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ABSTRACT

Zeinab, Jamil H. An Affine Invariant Signed-Rank Multivariate Exponentially Weighted
Moving Average Control Chart for Process Location Monitoring. Published
Doctor of Philosophy dissertation, University of Northern Colorado, 2013.
Multivariate statistical process control (SPC) charts for detecting possible shifts in
mean vectors assume that data observation vectors follow a multivariate normal
distribution. This assumption is ideal and seldom met. Nonparametric SPC charts have
increasingly become viable alternatives to parametric counterparts in detecting process
shifts when the underlying process output distribution is unknown, specifically when the
process measurement is multivariate. This study examined a new nonparametric signed-
rank multivariate exponentially weighted moving average type (SRMEWMA) control
chart for monitoring location parameters. The control chart was based on adapting a
multivariate spatial signed-rank test. The test was affine-invariant and the weighted
version of this test was used to formulate the charting statistic by incorporating the
exponentially weighted moving average (EWMA) scheme. The test’s in-control (IC) run
length distribution was examined and the IC control limits were established for different
multivariate distributions, both elliptically symmetrical and skewed. The average run
length (ARL) performance of the scheme was computed using Monte Carlo simulation
for select combinations of smoothing parameter, shift, and number of p-variate quality
characteristics. The ARL performance was compared to the performance of the

multivariate exponentially weighted moving average (MEWMA) and Hotelling T2. The



control charts for observation vectors sampled the multivariate normal, multivariate t, and
multivariate gamma distributions. The SRMEWMA control chart was applied to a real
dataset example from aluminum smelter manufacturing that showed the SRMEWMA
performed well. The newly investigated nonparametric multivariate SPC control chart
for monitoring location parameters--the Signed-Rank Multivariate Exponentially
Weighted Moving Average (SRMEWMA)--is a viable alternative control chart to the
parametric MEWMA control chart and is sensitive to small shifts in the process location
parameter. The signed-rank multivariate exponentially weighted moving average
performance for data from elliptically symmetrical distributions is similar to that of the
MEWMA parametric chart; however, SRMEWMA’s performance is superior to the
performance of the MEWMA and Hotelling’s T2 control charts for data from skewed

distributions.
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CHAPTERII

INTRODUCTION

Statistical quality control (SQC) is a powerful set of problem solving tools that
includes acceptance sampling, statistical process control, design of experiments, and
capability analysis (Lowry, Woodall, Champ, & Rigdon, 1992). Statistical quality
control plays a critical role in modern manufacturing and production environments and
dominates every aspect of most processes in any discipline (Montgomery, 2009; Woodall
& Montgomery, 1999). Statistical process control (SPC) utilizes the use of control charts
that are useful in monitoring process variability and improving capability through
reduction of variability. Since reducing process variability is the primary goal, control
charts play a pivotal role in SPC and utilize statistical estimation, inference, and control
schemes (Montgomery, 2009). These schemes evolved from monitoring a single quality
characteristic to two or more related quality characteristics. Variability analysis is a
statistical problem and control chart development has evolved with increasing modern
day of data acquisition, distributional assumptions, and computational capabilities
(Lowry et al., 1992). Therefore, the scope of SPC control charts is ever-changing to take
advantage of the increased amount of available data and the use of nontraditional
methods such as nonparametric methods, which are particularly useful in a data-rich

environment (Woodall & Montgomery, 1999).



The purpose of this study was to develop a new affine invariant spatial signed-
rank multivariate exponentially weighted moving average (SRMEWMA) control chart
and compare the performance of the test to traditional parametric counterparts like the
Hotelling’s T2 for different distributions. The author expanded on this purpose as well as
defined and explained relevant terms used in this study in chapters Il and IlI.

Statistical process control (SPC) was pioneered by Walter A. Shewhart (1931) in
the early 1920s at Bell Telephone Laboratories and was later used by Edward Deming
(1950) during World War 11 to improve quality in the manufacturing of war munitions
and other products. Deming went on to introduce SPC to Japanese manufacturers in the
1950s after the war ended; he is widely credited with much success in quality
improvements in the Japanese industry (Deming, 1950; Montgomery, 2009).

In product manufacturing, there are two sources of variation--chance causes and
assignable causes. The first cannot be economically identified and corrected; whereas,
the second can be identified and corrected (Chakraborti, van der Laan, & Bakir, 2001).
Statistical process control is a statistical method used to monitor and control a process in
order to improve process performance and reduce variability in key parameters
(Montgomery, 2009). Shewhart (1931) introduced control charts as primary tools in SPC
and pioneered statistical quality control through the design of experiments. The most
common assumption since Shewhart introduced the control chart was that the underlying
process behaved in statistically normal fashion or followed the theoretical normal
distribution.

When a manufacturing process operates only under chance or random variation, it

is said to be in a state of statistical control. Statistical process control and control charts



help to identify and eliminate assignable causes and insure that the process in a state of
control. However, when there is a change in process, control charts are expected to
quickly detect this change and signal out-of-control. The faster the chart signals, the
more efficient it is (Chakraborti et al., 2001).

Univariate control charts were developed to monitor Phase | implementation of
statistical process control where the process is likely to be out of control and experiencing
assignable causes that result in large shifts in the monitored parameters (Montgomery,
2009). The Shewhart (1931) chart for monitoring the mean of a process consists of a
centerline at the historical process level along with upper and lower control limits based
on the mean +/- 3 sigma (standard error) limits where the standard error is estimated from
the sample means. Process means are plotted over time; there is an out-of-control signal
when any sample mean plots outside the 3-sigma control limits.

A major disadvantage of a Shewhart (1931) style control chart is that it uses the
information from the last sample and ignores the information provided by the sequence of
prior points (Prabhu & Runger, 1997). Shewhart charts are inefficient in detecting small
shifts in the process mean. Two control charts, the exponentially weighted moving
average (EWMA) and the cumulative sum (CUSUM), were developed to take advantage
of all available observation sequences for a single variable of interest. Both charts are
used when detecting a small shift is desired.

The cumulative sum or CUSUM control chart procedure was described by
(Montgomery, 2009; Page, 1954) as the accumulation of the deviations from a process
mean that is above the target with one statistic and the accumulation of the deviations that

is below the target with another statistic. These two statistics are the upper and lower



CUSUMs. Another good alternative to the Shewhart control chart in detecting small
shifts in the process mean is the EWMA control chart that was first proposed by Roberts
(1959) at the Bell Telephone Laboratories. The EWMA’s performance is equivalent to
that of CUSUM but EWMA s easier to setup (Graham, Chakraborti, & Human, 2011).
The EWMA scheme is a geometric weighted moving average of all past and current
observations; according to Montgomery (2009), it is very robust to normality
assumptions, which makes it an ideal control chart to use with individual observations.
Multivariate control charts are an extension of their univariate counterparts and
are used to detect a shift in the process mean vector of several process variables. The chi-
squared control chart was described by Hotelling (1947). The average run length (ARL)
performance of a chi-squared control chart is easily analyzed from the central and non-
central chi-squared distribution of the control statistic in in-control and out-of-control
cases. The average run length has a geometric distribution with a mean equal to
ARL = 1/p, where p is the probability of a single observation being out of control limits
(Prabhu & Runger, 1997; Runger & Prabhu, 1996). The Hotelling’s chi-squared control
chart is the multivariate extension of the classical Shewhart control chart. The
Hotelling’s chi-squared control chart also suffers from the same disadvantage because it
uses the information from the most recent observation and ignores the information
provided from the prior sequence of points. Unfortunately, the Hotelling’s chi-square
chart is not sensitive to small shifts of the mean vector. The MEWMA or multivariate
exponentially weighted moving average is the multivariate extension of EWMA and is

ideal for use when simultaneously monitoring two or more correlated quality



characteristics that are jointly described by a multivariate normal distribution
(Montgomery, 2009).

In contemporary statistical process control, the use of control charts is a prevalent
tool for monitoring manufacturing processes. The monitoring problem is closely related
to the test of hypotheses for one-sample location problems (Ho: 6 = 0y vs. Hy: 6 £ 60). An
observation plotting within the control limits is equivalent to failing to reject the null
hypothesis of statistical process control and an observation plotting outside the control
limits is equivalent to rejecting the null hypothesis of statistical process control. These
process-monitoring control charts are seldom based on single variables or characteristics;
it is common to monitor several variables simultaneously (Stoumbos & Sullivan, 2002;
Zou & Tsung, 2010). In practice, most processes involve simultaneously monitoring
several related variables recorded with online computers or advanced data collection
procedures (Montgomery, 2009). Designing individual control charts to monitor a
process based on univariate variables when there are several related variables is
misleading, inefficient, and leads to distorted control charts (Montgomery, 2009; Qiu &
Hawkins, 2001). The probability of Type I error and the probability of a point correctly
plotting in control are not equal to nominal levels.

Parametric multivariate control charts are designed based on assumptions of
normality where p variables are jointly described by a multivariate normal distribution
(Montgomery, 2009; Zou & Tsung, 2010). If a set of p variables is assumed to be
independent and the probability of Type I error for joint control, ' = 1 — (1 — a)?, as
well as the probability that all variables means will simultaneously plot inside their

control limits when the process is in control, P{all p means plot in control} = (1 — a)?



can be computed. However, if the variables are dependent, then the above probability
functions do not hold and there is no easy way to measure the distortion in the joint
control procedure (Montgomery, 2009). According to Montgomery (2009), the
multivariate control charts work well when the number of variables is small (10 or less).
As the number of variables grows, traditional multivariate control charts lose efficiency
with regard to shift detection.
Nonparametric Perspective

In nonparametric analysis, very little or nothing can be said about the probability
of obtaining future data beyond the largest sample observation or less than the smallest
observation. For this reason, the actual measurements of a sample item mean less
compared to its rank within the sample. In fact, nonparametric methods are typically
based on ranks of the data and the properties of the population are deduced using order
statistics (Kvam & Vidakovic, 2007).

Traditional statistical methods are based on parametric assumptions, i.e., the data
can be assumed to be generated by some well-known family of distributions such as a
normal, exponential, or Poisson distribution. Each of these distributions has one or more
parameters, at least one of which is presumed unknown and must be inferred (Kvam &
Vidakovic, 2007). For example, the famous classical multivariate inference method of
Hotelling’s T2 is based on a sample mean vector and covariance matrix; therefore, it is
optimal under multivariate normality assumptions, poor in efficiency for heavy-tailed
distributions, and highly sensitive to extreme observations (Zou & Tsung, 2010).
Nonparametric alternatives to Hotelling’s T? based on sign and rank scores have

promising efficiency and robustness properties for heavy-tailed and light-tailed
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distributions (Nevalainen & Oja, 2005; Sirkia, Taskinen, Nevalainen, & Oja, 2007). The
term nonparametric was first coined by Jacob Wolfowitz (1942), saying,

We shall refer to this situation where a distribution is completely determined by

the knowledge of its finite parameter set, as the parametric case, and denote the

opposite case, where the functional forms of the distributions are unknown, as the

nonparametric case. (p. 247)

The terms nonparametric and distribution-free are not synonymous. Popular
usage, however, has equated them. A nonparametric test is one that makes no hypothesis
about the value of a parameter in a statistical density function; whereas, a distribution-
free test is one that makes no assumptions about the precise form of the sampled
population (Bradley, 1968). According to Randles, Hettmansperger, and Casella (2004),
“Nonparametric statistics can and should be broadly defined to include all methodology
that does not use a model based on a single parametric family” (p. 561).

Analysts limited to basic statistical methods can be trapped into making
parametric assumptions about the data that are not apparent in the analysis or the data. In
the case where the analyst is not sure about the underlying distribution of the data,
statistical techniques are needed that can be applied regardless of the true distribution of
the data. These techniques are called nonparametric or distribution-free methods (Kvam

& Vidakovic, 2007).

Purpose of the Study

The main purpose of this study was to explore the viability of a new
nonparametric multivariate statistical control chart for process monitoring where the
process monitoring p quality characteristics were not multivariate-normally distributed.
Hence, the goal was to develop a multivariate exponentially moving average (MEWMA)-

type control chart that used nonparametric signed-rank statistics as the unit of



measurement, weighted statistic, and charting statistic. Extending the research of Zou
and Tsung (2010) using the affine sign and Zou, Zhou, Wang, and Tsung (2010) using
the spatial rank, the control chart used an affine signed-rank test statistic
(Hettmansperger, Mottonen, & Oja, 1997; Oja, 2010) to develop a new affine invariant
spatial sign-rank MEWMA control chart or, hereafter named, the spatial signed-rank
multivariate exponentially weighted moving average (SRMEWMA) control chart. The
objective of the SRMEWMA control chart was to detect small shifts in the process
location vector. Using simulation, the ARL performance of the SRMEWMA control
chart was studied and compared to that of the Hotelling’s T2and MEWMA.

As with any multivariate control chart, the goal of the SRMEWMA control chart
was to quickly detect small shifts in the process location vector. The quick detection
helped bring the process back into the in-control state earlier and avoided producing
faulty products. The performance of the SRMEWMA control chart was evaluated based
upon its average run length (ARL) using Monte Carlo simulation. In addition, the
performance of the control chart or its ARL was compared to that of Hotelling’s T> ARL
and MEWMA'’s ARL.

Rationale for the Study

In practice, there is no assurance that the quality characteristics or variables are
normally distributed and the multivariate control charts designed using the traditional
methods relying on the normality assumption will provide misleading results and false
alarms (Lowry et al., 1992). Multivariate nonparametric or robust control charts
designed using spatial sign, rank, and signed-rank statistics seem to offer an attractive

viable option to traditional methods (Zou & Tsung, 2010; Zou et al., 2010).



Asymptotic Relative Efficiency

Several forms of the spatial sign and sign-rank tests were developed based on
different location estimates by Peters and Randles (1990), Hettmansperger et al. (1997),
Oja (1999), Randles (2000), Hettmansperger and Randles (2002), and Oja and Randles
(2004). The asymptotic relative efficiency (ARE) of both sign and signed-rank tests were
extensively studied by Peters and Randles (1990), Mottonen, Oja, and Tienari (1997),
Mottonen, Hettmansperger, Oja, and Tienari (1998), Mottonen, Oja, and Serfling (2004),
Mahfoud and Randles (2005), and Nordhausen, Oja, and Tyler (2006).

Peters and Randles (1990) suggested a signed-rank test modifying Randles’
(2000) sign test. Peters and Randles showed that the signed-rank test appeared to be
robust and performed better than its competitors (Randles’ sign and Hotelling’s T? tests)
for light-tailed distributions as well as Hotelling’s T test for the MV/N distribution.
However, for heavy-tailed distributions, Randles’ sign test was more powerful, although
the signed-rank test performed well relative to Hotelling’s T?. They went on to show that
when p = 2 or 3, the power of the signed-rank test appeared to be uniformly high.

Mottonen et al. (1997) studied the efficiencies of the spatial sign and spatial
signed-rank tests with respect to Hotelling’s T? test for the multivariate t-distribution with
selected values of degrees of freedom and selected dimensions and the multivariate
normal distribution (df = «0). They found that the signed-rank test dominated the
asymptotic relative efficiencies (ARES) of the sign test for the multivariate normal case;
however, for small values of degrees of freedom (heavy-tailed distributions) with high

dimension, the sign test was better.
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Mottonen et al. (1998) showed and calculated the AREs for a multivariate affine
invariant signed-rank test under MVVN and multivariate t-distributions (MV t). They
showed that the signed-rank test had better ARE for multivariate normal and multivariate
t-distribution with modest to large degrees of freedom (10+) when compared to the
Hoteling’s T test.

Mahfoud and Randles (2005) introduced a signed-rank statistic and its null
asymptotic distribution and demonstrated that it had strong efficiencies over a wide
spectrum of distributions, ranging from very light-tailed to heavy-tailed ones. They
showed that it performed as well or in many cases better than its competitors. Mahfoud
and Randles also showed that their signed-rank test statistic, in which they modified
Randles’ (2000) affine sign test, had better ARE properties than Randles’ sign test
statistic, which was also used by Zou and Tsung (2010) to develop their multivariate
sign-based EWMA control chart.

If the ARL performance of the spatial sign-rank MEWMA or SRMEWMA
control chart could be efficient in monitoring and controlling a process location vector, a
viable nonparametric multivariate control scheme alternative would provide a potential
remedy for non-normally distributed data. An expanded rationale section follows in the
review of literature in Chapter II.

Research Questions

This dissertation addressed the following questions:

Q1 How will the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
scheme be designed for the in-control average run length (ARLg)?
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Q2  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance for different number, p, of monitored related quality
characteristics?

Q3  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance for different values of the smoothing parameter 1?

Q4  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance for different sizes of shift in a process location vector?

Q5  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance compared to the Hotelling’s T> and MEWMA control chart

scheme for elliptically symmetrical (multivariate normal and multivariate
t) and skewed distributions (multivariate gamma)?

Delimitations of the Study

Two phases were used in multivariate statistical process control (SPC)--Phase |
and Phase Il. In Phase I, also called retrospective analysis, m samples of individual
observations (n = 1) or sample means (n > 1) were used to estimate the location vector
and covariance matrix in order to establish the control limits for Phase II--the monitoring
process (Montgomery, 2009). This study focused on Phase Il monitoring only and
assumed that all of the historical observations used in establishing the in-control (IC)
estimates of location and covariance matrix were independent and identically distributed
(iid; Zou & Tsung, 2010). Therefore, this study did not address Phase | issues as they
were beyond the scope of this study.

In addition, there were many multivariate distributions that could be simulated to
study the performance of the SRMEWMA control chart; however, in the interest of
brevity, this study relied on the recommendations of Stoumbos and Sullivan (2002) and

Mottonen et al. (1997) for generating data from the MVN, t, and gamma distributions.
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Definitions

Affine invariance. A property of a test that ensures the value of the test statistic
remains unchanged following rotations of the observations about the origin.
Average run length (ARL). The average number of consecutive points that must
be plotted before an out-of- control condition is signaled.

Center line (CL). An element of statistical process control corresponding to the
average value of the quality characteristic that corresponds to the in-control process.

Distribution free test. A test statistic that does not depend on a specified
probability density function or cumulative distribution function.

In-control ARL (ARL,). The ARL of the control chart when process is in-
control.

In-control process. A process that is operating with only the presence of chance
(common) causes of variation.

i.i.d. Independent identically distributed observations.

Lower control limit (LCL). The smallest chosen value such that, if the process
is in control, nearly all of the plotted points will fall above.

Phase I. A retrospective analysis phase in SPC where a set of samples or
individual observations are used to estimate the parameters for Phase II.

Phase Il. The phase of monitoring future production.

Out-of-control ARL (ARL;). The ARL of the control chart when the process is
out-of-control.

Out-of-control process. A process that is operating with the presence of

assignable (special) causes.
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Rational sub-group. A sample of data taken at some point in the process, e.g., a
sample taken during a specific time period.

Robust statistic. Strictly speaking, a robust statistic is resistant to errors in the
results produced by deviations from assumptions (e.g., of normality). This means that if
the assumptions are only approximately met, the robust estimator will still have a
reasonable efficiency, and reasonably small bias, as well as being asymptotically
unbiased, meaning having a bias tending towards 0 as the sample size tends towards
infinity.

Skewed distribution. Distribution of measurements that, when plotted, produce

a nonsymmetrical curve. When the skewness of a group of measurements is zero, the
distribution is symmetrical.

t-distribution. A family of theoretical probability distributions used in

hypothesis testing. As with normal distribution, t-distributions are unimodal,
symmetrical, and bell-shaped. Their multivariate forms are also elliptically
symmetrical. The t-distribution is especially important when the population variance is
unknown. The larger the sample, the more closely the t approximates the normal
distribution.

Target value. A pre-specified value of a quality characteristic.

Upper control limit (UCL). The largest chosen value that if the process is in-

control, nearly all of plotted points will fall below.



CHAPTER II

REVIEW OF LITERATURE

Univariate Parametric Control Charts

Two sources of variation are associated with process change: chance causes and
assignable causes. A process for which all variation is due to chance causes is operation
under control (Montgomery, 2009). Chance causes cannot be economically identified
and corrected. A process for which all variation is due to assignable causes is operating
out-of-control. Assignable causes that are not part of the chance pattern can be identified
and corrected by using control charts (Chakraborti et al., 2001; Montgomery, 2009). The
most common quality control charting procedures include the Shewhart X-bar, the
cumulative sum (CUSUM), and the exponentially weighted moving average (EWMA).
These three procedures have in common their assumption that the underlying process
distribution is normal or at least approximately normal. According to Shewhart (1931),
the objective of the Shewhart X-bar method is trying to identify an assignable cause in
order to improve product without changing the whole manufacturing process. This
remains true with CUSUM and EWMA as well as any other proposed procedure.

The distribution of run length is traditionally used to characterize the performance
of a chart. A popular measure of chart performance is the expected value of the run
length distribution, called the average run length (ARL; Chakraborti et al., 2001;

Montgomery, 2009). Average run length is the average number of points that must be
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plotted before a point indicates an out-of-control condition (Montgomery, 2009). The
ARL of an in-control process is equal to the reciprocal of the probability o of a signal at a
given time period when the process is in-control or ARL = 1/a (Pappanastos & Adams,
1996). It is desirable that the ARL of a chart be large when the process is in-control and
small when the process is out-of-control. The false alarm rate is the probability that a
chart signals a process change when in fact there is no assignable change, i.e., the process
is in-control. This is similar to the probability of a Type I error in the context of
hypothesis testing. Two control charts are often compared on the basis of out-of-control
ARL, such that their respective in-control ARLS are roughly the same. This parallels
comparing two statistical tests on the basis of power against some alternative when they
are roughly the same size (Chakraborti et al., 2001).

The Shewhart Control Chart

The earliest and simplest SPC control charts for monitoring location and
dispersion are the Shewhart X control chart, which signals whenever an observation plots
outside the control limits of a sample mean, and the Shewhart R chart, which monitors
process variability (Montgomery, 2009; Shewhart, 1931). In its simplest form, the
Shewhart X control charts uses multiples of the process standard deviation to establish
control limits for the process mean and plots the sample means versus the sample number
on a control chart. If the process standard deviation is unknown, then the standard
deviation must be estimated from previous data. Another method for designing control
limits is the range method. If x4, x5, ..., x,, 1S a sample of size n, then the range of the
sample difference between the largest and the smallest observations is = x4 — Xmin-

Let R;,R,, ...., Ry, be the ranges of the m samples. Then the average range is



= -~ ,

and the control limits for the Shewhart X control charts are
UCL =X + A,R
Center Line = )?,
LCL = X — A,R.
The control limits for an R chart are
UCL = D,R,
Center Line = R, and

LCL = D3R.
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(1)

(2)
3)
4)

()
(6)
(7)

The constants A,, D3, and D, are tabulated constants for various sample sizes (see

Montgomery, 2009). When it is possible to specify the standard deviation and the mean

of the process based on previous samples, then the control limits for the Shewhart X

control chart are
UCL=pu+3 in ,

Center Line = u, and

LCL = y— 3%.
The control limits for the R chart are
UCL = d,o + 3d;0,
Center Line = d,o, and
LCL =d,o — 3ds0

The constants d, and d3 are tabulated constants for various sample sizes (see

Montgomery, 2009). If ¢ is unknown, the sample standard deviation s is used

(8)
(9)

(10)

(11)
(12)

(13)

. However,
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the sample standard deviation s is not an unbiased estimator of . Montgomery (2009)

suggests that s estimates c,o, where c, is a constant that depends on the sample size n.
The average of m standard deviations is § = %Z}Zl s; , and therefore, the control limits

for x chart are

UCL =%+ ijg (14)
Center Line = Xx,and (15)
LCL =X — 35 : (16)
cavn
Using 4; = jﬁ then the x chart control chart control limits are
UCL = X + A;5, (17)
Center Line = X, and (18)
LCL = % — A55. (19)

The constant As is tabulated for various sample sizes (Montgomery, 2009).

To illustrate the control limits for x chart, we use an example for the inside
diameter measurements (mm) for automobile engine piston rings from a data set
borrowed from Montgomery (2009). Table 1 presents 25 observations from five samples
of n =5 each. The X control chart is shown in Figure 1. Since none of sample means
plot outside the control limits, there is no indication that the process is out-of-control;
therefore, those control limits could be adopted for Phase Il monitoring of the process

mean.



Table 1

Inside Diameter Measurement (mm) for an Automobile Engine Piston Rings
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Sample
Number X, Si
1 74.010 0.0148
2 74.001 0.0075
3 74.008 0.0147
4 74.003 0.0091
5 74.003 0.0122
6 73.996 0.0087
7 74.000 0.0055
8 73.997 0.0123
9 74.004 0.0055
10 73.998 0.0063
11 73.994 0.0029
12 74.001 0.0042
13 73.998 0.0105
14 73.990 0.0153
15 74.006 0.0073
16 73.997 0.0078
17 74.001 0.0106
18 74.007 0.0070
19 73.998 0.0085
20 74.009 0.0080
21 74.000 0.0122
22 74.002 0.0074
23 74.002 0.0119
24 74.005 0.0087
25 73.998 0.0162
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Figure 1. The x control chart for the example in Table 1.

The Shewhart X control chart for monitoring the mean of a process consists of a

center line at the historical process level and upper and lower statistical control limits.

Sample means are plotted over time. An out-of-control signal is detected when a sample

mean falls outside the chart’s control limits. The control limits are often set at the

process mean with a width of 30, where o is estimated using historical samples standard

deviations. Woodall and Montgomery (1999) pointed out that other methods have been

proposed to improve the sensitivity to small-sized and moderate-sized shifts in the

process mean. Woodall and Montgomery suggested using run rules to signal for unusual
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patterns on the chart. Although run rules improve the sensitivity of the chart, they
increase the number of false alarms (Montgomery, 1999).

The Cumulative Sum Control Chart

The cumulative sum (CUSUM) and the exponentially weighted moving average
(EWMA) control charts enjoy widespread popularity in practice because they are very
effective in detecting small shifts quickly. Unlike the Shewhart chart, they use the
information in the data from the beginning of the process and not the most recent time
point only (Montgomery, 2009). Page (1954) introduced the CUSUM procedure as an
alternative to Shewhart-style procedures that are based on a single point recorded on the
control chart. Shewhart-style procedures fail to make use of all the information available
from the process. While the Shewhart-type charts are probably most used because of their
simplicity, CUSUM procedures are quite appropriate in view of the sequential nature of
the process control problem (Chakraborti et al., 2001).

As an example of the advantages of the tabular CUSUM control charts, first
consider the data in Table 2, column (a), from Montgomery (2009, pages 401-409). The
first 20 observations are a random sample from a normal distribution with mean p = 10
and standard deviation 6 = 1. These 20 observations have been plotted on a Shewhart
control chart in Figure 2. The center line (CL) based on the first 20 observation labeled
as U, and three sigma control limits on this chart are at

UCL = pyo + 30 = 10 + 3(1) = 13, (20)
CL = uyo = 10, and (21)

UCL = pipg — 30 =10 — 3(1) = 7. (22)



Table 2

Data for Cumulative Sum Example
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(C)Ci:(Xi-10)+

Sample, i @) x; (b) x; - 10 Ci1
1 9.45 -0.55 -0.55
2 7.99 -2.01 -2.56
3 9.29 -0.71 -3.27
4 11.66 1.66 -1.61
5 12.16 2.16 0.55
6 10.18 0.18 0.73
7 8.04 -1.96 -1.23
8 11.46 1.46 0.23
9 9.2 -0.8 -0.57
10 10.34 0.34 -0.23
11 9.03 -0.97 -1.2
12 11.47 1.47 0.27
13 10.51 0.51 0.78
14 9.4 -0.6 0.18
15 10.08 0.08 0.26
16 9.37 -0.63 -0.37
17 10.62 0.62 0.25
18 10.31 0.31 0.56
19 8.52 -1.48 -0.92
20 10.84 0.84 -0.08
21 10.9 0.9 0.82
22 9.33 -0.67 0.15
23 12.29 2.29 2.44
24 115 15 3.94
25 10.6 0.6 4.54
26 11.08 1.08 5.62
27 10.38 0.38 6
28 11.62 1.62 7.62
29 11.31 1.31 8.93
30 10.52 0.52 9.45
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Figure 2. A Shewhart control chart for the data in Table 2.

Figure 2 shows that all 20 points plot are within the chart’s control limits. The
last 10 observations labeled as 21-30 are sampled from a normal distribution with mean p
= 11 and standard deviation 6 = 1. We can think of these observations as having been
drawn from an out-of-control process with a mean shift of 1. These last 10 observations
are also plotting within the chart’s control limits. However, note that 9 out of 10 points
plot above the center line, which is an indication of a process mean shift. The Shewhart
control chart failed to detect this shift. The reason for this failure is that the Shewhart
control chart is effective for large shifts in the range of 1.50 to 26. The Shewhart control

chart is ineffective for smaller shifts (Montgomery, 2009).
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The CUSUM control chart incorporates all information in the sequence of sample
observations by plotting the cumulative sums of the deviations of the sample observations
from target value (Montgomery, 2009; Woodall, 1986; page 1954). Using the data in
Table 3, column (a), if p, is the target value, and X; is the average of the j™ sample (n >1)

collected then we can define the cumulative sum as
i
€= ) (5 — o) (23)
=1

The cumulative sum control chart is formed by plotting the C; against the sample number
i. Figure 3 shows that for the first 20 observations, there is a slow upward trend;
however, after observation #20, the mean has shifted to p = 11, and an upward trend has
developed, which is evidence that the process mean has shifted (Crosier, 1986;
Montgomery, 2009; Reynolds, 1975). Note the chart in Figure 3 is not a true control
chart because it lacks statistical control limits. There are two ways to represent
CUSUMs: the tabular CUSUM and the V-mask CUSUM (Bissell, 1969; Montgomery,
2009; Woodall, 1986). Using the current example of observations in Table 2, the tabular
CUSUM is presented here. CUSUMSs may be constructed both for individual
observations and for averages of rational subgroups. The current example uses individual
observations. The tabular CUSUM works by accumulating deviations from p, above the
target with one statistic C;” and accumulating deviations from , below the target in

another statistic C;” (Montgomery, 2009). The C;* and C;” are called one-sided upper and

lower CUSUMs. For the data in Table 2, they are computed as follows:
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C;t = max[0,x; — (uo + K) + C 4], (24)
C; = max[0, (up — K) —x; + C[_;], and (25)
Ct=C5 = 0. (26)
12
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Figure 3. Plot of cumulative sum (CUSUM) from column c of Table 3.

K is usually a reference or allowance of the slack value, which is often chosen
about halfway between p, and the out-of-control value u,. Therefore, if the shift is

expressed in standard deviations units as y; = po + 80, then K is one-half the shift or
K= ga = '“12;“"' So, C;f and C;~ accumulate deviations greater than K. Both C;" and

C; are reset to 0 on becoming negative. If either of C;* and C;~ exceeds the decision
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interval H, which has a reasonable value of five times the process standard deviation, the
process is considered out-of-control (Montgomery, 2009). Using H =5, Table 3 shows
the calculations of both C;* and C;~ under the respective headings (a) and (b). The
quantities N* and N, respectively, indicate the number of consecutive observations for
which the CUSUMS C;* and C;” have been greater than zero. The CUSUMs in Table 3
show that the upper CUSUM (3, =5.28 > H =5, which is greater than the decision
interval (H = 5); thus, we can conclude that the process is out-of-control at this point.
Since N* =7 at period 29, this is an indication that the process shifted seven periods ago
or at period 22. This can be seen in the CUSUM chart plotted in Figure 4.

Representing the tabular CUSUM graphically is both useful and convenient. This
is done by plotting C;" and C;~ versus the sample number on a CUSUM status chart that
resembles a Shewhart control chart (see Figures 3 or 4). Adding a Shewhart control chart
to a CUSUM can improve the ARL properties of the combined control chart and can be
designed to quickly detest large shifts in process mean. However, the combined scheme
is not robust to outliers as a single outlier observation can cause an out-of-control signal
(Lucas, 1982). A fast initial response (FIR) feature at the process startup was proposed
by Lucas and Crosier (1982) in order to permit a faster response to an initial out-of-
control signal. Lucas and Crosier studied the ARL properties of both a standard
CUISUM and a FIR_CUSUM and found that if the process starts in-control, adding a
FIR has negligible effect; however, if the process mean is not at the desired level, an out-

of-control will be detected faster with an added FIR.



Table 3

The Tabular Cumulative Sum
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(@) (b)
Xi -

Sample, i Xi 10.5 Ci' N* 9.5 - X; Cy N’
1 9.45 -1.05 0 0 0.05 0.05 1
2 7.99 -2.51 0 0 151 1.56 2
3 9.29 -1.21 0 0 0.21 1.77 3
4 11.66 1.16 1.16 1 -2.16 0 0
5 12.16 1.66 2.82 2 -2.66 0 0
6 10.18 -0.32 2.5 3 -0.68 0 0
7 8.04 -2.46 0.04 4 1.46 1.46 1
8 11.46 0.96 1 5 -1.96 0 0
9 9.2 -1.3 0 0 0.3 0.3 1
10 10.34 -0.16 0 0 -0.84 0 0
11 9.03 -1.47 0 0 0.47 0.47 1
12 11.47 0.97 0.97 1 -1.97 0 0
13 10.51 0.01 0.98 2 -1.01 0 0
14 94 -1.1 0 0 0.1 0.1 1
15 10.08 -0.42 0 0 -0.58 0 0
16 9.37 -1.13 0 0 0.13 0.13 1
17 10.62 0.12 0.12 1 -1.12 0 0
18 10.31 -0.19 0 0 -0.81 0 0
19 8.52 -1.98 0 0 0.98 0.98 1
20 10.84 0.34 0.34 1 -1.34 0 0
21 10.9 0.4 0.74 1 -14 0 0
22 9.33 -1.17 0 0 0.17 0.17 1
23 12.29 1.79 1.79 1 -2.79 0 0
24 11.5 1 2.79 2 -2 0 0
25 10.6 0.1 2.89 3 -1.1 0 0
26 11.08 0.58 3.47 4 -1.58 0 0
27 10.38 -0.12 3.35 5 -0.88 0 0
28 11.62 1.12 4.47 6 -2.12 0 0
29 11.31 0.81 5.28 7 -1.81 0 0
30 10.52 0.02 5.3 8 -1.02 0 0
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Figure 4. Cumulative sum status chart for data in Table 3.

The average run length properties of the standard CUSUM have been studied by
Brook and Evans (1972), Reynolds (1975), Robinson and Ho (1978), Woodall (1983),
Yashchin (1985), Crosier (1986), and many other authors. Reynolds used a Brownian
motion approximation of CUSUM that does not require normality assumptions to derive
an analytical form of ARL. This form can be used to determine optimal parameters to
minimize ARL at a specified deviation from the mean. Montgomery (2009) used a
method based on sequential analysis attributed to Siegmund (1985). Siegmund’s

approximation for one-sided CUSUM is
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exp(—2A) + 2Ab — 1

oAz (27)

ARL =

whereb = H+ 1.116 and A = § — K,A # 0. To calculate the ARL for a two-

sided CUSUM, first obtain ARL" and ARL for the one-sided CUSUMSs. Then use

11 N 1
ARL  ARL* = ARL’

(28)

The last two decades provided an increased use of CUSUM as many authors
studied and proposed various designs to tackle specific problems and situations. Some
examples are outlined; however, the subject as a whole is very extensive and outside the
scope of this study. Lucas (1985) described and implemented CUSUM schemes for
counted data or CUSUM for attributes. CUSUM for attributes are used when the
underlying process output is not continuous but rather is a count, e.g., the number of
defects per unit. Lucas concluded that the CUSUM for attributes are simple to use, can
be tailored to detect important shifts in count level, and use all the information in the data
to quickly detect shifts. Shu, Jiang, and Tsui (2008) proposed a weighted cumulative
sum (WCUSUM) procedure for monitoring a sequence with patterned mean shift and
then used the estimates of a dynamic mean of the sequence for weighing the incremental
in the conventional CUSUM chart. A WCUSUM is similar to the standard CUSUM
chart and is less sensitive to large shifts. However, detection performance can be
improved by using a combined WCUSUM-Shewhart control limits scheme. Mousavi
and Reynolds (2009) investigated the problem of monitoring a proportion when there was
a stream of autocorrelated binary observations with first order dependence. According to
Mousavi and Reynolds, positive autocorrelation leads to false alarms that would be

expected for independent observations. Mousavi and Reynolds showed that a Bernoulli
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CUSUM and the Shewhart proportions control charts were not robust to autocorrelation
and adjusting the control limits was not an efficient approach. Mousavi and Reynolds
constructed a Markov binary cumulative sum control chart based on the log-likelihood
ratio statistic and showed that the properties of this chart were calculable. The Markov
binary cumulative sum control chart accounts for autocorrelations when present in the
data and is most effective for detecting increases in proportions

The Exponentially Weighted Moving
Average (EWMA) Control Chart

Exponentially weighted moving average EWMA control charts were developed
by Roberts (1959) at Bell Telephone Laboratories where he presented an intuitive
graphical technique for illustrating an EWMA design. Further design and ARL studies
were presented by Crowder (1987a, 1987b, 1989). The EWMA method is useful for
monitoring both the location and dispersion of a process as well as process for
forecasting. Lucas and Saccucci (1990) have shown that the EWMA is as effective as the
CUSUM in detecting periodic shifts in the process mean. Also, the EWMA is useful for
forecasting gradual drift as highlighted by Hunter (1986). Hunter viewed the EWMA as
an opportunity to begin to consider a real-time dynamic control of processes using
discrete data and, if desired, to make the operator part of the feedback control loop. The
EWMA design gives the most recent observation the greatest weight and every other
observation receives a geometrically decreasing weight back to the first observation.
EWMA charts take advantage of the sequentially accumulating nature of the data arising
in a typical statistical process control environment and are known to be more efficient

than the Shewhart control chart in detecting smaller shifts (Graham et al., 2011).
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Since EWMA charts are known to be sensitive in detecting small changes in
process mean and process variability, the EWMA method has gained a great deal of
attention and has become widely used in many quality control applications (Chen, Cheng,
& Xie, 2004). The EWMA is used mostly for monitoring process parameter shift,
primarily the mean for using either the individual observations or the sample mean
(Crowder, 1989; Lucas & Saccucci, 1990; Ng & Case, 1989). For an EWMA scheme
using individual observation, see Montgomery (2009). Montgomery stated, “Since the
EWMA can be viewed as a weighted average of all past and current observations, is very
insensitive to the normality assumption. It is therefore an ideal control chart of individual
observation” (p. 420). Crowder (1989) provided a simple procedure for designing an
EWMA scheme for purposes of process monitoring and detection of shifts using sample
means. For the sample means case X; , the EWMA control chart is based on the values

zi =A%+ (1 —A)x;_q, (29)
where i = 1,2,3,...and z, = X, 0 < A <1 and z;is the EWMA charting statistic.
In this scheme, A is a smoothing constant and x; are the sample means measured at time i.
When 4 = 1, the value of EWMA depends solely on the most recent observation as in
the Shewhart X-bar chart case. If the observations x; are independent random variables

with variance a2, then the variance of z; is

o2 = o> (2%) [1- (1 -2 (30)

The EWMA control chart is constructed by plotting z; versus the sample number i. The

center line (CL) and control limits for the EWMA control chart are
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UCL = g + La\/(z%) [1— (1- 2], (31)
CL = po, and (32)

A |
LCL = g — Lo J (m) [1—(1— )], (33)

In the above equations, the factor L is the width of the control limits in terms of standard
deviations. As i get larger, the term [1 — (1 — 21)?!] approaches unity. This means that

an EWMA has reached a steady-state and its center line and control limits are defined as

follows:
UCL = pg+ Lo (L) (34)
2-1)
CL =y, and (35)
LCL = py— Lo (L) (36)
2—1

The EWMA control chart signals out-of-control, detecting an off-target shift, if any
sample mean plots outside the above control limits.

Zhang and Chen (2005) extended the exponentially weighted moving average
(EWMA) technique by performing exponential smoothing twice; hence, they proposed a
method called the double exponentially weighted moving average (DEWMA) technique
for detecting process mean shifts. Zhang and Chen defined their DEWMA statistic by

Zy = MXp +Az,4, t2=21

Zo = Ho
Wy = A3Zp + AgWey, 21 37)

Wo = Uy,
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where t = 1,2,3,...and zy = wy = %, 0 < 4; < 1,and z, is the EWMA statistic and w;
is the DEWMA statistic. Based on DEWMA (14, 13), the DEWMA mean chart plots w;

against time t with starting target value u, and control limits as follows:

UCL; = uy + Lyvar(w,), (38)
CLt = Ug, and (39)
LCLy = po — Lyvar(wy) . (40)

Zhang and Chen used time-varying control limits to increase the sensitivity of the
DEWMA chart in detecting mean shifts at the start of the process. Zhang and Chen used
simulation studies to show that the DEWMA control charts outperform the EWMA
control charts for small shifts in process mean, ranging from 0.1 to 0.5 of the process
standard deviation. Both EWMA and DEWMA performed alike for process mean shifts
greater than 0.5 of the process standard deviation. Shamma and Shamma (1992) also
developed a DEWMA control chart that is based on a one A and the fixed control limits.
Shamma and Shamma studied the ARL properties of their proposed DEWMA chart using
simulation. Shamma and Shamma concluded that their DEWMA chart had similar
properties to the traditional EWMA control charts, which agrees with the conclusions of
Zhang and Chen (2005).

There have been many different uses and studies based on the EWMA control
chart method. For example, an EWMA control chart has been studied for monitoring
process dispersion by Amin, Wolff, Besenfelder, and Baxley (1999), Shu and Jiang
(2008), Chen et al. (2004), and Pascual (2010). Shu and Jiang developed an EWMA
dispersion control chart by truncating the negative normalized observations to zero in the

traditional EWMA statistic. Shu and Jiang found that by resetting the sample variance or
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the logarithm of the sample variance before using it into the EWMA recursion, their
proposed EWMA-type chart for monitoring increases in process variability outperformed
the traditional EWMA chart by detecting small changes in dispersion.

Amin et al. (1999) proposed an EWMA chart based on the smallest and largest
observation in each sample, which they called the MinMax EWMA control chart. The
design of the MinMax EWMA used an EWMA for the minimum observation in the
sample and an EWMA for the maximum observation in the sample and tracks
observations that were farthest from the center line (target) of both the low-side and the
upper-side. The advantages of the MinMax EWMA are as follows: (a) it allows for
monitoring of the mean and standard deviation of the process, (b) it is a useful graphical
tool, (c) it has good ARL properties for simultaneous changes in the process mean and
standard deviation, (d) it allows the placement of specification limits on the chart, (e) it
may be viewed as smoothed tolerance limits, and (f) it requires fewer measurements
when rank ordering of observations is possible. Through a numerical example, Amin et
al. showed the MinMax EWMA control chart had excellent ARL properties to detect
changes in the mean and standard deviation simultaneously.

Monitoring both location and dispersion in one control chart was proposed by
Chao and Cheng (1996) using the semicircle (SC) control chart. The SC control chart
allows for the detection of the mean shift and variability change in one single chart. The
SC chart’s main advantage is its ease of attributing an out-of-control signal to shift in the
mean or variability change. The SC chart is insensitive to small changes. Chen et al.
(2004) combined the features of Chao and Cheng’s semicircle chart with the EWMA

method to develop a new control chart, EWMA-SC, which is very sensitive in detecting
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small changes when a mean shift accompanies increased process variability. The
EWMA-SC charting technique is efficient and easy to implement so one can quickly
identify the sources and direction of an out-of-control signal on the plot (Chen et al.,
2004).

Monitoring the shape parameter is not restricted to observations from the normal
distribution. Other authors have used the EWMA technique to monitor shape parameters
based on different statistical distributions. Pascual (2010) presented an EWMA control
chart based on either a sample mean range or an unbiased estimator of the sample
variance for monitoring the Weibull shape parameter. Pascual’s proposed method allows
for independent monitoring of both the shape and scale parameters and is recommended
for monitoring small changes in the shape parameter. Pascual demonstrated through an
example that ARLSs are dependent on the shape parameter and are unbiased in the sense
that they are expected to detect shifts sooner than the in-control ARL.

A standard assumption when using parametric control charts like the EWMA is
that the observations coming from a process output are independent. Apley and Lee
(2008) and Lu and Reynolds (1999) studied the ARL properties of EWMA charts for
autocorrelated data. Lu and Reynolds considered the problem of detecting changes in a
process in which observations modeled as an autoregressive moving average (AR1) plus
arandom error. Lu and Reynolds found that monitoring a process of the AR1 type is
more difficult than monitoring a process in which the observations are independent
normal random variables. The main reasons for the monitoring difficulty are (a) the
autocorrelation appears to mask small changes in the process mean, and (b) the

autocorrelated case requires more observations for parameter estimation than the
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independent case as well as a more sophisticated model fitting. Lu and Reynolds
concluded that for low to medium level autocorrelations, both the autocorrelated residual-
based EWMA chart and the traditional EWMA chart have the same ARL properties.
However, for high level autocorrelation and large shifts, the residual-based EWMA chart
is better in detecting shifts. The results from Lu and Reynolds were corroborated by
Apley and Lee (2008). Apley and Lee added that while the residual-based EWMA charts
lacked robustness, they were more robust than independent EWMA when applied to
autocorrelated process output observations.

Univariate Nonparametric
Control Charts

A definition of a nonparametric or distribution-free control chart is given in terms
of its in-control run length distribution. If the in-control run length distribution is the
same for every continuous distribution, then the chart is called distribution-free
(Chakraborti et al., 2001). In process control, chance causes are assumed to follow some
parametric distribution; most often, it is the normal distribution (Chakraborti et al., 2001).
The statistical properties of control charts are exact if the normality assumption is true;
however, most underlying processes are not normal and, therefore, their statistical
properties are not exact. This gives rise and justification to the idea of developing control
charts for processes that do not depend on the normal distribution or any other parametric
distribution (Bakir, 2004, 2006; Bakir & Reynolds, 1979; Lowry et al., 1992).

The recent development of a substantial number of distribution-free or
nonparametric control charts where no-underlying probability distribution is assumed on
the process output observations has been more available in the literature (Bakir, 2004).

Many factors led to the development of nonparametric control charts. First, the



36

distributions of many process output observations are not known and, therefore,
parametric or distribution-based control charts are not robust to these distribution-free
process output observations. In addition, traditional or distribution-based control charts
lack robustness when the data are skewed or when extreme or outlier data are present
(Hackl & Ledolter, 1991). Finally, Hackl and Ledolter (1992) found that the average run
length of a EWMA process is reduced when the data are heavily contaminated by
outliers; hence, they argued that robust procedures are valuable.

Since the 1920s when Walter Shewhart (1931) developed the first control chart,
statistical process control charts have been developed based on distribution-based
procedures where the process output is assumed to follow a specified probability
distribution such as the normal, binomial, or Poisson (Bakir, 2004). The review of
literature provided a vast number of research studies proposing the use of univariate
nonparametric or distribution-free control charts as an alternative to the traditional
distribution-based control charts.

The use of nonparametric or distribution-free quality control charts for the
univariate case was studied by many authors. Bakir and Reynolds (1979), Hackl and
Ledolter (1991), Amin and Searcy (1991), Chakraborti et al., (2001), Amin, Reynolds,
and Bakir (1995), Bakir (2004, 2006), Yang, Lin, and Cheng (2011) and Graham et al.
(2011) proposed nonparametric control charts based on the sign, rank, or the signed-rank
statistics. Once the sign, rank, or the signed-rank statistics are computed, they are used to
construct control charts of the EWMA or CUSUM types. The conventional design of

nonparametric charts replaces the parametric control statistic, e.g., the mean, with a
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plausible statistic with an unknown distribution and uses the nonparametric statistics to
study equivalents of the parametric charts (Chakraborti et al., 2001).

Chakraborti et al. (2001) presented an overview of nonparametric or distribution-
free control charts for univariate data. They highlighted several advantages of using
nonparametric control charts and pointed out some of the disadvantages of traditional or
distribution-based control charts. The authors’ goal was to present alternative control
charts in the hope they would lead to wider acceptance of distribution-free charts and to
understand the problems of practical statistical control without the confines of classical
statistical estimation and hypothesis testing. The authors argued that nonparametric
control charts had many advantages: (a) their simplicity, (b) lack of need to assume any
particular parametric distribution for the underlying process, (c) same in-control length
for all continuous distributions, (d) greater robustness to outliers, (e) efficiency in
detecting changes when the distribution is not normal, and (f) the lack of need to estimate
the variance to set up charts for the location parameter. What follows is a brief
presentation of some highlights of univariate nonparametric control chart studies. For the
most part, the use of the sign-test or signed-rank test was used to develop a nonparametric
equivalent to the X-bar Shewhart, EWMA, or CUSUM charts. The performance and
efficiency of the proposed charts were evaluated by comparing them to their parametric
or distribution-based counterparts.

Bakir and Reynolds (1979), Amin and Searcy (1991), Bakir (2004, 2006) and
Graham et al. (2011) proposed different nonparametric control chart procedures based on
signed-ranks statistics. Bakir (2004, 2006) proposed a Shewhart style control chart based

on the signed-rank statistic and then extended the procedure using signed-rank statistics
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to develop cumulative sum (CUSUM) type control chart and an exponentially weighted
moving average (EWMA\) type control chart. Amin and Searcy (1991) and Graham et al.
(2011) also used group signed-ranks to develop an exponentially weighted moving
average (EWMA) type control chart.

Using a procedure based on the Wilcoxon signed-rank statistics where rankings
are within a group, Bakir and Reynolds (1979) proposed a process control chart. The
proposed statistic uses a nonparametric group signed-rank statistic (GSR) to compute a
CUSUM type control chart. The GSRs are computed using the following procedure: Let
(Xi1, X12, ..., Xi) for i = 1,2, ..., be groups of independent observations taken
sequentially on the output on some process. If R;; is the rank of | X;;| in the
group (X, |, IXizl, o) [Xigl) forj = 1,2, ..., g, then

Ujj = sign (Xij)Rij, j=12,...g (41)
are the usual Wilcoxon signed-ranks of the observations within the i™ group. Let

SR; = Z]Q U;; be the sum of the signed-ranks for the i" group. The values SR; are a

sequence of independent Wilcoxon signed-rank statistics, each based on g observations.
The grouped-signed-rank (GSR) procedure uses the Wilcoxon statistics with a CUSUM
stopping rule. Bakir and Reynolds showed that the average run length ARL for the GSR-
CUSUM is slightly less efficient than the parametric procedure under the normality
assumption since the null hypothesis is correct. However, the GSR-CUSUM is more
efficient than the parametric procedures for non-normal distributions like the uniform, the
double exponential, and the Cauchy distributions. A suitable subgroup size for this
nonparametric procedure is suggested to be between n =5 and 10, depending on the shift

size and the desired in-control ARL. Furthermore, the GSR-CUSUM procedure requires
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fewer assumptions about the distribution of the observations and the ARL of the GSR is
the same for any continuous distribution that is symmetric about the control value.

The ARL properties of the nonparametric Wilcoxon group signed-rank statistic
(GSR) developed by Bakir and Reynolds (1979) were investigated by Amin and Searcy
(1991). Amin and Searcy developed a GRS-EWMA control chart using the GSR statistic
and investigated the effect of autocorrelation on the average run length (ARL) properties
of the GRS-EWMA. Amin and Searcy’s simulation studies showed that the GSR-
EWMA control chart was slightly less efficient than the traditional X-bar EWMA when
the underlying distribution is normal and is more efficient at detecting smaller shifts
when the process has a heavy-tailed distributions such as the double exponential.

Bakir (2004) proposed a nonparametric Shewhart style control chart based on
signed-ranks for monitoring a process center. The exact false alarm rates and the in
control average run lengths (ARL) for Bakir’s proposed chart were calculated using the
null hypothesis of the Wilcoxon’s signed-rank statistic. The out-of-control ARLs were
computed empirically by simulation for the light-tailed distributions (normal, uniform)
and heavy-tailed distributions (double exponential and Cauchy) shift alternatives. The
computing procedure for the signed-ranks is similar to the one used by Bakir and
Reynolds (1979) in which they used group signed-ranks (GSR) applied to CUSUM type
control chart. These same group signed-ranks statistics are used by Bakir (2004) in his
proposed Shewhart style control chart. Bakir showed that control charts based on the
univariate group signed-rank statistic are more efficient than the traditional Shewhart X-
bar chart under heavy-tailed distributions but less efficient under light-tailed

distributions.
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Expanding on his initial research using GSR based control charts from 2004,
Bakir (2006) proposed three different nonparametric or distribution-free control charts for
monitoring a process mean when an in control target mean was specified: the Shewhart-
type, the EWMA-type, and the CUSUM-type. Bakir found that the primary advantage of
these signed-rank based control charts was having a constant in control ARL, regardless
of the underlying distribution, as long as the distribution was continuous and symmetric.
Furthermore, simulation studies showed that the signed-rank style control charts were
robust against outliers while the traditional Shewhart, CUSUM, and EWMA control
charts were not. Also, simulation studies showed that the signed-rank Shewhart style
control chart was more efficient than its parametric counterpart for moderate to heavy-
tailed distributions (Cauchy and double exponential). However, since the CUSUM and
EWMA control charts were more efficient than the Shewhart control chart for detecting
smaller shifts in the process mean, Bakir expected that the signed-rank EWMA and
CUSUM control charts were more efficient than their parametric counterparts but further
studies are required to confirm this expectation. Bakir’s results for the signed-rank
EWMA match those of Amin and Searcy (1991) who found that the GRS-EWMA control
chart performed well for non-normal and heavy-tailed data.

Graham et al. (2011) developed a new nonparametric EWMA control chart based
on Wilcoxon’s signed-rank test (NPEWMA-SR) arguing that if normality is in doubt or
cannot be justified for lack of information, then a control chart that combines the shift
detection properties of EWMA with the robustness of nonparametric tests is desirable.
They claimed that the Wilcoxon signed-rank test was efficient when compared to the

standard t-test for testing hypotheses about the mean. Unlike the t-test, the SR test does
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not require the assumption of normality and is very efficient. The asymptotic relative
efficiency (ARE) for the SR test compared to the t-test is 0.955, 1, 1.097, and 1.5 for the
normal, uniform, logistic, and Laplace distribution, respectively (Mottonen et al., 1997).
Previous ARE values indicated that the SR test is more powerful for some heavy-tailed
distributions like the uniform. Since the signed-rank test is more powerful than the sign
test (Gibbons & Chakraborti, 2003), the SR test was used to construct the NPEWMA-SR
control chart to monitor a process median of an asymptotic continuous distribution.

Suppose that X;;,i = 1,2,3,..and j = 1,2, ...n denoted the j"" observation in the i"

subgroup of n > 1. Let us denote the rank R{'j of the absolute values of the differences

|Xi; — 66|,/ = 1,2, ...n within the ith subgroup. Define

n

SR, = Z sign(Xy — 6) RS, 1=123,..,m, (42)
j=1

where sign (t) =1 ift>0,0ift=0and -1 if t <0 and 6, is the known or specified value
for the median, 6. R;‘j is the difference between the sum of the ranks of the absolute
differences corresponding to the positive and negative differences, respectively. The
NPEWMA-SR control chart is constructed by accumulating statistics Ry, R,, R5, ...
sequentially for each subgroup. The charting statistic is

Z; =ASRi+ (1 = A)Z;_q fori =123, ..., (43)
where the starting values Z, = 0 and 0 < A < 1 is the smoothing parameter. T he control

limits of the NPEWMA-SR for median are given by

LCL / UCL = iL\/w - (1-(1-2), (44)

and CL =0.
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The steady-state (as i — o, (1 — (1 — 2)?" - 1) control limits and CL are given by

LCL / UCL = J_rLjn(” Th@n+D A (45)
6 2—1

and CL = 0. L is the width of the control limits, which is often expressed in multiples of
the process standard deviation.

The NPEWMA-SR chart performs as well or better than its competitors when the
median is known or specified (Gibbons & Chakraborti, 2003). On the basis of minimal
assumptions, robustness of the in-control run-length and out-of-control distribution, the
MPEWMA-SR chart is a viable alternative to parametric methods in SPC. It combines
the advantages of the in-control robustness with the small shift detection capability of the
EWMA-style charts. A disadvantage of the NPEWMA-SR is that its properties are
unknown when the median is unknown or unspecified.

Other authors proposed and developed nonparametric control charts based on the
sign-test statistic. Amine et al. (1995) used the sign-test statistic to develop
nonparametric versions of CUSUM and EWMA control charts that were compared to
their parametric counterparts. Yang et al. (2011) also used the sign-test statistics to
develop a nonparametric EWMA sign control chart as well as an Arcsine EWMA control
chart. Procedures using the sign-test statistic required that each observation be compared
with a control value and the numbers of observations above and below the target mean,
Lo, be recorded for each sample. For a nonsymmetrical distribution, the sign-test is a test

for a change in the median of observation, where wy is the median (Amin et al. 1995). Let

SN; = Z;'l=1 Sign(Xij - .“0), i1=123.., (46)
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where sign (t) =1 ift >0, 0ift=0and -1 if t <0. SN; is the difference between the
number of observations above yand the number below . Amin et al. (1995) used SN;
as a charting statistic for detecting changes in the process location (e.g., mean, median) to
develop Shewhart and CUSUM-style control charts.

Amin et al. (1995) found that if the distribution of observations is close to normal
and the sample size is not too small, the distribution of X will be normal due to the
central limit theory (CLT) and the resulting ARL will be approximately correct.
However, if the distribution of observations is heavy-tailed (double exponential, Cauchy),
then nonparametric control charts based on the sign-test seem to offer an advantage of
fixed ARL when-in control and high efficiency in detecting shifts in p. In addition, the
variance does not need to be known or estimated to carry out the nonparametric sign-
based procedure.

Yang et al. (2011) proposed a nonparametric EWMA control chart as follows.
Assume that a quality characteristic, X, has a target value T. Lety=X-Tand p=P(Y >
0) = the process proportion. When the process is in-control (p = 0.5) and when the
process is out-of-control (p # 0.05). To monitor the deviation from the process target ant
any given time, a random sample of size n, Xy, Xo, ..., X; is taken from

1, if ¥, >0

Yi=X;—Tandl; = { 0, otherwise

forj=1,2,..,n. 47)

Let M be the total number of Y; > 0, then M = }7_, I; would follow a binomial
distribution with parameters (n, 0.5) when the process is in control. Yang et al. found that

for small n, the in-control ARL values were not always equal to the desired 370 (ARL =

1

Y i 370) where a is the 99.5% percentile of the observations. The reason was

QIR
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that for small n values, the binomial distribution is asymmetric. The authors proposed a
transformation using the arcsine function by letting = sin™! \/g Then Y is normally

distributed with mean sin~1,/p and variance 1/ (4n). The resulting in-control ARL is
370.

Multivariate Parametric Control
Charts

Multivariate control charts are used to monitor a process when more than one
quality characteristic is being observed and to improve the detection of small shifts in
SPC (Prabhu & Runger, 1997). Quality is seldom determined by a single quality
characteristic but rather by several quality characteristics that are likely to be correlated.
Multivariate control methods use the correlations between the variables to design more
powerful control charts that are sensitive to assignable causes, which are poorly detected
by individual variable control charts. Generalizations of the univariate control charts
methods outlined above take this correlation into account when monitoring the mean
vector or variance-covariance matrix (Woodall & Montgomery, 1999). As with the
univariate case, we wish to design a control chart and assess its ARL performance in
detecting a shift in the process mean vector, u, or variance-covariance matrix
(Stoumbos & Sullivan, 2002).

Hotelling’s x? control chart. The first multivariate control chart was a
Shewhart-type chart developed by Hotelling (1947). From the joint multivariate normal
distribution, the squared standardized (generalized) distance from a vector X to the

multivatiate mean u is
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X - X -, (48)
where X is the process variance-covariance matrix. For sub-grouped data, a modified
form of the distance (X — u)'21(X — p) is used to construct a plotting statistic based on
the y2 distribution,y2 = n(X — u)'2~1(X — u) where X is the vector of sample means
and u is the vector of in-control means (Montgomery, 2009; Zou & Tsung, 2010). This
test statistic is plotted on the chi-square control chart for every sample. Since y3 statistic
has a chi-square distribution, it is always positive; therefore, its control limits are LCL=0
and UCL = x4 ,,. Hotelling’s y # signals that a statistically significant shift in the mean
vector occurred or gave an out-of-control signal when
Yol =n(X-—w'E X -p) > hy (49)
where h; > 0 is the specified control limit. Since this chart is based on only the most
recent observation, it is insensitive to small to moderate shifts in the mean vector (Lowry
etal., 1992).

Perhaps the best known parametric statistic used in multivariate statistical process
control is Hotelling’s T2, which was developed by Hotelling (1947). For the one sample
location problem, assume that Y;, ..., Y;, are independent and identically distributed (iid)
observation Y, where Y = (Y;,...Y;))’ has an absolutely continuous p-directional
distribution with location parameter 8 = (01, s Hp)'. The Hotelling’s T2 chart is a direct
extension of the Shewhart x chart and is used when p and X are not known and must be
estimated by ¥ and S from preliminary samples taken when the process is assumed to be
in-control. However, when u and X are estimated from a large number of preliminary

samples, it is customary to use LCL=0 and UCL = x5 ,. We wish to test
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Hy:0 =0vs.H,:0 + 0. (50)
The value 0 is used without loss of generality since if the null was @ — @, the test would
be performed on the random variables Y; — 8, ..., Y,, — 8. For SPC, this test is
equivalent to testing whether an observation (sample) is in-control. The magnitude of the
shift considered is
8= (ur w2 (51)
In the context of multivariate normality, § is called the non-centrality parameter
(Stoumbos and Sullivan, 2002). The best known parametric test for this setting is the
Hotelling’s T test statistic. The Hotelling’s testis T2 = n¥’S~1¥, where ¥ and S are the
sample mean vector and the unbiased estimate of the population covariance matrix,
respectively.
There are two distinct phases of multivariate control charts. Phase | uses a set of
observations to estimate the mean and covariance structure in order to obtain in-control

limits for Phase Il or the monitoring phase. Phase | control limits are given by

-1(n-1
UCL = %Fmpm_m_pﬂ, and (52)
LCL = 0. (53)

In Phase Il, the monitoring control limits are

p(m+1)(n—-1)
mn-m—p+1

UCL = F g pmn-m-p+1,and (54)

LCL=0. (55)
The Hotelling’s T2 is directionally invariant with respect to nonsingular linear
transformation of the observations. That is, if L is a (p x p) nonsingular matrix, then

T2(Yy, ....,Y,) = T2(LY, ..., LY,). (56)
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This invariance property ensures that the value of the test statistic remains unchanged
following a rotation of the observations about the origin, reflections of the observations
about a (p - 1) dimensional hyper plane through the origin, or changes in scale.
Therefore, the performance of the Hotelling’s T2 and other similarly invariant procedures
are independent of the structure of the population covariance matrix or the direction of
the shift. This invariance property is referred to as affine-invariance (Peters & Randles,
1990) and is a desirable statistical property in any test statistic, parametric or
nonparametric.

Another variation of the Hotelling’s T test was discussed by Lowry and
Montgomery (1995) for individual observation or industrial settings where the subgroup
size is n = 1. Let x be the sample vector of observation n =1 and let x and S be the
sample mean vector and variance-covariance matrix for process with p observed quality
characteristics in each sample. In the case of n = 1, the Hotelling’s T? statistic is defined
as

T? = (x—%)'S1(x — x). (57)

The Phase Il control limits for the above statistic are

+1 -1
UCL = %F%m_p , and (58)
LCL=0. (59)

However, when the number of preliminary samples is large, say > 100, Lowry and

Montgomery (1995) and Montgomery (2009) suggested using

UCL = p'(:ln__pl) F“,p‘m_pa (60)
LCL = 0, (61)

or
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UCL = x3,. (62)
Lowry and Montgomery suggested that the chi-square limit should be used with caution
only when the covariance matrix is known and with number of samples > 250. Tracey,
Young, and Mason (1992) pointed out that when n =1, Phase | limits should be based on
the multivariate beta distribution where Phase | control limits are defined as

(m—1)2

UCL = ﬁ“,p/z,m—;—l ’ and (63)
LCcL=0, (64)
where B wp /Z,m—f—l is the upper a percentage point of a multivariate beta distribution

. -p—1
with parameters gand %.

Multivariate cumulative sum (MCUSUM) control chart. Multivariate
cumulative sum (MCUSUM) control charts are improvements on the multivariate
Shewhart-type charts like the Hotelling’s T2or y?2 control charts; they use information
from all samples and are more sensitive to small and moderate shifts in process mean
vectors. As in the univariate CUSUM case, the MCUSUM chart is a Phase Il procedure
(Montgomery, 2009). Multivariate CUSUM (MCUSUM) charts have been studied by
Woodall and Ncube (1985), Healy (1987), Crosier (1988), Pignatiello and Runger (1990),
Hawkins (1991), Ngai and Zhang (2001), Runger and Testik (2004), Cheng (2007), and
Golosnoy, Ragulin, and Schmid (2009).

Woodall and Ncube (1985) extended the univariate CUSUM charts to the
multivariate case by monitoring multiple quality characteristics. To detect the shift in the
mean vector of a p-variate normal distribution, construct multiple one-sided or two-sided

CUSUM schemes simultaneously and evaluate the performance of the groups of
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univariate CUSUM schemes. The ARL performance of the Woodall and Ncube depends
on the direction of the mean vector shift. The process signals out-of-control once any one
variable signals out-of-control. Woodall and Ncube showed that by using principal
components analysis, the dependency of ARL on the direction of the shift can be reduced
but not removed. Woodall and Ncube showed that in the bivariate case, the MCUSUM is
preferable to the Hotelling’s T2 chart. They argued that since the performance of the
MCUSUM depends less on correlations than that of the Hotelling’s T2 procedure, the
use of MCUSUM to monitor correlations is less important provided that the variances are
controlled. Healy (1987) also discussed the application of CUSUM to multivariate
normal processes and showed that the MCUSUM procedure, which is related to
sequential probability ratio tests, reduces to a univariate CUSUM. According to Healy,
the specification of both a target value and a specific alternative for the mean vector of a
multivariate normal distribution with known variance-covariance matrix yields a
MCUSUM scheme.

Crosier (1988) and Pignatiello and Runger (1990) developed multiple MCUSUM
schemes and compared their ARLs to each other and the Hotelling’s T2 chart. Crosier
built on the work of Healy (1987) by using sequential probability ratio tests in developing
his schemes. Crosier stated that there are two prevalent problems when deriving
CUSUM schemes from theory of sequential tests. First, sequential theory requires two
simple hypotheses to be tested instead of a composite one. Within quality control
settings, it is the difference of requiring a simple hypothesis that the mean is at its desired
level versus the composite hypothesis that the mean has shifted from the target value.

Second, the logarithm of the sequential probability is often too complex to generate a
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practical scheme. According to Healy, both problems have impacted development of the
multivariate CUSUM. To address the first problem, Crosier proposed two multivariate
CUSUM schemes as alternatives to the Hotelling T2 chart. A first scheme forms a
CUSUM by reducing the observations to a scalar Hotelling’s T statistic and then forms a
CUSUM of the T statistic. Crosier referred to this statistic as CUSUM of T or COT.
Healy showed that a CUSUM of T? statistics is the appropriate sequential probability test
for an inflation of the variance-covariance matrix X. Interestingly, Hotelling (1947)
suggested the plotting of T? instead of T to avoid the then-intensive effort to compute the
square roots. The second multivariate CUSUM scheme developed by Crosier had

smaller ARL and was based on the statistic

C; = {(Si—1 + X' (Si—1 + XD}/, (65)
where
_ 0,if C; <k
Si= {(si_1 + X)) —k/C),if C;> k' (66)

where Sp =0, and k > 0. An out-of-control signal is generated when
Y, = (s'iz-lsi)% > H, (67)
where k and H are the reference value and upper control limit for Y;, respectively.

The ARL of both procedures depends on the mean vector and covariance structure
of the data only through the non-centrality parameter, which allows these two procedures
to be compared to the Hotelling T2 chart. Crosier (1988) showed through simulations
and Markov chain analyses that both MCUSUM schemes have smaller ARLSs than the
Hotelling’s T2 chart and the procedure developed by Woodall and Ncube (1985). Both

procedures by Crosier allow for the use of the fast initial response (FIR) feature and
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robustness enhancements. Crosier pointed out that the MCSUM procedure is preferred
over COT because the CUSUM vector provides an indication of the direction of the shift.
Pignatiello and Runger (1990) also developed two different forms of the
multivariate CUSUM schemes (which they called MC1 and MC2) for controlling the
multivariate normal process. The MC1, which is the better of the two, is based on the

following vectors of cumulative sums:

Di= ) X (68)

and
MC; = max{0,(Di=™'D))¥/? — kl;}, (69)

where k > 0,l; = l;_1 + 1if MC;_; > 0 and [; = 1 otherwise. An out-of-control
signal is generated if MC; > H, where H is the upper control limit. The ARLSs of both
MC1 and MC2 were compared to those of multiple univariate CUSUM charts developed
by Woodall and Ncube (1985) and multivariate Shewhart x? charts. Pignatiello and
Runger found that for shifts in the mean that are less than three standard deviations, both
the MC1control and the multiple univariate CUSUM chart by Woodall and Ncube have
better performance than the Shewhart y?2 chart. For large shifts in the mean, the
Shewhart x?2 has smaller ARL than MC1.

Both of these multivariate CUSUM schemes have smaller ARL performance than
the Hotelling T? or the chi-square control charts. However, the multivariate exponentially
weighted moving average (MEWMA\) has very similar ARL to both of these multivariate

CUSUMs and is much easier to implement in practice; thus, it should be preferred
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(Montgomery, 2009). The MEWMA control charts are discussed in the following
section.

Multivariate exponentially weighted moving average (MEWMA) control
chart. Computerized manufacturing processes make it possible to collect data on large
amounts of correlated variables or characteristics for monitoring a manufactured part,
product, or service process. Several types of multivariate quality control charts have
been developed that perform well, providing these variables or characteristics are
assumed to be normally distributed. Lowry et al. (1992) developed MEWMA or
multivariate exponentially weighted moving average for monitoring the stability of a
process. Suppose (p x 1) random vectors X4, X,, X3, ..., each representing the p quality
characteristics to be monitored, are observed over time. It will be assumed that the
X;, i =1,2,3,... are independent multivariate normal vectors with mean vectors
u;, respectively, and assume that each random vector has a known covariance matrix X.
It is further assumed, without loss of generality, that the in-control process mean vector is
u=1(0,0,0,..0)". Multivariate control charts procedures signal that a statistically
significant shift in the mean (location) has occurred. Like the univariate EWMA control
chart, the MEWMA control chart is based on the values

Z,=AX;+(I-MN)Z;_, (70)
where i = 1,2,3,..and Zy = 0 and A = diag (A3,A,..,4,),0 < 4 < 1,j =
1,2,3,...,p . If there is no prior reason to weigh past observations differently for the
different p characteristics, then A, = 4, =+ =1, = 4 and

Zi =X, +(1-1)Z;_,. (72)

The MEWMA control chart signals out-of-control when



53
T? = Z;2;1Z; > h,, (72)

where h, > 0 is chosen to achieve a specified in control ARL.

y) .
Iy=5—1-1- A2z, (73)

is the variance-covariance matrix of the recursive statistic Z; and T? is the charting

statistic. Lowry et al. (1992) showed that the asymptotic variance-covariance matrix is

==y (74)

The control limit h; is usually chosen to give an in-control ARL = 200, where the process
is assumed to be in-control when the chart is started. This value is the zero-state ARL
and the shift size is of the quantity

&= tw2 (75)
Again, in the context of multivariate normality, & is called the non-centrality parameter
(Stoumbos & Sullivan, 2002). Larger values of & correspond to larger shifts in the mean
vector (Montgomery, 2009). When & = 0, the process is in control and the chart can be
constructed using standardized data. When L =1, MEWMA is equivalent to the T?or y?
control chart; the MEWMA is more sensitive to smaller shifts when A # 1. Since
MEWMA is directionally invariant, we only need the & values to examine the
performance for any shift in the mean vector (Lowry et al., 1992; Montgomery, 2009).
However, unlike Hotelling’s T2, MEWMA is not only based on the most recent
observation and therefore is sensitive to small and moderate shifts in the mean vector
(Lowry et al., 1992).

There have been various modifications to the MEWMA since it was first

developed by Lowry et al. (1992). The nature of most research findings is theoretical;
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however, general research demonstrates potential utility of many of the proposed
methods and modifications to the original MEWMA scheme by Lowry et al. as well as
providing encouragements for future researchers to further investigate the properties of
the proposed alternatives thoroughly. For example, Hawkins, Choi, and Lee (2008)
proposed using a full-smoothing matrix, A, instead of a diagonal one. Hawkins et al.
stated that the traditional MEWMA with diagonal elements only is directionally invariant
while the full-smoothing, matrix-based MEWMA (FMEWMA) is not. The FMEWMA is
affected by the direction of the shift and the correlation structure, thereby complicating
the control chart design. The FMEWMA scheme created additional computational
requirements but provided tangible improvement in detecting a shift in the process mean
vector. Hawkins et al. compared the ARL performance of FMEWMA to MEWMA and
found FMEWMA to have shorter ARL performance.

Reynolds and Kim (2005) pointed out that the standard practice when using any
control chart to monitor a process is to take samples of fixed size at regular intervals.
Reynolds and Kim investigated MEWMA based on sequential sampling where
observations at a sampling point were taken in groups of one or more observations and
the number of groups taken was a random variable that depended on the data. The
MEWMA chart was based on sequential sampling, which used the standard MEWMA
statistic at point k for variable i as

Exi = (1= DEg_1; + 21Xy , (76)
where E, = 0 and A is a weighting smoothing parameter such that 0 < A < 1. At the

sampling point k, the EWMA vector was formed by the Ej; statistics as

ek = (EkllEkzi""'Ekp)’! (77)
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and the control statistic
Y, = CEl(ek —ﬂo)'261(ek — Ho), (78)

[1-(1-1)%]

where the constant ¢;, = A o ,k = 1,2, ..., and an out-of-control signal is given

when Y, > h, where h is the control limit.

Reynolds and Kim (2005) found that the performance of MEWMA based on
sequential sampling is much more efficient in detecting process mean vector shifts than
standard MEWMA. Reynolds and Kim showed that for small to moderate shifts, both the
MEWMA based on sequential sampling and the standard MEWMA were more efficient
than the Hotelling’s Shewhart chart. For large shifts, they found that the performance of
the control chart based on MEWMA sequential sampling was close to the performance of
the Hotelling’s Shewhart chart.

Reynolds and Cho (2006) investigated the performance of MEWMA control
charts for simultaneous monitoring of the mean vector and variance-covariance matrix
compared to the of standard multivariate Shewhart chart and to combinations of
univariate EWMA charts applied to each of the variables. Reynolds and Cho found that
using combinations of MEWMA-type charts based on the mean and on the sum of
squared regression adjusted deviation from the target performed best. They concluded
that the chart based on squared deviations from target would detect large shifts both in
process mean vector as well as variance-covariance matrix. Huwang, Yeh, and Wu
(2007) developed two new control charts for monitoring process variability for individual
observations. Huwang et al. argued that any changes in the mean vector or the process
variability were more likely to occur within rational subgroups than between subgroups.

Huwang et al. developed two control charts to monitor process variability: the
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multivariate exponentially weighted mean squared deviation (MEWMS) and multivariate
exponentially weighted moving variance (MEWMV) charts. When monitoring process
variability, it is assumed that the process mean is constant; otherwise, the shift is subject
to confounding of both mean vector and variance-covariance matrices. Huwang et al.
showed through simulation studies that if the process means vector remained in control,
the MEWMS chart outperformed MEWMYV and both standard MEWMA and MCUSUM.
The authors pointed out that MEWMS and MEWMYV charts could be applied to cases
when the number of observation in the rational subgroups n > 1.

Lowry et al. (1992) used simulation to estimate the ARLs of the MEWMA charts;
whereas, others used approaches based on Markov chains or integral equations (Reynolds
& Kim, 2005). Markov chains can be applied when the multivariate control statistic can
be modeled and the run length performance depends on the off-target mean through the
non-centrality parameter. Runger and Prabhu (1996) used Markov chain approximation
to determine the run length performance of the MEWMA chart. They used symmetry
and orthogonal invariance to provide a Markov chain analysis of a multivariate control
procedure. They demonstrated the Markov chain analysis for a bivariate case is
extendible to multivariate processes by changing the chi-square degrees of freedom to
obtain transitional probabilities. They obtained MEWMA chart ARL estimates similar to
those obtained by Lowry et al. using simulation studies. Prabhu and Runger (1997) also
used Markov chain analyses to provide recommended values for weighting or smoothing
parameters for the zero-state, steady-state, and worst-state cases. ARL performance
results obtained from simulation studies by Lowry et al. have been limited. Prabhu and

Runger’s objective was to select the parameters for the design of a MEAMA by using the
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Markov chain method to provide design recommendations for a MEWMA control chart.
Molnau et al. (2001) also provided a program using Markov chain analysis that calculates
ARL for MEWMA control charts. The program returns the ARL given values of the shift
in the mean vector. The Markov chain program is dependent on the number of states
used in the approximation with a greater number of states providing more accurate
approximation of ARL but at the expense of increased computing resources and time.

But the ARL performance of MEWMA obtained using the Markov chain program
compares favorably with those obtained by Lowry et al. using simulation.

A very important research area in SPC is the robustness of statistical control
charts to non-normality. Stoumbos and Sullivan (2002) investigated the effects of non-
normality on the ARL performance of the MEWMA control chart and its special case--
the Hotelling’s y? in which the smoothing parameter A = 1. Stoumbos and Sullivan
showed that the Hotelling’s y? chart is highly sensitive to non-normality assumptions but
also showed that for individual observation and by extension for subgroups of size
greater than one, the MEWMA can be designed to be robust for elliptical symmetrical
distributions like the multivariate t distribution, the highly skewed such as the
multivariate gamma, and extremely heavy-tailed distributions. Stoumbos and Sullivan
demonstrated through simulation studies that for the bivariate t distribution with three or
more degrees of freedom, when the smoothing parameter A < 0.046, the in-control ARL
is at least as large as those obtained when the underlying process output is bivariate
normal. Also, Stoumbos and Sullivan demonstrated through simulation studies that the
bivariate gamma distribution Gam, with different values of the shape parameter a and

scale parameter =1, values of 1 < 0.046 give an in-control ARL values that are close
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to design values. When the shape parameter o increases and the gamma distribution
approaches normality, the in-control ARL is close 200 for any value of A.

Testik, Runger and Borror (2003) also examined the robustness of the MEWMA
control charts to non-normal data, specifically the symmetric multivariate t and the
skewed multivariate gamma distributions. Testik et al. demonstrated through simulation
studies MEWMA control charts’ in-control ARL outperformed its competitor control
charts for both the multivariate t and the multivariate gamma distributions with different
dimensions and 4 < 0.05. Overall, the authors showed that the MEWMA chart 1 < 0.05
was insensitive to the underlying distribution, which agreed with Stoumbos and
Sullivan’s (2002) results. Testik et al. also demonstrated through simulation studies that
the MEWMA control chart performance, when A2 < 0.05, was less sensitive and more
robust to non-normality. Testik et al. recommended usinga MEWMA with 1 =0.5as a
control chart for individual multivariate process outputs across many applications.

Zou and Tsung (2008) developed a directional multivariate exponentially
weighted moving average (directional MEWMA) by integrating the MEWMA with the
generalized likelihood ratio test (GLRT), which incorporates directional information
based on a multistage state-space model and effectively monitors the process mean vector
shift. Zou and Tsung’s scheme provides an SPC solution that incorporates both inter-
stage and intra-stage correlations as well as resolving the confounding issue of
monitoring cumulative effects from stage to stage such as in automotive body assembly
processes. The authors showed through simulation studies that the proposed directional

MEWMA procedure outperformed all existing SPC procedures in a multistage process.
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Multivariate parametric control charts have been studied extensively and have
been shown to provide a potential solution to many monitoring situations and settings.
However, although these methods are robust and efficient with modifications to chart
design, they all are based on the assumption that the underlying process output data are
sampled from a known parametric distribution such as the multivariate normal
distribution. This is rarely true and more robust methods are needed when the underlying
process output is distribution-free or the distribution is not known.

Multivariate Nonparametric Control Charts

Although multivariate SPC problems are important in their own right, the field of
multivariate nonparametric statistical process control techniques is not sufficiently
developed (Qiu & Hawkins, 2001). A partial review of this area is presented next. There
are two main components to multivariate nonparametric control charts. The first are the
various nonparametric test statistics used in place of parametric statistics when the
underlying distribution is unknown. The second are the control chart schemes employed
using these nonparametric statistics. Among the most prevalent multivariate
nonparametric statistics involve spatial statistics. The statistical process control chart
schemes utilizing these spatial statistics are extensions of the parametric MEWMA and
MCUSUM.

Multivariate signs, ranks, and signed-ranks statistics are designed based on
different mathematical concepts. Marginal multivariate signs and ranks are based on the

Manhattan-distance or norm |. | ,|x| = |xq| + |x2| + -+ + |xk|; Whereas, spatial signs

. . 1/2 .
and ranks are based on the Euclidean distance, [|x]| = (x% + -+ x2) /% and the affine

signs and ranks are based on average determinants of subsets of variables
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(Hettmansperger & Randles, 2002; Oja, 1999; Paindaveine, 2008). Using marginal signs
and ranks yield a vector of marginal medians, using spatial signs and ranks yield spatial
medians, and when using affine signs and ranks, the Oja median is produced(Oja, 1983)--
a location estimate satisfying the affine invariance and consistency conditions. The
spatial median is not scale equivariant and the marginal median does not satisfy rotation
equivariance (Visuri, Koivunen, & Oja, 2000). Depending on which signs and ranks
concepts are used, the covariance matrices have different statistical properties
(consistency, limiting distribution efficiencies, and influence functions, etc.).

Several nonparametric spatial multivariate statistics have been incorporated in the
design of multivariate control charts. Randles (1989, 2000) developed a multivariate sign
test based on the transformation-retransformation approach (Chakraborti, Chaudhuri, &
Oja, 1998) together with the directional transformation developed by Tyler (1987).
Tyler’s transformation is to find a p x p positive-definite matrix that has a trace (V,.) = p,
which satisfies that for any A, Ay = V3. Randles (2000) proposed Ay that is convenient
to calculate and produces a sign test with desirable characteristics. Randles’ Ay is
nonsingular and is affine-invariant such that

AXy, o, X)) = A(61 X, oo, 60 X)), (79)
forall §; = +1and x; = 1,2, .....,n. This property simplifies the conditional distribution

of the test statistic satisfying

1o, AX \/ AX 1
22 ax) axg) =5" (80
n A, X[/ \[|A,X;]| p

n
=1

for which
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n
1 1
= Wy =<1, (81
ns p
i=1
where V; denotes
AxXi
: 82
14X, &2
and
n
= z v (83)
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After obtaining V;, Randles proposed to use the test statistic

n -1
S, =nV’ (n-l Z Vivg) V. (84)
i=1

Randles showed that if Ay is replaced by A, which is calculated based on
interdirections, then

Sy =npV V' (85)
The test statistic S,, was shown by Randles to be affine-invariant and distribution-free for

the class of distributions with elliptical directions. In addition, Randles proved that

d —~ . .
Sn = X5 - Tyler (1987) demonstrated that A, is unique and the estimator 4, is consistent

with asymmetrical normal and provided an algorithm to compute 4,.. Randles stated that
his test makes minimal assumptions, is directional, and showed that the test not only has
a small sample distribution-free property over broad class of distributions but performs

well in comparison with Hotelling’s T°.
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Hettmansperger et al. (1997) developed an affine-invariance (equivariant) signed-
rank test (estimates) based on the generalized median of Oja and Oja signs and signed-
ranks. Oja (1983) extended the affine-invariant multivariate sign test of Hettmansperger,
Nyblom, and Oja (1994). The authors used the Oja criterion function to develop an
affine-invariant multivariate vector sign, then used the vector sign to develop a vector
rank, and finally defined the vector signed-rank and an affine-equivariant estimate of the
location. Their test needs a symmetry assumption but no assumptions about the
covariance structure are required. Their statistic proves more efficient than Hotelling’s
T2 when the underlying distribution of the variables is the multivariate t-distribution with
small degrees of freedom. For higher degrees of freedom, Hettmansperger et al. (1997)
showed that the performance of their signed-rank statistic improves and compares
favorably with that of Hotelling’s T>.

Hallin and Paindaveine (2002) proposed several multivariate location tests based
on interdirections and pseudo-Mahalanobis ranks under elliptical symmetry. Hallin and
Paindaveine developed an alternative to their multivariate location tests in which the
interdirections were replaced by “Tyler angles” or the angles between observations
standardized via Tyler’s estimator of scatter (Tyler, 1987). The tests developed using
Tyler’s angles are computationally preferable in terms of CPU to those developed using
interdirections. However, the authors showed via simulation studies that the two-
versions are asymptotically equivalent. Hallin and Paindaveine’s tests, which are a
generalization of the univariate signed-rank tests, are affine-invariant under elliptical
symmetry. Oja (2010) points out that the sign and signed-ranks of Hettmansperger et al.

(1997), which are based on the Oja signs and signed-ranks, are asymptotically equivalent
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to spatial signs and signed-ranks tests in the spherical case and are affine-invariant.
However, unlike the tests developed by Hallin and Paindaveine, their performance under
the elliptical case may be poor.

Peters and Randles (1990) developed an affine-invariant signed-rank test and
signed sum test for the one-sample multivariate location problem, respectively. Both
tests are modifications of Randles’ (1989) multivariate sign test and were developed
based on the principle of interdirections introduced by Randles. Randles introduced a
sign test based on interdirections that used the direction of the observations from 0 rather

than the distances from 0. Consider a pair of observations X;and X, in a sample of size
n. Let Cj, denote the number of hyperplanes formed by the origin and p -1 other points

(excluding X;and X)) such that X;and X, are on the opposite sides of the formed

hyperplane. Therefore, given a sample of size n, Cj is an integer between 0 and (ng)

inclusive. A value Cj = 0 implies that the points X;and X, are adjacent. The Cj;, counts
are referred to as interdirections, which measure the angular distance between X;and X

relative to the origin and other data points. To describe this test, consider the test for

general p that rejects Hy statistic for large values of the statistic

n

=) ) cost, (86)

j=1k=1
where
(Cjk + dn) .

By = (p’_ll) ifj+k

0,if j =k, (87)
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and

4 =3{(,2 1) -G ®)

and c;j, denotes the number of hyper-planes formed by the origin and p-1 observations.
The proportion pj is the observed fraction of times that X;and X fall on the opposite
sides of the formed hyperplanes. Randles showed that the sign test based on
interdirections in invariant under non-singular linear transformations and that under Ho,
, has small-sample distribution-free properties over the broad class of elliptical
distributions. Randles also showed that under H,, V,, has an asymptotic chi-square
distribution with p degrees of freedom.

Peters and Randles (1990) developed a signed-rank statistic as a special case

based on Randles’ (1989) V;, statistic. Using the original estimated Mahalanobis
distances of the original Y vector observations, D; = Y/S~1Y; , where £ = %YiYi’ is a

constant estimator of the variance and letting R; = rank(ﬁi), Peters and Randles’

signed-rank statistic is defined as

n n
Wy =25 cos(p) L, (89)
j=1k=1
Peters and Randles showed through Monte Carlo simulations that their signed-rank test
static was robust and it performed better than its competitors when the distribution was
light-tailed and as well as the Hotelling’s T2 under multivariate normality. For heavy-

tailed distributions, the signed-rank statistic performed better than Hotelling’s T but not

as well as Randles’ statistic.
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Hossjer and Croux (1995) and Hallin and Paindaveine (2002) developed a class of
optimal procedures based on Randles’ (1989) interdirections and pseudo-Mahalanobis
ranks. Hossjer and Croux developed a method to generalize signed-rank statistics to
higher dimensions. They suggested that when the underlying distribution of the data was
elliptically symmetric, transforming the observations using an equivariant estimate of the
population covariance matrix and then calculating the test statistic using the transformed
observation, the corresponding location estimator is affine-invariant if the signed-rank
statistic is applied to standardized data. For any sample X = (X4, ..., X;,), let
a,(1), ..., a,(n) be a sequence of non-negative scores, define the test statistic

To(X) = X1y anRUIXIDUX), (90)
where R(||X;|]) and U(X;) = x/||x|| are the rank and sign of the vector X. Hossjer and
Croux provided formulas for calculating the asymptotic relative efficiency (ARE) of
these generalized tests with respect to Hotelling’s T?. Hossjer and Croux showed through
simulation studies that the performance of the proposed signed-rank test was as good as
that of the Hotelling’s T and more robust to contamination for spherical and elliptically
symmetrical distributions.

Mahfoud and Randles (2005) argued that the test statistics by Hossjer and Croux
(1995) were too complicated to compute; while their performance was excellent for the
distribution for which they were optimal, their performance might not be good over a
broad spectrum of distributions. Mahfoud and Randles proposed a class of affine-
invariant multivariate signed-rank test based on the affine-invariant sign test that was

originally developed by Randles (2000). Using Randles’ original statistic
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n -1
S, =nV’ (n-l Z Vivg) v, (91)
i=1

Mahfoud and Randles proposed and developed a signed-rank statistic

n -1
Wop =V (wlsz,-v;i) 7. (92)
i=1

The statistic W,,, uses the ranks of the distances of the transformed observations from the

origin. Mahfoud and Randles defined the ranks Q; to be the rank of

|A;Y;|| among ||AgY1ll, ... |1Ag Yyl and V; = ¢ (ﬁ) V;, where ¢ (.) is a nonnegative,
non-decreasing, uniformly bounded continuous function that may depend on the
dimension p. Mahfoud and Randles showed that W},,, is affine-invariant as long as

n > p(p — 1). Mahfoud and Randles demonstrated that W, has strong efficiencies over
a wide spectrum of distributions, ranging from very light-tailed distributions to very
heavy-tailed ones.

Efficiency of Multivariate Spatial Sign and Rank Tests

To use the sign and rank test statistics in statistical process control and the design
of control charts as an alternative to parametric ones when the distributional assumption
is violated, the efficiency of the nonparametric spatial sign and rank statistics must be
comparable to their parametric counterparts. Since the asymptotic relative efficiency
plays a very important role in the development of nonparametric tests, it is critical to
consider multivariate efficiencies when developing multivariate location models.
Mottonen et al. (1997) derived the asymptotic relative efficiency formulae for the
multivariate spatial sign and signed-rank methods. The efficiency of affine invariant

multivariate rank tests under similar conditions was also developed by Mottonen et al.
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(1998). Mottonen et al. (2004) also calculated relative efficiencies for the spatial sign
and signed-rank methods with respect to Hotelling’s T2 under the multivariate t-
distribution with selected values of degrees of freedom v and with selected dimensions k.
Mottonen et al. (1997) found that in the multivariate normal case (v = o), the efficiencies
of the spatial signed-rank test dominated the efficiencies of the spatial sign test; however,
for small values of degrees of freedom (heavy-tailed distributions) with high dimensions,
the sign test was better. They also found that both tests had good efficiencies over broad
class of multivariate t-distributions and efficiencies were better for higher dimensions.
Mottonen et al. (1997) found that the efficiencies of the spatial sign test agreed with
efficiencies of the sign test based on the Oja median (Brown & Hettmansperger, 1987a,
1987b; Oja, 1983; Hettmansperger et al., 1994). Oja and Randles (2004) also calculated
the asymptotic relative efficiency (ARE) for the multivariate sign test and the signed-rank
test relative to Hotelling’s T2 under the multivariate t-distribution with selected values of
degrees of freedom v and with selected dimensions k.

Oja and Randles (2004) also investigated the ARE properties of some affine-
invariant sign and signed-rank tests. They found that as the dimension increased and as
the distribution got heavier tailed or when the degrees of freedom got smaller, the
performance of the sign and signed-rank tests improved relative to Hotelling’s T?,
indicating that the multivariate nonparametric test were clearly better in heavy-tailed
cases. For example, for the heavy-tailed multivariate t-distribution with degrees of
freedom v= 3, the AREs of the affine -invariant signed-rank test relative to Hotelling’s T2
were 1.9, 1.95, 2.02, and 2.09 for dimensions 1, 2, 4, and 10, respectively (Oja &

Randles, 2004). These AREs demonstrated that the affine-invariant spatial signed-rank
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test is a viable alternative to the Hotelling’s T?, indicating when the underlying
distribution was not multivariate normal.

Liu (1995) introduced three robust nonparametric multivariate control charts
(RMVCC): ther, Q, and S charts. Liu’s robust multivariate control charts are based on
the notion of data depth and do not require any underlying distributional assumptions.
The principal idea in constructing these RMVCC is the reduction of each vector of
observations X’ = (X, ..., X},) to a univariate rank based on the notion of data depths.
These ranks are then used to construct the multivariate control charts. Liu suggested that
for any point X € RP, the simpilical depth of X with respect to a distribution G is given
by

SDg(X) = P {X € s[Xq, ., Xps11} (93)
where s[X3, ..., Xj4+1] is a simplex whose vertices Xj, ..., X;41 are k+1 random
observations from G. The simpilical depth SD,; is a measure of how deep or central the
point X is with respect to the distribution G. However, most often, G is unknown and
SD. will be estimated empirically from a sample of points X3, ..., X;,,. The empirical

simpilical depth with respect to the sample Xi, ..., X,,, is given by

-1
1{X
All subsets of Xq,...Xm of size (k+1) (94)

Dm0 = (. ;)

€ s[Xi1, -, Xik+1l}
where Gm is the empirical distribution of Xj, ..., X;,,, 1 is the indicator function; that is ,
I(A) =1 if A occurs and I(A) = 0 otherwise. Inthe RMVCC case, the sample Xi, ..., X, is
considered to be the base period sample and the point X is considered to be an
observation from the control period. The Phase | sample is assumed to come from a

distribution G while the Phase Il sample is assumed to come from a distribution F. Both
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distributions G and F distributions are assumed to be unknown and if the process is in-
control, then G = F. Otherwise, G # F.

The robust multivariate control charts proposed by Liu (1995) are summarized as
follows: For an assumed in-control process in Phase I, take a sample X3, ..., X,,,, and then

for each observation X in Phase I, consider the test statistic:

S|

Tom@) = — "1 (Dom(¥%)) < Dgm(X)), (95)
j=q

Where | is the indicator function such that I (A) =1 if the data depth X is less than or

equal to the data depth of X and I(A) = 0 otherwise. The quantity r,, (X) measures the
outlying of the point X with respect to the sample X4, ..., X,,. Smaller values of rg,, (X)
are desired. Liu’s robust nonparametric multivariate control charts (the r, Q, and S
charts) are based on the quantity r,, (X).

The r control chart is constructed by taking a Phase | sample of m
observations X, ..., X,,. For each observation X; in Phase I, compute the charting
statistic rg,,, (X*) versus time (t =1, 2, ...). The control limits are defined by setting the
center line CL = 0.5 and the lower control limit LCL = a. These control limits are based
on the asymptotic distribution of 1, (X*)~U[0,1]. The asymptotic distribution of
rem (X*) suggests that LCL = a. The process is out-of-control whenever the value
Tem (X™) is below LCL = a.

Similarly, the Q control chart is constructed by taking a Phase | sample of m
observations (X4, ..., X,,). Consider taking several samples of size n (X7, ..., X;,) from

Phase Il. For each observationX; in Phase I, compute the charting statistic r,, (X*).
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The Q chart is constructed based on plotting the average of r¢,,, (X*) versus time for the

points taken from Phase 11, such that

1 n
Q' G ) =7 ) Tom(XD) (96)

where G,,, and F, are the empirical distributions of (X3, ...,X,,) and (X7, ..., X},),

respectively. Liu and Singh (1993) have shown by simulation studies that the statistic

Q' (G, E,) is asymptotically distributed as N(%, % (% + %)) The control limits of Q are

set as

CL = 0.5,and

11 1. 97)
LCL=05-2, IR E-I_;

The process is out-of-control whenever the value Q¢(G,,, E,) falls below LCL.

The S control chart is analogous to a univariate CUSUM chart for process
location and is constructed by taking a Phase | sample of m observations (X4, ..., X;;,).
Then for each observation X; in Phase 11, compute the statistic rg,,(X*). The S control

chart is based on the charting statistic

G =y [ren0 5], (99

which also can be written as

5 Gm) = 1@ (G ) - %] (99)

Liu (1995) suggested that the statistic S*(G,,) is asymptotically distributed

2f1. 1
as N ( 0, %) Therefore, the S control chart limits are defined as
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CL = 0.5,and

SR (100)
12 '

LCL=-2Z,
The process is out-of-control whenever the value S¢(G,,) falls below LCL.

Several multivariate statistical process control methods are based on parametric
and nonparametric assumptions. The parametric methods were designed with the
assumption of multivariate normality to describe the sample. The nonparametric methods
do not assume a known joint distribution of the p quality characteristics, although it
requires the assumption that the sample units are iid and exchangeable. The parametric
methods assume that the joint probability distribution of the p quality characteristics is
the p-variate normal distribution from a sample of size n (Montgomery, 2009; Stoumbos
& Sullivan, 2002). There is considerable dichotomy of opinions regarding the statistical
performance of MEWMA when normality assumptions are violated. Stoumbos and
Sullivan (2002) argue that statistical performance of an appropriately designed MEWMA
control chart is robust under non-normality and comes close to being distribution free.
However, Stoumbos and Sullivan continue to argue that the MEWMA chart would be
preferable to the nonparametric MEWMA control charts that are less powerful, are
computationally more intensive than their multi-normal counterparts, and do not apply to
heavily skewed multivariate distributions like the multivariate gamma distribution. On
the other hand, others argue for the need of a distribution-free MEMA control chart
(Woodall & Montgomery, 1999).

According to Oja (2010), consider a model

yi=p+ Qg ,i=1,...,n (101)
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We assume that the errors are independent and identically distributed random vectors
from spherically symmetrical and continuous distribution. We say that the distribution of
the error vector & is spherically symmetrical around the origin if the density function
f (¢) depends on & only through the modulus |&]|. The modulus r; = |&| and direction
u; = ||~ 1g; are independent and the direction of the vector u; is uniformly distributed
on the p-dimensional unit sphere where

E(u) =0 (102)

and
1
COV(u;) = E(uu;) = Elp' (103)

Q is a full rank p x p transformation matrix and the regular covariance matrix of the
multivariate normal distribution is £ = QQ’. Under these assumptions, the random
sample Y = (y4, ..., ¥,)' comes from p-variate elliptical distribution with probability

density function
£, = |E172f <>:‘%<y - u)> , (104)

1
where [ is the symmetry center and X > 0 is the scatter matrix. The matrix £z is chosen
to be symmetric. The location parameter i is the mean vector, the scatter matrix X is

proportional to the regular covariance matrix, and the correlation matrix
1 1
= [diag(Z)] 2X [diag(Z)] 2. Then we have

yi~ Ep(W X, p). (105)
Methods for accomplishing the monitoring task are usually based on the following

quadratic formulation of the test statistics:
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i — Bo) ) 2740 (i — fo) (106)
where fiy and £, are the mean vector and covariance matrix estimated from the in-control
sample.

Several authors showed that a nonparametric control chart can be designed while
being computationally efficient and as statistically powerful or better than the
multivariate normal counterparts. Qui and Hawkins (2001) proposed and developed a
nonparametric MCUSUM procedure for detecting shifts in the location vector of a
multivariate measurement statistical process based both on the order information among
measurements components and on the order information between the measurement
components and their in-control means. Qui and Hawkins’ nonparametric MCUSUM is
distribution-free in the sense that its properties depend only on the ordering of the
measurements components and the ordering between the measurement components and
their in-control means. The distribution-free property makes the nonparametric
MCUSUM appropriate to use when the potential shifts in mean vectors of the process can
occur in all possible directions and the underlying distribution is not multivariate normal.

Zou and Tsung (2010) used a nonparametric multivariate exponentially weighted
moving average (MSEWMA) control chart for monitoring location parameters. Zou and
Tsung modified Randles’ (2000) nonparametric directional multivariate sign test statistic
by estimating an affine equivariant multivariate median or AEM-median 6,
(Hettmansperger & Randles, 2002) to develop a multivariate sign exponentially weighted
moving average (MSEWMA) control chart. After standardizing and transforming the X;

and calculating a modified statisic
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A, (X; — 6y)

vV, = , (107)
b 1A (X = 69)l
they define a EWMA sequence

Wi = (I - A)Wi—l + AVL (108)

They proposed a control chart that triggers a signal if

2—1

Q="—""PWW;>L (109)

where L > 0 is the control limit chosen to achieve a specific in-control average run length
(IC ARL).

MSEWMA adapts the multivariate sign test using an affine equivariant
multivariate median (AEM-Median) developed by Hettmansperger and Randles (2002) to
create a new test statistic. The resulting statistic is used as a charting statistic to develop
a new nonparametric counterpart of the MEWMA. MSEWMA is easy to implement
because only the affine-equivariant multivariate median and the transformation-
retransformation matrix need to be estimated from the reference (Phase 1) data set using
an algorithm developed by Tyler (1987) in the same manner as estimating the mean and
covariance matrix in a parametric MEWMA setting. Zou and Tsung (2010) showed that
MSEWMA is robust in attaining the in-control (IC) ARL and is efficient in detecting
small to moderate location shifts for heavy-tailed or skewed distributions. MSEWMA is
computationally fast, easy to implement, and it outperformed the MEWMA control chart
in detecting small to moderate shifts of data from the multivariate t-distribution and
multivariate gamma distribution..

Zou et al. (2011) argued that the MSEWMA control chart developed by Zou and

Tsung (2010) could result in a significant uncertainty in parameter estimation when Phase
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I sample size is small. Zou et al. developed a spatial rank-based MEWMA or empirical
rank-based EWMA (EREWMA) control chart using spatial ranks where the weighted
version of the rank test was used to compute the charting statistic by incorporating a
MEWMA scheme. In the univariate case, signs and ranks are based on the ordering of
the data; however, in the multivariate case, there is no natural ordering of data points
(Oja, 1983; Randles, 2000). Oja (2010) developed the concept of spatial signs and ranks.

The spatial sign function was defined by Oja as

-1
TNEIE Ll (110)

1
where ||x|| = (x'x)z is the Euclidean length of the vector x. The theoretical spatial rank

and signed-rank are
1 n
R(x) = = (Uex — ), (111)
1

and
Q@) = 3 [Re(®) + R_y()] (112

where R_y(x) = —Rx(x).
Zou et al. (2011) used an affine invariant version of a test statistic based on the
ranks R, (x) to define a MEWMA-type control chart where the MEWMA sequence is
y: =1 —-Ay,1 + AR, (Mx;), and (113)
where M = Q1 such that a scatter matix £ = QQ' > 0 is used to make the test affine

invariant. vThe charting statistic is

0= L2 yitcovr,Mxy . (114)
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Zou et al. called this the theoretical rank-based MEWMA or TRMEWMA. The authors
showed that their scheme is more appropriate in self-starting situations. The theoretical
rank-based nonparametric MEWMA has distribution-free properties in the sense that its
IC ARL is very close to the nominal ARL for parametric MEWMA. The empirical rank-
based MEWMA charts are easy to compute, computationally efficient, robust to non-
normality, and very efficient in detecting multivariate process shifts, especially when data
come from a heavy-tailed or skewed distribution. The authors proceed to show that this
rank-based MEWMA scheme is more robust in its in-control (IC) performance and

generally more sensitive to small and moderate shifts in location parameters.



CHAPTER I

METHODOLOGY

The Spatial Nonparametric Signed-Ranks
I utilized a nonparametric test statistic based on the work of Hettmansperger et al.

(1997). Hettmansperger et al. (1997) developed a multivariate affine-invariant
(equivariant) signed-rank test (estimates) by extending the work of Brown and
Hettmansperger (1987a, 1987b). Hettmansperger and McKean (2011) stated that this is a
delicate problem since there is no natural way to order or rank vectors. Let X4, ... X,, be a
random sample from a continuous k-varite distribution. Let

P={p="_(~>1.,0;):1<i < <ip<n} (115)
be the set of Np = (7) different k-tuples of an index set {1, ...,n}. Index p € P then
refers to a k-subset of the original observations. The volume of the simplex determined

by p € P along with X is
1 T
V(%) = V(xiq, -, Xij, X) = o |dop + X7d, |, (116)

where do, = (—1)*det(X;y, ..., X)) and d,, is the k-dimensional vectors of cofactors of

Xin det( ! ! 1). The Oja (1983) objective function is
Xi1 - Xig X
D,(6) o1 ,(0)
=N = ) 117
i )

pPEP
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and the Oja median @ minimizes D,,(@). The Oja median is affine equivariant and has
efficiency at the multivariate normal distribution that increases with dimension k (Oja &
Niinimaa, 1985). Following Hettmansperger et al. (1994), Hettmansperger et al. (1997)
took the gradient of k! V,(X) to be the sign vector of X relative to the hyper-plane
p = (iy, ..., ix) € P.Let Q,(X) = k!V,(X); then

Qy(x) = S,(x)dp, (118)
where
S,(x) = sgn(do, + x7d,,). (119)
We say that x is above the hyper-plane p if S,(x) > 0 and below if §,(x) < 0.
The centered vector rank function, analogous to the univariate case, is defined to be the

mean of the signs with respect to all possible p’s (variables),

Ry(0) = N7 ) @, (0. (120)
pEP
Now, let A be the set of 2¢ possible vectors (+1, ..., +1) and define
+ — 97—k
p (%) =2 Z Spa(X)dpa, (121)

a€eA

where S, (x)d,q is the gradient of

1 1 .. 1 1 . .
Eabs{det<a1xu " e x)} and p = (iy, -, iy). (122)
Now, define the signed-rank function as
RLG) = N;' Y Q3 (), (123)
pEP

Hettmansperger et al. (1997) showed that both R3 (x) and Q5 (x) are odd: R (x) =

— Ry (x) and Q5 (—x) = —Q5 (x).
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A Computational Example of the Signed-
Ranks Observation Vectors

We now illustrate the computation of the signed-ranks on a data set. The data
consist of thickness of cork borings for 28 trees from four different directions: North,
East, South, and West (Hettmansperger et al., 1997; Rao, 1948). We first reduce the data
to tri-variate (contrast) observations N-E, E-S, and S-W. Table 4 provides the original
quad-variate data along with the tri-variate data. Table 5 gives the signed-rank vectors of
the tri-variate data. Appendix B displays the SAS code and interactive matrix language
(IML) routines for the computation of the signed-rank vectors. The signed-ranks vectors
in Table 5 are duplicate results validated by Hettmansperger et al. (1997) in their example

using the same data.



Table 4

Cork Boring Data: North (N), East (E), South (S), West (W), and the Difference N-

E, E-S, and S-W
Tree N E S w N-E E-S S-W
1 72 66 76 77 6 -10 -1
2 60 53 66 63 7 -13 3
3 56 57 64 58 -1 -7 6
4 41 29 36 38 12 -7 -2
5 32 32 35 36 0 -3 -1
6 30 35 34 26 -5 1 8
7 39 39 31 27 0 8 4
8 42 43 31 25 -1 12 6
9 37 40 31 25 -3 9 6
10 33 29 27 36 4 2 -9
11 32 30 34 28 2 -4 6
12 63 45 74 63 18 -29 11
13 54 46 60 52 8 -14 8
14 47 51 52 43 -4 -1 9
15 91 79 100 75 12 -21 25
16 56 68 47 50 -12 21 -3
17 79 65 70 61 14 -5 9
18 81 80 68 58 1 12 10
19 78 55 67 60 23 -12 7
20 46 38 37 38 8 1 -1
21 39 35 34 37 4 1 -3
22 32 30 30 32 2 0 -2
23 60 50 67 54 10 -17 13
24 35 37 48 39 -2 -11 9
25 39 36 39 31 3 -3 8
26 50 34 37 40 16 -3 -3
27 43 37 39 50 6 -2 -11
28 48 54 57 43 -6 -3 14
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Table 5

Signed-Rank Vectors for the N-E, E-S, and S-W Original Observation in Table 4

Tree SR(N-E) SR(E-S) SR(S-W)
1 5.2 -66.9 -47.2
4.5 -70.8 -17.0
3 -68.6 -70.9 24.6
4 96.9 5.8 -28.7
5 -42.8 -54.4 -30.6
6 -48.3 15.4 73.2
7 74.1 94.5 60.5
8 69.7 107.4 715
9 28.0 82.9 81.7
10 62.9 25.3 -65.2
11 8.6 -3.0 54.7
12 22.7 -64.5 2.6
13 10.0 -48.2 24.9
14 -44.4 -0.8 76.7
15 15.6 -8.5 88.2
16 2.2 84.8 36.4
17 113.3 71.0 63.9
18 83.0 105.9 89.5
19 122.3 44.4 26.3
20 116.9 77.0 12.7
21 78.7 41.8 -13.3
22 37.3 12.4 -16.0
23 19.4 -32.7 54.1
24 -93.2 -92.2 25.0
25 42.4 35.4 81.1
26 129.7 58.2 -12.8
27 37.7 -30.5 -95.6

28 -68.1 -19.3 86.0
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A Detailed Signed-Rank Numerical Example
The computations of the invariant signed-ranks are highly intensive and a
stochastic algorithm is used to calculate the signed-rank estimates by sampling
observation hyperplanes (Oja, 1983). The following example is presented in summary
form; the full example can be found in Appendix B.
Let x4, x5, x3 be a random sample from a continuous 3-variate distribution. X is
defined in (124) as a (3 x 3) matrix of n = 3 observations on 3 variables. Hence, k =3

and n =3, and

6 -—-10 12
X=|-7 13 -11 (124)
5 7 15
P S {p S (il, iz, i3): il < iz < i3 S n} (125)

be the set of N, = (Z) different k-tuples of index set {1,2,3}. In this example, there is

3

3) =2 = 1. Therefore, the set P = {p = (1,2,3)} and the index

only one set of N = ( 5

p € P refer to a k-subset of the original observations.

Recall the multivariate sign Equation 121 defined below as 126.

5 (x) = 27k Z Spa(X)dyq. (126)
a€eA
Since k=3,
1
o5 = ng Spa(©)dpa (127)

Also, the signed-rank function from Equation 123 for N5 = 1is

R0 =) Q5. (128)

pPEP

Substituting (126) into (127), we get the empirical signed-rank function
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1
R;(x) = 3 Z Spa(X)dpg - (129)

acA

The multivariate sign is an average of all possible vector set A, such that A is the set of 2
possible vectors(+1, =1, +1). Since k = 3, we have a set A with 8 possible vectors:
A= {a,=[-1 -1 -1],
a=[1 -1 -1],
a,=[-1 1 -1]

a3 = [1 1 _1]1

(130)
a,=[-1 -1 1]
Cl5 = [1 _1 1])
as=[-1 1 1],
a; =[1 1 1]}
Let
6 -7 5
X =|-10 13 7 1. (131)
12 —-11 15

1. The signed-rank vector R; (x) for x';.

We start by calculating the sign vector Q7 (x) and signed-rank vector R} (x) for x*; =
6
—10]. We will calculate the sign vector Q7 (x) and signed-rank vector R} (x) for the
12
-7 5
other vector components,x’, = | 13 [,and x’3 = | 7 | in the same manner.
—11 15

Calculate all vectors a;p : t = 0,1,2,3,4,5,6,7 and check ifi =1 € a;p.Ifi =1 €

a;p, then S,,(x)d,,, = 0. So by using element-wise multiplication, #, we have
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ap=[-1 -1 —-1]#[1 2 3]=[-1 -2 -=3],

ap=[1 -1 —-1]#[1 2 3]=[1 -2 -3]
ap=1[-1 1 —-1]#[1 2 3]=[-1 2 -=3],

azp=1[1 1 —-1]#[1 2 3]=[1 2 -=3],
aup=[-1 -1 1]#[1 2 3]=[-1 -2 3]

asp=1[1 -1 1]#[1 2 3]=[1 -2 3],

agp=1[-1 1 1]#[1 2 3]=[-1 2 3],

a;p=1[1 1 1]#[1 2 3]=[1 2 3]

Note that sincei = 1 € a;p fori =1,3,5,& 7. Therefore, @} (x) = %Z%A Spa(X)d,,

is determined by vectors ag, a,, a4, & agonly. We now calculate the component
Spa(X)dyq fOr ay, az, ay, & agonly.
Define
Y; = a;#X,

Wy=U;=[Y2 Y3])—[Xi Xi]:i=1,2,0r3,

Wy=Yy—[Xi Xi Xj]:i=1,2,0r3,

(132)
W
[(_1)1 Wl - _w;_
W
dpa = | (C1D? Wy = _w;_ [, or
W
[(_1)3 Wy = w; J




=2
Wi
dye=| 1 |W1 = [W3] J and
Wy
-1 W1 = _W2_|

S dpa = Sign(lwzldpa)-

pa

We now calculate Wy, W, dy, and Sp,od, as follows:

7 -5
Yo=[-1 -1 —1]#[ ] [ —13 —7],
—11 15 ~15

we have

Wy=Uo=[Y2 ¥3])-[x X

7 -5 -6 —6 13 1
W, = [—13 —7] —[ 10 10 ] = [—23 —17],

11 -15 =12 -12 23 =3

Wy=Yo—[X1 X1 X4,

—6 7 -5 6 6 6 -12 1 -11
w,=(10 -13 -7{|(—-|-10 -10 -10|=| 20 -3 3 |

-12 11 -15 12 12 12 —-24 -1 =27

[ - | _17 1

| TP [ 1oy ] r—460

=] 1 | Sl = e | = [ —62 ]

[ i J ~1(-198)] L 198
~17
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and the sign vector is

—12 1 —11]| [—460]\ [—460
Spodpo = sign(IW,ldyo) = sign| || 20 -3 3 ||| -62 ||| —62 |
—24 -1 27 198 198

Using the same formulas in Equation 132, we calculate

W1, W3, dy;,and Sy,,d,; for Y,, Y,,and Yg as

—7 -5
-7,
—11 15 —11 —15

Wy=Y,=[Y2 Y3]) - x;i]

Yo=[-1 1 —1]#|-

-7 =5 -6 —6 -1 1
W1=[13 —7]—[10 10]=[3 —17],

-11 -15 =12 -12 1 -3

WZ = YZ - [xl X1 xl],

-6 -7 =5 6 6 6 -12 -13 -11
W, =110 13 -7(—|-10 —-10 -10|=] 20 23 31

-12 -11 -15 12 12 12 —-24 =23 =27

[ -1~
] e o
dpz = | 1] _3| =] 1@ [=] 2}
11 ~1(14) 14

l_1|3 _17J

and the sign vector is



-12 -13 -11 -8 8
Sp2dys = sign(|Wld,;) =sign| || 20 23 3 || 2 | |F[-2]
—24 =23 =271l [-14l/ l14

6 -7 5 -6 7 5

Yy=[-1 -1 1]#|-10 13 7|=|10 -13 7]

12 -11 151 [-12 11 15

W1=(Y4_=[y2 y3])_[xi xi];

7 -5 -6 —6 13 11
W, = [—13 -7 ] - [ 10 10 ] = [—23 —3],

11 -15 —-12 -12 23 27

WZ = Y4, - [xl X1 xl],

-6 7 5 6 6 6 -12 1 -1
wW,=(10 -13 7|—-|-10 -10 -10|=| 20 -3 17|,

-12 11 15 12 12 12 —-24 -1 3

_1|—23 -3
5 4 [F1ess2)] g ss2
dpa=| 1|55 55 1(98) =[ 98 ]
1131 —1(214) —214
—23 -3
and the sign vector is
-12 1 -1 552 —552
Spadys = sign(|Wzld,,) = sign| || 20 -3 17||«| 98 ||=| -98
-24 -1 3 —214 214

6 -7 5 -6 -7 5
Ye=[-1 1 1]#|-10 13 7 |[=]10 13 71,

12 -11 15 -12 -11 15
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Wy=Ue=1[Y2 Ys)—[%i Xi]

-7 =5 -6 —6 -1 11
W, =| 13 -7 1—110 10 |=13 =3,
-11 -15 —12

—12

W,=Ye—[X1 X1 Xq],

-6 -7 5 6 6 6 -12 -13 -1
W, =|10 13 7(—[-10 -10 -10|=] 20 23 17},
—-12 -11 15 12 12 12 —-24 =23 3

[ =1 %)
e
[_1|_1 11J -1(-30)] L[ 30
3 =3
and the sign vector is
-12 -13 -1 —84 —84
Spedps = sign(|Wldye) = sign| || 20 23 17| *|-38 =[—38].
—-24 =23 3 30 30

Applying Equations 128 through 132, the signed-rank vector for the original X*; =

6
—10] is

12

1
R*(x'y) = Z QF (x) = §Z S (X)dpe

pPEP a€eA

1
R+(x 1) = § (Spodpo + szdpz + Sp4dp4 + Sp6dp6)
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L —460 8 —552 —84 —136
R*(x'y) = s{—62 |+ |=2[+|-98|+|-38[]|= -25 |
198 14 214 30 57

The same algorithm was applied to the other two vectors in the matrix. The complete

step-by-step computations are available in Appendix B. The following is a summary of

5
andx'3 =17
15

2. The signed-rank vector R (x) for x°,

-7
the results for vectors x*, = [ 13
-11

In the same manner, we calculate the sign vector Q7 (x) and signed-rank vector

-7
R} (x) forx’, = [ 13 |. Again, applying Equations 128 through 132, the signed-rank
-11
-7
vector for the original X°, = | 13 |, we get
-11

1
R*(x,) = Z Q:(x) = 52 S pa(D)dpq

pEP a€A

1
R+ (X 2) = g(SpOde + Sp1dp1 + Sp4dp4 + SdePS)

1 [[—460 84 —552 -8 —117
R*(X,) = 3 —62(+|38|+]|—-98|+]| 2 =1 -15
198 —-30 214 —14 46

3. The signed-rank vector R; (x) for x'3
And finally, in the same manner, we calculate the sign vector Q3 (x) and signed-rank

5
7
15

vector R (x) for x5 = . Once again, applying Equations 128 through 132, the

5
signed-rank vector for the original x*3 = [ 7 ] ,we get
15



90

1
R'@5) = ) @I@) =5 ) Spa(®)dpa

pEP a€eA

1
R+(x 3) = § (Spodpo + Spldpl + szdpz + szdp3)

1 [[~460 84 8 552 23
R*(x3) =¢||—62 [+|38 |+|-2[+| 98 [|=]9}|
198 —30l l14] 1-214 —4

—-136 —-117 23
We now have R} = [R*(x’y) R*(x’,) R*(x'3)]=|-25 —-15 9|
57 46 —4

The calculated signed-rank vectors R*(x';), R*(x",),and R*(x'3) were generated for

6 -7 5
the transposed X or X" = [—-10 13 7 ] and the signed-rank vectors or matrix is
12 -—-11 15

then transposed to give the final signed-ranks matrix

—136 —25 57
R =(R}) =|-117 -15 46/
23 9 —4

The above result is identical to the signed-rank vectors or matrix obtained by
applying the SAS code and interactive matrix language (IML) routines for the purpose of

calculating the Oja invariant signed-rank vectors in Appendix A.
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The Signed-Rank Based Test Statistic
Again, let X4, ... X;, be a random sample from a continuous and symmetric k-
varites distribution with density f(x — 8) so that f (x) is symmetric about the origin and
6 is the unknown center of symmetry. Without loss of generality, we assume then the
null hypothesis is Hy: 8 = 0. Now we consider a one-sample randomization or sign
change test. From above, since R; (x) = — R;} (x) and under Ho, X and —x are equally
probable. Let H be a fixed half-space such that x # 0 belongs to H, then —x does not. We
now write
X; = SiY¥i, (133)
where y; € H. Hences; = +1asx; € Hor x; € HS. If Hy: 8 = 0 is true, then
S1, ., Sy and y, ..., y,, are mutually independent. Write
= R (). (134)
The vector-valued, multivariate one-sample signed-rank test statistic is the sum of signed

ranks of the observations

n

REGD = ) st (135)

i=1

T, =

M:

1l
[N

i

Under Hy: @ = 0 and given (yy, ..., ¥n), the “signs” s, ..., s,, are iid Bernoulli random

variables with P(s; = 1) = P(s; = —1) = % Hence, conditionally, E(T,,) = 0 and

B = cov (n 2T ) = %zn:r T zn:Rg(xi) R (x)). (136)

i=1 i=1

3|'—*

The conditional, approximately size a, randomization test is then carried out by rejecting

Hy:0 = 0 when n™TEBNT, = x2(k), where y2(k) is the (1 — a)-percentile from a
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chi-squared distribution with k degrees of freedom. Hettmansperger et al. (1997) showed

that

B, 5 B = E[R}(X)R} (X)) (137)
Now the research questions outlined in Chapter 1 are revisited and address the
research methods corresponding to each question specifically. Once again, this
dissertation addressed the following questions:

Q1 How will the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
scheme be designed for the in-control average run length (ARLg)?

Q2  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance for different number, p, of monitored related quality
characteristics?

Q3  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance for different values of the smoothing parameter 1?

Q4  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance for different sizes of shift in a process location vector?

Q5  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance compared to the Hotelling’s T2 and MEWMA control chart
scheme for elliptically symmetrical (multivariate normal and multivariate
t) and skewed distributions (multivariate gamma)?

A new multivariate nonparametric MEWMA control chart combined with the signed-
rank test is derived next.
A Spatial Signed-Rank Based Multivariate
Exponentially Weighted Moving Average
Control Chart
This section provides the necessary background to answer the first research

question:

Q1 How will the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
scheme be designed for the in-control average run length (ARLg)?
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The monitoring problem is closely related to the nonparametric statistical tests of
hypothesis of the one-sample location problem. Therefore, to facilitate the derivation of
the proposed charting statistic, we start by assuming the underlying in-control (IC)
distribution F (X — pug) is completely known, where F represents a continuous p-
dimensional distribution located at the vector u, . Given a random observed vector
x ~F(X — up), we want to test the null hypothesis, Ho, that u = py against H; that
u # . By definition, it is easy to see that under Ho, E[R;:(X;)] = 0. Thus, itis
straightforward to consider the test statistic

Q" = R (X){Cov(RE (X))} RA(X), (138)
as a reasonable candidate for testing. When Hy is true, the test statistic should be small

and thus not lead to rejection of the null hypothesis. Now, define a MEWMA sequence

we = (1 - Dw,_q + RS (x), (139)
where w, = 0 and A is a smoothing parameter.
The charting statistic is given by
R =wl{Cov(w)} w,,or (140)
2—-1 -1 (141)
Qf = ——wi{Cov(Ri (X))} w,
such that
Iy, = cov(w,) = 57 Cov (R (X)) (142)
Since St x,) = Cov(R} (X;)), equation 142 can be written as
A 143
Bw, = 57 BREGD: (143)

The covariance of w; is derived below.
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Recall the MEWMA sequence using the signed-ranks

W = (1 - Dw,y + ARE(X). (144)
Let us suppose that we are using a full smoothing parameters matrix A such that
All Alt
[, @49
Anl Ant
then Equation 144 can be represented as
w = (1 - Dw,_y + ARL(X). (146)
By repeated substitution in Equation 146, it can be shown that
t
w, = Z Al - DT w, (147)
j=1
thus
t
Zy, = Z var{A(1 — A7 w,} (148)
j=1
¢ _ _ (149)
= Z[A(l — ) Cov(R (X)) A(1 — ) wy]
j=1
because A and (1 — A) are diagonal matrices, the (k,I)th element of X, is
1—2)81 =4t
A1 — (1-2)'(1—-24) ’ (150)
[Ak + 4 — Ao,
where gy, is the (k,|)th element of Cov (R} (X;)). If 1, = A, = -+ = 1, = 1, then the
expression in (A.7) simplifies to
A(1-Q1-210%) (151)

27— kb

Such that



A(1-(1-2?%)
2-12

Iy, = cov(w,) = Cov(R,J;(Xl-));

however, as i — oo, the asymptotic covariance matrix is

Z,, = cov(w,) = Cov(R} (X;)) or

2—-1

2
t 21

zw ZR;{—'

Equation 141 can be written as

£= W?(zwt)_lwt > L.
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(152)

(153)

(154)

(155)

where L > 0 is the control limit chosen to achieve a specific IC ARL or ARLy . We refer

to this method as the Spatial Signed-Rank MEWMA or SRMEWMA.

The SRMEWMA chart is affine invariant. For any p x p nonsingular matrix M,

the charting statistic Q¥ , based on X, and X; = MX, are the same. This property is

intuitively appealing and it also ensures that the performance of SRMEWMA is the same

for any initial covariance matrix and location. The value of the charting statistics remains

the same for any of the following conditions: (a) the data points are rotated, (b) the data

points are reflected around a p-1 dimensional hyperplane, or (c) the scales of

measurement are altered (Hettmansperger et al., 1997; Zou & Tsung, 2010).

Proof: we know from Equation 139 that
we = (1= Dwe_y + AR5 (X)).

Now, define

(156)



Then

wi = M[(1 - Dw,_ + AR7(X))],
w; = Mwy,

and the covariance matrix of wy; is
Zw; = Zyw, = MZ,, M’

now, define a new charting statistic

QF = wi*(Z,;) Wi
= (Mw,)' (MZ,, ,M")"" (Mw,)
=wl(MM'™)(5,,) (M M)w,
= wl(Zy,) W,
= QF.

This completes the proof.

Spatial Signed-Rank Multivariate
Exponentially Weighted Average
Run Length Performance
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(157)

(158

(159)

(160)

(161)
(162)
(163)
(164)

(165)

Choice of multivariate distributions for simulation. Following the robustness

analyses by Stoumbos and Sullivan (2002), Stoumbos and Reynolds (2000), Borror,

Montgomery, and Runger (1999), Zou and Tsung (2010), and Zou et al. (2010), data

were generated from the following distributions: (a) multivariate normal (elliptically

symmetrical) ; (b) multivariate t-distribution with v degrees of freedom (elliptically

symmetrical), denoted as ¢, ;

parameter a and scale parameter f = 1, without any loss of generality, denoted

and (c) multivariate gamma (skewed) with shape
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as Gam, (a, B = 1). Further statistical details on the general multivariate t-distribution
and gamma distribution can be found in the Appendix to Stoumbos and Sullivan’s study
(2002). As discussed by Stoumbos and Sullivan, since the multivariate normal and t
distributions were elliptically symmetrical, the MEWMA's OC performance depended on
a shift in the process mean vector only through a non-centrality parameter. This was still
true for the SRMEWMA chart because of its affine invariance. However, with the other
distributions, such as multivariate gamma, the performance was not invariant to the
covariance matrix of the “implicit” multivariate normal observation. The number and
variety of covariance matrices and shift directions were too large to allow a
comprehensive, all-encompassing comparison. The goal of this study was to show the
effectiveness, robustness, and sensitivity of the SRMEWMA chart; thus, only certain
representative models were chosen for illustration. Specifically for the three distribution
cases, the covariance matrix Zo = (o) was estimated from a large reference sample of
10,000 sample vectors for each distribution. In the interest of brevity, a shift of size & in
only the first component is used, say, x; + e, withe; = (1,0, ...,0)’, unless stated
otherwise.

Two literal bodies of work support the choice of distributions for simulation. The
first is based on the robustness to non-normality of MEWMA control charts for heavy-
tailed and skewed distributions and the second is based on the efficiencies of multivariate
signs and ranks tests relative to Hotelling’s T

Mottonen et al. (1997) examined the asymptotic relative efficiencies (ARE) of the
spatial sign test and the spatial signed-rank test with respect to the Hotelling’s T for the

t-distribution with selected values of degrees of freedom v and with selected dimensions
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p. Both tests seemed to have good ARE over a broad class of t-distributions with the
signed-rank test exhibiting better ARES; the higher the dimension the higher the ARE.
Peters and Randles (1990) found that the signed-rank statistic appeared to be robust and
performed better than its competitors when the data came from light-tailed distributions--
better than Hotelling’s T? for the heavy-tailed distribution and Hotelling’s T2 for the
multivariate normal distribution.

The Design of the Signed-Rank
Multivariate Exponentially
Weighted Average Control
Scheme

This section provides the necessary background to answer the second, third,
fourth, and fifth research questions:

Q2  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance for different number, p, of monitored related quality
characteristics?

Q3  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance for different values of the smoothing parameter A?

Q4  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance for different sizes of shift in a process location vector?

Q5  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance compared to the Hotelling’s T2 and MEWMA control chart
scheme for elliptically symmetrical (multivariate normal and multivariate
t) and skewed distributions (multivariate gamma)?

Using SAS 9.2, Monte Carlo simulation techniques were used to generate

simulated p-variate normal, t, and gamma observations vectors as described above and to

compute the signs, ranks, and signed-ranks. The following SAS functions were used to

generate the random p-variate observation vectors:



99

1.  The Random Query Generator (RANDGEN) function call was used to
generate multivariate normal p-variate observation vectors,

2.  The RANDGEN function call was used to generate multivariate student’s t-
distribution p-variate observation vectors, and

3. The RANDGEN function call was used to generate multivariate t-
distribution p-variate observation vectors.

Practical Guidelines on Choosing the
Reference Sample Size

The choice of sample size plays an important role in any simulation study and
affects parameter estimation. If the sample size is too small, there will be considerable
uncertainty in parameter estimates, which in turn will distort the in-control ARL (Zou et
al., 2010). Since collecting large reference samples is both costly and not time feasible,
Zou et al. (2010) suggested using a reference sample size of at least my, = 2p. To
achieve satisfactory performance, Zou et al. suggested using 50 observations or more.
However, the signed-ranks algorithm is computationally intensive when n > 5; therefore,
I used a universal sample size of 5.

Average run length; and upper control limit properties for signed-rank
multivariate exponentially weighted moving average. For a desired ARLy = 200,
ARL; and L values (see Equations 141 and 144) were calculated; where L > 0 was the
control limit chosen to achieve the desired ARL, of the SRMEWMA (QF) control scheme
for all combinations of following parameters’ values:

1. The number of quality variables to be simultaneously monitored, p = 2, 3, 4,

and 5 for the multivariate normal and t distributions and p = 2 only for the

multivariate gamma distribution.
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2. The smoothing parameter, A € [0.01, 0.02, 0.03, 0.05, 0.10, and 0.50]. A
smaller A led to a quicker detection (Lucas & Saccucci, 1990; Prabhu &
Runger, 1997).

3. Shifts in the process mean vector, 6 € [0, 0.25, .05, 1.0, 1.5, and 2.5].

The simulation process first determined the L values and based upon the
simulated L values, the associated ARL; values were calculated using simulation in Phase
Il. As an example, Table 6 illustrates the ARL; denoted by “x” and L values, denoted by
“h” for the SRMEWMA (QR) control scheme for ARLg ~ 200 , p =2, and all values of A
and 6 mentioned above in 2 and 3. All shifts in process mean vector were introduced in
the first variable or component, such that the shift in mean vector was from gy =

,..,0)0tou = (4,0,...,0).

Table 6

Average Running Length; Values of the Signed-Rank Multivariate Exponentially
Weighted Moving Average (QR) Control Scheme for Average Running Lengthy ~ 200
andp=2

A
0.01 0.02 0.05 0.5
L
) h h h h
0.00 X X X X
0.25 X X X X
1.50 X X X X

2.50 X X X X
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In addition, the performance of the SRMEWMA (QR) control scheme was
investigated for ARLy =~ 500 for the same simulation condition associated with ARL, =
200. Both ARL;and L values were displayed in the same manner as Table 6 but for a
desired in control ARL, = 500.

Average running length comparisons to Hotelling’s T? and multivariate
exponentially weighted moving average. The performance of the SRMEWMA (QF)
control scheme was compared to the ARL values of both the Hotelling’s T2 and
MEWMA control schemes for the same sampling distributions and simulation parameters
listed above in “Simulation parameters” 1-3 listed previously. The following SAS
functions were used to generate the random p-variate observation vectors:

1. The RANDGEN function call was used to generate multivariate normal p-

variate observation vectors,

2. The RANDGEN function call was used to generate multivariate student’s t-

distribution p-variate observation vectors, and

3. The RANDGEN function call was used to generate multivariate t-

distribution p-variate observation vectors.

The ARL and upper control values L, h; (see Equation 49) and h; (see Equation
72) for the Hotelling’s »°, and MEWMA control schemes, respectively, will be generated
according to Table 7. The UCL (hy) for the Hotelling’s »* for which ARL, ~ 200 are
obtained from the x; tables only for p-variate observation vectors from the multivariate
normal distribution. All other UCL for all control schemes will be obtained by using
Monte Carlo simulation. The performance of the SRMEWMA (QF) control scheme was

compared to the ARL values of both the Hotelling’s y* and MEWMA control schemes
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only for observations from the multivariate normal distribution. Additionally, the
performance of the SRMEWMA (QF) control scheme was compared to the ARL values
of both the MEWMA control scheme for observation samples from both the multivariate

t-distribution and the multivariate gamma distributions.

Table 7

Average Run Length and Upper Control Limit (L, h;, & hy) Determination
Methods for Control Schemes and Selected Sampling Distribution

Control Scheme

Distribution SRMEWMA MEWMA Hotelling’s x°
Multivariate Normal Simulation Simulation Xz Tables
Ny (1, Zp)
Multivariate t Simulation Simulation Simulation
tpy
Multivariate gamma Simulation Simulation Simulation

Gamz'(a,ﬁz 1)

Table 8 (for p-variate observations from the multivariate normal distribution),
Table 9 (for p-variate observations from the multivariate student’s t-distribution), and
Table 10 (for p-variate observations from the multivariate gamma distribution) are
examples of the ARL comparison for the SRMEWMA (QF) control scheme, the
Hotelling’s T?, and MEWMA control schemes for ARL Comparisons for p =2, A=0.10

and ARL, ~ 200 .



Table 8

Average Run Length Comparisons for p = 2, 2. = 0.10 and In-Control
Average Run Length ~ 200 for p-Variate Observation Vectors from
the Multivariate Normal Distribution

SRMEMA Hotelling’s T** MEWMA

d L=h h, = 10.59* h,=h
0.00 X X X
0.25 X X X
0.50 X X X
1.00 X X X
1.50 X X X
2.50 X X X

*Values obtained from Lowry et al. (1992).

Table 9

Average Run Length Comparisons for p = 2, 2. = 0.10 and In-Control
Average Run Length ~ 200 for p-Variate Observation Vectors from
the Multivariate Student’s t-Distribution

SRMEMA Hotelling’s T°* MEWMA

o L=h h, = 10.59* h,=h
0.00 X X X
0.25 X X X
0.50 X X X
1.00 X X X
1.50 X X X

2.50 X X X

103
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Table 10

Average Run Length Comparisons for p = 2, 2 = 0.10 and In-Control
Average Run Length ~ 200 for p-Variate Observation Vectors from
the Multivariate Gamma Distribution

SRMEMA Hotelling’s T** MEWMA

d L=h h; = 10.59 h,=h
0.00 X X X
0.25 X X X
0.50 X X X
1.00 X X X
1.50 X X X
2.50 X X X

Simulation Process

The simulation process was conducted in two phases as follows:

Step 1 for Phase I: determine the UCLs for the SRMEWMA (QF) control
scheme, the Hotelling’s »* (multivariate normal only), and MEWMA control schemes for
the desired ARL, values.

1. The following SAS function was used to generate the random p-variate
observation vectors: The RANDGEN function call was used to generate
multivariate normal observation vectors, the multivariate student’s t-
distribution p-variate observation vectors, and the multivariate gamma

distribution).
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2. Using the observation vectors from 1 above, the spatial signs, ranks and
signed-ranks were computed using SAS IML routines and macros based on
the work of Hettmansperger et al. (1997).

3. The QF control statistic from Equation 155, the MEWMA control
statistic T# from Equation 72, and the Hotelling’s T2 in Equation 49 (only
for the multivariate normal distribution) were computed. The computed
signed-ranks were used to compute the QX control statistic, while the
original p-variate was used to calculate both the MEWMA control
statistic T# from equation and the Hotelling’s T2 .

4.  The computed @R, T?, and y? were compared to the corresponding L, hy,
and h, values, respectively. Once QF > L (similarliy T? > h, and y? >
h,) (i.e., the process signals out-of-control), the run length for the i"
simulation RL, ( the number of samples simulated before first out-of-control
signals occur when process is operating in-control state) was recorded.

5. The above process was repeated 10,000 times for each combination of
conditions (e.g., see Table 6).

6. Atthe end of the 10,000 simulation, the computed average run length ARL

is obtained as

ARLy = — ZlO'OOORL (166)
710,000 4, 0

7. Once the ARL, was approximately equal to 200, the process stopped and
then the corresponding values of L or h; were recorded.

Step 2: Determining the ARL; values for Phase II.
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The following SAS function was used to generate the random p-variate
observation vectors: The RANDGEN function call was used to generate
multivariate normal p-variate observation vectors, the multivariate student’s
t-distribution p-variate observation vectors, and the multivariate gamma
distribution. The shift 8 value was added to the first component of the
standardized signed-ranks of the simulated observation vectors.

The QF control statistic, the MEWMA control statistic T# from Equation
72, and the Hotelling’s 2 in Equation 49 (only for the multivariate normal
distribution) were computed. The computed signed-ranks were used to
compute the QR control statistic; whereas, the original p-variate was used to
calculate both the MEWMA control statistic T# from equation and the
Hotelling’s T2 .

The computed QF, T?, and y2 were compared to the corresponding L, hy,
and h; values, respectively. Once QF > L (similarliy T? > h, and y? >
h,) (i.e., the process signals out-of-control), the run length for the i"
simulation RL; ( the number of samples simulated before first out-of-control
signals occur when process is operating in-control state) was recorded.

The above process was repeated 10,000 times for each combination of
conditions.

At the end of the 10,000 simulations, the computed average run length ARL;

was obtained as

1 10,000 (167)
ARL, = E RL, .
1710,000 44,4 1
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The calculated ARL; values for all three control statistics, the QR control
statistic from Equation 155, the MEWMA control statistic T? from Equation 72, and the
Hotelling’s y2 in Equation 49 were compared to one another for the different values of
the simulation parameters, the number of variables p, the shift parameter 8, and the
smoothing parameter A. The control statistic and control chart with the lowest ARL; was

considered the favorable control chart.



CHAPTER IV

RESULTS

The goal of this study was twofold. First, a new nonparametric multivariate SPC
control chart for monitoring location parameters--the Signed-Rank Multivariate
Exponentially Weighted Moving Average (SRMEWMA)--was developed as outlined in
Chapter I11. Second, the average run length (ARL;) performance of SRMEWMA was
compared with those of other known parametric control charts, specifically the
Multivariate Exponentially Weighted Moving Average (MEWMA) and Hotelling’s T?
control charts.

To facilitate ARL; comparisons, data were generated using the Monte Carlo
simulation technique using the interactive matrix language (IML) of the Statistical
Analysis System (SAS®) Windows 7 version 9.3 TSM10 running on an Intel core i7-
3930K CPU @ 3.2GHZ/64GB RAM-based system. Interactive matrix language-based
simulation algorithms were used to generate process observations in the form of vector-
means samples from the multivariate normal, t, and gamma distributions as outlined in
Table 7. For phase I, in-control (IC) data were simulated from the abovementioned
multivariate distribution in order to compute the upper control limits (UCL) for the
SRMEWMA, MEWMA, and Hotelling’s T? statistics and control charts. The upper
control limits (UCLSs) that achieved an in-control (IC) ARL, = 200, 500, & 1,000

(equivalent a = 0.005, 0.002, & 0.001 respectively) were generated. Then the vector
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signed-ranks were computed using IML macros. All UCL values were computed using
simulated data samples with the exception of the UCL values for the Hotelling’s T?
control chart for data from the multivariate normal distribution. Those UCL values were

used from the x; quintile tables.

Second, in phase 11, simulated data samples of vector means were generated using
the same set of algorithms in phase I; then a shift of magnitude & as a multiple of the
standard deviations was introduced in the first component of simulation-generated data
samples for MEWMA and the signed-ranks for SRMEWMA in order to compute the
average run length (ARL;) for the SRMEWMA, MEWMA, and Hotelling’s T2 control
charts. Finally, the ARL; values from phase Il simulation results were compared for the
three control charts above.

This dissertation addressed the following research questions:

Q1 How will the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
scheme be designed for the in-control average run length (ARLo)?

Q2  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance for different number, p, of monitored related quality
characteristics?

Q3  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance for different values of the smoothing parameter 1?

Q4  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance for different sizes of shift in a process location vector?

Q5  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance compared to the Hotelling’s T> and MEWMA control chart
scheme for elliptically symmetrical (multivariate normal and multivariate
t) and skewed distributions (multivariate gamma)?

Research question 1 was answered in Chapter I11. Questions 2, 3, and 4 were

answered simultaneously using phase | simulation. Question 5 was answered using phase
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I simulation results. Finally, a real-data manufacturing example was used to illustrate
the application of SRMEWMA.
Phase I Simulation Results

Using IML and the random query generator (RANDGEN) function in SAS®,
10,000 samples-per-run were generated from the multivariate normal, t, and gamma
distributions for each run of the following combinations of study parameters:

1. The number of variables, p = 2, 3, 4, and 5 for the multivariate normal and t

distributions and p = 2 only for the multivariate gamma distribution, and

2. The smoothing parameter, A € [0.01, 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50].

To estimate the vector mean and variance-covariance matrix in in-control phase I,
10,000 samples were generated using IML function RANGEN from the multivariate
normal, t, and gamma distributions for p = 2, 3, 4, and 5. Then the UCL values that
achieved an ARL, = 200, 500, and 1,000 for the MEWMA (T?%), SRMEWMA (Q¥), and
Hotelling’s T2 control chart statistics were computed.
Signed-Rank Multivariate Exponentially
Weighted Moving Average Upper
Control Limit and Multivariate
Exponentially Weighted Moving
Average Upper Control Limit
from the Multivariate Normal
Distribution

Tables 11-13 and Tables 14-16 show the computed IC UCL values for the
MEWMA and SRMEWMA, respectively, for data generated from the multivariate
normal distribution for p = 2, 3, 4, and 5 and A € [0.01, 0.02, 0.03, 0.05, 0.10, 0.2, and
0.50] for ARL, = 200, 500, & 1,000, respectively. In addition to the UCL and nominal

ARL, values, the standard deviation of run lengths (SDRL) is shown for all p and A
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combinations. Additionally, Figures 5-7 show the UCL values for both MEWMA and

SRMEWMA for p = 2 and ARL, = 200, 500, & 1,000, respectively. Additional tables

and figures summarizing the UCL results for the SRMEWMA, MEWMA, and

Hotelling’s T2 control charts for p = 3, 4, and 5 are available in Appendix C (Figures 21-

29 ). The results revealed the following:

1.

The UCLs values, L and h;, for the SRMEWMA and MEWMA control
charts, respectively, increased as p increased for any A value.

The UCLs values, L and h;, for the SRMEWMA and MEWMA control
charts, respectively, increased as A increased for any p value.

For p = 2, the UCL values for the SRMEWMA control chart were slightly
larger than those of the MEWMA control charts as A increased.

For any given p, the UCL values for SRMEWMA got larger than those of
MEWMA as A got larger.

The UCLs for SRMEWMA got increasingly larger than those of MEWMA
as A got larger for p = 3, 4, and 5.

The SRMEWMA and MEWMA UCL values, L and hy, respectively,

increased as ARL, increased for any p and A value.
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Table 11
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average

That Achieved an In-Control Average Run Length ~ 200 from the Multivariate Normal
Distribution

p

2 3 4 5

A h; ARL= SDRL |h, ARL= SDRL [j; ARL= SDRL f; ARL= SDRL

001 530 193 288 720 19. 295 88 201 301 104 200 289
002 6.20 197 245 820 200 244 99 199 246 116 200 241
0.03 680 194 223 880 193 220 107 203 232 123 195 222
005 770 201 214 970 198 214 116 193 209 134 200 218
0.10 880 201 205 110 209 214 129 200 203 147 199 201
020 970 202 203 120 204 207 139 199 199 158 199 197

0.50 1040 198 200 126 195 194 147 201 201 16.6 197 195
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The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average
That Achieved an In-Control Average Run Length ~ 500 from the Multivariate Normal

Distribution
p
2 3 4 5
A hy ARL= SDRL f; ARL= SDRL f; ARL= SDRL [, ARL= SDRL

001 7.0 505 625 9.0 504 635 10.8 500 623 125 499 625
0.02 8.1 494 551 10.2 488 54 12.1 492 546 140 504 560
0.03 8.8 501 537 11.0 495 521 13.0 503 530 148 494 520
0.05 9.7 502 501 119 483 496 14.0 506 523 159 499 514
0.10 10.8 498 505 13.0 473 475 15.2 505 513 17.1 488 489
0.20 11.6 482 488 14.0 498 497 16.2 501 500 18.1 485 485
050 12.3 504 504 146 490 485 16.8 496 502 18.8 495 493




Table 13
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The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average
That Achieved an In-Control Average Run Length ~ 1,000 from the Multivariate Normal

Distribution
P
2 3 4 5

A h; ARLy= SDRL hy ARLo= SDRL hy ARLo= SDRL hy ARLy= SDRL
001 83 967 1,100 106 1,027 1184 125 1010 1150 143 1,001 1,128
002 96 976 1030 118 942 1002 139 962 1011 158 996 1,049
003 103 971 999 126 955 972 148 1006 1,029 167 996 1,008
005 112 968 996 136 995 1004 158 1,004 1032 177 980 1,015
010 123 981 993 148 1,014 1022 169 973 978 189 974 959
020 131 987 973 156 994 992 178 1006 1,003 198 974 965
050 137 1,011 1012 162 1,014 1019 183 985 975 204 985 983
Table 14
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted
Moving Average That Achieved an In-Control Average Run Length = 200 from the
Multivariate Normal Distribution

P
2 3 4 5
A L ARL,=  SDRL L ARL,=  SDRL L ARL,=  SDRL L ARL,=  SDRL

001 530 196 287 730 204 307 9.00 202 305 1060 199 301

002 630 206 253 830 197 257 1030 201 263 1260 202 273

003 690 193 233 910 200 239 1145 202 256 1410 200 248

005 770 198 213 1020 201 221 1305 200 230 1690 201 231

010 885 197 200 1200 202 214 1625 200 218 2280 199 216

020 990 196 197 1445 200 206 2145 200 210 3350 201 208

050 1090 201 203 1910 200 197 3350 200 200 5830 200 200
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Table 15
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted

Moving Average That Achieved an In-Control Average Run Length = 500 from the
Multivariate Normal Distribution

2 3 4 5
A L ARL,=  SDRL L ARL,= SDRL L ARL,= SDRL L ARL,= SDRL

0.01 6.90 496 599 9.10 487 634 11.15 494 659  13.30 495 669

0.02 810 492 556  10.50 497 568 12.90 494 585  15.90 500 615

0.03 8.85 499 539  11.40 502 558 14.20 498 563  18.05 501 575

005 9.75 494 517  12.65 500 533 16.30 498 541  21.90 503 556

0.10 10.95 502 507  14.70 497 520 20.50 499 522  30.60 501 527

0.20 11.95 491 484  17.60 497 505 27.65 500 515  46.90 501 507

0.50 12.75 482 479  23.80 504 500 44.50 500 505 84.00 493 497
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Table 16

The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted
Moving Average That Achieved an In-Control Average Run Length = 1,000 from the
Multivariate Normal Distribution

2 3 4 5
A L ARL,=  SDRL L ARL,=  SDRL L ARL,= SDRL L ARL,=  SDRL

0.01 840 1,007 1,151 10.70 996 1,180 13.00 988 1,187 1555 1,005 1,269

0.02 9.60 985 1,047 1220 993 1,019 15.00 988 1,121 1860 1,010 1,178

0.03 10.40 990 1,024 13.20 996 1,056  16.50 997 1,096  21.30 998 1,103

005 1135 1,003 1,033 1420 1,004 1035 1885 1,000 1,078 2610 1,006 1,092

0.10 1250 995 1,007 16.90 993 1,010 2395 1,000 1,053 37.50 998 1,046

020 1350 992 982 2025 992 998 32.80 992 1,020 58.40 983 997

0.50 14.20 967 960  27.40 994 1,019 53.60 989 989 107.9 983 973




117

MEWMA & SRMEWMA UCL for MV NORMAL, p =2 and IC ARL =200
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Figure 5. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 2 and in-control average run length = 200.

MEWMA & SRMEWMA UCL for MV NORMAL, p =2 and IC ARL = 500
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Figure 6. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 2 and in-control average run length = 500.
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MEWMA & SRMEWMA UCL for MV NORMAL, p =2 and IC ARL = 1000

UCL
\\

Control Chart +—a—a MEWMA _UCL A&k SEMEWMA _UCL

4 LA N L L N L L L L I N I Y I Y I B B
000 002 OD4 OO OO 010 012 014 016 013 020 022 024 026 028 D030 032 034 036 038 040 042 044 D46 048 D30

Smoothing Parameter Lambda

Simulation Results Are Baged on 10,000 Replications of Each Combination of Parameters

Figure 7. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 2 and in-control average run length = 1,000.

Signed-Rank Multivariate Exponentially
Weighted Moving Average Upper
Control Limit and Multivariate
Exponentially Weighted
Moving Average Upper
Control Limit from the
Multivariate t Distribution

Tables 17-19 and Tables 20-22 show the computed IC UCL values for the
MEWMA and SRMEWMA, respectively, for data generated from the multivariate t, (df
= b) distribution for p = 2, 3, 4, and 5 and A € [0.01, 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50]
for ARL, = 200, 500, and 1,000, respectively. In addition to the UCL and nominal ARLg
values, the standard deviation of run lengths (SDRL) is shown for all p and A
combinations. Additionally, Figures 8-10 show the UCL values for both MEWMA and

SRMEWMA for p = 2 and ARL, = 200, 500, and 1,000, respectively. Additional tables
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and figures summarizing the UCL results for the SRMEWMA, MEWMA, and
Hotelling’s T2 control charts for p = 3, 4, and 5 are available in Appendix C (Figures 33-
41). The results for the UCL values generated from multivariate t distribution were
similar to those generated from the multivariate normal distribution. The results show the
following:

1. The UCL values, L and hy, for the SRMEWMA and MEWMA control
charts, respectively, increased as p increased for any A value.

2. The UCL values, L and hy, for the SRMEWMA and MEWMA control
charts, respectively, increased as A increased for any p value.

3. Forp =2, the UCL values for the SRMEWMA control chart were slightly
larger than those of the MEWMA control charts as A increased.

4.  Forany given p, the UCL values for SRMEWMA got larger than those of
MEWMA as A got larger.

5.  The UCLs for SRMEWMA got increasingly larger than those of MEWMA
as A got larger for p = 3, 4, and 5.

6. The SRMEWMA and MEWMA UCL values, L and h; respectively,

increased as ARL, increased for any p and A value.
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The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average

That Achieved an In-Control Average Run Length = 200 from the Multivariate t,(5)-

Distribution
p
2 3 4 5
N h, ARL= SDRL [ ARL= SDRL h; ARL= SDRL [j; ARL= SDRL

0.01 53 200 290 7.1 199 294 8.8 192 280 104 192 280
0.02 6.2 198 246 8.2 200 247 10.0 201 247 116 196 248
0.03 6.8 195 224 8.9 201 234 10.8 201 233 125 200 229
0.05 7.7 197 212 9.9 202 219 118 200 214 136 194 214
0.10 9.0 202 208 11.3 199 206 13.2 196 204 152 201 209
0.20 10.3 198 198 12.7 200 198 14.8 198 200 16.8 200 200
050 12.3 200 200 15.0 198 199 175 199 197 19.7 197 194
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Table 18
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average

That Achieved an In-Control Average Run Length = 500 from the Multivariate t,(5)-
Distribution

p

2 3 4 5

by hy ARL,= SDRL hy ARLe= SDRL hy ARLe= SDRL hy ARLe= SDRL

0.01 6.9 493 605 9.0 507 634 108 488 617 126 496 619

002 81 488 544 103 500 553 122 491 545 141 501 562

0.03 89 492 528 111 492 434 132 498 547 150 496 534

0.05 9.8 474 486 122 491 510 142 482 504 16.2 494 519

0.10 11.2 489 496 13.7 493 500 159 504 521 178 490 498

0.20 127 486 491 154 492 490 17,7 501 501 198 503 507

0.50 15.7 500 501 188 507 510 215 493 494 239 486 489
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The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average
That Achieved an In-Control Average Run Length = 1,000 from the Multivariate t,(5)-

Distribution
p
2 3 4 5

A h, ARL= SDRL |, ARL= SDRL [ ARL= SDRL h; ARL= SDRL
0.01 8.3 956 1,091 10.6 998 1,161 125 983 1,145 144 1,001 1,152
0.02 9.7 975 1,047 120 985 1,076 140 971 1,029 16.0 1,007 1,068
0.03 105 1,006 1,054 129 1,007 1,060 150 1,005 1,078 169 983 1,013
0.05 115 984 1,010 14.0 1002 1,038 16.2 1,002 1,022 18.1 1,017 1,058
0.10 13.0 984 982 156 1,006 1,026 179 1,002 1,019 199 992 995
0.20 148 995 1,022 176 1,003 1,007 20.0 995 1,013 22.2 984 986
0.50 18.8 997 993 221 964 966 25.3 985 1,002 279 996 1,090
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Table 20
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted

Moving Average That Achieved an In-Control Average Run Length = 200 from the
Multivariate t,(5)- Distribution

2 3 4 5
A L ARL, SDRL L ARL  SDRL L ARL,= SDRL L ARL, SDRL

= 0= =

0.01 5.35 203 300 710 196 283 8.75 199 296 10.30 200 297

0.02 630 201 248 835 200 253 1035 198 252 12.69 201 262

0.03 6.90 197 226 925 200 241 1170 199 240 1470 201 243

0.05 7.85 200 221 10.70 200 227 14.00 201 229 18.60 202 231

010 920 201 208 1330 200 215 19.20 201 211 2755 199 209

020 1070 199 205 1765 200 206 28.30 199 206 43.80 200 208

050 1340 200 204 2740 200 203 49.80 200 199 8190 198 201
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Table 21

The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted
Moving Average That Achieved an In-Control Average Run Length = 500 from the
Multivariate t,(5)- Distribution

A L ARL, SDRL L ARL, SDRL L ARL, SDRL L ARL, SDRL

0.01 695 495 609 920 504 650 11.30 501 667 13.70 498 663

0.02 820 500 558 10.75 498 579 13.62 502 604 17.60 497 589

0.03 895 497 539 1195 503 564 1560 506 578 20.90 497 563

0.05 10.00 501 527 13.80 501 546 19.20 503 541 27.60 502 548

0.10 1155 493 500 1750 500 516 2760 501 521 4340 498 519

0.20 1350 496 504 2415 495 496 43.00 501 505 7290 499 507

050 1750 501 501 40.10 496 493 79.00 497 493 14230 500 500
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Table 22
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted

Moving Average That Achieved an In-Control Average Run Length = 1,000 from the
Multivariate t,(5)- Distribution

2 3 4 5

A L ARL,= SDRL L ARL,= SDRL L ARL,= SDRL L ARL,= SDRL

0.01 8.40 991 1,132 10.90 997 1,179 13.50 998 1,246  16.90 996 1,238
0.02 980 1010 1,087 1275 997 1,093 16.45 992 1,132 2220 1,000 1,152

0.03 10.60 998 1,042 1415 1,006 1,082 19.05 992 1,099 27.20 995 1,091
05 1175 993 1,020 16.40 998 1,076 23.95 999 1,041 37.30 996 1,059

0.10 1350 1,007 1,021 21.20 982 1,016 35.50 992 1,007 6120 1,000 1,010
0.20 15.80 997 1,015 30.20 996 1,002 58.00 988 984 106.9 1,000 1,009

0.50 21.15 981 972 52.20 999 985 1111 997 987 21210 1,006 1,006
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MEWMA & SRMEWMA UCL for MV T, p=2 and IC ARL =200
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Figure 8. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal t, (df = 5), p = 2 and in-control average run length = 200.
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MEWMA & SRMEWMA UCL for MV T, p =2 and IC ARL = 500
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Figure 9. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal t, (df = 5), p = 2 and in-control average run length = 500.
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MEWMA & SRMEWMA UCL for MV T, p =2 and IC ARL = 1000
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Figure 10. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal t, (df = 5), p = 2 and in-control average run length = 1,000.

Signed-Rank Multivariate Exponentially
Weighted Moving Average Upper
Control Limit (L) and Multivariate
Exponentially Weighted Moving
Average Upper Control Limit

(hy) from the Multivariate

Gamma; (a=3,p=1)

Distribution

Tables 23 and 24 show the computed IC UCL
values for the MEWMA and SRMEWMA, respectively, for data generated from the
multivariate gamma;, (a=3,=1) distribution for p =2 and A € [0.01, 0.02, 0.03, 0.05,
0.10, 0.2, and 0.50] for ARL, = 200, 500, and 1,000, respectively. In addition to the UCL
and nominal ARL, values, the standard deviation of run lengths (SDRL) is shown for all p

and A combinations. Additionally, Figures 11-13 show the UCL values for both
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MEWMA and SRMEWMA for p = 2 and ARL, = 200, 500, and 1,000, respectively.
Only p = 2 was considered because the computation of the centered signed-ranks, which
was necessary to compute the SRMEWMA charting statistic, was very intensive due to
the number of vector combinations that were evaluated from the simulated variables to
calculate the vector signed-ranks. For example, when p =3 and n = 5, there are 10 vector
combinations to be analyzed. However, when n = 20, the number of vector combinations
to be analyzed is 1,140, a multiple of 114. For a detailed explanation of this limitation,
see Chapter V, Table 56. The results showed the following:
1. The UCL values, L and hy, for the SRMEWMA and MEWMA control
charts, respectively, increased as A increased.
2. The UCL values for SRMEWMA got smaller than those of MEWMA as A
got larger.
3. The SRMEWMA and MEWMA UCL values, L and h; respectively,
increased as ARL, increased for any p and A value.
4.  The UCL values, hy, for the MEWMA were larger than the UCL values, L,

for the SRMEWMA for any given A and ARL, values.
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Table 23
The Upper Control Limits of the Multivariate Exponentially Weighted Moving

Average That Achieved an In-Control Average Run Length ~ 200, 500, and 1,000
from the Gamma; (a = 3, p = 1) Distribution with p;, = 0.5

IC ARL=200 IC ARL=500 IC ARL=1,000
A hy ARL;=  SDRL hy ARL;=  SDRL hy ARL;=  SDRL

0.01 41241 200.05 215.23 4,209.5 499.98 485.80 4,268.4 1,002 959.10
0.02 2,116.6 200.1 201.53 2,1755 500.45 480.18 2,211.7 1,002 993.84
0.03 1,442.9 200.5 195.80 1.486.7 500.1 480.08 15157 9975 993.66
0.05 896.6 200.0 192.00 928.5 500.3 490.50 948.8 1,000 995.40
0.10 476.8 200.2 193.90 498.3 501.0 499.80 512.0 1,007 1,003.3
0.20 2578 200.2 196.60 272.6 498.0 503.80 282.8 1,001 993.05

050 116.1 200.7 202.30 125.8 503.7 502.16 132.7 999 982.17

Table 24

The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted
Moving Average That Achieved an In-Control Average Run Length = 200, 500,
and 1,000 from the Gamma; (a=3,5=1) Distribution with p;, = 0.5

IC ARL=200 IC ARL=500 IC ARL=1,000

A L ARL;=  SDRL L ARL;=  SDRL L ARL;=  SDRL
001 13663 201 23648 1419.9 4994 51319 1,460.0 9940  988.60
002 7231 200 209.37 7617 4947 49426 7981  999.4  980.70
0.03 5056 200 20050 5374 4985 49526 5593  999.4  966.63
0.05 3285 200 196,52 3527 500 500.16 369.2 1,001  1,002.63
0.10 1903 200 199.56  207.7 500 497.38 2194 9970  990.75
020 1162 200 196.41 1293 500 509.81 1387  997.0  994.06

0.50 65.9 201 200.60  76.7 502 502.64  84.5 1,000 997.33




4200

MEWMA & SRMEWMA UCL for MV GAMMA, p =2 and IC ARL =200
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Figure 11. Multivariate exponentially weighted moving average and signed-rank

multivariate exponentially weighted moving average upper control limit for multivariate
gamma, (oo = 3, # = I), p = 2 and in-control average run length = 200.
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MEWMA & SRMEWMA UCL for MV GAMMA, p =2 and IC ARL = 500
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Figure 12. Multivariate exponentially weighted moving average and signed-rank

multivariate exponentially weighted moving average upper control limit for multivariate
gamma, (o = 3, # = I), p = 2 and in-control average run length = 500.
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MEWMA & SRMEWMA UCL for MV GAMMA, p =2 and IC ARL =1000
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Figure 13. Multivariate exponentially weighted moving average and signed-rank

multivariate exponentially weighted moving average upper control limit for multivariate
gamma, (oo = 3, # = I), p = 2 and in-control average run length = 1,000.

Hotelling’s T2 (h,) Upper Control

Limit

In addition to the MEWMA and SRMEWMA control charts, the UCL values for

the Hotelling’s T2 control chart were generated according to Table 6. Tables 25-27 show

the computed IC Hotelling’s T2 UCL (h,) values for data generated from the multivariate

normal, t, and Gamma, (a=3,=1) distribution for p = 2, 3, 4, and 5 for ARL, = 200, 500,

and 1,000, respectively. Recall that for the multivariate normal distribution, the UCL (hy)

in Table 25 for the Hotelling’s T2 control chart was obtained from sz quintiles using the

SAS CINV function. The results show the following:

1.

The UCLs values, h,, for the Hotelling’s T2 control chart increased as p

increased for the MV normal and t distributions.
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2. Forafixed p, the UCLs values, h,, for the Hotelling’s T2 control chart

increased as ARL, increased for the MV normal and t distributions.

Table 25

The Upper Control Limits (h,) of the Hotelling’s y* That Achieved an In-Control Average
Run Length ~ 200, 500, and 1,000 under p-variates from the Multivariate Normal

Distribution
ARL,
p 200 500 1,000
2 10.59 12.42 13.88
3 12.83 14.79 16.26
4 14.86 16.92 18.46
5 16.74 18.90 20.51
Table 26

The Upper Control Limits (h,) of the Hotelling’s y* That Achieved an In-Control Average

Run Length = 200, 500, and 1,000 under p-variates from the Multivariate t,(5)-

Distribution
IC ARL=200 IC ARL=500 IC ARL=1,000
p h, ARL,= SDRL h, ARL,= SDRL h, ARL,= SDRL
2 13.50 200 196.61 17.60 488 483.73 21.50 992  986.65
3 16.60 200 196.61 21.10 494  493.82 25.60 998 978.42
4 19.20 201 202.63 24.30 500 501.81 29.20 088 984.37
5 21.60 201 198.70 27.00 494  493.68 3240 1,000 990.61
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Table 27
The Upper Control Limits (h,) of the Hotelling’s y* That Achieved an In-Control

Average Run Length = 200, 500, and 1,000 under p-variates from the Multivariate
Gammay(a = 3, f = 1) Distribution

IC ARL=200 IC ARL=500 IC ARL=1,000
h, ARL,= SDRL h, ARL,= SDRL h, ARL,= SDRL

N T

2530 201 19798 34.82 503 505.74 427 993 1,000.55
3 1550 200 202.82 1895 501 507.26 21.6 995 983.80
4 1793 200 199.38 215 500 501.74 2428 1,000 1,000.13

5 20.00 200 197.66 23.6 500 49181 26.45 999 1,011.04

Phase Il Average Run Length Simulation Results

The upper control limits (UCLs) that were generated in phase | were used in the
phase Il ARL; simulation. Using IML and the RANDGEN function in SAS, 10,000
samples per run were generated from the multivariate normal, t, and gamma distributions
for each run of the following combinations of study parameters:
1.  The number of variables, p = 2, 3, 4, and 5 for the multivariate normal and t
distributions and p = 2 only for the multivariate gamma distribution;
2. The smoothing parameter, A € [0.01, 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50];
and
3. Shift parameter, 6 € [0.0, 0.25, 0.50, 1.00, 1.50, and 2.50].
The full phase 11 ARL; simulation results are available in Appendix D (Tables 74-
96) for all three control charts and three multivariate distributions based upon the

abovementioned conditions in steps 1 through 3; thus, they provide the answers to
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research questions 3 and 4. In this section, the ARL; performance results of the
SRMEWMA and MEWMA control charts from the multivariate normal distribution for
ARLo =200, p=2,3,4,and 5, and 5 € [0.0, 0.25, 0.50, 1.00, 1.50, and 2.50] are
summarized using Tables 28 (MEWMA) and 29 (SRMEWMA) for data from the
multivariate normal distribution for ARLy = 200. The results showed the following:

1. For any given values of p and shift parameter 3, the ARL; and SDRL
values increased as the smoothing parameter A increased.

2. For any given values of p and smoothing parameter A, the ARL; and SDRL
values decreased as the shift parameter 6 increased.

3. For any given value of the shift parameter 6 and smoothing parameter A,
the ARL; values increased as p increased.

4. For any given values of 6 and A > 0.02, the SDRL values increased as p
increased.

5. The ARL; values increased as ARLg increased.
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The Upper Control Limits and Average Run Length Values of the Multivariate
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Exponentially Weighted Moving Average That Achieved an In-Control Average Run

Length =~ 200 from the Multivariate Normal Distribution

A
p 0.01 0.02 0.03 0.05 0.1 0.2 05
2 5 hy 5.30 6.20 6.80 77 8.8 9.7 10.40
0.00 193 197 194 201 201 202 198
(288) (245) (223) (214) (205) (203) (200)
0.25 3591 45.42 49.77 59.51 7491 94.88 133.82
42.77) (76.75) (48.67) (57.43) (71.68) (92.43) (131.22)
0.50 13.06 16.12 18.19 20.77 25.17 33.84 62.70
(13.57) (14.56) (15.51) (16.87) (20.79) (30.71) (61.51)
1.00 439 5.33 5.92 6.73 7.78 8.94 15.37
(3.75) (4.02) (4.30) (4.61) (5.13) (6.31) (13.55)
1.50 2.44 2.92 3.16 358 4.01 4.46 6.06
(1.67) (1.92) (2.02) (2.17) (2.34) (2.56) (4.44)
2.50 1.32 1.48 157 171 1.87 2.04 2.25
(0.60) (0.72) (0.76) (0.83) (0.92) (0.99) (1.20-)
3 3 hy 7.20 8.20 8.80 9.70 11.00 12.00 12.60
0.00 196 200 193 198 209 204 195
(295) (244) (220) (214) (214) (207) (195)
0.25 42.86 51.46 56.38 65.63 83.18 110.95 142.83
(48.77) (52.06) (54.32) (62.80) (80.16) (109.87) (143.54)
0.50 15.78 19.23 21.01 23.17 29.07 40.67 73.98
(15.30) (16.49) (17.36) (18.70) (24.04) (36.61) (72.18)
1.00 551 6.48 6.97 7.68 8.73 10.49 18.70
(4.30) (4.67) (4.83) (5.06) (5.70) (7.56) (16.91)
1.50 3.06 347 3.69 404 4.49 5.06 7.02
(2.03) (2.16) (2.30) (2.40) (2.59) (2.95) (5.31)
2.50 1.60 1.79 1.79 1.92 2.07 2.23 2.45
(0.78) (0.83) (0.88) (0.94) (0.99) (1.06) (1.317)
4 5 hy 8.80 9.90 10.70 11.60 12.90 13.90 14.70
0.00 201 199 203 193 200 199 201
(301) (246) (232) (209) (203) (199) (201)
0.25 44.09 55.30 61.93 71.22 89.81 116.74 156.31
(52.03) (55.12) (60.20) (67.50) (86.98) (115.13) (15.30)
0.50 16.06 20.26 22.11 24.94 31.44 43.76 84.06
(16.39) (17.69) (18.33) (20.02) (25.71) (40.22) (83.19)
1.00 5.42 6.69 7.48 8.28 957 11.34 21.64
(4.48) (5.00) (5.24) (5.51) (6.19) (8.07) (19.52)
1.50 2.9 3.58 3.95 427 4.86 5.33 8.06
(2.10) (2.32) (2.44) (2.56) .77) (3.11) (6.31)
2.50 153 1.75 1.87 2.01 2.18 2.35 2.70
(0.76) (0.88) (0.93) (0.98) (1.05) (1.12) (1.47)
5 3 hy 10.40 11.60 12.30 13.40 14.70 15.8 16.6
0.00 200 200 195 200 199 199 197
(289) (241) (222) (218) (201) (197) (185)
0.25 49.80 59.12 66.05 77.00 95.78 123.33 160.37
(55.27) (58.57) (64.05) (74.76) (93.40) (122.15) (160.06)
0.50 18.98 21.94 24.03 27.23 34.32 49.28 92.99
(17.64) (18.42) (19.63) (21.39) (29.07) (45.03) (92.07)
1.00 6.65 7.66 8.11 8.91 10.05 12.40 25.05
(4.99) (5.35) (5.52) (5.83) (6.43) (8.74) (23.05)
1.50 3.69 403 424 469 512 577 9.08
(2.37) (2.49) (2.57) (2.69) (2.83) (3.33) (7.31)
2.50 1.83 1.94 2.04 2.18 12.34 2.50 2.86
(0.91) (0.95) (1.00) (1.05) (1.12) (1.18) (1.56)

Note. Standard deviation of run length is in parentheses.
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The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted
Moving Average That Achieved an In-Control Average Run Length = 200 from the
Multivariate Normal Distribution

)
p 0.01 0.02 0.03 0.05 0.1 0.2 05
2 3 L 5.30 6.30 6.90 7.70 8.85 9.90 10.90
0.00 196 206 193 198 197 196 201
(287) (253) (233) (213) (200) (197) (203)
0.25 38.65 46.86 51.45 59.11 74.92 97.13 141.65
(43.62) (47.19) (49.27) (57.49) (73.52) (93.66) (142.57)
0.50 13.98 16.93 18.72 2052 25.62 35.10 68.02
(13.59) (14.81) (15.57) (16.60) (21.27) (32.32) (66.90)
1.00 4.96 571 6.21 6.88 7.81 9.36 16.82
(3.84) 4.17) (4.47) (4.71) (5.14) (6.62) (15.41)
1.50 273 3.07 3.32 3.61 4.07 4.60 6.57
(1.76) (1.94) (2.06) (2.16) (2.36) (2.68) (4.99)
250 1.43 1.56 1.63 1.74 1.90 2.08 2.34
(0.66) (0.74) (0.79) (0.84) (0.90) (0.98) (1.21)
3 L 7.30 8.30 9.10 10.20 12.00 14.45 19.10
0.00 204 197 200 201 202 200 200
(307) (257) (239) (221) (214) (206) (197)
0.25 40.40 50.11 56.84 69.70 96.00 136.97 180.71
(49.26) (53.77) (59.74) (69.97) (96.21) (138.34) (181.89)
0.50 14.19 18.15 20.79 24.29 33.60 61.03 132.92
(15.12) (16.79) (17.95) (20.31) (29.27) (59.21) (133.35)
1.00 4.66 5.93 6.79 7.84 9.74 14.53 51.80
(4.02) (4.53) (4.85) (5.22) (6.37) (11.05) (49.62)
1.50 247 321 3.60 4.12 4.92 6.32 19.03
(1.71) (2.08) (2.22) (2.41) 2.71) (3.65) (17.17)
2.50 1.26 1.55 1.73 1.92 221 2.63 438
(0.57) (0.73) (0.82) (0.88) (1.00) (1.15) (2.62)
4 L 9.00 10.30 11.45 13.05 16.25 21.45 33.50
0.00 202 201 202 200 200 200 200
(305) (263) (256) (230) (218) (210) (200)
0.25 46.90 56.33 67.32 84.7 123.19 171.09 196.13
(54.48) (61.76) (71.02) (87.25) (131.13) (174.35) (195.50)
0.50 17.09 21.13 24.61 30.43 50.77 102.06 174.16
(16.60) (18.66) (21.07) (25.94) (47.12) (102.95) (176.10)
1.00 6.08 7.33 8.20 9.62 13.10 28.11 114.80
(4.55) (5.13) (5.49) (6.23) (8.60) (24.39) (114.95)
1.50 3.37 3.89 4.33 4.97 6.37 10.13 63.05
(2.04) (2.26) (2.46) (2.72) (3.36) (6.30) (61.71)
250 1.67 1.88 2.05 2.28 2.75 3.65 14.35
(0.73) (0.81) (0.87) (0.97) (1.16) (1.51) (11.92)
5 L 10.60 12.60 14.10 16.90 22.80 33.50 58.30
0.00 199 202 200 201 199 201 200
(301) (273) (248) (231) (216) (208) (200)
0.25 51.67 67.46 81.28 111.61 156.56 187.51 194.70
(59.17) (73.35) (88.24) (120.36) (169.48) (194.42) (198.98)
0.50 19.86 25.44 30.00 41.03 82.16 147.13 191.50
(18.21) (22.09) (25.34) (36.27) (80.09) (147.88) (189.93)
1.00 7.29 8.70 9.86 12. 20.78 67.24 161.04
(5.03) (5.86) (6.39) (7.66) (14.85) (65.52) (161.80)
1.50 4.08 473 5.18 6.28 (3.21) 9.02 23.43 124.96
(2.22) (2.52) (2.78) (4.59) (18.56) (124.57)
2.50 1.99 2.25 243 2.81 3.66 5.79 55.24
(0.76) (0.98) (0.96) (1.11) (1.41) (2.30) (52.50)

Note. Standard deviation of run length is in parentheses.
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It should be noted that these findings also applied to the ARL; performance results
of the SRMEWMA and MEWMA control charts from the multivariate t distribution as
summarized in Tables 80-85 in appendix D for ARL, = 200, 500, and 1,000, respectively.
Tables 30 and 31 summarize the ARL; & SDRL performance for both the
MEWMA and SRMEWMA control charts for p = 2 and ARL, = 200, 500, and 1,000 from
the multivariate gamma distribution. The results were similar across all values ARL,.
For example, for ARL, = 200, the top parts of Table 30 (MEWMA) and 31 (SRMEWMA)
are reproduced below and show the following results:
1.  For any given values of p and shift parameter 3, the ARL; and SDRL values
increased as the smoothing parameter A increased.
2.  Forany given values of p and smoothing parameter A, the ARL; and SDRL
values decreased as the shift parameter 6 increased.
3. Forany given value of the shift parameter 6 and smoothing parameter A, the

ARL; values increased as p increased.
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The Upper Control Limits and Average Run Length Values of the Multivariate Exponentially

Weighted Moving Average That Achieved an In-Control Average Run Length = 200 from the
Multivariate Gamma, (e = 3, = 1) Distribution

p
ARL, 8 0.01 0.02 0.03 0.05 0.1 0.2 05
200 hy 41241 21166 14429 896.6 476.8 257.8 116.1
0.00 200 200 200 200 200 200 200
(215.23)  (201.53)  (195.80)  (192.00)  (193.90)  (196.60)  (202.30)
0.25 58.24 62.89 65.75 73.06 80.47 95.80 130.19
(47.74) (50.77) (53.43) (63.22) (73.11)  (90.70)  (129.27)
0.50 29.78 31.05 32.08 32.95 37.47 47.43 78.21
(18.94) (19.65) (21.15) (23.37) (31.23)  (43.78) (76.99)
1.00 14.50 14.73 1452 14.22 13.79 15.53 29.06
(6.43) (6.53) (6.66) (7.13) (8.10) (11.27) (27.52)
1.50 6.70 9.54 9.35 8.68 7.97 7.90 12.34
(3.47) (3.41) (3.35) (3.30) (3.46) (4.36) (10.50)
2.50 5.88 5.71 5.50 5.03 4.36 3.81 3.88
(1.60) (1.57) (1.49) (1.41) (1.33) (1.34) (2.16)

Note. Standard deviation of run length is in parentheses.

increased as p increased.

values of shift 6 and smoothing parameter A.

The ARL; and SDRL values increased as ARL increased for any fixed

For any given values of shift 6 and smoothing parameter A, the SDRL values
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Table 31
The Upper Control Limits and Average Run Length Values of the Signed-Rank Multivariate

Exponentially Weighted Moving Average That Achieved an In-Control Average Run Length =
200 for Data from the Multivariate GAMMA; (a=3, f=1) Distribution

X
ARL, 8 0.01 0.02 0.03 0.05 0.1 0.2 05
200 L 1,366.3 723.1 505.6 3285 190.3 116.2 65.9
0.00 201 200 200 200 200 200 201
(236.48)  (209.37)  (20050)  (196.52)  (199.56)  (196.41)  (200.60)
0.25 10.46 11.40 11.53 11.72 12.38 15.24 30.93
(4.60) (5.10) (5.28) (5.81) (7.25) (11.33) (29.17)
0.50 5.24 5.61 5.56 5.40 5.18 5.18 8.04
(1.60) (1.68) (1.71) A.77) (1.93) (2.42) (6.23)
1.00 2.97 2.92 2.87 2.74 2.51 2.24 2.14
(0.59) (0.61) (0.61) (0.62) (0.61) (0.62) (0.85)
1.50 2.00 2.05 2.02 1.96 1.83 1.60 1.26
(0.27) (0.32) (0.29) (0.28) (0.38) (0.49) (0.44)
2.50 1.21 1.34 1.26 1.01 1.00 1.00 1.00
(0.41) (0.47) (0.44) (0.31) (0.528) (0) (0)

Note. Standard deviation of run length is in parentheses.

For comparison purposes, the ARL; performance results of the Hotelling’s T2
control chart were generated by simulation from the multivariate normal, t, and gamma
distributions. Using IML and the RANDGEN function in SAS, 10,000 samples per run
were generated for each run of the following combinations of study parameters:

1. The number of variables, p = 2, 3, 4, and 5 for the multivariate normal and t

distributions and p = 2 only for the multivariate gamma distribution;

2. Shift parameter, 5 € [0.0, 0.25, 0.50, 1.00, 1.50, and 2.50]; and

3. ARLy =200, 500, and 1,000.

The ARL performance results of the Hotelling’s T2 control chart were consistent
with those of the MEWMA and SRMEWMA control chart results. The full ARL; and
SDRL performance simulation results of the Hotelling’s T? control chart are available in
Appendix D (see Tables 88-96). As an example, Table 32 below summarizes the

Hotelling’s T2 control chart’s ARL; and SDRL performance for p =2, 3, 4, and 5; & €
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[0.0, 0.25, 0.50, 1.00, 1.50, and 2.50]; and ARLy = 200. Table 32 shows that the values of
ARL; and SDRL increased as p increased for fixed shift parameter & and decreased as the

shift parameter o increased for fixed p.

Table 32

Average Run Length Values of the Hotelling T? That Achieved an In-Control
Average Run Length = 200 under p-variates Multivariate Normal Distribution

Y
2 3 4 S)
o ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00  200.00 200.00 200.00 200.00

0.25 162.11 160.46 175.80 174.36 182.42 180.29 186.44 186.26
0.5 112.45 113.48 130.19 129.89 140.16 140.78 144.74 147.05
1.0 4150 4128 5342 5331 6059 60.09 68.62 69.67
1.5 15.67 1524 20.77 19.84 2518 2487 2894 2821

2.5 3.61 3.08 4.46 3.95 5.27 4.72 6.03 5.58

Furthermore, the ARL; and SDRL performances for ARL, = 500 and 1000 (see
Tables 89-90 in Appendix D) were consistent with those for ARL, = 200. Additionally,
the ARL; and SDRL performance results for data simulated from the multivariate t and
gamma distribution were consistent with the ARL; and SDRL behavior from the

multivariate normal distribution.
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Average Run Length Performance Comparisons of Signed- Rank
Multivariate Exponentially Weighted Moving Average,
Multivariate Exponentially Weighted Moving Average,
and Hotelling’s T?

The combined simulation results from phase | where the UCL was computed and
phase Il where the ARL; values were generated are presented here to answer the fifth and
final research question:

Q5  What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart
performance compared to the MEWMA control chart and Hotelling’s T
control chart schemes for elliptically symmetrical (multivariate normal
and t) and skewed distribution (multivariate gamma)?

In this section, the average run length (ARL;) performance results are compared
for SRMEWMA, MEWMA, and Hotelling’s T control charts for data from the
multivariate normal, t, and gamma distributions. First, the ARL; comparisons for the
three control charts from the multivariate normal distribution are presented. Second, the
ARL; comparisons for the three control charts from the multivariate t, (df = 5) distribution
are presented. And finally, the ARL; comparisons for the three control charts from the
multivariate gamma (a = 3, = 1) distribution are presented for p = 2 only. For brevity,
only results for p = 2, 3, 4, and 5, ARLy = 200 for the multivariate normal and t
distributions, and p =2 for the multivariate gamma distribution are discussed below.

Please refer to Appendix E for comprehensive ARL; comparisons (Tables 97-150) of all

study parameters combinations for IC ARL, =500 and 1,000.
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Average Run Length Comparisons
for the Multivariate Normal
Distribution

First, the ARL; simulation results from the multivariate normal distribution are
presented. Tables 33-40 show the ARL; comparisons for SRMEWMA, MEWMA and
Hotelling’s T2 for the following conditions:

1. The number of variables, p =2, 3, 4, and 5;
2. The smoothing parameter, A € [ 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50]; and
3. Shift parameter, 6 € [0.0, 0.25, 0.50, 1.00, 1.50, and 2.50].

Tables 33-40 show the ARL; comparisons for in-control (IC) ARL, = 200 only.
Simulation results are shown in Tables 33 and 34, 35 and 36, 37 and 38, and 39 and 40
forp =2, 3, 4, and 5, respectively. Please note that for shift parameter 6 = 0.0, the results
represented the in-control (IC) ARL, values from phase | simulation and were included
for comparison purposes. Furthermore, comparisons for ARL, = 500 and ARL, = 1,000
are available in Appendix E.

The simulation results for SRMEWMA, MEWMA, and Hotelling’s T2 with A =
0.02, 0.03, and 0.05 and Hotelling’s T?for p = 2 are presented in Table 33 and results
with A = 0.1, 0.2, and 0.5 and Hotelling’s T*for p = 2 are presented in Table 34. In
addition to the ARL; values, the corresponding standard deviations of the run lengths
(SDRL) are also included in these two tables. Tables 33-40 show that the MEWMA
control chart had better efficiency in detecting mean shifts as expected since the
parametric hypothesis was the correct one in this case (Zou & Tsung, 2010). However,
the SRMEWMA control chart offered reasonably comparable ARL; performance and the

difference between MEWMA and SRMEWMA was not significant for p = 2, 3, and 4
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and all & shift values; butinp=>5and A > 0.1, MEWMA was superior to SRMEWMA
for all & shift values as shown in Table 40. Additionally, both SRMEWMA and
MEWMA were superior to Hotelling’s T2 for all p, A, and & values. Hackl and Ledolter
(1991) and Zhou et al. (2010) pointed out that MEWMA becomes more significant for
large 6 values. Signed-Rank Multivariate Exponentially Weighted Moving Average is
based on signs and ranks and even for large shifts, and the observations may not grow

large; hence, SRMEWMA is not as significant as MEWMA for large shift 6 values.

Table 33

Average Run Length Comparisons for p = 2, 2 = .02, .03, and .05, and In-Control
Average Run Length = 200 from the Multivariate Normal Distribution

)
p 0.02 0.03 0.05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 6.30 6.20 6.90 6.80 7.70 77 10.59
0.00 206 197 193 194 198 201 200
(253) (245) (233) (223) (213) (214)
0.25 46.86 45.42 51.45 49.77 59.11 59.51 162.11
(47.19) (76.75) (49.27) (48.67) (57.49) (57.43) (160.46)
0.50 16.93 16.12 18.72 18.19 2052 20.77 112.45
(14.81) (14.56) (15.57) (15.51) (16.60) (16.87) (113.48
1.00 571 533 6.21 5.92 6.88 6.73 4150
@.17) (4.02) (4.47) (4.30) @.71) (4.61) (41.28
150 3.07 2.92 332 3.16 361 358 15.67
(1.94) (1.92) (2.06) (2.02) (2.16) (2.17) (15.42)
250 1.56 1.48 1.63 157 1.74 171 361
(0.74) 0.72) (0.79) (0.76) (0.84) (0.83) (3.08)

Note. Standard deviation of run length is in parentheses.



146

Table 34

Average Run Length Comparisons for p =2, 1 =0.1, 0.3, and 0.5, and In-Control
Average Run Length =~ 200 from the Multivariate Normal Distribution

)
p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 5 UCL 8.85 8.8 9.90 97 10.90 10.40 10.50
0.00 197 201 196 202 201 198 200
(200) (205) (197) (203) (203) (200)
0.25 74.92 74.91 97.13 94.88 141.65 133.82 162.11
(73.52) (71.68) (93.66) (92.43) (142.57) (131.22) (160.46)
0.50 25.62 25.17 35.10 33.84 68.02 62.70 112.45
(21.27) (20.79) (32.32) (30.71) (66.90) (61.51) (113.48
1.00 7.81 7.78 9.36 8.94 16.82 15.37 4150
(5.14) (5.13) (6.62) (6.31) (15.41) (13.55) (41.28
150 4.07 4.01 4.60 4.46 6.57 6.06 15.67
(2.36) (2.34) (2.68) (2.56) (4.99) (4.44) (15.42)
2,50 1.90 1.87 2.08 2.04 2.34 2.25 3.61
(0.90) (0.92) (0.98) (0.99) (1.21) (1.20) (3.08)

Note. Standard deviation of run length is in parentheses.

Table 35

Average Run Length Comparisons for p =3, 4 =.02, .03, and .05, and In-Control
Average Run Length = 200 from the Multivariate Normal Distribution

)
p 0.02 0.03 0.05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA _ Hotelling’s T2
3 & UCL 8.30 8.20 9.10 8.80 10.20 9.70 12.83
0.00 197 200 200 193 201 198 200
(257) (244) (239) (220) (221) (214)
0.25 50.11 5146  56.84 (59.74) 56.38 69.70 65.63 175.80
(53.77) (52.06) (54.32) (69.97) (62.80) (174.36)
0.50 18.15 19.23 20.79 21.01 24.29 23.17 130.19
(16.79) (16.49) (17.95) (17.36) (20.31) (18.70) (129.89)
1.00 5.93 6.48 6.79 6.97 7.84 7.68 53.42
(4.53) (4.67) (4.85) (4.83) (5.22) (5.06) (53.31)
150 3.21 347 3.60 3.69 412 4.04 20.77
(2.08) (2.16) (2.22) (2.30) (2.41) (2.40) (19.84)
250 155 1.79 1.73 1.79 1.92 1.92 4.46
(0.73) (0.83) (0.82) (0.88) (0.88) (0.94) (3.95)

Note. Standard deviation of run length is in parentheses.
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Table 36

Average Run Length Comparisons for p =3, 4 = 0.1, 0.3, and 0.5, and In-Control
Average Run Length = 200 from the Multivariate Normal Distribution

A
p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
3 o UCL 12.00 11.00 14.45 12.00 19.10 12.60 12.83
0.00 202 209 200 204 200 195 200
(214) (214) (206) (207) (197) (195)
0.25 96.00 83.18 136.97 110.95 180.71 142.83 175.80
(96.21) (80.16) (138.34) (109.87) (181.89) (143.54) (174.36)
050 33.60 29.07 61.03 40.67 132.92 73.98 130.19
(29.27) (24.04) (59.21) (36.61) (133.35) (72.18) (129.89)
1.00 9.74 8.73 1453 10.49 51.80 18.70 53.42
(6.37) (5.70) (11.05) (7.56) (49.62) (16.91) (53.31)
150 4.92 4.49 6.32 5.06 19.03 7.02 20.77
(2.71) (2.59) (3.65) (2.95) (17.17) (5.31) (19.84)
250 221 2.07 2.63 2.23 438 245 4.46
(1.00) (0.99) (1.15) (1.06) (2.62) (1.317) (3.95)

Note. Standard deviation of run length is in parentheses.

Table 37

Average Run Length Comparisons for p = 4, 2 = .02, .03, and .05, and In-Control
Average Run Length = 200 from the Multivariate Normal Distribution

)
p 02 03 05
SRMEWMA MEWMA _ SRMEWMA __ MEWMA __ SRMEWMA __ MEWMA __ Hotelling’s T2
4 5 UCL 10.30 9.90 11.45 10.70 13.05 11.60 14.86
0.00 201 199 202 203 200 193 200
(263) (246) (256) (232) (230) (209)
0.25 56.33 55.30 67.32 61.93 84.7 71.22 182.42
(61.76) (55.12) (71.02) (60.20) (87.25) (67.50) (180.29)
050 21.13 20.26 24.61 22.11 30.43 24.94 140.16
(18.66) (17.69) (21.07) (18.33) (25.94) (20.02) (140.78)
1.00 7.33 6.69 8.20 7.48 9.62 8.28 60.59
(5.13) (5.00) (5.49) (5.24) (6.23) (5.51) (60.09)
150 3.89 358 433 3.95 4.97 427 25.18
(2.26) (2.32) (2.46) (2.44) 2.72) (2.56) (24.87)
250 1.88 1.75 2.05 1.87 2.28 2.01 5.27
(0.81) (0.88) (0.87) (0.93) (0.97) (0.98) 4.72)

Note. Standard deviation of run length is in parentheses.
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Average Run Length Comparisons for p =4, 1 =0.1, 0.2, and 0.5, and In-Control
Average Run Length = 200 from the Multivariate Normal Distribution

)
p 0.1 0.2 05
SRMEWMA MEWMA  SRMEWMA _ MEWMA _ SRMEWMA _ MEWMA __ Hotelling’s T2
4 5 UCL 16.25 12.90 21.45 13.90 33.50 14.70 14.86
0.00 200 200 200 199 200 201 200
(218) (203) (210) (199) (200) (201)
0.25 123.19 89.81 171.09 116.74 196.13 156.31 182.42
(131.13) (86.98) (174.35) (115.13) (195.50) (15.30) (180.29)
050 50.77 31.44 102.06 4376 174.16 84.06 140.16
(47.12) (25.71) (102.95) (40.22) (176.10) (83.19) (140.78)
1.00 13.10 957 28.11 11.34 114.80 21.64 60.59
(8.60) (6.19) (24.39) (8.07) (114.95) (19.52) (60.09)
150 6.37 4.86 10.13 5.33 63.05 8.06 25.18
(3.36) .77 (6.30) (3.11) (61.71) (6.31) (24.87)
250 275 2.18 3.65 2.35 14.35 2.70 5.27
(1.16) (1.05) (1.51) (1.12) (11.92) (1.47) (4.72)

Note. Standard deviation of run length is in parentheses.

Table 39

Average Run Length Comparisons for p =5, 2=.02, .03, and .05, and In-Control
Average Run Length = 200 from the Multivariate Normal Distribution

)
p 0.02 0.03 0.05
SRMEWMA _MEWMA _ SRMEWMA _ MEWMA __ SRMEWMA __ MEWMA __ Hotelling’s T2
5 & UCL 12.60 11.60 14.10 12.30 16.90 13.40 16.74
0.00 202 200 200 195 201 200 200
(273) (241) (248) (222) (231) (218)
0.25 67.46 59.12 81.28 66.05 111.61 77.00 186.44
(73.35) (58.57) (88.24) (64.05) (120.36) (74.76) (186.26)
0.50 25.44 21.94 30.00 24.03 41.03 27.23 144.74
(22.09) (18.42) (25.34) (19.63) (36.27) (21.39) (147.05)
1.00 8.70 7.66 9.86 8.11 12.33 8.91 68.62
(5.86) (5.35) (6.39) (5.52) (7.66) (5.83) (69.67)
150 473 403 5.18 424 6.28 469 28.94
(2.52) (2.49) (2.78) (2.57) (3.21) (2.69) (28.21)
250 2.25 1.94 243 2.04 2.81 2.18 6.03
(0.98) (0.95) (0.96) (1.00) (1.11) (1.05) (5.58)

Note. Standard deviation of run length is in parentheses.
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Table 40

Average Run Length Comparisons for p = 5, 2=0.1, 0.2, and 0.5, and In-Control
Average Run Length = 200 from the Multivariate Normal Distribution

)
p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA _ Hotelling’s T2
5 &5 UCL 22.80 14.70 33.50 15.8 58.30 16.6 16.74
0.00 199 199 201 199 200 197 200
(216) (201) (208) (197) (200) (185)
0.25 156.56 95.78 187.51 123.33 194.70 160.37 186.44
(169.48) (93.40) (194.42) (122.15) (198.98) (160.06) (186.26)
0.50 82.16 34.32 147.13 49.28 191.50 92.99 144.74
(80.09) (29.07) (147.88) (45.03) (189.93) (92.07) (147.05)
1.00 20.78 10.05 67.24 12.40 161.04 25.05 68.62
(14.85) (6.43) (65.52) (8.74) (161.80) (23.05) (69.67)
150 9.02 5.12 23.43 5.77 124.96 9.08 28.94
(4.59) (2.83) (18.56) (3.33) (124.57) (7.31) (28.21)
250 3.66 12.34 5.79 2.50 55.24 2.86 6.03
(1.41) (1.12) (2.30) (1.18) (52.50) (1.56) (5.58)

Note. Standard deviation of run length is in parentheses.

Average Run Length Comparisons
for the Multivariate t, (df = 5)

Next, the ARL; simulation results from the multivariate t, (df = 5) distribution are
presented. Tables 41-48 show the ARL; comparisons for SRMEWMA, MEWMA, and
Hotelling’s T2 for the following conditions:

1.  The number of variables, p = 2, 3, 4, and 5;

2. The smoothing parameter, A € [ 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50]; and

3. Shift parameter, 6 € [0.25, 0.50, 1.00, 1.50, and 2.50].

Tables 41-48 show the ARL; comparisons for in-control ARLy = 200 only.
Simulation results are shown in Tables 41 and 42, 43 and 44, 45 and 46, and 47 and 48
forp =2, 3, 4, and 5, respectively. Comparisons with ARL, =500 and ARL, = 1,000 are

available in Appendix E.
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The simulation results for SRMEWMA, MEWMA with A = 0.02, 0.03, and 0.05
and Hotelling’s T?for p = 2 are presented in Table 41 and results with A= 0.1, 0.2, and 0.5
and Hotelling’s T?for p = 2 are presented in Table 42. In addition to the ARLs, the
corresponding standard deviations of the run lengths (SDRL) are also included in these
two tables. Tables 41-48 show that the MEWMA control chart had better efficiency.
However, the SRMEWMA control chart offers reasonably comparable ARL; performance
and the difference between MEWMA and SRMEWMA was not significant for p = 2, 3,
and 4, for A < 0.1, and all 6 shift values; but forp=5and A > 0.1, MEWMA was
superior to SRMEWMA for all 6 shift values. Additionally, MEWMA was superior to
Hotelling’s T2 for all p, A, and & values. However, SRMEWMA was only significantly
superior to Hotelling’s T? for p = 2 and 3 for all § shift values but Hotelling’s T? was

superior to SRMEWMA for p =4 and 5 and A =0.5.

Table 41

Average Run Length Comparisons for p = 2, 2 = .02, .03, and .05, and In-Control
Average Run Length ~ 200 from the Multivariate t,(5) Distribution

A
p 0.02 0.03 0.05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 6.30 6.20 6.90 6.80 7.85 7.70 135
0.00 201 198 197 195 200 197 200
(248) (246) (226) (244) (221) (212) (196.61)
0.25 47.36 45.63 51.34 50.12 60.82 59.11 173.44
(47.58) (46.42) (49.45) (49.19) (59.76) (55.92) (170.68)
050 17.05 16.67 18.72 18.54 21.49 20.80 142.94
(14.92) (14.55) (15.79) (15.41) (17.22) (16.79) (142.15)
1.00 5.80 5.62 6.28 6.13 7.03 6.93 76.65
(4.14) (4.11) 4.32) (4.33) @.74) (4.63) (75.09)
150 3.17 2.9 3.33 3.30 372 3.62 34.06
(1.94) (1.90) (2.00) (2.04) (2.17) (2.15) (33.18)
250 1.56 1.50 1.63 1.60 1.78 1.73 6.78
(0.74) (0.70) (0.76) 0.77) (0.84) (0.83) (6.23)

Note. Standard deviation of run length is in parentheses.
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Table 42

Average Run Length Comparisons for p =2, 1 =0.1, 0.3, and 0.5, and In-Control
Average Run Length ~ 200 from the Multivariate t,(5) Distribution

)
p 0.1 02 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA _ Hotelling’s T2
2 5 UCL 9.20 9.00 10.70 10.30 13.40 12.30 135
0.00 201 202 199 198 200 200 200
(208) (208) (205) (198) (204) (200) (196.61)
0.25 80.56 77.35 112.22 105.85 164.98 160.7 173.44
(77.97) (74.18) (112.97) (104.85) (164.07) (159.49) (170.68)
0.50 27.12 26.06 41.68 38.20 101.41 93.25 142.94
(22.43) (21.37) (38.00) (35.52) (101.40) (90.85) (142.15)
1.00 8.35 8.04 10.63 9.80 29.88 24.24 76.65
(5.36) (5.27) (7.57) (6.90) (27.75) (22.49) (75.09)
1.50 424 411 4.98 4.76 10.16 8.38 34.06
(2.40) (2.33) (2.80) (2.73) (8.33) (6.53) (33.18)
2.50 1.99 1.93 2.19 2.12 291 2.64 6.78
(0.92) (0.92) (1.00) (0.99) (1.53) (1.38) (6.23)

Note. Standard deviation of run length is in parentheses.

Table 43

Average Run Length Comparisons for p = 3, 2 = .02, .03, and .05, and In-Control
Average Run Length ~ 200 from the Multivariate t,(5) Distribution

A
p 0.02 0.03 0.05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
3 & UCL 8.35 8.20 9.25 8.90 10.70 9.90 16.6
0.00 200 200 200 201 200 202 200
(253) (247) (241) (234) (227) (219) (196.61)
0.25 53.22 51.54 61.27 56.16 79.69 67.63 183.13
(55.90) (51.58) (61.59) (55.02) (81.16) (65.77) (180.89)
0.50 19.71 18.82 22.38 20.69 27.18 23.58 159.21
(17.08) (16.23) (18.44) (17.30) (22.02) (19.25) (159.41)
1.00 6.75 6.31 7.42 6.90 8.72 7.70 100.52
(4.63) (4.63) (4.95) (4.80) (5.52) (5.03) (101.41)
1.50 3.59 3.32 3.94 3.60 451 4.07 4877
(2.06) (2.13) (2.22) (2.20) (2.40) (2.40) (47.86)
250 1.75 1.65 1.87 1.78 2.08 1.89 10.04
(0.76) (0.80) (0.81) (0.87) (0.89) (0.91) (9.52)

Note. Standard deviation of run length is in parentheses.
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Table 44

Average Run Length Comparisons for p = 3, 2 = 0.1, 0.3, and 0.5, and In-Control
Average Run Length ~ 200 from the Multivariate t,(5) Distribution

A
P 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
3 & UCL 13.30 11.30 17.65 12.70 2.40 15.00 16.6
0.00 200 199 200 200 200 198 200
(215) (206) (206) (198) (203) (199) 196.61)
0.25 115.66 88.96 163.46 118.18 188.95 166.60 183.13
(118.31) (86.71) (167.63) (116.92) (190.11) (163.88) (180.89)
0.50 43.25 30.25 91.76 4571 168.17 106.47 159.21
(38.55) (25.09) (90.89) (42.39) (166.17) (104.71) (159.41)
1.00 11.35 9.11 22.39 11.37 105.31 30.70 100.52
(7.08) (5.84) (18.19) (8.15) (103.6) (29.04) (101.41)
150 5.60 461 8.48 542 53.01 10.46 48.77
(2.91) (2.63) (4.92) (3.10) (51.02) (8.64) (47.86)
250 2.45 2.12 3.18 3.34 9.74 3.02 10.04
(1.03) (1.01) (1.28) (1.08) (7.29) (1.63) (9.52)

Note. Standard deviation of run length is in parentheses.

Table 45

Average Run Length Comparisons for p = 4, 2 = .02, .03, and .05, and In-Control
Average Run Length ~ 200 from the Multivariate t,(5) Distribution

A
p 0.02 0.03 0.05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
4 § UCL 10.35 10.00 11.70 10.80 14.00 11.80 19.2
0.00 198 201 199 201 201 200 201
(252) (247) (240) (233) (229) (214) (202.62)
0.25 60.28 57.57 75.31 64.36 105.20 72.97 185.73
(64.29) (56.97) (79.62) (62.77) (113.01) (71.38) (184.26)
0.50 22.00 21.37 26.73 23.24 36.33 26.13 166.28
(18.81) (18.29) (21.96) (19.00) (30.93) (20.85) (163.48)
1.00 7.29 731 8.59 7.80 10.71 8.56 101.41
(4.88) (5.10) (5.54) (5.33) (6.47) (5.54) (110.60)
1.50 3.79 3.93 438 417 5.36 453 59.15
(2.08) (2.36) (2.32) (2.47) (2.76) (2.61) (58.04)
2,50 1.76 1.94 1.99 1.99 241 2.10 12.70
(0.71) (0.94) (0.79) (0.95) (0.95) (0.99) (12.42)

Note. Standard deviation of run length is in parentheses.



153
Table 46

Average Run Length Comparisons for p =4, 2 = 0.1, 0.3, and 0.5, and In-Control
Average Run Length ~ 200 from the Multivariate t,(5) Distribution

A
p
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
4 5 UCL 19.20 13.20 28.30 14.80 49.80 17.50 19.2
0.00 201 196 199 198 200 199 201
(211) (204) (206) (200) (199) (197) (202.62)
0.25 155.38 92.65 191.56 125.48 196.88 176.02 185.73
(164.26) (92.28) (192.02) (127.11) (197.67) (171.98) (184.26)
0.50 75.55 32.21 146.52 5151 188.51 120.17 166.28
(74.50) (28.33) (148.49) (47.89) (186.32) (121.42) (163.48)
1.00 17.85 9.87 58.89 12.76 160.96 38.23 101.41
(11.50) (6.36) (56.08) (9.23) (162.93) (36.96) (110.60)
150 7.91 5.02 18.75 5.88 122.07 12.68 59.15
(3.86) (2.78) (13.60) (3.37) (122.30) (10.68) (58.04)
250 3.20 2.28 4.94 252 49.29 341 12.70
(1.21) (1.06) (1.85) (1.16) (48.18) (1.90) (12.42)

Note. Standard deviation of run length is in parentheses.

Table 47

Average Run Length Comparisons for p =5, 4 = .02, .03, and .05, and In-Control
Average Run Length ~ 200 from the Multivariate t,(5) Distribution

P
p 0.02
SRMEWMA MEWMA _ SRMEWMA _ MEWMA _ SRMEWMA _ MEWMA __ Hotelling’s T2
5 & UCL 12.69 11.60 14.70 12,50 18.60 13.60 21.60
0.00 201 196 201 200 202 194 201
(262) (248) (243) (229) (231) (214) (198.70)
0.25 76.16 58.18 96.06 65.21 134.85 77.10 189.25
(78.89) (60.50) (104.47) (64.69) (150.44) (75.39) (187.77)
0.50 28.08 21.83 34.70 24.04 54.74 27.63 176.03
(22.45) (18.83) (28.02) (19.98) (48.94) (22.63) (174.21)
1.00 9.27 731 11.01 8.09 14.86 8.92 120.05
(5.66) (5.38) (6.36) (5.56) (8.46) (5.84) (120.40)
150 481 3.91 5.65 430 717 475 67.38
(2.37) (2.46) (2.71) (2.62) (3.32) (2.76) (67.27)
250 2.19 1.89 253 2.02 3.10 2.19 15.88
(0.80) (0.93) (0.91) (0.99) (1.10) (1.04) (15.19)

Note. Standard deviation of run length is in parentheses.
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Table 48

Average Run Length Comparisons for p = 5, 2= 0.1, 0.3, and 0.5, and In-Control
Average Run Length ~ 200 from the Multivariate t,(5) Distribution

A
P 0.1 0.2 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
5 & UCL 27.55 15.20 43.80 16.80 81.90 19.70 21.60
0.00 199 201 200 200 198 197 201
(209) (209) (208) (200) (201) (194) (198.70)
0.25 178.49 102.13 190.74 130.92 198.43 176.93 189.25
(185.49) (102.23) (196.67) (12.85) (197.72) (175.00) (187.77)
0.50 120.79 36.92 176.05 57.13 196.04 125,52 176.03
(124.97) (31.70) (178.26) (54.52) (194.71) (123.27) (174.21)
1.00 32.98 10.56 111.64 13.97 183.36 44.35 120.05
(25.04) (6.74) (110.42) (10.09) (184.40) (43.08) (120.40)
150 11.98 5.33 51.88 6.27 162.28 14.62 67.38
(5.61) (2.92) (47.46) (3.64) (160.67) (12.65) (67.27)
250 4.46 2.40 8.53 2.65 107.64 372 15.88
(1.53) (1.13) (3.37) (1.25) (109.46) (2.14) (15.19)

Note. Standard deviation of run length is in parentheses.

Average Run Length Comparisons
for the Multivariate Gamma,
(a =3, g =1) Distribution
Finally, the ARL; simulation results from the multivariate gamma, (o =3, = 1)
distribution are presented. Tables 49-54 show the ARL; comparisons for SRMEWMA,
MEWMA, and Hotelling’s T for the following conditions:
1.  The number of variables, p = 2 only;
2. The smoothing parameter, A € [ 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50]; and
3. Shift parameter, 6 € [0.25, 0.50, 1.00, 1.50, and 2.50].
Tables 49 and 50, 51 and 52, and 53 and 54 show the ARL; comparisons for in-
control ARL, =200, 500, and 1,000, respectively.

The simulation results for SRMEWMA; MEWMA with A = 0.02, 0.03, and 0.05;

and Hotelling’s Tfor ARL, = 200 are presented in Table 49. Results with A =0.1, 0.2,



155
and 0.5, and Hotelling’s T?for ARL, = 200 are presented in Table 50. In addition to the
ARL s, the corresponding standard deviations of the run lengths (SDRL) are also included
in these two tables. Tables 49-54 show that the SRMEWMA control chart had superior
efficiency in detecting mean shifts by a large margin. This showed that the SRMEWMA
control chart was more sensitive to process shift from normality for skewed distributions.
Furthermore, the SRMEWMA control chart was superior to the Hotelling’s T2 control
chart for all ARL, A, and 6 values. The MEWMA control chart was superior to

Hotelling’s T? for all shift values § < 2.5.

Table 49

Average Run Length Comparisons for p =2, 2 = .02, .03, and .05, and In-Control
Average Run Length =~ 200 with Multivariate Gamma Distribution

A
p 0.02 0.03 0.05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 723.1 2,116.6 723.1 1,442.9 723.1 896.6 253
0.00 200 200 200 200 200 200 201
(209.37) (201.53) (209.37) (195.80) (209.37) (192.00) (198.98)
0.25 11.40 62.89 11.40 65.75 11.40 73.06 146.77
(5.10) (50.77) (5.10) (53.43) (5.10) (63.22) (148.19)
0.50 561 31.05 5.61 32.08 5.61 32.95 92.89
(1.68) (19.65) (1.68) (21.15) (1.68) (23.37) (93.04)
1.00 2.92 14.73 2.92 14,52 2.92 14.22 30.32
(0.61) (6.53) (0.61) (6.66) (0.61) (7.13) (29.92)
1.50 2.05 9.54 2.05 9.35 2.05 8.68 8.73
(0.32) (3.41) (0.32) (3.35) (0.32) (3.30) (8.33)
2,50 1.34 571 1.34 5.50 1.34 5.03 1.05
(0.47) (1.57) (0.47) (1.49) (0.47) (1.41) (0.22)

Note. Standard deviation of run length is in parentheses.
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Average Run Length Comparisons for p = 2, 2 = 0.1, 0.3, and 0.5, and In-Control

Average Run Length = 200 with Multivariate Gamma Distribution

)
p 0.1 0.2
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 5 UCL 190.3 2,116.6 116.2 1,442.9 65.9 896.6 25.3
0.00 200 200 200 200 201 200 201
(199.56) (201.53) (196.41) (195.80) (200.60) (192.00) (198.98)
0.25 12.38 62.89 15.24 65.75 30.93 73.06 146.77
(7.25) (50.77) (11.33) (53.43) (29.17) (63.22) (148.19)
0.50 5.18 31.05 5.18 32.08 8.04 32.95 92.89
(1.93) (19.65) (2.42) (21.15) (6.23) (23.37) (93.04)
1.00 251 14.73 2.24 14,52 2.14 14.22 30.32
(0.61) (6.53) (0.62) (6.66) (0.85) (7.13) (29.92)
150 1.83 9.54 1.60 9.35 1.26 8.68 8.73
(0.38) (3.41) (0.49) (3.35) (0.44) (3.30) (8.33)
250 1.00 571 1.00 5.50 1.00 5.03 1.05
(0.528) (1.57) 0) (1.49) 0) (1.41) (0.22)

Note. Standard deviation of run length is in parentheses.

Table 51

Average Run Length Comparisons for p = 2, 2 = .02, .03, and .05, and In-Control

Average Run Length = 500 with Multivariate Gamma Distribution

)
P 0.02 0.03 0.05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA _ Hotelling’s T2
2 5 UCL 7617 21755 537.4 1,486.7 352.7 928.5 34.82
0.00 494 500 498 500 500 500 503
(494.26) (480.18) (495.26) (480.08) (500.16) (490.50) (505.74)
0.25 16.79 115.43 16.44 122.14 16.15 135.68 363.96
(6.56) (88.44) (6.90) (102.09) (7.60) (120.26) (363.06)
0.50 7.95 49.42 753 48.56 7.05 51.75 234.19
(2.05) (28.52) (2.04) (30.40) (2.13) (37.01) (236.49)
1.00 4.03 21.62 3.79 20.25 3.44 18.91 76.57
0.72) (8.29) (0.71) (8.46) (0.70) (9.03) (77.11)
150 2.82 13.69 2.65 12.49 2.37 11.28 21.76
(0.43) (4.28) (0.48) (4.03) (0.49) (3.97) (21.00)
2,50 1.97 7.98 1.94 7.15 1.77 6.30 1.65
(0.14) (1.84) (0.22) (1.73) (0.42) (1.60) (1.04)

Note. Standard deviation of run length is in parentheses.
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Table 52

Average Run Length Comparisons for p = 2, 2 =0.1, 0.3, and 0.5, and In-Control
Average Run Length =~ 500 with Multivariate Gamma Distribution

A
p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 207.7 4983 129.3 272.6 76.7 125.8 34.82
0.00 500 501 500 498 502 503 503
(497.38) (499.80) (509.81) (503.80) (502.64) (502.16) (505.74)
0.25 17.48 170.89 23.76 217.21 66.31 316.65 363.96
(10.46) (161.73) (19.03) (213.21) (64.08) (318.75) (363.06)
0.50 6.52 63.85 6.69 93.26 13.71 177.47 234.19
(2.3) (53.76) (3.25) (86.92) (11.65) (173.15) (236.49)
1.00 3.00 19.18 2.65 24.13 273 58.86 76.57
(0.68) (11.23) (0.71) (18.92) (1.17) (56.08) (77.11)
150 2.04 10.24 1.85 10.55 153 21.04 21.76
(0.33) (4.42) (0.37) (6.14) (0.51) (18.51) (21.00)
2,50 1.25 523 1.00 453 1.00 5.16 1.65
(0.43) (1.50) (.045) (1.57) (0.01) (3.21) (1.04)

Note. Standard deviation of run length is in parentheses.

Table 53

Average Run Length Comparisons for p = 2, 2 = .02, .03, and .05, and In-Control
Average Run Length =~ 1,000 with Multivariate Gamma Distribution

X
p 0.02 0.03 0.05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA _ Hotelling’s T2
2 &5 UCL 798.1 22117 559.3 1515.7 369.2 948.8 42.70
0.00 1,000 1,002 1,000 998 1,001 1,000 993
(980.70) (993.84) (966.63) (993.66) (1,002.63) (995.40) (1,000.55)
0.25 22.22 171.30 20.09 185.61 19.64 216.14 731.07
(7.90) (135.49) (7.98) (157.16) 9.27) (197.23) (737.23)
0.50 10.23 63.78 8.96 64.41 8.15 70.43 453.92
(2.41) (36.21) (2.32) (40.64) (2.33) (52.68) (455.00)
1.00 5.06 25.95 4.42 24.17 3.90 22.71 148.01
(0.83) (9.43) (0.78) (9.80) (0.75) (10.55) (148.15)
1.50 3.48 16.15 3.03 14.70 271 13.00 4376
(0.53) (4.55) (0.43) (4.52) (0.47) (4.43) (43.17)
2,50 2.08 9.36 1.99 8.33 1.95 7.08 3.2
(0.28) (1.99) (0.07) (1.88) (0.22) (1.72) (2.65)

Note. Standard deviation of run length is in parentheses.
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Table 54

Average Run Length Comparisons for p = 2, 2 =0.1, 0.3, and 0.5, and In-Control
Average Run Length =~ 1,000 with Multivariate Gamma Distribution

)
p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 219.4 512.0 138.7 282.8 845 132.7 42.70
0.00 997 1,007 997 1,001 1,000 999 993
(990.75)  (1,003.3) (994.06) (993.05) (997.33) (982.17) (1,000.55)
0.25 21.79 288.32 34.21 411.96 115.95 601.31 731.07
(13.54) (278.74) (28.56) (404.02) (115.52) (603.94) (737.23)
0.50 7.50 93.85 7.96 156.50 20.60 331.37 453.92
(2.67) (83.42) (3.89) (149.59) (18.14) (327.96) (455.09)
1.00 3.33 23.47 2.93 33.68 3.27 98.39 148.01
(0.74) (14.41) (0.76) (27.83) (1.51) (95.80) (148.15)
150 2.25 11.75 1.97 12.90 1.70 32.58 43.76
(0.45) (4.96) (0.35) (7.76) (0.51) (30.41) (43.17)
2,50 158 5.18 1.05 511 1.00 6.53 32
(0.49) (1.59) (0.23) (1.78) (0.00) (4.28) (2.65)

Note. Standard deviation of run length is in parentheses.

A Real Data Manufacturing Industry Example

The performance of the SRMEWMA control chart methodology along with the
parametric MEWMA control chart methodology for SPC location monitoring was
demonstrated using a data set from an aluminum electrolyte capacitor manufacturing data
example by Qiu and Hawkins (2001). The same data set was also used by Zou and Tsung
(2010) to illustrate their nonparametric multivariate sign EWMA (MSEWMA) control
chart methodology.

The goal of an aluminum electrolyte capacitor (AEC) process is to transform the
raw materials into AECs. The three most important characteristics in the process are the

capacitance, dissipation, and leakage. The three variables were measured electronically

at given voltage, frequency, and temperature.
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The data set contained 200 data vectors (see Table 151 in Appendix E). Initially,
using all 200 data vectors, the vector singed-ranks were computed and labeled as SR1,
SR2, and SR3 and were used in computing the SRMEWMA control chart plotting
statistic (QR). The raw data vectors (capacitance, dissipation, and leakage) were used to
compute the MEWMA control chart statistic (T?). The first 170 vectors (both raw data
and signed-ranks) were used as a reference sample to estimate the process mean and
variance-covariance matrix. The reference data set of 170 perhaps was smaller than
optimal but it was sufficient to illustrate the SRMEWMA scheme in an industry setting.

The normal Q-Q plots of the raw data vectors based on the 170 phase I vectors are
shown in figures 14, 15, and 16, respectively. The Q-Q plots showed that the three
variables (capacitance, dissipation, and leakage) were not normal. The Shapiro-Wilk,
Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling goodness-of-fit tests
for normality concluded that all three raw variables were not normally distributed (the p-
values were smaller than 0.0001, 0.001, 0.005, and 0.005, respectively). The results of
the four goodness-of-fit tests of normality along with the normal Q-Q plots (Figures 14-
16) showed that the multivariate normality assumption was not valid. Therefore, the
nonparametric SRMEWMA control chart would be more powerful than the MEWMA

control chart, which was based on normal parametric assumptions.
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Q-Q Plot for Capacitance
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Figure 14. The normal Q-Q plot for capacitance.
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Figure 15. The normal Q-Q plot for dissipation.
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Q-Q Plot for Leakage
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Figure 16. The normal Q-Q plot for leakage.

The first 170 data vectors were used in to compute the vector signed-ranks
corresponding to the original measurements and the IC parameter estimates of the mean
vectors and variance-covariance matrices for the raw data and signed-ranks respectively.
The IC ARL, was fixed at 200 and the smoothing parameter A was chosen to be 0.03 in
order to make MEWMA robust to non-normality (Zou & Tsung, 2010). The control
limits for MEWMA and SRMEWMA were 8.80 and 9.10, respectively. A shift 6 =0.25
multiples of the standard deviation was added to the first variable (capacitance) of the
remaining 30 vectors for phase Il analysis. Table 55 shows the phase Il analysis sample
of 30, the original raw data vectors (labeled as observations 171 — 200), the computed
vector signed-ranks, the MEWMA control chart statistic (T#), and the SRMEWMA

control chart statistic (QF). Figure 17 shows the plotted SRMEWMA and MEWMA
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control chart statistics along with their corresponding upper control limits of 8.80 and
9.10. It can be seen from the table or plot that the SRMEWMA signaled an out-of-
control at the 177™ observation, it stayed in control until the 193" observation, and
finally it remained above the control limit. In contrast, the MEWMA did not signal an
out-of-control until the 191* observation where it remained above the control limit until

the 196™ observation before it shifted below the control limit.
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Table 55

The Phase Il Signed-Rank Multivariate Exponentially Weighted Moving Average and
Multivariate Exponentially Weighted Moving Average Control Chart Plotting Statistics

MEWMA SRMEWMA
Obs. Capacitance Dissipation Leakage (T?) SR1 SR2 SR3 (1)
171 456.26 4.36 15.30 2.52 22.29 -62.17 -365.66 3.21
172 449.26 4.35 18.90 2.56 12.16 -98.12 -138.18 5.63
173 459.26 4.19 27.50 171 17.93 -2530.83 220.67 5.93
174 449.26 4.05 25.60 1.46 20.74 -2641.82 180.24 7.04
175 446.26 5.63 21.90 0.63 -28.59 3543.35 -71.58 6.11
176 445.26 4.35 18.30 0.86 8.84 385.20 -176.45 8.19
177 443.26 4.69 26.50 0.32 -18.90 1462.22 156.94 9.63**
178 437.26 4.45 15.70 1.16 1.75 1750.51 -328.27 8.59
179 441.26 4.56 35.00 0.69 -18.83 161.74 378.52 5.06
180 447.26 3.47 19.50 1.56 41.72 -3781.94 -26.12 3.79
181 440.26 4.08 20.50 271 20.90 -1749.13 1.63 4.83
182 439.26 5.73 24.30 2.16 -37.40 3711.42 52.62 3.58
183 436.26 3.92 17.40 3.94 32.47 -2156.98 -161.19 3.25
184 440.26 4.52 15.40 5.09 0.52 1970.24 -346.87 3.40
185 446.26 5.62 19.90 4.66 -23.65 3586.85 -183.35 4.17
186 439.26 4.47 16.70 6.09 0.13 1727.67 -285.34 5.32
187 445.26 4.32 19.50 6.59 9.82 -123.14 -91.38 6.96
188 439.26 4.27 20.10 7.79 7.45 -142.60 -45.70 8.18
189 442.26 411 21.30 8.63 19.49 -1770.31 35.67 8.74
190 442.26 4.98 29.00 8.03 -32.23 2361.72 227.79 8.14
191 438.26 3.83 14.70 10.43** 37.73 -2093.52 -291.13 6.76
192 453.26 4.27 17.30 10.11 25.66 -923.62 -253.07 8.55
193 448.26 4.93 17.50 10.04 -9.16 2677.23 -280.87 10.59
194 447.26 4.39 19.80 10.25 4.98 369.20 -87.44 13.30
195 447.26 4.15 30.30 9.15 10.43 -2334.56 308.85 10.75
196 447.26 4.52 17.50 9.55 1.36 1532.02 -256.96 13.10
197 465.26 4.37 24.70 7.17 16.80 -1728.24 102.43 16.35
198 447.26 4.47 17.20 7.81 4.35 1303.59 -272.98 18.59
199 443.26 4.73 31.30 6.71 -26.10 1367.00 299.62 16.44

200 456.26 4.37 16.70 6.59 20.69 -163.78 -304.57 18.69
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SRMEWMA & MEWMA Control Chart for Monitoring the AEC Process
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Figure 17. The signed-rank multivariate exponentially weighted moving average and
multivariate exponentially weighted moving average control charts for monitoring the
aluminum electrolyte capacitor process.



CHAPTER YV

CONCLUSIONS AND DISCUSSION

The purpose of this study was to develop a new affine invariant spatial signed-
rank multivariate exponentially weighted moving average control chart (the SRMEWMA
control chart) and to compare its performance to traditional parametric counterparts like
the multivariate exponentially moving average (MEWMA) and Hotelling’s T? for
different distributions, mainly the multivariate normal, t, and gamma using the concept of
average run length (ARL;). The control chart integrated a signed-rank test
(Hettmansperger et al., 1997) and exponentially weighted moving average (EWMA)
process monitoring. Finally, a real data example from the manufacturing industry
showed that SRMEWMA performance was robust and effective.

To achieve the first goal as presented in Chapter Ill, the theoretical development
of the new SRMEWMA control charts was shown based on the work of Hettmansperger
et al. (1997), Mottonen et al. (1998), and Oja (2010). Central to the process of
developing SRMEWMA was the concept of centered signed-rank vectors (Oja, 1983,
1999, 2010), which was illustrated using a numerical example that computed vector
signed-ranks from original observations using SAS® IML macros originally developed
by Mottonen et al. (1997). Additionally, like MEWMA and Hotelling’s T?, the new
SRMEWMA control chart was shown to have the intuitively appealing property of affine

invariance for distributions with elliptical directions, insuring that the performance of
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SRMEWMA was the same for any initial covariance matrix. Also, the affine invariance
property insured that for elliptically symmetrical distributions, the performance of
MEWMA, SRMEWMA, and Hotelling’s T2 depended on a shift in process mean vector
only through the non-centrality parameter § = [u'2~*u]*/? (Lowry et al., 1992;
Stoumbos & Sullivan, 2002).

In comparison with MEWMA and Hotelling’s T2, SRMEWMA’s ARL;
performance was robust to non-normality and sensitive to small shifts in the process
mean vector. It performed better than Hotelling’s T> and MEWMA for vector
observations from the multivariate normal and t distributions (elliptically symmetrical)
and better than MEWMA for observations from multivariate gamma (skewed)
distributions.

To achieve the second goal of ARL; performance comparisons of SRMEWMA,
MEWMA, and Hotelling’s T, a Monte Carlo simulation study was designed to compute
the UCLs of the three competing control charts for variations to the IC ARL, and compare
the ARL; performance of the three charts for observation vectors from the multivariate
normal, t, and gamma distributions for the number of variables, p = 2, 3, 4, and 5 for the
multivariate normal and t distributions, p = 2 only for the multivariate gamma
distribution and the smoothing parameter, A € [0.01, 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50],
and IC ARL, = 200, 500, and 1,000. The UCLSs for Hotelling’s T? from the multivariate
normal distribution were obtained using the CINV function in SAS®, which were
equivalent to the same values obtained from the y* statistical tables.

Based on phase Il simulated ARL; and SRDL values presented in Chapter 1V,

SRMEWMA was shown to be robust and equally as powerful as MEWMA,; it
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outperformed Hotelling’s T2 for location process monitoring when the underlying process
observations-vectors came from a multivariate normal distribution or more precisely, the
marginal distributions were normal. In addition, SRMEWMA was also demonstrated to
be robust and as powerful as MEWMA for location process monitoring when the
underlying process observations vectors came from the multivariate t distribution. Both
the multivariate normal and t distributions were elliptically symmetrical distributions.
However, SRMEWMA was shown to be superior to both MEWMA and Hotelling’s T
when the underlying process observations vectors came from a member of the family
multivariate gamma distributions--a skewed distribution.

There was one major limitation to computing SRMEWMA.. As with most higher-
dimension methods, SRMEWMA suffered from what is known as the “curse of
dimensionality,” a term coined by Richard Bellman (1961). As the number of monitored
quality variables p increased, the number of estimable parameters increased
exponentially. Hence, larger numbers of observations n were needed in order to estimate
those parameters. This “curse of dimensionality” becomes a significant obstacle in high
dimension data analysis, computation, and estimation. The computation of the centered
signed-ranks, which were necessary to compute the SRMEWMA charting statistic, was
very intensive due to the number of vector combinations that were evaluated from the
simulated variables to calculate the vector signed-ranks. For example, when p =3 and

n =5, there are 10 vector combinations to be analyzed. However, when n = 20, the
number of vector combinations to be analyzed is 1,140, a multiple of 114. The multiples
increased geometrically as p and n increased. This limitation made simulation very

intensive and almost prohibitive with current technology to practically use any sample
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size n >5 and p > 5 when computing the vector-signed-ranks. Table 56 illustrates the

exponential nature of the number of vector combinations that must be evaluated from the

simulated variables to calculate the vector signed-ranks. Therefore, due to the extensive

computation requirements of the signed-ranks for SRMEWMA, p=2, 3,4,and 5and n =

5 only were considered.

Table 56

Number of Vector Combinations That Must Be Evaluated from the Simulated Variables

to Calculate the Vector Signed-Ranks

Number of Simulated Variables

p 1 2 3 4 5 6
n
5 5 10 10 5 1
10 10 45 120 210 252 210
15 15 105 455 1,365 3,003 5,005
20 20 190 1,140 4,845 15,504 38,760
25 25 300 2,300 12,650 53,130 177,100
30 30 435 4,060 27,405 142,506 593,775
35 35 595 6,545 52,360 324,632 1,623,160
40 40 780 9,880 91,390 658,008 3,838,380
45 45 990 14,190 148,995 1,221,759 8,145,060
50 50 1,225 19,600 230,300 2,118,760 15,890,700
55 55 1,485 26,235 341,055 3,478,761 28,989,675
60 60 1,770 34,220 487,635 5,461,512 50,063,860
65 65 2,080 43,680 677,040 8,259,888 82,598,880
70 70 2,415 54,740 916,895 12,103,014 131,115,985
75 75 2,775 67,525 1,215,450 17,259,390 201,359,550
80 80 3,160 82,160 1,581,580 24,040,016 300,500,200
85 85 3,570 98,770 2,024,785 32,801,517 437,353,560
90 90 4,005 117,480 2,555,190 43,949,268 622,614,630
95 95 4,465 138,415 3,183,545 57,940,519 869,107,785
100 100 4,950 161,700 3,921,225 75,287,520 1,192,052,400
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Data were generated using the Monte Carlo Simulation technique using the
interactive matrix language (IML) of the Statistical Analysis System (SAS) Windows 7
version 9.3 TSM10 running on an Intel core i7-3930K CPU @ 3.2GHZ/64GB RAM-
based system. The system specifications are mentioned here to highlight the number of
parameter limitations and intensive simulation requirements needed to generate data from
various distributions in order to compute the vector-centered spatial signed-ranks and the
SRMEWMA control chart charting statistic. Due to the large number of parameter level
combinations that needed to be simulated, most simulation runs ran for more than 30
days and a full study became unattainable particularly with higher values of p using
current technology. With certain improved processing power in the future, this study
should be more thorough and insightful.
Recommendations for Future Research
A number of relevant issues and topics that were not addressed in this study could
and should be addressed in future research:
1.  Study the phase | UCL distribution and compare the ARL; performance of
SRMEWMA and MEWMA control charts for different IC ARL, other than
200, 500, and 1,000.
2. Compare the ARL; performance of SRMEWMA and MEWEMA for the
case where the smoothing matrix A, was not diagonal and/or the
individual smoothing parameter components A;; # 4;; .

3. Study the ARL; performance for other SPC possible and likely continuous

and discrete distributions.
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4.  Study the ARL; performance of the SRMEWMA control chart to monitor
and detect shifts in other location shifts, e.g., median, percentile, and process
variability. This is possible with reasonable modifications to the
methodology utilized in this study.
5. Investigate the performance of SRMEWMA for higher order
dimensionality.
6. Investigate the optimal smoothing parameter A > 0.2 in more detail for
nonparametric control charts like SRMEWMA.
7. Investigate the use of variable selection techniques to reduce dimensionality
and increase computational efficiency.
8.  Compare the performance of SRMEWMA to other nonparametric sign- and
rank-based control charts.
Final Thoughts
As was demonstrated in Chapter 11, a survey of multivariate nonparametric
control charts in the field of nonparametric multivariate process control revealed few
commercially available and utilized control charts in practice. This was due in part to
many reasons; among them was the difficulty of their computation, the curse of
dimensionality, and infancy of the multivariate nonparametric statistics field in terms of
software and hardware dependence.
The newly investigated nonparametric multivariate SPC control chart for
monitoring location parameters--the Signed-Rank Multivariate Exponentially Weighted
Moving Average (SRMEWMA)--is a viable alternative control chart to the parametric

MEWMA control chart and is sensitive to small shifts in the process location parameter.
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Recommendations of its use are mixed based solely on this study. Among its advantages
are its affine-invariant properties, its parallel performance to MEWMA for data from
elliptically symmetrical distributions, and its superiority to MEWMA and Hotelling’s T?
control charts for data from skewed distributions. Among its disadvantages are
complexity of computations for higher dimensions and lack of commercially available
software. Most developed software methods for computing multivariate signs, ranks, and
signed-ranks are in their infancy and are designed for academic research and low
dimensional vector observations. Additionally, SRMEWMA is not as efficient as
parametric charts for detecting large shifts. As the number of simultaneously monitored
quality characteristics have dramatically increased in manufacturing, software and
capable hardware must advance to take advantage of newly presented nonparametric

control charts like SRMEWMA.
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/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/7 >>>>>>>>>>>>>>>>>>  MEWMA Phase | UCL Determination <<<<<<<<<<<<< */
/* ___________________________________________________________________ */
/*-- A doctoral dissertation supplemental SAS code by Jamil Zeinab --*/
/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/* 1. The IML MEWMA code generates 10,000 iterations of */
/* of up to 15,000 p-variate samples from a */
/* sampling distribution and computes MEWMA */
/* 2. It creates a MEWMA chating statistic T */
/* 3. It calculates the UCLs for MEWMA for which the */
/* in-control average run length is ARL_O = 200, 500, & 1000. */
/* 4. Several versions of this code will exist based on the sampling */
/* criteria below (distribution, p-vartiates). */
/* ___________________________________________________________________ */
/* >>>> Sampling criteria <<<<< */
/* Distribution: Multivariate Normal (Normal Marginals) */
/* Number of qualirty variables: p=2, n=5 */
/* Estimated Covariance matrix & mean vector, from 100,000 samples */
/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/% SSSS5555>55555>>>>> Notes for usage <<<<K<<K<KKKKKKKLKLKLKLKLKL */
/* 1. Change the sampling distribution as needed, I used Normal, T, */
/* & Gamma. */
/* 2. Change the sampling size as desired. */
/* 3. Change the smoothing parameter "lambda™ as desired. */
Y A e e */;

dm "output® clear ;

dm "log® clear ;

options mlogic mprint FULLSTIMER compress=yes nonumber THREADS CPUCOUNT=ACTUAL ;
libname out "C:\SIMULATION_N5\MEWMA\MEWMA_UCLI_P2_N5";

/** —- to avoid the problem of filling SAS Log
Window in display save the SAS log and listing to files;*/
proc printto new
log = “C:\SIMULATION_N5\MEWMA\MEWMA_UCLI_P2_N5\MEWMAP1N_P3N5 Xn.txt" ;
print = "C:\SIMULATION_N5\MEWMA\MEWMA_UCLI_P2_N5\Temp_LIST.txt";

RUN; title "MEWMA UCL PHASE I Simulation - Normal for (Est. Cov.e matrix and mean vector,
from 100,000 samples) , p=2, n=57;

[F—————————— e ——— - */;
/** Clear old SAS data sets with teh same name */;
[ e */;

proc datasets library=out;
delete MEWMA_PhaselUCL_Normal_NP2_N5XSn ;

Run;
proc iml;
[F———————— e ———— - */;
/** START Estimate the covariance matrix and mean from 100,000 samples */;
[ e */;
NumSim=100000 ;
n=5;
p=2;
RESULT_MEAN = jJ(NumSim,p,.);
RESULT_COV = j(p.p.0);
call randseed(1); /* set seed for RANDGEN */
XX = j(n,p,-); /* initialize X matrix with n
rows and p columns (n x p) */

do iii=1 to NumSim;
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call RANDGEN(XX, "NORMAL®"); /* Till X values from normal
distribution default parameters */
X_MEAN=XX[:.]: /* compute the column means of X
matrix */
RESULT_MEAN[ii1,]=X_MEAN; /* save as the ith row of means
matrix */
COV_X=cov (XX); /* compute the covariance

matrix of X matrix */
RESULT_COV = RESULT_COV + COV_X;
end;
X_BAR_BAR_EST=RESULT_MEAN[:,1; /* calculate the samples means */
COV_EST = RESULT_COV / (NumSim*n) ; /* Calculate the average covariance matrix
to estimate sample covariance matrix */

print  COV_EST; /* This is the estimated
covariance matrix of X samples */

print X _BAR_BAR_EST; /* This is the estimated mean
vextor matrix of X samples, use as initial Z value */
[ m————————— e —— */;
/** END Estimatation of the covariance matrix and mean from 100,000 samples */
[P—————— e —————————— */;

varNames = {"lambda” "K" "h™" “T" “RL"};

create out.MEWMA_PhaselUCL_Normal_NP2_N5XSn var varNames;
SIMS=10000 ;

Z= j(@,p,-): /* initialize Z matrix with 1 row and p columns (1 x
2)*
X = j(n,p,-); /* initialize X matrix with n rows and p columns (5 x 2) */
RL=. ;

RESULT=j(SIMS,5,.); /* Result*/
call randseed(12345); /* set seed for RANDGEN */

[Pe——————— e */;
/** Start MEWMA simulation to find UCL for ARL0O=200,500, &1000 */

/* ______________________________________________________________________ */
do 1= 4 to 4; /* (1) Start iteration counter *"do" loop */

if 1=1 then lambda=0.01;
if 1=2 then lambda=0.02;
if 1=3 then lambda=0.03;
if 1=4 then lambda=0.05;
if 1=5 then lambda=0.1 ;
if 1=6 then lambda=0.2 ;
if 1=7 then lambda=0.5 ;

do h= 6.8 to 12.3 by 0.1; /*FOR LAMBDA=.05*/ /* (2) Test UCL limits from 7 to 40

for each lambda */
*do h=5 to 15 by 0.1; /* (2) Test UCL limits from 7 to 40
for each lambda */
do k = 1 to SIMS ; /* (3) DO 10,000
ITERATIONS */
do m= 1 to 15000 until (flag=0) ; /* (4) generate up to 15000
sample or until T > h */
if m=1 then flag=1;

call RANDGEN(X, "NORMAL®); /* Till x1 values from normal distribution
default parameters */
X_MEAN=X[:.,]: /* compute the column
means of X matrix */
if m=1 then Z=X_BAR_BAR_EST; /* usew instead of z={0 0} */
Zm=Clambda*X_MEAN) + (1-lambda)*Z; /* compute the Z vectors
recrusive MEWMA structure */
Z=7Zm; /* save

Z lag vectors for next vector in series */
COV_zZ=(lambda/(2-1ambda)) *

(1-(1-lambda)**(2*m))*COV_EST ; /*compute the
covariance matrix of Z matrix */
T = Z * SOLVE(COV_Z,Z7); /* compute the MEWMA

charting statistic T**2 */
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if (T > h & flag=1) then do; /* start T > h condition test
loop */
RL=m ; /* set RL =
number of subgroups or samples */
R = lambda] [K|Ih]|T]IRL ;
RESULT[k,]=R;

flag=0;
end; /* >> close T > h condition
test loop << */
end; /* (4) close/end (M)
subgroup *‘do" loop */
end; /* (3) close/end 10K
iteration loop */
append from RESULT; /* Append 10000 iteration
for eack lambda and UCL into SAS data set */
end; /* (2) close/end UCL
loop */
end; /* (1) close/end

lambda loop */

title “MEWMA UCL PHASE 1 Simulation®;

title2 "Normal for (Est. Cov. matrix & mean vector, from 100k samples), p=2, n=5%;
proc means data=out.MEWMA_PhaselUCL_Normal_NP2_N5XSn ;

class lambda H;

var RL;

output out=averages mean=ARL std=SDRL;

run;

data averages ;

keep Lambda UCL ARL STDERROR_ARL _FREQ_;
set averages ;

where _type_=3;

STDERROR_ARL=sdr1/100;

UCL=h;

run;

proc print data=averages ;

run;
/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/* >>>>>>>>>>>>>>  MEWMA Phase 11 ARL Determination <<<<<<<<<<<<<<<< */
/* ___________________________________________________________________ */
/*-- A doctoral dissertation supplemental SAS code by Jamil Zeinab --*/
/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/* 1. The IML MEWMA code generates 10,000 iterations of */
/* of up to 15,000 p-variate samples from a */
/* sampling distribution and computes MEWMA */
/* 2. It creates a MEWMA chating statistic T */
/* 3. It calculates the out of control ARL for each combonation of */
/* lambda, shift, and UCL obtaioned from Phase | for ARL0O=200 */
/* 4. Several versions of this code will exist based on the sampling */
/* criteria below (distribution, p-vartiates). */
/* ___________________________________________________________________ */
/* >>>> Sampling criteria <<<<< */
/* Distribution: Multivariate Normal (Normal Marginals) */
/* Number of qualirty variables: p=2, n=5 */
/* Estimated Covariance matrix & mean vector, from 100,000 samples */
/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/*  SSSSSSSSS>SSSS>S>>>>> Notes for usage <<<<<<LKLKLKLKLKLKLKLKLKLKLLLKL */
/* 1. Change the sampling distribution as needed, | used Normal, T, */
/* & Gamma. */
/* 2. Change the sampling size as desired. */
/* 3. Change the smoothing parameter "lambda™ as desired. */
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options mlogic mprint SYMBOLGEN FULLSTIMER
compress=yes nonumber THREADS CPUCOUNT=ACTUAL ;

/** to avoid the problem of filling SAS Log Window */
/** in display save the SAS log and listing to files */
proc printto new

log = “C:\SIMULATION_N5\MEWMA\MEWMA_PHASE_11_UCL_P2_N5\MEWMAP2N_P2N5_Xn.txt" ;
print = "C:\SIMULATION_N5\MEWMA\MEWMA PHASE 11_UCL_P2 N5\Temp_ LIST.txt";

RUN;

[F————————— e ————— - */;

/** Clear old SAS data sets with the same name */;

[P—————— oo ——————————————— */;

libname out "F:\ASRM2\SRM799_SIMULATION_WORK\PHASE_ 1 IN\MEWMA\MEWMA_PHASE_11_ARL_P2_N5%;

%macro mewmaphase2(arlO,ucll,ucl2,ucl3,ucl4,ucl5,ucl6,ucl7,variates);

proc iml;
[F———————— e ———— - */;
/** START Estimate the covariance matrix and mean from 100,000 samples */;
[P—————— oo ——————————————— */;
NumSim=10000 ;
n=5;
p=%eval (&variates);
var_x1=0;

RESULT_MEAN = jJ(NumSim,p,.);
RESULT_COV = j(p.,p.0);

call randseed(1); /* set seed for RANDGEN */
XX = jn,p,-); /* initialize X matrix with n rows
and p columns (n x p) */

do iii=1 to NumSim;
call RANDGEN(XX, *NORMAL"); /* Fill X values from normal distribution
default parameters */

X_MEAN=XX[:,1; /* compute the column means of X matrix */
RESULT_MEAN[iii,]=X_MEAN; /* save as the ith row of means matrix */
COV_X=cov (XX); /* compute the covariance matrix of X
matrix */
RESULT_COV = RESULT_COV + COV_X;
end;
X_BAR_BAR_EST=RESULT_MEAN[:,1; /* calculate the samples
means */

COV_EST = RESULT_COV / (NumSim*n ) ; /* Calc. the avg. covariance matrix to est.
sample cov matrix */

var_x1=COV_EST[1,1];

print result_cov COV_EST; /* This is the estimated covariance
matrix of X samples */

print X _BAR_BAR_EST var_x1; /* This is the estimated mean vextor
matrix of X samples, use as initial Z value */
[P—————— e —————————— */;
/** END Estimatation of the covariance matrix and mean from 100,000 samples */
[ m————————— e — */;

varNames = {"lambda™ "Delta"™ "H"™ "T" "RL"};
/* varNames = {"lambda"™ "K' *"h" "X1_BAR™ "X2_BAR'" "'z1' *Zz2"™ “T" "RL"}; */
create out.MEWMA %eval (&arl0)_PI11_ARL_N_P%eval (&variates) var varNames;
SIMS=10000 ;
Z = j(,p,-); /* initialize Z matrix with 1 row and p columns (1 x 2)
*/
X = j,p,-); /* initialize X matrix with n rows and p columns (6 x 2) */
X1= j(n,1,.);
X2= j(n,1,.);
RL=. ;
RESULT=j(SIMS,5,.); /* Result*/
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call randseed(12345); /* set seed for RANDGEN */
[—————————— e ————— */;
/** Start MEWMA To Generate Phase Il ARL values for ARL0O=200,500, &1000 */
/* ______________________________________________________________________ */

do I=1 to 7;

if I=1 then lambda=0.01; /* (1) Start iteration counter *"do" loop */

if 1=2 then lambda=0.02;

if 1=3 then lambda=0.03;

if 1=4 then lambda=0.05;

if 1=5 then lambda=0.1 ;

if 1=6 then lambda=0.2 ;

if 1=7 then lambda=0.5 ;

if 1=1 then H=&ucll ; /*5.3*/;

if 1=2 then H=&ucl2 ; /*6.2*/;

if 1=3 then H=&ucl3 ; /*6.8*/;

if 1=4 then H=&ucl4 ; /*7.7*/;

if 1=5 then H=&ucl5 ; /*8.8*/;

if 1=6 then H=&ucl6 ; /*9.7*/;

if 1=7 then H=&ucl7 ; /*10.4*/;

do ss= 1 to 5; /* (2) Test shift in first variable for each
lambda */

if ss=1 then Delta=0.25* sqgrt(var_x1);
if ss=2 then Delta=0.5 * sqgrt(var_x1);
if ss=3 then Delta=1.0 * sqgrt(var_x1);
if ss=4 then Delta=1.5 * sqgrt(var_x1);
if ss=5 then Delta=2.5 * sqgrt(var_x1);

do k = 1 to SIMS ; /* (3) DO 10,000
ITERATIONS */
do m= 1 to 15000 until (flag=0) ; /* (4) generate up to 15000
sample or until T > h */
if m=1 then flag=1;
call RANDGEN(X1, "NORMAL®); /* Till x1 values from normal distribution
default parameters */
call RANDGEN(X2, "NORMAL®); /* fill x1 values from normal distribution
default parameters */
X1=X1+Delta;

X[,1]=X1;
X[,2]=X2;
X_MEAN=X[:,]; /* compute the column means
of X matrix */
if m=1 then Z=X_BAR_BAR _EST; /* usew instead of Z={0 0} */
Zm=Clambda*X_MEAN) + (1-lambda)*Z; /* compute the Z vectors
recrusive MEWMA structure */
Z=7Zm; /* save Z lag vectors

for next vector in series */
COV_Z=(lambda/ (2-1ambda)) *
(1-(1-lambda)**(2*m))*COV_EST; /*compute the covariance
matrix of Z matrix */
T = Z * SOLVE(COV_Z,Z7); /* compute the MEWMA charting
statistic T**2 */

if (T > h & flag=1) then do; /* start T > h condition test
loop */
RL=m ; /* set RL =
number of subgroups or samples */
R = lambda] |Delta] [H]ITIlIRL;
RESULT[K,]=R;
flag=0;
end; /* >> close T > h condition test loop
<< */
end; /* (4) close/end (M)
subgroup *do*" loop */
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end; /* (3) close/end 10K
iteration loop */

append from RESULT; /* Append 10000 iteration for
eack lambda and UCL into SAS data set */

end; /* (2) close/end UCL loop */

end; /* (1) close/end lambda loop
*/
quit;

title "MEWMA UCL PHASE 11 Simulation - Normal for: (P=&variates) and (IC ARLO=&arl0)";

proc means data=out.MEWMA_ %eval (&arl10)_PII_ARL_N_P%eval (&variates) ;
class lambda h Delta;

var RL;

output out=out.MEWMA_%eval (&arl0)_PI11_ARL_N_P%eval (&variates)_AVG mean=ARL std=SDRL;
run;

proc print data=out.MEWMA_ %eval (&arl0)_PIl11_ARL_N_P%eval (&variates)_AVG;

run;

data out.MEWMA_%eval (&arl0)_PII_ARL_N_P%eval (&variates)_ AVG2 ;
keep Lambda UCL Delta ARL sdrl _FREQ_;
set out.MEWMA_%eval (&arl10)_PI11_ARL_N_P%eval (&variates)_AVG ;
UCL=h;
where _type_=7;
run;

proc print data=out.MEWMA_ %eval (&arl0)_PIlI_ARL_N_P%eval (&variates)_AVG2 ;
run;

%mend;

%mewmaphase2(200,5.3,6.2,6.8,7.7,8.8,9.7,10.4,2);
%mewmaphase2(500,7,8.1,8.8,9.7,10.8,11.6,12.3,2);
%mewmaphase2(1000,8.3,9.6,10.3,11.2,12.3,13.1,13.7,2);

/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/* >>>>>>>>>>>>>>>> SRMEWMA Phase 1 UCL Determination <<<<<<<<<<<<< */
/* ___________________________________________________________________ */
/*-- A doctoral dissertation supplemental SAS code by Jamil Zeinab --*/
/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/* 1. The IML SRMEWMA code generates 10,000 iterations of */
/* of up to 15,000 p-variate samples from a */
/* sampling distribution and computes MEWMA */
/* 2. It creates a SRMEWMA chating statistic Qt */
/* 3. It calculates the UCLs for MEWMA for which the */
/* in-control average run length is ARL_O = 200, 500, & 1000. */
/* 4. Several versions of this code will exist based on the sampling */
/* criteria below (distribution, p-vartiates). */
/* ___________________________________________________________________ */
/* >>>> Sampling criteria <<<<< */
/* Distribution: Multivariate Normal (Normal Marginals) */
/* Number of qualirty variables: p=5, n=5 */
/* Estimated Covariance matrix & mean vector, from 100,000 samples */
/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/*  SSSSSSSSSSSSSS>>S>>> Notes for usage <<<<K<K<LKLKLKLKLKLKLKLKLKLKLKLLKL */
/* 1. Change the sampling distribution as needed, 1 used Normal, T, */
/* & Gamma. */
/* 2. Change the sampling size as desired. */
/* 3. Change teh smoothing parameter '"lambda" as desired. */
/* ___________________________________________________________________ */

dm “output® clear ;
dm "log® clear ;



options mlogic mprint FULLSTIMER compress=yes nonumber THREADS CPUCOUNT=ACTUAL ;

libname out "C:\SIMULATION_N5\SRMEWMA\SRMEWMA_ PAHSEI_UCL_P5_N5";

/** —- to avoid the problem of filling SAS Log
Window in display save the SAS log and listing to files;*/
proc printto new

log = "C:\SIMULATION_N5\SRMEWMA\SRMEWMA_ PAHSEI_UCL_P5_N5\SRMEWMAPIN_P2N5_Xn_txt"
print = "C:\SIMULATION_N5\SRMEWMA\SRMEWMA PAHSEI_UCL_P5_N5\Temp_LIST.Txt";

RUN;
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title "SRMEWMA UCL PHASE I Simulation - Normal for (Estimated Covariance matrix and mean

vector, from 100,000 samples) , p=5, n=5";

/P
/** Clear old SAS data sets with tehe same name

) oy
/* ________________________________________________________________ */
/* >>>>>>>>>>> (Oja Centered Signed-Sank Vector <<<<<<<<<<<<<<<<<< */
/* */
/* infile: Specifies a name for the input SAS data set. The ith */
/* observation is the ith observation vector. The jth */
/* variable is the jth element of the observation */
/* vector. */
/* outfile: Specifies a name for the output SAS data set. */
/* This data set will contain the Oja signed-rank */
/* vectors (Hettmansperger, Mottonen and Oja (1996). */
/* Affine invariant multivariate one-sample signed-rank */
/* tests. Mathematics, University of Oulu). */
/* ________________________________________________________________ */
/* ________________________________________________________________ */
/* ________________________________________________________________ */
/* Courtesy of: */
/* Jyrki Mottonen, PhD */
/* Department of Mathematical Sciences, */
/* University of Oulu, */
/* FIN-90570 Oulu, */
/* Finland */
/* ________________________________________________________________ */
/* ________________________________________________________________ */
/** >>>>>>>>>>>>>>>>> Module RN <<<<<<<<<<<L<LLLLLLLLLLLLL L LKL L <F R/
/* ________________________________________________________________ */
proc iml;

start Rn(n,k,1,X); /* Module "Rn" gives the signed-rank */
p=1:k; s=j(k,1,0); cnt=0;
do until(lc=0);
cnt=cnt+1;
s=s+Qp(k,i,p,X);
run nextp(n,k,p,lc); /* take next p */
end;
return(s/(cnt*2**k)); /* cnt = N_p = "n choose k" */
/**/print s;
finish Rn;

/* ________________________________________________________________ */
[FF SSSSSSSSSSSSSSSSS>>>>>> Module nextp’ <<<<<<<LLLLLLLLLL<FT R/
/* ________________________________________________________________ */
start nextp(N,k,p,Ic); /* Module "nextp" gives the next k-subset of

an N-set */

/* 1c=0 if the previous k-

subset was the last k-subset */
Ic=k;
if(p[k]<N)then do;

pIKI=p[k]+1;
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end; /* returns the p-set combination
{1,2,3}. */
else do; /*for example. Order is not important */
flag=0;
do until((1c=0)](flag=1));
Ic=lc-1;

if(Ic>0)then do;
iT(p[Icl<(N-k+lc))then flag=1;
end;
end;
if(Ic>0) then do;
pLic]=p[ic]+1;
do i=(lc+l) to k;
pLil=pl[i-1]+1;

end;

end;
end;
finish nextp;
/* ________________________________________________________________ */
/7 >>>5>>>>>>>>>>>>>>> Module "MQpT <<<<<<K<<K<L<LKLKLKLKLLLLKLKK KKK KL< FH Y/
/* ________________________________________________________________ */
start Qp(k,i,p,X); /* Module "Qp'" gives the vector (2.8) times 2**k */
s=j(k,1,0);
temp=2##(0:(k-1)); /* temp = (1 2 4 ... 2**(k-1)) */
do j=0 to 2**k-1;

a=2*(band(temp,j)>0)-1; /* a[m]=+1 or -1, m=1,...k */

if(all(a#p-i))then do; /* if i is in a#p, Spdp=0 */

Y=repeat(a,k,1)#X[,pl;
s=s+Spdp(k,Y,X[,il1);
end;
end;
return(s);
finish Qp;
/* ________________________________________________________________ */

/FF SSSSSSSSS555>55555>>>>>> Module M'SpdpTt <<<<<<<<<<<LLLLLLLLLLL TR/
/* Module "'Spdp' computes the vector S_pa()d_pa in (2.8) Mottenen paper */

start Spdp(k,Y,xi);
W1=Y[,2:k]-repeat(Y[,1],1,k-1); /* (xi2-xil,...,xik-xil) */
W2=Y-repeat(xi,1,k); /* (xil-xi,...,xik-xi) */
dp=j(k,1,0);
do j=1 to k;
dp1=((-1)**j)*det(Wi[remove(1l:k,j).1);
end;
return(sign(det(W2))*dp); /*sign function return 1,-1, or 0 */
finish Spdp;

start score; /*print”Oja signed-rank vectors';*/
/*print"Signed-Rank Vectors";

*/

*use X;

*read all into X;

X=X"3;

N=ncol (X); /* n = # of cols = # of observations

*/

k=nrow(X); /* k

*/

srank=j(k,N,0);

do j=1 to N;

srank[,J]=Rn(n,k,j,.X);

end;

Srank=Srank™;

/*create OSR from srank [colname={SR1,SR2}];

append from srank;*/

finish score;

# of rows = dimension

[** SSSS5S555555>>>>>>>>>>> Module 'score’ <<<<<<<<<<LKLKLKLKLKLKLKLLKLKLK <R/
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/* ________________________________________________________________ */

start score2; /*print"Oja signed-rank vectors";*/
/*print"Signed-Rank Vectors";

*/

*use X;

*read all into X;

G=X"3;

n=ncol (G); /* n = # of cols = # of observations

*/

k=nrow(G); /* k = # of rows = dimension

*/

srank=j(k,n,0);
do j=1 to n;
srank[,Jj]=Rn(n,k,j,G);
end;
Srank=Srank™;
/*create OSR from srank [colname={SR1,SR2}];
append from srank;*/
finish score2;

/* _____________________________________________________________________________ */
/*-> Srart Parameter estimation of signed-ranks means and covarioance matrix <-*/
/* _____________________________________________________________________________ */
NumSim=100000 ;
nn=5;
pp=5;

RESULT_SR_MEAN = j(NumSim,pp,.);

RESULT_SR_COV = j(pp,pp,0);

call randseed(12345); /* set seed for RANDGEN */

X = j(n,pp,.); /* initialize X matrix with n rows and p columns (n x p)
*/

do iii=1 to NumSim;

call RANDGEN(X, "NORMAL®); /* Till X values from normal distribution default
parameters */

*print X ;

run score2;

*print x Srank;

/* _____________________________________________________________________________ */

/*-> calculate the Signed-rank statistic SR <-*/

/* _____________________________________________________________________________ */

SR_MEAN=Srank[:,]; /* compute the column means of SR
matrix */

*print SR_MEAN;
RESULT_SR_MEAN[iii,]=SR_MEAN; /* save as the ith row of means matrix */

COV_SR=cov (Srank); /* compute the covariance matrix of X matrix
*/
RESULT_SR_COV = RESULT_SR_COV + COV_SR;
end;
SR_D_BAR_MEAN_EST=RESULT_SR_MEAN[:,];/* calc. the samples means */
COV_EST = RESULT_SR_COV / (NumSim*nn) ; /* Calc. the average cov matrix */
print COV_EST;
print  SR_D_BAR_MEAN_EST;
[P—————— e —————————— */;
/** END Estimatation of the covariance matrix and mean from 100,000 samples */
[ m————————— e — */;

SIMS=10000 ;
varNames = {"lambda™ "kkk'™ "*hhh™ "Qt'" "RL2"};

Wm = j(1,pp.-):; /* initialize Wm matrix with 1 row and p columns (1 x 2 ) */
W= J(,pp.-):; /* initialize W matrix with 1 row and p columns (1 x 2 ) */
X = j(n,pp,-); /* initialize X matrix with n rows and p columns (5 x 2) */
RL2=. ;

RESULT=j(SIMS,5,.);  /* Result*/
call randseed(12345);/* set seed for RANDGEN */
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do 1I=5 to 5; /* (1) Start iteration counter ''do" loop */
if 1I=1 then lambda=0.01;
if 11=2 then lambda=0.02;
if 11=3 then lambda=0.03;
if 11=4 then lambda=0.05 ;
if 1I1=5 then lambda=0.1 ;
if 11=6 then lambda=0.2 ;
if 11=7 then lambda=0.5 ;

do hhh= 19. TO 19.3 BY 0.1 ; /* (2) Test UCL limits from 7 to 40
for each lambda */
do kkk = 1 to SIMS ; /* (3) DO 10,000

ITERATIONS */
do mmm= 1 to 10000 until (flag=0) ; /* (4) generate up to 15000 sample
or until T > h */
call RANDGEN(X, "NORMAL®); /* Till XX Matrix w/values from normal
dist. default parms */
run score2;

SR_MEAN=Srank[:,]; /*print SR_MEAN;*/
if mmm=1 then flag=1;
if mmm=1 then W=SR_D_BAR_MEAN_EST; /*W={0 0}*/

Wm = (lambda * SR_MEAN)+ (1-lambda)* W;/* compute the W vectors recrusive
SRMEWMA structure */

W=Wm ; /* save W lag vectors for
next vector in series */

COV_Qt=(lambda/(2-lambda)) *

(1-(1-lambda)**(2*mmm) )* COV_EST; /*compute the covariance matrix of w
matrix */
Qt = W * SOLVE(COV_Qt,W>); /* compute the SRMEWMA
charting statistic Qt */
if (Qt > hhh & flag=1) then do; /* Check if Qt > UCL */
RL2=mmm

R = lambda || kkk || hhh || Qt]] RL2;
RESULT[kkk,1=R;
flag=0;
end;
end; /* (4) close/end (M)
subgroup "do*" loop */
*print X Srank SR_MEAN lambda KKK hhh COV_Qt W Qt RL2;

end; /* (3) close/end 10K iteration loop */
append from RESULT; /*Append 10000 iteration for eack lambda and UCL
into SAS data set */
end; /* (2) close/end UCL
loop */
end; /* (1) close/end

lambda loop */

proc means data=out.SRMEWMA_ PhaselUCL_NI_P5 N5XSn ;
class lambda HHH;

var RL2;

output out=averages mean=ARL std=SDRL;

run;

data averages ;

keep Lambda UCL ARL STDERROR_ARL _FREQ_;
set averages ;

where _type_=3;

STDERROR_ARL=sdr1/100;

UCL=h;

run;

proc print data=averages
run;



options

___________________________________________________________________ */
___________________________________________________________________ */
>>>>>>>>>>>>>>>>  SRMEWMA Phase Il ARL Determination <<<<<<<<<<<< */
*
___________________________________________________________________ /
-- A doctoral dissertation supplemental SAS code by Jamil Zeinab --*/
___________________________________________________________________ */
___________________________________________________________________ */
1. The IML SRMEWMA code generates 10,000 iterations of */
of up to 15,000 p-variate samples from a */
sampling distribution and computes MEWMA */
2. It creates a SRMEWMA chating statistic Qt */
3. It calculates the UCLs for MEWMA for which the */
in-control average run length is ARL_O = 200, 500, & 1000. */
4. Several versions of this code will exist based on the sampling */
criteria below (distribution, p-vartiates). */
*
___________________________________________________________________ /
>>>> Sampling criteria <<<<< */
Distribution: Multivariate Normal (Normal Marginals) */
Number of qualirty variables: p=2, n=5 */
Estimated Covariance matrix & mean vector, from 100,000 samples */
*
___________________________________________________________________ /
___________________________________________________________________ */
SSS>5333333335>33>5>3>> Notes for usage <LLLL L L L L L L L Ll <<
1. Change the sampling distribution as needed, 1 used Normal, T, */
& Gamma. */
2. Change the sampling size as desired. */
3. Chamge the smoothing parameter "lambda"™ as desired. */
*
___________________________________________________________________ /
“output® clear ;

“log® clear ;

*/

mlogic mprint FULLSTIMER compress=yes nonumber THREADS CPUCOUNT=ACTUAL ;
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libname out "F:\ASRM2\SRM799_SIMULATION_WORK\PHASE_ I INSRMEWMA\SRMEWMA_PHASEI1_ARL_P2_N5%;

/** —- to avoid the problem of filling SAS Log
Window in display save the SAS log and listing to files;*/
proc printto new

log = "C:\SIMULATION_N5\SRMEWMA\SRMEWMA_ PAHSEI_UCL_P5_N5\SRMEWMAPIN_P2N5_Xn_txt"
print = "C:\SIMULATION_N5\SRMEWMA\SRMEWMA_PAHSEI_UCL_P5_N5\Temp_LIST.Txt";

RUN; title "SRMEWMA ARL PHASE Il Simulation - Normal for ARLO=200 , p=2, n=5";

________________________________________________________________ */
>>>>>>>>> Oja Centered Signed-Rank Vectors <<<<<<<<<<<<<<<<<< */
*/
infile: Specifies a name for the input SAS data set. The ith */
observation is the ith observation vector. The jth */
variable is the jth element of the observation */
vector. */
outfile: Specifies a name for the output SAS data set. */
This data set will contain the Oja signed-rank */
vectors (Hettmansperger, Mottonen and Oja (1996). */
Affine invariant multivariate one-sample signed-rank */
tests. Mathematics, University of Oulu). */

*
________________________________________________________________ >
________________________________________________________________ */

Courtesy of:

Jyrki Mottonen, PhD */
Department of Mathematical Sciences, */
University of Oulu, */
FIN-90570 Oulu, */
Finland */
*/
E-mail: Jyrki.Mottonen@oulu.fi */
________________________________________________________________ */

*/



/* ________________________________________________________________ */
/7 SSS>5555>>>>>>>>> Modulle RN <<<<<<K<K<KKKKKKKKKKKKKKKKKKKKKKK S xR/
/* ________________________________________________________________ */
proc iml;

start Rn(n,k,i,X); /* Module "Rn" gives the signed-rank */
p=1:k; s=j(k,1,0); cnt=0;
do until(lc=0);

cnt=cnt+1;

s=s+Qp(k, 1,p,X);

run nextp(n,k,p,lc); /* take next p */
end;
return(s/(cnt*2**k)); /* cnt = N_p = "n choose k'™ */
/**/print s;

finish Rn;

/* ________________________________________________________________ */

/FF SSSSSSSS555555555>>>>>> Module nextp’t <<<<<<<<<<<<LLLLLLLLL<T R/

/* ________________________________________________________________ */

start nextp(N,k,p,lIc); /* Module "nextp" gives the next k-subset of an N-set
/* 1c=0 if the previous k-subset was the last k-

subset */

lc=k;

iT(p[kl<N)then do;
pIKI=p[k]+1;

end; /* returns the p-set combination {1,2,3}. */
else do; /*for example. Order is not important */
flag=0;
do until((1c=0)](flag=1));
Ic=lc-1;

if(Ic>0)then do;
iT(p[Icl<(N-k+lc))then flag=1;
end;
end;
if(Ic>0) then do;
pLicl=p[ic]+1;
do i=(lc+l) to k;
pLil=pl[i-1]+1;

end;

end;
end;
finish nextp;
/* ________________________________________________________________ */
/7 >>>5>>>>>>>>>>>>>>> Module "MQpT <<<<<<K<<<LLKLKLKLKLKLLLLKK KKK KL< FH Y/
/* ________________________________________________________________ */
start Qp(k,i,p,X); /* Module "Qp'" gives the vector (2.8) times 2**k */
s=j(k,1,0);
temp=2##(0:(k-1)); /* temp = (1 2 4 ... 2**(k-1)) */
do j=0 to 2**k-1;

a=2*(band(temp,j)>0)-1; /* a[m]=+1 or -1, m=1,...k */

if(all(a#p-i))then do; /* if 1 is In a#p, Spdp=0 */

Y=repeat(a,k,1)#X[,p];
s=s+Spdp(K,Y,.X[,i1);

end;
end;
return(s);
finish Qp;
/* ________________________________________________________________ */
/FF SSSSS5>5S5555>5>555>>>>>> Module M'SpdpTt <<<<<<<<L<<LLLLLLLLLL TR/
/* ________________________________________________________________ */

/* Module "'Spdp* computes the vector S_pa()d_pa in (2.8) Mottenen paper */
start Spdp(k,Y,xi);
W1=Y[,2:k]-repeat(Y[,1],1,k-1); /* (xi2-xil,...,xik-xil) */
W2=Y-repeat(xi,1,k); /* (Xil-Xi,...,xik-xi) */
dp=j(k,1,0);
do j=1 to k;

dpJ]1=((-1)**j)*det(Wl[remove(1l:k,j),]1);
end;
return(sign(det(W2))*dp); /*sign function return 1,-1, or 0 */
finish Spdp;
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*/



start score; /*print”Oja signed-rank vectors';*/
/*print''Signed-Rank Vectors"; */

*use X;

*read all into X;

X=X";

N=ncol (X); /* n

k=nrow(X); /* k

srank=j(k,N,0);

do j=1 to N;

srank[,J]=Rn(n,k,j,.X);

end;

Srank=Srank™;

/*create OSR from srank [colname={SR1,SR2}];

append from srank;*/

finish score;

# of observations */
dimension */

# of cols
# of rows

start score2; /*print”Oja signed-rank vectors';*/
/*print"Signed-Rank Vectors'; */

*use X;

*read all into X;

G=X";

n=ncol (G); /* n

k=nrow(G); /* k

srank=j(k,n,0);

do j=1 to n;

srank[,j]=Rn(n,k,j,G);

end;

Srank=Srank™;

/*create OSR from srank [colname={SR1,SR2}];

append from srank;*/

finish score2;

# of observations */
dimension */

# of cols
# of rows

start score3; /*print''Oja signed-rank vectors";*/
/*print"Signed-Rank Vectors'; */

*use X;

*read all into X;

QQ=XX";

n=ncol (QQ); /* n

k=nrow(QQ); /* k

srank=j(k,n,0);

do j=1 to n;

srank[[,j1=Rn(n,k,§,QQ);

end;

Srank=Srank” ;

/*create OSR from srank [colname={SR1,SR2}];

append from srank;*/

finish score3;

# of observations */
dimension */

# of cols
# of rows

NumSim=100000 ;
nn=5;
pp=2;
RESULT_SR_MEAN = j(NumSim,pp,.);
RESULT_SR_COV = j(pp.,pp,0);
var_x1= j (1,1,0);
call randseed(12345); /* set seed for RANDGEN */

X = j(n,pp,-); /* initialize X matrix with n rows and p

columns (n x p)*/

do iii=1 to NumSim;
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call RANDGEN(X, "NORMAL®); /* Till X values from normal distribution default
param. */

*print X ;

run scorez2;

*print x Srank;

/* _____________________________________________________ */
/*-> calculate the Signed-rank statistic SR <-*/
/* _____________________________________________________ */
SR_MEAN=Srank[:,]; /* compute the column means of SR matrix */

*print SR_MEAN;
RESULT_SR_MEAN[iii,]=SR_MEAN; /* save as the ith row of means matrix */

COV_SR=cov (Srank); /* compute the covariance matrix of X matrix
*
/
RESULT_SR_COV = RESULT_SR_COV + COV_SR;
end;
SR_D_BAR_MEAN_EST=RESULT_SR_MEAN[:,];/* calculate the samples means */
COV_EST = RESULT_SR_COV/(NumSim*nn) ;/* Calculate teh average covariance matrix */
var_X1= COV_EST[1,1];
print COV_EST;
print var_x1;
print  SR_D_BAR_MEAN_EST;
[ m————————— e —— */;
/** END Estimatation of the covariance matrix and mean from 100,000 samples */
[P—————— e —————————— */;

SIMS=10000 ;
varNames = {"lambda™ "delta" "kkk™ "hhh™ "Qt'" "RL2"};
create out.SRMEWMA_200_Phasell_ARL_N_P2 var varNames;

Wm = j(1,pp,-); /* initialize Wm matrix with 1 row and p columns (1 x 2 ) */
W= jd,pp,-); /* initialize W matrix with 1 row and p columns (1 x 2 ) */
XX = j(nn,pp,-); /* initialize X matrix with n rows and p columns (6 x 2) */
XX1= j(nn,1,.);

XX2= j(nn,1,.);

RL2=. ;

RESULT=j (SIMS,6,.); /* Result*/

call randseed(12345); /* set seed for RANDGEN */

/* ______________________________________________________________________ */

/*>>> Start SRMEWMA simulation to find UCL for ARL0O=200,500, &1000 <<< */

/* ______________________________________________________________________ */

do IlI=1 to 7; /* (1) Start iteration counter "do" loop */

if 11=1 then lambda=0.01;

if 11=2 then lambda=0.02;

if 11=3 then lambda=0.03;

if 11=4 then lambda=0.05 ;

if 11=5 then lambda=0.1 ;

if 11=6 then lambda=0.2 ;

if 11=7 then lambda=0.5 ;

if 11=1 then hhh=5.3;

if 11=2 then hhh=6.3;

if 11=3 then hhh=6.9;

if 11=4 then hhh=7.7;

if 11=5 then hhh=8.85;

if 11=6 then hhh=9.9;

if 11=7 then hhh=10.9;

do ss= 1 to 5; /* (2) Test shift in first variable for each lambda

*/

if ss=1 then Delta=0.25 * sqgrt(var_x1);
if ss=2 then Delta=0.5 * sqgrt(var_x1);
if ss=3 then Delta=1.0 * sqgrt(var_x1);
if ss=4 then Delta=1.5 * sqgrt(var_x1);
if ss=5 then Delta=2.5 * sqgrt(var_x1);

do kkk = 1 to SIMS ; /* (3) DO 10,000 ITERATIONS */
do mmm= 1 to 15000 until (flag=0) ; /* (4) generate up to 15000 sample or
until T > h */
it mmm=1 then flag=1;
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call RANDGEN(XX1,*NORMAL®"); /* Till x1 values from normal dist.

default params */
call RANDGEN(XX2,*NORMAL®"); /* fill x2 values from normal dist. default

params */

XX1=XX1+Delta;

XX[,1]=XX1;

XX[,2]=XX2; /* Fill XX Matrix w/values from normal dist.
default parameters */

run score3;

SR_MEAN=Srank[:,]; /*print SR_MEAN;*/

if mmm=1 then W=SR_D_BAR_MEAN_EST; /*W={0 0}*/

Wm = (lambda * SR_MEAN)+ (1-lambda)* W;

W=Wm ; /* save W lag vectors for

next vector in series */
COoV_Qt=(lambda/(2-1ambda)) *

(1-(1-lambda)**(2*mmm) )* COV_EST; /*compute the covariance
matrix of w matrix */
Qt = W * SOLVE(COV_Qt,W™); /* compute the SRMEWMA
charting statistic Qt */
if (Qt > hhh & flag=1) then do; /* Check if Qt > UCL */
RL2=mmm

R = lambda || delta || kkk || hhh || Qt]] RL2 ;
RESULT[Kkk,]=R;

flag=0;
end;
end; /* (4) close/end (m) subgroup "do*
loop */
*print XX Srank SR_MEAN lambda KKK hhh COV_Qt W Qt RL2;
end; /* (3) close/end 10K iteration loop
*/
append from RESULT; /* Append 10000 iteration for eack
lambda and UCL into SAS data set */
end; /* (2) close/end UCL loop */
end; /* (1) close/end lambda loop */

proc means data=out.SRMEWMA_200_Phasell_ARL_N_P2 ;
class lambda HHH delta ;

var RL2;

output out=averages mean=ARL std=SDRL;

run;

data averages?2 ;

keep Lambda UCL ARL sdrl _FREQ_;
set averages ;

where _type_=7;

UCL=hhh;
run;
proc print data=averages?2 ;
run;
/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/* >>>>>>>> Hotellings TA2 Phase | UCL Determination <<<<<<<<<<<<< */
/* ___________________________________________________________________ */
/*-- A doctoral dissertation supplemental SAS code by Jamil Zeinab --*/
/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/* 1. The IML MEWMA code generates 10,000 iterations of */
/* of up to 15,000 p-variate samples from a */
/* sampling distribution and computes MEWMA */
/* 2. It creates a MEWMA chating statistic T */
/* 3. 1t calculates the UCLs for MEWMA for which the */
/* in-control average run length is ARL_O = 200, 500, & 1000. */
/* 4. Several versions of this code will exist based on the sampling */
/* criteria below (distribution, p-vartiates). *



199

/* >>>> Sampling criteria <<<<< */
/* Distribution: Multivariate GAMMA (GAMMA Marginals) */
/* Number of qualirty variables: p=2, n=5 */
/* Estimated Covariance matrix & mean vector, from 100,000 samples */
/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/*  SSSSSSSSSSSSSS>>S>>> Notes for usage <<<<<<LKLKLKLKLKLKLKLKLKLKLKLLKL */
/* 1. Change the sampling distribution as needed, I used Normal, T, */
/* & Gamma. */
/* 2. Change the sampling size as desired. */
/* 3. Change the smoothing parameter "lambda™ as desired. */
/* ___________________________________________________________________ */

dm "output® clear ;
dm "log®™ clear ;

options mlogic mprint FULLSTIMER compress=yes nonumber THREADS CPUCOUNT=ACTUAL ;
libname out "E:\ASRM2\SRM799_SIMULATION_WORK\PHASE_I\HOTELLINGS";

/* to avoid the problem of filling SAS Log */

/* Window in display save the SAS log and lis to files */

proc printto new
log = "C:\SIMULATION_N5\MEWMA\MEWMA_PHASEI_UCL_P2_N5\MEWMAP1G_P2N5_Xn.txt" ;
print = "C:\SIMULATION_N5\MEWMA\MEWMA_PHASEI_UCL_P2_N5\Temp_LIST.txt";*/

[F————————— e ————— - */;
/** Clear old SAS data sets with the same name */;
[ e */;
/*

proc datasets library=out;
delete  HOT2_PhaselUCL_NORMAL_P2 ;
Run;
*/
%macro hotellings (variates);
proc iml;

[ e */;
/** START Estimate the covariance matrix and mean from 100,000 samples */;

NumSim=100000 ;

n=5;

p=Y%eval (&variates);

RESULT_MEAN = jJ(NumSim,p,.);

RESULT_COV = j(p,p,0);

call randseed(1); /* set seed for RANDGEN */

XX = j(n,p,-); /* initialize X matrix with n rows
and p columns (n x p)*/

do iii=1 to NumSim;

call RANDGEN(XX, *NORMAL®); /* Fill X values from normal distribution

default parameter */

X_MEAN=XX[:,1; /* compute the column means of X matrix */
RESULT_MEAN[ii1,]=X_MEAN; /* save as the ith row of means matrix */
COV_X=cov (XX); /* compute the covariance matrix of X
matrix */
RESULT_COV = RESULT_COV + COV_X;
end;
X_BAR_BAR_EST=RESULT_MEAN[:,]: /* calcu. the samples means */

COV_EST = RESULT_COV / (NumSim);/* Calc. the avg covariance matrix to estimate
sample cov matrix */

print  COV_EST; /* This is the est. cov matrix of X samples */

print  X_BAR_BAR_EST; /* This is the est. mean vextor matrix of X samples,
use as initial Z value */
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varNames = {"p" "K' "h™ "T2"™ "RL"};
create out.HOT2_PhaselUCL_NORMAL_P2 var varNames;

SIMS=500 ;
Z = j(,p,-); /* initialize Z matrix with 1 row and p columns (1 X
2) */
éL: Jjn,p,-); /* initialize X matrix with n rows and p columns (56 x 2) */

RESULT=j(SIMS,5,.); /* Result*/
call randseed(12345); /* set seed for RANDGEN */

[—————————— e ———— */;
/** Start Hotellings t simulation to find UCL for ARL0O=200,500, &1000 */
/* ______________________________________________________________________ */
do h= 10 to 21 by .1; /* (2) Test UCL limits
from 7 to 40 for each lambda */
do k = 1 to SIMS ; /* (3) DO

10,000 ITERATIONS */
do m= 1 to 15000 until (flag=0) ; /* (4) generate up to
15000 sample or until T > h */
if m=1 then flag=1;

call RANDGEN(X, "NORMAL®); /* Fill x1 values from
normal distribution default parameters */
X_MEAN=X[:,1; /* compute the
column means of X matrix */
if m=1 then Z=X_BAR_BAR _EST; /* usew instead of
z={0 0} */
T_X_MEAN=t(X_MEAN) ; /*

compute the transpose of the X_MEANS matrix */

INV_COV_EST=inv (COV_EST);

T2 = ( X_MEAN * SOLVE(COV_EST,T_X_MEAN) ); /* compute the MEWMA
charting statistic T**2 works as below*/

*T2 =  X_MEAN * INV_COV_EST * T_X_MEAN ; /* compute the MEWMA
charting statistic T**2 works as abiove™*/

if (T2 > h & flag=1) then do; /* start T > h
condition test loop */
RL=m ; /* set
RL = number of subgroups or samples */
R = plIKIINIT2]IRL ; /*

Concatinate the X_MEAN, Z, & T matrices into one matrix R */
RESULT[K,]=R;

flag=0;
end; /* >> close T > h condition test loop << */
end; /* (4) close/end (m) subgroup *do"™ loop */
end; /* (3) close/end 10K iteration loop */
append from RESULT; /* Append 10000 iteration for eack lambda and UCL into
SAS data set */
end; /* (2) close/end UCL loop */

/* (1) close/end lambda loop */

title “Hotellings T72 UCL PHASE I Simulation - Standard Normal, p=%eval(&variates)”;
proc means data=out.HOT2_PhaselUCL_NORMAL_P%eval (&variates) ;
proc means data=out.HOT2_PhaselUCL_NORMAL_p2 ;

class H;

var RL;

output out=averages mean=ARL std=SDRL;
run;

data averages ;
keep Lambda UCL ARL sdrl _FREQ_;
set averages ;
where _type_=3;
UCL=h;
run;



proc print data=averages ;
run;

%mend Hotellings;
%hotellings(2);
%hotellings(3);
%hotellings(4);
%hotellings(5);

/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/* >>>>>>>>> HOTELLING®S Phase Il UCL Determination <<<< K<< *F/
/* ___________________________________________________________________ */
/*-- A doctoral dissertation supplemental SAS code by Jamil Zeinab --*/
/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/* 1. The IML code generates 10,000 iterations of */
/* of up to 15,000 p-variate samples from a */
/* sampling distribution and computes Hotelling"s chi square */
/* 2. It creates a Hotelling®s chi square chating statistic T2 */

/* 3. 1t calculates the out of control ARL for each combination of */
/* variates, shift, and UCL obtaioned from Phase 1 for ARLO=200, */

/* 500, & 1000. */
/* 4. Several versions of this code will exist based on the sampling */
/* criteria below (distribution, p-vartiates). */
/* ___________________________________________________________________ */
/* >>>> Sampling criteria <<<<< */
/* Distribution: Multivariate Normal (Normal Marginals) */
/* Number of qualirty variables: p=2, n=5 */
/* Estimated Covariance matrix & mean vector, from 100,000 samples */
/* ___________________________________________________________________ */
/* ___________________________________________________________________ */
/> SSSS533333355>5>3>5>3>> Notes for usage <LLLL L L L L L L L L <<

/* 1. Change the sampling distribution as needed, | used Normal, T, */
/* & Gamma. */
/* 2. Change the sampling size as desired. */
/* 3. Change the smoothing parameter 'lambda' as desired. */
/* ___________________________________________________________________ */

DM "LOG; CLEAR";

options mlogic mprint SYMBOLGEN FULLSTIMER nonumber THREADS CPUCOUNT=ACTUAL ;

/** —- to avoid the problem of filling SAS Log Window
in display save the SAS log and listing to files */
proc printto new

log = “C:\SIMULATION_N5\MEWMA\MEWMA_PHASE_I1_UCL_P2_N5\MEWMAP2N_P2N5_Xn.txt"
print = "C:\SIMULATION_N5\MEWMA\MEWMA_PHASE_I11_UCL_P2 N5\Temp_LIST.txt";
RUN;
/* _______________________________________________________________________ */
/** Clear old SAS data sets with the same name */
/* _______________________________________________________________________ */

libname out "T:\ASRM2\SRM799_SIMULATION_WORK\PHASE_IIN\HOTELLINGS";

%macro Hotphase2(arl0200,ucll,arl0500,ucl2,arl01000,ucl3,variates);
proc iml;

title " Hotelling®"s UCL PHASE 11 Simulation - MV t(df=5) for: (P=&variates)"

/* _______________________________________________________________________ */
/** START Estimate the covariance matrix and mean from 100,000 samples */
/* _______________________________________________________________________ */

NumSim=10000 ;
n=5;

*/

201
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p=%eval (&variates);
var_x1=0;

RESULT_MEAN = j(NumSim,p,.);
RESULT_COV = j(p,p.0);

call randseed(12345); /* set seed for RANDGEN */
XX = j(n,p,-); /* initialize X matrix with n
rows and p columns (n x p) */
do iii=1 to NumSim;
call RANDGEN(XX,*"T",5); /* Till X values from normal distribution
default parameters */
X_MEAN=XX[:.]: /* compute the column means of X
matrix */
RESULT_MEAN[ii1,]=X_MEAN; /* save as the ith row of means
matrix */
COV_X=cov (XX); /* compute the covariance

matrix of X matrix */
RESULT_COV = RESULT_COV + COV_X;
end;
X_BAR_BAR_EST=RESULT_MEAN[:,1; /* calculate the samples means */
COV_EST = RESULT_COV / (NumSim *n);
var_x1=COV_EST[1,1];
print result_cov COV_EST; /* This is the est. cov. matrix of X samples */

print X _BAR_BAR_EST var_x1;/*The est. mean vextor matrix of X samples, use as
initial Z value */

/* _____________________________________________________________________________ */
/* END Estimatation of the covariance matrix and mean from 100,000 samples */
/* _____________________________________________________________________________ */

varNames = {"P" "ARLO"™ "Delta' "H" "T2" "RL"};

/* varNames = {"K" "h" "X1_BAR" "X2_BAR'™ *ZzZ1'" "z2" "T' "RL"}; */

create out_HHOT2_PI11_ARL_Tdf5_P%eval (&variates) var varNames;

SIMS=10000 ;

Z = j(,p,-); /* initialize Z matrix with 1 row and p columns (1 x 2)*/
X = j,p,-); /* initialize X matrix with n rows and p columns (5 x 2)*/

X1= j(n,1,.);
X2= j(n,1,.);
RL=. ;

RESULT=j(SIMS,6,.); /* define the Result matrix */
*call randseed(12345); /* set seed for RANDGEN */

/* _______________________________________________________________________________ */
/*Start Hotellling"s T2 To Generate Phase Il ARL values for ARL0=200,500, &1000 */
/* _______________________________________________________________________________ */
do I= 1 to 3; /* (1) for each ARLO and UCL */

IF 1=1 THEN ARLO= %eval (&ar10200) ;
IF 1=2 THEN ARLO= %eval (&arl10500) ;
IF 1=3 THEN ARLO= %eval (&ar101000);

if I=1 then H=&ucll ;
if 1=2 then H=&ucl2 ;
if 1=3 then H=&ucl3 ;

do ss= 1 to 5; /* (2) Test shift in
first variable */

if ss=1 then Delta= 0.25 * sqrt(var_x1);

if ss=2 then Delta= 0.50 * sqrt(var_x1);

if ss=3 then Delta= 1.00 * sqgrt(var_x1);

if ss=4 then Delta= 1.50 * sqgrt(var_x1);

if ss=5 then Delta= 2.50 * sqrt(var_x1);

do k = 1 to SIMS ; /* (3) DO 10,000
ITERATIONS */
do m= 1 to 15000 until (flag=0) ; /* (4) generate up to 15000 sample or
until T > h */
if m=1 then flag=1;
call RANDGEN(X1,"T",5); /* fill x1 values from normal dist. default parameters */
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call RANDGEN(X2,"T",5); /* fill x1 values from normal dist. default parameters */
X1D=X1+delta;
X[,1]=X1D;
X[,2]1=X2;

X_MEAN=X[:,]:; /* compute the column means
of X matrix */

X_MINUS=(X_MEAN) - (X_BAR_BAR_EST) ;

T_X_MINUS=t (X_MINUS);

T_X_MEAN=t(X_MEAN); /* compute the transpose of
the X MEANS matrix */

INV_COV_EST=inv (COV_EST);

*T2 = ( X_MEAN * SOLVE(COV_EST,T_X_MEAN) T2 =  X_MINUS *
INV_COV_EST * T_X_MINUS

if (T2 > h & flag=1) then do; /* start T > h
condition test loop */
RL=m ; /* set RL = number of

subgroups or samples */
R = p|IARLO] |delta] |h]|T2]IRL ;
RESULT[K,]=R;

flag=0;
end; /* (5) >> close T > h condition test loop << */
end; /* (4) close/end (m) subgroup *"‘do* loop */
end; /* (3) close/end 10K k' iteration loop */
append from RESULT; /* Append 10000 iteration for eack lambda and

UCL into SAS data set */
end; /* (2) close/end ''ss'" or shift loop */
end; /* (1) close/end "i" UCL loop */

quit;

title " Hotelling®s UCL PHASE Il Simulation - t(df=5) for: (P=&variates)";

proc means data=out.HHOT2_PII_ARL_Tdf5_P%eval (&variates)

class p ARLO h Delta;

var RL;

output out=out_HHOT2_PI11_ARL_Tdf5_P%eval (&variates)_AVG mean=ARL std=SDRL;
run;

proc print data=out_.HHOT2_PII_ARL_Tdf5_P%eval (&variates)_AVG;
run;

data out_HHOT2_PI11_ARL_Tdf5_P%eval (&variates)_AVG2 ;
keep UCL Delta ARL sdrl _FREQ_;
set out.HHOT2_PI1_ARL_Tdf5_ P%eval (&variates) AVG ;
UCL=h;
where _type_=15;
run;

proc print data=out.HHOT2_PII1_ARL_Tdf5_P%eval (&variates)_AVG2
run;

%mend ;

%Hotphase2(200,13.5,500,17.6,1000,21.5,2);
%Hotphase2(200,16.6,500,21.1,1000,25.6,3);
%Hotphase2(200,19.2,500,24.3,1000,29.2,4);
%Hotphase2(200,21.6,500,27.0,1000,32.4,5);



APPENDIX B

A SIGNED-RANK NUMERICAL EXAMPLE
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A Signed-Rank Numerical Example
The computations of the invariant signed-ranks are highly intensive and a
stochastic algorithm is used to calculate the signed-rank estimates by sampling
observation hyperplanes (Oja, 1983).
Let x4, x5, x3 be a random sample from a continuous 3-variate distribution. X is
defined in Equation 124 as a (3 x 3) matrix of three variables and three observations.

Hence, k=3 and n =3, and

6 -10 12
X =|-7 13 —-11}. (1)

5 7 15
P={p=_(i,ipi3):i; <ip <iz<n} 2)

be the set of N, = (Z) different k-tuples of index set {1,2,3}. In this example, there is

only one set of N = (g) = 2—: = 1. Therefore, the set P = {p = (1,2,3)}, and the index

p € P refer to a k-subset of the original observations. Recall the multivariate sign

Equation 121 defined below as Equation 3.

Q; (x) = 27k Z Spa(x)dpa . (3)
acA
Since k=3,
1
050 = gz Spa(®)dpa. @

Also, the signed-rank function from Equation 123 for Ny ! = 1is

RL() = Q). )

pEP

Substituting Equation 126 into Equation 127, we get the empirical signed-rank function
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1
RGO =3 Z S pa(X) e (6)

acA

The multivariate sign is an average of all possible vector set A, such that A is the set of 2
possible vectors(+1, +1, =1). Since k = 3, we have a set A with 8 possible vectors.
A= {a=[-1 -1 -1]
a=[1 -1 -1],
a=[-1 1 -1],

a3 = [1 1 _1]1

(7)

a,=[-1 -1 1],

a5 = [1 _1 1];

ag=[-1 1 1],

a; =11 1 1]}

Let
6 -7 5
X =|-10 13 7]

12 —-11 15 (8)

1. The signed-rank vector R;: (x) for x*4

We start by calculating the sign vector Q7 (x) and signed-rank vector R} (x) for x*; =

6
[—10]. We will calculate the sign vector Q7 (x) and signed-rank vector R; (x) for the
12

-7 5
other vector components, x’, = [ 13 ] and x'3 = [ 7] in the same manner.
—-11 15
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Calculate all vectors a;p : t = 0,1,2,3,4,5,6,7 and check ifi =1 € a;p.Ifi =1 €
a;p, then S,,(x)dp,q = 0, so that
app=[-1 -1 -—-1]#[1 2 3]=[-1 -2 -=3]
ap=[1 -1 —-1]#[1 2 3]=[1 -2 -=3]
ap=[-1 1 —-1]#[1 2 3]=[-1 2 -=-3]
azp=[1 1 —1]#[1 2 3]=[1 2 -3]
aup=[-1 -1 1]#[1 2 3]=[-1 -2 3]
asp=1[1 -1 1]#[1 2 3]=[1 -2 3]
agp=[-1 1 1]#[1 2 3]=[-1 2 3],
a;p=[1 1 1]#[1 2 3]=[1 2 3]
Notethati =1 € a;p fori = 1,3,5,& 7. Therefore, Q; (x) = %ZaeA Spa(X)dyq is
determined by vectors a,, a,, a,, & agonly. We now calculate the component
Spa(X)d,, for ag, ay, ay, & agonly.
Define
Y; = a;#X,

Wi=;=[Y2 ¥Y3])—[Xi Xi]:i=1,20r3,

W,=Y,—[Xi Xi Xi]:i=1,2,0r3,

9)
[0 w, = [V
I( DY Wa =]y, |
W
dpa = | (-1)? Wy = W; , 0T
— _W1-
(_1)3 Wl - —WZ—
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Wy
—1|W1 = W3|l
dpa = | 1|W1= x;] | and
Wi
Rl

Spadpa = sign(|W, |dpa)-

We now calculate Wy, W, do, and Sp,odpg as follows

6 -7 5 —6 7 -5
Yo=[-1 -1 -1]#|-10 13 71=10 -13 -7,
12 —-11 15 —-12 11 -15
we have

W1=(Y0=[y2 y3])_[xi xi];

7 -5 -6 —6 13 1
W, = [—13 —7] —[ 10 10 ] = [—23 —17],

11 -15 =12 -12 23 =3

WZ = Yo - [xl X1 xl],

—6 7 -5 6 6 6 -12 1 -11
w,=(10 -13 -7(—-|-10 -10 -10|=| 20 -3 3 |,

-12 11 -15 12 12 12 —-24 -1 =27
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_1| —-17
2 73 [-1¢60) | —460
dpo=| 1|5 o |=] 162 [=]-62]
13 —1(—198) 198
—1 23 —17|
and the sign vector is
—12 1 —11]] [—460]\ [—460
Spodyo = sign(|Wzldyo) = sign| || 20 -3 3 |[*|-62]||7| —62 |
-24 -1 27 198 198

Using the same formulas in equation (3.18), we calculate

Wll Wz, dpz, and SpdeZ for Yz, Y4_, and Y6 as

—7 -5
— -7 ,
—11 15 —11 —15

W1 = (Yz = [yZ }’3 )— [xl xl]

Y,=[-1 1 —1]#

-7 =5 -6 —6 -1 1
W, =| 13 -7 1—110 10 1= 3 -17],

-11 -15 -12 -12 1 -3

W,=Y,—[X1 X1 Xq]

-6 -7 =5 6 6 6 -12 -13 -11
W, =| 10 13 -71—1-10 -10 -10|=| 20 23 3 |

-12 -11 -15 12 12 12 —24 =23 =27
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L Y
v -18)] -8
d.=| 17 14 =] 1@ =[ 2 ]
211 ~1(14)| l-14

_1|3 —1%

and the sign vector is

20 23 3
—24 =23 =27

-12 -13 -11
Spadyy = sign(leldpz) = sign

Ll

6 -7 5 -6 7 5
Yy=[-1 -1 1]#|-10 13 7|(=|10 -13 7|
12 —-11 15 -12 11 15

Wi=U,=[Y2 Y3])—-[xi xi],

7 -5 -6 —6 13 11
Wy=|[-13 -7|-—| 10 10 | =1|—23 -3|,

11 -15 —-12 —-12 23 27

Wz = Y4_ - [xl X1 xl],

—6 7 5 6 6 6 -12 1 -1
wW;=|(10 -13 7|—-|-10 -10 -10|=| 20 -3 17|,

-12 11 15 12 12 12 -24 -1 3

[_1|—23 -3
I 1233 1127| —1(=552) 552
l 13 11J —1(214) —214
_1|—23 -3

and the sign vector is
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Spadps = sign(leldp4) = sign(

-12 1 -1
20 -3 17

-24 -1 3

552 —552
*| 98 )= —98
—214 214

-6 -7 5
[ 10 13 7 ]
—12 —-11 15

Wy=Ue=1[Y2 Ys)—[%i xi]

6 -7 5
FOR:Y¢=[-1 1 1]#|-10 13 7 |=
12 -11 15

-7 =5 —6 —6 -1 11
W1=[13 —7]—[10 10]=[3 —3],
—11 -15] [-12

—12

WZ = Y6 - [xl X1 xl],

-6 -7 5 6 6 6 -12 -13 -1
W, =|10 13 7(—|-10 -10 -10|=]| 20 23 17},
—-12 -11 15 12 12 12 —-24 =23 3

[ -1 %)
o
dpo=| 1|7 55| =] 138) | =|-38]
[ 1|_1 11J -1(-30)] 30
T3 -3
and the sign vector is
-12 -13 -1 —84 —84
Sp6dp6=sign(|W2|dp6)=Sign( 20 23 17||*|-38 >=[—38].
—-24 =23 3 30 30
Applying Equations 128 through 132, the signed-rank vector for the original X*; =

6
—10] is

12
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1
R*(x'y) = Z QF(x) = §Z S (X)dpe

pPEP a€eA

1
R+(x 1) = § (Spodpo + szdpz + Sp4dp4 + Sp6dp6)

—460 8 —552 —84 —136
R+(x‘1)=§ —62 |+ |-2|+|—-98 |+ [-38]]|=|—25]
198 14 214 30 57

2. The signed-rank vector R} (x) for x°,

In the same manner, we calculate the sign vector Q3 (x) and signed-rank vector
-7

Ri(x)forx’, =| 13 |.
-11

Calculate all vectors a;p : t = 0,1,2,3,4,5,6,7 and check ifi =2 € aq;p. Ifi =1 €
a;p, then S,,(x)d,,q = 0, so that
app=[-1 -1 -—-1]#[1 2 3]=[-1 -2 -=3]
ap=[1 -1 -—-1]#[1 2 3]=[1 -2 -=-3],
ap=[-1 1 —-1]#[1 2 3]=[-1 2 -=3]
azp=1[1 1 —-1]#[1 2 3]=[1 2 -3]
aup=[-1 -1 1]#[1 2 3]=[-1 -2 3],
asp=1[1 -1 1]#[1 2 3]=[1 -2 3]
agp=1[-1 1 1]#[1 2 3]=[-1 2 3]
a;p=1[1 1 1]#[1 2 3]=[1 2 3]
Note thati = 2 € a;p fori = 2,3,6,& 7. Therefore, @} (x) = %ZaeA Spa(X)dyq is
determined by vectors ay, a4, a4, & asonly. We now calculate the component

Spa(X)d,, for ag, aq, ay, & asonly.
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Again, using the same formulas in Equation 132, we calculate

Wli Wz, deJ and szdpz for Yo, Yll Y4and Y5:

6 -7 5 -6 7 =5
Yo=[-1 -1 —-1]#|-10 13 7|=|10 -13 -7]
12 -11 15 -12 11 -15
—460
198
6 -7 5 6 7 =5
Fy,=[1 -1 -1]#|-10 13 7|=|-10 —-13 -7
1 —-11 15 12 11 -15

2
$pudys _[ ]
7

5 -6 7 5
71=110 -13 7|,

Yo=[-1 -1 1]#[

—11 15 -12 11 15
552
patps = | —
214
6 7 5
Ys=1[1 -1 1]#|- =|-10 —-13 7
—11 15 12 11 15

Spsdps =[ 2 ]
—-14

Applying Equations 128 through 132, the signed-rank vector for the original X, =

-7
13 | is

—11

1
R*(x,) = Z Q:(x) = 52 S pa(X)dpq

pEP a€A

1
R+ (X 2) = g(SpOde + Sp1dp1 + Sp4dp4 + SdePS)
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—460 84 —552 -8 —117
R*(X,) = 3 —62(+|38|+]|—-98|+]| 2 =1 -15
198 —-30 214 —14 46

3. The signed-rank vector R} (x) for x5

And finally, in the same manner, we calculate the sign vector Q% (x) and signed-rank

5
7|
15

Calculate all vectors a;,p : t = 0,1,2,3,4,5,6,7 and check ifi =2 e q;p. Ifi =1 €

vector R (x) for x5 =

a;p, then S,,(x)dp,q = 0, so that
app=[-1 -1 -—-1]#[1 2 3]=[-1 -2 -=-3]

ap=1[1 -1 -—-1]#[1 2 3]=[1 -2 -=3],

Uy

azp = [-1 —1]#[1 2 3]=[-1 2 -3],
azp=1[1 1 —1]#[1 2 3]=[1 2 -3],
app=[-1 -1 1]#[1 2 3]=[-1 -2 3],
asp=[1 -1 1]#[1 2 3]=[1 -2 3],
agp=[-1 1 1]#[1 2 3]=[-1 2 3],
a;p=1[1 1 1]#[1 2 3]=[1 2 3],

Note thati = 3 € a;p fori = 4,5,6,and 7. Therefore, @ (x) = %Z%A Spa(X)dp, is
determined by vectors ay, a4, az, & azonly . We now calculate the component
Spa(X)d,, for ay, as, ag, & azonly.

Again, using the same formulas in Equation132, we calculate

W1, W3, dy;,and Sy,,d,,; for Yy, Yy, Y, and Y3 as
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6 -7 5 —6 7 -5
Yo=[-1 -1 -—-1]#|-10 13 7|=|10 -13 -7/,

12 -11 15 -12 11 -15
—460
198
7 =5
Yi=[1 -1 -1J#|- -13 -7/,
—11 15 11  -15
84 ]
Sp1dp1 =1 38 |,
—301
6 -7 5] -6 =7 =5
Y,=[-1 1 -1]#|-10 13 71=|10 13 =7 |,
12 -—-11 15 -12 -11 -15
g
SpdeZ =|-2 )
14

6 -7 5] 6 -7 =5
Y3=[1 1 —-1]#|-10 13 7 |=|-10 13 -7,

12 -11 15l l12 -11 -15
552

Spadps =| 98
~214

5
Applying Equations128 through132, the signed-rank vector for the original x*3 = [ 7 ] is
15

RY ()= 050 =3 ) Dy

pEP a€eA

1
R+(x 3) = § (Spodpo + Spldpl + SpdeZ + szdpg)

1 [[—460 84 8 552 23
R*(x'3) = 3 —62 |+ 38 -2+ 98 =19
198 -30 14 —214 —4
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—136 —-117 23
We now have R} = [RT(x';) R*(x’,) R™(x'3)] = [—25 -15 9 ]
57 46 —4

The calculated signed-rank vectors R*(x';), R*(x",),and R* (x"3) were generated for

6 -7 5
the transposed X or X" = [—-10 13 7 ] and the signed-rank vectors or matrix is
12 -—-11 15

then transposed to give the final signed-ranks matrix

—136 —25 57
R =(R}) =|-117 —-15 46/
23 9 —4

The above result is identical to the signed-rank vectors or matrix obtained by
applying the SAS code and interactive matrix language (IML) routines for the
computation of the purpose of calculating the Oja invariant signed-rank vectors in

Appendix A.



APPENDIX C

PHASE | UPPER CONTROL LIMIT
SIMULATION RESULTS



218
Table 57
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average

That Achieved an In-Control Average Run Length ~ 200 from the Multivariate Normal
Distribution

p
2 3 4 5

A h. ARL,= SDRL h, ARLe= SDRL h, ARL,= SDRL h; ARL,= SDRL

0.01 5.30 193 288 7.20 196. 295 8.8 201 301 104 200 289

0.02 6.20 197 245  8.20 200 244 9.9 199 246 11.6 200 241

0.03 6.80 194 223  8.80 193 220 10.7 203 232 12.3 195 222

0.05 7.70 201 214 9.70 198 214 11.6 193 209 134 200 218

0.10 8.80 201 205 11.0 209 214 12.9 200 203 147 199 201

020 9.70 202 203 12.0 204 207 13.9 199 199 158 199 197

0.50 10.40 198 200 12.6 195 194 14.7 201 201 16.6 197 195

Table 58

The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average
That Achieved an In-Control Average Run Length = 500 from the Multivariate Normal
Distribution

P
2 3 4 5

A h; ARL,= SDRL h; ARL,= SDRL h; ARLe= SDRL h, ARL,= SDRL

001 70 505 625 9.0 504 635 10.8 500 623 125 499 625

002 81 494 551 10.2 488 54 12.1 492 546 14.0 504 560

0.03 838 501 537 11.0 495 521 13.0 503 530 14.8 494 520

0.05 97 502 501 119 483 496 140 506 523 159 499 514

0.10 10.8 498 505 13.0 473 475 15.2 505 513 171 488 489

020 116 482 488 140 498 497 16.2 501 500 18.1 485 485

050 123 504 504 14.6 490 485 16.8 496 502 18.8 495 493
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Table 59
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average

That Achieved an In-Control Average Run Length ~ 1,000 from the Multivariate
Normal Distribution

A h, ARL,= SDRL h, ARL,= SDRL h; ARL,= SDRL h; ARL,= SDRL

001 83 967 1,100 10.6 1,027 1,184 125 1,010 1,150 143 1,001 1,128
002 96 976 1,030 118 942 1,002 139 962 1,011 158 996 1,049
0.03 103 971 999 12.6 955 972 148 1,006 1,029 16.7 996 1,008
005 112 968 996 13.6 995 1,004 158 1,004 1,032 177 980 1,015
0.10 123 981 993 148 1,014 1,022 169 973 978 18.9 974 959
020 131 987 973 15.6 994 992 17.8 1,006 1,003 198 974 965

050 137 1,011 1,012 162 1,014 1,019 183 985 975 20.4 985 983

Table 60

The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average
That Achieved an In-Control Average Run Length = 200 from the Multivariate t,(5)-
Distribution

p
2 3 4 5

A h; ARLe= SDRL h; ARL= SDRL h; ARL= SDRL h; ARLe= SDRL

001 53 200 290 7.1 199 294 8.8 192 280 10.4 192 280
0.02 6.2 198 246 8.2 200 247 10.0 201 247 11.6 196 248
0.03 6.8 195 224 8.9 201 234 10.8 201 233 125 200 229
005 7.7 197 212 9.9 202 219 11.8 200 214 13.6 194 214
010 9.0 202 208 11.3 199 206 13.2 196 204 15.2 201 209
0.20 103 198 198 12.7 200 198 14.8 198 200 16.8 200 200

050 123 200 200 15.0 198 199 175 199 197 19.7 197 194
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Table 61
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average

That Achieved an In-Control Average Run Length = 500 from the Multivariate ty(5)-
Distribution

2 3 4 5
A  h, ARL= SDRL h, ARL= SDRL h; ARL= SDRL h; ARL= SDRL

001 69 493 605 9.0 507 634 10.8 488 617 12.6 496 619

002 81 488 544 10.3 500 553 12.2 491 545 14.1 501 562

0.03 89 492 528 111 492 434 13.2 498 547 15.0 496 534

005 98 474 486 12.2 491 510 142 482 504 16.2 494 519

010 112 489 496 13.7 493 500 15.9 504 521 17.8 490 498

020 127 486 491 154 492 490 17.7 501 501 19.8 503 507

050 157 500 501 18.8 507 510 215 493 494 23.9 486 489

Table 62

The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average
That Achieved an In-Control Average Run Length = 1,000 from the Multivariate t,(5)-
Distribution

A h, ARLe= SDRL h, ARL,= SDRL h;, ARL,= SDRL h, ARL,= SDRL

001 83 956 1,091 10.6 998 1,161 125 983 1,145 144 1,001 1,152
002 97 975 1,047 120 985 1,076  14.0 971 1,029 16.0 1,007 1,068
0.03 105 1,006 1,054 129 1,007 1,060 150 1,005 1,078 16.9 983 1,013
0.05 115 984 1,010 14.0 1002 1,038 16.2 1,002 1,022 181 1,017 1,058
0.10 13.0 984 982 156 1,006 1,026 179 1,002 1,019 19.9 992 995
0.20 148 995 1,022 176 1,003 1,007 20.0 995 1,013 222 984 986

0.50 18.8 997 993 221 964 966 253 985 1,002 279 996 1,090
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The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average

That Achieved an In-Control Average Run Length = 200, 500, and 1,000 from the

Gammay (a=3,5=1) Distribution with p;, = 0.5

IC ARL=200 IC ARL=500 IC ARL=1,000

A h; ARL,= SDRL h; ARL,= SDRL h; ARL,= SDRL
0.01 4,1241 200.05 21523 4,209.5 499.98 48580 4,268.4 1,002  959.10
0.02 2116.6 200.1 201.53 2,1755 500.45 480.18 2,211.7 1,002 993.84
0.03 1,4429 200.5 195.80 1.486.7 500.1 480.08 1,515.7 997.5 993.66
0.05 896.6 200.0 192.00 928.5 500.3  490.50 948.8 1,000  995.40
0.10 476.8 200.2 193.90 498.3 501.0 499.80 512.0 1,007 1,003.3
0.20 257.8 200.2 196.60 272.6 498.0 503.80 282.8 1,001  993.05
0.50 116.1 200.7 202.30 125.8 503.7 502.16 132.7 999 982.17
Table 64

The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted
Moving Average That Achieved an In-Control Average Run Length = 200 from the
Multivariate Normal Distribution

p
2 3 4 5
A L ARLo= SDRL L ARL,=  SDRL L ARL,=  SDRL L ARL,=  SDRL
0.01 5.30 196 287 7.30 204 307 9.00 202 305 10.60 199 301
0.02 6.30 206 253 8.30 197 257 10.30 201 263 12.60 202 273
0.03 6.90 193 233 9.10 200 239 11.45 202 256 14.10 200 248
0.05 7.70 198 213 10.20 201 221 13.05 200 230 16.90 201 231
0.10 8.85 197 200 12.00 202 214 16.25 200 218 22.80 199 216
0.20 9.90 196 197 14.45 200 206 21.45 200 210 33.50 201 208
0.50 10.90 201 203 19.10 200 197 33.50 200 200 58.30 200 200
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Table 65
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted

Moving Average That Achieved an In-Control Average Run Length = 500 from the
Multivariate Normal Distribution

p
2 3 4 5
A L ARL,= SDRL L ARL,= SDRL L ARL,= SDRL L ARL,= SDRL

0.01 6.90 496 599 9.10 487 634 11.15 494 659  13.30 495 669

0.02 8.10 492 556  10.50 497 568 12.90 494 585  15.90 500 615

0.03 8.85 499 539 1140 502 558 14.20 498 563 18.05 501 575

005 9.75 494 517 12,65 500 533 16.30 498 541 2190 503 556

0.10 10.95 502 507 1470 497 520 20.50 499 522 30.60 501 527

0.20 11.95 491 484  17.60 497 505 27.65 500 515  46.90 501 507

050 12.75 482 479 2380 504 500 44.50 500 505 8400 493 497

Table 66

The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted
Moving Average That Achieved an In-Control Average Run Length = 1,000 from the
Multivariate Normal Distribution

2 3 4 5

A L ARL,= SDRL L ARL,= SDRL L ARL,=  SDRL L ARL,=  SDRL

0.01 840 1,007 1,151 10.70 996 1,180 13.00 988 1,187 1555 1,005 1,269
0.02 9.60 985 1,047 12.20 993 1,019 15.00 988 1,121 1860 1,010 1,178
0.03 10.40 990 1,024 13.20 996 1,056  16.50 997 1,096 21.30 998 1,103
005 1135 1,003 1033 1420 1004 1,03 1885 1,000 1,078 2610 1006 1,092
0.10 1250 995 1,007 16.90 993 1010 2395 1,001 1,058 37.50 998 1,046
0.20 1350 992 982  20.25 992 998 32.80 992 1,020 58.40 983 997

050 1420 967 960  27.40 994 1,019 53.60 989 989 107.9 983 973
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Table 67
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted

Moving Average That Achieved an In-Control Average Run Length = 200 from the
Multivariate ty(5)- Distribution

P

2 3 4 5

A L ARL,=  SDRL L ARL,=  SDRL L ARL,= SDRL L ARL,=  SDRL

0.01 535 203 300 7.10 196 283 8.75 199 296  10.30 200 297

0.02 6.30 201 248 8.35 200 253  10.35 198 252 12.69 201 262

0.03 6.90 197 226 9.25 200 241 11.70 199 240 1470 201 243

0.05 7.85 200 221 10.70 200 227 14.00 201 229 18.60 202 231

0.10 9.20 201 208  13.30 200 215 1920 201 211 2755 199 209

0.20 10.70 199 205 17.65 200 206  28.30 199 206 43.80 200 208

0.50 13.40 200 204 27.40 200 203 49.80 200 199  81.90 198 201

Table 68

The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted
Moving Average That Achieved an In-Control Average Run Length = 500 from the
Multivariate t,(5)- Distribution

A L ARL, SDRL L ARL, SDRL L ARL, SDRL L ARL, SDRL

IR
IR
IR

R

0.01 6.95 495 609 9.20 504 650 11.30 501 667 13.70 498 663
0.02 8.20 500 558 10.75 498 579 13.62 502 604 17.60 497 589
0.03 8.95 497 539 11.95 503 564 1560 506 578 20.90 497 563
0.05 10.00 501 527 13.80 501 546 19.20 503 541 27.60 502 548
0.10 1155 493 500 17.50 500 516 27.60 501 521 43.40 498 519
0.20 1350 496 504 24.15 495 496 43.00 501 505 72.90 499 507

0.50 17.50 501 501 40.10 496 493 79.00 497 493 142.30 500 500
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Table 69
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted

Moving Average That Achieved an In-Control Average Run Length = 1,000 from the
Multivariate t,(5)- Distribution

A L ARL,= SDRL L ARL,= SDRL L ARL,= SDRL L ARL,= SDRL

0.01 8.40 991 1,132 10.90 997 1,179  13.50 998 1,246  16.90 996 1,238
0.02 9.80 1,010 1,087 12.75 997 1,093  16.45 992 1132  22.20 1,000 1,152
0.03 10.60 998 1,042 1415 1,006 1,082  19.05 992 1,099 27.20 995 1,001
0.05 11.75 993 1,020 16.40 998 1,076 23.95 999 1,041  37.30 996 1,059
0.10 1350 1,007 1,021 21.20 982 1,016  35.50 992 1,007  61.20 1,000 1,010
0.20 15.80 997 1,015 30.20 996 1,002  58.00 988 984 106.9 1,000 1,009

0.50 21.15 981 972 52.20 999 985 1111 997 987 212,10 1,006 1,006

Table 70

The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted
Moving Average That Achieved an In-Control Average Run Length = 200, 500,
and 1,000 from the Gamma; (a=3,p=1) Distribution with p;, = 0.5

IC ARL=200 IC ARL=500 IC ARL=1,000
A L ARL,= SDRL L ARL,= SDRL L ARLy= SDRL

001 1,366.3 201 236.48 14199 4994 513.19 1,460.0 994.0 988.60
002 723.1 200 209.37 761.7 494.7 49426 798.1 999.4 980.70
0.03 505.6 200 200.50 5374 4985 49526 559.3 999.4 966.63
0.05 3285 200 196.52 3527 500 500.16  369.2 1,001 1,002.63

0.10 190.3 200 199.56  207.7 500 497.38 2194 997.0 990.75

020 116.2 200 196.41 129.3 500 509.81 138.7 997.0 994.06

050 65.9 201 200.60 76.7 502 502.64 84.5 1,000 997.33
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Table 71

The Upper Control Limits (h,) of the Hotelling’s »* That Achieved an In-Control
Average Run Length = 200, 500, and 1,000 under p-variates Multivariate Normal
Distribution

ARLg
p 200 500 1,000
2 10.59 12.42 13.88
3 12.83 14.79 16.26
4 14.86 16.92 18.46
5 16.74 18.90 20.51
Table 72

The Upper Control Limits(h,) of the Hotelling’s »* That Achieved an In-Control
Average Run Length ~ 200, 500, and 1,000 under p-variates Multivariate t,(5)-
Distribution

IC ARL=200 IC ARL=500 IC ARL=1,000
h, ARLy= SDRL h, ARL,= SDRL h,  ARL,= SDRL

©

2 1350 200 196.61 17.60 488 483.73 21.50 992  986.65

3 16.60 200 196.61 21.10 494 493.82 2560 998 978.42
4 1920 201 202.63 2430 500 501.81 29.20 988  984.37

5 21.60 201 198.70 27.00 494 493.68 3240 1,000 990.61
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Table 73

The Upper Control Limits (h,) of the Hotelling’s y* That Achieved an In-Control
Average Run Length = 200, 500, and 1,000 under p-variates Multivariate
Gammay(a=3,p=1) Distribution

IC ARL=200 IC ARL=500 IC ARL=1,000
h, ARLy= SDRL h,  ARLy= SDRL h,  ARLy= SDRL

N|T

25.30 201 19798 34.82 503  505.74 42.7 993  1,000.55
3 1550 200 202.82 18.95 501 507.26 21.6 995 983.80
4 17.93 200 199.38 215 500 501.74 24.28 1,000 1,000.13

5 20.00 200 197.66 23.6 500  491.81 26.45 999 1,011.04

MEWMA & SRMEWMA UCL for MV NORMAL, p =2 and IC ARL =200
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Smoothing Parameter Lambda

Simulation Results Are Based on 10,000 Replications of Each Combination of Parameters

Figure 18. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 2 and in-control average run length = 200.
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MEWMA & SRMEWMA UCL for MV NORMAL, p =2 and IC ARL = 500
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Smoothing Parameter Lambda

Simulation Results Are Based on 10,000 Replications of Each Combination of Parameters

Figure 19. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 2 and in-control average run length = 500.

MEWMA & SRMEWMA UCL for MV NORMAL, p =2 and IC ARL = 1000
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Simulation Results Are Based on 10,000 Replications of Each Combination of Parameters

Figure 20. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 2 and in-control average run length = 1,000.
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MEWMA & SRMEWNMA UCL for MV NORMAL, p =3 and IC ARL =200
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Figure 21. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 3 and in-control average run length = 200.

MEWMA & SRMEWMA UCL for MV NORMAL, p = 3 and IC ARL = 500
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Figure 22. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 3 and in-control average run length = 500.
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MEWMA & SRMEWMA UCL for MV NORMAL, p =3 and IC ARL = 1000
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Figure 23. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 3 and in-control average run length = 1,000.

MEWMA & SRMEWMA UCL for MV NORMAL, p =4 and IC ARL =200
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Figure 24. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 4 and in-control average run length = 200.
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MEWMA & SRMEWMA UCL for MV NORMAL, p = 4 and IC ARL = 500
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Figure 25. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 4 and in-control average run length = 500.

MEWMA & SRMEWMA UCL for MV NORMAL, p = 4 and IC ARL =1000
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Figure 26. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 4 and in-control average run length = 1,000.
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MEWMA & SRMEWMA UCL for MV NORMAL, p =5 and IC ARL =200

60

554
504

454

35
30 P
25 _

204

15 ——

A -

101 ¥

e —

/)f:-" - Control Chart +—e—e MEWMA_UCL A& SRMEWMA _UCL
T I N B L L L L L L L L

Smoothing Parameter Lambda

Simulation Results Are Based on 10,000 Replications of Each Cowbination of Parameters

Figure 27. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 5 and in-control average run length = 200.
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MEWMA & SRMEWMA UCL for MV NORMAL, p =5 and IC ARL = 500
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Figure 28. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 5 and in-control average run length = 500.
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Figure 29. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
normal, p = 5 and in-control average run length = 1,000.
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Figure 30. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
t, (df =5), p =2 and in-control average run length = 200.
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MEWMA & SRMEWMA UCL for MV T, p =2 and IC ARL = 500
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Figure 31. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
t, (df =5), p =2 and in-control average run length = 500.
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Figure 32. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
t, (df =5), p =2 and in-control average run length = 1,000.
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MEWMA & SRMEWMA UCL for MV T, p = 3 and IC ARL =200
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Figure 33. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
t, (df =5), p =3 and in-control average run length = 200.
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Figure 34. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
t, (df =5), p =3 and in-control average run length = 500.
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MEWMA & SRMEWMA UCL for MV T, p=3 and IC ARL =1000
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Figure 35. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
t, (df =5), p =3 and in-control average run length = 1,000.
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Figure 36. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
t, (df = 5), p = 4 and in-control average run length = 200.
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MEWMA & SRMEWMA UCL for MV T, p = 4 and IC ARL = 500
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Figure 37. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
t, (df =5), p = 4 and in-control average run length = 500.
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Figure 38. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
t, (df = 5), p = 4 and in-control average run length = 1,000.
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MEWMA & SRMEWMA UCL for MV T, p =5 and IC ARL =200
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Figure 39. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
t, (df =5), p =5 and in-control average run length = 200.
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Figure 40. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
t, (df =5), p = 5 and in-control average run length = 500.
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MEWMA & SRMEWMA UCL for MV T, p = S and IC ARL = 1000
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Figure 41. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
t, (df =5), p = 5 and in-control average run length = 1,000.
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Figure 42. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate
gamma, (a. = 3, # = 1), p = 2 and in-control average run length = 200.
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MEWMA & SRMEWMA UCL for MV GAMMA, p =2 and IC ARL = 500
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Figure 43. Multivariate exponentially weighted moving average and signed-rank
multivariate exponentially weighted moving average upper control limit for multivariate

gamma, (a. = 3, # = 1), p = 2 and in-control average run length =500.
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Table 74

The Upper Control Limits and Average Run Length Values of the Multivariate

241

Exponentially Weighted Moving Average That Achieved an In-Control Average Run

Length =~ 200 from the Multivariate Normal Distribution

A
p 0.01 0.02 0.03 0.05 0.1 0.2 05
2 3 hy 530 6.20 6.80 77 8.8 97 10.40
0.00 193 197 194 201 201 202 198
(288) (245) (223) (214) (205) (203) (200)
0.25 35.91 45.42 49.77 59.51 74.91 94.88 133.82
(42.77) (76.75) (48.67) (57.43) (71.68) (92.43) (131.22)
0.50 13.06 16.12 18.19 20.77 25.17 33.84 62.70
(13.57) (14.56) (15.51) (16.87) (20.79) (30.71) (61.51)
1.00 439 5.33 5.92 6.73 7.78 8.94 15.37
(3.75) (4.02) (4.30) (4.61) (5.13) (6.31) (13.55)
1.50 2.44 2.92 3.16 3.58 4.01 4.46 6.06
(1.67) (1.92) (2.02) 2.17) (2.34) (2.56) (4.44)
2.50 1.32 1.48 157 171 1.87 2.04 2.25
(0.60) (0.72) (0.76) (0.83) (0.92) (0.99) (1.20-)
3 5 hy 7.20 8.20 8.80 9.70 11.00 12.00 12.60
0.00 196 200 193 198 209 204 195
(295) (244) (220) (214) (214) (207) (195)
0.25 42.86 51.46 56.38 65.63 83.18 110.95 142.83
(48.77) (52.06) (54.32) (62.80) (80.16) (109.87)  (143.54)
0.50 15.78 19.23 21.01 23.17 29.07 40.67 73.98
(15.30) (16.49) (17.36) (18.70) (24.04) (36.61) (72.18)
1.00 551 6.48 6.97 7.68 8.73 10.49 18.70
(4.30) (4.67) (4.83) (5.06) (5.70) (7.56) (16.91)
1.50 3.06 3.47 3.69 4.04 4.49 5.06 7.02
(2.03) (2.16) (2.30) (2.40) (2.59) (2.95) (5.31)
2.50 1.60 1.79 1.79 1.92 2.07 2.23 2.45
(0.78) (0.83) (0.88) (0.94) (0.99) (1.06) (1.317)
4 5 hy 8.80 9.90 10.70 11.60 12.90 13.90 14.70
0.00 201 199 203 193 200 199 201
(301) (246) (232) (209) (203) (199) (201)
0.25 44.09 55.30 61.93 71.22 89.81 116.74 156.31
(52.03) (55.12) (60.20) (67.50) (86.98) (115.13) (15.30)
0.50 16.06 20.26 22.11 24.94 31.44 43.76 84.06
(16.39) (17.69) (18.33) (20.02) (25.71) (40.22) (83.19)
1.00 5.42 6.69 7.48 8.28 9.57 11.34 21.64
(4.48) (5.00) (5.24) (5.51) (6.19) (8.07) (19.52)
1.50 2.99 3.58 3.95 4.27 4.86 5.33 8.06
(2.10) (2.32) (2.44) (2.56) @.77) (3.11) (6.31)
250 153 1.75 1.87 2.01 2.18 2.35 2.70
(0.76) (0.88) (0.93) (0.98) (1.05) (1.12) (1.47)
5 5 hy 10.40 11.60 12.30 13.40 14.70 15.8 16.6
0.00 200 200 195 200 199 199 197
(289) (241) (222) (218) (201) (197) (185)
0.25 49.80 59.12 66.05 77.00 95.78 123.33 160.37
(55.27) (58.57) (64.05) (74.76) (93.40) (122.15)  (160.06)
0.50 18.98 21.94 24.03 27.23 34.32 49.28 92.99
(17.64) (18.42) (19.63) (21.39) (29.07) (45.03) (92.07)
1.00 6.65 7.66 8.11 8.91 10.05 12.40 25.05
(4.99) (5.35) (5.52) (5.83) (6.43) (8.74) (23.05)
1.50 3.69 4.03 4.24 4.69 5.12 577 9.08
(2.37) (2.49) (2.57) (2.69) (2.83) (3.33) (7.31)
2.50 1.83 1.94 2.04 2.18 12.34 2.50 2.86
(0.91) (0.95) (1.00) (1.05) (1.12) (1.18) (1.56)

Note. Standard deviation of run length is in parentheses.



Table 75

The Upper Control Limits and Average Run Length Values of the Signed-Rank
Multivariate Exponentially Weighted Moving Average That Achieved an In-Control

Average Run Length ~ 200 from the Multivariate Normal Distribution

242

)
p 0.01 0.02 0.03 0.05 0.1 0.2 05
2 5 530 6.30 6.90 7.70 8.85 9.90 10.90
0.00 196 206 193 198 197 196 201
(287) (253) (233) (213) (200) (197) (203)
0.25 38.65 46.86 51.45 59.11 74.92 97.13 141.65
(43.62) (47.19) (49.27) (57.49) (73.52) (93.66) (142.57)
0.50 13.98 16.93 18.72 2052 25.62 35.10 68.02
(13.59) (14.81) (15.57) (16.60) (21.27) (32.32) (66.90)
1.00 4.96 571 6.21 6.88 7.81 9.36 16.82
(3.84) @.17) @.47) @.71) (5.14) (6.62) (15.41)
1.50 273 3.07 3.32 3.61 4.07 4.60 6.57
(1.76) (1.94) (2.06) (2.16) (2.36) (2.68) (4.99)
2.50 1.43 1.56 1.63 174 1.90 2.08 2.34
(0.66) (0.74) (0.79) (0.84) (0.90) (0.98) (1.21)
3 7.30 8.30 9.10 10.20 12.00 14.45 19.10
0.00 204 197 200 201 202 200 200
(307) (257) (239) (221) (214) (206) (197)
0.25 40.40 50.11 56.84 69.70 96.00 136.97 180.71
(49.26) (53.77) (59.74) (69.97) (96.21) (138.34)  (181.89)
0.50 14.19 18.15 20.79 24.29 33.60 61.03 132.92
(15.12) (16.79) (17.95) (20.31) (29.27) (59.21) (133.35)
1.00 4.66 5.93 6.79 7.84 9.74 1453 51.80
(4.02) (4.53) (4.85) (5.22) (6.37) (11.05) (49.62)
1.50 247 321 3.60 412 492 6.32 19.03
(1.71) (2.08) (2.22) (2.41) (2.71) (3.65) (17.17)
2.50 1.26 155 1.73 1.92 221 2.63 438
(0.57) (0.73) (0.82) (0.88) (1.00) (1.15) (2.62)
4 9.00 10.30 11.45 13.05 16.25 21.45 33.50
0.00 202 201 202 200 200 200 200
(305) (263) (256) (230) (218) (210) (200)
0.25 46.90 56.33 67.32 84.7 123.19 171.09 196.13
(54.48) (61.76) (71.02) (87.25) (131.13) (17435)  (195.50)
0.50 17.09 21.13 24.61 30.43 50.77 102.06 174.16
(16.60) (18.66) (21.07) (25.94) (47.12) (102.95)  (176.10)
1.00 6.08 7.33 8.20 9.62 13.10 28.11 114.80
(4.55) (5.13) (5.49) (6.23) (8.60) (24.39) (114.95)
1.50 3.37 3.89 433 4.97 6.37 10.13 63.05
(2.04) (2.26) (2.46) (2.72) (3.36) (6.30) (61.71)
2.50 167 1.88 2.05 2.28 275 3.65 14.35
(0.73) (0.81) (0.87) (0.97) (1.16) (1.51) (11.92)
5 10.60 12.60 14.10 16.90 22.80 33.50 58.30
0.00 199 202 200 201 199 201 200
(301) (273) (248) (231) (216) (208) (200)
0.25 51.67 67.46 81.28 111.61 156.56 187.51 194.70
(59.17) (73.35) (88.24) (120.36) (169.48) (194.42)  (198.98)
0.50 19.86 25.44 30.00 41.03 82.16 147.13 191.50
(18.21) (22.09) (25.34) (36.27) (80.09) (147.88)  (189.93)
1.00 7.29 8.70 9.86 12.33 20.78 67.24 161.04
(5.03) (5.86) (6.39) (7.66) (14.85) (65.52) (161.80)
1.50 4.08 473 5.18 6.28 9.02 23.43 124.96
(2.22) (2.52) (2.78) (3.21) (4.59) (18.56) (124.57)
2.50 1.99 2.25 2.43 2.81 3.66 5.79 55.24
(0.76) (0.98) (0.96) (1.11) (1.41) (2.30) (52.50)

Note. Standard deviation of run length is in parentheses.



Table 76

The Upper Control Limits and Average Run Length Values of the Multivariate
Exponentially Weighted Moving Average That Achieved an In-Control Average Run
Length =~ 500 from the Multivariate Normal Distribution
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)
p 5 0.01 0.02 0.03 0.05 0.1 0.2 05
2 hy 7.00 8.10 8.80 9.70 10.80 11.60 12.30
0.00 505 494 501 502 498 482 504
(625) (551) (537) (501) (505) (488) (504)
0.25 58.44 71.61 81.70 98.18 135.56 192.24 312.80
(58.30) (64.31) (72.82) (89.98) (130.63) (187.02)  (311.50)
0.50 19.22 23.18 2557 29.10 36.58 54.61 126.77
(16.96) (18.18) (19.01) (21.38) (30.27) (50.51) (124.78)
1.00 5.93 7.24 7.81 8.62 9.77 11.82 24.44
(4.85) (4.95) (5.16) (5.50) (6.19) (8.41) (22.060)
1.50 3.06 372 4.02 4.40 4.90 5.45 8.13
(2.07) (2.29) (2.40) (2.48) (2.69) (3.07) (6.19)
250 153 1.72 1.84 2.01 217 2.33 2.65
(0.74) (0.83) (0.90) (0.96) (1.02) (1.08) (1.43)
3 hy 9.00 10.20 11.00 11.90 13.00 14.00 14.60
0.00 504 488 495 483 473 493 490
(635) (541) (521) (496) (475) (497) (485)
0.25 67.25 82.04 93.13 111.13 154.84 228.20 340.06
(64.37) (73.04) (82.56) (10.69) (149.68) (224.68)  (342.13)
0.50 2273 26.91 29.42 33.09 42.25 66.77 153.04
(18.91) (19.66) (21.33) (24.54) (35.25) (62.48) (15.85)
1.00 7.29 8.53 9.03 9.76 10.85 13.75 30.68
(5.06) (5.57) (5.62) (5.89) (6.68) (9.67) (28.86)
1.50 3.85 4.30 4.64 4.95 541 6.06 9.58
(2.37) (2.51) (2.62) (2.70) (2.89) (3.44) (7.70)
2.50 1.84 2.01 2.10 2.22 2.38 2.55 291
(0.92) (0.97) (1.00) (1.06) (1.10) (1.17) (1.60)
4 hy 10.80 12.10 13.00 14.00 15.20 16.20 16.80
0.00 500 492 503 506 505 501 496
(623) (546) (530) (523) (513) (500) (502)
0.25 71.92 88.82 102.08 127.39 176.99 2.54.83 365.86
(69.64) (79.56) (91.42) (119.16) (169.92) (248.83)  (362.06)
0.50 23.80 28.44 31.96 36.44 48.13 78.83 177.91
(20.28) (21.60) (23.37) (27.36) (39.80) (74.97) (177.33)
1.00 7.37 8.74 9.58 10.52 12.17 15.12 36.42
(5.44) (5.79) (6.09) (6.33) (7.37) (10.81) (34.68)
1.50 3.82 450 4.90 5.34 5.83 6.70 11.34
(2.51) (2.69) (2.83) (2.93) (3.19) (3.82) (9.30)
2.50 1.86 2.06 2.20 2.37 256 2.72 3.8
(0.93) (1.01) (1.07) (1.11) (1.18) (1.25) (1.74)
5 hy 12.50 14.00 14.80 15.90 17.10 18.10 18.80
0.00 499 504 494 499 488 485 495
(625) (560) (520) (514) (489) (485) (493)
0.25 74.75 98.27 111.00 136.86 187.48 269.60 377.46
(74.12) (86.67) (102.35) (129.26) (178.73) (263.70)  (372.21)
0.50 26.87 31.66 34.47 39.28 53.20 87.29 199.40
(21.24) (23.50) (24.52) (29.06) (45.89) (82.18) (196.75)
1.00 8.17 9.99 10.72 11.50 12.98 16.61 43.11
(5.84) (6.21) (6.50) 6.77) (7.90) (12.24) (40.68)
1.50 455 5.03 5.36 5.79 6.24 7.12 12.91
2.73) (2.83) (3.00) (3.10) (3.26) (4.01) (10.88)
2.50 2.16 2.32 241 2.55 2.70 2.87 3.44
(1.03) (1.11) (1.14) (1.19) (1.23) (1.12) (1.93)

Note. Standard deviation of run length is in parentheses.
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The Upper Control Limits and Average Run Length Values of the Signed-Rank
Multivariate Exponentially Weighted Moving Average That Achieved an In-Control

Average Run Length = 500 from the Multivariate Normal Distribution
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A
p 3 0.01 0.02 0.03 0.05 0.1 0.2 05
2 6.90 8.10 8.85 9.75 10.95 11.95 12.75
0.00 496 492 499 494 502 491 482
(599) (556) (539) (517) (507) (484) (479)
0.25 60.51 72.30 82.34 99.10 139.49 205.31 315.56
(58.07) (63.57) (73.68) (91.71) (134.16) (200.77)  (309.19)
0.50 20.04 23.60 25.73 29.07 37.75 58.31 130.24
(16.58) (17.89) (19.28) (21.90) (30.95) (52.92) (125.96)
1.00 6.32 7.42 8.21 8.81 9.95 12.32 26.05
(4.61) (4.93) (5.31) (5.47) (6.24) (8.74) (23.92)
1.50 3.36 3.83 418 451 4.93 5.60 8.78
(2.09) (2.26) (2.44) (2.58) (2.67) (3.19) (6.95)
2.50 1.65 1.81 191 2.06 2.22 2.40 273
(0.80) (0.89) (0.91) (0.96) (1.02) (1.10) (1.46)
3 9.10 10.50 11.40 12.65 14.70 17.60 23.80
0.00 487 497 502 500 497 497 504
(634) (568) (558) (533) (520) (505) (500)
0.25 63.45 83.17 97.48 124.44 197.21 309.43 45559
(66.68) (79.85) (91.36) (121.37) (193.48) (311.71)  (456.01)
0.50 19.94 25.64 29.45 35.21 53.98 121.00 325.60
(18.20) (20.57) (22.79) (27.02) (47.88) (11955)  (323.42)
1.00 6.20 8.00 8.97 10.24 12.89 21.95 118.43
(4.89) (5.53) (5.80) (6.35) (8.05) (17.33) (117.12)
1.50 3.15 4.06 452 5.09 6.13 8.15 38.87
(2.15) (2.47) (2.61) (2.80) (3.22) 4.72) (36.49)
2.50 1.44 1.84 2.03 2.28 2.64 3.13 6.49
(0.70) (0.88) (0.94) (1.05) (1.14) (1.33) (4.48)
4 1115 12.90 14.20 16.30 20.50 27.65 4450
0.00 494 494 498 498 499 500 500
(659) (585) (563) (541) (522) (515) (505)
0.25 73.54 95.05 116.70 168.17 292.27 414.18 494.08
(73.97) (92.36) (115.55) (173.42) (306.87) (42422)  (501.77)
0.50 24.34 30.61 35.19 47.32 98.37 244,56 440.20
(21.19) (24.02) (27.19) (37.85) (94.88) (245.11)  (438.85)
1.00 8.03 953 10.63 12.84 19.00 57.38 304.36
(5.53) (6.24) (6.68) (7.65) (12.31) (52.69) (304.84)
1.50 417 4.98 5.46 6.32 8.34 16.53 165.90
(2.44) (2.80) (2.93) (3.30) (4.21) (11.35) (162.85)
2.50 1.96 2.25 2.44 2.75 341 475 35.37
(0.86) (0.98) (1.05) (1.14) (1.37) (1.86) (33.16)
5 13.30 15.90 18.05 21.90 30.60 46.90 84.00
0.00 495 500 501 503 501 501 493
(669) (615) (575) (556) (527) (507) (497)
0.25 83.83 119.63 157.31 251.28 382.48 472.85 484.76
(83.77) (121.54) (160.08) (270.44) (399.29) (483.38)  (488.94)
0.50 28.92 37.00 4554 74.17 204.96 391.20 472.17
(24.10) (29.02) (36.24) (66.29) (205.60) (396.67)  (476.26)
1.00 9.47 11.58 13.31 17.39 38.14 180.66 417.38
(6.15) (7.13) (7.97) (10.00) (29.00) (18151)  (409.12)
1.50 511 5.95 6.78 8.39 13.26 61.01 331.98
(2.71) (3.12) (3.46) (4.02) (6.60) (55.38) (330.77)
2.50 242 2.70 2.96 355 4.90 9.38 168.45
(0.94) (1.06) (1.15) (1.35) (1.75) (4.04) (165.21)

Note. Standard deviation of run length is in parentheses.
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Table 78

The Upper Control Limits and Average Run Length Values of the Multivariate
Exponentially Weighted Moving Average That Achieved an In-Control Average Run
Length ~ 1,000 from the Multivariate Normal Distribution

)
p 3 0.01 0.02 0.03 0.05 0.1 0.2 05
2 hy 8.30 9.60 10.30 11.20 12.30 13.10 13.70
0.00 967 976 971 968 981 987 1,011
(1,100) (1,030) (999) (996) (993) (973) (1,012)
0.25 78.74 96.42 112.73 138.55 212.96 338.80 592.36
(69.76) (82.69) (96.39) (125.68) (203.08) (343.19)  (588.96)
0.50 24.17 29.03 3134 35.93 48.32 80.86 220.45
(19.26) (20.94) (22.06) (25.79) (39.95) (76.00) (215.62)
1.00 7.07 8.72 931 10.25 11.49 14.38 35.33
(5.07) (5.62) (2.71) (6.10) (6.83) (10.18) (33.42)
1.50 3.63 4.20 462 5.07 553 6.18 10.19
(2.30) (2.48) (2.63) (2.76) (2.94) (3.45) (8.04)
2.50 1.69 1.95 2.08 2.25 2.42 255 2.94
(0.84) (0.95) (0.99) (1.07) (1.11) (1.15) (1.59)
3 hy 10.60 11.80 12.60 13.60 14.80 15.60 16.20
0.00 1,027 942 955 995 1,014 994 1,014
(1,184) (1,002) (972) (1,004) (1,022) (992) (1,019)
0.25 92.87 111.06 127.78 168.78 267.60 405.19 662.42
(78.04) (93.48) (111.44) (156.50) (263.21) (402.90)  (656.69)
0.50 29.02 33.67 35.84 41.28 58.42 101.07 281.23
(21.38) (23.43) (24.70) (29.69) (48.81) (96.38) (283.71)
1.00 8.94 9.95 10.53 11.47 13.09 16.76 46.64
(5.77) (6.01) (6.21) (6.61) (7.70) (12.13) (43.84)
1.50 457 498 5.36 5.75 6.22 6.91 12.62
(2.65) (2.75) (2.89) (2.98) (3.18) (3.84) (10.48)
2.50 211 2.24 2.37 2.49 2.65 2.82 331
(1.02) (1.06) (1.10) (1.13) (1.18) (1.26) (1.83)
4 hy 12.50 13.90 14.80 15.80 16.90 17080 18.30
0.00 1,010 962 1,006 1,004 973 1,006 985
(1,150) (1,011) (1,029) (1,032) (978) (1,003) (975)
0.25 99.18 122.45 147.80 192.27 291.72 449.13 693.38
(85.03) (102.24) (128.73) (179.86) (281.78) (446.28)  (691.43)
0.50 30.94 36.25 39.72 45.86 64.79 120.75 312.13
(23.43) (24.93) (27.01) (33.01) (55.75) (116.88)  (310.32)
1.00 9.11 10.50 11.48 12.44 13.96 18.81 55.72
(6.16) (6.40) (6.67) (7.13) (8.47) (13.74) (53.39)
1.50 452 5.23 5.74 6.10 6.63 759 14.48
(2.80) (2.94) (3.11) (3.13) (3.37) (4.26) (12.26)
2.50 2.04 2.34 2.49 2.65 2.83 2.99 355
(1.04) (1.12) 1.17) (1.22) (1.26) (1.33) (1.99)
5 hy 14.30 15.80 16.70 17.70 18.90 19.80 20.40
0.00 1,001 996 996 980 974 974 985
(1,128) (1,049) (1,008) (1,015) (959) (965) (983)
0.25 110.24 135.81 161.01 209.37 32054 482.92 73291
(90.26) (113.43) (142.45) (195.36) (308.27) (485.13)  (730.76)
0.50 34.37 39.31 42.41 50.25 73.18 135.84 355.85
(24.51) (26.44) (28.42) (37.24) (61.71) (131.21)  (355.10)
1.00 10.44 11.78 12.41 13.37 15.13 20.98 67.22
(6.40) (6.86) (6.96) (7.41) (8.91) (5.79) (64.83)
1.50 534 5.92 6.18 6.54 7.09 8.07 17.16
(2.96) (3.12) (3.21) (3.33) (3.58) (4.58) (14.96)
2.50 2.44 2.60 271 2.82 2.98 3.16 3.88
(1.14) (1.20) (1.24) (1.26) (1.32) (1.40) (2.23)

Note. Standard deviation of run length is in parentheses.
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Table 79
The Upper Control Limits and Average Run Length Values of the Signed-Rank

Multivariate Exponentially Weighted Moving Average That Achieved an In-Control
Average Run Length ~ 1,000 from the Multivariate Normal Distribution

A
p 5 0.01 0.02 0.03 0.05 0.1 02 05
2 L 8.40 9.60 10.40 11.35 12.50 13.50 14.20
0.00 1,007 985 990 1,003 995 992 967
(1,151) (1,047) (1,024) (1,033) (1,007) (982) (960)
0.25 83.21 96.92 113.27 145.00 225.56 356.92 593.27
(71.13) (80.26) (97.61) (132.17) (222.12) (362.23)  (595.55)
050 2551 29.46 32.28 37.22 49.83 87.85 227.82
(19.38) (20.76) (22.32) (26.89) (40.86) (83.30) (229.10)
1.00 777 8.92 9.50 10.34 11.66 15.19 38.08
(5.20) (5.60) (5.77) (6.02) (6.90) (10.75) (35.63)
1.50 3.95 4.48 4.77 5.16 5.66 6.40 11.02
(2.37) (2.53) (2.62) 2.77) (2.97) (3.56) (9.11)
250 1.89 2.04 2.16 231 2.46 2.64 3.10
(0.91) (0.96) (1.00) (1.07) (1.11) (1.18) (1.68)
3 L 10.70 12.20 13.20 14.20 16.90 20.25 27.40
0.00 996 993 996 1,004 993 992 994
(1,180) (1,019) (1,056) (1,035) (1,010) (998) (1,019)
0.25 87.34 113.84 140.38 179.71 353.79 606.84 875.22
(81.08) (102.33) (127.29) (170.82) (356.41) (609.62)  (888.06)
0.50 26.26 32.44 36.90 4356 81.58 208.82 607.44
(21.75) (23.88) (26.94) (33.21) (74.49) (20487)  (623.17)
1.00 7.61 9.64 10.64 11.81 15.66 30.78 219.68
(5.63) (6.18) (6.49) (6.94) (9.71) (24.83) (218.42)
1.50 3.78 4.77 5.29 5.77 7.11 10.11 67.05
(2.46) (2.76) (2.90) (3.00) (3.60) (5.87) (66.02)
250 1.67 2.11 2.30 2.50 2.94 358 9.06
(0.83) (0.99) (1.05) (1.11) (1.26) (1.48) (6.66)
4 L 13.00 15.00 16.50 18.85 23.95 32.80 53.60
0.00 988 988 997 1,000 1,001 992 989
(1,187) (1,121) (1,096) (1,078) (1,053) (1,020) (989)
0.25 100.12 136.53 181.43 290.42 554.93 819.76 937.25
(92.87) (126.91) (179.26) (297.15) (563.57) (84367)  (936.07)
050 31.82 38.37 45.67 63.16 168.09 489.67 849.45
(24.77) (28.17) (34.27) (50.95) (163.65) (491.70)  (843.00)
1.00 961 11.43 12.97 15.41 25.00 106.08 586.70
(6.41) (6.91) (7.59) (8.74) (16.09) (99.79) (575.21)
1.50 4.84 5.74 6.35 7.36 10.10 24.93 324.48
(2.75) (3.07) (3.30) (3.69) (4.85) (18.69) (323.49)
250 2.22 254 2.80 3.15 3.93 5.79 7459
(0.97) (1.10) (1.17) (1.28) (152) (2.27) (71.30)
5 L 15.55 18.60 21.30 26.10 37.50 58.40 107.90
0.00 1,005 1,010 998 1,006 998 983 983
(1,269) (1,178) (1,103) (1,092) (1,046) (997) (973)
0.25 116.80 180.93 269.54 472.39 785.62 920.76 965.83
(108.83) (174.33) (283.60) (498.75) (813.27) (928.77)  (958.74)
050 36.81 47.84 62.88 118.70 412.80 774.33 940.47
(28.26) (34.53) (47.81) (108.19) (427.53) (780.33)  (946.45)
1.00 11.61 14.12 16.60 22.45 66.30 384.64 834.64
(7.14) (8.28) (9.30) (12.38) (55.39) (391.47)  (824.48)
1.50 6.00 7.06 8.11 10.10 18.22 132.42 695.32
(3.12) (3.51) (3.88) (4.63) (9.24) (12731)  (691.56)
250 2.70 3.10 3.48 4.15 6.03 14.32 369..98
(1.06) (1.21) (1.33) (1.56) (2.07) (7.42) (363.46)

Note. Standard deviation of run length is in parentheses.



Table 80

The Upper Control Limits and Average Run Length Values of the Multivariate
Exponentially Weighted Moving Average That Achieved an In-Control Average Run
Length ~ 200 from the Multivariate t,(5)- Distribution
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)
p 0.01 0.02 0.03 0.05 0.1 0.2 05
2 3 hy 530 6.20 6.80 7.70 9.00 10.30 12.30
0.00 200 198 195 197 202 198 200
(290.00) (246) (244) (212) (208) (198) (200)
0.25 38.31 45,63 50.12 59.11 77.35 105.85 160.7
(43.17) (46.42) (49.19) (55.92) (74.18) (104.85)  (159.49)
0.50 13.71 16.67 18.54 20.80 26.06 38.20 93.25
(13.38) (14.55) (15.41) (16.79) (21.37) (35.52) (90.85)
1.00 479 5.62 6.13 6.93 8.04 9.80 24.24
(3.77) (4.11) (4.33) (4.63) (5.27) (6.90) (22.49)
1.50 2.66 2.99 3.30 3.62 411 476 8.38
(1.76) (1.90) (2.04) (2.15) (2.33) 2.73) (6.53)
250 1.40 150 1.60 1.73 1.93 2.12 2.64
(0.65) (0.70) 0.77) (0.83) (0.92) (0.99) (1.38)
3 hy 7.10 8.20 8.90 9.90 11.30 12.70 15.00
0.00 199 200 201 202 199 200 198
(294) (247) (234) (219) (206) (198) (199)
0.25 41.48 51.54 56.16 67.63 88.96 118.18 166.60
(47.57) (51.58) (55.02) (65.77) (86.71) (116.92)  (163.88)
0.50 15.19 18.82 20.69 23.58 30.25 4571 106.47
(14.65) (16.23) (17.30) (19.25) (25.09) (42.39) (104.71)
1.00 5.26 6.31 6.90 7.70 9.11 11.37 30.70
(4.12) (4.63) (4.80) (5.03) (5.84) (8.15) (29.04)
1.50 2.89 3.32 3.60 4.07 461 5.42 10.46
(1.93) (2.13) (2.20) (2.40) (2.63) (3.10) (8.64)
2.50 1.50 1.65 1.78 1.89 212 3.34 3.02
0.72) (0.80) (0.87) (0.91) (1.01) (1.08) (1.63)
4 hy 8.80 10.00 10.80 11.80 13.20 14.80 17.50
0.00 192 201 201 200 196 198 199
(280) (247) (233) (214) (204) (200) (197)
0.25 47.11 57.57 64.36 72.97 92.65 125.48 176.02
(52.38) (56.97) (62.77) (71.38) (92.28) (127.11)  (171.98)
0.50 18.48 21.37 23.24 26.13 3221 51.51 120.17
(16.80) (18.29) (19.00) (20.85) (28.33) (47.89) (121.42)
1.00 6.68 731 7.80 8.56 9.87 12.76 38.23
(4.84) (5.10) (5.33) (5.54) (6.36) (9.23) (36.96)
1.50 3.70 3.93 4.17 453 5.02 5.88 12.68
(2.22) (2.36) (2.47) (2.61) (2.78) (3.37) (10.68)
250 1.89 1.94 1.99 2.10 2.28 252 341
(0.88) (0.94) (0.95) (0.99) (1.06) (1.16) (1.90)
5 hy 10.40 11.60 12.50 13.60 15.20 16.80 19.70
0.00 192 196 200 194 201 200 197
(280) (248) (229) (214) (209) (200) (194)
0.25 4731 58.18 65.21 77.10 102.13 130.92 176.93
(55.68) (60.50) (64.69) (75.39) (102.23) (12.85) (175.00)
0.50 17.92 21.83 24.04 27.63 36.92 57.13 125.52
(17.23) (18.83) (19.98) (22.63) (31.70) (54.52) (123.27)
1.00 6.15 731 8.09 8.92 10.56 13.97 44.35
(4.91) (5.38) (5.56) (5.84) (6.74) (10.09) (43.08)
1.50 3.40 3.91 4.30 475 5.33 6.27 14.62
(2.30) (2.46) (2.62) (2.76) (2.92) (3.64) (12.65)
2.50 1.70 1.89 2.02 2.19 2.40 2.65 372
(0.86) (0.93) (0.99) (1.04) (1.13) (1.25) (2.14)

Note. Standard deviation of run length is in parentheses.



248

Table 81

The Upper Control Limits and Average Run Length Values of the Signed-Rank
Multivariate Exponentially Weighted Moving Average That Achieved an In-Control
Average Run Length = 200 from the Multivariate t,(5)- Distribution

)
p 0.01 0.02 0.03 0.05 0.1 0.2 05
2 5 L 535 6.30 6.90 7.85 9.20 10.70 13.40
0.00 230 201 197 200 201 199 200
(300) (248) (226) (221) (208) (205) (204)
0.25 38.91 47.36 51.34 60.82 80.56 112.22 164.98
(43.33) (47.58) (49.45) (59.76) (77.97) (112.97)  (164.07)
0.50 1457 17.05 18.72 21.49 27.12 41.68 101.41
(13.90) (14.92) (15.79) (17.22) (22.43) (38.00) (101.40)
1.00 495 5.80 6.28 7.03 8.35 10.63 29.88
(3.71) (4.14) (4.32) (a.74) (5.36) (7.57) (27.75)
1.50 2.84 3.7 3.33 372 4.24 4.98 10.16
(1.79) (1.94) (2.00) (2.17) (2.40) (2.80) (8.33)
2.50 1.46 1.56 1.63 1.78 1.99 2.19 2.91
(0.68) (0.74) (0.76) (0.84) (0.92) (1.00) (1.53)
3 L 7.10 8.35 9.25 10.70 13.30 17.65 2.40
0.00 196 200 200 200 200 200 200
(283) (253) (241) (227) (215) (206) (203)
0.25 43.22 53.22 61.27 79.69 115.66 163.46 188.95
(49.03) (55.90) (61.59) (81.16) (118.31) (167.63)  (190.11)
0.50 16.26 19.71 22.38 27.18 43.25 91.76 168.17
(15.06) (17.08) (18.44) (22.02) (38.55) (90.89) (166.17)
1.00 6.64 6.75 7.42 8.72 11.35 22.39 105.31
(4.00) (4.63) (4.95) (5.52) (7.08) (18.19) (103.6)
1.50 3.12 359 3.94 451 5.60 8.48 53.01
(1.82) (2.06) (2.22) (2.40) (2.91) (4.92) (51.02)
2.50 158 1.75 1.87 2.08 2.45 3.18 9.74
(0.69) (0.76) (0.81) (0.89) (1.03) (1.28) (7.29)
4 L 8.75 10.35 11.70 14.00 19.20 28.30 49.80
0.00 199 198 199 201 201 199 200
(296) (252) (240) (229) (211) (206) (199)
0.25 45.22 60.28 75.31 105.20 155.38 191.56 196.88
(53.34) (64.29) (79.62) (113.01) (164.26) (192.02)  (197.67)
0.50 16.21 22.00 26.73 36.33 75.55 14652 188.51
(15.70) (18.81) (21.96) (30.93) (74.50) (14849)  (186.32)
1.00 5.40 7.29 8.59 10.71 17.85 58.89 160.96
(4.02) (4.88) (5.54) (6.47) (11.50) (56.08) (162.93)
1.50 277 3.79 438 5.36 7.91 18.75 122.07
(1.68) (2.08) (2.32) (2.76) (3.86) (13.60) (122.30)
2.50 1.24 1.76 1.99 241 3.20 494 49.29
(0.52) (0.71) (0.79) (0.95) (1.21) (1.85) (48.18)
5 L 10.30 12.69 14.70 18.60 27.55 43.80 81.90
0.00 200 201 201 202 199 200 198
(297) (262) (243) (231) (209) (208) (201)
0.25 54.42 76.16 96.06 134.85 178.49 190.74 198.43
(59.37) (78.89) (104.47) (150.44) (185.49) (196.67)  (197.72)
0.50 20.86 28.08 34.70 54.74 120.79 176.05 196.04
(18.07) (22.45) (28.02) (48.94) (124.97) (178.26)  (194.71)
1.00 7.14 9.27 11.01 14.86 32.98 111.64 183.36
(4.56) (5.66) (6.36) (8.46) (25.04) (11042)  (184.40)
1.50 3.85 481 5.65 717 11.98 51.88 162.28
(1.96) (2.37) (2.71) (3.32) (5.61) (47.46) (160.67)
2.50 1.82 2.19 253 3.10 4.46 8.53 107.64
(0.63) (0.80) (0.91) (1.10) (1.53) (3.37) (109.46)

Note. Standard deviation of run length is in parentheses.
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Table 82
The Upper Control Limits and Average Run Length Values of the Multivariate

Exponentially Weighted Moving Average That Achieved an In-Control Average Run
Length ~ 500 from the Multivariate t,(5)- Distribution

)
p 3 0.01 0.02 0.03 0.05 0.1 0.2 05
2 hy 6.90 8.10 8.90 9.80 11.20 12.70 15.70
0.00 493 488 492 474 489 486 500
(605) (544) (528) (486) (496) (491) (501)
0.25 59.92 72.08 82.81 100.95 143.73 23351 407.26
(58.31) (65.25) (74.17) (92.18) (141.69) (233.07)  (407.61)
0.50 19.46 2358 26.44 29.77 39.81 69.90 237.60
(169.61) (18.03) (19.40) (22.28) (33.39) (66.05) (235.31)
1.00 6.25 7.45 8.05 8.85 10.29 13.61 54.41
(4.53) (4.94) (5.21) (5.45) (6.28) (9.81) (52.46)
1.50 3.29 3.84 4.14 4.47 5.14 6.00 15.00
(2.04) (2.29) (2.38) (2.51) (2.73) (3.33) (12.80)
2.50 161 1.80 1.93 2.04 2.26 250 351
(0.79) (0.86) (0.94) (0.96) (1.03) (1.13) (1.95)
3 hy 9.00 10.30 11.10 12.20 13.70 15.40 18.80
0.00 507 500 492 491 493 492 507
(634) (553) (434) (510) (500) (490) (510)
0.25 67.16 81.91 93.94 117.14 174.66 277.41 424.80
(64.62) (74.27) (85.08) (108.68) (171.45) (273.43)  (431.93)
0.50 22.31 26.54 29.03 34.05 4657 89.49 274.92
(18.73) (20.10) (21.65) (25.79) (39.43) (85.61) (274.27)
1.00 7.16 8.33 9.07 9.92 11.67 16.34 75.43
(5.04) (5.54) (5.81) (6.06) (7.24) (12.12) (72.71)
1.50 367 4.19 453 5.07 5.68 6.82 20.00
(2.29) (2.50) (2.59) (2.83) (3.00) (3.91) (17.63)
2.50 1.73 1.94 2.07 2.26 2.49 277 4.08
(0.85) (0.94) (0.98) (1.06) (1.13) (1.23) (2.34)
4 hy 10.80 12.20 13.20 14.20 15.90 17.70 2150
0.00 488 491 498 482 504 501 493
(617) (545) (498) (504) (521) (501) (494)
0.25 76.08 92.29 105.13 129.50 193.91 293.52 435.97
(72.07) (83.13) (94.55) (122.91) (192.41) (295.04)  (431.24)
0.50 26.12 30.06 3291 36.89 53.60 102.60 304.80
(20.48) (22.02) (23.67) (27.27) (45.68) (99.35) (305.58)
1.00 8.63 9.38 10.16 10.91 12.95 18.45 93.32
(5.64) (5.89) (6.17) (6.50) (7.97) (13.90) (91.87)
1.50 458 491 5.16 5.54 6.18 7.39 24.75
(2.58) (2.73) (2.80) (2.95) (3.26) (4.14) (22.33)
2.50 2.19 2.26 2.35 2.46 2.69 2.98 467
(1.00) (1.06) (1.09) (1.13) (1.20) (1.33) (2.82)
5 hy 12.60 14.10 15.0 16.20 17.80 19.80 23.90
0.00 496 501 496 494 490 503 486
(619) (562) (534) (519) (498) (507) (489)
0.25 78.90 96.73 111.39 142.65 203.74 308.14 437.01
(76.32) (88.77) (101.80) (135.24) (199.17) (306.56)  (435.84)
0.50 26.14 30.69 34.73 40.29 56.97 115.58 323.66
(21.87) (23.33) (25.18) (30.48) (48.46) (112.66)  (326.35)
1.00 8.31 9.79 10.41 11.58 13.60 20.43 112.13
(5.98) (6.34) (6.52) (6.96) (8.40) (15.71) (109.40)
1.50 432 493 531 5.84 6.53 8.00 30.13
(2.68) (2.85) (2.99) (3.14) (3.39) (4.57) (27.82)
2.50 2.00 2.25 2.39 2.56 2.81 3.168 5.18
(0.99) (1.09) (1.14) (1.19) (1.27) (1.41) (3.26)

Note. Standard deviation of run length is in parentheses.



Table 83

The Upper Control Limits and Average Run Length Values of the Signed-Rank
Multivariate Exponentially Weighted Moving Average That Achieved an In-Control
Average Run Length = 500 from the Multivariate t,(5)- Distribution

250

A
p 3 0.01 0.02 0.03 0.05 0.1 0.2 05
2 6.95 8.20 8.95 10.00 11.55 13.50 17.50
0.00 495 500 497 501 493 496 501
(609) (558) (539) (527) (500) (504) (501)
0.25 60.36 73.90 83.53 104.71 157.01 259.49 424.97
(57.74) (65.40) (76.69) (97.00) (152.40) (258.56)  (416.26)
0.50 20.36 23.97 26.25 30.67 4235 82.33 273.16
(17.03) (18.15) (19.83) (23.10) (35.54) (79.53) (272.22)
1.00 6.56 757 8.26 9.19 10.76 15.34 7358
(4.49) (5.03) (5.26) (5.56) (6.64) (11.22) (71.69)
1.50 3.49 3.94 427 463 5.29 6.47 20.80
(2.07) (2.29) (2.42) (2.50) (2.78) (3.63) (18.90)
2.50 1.69 1.86 1.95 2.09 2.34 2.65 408
(0.79) (0.87) (0.91) (0.95) (1.04) (1.15) (2.31)
3 9.20 10.75 11.95 13.80 17.50 24.15 40.10
0.00 504 498 503 501 500 495 496
(650) (579) (564) (546) (516) (496) (493)
0.25 69.70 87.95 109.47 155.02 275.10 41457 482.74
(67.86) (81.83) (104.44) (154.19) (282.80) (421.05)  (480.92)
0.50 23.32 28.06 32.29 41.94 85.82 248.76 441.43
(19.20) (21.45) (23.93) (33.17) (81.15) (246.24)  (438.39)
1.00 751 8.90 9.86 11.70 16.68 51.99 309.48
(5.00) (5.58) (5.97) (6.62) (10.24) (47.41) (306.82)
1.50 3.97 458 5.01 5.80 751 14.17 176.74
(2.25) (2.48) (2.66) (2.96) (3.68) (8.92) (174.33)
2.50 1.87 2.08 2.28 255 3.1 433 32.54
(0.81) (0.88) (0.96) (1.06) (1.24) (1.65) (30.00)
4 11.30 13.62 15.60 19.20 27.60 43.00 79.00
0.00 501 502 506 503 501 501 497
(667) (604) (578) (541) (521) (505) (493)
0.25 76.00 109.75 153.05 244.85 412.40 483.72 488.96
(76.59) (108.63) (154.96) (256.84) (425.25) (493.73)  (494.61)
0.50 24.50 33.43 4221 69.86 212.10 400.25 474.16
(20.77) (25.47) (32.29) (60.68) (214.56) (402.21)  (471.84)
1.00 7.46 10.15 12.15 15.97 35.00 191.11 430.84
(5.16) (6.15) (7.06) (8.77) (25.36) (187.82)  (43054)
1.50 3.74 5.08 6.03 7.62 12.36 60.62 348.80
(2.19) (2.67) (2.97) (3.65) (5.64) (53.05) (348.90)
2.50 164 221 2.60 3.19 451 8.45 184.92
(0.72) (0.90) (1.02) (1.21) (1.60) (3.30) (185.17)
5 13.70 17.60 20.90 27.60 43.40 72.90 142.30
0.00 498 497 497 502 498 499 500
(663) (589) (563) (548) (519) (507) (500)
0.25 92.82 158.47 232.12 350.48 451.09 484.18 466.93
(91.76) (160.15) (245.54) (372.37) (466.83) (492.87)  (487.79)
0.50 31.80 4537 64.41 136.87 335.31 444.15 490.88
(24.63) (33.31) (49.44) (131.07) (348.58) (44958)  (492.93)
1.00 9.93 13.41 16.68 25.01 103.93 339.13 170.90
(6.00) (7.48) (8.83) (13.30) (96.48) (338.08)  (467.27)
1.50 517 6.67 8.07 11.00 24.74 196.52 434.44
(2.54) (3.13) (3.64) (4.67) (13.55) (191.60)  (436.35)
2.50 2.27 2.91 3.42 4.46 7.09 29.54 337.41
(0.85) (1.03) (1.21) (1.48) (2.20) (21.34) (338.54)

Note. Standard deviation of run length is in parentheses.
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Table 84
The Upper Control Limits and Average Run Length Values of the Multivariate

Exponentially Weighted Moving Average That Achieved an In-Control Average Run
Length =~ 1,000 from the Multivariate t,(5)- Distribution

)
p 3 0.01 0.02 0.03 0.05 0.1 0.2 05
2 hy 8.30 9.70 10.50 11.50 13.0 14.80 18.80
0.00 956 975 1,006 984 984 995 997
(1,091) (1,047) (1,054) (1,010) (982) (1,022) (993)
0.25 79.61 100.02 116.35 146.30 248.20 451.94 829.65
(69.69) (84.86) (100.40) (135.15) (243.19) (456.02)  (836.81)
0.50 25.20 29.59 32.30 36.77 54.37 118.96 513.42
(19.46) (20.84) (22.60) (26.68) (45.16) (11487)  (518.66)
1.00 7.60 8.94 9.67 10.58 12.31 17.93 113.52
(5.14) (5.54) (5.80) (6.24) (7.41) (13.24) (110.85)
1.50 3.86 451 481 5.23 5.88 7.21 26.22
(2.30) (2.53) (2.63) (2.76) (3.05) (4.01) (23.53)
250 181 2.03 2.15 231 253 2.83 4.47
(0.86) (0.96) (1.02) (1.06) (1.13) (1.22) (2.57)
3 hy 10.60 12.00 12.90 14.00 15.60 17.60 22.10
0.00 998 985 1,007 1,002 1,006 1,003 964
(1,161) (1,076) (1,060) (1,038) (1,026) (1,007) (966)
0.25 93.00 111.44 135.13 179.27 306.13 524,51 847.64
(78.46) (95.51) (118.27) (167.31) (300.75) (521.30)  (842.48)
0.50 28.39 33.15 36.84 43.33 66.519 152.54 576.62
(21.24) (23.46) (25.03) (31.16) (56.76) (146.63)  (567.46)
1.00 8.58 9.88 10.73 11.79 13.88 21.76 159.32
(5.60) (6.15) (6.41) (6.74) (8.18) (16.63) (160.23)
1.50 433 5.00 2.35 5.79 6.56 8.11 37.17
(2.54) .77 (2.88) (3.01) (3.36) (4.53) (34.24)
2.50 1.97 2.19 2.36 2.54 278 3.16 5.39
(0.95) (1.03) (1.09) (1.14) (1.22) (1.35) (3.33)
4 hy 12.50 14.00 15.00 16.20 17.90 20.00 25.30
0.00 983 971 1,005 1,002 1,022 995 985
(1,145) (1,029) (1,078) (1,022) (1,019) (1,013) (1,002)
0.25 103.37 125.64 150.27 202.22 343.43 576.40 914.15
(86.73) (106.06) (134.04) (187.93) (334.60) (574.35)  (912.51)
0.50 33.15 36.67 40.73 47.81 76.44 183.41 662.16
(23.36) (25.02) (28.10) (35.19) (66.79) (180.18)  (664.80)
1.00 10.33 11.20 11.96 13.03 15.34 25.41 211.76
(6.19) (6.57) (6.73) (7.26) (9.23) (20.08) (209.37)
1.50 5.29 563 5.98 6.36 7.12 9.04 51.21
(2.83) (2.99) (3.10) (3.22) (3.55) (5.18) (49.17)
250 2.45 253 2.63 277 3.01 3.40 6.45
(1.09) (1.14) (1.17) (1.12) (1.31) (1.46) (4.20)
5 hy 14.40 16.00 16.90 18.10 19.90 22.20 27.90
0.00 1,001 1,007 983 1,017 992 984 996
(1,152) (1,068) (1,013) (1,058) (995) (986) (1,090)
0.25 108.14 134.88 160.42 216.90 367.53 597.20 895.20
(93.45) (115.57) (144.71) (203.83) (360.77) (590.33)  (892.94)
0.50 33.38 38.68 43.03 51.50 84.88 211.39 707.00
(24.75) (26.36) (29.27) (37.75) (75.19) (206.03)  (696.38)
1.00 10.09 11.62 12,51 13.57 16.24 28.588 251.83
(6.59) (6.89) (7.30) (7.74) (9.76) (22.90) (246.78)
1.50 5.04 5.75 6.14 6.60 751 9.80 63.40
(2.96) (3.13) (3.26) (3.38) (3.78) (5.63) (60.74)
2.50 2.28 252 2.69 2.86 3.13 357 7.36
(1.12) (1.18) (1.22) (1.28) (1.34) (1.51) (4.97)

Note. Standard deviation of run length is in parentheses.



Table 85

The Upper Control Limits and Average Run Length Values of the Signed-Rank

252

Multivariate Exponentially Weighted Moving Average That Achieved an In-Control

Average Run Length = 1,000 from the Multivariate t,(5) Distribution

A
p 3 0.01 0.02 0.03 0.05 0.1 0.2 05
2 8.40 9.80 10.60 1175 13.50 15.80 21.15
0.00 991 1,010 998 993 1,007 997 981
(1,132) (1,087) (1,042) (1,020) (1,021) (1,015) (972)
0.25 82.39 100.32 118.13 158.85 276.64 499.36 876.76
(70.38) (84.64) (103.67) (149.20) (268.10) (495.19) (873.96)
0.50 25.77 30.46 32.82 38.74 59.31 143.37 579.86
(19.39) (21.47) (22.69) (28.05) (50.43) (140.85) (580.42)
1.00 7.86 9.09 9.87 10.79 12.91 20.84 159.60
(5.10) (5.60) (5.89) (6.10) (7.62) (15.56) (157.76)
1.50 4.08 461 4.90 5.33 6.16 7.80 38.24
(2.36) (2.55) (2.62) (2.75) (3.08) (4.37) (35.77)
2.50 191 2.08 2.22 2.36 2.64 3.01 552
(0.89) (0.95) (1.02) (1.06) (1.14) (1.27) (3.47)
3 10.90 12.75 14.15 16.40 21.20 30.20 52.20
0.00 997 997 1,006 998 982 996 999
(1,179) (1,093) (1,082) (1,076) (1,016) (1,002) (985)
0.25 94.32 125.16 164.19 267.22 556.61 834.21 942.23
(82.60) (111.37) (151.99) (267.45) (568.27) (844.72) (937.06)
0.50 29.50 36.31 4231 58.25 158.50 526.33 880.94
(22.11) (25.40) (29.86) (44.98) (153.06) (520.62) (890.63)
1.00 9.23 10.80 12.03 14.30 2257 108.84 665.17
(5.85) (6.31) (6.72) (7.87) (13.88) (100.71) (664.35)
1.50 463 5.40 5.89 6.93 9.28 23.15 409.59
(2.54) (2.80) (3.00) (3.28) (4.32) (16.30) (411.25)
2.50 2.11 2.39 2.60 2.96 3.69 551 93.19
(0.92) (1.00) (1.09) (1.17) (1.38) (2.07) (91.61)
4 13.50 16.45 19.05 23.95 35.50 58.00 111.10
0.00 998 992 992 999 992 988 997
(1,246) (1,132) (1,099) (1,041) (1,007) (984) (987)
0.25 108.38 170.69 270.31 515.02 817.43 943.14 996.9
(98.33) (162.48) (275.08) (522.18) (839.57) (947.81) (999.07)
0.50 32.36 4555 59.66 122.05 465.15 823.31 982.98
(25.31) (31.84) (43.42) (111.14) (463.09) (840.16) (982.92)
1.00 9.39 12.78 15.48 21.46 67.87 457.19 890.51
(6.20) (7.36) (8.30) (11.09) (55.49) (464.79) (881.57)
1.50 456 6.31 741 9.69 17.58 169.83 783.17
(2.52) (3.12) (3.48) @.27 (8.35) (163.55) (788.80)
2.50 1.94 261 3.08 3.90 5.85 15.02 483.22
(0.84) (1.05) (1.19) (1.42) (1.95) (7.67) (482.63)
5 16.90 22.20 27.20 37.30 61.20 106.90 212.10
0.00 996 1,000 995 996 1,000 1,000 1,006
(1,238) (1,152) (1,091) (1,059) (1,010) (1,009) (1,006)
0.25 142,27 289.74 49137 752.58 910.47 990.63 973.42
(128.30) (292.96) (525.26) (796.65) (912.74) (998.40) (969.13)
0.50 42.49 66.27 109.66 327.65 738.87 937.27 979.06
(29.92) (45.24) (88.26) (328.63) (741.88) (940.32)  (1,001.09)
1.00 12.78 17.60 22.98 39.70 290.46 746.42 935.70
(7.23) (9.05) (11.25) (21.51) (287.43) (755.25) (940.07)
1.50 6.39 8.61 10.76 15.69 59.69 518.06 901.28
(3.03) (3.79) (4.48) (6.00) (44.92) (514.47) (902.16)
2.50 2.67 3.61 434 5.94 10.41 122.44 740.84
(1.00) (1.25) (1.48) (1.87) (3.13) (116.12) (748.72)

Note. Standard deviation of run length is in parentheses.



253
Table 86

The Upper Control Limits and Average Run Length Values of the Multivariate
Exponentially Weighted Moving Average That Achieved an In-Control Average Run
Length = 200, 500, and 1,000 under Multivariate Gamma, (a=3, f=1) Distribution

X
ARL, 3 0.01 0.02 0.03 0.05 0.1 0.2 05
200 h, 41241 21166 14429 8956 4768 257.8 116.1
0.00 200 200 200 200 200 200 200
(215.23)  (201.53) (195.80) (192.00)  (193.90) (196.60)  (202.30)
0.25 58.24 62.89 65.75 73.06 80.47 9580  130.19
(47.74)  (50.77)  (53.43)  (63.22)  (73.11)  (90.70)  (129.27)
0.50 29.78 31.05 32.08 32.95 37.47 47.43 78.21
(18.94)  (19.65)  (21.15)  (23.37)  (31.23)  (43.78)  (76.99)
1.00 14.50 14.73 14.52 14.22 13.79 15.53 29.06
(6.43) (6.53) (6.66) (7.13) (8.10)  (1127)  (27.52)
1.50 6.70 9.54 9.35 8.68 7.97 7.90 12.34
(3.47) (3.41) (3.35) (3.30) (3.46) (4.36)  (10.50)
2.50 5.88 5.71 5.50 5.03 4.36 3.81 3.88
(1.60) (1.57) (1.49) (1.41) (1.33) (1.34) (2.16)
500 h, 42095 21755 14867 9285 4983 2726 1258
0.00 500 500 500 500 501 498 503
(485.80) (480.18) (480.08) (490.50)  (499.80)  (503.80)  (502.16)
0.25 109.17 11543 12214 13568  170.89 21721  316.65
(77.90)  (88.44)  (102.09) (120.26) (161.73) (213.21) (318.75)
0.50 50.59 49.42 48.56 51.75 63.85 93.26  177.47
(26.06)  (28.52)  (30.40)  (37.01)  (53.76)  (86.92)  (173.15)
1.00 23.49 21.62 20.25 18.91 19.18 24.13 58.86
(8.42) (8.29) (8.46) (9.03)  (1123)  (18.92)  (56.08)
1.50 15.42 13.69 12.49 11.28 10.24 10.55 21.04
(4.47) (4.28) (4.03) (3.97) (4.42) (6.14) (1851
2.50 9.14 7.98 7.15 6.30 5.23 453 5.16
(2.00) (1.84) (1.73) (1.60) (1.50) (1.57) (3.21)
1,000 h, 42684 22117 15157 9488 512.0 282.8 132.7
0.00 1,002 1,002 998 1,000 1,007 1,001 999
(959.10)  (993.84) (993.66) (995.40) (1,003.3)  (993.05)  (982.17)
0.25 159.02 17130 18561 21614 28832 41196  601.31
(109.35)  (135.49) (157.16) (197.23) (278.74)  (404.02)  (603.94)
0.50 67.21 63.78 64.41 70.43 93.85 15650  331.37
(32.22)  (36.21)  (40.64)  (52.68)  (83.42)  (149.59)  (327.96)
1.00 29.91 25.95 24.17 22.71 23.47 33.68 98.39
(9.71) (9.43) (9.80)  (1055)  (14.41)  (27.83)  (95.80)
1.50 19.28 16.15 14.70 13.00 11.75 12.90 32.58
(4.96) (4.55) (4.52) (4.43) (4.96) (7.76)  (30.41)
2.50 11.37 9.36 8.33 7.08 5.18 5.11 6.53

(2.23) (1.99) (1.88) (1.72) (1.59) (1.78) (4.28)
Note. Standard deviation of run length is in parentheses.




Table 87

The Upper Control Limits and Average Run Length Values of the Signed-Rank
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Multivariate Exponentially Weighted Moving Average That Achieved an In-Control
Average Run Length ~ 200, 500, and 1,000 under Multivariate Gamma, (a=3, f=1)

Distribution
A
ARL, & 0.01 0.02 0.03 0.05 0.1 0.2 0.5
200 L 1,366.3 723.1 505.6 3285 190.3 116.2 65.9
0.00 201 200 200 200 200 200 201
(236.48)  (209.37) (200.50)  (196.52)  (199.56) (196.41)  (200.60)
0.25 10.46 11.40 11.53 11.72 12.38 15.24 30.93
(4.60) (5.10) (5.28) (5.81) (7.25) (11.33)  (29.17)
0.50 5.24 5.61 5.56 5.40 5.18 5.18 8.04
(1.60) (1.68) (1.71) (1.77) (1.93) (2.42) (6.23)
1.00 2.97 2.92 2.87 2.74 251 2.24 2.14
(0.59) (0.61) (0.61) (0.62) (0.61) (0.62) (0.85)
1.50 2.00 2.05 2.02 1.96 1.83 1.60 1.26
(0.27) (0.32) (0.29) (0.28) (0.38) (0.49) (0.44)
2.50 1.21 1.34 1.26 1.01 1.00 1.00 1.00
(0.41) (0.47) (0.44) (0.31) (0.528) (0) (0)
500 L 14199 761.7 537.4 352.7 207.7 129.3 76.7
0.00 499 494 498 500 500 500 502
(513.19)  (494.26) (495.26)  (500.16)  (497.38) (509.81)  (502.64)
0.25 17.28 16.79 16.44 16.15 17.48 23.76 66.31
(6.17) (6.56) (6.90) (7.60) (10.46)  (19.03)  (64.08)
0.50 8.43 7.95 7.53 7.05 6.52 6.69 13.71
(2.10) (2.05) (2.04) (2.13) (2.3) (3.25) (11.65)
1.00 4.33 4.03 3.79 3.44 3.00 2.65 2.73
(0.74) (0.72) (0.71) (0.70) (0.68) (0.71) (1.17)
1.50 3.02 2.82 2.65 2.37 2.04 1.85 1.53
(0.43) (0.43) (0.48) (0.49) (0.33) (0.37) (0.51)
2.50 1.99 1.97 1.94 1.77 1.25 1.00 1.00
(0.05) (0.14) (0.22) (0.42) (0.43) (.045) (0.01)
1,000 L 1,460.0 798.1 559.3 369.2 219.4 138.7 84.5
0.00 994 1,000 1,000 1,001 997 997 1,000
(988.60) (980.70) (966.63) (1,002.63) (990.75) (994.06)  (997.33)
0.25 22.55 22.22 20.09 19.64 21.79 34.21 115.95
(7.39) (7.90) (7.98) (9.27) (13.54)  (2856)  (115.52)
0.50 10.88 10.23 8.96 8.15 7.50 7.96 20.60
(2.40) (2.41) (2.32) (2.33) (2.67) (3.89) (18.14)
1.00 5.49 5.06 4.42 3.90 3.33 2.93 3.27
(0.84) (0.83) (0.78) (0.75) (0.74) (0.76) (1.51)
1.50 3.97 3.48 3.03 2.71 2.25 1.97 1.70
(0.50) (0.53) (0.43) (0.47) (0.45) (0.35) (0.51)
2.50 2.42 2.08 1.99 1.95 1.58 1.05 1.00
(0.49) (0.28) (0.07) (0.22) (0.49) (0.23) (0.00)

Note. Standard deviation of run length is in parentheses.
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Table 88

Average Run Length Values of the Hotelling’s T That Achieved an In-Control
Average Run Length = 200 under p-variates Multivariate Normal Distribution

Y
2 3 4 5
o ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0.00 200.00 200.00 200.00 200.00
0.25 162.11 160.46 17580 17436 18242 180.29 186.44 186.26
0.5 11245 11348 130.19 129.89 140.16 140.78 144.74 147.05
1.0 4150 4128 5342 5331 6059 60.09 68.62 69.67
15 15.67 1524 20.77 1984 2518 2487 2894 28.21
2.5 3.61 3.08 4.46 3.95 5.27 4.72 6.03 5.58

Table 89

Average Run Length Values of the Hotelling’s T That Achieved an In-Control
Average Run Length ~ 500 under p-variates Multivariate Normal Distribution

2 3 4 5
o ARL SDRL  ARL SDRL  ARL SDRL  ARL SDRL

0.00 500.00 500.00 500.00 500.00

0.25 395.29 397.41 41352 42055 44434 443.09 461.89 463.25

0.5 25413 253.84 307.15 303.17 330.17 33160 347.66 352.88

1.0 83.13 8297 11156 110.77 130.83 128.88 148.05 148.71

15 28.05 27.53 38.56 38.09 47.14 46.54  56.08 55.04

25 5.14 4.57 6.57 6.07 7.90 7.39 9.19 8.51
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Table 90

Average Run Length Values of the Hotelling’s T? That Achieved an In-Control Average
Run Length = 1,000 under p-variates Multivariate Normal Distribution

P
2 3 4 5

o ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 1,000.00 1,000.00 1,000.00 1,000.00

0.25 77120 764.14 837.75 846.95 881.11 876.92 898.83 910.71

0.5 47475 483.32 577.60 578.22 64094 641.13 669.04 674.43

1.0 140.49 138.42 196.35 196.55 231.75 230.24 26950 273.11

15 4355 43.93 63.09 63.10 77.30 77.85 92.68 91.56

2.5 6.88 6.44 9.24 8.83 11.35 10.89 13.31 1291
Table 91

Average Run Length Values of the Hotelling’s T? That Achieved an In-Control Average
Run Length = 200 under p-variates Multivariate t,(5)- Distribution

P
2 3 4 5
d ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0.00 200.00 196.61 200.00 196.61 201.00 202.63 201.00 198.70
0.25 173.44 170.68 183.13 180.89 185.73 184.26 189.25 187.77
0.5 142,94 142,15 159.21 159.41 166.28 163.48 176.03 174.21
1.0 76.65 75.09 100.52 101.41 110.14 110.60 120.05 120.40
1.5 3406 33.18 48.77 47.86 59.15 58.04 67.38 67.27

2.5 6.78 6.23 10.04 9.52 1270 1242 1588 15.19
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Table 92

Average Run Length Values of the Hotelling’s T* That Achieved an In-Control Average
Run Length = 500 under p-variates Multivariate ty(5)- Distribution

p
2 3 4 5
o ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0.00 488.00 483.73 494.00 493.82 500.00 501.81 494.00 493.63
0.25 439.56 436.29 449.27 449.74 464.87 463.89 477.49 483.03
0.5 37594 377.00 393.81 393.33 435.11 434.70 445.17 444.86
1.0 212.54 211.93 265.61 264.29 301.30 297.92 325.54 323.34
1.5 96.17 95.01 13590 134.77 174.03 171.95 19443 192.73
2.5 16.08 15.62 2548 2535 37.06 36.35 4563 45.19

Table 93

Average Run Length Values of the Hotelling’s T* That Achieved an In-Control Average
Run Length = 1,000 under p-variates Multivariate ty(5)- Distribution

p
2 3 4 5
d ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0.00 992.00 986.65 998.00 978.42 988.00 984.37 1,000.00 990.61

0.25 880.93 881.01 927.34 916.77 952.96 951.14  950.61 967.43

0.5 77423 769.71 844.34 855.33 864.67 877.62  921.47 936.77
1.0 467.87 464.36 578.61 576.05 657.06 649.00 713.52 707.90
1.5 230.38 225.60 323.24 325.44 411.02 403.19 478.71 488.31

2.5 38.36 38.12 6596 66.47 94.77 92.68 12412 122.95
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Average Run Length Values of the Hotelling’s T* That Achieved an In-Control Average
Run Length = 200 under p-variates Multivariate Gammay(a=3,5=1) Distribution

p
2 4 5

d ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 201.00 197.98 200.00 202.82 200.00 199.38 200.00 197.66

0.25 146.77 148.19 159.24 158.20 169.50 170.27 171.74 171.20

0.50 92.89 93.04 120.46 119.94 134.60 136.27 138.17 136.37

1.00 3032 29.92 60.17 6077 73.02 7275 76.62 77.76

1.50 8.73 833 2890 2829 3566 3568 39.57 38.52

2.50 1.05 0.22 7.31 6.93 8.97 8.47 10.07 9.45
Table 95
Average Run Length Values of the Hotelling’s T That Achieved an In-Control
Average Run Length ~ 500 under p-variates Multivariate Gammay(a=3,5=1)
Distribution

p
2 3 4 5

d ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0.00 503.00 505.74 501.00 507.26 500.00 501.74 500.00 491.81
0.25 363.96 363.06 397.45 395.36 412.64 417.49 41211 410.32
0.50 23419 236.49 285.51 28453 325.10 321.41 331.05 328.59
1.00 76.57 77.11 139.67 138.28 166.91 166.25 177.37 175.75
1.50 21.76  21.00 6199 6236 78.13 77.70 84.48 84.08
2.50 1.65 1.04 1338 1286 17.01 16.44 19.02 18.44
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Average Run Length Values of the Hotelling’s T* That Achieved an In-Control Average
Run Length = 1,000 under p-variates Multivariate Gammay(a=3,5=1) Distribution

p
2 3 4 5
d ARL  SDRL ARL SDRL ARL SDRL ARL  SDRL
0.00 993.00 1,000.55 995.00 983.80 1,000.00 1,000.13 999.00 1,011.04
025 73107 737.23 77144 76791 837.93 847.06 828.34  822.73
0.50 453.92  455.09 559.94 557.73 636.27 638.27 632.96 636.14
1.00 148.01 148.15 261.96 262.37 31241 31538 336.51  336.29
1.50 43.76 43.17 113.08 11254 139.09 140.24 153.77 152.90
2.50 3.20 2.65 21.73 20.98 27.85 27.17 3148 31.31




APPENDIX E

AVERAGE RUN LENGTH COMPARISONS
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Table 97

Average Run Length Comparisons for p = 2, A =.02, .03, and .05, and In-Control
Average Run Length = 200 from the Multivariate Normal Distribution

)
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 6.30 6.20 6.90 6.80 770 77 10.59
0.00 206 197 193 194 198 201 200
(253) (245) (233) (223) (213) (214)
0.25 46.86 45.42 51.45 49.77 59.11 59.51 162.11
(47.19) (76.75) (49.27) (48.67) (57.49) (57.43) (160.46)
050 16.93 16.12 18.72 18.19 2052 20.77 112.45
(14.81) (14.56) (15.57) (15.51) (16.60) (16.87) (113.48
1.00 571 533 6.21 5.92 6.88 6.73 4150
@17) (4.02) @.47) (4.30) @.71) (4.61) (41.28
1.50 3.07 2.92 3.32 3.16 361 358 15.67
(1.94) (1.92) (2.06) (2.02) (2.16) (2.17) (15.42)
2,50 1.56 1.48 1.63 157 1.74 171 361
(0.74) 0.72) (0.79) (0.76) (0.84) (0.83) (3.08)

Note. Standard deviation of run length is in parentheses.

Table 98

Average Run Length Comparisons forp =2, A = 0.1, 0.2, and 0.5, and In-Control

Average Run Length = 200 from the Multivariate Normal Distribution

A
p 0.1 0.2 05
SRMEWMA _MEWMA _ SRMEWMA _ MEWMA _ SRMEWMA __ MEWMA __ Hotelling’s T
2 o5 UCL 8.85 8.8 9.90 9.7 10.90 10.40 10.59
0.00 197 201 196 202 201 198 200
(200) (205) (197) (203) (203) (200)
0.25 74.92 7491 97.13 94.88 141.65 133.82 162.11
(73.52) (71.68) (93.66) (92.43) (142.57) (131.22) (160.46)
0.50 25.62 25.17 35.10 33.84 68.02 62.70 112.45
(21.27) (20.79) (32.32) (30.71) (66.90) (61.51) (113.48
1.00 7.81 7.78 9.36 8.94 16.82 15.37 4150
(5.14) (5.13) (6.62) (6.31) (15.41) (13.55) (41.28
1.50 4.07 401 4.60 4.46 6.57 6.06 15.67
(2.36) (2.34) (2.68) (2.56) (4.99) (4.44) (15.42)
2.50 1.90 1.87 2.08 2.04 2.34 2.25 361
(0.90) (0.92) (0.98) (0.99) (1.21) (1.20) (3.08)

Note. Standard deviation of run length is in parentheses.
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Table 99

Average Run Length Comparisons for p = 3, A =.02, .03, and .05, and In-Control
Average Run Length = 200 from the Multivariate Normal Distribution

A
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
3 & UCL 8.30 8.20 9.10 8.80 10.20 9.70 12.83
0.00 197 200 200 193 201 198 200
(257) (244) (239) (220) (221) (214)
0.25 50.11 51.46 56.84 (59.74) 56.38 69.70 65.63 175.80
(53.77) (52.06) (54.32) (69.97) (62.80) (174.36)
050 18.15 19.23 20.79 21.01 24.29 23.17 130.19
(16.79) (16.49) (17.95) (17.36) (20.31) (18.70) (129.89)
1.00 5.93 6.48 6.79 6.97 7.84 7.68 53.42
(4.53) (4.67) (4.85) (4.83) (5.22) (5.06) (53.31)
150 3.21 347 3.60 3.69 4.12 4.04 20.77
(2.08) (2.16) (2.22) (2.30) (2.41) (2.40) (19.84)
250 155 1.79 173 1.79 1.92 1.92 4.46
(0.73) (0.83) (0.82) (0.88) (0.88) (0.94) (3.95)

Note. Standard deviation of run length is in parentheses.

Table 100

Average Run Length Comparisons for p =3, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length ~ 200 from the Multivariate Normal Distribution

)
p 0.1 02 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
3 o UCL 12.00 11.00 14.45 12.00 19.10 12.60 12.83
0.00 202 209 200 204 200 195 200
(214) (214) (206) (207) (197) (195)
0.25 96.00 83.18 136.97 110.95 180.71 142.83 175.80
(96.21) (80.16) (138.34) (109.87) (181.89) (143.54) (174.36)
050 33.60 29.07 61.03 40.67 132.92 73.98 130.19
(29.27) (24.04) (59.21) (36.61) (133.35) (72.18) (129.89)
1.00 9.74 8.73 1453 10.49 51.80 18.70 53.42
(6.37) (5.70) (11.05) (7.56) (49.62) (16.91) (53.31)
150 4.92 4.49 6.32 5.06 19.03 7.02 20.77
(2.71) (2.59) (3.65) (2.95) (17.17) (5.31) (19.84)
250 221 2.07 2.63 2.23 438 245 4.46
(1.00) (0.99) (1.15) (1.06) (2.62) (1.317) (3.95)

Note. Standard deviation of run length is in parentheses.
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Table 101

Average Run Length Comparisons for p =4, A =.02, .03, and .05, and In-Control
Average Run Length = 200 from the Multivariate Normal Distribution

A
p 02 03 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
4§ UCL 10.30 9.90 11.45 10.70 13.05 11.60 14.86
0.00 201 199 202 203 200 193 200
(263) (246) (256) (232) (230) (209)
0.25 56.33 55.30 67.32 61.93 84.7 71.22 182.42
(61.76) (55.12) (71.02) (60.20) (87.25) (67.50) (180.29)
050 21.13 20.26 24.61 2211 30.43 24.94 140.16
(18.66) (17.69) (21.07) (18.33) (25.94) (20.02) (140.78)
1.00 7.33 6.69 8.20 7.48 9.62 8.28 60.59
(5.13) (5.00) (5.49) (5.24) (6.23) (5.51) (60.09)
150 3.89 358 433 3.95 4.97 427 25.18
(2.26) (2.32) (2.46) (2.44) (2.72) (2.56) (24.87)
250 1.88 1.75 2.05 1.87 2.28 2.01 527
(0.81) (0.88) (0.87) (0.93) (0.97) (0.98) 4.72)

Note. Standard deviation of run length is in parentheses.

Table 102

Average Run Length Comparisons for p =4, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length ~ 200 from the Multivariate Normal Distribution

)
p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
4 5 UcCL 16.25 12.90 21.45 13.90 33.50 14.70 14.86
0.00 200 200 200 199 200 201 200
(218) (203) (210) (199) (200) (201)
0.25 123.19 89.81 171.09 116.74 196.13 156.31 182.42
(131.13) (86.98) (174.35) (115.13) (195.50) (15.30) (180.29)
0.50 50.77 31.44 102.06 43.76 174.16 84.06 140.16
(47.12) (25.71) (102.95) (40.22) (176.10) (83.19) (140.78)
1.00 13.10 9.57 28.11 11.34 114.80 21.64 60.59
(8.60) (6.19) (24.39) (8.07) (114.95) (19.52) (60.09)
150 6.37 4.86 10.13 5.33 63.05 8.06 25.18
(3.36) @.77) (6.30) (3.11) (61.71) (6.31) (24.87)
250 275 2.18 3.65 2.35 14.35 2.70 527
(1.16) (1.05) (1.51) (1.12) (11.92) (1.47) (4.72)

Note. Standard deviation of run length is in parentheses.
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Table 103

Average Run Length Comparisons for p =5, A =.02, .03, and .05, and In-Control
Average Run Length = 200 from the Multivariate Normal Distribution

x
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
5 & UCL 12.60 11.60 14.10 12.30 16.90 13.40 16.74
0.00 202 200 200 195 201 200 200
(273) (241) (248) (222) (231) (218)
0.25 67.46 59.12 81.28 66.05 111.61 77.00 186.44
(73.35) (58.57) (88.24) (64.05) (120.36) (74.76) (186.26)
050 25.44 21.94 30.00 24.03 41.03 27.23 144,74
(22.09) (18.42) (25.34) (19.63) (36.27) (21.39) (147.05)
1.00 8.70 7.66 9.86 8.11 12.33 8.91 68.62
(5.86) (5.35) (6.39) (5.52) (7.66) (5.83) (69.67)
150 473 4.03 5.18 4.24 6.28 469 28.94
(2.52) (2.49) (2.78) (2.57) (3.21) (2.69) (28.21)
250 2.25 1.94 243 2.04 2.81 2.18 6.03
(0.98) (0.95) (0.96) (1.00) (1.12) (1.05) (5.58)

Note. Standard deviation of run length is in parentheses.

Table 104

Average Run Length Comparisons forp =5, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length ~ 200 from the Multivariate Normal Distribution

A
p 0.1 02 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T°
5 o UCL 22.80 14.70 3350 15.8 58.30 16.6 16.74
0.00 199 199 201 199 200 197 200
(216) (201) (208) (197) (200) (185)
0.25 156.56 95.78 187.51 123.33 194.70 160.37 186.44
(169.48) (93.40) (194.42) (122.15) (198.98) (160.06) (186.26)
0.50 82.16 34.32 147.13 49.28 191.50 92.99 144.74
(80.09) (29.07) (147.88) (45.03) (189.93) (92.07) (147.05)
1.00 20.78 10.05 67.24 12.40 161.04 25.05 68.62
(14.85) (6.43) (65.52) (8.74) (161.80) (23.05) (69.67)
150 9.02 5.12 23.43 577 124.96 9.08 28.94
(4.59) (2.83) (18.56) (3.33) (124.57) (7.31) (28.21)
250 3.66 12.34 5.79 250 55.24 2.86 6.03
(1.41) (1.12) (2.30) (1.18) (52.50) (1.56) (5.58)

Note. Standard deviation of run length is in parentheses.
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Table 105

Average Run Length Comparisons for p = 2, A =.02, .03, and .05, and In-Control
Average Run Length ~ 500 from the Multivariate Normal Distribution

)
p 02 03 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 8.10 8.10 8.85 8.80 9.75 9.70 12.42
0.00 492 494 499 501 494 502 500
(556) (551) (539) (537) (517) (501)
0.25 72.30 71.61 82.34 81.70 99.10 98.18 395.29
(63.57) (64.31) (73.68) (72.82) (91.71) (89.98) (397.41)
0.50 23.60 23.18 25.73 2557 29.07 29.10 254.13
(17.89) (18.18) (19.28) (19.01) (21.90) (21.38) (253.84)
1.00 7.42 7.24 8.21 7.81 8.81 8.62 83.13
(4.93) (4.95) (5.31) (5.16) (5.47) (5.50) (82.97)
1.50 3.83 372 4.18 4.02 451 4.40 28.05
(2.26) (2.29) (2.44) (2.40) (2.58) (2.48) (27.53)
2.50 1.81 1.72 191 1.84 2.06 2.01 5.14
(0.89) (0.83) (0.91) (0.90) (0.96) (0.96) (4.57)

Note. Standard deviation of run length is in parentheses.

Table 106

Average Run Length Comparisons forp =2, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 500 from the Multivariate Normal Distribution

p
p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 10.95 10.80 11.95 11.60 12.75 12.30 12.42
0.00 502 498 491 482 482 504 500
(507) (505) (484) (488) (479) (504)
0.25 139.49 135.56 205.31 192.24 315.56 312.80 395.29
(134.16) (130.63) (200.77) (187.02) (309.19) (311.50) (397.41)
050 37.75 36.58 58.31 54.61 130.24 126.77 254.13
(30.95) (30.27) (52.92) (50.51) (125.96) (124.78) (253.84)
1.00 9.95 9.77 12.32 11.82 26.05 24.44 83.13
(6.24) (6.19) (8.74) (8.41) (23.92) (22.060) (82.97)
150 4.93 4.90 5.60 545 8.78 8.13 28.05
(2.67) (2.69) (3.19) (3.07) (6.95) (6.19) (27.53)
250 2.22 217 2.40 2.33 273 2.65 5.14
(1.02) (1.02) (1.10) (1.08) (1.46) (1.43) (4.57)

Note. Standard deviation of run length is in parentheses.
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Table 107

Average Run Length Comparisons for p = 3, A =.02, .03, and .05, and In-Control
Average Run Length = 500 from the Multivariate Normal Distribution

p
p 02 03 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T°
3 & UCL 10.50 10.20 11.40 11.00 12.65 11.90 14.79
0.00 497 488 502 495 500 483 500
(568) (541) (558) (521) (533) (496)
0.25 83.17 82.04 97.48 93.13 124.44 111.13 41352
(79.85) (73.04) (91.36) (82.56) (121.37) (10.69) (420.55)
0.50 25.64 2691 29.45 29.42 35.21 33.09 307.15
(20.57) (19.66) (22.79) (21.33) (27.02) (24.54) (303.17)
1.00 8.00 853 8.97 9.03 10.24 9.76 111.56
(5.53) (5.57) (5.80) (5.62) (6.35) (5.89) (110.77)
150 4.06 430 452 464 5.09 495 38.56
(2.47) (2.51) (2.61) (2.62) (2.80) (2.70) (38.09)
250 1.84 2.01 2.03 2.10 2.28 2.22 6.57
(0.88) (0.97) (0.94) (1.00) (1.05) (1.06) (6.07)

Note. Standard deviation of run length is in parentheses.

Table 108

Average Run Length Comparisons forp = 3, A = 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 500 from the Multivariate Normal Distribution

A
p 0.1 0.2 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
3 & UCL 14.70 13.00 17.60 14.00 23.80 14.60 14.79
0.00 497 473 497 498 504 490 500
(520) (475) (505) (497) (500) (485)
0.25 197.21 154.84 309.43 228.20 45559 340.06 41352
(193.48) (149.68) (311.71) (224.68) (456.01) (342.13) (420.55)
0.50 53.98 42.25 121.00 66.77 325.60 153.04 307.15
(47.88) (35.25) (119.55) (62.48) (323.42) (15.85) (303.17)
1.00 12.89 10.85 21.95 13.75 118.43 30.68 111.56
(8.05) (6.68) (17.33) (9.67) (117.12) (28.86) (110.77)
1.50 6.13 5.41 8.15 6.06 38.87 9.58 38.56
(3.22) (2.89) (4.72) (3.44) (36.49) (7.70) (38.09)
2,50 2.64 2.38 3.13 255 6.49 2.91 6.57
(1.14) (1.10) (1.33) 1.17) (4.48) (1.60) (6.07)

Note. Standard deviation of run length is in parentheses.
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Average Run Length Comparisons for p =4, A =.02, .03, and .05, and In-Control
Average Run Length ~ 500 from the Multivariate Normal Distribution

A
p 02 03
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
4§ UCL 12.90 12.10 14.20 13.00 16.30 14.00 16.92
0.00 494 492 498 503 498 506 500
(585) (546) (563) (530) (541) (523)
0.25 95.05 88.82 116.70 102.08 168.17 127.39 444.34
(92.36) (79.56) (115.55) (91.42) (173.42) (119.16) (443.09)
0.50 30.61 28.44 35.19 31.96 47.32 36.44 330.17
(24.02) (21.60) (27.19) (23.37) (37.85) (27.36) (331.60)
1.00 953 8.74 10.63 9.58 12.84 10.52 130.83
(6.24) (5.79) (6.68) (6.09) (7.65) (6.33) (128.88)
150 4.98 450 5.46 4.90 6.32 534 47.14
(2.80) (2.69) (2.93) (2.83) (3.30) (2.93) (46.54)
250 2.25 2.06 2.44 2.20 275 2.37 7.90
(0.98) (1.01) (1.05) (1.07) (1.14) (1.11) (7.39)

Note. Standard deviation of run length is in parentheses.

Table 110

Average Run Length Comparisons for p =4, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length ~ 500 from the Multivariate Normal Distribution

A
p 0.1 02
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
4§ UcCL 20.50 15.20 27.65 16.20 4450 16.80 16.92
0.00 499 505 500 501 500 496 500
(522) (513) (515) (500) (505) (502)
0.25 292.27 176.99 414.18 2.54.83 494.08 365.86 444.34
(306.87) (169.92) (424.22) (248.83) (501.77) (362.06) (443.09)
0.50 98.37 48.13 244.56 78.83 440.20 177.91 330.17
(94.88) (39.80) (245.11) (74.97) (438.85) (177.33) (331.60)
1.00 19.00 12.17 57.38 15.12 304.36 36.42 130.83
(12.31) (7.37) (52.69) (10.81) (304.84) (34.68) (128.88)
150 8.34 5.83 16.53 6.70 165.90 11.34 47.14
(4.21) (3.19) (11.35) (3.82) (162.85) (9.30) (46.54)
250 341 2.56 475 2.72 35.37 3.8 7.90
(1.37) (1.18) (1.86) (1.25) (33.16) (1.74) (7.39)

Note. Standard deviation of run length is in parentheses.
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Table 111

Average Run Length Comparisons for p =5, A =.02, .03, and .05, and In-Control
Average Run Length ~ 500 from the Multivariate Normal Distribution

P
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
5 & UCL 15.90 14.00 18.05 14.80 21.90 15.90 18.90
0.00 500 504 501 494 503 499 500
(615) (560) (575) (520) (556) (514)
0.25 119.63 98.27 157.31 111.00 251.28 136.86 461.89
(121.54) (86.67) (160.08) (102.35) (270.44) (129.26) (463.25)
050 37.00 31.66 4554 34.47 74.17 39.28 347.66
(29.02) (23.50) (36.24) (24.52) (66.29) (29.06) (352.88)
1.00 11.58 9.99 13.31 10.72 17.39 11.50 148.05
(7.13) (6.21) (7.97) (6.50) (10.00) (6.77) (148.71)
1.50 5.95 5.03 6.78 5.36 8.39 5.79 56.08
(3.12) (2.83) (3.46) (3.00) (4.02) (3.10) (55.04)
250 2.70 2.32 2.96 241 355 255 9.19
(1.06) (1.11) (1.15) (1.14) (1.35) (1.19) (8.51)

Note. Standard deviation of run length is in parentheses.

Table 112

Average Run Length Comparisons for p =5, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length ~ 500 from the Multivariate Normal Distribution

)
p 0.1 02 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T°
5 & UCL 30.60 17.10 46.90 18.10 84.00 18.80 18.90
0.00 501 488 501 485 493 495 500
(527) (489) (507) (485) (497) (493)
0.25 382.48 187.48 472.85 269.60 484.76 377.46 461.89
(399.29) (178.73) (483.38) (263.70) (488.94) (372.21) (463.25)
0.50 204.96 53.20 391.20 87.29 472.17 199.40 347.66
(205.60) (45.89) (396.67) (82.18) (476.26) (196.75) (352.88)
1.00 38.14 12.98 180.66 16.61 417.38 43.11 148.05
(29.00) (7.90) (181.51) (12.24) (409.12) (40.68) (148.71)
1.50 13.26 6.24 61.01 7.12 331.98 12.91 56.08
(6.60) (3.26) (55.38) (4.01) (330.77) (10.88) (55.04)
2.50 4.90 2.70 9.38 2.87 168.45 3.44 9.19
(1.75) (1.23) (4.04) 1.12) (165.21) (1.93) (8.51)

Note. Standard deviation of run length is in parentheses.
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Average Run Length Comparisons for p = 2, A =.02, .03, and .05, and In-Control
Average Run Length = 1,000 from the Multivariate Normal Distribution

P .
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 9.60 9.60 10.40 10.30 11.35 11.20 13.88
0.00 985 976 990 971 1,003 968 1,000
(1,047) (1,030) (1,024) (999) (1,033) (996)
0.25 96.92 96.42 113.27 112.73 145.00 138.55 771.20
(80.26) (82.69) (97.61) (96.39) (132.17) (125.68) (764.14)
0.50 29.46 29.03 32.28 31.34 37.22 35.93 474.75
(20.76) (20.94) (22.32) (22.06) (26.89) (25.79) (483.32)
1.00 8.92 8.72 950 931 10.34 10.25 140.49
(5.60) (5.62) (5.77) (2.71) (6.02) (6.10) (138.42)
1.50 448 4.20 477 462 5.16 5.07 4355
(2.53) (2.48) (2.62) (2.63) .77 (2.76) (43.93)
2.50 2.04 1.95 2.16 2.08 231 2.25 6.88
(0.96) (0.95) (1.00) (0.99) (1.07) (1.07) (6.44)

Note. Standard deviation of run length is in parentheses.

Table 114

Average Run Length Comparisons forp =2, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 1,000 from the Multivariate Normal Distribution

p

05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 12,50 12.30 1350 13.10 14.20 13.70 13.88
0.00 995 981 992 987 967 1,011 1,000
(1,007) (993) (982) (973) (960) (1,012)
0.25 225.56 212.96 356.92 338.80 593.27 592.36 771.20
(222.12) (203.08) (362.23) (343.19) (595.55) (588.96) (764.14)
0.50 49.83 48.32 87.85 80.86 227.82 220.45 474.75
(40.86) (39.95) (83.30) (76.00) (229.10) (215.62) (483.32)
1.00 11.66 11.49 15.19 14.38 38.08 35.33 140.49
(6.90) (6.83) (10.75) (10.18) (35.63) (33.42) (138.42)
1.50 5.66 553 6.40 6.18 11.02 10.19 4355
(2.97) (2.94) (3.56) (3.45) (9.11) (8.04) (43.93)
2.50 2.46 242 2.64 255 3.10 2.94 6.88
(1.11) (1.11) (1.18) (1.15) (1.68) (1.59) (6.44)

Note. Standard deviation of run length is in parentheses.
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Average Run Length Comparisons for p = 3, A =.02, .03, and .05, and In-Control
Average Run Length = 1,000 from the Multivariate Normal Distribution

270

A
P 02 03 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
3 & UCL 12.20 11.80 13.20 12.60 14.20 13.60 16.26
0.00 993 942 996 955 1,004 995 1,000
(1,019) (1,002) (1,056) (972) (1,035) (1,004)
0.25 113.84 111.06 140.38 127.78 179.71 168.78 837.75
(102.33) (93.48) (127.29) (111.44) (170.82) (156.50) (846.95)
050 32.44 33.67 36.90 35.84 43.56 41.28 577.60
(23.88) (23.43) (26.94) (24.70) (33.21) (29.69) (578.22)
1.00 9.64 9.95 10.64 10.53 11.81 11.47 196.35
(6.18) (6.01) (6.49) (6.21) (6.94) (6.61) (196.55)
150 477 4.98 5.29 5.36 577 575 63.09
(2.76) (2.75) (2.90) (2.89) (3.00) (2.98) (63.10)
2,50 211 2.24 2.30 2.37 2,50 2.49 9.24
(0.99) (1.06) (1.05) (1.10) (1.11) (1.13) (8.83)

Note. Standard deviation of run length is in parentheses.

Table 116

Average Run Length Comparisons forp = 3, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 1,000 from the Multivariate Normal Distribution

p
p 0.1 0.2 05
SRMEWMA _MEWMA _ SRMEWMA _ MEWMA __ SRMEWMA __ MEWMA __ Hotelling’s T°
3 5 UCL 16.90 14.80 20.25 15.60 27.40 16.20 16.26
0.00 993 1,014 992 994 994 1,014 1,000
(1,010) (1,022) (998) (992) (1,019) (1,019)
0.25 353.79 267.60 606.84 405.19 875.22 662.42 837.75
(356.41) (263.21) (609.62) (402.90) (888.06) (656.69) (846.95)
050 81.58 58.42 208.82 101.07 607.44 281.23 577.60
(74.49) (48.81) (204.87) (96.38) (623.17) (283.71) (578.22)
1.00 15.66 13.09 30.78 16.76 219.68 46.64 196.35
(9.71) (7.70) (24.83) (12.13) (218.42) (43.84) (196.55)
150 711 6.22 10.11 6.91 67.05 12.62 63.09
(3.60) (3.18) (5.87) (3.84) (66.02) (10.48) (63.10)
250 2.94 2.65 358 2.82 9.06 331 9.24
(1.26) (1.18) (1.48) (1.26) (6.66) (1.83) (8.83)

Note. Standard deviation of run length is in parentheses.
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Average Run Length Comparisons for p =4, A =.02, .03, and .05, and In-Control
Average Run Length ~ 1,000 from the Multivariate Normal Distribution

p . .05
SRMEWMA MEWMA  SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T
4 ) UCL 15.00 13.90 16.50 14.80 18.85 15.80 18.46
0.00 988 962 997 1,006 1,000 1,004 1,000
(1,121) (1,011) (1,096) (1,029) (1,078) (1,032)
0.25 136.53 122.45 181.43 147.80 290.42 192.27 881.11
(126.91) (102.24) (179.26) (128.73) (297.15) (179.86) (876.92)
0.50 38.37 36.25 45.67 39.72 63.16 45.86 640.94
(28.17) (24.93) (34.27) (27.02) (50.95) (33.01) (641.13)
1.00 11.43 10.50 12.97 11.48 15.41 12.44 231.75
(6.91) (6.40) (7.59) (6.67) (8.74) (7.13) (230.24)
1.50 5.74 5.23 6.35 5.74 7.36 6.10 77.30
(3.07) (2.94) (3.30) (3.11) (3.69) (3.13) (77.85)
2.50 2.54 2.34 2.80 2.49 3.15 2.65 11.35
(1.10) (1.12) (1.17) (1.17) (1.28) (1.22) (10.89)

Note. Standard deviation of run length is in parentheses.

Table 118

Average Run Length Comparisons for p =4, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 1,000 from the Multivariate Normal Distribution

p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
4 &5 UCL 23.95 16.90 32.80 17.80 53.60 18.30 18.46
0.00 1,001 973 992 1,006 989 985 1,000
(1,053) (978) (1,020) (1,003) (989) (975)
0.25 554.93 291.72 819.76 449.13 937.25 693.38 881.11
(563.57) (281.78) (843.67) (446.28) (936.07) (691.43) (876.92)
0.50 168.09 64.79 489.67 120.75 849.45 312.13 640.94
(163.65) (55.75) (491.70) (116.88) (843.00) (310.32) (641.13)
1.00 25.00 13.96 106.08 18.81 586.70 55.72 231.75
(16.09) (8.47) (99.79) (13.74) (575.21) (53.39) (230.24)
150 10.10 6.63 24.93 759 324.48 14.48 77.30
(4.85) (3.37) (18.69) (4.26) (323.49) (12.26) (77.85)
2,50 3.93 2.83 5.79 2.99 74.59 355 11.35
(1.52) (1.26) .27 (1.33) (71.30) (1.99) (10.89)

Note. Standard deviation of run length is in parentheses.



Table 119

272

Average Run Length Comparisons for p =5, A =.02, .03, and .05, and In-Control
Average Run Length = 1,000 from the Multivariate Normal Distribution

p .02 .
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T
5 3 UCL 18.60 15.80 21.30 16.70 26.10 17.70 20.51
0.00 1,010 996 998 996 1,006 980 1,000
(1,178) (1,049) (1,103) (1,008) (1,092) (1,015)
0.25 180.93 135.81 269.54 161.01 472.39 209.37 898.83
(174.33) (113.43) (283.60) (142.45) (498.75) (195.36) (910.71)
0.50 47.84 39.31 62.88 42.41 118.70 50.25 669.04
(34.53) (26.44) (47.81) (28.42) (108.19) (37.24) (674.43)
1.00 14.12 11.78 16.60 12.41 22.45 13.37 269.50
(8.28) (6.86) (9.30) (6.96) (12.38) (7.41) (273.11)
1.50 7.06 5.92 8.11 6.18 10.10 6.54 92.68
(3.51) (3.12) (3.88) (3.21) (4.63) (3.33) (91.56)
2.50 3.10 2.60 3.48 271 4.15 2.82 13.31
(1.21) (1.20) (1.33) (1.24) (1.56) (1.26) (12.91)

Note. Standard deviation of run length is in parentheses.

Table 120

Average Run Length Comparisons forp =5, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length ~ 1,000 from the Multivariate Normal Distribution

0.1

0.2 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
5 &5  UCL 37.50 18.90 58.40 19.80 107.90 20.40 2051
0.00 998 974 983 974 983 985 1,000
(1,046) (959) (997) (965) (973) (983)
0.25 785.62 320.54 920.76 482.92 965.83 73291 898.83
(813.27) (308.27) (928.77) (485.13) (958.74) (730.76) (910.71)
0.50 412.80 73.18 774.33 135.84 940.47 355.85 669.04
(427.53) (61.71) (780.33) (131.21) (946.45) (355.10) (674.43)
1.00 66.30 15.13 384.64 20.98 834.64 67.22 269.50
(55.39) (8.91) (391.47) (5.79) (824.48) (64.83) (273.11)
1.50 18.22 7.09 132.42 8.07 695.32 17.16 92.68
(9.24) (3.58) (127.31) (4.58) (691.56) (14.96) (91.56)
2.50 6.03 2.98 14.32 3.16 369..98 3.88 13.31
(2.07) (1.32) (7.42) (1.40) (363.46) (2.23) (12.91)

Note. Standard deviation of run length is in parentheses.
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Table 121

Average Run Length Comparisons for p = 2, A =.02, .03, and .05, and In-Control
Average Run Length =~ 200 from the Multivariate t,(5) Distribution

p
p 02 03 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 6.30 6.20 6.90 6.80 7.85 7.70 135
0.00 201 198 197 195 200 197 200
(248) (246) (226) (244) (221) (212) (196.61)
0.25 4736 4563 51.34 50.12 60.82 59.11 173.44
(47.58) (46.42) (49.45) (49.19) (59.76) (55.92) (170.68)
050 17.05 16.67 18.72 18.54 21.49 20.80 142.94
(14.92) (14.55) (15.79) (15.41) (17.22) (16.79) (142.15)
1.00 5.80 5.62 6.28 6.13 7.03 6.93 76.65
(4.14) (4.11) 4.32) (4.33) (a.74) (4.63) (75.09)
150 3.17 2.9 3.33 3.30 3.72 3.62 34.06
(1.94) (1.90) (2.00) (2.04) (2.17) (2.15) (33.18)
250 1.56 1.50 1.63 1.60 1.78 1.73 6.78
(0.74) (0.70) (0.76) 0.77) (0.84) (0.83) (6.23)

Note. Standard deviation of run length is in parentheses.

Table 122

Average Run Length Comparisons forp =2, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 200 from the Multivariate t,(5) Distribution

)
p 0.1 02 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 9.20 9.00 10.70 10.30 13.40 12.30 135
0.00 201 202 199 198 200 200 200
(208) (208) (205) (198) (204) (200) (196.61)
0.25 80.56 77.35 112.22 105.85 164.98 160.7 173.44
(77.97) (74.18) (112.97) (104.85) (164.07) (159.49) (170.68)
0.50 27.12 26.06 41.68 38.20 101.41 93.25 142.94
(22.43) (21.37) (38.00) (35.52) (101.40) (90.85) (142.15)
1.00 8.35 8.04 10.63 9.80 29.88 24.24 76.65
(5.36) (5.27) (7.57) (6.90) (27.75) (22.49) (75.09)
1.50 424 411 498 476 10.16 8.38 34.06
(2.40) (2.33) (2.80) (2.73) (8.33) (6.53) (33.18)
2.50 1.99 1.93 2.19 212 2.91 2.64 6.78
(0.92) (0.92) (1.00) (0.99) (1.53) (1.38) (6.23)

Note. Standard deviation of run length is in parentheses.
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Table 123

Average Run Length Comparisons for p = 3, A =.02, .03, and .05, and In-Control
Average Run Length = 200 from the Multivariate t,(5) Distribution

P
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
3 o UCL 8.35 8.20 9.25 8.90 10.70 9.90 16.6
0.00 200 200 200 201 200 202 200
(253) (247) (241) (234) (227) (219) (196.61)
0.25 53.22 51.54 61.27 56.16 79.69 67.63 183.13
(55.90) (51.58) (61.59) (55.02) (81.16) (65.77) (180.89)
050 19.71 18.82 22.38 20.69 27.18 23.58 159.21
(17.08) (16.23) (18.44) (17.30) (22.02) (19.25) (159.41)
1.00 6.75 6.31 7.42 6.90 8.72 7.70 100.52
(4.63) (4.63) (4.95) (4.80) (5.52) (5.03) (101.41)
1.50 359 3.32 3.94 3.60 451 4.07 48.77
(2.06) (2.13) (2.22) (2.20) (2.40) (2.40) (47.86)
250 1.75 1.65 1.87 1.78 2.08 1.89 10.04
(0.76) (0.80) (0.81) (0.87) (0.89) (0.91) (9.52)

Note. Standard deviation of run length is in parentheses.

Table 124

Average Run Length Comparisons for p =3, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 200 from the Multivariate t,(5) Distribution

A
p 0.1 02 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
3 5 UCL 13.30 11.30 17.65 12.70 2.40 15.00 16.6
0.00 200 199 200 200 200 198 200
(215) (206) (206) (198) (203) (199) 196.61)
0.25 115.66 88.96 163.46 118.18 188.95 166.60 183.13
(118.31) (86.71) (167.63) (116.92) (190.11) (163.88) (180.89)
050 4325 30.25 91.76 4571 168.17 106.47 159.21
(38.55) (25.09) (90.89) (42.39) (166.17) (104.71) (159.41)
1.00 11.35 9.11 22.39 11.37 105.31 30.70 100.52
(7.08) (5.84) (18.19) (8.15) (103.6) (29.04) (101.41)
1.50 5.60 461 8.48 5.42 53.01 10.46 48.77
(2.91) (2.63) (4.92) (3.10) (51.02) (8.64) (47.86)
250 2.45 212 3.18 3.34 9.74 3.02 10.04
(1.03) (1.01) (1.28) (1.08) (7.29) (1.63) (9.52)

Note. Standard deviation of run length is in parentheses.
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Table 125

Average Run Length Comparisons for p =4, A =.02, .03, and .05, and In-Control
Average Run Length =~ 200 from the Multivariate t,(5) Distribution

p
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
4§ UcCL 10.35 10.00 11.70 10.80 14.00 11.80 19.2
0.00 198 201 199 201 201 200 201
(252) (247) (240) (233) (229) (214) (202.62)
0.25 60.28 57.57 75.31 64.36 105.20 72.97 185.73
(64.29) (56.97) (79.62) (62.77) (113.01) (71.38) (184.26)
050 22.00 21.37 26.73 23.24 36.33 26.13 166.28
(18.81) (18.29) (21.96) (19.00) (30.93) (20.85) (163.48)
1.00 7.29 731 8.59 7.80 10.71 8.56 101.41
(4.88) (5.10) (5.54) (5.33) (6.47) (5.54) (110.60)
150 3.79 3.93 438 417 5.36 453 59.15
(2.08) (2.36) (2.32) (2.47) (2.76) (2.61) (58.04)
250 1.76 1.94 1.99 1.99 241 2.10 12.70
(0.71) (0.94) (0.79) (0.95) (0.95) (0.99) (12.42)

Note. Standard deviation of run length is in parentheses.

Table 126

Average Run Length Comparisons for p =4, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 200 from the Multivariate t,(5) Distribution

)
p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA _ Hotelling’s T2
4 &5 UCL 19.20 13.20 28.30 14.80 49.80 17.50 19.2
0.00 201 196 199 198 200 199 201
(211) (204) (206) (200) (199) (197) (202.62)
0.25 155.38 92.65 191.56 125.48 196.88 176.02 185.73
(164.26) (92.28) (192.02) (127.11) (197.67) (171.98) (184.26)
0.50 75.55 3221 146.52 5151 188.51 120.17 166.28
(74.50) (28.33) (148.49) (47.89) (186.32) (121.42) (163.48)
1.00 17.85 9.87 58.89 12.76 160.96 38.23 101.41
(11.50) (6.36) (56.08) (9.23) (162.93) (36.96) (110.60)
150 7.91 5.02 18.75 5.88 122.07 12.68 59.15
(3.86) (2.78) (13.60) (3.37) (122.30) (10.68) (58.04)
2,50 3.20 2.28 4.94 252 49.29 341 12.70
(1.21) (1.06) (1.85) (1.16) (48.18) (1.90) (12.42)

Note. Standard deviation of run length is in parentheses.
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Table 127

Average Run Length Comparisons for p =5, A =.02, .03, and .05, and In-Control
Average Run Length = 200 from the Multivariate t,(5) Distribution

P
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
5 o UCL 12.69 11.60 14.70 12.50 18.60 13.60 21.60
0.00 201 196 201 200 202 194 201
(262) (248) (243) (229) (231) (214) (198.70)
0.25 76.16 58.18 96.06 65.21 134.85 77.10 189.25
(78.89) (60.50) (104.47) (64.69) (150.44) (75.39) (187.77)
050 28.08 21.83 34.70 24.04 54.74 27.63 176.03
(22.45) (18.83) (28.02) (19.98) (48.94) (22.63) (174.21)
1.00 9.27 731 11.01 8.09 14.86 8.92 120.05
(5.66) (5.38) (6.36) (5.56) (8.46) (5.84) (120.40)
1.50 481 391 5.65 4.30 7.17 475 67.38
(2.37) (2.46) (2.71) (2.62) (3.32) (2.76) (67.27)
250 219 1.89 253 2.02 3.10 2.19 15.88
(0.80) (0.93) (0.91) (0.99) (1.10) (1.04) (15.19)

Note. Standard deviation of run length is in parentheses.

Table 128

Average Run Length Comparisons for p =5, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 200 from the Multivariate t,(5) Distribution

X
p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
5 &5  UCL 2755 15.20 43.80 16.80 81.90 19.70 21.60
0.00 199 201 200 200 198 197 201
(209) (209) (208) (200) (201) (194) (198.70)
0.25 178.49 102.13 190.74 130.92 198.43 176.93 189.25
(185.49) (102.23) (196.67) (12.85) (197.72) (175.00) (187.77)
0.50 120.79 36.92 176.05 57.13 196.04 125,52 176.03
(124.97) (31.70) (178.26) (54.52) (194.71) (123.27) (174.21)
1.00 32.98 10.56 111.64 13.97 183.36 44.35 120.05
(25.04) (6.74) (110.42) (10.09) (184.40) (43.08) (120.40)
150 11.98 5.33 51.88 6.27 162.28 14.62 67.38
(5.61) (2.92) (47.46) (3.64) (160.67) (12.65) (67.27)
2,50 4.46 2.40 8.53 2.65 107.64 3.72 15.88
(1.53) (1.13) (3.37) (1.25) (109.46) (2.14) (15.19)

Note. Standard deviation of run length is in parentheses.
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Table 129

Average Run Length Comparisons for p = 2, A =.02, .03, and .05, and In-Control
Average Run Length ~ 500 from the Multivariate t,(5) Distribution

p
p 02 03 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 8.20 8.10 8.95 8.90 10.00 9.80 17.60
0.00 500 488 497 492 501 474 488
(558) (544) (539) (528) (527) (486) (183.73)
0.25 73.90 72.08 83.53 82.81 104.71 100.95 439,56
(65.40) (65.25) (76.69) (74.17) (97.00) (92.18) (436.29)
0.50 23.97 23.58 26.25 26.44 30.67 29.77 375.94
(18.15) (18.03) (19.83) (19.40) (23.10) (22.28) (377.00)
1.00 757 7.45 8.26 8.05 9.19 8.85 212,54
(5.03) (4.94) (5.26) (5.21) (5.56) (5.45) (211.93)
1.50 3.94 3.84 427 4.14 463 447 96.17
(2.29) (2.29) (2.42) (2.38) (2.50) (2.51) (95.01)
250 1.86 1.80 1.95 1.93 2.09 2.04 16.08
(0.87) (0.86) (0.91) (0.94) (0.95) (0.96) (15.62)

Note. Standard deviation of run length is in parentheses.

Table 130

Average Run Length Comparisons forp =2, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 500 from the Multivariate t,(5) Distribution

A
p 0.1 02 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 11.55 11.20 13.50 12.70 17.50 15.70 17.60
0.00 493 489 496 486 501 500 488
(500) (496) (504) (491) (501) (501) (183.73)
0.25 157.01 143.73 259.49 23351 424.97 407.26 439.56
(152.40) (141.69) (258.56) (233.07) (416.26) (407.61) (436.29)
0.50 4235 39.81 82.33 69.90 273.16 237.60 375.94
(35.54) (33.39) (79.53) (66.05) (272.22) (235.31) (377.00)
1.00 10.76 10.29 15.34 13.61 7358 54.41 212,54
(6.64) (6.28) (11.22) (9.81) (71.69) (52.46) (211.93)
150 5.29 5.14 6.47 6.00 20.80 15.00 96.17
(2.78) (2.73) (3.63) (3.33) (18.90) (12.80) (95.01)
250 234 2.26 2.65 2.50 4.08 351 16.08
(1.04) (1.03) (1.15) (1.13) (2.31) (1.95) (15.62)

Note. Standard deviation of run length is in parentheses.
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Table 131

Average Run Length Comparisons for p = 3, A =.02, .03, and .05, and In-Control
Average Run Length ~ 500 from the Multivariate t, (5) Distribution

p
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
3 & UCL 10.75 10.30 11.95 11.10 13.80 12.20 211
0.00 498 500 503 492 501 491 494
(579) (553) (564) (434) (546) (510) (493.82)
0.25 87.95 81.91 109.47 93.94 155.02 117.14 44927
(81.83) (74.27) (104.44) (85.08) (154.19) (108.68) (449.74)
050 28.06 26.54 32.29 29.03 41.94 34.05 393.81
(21.45) (20.10) (23.93) (21.65) (33.17) (25.79) (393.33)
1.00 8.90 8.33 9.86 9.07 11.70 9.92 265.61
(5.58) (5.54) (5.97) (5.81) (6.62) (6.06) (264.29)
150 458 419 5.01 453 5.80 5.07 135.90
(2.48) (2.50) (2.66) (2.59) (2.96) (2.83) (134.77)
250 2.08 1.94 2.28 2.07 255 2.26 25.48
(0.88) (0.94) (0.96) (0.98) (1.06) (1.06) (25.35)

Note. Standard deviation of run length is in parentheses.

Table 132

Average Run Length Comparisons forp = 3, A = 0.1, 0.2, and 0.5, and In-Control
Average Run Length ~ 500 from the Multivariate t,(5) Distribution

)
p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
3 & UCL 17.50 13.70 24.15 15.40 40.10 18.80 211
0.00 500 493 495 492 496 507 494
(516) (500) (496) (490) (493) (510) (493.82)
0.25 275.10 174.66 414,57 277.41 48274 424.80 449.27
(282.80) (171.45) (421.05) (273.43) (480.92) (431.93) (449.74)
0.50 85.82 4657 248.76 89.49 441.43 274.92 393.81
(81.15) (39.43) (246.24) (85.61) (438.39) (274.27) (393.33)
1.00 16.68 11.67 51.99 16.34 300.48 75.43 265.61
(10.24) (7.24) (47.41) (12.12) (306.82) (72.71) (264.29)
150 751 5.68 14.17 6.82 176.74 20.00 135.90
(3.68) (3.00) (8.92) (3.91) (174.33) (17.63) (134.77)
250 3.11 2.49 433 277 32.54 4.08 25.48
(1.24) (1.13) (1.65) (1.23) (30.00) (2.34) (25.35)

Note. Standard deviation of run length is in parentheses.
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Table 133

Average Run Length Comparisons for p =4, A =.02, .03, and .05, and In-Control
Average Run Length ~ 500 from the Multivariate t, (5) Distribution

)
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
4 5§ UCL 13.62 12.20 15.60 13.20 19.20 14.20 2430
0.00 502 491 506 498 503 482 500
(604) (545) (578) (498) (541) (504) (501.81)
0.25 109.75 92.29 153.05 105.13 244.85 129.50 464.87
(108.63) (83.13) (154.96) (94.55) (256.84) (122.91) (463.89)
0.50 33.43 30.06 4221 32.91 69.86 36.89 435.11
(25.47) (22.02) (32.29) (23.67) (60.68) (27.27) (434.70)
1.00 10.15 9.38 12.15 10.16 15.97 10.91 301.30
(6.15) (5.89) (7.06) (6.17) (8.77) (6.50) (297.92)
1.50 5.08 491 6.03 5.16 7.62 5.54 174.03
(2.67) (2.73) (2.97) (2.80) (3.65) (2.95) (171.95)
2.50 221 2.26 2.60 2.35 3.19 2.46 37.06
(0.90) (1.06) (1.02) (1.09) (1.21) (1.13) (36.35)

Note. Standard deviation of run length is in parentheses.

Table 134

Average Run Length Comparisons forp =4, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length ~ 500 from the Multivariate t,(5) Distribution

A
p 0.1 0.2 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
4 5 UcCL 27.60 15.90 43.00 17.70 79.00 21.50 24.30
0.00 501 504 501 501 497 493 500
(521) (521) (505) (501) (493) (494) (501.81)
0.25 412.40 193.91 483.72 293.52 488.96 435.97 464.87
(425.25) (192.41) (493.73) (295.04) (494.61) (431.24) (463.89)
0.50 212.10 53.60 400.25 102.60 474.16 304.80 435.11
(214.56) (45.68) (402.21) (99.35) (471.84) (305.58) (434.70)
1.00 35.00 12.95 191.11 18.45 430.84 93.32 301.30
(25.36) (7.97) (187.82) (13.90) (430.54) (91.87) (297.92)
1.50 12.36 6.18 60.62 7.39 348.80 24.75 174.03
(5.64) (3.26) (53.05) (4.14) (348.90) (22.33) (171.95)
250 451 2.69 8.45 2.98 184.92 467 37.06
(1.60) (1.20) (3.30) (1.33) (185.17) (2.82) (36.35)

Note. Standard deviation of run length is in parentheses.
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Table 135

Average Run Length Comparisons for p =5, A =.02, .03, and .05, and In-Control
Average Run Length ~ 500 from the Multivariate t,(5) Distribution

P
p 02 03 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T
5 & UCL 17.60 14.10 20.90 15.0 27.60 16.20 27.00
0.00 497 501 497 496 502 494 494
(589) (562) (563) (534) (548) (519) (493.63)
0.25 158.47 96.73 232.12 111.39 350.48 142.65 477.49
(160.15) (88.77) (245.54) (101.80) (372.37) (135.24) (483.03)
0.50 4537 30.69 64.41 34.73 136.87 40.29 445.17
(33.31) (23.33) (49.44) (25.18) (131.07) (30.48) (444.86)
1.00 13.41 9.79 16.68 10.41 25.01 11.58 32554
(7.48) (6.34) (8.83) (6.52) (13.30) (6.96) (323.34)
1.50 6.67 4.93 8.07 531 11.00 5.84 194.43
(3.13) (2.85) (3.64) (2.99) (4.67) (3.14) (192.73)
2.50 2.91 2.25 3.42 2.39 4.46 2.56 4563
(1.03) (1.09) (1.21) (1.14) (1.48) (1.19) (45.19)

Note. Standard deviation of run length is in parentheses.

Table 136

Average Run Length Comparisons forp =5, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 500 from the Multivariate t,(5) Distribution

)
p 0.1 2 5
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
5 & UCL 43.40 17.80 72.90 19.80 142.30 23.90 27.00
0.00 498 490 499 503 500 486 494
(519) (498) (507) (507) (500) (489) (493.63)
0.25 451.09 203.74 484.18 308.14 466.93 437.01 477.49
(466.83) (199.17) (492.87) (306.56) (487.79) (435.84) (483.03)
0.50 33531 56.97 444.15 115.58 490.88 323.66 44517
(348.58) (48.46) (449.58) (112.66) (492.93) (326.35) (444.86)
1.00 103.93 13.60 339.13 20.43 170.90 112.13 325.54
(96.48) (8.40) (338.08) (15.71) (467.27) (109.40) (323.34)
1.50 24.74 6.53 196.52 8.00 434.44 30.13 194.43
(13.55) (3.39) (191.60) (4.57) (436.35) (27.82) (192.73)
2.50 7.09 2.81 29.54 3.168 337.41 5.18 45,63
(2.20) (1.27) (21.34) (1.41) (338.54) (3.26) (45.19)

Note. Standard deviation of run length is in parentheses.
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Table 137

Average Run Length Comparisons for p = 2, A =.02, .03, and .05, and In-Control
Average Run Length =~ 1,000 from the Multivariate t,(5) Distribution

)
p 02 03 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 9.80 9.70 10.60 10.50 11.75 11.50 21.50
0.00 1,010 975 998 1,006 993 984 992
(1,087) (1,047) (1,042) (1,054) (1,020) (1,010) (986.65)
0.25 100.32 100.02 118.13 116.35 158.85 146.30 880.93
(84.64) (84.86) (103.67) (100.40) (149.20) (135.15) (881.01)
0.50 30.46 29.59 32.82 32.30 38.74 36.77 774.23
(21.47) (20.84) (22.69) (22.60) (28.05) (26.68) (769.71)
1.00 9.09 8.94 9.87 9.67 10.79 10.58 467.87
(5.60) (5.54) (5.89) (5.80) (6.10) (6.24) (464.36)
1.50 461 451 4.90 481 5.33 5.23 230.38
(2.55) (2.53) (2.62) (2.63) (2.75) (2.76) (225.60)
2.50 2.08 2.03 2.22 2.15 2.36 231 38.36
(0.95) (0.96) (1.02) (1.02) (1.06) (1.06) (38.12)

Note. Standard deviation of run length is in parentheses.

Table 138

Average Run Length Comparisons forp =2, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 1,000 from the Multivariate t,(5) Distribution

A
p 0.1 02 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 o UCL 1350 13.0 15.80 14.80 21.15 18.80 21.50
0.00 1,007 984 997 995 981 997 992
(1,021) (982) (1,015) (1,022) 972) (993) (986.65)
0.25 276.64 248.20 499.36 451.94 876.76 829.65 880.93
(268.10) (243.19) (495.19) (456.02) (873.96) (836.81) (881.01)
050 59.31 54.37 143.37 118.96 579.86 513.42 774.23
(50.43) (45.16) (140.85) (114.87) (580.42) (518.66) (769.71)
1.00 12.91 12.31 20.84 17.93 159.60 11352 467.87
(7.62) (7.41) (15.56) (13.24) (157.76) (110.85) (464.36)
1.50 6.16 5.88 7.80 7.21 38.24 26.22 230.38
(3.08) (3.05) 4.37) (4.01) (35.77) (23.53) (225.60)
250 2.64 253 3.01 2.83 552 4.47 38.36
(1.14) (1.13) (1.27) (1.22) (3.47) (2.57) (38.12)

Note. Standard deviation of run length is in parentheses.
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Table 139

Average Run Length Comparisons for p = 3, A =.02, .03, and .05, and In-Control
Average Run Length =~ 1,000 from the Multivariate t,(5) Distribution

p
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
3 & UCL 12.75 12.00 14.15 12.90 16.40 14.00 25.60
0.00 997 985 1,006 1,007 998 1,002 998
(1,093) (1,076) (1,082) (1,060) (1,076) (1,038) (978.42)
0.25 125.16 111.44 164.19 135.13 267.22 179.27 927.3
(111.37) (95.51) (151.99) (118.27) (267.45) (167.31) (916.77)
050 36.31 33.15 4231 36.84 58.25 4333 844.34
(25.40) (23.46) (29.86) (25.03) (44.98) (31.16) (855.33)
1.00 10.80 9.88 12.03 10.73 14.30 11.79 578.61
(6.31) (6.15) (6.72) (6.41) (7.87) (6.74) (576.05)
150 5.40 5.00 5.89 2.35 6.93 5.79 323.24
(2.80) .77) (3.00) (2.88) (3.28) (3.01) (325.44)
250 2.39 2.19 2.60 2.36 2.96 254 65.96
(1.00) (1.03) (1.09) (1.09) 1.17) (1.14) (66.47)

Note. Standard deviation of run length is in parentheses.

Table 140

Average Run Length Comparisons forp = 3, A = 0.1, 0.2, and 0.5, and In-Control
Average Run Length =~ 1,000 from the Multivariate t,(5) Distribution

A
p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T
3 & UCL 21.20 15.60 30.20 17.60 52.20 22.10 25.60
0.00 982 1,006 996 1,003 999 964 998
(1,016) (1,026) (1,002) (1,007) (985) (966) (978.42)
0.25 556.61 306.13 834.21 524,51 942.23 847.64 927.3
(568.27) (300.75) (844.72) (521.30) (937.06) (842.48) (916.77)
0.50 158.50 66.519 526.33 152.54 880.94 576.62 844.34
(153.06) (56.76) (520.62) (146.63) (890.63) (567.46) (855.33)
1.00 22.57 13.88 108.84 21.76 665.17 159.32 578.61
(13.88) (8.18) (100.71) (16.63) (664.35) (160.23) (576.05)
150 9.28 6.56 23.15 8.11 409.59 37.17 323.24
(4.32) (3.36) (16.30) (4.53) (411.25) (34.24) (325.44)
250 3.69 278 551 3.16 93.19 5.39 65.96
(1.38) (1.22) 2.07) (1.35) (91.61) (3.33) (66.47)

Note. Standard deviation of run length is in parentheses.
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Table 141

Average Run Length Comparisons for p =4, A =.02, .03, and .05, and In-Control
Average Run Length =~ 1,000 from the Multivariate t,(5) Distribution

p
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
4§ UcCL 16.45 14.00 19.05 15.00 23.95 16.20 29.20
0.00 992 971 992 1,005 999 1,002 988
(1,132) (1,029) (1,099) (1,078) (1,041) (1,022) (984.37)
0.25 170.69 125.64 270.31 150.27 515.02 202.22 952.96
(162.48) (106.06) (275.08) (134.04) (522.18) (187.93) (951.14)
050 4555 36.67 59.66 40.73 122.05 47.81 864.67
(31.84) (25.02) (43.42) (28.10) (111.14) (35.19) (877.62)
1.00 12.78 11.20 15.48 11.96 21.46 13.03 657.06
(7.36) (6.57) (8.30) (6.73) (11.09) (7.26) (649.00)
150 6.31 5.63 741 5.98 9.69 6.36 411.02
(3.12) (2.99) (3.48) (3.10) @.27) (3.22) (403.19)
250 261 253 3.08 2.63 3.90 277 94.77
(1.05) (1.14) (1.19) 1.17) (1.42) (1.12) (92.68)

Note. Standard deviation of run length is in parentheses.

Table 142

Average Run Length Comparisons forp =4, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length ~ 1,000 from the Multivariate t,(5) Distribution

)
p 0.1 0.2 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
4§ UcCL 3550 17.90 58.00 20.00 111.10 25.30 29.20
0.00 992 1,022 988 995 997 985 988
(1,007) (1,019) (984) (1,013) (987) (1,002) (984.37)
0.25 817.43 343.43 943.14 576.40 996.9 914.15 952.96
(839.57) (334.60) (947.81) (574.35) (999.07) (912.51) (951.14)
0.50 465.15 76.44 823.31 183.41 982.98 662.16 864.67
(463.09) (66.79) (840.16) (180.18) (982.92) (664.80) (877.62)
1.00 67.87 15.34 457.19 25.41 890.51 211.76 657.06
(55.49) (9.23) (464.79) (20.08) (881.57) (209.37) (649.00)
1.50 17.58 7.12 169.83 9.04 783.17 51.21 411.02
(8.35) (3.55) (163.55) (5.18) (788.80) (49.17) (403.19)
2.50 5.85 3.01 15.02 3.40 483.22 6.45 94.77
(1.95) (1.31) (7.67) (1.46) (482.63) (4.20) (92.68)

Note. Standard deviation of run length is in parentheses.
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Table 143

Average Run Length Comparisons for p =5, A =.02, .03, and .05, and In-Control
Average Run Length =~ 1,000 from the Multivariate t,(5) Distribution

p
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2

5 & UCL 22.20 16.00 27.20 16.90 37.30 18.10 32.40

0.00 1,000 1,007 995 983 996 1,017 1,000
(1,152) (1,068) (1,091) (1,013) (1,059) (1,058) (990.61)

0.25 289.74 134.88 491.37 160.42 752.58 216.90 950.61
(292.96) (115.57) (525.26) (144.71) (796.65) (203.83) (967.43)

050 66.27 38.68 109.66 43.03 327.65 51.50 921.47
(45.24) (26.36) (88.26) (29.27) (328.63) (37.75) (936.77)

1.00 17.60 11.62 22.98 12,51 39.70 1357 71352
(9.05) (6.89) (11.25) (7.30) (21.51) (7.74) (707.90)

150 8.61 5.75 10.76 6.14 15.69 6.60 47871
(3.79) (3.13) (4.48) (3.26) (6.00) (3.38) (488.31)

250 3.61 252 434 2.69 5.94 2.86 124.12
(1.25) (1.18) (1.48) (1.22) (1.87) (1.28) (122.95)

Note. Standard deviation of run length is in parentheses.

Table 144

Average Run Length Comparisons forp =5, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length = 1,000 from the Multivariate t,(5) Distribution

A
p 0.1 02 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T

5 & UCL 61.20 19.90 106.90 22.20 212.10 27.90 32.40

0.00 1,000 992 1,000 984 1,006 996 1,000
(1,010) (995) (1,009) (986) (1,006) (1,090) (990.61)

0.25 910.47 367.53 990.63 597.20 973.42 895.20 950.61
(912.74) (360.77) (998.40) (590.33) (969.13) (892.94) (967.43)

050 738.87 84.88 937.27 211.39 979.06 707.00 921.47
(741.88) (75.19) (940.32) (206.03) (1,001.09) (696.38) (936.77)

1.00 290.46 16.24 746.42 28.588 935.70 251.83 71352
(287.43) (9.76) (755.25) (22.90) (940.07) (246.78) (707.90)

150 59.69 751 518.06 9.80 901.28 63.40 47871
(44.92) (3.78) (514.47) (5.63) (902.16) (60.74) (488.31)

250 10.41 3.3 122.44 357 740.84 7.36 124.12
(3.13) (1.34) (116.12) (1.51) (748.72) (4.97) (122.95)

Note. Standard deviation of run length is in parentheses.
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Table 145

Average Run Length Comparisons for p = 2, A =.02, .03, and .05, and In-Control
Average Run Length = 200 with Multivariate Gamma Distribution

A
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 7231 2,116.6 7231 1,442.9 7231 896.6 253
0.00 200 200 200 200 200 200 201
(209.37) (201.53) (209.37) (195.80) (209.37) (192.00) (198.98)
0.25 11.40 62.89 11.40 65.75 11.40 73.06 146.77
(5.10) (50.77) (5.10) (53.43) (5.10) (63.22) (148.19)
0.50 561 31.05 561 32.08 561 32.95 92.89
(1.68) (19.65) (1.68) (21.15) (1.68) (23.37) (93.04)
1.00 2.92 14.73 2.92 14,52 2.92 14.22 30.32
(0.61) (6.53) (0.61) (6.66) (0.61) (7.13) (29.92)
1.50 2.05 9.54 2.05 9.35 2.05 8.68 8.73
(0.32) (3.41) (0.32) (3.35) (0.32) (3.30) (8.33)
2,50 1.34 571 1.34 550 1.34 5.03 1.05
(0.47) (1.57) (0.47) (1.49) (0.47) (1.41) (0.22)

Note. Standard deviation of run length is in parentheses.

Table 146

Average Run Length Comparisons forp =2, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length ~ 200 with Multivariate Gamma Distribution

A
p 0.1 0.2 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T
2 & UCL 190.3 2,116.6 116.2 1,442.9 65.9 896.6 253
0.00 200 200 200 200 201 200 201
(199.56) (201.53) (196.41) (195.80) (200.60) (192.00) (198.98)
0.25 12.38 62.89 15.24 65.75 30.93 73.06 146.77
(7.25) (50.77) (11.33) (53.43) (29.17) (63.22) (148.19)
0.50 5.18 31.05 5.18 32.08 8.04 32.95 92.89
(1.93) (19.65) (2.42) (21.15) (6.23) (23.37) (93.04)
1.00 251 14.73 2.24 14,52 2.14 14.22 30.32
(0.61) (6.53) (0.62) (6.66) (0.85) (7.13) (29.92)
150 1.83 9.54 1.60 9.35 1.26 8.68 8.73
(0.38) (3.41) (0.49) (3.35) (0.44) (3.30) (8.33)
2,50 1.00 571 1.00 550 1.00 5.03 1.05
(0.528) (1.57) 0) (1.49) 0) (1.41) (0.22)

Note. Standard deviation of run length is in parentheses.
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Table 147

Average Run Length Comparisons for p = 2, A =.02, .03, and .05, and In-Control
Average Run Length ~ 500 with Multivariate Gamma Distribution

p
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 761.7 2,1755 5374 1,486.7 352.7 9285 34.82
0.00 494 500 498 500 500 500 503
(494.26) (480.18) (495.26) (480.08) (500.16) (490.50) (505.74)
0.25 16.79 115.43 16.44 122.14 16.15 135.68 363.96
(6.56) (88.44) (6.90) (102.09) (7.60) (120.26) (363.06)
0.50 7.95 49.42 753 48.56 7.05 51.75 234.19
(2.05) (28.52) (2.04) (30.40) (2.13) (37.01) (236.49)
1.00 4.03 21.62 3.79 20.25 3.44 18.91 76.57
0.72) (8.29) (0.71) (8.46) (0.70) (9.03) (77.11)
150 2.82 13.69 2.65 12.49 2.37 11.28 21.76
(0.43) (4.28) (0.48) (4.03) (0.49) (3.97) (21.00)
250 1.97 7.98 1.94 7.15 1.77 6.30 1.65
(0.14) (1.84) (0.22) (1.73) (0.42) (1.60) (1.04)

Note. Standard deviation of run length is in parentheses.

Table 148

Average Run Length Comparisons forp =2, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length ~ 500 with Multivariate Gamma Distribution

)
p 0.1 0.2 05
SRMEWMA MEWMA  SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 2077 4983 129.3 2726 76.7 125.8 34.82
0.00 500 501 500 493 502 503 503
(497.38) (499.80) (509.81) (503.80) (502.64) (502.16) (505.74)
0.25 17.48 170.89 23.76 217.21 66.31 316.65 363.96
(10.46) (161.73) (19.03) (213.21) (64.08) (318.75) (363.06)
0.50 6.52 63.85 6.69 93.26 13.71 177.47 234.19
(2.3) (53.76) (3.25) (86.92) (11.65) (173.15) (236.49)
1.00 3.00 19.18 2.65 24.13 273 58.86 76.57
(0.68) (11.23) (0.71) (18.92) (1.17) (56.08) (77.11)
1.50 2.04 10.24 1.85 10.55 153 21.04 21.76
(0.33) (4.42) (0.37) (6.14) (0.51) (18.51) (21.00)
250 1.25 523 1.00 453 1.00 5.16 1.65
(0.43) (1.50) (.045) (1.57) (0.01) (3.21) (1.04)

Note. Standard deviation of run length is in parentheses.
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Average Run Length Comparisons for p = 2, A =.02, .03, and .05, and In-Control
Average Run Length ~ 1,000 with Multivariate Gamma Distribution

p
p 02 03 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 798.1 22117 559.3 1515.7 369.2 9488 42.70
0.00 1,000 1,002 1,000 998 1,001 1,000 993
(980.70) (993.84) (966.63) (993.66) (1,002.63) (995.40) (1,000.55)
0.25 22.22 171.30 20.09 185.61 19.64 216.14 731.07
(7.90) (135.49) (7.98) (157.16) (9.27) (197.23) (737.23)
0.50 10.23 63.78 8.96 64.41 8.15 70.43 453.92
(2.41) (36.21) (2.32) (40.64) (2.33) (52.68) (455.09)
1.00 5.06 25.95 4.42 24.17 3.90 22.71 148.01
(0.83) (9.43) (0.78) (9.80) (0.75) (10.55) (148.15)
150 3.48 16.15 3.03 14.70 271 13.00 4376
(0.53) (4.55) (0.43) (4.52) (0.47) (4.43) (43.17)
250 2.08 9.36 1.99 8.33 1.95 7.08 32
(0.28) (1.99) (0.07) (1.88) (0.22) 1.72) (2.65)

Note. Standard deviation of run length is in parentheses.

Table 150

Average Run Length Comparisons forp =2, A= 0.1, 0.2, and 0.5, and In-Control
Average Run Length ~ 1,000 with Multivariate Gamma Distribution

p
p 0.1 0.2 05
SRMEWMA MEWMA SRMEWMA  MEWMA  SRMEWMA  MEWMA  Hotelling’s T2
2 & UCL 2194 512.0 138.7 2828 845 132.7 42.70
0.00 997 1,007 997 1,001 1,000 999 993
(990.75)  (1,003.3) (994.06) (993.05) (997.33) (982.17) (1,000.55)
0.25 21.79 288.32 34.21 411.96 115.95 601.31 731.07
(13.54) (278.74) (28.56) (404.02) (115.52) (603.94) (737.23)
0.50 750 93.85 7.96 156.50 20.60 331.37 453.92
(2.67) (83.42) (3.89) (149.59) (18.14) (327.96) (455.09)
1.00 3.33 23.47 2.93 33.68 3.27 98.39 148.01
(0.74) (14.41) (0.76) (27.83) (1.51) (95.80) (148.15)
150 2.25 11.75 1.97 12.90 1.70 3258 43.76
(0.45) (4.96) (0.35) (7.76) (0.51) (30.41) (43.17)
250 158 5.18 1.05 511 1.00 6.53 32
(0.49) (1.59) (0.23) (1.78) (0.00) (4.28) (2.65)

Note. Standard deviation of run length is in parentheses.



Table 151

The Aluminum Capacitor Data Set

8 & 2 S| 4 g 2 S| 4 g 2 S| 4 g 2 3
(S} (@) [a] - (S} o o - () ] [a) | o (@) [a] -
1 443 581 215 51 443 429 149 | 101 454 447 186 | 151 449 463 315
2 448 453 253 52 441 539 268 | 102 444 411 241 | 152 450 415 193
3 443 423 337 53 443 443 153 | 103 465 395 459 | 153 442 472 282
4 446 465 176 54 440 562 253 | 104 444 342 255 | 154 463 432 186
5 439 365 207 55 444 419 184 | 105 444 398 179 | 155 446 562 19.8
6 435 398 187 56 474 534 284 | 106 449 414 196 | 156 446 498 239
7 447 417 195 57 469 425 212 | 107 450 4.09 21 | 157 445 395 195
8 454 445 218 58 459 425 295 | 108 454 385 165 | 158 446 567 205
9 445 539 208 59 443 539 245 | 109 443 447 36.7 | 159 448 441 312
10 443 439 187 60 449 41 245 | 110 441 519 21 | 160 449 425 165
11 442 467 311 61 443 429 204 | 111 449 467 279 | 161 434 349 179
12 445 455 312 62 447 429 155 | 112 447 356 159 | 162 469 475 314
13 446 441 296 63 466 4.85 26.6 | 113 437 447 215 | 163 439 449 153
14 448 465 377 64 449 463 331 | 114 459 452 264 | 164 448 433 279
15 446 432 182 65 456 436 147 | 115 445 425 165 | 165 456 347 272
16 446 6.01 195 66 445 395 259 | 116 45 413 209 | 166 493 412 195
17 459 454 165 67 442 568 235 | 117 485 396 275 | 167 447 395 212
18 441 539 257 68 453 436 17.7 | 118 463 45 167 | 168 446 439 306
19 439 539 208 69 441 434 183 | 119 465 497 268 | 169 449 398 204
20 439 423 173 70 465 393 193 | 120 449 426 209 | 170 453 445 186
21 454 447 165 71 473 432 296 | 121 446 430 309 | 171 456 436 153
22 440 425 23 72 447 436 154 | 122 439 555 232 | 172 449 435 189
23 440 469 313 73 449 436 195 | 123 457 453 259 | 173 459 419 275
24 445 425 224 74 456 367 256 | 124 446 439 306 | 174 449 405 256
25 469 385 236 75 449 477 249 | 125 447 425 152 | 175 446 563 219
26 447 487 275 76 449 427 286 | 126 443 463 172 | 176 445 435 183
27 463 349 209 77 446 437 30 | 127 434 427 159 | 177 443 469 265
28 457 455 195 78 477 425 265 | 128 447 422 247 | 178 437 445 157
29 438 632 198 79 445 539 187 | 129 470 483 305 | 179 441 456 35
30 449 676 229 80 454 385 172 | 130 445 395 165 | 180 447 347 195
31 440 482 19.2 81 445 425 207 | 131 446 459 36.7 | 181 440 4.08 205
32 446 474 247 82 439 417 171 | 132 439 593 257 | 182 439 573 243
33 445 425 176 83 445 561 239 | 133 445 495 335 | 183 436 392 174
34 439 494 264 84 449 456 311 | 134 466 458 286 | 184 440 452 154
35 463 464 276 85 450 465 307 | 135 459 409 17.7 | 185 446 562 199
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36
37

38
39
40
41
42
43
44
45
46
47
48
49
50

471
448

445
469
453
434
459
447
445
446
441
435
450
442
451

491
4.65

5.23
435
425
3.93
437
3.95
427
4.9
531
423
404
4.49
437

30.1
18.5

20.8
175
18.2
16.5
18.5
24.7
175
28.6
19.8
144
20.8
17.9
17.2

86
87

88
89
90
91
92
93
94
95
96
97
98
99
100

449
457

442
451
444
441
471
448
440
440
441
443
448
470
447

3.59
3.49

4.52
3.85

5.8
5.17
4.65
4.56
5.98
4.67
4.87
5.98
4.13
4.71
4.15

239
259

31
19.5
21.9
21.7
313
46.5
23.9
25.9
32.8
21.9
19.9
275
16.7

136
137

138
139
140
141
142
143
144
145
146
147
148
149
150

440
452

446
441
444
467
468
445
446
472
436
457
448
485
450

4.98
4.44

424
5.33

45
3.92
458
474
455
481
5.63
4.17
432
3.45
4.67

21
37.6

15.6
19.6

30
18.5
34.8

20
21.9

27
29.1
17.4
29.6
25.7
29.5

186
187

188
189
190
191
192
193
194
195
196
197
198
199
200

439
445

439
442
442
438
453
448
447
447
447
465
447
443
456

4.47
4.32

427
411
4.98
3.83
427
4.93
439
4.15
452
4.37
4.47
4.73
437

16.7
19.5

20.1
213

29
147
17.3
175
19.8
30.3
175
24.7
17.2
313
16.7
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