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Minimal cones on hypercubes
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Mathematics Department
Susquehanna University
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email: brakke@geom.umn.edu or brakke@susqu.edu

Abstract. It is shown that in dimension greater than 4, the minimal area hypersurface
separating the faces of a hypercube is the cone over the edges of the hypercube. This
constrasts with the cases of two and three dimensions, where the cone is not minimal.
For example, a soap film on a cubical frame has a small rounded square in the center. In
dimensions over 6, the cone is minimal even if the area separating opposite faces is given
zero weight. The proof uses the maximal flow problem that is dual to the minimal surface
problem.
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Primary: 49Q05 Minimal surfaces
Secondary: 49Q20 Variational problems in a geometric measure-theoretic setting
49N15 Duality theory
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1. Introduction.

Part of knowing the structure of minimal surfaces is knowing what kinds of singu-
larities are possible. By repeated magnification and a compactness argument, a singular
point can be shown to have a limiting shape, or tangent cone. A cone is an object that
is invariant under homothety from the origin. To be a candidate for a singularity type, a
conical surface must be minimizing in whatever class of surfaces is being considered.

The first nontrivial minimal tangent cone proven for hypersurfaces was the cone over
5% x 8% in R® in [BDG]. Jean Taylor [TJ] proved that the only two singularities possible
in soap films in R? have tangent cones that are three planes meeting at 120° or six planes
forming a cone over the edges of a regular tetrahedron. In particular, a soap film on a
cubical wire frame does not form a cone of twelve triangles meeting at the center; rather a
curved central square forms. Lawlor and Morgan [LM] show that the cone over the (N —2)-
dimensional skeleton of a regular simplex in R¥ is area minimizing among soap-film-like
hypersurfaces. This paper shows that for the corresponding problem for a hypercube in
dimension four or greater the cone is area minimizing. Thus the set of singularities in
higher dimension is much richer than just cones over regular simplices.

Many different soap films can form on a cubical frame. The ones considered here are
those that span the frame in the sense of separating all the faces of the cube from each
other. These surfaces can be regarded as the interfaces between several immiscible fluids,
one for each face. The problem can be generalized to permit different surface tensions
between different pairs of fluids. This paper considers the following problem:

1. The domain is a hypercube in R" centered at the origin with side length 2.

2. The hypercube is partitioned into 2N regions with each face belonging to a corre-
sponding region.

3. The area of the boundary between regions of adjacent faces has weight 1, and the
weight of the boundary between regions of opposite faces is a nonnegative value T
The weights correspond to the surface tensions between fluids.

4. The goal is to minimize the weighted boundary area.

Note that there are no volume constraints on the regions. In the fluid interpretation, this
means that all the regions are connected to external resevoirs at equal pressure.

The results may be summarized in terms of the critical tension 7T,, defined as the least
value of T' for which the cone is minimizing;:

N=23: T, =2
N=4: 0.545 < T, < 0.94
N=5: T. < 0.5
N=6: T, <0.13
N>7: T, =0

The upper bounds for N = 4,5,6 are rather crude, but suffice to show the cone is mini-
mizing for plain area for N > 4.



2. Notation and geometry.

N is the dimension of the ambient space, R".

The hypercube is the region [—1,1]%.

The coordinates will be grouped into an (N — 2)-component vector x, and coordinates
y and z. When attention is focused on a pair of opposite faces, they will be the z = 1
and z = —1 faces. The generic third face will be the y = 1 face. When there is a central
square, it will be in the z = 0 plane.

m-dimensional surfaces will be represented as normal m-currents [FH, 4.1.7]. Currents
are the dual space of differential forms, and normal currents are those representable by
integration, i.e. if w is an m-form and S is a normal m-current, then there is a Radon
measure ||S|| and a ||S||-measurable m-vectorfield u such that ||u|| = 1 almost everywhere
with respect to ||S]|| and

/w:/<w,u>d||S||.
S

The measure ||S|| is the area measure of the current. All currents hereafter are assumed
to be normal currents. The forms w dual to normal currents are those for which both
w and dw are representable by locally bounded Lebesgue measurable covectorfields. For
convenience, (N — 1)-forms will be represented as their dual vectorfields.

In a problem with M regions to be separated, a face tuple F' is taken to be a set
of (N — 1)-dimensional currents Fy,..., Fy. A dividing surface H for F will be a set of
currents H;; = —H,; for 1 <i # j < M such that

F; + Z H;; = 0B; for some N-current B; for each i.
J

For a dividing surface H to exist, it is sufficient that ). F; be the boundary of some region.
The F; will be the faces of a hypercube in this paper. Signed coordinate subscripts may
indicate the face; for example F, is the z = 1 face and F_, is the z = —1 face.

The unit vector from the origin to the center of face F; is e;.

The face-cone of a face is the cone whose base is the face and whose vertex is the
origin. The cone over the hypercube is the dividing surface where H;; is the boundary
between the face-cones of F; and F}, oriented as positive boundary of the face-cone of F;.

Each face tuple will have associated with it a set of real numbers (interface energies)
aj; = a;; > 0 for 1 < i # j < M. The mass of a dividing surface H is the sum of the
weighted areas of the interface components:

mass(H) =3 / aydl | Hig |-
i<g
A flow V for F is a set of divergenceless vectorfields vq,..., vy such that
|vi — vj| < aij pointwise in RY.

Here divergenceless means f@B v, = 0 for any N-current B. The flux of V through F' is
fluz(F, V) = Z/ vi.
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Signed coordinate subscripts may indicate the face a vectorfield is associated with; for
example, v, is associated with F).
A formulation that would work equally well would be to require for a dividing surface
that
OF; + Z 0H;; =0 for each 1,

J

and that the vectorfields of a low correspond to exact forms.

3. Maximal flow.

Upper bounds on area can be found by constructing explicit surfaces. The dual
problem to finding a minimal surface spanning a boundary is to find a maximal flow
through the boundary. This is a continuous version of the duality between maximal flows
and minimal cuts in network theory. Full duality is proved in a limited context by Federer
[FH2] and more widely in [BK1]. We will not need the full duality, but just an easily
proved part of it, so we may use explicit flows to find lower bounds on area. The partial
duality is expressed in the following theorem, due to Lawlor and Morgan [LM] in the case
of constant vectorfields.

Theorem 3.1. Suppose F' is a face tuple. Then
inf{mass(H)|H is a dividing surface for F'}

> sup{ fluz(F, V)|V is a flow for F'}.

Proof. Suppose F' is a face tuple, V is a flow for F', and H is a dividing surface for
F. Then

mass(i) = 3 [l il = 3 [ v, =vildll ) 2 X [ v,

1< 1<g 1<
= Z/ —-V; = Z/ v, = fluz(F, V).
it 7 Hid i VF

Remark. In the case that a flow V is maximal (for example, when its flux is the
same as the mass of a known dividing surface), then each H,; of an absolutely minimizing
dividing surface must have its support in the critical set K;; where

Kij = {33 € R™: |Vz' — Vj| = aij}.

In cases where there are multiple absolutely minimizing dividing surfaces (as in section
5), the critical sets for each maximal flow must contain the supports of all those dividing
surfaces.

4. Cones are minimizing for 7 > V2.

As a simple example of the use of Theorem 3.1, one can easily prove:
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Theorem 4.1. If N > 2 and T > /2 then the cone over the hypercube is absolutely
minimizing.

Proof. The cone has area 2V~1\/2N. The vectorfields v; = ei/\/ﬁ form a flow for F'
and have total flux 2¥—1y/2N. Therefore the cone is absolutely minimizing. i

5. Dimension 2, T < /2.

The minimal surface H here is well known to consist of five line segments, four from
the corners meeting the ends of a segment through the origin. There are two possible
orientations of the surface, with the central segment horizontal or vertical. Suppose it to
be horizontal. Then the endpoints are at

T T
14+ ——00 and 1———.0].
( Va-T7 ) ( Vi-T7 )

The total mass (weighting the central segment by T', recall) is 2T 4 2v/4 — T2.
A maximal flow can be defined as follows:

S (0.T/2).  ve.=(0.-T/2).

T=T771,0) for y > ||,
T/2,—\/1-T2/4+T/2) forz>0,—2<y<z,

(
_
v (T/2 V1-T2/4-T/2) for 2 <0, —|z| <y < |z,
(T 1-T2/4,0) for y < |z|.

A%

Define v_, to be the reflection of v, in the z axis. Note that v, changes direction when
it hits the diagonals of the square in such a way as to conserve flux, so it is divergenceless.
The total flux is 27 + 2v/4 — T2, so the configuration H is absolutely minimizing.

The existence of a maximal flow does not prove uniqueness of the minimal surface,
as the existence of two orientations of H here clearly shows. But for equality to hold in
Theorem 3.1, the normals of H must be parallel to v; — v; where |v; —v;| = a;;. The flow
given here restricts the normals to just a few directions, whence it can be proved the two
orientations are the only solutions.

6. Dimension 3, T < V2.

For T' = 1, one gets experimentally the soap film with a rounded central square. This
surface has eight curved sections with unknown equations, so finding a flow to prove it
optimal would be extremely difficult. By calculation with my Surface Evolver program
[BK2], it has area approximately 16.598, which is less than the cone area 16.971. So I
cannot prove it absolutely minimizing, but it does show the cone is not. The question is,
does raising the surface tension in the central square make it disappear for some T' < /27
The answer is no.



Theorem 6.1. For T < /2 there exists a spanning surface whose area is less than that
of the cone.

Proof. The cone has mass 12v/2. The surface H constructed will have the general
shape of the cubical soap film, but with the curved faces being cylinders with generator
z =y +clogy, where ¢ > 0. Note that z = 1 at y = 1, so the surface fits the cubical frame.
The surface hits the central square at 0 = yg + clog yg. The total mass of the surface is

1 1
mass(H) = 16/ V14 22ydy + 8/ V2zdy + 4Ty?
Yo Yo

1 2 1
:16\/5/ \/y2+cy+%dy+8\/§/ y+clogydy+4Ty§
Yo Yo

1 2 1

c c

§16\/§/ y+§+@dy+8\/§/ y+c]0gydy+4Ty§
Yo Yo

1— 2 1— 2
:16\/5[ 2y0+c( Qyo)—%logyo}

1
+8V2 [ logyo + Cyo] +4Ty3

=12v2(1 — 42) — 2V2 log yo — 8V 2¢yq log yo + 4Ty3

2
=12v2(1 —9) - Qﬁlozéoy + 8V2y5 + 4T3,
0

Thus we have mass less than the cone for

2
_4V2? — 2\/510?;0% ATy <0

or

T<V24 ——
\/_logyg

We can pick g as small as we please and still get ¢ > 0, thus getting comparison surfaces
for all T < /2. |

These surfaces make no attempt to have zero mean curvature, so they are probably
not good guides to the size of the central square. A much better approximation to the
actual optimal surface would probably come from linearizing the minimal surface equation

(1+ zi)zm — 22,2y 2y + (1 + 22) 24y = 0
for z =y + h(z,y) for small h. This gives
g + hyy = 0.
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A solution could be
_ 2 2 2 2
z =y + clog(z® + 2y°) — clog(z* + 2(2 — y)*).

The last term is there to make z = 1 at y = 1 and will be neglected hereafter. An accurate
area for this surface is much tougher to calculate than the one used above. But, assuming
it is a good approximation to the optimum, we can find 7" from the contact angle at z = 0.
Take * = 0. Then z =~ y + clog2y?, dz/dy ~ 1+ 2¢/y and 0 = yo + clog(2y?). So
Z'(yo) = 1 — 1/ log(2y2). Further, from a balance of forces argument,

T 1

2 J1+27
80

1
T~ V3 (1 i 7) ,
log(2y3)
SO

1 -1
o —exp| ———— | .
o= g P (2\/5(\@ —~ T))
None of this proves that the optimum surface actually has a central square; it just
proves that the cone is not minimizing.

7. Dimension 4 comparison surfaces.

The comparison surface H here will be the four dimensional analogue of the cube film
with a central “square” of side length 2y¢, 12 curved cylindrical surfaces meeting the sides
of the square (one of positive z and one of negative z on each of its 6 faces) and 12 flat
surfaces joining the edges of the cylindrical surfaces. A nice, simple formula for the curve
doesn’t seem to work, so I apply some calculus of variations to find the optimal cylinder
and numerically integrate.

The cylinder generator curve will be y = y(z) for 0 < z < 1. The total mass will be

1
1
mass(H) = 48/ (14 9y 22 + —(1 —y?)dz + 8Ty3.
0

V2

The Euler equation turns out to be

, (y4 _ 26y2 _ C2)1/2
y - y2—+—C

where ¢ is an arbitrary positive constant. Some numerical results (with T,,, being the
maximum 7" for which mass(H) < mass(cone)):

c Tmaz‘ Yo
0.00000001  0.54490  0.00016650
0.00000010  0.54470  0.00052648
0.00000100  0.54407 0.00166449



0.00001000  0.54208  0.00525974
0.00010000  0.53577  0.01659466
0.00100000  0.51561  0.05210906
0.01000000  0.44970 0.16151862
0.10000000  0.21227  0.49201093

Note that there seems to be an upper bound on T, which we will see in the next
section to be real.

8. Flows for dimension > 4.

The flows constructed in this section will show that the cone H over the hypercube
is minimizing. The reason cones are minimizing in higher dimensions is that the flow can
spread out before running into the flow from the opposite face.

The flow in the face-cone of Fj; is v; = ei/\/g. The rest of the low has to be more
carefully built. The flow v, for the face F, will be constructed; the flows for the other
faces are similar. Of v, the portion of the flow through the face-cone of the face F, will
be detailed, with the flows through the other adjacent face-cones being symmetric. In the
face-cone of F,, the coordinates are (x,y, z), where 0 <y <1, |z;| <y, and |z| < y. To
take advantage of radial spreading, the flow at (x,y,z) will have the form (ax/y,a, ),
where a(s,t) and f(s,t) depend on s = x/y and t = z/y. Hence the flow is invariant under
homothety, just as the cone is. Several conditions must be satisfied:

1. The flux through H,, must match on both sides. The normal of H,, is e, — e,, so

1/\/§:ﬂ—a at z = y.
2. The flow is divergenceless. This translates to
(N —2)a—tas+ = 0.
3. Bounded difference from the flow V,, = ey/ﬁ of face Fy:
a’s? 4+ (1/V2—a)? + 82 < 1.
4. Bounded differences from the flows belonging to the other faces adjacent to both F,
and F,. This turns out to be a consequence of condition 3.
5. Bounded difference from the flow of the opposite face F'_,:
[V, —v_y| < 1.
6. Bounded difference from the flow of the opposite face F'_, in the face-cone of F_,:
v, —v_,| <T.

For fixed s, we can numerically integrate conditions 2 and 3 (taken as equality) from
the initial condition a = 0, g = 1/\/§ at ¢ = 1 in the direction of decreasing ¢ until the
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flow is radial at some t., f/a =t.. At this point, there is no flux across the ¢t = ¢, plane,
and the vectorfield can be cut off.

Note that condition 3 is most stringent at the maximum value of s2, which is N — 2.

For N = 4, the flow becomes radial at t, ~ —.81 for s> = 2. The difference between
v, and v_, has its maximum value of 0.9333 at z = 0. Hence condition 6 at z = 0 is
satisfied if T' > .9333. Take the flow to be null for ¢ > T, and in the face cone of F_,. This
makes condition 5 easily satisfied.

For N =5, the flow becomes radial at ¢, ~ —.297 for s> = 3. The difference between
v, and v_, has its maximum value of 0.4974 at z = 0. Hence condition 6 at z = 0 is
satisfied if 7" > 4974. It T > 1/\/5, the flow for ¢ < t. can be left as null. Otherwise,
to satisfy condition 6, some flow of v, will have to be put through the face-cone of F_,.
Make this part of the flow (—/2 + T)e,. Continue it into the face-cone of F, in the same
manner as before, starting at ¢ = —1. By numerical integration, this flow goes radial well
before t, for T' > T, = 0.4974. Hence the cone is minimal for T > 0.4974.

For N = 6, the situation is like that for n = 5, with t. = —0.059 and T, =~ 0.12.

For N = 7,8, the numerical integration shows that the flow becomes radial for . > 0,
so the flow does not reach the z = 0 plane. Adjoin to v, its reflection in the z = 0 plane.
Now v, = v_,, so condition 6 is satisfied for T' = 0, and condition 5 becomes equivalent
to condition 3. Hence the cone is absolutely minimizing for 7' > 0.

For N > 9. one can take

V2(1 - 1)
n+1
(n—1)(1-t?% V21—t 1

S TR RS VR

3

for 0 < ¢ < 1 and the reflection for —1 < ¢ < 0. These satisfy all the conditions and g =0
att=0,s0 T, =0.

These flows are relatively crude, and further work will improve the upper bounds on
T.. Almost certainly T, = 0 for N = 6, and possibly for N = 5. But these results are
sufficient to show that the cone over the hypercube is absolutely minimizing for plain area
(T =1) for N > 4. Further, note that condition 3 need be equality only at z = y, which
shows that the cones are the unique absolutely minimizing dividing surfaces.
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