
Susquehanna University
Scholarly Commons
Landmark Conference Summer Research
Symposium

Jul 27th, 3:15 PM - 4:15 PM

Using Long-Short Term Memory Network to
Train Machine Composing Baroque Fugue/Canon
Yihe Chen
Susquehanna University

Toshiro Kubota
Susquehanna University

Follow this and additional works at: http://scholarlycommons.susqu.edu/landmark

Part of the Artificial Intelligence and Robotics Commons

This Poster is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Landmark Conference Summer
Research Symposium by an authorized administrator of Scholarly Commons. For more information, please contact sieczkiewicz@susqu.edu.

Chen, Yihe and Kubota, Toshiro, "Using Long-Short Term Memory Network to Train Machine Composing Baroque Fugue/Canon"
(2017). Landmark Conference Summer Research Symposium. 5.
http://scholarlycommons.susqu.edu/landmark/2017/posters/5

http://scholarlycommons.susqu.edu?utm_source=scholarlycommons.susqu.edu%2Flandmark%2F2017%2Fposters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarlycommons.susqu.edu/landmark?utm_source=scholarlycommons.susqu.edu%2Flandmark%2F2017%2Fposters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarlycommons.susqu.edu/landmark?utm_source=scholarlycommons.susqu.edu%2Flandmark%2F2017%2Fposters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarlycommons.susqu.edu/landmark?utm_source=scholarlycommons.susqu.edu%2Flandmark%2F2017%2Fposters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarlycommons.susqu.edu%2Flandmark%2F2017%2Fposters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarlycommons.susqu.edu/landmark/2017/posters/5?utm_source=scholarlycommons.susqu.edu%2Flandmark%2F2017%2Fposters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sieczkiewicz@susqu.edu

Author: Yihe Chen Advisor: Toshiro Kubota Ph.D

Department of Mathematical Sciences

WHAT IS FUGUE/CANON, WHY THEM?

• Fugue: is a contrapuntal compositional technique in two or more

voices, built on a subject (a musical theme) that is introduced at the

beginning in imitation and which recurs frequently in the course of the

composition. A typical fugue usually have three sections: an

Exposition, a Development, and a final entry that usually contains the

return of the subject in the fugue’s tonic key. Here in this case, a tiny

variant of typical fugue, which is Ricercar, will be more preferred, as a

type of late Renaissance and mostly Baroque instrumental

composition.

• Canon: a contrapuntal compositional technique or texture that

employs melody with one or more imitations of the melody played

after a given duration

Canon and Fugue as polyphonic musical texture were not practically

separated until early1600s.

Within such musical textures under relatively strict rules and laws to follow, it

is our believe that those rule could have made composing Fugue/Canon–like

music a relatively easier work to be taught to machinery.

In this project, the training data are primarily keyboard Fugue/Canon pieces

composed by Johan Sebastian Bach.

“Regis issu cantio et reliqua canoica arte resoluta”

“The theme given by king, with addition, resolved in canonic style”

Known as die Thema Regium(the king’s theme), it is the theme that

was given from King Friedrick II of Prussia to Johan Sebastian Bach

as the subject to his set of Fugues and Canons which was later to
be known as das musikalisches Opfer, the Music Offering.

Figure i & ii

WHAT IS A LONG-SHORT TERM

MEMORY NETWORK(LSTMs)?

An LSTMs is an implementation of Recurrent Neural Network (RNN) using

Long-short term memory architecture.

RNN:

Unlikely normal feed-forward networks, a RNN network will not only take its

current input example they see, but also what it have perceived one step

back in time. The decision a RNN have reached at time step t-1 affects the

decision at time step t. Thus, the network has two sources of input: the

present and the recent past, which will be combined to determine how the

response to new data would be.

Figure iii:

A brief illustration to RNN’s feedback loop, and the mathematical expression of

carrying memory forward. In the expression, ℎ𝑡 represents hidden state at time step t,

𝑥𝑡 represent the input at time t, modified by a weight matrix W added to the hidden

state of the previous time step ℎ𝑡−1 multiplied by its hidden-state-to-hidden-state

matrix U, otherwise known as a transition matrix and similar to a Markov chain.

LSTMs:

However, in a traditional recurrent neural network, during the gradient

back propagation phase, the gradient signal can end up being

multiplied a large number of times by the weight matrix associated

with the connection between the neurons of the recurrent hidden

layer. When the weights in this matrix are small, it can lead to a

situation called vanishing gradients where the gradient signal gets too

small and the learning becomes very slow. It also makes learning

long-term dependencies difficult. If the weights in the matrix is overly

large, it can lead to a situation called exploding gradients where the

learning process diverges.

The LSTM model was designed to compensate the above issues. It

introduces a new structure called a memory cell. A memory cell is

composed of four elements: an input gate, a neuron with self-

recurrent connection, a forget gate, and a output gate.

Figure iv: Illustration of an LSTM memory cell

The equations (1)-(6) show how a layer of memory cells is updated at

every time step t:

* 𝑥𝑡 as the input to memory cell layer at time t.

* 𝑊𝑖, 𝑊𝑓 , 𝑊𝑐, 𝑊𝑜, 𝑈𝑖 , 𝑈𝑓, 𝑈𝑐, 𝑈𝑜, and 𝑉𝑜 as weight matrices

* 𝑏𝑖, 𝑏𝑓, 𝑏𝑐 and 𝑏𝑜 as bias vectors.

We first attempt to compute the input gate value 𝑖𝑡,and 𝐶𝑡, the

candidate value for state of the cell at time t:

𝑖𝑡 = 𝜎 𝑊𝑖 𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖 (1)
 𝐶𝑡 = tanh 𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐 (2)

Then compute the value of 𝑓𝑡, the activation of the memory cells’

forget gate at time t:

𝑓𝑡 = 𝜎 𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 (3)

With the values gained above, we now can compute 𝐶𝑡, the cells’ new

state at time t:

𝐶𝑡 = 𝑖𝑡 × 𝐶𝑡 + 𝑓𝑡 × 𝐶𝑡−1 (4)

With the new state of the memory cells, now we can compute the

value of output gates, and subsequently the outputs.

𝑜𝑡 = 𝜎 𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑉𝑜𝐶𝑡 + 𝑏𝑜 (5)

ℎ𝑡 = 𝑜𝑡 × tanh(𝐶𝑡) (6)

THE APPLICATION

Training data pre-processing:

Like a linguistic expression, a piece of music is a sequence of information,

and its basic morpheme is highly context-dependent.

We adopted a 2-layer Recurrent Neural Network with LSTM designed for

training/sampling a character-level language model.

Music data in MIDI will first be converted into text files; we use ASCII

expression to represent the sound track, note duration, frequency,

intensity and time, which were being considered as the fundamental

morphemes (Figure vi).

Then as a further step of data pre-processing, structural key words were

converted into single character code-words. (Figure vii).

--

Figure v: a part of BWV 1079 – The music offering, Canon perpetuus super thema

regium, converted from midi file collected from Dave’s J.S Bach Page

Training:

Based on Torch framework, the model takes one text file as input and trains

a Recurrent Neural Network (Karpathy) that learns to predict the next

character in a sequence. The RNN can then be used to generate a

sequence of characters that looks like the original training data.

Totally 177 pieces of files were converted and pre-processed, resulted in

approximately 143,366 words.

Training setting:

Size of LSTM internal state: 128

Number of layers: 2

Learning rate: 0.002

Learning decay: 0.97

Decay rate: 0.95

By using CUDA, the learning took approximately 16 hours with the following

hardware:

CPU: Intel Xeon E5-2650 v3 2.3 GHz 10 Cores (20 threads)

GPU: Nvidia GTX 1080 Ti

RAM: 64GB DDR 4 (16 GB x3)

HDD0: 3TB

HDD1: 3TB

SSD: 500 GB

Operating System: Ubuntu 16.04 LTS 64bit

Torch Version: v5.2

Cuda Version: v8.0

Checkpoints:

While the model is training, it will periodically write checkpoint files for

every 1000 iterations (The frequency with which these checkpoints are

written could be controlled with number of iteration settings) The filename

of these checkpoints contains a very important number: the loss. For

example, a checkpoint with filename lm_lstm_epoch0.95_2.0681.t7

indicates that at this point the model was on epoch 0.95 (i.e. it has almost

done one full pass over the training data), and the loss on validation data

was 2.0681.

Sampling:

The model checkpoint file with lowest validation loss was used to

generate asci codes from random seed.

An anomaly filter was programmed and used to correct invalid

sequences such as incorrect time-line orders. Then the inverse of the

pre-processing procedure was applied to generate a MIDI file.

EXAMPLE RESULT

SOURCES & REFERENCES

•

•

•

	Susquehanna University
	Scholarly Commons
	Jul 27th, 3:15 PM - 4:15 PM

	Using Long-Short Term Memory Network to Train Machine Composing Baroque Fugue/Canon
	Yihe Chen
	Toshiro Kubota

	PowerPoint Presentation

