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ABSTRACT 
 

Saviola, Anthony J. Proteomic Analyses of Snake Venoms With an Examination of 
the Biological Roles and Anti-cancer Effects of Venom Disintegrins. 
Published Doctor of Philosophy dissertation, University of Northern 
Colorado, 2015.  

 
 For decades, snakes and snake venoms have been utilized in numerous 

aspects of biological and biomedical research. Behaviorally, snakes have been 

examined for their extraordinary chemosensory capabilities, providing a detailed 

understanding of their foraging ecology and predatory responses. The presence of 

a highly complex vomeronasal organ has enabled snakes to not only respond to, 

but also discriminate between a high-range of heterospecific, conspecific, 

predatory, and prey-derived chemical odors.  

 Snake venom has allowed for a transition in predatory behaviors, and this 

often complex mixture of proteins and peptides has provided researchers with an 

ever growing catalog of natural compounds that may be applicable as novel 

therapeutics or as biomedical reagents. Research into venomous systems also 

provides a detailed understanding of the biological roles of venom compounds, as 

well as providing critical information necessary for the proper assessment and 

treatment of snakebite.  

 The current work addresses several aspects of snake behavior and snake 

venom toxinology and has four major objectives: i) to examine the chemosensory 

responses of neonate, subadult and adult Prairie Rattlesnake (Crotalus viridis 
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viridis) to various prey chemical stimuli, ii) to identify the chemical component(s) of 

venom which allows for prey recovery during viperid predatory episodes, iii) to examine 

the anti-cancer effects of a novel snake venom disintegrin towards various human derived 

cancer cell lines and iv) to complete in-depth proteomic analyses of the neonate and adult 

C. v. viridis and examine the efficacy of the current anti-venom treatment CroFab® 

against this species’ venom. 

 Chapter I presents the objectives and aims of my dissertation work, and provides 

background on chemosensory systems in squamates, and the numerous studies examining 

prey relocation in viperid snakes. Further, this chapter addresses the importance of 

examining the potential medicinal values of disintegrins as anti-cancer therapeutics, and 

the utilization of proteomics to develop a better understanding of venom composition and 

anti-venom efficacy. Chapters II focuses on the chemosensory responses of wild-caught 

neonate, subadult, and adult C. v. viridis to natural and non-natural prey-derived chemical 

odors. Results indicate that responses to chemical stimuli shift with snake age, correlating 

with ontogenetic changes in snake diet. Chapter III examines this phenomenon in more 

detail with a group of “stunted” C. v. viridis which had been in captivity since birth and 

had only consumed neonate lab mice (Mus musculus). Further, these snakes were the age 

of adults yet only the size of large juveniles, therefore they could not consume larger prey 

normally taken by adult snakes. Results suggest that ontogenetic shifts in responsiveness 

to natural prey chemical cues are innately programmed and are not based on body size or 

feeding experience. Chapter IV identifies the venom component, disintegrins, which are 

responsible for prey recovery during strike-induced chemosensory searching in Western 

Diamondback Rattlesnakes (Crotalus atrox).  In Chapter V, a novel disintegrin protein 
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(named tzabcanin) was isolated from the venom of the Middle American Rattlesnake 

(Crotalus simus tzabcan) and the cytotoxic and anti-adhesion properties of this protein 

toward Colo-205 and MCF-7 cell lines was examined. Chapter VI also examines the anti-

cancer effects of tzabcanin towards A-375 and A-549 cell lines, and by specifically 

binding integrin αvβ3, tzabcanin inhibits cell migration and cell adhesion to vitronectin. 

In Chapter VII, a detailed proteomic analysis of the venoms of four individual C. v. 

viridis is presented, showing a novel trend in ontogenetic changes in venom composition, 

as well as identifying which compounds are, and which are not, effectively 

immunocaptured by the current anti-venom therapy used in the United States, CroFab®. 
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CHAPTER I 

INTRODUCTION 

 For decades, squamates (lizards and snakes) have been considered as non-

traditional yet key organisms in numerous facets of biological and biomedical research. 

Snakes have been especially well studied with regards to their evolution (Castoe et al. 

2008, 2013; Vonk et al. 2013) ecology (Wastell and Mackessy 2011; Shipley et al. 2013; 

Barbour and Clark 2012; Chiszar et al. 2014), behavior (Chiszar et al. 1977; Burghardt 

1971; Clark 2004a; Saviola et al. 2010, 2011, 2012), physiology (Secor 2005, 2008; 

Riquelme et al. 2011) and toxinology (Mackessy 1988, 2010; Calvete et al. 2009a, 2011; 

Lomonte et al. 2014). To date, approximately 3496 species of extant snakes are 

recognized (reptile.database.org), inhabiting every major continent with the exception of 

Antarctica and occupying virtually all habitats globally (Greene 1997). Extreme 

phenotypic and molecular plasticity among such a diversity of species has made snakes 

ideal organisms for diverse research in the biological, biochemical, physiological and 

even physical sciences. 

 Snake behavior has also been studied in depth with regards to their complex 

chemosensory systems, and their ability not only to recognize but also discriminate 

between chemical stimuli is well established (Burghardt 1970, 1971; Chiszar et al. 1992). 

Chemoreception in snakes modulates a diversity of behaviors including general 

exploratory behaviors (Chiszar et al. 1980), mate selection (Kubie et al. 1978; Shine et al. 

2003), foraging and prey location (Chiszar et al. 1992; Clark 2004a) and predator, 
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heterospecific and conspecific recognition (Weldon and Burghardt 1979; Burger 1989; 

Gutzke et al. 1993; Clark 2004b). This chemical recognition is typically mediated by 

rapid tongue flicking, activated by the detection of volatile chemical cues by the nasal 

olfactory system (Burghardt 1970; Saviola et al. 2010) or by visual or thermal stimulation 

(Chiszar et al. 1981; Saviola et al. 2011, 2012). Consequently, tongue flicking delivers 

volatile and non-volatile stimuli to the vomeronasal organ located in the roof of the upper 

jaw (Halpern 1992; Schwenk 1995), allowing for definitive analysis of chemical 

information (Cowles and Phelan 1958; Halpern 1992).  

 Snakes consume a diversity of invertebrate and vertebrate prey items and this prey 

preference may vary between species (Greene 1997) as well as between age classes of the 

same species (Klauber 1956; Mackessy 1988). As limbless gape-limited predators, snakes 

can only consume prey by swallowing it whole; therefore, head size is a critical limiting 

factor of prey consumption (Shine 1991). As a result, ontogenetic shifts in prey 

preference generally occur and are correlated with snake size. For instance, neonate 

rattlesnakes generally consume small ectothermic prey (lizards, invertebrates), whereas 

subadult and adult rattlesnakes often take larger endothermic prey (birds, mammals; 

Klauber 1956; Mackessy 1988; Hammerson 1999).  Likewise, shifts in responsiveness to 

prey chemical cues (Mushinsky and Lotz 1980), as well as prey-handling behaviors, may 

also exist (Mackessy 1988; Hayes 1991). Non-venomous snakes utilize constriction or 

jaw-holding behaviors to subdue prey (Savitzky 1980; Kardong et al. 1996; Bealor and 

Saviola 2007), whereas venomous snakes deliver a bolus of toxins, either by a strike-and-

hold method as seen in rear-fanged colubrids, neonate vipers and elapid snakes, or 

employing a strike-and-release behavior as documented in the majority of adult viperid 
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snakes (Mackessy 1988; Hayes 1991). Hence it is likely that natural selection influences 

specific chemosensory and predatory responses, allowing for successful capture of 

preferred prey (Tinbergen 1951; Cooper 2008). 

Biological Roles of Venoms 

Snake venoms are a complex mixture of proteins and peptides (Mackessy 2010) 

that have allowed for the transition from a mechanical (constriction) to a chemical 

(venom) means of subduing prey (Savitzky 1980; Kardong et al. 1996). This mixture of 

enzymatic and non-enzymatic toxins is not only critical to the foraging success of the 

snake, but venoms are continuously being investigated by researchers to elucidate overall 

venom composition and complexity and to identify novel biological roles and 

pharmacological activities of individual compounds. An ongoing question dealing with 

snake venom toxinology addresses the biochemical complexity of individual proteins and 

the sometimes numerous protein isoforms that are sometimes found within the venom of 

an individual species (Jia et al. 1996). These proteins not only act in concert with each 

other, but individual compounds may also demonstrate discrete biological effects 

(Weldon and Mackessy 2012; Peichoto et al. 2007; Heyborne and Mackessy 2013).  

The venoms of viperid snakes (vipers and pit vipers) contain an abundance of 

proteins critical for the immobilization, killing and predigestion of prey, including many 

that interfere with the hemostatic system and coagulation cascade  (Mackessy 2008). 

However, it has been shown that viper venoms also assist in the relocation of prey items 

during predatory episodes (Duvall et al. 1978; Chiszar et al. 1983, 1992, 1999, 2008). 

Rattlesnakes and other pitvipers are ambush predators which strike, envenomate and 

release prey (Clark 2004a; Chiszar et al. 1992). This predatory strategy allows for 
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minimal contact or retaliation from potentially dangerous prey items, yet requires the 

additional task of relocating prey that may wander several meters or more from the attack 

site before succumbing to the venom’s effects. By using rapid tongue flicking (strike-

induced chemosensory searching) to detect, and the vomeronasal organs to analyze 

volatile and non-volatile chemical cues (Halpern 1992; Schwenk 1995), snakes must also 

differentiate between the trail deposited by the prey before and after envenomation has 

occurred, as well as the trails left inadvertently by other potential prey and non-prey 

sources. Several hypotheses have addressed the source of chemical cues used to 

discriminate between trails of struck and unstruck prey. Cues emanating from the mouse 

when it is punctured during the predatory strike, as well as other potential chemical cues 

such as urine or volatiles from venom left on the prey’s integument, have been examined, 

with results indicating that such cues are not utilized by snakes (Lavin-Murcio et al. 

1993; Chiszar et al. 1991, 1992; Hayes et al. 1992). These previous results indicated that 

venom must be injected into tissues to initiate a release of chemical odor(s), permitting 

discrimination of envenomated prey and their trails.  

A convenient bioassay of vomeronasal chemoreception was previously developed 

for evaluating preference towards envenomated (E) vs. non-envenomated (NE) mouse 

carcasses, with snakes showing high rates of tongue flicking directed toward E carcasses 

(strike-induced chemosensory searching, SICS; Chiszar et al. 1992, 1999, 2008; 

Greenbaum et al. 2003). This preference holds when envenomation occurs by a 

conspecific or by a closely related heterospecific (Chiszar et al. 2008), or when 

lyophilized conspecific venom is injected into previously euthanized prey (Chiszar et al. 

1999). Therefore, venoms represent not only a rapid-acting chemical means of 
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dispatching potentially fractious prey (Kardong et al. 1996); they also greatly increase the 

perceptibility of the envenomated prey carcass (Chiszar et al. 1992, 1999). However, the 

specific component(s) of snake venom allowing for successful recovery of prey has not 

been identified.  

Compositional Diversity of Venoms – Sources of 
Novel Compounds 

 
In addition to understanding the roles of venom compounds during predation, the 

identification and characterization of these proteins offers significant insights for basic 

research, clinical diagnosis of human envenomations, and anti-venom production 

strategies (Gutiérrez et al. 2009; Calvete et al. 2009b). A recent proteomic approach, 

termed venomics (venom proteomics) (Juárez et al. 2004; Calvete et al. 2009b), provides 

in-depth analyses of venom composition, advancing the knowledge necessary for 

efficient snakebite treatment and anti-venom production and efficacy  (Calvete et al. 

2009a, 2009b; Lomonte et al. 2008). Human envenomation due to snakebite is a global 

issue, often neglected by health authorities around the world (Gutiérrez et al. 2006, 

2007). Estimates as high as 2.5 million envenomations and over 125,000 deaths have 

been reported (Chippaux 1998); however, more recent estimations suggest approximately 

1,841,000 envenomations resulting in 20,000 deaths, yearly (Kasturiratne et al. 2008). 

These numbers are largely based on hospital records, and with the vast majority of bites 

impacting agricultural workers in low income countries in Africa, Asia, and Central and 

South America, victims may seek traditional treatments or die before reaching 

appropriate health care (Gutiérrez et al. 2006). Therefore, the actual occurrence of 

envenomation may be significantly higher than reported. Further, victims may have 

permanent physical disability following snakebite, drastically impacting their overall 
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quality of life. Snakebite in the United States is rare, and it is estimated that there are 

approximately 9000 venomous snake bites reported annually (O’Neil et al. 2007), with 

roughly 99% of these bites from viperid snakes (Jucket and Hancox 2002). Human 

envenomations may pose a serious or potentially deadly emergency, and early therapeutic 

use of antivenom is necessary if severe envenomation is suspected. In the United States, 

the antivenom CroFab® (Crotaline Polyvalent Immune Fab(ovine)) is commonly 

administered during envenomation cases. CroFab® is produced in sheep immunized with 

one of the following North American snake venoms: Agkistrodon piscivorus (Water 

Moccasin), Crotalus adamanteus (Eastern Diamondback Rattlesnake), C. atrox (Western 

Diamondback Rattlesnake), and C. scutulatus (Mojave Rattlesnake) (Price and Sanny 

2007). Surprisingly, the most widely distributed rattlesnake in North America, the Prairie 

Rattlesnake (C. v. viridis), is not one of the species utilized for CroFab® production. 

Adequate treatment of snakebite is dependent on the ability of the antivenoms to reverse 

the pathological symptoms induced by venom. Therefore, knowledge on venom 

composition and inter- and intraspecies venom variability is critical for assessment of 

antivenom efficacy and treatment of snakebite.  

Not only can proteomic methodologies be utilized to increase our overall 

understanding of venom composition for efficient treatment of snakebite, but these 

techniques can be further applied to identify venom compounds exhibiting potential 

medicinal value. Toxins-to- drugs have been an emphasis of research in the last decade 

(Fox and Serrano 2007; Mukherjee and Mackessy 2013; Saviola et al. 2014), and several 

novel compounds developed from the poisons and venoms of animals are currently in 

clinical trials and use (Fox and Serrano 2007; Takacs and Nathan 2014).  Viperid snake 
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venoms in particular have been a useful source of several protein drugs and additional 

novel protein drug leads. For example, one class of snake venom proteins, known as 

disintegrins, has led to the design of two current therapies on the market. Integrilin 

(eptifibatide), used to treat acute coronary ischemic disease, and tirofiban (aggrastat), an 

anti-platelet aggregation drug, were both designed based on the structure of two snake 

venom disintegrins, barbourin (Scarborough et al. 1993) and echistatin (Gan et al. 1988), 

respectively.  Additionally, the dimeric disintegrin contortrostatin from the Southern 

Copperhead (Agkistrodon contortrix contortrix) has demonstrated promising anti-cancer 

effects towards numerous cancer cell lines (Zhou et al. 2000; Lin et al. 2010).Therefore, 

further analyses of snake venoms may provide additional novel sources of proteins for 

potentially useful therapeutics.    

Integrins and Cancer Therapies 

In 2014, it was estimated that there were approximately 1.6 million new cancer 

cases and over 580,000 cancer-related deaths in the United States alone (Siegel et al. 

2014). Cancer cells, and normal cells, rely on cell-cell and cell-extracellular matrix 

interactions, mediated by an important class of α/β heterodimeric proteins known as 

integrins (Cheresh 1992; Desgrosellier and Cheresh 2010). Integrins form by the 

appropriate pairing of one of 18 α with one of 8 β subunits, creating 24 potential integrin 

receptors with varying affinities toward numerous extracellular matrix proteins 

(Desgrosellier and Cheresh 2010).  Some integrins, such as αvβ3, have been shown to be 

overexpressed 50-100 fold in cancerous cells (Gehlsen et al. 1992), and specific subunits, 

such as β3, may not even be expressed in normal tissues (Stallmach et al. 1992; 

Desgrosellier and Cheresh 2010). Integrins are essential for tumor angiogenic activity, 
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proliferation and metastasis (Clark and Brugge 1995; Serini et al. 2006). Tumor 

dependence on angiogenesis is also well documented (Folkman 2007), and formation of 

new blood vessels is required for delivering nutrients to as well as providing a means of 

removing waste from tumors. Extracellular matrix proteins such as fibronectin and 

vitronectin also play critical roles in tumor formation and progression, as fibronectin-

integrin interactions in cancer cells may lead to resistance to numerous chemotherapeutic 

agents as well as increased tumorigenesis (Ruoslahti 1999; Rintoul and Sethi 2002; 

Knowles et al. 2013). In addition, vitronectin has also been shown to play a role in tumor 

progression and invasion (Marshall and Hart 1996; Hurt et al. 2010; Pola et al. 2013).  

Therefore, isolating compounds that have potential integrin-blocking activity and anti-

angiogenic functions may be a novel approach to controlling cancer cell proliferation and 

metastasis (Folkman 2006).  

Disintegrins are small (4-15 kDa) non-enzymatic proteins currently isolated only 

from the venoms of vipers (e.g., Calvete 2005).  Classified by their number of disulfide 

bonds and amino acids, disintegrins are grouped into short (~ 41-51 residues, 4 disulfide 

bonds), medium (~ 70 residues, 6 disulfide bonds), long (~ 84 resides, 7 disulfide bonds) 

and dimeric (~ 67 resides each, with 10 disulfide bonds), with a fifth group including the 

disintegrin domain of P-III snake venom metalloproteinases (Calvete 2005; Calvete et al. 

2010).   Disintegrins exhibit an Arg-Gly-Asp (RGD) domain that is also found within 

many extracellular matrix (ECM) proteins such as fibronectin and vitronectin (Buckley et 

al. 1999). Subsequently, disintegrins have been shown to selectively block αIIbβ3, α5β1, 

αvβ3, αvβ5, α2β1, and numerous other classes of integrin receptors (see Calvete et al. 2010 

for a review). Previous work with disintegrins has shown promising effects at inhibiting 
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pathways critical for metastasis (Zhou et al. 2000; Lin et al. 2010; Sánchez et al. 2009). 

However, disintegrins may show significant activity at inhibiting one class of integrins, 

yet fail to show an effect on other classes of integrins. It has been shown that the amino 

acids adjacent to the integrin inhibitory tripeptide sequence are critical to integrin binding 

affinity (Scarborough et al. 1993). Therefore, there is a continued need to isolate and 

purify novel disintegrins and other useful proteins which may demonstrate different 

integrin-blocking activities and have potential anti-cancer effects.  

The work presented herein addresses all of the topics reviewed above with the 

following objectives: (i) examine the ontogenetic shift in chemosensory responses of 

Prairie Rattlesnakes (Crotalus viridis viridis) to a variety of prey stimuli, (ii) identify the 

venom compound(s) allowing for prey relocation during viper predatory episodes, (iii) 

identify and characterize a new snake venom disintegrin and examine the potential anti-

cancer effects of this protein against human-derived cancer cell lines, and (iv) complete 

in-depth proteomic analyses of neonate and adult C. v. viridis, allowing for identification 

of toxins that may pose a severe threat during human envenomation and for assessment of 

antivenom efficacy.  The primary aims of my doctoral research are as follows: 

Aim 1: Identify venom compound(s) responsible for prey relocation during viperid 
predatory episodes. Viper venoms allow these snakes to strike, envenomate, and release 
prey; however, the compound(s) responsible for prey relocation has yet to be identified.  I 
hypothesize that venom metalloproteinases, an abundant enzyme family in viper venoms, 
assist in prey relocation by vomeronasal chemoreception.   
 
Aim 2: Complete in-depth proteomic analyses of venoms of Crotalus viridis viridis. 
Full proteomic analyses of venoms will allow for me to characterize and identify 
compounds that constitute the entire venom composition of a single species. These results 
will allow me to identify species that may pose a threat to humans due to snakebite 
envenomation as well as effectively assessing anti-venom efficacy by determining which 
compounds may or may not be recognized by the currently administered anti-venom.  
Proteomic characterization of venom compounds will also allow for me to identify any 
novel toxin drugs that may exhibit potential clinical use.  
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Aim 3: Examine potential anti-cancer effects of a novel snake venom disintegrin 
towards several cancer cell lines. Toxin drugs have been an emphasis of research in the 
last decade, with several novel compounds derived from venoms currently in clinical 
trials and use.  Snake venoms in particular have been a useful source of several protein 
drugs and additional novel protein drug leads. Venom disintegrins have demonstrated 
significant anti-neoplastic activity by binding to, and inhibiting integrin receptors in 
cancer cells, yet the specificity of which integrin(s) are recognized by disintegrins may 
vary drastically. I hypothesize that a novel disintegrin will recognize and bind integrin 
receptors over-expressed in cancer cell lines and inhibit critical pathways involved in 
metastasis. 
 

Chapter II of this dissertation examines the ontogenetic shift in chemosensory 

responsiveness to prey derived chemical cues in three age classes of C. v. viridis. In 

Chapter III, I follow up the study of Chapter II by examining chemosensory responses in 

a group of C. v. viridis who chronologically were the age of adult rattlesnakes, but the 

size of large neonates. In addition, the snakes studied in this chapter had never fed on 

natural prey items, and only had taken neonate or juvenile lab mice (Mus musculus).  In 

Chapter IV, I identify the chemical component of snake venom, a small non-enzymatic 

class of proteins called disintegrins, as the relocation molecule, allowing for 

envenomated prey discrimination and successful recovery of prey during adult viperid 

predatory episodes. Chapter V describes the isolation and characterization of a new 

disintegrin isolated and characterized from the venom of the Middle American 

Rattlesnake (Crotalus simus tzabcan), named tzabcanin. Further, I examine the ability of 

tzabcanin to inhibit adhesion of human breast (MCF-7) and colon (Colo-205) cancer cell 

lines to the extracellular matrix proteins fibronectin and vitronectin. Chapter VI examines 

the anti-cancer effects of tzabcanin towards human melanoma (A-375) and lung (A-549) 

cell lines, further identifying integrin αvβ3 as one of the primary binding sites of 

tzabcanin. In chapter VII, I conduct a detailed proteomic analysis to examine the venom 
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proteome of two neonate (male and female) and two adult (male and female) C. v. viridis, 

allowing for identification of variation in venom composition between age and sex 

groups; additionally, the efficacy of the current anti-venom treatment used in the United 

States, CroFab®, is evaluated using antivenomic and Western blot methods. Finally, I 

conclude with Chapter VIII by providing a summary of all six research chapters and 

addressing possible areas of continued research on these current topics. 
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Abstract 

Snakes often have specialized diets that undergo a shift from one prey type to 

another depending on the life stage of the snake. Crotalus viridis viridis (prairie 

rattlesnake) takes different prey at different life stages, and neonates typically prey on 

ectotherms, while adults feed almost entirely on small endotherms. We hypothesized that 

elevated rates of tongue flicking to chemical stimuli should correlate with particular prey 

consumed, and that this response shifts from one prey type to another as individuals age. 

To examine if an ontogenetic shift in response to chemical cues occurred, we recorded 

the rate of tongue flicking for 25 neonate, 20 subadult, and 20 adult (average SVL = 

280.9, 552, 789.5 mm, respectively) wild-caught C. v. viridis to chemical stimuli 

presented on a cotton-tipped applicator; water-soluble cues from two ectotherms, (prairie 

lizard, Sceloporus undulatus, and house gecko, Hemidactylus frenatus), two endotherms, 

(deer mouse, Peromyscus maniculatus and lab mouse, Mus musculus), and water controls 

were used. Neonates tongue flicked significantly more to chemical cues of their common 

prey, S. undulatus, than to all other chemical cues; however, the response to this lizard’s 

chemical cues decreased in adult rattlesnakes. Subadults tongue flicked with a higher rate 

of tongue flicking to both S. undulatus and P. maniculatus than to all other treatments, 

and adults tongue flicked significantly more to P. maniculatus than to all other chemical 

cues. In addition, all three sub-classes demonstrated a greater response for natural prey 

chemical cues over chemical stimuli of prey not encountered in the wild (M. musculus 

and H. frenatus).  This shift in chemosensory response correlated with the previously 

described ontogenetic shifts in C. v. viridis diet. Because many vipers show a similar 
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ontogenetic shift in diet and venom composition, we suggest that this shift in prey cue 

discrimination is likely a general phenomenon among viperid snakes. 

Introduction 

 Squamate reptile response to prey is often associated with chemical cues of prey 

integument, visual cues, or visual-thermal cues associated with prey movement 

(Burghardt, 1970; Ford and Burghardt, 1993; Cooper, 1995). Reliance on chemical cues 

by lizards and snakes is also critical in mate selection, exploratory behavior, predator 

identification, prey choice and location, and kin selection (Kubie et al., 1978; Chiszar and 

Scudder, 1980; Weldon and Burghardt, 1979; Chiszar et al., 2008; Clark, 2004; Pernetta 

et al., 2009), and many studies have examined chemical cue discrimination and 

chemosensory responses to multiple chemical cue sources. Chemical cue discrimination 

between extracts of multiple prey types is often correlated with evolutionary changes in 

diet, such that snake response to prey cues is greatest to that of most commonly taken 

prey (Cooper and Burghardt, 1990; Cooper, 1994, 1997, 2008; Clark, 2004). Since snakes 

are gape-limited predators, swallowing prey whole, head size is a limiting factor in what 

can be consumed. Therefore, shifts in prey taken as well as response to specific prey cues 

may also change as snakes increase in age and size (Mushinsky and Lotz, 1980).   

Neonate rattlesnakes primarily take smaller ectothermic prey such as lizards and 

anurans, and adults often specialize on larger endotherms such as rodents and birds 

(Klauber, 1972; Mackessy, 1988; Mackessy et al., 2003). Rattlesnakes are ambush 

predators, and the use of chemical cues in ambush site selection has been examined, and 

likewise selection of ambush sites is correlated with the presence of chemical cues of the 

most commonly consumed prey (Clark, 2004; LaBonte, 2008). During predatory events, 
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adult rattlesnakes use visual-thermal cues to strike, envenomate, and release endotherm 

prey (Hayes and Duvall, 1991; Kardong, 1992), inducing strike-induced chemosensory 

searching (SICS) and further use of chemical stimuli to relocate the envenomated carcass 

(Chiszar et al., 1977; 1992). However, neonate rattlesnakes demonstrate different prey 

handling behaviors. Mackessy (1988) noted that neonate pacific rattlesnakes (Crotalus 

oreganus helleri and C. o. oreganus) often hold onto small ectotherm prey and therefore 

do not have the task of relocating prey after venom has taken its course. Hayes (1991) 

showed that juvenile C. v. viridis released small endotherm prey after the strike; however, 

the duration of holding onto prey was much longer than that seen in medium or large C. 

v. viridis. Therefore, although extended contact with prey may increase risk of retaliation 

from struggling prey, the prolonged holding behavior may be advantageous for neonate 

feeding success, perhaps by allowing more venom to enter prey or by limiting the 

distance released prey can retreat before succumbing. 

The prairie rattlesnake Crotalus v. viridis is one of three species of rattlesnakes 

found in Colorado, with a broad distribution throughout most of the state at elevations 

under 2,890 m (Hammerson, 1999). The diet of C. v. viridis in Colorado consists 

primarily of the lesser earless lizard Holbrookia maculata, prairie lizard Sceloporus 

undulates and plains spadefoot toad Spea bombifrons, as well as endotherms such as 

western harvest mouse Reithrodontomys megalotis and deer mouse Peromyscus 

maniculatus; other prey are also taken (Hammerson, 1999). As with many other species 

of rattlesnakes, ontogenetic shifts are seen in prey type taken, and neonates primarily 

consume ectotherms, while adults primarily specialize on small mammals (Mackessy, 

1988; Hammerson, 1999). Prairie rattlesnakes therefore represent a species for which 
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many aspects of behavior, sensory processes, ecology and venom toxinology have been 

well studied, and it can serve as a model for behavior of rattlesnakes generally.  

Tongue flicking in snakes is a stimulus-seeking behavior and is the main process 

for delivering volatile and non-volatile cues to the vomeronasal organs (Halpern, 1992), 

which mediate definitive analysis of chemical information (Cowles and Phelan, 1958; 

Schwenk, 1995). Tongue flicking is activated by detection of volatile chemical cues by 

the nasal olfactory system and by visual, thermal, or vibratory stimulation (Burghardt, 

1970; Chiszar et al., 1981; Ford and Burghardt, 1993; Saviola et al., in Press); therefore, 

the rate of tongue flicking can be used as a convenient measure of a snake’s response to 

any or all of these stimuli. In this paper we present data from laboratory experiments 

examining the responses of neonate, subadult, and adult wild-caught prairie rattlesnakes 

to aqueous extracts from two ectotherms (S. undulatus and H. frenatus) and two 

endotherms (P. maniculatus and M. musculus) to determine if an ontogenetic shift in 

response to chemical cues occurs within this species. In addition, we examine if C. v. 

viridis can discriminate between prey extracts of natural (S. undulatus and P. 

maniculatus) and non-natural (H. frenatus and M. musculus) prey items. This latter point 

is of interest because both of these non-natural prey are taken by C. v. viridis in captivity; 

indeed, M. musculus of various sizes are probably the most common food items in 

captivity. 

Materials and Methods 

Study Animals   

The snakes used in this study consisted of 65 wild-caught C. v. viridis from 

Weld Co., Colorado, USA. Snakes were classified as neonates (n=25), subadults (n=20), 
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and adults (n=20) based on snout-vent length (SVL) and body mass (Table 2.1), which 

were measured immediately after testing. Snakes were randomly collected using snake 

hooks from two den sites that were frequently visited by our lab group. All snakes were 

housed in groups based on age (size) classification from visual inspection, as actual 

measurements and associated handling were not conducted until after testing. Snakes 

were tested approximately 48 hrs and within 96 hrs after being brought into captivity. 

Snakes were released at the exact location of capture and were in captivity for no more 

than 10 days. Snakes were maintained with water ad libitum, and none of the snakes were 

fed during their time in captivity. The laboratory was maintained at 26–28°C and the 

photoperiod was automatically controlled on a 12: 12 Light: Dark cycle.  

Experimental Design   

The test cages for neonate and subadult rattlesnakes consisted of glass terraria 

(51×28×48 cm); adults were tested in larger glass terraria (122×33×35 cm). Testing cages 

contained paper flooring, and paper was wrapped around the transparent sides. Cages 

were cleaned prior to and between tests with Quatricide-PV®, a commercial disinfectant 

and deodorant. Before testing, a snake was placed into the test cage, the top was affixed, 

and the subject was allowed to acclimate undisturbed for 10 min.  

Trials began by gently opening the lid of the testing cage, and using forceps we 

placed a cotton-tipped applicator containing one of five chemical cue extracts 1 cm from 

the snake’s snout (Cooper and Burghardt, 1990). Trials were of 60 sec duration, and we 

counted tongue flicks directed at the cotton-tip applicator simultaneously using a hand 

counter. To minimize stress to the animals and to keep them in captivity for as little time 

as possible, trials were separated by 10 min, during which the lid was affixed to the cage 
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and the snake was left undisturbed. However, this short duration between trials did not 

influence subsequent tongue flicking, as indicated by an absence of trials effects in 

statistical tests. 

Chemical extracts of deer mouse P. maniculatus, lab mouse M. musculus, prairie 

lizard S. undulatus, and house gecko H. frenatus, were prepared by placing intact prey 

(entire animal) in 1ml of distilled water per gram of prey for 10 minutes (Clark, 2004). 

Extracts were always used within 1 hr of preparation. Distilled water was used as a 

control, and we added an additional control treatment of opening and closing the lid of 

the testing cage. This additional control consisted of an observer opening the lid of the 

testing cage for 60 secs, counting tongue flicks, and closing the lid of the cage. This 

treatment was included to take into consideration any effect of opening the test cage as 

well as the observer being present in front of the snake that may have led to elevated 

levels of tongue flicking. 

Statistical Analysis  

Data were analyzed by Chi-square (χ² ) and repeated-measures, and mixed 

analyses of variance (ANOVA) followed by Newman-Keuls Range Test (NKRT, 5%). 

Repeated-measures ANOVA and mixed ANOVA (treating conditions as a repeated 

measures factor and age as a between-subjects factor) were completed since we have 

multiple observations on each individual and three age-groups of individuals. The 

concept of analyzing data by both non-parametric and parametric statistics is based on the 

desire to see different methodologies converge on a common outcome, thus strengthening 

our conclusions (Siegel, 1956). 
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Results 

The mean number of tongue flicks toward chemical extracts during the 60 sec 

trials varied markedly among treatments and age groups of snakes (Fig. 2.1). For 

neonates, 19 of 25 snakes directed more tongue flicks at S. undulatus extract than toward 

any other prey extract (χ²1 = 6.76, P <0.01). Repeated-measures ANOVA revealed a 

significant effect of prey cue type (F5, 120 = 16.74, P < 0.01) and NKRT showed that S. 

undulatus extract received significantly more tongue flicks than all other treatments. 

Also, H. frenatus extract received more tongue flicks than the two control treatments; no 

other pairwise comparisons were significant. The six means, ordered from low (open-

and-close control) to high (S. undulatus extract), were 1.4, 2.3 (water control), 4.2 (P. 

maniculatus extract), 4.3 (M. musculus extract), 7.9 (H. frenatus extract), and 13.7, 

respectively. Fifteen pairwise comparisons are possible. The differences (observed 

ranges, ORs) between the highest mean and all others were significant, since the least 

significant range (LSR) was 5.08, and all ORs exceeded this value. The two control 

means were significantly lower than the mean for H. frenatus extract, because the ORs 

were greater than the LSR of 4.86 (all Ps <0.05). 

For subadult C. viridis, response to S. undulatus and P. maniculatus extracts were 

significantly higher than some but not all other treatments. Response to S. undulatus 

extract was as strong as was seen in the neonates, but response to P. maniculatus extract 

was equally strong in the subadults. A significant effect of treatments (extracts) was 

revealed by ANOVA (F5, 95  = 8.64, P <0.01) and NKRT revealed that the means for the 

S. undulatus extract and for the P. maniculatus extract were significantly higher than the 

means for the two control treatments. No other differences between treatments were 
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significant. The mean numbers of tongue flicks, ordered from low (open-and-close 

control) to high (S. undulatus extract), were 2.8, 3.6 (water control), 7.7 (M. musculus 

extract), 8.8 (H. frenatus extract), 12.7 (P. maniculatus extract), and 14.4, respectively. 

The LSRs for comparisons with P. maniculatus and S. undulatus extracts were 6.19 and 

6.47, respectively, and the ORs for both control means were greater than these values; 

hence, these differences were significant (all Ps <0.05). All treatments except for P. 

maniculatus and H. frenatus extracts had ORs with S. undulatus extract that were greater 

than LSR = 6.47. Therefore, these three treatment means (the two controls and M. 

musculus extract) differed significantly from the mean for S. undulatus extract (all Ps 

<0.05). Mean response to M. musculus extract did not differ significantly from P. 

maniculatus extract (OR=5.0, LSR=6.19, P >0.05). Mean response to H. frenatus extract 

differed significantly from the open-and-close control (OR=6.0, LSR=5.83, P<0.05). No 

other pairwise comparisons were significant. 

For adult C. v. viridis, ANOVA indicated a significant effect of treatments (F5, 95 

= 12.24, P <0.01). NKRT showed that the two controls did not differ from each other, but 

both of these means differed significantly from all others. Most conspicuously, the mean 

for responses to P. maniculatus extract was significantly higher than all other means. 

This was confirmed by Chi-square (χ²1 = 5.00, P <0.05) and NKRT. In addition, 17 of 20 

adults had higher scores for P. maniculatus than for M. musculus extract (χ²1 = 9.8, P 

<0.01), indicating that adults discriminated between natural and non-natural prey cues. 

The six means, arranged from low (open-and-close control) to high (P. maniculatus 

extract), were 2.8, 3.3 (water control), 7.0 (M. musculus extract), 7.1 (H. frenatus 

extract), 8.1 (S. undulatus extract), and 12.9. The LSR for comparisons involving the 
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latter mean was 4.26, and all ORs were higher than this value, including that for M. 

musculus extract. Hence, P. maniculatus extract generated significantly more tongue 

flicks than all other conditions. The LSR for comparisons involving S. undulatus extract 

was 4.07, and both controls had ORs that were larger (all Ps <0.05). The mean for the 

open-and-close control generated ORs that were higher than the LSRs for M. musculus 

and H. frenatus extracts (3.49, 3.83, respectively, Ps < 0.05). The mean for the water 

control had an OR with the mean for M. musculus extract that exceeded the 

corresponding LSR (3.49; P <0.05). No other pairwise comparisons were significant. 

Integrating all three sub-analyses into a single 3 (age) x 6 (treatments) mixed 

ANOVA, treating age as a between-subjects factor and treatments as a repeated-measures 

factor, demonstrated that the age effect was not significant (F2, 62 = 1.47, P >0.05). The 

overall means across extracts for the age groups were similar and did not differ 

significantly. The significant effect of extracts (F5, 310 = 54.89, P <0.01) was primarily 

due to the fact that the controls were lower than the other treatments. The interaction of 

age × treatments was significant (F10, 310 = 38.21, P <0.01). When comparing the 18 

means with each other using NKRT, the S. undulatus extract had the highest means for 

neonates and subadults (significantly higher than for the adults); conversely, P. 

maniculatus extract had the highest means for adults (significantly higher than for 

neonates). Applying NKRT to the 18 means (see the lists of means from the three 

previous sub-analyses) from this 3× 6 mixed ANOVA produced 153 pairwise 

comparisons. First, all control means (from both controls and all three age groups) had 

ORs that did not exceed the corresponding LSRs. The highest OR in this subset of 15 

contrasts was 2.2, whereas the corresponding LSR was 4.76. So, none of these treatments 
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differed from each other. The highest means were for the S. undulatus extracts presented 

to subadults and to neonates, and these means had significantly higher ORs with all 

means except for P. maniculatus extracts presented to adult and subadult snakes. The 

highest of these latter ORs was 4.8, while the corresponding LSR was 5.10. Hence, the 

means for S. undulatus extracts presented to subadults and to neonates were significantly 

higher than all but these last two means. Additionally, the means for S. undulatus 

presented to subadults and neonates did not differ from each other (OR = 0.3, LSR = 

5.18). The mean for P. maniculatus extract presented to adult snakes was higher than all 

other means except for P. maniculatus extract presented to subadults, and S. undulatus 

extracts presented to neonates and subadults (ORs = 0.2, 0.8 and 1.5, respectively; LSRs 

= 5.49, 5.45, and 5.57, respectively). In short, this set of comparisons agrees with those 

reported above in showing that the youngest snakes tongue flicked most strongly towards 

S. undulatus extract, whereas the adult snakes tongue flicked the most to P. maniculatus. 

Subadult snakes tongue flicked approximately equally to both S. undulatus and P. 

maniculatus extracts. 

Discussion 

Natural selection can be expected to influence chemosensory responses of snakes 

to stimuli that are most likely to lead to capture of prey (Tinbergen, 1951; Cooper, 2008). 

Evolutionary shifts in snake diet have been well documented and are further correlated 

with shifts in response to specific cues associated with such prey (see Cooper, 2008). 

Whether this response is a learned or heritable trait has been examined in several species, 

and studies have indicated that prey generalists demonstrate learning behavior such that 

increased response is directed toward cues of the diet being fed to the snake (Burghardt, 
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1993). Prey specialists, on the other hand, may exhibit chemosensory responses only to 

specific prey, with such behavior exhibiting little flexibility, as is characteristic of 

heritable responses (Arnold, 1981; see also Cooper, 2008). The majority of rattlesnakes 

demonstrate different feeding strategies at different life stages; for example, gut content 

analyses indicated that juvenile pacific rattlesnakes had a diet consisting of more than 

50% ectotherms, whereas adult snakes had exclusively mammals in their diet (Mackessy, 

1988).  

Neonate C. v. viridis showed a significantly higher rate of tongue flicking for 

chemical extract of S. undulatus when compared to all other treatments, including a non-

prey lizard species H. frenatus extract. These results indicate that neonates discriminated 

between natural S. undulatus and non-natural H. frenatus lizard prey chemical cues. 

Interestingly, Chiszar and Radcliffe (1977) found that neonate C. v. viridis born in 

captivity exhibited no significantly different responses to chemical extracts of lizard and 

lab mouse M. musculus when compared to the control. However in this study, snakes 

were naïve, never having been fed prior to testing. Further, these snakes had never seen 

nor smelled prey, and snakes were tested immediately following the shed of natal skins 

(about 10 days following parturition). In comparison, in the current study, snakes 

certainly had feeding experience before they were caught, and that the observed 

difference between the results of these two studies is likely due to prior predatory 

experience among snakes in our study. 

Subadult C. v. viridis responded with a higher rate of tongue flicking to both S. 

undulatus and P. maniculatus extracts and adult C. v. viridis tongue flicked significantly 

to the extract of P. maniculatus when compared to all other treatments. As with the 
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neonates, rate of tongue flicking to chemical extract of native prey P. maniculatus was 

higher than that seen for non-native prey (M. musculus), indicating that adults also 

discriminated between natural and non-natural endothermic prey cues. Collectively, these 

results reveal a shift in chemosensory responses, presumably correlated with prey 

commonly taken between neonatal and adult life stages of C. v. viridis (Hammerson, 

1999). Subadult snakes showed elevated levels of tongue flicking to both S. undulatus 

and P. maniculatus, indicating that the emergence of the adult response is not associated 

with an immediate decline of earlier dietary predilections. Indeed, although adult C. v. 

viridis mostly take endothermic prey, they are known to take S. undulatus and other 

ectotherms opportunistically throughout life (Hammerson, 1999).  

Responses of rattlesnakes to chemical stimuli during ambush site selection 

demonstrate that rattlesnakes rely on prey chemical cues for ambush foraging strategy. 

Prairie rattlesnakes assumed ambush postures, both in the field and in the laboratory, in 

response to potential prey extracts (Duvall et al., 1990; Theodoratus and Chiszar, 2000), 

and dusky pygmy rattlesnakes Sisturus miliarius barbouri in the field selected ambush 

sites based on presence of extracts of their most taken prey, leopard frogs Rana pipiens 

(Roth et al., 1999). In addition, yearling timber rattlesnakes C. horridus born in captivity 

responded significantly to chemical extracts of natural prey items, even though snakes 

were fed exclusively lab mice (Clark, 2004). LaBonte (2008) further showed that ambush 

site selection shifted from ectotherm to endotherm cues with increased snake age in 

southern pacific rattlesnakes C. o. helleri. All of these results are consistent with our data 

reported here which indicate a shift in responsiveness to age-appropriate prey.  
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In addition to shifts in diet and chemosensory responses to prey, ontogenetic 

shifts in venom composition have also been documented, as neonate venoms often 

contain more toxic components, while adult venoms, which are less toxic, contain higher 

levels of pre-digestive and digestive enzyme toxins (Fiero et al., 1972; Mackessy, 1988, 

2008). This shift in venom composition is correlated with prey surface-to-volume ratios. 

With smaller body sizes and longer limbs, ectotherms are structurally easier to digest than 

endotherm prey, and many of the higher mass lytic components of rattlesnake venoms 

(specifically metalloproteinases) are more abundant in venoms of adult snakes 

(Mackessy, 1988, 2008). It therefore appears that concomitant changes in several aspects 

of behavior and physiology occur as rattlesnakes age.  

Our results support the hypothesis that chemosensory responses stages of C. v. 

viridis are highly correlated with chemical cues of prey commonly taken at different life. 

Similarly, Mushinsky and Lotz (1980) found that the plain-bellied water snake Nerodia 

erythrogaster shifted response preference from fish to frog extract at approximately 8 

months of age. Anurans make up nearly 85% of the diet of large N. erythrogaster, 

whereas fish are primarily taken by smaller snakes, indicating that the shift in 

chemosensory response as snakes mature closely follows actual dietary shifts (Mushinsky 

and Lotz, 1980). Additionally, feeding experience has been shown to lead to shifts in 

chemosensory responses. Burghardt et al. (2000) showed that an isolated population of 

Thamnophis sirtalis with a natural diet primarily of earthworms, but fed exclusively fish 

in captivity, exhibited a stronger response to fish cues at the end of the experimental 

period. It should be stressed that the present study was not designed to assess the extent 

of flexibility within each of the life stages. These studies are needed before we can 
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conclude that neonates and adults exhibit different specialized strategies, each relatively 

resistant to modification. However, prairie rattlesnakes are clearly differentially 

responsive to chemical cues derived from prey typical of a given life stage, and this 

ontogenetic change may be typical of other rattlesnakes which show age-related changes 

in diet. 
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Table 
 
Table 2.1: Mean snout-vent length and body mass (± SEM) for the 65 rattlesnakes tested. 
________________________________________________________________________ 

Snout-vent length (mm)  Mass (g) 
 

Neonate    280.9 (3.6)   13.4 (0.5) 

Subadult             552.0 (7.0)            103.0 (4.9) 

Adult                789.5 (10.9)            334.5 (15.1) 
________________________________________________________________________ 
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Figure 2.1: Mean Number of Tongue Flicks Over 60 Seconds. Mean number of tongue 
flicks per minute ± standard error of the mean (SEM) from neonate, subadult, and adult 
prairie rattlesnakes toward extracts of four different prey types and two control 
treatments.  
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Abstract 

Rattlesnakes use chemical stimuli in ambush site selection and for relocation of 

envenomated prey through strike-induced chemosensory searching. Shifts in 

responsiveness to prey chemicals have been documented in many snakes, and often 

correlate with prey commonly taken as snakes increase in age and size as well as 

geographical locations of the species. For instance, neonate rattlesnakes that prey 

primarily on ectotherms responded most strongly to chemical cues of commonly taken 

lizard prey, whereas adult rattlesnakes that prey primarily on small mammals responded 

significantly to chemical cues of commonly taken rodents. In the current study, 11 Prairie 

Rattlesnakes Crotalus viridis viridis which were classified as large neonates based on 

measures of snout-vent length (SVL) and body mass, yet chronologically were at or near 

adulthood, were tested for their responsiveness to chemical extracts of natural and non-

natural prey items. Although the snakes had eaten only neonate lab mice (Mus musculus), 

they responded significantly more to chemical cues of natural prey items and particularly 

to chemical cues of prey normally taken by subadults (Peromyscus mice and Sceloporus 

lizard). These results suggest that ontogenetic shifts in responsiveness to natural prey 

chemical cues are innately programmed and are not based on body size or feeding 

experience in C. v. viridis. This does not imply, however, that growth and experience are 

without effects, especially with novel prey or rare prey that have experienced recent 

population expansion. 

Introduction 

It is well established that many squamate reptiles, especially snakes, are excellent 

at recognizing and discriminating between chemical cues of prey sources (Burghardt, 
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1970; Cooper et al., 1990, Chiszar et al., 1992; Clark, 2004). Behavioral plasticity has 

also been documented, as shifts in responsiveness to prey-derived cues often correlate 

with shifts in diet as snakes increase in age and size (Mushinsky and Lotz, 1980; Cooper, 

2008; Saviola et al., 2012a). Saviola et al. (2012a) found that neonate prairie rattlesnakes 

Crotalus viridis viridis responded most strongly to chemical cues from prairie lizard prey 

Sceloporus undulatus, whereas adult C. v. viridis responded less strongly to these cues 

and more strongly to chemical cues from deer mice Peromyscus maniculatus. Subadults 

responded strongly to both lizard and rodent cues. These chemosensory response patterns 

also correlated with the natural prey most commonly taken by the three age groups 

(Hammerson, 1999; Mackessy, 1988).  

Rattlesnakes are ambush predators that use chemical cues in ambush site selection 

and visual-thermal cues to deliver the envenomating strike (Chiszar et al., 1981; Kardong 

and Mackessy, 1991; Kardong, 1992; Clark, 2004). Following the strike and release of 

prey, rapid tongue flicking (strike-induced chemosensory searching) detects volatile and 

non-volatile chemical cues, allowing for relocation of the envenomated carcass (Chiszar 

et al., 1977, 1992). Prey-handling behaviors also vary as neonates typically hold on to 

lizard prey (Mackessy, 1988), whereas adults release rodent prey immediately after the 

strike (Mackessy, 1988; Hayes, 1991). Likewise, shifts in venom composition are often 

seen, as neonate rattlesnakes tend to have higher concentrations of toxic venom 

components, and less pre-digestive enzymes such as metalloproteinases, which are 

typically in much higher abundance in venoms of adult rattlesnakes (see Mackessy, 2008 

for a review).  
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The present sample of C. v. viridis were collected as neonates in 2008 from the 

same population and location as the snakes studied by Saviola et al. (2012a), but the 

present animals had been underfed and, as a consequence, had not grown at a normal rate. 

It has been documented that prey preference correlates with skull shape and size in 

snakes (Vincent et al., 2004, 2009), and with maximum gape and head size being limiting 

factors in prey consumption, underfeeding and consumption of small prey may drastically 

inhibit snake growth. Based on measures of snout-vent length (SVL) and body mass, the 

present snakes were between the neonate and subadult categories defined by Saviola et al. 

(2012a), whereas chronologically the animals were at or near adulthood (Klauber, 1972). 

Hence, we were provided with a unique opportunity to assess whether the same shift in 

response to chemical cues occurred in these snakes as occurred in the snakes studied by 

Saviola et al. (2012a). This question is of additional interest for at least two reasons:  (1) 

the present snakes had never encountered P. maniculatus or S. undulatus, as they had 

eaten only neonatal and adolescent lab mice (Mus musculus; 3−10g, 2−3cm in length) in 

captivity, and (2) because of the size of the stunted snakes, they were incapable of 

swallowing adult P. maniculatus (or adult M. musculus). Hence, if the stunted snakes 

nevertheless respond strongly to chemical cues derived from adult P. maniculatus, the 

implication would be that the transition described by Saviola et al. (2012a) was not 

dependent upon experience with natural prey but may be innately programmed.  

Materials and Methods 

Eleven C. v. viridis captured in Weld County, CO, October 8, 2008 (approx. one 

month after parturition) were maintained in captivity for approximately four years (at the 

time of this study). The snakes were underfed, but cage sanitation and drinking water 
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were not neglected. During this period, snakes were offered M. musculus neonates and 

adolescents, as the snakes were and still are incapable of ingesting adults. Saviola et al. 

(2012a) classified wild caught neonates, subadults and adults as shown in Table 3.1. The 

present snakes had mean SVL of 349.1 mm and mean mass of 27.4 g, significantly higher 

than the means for the neonates of Saviola et al. (t34 = 9.52 and 9.75, respectively, Ps 

<0.01) but also significantly lower than the means for subadults (t29 = 18.73 and 11.09, 

respectively, Ps <0.01). Accordingly, the present sample would be classified as large 

neonates or small subadults, but not as adults, although chronologically these snakes 

would be nearing adulthood (Klauber, 1972). All snakes were maintained in individual 

plastic terraria (51 × 28 × 48 cm) and provided hide boxes, paper floor coverings and 

water ad libitum. The laboratory was maintained at 26−28 °C, and the photoperiod was 

automatically controlled on a 12:12 light-dark cycle. 

Chemical extracts of five adult potential prey organisms (P. maniculatus, M. 

musculus, S. undulatus, Side-blotched Lizard, Uta stansburiana, and Common House 

Gecko, Hemidactylus frenatus) were prepared by placing intact prey in one ml distilled 

water per gram of prey for 10 min (Clark, 2004). Extracts were always used within one hr 

of preparation, and distilled water was used as a control. Trials began by gently opening 

the lid of the terrarium. Using forceps, a cotton-tipped applicator containing one of the 

extracts or water was placed one cm from the snake’s snout (Cooper and Burghardt, 

1990). During the next 60 sec we counted the number of tongue flicks aimed at the 

applicator and the latency to strike if this occurred. Tongue flicking in squamates is 

activated by detection of chemical stimuli by the nasal olfactory system, or by visual, 

thermal or vibratory cues and is the main process for delivering volatile and non-volatile 
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cues to the vomeronasal organs, which mediates definitive analysis of chemical 

information (Burghardt, 1970; Halpern, 1992; Schwenk 1995; Saviola et al., 2011, 

2012b). Therefore, measuring tongue flicking in snakes is a useful assay for measuring a 

snake’s response to any or all of these cues. Trials were separated by at least 24 hr, and 

the six chemical cues were presented in a different random order for each snake. Each 

cage was cleaned prior to and between trials with Quatricide-PV®, a commercial 

disinfectant and deodorant. Snakes were always left undisturbed after a trial and allowed 

to come to rest after the cage lid was opened in preparation for the next trial. 

Data were converted to tongue-flick-attack (TFA) scores in order to account for 

strikes (Cooper and Burghardt, 1990); four strikes occurred during all trials. So, TFA 

scores were essentially the same as the number of tongue flicks during the 60 sec tests. 

We used a log-10 transformation to normalize the data and to achieve homogeneity of 

variance in the six conditions.  

Inferential analyses used Chi-square (χ²) and repeated-measures analyses of 

variance (ANOVA) followed by non-orthogonal contrasts. Alpha was set at 0.01 for these 

contrasts to control type I errors. Use of both nonparametric and parametric tests was 

predicated on our desire to see different statistical tools converge on the same 

conclusions. Comparisons of characteristics of the present snakes with those of Saviola et 

al. (2012a) used t-tests.  

Results 

Nine of the eleven snakes had their highest TFA scores with P. maniculatus or 

S. undulatus cues as opposed to the other four cues (χ²1 = 4.44, P < 0.05), including M. 

musculus, the only prey offered in captivity and likely the only prey ever eaten by these 
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snakes. All snakes had higher TFA scores for the three potential prey extracts (M. 

musculus, H. frenatus, U. stansburiana) as opposed to the water control (χ²1 = 11.00, P < 

0.01).  

The six means shown in Figure 3.1 differed significantly by repeated-measures 

ANOVA (F5,50  = 3.92, P < 0.01). Non-orthogonal contrasts revealed that the mean of the 

five extracts combined differed significantly from the mean for water (F1,50 = 9.06, P < 

0.01). The means of P. maniculatus and S undulatus extracts were significantly higher 

than the means of all other extracts combined, including the mean for M. musculus 

extract (F1,50 = 22.30, P < 0.01). The latter means did not differ significantly among 

themselves (F1,50 = 3.56, P > 0.05).  

Discussion 

Rattlesnakes use chemical stimuli in both ambush site selection (Duvall et al., 

1990; Clark, 2004; LaBonte, 2008) and relocation of prey during strike-induced 

chemosensory searching (Chiszar et al., 1977). Therefore, understanding how 

chemosensory responsiveness varies during the development of the snakes is important 

for understanding the behavior and ecology of these species. Although the present snakes 

had eaten only M. musculus, the response to P. maniculatus had developed more-or-less 

on the same schedule as that of normally fed adult snakes, while the response to S. 

undulatus extract had not dropped significantly, as is seen in wild-caught snakes (see 

Saviola et al., 2012a). Further, the only strikes observed during trials were toward these 

native prey extracts (P. maniculatus and S. undulatus, two strikes towards each). Hence, 

these snakes behaved like normal subadults, even though they were closer to the size 

range of neonates and could not ingest adult mice.  
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Development of response to chemical cues of natural prey might be innately 

programmed, or experience with these or similar items might be required. In the present 

case, the responses to P. maniculatus and S. undulatus extracts were of normal intensity, 

even though the snakes probably had never seen or eaten these prey. This is suggestive of 

and might be taken as evidence for innate ontogenetic programming. It remains possible 

that feeding on M. musculus provided sufficient surrogate cues to promote development 

of response to P. maniculatus extracts. However, if this is true, then why did the snakes 

not respond strongly to M. musculus extracts?  We cannot resolve this conundrum on the 

basis of present data, but we can provide two hypotheses:  (1) response to P. maniculatus 

cues developed innately, perhaps even earlier than usual because of hunger and 

underfeeding, and (2) this sensitivity to rodent cues may have been the reason the snakes 

accepted M. musculus (rather than the other way around). Although captivity may 

influence chemosensory responses it has been documented that long-term captive 

rattlesnakes (C. atrox, C. durissus, C. horridus, C. vegrandis, C. unicolor) demonstrate 

no significant differences in strike-induced chemosensory searching when compared to 

wild-caught rattlesnakes (Chiszar et al., 1985). Similarly, long-term captivity did not 

appear to affect the ability of C. o. oreganus to strike, dispatch, or relocate prey normally 

(Alving and Kardong, 1994). 

There is evidence that snakes can acquire responsiveness to new or unusual 

foods if the snakes are fed such foods but not their usual fare (Burghardt et al., 2000), and 

our data for M. musculus extracts agree with this finding. It is also known that naïve 

neonatal snakes respond to chemical extracts of natural foods (Cooper et al., 1990), and 

our data for S. undulatus extracts agree with those of Burghardt (working with garter 
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snakes). The data for P. maniculatus extracts suggest that ontogenetic appearance of 

response to prey normally taken later in life does not require experience with that prey. 

Similarly, adult C. horridus born and raised in captivity showed significant responses to 

chemical cues of preferred natural prey, even though these snakes were fed entirely M. 

musculus, never encountering natural prey items (Clark, 2004).   

Being gape-limited forces snakes to consume prey that are small enough for 

them to swallow, and chemosensory responses to prey cues have been shown to correlate 

with the most commonly consumed prey and with the foraging ecology of the snake (see 

Cooper, 1995, 2008; Saviola et al., 2012a, b). In Colorado, neonate C. v. viridis prey 

primarily on small ectotherms such as the lesser earless lizard Holbrookia maculata, 

prairie lizard S. undulates and plains spadefoot toad Spea bombifrons; however, shifts to 

endotherm prey such as the western harvest mouse Reithrodontomys megalotis and deer 

mouse P. maniculatus occur in subadult and adult snakes (Hammerson, 1999). Although 

responsiveness to chemical cues changes over snake age, which typically correlates with 

increased size, our study demonstrates that C. v. viridis respond to chemical cues of prey 

most commonly taken in adulthood, regardless of the snakes’ size, and we infer that 

changes in chemosensory responsiveness by C. v. viridis are innate. 
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Table 
 
Table 3.1: Mean Snout-vent Length and Body Mass (± SEM) for the 11 C. v. viridis 
Tested. Bold lettering indicates subject classifications and data from Saviola et al. 
(2012a; Chapter II). 
________________________________________________________________________ 

Snout-vent length (mm)   Mass (g) 
 

Current Subjects (n=11)  349.1 (7.1)   24.7 (2.0) 
Neonate (n=25)  280.9 (3.6)    13.4 (0.5) 
Subadult (n=20)  552.0 (7.0)    103.0 (4.9) 
Adult (n=20)   789.5 (10.9)    334.5 (15.1) 
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Figure 
 
 

  
Figure 3.1: Comparison of Log10 Transformed TFAS. A. Log10 transformation of mean 
tongue flicks attack score (TFAS) ± standard error of the mean (SEM) for 11 stunted C. 
v. viridis toward 5 different prey types and water control. B. Log10 transformation of 
mean TFAS ± SEM towards chemical cues of natural prey items for wild-caught neonate, 
subadult, and adult C. v. viridis from Saviola et al. (2012a). Dissimilar letters above 
histogram bars indicate significant differences between responses; same letters indicate 
no significant differences.  
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Abstract 

Vertebrate predators use a broad arsenal of behaviors and weaponry for 

overcoming fractious and potentially dangerous prey. A unique array of predatory 

strategies occur among snakes, ranging from mechanical modes of constriction and jaw-

holding in non-venomous snakes, to a chemical means, venom, for quickly dispatching 

prey. However, even among venomous snakes, different prey handling strategies are 

utilized, varying from the strike-and-hold behaviors exhibited by highly toxic elapid 

snakes to the rapid strike-and-release envenomation seen in viperid snakes. For vipers, 

this mode of envenomation represents a minimal risk predatory strategy by permitting 

little contact with or retaliation from prey, but it adds the additional task of relocating 

envenomated prey which has wandered from the attack site. This task is further 

confounded by trails of other unstruck conspecific or heterospecific prey. Despite 

decades of behavioral study, researchers still do not know the molecular mechanism 

which allows for prey relocation. During behavioral discrimination trials (vomeronasal 

responsiveness) to euthanized mice injected with size-fractionated venom, Crotalus atrox 

responded significantly to only one protein peak. Assays for enzymes common in 

rattlesnake venoms, such as exonuclease, L-amino acid oxidase, metalloproteinase, 

thrombin-like and kallikrein-like serine proteases and phospholipase A2, showed that 

vomeronasal responsiveness was not dependent on enzymatic activity. Using mass 

spectrometry and N-terminal sequencing, we identified the proteins responsible for 

envenomated prey discrimination as the non-enzymatic disintegrins crotatroxin 1 and 2. 

Our results demonstrate a novel and critical biological role for venom disintegrins far 

beyond their well-established role in disruption of cell-cell and cell-extracellular matrix 
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interactions. These findings reveal the evolutionary significance of free disintegrins in 

venoms as the molecular mechanism in vipers allowing for effective relocation of 

envenomated prey. The presence of free disintegrins in turn has led to evolution of a 

major behavioral adaptation (strike-and-release), characteristic of only rattlesnakes and 

other vipers, which exploits and refines the efficiency of a pre-existing chemical means 

of predation and a highly sensitive olfaction system. This system of a predator chemically 

tagging prey represents a novel trend in the coevolution of predator-prey relationships.  

Background 

Coevolution within predator-prey interactions has led to adaptations that are 

advantageous for either prey capture or predation avoidance. In predators, these traits 

may be under strong selection leading to successful capture of prey [1, 2], but they are 

relatively under-studied compared to the mechanisms involved in anti-predator 

adaptations [3]. Darwin [4] suggested that diversification of predators may be largely 

based on selection on predatory behaviors, and adaptations to observable phenotypic 

characteristics that are advantageous to prey capture are commonly examined. For 

example, evolution of craniofacial asymmetries has shown to increase predation success 

in scale-eating cichlids [5] as well as in snail-eating snakes [6]. Phenotypic plasticity 

undoubtedly plays a critical role in diversification of predators and prey, often leading to 

adaptations in behavior, life history, physiology and morphology of species [7]. Further, 

competition, predation and utilization of dangerous prey have been proposed as the most 

significant factors of selection on organisms [8]. The ability of predators to adapt to 

dangerous prey, such as garter snake (Thamnophis sirtalis) resistance to tetrodotoxin 

(TTX) of Taricha newts [2], provides strong evidence for a coevolutionary arms race 
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between predators and prey. However, adaptations in predatory behaviors to avoid 

complete retaliation from dangerous prey may be rare. Nevertheless, natural selection can 

be expected to lead to adaptations influencing behaviors that are most advantageous to 

prey capture [1], and further examination of the molecular mechanisms allowing for these 

large scale behavioral adaptations is critical for understanding coevolution between 

predator-prey interactions. Many studies examining phenotypic plasticity in species 

address various forms of plasticity separately, yet this variety may have significantly 

different ecological consequences [9]. Among venomous snakes, venom characteristics 

are under positive directional selection [10], and the presence of specific venom 

components may have played a critical role in diversification of predatory behaviors of 

several snake taxa.  

Rattlesnakes and other vipers demonstrate one of the most advanced modes of 

predation among vertebrates, utilizing a strike-and-release mode of envenomation. This 

behavior provides the benefit of minimal contact or retaliation from potentially dangerous 

prey, but adds the additional task of locating the trail left behind by the envenomated prey 

that may wander several meters or more from the attack site. By using rapid tongue 

flicking (strike-induced chemosensory searching) to detect, and the vomeronasal organs 

to analyze volatile and non-volatile chemical cues [11], snakes must then differentiate 

between the trail deposited by the prey before and after envenomation has occurred, as 

well as the trails left inadvertently by other potential prey and non-prey sources. Several 

hypotheses have addressed the source of chemical cues used to discriminate between 

trails of struck and unstruck prey. Cues emanating from the mouse when it is punctured 

during the envenomating strike, as well as other potential chemical cues, such as urine or 
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volatiles from venom left on the prey’s integument, have been examined, yet are not 

utilized by snakes [12-15]. These previous results indicate that venom must be injected 

into tissues to initiate a release of chemical odor(s), permitting discrimination of 

envenomated prey and their trails. A convenient bioassay of vomeronasal 

chemoreception was previously developed for evaluating preference towards 

envenomated (E) vs. non-envenomated (NE) mouse carcasses, with snakes showing high 

rates of tongue flicking directed toward E carcasses (strike-induced chemosensory 

searching, SICS [15-18]). This preference holds when envenomation occurs by a 

conspecific or by a closely related heterospecific [17], or when lyophilized conspecific 

venom is injected into previously euthanized prey [18]. Therefore, venoms represent not 

only a rapid-acting chemical means of dispatching potentially fractious prey [19]; they 

also greatly increase the perceptibility of the envenomated prey carcass [15, 18]. 

However, the specific component(s) of snake venom allowing for successful recovery of 

prey and further diversification of prey handling behaviors has not been identified. 

Results 

To determine which component(s) of venom allows for rattlesnakes to 

differentiate between envenomated (E) and non-envenomated (NE) prey, we offered 

western diamondback rattlesnakes (Crotalus atrox) E and NE mouse carcasses; E mice 

were injected with either crude venom or with fractionated protein or peptide peaks of 

crude venom (extracted from conspecifics). Non-envenomated mice were injected with a 

saline control. When artificial envenomation occurred with whole crude venom, the mean 

number of tongue flicks was significantly greater for the E mouse (t = 3.67, df = 6, P 

<0.01; Table 4.1). When total number of tongue flicks were converted to percentage of 
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tongue flicks (to control for natural variation in absolute tongue flick rate between 

snakes), results confirmed that C. atrox directed significantly more tongue flicks at the E 

than at NE mice (t = 3.76, df = 6, P <0.01) (Table 4.1). These results agree with 

numerous studies of vomeronasal response of rattlesnakes to E versus NE prey [15, 17, 

18], including a previous study performed using the same pool of C. atrox venom as used 

in this report [18].  

To test snake responses toward fractionated protein and peptide peaks, crude C. 

atrox venom was separated using low-pressure size exclusion liquid chromatography, and 

four major protein peaks, labeled I, IIa, IIb and III, as well as three downstream peptide 

peaks, were resolved (Figure 4.1A). When mouse carcasses were envenomated with 

either Peaks I, IIa, IIb or the peptide peaks, there was no significant difference between 

the mean number of tongue flicks or the percentages of tongue flicks directed towards 

either the E or NE carcasses (Table 4.2; see also Table 4.3). However, for Peak III, there 

were significantly more tongue flicks directed towards the E mouse (t = 4.24, df = 10, P 

<0.01; Table 4.2), and the mean percentage of tongue flicks toward the envenomated 

carcass (68%) was also significantly higher than the null (t = 5.78, df = 10, P <0.01; 

Table 3.2). Analysis of variance (ANOVA) indicated a significant main effect of 

conditions (F = 4.63, df = 4, 54, P <0.01). The Newman-Kewls range test also revealed 

that the mean for Peak III was significantly higher than the means for Peaks I, IIa, IIb and 

the peptide peaks (P <0.05), which did not differ significantly among themselves (P 

>0.05). Further, in 10 out of 11 Peak III trials, snakes tongue flicked more towards the E 

mouse (χ2 = 3.68, df = 1, P = 0.05), whereas for Peaks I, IIa, IIb and the combined 
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peptide peaks, there was no preference shown over the E mouse or the NE mouse (χ2 = 

0.264, 0.045, 0.2 and 0.05, respectively; all df’s = 1, all Ps >0.05).  

We next sought to examine the components in Peak III that produced this 

significant vomeronasal response. Because metalloproteinase enzymes are prevalent 

components of most viper venoms [20] and because they would still catalyze degradation 

of non-living E mouse tissues, we hypothesized that these enzymes would be responsible 

for “tagging” of E prey. Assays for enzymes common in rattlesnake venoms 

(exonuclease, L-amino acid oxidase, metalloproteinase, thrombin-like and kallikrein-like 

serine proteases, and phospholipase A2: [21]) indicated that all of these activities were 

confined to Peaks I through IIb (Figure 4.1A). SDS-PAGE (Figure 4.4) and mass 

spectrometry of Peak III (Figure 4.1B) revealed only peptides with masses of 

approximately 7.5 kD. Further analysis of Peak III through reverse-phase high pressure 

liquid chromatography (HPLC) yielded two peaks (Figure 4.2A) that were subjected to 

Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass 

spectrometer analysis. These results yielded masses of 7,440.35 Da (Figure 4.2B) and 

7,383.29 Da (Figure 4.2C), respectively, indicating that the proteins isolated were the 

disintegrins crotatroxin 1 and crotatroxin 2. N-terminal sequencing of Peak III proteins 

confirmed the identity of these disintegrins (Figure 4.3). 

Discussion 

Determining the molecular mechanisms leading to large-scale adaptations of 

predatory behaviors, including, in this case, relocation of prey, is critical for 

understanding predator-prey interactions, evolutionary biology and natural history of pit 

vipers. Our findings show that the venom disintegrins crotatroxin 1 and 2 alone allowed 
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C. atrox to distinguish between envenomated and non-envenomated prey sources, 

presumably by altering the chemical odor of prey integument. Crotatroxins are medium-

sized monomeric disintegrins with approximate masses of 7.4 kDa and contain 71 to 72 

amino acids with six disulfide bonds, differing only by the presence of an additional N-

terminal alanine in crotatroxin 1 ([22]; see also Figure 4.3). Disintegrins are non-

enzymatic and are produced by the proteolytic posttranslational processing of the C-

terminal domain of P-II snake venom metalloproteinases [23]. The presence of dimeric 

disintegrins in other viperid venoms has also been documented; however, only medium-

sized monomeric disintegrins appear to be present in C. atrox venom [24]. It is currently 

unknown if dimeric disintegrins will produce the same type of vomeronasal response as 

the monomeric disintegrins did in this current study. A primary activity of disintegrins is 

the inhibition of platelet aggregation by selectively binding integrin receptors expressed 

on cell surfaces [25]. The majority of monomeric disintegrins, including crotatroxins 1 

and 2, contain an active Arg-Gly-Asp (RGD) sequence [26], which has been shown to 

block numerous classes of integrin receptors with a high degree of selectivity. Therefore, 

the action of crotatroxins which results in successful relocation of envenomated prey via 

SICS likely involves an integrin binding mechanism and further release of volatile cues 

detectable by rattlesnakes.  

Rattlesnake venoms are classified as either type I venoms, containing high 

metalloproteinase activity and lower toxicity, or type II venoms, containing low 

metalloproteinase activity and higher toxicity [21]. Although some strike-and-release 

rattlesnakes, such as C. scutulatus scutulatus (type A) and C. tigris, contain less than 

0.1% venom metalloproteinases, proteomic studies have identified disintegrins in their 
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venoms [27, 28]. These species possess type II venoms with potent lethal toxicity, so the 

possibility of prey wandering a significant distance from the attack site before it has 

succumbed to venom is much less likely than species exhibiting type I venom, making 

relocation following a strike less challenging for these highly toxic rattlesnakes. 

Disintegrins make up approximately 2% (by mass) of the total venom proteins/peptides 

of crude C. atrox venom, though the abundance of this protein (and other venom 

compounds) may vary between individual snakes. The utilization of a relatively minor 

venom component to “tag” envenomated prey may also explain the “overkill method” 

[29] employed by venomous snakes. It has long been observed that many taxa of 

venomous snakes inject prey with amounts of venom which vastly exceed the mouse 

model LD50, often by several orders of magnitude [14, 30]. In part, this “excessive” 

dosage is explained by differential sensitivity of various prey to specific toxins [31] and 

venoms [32], induced by coevolutionary responses of both prey and their snake predators 

[33]. For example, some prey species are much less affected by venoms, while others are 

highly sensitive (cf. frogs and lizards [34]). However, another important factor, in 

particular, among the strike-and-release predators, such as most viperids, is the need to 

discriminate between competing prey trails (E and NE rodents), selecting the one leading 

to the previously envenomated prey. This is likely a main reason why rattlesnakes use 

apparently large quantities of venom - to achieve a “minimum perceptible dose” [18].  

Venoms consist of a myriad of proteins and peptides that may vary based on age, 

geographic locations and prey preference of the snake [35]. This complexity of venom 

composition, coupled with the fact that many species specialize on specific prey, likely 

result in selective pressures on venom characteristics, leading to the evolution of 
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advantageous venom phenotypes and predatory behaviors [36]. On a trophic level, the 

roles of disintegrins and many other proteins found in venoms still remain relatively 

unknown. In whole venom, disintegrins which have not been proteolytically processed 

could potentially assist in the targeting of PII snake venom metalloproteinases (SVMPs) 

to specific integrin receptors in cell membranes [37], giving rise to chemical changes 

recognized by the snakes. Lys49 phospholipase A2s have also been suggested to act as a 

tag of envenomated prey [38]; however, we have demonstrated that neither the 

metalloproteinase-containing nor the PLA2-containing fractions of C. atrox venom 

elicited prey relocating responses. 

To the best of our knowledge, all pit vipers that have been tested have shown 

significant preference for envenomated prey [for example, 15-18], indicating that 

disintegrins in other venoms, not just those in C. atrox, assist in prey relocation for other 

pit viper species. But not all snake venoms contain disintegrins. How are prey relocated 

in these cases? Atractaspis species (mole “vipers”) use a unilateral slashing 

envenomation behavior to feed on neonatal rodents within nests and burrows [39], and 

prey escape after envenomation is highly improbable. Elapids are typically strike-and-

hold predators [40], with venoms rich in rapid-acting three-finger toxins [35], and so the 

presence of a “relocator protein” in these venoms is not likely advantageous. Similarly, 

neonate rattlesnakes that generally strike-and-hold prey [41] produce much smaller 

amounts of venom and have significantly lower concentrations of metalloproteinases, the 

protein family that releases free disintegrins, when compared to venoms of subadult and 

adult rattlesnakes [21, 41].  
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A major selective advantage for the evolution of free disintegrins among viperid venoms 

(apparently exclusively) is provided by their role in prey relocation.  

Natural selection undoubtedly has influenced snake responses to stimuli that are 

most likely to lead to successful capture or, as in this case, successful relocation of prey 

[1, 42]. Further, this preference for envenomated prey is an adaptive mechanism that 

facilitates optimal foraging efforts, leading to rapid relocation of prey after it has 

succumbed. Snakes often will not attend to a second prey offered after the initial 

envenomating strike, suggesting that chemical cues arising from the struck prey may be 

focusing foraging efforts and redirecting the snake from additional, potentially 

confounding chemical cue sources [43]. Our results strongly indicate that for C. atrox, 

disintegrins have evolved into multifunctional proteins which evoke vomeronasally-

salient cues, enabling the snake to relocate envenomated prey after the strike. Therefore, 

in addition to immobilizing, killing and predigesting prey, another biological role of 

venoms in rattlesnakes is for prey relocation. 

Conclusions 

These findings provide an important biological role for a non-lethal venom 

protein which has little apparent relevance to the well-characterized roles of disintegrins 

in disrupting cell-cell and cell-extracellular matrix interactions. Thus, in order to 

understand the evolution of animal venoms and venom compositional variation, it will be 

important to consider possible selective advantages conferred by specific venom 

components to the behavior and ecology of the animals which produce them, in addition 

to the more apparent pharmacological effects. At present, it is unknown how the 

crotatroxins create an olfactory “mark” that snakes are able to recognize, but we 
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hypothesize that integrin-mediated release of chemical cues from prey stimulate the 

vomeronasal system of snakes. Studies now in progress are aimed at determining the 

mechanism(s) by which disintegrins interact with prey tissues and facilitate relocation of 

envenomated prey by rattlesnakes.  

Methods 

Materials 

BioGel P-100 resin was obtained from BioRad, Inc. (San Diego, CA, USA). 

Matrix for MALDI-TOF-MS, enzyme substrates, buffer salts and all other reagents were 

analytical grade or better and were obtained from Sigma Chemical Co. (St. Louis, MO, 

USA). 

Experimental Animals 

Behavioral trials were performed as approved by the Institutional Animal Care 

and Use Committee of the University of Colorado at Boulder. Eight C. atrox, all adult 

long-term captive snakes, were fed bi-weekly on live or pre-killed mice (Mus musculus). 

Snakes were never fed on the day of trials, which occurred 7 to 10 days after the last 

feeding session, and all trials were randomized and separated by at least 14 days. Snakes 

were housed individually in glass aquaria (61.0 x 41.0 x 44.5 cm) containing a paper 

floor, water bowls and hide boxes. We maintained the snakes on a 12:12 L:D cycle and at 

26 ± 2°C. Inbred Swiss/Webster mice (Mus musculus) were culls from colonies 

maintained by the University of Colorado Department of Molecular, Cellular and 

Developmental Biology and were euthanized by CO2 asphyxiation and frozen at -20° 

until used in this study [17]. The magnitude of SICS towards natural rodent prey such as 

Peromyscus maniculatus (deer mice) does not differ compared to lab mice (M. musculus) 
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[44], and the strain of lab mice used also does not influence results. On testing days, 

similar size and sex mice were thawed and warmed by electrical heaters until skin 

temperature was 38 ± 1°C before injection and subsequent testing. 

Experiment 1 

Venoms were manually extracted, centrifuged to pellet insoluble material, frozen, 

lyophilized and stored at -20°C until used [41]. Lyophilized venom was reconstituted on 

the day of testing by dissolving 10 mg of crude venom in 100 µL of deionized water. 

During a test day, C. atrox were allowed to strike and envenomate prey carcasses 

suspended from long forceps to initiate strike-induced chemosensory searching [15]. 

Since rattlesnakes release prey after the strike, this envenomated mouse was removed 

from the snakes’ cages and discarded, and that mouse never touched the floor or walls of 

the cage. The test apparatus, a 4 x 10 cm metal base with two wire mesh baskets 

approximately 4.0 cm apart, containing both an envenomated mouse injected with 100 

µL of reconstituted venom and a non-envenomated mouse [17, 18], was placed into the 

snake’s cage. The 100 µL volume of reconstituted venom is comparable to the volume of 

venom injected during a predatory strike [14]. Two injections (each containing 50 µL) 

were made in the thoracic region, dorsal and ventral to the shoulder blade, in areas most 

commonly struck during predatory episodes [45]. The control (non-envenomated) mouse 

was injected in the same regions with 100 µL of deionized water. Trials (10-minute trial 

duration) started as soon as the test apparatus was placed in the cage, with observers 

counting tongue flicks directed within 1 cm of either the envenomated or the non-

envenomated mouse. All tongue flicking was recorded double blind to the condition; 

therefore, the observer was unaware of which mouse carcass was injected with the 
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control or venom sample, as well as which condition was being tested. Tongue flicking in 

snakes represents a stimulus-seeking behavior that is the main process for delivering 

volatile and non-volatile cues to the vomeronasal organs [11]. Since tongue flicking is 

activated by the detection of volatile cues by the nasal olfactory system, or visual, 

thermal or vibratory stimuli, measuring the rate of tongue flicking is an accurate and 

convenient assay of nasal as well as vomeronasal chemoreception in snakes [11, 46]. 

Cages and test apparatus were cleaned between trials. 

Experiment 2. Low-Pressure Size  
Exclusion Chromatography 
 

Lyophilized venom (250 mg, from the same venom pool used in Experiment 1) 

was dissolved in 1.0 mL HEPES buffer solution (10 mM, pH 6.8, with 60 mM NaCl and 

5 mM CaCl2) and briefly centrifuged at 9,000 rpm to pellet and remove insoluble 

material. This solution was then fractionated by size exclusion chromatography using a 

90 x 2.8 cm column of BioGel P-100 equilibrated with the same HEPES buffer. 

Fractionation occurred at a flow rate of 6.3 mL/hr at 4°C, and 30-minute fractions were 

collected. Elution of size-fractionated protein and peptide peaks was monitored at 280 

nm.  

Enzyme Assays of Fractionated  
Venom 
 

All BioGel fractions (10 µL/assay, in duplicate) were assayed for several enzymes 

common to most rattlesnake venoms [21], including exonuclease (phosphodiesterase), L-

amino acid oxidase, caseinolytic metalloproteinase, thrombin-like and kallikrein-like 

serine proteinases and phospholipase A2, as described previously [47]. 
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Behavior Trials Using Fractionated  
Venom  
 

Fractions of Peaks I to III were pooled separately, dialyzed in a 14 kDa cutoff 

membrane tubing (Peak I) or in a 3.5 kDa cutoff membrane tubing (Peaks IIa, IIb and III) 

against 2 x 2 liters of ddH2O, lyophilized and stored frozen at -20°C until use. Similar to 

Experiment 1, the experimental (“envenomated”) mouse was injected with one of the 

four fractionated protein peaks (1.25 mg protein in 100 µL, reconstituted in ddH2O) or 

the combined peptide peaks (1.5 mg in 100 µL), and a non-envenomated control was 

injected with 100 µL ddH2O. When testing with fractionated venom, the number of 

subjects was limited by the quantity of protein in each peak. To induce SICS, each snake 

struck a mouse suspended by forceps just prior to placement of the apparatus; again, this 

mouse was immediately removed and discarded, never having touched the floor or walls 

of the cage. Trials began when the test apparatus containing E and NE carcasses was 

placed into the cage, again with 10-minute trials.  

The mean number of tongue flicks directed towards the E and NE mouse 

carcasses for whole crude venom and each peak were compared using a two-sample t-test 

and Chi-square analysis (χ2). For all trials, the numbers of tongue flicks were converted to 

percentages (that is, percent tongue flicks emitted to E and NE mice) by dividing the 

number of tongue flicks aimed at the E carcass by the total number of tongue flicks for 

both carcasses. These data were analyzed by single sample t-tests in which mean percent 

tongue flicks directed toward envenomated mice were compared to 50%, the expected 

value under the null hypothesis. Rate of tongue flicking can be highly variable among 
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snakes, so converting rate of tongue flicking to percentages places all snakes on the same 

scale. In addition, to achieve homogeneity of variance among conditions, we used a Log10 

transformation to normalize data, which was analyzed by analyses of variance (ANOVA) 

followed by Newman-Keuls range test.  

Mass Determination by Mass  
Spectrometry  
 

Peak III from size exclusion (BioGel P-100 column) was desalted using C4 

ZipTips (Millipore Inc., Billerica, MA, USA) and analyzed using a Bruker Ultraflex 

MALDI-TOF mass spectrometer (Proteomics and Metabolomics Facility, Colorado State 

University, Fort Collins, CO, USA) operating in linear mode. Protein (approximately 0.5 

µg) was spotted onto a sinapinic acid matrix (10 mg/mL 50% acetonitrile, 0.1% 

trifluoroacetic acid; 1.0 µL) and spectra were acquired in the mass range of 3.0 to 25 

kDa. 

Purification by Reverse-phase High  
Performance Liquid  
Chromatography  
(RP-HPLC) 
 

Peak III was then further fractionated by reverse-phase high pressure liquid 

chromatography. Two hundred microliters (1.0 mg/mL) were injected onto a Grace 

Vydac Reverse Phase C18 (4.6 x 250 mm) column equilibrated with buffer A (0.1% 

Trifluoroacetic acid (TFA) in water). Absorbance was measured at 280 nm and proteins 

were eluted using a shallow gradient of 20% to 28% buffer B (80% acetonitrile in 0.1% 

TFA) over 50 minutes, with a flow rate of 1.0 ml/min. Peaks eluting at approximately 

23% buffer B (fraction 13 - major peak; fraction 14 - minor following peak) were 

collected, dried in a Savant speedvac (ThermoScientific, Rockford, IL, USA), and stored 
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at -20°C. Masses of proteins in fractions 13 and 14 were determined using a Bruker 

Ultraflex MALDI-TOF mass spectrometer (Bruker Corporation, Fremont, CA, USA) as 

above.  

N-terminal Sequencing of RP-HPLC  
Purified Proteins 
 

Samples of Peak III for sequencing were reduced with dithiothreitol and alkylated 

with iodoacetamide as described previously [48]. The first 30 resides of sequence were 

obtained using an ABI Procise sequencer (Life Technologies/Applied Biosystems, Grand 

Island, NY, USA), and sequence obtained was subjected to Basic Local Alignment 

Search Tool (BLAST) at the National Center for Biotechnology Information (Bethesda, 

MD, USA) [49]. 

Abbreviations 
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metalloproteinase; TFA, Trifluoroacetic acid; TTX, tetrodotoxin 
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Tables 
 
Table 4.1: Rattlesnakes Discriminate Between Non-envenomated and Envenomated 
mice. directed at non-envenomated (NE) and envenomated (E) mice by Crotalus atrox 
when mice were envenomated by whole crude venom. Single-sample t-test was 
conducted on mean percentages where mean percent to E mice were compared with 50%, 
the value expected under the null hypothesis; df = 6. Because the two means are not 
independent, the same t value but with the opposite sign would be obtained for each 
mean. For raw data, see Additional file 1, Table S1. ** P <0.01. 
 

Sample NE E t 

Venom (n = 7) 32 (8.45) 
29 

83 (15.9) 
71 (5.65) 

3.67** 
3.76** 

 
Table 4.2: Prey Discrimination is Associated with Non-enzymatic Fractions. Mean 
number of tongue flicks and mean percent (lower values) tongue flicks (s.e.m.) directed 
at non-envenomated (NE) and envenomated (E) mice by Crotalus atrox when mice were 
envenomated using BioGel Peaks I, IIa, IIb, III or combined peptide peaks. Single-
sample t-test was conducted on mean percentages in which mean percent tongue flicks to 
E mice were compared with 50%, the value expected under the null hypothesis. Because 
the two means within each paired comparison are not independent, the same t-value but 
with the opposite sign would be obtained for each mean. For raw data, see Additional file 
1, Table S1. ** P <0.01. 
 

Fraction NE E t df 
Peak I 67.4 (11.9) 

51 
68.7 (12.3) 
49 (5.3) 

0.09 
0.22 

16 

Peak IIa 72.9 (15.6) 
50 

59.0 (12.7) 
50 (7.0) 

0.70 
0.01 

10 

Peak IIb 73.3 (18.4) 
49 

69.2 (15.3) 
51 (4.3) 

0.22 
0.25 

9 

Peak III 25.3 (5.1) 
32 

53.6 (7.7) 
68 (3.2) 

 4.24**  
 5.78** 

10 

Small peptide peaks (combined) 33.0 (7.7) 
49 

52.7 (24.6)  
51 (11.7) 

0.79 
0.12 

8 
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Table 4.3. Supplemental Table: Raw data: Number of tongue flicks toward envenomated 
(E) or non-envenomated (NE) mice. 
 
Experiment 1 - Whole Venom 
 
Subject E mouse NE mouse       Proportion to Experimental       

 
1     46     50   .48    
3    119     33   .78 
4    129     71   .65 
5     86     16   .84 
6     17     13   .57 
7     66       9   .88 
8     119     35   .77 
 
Experiment 2 – Peak I  
 
Subject E mouse NE mouse       Proportion to Experimental       

 
1      32     61   .34    
2     138       1   .99    
3     129    175   .42    
5     107    138   .44    
6       59    115   .34    
7     204      89   .70    
1       53      69   .43    
6       41      20   .67      
1     56     48   .54    
3     40     20   .67    
2       0     11   .00 
8     96     72   .57    
8     37    114   .25    
1     66    108   .38    
1     24      45   .35    
8     53      27   .66    
8     33      33   .50  
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Experiment 2 – Peak IIa 
 
Subject E mouse NE mouse       Proportion to Experimental       

 
1     67     56   .54 
8     31    183   .14   
3     30     36   .45 
4     39     116   .25 
5     25      30   .45 
6     11       0   1.0 
7     63     126   .33 
3    122       63   .66 
3      69       86   .45 
1    148       64   .70 
3      45       42   .52  
 
Experiment 2 – Peak IIb 
 
Subject E mouse NE mouse       Proportion to Experimental       

 
1     47     51   .48 
5     32     32   .50 
7     38     21   .64 
8     56     28   .67 
1    189     71   .73 
3     22     17   .56 
2     64     92   .41 
1     98    124   .44 
8     91    204   .31 
3     55      93   .37 
     
Experiment 2 - Peak III 
 
Subject E mouse NE mouse       Proportion to Experimental       

 
1     89     20   .82 
2     40     18   .69 
3     51     51   .50 
4     67     52   .56 
5     37     11   .77 
6     105     48   .69 
7      14     12   .54 
8      48     13   .79 
3      33     20   .62 
1      51     27   .65 
9      55      7   .89 
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Experiment 2 – Peptide Peaks 
 
Subject E mouse NE mouse       Proportion to Experimental       

 
1     120      82   .59 
2      46      25   .65 
3      15       2   .88 
6      23      24   .49 
4       7      39   .15 
5       9      19   .32 
1      30      34   .47 
6    225      19   .92 
2      0      53   .00 
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Figures 

 
Figure 4.1: Discrimination of Envenomated Prey is not Dependent on Enzymatic Toxins. 
(A) Size exclusion fractionation of 250 mg crude C. atrox venom on a 90 x 2.8 cm 
BioGel P-100 column equilibrated with HEPES/NaCl/CaCl2 buffer. Fractionation 
occurred at a flow rate of 6.3 mL per hour at 4ºC, and eluting proteins/peptides were 
followed by absorbance at 280 nm. Enzyme activities common to rattlesnake venoms 
were assayed and are limited to the first two peaks. Arrow indicates the peak containing 
crotatroxins 1 and 2 (Peak III). (B) MALDI-TOF-MS analysis of peptides in BioGel size 
exclusion Peak III. Approximately 0.5 µg protein was spotted onto sinapinic acid matrix 
and analyzed using a mass window of 3 to 25 kD. Several peptides with masses typical of 
monomeric disintegrins (7,245 to 7,655 Da) were present, but no larger proteins were 
observed. 
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Figure 4.2: Peak III Consist of Only of 7 kDa Peptides. (A) Reversed-phase 
chromatography of Peak III from the gel filtration step (BioGel P-100). Two hundred 
microliters was injected onto a Vydac C18 (4.6 x 250 mm) column, and disintegrin peaks 
were eluted at 23% buffer B (13 to 14 minutes). (B) MALDI-TOF-MS analysis of 
crotatroxin 1 from the reverse-phase chromatography purification step (fraction 13). 
Mass of 7,440.35 was observed for crotatroxin 1. (C) MALDI-TOF-MS analysis of 
crotatroxin 2 from the reverse-phase chromatography purification step (fraction 14). 
Mass of 7,383.29 was observed for crotatroxin 2.  
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Figure 4.3: N-terminal Sequence of Peak III Peptides. N-terminal sequencing confirms 
identity with crotatroxins (CT) 1 and 2. Note that CTs 1 and 2 are identical in sequence 
except for the additional N-terminal alanine residue in CT1. Protein sequencing of the 
relocator peak showed lower yield (approximately 3 pmol, compared to approximately 
6.5 pmol for residues 2 to 6) and presence of an N-terminal alanine at residue 1, 
indicating that both CTs were present. No secondary sequence (indicative of potential 
contaminant proteins) was observed. 
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Figure 4.4: Reducing SDS-PAGE Analysis of Size Exclusion Chromatography Fractions. 
Ten micrograms of protein (reduced with DTT) from each size exclusion peak (BioGel 
P100) were loaded onto a 12% acrylamide NuPage gel. Following electrophoresis, the gel 
was fixed and stained with 0.1% Coomassie Brilliant Blue R250 using standard methods, 
destained and photographed. MW standards = Invitrogen Mark 12. Circled faint bands 
indicate carryover contamination of metalloproteinases (darkest bands) from lanes 2 and 
4, respectively. Note that lane 5 is the only peak containing disintegrin bands (dark pair, 
red bracket); peptides were not visualized and are smaller than the resolution capability 
of the gel. 
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Abstract 

Disintegrins are small non-enzymatic proteins common in the venoms of many 

viperid snakes. These proteins have received significant attention due to their ability to 

inhibit platelet aggregation and cell adhesion, making them model compounds in drug 

development and design investigations. The present study used a combination of 

molecular and proteomic techniques to screen the venom of the Middle American 

Rattlesnake (Crotalus simus tzabcan) for novel disintegrins. Six disintegrin isoforms 

were identified, and the most abundant, named tzabcanin, was further isolated and 

characterized. Tzabcanin consists of 71 amino acids, has a mass of 7105 Da (by MALDI-

TOF mass spectrometry) and contains the canonical RGD binding domain. Tzabcanin 

was not cytotoxic to MCF-7 cells but showed weak cytotoxicity to Colo-205 cells 

following a 24 hr incubation period. Tzabcanin inhibited cell adhesion of both cell lines 

to immobilized fibronectin and vitronectin, and cell adhesion to immobilized tzabcanin 

was inhibited when cells were incubated with a cation chelator (EDTA), indicating that 

integrin-tzabcanin binding is specific. This study provides a detailed analysis of the 

purification and characterization of tzabcanin and provides sequence and mass data for 

the multiple disintegrins present in the venom of C. s. tzabcan. 

Introduction 

Snake venoms are a complex mixture of proteins and peptides exhibiting an array 

of biochemical and pharmacological functions [1]. These bioactive molecules have 

allowed for a trophic transition from a mechanical (constriction) to a chemical (venom) 

means of subduing prey [2] via the dysregulation of many homeostatic mechanisms 

simultaneously. Because venoms consist of ‘usurped’ regulatory compounds, they have 
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also been subjected to detailed screenings in the search for novel compounds which may 

be utilized as biomedical tools and reagents [3–5]. Further, research into venomous 

systems provides unique insights of the biological roles of venom compounds [6–8] and 

increases the ability to devise effective clinical treatment of human envenomations 

[9,10].  

Venoms likely evolved from the modification and differential expression of 

endogenous proteins with normal physiological functions early in the evolution of 

advanced snakes [11–13]. The vast majority of venomous snakes belong to three 

families: the highly toxic Elapidae and Viperidae, and the diverse, but generally less 

toxic, polyphyletic clade “Colubridae” [1,14,15]. Proteomic analyses of species within 

the family Viperidae demonstrate that venoms may contain up to 100 different 

compounds (including various isoforms), yet the majority can classified into a small 

number of protein families which dominate overall venom protein composition [1,16]. 

While snake venom metalloproteinases (SVMPs), serine proteinases, phospholipases A2 

and myotoxins account for the majority of proteins in most rattlesnake venoms, 

technological advances in proteomic [17] and transcriptomic [18–20] methodologies have 

allowed for the identification of less abundant and lesser known venom compounds, such 

as ohanin-like toxins, phospholipase B, and glutaminyl cyclase, in several viperid venoms 

[e.g. 21–23].  

Disintegrins are common constituents of viperid venoms and are small (4-16 kDa) 

non-enzymatic, cysteine-rich proteins that result from a post-translational cleavage of the 

P-II class of SVMPs [24]. From a predation perspective, disintegrins may aid in the 

circulation of other venom compounds throughout prey by binding integrins αIIbβ3 and 
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inhibiting platelet aggregation [25,26]. We have recently shown that disintegrins also 

have an important functional role during envenomation, facilitating prey relocation by 

altering chemical cues emanating from envenomated prey and allowing for prey recovery 

via strike-induced chemosensory searching [8].  Structurally, disintegrins are classified 

based on their polypeptide length and number of disulfide bonds [27]. Short disintegrins 

consist of 41 to 51 amino acid residues and 4 disulfide bonds, whereas medium 

disintegrins are approximately 70 amino acids and have 6 disulfide bonds. The vast 

majority of disintegrins that have been characterized and studied belong to this medium 

size class. The third group, long disintegrins, is composed of 84 amino acids and 7 

disulfide bonds. The fourth group, which consists of the homo- and heterodimeric 

disintegrins, has subunits of approximately 67 amino acids, including 10 cysteines which 

are involved in 4 intra-chain disulfide bonds and 2 interchain cysteine linkages [27,28].  

Despite the fact that disintegrins are relatively conserved, significant differences 

are seen with respect to their binding affinity towards integrin receptors. These 

disintegrin-integrin interactions are primarily mediated by the disulfide-defined integrin-

binding loop containing an RGD, KGD, MVD, MLD, MGD, WGD, or VGD sequence 

[27,29,30]. Although the amino acid residues adjacent to this binding motif also influence 

binding affinity [31], it has been suggested that the conserved aspartate residue in the 

tripeptide binding site is responsible for binding to the specific β integrin subunit, 

whereas the first two residues determine the affinity to the specific α integrin subunit 

[32]. The majority of characterized disintegrins contain an Arg-Gly-Asp (RGD) sequence 

which has been shown to block integrin αIIbβ3 on platelet membranes, in addition to 

integrins α5β1, α8β1, αvβ1 and αvβ3 (among others) which are expressed on many cell 



  83 

 

membranes [33]. These disintegrin-integrin interactions have been shown to disrupt 

adhesion between cells and various ECM and plasma proteins such as fibronectin 

vitronectin, fibrinogen, laminin, and certain collagen [34 –37] 

The use of venom compounds as potential therapeutics has long been an area of 

interest among venom researchers. Disintegrins in particular have been explored for 

biomedical applications due to their potent integrin blocking activity. In fact, two anti-

platelet drugs currently on the market, tirofiban (aggrastat), and integrilin (eptifibatide), 

were both designed based on the structures of the venom disintegrins echistatin [38] and 

barbourin [31], respectively. Further, disintegrins have received significant attention for 

their anti-metastatic and anti-angiogenic properties [34–36,39–43] demonstrating their 

potential applications as an anti-cancer therapeutic. Contortrostatin, a homodimeric RGD 

disintegrin purified from the venom of Agkistrodon contortrix contortrix [34,35,39], and 

several monomeric RGD-containing disintegrins, such as colombistatin [36], have been 

shown to significantly inhibit experimental metastasis and cellular adhesion to specific 

ECM proteins. The pharmacological potential of these compounds provides a strong 

motivation to examine snake venoms for novel disintegrins that may have application in 

biomedical research and drug discovery efforts.  

The current study was aimed at screening the venom of the Middle American 

Rattlesnake (Crotalus simus tzabcan) for novel disintegrins by a combination of cDNA 

analysis of transcripts and multistep liquid chromatography and mass spectrometry-based 

analysis of venom proteins. We isolated and characterized the most abundant disintegrin 

present in C. s. tzabcan venom and examined its cytotoxicity and ability to inhibit cell 
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adhesion of human colon adenocarcinoma (Colo-205) and breast adenocarcinoma (MCF-

7) cell lines. 

Materials and Methods 

Snakes, Venoms and  
Biochemicals 
 

Two adult Crotalus simus tzabcan were housed individually at the University of 

Northern Colorado Animal Resource Facility (UNC-IACUC protocol #0901C-SM-ML). 

Venom was extracted as previously described [44], pooled, and samples were centrifuged 

(1000 rpm for 5 min), lyophilized and stored at -20 °C until use. Matrigel (356234) was 

purchased from BD Biosciences (Franklin Lakes, NJ, USA). Fibronectin (F0895), 

vitronectin (V8379), and all additional buffers and reagents (analytical grade or better) 

were purchased from Sigma-Aldrich, Inc. (St. Louis, MO, USA). Protein gels, mass 

standards and electrophoretic reagents were obtained from Invitrogen-Life Technologies 

(Grand Island, NY, USA). 

Size Exclusion Liquid  
Chromatography 
(SE-LC) 
 

Two-hundred and fifty milligrams of lyophilized venom were dissolved in 3.0 mL 

HEPES buffer solution (10 mM, pH 6.8, with 60 mM NaCl and 5 mM CaCl2) and 

centrifuged at 3000 rpm for 5 min to pellet and remove insoluble material. This solution 

was then fractionated by low pressure size exclusion chromatography using a 90 x 2.6 cm 

column of BioGel P-100 medium (BioRad Inc., Hercules, CA, USA) equilibrated with 

the same HEPES buffer. Fractionation occurred at a flow rate of 6.0 mL/hr at 4 °C, and 

30 min fractions were collected. Elution of size-fractionated protein and peptide peaks 

was monitored at 280 nm using a Beckman DU640 spectrophotometer.  
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Reverse Phase High Performance 
Liquid Chromatography 
(RP-HPLC) 
 

Using two additional RP-HPLC methods, peak 6 from SE chromatography was 

further purified using a Phenomenex Jupiter C18 (250 x 4.6 mm, 5 µm) column on a 

Waters HPLC system using Empower software. The Cl8 column was equilibrated with 

95% of 0.1% TFA in water (solvent A) and 5% of 80% acetonitrile in 0.1% TFA in water 

(solution B) and elution was achieved as follows: 95% solvent A and 5% solvent B for 10 

minutes; linear gradient to 85% A and 15% B over 1 minute; linear gradient to 60% A 

and 40% B over 65 minutes; linear gradient to 100% B over 2 minutes; isocratic at 100% 

B for 5 minutes; linear gradient to 95% A and 5% B over 2 minutes.  The peak containing 

tzabcanin (RP-HPLC peak 2) was further purified using the same C18 column and a 

shallower gradient.  Elution was achieved as follows: 95% A and 5% B, with a linear 

gradient to 79% A and 21% B over 10 minutes; linear gradient to 75% A and 25% B over 

40 minutes; linear gradient to 100% B over 2 minutes; isocratic at 100% B for 5 minutes; 

linear gradient to 100% A over 2 minutes; isocratic at 100% A for 5 min.  Fractions were 

collected using a Waters Fraction Collector II at a flow rate of 1.0 ml/min, and protein 

peaks were monitored at 220 and 280 nm using a Waters 2487 Dual Absorbance 

Detector. Fractions were collected, lyophilized, and stored at -20 °C until further use. 

One-dimensional SDS-PAGE 
Electrophoresis 
 

Crude C. s. tzabcan venom and SE-LC and RP-HPLC fractions were assessed for 

the number and relative molecular masses of protein components by SDS-PAGE under 

reducing (DTT) conditions using NuPAGE 12% Bis-Tris gels and MES running buffer 
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(electrophoresed for approx. 45 min) as described previously [8]. Twenty-four µg of 

crude venom or 3 µL SE-LC aliquots were added to each lane, and Mark 12 standards 

were used for mass estimation.  For RP-HPLC fractions, 3 µg of lyophilized protein were 

resuspended in 1X reducing LDS buffer, placed into lanes on a NuPage 12% Bis-Tris gel 

and electrophoresed as above. Gels were stained with Coomassie Brilliant Blue 

overnight, destained and scanned with an HP Scanjet 4570C. 

Mass Analysis (MALDI-TOF-MS) 
And N-terminal Sequencing 
 

Mass determinations of lyophilized protein samples obtained by RP-HPLC were 

analyzed using a Bruker Ultraflex MALDI-TOF/TOF mass spectrometer (Proteomics and 

Metabolomics Facility, Colorado State University, Fort Collins, CO) operating in linear 

mode. Protein samples (~0.5 µg) were spotted onto a sinapinic acid matrix (10 mg/mL 

50% acetonitrile, 0.1% trifluoroacetic acid; 1.0 µL) and spectra were acquired in the mass 

range of 3.0-25 kDa. For N-terminal sequencing, approximately 50 µg of purified 

tzabcanin was reduced with dithiothreitol and alkylated with iodoacetamide as previously 

described [45]. Clean up and isolation of the reduced and alkylated product was 

accomplished by RP-HPLC using a Vydak C18 column as above, with a flow rate of 1.0 

mL/min and a gradient (1%/min) of 5-50% ACN. Protein fractions were collected and 

dried via a Speed Vac and N-terminal sequencing (Edman degradation) was performed 

on an ABI Procise 494 protein sequencer (Protein Structure Core Facility, University of 

Nebraska Medical Center, Omaha, NE) to obtain the first 30 amino acid residues. The 

sequence obtained was subjected to Basic Local Alignment Search Tool (BLAST) at the 

National Center for Biotechnology Information (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 
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RNA Isolation, cDNA Synthesis, 
And 3’ RACE 
 

RNA isolation, cDNA synthesis, and 3′ RACE of the C. s. tzabcan disintegrins 

was accomplished following methods of Modahl et al., 2015 (in review). Briefly, RNA 

was purified from approximately 6 mg of lyophilized venom resuspended in 1 mL of 

TRIzol (Life Technologies, CA, USA) following the manufacturer’s recommended RNA 

protocol, with the addition of a 4 °C overnight incubation in 300 µL ethanol containing 

40 µL 3 M sodium acetate to increase RNA yields. cDNA synthesis from total RNA was 

accomplished using the 3′ RACE System (Life Technologies, CA, USA) following the 

manufacturer’s protocols. The oligo(dT) adaptor primer (provided with the kit) initiates 

reverse transcriptase cDNA synthesis at the poly(A) region of mRNA and effectively 

selects for polyadenylated mRNAs from the total RNA preparation. Two sets of 3′ RACE 

sense primers were designed to obtain C. s. tzabcan disintegrin sequences. The first sense 

primer (5′-GGAGAAGARTGTGACTGTGGC-3′) was designed from the tzabcanin N-

terminal sequence, and the second sense primer (5′-

GAGGTGGGAGAAGAWTGYGACTG-3′) was modified from a previous primer [46] 

by the addition of degenerate base pairs, determined from multiple sequence alignments 

of a diversity of disintegrins from the NCBI database, including multiple C. 

adamanteus, C. viridis viridis, Agkistrodon piscivorus, Bothrops neuwiedi, Echis 

pyramidum, Echis coloratus and E. carinatus metalloproteinase PII sequences. Each 

sense primer was used in a reaction with the 3′ RACE system AUAP antisense primer 5′-

GGCCACGCGTCGACTAGTAC-3′. Twenty-three µL of PCR SuperMix High Fidelity 

polymerase (Life Technologies, CA, USA) was used with 1 µL of cDNA template and 

0.5 µL of each primer (sense and antisense). PCR was done with seven touchdown cycles 
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of 94 °C for 25 seconds, 52 °C for 30 seconds, and 68 °C for two minutes. Thirty 

additional cycles followed at 94 °C for 25 seconds, 48 °C for 30 seconds, and 68 °C for 

two minutes with a final 68 °C extension for five minutes. The amplified products were 

electrophoresed on a 1% agarose gel, and bands of the estimated disintegrin size were 

removed and purified using the Wizard SV gel and PCR clean-up system (Promega, 

USA). 

Cloning and Sequencing of 
Disintegrins  
 

Amplified cDNA was ligated into the pGEM-T Easy Vector System (Promega, 

Inc.) and transformed into Escherichia coli DH5 α competent cells and grown on 

nutrient-rich agar plates overnight at 37°C. Recombinant plasmids were selected from 

agar plates, ten E. coli colonies were picked from each PCR and placed into 2 mL LB 

broth treated with 1 µL/mL ampicillin, and shaken overnight at 37°C. Plasmids of each E. 

coli colony were than purified using the Quick Clean 5M Miniprep Kit (GenScript, Inc) 

and sent for sequencing at the DNASU facility (Arizona State University, AZ, USA) 

using Big Dye V3.1 chemistry with samples processed on an Applied Biosystems 

3730XL Sequence Analysis Instrument. 

 Cell Lines and Culture Conditions 

Cancer cells, growth media, fetal bovine serum (FBS) and cell viability assay kits 

were purchased from American Type Cell Culture (ATCC; Manassas, VA, USA).  

Human colorectal adenocarcinoma cells (Colo-205; ATCC CCL-222) were maintained 

with ATCC-formulated RPMI-1640 medium supplemented with 10% FBS, and human 

breast adenocarcinoma cells (MCF-7; ATCC HTB-22) were maintained with Eagle’s 

Minimum Essential Medium (EMEM) growth medium supplemented with 10% FBS and 
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10 µg/mL human recombinant insulin. Both cell lines were maintained in 75 cm2 flasks 

as a monolayer culture in a humidified 5% CO2 air incubator at 37 °C. Subcultivation of 

cells was performed according to ATCC instruction, using trypsin-EDTA (0.05% trypsin 

and 0.02% EDTA). 

Cytotoxicity Assays 

To examine the possible cytotoxicity of tzabcanin, as well as crude C s. tzabcan 

venom, the colorimetric MTT [3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-

teyrazolium bromide] assay was performed [47; see also 48]. One hundred µL aliquots of 

Colo-205 and MCF-7 cells, at a density of 5.0 x 105 cells/ml with complete media, were 

plated in 96-well cell culture plates and incubated with various concentrations of 

tzabcanin (0.22–14 µM), crude C. s. tzabcan venom  (20 µg), or 10 µL of 0.01 M 

phosphate buffered saline (PBS, pH 7.2, as a control) at 37 °C for 24 hr.  After 24 hr, 10 

µL of MTT was added to the treated cells and plates were returned to 37 °C for 2 hr.  

Following incubation, 100 µL of Detergent Reagent (ATCC) were added to cells, which 

were then incubated at room temperature overnight in the dark. The plate was gently 

shaken and the absorbance read at 570 nm using a SpectraMax 190 plate reader. Assays 

at each tzabcanin concentration were performed in triplicate and each assay was repeated 

at least twice. Percent cell viability was calculated by the following formula: 

[(absorbance of treatment cells) - (absorbance of medium blank)/(absorbance of control 

cells) - (absorbance of medium blank)] x 100, and all values are reported as mean ± 

standard error of the mean. 
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Cell Adhesion Inhibition 
Assays 
 

Inhibition of Colo-205 and MCF-7 cell binding to the extracellular matrix 

proteins fibronectin and vitronectin, and the basement membrane matrix Matrigel was 

measured as previously described [49]. Triplicate wells of Immulon-II 96 well microtiter 

plates were coated with either 100 µl of fibronectin (0.5 µg per well), vitronectin (0.3 µg 

per well), or Matrigel (0.5 µg per well) dissolved in 0.01M PBS, pH 7.2, and allowed to 

incubate overnight at 4 °C. Fluid was then removed and unbound proteins were removed 

by washing wells three times with 1% bovine serum albumin (BSA) in PBS, and 

unbound sites were blocked with 2.5% BSA in PBS (1 hr incubation at 37 °C). Both 

Colo-205 and MCF-7 cells were harvested as mentioned above and resuspended in 

serum-free medium containing 1% BSA at concentrations of 5 x 105 cells/mL. Cells were 

treated with various concentrations of tzabcanin (0.22-14 µM) and allowed to incubate at 

37 °C for 1 hr immediately prior to seeding. The blocking solution was aspirated, wells 

were washed 2X with 100 µL 1% BSA in PBS, and 100 µL cells were seeded in the 

coated microtiter plate wells. Following a 1 hr incubation at 37°C, unbound cells were 

removed by gentle washing (3X) with 1% BSA in PBS, and then 100 µL of serum-free 

medium containing MTT (5:1, vol/vol) and 1% BSA was added to the wells. Following 

incubation at 37°C for 2 hr, 100 µL of Detergent Reagent was added to the wells and 

cells were incubated overnight in the dark at room temperature. The plate was gently 

shaken and the absorbance read as above. The percent inhibition was calculated by 

[(absorbance of control-absorbance of treatment)/absorbance of control] x 100.  Assays at 

each tzabcanin concentration for all cell lines were performed in triplicate and each assay 

was repeated at least three times to confirm results. 
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Inhibitions of Cell Binding to 
Immobilized Tzabcanin 
 

Because integrin binding interactions are dependent on divalent cations [50,51], 

cells were incubated with varying concentrations of a cation chelator (disodium EDTA) 

to examine if tzabcanin binding occurs specifically via integrin receptors. Purified 

tzabcanin (20 µg/mL) was resuspended in PBS and 100 µL aliquots were add to 

Immulon-II 96 well microtiter plates and incubated overnight at 4°C. Following 

overnight incubation, wells were washed and blocked as described above. Further, both 

Colo-205 and MCF-7 cells were treated as mentioned above except before addition to the 

disintegrin treated wells, cells were incubated for 60 min at 37°C with serum-free 

medium containing 1% BSA and various concentrations of EDTA. Cells were then added 

to the disintegrin treated wells and the adhesion assay was performed as described above. 

All assays were completed in triplicate and replicated at least 3 times. 

Molecular Modeling 

Three dimensional structure of tzabcanin was modeled from the primary structure 

using the I-TASSER server (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) as 

described previously [7]. A viperid venom disintegrin with known solution structure was 

identified by I-TASSER as an appropriate template model (salmosin: Protein Database 

accession number 1L3X A). Figures were created using Discovery Studio Visualizer 

v3.1.1.11157 (Accelerys Software Inc., San Diego, CA).  

Statistical Analyses 

Data were analyzed by Analysis of Variance (ANOVA) followed by Tukey’s 

post-hoc test using R version 2.15.2. All p values <0.05 were considered as statistically 

significant. 
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Results 

Isolation and Masses of C. s. 
Tzabcan disintegrins and 
N-terminal Sequencing  
of Tzabcanin 
 

Following SE chromatography, 9 major peaks were collected (Fig. 5.1) which 

were assessed by reduced SDS-PAGE (Fig. 5.1 inset) to identify proteins in the ~7kDa 

range, as this is the general mass of monomeric disintegrins [28,36,37,40]. Peak 6 yielded 

one protein band in this mass range (Fig. 5.1 inset), and was further fractionated by RP-

HPLC chromatography, yielding 5 additional protein fractions that eluted between 22 and 

28% solution B (Fig. 5.2a). Following reducing SDS-PAGE, all five fractions showed 

masses of approximately 7 kDa (Fig. 5.2b). The spectra obtained by MALDI-TOF 

indicate the presence of six disintegrin isoforms in C. s. tzabcan venom (Fig. 5.2C). The 

most prominent of these disintegrins (RP-HPLC Peak 2) was further purified by an 

additional RP-HPLC step (Fig. 5.3a), yielding one protein peak eluting at approximately 

23% solvent B. This protein, with molecular mass of 7105.0 Da (Fig. 5.3b), was named 

tzabcanin. It was subjected to Edman degradation N-terminal sequencing, yielding the 

sequence GEECDCGSPANPCCDAATCKLRPGAQCADGLCCD and was assessed for 

cytotoxicity and inhibition of Colo-205 and MCF-7 cell adhesion to fibronectin, 

vitronectin and Matrigel. 

cDNA Sequencing Analysis  

Six cDNA sequences were obtained, ranging from 210 to 222 bp in length and 

coding for six protein isoforms varying from 69 to 73 amino acids (Fig. 5.4). NCBI 

protein BLAST analyses indicated that all amino acid sequences obtained belong to the 

disintegrin family. Five of the six sequences contain twelve cysteine residues, 
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characteristic of medium sized disintegrins [28]; tzbdis-4 contains only 11 cysteine 

residues. All six sequences also express the canonical RGD binding motif.  Fig. 5.5 

shows the alignment of the amino acid sequences from the six disintegrins and the N-

terminal sequence in comparison with sequences of disintegrins purified from other 

viperid venoms. Tzabcanin, the most abundant of the six disintegrin isoforms, contains 

71 amino acids, begins with a Gly, ends with an Ala, and shares 97% sequence identity to 

the disintegrin basilicin [P31981]. 

Cytotoxicity 
 

Crude C. s. tzabcan venom (20 µg/100 µL) exhibited potent cytotoxicity towards 

both Colo-205 and MCF-7 cell lines, with approximately 35 and 26% cell viability, 

respectively, remaining after 24 hr incubation (both p< 0.001; Fig. 5.6). However, 

tzabcanin caused only a slight decrease in Colo-205 cell viability at concentrations of 

1.75 µM and 3.5 µM (both p<0.05) and at 14 µM (p<0.01); 7 µM tzabcanin also resulted 

in a decrease in cell survival, but this treatment level failed to reach significance 

(p>0.05). Tzabcanin failed to exhibit significant cytotoxicity towards MCF-7 cells 

(p>0.05). 

Inhibition of Cell Adhesion In vitro 

Fibronectin and vitronectin support adhesion to Colo-205 and MCF-7 cells. 

Results indicate that tzabcanin inhibits adhesion of both cell lines to fibronectin and 

vitronectin in a dose-dependent manner (Figs. 5.7a & b). The greatest inhibition was 

observed for MCF-7 cells binding to fibronectin (81% binding inhibition at 14 µM; IC50 

= 6.9 µM), and although adhesion of Colo-205 cells to fibronectin was hindered, the IC50 

was twice as high (14 µM).  Similarly, tzabcanin inhibited adhesion of both cell lines to 
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vitronectin (Fig. 5.7B); the highest binding inhibition was observed with Colo-205 cells 

(62% binding inhibition at 3.5 µM; IC50 = 6.6 µM), but inhibition of MCF-7 cell 

adhesion failed to reach 50% (44% binding inhibition at 14 µM). Matrigel supported 

adhesion in both cell lines, but tzabcanin failed to inhibit adhesion (data not shown). 

Tzabcanin Binds to Colo-205 and 
MCF-7 Cells via Integrins(s) 
 

Binding of both Colo-205 cells and MCF-7 cells to immobilized tzabcanin was 

inhibited when cells were incubated with varying concentrations of EDTA (Fig. 5.8). 

Approximately 95% inhibition of MCF-7 cell binding to immobilized tzabcanin was 

achieved at 5 mM EDTA (IC50 = 2.01 mM), and 55% binding inhibition of Colo-205 

cells to tzabcanin was achieved at 5 mM EDTA. These results suggest that tzabcanin 

binds to both of these cell lines via integrin receptors.  

Molecular Modeling of Tzabcanin 

 Like other medium disintegrins, tzabcanin adopts a semi-globular configuration, 

and the RGD integrin-binding domain is presented on the surface of the molecule (Fig. 

5.9). The accessibility of this integrin-binding loop is believed to be critical to the binding 

efficiencies of disintegrins; in addition, a similar integrin-binding motif is found in the 

disintegrin-like domain of many P-III SVMPs [52] and is also likely functionally very 

important [53]. 

Discussion 

Due to their potential as lead compounds for binding and blocking integrin 

receptors, disintegrins have become one of the most studied venom protein families to 

date. In the current study, a combination of molecular and proteomic techniques were 

utilized to screen the venom of C. s. tzabcan for potentially novel disintegrins. In addition 
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to disintegrins, SDS-PAGE of crude C. s. tzabcan venom and SE fractions showed 

masses indicative of venom compounds such as LAAOs, SVMPs, serine proteases and 

PLA2s, which were confined to SE-HPLC peaks 1-5; these venom proteins were also 

observed in a recent proteomic analysis of C. s. tzabcan venom [54]. These enzymes have 

also been documented in the venom proteome of the closely related C. simus [55] and C. 

simus simus [56], and they are common to the venoms of numerous other Crotalus 

species [1]. SE peak 6 yielded one protein mass of approximately 8 kDa by SDS-PAGE 

and was subjected to an additional RP-HPLC step, yielding 5 additional protein peaks, 

each exhibiting molecular masses in the range of monomeric disintegrins as determined 

by both SDS-PAGE and MALDI-TOF mass spectrometry. When combined with cDNA 

analyses, results suggest the presence of numerous disintegrin isoforms with masses 

ranging from 7105 to 7637 Da, and 69 to 73 amino acids in length. The molecular 

masses, cysteine pattern, and polypeptide length places these disintegrins in the medium-

size classification as described by Calvete et al. [27,28]. Further, although MALDI-TOF 

mass analysis indicates the presence of six isoforms which correlate with the six cDNA 

sequences, caution must be taken with attempting to assign the RP-HPLC peaks to the 

specific translated amino acid sequences reported here without further independent amino 

acid sequence data. Only RP-HPLC peak two, the most abundant of the disintegrins 

present, was further characterized by N-terminal sequencing and correctly assigned to the 

complete amino acid sequence obtained from cDNA sequences.   

Disintegrin functionality is primarily due to interactions between the tripeptide 

binding loop, often containing an RGD sequence, and the specific integrin receptor. 

Molecular modeling demonstrates that this motif in tzabcanin is accessible to the solvent 



  96 

 

and is therefore available for ligand binding, as expected among disintegrins which are 

proteolytically processed from P-II SVMPs. In P-III SVMPs, which express a disintegrin-

like domain, it has been suggested that the distinct disulfide bond arrangement near the 

integrin-binding motif may lead to a very different functionality [52,57]. Further, 

although the P-III SVMP BjussuMP-I exhibits an RGD sequence in the disintegrin-like 

domain [58], the majority of P-III SVMPs express an XCD sequence [57], likely 

contributing to different integrin-binding affinities. For example, the disintegrin-like 

domain of alternagin-C contains an ECD binding motif and exhibited potent activity 

against integrin α2β1, yet failed to show activity towards integrins αIIbβ3, α1β1, α5β1, α4β1, 

α9β1, or αVβ3 [59]. Likewise, it has been suggested that in P-II SVMPs that fail to release 

the disintegrin domain, the presence of the metalloproteinase domain may sterically alter 

the accessibility of the RGD motif, lowering integrin-binding activity [57]. Binding 

specificity and affinity is also influenced by the amino acid residues flanking this 

tripeptide sequence, as well as characteristics of the C-terminal region of the protein 

[28,60]. Of the six disintegrins reported here, four contain an RGDW binding motif, and 

two, including tzabcanin, contain an RGDN binding region. One of these disintegrins, 

tzbdis-1, contains a Glu29 in the N-terminal region of the protein, whereas the other five 

disintegrins contain an Asp at this position. The presence of this Glu, in addition to a Lys 

at position 43 in tzbdis-1, are the only dissimilarities between this disintegrin and 

tzabcanin, both of which contain an RGDN binding domain and identical C-terminal 

sequences. However, these two amino acid differences in the N-terminal region of the 

protein likely do not influence activity of the disintegrins. Tzbdis-4, on the other hand, 

contains an additional N-terminal Glu at position 1, Val at position 2, an Arg at position 
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26, and completely lacks Cys27 which, when present, forms a disulfide bond with Cys58 

located in the C-terminal region of the disintegrin. As integrin inhibitory activity is 

dependent on the appropriate pairing of cysteine residues [61], the deletion of this 

disulfide bond likely abolishes inhibitory activity of this specific disintegrin [62].  

Differences in the C-termini regions are apparent when comparing RGDW to 

RGDN disintegrins. All RGDW disintegrins (tzbdis-3-6) reported here contain an Asn at 

position 53, Thr at position 58, and the sequence GLYG at the C-terminal end of the 

protein. Further, tzbdis-6 contains an Arg at position 62, whereas all other C. s. tzabcan 

disintegrins contain a Gln at this position. In contrast, the two RGDN disintegrins, tzbdis-

1 and tzabcanin, contain a Pro at position 53, Arg at position 58, and end with the 

sequence HFHA. Combined with the substitution of a Trp with Asn at a position carboxyl 

to the RGD sequence, these additional differences in the C-terminal regions may 

significantly influence disintegrin activities. Disintegrins expressing RGDW domains 

often show high affinity to αIIbβ3 integrins, whereas RGDN show higher selectivity 

towards both α5β1 and αvβ3 integrins [31,32,60].  

Tzabcanin has a mass of 7105 Da and shares high amino acid identity with 

basilicin from C. basiliscus venom. Basilicin has an additional alanine at the N-terminus, 

a Glu at position 29 and Lys at position 43, whereas tzabcanin contains an Asp and Thr at 

these positions, respectively. Both disintegrins also have identical RGDN and C-terminal 

sequences. Yet even with identical binding regions, structural discrepancies in the C-

terminal region can alter biological activity. Differences in ADP-induced platelet 

aggregation have been documented between colombistatin and cotiarin, both RGDN 

disintegrins that differ only by the presence of a Tyr72 in colombistatin, whereas cotiarin 
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exhibits His72 [36]. Of the RGDW disintegrins present here, it is hypothesized that 

tzbdis-3 and 5, due to their identical RGDW and C-terminal regions, may exhibit very 

similar, if not identical, biological activity, yet may be somewhat different from tzbdis-6. 

Likewise, due to the identical RGDN and C-termini regions, both tzbdis-1 and tzabcanin 

likely exhibit very similar biological activity.  

Although crude C. s. tzabcan venom was highly toxic to both Colo-205 or MCF-7 

cell lines, purified tzabcanin showed very low levels of cytotoxicity to Colo-205 cells and 

failed to exhibit cytotoxicity at concentrations as high as 14 µM following 24 hr 

treatment of MCF-7 cells. Disintegrin-induced apoptosis in HUVEC cells has been 

documented with rhodostomin [63] as well as with accutin [64]; however, the ability of 

disintegrins to induce apoptosis varies between cancer cell lines. Lucena et al. [42] found 

that the recombinant RGDN disintegrin, r-viridistatin, failed to induce apoptosis in SK-12 

melanoma cells, and the disintegrin rhodostomin did not induce apoptosis of MDA-MB-

231 cells [65].  Similarly, the homodimeric disintegrin contortrostatin was found to lack 

cytotoxicity toward MDA-MB-435 cells in vitro [35]. However, recently Lucena et al. 

[43] showed that recombinant disintegrins r-virdistatin 2 and r-mojastin 1 induced 

apoptosis in approximately 20% of human pancreatic adenocarcinoma (BXPC-3) cells. 

Therefore, the slight decrease in Colo-205 cell viability in the presence of high 

concentrations of tzabcanin could be due to induction of apoptosis, or a loss of membrane 

integrity, ultimately leading to antiproliferative effects. On the other hand, the potent 

toxicity of crude venom towards both cell lines is likely due to the presence of LAAOs, 

SVMPs, and PLA2s, which are abundant in C. s. tzabcan venom and have been shown to 

exhibit a combination of cytotoxic and apoptotic activities [66–68]. Similarly, Bradshaw 



  99 

 

et al. [48] also showed that the venom of C. s. tzabcan venom was significantly cytotoxic 

to both MCF-7 and human melanoma (A-375) cell lines. 

Integrins are critical to cell attachment, migration and invasion, and their 

significance in cancer progression is being examined extensively [69,70]. Integrin 

engagement to ECM proteins induces cell proliferation and may prevent apoptosis in 

some cancers, demonstrating the significance of cell adhesion in tumor progression and 

survival. αv integrins, in addition to α5β1, α8β1, and αIIbβ3, mediate cell adhesion to 

various ECM proteins, often by recognition of the tri-peptide RGD binding motif [71]. 

These integrin-ligand interactions are dependent on divalent cations, especially Mn2+and 

Mg2+, to support ligand binding [50]. Ca2+, on the other hand, fails to support binding, yet 

it greatly regulates ligand adhesion supported by Mn2+and Mg2+ [50]. The inhibition of 

both Colo-205 and MCF-7 cell binding to immobilized tzabcanin in the presence of a 

cation chelator (EDTA) indicates that tzabcanin-integrin binding was occurring, likely 

through the presence of the RGD domain. The low binding inhibition seen in Colo-205 

cells (~55% binding inhibition at 5 mM EDTA) compared to MCF-7 cells suggests that 

tzabcanin binding is occurring in this cell line through a higher number of integrins, 

requiring a higher concentration of EDTA to produce inhibition. Although tzabcanin 

binds to both Colo-205 and MCF-7 cells, tzabcanin-induced binding inhibition of these 

cell lines to fibronectin and vitronectin is not as potent as has been reported for some 

other disintegrins. Differential potency may be cell line dependent; for example, 

colombistatin had a potent inhibitory effect (IC50 = 33 nM) on SK-Mel-28 cell adhesion 

to fibronectin, yet much higher concentrations (IC50 = 4.4 µM) of this disintegrin were 

needed to inhibit T24 cells from binding to fibronectin [36]. A recombinant form of 



  100 

 

viridistatin-2 also showed varying binding inhibition of numerous cell lines to 

fibronectin, with IC50 values ranging from 11 to 4450 nM [42]. Further, although 

inhibition of cell adhesion was not as potent as other disintegrins, tzabcanin may exhibit 

additional anti-metastatic properties by binding different integrin receptors. For example, 

crotatroxin 2 failed to inhibit 66.3p cell adhesion to fibronectin, yet it significantly 

inhibited cell migration in vitro and lung tumor colonization in vivo [40]. 

Colo-205 and MCF-7 cells express integrins α5β1, αvβ5 and αvβ6, as well as several 

other α/β subunits [72–75]; however, the expression of these integrins and specific 

subunits may drastically vary. For instance, Colo-205 cells show low levels of α5, but 

moderate levels of αv, α1, and α3, and high levels of α2, α6 and β1 subunits [72], each 

displaying specificity to one or several discrete ligands. Fibronectin is recognized by an 

array of integrins including α5β1 and αvβ6, which were first characterized for their ability 

to bind to this ECM protein [76–78]. Integrins αvβ3, αvβ5, α3β1 α4β1 and α8β1 are additional 

receptors of fibronectin [79]. Fibronectin-integrin interactions contribute to numerous 

stages of tumor development, including tumor migration, invasion and metastasis [80]. 

αvβ5 has classically been known as a vitronectin receptor [81,82] however, integrin αvβ6 

has also been shown to adhere to vitronectin [83]. Therefore, Colo-205 and MCF-7 cells 

express an array of integrins that show recognition to both fibronectin and vitronectin. 

Because many disintegrins have the capability to recognize an array of integrins, the 

relatively weak potency of tzabcanin suggest that this disintegrin may inhibit cell 

adhesion by binding to a more select group of integrins, leaving other receptors available 

for integrin-ECM interactions. Further, tzabcanin also contains an RGDN binding domain 

which has been shown to exhibit higher affinity to integrin αvβ3 [31,60], an integrin not 
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expressed on either Colo-205 or MCF-7 cells. Therefore, studies utilizing cell lines 

expressing αvβ3 are predicted to demonstrate greater potency of tzabcanin.  

Conclusions 

This study reports the isolation and characterization of the most abundant 

disintegrin, tzabcanin, from the venom of C. s. tzabcan. In addition, we report molecular 

masses and cDNA sequences of five additional medium-sized disintegrin isoforms from 

the same venom. The documented differences in integrin-binding affinity between 

RGDW and RGDN disintegrins could represent distinct biological roles for these integrin 

homologs and differential anti-cancer effects may also exist. Tzabcanin, a new RGD 

disintegrin, was not cytotoxic to MCF-7 cells but produced a slight decrease in cell 

viability in Colo-205 cells at high concentrations. This could be due to induction of 

apoptosis by binding to an integrin(s) specifically expressed on Colo-205 cells that may 

be absent on the MCF-7 cell line. By binding to integrins, tzabcanin also inhibited cell 

adhesion of both cell lines to fibronectin and vitronectin. Although this inhibition was not 

as potent as reported for other disintegrins, the binding domain (RGDN) of tzabcanin 

suggests that it may have higher affinity towards αvβ3 integrins which are not present in 

either Colo-205 or MCF-7 cells.  
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Figures 

 
Figure 5.1: Size Exclusion Chromatography of Crude C. s. tzabcan Venom. A total of 
250 mg of crude venom was fractionated on a BioGel P-100 column. Fractions collected 
and crude venom (CrV) were analyzed by SDS-PAGE (inset) under reducing conditions; 
fraction 6 contained disintegrin-sized peptides. 
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Figure 5.2: RP-HPLC Purification and Mass Determination by MALDI-TOF-MS of C. s. 
tzabcan Venom Disintegrins. (a) RP-HPLC of SE peak 6. 2 mL samples were injected 
into a Phenomenex Jupiter C18 column and separated on a Waters 515 HPLC system.  
Five protein peaks eluted between 22 and 26% solvent B. Fractions were collected and 
analyzed by SDS-PAGE (inset) under DTT-reducing conditions. (b) Mass spectra of RP-
HPLC peaks 1-5; tzabcanin was present in peak 2 (m = 7105 Da), and peaks 3 and 4 
yielded two masses as indicated. 
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Figure 5.3: RP-HPLC Polishing and Mass Determination of Tzabcanin. (a) RP-HPLC 
peak 2 was further purified using a very shallow gradient. One peak eluted at 23% ACN 
and was assessed by MALDI-TOF mass spectrometry. (b) Mass determination of 
tzabcanin by MALDI-TOF mass spectrometry analysis in positive linear mode indicated 
a native mass of 7105 Da.  
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Figure 5.4: cDNA Sequence and Predicted Amino Acid Sequence of C. s. tzabcan 
Disintegrins. The cDNA sequence is located on the upper line and the corresponding 
amino acid sequence is below. The cysteine residues are in bold print and the RGD 
binding motif is in bold print and underlined.  
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Figure 5.5: Amino Acid Sequence Comparison of C. s. tzabcan Disintegrins with 
Selected Disintegrins. RGDN disintegrins are in the top group and RGDW disintegrins 
are in the bottom diagram. One-letter code for amino acids is used. Cysteine residues are 
shaded in gray, and the RGD binding motif is in bold print and underlined. Residue 
differences from tzabcanin are shaded in yellow.  
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Figure 5.6: Percent Cell Viability of Colo-205 and MCF-7 Cells. Cells were incubated 
with either crude C. s. tzabcan venom (CV) or purified tzabcanin. * p < 0.05, **p < 0.01, 
*** p < 0.001, compared to controls. 
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Figure 5.7a: The Effect of Tzabcanin on Colo-205 and MCF-7 Adhesion to Fibronectin; 
semilog plot. Various concentrations of tzabcanin (0.22 µM – 14 µM) were incubated 
with Colo-205 and MCF-7 cells (5.0 x 105 cells/mL) prior to addition to 96-well culture 
plates containing immobilized fibronectin. * p < 0.01, ** p < 0.001  
 
 

 

Figure 5.7b: The effects of tzabcanin on Colo-205 and MCF-7 adhesion to Vitronectin; 
semilog plot. Various concentrations of tzabcanin (0.22 µM – 14 µM) were incubated 
with Colo-205 and MCF-7 cells (5.0 x 105 cells/mL) prior to addition to 96-well culture 
plates containing immobilized vitronectin. * p < 0.05, ** p < 0.01, *** p < 0.001, relative 
to controls. 
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Figure 5.8: Percent Binding Inhibition of Cells to Immobilized Tzabcanin. Inhibition of 
Colo-205 and MCF-7 cells to immobilized tzabcanin was measured following cell 
incubation with the cation chelator EDTA; semilog plot. Colo-205 and MCF-7 cells (5.0 
x 105 cells/mL) were incubated with various concentrations of EDTA (0.3 – 5 mM) prior 
to addition to wells containing immobilized tzabcanin. * p < 0.01, ** p < 0.001, relative 
to controls  
 
  

 
Figure 5.9: Molecular Modeling of Tzabcanin. Space filling model (a) and stick model 
(b) of tzabcanin showing the same face of the molecule. In both figures, the RGD domain 
is shown in green, the N terminus is in yellow and the C terminus is shown in red. 
Surface charge features of other residues are shown in red to blue shading. Models are 
based on I-TASSER-derived modeling of tzabcanin and were constructed using 
Accelerys Discovery Studio 3.1 software. 
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Abstract 
 

The role of integrins in cancer progression and invasion is critical to the 

development of the disease, making these transmembrane proteins attractive targets in 

drug development and design. Disintegrins are small (4-16 kDa), Arg-Gly-Asp-

containing proteins, common in the venoms of many viperid snakes. These non-

enzymatic proteins inhibit integrin-mediated cell-cell and cell-extracellular matrix 

interactions, making them potential candidates as therapeutics in cancer and numerous 

other human disorders. The present study examines the anti-adhesion and migration 

effects of a recently characterized disintegrin, tzabcanin, towards melanoma (A-375) and 

lung (A-549) cancer cell lines. Tzabcanin inhibits adhesion of both cells lines to 

vitronectin and exhibited weak cytotoxicity towards A-375 cells; however, it had no 

effect on cell viability in A-549 cells. Further, tzabcanin inhibited adhesion of both cell 

lines to the extracellular matrix protein vitronectin, and it significantly inhibited cell 

migration in cell scratch wound assays. Flow cytometric analysis indicates that both cell 

lines express integrin αvβ3, a critical integrin in tumor motility and invasion which is 

identified here to be a binding site of tzabcanin. Tzabcanin blocks αvβ3, inhibiting cell 

adhesion to vitronectin and migration in A-375 and A-549 cell lines, suggesting that it 

may have utility for developing anticancer therapies.  

Introduction 
 

Integrins comprise an important family of cell surface receptors that mediate cell-

cell and cell-extracellular matrix (ECM) interactions (Hynes, 1987; Albelda and Buck, 

1990). To date, 24 distinct integrin heterodimers have been described, based on the 

appropriate noncovalent pairing of one of 18 α subunits with one of 8 distinct β-subunits 
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(Hynes, 2002). The specific pairing of these subunits regulates which substrates a cell 

will adhere to and migrate on, which will influence the activity of the cell (Aplin et al., 

1999). Typically the α-subunit dictates ligand specificity, whereas the β-subunit 

associates with the downstream signaling pathway (Hynes, 2002; Barczyk et al., 2010). 

Further, integrins have the ability to recognize a single, or several, ECM ligands or cell 

membrane proteins, each contributing to the regulation of an array of cellular functions 

(Plow et al., 2000; van der Flier and Sonnenberg, 2001; Humphries et al., 2006). For 

example, integrins α5β1, α4β1 and αvβ3 recognize fibronectin, and αvβ3 in addition to αvβ5 

show high affinity to vitronectin and fibrinogen.  Integrins α2β1, α3β1 and α6β1 bind 

laminin, and both α1β1 and α2β1 recognize collagen (Humphries et al., 2006).  The integrin 

αIIbβ3, which is expressed in platelets, binds to fibrinogen or von Willebrand factor, where 

it assists in platelet aggregation (Bennet et al., 1982; Humphries et al., 2006). 

Approximately one-third of the 24 integrins recognize these adhesive molecules through 

the tripeptide Arg-Gly-Asp (RGD) binding sequence, while others bind the triple helical 

GFOGER sequence present in collagen (Barczyk et al., 2010), or YIGSR in laminin 

(Gehlsen et al., 1988). As integrins are critical to numerous aspects of cell function, 

mutations targeting integrin receptors or integrin-related pathways are known to 

contribute to numerous human disorders (Wehrle-Haller and Imhof, 2003).   

It is well documented that several integrins play critical roles in cancer 

progression (Desgrosellier and Cheresh, 2010; Rathinam and Alahari, 2010; Sun et al., 

2014), and they have a significant role in tumor angiogenic activity, proliferation, 

survival and metastasis (Clark and Brugge, 1995; Serini et al., 2006). Further, expression 

of these cell membrane proteins may vary significantly between normal and cancerous 
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tissue, increasing their potential as selective targets in cancer therapy (Goodman and 

Picard, 2002; Kumar 2003; Sun et al., 2014). Integrins α6β1, αvβ3 and αvβ6 are almost 

undetectable in normal epithelial tissue (Desgrosellier and Cheresh, 2010), yet may be 

highly over-expressed in cancerous cells (Gehlsen et al., 1992; Nam et al., 2010). Integrin 

αvβ3 has been shown to increase 50-100 fold in melanoma (A-375) cells displaying an 

increased metastatic phenotype, indicating that increased integrin expression is correlated 

with advanced cancer states (Gehlsen et al., 1992). Tumor dependence on angiogenesis is 

also well documented (Folkman, 1971, 2006, 2007) and this formation of new blood 

vessels is required for delivering nutrients as well as providing a means of waste removal 

for tumors. Although numerous integrins are involved in angiogenesis (Avraamides et al., 

2008), evidence indicates that αvβ3 is critical for tumor angiogenic activity (Brooks et al., 

1994; Varner et al., 1995), likely permitting angiogenic endothelial cells to recognize 

proteins present in the tumor microenvironment (Desgrosellier and Cheresh, 2010). The 

significance of integrins in cancer biology cannot be overemphasized, so the isolation and 

characterization of compounds that have integrin-blocking activity and potential anti-

angiogenic functions may result in novel anti-neoplastic therapies and reveal new 

approaches to controlling cancer cell proliferation and metastasis (Folkman, 2006). 

The use of toxins as potential therapeutics has been an increasing emphasis of 

biomedical research in the last decade, and several novel compounds developed from the 

poisons and venoms of animals are currently in clinical trials and use (Fox and Serrano, 

2007; Takacs and Nathan, 2014). Snake venoms in particular have been a promising 

source of several protein drugs and additional protein drug leads (Vonk et al., 2011; 

Saviola et al., 2014). Snake venoms consist of a complex mixture of proteins and 
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peptides that exhibit an array of biochemical and pharmacological functions (Mackessy, 

2010). As many of these proteins are often mimics of compounds with normal 

physiological activities, but contain dramatically different pharmacologies, venom 

components have been subjected to detailed examination for their potential in biomedical 

or therapeutic use (Fox and Serrano, 2007; Lin et al., 2010; Mukherjee and Mackessy, 

2013). One class of venom proteins, the disintegrins, are small, cysteine-rich, non-

enzymatic proteins that result from the post-translational proteolytic processing of the 

enzymatic P-II class of snake venom metalloproteinases (Kini and Evans, 1992; Calvete 

et al. 2005). Many disintegrins contain an RGD-binding domain in the carboxyl terminal 

portion of the molecule and were originally characterized due to their ability to inhibit 

platelet aggregation by binding integrin αIIbβ3 (Haung et al., 1987). RGD disintegrins 

have also been shown to bind integrins α5β1, α8β1, αvβ1, and αvβ3, and variants of this 

tripeptide sequence demonstrate differing levels of selectivity to numerous integrin 

receptors (Calvete et al., 2009). 

 Due to their potent integrin binding activity, disintegrins are continuously being 

examined for their ability to reduce experimental metastasis. Contortrostatin, a 

homodimeric RGD disintegrin from the venom of the Southern Copperhead (Agkistrodon 

contortrix contortrix), has been shown to inhibit cell adhesion, migration, invasion and 

angiogenesis in numerous cancer cell lines (Trikha et al., 1994; Zhou et al., 2000, 2001; 

Lin et al., 2010). In addition, monomeric disintegrins such as crotatroxin 2 and 

colombistatin have also been shown to exhibit various anti-cancer effects (Galán et al., 

2008; Sanchez et al., 2009). We previously reported the isolation and characterization of 

a novel 7.1kDa, RGD-containing disintegrin from the venom of the Middle American 
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Rattlesnake (Crotalus simus tzabcan). Tzabcanin was not cytotoxic, but it inhibited colon 

(Colo-205) and breast (MCF-7) cancer cell adhesion to the ECM proteins fibronectin and 

vitronectin (Saviola et al., in review). Analyses of cell adhesion assays suggest that 

tzabcanin may bind αvβ5 and αvβ6, both of which are expressed in Colo-205 and MCF-7 

cell lines (Agrez et al., 1996; Taherian et al., 2011), and both recognize VN and FN, 

respectively. However, it has been reported that neither of these cell lines express the 

integrin αvβ3. Since integrin αvβ3 has been shown to contribute significantly in the 

progression of cancer (Gehlsen et al., 1992; Wong et al., 1998; Pecheur et al., 2002; 

Sloan et al., 2006), the current study was designed to examine if tzabcanin inhibits αvβ3-

mediated cell adhesion and migration in two highly metastatic melanoma (A-375) and 

lung carcinoma (A-549) cell lines which do express integrin αvβ3.  

Materials and Methods 

Snakes, Venoms and  
Biochemicals 
 

Venoms from two adult Middle American Rattlesnakes (Crotalus simus tzabcan) 

housed individually at the University of Northern Colorado Animal Resource Facility 

were extracted as previously described by Mackessy (1988). Venoms were centrifuged 

(10,000 rpm for 5 min), lyophilized, and stored at -20°C until use. Matrigel (356234) was 

purchased from BD Biosciences (Franklin Lakes, NJ, USA). αvβ3 antibody (sc-7312 

FITC) conjugated with a FITC was purchased from Santa Cruz Biotechnology (Dallas, 

TX, USA). Fibronectin (F0895), vitronectin (V8379), and all buffers and additional 

reagents (analytical grade) were purchased from Sigma-Aldrich, Inc. (St. Louis, MO, 

USA). 
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Purification of Tzabcanin 

Isolation and purification of tzabcanin was conducted as previously described 

(Chapter V; Saviola et al., in review) by a combination of multistep size exclusion and 

two steps of C18 reverse-phase liquid chromatography. Mass determination, purity and 

identification of tzabcanin was ascertained by both SDS-PAGE and MALDI-TOF mass 

spectrometry as described (Chapter V; Saviola et al., in review).  

Cell Lines and Culture Conditions 

Human malignant melanoma (A-375; ATCC CRL-1619) and human lung 

adenocarcinoma (A-549; ATCC CCL-185) cell lines were purchased from American 

Type Culture Collection (ATCC, Manassas, VA).  A-375 cells were maintained in 75 

cm2 flasks in Dulbecco’s Modified Essential Medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS) and maintained as a monolayer culture (<80% confluent) in a 

humidified 5% CO2/air incubator at 37°C.  A-549 cells were also maintained in 75 

cm2 flasks with ATCC-formulated F-12K growth medium supplemented with 10% FBS 

as a monolayer culture under the same conditions mentioned above. Subcultivation of 

cells was performed according to ATCC instruction, using trypsin-EDTA (0.05% trypsin 

and 0.02% EDTA). Cells were counted manually with a hemocytometer (4x, averaged) 

and diluted to appropriate densities. 

Cytotoxicity of Tzabcanin Towards 
A-375 and A-549 Cells 
 

Cytotoxicity of tzabcanin towards A-375 and A-549 cells was measured by the 

colorimetric MTT [3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-teyrazolium bromide] 

assay (Mossmann 1983; see also Bradshaw et al. in press). Both cell lines were 

trypsinized and resuspended in complete media at a concentration of 5.0 x 105 cells/ml. 
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One hundred microliter aliquots of A-375, and A-549 cell suspensions were plated in 96-

well cell culture plates with various concentrations of tzabcanin (0.22 – 14 µM) or 20 µg 

of crude C. s. tzabcan venom and incubated at 37 °C for 24 hr.  After 24 hours, 10 µL of 

MTT reagent (ATCC) was added to the cells which were then returned to 37 °C for 2 hr.  

Following incubation, 100 µL of Detergent Reagent (ATCC) were added to cells, which 

were then incubated overnight in the dark at room temperature. The plate was gently 

shaken and the absorbance read at 570 nm using a SpectraMax 190 spectrophotometer. 

Assays at each concentration of tzabcanin were performed in triplicate and each assay 

was repeated at least twice.  

A-375 and A-549 Cell Adhesion  
Assays 
 

Triplicate wells of Immulon-II 96 well microtiter plates were coated with 100 µl 

of either tzabcanin (2 µg per well), fibronectin (0.5 µg per well), vitronectin (0.3 µg per 

well) or Matrigel (0.5 µg per well) which was dissolved in 0.01M PBS, pH 7.2; protein 

was allowed to incubate overnight at 4°C.  Excess proteins were washed away twice with 

1% bovine serum albumin (BSA) in PBS and unbound sites were blocked with 100 µl 

2.5% BSA in PBS and incubated at 37 °C for 1 hr.  Cells were treated with various 

concentrations of tzabcanin (7.8 nM – 2 µM) and allowed to incubate at 37 °C for 1 hr 

immediately prior to seeding in treated plates.  The blocking solution was aspirated, and 

excess proteins were washed away twice with 1% BSA in PBS. One hundred microliters 

of tzabcanin-treated cells (5 x 105/mL) were seeded in the coated microtiter plate wells 

and returned to 37 °C for 1 hr. Unbound cells were washed away 3 times with 1% BSA in 

PBS by filling and aspirating, and 100 µL of serum-free medium with 1% BSA 

containing MTT (5:1 vol/vol) was added to wells and incubated at 37 °C for 2 hrs. One 
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hundred microliters of Detergent Reagent was then added to the wells and cells were 

incubated overnight in the dark at room temperature. The plate was gently shaken and the 

absorbance read at 570 nm using a SpectraMax 190 spectrophotometer.  The percent 

inhibition of cell binding was calculated by [(absorbance of control-absorbance of 

treatment)/absorbance of control] x 100.  Assays at each tzabcanin concentration for all 

cell lines were performed in triplicate and each assay was repeated at least three times. 

Cell Migration/Scratch Assay 

To measure the effects of tzabcanin on cell migration, a modified wound 

healing/scratch assay was completed as previously described by Liang et al. (2007). 

Twelve well Immulon-II plates were seeded with 1mL of A-549 or A-375 cells (5 x 

105/mL) and allowed to grow to confluence at 37°C. The complete media was then 

discarded and cells were starved in serum-free media for 48 hr at 37 °C, followed by 2 hr 

incubation with 10 µg/mL mitomycin C in serum-free medium at 37°C. Mitomycin C 

inhibits DNA synthesis and therefore was used to evaluate the contribution of cell 

migration in the absence of cell proliferation to scratch wound healing. A scratch in the 

cell monolayer was created with a 200 µL pipet tip, followed by extensive washing with 

serum-free medium to remove cell debris. Cells were then incubated with either 10 µL of 

tzabcanin (1 µg/µL) resuspended in PBS, or PBS alone as a control. Photographs were 

taken at the same location of the culture well using an Olympus D21 camera attached to 

an Olympus CKX41 inverted microscope at 4X magnification.  Because tzabcanin 

exhibited low cytotoxicity (see Results) towards A-375 cells, the migration evaluation for 

this cell line was conducted at 24 hrs, with photographs taken at 0 and 24 hrs. However, 

tzabcanin was not cytotoxic to A-549 cells, and therefore the migration assay for this cell 



  126 

 

line was conducted for an extended period, with photographs taken at 0, 24, 48, and 72 hr 

intervals.  Migration was measured by taking multiple measures of the width of the 

scratch for each cell line, and calculated using the equation  [(S-F)/S] x 100, where S is 

the distance (mm) of the cell edge at 0hrs, and F is the distance (mm) of the cell edge at 

24, 48, and 72 hrs (when possible). Assays were performed in triplicate and each assay 

was repeated at least three times. 

Competitive Binding Assay 

A-375 and A-549 cells were resuspended in 1% BSA in PBS at a density of 1 x 

106 cells/mL. One hundred µL cell aliquots were incubated with 0 (control) or 2 µg of 

tzabcanin resuspended in PBS for 30 min at 37°C, followed by the addition of mouse 

monoclonal anti-αvβ3 antibody conjugated with a FITC (10 µg/mL).  After 30 min 

incubation at room temperature in the dark, cells were gently pelleted and washed 3 times 

with 1% BSA in PBS to remove unbound antibody, and the fluorescence intensity of the 

cells was analyzed using flow cytometry (FACscan, Becton Dickinson, Bedford, MA). 

Tests were performed in triplicate and all experiments were repeated twice.  

Statistical Analyses 

Cytotoxicity and cell adhesion data were analyzed by Analysis of Variance 

(ANOVA) followed by Tukey’s post-hoc test using R version 2.15.2. Cell migration 

assays were analyzed using a Student’s T-test, comparing the percent migration of the 

treatment to the percent migration for the control for the respective time interval. All p 

values <0.05 were considered as statistically significant. 
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Results 

Tzabcanin Binds to Both A-375  
and A-549 Cells via Integrin(s) 
 

Integrin-ligand interactions are cation-dependent (Mould et al. 1995), and to 

confirm that cell recognition to tzabcanin in both A-375 and A-549 cells was via 

integrins, tzabcanin was immobilized in 96-well microtiter plates, and cell adhesion was 

measured following cell incubation with the cation chelator EDTA. A-375 and A-549 

binding to tzabcanin was inhibited by EDTA in a dose-dependent manner (Figure 6.1), 

with IC50 values of 2.4 mM and 3.23 mM, respectively. These results strongly indicate 

that tzabcanin interacts with both cell lines through integrin receptors, likely by cell 

recognition of the RGD binding region of tzabcanin. 

Cytotoxicity Towards A-375 and  
A-549 Cells In vitro 
 

Crude C. s. tzabcan venom (20 µg/100 µL) showed significant cytotoxicity 

toward A-375 cells, with approximately 13% cell viability remaining following 24 hr of 

incubation (Figure 6.2; p < 0.001). In addition, tzabcanin appeared to exhibit a slight 

dose-dependent decrease (~2-6% lower) in A-375 cell viability, and results were 

statistically significant (p < 0.05, 0.44 µm to 14 µM) at all concentrations except 0.22 

µM. In contrast, both crude C. s. tzabcan venom and tzabcanin failed to show any 

significant decrease in A-549 cell viability (all p’s > 0.05).  

Tzabcanin Inhibits Cell Adhesion  
of A-375 and A-549 to Vitronectin 
 

The ECM proteins fibronectin and vitronectin, and membrane matrix Matrigel, all 

support adhesion to A-375 and A-549 cells. By treating both cell lines with various 



  128 

 

concentrations of tzabcanin, its ability to inhibit cell adhesion to these matrices was 

evaluated. Results show that tzabcanin inhibits adhesion of both A-375 and A-549 cells 

to vitronectin in a dose-dependent manner (Figure 6.3); however, this inhibition is much 

more potent towards A-375 cells. The IC50 for A-375 cells was 747 nM, whereas A-549 

failed to reach 50% binding inhibition even at 2 µM. Tzabcanin failed to inhibit adhesion 

of either cell line to fibronectin or Matrigel (data not shown). 

Tzabcanin Inhibits Cell Migration 

Cell migration was measured following an in vitro scratch/wound healing assay. 

Tzabcanin (10 µg/ml) inhibited A-375 cell migration by approximately 45% when 

compared to the untreated control over 24 hr (Figure 6.4A; p < 0.01). Likewise, tzabcanin 

inhibited cell migration of A-549 cells by 76, 47, and 37% over the 24, 48, and 72 hr time 

intervals, respectively (Figure 6.4B; all p < 0.01). At 72 hr, all of the untreated A-549 

controls had 100% closed. 

αvβ3  is Identified as a Binding Site  
For Tzabcanin on A-375 and  
A-549 cells 
 

Since tzabcanin inhibits binding of A-375 and A-549 cells to vitronectin, we 

examined if tzabcanin binds to αvβ3, a vitronectin receptor (Horton, 1997). Flow 

cytometry analysis demonstrates that both A-375 and A-549 cells express integrin αvβ3 

(Figure 6.5), consistent with previously published reports (Gehlsen et al., 1992; Chetty et 

al. 2010). When A-375 and A-549 cells were pre-treated with tzabcanin, the disintegrin 

significantly inhibited anti-αvβ3 antibody binding (Figure 5), indicating that tzabcanin 

binds to αvβ3 on both cell lines.  
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Discussion 

In 2014, it was estimated that over 585,000 deaths were expected from cancer in 

the United States alone (Siegel et al., 2014). Although there appears to be declining or 

stable trends among most cancers, melanoma incidences appear to be increasing, and 

cancer of the lung and bronchus remains as the most common cause of cancer related 

deaths in both men and women (Jemal et al., 2010; Siegel et al., 2104). The molecular 

mechanisms involved in metastasis are complex, enabling cancerous cells to disseminate 

from the primary tumor, invade local tissue, enter into circulation, and ultimately adhere, 

proliferate, and stimulate angiogenesis at a distant site (Liotta et al., 1991).  This ability 

to metastasize is a significant cause of treatment failure and death in cancer patients 

(Price et al., 1997). Therefore, there is a tremendous need to identify compounds that may 

effectively arrest the numerous factors involved in metastasis. 

Integrins mediate cell adhesion, migration, invasion, proliferation and 

angiogenesis, and their roles in metastasis and tumor survival are now apparent 

(Desgrosellier and Cheresh, 2010; Rathinam and Alahari, 2010). Further, integrin 

expression levels may vary significantly between normal and cancerous tissues 

(Desgrosellier and Cheresh, 2010), and additionally they are correlated with advanced 

stages of disease progression. Further, it has been strongly implicated that in cancer cells 

possessing them, tumor invasiveness is proportional to the expression levels of integrin 

αvβ3 (Gehlsen et al., 1992; Liapis et al., 1997). However, numerous other integrin 

subfamilies, such as α3, α5, α6, αv, β1 and β4, also enhance tumorigenesis (Rathinam and 

Alahari, 2010). Our prior results demonstrated that tzabcanin, a 7.1 kDa, RGDN 

monomeric disintegrin, inhibited adhesion of MCF-7 and Colo-205 cells to fibronectin 
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and vitronectin through competitive binding to integrins (Chapter V; Saviola et al., in 

review), although this inhibition was not as potent as has been previously reported for 

other disintegrins (Zhou et al., 2001; Sánchez et al., 2009). Since the RGDN binding 

region of disintegrins exhibits higher affinity towards αvβ3 (Scarborough et al., 1993), an 

integrin not expressed on either Colo-205 or MCF-7 cells, it was postulated that 

tzabcanin may demonstrate significantly higher affinity and anti-metastatic properties 

towards cell lines expressing this receptor.   

Immobilized tzabcanin supports adhesion of A-375 and A-549 cells, 

demonstrating that these cells bind to this disintegrin. Because a cation chelator (EDTA) 

significantly inhibited adhesion of both cell lines to tzabcanin, it is likely that tzabcanin-

cell binding is primarily mediated via integrin receptors. Integrin-mediated cell adhesion 

to the ECM proteins fibronectin and vitronectin is largely due to the presence of the RGD 

region found in these proteins (Ruoslahti, 1992, 1996), with roughly one-third of all 

identified integrins recognizing this binding sequence (Barczyk et al., 2010). Tzabcanin, 

a RGD disintegrin, inhibited binding of both A-375 and A-549 cell lines to vitronectin, 

but this inhibitory effect was significantly more potent for A-375 cells (IC50 = 747 nM).  

Cell adhesion to vitronectin is mediated by integrins αvβ1, αvβ3, αvβ5, and αvβ8 (Barczyk et 

al., 2010). Using an antibody against integrin αvβ3, our flow cytometric analysis indicates 

that A-375 and A-549 cell lines are αvβ3 positive, results which are supported by previous 

reports (Gehlsen et al., 1992; Chetty et al., 2010). However, A-375 cells appear to 

express a higher percentage (29%, S.D. = 3.14%) of this receptor when compared to A-

549 cells (16%, S.D. = 3.7%), possibly explaining the weak inhibitory effect of tzabcanin 

on A-549 cell binding to vitronectin. Flow cytometric analysis also indicated that 
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tzabcanin binds to this receptor, inhibiting the binding of the FITC labeled anti-αvβ3 

antibody and therefore also inhibiting cell adhesion to immobilized vitronectin during 

adhesion assays. Despite this, it is hypothesized that because tzabcanin (at 2 µM) did not 

inhibit 100% adhesion of either A-375 or A-549 cells to vitronectin, other integrin 

receptors may participate in anchoring cells to this ECM protein. Therefore, complete 

inhibition of attachment of A-375 and A-549 cells to vitronectin would require blocking 

multiple integrins, and the possibility of other RGD-dependent integrins exhibiting 

affinity towards vitronectin in A-375 and A-549 cell lines cannot be excluded.  

Tzabcanin did not disrupt adhesion of either cell line to fibronectin or Matrigel at 

concentrations as high as 14 µM. Fibronectin is a ligand for numerous integrins including 

α4β1, α5β1, α8β1, αvβ1, αvβ3, αvβ6, and α4β7, which could explain why tzabcanin failed to 

inhibit cell adhesion to this ECM protein (Barczyk et al., 2010). In addition, the major 

components of Matrigel are laminin and type IV collagen (Hughes et al., 2010), which 

are recognized by the β1 subclass of integrins (Barczyk et al., 2010). Therefore, tzabcanin 

appears to show specificity towards αvβ3, likely accounting for the inhibitory effects of 

adhesion of both cell lines to vitronectin but not to fibronectin or laminin.  

Crude C. s. tzabcan venom was significantly cytotoxic to A-375 cells, results that  

confirm those published by Bradshaw et al. (in press). However, crude venom failed to 

exhibit any cytotoxic effects towards A-549 cells. This outcome was surprising due to the 

potent toxicity of C. s. tzabcan venom toward several immortal cell lines and toward 

mice (LD50 = 0.74 µg/g; Castro et al., 2013). Phenotypic differences between cell lines 

could account for the drastic differences in toxic effects of crude venom. Although 

purified tzabcanin failed to show a decrease in A-549 viability, there was a dose-
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dependent small decrease in A-375 cell viability. It is currently unknown if this decrease 

is the result of apoptosis or necrosis. However, it has recently been shown that the 

recombinant disintegrins r-mojastin 1 and r-viridistatin 2 induced apoptosis in 

approximately 20% of human pancreatic adenocarcinoma (BXPC-3) cells at 

concentrations of 5 µM following 24 hr incubation (Lucena et al., 2015).  

Migration is a critical step in metastasis, and cancer cells express various 

adhesion molecules facilitating movement from the primary tumor site to remote tissues 

or organs. Expression and activation of αvβ3 has been shown to enhance migration 

significantly in numerous cancer cell lines (Rolli et al., 2003; Dang et al., 2006; Sloan et 

al., 2006; Fong et al., 2009). Tzabcanin (10 µg/mL) effectively inhibited cell migration in 

both A-375 and A-549 cell lines, likely by blocking αvβ3-mediated adhesion. Upon 

ligation, αvβ3 induces the myosin light chain kinase through ras/MAP kinase pathways, 

causing an increase in phosphorylation of the myosin light chain kinase and leading to the 

phosphorylation of myosin light chains, thereby influencing cell locomotion (Klemke et 

al., 1997).  It is hypothesized that by binding to αvβ3, tzabcanin inhibits this cell signaling 

pathway and further reduces cell motility in A-375 and A-549 cells. Cell adhesion to 

fibronectin and Matrigel was not inhibited, but inhibition of cell adhesion is not always 

correlated with inhibition of cell migration (Bartsch et al., 2003; Galán et al., 2008).  For 

example, the disintegrin crotatroxin 2 from Crotalus atrox significantly inhibited 

migration of the murine mammary breast carcinoma cells (by 66%) yet failed to inhibit 

adhesion of this cell line to fibronectin or collagen IV and VI (Galán et al., 2008). 

 In conclusion, results from this study demonstrate that by binding integrin αvβ3, 

tzabcanin supports adhesion to both A-375 and A-549 cell lines. The RGDN binding 
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region present in tzabcanin may show specific affinity to integrin αvβ3, and not toward 

other receptors, which would explain why tzabcanin failed to inhibit adhesion of either 

cell line to fibronectin or Matrigel. However, by blocking αvβ3, tzabcanin inhibits A-375 

and A-549 cell-mediated adhesion to vitronectin, as well as migration in both cell lines 

over 24 (A-375) and 72 (A-549) hr periods. Further studies will assess the effects of 

tzabcanin in vivo and against numerous other cancer cell lines. 
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Figures 

 
Figure 6.1: Percent inhibition of binding of A-375 and A-549 Cells to Immobilized 
Tzabcanin. A-375 and A-549 cells (5.0 x 105 cells/mL) were incubated with various 
concentrations of EDTA (0.3 – 5 mM) prior to addition to wells containing immobilized 
tzabcanin. All treatments were significantly different from controls  (*, p < 0.01; **, p < 
0.001). 
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Figure 6.2: Percent Cell Viability of A-375 and A-549 cells following exposure to crude 
C. s. tzabcan venom or purified tzabcanin. *, p < 0.05, compared to controls. 
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Figure 6.3: The Effects of Tzabcanin on A-375 and A-549 Adhesion to Immobilized 
Vitronectin. Various concentrations of tzabcanin (7.8 nM – 2 µM) were incubated with 
A-375 and A-549 cells (5.0 x 105 cells/mL) prior to addition to 96-well culture plates 
containing immobilized vitronectin. * p < 0.001.  
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Figure 6.4: Inhibition of A-375 and A-549 Cell Migration. Cells were maintained as a 
monolayer in serum free medium for 48 hr before a 2 hr incubation with mitomycin-C. A 
line was scratched through the cell monolayer (0 hr), and cultures were allowed to 
migrate at 37°C in the presence of tzabcanin or a PBS control. Multiple measurements of 
the width of the scratch were made for for each treatment. A) cell migration for A-375 
cells after 24 hr. B) cell migration of A-549 cells at 24, 48, and 72 hr. 
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Figure 6.5: Tzabcanin Inhibits Binding of Anti-αvβ3 to A-375 and A-549 Cells. The 
natural fluorescence of A) A-375 melanoma cells and B) A-549 lung cancer cells is 
shown (black line) and the fluorescence following incubation with αvβ3 antibody (green 
line) indicates antibody-integrin binding. Tzabcanin added to cells prior to addition of the 
αvβ3 antibody effectively inhibits antibody binding (red line), as demonstrated by a shift 
of cell fluorescence back toward controls (black lines).  
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Abstract 
 

Here we describe and compare the venomic and antivenomic characteristics of 

both neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) venoms. Although 

both neonate and adult venoms contain unique components, similarities among protein 

family content were seen. Both neonate and adult venoms consisted of of myotoxin, 

bradykinin-potentiating peptide (BPP), phospholipase A2 (PLA2), Zn2+-dependent 

metalloproteinase (SVMP), serine proteinase, L-amino acid oxidase (LAAO), cysteine-

rich secretory protein (CRISP) and disintegrin families. Quantitative differences, 

however, were observed, with venoms of adults containing significantly higher 

concentrations of the non-enzymatic toxic compounds and venoms of neonates 

containing higher concentrations of pre-digestive enzymatic proteins such as SVMPs. To 

assess the relevance of this venom variation in the context of snakebite and snakebite 

treatment, we tested the efficacy of the common antivenom CroFab® for recognition of 

both adult and neonate venoms in vitro. This comparison revealed that many of the major 

protein families (SVMPs, CRISP, PLA2, serine proteases, and LAAO) in both neonate 

and adult venoms were immunodepleted by the antivenom, whereas myotoxins, one of 

the major toxic components of C. v. viridis venom, in addition to many of the small 

peptides, were not efficiently depleted by CroFab®. These results therefore provide a 

comprehensive catalog of the venom compounds present in C. v. viridis venom and new 

molecular insight into the potential efficacy of CroFab® against human envenomations by 

one of the most widely distributed rattlesnake species in North America.  
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Introduction 
 

Produced and stored in a pair of highly specialized cephalic gland, snake venoms 

represent a complex mixture of bioactive proteins and peptides that exhibit diverse 

biochemical and pharmacological functions [1]. Venoms likely evolved via the co-opting 

and secondary modification of endogenous proteins with normal physiological functions 

early in the evolution of advanced snakes [e.g., 2 but see 3, 4], enabling the transition 

from a mechanical (constriction) to a chemical (venom) means of subduing prey [5]. The 

complexity of venoms, coupled with the fact that many snake species specialize on 

specific prey, has led to selective pressures resulting in the evolution of advantageous 

venom phenotypes that may vary based on phylogenetic affinities [1, 6, 7], geographic 

localities [8, 9], snake age [10, 11, 12] and diet [13, 14]. It is this variation and 

complexity that has continuously led researchers to examine snake venoms and the 

evolution of venom systems. Research into the origin and evolution of snake venoms 

offers remarkable insights into the biological roles of venom compounds [15, 16] and 

potential avenues for novel drug discovery [17, 18, 19], as well as addressing the ever-

growing concern for effectively treating human snakebite [20, 21]. Proteomic analyses of 

venoms, termed “venomics”, is significantly expanding our knowledge and 

understanding of these oral secretions [e.g., 22, 23], which are not only critical to the 

foraging success of the snakes, but may also be of potential value or threat to humans.  

Within the superfamily Caenophidia, the family Viperidae consists of 

approximately 260 species within four subfamilies: Azemiopinae, Causinae, Crotalinae 

and Viperinae. Of these subfamilies, the Crotalinae (pit vipers) is the most speciose, and 

currently comprises over 200 species distributed among 28 genera. In the Americas, the 
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only viperids are the monophyletic pit vipers, which appear to have dispersed into the 

New World during the late Oligocene to early Miocene approximately 22-24 mya [24]. 

Among New World pit vipers, the genus Crotalus currently comprises 30-36 species of 

venomous snakes distributed throughout much of South, Central and North America 

(http://www.reptile-database.org). The Prairie Rattlesnake (Crotalus viridis viridis) is a 

medium-sized terrestrial pitviper commonly exceeding 100 cm snout-vent length (SVL) 

[25]. The range of this species spans much of the Great Plains of the central United 

States, northwestern Mexico and southwestern Canada, making it one of the most widely 

distributed rattlesnake species in North America (Fig.1). Due to this wide geographic 

distribution, and the sometimes large home ranges, C. v. viridis may occur in close 

proximity to housing developments and are often found migrating into human-inhabited 

areas [26], increasing the possibility of encounters with humans. Terrestrial habitats 

occupied by C. v. viridis range from semi-desert and plains grasslands to pinion-juniper, 

mountain shrublands and montane woodlands, up to 2740 m in elevation [25, 27]. In 

grasslands habitat, C. v. viridis is a frequent inhabitant of prairie dog towns where 

burrows are commonly used for prey ambush sites, predator avoidance, and hibernation 

[26]. Like many other rattlesnake species, the diet of C. v. viridis shifts with snake age, 

generally focusing on small ectothermic prey and newborn rodents as neonates, and 

switching to larger endothermic prey (small mammals and occasionally birds) as adults 

[10, 27]. 

Viperid venoms contain an abundance of proteins which interfere with 

homeostasis and with the blood coagulation cascade, ultimately leading to the 

immobilization, killing and predigestion of prey. Individual venom may contain well over 
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100 proteins and peptides (including various protein isoforms); these compounds can, 

however, generally be classified into 10-15 protein families, such as the enzymatic L-

amino acid oxidases (LAAOs), metalloproteinases (SVMPs), phospholipases A2 (PLA2) 

and serine proteases, as well as the non-enzymatic peptide myotoxins, C-type lectins, 

cysteine-rich secretory proteins (CRISPs) and disintegrins, among others [1]. Venom 

composition, especially in viperid species, can be classified based on enzymatic activity 

and toxicity, which are generally inversely correlated [7, 28]. For species classified as 

having type I venom, neonate and juvenile snakes have venoms exhibiting increased 

toxicity with lower SVMP and serine protease activity, whereas adults have lower 

toxicity (>1.0 µg/g mouse body weight) but higher SVMP activity [29]. Type II venoms, 

on the other hand, have been suggested to be paedomorphic [7, 28, 30, 31] since 

neonates, juveniles and adults all exhibit low SVMP activity but are higher in toxicity (< 

1.0 µg/g mouse body weight), retaining similar venom characteristics throughout the life 

history of the snake. 

Previous studies of the venom of C. v. viridis have shown moderate to high 

activity levels of LAAO, kallikrein, plasmin, and thrombin-like serine proteases, SVMP, 

PLA2 and phosphodiesterase enzymes [28, 32]. Gel electrophoresis and mass 

spectrometry indicate that myotoxins, CRISPs and disintegrins are also abundant 

compounds in the venom of C. v. viridis. Venom yields from adult C. v. viridis may vary 

from 40 mg to well over 100 mg of dry venom in Colorado populations [28, 33], while 

neonate snakes may yield only 2-4 mg venom. Further, Mackessy [28] reported mouse 

intravenous LD50 values at 1.55 µg/g of mouse body weight, making it one of the more 

toxic rattlesnake species in the Western rattlesnake complex.  
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It is estimated that there are over 9000 venomous snake bites in the United States 

annually [34], with roughly 99% of these bites from snakes of the family Viperidae [35]. 

These human envenomations may be characterized by edema, erythema, clotting 

disorders, hypofibrinogenemia and local tissue necrosis [36, 37]. Bites may pose a 

serious or potentially deadly emergency, and early therapeutic administration of 

antivenom is necessary if severe envenomation is suspected. In the United States, the 

antivenom CroFab® (Crotaline Polyvalent Immune Fab (ovine)) is commonly 

administered during envenomation cases. CroFab® is produced from sheep immunized 

with one of the following North American snake venoms: Agkistrodon piscivorus (Water 

Moccasin), Crotalus adamanteus (Eastern Diamondback rattlesnake), Crotalus 

atrox (Western Diamondback rattlesnake) and Crotalus scutulatus (Mojave rattlesnake) 

[38]; serum collected from hyperimmune animals is affinity purified using columns 

containing the same immobilized venom, and hyperimmune sera are then mixed to 

produce a polyvalent antivenom. Surprisingly, in spite of its wide distribution in North 

America, C. v. viridis is not one of the species utilized for CroFab® production. Adequate 

treatment of snakebite is dependent on the ability of the antivenoms to reverse the 

pathological symptoms induced by venom by immunologically binding to venom 

components, facilitating their removal and degradation. Therefore, knowledge on venom 

composition and inter- and intra-specific venom variability is critical for assessment of 

antivenom efficacy and treatment of snakebite. The present work was designed to provide 

a comparative analysis of the venom proteomes of neonate and adult C. v. viridis, to 

determine venom composition and to investigate the immunoreactivity profile of the 

commercially available antivenom CroFab® against these venoms.  
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Materials and Methods 

Venoms and Antivenoms 

The venoms of fourteen neonate, twelve subadult and twelve adult C. v. viridis 

(equal numbers of female and male snakes) were manually extracted from wild-caught 

specimens (Weld Co., Colorado, USA). Age classes of snakes were based on snout-vent 

lengths from a large dataset of mark-recaptures from the same population (Mackessy, 

unpub. data); snakes <300 mm were considered neonates, snakes 500-540 mm were 

considered subadults and snakes >800 mm were considered adults. Following extraction, 

snakes were in captivity for no more than 3 days and were released to the exact location 

of capture. Venoms were immediately centrifuged at 10,000 x g for 5 min to pellet 

insoluble material, frozen, lyophilized and stored at -20°C until used. CroFab® was 

donated by Dr. Robert Palmer of the Rocky Mountain Poison and Drug Center, and anti-

myotoxin a antibodies were a gift of Dr. Charlotte Ownby (Oklahoma State University). 

RP-HPLC Fractionation 

Venom proteins were separated by reverse-phase high-performance liquid 

chromatography (RP-HPLC) using a Teknokroma Europa C18 (250 x 4 mm, 5 µm 

particle size, 300 Å pore size) column and an ETTAN™ LC HPLC System (GE 

Healthcare). Two mg of venom from adult (2 samples, one male (specimen 281), one 

female (specimen 288) or 1.5 mg neonate (2 samples, one male (specimen 280), one 

female (specimen 249) were dissolved in 300 µL of 0.05% trifluoroacetic acid (TFA) and 

5% acetonitrile, and insoluble material was removed by centrifugation in an Eppendorf 

centrifuge at 13,000 g for 10 min at room temperature. The flow-rate was set to 1 mL/min 

and the column was developed with a linear gradient of 0.1% TFA in water (solution A) 
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and acetonitrile with 0.1% TFA (solution B). Elution was achieved as follows: isocratic 

at 5% solution B for 5 min, followed by 5–25% B for 10 min, 25–45% B for 60 min, and 

45–70% for 10 min. Protein detection was carried out at 215 nm and peaks were collected 

manually and dried using a Speed-Vac (Savant) for subsequent characterization. These 

four venom samples were considered the primary samples. 

Characterization of RP-HPLC  
Fractions 
 

Fractions obtained from RP-HPLC (primary samples) were further separated by 

SDS-PAGE under reduced and non-reduced conditions, using 15% gradient 

polyacrylamide gels. Chromatographic fractions containing peptides (m/z ≤ 1700) were 

loaded in a nanospray capillary column and subjected to peptide sequencing using a 

QTrap™ 2000 mass spectrometer (Applied Biosystems) equipped with a nanospray 

source (Protana, Denmark). Doubly- or triply-charged ions were selected for collision-

induced dissociation (CID) MS/MS analysis. Production spectra were interpreted 

manually or using the on-line form of the MASCOT program at 

http://www.matrixscience.com against a private database containing viperid protein 

sequences deposited in the SwissProt/TrEMBL database plus the protein sequences 

translated from the species-specific venom gland transcriptome. MS/MS mass tolerance 

was set to ± 0.6 Da. Carbamidomethyl cysteine and oxidation of methionine were fixed 

and variable modifications, respectively. Spectra producing positive hits were manually 

inspected. Good quality spectra that did not match any known protein sequence were 

interpreted manually to derive de novo amino acid sequences. Amino acid sequence 

similarity searches were performed against the available databanks using the BLAST 
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program [39] implemented in the WU-BLAST2 search engine at http://www.bork.embl-

heidelberg.de.  

 Protein bands of interest were excised from a Coomassie Brilliant Blue-stained 

SDS-PAGE gel and subjected to in-gel reduction (10 mM dithiothreitol) and alkylation 

(50 mM iodacetamide), followed by overnight sequencing-grade trypsin digestion (66 

ng/µl in 25 mM ammonium bicarbonate, 10% acetonitrile; 0.25 µg/sample) in an 

automated processor (using a Genomics Solution ProGest Protein Digestion Workstation) 

following the manufacturer's instructions. Tryptic digests were dried in a vacuum 

centrifuge (SPD SpeedVac®, ThermoSavant), redissolved in 15 µL of 5% acetonitrile 

containing 0.1% formic acid, and submitted to LC-MS/MS [40, 41]. To this end, tryptic 

peptides were separated by nano-Acquity UltraPerformance LC® (UPLC®) using a 

BEH130 C18 (100 µm x 100 mm, 1.7µm particle size) column in-line with a Waters 

SYNAPT G2 High Definition Mass Spectrometry System. The flow rate was set to 0.6 

µl/min and column was developed with a linear gradient of 0.1% formic acid in water 

(solution A) and 0.1% formic acid in acetonitrile (solution B) at 1% B for 1 min, 

followed by 1-12% B for 1 min, 12-40% B for 15 min, 40-85% B for 2 min. Doubly and 

triply charged ions were selected for CID MS/MS. Fragmentation spectra were 

interpreted i) manually (de novo sequencing), ii) using the on-line form of the MASCOT 

program at http://www.matrixscience.com against the NCBI non-redundant database, and 

iii) using Waters Corporation's ProteinLynx Global SERVER 2013 version 2.5.2. (with 

Expression version 2.0) against the species-specific venom gland cDNA-derived toxin 

sequences. MS/MS mass tolerance was set to ± 0.6 Da. Carbamidomethyl cysteine and 

oxidation of methionine were selected as fixed and variable modifications, respectively. 
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 The relative abundances (expressed as percentage of the total venom proteins) of 

the different protein families were calculated as the ratio of the sum of the areas of the 

reverse-phase chromatographic peaks containing proteins from the same family to the 

total area of venom protein peaks in the reverse-phase chromatogram [40, 41]. When 

more than one protein band was present in a reverse-phase fraction, their proportions 

were estimated by densitometry of Coomassie-stained SDS-polyacrylamide gels using 

ImageJ version 1.47 (http://rsbweb.nih.gov/ij). Conversely, the relative abundances of 

different proteins contained in the same SDS-PAGE band were estimated based on the 

relative ion intensities of the three more abundant peptide ions associated with each 

protein by MS/MS analysis. Finally, protein family abundances were estimated as the 

percentages of the total venom proteome.  

 To evaluate population-level variation in venom composition, and to confirm that 

trends observed in the primary samples were representative of the population, 34 

additional samples (secondary samples) were subjected to RP-HPLC fractionation as 

above, using a Waters 2485 HPLC system, Empower software and a Phenomenex Jupiter 

C18 (4.0 x 250 mm, 5µm) column. Characterization of these samples was based on the 

detailed characterizations of the primary samples, and peak identifications were 

determined by comparison of elution times and visual inspections of chromatograms with 

the primary samples. These samples consisted of 10 adult, 12 subadult and 12 neonate 

venom samples for each sex, collected from the same population as the four primary 

samples. Data from these 34 secondary samples were used to determine protein family 

abundances as a percent of total venom proteins, with a particular emphasis on two of the 

most abundant protein families (SVMPs, peptide myotoxins). Combined samples for each 
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age class were also subjected to RP-HPLC fractionation as above to obtain a population 

average. One hundred fifty µg from each of 12 individuals (per age class) were 

combined, fractionated on RP-HPLC and compared to primary samples. 

Antivenomics 

A second-generation antivenomics approach [42] was utilized to examine the 

paraspecific immunoreactivity of commercially available CroFab® against both neonate 

and adult C. v. viridis venom (primary samples). For preparation of the antivenom 

affinity column, 500 µL of NHS-activated Sepharose 4 Fast Flow (GE Healthcare) matrix 

was packed in a Pierce centrifuge column and washed extensively with 10 matrix 

volumes of cold 1 mM HCl followed by two matrix volumes of coupling buffer (0.2 M 

NaHCO3, 0.5 M NaCl, pH 8.3) to adjust the pH of the column to 7.0-8.0. Sixty 

milligrams of CroFab® was then dissolved in 250 µL coupling buffer and incubated with 

matrix for 4 h at room temperature. The amount of antivenom coupled to the matrix was 

estimated by measuring the amount of non-bound antivenom by quantitative SDS-PAGE 

band densitometry  (MetaMorph software, MDS Analytical Technologies) of CroFab®, 

which consists almost entirely of fragment antigen binding antibodies (Fab); the amount 

remaining in the coupling buffer was subtracted from the starting amount (60 mg), 

providing an estimate of approximately 16.4 mg (27%) of CroFab® antivenom bound to 

column matrix. The non-reacted groups were then blocked with 500 µL of 0.1 M Tris-

HCl, pH 8.5 at room temperature for 4 h. The column was alternately washed with three 

500 µL volumes of 0.1 M acetate containing 0.5 M NaCl, pH 4.0-5.0, and three 500 µL 

volumes of 0.1 M Tris-HCl, pH 8.5; this was repeated 6 times. The column was then 

equilibrated with 5 volumes of working buffer solution (20 mM phosphate buffer, 135 
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mM NaCl, pH 7.4; PBS). For the immunoaffinity assay, 300 µg of neonate (male) or 

adult (male) C. v. viridis venom were dissolved in ½ matrix volumes of PBS and 

incubated with the affinity matrix for 1 h at room temperature using an orbital shaker. As 

specificity controls, 500 µL of Sepharose 4 Fast Flow matrix, without or with 16 mg of 

immobilized control IgGs purified from non-immunized horse serum, were incubated 

with venom and the columns developed in parallel to the immunoaffinity experiment. 

Following elution of the non-retained fractions with 500 µL of PBS, the column was 

washed with 2.5 volumes of PBS, and the immunocaptured proteins were eluted with 5 

volumes of elution buffer (0.1 M glycine-HCl, pH 2.0) and neutralized with 500 µL 1 M 

Tris-HCl, pH 9.0. The non-retained and the immunocaptured venom fractions were 

fractionated by reverse-phase HPLC using a Discovery® BIO Wide Pore C18 (15 cm x 2.1 

mm, 3 µm particle size, 300 Å pore size) column and an Agilent LC 1100 High Pressure 

Gradient System equipped with a DAD detector. The flow rate was set to 0.4 mL/min and 

the column was developed with a linear gradient of 0.1% TFA in water (solution A) and 

0.1% TFA in acetonitrile (solution B): isocratic at 5% solution B for 1 min, followed by 

5-25% solution B for 5 min, 25-45% solution B for 35 min, and 45-70% solution B for 5 

min. Protein detection was carried out at 215 nm with a reference wavelength of 400 nm.  

Western Blot Analysis  

Venoms (16 µg/lane) were from the four specimens of C. v. viridis characterized 

here, plus venom from one C. o. helleri and one C. s. scutulatus (both from Los Angeles 

County, CA, USA), and purified myotoxin a (from this source population of C.v. viridis 

in Colorado; 3 µg/lane); each sample was subjected to Western blot analysis following 

reducing SDS-PAGE on 12% acrylamide NuPAGE® Bis-Tris precast gels. Proteins were 
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blotted to nitrocellulose (150 mA for 1.5 hr), and the membrane was rinsed in Millipore-

filtered water (18.2 MΩ·cm MilliQ™ H2O) and then blocked in PBS-buffered 3% BSA 

(Sigma Fraction V) for 1hr at room temperature (RT). The membrane was cut so that 

one-half of the myotoxin a lane was retained on each part of the membrane. Membranes 

were rinsed three times in PBS and then incubated with 15 mL primary antibody 

(CroFab® - 1.0 mg/mL 3% BSA in PBS; or specific anti-myotoxin a antibodies raised in 

rabbits, 5 µL in 15 mL 3% BSA in PBS) overnight at RT with constant gentle shaking. 

The membranes were rinsed three times with Tris buffered saline (TBS, 0.05 M Tris-HCl, 

0.15 M NaCl, pH 7.4) and then secondary antibody (5 µL donkey anti-sheep IgG 

conjugated with alkaline phosphatase for CroFab®; 5 µL goat anti-rabbit IgG conjugated 

with alkaline phosphatase for anti-myotoxin a) in 15 mL TBS was incubated with the 

appropriate membrane for 60 min at RT with gentle shaking. Membranes were then 

washed four times with TBS and alkaline phosphatase substrate (SIGMAFAST™ 

BCIP®/NBT) in 10 mL of Millipore-filtered water (18.2 MΩ·cm MilliQ™ H2O) was 

added. The color reaction was stopped with 20 mM disodium EDTA in PBS after ~5 min. 

Membranes were washed in MilliQ™ H2O, dried and photographed. The same venoms 

(16 µg/lane) and myotoxin a (1, 3 and 5 µg/lane) were also run on a second 12% 

acrylamide NuPage gel under reducing conditions. This gel was stained with 0.1% 

Coomassie Brilliant Blue, destained and photographed. The 34 secondary samples were 

also subjected to electrophoresis using 12% acrylamide NuPage gel under reducing 

conditions. 
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SVMP Activity Assay 

SVMP activity of crude neonate (n=12), subadult (n=12), and adult (n=12) C. v. 

viridis venoms was measured colorimetrically using azocasein as a substrate. Briefly, 2.5 

µL of crude C. v. viridis venom (4 µg/µL), or 2.5 µL MilliQ H20 as a control, was added 

to 247.5 µL of azocasein (2 mg/ml) resuspended in assay buffer (50 mM HEPES, 100 

mM NaCl, pH 8.0). The reaction mixture was then incubated at 37 °C for 30 min. The 

assay was terminated by the addition of 125 µL of 0.5 M trichloroacetic acid, vortexed at 

room temperature, and centrifuged at 2000 x g for 5 min. Following centrifugation, 100 

µL of supernatant was mixed with 100 µL of 0.5 M NaOH and the absorbance was 

determined at 450 nm using a SpectraMax 190 plate reader. Assays for each sample were 

performed in triplicate, and activity was reported as ΔA450nm/min/mg protein. 

Statistical Analysis 

The percent abundance of myotoxin a and SVMP from all RP-HPLC runs was analyzed 

by Analysis of Variance (ANOVA) followed by Tukey’s post-hoc test using R version 

2.15.2. Similarly, SVMP activity was also analyzed by ANOVA and Tukey’s post-hoc 

comparison. Comparisons between age classes and between sexes were also analyzed by 

ANOVA and Tukey’s post-hoc comparison and two-tailed t-test. All p values <0.05 were 

considered as statistically significant. 

Results and Discussion 

The Venom Proteome of  
C. v. viridis 
 

In the current study, venoms of both male and female neonate and adult C. v. 

viridis, obtained from snakes from approximately the center of the species’ distribution 

(Fig.7.1), were characterized by venomics analysis. These four (primary) venom samples 
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(Fig.7.2), as well as the 34 additional (secondary) samples (Fig. 7.3), exhibited similar 

chromatographic profiles and toxin family composition (Table 7.1), but there is apparent 

variation in concentrations of specific toxins and protein families (Table 7.1). Venoms 

from all C. v. viridis examined shared compounds from 10 protein classes (Table 7.1; Fig. 

7.3), which are typically abundant in rattlesnake venoms [7]. In addition, some molecules 

were detected in only a subset of venoms, including an ohanin-like toxin [~ L. muta 

Q27J48], PI-SVMP [~ C. atrox Q90392], phospholipase B [~ C. adamanteus F8S101], an 

acidic PLA2 [P0DJM5], and the tripeptide inhibitors of SVMPs, ZNW and ZQW (Table 

7.1) [43-46]. Both endogenous inhibitors were primarily detected in neonate venoms 

(peaks 39* and 40* in panels C and D of Fig.2). Only ZQW was observed in adult female 

venom (peak 4, Fig. 7.2B), whereas tripeptide inhibitors were not seen in adult male 

venom (Table 7.1). Consistent with previous reports [44], the concentration of 

endogenous inhibitors correlates with the abundance of SVMPs in the venoms, as overall 

SVMPs (PI, PII, and PIII classes) were detected in higher percentages in both neonate 

venoms when compared to adult venoms (Table 7.1). This observation supports the view 

that the relatively low affinity endogenous tripeptides (Ki = 0.20-0.95 mM) [43] keep 

SVMPs functionally silent in the venom gland, and disengagement of this control occurs 

spontaneously at the time of the snakebite.  

The major toxins present in both adult and the neonate male venoms were peptide 

myotoxins (Table 7.1). There were no statistically significant differences in myotoxin a 

or SVMP content, or SVMP activity of crude venom, with regards to sex of the snake (all 

p’s > 0.05). However, there was a significant age-related change in myotoxin a content of 

the venoms, and neonate venoms contain significantly less myotoxin a than adult venoms 
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(Fig. 4; p = 0.05). Further, there was no significant difference between neonate and 

subadult (p = 0.74) or subadult and adult (p = 0.23) myotoxin a concentration. Both 

myotoxin a [P01476] and myotoxin 2 [P63175] were detected in adult male C. v. viridis 

venom, whereas only myotoxin a was found in adult female and neonate venoms. Small 

basic myotoxins represent a Nearctic and Neotropical crotaline innovation of a protein 

fold acting on the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum [47] and 

voltage-sensitive Na+ channels [12, 48-51]. These myonecrotic toxins primarily serve two 

biological roles: to limit the flight of prey by causing tetanic paralysis of the hind limbs, 

and to promote death by paralysis of the diaphragm [52, 53].  

SVMPs are present in the venoms of all families of venomous snakes, and 

analysis of this activity in all samples of C. v. viridis venom showed a significant age-

related decrease (Figs. 7.4A and 7.4B). For overall SVMP abundance, ANOVA showed 

significant differences when comparing neonate to subadult (p = 0.02) and neonate to 

adult venoms (p = 0.002), yet comparison of subadult to adult venoms was not 

statistically significant (p = 0.69). SVMP activity assays further support these results with 

both subadult and adults venoms showing significantly less activity when compared to 

neonate C. v. viridis venoms (both p’s < 0.001). There was no difference in SVMP 

activity between subadult and adult venoms (p = 0.61). Tryptic peptides recovered after 

in-gel digestion yielded ions matching the highly hemorrhagic PIII atrolysin-A [Q92043], 

first characterized from the venom of C. atrox [54], in the venoms of all four C. v. viridis 

examined here. Adult and neonate male venoms also yielded peptides matching an 

additional PIII-SVMP [Q9DGB9] from C. atrox, and one other PIII-SVMP in the 36 kDa 

range [C9E1S0] was detected in the venom of the neonate male. Peptides of PI-SVMPs, 
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which are less hemorrhagic than the higher molecular weight PIII-SVMPs [55], were 

only detected in the adult male and neonate male venoms (Table 7.1). However, analyses 

of peak 9 from all four individuals yielded a 3 kDa protein band (see Fig. 7.2 panel A, 

protein band 9) that was subjected to tryptic peptide mass fingerprinting, producing the 

ion YIELVVVADHR that matches a C. atrox PI-SVMP [Q90392]. The early HPLC 

elution of this peptide compared to the other SVMPs, in addition to the low molecular 

mass of the protein band, suggests possible degradation of these PI-SVMP enzymes, 

which exhibit an intact mass of 20-24 kDa. 

Disintegrins are platelet aggregation inhibitors commonly found in viperid 

venoms as the result of the post-translational proteolytic processing of PII-SVMPs [56]. 

In Crotalus, these non-enzymatic toxins have been shown to range from 0.1% of the 

venom proteome of C. tigris [57] to over 6% of the total venom proteome in C. atrox 

[58]. Stage-dependent down-regulation of the precursor metalloproteinases in C. viridis 

may account for the lower abundance of disintegrins in adult compared with neonate 

venoms.    

 C-type lectin-like molecules (CTLs), also known as snaclecs (snake venom C-

type lectins), are also present in C. v. viridis venoms (Table 7.1). Snaclecs have been 

reported to bind in a Ca2+-independent manner and via protein-protein interactions with 

coagulation factors IX/X, X and II, impairing their physiological roles in hemostasis. 

Snaclecs also reduce platelet function by inhibiting surface receptors such as the von 

Willebrand receptor, GPIb, and the collagen receptor, integrin α2β1, or by activating 

platelets via clustering of the collagen receptor GPVI so that they are removed from the 

circulation, producing thrombocytopenia [59]. Whether this class of toxins participates in 
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age- and gender-dependent prey-securing strategies, and how they participate, deserves 

further investigation.   

  Phospholipase A2 (PLA2) enzymes are one of the most heavily-studied venom 

toxin families to date [60] and contribute to local tissue damage due to myonecrosis, 

edema, and inflammation. However, a single venom may contain numerous PLA2 

isoforms, and each may exhibit varying biological effects. In this respect, protein masses, 

in addition to tryptic peptides, indicate the presence of multiple PLA2 isoenzymes in all 

four venoms examined. Thus, tryptic peptides matching that of the D49-PLA2 [Q9I8F8] 

were found in adult male venom (Fig.2A, peak 13); D49-PLA2 [Q800C3] was found in 

venoms belonging to both adult and neonate male snakes (Figs.7.2A and C, peaks labeled 

11). Peptides representing another D49-PLA2 [Q800C4] were seen in the adult male and 

female venom samples (Figs.7.2A and 7.2B, peaks 19 and 19a/b, respectively), and ions 

for D49-PLA2 [Q71QE8] and acidic PLA2 [P0DJM5] were present in the adult female 

venom (Fig.7.2B, peak 32*). 

 Cysteine-rich secretory proteins (CRISPs), which comprise 1.8 to 7.3% of the 

venom proteome of adult and neonate C. v. viridis (Table 1), represent another widely 

distributed protein family in snake venoms [61, 62]. Reported activities of some CRISPs 

include inhibition of smooth muscle contraction and cyclic nucleotide-gated ion channels; 

however, their role in envenomation and prey capture has not been established.  

 L-amino acid oxidases are flavoenzymes that catalyze oxidative deamination of 

L-amino acids to form corresponding α-keto acids, hydrogen peroxide and ammonia. Due 

to their wide distribution in snake venom, LAAOs are thought to contribute to the 

toxicity of the venom due to the production of hydrogen peroxide during the oxidation 
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reaction. In addition, LAAOs have been reported to induce platelet aggregation in 

platelet-rich plasma [63, 64], although the overall functional contribution to the 

envenoming process remains elusive. 

Several somewhat unusual venom constituents, including glutaminyl cyclase 

(GC) and phospholipase B, were found within the venoms of C. v. viridis and deserve 

further discussion. GCs may contribute indirectly to overall venom toxicity by 

catalyzing the N-terminal formation of pyroglutamate characteristic of several snake 

venom toxin families [65, 66] and thereby stabilizing them to endogenous scavenging 

mechanisms. These cyclases have also been documented in the proteomes of C. atrox 

[58, 67] and C. d. terrificus [68], as well as in the transcriptomes of C. adamanteus [69], 

B. jararaca [70] and the colubrids Boiga dendrophila and B. irregularis [71]. Snake 

venom gland GC is also likely involved in the biosynthesis of pyroglutamyl peptides such 

as bradykinin-potentiating peptides (BPPs) [72] that contribute to symptoms of 

hypotension experienced by snakebite victims [73], and of endogenous inhibitors of 

metalloproteinases, ZQW and ZNW, discussed above [44, 45]. Although GCs are found 

in low concentrations in snake venoms, the enzyme may play a significant role in post-

translational modifications of functionally important and abundant venom proteins. Thus, 

mature PIII-SVMPs and other venom proteins, eg. svVEGF 

(http://www.ncbi.nlm.nih.gov/protein/?term=svVEGF) and colubrid three-finger toxins 

[19], usually contain an N-terminal pyroglutaminyl residue, indicating that the action of 

glutaminyl cyclase is downstream of the proteolytic processing of the pre-pro-precursors.  

 Reverse-phase peak 28 of venom samples from the adult female and both neonate 

C. v. viridis (Figs. 7.2B-D) yielded numerous ions matching a phospholipase B (PLB) 
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from C. adamanteus (F8S101, J3S4V6; supplemental Table 1). The occurrence of PLB in 

snake venoms was initially reported by Doery and Pearson [74] and was characterized as 

being responsible for the high direct hemolytic activity of several Australian elapid 

venoms [75-77]. PLB molecules have been identified in the venom proteome of the C. 

adamanteus [78], B. atrox, B. jararacussu, B. jararaca, B. neuwiedi, B. alternatus, and B. 

cotiara [79], and Porthidium lansbergii [80]. The functional relevance of this class of 

proteins in envenomation, represents another intriguing topic that requires future detailed 

study.  

C. v. viridis Exhibits a Novel  
Pattern of Ontogenetic  
Venom Proteome  
Changes 
 

The ontogenetic compositional shift in C. v. viridis venom is characterized by a 

stage-dependent decrease of the relative content of SVMPs, disintegrins, catalytically 

active D49-PLA2s, and L-amino acid oxidase, and the concomitant increase in the 

relative abundance of small basic myotoxins, serine proteinases and an ohanin-like toxin 

(Table 7.1; Figs. 7.3-7.5). We focused on SVMPs and myotoxin a levels as these 

ontogenetic venom shifts may represent an age-dependent “strategy” for effectively 

securing prey, because the snake prey regime switches with age from newborn rodents 

and small ectothermic prey to larger endothermic prey. 

 PIII-SVMPs are often highly hemorrhagic, promoting prey immobilization and 

tissue necrosis by degradation of the basement membrane surrounding capillary vessels 

[81]. SVMPs occur in venoms of all families of advanced snakes, suggesting the 

recruitment and modification of an ADAM (A disintegrin and metalloproteinase)-like 

gene early in the evolutionary history of venomous snakes [82, 83]. Although these 
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enzymes are generally highly expressed in venoms within the Viperidae [84, 85], the 

venom of the Black-speckled Palm Pitviper, Bothriechis nigroviridis, a neotropical 

arboreal pit viper from Costa Rica, does not possess detectable Zn2+-dependent 

metalloproteinases and is unique among Bothriechis species by possessing a high content 

of neurotoxic PLA2 and vasoactive peptides [86]. These data suggest that distinct 

evolutionary solutions have evolved within the arboreal genus Bothriechis for the same 

trophic purpose, and it underscores the versatility of viperid venoms as adaptive traits. 

The evolutionary justification for the ontogenetic decrease of PIII-SVMP hemorrhagins 

in C. v. viridis is elusive, although it is tempting to hypothesize that their biological role 

has been successfully replaced by the paralytic action of small basic myotoxins, the 

locomotion-disrupting and hyperalgesia-inducing ohanin-like protein [87], and the 

hemostasis-disrupting serine proteinases [88]. These latter enzymes comprise the second 

most abundant venom protein family in both adult male (26.82%) and female (26.86%) 

C. v. viridis (Table 1).  

 Variation in the biochemical composition of venoms from different geographic 

locations and with age has long been appreciated by herpetologists and toxinologists [10, 

89-91]. Stage-specific venom proteins differentially expressed during ontogenetic 

development have been reported in just a few species, and in each taxa investigated a 

somewhat different pattern of ontogenetic changes has been described. The ontogenetic 

shifts reported here for C. v. viridis represent a novel pattern of age-related venom 

compositional transitions among viperid species. For example, in Bothrops asper, major 

ontogenetic changes involve a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom 

and the secretion in adults of a distinct set of PLA2 molecules than in the neonates [8]; 
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ontogenetic changes in the toxin composition of L. stenophrys venom results in the net 

shift from a vasoactive (bradykinin-potentiating and C-type natriuretic) peptide (BPP/C-

NP)-rich and serine proteinase-rich venom in newborns and 2-year-old juveniles to a 

(PI>PIII) SVMP-rich venom in adults [92]; age-dependent venom changes in C. simus 

involve a shift from a neurotoxic to a hemorrhagic venom phenotype [29]; conversely, 

Sistrurus m. barbouri showed little evidence for an ontogenetic shift in venom 

composition [93].  

 Although the environmental and molecular mechanisms that generate this age-

dependent venom diversity remain unclear [94], age-dependent changes in the 

concentration of venom gland microRNAs have recently been shown to influence the 

translation of venom proteins from genes transcribed in the venom gland [29]. While the 

generalization of this finding requires additional study in other species, 

posttranscriptional modulation of the venom transcriptome could conceivably contribute 

broadly to differential venom composition without large-scale alterations of the 

underlying gene expression machinery. 

Assessment of the  
Immunoreactivity  
of CroFab®  
 

In the United States, human envenomation due to snakebite is relatively rare, and 

CroFab® is the antivenom administered universally to treat bites. CroFab® is produced 

utilizing venoms from four different North American viper species, A. piscivorus, C. 

adamanteus, C. atrox and C. scutulatus. Venomic profiles of all four species used in 

producing CroFab® have been published (A. piscivorus: [95]; Crotalus adamanteus: [78]; 

C. atrox: [58]; C. scutulatus: [49]), and these species collectively show varying relative 
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concentrations of typical viperid venom protein families. For example, in C. atrox, the 

venom proteome consisted of nearly 50% PI and PIII-SVMPs, with approximately 20% 

serine proteases and 7% PLA2s [58]; this species lacked small basic myotoxins, which 

represent approximately 22% of the venom proteome of C. adamanteus [78]. In addition 

to small basic peptide myotoxins, PLA2s and SVMPs represent a significant proportion 

(~59%) of the overall venom composition of C. adamanteus. Further, venomics analysis 

of A. piscivorus showed that over 75% of venom proteins consisted of PLA2 (33.6%), 

SVMP (33.1%), and serine protease (13.2%) [95]. However, C. scutulatus shows 

significant venom compositional diversity, with several distinct venom phenotypes 

varying in overall composition and toxicity [49]; venoms containing high amounts of the 

presynaptic neurotoxin Mojave toxin are typically used in the production of CroFab® 

(pers. comm., SPM: R. Straight).  

Our antivenomic assessment of C. v. viridis venoms against CroFab® (Fig.7.6) 

showed that significant amounts of the peptides and proteins in early eluting HPLC 

fractions (1-8 of adult and neonate venoms, and peaks 39* and 40* of neonate samples) 

were not immunocaptured by CroFab® affinity chromatography (Figures 7.6C and 7.6F); 

several additional downstream protein peaks were also not immunodepleted from neonate 

venom (Fig. 7.6F).  Our venomic analyses indicate that these non-depleted HPLC 

fractions consist of bradykinin inhibitory peptides, myotoxins a and 2, and SVMP 

inhibitors. It has recently been shown that the BPP family of venom proteins from 

Lachesis species were also not immunocaptured by antivenoms developed at Instituto 

Vital Brazil (IVB) and Instituto Clodomiro Picado (ICP). In spite of this, caudal vein 

injection of BPP proteins in mice failed to demonstrate toxicity or elicit abnormal 
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behavior [96], suggesting that BPPs, even if not recognized by antivenoms, may not 

contribute to the often severe pathologies seen in viperid envenomations.  

The immunoaffinity antivenomics assessment of CroFab® indicated that it 

exhibits partial immunoreactivity towards small basic myotoxin a (Fig.7.6, panels C and 

F). However, Western blot analysis shows that CroFab® does recognize myotoxin a in the 

crude venoms of several species as well as the purified toxin from C. v. viridis venom, as 

does a specific anti-myotoxin a antibody (Fig. 7.7). Myotoxin a produces rapid tetanic 

contraction of skeletal muscles in prey [97], leading to rapid immobilization of prey, and 

the poor immunodepletion by the CroFab® affinity column suggests that this should be 

problematic during human envenomations. However, the amount of CroFab® utilized was 

relatively small compared to human dosages, and so if anti-myotoxin a antibodies 

represent only a small percentage of CroFab® antibodies, this deficit may be compensated 

by high clinical dosages. Further, case log data from the American Association of Poison 

Centers for rattlesnake bites in Colorado (C. v. viridis is the most probable source of 

bites) over four years (2010-2013) indicated no fatalities (0/175 cases); unfortunately, 

long-term data for snakebites is generally lacking from all health databases, so chronic 

effects cannot be evaluated. These data suggest that in spite of minimal 

immunodepletion, CroFab® did provide sufficient protection for patients. Although 

quantitative estimates of anti-myotoxin a antibodies are not yet available for CroFab®, 

our data show that CroFab® does contain significant amounts of antibody which 

recognize myotoxin a, whereas the antivenom previously used in the United States 

(Wyeth polyvalent Crotalidae) was shown to contain very low titers to myotoxin a [98]. 

The low recovery of SVMPs in the immunocaptured and the non-bound fractions of both 
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adult and neonate venoms contrasts with the clear immunoreactivity towards these 

components exhibited by CroFab® in Western blot analysis. This indicates that the high 

binding affinity of the antivenom for SVMPs likely prevents their elution from the 

column.  

The antivenomic analysis also indicated that CroFab® effectively recognizes and 

depletes other potent and abundant venom components, including PLA2s, serine 

proteases, LAAOs and SVMPs, indicating that the similarity in venom protein family 

representation in C. v. viridis venom and venoms of the four species utilized in CroFab® 

production is reflected in the immunoreactivity of this antivenom. While comparing the 

levels of immune recognition gathered from antivenomics with the in vivo neutralization 

capacity of an antivenom is not straightforward, since both experiments involve radically 

different protocols, in our experience, even a moderate immunocapturing capability of 

~20%–25% correlates with a satisfactory outcome in the in vivo neutralization tests [99]. 

Consistent with these observations, CroFab® shows high efficacy in treatment of human 

and domestic animal envenomations by C. v. viridis, including snakes from Colorado 

[100, 101], so even partial binding/recognition of myotoxin a by Fabs appears sufficient 

to ameliorate symptoms effectively.  

Concluding Remarks 

In this study we conducted venomic and antivenomic analyses of C. v. viridis 

(Prairie Rattlesnake), one of the most widely distributed rattlesnake species in North 

America. The previously reported LD50 of 1.55 µg/g (inbred mice) for C. v. viridis, 

coupled with the SVMP concentrations detected here, confirms C. v. viridis as possessing 

type I venom as described previously [7]. Ontogenetic variation in prey preference has 
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been reported in C. viridis [10, 27] and changes in diet are correlated with ontogenetic 

changes in venom composition in Pacific Rattlesnakes [10]. These age-related changes in 

venom composition may facilitate prey handling and possibly digestion [10, 11]. 

Although a common ontogenetic trend documented in rattlesnake venoms is a shift from 

a type II venom composition (high toxicity, low SVMP activity) in neonates to a type I 

venom in adults (lower toxicity, high SVMP activity), our results clearly indicate the 

opposite relationship for C. v. viridis, with overall SVMP concentrations being lower in 

venoms from adult snakes, and myotoxin (a and 2) concentrations being higher in adult 

samples. Further, classic venom paedomorphism [11, 12, 30] does not occur in this 

population, as venoms analyzed here do show age-related changes in composition. It 

should be noted, however, that total SVMP activity of venoms from this population of C. 

v. viridis are not particularly high when compared with several type I venoms [7, 10]. 

 Our antivenomics results show that CroFab®, developed against venom of three 

Crotalus and one Agkistrodon species, efficiently immunodepleted many of the major 

compounds present in C. v. viridis venom. Our antivenomics results show that CroFab®, 

developed against venom of three Crotalus and one Agkistrodon species, efficiently 

immunodepleted many of the major compounds present in C. v. viridis venom. Myotoxin 

a, abundant in both adult and neonate C. v. viridis venoms, did not appear to be 

efficiently immunocaptured during the antivenomics experiment, but Western blot 

analysis indicated that it is recognized by CroFab® as well as by the specific myotoxin a 

antibody. Considering the high efficacy of CroFab® in treating C. v. viridis snakebites, it 

appears that the relatively low immunoreactivity of CroFab® to myotoxin a is indeed 

sufficient for effective treatment of snakebite. The current study defines the venom 
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proteome of a discrete population of C. v. viridis from Colorado, but a more detailed 

population venomics study evaluating venom composition, and antivenom reactivity, of 

this species throughout its entire range (spanning 22° of latitude) may demonstrate 

distinct regional differences in venom protein family distribution, concentration, and 

immunoreactivity against existing antivenoms.  
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Table 
 
Table 7.1: Percent Abundance of Protein Families in C. v. viridis Venom. --, not detected; 
M ± SD, mean ± standard deviation 

 
Adult                     Neonate 

Male         Female   M (±SD)      Male         Female    M (±SD)         

Protein Family                               % of total venom proteins             

BPP    8.2  6.5 7.4 (0.8)       6.4   11.2      8.8 (2.4) 
Disintegrin     0.1  0.1 0.1 (0.0)       0.8    0.7      0.7 (0.1) 
CRISP    3.9  2.1 3.0 (0.9)       4.0    4.8      4.4 (0.4) 
C-type lectin   1.8  3.3 2.6 (0.7)       7.3    1.9      4.6 (2.7) 
PLA2    7.7              10.6 9.2 (1.4)     10.9  16.3    13.6 (2.7) 
• D49 PLA2   7.7              10.2 9.0 (1.3)     10.9  16.3    13.6 (2.7) 
• Acidic PLA2    --  0.4 0.2 (0.2)        --     --         -- 
Ohanin-like Toxin 0.5  0.6 0.5 (0.1)        --    0.2      0.1 (0.1) 
Myotoxin  38.1             35.6      36.9 (1.2)    25.2    5.7    15.5 (9.7) 
• Myotoxin a  37.5             35.6          36.6 (1.0)    25.2       5.7          15.5 (9.7) 
• Myotoxin 2  0.6  --     0.3 (0.3)       --      --         -- 
Serine Proteinase 26.8             26.9         26.8 (0.1)     18.2   20.6    19.4 (1.2) 
LAAO   1.9  2.5 2.2 (0.3)      7.6                    11.9      9.8 (2.1) 
SVMP               11.0             11.4        11.2 (0.2)      14.2   18.0          16.1 (1.9) 
• PIII SVMP               3.1              4.9 4.0 (0.9)       8.4     8.8      8.6 (0.2) 
• PII SVMP  0.9              3.7           2.3 (1.4)       1.7     6.9      4.3 (2.6) 
• PI SVMP  0.2   -- 0.1 (0.1)       0.8      --      0.4 (0.4) 
• PI SVMP fragments   6.6  2.9 4.8 (1.9)       3.4     2.3      2.9 (0.6) 

Glutaminyl Cyclase 0.1  0.1 0.1 (0.0)       0.8      0.1      0.5 (0.4) 

Phospholipase B  --  0.1 0.1 (0.1)       0.3      0.1        0.2 (0.1) 

SVMP Inhibitor   --          < 0.10     0.1 (0.1)       4.5      8.5      6.5 (2.0) 

• ZNW    --    --    --      3.0      5.7      4.4 (0.3) 

• ZQW    --           < 0.10 0.1 (0.1)      1.5      2.8      2.2 (0.6) 

___________________________________________________________________________________  
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Figures 
 

Figure 7.1: Geographic Distribution of C. v. viridis. Venoms from C. v. viridis used in the 
proteomic characterizations reported here were collected from Weld County, Colorado 
(indicated by the black dot).  
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Figure 7.2: Characterization of the Venom Proteomes of C. v. viridis. Panels A-D display 
reverse-phase HPLC separations of the venom proteins from an adult male, adult female, 
neonate male and neonate female snake, respectively. Fractions were collected manually 
and analyzed by SDS-PAGE (insets) under non-reduced (top gel panel) and β-
mercaptoethanol-reduced (bottom gel panel) conditions.  
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Figure 7.3: Combined Samples Representing Three Age Classes of C. v. viridis. These 
chromatograms essentially represent a graphical average of 12 individual venoms for 
each age class. A. Adult venoms. B. Subadult venoms. C. Neonate venoms. D. Overlay of 
chromatograms A-C; adult – black line; subadult - green; neonate - blue. Note that 
significant differences exist between adults and neonates, in particular the myotoxin a 
(myo a) and metalloproteinase (SVMP) peaks. 
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Figure 7.4: Age-related Changes in SVMP and Myotoxin a abundance in C. v. viridis 
venoms. A. SVMP and myotoxin a content of all 38 venoms analyzed (12 adult and 
subadult, 14 neonate) by RP-HPLC. Adult and neonate venoms differ in SVMP (p = 
0.002) and myotoxin a (p = 0.05) content; SVMP content of subadult venoms also 
significantly differed when compared to neonate venoms (p = 0.02), however there was 
no difference between subadult and adult venoms for myotoxin a or SVMP content (p’s = 
0.23 and 0.69, respectively). B. SVMP activity toward azocasein substrate. Consistent 
with the RP-HPLC-based content differences, neonate venom activity levels also differ 
statistically when compared to subadult and adult venoms (p < 0.001). SVMP activity 
was not significantly different between subadult and adult venoms (p = 0.61). 
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Figure 7.5: Protein Family Composition of Primary C. v. viridis venoms (adult male 281; 
adult female 288; neonate male 280; and neonate female 249). Pie charts represent the 
relative occurrence of proteins from the different toxin families as identified in the 
current work. Percentages below protein families represent the percent of the total RP-
HPLC-separated components found in C. v. viridis venom. BPP, bradykinin-potentiating 
peptide; Disi, disintegrin; CRISP, cysteine-rich secretory proteins; CTL, C-type lectin-
like; PLA2, phospholipase A2; LAAO, L-amino acid oxidase; SVMP, snake venom 
metalloproteinase; GC, glutaminyl cyclase; PLB, phospholipase B.  
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Figure 7.6: Antivenomic Analysis on a CroFab® Affinity Column. Panels A and D, RP-
HPLC separation of the venom proteins of one adult and one neonate male C. v. viridis. 
Panels B and C show, respectively, reverse-phase HPLC separations of the components 
of adult male C. v. viridis recovered in the bound and the flow-through fractions of the 
affinity column. Panels E and F show the affinity column immunocaptured and non-
retained protein fractions of neonate C. v. viridis venom, respectively. Protein peaks are 
labeled as in panels A (adult male) and C (neonate male) of Fig.2. Supplemental Table S1 
lists the proteins found in each chromatographic fraction. BiP, bradykinin inhibitory 
peptide; OHA, ohanin-like protein. Other acronyms as in the legend of Fig.3. 
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Figure 7.7: Western blot and SDS-PAGE Analysis.Panel A, venoms and myotoxin a on 
nitrocellulose were detected with either CroFab or specific anti-myotoxin a antibodies 
(rabbit). Note that myotoxin a is detected by both CroFab® and specific anti-myotoxin a 
antibodies. Panel B, SDS-PAGE analysis of the same venoms (16 µg/lane) and myotoxin 
a (1, 3 and 5 µg/lane) as in A. For both panels A and B, C. o. helleri and C. s. scutulatus 
venoms were included as myotoxin a-positive and negative controls, respectively. 
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Figure 7.8: Reducing SDS-PAGE of Secondary Venom Samples - 16 µg/lane. Protein 
families found in bands of specific masses [1,7] are indicated on the right. Note that 
although most bands are shared between all individuals, differences in intensities 
(representing differing concentrations) exist, particularly among P-III metalloproteinases, 
PLA2s and myotoxin a bands. 
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CHAPTER VII 
 

CONCLUSION 
 

As with so many disciplines in biological sciences, the fields of herpetology and 

toxinology have grown tremendously over the last few decades, largely due to advances 

in laboratory techniques. As venoms are shaped by numerous biological factors, most 

importantly diet, significant venom variation may be documented, at times even between 

individuals of the same species as they mature. These ontogenetic shifts in venom 

composition often accompany changes in diet and may correlate with a shift to more 

complex prey-handling behaviors (Mackessy 1988; Hammerson 1999; Hayes 1992). 

Chapter II of this dissertation clearly shows that chemosensory responses to prey-derived 

cues shift with snake age in C. v. viridis. In neonates, rates of tongue flicking were 

significantly higher to natural lizard stimuli when compared to tongue flick rates in sub-

adult or adult snakes. This response declined as snakes increased in size, however, and 

tongue flicking to natural rodent cues was significantly higher when compared to those of 

neonates. Chapter III provides additional evidence that these chemosensory behaviors are 

innate, and although responses to prey cues may be learned over time, the sample of 

stunted C. v. viridis analyzed, which never encountered natural prey items, responded 

significantly to natural prey stimuli. Being gape-limited predators, neonate rattlesnakes 

are limited primarily to taking small ectothermic prey, which they often obtain by a    

strike -and-hold predatory behavior.  However, it is likely that small ectothermic prey are 

not energetically favorable prey items for adult Prairie Rattlesnakes, and larger 
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endothermic prey would be more metabolically advantageous for these snakes to 

consume.  Yet, predatory encounters between adult rattlesnakes and larger endothermic 

prey present the risk of prey retaliation, which may be threatening to the snake. 

Therefore, adult rattlesnakes often utilize a strike-and-release mode of prey 

envenomation, which minimizes contact with potentially dangerous prey, yet creates the 

additional task of locating prey that has wandered from the attack site. Although it is 

reasonable to assume that snakes are opportunistic feeders in the wild, the ability to 

discriminate between chemical stimuli not only leads to location and capture of preferred 

prey, it also assists in the location of envenomated prey following the predatory strike.  

This ability to release potentially dangerous prey during predatory episodes, and 

then relocate this prey once it has succumbed to venom, is a remarkable behavioral 

adaptation seen among adult viperid snakes. In Chapter IV, I identify crotatroxin 1 and 2 

as the molecular components, disintegrins, of venom allowing for prey relocation in 

rattlesnakes. The downstream signaling that is the result of disintegrin-integrin 

interactions, ultimately leading to the release of chemical odor(s) detectable by 

rattlesnakes during prey relocation, deserves further attention. It is possible that upon 

disintegrin binding, a downstream signaling cascade causes a release of novel odors, or 

increase of already present odors, that are detectable by the snakes. Since disintegrins 

appear to be present in all viperid snakes, but absent from venoms of all other advanced 

snakes, it is hypothesized that the presence of this compound in venom has led to the 

evolution of the complex strike-and-release behavior. Further, as several species of vipers 

contain non-RGD and dimeric disintegrins, further studies should examine if these 
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compounds exhibit the same prey-relocation response as the monomeric disintegrins 

present in C. atrox.  

Disintegrins function by blocking an array of integrin receptors (Scarborough et 

al. 1993; Calvete et al. 2009), and the roles of integrins in numerous human pathologies is 

being examined continuously (Wehrle-Haller and Imhof 2003; Desgrosellier and Cheresh 

2010). The recognition that disintegrins have unique anti-cancer activity (e.g., Trikha et 

al. 1994) has led to a plethora of studies examining the therapeutic potential of these 

compounds (Zhou et al. 1999, 2000; Sánchez et al. 2009; Galan et al. 2008; Lucena et al. 

2011, 2012, 2015).  In spite of these numerous studies, significant differences with 

regards to disintegrin binding affinity towards specific integrin receptors provides a 

strong motivation to continue to examine snake venoms for novel disintegrins that may 

have application in biomedical research. In Chapter V, I use a combination of molecular 

and proteomics techniques to screen the venom of C. s. tzabcan for disintegrins, 

identifying six novel disintegrin sequences and isolating and characterizing the dominant 

isoform, named tzabcanin. Tzabcanin, a 7.1 kDa RGDN-containing disintegrin, showed 

only slight cytotoxicity toward human colon cancer (Colo-205) cells, but it inhibited cell 

adhesion of both breast (MCF-7) and colon (Colo-205) cancer cells to fibronectin and 

vitronectin. Although I was unable to identify the specific integrin(s) tzabcanin was 

binding to in these two cell lines, in Chapter VI integrin αvβ3 was identified as a binding 

site for tzabcanin in human melanoma (A-375) and lung (A-549) cancer cell lines. 

Further, by binding αvβ3, tzabcanin inhibited adhesion of both cell lines to the 

extracellular matrix protein vitronectin, and it inhibited cell migration over 24 hrs in A-

375 and 72 hrs in A-549 cells. These results support the potential for tzabcanin, and 
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perhaps other C. s. tzabcan venom disintegrins, to provide useful information toward the 

development of novel drug therapies. 

Venomics (venom proteomics) is a relatively new method for probing venom 

proteomes, and it provides in-depth analyses of venom composition which is a necessary 

early step toward identifying compounds that have potential medicinal value, and by 

coupling this with antivenomic methods, one can gain significant insight into antivenom 

efficacy and more effective methods for antivenom production (Calvete et al. 2009; 

Calvete 2010). The final research chapter of my dissertation (Chapter VII) examined the 

venom proteome of a very wide-spread species, C. v. viridis, revealing a unique pattern of 

ontogenetic shift in venom composition. In rattlesnakes, venom compositions often shift 

from neonates containing high toxicity and low metalloproteinase activity, to a lower 

toxicity and higher metalloproteinase activity seen in adults. However, venomic analyses 

of the current C. v. viridis samples indicate the opposite relationship, with overall 

metalloproteinase concentrations being lower in venoms from adult snakes, and myotoxin 

a and 2 (two potent rodent-specific toxins) concentrations higher in adult venom samples. 

Further, some unusual venom compounds were identified in the C. v. viridis venom 

proteome, such as phospholipase B and ohanin-like toxin. Although the biological roles 

of these two compounds remains largely unknown, the presence of these two proteins, 

combined with the novel ontogenetic shift in overall composition, may be correlated with 

prey preference for this population of C. v. viridis. Toxins with prey specificity have been 

documented (Pawlak et al. 2009), and it is hypothesized that the presence of specific 

compounds in the venom proteome of C. v. viridis are there to target distinct prey items. 

Further, antivenomics results suggested that CroFab® does not appear to immunocapture 
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myotoxins and other small peptides efficiently; however, Western blot analysis does 

indicate that these compounds are recognized by CroFab®. When considering the 

reasonably high efficacy of CroFab® in treating viperid snakebites, including those by C. 

v. viridis, it is likely that the relatively low immunoreactivity of CroFab® to myotoxin is 

indeed sufficient enough for effective clinical treatment following envenomation. 

In conclusion, the results from this dissertation provide a unique look into 

numerous facets of biological and toxinological research, from the feeding ecology and 

behavior of rattlesnakes, to the individual biological roles of venom components 

(disintegrins), to the anti-cancer effects of a single venom protein. Due to the presence of 

disintegrins in venom, rattlesnakes can use their exquisite chemosensory recognition 

abilities to distinguish between envenomated and non-envenomated prey. Interestingly, 

the same protein family that allows for prey relocation in rattlesnakes also exhibits 

unique anti-cancer functions by blocking integrin receptors, and disintegrins may provide 

a novel therapy for cancer treatment. Finally, proteomic analyses of C. v. viridis venom 

demonstrated a novel ontogenetic shift in venom composition and identified several less 

well known and less abundant venom compounds. Advancements in laboratory 

techniques will continue to unravel the mysteries of the many venom compounds, which 

still exhibit unknown functions, and may provide greater insights on the biological roles 

and potential medicinal values of this highly complex mixture of proteins and peptides.
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APPENDIX 

INSTITUTIONAL ANIMAL CARE AND USE 
COMMITTEE APPROVAL 

 
All animal research conducted was carried out under protocol #1302D-SM-S-16 

(S.P.M) approved by the Institutional Animal Care and Use Committee of the University 

of Northern Colorado.  
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