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CLEFTING IN A PUMPKIN BALLOON

Frank E. Baginski**, Kenneth A. Brakke®, and Willi W. Schur®

2Department of Mathematics, The George Washington University
Washington, DC 20052, USA

bMathematics Department, Susquehanna University,
Selinsgrove, PA 17870, USA

°P.O. Box 698,
Accomac, VA 23301, USA

NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long
Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circum-
stances, it has been observed that a pumpkin balloon may be unable to pressurize into the
desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state
instead. Long term success of the pumpkin balloon for NASA requires a thorough understand-
ing of the phenomenon of multiple stable equilibria and means for quantitative assessment of
measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the
concept of stability to classify equilibrium shapes of fully pressurized/fully deployed strained
balloons. Our mathematical model for a strained equilibrium balloon, when applied to a shape
that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in
Spring 2003, this pumpkin balloon failed to deploy properly. Small scale testing suggests that
increasing the number of gores n, and utilizing a minimal bulge radius increases the likelihood
of deployment problems. Hoop stress considerations in the pumpkin design lead to choosing the
lowest possible bulge radius rg, while robust deployment is favored by a large bulge radius. In
an effort to quantify this dependency, we will explore the stability of a family of balloon shapes
parametrized by (ng,7p) which includes a design that is very similar, but not identical, to the
balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other
aspects related to multiple equilibria of pumpkin balloons.

1. Introduction

NASA’s Phase II and Phase III Ultra Long Duration Balloons (ULDB) were constant bulge
radius pumpkin designs (see [1]) that fully deployed once they reached their respective float
altitudes. Other factors shortened the length of these missions, but here we are concerned with
deployment related issues only. See [2] for more on ULDB flights. The Phase IT pumpkin had a
volume of 51,450 cubic meters and 145 gores. The Phase IIT pumpkin had a volume of 68,526
cubic meters and 150 gores. During test flights for the NASA Phase IV-A design, a much larger
balloon with 290 gores and a volume of about 0.6 million cubic meters, the balloon did not fully
deploy in Flight 517. A cleft that was observed in the launch configuration, was maintained
throughout the ascent phase, and remained once the balloon reached maximum altitude. See
Figure 1(a) for a snap-shot of the Flight 517 cleft. Testing of small scale balloons under constant
pressure at sea level in a controlled environment suggest that increasing the number of gores n,
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Figure 1. (a) Flight 517 Cleft (Photograph courtesy of the NASA Balloon Program Office); (b) Pumpkin gore

with lay-flat configuration.

(a) (b)

increases the likelihood of deployment problems. Furthermore, adding sufficient extra material to
the gore width can also lead to an undesired equilibrium configuration, even when the balloon
is fully pressurized. Ground tests suggest that the location of the extra gore width is also
important. Extra gore width added near the mid-latitudes is more likely to lead to a deployment
problem than extra gore-width added near the equator. See [3]| for more on tests involving small
pumpkin balloons.

In the 1980°s during the race for the first circumnavigation of the globe, Julian Nott was
one of the first researchers to tackle the problem of undesired equilibrium shapes in a pumpkin
type balloon. Nott’s vehicle, called the Endeavour, was a 64 gore constant bulge shape pumpkin
balloon. By constant bulge shape, we mean that the radial rays that bound the circular bulge
sweep the same angle anywhere along the gore. When fully pressurized during ground tests,
the Endeavour did not attain the desired configuration and only after 4 gores were removed
did it attain a cyclically symmetric equilibrium configuration. Using a stability analysis based
on the hydrostatic pressure potential energy and ignoring strain energy, researchers in [4] and
[5] attempted to explain the failure of the Endeavour to achieve the equilibrium state that was

intended.
In the present work, we will consider the stability of equilibrium configurations of pumpkin

balloons, where the balloon system is modeled as an elastic membrane with load tendons. Wrin-
kling of the membrane is modeled by energy relaxation. The total energy of the balloon includes
the hydrostatic pressure potential, film and tendon gravitational potential energy, film strain
energy and tendon strain energy. We calculate equilibrium configurations via an energy mini-
mizing approach (see Section 2) and then carry out a stability analysis of equilibria that were
found. If H(S) is the Hessian of the potential energy of the balloon evaluated at equilibrium
configuration S, then we say S is stable if all the eigenvalues of H(S) are positive. See Section 3
for the definition of stability. Our stability results are compared with the Calledine stability
results and available experimental data in Section 4.4.

In Section 4.3, we present a detailed analysis of a two-parameter family of pumpkin balloons
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that includes a balloon design that is similar to that of the balloon used in Flight 517. We
find that the fully inflated/fully deployed configuration of our model that mimics the balloon
of Flight 517 is unstable. In fact, this configuration is right on the border separating the stable
and unstable equilibria. In addition, we analyzed a shape that was based on the lay-flat pattern
and tendon local lack-of-fit that was used in the construction of Flight 517’s balloon. We found
this equilibrium shape, as well, to be unstable under float conditions. See Section 4.1.

One of the difficulties analyzing pumpkin balloons with significant excess material is handling
regions of self-contact. In Section 4.5, we consider a pumpkin balloon with significant excess
material, so much so, that it is impossible for the balloon to assume a cyclically symmetric
equilibrium shape.

It is probably safe to say that the number of gores and the bulge radius in a pumpkin design
are important design parameters. However, there is very little experimental data available that
allows one to characterize how a change in one of these parameters will affect the stability of a
corresponding equilibrium configuration. Keeping in mind the assumptions made, Callendine’s
stability approach is a reasonable first estimate. However, our model is more comprehensive
and provides a more detailed picture of the stability, including parameter dependencies.

2. Finite element model

In this section, we formulate the problem of determining the equilibrium shape of a strained
balloon. We have applied this model to pumpkin balloons and we refer the reader to [7] for a
more detailed exposition.

In the following, we will assume that a balloon is situated in such a way that the theoretical
center of the bottom of the pneumatic envelope is the origin of a Cartesian coordinate system.
A balloon has ng gores and we assume that y = 0 is a plane of reflectional symmetry. The nadir
fitting is fixed, and the apex fitting is free to slide up and down the z-axis. The nadir fitting
and the apex fitting are assumed to be rigid. The total potential energy £ of a strained inflated
balloon configuration & is the sum of six terms,

ES)=Ep+ &+ &+ Eop+ Si + S} (1)
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Ep is the hydrostatic pressure potential due to the lifting gas, £ is the gravitational potential
energy of the film, & is the gravitational potential energy of the load tendons, &, is the
gravitational potential energy of the apex fitting, S; is the relaxed strain energy of the tendons,
and S} is the relaxed strain energy of the balloon film, P is the differential pressure at the base

of the balloon where z = 0, b is the specific buoyancy of the lifting gas, dS = ndS , n is the
outward unit normal, dS' is surface area measure on the strained balloon surface, wy is the film

weight per unit area, w; is the tendon weight per unit length, 7 € IR? is a parametrization of a
deformed tendon I' € S, wy,, is the weight of the apex fitting, 2,y is the height of w;.,, W7} is the

relaxed film strain energy density, W} is the relaxed tendon strain energy density. Relaxation
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of the film strain energy density is a way of modeling wrinkling in the balloon film and has been
used in the analysis of pumpkin shaped balloons in [7].
To determine a strained equilibrium balloon shape, we solve the following,

Problem x:  min&(S).
Sec

C denotes the class of feasible balloon shapes. Boundary conditions are built into C. In the
present work, we will assume the differential pressure is in the form P(z) = —bz — P, and that
P, is known. We follow the convention that —P(z) > 0 means that the internal pressure is
greater than the external pressure. Here, the continuum problem is cast as an optimization
problem. This approach is particularly well-suited for the analysis of compliant structures.
Problem x was implemented into Surface Evolver, a C-program developed by the second author
(see [8]). Surface Evolver is a software package for interactive study of curves and surfaces
shaped by energy minimization. We used Surface Evolver to calculate solutions of Problem x
and to determine the stability of the solutions found.

3. Stability

The degrees of freedom (DOF) in a faceted balloon shape S are the coordinates of the facet
nodes that are free to move. Let @ = (z1,2,...,2y) be a list of the DOF. Let £(x) be the
total energy of a balloon configuration S = S(x). The Hessian of £ evaluated at « is the N x N
matrix of second order partial derivatives of &,

2
Hg(g)défyg(m):[836‘;(@], 1=1,2,...,N, j=1,2,...,N. (8)
Ul

When a volume constraint is imposed, Eq. (8) must be modified. Depending on the mesh
size and number of gores, NV is between 85,000 and 350,000 in our studies. However, H is
sparse. The lowest eigenvalue of H was calculated by inverse iteration. The matrix H — tI
was sparse Cholesky factored, with the shift value ¢ chosen to guarantee positive definiteness.
The factored matrix was then used to iteratively solve (H — tI)xmn + 1) = x,, starting with a
random vector x, until the iteration converged, almost certainly producing the eigenvector of
the lowest eigenvalue. See [10, Section 11.7, p. 493].
Next, we define the stability of an equilibrium shape S.

Definition 3.1 Let S = S(x) be an equilibrium configuration, i.e., a solution of Problem x.
We say S is stable if all the eigenvalues of Hg(S) are positive. We say S is unstable if at least
one eigenvalue of He(S) is negative. We say that the stability of S is indeterminate if the lowest
eigenvalue of He(S) is zero.

4. Parametric Studies

We begin by giving an overview of the shape finding process and the setup of Problem x. We
will focus most of our attention on designs related to Flight 517. Parameters relevant to the
Flight 517 design are given in Table 1.

There are twelve parameters that go into the shape finding process for a pumpkin balloon:
number of gores (p; = n,), bulge radius (p; = rp), constant pressure term (ps = Fp), buoyancy
of lifting gas (ps = b), length of Cap 1 (p5 = ¢1), length of Cap 2 (ps = co), film weight
density (pr = wy), Cap 1 weight density (ps = w,,), Cap 2 weight density (py = w,,), tendon
weight density (pio = wy), suspended payload (p1; = L, includes weight of nadir fitting), and
apex fitting weight (p12 = wyep). See [1] for more on the pumpkin model. Typically, material
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Table 1

(a) Shape finding parameters (b) Material properties for strained equilibrium
Description Variable Nominal Value
Number of gores p1 =Ny 290
Bulge radius P2 =TB 0.78 m Description Variable Value
Constant pressure term ps = P 130 Pa Film Youngs modulus ¢ = Ey 404.2 MPa
Buoyancy pr=>b 0.087 N/m3 Film Poisson ratio ¢ =vy 0.830
Cap 1 length ps =01 50 m Cap 1 Youngs modulus ¢35 = E,, 216 MPa
Cap 2 length Pe = Co 55 m Cap 1 Poisson ratio gs = V¢, 0.830
Tendon weight density  pr = w; 0.094 N/m Cap 2 Youngs modulus ¢5 = E., 216 MPa
Film weight density Pg = Wy 0.344 N/m? Cap 2 Poisson ratio Q6 = Ve, 0.830
Cap 1 weight density Pg = W, 0.184 N/m? Tendon stiffness g = E; 0.650 MN
Cap 2 weight density — pjg = w., 0.184 N/m> Tendon slackness gs = € —0.008 m/m
Payload pi1 =1L 27.80 kN
Top fitting weight P12 = Wiop 0.79

properties such film modulus and Poisson ratio do not enter directly into the shape finding
process. We define the shape finding vector, to be

P = (plap2a"'ap12)
= (ngarB:PO:baclaC27wf7wclawcgawtaLawtop)- (9)

The shape finding parameters that were used for the Flight 517 design are presented in Ta-
ble 1(a). Once a set of values are assigned to p, the pumpkin design shape S;(p) C IR® and

the corresponding lay-flat pattern Q(p) C IR? are determined. For Flight 517, we find that the

volume is 0.59 million cubic meters, the tendon length is 155.30 m and the gore seam length is
155.93 m.
The three-dimensional shape Sy(p) is discretized (call it Sy(; p)), and Sy(x; p) is used as the

initial guess for solving Problem x and determining the corresponding strained equilibrium shape,
denoted by S(x;p) or S(p). The tendon length is the edge length of S;(p). By construction,
the edge of the lay-flat pattern Q(p) is longer than the tendon length. To accommodate this
lack-of-fit, the film along the seam is gathered before the tendon is attached. Note, local lack-
of-fit varies along the length of the seam (i.e., more material must be gathered near the equator
than near the gore end).

If the unstrained tendon has no slackness, each segment length in the tendon should match
the corresponding length in S;. However, to model the tendon/film mismatch properly, we
should allow for tendon slackness or additional tendon shortening and so we introduce the
tendon uniform slackness parameter ¢;. In particular, if ¢, = 0.005, then a tendon segment
must strain 0.5% before it comes under tension. If ¢, = —0.005, then each tendon segment
length is shortened by an additional 0.5% beyond the local lack-of-fit due to the S;(p) and Q(p)
mismatch. In theory, ¢, = 0, but to illustrate sensitivity to this parameter, we set ¢ = —0.008
for the nominal case.
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We are most interested in investigating the stability of equilibria of pumpkin designs as a
function of (ngy, rp), and for this reason, we define the following family of balloon designs

Hd = {{Sd(p), Q(p)},pl € {48, 49, ... ,350}, fB(pl) < p2 <00, P3,P4,-..,P12 S€E Table 1(&)}(10)

where 7g(ng) is the minimal bulge radius for a design with n, gores. For convenience, we will
refer to a particular design in Il;, by indicating the number of gores and the bulge radius. For
example, {S5;4(290,0.78),€2(290,0.78)} refers to the Flight 517 design. If a parameter is not
explicitly written out, it will be our convention that it is assigned the value in Table 1. Note,
most of these designs are not practical. Analyses of these cases merely allow exploration that
aid our understanding of the causes of the instabilities that are of concern.

Once a design has been defined, then we can carry out a stress analysis of that design for
some applied load. Coming into play at this stage are other properties such as the film Youngs
modulus (¢; = Ef), film Poisson ratio (g2 = vy), Cap 1 Youngs modulus (¢35 = E,,), Cap 1
Poisson ratio (¢4 = v,,), Cap 2 Youngs modulus (¢5 = E,,), Cap 2 Poisson ratio (¢s = v.,),
tendon stiffness (g7 = E;), and the tendon slackness parameter (gs = ¢;). We define

q = (qlana"'aQS)
= (Efayf:ECUUCUECZaVCQaEtaGt)- (11)

Nominal values for g are presented in Table 1(b). Once p and g are specified, we can proceed
to the problem of solving Problem . Note, the shape determination process and the solution of
Problem x are separate processes, and so it possible to use p in the shape finding process, and
vector p’ in the solution of Problem x. While p is usually chosen with a particular g in mind, one
might also use another vector ¢’ in the solution of Problem x. The shape finding process and p
defines the lay-flat gore pattern (p) and provides a three dimensional shape S;(p) that is used
for determining the strained equilibrium shape which will be denoted by S(p’, q',2(p)). In our
stability studies involving II;, we will consider nominal parameter values for q. After solving
Problem * with a design {S4, 2} € I, we will then classify the resulting strained equilibrium
configuration § according to Definition 3.1.

4.1. Analysis of Flight 517 Design

Although the gore pattern generated by the model in [1] was very close to the pattern used
by the manufacturer to build the Phase IV-A balloon, we thought it prudent to analyze a shape
that was as close as possible to the fabricated Phase IV-A balloon. For this reason, we obtained
the gore pattern and tendon lack-of-fit that was used to build the Flight 517 balloon and input
these data into our model along with the parameters as presented in Table 1. We found that the
equilibrium shape using this design for float conditions and nominal parameters was unstable
by Definition 3.1. We reduced the number of gores to 282, retained the same gore pattern,
and found that the corresponding equilibrium shape was stable. This suggests that stability is
sensitive to extra gore width material.

4.2. Molded Super-gore

Since our model predicted that the Flight 517 balloon was unstable, we considered a pumpkin
design that was based on the “molded super-gore” construction discussed in [9]. In the molded
super-gore approach, one achieves the effect of a molded gore by seaming together a number of
different long flat warped sheets of film. After seaming together the warped panels, the resulting
super-gore edge has the proper length so that local film/tendon lack-of-fit is not necessary. In this
particular study, we assumed the balloon had 288 gores. We found that the nominal pumpkin
balloon led to an unstable equilibrium configuration at float conditions. On the other hand, a
pumpkin balloon, using the molded super-gore construction, was found to be stable at float. See
Table 2. While the molded super-gore construction is not feasible for large pumpkin balloons,
there are applications, such as small planetary balloon missions, where the additional time and
fabrication costs are worthwhile (see [9]).
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Table 2
Stability of a nominal pumpkin balloon with one lay-flat panel per gore versus a pumpkin balloon based on a

molded super-gore construction.

Pumpkin gore design Nominal Molded

Lowest eigenvalue of He —1.478  0.857

4.3. A two parameter family of designs.

To investigate the sensitivity of a pumpkin balloon equilibrium shape to a change in the
number of gores or the bulge radius, we generated a family of shapes Il;, using the default
values in Table 1 and varied (ng,rp). We then computed an equilibrium configuration for
each design, modeling one-half of the balloon. Each equilibrium configuration was classified as
stable or unstable according to Definition 3.1. The results are plotted in Figure 2. A stable
equilibrium S(ng,7p) is covered by a square and an unstable equilibrium is covered by a dot.
Note the location of §(290,0.78) (the shape that mimics the balloon of Flight 517) is on the
border between stable and unstable equilibria. See Figure 2.

If there is no additional fore-shortening in the unstrained tendon and there is no slackness in
the tendons, ¢, = 0. We analyzed the designs in II; using nominal parameter values in Table 1,
except we set ¢, = 0. The results are plotted in Figure 3, where we see that the region of
unstable equilibria has been reduced, but not eliminated. Note, in Figure 3, we have plotted
100 < my, <350 and 0.5 < rp < 2.1.

4.4. Comparisons with experimental data

In an earlier work, Calledine investigated the stability of pumpkin shape super-pressure bal-
loons of the constant bulge shape design and presented his findings in a formula for a stability
limit. Plotting Callendine’s formula, M. Smith of Raven Industries compared several pumpkin
balloons of different design schemes to Calledine’s stability limit. This comparison was repro-
duced and added to in [3, Figure 5]. We have included this presentation in Figure 4, and have
added our findings for nominally constant bulge radius designs. We designate stable designs by
square symbols and unstable designs by stars. Our stability limit is the border separating the
symbols for stable and unstable designs.

We note that Calledine investigated the behavior of constant bulge shape balloons via a two
dimensional proxi-model. He calibrated the formulation obtained from his model on a few data
points obtained from a constant bulge shape balloon. His stability limit is a curve in a two-
parameter plot. The parameters are the ratio (S/C) and the number of gores. C is the chord
distance between adjacent tendons. The arc length between adjacent tendons as measured along
the bulging gore is denoted by S. Calledine predicts that constant bulge shape designs that fall
below his limit line are stable and_those that fall above the limit line are unstable. In the case
of a constant bulge shape design the ratio S/C is a constant. We include constant bulge radius
designs by plotting against the ratio max(S/C) which occurs at the equator.

Calledine’s derivation of the formulation for the stability limit was based on an inextensional
model for which there is no strain energy hence there is no second variation of strain energy.
He observed that for such a case, the principal of the Minimum Total Potential Energy reduces
for a pneumatic envelope to a maximum volume rule. This rule is exact for the fictitious case
of inextendable materials and within limits approximate in the case of elastic materials with
very little compliance. It worked well for Calledine in his semi-empirical investigation where
the structural materials of the pneumatic envelope were fixed. Given the analytical capability
of the era, Callendine’s simplification was enabling. We also note that a constant bulge shape
design by Raven Industries falling near Calledine’s stability limit exhibited at (supposedly) the
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Figure 2. Regions of stability for II; variations on Flight 517 baseline.
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design pressure robust stable behavior but under further pressurization became unstable and
migrated into a distorted equilibrium shape. The structural materials of the Raven balloon were
different from those for the balloon used by Calledine for calibration. This is remarkable. There
is, however, reason to assert that in the case of elastomeric materials the approximate rule would
fail even in a semi-empirical investigation.

Included in Figure 3 are the Phase II, Phase III, and Phase IV-A balloons of NASA’s ULDB
program and a number of 48 gore test vehicles. The Phase II and Phase III balloons deployed
properly. Of two Phase IV-A balloons, the first flown in Summer 2002 in Palestine, Texas
deployed. The second, Flight 517NT flown in Spring 2003 in Australia failed to fully deploy.
After launch it displayed a large primary cleft that did not fully disengage when reaching float
altitude. The designs of both Phase IV-A balloons were identical. We note that there are,
of course, fabrication induced variations from balloon to balloon. Both, the Phase Il and the
Phase III balloons were nominally constant bulge radius designs. They are inside or near the
stable territory of Calledine’s stability plot for constant bulge shape designs. The Phase IV-A
balloons, also nominally constant bulge radius designs, are inside or near unstable territory for
Callendine’s stability curve. Our investigation places the Phase IV-A balloon right at the border
that separates stable designs from unstable designs.

There are a number of 48 gore test vehicles plotted on Figure 3. Some of them deployed
properly, some did not. The designs of these test vehicles differed from each other both in bulge
radius and bulge radius distribution over the gore length. In each case, however, max(S/C)
occurs at the equator. The purpose of this minimal test program was to learn what features of
gore design are most and least detrimental to proper deployment.

4.5. Extreme geometries

Suppose we are given a gore pattern §2(p) based on shape finding vector p with p; = n,. If we
increase the number of gores in the “fabricated balloon” sufficiently high (i.e., choose pj >> p1),
and then attempt to inflate that balloon, it is unlikely that one will observe a cyclically symmetric
shape. This is akin to what Julian Nott observed in the Endeavour. Similar shapes can also
be observed in some of the experiments in [3]. Computationally, this is a difficult problem to
model due to the balloon coming into self-contact. Partially inflated natural-shape balloons with
significant regions of self-contact were studied in [6]. However, the ascent configurations of zero-
pressure balloons have “fin-like” structures where excess film can fold up in a very natural way.
To demonstrate the complexity of modeling this scenario for pumpkin balloons with significant
excess material, we generated a gore pattern {2 for a 6.6 meter diameter pumpkin balloon with
bulge radius rg = 0.112 m and n, = 96. However, instead of using 96 copies of {2 to assemble
the balloon, we used 128 copies. The constant pressure term was Py = 200 Pa, but under this
load (or any realistic load), the resulting equilibrium shape is quite complicated. We computed
one representative shape to demonstrate our capabilities. We assumed that the 128 gore balloon
had D, dihedral symmetry, i.e., four symmetric large scale lobes. Each large scale lobe consisted
of 32 gores that were symmetric about a bisecting plane that contained the z-axis. Thus, we
needed to model only 16 gores. The equilibrium shape computed with 16 gores was unstable.
A 16-gore half-lobe is shown in Figure 5. The complete shape is shown in Figure 6. Note,
there is significant excess material in this configuration. Increasing the pressure will not yield
a cyclically symmetric shape. Unlike the ascent shapes of zero-pressure balloons where excess
material appears to hang in vertical planes containing the fin-like structures, Figure 6 appears
to have a twisting mode.

5. Conclusions

While the results presented in this paper are not sufficient to predict whether a particular
balloon design will or will not deploy, instability of the fully inflated/fully deployed strained
equilibrium configuration at float conditions appears to be an indicator for an unfavorable de-
ployment. The balloon designer is inviting trouble if a selected design leads to an unstable
equilibrium configuration at float. For if the desired float shape is a cyclically symmetric un-
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Figure 4. Comparison of BBS-stability and Calledine stability. Calledine stability curve is reproduced from [3,

Figure 5]. Additional experimental and flight data are annotated in the figure. D-deployed; F-failed deployment.

BBS stability criteria sum.dat

2 T T T T T T T
Reproduced from Figure 5 *  BBS Unstable
Schur—Jenkins AIAA-2002-1205 o BBS Stable
based on data from M. Smith/Raven Ind * Flight 517
1.8 Calledine |
unstable
above Flight 517 (Phase IVA (F))
curve (ng, S/C) = (290, 1.17)
16k g = 4%Gore 1 m radius model (D) 1
<D> < 4%Gore’ﬁ10dels 1,2 (FF)
o a
%) o o g x % % * e . w, K
5 g «
S 14} € « 48 gore &)nst@u@e ra%ll ) % % |
o o0bg * oA e * w Y
Oo o o0 x F e
o E ooB80n als e ¥
oo ¥ *
O gogad O O O e pie
0oog OoO0Opoo=g¥ %) Yo
E O30ppo0g% * o x
- pBb O UHBopooBog%Xw® x K X
[ | 0o0gg %% A
1.2 > « 48 Gore mode% O g OHg ¥ kX X -
e D O O g x 0%x x
A u Q H 00 . %
. Q O = H E %
Calledine - g I % X
stabe = Phas%llng 0 ¥ = -
1 curve EfHEHEEEPEEEEoEEEn o B
1 1 1 1 1 1 1
0 50 100 150 200 250 300 350



Clefting in pumpkin balloons

Figure 5. One-eighth of an unstable equilibrium configuration of a 128 gore balloon.

Figure 6. An unstable equilibrium configuration of a 128 gore balloon.
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stable equilibrium configuration, and the real balloon corresponds, in all aspects including the
pressurization state to the analytical model, then the balloon should not even be able to attain
that cyclically symmetric float shape through a normal ascent. The successful deployment of
the Phase IT and Phase III balloons, and the failed deployments of Phase IV and Phase IV-A
type balloons support our assertion. Ultimately, it would be desirable to develop guidelines
and dependable tools that would enable the balloon designer to a determine the proper balloon
that will safely and reliably meet the flight requirements for a long duration balloon mission,
including proper deployment. Although not all the necessary preliminaries are provided in this
paper, our results support the case that the development of such design aids is within reach.
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