally from the axioms. 

 Tall (2004b) illustrated these general classifications of truth with an example 

involving commutativity of vector addition: 

In the embodied world, the truth of u + v = v + u follows from the properties of 
a parallelogram and meaning is supported by tracing the finger along two sides to 
realise that the effect is the same, whichever way one goes to the opposite corner 
of the figure. In the symbolic world of vectors as matrices, addition is 
commutative because the sum of the components is commutative. At the formal 
level of defining a vector space, commutativity holds because it is assumed as an 
axiom. 
 

This example can also be easily adapted to justify the commutativity of complex numbers 

in each of the three worlds, as complex numbers can be expressed in vector form and 

additive commutativity in ℂ is one of the field axioms. Hence we have seen how each of 

the three worlds provides a different warrant for truth. 

 But more specifically, these three worlds can also correspond to particular classes 

of warrants mentioned in the literature review. For instance, recall from the last chapter 

that Inglis et al. (2007) found that participants’ warrants could be classified according to 

three types: inductive, structural-intuitive, and deductive. The inductive warrant was 
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comprised of evaluating specific cases, and Tall (2013) argued that such a warrant 

corresponds to either the embodied or symbolic worlds, depending on the nature of the 

case. Inglis et al.’s participants instantiated the structural-intuitive type of warrant via 

observing or experimenting with a mental structure, visual or otherwise, in the service of 

persuasion. As such, Tall associated this warrant type with the embodied world, as it 

“refers to thought experiments based on embodied images or calculations” (p. 343). 

Finally, a deductive warrant involved formal deductions from axioms or the use of 

counterexamples to argue a claim; hence Tall aligned such a warrant with the axiomatic 

formal world.   

 Moreover, recall from the previous chapter that Inglis et al. (2007) and Mejia-

Ramos (2008) argued for the necessity of modal qualifiers in Toulmin analyses of 

mathematical argumentation. In particular, their studies illustrated how one’s level of 

certainty about assertions can illuminate his or her progression towards a more formal 

argument. According to Tall (2013), these studies not only support the use of modal 

qualifiers, but they also lend credence to the three-world perspective in a Toulmin 

analysis. Consider the following four conjectures, the first two of which were presented 

to participants in Inglis et al.’s (2007) study, and the latter two of which were presented 

to Mejia-Ramos’ participants: (A) The sum w + x of two abundant numbers m, n is 

abundant; (B) The product wx of two abundant numbers m, n is abundant; (C) The 

derivative of an even function is an odd function; (D) The product of two diagonal 

matrices is diagonal. Although these two studies focused primarily on proof, Tall 

remarked that these four conjectures given to participants still lend themselves to the 

worlds of embodiment and symbolism: 
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(A) and (B) are general properties of whole number arithmetic that benefit from 
theoretical symbolic arguments. (C) is a calculus problem that can be embodied as 
a visual picture, symbolized as a rule in calculus, or formalized in mathematical 
analysis. (D) is a problem in matrix algebra that is essentially symbolic but is 
supported by a functional embodiment to remember the formula for matrix 
multiplication. Each benefits from different forms of support in embodiment, 
symbolism, and formalism to construct a proof (p. 346). 
 

 Summarily, as I have illustrated with the aforementioned examples, Tall’s three-

world perspective is compatible with Toulmin’s (2003) model of argumentation. 

Moreover, it complements the Toulmin analysis of a mathematical argument by adding 

specificity with regard to the types of backing and warrants used. As such, my data 

analysis was strengthened by classifying each Toulmin component as embodied, 

symbolic, formal, or various mixtures of these, as viewed through Tall’s three-world lens. 

Given that my study considered how pairs of students reason about integration tasks, it 

was additionally important that I consider how each individual contributes to collective 

argumentation. 

 According to Krummheuer (1995), collective argumentation takes place when 

multiple participants construct arguments through emergent social interaction. Because of 

the multivoicedness of this interaction, “Disputes in parts of an argumentation might arise 

that could lead to corrections, modifications, retractions, and replacements. Thus, the set 

or sequence of statements of the finally consensual argumentation is shaped step by step 

by surmounting controversy” (p. 232). In my paired interviews, participants’ 

argumentation could have additionally been influenced by my (albeit minimal) 

intervention. Ultimately, Krummheuer (2007) characterizes collective argumentation as a 

process of active participation wherein each individual participates in the production of 

an argument in two respects. First, he or she “produces statements that can be allocated to 
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certain categories in the sense of Toulmin” (p. 78). In doing so, the individual participates 

in a second manner by invoking a particular speaking role during this interaction.   

 To this end, Krummheuer (2007) detailed four speaker roles, originally formulated 

by Levinson (1988), that he used to describe the process of collective argumentation. 

Levinson built on Goffman’s (1981) decomposition of a speaker’s utterance into two 

functions. The first is a function of formulation comprised of the syntactical form in 

which a statement is produced. Thus this function focuses on the specific choice of words 

invoked to articulate a statement. The second function regards the content of a 

contribution and is therefore semantic in nature. Krummheuer argued that a speaker need 

not be autonomous with respect to one or both of these functions, and thus this leads to 

four potential cases in this setting. 

 The first case coincides with the role that Levinson (1988) denoted author. A 

speaker taking on the role of an author is both syntactically and semantically responsible 

for his or her statement, and thus employs both the formulation and content functions. On 

the other hand, a speaker might claim responsibility for neither the semantic nor syntactic 

aspects of an utterance, in which case he or she acts as relayer. Alternatively, a speaker 

“uses the words of someone else to mean something different from the meaning ascribed 

to the utterance of the original speaker” (Krummheuer, 2007, p. 67, italics in original). In 

this third case, the speaker takes on the role of ghostee, and is autonomous with respect to 

the content but not the formulation of a statement. Finally, when a speaker revoices a 

previously mentioned idea using his or her own language, he or she is acting as 

spokesman. In this fourth case, such an individual is responsible for the syntactic, but not 

the semantic, aspect of an utterance. As I discuss in the next section, I adopted these four 
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speaker roles in my study to address my second research question. In this next section, I 

explicate the methods pertinent to data collection and analysis for my study. 

Methods 

In this section, I detail the methods surrounding my study. Specifically, I 

thoroughly describe both the setting in which the study took place as well as the 

participants who consented to take part in the interviews. Next, I detail my data collection 

procedures, including rationale for the types of data collected. I also discuss my 

procedures for analyzing the data, including measures taken to ensure credible and 

trustworthy results. Before conducting this study, I obtained approval from the 

Institutional Review Board (IRB) for the methods outlined below (see Appendix B).  

General Setting and Participants 

The purpose of my study was to examine how undergraduates reason about 

integration of complex functions. As detailed in the previous section, an individual’s 

mathematical reasoning or argumentation can be nuanced, often attending to complicated 

blends of embodiment, symbolism, and formalism. Accordingly, I sought to employ 

qualitative research methods in an effort to capture the rich intricacies of participants’ 

mathematical argumentation. In particular, I conducted paired task-based interviews 

designed to elicit undergraduates’ reasoning about the integration of complex functions. 

In order to obtain a detailed account of the manner in which my participants learned 

integration of complex functions, I observed their complex variables class six times 

during the unit on integration. I will detail both of these data sources in the next 

subsection, but first I describe the course setting and my participants. 
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Participants were selected from undergraduate students at a military academy in 

the United States, enrolled in the complex variables course during the spring 2015 

semester. This institution, which I selected for convenience, has approximately 4000 

undergraduate students, and approximately three-fourths of those students are male. In 

2015 Forbes named this institution among the top ten western colleges in the nation, and 

in the top five public schools. Hence my participants come from an ostensibly intelligent 

and high-performing cross-section of undergraduate students.  

The complex variables course at this institution is generally a small-enrolled 

course with approximately 17 students composed of primarily third and fourth year 

students, as was the case in the spring 2015 class. These students were primarily 

Caucasian, with a male to female ratio representative of the larger undergraduate 

population. Many of the students in this course had not taken a course in real analysis, as 

this was not a prerequisite for complex variables. One section of this complex variables 

course is offered every spring semester at the institution, and the class met on a staggered 

schedule alternating between two and three class sessions per week. 

The instructor of this course, Dr. X., was a Visiting Scholar with expertise in 

complex analysis. He has published a textbook on complex analysis geared towards 

mathematics and engineering majors, and this book served as the official course text 

during the spring 2015 course. This instructor has also received several teaching awards 

at his home institution. Based on my classroom observations, the instructor’s teaching 

style could best be described as lecture-based, augmented by some technology and small 

group work. Students sat at large tables accommodating three to four students per table. 
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At the end of the semester, I enlisted the participation of two pairs of students 

from the course to partake in semi structured, task-based interviews regarding integration 

of complex functions. The manner in which I selected participants is detailed in later 

subsections, but for now I mention general background information about these 

individuals. All names mentioned throughout this document are pseudonyms I have 

assigned to protect participants’ identities, in accordance with the IRB (see Appendix B). 

My first pair of participants consisted of Sean and Riley, who are male and female, 

respectively. Sean was a fourth-year student and Riley was a second-year. The second 

pair of participants consisted of two males, who I refer to as Dan, a third-year student and 

Frank, a second-year. All four participants are Caucasian.  

Data Collection Procedures 

In this subsection I describe the various sources of data that I collected, as well as 

the purpose of these data with regard to my research questions. My study consisted of 

three sources of data: video-taped classroom observations, classroom observation notes, 

and video-taped task-based interviews. Below I detail each of these three aspects of my 

study. A timeline of these manners of data collection is summarized in Table 1.  

Table 1   

Summary Timeline   

Time Activity Participants 

March 11 – April 2 Class observations during unit on 

integration (6 classes) 

1 researcher 

All students 

Early May Conduct task-based interview 1 researcher 

2 pairs of consenting students 
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As discussed in my theoretical perspective section, the three-worlds framework 

predicates the growth of students’ mathematical knowledge on met-befores, or mental 

structures they now have as a result of prior mathematical experiences (Tall, 2013). 

Accordingly, before studying participants’ argumentation about integration of complex 

functions, I sought to first observe the context in which these students learned about such 

integration. Hence I sat in on the class during the integration unit of the course, which 

lasted six sessions during the second half of the semester. I was not an active class 

participant during these observations. Rather, the purpose of the classroom observations 

was to document what content had been presented by the instructor, and to establish a 

“base-line” for what students knew about integration theory before taking part in the 

subsequent interview. Hence these observations served to capture group characteristics 

and the general classroom environment, as described in the previous subsection. 

Summarily, these observations served to “provide some knowledge of the context or to 

provide specific incidents, behaviors, and so on that can be used as reference points for 

subsequent interviews” (Merriam, 2009, p. 119). 

I had planned to personally videotape the classes I observed, but the course was 

video-recorded by the institution for instructional purposes. Thus the institution provided 

me with a copy of the recordings for these classes, in accordance with the IRB. Video-

taping resulted in stronger research because it allowed me to “retain a rich record of 

behavior that can be reexamined again and again” (Clement, 2000, p. 577). It also 

allowed me to document field notes as I observed the class. These field notes, my second 

source of data, helped me focus on important classroom episodes from the videotaped 

observations in order to better summarize the classroom setting.  
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As such, these observation notes contain paraphrased statements and questions 

contributed by students and the instructor, inscriptions written by the instructor, and 

spontaneous connections I was able to make to prior class sessions. I also focused on how 

mathematical arguments were constructed during class, including the frequency and level 

of rigor of proofs. Although the instructor was not the focus of my research, his 

sequencing of events and how he taught the content likely influenced students’ reasoning 

to some degree. For example, his linguistic formulation of certain assumptions into 

acronyms such as ASCODOD (“analytic in a simply-connected domain D”) and 

SICOPOC (“simple, closed, positively oriented curve”) might have potentially influenced 

students’ attention to the hypotheses of major theorems in some way. As such, my 

classroom observations, videos and notes could serve as triangulation of interview 

findings. 

The third component of the data I collected was in the form of a videotaped, task-

based, semi-structured interview consisting of two 90-minute portions. According to 

Patton (2002),  

We interview people to find out from them those things we cannot directly 
observe […] We cannot observe how people have organized the world and the 
meanings they attach to what goes on in the world […] The purpose of 
interviewing, then, is to allow us to enter into the other person’s perspective (pp. 
340-341). 
 

Because my research questions sought to ascertain the nature of students’ mathematical 

reasoning, including thought processes and visualizations that are scarcely directly 

observable, interviewing was a crucial aspect to data collection. After the integration unit 

and my class observations were complete, I enlisted the help of the course instructor to 

select a subset of four students (two pairs) to take part in these interviews. This subset of 
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four was purposefully sampled (Patton, 2002) because I hoped to interview students who 

could cogently articulate their thoughts and work well together. In order to ensure such a 

selection, I corresponded with the instructor of the course to get an idea about which 

students might reason similarly or work well together.  

In particular, I directed the instructor to send me participant suggestions based on 

the following criteria. First, I requested that both students from each pair come from the 

same classroom group, so that they would be comfortable discussing complex variables 

content with one another aloud. Additionally, I wanted pairs of students to be relatively 

heterogeneous with respect to their current course grade, so that I did not interview just 

the top two or bottom two students in the class. As much as possible, I wanted my 

participants to be a representative cross-section of the larger class with respect to their 

mathematical argumentation and demographics. The instructor did not inform me about 

any particular student’s course grades or perceived abilities. Rather, he merely sent me a 

list of names based on the above criteria that we had discussed. I then scheduled 

interviews with consenting participants to take place at their institution several days after 

their final exams. This was done to ensure that all course content had been covered, that 

participants would hopefully remember all pertinent integration material, and that the 

interview would take place in an environment familiar to the students. 

During these videotaped interviews, I asked the pair of students to work together 

to solve a sequence of tasks related to integration of complex functions. I read tasks aloud 

verbally so as not to overtly suggest any particular representation or world. Each paired 

interview was comprised of two portions. I designed the first portion to elicit participants’ 

foundational understandings with respect to integration of complex functions, including 
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parametrization of paths, the Fundamental Theorem for Line Integrals, and embodied 

interpretations of these and related concepts. The second portion of the interview was 

primarily dedicated to evaluating specific integrals, some of which were intended to be 

familiar to the students and some unfamiliar. However, some tasks were crafted to be 

intentionally open-ended. The aforementioned classroom observations allowed me to 

discern which types of problems had been discussed in class, leading to increased 

credibility of my findings. Appendix C lists the tasks from the first and second portions 

of the interview.  

Most of these tasks lent themselves to multifaceted responses with respect to 

Tall’s (2013) three worlds framework, encouraging a mixture of embodied, symbolic, and 

formal argumentation. Participants were explicitly asked to communicate with one 

another aloud and write down their thoughts on the accompanying whiteboards. While 

the students worked on the tasks, I encouraged them to elaborate on their discoveries, 

theories, ideas, reasoning, and conjectures. Such probing allowed me to encourage the 

students to think aloud, to request clarification about their remarks, and to establish a rich 

and credible account of their argumentation.  

In the next subsection, I detail the mathematical content discussed during my 

class observations, as well as relevant student and instructor comments made during 

whole-class discussions which informed the interview component of my study. This 

portrayal, in conjunction with the above information, engenders a rich, thick description 

(Merriam, 2009) of my setting, hence bolstering the credibility of my research. In 

particular, Merriam points out that such descriptions can “contextualize the study such 
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that readers will be able to determine the extent to which their situations match the 

research context, and, hence, whether findings can be transferred” (p. 229). 

Class Setting 

 A typical day in this complex variables class commenced with the instructor 

asking students if they had any homework questions. During this time, other students 

were occasionally selected to present their solutions; selection was randomly decided 

using a basic computer program containing all students’ names. The instructor then 

typically lectured on new content for a while, introducing major theorems and sometimes 

sketching the proofs. Periodically, he directed students to practice problems in groups and 

then randomly selected a student or group to present a solution to the class. Below I 

briefly detail each of the six class sessions that I observed. Table 2 summarizes this 

information, displaying important concepts from each day. 

On the first day of the integration unit, the instructor motivated integration of 

complex functions by first garnering student input about how integration behaves for 

real-valued functions. Students quickly brought up line integrals and parametrization, and 

at one point all students spoke the words “area under the curve!” in unison when asked 

about a geometric interpretation for real integration. The instructor then introduced 

complex integration by arguing that in the complex case, a path can also be divided up 

into pieces, and that the integral behaves like a “sum of vector multiplications.” Hence, 

according to the instructor, this is where one can take advantage of the vector form of 

complex numbers, along with its multiplicative structure. 
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Table 2 

Class Observation Summary  

Class Session Important Concepts 
1. March 11 Introduction to integration; Fundamental Theorem 

for Line Integrals; ∫ (y + 8J)9(z)Jz =Z
[ (y +

8J) ∫ 9(z)JzZ
[  

2. March 16 Notation such as {h
k(0); ∫ 9(:)J:Z

[ =
∫ 9(:(z)):′(z)JzZ
[ ; M-L Inequality; |∫ 9(z)JzZ

[ | ≤
∫ |9(z)|JzZ
[  

3. March 18 
 

Proof sketches from session 2; Cauchy-Goursat 
Theorem;  

4. March 20 Examples involving Cauchy-Goursat; examples 
involving partial fractions and decomposition of 
regions 

5. March 31 Introduced ‘simple’ and ‘contour’ terminology; 
proof sketches of antiderivative theorems; 
ASCODOD and SICOPOC abbreviations; Cauchy’s 
Integral Formula 

6. April 2 Examples using Cauchy’s Integral Formula; 
sketched proof of Cauchy’s Integral Formula 

 

 The next portion of the lecture was dedicated to developing basic integration 

properties. For instance, the instructor pointed out that integrating a vector function 

amounted to integrating each component function; if 9(z) = ~(z) + 8�(z) then 

∫ 9(z)Jz = ∫ ~JzZ
[ + 8 ∫ �JzZ

[
Z
[ . He then listed two theorems from the textbook, without 

proof. The first was the Fundamental Theorem for Line Integrals, which he claimed 

“followed from the definition as in Calc 3.” The second theorem stated that ∫ (y +Z
[
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8J)9(z)Jz = (y + 8J) ∫ 9(z)JzZ
[ , and one student immediately questioned in disbelief, 

“There’s a formal proof for that?!” Such a question seemed to indicate that at least some 

students relegated this theorem to solely the operational-symbolic world (Tall, 2013) and 

hence did not feel a formal proof was necessary. 

 During the final portion of the first class, the instructor had students evaluate the 

integral ∫ NÄ cos z Jz
Å
j

L  using two applications of integration by parts. He then quickly 

computed the integral ∫ NÄkSÄJz
Å
j

L  on the board using the Fundamental Theorem for Line 

Integrals, in order to illustrate to the class that “Some things are easier in complex!” 

 On the second day of the integration unit, the instructor introduced the notation 

{h
k(0) to indicate a circle of radius 1 centered about the origin, with positive (i.e. 

counterclockwise) orientation. Later, he established the property that ∫ 9(:)J:Z
[ =

∫ 9(:(z)):′(z)JzZ
[  by partitioning the interval [^, _] into x segments and illustrating how 

:(z) maps each of these segments. He then evaluated the integral ∮ h
C J:	

ÉÑ
Ö(L)  using this 

result, concluding with an answer of 2b8. At this point, the instructor alluded to a later 

connection about winding number, but did not elaborate much on this. Finally, the 

instructor wrote two theorems on the board, one of which was the M-L inequality (see 

Appendix A). The other stated that |∫ 9(z)JzZ
[ | ≤ ∫ |9(z)|JzZ

[ . The class was informed 

that the latter result would be proven during the class session, and that the former would 

follow immediately. 

 As promised, the third class started with a sketch of the proof of the 

aforementioned inequality.  Following this proof, the instructor acknowledged that “we 

haven’t done too many proofs in this class.” He then briefly mentioned that the proof of 
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the M-L inequality follows rather easily from this result. Next the instructor stated the 

Cauchy-Goursat Theorem (see Appendix A) and asked students if they were familiar with 

the notion of a simply connected set. Very few students indicated that they were, so the 

instructor informed the class that this was equivalent to a region being homeomorphic to 

a disk. More informally, he characterized such regions as having no holes. He then 

sketched a proof of the theorem using Green’s Theorem (see Appendix A). 

 During the fourth class, the instructor provided another formulation of simply 

connected, namely that a region is simply connected if its complement on the Riemann 

sphere is path connected. [Here I note that neither this characterization nor the version 

referring to homeomorphisms appeared to be explicitly used in subsequent class 

discussions, which I observed.] After reminding students of the statement of the Cauchy-

Goursat Theorem, the instructor then had students evaluate the example integral 

	∮ h
C J:	

Éi
Ö(L) , which had already been introduced on Day 2. At this point, some students 

incorrectly concluded that this integral should be 0. The instructor then cautioned the 

students that this integral is not necessarily 0 because {h
k(0) is not simply connected in 

this case. Next, the instructor had students evaluate a similar integral, ∮ h
C J:	

Éi
Ö(Ü) . This 

time, the Cauchy-Goursat Theorem applied, as {h
k(3) did not include the origin. 

 The instructor then demonstrated how the integral ∮ h
C J:	

Éá
Ö(h)  could be evaluated, 

namely by rewriting {Ü
k(1) = àh + àE where àS were two semicircular paths. This allowed 

the original region to be broken into two simply connected regions. Afterwards, the 

students were informed that they would have to write the General Cauchy-Goursat 

Theorem (for multiply connected domains) word-for-word on the next test. Next, the 
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instructor walked students through the evaluation of the integral ∮ h
(CâÜ)(Ckä) J:	

Éiã
Ö (L) , 

which utilized a partial fractions decomposition. Finally, Day 4 ended with the instructor 

stating the theorem ∫ 9(:)J:	
å = −∫ 9(:)J:	

âå . 

 The fifth day of observations occurred after students’ spring break (during which 

time no classes occurred). This session seemed to appeal most to the formal world of 

mathematics (Tall, 2013) out of the sessions I observed, as the majority of the class was 

dedicated to proving several theorems and corollaries. However, I note that these proofs 

were really just sketches, and replaced formal appeals to epsilon-delta continuity with 

discussions of “smallness.” Before proving the theorems, which I discuss below, the 

instructor introduced some new terminology, such as a simple curve. He also defined a 

contour to be a path that is differentiable. 

 Next, a student asked about a homework question involving integration of a 

constant function over a closed triangular path. The instructor drew a picture of the path 

and briefly described how to parametrize the three sides of the triangle, and told students 

to finish the problem on their own at home. The instructor then introduced the following 

theorem about the existence of an antiderivative: Suppose 9 is ASCODOD. If ](:) =

∫ 9(ç)JçC
Cã

 where :L, : ∈ è, and ∫ 9(ç)JçC
Cã

 is the integral over any path from :Lto : and 

lying in è, then ]@(:) = 9(:). Before writing the acronym ASCODOD, the instructor 

paused to inform the class that this meant analytic on a simply connected domain D.  

 This was not the only time the instructor introduced an abbreviation to represent a 

rather complicated set of assumptions. He also did this later in this fifth class with the 

abbreviation SICOPOC (simple, closed, positively oriented contour). As this notation 

was used often in the course, I was consequently able to bring this language up during my 
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interviews with participants. When the instructor finished writing the statement of the 

theorem, several students were surprised to see the lack of restrictions on the path 

mentioned. For instance, one student remarked, “It can really be any path?!” and another 

student asked, “It can cross over itself?” This demonstrates that at least some students in 

the class were attentive to the assumptions in the integration theorems thus far. 

 After sketching the proof of the aforementioned theorem, the instructor 

introduced the following corollary: If 9 is ASCODOD and { is SICOPOC in è, and 

:L, :h ∈ è, and ]@(:) = 9(:)	∀: ∈ è then ∫ 9(ç)Jç = ](:h) − ](:L)
Ci
Cã

. He then proved 

this result using the previous theorem, and closed class by stating Cauchy’s Integral 

Formula: Suppose 9(:) is ASCODOD, and { is SICOPOC in è, and :L ∈ ëxz({). Then 

h
EMS ∫

í(C)
CâCã

J:	
É = 9(:L). 

 During the sixth and final class I observed, the instructor presented the class with 

the example ∫ :SJ:	
É  where { represents the positively oriented semicircular arc from : =

1 to : = −1. To evaluate this integral, the instructor employed a new branch cut along 

the negative imaginary axis so as not to intersect the chosen path. The instructor then 

reminded students of the Cauchy Integral Formula introduced at the end of the previous 

class session. He emphasized its utility in that it can be used to evaluate integrals without 

parametrizing paths. He then illustrated this utility with the example ∫ ìîG C
C

	
Éi

Ö(L) J:, 

because parametrizing this function does not result in a “friendly” expression. However, 

by applying the theorem, the integral is quickly seen to be 2b8.  

 The instructor then quickly worked through several additional examples with 

students, including ∫ GHI C
C

	
Éi

Ö(L) J: , ∫ GHI C
CâÅ

ï

	
Éi

Ö(L) J: , and ∫ ìîG C
Câñ

	
Éi

Ö(L) J:, the last of which is 
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zero by the Cauchy-Goursat Theorem because the point : = 6 does not lie inside the path 

{h
k(0). Finally, the instructor sketched a proof of the Cauchy Integral Formula using the 

Extended Cauchy-Goursat Theorem, the M-L Inequality, and an informal continuity 

argument avoiding l − ó statments. In the next subsection, I discuss my data analysis 

procedures pertaining to these class observations and the other data sources.  

Data Analysis Procedures 

Given the interview was the primary setting where I could directly detail 

participants’ reasoning about integration of complex functions, these interviews 

comprised my primary source of data analysis. The other two data sources of videotaped 

classroom observations and field notes served to contextualize and sometimes triangulate 

the interview findings, as well as to provide a rich description of the classroom setting 

described earlier. Hence, the following details refer primarily to my analysis of the 

interview data. The six steps comprising my interview data analysis for each task are 

summarized in Table 3 and are detailed afterwards. At the end of this subsection, I also 

discuss measures taken to ensure the credibility and trustworthiness of my findings. 

Given that my research was qualitative in nature, I used qualitative analysis 

methods to analyze the data, and utilized software such as Microsoft Excel to organize 

my data. As discussed in the theoretical perspective section, Tall’s (2013) three-world 

lens emphasizes the set-before of language as one of three basic innate principles that 

guide our growth within and between the three worlds. Accordingly, I began the data 

analysis for the student interviews by transcribing each participant’s exact verbiage word-

by-word in Excel. I also documented any written inscriptions or diagrams produced by 

participants during the interviews, and noted and described any important gestures made 
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by the participants. I chose to document gestures because they can complement and 

corroborate students’ verbal or written statements, and generally can act as a window into 

what students are thinking (Keene, Rasmussen, & Stephan, 2012). In the Excel document, 

responses were broken up into natural segments and time stamped for ease of location at 

a later time. I formed these segments primarily according to extended pauses in verbiage 

or when a segment lasted longer than roughly one minute. For later reference, I 

characterize the above portion of the analysis as stage 1. 

Table 3  

Interview Analysis Summary  

Step Description 
1. Transcription  Document participants’ exact verbiage; provide rich 

description of gesture and written inscriptions 
 

2. Code Toulmin components Classify participants’ arguments for each task 
according to data, warrant, backing, rebuttal, 
qualifier, and claim as in Toulmin’s (2003) model 

3. Code for speaker roles Categorize participants’ speaking roles as that of 
author, relayer, ghostee, or spokesman (Levinson, 
1988, as cited in Krummheuer, 2007)  

4. Code for three worlds 
 

Further classify participants’ arguments from step 2 
according to Tall’s (2013) three worlds framework   

5. Code for backing types Refine coded arguments from step 3 by categorizing 
backing according to the types identified by 
Simpson (2015) 

6. Thematic analysis Reflect on the coded data from steps 1-5 to identify 
common themes within and across interviews 

 

In the second stage of data analysis, the participants’ responses to each of the 

tasks were coded according to the Toulmin (2003) model of argumentation. Specifically, 

I identified the data, warrant, backing, modal qualifier, rebuttal, and claim according to 
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the definitions provided in Chapter 2. There were inevitably instances in which several 

sub-arguments were weaved together to represent participants’ reasoning with respect to 

certain tasks; in these cases, I documented and coded these sub-arguments as data-

conclusion pairs chained together as recommended in the literature (Aberdein, 2005; 

Simpson, 2015).  

 Stage 3 of analysis consisted of identifying participants’ social roles within each 

collective argument, in an effort to better address my research questions. To do this, I 

adopted the four speaker roles, outlined previously in this chapter, that were originally 

formulated by Levinson (1988) and discussed later by Krummheuer (2007). Recall that 

Krummheuer argued that a speaker need can be autonomous with respect to one, both, or 

neither of two functions regarding the formulation and content of an utterance. 

Specifically, a speaker taking on the role of an author is both syntactically and 

semantically responsible for his or her statement, and thus employs both the formulation 

and content functions. I therefore coded a participant’s statement as being authored by 

that individual if he or she was the first to mention a particular idea in such a formulation.  

 If a participant claimed responsibility for neither the semantic nor syntactic aspects 

of an utterance, I classified him or her as a relayer of that utterance. In particular, this 

occurred if one participant recycled a previous statement made by the other participant, 

and did not apply this statement in a new and different manner conceptually. For 

example, a participant might restate, in very similar wording, the other student’s prior 

observation that the integrand of a particular function is analytic everywhere. 

Alternatively, if a participant used “the words of someone else to mean something 

different from the meaning ascribed to the utterance of the original speaker” 
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(Krummheuer, 2007, italics in original), then I coded this role as ghostee. Finally, when a 

speaker re-voiced a previously mentioned idea using his or her own language, I coded 

this response under the role of spokesman. For instance, a participant might reword a 

previously vague articulation of the definition of continuity of a function. Together, these 

four types of speaker roles helped me characterize the social nature of individual 

participants’ contributions within collective argumentation. Accordingly, this stage of 

analysis assisted me in answering my research questions.   

 I commenced the fourth stage of analysis by classifying components of the 

participants’ Toulmin argumentation according to Tall’s (2013) three worlds framework. 

For instance, a theoretical warrant citing a proven theorem was characterized under the 

axiomatic-formal world, whereas an algebraic warrant involving the rules of arithmetic 

was associated with the operational-symbolic world. A warrant subsumed under the 

conceptual-embodied world could consist of a visual representation. Similarly, a pictorial 

form of backing or a gesture referential to a diagram or physical concept fell under the 

embodied world, and backing in the form of algebraic inscriptions served the symbolic 

world. Backing in the formal world sometimes consisted of convincing someone that 

certain hypotheses of a prominent theorem applied, or the statement of a field axiom to 

support an operation conducted on complex numbers.  

 Recall from Chapter I that in this report, I identified participants’ reasoning as 

embodied, symbolic, and formal to signify that they were operating within the conceptual-

embodied, operational-symbolic, and axiomatic-formal worlds, respectively. When 

participants’ reasoning incorporated multiple worlds, I hyphenate two or more of these 

labels, such as embodied-symbolic reasoning that attends to aspects of both Tall’s 
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conceptual-embodied and operational-symbolic worlds. For instance, an appeal to the 

Cauchy-Riemann equations as a condition for analyticity has a formal aspect to it, but the 

equations might be verified for a specific function by symbolically computing partial 

derivatives and verifying that ~ò = �<. Thus the backing would ultimately be 

characterized as symbolic- formal. Alternately, an iconic gesture (McNeill, 1992) 

representing a rotation, produced while verbally discussing multiplication by the number 

8, might be classified as embodied-symbolic. In such a case, I treated the gesture as 

external evidence of a visualization originating from algebraic operations.  

 In the fifth stage of analysis, I further classified the coded backing components of 

participants’ argumentation from stage 3 by using the backing categories established by 

Simpson (2015). Specifically, recall that Simpson delineated three forms of backing to 

support a warrant: backing for the warrant’s validity, to explain why the warrant applies 

to a given argument; backing for the warrant’s field, to “highlight the logical field in 

which the warrants are acceptable” (p. 12); and backing for the warrant’s correctness, to 

illustrate that a given warrant is actually correct. For example, a participant instantiating 

backing for a warrant’s validity could show that a given function satisfies particular 

conditions such as analyticity in order to apply a particular integration theorem, i.e. the 

warrant. Identifying the types of backing my participants used in their argumentation 

served to help rigorously characterize their reasoning about integration of complex 

functions.  

Finally, through many viewings of the video data, as well as reviewing and 

interpreting the coded reasoning data, I conducted a thematic analysis (Creswell, 2013) to 

inductively determine aggregate categories that emerged within and across the two paired 
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interviews. Such an analysis was conducted after primary coding, and was utilized to help 

“winnow” (p. 186) the data into more manageable chunks. After the interviews were 

coded and analyzed as previously described, I returned to relevant episodes of the 

classroom observation video data and field notes in order to either substantiate or negate 

certain findings from the aforementioned student interview analysis. As a hypothetical 

example, if a participant provided a rebuttal within his or her argument in the form of a 

counterexample discussed in class during my observation period, then this would 

strengthen my understanding of the nature of that student’s reasoning about integration.  

Such triangulation amongst multiple sources of data used to confirm emerging 

findings served to establish credibility and trustworthiness of my study (Merriam, 2009; 

Patton, 2002). To establish additional trustworthiness, I also maintained a researcher’s 

journal (Merriam, 2009) documenting various coding decisions I made during the data 

analysis process. Credibility in this study is bolstered by the inclusion of my researcher’s 

stance earlier in this chapter as a means of elucidating the inherent reflexivity regarding 

my role as the primary instrument of data collection in this qualitative research (Merriam, 

2009). Finally, I met with my research advisor regularly to discuss my coding for a subset 

of the data to ensure credible results. A sample excerpt from my codebook for Riley and 

Sean’s interview is provided in Appendix D. In the next chapter, I detail my results from 

the interview data.  
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CHAPTER IV 

 

RESULTS 

 

In this chapter, I explicate the nature of my four participants’ nuanced reasoning 

with respect to integration of complex functions. Specifically, I detail these two pairs of 

students’ collective argumentation as they respond to the integration tasks alluded to in 

Chapter III and listed in Appendix C. Accordingly, this chapter serves to address the 

aforementioned guiding research questions: 

Q1 How do pairs of undergraduate students attend to the idiosyncratic 
assumptions present in integration theorems, when evaluating specific 
integrals? 

 
Q2 How do pairs of undergraduate students invoke the embodied, symbolic, 

and formal worlds during collective argumentation regarding integration 
of complex functions? 

 
My presentation of these pairs’ reasoning is organized by task, with Dan and Frank’s 

response to each task followed by Riley and Sean’s. Because I treat reasoning in the 

context of this study as collective argumentation within one or more of Tall’s (2013) 

three worlds, I format my results within each task according to argument. Included in my 

account of each collective argument are: pertinent excerpts of the participants’ interview 

transcript; a Toulmin (2003) diagram summarizing the argument; and figures illustrating 

participants’ gestures or inscriptions, often for the purpose of documenting embodied 
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reasoning. At the end of each task’s results, I provide brief summaries comparing and 

contrasting the two student pairs’ responses. 

Throughout the transcript pieces presented in this chapter, ‘Int.’ signals statements 

that I stated aloud as the interviewer, while ‘D,’ ‘F,’ ‘R,’ and ‘S’ stand for Dan, Frank, 

Riley, and Sean, respectively. Bracketed phrases represent non-verbal events such as 

gestures or written inscriptions produced by the participants. In discussing Dan and 

Frank’s reasoning about each task, I reference line numbers from their transcript excerpts 

and refer to various components of the Toulmin diagrams I constructed based on my 

interpretation of their responses. I also convey individual participants’ speaker roles 

germane to each Toulmin component in the collective argument. In the Toulmin 

diagrams, italicized statements represent participants’ exact verbiage from the transcript, 

while non-italicized statements more succinctly summarize participants’ reasoning or 

deduce implicit Toulmin components based on their verbiage, gestures, and inscriptions, 

or lack thereof. A parenthetical ‘F,’ ‘D,’ ‘R,’ or ‘S’ placed prior to the italicized verbiage 

indicates a statement that the respective participant individually contributed. Horizontal 

and vertical lines show how argumentation components are linked within a collective 

argument or subargument. Following the format of Wawro (2015), I represent shifts in 

the Toulmin categorization from one type of component to another (such as claim to data) 

in the figures by a diagonal line. 

Part I 

 Recall from Chapter III that I designed the first portion of the interview to elicit 

participants’ foundational understandings with respect to integration of complex 

functions, including parametrization of paths, the Fundamental Theorem for Line 
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Integrals, and geometric interpretations of these and related concepts. At the end of this 

first portion, I asked them about the integral of a specific function (see Appendix C).  

Task 1 – Dan and Frank 

 Parametrization is a central concept in the definition and evaluation of integrals of 

complex functions, and typically instructors introduce integration of complex functions 

using related notions from multivariable calculus. Accordingly, I began part 1 of the 

interview by asking Dan and Frank how they generally think about parametrization (lines 

1-3). Because this question was not designed to elicit an explicit argument, I focus the 

discussion of this brief task on only the participants’ use of Tall’s (2013) three worlds. 

Dan responded first to this question, and provided a solely embodied explanation of 

parametrization (lines 4-5). Specifically, his dynamic verbiage characterized 

parametrization as a means to describe the motion of an object over time, and his tracing 

gesture (see Fig. 4) complemented his verbiage by illustrating one such hypothetical path. 

 

Figure 4.  Dan’s gesture tracing a hypothetical path to illustrate parametrization. 

Afterwards, Frank elaborated on Dan’s physical description to include the 

language of functions (lines 6-7). Due to the fact that he did not write any inscriptions nor 

gesture while speaking, it is difficult to ascertain with certainty which world or worlds 
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Frank was operating within at this moment. In particular, while he alluded to a function 

of a single variable as a representation of a path, a function can be represented in many 

manners (Hitt, 1998). Accordingly, while his mention of a path in two or three 

dimensions suggests some level of embodiment, from his statement alone, one cannot 

clearly identify whether or not Frank meant a symbolic representation of a function. 

Finally, I commented that while usually this “single variable” (line 7) tends to represents 

time, it need not in general (line 9). 

 

Task 1 – Riley and Sean 

 Riley and Sean’s response to Task 1 was quite similar to Dan and Frank’s in 

many respects. Just as Dan began their response with an embodied description 

considering the motion of a path over time, Riley began with “I always think of 

parametrization in terms of […] time” (line 6). She elaborated with a more symbolic 

statement about a single-variable description, as opposed to one involving the two 

variables 7 and R (lines 6-7). Subsequently, I asked Sean if he wanted to add anything to 

Riley’s response (line 8), something I did not need to do with Dan and Frank.  
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 Sean added that “it’s like what we did in Calc 3” (line 9). In particular, he likened 

a path in the multivariable calculus setting to “a path through the complex plane of 7 and 

R” (line 10). Just as Dan did, Sean traced a hypothetical path through the air, using the tip 

of his whiteboard marker (see Fig. 5), depicting an embodied visualization of this path 

(lines 10-11). Sean closed by stating that parametrization is necessary when evaluating 

complex integrals “through a ‘two-dimensional’ space” (line 11), and he gestured “air 

quotes” while he said “two-dimensional.” Ultimately, the primary difference between 

Riley and Sean’s response versus Dan and Frank’s was that Sean was the only person to 

mention a complex integral.  

 

Figure 5. Sean’s gesture tracing a hypothetical path to illustrate parametrization. 

Task 1 Summary 

 During this first task, neither pair of participants incorporated an official argument 

in their respective responses. However, Dan and Sean produced nearly identical 
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embodied tracing gestures depicting a hypothetical path to illustrate the notion of 

parametrization. Neither pair of students discussed parametrization in much detail or in 

much formality, but I anticipated this might be the case given the relatively informal 

nature of many undergraduate complex variables courses.  

Task 2 – Dan and Frank 

 The second task also served as a warm-up to the eventual evaluation of specific 

integrals, and required participants to provide a short but precise argument about how to 

represent :(z) = NSÄ as a position vector of a moving point in the complex plane (lines 1-

3). I anticipated that this task would complement participants’ descriptions from the first 

task, although this was not the direct purpose of this task. I also explicitly asked Dan and 

Frank to identify the two components of their vector as part of their response (line 5). 

Frank began the pair’s argument by relaying my spoken task setup as a symbolic datum 

(line 4), neither modifying the syntactic nor semantic nature of the given statement.  

 

 Using this datum, Dan authored a claim that :(z) represents a circular path. 

Accordingly, he used embodied-symbolic reasoning, in that his verbiage connected a 

symbolic expression to a geometric object. With his prior symbolic datum and Dan’s 

claim in mind, Frank proceeded as author to articulate a suggestion for a formal warrant, 
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Euler’s identity (line 8). Using formal-symbolic reasoning, he elaborated the statement of 

the formal warrant by writing the symbolic inscriptions NSÄ = cos z + 8	ô8x	z (lines 8-9). 

 Subsequently, Frank evidenced symbolic reasoning to author a claim that the 

equivalent vector form of this result has real and imaginary components cos z and sin z, 

respectively (lines 9-10). Finally, he clarified the warrant’s connection to the claim by 

highlighting that the imaginary component could be identified as the term containing 8 

(line 10). In discussing the imaginary axis, which he referred to as “basically the y-axis” 

(line 10), Frank traced an ostensibly visualized imaginary axis in the air with the palm of 

his hand. This gesture (see Fig. 6) and accompanying verbiage appeared to suggest 

embodied-symbolic reasoning, in that Frank’s gesture enacted a visualized geometric 

object and his verbiage connected this geometric object to his symbolic inscriptions. Dan 

and Frank’s argument for Task 2 is summarized in Figure 7. 

 

Figure 6. Frank’s gesture tracing a hypothetical imaginary axis in Task 2. 
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Figure 7. Dan and Frank’s Toulmin diagram for Task 2. 

Task 2 – Riley and Sean 

 Exactly as Frank began Task 2, Sean relayed the given datum that :(z) = NSÄ by 

writing this information as a symbolic inscription on the whiteboard (line 5). Sean 

immediately rewrote this symbolic expression as cos(z) + 8	ô8x(z), implementing Euler’s 

identity as a warrant for his subsequent claim (line 5). In particular, as spokesman, he 

characterized :(z) as a “unit vector,” and symbolically claimed � =	< 7(z), R(z) >	=	<

cos z , sin z > (lines 5-6). Because Sean had written several statements with only minimal 

accompanying verbiage, and Riley had not spoken at all, I reminded them that I wanted 

them to verbalize their thoughts and discuss the tasks with each other, when possible 

(lines 7-9). I then brought their attention back to the task at hand by reminding them that 

Sean had written the two vector components (line 10). 

 Sean continued by sketching an Argand Plane and unit circle on the whiteboard 

(line 11). He authored an embodied claim that the circle he just sketched is “just a unit 

circle, radius 1” (line 11). As spokesman, he also clarified that the two functions sin z and 
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cos z collectively describe an arbitrary point using the vector � (lines 11-13). Sean’s 

clarification instantiated embodied-symbolic reasoning, in that he discussed how the 

symbolic component functions comprise the vector drawn on their diagram. Sean’s 

sketch, including the vector �, is depicted in Figure 8 below. 

 

 

Figure 8. Sean’s initial diagram of the unit circle and vector v in Task 2. 
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 Afterwards, Riley began to articulate a second warrant for Sean’s claim. Using 

embodied reasoning, she discussed how a “normal unit circle” in ℝE has 7-component 

cos	(^) and R-component sin	(^) (lines 14-16). While identifying the two components, 

she traced her finger along the horizontal axis and the vertical axis in their diagram, 

respectively (see Fig. 9). Notice the similarity between Riley’s gestures and Frank’s from 

Figure 9. In particular, both Riley and Frank used their hand to trace along a vertical axis 

to illustrate the imaginary component of the vector form of :(z). The primary distinction 

between their corresponding gestures was that Frank did not have a diagram to reference. 

Accordingly, Riley’s gesture referenced motion along an existing diagram, while Dan’s 

had to incorporate visualization of the complex plane as well. 

                   

Figure 9. Riley’s gestures tracing along the real axis (left) and imaginary axis (right). 

Meanwhile, Sean drew additional geometric inscriptions on their diagram, namely 

an angle for the vector �,	which he labeled z (line 17; see Fig. 10). He also wrote 

symbolic inscriptions clarifying that 0 ≤ z ≤ 2b. Using formal-embodied reasoning, 

Riley continued to articulate her warrant, explaining that her characterization of the unit 

circle in ℝE generalized naturally to the complex plane (lines 18-20). As such, her 

warrant represents an instantiation of Danenhower’s (2000) “Thinking Real, Doing 
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Complex.” While Danenhower’s notion is usually discussed in a pejorative connotation, 

it should be noted that Riley’s application here was actually appropriate and seemingly 

helpful for her in the transition from ℝE to ℂ. Riley and Sean’s argument for Task 2 is 

summarized in Figure 11. 

 

Figure 10. Sean’s revised diagram with angle t in Task 2. 

 

Figure 11. Riley and Sean’s Toulmin diagram for Task 2. 



 102 

 

Task 2 Summary 

 One notable difference between Dan and Frank’s response to Task 2 and Riley 

and Sean’s was that the latter pair incorporated more embodied reasoning, instantiated 

primarily in their diagram of the circular path and corresponding vector �⃗. Both Frank 

and Riley produced similar tracing gestures to complement their verbiage when 

discussing the two vector components. However, Riley gestured about both components, 

while Frank’s gesture only alluded to the imaginary axis. Finally, although both pairs of 

students recognized :(z) = NSÄ as a circle, only Riley and Sean explicitly identified the 

radius as having unit length. The two responses were rather similar otherwise. 

Task 3 – Dan and Frank 

 Task 3 required participants to provide a physical description, along with a 

diagram, of the derivative ;C
;Ä at a point for a generic function : = 9(z) (lines 1-2). 

Accordingly, I expected their response to primarily incorporate embodied reasoning. 

Ultimately, this third task resulted in two arguments from Dan and Frank, the first of 

which is depicted in Figure 12. Dan began this first argument by authoring a claim that ;C
;Ä 

represents the “amplitwist,” (lines 4-5) a notion discussed in Dan and Frank’s class. 

 

  Hence, Dan’s reasoning about this claim could best be identified as embodied, in 

that his verbiage described changing the length and direction of a vector as geometric 
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attributes. Acting as spokesman, Frank re-voiced Dan’s claim about the amplitwist to 

include the words “argument” and “magnitude” (line 6). Frank continued with a warrant, 

“Because you can’t really say velocity […] in the context of complex numbers” (lines 6-

7). Due to Frank’s hesitation about hastily generalizing properties of real-valued 

functions to complex functions, it appeared that he attempted to avoid the issue of 

thinking real, doing complex (Danenhower, 2000). After authoring this warrant, Frank 

looked to me for validation, and appeared uncertain about his statement. After a pause, he 

articulated this uncertainty with the phrase, “would be my understanding” (line 8).  

 Continuing to express doubt about their argument, Frank continued, “But that 

doesn’t necessarily work. Um, so I guess we should write this” (lines 8-9). It is unclear 

from just this passage whether Frank meant “that” as the warrant or the claim, but 

because he suggested that he and Dan write down some inscriptions to assist their 

reasoning (lines 8-9), I did not interject. Frank’s suggestion that they write down some 

inscriptions catalyzed the beginning of a second argument, Argument 2, which is 

depicted in Figure 14. Using the given datum that : = 9(z), Frank symbolically 

concluded that ;C
;Ä = 9′(z), while Dan drew a coordinate plane with real and imaginary 

axes (line 11). Argument 1 is summarized in Figure 12. 
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Figure 12. Toulmin diagram for Dan and Frank’s Argument 1, Task 3. 

 Next, Dan sketched a path representing : = 9(z), instantiating embodied 

reasoning by authoring a diagrammatic datum (line 12; see Fig. 13). However, he was 

unable to fully articulate a claim regarding how this sketch helped depict the nature of ;C
;Ä, 

as evidenced by the qualifying phrase “I’m not sure how I’d describe it” (lines 13-14). As 

Dan further attempted to articulate a claim (line 15), Frank interjected with a question as 

to whether ;C
;Ä represented something tangential (line 16). Frank’s verbiage, especially his 

choice of the word “still” (line 16), suggested that he potentially invoked prior knowledge 
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about real-valued functions to offer this conjecture. He authored an embodied-symbolic 

warrant to connect his prior symbolic inscriptions to his conjecture describing a physical 

property on the drawn diagram (line 17).  

 Subsequently, Frank authored backing for this warrant’s correctness by 

elaborating that 9(z) is a vector, and hence 9′(z) is a vector (lines 17-18). Using a new 

colored marker, he drew in a tangent vector to Dan’s curve (see Fig. 13) and reformulated 

his prior conjecture as a tenuous claim (lines 18-21). I say “tenuous” because Frank 

revealed that he was not certain of his conclusion, admitting “I’m honestly not sure” (line 

21). Moreover, he mentioned that he thinks of ;C
;Ä more in terms of an amplitwist than as a 

velocity vector, and while saying the word “velocity” he gestured using “air quotes” to 

indicate a potentially loose interpretation of the word. Dan agreed (line 23), and Frank 

once again expressed uncertainty about the claim (line 24). 

 

Figure 13. Sketch of : = 9(z) and Frank’s tangent vector J:/Jz in Task 3. 

 Perhaps comforted by the fact that Frank was also not sure how to proceed, Dan 

authored a second warrant: “we’re taking the derivative of a function of time, not a—” 
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and Frank finished his sentence with “Not of a complex, yeah” (lines 25-26). This joint 

warrant appeared to represent symbolic reasoning, in that they used the nature of the 

symbolic inscription of the function to decide whether ;C
;Ä should be represented as an 

amplitwist or as a tangent vector. This realization also prompted Dan to conclude with 

more certainty that ;C
;Ä indeed represents a tangent vector, and he pointed to the recently 

drawn tangent vector in their diagram (line 27). Frank now agreed to this and with more 

certainty as well (line 28).  

 

 Because neither Dan nor Frank had explicitly referred to a tangent vector, only of 

an object “tangential” to the curve, I asked a clarifying question about what type of object 

;C
;Ä was (lines 29-30). Frank clarified that “We’re talking about another vector” (line 31), 

and Dan quickly agreed (line 32). Finally, Frank discussed how one could also think of 

the object as a point, given that “points and vectors are the same in complex numbers” 

(line 33), but he thought of it as a tangent vector in this instance. I asked if his description 

corresponded to the orange vector drawn in the diagram (line 35), and Frank confirmed 

this (line 36). Argument 2 is summarized in Figure 14. 
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Figure 14. Toulmin diagram for Dan and Frank’s Argument 2, Task 3. 

Task 3 – Riley and Sean 

 As he did at the beginning of Task 2, Sean relayed the task information that I read 

aloud by writing corresponding symbolic inscriptions on the white board as data (lines 1-

2). This began the first of two arguments related to this task. As spokeswoman, Riley 

implemented embodied-symbolic reasoning to reiterate that : is a parametrized curve and 

sketched such a curve on the board (lines 3-4; see Fig. 15). Using these data, she authored 

a claim that “J:/Jz is sort of breaking it into little chunks” (line 5).   
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Figure 15. Riley’s initial sketch of the curve : = 9(z) in Argument 1, Task 3. 

 Next, Riley plotted a specific point on the curve as embodied datum, and 

concluded that J:/Jz represented “a little directional kind of infinitesimal um, pointer” 

(lines 4-6). She drew in a small tangent vector at this same point (see Fig. 16), and 

provided an embodied addendum that this vector “says where we’re going along this 

curve” (line 6). Riley also qualified this assertion with the phrase “I guess” (line 5). 

Using embodied reasoning, she considered orienting the path as a datum, and drew in 

directional arrows on her path to indicate this orientation (lines 6-9; see Fig. 16).  

 

Figure 16. Riley’s revised sketch including path orientation and a tangent vector. 
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 Meanwhile, as spokesman, Sean succinctly re-voiced Riley’s description of 

J:/Jz with the phrase “Tangent vector” (line 8). Because she was mid-sentence, Riley 

did not acknowledge Sean’s comment, but instead articulated an embodied claim as 

spokesman. Specifically, she stated that “J:/Jz would look like a little vector pointing 

off to where the next, uh, : is” (lines 9-10). She also provided an embodied gesture as she 

spoke the words “a little vector pointing off,” using her open hand to point in a 

hypothetical direction based off an ostensibly visualized path (see Fig. 17). I assume she 

is visualizing a different path because her gestured vector points in the opposite direction 

of her drawn path’s orientation, and she did not produce this gesture in close proximity to 

the actual diagrammatic inscriptions (though it is hard to tell this in Fig. 17). Riley closed 

Argument 1 by authoring an embodied qualifier that “It’s not actually a tangible concept, 

because [J:/Jz] is infinitely small, but that’s how I think of it” (lines 10-11). Argument 

1 is summarized in Fig. 18. 

 

Figure 17. Riley’s gesture for “a little vector pointing off” in Argument 1, Task 3. 
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Figure 18. Toulmin diagram for Argument 1, Task 3. 

 

Afterwards, Sean began a second argument by authoring an embodied datum 

considering what a tangent vector would look like in their diagram from Task 2, which 

was still on the board (line 12). Switching to embodied-symbolic reasoning, he authored 

a claim that :@(z) = −sin z + 8 cos z (lines 12-13). Using this claim as datum, he 

authored a new embodied claim concerning the direction of the tangent vector (lines 13-

14). He drew in a green tangent vector on their previous diagram of the circular path to 
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illustrate this claimed direction (lines 13-14; see Fig. 19). As spokesman, he then labeled 

this tangent vector T (line 14).  

 

Figure 19. Sean’s added green tangent vector T on a diagram from the previous task. 

 To corroborate Sean’s claim, Riley authored an embodied warrant that the tangent 

vector “should be parallel to the slope of the line at that point” (line 15). While she spoke 

these words, she also produced a tracing gesture along her drawn path (see Fig. 20). 

Although this gesture did not refer to Sean’s vector T drawn on the Task 2 diagram, it 

appeared to embody a universal quantifier, signifying the slope of the (tangent) line at 

every point along her oriented path. Because Riley and Sean had not explicitly provided a 

physical interpretation of J:/Jz, and because of Riley’s qualifying statement from 

Argument 1 that J:/Jz “is not like actually a tangible concept” (line 10), I asked them 

about the physical meaning (lines 17-18). Sean quickly replied with an embodied claim, 

“Velocity” (line 19). To make sure I correctly understood him, I re-voiced his response 
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with the question, “So it’s your velocity vector?” (line 20), and he confirmed this (line 

21). Argument 2 is summarized in Figure 21. 

 

Figure 20. Riley’s tracing gesture along her diagram in Argument 2 of Task 3. 

 

Figure 21. Toulmin diagram for Riley and Sean’s Argument 2, Task 3. 

Task 3 Summary 

 Note that there are several key differences between Dan and Frank’s response to 

Task 3 versus Riley and Sean’s. One primary distinction is that Dan and Frank spoke 

about J:/Jz as an amplitwist, which was an instantiation of “Thinking Real, Doing 

Complex” (Danenhower, 2000), while Riley and Sean did not. Another difference 
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between the participants’ responses was that Sean chose to draw a tangent vector on the 

Task 2 diagram. Finally, Riley provided several embodied gestures to accompany her and 

Sean’s verbiage and diagrams, whereas Dan and Frank did not. 

Task 4 – Dan and Frank 

 The fourth task (see Appendix C) required participants to supply a geometric 

interpretation of the identity ∫ ;C
;Ä JzZ

[ = 9(_) − 9(^), where : = 9(z) is a parametrized 

curve described as a complex function of z (lines 1-4). Because this task explicitly asked 

for a “geometric interpretation,” I anticipated that this task would elicit primarily 

embodied and embodied-symbolic reasoning. However, Dan and Frank’s first argument 

consisted nearly entirely of symbolic reasoning. A Toulmin diagram for Argument 1 is 

depicted in Figure 22.   

 Frank began their response by writing a symbolic inscription corresponding to the 

identity that I read aloud to them, however he initially denoted the function using a 

capital letter ]. Shortly after, he changed his mind and rewrote the statement using a 

lower-case 9, explaining that “we don’t need an antiderivative” (line 6). When I asked 

him why he originally thought about an antiderivative (line 7), Frank clarified that he 

initially interpreted my verbiage as an integral of the function : = 9(z), as opposed to 

J:/Jz. Treating the integrand as 9(z), he presumed that my statement “9(_) − 9(^)” 

used an antiderivative ] of the function 9, and instead wrote “](_) − ](^)” (lines 8-9). 

But after realizing this discrepancy between my intended symbolism and his initial 

interpretation of the task, he concluded that “we obviously don’t need an antiderivative” 

(line 10). Frank authored a warrant for this claim as well, explaining “because we’re 

integrating J:/Jz with respect to time” (lines 9-10). 
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Figure 22. Toulmin diagram for Dan and Frank’s Argument 1, Task 4. 

 At this time, Dan used symbolic reasoning to author a claim that evaluating the 

integral of J:/Jz with respect to time is equivalent to integrating J: (line 12). Frank 

agreed with Dan and symbolically argued as spokesman that ∫ J:Z
[ = : 	

	†
Z
[ = 9(_) −

9(^), but expressed difficulty in providing a geometric interpretation of this (lines 13-

14). Because Dan and Frank did not provide a geometric interpretation of the identity and 
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Frank expressed some confusion about doing so, I directed the pair’s attention to their 

last diagram (lines 15-16). 

 

 In response, Frank discussed the difficulty with using their same picture from 

Task 3, namely that “the complexity is [that] this is not a time axis” (line 17). As he said 

these words, he traced along the real axis in the diagram from Task 3 using his hand, with 

the tip of the whiteboard marker taking on a referential role (see Fig. 23). This gesture 

and corresponding verbiage referential to the geometric diagram comprised the first 

instance of embodied reasoning during Task 4. After a pause of several seconds, Dan 

articulated an oddity about their prior claim that ∫ ;C
;Ä JzZ

[ = ∫ J:Z
[ . In particular, he 

recognized that they integrated with respect to time on one hand, but also used the same 

bounds of ^ and _ to integrate with respect to : = 9(z) (lines 19-21). As a result, Dan 

qualified his uncertainty with the statement, “So I don’t know, so it’s kind of weird” (line 

21). 
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Figure 23. Frank’s tracing gesture along the real axis during Argument 1 in Task 4.  

 Following another pause lasting several seconds, Frank authored a new claim, “so 

basically we're adding up all the derivatives over some interval in time” (line 22). 

However, he qualified this assertion with the statement, “I'm tempted to think of this in 

terms of real numbers, but I know the analogy doesn't work.” Accordingly, Frank’s 

qualifier represents a deliberate attempt to avoid erroneously applying properties of real 

numbers to the complex world, i.e. thinking real, doing complex (Danenhower, 2000). 

Proceeding as spokesman, Frank re-voiced his aforementioned claim using a new 

embodied datum that the orange tangent vector from their previous diagram from Task 3 

represents a generic ;C
;Ä vector (lines 24-26). Subsequently, Dan authored a follow-up 

claim characterizing Frank’s description as “just like a line integral” (line 27), and Frank 

agreed with this alternate characterization (line 28). 

   Though Dan and Frank discussed their geometric interpretation of the integral 

portion of the identity, they had not provided such an interpretation about the quantity 

9(_) − 9(^) that this integral equaled. As such, I asked them to consider this other 

portion of the identity geometrically (lines 29-31). This question prompted a second 
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argument, Argument 2, which Frank began by labeling values for the endpoints ^ and _ 

in the diagram (line 32; see Fig. 24), despite his previous recognition that the horizontal 

axis in that diagram was “not a time axis” (line 17).  

 

Figure 24. Frank’s labels for points a and b during Argument 2 in Task 4. 

 

 Perhaps realizing the inherent contradiction in Frank’s datum, Dan authored a 

claim that they would need a second, “u-v plane” (lines 34-35; see Fig. 26) to depict 

9(_) − 9(^) geometrically. Using embodied reasoning to supply another datum, Dan 

drew such a plane and plotted hypothetical points representing 9(_) and 9(^) (lines 35-
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37). Using this datum, Dan re-voiced Frank’s prior claim that the value of the integral is 

9(_) − 9(^), arguing as spokesman that “you’d just be taking the difference between 

those two points” (line 37). He then reiterated that “you’d have to look at a completely 

different graph” (line 39). Afterwards, Frank authored a warrant articulating the 

equivalence of vector addition and the addition of complex numbers (lines 40-41). He 

also provided backing for this warrant’s validity by affirming that the warrant applies to 

this task, stating “So yeah, it’s the same; it’s just evaluating those two points and […] 

finding the difference between the two” (lines 41-42). Frank articulated this backing in 

the role of spokesman because the latter portion reiterated the semantic content from 

claims 1 and 3 using slightly different wording. Argument 2 is summarized in Figure 25. 

 

Figure 25. Toulmin diagram for Dan and Frank’s Argument 2, Task 4. 

 Although Dan and Frank both described the difference 9(_) − 9(^) as vector 

“addition” and plotted the points 9(_) and 9(^) on a new u-v plane, they had not 

provided a geometric depiction of the result of this difference on their diagram. 
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Accordingly, I asked them to explicitly draw this portion of the result using their diagram 

(line 43). In response, Dan provided an embodied datum by drawing in position vectors 

corresponding to the points 9(_) and 9(^) (line 45). As spokesman, he once again 

reiterated that the result is the difference of 9(_) and 9(^), however these objects now 

explicitly represented vectors (line 46). Using embodied reasoning, Dan described the 

resultant vector and drew in what he thought to be its location on the u-v plane (lines 46-

48; see Fig. 26). Frank agreed with this claim, and added that they could not provide the 

exact coordinates of this resultant vector without knowing the coordinates of 9(^) and 

9(_) (line 49). Note from Figure 26 that Dan’s resultant vector is incorrect, both in terms 

of magnitude and direction. The correct result should have considerably longer length 

and lie in the second quadrant. However, I did not make this known during the interview, 

as it was not my goal to ensure that participants arrived at a correct answer. 
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Figure 26. Dan’s depiction of the vector difference 9(_) − 9(^) in Argument 2, Task 4. 

Sensing that the pair had concluded their argument, I asked them if they 

recognized the identity by a familiar name (line 50). Both Dan and Frank appeared to 

recognize the result, and Frank identified it as the Fundamental Theorem (lines 51-54). 

Dan also claimed that this result was equivalent to “a thing we talked about earlier” (line 

55). This assertion catalyzed a third argument related to this task, which I refer to as 

Argument 3 and depict in Figure 27. Dan continued by authoring a symbolic datum 

considering the definition of a contour integral in the special case where 9=:(z)? = :(z) 

(lines 55-57). Unsure of this statement, he also provided a qualifier, asking Frank, “Is that 

right?” (line 57).   
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 Frank affirmed Dan’s datum and authored a symbolic claim that they needed to 

integrate Dan’s inscription with respect to time (line 58). This prompted Dan to revise his 

previous inscription by replacing : with :(z) (line 59). In doing so, he acted as 

spokesman because he altered the syntactic structure of his prior statement while keeping 

the semantic nature intact. Identifying the resulting inscription ∫ :(z) ;C
;Ä 	Jz		

	 as equivalent 

to the integral from the statement of the task, Dan claimed “So that’s pretty much what 

you did” (line 61). Frank clarified this assertion by authoring a symbolic warrant 

identifying the task integral as the special case where :(z) = 1 (lines 62-63). Summarily, 

this third argument served to conclude that the identity from Task 4 could be thought of 

as a special case of the definition of the contour integral applied to the special case 

9=:(z)? = 1.  

 

Figure 27. Toulmin diagram for Dan and Frank’s Argument 3, Task 4. 
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Task 4 – Riley and Sean 

 Task 4 began as I read the task aloud while Sean, as spokesman, wrote symbolic 

inscriptions corresponding to the provided assumptions (lines 6-9). Exactly as Frank did 

initially, Sean instinctively wrote the function 9 as ] after I read the task identity (line 9). 

I finished reading the task by directing Riley and Sean to identify the result by name if 

they recognized it (lines 10-11). Sean quickly wrote “F.T.C.” under the identity, and as 

spokesman, claimed that this is the Fundamental Theorem of Calculus (line 12).  

 

 As a symbolic warrant, Sean began to author the “Calc I version” of the theorem 

(lines 12-14). In stating this version of the theorem, he clarified that “the antiderivative of 

little 9 is capital ]” (lines 14-15). As spokesman, Riley re-voiced this clarification as an 

equivalent statement, “the derivative of capital ] is little 9,” which Sean wrote symbolic 

inscriptions for (line 16). Sean finished writing the “Calc I” version of the Fundamental 

Theorem, and stated that “this [the task identity] is the exact same thing” (lines 17-18). 
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As such, he authored backing for their warrant’s validity by describing why the 

Fundamental Theorem of Calculus is essentially the same as the task identity. In 

particular, Sean wrote symbolic inscriptions for what it means to be an antiderivative in 

the context of Task 4 (lines 18-19). Employing embodied-symbolic reasoning, he 

described how the identification of one’s path and endpoints allow the evaluation of the 

antiderivative at those endpoints (lines 20-21). Argument 1 is summarized in Figure 28.   

 

Figure 28. Toulmin diagram for Riley and Sean, Argument 1, Task 4. 
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 Because Riley did not provide much input in Argument 1, I asked her directly if 

she had any additional comments about this argument (lines 22-24). I also alluded to the 

nature of Task 13 by telling Riley and Sean that we would return to the notion of an 

antiderivative of a complex function later in the interview. Riley responded to my follow-

up question with a qualifier expressing some degree of uncertainty about whether the task 

identity is true for any path between points a and b (lines 25-26). Sean assured her that it 

is true for any path (line 27), and as spokesman, Riley re-voiced this statement as a claim 

(line 28). This segment incorporated embodied, symbolic, and formal reasoning, as it 

entailed a universal statement about the relationship between the symbolic identity and 

the embodied path. I additionally clarified that the initial statement of the Task did not 

specify any particular path (line 29). 

 In response, Riley claimed that this generality with respect to path choice “makes 

it more flexible,” and began to author an embodied warrant to support her assertion. 



 125 

 

Specifically, she discussed how in the real-valued setting, one can only approach a given 

point from the left or the right (lines 30-32). She then compared this setting to its two-

dimensional analog, wherein “you can take any path you’d like” (lines 34-35) as she used 

her finger to incorporate an embodied tracing gesture illustrating a hypothetical path 

through the air (see Fig. 29). 

 

Figure 29. Riley’s tracing gesture for a hypothetical path in two dimensions. 

 Subsequently, Sean authored formal-embodied backing for their warrant’s 

correctness by discussing various assumptions needed to apply the Fundamental Theorem 

of Calculus (lines 36-39). He characterized these assumptions as “fairly technical” (line 

36), and argued that they collectively ensure that the path is “well-behaved” (line 39). 

Riley provided an embodied addendum backing the warrant’s field, as she appealed to the 

fact that “generally those are the [paths] we’re working with” (line 40). Sean closed 

Argument 2 with formal-symbolic backing for their warrant’s validity. He described the 

importance of distinguishing between the integral of a real-valued function and that of a 

complex function 9(:), thereby identifying conditions under which the warrant applies or 

does not (lines 41-44). Argument 2 is summarized in Figure 30. 
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Figure 30. Toulmin diagram for Riley and Sean, Argument 2, Task 4. 

 

 

 Although Riley and Sean discussed important and interesting aspects of the task 

identity in Arguments 1 and 2, they had not provided a physical interpretation of this 
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identity. As such, I asked a follow-up question in an effort to elicit such an interpretation, 

using their diagram from Task 3 (lines 45-47). Riley qualified Argument 3 by sharing 

that she did not remember a physical interpretation of this identity, though she 

acknowledged its existence (line 48). Applying embodied reasoning, she alluded to the 

common “Calc I” characterization of integration as “area below the curve,” but claimed, 

“that’s not the case for […] complex variables” (lines 48-49). Hence, Riley exemplified 

an explicit attempt to avoid an inappropriate application of thinking real, doing complex 

(Danenhower, 2000). As spokeswoman, she re-directed my question to Sean, and 

produced an embodied tracing gesture along the opposing direction of their original 

orange path from Task 3 (lines 49-51; see Fig. 31).  

 

Figure 31. Riley’s tracing gesture as she said “physical interpretation” in Argument 3. 

 Sean responded by authoring an embodied datum. He drew a position vector Q⃗ 

corresponding to the point on their orange curve where they previously drew a 

representative tangent vector, and labeled this vector �⃗ (lines 52-53; see Fig. 32). With 

this tangent vector in mind, he authored a symbolic claim that � = JQ/Jz (line 53). 

Continuing with symbolic reasoning, Sean authored a datum considering the integral 

∫ �(z)JzÄj
Äi  (lines 53-54). Employing embodied reasoning, he supplied a warrant that this 
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integral yields a “change in position.” This warrant supported the symbolic claim that 

°	Q = Q(zE) − Q(zh), which Sean provided as spokesman (lines 54-55).  

 

Figure 32. Sean’s revised diagram including position vectors r and v, Argument 3. 

 Riley asked Sean if an equivalent interpretation of this integral would be “length 

of the curve” (line 56). Sean initially agreed with this interpretation (line 57), but quickly 

changed his mind, and challenged Riley’s assertion. He authored an embodied-symbolic 

claim that arc length is instead obtained by integrating the “absolute value” of �(z) (lines 

57-58). Subsequently, Sean provided embodied-symbolic backing for his previous 

warrant’s correctness. He began this backing by relaying his stance that integrating �(z) 

alone results in a change of position, and pointed to his previous symbolic inscriptions. 

Next, Sean drew in a second position vector  Q⃗E and relabeled his original vector Q⃗	 to be 

Q⃗h (lines 59-60; see Fig. 33).  
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Figure 33. Sean’s position vectors r1 and r2, Argument 3, Task 4. 

 Sean once again concluded that integrating from time zE to zh yields a change in 

position, and he pointed to the tips of Q⃗E and Q⃗h as he specified these two respective times 

(lines 61-62). Note Sean’s apparently accidental transposition of these two times, as the 

times should actually range from zh to zE. As spokesman, Riley succinctly re-voiced 

Sean’s backing with the embodied statement, “So it’s displacement versus distance, or 

whatever?” (line 63). Sean affirmed her summary and labeled his recent symbolic 

transcriptions with the word “displacement” (line 64). A summary of Argument 3 is 

depicted in Figure 34. 
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Figure 34. Toulmin diagram for Riley and Sean, Argument 3, Task 4. 

 The previous distinction between displacement and arc length in Argument 3 

catalyzed a short follow-up argument, Argument 4, as follows. Implementing embodied-

symbolic reasoning, Sean began to re-voice his previous assertion that integrating |�(z)| 

yields the length of the curve (lines 65-66). Before finishing his thought, Sean qualified 

this claim with the phrase, “Which of course, is going to be” (lines 65-66). As 

spokesman, Riley finished Sean’s claim, but phrased it as a question (line 67). She very 

explicitly linked the symbolic and embodied worlds by drawing an arrow from Sean’s 

symbolic inscriptions to their path diagram, and traced along the path using “dotted” line 

segments as she said “length of the curve” (lines 67-68; see Fig. 35). As spokesman, Sean 

affirmed her claim, calling the result “actual arc length” (line 69). Argument 4 is 

summarized in Figure 36. 
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Figure 35. Riley’s connection between symbolism and geometry for arc length. 

 

Figure 36. Toulmin diagram for Riley and Sean, Argument 4, Task 4. 

 Following her and Sean’s brief discussion about arc length, Riley redirected their 

attention back to the original task (line 70). As spokesman, she sought to clarify that the 

symbolic inscriptions ∫ �(z)JzÄj
Äi = °	Q = Q(zE) − Q(zh) represented a distance (lines 70-

71). She re-drew their previous orange path, labeled the distance between starting and 

ending points, and drew an arrow from the symbolic inscriptions to this new diagram (see 

Fig. 37). Accordingly, she once again elucidated the connection between her and Sean’s 

symbolic and embodied representations in a very explicit manner. As before, she did so 

in the form of an embodied-symbolic claim. 
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Figure 37. Riley’s connection between symbolism and geometry for displacement. 

 Sean agreed, and continued to clarify the distinction between the integrals of �(z) 

and |�(z)| (line 73). Specifically, he rewrote ∫ |�(z)|Äj
Äi Jz as ∫ ¢(7̇)E + ṘEÄj

Äi Jz, and 

labeled these inscriptions with the words “arc length” (lines 73-74). As spokesman, Sean 

clarified that the symbolic “dot” notation represents a derivative with respect to time, as 

used in physics contexts (line 75). Implementing embodied-symbolic reasoning, he 
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relayed the prior claim that ∫ �(z)JzÄj
Äi = °	Q = Q(zE) − Q(zh) represents displacement 

and ∫ ¢(7̇)E + ṘEÄj
Äi Jz represents arc length, though he accidentally said “speed” in the 

latter case (lines 75-77). Sean’s earlier label of “arc length” written above these symbolic 

inscriptions, as well as the content of Argument 4 allow me to confidently conclude that 

he indeed misspoke when saying “speed” here. 

 As a quick follow-up question, I asked Riley and Sean how to connect their 

symbolic inscriptions for the original task identity to their recently drawn diagram with 

position vectors Q⃗E and Q⃗h (lines 78-79). Although they previously provided an embodied 

interpretation of the task identity as displacement, they had not drawn a geometric 

interpretation for the 9(_) − 9(^) portion of the identity. In response to my question, 

Sean authored an embodied-symbolic claim that Q(zE) − Q(zh) could be represented 

geometrically as a displacement vector between the two corresponding points along the 

path. He drew this displacement vector on their diagram, as depicted in Figure 38. 

Argument 5 is summarized in Figure 39 afterwards. 

 

Figure 38. Sean’s geometric inscriptions for displacement vector °Q, Argument 5. 
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Figure 39. Toulmin diagram for Riley and Sean, Argument 5, Task 4. 

 After Riley and Sean’s brief Argument 5, I asked one additional follow-up 

question to make sure neither of them had anything else to add about this task. Riley did 

not wish to add anything else to her response, but Sean discussed a short hypothetical 

scenario that comprised Argument 6. He began with a warrant that this scenario 

represented an analogous physics situation (line 83). Specifically, he authored an 

embodied datum considering a scenario in which the function 9(z) represented velocity 

rather than position, in which case J:/Jz would represent acceleration (lines 83-84). 

Employing embodied-symbolic reasoning, he authored a claim that in this case, the task 

identity would represent “change in velocity” (line 84). This brief Argument 6 is 

summarized below in Figure 40. 
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Figure 40. Toulmin diagram for Riley and Sean, Argument 6, Task 4. 

Task 4 Summary 

Overall, Riley and Sean appeared to exhibit more embodied reasoning than Dan 

and Frank during Task 4, evidenced in part by Riley’s tracing gestures in Figures 29 and 

31. Another distinctive aspect of Riley and Sean’s response was Riley’s explicit 

connections between the embodied and symbolic worlds, wherein she drew arrows 

illustrating the relationship between her and Sean’s symbolic inscriptions, and the 

embodied diagrams they drew. A symbolic difference between the pairs’ responses 

existed in Sean’s Newtonian “dot” notation for time derivatives, which Dan and Frank 

did not incorporate. One noteworthy similarity between both pairs was that they each 

explicitly articulated a desire to avoid inappropriate applications of thinking real, doing 

complex (Danenhower, 2000) during this task. However, both pairs also provided backing 

for a warrant’s validity that likened the Task 4 identity to the Fundamental Theorem in 

Calculus I. Accordingly, they also instantiated thinking real, doing complex in a manner 

that they felt suitably extended results from ℝt to ℂ.  

Task 5a – Dan and Frank 

 Task 5 (see Appendix C) required participants to consider the integral of a 

specific function for the first time in the interview. In part a, I asked Dan and Frank about 
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the analyticity of this function, 9(:) 	= 	 :	. After writing the formula for this function on 

the board as a symbolic datum (line 4), Frank immediately authored an initial claim that 

9(:) is not analytic everywhere (line 7). Dan agreed and added that this function is only 

differentiable on the [real and imaginary] axes, though the upward inflection in his voice 

suggested some uncertainty about this (line 8). Next, Frank relayed Dan’s claim and 

refined his own previous claim from line 7 by conjecturing that the function is analytic 

nowhere (line 9). Like Dan, however, Frank posed this claim more as a question, and 

subsequently looked over to me as if seeking validation of their claim. With no response 

from me, Frank then qualified the remainder of the argument with the statement, “I’d 

need to confirm that” (lines 9-10). 

 

After this dialogue, Dan authored a suggestion about using the limit definition of 

derivative in order to support their prior claim about differentiability (lines 11-14). By 

expressing 9@(:) as lim
C→Cã

	í(Cã)âí(C)
CãâC , Dan provided a second datum for their argument and 

invoked formal-symbolic reasoning because he invoked the formal limit definition of 

derivative in the service of symbolic manipulations. However, it should be noted that this 

limit represents 9′(:L), not 9′(:). I did not mention this error to Frank and Dan, so as not 

to interrupt their reasoning process. Proceeding as spokesman, Dan used symbolic 

reasoning to rewrite :	 as 7 − 8R (line 15). Frank then authored a symbolic portion of 
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their warrant about substituting, presumably for 7 − 8R, during their limit calculations 

(line 17). Dan then suggested that they approach some general point :L along two paths, a 

horizontal line and a vertical line (lines18-20), as he elaborated on their warrant 

pertaining to their limit characterization of 9′(:). He used the palm of his hand to gesture 

what the two paths of approach would look like, illustrating embodied reasoning (see 

Figure 41).  

 

Figure 41. Dan’s gestures representing a horizontal linear path of approach (left) and a 

vertical linear path (right) during Argument 1 for Task 5a. 

 

 Frank proceeded as ghostee by rephrasing Dan’s suggestion in terms of 

approaching along the real axis (line 21). Though his subsequent symbolic inscriptions 

(lines 21-28) supported his eventual intended claim (to follow), the semantic meaning of 
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those inscriptions would not correspond to his verbiage about the real axis unless :L = 0. 

Rather, the inscriptions are consistent with Dan’s formulation, wherein we approach :L 

along the horizontal line R = RL and then along the vertical line 7 = 7L. In any case, 

Frank instantiated symbolic reasoning comprised of function notation, as well as 

embodied reasoning comprised of language about paths of approach, to reach a claim that 

¶8w
<kSòã→<ãkSòã

(<ãâSòã)â(<	âSòã)
(<ãkSòã)â(<	kSòã) = 1 (lines 21-28). In particular, because Dan and Frank 

chose to approach the point :L along the horizontal line R = RL, which Frank mistakenly 

referred to as the real axis, Frank substituted 7 + 8RL for :, 7L + 8RL for :L, 7L − 8RL for 

9(:L), and 7 − 8RL for 9(:) in the original difference quotient. As Frank algebraically 

simplified his new expression, Dan silently authored symbolic inscriptions to set up their 

second limit, approaching :L along the vertical line 7 = 7L (line 25).  

 

 After Frank reached his claim that  ¶8w
<kSòã→<ãkSòã

(<ãâSòã)â(<	âSòã)
(<ãkSòã)â(<	kSòã) = 1 (line 28), he 

conjectured that the other limit, approaching :L along the “imaginary axis,” should be – 8 

(lines 28-29). Note again that this limit should approach along the vertical line R = RL, 

and their inscriptions support this latter path. At this point, Frank asked Dan if he was 

“doing this right” (lines 29-30). But Dan had already independently simplified his limit 
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expression to S(òâòã)
S(òãâò), which he concluded yielded a limit of −1 (line 31). When Dan 

communicated this result to Frank (line 33), Frank maintained that the limit should be – 8. 

Dan pointed to his inscriptions on the board and argued that “the 8	′s cancel” (line 35), 

but again Frank questioned the result, and wanted to “double check that” (line 36).  Thus, 

Frank proceeded to run through a nearly identical calculation (lines 36-42) as Dan’s, and 

concluded that lim
<ãkSò	→<ãkSòã

(<ãâSòã)â(<ãâSò)
(<ãkSòã)â(<ãkSò	)

= −1 (line 42) using the aforementioned 

embodied and symbolic reasoning from his other limit calculation. Specifically, his 

embodied reasoning consisted of language describing geometric paths of approach 

pertaining to limits, and his symbolic reasoning consisted of the associated symbolic 

manipulations that followed from the choice of path. Summarily, these two limit 

calculations yielded two different limits as Frank and Dan approached :L = 7L + 8RL 

along a horizontal line and a vertical line. 

 

 Using formal reasoning, Dan subsequently noticed that they could have used the 

Cauchy-Riemann equations (line 43) to investigate analyticity. This observation 

catalyzed a follow-up argument that I describe below, but first, both Dan and Frank 

identified their previous limit argument as more formal (lines 45-46). Frank then acted as 



 140 

 

spokesman by succinctly recapitulating their limit argument (lines 46-48). He explained 

that they approached the point :L from two different paths and obtained two different 

limits, and used this summary as a datum to claim that 9(:) is differentiable nowhere. 

Frank’s summary contained embodied-symbolic reasoning, in that the phrase “approach 

any point from two different directions” described physical motion towards an object 

using visualized processes, while the limit answers represented the product of a symbolic 

manipulation. Again, I take this process to be visualized because Dan and Frank did not 

draw a diagram depicting these paths, and Dan’s gestures from Figure 41 indicate an 

external window into such a visualization of these linear paths. 

 

Finally, Frank stated the pair’s overall claim that 9(:) is analytic nowhere (line 

48), using the relationship between differentiability and analyticity as a warrant to 

support this assertion using formal reasoning. Invoking formal-symbolic reasoning, Dan 

also clarified that this warrant supported their conclusion because they utilized an 

arbitrary point :L in their argument (line 49). Thus, this statement served as backing for 

the warrant’s field, in that it underscored their limit argument’s generality as appropriate 

for the mathematical setting. Argument 1 is summarized in Figure 42. 
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Figure 42. Toulmin diagram for Dan and Frank’s Argument 1, Task 5a. 

 

As mentioned previously, Dan’s comment in line 43 catalyzed a second argument 

wherein I asked the pair to think about this task using the Cauchy-Riemann equations 

(lines 51-52). I analyzed what followed as a separate argument, Argument 2 (see Fig. 43). 
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Because my question was primarily directed at Dan, he acted as author for the duration of 

this brief argument. Dan began by writing the Cauchy-Riemann equations in their general 

form (line 54), using formal-symbolic reasoning. He then relayed their previous symbolic 

data from Argument 1 that 9(:) = :̅ = 7 − 8R (line 54).  

 

Figure 43. Toulmin diagram for Dan and Frank’s Argument 2, Task 5a. 

Next, Dan identified the real component function to be ©(7, R) = 7 and used 

symbolic reasoning to calculate ©< = 1. Similarly, he determined ™ò  to be −1, and 

concluded that the Cauchy-Riemann equations do not hold for this function (lines 55-56). 

This required formal-symbolic reasoning, in that he used the symbolic fact that ©< and ™ò  

did not agree to relate back to the formal nature of the Cauchy-Riemann equations as 

necessary and sufficient conditions for differentiability. Dan determined that while ©ò =

0 = ™< and thus the second Cauchy-Riemann equation is satisfied (lines 56-57), this is 

not enough to make the function analytic anywhere (lines 57-58). Lines 57-58 explicitly 

indicate Dan’s use of the Cauchy-Riemann equations as his formal-symbolic warrant for 

the claim that 9 is not analytic anywhere. Finally, both Dan and Frank agreed that this 
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second argument represented an easier way to determine that the function was not 

analytic (lines 59-60). 

Task 5b – Dan and Frank 

 After Dan and Frank concluded that the function 9(:) = :̅ is not analytic 

anywhere, I asked them if it was possible to integrate this function over the path ´, a 

circle of radius ¨ traversed counterclockwise (lines 1-2). The first argument for this task 

began with Frank proceeding as spokesman, writing my verbal description of the path 

using the symbolism {≠
â (line 3). Note that the path should be positively oriented, so 

Frank’s path inscription should have read {≠
k; Dan and Frank recognized this error at a 

later point. Using the function formula and path description as data, Frank claimed that it 

would not be permissible to use “the Fundamental Integration Theorem” (lines 3-4). 

From the context, it appears that he meant either the Cauchy-Goursat Theorem or 

Cauchy’s Integral Formula. In particular, he explained that this theorem required the 

function to be analytic in some simply-connected domain (line 4). This requirement 

served as a formal warrant because Frank provided formal conditions, which prevent the 

theorem from holding based on the given data. 

 

Without the ability to invoke a powerful theorem directly, Frank hesitantly 

authored a claim that the pair parametrize the path instead (lines 5-6). Immediately 
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afterwards, Frank questioned this claim, asking Dan “Can we do that?” (line 6). The pair 

continued to express uncertainty about this approach (lines 7-10), arguing that although 

they might obtain an answer, they might be unsure of its validity. Nevertheless, Frank 

suggested that they persist with his plan, and relayed a portion of their previous datum 

(line 8). As in Task 5a, Frank looked at me for validation after the pair expressed the 

aforementioned uncertainty in the form of an extended qualifier (line 10).  

At this point, I redirected the conversation back to Dan and Frank by asking if 

they required any special properties about the function or domain when they used 

parametrization in the past (lines 11-12). Essentially, this probing question served to elicit 

their met-befores (Tall, 2013) related to parametrization in the hopes that doing so would 

drive their argument forward. In response, Dan authored a warrant for Frank’s claim that 

they could parametrize L, arguing that they “just did it” in the past (line 13). Frank 

elaborated that the only times they could not freely parametrize were when the function 

had discontinuities (lines 14-16). Frank supported this rebuttal with an embodied example 

(lines 14-16), as his verbiage “pass through the negative real axis” described motion 

through a geometric location on an ostensibly visualized diagram. At this point, Dan and 

Frank had not drawn any such diagram on the board.   
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With this rebuttal in mind, Dan observed that the function from this task is not 

discontinuous, and Frank added as spokesman that the function is continuous everywhere 

(lines 17-18). Hence, this statement about continuity served as backing for Dan’s 

warrant’s validity, in that the continuity of 9 prevented any issues brought up in Frank’s 

rebuttal, thus supporting the applicability of the original warrant. Having convinced 

themselves that the path could be parametrized, Dan and Frank proceeded to write L as 

¨NâST  (lines 21-24). However, because of the importance placed on continuity in 

Argument 1, I asked them to provide additional support for their assertion that 9(:) is 

continuous (lines 25-26). This began a new argument, which I refer to as Argument 2. 

Argument 1 is summarized in Figure 44. 

 

Figure 44. Toulmin diagram for Dan and Frank’s Argument 1, Task 5b. 

Dan began this continuity argument by relaying a symbolic datum from Task 5a, 

writing the inscription 7 − 8R (line 27). After briefly looking at his symbolic inscription, 

he mentioned that “you would never be dividing by zero, so I mean you can plug in any x 



 146 

 

value and any y value” (lines 27-28). Although Frank agreed (line 29) with this warrant, 

Dan also added that “there’s a formal way you could prove it” (line 30). In response, 

Frank authored the definition of continuity for real-valued functions (lines 31-33). I 

characterized this reasoning as formal-symbolic because Frank wrote symbolic 

inscriptions that corresponded with a formal definition of continuity. Dan then provided 

backing for this warrant’s validity with the statement, “It seems like it’s pretty clear that 

that would happen for this function” (line 34), which served to underscore the warrant’s 

applicability to the situation at hand. 

However, Frank was unsure that this characterization of continuity transferred to 

complex functions (lines 35-36). This consideration provided qualification for this sub-

argument, in that Frank expressed uncertainty about the backing for the warrant’s 

validity. Moreover, this statement seemed to represent symbolic-formal reasoning, as it 

considered the generalization of a symbolic definition of continuity to a different formal 

context. Following this qualifier, Frank mentioned that they had not discussed continuity 

at length in their complex variables course, but focused more on differentiability (line 

37). Dan elaborated, “we just kind of looked at something and said, ‘Look it’s clearly 

continuous’ or ‘It’s discontinuous at this point’” (lines 38-39).  
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Acting as spokesman, Frank used Dan’s clarification as an opportunity to re-voice 

Dan’s previous warrant about avoiding division by zero (lines 40-41). Accordingly, 

Dan’s elaboration in lines 38-39 served as backing for this warrant’s field. If, in their 

complex variables course, it was sufficient to simply look at a function’s formula and 

draw conclusions about continuity, then the absence of any division by zero or similar 

symbolic issues was enough to conclude that 9(:) = :̅ is continuous. Hence Dan and 

Frank concluded Argument 2 with the claim that no obvious discontinuities exist. 

Curious if the pair had considered using the component functions ~ and �, I directed 

them (lines 42-43) to provide an alternate argument, which I refer to as Argument 3. 

Argument 2 is summarized in Figure 45. 
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Figure 45. Toulmin diagram for Dan and Frank’s Argument 2, Task 5b. 

 

 Rather immediately and as author, Dan used symbolic reasoning to identify the 

real component function as 7, and claimed that 7 and R are “clearly continuous” (lines 

44-46). As Dan began to use these data to formulate another statement, Frank interrupted 

and claimed, “Their sum has to be continuous” (line 46). I then began to remind them of 

the result that if a complex function’s component functions are continuous, then the 

function itself is continuous (lines 47-50). However, Frank interrupted my conclusion as 

well and reiterated, “Then the sum is continuous” (line 49). Thus, it appeared that he was 
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quite certain that this was an acceptable warrant for their claim that the function is 

continuous. Indeed, using formal-symbolic reasoning, he followed this warrant with 

backing for its validity (line 53) by arguing that this more general property certainly 

applied to these particular component functions. Argument 3 is summarized in Figure 46 

below. 

 

Figure 46. Toulmin diagram for Dan and Frank’s Argument 3, Task 5b. 

 

 Not wanting to interrupt the natural flow of their original argument too 

extensively, I asked them to proceed in their evaluation of the integral of this function 

(line 54). This signaled the beginning of Argument 4. Frank proceeded to relay the 

integral he and Dan were evaluating (lines 55-58). As I pointed out that they could pick a 
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center for the circular path, Dan relayed their prior symbolic representation for the path, 

{≠
â (line 59). At this point, I chose to remind them (lines 60-61) that the path was 

oriented counterclockwise because Dan had repeated their previous error of denoting 

negative orientation. Dan and Frank were both surprised to hear this (lines 62-63), 

perhaps because they misinterpreted my original prompt. Dan altered his symbolic 

inscription to reflect this change (line 63). Using this revised inscription as a datum, 

Frank authored a claim that ´ can be parametrized as ¨NST , and qualified their revised 

task as “even easier” than previously anticipated (line 64). 

 

Figure 47. Toulmin diagram for Dan and Frank’s Argument 4, Task 5b. 

 Next, Frank applied symbolic reasoning to the previous claim, used now as a 

datum, to author a new claim that ;í
;T = 8¨NST  (lines 65-66), and qualified this as “easy 

enough.” Dan followed this with another symbolic claim that “z prime will just be 

¨NâST” (line 67). However, because of what he said directly afterwards in line 69, I 

interpreted this claim to be that 9=:(V)? = ¨NâST . Moreover, Frank’s clarification about 
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the warrant, “Oh, using the z-bar,” further suggests that Dan meant 9=:(V)? as opposed 

to :′. Frank additionally relayed Dan’s claim in line 70.  

 

 Frank clarified their choice of branch cut (line 72), using embodied reasoning as 

supported by the fact that he referred to a geometric location on a visualized Argand 

Plane. I say “visualized” here because Dan and Frank never drew a geometric diagram 

during this argument. Afterwards, Frank expressed concern about potentially having to 

alter their parametrization to make V range from –b to b, but quickly dismissed this 

concern (lines 74-75). Frank and Dan then continued to apply the definition of a contour 

integral as a warrant (lines 75-78), which I considered formal-symbolic reasoning 

because it relates the specific symbolic nature of the given function and parametrization 

to a formal definition. After algebraically simplifying their setup, Dan and Frank obtained 

an answer of 82b¨E, establishing their final claim (lines 79-80). Argument 4 is 

summarized in Figure 47. 
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Task 5c – Dan and Frank 

 Task 5c required participants to explicitly comment on whether ∫ :̅	
Æ J: depends 

on the radius of the circular path. Dan initially answered “I don’t think so” but clarified 

that “you just plug in your radius for R” (line 3), indicating symbolic reasoning related to 

their aforementioned result 82b¨E. Because Dan’s two statements seemed to contradict 

one another, I echoed what I interpreted to be Dan’s intended meaning (line 4), and Dan 

affirmed my statement (line 5). Proceeding as spokesman, Frank agreed that the integral 

depends on the radius (line 6), and his corresponding pointing gesture towards their prior 

inscription 82b¨E suggested symbolic reasoning. In an effort to explain why he and Dan 

attained a particular symbolic answer, Frank additionally authored a formal-symbolic 

warrant for this assertion (lines 7-8), which attended to the analyticity of the function.   

 

 Frank then authored a rebuttal articulating how the argument would change if 

9(:) was analytic (lines 9-13). This rebuttal consisted of the hypothetical datum that 9(:) 

was analytic, which Frank used to claim that “we wouldn’t have to worry about it” (line 

9), likely meaning that the integral in question did not depend on the radius of the circle. 

At this point, Dan appeared to realize what Frank had in mind, as he exclaimed “Ohhhh” 

(line 10). Frank proceeded with a formal warrant for this claim, arguing that the Cauchy-
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Goursat Theorem applied in this case (line 11), but qualified this assertion with the word 

“right?” (line 11).  

Dan continued with the warrant by discussing the possible resulting symbolic 

values of the integral (line 12), but Frank interrupted and concluded that the answer 

depended on the number of discontinuities (line 13). Because Dan and Frank discussed 

the symbolic possibilities for an integral as dictated by a formal theorem, I characterized 

this reasoning as formal-symbolic. As spokesman, Frank re-voiced the pair’s claim that 

the integral of the provided function 9(:) depended on the radius R, concluding that it 

was a “function of R” (lines 13-14). Argument 1 is summarized in Figure 48 below.  

 

Figure 48. Toulmin diagram for Dan and Frank’s Argument 1, Task 5c. 

 Probing further, I asked Dan and Frank where they chose to center the circle in 

this task (line 15). This question prompted a second argument, Argument 2, about Task 

5c. Frank responded with embodied-symbolic reasoning, relating the geometric location 

of the center of the circular path to a symbolic inscription describing the path as ´ =
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{≠
k(0) (line 16). Because Frank’s revised inscription clarified the semantic information 

used previously, but using new syntax, it appeared he acted as spokesman in this 

dialogue. Next, I asked if changing the center of the circle would affect the value of the 

integral (lines 17-18). Frank claimed that it would not, and that the integral “should 

simplify down to the same result” (line 19), but qualified this assertion with the phrase 

“um, I mean, I would imagine” (line 19).  

 

Dan agreed with this claim (line 20), but neither participant proceeded to 

elaborate on their assertion, so I asked them to at least consider how the parametrization 

for ´ would change (lines 21-22). In response, Frank authored the tentative suggestion 

that “we’d just have to shift it, right?” (line 23). Dan agreed and, as spokesman, provided 

a new symbolic parametrization ^ + ¨NST (lines 24-25) using the datum that the circular 

path is centered at some point ^.  

I assumed that this point ^ was a complex number, but Frank responded with a rebuttal 

that considered an alternate case of the circle centered at some ^ + _8, and adjusted the 

symbolic inscriptions for the parametrization accordingly (line 26).  
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Using this other parametrization as a datum, Frank pointed to the NST portion and 

claimed that they could algebraically expand this expression, invoking Euler’s Identity as 

a warrant (lines 27-28). Finally, Frank articulated their revised parametrization as 

spokesman, using the phrase “some point plus the circle” (lines 28-29). While saying 

“some point,” he pointed at the symbolic inscription ^ + _8, and while saying “plus the 

circle” he traced a circular path in the air with his marker pen (see Fig. 49). Accordingly, 

Frank’s summary remark seems to indicate embodied-symbolic reasoning, in that he 

related the symbolic inscriptions (^ + _8) and NST to a point in the Argand plane and a 

dynamic enactment of a circular parametrized path, respectively. Argument 2 is depicted 

in Figure 50. 

 

Figure 49. Frank’s circular path gesture during Argument 2 for Task 5c. 
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Figure 50. Toulmin diagram for Dan and Frank’s Argument 2, Task 5c. 

Task 5a – Riley and Sean 

 Sean began the response to Task 5a as spokesman as he wrote symbolic 

inscriptions characterizing 9(:) as :̅ = 7 − 8R (line 2). Riley authored a formal claim that 

“to be analytic it has to be differentiable everywhere,” and Sean agreed (lines 4-5). She 

qualified their argument by stating that she recalled this function as not analytic but could 

not remember why (lines 8-9). Sean assisted by authoring a formal-symbolic warrant 

appealing to the Cauchy-Riemann equations (line 10). He elaborated this warrant by 

symbolically identifying ~(7, R) = 7 and  �(7, R) = 8R, both of which he classified as 

continuous (lines 12-13). Setting ~< = �ò and  ~ò = −�<, he concluded the function is 

not differentiable and thus “not analytic anywhere,” citing that ~< = 1 and �ò = −1 

(lines 13-15). Argument 1 is summarized in Figure 51. 
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Figure 51. Toulmin diagram for Riley and Sean’s Argument 1, Task 5a. 

 Following Argument 1, I asked Riley and Sean a follow-up question about why 

they immediately wrote the function as 7 − 8R (lines 16-17). Riley authored a formal-

symbolic datum that they were using the Cauchy-Riemann equations to test the function’s 

differentiability, and claimed that they needed 9 to be expressed in terms of its 

component functions ~(7, R) and �(7, R) (lines 18-21). As spokeswoman, Riley 
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curiously referred to this symbolic form as “vector notation” (line 21), and claimed that 

~(7, R) = 7 and �(7, R) = R. Note that in both Arguments 1 and 2, Sean and Riley 

respectively identified �(7, R) incorrectly, as Sean claimed �(7, R) = −8R and Riley 

claimed �(7, R) = R, when in fact it should be �(7, R) = −R. Riley also referred to 7 −

8R as :, but revised her symbolism to “9(:)	[…] Or like Ø or something” (line 24). As a 

symbolic warrant for her choices of ~ and �, Riley clarified that “conjugate : is just, um, 

the negative of the […] imaginary component, for whatever : was” (lines 22-23). She 

closed Argument 2 with a formal-symbolic claim relaying the ease of invoking the 

Cartesian form when evaluating the Cauchy-Riemann equations to test for 

differentiability (lines 25-28). Argument 2 is depicted in Figure 52. 
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Figure 52. Toulmin diagram for Riley and Sean’s Argument 2, Task 5a. 

Task 5b – Riley and Sean 

 Riley began the pair’s response to the second portion of Task 5 as spokeswoman, 

producing an embodied diagram of the circular path L (line 3; see Fig. 53). She then 

quickly authored a claim that it is not possible to integrate 9(:) = :̅ along the path L, and 

cited the formal-symbolic warrant that this function is not analytic (line 4). As 

spokesman, Sean wrote a symbolic inscription echoing the integral in question (line 5), 

which prompted me to clarify that I had not specified a center of the circle, but that he 

and Riley could center it at zero (lines 6-7). At this time, Riley repeated her claim and 

warrant (line 9), and Sean qualified this claim-warrant pair by remarking, “That’s what I 

think. I just want to make sure” (line 10).  
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Figure 53. Riley’s sketch of circular path, Argument 1, Task 5b. 

 Because neither Riley nor Sean had provided any further explanation about why 

the absence of analyticity prevented them from integrating this function, I asked them to 

elaborate on this connection (line 11). This prompted Riley to challenge her previous 

claim by authoring a formal-symbolic rebuttal suggesting parametrization (lines 12-13). 

However, Sean claimed that he remembered this function as discontinuous when it 

appeared on a previous test in the course (lines 14-15). This first argument is summarized 

below in Figure 54.   
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Figure 54. Toulmin diagram for Riley and Sean’s Argument 1, Task 5b. 

 Given that Sean and Riley attempted to simply recall from a previous test the 

continuity of this function, I directed them to revisit its continuity together (line 17). This 

began Argument 2, in which Sean authored an embodied-symbolic datum considering a 

limit approaching the origin along the real and imaginary axes (lines 18-19). While 

articulating the “two different paths” (line 18), Sean produced a pair of embodied 

gestures illustrating these two manners of approaching the origin (see Fig. 55). Riley then 

challenged some of Sean’s symbolism in his limit inscriptions, and encouraged him as 

spokeswoman to rewrite (7, R) as (7, 0) given that R = 0 along the real axis (lines 20-

23). Sean authored a formal claim that the function is not continuous anywhere, and cited 

a formal-symbolic warrant that the two aforementioned limits yield “different values” 

(line 24). Sean then further revised his symbolism as spokesman to account for 

approaching a general point (7L, RL) rather than (7L, 0) (lines 24-26).  
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Figure 55. Sean’s gestures for approaching along two paths, Argument 2, Task 5b. 

Next, Riley suggested writing :̅ in their inscription in order to clarify what they 

were taking the limit of, and qualified this addendum with “right?” (line 27). As 

spokeswoman, she again changed the symbolism corresponding to their limits, claiming 

that (7L, R	) should approach (7L, RL) in accordance with their embodied-symbolic 

warrant that “you approach from two different paths” (lines 28-30). At this time, Sean 

further illustrated their confusion by authoring a symbolic rebuttal that their work 
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corresponded to differentiability and not continuity (line 31). He acknowledged that one 

could demonstrate continuity via a formal epsilon-delta proof, but he instead invoked a 

formal-symbolic warrant that in order for 9(:) to be continuous at :L, lim
C→Cã

9(:) must 

equal 9(:L): “limit at a point exists, the function at a point exists, the two are equal” 

(lines 32-33).  

Note that there are multiple ways for this continuity equality to be violated, such 

as the limit not existing or the limit not equaling 9(:L). Despite their prior symbolic 

attempts at the former, Sean chose to discuss the latter, and claimed that “we'd have to 

show the limit as you approach two different paths is not the same as the limit value at a 

point” (lines 33-34). Riley closed Argument 2 by authoring a qualifier expressing 

uncertainty with their statements about continuity due to her inexperience with limits 

(lines 35-36). Argument 2 is summarized in Figure 56 below. 

 

Figure 56. Toulmin diagram for Riley and Sean’s Argument 2, Task 5b. 
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 Given Sean’s apparent conflation with differentiability conditions, as well as his 

and Riley’s difficulty with the symbolism in their limit statements, I asked Sean to clarify 

whether he was showing the function was continuous or discontinuous (lines 37-39). 

Riley clarified that they were attempting to show the function is discontinuous, and 

authored a brief Argument 3 in support. Specifically, as spokeswoman, she re-voiced the 

previous requirement for continuity that the limit as one approaches :L along any path 

must exist (lines 40-41). She further claimed that the formal Cauchy-Riemann equations 

hold due to this same type of limit property, though her articulation of this connection 

was fairly nebulous (lines 41-42). Finally, she authored a formal-embodied claim that a 

discontinuous function has the property that “there will always be at least two paths that 

converge to different limits” (lines 43-45). Note that this once again attends to the 

existence of the limit rather than whether the limit equals 9(:L). Argument 3 is depicted 

in Figure 57.  

 

Figure 57. Toulmin diagram for Riley and Sean’s Argument 3, Task 5b. 
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 With this general approach in mind, I redirected Riley and Sean’s attention to the 

specific function at hand and asked them if they thought this function was continuous or 

not (lines 46-47). This catalyzed Argument 4, which Riley began with an uncertain 

“hmm” (line 48). I reminded them that they already determined 9 was not analytic (line 

49). Sean relayed his recollection of the function not being differentiable (line 51), but 

Riley authored a formal claim cautioning that a lack of differentiability does not imply 

discontinuity (line 52). This prompted Riley to consider a symbolic datum of 

parametrizing the circular path as : = QNST, in which case she symbolically claimed :̅ =

QNâST  (lines 54-55).  
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 With this parametrization in mind, Riley symbolically claimed that it “seems like 

it ought to be continuous” (line 57). She began to explain why, but paused long enough 

for Sean to step in and author his own embodied warrant that reversing the orientation of 

a circle should not affect its continuity (lines 60-62). Riley agreed with this conclusion 

(line 64), closing Argument 4, which is summarized in Figure 58 below. 

 

Figure 58. Toulmin diagram for Riley and Sean’s Argument 4, Task 5b. 

 Because Riley and Sean abandoned their previous limit inscriptions, I asked them 

if they wished to revisit this prior reasoning (lines 65-66), and this resulted in a long 

pause from both participants (line 67). I took this to mean Riley and Sean did not wish to 

pursue their limit inscriptions. Due to the amount of time already spent on determining 

the function’s continuity, I provided a rather large hint about considering the component 

functions ~ and � (lines 68-69). Even so, Riley only hesitantly claimed that the continuity 

of ~ and � should determine the continuity of 9, as indicated by her qualifier “I mean, I 

guess […] right?” (lines 70-71). She also claimed that this implication meant that 9(:) =

:̅ is continuous (lines 71-74), and authored a symbolic warrant comparing ~ and � for the 
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functions : and :̅ (lines 76-77). This argument implicitly rested on the continuity of 

>(:) = :, so I asked Riley and Sean explicitly if they believed that this identity function 

is continuous, and they confirmed that they did (lines 78-79). Argument 5 is summarized 

in Figure 59. 

 

 

Figure 59. Toulmin diagram for Riley and Sean’s Argument 5, Task 5b. 
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 Due to Riley and Sean’s difficulty with determining continuity in this task, I 

asked them if they had carefully shown whether particular functions were continuous or 

not during their course (lines 80-81). This question was not meant to induce another 

argument, but rather to put their struggle in context; as such, this portion of the interview 

did not constitute an argument. Rather, Riley and Sean both denied discussing continuity 

of specific functions in their course, and Sean clarified that they instead focused more on 

differentiability and analyticity (lines 84-85). Sean explained that Professor X justified 

this choice of omission based on the fact that such material is often covered as part of a 

real-analysis-based “complex analysis” course rather than just complex variables (lines 

87-88). To conclude the discussion on continuity, I informed Riley and Sean that indeed 

the continuity of ~ and � implies the continuity of 9 (lines 89-92). 
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 With the continuity of 9 resolved, I redirected Riley and Sean’s attention to the 

integral of this function (lines 93-97). Riley began the ensuing Argument 6 by 

articulating a symbolic warrant appealing to parametrization (line 98). She qualified this 

suggestion by admitting, “I don’t remember what the exact, uh, conditions are” (lines 98-

99), but claimed they could evaluate the symbolic integral ∫ 9=:(z)?:@(z)JzZ
[  (line 99). 

Sean agreed (line 100), and Riley relayed their previous parametrization : = QNST as a 

symbolic datum (line 101). She also relayed the embodied datum of their circular path, 

and authored an embodied-symbolic claim that if the circle were centered at a location 

other than the origin, “it’s not that difficult” to adjust their inscriptions accordingly (lines 

102-103).  

 In response, Sean challenged her assertion in the form of a formal rebuttal in 

which he cautioned that the function’s (lack of) differentiability might preclude them 

from pursuing this method (line 104). However, Riley maintained that she did not believe 

this differentiability was germane, but qualified this response by relaying her previous 

acknowledgement of not knowing the necessary conditions for parametrization (lines 
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105-106). Sean conceded, and claimed, “we should be fine” (line 107), thereby 

concluding Argument 6, which is depicted in Figure 60. 

 

Figure 60. Toulmin diagram for Riley and Sean’s Argument 6, Task 5b. 

 Afterwards, Sean symbolically set up their integral as  ∫ 	EM
L ¨NâST(8¨)NâSTJV and 

simplified this to become −8¨E ∫ NâESTJV	EM
L (lines 108-109). Note that Sean incorrectly 

computed :@(V) = 8¨NâST  instead of 8¨NST. He then evaluated this integral by 

symbolically taking an antiderivative of the integrand and employing the Fundamental 

Theorem of Calculus to obtain âS≠j

âES NâEST| 2b
0 = ≠j

E [NâäMS − 1] (line 109). Next, Sean 

authored a symbolic warrant that NâäMS  = cos(−4b) − 8	sin(4b) (lines 109-110), though 

Riley apparently did not realize that Sean had implicitly applied the identity sin(−V) =

− sin(V) in his inscription (line 111).  Nonetheless, Sean and Riley jointly concluded that 

the integral vanishes “just like the last way was” (line 111-113). However, Riley 

qualified their conclusion by questioning their correctness (line 114). Because Sean did 
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not respond to Riley’s question, and because be previously set up the integral incorrectly 

due to misidentifying :@(V), I tried to draw their attention to this setup by asking a 

follow-up question about using the Fundamental Theorem (line 115). This led to a new 

argument, as detailed below; Argument 7 is summarized in Figure 61. 

 

 

Figure 61. Toulmin diagram for Riley and Sean’s Argument 7, Task 5b. 

 In response, Riley asked me to illuminate what step in their calculation I was 

referring to, and then redirected my question to Sean (lines 117-121). Employing 

symbolic reasoning, Sean clarified that the integrand was a function of V (line 122), and 

Riley acted as spokeswoman to add that “these are real variables, just going from 0 to 
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2b” (line 124). Riley additionally authored a formal-symbolic warrant that Sean was 

previously using the “Calc 1 version” and that this technique is “not specific to complex” 

(lines 123-124). She drew an arrow between Sean’s previous symbolic inscriptions to 

indicate where he had implicitly utilized the theorem (line 127), and Sean provided 

backing for their warrant’s validity by explaining “NâEST  is well-defined and definitely 

differentiable” (line 128). Accordingly, Sean claimed as spokesman that they could take 

an antiderivative (lines 128-129). Argument 8 is summarized in Figure 62. 

 

 

Figure 62. Toulmin diagram for Riley and Sean’s Argument 8, Task 5b. 
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 Because neither Sean nor Riley discovered Sean’s aforementioned differentiation 

error, I pressed Sean on his backing by reminding them that they decided 9(:) was not 

differentiable anywhere in Task 5a (lines 130-134). Riley seemed to recognize a potential 

problem with this (line 135) and Sean claimed “that’s where the disconnect comes” (line 

136). Riley also added that this disconnect made her doubt whether they could use 

parametrization to evaluate the integral because “it probably has to do with […] those 

endpoints,” perhaps alluding to the connection between path-independence and 

analyticity (lines 137-138). Argument 9 is summarized in Figure 63 below. 

 

 

Figure 63. Toulmin diagram for Riley and Sean’s Argument 9, Task 5b. 

 Likely due to their doubt surrounding whether a function’s differentiability 

impacts one’s ability to parametrize and use the Fundamental Theorem, Riley pursued a 
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purely embodied approach to evaluate the integral. In particular, she began Argument 10 

by recalling from their work in Task 4 that “the integral […] was a, like in the physical 

manifestation, it was basically displacement between ^ and _,” but qualified this with the 

words “I mean, I guess […] right?” (lines 139-140).  She reproduced a diagram similar to 

the one drawn in their response to Task 4, as an embodied datum (line 142; see Fig. 64). 

Riley then qualified her datum by questioning the labeling of her endpoints a and b (line 

142), and pondered how to adjust her diagram to account for the fact that their path in this 

task is a circle meeting “at the same point” (lines 142-144).  

 

 

Figure 64. Riley’s diagram for displacement in Argument 10, Task 5b. 

 With this embodied characterization of integration as displacement in mind, Riley 

authored a claim that the integral “would be 0 still” (line 144), and cited an embodied 

warrant that “you don’t go anywhere” because the circle starts and ends at the same point 
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(lines 144-146). Recall that in Task 4, Riley and Sean integrated the derivative of a 

parametrized path to obtain displacement, whereas in Task 5b the integrand is not the 

derivative of the circular path, let alone the circular path itself. Hence, Riley appeared to 

conflate certain embodied aspects of these two tasks during Argument 10. Rather than 

addressing this issue directly, Sean chose to describe an alternate embodied interpretation 

of the integral in Task 5b, which manifested as Arguments 11-13. Argument 10 is 

summarized in Figure 65. 

 

Figure 65. Toulmin diagram for Riley and Sean’s Argument 10, Task 5b. 

 Sean began his embodied Argument 11 by relaying the circular path and 

authoring an embodied-symbolic datum considering °Q = ∫ �(z)Jz, where �(z) 

represents velocity (lines 147-149). Next, he plotted a point :h on the circular path in the 

first quadrant along with its conjugate and corresponding tangent vector (lines 149-152; 

see Fig. 66). Sean labeled points :E and :E∞  at the tips of the tangent vectors corresponding 

to :h∞  and :h, respectively (lines 152-153; see Fig. 67). He articulated an embodied 
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warrant regarding the orientation of the tangent vectors to author an embodied claim that 

these two vectors sum to “a little vertical vector,” which he sketched off to the right of his 

diagram (lines 153-154; see Fig. 67). 

 

 

Figure 66. Sean’s sketch including :h and its conjugate, Argument 11, Task 5b. 
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Figure 67. Sean’s :E, its conjugate, and “little vertical vector,” Argument 11, Task 5b. 

Subsequently, Sean continued plotting similar vectors :Ü and :ä, their conjugates, 

and corresponding tangent vectors (lines 155-157; see Fig. 68). Authoring an embodied-

symbolic warrant that “the integral is just adding them all vectorially pretty much,” Sean 

concluded that the vector sum of these second two tangent vectors produces “a little 

negative vector” and drew this resultant vector at the left of the diagram (lines 157-159; 

see Fig. 69). He used these two example resultant vectors to author a general warrant that, 

continuing in this manner, all pairwise vector sums on the right half of the diagram would 

result in an upward-facing vector and those on the left half would result in a downward-

facing one (lines 159-161). Accordingly, “just from symmetry,” Sean authored a claim 

that “they all cancel out […] to get zero” (line 161). Argument 11 is summarized in 

Figure 70. 
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Figure 68. Sean’s :Ü, :ä and their conjugates, Argument 11, Task 5b. 

 

Figure 69. Sean’s downward resultant vector at left, Argument 11, Task 5b. 
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Figure 70. Toulmin diagram for Riley and Sean’s Argument 11, Task 5b. 

 Because Sean did not properly plot the conjugate of :E, I asked a follow-up 

question to elicit more detail from Sean about how the conjugates factored in (lines 163-

164). He reiterated that he was considering the point :h and “a little point” just past it, 

then mapping them “down” via the conjugation function (lines 165-167). Sean’s 

reiteration as spokesman caused him to realize that his arrows were actually reversed 

(line 167), and thus he drew vertical dotted lines from :h and :E to indicate where their 

respective conjugates should be (lines 168-169; see Fig. 71). Sean used the revised 

locations of these conjugates as an embodied warrant for a resulting embodied claim in 

which “our little vector” should point in the opposite direction as the one he drew 

previously in the fourth quadrant (lines 169-170; see Fig. 71). He qualified this assertion 

with the words “I guess,” and concluded that the resultant vectors from summing the 
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pairs of vectors on the left and right halves of the diagram should “just flip” directions “to 

get mostly the same result” (lines 170-172). 

 

Figure 71. Sean’s revised diagram for :h, :E and conjugates, Argument 12, Task 5b. 

 

While articulating how the direction of these resultant should flip, Sean produced 

corresponding directional gestures to illustrate how the vector on the right would change 

from pointing up to pointing down, and similarly the vector at left should point upwards 

(see Fig. 72). However, note that the resultant vector from summing Sean’s tangent 

vectors from the first and fourth quadrants should point left, not down. Applying similar 
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reasoning to revised vectors on the left half of the diagram would also yield a resultant 

vector pointing left, and thus Sean’s conclusion that “they still cancel out in the end” is 

inaccurate. I did not notify Sean of this or other related errors during this portion of the 

interview, though I will discuss the implications of such geometric difficulties in Chapter 

V. In any case, Riley expressed doubt via the qualifier, “is this specific to z conjugate 

though?” (line 174) but Sean maintained that it is (line 175). Argument 12 is summarized 

in Figure 73. 

 

Figure 72. Sean’s gestures for "flip the directions of the vectors," Argument 12, Task 5b. 

 

Figure 73. Toulmin diagram for Riley and Sean’s Argument 12, Task 5b. 
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 Subsequently, Sean began Argument 13 by expressing doubt about whether his 

embodied approach is valid. In particular, he relayed the previous formal datum that 9 is 

not differentiable, authored the symbolic inscription for a difference quotient í(Cj)âí(Ci)
CjâCi

, 

and claimed that “the method kind of fails” (lines 177-179). He also qualified this 

conclusion with the phrase “I guess” (line 178). In response, I pushed him and Riley to 

explain why they believed that non-differentiability would make Sean’s method fail (line 

180). As author, Riley stepped in and articulated a formal-embodied warrant that “it’s 

because of those infinitesimal vectors,” though she qualified this justification with her 

usual “right?” (line 182).  

 

 Sean agreed with Riley’s warrant, and authored an embodied addendum that “it 

depends on what path you’re approaching” (line 183). Because I felt the link between 

these two statements needed more clarification, I asked Riley to elaborate on her warrant 

regarding the infinitesimal vectors (line 184). As spokeswoman, she provided backing for 

their warrant’s correctness by re-voicing Sean’s previous statement in terms of path 

dependence, arguing that these infinitesimal vectors might depend on the choice of path 

and thus yield resultant vectors that “won’t necessarily cancel” (lines 185-189). 

Argument 13 is summarized in Figure 74. 
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Figure 74. Toulmin diagram for Riley and Sean’s Argument 13, Task 5b. 

 Because Riley and Sean were convinced that they could no longer pursue their 

embodied approach, and because they had not discovered their aforementioned error in 

their parametrization setup, I asked them about this previous setup (lines 190-195). Riley 

and Sean relayed the symbolic data of their parametrized path :(z) and function 9(:) 

(lines 196-199), though Riley expressed uncertainty about their previous inscriptions, 

asking, “Did we do this right?” (lines 197-199). Sean still seemed relatively certain about 

their prior symbolism, and claimed “this is a path we can put into the function” (line 

200). However, when Riley relayed the parametrized path : = ¨NST  as a symbolic datum, 

Sean realized their error and claimed, “we did this wrong” (line 202).  

 As spokesman, Sean rewrote their integral as ∫ :̅	J:	
É±

Ö(L)  and once again wrote the 

parametrized path, this time as :(z) = ¨NST (lines 202-203). Recognizing his inconsistent 

use of the variables z and V, he authored a symbolic warrant that “t is theta” and that 

¨NST  is the expression he needed to input into 9(:) = :̅ (lines 203-204). Sean used this 
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warrant to fix their previous symbolic inscriptions for :′(V), claiming that “¨NâST  J: 

turns into […] 8¨NST”  (lines 204-206). He additionally qualified this claim by 

confidently asserting, “Yeah we made a stupid mistake [previously]” (line 206). Sean 

used their corrected symbolism to simplify the integral to ∫ 1	JV	EM
L , and implemented the 

Fundamental Theorem as a formal-symbolic warrant to obtain an answer of 2b¨E8 (lines 

206-207). He qualified both of these steps with the phrase “of course,” indicating a high 

level of certainty. Argument 14 is summarized in Figure 75.  
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Figure 75. Toulmin diagram for Riley and Sean’s Argument 14, Task 5b. 

 

Following Argument 14, Riley expressed some uncertainty about whether or not 

their approach was valid (lines 211-216), likely due to my previous questioning in 

Argument 8 about using the Fundamental Theorem. She recounted her hypothesis that 

“the only condition for [parametrizing] this is continuity,” but once again emphasized 

that she “[doesn’t] actually remember” (lines 215-216). Nonetheless, she used this 

qualification as an opportunity to move forward, asking Sean, “Is there any way we could 

figure this out?” (line 216). Sean looked puzzled about what Riley was referring to 

specifically, so I re-voiced her concern and asked both participants what conditions are 
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required to parametrize a function (lines 217-220). Hence, Riley’s qualifying question 

catalyzed Argument 15, as follows. 

 

 Riley relayed their previous assertion that the function in question has “got to be 

continuous,” but revised this claim via an embodied-symbolic rebuttal considering 

piecewise-continuous functions that she conceded “would be not very fun to work with” 

(lines 221-223). She also qualified her claim by questioning whether any other conditions 

applied (lines 223-224). Riley additionally authored an embodied-symbolic warrant 

clarifying why she intuitively felt the function should be continuous, or at least 

piecewise-continuous (lines 225-229). She described a function as “nice if it doesn’t have 

sharp edges,” though such a function could technically be continuous and just not 

differentiable. As spokeswoman, Riley repeated her thought that piecewise functions “are 

not fun to work with” but still can be parametrized (lines 228-229), and Sean agreed (line 

231). A summary of Argument 15 is depicted in Figure 76. 
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Figure 76. Toulmin diagram for Riley and Sean’s Argument 15, Task 5b. 

 

 Because Riley seemed to waver a bit regarding her continuity conclusion and 

repeatedly questioned whether other conditions were required, I asked her and Sean how 

confident they were about their claim (line 232). Riley responded by repeating their prior 

concern regarding the potential need for differentiability (lines 233-235). I asked her if, 

aside from that issue, they felt comfortable with their conclusion, given that their 

symbolic inscription 9(:(z)) :′(z)	Jz did not include any derivatives (lines 236-238). 
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After Riley confirmed she felt rather sure otherwise, I asked if there was another place in 

their argument where she and Sean felt differentiability was needed (lines 239-240). 

Riley answered that they had implicitly assumed the differentiability of the identity 

function 1, and acknowledged that this was separate from the differentiability of 9(:) 

(lines 241-248).  

 

Though this reflection on their prior argument(s) was not an argument itself, it did 

set the stage for Argument 16, in which Sean authored a datum considering the role of 

differentiability when applying the Fundamental Theorem of Calculus and finding a 

complex antiderivative (lines 249-252). He qualified this statement with, “I know it 

definitely comes into play” (line 249), and as spokeswoman, Riley clarified that he was 

referring to analyticity (lines 253-254). Because Task 13 served as a venue to discuss this 

connection further, I did not probe much further with their claim, but I asked them to 

briefly explain why they thought this, given that they brought up the connection 

organically (lines 255-256). In response, Riley and Sean co-authored a formal-embodied 

warrant that analyticity allowed for path independence, and Sean briefly alluded to its 

applicability in the formal proof of the Cauchy-Goursat Theorem (lines 257-259). 

Argument 16 is summarized in Figure 77. 
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Figure 77. Toulmin diagram for Riley and Sean’s Argument 16, Task 5b. 

 Subsequently, Sean brought up a problem on their recent final exam that dealt 

with integrating 1/: on a semicircular path from : = −8 to : = 8 (lines 261-264). He 

drew this path, denoted gamma, as an embodied datum; this prompted Riley to remember 

having to “choose a different branch” (line 265). Sean continued to discuss the setup of 

the final exam problem. He authored a second datum that recalled the problem’s two 

parts, one prompting them to incorporate parametrization, and the other directing them to 

“antiderive” using a logarithm (lines 266-268). Again, Riley stepped in and recalled that 

the latter approach “didn’t work” (line 269), and mentioned the formal-embodied datum 

that 1/: is not analytic along the traditional branch cut on the negative real axis (lines 

271-272). 

 Sean qualified their current argument, Argument 17, by explaining that this exam 

problem “makes me more confident in our answer.” In particular, he authored a formal-

symbolic claim that the integral in Task 5b will analogously not allow them to simply 

take an antiderivative, but that they can still parametrize (lines 275-276). Riley 
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challenged this assertion, in the sense that he did not explain why the former method fails 

but the latter method “works” (lines 277-278). However, she conceded, in the form of a 

rebuttal, that there is no antiderivative for the given function (lines 281-285). Argument 

17 is summarized in Figure 78. 

 



 191 

 

 

Figure 78. Toulmin diagram for Riley and Sean’s Argument 17, Task 5b. 

 Because Riley and Sean had mentioned previously that they were unsure that their 

parametrization method was valid (due to their concern for applying the Fundamental 

Theorem to their function of V), I directed them to revisit this avenue with their new 

consensus from Argument 17 in mind (lines 286-288). Accordingly, Riley and Sean 

began Argument 18 by clarifying that they were not trying to utilize the Fundamental 

Theorem of Calculus, but were rather “just parametrizing it” (lines 289-290). To set this 

apart from their second part of the final exam question, I re-voiced their response as 

“finding […] automatically an antiderivative […] and then evaluating at the endpoints]” 

and Riley agreed with this distinction (lines 293-295).  
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 This discussion prompted Sean to recall a similar technique from multivariable 

calculus in which “we did almost the same thing” (line 299). In particular, Sean authored 

a symbolic datum considering ∫] ∙ JQ where Q(z) is a path and ] is considered as a 

function of Q(z) and thus the integral can be expressed as ∫ ](Q(z)) ∙ Q@(z)JzÄj
Äi  (lines 

299-301). Sean proferred an embodied-symbolic datum describing the specific case in 

which ] was a “special conservative function, equal to the gradient of some potential 

function phi” (line 303). Under these circumstances, Sean symbolically claimed that 

∫ 	]≥
¥ = µ(∂) − µ(P), where P and ∂ are generic starting and endpoints, respectively 

(line 304). Riley verified with Sean his implicit symbolic warrant that µ is antiderivative, 

and Sean additionally referred to this function as an “anti-gradient” as spokesman (line 

306).  
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Sean concluded that Task 5b reminded him of this situation, and cited an 

embodied-symbolic warrant that in both cases ] was “something special,” either 

conservative or satisfying the Cauchy-Riemann equations, and this allowed one to take an 

antiderivative directly (lines 306-308). On the other hand, he referred to parametrization 

as the “fail-proof method” (lines 308-309). However, once again, Riley pressed Sean 

about why one method works and the other does not. Sean replied by authoring backing 

for his warrant’s validity; he merely wanted to give an illustrative example (lines 310-

311). This eighteenth and final argument from Task 5b is depicted in Figure 79. 

 

Figure 79. Toulmin diagram for Riley and Sean’s Argument 18, Task 5b. 

Task 5c – Riley and Sean 

 Because Riley and Sean had extensively discussed Task 5b, their response to Task 

5c was comparatively brief. Riley claimed that changing the radius of the circular path is 

“not that big of a deal,” and proffered a symbolic warrant that their inscriptions already 
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were in terms of ¨ (line 2). As spokesman, Sean clarified that “¨ is a variable,” thus 

closing their response to Task 5 and the first portion of the interview. Their sole argument 

for Task 5c is depicted in Figure 80. 

 

 

Figure 80. Toulmin diagram for Riley and Sean’s Argument 1, Task 5c. 

Task 5 Summary 

One notable difference between Dan and Frank’s response versus Riley and 

Sean’s was that the former pair appeared to be more comfortable with limit symbolism, 

so much so that they chose to test the differentiability of 9 using the limit definition of 

the derivative rather than the Cauchy-Riemann equations. This made Dan and Frank’s 

response to Task 5a longer than Riley and Sean’s, but their response for Task 5b was 

considerably shorter than Riley and Sean’s. While Dan and Frank immediately 
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recognized that they could not use an antiderivative, quickly determined that the function 

in question was continuous, and correctly parametrized, Riley and Sean spent a long time 

struggling with the limit symbolism regarding continuity. After deeming the function 

continuous, Riley and Sean made a symbolic error when differentiating their 

parametrized :(V) function, which resulted in several attempts wherein they claimed the 

integral should vanish. Throughout, they were uncertain whether their various approaches 

were valid, due to their lack of confidence about, and inability to recall, various 

assumptions for the tools they invoked. 

Another reason why Riley and Sean spent more time on Task 5b was that they 

conflated the setting in Task 4 with that of Task 5b when trying to provide an embodied 

interpretation for Task 5b. In particular, they appeared to treat either the circular path 

:(V) (Riley, Argument 10) or the :̅ function (Sean, Arguments 11-13) as velocity, i.e. the 

derivative of a parametrized path, and thus their vector addition yielded a sum of zero. As 

in previous arguments, Riley and Sean invoked more embodied reasoning than Dan and 

Frank, including the aforementioned arguments attempting a purely embodied approach 

to integration.  

Part II 

 Recall that the second portion of the interview was primarily dedicated to 

evaluating specific integrals, some of which were intended to be familiar to the students 

and some unfamiliar. As in the first portion of the interview, I asked follow-up questions 

to elicit more detail about certain components of participants’ arguments. At the end of 

the interview, I also asked two general questions about integration that were not tied to a 

particular function (see Appendix C). Though the content of these last two tasks was 
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implicitly addressed in previous tasks, these concluding questions served to corroborate 

and recapitulate participants’ earlier statements. 

Task 6 – Dan and Frank 

Task 6 (see Appendix C) required participants to evaluate the integral ∫ h
C J:	

Æ , 

where L denotes the unit circle |:| = 1 traversed counterclockwise. Dan began the pair’s 

response by writing down the path of integration as L = {h
k(0) (lines 1-3), which served 

as a datum. He thus acted as spokesman because he framed my spoken task using 

different notation. I note here that the pair refer to this path later in shorthand notation as 

‘C’ rather than ‘L.’ His inscription {h
k(0) was adopted from the class’s notation for a 

positively oriented circle of radius 1, centered about the origin, and illustrates 

operational-symbolic reasoning because he identified the path with a purely symbolic 

inscription. 

 

Next, Frank qualified their argument with the statement “That’s easy enough,” 

(line 8) expressing a high degree of confidence about completing the task. After staring at 

the symbolic inscription hC, Dan authored a second datum that there exists a discontinuity 

inside the circular path (line 9). This datum appeared to be embodied-symbolic, as staring 

at the symbolic inscription led him to verbally relate the inscription to an imagined 
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physical location relative to the path L. I say “imagined” here because neither participant 

had drawn a corresponding diagram. Frank then drew a diagram of the circular path (see 

Fig. 81), and indicated the discontinuity by drawing a dot at the origin, illustrating 

embodied reasoning (line 12). 

 

Figure 81. Frank’s diagram of the circular path during Argument 1 for Task 6. 

Next, using symbolic reasoning, Dan rewrote the integral (line 13) in a form that 

more closely resembles the statement of Cauchy’s Integral Formula. I identify Dan’s role 

as spokesman because he modified the formulation of the original integrand while 

keeping the same conceptual meaning behind the inscription. At this point, Frank asked if 

Dan was using Cauchy’s Integral Formula (line 14), clarifying the warrant for their 

argument. Using formal reasoning, Dan affirmed that Cauchy’s Integral Formula could 

be invoked for this situation (line 15). Thus, Frank chose to elaborate the remainder of 

this warrant (lines 16-17), as he relayed Data2 and Data3 and to their eventual claim that 

the result is 2b8 (line 17).  
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Frank’s elaboration used formal-symbolic reasoning because he related the 

statement of the theorem to Dan’s prior symbolic manipulation of writing 1/: as 1/(: −

:L) where :L = 0. Dan then used the phrase “And the reason why we used that is…” (line 

18) to instantiate backing for their warrant’s validity. This backing is detailed in lines 18-

21 and represents embodied-symbolic reasoning because Dan discussed the physical 

location of the point :L relative to their drawn circular path, and pointed to two symbolic 

inscriptions corroborating his verbiage. Figure 82 depicts Argument 1. 

 

Figure 82. Toulmin diagram for Dan and Frank’s Argument 1, Task 6. 
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To probe for additional clarity in Dan and Frank’s argument regarding their use of 

Cauchy’s Integral Formula, I asked them to elaborate (line 22) on the assumptions that 

they used in reaching their prior claim. Because Dan and Frank ended up providing 

another complete argument for their previous claim, I analyzed what followed as a 

separate argument, Argument 2. Dan began to speak (line 23) but Frank interrupted as he 

authored a discussion about analyticity of the integrand. He referred to this integrand as 

“the function” (line 24). I characterized this datum as formal embodied reasoning because 

Frank referred to an abstract notion of analyticity and referenced a location on the drawn 

diagram via his pointing gesture (see Fig. 83). 

 

Figure 83. Frank’s pointing gesture referencing the origin during Argument 2 for Task 6. 

  Shortly after Frank started verbalizing this datum, Dan began writing D is simply-

connected and C is simple, closed (line 25), which represents formal reasoning due to its 

attention to abstract assumptions related to Cauchy’s Integral Formula. Because Dan, as 

author, did not verbalize what information he used to make this assertion, it appeared that 

he implicitly reasoned about Data1 from Argument 1 and the integrand hC. A version of 
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Dan’s written statement ultimately ended up serving as data for Argument 2, but first it 

was challenged as described below. 

Frank continued to speak while he watched Dan finish writing the inscriptions 

from line 25, and appeared to be ready to use Dan’s inscriptions as data for a claim, as 

signified by the words “and because of those properties, we can—” (line 27). However, 

Frank’s line of reasoning was interrupted when he expressed uncertainty about Dan’s 

assertion regarding the existence of a simply-connected domain (lines 27-28). At this 

point, Dan authored a formal warrant for his previous assertion by explaining that we can 

just assume a simply connected domain exists (line 29). Using embodied reasoning, 

Frank then drew a domain (see Fig. 84) within the interior of the circular path on the 

previous diagram (line 30). 

 

Figure 84. Frank’s proposed domain during Argument 2 for Task 6. 

 

Noticing that Frank drew a domain that was not simply connected (as the path C 

enclosed both points of the domain and points in the domain’s complement), Dan added, 

“If it’s greater than the circle” (line 31) and pointed at Frank’s proposed domain. This 

addition instantiated embodied reasoning because Dan’s verbiage imposed a constraint on 



 201 

 

the existence of a hypothetical domain, concerning its position relative to the drawn 

diagram. His pointing gesture further suggested that this constraint was necessary in 

order to avoid coming up with a problematic domain like the one Frank drew.  

Realizing his previous error, Frank agreed with Dan’s addendum to the warrant in 

line 31, and hence to his written assertion in line 25. Taking on the role of spokesman, he 

re-voiced Dan’s written inscription from line 25, with added detail. Specifically, he 

surmised in lines 32-34 that the curve L, which they denoted C, is a simple closed curve 

and there exists a simply connected domain (previously denoted as D by Dan) that 

contains the curve. Frank used this finalized data as the basis for their warrant, Cauchy’s 

Integral Formula (lines 35-39). 

 

This warrant is comprised of three different types of reasoning with respect to 

Tall’s (2013) three worlds. In particular, lines 35-37 instantiate formal reasoning as an 

appeal to a major theorem. Next, “2b8 times whatever […] the discontinuity” (lines 37-

38) represents symbolic formal reasoning as it relates the statement of the theorem to the 

symbolic nature of the specific integrand given. Finally, “in which case it's just one 

because of the function [points at integrand]” (lines 38-39) exemplifies symbolic 

reasoning due to a symbolic evaluation of a particular function 9(:) = 1 within the 

integrand.  
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Frank also provided backing for this warrant’s validity in lines 34-35 by 

reiterating the datum regarding the discontinuity at :L = 0. Ultimately, Dan and Frank 

reached their concluding claim that the integral results in 2b8 (line 39). Frank concluded 

with a rebuttal that considered a situation in which their claim would not hold, namely if 

there were “multiple discontinuities” (lines 39-41). This rebuttal represents formal 

symbolic reasoning because it appeals to a variation of the theorem that allows for 

multiply-connected domains, and relates this to a hypothetical symbolic answer. 

Argument 2 is summarized in Figure 85. 

 

Figure 85. Toulmin diagram for Dan and Frank’s Argument 2, Task 6. 

As a follow up to this task, I asked Dan and Frank about evaluating the same 

integral by parametrizing the path instead of invoking a major theorem (lines 42-47), 

thereby prompting a new argument, Argument 3. Both Dan and Frank seemed quite 

confident that they would obtain the same answer as before (lines 48-49), but Frank 



 203 

 

decided to work out the details (line 50). In beginning to parametrize the circle as ¨NST , 

Frank stopped after writing ¨ and observed that here ¨ = 1 so he did not need to include 

an ¨ in his symbolic expression (lines 50-51). Thus, he seemed to implicitly use the 

datum that ´ = {h
k(0). 

At this point, Dan questioned whether hC and :̅ are “the same thing” (line 52), 

authoring a potential connection to the function from Task 5. Frank quickly responded, as 

spokesman, to instead represent hC as :âh using symbolic reasoning (line 53). However, 

Dan was committed to pursuing his aforementioned connection to :̅, and wrote some 

supporting algebraic inscriptions as Frank watched (line 54). Frank then changed his 

mind and relayed Dan’s conjecture (lines 55-56), using the symbolic warrant that :âh =

y∏ôV − 8ô8xV to claim, incorrectly, that indeed hC = :̅ .  Perhaps noticing the implications 

of what they just concluded, Frank re-voiced Claim 2 to include mention of a 

discontinuity (line 57). At this point, Dan and Frank quickly erased their inscriptions and 

appeared hesitant to elaborate on this claim any further (line 58).    
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Figure 86. Toulmin diagram for Dan and Frank’s Argument 3, Task 6. 
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 Seemingly convinced that hC = :̅, but uninterested in providing further justification 

for this claim, Frank alluded to previous work from Task 5 (lines 59-63). In particular, he 

relayed their previous answer of 2b8¨E for the integral of :̅ using the same circular path. 

He then used the recently established datum that hC is essentially :̅ with a discontinuity as 

a warrant for their claim that ultimately they will get the same answer of 2b8 as they did 

using Cauchy’s Integral Formula (lines 64-66). As part of the elaboration for this warrant, 

Frank symbolically reasoned that using a radius of 1 for ¨ in their previous answer 

2b8¨E yields an answer of 2b8. Argument 3 is summarized in Figure 86. 

During Argument 3, it was unclear how the pair distinguished between hC and :̅, 

especially when : does not lie on the unit circle. As such, I asked Dan and Frank to 

elaborate on their assertion that hC = :̅ (lines 68-70). I refer to their response to this 

follow-up question as Argument 4. This time, Dan re-voiced Frank’s previous symbolic 

warrant (Warrant2 in Argument 3), acting as spokesman and using the extra datum that 

: = NST  (lines 71-73). However, Dan additionally provided symbolic backing for this 

warrant’s correctness, clarifying that the claim holds because in this case the radius has 

unit length (line 74). He also qualified this backing with the word “right?” (line 74), 

expressing potential uncertainty or seeking affirmation from Frank. Frank did agree with 

this backing (line 76), so Dan continued with a symbolic rebuttal considering a 

hypothetical case wherein ¨ ≠ 1 (lines 77-78). Argument 4 is depicted in Figure 87. 
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Figure 87. Toulmin diagram for Dan and Frank’s Argument 4, Task 6. 

 Next, Frank provided their claim as spokesman, incorporating the aforementioned 

backing with the phrase “if we’re only on the unit circle” (line 79). This claim represents 

embodied-symbolic reasoning, in that Frank used the geometric location of : on the unit 

circle to conclude the equality of two symbolic representations. Finally, Frank closed out 

Argument 4 by authoring a rebuttal considering a potential issue with the standard choice 

of branch cut for the argument function along the negative real axis (lines 79-82). 
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However, Frank ultimately decided that their choice of branch cut would not be 

problematic after all, and recalled a conversation Dan and Frank had with their professor 

about their class project as a way of exemplifying the rebuttal (lines 83-87). As part of 

this elaboration, Frank employed embodied reasoning by referencing the geometric 

location of the negative real axis (line, and using his hand to trace along a hypothetical 

negative real axis of a presumably visualized complex plane (see Fig. 88). 

 

 

Figure 88. Frank’s gesture tracing along the negative real axis during Argument 4. 

 In response, I reminded Frank and Dan that their values of V in their last 

parametrization ranged from 0 to 2b, and asked them if this would be problematic given 

Frank’s concern for their choice of branch cut (lines 91-95). Frank quickly decided that 

any potential issue could be avoided by simply integrating from –b to b instead (line 96). 

I then asked if making this change would affect their previous answer, and Frank 

indicated that he did not believe it would (lines 97-98). Nevertheless, he asked Dan if the 
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pair should verify this (lines 98-99). Following a clarifying question from Dan, Frank 

proceeded to parametrize the circular path using these adjusted values for V, and thus 

began a fifth argument which is depicted in Figure 89. 

 

 Argument 5 began as Frank expressed : as NST, a symbolic datum (line 100). 

Frank acted as spokesman in articulating this datum, in that he modified the syntactic 

structure of Dan’s previous statement (Data1, Argument 4) but retained the same 

semantic meaning. He continued with another symbolic datum articulating the revised 

range of values for V (lines 100-101), and used these two data to conclude that J:/JV = 

8NST . Frank also relayed Dan’s datum from a previous argument (Data2, Argument 4) that 

h
C = NâST  (line 103).  

Next, Frank used these data to instantiate the definition of contour integral 

∫ 9(:)J:	
Æ = ∫ 9=:(z)?	:@(z)Jz	Z

[	  as a warrant, so that  ∫ h
C J:	

Éi
Ö(L) = ∫ NâST8NST	JVM

âM  

(lines 102-104). Frank continued to simplify this symbolic expression and use the 

Fundamental Theorem for Line Integrals to conclude that the integral still yielded a result 

of 2b8 (lines 105-108). Thus, Frank reached the claim that “even with a diferent 

parametrization, [...] it still works the same way” (lines 108-109).     
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Figure 89. Toulmin diagram for Dan and Frank’s Argument 5, Task 6. 

Task 6 – Riley and Sean 

 Riley and Sean pursued a markedly different approach to Task 6 than Dan and 

Frank, resulting in only one argument that did not call upon Cauchy’s Integral Formula. 

As I read the task aloud, Sean symbolically relayed the data comprised of the integral 

∫ h
C J:	

Æ  and the path |z|= 1 (line 4). He also authored an embodied datum by drawing the 

circular path on an Argand plane (see Fig. 90). As spokesman, Sean then symbolically 

rewrote L as {h
k(0), and I acknowledged this alternate symbolism from their class (lines 

4-5). Riley agreed, but Sean made sure to document that this was Dr. X’s notation, as if 

indicating that he did not hold any agency when using it (lines 6-8). 
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Figure 90. Sean’s initial diagram for the path L in Task 6. 

 Sean proceeded as spokesman, indicating that they could apply an antiderivative, 

as in the last task (lines 9-10). He also qualified this suggestion with the phrase, “I think 

I’m pretty sure that…” (line 9). However, Riley challenged Sean as she authored a 

warrant: “There’s no branch we can choose […] so that [the integrand] is going to be 

analytic over the entire path” (lines 11-12). Invoking embodied reasoning, Riley also 
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revised Sean’s initial diagram of the circular path to include a positive orientation (see 

Fig. 91).   

 

Figure 91. Riley’s counterclockwise orientation to the path L in Task 6. 

 Sean conceded, and used their warrant to author an alternate approach 

implementing parametrization. Specifically, he first used embodied-symbolic reasoning 

to conclude that : = NST as a parametrization of their path (line 13). Using this now as a 

datum, he further concluded that :′(V) = 8NST , using symbolic reasoning (line 13). As 

spokesman, Sean implemented embodied-symbolic reasoning to re-write the original 

integral, incorporating this new parametrization. The embodied aspect of this rewriting 

came from the decision to allow theta to vary from 0 to 2b, a decision qualified by the 

phrase, “theta is of course from these values” (lines 13-15). Sean symbolically simplified 

this integral to obtain 8 ∫ 	JV	EM
L , and claimed that they obtained the “well-known result” 

of 2b8 (lines 16-18). This sole argument for Task 6 is summarized in Figure 92.  
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Figure 92. Toulmin diagram for Riley and Sean, Task 6. 

Task 6 Summary 

 As stated previously, Riley and Sean chose not to invoke Cauchy’s Integral 

Formula to evaluate the task integral, unlike Dan and Frank. Accordingly, Dan and Frank 

partook in several follow-up arguments concerning the idiosyncratic hypotheses of the 

theorem, whereas Riley and Sean provided a more succinct response comprised of just 

one argument. This difference in approach led Dan and Frank to also supply more 

embodied reasoning in the form of an extra diagram illustrating Frank’s proposed simply-

connected domain. Other distinct embodied reasoning included Dan’s tracing gesture 

along the real axis, which neither Riley nor Sean incorporated into their response. 

Another consequence of Dan and Frank pursuing a more formal response was that their 

arguments including several backing statements, whereas Riley and Sean’s response 

contained no backing. 
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Task 7 – Dan and Frank 

 Task 7 (see Appendix C) required participants to consider how the value of the 

integral of the same function 9(:) = h
C from Task 6 would change, if at all, by altering the 

radius of the circular path ´ to be 2 instead of 1 (lines 1-2). Dan and Frank’s response to 

this task occurred over two arguments, which I present in Figures 93-94. At the 

commencement of Argument 1, both Dan and Frank immediately claimed that their result 

would be the same as in Task 6 (lines 3-4). Dan authored a warrant for this claim, 

suggesting that they employ Cauchy’s Integral Formula, but forgot the name of the 

theorem (lines 5-7).  

I was initially surprised that Dan forgot the name of this theorem, given that he 

and Frank just invoked this result in Task 6. However, once Frank started to elaborate the 

statement of the result (lines 8-9), it became clear that they were implementing a more 

general version of this result, namely the Cauchy Integral Formula for Derivatives. While 

Frank used formal-symbolic reasoning to write symbolic inscriptions corresponding to 

this formal theorem, Dan claimed, “So it doesn’t matter how big your circle is. It just 

matters how many discontinuities are inside the circle” (lines 7-8). As such, Dan acted as 

spokesman by re-voicing the aforementioned claim that their answer would be the same 

as in the last task, with added detail that underscored the use of their warrant. He 

qualified this assertion with the word “Right?” (line 8), suggesting potential uncertainty 

about the claim.   
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 Continuing to employ formal-symbolic reasoning, Dan and Frank worked 

together to articulate the rest of the statement of Cauchy’s Integral Formula (lines 9-12). 

Note that Dan and Frank intended for the symbolic inscription 9t(:L) to represent the 

xÄ∫ derivative of the function 9, evaluated at the point :L, in accordance with the 

theorem, and not the expression [9(:L)]t. While I did not call attention to this notational 

ambiguity during the interview, Dan and Frank explicitly referenced this symbolism in 

Argument 2 in discussions about derivatives. It is also worth noting that throughout Dan 

and Frank’s inscriptions and verbiage related to this task, they never incorporated the 

particular radius of 2 specified in the task. Rather, Dan and Frank referenced a general 

radius R, arguing that “the radius itself is irrelevant” (line 13). Frank’s claim about the 

irrelevancy of the radius suggests a speaker role of spokesman, in that he essentially 

rephrased Dan’s assertion from line 7. 

 Perhaps because I previously asked them to use parametrization to verify their 

answer in Task 6, Frank authored a second warrant involving parametrization to support 

their claim about the radius (lines 14-15). As he had done several times previously, Frank 

looked over at me after articulating this second warrant, as if seeking validation or 



 215 

 

reassurance. Still curious about why Dan and Frank chose to invoke the generalized 

Cauchy Integral Formula for Derivatives when the task did not mention any such 

derivatives, I asked them about the meaning of x in their inscriptions (line 16). This 

follow-up question prompted a second argument as detailed below.  

 

Figure 93. Toulmin diagram for Dan and Frank’s Argument 1, Task 7. 

 Frank seemed to interpret this question as an inquiry about their chosen value for 

x in this task, claiming that x = 0, and qualified this claim with the phrase “in this 

instance” (line 17). Using symbolic reasoning, Dan provided a partially articulated 

warrant for this claim (line 18), and Frank elaborated that “we’re evaluating the function, 

not like the derivative of the function at any point” (line 19). Frank continued to use 

symbolic reasoning to discuss the algebraic implications of taking on this value of x, 

adopting Claim1 as a datum for a second claim that the exponent x + 1 in the 

denominator (: − :L)tkh is simply 1 (lines 19-21).  
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 Using the aforementioned conclusions as data, Frank authored the remaining 

details of their warrant. In particular, he discussed how the symbolic expressions in the 

theorem simplify when x = 0, the integrand is 1/:, and hence the function 9 in the 

statement of the theorem is 9(:) = 1 (lines 21-25). Interspersed into Frank’s articulation 

of this warrant was backing for the warrant’s validity. Specifically, Frank mentioned that 

“9(:) is not discontinuous at :L” (lines 22-23), thus verifying a condition for 

applicability of the Cauchy Integral Formula as a warrant. 

 

I note here that Frank likely meant “discontinuous” when he said “not 

discontinuous” (line 23). I base this assumption on the fact that Frank later said that 

“regardless of the ¨ value, the discontinuity always occurs at zero” (line 24), and in this 

case :L = 0. In any case, Frank used the aforementioned warrant to author a claim that 

the integral of 1/:, regardless of the choice of ¨ in the path {≠
k(0), is “always just going 

to be […] 2b8” (lines 25-26). Argument 2 is summarized in Figure 94. 
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Figure 94. Toulmin diagram for Dan and Frank’s Argument 2, Task 7. 

Task 7 – Riley and Sean 

 As with Task 6, Riley and Sean chose not to pursue a formal approach to Task 7. 

In particular, they did not invoke Cauchy’s Integral Formula like Dan and Frank. Rather, 

Sean revised their existing inscriptions from Task 6 to account for a circle with radius 2 

rather than 1 (lines 3-5). This revision incorporated purely symbolic reasoning, as he did 

not alter the diagram depicting the path L.  
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Using these symbolic revisions as a warrant, Sean authored the claim that “we get 

the same [answer of 2b8]” (lines 5-6). Riley followed this claim with formal-symbolic 

backing for the warrant’s correctness, providing a general justification that they would 

obtain the same answer using a circle of any radius ¨. More specifically, she argued that 

the function and the J: portions of the integral are “always going to cancel,” leaving the 

integral of a constant (line 7). Meanwhile, Sean once again replaced the value of the 

radius in all symbolic inscriptions, this time with ¨ (line 8). This concluded their sole 

argument regarding Task 7, which is depicted below in Figure 95. 

 

Figure 95. Toulmin diagram for Riley and Sean’s argument in Task 7. 

Task 7 Summary 

 Once again, the prominent distinguishing factor between Riley and Sean’s versus 

Dan and Frank’s response to Task 7 was the absence of Cauchy’s Integral Formula. This 

indicated a general lack of formal reasoning in Riley and Sean’s response compared to 

Dan and Frank’s, aside from Riley’s general backing statement. Curiously, Dan and 

Frank chose to essentially rework the task from scratch, rather than alter their previous 

inscriptions as Riley and Sean chose to do. One quality apparent in both Dan and Frank 

and Riley and Sean’s responses was that neither pair invoked any embodied reasoning 
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during Task 7. Because both pairs rather immediately identified that the value of the 

integral would not change by modifying the circle’s radius, it is relatively unsurprising 

that no one felt the need to revise any embodied diagrams when altering various symbolic 

inscriptions.  

Task 8 – Riley and Sean 

 Unfortunately, after asking Dan and Frank my follow-up question to Task 7, I 

forgot to ask them about Task 8 (see Appendix C), which required participants to discuss 

how reversing the orientation of a path affects the value of the integral. Accordingly, I 

only discuss the results of this task for Riley and Sean, and acknowledge the omission 

here as a potential limitation of my study. After I introduced the task (line 1), Sean 

relayed the last portion of my question about the clockwise orientation (line 2), and I 

confirmed (line 3). He then authored an embodied-symbolic claim that linked the 

counterclockwise datum to a new symbolic manifestation of :: : = −¨NST (line 4).  

 

 At this time, Riley stepped in and authored an embodied-symbolic datum that the 

clockwise orientation corresponds to a reversal of the limits of integration from Task 7 

(line 5). She used this datum to author a symbolic claim that this reversal of limits 

“would just make it negative” (line 5). Sean agreed, and erased his negative sign from the 
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: = −¨NST inscription he just wrote (line 6). As spokesman, he proceeded to re-voice 

what Riley proposed regarding the values of theta, both verbally and by adjusting the 

symbolic Task 7 inscriptions on the whiteboard (lines 6-8). Using formal-symbolic 

reasoning, he concluded that reversing the limits of integration yields “the negative of our 

[previous] value,” and drew a negative sign in front of their 2b8 answer from Task 7 

(lines 8-9). Sean also qualified this assertion with the phrase, “of course,” expressing a 

high degree of certainty (line 8). This first argument pertinent to Task 8 is depicted below 

in Figure 96. 

 

Figure 96. Toulmin diagram for Riley and Sean, Argument 1, Task 8. 

 Because neither Riley nor Sean discussed why swapping the limits of integration 

yielded a negative value in this context, I asked them to clarify this point (lines 10-12). 

Although I did not ask them for a formal proof, Riley acknowledged that they had proved 

the result in class, but she did not “remember the formal proof at all” (lines 13-14). 

However, Sean proceeded to explain his conception of the result. Employing embodied-

symbolic reasoning, he described breaking up the original path into paths {h and {E such 
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that {E = −{h. As spokesman, he clarified that {h could be expressed as the 

set	{7(z), R(z)|^ ≤ z ≤ _} (lines 16-17). Similarly, Sean authored a symbolic claim that 

{E “would be the same path but you just switch your limits,” and wrote the corresponding 

inscription {E:	{7(z), R(z)|_ ≤ z ≤ ^} (lines 17-18). 

 

 Subsequently, Sean re-voiced the last portion of his claim as an embodied 

warrant. Specifically, he contrasted “going from z = ^ to z = _” against “going from z =

_ to z = ^,” and produced respective tracing gestures from left to right and right to left 

while verbalizing these scenarios (lines 19-20; see Fig. 97). As spokesman, he 

summarized this embodied warrant as, “Same curve but just running in reverse” (line 20). 

Sean further supported his assertion by authoring embodied backing for his warrant’s 

field. He discussed how “you usually think of a particle” and its motion along a path, 

which he traced in the air with his finger (lines 20-22; see Fig. 98). On the other hand, he 

explained that “run[ning] z backwards” reverses the motion of this particle, and produced 

another tracing gesture to illustrate such a process (lines 22-23; see Fig. 98). 
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Figure 97. Sean’s gestures for z = ^ to z = _ (at left) and z = _ to z = ^ (at right).   

     

Figure 98. Sean’s gestures a particle’s motion (at left) and reversing this path (at right).   

 Although Sean provided an extensive embodied account of reversing a path’s 

orientation, I pressed him and Riley to more explicitly connect this embodiment back to 

their symbolic inscriptions (lines 24-26). This follow-up question catalyzed a third 

argument, as detailed below. Argument 2 is summarized in Figure 99.  
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Figure 99. Toulmin diagram for Riley and Sean, Argument 2, Task 8. 

 

 In response to my aforementioned follow-up question, Sean once again claimed 

that switching the limits yields “the opposite” result (line 27). As spokesman, Riley 

emphasized the simplified version of the symbolic integral (lines 28-29). Employing 

formal-symbolic reasoning, she clarified that “we’re going to be sort of using the 

Fundamental Theorem of Calculus” to evaluate the integral (line 29). She concluded that 

doing so yields an answer of 0 − 2b, aside from the remaining 8 factor (line 30). Riley 

then compared this result to the integral 8 ∫ JVEM
L , in which case she argued that “it comes 
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out to the same exact thing but instead of being like, 9(^) 	− 	9(_), it's 9(_) 	− 	9(^)” 

(lines 31-32). She qualified this argument with the verbiage, “I don’t know if that really 

answers your question” (line 33), but I assured her that she and Sean adequately 

discussed the task (lines 35-36). Argument 3 is summarized below in Figure 100. 

Figure 100. Toulmin diagram for Riley and Sean, Argument 3, Task 8. 

Task 9a—Dan and Frank 

 Task 9a (see Appendix C) involved integrating the function 9(:) = CkE
C  over the 

semicircular path : = 2NST, 0 ≤ V ≤ b. I read this information aloud to Dan and Frank, 

and Frank wrote the corresponding symbolic inscriptions for this function and path (lines 

1-7). Dan and Frank’s first argument, Argument 1, centered around which method(s) they 

could use to evaluate this integral.  

 Dan initially authored a suggestion that working with a parametrization would be 

easiest, and conjectured that this might be the only approach, given that the semicircular 

path is not closed (line 8). As relayer, Frank reiterated Dan’s claim that this path is not 

closed, but qualified this statement with the word “right,” indicating a lack of certainty. 
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Dan confirmed that the path is not closed, stating that the path is a semicircle as support 

for this assertion (line 10). Because Dan and Frank discussed a geometric property of the 

semicircular path, this exchange suggests embodied reasoning. 

  

 Subsequently, Dan authored a claim that they could evaluate an antiderivative at 

the endpoints of the contour (lines 10-12). This claim represents formal-symbolic 

reasoning because it refers to a formal theorem involving the symbolic evaluation of an 

antiderivative. As support for this assertion, Frank authored a warrant describing why 

such an antiderivative exists (lines 15-21). As part of this warrant, Frank drew a 

geometric diagram depicting the semicircular path passing through the points 2, 28, and 

−2, implementing embodied reasoning (lines 15-16; see Fig. 101). In describing a 

domain wherein an antiderivative exists, Frank once again exemplified embodied 

reasoning by authoring the statement, “because we have a point on the negative real axis, 
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we’d have to choose a branch cut that doesn’t include the negative real axis” (lines 20-

21). Argument 1 is summarized in Figure 102. 

 

Figure 101. Frank’s sketch of the semicircular path and a domain enclosing the path. 

 

Figure 102. Toulmin diagram for Dan and Frank’s Argument 1 for Task 9a. 
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 Following this first argument, Frank acknowledged as author that they could 

alternatively use parametrization methods to evaluate the integral in question (line 23). 

This acknowledgement led to two distinct but related arguments about the task, which I 

refer to below as Argument 2a and Argument 2b, corresponding to the parametrization 

and Fundamental Theorem approaches, respectively. Arguments 2a and 2b initially 

occurred simultaneously as Dan and Frank silently wrote symbolic inscriptions on the 

board. However, later in each argument, the other participant interjected either to 

challenge the other student’s assertion or to verify the correctness of various statements, 

as I detail below. It should be noted that although each participant initially pursued a 

separate approach to the task, Dan and Frank’s resulting arguments were still collective in 

the sense alluded to previously. 

 

 After Frank acknowledged parametrization as an alternative method for 

approaching this task, Dan and Frank discussed which method they wished to pursue 
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(lines 24-36). Frank appeared to prefer the parametrization approach, as indicated by his 

assertion that it “should be simple” (line 27). As author, Dan added that they could split 

up the integrand into the sum 1 + E
C (lines 28-30), a symbolic claim. Frank continued by 

authoring the symbolic claim that J: = 28N8V (line 31), implicitly using the datum that the 

path can be represented by : = 2NST with 0 ≤ V ≤ b. However, Dan suggested that they 

“just do the branch cut one” (line 32), indicating his preference for the method they 

initially discussed in Argument 1. He additionally remarked that he finds this method 

easier than parametrization (line 34). Frank conceded but suggested that they also try the 

parametrization approach afterwards (line 35). 

 Curiously, however, Dan chose to attempt this “branch cut” method himself (line 

37) and Frank offered to work on the parametrization (line 44). In hindsight, it seems Dan 

interpreted my agreement with Frank as a direction to break up the task in this way. 

While this is not what I intended, I did not stop them from taking this course of action 

because I wanted their response to the task to unfold as naturally as possible. Frank and 

Dan decided that Dan should use a branch cut along the negative imaginary axis (lines 

40-43), which they discussed further at a later time. Frank mentioned that he hoped he 

and Dan “get the same answer” (line 44). Notably, Dan responded, “I might make a 

mistake and you’ll catch it” (line 45), which turned out to be an apt characterization of 

Argument 2b. 

 Subsequently, Dan and Frank began silently writing symbolic inscriptions 

supporting their respective preferred approaches to the task. In particular, Dan chose to 

split up the integrand as he alluded to previously in lines 28-30 (line 46); thus he took on 

the role of relayer to voice his symbolic claim. Meanwhile, Frank substituted :	 = 2NST 
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into the given function CkE
C  and utilized his prior claim that J: = 28NST  to conclude that 

∫ 9(:)	
É = ∫ Eæø¿kE

Eæø¿ 	(2ieH¬)	dθM
L , which he then simplified to ∫ =1 + 	e(âH¬)?	=2ieH¬?dθM

L , 

using symbolic reasoning to “cancel those 2’s” (lines 47-48; line 53). While Frank wrote 

these inscriptions, Dan wrote a symbolic claim that his integral ∫ ƒ1 + E
C≈ J: equals 

:†EM
L 	+ 	2´∏>	:	†EM

L  (line 49), but realized that his limits of integration differed from 

Frank’s (lines 50-52).  

 

 After acknowledging Dan’s error, Frank continued with his symbolic calculation 

by pulling out the constant 28 in front of the integral, leaving him with the expression 

28 ∫ 	M
L (NST + 1)	JV (lines 53-54). During this time, Dan silently evaluated his previous 

expression at 0 and b to obtain the new expression b + 2(´∏>	b	 − 	´∏>	0) (line 55). 

Frank commented that his calculations “work[ed] out nicely” (line 56) and was about to 

finish evaluating the integral when he glanced over towards Dan and noticed that Dan 

had stopped writing. In an effort to help, Frank asked Dan if he was “having a problem” 

(line 57). 
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Dan responded by starting to express concern about evaluating a logarithm with 

their chosen branch cut (line 58), but Frank reassured him that there would be no issues 

(line 59). However, Dan persisted that there is still a problem when taking the Argument 

of the value 0, and he and Frank continued to disagree because Dan interpreted the path 

as starting at an argument of 0 (lines 60-70). But Frank ultimately pointed out that 

because they adjusted their chosen branch cut to take place along the negative imaginary 

axis, the arguments of the start and end points of the path are instead at ME and ÜM
E , 

respectively (lines 71-73). Dan realized his error and adjusted his inscriptions accordingly 

(lines 74-76).    
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 Because Frank and Dan previously disagreed about whether the argument should 

be written as ‘arg’ or ‘Arg’ (lines 64-65), I asked them to comment on the difference 

between these two definitions (lines 77-78). Dan responded that “the capital A is from 

–b to b,” and Frank agreed (lines 79-80). As spokesman, Dan then referred to this type 

of argument as “the standard one” (line 81), and I asked if this was the same as the 

principal argument (line 82). Dan excitedly agreed and pointed at me, indicating that he 

had forgotten the particular name (line 83). Frank elaborated on this distinction, and 

recapitulated the agreement he and Dan reached about their chosen branch cut and the 

resulting values of the argument along the provided path (lines 84-87). In attributing the 

values b/2 and 3b/2	of the argument to their choice of branch cut, Frank used this 

choice of branch cut as a warrant in Argument 2b that built off Dan’s datum regarding the 

complex logarithmic definition. This portion of Argument 2b relied upon embodied-

symbolic reasoning because Dan and Frank symbolically labeled the argument of various 

complex points based on their geometric position relative to their chosen branch cut. 

Moreover, Frank’s tracing gestures along the axes in their diagram (see Fig. 103) 

substantiate the embodied aspect of this portion of the argument. 
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Figure 103. Frank’s gestures tracing the positive (left) and negative (right) real axis. 

 

 After this resolution to their disagreement, Frank returned to writing inscriptions 

for Argument 2a (line 89). In particular, he used symbolic reasoning to evaluate his last 

expression, concluding that ∫ =1 + 	e(âH¬)?	=2ieH¬?dθ∆
L = 2i ∫ 	∆

L (eH¬ + 1) dθ =

28	[hS 	N
ST + V] †ML = 28	[(−8NS	M + b) − (−8	 + 	0)] (lines 89-90). He then authored the 

symbolic warrant NSM = −1 to finish simplifying his previous expression, allowing him 

to claim that the result was 2b8 − 4 (lines 90-92). During this time, Dan updated the 

bounds in his previous inscription in Argument 2b to indicate evaluation of each term 

from : = 2 to : = −2 (line 93).  
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 Once Frank obtained his answer of 2b8 − 4, he qualified Argument 2a with the 

statement, “I feel like I screwed something up, but we'll see what you get” (line 94). 

Because his argument was complete, I asked about the nature of Frank’s uncertainty (line 

95), and Frank discussed how the integrand in this task appeared different symbolically 

than what he was used to in class (lines 96-97). Consequently, he felt uneasy when he 

obtained an answer that was “not quite clean enough” compared to what he was familiar 

with (lines 99-102). Argument 2a is summarized in Figure 104. 

 

Figure 104. Toulmin diagram for Dan and Frank’s Argument 2a for Task 9a. 
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 With Argument 2a completed, I suggested we check in with Dan on the other 

approach to the task, and Frank walked over to Dan’s portion of the whiteboard (line 

103). In the time following Dan and Frank’s previous discussion regarding the choice of 

branch cut and its implications on evaluating logarithms, Dan symbolically evaluated the 

expression z†âE
E + 2	Log	z†âE

E  as 4 + 2	[ln 2 + 	8b/2 − ln 2 − 8	3b/2 (lines 104-106). 

However, Frank relayed the datum that their path starts at : = 2 and ends at : = −2, and 

used symbolic reasoning to author a claim that the 4 in Dan’s expression should actually 

be negative (lines 107-108). After Dan agreed to this revision, Frank continued to 

question whether Dan switched the starting and ending point in evaluating the rest of the 

expression (lines 110-111). As support, he elaborated that Dan’s symbolic evaluation 

should include ¶x| − 2| 	+ 	8	^Q>(−2), which he simplified to ln 2 + 	8	3b/2 (lines 113 

and 115). In response, Dan maintained that this expression was equivalent to what he 

previously wrote, but quickly realized his error (line 116-118). After revising his 

argument calculations, Dan simplified his expression using symbolic reasoning and 

obtained an answer of −4 + 2b8 (line 120). 
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 As spokesman, Frank reiterated Dan’s claim and stated that he and Dan both got 

the same answer, also explicitly providing a warrant for Dan’s approach in Argument 2b 

(lines 121-122). Because he and Dan obtained the same answer in two different ways, 

Frank expressed that they were confident about the correctness of this answer (lines 123-

125). Dan added that his approach (in Argument 2b) was “the simpler way for sure,” 

despite his mistakes and the disagreements he and Frank had (lines 126-131). Frank 

agreed (line 129), and elaborated that while parametrization is rarely “going to steer you 

wrong, […] it’s kind of the brute force, ‘let’s bring a sledge hammer to it’ type of thing, 

versus that’s a lot more elegant [points to Dan’s approach]” (lines 132-134).  I was 

surprised to hear about their mutual preference for the method in Argument 2b, 

particularly Frank’s characterization of it as “a lot more elegant,” given how lengthy 

Argument 2b was. Argument 2b is summarized below in Figure 105. 
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Figure 105. Toulmin diagram for Dan and Frank’s Argument 2b for Task 9a. 

Task 9b – Dan and Frank 

 In the second portion of Task 9, participants evaluated the same integral as in 

Task 9a, except the semicircular path C now ranged from b to 2b (lines 1-2). As 

spokesman, Frank commenced Argument 1 by replacing the bounds for theta in the 

inscriptions from the last task, which remained on the whiteboard (line 3).  Given that 

Frank and Dan pursued two different methods in Task 9a, I clarified that they could 

choose either method this time (line 4). In accordance with their comments towards the 

end of Task 9a, Dan and Frank both quickly chose to use Dan’s antiderivative method 

from Argument 2b in Task 9a (line 5).  
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 With the new path in mind, Frank authored a claim that he and Dan “can just do 

the branch cut at the positive imaginary axis” (line 6). As spokesman, Dan agreed and 

characterized this branch cut by its complex argument of b/2 (line 7). Both portions of 

this claim represent embodied reasoning in that Frank presumably visualized the 

semicircular path to decide on a branch cut which avoided the path, and Dan’s 

reformulation relied on describing the positive imaginary axis using a different geometric 

attribute. While Frank joked that math was easier without branch cuts (line 8), Dan 

updated the symbolic inscriptions from the last task to evaluate their antiderivative from 

: = −2 to : = 2 (line 9). Using embodied reasoning, Frank sketched the path C “for 

[his] own visualization” (see Fig. 106) while Dan started working on the symbolic 

computation (lines 10-13). As spokesman, Frank re-voiced his first claim that a branch 

cut along the positive imaginary axis would avoid “any issues” (line 15). 
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Figure 106. Frank’s sketch of the semicircular path in Task 9b. 

 

 Dan finished altering the symbolic inscriptions from Task 9a, and claimed that 

∫ ƒ1 + E
»≈ dz = 2(−2) + 2 …ln2 + 	i Ü∆

E 	– ln 2 − 	i ∆
E = 4 + 2πi (line 16-18). He qualified 

this assertion by asking Frank if his inscriptions appeared to be accurate (line 16). As 

spokesman, Frank revoiced the datum from line 9 with the phrase “we’re going from -2 

to 2” and authored an embodied claim that “the argument of -2 is b/2 in this case” (line 

18). Dan then challenged Frank’s datum and the pair disagreed about the start- and 

endpoints of the path for this task, eventually asking me (lines 19-22). Rather than 

answering Dan’s question directly with the starting and ending z-values, I repeated the 

corresponding values of theta that I initially provided to them (line 23). This allowed Dan 
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and Frank to confirm that Dan’s inscriptions were correct (lines 24-30). In particular, Dan 

provided an embodied-symbolic warrant that they evaluated the expression at : = 2 first 

because their path ran from −2 to 2 (lines 24 and 27). Argument 1 is summarized below 

in Figure 107. 

 

Figure 107. Toulmin diagram for Dan and Frank’s Argument 1 for Task 9b. 

 Because Dan and Frank disagreed several times about the values of theta in 

Argument 1, I asked them to briefly recap how they decided on 3b/2 and b/2 (line 31). 

This catalyzed a second argument, Argument 2. Dan began by relaying the definition of a 

complex logarithm as well as their choice of branch cut (lines 32-33). Using these data, 

he claimed that the complex argument V must satisfy ME < V ≤ ÜM
E  along the path C (lines 

33-34). However, he expressed some uncertainty about this claim via the modal qualifier, 

“Is this right, Frank?” (lines 34-35).  
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Frank agreed with Dan’s claim, and Dan reiterated as spokesman that this choice 

of branch cut produced a “new argument definition” (lines 36-37). But shortly after, 

Frank reneged on his agreement with Dan and sought to verify that Dan represented a full 

circle (line 38). Frank’s question appeared to confuse Dan, but Dan initially went along 

with this change, and the pair concluded that V should in fact range from b/2 to 5b/2 

(lines 39-40). However, Dan then expressed uncertainty about Frank’s decision to 

represent a full circle, tracing a whole circle in the air with his pen (see Fig. 108). He 

followed this embodied reasoning with an explicit qualifier, “Is that right?” (line 41). 

Meanwhile, Frank changed Dan’s prior symbolic inscription ME < V ≤ ÜM
E  to indicate the 

new values of V for the full circle (line 42). But Dan insisted that this was incorrect (line 

43), and he and Frank disagreed once more about this (lines 44-45). 
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Figure 108. Dan gestures the path of a full circle in Task 9b, Argument 2. 

 Frank finally conceded that V should not go from b/2 to 5b/2, and supplied a 

symbolic warrant that such a range for V would present a problem with the terms 

involving b/2, pointing to the – SM
E  term in their prior inscription (line 46). Accordingly, 

Frank changed the inscription so that it read − ÜM
E < V ≤ M

E (lines 46-47). But this 

proposed fix was short-lived, as he concluded that the ÜM
E  term would be “too big” (lines 

47-48). Because I did not completely understand the reasoning behind Frank’s last claim, 

I asked him to clarify what was too big (line 49). Instead of directly answering this 

question, Frank appeared to start re-explaining the contents of Argument 2 from the 

beginning. In particular, he relayed their choice of branch cut and the fact that this 

influenced the respective values of the complex argument (lines 50-51). As he continued 

to summarize, he claimed that the “new” arguments for −2 and 2 were b/2 and 3b/2, 

respectively (lines 51-53). This claim reflected embodied reasoning, in that he rotated his 

pen on the diagram from their branch cut towards the point : = −2 (see Fig. 109).    
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 Ultimately, Frank answered my initial question which began Argument 2, and he 

clarified, “So yeah, that’s where those numbers are coming from” (line 53). While 

pointing out the terms in their symbolic inscriptions that corresponded to V = ÜM
E  and V =

M
E, Frank also authored a symbolic warrant that explained why they ended up with a 

negative sign in front of the term corresponding to V = M
E (lines 53-55). Argument 2 is 

summarized in Figure 110 below. 

 

Figure 109. Frank gestures a rotation from the branch cut towards : = −2 in Task 9b. 
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Figure 110. Toulmin diagram for Dan and Frank’s Argument 2 for Task 9b. 

Task 9c—Dan and Frank 

 Task 9 required participants to evaluate the same integral as in the last two parts, 

but now over a full circular path (lines 1-4). Before Dan and Frank provided their 

response to this task, I also reminded them of their answers from 9a and 9b (line 1). 

Frank rather quickly authored a symbolic claim that the answer is 2b8 (line 5). Dan began 

to author a warrant for this claim (line 6), but I accidentally started speaking at the same 

time and asked Frank why he said 2b8 (line 7). Accordingly, Frank authored a warrant 

that “you can just add up the two, uh, integrals along the semicircles” (line 8). This 

warrant represented embodied-symbolic reasoning because it characterized the new 

circular path as the concatenation of the two pervious semicircular paths and related this 

geometric description to the sum of two symbolic inscriptions. 
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 As Frank continued to elaborate on this warrant (line 9), Dan interrupted Frank 

with a challenge to this warrant. In particular, he expressed doubt because he and Frank 

utilized two different branch cuts in Tasks 9a and 9b (line 10). Frank tentatively agreed 

with Dan’s concern, but still maintained, as spokesman, that the integral would come out 

to 2b8 (line 11). In doing so, he contradicted his previous warrant with the statement, 

“You can’t add them” (line 11). When I asked him to clarify what he meant by this, Dan 

stepped in as spokesman and reiterated his concern about the two different branch cuts 

(lines 13-14). Frank agreed with Dan more definitively this time, and suggested a second 

way of looking at the task (line 15). This began a second argument pertinent to this task, 

Argument 2. Argument 1 is summarized in Figure 111.   
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Figure 111. Toulmin diagram for Dan and Frank’s Argument 1 for Task 9c. 

 Frank’s second way to consider the problem was to rewrite 9(:) as 1 + E
C using 

symbolic reasoning, so that ∫ CkE
C

	
É J: = ∫ 1	J:	

É + ∫ E
C 	J:	

É  (lines 16-18). After writing the 

corresponding symbolic inscriptions on the board, Frank authored a new claim that he 

thought the answer was instead 4b8 (line 19). As support for this assertion, he elaborated 

that the first term ∫ 1	J:	
É  is the integral of an analytic function over a closed curve (lines 

19-20). Using this as a datum, he authored an embodied claim that there exists a domain 

D that contains the curve (line 20). Using formal-symbolic reasoning, Frank discussed 

how applying the Cauchy-Goursat Theorem as a warrant yielded a value of 0 for this first 

term (lines 20-21).  
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 Moving on to the second term, Frank used symbolic reasoning to author a datum 

that EC has a discontinuity at zero (line 22). As spokesman, he rewrote the path C as {E
kto 

align with the conventional notation from their class, and described the curve as 

positively oriented (line 23). Continuing as spokesman, Frank used formal-symbolic 

reasoning to rewrite EC as E
CâL , a symbolic form that aligned with his subsequent formal 

warrant, Cauchy’s Integral Formula (lines 23-25). In particular, he used this warrant to 

author a symbolic claim that ∫ E
CâL 	J:	

Éj
Ö = 2b8(2), which Dan simplified as 4b8 (lines 

25-27). As relayer and then spokesman, Frank repeated the answer of 4b8 and described 

it as a “total” of the two integrals ∫ 1	J:	
É  and ∫ E

C 	J:	
É  (line 28). Dan added that this was 

also the sum of the answers from Tasks 9a and 9b, and Frank agreed (lines 29-31). A 

summary of Argument 2 is provided in Figure 112 below for reference. 
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Figure 112. Toulmin diagram for Dan and Frank’s Argument 2 for Task 9c. 

 Because Dan stated “Ah, that’s interesting” (line 31), I asked him and Frank if 

they thought Dan’s last observation was a coincidence (line 32). Frank did not think so, 

and Dan tried to reconcile this finding with his previous concern about using two branch 

cuts. Specifically, he suggested, “You could just use different branch cuts” (line 34). 

Frank agreed, and added that their parametrization still holds (lines 35-37). I also 

mentioned that Frank’s parametrization method in Task 9a did not involve any branch 

cuts, yet he and Dan obtained the same answer. 
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Task 9a—Riley and Sean 

 As with Dan and Frank, Riley and Sean began their response to Task 9a by 

writing inscriptions corresponding to the setting I provided. Specifically, Riley drew the 

semicircular path on the board as an embodied datum (line 3; see Fig. 113). Meanwhile, 

Sean provided a symbolic description of the path and the integral of interest, as 

spokesman (lines 4-6). He qualified their argument by conjecturing, “I think we’ll have to 

straight parametrize this; I don’t see there’s another way” (line 6). Sean continued by 

authoring a symbolic claim that they could write the integrand as 1 + E
C , and qualified 

this claim with “I mean, maybe” (lines 8-9).  

 

 

Figure 113. Riley’s initial diagram for the semicircular path in Argument 1, Task 9a. 
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 Riley agreed (line 10), and Sean began to author another claim regarding what 

parametrizing would yield, however Riley interrupted him (line 11). She proceeded to 

author a rebuttal proposing an alternate approach to the task not involving 

parametrization (lines 12-13). In particular, she employed formal-embodied reasoning to 

consider choosing a branch of the Log function that “makes it work,” and clarified that 

they could do so because the path is a semicircle rather than a full circle. Sean agreed that 

this was an alternate possibility, and Riley acknowledged that her approach would not 

necessarily save computational effort (lines 14-16). This first argument, Argument 1, is 

summarized in Figure 114.  

 

Figure 114. Toulmin diagram for Riley and Sean’s Argument 1, Task 9a. 

 Commencing a second brief argument, Riley continued to describe her alternate 

method avoiding parametrization. She began by authoring a formal-embodied warrant 

dictating a choice of branch cut that avoids the semicircular path (lines 17-18). While 

articulating this warrant, Riley produced an embodied tracing gesture back and forth 
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along their path to highlight her phrase “anywhere on this semicircle” (line 18; see Fig. 

115). She then clarified that she considered a branch cut at an angle of –b/4 to satisfy 

the aforementioned requirement (lines 18-19; see Fig. 116). 

 

 

Figure 115. Riley’s gesture representing “anywhere on this semicircle” in Argument 2.  

 

Figure 116. Riley’s chosen branch cut in Argument 2, Task 9a. 

 Subsequently, Sean interjected and finished describing his solution that 

incorporated parametrization. Using symbolic reasoning, he underlined the first integral 
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∫ 1	J:	
É  and authored a claim that this first result is 2b. As spokesman, he clarified that 

this result came from evaluating the expression EM(E)
E  (line 20). Riley once again 

challenged Sean’s conclusion, implementing embodied-symbolic reasoning to claim that 

the “2b” should instead read “b” because “you’re not integrating over the full circle” 

(line 21). This challenge catalyzed a third argument, as I discuss below. A summary of 

Argument 2 is depicted in Figure 117. 

 

Figure 117. Toulmin diagram for Riley and Sean’s Argument 2, Task 9a. 

 

 Following Riley’s challenge, Sean clarified his previous symbolic inscriptions in 

a third argument. Specifically, as spokesman, he explained that he used the symbolic 

formula 2bQ as a datum (line 22). He then authored a symbolic warrant elucidating that 

he took “half that” (line 22). As backing for this warrant’s correctness, Sean identified his 

2bQ	formula as “for circumference” (line 22), and described how “the full circumference 

is 4b” (lines 23-24). According to Sean, dividing by 2 then yielded the 2b result, and 
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summarized that he essentially calculated arc length of their curve (lines 24-25). Thus, 

this backing incorporated embodied-symbolic reasoning. Argument 3 is summarized in 

Figure 118. 

 

Figure 118. Toulmin diagram for Riley and Sean’s Argument 3, Task 9a. 

 

 Once again, Riley challenged Sean’s argument, beginning a fourth argument 

pertinent to Task 9a. She began Argument 4 with a formal-symbolic warrant as she drew 

an arrow from the symbolic inscription ∫ 1	J:	
É  and explained that “you just do […] 

9(^) − 9(_)” (lines 26-27). She qualified this warrant with the phrase, “or whatever, 

right?” (line 27). Notice that she transposed the order of subtraction in the statement of 

the Fundamental Theorem, but perhaps recognized this in her qualifier. In any case, she 

claimed that “it matters where you’re integrating to and from” (line 27). This claim 

appeared to involve primarily symbolic reasoning, as she indicated the limits of 
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integration as 0 to b as and added these to the integral inscription as symbolic data (line 

28).  

By this moment in Riley and Sean’s response to Task 9a, it became clear to me 

that Riley and Sean were conflating aspects of their two different approaches to the task, 

and this was what was causing their disagreements. In particular, Sean initially chose to 

parametrize their path, while Riley wanted to take an antiderivative and employ the 

Fundamental Theorem. However, in Argument 4, Riley attempted to apply limits of 

integration for V to evaluate ∫ 1	J:	
É , yet the integrand was not an expression of V. This 

conflation of approaches continued in Argument 5, as detailed below. Argument 4 is 

summarized in Figure 119.  

 

Figure 119. Toulmin diagram for Riley and Sean’s Argument 4, Task 9a. 
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 Sean responded to Riley’s prior challenge by pointing out that her limits of 

integration corresponded with the symbolic characterization of z as 2NST (lines 29-30). In 

doing so, he drew his own arrow from the ∫ 1	J:	
É  inscription in a manner similar to 

Riley, and symbolically claimed that the integral should be expressed as ∫ 82NST	JV	M
L  

(line 32). As a symbolic warrant, he began to elucidate what J: became in this new 

characterization, but did not finish verbalizing this statement (line 32). Sean authored a 

claim that this symbolic representation of the integral yielded a value of 2b, but retracted 

this claim with the qualifier, “wait, sorry,” and erased his recent inscriptions (line 32).  

 Sean relayed the prior data, “so same thing, same curve,” and that : = 2NST and 

theta ranges from 0 to b (line 33). As spokesman, Sean set up an integral equivalent to 

his prior one as a symbolic warrant, merely transposing the 2 and 8 compared to the last 

version (lines 33-35). However, once again, Riley challenged Sean. This time, she called 

his warrant into question via the qualifier “it shouldn’t be b there should it? […] right?” 

(lines 36-37). Due to the aforementioned conflation of their two methods, Riley claimed 

that instead the limits of integration should be 2 and −2 (lines 36-37). However, note that 

these two values correspond to the starting and ending values of :, rather than V. As 

spokesman, Sean clarified that he was using a parametrization (line 38). He 

complemented this symbolic rebuttal by once again pointing to the inscription : = 2NST. 

A summary of Argument 5 is depicted in Figure 120.  
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Figure 120. Toulmin diagram for Riley and Sean’s Argument 5, Task 9a. 

 

 Riley began Argument 6 by acknowledging Sean’s parametrization method (line 

39). With this datum in mind, Sean began to author a warrant, relaying that the integral 

“should be the arc length” (line 40). Implementing formal-symbolic reasoning, he then 

began to evaluate NST using Euler’s formula, but erased his corresponding inscriptions 

when finished (lines 40-41). He attempted this step once more, clarifying that cos b =

−1 (line 42). Once she saw Sean write 2(−1 − 1), Riley challenged Sean by authoring a 

claim that the answer should be 4, but once again qualified this challenge with the word 

“right?” (line 43). However, Sean concluded his calculation with an answer of −4 and 
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glanced at Riley with a puzzled facial expression (line 44), and qualified his answer with 

the word “Yeah?” (line 46). Argument 6 is depicted below in Figure 121. 

 

Figure 121. Toulmin diagram for Riley and Sean’s Argument 6, Task 9a. 

 

 Riley began Argument 7 by elaborating on her prior disagreement in Argument 6, 

this time using her preferred antiderivative method. Employing embodied-symbolic 

reasoning, she first pointed to the endpoints of their orange semicircular path, and wrote 

the corresponding inscription “2 → −2” to indicate these points symbolically (lines 47-
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48). Riley then authored a formal-symbolic warrant that the integrand, 1, is analytic (lines 

50-53), and Sean agreed (line 54). Because this integrand is analytic, Riley symbolically 

claimed that the antiderivative for 1 is :, and that they should evaluate this antiderivative 

at the two endpoints (lines 54-56). In particular, she relayed her prior symbolic claim 

from Argument 6 that the value of the integral should be −4 (line 56), once again 

qualifying this assertion with the word “right?” 

 Riley bolstered this claim by authoring the formal-embodied warrant, “it doesn’t 

matter what the path is” (lines 56-57). Sean conceded but also mentioned, “It seemed 

[like] arc length for some reason,” seemingly unconvinced that their two methods would 

obtain the same answer. Riley qualified this discrepancy by telling Sean, “I don’t really 

know why you’re getting that. Sorry” (line 59). Because Riley and Sean were unable to 

reconcile their two approaches, I asked a follow-up question about Riley’s statement 

regarding path choice. She attributed this path-independence to her previously established 

analyticity, invoking this formal-embodied reasoning as backing for her warrant’s 

validity (line 64). Argument 7 is summarized in Figure 122. 
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Figure 122. Toulmin diagram for Riley and Sean’s Argument 7, Task 9a. 

 

 Having satisfactorily resolved their discrepancy about the first integral, Riley 

turned to the second integral in their sum, ∫ E
C

	
É J: , beginning Argument 8. She 

acknowledged that they could evaluate this integral using either of their previous 

methods, and relayed the symbolic data that : = 2NST and 0 ≤ V ≤ b (lines 65-68). Sean 
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agreed (line 69), and Riley appealed to their prior parametrized work as a symbolic 

warrant. She used this warrant to author a symbolic claim, rewriting the integral as  

∫ E
EÃÕŒ 28NSTJV	M

L  (lines 70-72).  

 Next, Riley relayed the limits of integration, qualifying this data with the word 

“right?” (lines 71-72). She authored a symbolic claim that several of the factors “cancel” 

so that the integral simplifies to 28 ∫ V	JV	M
L = 2b8 (lines 72-74). Riley qualified this 

assertion with the phrase, “you could cancel it in this way, right?” (line 73). She authored 

an embodied-symbolic warrant confirming the reasonableness of their result, in that the 

integral of hC over a full circular path should be 2b8. Therefore, according to Riley, 

integrating over half a circle should yield half of 2b8, but because the integrand is EC, the 

extra factor of 2 should double that result so that they obtain 2b8 (lines 75-78). While she 

verbally articulated this warrant, she provided two tracing gestures corresponding to the 

semicircular and circular paths, respectively (see Fig. 123). 

    

Figure 123. Riley’s semicircular (left) and circular (right) gesture in Argument 8. 

 Returning to the original task, Riley authored a symbolic warrant that they needed 

to add the values of the two integrals together to obtain the overall result (line 79). She 

symbolically concluded that this yields a result of 2b8 − 4 (line 79), and Sean relayed 
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this conclusion in the form of a symbolic inscription on the board (lines 79-80). 

Argument 8 is depicted in Figure 124. 

 

Figure 124. Toulmin diagram for Riley and Sean’s Argument 8, Task 9a. 

Tasks 9b and 9c – Riley and Sean 

 In responding to Task 9b, Riley and Sean simultaneously answered Task 9c 

before I asked them about it. Accordingly, I present Riley and Sean’s arguments 

pertaining to Tasks 9b and 9c as one section. Sean began his and Riley’s first argument as 

spokesman, as he sketched the new semicircular path {E (see Fig. 125) and wrote a 

corresponding symbolic description of this path (lines 1-4). Riley authored a symbolic 

claim that the value of the integral should be 4b8, and qualified her claim with the word, 

“right?” (line 5). Because she did not immediately elaborate, I asked her about this 

assertion (line 6). Riley responded by authoring an embodied-symbolic datum that she 

and Sean already evaluated the integral of 1/: over a full circle in Task 6; she relayed 

their prior answer of 2b8 (lines 7-8). She once again qualified this statement with the 
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word, “right?” (line 8). While speaking the words “full curve” (line 7), Riley also 

provided an embodied gesture as she traced the full circle with her whiteboard marker 

(see Fig. 126). 

 

 

Figure 125. Sean’s drawn path {E in Argument 1, Task 9b/c. 
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Figure 126. Riley’s tracing gesture “for the full curve” in Argument 1, Task 9b/c. 

 Riley symbolically expressed this full circular path as the concatenation {h + {E 

of the two semicircular paths {h and {E, and authored a claim that twice the 

aforementioned integral is 4b8 (lines 9-10). Next, she authored a symbolic datum that 

they were adding this integral of 2/: to the integral of 1 over the path {h + {E (lines 10-

11). Riley authored an embodied-symbolic claim that the integral of 1 over this full 

circular path vanishes (line 12). The embodied aspect of this claim consisted of a tracing 

gesture Riley produced while saying “it’s going to come to equal 0” (line 12; see Fig. 

127).  She supported her assertion with a formal-embodied warrant, Cauchy’s Theorem 

(lines 13-14). However, she could not fully remember the name of the theorem, as 

evidenced by her qualifier, “what was it?” (line 13), and Sean stepped in as spokesman to 

name the warrant (line 15). 



 263 

 

 

Figure 127. Riley’s tracing gesture for “it’s going to come to equal 0” in Argument 1. 

 

 Subsequently, as spokesman, Riley supplied formal-embodied-symbolic backing 

for their warrant’s validity. In particular, she listed the embodied aspects of the curve that 

allowed her to apply the formal theorem that yielded the symbolic answer of 0 (lines 18-

20). While articulating this backing, she gestured a closed path beginning and ending at 

the point : = 2 (line 18; see Fig. 128). Next, Riley authored a symbolic warrant that once 

they had the value of the integral ∫ 1	J:	
ÉikÉj

, they could add that to the integral 

∫ E
C 	J:	

ÉikÉj
 to obtain the value of ∫ EkC

C 	J:	
ÉikÉj

 (lines 20-21). She also relayed her 

previous conjecture that this last integral would be 4b8 (line 21). Accordingly, Riley 

answered what I intended to be Task 9c in response to Task 9b. While communicating 
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her warrant, Riley traced along the path {E as she discussed “work[ing] out the second 

curve” (lines 20-21; see Fig. 129). 

 

Figure 128. Riley’s tracing gesture for “if this is a closed curve” in Argument 1. 

 

Figure 129. Riley’s tracing gesture for “work out the second curve” in Argument 1. 

 Afterwards, Sean stepped in and authored a warrant for Task 9b rather than 9c. 

Using symbolic reasoning, he discussed changing the limits of integration to reflect the 

new range of theta for the curve {E (line 22). He then pointed to previous symbolic 

inscriptions on the board for calculating ∫ 1	J:	
Éi

 and ∫ E
C 	J:	

Éi
 in Task 9a as he identified 

their counterparts using the curve {E. Specifically, he supplied values of 4 and 2b8 for the 

integrals ∫ E
C 	J:	

Éj
 and ∫ 1	J:	

Éj
, respectively, and relayed Riley’s statement that they could 
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add these results together (lines 22-24). However, he acted as ghostee when describing 

this sum, for he referred to adding (2b8 + 4) and (2b8 − 4) as the values of ∫ CkE
C 	J:	

Éj
 

and ∫ CkE
C 	J:	

Éi
, respectively. Ultimately, however, both Riley and Sean obtained the same 

result that ∫ CkE
C 	J:	

ÉikÉj
= 4b8, and Sean commented that he viewed Riley’s solution as 

“more elegant” (lines 25-28). Argument 1 is summarized in Figure 130. 

 

Figure 130. Toulmin diagram for Riley and Sean’s Argument 1, Task 9b/c. 
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 Because Riley and Sean ended up discussing Task 9c prior to answering 9b, I 

acknowledged this change in ordering and redirected them to the integral along just {E 

(lines 29-30). This initiated a second argument, which Riley began by authoring a claim 

that this integral “should also be 2b8” (line 31). Once again, she qualified this claim with 

the word, “right?” (line 31). Implementing symbolic reasoning, Sean challenged Riley’s 

assertion and claimed that they needed to add 4 to Riley’s result (line 32). Riley agreed 

with Sean’s addendum, and symbolically explained that she inadvertently thought about 

only the integral of 2/: (lines 33-34).  

 Afterwards, Sean and Riley articulated three warrants in short succession, not all 

of which were completed. Specifically, Sean mentioned the Cauchy-Goursat Theorem as 

a formal-embodied warrant, the embodied aspect of which was a circular tracing gesture 

around the path {h + {E (lines 35-36; see Fig. 131). Riley interrupted the end of Sean’s 

warrant with an incomplete warrant of her own, wherein she generally stated that “we’re 

just working backwards, but you can do the same exact process” (lines 37-38). I could 

not definitively discern which world or worlds she invoked when making this statement, 

because the “same exact process” from before involved all three worlds at various times. 

Before Riley was able to elaborate on her warrant, Sean interrupted Riley and added that 

“It’s like a dramatic argument—we know we know the ending” (line 39). As spokesman, 

he elaborated on this seemingly metacognitive statement with symbolic inscriptions 

summarizing the values of the integrals around paths {h and {E, as well as the sum of 

these integrals (lines 39-40). This concluded Argument 2, which is depicted in Figure 

132. 
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Figure 131. Sean’s circular tracing gesture for “Cauchy-Goursat” in Argument 2. 

 

Figure 132. Toulmin diagram for Riley and Sean’s Argument 2, Task 9b/c. 
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 Next, Riley began Argument 3 by elaborating on Warrant2 from their second 

argument, as she signified with the phrase “so again we do this” (line 41). As 

spokeswoman, she wrote the statement ∫ CkE
C 	J: =	

Éj
2 ∫ h

C 	J: +	
Éj

∫ 1	J:	
Éj

 as a symbolic 

datum (line 41). Calling upon the path independence discussed in Argument 1, Riley 

continued as spokeswoman to articulate a formal-embodied-symbolic warrant that they 

could write ∫ 1	J:	
Éj

 as ∫ 	J:	E
âE  (lines 41-42). Recall from Argument 1 that Riley 

previously attributed the formal analyticity of the integrand 1 as backing allowing her to 

conclude that they could invoke any embodied path between the endpoints −2 and 2 

when symbolically evaluating such an integral. Riley relayed the symbolic value of this 

integral from Argument 1 as 4 (lines 43-44). 

 Riley then turned her attention to the other integral 2∫ h
C 	J:	

Éj
, and authored a 

warrant that they could “parametrize in exactly the same way” (lines 44-45). She 

authored an embodied-symbolic warrant that their “bounds would be again flipped” (lines 

45-46), producing a two-handed crossing gesture to indicate flipping (see Fig. 133). Riley 

also qualified this warrant: “just like last time, right? […] Well, okay the curve—the 

curve itself is different, yes or no?” (lines 46-48). Using embodied-symbolic reasoning, 
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Sean clarified that their limits of integration should be from b to 2b because their path 

traveled counterclockwise (line 49).  

 

Figure 133. Riley’s gesture for “flipped” in Argument 3, Task 9b/c. 

 Riley agreed with Sean’s response, and symbolically set up the integral 

parametrized by V (line 50). She relayed the cancellation of certain factors in the 

integrand as a symbolic warrant (lines 50-51). Riley symbolically evaluated the integral 

to obtain a claimed answer of 28b (line 51), and qualified her assertion by reminding us 

that “it’s pretty much the same thing we had done before” (line 52). Argument 3 is 

summarized in Figure 134. 
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Figure 134. Toulmin diagram for Riley and Sean’s Argument 3, Task 9b/c. 

 

 Implicit to Riley and Sean’s previous arguments was the claim that the integral 

over the full circle {h + {E was equal to the sum of the integrals over {h and {E. Thus, I 

asked them about this facet as a follow-up question (lines 53-54), which began a fourth 
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argument. Riley agreed that she used this fact (line 55), but did not elaborate on why it is 

true. Accordingly, I asked her and Sean if they had any intuition behind why this result 

holds (line 56). As she had done previously in Task 8, Riley noted that Professor X had 

proved this result in class, but she could not remember the details (lines 57-58). However, 

Sean stepped in to provide some insight. 

 Sean authored a formal-embodied warrant that “when you add the paths together 

it’s piecewise smooth,” and as spokesman, continued, “So it’s like one giant path, pretty 

much” (lines 59-60). Because {h + {E can be thought of as one path, Sean claimed that 

“we could’ve just parametrized the integral from 0 to 2b” (line 60). Sean began to 

articulate an alternate way of thinking about this problem in terms of connectedness, but 

paused and did not finish his sentence (lines 61-62). However, when describing the path 

as “very well connected,” Sean produced a gesture bringing both his fists together to 

illustrate this connectedness (see Fig. 135). Thus, his incomplete thought incorporated 

embodied reasoning.   

 

Figure 135. Sean’s gesture for “very well connected” in Argument 4, Task 9b/c. 
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 Because I assumed throughout Riley and Sean’s response to Task 9 that by 

“adding the paths together” they meant concatenation of paths, I asked a deliberately 

“naïve” follow-up question to elicit a more precise description of what they meant by this 

(line 63). In response, Riley spoke of {h + {E as “just continu[ing] along the path” (line 

64), an embodied addendum to Sean’s previous warrant. Sean also added embodied 

specificity to the warrant by illustrating “a different kind of path” as he traced a 

meandering path between : = −2 and : = 2 as an alternate choice for {E (lines 65-67; 

see Fig. 136). But even in this case, Sean maintained that “the integral of the whole path 

is just […] the integral over path {h plus the integral over path {E” (lines 67 & 69-71). 

While authoring this embodied-symbolic claim, Sean provided tracing gestures for the 

paths {h and {E while discussing these two integral summands, using his visualized and 

hypothetical {E instead of the original semicircle (lines 70-71; see Fig. 137).  

 

Figure 136. Sean’s tracing gesture for “a different kind of path” in Argument 4. 
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Figure 137. Sean’s tracing gestures for “integral over path {h”(at left) and “integral over 

path {E” (at right) in Argument 4, Task 9b/c. 

 
 Again appealing to embodied-symbolic reasoning, Sean returned to his initial 

claim that “we could’ve just parametrized the integral from 0 to 2b” (line 60). 

Specifically, he authored a warrant that such a parametrization is possible in the case 

where {E is a semicircle because {h + {E comprises one full circular path (lines 68-69). 

Sean concluded Argument 4 by qualifying his and Riley’s more general claim that the 

sum of the integrals along {h and {E yields the integral along {h + {E: “as long as those 

paths are piecewise continuous then I think you're good” (line 71). Argument 4 is 

summarized in Figure 138.  
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Figure 138. Toulmin diagram for Riley and Sean’s Argument 4, Task 9b/c. 

 

 As a follow-up, Riley supplied a fifth argument appealing to integration in real-

variable calculus: “I just flew back to Calc 2 again” (line 73). She authored an embodied 

datum considering the integral of a piecewise function comprised of two linear pieces 

joined at 7 = 0 (lines 74-76 see Fig. 139). With this function in mind, Riley authored an 

embodied-symbolic claim that the integral of this function over a closed interval is equal 
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to the sum of the areas of the respective regions between each piece of the function and 

the x-axis (lines 76-79). Using embodied reasoning, she indicated the sum of the two 

areas via a two-fingered pointing gesture (see Fig. 140). Riley also authored an 

embodied-symbolic warrant that the integral of this piecewise function needed to be 

“split up” over each piece because her function was “not smooth” (lines 79-80). Although 

Riley did not define what she meant by “smooth,” she appeared to use this word to 

indicate a piecewise function that she could not readily describe using a single function 

formula. 

 

Figure 139. Riley’s “Calc 2” diagram with two “not smooth” regions in Argument 5. 
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Figure 140. Riley’s pointing gesture illustrating “the sum of them” in Argument 5. 

 Afterwards, Riley authored a second embodied datum by drawing a second curve 

that she identified as “smooth” (line 81). She once again considered the area of the region 

bounded between this function and the x-axis, and compared this full area to the areas of 

two sub-regions (see Fig. 141). In particular, she authored an embodied-symbolic claim 

that in order to evaluate the integral over the full region, “you just add the area” (line 82). 

Riley bolstered this claim with an embodied warrant: “you can do that because just 

physically it’s the area” (line 81). Although this statement is also true of her first “non-

smooth” function, Riley’s argument seemed to implicitly indicate that this second 

“smooth” function could be identified by a single formula. For example, evaluating the 

integral ∫ 3 − 7E	J7E
âE  could be accomplished by adding ∫ 3 − 7E	J7L

âE  and ∫ 3 − 7E	J7E
L , 

but the same could not be done with the first function without using two separate 

integrand formulas. 
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Figure 141. Riley’s diagram of 2 regions under a “smooth” curve in Argument 5. 

 Returning to the present context of the complex plane, Riley authored an 

embodied warrant that although integration no longer generally represents area under a 

curve, “it still sort of intuitively makes sense” to claim that 

∫ CkE
C 	J: =	

ÉikÉj
∫ CkE

C 	J: +	
Éi

∫ CkE
C 	J:	

Éj
 (lines 82-83). Hence, Riley explicitly instantiated 

thinking real, doing complex (Danenhower, 2000) in the sense that her experience with 

adding areas in Calculus 2 informed her embodied intuition in this task. Argument 5 is 

summarized below in Figure 142. 

 

Figure 142. Toulmin diagram for Riley and Sean’s Argument 5, Task 9b/c. 
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Task 9 Summary  

In task 9, we continue to observe a comparative abundance of embodied 

reasoning from Riley and Sean versus Dan and Frank. However, much of Dan and 

Frank’s embodied reasoning mirrored Riley and Sean’s, in the sense that both pairs drew 

diagrams of the various paths involved, and both pairs gestured a full circular path in 

response to Task 9b. This latter observation is particularly notable because Task 9b only 

explicitly considered the bottom semicircle, which Riley and Sean denoted {E. In fact, 

Riley provided whole-circle gestures even in Task 9a before I asked about {E. 

Additionally, Sean displayed more embodied reasoning in Task 9 than in previous tasks, 

particularly throughout Argument 4 of Task 9b/c. 

Another distinguishing factor between the pairs in Task 9 was that Riley and Sean 

responded to Task 9c before 9b, and Riley demonstrated a clever way of finding the 

integral of 2/: as twice the integral of 1/:, which they computed in Task 6. In task 9, 

both pairs exhibited the property that individuals within the pair pursued different 

solution approaches. In Riley and Sean’s case, they were not as explicit in articulating 

these choices of approach to each other, and this led to several disagreements and 

challenges that culminated in additional follow-up arguments. On the other hand, Dan 

and Frank more clearly delineated their division of labor; they clearly verbalized the 

decision for Dan to pursue a logarithmic approach while Frank used a parametrization. 

Nevertheless, both pairs of participants ran into some difficulty agreeing on their limits of 

integration in Task 9, which created some confusion between them when they needed to 

reconcile their respective methods. Finally, notice that of the two pairs, only Sean and 

Riley consciously verbalized thinking real, doing complex (Danenhower, 2000). 
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Task 10—Dan and Frank 

 Task 10 required participants to consider the implications of traversing a circular 

path twice on the complex integral along such a path (lines 1-2). As spokesman, Dan re-

voiced the datum of traversing a circular path twice by gesturing the motion of this path 

in the air, using the tip of his whiteboard marker (line 3; see Fig. 143). After a moment of 

silence, I clarified the intent of the task by reminding Dan and Frank that the last task 

involved a circular path traversed once, and I asked them what would happen if this path 

was traversed twice (line 4). As spokesman, Frank reworded the latter portion of my 

question and produced a gesture similar to Dan’s but oriented in the opposite direction 

(line 5; see Fig. 143). Both Dan and Frank’s gestures exemplify embodied reasoning 

because they represent motion along a visualized path. Having clarified the setting for 

this task, I finished asking them whether traversing the path twice would affect the value 

of the integral (line 6), and Dan and Frank gathered their thoughts (lines 7-8).  

                                           

Figure 143. Dan’s (left) and Frank’s (right) gesture a circular path traversed twice. 
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 Afterwards, Dan began to author a datum considering the integrand as a 

conservative vector field (lines 9-11) and Frank added that the effect of traversing the 

path twice depends on whether the function is analytic (12). Frank qualified this assertion 

with the phrase “I guess” and looked at me for validation (line 12). Dan began to author a 

symbolic claim that the integral of such a path has a doubling effect (line 13), and Frank 

relayed that it will “just double the value” (line 14). As spokesman, Frank clarified Dan’s 

datum that an analytic function represents a “conservative vector field,” and concluded 

that in this case, the integral around the circular path traversed once is zero. Therefore, 

according to Frank, traversing the path twice would double the value of this integral and 

thus yield an answer of zero (lines 14-16).  

 Dan began to author a symbolic rebuttal to Frank’s claim, and considered a 

situation wherein the value of the integral was nonzero, but Frank interjected (line 17). 
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Frank went on to author data regarding a specific function 9(:) = 1/: and a circular path 

traversed counterclockwise around the origin (lines 18-20). Using embodied-symbolic 

reasoning, he related the doubly traversed path to a symbolic statement about the 

corresponding values of theta (line 20). Transitioning to embodied reasoning, he then 

drew a diagram of the circular path, and accidentally increased the radius slightly as he 

traced the path a second time (lines 21-23). With this data in mind, Frank authored an 

embodied-symbolic claim that traversing the path once would yield an integral of 2b8 

(line 24). Therefore, Frank argued, traversing the path twice should double this value, and 

he concluded that the answer should be 2(2b8) = 4b8 (lines 24-26). He qualified this 

claim with the phrase, “I imagine,” conveying at least some level of uncertainty (line 25). 

This first argument is summarized in Figure 144 below. 

 

Figure 144. Toulmin diagram for Dan and Frank’s Argument 1 for Task 10. 
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 Although Dan and Frank articulated a claim for this task in Argument 1 and 

illustrated this claim via an example, they did not provide a warrant for this claim. 

Accordingly, I asked a follow-up question about whether they saw a connection between 

this task and the last (lines 27-31). This follow-up question prompted a second argument 

pertinent to Task 10, which began as Dan relayed a datum about parametrizing the path 

(lines 32-33). In particular, he reiterated that 0 ≤ V ≤ 4b when the circle is traversed 

twice. Dan then used this datum to author an unfinished symbolic claim relating the 

integral from 0 to 4b	to two integrals: one from 0 to 2b and another from 2b to 4b (lines 

33-34).  

 Likely as a result of their prior discussion in Task 9c concerning adjusting branch 

cuts when adding two integrals, Dan began to articulate how this issue manifested itself 

in the present context (lines 34-35). However, Frank interrupted and finished this warrant 

as spokesman, conveying the reason they could combine the two integrals in Dan’s 

previous claim (line 36). Frank altered Dan’s symbolic inscription from line 34 to 

explicitly indicate that they were adding the two integrals (line 36). As spokesman, Dan 

agreed and reworded Frank’s warrant (line 37), and he and Frank qualified their argument 

by expressing a moderate degree of confidence (lines 38-39). This second argument is 

summarized below in Figure 145. 
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Figure 145. Toulmin diagram for Dan and Frank’s Argument 2 for Task 10. 

 Subsequently, I asked Dan and Frank to conjecture about what happens if the 

circular path is traversed n times (line 40). This catalyzed a very brief third argument 

wherein both participants articulated symbolic claims that the integral would be “n times” 

the value of the integral involving the path traversed only once (lines 41-42). 

Specifically, Dan brought up the multiplication by n, and Frank relayed the phrase “n 

times” but clarified the quantity that is multiplied. This succinct Argument 3 is depicted 
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in Figure 146 below. As another follow-up, I asked the pair whether they had discussed 

ideas related to Task 10 in class (line 43). Consistent with Frank’s earlier comment that 

he had never thought about this idea before (line 8), Dan also denied having seen it in 

class (line 44). Frank agreed, and clarified that they “usually only went around things 

once” (line 45). 

 

 

Figure 146. Toulmin diagram for Dan and Frank’s Argument 3 for Task 10. 

 Frank did recall considering “things wrapping multiple times” when learning 

about winding numbers (line 46), and he and Dan attempted to recall what theorem 

involved this concept (lines 47-49). Frank wrote symbolic inscriptions representing the 

Argument Principle (line 50), and then explained the meaning of the various symbols 

within the equation (lines 50-53). Frank then related the symbolic statement of this result 

to a geometric interpretation, namely the “number of times that the image of 9({) winds 

around the origin” (lines 53-60). I asked him and Dan if they saw this idea as related to 

Task 10, and they both replied that they did not. Rather, Frank explained, “that was the 
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only time we had ever really seen things going around points multiple times” (lines 63-

64). 

 

Task 10—Riley and Sean 

 After I read Task 10 to Riley and Sean (lines 1-4), Sean began Argument 1 by 

authoring a symbolic claim that “you should get twice your value” (line 6) when 

traversing the circular path twice. Riley qualified Sean’s claim with the statement, “Yeah 

that would make sense,” and elaborated by authoring a formal datum considering an 

analytic function (line 7). Instantiating embodied-symbolic reasoning, she claimed that 

the integral of such a function vanishes due to an embodied warrant that the circular path 

is closed (lines 7-8). As she had done many times before, she qualified this assertion as a 

question, using the word “right?” (line 8). 

 Afterwards, Sean relayed the symbolic inscription NST |2b
0  from task 9 as a datum 

(lines 9-10). He explained that he and Riley obtained this result for “one of the values” in 

the last task. Recall that Riley and Sean expressed CkE
C  as 1 + E

C and integrated each term 
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along one full circle. However, notice that the integral of neither term produces this exact 

symbolism; Sean appeared to notice this, as he soon erased his symbolic inscription as an 

unspoken qualifier (line 12). Meanwhile, Riley authored an embodied datum by drawing 

the twice-traversed circular path and considering values of theta up to 4b (lines 11-13; 

see Fig. 147). Sean stared at Riley’s diagram and authored a symbolic claim that 

“eventually things cancel out” (line 14). Using formal-symbolic reasoning, he elaborated 

that “the analytic parts of the function go to 0” (line 14). I interpreted this to mean that if 

they rewrote a rational function as a sum of two or more terms, as they did in Task 9, 

then the integral of each analytic term would vanish. Sean qualified this assertion with 

the phrase, “of course,” expressing a high degree of confidence (line 14), and Riley 

agreed with his conclusion (line 16). Argument 1 is summarized in Figure 148. 
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Figure 147. Riley’s diagram for a circular path traversed twice in Argument 1, Task 10. 

 

 

Figure 148. Toulmin diagram for Riley and Sean’s Argument 1 for Task 10. 
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 As spokesman, Sean returned to the present task by pointing to Riley’s diagram as 

an embodied datum. With this datum in mind, he began a second argument with an 

embodied warrant that the circular path “would just wind around twice” (line 17). While 

speaking these words, he provided a circular gesture illustrating one full circle of the path 

rather than two (lines 17-18; see Fig. 149). As spokeswoman, Riley re-voiced their prior 

claim from Argument 1: “So it should just be double” (line 19). Continuing as 

spokeswoman, she repeated their finding from Task 9 that the integral of 1/: over one 

full circle became 8 ∫ 1	JzEM
L , though previously they expressed this result using V rather 

than z (lines 19 & 21-22). As done previously, Riley qualified this symbolic warrant with 

the word, “right?” (line 21). Riley then specified an embodied-symbolic datum 

considering how the upper limit of integration would change to 4b “if we wound twice” 

(lines 22-23). While speaking these quoted words, she produced the same circular gesture 

that Sean did previously (see Fig. 149).  
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Figure 149. Sean’s (left) and Riley’s (right) gesture for winding twice, Argument 2. 

 As Riley finished articulating her symbolic warrant, Sean wrote the symbolic 

inscription 28 ∫ JVäM
L  (line 20). Accordingly, when Riley later began to author her 

corresponding symbolic claim about the new path’s integral (lines 22-23), Sean was 

eager to interrupt and say “28” (line 24). Notice that Sean’s inscription is actually 

incorrect because he doubled Riley’s integral 8 ∫ 1	JzEM
L  but also changed the upper limit 

of integration to 4b, which would have an extra doubling effect. Unaffected by the 

interruption, Riley continued to articulate her claim. As spokeswoman, she created the 

symbolic notation {E to represent the new twice-traversed circular path. She then 

authored a symbolic claim that ∫ h
C	

	
Éj

J: = 8 ∫ 1	JzäM
L  (lines 25-26). Riley qualified this 

assertion by asking Sean, “It's going to end up at 0 to 4b, right?” (line 25). Finally, Riley 

authored a symbolic claim that they should obtain an answer of 4b8, and relayed her 

previous claim that “it’s just double” (lines 26-28). She qualified this assertion by asking 

Sean, “Yeah?” (line 26). Argument 2 is summarized below in Figure 150. 
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Figure 150. Toulmin diagram for Riley and Sean’s Argument 2 for Task 10. 

 

 Following Argument 2, I asked Riley and Sean if they could generalize this 

argument to discern what would happen if the circular path was traversed x times (lines 

29-30). This began Argument 3, as Riley relayed the embodied datum that the curve is 

traversed x times (line 31). She used this datum to author a symbolic claim about the 

resulting value of the integral along such a path (lines 31-32), but did not finish her 
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statement. Sean interrupted and finished the claim: “It would be x times the integral of 

one path” (line 33). As spokeswoman, Riley added to this claim to specify an integrand, 

and wrote corresponding symbolic inscriptions (line 34). However, she qualified her 

choice of symbolism as unmathematical, acknowledging that “n times {h seems like it 

would be really bad, like, notation” (lines 35-36).  

 In response to Riley’s hesitation, Sean proposed an alternate symbolization as 

spokesman. Specifically, he suggested they think of such a path as “{h + {E +	…+ {t, 

where {h, {E, … , {t are all {h” (line 37). As spokeswoman, Riley altered this notation 

even further, and claimed they could write the integral as ∫ 9(:)		
É–

J: (line 38). 

Argument 3 is summarized below in Figure 151. After this argument, I asked Riley and 

Sean if they had seen something similar in their class, and they both answered that they 

did not recognize “multiple winding around” (lines 39-42). I told them that there are 

more general versions of Cauchy’s Integral Formula that involve the concept of a 

winding number, and they both had looks on their faces that suggested they had indeed 

talked about such a concept in their course (lines 43-45). Sean recalled that they did 

discuss winding numbers at the very end of the course (line 46). This realization sparked 

one final argument pertinent to Task 10, as I detail next. 



 292 

 

 

Figure 151. Toulmin diagram for Riley and Sean’s Argument 3 for Task 10. 

 

 Riley began Argument 4 with the embodied-symbolic datum that she remembered 

the winding number as representing “how many times like the function 9(:) goes around 

the origin,” but qualified this datum as a question that ended with “or something?” (line 

47). As spokesman, Sean elaborated on this datum, but also qualified his remark with “if 

my memory’s correct” (line 48). He remembered the winding number as the symbolic 

formula h
EMS ∫

í—(C)
í(C)â[ J:, which represents “the number of times that 9(:) winds around 

the point ^ (lines 48-49). Sean authored a symbolic claim that if ^ = 0 then this formula 
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describes the number of “times you wind around the origin,” which he and Riley uttered 

in unison (lines 51-52).  

 Riley reflected on their argument thus far and qualified it as “mak[ing] sense, 

right?” (line 53). She elaborated by authoring a symbolic warrant that related their answer 

from Argument 3 to Sean’s formula for the winding number (lines 53-54). Accordingly, 

she claimed that this formula for winding number corroborated their findings from 

Argument 3 (lines 54-56). When describing the circular path as “run[ning] twice around 

the origin” (line 55), Riley gestured the motion of the circular path, this time with two 

full circles (see Fig. 152). This concluded Argument 4, which is depicted in Figure 153.  

 

Figure 152. Riley’s gesture for a circular path traversed twice in Argument 4, Task 10. 
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Figure 153. Toulmin diagram for Riley and Sean’s Argument 4 for Task 10. 

Task 10 Summary 

 All four participants individually produced the same circular tracing gesture in the 

air representing a circular path traversed twice. Sean and Riley both used very similar 

language (“wind around” and “wound it twice,” respectively) while producing this 

gesture, and until the end of Argument 4, their gestures corresponding to a multiply-

traversed path only explicitly illustrated one full circular motion, rather than several. One 

key difference between Dan and Frank’s response as compared to Riley and Sean’s was 

that Dan and Frank chose to incorporate the language of a “conservative vector field” to 

justify the portions of the integral that vanished, while Riley and Sean attributed this to 

the analyticity of the function and the fact that the path was closed. Moreover, Dan and 

Frank discussed having to adjust branch cuts when traversing the circular path a second 

time, whereas Riley and Sean incorporated parametrization techniques that did not need 
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to account for branch cuts. Ultimately, both pairs arrived at the same conjectures and 

eventual claims for Task 10 with respect to traversing the path twice and x times, and 

both pairs stated the Argument Principle when I asked if this task reminded them of 

anything they had done in class. 

Task 11 – Dan and Frank 

 

 Task 11 required participants to consider the possible values of the integral of the 

function 9(:) = h
C(Cjâh) along a simple, closed, positively oriented curve L such that 9 is 

continuous on L (lines 1-4). Recall from Chapter III that the course instructor used the 

abbreviation SICOPOC for a simple, closed, positively oriented curve. Surprisingly, 

Frank noted that he never personally used this abbreviation during the course, but wrote 

down inscriptions summarizing the information provided (lines 5-13). Consistent with his 

previous preference for using an antiderivative in the last few tasks, Dan authored the 

suggestion, “Can’t you just put it into the antiderivative?” (line 14). 

  Frank decided to pursue an alternate method, and relayed the given attributes of 

the curve as data (line 15). Using the fact that the curve was simple, closed, and 

positively oriented, he authored a claim that there are four possible values for the integral, 

and suggested they “draw it geometrically” (lines 15-17). He also qualified this assertion 



 296 

 

with the phrase, “I think,” expressing some uncertainty that he and Dan would revisit 

later in the task. Using embodied-symbolic reasoning, Frank drew an Argand plane and 

plotted points corresponding to poles he discerned from rewriting the function 9 as 

h
C(C	kh)(Câh) (lines 18-21).  

 

 Using these data, Dan authored a formal claim that they could implement the 

Residue Theorem, and qualified the claim with the question, “right?” (line 22). Frank 

agreed but once again preferred a different approach, supplying the Cauchy-Goursat 

Theorem as a formal warrant for a subsequent claim. In particular, Dan used this theorem 

to author a formal-embodied claim that the integral along a path containing none of the 

poles is zero (line 29). Frank contributed backing for this warrant’s validity by sketching 

possible paths L surrounding none, one, two, and all three of the poles, thus articulating 

why the warrant applies to at least one of these cases (lines 23-27; see Fig. 154). Note 

that Frank did not consider several other potential paths ´, namely the two other possible 

ways to include two of the poles. For instance, ´ could also surround either the points 0 
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and 1, or −1 and 1, and these different choices of paths can affect the value of the 

integral. However, Dan and Frank did eventually notice this issue, as I discuss later. 

 

Figure 154. Frank’s possible paths for L in Task 11. 

 After authoring these embodied examples, Frank looked at me for approval, and 

qualified his backing with the statement, “Uh, geometrically speaking, I think those are 

the only options” (lines 27-28). After Dan authored the aforementioned claim from line 

29, Frank re-voiced this claim as spokesman, and wrote the supporting symbolic 

inscription ∫ 9(:)	J:	
Æ = 0 (lines 30-31). Frank started to consider the next case wherein 

L contains a pole, but qualified this first argument with the phrase, “hang on, we should 

probably write this nicely” (line 32). This modal qualifier signaled the start of a second 

argument, Argument 2. Argument 1 is summarized with the Toulmin model depicted in 

Figure 155 below.  
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Figure 155. Dan and Frank’s Toulmin diagram for Argument 1 for Task 11. 

 In accordance with Frank’s qualifier commencing Argument 2, I suggested that it 

might be helpful to label the potential paths as ´h, ´E, and so on (line 33). Frank agreed, 

and started labeling his drawn paths (lines 34-35). However, he quickly changed his mind 

regarding how he wanted to label these paths, as evidenced by the qualifier, “Wait, you 

know what? Let’s be smart about this” (lines 35-36). He erased his recent labels and 

authored a claim that, given one of his paths contained no poles, he could label this path 

´L (lines 36-37). Dan agreed (line 38), and Frank similarly concluded that the paths he 

had drawn surrounding k poles could be labeled ´“ for ” = 1, 2, 3 (lines 39-40). As such, 

he implemented embodied-symbolic reasoning, corresponding his symbolic labels with 

the number of poles each path surrounded in the diagram he drew. Relaying their 

previous claim that the integral using the path ´L, Frank additionally claimed that the 

integral along ´h is 2b8 but expressed this claim as more of a question. Rather than look 
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at me for approval this time, Frank looked over at Dan, who began to verify Frank’s 

claim but qualified this verification with the phrase, “umm, wait” (line 43). Because 

Dan’s verification comprised a separate complete argument, I present his response as 

Argument 3; Argument 2 is summarized in Figure 156. 

 

 Dan proceeded to author a formal-symbolic datum that implicitly used Cauchy’s 

Integral Formula to dictate how to symbolically represent the integrand (line 43). With 

this manifestation of the integrand in mind, he concluded that they should evaluate the 

expression h
C(Câh), which he referred to as 9(:), at the point : = −1 (lines 43-44). 

Because Dan used the symbolism 9(:) to denote a function different from the given 

integrand, he acted as ghostee. Perhaps due to the fact that 9(:) now represented two 

distinct formulas, Frank asked Dan to repeat himself (line 45). Dan responded with 

formal-symbolic reasoning, stating an incomplete version of Cauchy’s Integral Formula 

for Derivatives: 9(:L) = t!
EMS 	∫

í(C)
CâCã

 (line 46). In particular, his equation included the 
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variable x only outside the integral, but not as part of the integrand. For reference, the 

complete equation should read 9(:L) = t!
EMS 	∫

í(–)(C)
(CâCã)–Öi. Accordingly, it appeared that Dan 

meant to use the case where x = 0. 

 

Figure 156. Dan and Frank’s Toulmin diagram for Argument 2 for Task 11. 

 Nevertheless, Frank agreed with Dan’s symbolic inscription (line 47). As 

spokesman, Dan re-voiced his prior claim from lines 43-44 that “you’d evaluate [his new 

9] at, uh, −1” clarifying that here :L = −1 (lines 49-50). This time, Dan additionally 

provided a formal-symbolic warrant that this function is 9(:) = h
C(Câh) in the context of 

the path ´h (lines 48-49). As such, he symbolically concluded that the integral should be 

h
âh(âE) 2b8 = b8 (lines 49-50). However, after Dan came to this conclusion, Frank 

realized the aforementioned issue regarding obtaining different answers for the integral 

depending on which poles the path surrounds. He articulated this realization via the 
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qualifier, “Wait hang on. But does that mean we can get different results based on 

different poles?” (line 51). This insight opened a new fourth argument, as I detail 

following Figure 157, which summarizes Argument 3.  

 

Figure 157. Dan and Frank’s Toulmin diagram for Argument 3 for Task 11. 

 Frank commenced Argument 4 by elaborating on his concern expressed at the end 

of Argument 3. First, as spokesman, he recapitulated their original choice of ´h as well as 

the resulting value of the integral, b8 (line 52). But then he introduced an alternate 

description of ´h, such that this curve only encloses the origin (lines 52-53). Using this 

embodied datum, he authored a formal-symbolic claim that symbolically identified 

“9(:)” to be h
(Ckh)(Câh) based on the formal Cauchy Integral Theorem (lines 53-54). 

Consequently, Frank implemented this theorem to author a warrant involving evaluation 

of this new function 9 at the point : = 0 (lines 54-55). Multiplying this result of −1 by 

2b8 as before, Frank used symbolic reasoning to conclude that the value of the integral 
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along this new path is −2b8 (lines 55-56). He then named this new path ´h
∗  to distinguish 

it from the previous path ´h(line 57). 

 

 Seemingly surprised by the result of this last integral, Frank checked his result 

and uttered the qualifier “so I guess this is getting a little more complicated than I 

anticipated” (lines 57-58). As spokesman, he reiterated the two different answers they 

obtained by using the respective paths ´h and ´h
∗  (lines 58-60). Using a process analogous 

to the calculations for the other two paths, Frank argued that 9(:) = h
C(Ckh) in the case 

where the path encloses solely the pole at : = 1 (lines 60-62). At this time, Dan suddenly 

recognized his omission of x from the symbolic inscriptions pertaining to Cauchy’s 

Integral Formula for derivatives (lines 63-64). Meanwhile, Frank continued his 

calculation by authoring a formal-symbolic warrant, evaluating 9(1) = h
h(hkh), but briefly 

doubted whether he was plugging in the correct value of : (line 65).  
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To resolve this doubt, Frank provided backing for his warrant’s correctness, citing 

the fact that the path “contains the point 1” (lines 65-66). This backing was embodied-

symbolic in nature because it coupled a geometric property of the path with symbolic 

inscriptions evaluating the function at a particular value. With his concern abated, he 

finished stating his warrant by arguing that the value h
hkh = h

E needed to be multiplied by 

2b8, and employed symbolic reasoning to author a claimed result of b8 (line 66). Dan 

relayed the previous answers obtained from integrating along a path containing one pole, 

but mistakenly mentioned –b8 as part of the list, and Frank reminded Dan that they had 

not obtained such an answer. As spokesman, Frank recapitulated the two answers of 

−2b8 and b8, and reiterated the corresponding paths used to obtain these answers (lines 

70-72). This fourth argument is summarized in Figure 158 below.   

 

Figure 158. Dan and Frank’s Toulmin diagram for Argument 4 for Task 11. 
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 Next, Dan began a fifth argument by considering what results were possible if the 

path of integration contains two of the aforementioned poles (line 73). Frank authored an 

embodied claim that there were three possible paths for ´E, and provided an embodied 

warrant describing the three potential pairs of poles that the path could enclose (lines 74-

75). With these three possible paths in mind, Dan authored a formal claim that “it’d 

probably be easier to do [the] Residue Theorem” (line 76). Frank agreed, and Dan 

authored the rebuttal that “otherwise you’d have to do partial fraction decomposition” 

(lines 78-79). Dan also clarified his claim with the warrant that this theorem makes the 

symbolic calculations easier when considering paths that surround two or more poles 

(lines 79-80). A summary of Argument 5 is depicted in Figure 159. 
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Figure 159. Dan and Frank’s Toulmin diagram for Argument 5 for Task 11. 

 At this time, I asked a couple follow-up questions about Dan and Frank’s recent 

arguments. Specifically, I first asked about the function they labeled 9(:), given that I 

initially provided them with the integrand introduced as 9(:) (line 82). Apparently 

having recognized this potential ambiguity beforehand, Frank interjected and conceded 

that they should have labeled their other function > so as to avoid this issue (lines 83-84). 

He quickly adjusted their previous inscriptions on the board to reflect this change in 

notation (line 85). This catalyzed a short sixth argument in which Frank recapitulated the 

role of this function now denoted >. 
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 As spokesman, Frank proffered a warrant clarifying that this function > allowed 

him and Dan to put the integrand in a form amenable to the application of Cauchy’s 

Integral Formula (lines 86-88). He then illustrated this in the specific case where their 

path surrounded the point : = 1, in which case Frank concluded that they symbolically 

altered the integrand so that it had a denominator of : − 1 (lines 89-90). From this claim, 

he additionally surmised that this choice of denominator yielded a choice of >(:) =
h

C(Ckh) (lines 90-91). Frank explained, via a formal-symbolic warrant, that this choice of > 

served to “complete that form,” namely the form dictated by the theorem (line 90). This 

sixth argument is summarized in Figure 160. 



 307 

 

 

Figure 160. Dan and Frank’s Toulmin diagram for Argument 6 for Task 11. 

 To ensure that I understood how Frank and Dan used this function >, I asked 

Frank if both of the functions in the revised inscriptions for the Cauchy Integral Formula, 

>(:L) = t!
EMS 	∫

÷(–)(C)
(CâCã)–Öi , where actually supposed to be > (line 92). Frank responded by 

essentially reciting the various symbolic pieces in the theorem (lines 93-97), and as 

spokesman, changed the name of the curve from { to ´ in his inscriptions to align with 

the notation I initially provided. Continuing as spokesman, Frank re-voiced his first 

warrant from Argument 6 to underscore the role of > in their work once again. When 

finished, Frank inquired about Dan’s claim in Argument 5 regarding the relative ease of 

employing the Residue Theorem for this task (lines 99-100). This also happened to be 

relevant to the other clarification question I intended to ask Dan before moving on (lines 

101-102). 
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When I asked Dan about his rebuttal to the claim about residues (from line 78), he 

verbally maintained that a partial fraction decomposition would be necessary, but his 

facial expression indicated some uncertainty (line 103). In response to my inquiry for an 

explanation (line 104), Dan began a seventh argument by authoring a formal datum that 

they “still want to use [Cauchy’s Integral] formula” (line 105). As such, he concluded 

that when the path of integration contains multiple discontinuities, the formula becomes 

similar to that in the extended Cauchy-Goursat Theorem (lines 105-106). Dan qualified 

this assertion with the word “right?” (line 106), and Frank agreed with Dan’s claim (line 

107). 

 

Figure 161. Frank’s example paths illustrating the Extended Cauchy-Goursat Theorem. 
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Dan continued to explain this connection by arguing that if the contour is 

“simpl[e], um—or one positively oriented uh, closed” then the value of the integral over 

this contour is equivalent to a sum (lines 108-109). Frank interjected as spokesman and 

characterized this value as the sum of “the smaller ones” (line 110). As relayer, he 

affirmed Dan’s suggestion to use the extended Cauchy-Goursat Theorem, and illustrated 

the theorem’s applicability using an example. Instantiating embodied reasoning, Frank 

authored a datum by drawing a new plane as well as a path surrounding the points 0 and 1 

(lines 111-113; see Fig. 161).  

As spokesman, Frank articulated a warrant that explained the embodied and 

symbolic connections between this example path and the theorem. Using formal-

embodied reasoning, Frank argued that the theorem allowed them to draw two small 

paths surrounding the points 0 and 1, respectively (lines 113-114; see Fig. 161). Then, 

according to Frank, they could evaluate the integrals around each of these smaller paths, 

and pointed to their existing symbolic inscriptions corresponding to these two values 

(lines 114-115). Using formal-symbolic reasoning, Frank concluded that the theorem 

allows them to add these two integrals to obtain the value of the integral along the larger 

original path (line 115). A summary of Argument 7 is depicted in Figure 162. 
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Figure 162. Dan and Frank’s Toulmin diagram for Argument 7 for Task 11. 

 

 Next, Frank suggested that he and Dan continue to apply the extended Cauchy-

Goursat Theorem in the ´Ü case (lines 117-118). As spokesman, Dan agreed, and 
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clarified that doing so would allow them to express the integral as the sum of values they 

already calculated (line 119). Because they had only outlined a method to calculate the 

integral along an “´E” path, Frank began an eighth argument by considering the exact 

values of the integral along each possible ´E path. He first authored an embodied datum 

considering the case they ended Argument 7 with, namely a curve enclosing the points 0 

and 1 (lines 120-122). Using this particular ´E, Frank authored a symbolic claim that the 

integral is b8 + (−2b8) = −b8 (lines 122-123). Note that the two terms in this sum 

corresponded to the two values of their previous integrals around ´h when the path 

enclosed the points : = 1 and : = 0, respectively.  

 Similarly, Frank concluded that if ´E contains the points −1 and 0, then the 

integral around this path is also –b8. To support this assertion, he authored a symbolic 

warrant clarifying that the corresponding values for the integral around ´h surrounding 

each of these two points happened to also be b8 and −2b8 (lines 124-125). Continuing in 

this manner, Frank claimed that the integral around a path containing the points −1 and 

1	is 2b8, concluding the possible values for the integral around ´E (line 126). He then 

moved on to the ´Ü case, and relayed the two possible distinct values for the integral 

around ´E (line 127). However, Dan challenged Frank’s statement because he 

remembered the two answers as b8 and −2b8 rather than −b8 and 2b8 (line 128). In 

response, Frank reminded Dan that the b8 and −2b8 answers corresponded to integrals 

around ´h, and recapitulated his answers for the ´E cases (lines 129-131).  

 With this disagreement resolved, Dan authored a symbolic claim that the integral 

around ´Ü “should be 0” (line 132). As spokesman, Frank agreed and clarified that they 

should obtain 2b8 − 2b8 (line 133). I subsequently asked Dan and Frank for a little more 
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detail about how they obtained an answer of 0 (line 134). Frank responded by authoring 

backing for his previous warrant’s correctness, relaying the three answers obtained from 

integrating along the possible ´h paths (lines 135-137). Frank reiterated that they used the 

Extended Cauchy-Goursat Theorem to add up these three values and obtain their answer 

(line 137). A summary of Argument 8 is depicted in Figure 163 below.   

 

Figure 163. Dan and Frank’s Toulmin diagram for Argument 8 for Task 11. 
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 Once Dan and Frank finished providing the different possible values of the 

integral, I asked a follow-up question about the fact that they obtained the same answer of 

zero for integrals around different paths (lines 138-139). In response, Dan claimed that 

this was “probably coincidental” but looked unsure as he glanced at Frank (line 140). 

Frank tentatively agreed, and qualified Dan’s claim with the phrase, “I guess” (line 141). 

Using symbolic reasoning, Frank authored a warrant explaining that “the values basically 

cancel each other out,” presumably referring to the summands in the ´Ü calculation (lines 

141-143). Dan authored a second datum in the form of a symbolic hypothetical function 

9(:) = h
C(Ckh) (line 144).  

Using embodied-symbolic reasoning, Dan claimed that the integral around a path 

enclosing both : = 0 and : = 1 is “still not going to be 0” (line 145). He supported this 

assertion with a warrant that referenced their recent symbolic inscriptions (lines 145-

146). Frank agreed (line 147), and Dan used his previous claim to conclude more 

definitively that “you can’t generalize that to any function. It’s coincidental I think” (line 

148). Frank agreed, and authored an embodied-symbolic warrant that supported Dan’s 

assertion. Specifically, he argued that the integral vanishes when “the curve contains 

singularities where the integral about each singularity is the exact same” (lines 149-150). 

This led Frank to hypothesize that symmetry played a role in obtaining an integral of zero 

(lines 150-151). Argument 9 is summarized in Figure 164.  
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Figure 164. Dan and Frank’s Toulmin diagram for Argument 9 for Task 11. 

 

 Subsequently, I asked Frank a follow-up question about why he thought 

symmetry was at play (line 152). This catalyzed a tenth argument, which Frank began 

with a long pause (line 153). In order to elicit more detail, I relayed their previous 

observation that the two individual integrals “cancel[ed] each other out somehow” (line 
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l54). Frank responded by altering the given function 9(7) to include additional poles at 

: = 2 and : = −2. Using embodied-symbolic reasoning, he plotted these two additional 

points on their diagram and appended a corresponding (:E − 4) factor to their symbolic 

inscriptions (lines 155-156). As author, Frank concluded that the integral around all poles 

of this new function “would work out to 0 again,” and drew such a path in their diagram 

(lines 157-158). In support of this claim, he authored a warrant that “the integral about 2 

and −2 would end up cancelling with each other,” as when they integrated the original 

function (lines 158-159). He also provided a qualifier, “I think,” conveying a degree of 

uncertainty (line 159). 

 Because of Frank’s hesitation, I asked him and Dan if they wanted to verify 

Frank’s claim regarding this altered version of the function 9 (line 160). Shortly after, 

however, Frank changed his mind about the value of this new integral (line 161), and Dan 

agreed (line 162). As author, Dan followed with a symbolic warrant that “the values 

wouldn’t be the same,” and pointed to the :(: + 1) portion of the denominator (line 162). 

As spokesman, Frank again reiterated that he did not think the integral vanished (line 

163). I again asked why he thought this, and he erased his previous inscriptions in an 

effort to “clean this up a bit” (line 167). Dan also authored a qualifier to clarify that his 

counterexample was not ideal to illustrate their argument (line 168-169). Because Frank 

erased the majority of the inscriptions and they indicated a desire to pursue a different 

strategy, I treat this portion as the end of Argument 10, which is summarized in Figure 

165. 
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Figure 165. Dan and Frank’s Toulmin diagram for Argument 10 for Task 11. 
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 Argument 11 opened as Frank altered 9(:) again, this time providing the 

symbolic datum that 9(:) = h
C(Cjâh)(Cjâä). As spokesman, he employed symbolic 

reasoning to rewrite this function as h
C(Câh)(Ckh)(CkE)(CâE) (lines 170-171). After drawing a 

new Argand plane, Frank used this rewritten form of the function as a warrant to 

conclude that the poles occur at 0,±1, and ±2, and plotted these points on his newly 

drawn plane (lines 171-173). Frank began to discuss the impact of this change on the 

integral of this function, but I interjected to ask which path they were integrating along 

(line 175). Frank replied that he was trying to decide on that, and he asked Dan if they 

should calculate all possible values of the integral of this function (lines 176-177). They 

laughed, and Dan replied with a definitive “no” (line 178). 

 Instead, Frank suggested they focus on the integral along a path enclosing just the 

origin (line 179). He authored a corresponding embodied datum describing such a path, 

and drew the path on their diagram (lines 179-181). Subsequently, Frank authored a 

symbolic warrant that such a path required a choice of “>” that yielded the integrand 

i
(ÿÖi)(ÿŸi)(ÿÖj)(ÿŸj)

CâL  (lines 181-182). He used this warrant to justify a symbolic claim that they 

should evaluate the numerator of this expression at : = 0, and multiply by 2b8 to obtain 

an answer of MS
E   (lines 183-184). Frank then authored a qualifier that he thought “it would 

end up working,” referring to achieving an integral of zero using a path surrounding all 

the poles of this function (line 185). He made this more explicit when he claimed, as 

spokesman, that “if we had a curve about all the points, it should […] end up giving us 0 

again” (lines 187-188). Dan supported this assertion with an incomplete warrant 
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concerning the presence of negatives when evaluating the integrals around subsets of the 

collection of poles (line 186). Argument 11 is summarized in Figure 166 below. 

 

 

Figure 166. Dan and Frank’s Toulmin diagram for Argument 11 for Task 11. 
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 Subsequently, I decided to ask one more follow-up question about this 

observation regarding vanishing integrals, which began a twelfth argument. In particular, 

I inquired about whether they thought anything other than symmetry caused the integrals 

over different paths to be zero (lines 191-192). Once again, Dan and Frank stared at the 

board in silence for quite some time, so I clarified that I was not necessarily implying that 

there was another obvious explanation (lines 193-194). Dan claimed that he did not think 

there was anything else at play. He explained by authoring a rebuttal considering what 

would happen if the integral around a curve containing all poles of the integrand was 

always zero (lines 195-197).  

 Frank agreed, and articulated another example wherein the pole at : = 2 is 

replaced with one at : = 3 (line 198). He concluded that the integral around a path 

containing all poles would no longer be zero, but qualified this claim with the word, 

“right?” Frank also authored a symbolic warrant that “it wouldn’t just cancel out” (lines 

198-199). Ultimately, Frank confidently claimed that symmetry was the reason the 

integral vanished when the path enclosed all poles (lines 203-204). As spokesman, he 

reiterated with a symbolic warrant that “this is only working because […] fundamentally 

they are negatives of each other […] we end up getting matching values” (lines 199-201). 

Finally, Frank qualified this argument with a statement that other “geometric 

arrangements” of asymmetric poles could still yield a vanishing integral, but he would 

“have to spend some time to come up with one” (lines 204-206). Argument 12 is 

summarized below in Figure 167. 
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Figure 167. Dan and Frank’s Toulmin diagram for Argument 12 for Task 11. 

Task 11 – Riley and Sean 

 Sean began the pair’s response to Task 11 as spokesman, symbolically rewriting 

the provided function in factored form (lines 1-2). After I provided the additional data 

related to the path L (lines 3-4), Riley asked about the meaning of the Jordan curve 

portion of the hypothesis (line 5). Sean clarified by authoring the formal claim, “we just 

said it was— simply connected positively oriented curve” (line 7). Seemingly unsure 

about Sean’s claim, Riley questioned whether these two descriptions were actually 

equivalent (line 8). Because her qualifier was directed at me, I started to respond that they 

had the SICOPOC acronym (line 9). Riley once again asked if this is equivalent to the 

Jordan condition (line 10), and this time Sean claimed the affirmative (line 11). As 

spokeswoman, Riley summarized this condition as “a nice curve” (line 12), and given 

that neither Riley nor Sean mentioned the usual definition of a Jordan curve as having an 

interior and exterior, I provided this clarification (line 13).  
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 I also reminded Riley and Sean that this idea was briefly discussed in class, which 

I observed, though they did not prove the Jordan Curve Theorem (lines 15-17). This 

seemed to trigger Sean’s memory, as he recalled a theorem from the “real-analysis-type 

section” of the book that mentioned this property (lines 18-19). Riley recapitulated the 

definition as spokeswoman in the form of a claim (line 20), and Sean submitted a formal 

warrant that the theorem implies a SICOPOC is Jordan (line 21). Riley qualified this by 

hypothesizing that a SICOPOC “would probably be a more slightly specific version of a 

Jordan curve” (line 24). This first argument is summarized in Figure 168.  
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Figure 168. Riley and Sean’s Toulmin diagram for Argument 1 for Task 11. 

 With the clarification about Jordan curves settled, I continued to articulate the 

directions for Task 11 (line 25-29). This began a second argument, starting with Sean 

relaying the provided data (line 26). As author, Riley considered the three “points of 

discontinuity” at : = −1, 0, and 1 as an embodied-symbolic datum (lines 30-31) and 

qualified her datum with “right?” Sean agreed (line 32), and Riley then drew a path 

containing none of these points as an embodied datum (line 33; see Fig. 169). She began 

to author a warrant that the function is analytic over this region (line 34), but Sean 

interrupted as spokesman to name the region enclosed by this path as region 1 (line 35). 

Riley continued her line of reasoning as she authored a symbolic claim that the integral 

around this path is zero, but qualified this assertion with the word “right?” (line 36). Sean 

agreed with her claim (line 37) and Riley continued to discuss and sketch other potential 

paths surrounding the various poles (lines 38-40; see Fig. 170). 
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Figure 169. Riley’s diagram with region 1 containing no poles, Argument 2, Task 11. 

 

Figure 170. Riley's various possible paths L enclosing the poles in Argument 2, Task 11. 
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 Before Riley continued to discuss these other options, I asked her and Sean to 

clarify how they knew the integral over “region 1” was zero (lines 41-42). In response, 

Riley relayed her previous warrant and additionally provided embodied-formal backing 

for this warrant’s validity by mentioning the applicability of Cauchy’s Theorem in light 

of the function’s analyticity (lines 43-46). The embodied aspect of this backing came 

from a circular tracing gesture she produced in the air to instantiate “a closed curve” (line 

44; see Fig. 171). This clarification signaled the end of Argument 2, which is depicted in 

Figure 172. 

 

Figure 171. Riley’s gesture for "closed curve" mimicking curve 1 in Argument 2. 

 

Figure 172. Riley and Sean’s Toulmin diagram for Argument 2 for Task 11. 
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 Sean began Argument 3 by previewing the invocation of the Extended Cauchy-

Goursat Theorem as a formal warrant (line 47). But first he clarified his datum, embodied 

by a dotted elliptical curve surrounding the poles 0 and 1 (lines 47-48; see Fig. 173). 

Combining symbolic, formal, and embodied reasoning, Sean authored a claim that the 

integral over his elliptical path is equal to the sum of the integrals around “small circles” 

surrounding each of the two poles, which he drew in red (lines 48-51; see Fig. 174). Sean 

began to discuss the values of the integrals along these small circles, but Riley interjected 

that she would prefer to use residue theory (line 52). Sean authored a formal claim that 

both methods are equivalent (line 53), and supported this assertion with a symbolic 

warrant detailing the two respective solutions (lines 53-57).  
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Figure 173. Sean's new dotted region for Extended Cauchy-Goursat, Argument 3. 

 

Figure 174. Sean's red “small circles” in Argument 3, Task 11. 

 However, Riley challenged Sean’s warrant with the qualifier, “But it’s not going 

to be 4b8 here, is it?” and cited the fact that 9 was not “simple” (in the colloquial sense) 

like hC (lines 58-59). Accordingly, Riley authored a symbolic claim that in such instances, 

they would have to proceed via partial fractions (lines 59-60). Sean qualified Riley’s 

claim by hesitantly agreeing with her and erasing his previous answer of 4b8 (line 61). 

He also agreed with Riley by identifying the residue method as “a little better” (line 62). 

Argument 3 is summarized below in Figure 175. 
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Figure 175. Riley and Sean’s Toulmin diagram for Argument 3 for Task 11. 

 

 After reaching this agreement, Sean got “hyper-specific” and determined the 

value of the integral using the residue approach (lines 65-66). This segment incorporated 

embodied-symbolic reasoning, in that Sean pointed to the points 0 and 1 in order to 

decide which limits to evaluate in the symbolic residue calculation. Sean did not proceed 

to evaluate the specific value of his symbolic expression, so I asked him to do so (line 

67), and he symbolically obtained –b8 (line 69). This brief exchange comprised 

Argument 4, which is depicted in Figure 176 below.   
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Figure 176. Riley and Sean’s Toulmin diagram for Argument 4 for Task 11. 

 

 Riley began a fifth argument by authoring a symbolic datum that Sean’s approach 

in Argument 4 only used two specific poles (line 70). However, she and Sean pointed out 

that this approach could be generalized to other poles (lines 73-74). As spokeswoman, 

Riley relayed Sean’s previous findings about the values of the residues at : = 0 and : =

1, then applied their symbolic warrant to evaluate the residue at the pole : = −1 (lines 

75-83). She qualified her claim with the questions “was it?” and “Right?” as she glanced 

back at Sean’s symbolic inscriptions (lines 75-76, 78). Because Riley was not providing 

detail about how she obtained her computations, and because she was uncertain and 

initially incorrect about the last value she obtained, I asked her to elaborate on these 
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calculations (line 84). This catalyzed a new argument; Argument 5 is summarized in 

Figure 177. 

 

Figure 177. Riley and Sean’s Toulmin diagram for Argument 5 for Task 11. 

 Riley began Argument 6 by implementing symbolic reasoning to identify : =

−1, 0, and 1 as first-order poles (lines 85-86). She provided the definition of the residue 

of a function 9(:) at a generic point :L, though she forgot to mention a limit (lines 86-

88). Thus, Sean stepped in as spokesman and mentioned taking the limit of Riley’s 

symbolic expression as : approaches :L (line 89). Next, Sean authored a datum 

considering the case where one’s pole is of order ”, and Riley claimed “Then you have to 

do derivatives and stuff” (line 91). Using formal-symbolic reasoning and as spokesman, 

Sean wrote out corresponding inscriptions for Riley’s claim (line 92) and Riley labeled 

Sean’s symbolism with “pole of order k” (line 93). 
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 After explaining this general form of the residue calculation, Sean authored a 

symbolic claim that this form also “works here” in the ” = 1 case, and provided a 

symbolic warrant that the function 9 corresponds to the zeroth derivative in this case 

(lines 94-95). Afterwards, Riley qualified this clarification by asking, “Did that answer 

the question?” (line 96). I responded that they did, but asked another follow-up question 

regarding any assumptions they were implicitly imposing on the function or domain in 

order to use the residue theorem (lines 97-98). This began Argument 7, which is detailed 

below; Argument 6 is summarized in Figure 178. 
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Figure 178. Riley and Sean’s Toulmin diagram for Argument 6 for Task 11. 

 

 Riley began Argument 7 by considering the function 9; she started to author a 

claim about properties of 9 allowing the use of residue theory, but Sean interrupted with 

the formal claim that the function needs to be “expressed as a Laurent series” (line 100). 

Riley qualified Sean’s claim by commenting, “Yeah I think that’s part of it” (line 101), 

but added that 9 needs to be analytic along ´ (line 101). This formal verbiage in her 

addendum also accompanied embodied reasoning, in that Riley traced out a visualized 

closed path ´ while verbalizing her statement (lines 101-102; see Fig. 179). 
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Figure 179. Riley’s tracing gesture for some path L, Argument 7, Task 11. 

 Using her clarification as a datum, Riley authored a formal-embodied claim that ´ 

could not pass through one of the poles as a result of this analyticity (lines 102-103). She 

continued to provide another property that the function has to be analytic “everywhere 

inside of ´, except for those specific points” (lines 103-104), a property she used as a 

datum for the claim that such points must be “isolated” (lines 104-105). As 

spokeswoman, Riley summarized her requirements for 9 as brief inscriptions on the 

whiteboard (lines 104-105). She paused for some time, and because she had not 

mentioned requirements about the domain, I asked a follow-up question about this (line 

106). Argument 7 is summarized in Figure 180 below. 

 

Figure 180. Riley and Sean’s Toulmin diagram for Argument 7 for Task 11. 
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 In response to my follow-up question, Sean began Argument 8 by authoring a 

formal-embodied warrant that “the only poles you can consider are the poles in the 

region” (line 107). He used this warrant to claim that this was the reason they did not 

calculate the residue at :L = −1 inside their red curve previously (lines 107-108). He 

paused for a while after authoring this claim, so I asked Sean and Riley about the given 

assumption that ´ was a simple closed curve (line 109). In response, Riley provided an 

embodied example of a non-simple curve that “loops around itself” (lines 110-111; see 

Fig. 181).  

 

 

Figure 181. Riley's example of a non-simple curve in Argument 8, Task 11. 

I asked her what would go wrong in the residue theorem if they used such a curve 

(line 112), and she responded by authoring an embodied datum considering a singularity 

in the upper portion of her figure eight (lines 113-114). Sean claimed that “it would go 
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wrong there,” but did not provide a reason as to why (line 115). Riley concluded that the 

curve does have to be simple, but both she and Sean qualified this conclusion with 

verbiage and pauses that suggested some uncertainty (lines 116-118). Argument 8 is 

depicted in Figure 182.  

 

Figure 182. Riley and Sean’s Toulmin diagram for Argument 8 for Task 11. 

 Given that Riley and Sean reached an impasse regarding the simplicity 

assumption for ´, I asked if Riley’s example curve was a Jordan curve (line 119), and she 

indicated that this was what was confusing her (line 120). She began a new ninth 

argument by remarking that her figure-eight shape appeared to have “an internal and 

external point” (line 121). Riley generated another example curve as an embodied datum 

(lines 121-122; see Fig. 183), and claimed that this limacon with inner loop would still 

not be simple (line 122). However, Riley drew a point within the inner loop (see Fig. 

183) and claimed that is was not clear whether this point would be considered as an 
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interior or exterior point with respect to the entire limacon (lines 122-123). This led her to 

qualify this argument by questioning whether Jordan curves can be non-simple (line 124).  

 

 

Figure 183. Riley's limacon with inner loop and point within inner loop, Argument 9. 

I redirected this question back to Riley and Sean, and Sean replied “I’m not sure” 

(lines 125-126). Riley added to her qualifier by stating that she does not “know the 

definition very well” (lines 127-128). Because the pair had once again reached an 

impasse about the assumptions needed for residues, I suggested that maybe they could 

pursue a different approach (lines 129-131). This catalyzed a new argument, as detailed 

following Figure 184, which summarizes Argument 9. 
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Figure 184. Riley and Sean’s Toulmin diagram for Argument 9 for Task 11. 

 As an alternative approach, Riley suggested that she and Sean employ the 

“extended Cauchy Integral Formula” as a formal warrant (line 132).  Implementing 

embodied reasoning, she drew a region and plotted several points inside the region 

representing “points of discontinuity” (lines 135-137; see Fig. 185). She clarified that, in 

their case, these discontinuities were located at : = −1, 0, and 1, and qualified her datum 

with the word “right?” (line 137).  
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Figure 185. Riley’s sample region and points of discontinuity, Argument 10, Task 11. 

Returning to her warrant, she added that “you have to be analytic along the whole 

curve” (line 140). As author, she invoked this warrant to surmise that the integral along 

this curve is equal to the sum of the integrals around small circles about the 

discontinuities (lines 139-142). This embodied-symbolic reasoning incorporated an 

updated diagram in which Riley drew in the aforementioned small circles (see Fig. 186). 

Afterwards, she began to exemplify her argument with a different function, but I 

redirected her to work with the provided function from Task 11 (lines 144-148). 

Argument 10 is summarized in Figure 187. 

 

Figure 186. Riley’s "integral around each of these summed," Argument 10, Task 11. 
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Figure 187. Riley and Sean’s Toulmin diagram for Argument 10 for Task 11. 

 Following my redirection back to the task at hand, Sean began Argument 11 by 

authoring a symbolic datum that considered a partial fractions decomposition, and Riley 

qualified this suggestion with the question, “What is it going to be? Um” (lines 149-152). 

Sean symbolically set up the partial fractions decomposition, and employed the usual 

technique of evaluating the resulting equation at conveniently-chosen values of : to 

obtain P = −1 and ∂ = h
E = { (lines 153-156). He used these resulting values of P,∂, { 

as a symbolic warrant to claim that ¥C 	 + ≥
Câh 	 + É

Ckh = −h
C + h

E ƒ h
Câh≈ 	 + h

E ƒ h
Ckh≈ (line 

157), thereby completing Argument 11, which is depicted in Figure 188. 
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Figure 188. Riley and Sean’s Toulmin diagram for Argument 11 for Task 11. 

 Riley began Argument 12 by symbolically replacing the integrand 9(:) by its 

partial fractions decomposition (lines 161-162). She employed embodied-symbolic 

reasoning as she authored a claim that “we choose three curves” based on the warrant that 

“we have 3 points of discontinuity” (lines 162-163). She somewhat arbitrarily designated 

these curves to be circles of radius 1/2 (line 163), and claimed that the integral over the 

entire curve is equal to the sum of the integrals about each of these three small circles 

(lines 163-168). She qualified this assertion with the question, “Am I doing this right?” 

(line 165). She also expressed some hesitation about her observation that the function is 

not analytic over these three circles, but hypothesized that they could still parametrize 

(lines 169-170). This brief argument is summarized in Figure 189.   
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Figure 189. Riley and Sean’s Toulmin diagram for Argument 12 for Task 11. 

 Riley discussed the details of evaluating each of the three integrals during 

Argument 13, which she began as spokeswoman, once again drawing an arrow from her 

symbolic inscription to signify its evaluation (lines 171-172). Using formal-symbolic 

reasoning, she authored a warrant resting on the analyticity of the terms h
Câh and h

Ckh, and 

supported this warrant with backing for its validity: “we can split up the integral” (lines 

172-173). Riley then authored a claim that the integrals of both these terms vanish (lines 
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173-174). Accordingly, as spokeswoman, Riley symbolically rewrote the integral 

∫ 9(:)	
Éi

j
(L) J: as ∫ − h

C
	
Éi

j
(L) J: (lines 175-176). 

 

 With the first term simplified significantly, Riley turned her attention to the 

integral of the other two terms, ∫ h
E

h
Câh + h

Ckh J: (lines 177-178). She again qualified this 

symbolic datum with the word “right?” (line 178). Riley symbolically claimed that this 

portion of the integral vanishes, based on a formal warrant appealing to the function’s 

analyticity in the region (lines 178-180). Finally, she returned to the integral ∫ −h
C

	
Éi
j
(L) J: 

and claimed that its value is −2b8 (lines 181-182). As a supporting warrant, Riley 

explained that one only needs to modify the familiar result of the integral of 1/: over a 

closed circle by negating the answer (lines 182-183). While she discussed this familiar 

symbolic result, she produced an embodied tracing gesture to represent the circular path 
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(see Fig. 190). She also qualified this assertion with the rhetorical question, “we’ve gone 

over this enough times […] right?” (lines 181 & 183). Given we had discussed the 

integral over one particular path for some time, I asked Riley to clarify which path she 

was integrating over in this argument as a way to segue into the rest of the possible 

values of the integral in Task 11 (lines 187-190). Argument 13 is summarized in Fig. 191. 

 

Figure 190. Riley’s tracing gesture for "integral over this closed circle,” Argument 13. 

 

Figure 191. Riley and Sean’s Toulmin diagram for Argument 13 for Task 11. 
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 Next, Riley discussed how to alter her approach from Argument 13 to obtain the 

integral over other possible paths ´. Specifically, she began Argument 14 by considering 

the embodied datum of a path ´ “that wasn’t around all three points” (line 191), and 

claimed that in such a case, one would just omit whichever terms in the expression 

∫ 9(:)	
Éi

j
(L) J: + ∫ 9(:)	

Éi
j
(âh) J: + ∫ 9(:)	

Éi
j
(h) J: coincided with poles not surrounded by 

the path (lines 191-193). After this aside, Riley returned to the expression 

∫ 9(:)	
Éi

j
(L) J: + ∫ 9(:)	

Éi
j
(âh) J: + ∫ 9(:)	

Éi
j
(h) J: in order to evaluate the two remaining 

terms; recall that up to this moment, she had evaluated ∫ 9(:)	
Éi

j
(L) J:.  

 Turning her attention to the second integral ∫ 9(:)	
Éi

j
(âh) J:, Riley mentioned that 

one could evaluate this integral in a similar fashion to ∫ 9(:)	
Éi
j
(L) J:, “except for now, 

you’re centered at −1 instead” (lines 193-194). In particular, she authored a datum that 

h
E

h
Ckh was now the portion of the partial fractions decomposition that was not analytic, and 

that the other two terms vanished under the integral (lines 195-197). After a lengthy 

pause, Riley authored a symbolic claim that ∫ 9(:)	
Éi
j
(âh) J: = b8, and qualified this claim 

with “right?” (line 198). As spokesman, Sean represented this answer as hE (2b8), which 

Riley acknowledged as equivalent to her claim (lines 199-200). Sean authored a formal-

symbolic-embodied warrant for their claim, namely that “you’ll get 1 over (: minus your 

pole), integrate over a circle, centered at your pole, which always goes to 2b8. Because 

that's the only pole in your circle” (lines 201-202).   
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 Finally, Riley considered the third integral ∫ 9(:)	
Éi
j
(h) J: and authored a symbolic 

claim that the result would still be hE (2b8), citing the symbolic warrant that “the one will 

cancel” and that “it really doesn’t matter where you’re centered” (lines 203-205). In total, 

then, Riley and Sean added their three integrals to obtain zero (lines 206-208), and Riley 

pondered whether they would get the same result by adding the three residues from 

before (line 209). Sean affirmed Riley’s suspicion symbolically by adding hE + 1 − h
E to 

obtain zero (line 210). Argument 14 is summarized in Figure 192. 
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Figure 192. Riley and Sean’s Toulmin diagram for Argument 14 for Task 11. 

 

 As a follow-up question, I asked Riley and Sean if they could think of any other 

paths that would yield an integral of zero (lines 213-217). This commenced Argument 15, 

which Riley began with the claim “I don’t think so,” though she provided her usual 

qualifier of “right?” to signal some uncertainty (line 218). She mentioned that she 
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preferred to think in terms of residues, and she considered situations in which adding “all 

three residues” yields a result of zero (lines 218-219). In particular, she incorporated 

symbolic reasoning to author a claim that the “full integral” vanishes precisely when the 

sum of the residues is zero (lines 220-221). To support this assertion, she authored a 

symbolic warrant that the residue calculation amounts to multiplying 2b8 by the sum of 

the residues, i.e. “you’re just multiplying by 2b8” (line 220).  

Accordingly, Sean symbolically surmised that the only way one could obtain a 

sum of zero from these three terms is if the curve contains either all three poles or none of 

them (line 222). Riley hypothesized that perhaps a non-simple curve might also yield a 

vanishing integral, but I reminded her that in this task we were only considering simple 

curves (lines 226-228). In response, she concluded that she could not think of any other 

ways to obtain zero, once again citing that “there’s no other way to add [the three 

residues]” (lines 229-230). Argument 15 is summarized in Figure 193. 

 

Figure 193. Riley and Sean’s Toulmin diagram for Argument 15 for Task 11. 



 347 

 

 Because Riley mentioned a preference for Residue Theory, I asked one final 

follow-up question about this (lines 231-232). This catalyzed one final argument related 

to Task 11, as follows. Riley claimed that she finds this method “easiest” (line 233), and 

Sean authored a symbolic warrant that this ease comes from not having to “do partial 

fractions” (line 234). Riley conceded that even though partial fractions are “not that bad” 

(line 235) the decomposition “takes more time” (line 237). Sean provided symbolic 

backing for this warrant’s correctness by discussing a situation in which the denominator 

contains higher-order poles and hence “the partial fractions would take forever” (lines 

239-241). Argument 16 is depicted in Figure 194. 

 

 

Figure 194. Riley and Sean’s Toulmin diagram for Argument 16 for Task 11. 
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Task 11 Summary 

 All four participants insisted at some point during this task that to find the integral 

of the function along a path containing multiple poles, they would have to either use 

residue theory or decompose 9(:) into partial fractions. In such instances, both pairs also 

indicated a preference for residues, although when I asked Dan about why he felt partial 

fractions might be necessary, he and Frank ended up changing their minds and used the 

Extended Cauchy-Goursat Theorem instead. Moreover, when I asked Riley and Sean 

what assumptions were needed to use the Residue Theorem, they struggled, particularly 

when discussing why they thought ´ needs to be simple and/or Jordan, and if you can 

have a Jordan curve that is not simple. In Task 11, Riley and Sean continued to evidence 

more embodied reasoning than Dan and Frank. However, the majority of Dan and 

Frank’s embodied reasoning alluded to small circular paths around poles contained inside 

the path ´ while applying the Extended Cauchy-Goursat Theorem, and this was also a 

common source of embodied reasoning for Riley and Sean as well. As in previous tasks, 

Riley produced many tracing gestures embodying a closed path as she discussed the 

integral around such a path, though she tended to be the only participant to do so in Task 

11. 

Task 12 – Dan and Frank 

 The twelfth task required participants to provide a general personal 

characterization of the integral of a complex function, as well as to compare this 

description to that of a real-valued integral (lines 1-4). Because Dan and Frank’s initial 

response did not contain an explicit argument, I focus the discussion more on the 

participants’ instantiation of Tall’s (2013) three worlds. Dan responded first, admitting 
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that he did not attribute any particular meaning to a complex integral (line 5). 

Subsequently, Frank recalled Professor X’s first lesson on integration in their complex 

variables course, and provided an embodied description of integration as “adding up a 

bunch of vectors […] along the curve” (lines 6-8). Dan agreed (line 9), and Frank added 

that such a characterization makes sense because “fundamentally, vectors are all these 

complex numbers are” (lines 10-11). This statement suggests an invocation of the formal-

embodied world, in the sense that the formal identification of complex numbers as 

vectors lent credence to the embodied drawing that he remembered from class. 

 

 Frank followed the aforementioned observation with an illuminating remark 

regarding the way he thinks about integration of complex functions. In particular, he 

explained that he does not “really take the time to think about [integration] in terms of 

vectors” when integrating specific functions. Rather, he “just think[s] about the formulas 

and the theorems that we regularly deal with” (lines 12-13). Accordingly, he 

compartmentalizes the characterization of integration as adding up vectors, 

acknowledging it as “the purest form,” but one that he need not invoke when computing 

integrals or using the Cauchy-Goursat Theorem (lines 13-14).  
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 Afterwards, Dan contrasted Frank’s formal-embodied vector description against 

integration of real-valued functions. He pointed out that “doing calculus in real variables, 

there’s all sorts of ways you can visualize [integration]” (lines 15-16). Frank proffered 

the archetypal embodied portrayal of “Area under the curve” (line 17), and Dan listed 

additional interpretations as distance travelled and work (line 18). However, in the 

complex setting, Dan conceded, “For this, I honestly don’t know” (line 19). Frank agreed 

and relayed his previous description involving vector addition (lines 20-21). Because I 

wanted to hear more of their thoughts about the relationship between integration in the 

real and complex settings, I asked Dan and Frank a follow-up question about complex 

contexts wherein integration still represents area (lines 22-24). This question initialized a 

Toulmin (2003) argument, as I detail below. 

  Dan began this argument by authoring a symbolic datum considering the function 

9(:) = 1 (line 25). He qualified this contribution with the phrase “I mean maybe,” 

suggesting some uncertainty. Because neither he nor Frank expanded on why this might 

represent area, I asked Dan why integrating such a function might yield an area, and also 

asked what path of integration he had in mind (lines 27-29). Frank responded by asking 

Dan if he was thinking about double integrals, as when integrating a density function 

over a region in multivariable calculus (lines 31-32). Accordingly, he suggested an 
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embodied-symbolic warrant relating the symbolism of a double-integral to the area of a 

region via a function embodied as a density.  

 

 Although Dan did not confirm that he necessarily thought about the situation in 

this way (line 32), I asked him and Frank how they might relate such an integral to a 

double integral (line 33). As author, Frank answered that Green’s Theorem could provide 

such a connection, given that most integrals they dealt with involved closed paths. Hence, 

he provided formal-symbolic backing for his prior warrant’s validity by describing why a 

double integral applied to the situation at hand. This backing also contained a formal-

embodied aspect, in the sense that he perceived the theorem to be applicable based on the 

closed attribute of the path. He further elaborated, “that also makes sense because […] 

it’s kind of irrelevant trying to find the area of a shape that’s not closed” (lines 38-39). 

Frank concluded, with some hesitation, that “in that way, we could come up with a way 

to solve for the area of something” (lines 36-37). This sole argument about Task 12 is 

summarized in Figure 195 below. 
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Figure 195. Toulmin diagram for Dan and Frank’s Argument 1, Task 12. 

Task 12 – Riley and Sean 

 Although I articulated Task 12 to Riley and Sean in such a way that did not favor 

any one of Tall’s (2013) three worlds (lines 1-5), Riley responded by discussing her lack 

of a “good geometric interpretation” for integration in the complex setting (line 6). She 

provided the usual interpretation of real integrals as “area under the curve,” but 

deliberately avoided thinking real, doing complex (Danenhower, 2000) as she clarified 

that “that analogy doesn’t apply […] for complex functions” (lines 6-10). As such, she 

reiterated her difficulty with embodying integration of complex functions (lines 10-11). 

Sean suggested that he and Riley attempt to come up with such an embodied 

interpretation (line 12). In response, Riley recalled discussing “displacement and stuff” 

from earlier in the interview, but conceded that she does not naturally think of such 
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physical interpretations, but rather “algebra” (lines 13-14). Regardless, Sean suggested 

they try something to “see where it goes” (line 15).  

 

 Rather than continuing to discuss their thoughts and tendencies in generality, Sean 

began an argument connecting the complex setting “back to Calc 3” (lines 17-18). He 

authored a symbolic datum considering a complex function 9(:) as “an ordered pair of 

points,” ~(7, R), �(7, R) (line 17). Continuing with symbolic reasoning, Sean relayed his 

previous penchant towards Calc 3 and wrote corresponding inscriptions for integration in 

that setting as ∫ ]⃗ ∙ JQ	
É  (lines 20-21). Riley authored a hesitant claim that such 

inscriptions represent work, and qualified this statement by questioning, “right? Or 

Something?” (line 22). 

 After relaying his previous datum about an ordered pair, Sean re-voiced this as 

spokesman in the language of vectors (lines 23-24). He then authored a new embodied-

symbolic data considering an arbitrary point : expressed as a vector, the function 9(:) =

:, and a semicircular, positively oriented path passing through his point (lines 24-27; see 

Fig. 196). Continuing with embodied-symbolic reasoning, Sean authored a claim that J: 

represents an “incremental path,” which he illustrated by sketching a small vector 
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between nearby points along the curve (lines 27-29; see Fig. 197). Consequently, Sean 

concluded as spokesman that the original integrand can be rewritten as a dot product 

between the vector 9(:) = : and the differential vector J: (lines 29-31).  

 

Figure 196. Sean’s initial setup for Argument 1, Task 12. 
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Figure 197. Sean’s vector J: representing an “incremental path,” Argument 1, Task 12.  

As he articulated this embodied-symbolic claim, Sean pointed to the embodied 

vectors on the whiteboard to convey which objects to “multiply,” and also pointed to the 

symbolic inscription ∫ ]⃗ ∙ JQ	
É  to highlight how the “language of Calc 3” influenced his 

complex reasoning (lines 30-31 & 33-34). Finally, he clarified that the integral symbol 

meant adding up the results given by his dot products, and he provided an embodied 

gesture to illustrate this summing of vectors along the semicircular path (lines 31-32; see 

Fig. 198). As I discuss further in the Task 12 Summary and in Chapter V, note that 

Sean’s application of the dot product to complex numbers is incorrect, given that 

complex numbers have their own well-defined product. Nonetheless, Argument 1 is 

summarized in Figure 199. 

 

Figure 198. Sean’s gesture for “Just add it up” in Argument 1, Task 12. 
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Figure 199. Toulmin diagram for Riley and Sean’s Argument 1, Task 12. 

 Following up on her previous claim in Argument 1, Riley began Argument 2 by 

revisiting her connection to a work application (line 35). In particular, she authored an 

embodied-symbolic datum characterizing the function ](:) as “the force being applied at 

:” (line 36). Citing an embodied warrant of “force applied over distance,” Riley re-

voiced her claim as spokeswoman and concluded “you could think of it in terms of work” 

(lines 38-39), though she qualified this claim with “I guess” (line 38).  

 

 Sean agreed and authored a symbolic claim that this integral would be zero; he 

provided a supporting embodied warrant that : and J: are “always perpendicular” (line 
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40). Sean additionally provided backing for this warrant’s field by emphasizing the 

connection to Calc 3 as he drew symbolic parallels between the real component functions 

⁄(7, R) and €(7, R), and the complex component functions ~(7, R) and �(7, R) (lines 41-

44). As spokesman, Sean summarized that he thinks of complex integration “vectorially” 

(line 44). Argument 2 is depicted in Figure 200 below. 

 

Figure 200. Toulmin diagram for Riley and Sean’s Argument 2, Task 12. 

 

 Subsequently, I asked Riley and Sean if they remembered a way to relate an 

integral such as ∫ ]⃗ ∙ JQ	
É  to a double integral (lines 45-46). In response, Sean began a 

third argument by authoring an embodied datum considering a closed region è and its 
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boundary { (lines 47, 49-50). He clarified his formal warrant, Green’s Theorem (line 47), 

and symbolically concluded that one can write the previous single integral as the double 

integral ∬€< − ⁄ò  (line 50). Moreover, Sean and Riley provided backing for their 

warrant’s field, in that Sean identified Green’s Theorem as a Calc 3 property, but Riley 

argued that this result “works for uh, complex as well” (lines 51-52). Sean additionally 

qualified Riley’s contribution to the backing by remarking, “I think it was used in […] 

the Cauchy Theorem of integrals” (line 53). Argument 3 is summarized in Figure 201 

below. 

 

Figure 201. Toulmin diagram for Riley and Sean’s Argument 3, Task 12. 

 Afterwards, I asked another follow-up question about how they interpret double 

integrals, this time probing more specifically about Riley and Sean’s embodied 

perceptions (lines 54-55). Riley answered that she thinks about “an area bounded by two 

curves” (line 56), and Sean agreed (line 57). Riley then elaborated on her thoughts via 
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Argument 4, as follows. She began by authoring an embodied datum considering a region 

è and an embodied claim about connecting two curves within this region (lines 58-60; 

see Fig. 202). She also provided her usual qualifier of “right?” to obtain affirmation (line 

60). Employing embodied-symbolic reasoning, Riley authored a datum detailing the 

limits of integration and specifying the integrand 9(:) = 1. In this case, Riley concluded 

that the double integral of this function over the region è yields the area of è (line 62).  

 

 On the other hand, Riley authored another datum considering a more involved 

integrand (lines 62-63) and articulated an embodied warrant indicating that the physical 

interpretation of this integral depends on what 9(:) represents (line 63). She ultimately 

decided to consider a density function, and concluded that the integral of such a function 

yields a mass (lines 64-65). She once again qualified this assertion with the word “right?” 

(line 65), and Sean affirmed her claim (line 66). As spokeswoman, Riley returned to her 

previous statement that she thinks of areas when she comes across double integrals, and 

Sean agreed (line 67-68). Riley’s Argument 4 is summarized in Figure 203.  
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Figure 202. Riley’s diagram illustrating the region D in Argument 4, Task 12. 

 

Figure 203. Toulmin diagram for Riley’s Argument 4, Task 12. 

 

 In the brief embodied-symbolic Argument 5, Sean authored a warrant that one can 

think of 9(7, R) as a “surface over the x-y plane” (lines 71-72).  Thus, he concluded that a 
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double integral in such a context represents the volume of that surface (lines 72-73). 

Argument 5 is depicted in Figure 204 below.  

 

Figure 204. Toulmin diagram for Riley and Sean’s Argument 5, Task 12. 

 

 Subsequently, Sean discussed a “more general version” (line 75) of his and 

Riley’s thoughts in Argument 6. He authored an embodied datum considering a setting 

comprised of a three-dimensional surface rather than just a curve (lines 75-76). Sean then 

authored a symbolic warrant detailing how the integral setup changes and incorporates 

the curl of the function in this context (lines 76-77). Incorporating formal-symbolic 

reasoning, he claimed that this revised symbolism reduces to Green’s Theorem “for the x-

y plane, but it goes to this more general version, I think it was Stokes’ Theorem at this 

point” (lines 77-79).  
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 With these connections in mind, Sean proffered a tentative claim about extending 

this type of argument to the complex setting (line 80). He immediately followed this 

claim with a rebuttal reflecting his interpretation that “it’s like you have a third dimension 

so it’s kind of weird” (lines 80-81). Sean also qualified his claim by conceding, “Maybe 

there is but I don’t really know” (lines 81-82). In support of his connection, he authored a 

formal-embodied warrant listing various physical interpretations of complex applications, 

all of which he identified as two-dimensional and thus compatible with Green’s Theorem 

(lines 82-85). As such, he pondered whether these applications could generalize to three 

dimensions (line 85). Sean’s Argument 6 is depicted in Figure 205. 

 

Figure 205. Toulmin diagram for Sean’s Argument 6, Task 12. 
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 As one final related follow-up question, I asked Riley and Sean what makes 

complex functions difficult to visualize (line 86), which prompted Argument 7 as 

follows. Riley responded by authoring an embodied datum that “you’re going from an x-y 

plane to an x-y plane” (line 87), and contrasted this against a “normal function” in which 

case “you’re going from like the x to y” (line 87). In the latter setting, she authored the 

embodied claim that “it’s easier to graph in two dimensions” and offered the embodied 

warrant “cuz that’s how we draw things” (line 89). She returned to the complex setting 

and claimed that graphing “becomes four-dimensional […] which we don’t graph very 

well” (line 92), and cited the embodied warrant that “you have to have color or time or 

something” as the fourth dimension (lines 93-94). As spokesman, Sean added to this 

warrant by articulating that there are essentially “4 axes and you can’t really visualize 

that at all” (lines 95-96). Accordingly, he claimed, “So you lose your visuals, but you still 

have all the math!” (line 97). Argument 7 is summarized in Figure 206.  
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Figure 206. Toulmin diagram for Riley and Sean’s Argument 7, Task 12. 

Task 12 Summary 

Both pairs of participants discussed an embodied interpretation for complex 

integration as summing vectors, however neither completely fleshed out the geometric 

details of this description. Although Sean’s “Calc 3” approach from Argument 1 was on 

the right track, he incorrectly applied the dot product to the complex setting, as the 

complex field ℂ is endowed with its own multiplication operation on vectors. Compared 

to Dan and Frank, Riley and Sean formed more actual arguments in response to Task 12, 

though to be fair, several of these stemmed from follow-up questions I asked. During 

these extra arguments, Riley and Sean instantiated backing for their warrants’ field when 

alluding to Calculus 3 ideas for integration; this is notable because this type of backing 

was used only sparingly throughout most of the other tasks. 
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Additionally, in this task, Riley and Sean demonstrated two types of reasoning 

related to thinking real, doing complex. First, Riley deliberately attempted to avoid 

thinking of complex integration as area under the curve, thus avoiding inappropriate 

invocation of thinking real, doing complex. On the other hand, Sean made connections 

back to Calculus 3 that supported thinking of complex numbers and functions as vectors. 

As discussed previously, some of these connections were beneficial while other details 

were problematic. Although both pairs of participants exhibited these two types of 

reasoning individually in other tasks, this task was relatively unique in that they alluded 

to both in the same task. That being said, this task seems like a natural candidate for both 

types of reasoning to show up, in that it called for a general overview of participants’ 

thoughts on the meaning behind complex integration. 

Task 13 – Dan and Frank 

 The thirteenth and final task required participants to discuss the conditions under 

which a complex function has an antiderivative (lines 1-3). Frank began Argument 1 by 

commenting that this question was on their recent exam (line 4). He authored formal-

embodied data considering the existence of a simply-connected domain that contains the 

path of integration (lines 4-6). Frank also stated a qualifier that “if 9 is analytic 

everywhere, then it’s really easy” (line 6). As relayer, he reiterated the aforementioned 

data and concluded that under these circumstances, 9 has an antiderivative (lines 7-8). 

Using symbolic reasoning, he also claimed that computing such an antiderivative would 

entail application of “our Calc 2 techniques—just treating : as our variable instead of 7” 

(lines 8-9). Argument 1 is summarized in Figure 207 below. 
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Figure 207. Toulmin diagram for Dan and Frank’s Argument 1, Task 13. 

 With this brief response to my initial question in mind, I asked Dan and Frank to 

reflect on their preference for applying antiderivatives as opposed to parametrization 

techniques in previous tasks (lines 10-16). This initiated a second argument relevant to 

Task 13, which Dan alone provided. As spokesman, he considered a formal datum 

wherein the integrand is entire, and concluded, “you’d want to use an antiderivative” 

(lines 17-18). He also qualified this assertion with the word “clearly,” expressing a high 

degree of certainty. 
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 Subsequently, he authored a symbolic datum considering programming a 

computer to evaluate such integrals (lines 19-20). According to Dan, in this situation, 

“It's a lot easier to just parametrize it, rather than deal with breaking up your function, 

making some different branch cuts that'll make it work— to make sure that your function 

is analytic on the contour” (lines 20-22). Dan’s claim represents embodied-symbolic 

reasoning, in that his hypothetical method relates symbolically “breaking up your 

function” to the embodied process of choosing a proper branch cut. Curiously, Dan 

proceeded to explain that “in general, it’s just easier to think about parametrizing rather 

than having to deal with branch cuts and trying to make a function be analytic on some 

contour” (lines 23-24). This statement seemed inconsistent with Dan’s preference for 

applying antiderivatives on earlier tasks such as Tasks 9a and 9b, so I asked  whether 

they thought there were situations in which one cannot parametrize to find a complex 

integral (lines 25-26). Argument 2 is depicted in Figure 208 below. 
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Figure 208. Toulmin diagram for Dan and Frank’s Argument 2, Task 13. 

 

 In response to my follow-up question, Dan and Frank stood in silence with 

confused looks on their faces for several seconds (lines 27-28). After this pause, Dan 

authored a claim that “you can always do that,” and qualified this assertion with the 

phrase “pretty much” (line 29). He additionally authored a formal-symbolic warrant, 

explaining that towards the end of their course, the class discussed parametrization as a 

viable but potentially tedious alternative to “all the formulas that we used later on” (lines 

31-32). As spokesman, Frank agreed with Dan’s prior claim that parametrization is 

always possible, though he recognized it as a “brute force” symbolic method (line 33).  
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 Continuing as spokesman, Frank recapitulated Dan’s prior embodied comments 

about the importance of finding a simply-connected domain containing the path of 

integration, and the need to adjust arguments relative to the choice of branch cut (lines 

33-36). He also re-voiced Dan’s datum from Argument 2 about using computers to 

perform tedious computations in the context of parametrization, clarifying that 

“computers don’t care how much algebra they have to do” (lines 36-39). He summarized, 

using symbolic-formal reasoning, that he would only use parametrization in the sense that 

it is “simpler,” yet “the machinery behind it is more complicated” (lines 39-41). 

Argument 3 is depicted in Figure 209 below. 

 

Figure 209. Toulmin diagram for Dan and Frank’s Argument 3, Task 13. 

Task 13 – Riley and Sean 

 Riley first responded to Task 13 by authoring a formal claim that whenever the 

function in question is analytic, it has an antiderivative, and Sean agreed (lines 5-6). She 

further added that such analyticity implies the existence of harmonic component 

functions ~ and �, but qualified this second assertion with “I guess […] right?” (line 7). 

However, Sean challenged her and authored an alternate datum of differentiability as the 

requirement needed for the harmonic property (line 8). As spokesman, Sean implemented 
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formal reasoning to clarify that “if it’s differentiable over a whole region then it becomes 

analytic” (line 10). Riley relayed this statement (line 11) and Sean authored a supporting 

warrant that differentiability merely along a line does not guarantee analyticity (line 12). 

Argument 1 is summarized in Figure 210. 

 

 

Figure 210. Toulmin diagram for Riley and Sean’s Argument 1, Task 13. 

 Afterwards, Sean provided a second argument expanding upon his warrant in 

Argument 1. He authored a symbolic datum considering the integral setup in Calculus 1, 

which he qualified as “pretty easy” and “simple” because there is a “one-dimensional 



 371 

 

axis” (lines 13-14). He then authored a formal-symbolic claim that ∫ 9(7)	J7Z
[ = ](_) −

](^), where ]@(7) = 9(7), provided that 9 “has no jump discontinuities or anything like 

that” (lines 13-15). Sean turned to the complex setting and authored an embodied-

symbolic datum considering the integral ∫ 9(:)	J:≥
¥ , where P and ∂ are endpoints along 

some curve { (lines 16-17). He claimed that, so long as the assumptions are met, using 

the Fundamental Theorem is “much easier” than parametrizing the curve {, and authored 

a symbolic warrant that one can simply “pick endpoints and subtract” (lines 17-20). At 

this time, Riley began writing the necessary requirements on 9 in order to invoke the 

Fundamental Theorem (line 20); Sean stepped in, agreed, and added to them (line 21). In 

doing so, Riley challenged Sean’s claim about a simple closed curve, and instead claimed 

that they should be working within a simply connected domain (lines 21-22), which Sean 

acknowledged and finished articulating (lines 22-23). Finally, he added that one can use 

“any paths through the domain” (line 23). Figure 211 summarizes Argument 2.   
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Figure 211. Toulmin diagram for Riley and Sean’s Argument 2, Task 13. 

 

 Subsequently, Sean began a third argument by alluding to a particular example. 

He authored an embodied-symbolic datum considering 9(:) = 1/: and a semicircular 

path from : = 8 to : = −8 (lines 24-25; see Fig. 212). Sean claimed that pursuing a 

parametrization approach to integrating this function takes longer than applying an 

antiderivative, and qualified this claim with “probably especially the more complicated 

ones,” though it is unclear whether Sean meant paths or functions by the word “ones” 
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(lines 25-26). On the other hand, Sean authored a claim that the antiderivative would 

“work,” and cited an embodied warrant that they would have to adjust the branch cut for 

the Log function so as to avoid intersecting their chosen path (lines 27-28). Accordingly, 

he chose a branch cut at an argument of –b/4 radians and drew this on their diagram 

(lines 28-29; see Fig. 213).   

 

Figure 212. Sean’s path gamma in Argument 3, Task 13. 

 

Figure 213. Sean’s chosen branch cut in Argument 3, Task 13. 

Next, Sean relayed their choice of function and authored an embodied datum by 

choosing a domain that “avoids the origin” (lines 31-32; see Fig. 214). He claimed that 
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this choice of domain allows them to find an antiderivative, and cited the embodied-

formal warrant that the function is analytic there (lines 32-33). Sean also cautioned, in the 

form of a rebuttal, that the logarithm function needs to be well-defined in the chosen 

region (line 33), but ultimately concluded that “in general, you just pick some nice little 

region that has our endpoint and beginning point, such that [1/:] is analytic, find the 

antiderivative, and evaluate at both points and subtract” (lines 34-35). Argument 3 is 

summarized in Figure 215 below.   

 

Figure 214. Sean’s dotted domain in Argument 3, Task 13. 
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Figure 215. Toulmin diagram for Riley and Sean’s Argument 3, Task 13. 

 Subsequently, I asked a follow-up question about whether Riley and Sean could 

think of a situation in which they would not be able to parametrize nicely (lines 36-40). 

In response, Sean began a fourth argument by discussing the opposite scenario, namely 

one in which the Fundamental Theorem did not apply but parametrization would. He 

authored an embodied datum extending their previous semicircular path to a full circle 

(line 41; see Fig. 216). In such a case, he authored a formal-embodied claim that they 

cannot concoct a domain in which the function is “analytic everywhere” (lines 41-42), 

and cited an embodied warrant that “that pole in the middle messes everything up” (line 

42).  
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Figure 216. Sean’s revised path as a full circle, Argument 4, Task 13. 

 

Figure 217. Sean’s dotted annular domain, Argument 4, Task 13. 
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As such, Sean erased their previous domain, and Riley further concluded, “then 

you’re forced to parametrize” (line 44). Sean then discussed a potential new annular 

domain that avoided the origin (see Fig. 217), however he claimed that choosing such a 

domain would not allow them to employ the Fundamental Theorem, due to the 

embodied-formal warrant that this domain is no longer simply connected (lines 45-48). 

At this time, Riley acknowledged that Sean had not fully answered my follow-up 

question, and re-voiced my question as spokeswoman (lines 49-51), which catalyzed a 

fifth argument. Argument 4 is depicted in Figure 218. 

 

Figure 218. Toulmin diagram for Riley and Sean’s Argument 4, Task 13. 

 After Sean paused for a moment following Riley’s re-phrased question, she 

decided to answer the question herself in Argument 5. She began by authoring an 

embodied datum considering a path with “a lot of sharp edges” (lines 53-54; see Fig. 

219). She concluded that one could still parametrize this path, but “it’s a pain” (line 54), 

and cited an embodied-symbolic warrant that one would have to parametrize each linear 
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piece separately (line 55). On the other hand, she authored an embodied-symbolic claim 

that one need only know the “value of the antiderivative” at the two endpoints of her 

jagged path (lines 55-57). As a formal-embodied warrant, she indicated that path-

independence allows one to draw a “smooth path” connecting the two endpoints instead 

(lines 57-58; see Fig. 219). Argument 5 is summarized in Figure 220. 

            

Figure 219. Riley’s jagged path (left) and smooth alternative (right) in Argument 5. 

 

 

Figure 220. Toulmin diagram for Riley and Sean’s Argument 5, Task 13. 
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 Due to the difficulty of parametrizing certain paths, Sean articulated one final 

argument in which he described the benefits of working with analytic functions in 

physics applications. He began Argument 6 by authoring an embodied datum comprised 

of a complicated path, which he described as a “strange blob function” (line 59; see Fig. 

221). Sean authored a qualifier expressing his doubt over whether such a path could even 

be parametrized (lines 59-60), but Riley claimed, “Piecewise you could parametrize just 

about anything” (line 61). Sean conceded in the form of an embodied warrant that they 

could “just chop it up” but insisted it would be very difficult (line 62). 

 

 

Figure 221. Sean’s “strange blob” path in Argument 6, Task 13. 
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 As such, Sean expressed physicists’ preference for “conservative work functions,” 

in that they afford one the favorable property of path independence as discussed in 

Argument 5 (lines 63-64). In contrast, Sean considered the datum of a “non-conservative 

work field,” in which case he authored an embodied claim that one must deal with 

numerous friction forces, which he alluded to using a tracing gesture along his path (lines 

65-66; see Fig. 222). Therefore, as spokesman, Sean reiterated that it is “much easier to 

make sure you have a function that’s analytic” (lines 66-68). Argument 6 is summarized 

in Figure 223.  

 

Figure 222. Sean’s tracing gesture, Argument 6, Task 13. 
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Figure 223. Toulmin diagram for Riley and Sean’s Argument 6, Task 13. 

Task 13 Summary 

Unsurprisingly, both pairs of participants discussed similar requirements needed 

to invoke the Fundamental Theorem or calculate antiderivatives, and everyone seemed to 

be in agreement about their general preference for using this theorem instead of 

parametrizing. However, the pairs expressed different reasons for their preferences, and 

in how they would abate the tedium of parametrizing more exotic paths. For instance, 

Riley and Sean appealed to physics applications to discuss why analytic functions and 

path independence are appealing, and suggested dealing with parametrizing messy 

functions by breaking them up piecewise. On the other hand, Dan and Frank suggested 

implementing technology to ease the burden of parametrizing more complicated paths, 

though this likely would also entail some sort of piecewise approach implicitly.  
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Another interesting finding in Task 13 was that Sean expressed more modal 

qualifiers than usual in this task, perhaps because this task especially pushed him to think 

about the idiosyncratic hypotheses present in the theorems they invoked throughout. 

Sean’s abundance of qualifiers also happened to coincide with fewer qualifiers from 

Riley, and she challenged more of Sean’s claims than in previous tasks. Perhaps this is 

because she felt comforted by Sean’s aforementioned uncertainty and did not need to 

highlight her own. Finally, Sean instantiated more embodied reasoning than in other 

tasks, particularly when describing physics applications, and Riley and Sean collectively 

exhibited more embodied reasoning than Dan and Frank. In the next chapter, I discuss the 

results presented in Chapter IV address my research questions. I frame this discussion 

within the context of the literature presented in Chapter II, and provide teaching and 

research implications of my findings. I also discuss future directions of my research, and 

acknowledge the limitations present in my study. 
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CHAPTER V 

 

 
DISCUSSION 

 

In the previous chapter, I detailed the nature of my four participants’ nuanced 

collective argumentation as these undergraduate pairs responded to the thirteen 

integration tasks listed in Appendix C. These results served to address my 

aforementioned guiding research questions: 

Q1 How do pairs of undergraduate students attend to the idiosyncratic 
assumptions present in integration theorems, when evaluating specific 
integrals? 

 
Q2 How do pairs of undergraduate students invoke the embodied, symbolic, 

and formal worlds during collective argumentation regarding integration 
of complex functions? 

 
In this final chapter, I summarize key findings related to these two research questions and 

situate these results within the existing literature discussed in Chapter II. Afterwards, I 

discuss theoretical implications of my dissertation with respect to framing collective 

argumentation in mathematics education research. I additionally proffer pedagogical 

implications arising from my results, and delineate the limitations of my study. Finally, I 

outline potential directions for future research in collective argumentation in light of my 

results and proposed theoretical addendums.  
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Summary of Key Findings 

Treatment of Theorem Premises 

 My first research question regarded the manner in which undergraduate student 

pairs attended to the assumptions pertaining to integration theorems. Generally speaking, 

neither pair of participants initially appeared confident nor certain about the premises 

needed for employing certain tools, approaches, or theorems. Participants repeatedly 

expressed such uncertainty through explicit verbal modal qualifiers, as well as nonverbal 

qualifiers involving indicators such as facial expressions. In this section, I recapitulate 

several examples from the interviews to illustrate both this initial uncertainty and the 

manners in which participants were able to eventually reach consensus, or at least make 

significant progress in the task, following such qualifiers. I also discuss the significance 

of these results relative to the existing mathematics education literature incorporating 

Toulmin’s (2003) scheme. Next, I briefly refer to established embodied cognition 

research to substantiate my contention that the types of nonverbal qualifiers exhibited by 

my participants can play a vital role in shaping collective argumentation. Finally, I 

highlight the manners in which participants instantiated Danenhower’s (2000) 

phenomenon of thinking real, doing complex while attending to the nuanced hypotheses 

of integration theorems. 

 From qualification to consensus. Although participants expressed uncertainty 

via their qualifiers in many of the tasks, Task 11 appeared to elicit some of the most 

consequential modal qualifiers from both student pairs. In particular, Riley and Sean 

shared many discussions during Task 11 about whether two formal methods, approaches, 

theorems, or definitions were equivalent. For instance, in Argument 1, Riley and Sean 
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discussed whether the SICOPOC conditions (simple, closed, positively oriented contour) 

were equivalent to a Jordan curve. Riley expressed her uncertainty about Sean’s 

statements regarding the equivalence of these properties by repeatedly voicing qualifiers 

such as, “Is that the same thing?” and “So that’s all a Jordan curve is?” Afterwards, in 

Argument 3, Riley expressed a preference for using the Residue Theorem instead of the 

Extended Cauchy-Goursat Theorem, but Sean claimed that these two results represent 

“the same thing.” Following each of Riley’s qualifiers, Sean either provided additional 

support for his assertions, or revised a previous assertion based on Riley’s feedback. 

Hence, these explicit modal qualifiers shaped the trajectory of the pair’s argumentation.  

Due to the multifaceted nature of Task 11, which required participants to find all 

possible values of a particular integral by incorporating different paths of integration, the 

student pairs also had to come up with careful symbolic notation to keep track of these 

various paths. The ensuing conversations about such notation allowed participants to 

reflect on important features of integration. For instance, in Arguments 1 and 2, Frank 

initially believed there were only four possible paths of integration that would yield 

distinct answers; these four paths corresponded to the number of poles enclosed by a 

path. However, at the end of Argument 2, Dan expressed uncertainty in Frank’s approach 

via the qualifier, “Umm, wait,” which led to a third argument in which Dan examined the 

dependency in Cauchy’s Integral Formula on which pole was enclosed by the path of 

integration. Consequently, Frank reflected on their work thus far and articulated the 

qualifier, “Wait hang on. Does that mean we can get different results based on different 

poles?” As such, these explicit modal qualifiers paved the way for subsequent arguments 

in which Dan and Frank came to realize that the task was more complicated than they 
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initially anticipated. In the arguments that followed, they were able to revise their 

notation to talk about the different path choices, and they ultimately exhausted the 

different solutions.  

Another example underscoring the importance of explicit modal qualifiers was 

when Riley and Sean questioned themselves in Task 5b about whether the integrand 

function needs to be differentiable in order to employ parametrization. By explicitly 

qualifying such arguments, and in conjunction with my follow-up questioning, they 

eventually reached a consensus that the function only needs to be continuous. However, 

because they did not spend significant time in their course carefully justifying continuity 

arguments, the students exhibited substantial difficulty justifying whether the function :̅ 

is continuous or not. In particular, they pursued limit calculations to try to show this 

function was not continuous, but muddled their symbolic limit inscriptions. More 

generally, when I pushed participants to justify why given functions were continuous, 

they primarily relied on backing for their warrants’ field. For instance, Dan mentioned in 

Task 5b that during their complex variables course, “we just kind of looked at something 

and said, ‘look, it’s clearly continuous’ or ‘it’s discontinuous at this point.’” Similarly, 

Sean mentioned in Task 5b that their professor identified continuity arguments as more 

germane to a complex analysis course in which students are already familiar with 

continuity proofs in the real-valued context. Both student pairs also mentioned that the 

professor emphasized differentiability more than continuity in the course. 

Although Dan and Frank exhibited more confidence and decisiveness when 

deciding a function’s continuity, they faltered a bit when justifying their application of 

Cauchy’s Integral Formula in Task 6. In particular, when Dan claimed they could 



 387 

 

produce a simply-connected domain containing the path ´, Frank questioned the 

existence of such a domain, and his attempt at drawing one resulted in a domain that was 

not simply-connected. However, as with the above examples, Dan and Frank’s eventual 

consensus resulted from an explicit modal qualifier. Summarily, the importance of such 

explicit qualifiers across the interviews was that they often led to follow-up arguments 

wherein the participants discussed assumptions in greater detail, including their 

applicability to the integral at hand. As such, my findings corroborate previous 

researchers’ (Alcock & Weber, 2005; Inglis, Mejia-Ramos, & Simpson, 2007; Simpson, 

2015; Troudt, 2015) contention that one should consider the full Toulmin (2003) model 

when analyzing undergraduate level mathematical arguments. 

Nonverbal qualifiers. Another theme that I observed related to modal qualifiers 

was that participants employed nonverbal qualifiers that shaped the flow of their 

argumentation. For example, participants would look at me or each other for validation 

after voicing a claim, and this led to follow-up arguments or clarifying remarks. In such 

instances, I was purposeful about not attending to these looks directly during the 

interview in order to not interrupt participants’ reasoning process. Frank instantiated this 

phenomenon most often, including during Task 3 (Argument 1), Task 5a (Argument 1), 

Task 5b (Argument 1), Task 7 (Argument 1), and Task 10 (Argument 1). Notice that this 

behavior took place in Argument 1 of each of the aforementioned tasks. As mentioned 

previously, I did not address Frank directly, and this meant that it was up to the students 

to sort out their uncertainty. Consequently, these nonverbal qualifiers led to clarifications 

or follow-up arguments about nuanced integration hypotheses or questionable integral 

results.  
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Moreover, because I deliberately avoided providing validation for Frank’s 

hesitant statements, he eventually turned to Dan instead of me. This turning point 

occurred in Task 11, during which Frank first looked to me for approval in Argument 1 

after listing possible path choices, but then looked to Dan in Argument 2 to verify his 

claim about the value of a particular integral. Subsequently, in Argument 9 Dan also 

looked to Frank for validation after answering a follow-up question that I posed for them. 

I noticed far fewer of these nonverbal glances as qualifiers between Riley and Sean, 

though they did exist sporadically. For instance, Sean glanced over at Riley inquisitively 

with a look of incredulity after obtaining a surprising value for an integral in Task 9a 

Argument 6. I discuss potential teaching implications associated with such findings in a 

later section.  

This theme is significant in that it points to a way in which the existing collective 

argumentation framework can be extended to account for important embodied and social 

considerations. In particular, research on embodied cognition posits that, “Through 

interaction with others, utterances become collective or group-phenomena” (Nemirovsky 

& Ferrara, 2009). This stance treats utterances as multimodal rather than just verbal, 

encompassing both overt and covert aspects of communication such as facial expression, 

gestures, tone of voice, eye motion, gaze, and body poise, among others (see also 

Arzarello, 2006).  

Moreover, much of participants’ embodied reasoning incorporated gestures that 

alluded to visualized processes or conveyed other geometric information. I detail this 

finding in the section addressing my second research question, but note this theme here to 

underscore the multimodality of participants’ collective argumentation in the sense 
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described above. Ultimately, these findings compel me to contend that collective 

argumentation analysis should classify participants’ multimodal utterances into Toulmin 

components and speaker roles, as opposed to just their verbiage.  

Thinking real, doing complex. Despite participants’ occasional struggles with 

formal hypotheses, both student-pairs were regularly cognizant of the thinking real, doing 

complex (Danenhower, 2000) phenomenon, and expressed their desire to avoid 

inappropriate applications of it. For instance, Frank cautioned in Task 3 Argument 1 that 

“you can’t really say velocity, I guess, in the context of complex numbers, would be my 

understanding,” when discussing a physical interpretation of ;C
;Ä. Subsequently, in 

Argument 2 Frank hypothesized that they could “still” visualize this quantity as a tangent 

vector: “I mean, wouldn’t it still be tangential?” Moreover, in Task 4 Argument 1, Dan 

and Frank initially had trouble describing a geometric interpretation of ∫ ;C
;Ä JzZ

[  because 

they did not know how to reconcile the fact that the horizontal axis in their diagram did 

not represent time, yet the Jz and limits of integration corresponded to times. This 

perceived conflict between thinking real and doing complex led Frank to comment, “I'm 

tempted to think of this in terms of real numbers, but I know the analogy doesn't work.” 

However, following this impasse, he and Dan agreed that they could still borrow some 

intuition from the notion of a line integral, as Dan claimed “So it’s just like a line 

integral.” Finally, during Task 5b Argument 2, Frank expressed uncertainty about how 

the limit definition for continuity might transfer from the real case to the complex setting: 

“I just don’t know what the analog is necessarily in terms of transferring that to complex 

numbers, or if it’s really different.”  
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Riley and Sean made similar statements regarding avoiding thinking real, doing 

complex during their interview as well, however not as often as Dan and (especially) 

Frank. For instance, in Task 4 Argument 3, Riley recited the common geometric 

interpretation of integration of real functions as “area below the curve,” but immediately 

acknowledged that “that’s not the case for um, like with complex variables.” Later, 

during Task 9b Argument 5, Riley once again verbalized her deliberate avoidance of this 

interpretation of integration of complex functions, this time while discussing “splitting 

up” one original integral into a sum of two integrals. In particular, she discussed how she 

“flew back to Calc 2 again,” wherein the area interpretation for integration in the real-

valued case allows one to break up one large area under a “smooth curve” into two 

smaller areas. However, in the context of complex functions, she cautioned that, “Here, 

it’s not physically the area.” Summarily, the above examples illustrate ways in which 

both pairs of participants explicitly articulated a desire to avoid inappropriately extending 

properties of real-valued integration to the complex context.  

However, this is not to say that the students always successfully avoided such 

pitfalls. One notable example of thinking real, doing complex that was ultimately 

unproductive occurred when Sean described his general interpretation of complex 

integration in Task 12. He began his response by correctly noting that complex numbers 

can be represented as vectors, and that he therefore tends to “think of it as like— kind of 

coming back to Calc 3.” However, he ultimately conflated multiplication of complex 

numbers with a dot product of vectors when explaining his perceived connection between 

the integrals ∫ 9(:)	
Æ J: and ∫ ]⃗ ∙ JQ	

É . In particular, his argument appealed to “the 

language of Calc 3” to equate the product of complex numbers with a dot product. But 
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note that these two vector operations are not equivalent because the latter yields a real-

valued scalar, while the former yields another complex number/vector. That said, if Sean 

had interpreted complex multiplication as a rotation and dilation instead of dot product, 

he would essentially have a correct embodied interpretation of complex integration, for 

he finished his description by articulating summing such products repeatedly over the 

entire path. As such, I found Sean’s embodied description quite impressive, considering 

several mathematicians from a recent study (Oehrtman, Soto-Johnson, & Hancock, 2018) 

did not successfully provide as complete of a geometric description of complex 

integration.  

Another important theme related to thinking real, doing complex pertains to 

instances in which participants instantiated this phenomenon in productive ways. This is 

noteworthy in the sense that the existing literature on the teaching and learning of 

complex variables tends to mostly refer to thinking real, doing complex in a pejorative 

light. For instance, Danenhower (2000) found that one student concluded that 9(:) =

(2: − 7)E was a polynomial and thus differentiable everywhere. Similarly, Troup (2015) 

noticed that his participants initially wanted to characterize the derivative of a complex 

function as the slope of a tangent line, but did not “know what slope means in complex 

world” (p. 178).  

Alternatively, my dissertation illuminates ways in which this type of thinking 

might actually support productive reasoning in complex analysis. For instance, in Task 2, 

Riley and Sean invoked a warrant characterizing the x and y coordinates of the unit circle 

in ℝE using cosine and sine in order to describe the corresponding real and imaginary 

coordinates in the Argand plane. Subsequently, in Task 4, Sean argued that the task 
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identity was procedurally the “same exact thing” as the “Calc 1 version” of the 

Fundamental Theorem of Calculus, in the sense that “we can find the antiderivative […] 

then just plug in the endpoints and subtract.” Similarly, during Task 13 Frank claimed 

that computing a complex antiderivative would entail application of “our Calc 2 

techniques—just treating : as our variable instead of 7.” 

In summary, there were three manners in which my participants attended to the 

thinking real, doing complex phenomenon in the present study: (1) purposefully avoiding 

inappropriate applications of it; (2) extending real intuition to the complex setting 

erroneously; and (3) extending real intuition to the complex setting in productive ways. 

With some exceptions, participants were mostly cognizant about avoiding the 

unproductive versions of thinking real, doing complex but implementing the productive 

ones. As such, I discuss potential teaching implications arising from these findings in a 

subsequent section. 

Invoking Tall’s Three Worlds 

My second research question inquired about the nature of students’ invocation of 

Tall’s (2013) three worlds during collective argumentation about complex integration. 

Quite unsurprisingly, my participants’ formal reasoning dealt primarily with Cauchy’s 

Integral Formula, the Cauchy-Goursat Theorem, the Cauchy-Riemann equations, and 

related results when evaluating specific integrals. However, more illuminating were the 

ways in which participants invoked formal-symbolic, formal-embodied, or embodied-

symbolic reasoning to justify the implementation of such theorems.  

For instance, Riley (and eventually Sean) explicitly illustrated their embodied-

symbolic reasoning by drawing arrows on the whiteboard between symbolic inscriptions 
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and embodied paths of integration which they had sketched on the board. This type of 

embodied-symbolic reasoning was most prevalent in tasks which required participants to 

discuss multiple integral results within the same argument or sequence of arguments, 

especially when employing partial fractions decompositions in Task 9a. This type of 

reasoning was also prevalent in Task 11 when participants invoked the residue theorem 

or extended Cauchy-Goursat Theorem. For example, Dan and Frank also created 

symbolism in Task 11 to allude to embodied paths of integration enclosing a given 

number of poles. That said, Riley demonstrated this type of reasoning as early as Task 4, 

when she drew an arrow from Sean’s symbolic integral inscription representing arc 

length to her drawn path.  

Additionally, when discussing limits and paths, all four participants produced 

symbolic inscriptions but also conveyed corresponding dynamic gestures embodying 

their chosen paths of approach or paths of integration. For example, in Task 2 both Dan 

and Riley provided similar tracing gestures accompanying their symbolic inscriptions 

pertaining to the real and imaginary axes in the Argand Plane. Subsequently, in Task 3 

Riley gestured in reference to “a little vector pointing off” as she discussed her 

interpretation of ;C
;Ä as a tangent vector. When discussing symbolic limit inscriptions in 

Task 5a regarding the definition of the derivative 9′(:), Dan also gestured horizontal and 

vertical lines with the palm of his hand to illustrate their two chosen paths of approaching 

a generic point :L, and Sean provided very similar gestures in Task 5b Argument 2. 

Moreover, in Task 5c Frank produced a circular tracing gesture as he discussed the 

symbolism for parametrizing such a circular path. These examples serve to highlight the 

ways in which my participants provided additional embodied support for their symbolic 
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inscriptions, thus instantiating one way in which the symbolic and embodied worlds can 

intersect in the context of complex integration. 

There were also instances in which the two student-pairs displayed notable 

differences in their predilections towards certain worlds when implementing various 

integration approaches. For instance, Dan and Frank incorporated a comparative lack of 

embodied reasoning versus Riley and Sean, especially in Tasks 4 and 5. On the other 

hand, in Task 5b, Riley and Sean chose to incorporate a mostly embodied method for 

integrating the complex conjugate :̅. The pair plotted tangent vectors along the circular 

path of integration as well as conjugates resulting from reflection transformations, and 

Riley and Sean also enacted visual vector addition. 

Another noteworthy distinction between Dan and Frank’s versus Riley and Sean’s 

invocation of the three worlds was that Dan and Frank tended to prefer calling upon 

formal theorems, while Riley and Sean incorporated more parametrization and partial 

fractions decompositions. This comparative preference for formal reasoning was 

especially prominent in Task 6, during which Dan and Frank invoked Cauchy’s Integral 

Formula. This choice of approach resulted in several follow-up arguments in which Dan 

and Frank provided backing statements and supporting embodied diagrams regarding 

simply-connected domains. In contrast, Riley and Sean provided only one argument 

about parametrization, containing no backing statements. Finally, a minor difference in 

the two pairs’ symbolic inscriptions was that Sean incorporated a Newtonian “dot” 

notation when discussing time derivatives in Task 4, while Dan and Frank did not 

incorporate such notation. 
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A surprising result related to Task 12 was that all participants interpreted the 

statement of the task as a request for an embodied meaning of integration of complex 

functions, even though I did not specify or encourage any particular world. Specifically, I 

read the task statement aloud, which asked, “What do you think the integral of a 

complex-valued function represents, and how is this different from a real-valued function 

and how is it the same?” In response, participants immediately responded in terms of a 

geometric interpretation. In particular, Riley responded, “I don’t really have a good 

geometric interpretation of that.” Similarly, Dan replied, “I don’t know if I actually have 

any type of what that can represent,” but Frank added that he recalled something that Dr. 

X drew about “adding up a bunch of vectors, uh, along the curve.” 

Afterwards, Frank also stated that while he recognizes complex numbers as 

vectors, “when we talk about things, kind of like the Cauchy-Goursat Theorem or we’re 

just evaluating [the integral] about circles, I don’t really take the time to think about it in 

terms of vectors. I just think about the formulas and the theorems that we regularly deal 

with.” The fact that my participants generally did not think of a purely embodied 

interpretation of integration while evaluating specific integrals is not particularly 

surprising, given that the majority of mathematicians from a recent study (Oehrtman et 

al., 2018) could not produce such a description when explicitly asked to do so. 

Nevertheless, I found it interesting that the students interpreted my question as a request 

for a geometric interpretation specifically, despite my intentionally open-ended phrasing 

of the question that did not favor any particular representation.  

The aforementioned instantiations of thinking real, doing complex in the previous 

section also have important connections to Tall’s (2013) Three Worlds lens. Specifically, 
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recall that Tall emphasizes the role of prior mathematical knowledge in shaping an 

individual’s cognitive structure, using the met-before construct: “a structure we have in 

our brains now as a result of experiences we have met before” (p. 23, italics in original). 

Through the innate set-befores of recognition, repetition, and language, individuals enact 

three corresponding forms of knowledge compression: categorization, encapsulation, and 

definition. As such, the thinking real, doing complex phenomenon can be characterized 

according to the met-before of the structure of the real numbers that is imposed 

(sometimes inappropriately) onto new mathematical concepts in ℂ such as the complex 

integral. This process is ostensibly enabled by the recognition set-before and manifested 

in the definitions of complex objects using the “language of Calc 3,” as Sean put it in 

Task 12. In particular, when participants explicitly concluded that the structure of the real 

numbers was inapplicable to the present complex context, I contend such instances 

revealed a glimpse into the students’ mental categorization of interpretations of calculus 

concepts into those that align with their real-valued counterparts, and those that cannot. 

In other instances, we witnessed episodes in which participants’ categorizations were 

unsuitable, such as when Sean equated a dot product of two vectors with the product of 

two complex numbers.  

Recall that Wawro (2015) found that her participant’s argumentative successes 

were primarily due to the fact that he was “flexible in his use of symbolic representations, 

proficient in navigating the various interpretations of matrix equations, and explicit in 

referencing concept definitions within his justifications” (p. 336). Similarly, in the setting 

of the complex numbers, researchers argued for the importance of students’ ability to 

recognize when certain forms of a complex number are most convenient, as well as the 
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ability to switch between forms (Danenhower, 2006; Karakok et al., 2014; Panaoura et 

al., 2006; Soto-Johnson & Troup, 2014). Accordingly, this literature mutually suggests a 

potentially strong connection between representational fluency and effective 

mathematical argumentation, particularly within the setting of complex analysis. As such, 

the results of my study corroborate this link by illustrating how students’ embodiment, 

symbolism, and formalism collectively inform their argumentation about integration. In 

particular, my participants were most successful and confident in supporting their 

assertions pertaining to integration when they could (1) proficiently alternate between or 

merge the embodied, symbolic, and formal worlds; and (2) properly reconcile thinking 

real with doing complex.   

Implications for Framing Collective Argumentation 

In this section, I discuss how my study complements and extends the mathematics 

education literature regarding students’ mathematical argumentation, particularly 

regarding how Toulmin’s (2003) model is adopted to the context of collective 

argumentation. For instance, not only did my participants’ explicit qualifiers catalyze 

new arguments, but follow-up arguments also ensued when individuals challenged each 

other’s assertions or changed their own mind. In the following subsections, I provide 

examples of such challenges from my results and discuss theoretical implications of these 

challenges in framing collective argumentation.   

According to Krummheuer (2007), individuals participate in collective 

argumentation in two ways: (1) the production of statements categorized according to 

Toulmin’s model, and (2) an individual’s speaker role (author, relayer, etc.). Notice that 

both of these forms of participation primarily serve to either introduce new ideas or 
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support/re-voice existing ideas. However, they do not account for disagreement between 

parties or changing one’s own mind following internal reflection. Accordingly, I contend 

that a third type of participation can drive collective argumentation, namely challenging.   

Previously, I illustrated how both my results and existing mathematics education 

literature support embodied addendums to analyzing Toulmin components and speaker 

roles. Specifically, I argued that nonverbal qualifiers and the general multimodality of 

utterances should be accounted for when analyzing these two forms of participation in 

collective argumentation. My study also incorporated increased specificity to analysis of 

Toulmin components by classifying backing statements according to Simpson’s (2015) 

three types. This allowed me to notice important themes related to my research questions, 

such as the aforementioned prevalence of backing for a warrant’s field when participants 

justified the continuity of specific functions. Moreover, I noticed an overall abundance of 

backing for the validity of participants’ warrants as opposed to backing for their 

correctness. Below, I propose an augmented theoretical framing of collective 

argumentation in which all three forms of participation operate in tandem and influence 

one another in multimodal manners (see Fig. 224). 
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Figure 224. Proposed augmented collective argumentation framework. 

Toulmin Components  
and Challenges 
 

As mentioned previously, participants occasionally disagreed with either the other 

student’s contributions or with a Toulmin component that they themselves previously 

stated. In other words, a participant would proffer a Toulmin component (datum, claim, 

etc.) and then either participant would challenge that component. Such challenges then 

resulted in new arguments, sub-arguments, or further clarification/support for the 

statement in question. For example, after labeling some paths of integration as ´h, ´E, and 

´Ü in Task 11, Frank challenged his own symbolic notation in Argument 2 when he 

decided, “wait, let’s be smart about this.” He then erased his previous labeling, and 

revised his symbolism to instead denote the number of poles enclosed by the path. This 

revision ended up giving Dan and Frank less ambiguous notation to talk about the 

different possibilities for their integral, which they outlined in subsequent arguments. 
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Hence, Frank’s self-imposed challenge was a catalyst for future Toulmin components and 

arguments. 

Later in Task 11, during Argument 8, Frank summarized the list of possible 

integral values obtained from paths of integration enclosing two poles. During this 

summary, Dan challenged Frank’s warrant about some of the answers obtained, and this 

led Frank to re-voice and provide additional clarification for how the previous answers 

were obtained. This exchange allowed the pair to subsequently reach the consensus that 

the integral around all three poles should vanish. Accordingly, sometimes both types of 

challenges occurred within the same task, each shaping the trajectory of the pair’s 

collective argumentation in different ways. In particular, while Frank’s challenge to his 

own symbolism in Argument 2 impacted how future arguments transpired, Dan’s 

challenge to Frank’s summary in Argument 8 resulted in Frank providing additional 

support for existing statements within the present argument. 

Riley and Sean also instantiated similar connections between challenges and new 

or revised Toulmin components. For example, during Task 4 Argument 3, Riley argued 

that the integral ∫ ;C
;Ä JzZ

[  represented arc length. But Sean challenged her assertion, 

insisting that this integral actually represented a “change in position.” This challenge 

affected the pair’s subsequent Toulmin components in both of the aforementioned ways. 

First, Sean provided embodied-symbolic backing for his warrant’s correctness by 

incorporating two new vectors Q⃗h and Q⃗E into their existing diagram. His and Riley’s 

disagreement then catalyzed a follow-up argument, Argument 4, about how they could 

obtain arc length by integrating the magnitude of the original integrand, which Sean 

chose to express as �(z). Hence, Sean’s challenge resulted in both additional support to 
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an existing argument, as well as the creation of a new argument whose purpose was to 

address their disagreement. Accordingly, my results corroborate Weber et al.’s (2008) 

contention that “Challenges […] from the student’s classmates invite the student to be 

explicit about the warrant being employed and provide backing to support the warrant’s 

legitimacy” (p. 249). 

Challenges and Speaker Roles 

In the present study, participants’ challenges and speaker roles were intimately 

connected, suggesting a bidirectional relationship between these two components of 

collective argumentation. Specifically, sometimes challenges induced specific speaker 

roles; in other instances, certain speaker roles resulted in challenges. In this section, I 

discuss some specific examples of each, beginning with the former. I also theorize 

hypothetical ways in which the latter relationship might naturally manifest itself in 

collective argumentation. 

There were several ways in which challenges evoked certain speaker roles in 

response to, or in further support of, the challenge. The first way in which I noticed such 

relationships was that challenges caused participants to re-voice a previous statement as 

spokesman. This happened either when one participant responded to a challenge, or when 

the student who articulated the challenge wished to clarify the aspects of a statement with 

which he or she did not agree. Sean instantiated the latter type in the following exchange 

from Argument 1 of Task 13. First, Riley claimed that whenever the function in question 

is analytic, it has an antiderivative. She further added that such analyticity implies the 

existence of harmonic component functions ~ and �. However, Sean challenged her 

statement, insisting that differentiability was the requirement needed for the harmonic 
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property. As spokesman, Sean clarified, “What I’m saying is, like, if it’s differentiable 

over a whole region then it becomes analytic.” He continued to assert that 

differentiability merely along a line does not guarantee analyticity. 

A second respect in which participants’ challenges influenced their speaker roles 

was that, following a challenge, participants authored additional support for a statement 

in the form of new backing, an additional warrant, or clarifying the data used. For 

instance, in Task 9a, Sean authored a claim that the integral ∫ 1	J:	
É  results in a value of 

2b. However, Riley challenged Sean’s assertion, instead claiming that the “2b” should 

instead read “b” because “you’re not integrating over the full circle.” Following Riley’s 

challenge, Sean clarified his previous symbolic inscriptions by explicitly identifying the 

symbolic formula 2bQ as a datum. He then authored a new warrant elucidating that he 

took “half that.” As backing for this warrant’s correctness, Sean identified his 

2bQ	formula as “for circumference,” and described how “the full circumference is 4b.” 

According to Sean, dividing by 2 then yielded the 2b result, and he summarized as 

spokesman that he essentially calculated arc length of their curve. 

Finally, participants responded to challenges in a third respect by reminding 

someone of something already said (as relayer). For example, in Task 11, Frank listed the 

two possible distinct values for the integral around ´E (their notation for paths enclosing 

two poles). However, Dan challenged Frank’s statement because he remembered the two 

answers as b8 and −2b8 rather than −b8 and 2b8. In response, Frank reminded Dan that 

the b8 and −2b8 answers corresponded to integrals around ´h, and recapitulated his 

answers for the ´E cases as relayer. As evidenced in the previous example, sometimes 

challenges catalyzed clarifications or addendums via multiple speaker roles. 
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Conversely, individuals’ choices of speaker roles can influence the appearance of 

a challenge in several respects. A relatively obvious example is that authoring new 

claims, warrants, or backing can induce a challenge if another person does not agree with 

the statement put forth. This particular sequencing happened often in the present study, 

including in many of the aforementioned examples from the previous section. 

Alternatively, one might also encounter instances in which an individual challenges 

someone’s re-voicing of a statement as spokes(wo)man during a collective argument. In 

particular, a student might make a claim or author a datum, which another student may 

then re-voice; but the original student might disagree about whether the re-voiced syntax 

matches the semantic intent of the original claim. For example, one student might 

verbally introduce the datum of a path of integration as a circle of radius 3, traversed 

counterclockwise and centered about the origin. As spokes(wo)man, another student 

might then express this path symbolically as {L
k(3), but the first student might challenge 

this re-voiced symbolism and instead wish to use the symbolism {Ü
k(0). Although I did 

not incorporate this latter scenario into my data analysis in the present study, further 

research could tease out the exact nature of this relationship between challenges and 

speaker roles in collective argumentation. 

Speaker Roles and Toulmin 
Components 
 
 Ostensibly, the relationship between speaker roles and Toulmin components is 

fairly straightforward in the context of collective argumentation, in that each Toulmin 

component is contributed via one of the four speaker roles. As such, I focus here on some 

implications for researchers’ treatment of the speaker roles themselves. For instance, 

something that I noted in the present study was when individuals incorporate speaker 
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roles in nonverbal or embodied manners. For instance, there were instances in which one 

participant made a statement and then corroborated her or his verbiage with an embodied 

gesture as spokes(wo)man, such as the aforementioned examples wherein participants 

produced circular tracing gestures while discussing paths of integration. This nonverbal 

re-voicing can also manifest as one individual produces a gesture to capture what another 

individual previously stated in words. In the present study, this occurred when one 

participant traced the real or imaginary axes in the air while the other student discussed 

paths of approach with regard to limits in continuity or differentiability calculations. 

Alternately, individuals or groups of individuals can instantiate a discordance 

between their speech and gesture content. This phenomenon, which is commonly referred 

to as gesture/speech mismatch in existing gesture research, can illuminate important 

features of students’ cognition. For instance, Alibali and Goldin-Meadow (1993) found 

that such mismatch actually “appears to be a stepping-stone on the way toward mastery 

of a task” (Goldin-Meadow, 2003, p. 51). Moreover, Goldin-Meadow, Alibali, and 

Church (1993) found that fourth grade students who exhibited three or more mismatches 

during mathematical equivalence tasks conveyed significantly more problem solving 

strategies, using gestures alone, than students who produced less than three mismatches. 

Thus, the researchers argued that students who mismatch speech and gesture not only 

have more strategies at their disposal than students whose speech and gesture match, but 

that these extra strategies lie in students’ gestures themselves. 

Analogously, I hypothesize that this phenomenon might be captured in the 

ghostee speaker role, which occurs when an individual attributes a different or new 

semantic meaning to existing syntactic content. Given that gestures can act as “a window 
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into what students in a classroom are thinking” (Keene, Rasmussen, & Stephan, 2012), an 

individual could repeat an existing statement with respect to his or her verbiage, yet the 

individual’s gesture could signify a different intended semantic meaning. In the present 

study, the ghostee speaker role was the least prevalent for both student pairs, however the 

phenomenon that I am describing arose for Riley and Sean in Argument 1 of Task 9bc. 

When determining the value of ∫ EkC
C 	J:	

ÉikÉj
, where {h and {E were semicircular paths in 

the upper-half and lower-half planes (respectively), Riley argued that this integral is 

equivalent to summing ∫ 1	J:	
ÉikÉj

 and ∫ E
C 	J:	

ÉikÉj
. Afterwards, Sean agreed and repeated 

Riley’s verbiage of “adding them together,” but his pointing gestures semantically 

referred to summing ∫ EkC
C 	J:	

Éi
  and ∫ EkC

C 	J:	
Éj

.  

Accordingly, such situations suggest a potential way in which gesture-speech 

mismatch might align with the ghostee speaker role, as well as how gesture-speech 

mismatches might be extended to more social situations such as a collective argument. 

Other examples of this phenomenon might have occurred in other tasks during my 

interviews, however I did not explicitly code for gesture-speech mismatches in the 

present study. Thus, future work could further investigate this potential relationship 

between mismatches and the ghostee speaker role. I hypothesize that there might also be 

a relationship between gesture-speech mismatches and students’ navigation of Tall’s 

three worlds, in the sense that one’s speech and gesture might respectively attend to two 

different worlds. Again, these relationships could be explored via future research. 

Nevertheless, my participants’ use of gestures to instantiate the spokes(wo)man and 

ghostee speaker roles suggest that a more comprehensive framing of speaker roles, 
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especially one including individuals’ gestures, might benefit collective argumentation 

analysis. 

Implications for Instruction 

As discussed in the previous section, I contend that there are at least three distinct 

manners in which individuals can participate in collective argumentation, and I have 

illustrated several ways in which these components can work in tandem. Accordingly, 

when the individuals in question are students, and when classroom interactions include 

students’ collective argumentation, this necessitates that instructors consider (1) how to 

attend to each of these three pieces, and (2) how the pieces can intertwine. Such 

considerations are especially important in classrooms driven by inquiry-oriented 

practices, in which students: 

learn new mathematics through inquiry by engaging in mathematical discussions, 
posing and following up on conjectures, explaining and justifying their thinking, 
and solving novel problems. Thus, the first function that student inquiry serves is 
to enable students to learn new mathematics through engagement in genuine 
argumentation (Rasmussen & Kwon, 2007, italics in original). 
 

Along these lines, it is also essential for instructors to keep in mind that they can 

directly shape students’ argumentation in subtle ways. Indeed, even as interviewer 

wherein my intended role was not to provide instruction, some of my follow-up questions 

initiated additional arguments or challenges, especially when such questions asked for 

clarification about a participant’s previous statement. Other times, my interjections 

induced particular speaker roles in my participants, such as when I would ask someone to 

recapitulate a prior statement and they would respond as relayer. Moreover, there were 

instances in which participants expected me to add to the conversation, as evidenced via 

particular eye gaze and facial expressions directed at me, but I deliberately did not. 
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Ultimately, my findings suggest that verbal and nonverbal qualifiers can significantly 

shape collective argumentation, in the sense that they can catalyze follow-up arguments 

or stimulate additional clarifications in an existing argument. As such, instructors must be 

attuned to both types of qualifiers.  

For instance, instructors might use students’ qualifiers to glean important 

information about how students view authority in the classroom, and perhaps to 

subsequently shape these views. As discussed previously, in Task 11 Frank’s nonverbal 

qualifiers transformed from looking to me for approval, to looking to Dan for approval. I 

was pleased to observe this because I found that Dan subsequently stepped in and tried to 

verify Frank’s claims himself rather than wait to see if I would validate Frank’s 

statements. Accordingly, instructors might wish to redirect students’ qualifying looks for 

approval back towards the students in order to shift the perceived source of authority 

from teacher to student(s) during collective argumentation. And more generally, 

instructors must be mindful of how their questioning and scaffolding (or lack thereof) can 

shape students’ argumentation in the above ways. Indeed, such implications also align 

with Krummheuer’s (2007) findings, in which elementary students appealed to their 

teacher’s presence or absence of intervention following students’ claims as a warrant to 

support or refute these claims.  

Moreover, considerations about students’ perceived sense of authority in the 

classroom could shape the prevalence of challenges in students’ collective 

argumentation. According to Weber et al. (2008), in classroom environments where the 

teacher is perceived as the sole arbiter of students’ reasoning, “we believe students will 

be unlikely to challenge their classmates’ arguments, believing that it is the teacher’s job 
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to do so” (p. 259). As such, and given the demonstrated importance of challenges to 

collective argumentation in the present study, instructors should cultivate learning 

environments in which “warrants become explicit and the subject of debate […] warrants 

become the claim to be justified, engaging students in a higher level of mathematical 

reasoning” (Weber et al., 2008, p. 258). For the reasons conveyed previously, it is a 

nontrivial task as an instructor to mediate all the various aspects of collective 

argumentation, and the idiosyncrasies of how this can be done should be the object of 

further research, as I discuss in a later section. 

Additionally, the manners in which my participants joined embodied reasoning 

with symbolic and formal reasoning highlight the potential roles of visualization and 

geometry in the study of complex integration. Although complex variables courses tend 

to focus on symbolic computations and applications involving integration, my results 

point to an important consideration for teaching such a course. Specifically, they suggest 

that instructors might want to more explicitly highlight how the symbolism that abounds 

during the integration unit of a complex variables course can intertwine with the 

embodied and formal worlds. For instance, after providing a formal definition for a 

simply-connected domain or a simple curve, students could benefit from drawing 

numerous examples and counterexamples with one another. At times, my participants 

conflated some of these formal requirements, suggesting that additional care should be 

taken to produce examples that satisfy one requirement but not another. Moreover, given 

Riley and Sean’s difficulty with justifying the continuity of certain complex functions, 

instructors might wish to review this topic prior to beginning the integration unit, as 

continuity is an assumption needed for many of the integration theorems. 
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A related pedagogical implication that arises from the present study involves 

educators’ emphasis of geometric interpretations of foundational arithmetic at the 

beginning of a complex analysis course. In particular, my participants occasionally 

reached impasses during embodied reasoning about integration due to errors in their 

geometric characterizations of complex arithmetic. A notable example of this was Sean’s 

conflation of the dot product with complex multiplication, as discussed previously. 

Moreover, in Task 5b, Sean mis-plotted several complex conjugates and this confused 

him and Riley during his embodied description of an integral. In Task 4, Riley and Sean 

also ended up with the wrong resultant vector when performing vector subtraction 

visually. Such difficulties with complex arithmetic were not limited to Riley and Sean. In 

particular, Dan and Frank conflated the complex reciprocal hC with the complex conjugate 

:̅ in Task 6, wherein both participants claimed that the two operations were equivalent. 

They attempted to justify this claim by writing the function hC in several forms, including 

:âh and y∏ôV − 8ô8xV, the latter of which is only accurate when the point : lies on the 

unit circle. 

The aforementioned findings suggest that complex variables instructors might 

need to further emphasize the geometry of complex arithmetic at the onset of the course 

if they wish for their students to develop a geometric interpretation of integration. In 

particular, instructors might especially stress that although complex numbers can be 

represented as vectors graphically, they are equipped with a multiplication operation that 

is structurally different than the dot- and cross-products studied in multivariable calculus. 

Moreover, a focus on fluency between the various forms of a complex number, especially 

those involving the exponential form, might prevent instances such as Dan and Frank’s 
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false equivalence of  hC and :̅, and is advocated for by other researchers in this domain as 

well (Danenhower, 2006; Karakok et al., 2014). Finally, Soto-Johnson and Troup (2014) 

found successes in participants’ proficiency between algebraic and geometric reasoning 

about complex arithmetic following a complex variables course incorporating dynamic 

geometry software. As such, I underscore their contention that the effective 

implementation of technology such as GeoGebra or Geometer’s Sketchpad could be 

effective in cultivating students’ geometric conceptions of complex arithmetic, which can 

be employed when discussing embodied interpretations of complex integration. 

As discussed in a previous section, there were three ways in which my 

participants explicitly addressed thinking real, doing complex (Danenhower, 2000): (1) 

purposefully avoiding inappropriate applications of it; (2) extending real intuition to the 

complex setting erroneously; and (3) extending real intuition to the complex setting in 

productive ways. Aside from a few notable exceptions, my participants were mostly 

cognizant about avoiding the unproductive versions of thinking real, doing complex, but 

implementing the productive ones; an important question is why? While this was not an 

explicit research question in the present study, I note here that it is possible that my 

participants’ attention to thinking real, doing complex might be partly attributed to 

Professor X’s explicit statements about building upon the intuition from real-valued 

functions in order to define analogous complex structure. He made such statements in 

class regularly throughout the integration unit, and I speculate that he made similar 

remarks during previous units as well based on how he introduced integration of complex 

functions. 
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In particular, on Day 1 of the integration unit, Professor X reminded the class that 

they had previously defined complex derivatives by mimicking the limit definition of the 

real-valued derivative. Analogously, he introduced complex integration by stating, “It 

can’t be the same as in real analysis, for reasons you’ll see in a minute; but let’s take the 

definition from real variables, and as best we can, mimic what we get to define something 

in the complex case.” Accordingly, I suspect that instructors might be able to instill in 

students an awareness of thinking real, doing complex via continual and explicit 

conversations regarding (1) how the intuition from real-valued functions plays a part in 

defining the complex-valued counterparts and (2) where that intuition needs adjustment 

in the complex setting. In other words, instructors might benefit from making explicit any 

productive versus unproductive met-befores using the set-before of “the language of Calc 

3.” That said, such matters can and should be explored through future research.  

Finally, my results suggest potential teaching implications regarding the use of 

language with respect to the formal assumptions in integration theorems. In particular, 

care should be taken when assigning acronyms like SICOPOC or ASCODOD. 

Ostensibly, these abbreviations are a convenient way to express several conditions or 

hypotheses succinctly in a proof or when writing out the statement of a theorem. 

However, in doing so, there is the potential danger of lumping assumptions together in 

such a way that students do not have to think carefully about each of the separate 

statements or when they are using each particular assumption during integration 

computations. For instance, this might be why Riley and Sean got confused about the 

“Jordan” phrasing of Task 11 and related considerations during Arguments 1-3. On the 

other hand, Dan and Frank did not seem to require as much clarification about the 
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statement of Task 11. As I read this task aloud to them, Frank immediately expressed a 

desire to “write this [the assumptions] out properly,” and when I added that he and Dan 

could use the SICOPOC abbreviation from class, he responded, “I guess I'll use the 

abbreviation. I never actually used it [in class].” To be clear, I am not suggesting that 

such abbreviations are always harmful, but rather that instructors should be careful to 

explicitly highlight each assumption as it comes up in the problem or proof.  

Limitations and Future Research 

 Although the results of my study suggest potential teaching implications and 

extensions for theoretically framing collective argumentation, I acknowledge several 

limitations preventing further interpretation of my findings. In this section, I disclose 

known limitations related to data collection at the chosen institution, as well as 

unexpected circumstances that arose during data collection. Afterwards, I suggest 

possible avenues for future research based on the observations discussed in this chapter 

and the results detailed in the previous chapter. 

Limitations  

Unfortunately, there were several unavoidable difficulties that I encountered 

during my study that arose from the logistics of collecting data at the particular institution 

in which my participants resided. In particular, internal policies at this institution 

regarding the conducting of interviews mandated that I submit the exact interview tasks 

to the institution early on in process of designing my study. This meant that I could not 

adjust my tasks after conducting classroom observations, and I was not able to 

significantly deviate from the submitted list of questions. Consequently, the ensuing 

classroom observations did not inform how I conducted the interviews to the extent that I 
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had originally intended, as I could not add new tasks based on what I observed in class. 

Along these lines, Professor X also had to slightly alter his original schedule for the 

integration unit mid-semester due to pacing considerations, so my scheduled observations 

did not completely cover the entire integration unit. Hence, I was not able to observe how 

the class discussed several of the later integration topics such as residue theory and 

integral applications.  

A related consequence of the aforementioned issue was that some of the tasks I 

asked participants happened to be strikingly similar to exercises they had completed in 

class or on a previous exam. For instance, after I asked Dan and Frank about the 

conditions under which a complex function has an antiderivative in Task 13, Frank 

remarked, “This was on the test” as he pointed at Dan. In such cases, participants’ 

collective argumentation might have included fewer explicit warrants and backing if they 

did not need to think as deeply about supporting their assertions or convince one another 

of their claims. Ultimately, I do not find this to be problematic, in that students can 

certainly encounter similar situations in authentic classroom sessions wherein they recall 

a problem they have interacted with previously. I mention this finding here only to 

acknowledge the fact that students’ prior exposure to certain tasks likely affected their 

ensuing collective argumentation in response to such tasks, for better or for worse. 

Another similar outcome arising from the predetermined rigidity of my tasks 

manifested during the students’ interviews as I read Task 11 aloud to the participants. In 

particular, my use of the word “Jordan” confused Riley and Sean, and this property 

become the object of follow-up arguments that required additional clarification. During 

my classroom observations, the class did not meaningfully discuss this property when 
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articulating the various integration theorems, but I did not change the wording of this task 

out of consideration of the aforementioned interview requirements. Accordingly, the 

assumptions I listed in the setup of Task 11 (and potentially others) were not exactly how 

they would have been phrased in class, and this might have caused undue confusion 

about what I was asking in the tasks. At times, I attempted to adjust for this scenario by 

additionally re-voicing some of the hypotheses using Professor X’s acronyms such as 

SICOPOC. However, as mentioned previously, Frank admitted that he never really used 

those abbreviations on his own.  

 An unfortunate limitation also arose from an accidental omission on my part 

during Dan and Frank’s interview. Specifically, after an interesting follow-up 

conversation after Task 7, I inadvertently skipped over Task 8. As such, I did not have 

enough data from that task to identify any similarities or differences in how the two 

student pairs reasoned about the effect of reversing a path’s orientation on the resulting 

integral across such a path. More generally, I witnessed instances during the interview in 

which one participant had more to say about a topic, but was interrupted by the other 

participant, leaving some arguments initially incomplete. I tried not to intervene in these 

cases, so as not to disturb the natural flow of the pair’s collective reasoning, but 

nevertheless this meant that sometimes one participant’s reasoning overshadowed 

another’s. 

As mentioned previously, participants occasionally recognized some aspects from 

the interview tasks from previous exam questions from their class. However, I did not 

request copies of these exams as artifacts, so I was unable to directly compare the two 

scenarios or verify that the tasks were indeed similar. While this was not an explicit goal 
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of the present study, future work could incorporate such considerations for the purposes 

of studying their transfer of knowledge as captured by their Toulmin argumentation 

schemes. In particular, it might be illuminating to compare how individual students 

initially reason about an exam problem on their own, compared with how they 

collectively support their assertions when working through a similar problem at a later 

time. In particular, such an investigation could capture how students’ mathematical 

justifications shift over time and in individual versus social contexts. In the next section, I 

detail other potential directions for pertinent future research. 

Future Research 

 With the aforementioned results from a controlled interview setting in mind, I am 

excited to ascertain in future research how my proposed theoretical addendums to 

collective argumentation play out in more authentic classroom interactions, as well as in 

other mathematical contexts. Specifically, I would like to collect data wherein I can 

carefully analyze the collective argumentation of larger groups of students rather than just 

pairs. Moreover, I am particularly interested in how teachers dynamically mediate the 

three proposed types of participation in collective argumentation during an actual class 

session, as doing so is certainly not a trivial task. 

Although previous studies (Krummheuer, 1995, 2007; Rasmussen, Stephan, & 

Allen, 2004; Stephan & Rasmussen, 2002) have investigated students’ real-time 

argumentation in classrooms, they have primarily done so via a truncated Toulmin model 

lacking qualifiers and rebuttals, and researchers rarely found evidence of explicit 

backing. These researchers’ justification for omitting such components from their 

analysis has largely been that such components were non-existent in their K-12 students’ 
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arguments. However, while it is perhaps unsurprising that younger students would not 

explicitly articulate backing or rebuttals in the traditional sense, I believe my proposed 

amendments to analyzing argumentation would indeed account for more subtle or 

embodied versions of qualifiers, backing, and rebuttals. It is my contention that features 

such as gestures and facial expressions can capture this type of important information 

when analyzing students’ mathematical justifications. As such, future work could shed 

immense light on how we view collective argumentation within authentic classroom 

settings, especially those that involve younger students who may not always be able to 

verbalize some of the nuances of their mathematical reasoning. 

I would additionally like to investigate such matters in courses for pre-service 

teachers via future research. I hypothesize that this particular population of students 

might argue in a relatively unique manner due to their dual roles as students and 

prospective teachers. Specifically, pre-service teachers might call upon specialized 

support for their mathematical assertions that stems from how they might teach a 

hypothetical student. Indeed, in previous work, mathematics professors appealed to 

pedagogical explanations when articulating their reasoning about continuity of complex 

functions (Soto-Johnson, Hancock, & Oehrtman, 2016). Moreover, I hope to find ways to 

further refine how we can view collective argumentation in order to inform subsequent 

research and ultimately improve the practice of teaching. Eventually, my aim is to 

provide research-based professional development for in-service teachers so that they may 

carefully attend to the interrelated factors shaping students’ collective argumentation. 

Attention to students’ argumentation is particularly important in modern standards-based 

curricula. In particular, one of the Common Core State Standards Initiative’s eight 
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Standards for Mathematical Practice is to “construct viable arguments and critique the 

reasoning of others” (National Governors Association Center for Best Practices & 

Council of Chief State School Officers, 2010). 

 Future work could also more intricately link classroom observations and student 

interviews. Specifically, it might be of interest to investigate how the establishment of 

norms regarding what counts as justification influences or shapes students’ collective 

argumentation about integration. This could illuminate, for instance, how a complex 

analysis professor’s justifications about continuity of complex functions during class 

inform students’ warrants related to continuity hypotheses when applying integration 

theorems in an interview setting or during future classes. Such research could 

complement work conducted by Fukawa-Connelly (2011) in abstract algebra, in which he 

conducted Toulmin analyses to conclude that students appropriated key features of their 

professor’s argumentation structure in their own subsequent proofs. Along these lines, I 

hypothesize that Professor X in my study influenced my participants’ attention to 

thinking real, doing complex (Danenhower, 2000) via explicit statements about building 

upon the intuition from real-valued functions. As such, future work could illuminate more 

definitively how instructors might influence students’ invocation of this phenomenon in 

complex variables courses by instilling and nurturing specific norms to this end. 

Although complex analysis has been a rich setting to explore the boundary 

between intuition and formality, I also plan to investigate students’ argumentation within 

more foundational settings such as calculus. Part of my rationale for this avenue of 

research is that I want to investigate the contexts in which some of students’ intuition and 

embodiment are formed in the first place. In particular, I intend to study how students’ 
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reconciliation of everyday notions such as steepness and accumulation with the 

symbolism and theorems in calculus manifests in students’ collective argumentation. 

Such work could, in turn, further inform research on the teaching and learning of 

complex analysis, in that I could gain pertinent insight into the thinking real aspect of 

thinking real, doing complex.  

Previous research on integration of real-valued functions has illuminated a few 

aspects that might be helpful in such an investigation, but unfortunately the majority of 

these studies have primarily focused on students’ misconceptions static products rather 

than the processes by which students reach these faulty conclusions. For instance, Orton 

(1983) and Grundmeier et al. (2006) reported students’ difficulties relating the concept of 

the definite integral to a limit, as well as incomplete or completely incorrect definitions of 

the definite integral. Mahir (2009) also found that students had trouble identifying when 

areas should be treated as negative contributions to the definite integral. While such 

findings suggest important potential misconceptions, future work could illuminate why 

such confusion might occur in calculus courses by detailing the processes of students’ 

(collective) argumentation as they make and support similar claims.   

Another context in which I could test my proposed amendments to framing 

collective argumentation is linear algebra. Like complex analysis, undergraduate linear 

algebra courses tend to be comprised of a healthy mixture of symbolic calculation and 

formal proof, with theoretical results such as the Invertible Matrix Theorem 

complementing symbolic manipulations such as row-reducing matrices. Moreover, topics 

such as linear transformations and eigenvectors are often visually embodied by studying 

the manners in which particular vectors or shapes are mapped under certain 
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transformations. Accordingly, the mathematical context of linear algebra is amenable to 

the theoretical lens of Tall’s (2013) Three Worlds.  

For instance, Thomas and Stewart (2011) investigated how undergraduate 

students attended to the embodied, symbolic, and formal worlds with respect to 

eigenvalues and eigenvectors. They found that explicitly highlighting embodied 

interpretations of linear maps throughout the course allowed some students to proficiently 

describe eigenvectors and eigenvalues using the language of “change of direction” and 

“steepness” (p. 283), though ultimately many participants still preferred symbolic 

representations. Moreover, although she did not incorporate the Three Worlds 

framework, Wawro (2015) attributed her participant’s successes in the observed linear 

algebra course to his representational fluency and explicit reference to definitions in his 

mathematical justifications. Future work should investigate the potential for similar 

successes in collective argumentation, particularly in a classroom where students are 

regularly given opportunity to “reflect on the different symbolic forms and translations 

between them,” as Wawro encouraged. 

Finally, it is worth noting that several important components of my study and 

proposed theoretical additions to framing collective argumentation concern explicit 

statements that resulted from reflecting on one’s own thoughts or prior statements. 

Specifically, both challenges to oneself and avoiding inappropriate invocations of 

thinking real, doing complex appear to instantiate aspects of metacognition, broadly 

described as thinking about one’s own thinking (Schoenfeld, 1987). Accordingly, future 

research could further illuminate these and other potential relationships between 

collective argumentation and metacognition. Such work could also complement and/or 
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extend recent efforts to reformulate metacognition as a social process related to a 

collaborative zone of proximal development (Goos, Galbraith, & Renshaw, 2002). 

Indeed, Goos et al. found that secondary students’ 

challenges eliciting clarification and justification of strategies stimulated further 
monitoring that led to errors being noticed or fruitful strategies being endorsed. 
On the other hand, causes of metacognitive failures could be traced to the absence 
of such challenges (p. 218). 
 

Hence, future studies could help discern how the types of challenges that I witnessed in 

my dissertation, both to oneself and to another student, shape undergraduate students’ 

metacognition on the individual and collective levels.  
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1. M-L Inequality: If 9 is a complex-valued, continuous function on the contour { 

and if |9(:)| ≤ › for some constant › and for all : on {, then †∫ 9(:)J:	
É † ≤ ›´ 

where ´ is the arc length of {. 

 

2. Cauchy-Goursat Theorem: If a function 9 is analytic at all points interior to and 

on a simple closed contour { then ∫ 9(:)J: = 0	
É . 

 

3. Green’s Theorem: Let { be a positively oriented, piecewise smooth, simple closed 

curve in a plane, and let è be the region bounded by {. If ⁄ and € are functions 

of (7, R) defined on an open region containing è and have continuous partial 

derivatives there, then ∮ (⁄	J7 + €	JR) = ∬ ƒfifl
fi< − fi‡

fiò≈ J7	JR	
·

	
É . 
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- 1 - Generated on IRBNet

  

   
 I n s t i t u t i o n a l R e v i e w B o a r d  

 
DATE: April 8, 2015
  
TO: Brent Hancock
FROM: University of Northern Colorado (UNCO) IRB
  
PROJECT TITLE: [732996-2] Undergraduate Mathematics Majors’ Geometric and Algebraic

Reasoning about Integration of Complex-valued Functions (REVISED)
SUBMISSION TYPE: Amendment/Modification
  
ACTION: APPROVED
APPROVAL DATE: April 8, 2015
EXPIRATION DATE: April 8, 2016
REVIEW TYPE: Expedited Review
  

Thank you for your submission of Amendment/Modification materials for this project. The University of
Northern Colorado (UNCO) IRB has APPROVED your submission. All research must be conducted in
accordance with this approved submission.

This submission has received Expedited Review based on applicable federal regulations.

Please remember that informed consent is a process beginning with a description of the project and
insurance of participant understanding. Informed consent must continue throughout the project via
a dialogue between the researcher and research participant. Federal regulations require that each
participant receives a copy of the consent document.

Please note that any revision to previously approved materials must be approved by this committee prior
to initiation. Please use the appropriate revision forms for this procedure.

All UNANTICIPATED PROBLEMS involving risks to subjects or others and SERIOUS and UNEXPECTED
adverse events must be reported promptly to this office.

All NON-COMPLIANCE issues or COMPLAINTS regarding this project must be reported promptly to this
office.

Based on the risks, this project requires continuing review by this committee on an annual basis. Please
use the appropriate forms for this procedure. Your documentation for continuing review must be received
with sufficient time for review and continued approval before the expiration date of April 8, 2016.

Please note that all research records must be retained for a minimum of three years after the completion
of the project.

If you have any questions, please contact Sherry May at 970-351-1910 or Sherry.May@unco.edu. Please
include your project title and reference number in all correspondence with this committee.

Brent -
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- 2 - Generated on IRBNet

Hello and thank you very much for your patience with the UNC IRB process.

The first reviewer, Dr. Collins, has provided approval based on the clear and thorough revisions/
clarifications submitted. It is now more clear how you will accomodate any students who do not
wish to participate, and/or not wish to have their recordings on audio and/or video used in your
study.

I've subsequently reviewed both your original and revised materials and have no further requests
for revisions or additional materials. Please be sure to use all revised/amended protocols in your
participant recruitment and data collection. Best wishes for a successful study and don't hestiate
to contact me with any IRB-related questions or concerns.

Sincerely,

Dr. Megan Stellino, UNC IRB Co-Chair

 

 

This letter has been electronically signed in accordance with all applicable regulations, and a copy is retained within University of
Northern Colorado (UNCO) IRB's records.
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Narrative: UNC IRB Application -- Undergraduate Mathematics Majors’ Geometric 
and Algebraic Reasoning about Integration of Complex-valued Functions 
 

A. Purpose 
1. Research Questions 
The study of complex numbers and variables is one of the undergraduate 
mathematical domains that have not received much attention from mathematics 
education researchers. The few studies that do exist in the domain of complex 
variables have focused primarily on complex arithmetic and forms of a complex 
number (Danenhower, 2006; Karakok, Soto-Johnson, & Anderson-Dyben, 2014;  
Nemirovsky, Rasmussen, Sweeney, & Wawro, 2012; Panaoura, Elia, Gagatsis, & 
Giatilis, 2006;  Soto-Johnson & Troup, 2014). While there are several ongoing 
studies investigating more advanced topics such as continuity and differentiation, 
there is no existing literature regarding integration of complex-valued functions, 
despite this being a central topic of any complex analysis course for 
undergraduates. In particular, it is unclear as of yet how undergraduate students 
reason algebraically and geometrically with the notion of integration of complex-
valued functions. Fortunately, there exists research within other mathematical 
domains (such as linear algebra) regarding how students reason algebraically and 
geometrically about mathematics (Sierpinska, 2000; Tabaghi & Sinclair, 2013), 
and I intend to utilize the associated reasoning framework to assist my data 
analysis. 
 
Due to the absence of any mathematics education research in this field, my1 study 
is designed to contribute to the literature on teaching, learning, and understanding 
undergraduate mathematics, particularly in the area of complex analysis. 
Specifically, the purpose of this qualitative research project is to explore 
undergraduate mathematics majors’ geometric and algebraic reasoning about 
integration of complex-valued functions. My research questions are: 

 
1. What is the nature of undergraduate mathematics majors’ reasoning with 

respect to integration of complex-valued functions?  
2. What relationships exist between undergraduate mathematics majors’ 

algebraic and geometric reasoning when integrating complex-valued 
functions? 

3. What types of reasoning do undergraduate mathematics majors invoke 
when they apply powerful integration theorems such as Cauchy’s Integral 
Formula to compute integrals? 

4. How do undergraduate mathematics majors attend to the assumptions 
present in powerful integration theorems, when reasoning about integrals 
in practice? 

 

                                                
 
1 “My” and “I” refer to the principal researcher (B. Hanock). The “research advisor” 
refers to H. Soto-Johnson. 
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Anecdotally, undergraduate students in complex analysis courses tend to be able 
to proficiently compute complex-valued integrals by applying powerful results 
such as Cauchy’s Integral Formula, but it is often unclear (from looking at 
traditional written student work) how students are actually reasoning about their 
computations or why they can even apply the theorems that they do. As such, my 
research aims to provide teaching implications for educators as to how they can 
draw students’ attention to any assumptions implicitly being used when 
computing integrals in complex analysis.  
 
2. Review Category 

This research falls under the expedited review category because the research 
activities present no more than minimal risk to human participants (see section 
C for details) and data collection will be in the form of video-recordings and 
student-work artifacts. Furthermore, my research is designed to describe 
group characteristics from a population who is not vulnerable. There is no 
appreciable, foreseeable risk associated with completion of the tasks or 
questions beyond the risk typically associated with solving math problems and 
all information regarding the participants will be kept strictly confidential. 
Details regarding this confidentiality are provided in the Methods section 
below. 

 
B. Methods 

1. Participants 
Participants will be selected from students at the United States Air Force 
Academy enrolled in the Math 451: Complex Variables course, which is 
offered in the spring of 2015. This is generally a small-enrolled course with 
approximately 17 students composed of primarily juniors or seniors. The 
course will already be recorded by the institution for instructional purposes. 
For this reason, I will ask everyone 18 and older for permission to utilize pre-
recorded video-taped classroom observations (see description below) for the 
purpose of describing group characteristics and the general classroom 
environment. I will also select a subset of four (two pairs) of these students to 
take part in two 90-minute task-based interviews per student pair. This subset 
of four will be purposeful (Patton, 2002) because I hope to interview students 
who can easily articulate their thoughts and work well together. In order to 
ensure such a selection I will talk to the instructor of the course to get an idea 
of which students might reason similarly or work well together.  
 
I will contact the four students selected to participate in the interviews via 
email. Document A is a sample letter that will be used in the email. 
Document B is a consent form for these four participants. Prior to the study’s 
commencement, I will visit the Math 451 class and request class participation 
from the entire class. Document C is a copy of the consent form that I will 
distribute after describing the purpose of the research and debriefing the class. 
A detailed description of the debriefing for the classroom observations is 
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included in the next section, and a copy of the debriefing for interview 
participants is included in Document G. 
  

2. Data Collection Procedures 
In this section I describe the data that I hope to collect, the purpose of these 
data, and debriefing protocols. There will be three sources of data: video-
taped classroom observations, student-work artifacts, and video-taped task-
based interviews. Conducting classroom observations and collecting student-
work artifacts will not require any extra time from the students.  
 
I will sit in on the course during the integration unit of the course 
(approximately five to eight class sessions), but will not be an active class 
participant. The purpose of the classroom observations is to document what 
information is covered by the instructor, and to establish a “base-line” for 
what students know about integration theory before taking part in the 
subsequent interview. The course will already be recorded by the institution 
for instructional purposes. Video-taping will result in stronger research 
because it allows me to “retain a rich record of behavior that can be 
reexamined again and again” (Clement, 2000, p. 577). It will also allow me to 
document field notes on the spot as I observe the class. Although the 
instructor is not the focus of my research, his sequencing of events and how 
he teaches the content will most likely influence students’ reasoning to some 
degree. Accordingly, I would like to have this information as part of my 
research. Thus, I will ask everyone 18 and older for permission to utilize pre-
recorded video-taped classroom observations (see description below) for the 
purpose of describing group characteristics and the general classroom 
environment. Those who do not give permission will have identifying 
information edited out of the video-recordings (both visual and audio) using 
the video editing software Camtasia Studio. The original identifying video 
will then be deleted. 
 
In addition to observing the complex variables class several times, I would 
also like to collect copies of select student work, such as homework exercises 
and quizzes/exams. These artifacts will help triangulate my classroom 
observations and task-based interview findings. In particular, they will help 
me to assess what students know before going into the interview, as well as 
how they typically solve problems in complex analysis. 
 
The third component of the data I wish to collect is in the form of two 90-
minute, task-based, semi-structured interviews. I will conduct two such 
interviews per pair of student participants, and these interviews will be 
scheduled to take place near the end of the spring 2015 semester. During these 
interviews, I will ask the pair of students to work together to solve some tasks 
related to integration of complex-valued functions. Participants will be asked 
to communicate with one another aloud and write down their thoughts on an 
accompanying whiteboard. Appendices D and E contain some sample 
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interview questions, though I will also be asking follow-up and clarification 
questions throughout.  
 
While the students work on the tasks, I will encourage the students to 
elaborate on their discoveries, theories, ideas, reasoning, conjectures, etc. 
Such probing will allow me to encourage the students to think aloud and to 
request clarification about their remarks. A research assistant will be 
responsible for video-recording the teaching experiment, but will not take part 
in any subsequent analysis of the data. The interviews will be conducted at the 
United States Air Force Academy in a room familiar to the students. 
Summarily, a timeline of the various data collection is shown below. 
 

Time Activity Participants 
Late March - 
Early April 

Class observations during unit 
on integration (5-8 classes) 

1 researcher 
All students 

Late April/Early 
May 

Conduct task-based interview 1 researcher 
2 pairs of consenting 
students 

 
The debriefing process will occur when I invite the class to partake in the 
video-taped classroom observations. I will inform the students of the purpose 
of the research, and let them know that the observations will be videotaped 
over the course of 5-8 class sessions. I will disclose that I am interested in 
their geometric and algebraic understanding of complex-valued integration, 
including their use of gestures, and thus request that the participants allow me 
to utilize recorded video-taped classroom sessions. I will inform them of the 
importance of viewing video-recorded classroom sessions (i.e. gather rich data 
that can be observed multiple times) and that the student-artifacts will help 
substantiate my conjectures. Further, the video-recorded classroom sessions 
will be used for the purpose of describing group characteristics and the 
general classroom environment.  Only video data artifacts (e.g. screenshots 
and quotes) for those students who agree to participate in interviews will be 
used in data analysis. Those who do not give permission will have identifying 
information edited out of the video-recordings (both visual and audio) using 
the video editing software Camtasia Studio. The original identifying video 
will then be deleted. Finally, I will inform them about the opportunity to take 
part in the aforementioned task-based interviews, if they are contacted by me 
at a later date 

 
All the students will be informed orally and through the consent forms that 
they are not required to participate in the research and that their course grade 
will not be affected if they choose to not participate in the research. Moreover, 
those who do not give permission will have identifying information edited out 
of the video-recordings (both visual and audio) using the video editing 
software Camtasia Studio. 
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Furthermore, I will inform the participants that for dissemination purposes I 
request that I be allowed to use video with their images, especially where I 
want to illustrate their use of gestures or diagrams to convey their 
understanding. I will honor students’ request to not use their images; such 
students will have the option to participate in the research, but I will only use 
their remarks and describe their gestures. More detail is provided in section 
B4. 
 

3. Data Analysis Procedures 
The following data analysis procedure are relevant only for those students 
who will be interview participants. Video data for students in the recorded 
class sessions who are not interview participants will not be used in data 
analysis. Given my research is qualitative in nature, I will use qualitative 
methods to analyze the data, and potentially use software such as Elan to 
organize my data. The data analysis for the student interviews will begin with 
me transcribing participants’ exact verbiage word-by-word in Microsoft Excel 
or a program such as Elan, and noting and describing any important gestures 
made by the participants. Each segment of the participants’ response will then 
be coded for types of reasoning (c.f. Sierpinska, 2000). Through many 
viewings of the video data, as well as reviewing the coded reasoning data, I 
will then use generative analysis techniques to develop a theoretical model of 
the observed data. Generative analysis entails open interpretation of large 
episodes. I hope to inductively determine themes that emerge from the data, 
and use the other types of data collected (classroom observation field 
notes/video, student artifacts) to triangulate my findings, as discussed below.  
 
Relevant episodes of the classroom observation video data and field notes will 
also be analyzed to substantiate or negate findings from the aforementioned 
student interview analysis. These classroom observations will be used in this 
way only to triangulate observations for interview participants, not for all 
students who allow me to view classroom observation data. Any phrases or 
gestures used by interview participants or the professor during the class 
observations will be compared to those used by interview participants during 
the interviews, and similar gestures will be documented by taking screenshots 
of the video data and labeling the corresponding gestures. The student-work 
artifacts will be used to triangulate my findings by offering a way to compare 
what students have previously written down to what they write as inscriptions 
during the interview tasks. The analysis of these three sources of data will 
help me answer my three research questions. 
 

4. Data Handling Procedures 
As the lead researcher, I (B. Hancock) will have access to the data, and my 
research advisor will also have access to the data as needed. But all data 
(video as well as PDF copies of student-work artifacts) will be stored on my 
password-protected computer. Any hard copies of the written work will be 
scanned and saved as an electronic copy on the external drives, and the hard 
copies will be shredded. In case my research advisor needs to view any data, I 
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will back-up all the data on a USB flash drive and have her store this drive in 
a locked file-cabinet in her UNC office. As this is a pilot study for a larger 
dissertation, all data will be stored for up to 4 years or until data analysis and 
dissertation are completed. All video data will then be destroyed.  
 
Some of the data will be synthesized and portrayed as group results, but 
student excerpts will be used to substantiate my hypotheses and theoretical 
models. Furthermore, images of interview participants’ gestures will be 
included as part of the results – this is standard reporting for such research 
questions.  As mentioned above, I will request to use images of the interview 
participants from the video, and thus the identity of the participants will only 
be protected if they choose to abstain from sharing their images. In such a 
case, these participants will be assigned a pseudonym to use with their 
remarks, and will be guaranteed that I will not use their images in any 
dissemination materials. In an effort to convey their gestures, I will include 
rich descriptions rather than images of these participants. All participants in 
the interview component of my research, regardless of whether they want their 
images used in dissemination materials, will be assigned a pseudonym to help 
protect their identity to the greatest extent possible under the aforementioned 
conditions. The video-recorded classroom sessions will be used for the 
purpose of describing group characteristics and the general classroom 
environment.  Only video data artifacts (e.g. screenshots and quotes) for those 
students who agree to participate in interviews will be used in data analysis. 
Those who do not give permission will have identifying information edited 
out of the video-recordings (both visual and audio) using the video editing 
software Camtasia Studio. The original identifying video will then be deleted. 
 

 
C. Risks, Discomforts and Benefits 

The risks inherent in this study are no greater than those normally encountered 
during regular classroom participation. Such minimal risks include participants 
being embarrassed about their responses, insecure about sharing their work, or 
worried that they will say something incorrect. I will attempt to mitigate these 
risks by assuring the students that I am not concerned about whether their 
responses/work/remarks are incorrect, and rather I am interested in how they 
reason algebraically and geometrically about complex variables concepts. 
 
A benefit of participating in this research is that the students may gain a deeper 
understanding of the geometry behind the arithmetic and analysis of complex 
numbers and variables by simply discussing the interview tasks with another 
student from the class. Indirect benefits include contributing to the knowledge 
base of teaching and learning complex variables, which could result in an 
improved course for future students. 
 

D. Costs and Compensations 
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Participation is voluntary. Because observations and interviews will be conducted 
on-base at the US Air Force Academy, there should not be any cost incurred by 
the participants exceeding normal transportation to school. The only other 
foreseen costs are the time costs associated with the interview, which will last 180 
minutes at most (two 90-minute sessions). Compensation will not be provided for 
consenting participants but snacks will be available during the interview periods. 
 

E. Grant Information 
I have recieved travel funds via University of Northern Colorado’s College of 
Natural and Health Sciences’ 2014-2015 Student Research Fund, in the amount of 
$200. 
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Documentation: 
 Document A: Email invitation to participate in interviews 
 Document B: Consent form for interview participants 
 Document C: Consent form for non-interview participants 
 Document D: Consent form for course instructor 
 Document E: Sample Day 1 Interview Questions/Tasks 
 Document F: Sample Day 2 Interview Questions/Tasks 
 Document G: Debriefing for Interview Participants 
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Document A: 
Email Invitation to Participate in Interviews 

  

 
Dear _______________, 
 
My name is Brent Hancock and I am a graduate student in educational mathematics at the 
University of Northern Colorado. I am conducting a study to investigate undergraduates’ 
algebraic and geometric reasoning about complex-valued functions. The purpose of this 
letter is to invite you to participate in a task-based interview along with one of your peers 
in Math 451. 
 
I am interested in exploring how undergraduate mathematics majors, such as you, view 
ideas such as integration of complex valued functions. As part of this research I intend to 
gather data on how undergraduates communicate their ideas using diagrams, gestures, 
metaphor, etc. In order to explore this phenomenon I am inviting you to participate in an 
end of semester interview, spread out over two sessions. Here are the important facts 
regarding the interview: 
 

• The interview will last a maximum of 180 minutes (90 minutes at most per 
session), and you will work with a classmate to discuss the tasks with one 
another. 

• This interview will take place on campus and will be video-taped so I can 
analyze the data at a later time.  

• We can find a time that works for you and your classmate during the second half 
of April or early May, after you have completed the integration unit. 

 
Given the purpose of my research, I would like to share portions of your video-clips 
during presentations and it is possible that I may want to incorporate photos that illustrate 
your gestures and/or diagrams in a publication. Thus, I am requesting permission to do 
so, but if you would prefer that I protect your identity, then I will honor your request. In 
such a case, I will only describe your responses rather than use pictures. In any case, I 
will assign you a pseudonym – care will be taken to protect your identity.  
 
I hope you will be willing to participate in this study especially since the results of this 
study could inform improved teaching methods of complex variables and other 
mathematical domains. This interview would also be a great opportunity to review and 
discuss Math 451 course material with a fellow classmate. Please do not hesitate to 
contact me if you have any questions regarding the study or the protocol for the study. 
You may contact me at brent.hancock@unco.edu . 
 
Sincerely, 
 
Brent Hancock 
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Document B:  

Consent Form for Interview Participants 
  
 
 
 
 
 
 
 
 

Consent Form for 
Human Participants in Research  

 
Project Title:  Undergraduate Mathematics Majors’ Geometric and Algebraic Reasoning 
about Integration of Complex-valued Functions 
Researcher:  Brent Hancock, Graduate Student, School of Mathematical Sciences, 
University of Northern Colorado  
Phone Number: (818) 730-9615  
E-mail: brent.hancock@unco.edu  
 
Research Supervisor: Dr. Hortensia Soto-Johnson, Department of Mathematical 
Sciences, University of Northern Colorado 
Phone Number: (970) 351-2425 
E-mail: hortensia.soto@unco.edu 
 
I am investigating how undergraduate mathematics majors perceive integration of 
complex-valued functions. I am interested in how students such as yourself communicate 
your understanding of these mathematical concepts through diagrams, gestures, body 
movements, and metaphors. In order to explore this phenomenon I invite you to 
participate in a video-recorded interview, spread over two 90-minute sessions. The 
purpose of the interview is to ask you and a Math 451 classmate to discuss some 
problems and concepts related to integration of complex valued functions. The results of 
this study could inform improved teaching methods of complex variables and other 
mathematical domains, and participation in this study would be a great opportunity to 
review and discuss Math 451 course material with a fellow classmate in a low-pressure 
environment.  
 
The interview is designed to allow me, as a researcher, more time to observe you interact 
with complex variables content. During this interview you will engage in some 
integration problems with a fellow classmate, where I ask that you articulate your 
thoughts. The two of you should converse with one another, share ideas, and question 
each other’s conjectures, if applicable. I may ask probing questions simply to get a better  

Page 1 of 3 ________________ (Participant Initials) 
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understanding of what you are attempting to convey. There is no need to worry if you say  
 something that is incorrect because I am interested in how you might use geometric and 
algebraic reasoning to answer questions, or how such reasoning is developing throughout 
the activities. Recall from my invitation letter that:  
 

• We can find a time that works for you and your classmate during the second half 
of April or early May, after you have completed the integration unit. 

• The interview will last a maximum of 180 minutes (two sessions lasting 90 
minutes at most), and you will work with a classmate to discuss the tasks with 
one another. 

• This interview will take place on campus and will be video-taped so I can 
analyze the data at a later time.  

Given the purpose of my research, I would like to share portions of your video-clips in 
both interviews and relevant class sessions during presentations and it is possible that I 
may want to incorporate photos that illustrate your gestures and/or diagrams in a 
publication. Thus, I am requesting permission to do so, but if you would prefer that I 
protect your identity, then I will honor your request. In such a case, I will only describe 
your responses rather than use pictures. In any case, I will assign you a pseudonym when 
reporting any results – care will be taken to protect your identity.  
 
All data will be stored on my (Brent Hancock’s) personal computer, which is password 
protected; thus no one will have access to this data other than potentially my research 
advisor.  
 
There are no foreseeable risks to participating in this study other than some discomfort if 
you do not feel comfortable answering a question. You may also benefit from 
participating in this research if reflecting on these activities and questions allows you to 
gain a new perspective of topics in complex variables. 
 
Participation is voluntary. You may decide not to participate in this study and if you 
begin participation you may still decide to stop and withdraw at any time. Your decision 
will be respected and will not result in loss of benefits to which you are otherwise 
entitled. Having read the above and having had an opportunity to ask any questions, 
please sign below if you would like to participate in this research. A copy of this form 
will be given to you to retain for future reference. If you have any concerns about your 
selection or treatment as a research participant, please contact Sherry May, IRB 
Administrator, Office of Sponsored Programs, 25 Kepner Hall, University of Northern 
Colorado Greeley, CO 80639; 970-351-1910. 
 
Please feel free to contact me via phone or email if you have any questions and retain one 
copy of this letter for your records. Thank you for assisting me with this research. 

Page 2 of 3 ________________ (Participant Initials) 
If willing to participate in the interview and willing to disclose your identity i.e., 
agreeing to have your video shared with others at conference presentations, 
publications, etc. please complete the following. 
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________________________________________________________________________ 
Name (please print)         Signature                                 Date 
 
 
________________________________________________________________________ 
Researcher’s Name    Researcher’s Signature                                Date 
 
 
 
If willing to participate in the interview but prefer to have identity protected, please 
complete the following. 
 
________________________________________________________________________ 
Name (please print)         Signature                                 Date 
 
 
________________________________________________________________________ 
Researcher’s Name    Researcher’s Signature                                Date 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Page 3 of 3 ________________ (Participant Initials) 
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Document C: 
Consent Form for Non-Interview Participants 

  
 
 
 
 

 
 
 

 
Consent Form for 

Human Participants in Research  
 
Project Title:  Undergraduate Mathematics Majors’ Geometric and Algebraic Reasoning 
about Integration of Complex-valued Functions 
Researcher:  Brent Hancock, Graduate Student, School of Mathematical Sciences, 
University of Northern Colorado  
Phone Number: (818) 730-9615  
E-mail: brent.hancock@unco.edu  
 
Research Supervisor: Dr. Hortensia Soto-Johnson, Department of Mathematical 
Sciences, University of Northern Colorado 
Phone Number: (970) 351-2425 
E-mail: hortensia.soto@unco.edu 
 
I am investigating how undergraduate mathematics majors perceive integration of 
complex-valued functions. I am interested in how students such as yourself communicate 
your understanding of these mathematical concepts through diagrams, gestures, body 
movements, and metaphors. In order to explore this phenomenon I request that you allow 
me to utilize 5 to 8 of the video-taped class sessions already being recorded by the 
mathematics department while you are in the complex-variables class (Math 451).  
By viewing video of the class I will be able to observe the different ways in which 
interview participants convey their understanding of complex variables and the recording 
will allow me to watch the episodes on multiple occasions. During class sessions I attend, 
I will not be an active participant during the class. I will simply take notes of my 
observations. There is no need to worry if you say something that is incorrect because I 
am only interested in how interview participants use geometric and algebraic reasoning to 
answer questions or how such reasoning is developing through the semester.  
 

 
Page 1 of 3 ________________ (Participant Initials) 
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Given the purpose of my research, I would like to share portions of video-clips involving 
interview participants during presentations and it is possible that I may want to 
incorporate photos that illustrate their gestures and/or diagrams in a publication. Thus, I 
am requesting permission to do so, but if you would prefer that I protect your identity, 
then I will honor your request. The video-recorded classroom sessions will be used for 
the purpose of describing group characteristics and the general classroom environment in 
order to triangulate observations for interview participants. Only video data artifacts (e.g. 
screenshots and quotes) for those students who agree to participate in interviews will be 
used in data analysis. Those who do not give permission will have identifying 
information edited out of the video-recordings (both visual and audio) using the video 
editing software Camtasia Studio. The original identifying video will then be deleted. 
 
Please note that you are not under any obligation to participate in this research and your 
decision to not participate in this research will not impact your Math 451 course grade. 
You also have the option to participate in different aspects of the research. You may 
choose to: 

a. participate in the video-taping where we are allowed to use episodes 
showing your face, 

b. participate in the video-taping where we are NOT allowed to use episodes 
showing your face but where we are allowed to use your remarks, 

c. not participate in the research at all. 
 
All data will be stored on Brent Hancock’s computer, which is password protected, thus 
no-one will have access to this data other than those involved in the study (B. Hancock 
and Hortensia Soto-Johnson).  
 
There are no foreseeable risks to participating in this study other than some discomfort if 
you do not feel comfortable being video-taped or are embarrassed by your work. It is 
possible that some video footage might accidentally capture your face or actions/words, 
especially if you are working closely with someone who has agreed to be video-taped. 
However, the video-recorded classroom sessions will be used for the purpose of 
describing group characteristics and the general classroom environment.  Only video data 
artifacts (e.g. screenshots and quotes) for those students who agree to participate in 
interviews will be used in data analysis. If you do not give permission to have your 
image/audio captured on video, all identifying information will be edited out of the 
video-recordings (both visual and audio) using the video editing software Camtasia 
Studio. The original identifying video will then be deleted so there will be no record of 
your involvement. 
You may benefit from participating in this research in reflecting on your work, hence 
gaining a new perspective of complex numbers and complex variables. 
 
Participation is voluntary. You may decide not to participate in this study and if you 
begin participation you may still decide to stop and withdraw at any time. Your decision 
will be respected and will not result in loss of benefits to which you are otherwise 
entitled. Having read the above and having had an opportunity to ask any questions, 
please sign below if you would like to participate in this research. A copy of this form 
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will be given to you to retain for future reference. If you have any concerns about your 
selection or treatment as a research participant, please contact Sherry May, IRB 
Administrator, Office of Sponsored Programs, 25 Kepner Hall, University of Northern 
Colorado Greeley, CO 80639; 970-351-1910. Please feel free to contact me via phone or 
email if you have any questions and retain one copy of this letter for your records. Thank 
you for assisting me with this research. 
 

Page 2 of 3 ________________ (Participant Initials) 
 
 
If willing to participate in classroom video-taping and willing to disclose your 
identity i.e., agreeing to have your video shared with others at conference 
presentations, classes, publications, etc. please complete the following. 
 
________________________________________________________________________ 
Name (please print)            Signature                         Date 
 
________________________________________________________________________ 
Researcher’s Name    Research’s Signature                        Date 
 
If willing to participate classroom video-taping but prefer to have identity protected, 
please complete the following. 
 
________________________________________________________________________ 
Name (please print)            Signature                         Date 
 
________________________________________________________________________ 
Researcher’s Name    Research’s Signature                        Date 
 
 
 
If not willing to participate in the research, please complete the following. 
 
________________________________________________________________________ 
Name (please print)            Signature                         Date 
 
________________________________________________________________________ 
Researcher’s Name    Research’s Signature                        Date 
 
 
 
 

Page 3 of 3 ________________ (Participant Initials) 
 
 

Document D: 
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Consent Form for Course Instructor 
  
 
 
 
 

 
 
 

 
Consent Form for 

Human Participants in Research  
 
Project Title:  Undergraduate Mathematics Majors’ Geometric and Algebraic Reasoning 
about Integration of Complex-valued Functions 
Researcher:  Brent Hancock, Graduate Student, School of Mathematical Sciences, 
University of Northern Colorado  
Phone Number: (818) 730-9615  
E-mail: brent.hancock@unco.edu  
 
Research Supervisor: Dr. Hortensia Soto-Johnson, Department of Mathematical 
Sciences, University of Northern Colorado 
Phone Number: (970) 351-2425 
E-mail: hortensia.soto@unco.edu 
 
I am investigating how undergraduate mathematics majors perceive integration of 
complex-valued functions. I am interested in how students communicate their 
understanding of these mathematical concepts through diagrams, gestures, body 
movements, and metaphors. In order to explore this phenomenon I request that you allow 
me access to 5 to 8 class sessions already recorded for instruction purposes through your 
institution while you teach the complex-variables class (Math 451) and that you allow me 
access to some of your students’ completed homework assignments, exams, including 
any physical models that they create, and quizzes or misc. class work. 
 
By using video-taped class sessions I will be able to observe the different ways in which 
you and the students convey an understanding of complex variables and the recording 
will allow me to watch the episodes on multiple occasions. Students’ class work will be 
used to substantiate my interpretations of the classroom observations. During class 
sessions I attend, I will not be an active participant during the class. I will simply take 
notes of my observations. There is no need to worry if you say something that is incorrect 
because I am only interested in how your students use geometric and algebraic reasoning 
to answer questions or how such reasoning is developing through the semester.  
 

Page 1 of 3 ________________ (Participant Initials) 
Given the purpose of my research, I would like to share portions of your video-clips 
during presentations and it is possible that I may want to incorporate photos that illustrate 
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your gestures and/or diagrams in a publication. Thus, I am requesting permission to do 
so, but if you would prefer that I protect your identity, then I will honor your request. In 
such a case, I will only describe your responses rather than use pictures. In any case, I 
will assign you a pseudonym when reporting any results – care will be taken to protect 
your identity.  
 
Please note that you are not under any obligation to participate in this research. You also 
have the option to participate in different aspects of the research. You may choose to: 

a. participate in the video-taping where I am allowed to use episodes 
showing your face and where I am allowed to use your students’ work, 

b. participate in the video-taping where I am NOT allowed to use episodes 
showing your face but where I am allowed to use your remarks and your 
students’ work, or 

c. not participate in the research at all. 
All data will be stored on Brent Hancock’s computer, which is password protected, thus 
no-one will have access to this data other than those involved in the study (B. Hancock 
and Hortensia Soto-Johnson).  
 
There are no foreseeable risks to participating in this study other than some discomfort if 
you do not feel comfortable being video-taped or are embarrassed by something you 
might say during class. It is possible that I may accidentally video-tape you, especially if 
you are working closely with someone who has agreed to be video-taped.  The video-
recorded classroom sessions will be used for the purpose of describing group 
characteristics and the general classroom environment.  Only video data artifacts (e.g. 
screenshots and quotes) for those students who agree to participate in interviews will be 
used in data analysis. . If you do not give permission to have your image/audio analyzed 
from video data, all identifying information will be edited out of the video-recordings 
(both visual and audio) using the video editing software Camtasia Studio. The original 
identifying video will then be deleted so there will be no record of your involvement. 
You may benefit from participating in this research if reflecting on your work, hence 
gaining a new perspective on the teaching complex variables. 
 
Participation is voluntary. You may decide not to participate in this study and if you 
begin participation you may still decide to stop and withdraw at any time. Your decision 
will be respected and will not result in loss of benefits to which you are otherwise 
entitled. Having read the above and having had an opportunity to ask any questions, 
please sign below if you would like to participate in this research. A copy of this form 
will be given to you to retain for future reference. If you have any concerns about your 
selection or treatment as a research participant, please contact Sherry May, IRB 
Administrator, Office of Sponsored Programs, 25 Kepner Hall, University of Northern 
Colorado Greeley, CO 80639; 970-351-1910. Please feel free to contact me via phone or 
email if you have any questions and retain one copy of this letter for your records. Thank 
you for assisting me with this research.    

Page 2 of 3 ________________ (Participant Initials) 
  



 453 

 

If willing to participate in classroom video-taping and to provide student work and 
willing to disclose your identity i.e., agreeing to have your video shared with others 
at conference presentations, classes, publications, etc. please complete the following. 
 
________________________________________________________________________ 
Name (please print)            Signature                         Date 
 
________________________________________________________________________ 
Researcher’s Name    Research’s Signature                        Date 
 
If willing to participate classroom video-taping and to provide student work but 
prefer to have identity protected, please complete the following. 
 
________________________________________________________________________ 
Name (please print)            Signature                         Date 
 
________________________________________________________________________ 
Researcher’s Name    Research’s Signature                        Date 
 
 
 
 
If not willing to participate in the research, please complete the following. 
 
________________________________________________________________________ 
Name (please print)            Signature                         Date 
 
________________________________________________________________________ 
Researcher’s Name    Research’s Signature                        Date 
 
 
 
 

Page 3 of 3 ________________ (Participant Initials) 
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Document E:  
Sample Day 1 Interview Questions/Tasks 

 
1. What do you believe the word “parametrization” signifies when describing a 

complex path integral? 
 

2. Explain how you would represent  as a position vector of a moving point 
in the complex plane, using vector component notation.  

a. What are the two components? 
 

3. Consider the paths defined by  and . 
a. How would you sketch  on the board? 
b. Is this the same as joining the end of one path to the beginning of the 

other? 
c. If not, what function would you construct to describe a parametrization of 

such a path? 
 

4. If  is a parametrized curve, what does  represent physically at each 

point? 
a. How would you draw this? 

 
5. If  is a parametrized curve described as a complex-valued function of t, 

how would you provide a geometric interpretation of the identity 

? 

a. What is this identity commonly called?  
 

6. Consider the function   
a. Is this function analytic?  

i. If so, where is it analytic? 
ii. If not, how do you know? 

b. Is it possible to find  where L is a circle of radius r traversed 
counterclockwise?  

i. If so, what is its value? 
ii. If not, how do you know? 

c. Does the value of the integral depend upon the radius of the circle?  
i. If so, how? 

ii. If not, how do you know? 
 

 
  

€ 

z(t) = eit

€ 

z1(t) = eiπt

€ 

z2(t) =1+ t

€ 

z1(t) + z2(t)

€ 

z = f (t)

€ 

dz
dt

€ 

z = f (t)

€ 

dz
dt
dt = f (b) − f (a)

a

b

∫

€ 

f (z) = z 

€ 

z dz
L∫
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Document F:  
Sample Day 2 Interview Questions/Tasks 

 
 

1. How would you find  if L represents the unit circle  traversed 

counterclockwise? Explain. 
 

2. What if L (from problem 1) is now a circle of radius 2, centered about the origin, 
traversed counterclockwise? Explain. 
 

3. What if L (from problem 2) is now traversed clockwise? Explain. 
a. How does parametrizing a path in the reverse direction affect the value of 

a complex path integral? Explain. 
 

4.  
a. Let C be the semicircle  . How would you find  

? Explain. 

 
b. Now let C be the semicircle  . How would you find  

? Explain. 

 
c. Finally, let C be the whole circle  . How would you 

find  ? Explain. 

 
d. How did your answer (in part c) compare to your previous answers (in 

parts a, b)? 
 

5. Is it permissible to travel over a circular path twice, and if so how does that affect 
the value of a complex path integral? 
 

6.  Let and let L be a closed rectifiable Jordan curve on the complex 

plane such that f (z) is continuous on L. Find all possible values of  . For 

each possibility sketch the curve L that results in that value. Explain your answer. 
 

a. Which curves L  (from problem 5) resulted in an answer of 0 for our 
integral? Why did this happen? 

b. What assumptions about f (z) did you use to find each value of the 
integral? Why? 

c. What assumptions about L did you use? Why? 
 

€ 

1
z
dz
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€ 
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∫
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7. What does the integral of a complex valued function represent? How is this 
different than the integral of a real valued function? How is it the same? 
 

8. When does a complex valued function have an antiderivative? Why would this be 
useful to know? 
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Document G:  
Debriefing for Interview Participants 

  
Thank you for taking the time to participate in these teaching experiments. As I 
mentioned in the invitation letter, the purpose of my research is to explore undergraduate 
mathematics majors’ algebraic and geometric understanding of complex variables topics 
related to integration. This interview process is designed to allow me, the researcher, 
more time to observe you interact with complex variables content related to integration. 
During these two interview sessions you will engage in some integration problems with a 
fellow classmate, where I ask that you articulate your thoughts. The two of you should 
converse with one another, share ideas, and question each other’s conjectures, if 
applicable. I may ask probing questions simply to get a better understanding of what you 
are attempting to convey. There is no need to worry if you say something that is incorrect 
because I am interested in how you might use geometric and algebraic reasoning to 
answer questions, or how such reasoning is developing throughout the activities. Recall 
from my invitation letter that:  

• The interview will last a maximum of 180 minutes (two sessions lasting 90 
minutes at most), and you will work with a classmate to discuss the tasks with 
one another. 

• This interview will be video-taped so I can analyze the data at a later time. 
  

Given the purpose of my research, I would like to share portions of your video-clips 
during presentations and it is possible that I may want to incorporate photos that illustrate 
your gestures and/or diagrams in a publication. Thus, I am requesting permission to do 
so, but if you would prefer that I protect your identity, then I will honor your request. In 
such a case, I will only describe your responses rather than use pictures. In any case, I 
will assign you a pseudonym when reporting any results – care will be taken to protect 
your identity.  
 
Please note that you are not under any obligation to participate in this research and your 
decision to not participate in this research will not impact your course grade. Please 
complete the consent form and then we will begin with the first interview session. 
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APPENDIX C  

INTERVIEW TASKS 

  



 459 

 

 

Part 1 Interview Questions/Tasks 

 
1. What do you believe the word “parametrization” signifies when describing a 

complex path integral? 
 

2. Explain how you would represent  as a position vector of a moving point 
in the complex plane, using vector component notation.  

a. What are the two components? 
 

3. If  is a parametrized curve, what does  represent physically at each 

point? 
a. How would you draw this? 

 
4. If  is a parametrized curve described as a complex-valued function of t, 

how would you provide a geometric interpretation of the identity 

? 

a. What is this identity commonly called?  
 

5. Consider the function   
a. Is this function analytic?  

i. If so, where is it analytic? 
ii. If not, how do you know? 

b. Is it possible to find  where L is a circle of radius r traversed 
counterclockwise?  

i. If so, what is its value? 
ii. If not, how do you know? 

c. Does the value of the integral depend upon the radius of the circle?  
i. If so, how? 

ii. If not, how do you know? 
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Part 2 Interview Questions/Tasks 
 
 

6. How would you find  if L represents the unit circle  traversed 

counterclockwise? Explain. 
 

7. What if L (from problem 1) is now a circle of radius 2, centered about the origin, 
traversed counterclockwise? Explain. 
 

8. What if L (from problem 2) is now traversed clockwise? Explain. 
a. How does parametrizing a path in the reverse direction affect the value of 

a complex path integral? Explain. 
 

9.  
a. Let C be the semicircle  . How would you find  

? Explain. 

 
b. Now let C be the semicircle  . How would you find  

? Explain. 

 
c. Finally, let C be the whole circle  . How would you 

find  ? Explain. 

 
 

10. Is it permissible to travel over a circular path twice, and if so how does that affect 
the value of a complex path integral? 
 

11.  Let and let L be a closed rectifiable Jordan curve on the complex 

plane such that f (z) is continuous on L. Find all possible values of  . For 

each possibility sketch the curve L that results in that value. Explain your answer. 
 
 

12. What does the integral of a complex valued function represent? How is this 
different than the integral of a real valued function? How is it the same? 
 

13. When does a complex valued function have an antiderivative? Why would this be 
useful to know? 
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APPENDIX D  

SAMPLE EXCERPT FROM CODEBOOK 
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Time Who? Speaker Role Verbiage Misc. notes Toulmin Worlds Backing
Task 3
Argument 1

3:46 I R

Ok sounds good. Um, ok so next, if z = f(t) is a 
parametrized curve [Sean writes z = f(t)], what does 
dz/dt represent physically [Sean writes dz/dt] at each 
point, and how would you draw this?

D1 S

4:05 R R, A, A

So let's see. So you have, like, z is a [draws curve on 
board]-- it's like some curve, right? It's parametrized. Um 
so like, dz/dt is sort of breaking it into little chunks. If 
we're at this point [draws a point on the curve], I guess 
[pauses] um, it would just be a little directional kind of 
infintessimal um, pointer, [draws in tangent vector at this 
same point] that says where we're going along this curve.  
So if your curve is oriented this way--

Until this 
point, Sean 
did all the 
writing on 
the board.

D1 (contd), C1, 
D2, Q2, C2, D3

E-S (relate 
symbolic z = 

f(t) to drawing 
of curve),  E, 

4:39 S A Tangent vector. C2(contd.) E

4:39 R S

[draws arrows on curve] then dz/dt would look like a 
little vector pointing off [gesture with hand of a tangent 
vector] to where the next, uh, z is. It's not like actually a 
tangible concept, because it's infinitely small, but that's 
how I think of it.

D3 (contd), C, Q E

Argument 2

4:53 S A

Yeah if you think about tangent vectors-- so, for this 
[points at diagram from Task 2] we would get, like, z'(t) = 
-sin t + i cos t [writes this], and then our unit vector is, 
like, in this direction [draws in green unit vector on 
circle]. And we could call our tangent vector T, I guess.

D1, C1=D2, C2 E, S, E, S

5:16 R A
Yeah, it's going to be, like-- it should be parallel to the 
slope of the line at that point [traces finger along her 
path for this task]. 

W2 E

5:22 I
And so if you-- if this is representing, like, the physical 
path of an object or something, does that tangent vector 
tell you anything physically about what's going on then?

5:32 S A Velocity. C E
5:33 I So it's your veloctiy vector?
5:34 S & R Yeah.
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Time Who? Role Verbiage Other notes Toulmin Worlds Backing
Task 4

Argument 2

7:56 I

Ok perfect, so yeah I saw you had the capital F notation before, 
so I was glad that you explained what that is and everything. 
So ok, we'll come back a little later, um, to talk a little more 
about antiderivatives and things of that nature. But, ok cool, so 
anything you wanted to add to that, Riley?

8:11 R A Um, let's see-- so it's going to be-- I think this has to be true 
[FTC] for any path between these two points? Q

E-S-F (formal 
statement about 
the relationship 

between the 
identity and the 

path)
8:18 S Mhm.
8:19 R S It has to always be true. D = (D from Arg 1) C F
8:22 I Yeah so we're really talking about any path from a to b there. 

8:27 R A

Yeah so it's nice because it makes it more flexible, since like if 
we're working here [in the Calc 1 case -- points to circled Calc 1 
version on board] if you're only in one dimension, there's only 
one way to get between, between the two points.

C (contd), W E

8:36 S Yeah.

8:37 R A
But in 2 dimensions, you can take any path you'd like [path 
gesture], cuz it works for any path. W (contd) E

8:40 S A

And there are like, fairly technical things. Like you have to 
assume this [f] is continuous on the interval here [a to b] and 
you have to assume that the path here is piecewise smooth, or 
something like that. So there's no special-- the antiderivative is 
defined so there's no like, breaks, or anything. So you have to 
make sure it's a "well-behaved" path. 

Good that he 
brought up the 
conditions/assumptio
ns to use FTC. Riley 
didn't really mention 
these before

B1 F, E Correctness

8:55 R A But generally those are the ones we're working with, so-- B1 (contd) Field

8:59 S A

Yeah, then of course, you have to distinguish between this 
thing [point to FTC] like, the integral of a complex function, 
versus the integral of, not a real variable [points to int of f(t)] 
but actually a complex variable. And that's when it gets a little 
more involved, but I guess that's later [in the interview].

B2 F-S

Validity 
(attention 
to when it 
applies vs. 

not)
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