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ABSTRACT 

 

Ramezani, Niloofar. Power Analysis of Longitudinal Data with Time-Dependent 

Covariates using Generalized Method of Moments. Published Doctor of 

Philosophy dissertation, University of Northern Colorado, 2017. 

 

Longitudinal data occur in different fields such as biomedical and health studies, 

education, engineering, and social studies.  Planning advantageous research projects with 

both high power and minimum sample size is an important step in any study. The 

extensive use of longitudinal data in different fields and the importance of their power 

estimation, yet the limited resources about their respective power estimation tools, made 

it worthwhile to study their power estimation techniques. 

The presence of time-dependent covariates triggers the need to use more efficient 

models such as generalized method of moments than the existing models which are based 

on generalized estimating equations. Not taking into consideration the correlation among 

observations and the covariates that change over time while calculating power and 

minimum sample size will cause expensive research being conducted without using data 

that are capable of answering the research questions (Williams, 1995). Two different 

power estimation and minimum sample size calculation techniques for longitudinal data 

in the presence of time-dependent covariate using generalized method of moments 

approaches are constructed in this study and their performances are evaluated.
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CHAPTER I 

 

 

INTRODUCTION 

 

Planning advantageous research projects with both high power and minimum 

sample size is an important step in any study which influences all future results of the 

research; therefore, comprehensive and innovative research studies are needed to address 

different issues associated with this step. If this step is not taken after systematic planning 

and with caution toward building valuable research design, the final results will not be 

valid and the outcome may not contribute to the body of the research. Therefore, studying 

power can greatly benefit almost any scientific study with statistical input where 

inferential statistical procedures are used. 

The motivation for this research comes from some weaknesses of the current 

approaches which are being taken in designing longitudinal studies and estimating their 

statistical power. Longitudinal studies are extensively used across disciplines to model 

changes over time in the presence of multiple time point measurements while taking into 

consideration the dependence among repeated measurements per subject. For instance, 

when studying patients with knee osteoarthritis over years with the goal of modeling their 

body stiffness and pain, there are multiple time points when they check into a hospital 

regarding their pain and treatment; hence, there exist multiple measurements for each
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patient. These multiple observations are correlated within each patient and the severity of 

each patient’s pain may vary through a period of time making longitudinal models and 

their respective power estimation techniques more appropriate than the ones used for 

cross-sectional data which is a type of data collected at one time point. The correlation 

that exists among observations is why longitudinal data are sometimes referred to as 

correlated data. Correlated data are a more general case of longitudinal data which 

include any type of correlation that may exist among observations due to clustering or 

repeated measurements per subject over a period of time. Therefore, due to the fact that 

this dissertation is mainly focused on the correlation that exists among repeated 

observations over time, it is more appropriate to use the longitudinal term for this study. 

When handling the correlation which exists among observations within 

longitudinal data, more advanced models are required to account for the dependence 

between multiple outcome values observed within each subject. Not taking into 

consideration the correlation among observations will result in unreliable conclusions 

when using flawed models for analyzing such data. Even worse, the erroneous theory 

being used for calculating power and the minimum sample size needed for analysis, may 

lead to expensive research being conducted that is incapable of answering the research 

questions (Williams, 1995). Sequentially observed over time, longitudinal data may be 

regarded to as a collection of numerous time series, which is a sequence of data points in 

successive order, one each per subject. This type of data allows conducting studies on the 

changes of the variability of the response in time with covariates possibly changing with 

time. One benefit in using longitudinal data is reducing the burden of recruiting a sizable 

number of subjects, compared to cross-sectional studies, by collecting repeated outcomes 
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from each subject. Longitudinal data analysis, which relies on the underlying probability 

mechanism of changes including growth, aging, time profiles, or effects of covariates 

over time, is technically more demanding and complex than cross-sectional data analysis. 

The presence of repeated measurements for each subject indicates that the observations 

from the same subjects are auto-correlated or serially correlated. This requires the 

development of statistical methodology with the ability to account for the serial 

correlation.  

When studying responses over time, more advanced models such as conditional 

models, transition models, or marginal models are required (Fitzmaurice, Davidian, 

Verbeke, & Molenberghs, 2009). Conditional or subject-specific models are used when 

the regression coefficients are used to describe an individual’s response to changing 

covariates while marginal or population averaged models are used when one does not 

attempt to control for unobserved subjects’ random effects. The primary estimation 

method adopted for this study is generalized method of moments (GMM) which is a 

population averaged model. GMM is preferred in this study because it provides more 

efficient estimates compared to the other marginal models in the presence of time-

dependent covariates, which is the primary interest in this dissertation (Lai & Small, 

2007). Time-dependent covariates are the covariates that may vary within individuals 

throughout the study. Age, weight, and systolic blood pressure are some examples of 

such covariates. For instance, when modeling the effectiveness of a drug over time for 

patients with heart disease, variables such as patients’ blood pressure or weight might 

change over time. This change may affect the treatment process of the patients potentially 

as the result of interactions between those time-dependent covariates and the status of the 
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heart disease or drug usage. However, patients’ race or sex will remain constant so they 

will not fluctuate the way a drug affects patients’ treatment over time. This type of 

covariate is called time-independent which remains constant through the whole study. 

Borrowing the strength from the theory of generalized linear models is important 

in developing marginal components, which are suitable for incorporating correlation of 

the outcomes (Zeger & Liang, 1986). Examples of such models are generalized 

estimating equations (GEE) and GMM. GEE are based on quasi-likelihood inference that 

depends on the first two moments of the underlying distribution of the data and treats the 

correlation as a nuisance parameter (Liang & Zeger, 1986), whereas GMM may be 

regarded as a class of inference functions constructed through a limited set of moment 

conditions of the underlying statistical model with no need for complete specification of 

the probability model. Moments of a distribution mentioned above refer to mean, 

variance, skewness, and so forth.  

GMM estimators are preferred to maximum likelihood (ML) estimators in this 

proposed study because according to Hall (2005), they are more robust due to not having 

any distributional assumptions, more tractable analytically, and more stable numerically. 

On the other hand, ML estimators are asymptotically more efficient only if the model is 

correctly specified. GMM estimators are more robust even in the presence of 

distributional misspecification (Hall, 2005). They also are more consistent with respect to 

the correct specification of only the limited set of the moment conditions in contrast with 

the ML estimators that require correct specification of every conceivable moment 

condition (Newey & McFadden, 1994).  
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The extensive use of longitudinal data and the importance of their power 

estimation, yet the limited resources about their respective power estimation tools, made 

it worthwhile to study the power estimation techniques for different types of longitudinal 

outcome variables. Although some valuable literature on the subject is currently 

available, there is less focus on instances in which there exist time dependent covariates. 

When trying to estimate the power of longitudinal studies in the presence of time-

independent covariates, Rochon (1998), Liu and Liang (1997), and Lyles, Lin, and 

Williamson (2007) proposed some GEE-based techniques to estimate the minimum 

sample size. It is when the covariates vary through the study that there is a need for 

developing better methods to estimate the power and minimum sample size based on 

GMM which is so far the most appropriate marginal technique for modeling longitudinal 

data with time-dependent covariates. The estimation technique used in this paper for 

developing power estimation methods for longitudinal data with time-dependent 

covariates is the GMM approach.  

Purpose of the Study 

 The purpose of this dissertation was to assess power estimation and minimum 

sample size calculation techniques for different hypothesis tests with the focus on 

longitudinal data. The objective of this study was to investigate various methods for 

power and minimum sample size calculation of longitudinal data that are gathered over 

time in the presence of time-dependent covariates using GMM. The primary 

methodology involved the use of GMM in estimating statistical power. GMM, which 

performs better in terms of efficiency than the previous methods that were based on GEE, 
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was used to extend the existing methods to a more efficient technique when dealing with 

longitudinal responses in the presence of time-dependent covariates.  

Different approaches of power calculation for longitudinal data with time-

dependent covariates were modeled and discussed using the GMM technique. In order to 

do that, the distribution of each statistic under null and alternative hypotheses needed to 

be estimated as knowing these distributions is a necessary element of power analysis. The 

performance of these approaches within the GMM technique was evaluated using a real 

data set and through a simulation study. Performance of the theoretically developed 

methodology at the end was compared to the empirical powers. 

Rationale for the Study 

When planning for any research project, it was important to consider different 

aspects of the data that need to be accounted for in the study. Assuring researchers collect 

enough data in the data collection process is crucial since without appropriate 

consideration of power and required minimum sample size, the entire study may fail and 

the research findings may be deceptive (Kraemer & Blasey, 2015). On the other hand, 

collecting more than enough data will result in wasted time and resources, often for 

minimal gain. The optimal sample size refers to a large enough sample size to get 

statistically significant results yet not too large to be only time consuming and expensive 

without a notable gain. This calculation tends to be a desired part of the protocol of 

nearly all scientific research, especially the studies involving human or animal subjects in 

which too small or too large sample sizes will have ethical, scientific, and budgetary 

implications. 
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In the process of planning research and finding out about the minimum sample 

size, for this dissertation I focused on longitudinal data due to their extensive use in 

different fields and especially by applied researchers and practitioners willing to answer 

research questions that address changes over time. Unfortunately, no extensive studies on 

power and sample size calculation had been completed within longitudinal designs in the 

presence of time-dependent covariates.   

Within longitudinal studies, estimation techniques such as GEE and GMM, which 

address issues regarding longitudinal data, need to be applied to appropriately account for 

the correlation among repeated observations. Among these more advanced models, GMM 

was my main focus for this dissertation due to its higher efficiency compared to GEE in 

particular when dealing with time-dependent covariates (Lai & Small, 2007). GMM 

models provide consistent, efficient, and asymptotically normally distributed estimators 

with minimal use of information only from the moment conditions. According to Hansen 

(2007), GMM also takes care of both sampling and estimation error by its unique way of 

constructing tests. All of these characteristics make GMM a desirable method to be used 

when providing estimation of unknown parameters within various models; therefore, 

making it crucial to study the power estimation methods within this technique.  

  There is a gap in the literature regarding appropriate power analysis and sample 

size calculation techniques based on GMM, which is important to be studied as GMM is 

more appropriate than estimation methods such as GEE when working with longitudinal 

data in the presence of time-dependent covariates. In addition to the aforementioned 

advantages of GMM, it can also be seen as a generalization of many other estimation 

techniques such as least squares (LS), instrumental variables (IV), or maximum 
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likelihood (ML; Chaussé, 2010), which makes it even more important to come up with an 

efficient power analysis technique for GMM.  

The advantages of GMM and the lack of available power analysis techniques for 

such models were the main rationales of this dissertation. In this study my aim was to 

provide an easier power and sample size calculation technique for applied researchers and 

practitioners with minimum knowledge about the distribution of the data. Such applied 

researchers are those who want to conduct cost effective research studies and at the same 

time be sure of selecting an appropriate model and optimal sample size for longitudinal 

data with time-varying covariates, which result in a high power of the performed tests. In 

this paper, different approaches of power estimation and sample size calculation for 

longitudinal data with time-dependent covariates using GMM are discussed to fill this 

gap. Previous methods for power estimation techniques are mainly based on GEE using 

Wald, likelihood ratio, and score tests. In the current study, the possibility of using the 

Wald test as well as the distant metric statistic, which is based on the difference of 

GMM-based quadratic forms, within GMM methods were investigated. These methods 

are no longer likelihood-based and rely on moment conditions. Moment conditions of a 

population are the assumed moments of the random variables and the analogous sample 

moment conditions can be computed using the data. 

Research Questions 

In order to develop power estimation and minimum sample size calculation 

methods for tests using GMM with a focus on longitudinal data with time-dependent 

covariates, this dissertation addressed the following questions: 
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Q1 How can power be calculated for hypothesis tests using longitudinal data 

with time-dependent covariates applying a Wald approach within a GMM 

estimation technique? 

 

Q2 How can sample size be calculated for a desired level of power for 

hypothesis tests using longitudinal data with time-dependent covariates 

applying a Wald approach within a GMM estimation technique? 

 

Q3 How can power be calculated for hypothesis tests using longitudinal data 

with time-dependent covariates applying a Distant Metric Statistic 

approach within a GMM estimation technique? 

 

Q4 How can sample size be calculated for a desired level of power for 

hypothesis tests using longitudinal data with time-dependent covariates 

applying a Distant Metric Statistic approach within a GMM estimation 

technique? 

 

Q5 How well do the proposed power calculation approaches within a GMM 

method perform compared to the empirical power? 

 

This study had two phases. The first phase was where the first four research 

questions were addressed theoretically through a set of proofs in Chapter III. The second 

phase was where a practical power estimation procedure was developed and the fifth 

research question were answered empirically through the analysis of an exemplary data 

set and Monte Carlo simulation methods. It was necessary to develop the theoretical 

portion of this dissertation first before implementing the empirical component of the 

study. This is why the theoretical derivation of the power calculation procedure of this 

study and the proofs I constructed are presented in Chapter III along with answers to 

research questions 1 through 4 before answering question 5 in Chapter IV. 

Methods 

 The performance of the two GMM-based power estimation techniques presented 

in this dissertation were evaluated using a pre-existing data set as well as a simulation 

study. The pre-existing data set consists of osteoarthritis initiative (OAI) data from a 
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multi-center study on osteoarthritis of the knee and contains follow-up information for 

about 4,000 subjects aged 45 and above over a period of up to 9 years. Studying these 

data helps understanding risk factors for progression of osteoarthritis of the knee. 

Osteoarthritis causes problems ranging from stiffness and mild pain to severe joint pain 

and even disability. The Western Ontario and McMaster Universities (WOMAC) 

disability score is typically treated as a continuous value indicating patients’ pain, 

stiffness, and physical function with knee osteoarthritis. The average of the WOMAC 

scores for the left and right knee, which is a continuous variable, was used as the 

response which might be affected by different variables in the presence of time-

dependent covariates. Considering this continuous response variable for the current study 

provides the opportunity of evaluating the effectiveness of the proposed power 

calculation techniques when modeling such response variables as the most common type 

of outcomes. This dataset was drawn from http:// www.oai.ucsf.edu. The OAI dataset is 

longitudinal, as desired for this study due to the repeated observations over time on each 

of the patients at multiple follow-up times. Using this dataset, a practical theoretical 

power estimation procedure for the pilot data sets was developed. 

A simulation study was also used for evaluating the performance of different 

power calculation techniques in this dissertation. The data were simulated using Monte 

Carlo simulation in R version 3.2.2 (R Core Team, 2015). This simulation was based on 

the real dataset introduced above. Continuous responses were generated so they would be 

consistent with the outcome variable from the OAI data. Four sample sizes and two 

power estimation techniques were considered in this simulation study and the results of 

the estimated powers were compared to the empirical power and post-hoc powers at the 
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end to evaluate the performance of the new power techniques. More details about the 

simulated data are provided in Chapter III of this dissertation.  

Chapter II includes an in-depth review of the most current literature pertaining to 

the power calculation techniques for longitudinal data, including reviews of previously 

studied methods of modeling longitudinal data as well as different power analysis 

techniques being performed for correlated data. Chapter III involves estimating power for 

tests using GMM and related theoretical proofs and procedures. Chapter IV includes the 

data analysis and results for this study using the OAI data set as well as a simulation 

study which were mainly used to evaluate the performance of the proposed methods. 

Finally, Chapter V consists of discussion, impact, limitations, and possible future work 

pertaining to the topics and methods discussed throughout this dissertation. 

  



12 

 

 
 

CHAPTER II 

 

 

LITERATURE REVIEW 

 

This chapter is dedicated to reviewing the literature on longitudinal data and 

different methods of analyzing this type of data with the purpose of providing the 

necessary background to discuss power analysis techniques of longitudinal data. The first 

section introduces the idea of power analysis and the important role it plays in any 

research study, specifically at the planning stage. The second section provides the 

background information regarding longitudinal data analysis. Within this section, a 

summary of different techniques of analyzing longitudinal data and estimating model 

parameters is provided. This subsection helps facilitate understanding of the differences 

between longitudinal modeling techniques, which are used when responses are measured 

at different time points and cross-sectional designs, which are used for modeling the 

outcomes that are measured at a single time point. After briefly introducing the 

generalized linear models (GLM), which are widely used for longitudinal data with 

continuous outcome variables, I mention different extensions to GLM in the subsequent 

sections of this chapter used for modeling different types of longitudinal responses. These 

extended models were developed to accommodate the correlation among observations 

inherent in longitudinal data with varying types of response variables, which are the main 

types of data considered in the current study. Two of the most important estimating 
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techniques that researchers use for longitudinal analyses are discussed, respectively, in 

the third and fourth sections of this chapter. These methods include generalized 

estimating equation (GEE) and generalized method of moments (GMM). The final 

section of this chapter is devoted to introducing power and discussing three of the most 

important available power analysis techniques and sample size calculation methods for 

correlated observations when model parameters are estimated using a GEE. These 

techniques were developed based on Wald statistics, likelihood ratio statistics, and score 

statistics. Finally, these techniques are discussed to support being adopted and extended 

in developing two new methods of power analysis of longitudinal data in the presence of 

time-dependent covariates based on GMM.  

Introduction 

Planning successful and cost-effective research projects is an important goal of 

every researcher in every field of study in order to answer research questions and help 

make policy. After designing a study and deciding the most appropriate type of statistical 

test to use, researchers need to perform the test. Studying the entire population is not 

practical or even possible for the majority of research studies. What can be done instead 

of looking into all the population observations is to take a sample of the population 

(Kraemer & Blasey, 2015). The sampling techniques and the details about taking a 

representative sample is an important topic but is not discussed here. What is important 

here is the number of subjects to sample, assuming that we already know how to sample 

them and what measures to use. For more information about different sampling 

techniques refer to Thompson (2012). 
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Making a mistake in the process of planning a study, such as when planning what 

data to collect and how many subjects to sample in order to study a population, is 

irrevocable and more of a challenge than when making a mistake in the data analysis. By 

not considering different aspects of the data that need to be collected or not collecting 

enough data during the timeline of data collection, the data that researchers have spent 

years and major resources to collect may not be useful in answering the research 

questions they posed. However, if the problem was in miscalculating the test-statistics or 

p-value or even the statistical technique used for analyzing the data, the analyses could 

easily be redone; however, there is almost nothing that statisticians can do with a 

researcher’s data that are not appropriate or that are based on an insufficient sample size. 

This is where the importance of power calculations in planning of research projects 

comes to attention. Without appropriate consideration of power, hence the sample size, 

the entire enterprise of applying the scientific method is likely to fail and the research 

findings may be misleading (Kraemer & Blasey, 2015). Unfortunately, incorrect results, 

due to the use of inadequate sample size within a study, may be published and this 

problem has been highlighted in the highly cited article by Ioannidis (2005). 

Sometimes there are multiple research designs and associated tests that can be 

used to answer one research question while each method requires a different sample size 

to get valid results. Performing the power analysis for all the possible tests and choosing 

the method which needs a smaller required sample size, compared to the other possible 

tests, can help researchers in getting the most feasible and cost effective design. Through 

power analysis, the optimal sample size can be picked for an appropriate test which will 

prevent researchers from ending up with a more expensive and time-consuming study for 



15 

 

 
 

a minimal gain (Kraemer & Blasey, 2015). These are a few reasons to emphasize the 

importance of the power analysis practice.  

The focus of this dissertation was to study longitudinal data, due to their extensive 

use in different fields and especially by applied researchers who are interested in 

answering research questions that address changes over time. Due to the correlated nature 

of this type of data, regular power analysis techniques are not appropriate and more 

advanced methods are needed for sample size calculations. These power estimation and 

sample size calculation methods are tied to the estimation method used within 

longitudinal models of correlated data. The review of these estimation techniques starts 

with introducing models such as GLM and different estimation methods commonly used 

within the models which cannot address all the issues regarding longitudinal data such as 

the presence of different types of covariates and discrete responses. The review then 

suggests more advanced estimation techniques such as GEE and GMM, which can be 

performed within different models to appropriately account for the correlation among 

repeated observations for non-normal outcomes. Then, different methods of power 

analysis for such models by Rochon (1998), Liu and Liang (1997), and Lyles et al., 

(2007) are discussed in this review. Review of these three studies helps identify a gap in 

the literature regarding appropriate power analysis and sample size calculation techniques 

based on GMM, which is the main topic of this dissertation. The reason that GMM and 

its power analysis is important is because it can be seen as a generalization of many other 

estimation methods like least squares (LS), instrumental variables (IV), or maximum 

likelihood (ML; Chaussé, 2010). According to Lai and Small (2007), GMM is also more 

efficient when modeling longitudinal data in the presence of time-dependent covariates 
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which is the type of covariate that does not remain constant throughout the period of a 

study. 

According to Hall (2005), GMM is proven to be a very flexible estimating 

technique since it does not require full distributional assumptions, which in practice may 

not be specified for different research studies. It only requires some assumptions about 

moment conditions. Moment conditions contain information about unknown parameters 

and are functions of the model parameters and the data, such that their expectation is zero 

at the true values of the parameters. By minimizing a quadratic form of the moment 

conditions, which is introduced in section four of this chapter, the GMM-based parameter 

estimates may be found. This estimation is obtained by finding the parameters that make 

the sample moment conditions as close to the population moment conditions as possible.   

The flexibility of the GMM estimation technique can be observed in different real 

world examples. For instance in macroeconomics, GMM allows estimating a structural 

model equation. As another example, we can look at finance in which most data such as 

stock returns are characterized by skewed and heavy-tailed distributions. Because GMM 

does not impose any restriction on the distribution of the data, it is a good alternative in 

this area as well. 

GMM is also a reliable estimation procedure for many models especially in 

economics. For example, GMM with the right moment conditions is more appropriate 

than ML in general equilibrium models, which suffer from endogeneity problems when 

attempting to explain the behavior of supply, demand, and prices in a whole economy 

with several interacting markets. In statistical models, endogeneity problems arise when 

there is a correlation between the explanatory variables and the error term as a result of 
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measurement error, autoregression with correlated errors, simultaneity, and omitted 

variables. Within finance studies, GMM is appealing in many cases due to the 

distribution-free feature, as there is no satisfying parametric distribution which 

reproduces the properties of stock returns. Some claim that the family of stable 

distributions is a good candidate but only the densities of the normal, Cauchy, and Levy 

distributions, which belong to this family, have a closed form expression. Therefore, 

GMM still is a better candidate for parameter estimation in finance (Hall, 2005).  

GMM estimators are consistent, which is another important characteristic that one 

can look for in any estimation technique; however, efficiency and bias depend on the 

choice of moment conditions so cannot be justified without considering the chosen 

moment conditions for each design. Furthermore, GMM can be used to estimate the 

model parameters and perform inferences, in even non-linear dynamic models when only 

a set of population moment conditions, which are deduced from the assumptions of the 

models, are known (Hall, 2005).  

The advantages of GMM and the lack of available power analysis techniques for 

such models provided the motivation to study this topic. This study is important in order 

to provide an easier power and sample size calculation technique for applied researchers 

with minimum knowledge about the distribution. Adopting the methods developed in this 

study, applied researchers and practitioners will end up with the most cost effective 

model selection and sample size with the highest possible power at the same time. GMM 

is specifically preferred to other models when dealing with longitudinal data and time-

dependent covariates. More details regarding the GMM estimation technique are 

discussed in the GMM section.  
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Longitudinal Data 

 In the presence of multiple time points for subjects of a study and the interest of 

patterns of change over time, longitudinal data are formed with the main characteristics 

of dependence among repeated measurements per subject (Liang & Zeger, 1986). This 

correlation among measures for each subject introduces a complexity to the study due to 

violating the assumption of independence among the observations, which requires more 

complex models that enable researchers to take into consideration all aspects of such 

models.  

For example, when modeling body pain and stiffness of patients with knee 

osteoarthritis over years, there are multiple measurements for each patient. The severity 

of each patient’s pain may vary through a period of time, but these observations are 

correlated within each patient, making cross-sectional data models inappropriate. This 

example is explained in detail in Chapter III of this dissertation. 

Many models have been developed for cross-sectional data where a single 

observation for each subject is available, but more studies regarding modeling of 

longitudinal data in the presence of varying types of responses and covariates need to be 

conducted regardless of their challenges. Conducting more studies in this area is 

important because of the opportunities repeated observations provide for researchers such 

as increased statistical power and robustness to model selection.  The higher power of 

longitudinal studies is due to having the same number of subjects as a comparable cross-

sectional study but more observations, due to multiple observations per subject, as well as 

generally smaller error terms resulting from these additional observations. Additionally, 

some model misspecification problems can be avoided within longitudinal studies as they 
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allow analyses that are insensitive to omitted covariates that do not change with time. 

This will result in robust model selections and inferences common in observational 

studies (Liang, Zeger, & Qaqish, 1992).  

According to Zeger and Liang (1991), although using each subject as his own 

control will result in homogeneity among subjects over time and hence increased 

efficiency, there is an analytic cost researchers may pay by inconsistent estimates of 

precision by ignoring the existing correlation among subjects of longitudinal data. 

However, these challenges can be met and overcome by appropriate models that are 

specifically designed to capture the correlation among the observations and use them to 

have a greater power and make inferences. Some of these methods that can be used in 

modeling longitudinal data are discussed below.  

Modeling Longitudinal Data 

The early development of methods that can handle longitudinal data is traced back 

to the usefulness of the ANOVA paradigm for longitudinal studies and to the seminal 

paper by Harville (1977). The most common way of modifying ANOVA for longitudinal 

studies is repeated measures ANOVA, which simply models the change of measurements 

over time through partitioning of the total variation. The total variance may be partitioned 

for such models using time-dependent and time-independent variables. A time-dependent 

variable will take on values that may change for different observations on the same 

subject; however, a time-independent variable has the same value on the same subject for 

all observations.  

After developing and adopting the repeated measures ANOVA technique for 

longitudinal studies, the idea of having random effects in a model in addition to fixed 
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effects and ending up with a mixed-effects model was developed. Mixed-effects models, 

which historically go back to 1930’s when Wishart (1938) started the early contribution 

to the growth curve analysis, enable researchers to efficiently model longitudinal data.  

The early use of mixed-effects within ANOVA for longitudinal data analysis was mainly 

in life science, which Laird and Ware (1982) highlighted. This way of using ANOVA 

was among the first steps of developing mixed-effects model, which is probably the most 

widely used method of analyzing longitudinal data (Fitzmaurice et al., 2009). 

The idea of randomly varying regression coefficients was also a common thread 

in the two-stage approach of longitudinal data analysis. A two-stage method is based on 

assuming that the repeated measurements on each subject follow a regression model with 

distinct regression parameters for each individual. While this method was used for years 

by different people in different ways, Rao (1965) was the one who formally used this 

two-staged model by specifying a parametric growth curve model based on the 

assumption of normality of the random growth curve parameters. Although relatively 

simple to use and providing the motivation for more advanced models from an historical 

perspective, the two-stage methods force some restrictions which are not necessary and 

are sometimes very inconvenient in terms of modeling. These restrictions include having 

only time-varying covariates in the first stage, the limitation of having the ability to 

introduce the between-subject covariates only in the second stage and finally putting 

unnecessary constraints on the choice of the design matrix for the fixed effects 

(Fitzmaurice et al., 2009). 
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Linear Mixed-Effects Models 

It was in the early 1980s that Laird and Ware (1982) proposed their flexible class 

of linear mixed-effects models for longitudinal data based on the earlier work done on the 

general class of mixed models by Harville (1977). Repeated-measures ANOVA and 

growth curve models are considered as special cases of this model. Furthermore, the 

linear mixed-effects model for longitudinal data has fewer restrictions on the fixed and 

random effects design matrices as well as more efficient likelihood-based estimation of 

the model parameters (Fitzmaurice et al., 2009). The linear mixed-effects model is given 

by  

𝑌𝑖𝑡 = 𝑿′𝑖𝑡𝜷 + 𝒁′𝑖𝑡𝜸 + 𝑒𝑖𝑡 ,   (2.1) 

where 𝑌𝑖𝑡 is the response variable of the 𝑖th subject observed repeatedly at different time 

points (𝑖 =  1, . . . , 𝑛, 𝑡 =  1, . . . , 𝑇), 𝑛 is the number of subjects, 𝑇 is the number of time 

points, 𝑿𝑖𝑡 is the design or covariance vector of 𝑡th measurement at time 𝑡 for subject 𝑖 

for the fixed effects, 𝜷 is the fixed effect parameter vector,  𝒁𝑖𝑡 is the design vector of the 

𝑡th measurement measured for subject 𝑖 for the random effects, 𝜸 is the random effect 

parameter vector following a normal distribution,  𝜸~𝑁(0, 𝑮) and 𝒆𝑖𝑡 is the random error 

also following a normal distribution, 𝑒𝑖𝑡~𝑁(0, 𝑅). When using this model for 

longitudinal studies, subjects can be considered as clusters with different measurements 

across time per subject; therefore, there will be 𝑖 subjects and 𝑡 different time points. 

Having the random effects within these mixed-effects models helps account for 

the correlation among the measurements per subject at different time points. Within the 

two normal distributions of the random vectors mentioned above, 𝑮 is the covariance 

matrix of random effects 𝜸 and 𝑅𝑖 is the covariance of error term 𝑒𝑖𝑡. Different 



22 

 

 
 

correlation structures among errors can be assumed but the most common one is the 

constant covariance, 𝜎2𝑰. Additionally, the distributions of the random effects can vary 

from normal. According to Laird and Ware (1982), Different algorithms other than the 

Expectation-Maximization (EM) can be used to fit this general class of models to 

longitudinal data (e.g., Fitzmaurice et al., 2009; Jennrich & Schluchter, 1986). During the 

mid-1980s a very general class of linear models was proposed that could handle 

longitudinal unbalanced data in the presence of mistimed measurement or missing data as 

well as time-varying or time-invariant covariates and yet provide parsimonious and 

flexible covariance models (Fitzmaurice et al., 2009).  

Nonlinear Models 

Although the developments in methods of analyzing longitudinal continuous 

responses span about a century, many of the advances in methods for analyzing 

longitudinal discrete responses have been limited to the most 30 to 35 years. According 

to Fitzmaurice et al. (2009), when the response variables are discrete within a 

longitudinal study and no longer normally distributed, linear models are no longer 

appropriate. To solve this problem, statisticians have developed approximations of GLM 

(Wedderburn, 1974) for longitudinal data. A characteristic feature of GLMs is the 

addition of a non-linear transformation of the mean, which is assumed to be a linear 

function of the covariates that can introduce some issues in the regression coefficients of 

longitudinal data. This problem has been solved also by extending GLMs to handle 

longitudinal observations in a number of different ways that can be categorized into three 

main types of models. These categories are: (i) conditional models also known as 

random-effects or subject-specific models, (ii) or transition models and (iii) marginal or 
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population averaged models (Fitzmaurice et al., 2009). These models have some main 

differences from each other in terms of how they account for the correlation among the 

repeated observations within longitudinal data and the interpretations of the regression 

parameters resulting from these models (Fitzmaurice et al., 2009). 

Conditional, Transition, and  

Marginal Models 

 

Conditional models are appropriate when a researcher seeks to examine individual 

level data. For example, take the situation of modeling the academic success of students 

clustered into majors within a single university or the academic success of students over 

time.  If the interpretation of the results seeks to explain what factors impact academic 

success of students and their individual trend, a conditional model would be appropriate 

(Zorn, 2001).  Conditional or random effects models allow adding a random term to the 

model to capture the variation in the population of subjects and also the correlation 

among the observations. A linear version of conditional models can be specified as  

𝑌𝑖𝑡 = 𝑿′𝑖𝑡𝜷 + 𝜈𝑖 + 𝑒𝑖𝑡 ,   (2.2) 

where 𝜈𝑖~𝑁(0, 𝐺) is a random effect and 𝑒𝑖𝑡~𝑁(0, 𝑅) is the random error term. The 

conditional mean can be obtained as  

𝐸(𝑌𝑖𝑡|𝜈𝑖) = 𝑿′𝑖𝑡𝜷 + 𝜈𝑖 .   (2.3) 

One example of conditional models is the Generalized Linear Mixed Model 

(GLMM), which is a GLM that includes a random effect and can be applied to 

longitudinal data. GLMM can be considered as an extension of the GLM in which the 

mean response model is conditioned on both measured covariates and an unobserved 

random effect. When averaging over the distribution of the random effects, the within-

subject correlation among the repeated responses within longitudinal data is marginally 
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captured by allowing the regression coefficients to vary randomly from one individual to 

another through entering random effects in the model for the mean response. Within 

GLMMs, there usually is the assumption that the random effects are normally distributed 

(multivariate normal) and are independent of the covariates (Fitzmaurice et al., 2009).  

The general form of GLMM can be written as Equation 2.1. What is different 

between the mixed-effects models and GLMMs is that the response variables can come 

from different distributions besides Gaussian (aka normal). Within GLMM, rather than 

modeling the responses directly, some link function is often applied, such as a log link. 

Let the linear predictor, 𝜼, be the combination of the fixed and random effects excluding 

the residuals specified as below 

𝜼 = 𝑿𝜷 + 𝒁𝜸,   (2.4) 

where 𝜷 is the vector of fixed effects, 𝑿 is the fixed effects design matrix, 𝜸 is the vector 

of random effects such that 𝑐𝑜𝑣(𝜸) = 𝜎𝟐𝑫 for at least positive definite matrix 𝑫 and 𝒁 is 

the random effects design matrix. The link function, 𝑔(. ), relates the outcome,  𝒀, to the 

linear predictor ,  𝜼. One of the most common link functions is 𝑔(. ) = 𝑙𝑜𝑔𝑒(
𝑝

1−𝑝
) and 

𝑔(𝐸(𝒀)) = 𝜼.  Both the estimations of fixed and random effects coefficients, 

respectively, �̂� and �̂�, can be found within these models. In the GLMM, the default 

optimization technique that is used is the Quasi-Newton method. Because a residual 

likelihood technique is used to compute the objective function, only the covariance 

parameters participate in the optimization. This model is not complicated and more 

details about it can be found in Agresti (2007).  

Transition models also result from extending generalized linear models by 

modeling the mean and time dependence simultaneously via conditioning an outcome on 
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other outcomes to handle longitudinal data.  Transition model, or Markov, is a specific 

kind of conditional model which accounts for the correlation between subjects of a 

longitudinal study by letting the past values influence the present observations, which are 

of interest by considering the sequential nature of longitudinal data. The fact that the 

conditional distribution of each response at any occasion is expressed given the past 

responses and covariates makes the transition models part of conditional ones 

(Fitzmaurice et al., 2009). In transition models, 

𝐸(𝑌𝑖𝑡|𝑯𝑖𝑡, 𝑿𝑖𝑡) = 𝑿′𝑖𝑡𝜷 + ∑ 𝛼𝑟𝑓𝑟(𝑯𝑖𝑡)𝑠
𝑟=1 ,   (2.5) 

where 𝑯𝑖𝑡 = {𝑌𝑖1, … , 𝑌𝑖𝑡−1} denotes the history of the past responses at the 𝑡th occasion 

and 𝑓𝑟(𝑯𝑖𝑡) denotes some known functions of the history of the past responses with 𝛼𝑟 as 

the coefficients of these past history functions of the responses. 

Marginal models are also the extension of GLMs, which directly incorporate the 

within-subject association among the repeated measures of the longitudinal data into the 

marginal response distribution. The principal distinction between marginal and 

conditional models has often been asserted to depend on whether the regression 

coefficients describe an individual’s response or the marginal response to changing 

covariates, that is, one that does not attempt to control for unobserved subjects’ random 

effects (Lee & Nelder, 2004). Marginal models can be written as in Equation 2.6, 

𝐸(𝑌𝑖𝑡) = 𝑿′
𝑖𝑡𝜷,   (2.6) 

where the parameters in 𝑣𝑎𝑟(𝒀) = 𝚺 are nuisance parameters with an arbitrarily chosen 

pattern. 

These models include no random effect and are population averaged models such 

as GEE and GMM. According to Hansen (2007), marginal approaches are appropriate 
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when the researcher seeks to examine cluster level data, which is when inferences about 

the population average are of primary interest (Diggle, Liang, & Zeger, 1994) or when 

the expected values of the responses as a function of the current covariates are the 

applicable necessary results (Pepe & Anderson, 1994). For the example mentioned above 

about academic success of students, if the goal of a study is to compare the academic 

success between clusters or majors or to compare the academic success between males 

and females, a marginal model would be appropriate (Zorn, 2001). These models are 

called marginal because the mean response model at each occasion depends only on the 

covariates of interest, not like conditional models, which depend on previous responses 

and random effects. 

Generalized Estimating Equations 

For analyzing marginal models, Liang and Zeger (1986) developed the GEE 

approach as a multivariate extension of quasi-likelihood used to estimate the regression 

coefficients without completely specifying the response distribution. In this approach, a 

“working” correlation structure for the correlation between a subject’s repeated 

measurements is proposed by Liang and Zeger (1986). 

Assume 𝑛 subjects are repeatedly measured over T times as before with J 

covariates 𝑗 = 1, … , 𝐽. Let 𝑌𝑖𝑡 denote a response variable observed repeatedly at different 

time points. It is also possible that these repeated measures are observed within an 

unbalanced longitudinal data but for the sake of simplicity, balanced data are considered 

here. Suppose 𝑿𝑖𝑡 is a covariates matrix including a (𝑟 × 1) vector of covariates 

associated with each response, 𝑌𝑖𝑡. The marginal model is a regression model which 

separately models the mean response and the within-subject association among repeated 
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measures of the response variable. These three parts are the main features of marginal 

models that need to be specified: 

1. 𝐸(𝑌𝑖𝑡|𝑿𝑖𝑡) = 𝜇𝑖𝑡 is the conditional expectation of each response which is 

assumed to be dependent on the covariates through a known link function 

𝑔(. ). Therefore, the conditional expectation can be written as 𝐸(𝑌𝑖𝑡|𝑿𝑖𝑡) =

𝜇𝑖𝑡 = 𝑔(𝑿𝑖𝑡
𝑇 𝜷) where 𝑿𝑖𝑡 represents the covariates matrix and 𝜷 represents 

the vector of parameters of interest. 

2. 𝑉𝑎𝑟(𝑌𝑖𝑡) = 𝜓𝜈(𝜇𝑖𝑡) is the conditional variance of each response given 𝑿𝑖𝑡 

which is assumed to be dependent on the mean and also on the covariates, 𝑿𝑖𝑡. 

𝜈(𝜇𝑖𝑡) is a known variance which is a function of the mean and 𝜓 is a possibly 

unknown scale or dispersion parameter. This scale parameter can be fixed and 

known or unknown in the estimation of such models. 

3. Given the covariates, the conditional within-subject associations among the 

vector of repeated responses are assumed to be a function of an additional 

vector of association parameters. The conditional within-subject associations 

can be specified as 𝑹𝑖(𝜶) = 𝑨 where 𝑹𝑖 is the working correlation matrix that 

may depend on a vector of unknown parameters, 𝜶.  In general, the assumed 

covariance among the responses can be written as below and referred to as 

working covariance within GEE emphasizing the fact that 𝑽𝑖 is only an 

approximation to the true covariance which can be approximated as  

𝑽𝑖(𝜶) = 𝜙𝑨
𝑖

1
2𝑹𝑖(𝜶)𝑨

𝑖

1
2, 

  (2.7) 

where 𝑨𝑖 = 𝑑𝑖𝑎𝑔{𝜈(𝜇𝑖𝑡)} is a diagonal matrix with diagonal elements 𝜈(𝜇𝑖𝑡), 

which are specified entirely by the marginal means, by 𝜷 and 𝑹𝑖(𝜶) is a (𝑇 ×
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𝑇) correlation matrix, referred to as the working correlation within GEE and 

𝜙 is an unknown scale or dispersion parameter.  

Within the correlation matrix, 𝜶 represents a vector of parameters 

associated with a specified model for 𝐶𝑜𝑟𝑟(𝒀𝑖𝑡), with typical element 

𝜌𝑖𝑠𝑡 = 𝜌𝑖𝑠𝑡(𝜶) = 𝐶𝑜𝑟𝑟(𝑌𝑖𝑠, 𝑌𝑖𝑡; 𝜶),   𝑠 ≠ 𝑡.   (2.8) 

As both the 𝑹𝑖(𝜶) and 𝑉𝑎𝑟(𝑌𝑖𝑡) can be incorrectly specified, the use of 

“working covariance” is preferred by many statisticians. When 𝑹𝑖(𝜶) = 𝑰, the 

GEE is reduced to the quasi-likelihood estimating equation for a GLM that 

assumes the repeated observations are independent by the use of an identity 

matrix for the working correlation (Fitzmaurice et al., 2009). There are other 

correlation structures within GEE such as autoregressive, unstructured, and 

exchangeable that can be found in more detail in Liang and Zeger (1986) and 

Prentice (1988). 

According to Fitzmaurice et al. (2009), the first two components of GEE 

correspond to the standard GLM with no distributional assumption. It is the third part that 

represents the main extension of the GLM to the longitudinal data. Therefore, the steps 

that marginal models take to make this extension first specify a GLM for longitudinal 

responses at each occasion and additionally include a model for the within-subject 

association among the repeated responses. Separately modeling the mean response and 

the association among responses is important in the interpretation of the regression 

parameters, 𝜷, in the model for the mean response. The population-averaged 

interpretations of the 𝜷 describe how the mean response in the population is related to the 

covariates.  
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The avoidance of the distributional assumptions is what makes these marginal 

models so unique and important as the specification of the joint multivariate distribution 

of 𝒀𝑖, the vector of responses, is not always possible. This avoidance of the full 

distributional assumptions is the reason for these models to be considered semi-

parametric due to having 𝜷 as a parametric component as well as a non-parametric 

component, which is determined by the nuisance parameters by the moments higher than 

just the first-order moments.  

Assuming that there are 𝑛 independent observations of a scalar response variable, 

𝒀𝑖 and 𝑿𝑖 are the covariates associated with the response, the GEE estimator of 𝜷 can be 

found as in Equation 2.9.  

�̂� = [∑ 𝑿𝑖
′[𝑹𝑖(�̂�)]−1𝑿𝑖

𝑛

𝑖=1

]

−1

[∑ 𝑿𝑖
′[𝑹𝑖(�̂�)]−1𝑿𝑖

𝑛

𝑖=1

]. 

 (2.9) 

A valuable feature of GEEs with time-independent covariates is that they produce 

efficient estimates if the working correlation structure is correctly specified (Lai & Small, 

2007). GEE estimators remain consistent and provide correct standard errors even if the 

working correlation structure is incorrectly specified. However, when there are time-

dependent covariates, Hu (1993) and Pepe and Anderson (1994) pointed out that the 

consistency of GEEs is not assured with arbitrary working correlation structures unless a 

key assumption is satisfied. When there are time-dependent covariates, Pepe and 

Anderson (1994) suggested that marginal models be estimated by generalized estimating 

equations with the independent working correlation in the presence of time-dependent 

covariates. Fitzmaurice et al. (2009) showed in detail the loss of efficiency when using a 
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GEE approach to estimate the unknown parameters of longitudinal models in the 

presence of time-dependent covariates. 

According to Lai and Small (2007), GMM is a more efficient estimation approach 

for marginal regression models with time-dependent covariates. GEEs with the 

independent working correlation do not exploit all of the available estimating equations 

involving any time-dependent covariate. GMM, on the other hand, makes efficient use of 

all the estimating equations that are made available by time-dependent covariates 

providing more efficient estimates than GEEs with the independent working correlation 

under certain conditions. GMM also maintains the GEE approach with time-independent 

covariates’ attractive feature of being consistent under all correlation structures for 

subjects’ repeated measurements (Lai & Small, 2007). 

Generalized Method of Moments 

GMM was first introduced in the econometrics literature by Lars Hansen in 1982 

and has had a large influence in econometrics (Hansen, 1982). From then, it has been 

developed and widely used by taking advantage of numerous statistical inference 

techniques. GMM has been used in agriculture, business cycles, commodity markets 

consumption, economics growth, education, environmental economics, equity pricing, 

health care, import demand, interest rates, inventories, investment, macroeconomic 

forecasts, microstructures in finance, technological innovation, and many other areas of 

economics (Hall, 2005).  

Unlike ML estimation, GMM does not require complete knowledge and 

specification of the distribution of the data. Only specified moments derived from an 

underlying model are what GMM estimator needs.  This method, under some 
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circumstances, is even superior to the ML estimator, which is one of the best available 

estimators for the classical statistics paradigm since the early 20th century (Hall, 2005). 

MLE performs well only if the distribution of the data are completely and correctly 

specified. However, this specification is not always possible. This problem happens under 

economic theory leaving researchers with the arbitrary choice of distribution. As a result 

of this limitation, an optimal estimator might not exist, which will possibly cause biased 

inferences under ML estimation. These circumstances also include the computational 

burden of MLE and its dependence on the joint probability distribution of the data, 

known as the likelihood function. So, even if the choice of the distribution coincides with 

the truth, with the currently available computer technology, numerically evaluating the 

likelihood function of the joint probability distribution would be burdensome. Another 

computational burden will be added to some models when more parameters need to be 

added to the model to complete the distributional specification of the data. Some models, 

specifically within economics, do not specify all aspects of the probability distribution of 

the data due to their parameters’ nature. This is very burdensome within MLE as under 

these circumstances, the likelihood needs to be maximized according to some nonlinear 

constraints implied by such models while trying to estimate many additional parameters 

(Hall, 2005). Additionally, in models for which there are more moment conditions than 

model parameters, GMM estimation provides a straightforward way to test the 

specification of the proposed model, which is an important feature that is unique only to 

GMM estimation. 

In contrast to the disadvantages of MLE mentioned above, GMM provides a 

computationally convenient framework for making inferences within such models 
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without the necessity of specifying the likelihood function (Hall, 2005). GMM, which has 

roots in the minimum 𝜒2 method, is an estimation procedure that enables researchers to 

avoid unwanted or unnecessary assumptions such as distributional assumptions regarding 

the model they try to fit. This type of model can be considered semi-parametric as the full 

shape of the distributional functions of data may not be known but the parameter of 

interest is finite-dimensional. 

Within GMM, a certain number of moment conditions, which are functions of the 

model parameters and the data, need to be specified for the model. These moment 

conditions have the expectation of zero at the true values of the parameters. Through 

GMM models, consistent, efficient, and asymptotically normally distributed estimators 

are estimated that do not need to use any information other than the information that is 

contained in the moment conditions. This method also takes account of both sampling 

and estimation error by its unique way of constructing tests (Hansen, 2007).  

According to Hansen (2007), GMM estimation begins with a vector of population 

moment conditions taking the form below for all 𝑡 

𝐸[𝑓(𝒙𝑖𝑡 , 𝜷0)] = 0, (2.10) 

where 𝜷0 is an unknown vector in a parameter, 𝒙𝑖𝑡 is a vector of random variables, 𝑖 =

1, … , 𝑛;  𝑡 = 1, … , 𝑇 and 𝑓(. ) is a vector of functions.  

The GMM estimator is the value of 𝜷 which minimizes a quadratic form in 

weighting matrix, 𝑾, and the sample moment 𝑛−1 ∑ 𝑓(𝒙𝑖𝑡 , 𝜷)𝑛
𝑖=1 . This quadratic form is 

shown in Equation 2.11. 

𝑄(𝜷) = {𝑛−1 ∑ 𝑓(𝒙𝑖𝑡 , 𝜷)𝑛
𝑖=1 }′𝑾{𝑛−1 ∑ 𝑓(𝒙𝑖𝑡 , 𝜷)𝑛

𝑖=1 }, (2.11) 
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where 𝑾 is a positive semi-definite matrix which may depend on the data but converges 

in probability to a matrix of constants which is positive definite. By definition, the GMM 

estimator of 𝜷0 is  

�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜷∈ℙ

𝑄(𝜷), (2.12) 

where 𝑎𝑟𝑔 𝑚𝑖𝑛 stands for the value of the argument 𝜷 which minimizes the function in 

front of it. 

If some regularity conditions hold (Hall, 2005), then the first order conditions for 

this minimization imply  

𝜕𝑄(�̂�)

𝜕𝜷
= 0. 

(2.13) 

Solving Equation 2.13 provides the closed form solution for �̂� as a function of data in 

linear models. Unfortunately, in non-linear models, this is typically impossible. 

This calculation takes a lot of steps which can be done using a computer based routine. 

The process begins with some trial value of 𝜷 which can be called 𝜷(0). If this is the 

value that minimizes 𝑄(𝜷), then it should not be possible to find a value of 𝜷 for which 

the minimand is smaller. Using some rules, the computer tries to find a possible value of 

𝜷, for example 𝜷(1), which satisfies 𝑄(𝜷[1]) < 𝑄(𝜷[0]). If this new value is found such 

that it meets the criterion mentioned above, 𝜷(1) becomes the new candidate value for �̂� 

and the computer searches again for another possible value which is smaller than 𝜷(1), 

say 𝜷(2), such that 𝑄(𝜷(2)) < 𝑄(𝜷(1)). This updating process continues until it is 

judged that the value of 𝜷 which minimizes 𝑄(𝜷) has been found. Three aspects of this 

routine need to be considered before beginning the estimation procedure: 
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1. The starting value for 𝜷 and 𝜷(0) needs to be specified. Ideally 𝜷(0) needs to be 

as close as possible to the value which minimizes 𝑄(𝜷) since meeting this 

condition reduces the number of iterations and hence the computational burden. 

2. The iterative search method, by which the candidate value of �̂� is updated on each 

step, needs to be conducted. In most of the problems, it is computationally 

infeasible to perform a search over the entire parameter space and some rules are 

used to limit the required calculations. For example in a class known as gradient 

methods, the value of 𝜷 is updated on the 𝑖th step by  

𝜷(𝑖) = 𝜷(𝑖 − 1) + 𝜉𝑖𝐷(𝜷(𝑖 − 1)), (2.14) 

where 𝜉𝑖 is a scalar known as the step size and 𝐷(. ) is a vector known as step 

direction which is a function of the gradient 
𝜕𝑄(𝜷(𝑖−1))

𝜕𝜷
 and hence reflects the 

curvature of the function at 𝜷(𝑖 − 1). 𝐷(𝜷(𝑖 − 1)) determines the direction in 

which to update 𝜷(𝑖 − 1) and 𝜉𝑖 determines how far to go in that direction. 

3. The convergence criterion used to judge when the minimum has been reached 

needs to be specified next. This convergence can be assessed in a number of 

different ways. For example, if 𝜷(𝑖) is the value which minimizes 𝑄(𝜷), then the 

updating routine should not move away from this point, suggesting that the 

minimum has been found if  

‖𝜷(𝑖 + 1) − 𝜷(𝑖)‖ < 𝜀, (2.15) 

where 𝜀 is an arbitrarily small positive constant. A typical value of 𝜀 is 10−6 or 

less. Convergence can be assessed by a number of other ways which can be found 

in Hall (2005). 



35 

 

 
 

Seven elements of the GMM framework according to Hall (2005) are as below. 

The first element is identification, which refers to the importance of the population 

moment conditions in having a successful estimation and how they must not only be valid 

but also provide sufficient information to identify the parameter vector. Decomposition of 

moment conditions into identifying restrictions which contain the information that goes 

into the estimation and over-identifying restrictions, which are a reminder that manifests 

itself in the estimated sample moment is the second element of this framework. The third 

element of this framework describes the asymptotic properties saying that when the 

consistent GMM estimator is appropriately scaled, it has a normal limiting distribution, 

which is important for hypothesis testing and performing other inferences. The fourth 

element pertains to the estimated sample moment, which is shown to have a limiting 

normal distribution with the characteristics that directly depend on the function of data in 

the over-identifying restrictions.  Long run covariance estimation, which emphasizes the 

necessity of consistently estimating the long run variance of the sample moment while 

trying to use the asymptotic normality in practical inference procedures, forms the fifth 

element. The sixth element is the optimum choice of weighting matrix, which depends on 

the long run variance of the sample moment. The last element of a GMM framework is 

about model diagnostics, which considers the bias provided for testing the validity of the 

GMM model specification via the estimated sample moments.  

Moment Selection for  

Longitudinal Data  

 

Moment selection is an important and yet challenging part of GMM models, 

which is one of the best and most efficient models when modeling longitudinal data 

especially in the presence of time-dependent covariates (Lai & small, 2007). The 
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desirable properties of the selected moments depend upon the question that needs to be 

answered in a study. Hall (2005) assumed that the objective of the study is mostly in 

regard to making inferences about an unknown parameter vector, 𝜷0, based on some 

asymptotic theories. Under this context, he argued it is desirable for the selected vector to 

satisfy three conditions. The first condition is the orthogonality condition, which refers to 

the fact that the estimation should be based on valid information. The efficiency 

condition is the second condition that emphasizes the importance of making the inference 

based on estimates that are asymptotically the most precise ones. The third condition is 

the non-redundancy condition so that the selected moment condition does not suffer from 

redundancy of elements resulting in declining the asymptotic approximation quality to 

finite sample behavior.  

There are two existing approaches to resolve this issue of moment selection in 

general. The first option is finding the optimal moment condition theoretically, which is 

the one that satisfies both the orthogonality and efficiency conditions. The score vector 

will always be the optimal moment condition as it will result in the GMM estimator, 

which also is the ML estimator. Unfortunately, within many models, this option is 

infeasible. Therefore, more restrictions forcing more practical settings are necessary. The 

second approach, which seems more realistic, is to develop data-based methods for 

moment selection. This is a more practical approach as in most circumstances a 

researcher needs to decide about the moments without any knowledge of the underlying 

data generation process and only based on the data. The only point that needs to be 

considered within this approach is that the use of the data does not contaminate the 

limiting distribution theory as the moment selection must perforce be based upon the 
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data. This introduces some other criteria, which are not discussed here as this is not the 

main topic of the current dissertation. For more details regarding moment selection, see 

Hall (2005). 

When analyzing longitudinal data, there are two types of correlations that need to 

be taken into consideration; the correlation inherent from the repeated measures of the 

responses and the correlation due to the feedback created between the responses at a 

particular time and the predictors at other times. These added complexities will make the 

process of finding the moment conditions more complicated. When using a generalized 

method of moments for estimating the coefficients in such data, the necessity of taking 

approaches that make use of all the valid moment conditions with each time-dependent 

and time-independent covariate is what is highlighted in some references (Lalonde, 

Wilson, & Yin, 2014). 

Lai and Small (2007) suggested using GMM for longitudinal models in a way to 

use optimal information provided by time-dependent covariates, when obtaining 

estimates. The choice of moment conditions within their approach depends on the type of 

time-dependent covariates, which they classified into three types. Type I and type II time-

dependent covariates are covariates for which there is no “feed-back” from the response 

process to the covariate process. Type I time-dependent covariates have the additional 

feature which is based on the situation of past values of the covariate being uncorrelated 

with current residuals. 

For the repeated observations taken over 𝑇 times on 𝑛 subjects with 𝐽 covariates, 

assume that observations 𝑦𝑖𝑠 and 𝑦𝑘𝑡 are independent whenever 𝑖 ≠ 𝑘. Making the 

decision about the type of time-dependent covariates is based on the equation  
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𝐸 [
𝜕𝜇𝑖𝑡(𝜷)

𝜕𝛽𝑗

{𝑦𝑖𝑡 − 𝜇𝑖𝑡(𝜷)}] = 0, 
(2.16) 

where 𝜇𝑖𝑡(𝜷) represents the expectation of  𝒚𝑖𝑡 based on the vector of covariate values, 

𝒙𝑖𝑡 and 𝜷 denotes the vector of parameters that describes the marginal distribution of 𝑦𝑖𝑡. 

If Equation 2.16 holds for all 𝑠 and 𝑡, then the 𝑗th covariate is classified as type I. Type I 

covariates plausibly satisfy a condition that their outcomes are independent of past and 

future outcomes of the response. For this type of covariate, there will be 𝑇2 moment 

conditions. Variables like age, time variables, and treatment assignment for each subject 

at a certain time point in a randomized crossover trial can be classified into type I 

covariates (Lai & Small, 2007). 

If Equation 2.16 holds for 𝑠 ≥ 𝑡 but fails to hold for some 𝑠 < 𝑡, the 𝑗th covariate 

is said to be type II. This type of covariate is used in many time-series models. This type 

of covariate is common in a linear model with autoregressive responses (Lalonde et al., 

2014). For each of the type II covariates, there will be 
 𝑇(𝑇+1)

2
 moment conditions. 

If Equation 2.16 fails to hold for any 𝑠 > 𝑡, the 𝑗th covariate is said to be type III. 

This will occur if there is some feedback loop or common response to an omitted 

variable; therefore, this type of covariate occurs when it changes randomly and its 

distribution may depend on past values of the response. There will be 𝑇 moment 

conditions valid for each type III covariate. To clarify the distinction between types II 

and III of time-dependent covariates, the study of infectious diseases and vitamin A 

deficiency in Indonesian children, which was first presented by Zeger and Liang (1991), 

is considered here. Considering diarrheal disease as an outcome variable and 

xerophthalmia, which is an ocular condition due to vitamin A deficiency, as the time-
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dependent covariate, xerophthalmia can be specified as a type III covariate. It is because 

there is a feedback cycle in which xerophthalmia increases the risk of diarrheal disease, 

which further increases the risk of future xerophthalmia. In contrast, considering 

respiratory disease as an outcome and the same covariate of xerophthalmia, this time 

xerophthalmia is classified as a type II covariate because there is no evidence of a 

feedback cycle (Diggle et al., 1994). 

Lalonde et al. (2014) argued that there can be theoretically more than three types 

of time-dependent covariates. Concentrating on using valid moment conditions, they 

provided a method to choose valid equations to determine the impact of time-dependent 

covariates on the response over time. In their recommended models, there is no need to 

classify the covariates into different types but in order to identify the appropriate moment 

conditions which result in consistent and efficient estimators, they revisited Lai and 

Small’s (2007) procedures and defined the forth type of covariates before presenting their 

different yet related approach. Type IV covariate is in direct contrast to type II in which 

the future responses are not affected by the previous process so there is no feedback from 

the covariate process to the response process. For this type of covariate, there will be 

 𝑇(𝑇+1)

2
 moment conditions. Lalonde et al. (2014) used the example of a weight loss study 

for clarification. The weight loss will impact the blood pressure as the future covariate 

but the blood pressure has no impact on future weight loss. So, this covariate can be 

classified as a type IV covariate because the future responses are not affected by the 

previous covariate process and there is no feedback from the covariate process to the 

response process. 
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Lalonde et al. (2014) showed that incorrectly specifying the type of covariate may 

result in significant changes in the standard errors, hence inaccurate conclusions. This is 

why after embracing the approach by Lai and Small (2007) regarding classifying the 

variables into different types as well as adding a new type of covariate, Lalonde et al. 

(2014) moved to a more general method which depicts each of the valid moment 

conditions rather than designating them in a group of a certain type. Their approach is 

based on using a correlation technique to decide about the moment conditions that should 

be included. Then, using the continuously updating GMM or two-step GMM is 

recommended in obtaining estimates and selecting moment conditions without assuming 

that feedback is always present over time, or if present, occurs at the same degree. 

Continuously updated GMM results from continuing the multi-step procedure to obtain 

the iterated GMM estimator. This approach was first suggested by Hansen, Heaton, and 

Yaron (1996) in which the dependence of the weighting matrix on the unknown 

parameters is acknowledged and taken care of during the optimization procedure. There 

is fairly compelling evidence to suggest there are gains to iteration in terms of finite 

sample performance of the estimator but in most cases the two-step estimator is applied. 

Two-step estimators on the other hand benefit from not having the numbers of equations 

and parameters in the nonlinear GMM step grow with the number of perfectly measured 

regressors, conferring a computational simplicity (Erickson & Whited, 2002). For more 

details about these two approaches in moment selection see Lai and Small (2007) and 

Lalonde et al. (2014). 
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Power 

The power of a statistical test can be taken to be the probability of obtaining 

statistically significant results when testing a false null hypothesis, 𝐻0, against a specific 

alternative hypothesis, 𝐻𝑎. Statistical power depends on the sample size (n), significance 

criterion (𝛼), type of test, and the population effect size among other things (Cohen, 

1992).  

According to Cohen (1992), power analysis is a very important aspect of most of 

the studies especially in social and behavioral sciences as in every single study, 

researchers are trying to formulate and test different null hypotheses with the hope of 

rejecting them to proceed to establish facts about the phenomena under study.   

The power function, 𝜋(𝜃), is the probability of rejecting the null hypothesis, 𝐻0, 

when the true value of the parameter is 𝜃1 for a simple hypotheses 𝐻0: 𝜃 = 𝜃0 versus 

𝐻𝑎: 𝜃 = 𝜃1. This probability can be specified as  

𝑃𝑜𝑤𝑒𝑟 = 𝑃(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻1𝑖𝑠 𝑡𝑟𝑢𝑒). (2.17) 

The computation of the power of a hypothesis test can be summarized in three 

steps. These steps include defining the region of acceptance, specifying the critical 

parameter value, which is an alternative to the value specified in the null hypothesis and 

finally calculating the power. The effect size can be found by using the difference 

between the critical parameter value and the value from the null hypothesis. When the 

null hypothesis is false and the researcher’s hypothesis is true, the effect size will be 

greater than zero. The power of the test for such positive effect size is the probability that 

the test will lead to rejecting the null hypothesis, which provides support for the theory. 

This will form the last step, which is computing the power after assuming that the true 
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population parameter is equal to the critical parameter value, rather than the value 

specified in the null hypothesis. Based on that assumption, the probability of the sample 

estimate of the population parameter falling outside the region of acceptance is the power 

of the test (Kraemer & Blasey, 2015).  

Derivation of the minimum sample size in applied research is an important 

component that needs to be considered at the design stage of any study that is designed 

by researchers to address some scientific hypotheses. It is important for researchers to 

come up with the correct sample size they need to perform a hypothesis test and make 

inferences. The ideal sample size is the one that is not too small to rob a study of power 

to detect the significant effects when they actually exist and not too large to be very time-

consuming and costly to perform or lead to over-powered tests (Rochon, 1998).  Usually 

there is no formula for the power of different tests, but power is estimated for different 

values of sample size and based on the preferred value of the power, the minimum 

sample size can be chosen. 

When trying to calculate the power of the tests within longitudinal studies to 

figure out the required sample size, the process is more complicated than it is for cross-

sectional data. In general, in any study including longitudinal data, in order to perform 

power analyses and sample size calculations, one needs to examine the asymptotic mean 

and variance of the test-statistic under both the alternative and null hypotheses. After 

specifying the significance level and possibly the parameter values, the sample size 

needed to test the hypothesis can be computed in different ways, three of which are 

explained below in detail. These three methods, which may be used within longitudinal 

studies, are based on using the Wald test, the likelihood ratio test, and the score test. 
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Power Calculation Using  

the Wald Test  

 

Rochon (1998) adopted GEE as the underlying statistical approach to sample size 

calculations on longitudinal continuous and discrete responses. This approach allows 

practitioners to design the study with the same analytic procedure that will be applied in 

the analysis. If the underlying assumptions are correctly specified, adequate power will 

be calculated to detect significant differences in the study using a GEE analysis. This 

approach uses the damped exponential family of correlation structures. Under this 

approach, the correlation between two observations separated by 𝑇 time points is 𝜑𝑇𝜃
, 

where 𝜑 is the correlation between observations separated by one unit of time and 𝜃 is a 

damping parameter. 

Assume the repeated measures are recorded at the same set of time points 𝑡 =

{1, 2, … , 𝑇} for all the subjects of the study. For this hypothetical study, each subject is 

considered as a cluster. Assuming there are 𝑖 = 1, … , 𝑛 clusters or subjects, 𝝁′𝑖 =

[𝜇𝑖1 … 𝜇𝑖𝑇] is the vector of expected values across the repeated measures of the 𝑖th subject 

and 𝑿𝑖 is a (𝑇 × 𝑟) design matrix in the 𝑖th cluster. Let 𝑿 = 𝑰𝑖 ⊗ 𝑿𝑖 be the overall 

design matrix across all the n subjects where ⊗ represents the outer product of two 

vectors which forms a matrix. The repeated measure response matrix can be specified as 

𝒀𝑖 = [𝒀𝑖1 … 𝒀𝑖𝑇] = [

𝑦11
𝑦12 … 𝑦1𝑇

𝑦21

⋮
𝑦𝑛1

𝑦22

⋮
𝑦𝑛2

…
⋱
…

𝑦2𝑇

⋮
𝑦𝑛𝑇

], 

where 𝑖 = 1, … , 𝑛. The regression model can be written as  

𝑔[𝐸(𝑌𝑖𝑡|𝑿𝑖𝑡 = 𝒙𝑖𝑡)] = 𝒙𝑖𝑡𝜷, (2.18) 
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where 𝑔(. ) is a known link function, 𝒙𝑖𝑡 is a (1 × 𝑟) vector and finally 𝜷 is a (𝑟 × 1) 

vector of regression coefficients that needs to be estimated.  

In order to find the power and then the minimum sample size of a statistical test, 

first the hypothesis needs to be specified. Suppose the specific desired hypothesis can be 

expressed as  

{
𝐻0: 𝑯𝜷 = 𝒉0

𝐻1: 𝑯𝜷 ≠ 𝒉0
, 

(2.19) 

where 𝑯 is an (ℎ × 𝑟) full rank matrix and 𝒉0 is an (ℎ × 1) conformable vector of 

constant elements.  

Within this test, the vector of the parameters, 𝜷, can be estimated using different 

estimating techniques. Adopting the GEE method, after assuming the same design matrix, 

mean vector and covariance matrix within each of the clusters, we may take sums across 

individuals and use them to find the estimators using GEE. According to McCullagh and 

Nelder (1989), the estimator of 𝜷 using GEE can be found using this equation  

�̂� = [∑ 𝑿′
𝑖

𝑖

𝑾𝑖𝑿𝑖]

−1

[∑ 𝑿′
𝑖

𝑖

𝑾𝑖ℎ(𝝁𝑖)], 
(2.20) 

where 𝑾𝑖 = 𝚫𝑖
′ 𝑽𝑖

−1𝚫𝑖. According to Rochon (1998), this estimated 𝜷 has the model-

based covariance matrix, 𝑐𝑜𝑣𝑀𝐵(�̂�), that can be calculated using the equation below 

𝑐𝑜𝑣𝑀𝐵(�̂�) = [𝑛 ∑ 𝑫′
𝑖

𝑖

𝑽𝑖
−1𝑫𝑖]

−1

. 
 (2.21) 

According to Liang and Zeger (1986), the robust covariance matrix for �̂�, 𝑐𝑜𝑣𝑅(�̂�), is 

obtained using the sandwich estimator as  
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𝑐𝑜𝑣𝑅(�̂�) = 𝑛−1 [∑ 𝑫′
𝑖

𝑖

𝑽𝑖
−1𝑫𝑖]

−1

[∑ 𝑫′
𝑖

𝑖

𝑽𝑖
−1𝚪𝑖𝑽𝑖

−1𝑫𝑖] [∑ 𝑫′
𝑖

𝑖

𝑽𝑖
−1𝑫𝑖]

−1

, 
(2.22) 

where 𝚪𝑖 is the true covariance matrix among the set of repeated measures in the 𝑖th 

cluster defined as  

𝚪𝑖 = 𝑉𝑎𝑟(𝒀𝑖). 

This robust covariance is used to protect the inferences from deviations in the working 

covariance structure 𝑽𝑖 from the true covariance pattern 𝚪𝑖. 𝑽𝑖 which is used in Equation 

2.22 and can be defined as  

𝑽𝑖 = 𝑨1/2𝑹𝑖(𝛼)𝑨1/2. 

This is difficult to do at the design stage as little is known about the true covariance 

structure and one needs to wait until starting the analysis stage to calculate the residuals 

for estimating 𝚪𝑖.  

The parameter estimation from above can be applied in calculating the Wald test 

statistic, which is utilized for testing the aforementioned null hypothesis in Equation 2.19. 

The Wald test statistic has an approximate chi-square distribution 

𝑇𝑊 = 𝑛(𝑯�̂� − 𝒉𝟎)
′
[𝑯𝑣𝑎�̂�(𝜷,̂ 𝝍)𝑯′]

−1
(𝑯�̂� − 𝒉𝟎) ~ χ(ℎ),𝜆𝑊

2 , (2.23) 

where 𝑣𝑎�̂�(�̂�) can be either the estimate of the model-based covariance matrix or the 

estimate of the robust covariance matrix for �̂� and 𝝍 is a vector of scale or dispersion 

parameters. This chi-square distribution has the approximate non-centrality parameter of 

𝜆𝑊 which can be approximated as 

�̂�𝑊 ≈ 𝑛(𝑯�̂� − 𝒉𝟎)
′
[𝑯𝑣𝑎�̂�(𝜷,̂ 𝝍)𝑯′]

−1
(𝑯�̂� − 𝒉𝟎). (2.24) 

So, sample size can be estimated as  
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𝑛 ≈
�̂�𝑊

(𝑯�̂� − 𝒉𝟎)
′
[𝑯𝑣𝑎�̂�(𝜷,̂ 𝝍)𝑯′]

−1
(𝑯�̂� − 𝒉𝟎)

. 
(2.25) 

In order to estimate the power, a specific vector needs to be specified for the 

alternative hypothesis, 𝒉1, so the original hypothesis should be stated as 

{
𝐻0: 𝑯𝜷 = 𝒉0

𝐻1: 𝑯𝑩 = 𝒉1
. 

(2.26) 

Assuming that 𝛼 represents the type I error, 𝜒(ℎ);1−𝛼
2  is the critical value from the central 

𝜒(ℎ)
2  distribution. Using this critical value, power can be calculated by finding the 

probability  

Pr(𝜒ℎ,(𝜆𝑊)
2 ≥ 𝜒ℎ,1−𝛼

2 ), (2.27) 

for the Wald test, with 𝜒ℎ,1−𝛼
2  denoting the 100(1 − 𝛼)th percentile of the central chi-

square with ℎ degrees of freedom. So, the power associated with the Wald test statistic is 

1 − 𝛾 = ∫ 𝑓(𝑥; ℎ, 𝜆𝑊)𝑑𝑥,
∞

𝜒(ℎ);1−𝛼
2

 
(2.28) 

where 𝛾 represents the type II error and 𝑓(𝑥; ℎ, 𝜆𝑊) is the probability density function of 

𝜒(ℎ),𝜆𝑊

2 . 

A strict application of the theory requires a true value of 𝜷 and the exact 

covariance of its estimator. A consistent estimator of this parameter can be applied which 

will result in two circumstances. One is that 𝑇𝑊 is only asymptotically distributed as a 

chi-square distribution which some believe might affect the efficiency. However, 

believing that efficiency is negatively affected is in disagreement with what Lipsitz, 

Fitzmaurice, Orav, and Laird (1994) suggested regarding the high efficiency of GEE 

procedures, even for small sample sizes. The other circumstance is that the non-centrality 

parameter for this asymptotic distribution is an approximation and so its influence is 
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unclear. However, neither of these two influences seem to be a problem with a large 

sample size (Rochon, 1998). After finding the power and solving the non-centrality 

equation for the minimum sample size, the required sample size for the particular 

hypothesis a researcher is considering can be estimated.  

The Wald test statistic explained above can also be used to estimate the 

conditional power calculated for an appropriate expanded data set. Lyles et al. (2007) 

came up with this method of estimating the power with no dependence on the assumed 

distribution of the response variable to an expanded data set composed of one record for 

each possible value of the outcome per combination of covariate value. The procedure for 

creating this expanded dataset is briefly explained at the end of this chapter. 

Power Calculation Using the  

Likelihood Ratio Test  

 

Having the same regression model of this general form as Equation 2.18,   

𝑔[𝐸(𝒀𝑖𝑡|𝑿𝑖𝑡 = 𝒙𝑖𝑡)] = 𝒙𝑖𝑡𝜷,  

the vector of regression coefficients, 𝜷, needs to be estimated.  

Trying to test the hypothesis from Equation 2.19, the likelihood ratio (LR) test statistic is 

given by  

𝑇𝐿𝑅 = −2[𝑙(�̂�∗, �̂�∗) − 𝑙(�̂�, �̂�)], (2.29) 

where �̂� and �̂� are unrestricted ML estimators of 𝜷 and a vector of 𝝍 of scale or 

dispersion parameters, �̂�∗ and �̂�∗ are the corresponding ML estimators under the null 

hypothesis and 𝑙(. ) denotes the log-likelihood function.  

𝑇𝐿𝑅 follows an asymptotic central chi-square distribution with ℎ degrees of 

freedom under the null hypothesis. The distribution of this test-statistic under the 
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alternative hypothesis is a non-central chi-square distribution, 𝜒ℎ,(𝜆𝐿𝑅)
2 , with the non-

centrality parameter specified by 𝜆𝐿𝑅,  

𝜆𝐿𝑅 = −2[𝑙∗(𝜷, 𝝍) − 𝑙(𝜷, 𝝍)], (2.30) 

where 𝑙(𝜷, 𝝍) is the log-likelihood evaluated at the true parameters and 𝑙∗(𝜷, 𝝍) is the 

log-likelihood evaluated at the true parameters after imposing the restrictions designated 

under the null hypothesis. Testing the hypothesis (2.26) with a specified vector of 𝒉1 for 

the alternative hypothesis, power can be calculated as  

Pr(𝜒ℎ,(𝜆𝐿𝑅)
2 ≥ 𝜒ℎ,1−𝛼

2 ), (2.31) 

with 𝜒ℎ,1−𝛼
2  denoting the 100(1 − 𝛼)th percentile of the central chi-square with ℎ 

degrees of freedom where 𝛼 represents the type I error also known as the critical value 

from the central 𝜒(ℎ)
2  distribution. Using this critical value, the power associated with 𝑇𝐿𝑅 

likelihood ratio test statistic is 

1 − 𝛾 = ∫ 𝑓(𝑥; ℎ, 𝜆𝐿𝑅)𝑑𝑥
∞

𝜒(ℎ);1−𝛼
2

, 
(2.32) 

where 𝛾 represents the type II error and 𝑓(𝑥; ℎ, 𝜆𝐿𝑅) is the probability density function of 

𝜒(ℎ),𝜆𝐿𝑅

2 . 

Power Calculation Using the  

Score Test  

 

Liu and Liang (1997) developed the use of score tests in the process of sample 

size and power calculation for correlated observations by extending what Self and 

Mauritsen (1988) did before for cross sectional studies. Within this multivariate 

extension, Liu and Liang (1997) used a quasi-score test statistic based on GEE models to 

derive the minimum sample size needed. The likelihood ratio-based model would not be 
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feasible for GEE models in general because the complete distribution function is often 

unspecified.  

Liu and Liang (1997) used the term “sample size” in their paper as the number of 

clusters in which the cluster is formed by subjects in longitudinal studies. They first came 

up with a test statistic for correlated data. 

Considering the general regression Equation 2.18, 

𝑔[𝐸(𝒀𝑖𝑡|𝑿𝑖𝑡 = 𝒙𝑖𝑡)] = 𝒙𝑖𝑡𝜷, 

This time two sets of vectors of covariates 𝑿𝑖𝑗 and 𝑿𝑛𝑖𝑗
 are considered 

𝑔[𝐸(𝒀𝑖𝑡|𝑿𝑖𝑡 = 𝒙𝑖𝑡)] = 𝒙𝑖𝑡𝜷 + 𝒙𝑛𝑖𝑡
𝜷𝑛,   (2.33) 

where 𝜷 is (𝑝 × 1) vector of the parameters of interest and 𝜷𝑛 is a (𝑞 × 1) vector of 

nuisance parameters. Testing the hypothesis (2.26), the quasi-score statistic based on 

GEE is as below 

𝑇 = 𝑆𝛽(𝜷0, �̂�𝑛0
, 𝛼)

′
Σ0

−1𝑆𝛽(𝜷0, �̂�𝑛0
, 𝛼), (2.34) 

where 𝛼 is the parameter used to specify the exchangeable or autoregressive correlations, 

𝜷0 is a vector of parameters of interest under the null hypothesis and �̂�𝑛0
 is the estimator 

of 𝜷𝑛 under 𝐻0. The covariance matrix under the null hypothesis, Σ0, as well as the score 

function, 𝑆𝛽(𝜷0, �̂�𝑛0
, 𝛼), are defined as below where 𝜷 = [

𝜷0

𝜷𝑛
], 

𝑆𝛽(𝜷0, �̂�𝑛0
, 𝛼) = ∑ (

𝜕𝝁𝒊

𝜕𝜷
)

𝑚

𝑖=1

′

𝑉𝑖
−1(𝒚𝒊 − 𝝁𝒊), 

(2.35) 

Σ0 = 𝑐𝑜𝑣𝐻0[𝑆𝛽(𝜷0, �̂�𝑛0
, 𝛼)], (2.36) 

and �̂�𝑛0
, which is the estimator of 𝜷𝑛 under 𝐻0, can be obtained from solving  
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𝑆𝛽𝑛
(𝜷0, 𝜷𝑛, 𝛼) = ∑ (

𝜕𝝁𝒊

𝜕𝜷𝑛
)

𝑚

𝑖=1

′

𝑉𝑖
−1(𝒚𝒊 − 𝝁𝒊) = 0, 

(2.37) 

where 𝑽𝑖 is the covariance matrix of 𝒚𝑖 , characterized by parameters 𝛼 and 𝝁𝑖 = 𝐸(𝒚𝑖). 

Under the null hypothesis, as 𝑛 → ∞, 𝑇 converges to a 𝜒𝑝
2 distribution; however, under 

the alternative hypothesis, 𝑇 converges to an asymptotic non-central chi-square 

distribution with the non-centrality parameter as 

𝜆 = 𝜉′Σ1
−1𝜉, (2.38) 

where 𝜉 is the expectation of 𝑆𝜷(𝜷, �̂�𝑛) under 𝐻1 and is approximated by 

𝜉 = 𝐸𝐻1
[𝑆𝜷(𝜷0, �̂�𝑛0

)] ≈ ∑ 𝑃𝑖
∗𝑽𝑖

−1(𝝁𝑖
1 − 𝝁𝑖

∗),

𝑛

𝑖=1

 
(2.39) 

where 𝝁𝑖𝑡
1 = 𝑔−1(𝑿𝑖𝑡

′ 𝜷1 + 𝑿𝑛𝑖𝑡
′ 𝜷𝑛1

) and 𝝁𝑖𝑡
∗ = 𝑔−1(𝑿𝑖𝑡

′ 𝜷0 + 𝑿𝑛𝑖𝑡
′ 𝜷𝑛0

∗ ).  

The above are evaluated at 𝜷0 and 𝜷𝑛0
∗  in which 𝜷𝑛0

∗  is the limiting value of �̂�𝑛0
 

under given 𝜷1 and 𝜷𝑛1
 as 𝑛 → ∞. This limiting value can be found by solving  

lim
𝑛→∞

𝑛−1𝐸𝐻1
[𝑆𝜷𝑛

(𝜷0, 𝜷𝑛0
∗ ); 𝜷1, 𝜷𝑛1

] = 0. (2.40) 

Σ1 is the covariance of  𝑆𝜷(𝜷0, �̂�𝑛0
, 𝛼) under 𝐻1 which is approximated by  

Σ1 = 𝑐𝑜𝑣𝐻1
[𝑆𝜷(𝜷0, �̂�𝑛0

) ≈ ∑ 𝑃𝑖
∗𝑉𝑖

−1𝑐𝑜𝑣𝐻1
(𝑦𝑖)𝑉𝑖

−1𝑃𝑖
∗′

𝑖

, (2.41) 

where 

𝑃𝑖
∗ = (

𝜕𝜇𝑖

𝜕𝜷
)

′

− 𝐼𝜷𝜷𝑛

∗ 𝐼𝜷𝑛𝜷𝑛

∗−1 (
𝜕𝜇𝑖

𝜕𝜷𝑛
)

′

, 

𝐼𝜷𝜷𝑛

∗ = ∑ (
𝜕𝜇𝑖

𝜕𝜷
)

′

𝑉𝑖
−1 (

𝜕𝜇𝑖

𝜕𝜷𝑛
) ,

𝑖

 

𝐼𝜷𝑛𝜷𝑛

∗ = ∑ (
𝜕𝜇𝑖

𝜕𝜷𝑛
)

′

𝑉𝑖
−1 (

𝜕𝜇𝑖

𝜕𝜷𝑛
)

𝑖

. 
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After specifying all the essential elements for performing the hypothesis test, the 

statistical power for testing a null versus alternative hypothesis can be approximated from 

the non-central chi-square distribution mentioned above. Conversely, the non-central 

parameter can be derived by specifying the type I and type II errors. Within power 

analysis and sample size calculations, both values of 𝜷1 and 𝜷𝑛1
 need to be specified 

under the alternative hypothesis since the distribution of 𝑇, which is a function of 𝒚𝑖𝑡, 

depends on both the parameter of interest, 𝜷 and the nuisance parameter, 𝜷𝑛. 

To calculate the sample size, first assume that the cluster sizes are identical across the 

clusters, for all 𝑖 for convenience. Assume the covariates {(𝒙𝑡 , 𝒙𝑛𝑡
), 𝑡 = 1, … , 𝑇} have the 

joint distribution 

𝑃[𝒙𝑡 = 𝒖𝑡𝑙 , 𝒙𝑛𝑡
= 𝒗𝑡𝑙; 𝑡 = 1, … , 𝑇] = 𝝅𝑙 ,    𝑙 = 1, … , 𝐿, (2.42) 

where {(𝒖𝑡𝑙 , 𝒗𝑡𝑙; 𝑡 = 1, … , 𝑇), 𝑙 = 1, … , 𝐿} are the 𝐿 possible distinct values for 

{(𝒙𝑡 , 𝒙𝑛𝑡
), 𝑡 = 1, … , 𝑇}.  

Taking the expectation with respect to the joint distribution specified above, it can be 

used to find 𝜉 as  

𝜉 = 𝑛𝐸[𝑷∗𝑽−1(𝝁1 − 𝝁∗)] = 𝑛 ∑ 𝝅𝑙𝑷𝑙
∗𝑽𝑙

−1(𝝁𝑙
1 − 𝝁𝑙

∗)

𝐿

𝑙=1

. 
(2.43) 

Then Σ1 is reduced to  

Σ1 = 𝑛𝐸(𝑷∗𝑽−1𝑐𝑜𝑣𝐻1
(𝒚)𝑽−1𝑷∗′) = 𝑛 ∑ 𝝅𝑙𝑷𝑙

∗𝑽𝑙
−1𝑐𝑜𝑣𝐻1

(𝒚𝑙)𝑽𝑙
−1𝑷𝑙

∗′.

𝐿

𝑙=1

 

(2.44) 

Defining 𝜉 = 𝐸[𝑷∗𝑽−1(𝝁1 − 𝝁∗)] and Σ̃1 = 𝐸(𝑷∗𝑽−1𝑐𝑜𝑣𝐻1
(𝒚)𝑽−1𝑷∗′), the non-

centrality parameter derived from a non-central chi-square distribution and the given 

valued of the nominal power and significance level of the test can now be expressed as  
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𝜈 = 𝑛𝜉′Σ̃1
−1𝜉. (2.45) 

The sample size required to achieve the nominal power is approximately 

𝑛 = 𝜈/(𝜉′Σ̃1
−1�̃�). (2.46) 

Finally, Equation 2.40 can be expressed as Equation 2.47 below which is used to find the 

solution of 𝜆0
∗  :  

∑ 𝜋𝑙 (
𝜕�̃�𝑙

∗

𝜕𝜷𝑛
)

′

𝑽𝑙
−1(

𝐿

𝑙=1

�̃�𝑙
1 − �̃�𝑙

∗) = 0. 
 (2.47) 

The expected value of 𝒚, known as  �̃�1, can be calculated given 𝜷1 and 𝜷𝒏1
. Equation 

2.47 can be solved using the GEE method with the weights {𝝅𝑙 , 𝑙 = 1, … , 𝐿}.  

All parameters in the models under the null and alternative hypotheses have to be 

specified in the process of sample size calculation so once the focus is on correlated 

observations, parameters 𝛼 which represent within-cluster associations need to be 

included too. These parameters appear in the working covariance 

𝑽𝑖 = 𝚫
𝑖

1
2𝑹(𝛼)𝚫

𝑖

1
2, 

(2.48) 

where 𝚫𝑖 = 𝑑𝑖𝑎𝑔[𝑣𝑎𝑟(𝒚𝑖1), 𝑣𝑎𝑟(𝒚𝑖2), … , 𝑣𝑎𝑟(𝒚𝑖𝑇)] and 𝑹(𝛼) = 𝑐𝑜𝑟𝑟(𝒚𝑖) is an (𝑇 × 𝑇) 

working correlation matrix. 

Common choices for the working correlation matrix are mentioned in Diggle et 

al. (1994) and Fitzmaurice, Laird, and Rotnitzky (1993) of which some are listed here. 

For an uncorrelated structure, 𝑹(𝛼) = 𝑰 can be used which is an (𝑇 × 𝑇) identity matrix. 

If there exists an exchangeable correlation structure, 𝑐𝑜𝑟𝑟(𝒚𝑖𝑡, 𝒚𝑖𝑘) = 𝛼, 𝑡 ≠ 𝑘 can be 

used. For an autoregressive correlation, 𝑐𝑜𝑟𝑟(𝒚𝑖𝑡, 𝒚𝑖𝑘) = 𝛼|𝑡−𝑘| is appropriate. These 

three correlation structures may be used for sample size calculations in practice. If there 
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exists a correlation that is unstructured, 𝑐𝑜𝑟𝑟(𝒚𝑖𝑡, 𝒚𝑖𝑘) = 𝛼𝑗𝑘 may be used in which 𝛼 

contains 𝑛(𝑛 − 1)/2  pairwise correlations (Liu & Liang, 1997).  

To summarize the sample size calculation process for correlated observations 

based on a quasi-score test statistic, four main steps need to be taken. First, the regression 

model for the marginal mean and parameter values for both 𝐻0 and 𝐻1 need to be 

specified. Second, a working correlation structure along with its corresponding parameter 

values should be specified. Third, a distribution for the configuration on discrete 

covariates needs to be assumed. At the end, the weighted GEE at Equation 2.47 needs to 

be solved for 𝜷𝑛0
∗ . In addition, the non-central parameter needs to be evaluated and the 

sample size needs to be estimated using Equation 2.46. 

The only disadvantage of this sample size formula in the univariate case is its 

sensitivity to the distribution of the covariates. This is one of the reasons that has led 

some researchers to use the likelihood-based sample size formula which outperforms the 

score test-based formula for univariate observations (Liu & Liang, 1997). One 

alternative, which uses the approximate likelihood ratio, can be found in the work done 

by Hanfelt and Liang (1995). 

Due to the absence of power estimation and minimum sample size calculation 

techniques for GMM, in conjunction with the higher efficiency of the GMM estimation 

technique for longitudinal data in the presence of time-dependent covariates, it is 

important to develop such methods. To the best of my knowledge, no studies exist on 

power estimation and minimum sample size calculation of longitudinal data using a 

GMM estimation technique. Two GMM-based approaches were developed in the current 

study to help applied researchers and practitioners in calculating the required sample size 
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and the optimal power for longitudinal studies in the presence of time-dependent 

covariates.  In the next chapter, different options using GMM for estimating power and 

minimum sample size for testing hypotheses in longitudinal studies with time-dependent 

covariates are assessed. 

  



55 

 

 
 

CHAPTER III 

 

 

METHODOLOGY 

 

This chapter is dedicated to examining different methods of estimating statistical 

power and required sample size when working with longitudinal data in the presence of 

time-dependent covariates. These methods are based on using the generalized method of 

moments (GMM) as it is a more efficient estimation technique for longitudinal studies 

with time-dependent covariates compared to other estimation techniques such as 

generalized estimating equations (GEE; Lai & Small, 2007). 

This chapter includes four sections that reveal the methodology that was used for 

the current study. First, a summary of the research methods used in this study is provided. 

Second, the process of the GMM technique for obtaining estimates of parameters within 

longitudinal studies is presented. Third, the power estimation tools based on GMM are 

explained. Fourth, the data set and description of data simulation schemes and conditions 

for Monte Carlo simulation are described. 

Introduction 

The research questions given in Chapter I are addressed in this chapter to develop 

power estimation and minimum sample size calculation methods for tests using GMM 

with a focus on longitudinal data with time-dependent covariates. This dissertation 

addressed the following questions: 
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Q1 How can power be calculated for hypothesis tests using longitudinal data 

with time-dependent covariates applying a Wald approach within a GMM 

estimation technique? 

 

Q2 How can sample size be calculated for a desired level of power for 

hypothesis tests using longitudinal data with time-dependent covariates 

applying a Wald approach within a GMM estimation technique? 

 

Q3 How can power be calculated for hypothesis tests using longitudinal data 

with time-dependent covariates applying a Distant Metric Statistic 

approach within a GMM estimation technique? 

 

Q4 How can sample size be calculated for a desired level of power for 

hypothesis tests using longitudinal data with time-dependent covariates 

applying a Distant Metric Statistic approach within a GMM estimation 

technique? 

 

Q5 How well do the proposed power calculation approaches within a GMM 

method perform compared to the empirical power? 

 

The first four questions are being addressed in this chapter through some proofs I 

constructed due to the importance of developing the theoretical derivation of the power 

calculation procedures before implementing the empirical component of this study. 

Various methods to properly model longitudinal data have been studied by 

Fitzmaurice et al. (1993), Gueorguieva (2001), and others and a discussion of these 

methods was given in the previous chapter. When trying to estimate the statistical power 

for such data, current research is mainly based on GEE techniques. GEE is appropriate 

for time-independent covariates but not for time-dependent covariates. The primary 

methodology of the existing approaches involves the use of the Wald test, the likelihood 

ratio test, and the score test as proposed by Rochon (1998), Lyles et al. (2007), and Liu 

and Liang (1997), respectively. However, this dissertation focused on time-dependent 

covariates. In the presence of such covariates, the models explored before based on GEE 

are not as efficient as the ones that can be developed based on GMM. Time-dependent 
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covariates are modeled more efficiently when using GMM according to Lai and Small 

(2007). 

Chapters I and II introduced and expanded on the need to find power estimation 

for longitudinal data in the presence of time-dependent covariates. The purpose of this 

chapter is to describe a method that uses GMM instead of GEE to estimate the power and 

the minimum sample size when testing different hypotheses in longitudinal data. This is 

necessary to study because longitudinal data that contain time-dependent covariates arise 

in many research situations, such as health data research, in which covariates do not 

necessarily remain constant throughout the whole study. 

Using Generalized Method of Moments  

in Longitudinal Studies 

 

When testing hypotheses about parameter vectors, different techniques can be 

used. For instance, in economics, there are many cases in which a particular theory 

implies some restrictions on the parameter vectors of the econometric model. 

Consequently, the accuracy of the theory can be assessed by testing whether such 

restrictions are met using the data (Hall, 2005). Such tests can be performed in every 

discipline in which some theory needs to be evaluated using real data. The power can be 

estimated and the required sample size may be calculated for these hypothesis tests. To 

do this, in general first the test needs to be defined. Suppose the specific desired 

hypothesis test can be expressed as  

{
𝐻0: 𝑯𝜷 = 𝒉0

𝐻1: 𝑯𝜷 ≠ 𝒉0
, 

(3.1) 
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where 𝑯 is a full rank matrix and 𝒉0 is a conformable vector of constant elements. Then, 

the estimation technique needs to be picked. Within the chosen test, the vector of 

parameters, 𝜷, can be estimated using different estimation techniques.  

One of these techniques is GMM, which provides a computationally convenient 

framework for making inferences within such models without the need to specify the 

likelihood function (Hall, 2005). Instead, within GMM, a certain number of moment 

conditions need to be specified for the model. This will result in a partially specified 

model, which uses the moment conditions to obtain estimates. As discussed in Chapter II, 

according to Hansen (2007), GMM estimation begins with a vector of population 

moment conditions taking the form  

𝐸[𝑓(𝒙𝑖𝑡 , 𝜷0)] = 0, (3.2) 

where 𝜷0 is an unknown vector which is to be estimated, 𝒙𝑖𝑡 is a vector of random 

variables, where 𝑖 = 1, … , 𝑛;  𝑡 = 1, … , 𝑇 and 𝑓(. ) is a vector of functions. The GMM 

estimator is the value of 𝜷 which minimizes the quadratic form  

𝑄(𝜷) = {𝑛−1 ∑ 𝑓(𝒙𝑖𝑡 , 𝜷)𝑛
𝑖=1 }′𝑾{𝑛−1 ∑ 𝑓(𝒙𝑖𝑡 , 𝜷)𝑛

𝑖=1 }, (3.3) 

where 𝑾 is a positive semi-definite weighting matrix which may depend on the data but 

converges in probability to a matrix of constants which is positive definite and 

𝑛−1 ∑ 𝑓(𝒙𝑖𝑡 , 𝜷)𝑛
𝑖=1  is the sample moment. By definition, the GMM estimator of 𝜷0 is  

�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜷∈ℙ

𝑄(𝜷), (3.4) 

where 𝑎𝑟𝑔 𝑚𝑖𝑛 stands for the value of the argument 𝜷 which minimizes the function in 

front of it. Hansen (1982), Hansen (2007), and Lai and Small (2007) discussed the GMM 

theory and their results are used in the current study in detail. 
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Power Estimation Using Generalized  

Method of Moments 

 

Considering Equation 3.1, when trying to test a hypothesis about the vector of 

parameters, the hypothesis can also be written as  

{
𝐻0: 𝑟(𝜷) = 𝟎

𝐻1: 𝑟(𝜷) ≠ 𝟎
, 

(3.6) 

where 𝑟(𝜷) = 𝑯𝜷 − 𝒉0. 

 In order to test the hypothesis (3.6) using GMM estimators, there exist some 

statistics, which can be viewed as extensions to the GMM framework of the Wald and 

distance metric statistic (DM). Unfortunately, some references such as Hall (2005) refer 

to the DM statistic as a likelihood ratio test; however, this is not accurate as GMM is not 

a likelihood-based method and the DM statistic is built based on the distance between 

two quadratic forms within the GMM framework. Thus, “DM statistic” is the preferred 

name for this statistic in the current dissertation.  

 To facilitate the presentation of these test statistics, unrestricted and restricted 

estimators of 𝜷 within GMM need to be defined. The unrestricted estimator of 𝜷 is �̂� 

which is defined above. The restricted estimator of 𝜷, denoted as �̃�,  is the value of 𝜷 

which minimizes 𝑄(𝜷) subject to 𝑟(𝜷) = 𝟎. It is assumed that both of these 

minimizations use the same weight matrix 𝑾 = 𝑺−1.  

The first statistic considered in this dissertation is used within the Wald test that 

examines whether the unrestricted estimator, �̂�, satisfies the restrictions with due 

allowance for sampling error. This statistic can be written as  

𝑇𝑊
∗ = 𝑛 (𝑟(�̂�))

𝑇

[𝑅(�̂�) (𝑮𝑛(�̂�)
𝑇

𝑺−1𝑮𝑛(�̂�))
−1

𝑅(�̂�)
𝑇

]

−1

(𝑟(�̂�)), 
(3.7) 
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where 𝑛 is the number of subjects, �̂� is the unrestricted GMM estimator of the unknown 

parameters, 𝑺−1 is the weight matrix, 𝑟(𝜷) = 𝑯𝜷 − 𝒉0, 

𝑅(𝜷) =
𝜕𝑟(𝜷)

𝜕𝜷′
, 

and  

𝑮𝑛(𝜷) = 𝐸 [
𝜕𝑓(𝒙𝑖𝑡 , 𝜷)

𝜕𝜷
] = 𝑛−1 ∑

𝜕𝑓(𝒙𝑖𝑡 , 𝜷)

𝜕𝜷

𝑛

𝑖=1

. 

The second statistic is the DM statistic that examines the impact on the GMM 

minimand of the imposition of the restrictions. This statistic is 

𝑇𝐷𝑀
∗ = 𝑛[𝑄(�̃�) − 𝑄( �̂�)], (3.8) 

where within the DM statistic, 𝑄(. ) is the quadratic form from Equation 3.3 which needs 

to be found based on the restricted and unrestricted parameter estimators, respectively, 

and then to be used in finding the difference between the respective quadratic forms. 

These statistics, in the context of maximum likelihood (ML) theory, are asymptotically 

equivalent under the null hypothesis, which can also be extended to the GMM setting 

(Hall, 2005).  

In order to estimate the power of the hypothesis (3.6) using each of the Wald or 

DM tests, one would need to find the distribution of these test statistics under the null and 

alternative hypotheses. According to Hall (2005), the limiting distribution of the 𝑇𝑊
∗  and 

𝑇𝐷𝑀
∗  under the null hypothesis is 𝑇𝑊

∗
𝑑
→ 𝜒𝑠

2 and 𝑇𝐷𝑀
∗

𝑑
→ 𝜒𝑠

2 as 𝑛 → ∞ where 𝑠 is the rank of 

𝑅(𝜷). 

Under the alternative hypothesis, both the Wald and DM statistics follow a non-

central chi-square distribution, 𝜒𝑠
2(𝜆), with the non-centrality parameter 𝜆,  
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𝜆 = 𝝁𝑅
𝑇 [𝑅(𝜷𝟎)(𝑮0

𝑇𝑺−1𝑮0)−1𝑅(𝜷𝟎)𝑇]−1𝝁𝑅 > 0, (3.9) 

where 𝑺−1 is the weight matrix, 𝑅(𝜷𝟎) is the 𝑅(𝜷), defined above, under the null 

hypothesis, 𝑮0 is the 𝑮𝑛(𝜷) under the null hypothesis and 𝝁𝑅 is √𝑛𝜷𝟎 when 𝒉0 = 𝟎. 𝝁𝑅 

is equal to √𝑛(𝑯𝜷𝟎 − 𝒉0) when 𝒉0 ≠ 𝟎. 

The proofs of these distributional assumptions are provided below. The proof 

regarding the distribution of the Wald statistic is based on one of the linear model 

theories about the quadratic form’s distributions which is mentioned here as Theorem 3.1 

(Ravishanker & Dey, 2002). The distributional properties of these statistics have been 

mentioned in (Hall, 2005), but I constructed the proofs regarding the actual distribution 

of these statistics.  

Theorem 3.1. According to this theorem (Ravishanker & Dey, 2002), if 𝒀, a random 

vector, follows a normal distribution of 𝑁(𝝁, 𝚺) where 𝚺 is a full rank positive definite 

matrix, 𝑨 is a symmetric matrix with 𝑟𝑎𝑛𝑘(𝑨) = 𝑚; then, 𝒀𝑇𝑨𝒀~𝜒2 (𝑚,
𝝁𝑇𝑨𝝁

2
) if any 

one of the following three conditions are met: 

1. 𝑨𝚺 is an idempotent matrix of rank 𝑚. 

2. 𝚺𝑨 is an idempotent matrix of rank 𝑚. 

3. 𝚺 is a g-inverse of 𝑨 with 𝑟𝑎𝑛𝑘(𝑨) = 𝑚. 

This can be applied in finding the distribution of the Wald statistic in Proof 3.1 as the 

specific case and Proof 3.2 as the general case.  

Proof 3.1. Consider the Wald statistic specified in Equation 3.7. It can be written as 

below 

𝑇𝑊
∗ = 𝑛(𝑯�̂� − 𝒉0)

𝑇
[𝑅(�̂�) (𝑮𝑛(�̂�)

𝑇
𝑺−1𝑮𝑛(�̂�))

−1

𝑅(�̂�)
𝑇

]

−1

(𝑯�̂� − 𝒉0), 
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in which 𝑅(𝜷) =
𝜕𝑟(𝜷)

𝜕𝜷′
 will be H after taking the derivative of 𝑟(𝜷). For the sake of 

simplicity, let’s write 𝑮𝑛(�̂�) = 𝑮. Now the Equation 3.7 can be written as  

𝑇𝑊
∗ = 𝑛(𝑯�̂� − 𝒉0)

𝑇
[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1(𝑯�̂� − 𝒉0). 

Defining [𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1 = 𝑩, 𝑇𝑊
∗  can be simplified as 

𝑇𝑊
∗ = 𝑛(�̂�𝑇𝑯𝑇 − 𝒉0

𝑇)𝑩(𝑯�̂� − 𝒉0) 

                                             = 𝑛[�̂�𝑇𝑯𝑇𝑩𝑯�̂� − �̂�𝑇𝑯𝑇𝑩𝒉0 − 𝒉0
𝑇𝑩𝑯�̂� + 𝒉0

𝑇𝑩𝒉0]. 

(3.10) 

Under the common special case that 𝒉0 = 𝟎 and by substituting 𝑩, Equation 3.10 

can simply be written as  

𝑇𝑊
∗ = 𝑛[�̂�𝑇𝑯𝑇𝑩𝑯�̂�] = 𝑛[�̂�𝑇𝑯𝑇[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1𝑯�̂�] 

                          = (√𝑛�̂�𝑇)𝑯𝑇[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1𝑯(√𝑛�̂�). 

(3.11) 

Using Theorem 3.1, assume 

𝑨 = 𝑯𝑇[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1𝑯, 

and   

𝒀 = √𝑛�̂�. 

Because �̂� is asymptotically normal, √𝑛�̂�~̇𝑁(√𝑛𝜷, 𝚺), where 𝚺 = (𝑮𝑇𝑺−1𝑮)−1. 

It is shown below that 𝑨𝚺 is an idempotent matrix meaning that (𝑨𝚺)(𝑨𝚺) = 𝑨𝚺. 

Substituting 𝑨 and 𝚺,  

(𝑨𝚺)(𝑨𝚺)

= {𝑯𝑇[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1𝑯(𝑮𝑇𝑺−1𝑮)−1} {𝑯𝑇[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1𝑯(𝑮𝑇𝑺−1𝑮)−1}. 

Due to the fact that 𝑯(𝑮𝑇𝑺−1𝑮)−1 𝑯𝑇[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1 = 𝑰, then  

(𝑨𝚺)(𝑨𝚺) = 𝑯𝑇[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1𝑰𝑯(𝑮𝑇𝑺−1𝑮)−1 

                              = 𝑯𝑇[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1𝑯(𝑮𝑇𝑺−1𝑮)−1 = 𝑨𝚺. 
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This proves that 𝑨𝚺 is idempotent, which is the one condition that needs to be met in 

order to conclude that the quadratic form Equation 3.11 is distributed as a chi-square. So, 

substituting 𝒀 = √𝑛�̂� and 𝝁 = √𝑛𝜷 in 𝒀𝑇𝑨𝒀~𝜒2 (𝑚,
𝝁𝑇𝑨𝝁

2
), we can say  

𝒀𝑇𝑨𝒀 = (√𝑛�̂�)
𝑇

𝑯𝑇[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1𝑯√𝑛�̂� = 𝑇𝑊
∗ ~𝜒2(𝑠, 𝜆), 

where the non-centrality parameter under the null hypothesis is defined as 

𝜆 =
𝝁𝑇𝑨𝝁

2
=

1

2
(√𝑛𝜷𝟎)

𝑇
𝑯𝑇[𝑯(𝑮0

𝑇𝑺−1𝑮𝟎)−1𝑯𝑇]−1𝑯(√𝑛𝜷𝟎)

=
1

2
𝝁𝑅

𝑇 [𝑅(𝜷0)(𝑮0
𝑇𝑺−1𝑮𝟎)−1𝑅(𝜷0)𝑇]−1𝝁𝑅 ,  

defining 𝝁𝑅 = √𝑛𝜷𝟎. ⧠ 

This proof was for the common case where 𝒉0 = 𝟎 which would result in a 

special case where 𝑟(𝜷) is reduced to 𝑯𝜷; however, it was of interest to also find the 

distribution of the Wald statistic for the general case where 𝒉0 ≠ 𝟎 to be able to 

generalize these results. In that case 𝑟(𝜷) = 𝑯𝜷 − 𝒉0 and the distribution of the Wald 

statistic will be chi-square as proven below. 

Proof 3.2. Knowing that 𝑟(�̂�) = 𝑯�̂� − 𝒉0~𝑁(𝑯𝜷 − 𝒉0, 𝑯𝜮𝑯𝑇), consider the 

Wald statistic  

𝑇𝑊
∗ = 𝑛 (𝑟(�̂�))

𝑇

[𝑅(�̂�) (𝑮𝑛(�̂�)
𝑇

𝑺−1𝑮𝑛(�̂�))
−1

𝑅(�̂�)
𝑇

]

−1

(𝑟(�̂�)) 

                            =  𝑛 (𝑟(�̂�))
𝑇

[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1 (𝑟(�̂�)) 

                            = (√𝑛𝑟(�̂�)
𝑇

) [𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1 (√𝑛𝑟(�̂�)). 

This time 𝑨 and 𝒀 are different from before; calling them 𝑨∗ and 𝒀∗, which are  

𝑨∗ = [𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1, 
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and 

𝒀∗ = √𝑛𝑟(�̂�), 

which still follows a normal distribution but with a different mean and variance. To find 

the mean and variance of 𝒀∗, consider 

√𝑛�̂�~̇𝑁(√𝑛𝜷, 𝜮) → √𝑛𝑯�̂�~̇𝑁(√𝑛𝑯𝜷, 𝑯𝜮𝑯𝑻)  

                                                              → √𝑛(𝑯�̂� − 𝒉0)~̇𝑁(√𝑛(𝑯𝜷 − 𝒉0), 𝑯𝜮𝑯𝑻), 

so, 𝒀∗~𝑁(√𝑛(𝑯𝜷 − 𝒉0), 𝑯𝜮𝑯𝑻). 

Knowing that the new variance covariance matrix of 𝒀∗ is  

𝚺∗ = 𝑯𝜮𝑯𝑻 = 𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑻, 

it can be shown that 𝑨∗𝚺∗ is an identity matrix, hence an idempotent one, 

(𝑨∗𝚺∗)(𝑨∗𝚺∗) =

= {[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇} {[𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇}

= 𝐼2 = 𝐼 = 𝑨∗𝚺∗. 

Therefore,  

𝒀∗𝑇𝑨∗𝒀∗ = (√𝑛𝑟(�̂�)
𝑇

) [𝑯(𝑮𝑇𝑺−1𝑮)−1𝑯𝑇]−1 (√𝑛𝑟(�̂�)) ~𝜒2(𝑠, 𝜆), 

where the non-centrality parameter is as below under the null hypothesis 

𝜆∗ =
𝝁∗𝑇𝑨∗𝝁∗

2
=

1

2
(√𝑛(𝑯𝜷𝟎 − 𝒉0))

𝑇
[𝑯(𝑮0

𝑇𝑺−1𝑮𝟎)−1𝑯𝑇]−1 (√𝑛(𝑯𝜷𝟎 − 𝒉0))

=
1

2
𝝁∗

𝑅
𝑇 [𝑅(𝜷0)(𝑮0

𝑇𝑺−1𝑮𝟎)−1𝑅(𝜷0)𝑇]−1𝝁∗
𝑅 , 

defining 𝝁∗
𝑅 = √𝑛(𝑯𝜷𝟎 − 𝒉0). ⧠ 
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The DM statistic follows the same distribution as the Wald statistic with the same 

non-centrality parameter because these statistics are identical. The proof for their identity 

can be found in Hall (2005) and Newey and McFadden (1994). 

Power Estimation Steps Using Generalized  

Method of Moments 

 

In every power estimation procedure, the distribution of the statistic used for 

testing the hypothesis needs to be known under the null and alternative hypotheses. Both 

Wald and DM statistics are distributed as a central chi-square distribution under the null 

hypothesis and a non-central chi-square distribution with the non-centrality parameter 

given in Equation 3.9 under the alternative hypothesis. Knowing all this information, the 

statistical power can be estimated using the following steps.  

Considering the repeated measures used before at 𝑇 time points for 𝑛 subjects, in 

order to find the power and then the required sample size of a statistical test, first the 

hypothesis needs to be specified and tested as shown in (3.6) 

{
𝐻0: 𝑟(𝜷) = 𝟎

𝐻1: 𝑟(𝜷) ≠ 𝟎
. 

Then the statistic, which is used to test this hypothesis, needs to be specified. 

Because the GMM approach is being adopted for this study, the Wald Equation 3.7 and 

the DM statistic Equation 3.8, where 

Wald:  𝑇𝑊
∗ = 𝑛 (𝑟(�̂�))

𝑇

[𝑅(�̂�) (𝑮𝑛(�̂�)
𝑇

𝑺−1𝑮𝑛(�̂�))
−1

𝑅(�̂�)
𝑇

]

−1

(𝑟(�̂�)), 

and   

DM: 𝑇𝐷𝑀
∗ = 𝑛[𝑄(�̃�) − 𝑄(�̂�)]. 
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Then distribution of these statistics under the null and alternative hypothesis 

needs to be specified. Their asymptotic distribution under the null hypothesis is 

equivalent as below 

𝐻0: 𝑇𝑊
∗

𝑑
→ χ(𝑠)

2 , 𝑇𝐷𝑀
∗

𝑑
→  χ(𝑠)

2 . 

Newey and West (1987) showed that the asymptotic equivalence of the statistics 

extends to the alternative hypothesis. As discussed above, under the alternative 

hypothesis, the Wald and 𝐷𝑀 statistics have an approximate non-central chi-square 

distribution of χ(𝑠),𝜆
2  with the Equation 3.9 non-centrality parameter 

𝜆 =
1

2
𝝁𝑅

𝑇 [𝑅(𝜷0)(𝑮0
𝑇𝑺−1𝑮𝟎)−1𝑅(𝜷0)𝑇]−1𝝁𝑅 . 

In order to estimate the power, assuming that 𝛼 represents the type I error, 

𝜒(𝑠);1−𝛼
2  is the critical value from the central 𝜒(𝑠)

2  distribution. Using this critical value, 

power can be calculated by finding the probability of  

Pr(𝜒𝑠,(𝜆)
2 ≥ 𝜒𝑠,1−𝛼

2 ), (3.12) 

with 𝜒𝑠,1−𝛼
2  denoting the 100(1 − 𝛼)th percentile of the central chi-square with 𝑠 degrees 

of freedom. So, the power associated with the Wald and DM test statistics is 

1 − 𝛾 = ∫ 𝑓(𝑥𝑡; 𝑠, 𝜆)𝑑𝑥,
∞

𝜒(𝑠);1−𝛼
2

 
(3.28) 

where 𝛾 represents the type II error and 𝑓(𝑥𝑡; 𝑠, 𝜆) is the probability density function of 

𝜒(𝑠),𝜆
2 . 

 Different steps to estimate the statistical power of longitudinal data using two 

aforementioned Wald and Distant Metric statistics can be summarized in Table 3.1. 
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Table 3.1 

 

Statistical Power Estimation Steps 

 
                                         Test Statistics 

 

 Wald 

 

Distance Metric 

Test 

Statistic 

 

𝑛 (𝑟(�̂�))
𝑇

[𝑅(�̂�) (𝑮𝑛(�̂�)
𝑇

𝑆−1𝑮𝑛(�̂�))
−1

𝑅(�̂�)
𝑇

]

−1

(𝑟(�̂�)) 
𝑛[𝑄(�̃�) − 𝑄(�̂�)] 

Step 1 Calculate the non- 

centrality parameter 

 

Calculate the non-

centrality parameter 

Step 2 Find the 

critical value 

 

Find the 

critical value 

Step 3 Pr(𝜒𝑠,(𝜆)
2 ≥ 𝜒𝑠,1−𝛼

2 ) 

∫ 𝑓(𝑥𝑡; 𝑠, 𝜆)𝑑𝑥
∞

𝜒(𝑠);1−𝛼
2

 

Pr(𝜒𝑠,(𝜆)
2 ≥ 𝜒𝑠,1−𝛼

2 ) 

∫ 𝑓(𝑥𝑡; 𝑠, 𝜆)𝑑𝑥
∞

𝜒(𝑠);1−𝛼
2

 

 

Model Evaluation 

The first four research questions were answered theoretically in this chapter by 

providing the proofs I constructed. To check the performance of the proposed theoretical 

GMM-based methods for estimating power and calculating the required sample sizes, a 

real data analysis and a simulation study were conducted. The real data set was used as an 

exemplar data set. The fifth question regarding the comparison of the exact power using 

the proposed GMM-based power calculation approaches to the empirical power was 

addressed using the simulated data. I constructed the R functions to accomplish these 

power and sample size estimates in Chapter IV of this dissertation. I developed a 

practical technique for estimating the theoretical powers using GMM in Chapter IV, 

which can be adopted by applied researchers and practitioners.  

Evaluation of the performance of the proposed methods using GMM was carried 

out primarily via comparisons between the proposed methods and the empirical power 
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from the simulation study. The proposed methods were used to estimate the exact power 

for the pilot data, the post-hoc power of the simulated data sets, and build their bootstrap 

confidence intervals. Then, the hypothesis tests were performed on the simulated data 

sets over and over to compute the empirical power. The comparison of the empirical 

power and the estimated power was proposed as an appropriate method to evaluate the 

performance of the proposed GMM-based methods. Two sets of comparisons were made 

in Chapter IV; first, the comparison of the exact estimated theoretical powers of the pilot 

data and the post-hoc powers of the simulated data to see how well the estimated 

theoretical powers lined up with the post-hoc powers of different sizes of simulated data. 

Second, the comparison of the exact theoretical powers of the pilot data and the empirical 

powers, which come from the rejection rates while performing the hypothesis tests on the 

simulated data sets.  

This simulation was not intended to compare the proposed GMM-based power 

estimation methods and the previously studied methods based on GEE. It rather was for 

comparing the exact power calculation to the empirical results of performing the 

hypothesis test on the simulated data sets multiple times to check the adequacy of the 

estimated power. 

None of these data sets had been analyzed previously under the current 

methodological frame. 

Example Data Set: Osteoarthritis  

Initiative 

 

 This study involved the use of the proposed power estimation techniques on one 

real data set to evaluate the performance of the proposed models. Using this pilot data, 

practical power estimation methods were developed, which can be adopted by researchers 
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in different fields. This data set was also used as an exemplary data set for future 

calculations. This data set contains characteristics of interest such as longitudinal data 

and different types of covariates including time-dependent covariates. These covariates 

were expected to provide a valid application of methodology to assess the efficiency of 

the proposed power estimation techniques and a comparison of them to the previously 

studied models. 

 The dataset used consists of data from the osteoarthritis initiative (OAI) which 

can be found at www.oai.ucsf.edu. The OAI data consist of a multi-center study on knee 

osteoarthritis in more than 4,000 subjects over a period of nine or more years. For the 

sake of simplicity, data from up to the 5th follow-up year were considered. If the number 

of complete cases was large enough, it dropped to three follow-ups. Where there exist 

problems with convergence in the process of using the proposed models on the OAI 

dataset, the covariates were adjusted to overcome the potential issue. 

Many variables were gathered; however, this research focused on modeling 

Western Ontario and McMaster Universities’ (WOMAC) disability score, which is 

typically treated as a continuous variable. This dataset contains longitudinal data by the 

fact that observations were gathered on the same subjects over time and are thus more 

related to each other than observations from other subjects. The subjects’ age and BMI at 

each time point as well as the subjects’ gender were utilized as fixed effect regression 

predictors in the model. Age and BMI can be two of the time-dependent covariates in this 

study, which do not remain constant over time. 

The proposed power estimation techniques were applied to this dataset to check 

how the power and required sample sizes can be estimated using Wald and DM statistics.  
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It was of interest to test the BMI, which is a time-dependent covariate within the 

model mentioned below 

𝑊𝑂𝑀𝐴𝐶𝑖𝑡 = 𝛽0 + 𝛽1𝐴𝑔𝑒𝑖𝑡 + 𝛽2𝐵𝑀𝐼𝑖𝑡 + 𝛽3𝑆𝑒𝑥𝑖𝑡 + 𝑡2 + 𝑡3 + 𝜀𝑖𝑡 , 

where age is a type I time-dependent covariate, 𝑡2 is a type I time-dependent covariate 

and a time indicator of the second follow-up time, 𝑡3 is a type I time-dependent covariate 

and a time indicator of the third follow-up time and sex is a time-independent covariate 

Within this model, the following hypothesis was tested 

{
𝐻0: 𝛽2 = 𝟎
𝐻1: 𝛽2 ≠ 𝟎

. 

For this hypothesis, the power for different sample sizes was estimated using the 

Wald and DM statistics within the GMM-based power estimation method. The R 

functions I developed were used to perform each estimation. 

Simulation Study 

Simulated data were also used for evaluating the performance of the two power 

calculation techniques proposed in this dissertation. The data were simulated using Monte 

Carlo simulation in R version 3.2.2 (R Core Team, 2015).  

This simulation was based on the real dataset introduced above to ensure that the 

simulated data are representative of the values seen in reality. Using the real dataset, 

predictor values and effect coefficients directly came from the OAI dataset and 

continuous response values were simulated based on them. Having predictors and effect 

coefficients coming from the real data helped get the time-dependent covariates in the 

simulated data to behave as they would in a real situation. Including these time-dependent 

covariates in the simulated data also helped to check the performance of the two GMM-

based power estimation methods proposed in this study in the presence of such 
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covariates. Within this simulation, the same model used for the real data analysis was 

used and the hypothesis test for the BMI was performed. Within the simulation study, 

rejection rates and post-hoc powers of each simulated data were recorded for comparison 

with the estimated theoretical powers of the pilot data. 

The nature of this simulation study is different from other simulation studies as 

this study was used for evaluating the effectiveness of the statistical power calculation 

methods proposed rather than checking the appropriateness or efficiency of different 

estimation techniques or statistical models, which are common in simulation studies. This 

study focused on developing two power estimation techniques for longitudinal data in the 

presence of time-dependent covariates; not on developing a new coefficient estimation 

technique. So, in the current simulation study, values such as standard errors were not 

used to compare different techniques. Instead, at the end of this study, the estimated 

power for different sample sizes using GMM-based power estimation methods was 

calculated for 3,600 data sets within different sample sizes. Then the 95% bootstrap 

confidence interval for each set of the estimated post-hoc powers was calculated. Finally, 

the actual hypothesis tests within the simulated data sets were performed using a Wald 

test and a DM test and the empirical power based on the rejection rates was calculated. 

After calculating the empirical rejection rates for the simulated data sets using Wald and 

DM tests, whether or not the empirical power for each method fell into the respective 

calculated 95% confidence intervals of the estimated power was reported as well as how 

close those values are to the theoretical powers. Having the empirical powers close to the 

estimated theoretical powers and the theoretical powers falling into the calculated 

confidence intervals of the estimated post-hoc powers are justifications that the proposed 
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power calculation methods are performing well. Tables are provided in Chapter IV of this 

dissertation to summarize the results of this simulation study for different sample sizes 

and statistical power estimation techniques.  

Within this simulation study, I tried to exemplify the proofs which I showed to 

work for large sample sizes and see if they work for smaller sample sizes as well. 

Different sample sizes, which were used for this simulation study, include 25, 50, 100, 

and 200 subjects with three observations per subject. Sample sizes of 100 and 200 were 

chosen according to the simulation study by Lyles et al. (2007) which focused on a GEE-

based technique for power estimation of longitudinal data using the Wald test. Two 

smaller sample sizes of 25 and 50 were also added to this study to compare the accuracy 

of the estimated statistical power for the smaller sample sizes to the higher sample size of 

100 and 200. This comparison was of interest to see whether the methods that were 

shown to work for large sample sizes according to the proofs Newey and West (1987) 

and I constructed work as well in terms of the accuracy of the estimated power for the 

small sample sizes or not.  

Three thousand and six hundred replicated samples were generated for each 

sample size within this simulation study. This number was calculated based on the theory 

from Robert and Casella (2013) explained below. Trying to use the existing literature to 

decide the number of replications resulted in two values based on two power estimation 

simulation studies of longitudinal data. Lyles et al. (2007) used 2,000 randomly generated 

data sets and Liu and Liang (1997) used 5,000 replications. Neither of these simulation 

sizes was selected for the current study because of the differences that existed between 

the nature of their simulation studies and the simulation study used for this dissertation. 
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Therefore, another method needed to be considered for determining the number of 

replications. The method adopted for this study was based on finding the required 

simulation size to achieve a desired level of accuracy of the recorded results (Robert & 

Casella, 2013). Each rejection of the hypothesis tests, which is a binary variable resulting 

in having a binomial distribution for the recorded results, was recorded. What the 

binomial random variable provides is an upper bound for the variance needed to calculate 

the number of replications as shown in Equation 3.29 

𝑀 =
[𝑆𝐷]2

𝑑2
, 

(3.29) 

where 𝑀 is the number of replications, 𝑑 is the level of accuracy, and [𝑆𝐷]2 is the 

variance of the simulation outcome which comes from the sampling distribution of the 

recorded statistics. Given that I wished to report the p-values from the hypothesis tests 

with two digits of accuracy in order to decide the rejection of the null hypothesis, I 

needed the standard error to be half of the distance between two consecutive reported p-

values with two digits of accuracy. Therefore, 𝑑 = . 01
2⁄ = .005. Using the variance of 

the binomial distribution and the desired power of .9, Equation 3.29 resulted in the 

minimum simulation size of 3,600, which is the required sample size for the empirical 

power. When reporting the estimated power, the beta distribution can be used to find the 

variance used in Equation 3.29. This is because power follows a beta distribution, 

𝑏𝑒𝑡𝑎 (𝑎, 𝑏), with the shape parameters 𝑎 and 𝑏 where 𝑏 = 1 according to Gupta and 

Nadarajah (2004). When 𝑎 = 1, the resulting distribution will be the power function 

distribution which is a special case of the beta distribution (Gupta & Nadarajah, 2004). 

Considering the variance of this beta distribution, the number of replications were 3,300 

which is the required sample size for the exact power calculation process. Three thousand 
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and three hundred (3,300) is smaller than 3,600; therefore, the number of replicates I 

decided to use for this study was 3,600 to ensure having a good-enough replication and 

an acceptable precision. I developed the R codes for performing the above power 

estimation procedures and shared them with the public at the end of this study. 

The final tables, which are provided in the results of this study, helped in making 

conclusions regarding the performance of the proposed power estimation techniques for 

different sample sizes. These tables (similar to Table 3.2) summarize the power 

calculation results for sample sizes of 25, 50, 100, and 200 subjects.  

Information in tables similar to Table 3.2 will be used to make the final 

conclusion about the performance of the proposed power estimation technique using the 

Wald statistic by comparing the empirical power applying the Wald test to the 95% 

confidence interval of the estimated power using the Wald method. I made the final 

conclusion about the performance of the proposed power estimation technique using the 

DM statistic by comparing the empirical power which applies the DM test to the 95% 

confidence interval of the estimated power adopting the DM method. Finally, the 

theoretical powers of each sample size were compared to the 95% bootstrap confidence 

interval of the estimated power for each simulated data (post-hoc power). 
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Table 3.2  

Simulation Results for Each Sample Size 

 

 

Estimated Power 

 

Hypothesis Test Wald 

Test 

(Reject or Not) 

Hypothesis Test DM 

Test 

(Reject or Not) 

Estimated 

Values 

Summary of the 

post-hoc powers  

Empirical power using 

Wald test for each sample 

size 

Empirical power using 

DM test for each 

sample size 

Confidence 

Intervals 

95% bootstrap 

confidence interval 

95% confidence interval 

of the rejection rate 

95% confidence 

interval of the rejection 

rate 

 

At the end, these results were compared across four sample sizes and the 

empirical power and the estimated power are closer to each other and higher in value 

when sample sizes are larger. 
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CHAPTER IV 

 

 

RESULTS 

 

This chapter describes the simulation procedure used in the process of estimating 

statistical power and required sample size when working with longitudinal data in the 

presence of time-dependent covariates using generalized method of moments (GMM). 

The main purpose of this simulation was to compare the exact power calculation, based 

on the methods developed in Chapter III of this dissertation, to the empirical results of 

performing the hypothesis test on the simulated data sets. In addition, providing the 

comparison of the post-hoc powers of the simulated data sets was of interest to evaluate 

the performance of the developed theory on smaller sample sizes. 

Introduction 

In this study, I aimed to develop power estimation and sample size calculation 

techniques for longitudinal data with time-dependent covariates using GMM. The reason 

for using GMM within the power estimation techniques instead of previously developed 

methods which were based on generalized estimating equations is the higher efficiency of 

GMM compared to GEE when dealing with time-dependent covariates (Lai & Small, 

2007). However, when GMM is adopted as an estimation technique within a longitudinal 

model, prior to the current study, there was no existing methodology to estimate the 

power of such models.  
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The simulation study was carried out in R version (3.3.2); I wrote all the 

programs, including the estimation algorithm, for this study. To evaluate and compare the 

aforementioned approaches accurately, this study followed the simulation scheme based 

on real data to assure the simulated data show the same behavior as the real longitudinal 

type of data with time-dependent covariates. This method of simulation provides a 

comparable replication of the data analyses in real life scenarios. The simulation results 

are reported in text and presented in tables and figures relative to each of the research 

questions mentioned in Chapter I. 

The remainder of this chapter is divided into the following sections. The first 

section briefly discusses the research questions and the answers to those questions. The 

second section describes the steps in the simulation study and the steps that needed to be 

taken in the process of transforming and generating the outcome variable, controlling the 

effect size, and simulating the final data sets for different conditions. In the third section, 

I discuss the algorithm for GMM estimation, which was used in the process of power 

estimation in the next sections. Section four presents problems with the convergence of 

the GMM algorithm and the solution to resolve this issue. Section five contains the issues 

I faced in the process of completing this study in terms of the run time and the steps 

which were taken to make the large simulation possible in a reasonable amount of time. 

Section six includes some issues associated with the distant metric (DM) statistic and the 

reasons causing such problems. The seventh section describes the GMM power 

estimation procedure and how tied it is with the number and magnitude of the responses, 

effect size, parameter estimates, and the sample sizes used within the theoretical power 

calculation. Section eight contains the simulation study results comparing the behavior of 
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the techniques proposed in Chapter III to the empirical results and post-hoc powers under 

different conditions to address the concern with smaller sample sizes. Lastly, the ninth 

section is dedicated to the summary and implications for the power estimation of 

longitudinal data with time-dependent covariates using GMM 

Research Questions and Their Answers 

Two statistics including Wald and DM statistics, which are used for testing 

statistical hypotheses when GMM is used, were discussed in Chapter III. The Wald 

statistic is, 

𝑇𝑊
∗ = 𝑛 (𝑟(�̂�))

𝑇

[𝑅(�̂�) (𝑮𝑛(�̂�)
𝑇

𝑺−1𝑮𝑛(�̂�))
−1

𝑅(�̂�)
𝑇

]

−1

(𝑟(�̂�)), 
(4.1) 

where 𝑛 is the number of subjects, �̂� is the unrestricted GMM estimator of the unknown 

parameters, 𝑺−1 is the weight matrix, 𝑟(𝜷) = 𝑯𝜷 − 𝒉0, 

𝑅(𝜷) =
𝜕𝑟(𝜷)

𝜕𝜷′
, 

(4.2) 

and  

𝑮𝑛(𝜷) = 𝐸 [
𝜕𝑓(𝒙𝑖𝑡 , 𝜷)

𝜕𝜷
] = 𝑛−1 ∑

𝜕𝑓(𝒙𝑖𝑡 , 𝜷)

𝜕𝜷

𝑛

𝑖=1

, 
(4.3) 

where 𝑓(𝒙𝑖𝑡 , 𝜷) specifies the moment conditions.  

The DM statistic is,  

𝑇𝐷𝑀
∗ = 𝑛[𝑄(�̃�) − 𝑄(�̂�)], (4.4) 

where 𝑄(. ) is the quadratic form from the GMM algorithm which needs to be found 

based on the restricted and unrestricted parameter estimators �̃� and �̂�, respectively, and 

then to be used in finding the difference between the two quadratic forms. 
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In order to use these statistics within the power estimation and sample size 

calculation process, their distributions under the null and alternative hypotheses needed to 

be identified. It has been proven that their asymptotic distributions are central and non-

central Chi Square under null and alternative hypotheses, respectively. I provided a new 

proof for the Wald statistic’s distributions in Chapter III of this dissertation. According to 

Hall (2005), Wald and DM statistics’ distributions under the null and alternative 

hypotheses are identical; this theory was used in answering the research questions 

regarding using the DM statistic in the process of power estimation. Finally, different 

steps that needed to be taken to estimate statistical power and calculate optimal sample 

size are discussed. The first four questions were addressed in the previous chapter 

through some methodology and proofs I constructed due to the importance of developing 

the theoretical derivation of the power calculation procedures before implementing the 

empirical component of this study. To summarize, the first four research questions given 

in Chapter I were addressed in Chapter III; they are also briefly discussed below in 

multiple steps to be adopted by researchers and applied practitioners. More details about 

each of the answers to the research questions are discussed later in this chapter. 

Suppose the repeated measures for a study are recorded at 𝑇 time points for 𝑛 

subjects and researchers will test the hypothesis  

{
𝐻0: 𝑟(𝜷) = 𝟎

𝐻1: 𝑟(𝜷) ≠ 𝟎
, 

where 𝑟(𝜷) = 𝑯𝜷 − 𝒉0. 

Q1 How can power be calculated for hypothesis tests using longitudinal data 

with time-dependent covariates applying a Wald approach within a GMM 

estimation technique? 
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Answer to Question 1. In order to estimate power for longitudinal data in the 

presence of time-dependent covariates using the Wald approach, adopting a GMM 

estimation technique, three steps need to be taken which are summarized below: 

Step 1. It was proven in Chapter III that the Wald statistic has a central chi-square 

distribution under the null hypothesis. As Hall (2005) discussed, 𝑇𝑊
∗

𝑑
→ 𝜒𝑠

2 as 𝑛 → ∞ 

where 𝑠 is the rank of 𝑅(𝜷). Therefore, one needs to find the degrees of freedom of this 

chi-square distribution and find the chi-square critical value for the degrees of freedom 

which depends on the number of parameters that are tested in the null hypothesis.  

Step 2. It also was proven in Chapter III that the Wald statistic under the 

alternative hypothesis has a non-centrality parameter, which needs to be calculated before 

moving to the next step. Under the alternative hypothesis, the Wald statistic follows a 

non-central chi-square distribution, 𝜒𝑠
2(𝜆), with the non-centrality parameter 𝜆, which can 

be calculated as below 

𝜆 = 𝝁𝑅
𝑇 [𝑅(𝜷𝟎)(𝑮0

𝑇𝑺−1𝑮0)−1𝑅(𝜷𝟎)𝑇]−1𝝁𝑅 > 0, (4.5) 

where 𝑺−1 is the weight matrix or 𝑾, 𝑅(𝜷𝟎) is the 𝑅(𝜷), defined above, under 

the null hypothesis, 𝑮0 is the 𝑮𝑛(𝜷) under the null hypothesis and 𝝁𝑅 is √𝑛𝜷𝟎 when 

𝒉0 = 𝟎. 𝝁𝑅 is equal to √𝑛(𝑯𝜷𝟎 − 𝒉0) when 𝒉0 ≠ 𝟎. 

Step 3. Then, the power can be calculated by integrating the probability 

distribution function of the non-central chi-square with the non-centrality parameter 

found in step 2. This integration starts from the central chi-square critical value found in 

step 1 and goes to infinity. This gives the power for a data set with a known sample size. 

Pr(𝜒𝑠,(𝜆)
2 ≥ 𝜒𝑠,1−𝛼

2 ) = ∫ 𝑓(𝑥𝑡; 𝑠, 𝜆)𝑑𝑥
∞

𝜒(𝑠);1−𝛼
2

. 
(4.6) 
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Q2 How can sample size be calculated for a desired level of power for 

hypothesis tests using longitudinal data with time-dependent covariates 

applying a Wald approach within a GMM estimation technique? 

 

Answer to Question 2. In order to answer this question, power should be 

calculated for different sample sizes using multiple steps depending on the size of the 

pilot data. 

Scenario 1 is when the size of the pilot data is larger than the sizes of the data sets 

considered for the future studies. In that case, multiple subsamples of the pilot data set 

must be taken for each of the sample sizes considered as possible options for future 

studies. Then, within each set of sample sizes, the non-centrality parameters need to be 

calculated for each sub-sample of each size. These non-centrality parameters of each 

sample size need to be averaged at the end and the power needs to be calculated for the 

averaged non-centrality parameter.  

The reason for averaging the non-centrality parameters first and then finding the 

theoretical power for them rather than finding the power multiple times for each sub-

sample and then averaging them, which is what I originally implemented, is the 

sensitivity of the power to the non-centrality parameter of each sub-sample and higher 

variance of power than the real power value for each sample size, which results in 

skewing the final averaged power. For example, when the non-centrality parameter of 

one of the sub-samples gets small, the resulting power of that sub-sample gets extremely 

small; using this extremely small power and averaging it along with the other powers will 

skew the mean of the powers at the end. But once all the non-centrality parameters of the 

representative sub-samples are averaged and then one theoretical power for the mean of 
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the non-centrality parameters is calculated, the power is representative of the actual 

power (close to the post-hoc power of 3,600 simulated datasets). The mathematical 

theory behind the relationship between the magnitude of the non-centrality parameters 

and how they affect the integration process within the power calculation procedure is 

discussed later. 

Scenario 2 is when the size of the pilot data is smaller than the sizes of data sets 

considered for future studies. In that case, multiple data sets of the desired sizes need to 

be simulated using the characteristics of the data. This simulation process to expand the 

pilot dataset can be performed following the steps from Lyles et al. (2007). After this step 

is completed, the same steps as described above should be repeated for each of the 

simulated data sets within each sample size to calculate the power for desired sizes of 

sample. To simplify these steps, the procedure mentioned above is summarized in six 

steps as below: 

Step 1. Determine the appropriate model and the hypothesis to be tested.   

Step 2. Determine the "true" effects of the alternative. 

Step 3. Determine the sample sizes of interest.  

Step 4a. If the pilot data are larger than the sample sizes of interest, sub-samples 

of covariates and their respective responses should be selected.  If effect sizes for the 

study were chosen to differ from the original model, the new outcomes must be 

generated. 

Step 4b. If the pilot data are smaller than the sample sizes of interest, data sets of 

the sizes of interest should be randomly generated. The article by Lyles et al. (2007) can 

clarify the steps of generating data that are representative of the original pilot data. 
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Step 5. Use software to obtain the non-centrality parameters for all sub-samples / 

simulated samples. The programs I wrote in R 3.2.2 can be used to find the non-centrality 

parameters. 

Step 6. Use the average of all non-centrality parameters to calculate the final 

power for each sample size.   

Q3 How can power be calculated for hypothesis tests using longitudinal data 

with time-dependent covariates applying a Distant Metric Statistic 

approach within a GMM estimation technique? 

 

Answer to Question 3. In order to estimate power for longitudinal data in the 

presence of time-dependent covariates using the DM approach within a GMM estimation 

technique three steps need to be taken which are summarized below: 

Step 1. According to Hall (2005), the limiting distribution of the 𝑇𝐷𝑀
∗  under the 

null hypothesis is 𝑇𝐷𝑀
∗

𝑑
→ 𝜒𝑠

2 as 𝑛 → ∞ where 𝑠 is the rank of 𝑅(𝜷). So, one needs to find 

the degrees of freedom of this chi-square distribution and find the chi-square critical 

value for the degrees of freedom which depends on the null hypothesis being tested.  

Step 2. According to Hall (2005), the DM statistic under the alternative 

hypothesis has a non-centrality parameter that needs to be calculated before moving to 

the next step. Under the alternative hypothesis, the DM statistic follows a non-central chi-

square distribution, 𝜒𝑠
2(𝜆), with the non-centrality parameter 𝜆, which can be calculated 

as using Equation 4.5. 

Step 3. Then, the power can be calculated by integrating the probability 

distribution function of the non-central chi-square with the non-centrality parameter 

found in step 2. This integration starts from the central chi-square value found in step 1 

and goes to infinity. This gives the power for a data set with a known sample size. 
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Pr(𝜒𝑠,(𝜆)
2 ≥ 𝜒𝑠,1−𝛼

2 ) = ∫ 𝑓(𝑥𝑡; 𝑠, 𝜆)𝑑𝑥
∞

𝜒(𝑠);1−𝛼
2

. 
(4.6) 

Q4 How can sample size be calculated for a desired level of power for 

hypothesis tests using longitudinal data with time-dependent covariates 

applying a Distant Metric Statistic approach within a GMM estimation 

technique? 

 

Answer to Question 4. The answer to this question is identical to the second 

question due to the fact that both Wald and DM statistics have the same asymptotic 

distribution according to Hall (2005). 

Once the first four research questions were successfully answered through some 

theoretical proofs in Chapter III, it was time to complete the empirical aspect of this study 

to evaluate how well the theoretically developed power estimation methods work for 

smaller sample sizes. The fifth question, which was not answered in Chapter III, is 

answered in this chapter using real and simulated data. This question is as below: 

Q5 How well do the proposed power calculation approaches within a GMM 

method perform compared to the empirical power? 

 

This comparison was made multiple times using simulated data to check the 

adequacy of the estimated power using the GMM-based Wald test as well as the DM 

statistic. As emphasized in Chapter III, this simulation was not intended to be a 

comparison of the proposed GMM-based power estimation methods and the previously 

studied methods based on GEE. Instead, it was designed to compare the exact power 

calculation to the empirical results of performing the hypothesis test on the simulated 

data sets multiple times to check the adequacy of the estimated power for smaller sample 

sizes. 

To check the performance of the proposed theoretical GMM-based methods for 

estimating power and calculating the required sample sizes, a real data analysis and a 
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simulation study was performed and is reported in this chapter. The real data set was used 

as an exemplar data set as well as a pilot data set in the process of simulating data for the 

simulation study. This simulated data set, which is explained in detail below, was used to 

answer the fifth question regarding the comparison of the exact power using the proposed 

GMM-based power calculation approaches to the empirical rejection rates and post-hoc 

powers. I constructed the R functions to accomplish these power and sample size 

estimates which are shown in the Appendix C. 

Evaluation of the performance of the proposed methods using GMM was carried 

out primarily via comparisons between the proposed methods and the empirical power. 

The proposed methods were used to estimate the exact power of the pilot data and the 

post-hoc powers of the simulated data and build their bootstrap confidence intervals. 

Then, the hypothesis test was performed on the simulated data sets over and over to 

compute the empirical power. The comparison of the empirical power, post-hoc powers, 

and the estimated theoretical powers was proposed as an appropriate method to evaluate 

the performance of the proposed GMM-based methods.  

Simulation Study 

The algorithm for the simulation study consisted of randomly extracting unique 

time-dependent and time-independent covariates from the real data set consisting of 

osteoarthritis initiative (OAI) data, discussed in Chapter III, based on different sample 

size conditions and effect sizes, then, generating the longitudinal response variables. The 

simulated data at the end were used to evaluate the performance of the proposed methods 

using GMM and the empirical power. The steps are discussed in detail in this section. 
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Exemplar Data Set 

Real data were used as an exemplar data set for simulating multiple data sets of 

sizes 25, 50, 100, and 200 each 3,600 times. The use of real data in the process of data 

simulation is to ensure the consistency of the simulated data with the outcome variable 

from the OAI data in the presence of multiple types of time-dependent covariates. This 

data set contains characteristics of interest such as longitudinal data and different types of 

covariates including time-dependent covariates. These covariates were expected to 

provide a valid application of methodology to assess the efficiency of the proposed power 

estimation techniques. 

 The dataset, which was used in this study and explained in detail in Chapter III, 

consisted of OAI data. The number of complete cases used for this study was 2,456. Each 

subject had three follow-up measurements, which resulted in 7,368 records in the pilot 

data set. 

Many variables were gathered; however, this research focused on modeling the 

Western Ontario and McMaster Universities’ (WOMAC) disability score, which is 

typically treated as a continuous variable. The subjects’ age and BMI at each time point 

as well as the subjects’ sex were utilized as fixed effect regression predictors in the 

model. Age and BMI are two of the time-dependent covariates in this study, which do not 

remain constant over time. It was of interest to test the effect of BMI, which was treated 

as a type II time-dependent covariate within the model mentioned in Chapter III. This 

means there may be feedback between BMI and WOMAC disability score. The model is, 

𝑊𝑂𝑀𝐴𝐶𝑖𝑡 = 𝛽0 + 𝛽1𝐴𝑔𝑒𝑖𝑡 + 𝛽2𝐵𝑀𝐼𝑖𝑡 + 𝛽3𝑆𝑒𝑥𝑖𝑡 + 𝑡2 + 𝑡3 + 𝜀𝑖𝑡 , (4.7) 
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where age is a type I time-dependent covariate, 𝑡2 is a type I time-dependent covariate 

and a time indicator of the second follow-up time for subjects, 𝑡3 is a type I time-

dependent covariate and a time indicator of the third follow-up time for subjects, and sex 

is a time-independent covariate. Type I time-dependent covariates are not stochastic and 

change predictably. 

Within this model, the following hypothesis were tested 

{
𝐻0: 𝛽2 = 𝟎
𝐻1: 𝛽2 ≠ 𝟎

. 

For this hypothesis, the power for different sample sizes was estimated using the 

Wald and DM statistics within the GMM-based power estimation method. The alternative 

hypothesis when calculating power is 𝛽2 being equal to the population value for this 

parameter. 

Data Generation 

There is no data generating process for GMM due to the fact that GMM is a 

distribution free technique. Thus, in order to randomly generate data for this study and 

decide about the distribution of the random terms that needed to be used in the process of 

generating random responses, I needed to fit a mixed effect model. This required 

normalizing the response variable, which did not follow a normal distribution. Although 

the proposed power estimation process can also be applied to non-normal responses, the 

responses were normalized for this study. The reason for transforming the original 

WOMAC scores to a normal response was to keep the focus on estimating power, which 

was the main purpose of this study, not on non-linear modeling. 

 Figure 4.1 shows the histogram of the WOMAC scores which I believed to 

follow a Gamma distribution.  
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Figure 4.1. WOMAC Scores Histogram 

 

In order to validate what the histogram of the WOMAC score was implying about 

the distribution of the response, I drew a Cullen and Frey graph in R using the “descdist” 

function from the “fitdistrplus” package. Cullen and Frey (1999) introduced their 

skewness-kurtosis graph, known as a Cullen and Frey graph, for the choice of 

distributions. Figure 4.2 shows the result, which implies the same type of distribution for 

the response variable. After seeing the Gamma distribution is a reasonable distribution 

for the WOMAC scores, the parameters of the Gamma distribution needed to be 

specified. Function “fitdist” from the “fitdistplus” package was used to fit a given 

distribution by maximum likelihood or matching moments. They suggested a shape of 

0.95 and a rate of 0.08 for the Gamma distribution, which was fitted to the WOMAC 

scores. These estimated parameters of Gamma distribution were used in specifying the 

original distribution of the WOMAC score when applying transformations to it to 

normalize it for the future simulation steps.  
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Figure 4.2. Cullen and Frey Graph of WOMAC Scores 

 

To normalize the outcome WOMAC score variable, which had a Gamma 

distribution, a transformation needed to be applied to create the normalized WOMAC 

scores in the population data set. The idea of the final transformation that was applied to 

the response variable comes from the combination of two theories mentioned in Bain and 

Engelhardt (2009). The theories imply that no matter what the distribution of a variable 

is, if the cumulative distribution function of it is taken, then the cumulative distribution is 

passed into an inverse normal distribution function; the resulting values follow a normal 

distribution. This transformation was done using “pgamma” with the shape of .95 and 

rate of .08 on the WOMAC scores. The resulting values of the cumulative distribution 

were passed into the “qnorm” function in R to get the normalized WOMAC scores. 

Figure 4.3 shows how the new transformed response looks. After fitting the 

normal distribution to it, the parameters for the normal distribution they followed were 

estimated to be 0.2 for the mean and 1.01 for the standard deviation using maximum 

likelihood estimation technique.  
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Figure 4.3. Normalized WOMAC Scores Histogram 

 

Once the new normalized outcome was created, the goal changed to generating 

outcome variables that follow the same normal distributions as the new normalized 

outcome in the process of simulating data. As explained above, a mixed effect model was 

fitted to the transformed WOMAC score to figure out the coefficients of each of the 

covariates to be used in the simulation process later as well as to find out about the 

distribution of the random terms, which needed to be used in the response variable 

generating process. The model can be written as below  

𝑌𝑖𝑡 = 𝑿′𝑖𝑡𝜷𝑖𝑡 + 𝑢0𝑖 + 𝜀𝑖𝑡 ,    

where 𝑿𝑖𝑡 is the matrix of the covariates, 𝜷𝑖𝑡 is the vector of parameters, 𝑢0𝑖 is the 

random intercept for each person, and finally 𝜀𝑖𝑡 is the random error term. Both the 

random intercept and random error follow a normal distribution with the mean of zero but 

different constant variances that needed to be estimated for the population used in the 

simulation process by fitting this model.  

 The “lmer” function from the “lme4” package in R was used to fit this random 

intercept model and the results are shown in Tables 4.1and 4.2 These results show the 



91 

 

 
 

two important pieces of information needed for the data simulation procedure: first, the 

coefficients for each variable and second, the variances to be used for generating random 

normal intercepts and error terms. 

 

Table 4.1  

 

Linear Mixed Model – Fixed Effects Estimates 

 

Parameter Estimate Standard Error t Value 

 

Intercept -1.695228 0.158606 -10.688 

 

Sex 0.209491 0.033393 6.274 

 

Age 0.003564 0.001819 1.959 

 

BMI 0.048821 0.003109 15.705 

 

t2 -0.092723 0.015575 -5.953 

 

t3 -0.103803 0.015902 -6.528 

Note. REML criterion at convergence: 16610.16 

 

Table 4.2  

 

Linear Mixed Model - Random Effects Estimates 

 

Parameter Variance Standard Deviation 

 

ID (Intercept) 0.5632 0.7505   

 

Residual 0.2936    0.5418   

 

The random error terms were randomly simulated from a normal distribution with 

the mean and variance of the estimated random effects from the aforementioned linear 

mixed model fitted to the population data,  
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𝜀𝑖𝑡~𝑁(𝜇 = 0, 𝜎 = 0.54), 

𝑢0𝑖~𝑁(𝜇 = 0, 𝜎 = 0.75). 

The generated random intercept for each person stays the same for the three time 

points and the random error terms vary within each person as well as across patients. The 

reason for having the same randomly generated intercept for each person is to capture the 

autocorrelation that exists among the repeated measurements of each subject. 

 The steps for generating the response variable are described below. To make sure 

the generated response values followed the same distribution as the transformed 

WOMAC scores, first, the response values were simulated for all subjects in the pilot 

dataset. Then, the generated response values were plotted and they had the same 

distribution as the transformed WOMAC scores. Figure 4.4 shows the generated response 

values for the entire pilot population. Maximum likelihood estimation of the parameter of 

the normal distribution the generated responses follow was almost the same as the 

original transformed WOMAC scores. Some tests were applied to compare their 

distributions and there was no significant difference between the distribution of actual 

transformed response and the generated responses. The Kolmogorov–Smirnov test, which 

is a nonparametric test of the equality of continuous, one-dimensional probability 

distributions, was also applied to subsamples of the data to compare the distribution of 

the transformed WOMAC scores and the generated response variable and there was no 

significant difference in the distributions of the two variables (D = 0.11, p = .07). The 

reason for using sub-samples of the population to perform the Kolmogorov–Smirnov test 

is the large size of the population, which would result in the significance of any tests 

applied on them. As a result, random samples of 100 patients with unique IDs were 
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sampled with replacement multiple times and each time the Kolmogorov–Smirnov test 

resulted in no significant difference in the distributions of the transformed WOMAC 

scores and the generated response variables. This reassured me that the same procedure 

of generating response variables could be applied for the simulation procedure and the 

generated data would behave the same as the real data; hence, simulated data would be 

representative of the values seen in reality. Data generation code can be found in the 

Appendix A. 

 

Figure 4.4. Histogram of the Generated Response Variable 

 

Simulation Conditions and Procedure  

Different sample sizes used for this simulation study include 25, 50, 100, and 200 

subjects with three observations per subject due to having three follow-up times. Sample 

sizes of 100 and 200 were chosen according to the simulation study by Lyles et al. 

(2007), which focused on a GEE-based technique for power estimation of longitudinal 

data using the Wald test. Two smaller sample sizes of 25 and 50 were also added to this 

study to compare the accuracy of the estimated statistical power for the smaller sample 

sizes to the higher sample sizes of 100 and 200. This comparison was of interest to see 
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whether the methods that were shown to work for large sample sizes according to the 

proofs I constructed work as well in terms of the accuracy of the estimated power for the 

small sample sizes.  

There were 3,600 data sets generated for each sample size within this simulation 

study. This number was calculated based on the theory and explained in Chapter III. 

Below, four steps for simulating the data sets for this study are summarized, but before 

looking at each step in detail, the entire simulation process is explained in one paragraph.  

In summary, to simulate the data for this study, for each data set of size 25, 25 

unique IDs from the population data set were randomly selected and then all three cases 

of predictors for each ID were selected. The “true” parameter values from the linear 

model, fitted to the entire population, were used to randomly generate responses for each 

case. This process was replicated 3,600 times to complete 3,600 data sets of size 25. 

Then, this process was repeated for sample sizes of 50, 100, and 200. This data 

simulation procedure is explained in detail below: 

Step 1: Extracting the X values from the real dataset. At this step, for each 

sample size, unique IDs from the population data set were randomly chosen 3,600 times, 

which was the number of replications. Therefore, 3,600 datasets were randomly 

simulated within each sample size. The number of IDs chosen at this step depended on 

the sample size condition. There were four sets of sample sizes for this study: 25, 50, 100, 

and 200. So, for example, for sample size of 25, 25 unique ID’s were selected from the 

population 3,600 times. This selection for each ID included their three time points 

resulting in 75 records of covariates.  
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Step 2: Creating the fixed effects. Using the extracted vector of covariates 

measured at each follow-up time for each subject formed the design matrix of the fixed 

effects (i.e., 𝑿𝑖𝑡). The estimated coefficients of the fixed parameters from the original 

mixed effect model, called the “true” parameter values. formed the fixed effect parameter 

vector (i.e., 𝜷).  

Step 3: Generating the random effects. For each dataset, two random terms 

were generated at this step to be used as two random error terms in the process of 

generating the response variable. As explained before, one random intercept was 

generated for each subject following a normal distribution with the mean of 0 and 

standard deviation of 0.75 as  

𝑢0𝑖~𝑁(𝜇 = 0, 𝜎 = 0.75), 

where 𝑖 =  1, . . . , 𝑛 and n = 25, 50, 100, 200. 

Then, this random number was used at all three follow-up times per each subject. 

Using the same random intercept term per subject was imposed to ensure that the 

similarities and autocorrelation that existed among the repeated measurements of each 

patient are being captured using this random intercept. Finally, the three random terms 

were generated for each subject following a normal distribution with the mean of 0 and 

standard deviation of 0.54 as  

𝜀𝑖𝑡~𝑁(𝜇 = 0, 𝜎 = 0.54), 

where 𝑖 =  1, . . . , 𝑛 specifies the number of subjects, which for this study were four sets 

of sample sizes n = 25, 50, 100, 200 and 𝑡 =  1, . . . , 𝑇 specifies the number of repeated 

measures for each subject, which for this balanced study are the same per subject (𝑇 =

3).    
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Step 4: Generating the response values. At the final step, for each subject, the 

multiplication of the design matrix and “true” parameters from the model using the pilot 

data were added to the random intercept generated for that subject. Finally, the random 

error term was added to the previous addition to form the final transformed WOMAC 

score. Notice, at this step, to be consistent with the generated responses from the pilot 

data, the coefficient of BMI was being multiplied by 15 to increase the effect size as 

explained above. This step and why the effect size was increased for this study are 

explained below. 

Controlling the Effect Size 

 When estimating the power of this study, the estimated powers ended up being 

very small, ranging from .05 to .1, for different data sets with sample sizes of 25 to 200 

subjects. The small magnitude of the power would make it difficult, in the next steps of 

the simulation study, to see the changes in the magnitude of the estimated power values 

with the changes in the sample sizes. So, the effect size for the estimated parameter 

coefficient for BMI needed to be increased. BMI is the covariate whose effect size was 

controlled since BMI is the time-dependent covariate, which was tested in this study, 

hence; the magnitude of the power, which was calculated for the hypothesis test related to 

this variable, was directly affected by the changes in the effect size of this covariate.  

Different constants ranging from 2 to 30 were multiplied by the coefficient of 

covariate of interest to find out which one would have the desired effect on the final 

estimated powers while using the same GMM estimates for all of the other parameters. 

Fifteen was the multiplier used for this study as it resulted in higher values of power, but 

not too high such as .999, for different sample sizes with the ability of capturing higher 
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ranges of power values. Consequently, when final response values were generated for this 

study, the BMI coefficient was multiplied by 15 but everything else stayed the same. 

Changing the effect size necessitated generating new responses. After generating the new 

responses, a random intercept mixed effect model was fitted to the population data set 

using the newly generated response. The estimated coefficients at this step were used as 

the “true” values of the parameters for the rest of the study. These “true” values are listed 

later in Table 4.4.  

Algorithm for Generalized Method 

of Moments Estimation 

 

The GMM estimation technique was explained in detail in Chapter III. The GMM 

method was used to estimate the parameters of the model within this study, so they could 

be used in the process of power estimation, which is explained in the next section. As 

explained in Chapter II and III of this dissertation and according to Hansen (2007), GMM 

estimation begins with a vector of population moment conditions taking the form in 

Equation 4.8 for all 𝑡 

𝐸[𝑓(𝒙𝑖𝑡 , 𝜷0)] = 0, (4.8) 

where 𝜷0 is an unknown vector in a parameter, 𝒙𝑖𝑡 is a vector of random variables, 𝑖 =

1, … , 𝑛;  𝑡 = 1, … , 𝑇 and 𝑓(. ) is a vector of functions.  

The GMM estimator is the value of 𝜷 which minimizes the quadratic form shown 

in Equation 4.9  

𝑄(𝜷) = {𝑛−1 ∑ 𝑓(𝒙𝑖𝑡 , 𝜷)𝑛
𝑖=1 }′𝑾{𝑛−1 ∑ 𝑓(𝒙𝑖𝑡 , 𝜷)𝑛

𝑖=1 }, (4.9) 

where 𝑾 is a positive semi-definite weighting matrix, which may depend on the data but 

converges in probability to a matrix of constants which is positive definite and 



98 

 

 
 

𝑛−1 ∑ 𝑓(𝒙𝑖𝑡 , 𝜷)𝑛
𝑖=1  is the average of the sample moments. Therefore, by definition, the 

GMM estimator of 𝜷0 is  

�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜷∈ℙ

𝑄(𝜷), (4.10) 

where 𝑎𝑟𝑔 𝑚𝑖𝑛 stands for the value of the argument 𝜷 which minimizes the function. 

Due to the lack of software availability to perform a GMM estimation and no 

known software package to perform the continuously updating GMM procedure, I wrote 

the R code for obtaining the parameter estimates of this GMM model due to its more 

efficient estimators in the second-order sense than the 2-step or k-step GMM estimators 

to improve the finite sample properties (Hall, 2005). 

Four steps, which are summarized below, were taken in writing this R code:  

Step 1: Defining the moment conditions. The moment conditions for this study 

needed to be defined depending on the types of time-dependent covariates in the model 

used within this study.  

The moment conditions for this study were defined using Equation 4.10, which is 

defined for the repeated observations taken over 𝑇 times on 𝑛 subjects with 𝐽 covariates, 

assuming that observations 𝑦𝑖𝑠 and 𝑦𝑘𝑡 are independent whenever 𝑖 ≠ 𝑘.  

𝐸 [
𝜕𝜇𝑖𝑠(𝜷)

𝜕𝛽𝑗

{𝑦𝑖𝑡 − 𝜇𝑖𝑡(𝜷)}] = 0, 
(4.11) 

where 𝜇𝑖𝑠(𝜷) represents the expectation of response measured for the 𝑖th subject at 𝑠th 

time,  𝒚𝑖𝑡, based on the vector of covariate values, 𝒙𝑖𝑡 and vector of parameters, 𝜷.  

To define the type of the time-dependent covariates, as explained in Chapter II, if 

Equation 4.11 holds for all 𝑠 and 𝑡, then the 𝑗th covariate is classified as type I with 𝑇2 

moment conditions (Lai & Small, 2007). Variables age and time indicators were 
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classified as type I time-dependent covariates in this study as they could plausibly satisfy 

the condition that their outcomes are independent of past and future outcomes of the 

response. Therefore, nine moments were defined for each of them. If Equation 4.11 holds 

for 𝑠 ≥ 𝑡 but fails to hold for some 𝑠 < 𝑡, the 𝑗th covariate is said to be type II. This type 

of covariate is common in a linear model with autoregressive responses (Lalonde et al., 

2014) and BMI satisfied the conditions to be classified as a type II covariate with 
 𝑇(𝑇+1)

2
 

moment conditions. Thus, six moment conditions were defined for this covariate. 

In total, there were 39 moments that needed to be defined and entered into the 

GMM function. Three moment conditions for the intercept, three moment condition for 

the time-independent sex, nine moment conditions for the type I time-dependent 

covariate age, nine moment conditions for the time indicator 𝑡2, nine moment conditions 

for the time indicator 𝑡3, and finally six moment conditions for BMI, which is a type II 

time-dependent covariate. For each subject and considering the three time points, these 

moments were defined and saved to be used at the next step. 

Step 2: Forming the vectors of the moment conditions. The vectors of sample 

moment conditions were defined at this step using the created moment conditions 

mentioned above. They were summed up for all subjects within each data set and finally 

averaged. 

Step 3: Forming the weighting matrix. The weighting matrix, shown in 

Equation 4.12, was created using the suggestion of Lai and Small (2007), 

𝑊 = 𝑆−1 = [
1

𝑛
∑ 𝑓(𝒙𝑖𝑡 , 𝜷)

𝑛

𝑖=1

𝑓(𝒙𝑖𝑡 , 𝜷)𝑇]

−1

. 

(4.12) 
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Step 4: Defining the quadratic form. The quadratic form that was minimized is 

formed using Equation 4.9 

𝑄(𝜷) = {𝑛−1 ∑ 𝑓(𝒙𝑖𝑡 , 𝜷)

𝑛

𝑖=1

}

′

𝑾 {𝑛−1 ∑ 𝑓(𝒙𝑖𝑡 , 𝜷)

𝑛

𝑖=1

}. 

As is obvious from the equation, this quadratic form is directly affected by the 

number of subjects and therefore the number of subjects involved in building the moment 

conditions, which are later summed up. This causes some issues with the power 

calculation for models using the GMM estimation technique. This issue is explained in 

detail under the GMM power section.  

Step 5: Minimizing the quadratic form. The aforementioned quadratic form 

from Equation 4.9 was then minimized to find the GMM estimate of the parameters in the 

model. To do this, the “optim” function from the “stats” package was used. This general-

purpose optimization works based on Nelder–Mead, quasi-Newton, and conjugate-

gradient algorithms. Nelder–Mead method, that uses only function values and is robust 

but relatively slow, was used here. The code written for estimating the parameters using 

the continuously updating GMM estimation can be found in the Appendix B. 

Convergence Problem 

The GMM procedure and finding the GMM estimates within each simulated data 

set faced some issues regarding convergence. Not only did it affecting the final results of 

the estimates, it was biasing the final values of the quadratic term at the estimated 

parameters. 

I had to re-write parts of the GMM function as well as monitor the convergence or 

non-convergence of the GMM process within each simulated data set to determine the 
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optimum number of iterations that needed to be used within each GMM estimation 

process. At the end to solve the issue for every simulated data set, the number of 

iterations had to be maxed to 10,000 iterations. Doing so, not even one non-convergence 

issue happened anymore for any of the 3,600 data sets for each of the four desired sample 

sizes, which resulted in close to unbiased estimates of parameters. Solving this issue 

insured the accurate and asymptotically unbiased estimation of the parameters of the 

model using the GMM estimation technique. Unfortunately, increasing the number of 

iterations resulted in the GMM process taking even longer to run, which was another 

issue that needed to be resolved within this study. This procedure is explained in the next 

section. 

Issues Regarding the Run Time 

 There were many issues with the run time of the simulation, which made it 

impossible to finish this study in a reasonable amount of time. Overall, the expected run 

time was estimated to be over 515 days. The details regarding how long each part of the 

simulation process and data analyses originally took are described below. 

Table 4.3 shows the original run time of this study for just GMM estimation, 

resulting in 114 days of run time excluding all the power calculation process. Including 

the power calculations would approximately triple the simulation run time. This run time 

estimate was made by assuming the time will increase linearly as the number of runs 

increased; however, the growth was not linear which resulted in an even longer run time. 

The full process of running the GMM estimation procedure, hypothesis testing, 

and power calculation for one run of each sample size was 206 minutes. Assuming there 

was a linear growth in time by increasing the number of runs, 3,600 runs would take 
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741,600 minutes or 515 days. This run time was not feasible so I considered reducing the 

number of replications at this point but did not want to sacrifice the accuracy of this study 

by reducing the number of replications. 

 

Table 4.3  

 

Run Time for GMM Procedure 

 

 Run Time for 1 Run 

in Minutes 

Run time for 3,600 

runs in minutes 

Run time for 3,600 

runs in Days 

 

n=25 4.3163 15,538.68 10.79075 

    

n=50 8.0935 29,136.6 20.23375 

    

n=100 10.2232 36,803.52 25.558 

    

n=200 22.842 82,231.2 57.105 

 

Multiple options including renting space on Amazon web services, getting access 

to the university’s super computer, and using multiple cores to run the simulation, 

parallelizing the simulation, and re-writing parts of the code were considered. Almost all 

of these options had to be taken advantage of in order to finish the originally proposed 

simulation without having to change the number of replications. These steps included 

first, removing any “filter” function from the study and replacing filters with other 

selection options which would take a shorter time than “filter.” 

A second option was to produce only the required statistics and results and 

removing extra information which was being stored. Any additional piece of information, 

that was originally being extracted, was removed to speed up the simulation process. 

Re-writing parts of the GMM function, which was the most time-consuming part 

of this process, was a third option. The structure of all the data frames was changed to 
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vectors and matrices and the algorithm was written according to the new structure of the 

data. This step was the most effective solution I could come up with to reduce the run 

time. 

Fourth, I had to parallel-program the entire code. This parallelization included 

two parts: (1) running the code on multiple computers while making sure the same seed 

was used for all of them and (2) parallelizing the workload into multiple cores of each 

computer to take advantage of all the cores of each machine used for running part of the 

analysis. The regular machines used for parts of this analysis had eight cores and the 

super computer, which was used for other parts of the analysis, had 12 cores. 

Fifth, the machines with eight cores were used to run the analysis on the smaller 

sample sizes and the super computer, which to which I had to request access, was used to 

run the analysis on the larger sample sizes.  

I was able to decrease the run time of the GMM estimation, hypothesis testing 

using Wald statistic, and post-hoc power estimation to about 90 hours or less than four 

days, which was a great improvement from the original 515 days to run the same thing. 

Of course, multiple machines and parallel programming, resulting in using multiple cores 

on each machine, were involved in achieving the goal of decreasing the run time. These 

90 hours do not include the run time for the DM tests and calculating their power and 

generating the data. Data generation procedure was taken out of the original code and run 

separately to save time. Completing those tasks took another 90 hours or so, which 

needed to be done separately.  
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Distance Metric Statistic and  

Issues Regarding This  

Statistic 

 

There was some uncertainty regarding calculating the DM statistic and getting 

different results from this test compared to what the Wald statistic, which was the main 

focus of this study. According to Hall (2005), “the DM test examines the impact on the 

GMM minimand of the imposition of the restrictions” which needs to be calculated using 

Equation 4.4. Within this equation, in order to find the DM statistic, a function of two 

quadratic forms needs to be found as below 

𝑇𝐷𝑀
∗ = 𝑛[𝑄(�̃�) − 𝑄(�̂�)],      

where within the DM statistic, 𝑄(. ), is the quadratic form from the GMM algorithm 

which needs to be found based on the restricted, �̃� and unrestricted, �̂�, parameter 

estimators, respectively and then to be used in finding the difference between the 

respective quadratic forms. Hall (2005) mentioned “the unrestricted estimator is just the 

GMM parameter estimates and the restricted estimator of 𝜷 which minimizes the 

quadratic form subject to 𝑟(𝜷) = 0 and both these minimizations use the same weighting 

matrix”. This being said, I tried imposing the restriction from the null hypotheses to find 

the quadratic form for the restricted parameter estimates, 𝑄(�̃�), in two different ways: 

Within the first method of calculating the DM statistic, the quadratic form used 

for fitting the original GMM to all the parameters using 39 moment conditions was also 

used for 𝑄(�̃�) by using the unrestricted GMM estimates and imposing the estimate of the 

BMI parameter to be equal to zero and then calculating the quadratic form. This quadratic 

term was calculated using the unrestricted parameter estimates from the newly calculated 

quadratic form based on the restricted parameter estimates. Then, the difference between 
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two quadratic terms was found and finally multiplied by the sample size used. These 

values were very large resulting in always rejecting the null hypothesis for different 

sample sizes. 

The second method, which is believed to correctly calculate the DM statistics, 

involves writing another GMM function excluding all the moment conditions related to 

the variable of interest which imposes the restrictions, BMI here, from the quadratic 

form. Therefore, this quadratic form was written using 33 moment conditions and then 

the new GMM function was applied to all 3,600 data sets within each sample size, 

estimating every parameter except from the one for the BMI that was excluded from the 

model. Then the newly constrained estimates were substituted into the original quadratic 

form that included 39 moment conditions and were used for the unrestricted parameter 

estimation. This value was then saved as the restricted quadratic value and the 

unrestricted quadratic value was subtracted from it and then multiplied by the sample 

size. So, the DM statistic for this analysis was calculated as 

𝑇𝐷𝑀 = 𝑛[𝑄(𝛽0, 𝛽1, 𝛽2, 0, 𝛽4, 𝛽5) − 𝑄(𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5)]. 

 Even though, these values are more reasonable, they do not seem to give the 

same results compared to the Wald test. The summary of these statistics can be found 

later but all in all the DM statistics do not seem to behave similarly to the Wald statistics 

and do not seem to have the same distribution as the Wald statistics for this study. This 

could be due to not having large enough sample sizes in order for the two statistics to 

have the same asymptotic distributions or some of the assumptions might not be met for 

them to have identical chi-square distributions.  
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These assumptions are mentioned in Hall (2005). It is believed that the first 

assumption might not be met in the current study due to the use of real data in the process 

of simulating the data. These 13 assumptions are: 

1. Strict stationary process to be formed by the random vectors. This implies all 

expectations of functions of the random variables to be independent of time. 

2. Regularity conditions for the function of the moments and the ability to measure 

them. 

3. The population moment condition assumption which refers to the random vector 

and the parameter vector satisfying the population moment condition: 

𝐸[𝑓(𝒙𝑖𝑡 , 𝜷0)] = 0. 

4. Global identification which is 𝐸[𝑓(𝒙𝑖𝑡 , �̅�)] ≠ 0 for all �̅� such that �̅�  ≠ 𝜷0. 

5. Regularity condition on 
𝜕𝑓(𝒙𝑖𝑡,𝜷)

𝜕𝜷′
 which refers to this derivative matrix to exist and 

be continuous for each of the random vectors, 𝜷0 being an interior point of the 

set, and 𝐸 [
𝜕𝑓(𝒙𝑖𝑡,𝜷)

𝜕𝜷′
 ] existing and being finite. 

6. Assumptions regarding the weighting matrix. 

7. Ergodicity of the random process. 

8. The set being compact. 

9. Domination of 𝑓(𝒙𝑖𝑡 , 𝜷). 

10. Assumptions regarding the variance of the sample moment. 

11. Continuity of 𝐸 [
𝜕𝑓(𝒙𝑖𝑡,𝜷)

𝜕𝜷′  ]. 

12. Uniform convergence of 𝑮𝑛(𝜷). 
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13. Regularity condition for 𝑟(. ) which includes its being a vector of continuous 

differentiable functions and 𝑟𝑎𝑛𝑘{𝑅(𝜷0)} = 𝑠 where (𝜷) =
𝜕𝑟(𝜷)

𝜕𝜷′
 . 

Power Estimation Procedure 

After the data were simulated and the method for estimating the model parameters 

using GMM was developed, it was time to figure out the power estimation procedure 

using GMM and figure out how the theoretically developed power estimation methods 

from Chapter III compare to the empirical results from Chapter IV.  

Considering the repeated measures, explained in previous chapters of this 

dissertation, at 𝑇 time points for 𝑛 subjects, in order to find the power and then the 

required sample size of a statistical test, first the hypothesis needs to be specified and 

tested as shown before, 

{
𝐻0: 𝑟(𝜷) = 𝟎

𝐻1: 𝑟(𝜷) ≠ 𝟎
, 

where this hypothesis can be simplified to the hypothesis mentioned below for this study, 

{
𝐻0: 𝛽2 = 𝟎
𝐻1: 𝛽2 ≠ 𝟎

, 

in which, 𝛽2 is tested to see whether the effect of the type II time-dependent covariate, 

BMI, in predicting the transformed WOMAC score is significant. 

Then the statistic which is used to test this hypothesis needs to be specified. 

Because the GMM approach was adopted as the estimation method for this study, the 

Wald statistic from Equation 4.1 and the DM statistic from Equation 4.4 were used to test 

the hypothesis mentioned above.  

In order to estimate the statistical power of these tests, the distributions of these 

statistics under the null and alternative hypothesis need to be specified. From Chapter III 
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and Hall (2005), we know the asymptotic distributions of Wald and DM statistics under 

the null hypothesis are equivalent as below 

𝐻0: 𝑇𝑊
∗

𝑑
→ χ(𝑠)

2 , 𝑇𝐷𝑀
∗

𝑑
→  χ(𝑠)

2 . 

Newey and West (1987) showed that the asymptotic equivalence of the statistics 

extends to the alternative hypothesis. As discussed before, under the alternative 

hypothesis, the Wald and DM statistics have an asymptotic non-central chi-square 

distribution of χ(𝑠),𝜆
2  with the  non-centrality parameter that could be calculated using 

Equation 4.5. 

In order to estimate the power, assuming that 𝛼 represents the type I error, 

𝜒(𝑠);1−𝛼
2  is the critical value from the central 𝜒(𝑠)

2  distribution. Using this critical value, 

power can be calculated using Equation 4.6 by finding the probability of  

Pr(𝜒𝑠,(𝜆)
2 ≥ 𝜒𝑠,1−𝛼

2 ), 

with 𝜒𝑠,1−𝛼
2  denoting the 100(1 − 𝛼)th percentile of the central chi-square with 𝑠 degrees 

of freedom. Thus, the power associated with the Wald and DM test statistics is 

1 − 𝛾 = ∫ 𝑓(𝑥𝑡; 𝑠, 𝜆)𝑑𝑥,
∞

𝜒(𝑠);1−𝛼
2

 
 

where 𝛾 represents the type II error and 𝑓(𝑥𝑡; 𝑠, 𝜆) is the probability density function of 

𝜒(𝑠),𝜆
2 . This process is explained in detail for the model fitted in this study. 

Calculating the Theoretical Powers 

 There are multiple steps I developed to calculate the theoretical power for the 

pilot data set with 2,456 subjects. First, the mixed effect model was fitted to the OAI 

dataset using the newly generated normalized WOMAC score after increasing the effect 

of BMI. The coefficients are listed in Table 4.4 for the sake of comparison to the GEE 
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and GMM estimates of the same models. As explained before, these estimates are 

referred to as the “true” parameter values. 

 

Table 4.4   

 

Mixed-Effects Model Summary 

 

Parameters Intercept Sex Age BMI 𝑡2 𝑡3 

Coefficients -1.51988 0.19867 0.00248 0.72956 -0.11230 -0.10446 

 

Table 4.5 shows the coefficients of the model fitted to the data using GEE with 

the independence covariance structure. These values were used as the initial values of the 

unknown parameters within the GMM function to get the GMM estimates. GEE 

estimates with the independent covariance structure are believed to be the closest to the 

GMM estimates, making them the best option as the initial values to be used in the 

process of optimization of quadratic form within the GMM function. 

 

Table 4.5   

 

GEE Model Summary 

 

Parameters Intercept Sex Age BMI 𝑡2 𝑡3 

Coefficients -1.48183 0.19881 0.00241 0.72840 -0.11226 -0.10424 

  

These initial values were used within the GMM function to find the GMM 

estimates of the parameters used in the model. The estimated parameters using GMM are 

listed in Table 4.6. These values are close to the estimated values using the GEE method 

and the estimated parameters from the mixed effect model. The effects should be similar 
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for all three methods; it is the standard errors that change for different models fitted to 

Equation 4.7, which is the model used for this study. These results show the accuracy of 

the GMM function I wrote and are the assurance for moving forward with the rest of the 

power estimation procedure using the pilot data.  

 

Table 4.6   

 

GMM Model Summary 

 

Parameters Intercept Sex Age BMI 𝑡2 𝑡3 

Coefficients -1.48913 0.20018 0.00255 0.72824 -0.11059 -0.10393 

 

The next step involved extracting the quadratic form at the GMM estimated 

parameters, which was equal to 0.004 for the entire pilot data. This value needs to be 

used in the process of calculating the non-centrality parameter of the non-central chi-

square distribution, which is the distribution of Wald and DM statistics under the 

alternative hypothesis. The non-centrality parameter was equal to 5.219863, resulting in a 

power of .627 for the entire data set using N=2,456. 

 I originally believed that by changing the sample sizes and using different sample 

size values in the process of calculating the non-centrality parameters, I could estimate 

the power using the quadratic forms and estimate the parameters from the pilot data set. 

Instead, after using different sample sizes, calculating the power, and comparing them to 

the post-hoc powers calculated for each sample size, I learned this process could not be 

done in this way within GMM even though it is the common way of calculating power 

for other models. The calculated power for sample size of 25 using the estimated 

parameters and quadratic form from the large pilot dataset was .056. Power calculated the 
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same way for sample sizes of 50, 100, and 200 were .062, .075, and .099, respectively. 

However, the post-doc power calculated for the data sets with those sample sizes 

appeared to be a lot higher when the GMM was fitted to smaller sample sizes. This 

showed that the GMM power calculation procedure is tied to the size of the pilot data, the 

estimated parameters, and the magnitude and the number of response variables used in 

the process of calculating the non-centrality parameter of the non-central chi-square 

distribution. The estimated parameters and the number of subjects within each data set 

used in the GMM estimation procedure, directly reflect the summation of the moment 

conditions and hence the quadratic form of a GMM function. This makes the non-

centrality parameter of the non-central chi-square distribution very sensitive to the 

number of subjects used in the study.  

 Below, it is shown theoretically how the non-centrality parameter is influenced by 

the size of the pilot data used in the process of power calculation. Because only one 

parameter was tested within this study, the non-centrality parameter can be simplified to  

𝜆 = 𝑛𝛽2𝑮𝑇𝑾𝑮. 

After substituting the simplified versions of 𝑮 and weighting matrix for this model, the 

non-centrality parameter can be written as 

𝜆 = 𝑛𝛽2 (𝑛−1 ∑
𝜕𝑓(𝒙𝑖𝑡 , 𝜷)

𝜕𝜷

𝑛

𝑖=1

)

𝑇

(
1

𝑛
∑ 𝑓(𝒙𝑖𝑡 , 𝜷)𝑓(𝒙𝑖𝑡 , 𝜷)𝑇

𝑖

)

−1

(𝑛−1 ∑
𝜕𝑓(𝒙𝑖𝑡 , 𝜷)

𝜕𝜷

𝑛

𝑖=1

), 

where all 𝑛 terms will be canceled out and the magnitude of the resulting non-centrality 

parameter will increase as the number of terms added together increases by the increase 

of sample size. Here is the final non-centrality parameter, 
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𝜆 = 𝛽2 (∑
𝜕𝑓(𝒙𝑖𝑡 , 𝜷)

𝜕𝜷

𝑛

𝑖=1

)

𝑇

(∑ 𝑓(𝒙𝑖𝑡 , 𝜷)

𝑖

𝑓(𝒙𝑖𝑡 , 𝜷)𝑇)

−1

(∑
𝜕𝑓(𝒙𝑖𝑡 , 𝜷)

𝜕𝜷

𝑛

𝑖=1

). 

 The dependence between the quadratic forms and moment conditions used in the 

calculation of non-centrality parameters are to the number of subjects, makes it 

inappropriate to use the quadratic form from the pilot data with a specific number of 

subjects to calculate the power for future samples with a different number of subjects 

from the pilot data. This is because the quadratic forms of the pilot data sets with 

different number of subjects will not be representative of the new dataset with a different 

number of subjects. In addition, response values are part of the quadratic form and must 

reflect different effect sizes. 

 After conducting some theoretical work and testing them on the real data, the final 

answer for finding the theoretical power for this study can be described in the six steps 

below: 

Step1. Multiple subsamples of the pilot data set need to be taken for each of the 

sample sizes considered as future sample sizes for future studies. For this study, 100 

randomly selected data sets of 25 subjects were selected. The same process was carried 

out for the sample sizes of 50, 100, and 200 meaning that 100 data sets of each size were 

randomly selected from the original pilot dataset of size 2,456 subjects.  

Step 2. The GEE was fitted to each of the data sets and the parameter estimates 

were extracted as the initial values to be used within the GMM optimization process. 

Step 3. The GMM estimation was applied within each data set and the estimated 

parameter of interest as well as the value of the quadratic form at the GMM estimated 

parameters were extracted from each dataset. 



113 

 

 
 

Step 4. The non-centrality parameter was calculated for each dataset using the 

GMM estimates and quadratic value coming from that dataset with the same sample size, 

which was used in the calculation of the non-centrality parameter. 

Step 5. Now, there are 100 non-centrality parameters for samples with size of 25, 

100 non-centrality parameters for samples with size of 50, 100 non-centrality parameters 

for samples with size of 100, and finally 100 non-centrality parameters for samples with 

size of 200. In order to get one non-centrality parameter for each sample size, the 100 

non-centrality parameters of each sample size were averaged. 

Step 6. Power was calculated for each sample size using the averaged non-

centrality parameters as below 

1 − 𝛾 = ∫ 𝑓χ2(1, �̅�)𝑑𝑥.
∞

𝜒(1)
2

 

The results of the theoretical power for the four sample sizes considered for this 

study are summarized in Table 4.7. 

 

Table 4.7   

 

Theoretical Powers for Different Sample Sizes (Using GMM at Each Sub-Sample) 

 

Sample Size Averaged Non-centrality Parameter Power 

 

n=25 5.75638551 .6697782 

 

n=50 6.070270952 .6928137 

 

n=100 7.296046533 .770702 

 

n=200 7.479371536 .780796 

 

These non-centrality parameters need to be averaged at the end and the power 

needs to be calculated for the averaged non-centrality parameter. This means the 
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integration should happen at the end rather than integrating the non-central chi-square 

distribution for each sub-sample, finding the power 100 times and at the end averaging 

the powers. 

The reason for averaging the non-centrality parameters first and then finding the 

theoretical power for them, rather than finding the power multiple times for each sub-

sample and then averaging them, which I also tried, is the sensitivity of the power to the 

non-centrality parameter of each sub-sample. This sensitivity produces higher variance of 

power than the real power values. This higher variance of the multiple calculated powers 

results in skewing the mean of the powers when trying to find one theoretical power at 

the end. Looking at the power calculation process,  

1 − 𝛾 = ∫
𝑒−

𝑥+𝜆
2

2
(

𝑥

𝜆
)

−
1
2

𝐼
−

1
2

(√𝜆𝑥 )𝑑𝑥,
∞

𝜒(1)
2

 

where 𝐼𝜈(𝑦) is a modified Bessel function, clarifies the relationship between the non-

centrality parameter, 𝜆, and the power, 1 − 𝛾, and how when 𝜆 gets smaller, power gets 

extremely small. Once all non-centrality parameters of the representative sub-samples 

were averaged and then one theoretical power for the mean of the non-centrality 

parameters was calculated, the power was representative of the actual power and close to 

the post-hoc power of the 3,600 simulated data, which is reported later. 

Another way to calculate the theoretical power is taking the same steps except for 

step 4. Instead, step 4 is done using the estimated parameters and quadratic form which 

come from the GMM estimation of the entire population or pilot dataset. This is faster as 

the GMM estimation procedure is conducted only once and then the non-centrality 

parameter is calculated for each dataset using the GMM estimates and quadratic value 
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coming from the pilot dataset. These then are used in the calculation of the non-centrality 

parameter for each sub-sample. The resulting power values using this method are higher 

than the ones calculated above and also higher than the post-hoc power but they are 

closer to the rejection rate of the simulation study explained later. These powers are listed 

in Table 4.8.  

When the size of the pilot data is smaller than the sizes of data sets considered for 

future studies, multiple data sets of the desired sizes need to be simulated using the 

characteristics of the data. Then the same steps should be applied to them to calculate the 

powers for different sample sizes following the rules from Lyles et al. (2007). 

 

Table 4.8   

 

Theoretical Powers for Different Sample Sizes (Using GMM Estimates of Population) 

 

Sample Size Averaged Non-centrality Parameter Power 

 

n=25 9.033433 .8521282 

 

n=50 10.0974 .8883268 

 

n=100 10.49592 .8996884 

 

n=200 10.82056 .9081583 

 

This section shows the application of the proposed power estimation techniques 

on one real data set to provide a guideline for applied researchers and practitioners in 

how to apply these methods and estimate the power as well as evaluate the performance 

of the proposed models using Wald and DM statistics. Two methods for calculating the 

theoretical power have been provided from many methods, which I have been examined. 

For larger sample sizes, these two power estimation methods should perform similarly. 
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For the smaller sample sizes used for this study, they performed slightly differently but 

one was close to the post-hoc powers and the other was close to the rejection rates. The 

first method is the one I recommend.  

As explained these powers increased by the increase of the sample size and effect 

size. To consider it, not only was the theoretical power calculated for different sample 

sizes, but it was also calculated for different effect sizes. These effect sizes were 

implemented by multiplying BMI by 5 and 10 as well as 15, which is the effect size used 

within this study. The calculated theoretical powers were then plotted against each other. 

Figure 4.5 shows these theoretical powers for different effect sizes across four sample 

sizes of interest on the OAI population dataset. It shows the increase in the effect size and 

sample size of a study result in an increase in the estimated GMM based power.  

 

Figure 4.5. Line Chart of the Theoretical Powers for Three Effect Sizes and Four Sample 

Sizes 
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Hypothesis Testing for Each  

Simulated Data 

 

 The process of simulating 3,600 datasets for each sample size of 25, 50, 100, and 

200 was explained earlier. Once each dataset was created, within each data set, the 

hypothesis about the significance of BMI needed to be tested. For each of those data sets, 

after testing the hypothesis, the power was also calculated. Even though this sounds like a 

post-hoc power calculation and is also called post-hoc power throughout this paper, it 

was not calculated for the same purpose as some practitioners calculate the post-hoc 

power which is not supported by some statisticians (Hoenig & Heisey, 2001). In this 

study, each of the simulated data sets were also considered as a pilot data set of one of the 

desired four sizes and the power was calculated for each of the data sets to figure out the 

distribution of the powers for different sample sizes and compare the theoretical powers 

to them. Below, multiple steps of hypothesis testing and power calculation for the 

simulated data are explained: 

Step 1. In order to save time while running the analysis, the entire data set was 

simulated separately and saved in one master data set. This master simulated data set 

included 3,600 data sets of sample size 25 (270,000 rows), 3,600 data sets of sample size 

50 (540,000 rows), 3,600 data sets of sample size 100 (1,080,000 rows), and 3,600 data 

sets of sample size 200 (2,160,000 rows). Altogether, the master simulated data set had 

4,050,000 records. At each run, one of the simulated data sets from each sample size was 

selected and used to perform the power analysis. 

Step 2. A GEE was fitted to the selected data set using the “independence” 

correlation structure to find the initial, estimated points that needed to be used within the 

GMM function to estimate the model parameters using the GEE package in R. 
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Step 3. The written GMM function was then used within each data set to find the 

GMM estimates for the parameters of the model and to test for the effect of the BMI 

later. The estimated parameters were extracted from each data set to be used in the future 

steps. 

Step 4. The quadratic form for the GMM estimated parameters was then extracted 

for use in the process of calculating the Wald and DM statistics to test the BMI effect. It 

was also used in calculating the post-hoc powers of each data set. One additional 

quadratic form needed to be calculated for the DM statistic calculation, which is 

explained later in a separate section. 

Step 5. The Wald and DM statistics were then calculated using the quadratic form 

at the estimated values of the parameters and the GMM estimates of the BMI. The Wald 

and DM statistics were then extracted to be compared to the critical value later. 

Step 6. Each Wald and DM statistic was compared to the critical value, which 

comes from the distribution of the Wald statistic under the null hypothesis that is chi-

square with the degree of freedom of one. This value is equal to 3.841459 here. 

Step 7. The final decision regarding rejecting or not rejecting the null hypothesis 

of 𝛽𝐵𝑀𝐼 = 0 was made for each data set after comparing the calculated Wald and DM test 

statistics to the critical value. 

Step 8. Within each sample size, there were 3,600 data sets and the rejection rate 

was calculated for each of the sample sizes by dividing the number of the rejected 

hypotheses by 3,600. Then the 95% confidence interval was found and reported for each 

rejection rate. The rejection rates and their confidence intervals are reported in the 

simulation results section. 
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Distribution of Powers for Each  

Simulated Data 

 

As explained above, to figure out the distribution of the powers for different 

sample sizes and to see how they improve by the increase of sample size, after each 

hypothesis was tested, the power for that data set was also calculated. Once again, the 

idea of post-hoc power is not recommended here and this calculation is only being made 

to see how these powers are distributed across sample sizes by considering each of the 

simulated data as pilot data sets. 

To find out about the distribution of statistical powers of the simulated data, steps 

1 through 6, which were used to test the hypothesis about each data set, remain the same 

and a few more steps were added to the analysis. These steps are as below: 

Step 9. The non-centrality parameter was calculated for each data set, as below, 

using the GMM estimated parameters and the quadratic value at the GMM estimated 

parameters. This non-centrality parameter for the model considered in this study 

simplifies to  

𝜆 = 𝑛�̂�𝐵𝑀𝐼𝑄(�̂�)�̂�𝐵𝑀𝐼. 

Step 10. The power was then calculated by integrating the non-central chi-square 

distribution of the Wald statistic under the alternative hypothesis and the area under the 

non-central chi-square curve was calculated from 3.841459 which is the value of the 

central chi-square distribution with one degree of freedom, that is the distribution of the 

Wald-statistic under the null hypotheses, to infinity. 

Step 11. All these 3,600 powers within each simulated data were then averaged to 

find the mean of all these powers (called post-hoc power here). The median power was 
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also calculated and reported as well as some other descriptive statistics in the simulation 

results section.  

Simulation Results 

The results for the simulation studies of four sample sizes of 25, 50, 100, and 200 

are reported in four sub-sections below.  

Summary of Simulation Results  

for Sample Size of 25  

 

The simulation for sample size of 25 for the hypothesis test of BMI effect on 

2,973 out of 3,600 data sets resulted in an 82.6 % null hypothesis rejection rate using the 

Wald test. The rejection rate for the same simulated data sets using the DM statistic was 

91.58%, which is a lot higher than the Wald test results. As explained before, I do not 

recommend using the DM statistic. The average post hoc power was .628 and the median 

was .635. The average GMM estimated BMI parameter was close to the average GEE 

estimated BMI parameters and was around .73. These estimates were close to the 

population parameter estimate for BMI listed in Table 4.4. All simulation results for data 

sets of size 25 are summarized in Table 4.9. 

As obvious from Table 4.9, for sample size of 25, the theoretical power of .6698 

is very close to the post-hoc power and it falls into the 95% bootstrap confidence interval 

of the post-hoc power with the lower confidence limit of .3450 and upper confidence 

limit of .879. However, the rejection rate of the simulated data using the Wald test is 

much larger than the theoretical power showing us that for smaller sample sizes, the 

rejection rates do not line up with the calculated powers using the Wald statistic.  
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Table 4.9   

 

Simulation Results for 3,600 Data Sets of Size 25 (Theoretical Power=.6698) 

 

Rejection Rate 

using Wald Test  

Rejection Rate 

using DM Test  

Post-hoc Power of 

3,600 Simulated Data 

Average BMI 

Parameter 

Estimate 

 

.8260 .9158 Mean: .62837 

Q1: .54064 

Q2 (Median): .63509 

Q3: .72214 

 

�̅̂�𝐺𝑀𝑀 = .7349 

�̅̂�𝐺𝐸𝐸 = .7331 

Confidence 

Interval: 

(.8136, .8384) 

Confidence 

Interval: 

(.9067, .9249) 

Bootstrap CI: 

(.3450, .8790) 

 

As mentioned before, the DM statistic, which was claimed by Hall (2005) to have 

the same asymptotic distribution as the Wald statistics, produced very high rejection rates 

and therefore is not recommended at least for smaller sample sizes and under 

circumstances in which any of the 13 assumptions mentioned before might not be met. 

Summary of Simulation Results  

for Sample Size of 50 

 

The simulation for sample sizes of 50 for the hypothesis test of BMI effect on 

3,389 out of 3,600 data sets resulted in a 94.1 % rejection rate of the null hypothesis 

using the Wald test. The rejection rate for the same simulated data sets using the DM 

statistic was 99.7%, which is higher than the Wald test results. As explained before, I do 

not recommend using the DM statistic. The average post hoc power was .71 and the 

median was .72. The average GMM estimated BMI parameter was close to the average 

GEE estimated BMI parameters and was around .73. All results are summarized in Table 

4.10. 
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Table 4.10   

 

Simulation Results for 3,600 Data Sets of Size 50 (Theoretical Power=.6928) 

 

Rejection Rate 

using Wald Test  

Rejection Rate 

using DM Test  

Post-hoc Power of 

3,600 Simulated 

Data 

 

Average BMI 

Parameter Estimate 

. 9410  . 9970 Mean: .7105 

Q1: .6328 

Q2 (Median): .7213 

Q3: .8029 

 

�̅̂�𝐺𝑀𝑀 = .7321 

�̅̂�𝐺𝐸𝐸 = .7319 

Confidence 

Interval: 

(.9333, .9487) 

Confidence 

Interval: 

(.9952, .9988) 

Bootstrap CI: 

(.4368, .9115) 

 

As is obvious from Table 4.10, for sample size of 50, the theoretical power of 

.6928 is very close to the post-hoc power and it falls into the 95% bootstrap confidence 

interval of the post-hoc power with the lower confidence limit of .4368 and upper 

confidence limit of .9115. However, the rejection rate of the simulated data using the 

Wald test is much larger than the theoretical power showing that for smaller sample sizes, 

the rejection rates do not line up with the calculated powers using the Wald statistic. As 

mentioned before, the DM statistic, which was claimed by Hall (2005) to have the same 

asymptotic distribution as the Wald statistics, produced very high rejection rates and 

therefore is not recommended at least for smaller sample sizes and under circumstances 

in which any of the 13 assumptions mentioned before might not be met. 

Summary of Simulation Results  

for Sample Size of 100 

 

The simulation for sample sizes of 100 for the hypothesis test of BMI effect on 

3,469 out of 3,600 data sets resulted in a 96.4 % rejection rate of the null hypothesis 

using the Wald test. The rejection rate for the same simulated data sets using the DM 
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statistic was 100%, which is somewhat higher than the Wald test results. As explained 

before, I do not recommend using the DM statistic. The average post hoc power was .76 

and the median was .77. The average GMM estimated BMI parameter is close to the 

average GEE estimated BMI parameters and is around .73. All the results are 

summarized in Table 4.11. 

As is obvious from Table 4.11, for sample size of 100, the theoretical power of 

.7707 is very close to the mean of the post-hoc power and almost equal to their median. It 

falls into the 95% bootstrap confidence interval of the post-hoc power with the lower 

confidence limit of .4556 and upper confidence limit of .9381. However, the rejection 

rate of the simulated data using the Wald test is much larger than the theoretical power, 

showing us that for smaller sample sizes, the rejection rates do not line up with the 

calculated powers using the Wald statistic. 

 

Table 4.11  

  

Simulation Results for 3,600 Data Sets of Size 100 (Theoretical Power=.7707) 

 

Rejection Rate 

using Wald Test  

Rejection Rate using 

DM Test  

Post-hoc Power of 

3,600 Simulated 

Data 

 

Average BMI 

Parameter 

Estimate 

.9640  1. 0000 Mean: .7569 

Q1: .6878 

Q2 (Median): .7750 

Q3: .8488 

 

�̅̂�𝐺𝑀𝑀 = .7322 

�̅̂�𝐺𝐸𝐸 = .7322 

Confidence 

Interval: 

(.9579, .9701) 

Confidence Interval: 

NA 

Bootstrap CI: 

(.4556, .9381) 

 

As mentioned before, the DM statistic, which was claimed by Hall (2005) to have 

the same asymptotic distribution as the Wald statistics, is producing very high rejection 
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rates, representing Type I error, and therefore is not recommended at least for smaller 

sample sizes and under circumstances in which any of the 13 assumptions mentioned 

before might not be met. 

Summary of Simulation Results  

for Sample Size of 200 

 

The simulation for sample sizes of 200 for the hypothesis test of BMI effect on 

3,494 out of 3,600 data sets resulted in a 97.06 % rejection rate of the null hypothesis 

using the Wald test. The rejection rate for the same simulated data sets using the DM 

statistic was 100%, which is slightly higher than the Wald test results. As explained 

before, I do not recommend using the DM statistic for this sample size either. The post 

hoc power of the simulated data sets ranged from .2728 to .9964. The average post hoc 

power was .78 and the median was .798. The average GMM estimated BMI parameter 

was close to the average GEE estimated BMI parameters and was around .73. All results 

are summarized in Table 4.12. 

As is obvious from Table 4.12, for sample size of 200, the theoretical power of 

.7807 is very close to the median of the post-hoc powers and almost equal to their mean. 

It falls into the 95% bootstrap confidence interval of the post-hoc power with the lower 

confidence limit of .4860 and upper confidence limit of .9584. However, the rejection 

rate of the simulated data using the Wald test is much larger than the theoretical power 

showing us that for smaller sample sizes, the rejection rates do not line up with the 

calculated powers using the Wald statistic. So, it appears the sample size of 200 is still 

too small for the Wald test to perform as it is theoretically expected to behave while using 

the data with characteristics of the OAI data.  As mentioned before, the DM statistic, 

which was claimed by Hall (2005) to have the same asymptotic distribution as the Wald 
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statistics, produced very high rejection rates and therefore is not recommended at least for 

smaller sample sizes and under circumstances in which any of the 13 assumptions 

mentioned before might not be met. 

Table 4.12   

 

Simulation Results for 3,600 Data Sets of Size 200 (Theoretical Power=.7807) 

 

Rejection Rate 

using Wald Test 

Rejection Rate using 

DM Test 

Post-hoc Power of 

3,600 Simulated 

Data 

Average BMI 

Parameter 

Estimate 

 

.9706 1. 0000 Mean: .7788 

Q1: .7030 

Q2 (Median): .7981 

Q3: .8725 

 

�̅̂�𝐺𝑀𝑀 = .7323 

�̅̂�𝐺𝐸𝐸 = .7322 

Confidence 

Interval: 

(.9651, .9761) 

Confidence Interval: 

NA 

Bootstrap CI: 

(.4860, .9584) 

 

These results clearly show that the post-hoc powers are right in line with the 

calculated theoretical powers showing the accuracy of the power calculation technique 

developed in this dissertation. It is obvious that by an increase in sample size, the 

theoretical powers get much closer to the measures of central tendency of the post-hoc 

powers. Figure 4.6 shows the box plots of the post-hoc powers for different sample sizes 

displaying the distribution of the post-hoc powers. As is clear from these box plots, by 

increase sample sizes, the post-hoc power values move higher. The theoretical powers are 

indicated on the box plots, using circles, and connected to each other, using a solid line. 

They show an increasing trend by the increase of sample size and they obviously are very 

close to the center of the box plots. The rejection rates based on the Wald test are also 

indicated on the box plots and connected using dotted lines. They also show an increasing 

trend by the increase in sample size but they do not fall within the 25th and 75th 
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percentiles of each box plot showing they are much higher than the mean of the post hoc 

powers and the theoretical powers.  

 
Figure 4.6. Distributions of Post-Hoc Powers for Different Sample Sizes Using Wald 

Test 

 

Considering the main test investigated in this study is the Wald test, the rejection 

rates of the Wald were explored. The rejection rates being higher than the theoretical 

powers and the average of the post-hoc powers for each sample size shows that the 

hypothesis tests are rejected more often than what they should be. This is due to the high 

values of the Wald statistics calculated for each of the 3,600 simulated data for each of 

the four sample sizes considered for this study. It shows that the Wald statistics probably 

do not follow the non-central chi-square distribution that they should follow under the 

alternative hypothesis, according to Hall (2005). To investigate this possibility, the Wald 

test statistics from the simulated data were examined to see what parameter of their 

distribution is different from the non-central chi-square distribution mentioned in Hall 
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(2005). Table 4.13 summarizes the Wald statistics calculated for the simulated data sets 

of different size. 

 

Table 4.13  

  

Wald Statistics for 3,600 Data Sets of Sizes 25, 50, 100, and 200 

 

 

Sample size of 

25 

Sample size of 

50 

Sample size of 

100 

Sample size of 

200 

 

Mean 

 

5.51652 

 

6.67186 7.52108 8.05377 

Variance 

 

3.861 

 

3.921 4.899 6.504 

25th Percentiles 

 

4.25167 

 

5.28609 6.00113 6.21453 

50th Percentiles 

 

5.31447 

 

6.48601 7.37399 7.81154 

100th Percentiles 6.49833 7.90512 8.94792 9.60096 

 

These Wald statistics were then plotted for each sample size using histograms. 

Figures 4.7, 4.8, 4.9, and 4.10 show the histograms of the Wald statistics for the 

simulated data of sample sizes of 25, 50, 100, and 200, respectively. The non-central 

distributions of the Wald statistics they theoretically are supposed to follow are plotted on 

the histograms using a dashed curve. The solid curve in to the left shows the central chi-

square distribution these statistics are supposed to follow under the null hypotheses. Not 

having most of the histogram bars even close to the null curves, clearly suggests the null 

hypotheses should be rejected most of the time, which is true. Three vertical lines are also 

indicated on the histogram of the 3,600 Wald statistic values for each sample size. The 

first line from the left, which is in thicker than the rest of the lines, shows the critical 

value to which each Wald statistic was being compared and if the Wald statistics were 

higher than this critical value, the null hypothesis was rejected. It is obvious that most of 
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the Wald statistics were much higher than the critical value; this explains the high 

frequency of the times the null hypotheses were rejected. The second vertical line from 

the left specifies the average of the 3,600 Wald statistics. The third line from the left, 

which is dotted, shows the mean of the non-central chi-square distribution the Wald 

statistics should theoretically follow. It is obvious that the second and the third line are 

slightly different from each other but not too far away from one another. This shows that 

the means of the non-central chi-square distributions Wald statistics follow theoretically 

and empirically are almost the same.  Looking at Figures 4.7 through 4.10, as sample size 

increases, the shape of the distribution of the Wald statistics clearly becomes wider. It 

should be noted that no matter how much their variance increases based on increasing 

sample size, the non-central chi-square distribution the Wald statistic should theoretically 

follow under the alternative hypothesis does not seem to fit well to the actual values 

resulting from the Wald test on the 3,600 replications. As displayed on these histograms, 

what leads to a high rejection rate is that most of the Wald statistics are more 

concentrated around the area which is to the right of the critical value. This shows that 

even though the mean of the test statistics seems to be close to the mean of the 

hypothetical non-central chi-square distribution, their variances are not equal to the 

variance of the non-central chi-square distribution they theoretically should follow.  

As clearly observed, by the increase of the sample sizes, the variances of the 

population of Wald statistics seem to increase as well. The variances for sample sizes of 

25, 50, 100, and 200 are, respectively, equal to 3.861, 3.921, 4.899, and finally 6.504, 

which agrees with what the histograms in Figures 4.7, 4.8, 4.9, and 4.10 illustrate. The 

mean-variance relationship that exists for the theoretical non-central chi-square 
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distribution does not exist in the same way for the current values of the Wald statistics 

but the trend shows the Wald statistics are getting closer to what it should be by 

increasing the sample size. This theoretical mean-variance relationship shows if there is a 

𝜒1
2 distribution with the non-centrality parameter of 𝜆 = 5.75, which is the average non-

centrality value for the datasets with sample sizes of 25. The variance in this case should 

be equal to 2(1+2(5.75))=25; however, this variance is much larger than the variance of 

3.861 that is what the population of the calculated Wald statistics from data sets of size 

25 produced. This is why the Wald statistic values were mostly larger than the critical 

value and were not spread enough toward the tails of the curves of the non-central chi-

square distributions shown in Figure 4.7. The increase in the variance associated with the 

increase in sample size is promising and informative in providing the reason for having 

the empirical Wald statistics from the simulation study to not to follow the exact non-

central distributions they should follow based on the proof by Newey and West (1987). 

 
Figure 4.7. Distributions of the Wald Statistics for Sample Size of 25 
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Figure 4.8. Distributions of the Wald Statistics for Sample Size of 50 

 

 
Figure 4.9. Distributions of the Wald Statistics for Sample Size of 100 
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Figure 10. Distributions of the Wald Statistics for Sample Size of 200 

 

Summary and Implications for the Power Estimation 

of Longitudinal Data with Time-Dependent  

Covariates Using Generalized Method  

of Moments Estimation 

 

Estimating the GMM-based power is tough. At the same time, the methodology 

needed to be developed in a way that response values, effect sizes, parameter estimates, 

and the number of subjects were reflected in the estimated power since GMM-based 

power depends on all these criteria.  

Two methods were developed in this dissertation for calculating the theoretical 

power of pilot data using GMM and due to the results each method provided and their 

comparison to the post-hoc powers calculated from a subsequent simulation study, the 

first method is the method I recommend especially when working with smaller sample 

sizes. The results of the simulation study clearly showed that the post-hoc powers were 

consistent with the calculated theoretical powers showing the accuracy of the power 

calculation technique developed in this dissertation. It is obvious that by the increase in 
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sample size, the theoretical powers get much closer to the measures of central tendency 

of the post-hoc powers. 

According to the results from the simulation study, the estimated post-hoc powers 

increased with sample size and effect size and as expected, their average values were 

close to the theoretical powers calculated using the first method I proposed. This shows 

powers calculated based on the Wald statistic are distributed and behave similarly to the 

population theoretical powers. In contrast, the rejection rates were not close to the 

theoretical powers, which is due to not having a large enough sample size.  

The DM statistic, which was adopted due to the claim by Hall (2005) regarding its 

having the same asymptotic distribution as the Wald statistic, did not perform the same as 

the Wald statistic and did not provide similar results to the Wald test. The rejection rates 

using the DM test were higher than the rejection rates using a Wald test. As explained 

above, this might be due to smaller sample sizes or violation of assumptions that were 

specified in Hall (2005). By smaller sample sizes, I mean the sample size of 200, with the 

data characteristics of OAI data, had not yet reached the size necessary to satisfy the 

asymptotic distributional assumptions for the two statistics to perform similarly. This 

causes the power calculation to be higher than it should be for lower sample sizes. Power 

still increases, as expected, with increase sample size, but it is inflated for lower sample 

sizes. 

In summary, there need to be a much higher sample sizes for the empirical results 

to perform the same as the proposed theoretical methods and for now I recommend using 

the Wald statistic over the DM statistic for performing tests within longitudinal data with 

time-dependent covariates using the GMM estimation method. 
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CHAPTER V 

 

 

CONCLUSIONS 

 

Methods for estimation of statistical power for longitudinal data with time-

dependent covariates using generalized method of moments (GMM) were developed in 

this dissertation. GMM was adopted within the power estimation techniques as the 

estimation method in order to provide more efficient estimates than generalized 

estimating equations (GEE) or restricted maximum likelihood (REML) used in the power 

estimation procedure when dealing with varying types of covariates. 

The developed power estimation methods mainly focused on the use of the Wald 

statistic, which was proven to follow a chi-square distribution. The centrality or non-

centrality of this distribution depends on whether the distribution of the Wald statistic is 

considered under the null or alternative hypothesis. Under the null hypothesis, this 

statistic follows an asymptotic central chi-square distribution; however, it follows a non-

central chi-square distribution under the alternative hypothesis. The other statistic 

evaluated in this study is the distant metric (DM) statistic, which according to Hall (2005) 

should have the identical asymptotic chi-square distribution as the Wald statistic. 

Therefore, theoretically, the power estimation procedures developed in this dissertation 

based on the two statistics should perform similarly when the sample size is large and all 

the assumptions given by Hall (2005) are met. 
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The objective of the proposed methods and the results presented in this 

dissertation was to help applied researchers and practitioners, who design studies using 

real data, make valid decisions in terms of sample size selection. In turn, such decisions 

should result in an optimal sample size for their study, which results in an acceptable 

range of statistical power according to their discipline. The contribution of the proposed 

power estimation methods in this dissertation is that it is a new technique capable of 

coping with the use of time-dependent covariates in longitudinal modeling. A review of 

the literature on longitudinal modeling, GMM techniques, and power estimation 

techniques in Chapter II indicated that no known work had been done that applies the 

GMM estimation technique in the process of estimating power for repeated measures. 

This gap negatively affected this field of research in a way that the existing power 

estimation techniques were not general enough to efficiently involve time-dependent as 

well as time-independent covariates in a model.  In Chapter III, these methods were 

theoretically developed and in Chapter IV, the performance of the proposed methods was 

evaluated. After validating these methods through real data analyses and simulation 

studies, the limitations of the proposed methodology were illustrated.  

The power estimation technique introduced in this dissertation is different in the 

sense that there had not been any developed power estimation procedure that uses the 

GMM estimation technique and its related test statistics to estimate power for hypothesis 

tests for longitudinal data when dealing with time-dependent covariates. In previously 

developed techniques, covariates were assumed to stay constant throughout the study, 

which is not always realistic. The power estimation methods established in this paper, 

however, give researchers and practitioners the opportunity to use varying types of 
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covariates and still be able to estimate the statistical power of tests in their studies and 

predict optimal sample sizes for desired levels of power. The developed power estimation 

algorithm improves upon the other methods in that the process takes advantage of using a 

more efficient estimation technique (i.e., GMM) to capture the changes of the covariates 

over time. 

The power estimation approach developed in this dissertation has two major 

advantages over previously developed power estimation methods for longitudinal models. 

First, the current power estimation method uses an estimation technique within its 

procedure that does not require any distributional assumptions, which can be helpful 

when dealing with data that do not meet the usual distributional assumptions. Second, 

GMM, which was used in this study, uses a set of moment conditions to take into account 

the autocorrelation among subjects and the time varying nature of some of the covariates. 

On the other hand, the GEE-based power estimation approach is subject to some 

criticisms because of forcing all the covariates used in a model to remain constant 

throughout the study, which will result in some loss of information, hence the reduced 

efficiency of the results.  

The performance of the proposed methodology was tested in a simulation study as 

well as in applications using a pre-existing data set consisting of osteoarthritis initiative 

(OAI) data from a multi-center study on osteoarthritis of the knee. The results regarding 

the accuracy of performance of the developed power techniques and the situations that 

would affect their performance in application were tabulated and discussed in Chapter 

IV. 
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I developed the simulation scheme by borrowing information from the real OAI 

data to ensure that the results of the simulation study are generalizable to real data 

analysis; hence, the methodology could be adopted by researchers in different fields 

when using real data with unexpected behavior over time. Using this scheme rather than 

controlling for the distribution of all the covariates used in the simulation study made it 

more difficult to meet all the assumptions but, on the other hand, it resulted in a valuable 

gain in generalizability of the methodology when evaluating the performance of the 

theoretically developed methods in dealing with real data. This aided in providing helpful 

guidelines for practitioners regarding the situations that might arise in real data analysis 

when the methods might not perform as well as what was claimed in theory.  

Furthermore, the simulation study clarified the accuracy of the power estimation 

method using the Wald test and the fact that using the DM technique may be erroneous 

when sample sizes are smaller and the random vectors of data do not necessarily form a 

strict stationary and ergodic process. In such cases, these techniques do not necessarily 

perform as expected. In order to improve the accuracy of the estimated power, different 

recommendations, such as increasing the sample size and sub-sampling or simulating 

data in the process of calculating the statistical power for future studies following certain 

steps, are provided.  

To validate the results obtained from the simulation process, the hypothesis tests 

using the Wald statistic as well as the DM statistic were conducted on 3,600 simulated 

data sets. Different results from the simulation study, such as the rejection rates, test 

statistic values, and post-hoc power, were compared to the values calculated from the 

population data and across sample sizes within the simulation. The simulation study 
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showed that the average post-hoc power lines up with the theoretical power, using the 

procedure developed in this dissertation, for different sample sizes. However, the 

rejection rates are much higher than the theoretical powers for the smaller sample sizes 

considered in this study. 

The first research question addressed the process of estimating the statistical 

power for longitudinal data in the presence of time dependent covariates using the Wald 

approach within a GMM estimation technique. The GMM estimation used within the 

Wald test was combined with the power estimation process to find the power of 

hypothesis tests using such data. This question was theoretically answered in Chapter III 

and the main steps leading to the results of applying the methods to real data are 

demonstrated in Chapter IV. The results obtained from the post-hoc power calculation of 

the simulated data and by comparing their distribution to the theoretical powers 

calculated from the pilot data showed that the powers calculated based on the Wald 

statistic are distributed and behave, similarly to the population theoretical powers. As 

expected, the estimated post-hoc powers increased with the increase of sample size and 

effect size. The accuracy of these powers was enhanced by the increase of sample size. 

The applied methods developed in this study to address the second and fourth 

research questions were the biggest contributions made in Chapter IV of this dissertation 

to provide easy directions for applied researchers to find out the optimal sample size and 

power for their studies. Two methods of estimating the theoretical power for different 

sample sizes, leading to optimal sample size for the desired power for each study, were 

developed. Then, the first method was assessed and it provided results that were closer to 
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the results from the simulation study, making it the preferred option to be adopted by 

researchers. Briefly, the process is as follows. 

After defining the appropriate model for each study and determining the 

hypothesis to be tested, the true effects of the alternative and sample sizes of interest need 

to be determined. If the pilot data set is larger than the sample sizes of interest, sub-

samples of covariates and outcomes need to be taken. If effect sizes for the study were 

decided to alter from the original model, the new outcomes must be generated to reflect 

these effects. On the other hand, if the pilot data set is smaller than the sample sizes of 

interest, data sets of the sizes of interest need to be randomly generated using similar 

characteristics of the pilot data set. So, either pilot data or generated data are always 

needed within this method. Then the programs I wrote, or any other software, can be used 

to obtain the non-centrality parameters for all sub-samples, or simulated samples for the 

second scenario.  

What differentiates the first method from the second method is the use of the 

GMM estimated parameters from each data set in the process of finding the non-

centrality parameter for the respective data set. The first method produces estimates for 

each sub-sampled or simulated data. On the other hand, the second method uses the 

parameter estimates from the original pilot dataset in finding the non-centrality parameter 

for all different sub-sampled or simulated data sets. Using the average of all the non-

centrality parameters, the power of the study can be calculated using the same procedure 

that was used when answering the first and third research questions.   

The third research question was addressed the same way as the first question with 

the only difference being the different statistic used in the testing process. Within this 
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procedure, the DM statistic was adopted instead of the Wald statistic and the rest of the 

steps stayed the same due to the identical asymptotic distributions of these two statistics. 

The results obtained from the post-hoc power calculation of the simulated data revealed 

that the DM statistic, which was adopted from Hall (2005), did not perform the same as 

the Wald statistic and did not provide similar results to the Wald statistic and Wald test. 

These differences might be due to smaller sample sizes or violation of assumptions. If 

assumption violation is the case, the violated assumptions most likely are the violation of 

ergodicity or stationarity of data. I recommend using the Wald statistic over the DM 

statistic for performing tests within longitudinal data with time-dependent covariates 

using the GMM estimation method. 

The simulation study was also used to answer the last research question regarding 

the behavior of the proposed method under varying sample sizes and the comparison of 

its results to the empirical results regarding power. Comparisons of the rejection rates of 

the simulated study and the estimated theoretical powers of the pilot dataset for different 

sample sizes was used to evaluate the behavior of the developed power estimation 

methodology. The results varied depending upon the sample sizes used within this study 

but they all agreed in one respect, which is the need for a higher sample size for the 

empirical results to perform exactly the same as the proposed theoretical methods. It is 

concluded that the methods which were theoretically proven to work in Chapter III for 

estimating the power do not perfectly work for sample sizes of 200 or smaller but it is 

shown that, even within these smaller sample sizes, as sample size increases, the results 

get closer to the theoretical expectations. 
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For the application considered in this dissertation, the developed methods were 

applied to a biomedical data set. However, these methods can be applied to any discipline 

or area of research as long as the model and hypothesis tests are correctly specified, the 

assumptions are met, and the sample sizes are large enough for the statistical tests to 

follow the asymptotic distributions they are supposed to follow in line with the 

theoretical proofs.  

Limitations and Future Research 

Though this dissertation investigated the power estimation methods of a specific 

type of longitudinal data, the methodology can be applied to a wide range of data types 

and models. This encourages future work in this area due to its potential generalizability 

to different models. The results also highlight the fact that the research line on power 

estimation and sample size calculation using GMM within longitudinal models that deal 

with varying types of covariates is not closed.  

Limitations such as smaller sample sizes used for this study and the lengthy run 

time are acknowledged and therefore are areas of future research to explore. The sample 

size limitation is believed to be the main reason for the differences in the final results in 

Chapter IV compared to what was expected based on the theory developed in Chapter III. 

The run time was the main reason I could not extend the work to larger sample sizes for 

the current study; however, advances in technology and using more powerful computers 

will help in investigating the performance of the developed methods for larger sample 

sizes. 

I aim to continue with the extension of this research line in several areas, 

including, but not limited to, extending the current methods to varying types of response 
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variables such as binary and categorical responses, applying these models to other types 

of time-dependent covariates, as well as developing R packages that can handle balanced 

data, meaning the circumstances where different numbers of follow-up times for the 

repeated measurements of the longitudinal studies are involved.  

Extending these models to unbalanced data would enable researchers to estimate 

statistical power for circumstances where not every subject’s measurement is recorded 

for every follow-up time. These situations arise in different areas such as biomedical 

studies when patients do not show up for every follow-up visit to their physician’s office 

or hospital; in education when students drop out of school or do not take every exam 

while being evaluated at the end of a school year; in social research when not everyone 

fills out every survey throughout a study and, in general, in every field that involves 

multiple measurement of the same subject and not every measurement can be recorded 

over the period of study. 

Extending this methodology to different types of outcome variables is another 

area of interest that can greatly benefit applied practitioners working with varying types 

of responses. I plan to adopt binary logistic models when dealing with dichotomous 

responses and borrow the theory from ordinal or multinomial models when predicting 

categorical responses, then apply them along with the power estimation techniques 

developed in this dissertation to build models that are more general. 

 Adopting and extending the developed techniques for data with other types of 

time-varying covariates could also provide valuable information for researchers testing 

for types I, III, and IV time-dependent covariates. Within this dissertation, the main 

hypothesis was tested on a type II time-dependent covariate; however, researchers might 
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be interested in testing other types of time-dependent covariates. Investigating the 

performance of the developed methods within this dissertation on the other types of time- 

dependent covariates and extending them, if necessary, will add to the body of research, 

making it possible for researchers to test other types of covariates as well while being 

able to estimate power for their models.  

Although GMM power estimation is tough to calculate due to the fact that 

responses, effect sizes, parameter estimates, and the number of subjects are reflected in 

the estimated power, the developed methods add options in being able to estimate power 

for longitudinal data with time-dependent covariates in different fields. Writing packages 

and manuals in R for each of the models I worked on in the current dissertation and am 

planning to continue to pursue in the future, will help practitioners to easily use these 

techniques to design studies with optimal power and minimum sample size. 
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DATA GENERATION CODE 
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N=c(25,50,100,200) 

 

OAIModel = lmer(WOMAC1 ~ Sex+Age+BMI+t2+t3+(1|ID), data= Dataset, REML=TRUE) 

beta<-(summary(OAIModel))$coefficients[,1] 

 

ids<-sqldf::sqldf("select distinct `ID` from Dataset") 

 

samples<-data.frame('n'=c(0), 'run'=c(0), 'ID'=c(0), 'Sex'=c(0), 'Index1'=c(0), 'Age'=c(0), 'BMI'=c(0), 'WOMAC'=c(0), 'Sex'=c(0), 

'WOMAC1'=c(0), 't2'=c(0), 't3'=c(0), 'predicted2'=c(0), 'predicted3'=c(0), 'predicted5'=c(0), 'predicted10'=c(0), 'predicted15'=c(0), 

'predicted20'=c(0), 'predicted25'=c(0), 'predicted30'=c(0), 'predicted40'=c(0), 'predicted50'=c(0), 'time'=c(0), 'ID2'=c(0)) 

 

for (j in 1:4) 

{ 

  for (i in 1:3,600) 

  { 

    set.seed(seed=i^2+7) 

    subjects<-sample(x = t(ids), size=as.numeric(N[[j]]), replace=FALSE) 

    X<-Dataset[which(Dataset$`ID` %in% subjects),]     

    errors<-rnorm(n=length(X[,1]), mean=0, sd=0.5444)     

    RandomIntercept<-rnorm(n=length(X[,1])/3, mean=0, sd=0.7503) 

    errorREP<-rep(RandomIntercept, each=3) 

 

    values1<-beta[1]+ beta[2]*X[["Sex"]]+beta[3]*X[["Age"]]+2*beta[4]*X[["BMI"]]+beta[5]*X[["t2"]]+beta[6]*X[["t3"]] 

    values2<-beta[1]+ beta[2]*X[["Sex"]]+beta[3]*X[["Age"]]+3*beta[4]*X[["BMI"]]+beta[5]*X[["t2"]]+beta[6]*X[["t3"]] 

    values3<-beta[1]+ beta[2]*X[["Sex"]]+beta[3]*X[["Age"]]+5*beta[4]*X[["BMI"]]+beta[5]*X[["t2"]]+beta[6]*X[["t3"]] 

    values4<-beta[1]+ beta[2]*X[["Sex"]]+beta[3]*X[["Age"]]+10*beta[4]*X[["BMI"]]+beta[5]*X[["t2"]]+beta[6]*X[["t3"]] 

    values5<-beta[1]+ beta[2]*X[["Sex"]]+beta[3]*X[["Age"]]+15*beta[4]*X[["BMI"]]+beta[5]*X[["t2"]]+beta[6]*X[["t3"]] 

    values6<-beta[1]+ beta[2]*X[["Sex"]]+beta[3]*X[["Age"]]+20*beta[4]*X[["BMI"]]+beta[5]*X[["t2"]]+beta[6]*X[["t3"]] 

    values7<-beta[1]+ beta[2]*X[["Sex"]]+beta[3]*X[["Age"]]+25*beta[4]*X[["BMI"]]+beta[5]*X[["t2"]]+beta[6]*X[["t3"]] 

    values8<-beta[1]+ beta[2]*X[["Sex"]]+beta[3]*X[["Age"]]+30*beta[4]*X[["BMI"]]+beta[5]*X[["t2"]]+beta[6]*X[["t3"]] 

    values9<-beta[1]+ beta[2]*X[["Sex"]]+beta[3]*X[["Age"]]+40*beta[4]*X[["BMI"]]+beta[5]*X[["t2"]]+beta[6]*X[["t3"]] 

    values10<-beta[1]+ beta[2]*X[["Sex"]]+beta[3]*X[["Age"]]+50*beta[4]*X[["BMI"]]+beta[5]*X[["t2"]]+beta[6]*X[["t3"]] 

     

    predicted2<-values1+errors+errorREP 

    predicted3<-values2+errors+errorREP 

    predicted5<-values3+errors+errorREP 

    predicted10<-values4+errors+errorREP 

    predicted15<-values5+errors+errorREP 

    predicted20<-values6+errors+errorREP 

    predicted25<-values7+errors+errorREP 

    predicted30<-values8+errors+errorREP 

    predicted40<-values9+errors+errorREP 

    predicted50<-values10+errors+errorREP 

     

    sample.run<-data.frame(cbind('n'=c(rep(N[[j]], N[[j]]*3)), 'run'=c(rep(i, N[[j]]*3)), X, predicted2, predicted3, predicted5, 

predicted10, predicted15, predicted20, predicted25, predicted30, predicted40, predicted50)) 

    samples=rbind(samples, sample.run) 

  } 

} 

toc() 
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APPENDIX B 

 

 

GENERALIZED METHOD OF MOMENTS FUNCTION
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QuadForm2=function(beta1, sampleset, n) # the new quadform 

{ 

  G=c(rep(0,39)) 

  S=matrix(0,39,39) 

  #n=nrow(sampleset)/3 

  for (i in 1:n) 

  { 

    gets<-numeric() 

    g11<-sampleset[((i*3) -2), ]; g11 <- unlist(g11) 

    g1<-unlist(c(1, g11[c("Sex","Age", "BMI", "t2", "t3")])); g1 <- unlist(g1) 

    g22<-sampleset[((i*3) -1), ]; g22 <- unlist(g22) 

    g2<-unlist(c(1, g22[c("Sex","Age", "BMI", "t2", "t3")])); g2 <- unlist(g2) 

    g33<-sampleset[((i*3)), ]; g33 <- unlist(g33) 

    g3<-unlist(c(1, g33[c("Sex","Age", "BMI", "t2", "t3")])); g3 <- unlist(g3)       

     

    #Intercept 

    gets[1]=g11["predicted"]-g1%*%beta1 

    gets[2]=g22["predicted"]-g2%*%beta1 

    gets[3]=g33["predicted"]-g3%*%beta1 

     

    #Age 

    gets[4]=g1["Age"]*(g11["predicted"]-g1%*%beta1) 

    gets[5]=g1["Age"]*(g22["predicted"]-g2%*%beta1) 

    gets[6]=g1["Age"]*(g33["predicted"]-g3%*%beta1) 

     

    gets[7]=g2["Age"]*(g11["predicted"]-g1%*%beta1) 

    gets[8]=g2["Age"]*(g22["predicted"]-g2%*%beta1) 

    gets[9]=g2["Age"]*(g33["predicted"]-g3%*%beta1) 

     

    gets[10]=g3["Age"]*(g11["predicted"]-g1%*%beta1) 

    gets[11]=g3["Age"]*(g22["predicted"]-g2%*%beta1) 

    gets[12]=g3["Age"]*(g33["predicted"]-g3%*%beta1) 
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     #Sex 

    gets[13]=g1["Sex"]*(g11["predicted"]-g1%*%beta1) 

    gets[14]=g2["Sex"]*(g22["predicted"]-g2%*%beta1) 

    gets[15]=g3["Sex"]*(g33["predicted"]-g3%*%beta1) 

     

    #BMI 

    gets[16]=g1["BMI"]*(g11["predicted"]-g1%*%beta1) 

    gets[17]=g2["BMI"]*(g11["predicted"]-g1%*%beta1) 

    gets[18]=g3["BMI"]*(g11["predicted"]-g1%*%beta1) 

     

    gets[19]=g2["BMI"]*(g22["predicted"]-g2%*%beta1) 

    gets[20]=g3["BMI"]*(g22["predicted"]-g2%*%beta1) 

     

    gets[21]=g3["BMI"]*(g33["predicted"]-g3%*%beta1) 

     

    #t2 

    gets[22]=g1["t2"]*(g11["predicted"]-g1%*%beta1) 

    gets[23]=g1["t2"]*(g22["predicted"]-g2%*%beta1) 

    gets[24]=g1["t2"]*(g33["predicted"]-g3%*%beta1) 

     

    gets[25]=g2["t2"]*(g11["predicted"]-g1%*%beta1) 

    gets[26]=g2["t2"]*(g22["predicted"]-g2%*%beta1) 

    gets[27]=g2["t2"]*(g33["predicted"]-g3%*%beta1) 

     

    gets[28]=g3["t2"]*(g11["predicted"]-g1%*%beta1) 

    gets[29]=g3["t2"]*(g22["predicted"]-g2%*%beta1) 

    gets[30]=g3["t2"]*(g33["predicted"]-g3%*%beta1) 

     

    #t3 

    gets[31]=g1["t3"]*(g11["predicted"]-g1%*%beta1) 

    gets[32]=g1["t3"]*(g22["predicted"]-g2%*%beta1) 

    gets[33]=g1["t3"]*(g33["predicted"]-g3%*%beta1) 

     

    gets[34]=g2["t3"]*(g11["predicted"]-g1%*%beta1) 

    gets[35]=g2["t3"]*(g22["predicted"]-g2%*%beta1) 

    gets[36]=g2["t3"]*(g33["predicted"]-g3%*%beta1) 

     

    gets[37]=g3["t3"]*(g11["predicted"]-g1%*%beta1) 
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    gets[38]=g3["t3"]*(g22["predicted"]-g2%*%beta1) 

    gets[39]=g3["t3"]*(g33["predicted"]-g3%*%beta1) 

     

    G=G + (gets) 

    S=S + gets%*%t(gets) 

  } 

  G=G/n 

  W=MASS::ginv((1/n)*S) 

  QF=t(G)%*%W%*%G 

} 
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POWER FUNCTION
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rep <- 100 

n <- 25 

pb <- txtProgressBar(style = 3) 

results25 <- data.frame(Lambdabhatn = rep(NA,rep), powerbhatn = rep(NA,rep)) 

for(i in 1:rep){ 

    ids <- sample(x = unique(Dataset$ID), size = n, replace = FALSE) 

    sampleset <- Dataset[Dataset$ID %in% ids,] #working data 

    beta1 <- gee::gee(predicted ~ Sex+Age+BMI+t2+t3, id = ID, data = sampleset, corstr = "independence")$coefficients 

    betahat <- optim(beta1, QuadForm2)$par 

    QQ1<-QuadForm2(betahat) 

    results25$Lambdabhatn[i]<-n*betahat[4]*QQ1*betahat[4] 

    results25$powerbhatn[i]<-pchisq(q=CV, ncp=results25$Lambdabhatn[i], df=1, lower.tail = F) 

    setTxtProgressBar(pb, i/rep) 

  } 

close(pb) 

head(results25); mean(results25$powerbhatn) 

 

# Randomly sample 50 observations 100 times  

n <- 50 

pb <- txtProgressBar(style = 3) 

results50 <- data.frame(Lambdabhatn = rep(NA,rep), powerbhatn = rep(NA,rep)) 

for(i in 1:rep){ 

    ids <- sample(x = unique(Dataset$ID), size = n, replace = FALSE) 

    sampleset <- Dataset[Dataset$ID %in% ids,] #working data 

    beta1 <- gee::gee(predicted ~ Sex+Age+BMI+t2+t3, id = ID, data = sampleset, corstr = "independence")$coefficients 

    betahat <- optim(beta1, QuadForm2)$par 

    QQ1<-QuadForm2(betahat) 

    results50$Lambdabhatn[i]<-n*betahat[4]*QQ1*betahat[4] 

    results50$powerbhatn[i]<-pchisq(q=CV, ncp=results50$Lambdabhatn[i], df=1, lower.tail = F) 

    setTxtProgressBar(pb, i/rep) 

  } 

close(pb) 

head(results50); mean(results50$powerbhatn) 

 

# Randomly sample 100 observations 100 times  

n <- 100 

pb <- txtProgressBar(style = 3) 

results100 <- data.frame(Lambdabhatn = rep(NA,rep), powerbhatn = rep(NA,rep)) 

for(i in 1:rep){ 

    ids <- sample(x = unique(Dataset$ID), size = n, replace = FALSE) 

    sampleset <- Dataset[Dataset$ID %in% ids,] #working data 

    beta1 <- gee::gee(predicted ~ Sex+Age+BMI+t2+t3, id = ID, data = sampleset, corstr = "independence")$coefficients 

    betahat <- optim(beta1, QuadForm2)$par 

    QQ1<-QuadForm2(betahat) 

    results100$Lambdabhatn[i]<-n*betahat[4]*QQ1*betahat[4] 

    results100$powerbhatn[i]<-pchisq(q=CV, ncp=results100$Lambdabhatn[i], df=1, lower.tail = F) 

    setTxtProgressBar(pb, i/rep) 

  } 

close(pb) 

head(results100); mean(results100$powerbhatn) 

# Randomly sample 200 observations 100 times  

n <- 200 

pb <- txtProgressBar(style = 3) 

results200 <- data.frame(Lambdabhatn = rep(NA,rep), powerbhatn = rep(NA,rep)) 

for(i in 1:rep){ 

    ids <- sample(x = unique(Dataset$ID), size = n, replace = FALSE) 

    sampleset <- Dataset[Dataset$ID %in% ids,] #working data 

    beta1 <- gee::gee(predicted ~ Sex+Age+BMI+t2+t3, id = ID, data = sampleset, corstr = "independence")$coefficients 

    betahat <- optim(beta1, QuadForm2)$par 

    QQ1<-QuadForm2(betahat) 

    results200$Lambdabhatn[i]<-n*betahat[4]*QQ1*betahat[4] 
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    results200$powerbhatn[i]<-pchisq(q=CV, ncp=results200$Lambdabhatn[i], df=1, lower.tail = F) 

    setTxtProgressBar(pb, i/rep) 

  } 

close(pb) 

head(results200); mean(results200$powerbhatn) 

printout <- (cbind(results25, results50, results100, results200)) 

colnames(printout) <- c("25_Lambdabhatn", 

"25_powerbhatn","50_Lambdabhatn","50_powerbhatn","100_Lambdabhatn","100_powerbhatn","200_Lambdabhatn","200

_powerbhatn") 

write.csv(printout, file = "theoretical power results rep 5 by BMI 100_n25to200_GEE quadratic each sample_6.15.2017.csv 
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