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ABSTRACT 
 

DeRoche, Kathryn K. The Functioning of Global Fit Statistics in Latent Growth Curve 
Modeling. Published Doctor of Philosophy dissertation, University of Northern 
Colorado, 2009.  

 
Latent growth curve (LGC) modeling is emerging as a preferred method of longitudinal 

analysis, which uses the structural equation modeling (SEM) framework to demonstrate 

growth or change (Meredith & Tisak, 1990). The purpose of this dissertation was to 

examine the performance of commonly utilized measures of model fit in LGC modeling 

data environments. A Monte Carlo simulation was conducted to examine the influence of 

LGC modeling design characteristics (i.e., sample size, waves of data, and model 

complexity) on selected fit indexes (i.e., χ², NNFI, CFI, and RMSEA) estimated in correct 

LGC models. The CFI performed the best, followed by the NNFI, χ², and finally, the 

RMSEA showed the least desirable characteristics. The RMSEA was found to over-reject 

correct models (i.e., suggest poor model fit) in conditions of small to moderate sample 

size (N ≤ 1,000) and few waves of data. The χ² over-rejected correct multivariate models 

with more waves of data and small sample sizes (N = 100). The NNFI over-rejected  

unvariate and multivariate models with small sample size (N = 100) and three waves of 

data. Six guidelines were proposed for LGC modeling researchers, including: maximizing 

the chance of obtaining a plausible solutions, cautioning the use of the χ², adopting the 

novel LGC modeling cutoff values, using multiple fit indexes, and assessing the within-

person fit. As LGC modeling applications escalate in the social and behavioral sciences, 



 
 

 

there is a critical need for additional research regarding LGC model fit, specifically, the 

sensitivity of fit indexes to relevant types of LGC model misspecification. 
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CHAPTER I 
 

INTRODUCTION 
 

In contemporary science, many researchers, practitioners, and policy makers, 

across a variety of disciplines, have encountered the question of how to measure change. 

Measurements of change in the educational field are apparent by teachers’, school 

administrators’, and federal policy makers’ concerns regarding change or growth in 

student achievement. Researchers in the pharmaceutical industry are interested in the 

discovery of changes in symptom relief between members of control and experimental 

groups who receive a novel drug treatment. Psychologists, therapists, early education 

specialists, and parents are focused on the growth of developmental characteristics, 

including predictors or moderators of cognitive development. In addition, the field of 

program evaluation is committed to determining if change has occurred as a result of a 

program or intervention.  

Along with a general interest in change, accountability of change has become 

apparent at the federal, state, and local levels. For example, the No Child Left Behind Act 

(NCLB; U.S. Department of Education, 2001) requires state governments to monitor 

change in students’ achievement. A potential consequence of NCLB is that schools can 

lose federal funding and even risk termination if they fail to display adequate progress. 

Furthermore, most state and foundation funding agencies in the health and human 

services require quantitative evaluations to assess change in desired program outcomes 



 
 

 

(e.g., U.S. Department of Health and Human Services, 2005). While the implications of 

quantitative evaluations of change vary by state, department, discipline, and agency, in 

general, those programs that fail to display change, risk loss of all or part of their funding. 

Therefore, agencies funded through federal, state, and local venues have a fiscal 

responsibility to demonstrate change. The federal mandates have driven statistical and 

methodological researchers to develop and examine models to adequately measure 

change for complex traits (i.e., achievement, cognition, etc.). Typically, advances in 

research guide policy but, in the last decade, policy has driven the research on the 

methods (i.e., statistical models) to estimate change.     

Traditional Models of Change 

Appropriate, quantitative techniques for the measurement of change have been 

debated in the methodological literature for the last century, and a novel perspective of 

change has provided the framework for modern statistical models (Rogosa, Brandt, & 

Zimowaski, 1982). Historically, change has been predominantly conceptualized as a raw 

change score, the difference between pre- and posttest scores. However, raw change 

scores may produce low reliability estimates and high correlations among initial status 

and change scores (Cronbach & Furby, 1970).  

To address the complications associated with raw change scores, several 

researchers advocated that the conceptualization of change should be altered from an 

increment of time (i.e., pre- to posttest) to a continuous process of development (Rogosa 

et al., 1982; Rogosa & Willett, 1983, 1985; Willett, 1989). Specifically, Rogosa et al. 

proposed that change can be measured with precision and adequate psychometric 

properties when more than two waves of data, or data collection points, are collected. 



 
 

 

Furthermore, Willett demonstrated that the reliability of change can substantially increase 

as additional waves of data are included, with an approximate 250% increase in reliability 

when three waves of data are adopted as opposed to two waves of data. When change is 

measured as a process with more than two time points, complications of low reliability 

estimates, typically found with raw change scores, are no longer of concern.  

In the contemporary study of change, residual change scores, repeated measures 

analysis of variance (ANOVA), and regression techniques can be used to statistically 

assess change over more than two waves of data (Field, 2005). However, these 

procedures have been criticized due to their limitations. Residual change scores, the 

difference between the residuals at two time points, were developed to avoid the high 

correlation between raw change scores and initial status as discussed by Cronbach and 

Furby (1970). Considerable debate has occurred in regard to the corresponding 

interpretability of residual change, and theorists (Rogosa & Willett, 1985; Willett, 1989) 

have advocated avoiding the use of residual change scores  

Typically, behavioral and social sciences researchers apply repeated measures 

ANOVA and regression techniques to measure change across three or more time points 

(Voelkle, 2007). Based on variance decomposition, ANOVA and regression models 

determine group differences by partitioning variance into between-person (i.e., inter-

individual differences) and within-person (i.e., intra-individual differences) variations. 

The between-person variance represents variations accounted for in the model (e.g., 

variations due to a manipulated variable between an experimental and control group) and 

the within-person variance represents variation not accounted for in the model (i.e., 

variation due to individual differences) sometimes labeled as error variance. Inherent in 



 
 

 

its name, error variance, the individual variations in a trait are not of interest because 

attention is placed on the between group differences (i.e., between-person variance). 

However, questions about the accountability of change may be enhanced by an 

examination of variation within individuals (e.g., Is the rate of change in academic 

growth for one student different from the rate of change for another student?). As a novel 

extension of the ANOVA/regression family of techniques, growth curve modeling 

procedures include the analysis of within and between-person variations to measure 

change. Therefore, subsequently, the modern movement toward the analysis of change 

has adopted Rogosa and Willett’s (1983) notion of growth models, because their 

application increases the accuracy of measuring, accounting for, and  interpreting 

individual variations across examinees.  

Growth Curve Models 

 The legislative mandates (e.g., NCLB) of the last few decades have guided the 

advances in a collection of statistical models, referred to as growth curve models, which 

includes an assortment of models to investigate growth at the within and between 

participant levels. All growth modeling procedures can be conceptualized as two distinct 

steps: (a) the within-person model symbolizing individual change over time, and (b) the 

between-person model which characterizes inter-individual change across time (Willett & 

Sayer, 1994). In all growth models, the within-person changes are accounted for in the 

statistical analysis of between-persons changes; however, the specific statistical methods 

used to achieve the result vary among the different types of growth models. 



 
 

 

The list below contains potential research questions that are commonly 

encountered when an analysis of change is conducted with traditional statistical 

approaches: 

1. Has there been a change or growth in the trait?   

2. Do individuals differ in their growth in the trait? Or, for multiple groups, 

does the control group differ in the amount of change from the 

experimental group? 

While growth models can answer the two previous questions, also, they can answer the 

questions listed below (Voelkle & Wittmann, 2007): 

 1. What is the trajectory of change for the group? Is change related to time?  

 2. What is the variability of individual trajectories for change?  

 3. Can the individual growth trajectories be predicted?  

 4. Are the growth trajectories the same for multiple groups?  

5. Does a covariate explain the same amount of growth in multiple groups? 

This list provides a glimpse into potential questions that can be answered when growth 

models are applied to longitudinal research designs. Consequently, state and federal 

mandates frequently apply growth curve modeling techniques to demonstrate change.   

Growth curve models have been referred to as: (a) developmental models 

(Rindskopf, 1987); (b) hierarchical linear models (HLM) or multilevel models (Byrk & 

Raudenbush, 1992); (c) random-effects ANOVA models (Vangel & Rukhin, 1999); (d) 

random coefficients models (Rovine & Molenaar, 2000); and (d) latent growth curve 

models (LGC model; Duncan, Duncan, & Strycker, 2007). Estimation of LGC modeling 

techniques includes the analysis of variance-covariance structures and latent means to 



 
 

 

determine growth or change with use of a structural equation modeling (SEM) framework 

(Meredith & Tisak, 1990). Duncan et al. and Schulenberg and Maggs (2001) have 

mathematically discussed or methodologically investigated the similarities and 

differences between LGC models and other growth curve models, specifically, HLM-

based growth models. The preference for LGC models, compared to other growth curve 

models, is rooted in the methodological advantages of SEM (i.e., also known as latent 

variable modeling). Accordingly, LGC models represent growth in latent traits (i.e., 

unobservable traits), whereas other growth model designs do not distinguish between 

latent and observed traits. Other advantages of LGC modeling include: (a) flexibility in 

modeling complex phenomena, (b) ability to account for measurement error, and (c) 

capability of testing model fit (Byrne & Crombie, 2003; Duncan & Duncan, 2004; 

Meredith & Tisak, 1990; Muthén & Curran, 1997; Voelkle, 2007; Willett & Sayer, 1994). 

Thus, LGC modeling techniques are emerging as a preferred method of researchers to 

assess change among complex latent traits.  

Latent Growth Curve Models 

Meredith and Tisak (1990) presented an SEM model that accounted for individual 

changes in a trait across time, referred to as a LGC model. As a subcategory of SEM, 

LGC models have similar benefits to SEM in general. However, LGC models have two 

dominant characteristics not found in standard SEM models. First, the goal of LGC 

modeling is to examine growth over time within longitudinal research designs, while 

typical SEM applications model cross-sectional designs (Meredith & Tisak). As a result 

of differences in the underlying conceptualization, LGC model researchers fix the 

relationships between the latent and observed variables (i.e., factor loadings), whereas in 



 
 

 

SEM methods, these relationships are estimated. While LGC modeling includes the 

analysis of variance-covariance structures found in general SEM applications, 

transformations convert this data structure to means and variances in order to interpret 

overall growth parameters. Thus, a second variation of LGC modeling includes the 

estimation of latent means as well as the variance-covariance matrix.  

Hypothesized theories of change in the social and behavioral sciences typically 

include additional study characteristics (e.g., variations in sample size, waves of data, 

potential covariates, quadratic growth, and multivariate growth) to properly represent the 

complex changes in the latent traits of interest. Due to the flexibility in LGC modeling, 

researchers typically include additional constructs in the LGC model to correspond to the 

hypothesized theory of change. For example, a social science researcher may include 

additional participants to achieve adequate statistical power or may include additional 

waves of data to ensure that the latent trait is measured adequately during the 

hypothesized period of change. Furthermore, several theories in the social and behavioral 

sciences assume multifaceted growth, requiring complex models to properly represent 

traits of interest. For example, longitudinal researchers may hypothesize that quadratic 

growth, or initial growth that levels off, is a more appropriate representation for the trait 

of interest than linear growth. A LGC modeling researcher may also be interested in 

growth in more than one trait; therefore, requiring a multivariate LGC to properly 

represent the hypothesized trait. Typically, theories in the social and behavioral sciences 

include covariates that may influence the process of change. In conclusion, LGC models 

applied to traits found in the social and behavioral science will include variations in the 

number of participants, waves of data, and model complexity. Therefore, extensions of 



 
 

 

LGC models are of concern to longitudinal behavioral and social science researchers. In 

Chapter II, a comprehensive description of LGC models and the similarities and 

differences compared to general SEM are discussed. 

As in all SEM models, LGC models are used to examine the hypothesized model 

to determine how well it matches the data. As a critical component of LGC modeling, 

model fit determines whether the statistical model matches or fits the data collected from 

the participants over time. Fit indexes are a collection of descriptive and inferential 

statistics that represent indicators of how well the data fit the hypothesized model. Due to 

the debatable advantages and disadvantages of the different indexes, SEM researchers 

frequently report multiple fit indexes (Hu & Bentler, 1999). Assessment of model fit 

determines how well the hypothesized model is supported by the data. Therefore, a 

fundamental concept of LGC modeling is an evaluation of the model fit to properly 

represent change.  

A review of the literature produced a few simulation studies which investigated 

the functioning of LGC models under various conditions (Fan, 2003; Hertzog, 

Lindenberger, Ghisletta, & von Oertzen, 2006; Leite, 2007; Muthén & Curran, 1997; 

Muthén & Muthén, 2002). Simulation studies have expanded the knowledge of optimal 

conditions for the application of LGC models; however, the focus of these studies has 

been on statistical power and assumptions, with one exception. Coffman and Millsap 

(2006) conducted the only other known study in which the concept of model fit was 

investigated in regard to LGC modeling. By examination of the two conditions of linear 

and quadratic growth, the authors concluded that fit indexes may not accurately represent 

shape in individual growth trajectories. While Coffman and Millsap’s simulation 



 
 

 

provided support for their conclusions, the authors examined their hypothesis under the 

limited conditions of a single sample size (N = 500) and waves of data (three waves of 

data) for only two fit indices. Consequently, the authors’ research design lacked 

representation of many common conditions found in LGC modeling applications (e.g., in 

terms of model complexity, waves of data, sample size, and multiple fit indexes).   

The use of LGC modeling has progressed in the areas of theoretical development 

and simulation studies of statistical power, with a need to examine the critical procedures 

of assessing model fit in the LGC model. Consequently, the examination of fit indexes, 

under various data environments encountered in LGC modeling applications, is a novel 

area of exploration.  

Statement of the Problem 
 

The gap in the methodological literature in regard to fit indexes for LGC models 

under various conditions has inhibited applied researchers from being able to fully 

understand and interpret change. Longitudinal research environments include varying 

conditions of sample size, waves of data collected, and model complexity which have not 

yet been examined in terms of their corresponding effect on fit indexes. Coffman and 

Millsap (2006) provided a critical hypothesis in regard to procedures for the assessment 

of model fit in LGC modeling that needs to be examined under additional conditions. 

Currently, applied longitudinal researchers do not know if values of a particular fit index 

suggest adequate fit for LGC models.  

In addition, simulation studies (Bentler, 1990; Hu & Bentler, 1999; Yadama & 

Panday, 1995) of general SEM applications have demonstrated that fit indexes fluctuate 

with sample sizes and model complexity. Currently, LGC modeling researchers reference 



 
 

 

methodological studies of fit statistics under general SEM conditions to justify their 

interpretation of model fit (e.g., Hu & Bentler). However, given the lack of research on fit 

in the LGC modeling context, it is unknown if guidelines for assessing fit in standard 

SEM are applicable to LGC models. Assistance could be provided to applied researchers 

by increasing the understanding of fit indexes for LGC modeling data environments. For 

example, applied LGC modeling researchers could benefit from a better understanding of 

how fit indexes are affected under conditions of: (a) sample size, (b) waves of data 

collected, and (c) model complexity. In a recent review, Voelkle (2007) noted an 

apparent lack of methodological guidance for applied LGC researchers specifically 

related to interpretation of fit indexes and stated:   

Clearly, there is a need for future research to shed light on the complex 
interactions between these factors (sample size, underlying assumptions, and 
model complexity) in order to determine the optimal procedures for the analysis 
of change for a given set of data. Similar arguments can be made for most fit 
indexes employed in LGC modeling, which are greatly affected by sample size. 
This topic has been deliberately ignored because it is no different from standard 
structural equation modeling and a more detailed discussion would go far beyond 
the scope of this article. (p. 411) 
 

Rationale for the Study 
 

 Even though the LGC modeling simulation literature is scarce, applications of the 

procedure have escalated in the last decade, especially in the behavioral and social 

sciences. Even a cursory review of the recent published literature reveals numerous LGC 

modeling application studies across a variety of disciplines, which varied considerably in 

sample size, number of waves of data, and model complexity, as well as in the type of fit 

indexes reported. The application studies cluster around conditions of three to five waves 

of data and fewer than 500 participants. In the majority of studies, fit indexes are reported 



 
 

 

to examine model fit, typically including the: (a) chi-squared likelihood ratio test (χ²); (b) 

non-normed fit index (NNFI; Bentler & Bonett, 1980); (c) comparative fit index (CFI; 

Bentler, 1990); and (d) the root mean square error of approximation (RMSEA; Steiger & 

Lind, 1980). Unfortunately, many researchers who use LGC models seem to be unaware 

of the influence of study characteristics on fit indexes and follow guidelines developed 

upon more general SEM models. Consequently, there is a need for methodological 

research on the performance of various fit indexes under conditions commonly 

encountered in LGC modeling applications.  

Purpose of the Study 

The purpose of this dissertation was to examine varying LGC modeling 

conditions on the functioning of selected model fit indexes. By application of Monte 

Carlo simulation techniques, I examined how fit indexes function under simulated 

conditions that are commonly encountered in applied LGC environments. Data were 

generated by replication of the conditions of LGC modeling data environments found in 

the social and behavioral sciences, including varying levels of: (a) overall sample size, 

(b) waves of data collected, and (c) model complexity. The latter represent various design 

characteristics of LGC models including: (a) shape of growth, (b) number of dependent 

variables, and (c) inclusion of a covariate. Subsequently, the simulated data conditions 

were examined with use of LGC modeling techniques to estimate the following fit 

indexes: (a) χ², (b) NNFI, (c) CFI, and (d) the RMSEA. All other parameters required for 

LGC modeling estimation were held constant across simulation conditions, with the 

explanation and discussion of these parameters included in Chapters II and III. The 



 
 

 

results of the simulation study can be used to develop more informative guidelines for 

applied researchers to assess the fit of their LGC models.  

Research Questions and Hypotheses 

The overall hypothesis suggests that the selected fit indexes vary by sample size, 

waves of data collected, and model complexity. The explicit research questions and 

hypotheses are presented below: 

Q1   Do model convergence rates vary under conditions of sample size, waves of 
data, and model complexity? 

 
H1   Large models (including an increase in both waves of data and model 

complexity) with small sample sizes will have lower convergence rates 
compared to parsimonious models with large sample sizes. For example, the 
condition of a multivariate LGC model with 3 waves of data and N=100 will 
have the lowest frequency of model convergences. On the contrary, a 
univariate linear LGC model with 6 waves of data and N = 2,500 will have 
all samples converge, resulting in 100% convergence rate.   

 
Q2   Do fit indexes (i.e., χ², NNFI, CFI, and RMSEA) differ under varying 

conditions of sample size?  
 
H2   Regarding the influence of sample size, it is hypothesized that all fit indexes 

will display a difference among sample size conditions; with fit indexes in 
small sample size conditions (N = 100) deteriorating and implying a lack of 
model fit, while fit indexes under large sample size conditions (N ≥ 1,000) 
will suggest excellent model fit. However, the magnitude of variation will 
fluctuate among fit indexes. The χ² will display a large effect size and the 
NNFI, CFI, and RMSEA will display a small effect size among sample sizes 
conditions.   

 
Q3   Do fit indexes (i.e., χ², NNFI, CFI, and RMSEA) differ under varying 

conditions of waves of data?  
 
H3   Due to the increase in waves of data requiring additional observed measures 

in the LGC modeling, all fit indexes will display a difference among the 
waves of data conditions with fit indexes deteriorating, suggesting 
inadequate model fit, with increasing waves of data. According to previous 
simulations, researchers suggested that the CFI will have a medium effect, 
suggesting worse fit with more waves of data, with the χ², NNFI, and 



 
 

 

RMSEA having small effect sizes that may be negligible in the context of 
practical changes in fit index values.  

 
Q4   Do fit indexes (i.e., χ², NNFI, CFI, and RMSEA) differ under varying 

conditions of model complexity, defined in the current dissertation as a 
univariate linear LGC model, quadratic LGC model, multivariate linear LGC 
model, and a linear LGC model with a covariate?  

 
H4   Extensions to the parsimonious linear LGC model require additional 

parameters to be estimated, increasing in model complexity with the addition 
of a covariate, representation of quadratic growth, and the most complex 
multivariate linear LGC model. Based on previous studies of model fit in 
general SEM, it is expected that as the model complexity increases, the fit 
indexes will depreciate. According to previous simulations, researchers 
suggested that the CFI will have a medium effect, with the χ², NNFI, and 
RMSEA having small effect sizes that may be negligible in the context of 
practical changes in fit index values.  

 
The four fit indexes were investigated separately for research questions two through four. 

Support for the research questions and corresponding hypotheses is provided in Chapter 

II. 

Limitations 

In this dissertation, I replicated common application scenarios of LGC models, 

but did not attempt to simulate data specific to every possible scenario. For example, in 

many applications of LGC models, there may be: (a) missing data, (b) varying degrees of 

measurement error, (c) non-normality, (d) different variances within each measurement 

point, and (e) assumption violations; all of which were held constant in the current study. 

This dissertation was designed to simulate conditions of typical data environments in the 

social and behavioral sciences and, therefore, may not reflect all fields and applications 

of study. Furthermore, only selected fit indexes were examined despite the myriad fit 

indexes that have been developed for use in SEM with rationale and justification 

discussed in Chapter II. As a result, the external validity of the study is limited to the 



 
 

 

conditions which are explored in the current investigation and the results may not apply 

universally to all LGC modeling applications.  

Conclusion 
 

 This study has built on the methodological research in regard to LGC models and 

enhanced the understanding of the functioning of fit indexes used to assess plausibility of 

tested models. The results from the simulation study have illuminated how fit indexes 

function under: (a) various sample sizes, (b) waves of data, and (c) model complexity. By 

an increased understanding of the influence of longitudinal design characteristics on 

model fit indexes, guidelines are provided for the applied LGC modeling researcher to 

assist her or him in interpretation of model fit. Fit indexes are utilized in SEM 

applications to support hypothesis testing (e.g., how well the data match the hypothesized 

model); therefore; guidelines specific to LGC modeling model fit may increase the rigor 

of hypothesis testing in applied longitudinal research. 

 The dissertation is organized to convey the study of fit indexes in LGC modeling 

through five chapters. Chapter I established the background for the current political and 

scientific study of change, the advantages of LGC modeling, and the need for additional 

studies investigating model fit in LGC models. Chapter II further explains the concepts of 

LGC modeling, continuing to review LGC model simulation studies, as well as 

simulation studies of fit indexes in general SEM. The methodological procedures are 

presented in Chapter III, including a discussion of the independent and dependent 

variables, in addition to methods for data generation and analysis. Furthermore, Chapter 

IV explains the results of varying LGC modeling design characteristics on the four 

measures of fit. In Chapter V, I discuss the implications for the findings providing six 



 
 

 

suggestions to improve the validity of LGC assessments of model fit. Finally, the 

appendix contains supplemental information for the study, including tables to present the 

results, as well as program syntax for data analysis procedures. The outline of the 

dissertation provides a clear description of the need, methodology, results, and 

interpretation of an investigation into model fit in LGC models.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

 
 
 
 
 

CHAPTER II 
 

REVIEW OF LITERATURE 

The purpose of this dissertation is to assist applied LGC modeling researchers in 

their assessment of model fit by examining the functioning of selected model fit indexes 

under simulated LGC modeling conditions commonly found in application. Provided in 

Chapter II is a summary of the current literature related to the evaluation of model fit for 

latent growth curve (LGC) models and is divided into two sections, including: (a) a 

description of LGC models and relevant literature, and (b) a description of selected fit 

indexes and relevant literature. The chapter begins with a discussion of structural 

equation models (SEM) to describe the general family of statistical procedures in which 

LGC models are a subcategory. Next, a detailed description of LGC models is presented 

to demonstrate the procedures undertaken to estimate necessary parameters, along with a 

brief review of conditions found in LGC modeling applications and simulation studies. 

Then, I focus on fit indexes utilized in LGC model applications, and the computation of 

fit indexes used in this dissertation. To establish the foundation for procedures and 

hypotheses, simulation studies of fit indexes in general SEM are discussed. Finally, 

Chapter II is concluded by a discussion of the only prior LGC modeling simulation study 

to investigate fit indexes and the chapter summary. The information presented in Chapter 

II provides the framework for the methods proposed in Chapter III.  

 



 
 

 

Structural Equation Modeling 

Structural equation modeling (SEM) is a collection of statistical techniques 

commonly referred to as latent variable modeling. Latent variables are defined as 

unobservable variables that we, as human beings, have constructed. Accordingly, LGC 

models represent growth in latent traits, whereas other growth model designs do not 

distinguish between latent and observed traits. The roots of SEM are founded in the 

social and behavioral sciences, with applications in the majority of journals related to 

human behavior (Kline, 2005). Due to the predominant presence of latent traits within 

social and behavioral science (e.g., depression, self-esteem, and substance abuse 

recovery), it is understandable that, frequently, researchers in these fields apply SEM to 

capture the abstract phenomena they commonly encounter.  

Extended from regression procedures, SEM is a family of statistical techniques 

that allows for various applications, which include: (a) path modeling, (b) confirmatory 

factor analysis (CFA), (c) structural covariance analysis, and (d) LGC modeling among 

others. Applications can be exploratory or confirmatory, applicable to all types of 

designs, and include predictors and covariate effects. Therefore, SEM applications have 

two general goals: (a) to understand the relationships among a collection of variables, and 

(b) to explain variability in a model based on a theoretical rationale (Kline, 2005). While 

these goals are achievable through other statistical venues, SEM is a flexible procedure 

that incorporates measurement error in the model, whereas all other procedures assume 

perfect measurement (e.g., regression, ANOVA, and time-series analysis). It is unrealistic 

to assume that the types of variables often studied in the social and behavioral sciences 



 
 

 

will include perfect measurement because of the abstract nature of the latent traits of 

interest.  

Applications of SEM are partitioned into two components: (a) a measurement 

model (i.e., same as a CFA) and (b) a structural model. The measurement model 

identifies the relationships between the observed variables and latent variables (i.e., factor 

loadings), whereas the structural model displays the directional relationships among the 

latent variables. Unique to SEM application is the specification of relationships in the 

measurement and structural models, based on theory and previous research to define the 

relationships. By specification of the model, matrix equations are derived, which 

represent the theoretical relations among and between the observed and latent variables 

(Jöreskog & Sörbom, 2001). In addition to matrix equations, SEM applications can 

jointly display the measurement and structural model in diagram form. Both venues of 

the communication of SEM models (i.e., matrix notation and diagram) will be discussed 

specific to LGC models in the latter portion of this chapter.  

The foundations of SEM procedures are focused on the analysis of variance-

covariance matrices (e.g., also referred to as the unstandardized correlation matrix), 

which assess the strength of the relationships among two or more variables. Two types of 

variance-covariance matrices are at the forefront of SEM parameter estimation and model 

fit, specifically the observed variance-covariance matrix (Σ) and the model implied 

variance-covariance matrix (Σ(θ)). The Σ represents the relationships (covariance) 

between all observed variables and the variance on each observed variable, whereas Σ(θ) 

is a variance-covariance matrix that is explained by the specified  model (Jöreskog & 

Sörbom, 2001). Unique to SEM applications is the Σ(θ), which is an a priori hypothesized 



 
 

 

model specified by the researcher, of the relationships among and between the observed 

and latent variables. The framework of SEM is rooted in an examination of how well the 

Σ(θ) matches or accounts for the relationships in the Σ. Essentially, a SEM analysis 

determines how well the researchers’ hypothesized model (Σ(θ)), accounts for the 

relationships found in the data (Σ). The comparison of the Σ(θ) to the Σ can be conducted 

by use of a variety of estimation procedures (e.g., unweighted least squares, generalized 

least squares, generally weighted least squares, etc.); however, the focus of this 

dissertation is on maximum likelihood (ML) estimation techniques because of their 

frequent use in application studies. A ML fitting function is used to estimate the Σ(θ) by 

minimization of the discrepancies between the Σ(θ) and the Σ (Jöreskog & Sörbom). A 

detailed discussion of parameter estimation procedures is provided specific to LGC 

modeling techniques in the following section. 

In summary, SEM applications have the benefit of flexible modeling and 

estimation of measurement error, through the use of measurement and structural models 

where the observed variance-covariance matrix is compared to the model implied 

variance-covariance matrix to examine the plausibility of the model. As a type of SEM, 

LGC models include identical components of estimation of the variance-covariance 

structure; however, LGC procedures include the estimation of latent means and are 

exclusively focused on longitudinal change in traits across time.  

Latent Growth Curve Models 

 A basic LGC model can be considered a special case of a CFA. The most 

parsimonious LGC model is a two factor CFA with three indictor variables, meaning 

there are two latent factors measured by three observed variables total, across both latent 



 
 

 

factors. In a typical SEM application, a parsimonious CFA model with three observed 

variables could only be estimated for one latent trait, not two latent traits as represented 

in the LGC model. The underlying differences are due to issues of identification where 

LGC models fix or free (i.e., estimate) different variables than in a standard SEM 

application. The topic of LGC model identification is described in detail in the latter 

portion of this chapter.  

Standard SEM procedures for estimation of the variance-covariance parameters 

can be described in CFA matrix notation, as displayed in Equation 2.1. 

εη +Λ=y
  

    (2.1) 

Where, y is a vector of the observed measures for each time point, Λ is matrix of fixed 

factor loadings to represent time, η is vector of latent factors, and ε is a vector of the 

residuals (Bollen & Curran, 2006). For each observed trait, a LGC model includes two 

latent factors to represent the trajectory of growth, including: (a) a latent intercept (ηi1), 

which represents the initial level in the trait at baseline; and (b) a latent slope (ηi2), which 

indicates growth in the trait over the specified time period (Duncan et al., 2007). The 

individual growth trajectories for each ith participant are estimated based on the vector of 

a latent factor (η).  

A basic LGC model with three time points is represented in expanded matrix 

notation in Equation 2.2. 
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The observed measures (i.e., yi1 is time point 1, yi2 is time point 2, yi3 is time point 3 for 

each ith individual) are treated as indicators of the latent intercept and latent slope (i.e., 

characteristics of the growth trajectory). To represent the anticipated change in the trait of 

interest, LGC modeling researchers fix the factor loadings depending on the time 

intervals of data collection, which differs from the standard SEM procedures where the 

majority of factor loadings are estimated (Duncan et al., 2007). The factor loadings (λ11, 

λ12, λ13) from the latent intercept (ηi1) to the observed variables (yit) are fixed to a value of 

1.0, which represents the equal influence of all observed measurement points to the latent 

intercept. The factor loadings from the latent slope (ηi2) to the observed variables (yit) are 

typically fixed with linear trend contrasts to represent the coding of time (λ21, λ22, λ23 in 

general SEM; λt, in LGC modeling, where t represents the time point; Duncan et al.). A 

typical LGC model application, with equal intervals of data collection, would fix λt = 0, 

1, 2. . .  n – 1 to represent baseline, time point two, and time point three, respectively. 

Time can be coded with the use of alternative procedures; however, in this study standard 

polynomial coding was applied because of its frequent use in applications. Equations 2.1 

and 2.2 are occasionally referred to as the level one model, similar to concepts found in 

other growth curve models (e.g., HLM). 

To assist in the explanation of the underpinning of LGC modeling, I applied the 

example of the measurement of student achievement with a basic linear LGC model over 

three time points (i.e., Grades 9, 10, and 11). For example, a researcher interested in the 

trajectory of growth in student achievement between Grades 9 to 11 could apply a 

univariate linear LGC model to estimate the linear growth trajectory (including the initial 

level and rate of growth) for each student and for the entire sample. Equation 2.2 can be 



 
 

 

explained in terms of the student achievement example where the achievement scores 

from each ith participant for the three time points of Grade 9 (yil), Grade 10 (yi2), and 

Grade 11 (yi3) are a function of: (a) the fixed factor loadings (e.g., 1 in the first column of 

the factor loading matrix and the λt  = 0, 1, and 2 represent the equal interval time periods 

from Grades 9-11 in the second column of the factor loading matrix); (b) the latent 

estimate of the initial level of achievement in Grade 9 (ηi1) and latent growth from Grades 

9-11 grade (ηi2); and (c) residuals associated with the achievement scores in Grades 9 

(εi1), 10 (εi2), and 11 (εi3) for each ith participant. Henceforth, the ith notation, which 

represents each participant’s individual growth trajectory, will not be included until the 

discussion of latent means. In other words, an applied researcher enters the known 

information of three observed measure of academic achievement from Grades 9 to 11 and 

the coding of time into the LGC model equation. From this information, the errors 

associated with each observed measure estimated, along with the initial level of academic 

achievement in 9th grade and rate of growth in achievement over Grades 9 to 11. In 

summary, the univariate linear LGC model of student achievement assumes that the 

observed measures of student achievement are a function of the coding of time, the 

growth trajectory, and errors in the observed measures of achievement.  

Commonly, both SEMs and LGC models are described in diagram format due to 

its ease in interpretation compared to matrix notation. The student achievement example 

is displayed in Figure 2.1. For audiences not familiar with SEM diagram notation, 

rectangles represent observed variables (e.g., test scores), circles imply latent variables, 

the triangle is a constant term, the single headed arrow suggests the direction of the 

relationship from one variable to another, and the double headed arrow implies the 



 
 

 

covariance between two variables (Kline, 2005). The diagram notations correspond to the 

description of LGC models presented in the following three pages.  

  

Figure 2.1.  Univariate linear LGC model of student achievement 

As displayed in Figure 2.1, η1, the latent intercept, represents initial level of 

student achievement in Grade 9, and η2, the latent slope, indicates the rate of growth in 

student achievement from Grades 9-11. The observed measures of student achievement in 

Grades 9, 10, and 11 are denoted as y1 , y2, and y3, respectively. Observed measures of 
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student achievement for Grades 9, 10, and 11 are indicators of the latent constructs of 

initial level of achievement in Grade 9, and the rate of growth in achievement from 

Grades 9-11. The λt  are fixed with linear trend contrasts of 0, 1, and 2 to represent the 

coding of time for Grades 9, 10, and 11, with the factor loadings from the latent intercept 

to the latent slope fixed to the value of 1.0.  

As in all SEM models, the symbols ε1, ε2, and ε3 represent the random errors of 

measurement associated with each observed variable, and θε1, θε2, and θε3 signify the 

residual variances for each of the random errors (Kline, 2005). Also, the variance and co-

variation among the latent variables are estimated with use of traditional SEM 

parameters; Ψ11 symbolizes the variances of the latent intercept, η1, Ψ22 stands for the 

variance of the latent slope, η2, and Ψ12 represents the covariance between the η1 and η2 

factors (Bollen & Curran, 2006). In the achievement example, the ε1, ε2, and ε3 are the 

random errors of the observed achievement scores, the θε1, θε1, and θε1 are the variance 

estimates of the errors of observed achievement scores in Grades 9, 10, and 11; Ψ11 is the 

variance estimate of the initial level of achievement in Grade 9, Ψ22  is the variance 

estimate of rate of change in achievement from Grades 9-11, and Ψ12  is the covariance 

between the initial level of achievement in Grade 9, and the rate of change from Grades 

9-11. In the student achievement example, variances on the latent intercept would 

indicate that students differed on their initial achievement scores in Grade 9 and 

variances on the latent slopes would indicate that they grew at different rates from Grades 

9 - 11; therefore, some students might improve on achievement at a faster rate across time 

than others. 



 
 

 

  In addition to the standard parameters of SEM described above, LGC models 

include estimation of a vector of latent means (α) to represent the trajectory of growth. 

The means are estimated by “fixing the intercept of the repeated measures to zero” 

(Bollen & Curran, 2006, p. 36). By inclusion of the constant of zero in Figure 2.1, the η1 

and η2 factors can be expressed as a function of the α (latent means) and individual 

deviations away from the latent mean (ζ, also known as the disturbance), as displayed in 

Equation 2.3 (Bollen & Curran).  

ζαη +=
     (2.3) 

In LGC modeling, ζ have a mean of zero, variance and covariance corresponding to the 

variance and covariance of the  latent trait, and are assumed to be uncorrelated with the 

residuals of the observed variables (e.g., covariance of ζ and εit  is equal to zero) (Bollen 

& Curran). Drawing from HLM concepts, Equation 2.3 is referred to as the level two 

model. In the achievement example, Equation 2.3 can be written in expanded form to 

represent the growth trajectory, including the estimation of the initial level of 

achievement in Grade 9 (αi1) and rate of growth in achievement from Grades 9-11 (αi2) 

for each ith individual in the sample. The equations specific to each latent variable in the 

achievement example are displayed in Equations 2.4 and 2.5.   
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Estimation of the initial level of achievement in ninth grade (ηi1) is a function of: (a) the 

latent mean of the initial level of achievement in ninth grade (αi1) and (b) some deviations 

away from the average achievement level in Grade 9 (ζi1). Similarly, estimation of the 

growth in achievement from Grades 9-11 (ηi2) is a function of: (a) the latent mean of the 

(2.4) 
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growth in achievement (αi2) and (b) some deviations away from the average growth in 

achievement from Grades 9-11 (ζi2). The ζi1 and ζi2  have a mean of zero, variance of Ψ11 

and Ψ22, a covariance of Ψ12, and are assumed to be uncorrelated with εit. 

The estimation of the latent means and deviations can be expressed within the 

standard matrix notation of a CFA by the substitution of Equation 2.3 into Equation 2.1, 

as displayed in Equation 2.6, where αη is the estimated latent means for each η (Bollen & 

Curran, 2006). 

( ) εζαη ++Λ=y
     (2.6)

 

Consequently, the diagram notation presented in Figure 2.1 corresponds to Equation 2.6, 

with joint representation of the variance-covariance matrices and the latent means (e.g., 

includes both level one and two equations).  

Parameter Estimation 

The additional estimation of latent means in LGC modeling requires a 

fundamental addition to standard CFA estimation procedures. As discussed in the 

previous section on SEM, the central concept of parameter estimation and model fit is to 

examine how well the model implied covariance matrix (Σ(θ)) can reproduce the 

observed covariance matrix (Σ). The LGC models are based on testing the same null 

hypothesis, shown in Equation 2.7, that is tested in standard SEM.   

Σ = Σ(θ)               (2.7) 

For the example of student achievement with three time points, Equation 2.7 can be 

written in expanded matrix notation, as displayed below in Equation 2.8 (Bollen & 

Curran, 2006). 
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  (2.8) 

The first matrix is the observed covariance matrix where VAR is the variance of each time 

point (i.e., variance in achievement scores for Grades 9, 10, and 11), the COV is the 

covariance between two time points (e.g., COV (y1, y2), the covariance of achievement 

scores between Grades 9 and 10 grade). The latter is the model implied matrix that 

matches the variances and covariances described in Figure 2.1 for the sample. Thus, the 

objective is to specify a model so that a model implied variance-covariance matrix 

reproduces, or is similar to, the observed covariance matrix. According to the student 

achievement example, the goal is to specify a model of growth in student achievement so 

that the hypothesized relationships in student achievement (model-implied variance-

covariance matrix) reproduce the relationships found in the data (observed variance-

covariance matrix). 

In addition to estimation of the variance-covariance matrices, LGC models are 

used to examine the latent means of the growth trajectory, where the model-implied mean 

vector, µ(θ), is estimated to determine how closely it reproduces the observed mean 

vector, µ, as displayed in Equation 2.9.  

µ = µ(θ)                                           (2.9) 

According to the student achievement example with three time points, Equation 2.9 

would be expressed as two mean vectors, shown in Equation 2.10.  
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The first vector consists of the estimated mean values on achievement for each time point 

(i.e., Grades 9 (µy1), 10 (µy2), and 11 (µy3)). The vector on the right side of the equals sign 

is the model-implied mean vector which includes the means of growth trajectory, where 

µα1 is the population mean of the latent intercept, and µα2 is the population mean of the 

latent slope (Bollen & Curran, 2006). According to the hypothesized achievement 

example: (a) the estimated mean achievement level in Grade 9 (µy1) is equal to the 

population mean of the initial level of achievement in Grade 9 (µα1); (b) the estimated 

mean achievement level in Grade 10 (µy2) is equal to the population means of the initial 

level of achievement in Grade 9 (µα1) plus the rate of growth in achievement from Grades 

9 to 11 (µα2); and (c) the estimated achievement level in Grade 11(µy3)  is equal to the 

population mean of the initial level of achievement in Grade 9 (µα1) plus two times the 

rate of growth in achievement from Grades 9 to 11(µα2). In Equations 2.8 and 2.10, the 

parameters estimates are substituted in place of the population parameters to estimate the 

model implied covariance and mean vectors (e.g., µα1 = α1). For example, the variances of 

achievement in Grades 9, 10, and 11, the covariance in achievement among Grades 9 to 

11, and the latent means in Grades 9 to 11 are substituted in place of the population 

parameter of student achievement to allow for estimation of the model-implied variance, 

covariance, and latent mean parameters.   

The implied variance-covariance matrices and mean vectors, found in Equations 

2.7 and 2.9, are critical to answering longitudinal research questions. The ML estimation 



 
 

 

procedures are used to estimate the values of the model-implied variance-covariance 

matrices and mean vectors to determine how well they reproduce the observed sample 

values. As previously discussed, the population means (µ) and variance-covariance 

matrix (Σ) are unobtainable; therefore, the sample values of the means (y ) and 

covariances (S) are used in the ML fitting function. For ML estimation, the latent means 

(α1 and α2), the variances of the latent means (Ψ11 and Ψ22), and the covariance between 

the latent means (Ψ12) are jointly denoted by θ, and “the goal is to choose values of θ to 

make µ(θ) close toy and Σ(θ) close to S” (Bollen & Curran, 2006, p. 41). In Equation 

2.11, the ML fitting function for LGC model parameter estimation is described. 

( ) ( )[ ] ( )[ ] ( ) ( )[ ]θµθθµθθ −Σ′−−−Σ+−Σ= −− yypStrSFML
11||ln||ln

     (2.11)
 

A FML value can range from zero to infinity, with a value of zero indicating that the model 

implied variance-covariance matrix Σ(θ) is the same as the sample covariance matrix (S), 

and the model-implied mean vector (µ(θ) is identical to the sample values of the means 

( y ) (Bollen & Curran). When a model has zero degrees of freedom (df), the FML  value 

will equal zero because the model implied parameters are identical to the sample 

parameters. In such case, the model would fit the data perfectly, which is discussed in 

detail in the model identification section. However, when a model has df ≥ 1, a FML value 

equal to zero occurs only theoretically because an exact match between the model 

implied and observed variance-covariance matrix and mean vectors does not occur in 

applications. As discrepancies between the model-implied parameters (Σ(θ) and µ(θ)) and 

the observed parameters (S and y ) increase, the FML value simultaneously increases; 



 
 

 

therefore, large FML values are not desirable as they suggest the researcher’s model does 

not fit the data. 

In LGC modeling, the FML value is a measure of the discrepancy between the 

observed and model-implied variance-covariance matrices and latent mean vectors. 

Therefore, the FML values are utilized in the computation of fit indexes. Compared to 

standard model fit estimation procedures in SEM that usually evaluate only the variance-

covariance matrices, evaluation of LGC model fit includes the evaluation of 

discrepancies in latent means as well. The additional estimation of the latent mean 

vectors in the FML may influence the interpretation and standard cutoff values for fit 

indexes that are used to assess poor vs. adequate model fit in general SEM applications. 

A comprehensive discussion of fit indexes and the influences of the estimation of latent 

means is presented in the second portion of Chapter II.  

The estimation of the Σ(θ) and µ(θ) parameters is used to answer a variety of 

research questions related to change or growth in a latent trait. The µ(θ) values describe 

the overall expression of the growth trajectories, which answers two questions in regard 

to the achievement example: (a) What is the average initial level of achievement in Grade 

9? and (b) What is the average rate of growth in achievement between Grades 9 and 11? 

(similar to the standardized betas in multiple regression). The Σ(θ) matrix includes the 

variances and covariances of the latent factors and observed variables. The variances 

reflect the amount of intra-individual variation in the initial status and rate of growth. The 

covariance between the latent means measures the relationship between initial status and 

the rate of growth for the selected time period. Confidence intervals are computed for the 

variance and covariance estimations, and can be computed for the latent means, to answer 



 
 

 

three research questions in terms of the achievement example: (a) Do students 

significantly differ in their initial level of achievement in Grade 9? (b) Do students 

significantly differ in their rate of growth in achievement from Grades 9-11? and, (c) Is 

there a significant relationship between the achievement in Grade 9 and the rate of 

growth in achievement from Grades 9-11? In addition, confidence intervals are computed 

for the residual variance estimates to answer the question, Is there significant variability 

that is unexplained in the repeated measure of achievement from Grades 9 to 11? If 

significant variability is found in the residual variances, then covariates and/or predictors 

variables should be examined. In the student achievement example, parental involvement 

could be considered a predictor and account for a significant amount of variability in the 

trajectory of student achievement, which includes both the initial status and rate of 

growth. 

Statistical Assumptions 

When the two families of statistical techniques are merged, LGC models display 

the benefits of both general SEM and growth curve models. Accompanying these benefits 

are assumptions or required conditions that allow for proper interpretation of longitudinal 

change within the LGC modeling framework. Since LGC modeling is a novel field, 

methodologists are rapidly discovering new advances to address what were previously 

defined as assumptions or restrictions (Preacher, Wichman, MaCallum, & Briggs, 2008). 

Thus, the specific assumptions associated with LGC models are highly dependent upon 

the date of publication of the source, and in some cases, the specific author(s) of the 

source. The following section describes the assumptions imposed in the majority of LGC 



 
 

 

modeling applications and simulations, and these were the assumptions for the current 

research study.    

First and foremost, LGC modeling researchers must assume that the latent trait of 

interest is theoretically assumed to change over the time period of measurement. For 

example, theoretically, an intelligence quotient is not related to the passage of time and 

would not be hypothesized to change from Grades 9-11; thus, a LGC model would not be 

appropriate to measure intelligence during those years. Secondly, a minimum of three 

waves of data are required to estimate model parameters and model fit due to issues of 

model identification, which are discussed in a later section of Chapter II.  

Furthermore, a third collection of assumptions is related to the residuals and 

disturbance terms, which differs from standard SEM assumptions. First, the means of the 

residuals and disturbance terms are fixed to zero within each participant, and for the 

residuals, the means are also fixed to zero at each time point (εit = 0, for i = 1, 2,…N, t = 

1, 2,…t; ζi1 = 0 for i = 1, 2,…N;  and ζi2 = 0 for i = 1, 2,…N; Bollen & Curran, 2006; 

Preacher et al., 2008). According to the student achievement example, if it were possible 

to observe multiple measures of the latent trait of student achievement in Grade 9 (i.e., or 

Grade 10, or Grade 11), the researcher would assume that the average disturbances (i.e., 

random measurement error) of the achievement scores in Grade 9 would be equal to zero 

across the multiple measurement. In other words, the deviations away from the latent 

intercept and latent slope factors in Grade 9 will average to zero if multiple 

measurements were taken at the same time point. Accordingly, the covariances between 

the residuals and disturbance terms  are fixed to zero within and between waves of data 

for each participant, assuming there is no relationship among and between the 



 
 

 

disturbance terms and the residual errors (COV(εit, ζi1 ) = 0; COV(εit, ζi2) = 0; COV(ζi1, ζi2) 

= 0; COV (εit, εit) = 0 (Bollen & Curran; Preacher et al.). For instance, the errors in the 

student achievement scores are assumed to be unrelated within each participant and 

between the measurement points in Grades 9, 10, and 11. Likewise, all co-variations 

between the residual terms and the disturbances of the latent factors (e.g., the latent 

intercepts and slope factors) are fixed to zero for each individual, which implies no 

relationship between the errors in the observed measurements of student achievement and 

the deviations away from the initial status of student achievement in Grade 9, and the rate 

of growth in achievement from Grades 9-11. The assumptions placed on the residual and 

disturbance terms are related to model identification, or the ability to estimate growth 

parameters and model fit, as discussed later in Chapter II. However, applied researchers 

may modify the residual and disturbance assumptions in application depending on the 

specific LGC model examined.   

Finally, the computation of the FML fitting function, used to estimate the desired 

model parameters, requires the necessary assumption of multivariate normality (Bollen & 

Curran, 2006). To summarize, the customary assumptions associated with LGC modeling 

include: (a) theoretical support, (b) a minimum of three waves of data, (c) restriction 

imposed on the residual terms, and (d) multivariate normality. However, depending on 

the author and year of publication, LGC modeling assumptions may vary.     

Characteristics of Latent Growth Curve Models 

Thus far, a parsimonious linear LGC model has been discussed, specifically, a 

CFA model with two latent factors and three observed variables. However, applications 

utilize more complex models in comparison to the basic model of student achievement 



 
 

 

discussed earlier. Typically, social and behavioral sciences applications include 

variations in sample sizes, and may require additional waves of data to capture the 

hypothesized time period of change. Although sample size is not a model characteristic 

per say, variations in sample sizes effect model estimation; therefore, decisions regarding 

sample sizes are critical to applied longitudinal researcher and are considered modeling 

characteristics in this dissertation. In addition, theories of change commonly anticipate 

non-linear growth, multivariate growth, and inclusion of covariate(s). In this dissertation, 

three design features of LGC models are explored as independent variables, which 

include variations in: (a) sample size, (b) waves of data, and (c) model complexity. The 

following sections describe the three characteristics of LGC models examined, as well as 

descriptions of previous LGC modeling simulation studies and data conditions found in 

LGC modeling applications. To understand the methodological conditions utilized in 

applied studies, a synthesis of published LGC modeling articles (i.e., from 2006-2008) 

was conducted based on a total of 29 application studies¹. 

Sample Size 

Depending on resources, a LGC modeling researcher may encounter large 

variations in sample sizes. For example, state-wide educational assessments include large 

sample sizes, while a pilot study of growth in adolescents’ psychological development 

may include a small sample size. Therefore, depending on the latent trait of interest and 

associated resources, LGC modeling researchers may investigate designs varying in 

sample size.  

 As in all SEM models, varying the sample size changes the participants (i.e., i) at 

each time point, but does not directly alter the structure of the LGC model. For example, 



 
 

 

the diagram presented in Figure 2.1, corresponding to Equation 2.6, does not change with 

the exception of more participants (i.e., i) included in the model. The current study 

simulated LGC models with no missing data; therefore, all time points had the same 

number of observations. In the LGC modeling applications reviewed, sample sizes 

ranged from 65 participants (Hardy & Thiels, 2007) to 3,602 participants (Grimm, 2007), 

with a median of 356 participants (M = 690.75, SD = 911.70). Thus far, LGC 

methodologists have focused on investigations of the statistical power of the LGC model, 

in order to provide methodological guidelines of sample sizes, which are necessary to 

obtain adequate statistical power. To briefly summarize, LGC models under ideal 

conditions can produce adequate power with a relatively small sample size (i.e., 100-200; 

Muthén & Curran, 1997; Muthén & Muthén, 2002). However, conditions found in 

application studies include attrition, reduced reliability, inclusion of covariates, and 

missing data, which require larger sample sizes to adequately detect group differences 

and test parameter estimates (i.e., N > 500 or N > 1,000; Fan, 2003; Hertzog et al., 2006; 

Muthén & Muthén). Concisely, LGC modeling applications include a large range of 

sample sizes, with methodological findings to suggest adequate statistical power with as 

few as 100 participants for a parsimonious model and as large as 1,000 for more complex 

models.  

Waves of Data 

 As discussed in Chapter I, additional waves of data increase the reliability of the 

LGC model; however, additional waves require additional resources (e.g., time and 

money for data collection). Furthermore, waves of data define the time period of interest 

in which growth parameters are estimated and should correspond to the research question 



 
 

 

and/or theory being investigated. For example, a researcher may be interested in growth 

in student achievement from K-12 and could measure achievement with 13 waves of data 

corresponding to kindergarten and Grades 1 through 12. However, another researcher 

may only be interested in growth in student achievement in high school; thus, the 

corresponding LGC model would only include Grades 9 – 12. Therefore, the waves of 

data represented in a LGC model vary to be consistent with the research question(s) as 

well as available resources. As a result, specification of the number of waves of data in a 

LGC model is a critical decision for applied researchers.  

As the waves of data, or time points, are added to a LGC model, an additional 

observed variable (yti) is included for each time point (t = 0, 1, 2,… n) with additional 

fixed paths from the latent factors to the observed variables (λ1 and λt). In the 

achievement example, the research question(s) could be adapted to learn about the 

growth in achievement from Grade 9 to freshman year of college. The LGC model would 

then include five waves of data, as displayed in Figure 2.2. 

Compared to the more parsimonious univariate linear LGC model with three 

waves of data presented in Figure 2.1, the model with five waves of data includes the two 

additional observed variables (y4 and y5), which represent achievement in Grade 12 and 

freshman year of college, respectively. Also, the model estimates four additional 

parameters, including: two residuals of the observed measurement (ε4, residual of 

achievement in Grade 12 and ε5, residual of achievement freshman year of colleges), and 

two variances of the residual (θ4, variance of residual of achievement in Grade 12 and θ5, 

the variance of residual of achievement freshman year of college). Therefore, additional 



 
 

 

waves of data in a LGC model increase the model complexity by including additional 

observed variables.  

 

 

Figure 2.2.  Univariate linear LGC model with five waves of data 

Previous LGC modeling simulation studies have investigated waves of data in 

relation to statistical power that have ranged from three to eight waves of data. However, 

the majority of investigations included only the conditions of three, four, and five waves 

of data, which suggests that minor improvements are obtained beyond five waves when 
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adequate sample size is achieved (Fan, 2003; Hertzog et al., 2006; Muthén & Curran, 

1997; Muthén & Muthén, 2002). Similar patterns were found in the LGC modeling 

applications reviewed, as displayed in Figure 2.3, with three to five waves of data being 

frequently utilized. In conclusion, while LGC modeling applications and simulation 

studies have investigated a range of waves of data (e.g., three to eight time points), 

typically, researchers have focused on three to five waves of data.  

 

Figure 2.3.  Waves of data and sample size of 29 application studies 

Model Complexity 

In LGC modeling, additional waves of data increase the model complexity by the 

inclusion of additional observed variables and fixed paths. However, in this dissertation 

and in most of the LGC modeling literature, waves of data are defined as a separate 

construct from model complexity because of the difference in the LGC modeling 

researcher’s decisions in regard to specification of the model. Decisions regarding the 

number of waves of data should be defined according to the hypothesized time period of 

change. Typically, conditions of model complexity include additional characteristics of 
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the growth trajectory (e.g., the shape of the growth trajectory, univariate or multivariate 

growth trajectories, and potential covariates of the trajectory of change). The following 

three sections define the conditions of model complexity utilized in this dissertation and 

include: (a) reasons for inclusion of the condition of model complexity, (b) the 

representation of model complexity in LGC modeling, and (c) simulation studies and 

applications that used the condition of model complexity.  

Nonlinear growth.  Frequently encountered in human growth or human 

development is nonlinear growth, which requires additional latent factors to represent the 

curvilinear nature of the growth (Burchinal & Appelbaum, 1991). While an assortment of 

procedures can be applied to represent nonlinear growth in LGC modeling (Bollen & 

Curran, 2006), the majority of nonlinear applications specified quadratic growth in the 

trait of interest (i.e., 31% of the studies reviewed). Moreover, Coffman and Miller’s 

(2006) LGC model study simulated quadratic growth and compared the results to linear 

growth models under limited conditions. Therefore, this dissertation included the 

condition of quadratic growth.   

As opposed to linear growth, quadratic growth assumes that a latent trait of 

interest begins with a slight growth and moves into moderate and high growth, and then 

plateaus with a slight decrease at the end of growth. A primary example of quadratic 

growth in the social and behavioral sciences is cognitive functioning across a lifetime. 

For example, cognitive functioning is expected to have slight increase at birth, with a 

large increase in youth and young adults, a plateau in mid to late adulthood, and a 

decrease in a geriatric population. In term of academic achievement from Grades 9 to 11,  

researchers in the field of education do not assume that achievement has a slight increase 



 
 

 

in Grade 9, with a moderate to large increase in Grade 10, a plateau in the end of Grade 

10 and beginning of Grade 11, and slight decrease at the end of Grade 11. However, by 

changing the trait of interest from academic achievement to knowledge retention, an 

educational researcher may apply a quadratic LGC model because retention of 

knowledge is assumed to increase, plateau, and then have a slight decrease. Therefore, 

application of quadratic LGC modeling is dependent on the expected pattern of growth. 

Figure 2.4 illustrates a quadratic LGC model for knowledge retention from Grades 9 to 

11.  

Notice, the latent quadratic slope factor (η3), the variance of the latent quadratic 

slope factor (ψ33), and the latent mean of the quadratic slope factor (α3) are incorporated 

in the model to represent quadratic growth in the trait of interest. According to the 

achievement example, η3 is the quadratic growth in achievement from Grades 9-11, ψ33 is 

the variance of the quadratic growth in achievement from Grades 9-11, and α3 is the 

latent mean of the quadratic growth in achievement from Grades 9-11. 

Along with the additional latent factor, variance and mean parameters are 

associated with unidirectional paths from the quadratic factor to the observed variables 

(λq = 0, 1, 4), which are fixed to the squares of the linear factor loadings (Preacher et al., 

2008). Additional covariances are represented in the model, including the covariance 

between the intercept factor and quadratic slope factor (Ψ13) and the covariance between 

the linear slope factor and the quadratic slope factor (Ψ23). In terms of the hypothesized 

achievement example, Ψ13 represents the relationship between the initial level of 

achievement in Grade 9 and the quadratic growth in achievement from Grades 9-11, and 

Ψ23 indicates the relationship between the linear growth in achievement from Grades 9-11 



 
 

 

and the quadratic growth in achievement from Grades 9-11. For example, a large value of 

the covariance between the intercept and quadratic slope factor (Ψ13) suggests that 

students’ rate and pattern of growth may be related to where they started, as indicated by 

their initial achievement level.  

 

Figure 2.4.  Univariate quadratic LGC model of knowledge retention 
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The η3 is used to estimate the overall quadratic growth estimate (α3) and deviation 

from the quadratic slope (ζ3), through the procedures described in Equations 2.3 to 2.5. 

The latent quadratic growth factor in achievement from Grades 9-11, (η3) is separated 

into the overall quadratic growth in achievement from Grades 9-11, (α3), and some 

deviation from the quadratic slope of achievement from Grades 9-11, (ζ3). Therefore, α3 is 

the estimate of latent quadratic growth in student achievement and ζ3 is a measure of 

external factors (e.g., students’ concentration level).  In summary, to represent quadratic 

growth an additional latent factor, variance of the latent factor, latent mean, deviation 

term, and two covariances are added to the model.   

The validity of the representation of growth is commonly assessed by three 

different methods. First, confidence intervals can be computed for the estimated linear 

growth (α2) and the estimated quadratic growth (α3) to determine if the latent means of the 

linear and quadratic slope factors are significant across participants (Bollen & Curran, 

2006). According to the achievement example, confidence intervals for the estimated 

mean linear growth from Grades 9-11, (α2), and the estimated mean quadratic growth 

from Grades 9-11, (α3), would be computed to determine if they are significant. If the 

quadratic growth factor includes a significant amount of variability, potential covariates 

and predictors should be explored. In the student achievement example, if the quadratic 

latent growth factor (α3) was found to be significant, then the researcher should explore if 

parental involvement, or some other potential predictor or covariate, could explain some 

of the variability in growth in student achievement. Secondly, a χ² difference test is 

computed to determine if the quadratic slope factor improves the model fit, compared to 

linear growth, with significant results suggesting preference for the quadratic 



 
 

 

representation of growth (Willett & Sayer, 1994). Thirdly, fit indexes for a linear model 

can be compared to fit indexes for a quadratic model to assess which model displays the 

most desirable fit. While the procedures to assess the validity of the shape of growth are 

frequently applied, recent methodological sources have cautioned the sole use of these 

data-driven procedures. 

Preacher et al. (2008) cautioned against the sole use of significance testing to 

determine the shape of growth, re-enforcing that theory must define the appropriate type 

of growth, and researchers should not “capitalize on possible idiosyncratic characteristics 

of the particular sample under scrutiny” (p. 51). Furthermore, Bollen and Curran (2006) 

emphasized that theories of change in latent traits found in the behavioral and social 

science are rarely hypothesized to represent quadratic growth, despite the frequent 

application of quadratic LGC models. For example, quadratic growth is expected to 

represent lifetime cognitive functioning; however, researchers rarely have the resources 

to measure cognitive function over a lifetime and are commonly examining segments of 

development that may require different representations of growth (e.g., cognitive 

functioning in adolescents). Finally, the application of a quadratic LGC model requires 

the estimation of additional parameters, in comparison to a linear LGC model. Therefore, 

researchers need to find the most appropriate balance among: (a) theoretical support; (b) 

effects of additional parameter estimates (i.e., increase in model complexity); and (c) the 

hypothesized bias of significance testing. Due to the complex debate that LGC modeling 

researchers encounter related to representation of growth, this dissertation included the 

condition of a univariate quadratic LGC model as a level of model complexity.  



 
 

 

Multivariate LGC models. Within human development, growth simultaneously 

occurs among multiple traits and, frequently researchers are interested in the covariation 

among growth in two or more latent traits. The achievement example could be expanded 

to include: (a) growth in students’ mathematical achievement, growth in students’ verbal 

achievement, and of particular interest, the covariation between mathematical and verbal 

growth in achievement from Grades 9-11. Multivariate LGC modeling representation is 

separated into models to demonstrate first-order and second-order characteristics. The 

latter implies a higher order latent factor, which symbolizes the joint, global trait 

comprised of the two more specific traits (e.g., an additional global latent factor of 

achievement including paths to the mathematical and verbal latent factors; McArdle, 

1988). The first-order representation, utilized in this dissertation, is referred to as an 

associative LGC model, which estimates the covariation among growth in two or more 

latent variables, but does not include a second order factor, which represents the 

combined traits of the first order factors (Duncan et al., 2007). The multivariate 

representation of achievement includes growth in both mathematical and verbal 

achievement from Grades 9-11, as displayed in Figure 2.5. Notice that estimation of a 

multivariate LGC model drastically increases the model complexity through inclusion of: 

(a) additional observed parameters to represent the second latent trait (y4 is verbal 

achievement in Grade 9, y5 is verbal achievement in Grade 10, and y6 is verbal 

achievement in Grade 11); (b) associated estimated residuals (ε4, ε5, ε6); (c) fixed factor 

loadings from the observed variables to the latent factors; (d) variance of the additional 

latent factors (Ψ33, Ψ44); (e) the covariation between the latent factors (Ψ24, Ψ34); and (f) 

the latent means of the additional latent factors (α3 and α4).   



 
 

 

Despite the fact that previous simulation studies have not included multivariate 

LGC models, the practical appeal to human developmental research and the dramatic 

increase in model complexity requires methodological attention. Thus, this dissertation 

included a multivariate LGC model as a level of model complexity due to the expected 

increase in application in the fields of behavioral and social sciences.   
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Figure 2.5.  Multivariate linear LGC model of student achievement 



 
 

 

 

Inclusion of a covariate. In most models of human behavior, change does not 

occur independently of other contextual factors, with covariates of growth necessary to 

provide a comprehensive model of change. A covariate in LGC modeling can be either 

continuous or categorical and is presented in the same manner as in general SEM 

applications where an additional observed variable is added to the model. The LGC 

models can include two categories of covariates: (a) time-varying covariates where an 

observed measure of the covariate is collected at each time point (e.g., classroom 

attendance in Grades 9, 10 and 11), and (b) time invariant covariates where one measure 

of the covariate is added to the model under the assumption that the variable will not 

change during the selected time period (e.g., participants’ gender; Duncan et al., 2007). 

Frequently, time invariant covariate models are utilized in application studies and have 

been examined by Hertzog et al. (2006) and Muthén and Muthén (2002) in LGC 

modeling simulation studies. Therefore, the condition of a single time-invariant covariate 

added to a univariate LGC model is included as a level of model complexity.  

 Similar to all growth curve models, the addition of a covariate or predictor to a 

basic LGC model is called a conditional LGC model, whereas the models presented thus 

far are considered unconditional LGC models (Meredith & Tisak, 1990). Conditional 

LGC models are generally applied when an unconditional LGC model displays a 

significant amount of variance for the latent intercept and/or latent slope factors (i.e., a 

significant Ψ11 Ψ22, and Ψ33 for a quadratic LGC model, and a Ψ44 for a multivariate LGC 

model). Significant variability of the latent factors (latent means) may be explained by 

another observed or latent trait; therefore, potential covariates of growth in the latent trait 



 
 

 

should be explored. For example, if the univariate LGC model of student achievement 

displayed significant variability for the latent intercept and latent slope factors 

(significant Ψ11 and Ψ22), the corresponding interpretation is that students have significant 

variability in their trajectories of growth from Grades 9 to 11. The subsequent question 

arises as to what is influencing the variability in the initial level of achievement in Grade 

9 and growth in achievement from Grades 9 to 11? Potential covariates could include 

gender, parental education levels, school attendance, IQ, and numerous others. Potential 

covariates can be latent or observed; however, this dissertation will only include observed 

variables. Conditional LGC models are typically applied to explain variability in the 

latent growth trajectories.  

While not typically referenced as a rationale for applying conditional LGC 

models, it is important to highlight that most, if not all theories of change in the social 

and behavioral sciences include characteristics or traits hypothesized to modify or predict 

growth. Behavioral and social science theories tend to be complex, and I cannot identify a 

single theory of change in the social and behavioral sciences that assumes that growth in 

a latent trait is independent of any other trait or characteristic. For example, educational 

psychologists have numerous hypotheses about potential predictors (e.g., time spent in 

the classroom, school attendance, extracurricular activities) and covariates (e.g., parent’s 

education, teacher’s experience, school characteristics, socioeconomic status) of 

academic achievement. The conditional LGC model allows the researcher to examine the 

potential covariate of change in a latent trait. Therefore, the complex nature of human 

development supports the use of conditional LGC models in behavioral and social 



 
 

 

sciences to adequately represent the multiple influences on a hypothesized theory of 

change.  

 Conditional LGC models require alteration to the estimation of the latent means 

presented in Equations 2.4 and 2.5 (i.e., the level two growth curve model) to include a 

time-invariant covariate, as displayed in Equations 2.12 and 2.13. 
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The xi symbol represents a single time-invariant covariate, βηi1 is the random intercept 

parameter, and βηi2 is the random slope parameter, which can both be interpreted similar 

to beta coefficients in a regression equation. However, the ζni1 and ζni2 have an alternative 

interpretation and are disturbances (i.e., conditional variances) with: (a) mean of zero; (b) 

variance of ψ11 and ψ22,  respectively; and (c) a covariance of ψ12 as opposed to the 

variances of the α1 and α2 discussed in Equations 2.4 and 2.5 (Bollen & Curran, 2006). 

Displayed in Figure 2.6 is the alternative structure of the level two LGC model with the 

addition of a single time-invariant covariate of gender in the student achievement 

example.  

 Notice the addition of the covariate effect on the random latent intercept (βηi1) and 

the random slope parameter (βηi2). In the conditional LGC model, the observed time 

points of student achievement are a function of the following: (a) the covariate of gender, 

(b) the disturbance terms, (c) the vector of factor loadings, (d) the latent intercept and 

latent slope, and (e) the residual terms. Therefore, an applied researcher can examine and 

test if the trajectory of growth in achievement, specifically the initial level and rate of 

growth, is moderated by gender. For example, male and female students may begin at the 

(2.12) 
(2.13) 



 
 

 

same level of achievement in Grade 9 (non-significant βηi1); however, males and females 

may differ in their linear slope or growth from Grades 9 to 11 (significant βηi2). 

Figure 2.6.  Univariate linear LGC model of student achievement with a covariate 
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Typically, the covariate effects are displayed in graphical format, as displayed in 

Figure 2.7 for the hypothesized gender effect of growth in student achievement from 

Grades 9 to 11. Notice, both males and females have the same initial status in 

achievement; however, the rate of growth for females is high than males from Grades 9 to 

11. The conditional LGC model with a single time invariant covariate is included in this 

dissertation to examine whether the alternative structure, and representation of a 

conditional LGC model, influences the interpretation of fit indexes. 
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Figure 2.7.   Academic achievement between grades 9 to 11 by gender  

 Summary of LGC Model Characteristics   

 This dissertation includes three characteristics of LGC models (e.g., sample size, 

waves of data, and model complexity), which are the independent variables in the 

simulation of model fit indexes. To briefly review, variations in sample size do not alter 

the LGC model structure; however, the sample size is of critical importance to statistical 

power, with methodological literature providing general guidelines for LGC models. An 

increase in waves of data will increase the number of observed variables and fixed factor 

loadings, as well as increase the reliability of the analysis. Conversely, increasing waves 
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of data require additional resources and should have theoretical or contextual support. 

Model complexity conditions are associated with methodological decisions in regard to: 

(a) the trait(s) of interest represented in the growth trajectory (i.e., univariate or 

multivariate LGC model); (b) the shape of the growth trajectory (i.e., univariate or 

quadratic growth); and (c) need to represent traits which may influence the growth 

trajectory (i.e., inclusion of a covariate). Quadratic growth requires: (a) an additional 

latent factor, (b) variance of the latent factor, (c) covariances among the latent factors, 

and (d) estimation of a latent mean for the quadratic growth factor. Multivariate growth 

dramatically increases model complexity with: (a) additional observed variables and 

latent factors, (b) variance of the latent factors, (c) covariances among the latent factors, 

and (d) estimation of additional latent means. The inclusion of a single time invariant 

covariate creates a conditional LGC model and alters the structure and interpretation of 

the variances of the latent factors. Due to the differences in model specification among 

the conditions of model complexity, interpretation of fit indexes under varying conditions 

of LGC model complexity should be of critical concern to applied researchers. In 

summary, the three independent variables and levels of model complexity provide a 

range of LGC modeling conditions that directly relate to decisions frequently 

encountered in applications.  

Model Identification 

Inherent to all applications of SEM are issues of model identification or the ability 

“to derive a unique estimate of each parameter” (Kline, 2005, p. 105). The LGC model 

parameters, and all SEM applications, can be divided into two categories: (a) parameters 

that are known to be identified, commonly referred to as known parameters, that include 



 
 

 

the observed means, variances, and covariances; and (b) unknown parameters which are 

estimated in the model including the model implied latent means, error variance of 

observed measures, and the variance of latent factor (Bollen & Curran, 2006). In LGC 

modeling, the number of known parameters, minus the unknown parameters, equals the 

df.  

To be able to estimate the parameters of the growth trajectory and model fit, the 

number of known parameters must be greater than the number of unknown parameters to 

be estimated (df > 0), which is termed an identified model. Equality of the number of 

known and unknown parameters results in a just identified model (df = 0), which permits 

estimation of the desired parameters of change; however, just identified models assume 

that the specified model fits the data perfectly. As a result, researchers who use a just 

identified model must assume perfect measurement, cannot estimate the residual errors of 

the latent means, and lack the ability to produce tests of model fit. Finally, desired 

parameters of change and model fit cannot be estimated when there are a greater number 

of unknown parameters to be estimated than known parameters (df < 0), referred to as an 

unidentified model. 

As previously discussed, LGC models differ from standard SEM applications by 

fixing the paths from the observed variables to the latent factors; therefore, factor 

loadings are not unknown parameters as typically labeled in standard SEM applications. 

Furthermore, LGC models fix the means of the error variances and disturbance terms at 

each time point, which suggests that error variances of the observed time points are the 

same for all participants; however, the error variances can differ across time points 

(Bollen & Curran, 2006). In addition, two of the three independent variables for this 



 
 

 

study require the inclusion of additional parameters (i.e., waves of data and model 

complexity), which influence the model identification.  

Bollen and Curran (2006) developed general equations to compute the number of 

known and unknown parameters for each LGC model utilized as independent variables in 

this dissertation. Described in Table 2.1 are: (a) the equations used; (b) the number of 

known parameters; and (c) the number of unknown parameters for the four levels of 

model complexity by waves of data (i.e., range from three to six). In Table 2.1, T 

represents the waves of data (i.e., or time points), and K symbolizes the number of 

covariates. Sample size is not included in Table 2.1 because it is not related to model 

identification.  

Beginning with the univariate linear LGC model with three waves of data, 

presented in Figure 2.1 and Equation 2.8, there are nine parameters known, which 

correspond to the observed means, variances, and covariances. Specifically, the model 

includes: (a) three means of the observed achievement scores in Grades 9, 10, and 11 

[(E(yi1), E(yi2), E(yi3)]; (b) variances of Grade 9, 10, and 11 achievement scores 

[VAR(yi1), VAR(yi2), VAR(yi3)]; and (c) their covariances [(COV(yi1, yi2), COV(yi1, yi3), 

COV(yi2, yi3)], defined as known parameters (e.g., (½)(3)(3+3) = 9). There are eight 

unknown parameters corresponding to the model-implied variance-covariance matrix and 

latent means, including the estimation of the latent means (µα1 and µα2), variances of the 

latent factors (ψ11 and ψ22), and covariance of the latent factors (ψ11), in addition to the 

estimation of error variances for each time point [(VAR(εi1), VAR(εi2), VAR(εi3)] (e.g., 2 + 

2 + 1 + 3= 8). Thus, the univariate linear model with three waves of data is identified 

with one degree of freedom. 



 
 

 

Table 2.1    

Model Identification for LGC Models 

LGC Model 
(corresponding 
figure) 

Waves of 
Data 

Known 
Parameters  

 

Unknown 
parameters 

Degree of 
Freedom 

Univariate 
Linear LGC 
model  
(2.1) 

 (½)(T)(T+3) 5 + T  
3 9 8 1 
4 14 9 5 
5 20 10 10 
6 27 11 16 

Univariate 
Quadratic LGC 
model  
 (2.2) 

 (½)(T)(T+3) 9 + T  
3 9 12 Unidentified 
4 14 13 1 
5 20 14 6 
6 27 15 12 

Multivariate 
LGC model 
(2.3) 

 n.a.  14 + 2T  
3 27 20 7 
4 44 22 22 
5 65 24 41 
6 90 26 64 

Univariate 
Linear LGC 
model with time 
invariant 
covariate  
(2.4) 

 (½)(T+K)(T+K+3) T + 2K + 5  
3 14 10 4 
4 20 11 9 
5 27 12 15 
6 35 13 22 

Note. T = the number of waves of data, K = the number of covariates; n.a. represents that 
estimation of multivariate condition cannot be captured in a simple equation.  

 

The quadratic linear LGC model, presented in Figure 2.3, includes the same 

number of known parameters; however, four additional unknown parameters are added to 

the model, including the: (a) latent mean (µα1); (b) variance (ψ33) of the quadratic factor; 

and (c) two covariances between the quadratic factor, latent intercept, and latent slope 

factors (ψ13 and ψ23). Consequently, a quadratic linear LGC model with three waves of 

data is an unidentified model; thus, fit indexes and parameters cannot be estimated.  



 
 

 

A multivariate linear LGC model is the most intricate level of model complexity 

examined and substantially increases the known parameters (i.e., ranges between 27-90 

parameters); therefore, all multivariate LGC models are over-identified. A univariate 

linear LGC model with a covariate increases the number of known parameters by 

including the covariate, variance, and co-variance of the covariate, as well as increasing 

the number of unknown parameters to include the covariate coefficients (i.e., βα1 and βα2). 

Therefore, inclusion of a covariate increases the df in LGC modeling with all model 

conditions being an identified model (df ≥ 1). In conclusion, there is one condition where 

fit indexes cannot be estimated (i.e., univariate quadratic LGC with three waves of data).   

Summary of Latent Growth Curve Modeling 

 The LGC models hold many similar characteristics to typical SEM procedures; 

however, LGC models estimate latent means as well as the variance-covariance matrices 

and are designed to answer longitudinal research questions. In the first portion of Chapter 

II, I explained parameter estimation in LGC modeling and detailed how FML reproduces 

the model implied variance-covariance matrix and means to minimize the discrepancies 

to the observed variance-covariance matrix and latent means. The discussion continued to 

describe three extensions of LGC models used as independent variables in this 

dissertation (i.e., sample size, waves of data, and model complexity), which are 

associated with critical design decisions made by LGC modeling researchers and 

methodologists. In the last section of Chapter II, the focus shifts to description of the four 

fit indexes, dependent variables in this dissertation, and relevant literature that was used 

to formulate the research hypotheses.  

 



 
 

 

Description of Fit Indexes 

Excluding Coffman and Millsap’s (2006) study of LGC model fit, the 

methodological knowledge of LGC model fit is derived from SEM simulation studies. 

Conversely, SEM literature is immersed with methodological studies investigating fit 

indexes under various conditions of: (a) model type, (b) sample size, (c) estimation 

nmethod, (d) model misspecification, and (e) normality (Beauducel & Wittmann, 2005; 

Cheung & Rensvold, 2002; Curran, Bollen, Paxton, Kirby, & Chen, 2002; Davey, Savla, 

& Luo, 2005; Fan & Sivo, 2005; Fan & Wang, 1998; Hu & Bentler, 1998; 1999; Jackson, 

2007; La Du & Tanaka, 1995; Sivo, Fan, Witta, & Willse, 2006; Tanguma, 2001; 

Widaman & Thompson, 2003; Yuan, Bentler, & Zhang, 2005). Historically, the χ² 

likelihood ratio test has been used to assess model fit, but due to its limitations, numerous 

alternative indexes have been proposed. The array of fit indexes available is problematic 

(Sivo et al.), and applied researchers and methodologists have varied preferences in 

regard to the optimal venue to assess model fit. Therefore, despite the abundance of 

investigations, procedures to establish model fit lack congruency and are still highly 

debated (Marsh, Hau, & Wen, 2004).  

The authors of LGC modeling books have selectively endorsed a collection of fit 

indexes for LGC modeling techniques; however, rationales for the indexes are extracted 

from general SEM simulation studies and lack discussion of how LGC modeling 

variations may influence model fit interpretation (Bollen & Curran, 2006; Duncan et al., 

2007; Preacher et al., 2008). Described in Table 2.2 are the fit indexes suggested for use 

in the three LGC modeling books that are the primary resources for training and teaching 

of LGC modeling procedures. In addition, Table 2.2 displays the percentage of authors, 



 
 

 

among the 29 applications studies reviewed, which reported the indexes in their 

published manuscript. Notice, the standardized root mean square residual (SRMR) and 

incremental fit index (IFI ) are rarely utilized and lack endorsement in the majority of 

LGC modeling books. Even though references to SRMR are found in LGC modeling 

literature (e.g., the square root of the squared absolute difference between the S and Σ(θ) 

matrices), the SRMR lacks assessment of the mean vectors (i.e., comparison of y  and 

µ(θ); for a review of notation, see section on parameter estimation). Similarly, the IFI  is 

seldom found in LGC modeling literature, and researchers have shown similar 

performance of the IFI  and CFI in simulated CFA models (Bentler, 1990, La Du & 

Tanaka, 1995; Yadama & Pandey, 1995). 

Table 2.2   

Recommended Fit Indexes in LGC Modeling   

Source χ² NNFI CFI RMSEA SRMR IFI 

Bollen & Curran (2006) �  �  �  � 
Duncan et al. (2007) �  �  �  �  
Preacher at al. (2008) �  �  �  �  �  
29 Application Studies 93.1% 51.7% 65.5% 65.5% 17.2% 3.4% 

Note.  NNFI = non-normed fit index, CFI = comparative fit index, RMSEA = root mean 
squared error of approximation, SRMR = standardized mean square residual, and IFI  = 
incremental fit index. 
  

The χ², NNFI, CFI, and RMSEA are used in this dissertation to represent fit 

indexes utilized in LGC modeling applications. The four fit indexes are trifurcated into 

three categories based on the manner in which they assess model fit, including: (a) χ² 

likelihood ratio test; (b) incremental fit indexes (NNFI and CFI); and (c) absolute fit 



 
 

 

indexes (RMSEA; Bollen, 1989; Hu & Bentler, 1999). The following discussion describes 

the: (a) computation of the fit indexes, (b) proposed cutoff values to determine adequate 

model fit, and (c) summaries of selected CFA model fit simulations. Due to the countless 

simulation studies on model fit, the following review is focused on authors who utilized 

conditions relevant to the independent and dependent variables used in this dissertation 

(e.g., similar to LGC modeling data environments, continuous outcomes, ML estimation 

procedures, etc.).  

Chi-Squared Likelihood Ratio Test 

 In the behavioral and social sciences, the χ² likelihood ratio test is a frequently 

applied procedure, where a dichotomous decision is made to retain or reject the null 

hypothesis described below. In terms of LGC model fit, the χ² likelihood ratio test 

determines whether a significant difference simultaneously occurs between the observed 

variance-covariance matrix and mean vector, and model implied variance-covariance 

matrix and mean vector (Bollen & Curran, 2006). The null hypothesis implies that Σ(θ) 

exactly reproduces S, and µ(θ) exactly reproduces y  as displayed in Equation 2.14.  

Ho: S  = Σ(θ) and y  =  µ(θ)    (2.14) 

Unlike typical applications of the χ² test, a nonsignificant result is desirable, as it 

conceptually assesses the badness of model fit. Significant discrepancies between S and  

Σ(θ) and betweeny and µ(θ) are interpreted as insufficient model fit and imply that the 

hypothesized model does not adequately account for relationships in the observed data. 

The LGC models lack adequate model fit when the estimated parameters, Σ(θ) and µ(θ), 

are significantly different from observed parameters. In other words, if the model 

specified by the researcher does not adequately match the observed data, the 



 
 

 

hypothesized model might lack support. The χ² test statistic is equal to the FML, described 

in Equation 2.11, multiplied by the sample size (N) minus one, as shown in Equation 

2.15.   

         χ² = (N - 1) FML     (2.15) 

When the assumptions of LGC modeling are satisfied, Equation 2.15 follows a χ² 

distribution with degrees of freedom equal to the difference between the number of 

unique elements of the observed variance-covariance matrix and the number of 

parameters estimated. The degrees of freedom for the LGC models utilized in this 

dissertation are presented in Table 2.1 in the discussion of model identification. 

Intuitively, application of the χ² likelihood ratio test provides an adequate measure 

of model fit; however, numerous researchers have discussed limitations to this procedure 

(Beauducel & Wittmann, 2005; Bentler, 1990; Bollen & Curran, 2006; Duncan et al., 

2007; Fan & Wang, 1998; Hu & Bentler, 1999; Kline, 2005). By conceptualizing model 

fit through significance testing, sample size becomes a confounding factor. Large sample 

sizes excessively increase statistical power to detect minor discrepancies, which result in 

a rejection of the null hypothesis (i.e., implies a lack of model fit) even when the model 

may adequately fit the data (Beauducel & Wittmann). Consequently, numerous SEM 

methodologists have demonstrated that, when sample sizes are large, the χ² likelihood 

ratio test will be too restrictive, resulting in excessive rejection of correct models 

(Beauducel & Wittmann; Hu & Bentler). 

The use of LGC modeling may increase detection of minor discrepancies between 

observed and model-implied matrices for the χ² assessment in conditions of large sample 

sizes because of additional estimation of latent means. An increase in the number of 



 
 

 

parameters ultimately increases the model complexity (i.e., the size of the variance-

covariance matrices and mean vectors), which in turn, increases the statistical power of 

the significance testing (Bollen & Curran, 2006). Thus, there is a higher chance of having 

a minor discrepancy between S and Σ(θ) and y and µ(θ) result in a significant result, 

implying a lack of model fit. To demonstrate with the student achievement example, a 

trivial discrepancy may occur between the observed and model-implied mean of Grade 9 

student achievement, with all remaining model implied parameters being exactly 

reproduced (e.g., the variances-covariances and means of Grade 10 and 11 student 

achievement). In this situation, a significant χ² test would be obtained, which would 

imply inadequate model fit; however, minor discrepancies in the single Grade 9 mean 

achievement scores may be negligible in terms of practical significance. A comparable 

cross-sectional CFA model would include only the variance-covariance matrices 

resulting in a non-significant χ², which would imply acceptable model fit (Bollen & 

Curran). As a consequence, the LGC model structure may increase the bias of the χ² with 

large sample sizes due to the additional estimation of the latent means.   

Furthermore, when sample sizes are small, the χ² test may not contain enough 

statistical power to adequately reject a misspecified model (Field, 2005). Therefore, the χ² 

likelihood ratio test is commonly understood as being too relaxed for small sample sizes 

and too conservative for large samples. In recent years, the popularity of assessing the 

χ²/df ratio is preferred to correct for the χ² tendency to penalize more complex models.  

Numerous SEM methodologists and researchers have found the χ²/df to be appropriately 

sensitive to model misspecficiation, with complex models and extreme sample sizes 

(Jackson, 2007), compared to the standard χ² test. However, SEM methodologists 



 
 

 

generally report the standard χ² test, despite its shortcomings; therefore, both the χ² test 

the χ²/df were reported in this dissertation in order to compare to other typical CFA model 

fit simulations. Along with the χ² test, and the χ²/df assessment, SEM researchers 

frequently use alternative descriptive methods to assess model fit. These alternative fit 

indexes are descriptive and assume a continuum of fit, as opposed to the χ² likelihood 

ratio test which is an inferential test with an all or nothing interpretation. Continuous 

debate occurs in regard to what values constitute acceptable model fit, and 

methodologists discuss the falsified nature of any single cutoff values among the vast 

SEM application conditions (Hu & Bentler, 1999; March et al., 2004). However, applied 

researchers, textbooks, and journals continue to present and support standard cutoff 

values for individual fit indexes. The following section describes the computation of fit 

indexes, as well as suggested cutoff values for assessing model fit.  

Incremental Fit Indexes  

Incremental fit indexes compare the hypothesized model, specified by the 

researcher, to a more restrained baseline model to determine the proportion of 

improvement in model fit (Hu & Bentler, 1999). Conceptually, a continuum is created, 

which ranges from the largest chi-squared value of a baseline model to a saturated model 

(df = 0; Bentler, 1990). In typical SEM applications, LGC modeling applications, and the 

current dissertation, the baseline model is the independence null model, specified to 

estimate (i.e., free) the variances of the observed variables and fix the covariances among 

the observed variables to zero to imply no underlying common or latent factors (Bentler 

& Bonett, 1980). Although not commonly found in SEM applications, alternative null 

models may provide a more appropriate measure of model fit because the assumptions of 



 
 

 

no common variance among the observed data points (i.e., zero covariance) is rarely, if 

ever, found in social and behavioral science applications (Widaman & Thompson, 2003). 

While use of an alternative null baseline model may provide a more suitable assessment 

of model fit specific to the growth or change in a hypothesized latent trait, the widespread 

application would affect the standardization of fit statistics across studies, resulting in 

overall lower fit index values. Therefore, this dissertation specified the independence null 

model for variance-covariance structure. Even less agreement is found for the 

specification of appropriate values for the mean vectors of the baseline LGC model. 

Following guidelines provided by Bollen and Curran (2006), in this dissertation, I freed 

(estimated) the mean parameters in the baseline model. In summary, incremental fit 

indexes in this dissertation compared the hypothesized LGC model to a baseline model 

with: (a) estimated variances of the observed variables, (b) estimated latent means, and 

(c) fixed covariances at zero.   

The nonnormed fit index (NNFI; also referred to as the Tucker Lewis Index) is an 

incremental fit index that requires model comparison to determine the value of the fit 

index (Bentler & Bonett, 1980). The NNFI utilizes the likelihood ratio χ² test statistic and 

degrees of freedom, displayed as 
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where, 2
bχ  is the likelihood ratio χ² test statistic for the baseline model, bdf  are the 

degrees of freedom for the χ² test statistic for the baseline model,2hχ is the likelihood ratio 

χ² of the hypothesized model, and hdf  are the degrees of freedom of the χ² for the 

hypothesized model. The equation compares the relative difference between the baseline 



 
 

 

model denoted with a b subscript, and the hypothesized (i.e., or specified) model 

represented by the subscript h. By dividing the χ² value by the df prior to computing the 

relative difference, the NNFI is known to compare model fit per df (Bentler, 1990). The 

NNFI is a nonnormed fit index with the majority of values ranging from 0-1.0; however, 

values can fall outside of this range. Values of 1.0 indicate perfect model fit; values 

greater than 1.0 occur when the2hχ is greater than hdf (Bentler). The value produced by 

the NNFI would rarely be negative, because the baseline model ( bb df/2χ ) is expected to 

be larger than the corresponding hypothesized model ( hh df/2χ  ) due to the hypothesized 

model imposing more restrictions than the baseline model.  

A more recent incremental fit index is the CFI, designed to have the benefits of 

the NNFI, while reducing the undesirable characteristics (e.g., large variance, over-

parameterization), as discussed in the following section. The CFI is a normed fit index, 

proposed by Bentler (1990) that ranges from 0-1.0, where 1.0 indicates a perfect fit. The 

CFI is computed by  

( )bh ddCFI
~

/
~

1−=     (2.17) 

where, hd
~

is the ( )0,max hd , bd
~

is the ( )0,,max hb dd , hd  is ( ) ndfhh /2 −χ , bd  is 

( ) ndfbb /2 −χ , with all other variables defined according to Equation 2.16. In application, 

the baseline model χb² should be greater than the χh² for the less restrictive hypothesized 

model, which should both be greater than zero (i.e., unless the model is just-identified); 

therefore bd
~

 >  hd
~

 > 0. hd
~

is the maximum value of the range produced by the value for 

( ) ndfhh /2 −χ , which adjusts for χ² values df and sample sizes (Bollen & Curran, 2006). 



 
 

 

The bd
~

 is the maximum value of the continuum created by the baseline model, 

hypothesized model, and zero, also corrected for sample size and df.   

 Within the last decade, methodologists have reported evidence for the limited 

sensitivity of incremental fit indexes in the detection of model misspecification (Fan, 

Thompson, & Wang, 1999; Jackson 2007). For example, Fan et al. found the CFI, NNFI, 

and χ² to have approximately half of the sensitivity of the RMSEA to detect appropriate 

models. Although the results of Fan et al. study lack support for the CFI and NNFI, the 

authors defined model misspecification as additional unspecified latent paths (i.e., factor 

loadings), according to standard CFA model fit simulation procedures. Misspecification 

of latent paths lack relevance within the LGC modeling framework, which fixes the 

factor loadings to represent time. However, Hu and Bentler (1998) manipulated both 

measurement model and structural model misspecification, defined as misspecification 

between latent factors, and found that the CFI was highly sensitive to structural 

misspecification and only moderately sensitive to measurement model misspecification. 

Therefore, the limited sensitivity of incremental fit indexes discussed in the model fit 

literature may lack relevance for LGC modeling data environments. 

 Originally, Bentler and Bonett (1980) proposed cutoff values of .90 or greater to 

constitute sufficient model fit for the NNFI.  To date, Hu and Bentler’s investigations 

(1998, 1999) into model fit are the most well accepted methodological references and 

provide a foundation upon which subsequent application studies and methodological 

investigations base their results (Beauducel & Wittmann, 2005; Sivo et al., 2006). Even 

though Hu and Bentler (1999) discussed the erroneous nature of any single cutoff values 

among the vast SEM application conditions, they provided cutoff values for individual fit 



 
 

 

indexes that have become the golden rules of SEM (March et al., 2004). Hu and Bentler 

(1999) proposed more restrictive cutoffs than originally proposed for the incremental fit 

indexes and suggested that values of .95 (NNFI) and .96 (CFI) or greater imply sufficient 

model fit. 

 To complicate the debate of adequate cutoffs, researchers have provided evidence 

to support that NNFI and CFI are influenced by sample size. In conditions of small 

sample size (i.e., N < 200), researchers have found the NNFI to produce low values (i.e., 

which suggests inadequate model fit) and extremely high values that lack interpretability 

(Jackson, 2007; Sharma, Mukherjee, Kurmer, & Dillion, 2005; Tanguma, 2001). 

Understandably, authors who have utilized sample sizes greater than 150 report no 

substantial influence of sample size for the NNFI and CFI (Bentler, 1990; Cheung & 

Rensvold, 2002; Fan et al., 1999; Sivo et al., 2006). Moreover, the NNFI has been found 

to produce standard deviations that are substantially larger than other fit indexes (Bentler; 

Jackson; Sharma et al.; Yadama & Panday, 1995). The large range of the NNFI reflects 

contradictory interpretations that for some simulated samples would suggest a lack of 

model fit, whereas for others would over-estimate model fit.  

 To further the understanding of cutoff for incremental fit indexes, Sivo et al. 

(2006) examined the optimal cutoff values for CFI and NNFI in two situations: (a) the 

minimum value without rejection of any correctly specified models (i.e., Type I error) 

and (b) the maximum value to reject all misspecified models (i.e., Type II error). The 

range between the two optimal values creates guidelines of acceptable values dependent 

on sample size. Sivo et al. found the ranges to be identical for both incremental fit 

indexes, including: (a) N = 150 (NNFI and CFI = .95 – 1.0); (b) N = 250 (NNFI and CFI 



 
 

 

= .97 – 1.0); (c) N = 500 (NNFI and CFI =.98 - .99); (c) N = 1,000 (NNFI and CFI = .98 

- .99); (d) N = 2,500 (NNFI and CFI = .98 -.99); and (e) N = 5,000 (NNFI and CFI = .98 

- .99). Notice, the range decreases as sample size increases with all conditions where N ≥ 

1,000 indicating an identical range. Collectively, the simulated results support that the 

NNFI and CFI are influenced by variability in sample size.   

 Contrary to sample size, which is investigated in the majority of model fit 

simulations, model complexity is less frequently included as a condition of interest. 

Sharma et al. (2005) simulated CFA model complexity by an increase of the number of 

latent factors (e.g., 2, 4, 6, and 8) and corresponding observed variables (e.g., 8, 16, 24, 

and 32); they found NNFI values to vary among conditions of model complexity, with the 

magnitude of the effect of greater model complexity increasing with low sample sizes; 

however, they did not investigate the CFI. Although the results support the influence of 

model complexity on NNFI assessment of fit, conditions examined by Sharma et al. may 

lack applicability to LGC modeling environments (e.g., 16 or more waves of data). 

Comparable to LGC modeling conditions, Cheung and Rensvold (2002) simulated CFA 

models as they varied the number of: (a) latent factors (e.g., 2 and 3); (b) observed 

variables (e.g., 3, 4, and 5); and sample size (e.g., 150 and 300). They found that the CFI 

and NNFI values were higher, suggesting adequate fit, with a lower number of latent 

factors and observed variables. Values decreased as model complexity increased (i.e., as 

additional latent factors and observed variables were added to the model, the values 

suggested worse fit). In regard to the magnitude of effects, the CFI was more influenced 

than the NNFI for both latent factors and observed variables. 



 
 

 

  Based on prior research on model fit literature for incremental fit indexes, in the 

current dissertation the NNFI and CFI are hypothesized to be afflicted by variation in 

sample size, when N < 200 resulting in biased estimates of model fit. Specially, the NNFI 

and CFI values will vary among the different conditions of sample size; however, the 

effect sizes and mean values will suggest negligible difference in terms of practical 

implications for sample sizes greater than 200. For waves of data and model complexity 

conditions, the NNFI and CFI were hypothesized to vary under conditions of waves of 

data (i.e., observed variables) and model complexity (i.e., additional factor loadings). The 

CFI was expected to suggest worse model fit with increased model complexity, in 

comparison to the NNFI. Finally, the NNFI was expected to produce large variations, in 

comparison to all other fit indexes.  

Absolute Fit Indexes  

 Unlike incremental fit indexes, absolute fit indexes do not use a baseline model to 

assess model fit, but examine to what degree a hypothesized variance-covariance matrix 

and mean vectors can be reproduced (Bollen & Curran, 2006). As opposed to the three 

previously described fit indexes that are based on exact model fit, the RMSEA is based on 

close approximation to the correct model. The RMSEA is an absolute fit index, computed 

as 

( ) ( )[ ]0,/max 2
hhh dfndfRMSEA ×−= χ    (2.18) 

where all values are defined as in Equation 2.16, including: bdf are the degrees of freedom 

for the χ² test statistic for the baseline model,2hχ is the likelihood ratio χ² of the 

hypothesized model, and hdf  are the degrees of freedom of the χ² for the hypothesized 



 
 

 

model. The numerator of the first term is the unbiased estimate of “the noncentrality 

parameter for the noncentral chi-square distribution underlying hypothesized 

model”( )2
hχ  (Bollen & Curran, 2006, p. 47). The expression in the denominator of the 

first term corrects for the sample size effect and penalizes for increasing df, commonly 

found in complex models (Bollen & Curran). The values of the RMSEA range from zero 

to infinity where values of zero indicate a perfect fit.  

Preference for the RMSEA is related to its ability to be highly sensitive to model 

misspecification (Fan et al., 1999; Fan & Wang, 1998; Hu & Bentler, 1998; Jackson, 

2007; Sivo et al., 2006). Another reported advantage of the RMSEA index is that 

confidence intervals can be computed, based on upper and lower limits of the non-central 

chi-squared distribution (Curran et al., 2002). In contrast, Chen, Curran, Bollen, Kirby, 

and Paxton (2008) found a lack of support for the value added by the construction of 

RMSEA confidence intervals with an upper bound of 0.1 and lower bound of .05, 

corresponding to standard cutoff values for acceptable fit. Chen et al. concluded that 

confidence intervals are afflicted by the use of universal cutoff values as upper and lower 

bound limits for the abundance of conditions found in research environments. 

Furthermore, Curran et al. found RMSEA confidence intervals to be biased when N < 200, 

due to deviations from the non-central chi-square distribution with small sample sizes. 

Other research has been less favorable toward the RMSEA on the basis of its relative lack 

of sensitivity to model misspecification. For example, Sharma et al. (2005) endorsed the 

NNFI over the RMSEA and suggested that the NNFI is more sensitive to model 

misspecification than the RMSEA in a CFA model with varying sample sizes and 

conditions of model complexity similar to LGC modeling environments (e.g., additional 



 
 

 

latent factors and observed variables; see section on incremental fit indexes for 

description of conditions). Regardless of the simulated evidence in favor of or against the 

RMSEA as a measure of model fit, researchers frequently utilize the RMSEA, and its 

functioning under LGC modeling conditions are of critical concern.  

 Steiger’s (1989) original guidelines, in conjunction with support from other 

methodologists, endorsed RMSEA values of: (a) less than .05 to suggest good fit, (b) .08 

for reasonable fit, and (c) values beyond .10 to indicate model misfit (MacCallum, 

Browne, & Sugawara, 1996). Hu and Bentler (1999) supported values less than .05 to 

assume adequate model fit; however, the authors cautioned the use of an RMSEA 

universal cutoff of .05 cutoff with small sample sizes because of the tendency to over-

reject correct models. Also, the range of optimal values between the reduction of Type I 

and Type II errors for the RMSEA were computed by Sivo et al. (2006) for the sample 

sizes of: (a) N = 150 (RMSEA = .06 - .01); (b) N = 250 (RMSEA = .05 - .01); (c) N = 500  

(RMSEA = .03 - .01); (d) N = 1,000  (RMSEA = .03 - .005); (e) N = 2,500  (RMSEA = .02 

- .003); and (f) N = 5,000 (RMSEA = .01 - .002). Notice that the RMSEA range is large 

for small sample sizes and reduces as the sample size increases, where a global cutoff of 

greater than or equal to .05 over-rejects the correct model with N <150 and under-rejects 

the incorrect model with N > 500. Subsequent researchers have provided supportive 

evidence of the RMSEA’s tendency to over-reject correct models with small sample sizes 

(N < 200; Chen et al., 2008; Fan & Wang, 1998; Sharma et al., 2005). Moreover, Sivo et 

al. reported that global cutoff values of .05 will tend to under-reject incorrect models with 

large sample sizes (N > 500). The collective evidence indicated that the RMSEA is 



 
 

 

influenced by variations in sample size, leading to the tendency of the RMSEA to over-

reject models with small sample sizes and under-reject models with large sample sizes.  

 In regard to model complexity, Chen et al. (2008) applied a RMSEA cutoff value 

of < .05 for a simulated, correct, three factor CFA and found a tenfold decrease in the 

percentage of models rejected when the same model with six additional observed 

variables was examined. Although, the Chen et al. findings were based on six additional 

observed variables added to the CFA model, the trend may extrapolate to LGC models 

where the addition of a single observed variable (i.e., wave of data) may result in worse 

model fit according to the RMSEA value (i.e., higher RMSEA values). However, Sharma 

et al. (2005) simulated CFA model complexity when they increased the number of factors 

and indictors (i.e., see description under incremental fit indexes), and reported a 

negligible effect for sample size and model complexity on the RMSEA value. 

Furthermore, Cheung and Rensvold (2002) simulated conditions similar to LGC 

modeling and found the RMSEA was not affected by variations in the number of observed 

variables or latent factors.  

 In summary, RMSEA was hypothesized in the current study to be influenced by 

sample size with inappropriate estimates that occur in small sample sizes (N < 200). Due 

to the common variations in LGC model complexity, which include few latent factors 

(e.g., 2- 4) and observed variables (e.g., 3-6), it wass hypothesized that significant 

differences would occur for the conditions of waves of data and model complexity. 

However, the effect sizes and mean values of the RMSEA were expected to suggest that 

the significant differences lack practical importance in terms of assessing model fit due to 

the anticipated small effect size.  



 
 

 

Latent Growth Curve Model Fit Investigation 

Coffman and Millsap (2006) initiated the model fit research specific to LGC 

analysis and investigated model misspecification related to the shape of growth. One 

condition of model misspecification was constructed to represent a small quadratic term 

examined with the use of two fit indexes. The χ² and RMSEA displayed poor fit for the 

linear model and adequate fit for the quadratic model; therefore, the fit indexes suggested 

a preference for quadratic growth, even when the majority of individual trajectories 

exhibited linear growth. Interestingly, estimates of a covariate effect on a univariate LGC 

model over five time points suggested similar parameter estimates for both the linear and 

quadratic models, despite the lack of fit for the linear model. As a result, Coffman and 

Millsap concluded that fit indexes for LGC models may be influenced by shape 

misspecification and suggested estimation of log likelihood values (-2PLL) for each 

individual subject as a measure of within person fit, as well as the fit indexes to assess 

global fit of the overall model.  

While the novel study conducted by Coffman and Millsap (2006) provided 

interesting insight into the consequences of LGC model misspecification, application 

studies have not utilized investigations into individual-level fit statistics. In addition, in 

the Coffman and Millsap preliminary study, they reviewed a single condition of model 

misspecification, reducing the external validity. Due to the practical focus of this 

dissertation to examine characteristics found in application studies in the social and 

behavioral sciences, global fit indexes are of fundamental interest; however, the avenue 

of model misspecification and individual level fit requires additional attention in future 

research endeavors.  



 
 

 

Summary of Model Fit Indexes 

The model fit literature consists of a gap specific to LGC modeling environments; 

nevertheless, LGC modeling educators and applied researchers endorse and frequently 

apply the χ², NNFI, CFI, and RMSEA. Excluding the Coffman and Millsap (2006) 

investigation, this dissertation is the first investigation to examine the influence of typical 

LGC modeling environments on selected global fit indexes. Drawing on the relevant 

SEM literature, the hypothesis for Research Question 1 suggests that model complexity 

would affect convergence rates, with complex models based on low sample sizes 

displaying the lowest convergence rates. The hypothesis for Research Question 2 

suggests that sample sizes would influence all fit indexes, especially when N < 200. It is 

expected that the χ² will be most affected with a general trend to over-reject correct 

models in small and large sample size conditions. The NNFI, CFI, and RMSEA were 

expected to be less influenced with a general trend to over-reject correct models in small 

sample size conditions and to under-reject incorrect models with large sample sizes. 

Regarding Research Questions 2 and 3, it was expected that varying waves of data and 

LGC model complexity would influence all four fit indexes following the pattern to over-

reject correct complex models (i.e., and more waves of data), as well as to under-reject 

correct, parsimonious models (i.e., fewer waves of data). The χ² and CFI were 

hypothesized to be most influenced by model complexity and increasing waves of data, 

followed by the NNFI. The influence of model complexity and waves of data on the 

RMSEA values was expected to have limited practical importance as displayed by the 

effect sizes and mean values.  

 



 
 

 

Chapter Two Summary 

In Chapter II, I conveyed the procedures and relevant literature of LGC models 

and assessment of model fit with the χ², NNFI, CFI, and RMSEA. As discussed, LGC 

modeling is a flexible tool that can model various types of longitudinal research 

environments by the estimation of variance-covariance matrices and mean vectors. Of 

particular interest to applied LGC modeling researchers is how variations in sample size, 

waves of data, and model complexity (i.e., defined as linear univariate LGC model, 

quadratic univariate LGC model, multivariate linear LGC model, and linear univariate 

LGC model with a covariate) may affect estimation of model fit. Due to the lack of 

literature that pertains to LGC model fit, inferences were drawn from SEM simulation 

studies with similar model structures. Based on the review of SEM literature, it was 

hypothesized that all four fit indexes would be afflicted by variations in sample size, 

waves of data, and model complexity when N < 200; however, the true questions lie in 

the magnitude of difference and practical relevance to applied researchers. In Chapter II, 

the background literature was established to allow for a discussion of methods utilized to 

examine the functioning of model fit indexes in LGC modeling environments, which are 

presented in Chapter III.    



 
 

 

 

 

 
CHAPTER III 

 
METHODOLOGY 

 In this chapter, I address the methods applied to investigate the functioning of fit 

indexes in latent growth curve (LGC) models under conditions of: (a) sample sizes, (b) 

waves of data, and (c) model complexity. In this dissertation, LGC modeling simulation 

techniques were applied to answer the following four questions:   

Q1   Do model convergence rates vary under conditions of sample size, waves of 
data, and model complexity? 

 
Q2   Do fit indexes (χ², NNFI, CFI, and RMSEA) differ under varying conditions 

of sample size?  
 
Q3   Do fit indexes (χ², NNFI, CFI, and RMSEA) differ under varying conditions 

of waves of data?  
 
Q4   Do fit indexes (χ², NNFI, CFI, and RMSEA) differ under varying conditions 

of model complexity, defined in the current dissertation as a: (a) univariate 
linear LGC model, (b) quadratic LGC model, (c) multivariate linear LGC 
model, and (d) a linear LGC model with a covariate?  

 
Models to Be Tested 

The four research questions were investigated with the utilization of two types of 

LGC models. As established in Chapter II, LGC models are divided into: (a) 

unconditional LGC models (i.e., measurement models); and (b) conditional models, 

which include additional structural components (i.e., inclusion of a covariate). In this 

dissertation, unconditional LGC models were examined in three conditions of model 

complexity including: (a) univariate linear LGC models, (b) quadratic univariate LGC 



 
 

 

models, and (c) linear multivariate LGC models. Conditional LGC models were 

examined in a single condition of model complexity based on a univariate linear LGC 

model with a time-invariant covariate. The two population models were described in 

Chapter II; however, they are briefly restated in the following section. The unconditional 

LGC model, which jointly represents both Level 1 and 2 models, is displayed in Equation 

3.1.   

( ) ititit i
y εζαη ++Λ=

`
 

In this equation, yit is a vector of the observed measures for each ith participant (i = 1, 

2…N) at each t time point (t = 0, 1… t-1), Λ is a matrix of fixed factor loadings to 

represent time, αηi is a vector of latent means for each latent factor (i.e., ηi, represents the 

growth trajectory), ζit is a vector of the individual deviations away from the latent means, 

and εit is a vector of the residuals (Bollen & Curran, 2006). The conditional LGC model, 

which jointly represents both Level 1 and 2 models, is presented in Equation 3.2. 

( ) ititiit xy
ii

εζβα ηη +++Λ=  

All parameters were described in Equation 3.1 except for βηi which is a vector of the 

random parameters for each latent factor and xi represents a single time invariant 

covariate. All parameters were estimated with use of maximum likelihood techniques 

(FML), the predominant estimation method found in LGC modeling applications and 

simulations. The population means, variance, and covariance parameters are discussed 

according to each independent variable.  

Coding of time in LGC modeling is represented by Λ which describes the paths 

from the observed variables (e.g., waves of data) to each latent factor (e.g., intercept, 

(3.1) 

(3.2) 



 
 

 

slope, and additional factors). In all LGC models, the paths from the observed variables 

to the latent intercept are set to one, with paths from the observed variables to the latent 

slope, and additional factors, fixed to represent the coding of time (λit). Frequently, linear 

trend contrasts are utilized to represent time in LGC modeling and were applied in this 

dissertation (λit = 0, 1, 2,… t-1).  

Independent Variables 

 The current analysis is among the first simulation studies to focus on model fit 

indexes within LGC modeling data environments. As in all novel areas of research, the 

most fundamental variations need to be considered prior to examination of more complex 

conditions. Consequently, an assortment of independent variables and potential levels 

need to be inspected in regard to their corresponding functioning of fit indexes. The 

current investigation examined only conditions deemed to be essential to most LGC 

modeling applications. The rationale for the selected independent variables and 

associated levels within each condition were based on three predominant considerations: 

(a) the review of conditions employed in current LGC modeling applications in 

behavioral and social sciences journal articles; (b) the conditions examined in previous 

simulation studies of LGC models (Fan & Sivo, 2005; Leite, 2007; Muthén & Curran, 

1997, Muthén & Muthén, 2002) and studies of fit indexes in SEM (Hu & Bentler, 1999; 

Sivo et al., 2006); and (c) a combination of a reasonable number of conditions to allow 

for proper interpretation of the influence of each variable being examined. The estimated 

values for the parameters in the models were based on previous LGC modeling 

simulations, which have typically followed the procedures suggested by Muthén and 

Muthén (2002), who are known as experts in the field and are the developers of the 



 
 

 

software being used in the current study. The levels and justification for independent 

variables investigated in the proposed dissertation are described below.   

Sample Size 

The independent variable of sample size included five levels (N = 100, 250, 500, 

1,000, and 2,500). This range encompasses the majority of LGC modeling applications 

reviewed (96.5%). Previous LGC modeling simulation studies have included a similar 

range, excluding the most extreme level of 2,500, for example: (a) 200-500, Hertzog et 

al., 2006; and (b) 100-1,000, Leite, 2007; Muthén & Curran, 1997). However, extremely 

large sample sizes (e.g., > 2,000) are common in general SEM simulation studies of 

model fit to examine the tendency of chi-square tests (χ²) to produce biased estimates of 

fit with large sample sizes (Hu & Bentler, 1999; Sivo et al., 2006). Therefore, it is critical 

to examine an extreme level of sample size in the evaluation of model fit, although this 

has not been typical in LGC modeling simulations.  

Waves of Data 

The waves of data included four levels of 3, 4, 5, and 6, creating a range which 

includes 89.6% of the applied studies reviewed. The four levels mimic conditions found 

in previous LGC modeling simulations (Hertzog et al., 2006; Muthén & Muthén, 2004; 

Leite, 2007; Sivo et al., 2006), with the exclusion of Muthén and Curran’s (1997) 

simulation study which investigated seven waves of data. Six or more waves of data were 

rarely found in LGC modeling applications; thus, three and six waves of data were used 

as the extreme condition of waves of data.  

 

 



 
 

 

Model Complexity 

Based on the complexity of traits examined in LGC modeling applications in the 

social and behavioral sciences, it is reasonable to believe that most applied studies 

examine complex traits. In addition, SEM methodologists have debated between 

preference for model parsimony vs. proper representation of change through more 

complex representations (Raykov & Marcoulides, 1999). Consequently, conditions of 

model complexity typically require decisions by LGC modeling researchers. The four 

conditions of model complexity examined were chosen based on common decisions 

required in LGC modeling application: (a) What shape of growth occurs in this trait? 

(e.g., linear or quadratic); (b) What type of model represents the trait? (e.g., univariate or 

multivariate); and (c) Does a covariate account for variations in growth on the trait(s)? 

(e.g., inclusion or exclusion of a covariate). The condition of univariate linear LGC 

modeling is the most parsimonious LGC model examined, with model complexity 

increasing to a quadratic LGC model, a LGC model with inclusion of a time invariant 

covariate, and to the most complex multivariate LGC model. Figure 3.1 is the expanded 

matrix notation of Equations 3.1 and 3.2, with an emphasis on the portions included in 

each condition of model complexity.  
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Figure 3.1.  LGC model highlighted for model complexity conditions   

Univariate  Covariate   

Quadratic  Multivariate  



 
 

 

For example, the linear LGC model parameters (e.g., parameters included in the 

red univariate linear LGC model, excluding the green covariate term) include the 

population means and variances for two latent factors that represent the growth 

trajectories. In this dissertation, population means of the latent intercept (α1) were set to 

zero, the linear latent slope (α2) was fixed at 0.2, with the variance of the linear slope 

factor (ψ22) at 0.1, and the variance of the latent intercept (ψ11) at 0.5, which have been 

suggested to mimic common LGC application conditions (Leite, 2007; Muthén & 

Muthén, 2002). Therefore, the latent growth curve models estimated have a baseline 

value of zero and a slight, positive linear growth over the selected time period. 

Furthermore, the proportion of the variance of linear slope factor to the variance of the 

intercept factor represents a 1:5 ratio, as suggested by Muthén and Muthén, to replicate 

commonly encountered variances in applied longitudinal research environments. The 

covariance between the intercept and linear slope factor (ψ12) will be set to 0.2, to 

represent a small relationship. While the population means and variance vary depending 

on model complexity, the error variances of the observed variables (εit) were set at 0.5 for 

each wave of data (e.g., observed variable) in all models and were assumed henceforth at 

this value. By setting the error variances to 0.5, the corresponding R² values of the 

observed variables mimic commonly found conditions in applied longitudinal 

environments (i.e., R²(y1) = .50, R²(y2) = .55, R²(y3) = .64, R²(y4) = .74; Muthén & 

Muthén). This paragraph described the model parameters to generate data for a linear 

LGC model, and the following subsections describe the rationale and population values 

for the three other conditions of model complexity. 



 
 

 

Quadratic growth.  The dominant form of nonlinear growth discovered in the 

review of application studies was a quadratic growth trajectory. Although linear growth is 

more frequently applied, utilization of linear growth models may be attributed to 

convenience, as opposed to theory or strong contextual evidence (Burchinal & 

Appelbaum, 1991). Coffman and Millsap’s (2006) LGC modeling simulation study of 

model misfit was focused on the representation of growth and utilized a linear and 

quadratic trajectory of growth. For models which examine quadratic growth, the 

additional paths from the observed variables to the latent quadratic slope were fixed with 

a quadratic polynomial representation (tλ = 0, 1, 4, 16,…t -1). The quadratic model 

included identical variances, covariance, and population mean of the latent intercept 

described for the linear LGC model, with additional parameters to represent the quadratic 

growth as displayed in blue in Figure 3.1 (i.e., excluding the green covariate 

representation). Following a similar rationale to that of the univariate linear LGC model, 

the latent intercept was set at zero (α3), the latent linear slope factor (α2) was fixed at 0.1, 

the quadratic slope factor (α3) was fixed at 0.2, representing a slight positive quadratic 

increase in the latent trait over the selected time period. The variance of the quadratic 

factor (ψ33) was fixed at 0.1 to represent a 1:5 ratio with the variance of latent intercept 

factor, to replicate typical longitudinal research environments. The covariance between 

the latent intercept and the linear slope factor (ψ12) was set at 0.1. The covariance 

between the latent intercept and the quadratic slope factor (ψ13) was set a 0.2, which is the 

identical relationships set in the linear LGC model between the intercept and slope factor. 

Finally, the covariance between the linear slope factor and the quadratic slope factor (ψ23) 

was set at .05, representing the smallest relationship among the latent variables. 



 
 

 

Multivariate growth. In regard to LGC modeling simulation studies, although Leite 

(2007) investigated a multivariate factor-of-curve model, neither his study nor any of the 

other LGC modeling simulations reviewed included an associative multivariate LGC 

model such as the one applied in this dissertation. The majority of LGC applications 

reviewed used a univariate model of growth with limited use of a multivariate 

representation of growth. While application studies have infrequently applied 

multivariate LGC models, it may be understandable to assume that multivariate 

applications will increase in the coming years for two reasons. First, within the social and 

behavioral sciences, the complexity of research questions is escalating in an attempt to 

represent the complex phenomena of human behavior in which multivariate growth may 

have greater theoretical support. Secondly, LGC modeling software programs allow for 

easy programming of multivariate growth in LGC models, as compared to software 

programs used to estimate other types of growth curve models (e.g., HLM-6). Therefore, 

an associative multivariate LGC model was chosen due to an expected increase in 

application among the social and behavioral sciences and it has yet to be investigated.  

For the associative multivariate LGC model, the parameters described for the 

univariate linear LGC model are assumed in addition to parameters, which represent the 

second growth trajectory and the relationship among the latent factors of the growth 

trajectories. In Figure 3.1, the multivariate model includes parameters in the orange area, 

excluding the green area representing the covariate parameters. The latent intercept factor 

of the second trait (α3) was fixed at 0.5, and the latent slope factor of the second trait (α4) 

was fixed at 0.1. In contrast to the growth in the first latent trait, the trajectory of the 

second latent trait begins slightly higher, representing a lower rate of growth over time. 



 
 

 

The variance of the linear slope factor for the second trait (ψ44) was fixed at 0.1, and the 

variance of the latent intercept of the second trait (ψ33) at 0.5, suggested to mimic 

longitudinal data environments with a slope to intercept variance ratio of 1:5 (Muthén & 

Muthén, 2002). In the first trait, the covariance between the intercept and slope factors 

(ψ12) was set a 0.2, whereas in the second latent trait the same relationship (ψ34) was set a 

0.1. All other covariances among latent variables were set to zero. Therefore, the 

relationship between the initial level and the rate of growth was stronger in the first trait 

than in the second trait.  

 Time invariant covariate.  The simulated models included representation of a 

univariate linear LGC model with a single time invariant covariate, similar to the LGC 

model used in Hertzog et al.’s (2006) simulation study of statistical power. While some 

application studies reviewed included representation of multiple covariates, the majority 

of studies included only a single covariate in the LGC model. In Figure 3.1, the univariate 

linear LGC model with a single time invariant covariate is represented by the parameters 

in the green and red areas. The single time-invariant covariate, xi, was set with a mean of 

.5 and a variance of .25, representing a dichotomous covariate (e.g., gender). The random 

regression coefficients to both the latent intercept and latent slope factor, βit, were set at 

0.2, with a variance of 0.09 (Muthén & Muthén, 2002). The values were selected due to 

their correspondence to a representation of medium effect size (d = .63), which was also 

used in a previous LGC modeling simulation with a covariate (Hertgoz et al.; Muthén & 

Muthén). 

 

 



 
 

 

Summary of Independent Variables 

In summary, the LGC model simulation included the independent variables of: (a) 

sample size (100, 250, 500, 1,000, and 2,500); (b) waves of data (3, 4, 5 and 6); and (c) 

model complexity (i.e., univariate linear, univariate quadratic, inclusion of a covariate, 

and multivariate linear LGC model). Due to the requirements of identification, one cell 

could not be computed; thus, a completely crossed design was not applied. The condition 

of a univariate quadratic LGC model with three waves of data results in an under 

identified model, which does not allow for estimation of model fit indexes.  

Dependent Variables 

 The dependent variables included four fit indexes, χ², NNFI, CFI, and RMSEA, 

which were described in detail in Chapter II. To briefly reiterate, the χ² is the most 

historic measure and uses significance testing; however, the NNFI, CFI, and RMSEA are 

all descriptive indexes based on a continuum of fit. The NNFI and CFI are incremental fit 

indexes that assess a ratio between the hypothesized model and baseline model and the 

RMSEA is an absolute fit index that assesses approximate fit. The equations used to 

compute the fit indexes are presented in Table 3.1. Moreover, LGC modeling procedural 

guides endorse the use of the four selected fit indexes in application (Bollen & Curran, 

2006; Duncan et al., 2007; Preacher et al., 2008). In addition, the four selected indexes 

are reported as defaults in most LGC modeling software (i.e., Mplus, LISREL, EQS), 

which results in frequent reporting in applied studies. 

 

 

 



 
 

 

Table 3.1   

Fit Indexes and Recommended Cutoff Values 

Fit Index Range Perfect fit Hu and Bentler’s 
(1999) cutoff 

values 

 
χ²b = (N - 1) FML 

 

 
χ² 

distribution 

 
Non-

significant 
result 

(adequate fit) 
 

 
n.a. 
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//
2

22
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−
=

bb
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0 – infinity 

but 
generally 
between    
0 -1.0 

 
1.0 

 
.95 – 1.00 
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0 – 1 

1.0  
.96 – 1.00 

 

( ) ( )[ ]0,/max 2
hhh dfndfRMSEA ×−= χ

 
 

 
0 – infinity 

 
0.0 

 
.05 – < 0.1 

 
Note.  FML = full information maximum likelihood estimation, N = sample size, 2

bχ = χ² 

test statistic for the baseline model, bdf  = degree of freedom for the χ² test statistic for 

the baseline model, 2
hχ = likelihood ratio χ² of the hypothesized model, hdf  = degrees of 

freedom of the χ² hypothesized model, hd
~

= ( )0,max hd , bd
~  = ( )0,,max hb dd , hd  = 

( ) ndfhh /2 −χ , and bd  = ( ) ndfbb /2 −χ .
  

In addition to the four fit indexes examined in this dissertation, there is an 

assortment of additional measures of model fit, which include the: (a) goodness of fit 

index (GFI; Jöreskog & Sörbom, 2001); (b) adjusted goodness of fit index (AGFI; 

Jöreskog & Sörbom); (c) normed fit index (NFI; Bentler & Bonett, 1980); (d) root mean 

square residual (RMR; Jöreskog & Sörbom); and (e) McDonald’s centrality index (Mc; 



 
 

 

McDonald, 1989), among others. Previous general SEM simulation studies of fit indexes 

suggested that the four selected indexes have potential benefit over the excluded 

alternatives (Hu & Bentler, 1998, 1999). Also, the χ²/df ratio was computed in the current 

study based on methodological preference over the χ² value alone. In summary, the χ² 

(χ²/df), NNFI, CFI, and RMSEA were examined in the conditions of sample size, waves 

of data, and model complexity in this dissertation.  

Generating the Data 

 The data were generated by use of Monte Carlo procedures available in Mplus 

(Muthén & Muthén, 2004). The parameters were fixed or varied as previously discussed 

according to model conditions. A random seed was created based on the random numbers 

generator in Microsoft Excel, then input into the Mplus syntax for data generation. One 

thousand replications were generated per design condition. The Mplus syntax for this 

dissertation can be found in Appendix A.  

Also, convergence and inadmissible solutions for each data condition were 

reported. To account for the large amount of inadmissible solutions (non-plausible 

values), numerous additional datasets were estimated, from which only the first 1,000 

datasets that converged and had admissible solutions (plausible values) were used in the 

analysis. One thousand replications is the average number of replications found in other 

LGC modeling simulations (e.g., Liete, 2007). The data were checked for validation by 

examination of the number of replications reported in the analysis and the means and 

variances among the fit indexes. Based on the three research questions (excluding Q1 

regarding convergence rates), the simulation included 75 cells, with 1,000 replications in 

each cell, resulting in a total 75,000 datasets generated and analyzed regarding model fit.  



 
 

 

Data Analysis 

Four fit indexes (i.e., x², NNFI, CFI, and RMSEA) were produced for each dataset 

resulting in a total of 300,000 indexes to be interpreted. To collect the indexes, an SPSS 

(Version 15.0) program selected the desired statistics from the Mplus output and placed 

them in a format which could be analyzed. Once the data were represented in an 

interpretable SPSS data set, descriptive and inferential analyses were conducted. First, a 5 

x 4 x 4 incomplete factorial ANOVA was conducted for each of the four dependent 

variables (χ², NNFI, CFI, and RMSEA), as well as the χ²/df ratio, to determine if LGC 

modeling design characteristics influence the fit index values. Partial eta-squared effect 

sizes were examined for all main effects and interactions to descriptively quantify the 

magnitude of the effect and were interpreted as: (a) .09 as a small effect, (b) .14 as a 

medium effect, and (c) .22 as a large effect (Gamst, Meyers, & Guarino, 2008). The mean 

fit indexes were reported descriptively in two formats. Line graphs are presented in the 

text for χ² and RMSEA and tables can be found in Appendix B. Due to the large sample 

size, the statistical power in this analysis was high which increased the chance to obtain 

significant outcomes. Therefore, an alpha level of .01 was applied to determine 

significance and more weight was placed on the effect sizes and mean values when 

interpreting the results.   

Due to the practical focus of this dissertation, planned contrasts were conducted to 

answer common questions as encountered by applied researchers. For example, an 

applied researcher, who designs a longitudinal study, may debate between using N = 100 

or using additional resources to increase sample size to N = 250, but would not typically 

contemplate between N = 100 and N = 1,000. Therefore, planned comparisons assessed 



 
 

 

whether a significant difference was obtained when small sample sizes are compared to 

conditions with larger sample sizes (N = 100 vs. N = 250), while also examining 

decisions among moderate sample sizes (N = 250 vs. N = 500), and large sample sizes (N 

= 500 vs. N  = 1,000 and N = 1,000 vs. N = 2,500). Similarly, researchers may utilize 

resources to add an additional wave of data; therefore, planned comparisons assessed 

significant differences with one additional wave of data (t = 3 vs. t = 4; t = 4 vs. t = 5; t = 

5 vs. t = 6). Furthermore, the test of main effects for model complexity lacks applicability 

for applied researchers because the conditions of model complexity are utilized for 

different purposes. For example, a LGC modeling researcher may debate between a 

univariate linear or multivariate linear LGC model; however, it would be rare for a 

researcher to change from a quadratic univariate model to a linear multivariate model. 

Therefore, a unvariate linear LGC model were compared to all other conditions of model 

complexity through planned comparisons (e.g., unvariatate vs. quadratic, univariate vs. 

multivariate, univariate vs. inclusion of covariate). An alpha level of .01 was applied to 

examine the planned comparisons. Cohen’s d effect sizes were computed for all planned 

comparisons and were interpreted as .2 for a small effect, .5 for a moderate effect, and .8 

for a large effect (Field, 2005). 

In addition, the Type I error rate were computed in all 75 conditions to investigate 

the frequently applied methods for determining model fit. In this simulation, correctly 

specified models were estimated; therefore, theoretically, all fit statistics should imply 

adequate model fit. The Type I error rate is defined, in this dissertation, as the proportion 

of models that are rejected based on Hu and Bentler’s (1999) proposed cutoff values.   

 



 
 

 

Summary of Method 

The simulation analysis provided insight into the performance of common fit 

indexes in LGC model environments by the generation and analysis of 75 data conditions 

(i.e., with 1,000 replications) among variations in sample size, waves of data, and model 

complexity. The levels of independent and dependent variables were designed, based on 

conditions found in application and simulation LGC modeling studies, in order to aid in 

the understanding of fit indexes for LGC modeling methodologists and applied 

researchers. A 5 x 4 x 4 incomplete factorial ANOVA was conducted for each of the four 

dependent variables, along with partial eta-squared effect sizes for the main effects and 

interactions. Planned comparisons were computed for significant main effects, along with 

Cohen’s d effect sizes. Finally, Type I errors were computed to determine the proportion 

of models rejected based on frequently used methods for determining acceptable model 

fit. The examination of four common fit indexes in LGC models provided novel 

information in regard to the functioning of fit indexes, which can be utilized to provide 

applied longitudinal researchers with valid methodological information.   



 
 

 

 
 
 
 
 

CHAPTER IV 
 

RESULTS 
 

 The purpose of this dissertation was to provide guidance for applied longitudinal 

researchers regarding the evaluation of latent growth curve (LGC) model fit. In Chapter 

IV, I conveyed the results of four commonly used measures of global fit to understand 

their performance in correctly estimated LGC models under various conditions based on 

three variables: (a) sample size, (b) waves of data, and (c) model complexity (e.g., 

defined in this dissertation as a univariate LGC model, quadratic LGC model, 

multivariate LGC model, and a univariate LGC model with the inclusion of a time-

invariant covariate). The specific fit indexes investigated include: (a) the likelihood ratio 

chi-squared (χ²), (b) nonnormed fit index (NNFI), (c) comparative fit index (CFI), and (d) 

the root mean squared error of approximation (RMSEA). 

 The chapter begins with a discussion of model convergence and inadmissible 

solution rates for the 75 LGC modeling conditions estimated. Subsequently, five 

incomplete factorial analysis of variance (ANOVA) designs are discussed for each of the 

measures of global fit, according to the interactions, main effects, and planned 

comparisons among the three independent variables. To interpret the magnitude of the 

effect, partial eta-squared effect sizes (η²) are presented for main effect and interaction 

findings, while Cohen’s d effect sizes are presented for the planned comparison results. 

Furthermore, the mean values of the five measures of fit are presented, as well as the 



 
 

 

Type I error rates, defined as the proportion of models rejected based on frequently 

utilized criteria for determining acceptable model fit, such as Hu and Bentler’s (1999) 

proposed cutoff values. Chapter IV summarizes detailed evidence examining the 

influence of design characteristics (i.e., sample size, waves of data, and model 

complexity) on commonly utilized measures of LGC model fit, with supplemental 

information presented in the Appendices.   

Model Convergence and Inadmissible Solutions Rates 

 Interestingly, all conditions achieved 100% convergence; however, the 

inadmissible solutions rate was problematic. Inadmissible solutions occur when 

maximum likelihood estimation results in an implausible value (i.e., also known as a 

Heywood case), including one or more of the following conditions: (a) a negative latent 

intercept variance, (b) a negative latent slope variance, or (c) a correlation between the 

latent intercept and slope factors beyond the acceptable range (i.e., -1 to 1; Kline, 2005; 

Leite, 2007). Consequently, inadmissible solutions should not be interpreted by 

longitudinal researchers, as noted in the error message that occurs in structural equation 

modeling (SEM) software (i.e., non-positive definite variance-covariance matrix). 

Table 4.1 displays the percent of inadmissible solutions for the first 1,200 

replications generated in each LGC modeling condition. Conditions with small sample 

sizes and few waves of data encountered the largest inadmissible solution rates, 

particularly in quadratic and multivariate LGC modeling conditions. The lowest rates 

were observed for all models with six waves of data and N = 2,500, ranging up to 49.9% 

to 74.5% for models with three waves of data and N = 100. Notice, if a researcher were to 

begin with the design conditions of a univariate LGC model with N = 100 and four waves 



 
 

 

of data, the inadmissible solutions rate would be 43.1%. To include a single covariate the 

rate would decrease to 42.6%, to change to a multivariate model the rate would increase 

to 59.4%, and to change to a quadratic LGC model the inadmissible rate would increase 

to 90.3%. Therefore, the highest rates were observed in quadratic models, followed by 

multivariate models, then univariate models, and finally, the lowest rates were observed 

for the covariate model. In conclusion, the percentage of inadmissible solutions increased 

in conditions with small sample sizes and few waves of data, especially in quadratic and 

multivariate model conditions.  

Table 4.1    

Percent of Inadmissible Solutions  
 

Waves of 
Data 

Sample Size 
100  250 500 1,000 2,500 

 Univariate Linear LGC Model 
3 52.0% 46.9% 43.6% 39.3% 30.3% 
4 43.1% 34.5% 27.3% 19.3%  7.7% 
5 34.8% 23.5% 11.6%  4.9%  <.1% 
6 26.4% 13.0%  5.6%  1.1%     0% 

Quadratic LGC Model 
4 90.3% 84.3% 76.7% 64.2% 51.1% 
5 69.3% 46.8% 33.1% 17.2%  5.3% 
6 48.6% 26.2% 12.7%   4.3%    .3% 

Multivariate Linear LGC Model 
3 74.5% 64.2% 55.5% 45.7% 33.3% 
4 59.4% 40.8% 31.9% 22.0%  7.3% 
5 46.1% 27.9% 16.8%   5.8%    .4% 
6 36.5% 17.4%   6.4%     .7%     0% 

Covariate Linear LGC Model 
3 49.4% 44.4% 44.3% 38.1% 31.3% 
4 42.6% 36.1% 28.2% 17.6%  6.2% 
5 37.3% 22.8% 15.1%   4.2%    .9% 
6 29.3% 12.5%   5.7%   1.2%    0% 

Note.  Values based on the first 1,200 datasets generated. 



 
 

 

 Due to the applied nature of this dissertation, inadmissible solutions were 

removed and replaced with admissible solutions (i.e., plausible values). Although an 

additional 200 replications were estimated, in conditions with small sample sizes and few 

waves of data additional simulations were conducted to achieve 1,000 admissible datasets 

in each condition. In summary, even though all models achieved convergence, the high 

rate of inadmissible solutions was problematic, particularly in conditions with small 

sample sizes, few waves of data, and in quadratic and multivariate models. 

Assessment of Differences in LGC Model Fit 

 The influence of LGC modeling design characteristics on global measures of 

model fit was investigated with five incomplete factorial ANOVAs and effect sizes for 

the χ², χ²/df, NNFI, CFI, and RMSEA. The ANOVAs were used to examine the statistical 

significance of the design conditions (alpha level = .01), while the effect sizes exhibited 

the magnitude of the effects. Table 4.2 displays the effect sizes and significant 

differences for the five measures of model fit. Detailed ANOVA tables for the measures 

of fit are presented in Appendix B.   

 As expected, the majority of main effects and interactions were significant, most 

likely due to the large amount of statistical power typically encountered in simulation 

studies such as the current study. Therefore, the effect size results, which varied in 

magnitude among the fit indexes and model conditions, were weighted more heavily than 

significance testing in interpreting the results. Clearly, the χ² assessment of fit was highly, 

negatively affected by additional waves of data and increasing model complexity 

(excluding the quadratic model), while the RMSEA and CFI displayed a moderate 

tendency to suggest worse fit in small sample sizes, and the χ²/df and NNFI displayed no 



 
 

 

notable effects. The detailed findings are discussed below, partitioned by each measure of 

model fit.   

Table 4.2     

Effect Sizes and Significant Differences for Model Fit Indexes   

Condition df Effect Sizes 
χ² χ²/df NNFI CFI RMSEA 

  Partial Eta Squared (η²) Effect Sizesa 

SS   4 <.01* <.01* <.01*   .11*   .13* 
W   3   .75*   .00   .00* <.01* <.01* 
C   3   .81*   .00 <.01*   .01* <.01* 
SS x W 12 <.01*   .00 <.01* <.01* <.01* 
SS x C 12 <.01*   .00 <.01*   .01* <.01* 
W x C   8   .58*   .00   .00 <.01* <.01* 
SS x W x C 32 <.01*   .00 <.01* <.01* <.01* 
  Cohen’s d Effect Sizesb 

SS: 100 vs. 250   1   .02*   .03* <.07*   .25*   .56* 
SS: 250 vs. 500   1   .01   .02 <.03   .36*   .25* 
SS: 500 vs. 1000   1 <.01*   .00 <.01   .35*   .22* 
SS: 1000 vs. 2500   1   .01* <.01 <.01   .43*   .46* 
W: 3 vs. 4   1   .76* -   .03*   .12*   .07* 
W: 4 vs. 5   1   .72* -   .02   .01   .02* 
W: 5 vs. 6   1   .56* -   .01   .05*   .05* 
C: uni. vs. quadratic   1  -.26* - <.01   .29* <.01* 
C: uni. vs. multivariate   1  1.83* -   .05*   .04*   .13* 
C: uni. vs. covariate   1    .81* - <.01   .02*   .02* 
Note.  NNFI = Nonnormed Fit Index; CFI = Comparative Fit Index; RMSEA = Root 
Mean Squared Error of Approximation; SS = sample size; W = waves of data; C = model 
complexity. 
a
η² effect sizes of .09 or lower were interpreted as a small effect, .14 as a moderate effect, 

and .22 as a large effect. bd effect sizes were interpreted as .2 for a small effect, .5 for a 
moderate effect, and .8 for a large effect. 
* p < .01. 
 
Chi-Squared Ratio Test  

 Despite the significant difference observed for the χ² assessment of fit among 

conditions of sample size, the effect size displayed a negligible effect (i.e., <.01% of the 

variance explained). As previously discussed, the significant difference is most likely 



 
 

 

related to the high statistical power in this analysis, increasing the ability to detect minor 

differences. Consequently, the significant difference for χ² among sample size conditions 

lacks practical merit and will not be interpreted as a genuine effect. Similar trends were 

observed for most fit index comparisons (i.e., significant differences with negligible 

effect sizes), and will be interpreted in the same manner (i.e., concluding that the 

significant difference lacks practical value). For example, the interactions including 

sample size were also found to display negligible effects, despite the significant 

differences.  

The χ² values displayed a large amount of disparity among the conditions of 

waves of data and model complexity, explaining 75% and 81% of the variation, 

respectively. As additional waves of data were added to the LGC model, the χ² values 

suggested a decrease in model fit. Similarly, as model complexity increased, the χ² values 

implied a decrease in model fit, excluding the quadratic LGC model. The planned 

comparisons for waves of data displayed moderate effect sizes (d = .56 - .76). 

Among the model complexity conditions, the comparison of univariate to 

multivariate models displayed the largest effect (d = 1.83), followed by the comparison 

between univariate and covariate models that also displayed a large effect (d = .81). 

Therefore, univariate models displayed better model fit than covariate models, and much 

better fit than multivariate models. The comparison between univariate and quadratic 

models displayed a small effect (d = -.26); however, the direction of effect was negative 

suggesting that χ² values tend to be lower in quadratic models. Therefore, quadratic LGC 

models will display slightly better model fit than univariate linear LGC models.  



 
 

 

The interaction between waves of data and model complexity accounted for 58% 

of the variation in χ² values. To understand the nature of the interaction, a test of simple 

main effects was conducted as presented in Table 4.3. Notice, within all four model 

complexity conditions, varying the waves of data was found to significantly affect the χ² 

values. More specifically, in all model complexity conditions as waves of data were 

added to LGC models, the χ² values suggested worse model fit.  

Table 4.3    

ANOVA Table of Simple Main Effects for the χ² 

Source SS df MSE F-value p-
value 

Waves within 
univarite models 

643,436.08 3 214,478.69 1,628.40 <.01* 

Waves within  
quadratic models 

2,161,568.08 3 720,522.87 5,470.48 <.01* 

Waves within 
multivariate models 

9,444,146.30 3 3,148,048.80 23,901.16 <.01* 

Waves within 
covariate models 

834,688.43 3 278,229.48 2,112.42 <.01* 

Error 9,876,620.44 74987 131.71   
Total 22,960,459.88 74999    
Note. SS = sums of square; df = degrees of freedom; MSE = mean squared error; SS = 
sample size; W = waves of data; C = model complexity.  
*p < .01.  
 

To further investigate the nature of the interaction, Figure 4.1 graphically 

represents the mean values for the χ² assessments of fit, which can also be found in table 

format in Appendix C. Notice, the interaction between waves and data and model 

complexity is evident, where the effect of number of waves of data is considerably 

stronger for the multivariate model than for the other models. Therefore, multivariate 

models with more waves of data (i.e., five and six waves) displayed the worst model fit; 

whereas, univariate models with three waves of data and quadratic models with four 



 
 

 

waves of data displayed the best model fit. In summary, the χ² assessment of LGC model 

fit was found to be influenced by variations in waves of data and model complexity, but 

was not affected by differences in sample size.  
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Figure 4.1.  Mean chi-square values for LGC modeling conditions  



 
 

 

 By correcting for df, the χ²/df ratio has been suggested to be superior to the 

traditional χ² assessment. Despite the significant difference observed for the χ²/df 

assessment of fit among conditions of sample size, the effect size displayed a negligible 

effect (i.e., <.01% of the variance explained), as seen in Table 4.2. As previously 

discussed in regard to the χ², the significant difference is related to the high statistical 

power but the effect lacks practical merit and was not interpreted. No notable effects for 

χ²/df were observed among the conditions of waves of data and model complexity. 

Furthermore, all interaction effects lacked evidence of discrepancies among the design 

conditions as well. Therefore, the χ²/df was not influenced by the LGC modeling design 

conditions examined in this dissertation. Due to the lack of variation among conditions, 

mean values for the χ²/df are not displayed in the text, but can be found in Appendix C.  

 In summary, the conditions of waves of data and model complexity produced 

substantial variation in the χ² assessment of LGC model fit. Increasing waves of data 

resulted in worse model fit (i.e., larger χ² values). Multivariate models produced the 

largest amount of variation, followed by covariate models, univariate model, and finally, 

the smallest differences were observed for the quadratic model. As expected, the χ²/df 

was superior to the traditional χ² assessment of model fit, finding no variations based on 

the LGC modeling conditions examined in this dissertation. Sample size had only a 

negligible effect on either the χ² or χ²/df. 

Nonnormed Fit Index 

 The significant differences observed for the NNFI were found to lack practical 

relevance among the LGC modeling conditions examined in this dissertation, as 

displayed by the minimal effect sizes in Table 4.2. Due to the lack of effects for sample 



 
 

 

size, waves of data, and model complexity, the mean values are not displayed in the text, 

but can be found in Appendix C. In summary, NNFI values did not vary under LGC 

modeling conditions and functioned similarly to the χ²/df, in performing in a superior 

manner to the traditional χ² assessment of model fit. 

Comparative Fit Index 

 Similar to the NNFI, the CFI values displayed no notable main effects or 

interactions for the conditions of waves of data and model complexity; however, a 

moderate variation was observed for the main effect of sample size (η² = .11) and small to 

moderate effects were found for the planned comparisons of sample size (d = .25 - .43). 

Upon further examination, identical mean values were observed in all conditions (.99) 

with the only difference being standard deviations in the tenth (for model with N = 100 

and 3 waves of data) or hundredth decimal place (N > 100), as presented in Appendix C. 

Therefore, the small to moderate differences in the CFI may lack practical relevance 

based on the limited change in mean values.  

Root Mean Squared Error of Approximation 

The RMSEA values displayed a moderate effect for sample size (η² = .13), with no 

notable differences among the conditions of waves of data and the majority of model 

complexity conditions. The planned comparisons revealed a moderate effect (d = .46 and 

d = .58) for the extreme comparisons of sample size (i.e., 100 vs. 250 and 1,000 vs. 

2,500), respectively, and small effect for the remaining sample size comparisons (d = .25 

- .22). As displayed in Figure 4.2, smaller sample sizes (N ≤ 250) were found to produce 

higher RMSEA values (suggesting decrements in model fit), which began to stabilize at N 

= 1,000. The comparisons between univariate and multivariate models displayed a small 



 
 

 

effect size (d = .13), which can be seen in Figure 4.2 with an average of a .01 mean 

difference in RMSEA values among the two conditions of model complexity. In 

summary, the RMSEA was generally stable under varying conditions of waves of data and 

model complexity, but displayed a moderate effect for sample size suggesting worse 

model fit with smaller sample sizes.  
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Figure 4.2.  Mean values for the RMSEA  

 



 
 

 

Summary of the Assessment of Mean Differences in LGC Model Fit 

In summary, the ANOVAs, effect sizes, and mean fit index values highlighted the 

influence of LGC modeling conditions on selected global fit indexes. The χ²/df and NNFI 

exhibited superior performance, lacking any differences due to varying LGC modeling 

data conditions examined in this dissertation. The CFI and RMSEA were found to have a 

moderate effect based on sample size; however, upon examining the mean values, the 

disparities in CFI values were found to lack practical relevance. The RMSEA mean values 

were found to vary tending toward worse model fit (i.e., larger values) in conditions with 

small sample sizes. The χ² assessment was the only fit index that varied among waves of 

data and model complexity, with higher values (suggesting worse model fit) in conditions 

with few waves of data and in multivariate and covariate LGC models. Unexpectedly, 

quadratic LGC model conditions displayed better model fit (i.e., lower χ² values) than the 

parsimonious univariate LGC model. In conclusion, the χ² assessment of fit suggested 

worse model fit with more waves of data and an increasing model complexity (excluding 

quadratic models), whereas the RMSEA displayed poorer fit in the presence of smaller 

sample size.  

Type I Error Rates 

 To investigate the practical application, or methods, of determining adequate 

model fit, the Type I error rates were computed as the proportion of correct models that 

were falsely rejected using frequently utilized cutoffs. All models were correctly 

estimated (i.e., no model misspecifications) so, theoretically, all fit indexes should have 

displayed acceptable fit. Thus, any models classified as having inadequate fit would 

reflect a Type I error. For the χ² assessment of fit, the Type I error rate is the percentage 



 
 

 

of correct models that are rejected based on significance testing (i.e., p-value <.05). For 

the three descriptive fit indexes, Hu and Bentler’s (1999) frequently utilized guidelines 

for acceptable model fit were applied to estimate the Type I error rates (i.e., NNFI ≤ .95, 

CFI ≤ .96, and RMSEA ≥ .05.) Type I error rates of concern were defined as conditions 

that rejected more than 5% of the samples, comparable to the concept of an alpha level of 

.05.  

Type I Error Rates: Chi-Square 

 Figure 4.3 graphically displays the Type I error rate, which ranged between 3% 

and 10%, for the χ² assessment of model fit, with the majority of conditions exhibiting 

Type 1 error rates between 4% and 6%. Small to moderate sample sizes resulted in 

variation in the χ² Type I errors, which stabilized at N ≥ 1,000 among the different levels 

of model complexity. Type I error rates of concern were identified in multivariate models 

with N = 100 and more waves of data (i.e., 10%). In conclusion, the χ² is at moderate risk 

of displaying poor model fit for the multivariate model with more waves of data and 

small sample sizes.  

Type I Error Rates: NNFI 

 Even though the NNFI was not found to vary among the LGC model data 

environments examined, excessive Type I errors were found in selected conditions, as 

shown in Figure 4.4. Conditions with small sample sizes (i.e., N = 100) and few waves of 

data (i.e., three waves, and four waves for quadratic models) displayed the worst model 

fit (i.e., encountered the highest Type I error rates). The Type I errors varied in model 

complexity conditions with the highest tendency to suggest poor fit in the univarite LGC 

model, followed by the multivariate LGC model, the quadratic LGC model, and finally, 



 
 

 

the covariate LGC model suggested the best fit. Therefore, applied researchers using the 

NNFI to assess model fit may falsely reject a correct univariate and multivariate LGC 

model with three waves of data and N = 100.  
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Figure 4.3.  Type I error rates for the χ² assessment of fit  
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Figure 4.4.  Type I error rates for the NNFI  
 
 
Type I Error Rates: CFI 

 The CFI was found to perform the best, with the lowest Type I error rates among 

the four fit indexes, ranging from 0% to 4% (see Figure 4.5), although probability of 



 
 

 

obtaining poor model fit displayed a slight increase as more waves of data were added to 

models with N = 100. As for model complexity, the covariate model displayed the 

highest Type 1 error rates, followed by the multivariate models, univariate models, and 

finally, quadratic models which did not encounter any Type I errors. In summary, the CFI 

did not encounter any troubling Type I error among the LGC modeling conditions 

examined.  

Type I Error Rates: RMSEA 

 The RMSEA did not perform well, with considerable Type I error rates ranging up 

to 30% in selected conditions with small sample sizes and few waves of data. In other 

words, the RMSEA incorrectly suggested poor model fit in conditions with small to 

moderate sample size and few waves of data. The Type I error rates were negligible when 

N ≥ 500 for multivariate and covariate models, and N ≥ 1,000 in univariate and quadratic 

models. In summary, the Type I error rates, based on the .05 RMSEA cutoff proposed by 

Hu and Bentler (1999), over-rejected correct models with small sample sizes (N ≤ 500 to 

N ≤ 1,000) and fewer waves of data. 

Summary of Type I Error Rates 

 Regarding the methods for determining model fit (Type I error rates), the CFI 

performed the best, followed by the NNFI, χ², and RMSEA displayed the least desirable 

characteristics. The NNFI was found to over-reject (i.e., imply poor model fit) in correct 

univariate and multivariate models with three waves of data and N = 100. The χ² 

suggested inadequate model fit (i.e., excessive Type I errors) in multivariate models with 

N =100 and five or six waves of data. The RMSEA displayed potentially problematic 



 
 

 

characteristics, tending toward poor fit, in LGC models with small to moderate sample 

sizes (N ≤ 1,000) and few waves of data.  
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Figure 4.5.  Type I Error Rates for the CFI  
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Figure 4.6.  Type I Error Rates for RMSEA  

Summary of Results 

 The investigation into the influence of LGC modeling design characteristics on 

commonly utilized fit indexes revealed several interesting findings. Four research 

questions were proposed and the results are summarized accordingly. 



 
 

 

Research Question One: Model Convergence  

The first research question inquired as to the model convergence rates among the 

data conditions, asking:  

Q1   Do model convergence rates vary under conditions of sample size, waves of 
data, and model complexity? 

 
It was hypothesized that complex models with small sample sizes and few waves of data 

would produce lower convergence rates. While all models converged, the rate of 

inadmissible solutions followed the anticipated convergence trends for sample size, 

waves of data, and selected conditions of model complexity. As expected, the 

multivariate models had a higher rate of inadmissible solutions than the covariate models, 

which in turn had higher rates than the univariate model. However, the quadratic model 

produced higher inadmissible solution rates than the more complex multivariate model 

conditions, particularly with three waves of data. In summary, all models converged, but 

the rate of inadmissible solutions was problematic, specifically in conditions of small 

sample size and few waves of data, particularly in quadratic and multivariate models.  

Research Question Two: Sample Size  

The second research question examined the influence of varying sample size 

conditions on four measures of model fit in LGC models, asking:  

Q2   Do fit indexes (χ², NNFI, CFI, and RMSEA) differ under varying conditions of 
sample size?  

 
It was hypothesized that the CFI, NNFI, and RMSEA will imply poor model fit in 

conditions of small sample size; whereas the χ² will imply good model fit in small sample 

sizes. Regarding the influence of LGC model conditions, the χ², χ²/df, and NNFI 

performed well suggesting acceptable model fit in all sample size conditions. The CFI 



 
 

 

displayed a small to moderate effect for sample size; however, examination of mean 

values revealed the extremely minor discrepancies which lacked practical relevance. The 

RMSEA had the least desirable characteristics, displaying worse model fit in conditions 

with small to moderate sample sizes (N ≤ 1,000) sample sizes.  

Concerning the methods for determining model fit, the CFI performed the best, 

followed by the NNFI and χ², and finally, the RMSEA was the worst index examined. The 

latter three indexes were found to suggest poor model fit in conditions with smaller 

sample sizes. More specifically, the NNFI and χ² only suggested poor model fit when N = 

100. However, the RMSEA was found to suggest inadequate fit in sample sizes as large as 

N = 1,000. To summarize, the CFI performed the best and the NNFI and χ² displayed 

moderate deficiencies, suggesting poor model fit when N = 100. However, the use of 

RMSEA in LGC models is of great concern, displaying unacceptable fit in conditions with 

small and moderate sample sizes (i.e., N ≤ 1,000).  

Research Question Three: Waves of Data 
 

The third research question examined the effects of differing waves of data, 

asking:  

Q3   Do fit indexes (χ², NNFI, CFI, and RMSEA) differ under varying conditions of 
waves of data?  

 
It was hypothesized that as waves of data (observed variables) are added to a LGC model, 

the fit indexes will suggest worse model fit. However, the hypothesis was only supported 

for the χ² assessment of fit, suggesting worse model fit in models with more waves of 

data (five and six waves). The CFI performed in a superior manner compared with all 

other indexes, lacking any variations among waves of data conditions. While the NNFI 



 
 

 

and RMSEA were not found to be influenced by changing the waves of data in a LGC 

model, the methods for evaluating model fit displayed poor model fit with fewer waves of 

data. More specifically, the NNFI displayed unacceptable fit in univariate and 

multivariate models with three waves of data. Similarly, the RMSEA displayed worse 

model fit in all models with three waves of data and quadratic model with four waves of 

data. As waves of data increased, the χ² values increased suggesting increasingly poorer 

model fit. In summary, variations in waves of data suggested poor model fit for: (a) the χ² 

in conditions with five and six waves of data, in multivariate models, (b) the NNFI with 

three waves of data in univariate and multivariate models, and (c) the RMSEA with three 

waves of data and four waves of data in quadratic LGC model.   

Research Question Four: Model Complexity 

The fourth research question investigated the model complexity in LGC models 

asking: 

 Q4  Do fit indexes (χ², NNFI, CFI, and RMSEA) differ under varying conditions of 
model complexity, defined in the current dissertation as a: (a) univariate linear 
LGC model, (b) quadratic LGC model, (c) multivariate linear LGC model, and 
(d) a linear LGC model with a covariate?  

 
It was hypothesized that as model complexity increases (i.e., beginning with the most 

parsimonious univariate linear model to the quadratic model, the covariate model, and 

finally the most complex, multivariate models) the fit indexes will suggest worse model 

fit. The hypothesis was not fully supported in the findings, whereas the ordering of model 

complexity conditions differed from the expected direction of influence. For example, χ² 

was found to vary among conditions of model complexity; however, the quadratic model 

displayed better fit than the univariate model, even though the quadratic model is 



 
 

 

generally considered more complex (includes an additional latent variable). The superior 

model fit for the quadratic model is most likely related to the quadratic models having 

fewer df than univariate models. As expected, the χ² displayed the worse model fit in 

multivariate models compared to all other model complexity conditions. Multivariate 

models include more df than all other modeling conditions; thus, higher χ² values were 

found in these models. Furthermore, the influence of LGC modeling conditions did not 

affect the NNFI, but the methods of assessing model fit were found to over reject correct 

univariate and multivariate models, which were hypothesized to be the most extreme 

conditions examined. The RMSEA displayed a minor tendency to show better model fit in 

multivariate and covariate models, which were hypothesized to be the two most complex 

conditions examined. In summary, varying model complexity conditions did affect the fit 

indexes’ assessment of model; however, not in the expected directions.  

In conclusion, the results support the overall hypotheses that the fit indexes’ 

values and the methods for determining model fit are affected by LGC modeling design 

conditions. The CFI performed the best, suggesting good model fit in the majority of 

conditions examined. The χ² suggested worse model fit in models with more waves of 

data (i.e., five or six waves), small sample sizes (i.e., N = 100), and multivariate models. 

The NNFI tended toward poor model fit in conditions with small sample sizes (N = 100), 

three waves of data, as well as univariate and multivariate models. The RMSEA tended 

toward poor model fit in conditions up to N ≤ 1,000, with few waves of data (three and 

four), and in univariate and quadratic model. Presented in the following chapter is the 

discussion of the implications of these findings for applied and methodological 

researchers.  



 
 

 

 

 

 
CHAPTER V 

 
DISCUSSION 

 
To date, there has been a lack of methodological guidance for applied longitudinal 

researchers in regard to the evaluation of latent growth curve (LGC) model fit, and they 

have had to follow the suggestions proposed for general structural equation modeling 

(SEM). In this dissertation, I examined the functioning of four commonly utilized fit 

indexes in LGC modeling data environments, including variations in sample size, waves 

of data, and model complexity. In Chapter IV, two venues for investigating LGC model 

fit were explored: (a) the influence of LGC modeling design characteristics on measures 

of model fit (e.g., effect sizes and the mean fit values), and (b) the methods for 

determining adequate model fit (e.g., Type I error rates based on significance testing and 

Hu and Bentler’s (1999) cutoff values).  

In regard to the influence of LGC modeling data environments, the chi-square 

divided by the degrees of freedom (χ²/df), nonnormed fit index (NNFI), and comparative 

fit index (CFI) performed well, lacking any differences in the assessment of fit among 

LGC modeling conditions. Conversely, the chi-square likelihood ratio assessment (χ²) 

and the root mean square error of approximation (RMSEA) performed poorly in selected 

LGC modeling conditions. Concerning the methods for determining acceptable fit, the 

Type I error findings suggest lack justification for the common practice of using 

universal cutoff values among the various LGC modeling environments, as found in 



 
 

 

numerous general SEM model fit simulations (Fan & Wang, 1998; Hu & Bentler, 1999; 

March, Hau, & Wen, 2004; Sivo et al., 2006). The CFI performed in a superior manner 

compared with all other indexes examined, using the standard cutoff of .96. Among the 

three remaining fit indexes examined, the NNFI performed the best (i.e., use of a cutoff 

of .95), followed by the χ², and finally, the RMSEA displayed the least desirable 

characteristics (i.e., application of a cutoff of .05).  

Although authors of general SEM model fit simulations have drawn similar 

conclusions (Fan & Wang, 1998; Hu & Bentler, 1999; March et al., 2004; Sivo et al., 

2006) it is critical to readdress these trends in terms of LGC modeling conceptualization. 

In Chapter V, I translate the findings into six general guidelines or suggestions to assist 

applied researchers in the assessment of LGC model fit, including: (a) the design of 

longitudinal studies to maximize the chance of obtaining a plausible solution, (b) cautious 

use of the χ² in selected modeling conditions, (c) relaxation of Hu and Bentler’s (1999) 

cutoff for the NNFI in selected conditions, (d) adoption of novel LGC modeling cutoff 

values for the RMSEA, (e) use of multiple fit indexes in combinations to assess overall 

model fit, and (f) assessment of the within person fit as well as global model fit. In the 

following sections, I discuss evidence for the guidelines/suggestions, as well as specific 

design decisions that may allow applied researchers to increase the validity of the 

assessment of model fit.  

Obtaining a Plausible Solution 

 Although all LGC modeling conditions converged, a high rate of inadmissible 

solutions was observed, specifically in conditions with small sample size, fewer waves of 

data, as well as in quadratic and multivariate models. As discussed in Chapter IV, 



 
 

 

inadmissible solutions occur when maximum likelihood estimation results in an 

implausible value (Bollen, 1989; Kline, 2005). Larger sampling distributions frequently 

occur in conditions with smaller sample sizes, which may extend beyond the range of 

plausible solutions and result in a larger percent of inadmissible solutions observed (Fan 

& Wang, 1998). In addition, models with three waves of data have a single df resulting in 

a limited amount of known information (Leite, 2007). For a review of model 

identification refer to pages 52-57. An identical rationale is attributed to the extremely 

high rates found in quadratic models with four waves of data, where there is only a single 

df in the model. Therefore, higher rates of inadmissible solutions for small sample sizes 

and fewer waves of data are rooted in the mathematical limitations of using parsimonious 

LGC models.   

Interestingly, the topic of inadmissible solutions specific to LGC models is rarely 

addressed in the literature. Leite (2007), the only other known methodologist to discuss 

LGC modeling inadmissible solutions, observed rates which ranged up to 30.7% for 

univariate models and 32.4% for multivariate curve of factor models in conditions with 

three waves of data and N = 100. In this dissertation, higher rates were obtained which 

may have resulted from the parameter specification discrepancies between the two 

simulations (e.g., covariance between the latent intercept and latent slope was specified 

as .4 in Leite and .2 in this dissertation). Compared to general SEM simulations (Fan & 

Wang, 1998; Siemsen & Bollen, 2007), higher inadmissible solutions rates were observed 

in LGC modeling simulations (i.e., Leite and this dissertation). For example, Fan and 

Wang reported a 12.5% inadmissible solutions rate for general SEM models with N = 

100. Therefore, applied LGC modeling researchers should anticipate a higher probability 



 
 

 

of encountering an inadmissible solution, compared to what they might encounter when 

conducting standard SEM, and recognize that variations in parameter estimates may 

affect the probability of obtaining an inadmissible solution.  

The corresponding practical interpretation of the high inadmissible solution rates 

is critical to the design of longitudinal studies. Specifically, applied researchers should 

attempt to design longitudinal studies that minimize the possibility of finding an 

inadmissible solution, with the use of larger sample sizes and more waves of data. For 

example, a researcher should avoid implementing a quadratic LGC model with four 

waves of data and N = 100 because of the limited chance in obtaining a proper solution 

(e.g., 9.3%). If it is not feasible to alter design characteristics, due to limited resources, 

applied researchers should be prepared to conduct a more traditional longitudinal analysis 

of change (e.g., repeated measures ANOVA) if an inadmissible solution is obtained. 

Therefore, Suggestion #1 is stated below.  

Suggestion #1: Applied longitudinal researchers should be proactive by minimizing the 
chance of obtaining an implausible solution using design conditions with more waves of 
data and larger sample sizes. If design conditions cannot be altered, due to limited 
resources, applied researchers should prepare an alternative analysis in the chance that an 
inadmissible solution is obtained. 
 

Cautions about the Use of the Chi-Square  
Likelihood Ratio Test 

 
The tendency for χ² assessment of model fit to differ among sample size 

conditions is by far the most commonly referenced model fit limitation (Beauducel & 

Wittmann, 2005; Bollen & Curran, 2006; Bentler, 1990; Duncan et al., 2007; Fan & 

Wang, 1998; Hu & Bentler, 1999; Kline, 2005). Interestingly, in this LGC modeling 

simulation, the χ² was robust to variation in sample size, meaning the assessment of LGC 



 
 

 

model fit did not change by increasing or decreasing sample sizes. General SEM 

simulations have demonstrated acceptable performance of the χ² in ideal modeling 

conditions (e.g., normally distributed data, no missing data, continuous data using 

maximum likelihood estimation) and correctly specified models, similar to the conditions 

simulated in this dissertation (March, Hau, & Wen, 2004). Therefore, in application, 

when real data conditions are introduced into a LGC model, the good performance of the 

χ² among sample size conditions may diminish.  

Despite the ideal modeling conditions simulated, the χ² suggested worse model fit 

as more waves of data were added to a LGC model (e.g., additional observed variables). 

As discussed in Chapter II, df for the χ² are equal to the difference between the number of 

unique elements of the observed variance-covariance matrix (i.e., known parameters) and 

the number of parameters estimated (i.e., unknown parameters), which were presented in 

Table 2.1 on page 54. As waves of data are added to a LGC model, additional observed 

variables (i.e., known parameters) are added, ultimately increasing the df. Although not 

directly examined in this dissertation, evidence supports the tendency for the χ² to vary 

with model df. By collectively interpreting the LGC simulation studies, including the 

findings from this dissertation, the use of increasing waves of data has benefits of 

increased reliability (Willett, 1989) and statistical power (Muthén & Curran, 1997; 

Muthén & Muthén, 2002). However, these design benefits are accompanied by worse 

model fit (i.e., increase in χ² values).  

Also, the χ² assessment of model fit was found to vary among model complexity 

conditions, where quadratic models suggested better model fit than univariate models. 

The tendency for the χ² assessment of fit to imply better fit in quadratic models was not 



 
 

 

anticipated because these models are generally considered more complex. However, 

quadratic models require estimation of an additional latent parameter without an increase 

in observed variables leading to decreased df. For example, a quadratic model with three 

waves of data is just identified (i.e., model fit cannot be estimated), even though an 

equivalent linear model is an over-identified model (i.e., model fit can be estimated). 

Applied LGC modeling researchers, who apply exploratory techniques, may compare χ² 

values between two or more competing model (e.g., linear univariate vs. quadratic 

models) to determine the most appropriate shape of the growth trajectory. However, the 

findings from the current investigation demonstrated that the design conditions of 

quadratic LGC models simply resulted in better model fit due to differences in df. 

Understandably, applied LGC modeling researchers may have drawn erroneous 

conclusions, by interpreting minor improvements in model fit (i.e., decrease in χ² values), 

as representing better model fit in a quadratic growth model, when the apparent 

improvement in fit may ban artifact of having fewer df. Applied longitudinal researchers 

should follow three general guidelines, based on the findings from this dissertation and 

previous methodological suggestions, to assess the shape of quadratic growth trajectories: 

(a) ensure that their underlying theory assumes quadratic growth in the hypothesized trait 

(Bollen & Curran, 2006; Preacher et al., 2008); (b) collectively interpret results from 

multiple indexes to interpret the shape of the growth trajectory, and (c) observe more than 

a 5.00 increase in χ² values per df to assume that the variations are more than what is 

expected from design condition alone. In conclusion, the χ² tendency to suggest a minor 

improvement in model fit for quadratic models (i.e., < 5.00), compared to univariate 



 
 

 

models, is an artifact of LGC model design characteristics and does not imply that the 

hypothesized shape represents quadratic growth.  

In respect to the χ² assessment of fit, multivariate LGC models displayed the 

worst model fit compared to all other modeling conditions, when more than three waves 

of data were incorporated in the model. The χ² tendency toward poor model fit in 

complex models has been well documented in the general SEM literature (Beauducel & 

Wittmann, 2005; Cheung & Rensvold, 2002; Hutchinson & Olmos, 1998). Again, 

multivariate LGC models have more df than more parsimonious univariate models, 

therefore, complex models will produce higher χ² values, tending toward worse model fit.  

It is unknown if applied longitudinal researchers extrapolate this finding to LGC 

modeling by cautious comparisons of χ² statistics between multivariate and more 

parsimonious LGC models (e.g., univariate, quadratic models). To clearly reiterate in 

terms of LGC modeling terminology, larger χ² will occur in more complex models, which 

implies poor model fit (i.e., multivariate models), and applied researchers should avoid 

the sole use of χ² statistics to compare complex models to parsimonious models.  

Despite the large variations in χ² model fit assessment regarding the influence of 

varying waves of data and model complexity conditions, the methods for determining 

model fit were less severely affected by LGC design conditions. The χ² displayed a 

moderate tendency (i.e., 10% Type I error) to suggest poor model fit (i.e., over-reject 

correct models) for multivariate models with N = 100 and more waves of data (i.e., five 

and six waves of data), which were the most complex conditions examined. 

Consequently, the current LGC modeling results differed slightly from the well 

documented tendency for the χ² assessment to over-reject complex models with small 



 
 

 

sample sizes and under-reject parsimonious models with large sample sizes (Beauducel & 

Wittmann, 2005; Fan & Wang, 1998), excluding the two most complex models 

examined.  

As a whole, LGC models include a smaller range of model complexity conditions 

compared to general CFA simulations. For example, LGC models require two latent 

factors to represent a growth trajectory, and by nature, are more complex models than 

parsimonious CFA models, which can have one latent factor. Similarly, the LGC 

modeling data environments examined in this dissertation are relatively parsimonious 

compared to the number of latent and observed variables included in complex CFA 

designs. For example, Sharma et al. (2005) used more observed variables in their 

parsimonious conditions for CFA models than examined in the most complex conditions 

of this dissertation (e.g., 8-32 observed variables). Therefore, the LGC models examined 

in this dissertation represented less extreme conditions; thus, the well documented trend 

of over-rejecting complex models was observed only in the two most complex conditions 

(e.g., multivariate models with five and six waves of data when N = 100).   

As discussed above, the use of the χ² assessment of fit should be cautioned in 

decisions made by applied LGC modeling researchers, which leads to Suggestion #2.  

Suggestion #2: Applied researchers should use of the χ² with caution in the four following 
research design decisions.  
 1. Decisions to increase waves of data will result in a higher χ² values and tend 

toward poor model fit.  
 2. In comparison of quadratic models to univariate models, χ² values will be 

lower in quadratic models suggesting better model fit.  
 3. In comparison of multivariate models to a univariate model, the χ² values will 

be higher in multivariate models suggesting poor fit.  
 4. In complex models (i.e., multivariate models with five and six waves of data) 

with small sample sizes (N = 100), the χ² has a moderate tendency to suggest 
poor model fit (i.e., over-reject correct models). 



 
 

 

  
LGC Modeling Cutoff Values for  

the Nonnormed Fit Index 
 

While the NNFI lacked practical variations concerning the influence of design 

conditions, application of a .95 universal cutoff was found to have a moderate tendency 

(i.e., ≈ 10% Type I error) to suggest poor model fit in conditions with small sample sizes 

(N = 100), three waves of data, and in univariate and multivariate LGC models. This 

finding was expected based on the general SEM literature which has demonstrated that 

the NNFI will produce standard deviations that are substantially larger than other fit 

indexes in conditions of small sample size (Bentler, 1990; Jackson, 2007; Sharma et al., 

2005; Yadama & Pandey, 1995). Interestingly, inflated Type I error rates were found 

only for univariate and multivariate models, which included the same ratio of observed to 

latent variables. Both quadratic and covariate LGC models included an additional latent 

variable; thus, the ratio of latent to observed variables was increased. Therefore, applied 

LGC modeling researchers should attempt to include an additional latent variable in their 

LGC model (e.g., covariate), which will reduce the NNFI tendency to suggest worse 

model fit based on design characteristics. If the addition of a covariate or predictor is not 

possible, researchers should be cautious in their use of a .95 universal cutoff for the NNFI 

in univariate and multivariate models with small sample sizes and three waves of data.      

Selected SEM methodologists have discouraged the proposal of novel cutoff 

values, and even the use of fit indexes at all, because any cutoff values will be flawed 

among the vast number of potential modeling conditions (Chen et al., 2008). However, 

the practical reality is that in applied LGC modeling and SEM, researchers use fit indexes 

and procedural guides continue to endorse the use of the fit index along with Hu and 



 
 

 

Bentler’s (1999) cutoff values. Therefore, I propose the adoption of novel cutoff values 

specific to LGC models that vary by design characteristics. The proposed cutoffs are not 

universally applicable, but may provide a more accurate assessment of fit compared to 

traditional SEM cutoff values. Based on the results from this dissertation, I propose that 

applied researchers should relax the NNFI cutoff values proposed by Hu and Bentler in 

conditions with N ≤ 100 and three waves of data in univariate and multivariate LGC 

models, which leads to Suggestion #3.  

Suggestion #3: Applied researchers should relax the NNFI cutoff values to the originally 
proposed value of .90 (Bentler & Bonett, 1980) in conditions of small sample sizes (i.e., 
N ≤ 100) and few waves of data (i.e., three waves of data) for univariate and multivariate 
models. Or, applied researchers could simply add a covariate to the univariate and 
multivariate LGC model, which would elevate the NNFI and reduce its problematic 
tendencies; then the standard .95 cutoff could be applied.  
 

LGC Modeling Cutoff Values for the Root  
Mean Error of Approximation 

 
 In conditions of small sample, the RMSEA suggested poor model fit, which has 

been well documented in the general SEM literature (Chen et al., 2008; Fan & Wang, 

1998; Sharma et al., 2005; Sivo et al., 2006). However, in LGC models, tendency to 

suggest unacceptable model fit did not ameliorate until N = 1,000; which is higher than 

what has been found in the general SEM literature that suggests, on average, biased 

RMSEA values are only found in conditions with N ≤ 250. The undesirable tendency of 

the RMSEA held true in the evaluation of the methods to determine acceptable model fit. 

By applying the standard cutoff value of .05, the RMSEA was found to suggest poor 

model fit in conditions with small to moderate samples sizes and few waves of data. 

Regarding model complexity, the undesirable characteristics of the RMSEA did not 

dissipate until N ≥ 500 for multivariate and covariate models and N ≥ 1,000 and in 



 
 

 

univariate and quadratic models. Again, the influences of sample size on RMSEA Type I 

error rates was expected based on the general SEM literature (Hu & Bentler, 1999; Sivo 

et al., 2006). Even when Hu and Bentler originally proposed the cutoff value of .05, they 

cautioned that this standard value will tend to over-reject correct models in conditions of 

small sample size. However, longitudinal researchers should be aware that RMSEA 

values may continue to vary and may imply poor model fit in LGC models conditions up 

to N = 1,000, which extends the cautionary range of recommendations from the general 

SEM literature.  

Therefore, RMSEA cutoff values should be adjusted to account for the tendency to 

suggest poor model fit in conditions with small sample sizes and few waves of data, 

particularly in univariate and quadratic models. As discussed in Chapter II, Steiger’s 

(1989) original guidelines endorsed RMSEA values of: (a) less than .05 to suggest good 

fit, (b) .08 for reasonable fit, and (c) values beyond .10 to indicate model misfit. 

Therefore, I propose using the cutoff values of .05, .08, and .10 for most LGC modeling 

conditions due to their familiarity. Specifically, that RMSEA values less than or equal to 

.10 may constitute appropriate model fit in the following conditions:  

 1. univariate LGC models with N = 100 and three, four, or five waves of data;  
2. quadratic LGC models with N = 100 and four or five waves of data; and  
3. multivariate and covariate LGC models with N = 100 and three waves of data.  

RMSEA values less than or equal to .08 may suggest acceptable model fit in the following 

conditions:  

1. univarite LGC models with six waves of data and N = 100;  
2. univariate LGC models with three and four waves of data when N = 250; 
3. univariate LGC models with three waves of data when N = 500;  
4. quadratic LGC models with four waves of data when N = 250 or N = 500;  
5. quadratic LGC models with five waves of data when N = 250;  



 
 

 

6. multivariate LGC models when N = 100 with four, five, or six waves of data;  
7. multivariate LGC models with three waves of data when N = 100;  
8. covariate LGC models when N = 100 with three, four, and five waves of data; and  
9. covariate models with three waves of data and N = 250.  
 

Finally, all other more complex LGC modeling conditions may be able to determine 

appropriate model fit by using the frequently applied RMSEA values less than or equal to 

.05. Althought the previous guidelines are detailed; applied researchers typically follow 

more general guidelines. Therefore, novel cutoff values for the RMSEA are consisly 

stated in Suggestion #4.  

Suggestion #4: Applied researchers should adopt novel cutoff values for the RMSEA in 
selected LGC modeling conditions. Values less than or equal to .10 may constitute 
appropriate fit in models with N = 100 and fewer waves of data. Values less than or equal 
to .08 may suggest acceptable model fit in model with N = 100 and more waves of data 
OR with moderate sample sizes (N = 250 or 500) and fewer waves of data. All other more 
complex LGC modeling conditions may be able to determine appropriate model fit by 
using the frequently applied RMSEA values less than or equal to .05. 

 
To reiterate, the novel cutoff values proposed for the NNFI and RMSEA in LGC 

models are rules of thumb; therefore, these values are clearly limited and will not be 

appropriate for all LGC modeling conditions. Furthermore, the new cutoff values should 

be adjusted, based on future research regarding LGC model misspecification, and 

discussed in detail in a later section.  

Using Combinations of Fit Indexes 

Methodologists have discussed the deceptive nature of deducing a dichotomous 

decision regarding model fit based on any single fit index, suggesting that two or more fit 

indexes should be collectively interpreted (Beauducel & Wittmann, 2005; Chen et al., 

2008; Hu & Bentler, 1999; Hutchinson & Olmos, 1998; Kline, 2005; Preacher et al., 

2008). For example, the seminal article by Hu and Bentler was predominantly devoted to 



 
 

 

recommending pairs of model fit indexes used conjunctively to evaluate fit. Even though 

researchers use multiple fit indexes to increase the information obtained regarding model 

fit, the fit indexes may imply various degrees of model fit because they were developed 

on a different rationale of model fit (Bollen, 1998; Bollen & Curran, 2006). When fit 

indexes provide conflicting model fit interpretations, applied researchers need to review 

methodological model fit guidelines to determine which fit index(es) should be weighted 

more than other based on the currently modeling conditions. For example, if a researcher 

was examining a LGC with small sample sizes, less weight should be placed on the 

RMSEA based on the finding of this study. Therefore, when multiple fit indexes are 

collectively interpreted, LGC modeling researchers may not arrive at a unanimous 

decision regarding model fit, which requires a critical analysis of the type of information 

provided by each index (Hutchinson & Olmos), and a review of the relevant literature to 

determine data conditions that may have biased the index(es). Therefore, Suggestion #5 

addresses the use of a collection of fit indexes to determine model fit.  

Suggestion #5: Similar to guidelines found in the general SEM model, I recommend that 
applied LGC modeling researchers collectively interpret all four fit indexes examined in 
this dissertation, while recognizing and adjusting for the limitations of the χ², CFI, NNFI, 
and RMSEA in selected modeling conditions discussed above. By using multiple fit 
indexes, applied researchers may have to engage in a critical analysis of the type of 
model fit information presented by each fit index.  
 

Evaluating Within Person Fit 

Coffman and Millsap (2006), the authors of the only other known LGC model 

simulation of model fit, demonstrated the poor performance of the χ² and RMSEA to 

detect model shape misspecification. The authors recommended exploring within person 

fit in LGC models by using negative loglikelihood values (-2LL) for each participant, in 



 
 

 

addition to assessing global fit. While the evaluation of within person fit may benefit the 

overall assessment of LGC model fit, the computation of -2LL parameters are not 

standard in the SEM software used in the social and behavioral sciences (e.g., EQS, 

AMOS, LISREL, Mplus). However, ambitious applied longitudinal researchers are 

encouraged to use the Mx syntax provided by Coffman and Millsap to evaluate within 

person fit, as well as global model fit.  

Suggestion #6: Applied longitudinal researchers should attempt to evaluate within person 
model fit using -2LL values; however, the computation of these values requires the use of 
alternative software program, not frequently utilized in the social and behavioral 
sciences, which may limit the widespread use.  
 

Dissemination of Information for  
Assessing LGC Model Fit 

 
In general, SEM methodologists tend to communicate model fit findings to their 

colleagues through highly technical and complex methodological journals and conference 

presentations, which limits the impact of these findings in applied research fields. Due to 

the applied nature of this dissertation, it is imperative to discuss strategies that may 

encourage applied longitudinal researchers in the social and behavior sciences fields to 

adopt the proposed guidelines for assessing LGC model fit.  

First, I propose that novel findings regarding LGC model fit be presented in a 

user-friendly manner (e.g., clear suggestions focused on methodological decisions), as 

well as being published in applied journals frequently read by longitudinal researchers. 

Secondly, novel information regarding LGC model fit should be conveyed to a key group 

of influential individuals who have the ability to modify methodological practices in the 

behavioral and social sciences. Typically, trends in the standard reporting of statistical 

concepts, for the behavioral and social sciences, are driven by journal editors’ 



 
 

 

requirements for publishing and standards proposed by national organizations (e.g., the 

Manual of the American Psychological Association [APA]). For example, the concepts of 

statistical power and effect sizes were addressed in the methodological literature for 

decades, but did not fully emerge in the applied literature until journal editors and APA 

staff endorsed their use. Consequently, by proactively seeking out a selected group of 

researchers in the behavioral and social science (e.g., journal editors and national 

organizations), the recommendation proposed for assessing model fit may be adopted 

more rapidly.    

Limitations and Future Research 

 Even though the findings from this dissertation provided interesting insights into 

the assessment of LGC model fit, there are clear limitations to this study. First and 

foremost, this dissertation lacked evaluation of the sensitivity of the fit indexes to LGC 

model misspecification, which is the primary purpose of using fit indexes. For example, 

while the incremental fit indexes (i.e., NNFI and CFI) were quite robust among LGC 

modeling design conditions, general SEM researchers have reported their limited ability 

to detect model misspecification (Fan et al., 1999; Jackson, 2007). Furthermore, 

incremental fit indexes have been found to exhibit discrepancies based on estimation 

methods and non-normality (Fan & Wang, 1998; Hutchinson & Olmos, 1998); therefore, 

their advantages may dissipate when additional variations are considered. In summary, all 

results and conclusions are limited without a comprehensive investigation of fit indexes 

in model misspecification conditions relevant to LGC modeling and under various 

estimation methods.  



 
 

 

 In contrast to general SEM, LGC modeling researchers conceptualize and specify 

model parameters differently; therefore, specification of model misspecification will 

differ in LGC model. For example, general SEM model misspecification is typically 

separated according to two categories: (a) measurement misspecification including 

misspecified paths or factor loadings, and (b) structural misspecification including 

misspecified latent traits and paths among latent traits. Although measurement 

misspecification is more frequently investigated in general SEM simulations, within a 

LGC modeling framework, measurement misspecification lacks relevance because all 

factor loadings are fixed to represent the coding of time. Consequently, fit indexes should 

be re-evaluated based on types of structural misspecification relevant to the 

conceptualization of LGC modeling, potentially, to include: (a) shape misspecification, 

where an additional latent trait(s) is estimated in the model to represent the growth of the 

trajectory of change; (b) time period misspecification, which would include the addition 

or reduction of the number of observed variables to ensure that proper time period of 

growth is measured in the LGC model; and (c) predictors or covariate misspecification, 

which would include examining whether a critical predictor(s) or covariate(s) should be 

included or excluded from a model. To summarize, all fit indexes proposed for assessing 

SEM model fit, even indexes deemed to lack sensitivity, should be reexamined to 

determine if they are sensitive to structural misspecification relevant to LGC modeling. 

As noted by methodologists, numerous additional LGC modeling simulations 

must be conducted to expand the knowledge regarding the assessment of model fit 

(Coffman & Millsap, 2006; Voelkle, 2007). Specially, a large scale simulation study 

should be conducted to examine the sensitivity of multiple fit indexes to types of LGC 



 
 

 

model misspecification. Based on the results from this dissertation, future LGC model fit 

simulations should specifically focus on the examination of two LGC design 

characteristics including: (a) df in the LGC model and (b) the ratio of latent to observed 

variables in the model.  

Discussion Summary 
 

This dissertation has provided the applied longitudinal researcher with a 

preliminary understanding of the functioning of fit indexes in LGC modeling 

environments. Consistent with standard SEM simulation findings, results from the current 

study supported that the fit indexes commonly utilized in LGC modeling applications are 

influenced by variations in: (a) sample size, (b) waves of data, and (c) model complexity. 

The CFI was found to be quite robust among the LGC modeling design conditions 

examined; however, the sensitivity of the CFI to LGC model misspecification needs to be 

assessed in future research. All other fit indexes were found to suggest poor model fit 

(i.e., over-reject correct models) in select LGC modeling conditions. Six guidelines were 

proposed for LGC modeling researchers, including: (a) design longitudinal studies to 

maximize the chance of obtaining a plausible solutions (i.e., more waves of data and 

larger sample sizes); (b) be cautious in the use of the χ² in selected modeling conditions; 

(c) relax Hu and Bentler’s (1999) cutoff values for the NNFI in univariate and 

multivariate models with N = 100 and three waves of data; (d) adopt novel LGC model 

cutoff values for the RMSEA in conditions of small to moderate samples sizes and few 

waves of data; (e) use multiple fit indexes in combinations to assess overall model fit; 

and (f) assess the within person fit as well as global model fit.   



 
 

 

As the use of LGC modeling applications increases in the social and behavioral 

sciences, there is a critical need for additional research regarding LGC model fit, 

specifically, the sensitivity of fit indexes to relevant types of LGC model 

misspecification. In conclusion, this dissertation provides novel information regarding the 

interpretation of LGC model fit; however, additional methodological research is needed 

to increase the rigor of applied longitudinal studies in the social and behavior sciences.  
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Footnote 

¹ The specific databases examined for the review  of LGC modeling applications in 2006 

and 2007 included the following databases: Academic Search Premier, Agricola, 

America: History and Life, Art Abstracts, Biological Abstrcacts, Business Source 

Premier, CINAHL, Communication & Mass Media Complete, EconLit, Family & 

Society Studies Worldwide, GeoRef, Humanities International Complete, Information 

Science and Technology Abstract, MedicLatina, MEDLINE, Pre-CINAHL, 

PsychARTICLES, PsycINFO, and Regional Business news. The search terms included 

“latent growth curve,” “latent growth modeling,” “latent growth curve model,” “latent 

growth curve modeling,” and “latent growth curve models.”  



 
 

 

 
 
 
 
 
 
 
 
 
 

APPENDIX A 
 

MPLUS PROGRAM SYNTAX  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

A.1  Unconditional model: Univariate linear LGC model data generation 
 
montecarlo: 
 names = y1-y3;      (note: varies according to waves of data)   
 nobs = 100;                       (note: N = 250, 500, 1,000, 2,500) 
            seed = 99228; 
 nreps = 200; 
  repsave=all; 
  save = C:\program files\Mplus\2rep*_uni_100_4waves.dat; 
  model population: 
          i s | y1@0, y2@1, y3@2;          (note: waves of data = y4@3, y5@4, y6@5) 
          [y1-y3@0];     (note: varies according to waves of data) 
          y1-y3*.5;    (note: varies according to waves of data) 
          [i*0 s*.2]; 
          i*.5; s*.1; i with s*.2; 
output: 
  tech9; 
 
A.2 Unconditional model: Univariate linear LGC model data analysis 
 
title: analysis of uni_100_3 waves 
data: file = C:\Program Files\Mplus\replist_uni_100_3waves.dat; 
  type=montecarlo; 
variable:  
 names = y1-y3;    (note: varies according to waves of data) 
model: 
          i s | y1@0, y2@1, y3@2;          (note: waves of data = y4@3, y5@4, y6@5) 
          [y1-y3@0];     (note: varies according to waves of data) 
          y1-y3*.5;    (note: varies according to waves of data) 
          [i*0 s*.2]; 
          i*.5; s*.1; i with s*.2; 
savedata: results are results.sav; 
output: tech9; 
 
A.3  Unconditional model: Univariate quadratic LGC model data generation 
 
montecarlo: 
 names = y1-y4;      (note: varies according to waves of data) 
 nobs = 100;       (note: N = 250, 500, 1,000, 2,500) 
            seed = 17385; 
 nreps = 100; 
repsave=all; 
save = C:\program files\Mplus\2rep*_quad_100_4waves.dat; 
model population: 
 i by y1-y4@1;      (note: waves of data = y5@4, y6@5) 



 
 

 

     l by y1@0, y2@1, y3@2, y4@3;  (note: waves of data = y5@4, y6@5) 
     q by y1@0, y2@1, y3@4, y4@9;  (note: waves of data = y5@4, y6@5) 
 [y1-y4@0];     (note: varies according to waves of data) 
 y1-y4*.5;    (note: varies according to waves of data) 
 [i*0 l*.1 q*.2]; 
 i*.5; l*.1 q*.1;  
     i with l*.1; 
     i with q*.2; 
     l with q*.05; 
output: 
  tech9; 
 
A.4  Unconditional model: Univariate quadratic LGC model data analysis 
 
title: analysis of quad_100_4 waves 
data: file = C:\Program Files\Mplus\replist_quad_100_4waves.dat; 
  type=montecarlo; 
variable:  
 names = y1-y4;      (note: varies according to waves of data) 
model: 
 i by y1-y4@1;      (note: waves of data = y5@4, y6@5) 
     l by y1@0, y2@1, y3@2, y4@3;  (note: waves of data = y5@4, y6@5) 
     q by y1@0, y2@1, y3@4, y4@9;  (note: waves of data = y5@4, y6@5) 
 [y1-y4@0];     (note: varies according to waves of data) 
 y1-y4*.5;    (note: varies according to waves of data) 
 [i*0 l*.1 q*.2]; 
 i*.5; l*.1 q*.1;  
     i with l*.1; 
     i with q*.2; 
     l with q*.05; 
savedata: results are results.sav; 
output: tech9; 
 
A.5 Unconditional Model: Multivariate linear LGC model data generation 
 
montecarlo: 
 names = y1-y6;    (note: varies according to waves of data) 
 nobs = 100;     (note: N = 250, 500, 1,000, 2,500) 
     seed = 43152; 
 nreps = 1000; 
   repsave=all; 
save = C:\program files\Mplus\2rep*_multi_100_4waves.dat; 
model population: 
      Int1 by y1-y3@1;     (note: varies according to waves of data) 
      slp1 by y1@0, y2@1, y3@2;   (note: waves of data = y4@3, y5@4, y6@5) 



 
 

 

      Int2 by y4-y6@1;     (note: varies according to waves of data) 
      slp2 by y4@0, y5@1, y6@2;   (note: waves of data = yX@3, 4 and 5) 
      [y1 – y6@0];    (note: varies according to waves of data) 
      y1-y6*.5;      (note: varies according to waves of data) 
      [int1*0 slp1*.2 int2*.5 slp2*.1]; 
      int1*.5; slp1*.1; int2*.5; slp2*.1; 
      Int1 with int2*0 slp1*.2 slp2*0; 
      Int2 with slp1*0 slp2*.1; 
      Slp1 with slp2*0; 
output: 
  tech9; 
 
A.6 Unconditional Model: Multivariate linear LGC model data analysis 
 
title: analysis of multi_100_3 waves 
data: file = C:\Program Files\Mplus\replist_multi_100_3waves.dat; 
  type=montecarlo; 
variable:  
 names = y1-y6;     (note: varies according to waves of data)  
model: 
      Int1 by y1-y3@1;     (note: varies according to waves of data) 
      slp1 by y1@0, y2@1, y3@2;   (note: waves of data = y4@3, y5@4, y6@5) 
      Int2 by y4-y6@1;     (note: varies according to waves of data) 
      slp2 by y4@0, y5@1, y6@2;   (note: waves of data = yX@3, 4 and 5) 
      [y1 – y6@0];    (note: varies according to waves of data) 
      y1-y6*.5;      (note: varies according to waves of data) 
      [int1*0 slp1*.2 int2*.5 slp2*.1]; 
      int1*.5; slp1*.1; int2*.5; slp2*.1; 
      Int1 with int2*0 slp1*.2 slp2*0; 
      Int2 with slp1*0 slp2*.1; 
      Slp1 with slp2*0; 
savedata: results are results.sav; 
output: tech9; 
 
A.7  Conditional Model: Univariate linear LGC model with a time-invariant 
covariate data generation 
 
montecarlo: 
 names = y1-y3 x;    (note: varies according to waves of data) 
 nobs = 100;      
            seed = 19574; 
 nreps = 2200; 
 repsave=all;  
 save = C:\program files\Mplus\rep*_cov_100_3waves.dat; 
model population: 



 
 

 

    i s | y1@0, y2@1, y3@2;   (note: waves of data = y4@3, y5@4, y6@5) 
    [x@0]; x@1;  
    [y1-y3@0];      (note: varies according to waves of data) 
    [i*0 s*.2]; 
    i*.5; s*.1;  
    i with s*.2; 
    y1-y3*.5;     
    i ON x*.5; 
    s ON x*.1;  
    [i@0 s@.2] 
output: 
  tech9; 
 
A.8  Conditional Model: Univariate linear LGC model with a time-invariant 
covariate data analysis 
 
title: analysis of cov_100_3 waves 
data: file = C:\Program Files\Mplus\replist_cov_100_3waves.dat; 
  type=montecarlo; 
variable:  

names = y1-y3 x;      (note: varies according to waves of data) 
model: 
    i s | y1@0, y2@1, y3@2;   (note: waves of data = y4@3, y5@4, y6@5) 
    [x@0]; x@1;  
    [y1-y3@0];      (note: varies according to waves of data) 
    [i*0 s*.2]; 
     i*.5; s*.1;  
    i with s*.2; 
    y1-y3*.5;      
     i ON x*.5; 
     s ON x*.1;  
     [i@0 s@.2] 
savedata: results are results.sav; 

output: tech9;



 
 

 

  
 
 
 
 
 
 
 
 
 

APPENDIX B 
 

ANOVA AND EFFECT SIZE TABLES 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

B.1  ANOVA Table and Effect Size for the χ² 

Source SS df MSE F-value p-
value 

Effect 
Size 

SS 5516.40 4 1379.10 41.77 <.01* <.01 
W 7716479.68 3 2572159.89 77921.74 <.01* .75 
C 10676023.23 3 3558674.41 107807.50 <.01* .81 

SS x W 5209.32 12 434.11 13.151 <.01* <.01 
SS x C 5106.61 12 425.55 12.892 <.01* <.01 
W x C 3511902.95 8 438975.36 13298.44 <.01* .58 

SS x W x C 6669.98 32 208.43 6.31 <.01* <.01 
Error 2473238.71 74925 33.01    
Total 22960459.87 75000     

Corrected Total  74999     
 Contrast 

Estimate 
Std. 

Error 
Lower CI Upper CI p-

value 
Effect 

Size 
SS: 100 vs. 250 .37 .06 .24 .50 <.01* <.01 
SS: 250 vs. 500 .29 .06 .16 .42 <.01* <.01 

SS: 500 vs. 1000 -.07 .06 -.20 .05 .28 <.01 
SS: 1000 vs. 

2500 
.28 .06 .15 .41 <.01* <.01 

W: 3 vs. 4 -10.75 .06 -10.88 -10.62 <.01* .76 
W: 4 vs. 5 -8.81 .05 -8.92 -8.70 <.01* .76 
W: 5 vs. 6 -10.58 .05 -10.69 -10.46 <.01* .76 

Univ. vs. Quad. -4.41 .06 -4.54 -4.28 <.01* .79 
Uni. vs. Multi.  26.02 .05 25.90 26.13 <.01* .79 

Uni. vs. Cov.  6.24 .05 6.13 6.35 <.01* .79 
Note. SS = sums of square, df = degrees of freedom, MSE = mean squared error, SS = 
sample size; W = waves of data; C = model complexity; * indicates a significant effect at 
the .01 alpha level; η² effect sizes were interpreted as .09 as a small effect, .14 as a 
moderate effect, and .22 as a large effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

B.2  ANOVA Table for the χ²/df 
  

Source SS df MSE F-value p-
value 

Effect 
Size 

SS 17.50 4 4.37 9.99 <.01* <.01 
W 3.43 3 1.14 2.61 .04 .00 
C 1.75 3 .58 1.33 .26 .00 

SS x W 4.55 12 .37 .86 .58 .00 
SS x C 10.75 12 .89 2.04 .02 .00 
W x C 2.76 8 .34 .78 .61 .00 

SS x W x C 18.04 32 .56 1.28 .12 .00 
Error 32814.90 74925 .43    
Total 108879.91 75000     

Corrected Total 32873.45 74999     
 Contrast 

Estimate 
Std. 

Error 
Lower CI Upper CI p-

value 
Effect 

Size 
SS: 100 vs. 250 .02 <.01 <.01 .03 <.01* <.01 
SS: 250 vs. 500 .01 <.01 <.01 .02 .07 <.01 

SS: 500 vs. 1000 <.01 <.01 -.01 .01 .76 <.01 
SS: 1000 vs. 

2500 
<.01 <.01 -.01 .02 .50 <.01 

W: 3 vs. 4 .01 <.01 <.01 .03 .01 <.01 
W: 4 vs. 5 <.01 <.01 -.01 <.01 .32 <.01 
W: 5 vs. 6 <-.01 <.01 -.01 <.01 .39 <.01 

Univ. vs. Quad. <-.01 <.01 -.01 .01 .62 <.01 
Uni. vs. Multi.  .01 <.01 <-.01 .02 .13 <.01 

Uni. vs. Cov.  <-.01 <.01 -.01 .01 .90 <.01 
Note. SS = sums of square, df = degrees of freedom, MSE = mean squared error, SS = 
sample size; W = waves of data; C = model complexity; * indicates a significant effect at 
the .01 alpha level; η² effect sizes were interpreted as .09 as a small effect, .14 as a 
moderate effect, and .22 as a large effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

B.3  ANOVA Table and Effect Size for the NNFI 
  
  

Source SS df MSE F-value p-
value 

Effect 
Size 

SS .01 4 <.01 43.26 <.01* .00 
W <.01 3 <.01 4.54 <.01* .00 
C <.01 3 <.01 15.30 <.01* .00 

SS x W <.01 12 <.01 3.64 <.01* .00 
SS x C <.01 12 <.01 7.76 <.01* .00 
W x C <.01 8 <.01 1.33 .22 .00 

SS x W x C <.01 32 <.01 1.82 <.01* .00 
Error 6.41 74925 855522.18    
Total 74967.63 75000     

Corrected Total 6.45 74999     
 Contrast 

Estimate 
Std. 

Error 
Lower CI Upper CI p-

value 
Effect 

Size 
SS: 100 vs. 250 <-.01 .00 <-.01 <-.01 <.01* .00 
SS: 250 vs. 500 <.01 .00 <.01 <.01 .12 .00 

SS: 500 vs. 1000 <-.01 .00 <.01 <.01 .98 .00 
SS: 1000 vs. 

2500 
<-.01 .00 <.01 <.01 .97 .00 

W: 3 vs. 4 <.01 .00 <-.01 <.01 <.01* .00 
W: 4 vs. 5 <.01 .00 <-.01 <.01 .05 .00 
W: 5 vs. 6 <.01 .00 <.01 <.01 .77 .00 

Univ. vs. Quad. <-.01 .00 <.01 <.01 .77 .00 
Uni. vs. Multi.  <-.01 .00 <-.01 <.01 <.01 .00 

Uni. vs. Cov.  <-.01 .00 <.01 <.01 .72 .00 
Note. SS = sums of square, df = degrees of freedom, MSE = mean squared error, SS = 
sample size; W = waves of data; C = model complexity; * indicates a significant effect at 
the .01 alpha level; η² effect sizes were interpreted as .09 as a small effect, .14 as a 
moderate effect, and .22 as a large effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

 
B.4  ANOVA Table and Effect Size for the CFI 
 
 Contrast 

Estimate 
Std. 

Error 
Lower CI Upper CI p-

value 
Effect 

Size 
SS: 100 vs. 250 <-.01 .00 <.01 <.01 <.01* .14 
SS: 250 vs. 500 <-.01 .00 <.01 <.01 <.01* .14 

SS: 500 vs. 1000 <.01 .00 <.01 <.01 <.01* .14 
SS: 1000 vs. 

2500 
<.01 .00 <.01 <.01 <.01* .14 

W: 3 vs. 4 <.01 .00 <-.01 <.01 <.01* <.01 
W: 4 vs. 5 <-.01 .00 <.01 <.01 <.01* <.01 
W: 5 vs. 6 <.01 .00 <.01 <.01 <.01* <.01 

Univ. vs. Quad. <.01 .00 <.01 <.01 <.01* .01 
Uni. vs. Multi.  <-.01 .00 <-.01 <-.10 <.01* .01 

Uni. vs. Cov.  <.01 .00 <-.10 <.10 <.01* .01 
Note. SS = sums of square, df = degrees of freedom, MSE = mean squared error, SS = 
sample size; W = waves of data; C = model complexity; * indicates a significant effect at 
the .01 alpha level; η² effect sizes were interpreted as .09 as a small effect, .14 as a 
moderate effect, and .22 as a large effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

B.5  ANOVA Table and Effect Size for the RMSEA 
  

Source SS df MSE F-value p-
value 

Effect 
Size 

SS 4.81 4 1.20 2414.79 <.01* .11 
W .24 3 .08 165.51 <.01* .00 
C .18 3 .06 123.69 <.01* .00 

SS x W .07 12 <.01 11.96 <.01* .00 
SS x C .05 12 <.01 9.82 <.01* .00 
W x C .04 8 <.01 10.44 <.01* .00 

SS x W x C .04 32 <.01 2.72 <.01* .00 
Error 37.37 74925 <.01    
Total 56.52 75000     

Corrected Total 42.69 74999     
 Contrast 

Estimate 
Std. 

Error 
Lower CI Upper CI p-

value 
Effect 

Size 
SS: 100 vs. 250 .01 .00 .01 .01 <.01* .11 
SS: 250 vs. 500 <.01 .00 <.01 <.01 <.01* .11 

SS: 500 vs. 1000 <.01 .00 <.01 <.01 <.01* .11 
SS: 1000 vs. 

2500 
<.01 .00 <.01 <.01 <.01* .11 

W: 3 vs. 4 <.01 .00 <.01 <.01 <.01* .00 
W: 4 vs. 5 <.01 .00 <.01 <.01 <.01* .00 
W: 5 vs. 6 <.01 .00 <.01 <.01 <.01* .00 

Univ. vs. Quad. <.01 .00 <.01 <.01 <.01* .00 
Uni. vs. Multi.  <-.01 .00 <-.01 <-.01 <.01* .00 

Uni. vs. Cov.  <-.01 .00 <-.01 <-.10 <.01* .00 
Note. SS = sums of square, df = degrees of freedom, MSE = mean squared error, SS = 
sample size; W = waves of data; C = model complexity; * indicates a significant effect at 
the .01 alpha level; η² effect sizes were interpreted as .09 as a small effect, .14 as a 
moderate effect, and .22 as a large effect. 
 
 
 
 

 

 

 

 

 



 
 

 

 

 

 

 

 

APPENDIX C 

MEAN FIT INDEX TABLES 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

C.1    χ² mean fit values, standard deviations, p-values, and χ²/df mean values 

Model & 
Waves of Data 

Sample Size 
100 250 500 1,000 2,500 

Uni.  3 χ² = 1.09 
df = 1 
 p =.48 
χ²/df =1.09 

χ² = .97 
df = 1 

 p = .51 
χ²/df = .97 

χ² = 1.04  
df = 1 

 p = .48 
χ²/df = 1.04 

χ² = 1.01 
df = 1 

 p = .49 
χ²/df = 1.01 

χ² = 1.01 
df = 1 

 p = .50 
χ²/df = 1.01 

4 χ² = 4.98 
df = 5 

 p = .50 
χ²/df = .99 

χ² = 4.87 
df = 5 

 p = .50 
χ²/df = .97 

χ² = 4.87 
df = 5 

 p = .51 
χ²/df = .97 

χ² = 4.84 
df = 5 

 p = .50 
χ²/df = .96 

χ² = 5.11 
df = 5 

 p = .49 
χ²/df = 1.02 

5 χ² = 10.32 
df = 10 
 p = .48 

χ²/df = 1.03 

χ² = 9.67 
df = 10 
 p = .51 
χ²/df = .96 

χ² = 9.98 
df = 10 
 p = .50 
χ²/df = .99 

χ² = 9.89 
df = 10 
 p = .50 
χ²/df = .98 

χ² = 9.79 
df = 10 
 p = .51 
χ²/df = .97 

6 χ² = 16.36 
df = 16 
 p = .47 

χ²/df = 1.02 

χ² = 16.35 
df = 16 
 p = .48 

χ²/df = 1.02 

χ² = 15.90 
df = 16 
 p = .50 
χ²/df = .99 

χ² = 16.04 
df = 16 
 p = .49 

χ²/df = 1.00 

χ² = 16.26 
df = 16 
 p = .48 

χ²/df = 1.01 
Quad 4 χ² = 1.07 

df = 1 
 p = .48 

χ²/df = 1.07 

χ² = 1.05 
df = 1 

 p = .49 
χ²/df = 1.05 

χ² = .92 
df = 1 

 p = .51 
χ²/df = .92 

χ² = 1.01 
df = 1 

 p = .50 
χ²/df = 1.01  

χ² = .92 
df = 1 

 p = .50 
χ²/df = .92 

5 χ² = 6.01 
df = 6 

 p = .49 
χ²/df = 1.00 

χ² = 5.93 
df = 6 

 p = .50 
χ²/df = .98 

χ² = 5.99 
df = 6 

 p = .50 
χ²/df = .99 

χ² = 6.20 
df = 6 

 p = .47 
χ²/df =1.03 

χ² = 5.77 
df = 6 

 p = .51 
χ²/df = .96 

6 χ² = 12.31 
df = 12 
 p = .48 

χ²/df = 1.02 

χ² = 12.40 
df = 12 
 p = .47 

χ²/df = 1.03 

χ² = 11.80 
df = 12 
 p = .51 
χ²/df = .98 

χ² = 11.76 
df = 12 
 p = .51 
χ²/df = .98 

χ² = 11.92 
df = 12 
 p = .50 
χ²/df = .99 

Multi 3 χ² = 7.37 
df = 7 

 p = .46 
χ²/df = 1.05 

χ² = 7.21 
df = 7 

 p = .48 
χ²/df = 1.03 

χ² = 6.98 
df = 7 

 p = .50 
χ²/df = .99 

χ² = 7.05 
df = 7 

 p = .49 
χ²/df = 1.00 

χ² = 6.92 
df = 7 

 p = .50 
χ²/df = .98 

4 χ² = 22.26 
df = 22 
 p = .48 

χ²/df = 1.01  

χ² = 22.79 
df = 22 
 p = .46 

χ²/df = 1.03 

χ² = 21.98 
df = 22 
 p = .50 
χ²/df = .99 

χ² = 22.13 
df = 22 
 p = .49 

χ²/df = 1.00 

χ² = 21.99 
df = 22 
 p = .50 
χ²/df = .99 

5 χ² = 43.48 
df = 41 
 p = .43 

χ²/df = 1.05 

χ² = 41.36 
df = 41 
 p = .48 

χ²/df = 1.00 

χ² = 41.36 
df = 41 
 p = .49 

χ²/df = 1.00 

χ² = 41.10 
df = 41 
 p = .49 

χ²/df = 1.00 

χ² = 41.32 
df = 41 
 p = .49 

χ²/df = 1.00 
6 χ² = 67.31 χ² = 65.07 χ² = 65.22 χ² = 64.48 χ² = 63.46 



 
 

 

df = 64 
 p = .42 

χ²/df = 1.05 

df = 64 
 p = .47 

χ²/df = 1.01 

df = 64 
 p = .46 

χ²/df = 1.01 

df = 64 
 p = .48 

χ²/df = 1.00 

df = 64 
 p = .51 
χ²/df = .99 

Cov. 3 χ² = 6.13 
df = 6 

 p = .48 
χ²/df = 1.02 

χ² = 6.09 
df = 6 

 p = .49 
χ²/df = 1.01 

χ² = 6.12 
df = 6 

 p = .48 
χ²/df = 1.02 

χ² = 5.91 
df = 6 

 p = .50 
χ²/df = .98 

χ² = 6.05 
df = 6 

 p = .50 
χ²/df = 1.00 

4 χ² = 10.95 
df = 11 
 p = .50 
χ²/df = .99 

χ² = 10.94 
df = 11 
 p = .49 
χ²/df = .99 

χ² = 10.91 
df = 11 
 p = .50 
χ²/df = .99 

χ² = 10.94 
df = 11 
 p = .50 
χ²/df = .99 

χ² = 10.88 
df = 11 
 p = .50 
χ²/df = .98 

5 χ² = 17.52 
df = 17 
 p = .47 

χ²/df = 1.03 

χ² = 17.37 
df = 17 
 p = .48 

χ²/df = 1.02 

χ² = 16.85 
df = 17 
 p = .51 
χ²/df = .99 

χ² = 16.79 
df = 17 
 p = .50 
χ²/df = .98 

χ² = 15.11 
df = 17 
 p = .49 

χ²/df = 1.00 
6 χ² = 24.73 

df = 24 
 p = .46 

χ²/df = 1.03 

χ² = 24.16 
df = 24 
 p = .49 

χ²/df = 1.00 

χ² = 21.94 
df = 24 
 p = .50 
χ²/df = .99 

χ² = 23.80 
df = 24 
 p = .50 
χ²/df = .99 

χ² = 22.08 
df = 24 
 p = .49 

χ²/df = 1.00 
 



 
 

 

C.2    NNFI mean values and standard deviations 

Model  Waves 
of Data 

Sample Size 
  100    250    500    1,000    2,500 

Uni. 
LGC 

3 .99 (.03) 1.00 (.01) .99 (<.01) .99 (<.01) .99 (<.01) 
4 .99 (.01) 1.00 (.01) 1.00 (<.01) 1.00 (<.01) .99 (<.01) 
5 .99 (.01) 1.00 (<.01) 1.00 (<.01) 1.00 (<.01) 1.00 (<.01) 
6 .99 (.01) .99 (<.01) 1.00 (<.01) .99 (<.01) .99 (<.01) 

Quad. 
LGC  

4 .99(.02) .99 (<.01) 1.00 (<.01) .99 (<.01) .99 (<.01) 
5 .99 (<.01) 1.00 (<.01) 1.00 (<.01) .99 (<.01) 1.00 (<.01) 
6 .99 (<.01) .99 (<.01) 1.00 (<.01) 1.00 (<.01) 1.00 (<.01) 

Multi.  
LGC  

3 .99 (.03) .99 (.01) 1.00 (<.01) .99 (<.01) 1.00 (<.01) 
4 .99 (.03) .99 (<.01) 1.00 (<.01) .99 (<.01) 1.00 (<.01) 
5 .99 (.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 
6 .99 (.01) .99 (<.01) .99 (<.01) .99 (<.01) 1.00 (<.01) 

Cov. 
LGC 

3 .99 (.01) .99 (<.01) .99 (<.01) 1.00 (<.01) .99 (<.01) 
4 1.00 (.01) 1.00 (<.01) 1.00 (<.01) 1.00 (<.01) 1.00 (<.01) 
5 .99 (.01) .99 (<.01) 1.00 (<.01) 1.00 (<.01) .99 (<.01) 
6 .99 (<.01) .99 (<.01) 1.00 (<.01) 1.00 (<.01)

 
1.00 (<.01) 

.99 (<.01) 

Note: NNFI = Non-normed fit index; Uni = univariate LGC Model; Quad = Quadratic 
LGC Model; Multi = Multivariate LGC model; Cov = Univariate Linear LGC model with 
a single time invariant covariate.  
 

 

 

  



 
 

 

C.4  CFI  mean values and standard deviations  

 

Model  Waves 
of Data 

Sample Size 
  100    250    500    1,000    2,500 

Uni. 
LGC 

3 .99 (.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 
4 .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 
5 .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 
6 .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 

Quad. 
LGC  

4 .99 (.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 
5 .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 
6 .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 

Multi.  
LGC  

3 .99 (.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 
4 .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 
5 .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 
6 .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 

Cov. 
LGC 

3 .99 (.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 
4 .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 
5 .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 
6 .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) .99 (<.01) 

Note: CFI = Comparative Fit Index; Uni = univariate LGC Model; Quad = Quadratic 
LGC Model; Multi = Multivariate LGC model; Cov = Univariate Linear LGC model with 
a single time invariant covariate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 

C.5    RMSEA mean values and standard deviations  

Model  Waves 
of Data 

Sample Size 
  100    250    500    1,000    2,500 

Uni. 
LGC 

3  .03 (.06) .02 (.03) .01 (.02) .01 (.01) <.01 (.01) 
4 .02 (.04) .01 (.02) .01 (.01) <.01 (.01) <.01 (<.01) 
5 .02 (.03) .01 (.02) .01 (.01) <.01 (.01) <.01 (<.01) 
6 .02 (.02) .01 (.01) <.01 (.01) <.01 (.01) <.01 (<.01) 

Quad. 
LGC  

4 .03 (.06) .02 (.04) .01 (.01) .01 (.01) <.01 (<.01) 
5 .02 (.03) .01 (.02) .01 (.01) <.01 (.01) <.01 (<.01) 
6 .02 (.03) .01 (.02) .01 (.01) <.01 (<.01) <.01 (<.01) 

Multi.  
LGC  

3 .03 (.03) .01 (.02) .01 (.01) <.01 (.01) <.01 (<.01) 
4 .02 (.02) .01 (.01)  <.01 (.01) <.01 (<.01) <.01 (<.01) 
5 .02 (.02) .01 (.01) <.01 (.01) <.01 (<.01) <.01 (<.01) 
6 .02 (.02) .01 (.01) <.01 (.01) <.01 (<.01) <.01 (<.01) 

Cov. 
LGC 

3 .02 (.03) .01 (.02) .01 (.01) <.01 (<.01) <.01 (<.01) 
4 .02 (.02) .01 (.01) .01 (.01) <.01 (<.01) <.01 (<.01) 
5 .02 (.02) .01 (.01) <.01 (.01) <.01 (<.01) <.01 (<.01) 
6 .02 (.02) .01 (.01) <.01 (.01) <.01 (<.01) <.01 (<.01) 

Note: RMSEA = Root Mean Squared Error of Approximation; Uni = Univariate LGC 
Model; Quad = Quadratic LGC Model; Multi = Multivariate LGC model; Cov = 
Univariate Linear LGC model with a single time invariant covariate.  
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