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ABSTRACT

DeRoche, Kathryn KThe Functioning of Global Fit Statistics in Latent Growth Curve

Modeling Published Doctor of Philosophy dissertation, University of Northern

Colorado, 2009.
Latent growth curve (LGC) modeling is emerging as a preferred method dtitingl
analysis, which uses the structural equation modeling (SEM) framework tmdeate
growth or change (Meredith & Tisak, 1990). The purpose of this dissertation was to
examine the performance of commonly utilized measures of model fit in LGdingpde
data environments. A Monte Carlo simulation was conducted to examine the inflience o
LGC modeling design characteristics (i.e., sample size, waves of ddtancalel
complexity) on selected fit indexes (i.g2, NNFI, CFl, andRMSEA estimated in correct
LGC models. Th€FI performed the best, followed by tNe&FI, 2, and finally, the
RMSEAshowed the least desirable characteristics. RMSEAwas found to over-reject
correct models (i.e., suggest poor model fit) in conditions of small to modergtesam
size (N < 1,000) and few waves of data. Tftever-rejected correct multivariate models
with more waves of data and small sample sikies {00). TheNNFI over-rejected
unvariate and multivariate models with small sample $ize {00) and three waves of
data. Six guidelines were proposed for LGC modeling researchers, includixigniaing
the chance of obtaining a plausible solutions, cautioning the use &f #uopting the

novel LGC modeling cutoff values, using multiple fit indexes, and assessingtktie- wi

person fit. As LGC modeling applications escalate in the social and behacierales,



there is a critical need for additional research regarding LGC modgddifially, the

sensitivity of fit indexes to relevant types of LGC model misspetidica
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CHAPTER |
INTRODUCTION

In contemporary science, many researchers, practitioners, and pokeysma
across a variety of disciplines, have encountered the question of how to measure change.
Measurements of change in the educational field are apparent by teached’, s
administrators’, and federal policy makers’ concerns regarding chamggeveth in
student achievement. Researchers in the pharmaceutical industry aréeithter ése
discovery of changes in symptom relief between membearsrifol and experimental
groups who receive a novel drug treatment. Psychologists, therapistgdeerdyion
specialists, and parents are focused on the growth of developmental clsregteri
including predictors or moderators of cognitive development. In addition, the field of
program evaluation is committed to determining if change has occurred a# afras
program or intervention.

Along with a general interest in change, accountability of change has become
apparent at the federal, state, and local levels. For example, the No GhBe:lhied Act
(NCLB; U.S. Department of Education, 2001) requires state governments to monitor
change in students’ achievement. A potential consequence of NCLB is that schools can
lose federal funding and even risk termination if they fail to display adepuadeess.
Furthermore, most state and foundation funding agencies in the health and human
services require quantitative evaluations to assess change in desirathpootromes

1



(e.g., U.S. Department of Health and Human Services, 2005). While the implications of
guantitative evaluations of change vary by state, department, disciplinggemy an
general, those programs that fail to display change, risk loss of all af plaeir funding.
Therefore, agencies funded through federal, state, and local venues haak a fisc
responsibility to demonstrate change. The federal mandates have daisicat and
methodological researchers to develop and examine models to adequatelgmeasur
change for complex traits (i.e., achievement, cognition, etc.). Typicallgnads in
research guide policy but, in the last decade, policy has driven the research on the
methods (i.e., statistical models) to estimate change.

Traditional Models of Change

Appropriate, quantitative techniques for the measurement of change have been
debated in the methodological literature for the last century, and a novel peespéct
change has provided the framework for modern statistical models (Rogasds, B
Zimowaski, 1982). Historically, change has been predominantly conceptualiaedwas
change score, the difference between pre- and posttest scores. Howeverngeav cha
scores may produce low reliability estimates and high correlations ambabstatus
and change scores (Cronbach & Furby, 1970).

To address the complications associated with raw change scores|, severa
researchers advocated that the conceptualization of change should be altesed from
incrementof time (i.e., pre- to posttest) to a continupuscessof development (Rogosa
et al., 1982; Rogosa & Willett, 198B985; Willett, 1989). Specifically, Rogosa et al.
proposed that change can be measured with precision and adequate psychometric

properties when more than two waves of data, or data collection points, areedollec



Furthermore, Willett demonstrated that the reliability of change canestiadly increase
as additional waves of data are included, with an approximate 250% increaseilityelia
when three waves of data are adopted as opposed to two waves of data. When change is
measured as a process with more than two time points, complications of lowityeliabi
estimates, typically found with raw change scores, are no longer ofraonce

In the contemporary study of change, residual change scores, repeatactesiea
analysis of variance (ANOVA), and regression techniques can be usedsticatiyt
assess change over more than two waves of data (Field, 2005). However, these
procedures have been criticized due to their limitations. Residual change $eores, t
difference between the residuals at two time points, were developed to avieighthe
correlation between raw change scores and initial status as discy<3exhbach and
Furby (1970). Considerable debate has occurred in regard to the corresponding
interpretability of residual change, and theorists (Rogosa & Willett, 198ktiV1989)
have advocated avoiding the use of residual change scores

Typically, behavioral and social sciences researchers apply repeatsdrase
ANOVA and regression techniques to measure change across three or more time points
(Voelkle, 2007). Based on variance decomposition, ANOVA and regression models
determine group differences by partitioning variance into between-pemsom er-
individual differences) and within-person (i.e., intra-individual differengaggtions.
The between-person variance represents variations accounted for in the ngodel (e.
variations due to a manipulated variable between an experimental and contrplagrup
the within-person variance represents variation not accounted for in the model (i.e.,

variation due to individual differences) sometimes labeled as error varlaheeent in



its name error variance, the individual variations in a trait are not of interest because
attention is placed on the between group differences (i.e., between-personejaria
However, questions about the accountability of change may be enhanced by an
examination ofariation within individuals (e.g., Is the rate of change in academic
growth for one student different from the rate of change for another student?). As a novel
extension of the ANOVA/regression family of techniques, growth curve modeling
procedures include the analysis of within and between-person variations to measure
change. Therefore, subsequently, the modern movement toward the analysis of change
has adopted Rogosa and Willett’s (1983) notion of growth models, because their
application increases the accuracyraasuringaccounting for, andnterpreting
individual variations across examinees.
Growth Curve Models

The legislative mandates (e.g., NCLB) of the last few decades balexighe
advances in a collection of statistical models, referred ¢paagth curve mode]svhich
includes an assortment of models to investigate growth at the within and between
participant levels. All growth modeling procedures can be conceptualizeo asstinct
steps: (a) the within-person model symbolizing individual change over time, athe (b)
between-person model which characterizes inter-individual change aaonegMillett &
Sayer, 1994). In all growth models, the within-person changes are accounted for in the
statistical analysis of between-persons changes; however, thcsgtatistical methods

used to achieve the result vary among the different types of growth models.



The list below contains potential research questions that are commonly

encountered when an analysis of change is conducted with traditional siatistic

approaches:
1. Has there been a change or growth in the trait?
2. Do individuals differ in their growth in the trait? Or, for multiple groups,

does the control group differ in the amount of change from the
experimental group?
While growth models can answer the two previous questions, also, they can answer the

guestions listed below (Voelkle & Wittmann, 2007):

1. What is the trajectory of change for the group? Is change relatetfo t

2. What is the variability of individual trajectories for change?

3. Can the individual growth trajectories be predicted?

4. Are the growth trajectories the same for multiple groups?

5. Does a covariate explain the same amount of growth in multiple groups?

This list provides a glimpse into potential questions that can be answered when growth
models are applied to longitudinal research designs. Consequently, state eald fede
mandates frequently apply growth curve modeling techniques to demonstrate change.
Growth curve models have been referred to asideg¢lopmental models
(Rindskopf, 1987); (bhierarchical linear model¢HLM) or multilevel model¢Byrk &
Raudenbush, 1992); (@ndom-effects ANOVA modélsangel & Rukhin, 1999); (d)
random coefficients mode|Rovine & Molenaar, 2000); and (tent growth curve
models(LGC model; Duncan, Duncan, & Strycker, 2007). Estimation of LGC modeling

techniques includes the analysis of variance-covariance structureseamarlaans to



determine growth or change with use of a structural equation modeling (&&Mviork
(Meredith & Tisak, 1990). Duncan et al. and Schulenberg and Maggs (2001) have
mathematically discussed or methodologically investigated the simesaand
differences between LGC models and other growth curve models, specificallly, HL
based growth models. The preference for LGC models, compared to other grasgth cur
models, is rooted in the methodological advantages of SEM (i.e., also known as latent
variable modeling). Accordingly, LGC models represent growth in lateits {i.e.,
unobservable traits), whereas other growth model designs do not distinguish between
latent and observed traits. Other advantages of LGC modeling include: {ai)ifiex
modeling complex phenomena, (b) ability to account for measurement error, and (c)
capability of testing model fit (Byrne & Crombie, 2003; Duncan & Duncan, 2004,
Meredith & Tisak, 1990; Muthén & Curran, 1997; Voelkle, 2007; Willett & Sayer, 1994).
Thus, LGC modeling techniques are emerging as a preferred method athresety
assess change among complex latent traits.
Latent Growth Curve Models

Meredith and Tisak (1990) presented an SEM model that accounted for individual
changes in a trait across time, referred to as a LGC model. As a sobgate§EM,
LGC models have similar benefits to SEM in general. However, LGC modeldvave
dominant characteristics not found in standard SEM models. First, the goal of LGC
modeling is to examine growth over time within longitudinal research designs, while
typical SEM applications model cross-sectional designs (Meredith &)Ti&ala result
of differences in the underlying conceptualization, LGC model researchéne fix

relationships between the latent and observed variables (i.e., factor loadingegssher



SEM methods, these relationships are estimated. While LGC modeling indlaedes t
analysis of variance-covariance structures found in general SEM aiopis;a
transformations convert this data structure to means and variances in ordenpretint
overall growth parameters. Thus, a second variation of LGC modeling includes the
estimation of latent means as well as the variance-covariance matrix.
Hypothesized theories of change in the social and behavioral sciences typically
include additional study characteristics (e.g., variations in samplensizes of data,
potential covariates, quadratic growth, and multivariate growth) to pro@gtgsent the
complex changes in the latent traits of interest. Due to the flexillitGC modeling,
researchers typically include additional constructs in the LGC model to pone$o the
hypothesized theory of change. For example, a social science researglneriooke
additional participants to achieve adequate statistical power or may iclddenal
waves of data to ensure that the latent trait is measured adequately laeiring t
hypothesized period of change. Furthermore, several theories in the social and akhavior
sciences assume multifaceted growth, requiring complex models to prayedgent
traits of interest. For example, longitudinal researchers may hypothiesizgiadratic
growth, or initial growth that levels off, is a more appropriate represemtat the trait
of interest than linear growth. A LGC modeling researcher may alsddyested in
growth in more than one trait; therefore, requiring a multivariate LG Cojoeply
represent the hypothesized trait. Typically, theories in the social and behaziences
include covariates that may influence the process of change. In conclusiorma@els
applied to traits found in the social and behavioral science will includdigasgan the

number of participants, waves of data, and model complexity. Therefore, extasfsions



LGC models are of concern to longitudinal behavioral and social sciencechessaln
Chapter I} a comprehensive description of LGC models and the similarities and
differences compared to general SEM are discussed.

As in all SEM models, LGC models are used to examine the hypothesized model
to determine how well inatcheghe data. As a critical component of LGC modeling,
model fit determines whether the statistical model matches or fits thealkcted from
the participants over time. Fit indexes are a collection of descriptive anentiér
statistics that represent indicators of how well the data fit the hypogldesiodel. Due to
the debatable advantages and disadvantages of the different indexes, SEMeaesearc
frequently report multiple fit indexes (Hu & Bentler, 1999). Assessment of Ifibde
determines how well the hypothesized model is supported by the data. Therefore, a
fundamental concept of LGC modeling is an evaluation of the model fit to properly
represent change.

A review of the literature produced a few simulation studies which investiga
the functioning of LGC models under various conditions (Fan, 2003; Hertzog,
Lindenberger, Ghisletta, & von Oertzen, 2006; Leite, 2007; Muthén & Curran, 1997;
Muthén & Muthén, 2002). Simulation studies have expanded the knowledge of optimal
conditions for the application of LGC models; however, the focus of these studies has
been on statistical power and assumptions, with one exception. Coffman and Millsap
(2006) conducted the only other known study in which the concept of model fit was
investigated in regard to LGC modeling. By examination of the two conditions af line
and quadratic growth, the authors concluded that fit indexes may not accuratetgnepr

shape in individual growth trajectories. While Coffman and Millsap’s sinaulati



provided support for their conclusions, the authors examined their hypothesis under the
limited conditions of a single sample sid¢< 500) and waves of data (three waves of
data) for only two fit indices. Consequently, the authors’ research design lacked
representation of many common conditions found in LGC modeling applications (e.g., in
terms of model complexity, waves of data, sample size, and multiple fit indexes

The use of LGC modeling has progressed in the areas of theoretical deveglopme
and simulation studies of statistical power, with a need to examine thel gniicadures
of assessing model fit in the LGC model. Consequently, the examinatiomnolefites,
under various data environments encountered in LGC modeling applications, is a novel
area of exploration.

Statement of the Problem

The gap in the methodological literature in regard to fit indexes for LGC models
under various conditions has inhibited applied researchers from being able to fully
understand and interpret change. Longitudinal research environments inclidg var
conditions of sample size, waves of data collected, and model complexity whichdtave
yet been examined in terms of their corresponding effect on fit indexes. Coffman and
Millsap (2006) provided a critical hypothesis in regard to procedures for thesiamesd
of model fit in LGC modeling that needs to be examined under additional conditions.
Currently, applied longitudinal researchers do not know if values of a partiit urheex
suggest adequate fit for LGC models.

In addition, simulation studies (Bentler, 1990; Hu & Bentler, 1999; Yadama &
Panday, 1995) of general SEM applications have demonstrated that fit indeiestdluc

with sample sizes and model complexity. Currently, LGC modeling reseaurelierence



methodological studies of fit statistics under general SEM conditions to jtrstify
interpretation of model fit (e.g., Hu & Bentler). However, given the lacksgaech on fit
in the LGC modeling context, it is unknown if guidelines for assessing fit miolate
SEM are applicable to LGC models. Assistance could be provided to applied research
by increasing the understanding of fit indexes for LGC modeling data envirarient
example, applied LGC modeling researchers could benefit from a bettestandang of
how fit indexes are affected under conditions of: (a) sample size, (b) waves of data
collected, and (c) model complexity. In a recent review, Voelkle (2007) noted a
apparent lack of methodological guidance for applied LGC researcheifcsilg
related to interpretation of fit indexes and stated:
Clearly, there is a need for future research to shed light on the complex
interactions between these factors (sample size, underlying assumations
model complexity) in order to determine the optimal procedures for the analysi
of change for a given set of data. Similar arguments can be made fortmost fi
indexes employed in LGC modeling, which are greatly affected by sample
This topic has been deliberately ignored because it is no different from standard
structural equation modeling and a more detailed discussion would go far beyond
the scope of this article. (p. 411)
Rationale for the Study
Even though the LGC modeling simulation literature is scarce, applicatidihes
procedure have escalated in the last decade, especially in the behavioogiand s
sciences. Even a cursory review of the recent published literature reuessous LGC
modeling application studies across a variety of disciplines, which varied caiydie
sample size, number of waves of data, and model complexity, as well as in thifitype o

indexes reported. The application studies cluster around conditions of three to fige wave

of data and fewer than 500 participants. In the majority of studies, fit indexesparted



to examine model fit, typically including the: (a) chi-squared likelihotid tast {?); (b)
non-normed fit indexNINFI; Bentler & Bonett, 1980); (c) comparative fit ind&xH{;
Bentler, 1990); and (d) the root mean square error of approxim&MSBIEA Steiger &
Lind, 1980). Unfortunately, many researchers who use LGC models seem to besunawar
of the influence of study characteristics on fit indexes and follow guidelinetodede
upon more general SEM models. Consequently, there is a need for methodological
research on the performance of various fit indexes under conditions commonly
encountered in LGC modeling applications.
Purpose of the Study

The purpose of this dissertation was to examine varying LGC modeling
conditions on the functioning of selected model fit indexes. By application of Monte
Carlo simulation techniques, | examined how fit indexes function under simulated
conditions that are commonly encountered in applied LGC environments. Data were
generated by replication of the conditions of LGC modeling data environments found in
the social and behavioral sciences, including varying levels of: (a) osamafile size,
(b) waves of data collected, and (c) model complexity. The latter repxesenis design
characteristics of LGC models including: (a) shape of growth, (b) numbepenhdent
variables, and (c) inclusion of a covariate. Subsequently, the simulated databnendit
were examined with use of LGC modeling techniques to estimate the follotving fi
indexes: (a)?, (b) NNFlI, (c) CFl, and (d) theRMSEA All other parameters required for
LGC modeling estimation were held constant across simulation conditiohgheit

explanation and discussion of these parameters included in Chapters Il and Ill. The



results of the simulation study can be used to develop more informative guidetines

applied researchers to assess the fit of their LGC models.

Research Questions and Hypotheses

The overall hypothesis suggests that the selected fit indexes vample saze,

waves of data collected, and model complexity. The explicit researchaqnsestid

hypotheses are presented below:

Q1

H1

Q2

H2

Q3

H3

Do model convergence rates vary under conditions of sample size, waves of
data, and model complexity?

Large models (including an increase in both waves of data and model
complexity) with small sample sizes will have lower convergence rates
compared to parsimonious models with large sample sizes. For example, the
condition of a multivariate LGC model with 3 waves of data&atiO0 will

have the lowest frequency of model convergences. On the contrary, a
univariate linear LGC model with 6 waves of data & 2,500 will have

all samples converge, resulting in 100% convergence rate.

Do fit indexes (i.ex2, NNFI, CFl,andRMSEA differ under varying
conditions of sample size?

Regarding the influence of sample size, it is hypothesized that all fit ;xdexe
will display a difference among sample size conditions; with fit indexes
small sample size conditiond € 100) deteriorating and implying a lack of
model fit, while fit indexes under large sample size conditibis 1,000)

will suggest excellent model fit. However, the magnitude of variation will
fluctuate among fit indexes. Thewill display a large effect size and the
NNFI, CFl, andRMSEAwill display a small effect size among sample sizes
conditions.

Do fit indexes (i.ex2, NNFI, CFl,andRMSEA differ under varying
conditions of waves of data?

Due to the increase in waves of data requiring additional observed measures
in the LGC modeling, all fit indexes will display a difference among the
waves of data conditions with fit indexes deteriorating, suggesting
inadequate model fit, with increasing waves of data. According to previous
simulations, researchers suggested thaCtiewill have a medium effect,
suggesting worse fit with more waves of data, withy8h&INFI, and



RMSEAhaving small effect sizes that may be negligible in the context of
practical changes in fit index values.

Q4 Do fit indexes (i.ex2, NNFI, CFl,andRMSEA differ under varying
conditions of model complexity, defined in the current dissertation as a
univariate linear LGC model, quadratic LGC model, multivariate linedC LG
model, and a linear LGC model with a covariate?

H4 Extensions to the parsimonious linear LGC model require additional
parameters to be estimated, increasing in model complexity with the addition
of a covariate, representation of quadratic growth, and the most complex
multivariate linear LGC model. Based on previous studies of model fit in
general SEM, it is expected that as the model complexity increases, the fi
indexes will depreciate. According to previous simulations, researchers
suggested that tH@FI will have a medium effect, with th&, NNFI, and
RMSEAhaving small effect sizes that may be negligible in the context of
practical changes in fit index values.

The four fit indexes were investigated separately for research questmtigough four.
Support for the research questions and corresponding hypotheses is provided in Chapter
.
Limitations

In this dissertation, | replicated common application scenarios of LGC models,
but did not attempt to simulate data specific to every possible scenario. Fgiexa
many applications of LGC models, there may be: (a) missing data, (Imyaegrees of
measurement error, (c) non-normality, (d) different variances witlcim @&asurement
point, and (e) assumption violations; all of which were held constant in the cuuet st
This dissertation was designed to simulate conditions of typical data envirgnmém
social and behavioral sciences and, therefore, may not reflect all fieldgoplications
of study. Furthermore, only selected fit indexes were examined despibgytiae fit

indexes that have been developed for use in SEM with rationale and justification

discussed in Chapter Il. As a result, the external validity of the studhyiisdito the



conditions which are explored in the current investigation and the results may not apply
universally to all LGC modeling applications.
Conclusion

This study has built on the methodological research in regard to LGC models and
enhanced the understanding of the functioning of fit indexes used to assess plaokibility
tested models. The results from the simulation study have illuminated hodefites
function under: (a) various sample sizes, (b) waves of data, and (c) model compBhexit
an increased understanding of the influence of longitudinal design charact@nistic
model fit indexes, guidelines are provided for the applied LGC modeling rese&oc
assist her or him in interpretation of model fit. Fit indexes are utilized in SEM
applications to support hypothesis testing (e.g., how well the data match theelsigexth
model); therefore; guidelines specific to LGC modeling model fit magase the rigor
of hypothesis testing in applied longitudinal research.

The dissertation is organized to convey the study of fit indexes in LGC imgpdel
through five chapters. Chapter | established the background for the currenélpatitic
scientific study of change, the advantages of LGC modeling, and the need famadlditi
studies investigating model fit in LGC models. Chapter Il further expllia concepts of
LGC modeling, continuing to review LGC model simulation studies, as well as
simulation studies of fit indexes in general SEM. The methodological procederes ar
presented in Chapter lll, including a discussion of the independent and dependent
variables, in addition to methods for data generation and analysis. Furthermorer Chapt
IV explains the results of varying LGC modeling design characteristiche four

measures of fit. In Chapter V, | discuss the implications for the findings pngvsai



suggestions to improve the validity of LGC assessments of model fit. Fimnaly, t
appendix contains supplemental information for the study, including tables ¢émipties
results, as well as program syntax for data analysis procedures. The outi@e of t
dissertation provides a clear description of the need, methodology, results, and

interpretation of an investigation into model fit in LGC models.



CHAPTER Il
REVIEW OF LITERATURE
The purpose of this dissertation is to assist applied LGC modeling regsarnche
their assessment of model fit by examining the functioning of selected ntaddekes
under simulated LGC modeling conditions commonly found in application. Provided in
Chapter Il is a summary of the current literature related to the ¢&walwd model fit for
latent growth curve (LGC) models and is divided into two sections, includihg: (
description of LGC models and relevant literature, and (b) a descriptiolecfeskfit
indexes and relevant literature. The chapter begins with a discussion of atructur
equation models (SEM) to describe the general family of statistical pnaseth which
LGC models are a subcategory. Next, a detailed description of LGC n®getsented
to demonstrate the procedures undertaken to estimate necessary paratoetgvéth a
brief review of conditions found in LGC modeling applications and simulation studies.
Then, | focus on fit indexes utilized in LGC model applications, and the computation of
fit indexes used in this dissertation. To establish the foundation for procedures and
hypotheses, simulation studies of fit indexes in general SEM are discusssly, Fi
Chapter Il is concluded by a discussion of the only prior LGC modeling siowlkstiidy
to investigate fit indexes and the chapter summary. The information preseQiedgter

Il provides the framework for the methods proposed in Chapter IIl.



Structural Equation Modeling

Structural equation modeling (SEM) is a collection of statistical techsique
commonly referred to as latent variable modeling. Latent variablesfined as
unobservable variables that we, as human beings, have constructed. Accordiily, L
models represent growth in latent traits, whereas other growth model designs do not
distinguish between latent and observed traits. The roots of SEM are founded in the
social and behavioral sciences, with applications in the majority of journaied¢b
human behavior (Kline, 2005). Due to the predominant presence of latent traits within
social and behavioral science (e.g., depression, self-esteem, and sulisiaace a
recovery), it is understandable that, frequently, researchers in thleseafpply SEM to
capture the abstract phenomena they commonly encounter.

Extended from regression procedures, SEM is a family of statistical ¢eesni
that allows for various applications, which include: (a) path modeling, (b)rotory
factor analysis (CFA), (c) structural covariance analysis, andG@) modeling among
others. Applications can be exploratory or confirmatory, applicable to ali tfpe
designs, and include predictors and covariate effects. Therefore, SERbtppE have
two general goals: (a) to understand the relationships among a collectamables, and
(b) to explain variability in a model based on a theoretical rationale (Kline, .200tle
these goals are achievable through other statistical venues, SEM ibke fiemcedure
that incorporates measurement error in the model, whereas all other precsturae
perfect measurement (e.g., regression, ANOVA, and time-seriesiahdlyis unrealistic

to assume that the types of variables often studied in the social and behaieos



will include perfect measurement because of the abstract nature of tidrkite of
interest.

Applications of SEM are patrtitioned into two components: (a) a measurement
model (i.e., same as a CFA) and (b) a structural model. The measuremeint mode
identifies the relationships between the observed variables and latentesaiah| factor
loadings), whereas the structural model displays the directional relapsrashbng the
latent variables. Unique to SEM application is the specification of re#dtips in the
measurement and structural models, based on theory and previous research tioedefine
relationships. By specification of the model, matrix equations are derived) whic
represent the theoretical relations among and between the observed and latdasvaria
(JOreskog & Sérbom, 2001). In addition to matrix equatiSisyl applications can
jointly display the measurement and structural model in diagram form. Botlev®f
the communication of SEM models (i.e., matrix notation and diagram) will besdisd
specific to LGC models in the latter portion of this chapter.

The foundations of SEM procedures are focused on the analysis of variance-
covariance matrices (e.g., also referred to as the unstandardizddticormatrix),
which assess the strength of the relationships among two or more variablegp@&svoft
variance-covariance matrices are at the forefront of SEM paransétaaton and model
fit, specifically the observed variance-covariance mak)afd the model implied
variance-covariance matriX(p)). TheX represents the relationships (covariance)
between all observed variables and the variance on each observed variables 3{fgrea
IS a variance-covariance matrix that is explained by the specified| (dédeskog &

Sorbom, 2001). Unique to SEM applications isZ(@, which is an a priori hypothesized



model specified by the researcher, of the relationships among and betweerethiedbs
and latent variables. The framework of SEM is rooted in an examination of albwhey
>(0) matchesor accounts for the relationships in theEssentially, a SEM analysis
determines how well the researchers’ hypothesized mB{g) (accounts for the
relationships found in the dat&)( The comparison of th&(6) to theX can be conducted
by use of a variety of estimation procedures (e.g., unweighted least sqeasssaliged
least squares, generally weighted least squares, etc.); however, theffihcsis
dissertation is on maximum likelihood (ML) estimation techniques becauserof the
frequent use in application studies. A ML fitting function is used to estita#) by
minimization ofthe discrepancies between (@) and thex (Joreskog & Sdrbom). A
detailed discussion of parameter estimation procedures is provided sgec@ECt
modeling techniques in the following section.

In summary, SEM applications have the benefit of flexible modeling and
estimation of measurement error, through the use of measurement and stnuotigial
where the observed variance-covariance matrix is compared to the model implied
variance-covariance matrix to examine the plausibility of the model.tyysesof SEM,
LGC models include identical components of estimation of the variance-covariance
structure; howevelt,GC procedures include the estimation of latent means and are
exclusively focused on longitudinal change in traits across time.

Latent Growth Curve Models

A basic LGC model can be considered a special case of a CFA. The most

parsimonious LGC model is a two factor CFA with three indictor variablesjingea

there are two latent factors measured by three observed variablesctotss, lzoth latent



factors. In a typical SEM application, a parsimonious CFA model with threevelser
variables could only be estimated for one latent trait, not two latent tragpr@sented
in the LGC model. The underlying differences are due to issues of iderdifiedtere
LGC models fix or free (i.e., estimate) different variables than iaradatd SEM
application. The topic of LGC model identification is described in detail inatier |
portion of this chapter.

Standard SEM procedures for estimation of the variance-covariance pasamete
can be described in CFA matrix notation, as displayed in Equation 2.1.

y=An+e¢ (2.1)

Where\y is a vector of the observed measures for each time poistnatrix of fixed
factor loadings to represent timgis vector of latent factors, amds a vector of the
residuals (Bollen & Curran, 2006). For each observed trait, a LGC model inclumles tw
latent factors to represent the trajectory of growth, including: (agatlatterceptifi1),
which represents the initial level in the trait at baseline; and (b) a Hoga §i2), which
indicates growth in the trait over the specified time period (Duncan et al., 20@7). T
individual growth trajectories for eacth participant are estimated based on the vector of
a latent factor).

A basic LGC model with three time points is represented in expanded matrix

notation in Equation 2.2.

Yia 10 &y

Vi, =11 [nilj"‘ €ir

2.2
Yis 12 €i3 (2:2)



The observed measures (iyeLjs time point 1y is time point 2yizis time point 3 for
eachith individual)are treated as indicators of the latent intercept and latent slope (i.e.,
characteristics of the growth trajectory). To represent the artedighange in the trait of
interest, LGC modeling researchers fix the factor loadings depending ttrm¢he

intervals of data collection, which differs from the standard SEM procedlrere the
majority of factor loadings are estimated (Duncan et al., 2007). The factardedd,
J12,113) from the latent intercepyif) to the observed variableg:) are fixed to a value of
1.0, which represents the equal influence of all observed measurement points enthe lat
intercept. The factor loadings from the latent slojg {o the observed variableg:) are
typically fixed with linear trend contrasts to represent the codingnef 21,422, 423in
general SEMit, in LGC modeling, wherérepresents the time point; Duncan et al.). A
typical LGC model application, with equal intervals of data collection, woxlé # O,

1, 2...n-1to represent baseline, time point two, and time point three, respectively.
Time can be coded with the use of alternative procedures; however, in thiststudigrd
polynomial coding was applied because of its frequent use in applicationsoBgzatl

and 2.2 are occasionally referred to asl¢hrel onemodel, similar to concepts found in
other growth curve models (e.g., HLM).

To assist in the explanation of the underpinning of LGC modeling, | applied the
example of the measurement of student achievement with a basic lineana@el over
three time points (i.e., Grades 9, 10, and 11). For example, a researcheethiartst
trajectory of growth in student achievement between Grades 9 to 11 could apply a
univariate linear LGC model to estimate the linear growth trajectoryuimgy the initial

level and rate of growth) for each student and for the entire sample. Equation 2.2 can be



explained in terms of the student achievement example where the achieseonest
from eachth participant for the three time points of Gradgi9, (Grade 10¥2), and
Grade 11¥3) are a function of: (a) the fixed factor loadings (e.g., 1 in the first column of
the factor loading matrix and thie = 0, 1, and 2 represent the equal interval time periods
from Grades 9-11 in the second column of the factor loading matrix); (b) the late
estimate of the initial level of achievement in Gradei and latent growth from Grades
9-11 gradefi2); and (c) residuals associated with the achievement scores in Grades 9
(ei1), 10 €i2), and 11 4i3) for eachith participant. Henceforth, thtéh notation, which
represents each participant’s individual growth traje¢teiy not be included until the
discussion of latent means. In other words, an applied researcher enters the known
information of three observed measure of academic achievement from Grades &ntl
the coding of time into the LGC model equation. From this information, the errors
associated with each observed measure estimated, along with the irgliaiflaeademic
achievement in"®grade and rate of growth in achievement over Grades 9 to 11. In
summary, the univariate linear LGC model of student achievement assufrtég tha
observed measures of student achievement are a function of the coding of time, the
growth trajectory, and errors in the observed measures of achievement.

Commonly, both SEMs and LGC models are described in diagram format due to
its ease in interpretation compared to matrix notation. The student achievearapteex
is displayed in Figure 2.1. For audiences not familiar with SEM diagram notation,
rectangles represent observed variables (e.qg., test scores),implekatent variables,
the triangle is a constant term, the single headed arrow suggests thierdwéthe

relationship from one variable to another, and the double headed arrow implies the



covariance between two variables (Kline, 2005). The diagram notations correspoad t

description of LGC models presented in the following three pages.

Constar

a1 az

Y5

Latent
Slope

M2)

Latent
Intercept

y1 y2 y3
(Student (Student (Student
Achievement Achievement Achievement
ninth grade) tenth grade) eleventh grade)

5

Figure 2.1. Univariate linear LGC model of student achievement

As displayed in Figure 2.3y, the latent intercept, represents initial level of
student achievement in Grade 9, gndhe latent slopendicates the rate of growth in
student achievement from Grades 9-11. The observed measures of student aohieveme

Grades 9, 10, and 11 are denotegiage, andys, respectively. Observed measures of



student achievement for Grades 9, 10, and 11 are indicators of the latent constructs of
initial level of achievement in Grade 9, and the rate of growth in achievement from
Grades 9-11. Tha are fixed with linear trend contrasts of 0, 1, and 2 to represent the
coding of time for Grades 9, 10, and 11, with the factor loadings from the latentpiterce
to the latent slope fixed to the value of 1.0.

As in all SEM models, the symbats, 2, andes represent the random errors of

measurement associated with each observed variabléziafid, andfe3 signify the
residual variances for each of the random errors (Kline, 2005). Also, the vanmhce-a
variation among the latent variables are estimated with use of trat&iBiva
parameters¥11symbolizes theariances of the latent intercept, ¥22stands for the

variance of the latent slopg, and¥12representthe covariance between theands2
factors (Bollen & Curran, 2006). In the achievement exampleitlae andez are the

random errors of the observed achievement scoreg;ititler, andéds1 are the variance
estimates of the errors of observed achievement scores in Grades 9, 10,%nd he
variance estimate of the initial level of achievement in Grad@®is the variance
estimate of rate of change in achievement from Grades 9-1¥1amlthe covariance
between the initial level of achievement in Grade 9, and the rate ofechrang Grades
9-11. In the student achievement example, variances on the latent intercept would
indicate that students differed on their initial achievement scores in Geate 9
variances on the latent slopes would indicate that they grew at differentrosteGrades
9 - 11, therefore, some students might improve on achievement at a fasterostdiae

than others.



In addition to the standard parameters of SEM described above, LGC models
include estimation of a vector of latent meaast¢ represent the trajectory of growth.
The means are estimated by “fixing the intercept of the repeated netrsnezo”

(Bollen & Curran, 2006, p. 36). By inclusion of the constant of zero in Figure 2.4 the
andzz factors can be expressed as a function o tfl@ent means) and individual
deviations away from the latent medndlso known as the disturbance), as displayed in

Equation 2.3 (Bollen & Curran).

Tmae (2.3)

In LGC modeling{ have a mean of zero, variance and covariance corresponding to the
variance and covariance of the latent trait, and are assumed to be uncorrithetieel w
residuals of the observed variables (e.g., covarian€adeit is equal to zero) (Bollen

& Curran). Drawing from HLM concepts, Equation 2.3 is referred to aletied two

model. In the achievement example, Equation 2.3 can be written in expanded form to
represent the growth trajectory, including the estimation of the iretral bf

achievement in Grade @i{) and rate of growth in achievement from Grades ]} (

for eachith individual in the sample. The equations specific to each latent variable in the

achievement example are displayed in Equations 2.4 and 2.5.

My =iy +Cit (2.4)
N2 =iz +Cz (2.5)

Estimation of the initial level of achievement in ninth grage (s a function of: (a) the
latent mean of the initial level of achievement in ninth gradg #énd (b) some deviations
away from the average achievement level in Grade)9 $imilarly, estimation of the

growth in achievement from Grades 9-%i)(is a function of: (a) the latent mean of the



growth in achievementi) and (b) some deviations away from the average growth in
achievement from Grades 9-1k). Theli1 and{iz have a mean of zero, variancetat
and ?22,a covariance af12,and are assumed to be uncorrelated wiith

The estimation of the latent means and deviations can be expressed within the
standard matrix notation of a CFA by the substitution of Equation 2.3 into Equation 2.1,
as displayed in Equation 2.6, whesgs the estimated latent means for ea¢Bollen &

Curran, 2006).

yzA(a” +§)+g (2.6)

Consequently, the diagram notation presented in Figure 2.1 corresponds to Equation 2.6,
with joint representation of the variance-covariance matrices and ¢né¢ tatans (e.g.,
includes both level one and two equations).
Parameter Estimation

The additional estimation of latent means in LGC modeling requires a
fundamental addition to standard CFA estimation procedures. As discussed in the
previous section on SEM, the central concept of parameter estimation and medsel fit
examine how well the model implied covariance ma&id)) can reproduce the
observed covariance matriX)( The LGC models are based on testing the same null
hypothesis, shown in Equation 2.7, that is tested in standard SEM.

¥ =3(0) (2.7)

For the example of student achievement with three time points, Equation 2.7 can be
written in expanded matrix notation, as displayed below in Equation 2.8 (Bollen &

Curran, 2006).



VARY;)  COV(y.y,) COV(y,,Y,)
COV(Y,, V1) VARYY,) COV(Y,, Ys) |= (2.8)
COV(y; y1) COV(ys;,y,) VARYs,)
v +VARE,) YtV it 2,

VitV Wi tWa+ 2y, +VARE,) Wit 2+,

Wi+ 20, Wi+ 205 + 301, Wi+ + 4y, +VARE,)

The first matrix is the observed covariance matrix wWNgRis the variance of each time
point (i.e., variance in achievement scores for Grades 9, 10, and 1&Yhs the
covariance between two time points (e€QV (y1, y3, the covariance of achievement
scores between Grades 9 and 10 grade). The latter is the model impliedmaatri
matches the variances and covariances described in Figure 2.1 for the Samgl¢he
objective is to specify a model so that a model implied variance-covariattg m
reproduces, or is similar to, the observed covariance matrix. According student
achievement example, the goal is to specify a model of growth in student achieseme
that the hypothesized relationships in student achievement (model-impliettcearia
covariance matrix) reproduce the relationships found in the data (observextearia
covariance matrix).

In addition to estimation of the variance-covariance matrices, LGC madels
used to examine the latent means of the growth trajectory, where the modettimphn
vector,u(6), is estimated to determine how closely it reproduces the observed mean
vector,u, as displayed in Equation 2.9.

w=(0) (2.9)
According to the student achievement example with three time points, Equation 2.9

would be expressed as two mean vectors, shown in Equation 2.10.



Hy Hoa
/Uyz = /ual+/ua2

(2.10)
/Jy3 /ual + 2/“0:2

The first vector consists of the estimated mean values on achievemeattidime point
(i.e., Grades 941), 10 (uy2), and 11 £y3)). The vector on the right side of the equals sign
is the model-implied mean vector which includes the means of growth trajestase
ua1is the population mean of the latent intercept, and the population mean of the
latent slope (Bollen & Curran, 2006). According to the hypothesized achievement
example: (a) the estimated mean achievement level in Graglg & Equal to the
population mean of the initial level of achievement in Grade.9; (b) the estimated
mean achievement level in Grade A@)is equal to the population means of the initial
level of achievement in Grade &) plus the rate of growth in achievement from Grades
9 to 11(ua2); and (c) the estimated achievement level in Grade/d1(s equal to the
population mean of the initial level of achievement in Grage9 plus two times the
rate of growth in achievement from Grades 9 tqu&)(In Equations 2.8 and 2.10, the
parameters estimates are substituted in place of the population pasamettimate the
model implied covariance and mean vectors (g.g s a1). For example, the variances of
achievement in Grades 9, 10, and 11, the covariance in achievement among Grades 9 to
11, and the latent means in Grades 9 to 11 are substituted in place of the population
parameter of student achievement to allow for estimation of the model-ihvaliance,
covariance, and latent mean parameters.

The implied variance-covariance matrices and mean vectors, found in Equations

2.7 and 2.9, are critical to answering longitudinal research questions. The Mhtesti



procedures are used to estimate the values of the model-implied variancarzm®vari
matrices and mean vectors to determine how well they reproduce the observed sample
values. As previously discussed, the population megren@ variance-covariance

matrix &) are unobtainable; therefore, the sample values of the mgamsd

covariances9) are used in the ML fitting function. For ML estimation, the latent means
(e1andaz), the variances of the latent meat#1@nd?22), and the covariance between
the latent meand#42) are jointly denoted bg, and “the goal is to choose value¥/db

makep(0) close toy andZ(6) close toS’ (Bollen & Curran, 2006, p. 41). In Equation

2.11, the ML fitting function for LGC model parameter estimation is described.

!

Fo =In12(0)|-In|S|+tr[22(0)S]- p—[y - 1(0)] = 2(0)y - u(6)] (2.11)

A FwmLvalue can range from zero to infinity, with a value of zero indicating that digkelm
implied variance-covariance matiXd) is the same as the sample covariance majx (
and the model-implied mean vecta(q) is identical to the sample values of the means

(y) (Bollen & Curran). When a model has zero degrees of freedf)nteFwL value

will equal zero because the model implied parameters are identical tortpke sa
parameters. In such case, the model would fit the data perfectly, whichussgidan

detail in the model identification section. However, when a modaifirag, aFwv. value
equal to zero occurs only theoretically because an exact match beteeeodél

implied and observed variance-covariance matrix and mean vectors does not occur in
applications. As discrepancies between the model-implied paranm&i@raridu(6)) and

the observed parametef&gnd y) increase, th&wc value simultaneously increases;



therefore, largé&wmL values are not desirable as they suggest the researcher’s model does
not fit the data.

In LGC modeling, thé-mL value is a measure of the discrepancy between the
observed and model-implied variance-covariance matrices and latenveotairs.
Thereforethe FmL values are utilized in the computation of fit indexes. Compared to
standard model fit estimation procedures in SEM that usually evaluatéhentgriance-
covariance matrices, evaluation of LGC model fit includes the evaluation of
discrepancies in latent means as well. The additional estimation of thientetan
vectors in thd=mL may influence the interpretation and standard cutoff values for fit
indexes that are used to assess poor vs. adequate model fit in general SEMaagsplicati
A comprehensive discussion of fit indexes and the influences of the estimatitanof la
means is presented in the second portion of Chapter II.

The estimation of thE(#) andu(#) parameters is used to answer a variety of
research questions related to change or growth in a latent tragi(Ahe&lues describe
the overall expression of the growth trajectories, which answers twoansesst regard
to the achievement example: (a) What is the average initial level oiaoieat in Grade
9? and (b) What is the average rate of growth in achievement between Gaades1?P
(similar to the standardized betas in multiple regression)Z{é#amatrix includes the
variances and covariances of the latent factors and observed variables. aiheegari
reflect the amount of intra-individual variation in the initial status and rateowftr The
covariance between the latent means measures the relationship betwalestatis and
the rate of growth for the selected time period. Confidence intervals are cdrfguutee

variance and covariance estimations, and can be computed for the latenttonaasser



three research questions in terms of the achievement example: (a) Do students
significantly differ in their initial level of achievement in Grade 9? (b)sRalents
significantly differ in their rate of growth in achievement from Graded®4dnd, (c) Is
there a significant relationship between the achievement in Grade 9 antdtbe ra
growth in achievement from Grades 9-117? In addition, confidence intervals are edmput
for the residual variance estimates to answer the question, Is thefieang variability
that is unexplained in the repeated measure of achievement from Grades &§to 117?
significant variability is found in the residual variances, then covariaepredictors
variables should be examined. In the student achievement example, parental involvement
could be considered a predictor and account for a significant amount of variabhigy in t
trajectory of student achievement, which includes both the initial status eraf rat
growth.
Statistical Assumptions

When the two families of statistical techniques are merged, LGC modelsydispla
the benefits of both general SEM and growth curve models. Accompanying theses benef
are assumptions or required conditions that allow for proper interpretation of londitudina
change within the LGC modeling framework. Since LGC modeling is a fiel|
methodologists are rapidly discovering new advances to address what eweoegly
defined as assumptions or restrictions (Preacher, Wichman, MaCallum, & B2@fiB).
Thus, the specific assumptions associated with LGC models are highly depgratent
the date of publication of the source, and in some cases, the specific author(s) of the

source. The following section describes the assumptions imposed in the majb€§ of



modeling applications and simulations, and these were the assumptions fore¢he cur
research study.

First and foremost, LGC modeling researchers must assume that therattent t
interest is theoretically assumed to change over the time period of measueone
example, theoretically, an intelligence quotient is not related to the paddage and
would not be hypothesized to change from Grades 9-11; thus, a LGC model would not be
appropriate to measure intelligence during those years. Secondly, a mioirthnee
waves of data are required to estimate model parameters and model fit duesdmiss
model identification, which are discussed in a later section of Chapter II.

Furthermore, a third collection of assumptions is related to the residdals an
disturbance terms, which differs from standard SEM assumptions. First, @ins ofehe
residuals and disturbance terms are fixed to zero within each participdufdy dime
residuals, the means are also fixed to zero at each time pom0@(fori =1, 2,..N,t =
1,2,..1;1=0fori=1, 2,..N; anddi2= 0 fori = 1, 2,..N; Bollen & Curran, 2006;
Preacher et al., 2008). According to the student achievement example, if it wépeposs
to observe multiple measures of the latent trait of student achievement in93radgeor
Grade 10, or Grade 11), the researcher would assume that the average desrleanc
random measurement error) of the achievement scores in Grade 9 would be eqral t
across the multiple measurement. In other words, the deviations away fratetite |
intercept and latent slope factors in Grade 9 will average to zero if multiple
measurements were taken at the same time point. Accordingly, the covabatween
the residuals and disturbance terms are fixed to zero within and between wavas of da

for each participant, assuming there is no relationship among and between the



disturbance terms and the residual err@SVeit, i1 ) = 0; COVit, i2) = 0; COM (i1, {i2)

= 0; COV (e, €it) = 0 (Bollen & Curran; Preacher et al.). For instance, the errors in the
student achievement scores are assumed to be unrelated within each partidipant a
between the measurement points in Grades 9, 10, and 11. Likewise, all co-variations
between the residual terms and the disturbances of the latent faggrhéelatent
intercepts and slope factors) are fixed to zero for each individual, whiclesmui
relationship between the errors in the observed measurements of student acttianeme
the deviations away from the initial status of student achievement in Grautk thearate

of growth in achievement from Grades 9-11. The assumptions placed on the residual and
disturbance terms are related to model identification, or the ability toagstgrowth
parameters and model fit, as discussed later in Chapter Il. However, appkadchers
may modify the residual and disturbance assumptions in application depending on the
specific LGC model examined.

Finally, the computation of thiéw. fitting function, used to estimate the desired
model parameters, requires the necessary assumption of multivariate tyoffdcdlen &
Curran, 2006). To summarize, the customary assumptions associated with LGC modeling
include: (a) theoretical support, (b) a minimum of three waves of datas{ggtien
imposed on the residual terms, and (d) multivariate normality. However, depending on
the author and year of publication, LGC modeling assumptions may vary.

Characteristics of Latent Growth Curve Models

Thus far, a parsimonious linear LGC model has been discussed, specifically, a

CFA model with two latent factors and three observed variables. However, appsica

utilize more complex models in comparison to the basic model of student achi¢veme



discussed earlier. Typically, social and behavioral sciences apphsaticlude
variations in sample sizes, and may require additional waves of data to capture the
hypothesized time period of change. Although sample size is not a model etistiact
per say, variations in sample sizes effect model estimation; therefoigpds regarding
sample sizes are critical to applied longitudinal researcher and arderendsmodeling
characteristics in this dissertation. In addition, theories of change comartitipate
non-linear growth, multivariate growth, and inclusion of covariate(s). éndissertation,
three design features of LGC models are explored as independent vawaiiés,
include variations in(a) sample size, (b) waves of data, and (c) model complexity. The
following sections describe the three characteristics of LGC modatsied, as well as
descriptions of previous LGC modeling simulation studies and data conditions found in
LGC modeling applications. To understand the methodological conditions utilized in
applied studies, a synthesis of published LGC modeling articles (i.e., fronr2R08%
was conducted based on a total of 29 application studies?.
Sample Size

Depending on resources, a LGC modeling researcher may encounter large
variations in sample sizes. For example, state-wide educational assssisiclede large
sample sizes, while a pilot study of growth in adolescents’ psychologicdbdement
may include a small sample size. Therefore, depending on the latent traitestiatel
associated resources, LGC modeling researchers may investiggtesdesying in
sample size.

As in all SEM models, varying the sample size changes the partic{pani$ at

each time point, but does not directly alter the structure of the LGC modekdfople,



the diagram presented in Figure 2.1, corresponding to Equation 2.6, does not change with
the exception of more participants (ii@.included in the model. The current study
simulated LGC models with no missing data; therefore, all time points hadrie
number of observations. In the LGC modeling applications reviewed, same size
ranged from 65 participants (Hardy & Thiels, 2007) to 3,602 patrticipants (Grimm, 2007),
with a median of 356 participants! (= 690.75SD= 911.70). Thus far, LGC
methodologists have focused on investigations of the statistical powerlds@enodel,
in order to provide methodological guidelines of sample sizes, whicteaessary to
obtain adequate statistical power. To briefly summarize, LGC models under ide
conditions can produce adequate power with a relatively small sample size (i.e., 100-200
Muthén & Curran, 1997; Muthén & Muthén, 2002). However, conditions found in
application studies include attrition, reduced reliability, inclusion of catesj and
missing data, which require larger sample sizes to adequately gieteptdifferences
and test parameter estimates (INe> 500 orN > 1,000; Fan, 2003; Hertzog et al., 2006;
Muthén & Muthén). Concisely, LGC modeling applications include a large @hge
sample sizes, with methodological findings to suggest adequatéchpiswer with as
few as 100 participants for a parsimonious model and as large as 1,000 for morexcomple
models.
Waves of Data

As discussed in Chapter |, additional waves of data increase the reliabihty
LGC model; however, additional waves require additional resources (egariin
money for data collection). Furthermore, waves of data define the time periadrest

in which growth parameters are estimated and should correspond to the reseaimh quest



and/or theory being investigated. For example, a researcher may bst@uenegrowth
in student achievement from K-12 and could measure achievement with 13 waves of data
corresponding to kindergarten and Grades 1 through 12. However, another researcher
may only be interested in growth in student achievement in high school; thus, the
corresponding LGC model would only include Grades 9 — 12. Therefore, the waves of
data represented in a LGC model vary to be consistent with the researabngsjeas
well as available resources. As a result, specification of the numbe&wves of data in a
LGC model is a critical decision for applied researchers.

As the waves of data, or time points, are added to a LGC model, an additional
observed variabley) is included for each time poirtt£ 0, 1, 2,...n) with additional
fixed paths from the latent factors to the observed variahlesnd/t). In the
achievement example, the research question(s) could be adapted to learn about the
growth in achievement from Grade 9 to freshman year of college. The LGC wumdlel
then include five waves of data, as displayed in Figure 2.2.

Compared to the more parsimonious univariate linear LGC model with three
waves of data presented in Figure 2.1, the model with five waves of data includes the t
additional observed variableg @ndys), which represent achievement in Grade 12 and

freshman year of college, respectively. Also, the model estimates fotioaddi
parameters, including: two residuals of the observed measuremeaes{dual of
achievement in Grade 12 agx] residual of achievement freshman year of colleges), and

two variances of the residuak( variance of residual of achievement in Grade 126and

the variance of residual of achievement freshman year of college) fareedditional



waves of data in a LGC model increase the model complexity by including additiona

observed variables.
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Figure 2.2. Univariate linear LGC model with five waves of data

Previous LGC modeling simulation studies have investigated waves of data in
relation to statistical power that have ranged from three to eight wadesaofHowever,
the majority of investigations included only the conditions of three, four, and fiveswa

of data, which suggests that minor improvements are obtained beyond five waves when



adequate sample size is achieved (Fan, 2003; Hertzog et al., 2006; Muthén & Curran,
1997; Muthén & Muthén, 2002). Similar patterns were found in the LGC modeling
applications reviewed, as displayed in Figure 2.3, with three to five waves difeilaga
frequently utilized. In conclusion, while LGC modeling applications and simoualat
studies have investigated a range of waves of data (e.g., three to eight titag poi

typically, researchers have focused on three to five waves of data.
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Figure 2.3. Waves of data and sample size of 29 application studies
Model Complexity
In LGC modeling, additional waves of data increase the model complexitye by
inclusion of additional observed variables and fixed paths. However, in this dissertat
and in most of the LGC modeling literature, waves of data are definesepsiate
construct from model complexity because of the difference in the LGClimgde
researcher’s decisions in regard to specification of the model. Decisgansling the
number of waves of data should be defined according to the hypothesized time period of

change. Typically, conditions of model complexity include additional chaistaterof



the growth trajectory (e.g., the shape of the growth trajectory, univariataltvariate
growth trajectories, and potential covariates of the trajectory ofgeamhhe following
three sections define the conditions of model complexity utilized in this disserdad
include: (a) reasons for inclusion of the condition of model complexity, (b) the
representation of model complexity in LGC modeling, and (c) simulation studies a
applications that used the condition of model complexity.

Nonlinear growth.Frequently encountered in human growth or human
development is nonlinear growth, which requires additional latent factorsreseat the
curvilinear nature of the growth (Burchinal & Appelbaum, 1991). While an assottof
procedures can be applied to represent nonlinear growth in LGC modeling (Bollen &
Curran, 2006), the majority of nonlinear applications specified quadratic gnowta i
trait of interest (i.e., 31% of the studies reviewed). Moreover, Coffman anel'slill
(2006) LGC model study simulated quadratic growth and compared the resuiesato li
growth models under limited conditions. Therefore, this dissertation included the
condition of quadratic growth.

As opposed to linear growth, quadratic growth assumes that a latent trait of
interest begins with a slight growth and moves into moderate and high growth, and then
plateaus with a slight decrease at the end of growth. A primary exampledo&iitia
growth in the social and behavioral sciences is cognitive functioning acritetsael
For example, cognitive functioning is expected to have slight increaséhatith a
large increase in youth and young adults, a plateau in mid to late adulthood, and a
decrease in a geriatric population. In term of academic achievemenGfiamhes 9 to 11,

researchers in the field of education do not assume that achievement has iacséghei



in Grade 9, with a moderate to large increase in Grade 10, a plateau in the end of Grade
10 and beginning of Grade 11, and slight decrease at the end of Grade 11. However, by
changing the trait of interest from academic achievement to knowle@gtioat an
educational researcher may apply a quadratic LGC model because retention of
knowledge is assumed to increase, plateau, and then have a slight decreat®eT he
application of quadratic LGC modeling is dependent on the expected pattern tf.grow
Figure 2.4 illustrates a quadratic LGC model for knowledge retention fraeSO to

11.

Notice, the latent quadratic slope factgs)(the variance of the latent quadratic
slope factorss), and the latent mean of the quadratic slope faetdrafe incorporated

in the model to represent quadratic growth in the trait of interest. Accordihg to t
achievement examples is the quadratic growth in achievement from Grades 9&lis
the variance of the quadratic growth in achievement from Grades 9-143 rithe
latent mean of the quadratic growth in achievement from Grades 9-11.

Along with the additional latent factor, variance and mean parameters are
associated with unidirectional paths from the quadratic factor to the obsenagulesri
(Aq=0, 1, 4), which are fixed to the squares of the linear factor loadings (Preaahgr et
2008). Additional covariances are represented in the model, including the covariance
between the intercept factor and quadratic slope fa#ta)y &nd the covariance between
the linear slope factor and the quadratic slope fadta).(In terms of the hypothesized
achievement exampl&isrepresents the relationship between the initial level of
achievement in Grade 9 and the quadratic growth in achievement from Grades 9-11, and

P23 indicates the relationship between the linear growth in achievement from Grades



and the quadratic growth in achievement from Grades 9-11. For example, a larg# value
the covariance between the intercept and quadratic slope f#ctpbsiggests that

students’ rate and pattern of growth may be related to where they started¢ca®chy

their initial achievement level.
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Theysis used to estimate the overall quadratic growth estimataiid deviation
from the quadratic slopé3], through the procedures described in Equations 2.3 to 2.5.
The latent quadratic growth factor in achievement from Grades %<} 1s 6eparated
into the overall quadratic growth in achievement from Grades %31 afd some
deviation from the quadratic slope of achievement from Grades g@sLITl{ereforepsis
the estimate of latent quadratic growth in student achievemeigt &nd measure of
external factors (e.g., students’ concentration level). In summary, teeepaadratic
growth an additional latent factor, variance of the latent factor, latent, mieaation
term, and two covariances are added to the model.

The validity of the representation of growth is commonly assessed by three
different methods. First, confidence intervals can be computed for the testiiinaar
growth @2) andthe estimated quadratic growis) to determine if the latent means of the
linear and quadratic slope factors are significant across partic{j@lsn & Curran,

2006). According to the achievement example, confidence intervals for the edtimat
mean linear growth from Grades 9-1d4z)( and the estimated mean quadratic growth

from Grades 9-1146), would be computed to determine if they are significant. If the
guadratic growth factor includes a significant amount of variability, petlecdvariates

and predictors should be explored. In the student achievement example, if the quadratic
latent growth factora) was found to be significant, then the researcher should explore if
parental involvement, or some other potential predictor or covariate, could expl&n som
of the variability in growth in student achievement. Second}y difference test is

computed to determine if the quadratic slope factor improves the model fit, conpare

linear growth, with significant results suggesting preference for tharagia



representation of growth (Willett & Sayer, 1994). Thirdly, fit indexesafbnear model
can be compared to fit indexes for a quadratic model to assess which model dnsplays
most desirable fit. While the procedures to assess the validity of the shaperibf gre
frequently applied, recent methodological sources have cautioned the sole use of thes
data-driven procedures.

Preacher et al. (2008) cautioned against the sole use of significanug testi
determine the shape of growth, re-enforcing that theory must define the #geroge
of growth, and researchers should not “capitalize on possible idiosyncratictehatias
of the particular sample under scrutiny” (p. 51). Furthermore, Bollen andnJ268a6)
emphasized that theories of change in latent traits found in the behavioral ahd socia
science are rarely hypothesized to represent quadratic growth, desriée) tiemt
application of quadratic LGC models. For example, quadratic growth is expected to
represent lifetime cognitive functioning; however, researchers rared¢ytha resources
to measure cognitive function over a lifetime and are commonly examining rs&sgohe
development that may require different representations of growth (e.g.,ieegnit
functioning in adolescents). Finally, the application of a quadratic LGC modetegqui
the estimation of additional parameters, in comparison to a linear LGC.ribeetfore,
researchers need to find the most appropriate balance among: (a) thesuppeat; (b)
effects of additional parameter estimates (i.e., increase in model coy)plend (c) the
hypothesized bias of significance testing. Due to the complex debate GanbGeling
researchers encounter related to representation of growth, this disseneltided the

condition of a univariate quadratic LGC model as a level of model complexity.



Multivariate LGC modelswithin human development, growth simultaneously
occurs among multiple traits and, frequently researchers are iateneshe covariation
among growth in two or more latent traits. The achievement example could loelestpa
to include: (a) growth in students’ mathematical achievement, growth imsstderbal
achievement, and of particular interest, the covariation between mathermaticadrbal
growth in achievement from Grades 9-11. Multivariate LGC modeling repeatsanis
separated into models to demonstrate first-order and second-ordetafstres. The
latter implies a higher order latent factor, which symbolizes the joint, dgical
comprised of the two more specific traits (e.g., an additional global |aietot fof
achievement including paths to the mathematical and verbal latent fadt#g]le,
1988). The first-order representation, utilized in this dissertation, isedfto as an
associative LGC model, which estimates the covariation among growth in twarer m
latent variables, but does not include a second order factor, which represents the
combined traits of the first order factors (Duncan et al., 2007). The multivariate
representation of achievement includes growth in both mathematical and verbal
achievement from Grades 9-11, as displayed in Figure 2.5. Notice that estimation of
multivariate LGC model drastically increases the model complexibygir inclusion of:
(a) additional observed parameters to represent the second lategt isaie(bal
achievement in Grade % is verbal achievement in Grade 10, gs$ verbal

achievemenn Grade 11); (b) associated estimated residaalss(es); (c) fixed factor

loadings from the observed variables to the latent factors; (d) varianceaafditienal
latent factors {33, ¥44); (e) the covariation between the latent factdits, (P34); and (f)

the latent means of the additional latent factass(daa).



Despite the fact that previous simulation studies have not included multivariate
LGC models, the practical appeal to human developmental research and the dramatic
increase in model complexity requires methodological attention. Thus, thigatisser
included a multivariate LGC model as a level of model complexity due to the edpect

increase in application in the fields of behavioral and social sciences.
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Inclusion of a covariatdn most models of human behavior, change does not
occur independently of other contextual factors, with covariates of growthsaegeo
provide a comprehensive model of change. A covariate in LGC modeling can be either
continuous or categorical and is presented in the same manner as in general SEM
applications where an additional observed variable is added to the model. The LGC
models can include two categories of covariates: (a) time-varying a&where an
observed measure of the covariate is collected at each time pointléssroam
attendance in Grades 9, 10 and 11), and (b) time invariant covariates where sue mea
of the covariate is added to the model under the assumption that the variable will not
change during the selected time period (e.g., participants’ gender; Duratar2@07).
Frequently, time invariant covariate models are utilized in applicatiorestadd have
been examined by Hertzog et al. (2006) and Muthén and Muthén (2002) in LGC
modeling simulation studies. Therefore, the condition of a single time-invaoaatiate
added to a univariate LGC model is included as a level of model complexity.

Similar to all growth curve models, the addition of a covariate or predictor to a
basic LGC model is calledanditional LGC modeMhereas the models presented thus
far are considerednconditional LGC model@Meredith & Tisak, 1990). Conditional
LGC models are generally applied when an unconditional LGC model displays a
significant amount of variance for the latent intercept and/or latent slofpeddi.e., a
significant¥11 %22, and¥33for a quadratic LGC model, and/as for a multivariate LGC
model). Significant variability of the latent factors (latent meang) Ineeexplained by

another observed or latent trait; therefore, potential covariates of grothh letent trait



should be explored. For example, if the univariate LGC model of student achievement
displayed significant variability for the latent intercept and latent slagterfs
(significant?11and¥22), the corresponding interpretation is that students have significant
variability in their trajectories of growth from Grades 9 to 11. The subsequenibquest
arises as to what is influencing the variability in the initial level ofeadment in Grade
9 and growth in achievement from Grades 9 to 11? Potential covariates could include
gender, parental education levels, school attendance, 1Q, and numerous othetial Pote
covariates can be latent or observed; however, this dissertation will onlgenabserved
variables. Conditional LGC models are typically applied to explain vatiabilthe
latent growth trajectories.

While not typically referenced as a rationale for applying conditional LGC
models, it is important to highlight that most, if not all theories of change sothal
and behavioral sciences include characteristics or traits hypotthésizedify or predict
growth. Behavioral and social science theories tend to be complex, and | cantifyt &de
single theory of change in the social and behavioral sciences that assurgeswtiain
a latent trait is independent of any other trait or characteristiexXénple, educational
psychologists have nhumerous hypotheses about potential predictors (e.g., time spent i
the classroom, school attendance, extracurricular activities) and cesdaal., parent’s
education, teacher’s experience, school characteristics, socioeconousy attat
academic achievement. The conditional LGC model allows the researchantmexhe
potential covariate of change in a latent trait. Therefore, the complex mdtauman

development supports the use of conditional LGC models in behavioral and social



sciences to adequately represent the multiple influences on a hypothesizgdtheor
change.

Conditional LGC models require alteration to the estimation of the latent means
presented in Equations 2.4 and 2.5 (i.e., the level two growth curve model) to include a

time-invariant covariate, as displayed in Equations 2.12 and 2.13.

nil = al + ﬁnllxi + g’?u (212)
Mo=0,+ P, X +¢&, (2.13

Thexi symbol represents a single time-invariant covarjateis the random intercept
parameter, angiz is the random slope parameter, which can both be interpreted similar
to beta coefficients in a regression equation. Howeveththend{niz have an alternative
interpretation and are disturbances (i.e., conditional variances) witheg@) of zero; (b)
variance ofy11andyz22 respectively; and (c) a covarianceyat as opposed to the
variances of the1 andaz2discussed in Equations 2.4 and 2.5 (Bollen & Curran, 2006).
Displayed in Figure 2.6 is the alternative structure of the level two LGClmiitiehe
addition of a single time-invariant covariate of gender in the student achievement
example.

Notice the addition of the covariate effect on the random latent intefgeptfd
the random slope parametgriq). In the conditional LGC model, the observed time
points of student achievement are a function of the following: (a) the covargeadér,
(b) the disturbance terms, (c) the vector of factor loadings, (d) the latergapt and
latent slope, and (e) the residual terms. Therefore, an applied researchemcme exd
test if the trajectory of growth in achievement, specifically the Inéigel and rate of

growth, is moderated by gender. For example, male and female studentsgimagttihe



same level of achievement in Grade 9 (non-signifigant however, males and females

may differ in their linear slope or growth from Grades 9 to 11 (signifiéant
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Oc3



Typically, the covariate effects are displayed in graphical formatsatagied in
Figure 2.7 for the hypothesized gender effect of growth in student achievieoment
Grades 9 to 11. Notice, both males and females have the same initial status in
achievement; however, the rate of growth for females is high than males feales® to
11. The conditional LGC model with a single time invariant covariate is includedsin thi
dissertation to examine whether the alternative structure, and reptieseota

conditional LGC model, influences the interpretation of fit indexes.
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Figure 2.7. Academic achievement between grades 9 to 11 by gender
Summary of LGC Model Characteristics

This dissertation includes three characteristics of LGC modelsgargple size,
waves of data, and model complexity), which are the independent variables in the
simulation of model fit indexes. To briefly review, variations in sampledizeot alter
the LGC model structure; however, the sample size is of critical importastatistical
power, with methodological literature providing general guidelines for L@&Gets. An
increase in waves of data will increase the number of observed variabléseani@ddtor

loadings, as well as increase the reliability of the analysis. Conversaiyasing waves



of data require additional resources and should have theoretical or contextual support.
Model complexity conditions are associated with methodological decisioagandrto:
(a) the trait(s) of interest represented in the growth trajectery (inivariate or
multivariate LGC model); (b) the shape of the growth trajectory (i.evauate or
guadratic growth); and (c) need to represent traits which may influengeotlith
trajectory (i.e., inclusion of a covariate). Quadratic growth requiresn(agditional
latent factor, (b) variance of the latent factor, (c) covariances amoraténé flactors,
and (d) estimation of a latent mean for the quadratic growth factor. Midtergrowth
dramatically increases model complexity with: (a) additional observéables and
latent factors, (b) variance of the latent factors, (c) covariancesathe latent factors,
and (d) estimation of additional latent means. The inclusion of a singlenuagaint
covariate creates a conditional LGC model and alters the structure apdeitatigon of
the variances of the latent factors. Due to the differences in model spauifigatong
the conditions of model complexity, interpretation of fit indexes under varying conditions
of LGC model complexity should be of critical concern to applied researdner
summary, the three independent variables and levels of model complexity provide a
range of LGC modeling conditions that directly relate to decisions frdguent
encountered in applications.
Model Identification

Inherent to all applications of SEM are issues of model identification or thigy abil
“to derive a unique estimate of each parameter” (Kline, 2005, p. 105). The LGC model
parameters, and all SEM applications, can be divided into two categories:af@ages

that areknown to be identifiegccommonly referred to dsrxownparameters, that include



the observed means, variances, and covariances; amk(mwn parametenshich are
estimated in the model including the model implied latent means, error variance of
observed measures, and the variance of latent factor (Bollen & Curran, 2008 In
modeling, the number of known parameters, minus the unknown parameters, equals the
df.

To be able to estimate the parameters of the growth trajectory and maithel fi
number of known parameters must be greater than the number of unknown parameters to
be estimateddf > 0), which is termed aidentified modelEquality of the number of
known and unknown parameters results jusa identifiedmodel ¢@f = 0), which permits
estimation of the desired parameters of change; however, just identiftedsnagsume
that the specified model fits the data perfectly. As a result, reseamheruse a just
identified model must assume perfect measurement, cannot estimate the eesidsiaf
the latent means, and lack the ability to produce tests of model fit. Finally,desire
parameters of change and model fit cannot be estimated when there aterangraber
of unknown parameters to be estimated than known paramgfterf), referred to as an
unidentifiedmodel.

As previously discussed, LGC models differ from standard SEM applications by
fixing the paths from the observed variables to the latent factors; thereitta, f
loadings are not unknown parameters as typically labeled in standard SEM agdicat
Furthermore, LGC models fix the means of the error variances and distitbames at
each time point, which suggests that error variances of the observed tinsegpeitite
same for all participants; however, the error variances can differsaaras points

(Bollen & Curran, 2006). In addition, two of the three independent variables for this



study require the inclusion of additional parameters (i.e., waves of data and mode
complexity), which influence the model identification.

Bollen and Curran (2006) developed general equations to compute the number of
known and unknown parameters for each LGC model utilized as independent variables in
this dissertation. Described in Table 2.1 are: (a) the equations used;r{bjrther of
known parameters; and (c) the number of unknown parameters for the four levels of
model complexity by waves of data (i.e., range from three tolsiX)able 2.1,T
represents the waves of data (i.e., or time points), and K symbolizes the number of
covariates. Sample size is not included in Table 2.1 because it is not related to model
identification.

Beginning with the univariate linear LGC model with three waves of data,
presented in Figure 2.1 and Equation 2.8, there are nine parameters known, which
correspond to the observed means, variances, and covariances. Specifically, the model
includes:(a) three means of the observed achievement scores in Grades 9, 10, and 11
[(E(yi1), E(yi2), E(y3)]; (b) variances of Grade 9, 10, and 11 achievement scores
[VAR(y1), VAR(¥), VAR(W)]; and (c) their covariancesGOV(y1, yi2), COV(y1, Vi3),

COV(y2, yi3)], defined as known parameters (e.g., (+2)(3)(3+3) = 9). There are eight
unknown parameters corresponding to the model-implied variance-covarianceandtrix
latent means, including the estimation of the latent meansiidu.2), variances of the
latent factorsy11 andy22), and covariance of the latent factopsaf, in addition to the
estimation of error variances for each time poiMAREi1), VAREi2), VAREi3)] (e.g., 2 +

2 + 1 + 3= 8). Thus, the univariate linear model with three waves of data idiedenti

with one degree of freedom.



Table 2.1

Model Identification for LGC Models

LGC Model Waves of Known Unknown Degree of
(corresponding Data Parameters parameters Freedom
figure)
Univariate (22)(T)(T+3) 5+T
Linear LGC 3 9 8 1
model 4 14 9 5
(2.2) 5 20 10 10

6 27 11 16
Univariate (22)(T)(T+3) 9+T
Quadratic LGC 3 9 12 Unidentified
model 4 14 13 1
(2.2) 5 20 14 6

6 27 15 12
Multivariate n.a. 14 + 2T
LGC model 3 27 20 7
(2.3) 4 44 22 22

5 65 24 41

6 90 26 64
Univariate (2)(T+K)(T+K+3) T +2K+5
Linear LGC 3 14 10 4
model with time 4 20 11 9
invariant 5 27 12 15
covariate 6 35 13 22
(2.4)

Note.T = the number of waves of data, K = the number of covariates; n.a. represents tha
estimation of multivariate condition cannot be captured in a simple equation.

The quadratic linear LGC model, presented in Figure 2.3, includes the same

number of known parameters; however, four additional unknown parameters are added to

the model, including the: (a) latent meam); (b) varianceyss) of the quadratic factor;

and (c) two covariances between the quadratic factor, latent ipiteaoel latent slope

factors (r13andy23). Consequently, a quadratic linear LGC model with three waves of

data is an unidentified model; thus, fit indexes and parameters cannot beegstima



A multivariate linear LGC model is the most intricate level of model cerityl
examined and substantially increases the known parameters (i.es babgeen 27-90
parameters); therefore, all multivariate LGC models are over-igeht& univariate
linear LGC model with a covariate increases the number of known paraimgters
including the covariate, variance, and co-variance of the covariate, assviatireasing
the number of unknown parameters to include the covariate coefficientgu«{isggf.2).
Therefore, inclusion of a covariate increaseddftie LGC modeling with all model
conditions being an identified modelf & 1). In conclusion, there is one condition where
fit indexes cannot be estimated (i.e., univariate quadratic LGC with thres whdata).

Summary of Latent Growth Curve Modeling

The LGC models hold many similar characteristics to typical SEMegiges;
however, LGC models estimate latent means as well as the vacavexance matrices
and are designed to answer longitudinal research questions. In the first pb@ioapter
I, | explained parameter estimation in LGC modeling and detailedAvaweproduces
the model implied variance-covariance matrix and means to minihezgigcrepancies
to the observed variance-covariance matrix and latent means. The discussrmareddot
describe three extensions of LGC models used as independent variables in this
dissertation (i.e., sample size, waves of data, and model complexity), avhich
associated with critical design decisions made by LGC modeling chsesiand
methodologists. In the last section of Chapter Il, the focus shifts to plestof the four
fit indexes, dependent variables in this dissertation, and relevant lieetlétinwas used

to formulate the research hypotheses.



Description of Fit Indexes

Excluding Coffman and Millsap’s (2006) study of LGC model fit, the
methodological knowledge of LGC model fit is derived from SEM simulation studie
Conversely, SEM literature is immersed with methodological studies igatsy fit
indexes under various conditions of: (a) model type, (b) sample size, (c)testima
nmethod, (d) model misspecification, and (e) normality (Beauducel &\afiih, 2005;
Cheung & Rensvold, 2002; Curran, Bollen, Paxton, Kirby, & Chen, 2002; Davey, Savla,
& Luo, 2005; Fan & Sivo, 2005; Fan & Wang, 1998; Hu & Bentler, 1998; 1999; Jackson,
2007; La Du & Tanaka, 1995; Sivo, Fan, Witta, & Willse, 2006; Tanguma, 2001,
Widaman & Thompson, 2003; Yuan, Bentler, & Zhang, 2005). Historically?the
likelihood ratio test has been used to assess model fit, but due to its limitationsyusimer
alternative indexes have been proposed. The array of fit indexes available imptmble
(Sivo et al.), and applied researchers and methodologists have variedngesene
regard to the optimal venue to assess model fit. Therefore, despite the abuwfdanc
investigations, procedures to establish model fit lack congruency and anegbtii
debated (Marsh, Hau, & Wen, 2004).

The authors of LGC modeling books have selectively endorsed a collection of fit
indexes for LGC modeling techniques; however, rationales for the indexegractezk
from general SEM simulation studies and lack discussion of how LGC modeling
variations may influence model fit interpretation (Bollen & Curran, 2006; Duricaln e
2007; Preacher et al., 2008). Described in Table 2.2 are the fit indexes suggessed f
in the three LGC modeling books that are the primary resources for trainingeghthty

of LGC modeling procedures. In addition, Table 2.2 displays the percentage ofauthor



among the 29 applications studies reviewed, which reported the indexes in their
published manuscript. Notice, the standardized root mean square reSKRIN#E @nd
incremental fit indexIEl) are rarely utilized and lack endorsement in the majority of
LGC modeling books. Even though referenceSRMRare found in LGC modeling
literature (e.g., the square root of the squared absolute difference betwSamdi£o)
matrices), th6RMRlacks assessment of the mean vectors (i.e., comparispraoél
u(6); for a review of notation, see section on parameter estimation). Similarli| tise
seldom found in LGC modeling literature, and researchers have shown similar
performance of thé1 andCFl in simulated CFA modelBentler, 1990, La Du &
Tanaka, 1995; Yadama & Pandey, 1995).

Table 2.2

Recommended Fit Indexes in LGC Modeling

Source x? NNFI CFl RMSEA SRMR IFI
Bollen & Curran (2006) v v v’ v
Duncan et al. (2007) v v v v

Preacher at al. (2008) v v v v v

29 Application Studies 93.1% 51.7% 65.5% 65.5% 17.2% 3.4%

Note. NNFI = non-normed fit indexCFI = comparative fit indeXxRMSEA= root mean
squared error of approximaticBRMR= standardized mean square residual,|IBhe
incremental fit index.

They?, NNFI, CFl, andRMSEAare used in this dissertation to represent fit
indexes utilized in LGC modeling applications. The four fit indexes are taiiedanto

three categories based on the manner in which they assess model fit, incajgihg: (

likelihood ratio test; (b) incremental fit index@¢NFI andCFl); and (c) absolute fit



indexes RMSEA Bollen, 1989; Hu & Bentler, 1999). The following discussion describes
the: (a) computation of the fit indexes, (b) proposed cutoff values to determine adequat
model fit, and (c) summaries of selected CFA model fit simulationsi®the countless
simulation studies on model fit, the following review is focused on authorsitized
conditions relevant to the independent and dependent variables used in this dissertation
(e.g., similar to LGC modeling data environments, continuous outcomes, ML e&stimat
procedures, etc.).
Chi-Squared Likelihood Ratio Test

In the behavioral and social sciences,#éelihood ratio test is a frequently
applied procedure, where a dichotomous decision is made to retain or reject the null
hypothesis described below. In terms of LGC model fitytHielihood ratio test
determines whether a significant difference simultaneously occtwsé&e the observed
variance-covariance matrix and mean vector, and model implied variancénoear
matrix and mean vector (Bollen & Curran, 2006). The null hypothesis implieS(that
exactly reproduceS andu(#) exactly reproduce§ as displayed in Equation 2.14.

Ho: S =2(0) andy = u(0) (2.14)

Unlike typical applications of thg? test, a nonsignificant result is desirable, as it
conceptually assesses timdness of model fiSignificant discrepancies betwegand
2(0) and betweeRg andu(0) are interpreted as insufficient model fit and imply that the
hypothesized model does not adequately account for relationships in the observed data.
The LGC models lack adequate model fit when the estimated paraméiendw.(6),
are significantly different from observed parameters. In other worthe hodel

specified by the researcher does not adequately match the observed data, the



hypothesized model might lack support. JRAgest statistic is equal to tiei, described
in Equation 2.11, multiplied by the sample sikk ihinus one, as shown in Equation
2.15.
x2=(N-1)Fm (2.15)

When the assumptions of LGC modeling are satisfied, Equation 2.15 foljgws a
distribution with degrees of freedom equal to the difference between thHeenom
unique elements of the observed variance-covariance matrix and the number of
parameters estimated. The degrees of freedom for the LGC modetdutilithis
dissertation are presented in Table 2.1 in the discussion of model idewtificati

Intuitively, application of the? likelihood ratio test provides an adequate measure
of model fit; however, numerous researchers have discussed limitations toteduye
(Beauducel & Wittmann, 2005; Bentler, 1990; Bollen & Curran, 2006; Duncan et al.,
2007; Fan & Wang, 1998; Hu & Bentler, 1999; Kline, 2005). By conceptualizing model
fit through significance testing, sample size becomes a confounding tzantge. sample
sizes excessively increase statistical power to detect mirevepiacies, which result in
a rejection of the null hypothesis (i.e., implies a lack of model fit) even whendtiel m
may adequately fit the data (Beauducel & Wittmann). Consequently, numerbus SE
methodologists have demonstrated that, when sample sizes are lay§ékétdood
ratio test will be too restrictive, resulting in excessive rejection sgecomodels
(Beauducel & Wittmann; Hu & Bentler).

The use of LGC modeling may increase detection of minor discrepanciesehet
observed and model-implied matrices for thassessment in conditions of large sample

sizes because of additional estimation of latent means. An increase umtherrof



parameters ultimately increases the model complexity (i.e., the dize wériance-
covariance matrices and mean vectors), which in turn, increases thecatgiwstier of
the significance testing (Bollen & Curran, 2006). Thus, there is a higher cbiginaeing

a minor discrepancy betwe&andX(¢) and y andu(0) result in a significant result,

implying a lack of model fit. To demonstrate with the student achievememipéxaa
trivial discrepancy may occur between the observed and model-implied mean oBGrade
student achievement, with all remaining model implied parameters beintyexac
reproduced (e.g., the variances-covariances and means of Grade 10 and 11 student
achievement). In this situation, a significghtest would be obtained, which would
imply inadequate model fit; however, minor discrepancies in the single Gradar® m
achievement scores may be negligible in terms of practical sigmific A comparable
cross-sectional CFA model would include only the variance-covarianteesa
resulting in a non-significang, which would imply acceptable model fit (Bollen &
Curran). As a consequence, the LGC model structure may increase thetbegg wiith
large sample sizes due to the additional estimation of the latent means.
Furthermore, when sample sizes are smallyzbest may not contain enough
statistical power to adequately reject a misspecified model (Field, 20d8&5efdre, thg?
likelihood ratio test is commonly understood as being too relaxed for small saregle s
and too conservative for large samples. In recent years, the popularityssirag siee
x2df ratio is preferred to correct for thetendency to penalize more complex models.
Numerous SEM methodologists and researchers have fougtidh® be appropriately
sensitive to model misspecficiation, with complex models and extreme sangse s

(Jackson, 2007), compared to the stangatdst. However, SEM methodologists



generally report the standgytitest, despite its shortcomings; therefore, bothihest
they?/df were reported in this dissertation in order to compare to other typical CFA model
fit simulations. Along with the? test, and thg?/df assessment, SEM researchers
frequently usalternative descriptive methods to assess model fit. These alternative fi
indexes are descriptive and assume a continuum of fit, as opposegzbkéiéood
ratio test which is an inferential test with @hor nothinginterpretation. Continuous
debate occurs in regard to what values constitute acceptable model fit, and
methodologists discuss the falsified nature of any single cutoff valuasgeatime vast
SEM application conditions (Hu & Bentler, 1999; March et al., 2004). However, applied
researchers, textbooks, and journals continue to present and support standard cutoff
values for individual fit indexes. The following section describes the computatidn of f
indexes, as well as suggested cutoff values for assessing model fit.
Incremental Fit Indexes

Incremental fit indexes compare the hypothesized model, specified by the
researcher, to a more restrained baseline model to determine the proportion of
improvement in model fit (Hu & Bentler, 1999). Conceptually, a continuum is dreate
which rangegrom the largest chi-squared value of a baseline model to a saturated model
(df = 0; Bentler, 1990). In typical SEM applications, LGC modeling applications hend t
current dissertation, the baseline model is the independence null model, dpecifie
estimate (i.e., free) the variances of the observed variables ahe fiovariances among
the observed variables to zero to imply no underlying common or latent factore(Bent
& Bonett, 1980). Although not commonly found in SEM applications, alternative null

models may provide a more appropriate measure of model fit because the mssuafipt



no common variance among the observed data points (i.e., zero covariance),iff rarely
ever, found in social and behavioral science applications (Widaman & Thompson, 2003).
While use of an alternative null baseline model may provide a more suitatdsrasaé
of model fit specific to the growth or change in a hypothesized latent trawjdespread
application would affect the standardization of fit statistics across sfudilting in
overall lower fit index values. Therefore, this dissertation specifiethtfependence null
model for variance-covariance structure. Even less agreement is found for the
specification ofappropriate values for the mean vectors of the baseline LGC model.
Following guidelines provided by Bollen and Curran (2006), in this disserthfieed
(estimated) the mean parameters in the baseline model. In summary eimiziefih
indexes in this dissertation compared the hypothesized LGC model to a baselale m
with: (a) estimated variances of the observed variables, (b) estimtgatmeans, and
(c) fixed covariances at zero.

The nonnormed fit indeX\INFI; also referred to as the Tucker Lewis Index) is an
incremental fit index that requires model comparison to determine the value iof the f
index (Bentler & Bonett, 1980). TH¢NFI utilizes the likelihood ratig? test statistic and

degrees of freedom, displayed as

2.2 1df, — 4,21 df,

NNFI = .
2 1df, -1

(2.16)

where, z,? is the likelihood ratig? test statistic for the baseline mode, are the
degrees of freedom for thetest statistic for the baseline modgf.is the likelihood ratio
x2 of the hypothesized model, anlf, are the degrees of freedom of gador the

hypothesized model. The equation compares the relative difference betweenlthe base



model denoted with b subscript, and the hypothesized (i.e., or specified) model
represented by the subscrptBy dividing they? value by thelf prior to computing the
relative difference, thBINFI is known to compare model fit pef (Bentler, 1990). The
NNFI is a nonnormed fit index with the majority of values ranging from 0-1.0; however,

values can fall outside of this range. Values of 1.0 indicate perfect modeildies
greater than 1.0 occur when méis greater thanif | (Bentler). The value produced by
the NNFI would rarely be negative, because the baseline moggfeldf, ) is expected to
be larger than the corresponding hypothesized mggléldf, ) due to the hypothesized

model imposing more restrictions than the baseline model.

A more recent incremental fit index is tB8&1, designed to have the benefits of
theNNFI, while reducing the undesirable characteristics (e.g., large variavee
parameterization), as discussed in the following sectionCHiés a normed fit index,
proposed by Bentler (1990) that ranges from 0-1.0, where 1.0 indicates a perfée f

CFl is computed by

CFI =1-(d,/d,) (2.17)
where, d, is themaxd, ,0), d,is themaxd,,d, 0), d, is (th —dfh)/n, d, is
(sz —df, )/n, with all other variables defined according to Equation 2.16. In application,

the baseline model?2 should be greater than tja@ for the less restrictive hypothesized

model, which should both be greater than zero (i.e., unless the model is just-identified);

thereforeéldb > d, >0. Jh is the maximum value of the range produced by the value for

(th —df, )/n , Which adjusts foy? valuesdf and sample sizes (Bollen & Curran, 2006).



The ab is the maximum value of the continuum created by the baseline model,

hypothesized model, and zero, also corrected for sample sizi. and

Within the last decade, methodologists have reported evidence for the limited
sensitivity of incremental fit indexes in the detection of model misspatdn (Fan,
Thompson, & Wang, 1999; Jackson 2007). For example, Fan et al. fouG8IthéeNFI,
andy? to have approximately half of the sensitivity of RIdSEAto detect appropriate
models. Although the results of Fan et al. study lack support f@FhandNNFI, the
authors defined model misspecification as additional unspecified latent path&aétor
loadings), according to standard CFA model fit simulation procedures. Missataif
of latent paths lack relevance within the LGC modeling framework,hwiiMes the
factor loadings to represent time. However, Hu and Bentler (1998) manipulated both
measurement model and structural model misspecification, defined asatfisapen
between latent factors, and found that@#d was highly sensitive to structural
misspecification and only moderately sensitive to measurement modpEenifgsation.
Therefore, the limited sensitivity of incremental fit indexes discuss#teimodel fit
literature may lack relevance for LGC modeling data environments.

Originally, Bentler and Bonett (1980) proposed cutoff values of .90 or gteater
constitute sufficient model fit for tidNFI. To date, Hu and Bentler’s investigations
(1998, 1999) into model fit are the most well accepted methodological references and
provide a foundation upon which subsequent application studies and methodological
investigations base their results (Beauducel & Wittmann, 2005; Sivo et al., 2006). Even
though Hu and Bentler (1999) discussed the erroneous nature of any single cutsff value

among the vast SEM application conditions, they provided cutoff values for individual fit



indexes that have become th@lden rulesof SEM (March et al., 2004). Hu and Bentler
(1999) proposed more restrictive cutoffs than originally proposed for the incréfitenta
indexes and suggested that values of \ISKI) and .96 CFI) or greater imply sufficient

model fit.

To complicate the debate of adequate cutoffs, researchers have providedeevidenc
to support thaNNFI andCFI are influenced by sample size. In conditions of small
sample size (i.eN < 200), researchers have found MeFI to produce low values (i.e.,
which suggests inadequate model fit) and extremely high values that lagkatability
(Jackson, 2007; Sharma, Mukherjee, Kurmer, & Dillion, 2005; Tanguma, 2001).
Understandably, authors who have utilized sample sizes greater than 150 report no
substantial influence of sample size for Mi¢Fl andCFI (Bentler, 1990; Cheung &
Rensvold, 2002; Fan et al., 1999; Sivo et al., 2006). MoreoveKNif¢ has been found
to produce standard deviations that are substantially larger than other fit i{Blexter;
Jackson; Sharma et al.; Yadama & Panday, 1995). The large rangé\Ndffheeflects
contradictory interpretations that for some simulated samples would saggektof
model fit, whereas for others would over-estimate model fit.

To further the understanding of cutoff for incremental fit indexes, Sivo et al
(2006) examined the optimal cutoff values @l andNNFI in two situations: (a) the
minimum value without rejection of any correctly specified models (i.gae Tyerror)
and (b) the maximum value to reject all misspecified models (i.e., Type®t).eThe
range between the two optimal values creates guidelines of acceptalele dgppendent
on sample size. Sivo et al. found the ranges to be identical for both incremental fit

indexes, including: (a) = 150 NNFIandCFI = .95 — 1.0); (bN = 250 (NNFI andCFI



=.97 - 1.0); (cN =500 (NNFIl andCFI =.98 - .99); (cN = 1,000 NNFI andCFI = .98

-.99); (d)N = 2,500 NNFI andCFI = .98 -.99); and (elN = 5,000 NNFI andCFI = .98
- .99). Notice, the range decreases as sample size increases with atbbaemdiereN >

1,000 indicating an identical range. Collectively, the simulated results suppdhdhat
NNFI andCFl are influenced by variability in sample size.

Contrary to sample size, which is investigated in the majority of model fit
simulations, model complexity is less frequently included as a condition méshte
Sharma et al. (2005) simulated CFA model complexity by an increase of themnain
latent factors (e.qg., 2, 4, 6, and 8) and corresponding observed variables (e.g., 8, 16, 24,
and 32); they foun8iNFI values to vary among conditions of model complexity, with the
magnitude of the effect of greater model complexity increasing with lowlsssizes;
however, they did not investigate tG€&I. Although the results support the influence of
model complexity otNNFI assessment of fit, conditions examined by Sharma et al. may
lack applicability to LGC modeling environments (e.g., 16 or more waves of data).
Comparable to LGC modeling conditions, Cheung and Rensvold (2002) simulated CFA
models as they varied the number of: (a) latent factors (e.g., 2 and 3); (wedbse
variables (e.g., 3, 4, and 5); and sample size (e.g., 150 and 300). They foundGifat the
andNNFI values were higher, suggesting adequate fit, with a lower number of latent
factors and observed variables. Values decreased as model complexiseddresn, as
additional latent factors and observed variables were added to the model, the values
suggested worse fit). In regard to the magnitude of effect§Fhevas more influenced

than theNNFI for both latent factors and observed variables.



Based on prior research on model fit literature for incremental fit isgdéexéhe
current dissertation tHeéNFI andCFI are hypothesized to be afflicted by variation in
sample size, wheN < 200 resulting in biased estimates of model fit. SpeciallyNtiEl
andCFI values will vary among the different conditions of sample size; however, the
effect sizes and mean values will suggest negligible difference in tenpnaatical
implications for sample sizes greater than 200 .wWawes of data and model complexity
conditions, the&NNFI andCFI were hypothesized to vary under conditions of waves of
data (i.e., observed variables) and model complexity (i.e., additional factor l®adihg
CFI was expected to suggest worse model fit with increased model compiexity
comparison to th&INFI. Finally, theNNFI was expected to produce large variations, in
comparison to all other fit indexes.

Absolute Fit Indexes

Unlike incremental fit indexes, absolute fit indexes do not use a baseline model to
assess model fit, but examine to what degree a hypothesized variance-cevaaainc
and mean vectors can be reproduced (Bollen & Curran, 2006). As opposed to the three
previously described fit indexes that are based on exact model RMBE&EAIs based on
close approximation to the correct model. RMSEAIs an absolute fit index, computed

as

RMSEA- y/max| 7,2 —df, )/(nx df, ) 0| (2.18)
where all values are defined as in Equation 2.16, includifjgre the degrees of freedom

for they? test statistic for the baseline modg;fis the likelihood ratig? of the

hypothesized model, ardf, are the degrees of freedom of jador the hypothesized



model. The numerator of the first term is the unbiased estimate of “themuality

parameter for the noncentral chi-square distribution underlying hypothesized
model”(;(hz) (Bollen & Curran, 2006, p. 47). The expression in the denominator of the

first term corrects for the sample size effect and penalizes feasiagdf, commonly
found in complex models (Bollen & Curran). The values oRMSEArange from zero
to infinity where values of zero indicate a perfect fit.

Preference for thRMSEAIs related to its ability to be highly sensitive to model
misspecification (Fan et al., 1999; Fan & Wang, 1998; Hu & Bentler, 1998; Jackson,
2007; Sivo et al., 2006). Another reported advantage dREWSEAindex is that
confidence intervals can be computed, based on upper and lower limits of the non-central
chi-squared distribution (Curran et al., 2002). In contrast, Chen, Curran, Bollen, Kirby,
and Paxton (2008) found a lack of support for the value added by the construction of
RMSEAconfidence intervals with an upper bound of 0.1 and lower bound of .05,
corresponding to standard cutoff values for acceptable fit. Chen et al. concluded that
confidence intervals are afflicted by the use of universal cutoff vakiepper and lower
bound limits for the abundance of conditions found in research environments.
Furthermore, Curran et al. fouRMSEAconfidence intervals to be biased winer 200,
due to deviations from the non-central chi-square distribution with small sainete
Other research has been less favorable towam@MfeEAoN the basis of its relative lack
of sensitivity to model misspecification. For example, Sharma et al. (2005seddbe
NNFI over theRMSEAand suggested that thNeNFI is more sensitive to model
misspecification than theMSEAIn a CFA model with varying sample sizes and

conditions of model complexity similar to LGC modeling environments (e.g., additional



latent factors and observed variables; see section on incremental fit ifmlexes
description of conditions). Regardless of the simulated evidence in favor of or against t
RMSEAas a measure of model fit, researchers frequently utiliZRMBEA and its
functioning under LGC modeling conditions are of critical concern.

Steiger’s (1989) original guidelines, in conjunction with support from other
methodologists, endors€@MSEAvalues of: (a) less than .05 to suggest good fit, (b) .08
for reasonable fit, and (c) values beyond .10 to indicate model misfit (MacCallum
Browne, & Sugawara, 1996). Hu and Bentler (1999) supported values less than .05 to
assume adequate model fit; however, the authors cautioned the udeME&A
universal cutoff of .05 cutoff with small sample sizes because of the wntieaver-
reject correct models. Also, the range of optimal values between the oadoicliype |
and Type Il errors for thRMSEAwere computed by Sivo et al. (2006) for the sample
sizes of: (aN = 150 RMSEA= .06 - .01); (bN = 250 RMSEA= .05 - .01); (cN =500
(RMSEA= .03 - .01); (dN = 1,000 RMSEA= .03 - .005); (eN = 2,500 RMSEA= .02
-.003); and (N = 5,000 RMSEA= .01 - .002). Notice that tiRMSEArange is large
for small sample sizes and reduces as the sample size increases glbbe cutoff of
greater than or equal to .05 over-rejects the correct modeNwtb0 and under-rejects
the incorrect model with > 500. Subsequent researchers have provided supportive
evidence of th&@MSEA'stendency to over-reject correct models with small sample sizes
(N < 200; Chen et al., 2008; Fan & Wang, 1998; Sharma et al., 2005). Moreover, Sivo et
al. reported that global cutoff values of .05 will tend to under-reject incorielswith

large sample size®(> 500). The collective evidence indicated thatRMSEAIS



influenced by variations in sample size, leading to the tendency BIMISEAL0 over-
reject models with small sample sizes and under-reject models with dangéessizes.

In regard to model complexity, Chen et al. (2008) appliB#SE Acutoff value
of < .05 for a simulated, correct, three factor CFA and found a tenfold decrease in the
percentage of models rejected when the same model with six additional dbserve
variables was examined. Although, the Chen et al. findings were based on sonatdit
observed variables added to the CFA model, the trend may extrapolate to LGIE mode
where the addition of a single observed variable (i.e., wave of data) maynasaise
model fit according to thRMSEAvalue (i.e., higher RMSEA values). However, Sharma
et al. (2005) simulated CFA model complexity when they increased the numbeods fac
and indictors (i.e., see description under incremental fit indexes), and ceporte
negligible effect for sample size and model complexity orRiMSEAvalue.
Furthermore, Cheung and Rensvold (2002) simulated conditions similar to LGC
modeling and found thRMSEAwas not affected by variations in the number of observed
variables or latent factors.

In summaryRMSEAwas hypothesized in the current study to be influenced by
sample size with inappropriate estimates that occur in small samEeNk&00). Due
to the common variations in LGC model complexity, which include few laterdrfact
(e.q., 2- 4) and observed variables (e.g., 3-6), it wass hypothesized thatangnifi
differences would occur for the conditions of waves of data and model complexity.
However, the effect sizes and mean values oRIMSEAwere expected to suggest that
the significant differences lack practical importance in terms of sisgesiodel fit due to

the anticipated small effect size.



Latent Growth Curve Model Fit Investigation

Coffman and Millsap (2006) initiated the model fit research specific to LGC
analysis and investigated model misspecification related to the shgrenti. One
condition of model misspecification was constructed to represent a small tgutedra
examined with the use of two fit indexes. TA@andRMSEAdisplayed poor fit for the
linear model and adequate fit for the quadratic model; therefore, the fit ;mxdaeggested
a preference for quadratic growth, even when the majority of individual tragsctor
exhibited linear growth. Interestingly, estimates of a covariatetedfea univariate LGC
model over five time points suggested similar parameter estimates for bbtietineand
guadratic models, despite the lack of fit for the linear model. As a result, &o#ind
Millsap concluded that fit indexes for LGC models may be influenced by shape
misspecification and suggested estimation of log likelihood val@es j-for each
individual subject as a measure of within person fit, as well as the fit indeassdss
global fit of the overall model.

While the novel study conducted by Coffman and Millsap (2006) provided
interesting insight into the consequences of LGC model misspecificatiorcadmpli
studies have not utilized investigations into individual-level fit statisticaddition, in
the Coffman and Millsap preliminary study, they reviewed a single condifimodel
misspecification, reducing the external validity. Due to the pradbcails of this
dissertation to examine characteristics found in application studies iodiaéand
behavioral sciences, global fit indexes are of fundamental interest; howevavenue
of model misspecification and individual level fit requires additional attenticutumef

research endeavors.



Summary of Model Fit Indexes

The model fit literature consists of a gap specific to LGC modelingammients;
nevertheless, LGC modeling educators and applied researchers endorse antyfreque
apply they?, NNFI, CFl, andRMSEA Excluding the Coffman and Millsap (2006)
investigation, this dissertation is the first investigation to examinentlhuence of typical
LGC modeling environments on selected global fit indexes. Drawing on therneleva
SEM literature, the hypothesis for Research Question 1 suggests thatcorogédxity
would affect convergence rates, with complex models based on low sample sizes
displaying the lowest convergence rates. The hypothesis for Reseastio@de
suggests that sample sizes would influence all fit indexes, especiallyNw#e00. It is
expected that the will be most affected with a general trend to over-reject correct
models in small and large sample size conditions.NEI, CFI, andRMSEAwere
expected to be less influenced with a general trend to over-rejecttecooeels in small
sample size conditions and to under-reject incorrect models with large sareple si
Regarding Research Questions 2 and 3, it was expected that varyegafaata and
LGC model complexity would influence all four fit indexes following the patte over-
reject correct complex models (i.e., and more waves of data), as welliader-reject
correct, parsimonious models (i.e., fewer waves of data)yZdedCF| were
hypothesized to be most influenced by model complexity and increasing waves, of dat
followed by theNNFI. The influence of model complexity and waves of data on the
RMSEAvalues was expected to have limited practical importance as displayeel by t

effect sizes and mean values.



Chapter Two Summary

In Chapter Il, | conveyed the procedures and relevant literature of LGElsno
and assessment of model fit with fieNNFI, CFl,andRMSEA As discussed, LGC
modeling is a flexible tool that can model various types of longitudinal research
environments by the estimation of variance-covariance matrices and notens vef
particular interest to applied LGC modeling researchers is how variatisasnple size,
waves of data, and model complexity (idefined as linear univariate LGC model,
guadratic univariate LGC model, multivariate linear LGC model, and linear watar
LGC model with a covariate) may affect estimation of model fit. Due to theofac
literature that pertains to LGC model fit, inferences were drawn from SiEMlation
studies with similar model structures. Based on the review of SEMtlifre, it was
hypothesized that all four fit indexes would be afflicted by variations ipleasize,
waves of data, and model complexity whir 200; however, the true questions lie in
the magnitude of difference and practical relevance to applied reseatoh@nspter Il,
the background literature was established to allow for a discussion of metitiadd td
examine the functioning of model fit indexes in LGC modeling environments, which are

presented in Chapter III.



CHAPTER Il
METHODOLOGY
In this chapter, | address the methods applied to investigate the functdfiing
indexes in latent growth curve (LGC) models under conditions of: (a) sarnet @)
waves of data, and (c) model complexity. In this dissertation, LGC modsfimgation
techniques were applied to answer the following four questions:

Q1 Do model convergence rates vary under conditions of sample size, waves of
data, and model complexity?

Q2 Do fit indexesy, NNFI, CFl,andRMSEA differ under varying conditions
of sample size?

Q3 Do fit indexesy®, NNFI, CFl,andRMSEA differ under varying conditions
of waves of data?

Q4 Do fit indexesy, NNFI, CFl,andRMSEA differ under varying conditions
of model complexity, defined in the current dissertation as a: (a) univariate
linear LGC model, (b) quadratic LGC model, (c) multivariate linga€
model, and (d) a linear LGC model with a covariate?
Models to Be Tested
The four research questions were investigated with the utilization of twe bfp
LGC models. As established in Chapter Il, LGC models are divided into: (a)
unconditional LGC models (i.e., measurement models); and (b) conditional models,
which include additional structural components (i.e., inclusion of a covariatg)sin t

dissertation, unconditional LGC models were examined in three conditions of model

complexity including: (a) univariate linear LGC models, (b) quadratic unieaki@C



models, and (c) linear multivariate LGC models. Conditional LGC models were
examined in a single condition of model complexity based on a univariate lin€ar LG
model with a time-invariant covariate. The two population models were described in
Chapter II; however, they are briefly restated in the following section. Thenditional
LGC model, which jointly represents both Level 1 and 2 models, is displayed indbguat
3.1.

Yit :A(aql + & )+ it . (3.1)

In this equationyit is a vector of the observed measures for éhgbarticipanti(= 1,
2...N) at eacht time point (=0, 1...t-1), A is a matrix of fixed factor loadings to
represent timey,i is a vector of latent means for each latent factor gi.agpresents the
growth trajectory){i is a vector of the individual deviations away from the latent means,
andeit is a vector of the residuals (Bollen & Curran, 2006). The conditional LGC model,
which jointly represents both Level 1 and 2 models, is presented in Equation 3.2.
Y = A(O‘n. + B, % + & )+ &, (3.2)

All parameters were described in Equation 3.1 exceg;,farhich is a vector of the
random parameters for each latent factorxanepresents a single time invariant
covariate. All parameters were estimated with use of maximuiihicel techniques
(Fwmv), the predominant estimation method found in LGC modeling applications and
simulations. The population means, variance, and covariance parametersiesedis
according to each independent variable.

Coding of time in LGC modeling is representedwhich describes the paths

from the observed variables (e\waves of data) to each latent factor (e.g., intercept,



slope, and additional factors). In all LGC models, the paths from the observedegariabl
to the latent intercept are set to one, with paths from the observed variablesatemnt
slope, and additional factors, fixed to represent the coding of tithd=(equently, linear
trend contrasts are utilized to represent time in LGC modeling andayplied in this
dissertationAit = 0, 1, 2,..1-1).
Independent Variables

The current analysis is among the first simulation studies to focus on model fit
indexes within LGC modeling data environments. As in all novel areas of reséarch, t
most fundamental variations need to be considered prior to examination of more complex
conditions. Consequently, an assortment of independent variables and potential levels
need to be inspected in regard to their corresponding functioning of fit indexes. The
current investigation examined only conditions deemed to be essential to most LGC
modeling applications. The rationale for the selected independent variables and
associated levels within each condition were based on three predominant ctosglera
(a) the review of conditions employed in current LGC modeling applications in
behavioral and social sciences journal articles; (b) the conditions examipex/ious
simulation studies of LGC models (Fan & Sivo, 2005; Leite, 2007; Muthén & Curran,
1997, Muthén & Muthén, 2002) and studies of fit indexes in SEM (Hu & Bentler, 1999;
Sivo et al., 2006); and (c) a combination of a reasonable number of conditions to allow
for proper interpretation of the influence of each variable being examined. Thatedt
values for the parameters in the models were based on previous LGC modeling
simulations, which have typically followed the procedures suggested by Martice

Muthén (2002), who are known as experts in the field and are the developers of the



software being used in the current study. The levels and justificatiomdependent
variables investigated in the proposed dissertation are described below.
Sample Size

The independent variable of sample size included five leMets1(00, 250, 500,
1,000, and 2,500). This range encompasses the majority of LGC modeling applications
reviewed (96.5%). Previous LGC modeling simulation studies have included & simila
range, excluding the most extreme level of 2,500, for exampl20(a500, Hertzog et
al., 2006; and (b) 100-1,000, Leite, 2007; Muthén & Curran, 1997). However, extremely
large sample sizes (e.g., > 2,000) are common in general SEM simulation studies
model fit to examine the tendency of chi-square t@3f40 produce biased estimates of
fit with large sample sizes (Hu & Bentler, 1999; Sivo et al., 2006). Thereforeriticsl
to examine an extreme level of sample size in the evaluation of modehfi gt this
has not been typical in LGC modeling simulations.
Waves of Data

The waves of data included four levels of 3, 4, 5, and 6, creating a range which
includes 89.6% of the applied studies reviewed. The four levels mimic conditions found
in previous LGC modeling simulations (Hertzog et al., 2006; Muthén & Muthén, 2004,
Leite, 2007; Sivo et al., 2006), with the exclusion of Muthén and Curran’s (1997)
simulation study which investigated seven waves of data. Six or more walas efere
rarely found in LGC modeling applications; thus, three and six waves of dataseste

as the extreme condition of waves of data.



Model Complexity

Based on the complexity of traits examined in LGC modeling applicatiohs in t
social and behavioral sciences, it is reasonable to believe that most ajydlied s
examine complex traits. In addition, SEM methodologists have debated between
preference for model parsimony vs. proper representation of change through more
complex representations (Raykov & Marcoulides, 1999). Consequently, conditions of
model complexity typically require decisions by LGC modeling reseaschie four
conditions of model complexity examined were chosen based on common decisions
required in LGC modeling application: (a) What shape of growth occurs indhi t
(e.g., linear or quadratic); (b) What type of model represents the trgt?uf@variate or
multivariate); and (c) Does a covariate account for variations in growthednatit(s)?
(e.q., inclusion or exclusion of a covariate). The condition of univariate line@r LG
modeling is the most parsimonious LGC model examined, with model complexity
increasing to a quadratic LGC model, a LGC model with inclusion of a timganva
covariate, and to the most complex multivariate LGC model. Figure 3.1 ispghaded
matrix notation of Equations 3.1 and 3.2, with an emphasis on the portions included in

each condition of model complexity.
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Figure 3.1. LGC model highlighted for model complexity conditions



For example, the linear LGC model parameters (e.g., parameters inciutied i
red univariate linear LGC model, excluding the green covariate term) intlede t
population means and variances for two latent factors that represent thie growt
trajectories. In this dissertation, population means of the latent intésaeptere set to
zero, the linear latent slopez) was fixed at 0.2, with the variance of the linear slope
factor (y22) at 0.1, and the variance of the latent intercegpf) @t 0.5, which have been
suggested to mimic common LGC application conditions (Leite, 2007; Muthén &
Muthén, 2002). Therefore, the latent growth curve models estimated haveirebasel
value of zero and a slight, positive linear growth over the selected time period.
Furthermore, the proportion of the variance of linear slope factor to the vaoi&tiee
intercept factor represents a 1:5 ratio, as suggested by Muthén and Muthglicdtere
commonly encountered variances in applied longitudinal research environments. The
covariance between the intercept and linear slope fagtgrwill be set to 0.2, to
represent a small relationship. While the population means and vaveyadepending
on model complexity, the error variances of the observed variab)asdre set at 0.5 for
each wave of data (e.g., observed variable) in all models and were assuméatthesice
this value. By setting the error variances to 0.5, the correspoRéirajues of the
observed variables mimic commonly found conditions in applied longitudinal
environments (i.eR¥y1) = .50,Rqy2) = .55,Rqys) = .64,Rys) = .74; Muthén &
Muthén). This paragraph described the model parameters to generate dataetr a li
LGC model, and the following subsections describe the rationale and populaties val

for the three other conditions of model complexity.



Quadratic growth.The dominant form of nonlinear growth discovered in the
review of application studies was a quadratic growth trajectory. Althlboegr growth is
more frequently applied, utilization of linear growth models may be attribated t
convenience, as opposed to theory or strong contextual evidence (Burchinal &
Appelbaum, 1991). Coffman and Millsap’s (2006) LGC modeling simulation study of
model misfit was focused on the representation of growth and utilized a linear and
guadratic trajectory of growth. For models which examine quadratic growth, the
additional paths from the observed variables to the latent quadratic slope wengifixe

a quadratic polynomial representatiofy£ O, 1, 4, 16,.1.-1). The quadratic model

included identical variances, covariance, and population mean of the latent intercept
described for the linear LGC model, with additional parameters to reptasejuadratic
growth as displayed in blue in Figure 3.1 (i.e., excluding the green covariate
representation). Following a similar rationale to that of the univariaadiLGC model,
the latent intercept was set at zarg),(the latent linear slope factarzf was fixed at 0.1,
the quadratic slope factaxs) was fixed at 0.2, representing a slight positive quadratic
increase in the latent trait over the selected time period. The variancegofttratic
factor (y33) was fixed at 0.1 to represent a 1:5 ratio with the variance of latent intercept
factor, to replicate typical longitudinal research environments. The covat@tveen

the latent intercept and the linear slope faatar)(was set at 0.1. The covariance
between the latent intercept and the quadratic slope faat)mas set a 0.2, which is the
identical relationships set in the linear LGC model between the interadptape factor.
Finally, the covariance between the linear slope factor and the quadratitasitmpe23)

was set at .05, representing the smallest relationship among the latent sariable



Multivariate growth.In regard to LGC modeling simulation studies, although Leite
(2007) investigated a multivariate factor-of-curve model, neither his studgny of the
other LGC modeling simulations reviewed included an associative multevaGE
model such as the one applied in this dissertation. The majority of LGC &ipplsca
reviewed used a univariate model of growth with limited use of a multivariate
representation of growth. While application studies have infrequently applied
multivariate LGC models, it may be understandable to assume that matavari
applications will increase in the coming years for two reasons. Firkinwiite social and
behavioral sciences, the complexity of research questions is escalamgtiempt to
represent the complex phenomena of human behavior in which multivariate growth may
have greater theoretical support. Secondly, LGC modeling software psogham for
easy programming of multivariate growth in LGC models, as compared to softwa
programs used to estimate other types of growth curve models (e.g., HLM-6) oféeref
an associative multivariate LGC model was chosen due to an expected intrease
application among the social and behavioral sciences and it has yet vesteyated.

For the associative multivariate LGC model, the parameters descriltbe for
univariate linear LGC model are assumed in addition to parameters, whiebeneithe
second growth trajectory and the relationship among the latent factoesgrbilith
trajectories. In Figure 3.1, the multivariate model includes parametérs ardnge area,
excluding the green area representing the covariate parametersenbhetarcept factor
of the second traitxg) was fixed at 0.5, and the latent slope factor of the seconduttait (
was fixed at 0.1. In contrast to the growth in the first latent trait, thetioayeof the

second latent trait begins slightly higher, representing a lower ratewfrgover time.



The variance of the linear slope factor for the second iradt Was fixed at 0.1, and the
variance of the latent intercept of the second tyad) (@t 0.5, suggested to mimic
longitudinal data environments with a slope to intercept variance ratio of 1:5¢M&t
Muthén, 2002). In the first trait, the covariance between the intercept and slaps fact
(w12) was set a 0.2, whereas in the second latent trait the same relatignghiaé set a
0.1. All other covariances among latent variables were set to zero. Thetle¢ore
relationship between the initial level and the rate of growth was stronther finst trait
than in the second trait.

Time invariant covariate.The simulated models included representation of a
univariate linear LGC model with a single time invariant covariate, airtol the LGC
model used in Hertzog et al.’s (2006) simulation study of statistical powere Btrie
application studies reviewed included representation of multiple covariates,jtrgyma
of studies included only a single covariate in the LGC model. In Figure 3.dnithegriate
linear LGC model with a single time invariant covariate is representételparameters
in the green and red areas. Hmggle time-invariant covariatg, was set with a mean of
.5 and a variance of .25, representing a dichotomous covariate (e.g., gender). The random
regression coefficients to both the latent intercept and latent slope factoere set at
0.2, with a variance of 0.09 (Muthén & Muthén, 2002). The values were selected due to
their correspondence to a representation of medium effecidsizeé8), which was also
used in a previous LGC modeling simulation with a covariate (Hertgoz et ahgMét

Muthén).



Summary of Independent Variables

In summary, the LGC model simulation included the independent variables of: (a)
sample size (100, 250, 500, 1,000, and 2,500); (b) waves of data (3, 4, 5 and 6); and (c)
model complexity (i.e., univariate linear, univariate quadratic, inclusi@ncoivariate,
and multivariate linear LGC model). Due to the requirements of identdicatne cell
could not be computed; thus, a completely crossed design was not applied. The condition
of a univariate quadratic LGC model with three waves of data results in an unde
identified model, which does not allow for estimation of model fit indexes.

Dependent Variables

The dependent variables included four fit indexgINNFI, CFl, andRMSEA,
which were described in detail in Chapter II. To briefly reiteratey2lethe most
historic measure and uses significance testing; howeveXNRk¢ CFl, andRMSEAare
all descriptive indexes based on a continuum of fit. TN&I andCFI are incremental fit
indexes that assess a ratio between the hypothesized model and baseline mbdel and t
RMSEAis an absolute fit index that assesses approximate fit. The equations used to
compute the fit indexes are presented in Table 3.1. Moreover, LGC modeling pabcedur
guides endorse the use of the four selected fit indexes in application (Bollena& Curr
2006; Duncan et al., 2007; Preacher et al., 2008). In addition, the four selected indexes
are reported as defaults in most LGC modeling software (i@ysvVLISREL, EQS),

which results in frequent reporting in applied studies.



Table 3.1

Fit Indexes and Recommended Cutoff Values

Fit Index Range Perfect fit Hu and Bentler’'s
(1999) cutoff
values
x=(N-1)Fm x? Non- n.a.
distribution  significant
result

(adequate fit)

2 2 0 — infinity 1.0 .95-1.00
NNE| = b /dIb_Zh /dfy but
x, [df, -1 generally
between
0-1.0
1.0
CFI =1—(dh/db) 0-1 .96 — 1.00

RMSEA- me{(zhz —df, Ji(nx dfh),oj 0 — infinity 0.0 05— <0.1

Note. FML = full information maximum likelihood estimatioN, = sample sizgy,? _ x?

test statistic for the baseline modef, = degree of freedom for th test statistic for
the baseline modely, >= likelihood ratioy? of the hypothesized modetdf, = degrees of
freedom of the2 hypothesized modell, _ maxd, 0) d, = maxd,.d, 0) d, =

(7,2 - df, Jin “and® = (" —df,Jin.

In addition to the four fit indexes examined in this dissertation, there is an
assortment of additional measures of model fit, which include the: (a) goodrigss of
index GFI; Joreskog & Sérbom, 2001); (b) adjusted goodness of fit iniex
Joreskog & Sorbom); (c) normed fit indeéXKI; Bentler & Bonett, 1980); (d) root mean

square residuaRMR Joreskog & Sérbom); and (e) McDonald’s centrality inddx; (



McDonald, 1989), among others. Previous general SEM simulation studies of fit indexes
suggested that the four selected indexes have potential benefit over the excluded
alternatives (Hu & Bentler, 1998, 1999). Also, jklf ratio was computed in the current
study based on methodological preference overihalue alone. In summary, the
(x3/df), NNFI, CFl,andRMSEAwere examined in the conditions of sample size, waves
of data, and model complexity in this dissertation.

Generating the Data

The data were generated by use of Monte Carlo procedures availalpus M
(Muthén & Muthén, 2004). The parameters were fixed or varied as previously discussed
according to model conditions. A random seed was created based on the random numbers
generator in Microsoft Excel, then input into th@lik syntax for data generation. One
thousand replications were generated per design condition. plus 8§ntax for this
dissertation can be found in Appendix A.

Also, convergence and inadmissible solutions for each data condition were
reported. To account for the large amount of inadmissible solutions (non-plausible
values), numerous additional datasets were estimated, from which only theOf@
datasets that converged and had admissible solutions (plausible values) werehesed in t
analysis. One thousand replications is the average number of replications found in othe
LGC modeling simulations (e.qg., Liete, 2007). The data were checked ifdatiai by
examination of the number of replications reported in the analysis and the méans a
variances among the fit indexes. Based on the three research questions (exxluding
regarding convergence rates), the simulation included 75 cells, with 1,000 repdicat

each cell, resulting in a total 75,000 datasets generated and analyzedcegedie! fit.



Data Analysis

Four fit indexes (i.ex2, NNFI, CFl,andRMSEA were produced for each dataset
resulting in a total of 300,000 indexes to be interpreted. To collect the indexes, an SPSS
(Version 15.0) program selected the desired statistics froidphes output and placed
them in a format which could be analyzed. Once the data were represemted in a
interpretable SPSS data set, descriptive and inferential analysesoweueted. First, a 5
x 4 x 4 incomplete factorial ANOVA was conducted for each of the four dependent
variables £2, NNFI, CFl andRMSEA, as well as thg?/df ratio, to determine if LGC
modeling design characteristicgluencethe fit index values. Partial eta-squared effect
sizes were examined for all main effects and interactions to degelypquantify the
magnitude of the effect and were interpreted as: (a) .09 as a small @fett as a
medium effect, and (c) .22 as a large effect (Gamst, Meyers, & Guarino, Z8@8nean
fit indexes were reported descriptively in two formats. Line graphs aserge=l in the
text fory? andRMSEAand tables can be found in Appendix B. Due to the large sample
size, the statistical power in this analysis was high which increasebaheecto obtain
significant outcomes. Therefore, an alpha level of .01 was applied to determine
significance and more weight was placed on the effect sizes and meanwiadumes
interpreting the results.

Due to the practical focus of this dissertation, planned contrasts were cahttucte
answer common questions as encountered by applied researchers. For example, an
applied researcher, who designs a longitudinal study, may debate betwegk ai00
or using additional resources to increase sample side=ta50, but would not typically

contemplate betwedd = 100 andN = 1,000. Therefore, planned comparisons assessed



whether a significant difference was obtained when small sample sizesrgrared to
conditions with larger sample sizé$ £ 100 vsN = 250), while also examining
decisions among moderate sample sikks 250 vsN = 500), and large sample sizés (
=500 vsN =1,000 andN = 1,000 vsN = 2,500). Similarly, researchers may utilize
resources to add an additional wave of data; therefore, planned comparisaeddasses
significant differences with one additional wave of datag vst=4;t=4vst=5;t =

5 vs.t = 6). Furthermore, the test of main effects for model complexity lacks amptica
for applied researchers because the conditions of model complexity arlbliz
different purposes. For example, a LGC modeling researcher may defvaterba
univariate linear or multivariate linear LGC model; however, it would be cara f
researcher to change from a quadratic univariate model to a linear mukivaadel.
Therefore, a unvariate linear LGC model were compared to all othericosdf model
complexity through planned comparisons (e.g., unvariatate vs. quadratic, uaivariat
multivariate, univariate vs. inclusion of covariate). An alpha level of .01 wasedppli
examine the planned comparisons. Cohdréffect sizes were computed for all planned
comparisons and were interpreted as .2 for a small effect, .5 for a maférateand .8
for a large effect (Field, 2005).

In addition, the Type | error rate were computed in all 75 conditions to investigate
the frequently appliethethoddor determining model fit. In this simulation, correctly
specified models were estimated; therefore, theoretically, alafissts should imply
adequate model fit. The Type | error rate is defined, in this dissertagitime @roportion

of models that are rejected based on Hu and Bentler’s (1999) proposed cutoff values



Summary of Method

The simulation analysis provided insight into the performance of common fit
indexes in LGC model environments by the generation and analysis of 75 data conditions
(i.e., with 1,000 replications) among variations in sample size, waves of data, arld mode
complexity. The levels of independent and dependent variables were designeéarbase
conditions found in application and simulation LGC modeling studies, in order to aid in
the understanding of fit indexes for LGC modeling methodologists and applied
researchers. A5 x 4 x 4 incomplete factorial ANOVA was conducted for edlct fafur
dependent variables, along with partial eta-squared effect sizes foritheffaats and
interactions. Planned comparisons were computed for significant mairsgéfiectg with
Cohen’sd effect sizes. Finally, Type | errors were computed to determine the pooporti
of models rejected based on frequently used methods for determining acceptalble mode
fit. The examination of four common fit indexes in LGC models provided novel
information in regard to the functioning of fit indexes, which can be utilized to provide

applied longitudinal researchers with valid methodological information.



CHAPTER IV
RESULTS

The purpose of this dissertation was to provide guidance for applied longitudinal
researchers regarding the evaluation of latent growth curve (LGC) modielGihapter
IV, | conveyed the results of four commonly used measures of global fit to tarders
their performance in correctly estimated LGC models under various condiised on
three variables: (a) sample size, (b) waves of data, and (c) model coynfaexit
defined in this dissertation as a univariate LGC model, quadratic LGC model,
multivariate LGC model, and a univariate LGC model with the inclusion of a time-
invariant covariate). The specific fit indexes investigated includehéaljkelihood ratio
chi-squared?), (b) nonnormed fit indexNINFI), (c) comparative fit indeXCFI), and (d)
the root mean squared erroragfproximationRMSEA.

The chapter begins with a discussion of model convergence and inadmissible
solution rates for the 75 LGC modeling conditions estimated. Subsequently, five
incomplete factorial analysis of variance (ANOVA) designs are disddsseach of the
measures of global fit, according to the interactions, main effects, and planned
comparisons among the three independent variables. To interpret the magnitude of the
effect, partial eta-squared effect sizg3d are presented for main effect and interaction
findings, while Cohen’sl effect sizes are presented for the planned comparison results.

Furthermore, the mean values of the five measures of fit are presented,asstine



Type | error rates, defined as the proportion of models rejected based on frequently
utilized criteria for determining acceptable model fit, such as Hu and Bs{fl699)
proposed cutoff values. Chapter IV summarizes detailed evidence examining the
influence of design characteristics (i.e., sample size, waves of datapdetl m
complexity) on commonly utilized measures of LGC model fit, with supplemental
information presented in the Appendices.
Model Convergence and Inadmissible Solutions Rates

Interestingly, all conditions achieved 100% convergence; however, the
inadmissible solutions rate was problematic. Inadmissible solutions occur when
maximum likelihood estimation results in an implausible value (i.e., also known as a
Heywood casgincluding one or more of the following conditions: (a) a negative latent
intercept variance, (b) a negative latent slope variance, or (c) a torrddatween the
latent intercept and slope factors beyond the acceptable range (i.e., -1litee 126805;
Leite, 2007). Consequently, inadmissible solutions should not be interpreted by
longitudinal researchers, as noted in the error message that occurs urataguation
modeling (SEM) software (i.e., non-positive definite variance-covariaatexn

Table 4.1 displays the percent of inadmissible solutions for the first 1,200
replications generated in each LGC modeling condition. Conditions with smagblle
sizes and few waves of data encountered the largest inadmissible soluspn rate
particularly in quadratic and multivariate LGC modeling conditions. The lowtss r
were observed for all models with six waves of datadrd2,500, ranging up to 49.9%
to 74.5% for models with three waves of data Hrel100. Notice, if a researcher were to

begin with the design conditions of a univariate LGC model With100 and four waves



of data, the inadmissible solutions rate would be 43.1%. To include a single covariate th
rate would decrease to 42.6%, to change to a multivariate model the rate wowsgencre

to 59.4%, and to change to a quadratic LGC model the inadmissible rate would increase
to 90.3%. Therefore, the highest rates were observed in quadratic models, followed by
multivariate models, then univariate models, and finally, the lowest rates wergexbs

for the covariate model. In conclusion, the percentage of inadmissible solutiorsattcre

in conditions with small sample sizes and few waves of data, especially iraticiadd
multivariate model conditions.

Table 4.1

Percent of Inadmissible Solutions

Waves of Sample Size
Data 100 250 500 1,000 2,500
Univariate Linear LGC Model
3 52.0% 46.9% 43.6% 39.3% 30.3%
4 43.1% 34.5% 27.3% 19.3% 7.7%
5 34.8% 23.5% 11.6% 4.9% <.1%
6 26.4% 13.0% 5.6% 1.1% 0%
Quadratic LGC Model
4 90.3% 84.3% 76.7% 64.2% 51.1%
5 69.3% 46.8% 33.1% 17.2% 5.3%
6 48.6% 26.2% 12.7% 4.3% .3%
Multivariate Linear LGC Model
3 74.5% 64.2% 55.5% 45.7% 33.3%
4 59.4% 40.8% 31.9% 22.0% 7.3%
5 46.1% 27.9% 16.8% 5.8% 4%
6 36.5% 17.4% 6.4% 1% 0%
Covariate Linear LGC Model
3 49.4% 44.4% 44.3% 38.1% 31.3%
4 42.6% 36.1% 28.2% 17.6% 6.2%
5 37.3% 22.8% 15.1% 4.2% .9%
6 29.3% 12.5% 5.7% 1.2% 0%

Note. Values based on the first 1,200 datasets generated.



Due to the applied nature of this dissertation, inadmissible solutions were
removed and replaced with admissible solutions (i.e., plausible values). Although an
additional 200 replications were estimated, in conditions with small sarmpkeand few
waves of data additional simulations were conducted to achieve 1,000 admissildts datas
in each condition. In summary, even though all models achieved convergence, the high
rate of inadmissible solutions was problematic, particularly in conditions wih sm
sample sizes, few waves of data, and in quadratic and multivariate models.

Assessment of Differences in LGC Model Fit

Theinfluenceof LGC modeling design characteristics on global measures of
model fit was investigated with five incomplete factorial ANOVAs and ¢Sexes for
they?, x?/df, NNFI, CFl, andRMSEA The ANOVAs were used to examine the statistical
significance of the design conditions (alpha level = .01), while the effectesthésted
the magnitude of the effects. Table 4.2 displays the effect sizes and significa
differences for the five measures of model fit. Detailed ANOVA taldethe measures
of fit are presented in Appendix B.

As expected, the majority of main effects and interactions were samifimost
likely due to the large amount of statistical power typically encounterechiraion
studies such as the current study. Therefore, the effect size results, whadhrva
magnitude among the fit indexes and model conditions, were weighted more heavily than
significance testing in interpreting the results. Clearlyyttassessment of fit was highly,
negatively affected by additional waves of data and increasing modelecotypl
(excluding the quadratic model), while tR&MSEAandCFI displayed a moderate

tendency to suggest worse fit in small sample sizes, and/tiandNNFI displayed no



notable effects. The detailed findings are discussed below, partitioned by easlrenof

model fit.
Table 4.2

Effect Sizes and Significant Differences for Model Fit Indexes

Condition df Effect Sizes

212 2ldf NNFI CFl RMSEA

Partial Eta Squared?) Effect Size8
SS 4 <.01* <.01* <.01* JA1* A3
w 3 .75% .00 .00* <.01* <.01*
C 3 .81* .00 <.01* .01* <.01*
SSxW 12 <.01* .00 <.01* <.01* <.01*
SSxC 12 <.01* .00 <.01* .01* <.01*
WxC 8 .58* .00 .00 <.01* <.01*
SSxWxC 32 <.01* .00 <.01* <.01* <.01*
Cohen’'sd Effect Size8

SS: 100 vs. 250 1 .02* .03* <.07* .25* .56*
SS: 250 vs. 500 1 .01 .02 <.03 .36* .25*
SS: 500 vs. 1000 1 <.01* .00 <.01 .35* 22*
SS: 1000 vs. 2500 1 .01* <.01 <.01 A43* 46*
W:3vs. 4 1 .76* - .03* 12* .07*
W:4vs.5 1 72* - .02 .01 .02*
W:5vs. 6 1 .56* - .01 .05* .05*
C: uni. vs. quadratic 1 -.26* - <.01 29% <.01*
C: uni. vs. multivariate 1 1.83* - .05* .04* 13
C: uni. vs. covariate 1 81* - <.01 .02* .02*

Note. NNFI = Nonnormed Fit IndexCFI = Comparative Fit IndeX@MSEA= Root

Mean Squared Error of Approximation; SS = sample size; W = waves of dataoGet
complexity.

%2 effect sizes of .09 or lower were interpreted as a small effect, .14 as eateasféect,
and .22 as a large effeBd effect sizes were interpreted as .2 for a small effect, .5 for a
moderate effect, and .8 for a large effect.

*p<.01.

Chi-Squared Ratio Test
Despite the significant difference observed forghassessment of fit among
conditions of sample size, the effect size displayed a negligible afeeck(01% of the

variance explained). As previously discussed, the significant differenaesidikely



related to the high statistical power in this analysis, increasing thty sdbdetect minor
differences. Consequently, the significant differencgf@mong sample size conditions
lacks practical merit and will not be interpreted as a genuine effectaineihds were
observed for most fit index comparisons (i.e., significant differences witigitegl

effect sizes), and will be interpreted in the same manner (i.e., concludinietha
significant difference lacks practical value). For example, the titers including
sample size were also found to display negligible effects, despite thiecsigini
differences.

They? values displayed a large amount of disparity among the conditions of
waves of data and model complexity, explaining 75% and 81% of the variation,
respectively. As additional waves of data were added to the LGC modg vélees
suggested a decrease in model fit. Similarly, as model complexity iadre¢hsy? values
implied a decrease in model fit, excluding the quadratic LGC model. The planned
comparisons for waves of data displayed moderate effect dize$6 - .76).

Among the model complexity conditions, the comparison of univariate to
multivariate models displayed the largest effelct (L.83), followed by the comparison
between univariate and covariate models that also displayed a largecefe8t].
Therefore, univariate models displayed better model fit than covariatdsnadeé much
better fit than multivariate models. The comparison between univariate and quadrati
models displayed a small effect£ -.26); however, the direction of effect was negative
suggesting thag? values tend to be lower in quadratic models. Therefore, quadratic LGC

models will display slightly better model fit than univariate linear L@adels.



The interaction between waves of data and model complexity accounted for 58%
of the variation iry? values. To understand the nature of the interaction, a test of simple
main effects was conducted as presented in Table 4.3. Notice, within all four model
complexity conditions, varying the waves of data was found to significaifeigt ahey?
values. More specifically, in all model complexity conditions as waves of daéa we
added to LGC models, the values suggested worse model fit.

Table 4.3

ANOVA Table of Simple Main Effects for je

Source SS df MSE  F-value p-
value

Waves within 643,436.08 3 214,478.69 1,628.40 <.01*

univarite models

Waves within 2,161,568.08 3 720,522.87 5,470.48 <.01*

guadratic models

Waves within 9,444,146.30 3 3,148,048.80 23,901.16 <.01*

multivariate models

Waves within 834,688.43 3 278,229.48 2,112.42 <.01*

covariate models

Error 9,876,620.44 74987 131.71

Total 22,960,459.88 74999

Note SS= sums of squareif = degrees of freedoMJSE= mean squared error; SS =
sample size; W = waves of data; C = model complexity.
*p<.01.

To further investigate the nature of the interaction, Figure 4.1 graphically
represents the mean values for ghassessments of fit, which can also be found in table
format in Appendix C. Notice, the interaction between waves and data and model
complexity is evident, where the effect of number of waves of data is cordydera
stronger for the multivariate model than for the other models. Therefore, matevar

models with more waves of data (i.e., five and six waves) displayed the worst ijodel f

whereas, univariate models with three waves of data and quadratic motdisuvit



waves of data displayed the best model fit. In summarythgsessment of LGC model
fit was found to be influenced by variations in waves of data and model complexity, but

was not affected by differences in sample size.
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Figure 4.1. Mean chi-square values for LGC modeling conditions



By correcting fodf, they?/dfratio has been suggested to be superior to the
traditionaly? assessment. Despite the significant difference observed fg¥dfie
assessment of fit among conditions of sample size, the effect size displaggligible
effect (i.e., <.01% of the variance explained), as seen in Table 4.2. As previously
discussed in regard to the the significant difference is related to the high statistical
power but the effect lacks practical merit and was not interpreted. No ndfalts ér
x?ldf were observed among the conditions of waves of data and model complexity.
Furthermore, all interaction effects lacked evidence of discrepammsgathe design
conditions as well. Therefore, th&df was not influenced by the LGC modeling design
conditions examined in this dissertation. Due to the lack of variation among conditions,
mean values for thg/df are not displayed in the text, but can be found in Appendix C.

In summary, the conditions of waves of data and model complexity produced
substantial variation in thg assessment of LGC model fit. Increasing waves of data
resulted in worse model fit (i.e., larg@rvalues). Multivariate models produced the
largest amount of variation, followed by covariate models, univariate model, and, finally
the smallest differences were observed for the quadratic model. Adezkbey?/df
was superior to the traditiongl assessment of model fit, finding no variations based on
the LGC modeling conditions examined in this dissertation. Sample size had only a
negligible effect on either the or y2/df.

Nonnormed Fit Index

The significant differences observed for NMiFI were found to lack practical

relevance among the LGC modeling conditions examined in this dissertation, as

displayed by the minimal effect sizes in Table 4.2. Due to the lack of effectarfyle



size, waves of data, and model complexity, the mean values are not displayedxt) the te
but can be found in Appendix C. In summadFI values did not vary under LGC
modeling conditions and functioned similarly to ja&lf, in performing in a superior
manner to the traditiongf assessment of model fit.
Comparative Fit Index

Similar to theNNFI, theCFI values displayed no notable main effects or
interactions for the conditions of waves of data and model complexity; however, a
moderate variation was observed for the main effect of sample;3izel(1) and small to
moderate effects were found for the planned comparisons of sampld siz25(- .43).
Upon further examination, identical mean values were observed in all conditions (.99)
with the only difference being standard deviations in the tenth (for modeNwith0O0
and 3 waves of data) or hundredth decimal place 100), as presented in Appendix C.
Therefore, the small to moderate differences inGkRemay lack practical relevance
based on the limited change in mean values.
Root Mean Squared Error of Approximation

TheRMSEAvalues displayed a moderate effect for sample gize (13), with no
notable differences among the conditions of waves of data and the majority of model
complexity conditions. The planned comparisons revealed a moderate &fedit(and
d = .58) for the extreme comparisons of sample size (i.e., 100 vs. 250 and 1,000 vs.
2,500), respectively, and small effect for the remaining sample size ceorséi = .25
- .22). As displayed in Figure 4.2, smaller sample sikesZ50) were found to produce
higherRMSEAvalues (suggesting decrements in model fit), which began to stabihze at

=1,000. The comparisons between univariate and multivariate models displayed a small



effect sized = .13), which can be seen in Figure 4.2 with an average of a .01 mean

difference inRMSEAvalues among the two conditions of model complexity. In

summary, thekMSEAwas generally stable under varying conditions of waves of data and

model complexity, but displayed a moderate effect for sample size suggestsgg w

model fit with smaller sample sizes.
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Summary of the Assessment of Mean Differences in LGC Model Fit

In summary, the ANOVAS, effect sizes, and mean fit index values highlighted the
influenceof LGC modeling conditions on selected global fit indexes. yPfuf andNNFI
exhibited superior performance, lacking any differences due to varyigni@leling
data conditions examined in this dissertation. Th¢ andRMSEAwere found to have a
moderate effect based on sample size; however, upon examining the mean values, the
disparities inCFl values were found to lack practical relevance. RMSSEAmMean values
were found to vary tending toward worse model fit (i.e., larger values) in conditins wi
small sample sizes. Theassessment was the only fit index that varied among waves of
data and model complexity, with higher values (suggesting worse model fi)dlitions
with few waves of data and in multivariate and covariate LGC models. Uneglpect
guadratic LGC model conditions displayed better model fit (i.e., lp¥vealues) than the
parsimonious univariate LGC model. In conclusion gha@ssessment of fit suggested
worse model fit with more waves of data and an increasing model compkxatyding
guadratic models), whereas tR&SEAdisplayed poorer fit in the presence of smaller
sample size.

Type | Error Rates

To investigate the practical application,noethodsof determining adequate
model fit, the Type | error rates were computed as the proportion of cowdetsithat
were falsely rejected using frequently utilized cutoffs. All modelswerrectly
estimated (i.e., no model misspecifications) so, theoretically, all fit egdstould have
displayed acceptable fit. Thus, any models classified as having inadégwated

reflect a Type | error. For th@ assessment of fit, the Type | error rate is the percentage



of correct models that are rejected based on significance testing-yiadue <.05). For
the three descriptive fit indexes, Hu and Bentler’s (1999) frequently utilized iqaisiel
for acceptable model fit were applied to estimate the Type | eras fiae. NNFI < .95,
CFI <.96, anARMSEA> .05.) Type | error rates of concern were defined as conditions
that rejected more than 5% of the samples, comparable to the concept of anvalpbfa le
.05.
Type | Error Rates: Chi-Square

Figure 4.3 graphically displays the Type | error rate, which ranged be%ée
and 10%, for thg? assessment of model fit, with the majority of conditions exhibiting
Type 1 error rates between 4% and 6%. Small to moderate sample sizes nesulted i
variation in the2 Type | errors, which stabilized Bt> 1,000 among the different levels
of model complexity. Type | error rates of concern were identified in muliteanodels
with N = 100 and more waves of data (i.e., 10%). In conclusion?tiseat moderate risk
of displaying poor model fit for the multivariate model with more waves of data and
small sample sizes.
Type | Error Rates: NNFI

Even though th&INFI was not found to vary among the LGC model data
environments examined, excessive Type | errors were found in selectetiotsnadis
shown in Figure 4.4. Conditions with small sample sizes N.e.100) and few waves of
data (i.e., three waves, and four waves for quadratic models) displayed the aaebt m
fit (i.e., encountered the highest Type | error rates). The Type | errord yraneodel
complexity conditions with the highest tendency to suggest poor fit in the univé@e L

model, followed by the multivariate LGC model, the quadratic LGC model, arnlyfina



the covariate LGC model suggested the best fit. Therefore, applied hesesarsing the

NNFI to assess model fit may falsely reject a correct univariate and mialtievaGC

model with three waves of data aNd 100.
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Type | Error Rates: CFl

TheCFI was found to perform the best, with the lowest Type | eatesramong

the four fit indexes, ranging from 0% to 4% (see Figure 4.5)adth probability of



obtaining poor model fit displayed a slight increase asem@ves of data were added to
models withN = 100. As for model complexity, the covariate model displalged t
highest Type 1 error rates, followed by the multivariate elydinivariate models, and
finally, quadratic models which did not encounter any Typeors. In summary, theFl
did not encounter any troubling Type | error among the If@eling conditions
examined.
Type | Error Rates: RMSEA

TheRMSEAdid not perform well, with considerable Type | error ratasying up
to 30% in selected conditions with small sample sizes andviexes of data. In other
words, theRMSEAincorrectly suggested poor model fit in conditions wittakno
moderate sample size and few waves of data. The Type | desmware negligible when
N > 500 for multivariate and covariate models, &he 1,000 in univariate and quadratic
models. In summary, the Type | error rates, based on tHeMEE Acutoff proposed by
Hu and Bentler (1999), over-rejected correct models withlssample sized\ < 500 to
N < 1,000) and fewer waves of data.
Summary of Type | Error Rates

Regarding thenethoddor determining model fit (Type | error rates), GEI
performed the best, followed by thNFI, 2, andRMSEAdisplayed the least desirable
characteristics. ThENFI was found to over-reject (i.e., imply poor model fit) in correc
univariate and multivariate models with three waves of datiN = 100. Thes?
suggested inadequate model fit (i.e., excessive Type | emarsultivariate models with

N =100 and five or six waves of data. TRRISEAdisplayed potentially problematic



characteristics, tending toward poor fit, in LGC modeldhwmall to moderate sample

sizes N < 1,000) and few waves of data.
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Summary of Results

The investigation into the influence of LGC modeling gesiharacteristics on
commonly utilized fit indexes revealed several intergstimdings. Four research

guestions were proposed and the results are summarizadiagly.



Research Question One: Model Convergence
The first research question inquired as to the incolevergence rates among the
data conditions, asking:

Q1 Do model convergence rates vary under conditions ofleamp, waves of
data, and model complexity?

It was hypothesized that complex models with small sampés sind few waves of data
would produce lower convergence rates. While all modelserged, the rate of
inadmissible solutions followed the anticipated convecgdrends for sample size,
waves of data, and selected conditions of model complexitgxpscted, the
multivariate models had a higher rate of inadmissible isolsithan the covariate models,
which in turn had higher rates than the univariate modekeier, the quadratic model
produced higher inadmissible solution rates than the noonglex multivariate model
conditions, particularly with three waves of data. In sarypall models converged, but
the rate of inadmissible solutions was problematic, spadiiin conditions of small
sample size and few waves of data, particularly in quadratianultivariate models.
Research Question Two: Sample Size

The second research question examined the influence ahgagmple size
conditions on four measures of model fit in LGC modelsinask

Q2 Do fit indexesy®, NNFI, CFl,andRMSEA differ under varying conditions of
sample size?

It was hypothesized that ti@FI, NNFI, andRMSEAwill imply poor model fit in
conditions of small sample size; whereasy#will imply good model fit in small sample
sizes. Regarding thafluenceof LGC model conditions, the, y2/df, andNNFI

performed well suggesting acceptable model fit in all@armsize conditions. ThéFI



displayed a small to moderate effect for sample size; \'enywvexamination of mean
values revealed the extremely minor discrepancies whaktet practical relevance. The
RMSEAhad the least desirable characteristics, displaying wooskelrfit in conditions
with small to moderate sample sizék<{1,000) sample sizes.

Concerning thenethoddor determining model fit, th€FI performed the best,
followed by theNNFI andy?, and finally, theRMSEAwas the worst index examined. The
latter three indexes were found to suggest poor modeldanditions with smaller
sample sizes. More specifically, tN&NFI andy? only suggested poor model fit whisi=
100. However, th&MSEAwas found to suggest inadequate fit in sample sizes asaarge
N =1,000. To summarize, tii&F1l performed the best and tN&FI andy? displayed
moderate deficiencies, suggesting poor model fit whenl00. However, the use of
RMSEAIn LGC models is of great concern, displaying unaccept#abtedonditions with
small and moderate sample sizes (Nesx, 1,000).

Research Question Three: Waves of Data

The third research question examined the effects of diffeviaves of data,

asking:

Q3 Do fit indexesy, NNFI, CFl,andRMSEA differ under varying conditions of
waves of data?

It was hypothesized that as waves of data (observed vaj)arkeadded to a LGC model,
the fit indexes will suggest worse model fit. However, the thyggis was only supported
for they? assessment of fit, suggesting worse model fit in modelsmaite waves of

data (five and six waves). Ti@&F| performed in a superior manner compared with all

other indexes, lacking any variations among waves of dedittons. While theNNFI



andRMSEAwere not found to bmfluencedby changing the waves of data in a LGC
model, themethoddor evaluating model fit displayed poor model fit with feweves of
data. More specifically, theNFI displayed unacceptable fit in univariate and
multivariate models with three waves of data. Similarly, RMSEAdisplayed worse
model fit in all models with three waves of data and quadnatidel with four waves of
data. As waves of data increased,fhealues increased suggesting increasingly poorer
model fit. In summary, variations in waves of data suggesiedmpodel fit for: (a) thg?
in conditions with five and six waves of data, in multivariaiedels, (b) th&INFI with
three waves of data in univariate and multivariate modets(@ theRMSEAwith three
waves of data and four waves of data in quadratic LGC model.
Research Question Four: Model Complexity
The fourth research question investigated the model carhpie LGC models
asking:
Q4 Do fit indexesy, NNFI, CFl,andRMSEA differ under varying conditions of

model complexity, defined in the current dissertation ag)air{ivariate linear

LGC model, (b) quadratic LGC model, (c) multivariate line&C model, and

(d) a linear LGC model with a covariate?
It was hypothesized that as model complexity increases @ginring with the most
parsimonious univariate linear model to the quadratic mtue covariate model, and
finally the most complex, multivariate models) the fit inégexvill suggest worse model
fit. The hypothesis was not fully supported in the findingsnehs the ordering of model
complexity conditions differed from the expected dimtbf influence. For examplg?

was found to vary among conditions of model complexity; éweaw, the quadratic model

displayed better fit than the univariate model, even tholglyuadratic model is



generally considered more complex (includes an additiatextt variable). The superior
model fit for the quadratic model is most likely relatedn® quadratic models having
fewerdf than univariate models. As expected, thdisplayed the worse model fit in
multivariate models compared to all other model complecatyditions. Multivariate
models include mordf than all other modeling conditions; thus, higpevalues were
found in these models. Furthermore, itftuenceof LGC modeling conditions did not
affect theNNFI, but themethodsf assessing model fit were found to over reject correct
univariate and multivariate models, which were hypothésiade the most extreme
conditions examined. THRMSEAdisplayed a minor tendency to show better model fit in
multivariate and covariate models, which were hypothesizée the two most complex
conditions examined. In summary, varying model compjecanditions did affect the fit
indexes’ assessment of model; however, not in the expecsatiahs.

In conclusion, the results support the overall hypothdsegtie fit indexes’
values and the methods for determining model fit are atfdnyd GC modeling design
conditions. TheCFI performed the best, suggesting good model fit in the myjuirit
conditions examined. Theé suggested worse model fit in models with more waves of
data (i.e., five or six waves), small sample sizes (ile=,100), and multivariate models.
TheNNFI tended toward poor model fit in conditions with small sanspes N = 100),
three waves of data, as well as univariate and multivariatiels\orTheRMSEAtended
toward poor model fit in conditions up k< 1,000, with few waves of data (three and
four), and in univariate and quadratic model. Presented ifollbeving chapter is the
discussion of the implications of these findings for ajglpéied methodological

researchers.



CHAPTER V
DISCUSSION

To date, there has been a lack of methodological guidane@gtied longitudinal
researchers in regard to the evaluation of latent growtle gWGC) model fit, and they
have had to follow the suggestions proposed for genevatstal equation modeling
(SEM). In this dissertation, | examined the functionindooir commonly utilized fit
indexes in LGC modeling data environments, including vianatin sample size, waves
of data, and model complexity. In Chapter 1V, two venuesnfeestigating LGC model
fit were explored: (a) thmfluenceof LGC modeling design characteristics on measures
of model fit (e.g., effect sizes and the mean fit values), anith¢methodsor
determining adequate model fit (e.g., Type | error raésgdh on significance testing and
Hu and Bentler's (1999) cutoff values).

In regard to thénfluenceof LGC modeling data environments, the chi-square
divided by the degrees of freedog@/df), nonnormed fit index\\NFI), and comparative
fit index (CFI) performed well, lacking any differences in the assessnidmntamong
LGC modeling conditions. Conversely, the chi-square likelthratio assessmeng)(
and the root mean square error of approximatRii$EA performed poorly in selected
LGC modeling conditions. Concerning timethodgor determining acceptable fit, the
Type | error findings suggest lack justification for tmmmon practice of using

universal cutoff values among the various LGC modelingrenments, as found in



numerous general SEM model fit simulations (Fan & Wang, 1998&: Bentler, 1999;
March, Hau, & Wen, 2004; Sivo et al., 2006). Tl performed in a superior manner
compared with all other indexes examined, using the staicdéotf of .96. Among the
three remaining fit indexes examined, NFI performed the best (i.e., use of a cutoff
of .95), followed by the?, and finally, theRMSEAdisplayed the least desirable
characteristics (i.e., application of a cutoff of .05).

Although authors of general SEM model fit simulations h#nasvn similar
conclusions (Fan & Wang, 1998; Hu & Bentler, 1999; March.ef@D4; Sivo et al.,
2006) it is critical to readdress these trends in terms & b®deling conceptualization.
In Chapter V, | translate the findings into six general duide or suggestions to assist
applied researchers in the assessment of LGC model fitdingt (a) the design of
longitudinal studies to maximize the chance of obtaininiguasible solution, (b) cautious
use of the2 in selected modeling conditions, (c) relaxation of Hu aedtBr’'s (1999)
cutoff for theNNFI in selected conditions, (d) adoption of novel LGC modgetintoff
values for theRMSEA (e) use of multiple fit indexes in combinations to assessad
model fit, and (f) assessment of the within person fit abageglobal model fit. In the
following sections, | discuss evidence for the guidelswggestions, as well as specific
design decisions that may allow applied researchergitease the validity of the
assessment of model fit.

Obtaining a Plausible Solution

Although all LGC modeling conditions converged, a higk aitinadmissible

solutions was observed, specifically in conditions witlalksample size, fewer waves of

data, as well as in quadratic and multivariate models. Asstisdun Chapter IV,



inadmissible solutions occur when maximum likelihoodneation results in an
implausible value (Bollen, 1989; Kline, 2005). Larger samptistributions frequently
occur in conditions with smaller sample sizes, which magrekbeyond the range of
plausible solutions and result in a larger percent of insslbie solutions observed (Fan
& Wang, 1998). In addition, models with three waves of data lhasinglelf resulting in
a limited amount of known information (Leite, 2007). For aeenvof model

identification refer to pages 52-57. An identical rationslattributed to the extremely
high rates found in quadratic models with four waves of daiarevthere is only a single
df in the model. Therefore, higher rates of inadmissible solsifior small sample sizes
and fewer waves of data are rooted in the mathematicahtions of using parsimonious
LGC models.

Interestingly, the topic of inadmissible solutions spedii LGC models is rarely
addressed in the literature. Leite (2007), the only othewkrmethodologist to discuss
LGC modeling inadmissible solutions, observed rates wiaisbed up to 30.7% for
univariate models and 32.4% for multivariate curve of factodels in conditions with
three waves of data amdl= 100. In this dissertation, higher rates were obtainedhwhic
may have resulted from the parameter specification disooegs between the two
simulations (e.g., covariance between the latent interoepliagent slope was specified
as .4 in Leite and .2 in this dissertation). Compared to gefEfdl simulations (Fan &
Wang, 1998; Siemsen & Bollen, 2007), higher inadmissiblgisois rates were observed
in LGC modeling simulations (i.e., Leite and this dissengt For example, Fan and
Wang reported a 12.5% inadmissible solutions rate for geB8&M models withN =

100. Therefore, applied LGC modeling researchers shotitdpate a higher probability



of encountering an inadmissible solution, compared td tiiegy might encounter when
conducting standard SEM, and recognize that variationgam@der estimates may
affect the probability of obtaining an inadmissible solut

The corresponding practical interpretation of the higlnmasible solution rates
is critical to the design of longitudinal studies. Spediljcapplied researchers should
attempt to design longitudinal studies that minimize tesjwility of finding an
inadmissible solution, with the use of larger sample sizésrare waves of data. For
example, a researcher should avoid implementing a quatfaticmodel with four
waves of data and = 100 because of the limited chance in obtaining a propeticol
(e.g., 9.3%). If it is not feasible to alter design charactesistiue to limited resources,
applied researchers should be prepared to conduct a mditeotral longitudinal analysis
of change (e.g., repeated measures ANOVA) if an inadressatution is obtained.
Therefore, Suggestion #1 is stated below.
Suggestion #1Applied longitudinal researchers should be proactive ioymizing the
chance of obtaining an implausible solution using desigulitions with more waves of
data and larger sample sizes. If design conditions caeraltdred, due to limited
resources, applied researchers should prepare an alteraadilysis in the chance that an

inadmissible solution is obtained.

Cautions about the Use of the Chi-Square
Likelihood Ratio Test

The tendency foy2 assessment of model fit to differ among sample size
conditions is by far the most commonly referenced motlgirfitation (Beauducel &
Wittmann, 2005; Bollen & Curran, 2006; Bentler, 1990; Duneial., 2007; Fan &
Wang, 1998; Hu & Bentler, 1999; Kline, 2005). Interestinglythis LGC modeling

simulation, the/2 was robust to variation in sample size, meaning the assassfmesC



model fit did not change by increasing or decreasing sasigge. General SEM
simulations have demonstrated acceptable performanbe gfit ideal modeling
conditions (e.g., normally distributed data, ho missing datatjnuous data using
maximum likelihood estimation) and correctly specifiedd®ls, similar to the conditions
simulated in this dissertation (March, Hau, & Wen, 2004). Thezein application,
when real data conditions are introduced into a LGC modefdbd performance of the
x? among sample size conditions may diminish.

Despite the ideal modeling conditions simulated y#r®iggested worse model fit
as more waves of data were added to a LGC model (e.g., adtdlmserved variables).
As discussed in Chapter tf for they? are equal to the difference between the number of
unique elements of the observed variance-covariancexniagr known parameters) and
the number of parameters estimated (i.e., unknown parametarsh were presented in
Table 2.1 on page 54. As waves of data are added to a LGC, mddgional observed
variables (i.e., known parameters) are added, ultimatelgasimg thelf. Although not
directly examined in this dissertation, evidence sugpbe tendency for the to vary
with modeldf. By collectively interpreting the LGC simulation studigsluding the
findings from this dissertation, the use of increasing wafalata has benefits of
increased reliability (Willett, 1989) and statistical mywMuthén & Curran, 1997;
Muthén & Muthén, 2002). However, these design benefits amrazanied by worse
model fit (i.e., increase iy values).

Also, they? assessment of model fit was found to vary among model caityple
conditions, where quadratic models suggested better mother univariate models.

The tendency for thg?2 assessment of fit to imply better fit in quadratic models mat



anticipated because these models are generally cortsidere complex. However,
guadratic models require estimation of an additionahtgiarameter without an increase
in observed variables leading to decreafe&or example, a quadratic model with three
waves of data is just identified (i.e., model fit cannot be @d&d) even though an
equivalent linear model is an over-identified model (i.e.dehdit can be estimated).
Applied LGC modeling researchers, who apply explorateciitiques, may compaye
values between two or more competing model (e.g., linearnetwas. quadratic
models) to determine the most appropriate shape of thelgtajectory. However, the
findings from the current investigation demonstratedl @ design conditions of
guadratic LGC models simply resulted in better model & wudifferences inlf.
Understandably, applied LGC modeling researchers may di@awn erroneous
conclusions, by interpreting minor improvements in modé€l.&., decrease ig? values),
as representing better model fit in a quadratic growth madien the apparent
improvement in fit may ban artifact of having fevaér Applied longitudinal researchers
should follow three general guidelines, based on the fysdirom this dissertation and
previous methodological suggestions, to assess the shapadvatic growth trajectories:
(a) ensure that their underlying theory assumes quadrraticth in the hypothesized trait
(Bollen & Curran, 2006; Preacher et al., 2008); (b) callebt interpret results from
multiple indexes to interpret the shape of the growtledtajy, and (c) observe more than
a 5.00 increase iy? values pedf to assume that the variations are more than what is
expected from design condition alone. In conclusionyitbendency to suggest a minor

improvement in model fit for quadratic models (i.e., < 5.00), manm®d to univariate



models, is an artifact of LGC model design characteristidsdaesiot imply that the
hypothesized shape represents quadratic growth.

In respect to thg? assessment of fit, multivariate LGC models displayed the
worst model fit compared to all other modeling conditionsgmvimore than three waves
of data were incorporated in the model. Jhtendency toward poor model fit in
complex models has been well documented in the general $&tktdre (Beauducel &
Wittmann, 2005; Cheung & Rensvold, 2002; Hutchinson & OIm83881L Again,
multivariate LGC models have madéthan more parsimonious univariate models,
therefore, complex models will produce highevalues, tending toward worse model fit.
It is unknown if applied longitudinal researchers extfafe this finding to LGC
modeling by cautious comparisonsydftatistics between multivariate and more
parsimonious LGC models (e.g., univariate, quadratic modedsylearly reiterate in
terms of LGC modeling terminology, largérwill occur in more complex models, which
implies poor model fit (i.e., multivariate models), and agpiesearchers should avoid
the sole use gf? statistics to compare complex models to parsimonious model

Despite the large variations yA model fit assessment regarding thiguenceof
varying waves of data and model complexity conditionsptethodgor determining
model fit were less severely affected by LGC design camdit They? displayed a
moderate tendency (i.e., 10% Type | error) to suggest pocelrfib@.e., over-reject
correct models) for multivariate models with= 100 and more waves of data (i.e., five
and six waves of data), which were the most complex conditixasined.
Consequently, the current LGC modeling results diffelighitty from the well

documented tendency for teassessment to over-reject complex models with small



sample sizes and under-reject parsimonious models wigh $@mple sizes (Beauducel &
Wittmann, 2005; Fan & Wang, 1998), excluding the two most ¢exnmpodels
examined.

As a whole, LGC models include a smaller range of model atitplconditions
compared to general CFA simulations. For example, LGC rmadglire two latent
factors to represent a growth trajectory, and by naturenare complex models than
parsimonious CFA models, which can have one latent factolaBynthe LGC
modeling data environments examined in this dissertatiemelatively parsimonious
compared to the number of latent and observed variabliesl@ttin complex CFA
designs. For example, Sharma et al. (2005) used more etisawnables in their
parsimonious conditions for CFA models than examingddlermost complex conditions
of this dissertation (e.g., 8-32 observed variables). Torerethe LGC models examined
in this dissertation represented less extreme conditibas; the well documented trend
of over-rejecting complex models was observed only invleenhost complex conditions
(e.g., multivariate models with five and six waves of data whenl00).

As discussed above, the use of thassessment of fit should be cautioned in
decisions made by applied LGC modeling researchers, wéadls to Suggestion #2.
Suggestion #2Applied researchers should use of ghvith caution in the four following
research design decisions.

1. Decisions to increase waves of data will result in agnigthvalues and tend

toward poor model fit.

2. In comparison of quadratic models to univariate mogelalues will be

lower in quadratic models suggesting better model fit.

3. In comparison of multivariate models to a univariate@hahey? values will

be higher in multivariate models suggesting poor fit.

4. In complex models (i.e., multivariate models with fived aix waves of data)

with small sample size®(= 100), thei2 has a moderate tendency to suggest
poor model fit (i.e., over-reject correct models).



LGC Modeling Cutoff Values for
the Nonnormed Fit Index

While theNNFI lacked practical variations concerning thifuenceof design
conditions, application of a .95 universal cutoff was founkdaee a moderate tendency
(i.e.,= 10% Type | error) to suggest poor model fit in conditiorth wimall sample sizes
(N =100), three waves of data, and in univariate and multivdr@a@ models. This
finding was expected based on the general SEM literatoichvinas demonstrated that
theNNFI will produce standard deviations that are substantialyetahan other fit
indexes in conditions of small sample size (Bentler, 19%ksda, 2007; Sharma et al.,
2005; Yadama & Pandey, 1995). Interestingly, inflated Tiygreor rates were found
only for univariate and multivariate models, which incldidlee same ratio of observed to
latent variables. Both quadratic and covariate LGC madelsded an additional latent
variable; thus, the ratio of latent to observed variablesneasased. Therefore, applied
LGC modeling researchers should attempt to include ani@ualitatent variable in their
LGC model (e.g., covariate), which will reduce ttEFI tendency to suggest worse
model fit based on design characteristics. If the additi@ncovariate or predictor is not
possible, researchers should be cautious in their use of aiv@ssal cutoff for theNNFI
in univariate and multivariate models with small samplesend three waves of data.

Selected SEM methodologists have discouraged the proplasavel cutoff
values, and even the use of fit indexes at all, because affinaltes will be flawed
among the vast number of potential modeling conditiongi§G al., 2008). However,
the practical reality is that in applied LGC modeling aBd//Sresearchers use fit indexes

and procedural guides continue to endorse the use of thddk along with Hu and



Bentler's (1999) cutoff values. Therefore, | propose ttpadn of novel cutoff values
specific to LGC models that vary by design characteristiose proposed cutoffs anet
universally applicable, but may provide a more accuassessment of fit compared to
traditional SEM cutoff values. Based on the results fromdisisertation, | propose that
applied researchers should relax Mi¢FI cutoff values proposed by Hu and Bentler in
conditions withN < 100 and three waves of data in univariate and multivariate
models, which leads to Suggestion #3.

Suggestion #3Applied researchers should relax tFI cutoff values to the originally
proposed value of .90 (Bentler & Bonett, 1980) in conditidrswall sample sizes (i.e.,
N < 100) and few waves of data (i.e., three waves of data) fornatvand multivariate
models. Or, applied researchers could simply add a covaoidihe univariate and
multivariate LGC model, which would elevate tHBIFI and reducds problematic

tendencies; then the standard .95 cutoff could be applied.

LGC Modeling Cutoff Values for the Root
Mean Error of Approximation

In conditions of small sample, tRMSEAsuggested poor model fit, which has
been well documented in the general SEM literature (Chah, &008; Fan & Wang,
1998; Sharma et al., 2005; Sivo et al., 2006). However, in LGC syddabdency to
suggest unacceptable model fit did not ameliorate hrtill,000; which is higher than
what has been found in the general SEM literature that steygs average, biased
RMSEAvalues are only found in conditions with< 250. The undesirable tendency of
theRMSEAheld true in the evaluation of theethodgo determine acceptable model fit.
By applying the standard cutoff value of .05, RMSEAwas found to suggest poor
model fit in conditions with small to moderate samples saneksfew waves of data.
Regarding model complexity, the undesirable characesisfitheRMSEAdid not

dissipate untiN > 500 for multivariate and covariate models &hg 1,000 and in



univariate and quadratic models. Again, the influencesropkasize orRMSEATYype |
error rates was expected based on the general SEMure(atu & Bentler, 1999; Sivo
et al., 2006). Even when Hu and Bentler originally proposedttoff value of .05, they
cautioned that this standard value will tend to over-rejectect models in conditions of
small sample size. However, longitudinal researchers slheutdvare thaRMSEA
values may continue to vary and may imply poor model fitG€Lmodels conditions up
to N = 1,000, which extends the cautionary range of recommenddtiom the general
SEM literature.

Therefore RMSEAcutoff values should be adjusted to account for the tendency
suggest poor model fit in conditions with small sample siresfew waves of data,
particularly in univariate and quadratic models. As disedsn Chapter I, Steiger’s
(1989) original guidelines endorsBiMSEAvalues of: (a) less than .05 to suggest good
fit, (b) .08 for reasonable fit, and (c) values beyond .10 to atelimodel misfit.
Therefore, | propose using the cutoff values of .05, .08, anarifidst LGC modeling
conditions due to their familiarity. Specifically, tfRMSEAvalues less than or equal to
.10 may constitute appropriate model fit in the followingditons:

1. univariate LGC models witN = 100 and three, four, or five waves of data;

2. quadratic LGC models with = 100 and four or five waves of data; and

3. multivariate and covariate LGC models witl+ 100 and three waves of data.
RMSEAvalues less than or equal to .08 may suggest acceptable fhod#ie following
conditions:
univarite LGC models with six waves of data &hd 100;
univariate LGC models with three and four waves of datnM = 250;
univariate LGC models with three waves of data wWken500;

quadratic LGC models with four waves of data wNen250 orN = 500;
guadratic LGC models with five waves of data wNen 250;

agrwnE



multivariate LGC models wheshi= 100 with four, five, or six waves of data;
multivariate LGC models with three waves of data wkien100;

covariate LGC models whéh= 100 with three, four, and five waves of data; and
covariate models with three waves of datalmrd250.

© 00N

Finally, all other more complex LGC modeling conditionsyrha able to determine
appropriate model fit by using the frequently apphR¥SEAvalues less than or equal to
.05. Althought the previous guidelines are detailed; appésdarchers typically follow
more general guidelines. Therefore, novel cutoff valueth®sRMSEA are consisly

stated in Suggestion #4.

Suggestion #4Applied researchers should adopt novel cutoff valuehERMSEAIN
selected LGC modeling conditions. Values less than or éguB0 may constitute
appropriate fit in models witN = 100 and fewer waves of data. Values less than or equal
to .08 may suggest acceptable model fit in model With100 and more waves of data
OR with moderate sample sizéé£ 250 or 500) and fewer waves of data. All other more
complex LGC modeling conditions may be able to deternpecgpriate model fit by

using the frequently appliRMSEAvalues less than or equal to .05.

To reiterate, the novel cutoff values proposed foNhNéEl andRMSEAN LGC
models areules of thumbtherefore, these values are clearly limited and will not be
appropriate for all LGC modeling conditions. Furthereydhe new cutoff values should
be adjusted, based on future research regarding LGC madgieuification, and
discussed in detail in a later section.

Using Combinations of Fit Indexes

Methodologists have discussed the deceptive nature otitgda dichotomous
decision regarding model fit based on amglefit index, suggesting that two or more fit
indexes should be collectively interpreted (Beauducel &iénn, 2005; Chen et al.,

2008; Hu & Bentler, 1999; Hutchinson & Olmos, 1998; Kline, 2@&acher et al.,

2008). For example, the seminal article by Hu and Bewtdarpredominantly devoted to



recommending pairs of model fit indexes used conjungtitceévaluate fit. Even though
researchers use multiple fit indexes to increase the iatoymobtained regarding model
fit, the fit indexes may imply various degrees of model fdause they were developed
on a different rationale of model fit (Bollen, 1998; BollerC&rran, 2006). When fit
indexes provide conflicting model fit interpretations, leggpresearchers need to review
methodological model fit guidelines to determine whitlniidex(es) should be weighted
more than other based on the currently modeling conditiamseXample, if a researcher
was examining a LGC with small sample sizes, less weightdbeplaced on the
RMSEAbased on the finding of this study. Therefore, when mulfipledexes are
collectively interpreted, LGC modeling researchers mayamove at a unanimous
decision regarding model fit, which requires a criticalysia of the type of information
provided by each index (Hutchinson & Olmos), and a reviewefelevant literature to
determine data conditions that may have biased the irgjeX(®erefore, Suggestion #5
addresses the use of a collection of fit indexes to determauel fit.
Suggestion #5Similar to guidelines found in the general SEM modelcbnemend that
applied LGC modeling researchers collectively interphefour fit indexes examined in
this dissertation, while recognizing and adjusting ferltmitations of the2, CFI, NNFI,
andRMSEAIn selected modeling conditions discussed above. By usuityple fit
indexes, applied researchers may have to engage in a @aritadgkis of the type of
model fit information presented by each fit index.
Evaluating Within Person Fit

Coffman and Millsap (2006), the authors of the only other knb@C model

simulation of model fit, demonstrated the poor performanmtieey? andRMSEALo

detect model shape misspecification. The authors recanedesxploring within person

fit in LGC models by using negative loglikelihood value&_(:) for each participant, in



addition to assessing global fit. While the evaluation dfiwiperson fit may benefit the
overall assessment of LGC model fit, the computation of 2&4lameters are not
standard in the SEM software used in the social and behlestoeaces (e.g., EQS,
AMOS, LISREL, Mplus). However, ambitious applied longitudinal researchers are
encouraged to use the Mx syntax provided by Coffman andaditls evaluate within
person fit, as well as global model fit.

Suggestion #6Applied longitudinal researchers should attempt to edalwithin person
model fit using -2LL values; however, the computation o$¢healues requires the use of
alternative software program, not frequently utilized mdbcial and behavioral

sciences, which may limit the widespread use.

Dissemination of Information for
Assessing LGC Model Fit

In general, SEM methodologists tend to communicate mddeidings to their
colleagues through highly technical and complex metlogitcal journals and conference
presentations, which limits the impact of these findingppliad research fields. Due to
the applied nature of this dissertation, it is imperative@isouss strategies that may
encourage applied longitudinal researchers in the saathbehavior sciences fields to
adopt the proposed guidelines for assessing LGC madel fi

First, | propose that novel findings regarding LGC motdddd presented in a
user-friendly manner (e.g., clear suggestions focused trodwogical decisions), as
well as being published in applied journals frequently atbngitudinal researchers.
Secondly, novel information regarding LGC model fit shdugdconveyed to a key group
of influential individuals who have the ability to modifyethodological practices in the
behavioral and social sciences. Typically, trends in thelatdrreporting of statistical

concepts, for the behavioral and social sciences, are diwgurnal editors’



requirements for publishing and standards proposed bynahtirganizations (e.g., the
Manual of the American Psychological Association [APAPr Example, the concepts of
statistical power and effect sizes were addressed in thedatbgical literature for
decades, but did not fully emerge in the applied literatntiéjournal editors and APA
staff endorsed their use. Consequently, by proactivelyrspekt a selected group of
researchers in the behavioral and social science (e.g.aj@ditors and national
organizations), the recommendation proposed for asgassidel fit may be adopted
more rapidly.
Limitations and Future Research

Even though the findings from this dissertation provitheresting insights into
the assessment of LGC model fit, there are clear limitstio this study. First and
foremost, this dissertation lacked evaluation of the geitgiof the fit indexes to LGC
model misspecification, which is the primary purpose ofgifiitnndexes. For example,
while the incremental fit indexes (i.&INFI andCFI) were quite robust among LGC
modeling design conditions, general SEM researchers bpoeeted their limited ability
to detect model misspecification (Fan et al., 1999; JackXf¥). Furthermore,
incremental fit indexes have been found to exhibit discreipa based on estimation
methods and non-normality (Fan & Wang, 1998; Hutchinson&ads, 1998); therefore,
their advantages may dissipate when additional variaimmsonsidered. In summary, all
results and conclusions are limited without a comprehensiestigation of fit indexes
in model misspecification conditions relevant to LGC ntiodeand under various

estimation methods.



In contrast to general SEM, LGC modeling researcherseginalize and specify
model parameters differently; therefore, specificatibmodel misspecification will
differ in LGC model. For example, general SEM model mis$igation is typically
separated according to two categories: (a) measuremsspeuification including
misspecified paths or factor loadings, and (b) structursgpecification including
misspecified latent traits and paths among latent traitisoAgh measurement
misspecification is more frequently investigated in gagh®EM simulations, within a
LGC modeling framework, measurement misspecificationslaelevance because all
factor loadings are fixed to represent the coding of tineas€quently, fit indexes should
be re-evaluated based on types of structural misspaaificrelevant to the
conceptualization of LGC modeling, potentially, to in@du¢a) shape misspecification,
where an additional latent trait(s) is estimated in theehtmdrepresent the growth of the
trajectory of change; (b) time period misspecificatiohiclr would include the addition
or reduction of the number of observed variables to ensat@itbper time period of
growth is measured in the LGC model; and (c) predictors\ar@ie misspecification,
which would include examining whether a critical predi@dpor covariate(s) should be
included or excluded from a model. To summarize, all fit iedgxoposed for assessing
SEM model fit, even indexes deemed to lack sensitivity, sHmeildéexamined to
determine if they are sensitive to structural misspeatifon relevant to LGC modeling.

As noted by methodologists, numerous additional LGC mogisimulations
must be conducted to expand the knowledge regarding tbesassnt of model fit
(Coffman & Millsap, 2006; Voelkle, 2007). Specially, a largalssimulation study

should be conducted to examine the sensitivity of mulfipladexes to types of LGC



model misspecification. Based on the results from this désm, future LGC model fit
simulations should specifically focus on the examinatiomvo LGC design
characteristics including: (&@f in the LGC model and (b) the ratio of latent to observed
variables in the model.
Discussion Summary

This dissertation has provided the applied longitudies¢éarcher with a
preliminary understanding of the functioning of fit indexn LGC modeling
environments. Consistent with standard SEM simulationrfgg] results from the current
study supported that the fit indexes commonly utilized@CLmodeling applications are
influenced by variations in: (a) sample size, (b) waves @f, @atd (c) model complexity.
The CFIl was found to be quite robust among the LGC modeling desigtitmms
examined; however, the sensitivity of tG€1 to LGC model misspecification needs to be
assessed in future research. All other fit indexes weralftlusuggest poor model fit
(i.e., over-reject correct models) in select LGC modelingltmns. Six guidelines were
proposed for LGC modeling researchers, including: (agddengitudinal studies to
maximize the chance of obtaining a plausible solutions (here waves of data and
larger sample sizes); (b) be cautious in the use gftimeselected modeling conditions;
(c) relax Hu and Bentler’'s (1999) cutoff values for MNFI in univariate and
multivariate models wittN = 100 and three waves of data; (d) adopt novel LGC model
cutoff values for th& MSEAIn conditions of small to moderate samples sizes and few
waves of data; (e) use multiple fit indexes in combinatiorastess overall model fit;

and (f) assess the within person fit as well as global hiibde



As the use of LGC modeling applications increases in thalsow behavioral
sciences, there is a critical need for additional reseagdrding LGC model fit,
specifically, the sensitivity of fit indexes to relevaypes of LGC model
misspecification. In conclusion, this dissertation presidovel information regarding the
interpretation of LGC model fit; however, additional noetblogical research is needed

to increase the rigor of applied longitudinal studies engbcial and behavior sciences.
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1 The specific databases examined for the review of LGGhmgdapplications in 2006
and 2007 included the following databases: Academic S@aethier, Agricola,
America: History and Life, Art Abstracts, Biological Absiots, Business Source
Premier, CINAHL, Communication & Mass Media Complete, Ecqrftamily &
Society Studies Worldwide, GeoRef, Humanities Internati@omplete, Information
Science and Technology Abstract, MedicLatina, MEDLINE; EHRdAHL,
PsychARTICLES, PsycINFO, and Regional Business news. Thehsieams included
“latent growth curve,” “latent growth modeling,” “lategrowth curve model,” “latent

growth curve modeling,” and “latent growth curve models.”



APPENDIX A

MPLUS PROGRAM SYNTAX



A.1 Unconditional model: Univariate linear L GC model data generation

montecarlo:
names = y1-y3; (note: varies according to waves aj dat
nobs = 100; (nodé= 250, 500, 1,000, 2,500)
seed = 99228;
nreps = 200;
repsave=all;

save = C:\program files\Mplus\2rep*_uni_100_4waves.dat;
model population:

is|yl@0, y2@1, y3@2; (note: waves of data = y4@3, yo@5)y
[y1-y3@O]; (note: varies according to waves of data)
y1-y3*.5; (note: varies according to waves of data)
[i(*0 s*.2];
i*.5; s*.1; i with s*.2;
output:
tech9;

A.2 Unconditional model: Univariate linear L GC model data analysis

title: analysis of uni_100_3 waves
data: file = C:\Program Files\Mplus\replist_uni_100_Sesdat;
type=montecarlo;

variable:
names = y1-y3; (note: varies according to waves oj data
model:
is|yl@0, y2@1, y3@2; (note: waves of data = y4@3, yo@5)y
[y1-y3@O]; (note: varies according to waves of data)
y1-y3*.5; (note: varies according to waves of data)
[i(*0 s*.2];

i*.5; s*.1; 1 with s*.2;
savedata: results are results.sav;
output: tech9;

A.3 Unconditional model: Univariate quadratic LGC model data generation

montecarlo:
names = yl-y4; (note: varies according to waves aj dat
nobs = 100; (not& = 250, 500, 1,000, 2,500)
seed = 17385;
nreps = 100;
repsave=all;

save = C:\program files\Mplus\2rep* quad_100_ 4waves.dat
model population:
I by y1-y4@1; (note: waves of data = y5@4, y6@5)



| by y1@0, y2@1, y3@2, y4@3; (note: waves of data = yyG@5)
g by y1@0, y2@1, y3@4, y4@9; (note: waves of data = yy@&i@b5)
[y1-y4@O]; (note: varies according to waves of data)
yl-y4*.5; (note: varies according to waves of data)
[i*O I*.1 g*.2];
i*.5; 1*.1 g*.1;
I with 1*.1;
i with g*.2;
| with g*.05;
output:
tech9;

A.4 Unconditional mode: Univariate quadratic LGC model data analysis

title: analysis of quad_100_4 waves
data: file = C:\Program Files\Mplus\replist_quad_100aves.dat;
type=montecarlo;
variable:
names = yl-y4; (note: varies according to waves aj dat
model:
I by y1-y4@1,; (note: waves of data = y5@4, y6@5)
| by y1@0, y2@1, y3@2, y4@3; (note: waves of data = yy@@5)
g by yl@0, y2@1, y3@4, yA@9; (note: waves of data = yy6A5)
[yl-y4@O0]; (note: varies according to waves of data)
yl-y4*.5; (note: varies according to waves of data)
[i*0 I*.1 g*.2];
i*.5; [*.1 gq*.1;
I with *.1;
I with g*.2;
| with g*.05;
savedata: results are results.sav;
output: tech9;

A.5 Unconditional Model: Multivariate linear LGC model data gener ation

montecarlo:
names = y1-y6; (note: varies according to waves @i dat
nobs = 100; (not&N = 250, 500, 1,000, 2,500)
seed = 43152;
nreps = 1000;
repsave=all,
save = C:\program files\Mplus\2rep* multi_100_4waves.da
model population:
Intl by y1-y3@1,; (note: varies according to wavetatd)
slpl by y1@0, y2@1, y3@2; (note: waves of data = y4@34yg6m5)



Int2 by y4-y6 @1, (note: varies according to wavetatd)

slp2 by y4@0, y5@1, y6@2; (note: waves of data = yX@3, 8)and
[yl - y6@0]; (note: varies according to waves of data)
y1l-y6*.5; (note: varies according to waves of data)

[int1*0 slpl*.2 int2*.5 slp2*.1];
int1*.5; slpl*.1; int2*.5; slp2*.1;
Intl with int2*0 slp1*.2 slp2*0;
Int2 with slp1*0 slp2*.1;
Slp1 with slp2*0;
output:
tech9;

A.6 Unconditional Model: Multivariatelinear LGC model data analysis
title: analysis of multi_100_3 waves

data: file = C:\Program Files\Mplus\replist_multi_10&/a¥es.dat;
type=montecarlo;

variable:
names = yl1-y6; (note: varies according to waves aij) dat
model:
Intl by y1-y3@1, (note: varies according to wavetatd)
slpl by y1@0, y2@1, y3@2; (note: waves of data = y4@34y§G05)
Int2 by y4-y6 @1, (note: varies according to wavetatd)
slp2 by y4@0, y5@1, y6@2; (note: waves of data = yX@3, 8)and
[yl-y6@O0]; (note: varies according to waves of data)
y1-y6*.5; (note: varies according to waves of data)

[int1*0 slpl*.2 int2*.5 slp2*.1];
int1*.5; slpl*.1; int2*.5; slp2*.1;
Intl with int2*0 slp1*.2 slp2*0;
Int2 with slp1*0 slp2*.1;
Slp1 with slp2*0;
savedata: results are results.sav;
output: tech9;

A.7 Conditional Model: Univariatelinear L GC modd with atime-invariant
covariate data generation

montecarlo:
names = y1-y3 Xx; (note: varies according to wavestaj) da
nobs = 100;
seed = 19574;
nreps = 2200;
repsave=all,

save = C:\program files\Mplus\rep*_cov_100_3waves.dat;
model population:



is|yl@o0, y2@1, y3@2; (note: waves of data = y4@3, yyEI5)
[x@0]; x@1;
[y1-y3@O]; (note: varies according to waves of data)
[i(*0 s*.2];
i*.5; s*.1;
I with s*.2;
y1l-y3*.5;
i ON x*.5;
s ON x*.1;
[[@0 s@.2]
output:
tech9;

A.8 Conditional Modedl: Univariatelinear L GC modd with atime-invariant
covariate data analysis

title: analysis of cov_100_3 waves
data: file = C:\Program Files\Mplus\replist_cov_100_ @esdat;
type=montecarlo;
variable:
names = y1-y3 Xx; (note: varies according to waves aj dat
model:
is|yl@o0, y2@1, y3@2; (note: waves of data = y4@3, yygiA5)
[x@0]; x@1;
[y1-y3@O]; (note: varies according to waves of data)
[i*0 s*.2];
i*.5; s*.1,;
i with s*.2;
y1l-y3*.5;
i ON x*.5;
s ON x*.1;
[[@0s@.2]
savedata: results are results.sav;
output: tech9;



APPENDIX B

ANOVA AND EFFECT SIZE TABLES



B.1 ANOVA Tableand Effect Sizefor the y2

Source SS df MSE F-value p- Effect
value Size
SS 5516.40 4 1379.10 41.77 <.01* <.01
W  7716479.68 3 2572159.89 77921.74 <.01* .75
C 10676023.23 3 3558674.41 107807.50 <.01* .81
SSxW 5209.32 12 434.11 13.151 <.01* <.01
SSxC 5106.61 12 425.55 12.892 <.01* <.01
WxC  3511902.95 8 438975.36 13298.44 <.01* .58
SSxWxC 6669.98 32 208.43 6.31 <.01* <.01
Error 2473238.71 74925 33.01
Total 22960459.87 75000
Corrected Total 74999
Contrast  Std. Lower CI  Upper ClI p- Effect
Estimate Error value Size
SS: 100 vs. 250 .37 .06 24 50 <.01* <.01
SS: 250 vs. 500 .29 .06 .16 42 <.01* <01
SS: 500 vs. 1000 -.07 .06 -.20 .05 28 <.01
SS: 1000 vs. .28 .06 15 41 <.01* <01
2500
W: 3vs. 4 -10.75 .06 -10.88 -10.62 <.01* .76
W:4vs. 5 -8.81 .05 -8.92 -8.70 <.01* .76
W:5vs. 6 -10.58 .05 -10.69 -10.46 <.01* .76
Univ. vs. Quad. -4.41 .06 -4.54 -4.28 <.01* .79
Uni. vs. Multi. 26.02 .05 25.90 26.13 <.01* .79
Uni. vs. Cov. 6.24 .05 6.13 6.35 <.01* .79

Note SS= sums of squarelf = degrees of freedonVJSE= mean squared error, SS =
sample size; W = waves of data; C = model complexity; * indgcatsignificant effect at
the .01 alpha level)? effect sizes were interpreted as .09 as a small effect, .14 as a
moderate effect, and .22 as a large effect.



B.2 ANOVA Tablefor the y?/df

Source SS df MSE F-value p- Effect
value Size
SS 17.50 4 4.37 9.99 <.01* <.01
w 3.43 3 1.14 2.61 .04 .00
C 1.75 3 .58 1.33 26 .00
SSxW 4.55 12 37 .86 .58 .00
SSxC 10.75 12 .89 2.04 .02 .00
WxC 2.76 8 34 .78 .61 .00
SSxWxC 18.04 32 .56 1.28 12 .00
Error 32814.90 74925 43
Total 108879.91 75000
Corrected Total 32873.45 74999
Contrast  Std. Lower CI  Upper CI p- Effect
Estimate Error value Size
SS: 100 vs. 250 02 <01 <.01 03 <.01* <.01
SS: 250 vs. 500 01 <01 <.01 .02 .07 <01
SS: 500 vs. 1000 <01 <.01 -.01 .01 76 <.01
SS: 1000 vs. <01 <01 -.01 .02 50 <01
2500
W: 3vs. 4 01 <.01 <.01 .03 01 <01
W: 4vs.5 <01 <01 -.01 <.01 32 <01
W:5vs. 6 <01 <01 -.01 <.01 39 <01
Univ. vs. Quad. <-.01 <.01 -.01 .01 62 <01
Uni. vs. Multi. 01 <01 <-.01 .02 A3 <01
Uni. vs. Cov. <01 <01 -.01 .01 90 <01

Note SS= sums of squarelf = degrees of freedonVJSE= mean squared error, SS =
sample size; W = waves of data; C = model complexity; * indgcatsignificant effect at
the .01 alpha levelj? effect sizes were interpreted as .09 as a small effect, .14 as a
moderate effect, and .22 as a large effect.



B.3 ANOVA Table and Effect Sizefor the NNFI

Source SS df MSE F-value p- Effect
value Size
SS .01 4 <.01 43.26 <.01* .00
W <.01 3 <.01 454 <.01* .00
C <.01 3 <.01 15.30 <.01* .00
SSxW <.01 12 <.01 3.64 <.01* .00
SSxC <.01 12 <.01 7.76 <.01* .00
WxC <.01 8 <.01 1.33 22 .00
SSxWxC <.01 32 <.01 1.82 <.01* .00
Error 6.41 74925 855522.18
Total 74967.63 75000
Corrected Total 6.45 74999
Contrast  Std. Lower CI  Upper ClI p- Effect
Estimate Error value Size
SS: 100 vs. 250 <-.01 .00 <-.01 <-.01 <.01*% .00
SS: 250 vs. 500 <.01 .00 <.01 <.01 A2 .00
SS: 500 vs. 1000 <-.01 .00 <.01 <.01 .98 .00
SS: 1000 vs. <-.01 .00 <.01 <.01 .97 .00
2500
W: 3vs. 4 <.01 .00 <-.01 <.01 <.01*% .00
W:4vs.5 <.01 .00 <-.01 <.01 .05 .00
W:5vs. 6 <.01 .00 <.01 <.01 g7 .00
Univ. vs. Quad. <-.01 .00 <.01 <.01 g7 .00
Uni. vs. Multi. <-.01 .00 <-.01 <.01 <.01 .00
Uni. vs. Cov. <-.01 .00 <.01 <.01 72 .00

Note SS= sums of squarelf = degrees of freedom)SE= mean squared error, SS =
sample size; W = waves of data; C = model complexity; * indgcatsignificant effect at
the .01 alpha levelj? effect sizes were interpreted as .09 as a small effect, .14 as a
moderate effect, and .22 as a large effect.



B.4 ANOVA Table and Effect Sizefor the CFI

Contrast  Std. Lower CI  Upper ClI p- Effect

Estimate Error value Size

SS: 100 vs. 250 <-.01 .00 <.01 <01 <.01* 14

SS: 250 vs. 500 <-.01 .00 <.01 <01 <.01*% 14

SS: 500 vs. 1000 <.01 .00 <.01 <01 <.01* 14

SS: 1000 vs. <.01 .00 <.01 <01 <.01*% 14
2500

W: 3vs. 4 <.01 .00 <-.01 <01 <.01* <.01

W:4vs. 5 <-.01 .00 <.01 <01 <01* <01

W:5vs. 6 <.01 .00 <.01 <01 <.01* <.01

Univ. vs. Quad. <.01 .00 <.01 <01 <.01* .01

Uni. vs. Multi. <-.01 .00 <-.01 <10 <.01* .01

Uni. vs. Cov. <.01 .00 <-.10 <10 <.01* .01

Note SS= sums of squarelf = degrees of freedom)SE= mean squared error, SS =
sample size; W = waves of data; C = model complexity; * indgcatsignificant effect at
the .01 alpha levelj? effect sizes were interpreted as .09 as a small effect, .14 as a
moderate effect, and .22 as a large effect.



B.5 ANOVA Table and Effect Sizefor the RMSEA

Source SS df MSE F-value p- Effect
value Size

SS 4.81 4 1.20 241479 <.01* A1
w 24 3 .08 165.51 <.01%* .00
C .18 3 .06 123.69 <.01* .00
SSxW .07 12 <.01 11.96 <.01* .00
SSxC .05 12 <.01 0.82 <.01* .00
WxC .04 8 <.01 10.44 <.01* .00
SSxWxC .04 32 <.01 272 <.01* .00
Error 37.37 74925 <.01
Total 56.52 75000
Corrected Total 42.69 74999
Contrast  Std. Lower CI  Upper CI p- Effect
Estimate Error value Size
SS: 100 vs. 250 .01 .00 .01 .01 <.01* A1
SS: 250 vs. 500 <.01 .00 <.01 <01 <.01* A1
SS: 500 vs. 1000 <.01 .00 <.01 <.01 <.01* A1
SS: 1000 vs. <.01 .00 <.01 <01 <.01* A1
2500
W:3vs. 4 <.01 .00 <.01 <01 <.01* .00
W: 4vs. 5 <.01 .00 <.01 <.01 <.01* .00
W:5vs. 6 <.01 .00 <.01 <01 <.01* .00
Univ. vs. Quad. <.01 .00 <.01 <01 <.01*% .00
Uni. vs. Multi. <-.01 .00 <-.01 <-.01 <.01*% .00
Uni. vs. Cov. <-.01 .00 <-.01 <-.10 <.01* .00

Note SS= sums of squarelf = degrees of freedonVJSE= mean squared error, SS =
sample size; W = waves of data; C = model complexity; * indgcatsignificant effect at
the .01 alpha levelj? effect sizes were interpreted as .09 as a small effect, .14 as a
moderate effect, and .22 as a large effect.



APPENDIX C

MEAN FIT INDEX TABLES



C.1 xy2mean fit values, standard deviations, p-values, and y?/df mean values

Model & Sample Size
Waves of Data 100 250 500 1,000 2,500
Uni. 3 x2=1.09 x2=.97 x> =1.04 x2=1.01 x2=1.01
df=1 df=1 df=1 df=1 df=1
p=.48 p=.51 p=.48 p=.49 p=.50
xAdf=1.09  p2/df=.97 2/df=1.04 »?/df=1.01 ,?3/df=1.01
4 x> =4.98 x> =4.87 x> =4.87 x>=4.84 x?=5.11
df=5 df=5 df=5 df=5 df=5
p=.50 p=.50 p=.51 p=.50 p=.49
yAdf=.99  p2df=.97  p2df=.97  /df=.96 ?/df=1.02
5 x?=10.32  x2=9.67 x?=9.98 x?=9.89 x2=9.79
df =10 df =10 df =10 df =10 df =10
p=.48 p=.51 p=.50 p=.50 p=.51
xdf=1.03 p2/df=.96  p2/df=.99 »?/df=.98 y3/df=.97
6 x?=16.36 x?2=16.35 x2=1590 »,?>=16.04 x2=16.26
df =16 df =16 df =16 df =16 df =16
p=.47 p=.48 p=.50 p=.49 p=.48
x2ldf=1.02 »2/df=1.02 2/df=.99 »2/df=1.00 ,?/df=1.01
Quad 4 x?=1.07 x> =1.05 x?=.92 x?=1.01 x?=.92
df=1 df=1 df=1 df=1 df=1
p=.48 p=.49 p=.51 p=.50 p=.50
x2ldf=1.07 »,?/df=1.05 p/df=.92 »?/df=1.01 ,?/df=.92
5 x?=6.01 x?=5.93 x?=5.99 x> =6.20 x> =577
df=6 df=6 df=6 df=6 df=6
p=.49 p=.50 p=.50 p=.47 p=.51
x2df=1.00 p?/df=.98 ,2/df=.99 »2/df=1.03 p*/df=.96
6 x?=1231 p?2=1240 p2=1180 p?=11.76 p?>=11.92
df =12 df =12 df =12 df =12 df =12
p=.48 p=.47 p=.51 p=.51 p=.50
x2ldf=1.02 »2/df=1.03 »?/df=.98 »?/df=.98 ,?/df=.99
Multi 3 x2=1.37 x2=7.21 x> =16.98 x> =7.05 x?=16.92
df=7 df=7 df=7 df=7 df=7
p=.46 p=.48 p=.50 p=.49 p=.50
x2df=1.05 »2/df=1.03 p2/df=.99 p?/df=1.00 y?/df=.98
4 x2=2226 p2=2279 x2=2198 p?=22.13 ,?2=2199
df = 22 df =22 df =22 df = 22 df =22
p=.48 p=.46 p=.50 p=.49 p=.50
xAdf=1.01 »2/df=1.03 p2/df=.99 »?/df=1.00 y?/df=.99
5 x>=43.48 2=41.36 p?>=41.36 ?>=4110 p?2=41.32
df =41 df =41 df =41 df =41 df =41
p=.43 p=.48 p=.49 p=.49 p=.49
x2df=1.05 »2/df=1.00 p?/df=1.00 x3/df=1.00 y?/df=1.00
6 x>=67.31 2=65.07 »?>=65.22 y2=64.48 »?>=63.46




df = 64 df = 64 df = 64 df = 64 df = 64
p=.42 p=.47 p=.46 p=.48 p=.51
x2df=1.05 »?/df=1.01 p2/df=1.01 »?/df=1.00 »?/df=.99

Cov. x?=6.13 x?=16.09 x?=6.12 x?=5091 x> =6.05
df=6 df=6 df=6 df=6 df=6
p=.48 p=.49 p=.48 p=.50 p=.50

xdf=1.02 »?/df=1.01 p3/df=1.02 »2/df=.98 ,3/df=1.00
x?=10.95 »?2=10.94 ,2=1091 »?=10.94 »2=10.88
df=11 df=11 df=11 df=11 df=11
p=.50 p=.49 p=.50 p=.50 p=.50
xAdf=.99  »2df=.99  »2/df=.99 p?/df=.99  ,?/df=.98
x?>=1752 2=17.37 »?>=16.85 x2=16.79 p?>=15.11
df =17 df =17 df =17 df =17 df =17
p=.47 p=.48 p=.51 p=.50 p=.49
x2df=1.03 »2/df=1.02 »2/df=.99 »?/df=.98 x?/df=1.00
x?=2473 2=24.16 p?>=2194 x2=23.80 ,?2=22.08
df =24 df =24 df =24 df =24 df =24
p=.46 p=.49 p=.50 p=.50 p=.49
x2ldf=1.03 »2/df=1.00 »2/df=.99 »?/dfi=.99 ,?/df=1.00




C.2 NNFI mean values and standard deviations

Model Waves Sample Size
of Data 100 250 500 1,000 2,500
Uni. 3  .99(.03) 1.00(.01) .99 (<.01) 99 (<.01) .99 (<.01)
LGC 4 .99(.01) 1.00(.01) 1.00 (<.01) 1.00(<.01) .99 (<.01)
5 .99(.01) 1.00(<.01) 1.00 (<.01) 1.00(<.01) 1.00 (<.01)
6 .99 (01) .99 (<.01) 1.00 (<.01) .99 (<.01) .99 (<.01)
Quad. 4 .99(.02) .99 (<.01) 1.00 (<.01) .99 (<.01) .99 (<.01)
LGC 5 .99(<.01) 1.00(<.01) 1.00 (<.01) .99 (<.01) 1.00 (<.01)
6 .99 (<.01) .99 (<.01) 1.00 (<.01)  1.00 (<.01)00 (<.01)
Multi. 3  .99(.03) .99 (.01) 1.00 (<.01) .99 (<.01) 1.00 (<.01)
LGC 4 .99 (.03) .99 (<.01) 1.00 (<.01) .99(<.01) 1.00 (<.01)
5 .99(.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01)
6 .99(01) .99 (<.01) .99 (<.01) 99 (<.01) 1.00 (<.01)
Cov. 3  .99(.01) .99 (<.01) .99 (<.01) 1.00 (<.0199 (<.01)
LGC 4 1.00(.01) 1.00(<.01) 1.00 (<.01) 1.00 (<.01)00 (<.01)
5 .99(01) .99 (<.01) 1.00 (<.01) 1.00 (<.0199 (<.01)
6 .99 (<.01) .99 (<.01) 1.00 (<.01) 1.00 (<.0199 (<.01)
1.00 (<.01)

Note:NNFI = Non-normed fit index; Uni = univariate LGC Model; Quad =a@Quatic
LGC Model; Multi = Multivariate LGC model; Cov = Univariaténear LGC model with
a single time invariant covariate.



C.4 CFI mean values and standard deviations

Model Waves Sample Size
of Data 100 250 500 1,000 2,500

uni. 3  .99(01) .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01)
LGC 4 .99 (<.01) .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01)
5 .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01) .99 (<.01)
6 .99(<.01) .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01)
Quad. 4 .99 (.01) .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01)
LGC 5 .99(<.01) .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01)
6 .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01) .99 (<.01)
Multi. 3  .99(.01) .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01)
LGC 4 .99 (<.01) .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01)
5 .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01) .99 (<.01)
6 .99(<.01) .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01)
Cov. 3  .99(.01) .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01)
LGC 4 .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01) .99 (<.01)
5 .99(<.01) .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01)
6 .99 (<.01) .99 (<.01) 99 (<.01) .99 (<.01) .99 (<.01)

Note: CFl = Comparative Fit Index; Uni = univariate LGC Model; QuaQuadratic
LGC Model; Multi = Multivariate LGC model; Cov = Univariaténear LGC model with
a single time invariant covariate



C.5 RMSEA mean values and standard deviations

Model Waves Sample Size
of Data 100 250 500 1,000 2,500
Uni. 3 .03 (.06) .02 (.03) .01 (.02) .01 (.01) <.01 (.01)
LGC 4 .02(.04) .01(.02) .01 (.01) <.01 (.01) <.01 (<.01)
5 .02(.03) .01(.02 .01 (.01) <.01 (.01) <.01 (<.01)
6 .02(.02) .01(.01) <.01 (.01) <.01 (.01) <.01 (<.01)
Quad. 4 .03(.06) .02 (.04) .01 (.01) .01 (.01) <.01 (<.01)
LGC 5 .02(03) .01(.02 .01 (.01) <.01 (.01) <.01 (<.01)
6 .02(.03) .01(.02) .01 (.01) <.01 (<.01) <.01(<.01)
Multi. 3 .03(.03) .01(.02 .01 (.01) <.01 (.01) <.01 (<.01)
LGC 4 .02(.02) .01(.01) <.01 (.01) <.01(<.01) <.01(<.01)
5 .02(.02) .01(.01) <.01 (.01) <.01 (<.01) <.01(<.01)
6 .02(.02) .01(.01) <.01 (.01) <.01 (<.01) <.01(<.01)
Cov. 3 .02(.03) .01(.02 .01 (.01) <.01(<.01) <.01(<.01)
LGC 4 .02(.02) .01(.01) .01 (.01) <.01(<.01) <.01(<.01)
5 .02(.02) .01(.01) <.01 (.01) <.01 (<.01) <.01(<.01)
6 .02(.02) .01(.01) <.01 (.01) <.01 (<.01) <.01(<.01)

Note:RMSEA= Root Mean Squared Error of Approximation; Uni = UnivariaGC
Model; Quad = Quadratic LGC Model; Multi = Multivariate B3nodel; Cov =
Univariate Linear LGC model with a single time invatiaavariate.
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