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ABSTRACT

Seo, JangDong. Joint models of longitudinal outcomes and informative time.
Published Doctor of Philosophy Dissertation, University of Northern
Colorado, 2015

In longitudinal data analyses, it is commonly assumed that time intervals

for collecting outcomes are predetermined – the same across all subjects – and have

no information regarding the measured variables. However, in practice researchers

might occasionally have irregular time intervals and informative time, which violate

the above assumptions. Hence, if traditional statistical methods are used for this

situation, the results would be biased.

In this study, as a solution, joint models of longitudinal outcomes and

informative time are presented by using joint probability distributions,

incorporating the relationships between outcomes and time. The joint models are

designed to handle outcome distributions from a member of the exponential family

of distributions with informative time following an exponential distribution. For

instance, the Poisson probability density function is combined with the exponential

distribution for count data, as well as the relations between outcomes and time; the

Bernoulli probability density function is combined for binary data; and the Gamma

probability density function is combined when the outcome is waiting time or

survival time. The maximum likelihood parameter estimates of the joint model are

found by using a nonlinear optimization method, and the asymptotic behaviors of

the estimators are studied. Moreover, the likelihood ratio test statistic is computed

for comparing nested models, and the model selection criteria, such as AIC, AICc,

BIC, are found as well.
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Through simulation studies, the maximum likelihood parameter estimates

of the joint models appeared to be multivariate normal as the number of

observations increased. As a result, the likelihood ratio test statistic could be

utilized for model comparisons since the asymptotic normality of the maximum

likelihood estimators has been verified. Also, AIC, AICc, and BIC scores were

calculated as model selection criteria. Furthermore, the computing package using R

was developed to handle the joint models and used to analyze the bladder cancer

data for demonstration purposes.
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CHAPTER I

INTRODUCTION

The term “repeated measurements” is used to define outcomes measured at

multiple time points on the same subjects or experimental units. When outcomes

are collected for a relatively long period of time on the same subjects to evaluate

the changes over time, the term “longitudinal data” is a common name instead of

repeated measurements. In general, repeated measurement data are treated as a

part of longitudinal data (Davis, 2002). Longitudinal study design is believed to

be more powerful than traditional cross-sectional design in terms of the ability to

capture the within-subject effect, by excluding the between-subject variability and

investigating any trend or pattern on the changes for subjects. In addition, due to

the exclusion of between-subject variability, the estimate of within-subject effects

can be calculated more accurately (Fitzmaurice, Laird, & Ware, 2004; Hedeker &

Gibbons, 2006).

Despite the advantages of the longitudinal design over the cross-sectional

design, there are some barriers to analyzing the longitudinal data due to its

complexity of data structure. Firstly, the measurements are assumed to be

correlated, in general, with each other since the outcomes are collected repeatedly

at multiple time points from the same subjects. The traditional approaches, such as

simple method, the Analysis of Variance (ANOVA), or Multivariate Analysis of
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Variance (MANOVA), have an assumption that outcomes are independent of each

other, ignoring the correlation among outcomes, which cannot be true in

longitudinal designs. Secondly, due to the long duration of a study, the researcher

has difficulties controlling the subjects or the whole experiment. Therefore, very

often the final data may turn out to be incomplete or unbalanced, or has missing

data due to attrition, which is also adding to difficulties in analyzing the data, even

though the researcher did not intend it at the beginning of the study.

Many methods have been developed and proposed attempting to handle the

problems, but most of the methods are limited to cases with complete data

(Hedeker & Gibbons, 2006), or normally distributed outcomes with balanced

complete data (Davis, 2002). That is why nowadays the mixed-effects model or the

generalized estimating equation (GEE) model is getting popular, but many

researchers still also use the traditional methods due to the simplicity of

computation, in spite of their drawbacks. Therefore, selection of a method for one’s

longitudinal study is totally up to the researcher’s subjective judgement based on

the purpose of the research.

General Notations for Longitudinal Data

Notations to represent longitudinal data used in this study may slightly

vary based on the methods introduced in each chapter, but the general notations

are similar throughout this study. The number of subjects, or experimental units, is

denoted by m and the subject is denoted by i, which are expressed as

i = 1, . . . ,m.
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Time point for the ith subject is denoted by j and the number of outcomes of the

ith subject, which are written as

j = i, . . . , ni.

If a dataset is balanced and complete, all subjects will have the same

number of outcomes at the same time points, then j can be simplified by

j = 1, . . . , n. The advantage of using ni is that it allows each subject to have a

different number of outcomes. The outcomes at the jth time point for the ith

subject with ni outcomes can be expressed by

yij = (yi1, . . . , yini
)′.

A general layout of longitudinal data is described in Table 1 below.

Table 1

General Layout of Longitudinal Data

Subject Occasions

1 y11 y12 . . . y1j . . . y1n1

2 y21 y22 . . . y2j . . . y2n2

...
...

...
...

...

i yi1 yi2 . . . yij . . . yini

...
...

...
...

...

m ym1 ym2 . . . ymj . . . ymnm

A balanced or complete data structure is a special case of longitudinal data since

each subject can have a different number of measurements.
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Longitudinal Data Analysis

Many approaches have been developed in order to handle longitudinal data.

However, none of those can take care of all potential problems that may arise in the

analysis for longitudinal data, so researchers have to make a decision about which

approach to use based on their research questions, purpose of study, and data

collection method.

For example, a simple method was introduced by Student (1908). In his

study there were two outcome variables, such as pretest and posttest, and then a

new variable called the summary variable was calculated by taking the difference

between the pretest and posttest. Then, the summary variable was tested to

determine if the average of the summary variable was equal to zero. This method

will be enough when there are only two outcome variables at two different time

points. The simple method has been applied by many researchers due to its

simplicity of calculation.

Currently, one of the most commonly used methods might be the Analysis

of Variance (ANOVA) or Multivariate Analysis of Variance (MANOVA) method.

These methods are more advanced techniques than the simple method and easy to

apply to longitudinal data. The two methods, however, have unrealistic

assumptions, such as equal variance structure and equal predetermined time

intervals to all subjects; moreover, data should be complete and balanced.

Other methods called mixed-effects model and generalized estimating

equation (GEE) model are also used with highly math-oriented or computer-based
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techniques, attempting to handle the special characteristics of longitudinal data:

correlation among outcomes, unequal time points for each subject, and unbalanced

data structure. Although these methods were developed to obtain more accurate

estimations of changes over time, they are known to be computationally very

complicated and need more computer programming. Despite computational

difficulties, these approaches are being widely used, especially in the fields of

biology, pharmaceuticals or physics due to the accuracy and efficiency of the

estimation. Moreover, the GEE approach was developed to handle binary and

count outcomes as well as continuous outcomes; therefore, the GEE model is very

useful when the outcome is binary or count. The common drawback of the GEE

and mixed-effects models is that time is still fixed or predetermined by the design.

So, when time points are irregular and data are unbalanced, estimators may be

biased (Lin, Scharfstein, & Rosenheck, 2004). Researchers are still putting in a lot

of effort to find better methods. For instance, when time is informative, which

means that the next time points for collecting measurements are adaptively

determined based on current outcomes for each subject, the methods mentioned

above are not appropriate.

Purpose of the Study

Most of the currently existing methods have now been introduced, and

some disadvantages have been described as well as advantages. One common aspect

to all the methods above is that time is fixed or predetermined before the study. In

general, longitudinal study is conducted for a relatively long period of time to find
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if there is any specific trend over time. If time is not fixed or cannot be determined

by a researcher – since each subject’s next time point is decided based on current

outcome, causing irregular time intervals for individuals – estimations by using the

methods above may be biased. For instance, individuals may follow different

measurement schedules based on their prior health outcomes since patients who

have poorer health outcomes will be asked to visit for checkups more often;

therefore, patients will not share the common time occasions; instead each patient

will follow their own schedule for visiting the clinic depending on their own prior

health outcomes (Lipsitz, Fitzmarice, Ibrahim, Gelber, & Lipshultz, 2002). Since

the main purpose of this study was to develop a model to handle the situation

described above, namely informative schedule data, all the methods mentioned so

far do not work for this study.

Fortunately, some researchers have introduced a new approach, named joint

model, which is combining longitudinal data and the time-related factor. There are

multiple articles under the name of the joint model (Henderson, Diggle, & Dobson,

2000; Kim, Zeng, Chambless, & Li, 2012; Liang, Lu, & Ying, 2009; Lin et al., 2004;

Lipsitz et al., 2002; Qiu, Stein, & Elston, 2013). Some of the articles are about the

joint model of longitudinal data and survival outcome, and some are about the

joint model of longitudinal data and informative time. Fundamentally, the joint

model is based on the joint distribution of outcomes and the time related factor

with maximum likelihood estimation. As introduced, the joint model can be

applied to any kind of situation. Estimation by using the joint model produces

more precise results (Qiu et al., 2013). Nonetheless, one fact in common is that
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even though they are dealing with the joint models, the situations they are

studying are different from each other. For that reason, if any researcher who wants

to adapt his/her joint models should be careful of assumptions since all the joint

models were built for different situations.

For example, Bronsert (2009) presented a joint model, named

Gaussian-Exponential model, in which normally distributed longitudinal responses

and intermittent times following an exponential distribution are combined, and he

showed the joint model has a very good ability for longitudinal data analysis

compared to the mixed-effects model in his simulation study. Bronsert calculated

the parameter estimates of the joint model, omitting a procedure checking the

properties of the estimators, such as multivariate normality. Later, Lin (2011)

extended Bronsert’s (2009) study and showed that the parameter estimates

maintain the property of multivariate normality, and the joint model can be an

alternative method for analyzing longitudinal data. Also, Lin studied on how to

calculate the scores for model selection criteria, such as the Akaike information

criterion (AIC), the Akaike information criterion with correction (AICc), the

Bayesian information criterion (BIC), and likelihood ratio test. A limitation of

these studies is that the model incorporates informative time and normally

distributed longitudinal responses only.

Research interest of the current study was developing joint models of

longitudinal outcomes following the exponential family of distributions and

informative time. Thus, this study mainly focused on verifying (1) if the joint

model developed by Bronsert and tested by Lin can be extended and (2) if the
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parameter estimates of the extended joint models maintain the asymptotic

multivariate normality, when the outcome distribution is from a member of the

exponential family of distributions.

Definition of Terminology

Terminology used throughout this study are described below.

Longitudinal Data is a set of outcomes measured at multiple time points on

the same subjects over a given time duration. In general, time points are

predetermined by researchers before outcomes are collected.

Informative Time is used to describe the fact that the next time point for

collecting a response is determined by the current outcome. Thus, all subjects may

not share the common set of time intervals.

Informative Schedule Data is a set of measurements collected repeatedly

from the same subjects for a given time duration. The outcomes are measured

based on the informative time for each subject determined by the previous

outcomes.

Outcome Process is a set of measurements collected repeatedly at multiple

time points for each subject.

Counting Process is a stochastic process with values that are integer,

increasing, and positive in which the values represent arbitrary time points for

collecting responses for each individual.
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Research Questions

Q1 Can the joint model (Gaussian-Exponential model) developed by
Bronsert (2009) and tested by Lin (2011) be extended to longitudinal
outcomes following the exponential family of distributions?

Q2 Do the maximum likelihood estimators of the joint models obtain
asymptotic normality?

Q3 Can the likelihood ratio test be conducted to compare the fit of two
models?

Q4 Can the model selection criteria, such as AIC, AICc, or BIC, be
developed to compare models?

If the answer to Research Question One says that the joint models are not

appropriate for longitudinal outcomes with the exponential family of distributions

and informative schedule data other than normally distributed outcomes, then the

rest of the research questions can not be answered.

Limitations

The following limitations must be considered before any researcher is

willing to take advantage of this study.

1. This study is limited to outcomes with the exponential family of distributions

with a single response variable; therefore, the models should not be applied to

any study with multivariate responses

2. In this study, time is assumed to be exponentially distributed. If any other

distribution other than the exponential distribution is believed to be

appropriate, applying the joint models should not be considered with caution.
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Conclusion

One of the greatest advantages of longitudinal data analyses is that it can

detect changes over time. Most of the analyzing methods introduced above are

treating time as a fixed factor that is predetermined by researchers at the beginning

of the study. In some cases, time intervals, however, are decided based on the

previous outcomes. In that situation, approaches mentioned before cannot be used

and will generate biased estimators, if used. Therefore, as a new model, the joint

model was presented by Bronsert (2009), combining normally distributed

longitudinal responses and informative time. Bronsert used maximum likelihood

estimation to compute the parameter estimates. Then, the joint model was

extended by Lin (2011). He verified that the maximum likelihood estimators of the

joint model obtain multivariate normality. Also, Lin proposed the likelihood ratio

test statistic, AIC, AICc, and BIC as model selection criteria. The assumptions in

their studies are that longitudinal data are normally distributed and time is

exponentially distributed.

Hence, questions arose: what if the outcomes are not assumed to follow a

normal distribution; what if the outcomes have any other types, for instance, binary

or count outcomes? Also, if the joint model is extended to any other types of

outcomes, do the parameter estimates of the extended joint models still keep

asymptotic normaltiy? Thus, this study focused on extending their joint model to

the exponential family of distributions and checking the multivariate normality

assumption of the estimators of the extended joint models.
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CHAPTER II

LITERATURE REVIEW

Multiple methods have been developed due to its complexity of analysis

and used to analyze longitudinal data. In this chapter, commonly used methods

and previously studied joint models combining informative time and outcomes are

discussed.

Simple Method Approach

The purpose of longitudinal studies is to detect changes between outcomes

measured at different time points on the same subjects. One of the elementary

methods was introduced by Student (1908), including outcomes measured at two

time points for each subject. In the analysis, the differences between outcomes

measured at two different time points on the same subjects were used to determine

the change over time. The idea of the simple method is to reduce the multivariate

measurements into a single measurement ignoring the correlation between repeated

measurements.

A well-known example of this type of method is the dependent two sample

t-test. This method can be simply applied when there are two outcomes, but

generally in longitudinal studies, multiple observations at multiple time points are

collected. However, due to the simplicity of the application, this approach has been

commonly used with different names, such as the summary-statistic approach
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(Frison & Pocock, 1992; Dawson, 1994), the response feature analysis (Crowder &

Hand, 1990), or the derived variable (Diggle, Heagerty, Liang, & Zeger, 2002).

For example, the summary statistic could be the coefficient of the regression

line for each subject. The summary statistic is used to test whether or not the

average of the summary measurements differs from zero. However, the results of the

analysis will be misleading if a wrong summary measurement is selected that does

not represent an individual trend (Davis, 2002). That means the success of the

analysis depends on the selection of summary measurements. Moreover, when time

intervals are not equal across all subjects, the summary variable does not satisfy

the homoscedasticity assumption (Diggle et al., 2002). Therefore, this

summary-statistic approach is not appropriate to be used in this study with

longitudinal informative schedule data.

Repeated Measures Analysis with ANOVA

When outcomes are from a normal distribution satisfying the assumptions

of independence and homogeneity of variance, traditional univariate ANOVA can

be simply applied. Additionally, for repeated measures ANOVA, the assumption of

sphericity must be met also. Sphericity is sometimes called compound symmetry,

also known as homogeneity of covariance. Sphericity is that the variance of

difference between any two levels of within-subjects factor is the same to any

pairwise combination. In general, it is very difficult that longitudinal data meet the

assumptions of independence and homogeneity of variance. In order to test

sphericity assumption, Mauchly’s test is generally used, but this test is not powerful
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for small sample sizes and sensitive to non-normality; therefore, Mauchly’s test is

not practical (Davis, 2002). Another approach using adjusted degrees of freedom

has been introduced by Greenhouse and Geisser, and Huynh and Feldt when the

sphericity assumption is violated, but these are too conservative, which increases

Type II error (Davis, 2002).

In repeated measures ANOVA model, occasions of measurements are

treated as within-subject effects, so the model becomes

Y ij = X
′

ij + bi + eij, (1)

where X
′

ij is the design matrix, bi is the random subject-specific effect, and eij is

the individual-specific measurement error (Fitzmaurice et al., 2004). In this model,

there are two sources of variation; one is within-subject variation, σ2
b , and the other

is between-subject variation, σ2
e . Based on the information for variations above, the

covariance structure of the model, known as compound symmetry, becomes

Cov(Y i) =



σ2
b + σ2

e σ2
b σ2

b · · · σ2
b

σ2
b σ2

b + σ2
e σ2

b · · · σ2
b

σ2
b σ2

b σ2
b + σ2

e · · · σ2
b

...
...

... · · · σ2
b

σ2
b σ2

b σ2
b · · · σ2

b + σ2
e


. (2)
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The covariance structure shows that the variance for each occasion is equal to σ2
b +

σ2
e . Therefore, the correlation between all pairs of measures is

Corr(Y ij,Y ik) =
σ2
b

σ2
b + σ2

e

, j 6= k. (3)

Commonly, correlation between measurements tends to be stronger when

they are closer in time, and the correlation decreases when they are further away

from each other in time; therefore, constant correlation between two measurements

is not realistic. In addition, it is assumed that all subjects have an equal number of

measurements at fixed time points since the repeated measures ANOVA approach

was designed to handle experimental studies (Fitzmaurice et al., 2004). Due to

these unrealistic assumptions, the repeated measures ANOVA model is

inappropriate for this study on informative time and non-normal outcomes.

Repeated Measures Analysis with MANOVA

When the assumptions are violated for repeated measures ANOVA,

MANOVA based on Hotellings T 2 is an alternative way to handle repeated

measures since the sphericity assumption is not necessary. Also, it can handle

multiple response variables simultaneously, but MANOVA reduces the power of

analysis (Vincent, 2005). A general idea of the MANOVA approach is followed

below.

For instance, we have a vector of responses from the ith subject at time j

yi = (yi1, yi2, . . . , yini
)′,
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where i = i, . . . ,m and j = 1, . . . , ni, and yi is from Nt(µ,Σ). To test the

hypothesis of H0 : µ1 = µ2 = · · · = µt, y
∗
ij = yij − yi,j+1 for j = 1, . . . , t − 1 is

obtained. The y∗i = (y∗i1, . . . , yi,t−1)
′ vectors are random samples from Nt−1(µ

∗,Σ∗),

where

µ∗ = (µ1 − µ2, µ2 − µ3, . . . , µt−1 − µt)′. (4)

By using Hottelling’s T 2,

T 2 = nȳ∗
′
S∗−1ȳ∗ ∼ T 2

t−1,n−1,nµ∗′Σ∗−1µ∗
. (5)

The test statistic F ,

F =
n− t+ 1

(n− 1)(t− 1)
T 2, (6)

has a Ft−1,n−t+1 distribution if H∗0 : µ∗ = (0, . . . , 0)′ holds (Davis, 2002).

One of the advantages of using MANOVA approach, instead of repeated

measures ANOVA, is that it can handle repeated measurements at multiple time

points since MANOVA was originally designed to deal with multiple response

variables (Fitzmaurice et al., 2004). The other advantage is that the assumption of

sphericity is not needed while it still assumes the multivariate normality (Davis,

2002; Hedeker & Gibbons, 2006). However, MANOVA method itself has multiple

shortcomings. One drawback is that the covariance matrix with t × t must be

estimated. When t is large, numerous degrees of freedom to estimate covariance

parameters, t(t − 1)/2, will be lost. Therefore, it causes power to decrease,

especially when F has small degrees of freedom for the denominator (Davis, 2002).

Secondly, like ANOVA, MANOVA approach also can be used only if time points are
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fixed across all subjects (Hedeker & Gibbons, 2006). However, in longitudinal

studies with informative time, each subject may have different sets of time points.

Thirdly, MANOVA cannot handle missing data like ANOVA. Due to these

restrictions, subjects with missing data will be excluded in the analysis, which

causes loss of a large amount of information in the data (Fitzmaurice et al., 2004;

Hedeker & Gibbons, 2006). In other words, MANOVA cannot handle unbalanced or

incomplete data. Hedeker et. al.(2006) named it “the Achilles heel of the

MANOVA model for repeated measurements” (p. 34). A complete dataset is

unrealistic in longitudinal studies; therefore, it can be used only in limited

situations. Despite benefits of using MANOVA model over repeated measures

ANOVA, it is not considered for this study on informative time and non-normal

outcomes because of these drawbacks.

Mixed-Effects Model

Due to the unrealistic assumptions, such as non-missing, sphericity, and

complete data structure in ANOVA and MANOVA models the use of these

traditional methods are restricted to certain cases and must be interpreted with

caution. The mixed-effects model is an univariate regression analysis on correlated

responses (Davis, 2002). One main advantage of using the mixed-effects model is

that it can handle missing data and incomplete data that are problematic in

ANOVA and MANOVA analyses for repeated measures. Due to its flexibility, the

mixed-effects model has been studied by and became popular among many

statisticians for longitudinal data analyses these days (Lindstrom & Bates, 1990;
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Pinheiro & Bates, 1995, 2000). Also, there are a couple more benefits that make

the mixed-effects model popular for repeated measures analyses. Firstly, traditional

methods, such as ANOVA and MANOVA, assume that all subjects would have the

outcomes measured at the same number of fixed time points, but the mixed-effects

model does not need this assumption. For this reason, any subjects with missing

data or incomplete data can be included in the analysis, which means it will

increase statistical power. It is not necessary for each subject to be measured at the

same time points since time is treated as a continuous variable in the mixed-effects

model (Hedeker & Gibbons, 2006). Secondly, since the mixed-effects model is an

extension of repeated measures ANOVA, one can measure the average changes

across time. Moreover, by including subject-specific effects in the model as a

random effect, the model can detect individual trajectories. For these reasons, the

mixed-effects model has become popular for longitudinal data analyses. The

average responses across time for each subject is named as a fixed effect, while a

subject-specific effect, which is unique to each subject, is called a random effect.

Literally, the mixed-effects model combines both fixed effects and random effects

(Fitzmaurice et al., 2004).

The mixed-effects model has been used with a variety of different names:

random effects model (Diggle et al., 2002; Fitzmaurice et al., 2004; Laird & Ware,

1982), multilevel model (Goldstein, 2011; Nash & Varadhan, 2011), hierarchical

model (Lee & Nelder, 1996; Raudenbush & Bryk, 2002), and random coefficient

model (Leeuw & Kreft, 1986). Using matrix notations, the mixed-effects model for

a vector of ni × 1 responses for the ith subject can be written as
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yi = X iβ +Ziγi + εi, (7)

where

yi = (yi1, . . . , yini
)′ is the vector of responses for the ith subject at time point

j for j = 1, . . . , ni,

X i is the ni × p covariate matrix for the ith subject,

β is the p× 1 vector of fixed effects,

Z is the ni × r design matrix for random effects,

γ is the r × 1 vector of random effects, and

ε is the ni × 1 vector for error with the assumptions of

εi = N(0, σ2Ini
) and γi = N(0,Σγ). (8)

The variance-covariance matrix of the model becomes

Cov(yi) = Cov(X iβ +Ziγi + εi)

Cov(yi) = Cov(Ziγi) + Cov(εi)

Cov(yi) = ZiGZ
′

i + Cov(εi).

(9)

The model can be rewritten as

Cov(yi) = ZiGZ
′

i + σ2Ini
, (10)

since Cov(εi) = σ2Ini
, which has the diagonal elements of the variance-covariance

matrix with all zeros for the entries outside the main diagonal (Fitzmaurice et al.,

2004). The mixed-effects model can be presented in a multilevel form for a better
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explanation of each subject’s effect on their observations (Hedeker & Gibbons,

2006).

For example, when there is time and one factor in the model, the level-1

model, which represents within-subjects, becomes

yij = π0j + π1jTimeij + εij. (11)

The level-2 model, which represents between-subjects, is

π0j = β00 + β01Groupi + µ0j

π1j = β10 + β11Groupi + µ1j,

(12)

where

εij ∼ N(0, σ2) and

µ0j

µ1j

 ∼ N


0

0

 ,

τ00 τ01

τ10 τ11.


 . (13)

The linear format of the combined level-1 and level-2 models becomes

yij =β00 + β01Groupj + β10Timeij + β11GroupjTimeij

+ µ0j + µ1jTimeij + εij.

(14)

In the linear model, β00, β01, β10, and β11 are the coefficients for the fixed effects,

and µ0j, µ1j, and εij are the random effects. A description of each term in the

model is as follows.

yij is the outcome for subject i measured at time point j,

β00 is the average intercept for all subjects,
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β01 is the average difference in π0j for a unit change in level-2 predictor,

β10 is the average of the level-1 slope,

β11 is the average difference in π1j for a unit change in level-2 predictor,

π0j is the intercept of the trajectory of subject i,

π1j is the slope of the trajectory of subject i,

µ0j is the unique contribution of each j to the mean response on time point j,

µ1j is the unique contribution of each j to the slope on time point j

(Singer & Willett, 2003). As it can be seen in the model, because time points are

from j = 1 to ni, the model can include all outcomes measured at different time

points in the analysis. Additionally, the model allows for each subject to be

measured at different schedules of time points, which means the model can handle

missing data, incomplete data, or unbalanced data (Hedeker & Gibbons, 2006).

Parameters of variance components can be estimated by using maximum

likelihood estimation, which needs an iterative numerical solution of a nonlinear

optimization procedure (Davis, 2002). There are many statistical computing

software that can calculate paramteres of covariance components. Also, these

softwares provide a variety of types of covariance structures for the G matrix, such

as compound symmetry, unstructured, first-order autoregressive, or Toeplitz, etc.,

as an initial value of the iteration. An alternative approach instead of the

maximum likelihood estimation is the restricted maximum likelihood (REML)

approach. This approach was introduced since the maximum likelihood estimation
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method generates a somewhat baised solution when the design is unbalanced

(Patterson & Thompson, 1971).

Despite many advantages of the mixed-effects model for longitudinal data,

this model also has some drawbacks. One is that the covariance matrix structure

of the yi vector is nonstationary. For example, when outcomes are collected from

the same subjects at equally spaced time points, j = i, . . . , n, the variance and

covariance become respectively

V ar(yij) = σ2
α + 2jσαβ + j2σ2

β + σ2,

Cov(yij, yij′) = σ2
α + (j + j′)σαβ + jjσ2

β.

(15)

Consequently, general trends at time point j are (1) the V ar(yij) increases after

time j when j > −σαβ/σ2
β, and (2) the V ar(yij) decreases up to time j when

j < −σαβ/σ2
β (Davis, 2002). However, this result is not realistic in longitudinal

data. The other drawback shown in a simulation study is that the quality of the

mixed-effects model is greatly affected by the choice of variance-covariance matrix

structure (Davis, 2002). Moreover, in the mixed-effects model, time is still treated

as fixed; therefore, the mixed-effects model is not an appropriate method for this

study on informative schedule data.

Marginal Model

Liang and Zeger (1986) introduced the marginal model approach using the

generalized estimating equations (GEE) method to analyze repeated measurements,

which is an extension of the generalized linear model to longitudinal data analyses

using quasilikelihood estimation. The terminology of the marginal model is referred
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to as the population-average model, meaning that the model for the mean response

is not affected by any random effects or previous responses, and instead solely

depends on the covariate. The marginal model does not need any assumptions for

the distribution of outcomes; it depends only on assumptions for the mean of

responses, so the marginal model can be used for binary or count as well as

continuous outcomes. However, in general, the GEE model is very useful for

categorical and count outcomes (Hedeker & Gibbons, 2006). The other advantage is

that subjects do not need to have the same number of outcomes measured at the

same time periods (Fitzmaurice et al., 2004).

A brief introduction to GEE method is as follows. The expected mean of

each response given covariate, µij = E(yij|Xij), can be rewritten with a link

function as

g(µij) = X ′ijβ. (16)

The variance of yij given the covariates becomes

V ar(yij) = v(µij)φ, (17)

where v(µij) is a known variance function, which is the relationship between the

mean and the variance, expressing the variance as a function of the mean, and φ is

a known or to be estimated scale parameter. The link and variance functions for

different distributions of outcomes are shown below. The normally distributed

outcomes with the identity link function has

g(µij) = µij = X ′ijβ, v(µij) = 1, and V ar(yij) = v(µij)φ = φ. (18)
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For binary outcomes,

g(µij) = log

(
µij

1− µij

)
= X ′ijβ, V ar(yij) = µij(1− µij), and φ = 1. (19)

For Poisson outcomes,

g(µij) = log(µij) = X ′ijβ, V ar(yij) = µij, and φ = 1. (20)

The last component of the GEE model is the working correlation matrix Ri(a) for

each yi = (yi1, . . . , yini
)′ with dimension of ni × ni, which is called the working

correlation between yij and yij′ . This correlation structure will vary based on a

pattern of relationships of the repeated measurements. For example, when no

correlation is assumed, R(a) = I, which is the identity matrix with the equal

correlations, Rij(a) = ρ for any i 6= j, the correlation structure is called

exchangeable, also known as compound symmetry. The working variance-covariance

matrix for yi becomes

V (a) = φA
1/2
i Ri(a)A

1/2
i , (21)

where Ai is a diagonal matrix with v(µij) as the jth diagonal element. Finally, the

GEE estimates of the parameter vector β can be obtained by solving

U(β) =
n∑
i=1

(
∂µi
∂β

)
[V i]

−1(yi − µi) = 0p (22)

(Singer & Willett, 2003). To get the vector of parameters β, a numerical iterative

method is needed by using the quasilikelihood method (Davis, 2002).
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Since there is no distributional assumption, the GEE model provides a very

flexible approach to estimate the mean and pairwise correlations among repeated

measures; also, it can handle missing data and unbalanced data (Fitzmaurice et al.,

2004). The GEE model also has some drawbacks. Firstly, the estimation of β used

in the GEE model is less efficient compared to the maximum likelihood-based

estimation due to no assumption on the distribution (Fitzmaurice et al., 2004).

Secondly, the GEE model is not sensitive to misselection of variance-covariance

structure; therefore, when research questions are not about variance-covariance

structure, the GEE model can be a good option to the researcher. However, if the

researcher’s interest is in the estimation of the variance-covariance structure, the

GEE model will not be a good selection. Thirdly, even though complete data across

time for subjects is not required in the GEE model, the model assumes all time

points are fixed, and if there are any missing responses, it must be missing

completely at random (MCAR) (Hedeker & Gibbons, 2006). The assumption of

fixed time points is unrealistic and does not fit this study on informative schedule

data. Fourthly, parameter estimates of β̂ are not consistent to estimate β when

time-varying covariates are involved in the regression model (Pepe & Anderson,

1994). Despite all the advantages of the GEE model, in this study, time points are

considered to be not fixed. That is why the GEE model is not considered to be a

potential candidate for this study.
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Joint Model

Currently, a new approach named the joint model is getting popular in an

attempt to handle irregular measurement occasions in the analysis, which is

combining longitudinal data and time or any other factors that the researcher is

interested in (Henderson et al., 2000; Kim et al., 2012; Liang et al., 2009; Lin et al.,

2004; Lipsitz et al., 2002; Qiu et al., 2013; Wu, Liu, Yi, & Huang, 2012). The joint

model uses maximum likelihood estimators of its joint distribution.

For example, Liang et al., (2009) presented a joint model of longitudinal

data with informative observation times via latent variables to handle highly

irregular time points and longitudinal outcomes. Their model is for longitudinal

outcomes and censoring or dropout time under the assumption that censoring time

is non-informative; in addition, outcomes are measured only at the dropout time.

That is the difference from this current study that involves multiple time points.

Lipsitz et al. (2002) presented a joint model for longitudinal data. The

joint model assumes that time points are not fixed and dependent on previous

outcomes, and the repeated measurements are supposed to follow a multivariate

normal distribution. The likelihood function of the joint model consists of two

components: one for the counting process, the other for the outcome process. The

outcome process is determined by yi(t) = µi(t) + εi(t), where µi(t) is the marginal

mean at time t and εi(t) is a Gaussian process. The counting process is the number

of measurements on the ith subject by a continuous time point. The joint model

was developed based on the idea that time points are dependent on previously
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observed data only, not the times where outcomes are measured. The advantage of

the separation of likelihood function, such as the counting process and the outcome

process, is the simplicity of the calculation of the maximum likelihood estimators,

since the counting process can be ignored when using the likelihood based

estimation for the outcome process, or vice versa.

Bronsert (2009) presented his joint model to handle informative time and

normally distributed longitudinal outcomes. Bronsert’s Gaussian-Exponential

model comes with assumptions of a normal distribution for the outcome process

and an exponential distribution for informative time. The main difference between

Bronsert’s joint model and the joint models above is that repeated outcomes are

dependent on previous outcomes and current time points. That is given by

fθi(yi, ti) =
1√

2πσ2
exp

(
−1

2

(yi1 −X ′i1β)2

σ2

)
× f(ti1)

×
ni∏
j=2

{
1√

2πσ2
√

1− ρ2i
exp

(
−1

2

(yij − γtij − ϕiyij−1 −X ′ijβ)2

σ2(1− ρ2i )

)

· exp(α + δiyij−1) · exp(−eα+δiyij−1tij)

}
,

(23)

where

β is the effect of the independent variables on outcomes,

f(ti1) is the initial time point for the ith subject,

ϕ is the effect of the previous outcome on the mean response of the current

outcome,

γ is the effect of current time on the mean response,
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α is the constant parameter for the time process,

δ is the effect of the previous outcome on the mean time, and

X is the design matrix.

f(ti1) is a distribution for an initial time point, and it is assumed that the

distribution of f(ti1) does not affect any parameters. The maximum likelihood

estimators Θ were calculated from the log-likelihood function of the

Gaussian-Exponential model by using the nonlinear optimization algorithms called

NLPDD Call in SAS/IML that uses the double dogleg optimization method.

Bronsert’s study showed only parameter estimates without testing if the estimators

can be usable for hypothesis testing, which assumes the normality assumption.

Later, Lin (2011) adapted and modified Bronsert’s Gaussian-Exponential

model. Lin’s modified model is

fθi(yi, ti) =
1√

2πσ2
exp

(
−1

2

(yi1 −X ′i1β)2

σ2

)
× f(ti1)

×
ni∏
j=2

{
1√

2πσ2
exp

(
−1

2

(yij − γtij − ϕiyij−1 −X ′ijβ)2

σ2

)

· exp(α + δiyij−1) · exp(−eα+δiyij−1tij)

}
.

(24)

The only difference is that ρ2i is not included in Lin’s model. The term of ρ2i was

used to account for the relationships between two outcome variables at two time

points in Bronsert’s model. Lin believed that it is redundant since there is another

term to take care of the correlation, so ρ2i is not included in the modified model.

The modified model was used in this study to test if the model can be extended
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when the responses have the exponential family of distributions with informative

time.

Conclusion

In general, the main purpose of longitudinal data analyses is to capture the

changes over time. Currently, multiple methods are being used to fulfill this

purpose, and most of them are working well in finely-designed experiments,

especially when all subjects share the common fixed time points. One common

assumption to all the models, except the joint models discussed in this chapter, is

that time intervals are predetermined by the researcher or previous studies. In

practice, sometimes time points must be determined based on prior outcomes,

which means individuals may have different sets of time points. As a result of

irregular measurement occasions for each subject, traditional methods may not be

the best for this longitudinal design with informative schedule data, since

traditional methods assume time to be fixed. The joint model does not require time

to be fixed. Thus, in the current study, the joint model by Bronsert and Lin was

investigated to find if the model could be extended when repeated outcomes have

the exponential family of distributions.
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CHAPTER III

METHODOLOGY

The traditional models can be used for informative schedule data, but the

results of analyses may not be usable because the traditional approaches assume

time is fixed. The joint model by Bronsert (2009) and Lin (2011) was developed

under the assumption that outcomes follow a normal distribution and time follows

an exponential distribution. In this study, Bronsert and Lin’s joint model was

adapted and modified to find if the parameter estimates of the extended joint

models satisfy the normality assumption when the distribution of outcomes is a

member of the exponential family of distributions.

Notation and Joint Model

The outcome for the ith subject measured at the jth time point refers to

yij; therefore, the ith subject has yi = (yi1, yi2, . . . , yini
)′ collected at

ti = (ti1, ti2, . . . , tini
)′. The joint distribution of outcomes and time points becomes

fΘ(yi, ti) = fΘ(yi|ti) · fΘ(ti), (25)

where Θ is a vector of unknown parameters. A general model can be derived by

using this joint distribution of yi and ti. Therefore, the general model under the

assumptions that the current outcome is dependent on the one-step prior outcome

(yij−1), current outcome (yij), and current time point (tij) becomes
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fΘ(yi, ti) = fΘ(yi1|ti1) · fΘ(ti1) ·
ni∏
j=2

fΘ(yij|tij, yij−1) · fΘ(tij|yij−1). (26)

Based on this general model, a joint model was developed for each member of the

exponential family of distributions, while assuming time to follow an exponential

distribution.

Generalized Linear Model

The purpose of this study was to develop joint models that can handle

outcomes from the exponential family of distributions. The generalized linear

model provides a unified class of models of regression analysis, regardless of discrete

or continuous outcomes (Dobson, 2001; Fitzmaurice et al., 2004; McCullagh &

Nelder, 1983, 1989; Nelder & Wedderburn, 1972). The generalized linear model has

three components: a random component, a systematic component, and a link

function. The random component identifies the distribution of outcome variable.

The generalized linear model assumes that the outcome variable has a

probability distribution from the exponential family of distributions. For example,

when the outcome is binary, such as yes or no, a binomial or Bernoulli distribution

is assumed. When the outcome is count, a Poisson distribution is assumed. The

variance of the outcome can be written as a product of a single scale or dispersion

parameter, φ, and it is called the variance function:

V ar(Y ) = φv(µ). (27)

The systematic component of the generalized linear model identifies

explanatory variables. These explanatory variables are combined into a linear
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format, and it is called the linear predictor:

ηi = X
′

iβ = β1Xi1 + β2Xi2 + · · ·+ βpXip, (28)

where Xi1 = 1 for all i, and β1 is the intercept. β = (β1, . . . , βp)
′ is the vector of

unknown parameters (Fitzmaurice et al., 2004). The link function is a function that

connects the linear predictor with the mean of the probability distribution. So, the

function g(·) connects a random component to a systematic component, which can

be written as

g(ηi) = β1Xi1 + β2Xi2 + · · ·+ βpXip (29)

(Fitzmaurice et al., 2004). As an example, the variance and link function for the

Gaussian, Bernoulli, Poisson, and Gamma distributions are as follows (Fitzmaurice

et al., 2004).

Table 2

Variances and link functions

Distribution Variance Function Link Function Mean Function

Gaussian v(µ) = 1 Identity: µ = η µ = η

Bernoulli v(µ) = µ(1− µ) Logit: log(µ/1− µ) = η µ = exp(η)
1−exp(η)

Poisson v(µ) = µ Log: log(µ) = η µ = exp(η)

Gamma v(µ) = µ2 Log: log(µ) = η µ = exp(η)

All the distributions from the exponential family can be expressed as

f(y; θ, φ) = exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
, (30)
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where θ is a canonical parameter and φ is a scale or dispersion parameter

(Fitzmaurice et al., 2004). The commonly used distributions of the outcomes are

the Gaussian for normally distributed outcomes, the Bernoulli for binary outcomes,

the Poisson for count outcomes, and the Gamma distribution for survival time or

waiting time. The probability density function of the Gaussian distribution can be

rewritten in an exponential family form of

f(y;µ, σ2) = (2πσ2)−1/2exp

(
−(y − µ)2

2σ2

)
= exp

(
−1

2
log(2πσ2)

)
exp

(
−(y − µ)2

2σ2

)
= exp

(
−(y2 − 2yµ+ µ2)

2σ2
− 1

2
log(2πσ2)

)
= exp

(
yµ− µ2/2

σ2
− 1

2

(
y2

σ2
+ log(2πσ2)

))
,

(31)

with a canonical parameter and a dispersion parameter of

θ = µ and a(φ) = σ2. (32)

The probability density function of the Bernoulli distribution can be rewritten as

f(y;µ) = µy(1− µ)1−y

= exp(ylog(µ) + (1− y)log(1− µ))

= exp

(
ylog

(
µ

1− µ

)
+ log(1− µ)

)
,

(33)

with a canonical parameter and a dispersion parameter of

θ = log

(
µ

1− µ

)
= logit(µ) and a(π) = 1. (34)
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The probability density function of the Poisson distribution can be rewritten as

f(y;µ) =
e−µµy

y!

= exp(ylog(µ)− µ− log(y!)),

(35)

with a canonical parameter and a dispersion parameter of

θ = log(µ) and a(φ) = 1 (36)

(Fitzmaurice et al., 2004). Lastly, the probability density function of the Gamma

distribution can be rewritten as

f(y;λ, v) =
yv−1λve−yλ

Γ(v)

= exp(−yλ+ vlog(λ) + (v − 1)log(y)− log(Γ(v))

= exp

(
y(−λ/v)− log(λ)

1/v
+ (v − 1)log(y)− log(Γ(v)

) (37)

with a canonical parameter and a dispersion parameter of

θ = −λ
v

and a(φ) =
1

v
. (38)

Joint Model

In this section, three joint models are presented with different outcome

types as examples, but time is still assumed to follow an exponential distribution.

Examples of the outcome distributions include the Bernoulli for binary, the Poisson

for count, and the Gamma distribution for survival time or waiting time. Also, the

mean function and the link function for each distribution are modified to take
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account of the dependency among the current outcome, one-step prior outcome,

and current time into the model.

Bernoulli-Exponential Model

This joint model is for binary outcomes and informative time. The

Bernoulli distribution, in an exponential family form, can be expressed to handle

repeated outcomes with given dependency

f(yij|yij−1, tij, X) = µ
yij
ij (1− µij)1−yij

= exp

(
yijlog

(
µij

1− µij

)
+ log(1− µij)

)
,

(39)

where µi = E(Yi) = P (Yi = 1). The parameter is

θij = log

(
µij

1− µij

)
= logit(µij). (40)

The link function becomes

log

(
µij

1− µij

)
= β0 + β1x1 + · · ·+ βkxk + γtij + ϕyij−1

= X
′

iβ + γtij + ϕyij−1.

(41)

Then, the mean function can be expressed as

µij =
exp(X

′

iβ + γtij + ϕyij−1)

1 + exp(X
′

iβ + γtij + ϕyij−1)
. (42)

Hence, the mean function for the initial value for the ith subject and the mean

function after the initial value can be expressed as

µi1 =
exp(X ′iβ)

1 + exp(X ′iβ)
and µij =

exp(X ′iβ + γtij + ϕyij−1)

1 + exp(X ′iβ + γtij + ϕyij−1)
. (43)
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Finally, the joint model for the Bernoulli-Exponential model can be written as

fΘ(yi, ti) = exp

(
yi1log

(
µi1

1−Ai1

)
+ log(1− µi1)

)
×

ni∏
j=2

{
exp

(
yij log

(
µij

1− µij

)
+ log(1− µij)

)
· exp(α+ δyij−1) · exp(−eα+δyij−1tij)

}
.

(44)

The likelihood function, which is the product of the density functions for m

individuals, is

L(Θ, yi, . . . , ym) =
m∏
i=1

{
exp

(
yi1log

(
µi1

1− µi1

)
+ log(1− µi1)

)

×
ni∏
j=2

exp

(
yijlog

(
µij

1− µij

)
+ log(1− µij)

)
· exp(α + δyij−1) · exp(−eα+δyij−1tij)

}
.

(45)

Generally, the log-likelihood function is used to find the parameter estimates for

convenience. The log-likelihood function for the ith individual in the model

becomes

li =log

{
exp

(
yi1log

(
µi1

1− µi1

)
+ log(1− µi1)

)
×

ni∏
j=2

exp

(
yijlog

(
µij

1− µij

)
+ log(1− µij)

)
· exp(α + δyij−1) · exp(−eα+δyij−1tij)

}

=

(
yi1log

(
µi1

1− µi1

)
+ log(1− µi1)

)
+

ni∑
j=2

{
(yijlog

(
µij

1− µij
+ log(1− µij

)
+ α + δyij−1 − eα+δyij−1tij)

}
.

(46)

The log-likelihood function for all individuals is the sum of m individuals’

log-likelihood functions, as shown below.
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l =
m∑
i=1

li =
m∑
i=1

(
yi1log

(
µi1

1− µi1

)
+ log(1− µi1)

)

+
m∑
i=1

ni∑
j=2

(
yijlog

(
µij

1− µij

)
+ log(1− µij)

)

+
m∑
i=1

ni∑
j=2

(α + δyij−1 − eα+δyij−1tij).

(47)

Poisson-Exponential Model

This joint model is for count outcomes and informative time with an

exponential distribution. Since the Poisson distribution is a member of the

exponential family, it can be rewritten as

f(yij|yij−1, tij, X) =
e−µijµ

yij
ij

yij!

= exp(yijlog(µij)− µij − log(yij!)).

(48)

The parameter is

θij = log(µij). (49)

The canonical link function becomes

log(µij) = β0 + β1x1 + · · ·+ βkxk + γtij + ϕyij−1

= X
′

iβ + γtij + ϕyij−1.

(50)

Then, the mean function is

µij = exp(X
′

iβ + γtij + ϕyij−1). (51)

Hence, the mean function for the initial value for the ith subject and the mean

function after the initial value can be expressed as
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µi1 = exp(X
′

iβ) and µij = exp(X
′

iβ + γtij + ϕyij−1). (52)

Then, the joint model of the Poisson-Expoential model becomes

fΘ(yi, ti) = exp(yi1log(µi1)− µi1 − log(yi1!))

×
ni∏
j=2

exp(yijlog(µij)− µij − log(yij!)) · exp(α + δyij−1) · exp(−eα+δyij−1tij).
(53)

The likelihood function for m individuals is

L(Θ, yi, . . . , ym) =
m∏
i=1

{
exp(yi1log(µi1)− µi1 − log(yi1!))

×
ni∏
j=2

exp(yijlog(µij)− µij − log(yij!)) · exp(α + δyij−1) · exp(−eα+δyij−1tij)

}
.

(54)

The log-likelihood function for the ith individual in the model becomes

li =log

{
exp(yi1log(µi1)− µi1 − log(yi1!))

×
ni∏
j=2

exp(yijlog(µij)− µij − log(yij!)) · exp(α + δyij−1) · exp(−eα+δyij−1tij)

}

=(yi1log(Ai1)− µi1 − log(yi1!))

+

ni∑
j=2

{
yijlog(µij)− µij − log(yij!)) + α + δyij−1 − eα+δyij−1tij

}
.

(55)

The log-likelihood function for all individuals, which is the sum of m individuals’

log-likelihood functions, is
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l =
m∑
i=1

li =
m∑
i=1

(yi1log(µi1)− µi1 − log(yi1!))

+
m∑
i=1

ni∑
j=2

(yijlog(µij)− µij − log(yij!))

+
m∑
i=1

ni∑
j=2

(α + δyij−1 − eα+δyij−1tij).

(56)

Gamma-Exponential Model

This joint model is used for waiting or survival time and informative time

with an exponential distribution. The density function of a random variable Y with

a Gamma distribution can be rewritten in an exponential family form:

f(yij|yij−1, tij, X) =
y
vij−1

ij λ
vij
ij e
−yijλij

Γ(vij)

= exp

(
yij(−1/µij)− log(µij)

1/vij
+ vijlog(vij) + (vij − 1)log(yij)− log(Γ(vij))

)
.

(57)

The θ becomes 1/µij, so the canonical link function and dispersion parameter are

g(µij) = − 1

µij
and a(φ) =

1

vij
. (58)

For the Gamma distribution, there are three link functions: (1) inverse link (g(µ) =

1/µ), (2) log link (g(µ) = log(µ)), and (3) identity link function (g(µ) = µ). The

log link function was used in this study. So, the mean function with the log link

function becomes

µij = exp(X
′

iβ + γtij + ϕyij−1). (59)

Hence, the mean function for the initial value for the ith subject and the mean

function after the initial value can be expressed as
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µi1 = exp(X
′

iβ) and µij = exp(X
′

iβ + γtij + ϕyij−1). (60)

As a consequence, the joint model for the Gamma distribution becomes

fΘ(yi, ti) = exp

(
yi1(−1/µi1)− log(µi1)

1/vij
+ vijlog(vij) + (vij − 1)log(yi1)− log(Γ(vij))

)
×

ni∏
j=2

(
exp

(
yij(−1/µij)− log(µij)

1/vij
+ vijlog(vij) + (vij − 1)log(yi1)− log(Γ(vij))

)

· exp(α + δyij−1) · exp(−eα+δyij−1tij)

)
.

(61)

The likelihood function is the product of the density functions for m individuals.

L(Θ, yi, . . . , ym) =

m∏
i=1

{
exp

(
yi1(−1/µi1)− log(µi1)

1/vij
+ vijlog(vij) + (vij − 1)log(yi1)− log(Γ(vij))

)

×
ni∏
j=2

exp

(
yij(−1/µij)− log(µij)

1/vij
+ vijlog(vij) + (vij − 1)log(yij)− log(Γ(vij))

)

· exp(α + δyij−1) · exp(−eα+δyij−1tij)

}
.

(62)
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The log-likelihood function for the ith individual in the model becomes

li =log

{
exp

(
yi1(−1/µi1)− log(µi1)

1/vij
+ vijlog(vij) + (vij − 1)log(yi1)− log(Γ(vij))

)
×

ni∏
j=2

(
exp

(
yij(−1/µij)− log(µij)

1/vij
+ vijlog(vij) + (vij − 1)log(yij)− log(Γ(vij))

)

· exp(α + δyij−1) · exp(−eα+δyij−1tij)

)}
=

(
yi1(−1/µi1)− log(µi1)

1/vij
+ vijlog(vij) + (vij − 1)log(yi1)− log(Γ(vij))

)
+

ni∑
j=2

(
yi1(−1/µij)− log(µij)

1/vij
+ vijlog(vij) + (vij − 1)log(yij)− log(Γ(vij))

+ α + δyij−1 − eα+δyij−1tij

)
.

(63)

Finally, the log-likelihood function for all individuals becomes

l =
m∑
i=1

li =
m∑
i=1

(
yi1(−1/µi1)− log(µi1)

1/vij
+ vijlog(vij) + (vij − 1)log(yi1)− log(Γ(vij))

)

+
m∑
i=1

ni∑
j=2

(
yij(−1/µij)− log(µij)

1/vij
+ vijlog(vij) + (vij − 1)log(yij)− log(Γ(vij))

)

+
m∑
i=1

ni∑
j=2

(
α + δyij−1 − eα+δyij−1tij

)
.

(64)

Parameter Estimation

The maximum likelihood estimators are defined as the values that maximize

the joint probability evaluated at their observed data (Fitzmaurice et al., 2004).

Generally, the log-likelihood function is used rather than the likelihood function for

joint probability because it is simpler to find the parameter estimates. However, as

can be seen, maximization of the log-likelihood function is not an easy job;
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therefore, mathematical iterative methods are needed. In the two previous studies,

the nonlinear optimization function called NLPDD in SAS/IML was used to find

the maximum likelihood estimators from the log-likelihood function. The NLPDD

function is a nonlinear optimization function using a double dogleg method, which

combines the quasi-Newton and trust-region methods. Many nonlinear optimization

methods are provided in SAS or R (Nash & Varadhan, 2011; SAS Institute, 2008).

None of them seems to be superior to any other methods in any situation. The

nonlinear optimization function, called maxLik in R, is chosen in the current study

since it provides a single, unified interface to various optimization routines, offering

easy access to likelihood-specific features. The Newton-Raphson maximization

algorithm is used by default in the maxLik function.

Parameter Testing

There are three ways of using the likelihood function: the Wald test, the

score test, and the likelihood ratio test. These are used for hypothesis testing, to

determine the significance of the parameter estimates, or to determine confidence

intervals (Agresti, 2007). The likelihood ratio test uses the ratio of two maximized

log-likelihood functions for two nested models: (1) the maximized log-likelihood

value for the null hypothesis denoted by l̂red; and (2) the maximized log-likelihood

value for the alternative hypothesis denoted by l̂full. Hence, the likelihood ratio test

statistic is

2(l̂full − l̂red) ∼ χ2
dffull−dfred , (65)
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where dffull is the degrees of freedom for the full model and dfred is the degrees of

freedom for the reduced model. The ratio is compared to the chi-squared

distribution with the degrees of freedom equal to the difference between the two

models’ number of parameters. When the difference gets larger, it shows that the

reduced model is inappropriate (Fitzmaurice et al., 2004). This likelihood ratio test

is used to maintain the consistency from the previous study and ease of calculation.

Model Selection

Model selection criteria used in this study are the Akaike information

criterion (AIC), the Akaike information criterion with correction (AICc), and the

Bayesian information criterion (BIC) to compare non-nested models.

The AIC measures relative quality of a model to provide a method on

model selection with given data. The AIC is defined as

AIC = 2k − 2ln(L), (66)

where k is the number of parameters in the model and ln(L) is the maximized

value of the log-likelihood function of the model. The AIC takes into account both

the statistical goodness of fit and the number of parameters to be estimated. The

model with a low AIC value is preferred, which has the fewest number of

parameters with adequate fit to the data (Everitt, 2006).
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For example, since ln(L) is the maximized log-likelihood at Θ̂, the AIC for

the Bernoulli-Exponential model becomes

AIC = 2k − 2

{ m∑
i=1

yi1X
′

iβ̂ + log

(
1

1 + exp(X
′

iβ̂)

)

+
m∑
i=1

ni∑
j=2

(
yij(X

′

iβ̂ + γ̂tij + ϕ̂yij−1) + log

(
1

1 + exp(X
′

iβ̂ + γ̂tij + ϕ̂yij−1)

))

+
m∑
i=1

ni∑
j=2

(
α̂ + δ̂yij−1 − eα̂+δ̂yij−1tij

)}
.

(67)

The Poisson-Exponential model has the AIC of

AIC =2k − 2

{
m∑
i=1

(
yi1X

′

iβ̂ − exp(X
′

iβ̂)− log(yij!)
)

+
m∑
i=1

ni∑
j=2

(
yij(X

′

iβ̂ + γ̂tij + ϕ̂yij−1)− exp(X
′

iβ̂ + γ̂tij + ϕ̂yij−1)− log(yij!)
)

+
m∑
i=1

ni∑
j=2

(
α̂ + δ̂yij−1 − eα̂+δ̂yij−1tij

)}
.

(68)

The AIC of the Gamma-Exponential model becomes

AIC =2k − 2

{
m∑
i=1

(
yi1(−1/exp(X

′
iβ̂))−X ′iβ̂

1/v̂ij
+ v̂ij log(v̂ij) + (v̂ij − 1)log(yi1)− log(Γ(v̂ij))

)

+

m∑
i=1

ni∑
j=2

(
yij(−1/exp(X

′
iβ̂ + γ̂tij + ϕ̂yij−1))− (X

′
iβ̂ + γ̂tij + ϕ̂yij−1)

1/v̂ij

+ v̂ij log(v̂ij) + (v̂ij − 1)log(yi1)− log(Γ(v̂ij))

)
+

m∑
i=1

ni∑
j=2

(
α̂+ δ̂yij−1 − eα̂+δ̂yij−1tij

)}
.

(69)
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The AICc is the AIC with a correction for finite sample sizes and is defined as

AICc = AIC +
2k(k + 1)

n− k − 1
, (70)

where k is the number of parameters and n is the sample size. The AIC performs

poorly with small sample sizes and AICc converges to AIC as n increases, so AICc

is recommended (Burnham & Anderson, 2002).

Bayesian information criterion (BIC) is given by

BIC = −2ln(L) + klog(n), (71)

where k is the number of parameters and n is the sample size. The penalty

associated with BIC is more severe than that of AIC because the sample size is

included in the function. Like AIC, a model with the lowest BIC value is preferred.

The use of BIC is not recommended due to a high risk of selecting a model that is

too simple or parsimonious (Fitzmaurice et al., 2004). However, in a simulation

study, the BIC outperformed the AIC as sample size increased (McQuarrie,

Shumway, & Tsai, 1997). Therefore, BIC is included since this study uses the

log-likelihood function in the process of finding parameter estimates.

Data Simulation

This study is an extension of the studies of Bronsert (2009) and Lin (2011).

To maintain consistency, all of the parameter values in Table 3 and simulation

conditions in Table 4 were adopted from Lin’s study. The joint model developed by

the two researchers can be used only when outcomes follow a normal distribution

and time follows an exponential distribution. Since the purpose of this study was to
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develop joint models for members of the exponential family of distributions for

outcomes with an exponential distribution for time, three outcome distributions

were used in this study as examples. These are the Bernoulli for binary outcomes,

the Poisson distribution for counts, and the Gamma distribution for waiting time or

survival time.

In the two previous studies, Monte Carlo simulations were utilized using

SAS/IML. Lin used the Henze-Zirkler multivariate normality test statistic

computed in the PROC MODEL procedure. During this study, a program error

was found in that procedure in the software. Consequently, a SAS problem note

was posted on their website (http://support.sas.com/kb/51/281.html) on October

11, 2013. The SAS company said that the Henze-Zirkler test should not be used to

test for multivariate normality. Therefore, this study retested the simulation results

of the previous study done by Lin, by using R instead of SAS.

The basic structure of simulated data has two categorical variables with

three levels each and two continuous variables. The values of the dependent

variables are generated from the Bernoulli, the Poisson, and the Gamma

distributions respectively. The first outcome is generated from each distribution,

then the next outcome is calculated based on the relationship between the previous

outcome and the previous time to predict the average outcome with fixed

parameter values in Table 3. All parameter values are assumed to be equal across

subjects for simplicity of model form in simulation studies. The scale parameter

values (v) in Table 3 are used for the Gamma distribution only.
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Table 3

Parameter Values for Simulations

v β0 β1 β2 β3 β4 β5 β6 ϕ γ α δ

1 0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.8 0.1 2 0.01

1 0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.8 0.1 1 0.02

1 0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.8 0.1 2 0.01

1.2 0.4 0.2 0.3 0.1 0.3 0.4 0.9 0 0.1 1 0.02

1.2 0.4 0.2 0.3 0.1 0.3 0.4 0.9 0 0.1 2 0.01

1.2 0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.8 0.1 1 0.02

To test multivariate normality of the estimators of the joint models, a

diversity of sample sizes and design structures (balanced or unbalanced) were

included in the simulations. As described in Table 4, five sample sizes are combined

with four types of design structures with a different number of observations.

Because sample sizes range from 18 to 180, simulation studies are believed to be

enough to see if the multivariate normality test shows a trend as sample size

increases. In addition, a different number of observations were included in each

sample size to check if there is a certain pattern as the number of observations

increases.

Some researchers used 1,000 replications (Lipsitz et al., 2002; Qiu et al.,

2013), and some used 500 replications (Liang et al., 2009). The number of

replications was 5,000 times in Lin’s study. In this study, each simulation design

was run 1,000 times. Each outcome distribution had 120 simulation designs.
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Therefore, the total number of simulation designs was 480 with the six parameter

schemes, five sample sizes, and four different numbers of observations with four

distributions.
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Table 4

Simulation Designs

Scheme Sample Number of Design Total number of

Number Size Observations Structure Observations

1 18 10 Balanced 180

2 5 & 3 Unbalanced 72

3 10 & 5 Unbalanced 135

4 20 & 6 Unbalanced 234

5 36 10 Balanced 360

6 5 & 3 Unbalanced 144

7 10 & 5 Unbalanced 180

8 20 & 6 Unbalanced 288

9 54 10 Balanced 540

10 5 & 3 Unbalanced 216

11 10 & 5 Unbalanced 405

12 20 & 6 Unbalanced 702

13 90 10 Balanced 900

14 5 & 3 Unbalanced 360

15 10 & 5 Unbalanced 675

16 20 & 6 Unbalanced 1170

17 180 10 Balanced 1800

18 5 & 3 Unbalanced 720

19 10 & 5 Unbalanced 1350

20 20 & 6 Unbalanced 2340



49

As shown in Table 4, each sample size with a different number of

observations was simulated, and estimators were calculated. Those two procedures

were replicated 1,000 times, and multivariate normality was tested with 1,000 sets

of the estimators by using the Henze-Zirkler test. For example, when the sample

size is 54 and the number of observations is 5 & 3, 27 subjects have 5 outcomes

each and 27 subjects have 3 outcomes each, which makes the total number of

observations 216.

This study used the Henze-Zirkler multivariate normality test for checking

the property of the estimators of the joint models by using R instead of SAS due to

the error. The built-in function name is HZ.test in the MVN package. After

showing the test results, AIC, AICc, and BIC scores were calculated for model

selection purposes. Finally, the computing program package using R was applied to

a real dataset, bladder cancer data, and the output is presented.
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CHAPTER IV

RESULTS

Two main purposes of this study were (1) to build joint models with

longitudinal outcomes and informative time and verify if the asymptotic normality

of the maximum likelihood estimators holds for the joint models and (2) to

establish a computing program package that can handle the joint models by using

R. A partial result of the analysis of the bladder cancer data using the package is

presented at the end of this chapter to demonstrate the performance of the

package. To verify the asymptotic normality of the maximum likelihood estimators

of the joint models, four outcome distributions were selected as examples, and the

simulation results are presented in this chapter. The chosen outcome distributions

are the Gaussian, Bernoulli, Poisson, and Gamma distributions. The simulation

results of the Gaussian distribution are presented since an error was found in the

Henze-Zirkler multivariate normality test in SAS used by the previous researcher.

A general description of the simulation procedures is as follows. Firstly, a

design matrix is generated with two continuous and two categorical variables with

three levels each. Secondly, a dataset is created based on the fixed parameter values

shown in Table 3, in addition to the relations among previous and current outcomes

and previous time. Thirdly, the maximum likelihood estimators are computed using

a nonlinear parameter optimization function called maxLik in R. Fourthly, the
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parameter estimates are standardized by the standard error from the Hessian

matrix. The above four steps are repeated 1,000 times. The Henze-Zirkler test is

then used to test the multivariate normality of the 10,000 sets of parameter

estimates. The test was conducted separately for the parameter estimates of the

outcome and time processes. Simulation designs are based on five sample sizes, four

different observations, and six parameter schemes. Each outcome distribution has

120 (5 * 4 * 6) simulation conditions, which makes 480 simulation designs in total

for all four outcome distributions.

While simulating data, the logit link function for the Bernoulli, log link

function for the Poisson and Gamma distributions, and identity link function for

the Gaussian are used. The mean function of the Bernoulli becomes µ = exp(η)
1−exp(η) ,

and the mean function of the Poisson and Gamma is µ = exp(η). In addition, to

generate time points, another exponential function is used. Due to the two

exponential functions, oftentimes outcomes and time points quickly became

impractical. To avoid generating unrealistic outcomes and time points, the

parameter values in Table 3 on page 46 were multiplied by 1/10 to reduce the

magnitude.

For example, when X ′iB = 3 for the ith subject, µi = exp(X ′iB) becomes

20.08. This value is passed to the second exponential function to generate a time

point, which is exp(20.08) = 528, 491, 311 without including any other terms in the

computation. Moreover, this value is plugged into a function to generate a random

number from the Poisson distribution. As a result, an outcome of 528,538,500 is
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generated, which is very unlikely to have in practice. This problem was resolved by

reducing the magnitude of the parameter values.

The computing package using R presented in Appendix D was designed to

handle outcome distributions, such as the Gaussian, Bernoulli, Poisson, and

Gamma, with informative time, which follows an exponential distribution. The

package uses the identity link function for the Gaussian, logit link function for the

Bernoulli, and log link function for the Poisson and Gamma distributions, by

default. But for the Gamma distribution, the inverse and identity link functions

can be used as well, in addition to the log link function. Once all the information

needed to utilize the package is provided, the package computes the estimators,

AIC, AICc, BIC, and likelihood ratio test statistic with a corresponding p-value for

a model. For demonstration purposes, the package was applied to the bladder

cancer data; then, the outputs generated by the package are shown in Appendix A

and B.

Simulation Results

The results of the multivariate normality tests for all simulation conditions

from the four selected outcome distributions are presented.

Gaussian-Exponential Model

As can be seen in Figure 1 and 4 and Table 5, multivariate normality is not

stable when the sample size is 18 for the outcome process. However, as sample size

increases, most of the cases show multivariate normality. In these figures, filled

circles represent the unbalanced simulation design, and unfilled circles are for the
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balanced simulation design. Figure 2 and 4 show the multivariate normality test

results at the significance level of α = 0.05 for each parameter scheme. When a

p-value of the test is less than 0.05, it is categorized into “Non-normal,” but

otherwise it is “Normal.” By looking at the plots, the effects of the design

structures are not clear. The Gaussian-Exponential model has ten parameters for

the outcome process and two for the time process.

For the time process, the multivariate normality test results can be seen in

Figure 5 and 8 and Table 6. Most of the test results show multivariate normality

even with the sample size of 18. Also, the design structures do not seem to affect

the multivariate normality of the estimators. The estimators of the time process

show a pattern in achieving normality slightly faster than the outcome process.

The previous researcher stated that “there was a tendency of achieving

multivariate normality as the number of subjects exceeds 54” for the outcome and

time processes (Lin, 2011, p. 60 & 65). However, in this study, most of the

simulation results for the Gaussian model obtained normality as sample size is

greater than 18 for both the outcome and time processes. It is assumed that the

Henze-Zirkler multivariate normality test in the PROC MODEL procedure in SAS

used by the previous researcher did not compute the test statistic correctly due to

the error in the software.



54

Figure 1. Outcome Process of the Gaussian-Exponential Model (Subjects)

Figure 2. Outcome Process of the Gaussian-Exponential Model (Subjects)
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Figure 3. Outcome Process of the Gaussian-Exponential Model (Observations)

Figure 4. Outcome Process of the Gaussian-Exponential Model (Observations)
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Table 5

Outcome Process of the Gaussian-Exponential Model: p-values of the Multivariate
Normality Test for different parameter schemes and sample sizes

Parameter Scheme

Sample Sample # of 1 2 3 4 5 6

Scheme Size Obs p-value p-value p-value p-value p-value p-value

1 18 180 0.29971 0.03930 0.00001 0.01529 0.53645 0.17374

2 72 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

3 135 0.01769 0.14771 0.00001 0.09001 0.22121 0.02722

4 234 0.15295 0.01213 0.00001 0.09044 0.61176 0.19633

5 36 360 0.32246 0.10253 0.00001 0.07367 0.12644 0.27061

6 144 0.34162 0.36361 0.24073 0.31887 0.20862 0.51200

7 180 0.37339 0.09288 0.89520 0.43668 0.18142 0.72612

8 288 0.11841 0.20394 0.78541 0.15052 0.94910 0.18182

9 54 540 0.51538 0.93902 0.01182 0.28265 0.60469 0.74613

10 216 0.36149 0.51311 0.45283 0.39490 0.15466 0.91270

11 405 0.65701 0.84358 0.53248 0.78497 0.61603 0.89729

12 702 0.33136 0.89321 0.79814 0.50627 0.66203 0.93771

13 90 900 0.20652 0.45802 0.40458 0.96591 0.17377 0.71388

14 360 0.29366 0.75052 0.35323 0.84260 0.54679 0.89042

15 675 0.41352 0.74227 0.69382 0.14320 0.36336 0.86635

16 1170 0.63985 0.06333 0.67474 0.57609 0.23243 0.68908

17 180 1800 0.06868 0.37988 0.53598 0.61698 0.46444 0.82726

18 720 0.24276 0.80939 0.76237 0.24585 0.83869 0.55219

19 1350 0.41318 0.32841 0.91741 0.68461 0.51855 0.47480

20 2340 0.58655 0.23763 0.78124 0.99267 0.69329 0.98776
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Figure 5. Time Process of the Gaussian-Exponential Model (Subjects)

Figure 6. Time Process of the Gaussian-Exponential Model (Subjects)
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Figure 7. Time Process of the Gaussian-Exponential Model (Observations)

Figure 8. Time Process of the Gaussian-Exponential Model (Observations)
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Table 6

Time Process of the Gaussian-Exponential Model: p-values of the Multivariate
Normality Test for different parameter schemes and sample sizes

Parameter Scheme

Sample Sample # of 1 2 3 4 5 6

Scheme Size Obs p-value p-value p-value p-value p-value p-value

1 18 180 0.00536 0.62492 0.44094 0.27630 0.06168 0.86184

2 72 0.09875 0.39235 0.26561 0.29329 0.23040 0.01546

3 135 0.79393 0.43889 0.61088 0.22100 0.40391 0.80296

4 234 0.96929 0.06662 0.29046 0.25676 0.11720 0.55487

5 36 360 0.37019 0.59933 0.38449 0.19781 0.05106 0.65543

6 144 0.09881 0.08263 0.04383 0.64623 0.08940 0.27226

7 180 0.61501 0.65657 0.51750 0.96478 0.07434 0.63833

8 288 0.42738 0.01507 0.32936 0.01262 0.85221 0.36209

9 54 540 0.77590 0.94485 0.70976 0.10574 0.53873 0.22542

10 216 0.25769 0.62343 0.52139 0.36188 0.80927 0.22598

11 405 0.52672 0.41992 0.23673 0.41124 0.62807 0.83770

12 702 0.39817 0.19285 0.45714 0.20934 0.56195 0.65525

13 90 900 0.82082 0.51221 0.10389 0.95954 0.71905 0.97961

14 360 0.37800 0.33752 0.23034 0.88490 0.70013 0.49251

15 675 0.59168 0.11903 0.63875 0.34989 0.77778 0.22766

16 1170 0.90701 0.47944 0.65285 0.09478 0.70765 0.42658

17 180 1800 0.35810 0.95003 0.20777 0.29659 0.81707 0.13618

18 720 0.25920 0.75638 0.38214 0.86188 0.42393 0.86280

19 1350 0.24551 0.70440 0.27935 0.77896 0.26871 0.46085

20 2340 0.78797 0.57098 0.44826 0.43375 0.66599 0.93396
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Bernoulli-Exponential Model

The simulation results of the multivariate normality tests for the outcome

process are shown in Figure 9 and 12 and Table 7. As can be seen, some simulation

designs do not obtain multivariate normality when the sample size is 18. However,

when sample size goes beyond 18, it has a tendency of obtaining multivariate

normality in most of the cases. The test results for the time process are shown in

Figure 13 and 16 and Table 8. Like the Gaussian and Poisson models, design

structures do not seem to affect the test results. Compared to the Gaussian model,

the Bernoulli model is slightly slower to obtain multivariate normality in both

outcome and time processes. The Bernoulli model shows, however, the same

pattern for obtaining multivariate normality as sample size increases.

Figure 9. Outcome Process of the Bernoulli-Exponential Model (Subjects)
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Figure 10. Outcome Process of the Bernoulli-Exponential Model (Subjects)

Figure 11. Outcome Process of the Bernoulli-Exponential Model (Observations)
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Figure 12. Outcome Process of the Bernoulli-Exponential Model (Observations)
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Table 7

Outcome Process of the Bernoulli-Exponential Model: p-values of the Multivariate
Normality Test for different parameter schemes and sample sizes

Parameter Scheme

Sample Sample # of 1 2 3 4 5 6

Scheme Size Obs p-value p-value p-value p-value p-value p-value

1 18 180 0.05675 0.08736 0.55261 0.40705 0.02049 0.02893

2 72 0.00170 0.00001 0.00443 0.00005 0.00001 0.00001

3 135 0.08779 0.07709 0.36283 0.00722 0.75259 0.44204

4 234 0.23295 0.80118 0.01941 0.44327 0.11254 0.02502

5 36 360 0.75219 0.03635 0.10186 0.51965 0.69102 0.57244

6 144 0.03161 0.23727 0.05807 0.30133 0.03666 0.55714

7 180 0.17731 0.08543 0.00142 0.55424 0.10476 0.00169

8 288 0.79914 0.22383 0.81402 0.02987 0.74556 0.12857

9 54 540 0.92032 0.01005 0.67330 0.08488 0.28485 0.38808

10 216 0.30015 0.16119 0.04276 0.63300 0.93464 0.21757

11 405 0.44539 0.26563 0.01529 0.01394 0.12901 0.23853

12 702 0.33028 0.76880 0.05700 0.53018 0.42188 0.33184

13 90 900 0.15870 0.14108 0.12986 0.88998 0.10659 0.65001

14 360 0.48833 0.58988 0.55276 0.07854 0.12428 0.73702

15 675 0.12926 0.31151 0.05007 0.72414 0.03409 0.49010

16 1170 0.89959 0.59373 0.72635 0.80065 0.56804 0.53755

17 180 1800 0.18810 0.91157 0.57165 0.72655 0.94775 0.35183

18 720 0.07356 0.16238 0.78948 0.49637 0.87328 0.65930

19 1350 0.17788 0.24911 0.25517 0.64486 0.16041 0.13796

20 2340 0.23908 0.57153 0.28496 0.28281 0.13885 0.15042
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Figure 13. Time Process of the Bernoulli-Exponential Model (Subjects)

Figure 14. Time Process of the Bernoulli-Exponential Model (Subjects)
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Figure 15. Time Process of the Bernoulli-Exponential Model (Observations)

Figure 16. Time Process of the Bernoulli-Exponential Model (Observations)
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Table 8

Time Process of the Bernoulli-Exponential Model: p-values of the Multivariate
Normality Test for different parameter schemes and sample sizes

Parameter Scheme

Sample Sample # of 1 2 3 4 5 6

Scheme Size Obs p-value p-value p-value p-value p-value p-value

1 18 180 0.63656 0.25638 0.83782 0.88686 0.80580 0.39971

2 72 0.02153 0.01852 0.09288 0.74398 0.14944 0.20743

3 135 0.11022 0.15489 0.08093 0.13597 0.56070 0.46692

4 234 0.21111 0.84092 0.54910 0.79137 0.54731 0.94560

5 36 360 0.23178 0.14502 0.60016 0.28552 0.65038 0.27444

6 144 0.82361 0.59250 0.49520 0.00784 0.35823 0.05031

7 180 0.51769 0.20966 0.16625 0.24893 0.27654 0.60556

8 288 0.48287 0.07160 0.79540 0.00947 0.77695 0.07273

9 54 540 0.65554 0.77282 0.66345 0.81803 0.09565 0.49507

10 216 0.23119 0.04746 0.16934 0.10530 0.33313 0.17070

11 405 0.04573 0.57223 0.53258 0.63360 0.52933 0.72817

12 702 0.85915 0.44562 0.57071 0.01737 0.84832 0.25854

13 90 900 0.35063 0.58724 0.38891 0.75017 0.99741 0.79655

14 360 0.82732 0.22178 0.37066 0.77456 0.18029 0.30316

15 675 0.87315 0.20865 0.85218 0.72115 0.38335 0.62810

16 1170 0.13283 0.91835 0.68403 0.05189 0.61365 0.77964

17 180 1800 0.60475 0.27057 0.91102 0.11225 0.40229 0.48817

18 720 0.52796 0.20331 0.86455 0.42649 0.34244 0.05321

19 1350 0.38633 0.95209 0.05218 0.74395 0.61988 0.34718

20 2340 0.55747 0.35095 0.18420 0.92866 0.66420 0.17732
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Poisson-Exponential Model

The results of the multivariate normality tests for the outome process are

shown in Figure 17 and 20 and Table 9. Figure 21 and 24 and Table 10 are

presented for the time process. When the sample size is 18, some of the p-values

are smaller than 0.05. But when sample size goes over 18, most cases obtain

normality in the outcome and time processes. The effects of design structures are

not clear. The outcome and time process of the Poisson model show a similar

pattern to the Bernoulli model in obtaining multivariate normality.

Figure 17. Outcome Process of the Poisson-Exponential Model (Subjects)
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Figure 18. Outcome Process of the Poisson-Exponential Model (Subjects)

Figure 19. Outcome Process of the Poisson-Exponential Model (Observations)
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Figure 20. Outcome Process of the Poisson-Exponential Model (Observations)
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Table 9

Outcome Process of the Poisson-Exponential Model: p-values of the Multivariate
Normality Test for different parameter schemes and sample sizes

Parameter Scheme

Sample Sample # of 1 2 3 4 5 6

Scheme Size Obs p-value p-value p-value p-value p-value p-value

1 18 180 0.10057 0.02895 0.18157 0.00001 0.16507 0.00514

2 72 0.00021 0.00001 0.22112 0.00001 0.02607 0.00001

3 135 0.36130 0.00001 0.16868 0.00001 0.07339 0.00001

4 234 0.67790 0.00163 0.00080 0.01920 0.44829 0.00001

5 36 360 0.08865 0.38247 0.64722 0.04076 0.27216 0.00293

6 144 0.11726 0.00986 0.00362 0.09490 0.05695 0.00001

7 180 0.15288 0.02433 0.23448 0.00053 0.23166 0.00086

8 288 0.28679 0.26373 0.09063 0.26016 0.23803 0.05345

9 54 540 0.31881 0.00039 0.01431 0.06875 0.51118 0.02247

10 216 0.41920 0.01423 0.21104 0.05748 0.39067 0.06158

11 405 0.44330 0.15155 0.82205 0.06632 0.22130 0.09995

12 702 0.28225 0.41316 0.47929 0.01236 0.16226 0.16811

13 90 900 0.27823 0.11821 0.11337 0.37641 0.45065 0.24115

14 360 0.28681 0.18526 0.12320 0.27628 0.53792 0.27771

15 675 0.23369 0.52214 0.07221 0.27438 0.18044 0.77676

16 1170 0.45542 0.61720 0.74317 0.88513 0.61144 0.42771

17 180 1800 0.56882 0.41468 0.49275 0.72791 0.62766 0.56920

18 720 0.20004 0.68145 0.42954 0.30436 0.31401 0.42366

19 1350 0.60901 0.10406 0.21374 0.52314 0.43834 0.25464

20 2340 0.90283 0.18755 0.19736 0.86215 0.52802 0.42036
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Figure 21. Time Process of the Poisson-Exponential Model (Subjects)

Figure 22. Time Process of the Poisson-Exponential Model (Subjects)
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Figure 23. Time Process of the Poisson-Exponential Model (Observations)

Figure 24. Time Process of the Poisson-Exponential Model (Observations)
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Table 10

Time Process of the Poisson-Exponential Model: p-values of the Multivariate
Normality Test for different parameter schemes and sample sizes

Parameter Scheme

Sample Sample # of 1 2 3 4 5 6

Scheme Size Obs p-value p-value p-value p-value p-value p-value

1 18 180 0.36968 0.05920 0.56300 0.00001 0.17918 0.04218

2 72 0.11893 0.44316 0.00997 0.26382 0.36458 0.00143

3 135 0.69557 0.47282 0.80654 0.31771 0.77710 0.70368

4 234 0.11195 0.33696 0.52556 0.11119 0.06275 0.55649

5 36 360 0.63561 0.51381 0.03773 0.00701 0.94172 0.59264

6 144 0.76581 0.12487 0.86573 0.03754 0.43839 0.36994

7 180 0.59204 0.21128 0.78980 0.18652 0.08187 0.86942

8 288 0.99272 0.39981 0.84805 0.60154 0.66689 0.85443

9 54 540 0.59380 0.84378 0.98316 0.93627 0.87752 0.92402

10 216 0.11246 0.16843 0.69691 0.38750 0.27582 0.17288

11 405 0.74750 0.55241 0.49931 0.10998 0.39248 0.85567

12 702 0.57741 0.07716 0.17194 0.94672 0.86231 0.62319

13 90 900 0.43914 0.09881 0.60773 0.41156 0.21464 0.31899

14 360 0.21623 0.88285 0.12009 0.72366 0.71011 0.25202

15 675 0.28960 0.52017 0.06290 0.17220 0.84827 0.12679

16 1170 0.72832 0.62466 0.52392 0.32749 0.66726 0.83152

17 180 1800 0.21276 0.32669 0.77498 0.46644 0.44065 0.74302

18 720 0.57254 0.12714 0.84636 0.75986 0.15928 0.41047

19 1350 0.10377 0.82882 0.68000 0.70381 0.58446 0.32260

20 2340 0.47510 0.11559 0.30508 0.27282 0.40995 0.86716
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Gamma-Exponential Model

The test results of the multivariate normality tests for the outcome process

are shown in Figure 25 and 28 and Table 11. The test results for the time process

are presented in Figure 29 and 32 and Table 12. Compared to other models, the

parameter estimates of the Gamma-Exponential model obtain normality a little

slowler, but the estimators of the model still show the same pattern.

Figure 25. Outcome Process of the Gamma-Exponential Model (Subjects)
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Figure 26. Outcome Process of the Gamma-Exponential Model (Subjects)

Figure 27. Outcome Process of the Gamma-Exponential Model (Observations)
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Figure 28. Outcome Process of the Gamma-Exponential Model (Observations)
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Table 11

Outcome Process of the Gamma-Exponential Model: p-values of the Multivariate
Normality Test for different parameter schemes and sample sizes

Parameter Scheme

Sample Sample # of 1 2 3 4 5 6

Scheme Size Obs p-value p-value p-value p-value p-value p-value

1 18 180 0.01510 0.17792 0.00003 0.08083 0.00001 0.00262

2 72 0.00001 0.00001 0.01978 0.00031 0.00001 0.00001

3 135 0.00210 0.00001 0.01978 0.03275 0.00001 0.00001

4 234 0.00103 0.00128 0.02076 0.34407 0.11764 0.00001

5 36 360 0.35421 0.00001 0.01028 0.06356 0.40382 0.00825

6 144 0.00722 0.00019 0.00001 0.32497 0.22074 0.00046

7 180 0.08193 0.02348 0.01526 0.02878 0.22582 0.05744

8 288 0.23467 0.02400 0.05475 0.50811 0.09404 0.29712

9 54 540 0.49101 0.75876 0.05001 0.06823 0.00321 0.40774

10 216 0.21903 0.04334 0.34122 0.23272 0.01000 0.31520

11 405 0.05726 0.38631 0.13727 0.38797 0.66817 0.28811

12 702 0.33324 0.12490 0.81706 0.10886 0.14504 0.10684

13 90 900 0.96265 0.32650 0.23116 0.78075 0.31541 0.30844

14 360 0.00042 0.84341 0.02709 0.05386 0.52406 0.06959

15 675 0.28685 0.22844 0.30391 0.61856 0.74784 0.48915

16 1170 0.49667 0.99965 0.22644 0.38226 0.51399 0.12637

17 180 1800 0.11085 0.17630 0.98062 0.28320 0.10254 0.32523

18 720 0.12046 0.23472 0.13587 0.28952 0.27900 0.71762

19 1350 0.77981 0.47663 0.07182 0.52340 0.63300 0.11060

20 2340 0.97624 0.05044 0.89781 0.79816 0.97604 0.43067
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Figure 29. Time Process of the Gamma-Exponential Model (Subjects)

Figure 30. Time Process of the Gamma-Exponential Model (Subjects)
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Figure 31. Time Process of the Gamma-Exponential Model (Observations)

Figure 32. Time Process of the Gamma-Exponential Model (Observations)
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Table 12

Time Process of the Gamma-Exponential Model: p-values of the Multivariate
Normality Test for different parameter schemes and sample sizes

Parameter Scheme

Sample Sample # of 1 2 3 4 5 6

Scheme Size Obs p-value p-value p-value p-value p-value p-value

1 18 180 0.86572 0.37131 0.00100 0.67151 0.60584 0.27504

2 72 0.29841 0.00741 0.08825 0.27548 0.09334 0.09979

3 135 0.77992 0.16504 0.08825 0.72134 0.32923 0.01447

4 234 0.35246 0.64602 0.00409 0.48813 0.11194 0.09114

5 36 360 0.07756 0.49069 0.54544 0.74836 0.19391 0.03679

6 144 0.22799 0.40778 0.11894 0.12180 0.98087 0.14305

7 180 0.63773 0.67727 0.00129 0.85998 0.06022 0.17012

8 288 0.15240 0.04646 0.00432 0.18650 0.54985 0.77054

9 54 540 0.71251 0.67581 0.29709 0.33731 0.41851 0.94068

10 216 0.74534 0.85472 0.05161 0.23272 0.01336 0.89112

11 405 0.63544 0.88261 0.25709 0.28075 0.12749 0.13077

12 702 0.73240 0.81992 0.31355 0.02845 0.44592 0.79969

13 90 900 0.74591 0.26546 0.40587 0.31457 0.03915 0.80940

14 360 0.19773 0.68945 0.60848 0.29627 0.41734 0.49496

15 675 0.22578 0.20036 0.85129 0.79418 0.34258 0.50440

16 1170 0.01130 0.02301 0.69937 0.96062 0.06400 0.31042

17 180 1800 0.53021 0.47935 0.61597 0.11075 0.16306 0.57966

18 720 0.55779 0.74150 0.65422 0.04132 0.87813 0.47186

19 1350 0.81460 0.61568 0.14774 0.23289 0.06044 0.36606

20 2340 0.76442 0.15216 0.68042 0.49321 0.58991 0.73169
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Overall, the design structures, balanced or unbalanced, do not seem to

affect multivariate normality. And the maximum likelihood estimators of the

outcome and time processes of the joint models gain asymptotic multivariate

normality as sample size goes beyond 18. Also, p-values of the tests have an

increasing trend as sample size increases. In addition, the estimators of the time

process obtain asymptotic multivariate normality faster than the outcome process.

Likelihood Ratio Test

For Research Question Three, the simulation study shows that the

parameter estimates of the joint models have the asymptotic normal distribution;

therefore, the likelihood ratio test statistic can be computed and used for

comparing nested models. The likelihood ratio test assumes that the asymptotic

normality of the parameter estimates is satisfied.

The likelihood ratio test statistic is twice the difference in the two nested

models’ maximized log-likelihoods; thus, it can be written as

2(l̂full − l̂red) ∼ χ2
dffull−dfred .

The test statistic is compared to a chi-squared distribution. The common likelihood

ratio test is for testing if all parameter estimates but the intercept (β0) are zero,

H0 :


β

γ

ϕ

 = 0.
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For instance, the maximized log-likelihood of the full model of the

Bernoulli-Exponential model is

l̂full =

m∑
i=1

(
yi1log

(
µi1

1− µi1

)
+ log(1− µi1)

)
+

m∑
i=1

ni∑
j=2

(
yij log

(
µij

1− µij

)
+ log(1− µij)

)
,

(72)

where

µi1 =
exp(X ′iβ̂)

1 + exp(X ′iβ̂)
and µij =

exp(X ′iβ̂ + γ̂tij + ϕ̂yij−1)

1 + exp(X ′iβ̂ + γ̂tij + ϕ̂yij−1)
. (73)

The maximized log-likelihood of the reduced model of the Bernoulli-Exponential

model is

l̂red =
m∑
i=1

(
yi1log

(
µi1

1− µi1

)
+ log(1− µi1)

)
+

m∑
i=1

ni∑
j=2

(
yij log

(
µij

1− µij

)
+ log(1− µij)

)
,

(74)

where

µi1 =
exp(X ′i · 0)

1 + exp(X ′i · 0)
and µij =

exp(X ′i · 0 + 0 · tij + 0 · yij−1)
1 + exp(X ′i · 0 + 0 · tij + 0 · yij−1)

. (75)

Thus, the likelihood ratio test statistic can be calculated by taking the difference

between the two maximized log-likelihoods of the two models multiplied by two.

This concept is applied to the other joint models.

Information Criteria

For Research Question Four, the AIC, AICc, and BIC are computed as

model selection criteria. The AIC is expressed as 2k − 2l̂, where l̂ is the maximized

log-likelihood evaluated at θ̂. The log-likelihood functions for different outcome

distributions studied were described in Chapter III. The AICc has the form of
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AIC + 2k(k−1)
n−k−1 and the BIC is −2l̂ + klog(n), which both are the extention of the

AIC. The computing program package calculates those model selection criteria,

along with the likelihood ratio test statistic.

Analysis of Bladder Cancer Data

The proposed joint models were applied to the bladder cancer data

provided in R, and the outputs generated by the computing package are presented

in this section and Appendix A and B. R provides two different datasets, bladder

and bladder1 in the package called survival. The bladder1 is the full dataset with

118 subjects, and the bladder is the subset of the bladder1 with 85 subjects and a

reduced number of variables. The bladder cancer dataset has been studied by many

methodologists, Cai, Lu, and Zhang (2012), Sun and Wei (2000), Sun, Park, Sun,

and Zhao (2005), and Zhang (2002). The bladder dataset is most commonly used

by many researchers for recurrent event modeling (R Core Team, 2014). To

demonstrate the performance of the computing package, the Bernoulli-Exponential

model was applied to the bladder dataset, and the Poisson-Exponential model was

applied to the bladder1 dataset. The variable “stop” in both datasets measure the

time interval (in months) since the last visit. Moreover, the next visiting time is

scheduled depending on the recurrence of bladder tumor at the time of

measurement. Therefore, time becomes informative, and time intervals become

irregular across all subjects. The variable “rx” in the bladder or “treatment” in the

bladder1 represents treatment types, such as placebo, pyridoxine, and thiotepa.
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Two treatment types are included in the bladder, and three treatments in the

bladder1.

Bernoulli-Exponential Model

The bladder cancer dataset is composed of 85 subjects with bladder tumors

who were assigned to either thiotepa or placebo treatment group. For each patient,

the recurrence of tumors, treatment, initial number of tumors, size (cm) of the

largest initial tumor, and visiting time (in months) since the last visit were

recorded. The status variable “event” for the recurrence of tumors has 1 for

recurrence and 0 for everything else (including death for any reason). Therefore,

the Bernoulli-Exponential model was applied with the “event” as an outcome

variable. The chosen research interest is to study the effects of the treatment,

initial number of tumors, and size of the largest initial tumor on tumor recurrence.

In the bladder dataset, all patients were measured four times.

The placebo treatment group has 47 randomly selected patients, and the

thiotepa group has 38 patients. The likelihood ratio test statistic and the

corresponding p-value for each model shown in Table 13 can be used to test if all βs

but β0 equal to zero. Based on the information criteria, AIC, AICc, and BIC, the

best fitting model is the one with the treatment, prior outcome, and current time

as predictors. Based on the output in the Appendex A says that the treatment (=

rx) has a non-significant effect on cancer recurrence (β1 = 0.2480 with p-value of

0.248). However, the prior outcome has a significant effect (ϕ = 4.3312 with p-value

of < .0001), and the current time has a significant effect (γ = −0.1412 with p-value
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of < .0001) as well. More descriptions of the data and the output for each model

are provided in Appendix A.

Table 13

Model Selection Criteria for the Bernoulli-Exponential Model

Model AIC AICc BIC LR Test P-value

event ∼ rx+ number + size 2652.85 2654.74 2692.39 199.10 < 0.0001

event ∼ rx+ number 2651.44 2652.90 2668.54 198.51 < 0.0001

event ∼ rx+ size 2651.64 2653.09 2668.73 198.31 < 0.0001

event ∼ rx 2650.60 2651.67 2665.25 197.35 < 0.0001

Poisson-Exponential Model

The bladder1 dataset is the full data set of the study for 118 patients, and

the maximum observed number of recurrences is 9. The dataset contains all three

treatments, placebo, pyridoxine, and thiotepa, with a variable “rtumor”, the

number of tumors found at the time of recurrence. The Poisson-Exponential model

was then applied to model the number of tumors with predictors, such as the

treatments, initial number of tumors, and size of the largest initial tumor. The

same predictors used in the Bernoulli-Exponential model were used with the

variable “rtumor” as an outcome variable. Based on the information criteria

presented in Table 14, the model with the treatment, prior outcome, and current

time as predictors is selected as the best fitting model. In the model, the

“thiotepa” in the treatment and the prior outcome have significant effects on the
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number of tumors (β2 = −0.274 and ϕ = 0.078 with p-value of 0.023 and < .0001,

respectively). Also, the likelihood ratio test statistic and the corresponding p-value

for each model are presented in Table 14. More information about the data and the

output for each model are presented in Appendix B.

Table 14

Model Selection Criteria for the Poisson-Exponential Model

Model AIC AICc BIC LR Test P-value

rtumor ∼ trt+ number + size 2220.32 2223.78 2239.47 45.50 < 0.0001

rtumor ∼ trt+ number 2219.59 2222.31 2236.61 44.23 < 0.0001

rtumor ∼ trt+ size 2218.47 2221.19 2235.49 45.35 < 0.0001

rtumor ∼ trt 2218.13 2220.21 2233.02 43.69 < 0.0001

The term “trt” in the above table is a shortened word for treatment. The

second model, “rtumor ∼ treatment + number,” in the table above, was studied by

Cai et al. (2012). Their research interest was to study the effects of the treatment

and number of initial tumors on tumor recurrence. The difference is that those

researchers studied a time-varying latent effect model with time-independent

covariates. The model they found is shown below.
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Table 15

Coefficients of the Latent Effect Model

Est. SE

Treatment -0.152 0.042

Number of initial tumors 0.205 0.050

For model comparisons, the coefficients of the Poisson-Exponential model

are provided below.

Table 16

Coefficients of the Poisson-Exponential Model

Coefficient Estimate Std. error t value Pr(> |t|)

Intercept 0.9328 0.0758 12.3010 < .0001

treatment.pyridoxine -0.0100 0.1015 -0.0993 0.9208

treatment.thiotepa -0.3001 0.1266 -2.3709 0.0177

number 0.0160 0.0218 0.7364 0.4614

Prior Outcome 0.0784 0.0183 4.2848 < .0001

Current Time 0.0006 0.0030 0.2032 0.8389

Even though these two models have different concepts, both models found that the

treatment has a negative effect on the number of tumors. The output above shows

that the third treatment level, thiotepa, has a significant negative effect on the

number of tumors (β2 = −0.3001 with p-value of 0.0177), and that the number of
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initial tumors is not significant on the tumor occurrence (β3 = 0.0160 with p-value

of 0.4614).
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CHAPTER V

CONCLUSION AND DISCUSSIONS

Conclusion

The purpose of this study was to test if the Gaussian-Exponential model

(Bronsert, 2009; Lin, 2011) can be extended to outcomes belonging to the

exponential family of distributions. The simulation studies were conducted with six

parameter schemes, two design structures, and five sample sizes, to test the

asymptotic multivariate normality of the maximum likelihood estimators of the

extended joint models. Outcome distributions considered in this study were the

Gaussian, Bernoulli, Poisson, and Gamma distributions. In all of the simulation

designs, the maximum likelihood parameter estimates of the joint models appeared

to be multivariate normal as the number of observations increased. As a result, the

likelihood ratio test statistic could be utilized for model comparisons since the

asymptotic normality of the maximum likelihood estimators has been verified. Also,

AIC, AICc, and BIC scores were calculated as model selection criteria.

Furthermore, the computing package using R was developed to handle the joint

models and used to analyze the bladder cancer data for demonstration purposes.

Also, a part of this study was to retest the simulation results for the

Gaussian-Exponential model, since an error was found in the Henze-Zirkler test in

SAS software, used by the previous researcher, at the beginning of this study. Lin
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(2011) suggested that the minimum sample size to be applied to the

Gaussian-Exponential model should be greater than 54 subjects, each with at least

20 observations. However, in this study, most of the simulation results for the

Gaussian-Exponential model attained asymptotic normality as sample size exceeded

18 for both the outcome and time processes. Consequently, the

Gaussian-Exponential model can be valid for data with a sample size of greater

than 18, instead of 54.

Overall, based on the multivariate normality test from the simulation study,

the maximum likelihood parameter estimates of the joint models obtain the

asymptotic normality when sample size is greater than 18. Accordingly, the model

selection methods are valid in the joint models, which are based on the normality

assumption of parameter estimates. For those reasons, the extended joint models

can be recommended to use when sample size is greater than 18. In addition, the

maximum likelihood parameter estimates of the joint models obtain asymptotic

multivariate normality in both balanced and unbalanced designs.

The joint models presented in this study rely on the relation among the

one-step prior outcome, current time, and potential covariates. Also, it is assumed

that time and covariates are independent of each other, and that time should be

informative and exponentially distributed. If any of these assumptions is not

satisfied, the joint models proposed in this study should be considered with caution.
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Application of the Joint Models

The proposed joint models were applied to real datasets to demonstrate the

performance of the models. The Poisson-Exponential model was compared with the

latent effect model proposed by Cai et al. (2012). The results based on the model

of Cai et al. (2012) showed similar findings, for the estimation of the effects of the

treatment and the number of initial tumors. As can be seen in Table 15 and 16,

both methods found that the treatment has a negative effect on the tumor

occurrence, and that the number of initial tumors has a positive effect on the tumor

occurrence. The difference is that the model of Cai et al. (2012) computed the

overall treatment effect, ignoring the effect of each treatment level. However, the

Poisson-Exponential model calculated the estimator for each treatment level, like

other regression analyses normally do. Cai et al. (2012) stated that the treatment

has a negative association since “the more often the patients visited the clinic and

received the treatment, the less chance they will have tumor recurrence” (p. 10).

This interpretation makes sense, but does not specify which treatment is most

effective to reduce the tumor occurrence. However, the Poisson-Exponential model

specifically pointed out that the thiotep treatment only can reduce the tumor

occurrence.

Discussions

In this study, the asymptotic multivariate normality of the maximum

likelihood estimators of the joint models has been verified by simulation studies

with the arbitrary chosen simulation designs. Proving the asymptotic normality
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with mathematical theories is beyond the scope of the current study. This

undeveloped step can be studied by a theorist in the future.

As described in the last paragraph of the previous section, the joint models

have multiple assumptions, which limit the use of the joint models. If those

assumptions are relaxed, the joint models can be easily expanded to be more

flexible.

For example, firstly, the current response is assumed to be dependent upon

the one-step prior outcome. In some experiments, it is possible that the current

response depends on the two-step prior outcome or three-step prior outcome, etc.

In that case, the joint models can be modified to accommodate those terms in the

models by simply replacing yt−1 by yt−2 or yt−3. Secondly, time is assumed to follow

an exponential distribution. The distribution of time can be different based on a

research design, for example, a normal distribution. If that is the situation, the

appropriate distribution can be applied to the time process; then, the maximum

likelihood parameter estimates from the time process can be obtained. Thirdly,

currently time and covariates are assumed to be independent of each other. If they

are related, another term can be added to define the relations between them in the

models. Fourthly, the current joint models have a single response variable in a data

set. If multiple response variables are included in the analysis, the joint models

should be able to take correlations among those into account; furthermore, the joint

models should be able to give simultaneous tests for separate responses, in addition

to a single responses analysis. All of assumption relaxations mentioned above are
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technically possible and can be further explored by a researcher in order to improve

the joint models.
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Appendix A

OUTPUT OF THE BERNOULLI-EXPONENTIAL MODEL
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Bladder Cancer Data

This analysis uses the status variable, “event”, as a outcome, “rx” as a grouping
variable, and “number” and “size” as covariates. This dataset consists of 85
patients.

1. id: Patient id

2. event: Recurrence of tumors (1 = recurrence and 0 = everything else)

3. rx: Treatment 1=placebo 2=thiotepa

4. number: Initial number of tumors (8 = 8 or more)

5. size: Size (cm) of the largest initial tumor

6. stop: Recurrence or censoring time

7. enum: Which recurrence (up to 4)
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Model 1 : event ∼ rx+ number + size

$Model

[1] "Call: event ~ rx + number + size"

$Coefficients Estimate Std. error t value Pr(> t)

(Intercept) -0.05502464 0.24446703 -0.2250800 8.219170e-01

rx2 0.27649473 0.21521080 1.2847623 1.988754e-01

number -0.05055372 0.05694457 -0.8877707 3.746641e-01

size 0.05607314 0.07282951 0.7699233 4.413454e-01

prior.outcome 4.34943175 0.58220294 7.4706455 7.980240e-14

current.time -0.14184232 0.02058932 -6.8891199 5.613863e-12

alpha -3.38082136 0.07960693 -42.4689304 0.000000e+00

delta 0.20276751 0.12872836 1.5751581 1.152200e-01

$AIC

[1] 2652.851

$AICc

[1] 2654.745

$BIC

[1] 2672.392

$LogLik

[1] 199.1082

$LogLikPval

[1] 0
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Model 2 : event ∼ rx+ number

$Model

[1] "Call: event ~ rx + number"

$Coefficients Estimate Std. error t value Pr(> t)

(Intercept) 0.07737720 0.17404807 0.4445737 6.566278e-01

rx2 0.27293430 0.21504153 1.2692167 2.043638e-01

number -0.05978083 0.05571470 -1.0729812 2.832795e-01

prior.outcome 4.33597152 0.57614103 7.5258856 5.236416e-14

current.time -0.14179764 0.02035379 -6.9666444 3.245898e-12

alpha -3.38082133 0.07977955 -42.3770393 0.000000e+00

delta 0.20276748 0.12856084 1.5772103 1.147471e-01

$AIC

[1] 2651.446

$AICc

[1] 2652.901

$BIC

[1] 2668.545

$LogLik

[1] 198.5126

$LogLikPval

[1] 0
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Model 3 : event ∼ rx+ size

$Model

[1] "Call: event ~ rx + size"

$Coefficients Estimate Std. error t value Pr(> t)

(Intercept) -0.17922106 0.20141067 -0.8898290 3.735577e-01

rx2 0.25728127 0.21496375 1.1968589 2.313616e-01

size 0.06963772 0.07131094 0.9765363 3.287988e-01

prior.outcome 4.34895831 0.56927249 7.6395020 2.180635e-14

current.time -0.14216743 0.02026683 -7.0147848 2.303031e-12

alpha -3.38082134 0.07954964 -42.4995167 0.000000e+00

delta 0.20276751 0.12837268 1.5795223 1.142163e-01

$AIC

[1] 2651.641

$AICc

[1] 2653.095

$BIC

[1] 2668.739

$LogLik

[1] 198.3183

$LogLikPval

[1] 0
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Model 4 : event ∼ rx

$Model

[1] "Call: event ~ rx"

$Coefficients Estimate Std. error t value Pr(> t)

(Intercept) -0.03676028 0.13805297 -0.2662767 7.900261e-01

rx2 0.24806938 0.21487572 1.1544784 2.483041e-01

prior.outcome 4.33127194 0.60620489 7.1448977 9.006294e-13

current.time -0.14218783 0.02123201 -6.6968610 2.129440e-11

alpha -3.38082134 0.07983721 -42.3464353 0.000000e+00

delta 0.20276751 0.12875661 1.5748124 1.152997e-01

$AIC

[1] 2650.602

$AICc

[1] 2651.679

$BIC

[1] 2665.258

$LogLik

[1] 197.3565

$LogLikPval

[1] 0
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Appendix B

OUTPUT OF THE POISSON-EXPONENTIAL MODEL
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Bladder1 Cancer Data

This analysis uses “rtumor” as a outcome, “treatment” as a grouping variable, and
“number” and “size” as covariates. This dataset consists of 118 patients.

1. id: Patient id

2. treatment: Placebo, pyridoxine (vitamin B6), or thiotepa

3. number: Initial number of tumors (8 = 8 or more)

4. size: Size (cm) of the largest initial tumor

5. recur: Number of recurrences

6. start: The start time of each time interval

7. stop: The end time of each time interval

8. status: End of interval code, 0 = censored, 1 = recurrence, 2 = death from
bladder disease, 3 = death other/unknown cause

9. rtumor: Number of tumors found at the time of a recurrence

10. rsize: Size of largest tumor at a recurrence
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Model 1 : rtumor ∼ treatment+ number + size

$Model

[1] "Call: rtumor ~ treatment + number + size"

$Coefficients Estimate Std. error t value Pr(> t)

(Intercept) 1.0028856783 0.098013784 10.2320882 1.424149e-24

treatmentpyridoxine -0.0059002387 0.101527477 -0.0581147 9.536573e-01

treatmentthiotepa -0.3009050218 0.126373379 -2.3810792 1.726200e-02

number 0.0087449771 0.022726800 0.3847870 7.003952e-01

size -0.0271937970 0.024349235 -1.1168235 2.640698e-01

prior.outcome 0.0769869072 0.018345161 4.1965785 2.709775e-05

current.time 0.0007712331 0.003072309 0.2510272 8.017931e-01

alpha -3.1450823925 0.150181259 -20.9419099 2.223643e-97

delta -0.0110809301 0.040064259 -0.2765789 7.821034e-01

$AIC

[1] 2220.327

$AICc

[1] 2223.788

$BIC

[1] 2239.471

$LogLik

[1] 45.50186

$LogLikPval

[1] 3.719609e-08
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Model 2 : rtumor ∼ treatment+ number

$Model

[1] "Call: rtumor ~ treatment + number"

$Coefficients Estimate Std. error t value Pr(> t)

(Intercept) 0.9328033958 0.075831065 12.30107206 8.937990e-35

treatmentpyridoxine -0.0100911560 0.101561128 -0.09936042 9.208521e-01

treatmentthiotepa -0.3001890441 0.126609851 -2.37097699 1.774114e-02

number 0.0160542137 0.021800670 0.73640918 4.614817e-01

prior.outcome 0.0784415210 0.018306650 4.28486490 1.828503e-05

current.time 0.0006219553 0.003059826 0.20326490 8.389280e-01

alpha -3.1450823966 0.150016250 -20.96494482 1.370798e-97

delta -0.0110809300 0.040020304 -0.27688270 7.818702e-01

$AIC

[1] 2219.597

$AICc

[1] 2222.314

$BIC

[1] 2236.614

$LogLik

[1] 44.23187

$LogLikPval

[1] 2.078272e-08
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Model 3 : rtumor ∼ treatment+ size

$Model

[1] "Call: rtumor ~ treatment + size"

$Coefficients Estimate Std. error t value Pr(> t)

(Intercept) 1.0273170858 0.074565269 13.77742079 3.485021e-43

treatmentpyridoxine -0.0055632814 0.101657424 -0.05472578 9.563569e-01

treatmentthiotepa -0.2885945888 0.122187411 -2.36190116 1.818149e-02

size -0.0298282354 0.023377995 -1.27591075 2.019871e-01

prior.outcome 0.0769599487 0.018326143 4.19946234 2.675495e-05

current.time 0.0007911878 0.003071865 0.25755945 7.967469e-01

alpha -3.1450824118 0.150107129 -20.95225208 1.789646e-97

delta -0.0110809278 0.040013072 -0.27693270 7.818318e-01

$AIC

[1] 2218.474

$AICc

[1] 2221.191

$BIC

[1] 2235.492

$LogLik

[1] 45.35418

$LogLikPval

[1] 1.229156e-08
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Model 4 : rtumor ∼ treatment

$Model

[1] "Call: rtumor ~ treatment"

$Coefficients Estimate Std. error t value Pr(> t)

(Intercept) 0.9679454154 0.058686375 16.49352880 4.083858e-61

treatmentpyridoxine -0.0096904843 0.101409612 -0.09555785 9.238717e-01

treatmentthiotepa -0.2747982336 0.121497045 -2.26176887 2.371169e-02

prior.outcome 0.0786729618 0.018264445 4.30743786 1.651565e-05

current.time 0.0006277268 0.003056412 0.20538030 8.372750e-01

alpha -3.1450823926 0.150789979 -20.85737002 1.306619e-96

delta -0.0110809306 0.040152939 -0.27596810 7.825726e-01

$AIC

[1] 2218.136

$AICc

[1] 2220.21

$BIC

[1] 2233.026

$LogLik

[1] 43.69226

$LogLikPval

[1] 7.432897e-09
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Appendix C

R PROGRAM FOR SIMULATIONS
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1. Gaussian-Exponential Model

##################################################################

# Packages #

##################################################################

install.packages(’MVN’) # hzTest, roystonTest

install.packages(’MASS’)

install.packages(’maxLik’) #maxLik

install.packages(’AlgDesign’) # gen.factorial

install.packages(’mefa’) # provide rep(dat,times)

library(MVN)

library(MASS)

library(maxLik)

library(AlgDesign)

library(mefa)

##################################################################

# Parameter Setting (Pscheme: 1 to 6) #

##################################################################

parameter = matrix(c(1,1,2,2,0.5,0.5, #1:sigma

0.4,0.4,0.4,0.4,0.4,0.4, #2:beta0

0.2,0.2,0.2,0.2,0.2,0.2, #3:beta1

0.3,0.3,0.3,0.3,0.3,0.3, #4:beta2

0.1,0.1,0.1,0.1,0.1,0.1, #5:beta3

0.3,0.3,0.3,0.3,0.3,0.3, #6:beta4

0.4,0.4,0.4,0.4,0.4,0.4, #7:beta5

0.9,0.9,0.9,0.9,0.9,0.9, #8:beta6

0.8,0.8,0.8,0.0,0.0,0.8, #9:phi

0.1,0.1,0.1,0.1,0.1,0.1, #10:gamma

2,1,2,1,2,1, #11:alpha

0.01,0.02,0.01,0.02,0.01,0.02),#12:delta

nrow=6)

################################################################

# create design matrix (X) with two cat & two cont vars #

################################################################

design=function(level=c(3,3),m=18,p=2){

catg=gen.factorial(levels=level,center=FALSE,factors=’all’)

ext=rep(catg,m/(prod(level)))

des=model.matrix(~.,data=ext) #’~.’ is supported by {AlgDesign}

cont=data.frame(matrix(NA,nrow=m,ncol=p))
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for (i in 1:p){

cont[i]=rnorm(m)

}

xmatrix=as.matrix(cbind(des,cont))

xmatrix

}

################################################################

# Create Data: c(’outcome’,’time’,’subject’) #

################################################################

outcome<- function(m=m,num=num,parm=parm){

if (num == 1) {n1 = 10; n2=10}

if (num == 2) {n1 = 5; n2=3}

if (num == 3) {n1 = 10; n2=5}

if (num == 4) {n1 = 20; n2=6}

ndesign = matrix(c(rep(n1,m/2),rep(n2,m/2)),byrow=T)

nn=cumsum(c(1,ndesign[-length(ndesign)]))

raw = matrix(NA,sum(ndesign),3) #Null matrix

mu = xmatrix %*% parm[2:8] # mu is matrix

raw[nn,1]= mu + rnorm(m)*parm[1]

raw[nn,2] = rexp(m)

for (i in 1:m){

for (j in 2:ndesign[i]){

yjmin1 = raw[nn[i] - 1 + j - 1,1]

raw[nn[i] - 1 + j,2] = rexp(1)*

exp(parm[11] +parm[12] * yjmin1)

raw[nn[i] - 1 + j,1] =mu[i] + yjmin1 * parm[9] +

raw[nn[i]-1+j,2]*parm[10]+rnorm(1)*parm[1]

raw[nn[i],3]=i

raw[nn[i]-1+j,3]=i

} #j

}#i

result=list(raw=raw,nn=nn,ndesign=ndesign)

result

} #outcome

###########################################################

# Log-Likelihood Function #

###########################################################

loglikfn<- function(parms){



113

y1=y[nn,1] #initial obs for every subjects

f1=sum(-0.5 * log(parms[1]^2)-0.5*

(y1-xmatrix %*% parms[2:8])^2/parms[1]^2)

f2=0;f3=0

for (i in 1:m){

yi=y[(y[,3]==i), 1] # all obs for ith subject

ti=y[(y[,3]==i), 2] # all time points for ith subject

yi1=yi[-ndesign[i]] #previous obs

tti=ti[-1] #current time

yi2=yi[-1] #current obs

f2=sum(-0.5 * log(parms[1]^2)-0.5 *

(yi2-parms[10]*tti-parms[9]*yi1-xmatrix[i,]%*%parms[2:8])^2/

parms[1]^2)+f2

f3=sum(parms[11]+parms[12]*yi1-

exp(parms[11]+parms[12]*yi1)*tti)+f3

} #i

(m+f1+f2+f3)

} # loglike

##########################################################

# Simulation #

##########################################################

Pschem = 1 # parameter setting, 1 to 6

m=36

num = 2 # design structure 1(10,10), 2(5,3),3(10,5),4(20,6)

rep=1000 #number of replications

out = matrix(NA,rep,ncol(parameter))

parm = parameter[Pschem,]

xmatrix=design(level=c(3,3),m=m,p=2)

for (r in 1:rep){

#compute some info to be used in optimization

result=outcome(m=m,num=num,parm=parm)

y=result$raw

nn=result$nn

ndesign=result$ndesign

mle=maxLik(logLik = loglikfn, start = parm)

diff=coef(mle)-parm

out[r,]=sqrt(sum(ndesign))*diff/summary(mle)$estimate[,2]

}
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hzTest(out[,1:9]) #Outcome process

hzTest(out[,10:11]) #Time process
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2. Bernoulli-Exponential Model

##################################################################

# Parameter Setting (Pscheme: 1 to 6) #

##################################################################

parameter = matrix(c(0.4,0.4,0.4,0.4,0.4,0.4, #1:beta0

0.2,0.2,0.2,0.2,0.2,0.2, #2:beta1

0.3,0.3,0.3,0.3,0.3,0.3, #3:beta2

0.1,0.1,0.1,0.1,0.1,0.1, #4:beta3

0.3,0.3,0.3,0.3,0.3,0.3, #5:beta4

0.4,0.4,0.4,0.4,0.4,0.4, #6:beta5

0.9,0.9,0.9,0.9,0.9,0.9, #7:beta6

0.8,0.8,0.8,0.0,0.0,0.8, #8:phi

0.1,0.1,0.1,0.1,0.1,0.1, #9:gamma

2,1,2,1,2,1, #10:alpha

0.01,0.02,0.01,0.02,0.01,0.02),#11:delta

nrow=6)

################################################################

# Create Data: c(’outcome’,’time’,’subject’) #

################################################################

outcome<- function(m=m,num=num,parm=parm){

if (num == 1) {n1 = 10; n2=10}

if (num == 2) {n1 = 5; n2=3}

if (num == 3) {n1 = 10; n2=5}

if (num == 4) {n1 = 20; n2=6}

ndesign = matrix(c(rep(n1,m/2),rep(n2,m/2)),byrow=T)

nn=cumsum(c(1,ndesign[-length(ndesign)]))

raw = matrix(NA,sum(ndesign),3) #Null matrix

mu=xmatrix %*% parm[1:7]

raw[nn,1]=rbinom(m,1,ui1)

raw[nn,2] = rexp(m,rate=1)

for (i in 1:m){

for (j in 2:ndesign[i]){

yjmin1 = raw[nn[i]-1+j-1,1]

raw[nn[i]-1+j,2]= rexp(1)*exp(parm[10]+parm[11]*yjmin1)

uij=1/(1+exp(-(mu[i]+raw[nn[i]-1+j,2]*parm[9]+yjmin1 * parm[8])))

raw[nn[i]-1+j,1]=rbinom(1,1,uij)

raw[nn[i],3]=i

raw[nn[i]-1+j,3]=i

} #j
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}#i

result=list(raw=raw,nn=nn,ndesign=ndesign)

result

} #outcome

###########################################################

# Log-Likelihood Function #

###########################################################

loglikfn<-function(parms){

y1=y[nn,1] #initial obs for every subjects

mu=xmatrix %*% parms[1:7]

ui1=1/(1+exp(-mu))

f1=sum(y1*log(ui1/(1-ui1))+log(1-ui1))

f2=0;f3=0

for(i in 1:m){

yi=y[(y[,3]==i), 1] # all obs for ith subject

ti=y[(y[,3]==i), 2] # all time points for ith subject

yi1=yi[-ndesign[i]] #previous obs

tti=ti[-1] #current time

yi2=yi[-1] #current obs

uij=1/(1+exp(-(mu[i]+parms[9]*tti+parms[8]*yi1)))

f2=sum((1-yi2)*log(1-uij)+ yi2*log(uij))+f2

f3=sum(parms[10]+parms[11]*yi1-

exp(parms[10]+parms[11]*yi1)*tti)+f3

} #i

(m+f1+f2+f3)

} #loglikfn

##########################################################

# Simulation #

##########################################################

Pschem = 1 # parameter setting, 1 to 6

m=36

num = 2 # design structure 1(10,10), 2(5,3),3(10,5),4(20,6)

rep=1000 #number of replications

out = matrix(NA,rep,ncol(parameter))

parm = parameter[Pschem,]*0.1

xmatrix=design(level=c(3,3),m=m,p=2)

for (r in 1:rep){

result=outcome(m=m,num=num,parm=parm)
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y=result$raw

nn=result$nn

ndesign=result$ndesign

mle=maxLik(logLik = loglikfn, start = parm)

diff=coef(mle)-parm

out[r,]=sqrt(sum(ndesign))*diff/summary(mle)$estimate[,2]

}

hzTest(out[,1:9]) #Outcome process

hzTest(out[,10:11]) #Time process
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3. Poisson-Exponential Model

##################################################################

# Parameter Setting (Pscheme: 1 to 6) #

##################################################################

parameter = matrix(c(0.4,0.4,0.4,0.4,0.4,0.4, #1:beta0

0.2,0.2,0.2,0.2,0.2,0.2, #2:beta1

0.3,0.3,0.3,0.3,0.3,0.3, #3:beta2

0.1,0.1,0.1,0.1,0.1,0.1, #4:beta3

0.3,0.3,0.3,0.3,0.3,0.3, #5:beta4

0.4,0.4,0.4,0.4,0.4,0.4, #6:beta5

0.9,0.9,0.9,0.9,0.9,0.9, #7:beta6

0.8,0.8,0.8,0.0,0.0,0.8, #8:phi

0.1,0.1,0.1,0.1,0.1,0.1, #9:gamma

2,1,2,1,2,1, #10:alpha

0.01,0.02,0.01,0.02,0.01,0.02),#11:delta

nrow=6)

################################################################

# Create Data: c(’outcome’,’time’,’subject’) #

################################################################

outcome<- function(m=m,num=num,parm=parm){

if (num == 1) {n1 = 10; n2=10}

if (num == 2) {n1 = 5; n2=3}

if (num == 3) {n1 = 10; n2=5}

if (num == 4) {n1 = 20; n2=6}

ndesign = matrix(c(rep(n1,m/2),rep(n2,m/2)),byrow=T)

nn=cumsum(c(1,ndesign[-length(ndesign)]))

raw = matrix(NA,sum(ndesign),3) #Null matrix

mu=xmatrix %*% parm[1:7]

ui1=exp(mu)

raw[nn,1]=rpois(m,ui1)

raw[nn,2] = rexp(m)

for (i in 1:m){

for (j in 2:ndesign[i]){

yjmin1 = raw[nn[i]-1+j-1,1]

raw[nn[i]-1+j,2]= rexp(1)*(exp(parm[10]+parm[11]*yjmin1))

uij=exp(mu[i]+raw[nn[i]-1+j,2]*parm[9]+yjmin1*parm[8])

raw[nn[i]-1+j,1]=rpois(1,uij)

raw[nn[i],3]=i
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raw[nn[i]-1+j,3]=i

} #j

}#i

result=list(raw=raw,nn=nn,ndesign=ndesign)

result

} #outcome

###########################################################

# Log-Likelihood Function #

###########################################################

loglikfn<- function(parms){

y1=y[nn,1] #initial obs for every subjects

mu=xmatrix %*% parms[1:7]

ui1=exp(mu)

f1=sum(y1*log(ui1)-ui1-log(factorial(y1)))

f2=0;f3=0

for( i in 1:m){

yi=y[(y[,3]==i), 1] # all obs for ith subject

ti=y[(y[,3]==i), 2] # all time points for ith subject

yi1=yi[-ndesign[i]] #previous obs

tti=ti[-1] #current time

yi2=yi[-1] #current obs

uij=exp(mu[i]+parms[9]*tti+parms[8]*yi1)

f2=sum(yi2*log(uij)-uij-log(factorial(yi2)))+f2

f3=sum(parms[10]+parms[11]*yi1-exp(parms[10]+parms[11]*yi1)*tti)+f3

} #i

(m+f1+f2+f3)

} #loglikfn

##########################################################

# Simulation #

##########################################################

Pschem = 1 # parameter setting, 1 to 6

m=36

num = 2 # design structure 1(10,10), 2(5,3),3(10,5),4(20,6)

rep=1000 #number of replications

out = matrix(NA,rep,ncol(parameter))

parm = parameter[Pschem,]*0.1

xmatrix=design(level=c(3,3),m=m,p=2)
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for (r in 1:rep){

result=outcome(m=m,num=num,parm=parm)

y=result$raw

nn=result$nn

ndesign=result$ndesign

mle=maxLik(logLik = loglikfn, start = parm)

diff=coef(mle)-parm

out[r,]=(sqrt(sum(ndesign))*diff)/summary(mle)$estimate[,2]

}

hzTest(out[,1:9]) #Outcome process

hzTest(out[,10:11]) #Time process
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4. Gamma-Exponential Model

##################################################################

# Parameter Setting (Pscheme: 1 to 6) #

##################################################################

parameter = matrix(c(10,10,10,12,12,12, #1:v

0.4,0.4,0.4,0.4,0.4,0.4, #2:beta0

0.2,0.2,0.2,0.2,0.2,0.2, #3:beta1

0.3,0.3,0.3,0.3,0.3,0.3, #4:beta2

0.1,0.1,0.1,0.1,0.1,0.1, #5:beta3

0.3,0.3,0.3,0.3,0.3,0.3, #6:beta4

0.4,0.4,0.4,0.4,0.4,0.4, #7:beta5

0.9,0.9,0.9,0.9,0.9,0.9, #8:beta6

0.8,0.8,0.8,0.0,0.0,0.8, #9:phi

0.1,0.1,0.1,0.1,0.1,0.1, #10:gamma

2,1,2,1,2,1, #11:alpha

0.01,0.02,0.01,0.02,0.01,0.02),#12:delta

nrow=6)

################################################################

# Create Data: c(’outcome’,’time’,’subject’) #

################################################################

outcome<- function(m=m,num=num,parm=parm){

if (num == 1) {n1 = 10; n2=10}

if (num == 2) {n1 = 5; n2=3}

if (num == 3) {n1 = 10; n2=5}

if (num == 4) {n1 = 20; n2=6}

ndesign = matrix(c(rep(n1,m/2),rep(n2,m/2)),byrow=T)

nn=cumsum(c(1,ndesign[-length(ndesign)]))

raw = matrix(NA,sum(ndesign),3) #Null matrix

mu=xmatrix %*% parm[2:8]

ui1=exp(mu)

raw[nn,1]=rgamma(n=m,shape=ui1*parm[1],scale=parm[1])

raw[nn,2] = rexp(m)

for (i in 1:m){

for (j in 2:ndesign[i]){

yjmin1 = raw[nn[i]-1+j-1,1]

raw[nn[i]-1+j,2]= rexp(1)*(exp(parm[11]+parm[12]*yjmin1))

uij=exp(mu[i]+raw[nn[i]-1+j,2]*parm[10]+yjmin1*parm[9])
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raw[nn[i]-1+j,1]=rgamma(1,shape=uij*parm[1],scale=parm[1])

raw[nn[i],3]=i

raw[nn[i]-1+j,3]=i

} #j

}#i

result=list(raw=raw,nn=nn,ndesign=ndesign)

result

} #outcome

###########################################################

# Log-Likelihood Function #

###########################################################

loglikfn<- function(parms){

y1=y[nn,1] #initial obs for every subjects

mu=xmatrix %*% parms[2:8]

ui1=exp(mu)

f1=sum((-y1/ui1-log(ui1))*parms[1]+parms[1]*log(parms[1])+

(parms[1]-1)*log(y1)-log(gamma(parms[1])))

f2=0;f3=0

for(i in 1:m){

yi=y[(y[,3]==i), 1] # all obs for ith subject

ti=y[(y[,3]==i), 2] # all time points for ith subject

yi1=yi[-ndesign[i]] #previous obs

tti=ti[-1] #current time

yi2=yi[-1] #current obs

uij=exp(mu[i]+parms[10]*tti+parms[9]*yi1)

f2=sum((-yi2/uij-log(uij))*parms[1]+parms[1]*log(parms[1])+

(parms[1]-1)*log(yi2)-log(gamma(parms[1])))+f2

f3=sum(parms[11]+parms[12]*yi1-

exp(parms[11]+parms[12]*yi1)*tti)+f3

} #i

(m+f1+f2+f3)

} #loglikfn

##########################################################

# Simulation #

##########################################################

Pschem = 1 # parameter setting, 1 to 6

m=18

num = 2 # design structure 1(10,10), 2(5,3),3(10,5),4(20,6)

rep=1000 #number of replications
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out = matrix(NA,rep,ncol(parameter))

parm = parameter[Pschem,]*0.1

xmatrix=design(level=c(3,3),m=m,p=2)

for (r in 1:rep){

result=outcome(m=m,num=num,parm=parm)

y=result$raw

nn=result$nn

ndesign=result$ndesign

mle=maxLik(logLik = loglikfn, start = parm)

diff=coef(mle)-parm

out[r,]=sqrt(sum(ndesign))*diff/summary(mle)$estimate[,2]

}

hzTest(out[,1:9]) #Outcome process

hzTest(out[,10:11]) #Time process



124

Appendix D

R PROGRAM OF THE JOINT MODELS
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##################################################################

# Joint Model

##################################################################

# DESCRIPTION:

# JointModel is used to fit longitudinal outcomes and informative

# time under the assumptions that the current outcome is dependent

# on the one-step prior outcome, and that time follows an

# exponential distribution. The outcome distributions that can be

# analyzed by this function are the Gaussian, Bernoulli, Poisson,

# and Gamma distributions. The function computes the effects of

# the prior outcome, current time, alpha, and delta; therefore,

# these terms do not need to be specified in the model.

#

# USAGE:

# JointModel(formula, data, id, time, family, link = log)

# - formula: a symbolic description of the model to be fitted.

# - data: dataset name to be analyzed

# - id: id variable name in the dataset to be analyzed

# - time: time variable name in a dataset to be analyzed

# - family: distribution of outcome variable,

# such as gaussian, bernoulli, poisson, and gamma.

# - link: name of the link function. The default link function

# for gaussian is identity, logit for bernoulli, log for

# poisson and gamma. The inverse or identify can be used

# for gamma.

###################################################################

########################################################

# A Example of Data Structure to be analyzed

########################################################

# data with two continous vars and one factor

# subj: id, y:outcome, t:time, f1:factor, c1 & c2: continuous vars

#

# subj y t f1 c1 c2

#1 1 0 0.4352370 1 0.13333636 1.08576936

#2 1 0 0.2634203 1 0.13333636 1.08576936

#3 1 1 1.4733225 1 0.13333636 1.08576936

#4 1 1 0.7620299 1 0.13333636 1.08576936

#5 2 0 1.2376036 1 0.80418951 -0.69095384

#6 2 1 4.4239342 1 0.80418951 -0.69095384

#7 2 1 1.0545432 1 0.80418951 -0.69095384

#8 2 1 1.0352439 1 0.80418951 -0.69095384

#9 3 1 1.8760352 2 -0.05710677 -1.28459935

#10 3 0 0.6547466 2 -0.05710677 -1.28459935

#############################################################
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JointModel <- function(formula, data, id, time, family, link = log) {

wants <- c(’maxLik’, ’formula.tools’, ’MASS’)

has <- wants %in% rownames(installed.packages())

if (any(!has)) install.packages(wants)

library(maxLik)

library(formula.tools)

library(MASS)

arguments <- as.list(match.call())

id <- eval(arguments$id, data)

time <- eval(arguments$time, data)

get.names <- get.vars(formula)

id.time <- data.frame(cbind(id=id,time=time))

df <- data[,get.names]

df <- cbind(id.time, df)

df <- df[complete.cases(df),]

df[,1] <- as.numeric(as.factor(df[,1])) #1=id

xdesign <- model.matrix(formula, data = df)

coef.names <- colnames(xdesign)

ndesign <- as.numeric(table(df[,1])) #1=id

m <- tail(df[,1],1) #1=id

nn <- cumsum(c(1,ndesign[-length(ndesign)]))

df$lag.out <- c(NA, df[-nrow(df), 3])

for (i in 1:(nrow(df)-1)) {

if(df[,1][i]!= df[,1][i+1]) df$lag.out[i+1] <- NA

}

time.initial <- lm(df[,3]~lag.out,data=df) #3=outcome

time.coef <- as.numeric(coef(time.initial))

x.name <- c(get.names[-1],’lag.out’,’df[,2]’)

ff <- as.formula(paste(’df[,3]~’,paste(x.name,collapse=’+’)))

out.initial <- lm(ff,data=df)

out.coef <- as.numeric(coef(out.initial))

if (arguments$family == ’poisson’| arguments$family== ’bernoulli’) {

initial <- c(out.coef, time.coef)

} else if (arguments$family== ’gaussian’) {

initial <- c(out.coef, time.coef, sd(df[,3]))

} else {

v <- fitdistr(df[,3], "Gamma")
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v <- as.numeric(a$estimate[1])

initial <- c(out.coef,time.coef, v)

}

if(arguments$family== ’gaussian’) {

LikeFn <- function(parms) {

y1= df[nn,as.character(lhs(formula))]

mu=xdesign %*% parms[1:ncol(xdesign)]

f1=sum(-0.5 * log(parms[ncol(xdesign)+5]^2)-0.5*

(y1-mu)^2/parms[ncol(xdesign)+5]^2)

f2=0;f3=0

for (i in 1:m) {

yi=df[(df[,’id’]==i), as.character(lhs(formula))] #1=id

ti=df[(df[,’id’]==i), as.character(lhs(formula))] #1=id

yi1=yi[-ndesign[i]] #previous obs

tti=ti[-1] #current time

yi2=yi[-1] #current obs

f2=sum(-0.5 * log(parms[ncol(xdesign)+5]^2)-0.5 *

(yi2-parms[ncol(xdesign)+2]*tti-parms[ncol(xdesign)+1]*

yi1-mu[i])^2/parms[ncol(xdesign)+5]^2)+f2

f3=sum(parms[ncol(xdesign)+3]+parms[ncol(xdesign)+4]*yi1-

exp(parms[ncol(xdesign)+3]+ parms[ncol(xdesign)+4]*yi1)*tti)+f3

} #i

(m+f1+f2+f3)

} # LikeFn

} #gaussian

if(arguments$family== ’bernoulli’) {

LikeFn <-function(parms) {

y1 <- df[nn, as.character(lhs(formula))]

mu <- xdesign %*% parms[1:ncol(xdesign)]

ui1 <- 1/(1+exp(-mu))

f1 <- sum(y1*(log(ui1)-log(1-ui1))+log(1-ui1))

f2 <- 0; f3 <- 0

for(i in 1:m) {

yi <- df[(df[,’id’]==i), as.character(lhs(formula))] #1=id

ti <- df[(df[,’id’]==i), 2]

yi1 <- yi[-ndesign[i]] #previous obs

tti <- ti[-1] #current time
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yi2 <- yi[-1] #current obs

uij <- 1/(1+exp(-(mu[i]+parms[ncol(xdesign)+2]*tti+

parms[ncol(xdesign)+1]*yi1)))

f2 <- sum((1-yi2)*log(1-uij)+ yi2*log(uij))+f2

f3 <- sum(parms[ncol(xdesign)+3]+parms[ncol(xdesign)+4]*yi1-

exp(parms[ncol(xdesign)+3]+parms[ncol(xdesign)+4]*yi1)*tti)+f3

} #i

(m+f1+f2+f3)

} #LikeFn

} #binomial

if(arguments$family== ’poisson’) {

LikeFn <- function(parms) {

y1 <- df[nn, as.character(lhs(formula))]

mu <- xdesign %*% parms[1:ncol(xdesign)]

ui1 <- exp(mu)

f1 <- sum(y1*log(ui1)-ui1-log(factorial(y1)))

f2 <- 0; f3 <- 0

for (i in 1:m) {

yi <- df[(df[,’id’]==i), as.character(lhs(formula))]

ti <- df[(df[,’id’]==i), 2] #2=time

yi1 <- yi[-ndesign[i]] #previous obs

tti <- ti[-1] #current time

yi2 <- yi[-1] #current obs

uij <- exp(mu[i]+parms[ncol(xdesign)+2]*tti+

parms[ncol(xdesign)+1]*yi1)

f2 <- sum(yi2*log(uij)-uij-log(factorial(yi2)))+f2

f3 <- sum(parms[ncol(xdesign)+3]+parms[ncol(xdesign)+4]*yi1-

exp(parms[ncol(xdesign)+3]+

parms[ncol(xdesign)+4]*yi1)*tti)+f3

} #i

(m+f1+f2+f3)

} #LikeFn

} #poisson

if(arguments$family== ’gamma’) {

LikeFn <-function(parms) {

y1 <- df[nn, as.character(lhs(formula))]

mu <- xdesign %*% parms[1:ncol(xdesign)]

ui1 <- exp(mu)

if (arguments$link ==’inverse’) ui1 <- 1/mu
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if (arguments$link ==’indentity’) ui1 <- mu

f1 <- sum((-y1/ui1-log(ui1))*parms[ncol(xdesign)+5]+

parms[ncol(xdesign)+5]*log(parms[ncol(xdesign)+5])+

(parms[ncol(xdesign)+5]-1)*log(y1)-

log(gamma(parms[ncol(xdesign)+5])))

f2 <- 0; f3 <- 0

for (i in 1:m) {

yi <- df[(df[,’id’]==i), as.character(lhs(formula))]

ti <- df[(df[,’id’]==i), time]

yi1 <- yi[-ndesign[i]] #previous obs

tti <- ti[-1] #current time

yi2 <- yi[-1] #current obs

uij <- exp(mu[i]+parms[ncol(xdesign)+2]*tti+

parms[ncol(xdesign)+1]*yi1)

if (arguments$link==’inverse’) uij <- 1/uij

if (arguments$link==’indentity’) uij <- uij

f2 <- sum((-yi2/uij-log(uij))*parms[ncol(xdesign)+5]+

parms[ncol(xdesign)+5]*log(parms[ncol(xdesign)+5])+

(parms[ncol(xdesign)+5]-1)*log(yi2)-

log(gamma(parms[ncol(xdesign)+5])))+f2

f3 <- sum(parms[ncol(xdesign)+3]+parms[ncol(xdesign)+4]*yi1-

exp(parms[ncol(xdesign)+3]+

parms[ncol(xdesign)+4]*yi1)*tti)+f3

} #i

(m+f1+f2+f3)

} #LikeFn

} #gamma

if(arguments$family== ’gamma’) {

mlefull <- maxLik(logLik=LikeFn,start=initial)

betas <- c(coef.names, ’prior.outcome’,’current.time’,

’alpha’,’delta’,’shape’)

names(mlefull$estimate) <- betas

mlered <- maxLik(logLik=LikeFn,

start=c(initial[1],rep(0,ncol(xdesign)+3),v),

activePar=c(T,rep(F,ncol(xdesign)+1),rep(T,2),T)

)

} else if (arguments$family==’gaussian’) {

mlefull <- maxLik(logLik=LikeFn,start=initial)

betas <- c(coef.names,’prior.outcome’,’current.time’,

’alpha’,’delta’,’sigma’)
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names(mlefull$estimate) <- betas

mlered <- maxLik(logLik=LikeFn,

start=c(initial[1],rep(0,ncol(xdesign)+3),

initial[length(initial)]),

activePar=c(T,rep(F,ncol(xdesign)+1), rep(T,2),T)

)

} else {

mlefull <- maxLik(logLik=LikeFn,start=initial)

betas <- c(coef.names,’prior.outcome’,’current.time’,’alpha’,’delta’)

names(mlefull$estimate) <- betas

mlered <- maxLik(logLik=LikeFn,

start=c(initial[1],rep(0,ncol(xdesign)+3)),

activePar=c(T,rep(F,ncol(xdesign)+1), rep(T,2))

)

}

parm <- summary(mlefull)

est <- summary(mlefull)$estimate

AIC <- AIC(mlefull)

AICc <- AIC+2*parm$NActivePar*(parm$NActivePar+1)/

(m-parm$NActivePar-1)

BIC <- -2*parm$loglik+parm$NActivePar*log(m)

ratio <- 2*(logLik(mlefull)-logLik(mlered))

dfred <- summary(mlered)$NActivePar

dffull <- summary(mlefull)$NActivePar

dfchi <- dffull-dfred

Pr <- 1-pchisq(ratio,dfchi)

list(Model = paste(’Call: ’, formula )),

Coefficients = est,

AIC = AIC, AICc = AICc, BIC = BIC,

LogLik = ratio, LogLikPval = Pr)

} #JointModel
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