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ABSTRACT 
 
 

Zeinab, Jamil H. An Affine Invariant Signed-Rank Multivariate Exponentially Weighted  
Moving Average Control Chart for Process Location Monitoring.  Published 
Doctor of Philosophy dissertation, University of Northern Colorado, 2013. 
 

 Multivariate statistical process control (SPC) charts for detecting possible shifts in 

mean vectors assume that data observation vectors follow a multivariate normal 

distribution.  This assumption is ideal and seldom met.  Nonparametric SPC charts have 

increasingly become viable alternatives to parametric counterparts in detecting process 

shifts when the underlying process output distribution is unknown, specifically when the 

process measurement is multivariate.  This study examined a new nonparametric signed-

rank multivariate exponentially weighted moving average type (SRMEWMA) control 

chart for monitoring location parameters.  The control chart was based on adapting a 

multivariate spatial signed-rank test.  The test was affine-invariant and the weighted 

version of this test was used to formulate the charting statistic by incorporating the 

exponentially weighted moving average (EWMA) scheme. The test’s in-control (IC) run 

length distribution was examined and the IC control limits were established for different 

multivariate distributions, both elliptically symmetrical and skewed.  The average run 

length (ARL) performance of the scheme was computed using Monte Carlo simulation 

for select combinations of smoothing parameter, shift, and number of p-variate quality 

characteristics.  The ARL performance was compared to the performance of the 

multivariate exponentially weighted moving average (MEWMA) and Hotelling T2.  The 
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control charts for observation vectors sampled the multivariate normal, multivariate t, and 

multivariate gamma distributions.  The SRMEWMA control chart was applied to a real 

dataset example from aluminum smelter manufacturing that showed the SRMEWMA 

performed well.  The newly investigated nonparametric multivariate SPC control chart 

for monitoring location parameters--the Signed-Rank Multivariate Exponentially 

Weighted Moving Average (SRMEWMA)--is a viable alternative control chart to the 

parametric MEWMA control chart and is sensitive to small shifts in the process location 

parameter. The signed-rank multivariate exponentially weighted moving average 

performance for data from elliptically symmetrical distributions is similar to that of the 

MEWMA parametric chart; however, SRMEWMA’s performance is superior to the 

performance of the MEWMA and Hotelling’s T2 control charts for data from skewed 

distributions. 
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CHAPTER I 
 
 

INTRODUCTION 
 
 

Statistical quality control (SQC) is a powerful set of problem solving tools that 

includes acceptance sampling, statistical process control, design of experiments, and 

capability analysis (Lowry, Woodall, Champ, & Rigdon, 1992).  Statistical quality 

control plays a critical role in modern manufacturing and production environments and 

dominates every aspect of most processes in any discipline (Montgomery, 2009; Woodall 

& Montgomery, 1999).  Statistical process control (SPC) utilizes the use of control charts 

that are useful in monitoring process variability and improving capability through 

reduction of variability.  Since reducing process variability is the primary goal, control 

charts play a pivotal role in SPC and utilize statistical estimation, inference, and control 

schemes (Montgomery, 2009).  These schemes evolved from monitoring a single quality 

characteristic to two or more related quality characteristics.  Variability analysis is a 

statistical problem and control chart development has evolved with increasing modern 

day of data acquisition, distributional assumptions, and computational capabilities 

(Lowry et al., 1992).  Therefore, the scope of SPC control charts is ever-changing to take 

advantage of the increased amount of available data and the use of nontraditional 

methods such as nonparametric methods, which are particularly useful in a data-rich 

environment (Woodall & Montgomery, 1999).  
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The purpose of this study was to develop a new affine invariant spatial signed-

rank multivariate exponentially weighted moving average (SRMEWMA) control chart 

and compare the performance of the test to traditional parametric counterparts like the 

Hotelling’s T2 for different distributions.  The author expanded on this purpose as well as 

defined and explained relevant terms used in this study in chapters II and III. 

Statistical process control (SPC) was pioneered by Walter A. Shewhart (1931) in 

the early 1920s at Bell Telephone Laboratories and was later used by Edward Deming 

(1950) during World War II to improve quality in the manufacturing of war munitions 

and other products.  Deming went on to introduce SPC to Japanese manufacturers in the 

1950s after the war ended; he is widely credited with much success in quality 

improvements in the Japanese industry (Deming, 1950; Montgomery, 2009).   

In product manufacturing, there are two sources of variation--chance causes and 

assignable causes.  The first cannot be economically identified and corrected; whereas, 

the second can be identified and corrected (Chakraborti, van der Laan, & Bakir, 2001).  

Statistical process control is a statistical method used to monitor and control a process in 

order to improve process performance and reduce variability in key parameters 

(Montgomery, 2009).  Shewhart (1931) introduced control charts as primary tools in SPC 

and pioneered statistical quality control through the design of experiments.  The most 

common assumption since Shewhart introduced the control chart was that the underlying 

process behaved in statistically normal fashion or followed the theoretical normal 

distribution.    

When a manufacturing process operates only under chance or random variation, it 

is said to be in a state of statistical control.  Statistical process control and control charts 
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help to identify and eliminate assignable causes and insure that the process in a state of 

control.  However, when there is a change in process, control charts are expected to 

quickly detect this change and signal out-of-control.  The faster the chart signals, the 

more efficient it is (Chakraborti et al., 2001).    

Univariate control charts were developed to monitor Phase I implementation of 

statistical process control where the process is likely to be out of control and experiencing 

assignable causes that result in large shifts in the monitored parameters (Montgomery, 

2009).  The Shewhart (1931) chart for monitoring the mean of a process consists of a 

centerline at the historical process level along with upper and lower control limits based 

on the mean +/- 3 sigma (standard error) limits where the standard error is estimated from 

the sample means.  Process means are plotted over time; there is an out-of-control signal 

when any sample mean plots outside the 3-sigma control limits.  

A major disadvantage of a Shewhart (1931) style control chart is that it uses the 

information from the last sample and ignores the information provided by the sequence of 

prior points (Prabhu & Runger, 1997).  Shewhart charts are inefficient in detecting small 

shifts in the process mean.  Two control charts, the exponentially weighted moving 

average (EWMA) and the cumulative sum (CUSUM), were developed to take advantage 

of all available observation sequences for a single variable of interest.  Both charts are 

used when detecting a small shift is desired.  

The cumulative sum or CUSUM control chart procedure was described by 

(Montgomery, 2009; Page, 1954) as the accumulation of the deviations from a process 

mean that is above the target with one statistic and the accumulation of the deviations that 

is below the target with another statistic.  These two statistics are the upper and lower 
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CUSUMs.  Another good alternative to the Shewhart control chart in detecting small 

shifts in the process mean is the EWMA control chart that was first proposed by Roberts 

(1959) at the Bell Telephone Laboratories.  The EWMA’s performance is equivalent to 

that of CUSUM but EWMA is easier to setup (Graham, Chakraborti, & Human, 2011). 

The EWMA scheme is a geometric weighted moving average of all past and current 

observations; according to Montgomery (2009), it is very robust to normality 

assumptions, which makes it an ideal control chart to use with individual observations.  

Multivariate control charts are an extension of their univariate counterparts and 

are used to detect a shift in the process mean vector of several process variables.  The chi-

squared control chart was described by Hotelling (1947).  The average run length (ARL) 

performance of a chi-squared control chart is easily analyzed from the central and non-

central chi-squared distribution of the control statistic in in-control and out-of-control 

cases.  The average run length has a geometric distribution with a mean equal to  

ARL = 1/p, where p is the probability of a single observation being out of control limits 

(Prabhu & Runger, 1997; Runger & Prabhu, 1996).  The Hotelling’s chi-squared control 

chart is the multivariate extension of the classical Shewhart control chart.  The 

Hotelling’s chi-squared control chart also suffers from the same disadvantage because it 

uses the information from the most recent observation and ignores the information 

provided from the prior sequence of points.  Unfortunately, the Hotelling’s chi-square 

chart is not sensitive to small shifts of the mean vector.  The MEWMA or multivariate 

exponentially weighted moving average  is the multivariate extension of EWMA and is 

ideal for use when simultaneously monitoring two or more correlated quality 
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characteristics that are jointly described by a multivariate normal distribution 

(Montgomery, 2009).     

In contemporary statistical process control, the use of control charts is a prevalent 

tool for monitoring manufacturing processes.  The monitoring problem is closely related 

to the test of hypotheses for one-sample location problems (H0: θ = θ0 vs. H1: θ ≠ θ0).   An 

observation plotting within the control limits is equivalent to failing to reject the null 

hypothesis of statistical process control and an observation plotting outside the control 

limits is equivalent to rejecting the null hypothesis of statistical process control.  These 

process-monitoring control charts are seldom based on single variables or characteristics; 

it is common to monitor several variables simultaneously (Stoumbos & Sullivan, 2002; 

Zou & Tsung, 2010).  In practice, most processes involve simultaneously monitoring 

several related variables recorded with online computers or advanced data collection 

procedures (Montgomery, 2009).  Designing individual control charts to monitor a 

process based on univariate variables when there are several related variables is 

misleading, inefficient, and leads to distorted control charts (Montgomery, 2009; Qiu & 

Hawkins, 2001).  The probability of Type I error and the probability of a point correctly 

plotting in control are not equal to nominal levels.  

Parametric multivariate control charts are designed based on assumptions of 

normality where p variables are jointly described by a multivariate normal distribution 

(Montgomery, 2009; Zou & Tsung, 2010).  If a set of p variables is assumed to be 

independent and the probability of Type I error for joint control, 𝛼 ′ = 1 − (1 − 𝛼)𝑝, as 

well as the probability that all variables means will simultaneously plot inside their 

control limits when the process is in control, 𝑃{all p means plot in control} = (1 − 𝛼)𝑝 
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can be computed.  However, if the variables are dependent, then the above probability 

functions do not hold and there is no easy way to measure the distortion in the joint 

control procedure (Montgomery, 2009).  According to Montgomery (2009), the 

multivariate control charts work well when the number of variables is small (10 or less). 

As the number of variables grows, traditional multivariate control charts lose efficiency 

with regard to shift detection.  

Nonparametric Perspective 

In nonparametric analysis, very little or nothing can be said about the probability 

of obtaining future data beyond the largest sample observation or less than the smallest 

observation.  For this reason, the actual measurements of a sample item mean less 

compared to its rank within the sample.  In fact, nonparametric methods are typically 

based on ranks of the data and the properties of the population are deduced using order 

statistics (Kvam & Vidakovic, 2007). 

Traditional statistical methods are based on parametric assumptions, i.e., the data 

can be assumed to be generated by some well-known family of distributions such as a 

normal, exponential, or Poisson distribution.  Each of these distributions has one or more 

parameters, at least one of which is presumed unknown and must be inferred (Kvam & 

Vidakovic, 2007).  For example, the famous classical multivariate inference method of 

Hotelling’s T2 is based on a sample mean vector and covariance matrix; therefore, it is 

optimal under multivariate normality assumptions, poor in efficiency for heavy-tailed 

distributions, and highly sensitive to extreme observations (Zou & Tsung, 2010).  

Nonparametric alternatives to Hotelling’s T2 based on sign and rank scores have 

promising efficiency and robustness properties for heavy-tailed and light-tailed 
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distributions (Nevalainen & Oja, 2005; Sirkia, Taskinen, Nevalainen, & Oja, 2007).  The 

term nonparametric was first coined by Jacob Wolfowitz (1942), saying,  

We shall refer to this situation where a distribution is completely determined by 
the knowledge of its finite parameter set, as the parametric case, and denote the 
opposite case, where the functional forms of the distributions are unknown, as the 
nonparametric case. (p. 247)  
 
The terms nonparametric and distribution-free are not synonymous.  Popular 

usage, however, has equated them.  A nonparametric test is one that makes no hypothesis 

about the value of a parameter in a statistical density function; whereas, a distribution-

free test is one that makes no assumptions about the precise form of the sampled 

population (Bradley, 1968).  According to Randles, Hettmansperger, and Casella (2004), 

“Nonparametric statistics can and should be broadly defined to include all methodology 

that does not use a model based on a single parametric family” (p. 561).  

Analysts limited to basic statistical methods can be trapped into making 

parametric assumptions about the data that are not apparent in the analysis or the data.  In 

the case where the analyst is not sure about the underlying distribution of the data, 

statistical techniques are needed that can be applied regardless of the true distribution of 

the data.  These techniques are called nonparametric or distribution-free methods (Kvam 

& Vidakovic, 2007).   

Purpose of the Study 
 

The main purpose of this study was to explore the viability of a new 

nonparametric multivariate statistical control chart for process monitoring where the 

process monitoring p quality characteristics were not multivariate-normally distributed.  

Hence, the goal was to develop a multivariate exponentially moving average (MEWMA)-

type control chart that used nonparametric signed-rank statistics as the unit of 
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measurement, weighted statistic, and charting statistic.  Extending the research of Zou 

and Tsung (2010) using the affine sign and Zou, Zhou, Wang, and Tsung (2010) using 

the spatial rank, the control chart used an affine signed-rank test statistic 

(Hettmansperger, Mottonen, & Oja, 1997; Oja, 2010) to develop a new affine invariant 

spatial sign-rank MEWMA control chart or, hereafter named, the spatial signed-rank 

multivariate exponentially weighted moving average (SRMEWMA) control chart.  The 

objective of the SRMEWMA control chart was to detect small shifts in the process 

location vector.  Using simulation, the ARL performance of the SRMEWMA control 

chart was studied and compared to that of the Hotelling’s 𝑇2and MEWMA.   

As with any multivariate control chart, the goal of the SRMEWMA control chart 

was to quickly detect small shifts in the process location vector.  The quick detection 

helped bring the process back into the in-control state earlier and avoided producing 

faulty products.  The performance of the SRMEWMA control chart was evaluated based 

upon its average run length (ARL) using Monte Carlo simulation.  In addition, the 

performance of the control chart or its ARL was compared to that of Hotelling’s T2 ARL 

and MEWMA’s ARL.  

Rationale for the Study 
 
 In practice, there is no assurance that the quality characteristics or variables are 

normally distributed and the multivariate control charts designed using the traditional 

methods relying on the normality assumption will provide misleading results and false 

alarms (Lowry et al., 1992).  Multivariate nonparametric or robust control charts 

designed using spatial sign, rank, and signed-rank statistics seem to offer an attractive 

viable option to traditional methods (Zou & Tsung, 2010; Zou et al., 2010).   



9 
 

Asymptotic Relative Efficiency 

Several forms of the spatial sign and sign-rank tests were developed based on 

different location estimates by Peters and Randles (1990), Hettmansperger et al. (1997), 

Oja (1999), Randles (2000), Hettmansperger and Randles (2002), and Oja and Randles 

(2004).  The asymptotic relative efficiency (ARE) of both sign and signed-rank tests were 

extensively studied by Peters and Randles (1990), Mottonen, Oja, and Tienari (1997), 

Mottonen, Hettmansperger, Oja, and Tienari (1998), Mottonen, Oja, and Serfling (2004), 

Mahfoud and Randles (2005), and Nordhausen, Oja, and Tyler (2006).   

Peters and Randles (1990) suggested a signed-rank test modifying Randles’ 

(2000) sign test.  Peters and Randles showed that the signed-rank test appeared to be 

robust and performed better than its competitors (Randles’ sign and Hotelling’s T2 tests) 

for light-tailed distributions as well as Hotelling’s T2 test for the MVN distribution.  

However, for heavy-tailed distributions, Randles’ sign test was more powerful, although 

the signed-rank test performed well relative to Hotelling’s T2.  They went on to show that 

when p = 2 or 3, the power of the signed-rank test appeared to be uniformly high. 

Mottonen et al. (1997) studied the efficiencies of the spatial sign and spatial 

signed-rank tests with respect to Hotelling’s T2 test for the multivariate t-distribution with 

selected values of degrees of freedom and selected dimensions and the multivariate 

normal distribution (df = ∞).  They found that the signed-rank test dominated the 

asymptotic relative efficiencies (AREs) of the sign test for the multivariate normal case; 

however, for small values of degrees of freedom (heavy-tailed distributions) with high 

dimension, the sign test was better.  
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Mottonen et al. (1998) showed and calculated the AREs for a multivariate affine 

invariant signed-rank test under MVN and multivariate t-distributions (MV t).  They 

showed that the signed-rank test had better ARE for multivariate normal and multivariate 

t-distribution with modest to large degrees of freedom (10+) when compared to the 

Hoteling’s T2 test.  

Mahfoud and Randles (2005) introduced a signed-rank statistic and its null 

asymptotic distribution and demonstrated that it had strong efficiencies over a wide 

spectrum of distributions, ranging from very light-tailed to heavy-tailed ones.  They 

showed that it performed as well or in many cases better than its competitors.  Mahfoud 

and Randles also showed that their signed-rank test statistic, in which they modified 

Randles’ (2000) affine sign test, had better ARE properties than Randles’ sign test 

statistic, which was also used by Zou and Tsung (2010) to develop their multivariate 

sign-based EWMA control chart.  

     If the ARL performance of the spatial sign-rank MEWMA or SRMEWMA 

control chart could be efficient in monitoring and controlling a process location vector, a 

viable nonparametric multivariate control scheme alternative would provide a potential 

remedy for non-normally distributed data.  An expanded rationale section follows in the 

review of literature in Chapter II. 

Research Questions 
 

 This dissertation addressed the following questions: 

Q1 How will the Spatial Signed-Rank MEWMA (SRMEWMA) control chart  
 scheme be designed for the in-control average run length (ARL0)? 
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Q2 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart  
performance for different number, p, of monitored related quality 
characteristics? 
 

Q3 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart  
performance for different values of the smoothing parameter 𝜆?  

 
Q4 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart  
 performance for different sizes of shift in a process location vector? 

 
Q5 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart  

performance compared to the Hotelling’s T2 and MEWMA control chart 
scheme for elliptically symmetrical (multivariate normal and multivariate 
t) and skewed distributions (multivariate gamma)? 

 
Delimitations of the Study 

 
Two phases were used in multivariate statistical process control (SPC)--Phase I 

and Phase II.  In Phase I, also called retrospective analysis, m samples of individual 

observations (n = 1) or sample means (n > 1) were used to estimate the location vector 

and covariance matrix in order to establish the control limits for Phase II--the monitoring 

process (Montgomery, 2009).  This study focused on Phase II monitoring only and 

assumed that all of the historical observations used in establishing the in-control (IC) 

estimates of location and covariance matrix were independent and identically distributed 

(iid; Zou & Tsung, 2010).  Therefore, this study did not address Phase I issues as they 

were beyond the scope of this study. 

In addition, there were many multivariate distributions that could be simulated to 

study the performance of the SRMEWMA control chart; however, in the interest of 

brevity, this study relied on the recommendations of Stoumbos and Sullivan (2002) and 

Mottonen et al. (1997) for generating data from the MVN, t, and gamma distributions. 
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Definitions 
 

Affine invariance.  A property of a test that ensures the value of the test statistic 

remains unchanged following rotations of the observations about the origin.  

Average run length (ARL).  The average number of consecutive points that must 

be plotted before an out-of- control condition is signaled. 

Center line (CL).  An element of statistical process control corresponding to the 

average value of the quality characteristic that corresponds to the in-control process. 

Distribution free test.  A test statistic that does not depend on a specified 

probability density function or cumulative distribution function.  

In-control ARL (ARL0).  The ARL of the control chart when process is in-

control. 

In-control process.  A process that is operating with only the presence of chance 

(common) causes of variation. 

i.i.d.  Independent identically distributed observations. 

Lower control limit (LCL).  The smallest chosen value such that, if the process 

is in control, nearly all of the plotted points will fall above. 

Phase I.  A retrospective analysis phase in SPC where a set of samples or 

individual observations are used to estimate the parameters for Phase II. 

Phase II.  The phase of monitoring future production.  

Out-of-control ARL (ARL1).  The ARL of the control chart when the process is 

out-of-control. 

Out-of-control process.  A process that is operating with the presence of 

assignable (special) causes. 
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Rational sub-group.  A sample of data taken at some point in the process, e.g., a 

sample taken during a specific time period. 

Robust statistic.  Strictly speaking, a robust statistic is resistant to errors in the 

results produced by deviations from assumptions (e.g., of normality).  This means that if 

the assumptions are only approximately met, the robust estimator will still have a 

reasonable efficiency, and reasonably small bias, as well as being asymptotically 

unbiased, meaning having a bias tending towards 0 as the sample size tends towards 

infinity. 

Skewed distribution.  Distribution of measurements that, when plotted, produce 

a nonsymmetrical curve.  When the skewness of a group of measurements is zero, the 

distribution is symmetrical.  

t-distribution.  A family of theoretical probability distributions used in 

hypothesis testing.  As with normal distribution, t-distributions are unimodal, 

symmetrical, and bell-shaped.  Their multivariate forms are also elliptically 

symmetrical.  The t-distribution is especially important when the population variance is 

unknown.  The larger the sample, the more closely the t approximates the normal 

distribution. 

Target value.  A pre-specified value of a quality characteristic. 

Upper control limit (UCL).  The largest chosen value that if the process is in-

control, nearly all of plotted points will fall below. 



 
 
 
 
 

CHAPTER II 
 
 

REVIEW OF LITERATURE 
 
 

Univariate Parametric Control Charts 
 

Two sources of variation are associated with process change: chance causes and 

assignable causes.  A process for which all variation is due to chance causes is operation 

under control (Montgomery, 2009).  Chance causes cannot be economically identified 

and corrected.  A process for which all variation is due to assignable causes is operating 

out-of-control.  Assignable causes that are not part of the chance pattern can be identified 

and corrected by using control charts (Chakraborti et al., 2001; Montgomery, 2009).  The 

most common quality control charting procedures include the Shewhart X-bar, the 

cumulative sum (CUSUM), and the exponentially weighted moving average (EWMA).  

These three procedures have in common their assumption that the underlying process 

distribution is normal or at least approximately normal.  According to Shewhart (1931), 

the objective of the Shewhart X-bar method is trying to identify an assignable cause in 

order to improve product without changing the whole manufacturing process.  This 

remains true with CUSUM and EWMA as well as any other proposed procedure.  

The distribution of run length is traditionally used to characterize the performance 

of a chart.  A popular measure of chart performance is the expected value of the run 

length distribution, called the average run length (ARL; Chakraborti et al., 2001; 

Montgomery, 2009).  Average run length is the average number of points that must be 
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plotted before a point indicates an out-of-control condition (Montgomery, 2009).  The 

ARL of an in-control process is equal to the reciprocal of the probability α of a signal at a 

given time period when the process is in-control or ARL = 1/α (Pappanastos & Adams, 

1996).  It is desirable that the ARL of a chart be large when the process is in-control and 

small when the process is out-of-control.  The false alarm rate is the probability that a 

chart signals a process change when in fact there is no assignable change, i.e., the process 

is in-control.  This is similar to the probability of a Type I error in the context of 

hypothesis testing.  Two control charts are often compared on the basis of out-of-control 

ARL, such that their respective in-control ARLs are roughly the same.  This parallels 

comparing two statistical tests on the basis of power against some alternative when they 

are roughly the same size (Chakraborti et al., 2001). 

The Shewhart Control Chart 
 

The earliest and simplest SPC control charts for monitoring location and 

dispersion are the Shewhart X� control chart, which signals whenever an observation plots 

outside the control limits of a sample mean, and the Shewhart R chart, which monitors 

process variability (Montgomery, 2009; Shewhart, 1931).  In its simplest form, the 

Shewhart X� control charts uses multiples of the process standard deviation to establish 

control limits for the process mean and plots the sample means versus the sample number 

on a control chart.  If the process standard deviation is unknown, then the standard 

deviation must be estimated from previous data.  Another method for designing control 

limits is the range method.  If 𝑥1, 𝑥2, … , 𝑥𝑛 is a sample of size n, then the range of the 

sample difference between the largest and the smallest observations is = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛.  

Let R1, R2, … . , Rm be the ranges of the m samples.  Then the average range is 
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 𝑅� =
𝑅1 + 𝑅2 + ⋯+ 𝑅𝑚

𝑚
 , (1)  

and the control limits for the Shewhart X� control charts are 

 𝑈𝐶𝐿 = 𝑋� + 𝐴2𝑅� , (2) 

 𝐶𝑒𝑛𝑡𝑒𝑟 𝐿𝑖𝑛𝑒 =  𝑋�, (3) 

 𝐿𝐶𝐿 = 𝑋� − 𝐴2𝑅�. (4) 

The control limits for an R chart are  

 𝑈𝐶𝐿 = 𝐷4𝑅�, (5) 

 𝐶𝑒𝑛𝑡𝑒𝑟 𝐿𝑖𝑛𝑒 =  𝑅�, and (6) 

 𝐿𝐶𝐿 = 𝐷3𝑅�. (7) 

The constants A2, D3, and D4 are tabulated constants for various sample sizes (see 

Montgomery, 2009).  When it is possible to specify the standard deviation and the mean 

of the process based on previous samples, then the control limits for the Shewhart X� 

control chart are 

 𝑈𝐶𝐿 = 𝜇 + 3 𝜎
√𝑛

 , (8) 

 𝐶𝑒𝑛𝑡𝑒𝑟 𝐿𝑖𝑛𝑒 = 𝜇, and (9) 

 𝐿𝐶𝐿 = 𝜇 − 3
𝜎
√𝑛

. (10) 

The control limits for the R chart are  

 𝑈𝐶𝐿 = 𝑑2𝜎 + 3𝑑3𝜎, (11) 

 𝐶𝑒𝑛𝑡𝑒𝑟 𝐿𝑖𝑛𝑒 =  𝑑2𝜎, and (12) 

 𝐿𝐶𝐿 = 𝑑2𝜎 − 3𝑑3𝜎 (13) 

The constants d2 and d3 are tabulated constants for various sample sizes (see 

Montgomery, 2009).  If 𝜎 is unknown, the sample standard deviation s is used.  However, 
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the sample standard deviation s is not an unbiased estimator of 𝜎.  Montgomery (2009) 

suggests that s estimates  𝑐4𝜎, where  𝑐4 is a constant that depends on the sample size n. 

The average of m standard deviations is  �̅� = 1
𝑚
∑ 𝑠𝑖𝑚
𝑖=1  , and therefore, the control limits 

for  �̅� chart are 

 𝑈𝐶𝐿 = �̿� +
3�̅�
𝑐4√𝑛

, (14) 

 𝐶𝑒𝑛𝑡𝑒𝑟 𝐿𝑖𝑛𝑒 = �̿�, and (15) 

 𝐿𝐶𝐿 = �̿� −
3�̅�
𝑐4√𝑛

. (16) 

Using 𝐴3 = �̅�
𝑐4√𝑛

, then the �̅� chart control chart control limits are 

 𝑈𝐶𝐿 = �̿� + 𝐴3�̅�,  (17) 

 𝐶𝑒𝑛𝑡𝑒𝑟 𝐿𝑖𝑛𝑒 = �̿�, and (18) 

 𝐿𝐶𝐿 = �̿� − 𝐴3�̅�. (19) 

The constant A3 is tabulated for various sample sizes (Montgomery, 2009). 

 To illustrate the control limits for  �̅� chart, we use an example for the inside 

diameter measurements (mm) for automobile engine piston rings from a data set 

borrowed from Montgomery (2009).  Table 1 presents 25 observations from five samples 

of n = 5 each.  The x� control chart is shown in Figure 1.  Since none of sample means 

plot outside the control limits, there is no indication that the process is out-of-control; 

therefore, those control limits could be adopted for Phase II monitoring of the process 

mean.  
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Table 1 
 
Inside Diameter Measurement (mm) for an Automobile Engine Piston Rings 
 

Sample 
  Number 𝑥𝚤�  si 

1 74.010 0.0148 
2 74.001 0.0075 
3 74.008 0.0147 
4 74.003 0.0091 
5 74.003 0.0122 
6 73.996 0.0087 
7 74.000 0.0055 
8 73.997 0.0123 
9 74.004 0.0055 
10 73.998 0.0063 
11 73.994 0.0029 
12 74.001 0.0042 
13 73.998 0.0105 
14 73.990 0.0153 
15 74.006 0.0073 
16 73.997 0.0078 
17 74.001 0.0106 
18 74.007 0.0070 
19 73.998 0.0085 
20 74.009 0.0080 
21 74.000 0.0122 
22 74.002 0.0074 
23 74.002 0.0119 
24 74.005 0.0087 
25 73.998 0.0162 
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Figure 1.  The x� control chart for the example in Table 1. 

 

The Shewhart x� control chart for monitoring the mean of a process consists of a 

center line at the historical process level and upper and lower statistical control limits. 

Sample means are plotted over time. An out-of-control signal is detected when a sample 

mean falls outside the chart’s control limits.  The control limits are often set at the 

process mean with a width of 3σ, where σ is estimated using historical samples standard 

deviations.  Woodall and Montgomery (1999) pointed out that other methods have been 

proposed to improve the sensitivity to small-sized and moderate-sized shifts in the 

process mean.  Woodall and Montgomery suggested using run rules to signal for unusual 
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patterns on the chart.  Although run rules improve the sensitivity of the chart, they 

increase the number of false alarms (Montgomery, 1999). 

The Cumulative Sum Control Chart 
 

The cumulative sum (CUSUM) and the exponentially weighted moving average 

(EWMA) control charts enjoy widespread popularity in practice because they are very 

effective in detecting small shifts quickly.  Unlike the Shewhart chart, they use the 

information in the data from the beginning of the process and not the most recent time 

point only (Montgomery, 2009).  Page (1954) introduced the CUSUM procedure as an 

alternative to Shewhart-style procedures that are based on a single point recorded on the 

control chart.  Shewhart-style procedures fail to make use of all the information available 

from the process. While the Shewhart-type charts are probably most used because of their 

simplicity, CUSUM procedures are quite appropriate in view of the sequential nature of 

the process control problem (Chakraborti et al., 2001). 

As an example of the advantages of the tabular CUSUM control charts, first 

consider the data in Table 2, column (a), from Montgomery (2009, pages 401-409).  The 

first 20 observations are a random sample from a normal distribution with mean μ = 10 

and standard deviation σ = 1.  These 20 observations have been plotted on a Shewhart 

control chart in Figure 2.  The center line (CL) based on the first 20 observation labeled 

as 𝜇20 and three sigma control limits on this chart are at 

 𝑈𝐶𝐿 = 𝜇20 + 3𝜎 = 10 + 3(1) = 13, (20) 

 𝐶𝐿 = 𝜇20 = 10, and (21) 

 𝑈𝐶𝐿 = 𝜇20 − 3𝜎 = 10 − 3(1) = 7. (22) 
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Table 2 
 
Data for Cumulative Sum Example 
 

Sample, i (a) xi (b) xi - 10 
( c) Ci = (xi - 10) + 

Ci-1 
1 9.45 -0.55 -0.55 
2 7.99 -2.01 -2.56 
3 9.29 -0.71 -3.27 
4 11.66 1.66 -1.61 
5 12.16 2.16 0.55 
6 10.18 0.18 0.73 
7 8.04 -1.96 -1.23 
8 11.46 1.46 0.23 
9 9.2 -0.8 -0.57 
10 10.34 0.34 -0.23 
11 9.03 -0.97 -1.2 
12 11.47 1.47 0.27 
13 10.51 0.51 0.78 
14 9.4 -0.6 0.18 
15 10.08 0.08 0.26 
16 9.37 -0.63 -0.37 
17 10.62 0.62 0.25 
18 10.31 0.31 0.56 
19 8.52 -1.48 -0.92 
20 10.84 0.84 -0.08 
21 10.9 0.9 0.82 
22 9.33 -0.67 0.15 
23 12.29 2.29 2.44 
24 11.5 1.5 3.94 
25 10.6 0.6 4.54 
26 11.08 1.08 5.62 
27 10.38 0.38 6 
28 11.62 1.62 7.62 
29 11.31 1.31 8.93 
30 10.52 0.52 9.45 
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Figure 2.  A Shewhart control chart for the data in Table 2.  
 

 Figure 2 shows that all 20 points plot are within the chart’s control limits.  The 

last 10 observations labeled as 21-30 are sampled from a normal distribution with mean μ 

= 11 and standard deviation σ = 1.  We can think of these observations as having been 

drawn from an out-of-control process with a mean shift of 1σ.  These last 10 observations 

are also plotting within the chart’s control limits.  However, note that 9 out of 10 points 

plot above the center line, which is an indication of a process mean shift.  The Shewhart 

control chart failed to detect this shift.  The reason for this failure is that the Shewhart 

control chart is effective for large shifts in the range of 1.5σ to 2σ.  The Shewhart control 

chart is ineffective for smaller shifts (Montgomery, 2009).  
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 The CUSUM control chart incorporates all information in the sequence of sample 

observations by plotting the cumulative sums of the deviations of the sample observations 

from target value (Montgomery, 2009; Woodall, 1986; page 1954). Using the data in 

Table 3, column (a), if 𝜇0 is the target value, and 𝑥𝚥�  is the average of the jth sample (n ≥1) 

collected then we can define the cumulative sum as 

 𝐶𝑖 = �(𝑥𝚥� − 𝜇0)
𝑖

𝑗=1

. (23) 

The cumulative sum control chart is formed by plotting the 𝐶𝑖 against the sample number 

i.  Figure 3 shows that for the first 20 observations, there is a slow upward trend; 

however, after observation #20, the mean has shifted to μ = 11, and an upward trend has 

developed, which is evidence that the process mean has shifted (Crosier, 1986; 

Montgomery, 2009; Reynolds, 1975).  Note the chart in Figure 3 is not a true control 

chart because it lacks statistical control limits.  There are two ways to represent 

CUSUMs: the tabular CUSUM and the V-mask CUSUM (Bissell, 1969; Montgomery, 

2009; Woodall, 1986).  Using the current example of observations in Table 2, the tabular 

CUSUM is presented here.  CUSUMs may be constructed both for individual 

observations and for averages of rational subgroups.  The current example uses individual 

observations.  The tabular CUSUM works by accumulating deviations from 𝜇0 above the 

target with one statistic 𝐶𝑖+ and accumulating deviations from 𝜇0 below the target in 

another statistic 𝐶𝑖− (Montgomery, 2009).  The 𝐶𝑖+ and 𝐶𝑖− are called one-sided upper and 

lower CUSUMs.  For the data in Table 2, they are computed as follows: 
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 𝐶𝑖+ = max [0, 𝑥𝑖 − (𝜇0 + 𝐾) + 𝐶𝑖−1+ ], (24) 

 𝐶𝑖− = max [0, (𝜇0 − 𝐾) − 𝑥𝑖 + 𝐶𝑖−1− ], and (25) 

 𝐶0+ =, C0− = 0. (26) 

  

 

 

Figure 3.  Plot of cumulative sum (CUSUM) from column c of Table 3. 

 

 K is usually a reference or allowance of the slack value, which is often chosen 

about halfway between 𝜇0 and the out-of-control value 𝜇1.  Therefore, if the shift is 

expressed in standard deviations units as 𝜇1 = 𝜇0 + 𝛿𝜎, then K is one-half the shift or 

𝐾 = 𝛿
2
𝜎 = |𝜇1−𝜇0|

2
.  So, 𝐶𝑖+ and 𝐶𝑖− accumulate deviations greater than K.  Both 𝐶𝑖+ and 

𝐶𝑖− are reset to 0 on becoming negative.  If either of 𝐶𝑖+ and 𝐶𝑖− exceeds the decision 
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interval H, which has a reasonable value of five times the process standard deviation, the 

process is considered out-of-control (Montgomery, 2009).  Using H = 5, Table 3 shows 

the calculations of both 𝐶𝑖+ and 𝐶𝑖− under the respective headings (a) and (b).  The 

quantities 𝑁+ and 𝑁−, respectively, indicate the number of consecutive observations for 

which the CUSUMS 𝐶𝑖+ and 𝐶𝑖− have been greater than zero.  The CUSUMs in Table 3 

show that the upper CUSUM 𝐶29+  = 5.28 > H = 5, which is greater than the decision 

interval (H = 5); thus, we can conclude that the process is out-of-control at this point. 

Since 𝑁+ =7 at period 29, this is an indication that the process shifted seven periods ago 

or at period 22.  This can be seen in the CUSUM chart plotted in Figure 4. 

Representing the tabular CUSUM graphically is both useful and convenient.  This 

is done by plotting 𝐶𝑖+ and 𝐶𝑖− versus the sample number on a CUSUM status chart that 

resembles a Shewhart control chart (see Figures 3 or 4).  Adding a Shewhart control chart 

to a CUSUM can improve the ARL properties of the combined control chart and can be 

designed to quickly detest large shifts in process mean.  However, the combined scheme 

is not robust to outliers as a single outlier observation can cause an out-of-control signal 

(Lucas, 1982).  A fast initial response (FIR) feature at the process startup was proposed 

by Lucas and Crosier (1982) in order to permit a faster response to an initial out-of-

control signal.  Lucas and Crosier studied the ARL properties of both a standard 

CUISUM and a FIR_CUSUM and found that if the process starts in-control, adding a 

FIR has negligible effect; however, if the process mean is not at the desired level, an out-

of-control will be detected faster with an added FIR.  
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Table 3 
 
The Tabular Cumulative Sum 
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Figure 4.  Cumulative sum status chart for data in Table 3. 
 
 

The average run length properties of the standard CUSUM have been studied by 

Brook and Evans (1972), Reynolds (1975), Robinson and Ho (1978), Woodall (1983), 

Yashchin (1985), Crosier (1986), and many other authors.  Reynolds used a Brownian 

motion approximation of CUSUM that does not require normality assumptions to derive 

an analytical form of ARL.  This form can be used to determine optimal parameters to 

minimize ARL at a specified deviation from the mean.  Montgomery (2009) used a 

method based on sequential analysis attributed to Siegmund (1985).  Siegmund’s 

approximation for one-sided CUSUM is  
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 𝐴𝑅𝐿 =
exp(−2Δ) + 2Δ𝑏 − 1

2Δ2
, (27) 

 where 𝑏 = 𝐻 + 1.116 and Δ = 𝛿 − 𝐾,Δ ≠ 0.  To calculate the ARL for a two-

sided CUSUM, first obtain ARL+ and ARL- for the one-sided CUSUMs. Then use 

 1
𝐴𝑅𝐿

=
1

𝐴𝑅𝐿+
+

1
𝐴𝑅𝐿−

 . (28) 

The last two decades provided an increased use of CUSUM as many authors 

studied and proposed various designs to tackle specific problems and situations.  Some 

examples are outlined; however, the subject as a whole is very extensive and outside the 

scope of this study.  Lucas (1985) described and implemented CUSUM schemes for 

counted data or CUSUM for attributes.  CUSUM for attributes are used when the 

underlying process output is not continuous but rather is a count, e.g., the number of 

defects per unit.  Lucas concluded that the CUSUM for attributes are simple to use, can 

be tailored to detect important shifts in count level, and use all the information in the data 

to quickly detect shifts.  Shu, Jiang, and Tsui (2008) proposed a weighted cumulative 

sum (WCUSUM) procedure for monitoring a sequence with patterned mean shift and 

then used the estimates of a dynamic mean of the sequence for weighing the incremental 

in the conventional CUSUM chart.  A WCUSUM is similar to the standard CUSUM 

chart and is less sensitive to large shifts.  However, detection performance can be 

improved by using a combined WCUSUM-Shewhart control limits scheme.  Mousavi 

and Reynolds (2009) investigated the problem of monitoring a proportion when there was 

a stream of autocorrelated binary observations with first order dependence.  According to 

Mousavi and Reynolds, positive autocorrelation leads to false alarms that would be 

expected for independent observations.  Mousavi and Reynolds showed that a Bernoulli 
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CUSUM and the Shewhart proportions control charts were not robust to autocorrelation 

and adjusting the control limits was not an efficient approach.  Mousavi and Reynolds 

constructed a Markov binary cumulative sum control chart based on the log-likelihood 

ratio statistic and showed that the properties of this chart were calculable.  The Markov 

binary cumulative sum control chart accounts for autocorrelations when present in the 

data and is most effective for detecting increases in proportions  

The Exponentially Weighted Moving  
Average (EWMA) Control Chart 
 

Exponentially weighted moving average EWMA control charts were developed 

by Roberts (1959) at Bell Telephone Laboratories where he presented an intuitive 

graphical technique for illustrating an EWMA design.  Further design and ARL studies 

were presented by Crowder (1987a, 1987b, 1989).  The EWMA method is useful for 

monitoring both the location and dispersion of a process as well as process for 

forecasting.  Lucas and Saccucci (1990) have shown that the EWMA is as effective as the 

CUSUM in detecting periodic shifts in the process mean.  Also, the EWMA is useful for 

forecasting gradual drift as highlighted by Hunter (1986).  Hunter viewed the EWMA as 

an opportunity to begin to consider a real-time dynamic control of processes using 

discrete data and, if desired, to make the operator part of the feedback control loop.  The 

EWMA design gives the most recent observation the greatest weight and every other 

observation receives a geometrically decreasing weight back to the first observation. 

EWMA charts take advantage of the sequentially accumulating nature of the data arising 

in a typical statistical process control environment and are known to be more efficient 

than the Shewhart control chart in detecting smaller shifts (Graham et al., 2011).  
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Since EWMA charts are known to be sensitive in detecting small changes in 

process mean and process variability, the EWMA method has gained a great deal of 

attention and has become widely used in many quality control applications (Chen, Cheng, 

& Xie, 2004).  The EWMA is used mostly for monitoring process parameter shift, 

primarily the mean for using either the individual observations or the sample mean 

(Crowder, 1989; Lucas & Saccucci, 1990; Ng & Case, 1989).  For an EWMA scheme 

using individual observation, see Montgomery (2009).  Montgomery stated, “Since the 

EWMA can be viewed as a weighted average of all past and current observations, is very 

insensitive to the normality assumption.  It is therefore an ideal control chart of individual 

observation” (p. 420).  Crowder (1989) provided a simple procedure for designing an 

EWMA scheme for purposes of process monitoring and detection of shifts using sample 

means.  For the sample means case �̅�𝑖 , the EWMA control chart is based on the values  

 𝑧𝑖 = 𝜆�̅�𝑖 + (1 − 𝜆 )�̅�𝑖−1, (29) 

where 𝑖 = 1,2,3, … and 𝑧0 = �̅�,   0 < 𝜆 ≤ 1 and 𝑧𝑖is the EWMA charting statistic. 

In this scheme, 𝜆 is a smoothing constant and �̅�𝑖 are the sample means measured at time i. 

When 𝜆 = 1 , the value of EWMA depends solely on the most recent observation as in 

the Shewhart X-bar chart case.  If the observations 𝑥𝑖 are independent random variables 

with variance 𝜎2, then the variance of 𝑧𝑖 is  

 𝜎𝑧𝑖 
2 = 𝜎2 �

𝜆
2 − 𝜆

� �1 − (1 − 𝜆)2𝑖�. (30) 

The EWMA control chart is constructed by plotting 𝑧𝑖 versus the sample number i.  The 

center line (CL) and control limits for the EWMA control chart are  
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 𝑈𝐶𝐿 =  𝜇0 + 𝐿𝜎��
𝜆

2 − 𝜆
� [1 − (1 − 𝜆)2𝑖], (31) 

 𝐶𝐿 = 𝜇0, and (32) 

 𝐿𝐶𝐿 =  𝜇0 − 𝐿𝜎��
𝜆

2 − 𝜆
� [1 − (1 − 𝜆)2𝑖]. (33) 

In the above equations, the factor L is the width of the control limits in terms of standard 

deviations.  As i get larger, the term [1 − (1 − 𝜆)2𝑖] approaches unity.  This means that 

an EWMA has reached a steady-state and its center line and control limits are defined as 

follows: 

 𝑈𝐶𝐿 =  𝜇0 + 𝐿𝜎��
𝜆

2 − 𝜆
�, (34) 

 𝐶𝐿 = 𝜇0, and (35) 

 𝐿𝐶𝐿 =  𝜇0 − 𝐿𝜎��
𝜆

2 − 𝜆
�. (36) 

The EWMA control chart signals out-of-control, detecting an off-target shift, if any 

sample mean plots outside the above control limits.   

 Zhang and Chen (2005) extended the exponentially weighted moving average 

(EWMA) technique by performing exponential smoothing twice; hence, they proposed a 

method called the double exponentially weighted moving average (DEWMA) technique 

for detecting process mean shifts.  Zhang and Chen defined their DEWMA statistic by 

  �

𝑧𝑡 =  𝜆1�̅�𝑡 + 𝜆2𝑧𝑡−1 ,      𝑡 ≥ 1
𝑧0 = 𝜇0

𝑤𝑡 =  𝜆3𝑧�̅� + 𝜆4𝑤𝑡−1 ,    𝑡 ≥ 1
𝑤0 = 𝜇0,

,  

 

(37) 
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where 𝑡 = 1,2,3, … and 𝑧0 = 𝑤0 = �̅�, 0 < 𝜆𝑖 ≤ 1, and 𝑧𝑡 is the EWMA statistic and 𝑤𝑡 

is the DEWMA statistic.  Based on 𝐷𝐸𝑊𝑀𝐴 (𝜆1,𝜆3),  the DEWMA mean chart plots 𝑤𝑡 

against time t with starting target value 𝜇0 and control limits as follows: 

 𝑈𝐶𝐿𝑡 =  𝜇0 + 𝐿�𝑣𝑎𝑟(𝑤𝑡), (38) 

 𝐶𝐿𝑡 = 𝜇0, and (39) 

 𝐿𝐶𝐿𝑡 =  𝜇0 − 𝐿�𝑣𝑎𝑟(𝑤𝑡) . (40) 

Zhang and Chen used time-varying control limits to increase the sensitivity of the 

DEWMA chart in detecting mean shifts at the start of the process.  Zhang and Chen used 

simulation studies to show that the DEWMA control charts outperform the EWMA 

control charts for small shifts in process mean, ranging from 0.1 to 0.5 of the process 

standard deviation.  Both EWMA and DEWMA performed alike for process mean shifts 

greater than 0.5 of the process standard deviation.  Shamma and Shamma (1992) also 

developed a DEWMA control chart that is based on a one 𝜆 and the fixed control limits. 

Shamma and Shamma studied the ARL properties of their proposed DEWMA chart using 

simulation.  Shamma and Shamma concluded that their DEWMA chart had similar 

properties to the traditional EWMA control charts, which agrees with the conclusions of 

Zhang and Chen (2005).  

 There have been many different uses and studies based on the EWMA control 

chart method.  For example, an EWMA control chart has been studied for monitoring 

process dispersion by Amin, Wolff, Besenfelder, and Baxley (1999), Shu and Jiang 

(2008), Chen et al. (2004), and Pascual (2010).  Shu and Jiang developed an EWMA 

dispersion control chart by truncating the negative normalized observations to zero in the 

traditional EWMA statistic.  Shu and Jiang found that by resetting the sample variance or 
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the logarithm of the sample variance before using it into the EWMA recursion, their 

proposed EWMA-type chart for monitoring increases in process variability outperformed 

the traditional EWMA chart by detecting small changes in dispersion.  

 Amin et al. (1999) proposed an EWMA chart based on the smallest and largest 

observation in each sample, which they called the MinMax EWMA control chart.  The 

design of the MinMax EWMA used an EWMA for the minimum observation in the 

sample and an EWMA for the maximum observation in the sample and tracks 

observations that were farthest from the center line (target) of both the low-side and the 

upper-side.  The advantages of the MinMax EWMA are as follows: (a) it allows for 

monitoring of the mean and standard deviation of the process, (b) it is a useful graphical 

tool, (c) it has good ARL properties for simultaneous changes in the process mean and 

standard deviation, (d) it allows the placement of specification limits on the chart, (e) it 

may be viewed as smoothed tolerance limits, and (f) it requires fewer measurements 

when rank ordering of observations is possible.  Through a numerical example, Amin et 

al. showed the MinMax EWMA control chart had excellent ARL properties to detect 

changes in the mean and standard deviation simultaneously.  

 Monitoring both location and dispersion in one control chart was proposed by 

Chao and Cheng (1996) using the semicircle (SC) control chart.  The SC control chart 

allows for the detection of the mean shift and variability change in one single chart.  The 

SC chart’s main advantage is its ease of attributing an out-of-control signal to shift in the 

mean or variability change.  The SC chart is insensitive to small changes.  Chen et al. 

(2004) combined the features of Chao and Cheng’s semicircle chart with the EWMA 

method to develop a new control chart, EWMA-SC, which is very sensitive in detecting 
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small changes when a mean shift accompanies increased process variability.  The 

EWMA-SC charting technique is efficient and easy to implement so one can quickly 

identify the sources and direction of an out-of-control signal on the plot (Chen et al., 

2004). 

Monitoring the shape parameter is not restricted to observations from the normal 

distribution.  Other authors have used the EWMA technique to monitor shape parameters 

based on different statistical distributions.  Pascual (2010) presented an EWMA control 

chart based on either a sample mean range or an unbiased estimator of the sample 

variance for monitoring the Weibull shape parameter.  Pascual’s proposed method allows 

for independent monitoring of both the shape and scale parameters and is recommended 

for monitoring small changes in the shape parameter.  Pascual demonstrated through an 

example that ARLs are dependent on the shape parameter and are unbiased in the sense 

that they are expected to detect shifts sooner than the in-control ARL.    

A standard assumption when using parametric control charts like the EWMA is 

that the observations coming from a process output are independent.  Apley and Lee 

(2008) and Lu and Reynolds (1999) studied the ARL properties of EWMA charts for 

autocorrelated data.  Lu and Reynolds considered the problem of detecting changes in a 

process in which observations modeled as an autoregressive moving average (AR1) plus 

a random error.  Lu and Reynolds found that monitoring a process of the AR1 type is 

more difficult than monitoring a process in which the observations are independent 

normal random variables.  The main reasons for the monitoring difficulty are (a) the 

autocorrelation appears to mask small changes in the process mean, and (b) the 

autocorrelated case requires more observations for parameter estimation than the 
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independent case as well as a more sophisticated model fitting.  Lu and Reynolds 

concluded that for low to medium level autocorrelations, both the autocorrelated residual-

based EWMA chart and the traditional EWMA chart have the same ARL properties. 

However, for high level autocorrelation and large shifts, the residual-based EWMA chart 

is better in detecting shifts.  The results from Lu and Reynolds were corroborated by 

Apley and Lee (2008). Apley and Lee added that while the residual-based EWMA charts 

lacked robustness, they were more robust than independent EWMA when applied to 

autocorrelated process output observations.  

Univariate Nonparametric  
Control Charts 
 

A definition of a nonparametric or distribution-free control chart is given in terms 

of its in-control run length distribution.  If the in-control run length distribution is the 

same for every continuous distribution, then the chart is called distribution-free 

(Chakraborti et al., 2001).  In process control, chance causes are assumed to follow some 

parametric distribution; most often, it is the normal distribution (Chakraborti et al., 2001). 

The statistical properties of control charts are exact if the normality assumption is true; 

however, most underlying processes are not normal and, therefore, their statistical 

properties are not exact.  This gives rise and justification to the idea of developing control 

charts for processes that do not depend on the normal distribution or any other parametric 

distribution (Bakir, 2004, 2006; Bakir & Reynolds, 1979; Lowry et al., 1992). 

The recent development of a substantial number of distribution-free or 

nonparametric control charts where no-underlying probability distribution is assumed on 

the process output observations has been more available in the literature (Bakir, 2004). 

Many factors led to the development of nonparametric control charts.  First, the 
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distributions of many process output observations are not known and, therefore, 

parametric or distribution-based control charts are not robust to these distribution-free 

process output observations.  In addition, traditional or distribution-based control charts 

lack robustness when the data are skewed or when extreme or outlier data are present 

(Hackl & Ledolter, 1991).  Finally, Hackl and Ledolter (1992) found that the average run 

length of a EWMA process is reduced when the data are heavily contaminated by 

outliers; hence, they argued that robust procedures are valuable.     

Since the 1920s when Walter Shewhart (1931) developed the first control chart, 

statistical process control charts have been developed based on distribution-based 

procedures where the process output is assumed to follow a specified probability 

distribution such as the normal, binomial, or Poisson (Bakir, 2004).  The review of 

literature provided a vast number of research studies proposing the use of univariate 

nonparametric or distribution-free control charts as an alternative to the traditional 

distribution-based control charts.   

The use of nonparametric or distribution-free quality control charts for the 

univariate case was studied by many authors.  Bakir and Reynolds (1979), Hackl and 

Ledolter (1991), Amin and Searcy (1991), Chakraborti et al., (2001), Amin, Reynolds, 

and Bakir (1995), Bakir (2004, 2006), Yang, Lin, and Cheng (2011) and Graham et al. 

(2011) proposed nonparametric control charts based on the sign, rank, or the signed-rank 

statistics.  Once the sign, rank, or the signed-rank statistics are computed, they are used to 

construct control charts of the EWMA or CUSUM types.  The conventional design of 

nonparametric charts replaces the parametric control statistic, e.g., the mean, with a 
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plausible statistic with an unknown distribution and uses the nonparametric statistics to 

study equivalents of the parametric charts (Chakraborti et al., 2001). 

Chakraborti et al. (2001) presented an overview of nonparametric or distribution-

free control charts for univariate data.  They highlighted several advantages of using 

nonparametric control charts and pointed out some of the disadvantages of traditional or 

distribution-based control charts.  The authors’ goal was to present alternative control 

charts in the hope they would lead to wider acceptance of distribution-free charts and to 

understand the problems of practical statistical control without the confines of classical 

statistical estimation and hypothesis testing.  The authors argued that nonparametric 

control charts had many advantages: (a) their simplicity, (b) lack of need to assume any 

particular parametric distribution for the underlying process, (c) same in-control length 

for all continuous distributions, (d) greater robustness to outliers, (e) efficiency in 

detecting changes when the distribution is not normal, and (f) the lack of need to estimate 

the variance to set up charts for the location parameter.  What follows is a brief 

presentation of some highlights of univariate nonparametric control chart studies.  For the 

most part, the use of the sign-test or signed-rank test was used to develop a nonparametric 

equivalent to the X-bar Shewhart, EWMA, or CUSUM charts.  The performance and 

efficiency of the proposed charts were evaluated by comparing them to their parametric 

or distribution-based counterparts. 

Bakir and Reynolds (1979), Amin and Searcy (1991), Bakir (2004, 2006) and 

Graham et al. (2011) proposed different nonparametric control chart procedures based on 

signed-ranks statistics.  Bakir (2004, 2006) proposed a Shewhart style control chart based 

on the signed-rank statistic and then  extended the procedure using signed-rank statistics 
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to develop cumulative sum (CUSUM) type control chart and an exponentially weighted 

moving average (EWMA) type control chart.  Amin and Searcy (1991) and Graham et al. 

(2011) also used group signed-ranks to develop an exponentially weighted moving 

average (EWMA) type control chart.  

Using a procedure based on the Wilcoxon signed-rank statistics where rankings 

are within a group, Bakir and Reynolds (1979) proposed a process control chart.  The 

proposed statistic uses a nonparametric group signed-rank statistic (GSR) to compute a 

CUSUM type control chart.  The GSRs are computed using the following procedure: Let 

�𝑋𝑖1,𝑋12, … ,𝑋𝑖𝑔� for  𝑖 = 1,2, …, be groups of independent observations taken 

sequentially on the output on some process. If 𝑅𝑖𝑗 is the rank of |𝑋𝑖𝑗| in the 

group �|𝑋𝑖1, |, |𝑋𝑖2|, … , |𝑋𝑖𝑔|� for 𝑗 = 1,2, … ,𝑔, then 

 𝑈𝑖𝑗 = 𝑠𝑖𝑔𝑛 �𝑋𝑖𝑗�𝑅𝑖𝑗 ,   𝑗 = 1,2, … ,𝑔 (41) 

are the usual Wilcoxon signed-ranks of the observations within the ith group.  Let 

𝑆𝑅𝑖 = ∑ 𝑈𝑖𝑗
𝑔
𝑗  be the sum of the signed-ranks for the ith group.  The values 𝑆𝑅𝑖 are a 

sequence of independent Wilcoxon signed-rank statistics, each based on g observations. 

The grouped-signed-rank (GSR) procedure uses the Wilcoxon statistics with a CUSUM 

stopping rule.  Bakir and Reynolds showed that the average run length ARL for the GSR-

CUSUM is slightly less efficient than the parametric procedure under the normality 

assumption since the null hypothesis is correct.  However, the GSR-CUSUM is more 

efficient than the parametric procedures for non-normal distributions like the uniform, the 

double exponential, and the Cauchy distributions.  A suitable subgroup size for this 

nonparametric procedure is suggested to be between n = 5 and 10, depending on the shift 

size and the desired in-control ARL.  Furthermore, the GSR-CUSUM procedure requires 
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fewer assumptions about the distribution of the observations and the ARL of the GSR is 

the same for any continuous distribution that is symmetric about the control value.      

The ARL properties of the nonparametric Wilcoxon group signed-rank statistic 

(GSR) developed by Bakir and Reynolds (1979) were investigated by Amin and Searcy 

(1991).  Amin and Searcy developed a GRS-EWMA control chart using the GSR statistic 

and investigated the effect of autocorrelation on the average run length (ARL) properties 

of the GRS-EWMA.  Amin and Searcy’s simulation studies showed that the GSR-

EWMA control chart was slightly less efficient than the traditional X-bar EWMA when 

the underlying distribution is normal and is more efficient at detecting smaller shifts 

when the process has a heavy-tailed distributions such as the double exponential.     

Bakir (2004) proposed a nonparametric Shewhart style control chart based on 

signed-ranks for monitoring a process center.  The exact false alarm rates and the in 

control average run lengths (ARL) for Bakir’s proposed chart were calculated using the 

null hypothesis of the Wilcoxon’s signed-rank statistic.  The out-of-control ARLs were 

computed empirically by simulation for the light-tailed distributions (normal, uniform) 

and heavy-tailed distributions (double exponential and Cauchy) shift alternatives.  The 

computing procedure for the signed-ranks is similar to the one used by Bakir and 

Reynolds (1979) in which they used group signed-ranks (GSR) applied to CUSUM type 

control chart.  These same group signed-ranks statistics are used by Bakir (2004) in his 

proposed Shewhart style control chart.  Bakir showed that control charts based on the 

univariate group signed-rank statistic are more efficient than the traditional Shewhart X-

bar chart under heavy-tailed distributions but less efficient under light-tailed 

distributions.   
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Expanding on his initial research using GSR based control charts from 2004, 

Bakir (2006) proposed three different nonparametric or distribution-free control charts for 

monitoring a process mean when an in control target mean was specified: the Shewhart-

type, the EWMA-type, and the CUSUM-type.  Bakir found that the primary advantage of 

these signed-rank based control charts was having a constant in control ARL, regardless 

of the underlying distribution, as long as the distribution was continuous and symmetric. 

Furthermore, simulation studies showed that the signed-rank style control charts were 

robust against outliers while the traditional Shewhart, CUSUM, and EWMA control 

charts were not.  Also, simulation studies showed that the signed-rank Shewhart style 

control chart was more efficient than its parametric counterpart for moderate to heavy-

tailed distributions (Cauchy and double exponential).  However, since the CUSUM and 

EWMA control charts were more efficient than the Shewhart control chart for detecting 

smaller shifts in the process mean, Bakir expected that the signed-rank EWMA and 

CUSUM control charts were more efficient than their parametric counterparts but further 

studies are required to confirm this expectation.  Bakir’s results for the signed-rank 

EWMA match those of Amin and Searcy (1991) who found that the GRS-EWMA control 

chart performed well for non-normal and heavy-tailed data. 

Graham et al. (2011) developed a new nonparametric EWMA control chart based 

on Wilcoxon’s signed-rank test (NPEWMA-SR) arguing that if normality is in doubt or 

cannot be justified for lack of information, then a control chart that combines the shift 

detection properties of EWMA with the robustness of nonparametric tests is desirable. 

They claimed that the Wilcoxon signed-rank test was efficient when compared to the 

standard t-test for testing hypotheses about the mean.  Unlike the t-test, the SR test does 
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not require the assumption of normality and is very efficient.  The asymptotic relative 

efficiency (ARE) for the SR test compared to the t-test is 0.955, 1, 1.097, and 1.5 for the 

normal, uniform, logistic, and Laplace distribution, respectively (Mottonen et al., 1997). 

Previous ARE values indicated that the SR test is more powerful for some heavy-tailed 

distributions like the uniform.  Since the signed-rank test is more powerful than the sign 

test (Gibbons & Chakraborti, 2003), the SR test was used to construct the NPEWMA-SR 

control chart to monitor a process median of an asymptotic continuous distribution. 

Suppose that 𝑋𝑖𝑗, 𝑖 = 1,2,3, . . and 𝑗 = 1,2, …𝑛 denoted the jth observation in the ith 

subgroup of n > 1.  Let us denote the rank 𝑅𝑖𝑗+  of the absolute values of the differences 

�𝑋𝑖𝑗 − 𝜃0�, 𝑗 = 1,2, …𝑛 within the ith subgroup.  Define 

 𝑆𝑅𝑖 = �𝑠𝑖𝑔𝑛�𝑋𝑖𝑗 − 𝜃0� 𝑅𝑖𝑗+ ,     𝑖 = 1,2,3, … ,𝑛,
𝑛

𝑗=1

 (42) 

where sign (t) =1 if t > 0, 0 if t=0 and -1 if t < 0 and 𝜃0 is the known or specified value 

for the median, 𝜃. 𝑅𝑖𝑗+  is the difference between the sum of the ranks of the absolute 

differences corresponding to the positive and negative differences, respectively.  The 

NPEWMA-SR control chart is constructed by accumulating statistics 𝑅1,𝑅2,𝑅3, … 

sequentially for each subgroup. The charting statistic is 

 𝑍𝑖 = 𝜆𝑆𝑅𝑖 + (1 − 𝜆)𝑍𝑖−1 𝑓𝑜𝑟 𝑖 = 1,2,3, … , (43) 

where the starting values 𝑍0 = 0 and 0 < 𝜆 ≤ 1 is the smoothing parameter. T he control 

limits of the NPEWMA-SR for median are given by   

 𝐿𝐶𝐿 / 𝑈𝐶𝐿 = ±𝐿�𝑛(𝑛+1)(2𝑛+1)
6

𝜆
2−𝜆

 (1 − (1 − 𝜆)2𝑖) , (44) 

and CL = 0.     
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The steady-state (𝑎𝑠 𝑖 → ∞, �1 − (1 − 𝜆)2𝑖 → 1� control limits and CL are given by  

 𝐿𝐶𝐿 / 𝑈𝐶𝐿 = ±𝐿�𝑛
(𝑛 + 1)(2𝑛 + 1)

6
𝜆

2 − 𝜆
  , (45) 

and CL = 0. L is the width of the control limits, which is often expressed in multiples of 

the process standard deviation. 

The NPEWMA-SR chart performs as well or better than its competitors when the 

median is known or specified (Gibbons & Chakraborti, 2003).  On the basis of minimal 

assumptions, robustness of the in-control run-length and out-of-control distribution, the 

MPEWMA-SR chart is a viable alternative to parametric methods in SPC.  It combines 

the advantages of the in-control robustness with the small shift detection capability of the 

EWMA-style charts.  A disadvantage of the NPEWMA-SR is that its properties are 

unknown when the median is unknown or unspecified.  

Other authors proposed and developed nonparametric control charts based on the 

sign-test statistic.  Amine et al. (1995) used the sign-test statistic to develop 

nonparametric versions of CUSUM and EWMA control charts that were compared to 

their parametric counterparts.  Yang et al. (2011) also used the sign-test statistics to 

develop a nonparametric EWMA sign control chart as well as an Arcsine EWMA control 

chart.  Procedures using the sign-test statistic required that each observation be compared 

with a control value and the numbers of observations above and below the target mean, 

μ0, be recorded for each sample.  For a nonsymmetrical distribution, the sign-test is a test 

for a change in the median of observation, where μ0 is the median (Amin et al. 1995). Let 

 𝑆𝑁𝑖 = ∑ 𝑠𝑖𝑔𝑛�𝑋𝑖𝑗 − 𝜇0�,     𝑖 = 1,2,3, …𝑛
𝑗=1  , (46) 
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where sign (t) =1 if t > 0, 0 if t=0 and -1 if t < 0.  SNi is the difference between the 

number of observations above μ0 and the number below μ0.  Amin et al. (1995) used SNi 

as a charting statistic for detecting changes in the process location (e.g., mean, median) to 

develop Shewhart and CUSUM-style control charts.  

Amin et al. (1995) found that if the distribution of observations is close to normal 

and the sample size is not too small, the distribution of 𝑋� will be normal due to the 

central limit theory (CLT) and the resulting ARL will be approximately correct. 

However, if the distribution of observations is heavy-tailed (double exponential, Cauchy), 

then nonparametric control charts based on the sign-test seem to offer an advantage of 

fixed ARL when-in control and high efficiency in detecting shifts in μ.  In addition, the 

variance does not need to be known or estimated to carry out the nonparametric sign-

based procedure. 

Yang et al. (2011) proposed a nonparametric EWMA control chart as follows. 

Assume that a quality characteristic, X, has a target value T.  Let y = X – T and p = P(Y > 

0) = the process proportion.  When the process is in-control (p = 0.5) and when the 

process is out-of-control (p ≠ 0.05).  To monitor the deviation from the process target ant 

any given time, a random sample of size n, X1, X2, …, Xn is taken from    

 𝑌𝑖 = 𝑋𝑗 − 𝑇 𝑎𝑛𝑑 𝐼𝑖 =  � 1, 𝑖𝑓 𝑌𝑖 > 0
   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  for 𝑗 = 1,2, … ,𝑛.  (47) 

Let M be the total number of   𝑌𝑗 > 0, then 𝑀 = ∑ 𝐼𝑗𝑛
𝑗=1  would follow a binomial 

distribution with parameters (n, 0.5) when the process is in control. Yang et al. found that 

for small n, the in-control ARL values were not always equal to the desired 370 (𝐴𝑅𝐿 =

1
𝛼

= 1
0.0027

= 370) where α is the 99.5% percentile of the observations.  The reason was 
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that for small n values, the binomial distribution is asymmetric.  The authors proposed a 

transformation using the arcsine function by letting = sin−1 �𝑀
𝑛

.  Then Y is normally 

distributed with mean sin−1 �𝑝 and variance 1/ (4n).  The resulting in-control ARL is 

370. 

Multivariate Parametric Control  
Charts 
 

Multivariate control charts are used to monitor a process when more than one 

quality characteristic is being observed and to improve the detection of small shifts in 

SPC (Prabhu & Runger, 1997).  Quality is seldom determined by a single quality 

characteristic but rather by several quality characteristics that are likely to be correlated. 

Multivariate control methods use the correlations between the variables to design more 

powerful control charts that are sensitive to assignable causes, which are poorly detected 

by individual variable control charts.  Generalizations of the univariate control charts 

methods outlined above take this correlation into account when monitoring the mean 

vector or variance-covariance matrix (Woodall & Montgomery, 1999).  As with the 

univariate case, we wish to design a control chart and assess its ARL performance in 

detecting a shift in the process mean vector,  𝜇, or variance-covariance matrix Σ 

(Stoumbos & Sullivan, 2002).   

Hotelling’s 𝝌𝟐 control chart.  The first multivariate control chart was a 

Shewhart-type chart developed by Hotelling (1947).  From the joint multivariate normal 

distribution, the squared standardized (generalized) distance from a vector 𝑿 to the 

multivatiate mean 𝝁 is 
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 (𝑿 − 𝝁)′𝚺−1(𝑿− 𝝁), (48) 

where Σ is the process variance-covariance matrix.  For sub-grouped data, a modified 

form of the distance (𝑿� − 𝝁)′𝚺−1(𝑿� − 𝝁) is used to construct a plotting statistic based on 

the 𝜒2 distribution,𝜒02 = 𝑛(𝑿� − 𝝁)′𝚺−1(𝑿� − 𝝁) where 𝑿� is the vector of sample means 

and 𝜇 is the vector of in-control means (Montgomery, 2009; Zou & Tsung, 2010).  This 

test statistic is plotted on the chi-square control chart for every sample.  Since 𝜒02 statistic 

has a chi-square distribution, it is always positive; therefore, its control limits are LCL=0 

and 𝑈𝐶𝐿 = 𝜒𝛼,𝑝
2 .  Hotelling’s 𝜒 2 signals that a statistically significant shift in the mean 

vector occurred or gave an out-of-control signal when  

 𝜒02 = 𝑛(𝑿� − 𝝁)′𝚺−1(𝑿� − 𝝁) > ℎ1 (49) 

where h1 > 0 is the specified control limit. Since this chart is based on only the most 

recent observation, it is insensitive to small to moderate shifts in the mean vector (Lowry 

et al., 1992).  

Perhaps the best known parametric statistic used in multivariate statistical process 

control is Hotelling’s T2, which was developed by Hotelling (1947).  For the one sample 

location problem, assume that 𝑌1, … ,𝑌𝑛  are independent and identically distributed (iid) 

observation Y, where  𝒀 = (𝑌1, …𝑌𝑛)′ has an absolutely continuous p-directional 

distribution with location parameter 𝜽 = �𝜃1, … ,𝜃𝑝�
′
.  The Hotelling’s T2 chart is a direct 

extension of the Shewhart 𝑥 �chart and is used when 𝝁 and 𝚺 are not known and must be 

estimated by 𝒀� and 𝑺 from preliminary samples taken when the process is assumed to be 

in-control.  However, when 𝜇 and Σ are estimated from a large number of preliminary 

samples, it is customary to use LCL=0 and 𝑈𝐶𝐿 = 𝜒𝛼,𝑝
2 .  We wish to test  
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 𝐻0: 𝜽 = 0 𝑣𝑠.𝐻𝑎:𝜽 ≠ 0. (50) 

The value 0 is used without loss of generality since if the null was 𝜽 − 𝜽𝟎, the test would 

be performed on the random variables 𝑌1 − 𝜽𝟎, … ,𝑌𝑛 − 𝜽𝟎.  For SPC, this test is 

equivalent to testing whether an observation (sample) is in-control.  The magnitude of the 

shift considered is  

 𝜹 = (𝝁′𝚺−𝟏𝝁)1/2 (51) 

In the context of multivariate normality,  𝛿 is called the non-centrality parameter 

(Stoumbos and Sullivan, 2002). The best known parametric test for this setting is the 

Hotelling’s T2 test statistic.  The Hotelling’s test is  𝑇2 = 𝑛𝒀�′𝑺−𝟏𝒀�, where 𝒀 � and S are the 

sample mean vector and the unbiased estimate of the population covariance matrix, 

respectively.   

There are two distinct phases of multivariate control charts.  Phase I uses a set of 

observations to estimate the mean and covariance structure in order to obtain in-control 

limits for Phase II or the monitoring phase.  Phase I control limits are given by 

 𝑼𝑪𝑳 = 𝒑(𝒎−𝟏)(𝒏−𝟏)
𝒎𝒏−𝒎−𝒑+𝟏

𝑭𝜶,𝒑,𝒎𝒏−𝒎−𝒑+𝟏 ,  and (52) 

 𝐿𝐶𝐿 = 0. (53) 

In Phase II, the monitoring control limits are 

 𝑼𝑪𝑳 = 𝒑(𝒎+𝟏)(𝒏−𝟏)
𝒎𝒏−𝒎−𝒑+𝟏

𝑭𝜶,𝒑,𝒎𝒏−𝒎−𝒑+𝟏 , and (54) 

 𝑳𝑪𝑳 = 𝟎 . (55) 

The Hotelling’s T2 is directionally invariant with respect to nonsingular linear 

transformation of the observations. That is, if L is a (p x p) nonsingular matrix, then  

 𝑇2(𝒀1, … . ,𝒀𝑛) = 𝑇2(𝐿𝒀1, … , 𝐿𝒀𝒏). (56) 
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This invariance property ensures that the value of the test statistic remains unchanged 

following a rotation of the observations about the origin, reflections of the observations 

about a (p - 1) dimensional hyper plane through the origin, or changes in scale.  

Therefore, the performance of the Hotelling’s T2 and other similarly invariant procedures 

are independent of the structure of the population covariance matrix or the direction of 

the shift.  This invariance property is referred to as affine-invariance (Peters & Randles, 

1990) and is a desirable statistical property in any test statistic, parametric or 

nonparametric.   

Another variation of the Hotelling’s T2 test was discussed by Lowry and 

Montgomery (1995) for individual observation or industrial settings where the subgroup 

size is n = 1. Let 𝒙 be the sample vector of observation n = 1 and let  𝒙� and 𝑺 be the 

sample mean vector and variance-covariance matrix for process with p observed quality 

characteristics in each sample. In the case of n = 1, the Hotelling’s T2 statistic is defined 

as  

 𝑻𝟐 = (𝒙 − 𝒙�)′𝑺−𝟏(𝒙 − 𝒙�). (57) 

The Phase II control limits for the above statistic are  

 𝑼𝑪𝑳 = 𝒑(𝒎+𝟏)(𝒎−𝟏)
𝒎𝟐−𝒎𝒑

𝑭𝜶,𝒑,𝒎−𝒑 , and (58) 

 𝑳𝑪𝑳 = 𝟎 . (59) 

However, when the number of preliminary samples is large, say > 100, Lowry and 

Montgomery (1995) and Montgomery (2009) suggested using  

 𝑼𝑪𝑳 = 𝒑(𝒎−𝟏)
𝒎− 𝒑

 𝑭𝜶,𝒑,𝒎−𝒑 , (60) 

 𝑳𝑪𝑳 = 𝟎, (61) 

or 
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 𝑼𝑪𝑳 = 𝝌𝜶,𝒑
𝟐  . (62) 

Lowry and Montgomery suggested that the chi-square limit should be used with caution 

only when the covariance matrix is known and with number of samples > 250.  Tracey, 

Young, and Mason (1992) pointed out that when n = 1, Phase I limits should be based on 

the multivariate beta distribution where Phase I control limits are defined as  

 𝑼𝑪𝑳 = (𝒎−𝟏)𝟐

𝒎
𝜷𝜶,𝒑/𝟐,𝒎−𝒑−𝟏𝟐  , and (63) 

 𝑳𝑪𝑳 = 𝟎 , (64) 

where  𝜷𝜶,𝒑/𝟐,𝒎−𝒑−𝟏𝟐   is the upper α percentage point of a multivariate beta distribution 

with parameters 𝑝
2
𝑎𝑛𝑑 𝑚−𝑝−1

2
. 

Multivariate cumulative sum (MCUSUM) control chart.  Multivariate 

cumulative sum (MCUSUM) control charts are improvements on the multivariate 

Shewhart-type charts like the Hotelling’s  𝑇2or 𝜒2 control charts; they use information 

from all samples and are more sensitive to small and moderate shifts in process mean 

vectors.  As in the univariate CUSUM case, the MCUSUM chart is a Phase II procedure 

(Montgomery, 2009).  Multivariate CUSUM (MCUSUM) charts have been studied by 

Woodall and Ncube (1985), Healy (1987), Crosier (1988), Pignatiello and Runger (1990), 

Hawkins (1991), Ngai and Zhang (2001), Runger and Testik (2004), Cheng (2007), and 

Golosnoy, Ragulin, and Schmid (2009).  

Woodall and Ncube (1985) extended the univariate CUSUM charts to the 

multivariate case by monitoring multiple quality characteristics.  To detect the shift in the 

mean vector of a p-variate normal distribution, construct multiple one-sided or two-sided 

CUSUM schemes simultaneously and evaluate the performance of the groups of 
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univariate CUSUM schemes.  The ARL performance of the Woodall and Ncube depends 

on the direction of the mean vector shift.  The process signals out-of-control once any one 

variable signals out-of-control.  Woodall and Ncube showed that by using principal 

components analysis, the dependency of ARL on the direction of the shift can be reduced 

but not removed.  Woodall and Ncube showed that in the bivariate case, the MCUSUM is 

preferable to the Hotelling’s  𝑇2 chart.  They argued that since the performance of the 

MCUSUM depends less on correlations than that of the Hotelling’s  𝑇2 procedure, the 

use of MCUSUM to monitor correlations is less important provided that the variances are 

controlled.  Healy (1987) also discussed the application of CUSUM to multivariate 

normal processes and showed that the MCUSUM procedure, which is related to 

sequential probability ratio tests, reduces to a univariate CUSUM.  According to Healy, 

the specification of both a target value and a specific alternative for the mean vector of a 

multivariate normal distribution with known variance-covariance matrix yields a 

MCUSUM scheme.   

Crosier (1988) and Pignatiello and Runger (1990) developed multiple MCUSUM 

schemes and compared their ARLs to each other and the Hotelling’s  𝑇2 chart.  Crosier 

built on the work of Healy (1987) by using sequential probability ratio tests in developing 

his schemes.  Crosier stated that there are two prevalent problems when deriving 

CUSUM schemes from theory of sequential tests.  First, sequential theory requires two 

simple hypotheses to be tested instead of a composite one.  Within quality control 

settings, it is the difference of requiring a simple hypothesis that the mean is at its desired 

level versus the composite hypothesis that the mean has shifted from the target value.  

Second, the logarithm of the sequential probability is often too complex to generate a 
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practical scheme.  According to Healy, both problems have impacted development of the 

multivariate CUSUM.  To address the first problem, Crosier proposed two multivariate 

CUSUM schemes as alternatives to the Hotelling  𝑇2 chart.  A first scheme forms a 

CUSUM by reducing the observations to a scalar Hotelling’s T statistic and then forms a 

CUSUM of the T statistic.  Crosier referred to this statistic as CUSUM of T or COT. 

Healy showed that a CUSUM of T2 statistics is the appropriate sequential probability test 

for an inflation of the variance-covariance matrix 𝚺.  Interestingly, Hotelling (1947) 

suggested the plotting of T2 instead of T to avoid the then-intensive effort to compute the 

square roots.  The second multivariate CUSUM scheme developed by Crosier had 

smaller ARL and was based on the statistic 

 𝐶𝑖 = {(𝑺𝒊−𝟏 + 𝑿𝒊)′(𝑺𝒊−𝟏 + 𝑿𝒊)}1/2, (65) 

where 

 𝑺𝑖 = �
0, 𝑖𝑓 𝐶𝑖 ≤ 𝑘

(𝑺𝒊−𝟏 + 𝑿𝒊)(1− 𝑘/𝐶𝑖), 𝑖𝑓 𝐶𝑖 > 𝑘, (66) 

where S0 = 0, and k > 0.  An out-of-control signal is generated when  

 𝑌𝑖 = �𝑺𝒊′𝚺−𝟏𝑺𝒊�
1
2 > 𝐻, (67) 

where k and H are the reference value and upper control limit for 𝑌𝑖, respectively.  

 The ARL of both procedures depends on the mean vector and covariance structure 

of the data only through the non-centrality parameter, which allows these two procedures 

to be compared to the Hotelling  𝑇2 chart.  Crosier (1988) showed through simulations 

and Markov chain analyses that both MCUSUM schemes have smaller ARLs than the 

Hotelling’s  𝑇2 chart and the procedure developed by Woodall and Ncube (1985).  Both 

procedures by Crosier allow for the use of the fast initial response (FIR) feature and 
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robustness enhancements.  Crosier pointed out that the MCSUM procedure is preferred 

over COT because the CUSUM vector provides an indication of the direction of the shift. 

Pignatiello and Runger (1990) also developed two different forms of the 

multivariate CUSUM schemes (which they called MC1 and MC2) for controlling the 

multivariate normal process.  The MC1, which is the better of the two, is based on the 

following vectors of cumulative sums: 

 𝑫𝒊 = � 𝑿𝑗

𝑖

𝑗=𝑖−𝑙𝑖+1

 (68) 

and  

 𝑴𝑪𝒊 = 𝑚𝑎𝑥�0, (𝑫𝒊
′Σ−1𝑫𝑖)1/2 − 𝑘𝑙𝑖�, (69) 

where 𝑘 > 0, 𝑙𝑖 = 𝑙𝑖−1 + 1 𝑖𝑓 𝑀𝐶𝑖−1 > 0 and 𝑙𝑖 = 1 otherwise.  An out-of-control 

signal is generated if MCi > H, where H is the upper control limit.  The ARLs of both 

MC1 and MC2 were compared to those of multiple univariate CUSUM charts developed 

by Woodall and Ncube (1985) and multivariate Shewhart  𝜒2 charts.  Pignatiello and 

Runger found that for shifts in the mean that are less than three standard deviations, both 

the MC1control and the multiple univariate CUSUM chart by Woodall and Ncube have 

better performance than the Shewhart  𝜒2 chart.  For large shifts in the mean, the 

Shewhart  𝜒2 has smaller ARL than MC1.  

Both of these multivariate CUSUM schemes have smaller ARL performance than 

the Hotelling T2 or the chi-square control charts.  However, the multivariate exponentially 

weighted moving average (MEWMA) has very similar ARL to both of these multivariate 

CUSUMs and is much easier to implement in practice; thus, it should be preferred 
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(Montgomery, 2009).  The MEWMA control charts are discussed in the following 

section. 

Multivariate exponentially weighted moving average (MEWMA) control 

chart.  Computerized manufacturing processes make it possible to collect data on large 

amounts of correlated variables or characteristics for monitoring a manufactured part, 

product, or service process.  Several types of multivariate quality control charts have 

been developed that perform well, providing these variables or characteristics are 

assumed to be normally distributed.  Lowry et al. (1992) developed MEWMA or 

multivariate exponentially weighted moving average for monitoring the stability of a 

process.  Suppose (p x 1) random vectors 𝑿𝟏,𝑿𝟐, 𝑿𝟑, …, each representing the p quality 

characteristics to be monitored, are observed over time.  It will be assumed that the 

 𝑿𝒊, 𝒊 = 𝟏,𝟐,𝟑, …  are independent multivariate normal vectors with mean vectors 

𝝁𝒊, respectively, and assume that each random vector has a known covariance matrix 𝚺.  

It is further assumed, without loss of generality, that the in-control process mean vector is 

 𝝁 = (𝟎,𝟎,𝟎, …𝟎)′.  Multivariate control charts procedures signal that a statistically 

significant shift in the mean (location) has occurred.  Like the univariate EWMA control 

chart, the MEWMA control chart is based on the values  

 𝒁𝑖 =  𝚲 𝑿𝑖 + (𝑰 − 𝚲 )𝒁𝑖−1 (70) 

where 𝑖 = 1,2,3, … and 𝒁𝟎 = 𝟎 and 𝚲 = 𝑑𝑖𝑎𝑔 �𝜆1, λ2, . . , 𝜆𝑝�, 0 < 𝜆𝑗 ≤ 1, 𝑗 =

1,2,3, … ,𝑝 .  If there is no prior reason to weigh past observations differently for the 

different p characteristics, then 𝜆1 =  𝜆2 = ⋯ = 𝜆𝑝 = 𝜆  and  

 𝒁𝑖 = λ𝑿𝑖 + (1 − 𝜆 )𝒁𝑖−1. (71) 

The MEWMA control chart signals out-of-control when 
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 𝑻𝑖2 = 𝒁𝒊′𝚺𝒁−𝟏𝒁𝒊 > ℎ2, (72) 

where ℎ2 > 0 is chosen to achieve a specified in control ARL. 

 𝚺𝒁 =
𝝀

𝟐 − 𝝀
[𝟏 − (𝟏 − 𝛌)𝟐𝐢]𝚺𝑿 (73) 

is the variance-covariance matrix of the recursive statistic Zi and T2
i is the charting 

statistic.  Lowry et al. (1992) showed that the asymptotic variance-covariance matrix is 

 𝚺𝒁 = 𝝀
𝟐−𝝀

𝚺𝑿. (74) 

The control limit h2 is usually chosen to give an in-control ARL = 200, where the process 

is assumed to be in-control when the chart is started.  This value is the zero-state ARL 

and the shift size is of the quantity 

 𝜹 = (𝝁′𝚺−1𝝁)1/2. (75) 

Again, in the context of multivariate normality,  𝜹  is called the non-centrality parameter 

(Stoumbos & Sullivan, 2002).  Larger values of δ correspond to larger shifts in the mean 

vector (Montgomery, 2009).  When δ = 0, the process is in control and the chart can be 

constructed using standardized data.  When λ = 1, MEWMA is equivalent to the  𝑇2or 𝜒2 

control chart; the MEWMA is more sensitive to smaller shifts when λ ≠ 1.  Since 

MEWMA is directionally invariant, we only need the δ values to examine the 

performance for any shift in the mean vector (Lowry et al., 1992; Montgomery, 2009). 

However, unlike Hotelling’s 𝑇2, MEWMA is not only based on the most recent 

observation and therefore is sensitive to small and moderate shifts in the mean vector 

(Lowry et al., 1992). 

There have been various modifications to the MEWMA since it was first 

developed by Lowry et al. (1992).  The nature of most research findings is theoretical; 
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however, general research demonstrates potential utility of many of the proposed 

methods and modifications to the original MEWMA scheme by Lowry et al. as well as 

providing encouragements for future researchers to further investigate the properties of 

the proposed alternatives thoroughly.  For example, Hawkins, Choi, and Lee (2008) 

proposed using a full-smoothing matrix, Λ, instead of a diagonal one.  Hawkins et al. 

stated that the traditional MEWMA with diagonal elements only is directionally invariant 

while the full-smoothing, matrix-based MEWMA (FMEWMA) is not.  The FMEWMA is 

affected by the direction of the shift and the correlation structure, thereby complicating 

the control chart design.  The FMEWMA scheme created additional computational 

requirements but provided tangible improvement in detecting a shift in the process mean 

vector.  Hawkins et al. compared the ARL performance of FMEWMA to MEWMA and 

found FMEWMA to have shorter ARL performance.  

Reynolds and Kim (2005) pointed out that the standard practice when using any 

control chart to monitor a process is to take samples of fixed size at regular intervals.  

Reynolds and Kim investigated MEWMA based on sequential sampling where 

observations at a sampling point were taken in groups of one or more observations and 

the number of groups taken was a random variable that depended on the data.  The 

MEWMA chart was based on sequential sampling, which used the standard MEWMA 

statistic at point k for variable i as  

 E𝑘𝑖 = (1 − 𝜆)𝑬𝑘−1,𝑖 + 𝜆𝑿�𝑘𝑖 , (76) 

where  𝐸0 = 0 and 𝜆 is a weighting smoothing parameter such that 0 < 𝜆 < 1.  At the 

sampling point k, the EWMA vector was formed by the 𝐸𝑘𝑖  statistics as  

 𝒆𝑘 = �𝑬𝑘1,𝑬𝑘2, … . ,𝑬𝑘𝑝�
′
, (77) 
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and the control statistic  

 𝒀𝑘 = 𝑐𝑘−1(𝒆𝒌 − 𝝁𝟎)′𝚺𝟎−1(𝒆𝒌 − 𝝁𝟎), (78) 

where the constant 𝑐𝑘 = 𝜆[1−(1−𝜆)2𝑘]
(2−𝜆)𝑛

 ,𝑘 = 1,2, …,  and an out-of-control signal is given 

when 𝑌𝑘 > ℎ ,  where h is the control limit. 

Reynolds and Kim (2005) found that the performance of MEWMA based on 

sequential sampling is much more efficient in detecting process mean vector shifts than 

standard MEWMA.  Reynolds and Kim showed that for small to moderate shifts, both the 

MEWMA based on sequential sampling and the standard MEWMA were more efficient 

than the Hotelling’s Shewhart chart.  For large shifts, they found that the performance of 

the control chart based on MEWMA sequential sampling was close to the performance of 

the Hotelling’s Shewhart chart. 

  Reynolds and Cho (2006) investigated the performance of MEWMA control 

charts for simultaneous monitoring of the mean vector and variance-covariance matrix 

compared to the of standard multivariate Shewhart chart and to combinations of 

univariate EWMA charts applied to each of the variables.  Reynolds and Cho found that 

using combinations of MEWMA-type charts based on the mean and on the sum of 

squared regression adjusted deviation from the target performed best.  They concluded 

that the chart based on squared deviations from target would detect large shifts both in 

process mean vector as well as variance-covariance matrix.  Huwang, Yeh, and Wu 

(2007) developed two new control charts for monitoring process variability for individual 

observations.  Huwang et al. argued that any changes in the mean vector or the process 

variability were more likely to occur within rational subgroups than between subgroups. 

Huwang et al. developed two control charts to monitor process variability: the 
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multivariate exponentially weighted mean squared deviation (MEWMS) and multivariate 

exponentially weighted moving variance (MEWMV) charts.  When monitoring process 

variability, it is assumed that the process mean is constant; otherwise, the shift is subject 

to confounding of both mean vector and variance-covariance matrices.  Huwang et al. 

showed through simulation studies that if the process means vector remained in control, 

the MEWMS chart outperformed MEWMV and both standard MEWMA and MCUSUM. 

The authors pointed out that MEWMS and MEWMV charts could be applied to cases 

when the number of observation in the rational subgroups n > 1.    

Lowry et al. (1992) used simulation to estimate the ARLs of the MEWMA charts; 

whereas, others used approaches based on Markov chains or integral equations (Reynolds 

& Kim, 2005).  Markov chains can be applied when the multivariate control statistic can 

be modeled and the run length performance depends on the off-target mean through the 

non-centrality parameter.  Runger and Prabhu (1996) used Markov chain approximation 

to determine the run length performance of the MEWMA chart.  They used symmetry 

and orthogonal invariance to provide a Markov chain analysis of a multivariate control 

procedure.  They demonstrated the Markov chain analysis for a bivariate case is 

extendible to multivariate processes by changing the chi-square degrees of freedom to 

obtain transitional probabilities.  They obtained MEWMA chart ARL estimates similar to 

those obtained by Lowry et al. using simulation studies.  Prabhu and Runger (1997) also 

used Markov chain analyses to provide recommended values for weighting or smoothing 

parameters for the zero-state, steady-state, and worst-state cases. ARL performance 

results obtained from simulation studies by Lowry et al. have been limited.  Prabhu and 

Runger’s objective was to select the parameters for the design of a MEAMA by using the 
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Markov chain method to provide design recommendations for a MEWMA control chart.  

Molnau et al. (2001) also provided a program using Markov chain analysis that calculates 

ARL for MEWMA control charts.  The program returns the ARL given values of the shift 

in the mean vector.  The Markov chain program is dependent on the number of states 

used in the approximation with a greater number of states providing more accurate 

approximation of ARL but at the expense of increased computing resources and time.  

But the ARL performance of MEWMA obtained using the Markov chain program 

compares favorably with those obtained by Lowry et al. using simulation.    

A very important research area in SPC is the robustness of statistical control 

charts to non-normality.  Stoumbos and Sullivan (2002) investigated the effects of non-

normality on the ARL performance of the MEWMA control chart and its special case--

the Hotelling’s 𝜒2 in which the smoothing parameter 𝜆 = 1.  Stoumbos and Sullivan 

showed that the Hotelling’s 𝜒2 chart is highly sensitive to non-normality assumptions but 

also showed that for individual observation and by extension for subgroups of size 

greater than one, the MEWMA can be designed to be robust for elliptical symmetrical 

distributions like the multivariate t distribution, the highly skewed such as the 

multivariate gamma, and extremely heavy-tailed distributions.  Stoumbos and Sullivan 

demonstrated through simulation studies that for the bivariate t distribution with three or 

more degrees of freedom, when the smoothing parameter  𝜆 ≤ 0.046 , the in-control ARL 

is at least as large as those obtained when the underlying process output is bivariate 

normal.  Also, Stoumbos and Sullivan demonstrated through simulation studies that the 

bivariate gamma distribution 𝐺𝑎𝑚2 with different values of the shape parameter α and 

scale parameter β=1, values of  𝜆 ≤ 0.046  give an in-control ARL values that are close 
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to design values.  When the shape parameter α increases and the gamma distribution 

approaches normality, the in-control ARL is close 200 for any value of 𝜆.  

Testik, Runger and Borror (2003) also examined the robustness of the MEWMA 

control charts to non-normal data, specifically the symmetric multivariate t and the 

skewed multivariate gamma distributions.  Testik et al. demonstrated through simulation 

studies MEWMA control charts’ in-control ARL outperformed its competitor control 

charts for both the multivariate t and the multivariate gamma distributions with different 

dimensions and 𝜆 ≤ 0.05.  Overall, the authors showed that the MEWMA chart 𝜆 ≤ 0.05 

was insensitive to the underlying distribution, which agreed with Stoumbos and 

Sullivan’s (2002) results.  Testik et al. also demonstrated through simulation studies that 

the MEWMA control chart performance, when 𝜆 ≤ 0.05, was less sensitive and more 

robust to non-normality.  Testik et al. recommended using a MEWMA with  𝜆 = 0. 5 as a 

control chart for individual multivariate process outputs across many applications.  

Zou and Tsung (2008) developed a directional multivariate exponentially 

weighted moving average (directional MEWMA) by integrating the  MEWMA with the 

generalized likelihood ratio test (GLRT), which incorporates directional information 

based on a multistage state-space model and effectively monitors the process mean vector 

shift.  Zou and Tsung’s scheme provides an SPC solution that incorporates both inter-

stage and intra-stage correlations as well as resolving the confounding issue of 

monitoring cumulative effects from stage to stage such as in automotive body assembly 

processes.  The authors showed through simulation studies that the proposed directional 

MEWMA procedure outperformed all existing SPC procedures in a multistage process.    
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 Multivariate parametric control charts have been studied extensively and have 

been shown to provide a potential solution to many monitoring situations and settings. 

However, although these methods are robust and efficient with modifications to chart 

design, they all are based on the assumption that the underlying process output data are 

sampled from a known parametric distribution such as the multivariate normal 

distribution.  This is rarely true and more robust methods are needed when the underlying 

process output is distribution-free or the distribution is not known.  

Multivariate Nonparametric Control Charts 
 

Although multivariate SPC problems are important in their own right, the field of 

multivariate nonparametric statistical process control techniques is not sufficiently 

developed (Qiu & Hawkins, 2001).  A partial review of this area is presented next.  There 

are two main components to multivariate nonparametric control charts.  The first are the 

various nonparametric test statistics used in place of parametric statistics when the 

underlying distribution is unknown.  The second are the control chart schemes employed 

using these nonparametric statistics.  Among the most prevalent multivariate 

nonparametric statistics involve spatial statistics.  The statistical process control chart 

schemes utilizing these spatial statistics are extensions of the parametric MEWMA and 

MCUSUM.  

Multivariate signs, ranks, and signed-ranks statistics are designed based on 

different mathematical concepts.  Marginal multivariate signs and ranks are based on the 

Manhattan-distance or norm |. |  ,|𝒙| = |𝒙𝟏| + |𝒙𝟐| + ⋯+ |𝒙𝒌|; whereas, spatial signs 

and ranks are based on the Euclidean distance, �|𝒙|� = �𝒙𝟏𝟐 + ⋯+ 𝒙𝒌𝟐�
𝟏/𝟐

 and the affine 

signs and ranks are based on average determinants of subsets of variables 
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(Hettmansperger & Randles, 2002; Oja, 1999; Paindaveine, 2008).  Using marginal signs 

and ranks yield a vector of marginal medians, using spatial signs and ranks yield spatial 

medians, and when using affine signs and ranks, the Oja median is produced(Oja, 1983)--

a location estimate satisfying the affine invariance and consistency conditions.  The 

spatial median is not scale equivariant and the marginal median does not satisfy rotation 

equivariance (Visuri, Koivunen, & Oja, 2000).  Depending on which signs and ranks 

concepts are used, the covariance matrices have different statistical properties 

(consistency, limiting distribution efficiencies, and influence functions, etc.).    

Several nonparametric spatial multivariate statistics have been incorporated in the 

design of multivariate control charts.  Randles (1989, 2000) developed a multivariate sign 

test based on the transformation-retransformation approach (Chakraborti, Chaudhuri, & 

Oja, 1998) together with the directional transformation developed by Tyler (1987). 

Tyler’s transformation is to find a p x p positive-definite matrix that has a trace (𝑽𝑥) = 𝑝, 

which satisfies that for any 𝑨𝑥′ 𝑨𝑋 = 𝑽𝑥−1.  Randles (2000) proposed 𝑨𝑋 that is convenient 

to calculate and produces a sign test with desirable characteristics.  Randles’ 𝑨𝑋 is 

nonsingular and is affine-invariant such that 

 𝑨(𝑋1, … . . ,𝑋𝑛) = 𝑨(𝛿1𝑋1, … . . , 𝛿𝑛𝑋𝑛), (79) 

for all 𝛿𝑖 = ±1 and 𝑥𝑖 = 1,2, … . . ,𝑛.  This property simplifies the conditional distribution 

of the test statistic satisfying  

 
1
𝑛
��

𝑨𝑥𝑿𝑖
‖𝑨𝑥𝑿𝑖‖

� �
𝑨𝑥𝑿𝑖
‖𝑨𝑥𝑿𝑖‖

�
′𝑛

𝑖=1

=
1
𝑝
𝑰, (80) 

for which 
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1
𝑛
�(𝑽𝑖)(𝑽𝑖)′
𝑛

𝑖=1

=
1
𝑝
𝑰, (81) 

where 𝑽𝑖 denotes 

 
𝑨𝑥𝑿𝑖
‖𝑨𝑥𝑿𝑖‖

, (82) 

and  

 𝑽� =
1
𝑛

 �𝑽𝑖

𝑛

𝑖

. (83) 

 

 After obtaining 𝑽𝑖, Randles proposed to use the test statistic 

 𝑆𝑛 = 𝑛𝑽�′ �𝑛−1�𝑽𝒊𝑽𝒊′
𝑛

𝑖=1

�
−1

𝑽�. (84) 

Randles showed that if 𝑨𝑋 is replaced by 𝑨𝑑, which is calculated based on 

interdirections, then  

 𝑆𝑛 = 𝑛𝑝𝑽� 𝑽�′ (85) 

The test statistic 𝑆𝑛 was shown by Randles to be affine-invariant and distribution-free for 

the class of distributions with elliptical directions.  In addition, Randles proved that  

𝑆𝑛  
𝑑
→ 𝜒𝑝2 .  Tyler (1987) demonstrated that 𝑨𝑥 is unique and the estimator 𝑨�𝑥 is consistent 

with asymmetrical normal and provided an algorithm to compute 𝑨�𝑥.  Randles stated that 

his test makes minimal assumptions, is directional, and showed that the test not only has 

a small sample distribution-free property over broad class of distributions but performs 

well in comparison with Hotelling’s T2.   
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Hettmansperger et al. (1997) developed an affine-invariance (equivariant) signed-

rank test (estimates) based on the generalized median of Oja and Oja signs and signed-

ranks.  Oja (1983) extended the affine-invariant multivariate sign test of Hettmansperger, 

Nyblom, and Oja (1994).  The authors used the Oja criterion function to develop an 

affine-invariant multivariate vector sign, then used the vector sign to develop a vector 

rank, and finally defined the vector signed-rank and an affine-equivariant estimate of the 

location.  Their test needs a symmetry assumption but no assumptions about the 

covariance structure are required.  Their statistic proves more efficient than Hotelling’s 

T2 when the underlying distribution of the variables is the multivariate t-distribution with 

small degrees of freedom.  For higher degrees of freedom, Hettmansperger et al. (1997) 

showed that the performance of their signed-rank statistic improves and compares 

favorably with that of Hotelling’s T2.   

Hallin and Paindaveine (2002) proposed several multivariate location tests based 

on interdirections and pseudo-Mahalanobis ranks under elliptical symmetry.  Hallin and 

Paindaveine developed an alternative to their multivariate location tests in which the 

interdirections were replaced by “Tyler angles” or the angles between observations 

standardized via Tyler’s estimator of scatter (Tyler, 1987).  The tests developed using 

Tyler’s angles are computationally preferable in terms of CPU to those developed using 

interdirections.  However, the authors showed via simulation studies that the two-

versions are asymptotically equivalent.  Hallin and Paindaveine’s tests, which are a 

generalization of the univariate signed-rank tests, are affine-invariant under elliptical 

symmetry.  Oja (2010) points out that the sign and signed-ranks of Hettmansperger et al. 

(1997), which are based on the Oja signs and signed-ranks, are asymptotically equivalent 
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to spatial signs and signed-ranks tests in the spherical case and are affine-invariant. 

However, unlike the tests developed by Hallin and Paindaveine, their performance under 

the elliptical case may be poor. 

Peters and Randles (1990) developed an affine-invariant signed-rank test and 

signed sum test for the one-sample multivariate location problem, respectively.  Both 

tests are modifications of Randles’ (1989) multivariate sign test and were developed 

based on the principle of interdirections introduced by Randles.  Randles introduced a 

sign test based on interdirections that used the direction of the observations from 0 rather 

than the distances from 0.  Consider a pair of observations 𝑋𝑗and 𝑋𝑘 in a sample of size 

n.  Let 𝐶𝑗𝑘  denote the number of hyperplanes formed by the origin and p -1 other points 

(excluding 𝑋𝑗and 𝑋𝑘) such that 𝑋𝑗and 𝑋𝑘 are on the opposite sides of the formed 

hyperplane.  Therefore, given a sample of size n, 𝐶𝑗𝑘 is an integer between 0 and �𝑛−2𝑝−1� 

inclusive.  A value 𝐶𝑗𝑘 = 0 implies that the points 𝑋𝑗and 𝑋𝑘 are adjacent.  The 𝐶𝑗𝑘  counts 

are referred to as interdirections, which measure the angular distance between 𝑋𝑗and 𝑋𝑘 

relative to the origin and other data points.  To describe this test, consider the test for 

general p that rejects H0 statistic for large values of the statistic 

 𝑉𝑛 = �
𝑝
𝑛
��� cos (�̂�𝑗𝑘)

𝑛

𝑘=1 

𝑛

𝑗=1

, (86) 

where  
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(87) 
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and  

 dn =
1
2
��

n
p − 1

� − �
n − 2
p − 1

��, (88) 

and 𝑐𝑗𝑘 denotes the number of hyper-planes formed by the origin and p-1 observations. 

The proportion �̂�𝑗𝑘 is the observed fraction of times that 𝑋𝑗and 𝑋𝑘 fall on the opposite 

sides of the formed hyperplanes.  Randles showed that the sign test based on 

interdirections in invariant under non-singular linear transformations and that under H0, 

𝑉𝑛 has small-sample distribution-free properties over the broad class of elliptical 

distributions.  Randles also showed that under 𝐻0,𝑉𝑛  has an asymptotic chi-square 

distribution with p degrees of freedom.  

Peters and Randles (1990) developed a signed-rank statistic as a special case 

based on Randles’ (1989) 𝑉𝑛 statistic.  Using the original estimated Mahalanobis 

distances of the original Y vector observations, 𝐷�𝑖 = 𝑌𝑖′Σ�−1𝑌𝑖 , where Σ� = 1
𝑛
𝑌𝑖𝑌𝑖′ is a 

constant estimator of the variance and letting 𝑅𝑖 = 𝑟𝑎𝑛𝑘�𝐷�𝑖�, Peters and Randles’ 

signed-rank statistic is defined as 

 𝑊𝑛 =
3𝑝
𝑛2

 �� cos (�̂�𝑗𝑘)
𝑛

𝑘=1 

𝑛

𝑗=1

𝑅𝑗
𝑛
𝑅𝑘
𝑛

.  (89) 

Peters and Randles  showed through Monte Carlo simulations that their signed-rank test 

static was robust and it performed better than its competitors when the distribution was 

light-tailed and as well as the Hotelling’s T2 under multivariate normality.  For heavy-

tailed distributions, the signed-rank statistic performed better than Hotelling’s T2 but not 

as well as Randles’ statistic.   
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Hossjer and Croux (1995) and Hallin and Paindaveine (2002) developed a class of 

optimal procedures based on Randles’ (1989) interdirections and pseudo-Mahalanobis 

ranks.  Hossjer and Croux developed a method to generalize signed-rank statistics to 

higher dimensions.  They suggested that when the underlying distribution of the data was 

elliptically symmetric, transforming the observations using an equivariant estimate of the 

population covariance matrix and then calculating the test statistic using the transformed 

observation, the corresponding location estimator is affine-invariant if the signed-rank 

statistic is applied to standardized data.  For any sample 𝑿 = (𝑿1, … ,𝑿𝑛), let 

 𝑎𝑛(1), … ,𝑎𝑛(𝑛) be a sequence of non-negative scores, define the test statistic 

  𝑇𝑛(𝑿) = ∑ 𝑎𝑛𝑅(||𝑿𝑖||)𝑈(𝑿𝑖)𝑛
𝑖=1 , (90) 

where 𝑅(||𝑿𝑖||) and 𝑈(𝑿𝒊) =  𝒙/||𝒙|| are the rank and sign of the vector X.  Hossjer and 

Croux provided formulas for calculating the asymptotic relative efficiency (ARE) of 

these generalized tests with respect to Hotelling’s T2.  Hossjer and Croux showed through 

simulation studies that the performance of the proposed signed-rank test was as good as 

that of the Hotelling’s T2 and more robust to contamination for spherical and elliptically 

symmetrical distributions.  

Mahfoud and Randles (2005) argued that the test statistics by Hossjer and Croux 

(1995) were too complicated to compute; while their performance was excellent for the 

distribution for which they were optimal, their performance might not be good over a 

broad spectrum of distributions.  Mahfoud and Randles proposed a class of affine-

invariant multivariate signed-rank test based on the affine-invariant sign test that was 

originally developed by Randles (2000).  Using Randles’ original statistic 
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 𝑆𝑛 = 𝑛𝑽�′ �𝑛−1�𝑽𝒊𝑽𝒊′
𝑛

𝑖=1

�
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Mahfoud and Randles proposed and developed a signed-rank statistic  

 𝑊𝑛𝑝 = 𝑛 𝑽𝑠����
′ �𝑛−1�𝑽𝒔𝒊𝑽𝒔𝒊′

𝑛

𝑖=1

�
−1

  𝑽𝑠���� . (92) 

The statistic 𝑊𝑛𝑝 uses the ranks of the distances of the transformed observations from the 

origin.  Mahfoud and Randles defined the ranks 𝑄𝑖 to be the rank of 

‖𝐴𝑑𝑌𝑖‖ among ‖𝐴𝑑𝑌1‖, … ‖𝐴𝑑𝑌𝑛‖ and 𝑉𝑠𝑖 = 𝜙 � 𝑄𝑖
𝑛+1

�𝑉𝑖, where 𝜙 (. ) is a nonnegative, 

non-decreasing, uniformly bounded continuous function that may depend on the 

dimension p.  Mahfoud and Randles showed that 𝑊𝑛𝑝 is affine-invariant as long as 

𝑛 > 𝑝(𝑝 − 1).  Mahfoud and Randles demonstrated that 𝑊𝑛𝑝 has strong efficiencies over 

a wide spectrum of distributions, ranging from very light-tailed distributions to very 

heavy-tailed ones.  

Efficiency of Multivariate Spatial Sign and Rank Tests 
 
 To use the sign and rank test statistics in statistical process control and the design 

of control charts as an alternative to parametric ones when the distributional assumption 

is violated, the efficiency of the nonparametric spatial sign and rank statistics must be 

comparable to their parametric counterparts.  Since the asymptotic relative efficiency 

plays a very important role in the development of nonparametric tests, it is critical to 

consider multivariate efficiencies when developing multivariate location models.  

Mottonen et al. (1997) derived the asymptotic relative efficiency formulae for the 

multivariate spatial sign and signed-rank methods.  The efficiency of affine invariant 

multivariate rank tests under similar conditions was also developed by Mottonen et al. 
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(1998).  Mottonen et al. (2004) also calculated relative efficiencies for the spatial sign 

and signed-rank methods with respect to Hotelling’s T2 under the multivariate t-

distribution with selected values of degrees of freedom ν and with selected dimensions k.  

Mottonen et al. (1997) found that in the multivariate normal case (ν = ∞), the efficiencies 

of the spatial signed-rank test dominated the efficiencies of the spatial sign test; however, 

for small values of degrees of freedom (heavy-tailed distributions) with high dimensions, 

the sign test was better.  They also found that both tests had good efficiencies over broad 

class of multivariate t-distributions and efficiencies were better for higher dimensions.  

Mottonen et al. (1997) found that the efficiencies of the spatial sign test agreed with 

efficiencies of the sign test based on the Oja median (Brown & Hettmansperger, 1987a, 

1987b; Oja, 1983; Hettmansperger et al., 1994).  Oja and Randles (2004) also calculated 

the asymptotic relative efficiency (ARE) for the multivariate sign test and the signed-rank 

test relative to Hotelling’s T2 under the multivariate t-distribution with selected values of 

degrees of freedom ν and with selected dimensions k.   

Oja and Randles (2004) also investigated the ARE properties of some affine-

invariant sign and signed-rank tests.  They found that as the dimension increased and as 

the distribution got heavier tailed or when the degrees of freedom got smaller, the 

performance of the sign and signed-rank tests improved relative to Hotelling’s T2, 

indicating that the multivariate nonparametric test were clearly better in heavy-tailed 

cases.  For example, for the heavy-tailed multivariate t-distribution with degrees of 

freedom ν= 3, the AREs of the affine -invariant signed-rank test relative to Hotelling’s T2 

were 1.9, 1.95, 2.02, and 2.09 for dimensions 1, 2, 4, and 10, respectively (Oja & 

Randles, 2004).  These AREs demonstrated that the affine-invariant spatial signed-rank 
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test is a viable alternative to the Hotelling’s T2, indicating when the underlying 

distribution was not multivariate normal.  

Liu (1995) introduced three robust nonparametric multivariate control charts 

(RMVCC): the r, Q, and S charts.  Liu’s robust multivariate control charts are based on 

the notion of data depth and do not require any underlying distributional assumptions. 

The principal idea in constructing these RMVCC is the reduction of each vector of 

observations 𝑿′ = (𝑋1, … ,𝑋𝑝) to a univariate rank based on the notion of data depths.  

These ranks are then used to construct the multivariate control charts.  Liu suggested that 

for any point 𝑿 ∈ ℝ𝑝, the simpilical depth of X with respect to a distribution G is given 

by 

 𝑆𝐷𝐺(𝑿) = 𝑃𝐺  {𝑿 ∈ 𝑠[𝑋1, … ,𝑋𝑘+1]},  (93) 

where 𝑠[𝑋1, … ,𝑋𝑘+1] is a simplex whose vertices 𝑋1, … ,𝑋𝑘+1 are k+1 random 

observations from G.  The simpilical depth 𝑆𝐷𝐺  is a measure of how deep or central the 

point X is with respect to the distribution G.  However, most often, G is unknown and 

𝑆𝐷𝐺  will be estimated empirically from a sample of points 𝑋1, … ,𝑋𝑚.  The empirical 

simpilical depth with respect to the sample  𝑋1, … ,𝑋𝑚 is given by 

 
𝑆𝐷𝐺𝑚(𝑿) =  �

𝑚
𝑘 + 1

�
−1

� 𝐼
𝐴𝑙𝑙 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑋1,…,𝑋𝑚 𝑜𝑓 𝑠𝑖𝑧𝑒 (𝑘+1)

{𝑿

∈ 𝑠[𝑋𝑖1, … ,𝑋𝑖𝑘+1]},  

(94) 

where Gm is the empirical distribution of  𝑋1, … ,𝑋𝑚, I is the indicator function; that is , 

I(A) =1 if A occurs and I(A) = 0 otherwise.  In the RMVCC case, the sample  𝑋1, … ,𝑋𝑚 is 

considered to be the base period sample and the point X is considered to be an 

observation from the control period.  The Phase I sample is assumed to come from a 

distribution G while the Phase II sample is assumed to come from a distribution F.  Both 
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distributions G and F distributions are assumed to be unknown and if the process is in-

control, then G = F. Otherwise, G ≠ F. 

The robust multivariate control charts proposed by Liu (1995) are summarized as 

follows: For an assumed in-control process in Phase I, take a sample 𝑋1, … ,𝑋𝑚, and then 

for each observation X in Phase II, consider the test statistic: 

 𝑟𝐺𝑚(𝑿) =
1
𝑚
�𝐼 �𝐷𝐺𝑚�𝑋𝑗� ≤ 𝐷𝐺𝑚(𝑿)� ,
𝑚

𝑗=𝑞

 (95) 

Where I is the indicator function such that I (A) =1 if the data depth 𝑋𝑗 is less than or 

equal to the data depth of X and I(A) = 0 otherwise.  The quantity 𝑟𝐺𝑚(𝑿) measures the 

outlying of the point X with respect to the sample 𝑋1, … ,𝑋𝑚.  Smaller values of 𝑟𝐺𝑚(𝑿) 

are desired.  Liu’s robust nonparametric multivariate control charts (the r, Q, and S 

charts) are based on the quantity 𝑟𝐺𝑚(𝑿).  

 The r control chart is constructed by taking a Phase I sample of m 

observations 𝑋1, … ,𝑋𝑚.  For each observation 𝑋𝑡∗ in Phase II, compute the charting 

statistic 𝑟𝐺𝑚(𝑿∗) versus time (t =1, 2, …).  The control limits are defined by setting the 

center line CL = 0.5 and the lower control limit LCL = α.  These control limits are based 

on the asymptotic distribution of  𝑟𝐺𝑚(𝑿∗)~𝑈[0,1].  The asymptotic distribution of 

 𝑟𝐺𝑚(𝑿∗) suggests that LCL = α.  The process is out-of-control whenever the value 

 𝑟𝐺𝑚(𝑿∗) is below LCL = α. 

Similarly, the Q control chart is constructed by taking a Phase I sample of m 

observations (𝑋1, … ,𝑋𝑚).  Consider taking several samples of size n (𝑋1∗, … ,𝑋𝑛∗) from 

Phase II.  For each observation𝑋𝑡∗ in Phase II, compute the charting statistic 𝑟𝐺𝑚(𝑿∗).  
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The Q chart is constructed based on plotting the average of  𝑟𝐺𝑚(𝑿∗) versus time for the 

points taken from Phase II, such that 

 𝑄𝑡(𝐺𝑚,𝐹𝑛) =
1
𝑛
�  𝑟𝐺𝑚(𝑋𝑖∗),

𝑛

𝑖=1
 (96) 

where 𝐺𝑚 and  𝐹𝑛 are the empirical distributions of  (𝑋1, … ,𝑋𝑚) and (𝑋1∗, … ,𝑋𝑛∗), 

respectively.  Liu and Singh (1993) have shown by simulation studies that the statistic 

𝑄𝑡(𝐺𝑚,𝐹𝑛) is asymptotically distributed as 𝑁(1
2

, 1
12
� 1
𝑚

+ 1
𝑛
�).  The control limits of Q are 

set as  

 

𝐶𝐿 = 0.5, and

𝐿𝐶𝐿 = 0.5 − 𝑍𝛼�
1

12
[

1
𝑚

+
1
𝑛

]
. (97) 

The process is out-of-control whenever the value 𝑄𝑡(𝐺𝑚,𝐹𝑛) falls below LCL. 

The S control chart is analogous to a univariate CUSUM chart for process 

location and is constructed by taking a Phase I sample of m observations (𝑋1, … ,𝑋𝑚). 

Then for each observation 𝑋𝑡∗ in Phase II, compute the statistic 𝑟𝐺𝑚(𝑿∗).  The S control 

chart is based on the charting statistic 

 𝑆𝑡(𝐺𝑚) =  � � 𝑟𝐺𝑚(𝑋𝑖∗) −
1
2
� ,

𝑡

𝑖=1
 (98) 

which also can be written as 

 𝑆𝑡(𝐺𝑚) = 𝑛 �𝑄𝑡(𝐺𝑚,𝐹𝑛) −
1
2
�. (99) 

Liu (1995) suggested that the statistic 𝑆𝑡(𝐺𝑚) is asymptotically distributed 

as 𝑁 � 0,
𝑛2[ 1𝑚+

1
𝑛

12
�.  Therefore, the S control chart limits are defined as 
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𝐶𝐿 = 0.5, and

𝐿𝐶𝐿 = −𝑍𝛼
�𝑛

2[ 1
𝑚 + 1

𝑛  
12

.
 (100) 

The process is out-of-control whenever the value 𝑆𝑡(𝐺𝑚) falls below LCL. 

Several multivariate statistical process control methods are based on parametric 

and nonparametric assumptions.  The parametric methods were designed with the 

assumption of multivariate normality to describe the sample.  The nonparametric methods 

do not assume a known joint distribution of the p quality characteristics, although it 

requires the assumption that the sample units are iid and exchangeable.  The parametric 

methods assume that the joint probability distribution of the p quality characteristics is 

the p-variate normal distribution from a sample of size n (Montgomery, 2009; Stoumbos 

& Sullivan, 2002).  There is considerable dichotomy of opinions regarding the statistical 

performance of MEWMA when normality assumptions are violated.  Stoumbos and 

Sullivan (2002) argue that statistical performance of an appropriately designed MEWMA 

control chart is robust under non-normality and comes close to being distribution free. 

However, Stoumbos and Sullivan continue to argue that the MEWMA chart would be 

preferable to the nonparametric MEWMA control charts that are less powerful, are 

computationally more intensive than their multi-normal counterparts, and do not apply to 

heavily skewed multivariate distributions like the multivariate gamma distribution.  On 

the other hand, others argue for the need of a distribution-free MEMA control chart 

(Woodall & Montgomery, 1999).   

According to Oja (2010), consider a model  

 𝒚𝑖 = 𝝁 +  𝛀𝜺𝒊 , 𝑖 = 1, … . ,𝑛. (101) 
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We assume that the errors are independent and identically distributed random vectors 

from spherically symmetrical and continuous distribution.  We say that the distribution of 

the error vector 𝜺 is spherically symmetrical around the origin if the density function 

𝑓(𝜀) depends on 𝜺 only through the modulus |𝜺|.  The modulus 𝑟𝑖 = |𝜺| and direction  

𝒖𝑖 = |𝜀𝑖|−1𝜀𝑖 are independent and the direction of the vector 𝒖𝑖 is uniformly distributed 

on the p-dimensional unit sphere where 

 𝑬(𝒖𝒊) = 𝟎  (102) 

and 

 𝑪𝑶𝑽(𝒖𝑖) = 𝐸(𝒖𝑖𝒖𝑖′) =
1
𝑝
𝐼𝑝 . (103) 

𝛀 is a full rank p x p transformation matrix and the regular covariance matrix of the 

multivariate normal distribution is 𝚺 = 𝛀𝛀′.  Under these assumptions, the random 

sample 𝒀 = (𝒚1, … ,𝒚𝑛)′ comes from p-variate elliptical distribution with probability 

density function 

 𝑓𝑦(𝒚) = |𝚺|−
1
2𝑓 �𝚺−

1
2(𝒚 − 𝜇)� , (104) 

where µ is the symmetry center and 𝚺 > 0 is the scatter matrix.  The matrix 𝚺−
1
2 is chosen 

to be symmetric.  The location parameter µ is the mean vector, the scatter matrix 𝚺 is 

proportional to the regular covariance matrix, and the correlation matrix  

= [𝑑𝑖𝑎𝑔(𝚺)]−
1
2 𝚺 [𝑑𝑖𝑎𝑔(𝚺)]−

1
2 .  Then we have 

 𝒚𝑖~ 𝐸𝑝(𝜇,𝚺,𝜌). (105) 

Methods for accomplishing the monitoring task are usually based on the following 

quadratic formulation of the test statistics: 
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 (𝒚𝒊 − 𝝁�𝟎) )′ 𝚺−𝟏� 𝟎(𝒚𝒊 − 𝝁�𝟎) , (106) 

where 𝝁�𝟎 and Σ�0 are the mean vector and covariance matrix estimated from the in-control 

sample.     

Several authors showed that a nonparametric control chart can be designed while 

being computationally efficient and as statistically powerful or better than the 

multivariate normal counterparts.  Qui and Hawkins (2001) proposed and developed a 

nonparametric MCUSUM procedure for detecting shifts in the location vector of a 

multivariate measurement statistical process based both on the order information among 

measurements components and on the order information between the measurement 

components and their in-control means.  Qui and Hawkins’ nonparametric MCUSUM is 

distribution-free in the sense that its properties depend only on the ordering of the 

measurements components and the ordering between the measurement components and 

their in-control means.  The distribution-free property makes the nonparametric 

MCUSUM appropriate to use when the potential shifts in mean vectors of the process can 

occur in all possible directions and the underlying distribution is not multivariate normal.  

Zou and Tsung (2010) used a nonparametric multivariate exponentially weighted 

moving average (MSEWMA) control chart for monitoring location parameters.  Zou and 

Tsung modified Randles’ (2000) nonparametric directional multivariate sign test statistic 

by estimating an affine equivariant multivariate median or AEM-median 𝜽𝟎 

(Hettmansperger & Randles, 2002) to develop a multivariate sign exponentially weighted 

moving average (MSEWMA) control chart.  After standardizing and transforming the 𝑿𝒊 

and calculating a modified statisic   
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 𝑉𝑖 =
𝑨𝑥(𝑿𝒊 − 𝜽𝟎)
‖𝑨𝑥(𝑿𝒊 − 𝜽𝟎)‖ , (107) 

they define a EWMA sequence  

 𝑾𝑖 = (𝐼 − 𝜆)𝑾𝑖−1 +  𝜆𝑽𝑖. (108) 

They proposed a control chart that triggers a signal if  

 𝑄𝑖 =
2 − 𝜆
𝜆

𝑝𝑾𝑖
′𝑾𝑖 > 𝐿, (109) 

where L > 0 is the control limit chosen to achieve a specific in-control average run length 

(IC ARL).  

MSEWMA adapts the multivariate sign test using an affine equivariant 

multivariate median (AEM-Median) developed by Hettmansperger and Randles (2002) to 

create a new test statistic.  The resulting statistic is used as a charting statistic to develop 

a new nonparametric counterpart of the MEWMA.  MSEWMA is easy to implement 

because only the affine-equivariant multivariate median and the transformation-

retransformation matrix need to be estimated from the reference (Phase I) data set using 

an algorithm developed by Tyler (1987) in the same manner as estimating the mean and 

covariance matrix in a parametric MEWMA setting.  Zou and Tsung (2010) showed that 

MSEWMA is robust in attaining the in-control (IC) ARL and is efficient in detecting 

small to moderate location shifts for heavy-tailed or skewed distributions.  MSEWMA is 

computationally fast, easy to implement, and it outperformed the MEWMA control chart 

in detecting small to moderate shifts of data from the multivariate t-distribution and 

multivariate gamma distribution..   

Zou et al. (2011) argued that the MSEWMA control chart developed by Zou and 

Tsung (2010) could result in a significant uncertainty in parameter estimation when Phase 
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I sample size is small.  Zou et al. developed a spatial rank-based MEWMA or empirical 

rank-based EWMA (EREWMA) control chart using spatial ranks where the weighted 

version of the rank test was used to compute the charting statistic by incorporating a 

MEWMA scheme.  In the univariate case, signs and ranks are based on the ordering of 

the data; however, in the multivariate case, there is no natural ordering of data points 

(Oja, 1983; Randles, 2000).  Oja (2010) developed the concept of spatial signs and ranks. 

The spatial sign function was defined by Oja as 

 𝑈𝑋(𝒙) = �‖𝒙‖
−1𝑥, 𝑥 ≠ 0

0, 𝑥 = 0, (110) 

where ‖𝒙‖ = (𝒙′𝒙)
1
2 is the Euclidean length of the vector x.  The theoretical spatial rank 

and signed-rank are  

 𝑅𝑥(𝒙) =
1
𝑛
�{𝑈𝑥(𝒙 − 𝒙𝒊)}
𝑛

1

, (111) 

and 

 𝑄(𝒙) =
1
2

[𝑅𝑋(𝒙) + 𝑅−𝑋(𝒙)], (112) 

where 𝑅−𝑋(𝒙) = −𝑅𝑋(𝒙). 

Zou et al. (2011) used an affine invariant version of a test statistic based on the 

ranks 𝑅𝑥(𝒙)  to define a MEWMA-type control chart where the MEWMA sequence is 

 𝒚𝒕 = (1 − 𝜆)𝒚𝑡−1 + 𝜆𝑅𝑥(𝑴𝒙𝒊), and (113) 

where 𝑴 = 𝛀−𝟏 such that a scatter matix  𝚺 = 𝛀𝛀′ > 0 is used to make the test affine 

invariant. vThe charting statistic is 

 𝑄 =
(2 − 𝜆)

𝜆
𝒚𝑡′ {𝑐𝑜𝑣𝑅𝑥(𝑀𝒙𝒊}−1𝒚𝑡 . (114) 
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Zou et al. called this the theoretical rank-based MEWMA or TRMEWMA.  The authors 

showed that their scheme is more appropriate in self-starting situations.  The theoretical 

rank-based nonparametric MEWMA has distribution-free properties in the sense that its 

IC ARL is very close to the nominal ARL for parametric MEWMA.  The empirical rank-

based MEWMA charts are easy to compute, computationally efficient, robust to non-

normality, and very efficient in detecting multivariate process shifts, especially when data 

come from a heavy-tailed or skewed distribution.  The authors proceed to show that this 

rank-based MEWMA scheme is more robust in its in-control (IC) performance and 

generally more sensitive to small and moderate shifts in location parameters. 

 



 
 
 
 

CHAPTER III 
 
 

METHODOLOGY 
  
 

The Spatial Nonparametric Signed-Ranks 
 

I utilized a nonparametric test statistic based on the work of Hettmansperger et al. 

(1997).  Hettmansperger et al. (1997) developed a multivariate affine-invariant 

(equivariant) signed-rank test (estimates) by extending the work of Brown and 

Hettmansperger (1987a, 1987b).  Hettmansperger and McKean (2011) stated that this is a 

delicate problem since there is no natural way to order or rank vectors.  Let 𝑿𝟏, …𝑿𝒏 be a 

random sample from a continuous k-varite distribution.  Let  

 𝑃 = {𝑝 = (𝑖1, … , 𝑖𝑘): 1 ≤ 𝑖1 < ⋯ < 𝑖𝑘 ≤ 𝑛} (115) 

be the set of 𝑁𝑃 = �𝑛𝑘� different k-tuples of an index set {1, … ,𝑛}.  Index 𝑝 ∈ 𝑃 then 

refers to a k-subset of the original observations.  The volume of the simplex determined 

by 𝑝 ∈ 𝑃 along with X is  

 𝑉𝑝(𝒙) = 𝑉(𝒙𝑖1, … ,𝒙𝑖𝑘,𝒙) =
1
𝑘!

 �𝑑0𝑝 + 𝑿𝑇𝒅𝑝�, (116) 

where 𝑑0𝑝 = (−1)𝑘𝑑𝑒𝑡(𝑋𝑖1, … ,𝑋𝑖𝑘) and 𝒅𝑝 is the k-dimensional vectors of cofactors of 

X in 𝑑𝑒𝑡 � 1 . .
𝒙𝑖1 . .

1 1
𝒙𝑖𝑘 𝒙�.  The Oja (1983) objective function is 

 𝐷𝑛(𝜽) =
1
𝑁𝑝

=
1
�𝑛𝑘�

�𝑉𝑝(𝜽),
𝑝∈𝑃

 (117) 



78 
 
and the Oja median 𝜽� minimizes 𝐷𝑛(𝜽).   The Oja median is affine equivariant and has 

efficiency at the multivariate normal distribution that increases with dimension k (Oja & 

Niinimaa, 1985).  Following Hettmansperger et al. (1994), Hettmansperger et al. (1997) 

took the gradient of 𝑘!𝑉𝑝(𝑿) to be the sign vector of X relative to the hyper-plane 

𝑝 = (𝑖1, … , 𝑖𝑘)  ∈ 𝑃. Let 𝑸𝑝(𝑿) = 𝑘!𝑉𝑝(𝑿); then 

 𝑸𝑝(𝒙) = 𝑺𝒑(𝒙)𝒅𝑃 , (118) 

where  

 𝑺𝒑(𝒙) = 𝑠𝑔𝑛�𝑑0𝑝 + 𝒙𝑇𝒅𝑝�. (119) 

We say that x is above the hyper-plane 𝑝 if 𝑺𝒑(𝒙) > 0 and below if 𝑺𝒑(𝒙) < 0. 

The centered vector rank function, analogous to the univariate case, is defined to be the 

mean of the signs with respect to all possible p’s (variables), 

 𝑹𝑛(𝑥) = 𝑁𝑃−1�𝑸𝑝(𝒙).
𝑝∈𝑃

 (120) 

Now, let A be the set of 2k possible vectors (±1, … , ±1) and define 

 𝑸𝑝
+(𝒙) = 2−𝑘�𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎

𝑎∈𝐴

, (121) 

where 𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎 is the gradient of  

 
1
𝑘!
𝑎𝑏𝑠{det � 1 . .

𝑎1𝒙𝑖1 . .
1 1

𝑎𝑘𝒙𝑖𝑘 𝒙�} and  𝑝 = (𝑖1, … , 𝑖𝑘). (122) 

Now, define the signed-rank function as  

 𝑹𝑛+(𝒙) = 𝑁𝑃−1�𝑸𝑝
+(𝒙).

𝑝∈𝑃

 (123) 

Hettmansperger et al. (1997) showed that both  𝑹𝑛+(𝒙) and 𝑸𝑝
+(𝒙) are odd:  𝑹𝑛+(𝒙) =

− 𝑹𝑛+(𝒙) and 𝑸𝑝
+(−𝒙) = −𝑸𝑝

+(𝒙). 
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A Computational Example of the Signed- 
Ranks Observation Vectors 

We now illustrate the computation of the signed-ranks on a data set.  The data 

consist of thickness of cork borings for 28 trees from four different directions: North, 

East, South, and West (Hettmansperger et al., 1997; Rao, 1948).  We first reduce the data 

to tri-variate (contrast) observations N-E, E-S, and S-W.  Table 4 provides the original 

quad-variate data along with the tri-variate data.  Table 5 gives the signed-rank vectors of 

the tri-variate data.  Appendix B displays the SAS code and interactive matrix language 

(IML) routines for the computation of the signed-rank vectors.  The signed-ranks vectors 

in Table 5 are duplicate results validated by Hettmansperger et al. (1997) in their example 

using the same data.  
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Table 4 
 
Cork Boring Data: North (N), East (E), South (S), West (W), and the Difference N-
E, E-S, and S-W 
 

Tree N E S W N-E E-S S-W 
1 72 66 76 77 6 -10 -1 
2 60 53 66 63 7 -13 3 
3 56 57 64 58 -1 -7 6 
4 41 29 36 38 12 -7 -2 
5 32 32 35 36 0 -3 -1 
6 30 35 34 26 -5 1 8 
7 39 39 31 27 0 8 4 
8 42 43 31 25 -1 12 6 
9 37 40 31 25 -3 9 6 
10 33 29 27 36 4 2 -9 
11 32 30 34 28 2 -4 6 
12 63 45 74 63 18 -29 11 
13 54 46 60 52 8 -14 8 
14 47 51 52 43 -4 -1 9 
15 91 79 100 75 12 -21 25 
16 56 68 47 50 -12 21 -3 
17 79 65 70 61 14 -5 9 
18 81 80 68 58 1 12 10 
19 78 55 67 60 23 -12 7 
20 46 38 37 38 8 1 -1 
21 39 35 34 37 4 1 -3 
22 32 30 30 32 2 0 -2 
23 60 50 67 54 10 -17 13 
24 35 37 48 39 -2 -11 9 
25 39 36 39 31 3 -3 8 
26 50 34 37 40 16 -3 -3 
27 43 37 39 50 6 -2 -11 
28 48 54 57 43 -6 -3 14 
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Table 5 
 
Signed-Rank Vectors for the N-E, E-S, and S-W Original Observation in Table 4 
 

Tree SR(N-E) SR(E-S) SR(S-W) 
1 5.2 -66.9 -47.2 
2 -4.5 -70.8 -17.0 
3 -68.6 -70.9 24.6 
4 96.9 5.8 -28.7 
5 -42.8 -54.4 -30.6 
6 -48.3 15.4 73.2 
7 74.1 94.5 60.5 
8 69.7 107.4 71.5 
9 28.0 82.9 81.7 
10 62.9 25.3 -65.2 
11 8.6 -3.0 54.7 
12 22.7 -64.5 2.6 
13 10.0 -48.2 24.9 
14 -44.4 -0.8 76.7 
15 15.6 -8.5 88.2 
16 -2.2 84.8 36.4 
17 113.3 71.0 63.9 
18 83.0 105.9 89.5 
19 122.3 44.4 26.3 
20 116.9 77.0 12.7 
21 78.7 41.8 -13.3 
22 37.3 12.4 -16.0 
23 19.4 -32.7 54.1 
24 -93.2 -92.2 25.0 
25 42.4 35.4 81.1 
26 129.7 58.2 -12.8 
27 37.7 -30.5 -95.6 
28 -68.1 -19.3 86.0 

 

 

 

 



82 
 

A Detailed Signed-Rank Numerical Example 

The computations of the invariant signed-ranks are highly intensive and a 

stochastic algorithm is used to calculate the signed-rank estimates by sampling 

observation hyperplanes (Oja, 1983).  The following example is presented in summary 

form; the full example can be found in Appendix B. 

Let 𝒙𝟏, 𝒙𝟐,𝒙𝟑 be a random sample from a continuous 3-variate distribution.  X is 

defined in (124) as a (3 x 3) matrix of n = 3 observations on 3 variables.  Hence, k = 3 

and n = 3, and  

 𝑿 = �
6 −10 12
−7 13 −11
5 7 15

� (124) 

 𝑃 = {𝑝 = (𝑖1, 𝑖2, 𝑖3): 𝑖1 < 𝑖2 < 𝑖3 ≤ 𝑛} (125) 

be the set of 𝑁𝑝 = �𝑛𝑘� different k-tuples of index set {1,2,3}.  In this example, there is 

only one set of 𝑁 = �3
3� = 3!

3!
= 1.  Therefore, the set 𝑃 = {𝑝 = (1,2,3)} and the index 

𝑝 ∈ 𝑃 refer to a k-subset of the original observations.  

Recall the multivariate sign Equation 121 defined below as 126.  

 𝑸𝑝
+(𝒙) = 2−𝑘�𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎

𝑎∈𝐴

. (126) 

Since k=3,  

 𝑸𝑝
+(𝑿) =

1
8
�𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎.
𝑎∈𝐴

, (127) 

Also, the signed-rank function from Equation 123 for 𝑁𝑃−1 = 1is 

 𝑹𝑛+(𝒙) = �𝑸𝑝
+(𝒙)

𝑝∈𝑃

 . (128) 

Substituting (126) into (127), we get the empirical signed-rank function 
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 𝑹𝑛+(𝒙) =
1
8
�𝑺𝒑𝒂(𝒙)𝒅𝒑𝒂
𝒂∈𝑨

 .  (129) 

The multivariate sign is an average of all possible vector set A, such that A is the set of 2k 

possible vectors(±1 , ±1, ±1).  Since k = 3, we have a set A with 8 possible vectors:  

 

𝐴 =  {𝑎0 = [−1 −1 −1], 

𝑎1 = [1 −1 −1], 

𝑎2 = [−1 1 −1], 

𝑎3 = [1 1 −1], 

𝑎4 = [−1 −1 1], 

𝑎5 = [1 −1 1], 

𝑎6 = [−1 1 1], 

𝑎7 = [1 1 1]}. 

(130) 

Let  

 𝑿` = �
6 −7 5

−10 13 7
12 −11 15

�. (131) 

 1. The signed-rank vector 𝑹𝑛+(𝒙) for 𝒙`𝟏. 

We start by calculating the sign vector 𝑸1
+(𝒙) and signed-rank vector 𝑹𝑛+(𝒙) for 𝒙`𝟏 =

�
6

−10
12

�.  We will calculate the sign vector 𝑸1
+(𝒙) and signed-rank vector 𝑹𝑛+(𝒙) for the 

other vector components,𝒙`𝟐 = �
−7
13
−11

�, and 𝒙`𝟑 = �
5
7

15
� in the same manner. 

Calculate all vectors 𝑎𝑡𝑝 ∶ 𝑡 = 0,1,2,3,4,5,6,7 and check if 𝑖 = 1 ∈ 𝒂𝒊𝒑. If 𝑖 = 1 ∈

𝒂𝒊𝒑, then 𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎 = 0.  So by using element–wise multiplication, #, we have 
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𝒂𝟎𝒑 = [−1 −1 −1]#[1 2 3] = [−1 −2 −3], 

𝒂𝟏𝒑 = [1 −1 −1]#[1 2 3] = [𝟏 −2 −3], 

𝒂𝟐𝒑 = [−1 1 −1]#[1 2 3] = [−1 2 −3], 

𝒂𝟑𝒑 = [1 1 −1]#[1 2 3] = [𝟏 2 −3], 

𝐚𝟒𝒑 = [−1 −1 1]#[1 2 3] = [−1 −2 3], 

𝒂𝟓𝒑 = [1 −1 1]#[1 2 3] = [𝟏 −2 3], 

𝒂𝟔𝒑 = [−1 1 1]#[1 2 3] = [−1 2 3], 

𝒂𝟕𝒑 = [1 1 1]#[1 2 3] = [𝟏 2 3], 

Note that since 𝑖 = 1 ∈ 𝒂𝒊𝒑 for 𝑖 = 1, 3, 5, & 7.  Therefore, 𝑸𝑝
+(𝒙) = 1

8
∑ 𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎𝑎∈𝐴  

is determined by vectors 𝒂𝟎,𝒂𝟐,𝒂𝟒, & 𝒂𝟔only.  We now calculate the component  

𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎 for 𝒂𝟎,𝒂𝟐,𝒂𝟒, & 𝒂𝟔only. 

 Define  

 

𝒀𝒊 = 𝒂𝒊#𝑿`, 

𝑾𝟏 = (𝒀𝒊 = [ 𝒚𝟐 𝒚𝟑]) − [ 𝒙𝒊 𝒙𝒊] ∶ 𝒊 = 𝟏,𝟐,𝐨𝐫 𝟑, 

 

𝑾𝟐 = 𝒀𝟎 − [𝒙𝒊 𝒙𝒊 𝒙𝒊] ∶ 𝒊 = 𝟏,𝟐,𝐨𝐫 𝟑, 

 

𝒅𝒑𝒂 =  

⎣
⎢
⎢
⎢
⎢
⎡

 

(−1)1 �𝑾𝟏 = �
𝒘𝟐
𝒘𝟑

��

(−1)2 �𝑾𝟏 = �
𝒘𝟏
𝒘𝟑

��

(−1)3 �𝑾𝟏 = �
𝒘𝟏
𝒘𝟐

��⎦
⎥
⎥
⎥
⎥
⎤

, 𝑜𝑟 

 

(132) 
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𝒅𝒑𝒂 =  

⎣
⎢
⎢
⎢
⎢
⎡

 

−1 �𝑾𝟏 = �
𝒘𝟐
𝒘𝟑

��

1 �𝑾𝟏 = �
𝒘𝟏
𝒘𝟑

��

−1 �𝑾𝟏 = �
𝒘𝟏
𝒘𝟐

��⎦
⎥
⎥
⎥
⎥
⎤

, and 

 

𝑺𝒑𝒂𝒅𝒑𝒂 = 𝑠𝑖𝑔𝑛(|𝑾𝟐|𝒅𝒑𝒂). 

 

We now calculate 𝑾𝟏,𝑾𝟐,𝒅𝒑𝟎, and 𝑺𝒑𝟎𝒅𝒑𝟎 as follows:  

 𝒀𝟎 = [−1 −1 −1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
−6 7 −5
10 −13 −7
−12 11 −15

�,  

we have 

𝑾𝟏 = (𝒀𝟎 = [ 𝒚𝟐 𝒚𝟑]) − [ 𝒙𝒊 𝒙𝒊], 

 

𝑾𝟏 = �
7 −5

−13 −7
11 −15

� − �
−6 −6
10 10
−12 −12

� = � 
13 1
−23 −17
23 −3

�, 

 

𝑾𝟐 = 𝒀𝟎 − [𝒙𝟏 𝒙𝟏 𝒙𝟏], 

 

𝑾𝟐 = �
−6 7 −5
10 −13 −7
−12 11 −15

� − �
6 6 6

−10 −10 −10
12 12 12

� = � 
−12 1 −11
20 −3 3
−24 −1 −27

�, 

 

𝒅𝒑𝟎 =  

⎣
⎢
⎢
⎢
⎢
⎡

 

−1 �−23 −17
23 −3 �

1 �13 1
23 −3�

−1 � 13 1
−23 −17�⎦

⎥
⎥
⎥
⎥
⎤

= �
−1(460)
1(−62)

−1(−198)
� = �

−460
−62
198

�, 
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and the sign vector is 

𝑺𝒑𝟎𝒅𝒑𝟎 = 𝑠𝑖𝑔𝑛�|𝑾𝟐|𝒅𝒑𝟎� = 𝑠𝑖𝑔𝑛 ��� 
−12 1 −11
20 −3 3
−24 −1 27

�� ∗ �
−460
−62
198

��=�
−460
−62
198

�. 

Using the same formulas in Equation 132, we calculate 

𝑾𝟏,𝑾𝟐,𝒅𝒑𝟐, and 𝑺𝒑𝟐𝒅𝒑𝟐 for 𝐘𝟐,𝒀4, and 𝒀𝟔 as 

 

 𝒀𝟐 = [−1 1 −1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
−6 −7 −5
10 13 −7
−12 −11 −15

�, 

𝑾𝟏 = (𝒀𝟐 = [ 𝒚𝟐 𝒚𝟑]) − [ 𝒙𝒊 𝒙𝒊] 

 

𝑾𝟏 = �
−7 −5
13 −7
−11 −15

� − �
−6 −6
10 10
−12 −12

� = � 
−1 1
3 −17
1 −3

�, 

 

𝑾𝟐 = 𝒀𝟐 − [𝒙𝟏 𝒙𝟏 𝒙𝟏], 

 

𝑾𝟐 = �
−6 −7 −5
10 13 −7
−12 −11 −15

� − �
6 6 6

−10 −10 −10
12 12 12

� = � 
−12 −13 −11
20 23 3
−24 −23 −27

�, 

 

𝒅𝒑𝟐 =  

⎣
⎢
⎢
⎢
⎢
⎡

 

−1 �3 −17
1 −3 �

1 �−1 1
1 −3�

−1 �−1 1
3 −17�⎦

⎥
⎥
⎥
⎥
⎤

= �
−1(8)
1(2)

−1(14)
� = �

−8
2

−14
�, 

and the sign vector is 
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𝑺𝒑𝟐𝒅𝒑𝟐 = 𝑠𝑖𝑔𝑛�|𝑾𝟐|𝒅𝒑𝟐� = 𝑠𝑖𝑔𝑛 ��� 
−12 −13 −11
20 23 3
−24 −23 −27

�� ∗ �
−8
2

−14
��=�

8
−2
14
�. 

 

 𝒀𝟒 = [−1 −1 1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
−6 7 5
10 −13 7
−12 11 15

�, 

𝑾𝟏 = (𝒀𝟒 = [ 𝒚𝟐 𝒚𝟑]) − [ 𝒙𝒊 𝒙𝒊], 

 

𝑾𝟏 = �
7 −5

−13 −7
11 −15

� − �
−6 −6
10 10
−12 −12

� = �−
13 11
23 −3
23 27

�, 

 

𝑾𝟐 = 𝒀𝟒 − [𝒙𝟏 𝒙𝟏 𝒙𝟏], 

 

𝑾𝟐 = �
−6 7 5
10 −13 7
−12 11 15

� − �
6 6 6

−10 −10 −10
12 12 12

� = � 
−12 1 −1
20 −3 17
−24 −1 3

�, 

 

𝒅𝒑𝟒 =  

⎣
⎢
⎢
⎢
⎢
⎡

 

−1 �−23 −3
23 27�

1 �13 11
23 27�

−1 � 13 11
−23 −3�⎦

⎥
⎥
⎥
⎥
⎤

= �
−1(−552)

1(98)
−1(214)

� = �
552
98

−214
�, 

and the sign vector is 

𝑺𝒑𝟒𝒅𝒑𝟒 = 𝑠𝑖𝑔𝑛�|𝑾𝟐|𝒅𝒑𝟒� = 𝑠𝑖𝑔𝑛 ��� 
−12 1 −1
20 −3 17
−24 −1 3

�� ∗ �
552
98

−214
��=�

−552
−98
214

� 

 

 𝒀𝟔 = [−1 1 1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
−6 −7 5
10 13 7
−12 −11 15

�, 
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𝑾𝟏 = (𝒀𝟔 = [ 𝒚𝟐 𝒚𝟑]) − [ 𝒙𝒊 𝒙𝒊], 

 

𝑾𝟏 = �
−7 −5
13 −7
−11 −15

� − �
−6 −6
10 10
−12 −12

� = �
−1 11
3 −3
1 27

�, 

 

𝑾𝟐 = 𝒀𝟔 − [𝒙𝟏 𝒙𝟏 𝒙𝟏], 

 

𝑾𝟐 = �
−6 −7 5
10 13 7
−12 −11 15

� − �
6 6 6

−10 −10 −10
12 12 12

� = � 
−12 −13 −1
20 23 17
−24 −23 3

�, 

 

𝒅𝒑𝟔 =  

⎣
⎢
⎢
⎢
⎢
⎡

 

−1 �3 −3
1 27�

1 �−1 11
1 27�

−1 �−1 11
3 −3�⎦

⎥
⎥
⎥
⎥
⎤

= �
−1(84)
1(−38)
−1(−30)

� = �
−84
−38
30

�, 

and the sign vector is 

𝑺𝒑𝟔𝒅𝒑𝟔 = 𝑠𝑖𝑔𝑛�|𝑾𝟐|𝒅𝒑𝟔� = 𝑠𝑖𝑔𝑛 ��� 
−12 −13 −1
20 23 17
−24 −23 3

�� ∗ �
−84
−38
30

��=�
−84
−38
30

�. 

Applying Equations 128 through 132, the signed-rank vector for the original 𝑿`𝟏 =

�
6

−10
12

�  is 

𝑹+(𝒙`𝟏) = �𝑸1
+(𝒙)

𝑝∈𝑃

=
1
8
�𝑆𝑝𝑎(𝒙)𝒅𝑝𝑎
𝑎∈𝐴

  

𝑹+(𝒙`𝟏) =
1
8
�𝑺𝒑𝟎𝒅𝒑𝟎 + 𝑺𝒑𝟐𝒅𝒑𝟐 + 𝑺𝒑𝟒𝒅𝒑𝟒 + 𝑺𝒑𝟔𝒅𝒑𝟔�  
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𝑹+(𝒙`𝟏) = 1
8
��
−460
−62
198

� + �
8
−2
14
� + �

−552
−98
214

� + �
−84
−38
30

�� = �
−136
−25
57

�. 

The same algorithm was applied to the other two vectors in the matrix.  The complete 

step-by-step computations are available in Appendix B.  The following is a summary of 

the results for vectors 𝒙`𝟐 = �
−7
13
−11

� and 𝒙`𝟑 = �
5
7

15
�. 

 2. The signed-rank vector 𝑹𝑛+(𝒙) for 𝒙`𝟐  

In the same manner, we calculate the sign vector 𝑸2
+(𝒙) and signed-rank vector 

𝑹𝑛+(𝒙) for 𝒙`𝟐 = �
−7
13
−11

�.  Again, applying Equations 128 through 132, the signed-rank 

vector for the original 𝑿`𝟐 = �
−7
13
−11

� , we get 

𝑹+(𝒙`𝟐) = �𝑸2
+(𝒙)

𝑝∈𝑃

=
1
8
�𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎
𝑎∈𝐴

  

𝑹+(𝑿`𝟐) =
1
8
�𝑺𝒑𝟎𝒅𝒑𝟎 + 𝑺𝒑𝟏𝒅𝒑𝟏 + 𝑺𝒑𝟒𝒅𝒑𝟒 + 𝑺𝒑𝟓𝒅𝑷𝟓�  

𝑹+(𝑿`𝟐) =
1
8
��
−460
−62
198

� + �
84
38
−30

� + �
−552
−98
214

� + �
−8
2

−14
�� = �

−117
−15
46

� 

 3. The signed-rank vector 𝑹𝑛+(𝒙) for 𝒙`𝟑   

And finally, in the same manner, we calculate the sign vector 𝑸3
+(𝒙) and signed-rank 

vector 𝑹𝑛+(𝒙) for 𝒙`𝟑 = �
5
7

15
�. Once again, applying Equations 128 through 132, the 

signed-rank vector for the original 𝒙`𝟑 = �
5
7

15
� , we get 
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𝑹+(𝒙`𝟑) = �𝑸3
+(𝒙)

𝑝∈𝑃

=
1
8
�𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎
𝑎∈𝐴

  

𝑹+(𝒙`𝟑) =
1
8
�𝑺𝒑𝟎𝒅𝒑𝟎 + 𝑺𝒑𝟏𝒅𝒑𝟏 + 𝑺𝒑𝟐𝒅𝒑𝟐 + 𝑺𝒑𝟐𝒅𝒑𝟑�  

𝑹+(𝒙`𝟑) =
1
8
��
−460
−62
198

� + �
84
38
−30

� + �
8
−2
14
� + �

552
98

−214
�� = �

23
9
−4

�. 

We now have 𝑅𝑛+ = [𝑹+(𝒙`𝟏) 𝑹+(𝒙`𝟐) 𝑹+(𝒙`𝟑)] = �
−136 −117 23
−25 −15 9
57 46 −4

�. 

The calculated signed-rank vectors  𝑹+(𝒙`1),𝑹+(𝒙`2), and 𝑹+(𝒙`𝟑) were generated for 

the transposed 𝑿 or 𝑿` = �
6 −7 5

−10 13 7
12 −11 15

� and the signed-rank vectors or matrix is 

then transposed to give the final signed-ranks matrix  

𝑹𝒏+ = (𝑹𝒏+)` = �
−136 −25 57
−117 −15 46

23 9 −4
�. 

The above result is identical to the signed-rank vectors or matrix obtained by 

applying the SAS code and interactive matrix language (IML) routines for the purpose of 

calculating the Oja invariant signed-rank vectors in Appendix A.  
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The Signed-Rank Based Test Statistic 
 

Again, let 𝑿𝟏, …𝑿𝒏 be a random sample from a continuous and symmetric k-

varites distribution with density 𝑓(𝑥 − 𝜃) so that 𝑓(𝑥) is symmetric about the origin and 

𝜃 is the unknown center of symmetry.  Without loss of generality, we assume then the 

null hypothesis is 𝐻0:𝜽 = 𝟎.  Now we consider a one-sample randomization or sign 

change test.  From above, since  𝑹𝑛+(𝒙) = − 𝑹𝑛+(𝒙) and under H0, x and –x are equally 

probable. Let H be a fixed half-space such that 𝒙 ≠ 0 belongs to H, then –x does not.  We 

now write  

 𝒙𝑖 = 𝑠𝑖𝒚𝑖, (133) 

where 𝒚𝑖 ∈ 𝐻.   Hence 𝑠𝑖 = ±1 as 𝒙𝑖 ∈ 𝐻 𝑜𝑟 𝒙𝑖 ∈ 𝐻𝑐.   If 𝐻0:𝜽 = 𝟎 is true, then 

𝑠1, … , 𝑠𝑛 and 𝒚1, … ,𝒚𝑛 are mutually independent.  Write  

 𝒓𝑛𝑖+ = 𝑹𝑛+(𝒚𝑖). (134) 

The vector-valued, multivariate one-sample signed-rank test statistic is the sum of signed 

ranks of the observations 

 𝑻𝑛 = �𝑹𝑛+(𝒙𝑖)
𝑛

𝑖=1

=  �𝑠𝑖𝒓𝑛𝑖+
𝑛

𝑖=1

. (135) 

Under 𝐻0:𝜽 = 𝟎 and given (𝒚1, … ,𝒚𝒏), the “signs” 𝑠1, … , 𝑠𝑛 are iid Bernoulli random 

variables with 𝑃(𝑠𝑖 = 1) = 𝑃(𝑠𝑖 = −1) = 1
2
.    Hence, conditionally, 𝐸(𝑻𝑛) = 𝟎 and  

 𝑩 = 𝑐𝑜𝑣 �𝑛−
1
2𝑻𝑛� =

1
𝑛
�𝒓𝑛𝑖+
𝑛

𝑖=1

𝒓𝑛𝑖+
𝑇 =

1
𝑛
�𝑹𝑛+(𝒙𝑖)
𝑛

𝑖=1

 𝑹𝑛+
𝑇(𝒙𝑖). (136) 

The conditional, approximately size 𝛼, randomization test is then carried out by rejecting 

𝐻0:𝜽 = 𝟎 when 𝑛−1𝑻𝑛𝑇𝑩𝑁
−1𝑻𝑛 ≥  𝜒𝛼2(𝑘),  where 𝜒𝛼2(𝑘) is the (1 − 𝛼)-percentile from a 
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chi-squared distribution with k degrees of freedom.  Hettmansperger et al. (1997) showed 

that 

 𝑩𝑛
𝒑
→ 𝑩 = 𝐸[𝑹𝑛+(𝑿𝑖)𝑹𝑛+𝑇(𝑿𝑖)]. (137) 

Now the research questions outlined in Chapter 1 are revisited and address the 

research methods corresponding to each question specifically.  Once again, this 

dissertation addressed the following questions: 

Q1 How will the Spatial Signed-Rank MEWMA (SRMEWMA) control chart  
 scheme be designed for the in-control average run length (ARL0)? 
 
Q2 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart  

performance for different number, p, of monitored related quality 
characteristics? 

 
Q3 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart  

performance for different values of the smoothing parameter 𝜆?  
 
Q4 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart  
 performance for different sizes of shift in a process location vector? 
 
Q5 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart  

performance compared to the Hotelling’s T2 and MEWMA control chart 
scheme for elliptically symmetrical (multivariate normal and multivariate 
t) and skewed distributions (multivariate gamma)? 
 

A new multivariate nonparametric MEWMA control chart combined with the signed-

rank test is derived next. 

A Spatial Signed-Rank Based Multivariate  
Exponentially Weighted Moving Average  
Control Chart 

This section provides the necessary background to answer the first research 

question: 

Q1 How will the Spatial Signed-Rank MEWMA (SRMEWMA) control chart  
  scheme be designed for the in-control average run length (ARL0)? 
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The monitoring problem is closely related to the nonparametric statistical tests of 

hypothesis of the one-sample location problem.  Therefore, to facilitate the derivation of 

the proposed charting statistic, we start by assuming the underlying in-control (IC) 

distribution 𝐹(𝑿 − 𝝁𝟎) is completely known, where F represents a continuous p-

dimensional distribution located at the vector 𝝁𝟎 .  Given a random observed vector 

𝒙 ~𝐹(𝑿 − 𝝁𝟎), we want to test the null hypothesis, H0, that 𝝁 = 𝝁𝟎 against H1 that 

 𝝁 ≠ 𝝁𝟎.   By definition, it is easy to see that under H0, 𝐸[𝑹𝑛+(𝑿𝑖)] = 0.   Thus, it is 

straightforward to consider the test statistic 

 𝑸𝑅 = 𝑹𝑛+𝑇(𝑿𝑖)�𝐶𝑜𝑣�𝑹𝑛+(𝑿𝑖)��
−1
𝑹𝑛+(𝑿𝑖), (138) 

as a reasonable candidate for testing.  When H0 is true, the test statistic should be small 

and thus not lead to rejection of the null hypothesis.  Now, define a MEWMA sequence 

 𝒘𝑡 = (1 − 𝜆)𝒘𝑡−1 + 𝜆𝑹𝑛+(𝒙𝑖), (139) 

where 𝒘0 = 0 and 𝜆 is a smoothing parameter.  
 

The charting statistic is given by 
 

 𝑸𝑡
𝑅 = 𝒘𝑡

𝑇{𝐶𝑜𝑣(𝒘𝑡)}−1𝒘𝑡 , 𝑜𝑟 (140) 

 
𝑸𝑡
𝑅 =

2 − 𝜆
𝜆

𝒘𝑡
𝑇�𝐶𝑜𝑣�𝑹𝑛+(𝑿𝑖)��

−1
𝒘𝑡, 

(141) 

 
such that 

 𝚺𝒘𝑡 = 𝑐𝑜𝑣(𝒘𝒕) =
𝜆

2 − 𝜆
𝐶𝑜𝑣�𝑹𝑛+(𝑿𝑖)�. (142) 

Since Σ𝑹𝑛+(𝑿𝑖) = 𝐶𝑜𝑣�𝑹𝑛+(𝑿𝑖)�, 𝑒quation 142 can be written as 
 

 𝚺𝒘𝑡 =
𝜆

2 − 𝜆
𝚺𝑹𝑛+(𝑿𝑖). (143) 

The covariance of 𝒘𝑡  is derived below. 
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 Recall the MEWMA sequence using the signed-ranks 
  

 𝒘𝑡 = (1 − 𝜆)𝒘𝑡−1 + 𝜆𝑹𝑛+(𝑿𝑖). (144) 

 
Let us suppose that we are using a full smoothing parameters matrix Λ such that  
 

 𝚲 = �
𝜆11 ⋯ 𝜆1𝑡 
⋮ ⋱ ⋮
𝜆𝑛1 ⋯ 𝜆𝑛𝑡

�  , (145) 

 
then Equation 144 can be represented as  
 

 𝒘𝑡 = (1 − 𝜦)𝒘𝑡−1 + 𝜦𝑹𝑛+(𝑿𝑖). (146) 

 
By repeated substitution in Equation 146, it can be shown that 
 

 𝒘𝑡 = �𝜦(1 − 𝜦)𝑡−𝑗 
𝑡

𝑗=1

𝒘𝑡, 
(147) 

 
thus  
 

 𝜮𝑤𝑡 = �𝑣𝑎𝑟{𝜦(1− 𝜦)𝑡−𝑗 
𝑡

𝑗=1

𝒘𝑡} (148) 

 
       = �[𝜦(1 − 𝜦)𝑡−𝑗 𝐶𝑜𝑣�𝑹𝑛+(𝑿𝑖)�

𝑡

𝑗=1

𝜦(1 − 𝜦)𝑡−𝑗 𝒘𝑡] 
(149) 

 
because 𝚲 and (1 − 𝚲) are diagonal matrices, the (k,l)th element of 𝚺𝑤𝑡  is 
 

 𝜆𝑘𝜆𝑙[1 −
(1 − 𝜆𝑘)𝑖(1 − 𝜆𝑙)𝑖  

[𝜆𝑘 + 𝜆𝑙 − 𝜆𝑘𝜆𝑙]𝜎𝑘,𝑙
 , 

 

(150) 

where 𝜎𝑘,𝑙 is the (k,l)th element of 𝐶𝑜𝑣�𝑹𝑛+(𝑿𝑖)�. If 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑡 = 𝜆 , then the 

expression in (A.7) simplifies to  

 𝜆�1 − (1 − 𝜆)2𝑖�
2 − 𝜆

𝜎𝑘,𝑙.  
(151) 

 
Such that 
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 𝚺𝒘𝒕 = 𝑐𝑜𝑣(𝒘𝒕) =
𝜆�1 − (1 − 𝜆)2𝑖�

2 − 𝜆
𝐶𝑜𝑣�𝑹𝑛+(𝑿𝑖)�; (152) 

 
however, as 𝑖 → ∞, the asymptotic covariance matrix is 
 

 𝚺𝒘𝒕 = 𝑐𝑜𝑣(𝒘𝒕) =
𝜆

2 − 𝜆
𝐶𝑜𝑣�𝑹𝑛+(𝑿𝑖)� or (153) 

 
𝚺𝒘𝒕 =

𝜆
2 − 𝜆

𝚺𝑹𝒏+ . 
(154) 

Equation 141 can be written as  
 

 𝑸𝑡
𝑅 = 𝒘𝑡

𝑇(𝚺𝒘𝑡)
−1𝒘𝑡  > 𝐿. (155) 

 
where L > 0 is the control limit chosen to achieve a specific IC ARL or ARL0 .  We refer 

to this method as the Spatial Signed-Rank MEWMA or SRMEWMA. 

The SRMEWMA chart is affine invariant.  For any 𝑝 𝑥 𝑝 nonsingular matrix M, 

the charting statistic 𝑸𝑡
𝑅 , based on 𝑿𝑡  and 𝑿𝑡∗ = 𝑴𝑿𝑡 are the same.  This property is 

intuitively appealing and it also ensures that the performance of SRMEWMA is the same 

for any initial covariance matrix and location.  The value of the charting statistics remains 

the same for any of the following conditions: (a) the data points are rotated, (b) the data 

points are reflected around a p-1 dimensional hyperplane, or (c) the scales of 

measurement are altered (Hettmansperger et al., 1997; Zou & Tsung, 2010). 

 

 Proof: we know from Equation 139 that 

 𝒘𝑡 = (1 − 𝜆)𝒘𝑡−1 + 𝜆𝑹𝑛+(𝑿𝑖). (156) 

 
Now, define 
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 𝒘𝑡
∗ = (1 − 𝜆)𝑴𝒘𝑡−1 + 𝜆𝑴𝑹𝑛+(𝑿𝑖). 

 
(157) 

Then 
 

 𝒘𝑡
∗ = 𝑴[(1 − 𝜆)𝒘𝑡−1 + 𝜆𝑹𝑛+(𝑿𝑖)], 

 
(158 

 𝒘𝑡
∗ = 𝑴𝒘𝑡 , 

 
(159) 

and the covariance matrix of 𝒘𝑡
∗ is 

 
 𝚺𝑤𝑡∗ = 𝚺𝑴𝒘𝑡 = 𝑴𝚺𝒘𝑡𝑴

′. (160) 

 
now, define a new charting statistic 
 

 
𝑸𝑡
𝑅∗ = 𝒘𝑡

𝑇∗�𝚺𝒘𝒕∗�
−1
𝒘𝑡
∗  

(161) 

 
= (𝑴𝒘𝑡)′�𝑴𝚺𝒘𝑡𝑴

′�
−1

(𝑴𝒘𝑡)  
(162) 

 
= 𝒘𝑡

𝑇(𝑴𝑴′−1 )�𝚺𝒘𝑡�
−1(𝑴−1𝑴)𝒘𝑡   

(163) 

 
 = 𝒘𝑡

𝑇�𝚺𝒘𝑡�
−1
𝒘𝑡   

(164) 

  = 𝑸𝑡
𝑅 . (165) 

This completes the proof. 
 

Spatial Signed-Rank Multivariate  
Exponentially Weighted Average  
Run Length Performance 
 

 Choice of multivariate distributions for simulation.  Following the robustness 

analyses by Stoumbos and Sullivan (2002), Stoumbos and Reynolds (2000), Borror, 

Montgomery, and Runger (1999), Zou and Tsung (2010), and Zou et al. (2010), data 

were generated from the following distributions: (a) multivariate normal (elliptically 

symmetrical) ; (b) multivariate t-distribution with 𝝂 degrees of freedom (elliptically 

symmetrical), denoted as  𝒕𝒑,𝝂 ; and (c) multivariate gamma (skewed) with shape 

parameter 𝜶 and scale parameter 𝜷 = 𝟏, without any loss of generality, denoted 
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as 𝑮𝒂𝒎𝟐 (𝜶,𝜷 = 𝟏).  Further statistical details on the general multivariate t-distribution 

and gamma distribution can be found in the Appendix to Stoumbos and Sullivan’s study 

(2002).  As discussed by Stoumbos and Sullivan, since the multivariate normal and t 

distributions were elliptically symmetrical, the MEWMA's OC performance depended on 

a shift in the process mean vector only through a non-centrality parameter.  This was still 

true for the SRMEWMA chart because of its affine invariance.  However, with the other 

distributions, such as multivariate gamma, the performance was not invariant to the 

covariance matrix of the “implicit" multivariate normal observation.  The number and 

variety of covariance matrices and shift directions were too large to allow a 

comprehensive, all-encompassing comparison.  The goal of this study was to show the 

effectiveness, robustness, and sensitivity of the SRMEWMA chart; thus, only certain 

representative models were chosen for illustration.  Specifically for the three distribution 

cases, the covariance matrix 𝚺𝟎 = �𝝈𝒊𝒋� was estimated from a large reference sample of 

10,000 sample vectors for each distribution.  In the interest of brevity, a shift of size 𝜹 in 

only the first component is used, say, 𝒙𝒊 + 𝜹𝒆𝟏 with 𝒆𝟏 = (𝟏,𝟎, … ,𝟎)′, unless stated 

otherwise. 

Two literal bodies of work support the choice of distributions for simulation.  The 

first is based on the robustness to non-normality of MEWMA control charts for heavy-

tailed and skewed distributions and the second is based on the efficiencies of multivariate 

signs and ranks tests relative to Hotelling’s T2.  

Mottonen et al. (1997) examined the asymptotic relative efficiencies (ARE) of the 

spatial sign test and the spatial signed-rank test with respect to the Hotelling’s T2 for the 

t-distribution with selected values of degrees of freedom 𝜈 and with selected dimensions 
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p.  Both tests seemed to have good ARE over a broad class of t-distributions with the 

signed–rank test exhibiting better AREs; the higher the dimension the higher the ARE. 

Peters and Randles (1990) found that the signed-rank statistic appeared to be robust and 

performed better than its competitors when the data came from light-tailed distributions-- 

better than Hotelling’s T2 for the heavy-tailed distribution and Hotelling’s T2 for the 

multivariate normal distribution. 

The Design of the Signed-Rank  
Multivariate Exponentially  
Weighted Average Control  
Scheme 
 

This section provides the necessary background to answer the second, third, 

fourth, and fifth research questions:  

Q2 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart 
 performance for different number, p, of monitored related quality  
characteristics? 
 

 Q3 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart 
performance for different values of the smoothing parameter λ? 
 

 Q4 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart 
performance for different sizes of shift in a process location vector? 

 
 Q5 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart 

performance compared to the Hotelling’s T2 and MEWMA control chart 
scheme for elliptically symmetrical (multivariate normal and multivariate 
t) and skewed distributions (multivariate gamma)? 
 

 Using SAS 9.2, Monte Carlo simulation techniques were used to generate 

simulated p-variate normal, t, and gamma observations vectors as described above and to 

compute the signs, ranks, and signed-ranks. The following SAS functions were used to 

generate the random p-variate observation vectors: 
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1. The Random Query Generator (RANDGEN) function call was used to 

generate multivariate normal p-variate observation vectors, 

2. The RANDGEN function call was used to generate multivariate student’s  t-

distribution p-variate observation vectors, and  

3. The RANDGEN function call was used to generate multivariate t-

distribution p-variate observation vectors.   

Practical Guidelines on Choosing the 
Reference Sample Size 
 
 The choice of sample size plays an important role in any simulation study and 

affects parameter estimation.  If the sample size is too small, there will be considerable 

uncertainty in parameter estimates, which in turn will distort the in-control ARL (Zou et 

al., 2010).  Since collecting large reference samples is both costly and not time feasible, 

Zou et al. (2010) suggested using a reference sample size of at least 𝑚0 ≥ 2𝑝.  To 

achieve satisfactory performance, Zou et al. suggested using 50 observations or more.  

However, the signed-ranks algorithm is computationally intensive when n > 5; therefore, 

I used a universal sample size of 5.  

 Average run length1 and upper control limit properties for signed-rank 

multivariate exponentially weighted moving average.  For a desired ARL0 ≈ 𝟐𝟎𝟎, 

ARL1 and L values (see Equations 141 and 144) were calculated; where L > 0 was the 

control limit chosen to achieve the desired ARL0 of the SRMEWMA (𝑸𝒕
𝑹) control scheme 

for all combinations of following parameters’ values: 

1. The number of quality variables to be simultaneously monitored, p = 2, 3, 4, 

and 5 for the multivariate normal and t distributions and p = 2 only for the 

multivariate gamma distribution. 
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2. The smoothing parameter, λ ∈ [0.01, 0.02, 0.03, 0.05, 0.10, and 0.50].  A 

smaller λ led to a quicker detection (Lucas & Saccucci, 1990; Prabhu & 

Runger, 1997). 

3. Shifts in the process mean vector, δ ∈ [0, 0.25, .05, 1.0, 1.5, and 2.5]. 

 The simulation process first determined the L values and based upon the 

simulated L values, the associated ARL1 values were calculated using simulation in Phase 

II.  As an example, Table 6 illustrates the ARL1 denoted by “x” and L values, denoted by 

“h” for the SRMEWMA (𝑸𝑡
𝑅) control scheme for ARL0 ≈ 200 , p = 2, and all values of λ 

and δ mentioned above in 2 and 3.  All shifts in process mean vector were introduced in 

the first variable or component, such that the shift in mean vector was from 𝝁𝟎 =

(0, … ,0) to 𝝁 = (𝛿, 0, … ,0).  

 

Table 6 

Average Running Length1 Values of the Signed-Rank Multivariate Exponentially 
Weighted Moving Average (𝑸𝑡

𝑅) Control Scheme for Average Running Length0 ≈ 200 
and p = 2 
 

 λ 
 0.01 0.02 0.05 0.5 
   L  
δ h h h h 

0.00 x x x x 

0.25 x x x x 

1.50 x x x x 

2.50 x x x x 
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In addition, the performance of the SRMEWMA (𝑸𝑡
𝑅) control scheme was 

investigated for ARL0 ≈ 500 for the same simulation condition associated with ARL0 ≈

200.  Both ARL1 and L values were displayed in the same manner as Table 6 but for a 

desired in control ARL0 ≈ 500.    

Average running length comparisons to Hotelling’s T2 and multivariate 

exponentially weighted moving average.  The performance of the SRMEWMA (𝑸𝒕
𝑹) 

control scheme was compared to the ARL values of both the Hotelling’s T2 and 

MEWMA control schemes for the same sampling distributions and simulation parameters 

listed above in “Simulation parameters” 1-3 listed previously.  The following SAS 

functions were used to generate the random p-variate observation vectors: 

1. The RANDGEN function call was used to generate multivariate normal p-

variate observation vectors, 

2. The RANDGEN function call was used to generate multivariate student’s  t-

distribution p-variate observation vectors, and  

3. The RANDGEN function call was used to generate multivariate t-

distribution p-variate observation vectors. 

The ARL and upper control values L, h1 (see Equation 49) and h2 (see Equation 

72) for the Hotelling’s χ2, and MEWMA control schemes, respectively, will be generated 

according to Table 7.  The UCL (h1) for the Hotelling’s χ2 for which ARL0 ≈ 200 are 

obtained from the 𝜒𝑝2 tables only for p-variate observation vectors from the multivariate 

normal distribution.  All other UCL for all control schemes will be obtained by using 

Monte Carlo simulation.  The performance of the SRMEWMA (𝑸𝑡
𝑅) control scheme was 

compared to the ARL values of both the Hotelling’s χ2 and MEWMA control schemes 
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only for observations from the multivariate normal distribution.  Additionally, the 

performance of the SRMEWMA (𝑸𝑡
𝑅) control scheme was compared to the ARL values 

of both the MEWMA control scheme for observation samples from both the multivariate 

t-distribution and the multivariate gamma distributions. 

 

Table 7 
 
Average Run Length and Upper Control Limit (L, h1, & h2) Determination 
Methods for Control Schemes and Selected Sampling Distribution 
 

  Control Scheme  
Distribution SRMEWMA MEWMA Hotelling’s χ2 

Multivariate Normal 
𝑁𝑝�𝝁,𝚺𝑝� 

 

Simulation Simulation 𝜒𝑝2 𝑇𝑎𝑏𝑙𝑒𝑠 

Multivariate t 
𝑡𝑝,𝜈 

 

Simulation Simulation Simulation 

Multivariate gamma 
𝐺𝑎𝑚2,(𝛼,𝛽=1) 

Simulation Simulation Simulation 

 
 
 

Table 8 (for p-variate observations from the multivariate normal distribution), 

Table 9 (for p-variate observations from the multivariate student’s t-distribution), and 

Table 10 (for p-variate observations from the multivariate gamma distribution) are 

examples of the ARL comparison for the SRMEWMA (𝑸𝑡
𝑅) control scheme, the 

Hotelling’s T2, and MEWMA control schemes for ARL Comparisons for p = 2, λ = 0.10 

and 𝐴𝑅𝐿0 ≈ 200 .  
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Table 8 
 
Average Run Length Comparisons for p = 2, λ = 0.10 and In-Control 
Average Run Length ≈ 200 for p-Variate Observation Vectors from 
the Multivariate Normal Distribution 
 

 SRMEMA Hotelling’s T2* MEWMA 
δ L = h h1 = 10.59* h2 = h 

0.00 x x x 

0.25 x x x 

0.50 x x x 

1.00 x x x 

1.50 x x x 

2.50 x x x 

*Values obtained from Lowry et al. (1992). 

 

Table 9 
 
Average Run Length Comparisons for p = 2, λ = 0.10 and In-Control 
Average Run Length ≈ 200 for p-Variate Observation Vectors from 
the Multivariate Student’s t-Distribution 
 

 SRMEMA Hotelling’s T2* MEWMA 
δ L = h h1 = 10.59* h2 = h 

0.00 x x x 

0.25 x x x 

0.50 x x x 

1.00 x x x 

1.50 x x x 

2.50 x x x 
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Table 10 
 
Average Run Length Comparisons for p = 2, λ = 0.10 and In-Control 
Average Run Length ≈ 200 for p-Variate Observation Vectors from 
the Multivariate Gamma Distribution 
 

 SRMEMA Hotelling’s T2* MEWMA 
δ L = h h1 = 10.59 h2 = h 

0.00 x x x 

0.25 x x x 

0.50 x x x 

1.00 x x x 

1.50 x x x 

2.50 x x x 

 
 

Simulation Process 
 

 The simulation process was conducted in two phases as follows: 

 Step 1 for Phase I: determine the UCLs for the SRMEWMA (𝑄𝑡𝑅) control 

scheme, the Hotelling’s χ2 (multivariate normal only), and MEWMA control schemes for 

the desired ARL0 values. 

1. The following SAS function was used to generate the random p-variate 

observation vectors: The RANDGEN function call was used to generate 

multivariate normal observation vectors, the multivariate student’s t-

distribution p-variate observation vectors, and the multivariate gamma 

distribution).  
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2.  Using the observation vectors from 1 above, the spatial signs, ranks and 

signed-ranks were computed using SAS IML routines and macros based on 

the work of Hettmansperger et al. (1997).  

3.  The 𝑸𝑡
𝑅 control statistic from Equation 155, the MEWMA control 

statistic 𝑻𝑖2 from Equation 72, and the Hotelling’s 𝑇2  in Equation 49 (only 

for the multivariate normal distribution) were computed.  The computed 

signed-ranks were used to compute the 𝑸𝑡
𝑅 control statistic, while the 

original p-variate was used to calculate both the MEWMA control 

statistic 𝑻𝑖2 from equation and the Hotelling’s 𝑇2 . 

4.  The computed 𝑸𝑡
𝑅, 𝑻𝑖2, and 𝜒2 were compared to the corresponding L, h1, 

and h2 values, respectively.  Once  𝑸𝑡
𝑅 > 𝐿 (similarliy  𝑻𝑖2 > ℎ2 𝑎𝑛𝑑 𝜒2 >

ℎ1) (i.e., the process signals out-of-control), the run length for the ith 

simulation RL0 ( the number of samples simulated before first out-of-control 

signals occur when process is operating in-control state) was recorded. 

5.  The above process was repeated 10,000 times for each combination of 

conditions (e.g., see Table 6). 

6.  At the end of the 10,000 simulation, the computed average run length ARL0 

is obtained as  

 𝐴𝑅𝐿0 =
1

10,000
� 𝑅𝐿0

10,000

1
 . 

 

(166) 

7.  Once the ARL0 was approximately equal to 200, the process stopped and 

then the corresponding values of L or h1 were recorded. 

 Step 2: Determining the ARL1 values for Phase II.   
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1. The following SAS function was used to generate the random p-variate  

observation vectors: The RANDGEN function call was used to generate 

multivariate normal p-variate observation vectors, the multivariate student’s 

t-distribution p-variate observation vectors, and the multivariate gamma 

distribution.  The shift δ value was added to the first component of the 

standardized signed-ranks of the simulated observation vectors. 

2. The 𝑸𝑡
𝑅 control statistic, the MEWMA control statistic 𝑻𝑖2 from Equation  

72, and the Hotelling’s 𝜒2  in Equation 49 (only for the multivariate normal 

distribution) were computed.  The computed signed-ranks were used to 

compute the 𝑸𝑡
𝑅 control statistic; whereas, the original p-variate was used to 

calculate both the MEWMA control statistic 𝑻𝑖2 from equation and the 

Hotelling’s 𝑇2 . 

3. The computed 𝑸𝑡
𝑅, 𝑻𝑖2, and 𝜒2 were compared to the corresponding L, h1,  

and h2 values, respectively.  Once  𝑸𝑡
𝑅 > 𝐿 (similarliy  𝑻𝑖2 > ℎ2 𝑎𝑛𝑑 𝜒2 >

ℎ1) (i.e., the process signals out-of-control), the run length for the ith 

simulation RL1 ( the number of samples simulated before first out-of-control 

signals occur when process is operating in-control state) was recorded. 

4. The above process was repeated 10,000 times for each combination of  

 conditions. 

5. At the end of the 10,000 simulations, the computed average run length ARL1  

 was obtained as  

 𝐴𝑅𝐿1 =
1

10,000
� 𝑅𝐿1

10,000

1
 . (167) 
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 The calculated ARL1 values for all three control statistics, the 𝑸𝑡

𝑅 control 

statistic from Equation 155, the MEWMA control statistic 𝑻𝑖2 from Equation 72, and the 

Hotelling’s 𝜒2  in Equation 49 were compared to one another for the different values of 

the simulation parameters, the number of variables p, the shift parameter δ, and the 

smoothing parameter λ.  The control statistic and control chart with the lowest ARL1 was 

considered the favorable control chart. 

 
 

 



 
 
 
 
 

CHAPTER IV 
 
 

RESULTS 
 
 

The goal of this study was twofold.  First, a new nonparametric multivariate SPC 

control chart for monitoring location parameters--the Signed-Rank Multivariate 

Exponentially Weighted Moving Average (SRMEWMA)--was developed as outlined in 

Chapter III.  Second, the average run length (ARL1) performance of SRMEWMA was 

compared with those of other known parametric control charts, specifically the 

Multivariate Exponentially Weighted Moving Average (MEWMA) and Hotelling’s T2 

control charts.  

To facilitate ARL1 comparisons, data were generated using the Monte Carlo 

simulation technique using the interactive matrix language (IML) of the Statistical 

Analysis System (SAS®) Windows 7 version 9.3 TSM10 running on an Intel core i7-

3930K CPU @ 3.2GHZ/64GB RAM-based system.  Interactive matrix language-based 

simulation algorithms were used to generate process observations in the form of vector-

means samples from the multivariate normal, t, and gamma distributions as outlined in 

Table 7.  For phase I, in-control (IC) data were simulated from the abovementioned 

multivariate distribution in order to compute the upper control limits (UCL) for the 

SRMEWMA, MEWMA, and Hotelling’s T2 statistics and control charts.  The upper 

control limits (UCLs) that achieved an in-control (IC) ARL0 ≅ 200, 500, & 1,000 

(equivalent α = 0.005, 0.002, & 0.001 respectively) were generated.  Then the vector 
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signed-ranks were computed using IML macros.  All UCL values were computed using 

simulated data samples with the exception of the UCL values for the Hotelling’s T2 

control chart for data from the multivariate normal distribution.  Those UCL values were 

used from the 𝜒𝑝2 quintile tables.  

Second, in phase II, simulated data samples of vector means were generated using 

the same set of algorithms in phase I; then a shift of magnitude δ as a multiple of the 

standard deviations was introduced in the first component of simulation-generated data 

samples for MEWMA and the signed-ranks for SRMEWMA in order to compute the 

average run length (ARL1) for the SRMEWMA, MEWMA, and Hotelling’s T2 control 

charts.  Finally, the ARL1 values from phase II simulation results were compared for the 

three control charts above. 

This dissertation addressed the following research questions: 

Q1 How will the Spatial Signed-Rank MEWMA (SRMEWMA) control chart 
scheme be designed for the in-control average run length (ARL0)? 
 

Q2 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart 
performance for different number, p, of monitored related quality  
characteristics? 
 

Q3 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart 
performance for different values of the smoothing parameter 𝜆? 
 

Q4 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart 
performance for different sizes of shift in a process location vector? 
 

Q5 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart 
performance compared to the Hotelling’s T2 and MEWMA control chart 
scheme for elliptically symmetrical (multivariate normal and multivariate 
t) and skewed distributions (multivariate gamma)? 

 
 Research question 1 was answered in Chapter III.  Questions 2, 3, and 4 were 

answered simultaneously using phase I simulation. Question 5 was answered using phase 
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II simulation results.  Finally, a real-data manufacturing example was used to illustrate 

the application of SRMEWMA.   

Phase I Simulation Results 

Using IML and the random query generator (RANDGEN) function in SAS®, 

10,000 samples-per-run were generated from the multivariate normal, t, and gamma 

distributions for each run of the following combinations of study parameters:  

1. The number of variables, p = 2, 3, 4, and 5 for the multivariate normal and t 

distributions and p = 2 only for the multivariate gamma distribution, and  

2. The smoothing parameter, λ ∈ [0.01, 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50].  

To estimate the vector mean and variance-covariance matrix in in-control phase I, 

10,000 samples were generated using IML function RANGEN from the multivariate 

normal, t, and gamma distributions for p = 2, 3, 4, and 5.  Then the UCL values that 

achieved an ARL0 = 200, 500, and 1,000 for the MEWMA (𝑻𝒊𝟐), SRMEWMA (𝑸𝒕
𝑹), and 

Hotelling’s T2 control chart statistics were computed. 

Signed-Rank Multivariate Exponentially  
Weighted Moving Average Upper  
Control Limit and Multivariate  
Exponentially Weighted Moving  
Average Upper Control Limit  
from the Multivariate Normal  
Distribution 
 
 Tables 11-13 and Tables 14-16 show the computed IC UCL values for the 

MEWMA and SRMEWMA, respectively, for data generated from the multivariate 

normal distribution for p = 2, 3, 4, and 5 and λ ∈ [0.01, 0.02, 0.03, 0.05, 0.10, 0.2, and 

0.50] for ARL0 = 200, 500, & 1,000, respectively.  In addition to the UCL and nominal 

ARL0 values, the standard deviation of run lengths (SDRL) is shown for all p and λ 
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combinations.  Additionally, Figures 5-7 show the UCL values for both MEWMA and 

SRMEWMA for p = 2 and ARL0 = 200, 500, & 1,000, respectively.  Additional tables 

and figures summarizing the UCL results for the SRMEWMA, MEWMA, and 

Hotelling’s T2 control charts for p = 3, 4, and 5 are available in Appendix C (Figures 21-

29 ). The results revealed the following: 

1. The UCLs values, L and h1, for the SRMEWMA and MEWMA control 

charts, respectively, increased as p increased for any λ value. 

2. The UCLs values, L and h1, for the SRMEWMA and MEWMA control 

charts, respectively, increased as λ increased for any p value. 

3. For p = 2, the UCL values for the SRMEWMA control chart were slightly 

larger than those of the MEWMA control charts as λ increased.  

4. For any given p, the UCL values for SRMEWMA got larger than those of 

MEWMA as λ got larger. 

5. The UCLs for SRMEWMA got increasingly larger than those of MEWMA 

as λ got larger for p = 3, 4, and 5. 

6. The SRMEWMA and MEWMA UCL values, L and h1, respectively, 

increased as ARL0 increased for any p and λ value. 
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Table 11  
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 200 from the Multivariate Normal 
Distribution 

p 
 2 3 4 5 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 

0.01 5.30 193 288 7.20 196. 295 8.8 201 301 10.4 200 289 

0.02 6.20 197 245 8.20 200 244 9.9 199 246 11.6 200 241 

0.03 6.80 194 223 8.80 193 220 10.7 203 232 12.3 195 222 

0.05 7.70 201 214 9.70 198 214 11.6 193 209 13.4 200 218 

0.10 8.80 201 205 11.0 209 214 12.9 200 203 14.7 199 201 

0.20 9.70 202 203 12.0 204 207 13.9 199 199 15.8 199 197 

0.50 10.40 198 200 12.6 195 194 14.7 201 201 16.6 197 195 
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Table 12  
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 500 from the Multivariate Normal 
Distribution 
 

p 
 2 3 4 5 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 

0.01 7.0 505 625 9.0 504 635 10.8 500 623 12.5 499 625 

0.02 8.1 494 551 10.2 488 54 12.1 492 546 14.0 504 560 

0.03 8.8 501 537 11.0 495 521 13.0 503 530 14.8 494 520 

0.05 9.7 502 501 11.9 483 496 14.0 506 523 15.9 499 514 

0.10 10.8 498 505 13.0 473 475 15.2 505 513 17.1 488 489 

0.20 11.6 482 488 14.0 498 497 16.2 501 500 18.1 485 485 

0.50 12.3 504 504 14.6 490 485 16.8 496 502 18.8 495 493 
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Table 13  
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 1,000 from the Multivariate Normal 
Distribution 
 

p 
 2 3 4 5 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 
0.01 8.3 967 1,100 10.6 1,027 1,184 12.5 1,010 1,150 14.3 1,001 1,128 

0.02 9.6 976 1,030 11.8 942 1,002 13.9 962 1,011 15.8 996 1,049 

0.03 10.3 971 999 12.6 955 972 14.8 1,006 1,029 16.7 996 1,008 

0.05 11.2 968 996 13.6 995 1,004 15.8 1,004 1,032 17.7 980 1,015 

0.10 12.3 981 993 14.8 1,014 1,022 16.9 973 978 18.9 974 959 

0.20 13.1 987 973 15.6 994 992 17.8 1,006 1,003 19.8 974 965 

0.50 13.7 1,011 1,012 16.2 1,014 1,019 18.3 985 975 20.4 985 983 

 
 
 
 
Table 14  
 
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 200 from the 
Multivariate Normal Distribution 
 

p 
 2 3 4 5 

λ L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL 

0.01 5.30 
 

196 287 7.30 204 307 9.00 202 305 10.60 199 301 

0.02 6.30 206 253 8.30 197 257 10.30 201 263 12.60 202 273 

0.03 6.90 193 233 9.10 200 239 11.45 202 256 14.10 200 248 

0.05 7.70 198 213 10.20 201 221 13.05 200 230 16.90 201 231 

0.10 8.85 197 200 12.00 202 214 16.25 200 218 22.80 199 216 

0.20 9.90 196 197 14.45 200 206 21.45 200 210 33.50 201 208 

0.50 10.90 201 203 19.10 200 197 33.50 200 200 58.30 200 200 
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Table 15  
 
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 500 from the 
Multivariate Normal Distribution 
  

p 
 2 3 4 5 

λ L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL 

0.01 6.90 496 599 9.10 487 634 11.15 494  659 13.30 495 669 

0.02 8.10 492 556 10.50 497 568 12.90 494 585 15.90 500 615 

0.03 8.85 499 539 11.40 502 558 14.20 498 563 18.05 501 575 

0.05 9.75 494 517 12.65 500 533 16.30 498 541 21.90 503 556 

0.10 10.95 502 507 14.70 497 520 20.50 499 522 30.60 501 527 

0.20 11.95 491 484 17.60 497 505 27.65 500 515 46.90 501 507 

0.50 12.75 482 479 23.80 504 500 44.50 500 505 84.00 493 497 
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Table 16 
  
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 1,000 from the 
Multivariate Normal Distribution 
 

p 
 2 3 4 5 

λ L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL 

0.01 8.40 1,007 1,151 10.70 996 1,180 13.00 988 1,187 15.55 1,005 1,269 

0.02 9.60 985 1,047 12.20 993 1,019 15.00 988 1,121 18.60 1,010 1,178 

0.03 10.40 990 1,024 13.20 996 1,056 16.50 997 1,096 21.30 998 1,103 

0.05 11.35 1,003 1,033 14.20 1,004 1,035 18.85 1,000 1,078 26.10 1,006 1,092 

0.10 12.50 995 1,007 16.90 993 
 

1,010 23.95 1,001 1,053 37.50 998 1,046 

0.20 13.50 992 982 20.25 992 998 32.80 992 1,020  58.40 983 997 

0.50 14.20 967 960 27.40 994 1,019 53.60 989 989 107.9  983 973 
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Figure 5.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 2 and in-control average run length = 200. 
 
 
 

 

Figure 6.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 2 and in-control average run length = 500. 
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Figure 7.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 2 and in-control average run length = 1,000. 
 

Signed-Rank Multivariate Exponentially  
Weighted Moving Average Upper  
Control Limit and Multivariate  
Exponentially Weighted  
Moving Average Upper  
Control Limit from the  
Multivariate t Distribution 
 
 Tables 17-19 and Tables 20–22 show the computed IC UCL values for the 

MEWMA and SRMEWMA, respectively, for data generated from the multivariate tp (df 

= 5) distribution for p = 2, 3, 4, and 5 and λ ∈ [0.01, 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50] 

for ARL0 = 200, 500, and 1,000, respectively. In addition to the UCL and nominal ARL0 

values, the standard deviation of run lengths (SDRL) is shown for all p and λ 

combinations.  Additionally, Figures 8-10 show the UCL values for both MEWMA and 

SRMEWMA for p = 2 and ARL0 = 200, 500, and 1,000, respectively.  Additional tables 
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and figures summarizing the UCL results for the SRMEWMA, MEWMA, and 

Hotelling’s T2 control charts for p = 3, 4, and 5 are available in Appendix C (Figures 33-

41).  The results for the UCL values generated from multivariate t distribution were 

similar to those generated from the multivariate normal distribution.  The results show the 

following: 

1. The UCL values, L and h1, for the SRMEWMA and MEWMA control 

charts, respectively, increased as p increased for any λ value. 

2. The UCL values, L and h1, for the SRMEWMA and MEWMA control 

charts, respectively, increased as λ increased for any p value. 

3. For p = 2, the UCL values for the SRMEWMA control chart were slightly 

larger than those of the MEWMA control charts as λ increased.  

4. For any given p, the UCL values for SRMEWMA got larger than those of 

MEWMA as λ got larger. 

5. The UCLs for SRMEWMA got increasingly larger than those of MEWMA 

as λ got larger for p = 3, 4, and 5. 

6. The SRMEWMA and MEWMA UCL values, L and h1, respectively, 

increased as ARL0 increased for any p and λ value. 
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Table 17  
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 200 from the Multivariate tp(5)- 
Distribution 
  

p 
 2 3 4 5 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 

0.01 5.3 200 290 7.1 199 294 8.8 192 280 10.4 192 280 

0.02 6.2 198 246 8.2 200 247 10.0 201 247 11.6 196 248 

0.03 6.8 195 224 8.9 201 234 10.8 201 233 12.5 200 229 

0.05 7.7 197 212 9.9 202 219 11.8 200 214 13.6 194 214 

0.10 9.0 202 208 11.3 199 206 13.2 196 204 15.2 201 209 

0.20 10.3 198 198 12.7 200 198 14.8 198 200 16.8 200 200 

0.50 12.3 200 200 15.0 198 199 17.5 199 197 19.7 197 194 
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Table 18  
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 500 from the Multivariate tp(5)- 
Distribution 
 

p 
 2 3 4 5 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 

0.01 6.9 493 605 9.0 507 634 10.8 488 617 12.6 496 619 

0.02 8.1 488 544 10.3 500 553 12.2 491 545 14.1 501 562 

0.03 8.9 492 528 11.1 492 434 13.2 498 547 15.0 496 534 

0.05 9.8 474 486 12.2 491 510 14.2 482 504 16.2 
 

494 519 

0.10 11.2 489 496 13.7 493 500 15.9 504 521 17.8 490 498 

0.20 12.7 486 491 15.4 492 490 17.7 501 501 19.8 503 507 

0.50 15.7 500 501 18.8 507 510 21.5 493 494 23.9 486 489 
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Table 19  
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 1,000 from the Multivariate tp(5)- 
Distribution 
 

p 
 2 3 4 5 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 

0.01 8.3 956 1,091 10.6 998 1,161 12.5 983 1,145 14.4 1,001 1,152 

0.02 9.7 975 1,047 12.0 985 1,076 14.0 971 1,029 16.0 1,007 1,068 

0.03 10.5 1,006 1,054 12.9 1,007 1,060 15.0 1,005 1,078 16.9 983 1,013 

0.05 11.5 984 1,010 14.0 1002 1,038 16.2 1,002 1,022 18.1 1,017 1,058 

0.10 13.0 984 982 15.6 1,006 1,026 17.9 1,002 1,019 19.9 992 995 

0.20 14.8 995 1,022 17.6 1,003 1,007 20.0 995 1,013 22.2 984 986 

0.50 18.8 997 993 22.1 964 966 25.3 985 1,002 27.9 996 1,090 
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Table 20  
 
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 200 from the 
Multivariate tp(5)- Distribution  
 

p 
 2 3 4 5 

λ L ARL0

≅ 
SDRL L ARL

0≅ 
SDRL L ARL0≅ SDRL L ARL0

≅ 
SDRL 

0.01 5.35 203 300 7.10 196 283 8.75 199 296 10.30 200 297 

0.02 6.30 201 248 8.35 200 253 10.35 198 252 12.69 201 262 

0.03 6.90 197 226 9.25 200 241 11.70 199 240 14.70 201 243 

0.05 7.85 200 221 10.70 200 227 14.00 201 229 18.60 202 231 

0.10 9.20 201 208 13.30 200 215 19.20 201 211 27.55 199 209 

0.20 10.70 199 205 17.65 200 206 28.30 199 206 43.80 200 208  

0.50 13.40 200 204 27.40 200 203 49.80 200 199 81.90 198 201 
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Table 21  
 

The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 500 from the 
Multivariate tp(5)- Distribution 

p 
 2 3 4 5 

λ L ARL0

≅ 
SDRL L ARL0

≅ 
SDRL L ARL0

≅ 
SDRL L ARL0

≅ 
SDRL 

0.01 6.95 495 609 9.20 504 650 11.30 501 667 13.70 498 663 

0.02 8.20 500 558 10.75 498 579 13.62 502 604 17.60 497 589 

0.03 8.95 497 539 11.95 503 564  15.60 506 578 20.90 497 563 

0.05 10.00 501 527 13.80 501 546 19.20 503 541 27.60 502 548 

0.10 11.55 493 500 17.50 500 516 27.60 501 521 43.40 498 519 

0.20 13.50 496 504 24.15 495 496 43.00 501 505 72.90 499 507 

0.50 17.50 501 501 
 

40.10 496 493 79.00 497 493 142.30 500 500 
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Table 22  
 
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 1,000 from the 
Multivariate tp(5)- Distribution 
 

p 
 2 3 4 5 

λ L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL 
0.01  8.40 991 1,132 10.90 997 1,179 13.50 998 1,246 16.90 996 1,238 

0.02 9.80 1,010 1,087 12.75 997 1,093 16.45 992 1,132 22.20 1,000 1,152 

0.03 10.60 998 1,042 14.15 1,006 1,082 19.05 992 1,099 27.20 995 1,091 

.05 11.75 993 1,020 16.40 998 1,076 23.95 999 1,041 37.30 996 1,059 

0.10 13.50 1,007 1,021 21.20 982 1,016 35.50 992 1,007 61.20 1,000 1,010 

0.20 15.80 997 1,015 30.20 996 1,002 58.00 988 984 106.9 1,000 1,009 

0.50 21.15 981 972 52.20 999 985 111.1 997 987 212.10 1,006 1,006 
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Figure 8.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal tp (df = 5), p = 2 and in-control average run length = 200. 
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Figure 9.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal tp (df = 5), p = 2 and in-control average run length = 500. 
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Figure 10.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal tp (df = 5), p = 2 and in-control average run length = 1,000. 
 

Signed-Rank Multivariate Exponentially  
Weighted Moving Average Upper  
Control Limit (L) and Multivariate  
Exponentially Weighted Moving  
Average Upper Control Limit  
(h1) from the Multivariate  
Gamma2 (α = 3, β = 1)  
Distribution 
 

 Tables 23 and 24 show the computed IC UCL 

values for the MEWMA and SRMEWMA, respectively, for data generated from the 

multivariate gamma2 (α=3,β=1) distribution for p = 2 and λ ∈ [0.01, 0.02, 0.03, 0.05, 

0.10, 0.2, and 0.50] for ARL0 = 200, 500, and 1,000, respectively.  In addition to the UCL 

and nominal ARL0 values, the standard deviation of run lengths (SDRL) is shown for all p 

and λ combinations. Additionally, Figures 11-13 show the UCL values for both 
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MEWMA and SRMEWMA for p = 2 and ARL0 = 200, 500, and 1,000, respectively.  

Only p = 2 was considered because the computation of the centered signed-ranks, which 

was necessary to compute the SRMEWMA charting statistic, was very intensive due to 

the number of vector combinations that were evaluated from the simulated variables to 

calculate the vector signed-ranks.  For example, when p = 3 and n = 5, there are 10 vector 

combinations to be analyzed.  However, when n = 20, the number of vector combinations 

to be analyzed is 1,140, a multiple of 114.  For a detailed explanation of this limitation, 

see Chapter V, Table 56.  The results showed the following: 

1. The UCL values, L and h1, for the SRMEWMA and MEWMA control 

charts, respectively, increased as λ increased. 

2. The UCL values for SRMEWMA got smaller than those of MEWMA as λ 

got larger. 

3. The SRMEWMA and MEWMA UCL values, L and h1, respectively, 

increased as ARL0 increased for any p and λ value. 

4. The UCL values, h1, for the MEWMA were larger than the UCL values, L, 

for the SRMEWMA for any given λ and ARL0 values. 
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Table 23  
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving 
Average That Achieved an In-Control Average Run Length ≈ 200, 500, 𝑎𝑛𝑑 1,000 
from the Gamma2 (α = 3, β = 1) Distribution with 𝜌12 = 0.5 
 
 IC ARL=200 IC ARL=500 IC ARL=1,000 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 
0.01 4,124.1 200.05 215.23 4,209.5 499.98 485.80 4,268.4 1,002 959.10 

0.02 2,116.6 200.1 201.53 2,175.5 500.45 480.18 2,211.7 1,002 993.84 

0.03 1,442.9 200.5 195.80 1.486.7 500.1 480.08  1,515.7 997.5 993.66 

0.05 896.6 200.0 192.00 928.5 500.3 490.50 948.8 1,000 995.40 

0.10 476.8 200.2 193.90 498.3 501.0 499.80 512.0 1,007 1,003.3 

0.20 257.8 200.2 196.60 272.6 498.0 503.80 282.8 1,001 993.05 

0.50 116.1 200.7 202.30 125.8 503.7 502.16 132.7 999 982.17 

 

 

Table 24  
 
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 200, 500,
𝑎𝑛𝑑 1,000 from the Gamma2 (α=3,β=1) Distribution with 𝜌12 = 0.5 
 
 IC ARL=200 IC ARL=500 IC ARL=1,000 

λ L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL 

0.01 1,366.3 201 236.48 1419.9 499.4 513.19 1,460.0 994.0 988.60 

0.02 723.1 200 209.37 761.7 494.7 494.26 798.1 999.4 980.70 

0.03 505.6 200 200.50  537.4 498.5 495.26  559.3 999.4 966.63 

0.05 328.5 200 196.52 352.7 500 500.16 369.2 1,001 1,002.63 

0.10 190.3 200 199.56 207.7 500 497.38 219.4 997.0 990.75 

0.20 116.2 200 196.41 129.3 500 509.81 138.7 997.0 994.06 

0.50 65.9 201 200.60 76.7 502 502.64 84.5 1,000 997.33 
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Figure 11.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
gamma2 (α = 3, β = 1), p = 2 and in-control average run length = 200. 
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Figure 12.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
gamma2 (α = 3, β = 1), p = 2 and in-control average run length = 500. 
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Figure 13.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
gamma2 (α = 3, β = 1), p = 2 and in-control average run length = 1,000.  
 
 
 
Hotelling’s T2 (h2) Upper Control  
Limit 

In addition to the MEWMA and SRMEWMA control charts, the UCL values for 

the Hotelling’s T2 control chart were generated according to Table 6.  Tables 25-27 show 

the computed IC Hotelling’s T2 UCL (h2) values for data generated from the multivariate 

normal, t, and Gamma2 (α=3,β=1) distribution for p = 2, 3, 4, and 5 for ARL0 = 200, 500, 

and 1,000, respectively. Recall that for the multivariate normal distribution, the UCL (h2) 

in Table 25 for the Hotelling’s T2 control chart was obtained from χp
2 quintiles using the 

SAS CINV function.  The results show the following: 

1. The UCLs values, h2, for the Hotelling’s T2 control chart increased as p 

increased for the MV normal and t distributions. 
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2. For a fixed p, the UCLs values, h2, for the Hotelling’s T2 control chart 

increased as ARL0 increased for the MV normal and t distributions.   

 

Table 25  
 
The Upper Control Limits (h2) of the Hotelling’s χ2 That Achieved an In-Control Average 
Run Length ≈ 200, 500, 𝑎𝑛𝑑 1,000 under p-variates from the Multivariate Normal 
Distribution  
 

 ARL0 
p 200 500 1,000 
2 10.59 12.42 13.88 
3 12.83 14.79 16.26 
4 14.86 16.92 18.46 
5 16.74 18.90 20.51 

 

 

Table 26  
 
The Upper Control Limits (h2) of the Hotelling’s χ2 That Achieved an In-Control Average 
Run Length ≈ 200, 500, 𝑎𝑛𝑑 1,000 under p-variates from the Multivariate tp(5)- 
Distribution  
 
 IC ARL=200 IC ARL=500 IC ARL=1,000 

p h2 ARL0≅ SDRL h2 ARL0≅ SDRL h2 ARL0≅ SDRL 
2 13.50 200 196.61 17.60 488 483.73 21.50 992 986.65 

3 16.60 200 196.61 21.10 494 493.82 25.60 998 978.42 

4 19.20 201 202.63 24.30 500 501.81 29.20 988 984.37 

5 21.60 201 198.70 27.00 494 493.68 32.40 1,000 990.61 
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Table 27  
 
The Upper Control Limits (h2) of the Hotelling’s χ2 That Achieved an In-Control 
Average Run Length ≈ 200, 500, 𝑎𝑛𝑑 1,000 under p-variates from the Multivariate 
Gamma2(α = 3, β = 1) Distribution  
 
 IC ARL=200 IC ARL=500 IC ARL=1,000 

p h2 ARL0≅ SDRL h2 ARL0≅ SDRL h2 ARL0≅ SDRL 

2 25.30 201 197.98 34.82 503 505.74 42.7 993 1,000.55 

3 15.50 200 202.82 18.95 501 507.26 21.6 995 983.80 

4 17.93 200 199.38 21.5 500 501.74 24.28 1,000 1,000.13 

5 20.00 200 197.66 23.6 500 491.81 26.45 999 1,011.04 

 

 

Phase II Average Run Length Simulation Results 

The upper control limits (UCLs) that were generated in phase I were used in the 

phase II ARL1 simulation.  Using IML and the RANDGEN function in SAS, 10,000 

samples per run were generated from the multivariate normal, t, and gamma distributions 

for each run of the following combinations of study parameters:  

1. The number of variables, p = 2, 3, 4, and 5 for the multivariate normal and t 

distributions and p = 2 only for the multivariate gamma distribution; 

2. The smoothing parameter, λ ∈ [0.01, 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50]; 

and  

3. Shift parameter, δ ∈ [0.0, 0.25, 0.50, 1.00, 1.50, and 2.50]. 

The full phase II ARL1 simulation results are available in Appendix D (Tables 74-

96) for all three control charts and three multivariate distributions based upon the 

abovementioned conditions in steps 1 through 3; thus, they provide the answers to 
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research questions 3 and 4.  In this section, the ARL1 performance results of the 

SRMEWMA and MEWMA control charts from the multivariate normal distribution for 

ARL0 = 200, p = 2, 3, 4, and 5, and δ ∈ [0.0, 0.25, 0.50, 1.00, 1.50, and 2.50] are 

summarized using Tables 28 (MEWMA) and 29 (SRMEWMA) for data from the 

multivariate normal distribution for ARL0 = 200.  The results showed the following: 

1. For any given values of p and shift parameter δ, the ARL1 and SDRL 

values increased as the smoothing parameter λ increased. 

2. For any given values of p and smoothing parameter λ, the ARL1 and SDRL 

values decreased as the shift parameter δ increased. 

3. For any given value of the shift parameter δ and smoothing parameter λ, 

the ARL1 values increased as p increased. 

4. For any given values of δ and λ > 0.02, the SDRL values increased as p 

increased. 

5. The ARL1 values increased as ARL0 increased. 
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Table 28  
 
The Upper Control Limits and Average Run Length Values of the Multivariate 
Exponentially Weighted Moving Average That Achieved an In-Control Average Run 
Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ 

p     0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2 δ h1 5.30 6.20 6.80 7.7 8.8 9.7 10.40 
  0.00 

 
 193 

(288) 
197 

(245) 
194 

(223) 
201 

(214) 
201 

(205) 
202 

(203) 
198 

(200) 
 0.25 

 
 35.91 

(42.77) 
45.42 

(76.75) 
49.77 

(48.67) 
59.51 

(57.43) 
74.91 

(71.68) 
94.88 

(92.43) 
133.82 

(131.22) 
 0.50 

 
 13.06 

(13.57) 
16.12 

(14.56) 
18.19 

(15.51) 
20.77 

(16.87) 
25.17 

(20.79) 
33.84 

(30.71) 
62.70 

(61.51) 
 1.00 

 
 4.39 

(3.75) 
5.33 

(4.02) 
5.92 

(4.30) 
6.73 

(4.61) 
7.78 

(5.13) 
8.94 

(6.31) 
15.37 

(13.55) 
 1.50 

 
 2.44 

(1.67) 
2.92 

(1.92) 
3.16 

(2.02) 
3.58 

(2.17) 
4.01 

(2.34) 
4.46 

(2.56) 
6.06 

(4.44) 
 2.50 

 
 1.32 

(0.60) 
1.48 

(0.72) 
1.57 

(0.76) 
1.71 

(0.83) 
1.87 

(0.92) 
2.04 

(0.99) 
2.25 

(1.20-) 
3 δ h1 7.20 8.20 8.80 9.70 11.00 12.00 12.60 
  0.00 

 
 196 

(295) 
200 

(244) 
193 

(220) 
198 

(214) 
209 

(214) 
204 

(207) 
195 

(195) 
 0.25 

 
 42.86 

(48.77) 
51.46 

(52.06) 
56.38 

(54.32) 
65.63 

(62.80) 
83.18 

(80.16) 
110.95 

(109.87) 
142.83 

(143.54) 
 0.50 

 
 15.78 

(15.30) 
19.23 

(16.49) 
21.01 

(17.36) 
23.17 

(18.70) 
29.07 

(24.04) 
40.67 

(36.61) 
73.98 

(72.18) 
 1.00 

 
 5.51 

(4.30) 
6.48 

(4.67) 
6.97 

(4.83) 
7.68 

(5.06) 
8.73 

(5.70) 
10.49 
(7.56) 

18.70 
(16.91) 

 1.50 
 

 3.06 
(2.03) 

3.47 
(2.16) 

3.69 
(2.30) 

4.04 
(2.40) 

4.49 
(2.59) 

5.06 
(2.95) 

7.02 
(5.31) 

 2.50 
 

 1.60 
(0.78) 

1.79 
(0.83) 

1.79 
(0.88) 

1.92 
(0.94) 

2.07 
(0.99) 

2.23 
(1.06) 

2.45 
(1.317) 

4 δ h1 8.80 9.90 10.70 11.60 12.90 13.90 14.70 
  0.00 

 
 201 

(301) 
199 

(246) 
203 

(232) 
193 

(209) 
200 

(203) 
199 

(199) 
201 

(201) 
 0.25 

 
 44.09 

(52.03) 
55.30 

(55.12) 
61.93 

(60.20) 
71.22 

(67.50) 
89.81 

(86.98) 
116.74 

(115.13) 
156.31 
(15.30) 

 0.50 
 

 16.06 
(16.39) 

20.26 
(17.69) 

22.11 
(18.33) 

24.94 
(20.02) 

31.44 
(25.71) 

43.76 
(40.22) 

84.06 
(83.19) 

 1.00 
 

 5.42 
(4.48) 

6.69 
(5.00) 

7.48 
(5.24) 

8.28 
(5.51) 

9.57 
(6.19) 

11.34 
(8.07) 

21.64 
(19.52) 

 1.50 
 

 2.99 
(2.10) 

3.58 
(2.32) 

3.95 
(2.44) 

4.27 
(2.56) 

4.86 
(2.77) 

5.33 
(3.11) 

8.06 
(6.31) 

 2.50 
 

 1.53 
(0.76) 

1.75 
(0.88) 

1.87 
(0.93) 

2.01 
(0.98) 

2.18 
(1.05) 

2.35 
(1.12) 

2.70 
(1.47) 

5 δ h1 10.40 11.60 12.30 13.40 14.70 15.8 16.6 
  0.00 

 
 200 

(289) 
200 

(241) 
195 

(222) 
200 

(218) 
199 

(201) 
199 

(197) 
197 

(185) 
 0.25 

 
 49.80 

(55.27) 
59.12 

(58.57) 
66.05 

(64.05) 
77.00 

(74.76) 
95.78 

(93.40) 
123.33 

(122.15) 
160.37 

(160.06) 
 0.50 

 
 18.98 

(17.64) 
21.94 

(18.42) 
24.03 

(19.63) 
27.23 

(21.39) 
34.32 

(29.07) 
49.28 

(45.03) 
92.99 

(92.07) 
 1.00 

 
 6.65 

(4.99) 
7.66 

(5.35) 
8.11 

(5.52) 
8.91 

(5.83) 
10.05 
(6.43) 

12.40 
(8.74) 

25.05 
(23.05) 

 1.50 
 

 3.69 
(2.37) 

4.03 
(2.49) 

4.24 
(2.57) 

4.69 
(2.69) 

5.12 
(2.83) 

5.77 
(3.33) 

9.08 
(7.31) 

 2.50 
 

 1.83 
(0.91) 

1.94 
(0.95) 

2.04 
(1.00) 

2.18 
(1.05) 

12.34 
(1.12) 

2.50 
(1.18) 

2.86 
(1.56) 

Note. Standard deviation of run length is in parentheses. 
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Table 29   
 
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 200 from the 
Multivariate Normal Distribution  
 
   λ 

p     0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2 δ L 5.30 6.30 6.90 7.70 8.85 9.90 10.90 
  0.00 

 
 196 

(287) 
206 

(253) 
193 

(233) 
198 

(213) 
197 

(200) 
196 

(197) 
201 

(203) 
 0.25 

 
 38.65 

(43.62) 
46.86 

(47.19) 
51.45 

(49.27) 
59.11 

(57.49) 
74.92 

(73.52) 
97.13 

(93.66) 
141.65 

(142.57) 
 0.50 

 
 13.98 

(13.59) 
16.93 

(14.81) 
18.72 

(15.57) 
20.52 

(16.60) 
25.62 

(21.27) 
35.10 

(32.32) 
68.02 

(66.90) 
 1.00 

 
 4.96 

(3.84) 
5.71 

(4.17) 
6.21 

(4.47) 
6.88 

(4.71) 
7.81 

(5.14) 
9.36 

(6.62) 
16.82 

(15.41) 
 1.50 

 
 2.73 

(1.76) 
3.07 

(1.94) 
3.32 

(2.06) 
3.61 

(2.16) 
4.07 

(2.36) 
4.60 

(2.68) 
6.57 

(4.99) 
 2.50 

 
 1.43 

(0.66) 
1.56 

(0.74) 
1.63 

(0.79) 
1.74 

(0.84) 
1.90 

(0.90) 
2.08 

(0.98) 
2.34 

(1.21) 
3  L 7.30 8.30 9.10 10.20 12.00 14.45 19.10 
  0.00 

 
 204 

(307) 
197 

(257) 
200 

(239) 
201 

(221) 
202 

(214) 
200 

(206) 
200 

(197) 
 0.25 

 
 40.40 

(49.26) 
50.11 

(53.77) 
56.84 

(59.74) 
69.70 

(69.97) 
96.00 

(96.21) 
136.97 

(138.34) 
180.71 

(181.89) 
 0.50 

 
 14.19 

(15.12) 
18.15 

(16.79) 
20.79 

(17.95) 
24.29 

(20.31) 
33.60 

(29.27) 
61.03 

(59.21) 
132.92 

(133.35) 
 1.00 

 
 4.66 

(4.02) 
5.93 

(4.53) 
6.79 

(4.85) 
7.84 

(5.22) 
9.74 

(6.37) 
14.53 

(11.05) 
51.80 

(49.62) 
 1.50 

 
 2.47 

(1.71) 
3.21 

(2.08) 
3.60 

(2.22) 
4.12 

(2.41) 
4.92 

(2.71) 
6.32 

(3.65) 
19.03 

(17.17) 
 2.50 

 
 1.26 

(0.57) 
1.55 

(0.73) 
1.73 

(0.82) 
1.92 

(0.88) 
2.21 

(1.00) 
2.63 

(1.15) 
4.38 

(2.62) 
4  L 9.00 10.30 11.45 13.05 16.25 21.45 33.50 
  0.00 

 
 202 

(305) 
201 

(263) 
202 

(256) 
200 

(230) 
200 

(218) 
200 

(210) 
200 

(200) 
 0.25 

 
 46.90 

(54.48) 
56.33 

(61.76) 
67.32 

(71.02) 
84.7 

(87.25) 
123.19 

(131.13) 
171.09 

(174.35) 
196.13 

(195.50) 
 0.50 

 
 17.09 

(16.60) 
21.13 

(18.66) 
24.61 

(21.07) 
30.43 

(25.94) 
50.77 

(47.12) 
102.06 

(102.95) 
174.16 

(176.10) 
 1.00 

 
 6.08 

(4.55) 
7.33 

(5.13) 
8.20 

(5.49) 
9.62 

(6.23) 
13.10 
(8.60) 

28.11 
(24.39) 

114.80 
(114.95) 

 1.50 
 

 3.37 
(2.04) 

3.89 
(2.26) 

4.33 
(2.46) 

4.97 
(2.72) 

6.37 
(3.36) 

10.13 
(6.30) 

63.05 
(61.71) 

 2.50 
 

 1.67 
(0.73) 

1.88 
(0.81) 

2.05 
(0.87) 

2.28 
(0.97) 

2.75 
(1.16) 

3.65 
(1.51) 

14.35 
(11.92) 

5  L 10.60 12.60 14.10 16.90 22.80 33.50 58.30 
  0.00 

 
 199 

(301) 
202 

(273) 
200 

(248) 
201 

(231) 
199 

(216) 
201 

(208) 
200 

(200) 
 0.25 

 
 51.67 

(59.17) 
67.46 

(73.35) 
81.28 

(88.24) 
111.61 

(120.36) 
156.56 

(169.48) 
187.51 

(194.42) 
194.70 

(198.98) 
 0.50 

 
 19.86 

(18.21) 
25.44 

(22.09) 
30.00 

(25.34) 
41.03 

(36.27) 
82.16 

(80.09) 
147.13 

(147.88) 
191.50 

(189.93) 
 1.00 

 
 7.29 

(5.03) 
8.70 

(5.86) 
9.86 

(6.39) 
12.33 
(7.66) 

20.78 
(14.85) 

67.24 
(65.52) 

161.04 
(161.80) 

 1.50 
 

 4.08 
(2.22) 

4.73 
(2.52) 

5.18 
(2.78) 

6.28 (3.21) 9.02 
(4.59) 

23.43 
(18.56) 

124.96 
(124.57) 

 2.50 
 

 1.99 
(0.76) 

2.25 
(0.98) 

2.43 
(0.96) 

2.81 
(1.11) 

3.66 
(1.41) 

5.79 
(2.30) 

55.24 
(52.50) 

Note. Standard deviation of run length is in parentheses. 
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It should be noted that these findings also applied to the ARL1 performance results 

of the SRMEWMA and MEWMA control charts from the multivariate t distribution as 

summarized in Tables 80-85 in appendix D for ARL0 = 200, 500, and 1,000, respectively.  

Tables 30 and 31 summarize the ARL1 & SDRL performance for both the 

MEWMA and SRMEWMA control charts for p = 2 and ARL0 = 200, 500, and 1,000 from 

the multivariate gamma distribution.  The results were similar across all values ARL0.  

For example, for ARL0 = 200, the top parts of Table 30 (MEWMA) and 31 (SRMEWMA) 

are reproduced below and show the following results:   

1. For any given values of p and shift parameter δ, the ARL1 and SDRL values 

increased as the smoothing parameter λ increased. 

2. For any given values of p and smoothing parameter λ, the ARL1 and SDRL 

values decreased as the shift parameter δ increased. 

3. For any given value of the shift parameter δ and smoothing parameter λ, the 

ARL1 values increased as p increased. 
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Table 30  
 
The Upper Control Limits and Average Run Length Values of the Multivariate Exponentially 
Weighted Moving Average That Achieved an In-Control Average Run Length ≈ 200 from the 
Multivariate Gamma2 (α = 3, β = 1) Distribution 
 
   λ 
ARL0 δ    0.01 0.02 0.03 0.05 0.1 0.2 0.5 
200  h1 4,124.1 2,116.6 1,442.9 896.6 476.8 257.8 116.1 

  0.00 
 

 200 
(215.23) 

200 
(201.53) 

200 
(195.80) 

200 
(192.00) 

200 
 (193.90) 

200 
 (196.60) 

200 
 (202.30) 

 0.25 
 

 58.24 
 (47.74) 

62.89 
 (50.77) 

65.75 
 (53.43) 

73.06 
 (63.22) 

80.47 
 (73.11) 

95.80 
 (90.70) 

130.19 
 (129.27) 

 0.50 
 

 29.78 
 (18.94) 

31.05 
 (19.65) 

32.08 
 (21.15) 

32.95 
 (23.37) 

37.47 
 (31.23) 

47.43 
 (43.78) 

78.21 
 (76.99) 

 1.00 
 

 14.50 
 (6.43) 

14.73 
 (6.53) 

14.52 
 (6.66) 

14.22 
 (7.13) 

13.79 
 (8.10) 

15.53 
 (11.27) 

29.06 
 (27.52) 

 1.50 
 

 6.70 
 (3.47) 

9.54 
 (3.41) 

9.35 
 (3.35) 

8.68 
 (3.30) 

7.97 
 (3.46) 

7.90 
 (4.36) 

12.34 
 (10.50) 

 2.50 
 

 5.88 
 (1.60) 

5.71 
 (1.57) 

5.50 
 (1.49) 

5.03 
 (1.41) 

4.36 
 (1.33) 

3.81 
 (1.34) 

3.88 
 (2.16) 

Note. Standard deviation of run length is in parentheses. 

 

4. For any given values of shift δ and smoothing parameter λ, the SDRL values 

increased as p increased. 

5. The ARL1 and SDRL values increased as ARL0 increased for any fixed 

values of shift δ and smoothing parameter λ. 
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Table 31 
 
The Upper Control Limits and Average Run Length Values of the Signed-Rank Multivariate 
Exponentially Weighted Moving Average That Achieved an In-Control Average Run Length ≈
200 for Data from the Multivariate GAMMA2 (α=3, β=1) Distribution 
 
   λ 
ARL0 δ    0.01 0.02 0.03 0.05 0.1 0.2 0.5 
200  L 1,366.3 723.1 505.6 328.5 190.3 116.2 65.9 

  0.00 
 

 201 
(236.48) 

200 
(209.37) 

200 
(200.50) 

200 
(196.52) 

200 
 (199.56) 

200 
 (196.41) 

201 
 (200.60) 

 0.25 
 

 10.46 
 (4.60) 

11.40 
 (5.10) 

11.53 
 (5.28) 

11.72 
 (5.81) 

12.38 
 (7.25) 

15.24 
 (11.33) 

30.93 
 (29.17) 

 0.50 
 

 5.24 
 (1.60) 

5.61 
 (1.68) 

5.56 
 (1.71) 

5.40 
 (1.77) 

5.18 
 (1.93) 

5.18 
 (2.42) 

8.04 
 (6.23) 

 1.00 
 

 2.97 
 (0.59) 

2.92 
 (0.61) 

2.87 
 (0.61) 

2.74 
 (0.62) 

2.51 
 (0.61) 

2.24 
 (0.62) 

2.14 
 (0.85) 

 1.50 
 

 2.00 
 (0.27) 

2.05 
 (0.32) 

2.02 
 (0.29) 

1.96 
 (0.28) 

1.83 
 (0.38) 

1.60 
 (0.49) 

1.26 
 (0.44) 

 2.50 
 

 1.21 
 (0.41) 

1.34 
 (0.47) 

1.26 
 (0.44) 

1.01 
 (0.31) 

1.00 
 (0.528) 

1.00 
 (0) 

1.00 
 (0) 

Note. Standard deviation of run length is in parentheses. 

 

For comparison purposes, the ARL1 performance results of the Hotelling’s T2 

control chart were generated by simulation from the multivariate normal, t, and gamma 

distributions.  Using IML and the RANDGEN function in SAS, 10,000 samples per run 

were generated for each run of the following combinations of study parameters:  

1. The number of variables, p = 2, 3, 4, and 5 for the multivariate normal and t 

distributions and p = 2 only for the multivariate gamma distribution; 

2. Shift parameter, δ ∈ [0.0, 0.25, 0.50, 1.00, 1.50, and 2.50]; and 

3. ARL0 = 200, 500, and 1,000. 

The ARL performance results of the Hotelling’s T2 control chart were consistent 

with those of the MEWMA and SRMEWMA control chart results.  The full ARL1 and 

SDRL performance simulation results of the Hotelling’s T2 control chart are available in 

Appendix D (see Tables 88-96).  As an example, Table 32 below summarizes the 

Hotelling’s T2 control chart’s ARL1 and SDRL performance for p = 2, 3, 4, and 5; δ ∈ 
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[0.0, 0.25, 0.50, 1.00, 1.50, and 2.50]; and ARL0 = 200.  Table 32 shows that the values of 

ARL1 and SDRL increased as p increased for fixed shift parameter δ and decreased as the 

shift parameter δ increased for fixed p.  

 

Table 32  
 
Average Run Length Values of the Hotelling T2 That Achieved an In-Control 
Average Run Length ≈ 200 under p-variates Multivariate Normal Distribution  
 
 p 
 2 3 4 5 

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 200.00   200.00   200.00   200.00   

0.25 162.11 160.46 175.80 174.36 182.42 180.29 186.44 186.26 

0.5 112.45 113.48 130.19 129.89 140.16 140.78 144.74 147.05 

1.0 41.50 41.28 53.42 53.31 60.59 60.09 68.62 69.67 

1.5 15.67 15.24 20.77 19.84 25.18 24.87 28.94 28.21 

2.5 3.61 3.08 4.46 3.95 5.27 4.72 6.03 5.58 

 

Furthermore, the ARL1 and SDRL performances for ARL0 = 500 and 1000 (see 

Tables 89-90 in Appendix D) were consistent with those for ARL0 = 200. Additionally, 

the ARL1 and SDRL performance results for data simulated from the multivariate t and 

gamma distribution were consistent with the ARL1 and SDRL behavior from the 

multivariate normal distribution. 
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Average Run Length Performance Comparisons of Signed- Rank 
Multivariate Exponentially Weighted Moving Average,  
Multivariate Exponentially Weighted Moving Average,  

and Hotelling’s T2 

 
 The combined simulation results from phase I where the UCL was computed and 

phase II where the ARL1 values were generated are presented here to answer the fifth and 

final research question: 

Q5 What is the Spatial Signed-Rank MEWMA (SRMEWMA) control chart 
performance compared to the MEWMA control chart and Hotelling’s T2 
control chart schemes for elliptically symmetrical (multivariate normal 
and t) and skewed distribution (multivariate gamma)? 
 

In this section, the average run length (ARL1) performance results are compared 

for SRMEWMA, MEWMA, and Hotelling’s T2 control charts for data from the 

multivariate normal, t, and gamma distributions.  First, the ARL1 comparisons for the 

three control charts from the multivariate normal distribution are presented.  Second, the 

ARL1 comparisons for the three control charts from the multivariate tp (df = 5) distribution 

are presented. And finally, the ARL1 comparisons for the three control charts from the 

multivariate gamma (α = 3, β = 1) distribution are presented for p = 2 only. For brevity, 

only results for p = 2, 3, 4, and 5, ARL0 = 200 for the multivariate normal and t 

distributions, and p =2 for the multivariate gamma distribution are discussed below.  

Please refer to Appendix E for comprehensive ARL1 comparisons (Tables 97-150) of all 

study parameters combinations for IC ARL0 = 500 and 1,000.  
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Average Run Length Comparisons  
for the Multivariate Normal  
Distribution 
 

First, the ARL1 simulation results from the multivariate normal distribution are 

presented.  Tables 33-40 show the ARL1 comparisons for SRMEWMA, MEWMA and 

Hotelling’s T2 for the following conditions: 

1. The number of variables, p = 2, 3, 4, and 5;  

2. The smoothing parameter, λ ∈ [ 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50]; and  

3. Shift parameter, δ ∈ [0.0, 0.25, 0.50, 1.00, 1.50, and 2.50]. 

Tables 33–40 show the ARL1 comparisons for in-control (IC) ARL0 = 200 only.  

Simulation results are shown in Tables 33 and 34, 35 and 36, 37 and 38, and 39 and 40 

for p = 2, 3, 4, and 5, respectively.  Please note that for shift parameter δ = 0.0, the results 

represented the in-control (IC) ARL0 values from phase I simulation and were included 

for comparison purposes.  Furthermore, comparisons for ARL0 = 500 and ARL0 = 1,000 

are available in Appendix E.  

The simulation results for SRMEWMA, MEWMA, and Hotelling’s T2 with λ = 

0.02, 0.03, and 0.05 and Hotelling’s T2 for p = 2 are presented in Table 33 and results 

with λ = 0.1, 0.2, and 0.5 and Hotelling’s T2 for p = 2 are presented in Table 34.  In 

addition to the ARL1 values, the corresponding standard deviations of the run lengths 

(SDRL) are also included in these two tables.  Tables 33-40 show that the MEWMA 

control chart had better efficiency in detecting mean shifts as expected since the 

parametric hypothesis was the correct one in this case (Zou & Tsung, 2010).  However, 

the SRMEWMA control chart offered reasonably comparable ARL1 performance and the 

difference between MEWMA and SRMEWMA was not significant for p = 2, 3, and 4 
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and all δ shift values; but in p = 5 and λ ≥  0.1, MEWMA was superior to SRMEWMA 

for all δ shift values as shown in Table 40.  Additionally, both SRMEWMA and 

MEWMA were superior to Hotelling’s T2 for all p, λ, and δ values.  Hackl and Ledolter 

(1991) and Zhou et al. (2010) pointed out that MEWMA becomes more significant for 

large δ values.  Signed-Rank Multivariate Exponentially Weighted Moving Average is 

based on signs and ranks and even for large shifts, and the observations may not grow 

large; hence, SRMEWMA is not as significant as MEWMA for large shift δ values.   

 

Table 33  
 
Average Run Length Comparisons for p = 2, λ = .02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p     0.02 0.03 0.05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2  
2 δ UCL 6.30 6.20 6.90 6.80 7.70 7.7 10.59 
  0.00 

 
 206 

(253) 
197 

(245) 
193 

(233) 
194 

(223) 
198 

(213) 
201 

(214) 
200 

 

 0.25 
 

 46.86 
(47.19) 

45.42 
(76.75) 

51.45 
(49.27) 

49.77 
(48.67) 

59.11 
(57.49) 

59.51 
(57.43) 

162.11 
(160.46) 

 0.50 
 

 16.93 
(14.81) 

16.12 
(14.56) 

18.72 
(15.57) 

18.19 
(15.51) 

20.52 
(16.60) 

20.77 
(16.87) 

112.45 
(113.48 

 1.00 
 

 5.71 
(4.17) 

5.33 
(4.02) 

6.21 
(4.47) 

5.92 
(4.30) 

6.88 
(4.71) 

6.73 
(4.61) 

41.50 
(41.28 

 1.50 
 

 3.07 
(1.94) 

2.92 
(1.92) 

3.32 
(2.06) 

3.16 
(2.02) 

3.61 
(2.16) 

3.58 
(2.17) 

15.67 
(15.42) 

 2.50 
 

 1.56 
(0.74) 

1.48 
(0.72) 

1.63 
(0.79) 

1.57 
(0.76) 

1.74 
(0.84) 

1.71 
(0.83) 

3.61 
(3.08) 

Note. Standard deviation of run length is in parentheses. 
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Table 34  
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.3, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2  
2 δ UCL 8.85 8.8 9.90 9.7 10.90 10.40 10.59 
  0.00 

 
 197 

(200) 
201 

(205) 
196 

(197) 
202 

(203) 
201 

(203) 
198 

(200) 
200 

 
 0.25 

 
 74.92 

(73.52) 
74.91 

(71.68) 
97.13 

(93.66) 
94.88 

(92.43) 
141.65 

(142.57) 
133.82 

(131.22) 
162.11 

(160.46) 

 0.50 
 

 25.62 
(21.27) 

25.17 
(20.79) 

35.10 
(32.32) 

33.84 
(30.71) 

68.02 
(66.90) 

62.70 
(61.51) 

112.45 
(113.48 

 1.00 
 

 7.81 
(5.14) 

7.78 
(5.13) 

9.36 
(6.62) 

8.94 
(6.31) 

16.82 
(15.41) 

15.37 
(13.55) 

41.50 
(41.28 

 1.50 
 

 4.07 
(2.36) 

4.01 
(2.34) 

4.60 
(2.68) 

4.46 
(2.56) 

6.57 
(4.99) 

6.06 
(4.44) 

15.67 
(15.42) 

 2.50 
 

 1.90 
(0.90) 

1.87 
(0.92) 

2.08 
(0.98) 

2.04 
(0.99) 

2.34 
(1.21) 

2.25 
(1.20) 

3.61 
(3.08) 

Note. Standard deviation of run length is in parentheses. 

 

 

Table 35  
 
Average Run Length Comparisons for p =3, λ = .02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p     0 .02 0.03 0.05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2  
3 δ UCL 8.30 8.20 9.10 8.80 10.20 9.70 12.83 
  0.00 

 
 197 

(257) 
200 

(244) 
200 

(239) 
193 

(220) 
201 

(221) 
198 

(214) 
200 

 0.25 
 

 50.11 
(53.77) 

51.46 
(52.06) 

56.84 (59.74) 56.38 
(54.32) 

69.70 
(69.97) 

65.63 
(62.80) 

175.80 
(174.36) 

 0.50 
 

 18.15 
(16.79) 

19.23 
(16.49) 

20.79 
(17.95) 

21.01 
(17.36) 

24.29 
(20.31) 

23.17 
(18.70) 

130.19 
(129.89) 

 1.00 
 

 5.93 
(4.53) 

6.48 
(4.67) 

6.79 
(4.85) 

6.97 
(4.83) 

7.84 
(5.22) 

7.68 
(5.06) 

53.42 
(53.31) 

 1.50 
 

 3.21 
(2.08) 

3.47 
(2.16) 

3.60 
(2.22) 

3.69 
(2.30) 

4.12 
(2.41) 

4.04 
(2.40) 

20.77 
(19.84) 

 2.50 
 

 1.55 
(0.73) 

1.79 
(0.83) 

1.73 
(0.82) 

1.79 
(0.88) 

1.92 
(0.88) 

1.92 
(0.94) 

4.46 
(3.95) 

Note. Standard deviation of run length is in parentheses. 
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Table 36  
 
Average Run Length Comparisons for p =3, λ = 0.1, 0.3, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2  
3 δ UCL 12.00 11.00 14.45 12.00 19.10 12.60 12.83 
  0.00 

 
 202 

(214) 
209 

(214) 
200 

(206) 
204 

(207) 
200 

(197) 
195 

(195) 
200 

 0.25 
 

 96.00 
(96.21) 

83.18 
(80.16) 

136.97 
(138.34) 

110.95 
(109.87) 

180.71 
(181.89) 

142.83 
(143.54) 

175.80 
(174.36) 

 0.50 
 

 33.60 
(29.27) 

29.07 
(24.04) 

61.03 
(59.21) 

40.67 
(36.61) 

132.92 
(133.35) 

73.98 
(72.18) 

130.19 
(129.89) 

 1.00 
 

 9.74 
(6.37) 

8.73 
(5.70) 

14.53 
(11.05) 

10.49 
(7.56) 

51.80 
(49.62) 

18.70 
(16.91) 

53.42 
(53.31) 

 1.50 
 

 4.92 
(2.71) 

4.49 
(2.59) 

6.32 
(3.65) 

5.06 
(2.95) 

19.03 
(17.17) 

7.02 
(5.31) 

20.77 
(19.84) 

 2.50 
 

 2.21 
(1.00) 

2.07 
(0.99) 

2.63 
(1.15) 

2.23 
(1.06) 

4.38 
(2.62) 

2.45 
(1.317) 

4.46 
(3.95) 

Note. Standard deviation of run length is in parentheses. 

 
 
Table 37  
 
Average Run Length Comparisons for p = 4, λ = .02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 10.30 9.90 11.45 10.70 13.05 11.60 14.86 
  0.00 

 
 201 

(263) 
199 

(246) 
202 

(256) 
203 

(232) 
200 

(230) 
193 

(209) 
200 

 0.25 
 

 56.33 
(61.76) 

55.30 
(55.12) 

67.32 
(71.02) 

61.93 
(60.20) 

84.7 
(87.25) 

71.22 
(67.50) 

182.42 
(180.29) 

 0.50 
 

 21.13 
(18.66) 

20.26 
(17.69) 

24.61 
(21.07) 

22.11 
(18.33) 

30.43 
(25.94) 

24.94 
(20.02) 

140.16 
(140.78) 

 1.00 
 

 7.33 
(5.13) 

6.69 
(5.00) 

8.20 
(5.49) 

7.48 
(5.24) 

9.62 
(6.23) 

8.28 
(5.51) 

60.59 
(60.09) 

 1.50 
 

 3.89 
(2.26) 

3.58 
(2.32) 

4.33 
(2.46) 

3.95 
(2.44) 

4.97 
(2.72) 

4.27 
(2.56) 

25.18 
(24.87) 

 2.50 
 

 1.88 
(0.81) 

1.75 
(0.88) 

2.05 
(0.87) 

1.87 
(0.93) 

2.28 
(0.97) 

2.01 
(0.98) 

5.27 
(4.72) 

Note. Standard deviation of run length is in parentheses. 
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Table 38  
 
Average Run Length Comparisons for p = 4, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 16.25 12.90 21.45 13.90 33.50 14.70 14.86 
  0.00 

 
 200 

(218) 
200 

(203) 
200 

(210) 
199 

(199) 
200 

(200) 
201 

(201) 
200 

 0.25 
 

 123.19 
(131.13) 

89.81 
(86.98) 

171.09 
(174.35) 

116.74 
(115.13) 

196.13 
(195.50) 

156.31 
(15.30) 

182.42 
(180.29) 

 0.50 
 

 50.77 
(47.12) 

31.44 
(25.71) 

102.06 
(102.95) 

43.76 
(40.22) 

174.16 
(176.10) 

84.06 
(83.19) 

140.16 
(140.78) 

 1.00 
 

 13.10 
(8.60) 

9.57 
(6.19) 

28.11 
(24.39) 

11.34 
(8.07) 

114.80 
(114.95) 

21.64 
(19.52) 

60.59 
(60.09) 

 1.50 
 

 6.37 
(3.36) 

4.86 
(2.77) 

10.13 
(6.30) 

5.33 
(3.11) 

63.05 
(61.71) 

8.06 
(6.31) 

25.18 
(24.87) 

 2.50 
 

 2.75 
(1.16) 

2.18 
(1.05) 

3.65 
(1.51) 

2.35 
(1.12) 

14.35 
(11.92) 

2.70 
(1.47) 

5.27 
(4.72) 

Note. Standard deviation of run length is in parentheses. 

 

 

Table 39  
 
Average Run Length Comparisons for p = 5, λ=.02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p      0.02 0.03 0.05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 12.60 11.60 14.10 12.30 16.90 13.40 16.74 
  0.00 

 
 202 

(273) 
200 

(241) 
200 

(248) 
195 

(222) 
201 

(231) 
200 

(218) 
200 

 0.25 
 

 67.46 
(73.35) 

59.12 
(58.57) 

81.28 
(88.24) 

66.05 
(64.05) 

111.61 
(120.36) 

77.00 
(74.76) 

186.44 
(186.26) 

 0.50 
 

 25.44 
(22.09) 

21.94 
(18.42) 

30.00 
(25.34) 

24.03 
(19.63) 

41.03 
(36.27) 

27.23 
(21.39) 

144.74 
(147.05) 

 1.00 
 

 8.70 
(5.86) 

7.66 
(5.35) 

9.86 
(6.39) 

8.11 
(5.52) 

12.33 
(7.66) 

8.91 
(5.83) 

68.62 
(69.67) 

 1.50 
 

 4.73 
(2.52) 

4.03 
(2.49) 

5.18 
(2.78) 

4.24 
(2.57) 

6.28 
 (3.21) 

4.69 
(2.69) 

28.94 
(28.21) 

 2.50 
 

 2.25 
(0.98) 

1.94 
(0.95) 

2.43 
(0.96) 

2.04 
(1.00) 

2.81 
(1.11) 

2.18 
(1.05) 

6.03 
(5.58) 

Note. Standard deviation of run length is in parentheses. 
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Table 40  
 
Average Run Length Comparisons for p = 5, λ=0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 22.80 14.70 33.50 15.8 58.30 16.6 16.74 
  0.00 

 
 199 

(216) 
199 

(201) 
201 

(208) 
199 

(197) 
200 

(200) 
197 

(185) 
200 

 0.25 
 

 156.56 
(169.48) 

95.78 
(93.40) 

187.51 
(194.42) 

123.33 
(122.15) 

194.70 
(198.98) 

160.37 
(160.06) 

186.44 
(186.26) 

 0.50 
 

 82.16 
(80.09) 

34.32 
(29.07) 

147.13 
(147.88) 

49.28 
(45.03) 

191.50 
(189.93) 

92.99 
(92.07) 

144.74 
(147.05) 

 1.00 
 

 20.78 
(14.85) 

10.05 
(6.43) 

67.24 
(65.52) 

12.40 
(8.74) 

161.04 
(161.80) 

25.05 
(23.05) 

68.62 
(69.67) 

 1.50 
 

 9.02 
(4.59) 

5.12 
(2.83) 

23.43 
(18.56) 

5.77 
(3.33) 

124.96 
(124.57) 

9.08 
(7.31) 

28.94 
(28.21) 

 2.50 
 

 3.66 
(1.41) 

12.34 
(1.12) 

5.79 
(2.30) 

2.50 
(1.18) 

55.24 
(52.50) 

2.86 
(1.56) 

6.03 
(5.58) 

Note. Standard deviation of run length is in parentheses. 

 

Average Run Length Comparisons  
for the Multivariate tp (df = 5)  
 

Next, the ARL1 simulation results from the multivariate tp (df = 5) distribution are 

presented.  Tables 41-48 show the ARL1 comparisons for SRMEWMA, MEWMA, and 

Hotelling’s T2 for the following conditions: 

1. The number of variables, p = 2, 3, 4, and 5;  

2. The smoothing parameter, λ ∈ [ 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50]; and  

3. Shift parameter, δ ∈ [0.25, 0.50, 1.00, 1.50, and 2.50]. 

Tables 41-48 show the ARL1 comparisons for in-control ARL0 = 200 only.  

Simulation results are shown in Tables 41 and 42, 43 and 44, 45 and 46, and 47 and 48 

for p = 2, 3, 4, and 5, respectively.  Comparisons with ARL0 = 500 and ARL0 = 1,000 are 

available in Appendix E.  
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The simulation results for SRMEWMA, MEWMA with λ = 0.02, 0.03, and 0.05 

and Hotelling’s T2for p = 2 are presented in Table 41 and results with λ = 0.1, 0.2, and 0.5 

and Hotelling’s T2for p = 2 are presented in Table 42.  In addition to the ARL1s, the 

corresponding standard deviations of the run lengths (SDRL) are also included in these 

two tables.  Tables 41–48 show that the MEWMA control chart had better efficiency. 

However, the SRMEWMA control chart offers reasonably comparable ARL1 performance 

and the difference between MEWMA and SRMEWMA was not significant for p = 2, 3, 

and 4, for λ ≤  0.1, and all δ shift values; but for p = 5 and λ ≥  0.1, MEWMA was 

superior to SRMEWMA for all δ shift values.  Additionally, MEWMA was superior to 

Hotelling’s T2 for all p, λ, and δ values.  However, SRMEWMA was only significantly 

superior to Hotelling’s T2 for p = 2 and 3 for all δ shift values but Hotelling’s T2 was 

superior to SRMEWMA for p =4 and 5 and λ = 0.5.    

 
Table 41  
 
Average Run Length Comparisons for p = 2, λ = .02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p      0.02 0.03 0.05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 6.30 6.20 6.90 6.80 7.85 7.70 13.5 
  0.00 

 
 201 

(248) 
198 

(246) 
197 

(226) 
195 

(244) 
200 

(221) 
197 

(212) 
200 

(196.61) 

 0.25 
 

 47.36 
 (47.58) 

45.63 
(46.42) 

51.34 
 (49.45) 

50.12 
(49.19) 

60.82 
 (59.76) 

59.11 
(55.92) 

173.44 
(170.68) 

 0.50 
 

 17.05 
 (14.92) 

16.67 
(14.55) 

18.72 
 (15.79) 

18.54 
(15.41) 

21.49 
 (17.22) 

20.80 
(16.79) 

142.94 
(142.15) 

 1.00 
 

 5.80 
 (4.14) 

5.62 
(4.11) 

6.28 
 (4.32) 

6.13 
(4.33) 

7.03 
 (4.74) 

6.93 
(4.63) 

76.65 
(75.09) 

 1.50 
 

 3.17 
 (1.94) 

2.99 
(1.90) 

3.33 
 (2.00) 

3.30 
(2.04) 

3.72 
 (2.17) 

3.62 
(2.15) 

34.06 
(33.18) 

 2.50 
 

 1.56 
 (0.74) 

1.50 
(0.70) 

1.63 
 (0.76) 

1.60 
(0.77) 

1.78 
 (0.84) 

1.73 
(0.83) 

6.78 
(6.23) 

Note. Standard deviation of run length is in parentheses. 

 



151 
 
Table 42  
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.3, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 9.20 9.00 10.70 10.30 13.40 12.30 13.5 
  0.00 

 
 201 

(208) 
202 

(208) 
199 

(205) 
198 

(198) 
200 

(204) 
200 

(200) 
200 

(196.61) 

 0.25 
 

 80.56 
 (77.97) 

77.35 
(74.18) 

112.22 
 (112.97) 

105.85 
(104.85) 

164.98 
 (164.07) 

160.7 
(159.49) 

173.44 
(170.68) 

 0.50 
 

 27.12 
 (22.43) 

26.06 
(21.37) 

41.68 
 (38.00) 

38.20 
(35.52) 

101.41 
 (101.40) 

93.25 
(90.85) 

142.94 
(142.15) 

 1.00 
 

 8.35 
 (5.36) 

8.04 
(5.27) 

10.63 
 (7.57) 

9.80 
(6.90) 

29.88 
 (27.75) 

24.24 
(22.49) 

76.65 
(75.09) 

 1.50 
 

 4.24 
 (2.40) 

4.11 
(2.33) 

4.98 
 (2.80) 

4.76 
(2.73) 

10.16 
 (8.33) 

8.38 
(6.53) 

34.06 
(33.18) 

 2.50 
 

 1.99 
 (0.92) 

1.93 
(0.92) 

2.19 
 (1.00) 

2.12 
(0.99) 

2.91 
 (1.53) 

2.64 
(1.38) 

6.78 
(6.23) 

Note. Standard deviation of run length is in parentheses. 

 

 

Table 43  
 
Average Run Length Comparisons for p = 3, λ = .02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p      0.02 0.03 0.05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 8.35 8.20 9.25 8.90 10.70 9.90 16.6 
  0.00 

 
 200 

(253) 
200 

(247) 
200 

(241) 
201 

(234) 
200 

(227) 
202 

(219) 
200 

(196.61) 

 0.25 
 

 53.22 
 (55.90) 

51.54 
(51.58) 

61.27 
 (61.59) 

56.16 
(55.02) 

79.69 
 (81.16) 

67.63 
(65.77) 

183.13 
(180.89) 

 0.50 
 

 19.71 
 (17.08) 

18.82 
(16.23) 

22.38 
 (18.44) 

20.69 
(17.30) 

27.18 
 (22.02) 

23.58 
(19.25) 

159.21 
(159.41) 

 1.00 
 

 6.75 
 (4.63) 

6.31 
(4.63) 

7.42 
 (4.95) 

6.90 
(4.80) 

8.72 
 (5.52) 

7.70 
(5.03) 

100.52 
(101.41) 

 1.50 
 

 3.59 
 (2.06) 

3.32 
(2.13) 

3.94 
 (2.22) 

3.60 
(2.20) 

4.51 
 (2.40) 

4.07 
(2.40) 

48.77 
(47.86) 

 2.50 
 

 1.75 
 (0.76) 

1.65 
(0.80) 

1.87 
 (0.81) 

1.78 
(0.87) 

2.08 
 (0.89) 

1.89 
(0.91) 

10.04 
(9.52) 

Note. Standard deviation of run length is in parentheses. 
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Table 44  
 
Average Run Length Comparisons for p = 3, λ = 0.1, 0.3, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 13.30 11.30 17.65 12.70 2.40 15.00 16.6 
  0.00 

 
 200 

(215) 
199 

(206) 
200 

(206) 
200 

(198) 
200 

(203) 
198 

(199) 
200 

196.61) 

 0.25 
 

 115.66 
 (118.31) 

88.96 
(86.71) 

163.46 
 (167.63) 

118.18 
(116.92) 

188.95 
 (190.11) 

166.60 
(163.88) 

183.13 
(180.89) 

 0.50 
 

 43.25 
 (38.55) 

30.25 
(25.09) 

91.76 
 (90.89) 

45.71 
(42.39) 

168.17 
 (166.17) 

106.47 
(104.71) 

159.21 
(159.41) 

 1.00 
 

 11.35 
 (7.08) 

9.11 
(5.84) 

22.39 
 (18.19) 

11.37 
(8.15) 

105.31 
 (103.6) 

30.70 
(29.04) 

100.52 
(101.41) 

 1.50 
 

 5.60 
 (2.91) 

4.61 
(2.63) 

8.48 
 (4.92) 

5.42 
(3.10) 

53.01 
 (51.02) 

10.46 
(8.64) 

48.77 
(47.86) 

 2.50 
 

 2.45 
 (1.03) 

2.12 
(1.01) 

3.18 
 (1.28) 

3.34 
(1.08) 

9.74 
 (7.29) 

3.02 
(1.63) 

10.04 
(9.52) 

Note. Standard deviation of run length is in parentheses. 

 

 

Table 45  
 
Average Run Length Comparisons for p = 4, λ = .02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution 
 
   λ  
p      0.02 0.03 0.05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 10.35 10.00 11.70 10.80 14.00 11.80 19.2 
  0.00 

 
 198 

(252) 
201 

(247) 
199 

(240) 
201 

(233) 
201 

(229) 
200 

(214) 
201 

(202.62) 
 0.25 

 
 60.28 

 (64.29) 
57.57 

(56.97) 
75.31 

 (79.62) 
64.36 

(62.77) 
105.20 

 (113.01) 
72.97 

(71.38) 
185.73 

(184.26) 

 0.50 
 

 22.00 
 (18.81) 

21.37 
(18.29) 

26.73 
 (21.96) 

23.24 
(19.00) 

36.33 
 (30.93) 

26.13 
(20.85) 

166.28 
(163.48) 

 1.00 
 

 7.29 
 (4.88) 

7.31 
(5.10) 

8.59 
 (5.54) 

7.80 
(5.33) 

10.71 
 (6.47) 

8.56 
(5.54) 

101.41 
(110.60) 

 1.50 
 

 3.79 
 (2.08) 

3.93 
(2.36) 

4.38 
 (2.32) 

4.17 
(2.47) 

5.36 
 (2.76) 

4.53 
(2.61) 

59.15 
(58.04) 

 2.50 
 

 1.76 
 (0.71) 

1.94 
(0.94) 

1.99 
 (0.79) 

1.99 
(0.95) 

2.41 
 (0.95) 

2.10 
(0.99) 

12.70 
(12.42) 

Note. Standard deviation of run length is in parentheses. 
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Table 46  
 
Average Run Length Comparisons for p = 4, λ = 0.1, 0.3, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 19.20 13.20 28.30 14.80 49.80 17.50 19.2 
  0.00 

 
 201 

(211) 
196 

(204) 
199 

(206) 
198 

(200) 
200 

(199) 
199 

(197) 
201 

(202.62) 

 0.25 
 

 155.38 
 (164.26) 

92.65 
(92.28) 

191.56 
 (192.02) 

125.48 
(127.11) 

196.88 
 (197.67) 

176.02 
(171.98) 

185.73 
(184.26) 

 0.50 
 

 75.55 
 (74.50) 

32.21 
(28.33) 

146.52 
 (148.49) 

51.51 
(47.89) 

188.51 
 (186.32) 

120.17 
(121.42) 

166.28 
(163.48) 

 1.00 
 

 17.85 
 (11.50) 

9.87 
(6.36) 

58.89 
 (56.08) 

12.76 
(9.23) 

160.96 
 (162.93) 

38.23 
(36.96) 

101.41 
(110.60) 

 1.50 
 

 7.91 
 (3.86) 

5.02 
(2.78) 

18.75 
 (13.60) 

5.88 
(3.37) 

122.07 
 (122.30) 

12.68 
(10.68) 

59.15 
(58.04) 

 2.50 
 

 3.20 
 (1.21) 

2.28 
(1.06) 

4.94 
 (1.85) 

2.52 
(1.16) 

49.29 
 (48.18) 

3.41 
(1.90) 

12.70 
(12.42) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
 
Table 47  
 
Average Run Length Comparisons for p = 5, λ = .02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution 
 
   λ  
p     0.02 0.03 0.05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 12.69 11.60 14.70 12.50 18.60 13.60 21.60 
  0.00 

 
 201 

 (262) 
196 

(248) 
201 

 (243) 
200 

(229) 
202 

 (231) 
194 

(214) 
201 

(198.70) 

 0.25 
 

 76.16 
 (78.89) 

58.18 
(60.50) 

96.06 
 (104.47) 

65.21 
(64.69) 

134.85 
 (150.44) 

77.10 
(75.39) 

189.25 
(187.77) 

 0.50 
 

 28.08 
 (22.45) 

21.83 
(18.83) 

34.70 
 (28.02) 

24.04 
(19.98) 

54.74 
 (48.94) 

27.63 
(22.63) 

176.03 
(174.21) 

 1.00 
 

 9.27 
 (5.66) 

7.31 
(5.38) 

11.01 
 (6.36) 

8.09 
(5.56) 

14.86 
 (8.46) 

8.92 
(5.84) 

120.05 
(120.40) 

 1.50 
 

 4.81 
 (2.37) 

3.91 
(2.46) 

5.65 
 (2.71) 

4.30 
(2.62) 

7.17 
 (3.32) 

4.75 
(2.76) 

67.38 
(67.27) 

 2.50 
 

 2.19 
 (0.80) 

1.89 
(0.93) 

2.53 
 (0.91) 

2.02 
(0.99) 

3.10 
 (1.10) 

2.19 
(1.04) 

15.88 
(15.19) 

Note. Standard deviation of run length is in parentheses. 
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Table 48  
 
Average Run Length Comparisons for p = 5, λ = 0.1, 0.3, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
  
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 27.55 15.20 43.80 16.80 81.90 19.70 21.60 
  0.00 

 
 199 

 (209) 
201 

(209) 
200 

 (208) 
200 

(200) 
198 

 (201) 
197 

(194) 
201 

(198.70) 

 0.25 
 

 178.49 
 (185.49) 

102.13 
(102.23) 

190.74 
 (196.67) 

130.92 
(12.85) 

198.43 
 (197.72) 

176.93 
(175.00) 

189.25 
(187.77) 

 0.50 
 

 120.79 
 (124.97) 

36.92 
(31.70) 

176.05 
 (178.26) 

57.13 
(54.52) 

196.04 
 (194.71) 

125.52 
(123.27) 

176.03 
(174.21) 

 1.00 
 

 32.98 
 (25.04) 

10.56 
(6.74) 

111.64 
 (110.42) 

13.97 
(10.09) 

183.36 
 (184.40) 

44.35 
(43.08) 

120.05 
(120.40) 

 1.50 
 

 11.98 
 (5.61) 

5.33 
(2.92) 

51.88 
 (47.46) 

6.27 
(3.64) 

162.28 
 (160.67) 

14.62 
(12.65) 

67.38 
(67.27) 

 2.50 
 

 4.46 
 (1.53) 

2.40 
(1.13) 

8.53 
 (3.37) 

2.65 
(1.25) 

107.64 
 (109.46) 

3.72 
(2.14) 

15.88 
(15.19) 

Note. Standard deviation of run length is in parentheses. 

 

 

Average Run Length Comparisons  
for the Multivariate Gammap  
(α = 3, β = 1) Distribution 
 

Finally, the ARL1 simulation results from the multivariate gammap (α = 3, β= 1) 

distribution are presented.  Tables 49-54 show the ARL1 comparisons for SRMEWMA, 

MEWMA, and Hotelling’s T2 for the following conditions: 

1. The number of variables, p = 2 only;  

2. The smoothing parameter, λ ∈ [ 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50]; and  

3. Shift parameter, δ ∈ [0.25, 0.50, 1.00, 1.50, and 2.50]. 

Tables 49 and 50, 51 and 52, and 53 and 54 show the ARL1 comparisons for in-

control ARL0 = 200, 500, and 1,000, respectively.  

The simulation results for SRMEWMA; MEWMA with λ = 0.02, 0.03, and 0.05; 

and Hotelling’s T2for ARL0 = 200 are presented in Table 49.  Results with λ = 0.1, 0.2, 
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and 0.5, and Hotelling’s T2for ARL0 = 200 are presented in Table 50.  In addition to the 

ARL1s, the corresponding standard deviations of the run lengths (SDRL) are also included 

in these two tables.  Tables 49-54 show that the SRMEWMA control chart had superior 

efficiency in detecting mean shifts by a large margin.  This showed that the SRMEWMA 

control chart was more sensitive to process shift from normality for skewed distributions.  

Furthermore, the SRMEWMA control chart was superior to the Hotelling’s T2 control 

chart for all ARL0, λ, and δ values.  The MEWMA control chart was superior to 

Hotelling’s T2 for all shift values δ ≤  2.5.  

 

Table 49  
 
Average Run Length Comparisons for p = 2, λ = .02, .03, and .05, and In-Control 
Average Run Length ≈ 200 with Multivariate Gamma Distribution  
 
   λ  
p      0.02 0.03 0.05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 723.1 2,116.6 723.1 1,442.9 723.1 896.6 25.3 
  0.00 

 
 200 

(209.37) 
200 

(201.53) 
200 

(209.37) 
200 

(195.80) 
200 

(209.37) 
200 

(192.00) 
201 

(198.98) 
 0.25 

 
 11.40 

 (5.10) 
62.89 

 (50.77) 
11.40 
 (5.10) 

65.75 
 (53.43) 

11.40 
 (5.10) 

73.06 
 (63.22) 

146.77 
(148.19) 

 0.50 
 

 5.61 
 (1.68) 

31.05 
 (19.65) 

5.61 
 (1.68) 

32.08 
 (21.15) 

5.61 
 (1.68) 

32.95 
 (23.37) 

92.89 
(93.04) 

 1.00 
 

 2.92 
 (0.61) 

14.73 
 (6.53) 

2.92 
 (0.61) 

14.52 
 (6.66) 

2.92 
 (0.61) 

14.22 
 (7.13) 

30.32 
(29.92) 

 1.50 
 

 2.05 
 (0.32) 

9.54 
 (3.41) 

2.05 
 (0.32) 

9.35 
 (3.35) 

2.05 
 (0.32) 

8.68 
 (3.30) 

8.73 
(8.33) 

 2.50 
 

 1.34 
 (0.47) 

5.71 
 (1.57) 

1.34 
 (0.47) 

5.50 
 (1.49) 

1.34 
 (0.47) 

5.03 
 (1.41) 

1.05 
(0.22) 

Note. Standard deviation of run length is in parentheses. 
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Table 50  
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.3, and 0.5, and In-Control 
Average Run Length ≈ 200 with Multivariate Gamma Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 190.3 2,116.6 116.2 1,442.9 65.9 896.6 25.3 
  0.00 

 
 200 

 (199.56) 
200 

(201.53) 
200 

 (196.41) 
200 

(195.80) 
201 

 (200.60) 
200 

(192.00) 
201 

(198.98) 
 0.25 

 
 12.38 

 (7.25) 
62.89 

 (50.77) 
15.24 

 (11.33) 
65.75 

 (53.43) 
30.93 

 (29.17) 
73.06 

 (63.22) 
146.77 

(148.19) 

 0.50 
 

 5.18 
 (1.93) 

31.05 
 (19.65) 

5.18 
 (2.42) 

32.08 
 (21.15) 

8.04 
 (6.23) 

32.95 
 (23.37) 

92.89 
(93.04) 

 1.00 
 

 2.51 
 (0.61) 

14.73 
 (6.53) 

2.24 
 (0.62) 

14.52 
 (6.66) 

2.14 
 (0.85) 

14.22 
 (7.13) 

30.32 
(29.92) 

 1.50 
 

 1.83 
 (0.38) 

9.54 
 (3.41) 

1.60 
 (0.49) 

9.35 
 (3.35) 

1.26 
 (0.44) 

8.68 
 (3.30) 

8.73 
(8.33) 

 2.50 
 

 1.00 
 (0.528) 

5.71 
 (1.57) 

1.00 
 (0) 

5.50 
 (1.49) 

1.00 
 (0) 

5.03 
 (1.41) 

1.05 
(0.22) 

Note. Standard deviation of run length is in parentheses. 

 

 

Table 51  
 
Average Run Length Comparisons for p = 2, λ = .02, .03, and .05, and In-Control 
Average Run Length ≈ 500 with Multivariate Gamma Distribution  
 
   λ  
p     0.02 0.03 0.05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 761.7 2,175.5 537.4 1,486.7 352.7 928.5 34.82 
  0.00 

 
 494 

 (494.26) 
500 

 (480.18) 
498 

 (495.26) 
500 

 (480.08) 
500 

 (500.16) 
500 

 (490.50) 
503 

(505.74) 

 0.25 
 

 16.79 
 (6.56) 

115.43 
 (88.44) 

16.44 
 (6.90) 

122.14 
 (102.09) 

16.15 
 (7.60) 

135.68 
 (120.26) 

363.96 
(363.06) 

 0.50 
 

 7.95 
 (2.05) 

49.42 
 (28.52) 

7.53 
 (2.04) 

48.56 
 (30.40) 

7.05 
 (2.13) 

51.75 
 (37.01) 

234.19 
(236.49) 

 1.00 
 

 4.03 
 (0.72) 

21.62 
 (8.29) 

3.79 
 (0.71) 

20.25 
 (8.46) 

3.44 
 (0.70) 

18.91 
 (9.03) 

76.57 
(77.11) 

 1.50 
 

 2.82 
 (0.43) 

13.69 
 (4.28) 

2.65 
 (0.48) 

12.49 
 (4.03) 

2.37 
 (0.49) 

11.28 
 (3.97) 

21.76 
(21.00) 

 2.50 
 

 1.97 
 (0.14) 

7.98 
 (1.84) 

1.94 
 (0.22) 

7.15 
 (1.73) 

1.77 
 (0.42) 

6.30 
 (1.60) 

1.65 
(1.04) 

Note. Standard deviation of run length is in parentheses. 
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Table 52  
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.3, and 0.5, and In-Control 
Average Run Length ≈ 500 with Multivariate Gamma Distribution 
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 207.7 498.3 129.3 272.6 76.7 125.8 34.82 
  0.00 

 
 500 

 (497.38) 
501 

 (499.80) 
500 

 (509.81) 
498 

 (503.80) 
502 

 (502.64) 
503 

 (502.16) 
503 

(505.74) 

 0.25 
 

 17.48 
 (10.46) 

170.89 
 (161.73) 

23.76 
 (19.03) 

217.21 
 (213.21) 

66.31 
 (64.08) 

316.65 
 (318.75) 

363.96 
(363.06) 

 0.50 
 

 6.52 
 (2.3) 

63.85 
 (53.76) 

6.69 
 (3.25) 

93.26 
 (86.92) 

13.71 
 (11.65) 

177.47 
 (173.15) 

234.19 
(236.49) 

 1.00 
 

 3.00 
 (0.68) 

19.18 
 (11.23) 

2.65 
 (0.71) 

24.13 
 (18.92) 

2.73 
 (1.17) 

58.86 
 (56.08) 

76.57 
(77.11) 

 1.50 
 

 2.04 
 (0.33) 

10.24 
 (4.42) 

1.85 
 (0.37) 

10.55 
 (6.14) 

1.53 
 (0.51) 

21.04 
 (18.51) 

21.76 
(21.00) 

 2.50 
 

 1.25 
 (0.43) 

5.23 
 (1.50) 

1.00 
 (.045) 

4.53 
 (1.57) 

1.00 
 (0.01) 

5.16 
 (3.21) 

1.65 
(1.04) 

Note. Standard deviation of run length is in parentheses. 

 

 

Table 53  
 
Average Run Length Comparisons for p = 2, λ = .02, .03, and .05, and In-Control 
Average Run Length ≈ 1,000 with Multivariate Gamma Distribution  
 
   λ  
p      0.02 0.03 0.05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 798.1 2,211.7 559.3 1,515.7 369.2 948.8 42.70 
  0.00 

 
 1,000 

 (980.70) 
1,002 

 (993.84) 
1,000 

 (966.63) 
998 

 (993.66) 
1,001 

(1,002.63) 
1,000 

 (995.40) 
993 

(1,000.55) 

 0.25 
 

 22.22 
 (7.90) 

171.30 
 (135.49) 

20.09 
 (7.98) 

185.61 
 (157.16) 

19.64 
 (9.27) 

216.14 
 (197.23) 

731.07 
(737.23) 

 0.50 
 

 10.23 
 (2.41) 

63.78 
 (36.21) 

8.96 
 (2.32) 

64.41 
 (40.64) 

8.15 
 (2.33) 

70.43 
 (52.68) 

453.92 
(455.09) 

 1.00 
 

 5.06 
 (0.83) 

25.95 
 (9.43) 

4.42 
 (0.78) 

24.17 
 (9.80) 

3.90 
 (0.75) 

22.71 
 (10.55) 

148.01 
(148.15) 

 1.50 
 

 3.48 
 (0.53) 

16.15 
 (4.55) 

3.03 
 (0.43) 

14.70 
 (4.52) 

2.71 
 (0.47) 

13.00 
 (4.43) 

43.76 
(43.17) 

 2.50 
 

 2.08 
 (0.28) 

9.36 
 (1.99) 

1.99 
 (0.07) 

8.33 
 (1.88) 

1.95 
 (0.22) 

7.08 
 (1.72) 

3.2 
(2.65) 

Note. Standard deviation of run length is in parentheses. 
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Table 54  
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.3, and 0.5, and In-Control 
Average Run Length ≈ 1,000 with Multivariate Gamma Distribution 
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 219.4 512.0 138.7 282.8 84.5 132.7 42.70 
  0.00 

 
 997 

 (990.75) 
1,007 

(1,003.3) 
997 

 (994.06) 
1,001 

 (993.05) 
1,000 

 (997.33) 
999 

 (982.17) 
993 

(1,000.55) 

 0.25 
 

 21.79 
 (13.54) 

288.32 
 (278.74) 

34.21 
 (28.56) 

411.96 
 (404.02) 

115.95 
 (115.52) 

601.31 
 (603.94) 

731.07 
(737.23) 

 0.50 
 

 7.50 
 (2.67) 

93.85 
 (83.42) 

7.96 
 (3.89) 

156.50 
 (149.59) 

20.60 
 (18.14) 

331.37 
 (327.96) 

453.92 
(455.09) 

 1.00 
 

 3.33 
 (0.74) 

23.47 
 (14.41) 

2.93 
 (0.76) 

33.68 
 (27.83) 

3.27 
 (1.51) 

98.39 
 (95.80) 

148.01 
(148.15) 

 1.50 
 

 2.25 
 (0.45) 

11.75 
 (4.96) 

1.97 
 (0.35) 

12.90 
 (7.76) 

1.70 
 (0.51) 

32.58 
 (30.41) 

43.76 
(43.17) 

 2.50 
 

 1.58 
 (0.49) 

5.18 
 (1.59) 

1.05 
 (0.23) 

5.11 
 (1.78) 

1.00 
 (0.00) 

6.53 
 (4.28) 

3.2 
(2.65) 

Note. Standard deviation of run length is in parentheses. 

 

 

A Real Data Manufacturing Industry Example 
 

 The performance of the SRMEWMA control chart methodology along with the 

parametric MEWMA control chart methodology for SPC location monitoring was 

demonstrated using a data set from an aluminum electrolyte capacitor manufacturing data 

example by Qiu and Hawkins (2001).  The same data set was also used by Zou and Tsung 

(2010) to illustrate their nonparametric multivariate sign EWMA (MSEWMA) control 

chart methodology.   

 The goal of an aluminum electrolyte capacitor (AEC) process is to transform the 

raw materials into AECs.  The three most important characteristics in the process are the 

capacitance, dissipation, and leakage.  The three variables were measured electronically 

at given voltage, frequency, and temperature. 
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The data set contained 200 data vectors (see Table 151 in Appendix E).  Initially, 

using all 200 data vectors, the vector singed-ranks were computed and labeled as SR1, 

SR2, and SR3 and were used in computing the SRMEWMA control chart plotting 

statistic (𝑸𝒕
𝑹).  The raw data vectors (capacitance, dissipation, and leakage) were used to 

compute the MEWMA control chart statistic (𝑻𝒊𝟐).  The first 170 vectors (both raw data 

and signed-ranks) were used as a reference sample to estimate the process mean and 

variance-covariance matrix.  The reference data set of 170 perhaps was smaller than 

optimal but it was sufficient to illustrate the SRMEWMA scheme in an industry setting.   

The normal Q-Q plots of the raw data vectors based on the 170 phase I vectors are 

shown in figures 14, 15, and 16, respectively.  The Q-Q plots showed that the three 

variables (capacitance, dissipation, and leakage) were not normal.  The Shapiro-Wilk, 

Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling goodness-of-fit tests 

for normality concluded that all three raw variables were not normally distributed (the p-

values were smaller than 0.0001, 0.001, 0.005, and 0.005, respectively).  The results of 

the four goodness-of-fit tests of normality along with the normal Q-Q plots (Figures 14-

16) showed that the multivariate normality assumption was not valid.  Therefore, the 

nonparametric SRMEWMA control chart would be more powerful than the MEWMA 

control chart, which was based on normal parametric assumptions.    
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Figure 14.  The normal Q-Q plot for capacitance. 

 

 

Figure 15.  The normal Q-Q plot for dissipation. 
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Figure 16.  The normal Q-Q plot for leakage. 

 

The first 170 data vectors were used in to compute the vector signed-ranks 

corresponding to the original measurements and the IC parameter estimates of the mean 

vectors and variance-covariance matrices for the raw data and signed-ranks respectively. 

The IC ARL0 was fixed at 200 and the smoothing parameter λ was chosen to be 0.03 in 

order to make MEWMA robust to non-normality (Zou & Tsung, 2010).  The control 

limits for MEWMA and SRMEWMA were 8.80 and 9.10, respectively.  A shift δ = 0.25 

multiples of the standard deviation was added to the first variable (capacitance) of the 

remaining 30 vectors for phase II analysis.  Table 55 shows the phase II analysis sample 

of 30, the original raw data vectors (labeled as observations 171 – 200), the computed 

vector signed-ranks, the MEWMA control chart statistic (𝑻𝒊𝟐), and the SRMEWMA 

control chart statistic (𝑸𝒕
𝑹).   Figure 17 shows the plotted SRMEWMA and MEWMA 
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control chart statistics along with their corresponding upper control limits of 8.80 and 

9.10.  It can be seen from the table or plot that the SRMEWMA signaled an out-of-

control at the 177th observation, it stayed in control until the 193rd observation, and 

finally it remained above the control limit.  In contrast, the MEWMA did not signal an 

out-of-control until the 191st observation where it remained above the control limit until 

the 196th observation before it shifted below the control limit. 
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Table 55 

The Phase II Signed-Rank Multivariate Exponentially Weighted Moving Average and  
Multivariate Exponentially Weighted Moving Average Control Chart Plotting Statistics  
 

 
Obs. 

 
Capacitance 

 
Dissipation 

 
Leakage 

MEWMA 
(𝑻𝒊𝟐) 

 
SR1 

 
SR2 

 
SR3 

SRMEWMA 
(𝑸𝒕

𝑹) 

171 456.26 4.36 15.30 2.52 22.29 -62.17 -365.66 3.21 

172 449.26 4.35 18.90 2.56 12.16 -98.12 -138.18 5.63 

173 459.26 4.19 27.50 1.71 17.93 -2530.83 220.67 5.93 

174 449.26 4.05 25.60 1.46 20.74 -2641.82 180.24 7.04 

175 446.26 5.63 21.90 0.63 -28.59 3543.35 -71.58 6.11 

176 445.26 4.35 18.30 0.86 8.84 385.20 -176.45 8.19 

177 443.26 4.69 26.50 0.32 -18.90 1462.22 156.94 9.63** 

178 437.26 4.45 15.70 1.16 1.75 1750.51 -328.27 8.59 

179 441.26 4.56 35.00 0.69 -18.83 161.74 378.52 5.06 

180 447.26 3.47 19.50 1.56 41.72 -3781.94 -26.12 3.79 

181 440.26 4.08 20.50 2.71 20.90 -1749.13 1.63 4.83 

182 439.26 5.73 24.30 2.16 -37.40 3711.42 52.62 3.58 

183 436.26 3.92 17.40 3.94 32.47 -2156.98 -161.19 3.25 

184 440.26 4.52 15.40 5.09 0.52 1970.24 -346.87 3.40 

185 446.26 5.62 19.90 4.66 -23.65 3586.85 -183.35 4.17 

186 439.26 4.47 16.70 6.09 0.13 1727.67 -285.34 5.32 

187 445.26 4.32 19.50 6.59 9.82 -123.14 -91.38 6.96 

188 439.26 4.27 20.10 7.79 7.45 -142.60 -45.70 8.18 

189 442.26 4.11 21.30 8.63 19.49 -1770.31 35.67 8.74 

190 442.26 4.98 29.00 8.03 -32.23 2361.72 227.79 8.14 

191 438.26 3.83 14.70 10.43** 37.73 -2093.52 -291.13 6.76 

192 453.26 4.27 17.30 10.11 25.66 -923.62 -253.07 8.55 

193 448.26 4.93 17.50 10.04 -9.16 2677.23 -280.87 10.59 

194 447.26 4.39 19.80 10.25 4.98 369.20 -87.44 13.30 

195 447.26 4.15 30.30 9.15 10.43 -2334.56 308.85 10.75 

196 447.26 4.52 17.50 9.55 1.36 1532.02 -256.96 13.10 

197 465.26 4.37 24.70 7.17 16.80 -1728.24 102.43 16.35 

198 447.26 4.47 17.20 7.81 4.35 1303.59 -272.98 18.59 

199 443.26 4.73 31.30 6.71 -26.10 1367.00 299.62 16.44 

200 456.26 4.37 16.70 6.59 20.69 -163.78 -304.57 18.69 
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Figure 17.  The signed-rank multivariate exponentially weighted moving average and 
multivariate exponentially weighted moving average control charts for monitoring the 
aluminum electrolyte capacitor process. 
 

 



 
 
 
 

CHAPTER V 
 
 

CONCLUSIONS AND DISCUSSION 
 

 
 The purpose of this study was to develop a new affine invariant spatial signed-

rank multivariate exponentially weighted moving average control chart (the SRMEWMA 

control chart) and to compare its performance to traditional parametric counterparts like 

the multivariate exponentially moving average (MEWMA) and Hotelling’s T2 for 

different distributions, mainly the multivariate normal, t, and gamma using the concept of 

average run length (ARL1).  The control chart integrated a signed-rank test 

(Hettmansperger et al., 1997) and exponentially weighted moving average (EWMA) 

process monitoring.  Finally, a real data example from the manufacturing industry 

showed that SRMEWMA performance was robust and effective.   

 To achieve the first goal as presented in Chapter III, the theoretical development 

of the new SRMEWMA control charts was shown based on the work of Hettmansperger 

et al. (1997), Mottonen et al. (1998), and Oja (2010).  Central to the process of 

developing SRMEWMA was the concept of centered signed-rank vectors (Oja, 1983, 

1999, 2010), which was illustrated using a numerical example that computed vector 

signed-ranks from original observations using SAS® IML macros originally developed 

by Mottonen et al. (1997). Additionally, like MEWMA and Hotelling’s T2, the new 

SRMEWMA control chart was shown to have the intuitively appealing property of affine 

invariance for distributions with elliptical directions, insuring that the performance of 
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SRMEWMA was the same for any initial covariance matrix.  Also, the affine invariance 

property insured that for elliptically symmetrical distributions, the performance of 

MEWMA, SRMEWMA, and Hotelling’s T2 depended on a shift in process mean vector 

only through the non-centrality parameter 𝛿 = [𝜇′Σ−1𝜇]1/2 (Lowry et al., 1992; 

Stoumbos & Sullivan, 2002). 

 In comparison with MEWMA and Hotelling’s T2, SRMEWMA’s ARL1 

performance was robust to non-normality and sensitive to small shifts in the process 

mean vector.  It performed better than Hotelling’s T2 and MEWMA for vector 

observations from the multivariate normal and t distributions (elliptically symmetrical) 

and better than MEWMA for observations from multivariate gamma (skewed) 

distributions.  

To achieve the second goal of ARL1 performance comparisons of SRMEWMA, 

MEWMA, and Hotelling’s T2, a Monte Carlo simulation study was designed to compute 

the UCLs of the three competing control charts for variations to the IC ARL0 and compare 

the ARL1 performance of the three charts for observation vectors from the multivariate 

normal, t, and gamma distributions for the number of variables, p = 2, 3, 4, and 5 for the 

multivariate normal and  t distributions, p = 2 only for the multivariate gamma 

distribution and the smoothing parameter, λ ∈ [0.01, 0.02, 0.03, 0.05, 0.10, 0.2, and 0.50], 

and IC ARL0 = 200, 500, and 1,000.  The UCLs for Hotelling’s T2 from the multivariate 

normal distribution were obtained using the CINV function in SAS®, which were 

equivalent to the same values obtained from the χ2 statistical tables.   

Based on phase II simulated ARL1 and SRDL values presented  in Chapter IV, 

SRMEWMA was shown to be robust and equally as powerful as MEWMA; it 
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outperformed Hotelling’s T2 for location process monitoring when the underlying process 

observations-vectors came from a multivariate normal distribution or more precisely, the 

marginal distributions were normal.  In addition, SRMEWMA was also demonstrated to 

be robust and as powerful as MEWMA for location process monitoring when the 

underlying process observations vectors came from the multivariate t distribution.  Both 

the multivariate normal and t distributions were elliptically symmetrical distributions. 

However, SRMEWMA was shown to be superior to both MEWMA and Hotelling’s T2 

when the underlying process observations vectors came from a member of the family 

multivariate gamma distributions--a skewed distribution.    

There was one major limitation to computing SRMEWMA.  As with most higher-

dimension methods, SRMEWMA suffered from what is known as the “curse of 

dimensionality,” a term coined by Richard Bellman (1961).  As the number of monitored 

quality variables p increased, the number of estimable parameters increased 

exponentially.  Hence, larger numbers of observations n were needed in order to estimate 

those parameters.  This “curse of dimensionality” becomes a significant obstacle in high 

dimension data analysis, computation, and estimation.  The computation of the centered 

signed-ranks, which were necessary to compute the SRMEWMA charting statistic, was 

very intensive due to the number of vector combinations that were evaluated from the 

simulated variables to calculate the vector signed-ranks.  For example, when p = 3 and 

 n = 5, there are 10 vector combinations to be analyzed.  However, when n = 20, the 

number of vector combinations to be analyzed is 1,140, a multiple of 114.  The multiples 

increased geometrically as p and n increased. This limitation made simulation very 

intensive and almost prohibitive with current technology to practically use any sample 
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size n > 5 and p > 5 when computing the vector-signed-ranks.  Table 56 illustrates the 

exponential nature of the number of vector combinations that must be evaluated from the 

simulated variables to calculate the vector signed-ranks.  Therefore, due to the extensive 

computation requirements of the signed-ranks for SRMEWMA, p = 2, 3, 4, and 5 and n = 

5 only were considered.  

 

Table 56 
 
Number of Vector Combinations That Must Be Evaluated from the Simulated Variables 
to Calculate the Vector Signed-Ranks 
 

 
Number of Simulated Variables  

 p       1    2    3     4 5 6 
n 

      5           5           10             10                    5                        1      
10         10           45           120                210                    252                        210  
15         15         105           455             1,365                 3,003                     5,005  
20         20         190        1,140             4,845               15,504                   38,760  
25         25         300        2,300           12,650               53,130                 177,100  
30         30         435        4,060           27,405             142,506                 593,775  
35         35         595        6,545           52,360             324,632              1,623,160  
40         40         780        9,880           91,390             658,008              3,838,380  
45         45         990      14,190         148,995          1,221,759              8,145,060  
50         50      1,225      19,600         230,300          2,118,760            15,890,700  
55         55      1,485      26,235         341,055          3,478,761            28,989,675  
60         60      1,770      34,220         487,635          5,461,512            50,063,860 
65         65      2,080      43,680         677,040          8,259,888            82,598,880  
70         70      2,415      54,740         916,895        12,103,014          131,115,985  
75         75      2,775      67,525      1,215,450        17,259,390          201,359,550  
80         80      3,160      82,160      1,581,580        24,040,016          300,500,200  
85         85      3,570      98,770      2,024,785        32,801,517          437,353,560  
90         90      4,005    117,480      2,555,190        43,949,268          622,614,630  
95         95      4,465    138,415      3,183,545        57,940,519          869,107,785 

100       100      4,950    161,700      3,921,225        75,287,520       1,192,052,400  
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Data were generated using the Monte Carlo Simulation technique using the 

interactive matrix language (IML) of the Statistical Analysis System (SAS) Windows 7 

version 9.3 TSM10 running on an Intel core i7-3930K CPU @ 3.2GHZ/64GB RAM- 

based system.  The system specifications are mentioned here to highlight the number of 

parameter limitations and intensive simulation requirements needed to generate data from 

various distributions in order to compute the vector-centered spatial signed-ranks and the 

SRMEWMA control chart charting statistic.  Due to the large number of parameter level 

combinations that needed to be simulated, most simulation runs ran for more than 30 

days and a full study became unattainable particularly with higher values of p using 

current technology.  With certain improved processing power in the future, this study 

should be more thorough and insightful.    

Recommendations for Future Research 

A number of relevant issues and topics that were not addressed in this study could 

and should be addressed in future research:  

1. Study the phase I UCL distribution and compare the ARL1 performance of 

SRMEWMA and MEWMA control charts for different IC ARL0 other than 

200, 500, and 1,000. 

2. Compare the ARL1 performance of SRMEWMA and MEWEMA for the 

case where the smoothing matrix Λ𝑝𝑥𝑝 was not diagonal and/or the 

individual smoothing parameter components 𝜆𝑖𝑗 ≠ 𝜆𝑖𝑗 . 

3. Study the ARL1 performance for other SPC possible and likely continuous 

and discrete distributions. 
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4. Study the ARL1 performance of the SRMEWMA control chart to monitor 

and detect shifts in other location shifts, e.g., median, percentile, and process 

variability.  This is possible with reasonable modifications to the 

methodology utilized in this study. 

5. Investigate the performance of SRMEWMA for higher order 

dimensionality. 

6. Investigate the optimal smoothing parameter λ > 0.2 in more detail for 

nonparametric control charts like SRMEWMA.  

7. Investigate the use of variable selection techniques to reduce dimensionality 

and increase computational efficiency. 

8. Compare the performance of SRMEWMA to other nonparametric sign- and 

rank-based control charts. 

Final Thoughts 

As was demonstrated in Chapter II, a survey of multivariate nonparametric 

control charts in the field of nonparametric multivariate process control revealed few 

commercially available and utilized control charts in practice.  This was due in part to 

many reasons; among them was the difficulty of their computation, the curse of 

dimensionality, and infancy of the multivariate nonparametric statistics field in terms of 

software and hardware dependence.   

The newly investigated nonparametric multivariate SPC control chart for 

monitoring location parameters--the Signed-Rank Multivariate Exponentially Weighted 

Moving Average (SRMEWMA)--is a viable alternative control chart to the parametric 

MEWMA control chart and is sensitive to small shifts in the process location parameter. 
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Recommendations of its use are mixed based solely on this study.  Among its advantages 

are its affine-invariant properties, its parallel performance to MEWMA for data from 

elliptically symmetrical distributions, and its superiority to MEWMA and Hotelling’s T2 

control charts for data from skewed distributions.  Among its disadvantages are 

complexity of computations for higher dimensions and lack of commercially available 

software.  Most developed software methods for computing multivariate signs, ranks, and 

signed-ranks are in their infancy and are designed for academic research and low 

dimensional vector observations.  Additionally, SRMEWMA is not as efficient as 

parametric charts for detecting large shifts.  As the number of simultaneously monitored 

quality characteristics have dramatically increased in manufacturing, software and 

capable hardware must advance to take advantage of newly presented nonparametric 

control charts like SRMEWMA. 
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/*-------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------*/ 
/* >>>>>>>>>>>>>>>>>>  MEWMA Phase I UCL Determination <<<<<<<<<<<<< */ 
/*-------------------------------------------------------------------*/ 
/*-- A doctoral dissertation supplemental SAS code by Jamil Zeinab --*/ 
/*-------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------*/ 
/* 1. The IML MEWMA code generates 10,000 iterations of              */  
/*    of up to 15,000 p-variate samples from a                       */  
/*    sampling distribution and computes MEWMA                       */ 
/* 2. It creates a MEWMA chating statistic T                         */ 
/* 3. It calculates the UCLs for MEWMA  for which the                */  
/*    in-control average run length is ARL_0 = 200, 500, & 1000.     */ 
/* 4. Several versions of this code will exist based on the sampling */ 
/*    criteria below (distribution, p-vartiates).                    */ 
/*-------------------------------------------------------------------*/ 
/*                >>>> Sampling criteria <<<<<                       */ 
/* Distribution: Multivariate Normal (Normal Marginals)              */ 
/* Number of qualirty variables: p=2, n=5                            */ 
/* Estimated Covariance matrix & mean vector, from 100,000 samples  */ 
/*-------------------------------------------------------------------*/ 
 
/*-------------------------------------------------------------------*/ 
/*  >>>>>>>>>>>>>>>>>>>    Notes for usage <<<<<<<<<<<<<<<<<<<   */ 
/* 1. Change the sampling distribution as needed, I used Normal, T,  */ 
/*    & Gamma.                                                       */ 
/* 2. Change the sampling size as desired.                           */ 
/* 3. Change the smoothing parameter "lambda" as desired.            */ 
/*-------------------------------------------------------------------*/; 
dm 'output'  clear ; 
dm 'log'  clear ; 
options   mlogic mprint FULLSTIMER compress=yes nonumber THREADS CPUCOUNT=ACTUAL ; 
libname out 'C:\SIMULATION_N5\MEWMA\MEWMA_UCLI_P2_N5'; 
 
 
/** -- to avoid the problem of filling SAS Log  
   Window in display save the SAS log and listing to files;*/ 
proc printto  new 
 log  =  'C:\SIMULATION_N5\MEWMA\MEWMA_UCLI_P2_N5\MEWMAP1N_P3N5_Xn.txt'  ; 
  print = "C:\SIMULATION_N5\MEWMA\MEWMA_UCLI_P2_N5\Temp_LIST.txt"; 
 
RUN; title 'MEWMA UCL PHASE I Simulation - Normal for (Est. Cov.e matrix and mean vector, 
from 100,000 samples) , p=2, n=5'; 
  
/*-----------------------------------------------------------------------*/; 
/** Clear old SAS data sets with teh same name                           */; 
/*-----------------------------------------------------------------------*/; 
 
 
proc datasets library=out;  
 delete   MEWMA_PhaseIUCL_Normal_NP2_N5XSn ;  
Run;  
 
 
proc iml; 
 
/*-----------------------------------------------------------------------*/; 
/** START Estimate the covariance matrix and mean from 100,000 samples   */; 
/*-----------------------------------------------------------------------*/; 
 
 NumSim=100000 ; 
  n=5; 
 p=2; 
 RESULT_MEAN = j(NumSim,p,.); 
 RESULT_COV = j(p,p,0);  
 call randseed(1);     /* set seed for RANDGEN */  
 XX =  j(n,p,.);      /* initialize X matrix with n 
rows and p columns (n x p)    */ 
 do iii=1 to NumSim; 
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  call RANDGEN(XX,'NORMAL');   /* fill X values from normal 
distribution default parameters */ 
     X_MEAN=XX[:,];      /* compute the column means of X 
matrix */ 
  RESULT_MEAN[iii,]=X_MEAN;  /* save as the ith row of means 
matrix */ 
  COV_X=cov (XX);      /* compute the covariance 
matrix of X matrix */ 
  RESULT_COV = RESULT_COV + COV_X; 
 end; 
 X_BAR_BAR_EST=RESULT_MEAN[:,];  /* calculate the samples means */ 
 COV_EST = RESULT_COV / (NumSim*n) ; /* Calculate the average covariance matrix 
to estimate sample covariance matrix */ 
 print   COV_EST;     /* This is the estimated 
covariance matrix of X samples */ 
 print   X_BAR_BAR_EST;     /* This is the estimated mean 
vextor matrix of X samples, use as initial Z value */ 
 
/*-----------------------------------------------------------------------------*/; 
/**  END Estimatation of the covariance matrix and mean from 100,000 samples   */ 
/*-----------------------------------------------------------------------------*/; 
 
  varNames = {"lambda" "K" "h" "T" "RL"};       
   
   create out.MEWMA_PhaseIUCL_Normal_NP2_N5XSn var varNames;  
   SIMS=10000 ;            
  Z =  j(1,p,.);   /* initialize Z matrix with 1 row and p columns (1 x 
2 ) */ 
     X =  j(n,p,.);   /* initialize X matrix with n rows and p columns (5 x 2) */ 
     RL=. ; 
  RESULT=j(SIMS,5,.); /* Result*/ 
     call randseed(12345); /* set seed for RANDGEN */ 
 
/*----------------------------------------------------------------------*/; 
/**  Start MEWMA simulation to find UCL for ARL0=200,500, &1000         */ 
/*----------------------------------------------------------------------*/ 
 
 do l= 4 to 4;    /* (1) Start iteration counter "do" loop */ 
    if l=1  then lambda=0.01; 
    if l=2  then lambda=0.02;  
    if l=3  then lambda=0.03; 
 if l=4  then lambda=0.05; 
    if l=5  then lambda=0.1 ;  
    if l=6  then lambda=0.2 ;  
    if l=7  then lambda=0.5 ; 
 
    do h= 6.8  to 12.3 by  0.1;  /*FOR LAMBDA=.05*/ /* (2) Test UCL limits from 7 to 40 
for each lambda */ 
 *do h= 5  to 15 by  0.1;        /* (2) Test UCL limits from 7 to 40 
for each lambda */ 
   do k = 1 to SIMS   ;      /* (3) DO 10,000 
ITERATIONS */ 
     do m= 1 to 15000   until (flag=0) ; /* (4) generate up to 15000 
sample or until T > h */ 
      if m=1 then flag=1;  
       call RANDGEN(X,'NORMAL');  /* fill x1 values from normal distribution 
default parameters */ 
       X_MEAN=X[:,];       /* compute the column 
means of X matrix */ 
         if m=1 then Z=X_BAR_BAR_EST;  /* usew instead of Z={0 0} */ 
        Zm=(lambda*X_MEAN) + (1-lambda)*Z; /* compute the Z vectors 
recrusive MEWMA structure */  
       Z=Zm;        /* save 
Z lag vectors for next vector in series */ 
      COV_Z=(lambda/(2-lambda)) *  
   (1-(1-lambda)**(2*m))*COV_EST ;  /*compute the 
covariance matrix of Z matrix */ 
    T =  Z * SOLVE(COV_Z,Z`);   /* compute the MEWMA 
charting statistic T**2 */ 
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    if (T > h & flag=1) then  do; /* start T > h condition test 
loop   */ 
          RL=m     ;      /* set RL = 
number of subgroups or samples */ 
     R = lambda||K||h||T||RL ;    
     RESULT[k,]=R; 
              flag=0; 
       end;     /* >> close T > h condition 
test loop << */ 
  end;       /* (4) close/end  (m) 
subgroup "do" loop */ 
 end;        /* (3) close/end 10K 
iteration loop */ 
    append from RESULT;     /*  Append 10000 iteration 
for eack lambda and UCL into SAS data set */ 
  end;         /* (2) close/end UCL 
loop */ 
end;         /* (1) close/end 
lambda loop */ 
  
  
title  'MEWMA UCL PHASE I Simulation'; 
title2 'Normal for (Est. Cov. matrix & mean vector, from 100k samples), p=2, n=5'; 
proc means data=out.MEWMA_PhaseIUCL_Normal_NP2_N5XSn  ; 
class lambda H; 
var RL; 
output out=averages mean=ARL std=SDRL; 
run; 
  
data averages ; 
 keep Lambda UCL ARL STDERROR_ARL _FREQ_; 
 set averages ; 
 where _type_=3; 
 STDERROR_ARL=sdrl/100;          
 UCL=h; 
run; 
 
proc print data=averages    ; 
run; 
   
 
/*-------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------*/ 
/* >>>>>>>>>>>>>>  MEWMA Phase II ARL Determination <<<<<<<<<<<<<<<< */ 
/*-------------------------------------------------------------------*/ 
/*-- A doctoral dissertation supplemental SAS code by Jamil Zeinab --*/ 
/*-------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------*/ 
/* 1. The IML MEWMA code generates 10,000 iterations of              */  
/*    of up to 15,000 p-variate samples from a                       */  
/*    sampling distribution and computes MEWMA                       */ 
/* 2. It creates a MEWMA chating statistic T                         */ 
/* 3. It calculates the out of control ARL for each combonation of   */  
/*    lambda, shift, and UCL obtaioned from Phase I for ARL0=200     */ 
/* 4. Several versions of this code will exist based on the sampling */ 
/*    criteria below (distribution, p-vartiates).                    */ 
/*-------------------------------------------------------------------*/ 
/*                >>>> Sampling criteria <<<<<                       */       
/* Distribution: Multivariate Normal (Normal Marginals)              */ 
/* Number of qualirty variables: p=2, n=5                            */ 
/* Estimated Covariance matrix & mean vector, from 100,000 samples  */ 
/*-------------------------------------------------------------------*/ 
 
/*-------------------------------------------------------------------*/ 
/*  >>>>>>>>>>>>>>>>>>>    Notes for usage <<<<<<<<<<<<<<<<<<<   */ 
/* 1. Change the sampling distribution as needed, I used Normal, T,  */ 
/*    & Gamma.                                                       */ 
/* 2. Change the sampling size as desired.                           */ 
/* 3. Change the smoothing parameter "lambda" as desired.            */ 
/*-------------------------------------------------------------------*/ 
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options   mlogic mprint SYMBOLGEN FULLSTIMER  
compress=yes nonumber THREADS CPUCOUNT=ACTUAL ; 
 
/** to avoid the problem of filling SAS Log Window   */ 
/** in display save the SAS log and listing to files */ 
proc printto  new 
 log  =  'C:\SIMULATION_N5\MEWMA\MEWMA_PHASE_II_UCL_P2_N5\MEWMAP2N_P2N5_Xn.txt'  ; 
 print = "C:\SIMULATION_N5\MEWMA\MEWMA_PHASE_II_UCL_P2_N5\Temp_LIST.txt"; 
RUN;  
 
/*-----------------------------------------------------------------------*/; 
/** Clear old SAS data sets with the same name                           */; 
/*-----------------------------------------------------------------------*/; 
 
     
libname out 'F:\ASRM2\SRM799_SIMULATION_WORK\PHASE_II\MEWMA\MEWMA_PHASE_II_ARL_P2_N5'; 
 
%macro mewmaphase2(arl0,ucl1,ucl2,ucl3,ucl4,ucl5,ucl6,ucl7,variates); 
 
proc iml; 
  
/*-----------------------------------------------------------------------*/; 
/** START Estimate the covariance matrix and mean from 100,000 samples   */; 
/*-----------------------------------------------------------------------*/; 
 
 NumSim=10000 ; 
  n=5; 
 p=%eval(&variates); 
 var_x1=0; 
 RESULT_MEAN = j(NumSim,p,.); 
 RESULT_COV = j(p,p,0);  
 call randseed(1);    /* set seed for RANDGEN */  
 XX =  j(n,p,.);     /* initialize X matrix with n rows 
and p columns (n x p)    */ 
 do iii=1 to NumSim; 
  call RANDGEN(XX,'NORMAL');  /* fill X values from normal distribution 
default parameters */ 
     X_MEAN=XX[:,];     /* compute the column means of X matrix */ 
  RESULT_MEAN[iii,]=X_MEAN; /* save as the ith row of means matrix */ 
  COV_X=cov (XX);     /* compute the covariance matrix of X 
matrix */ 
  RESULT_COV = RESULT_COV + COV_X; 
 end; 
 X_BAR_BAR_EST=RESULT_MEAN[:,];   /* calculate the samples 
means */ 
 COV_EST = RESULT_COV / (NumSim*n ) ; /* Calc. the avg. covariance matrix to est. 
sample cov matrix */ 
   
 var_x1=COV_EST[1,1]; 
 print   result_cov COV_EST;   /* This is the estimated covariance 
matrix of X samples */ 
 print   X_BAR_BAR_EST var_x1;   /* This is the estimated mean vextor 
matrix of X samples, use as initial Z value */ 
  
/*-----------------------------------------------------------------------------*/; 
/**  END Estimatation of the covariance matrix and mean from 100,000 samples   */ 
/*-----------------------------------------------------------------------------*/; 
 
  varNames = {"lambda" "Delta" "H" "T" "RL"};  
  /* varNames = {"lambda" "K" "h" "X1_BAR" "X2_BAR" "Z1" "Z2" "T" "RL"}; */ 
   create out.MEWMA_%eval(&arl0)_PII_ARL_N_P%eval(&variates)  var varNames;  
   SIMS=10000 ;            
  Z =  j(1,p,.);  /* initialize Z matrix with 1 row and p columns (1 x 2)       
*/ 
     X =  j(n,p,.);  /* initialize X matrix with n rows and p columns (5 x 2)    */ 
  X1=  j(n,1,.); 
  X2=  j(n,1,.); 
     RL=. ; 
  RESULT=j(SIMS,5,.);     /* Result*/ 
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     call randseed(12345);     /* set seed for RANDGEN */ 
 
/*----------------------------------------------------------------------*/; 
/**  Start MEWMA To Generate Phase II ARL values for ARL0=200,500, &1000 */ 
/*----------------------------------------------------------------------*/ 
 
  
 do l= 1 to 7;               
     
    if l=1  then lambda=0.01;  /* (1) Start iteration counter "do" loop */ 
    if l=2  then lambda=0.02;  
    if l=3  then lambda=0.03; 
    if l=4  then lambda=0.05; 
    if l=5  then lambda=0.1 ;  
    if l=6  then lambda=0.2 ;  
    if l=7  then lambda=0.5 ;  
 if l=1  then H=&ucl1 ; /*5.3*/; 
 if l=2  then H=&ucl2 ; /*6.2*/; 
 if l=3  then H=&ucl3 ; /*6.8*/; 
 if l=4  then H=&ucl4 ; /*7.7*/; 
 if l=5  then H=&ucl5 ; /*8.8*/; 
 if l=6  then H=&ucl6 ; /*9.7*/; 
 if l=7  then H=&ucl7 ; /*10.4*/; 
 
 do ss= 1 to 5;        /* (2) Test shift in first variable for each 
lambda */ 
  if ss=1 then Delta=0.25* sqrt(var_x1); 
  if ss=2 then Delta=0.5 * sqrt(var_x1); 
  if ss=3 then Delta=1.0 * sqrt(var_x1); 
  if ss=4 then Delta=1.5 * sqrt(var_x1); 
  if ss=5 then Delta=2.5 * sqrt(var_x1); 
    
    
   do k = 1 to SIMS   ;       /* (3) DO 10,000 
ITERATIONS */ 
     do m= 1 to 15000   until (flag=0) ; /* (4) generate up to 15000 
sample or until T > h */ 
      if m=1 then flag=1;  
       call RANDGEN(X1,'NORMAL');   /* fill x1 values from normal distribution 
default parameters */ 
       call RANDGEN(X2,'NORMAL');  /* fill x1 values from normal distribution 
default parameters */ 
   X1=X1+Delta; 
   X[,1]=X1; 
   X[,2]=X2;  
   X_MEAN=X[:,];     /* compute the column means 
of X matrix */ 
         if m=1 then Z=X_BAR_BAR_EST;  /* usew instead of Z={0 0} */ 
        Zm=(lambda*X_MEAN) + (1-lambda)*Z; /* compute the Z vectors 
recrusive MEWMA structure */  
       Z=Zm;      /* save Z lag vectors 
for next vector in series */ 
      COV_Z=(lambda/(2-lambda)) *  
   (1-(1-lambda)**(2*m))*COV_EST; /*compute the covariance 
matrix of Z matrix */ 
    T =  Z * SOLVE(COV_Z,Z`);  /* compute the MEWMA charting 
statistic T**2 */ 
 
    if (T > h & flag=1) then  do; /* start T > h condition test 
loop   */ 
          RL=m     ;      /* set RL = 
number of subgroups or samples */ 
     R = lambda||Delta||H||T||RL; 
     RESULT[k,]=R; 
              flag=0; 
       end;    /* >> close T > h condition test loop 
<< */ 
  end;      /* (4) close/end  (m) 
subgroup "do" loop */ 
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 end;       /* (3) close/end 10K 
iteration loop */ 
    append from RESULT;    /*  Append 10000 iteration for 
eack lambda and UCL into SAS data set */ 
  end;        /* (2) close/end UCL loop */ 
end;        /* (1) close/end lambda loop 
*/ 
   
quit; 
 
title "MEWMA UCL PHASE II Simulation - Normal for: (P=&variates) and (IC ARL0=&arl0)"; 
  
proc means data=out.MEWMA_%eval(&arl0)_PII_ARL_N_P%eval(&variates)  ; 
class lambda h Delta; 
  
var RL; 
output out=out.MEWMA_%eval(&arl0)_PII_ARL_N_P%eval(&variates)_AVG mean=ARL std=SDRL; 
run; 
proc print data=out.MEWMA_%eval(&arl0)_PII_ARL_N_P%eval(&variates)_AVG; 
run;  
 
 
data out.MEWMA_%eval(&arl0)_PII_ARL_N_P%eval(&variates)_AVG2 ; 
 keep Lambda UCL Delta ARL sdrl _FREQ_; 
 set out.MEWMA_%eval(&arl0)_PII_ARL_N_P%eval(&variates)_AVG ; 
   UCL=h; 
   where _type_=7; 
run; 
 
proc print data=out.MEWMA_%eval(&arl0)_PII_ARL_N_P%eval(&variates)_AVG2    ; 
run; 
%mend; 
 
%mewmaphase2(200,5.3,6.2,6.8,7.7,8.8,9.7,10.4,2); 
%mewmaphase2(500,7,8.1,8.8,9.7,10.8,11.6,12.3,2); 
%mewmaphase2(1000,8.3,9.6,10.3,11.2,12.3,13.1,13.7,2); 
 
 
/*-------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------*/ 
/* >>>>>>>>>>>>>>>>  SRMEWMA Phase I UCL Determination <<<<<<<<<<<<< */ 
/*-------------------------------------------------------------------*/ 
/*-- A doctoral dissertation supplemental SAS code by Jamil Zeinab --*/ 
/*-------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------*/ 
/* 1. The IML SRMEWMA code generates 10,000 iterations of            */  
/*    of up to 15,000 p-variate samples from a                       */  
/*    sampling distribution and computes MEWMA                       */ 
/* 2. It creates a SRMEWMA chating statistic Qt                      */ 
/* 3. It calculates the UCLs for MEWMA  for which the                */  
/*    in-control average run length is ARL_0 = 200, 500, & 1000.     */ 
/* 4. Several versions of this code will exist based on the sampling */ 
/*    criteria below (distribution, p-vartiates).                    */ 
/*-------------------------------------------------------------------*/ 
/*                >>>> Sampling criteria <<<<<                       */ 
/* Distribution: Multivariate Normal (Normal Marginals)              */ 
/* Number of qualirty variables: p=5, n=5                            */ 
/* Estimated Covariance matrix & mean vector, from 100,000 samples  */ 
/*-------------------------------------------------------------------*/ 
 
/*-------------------------------------------------------------------*/ 
/*  >>>>>>>>>>>>>>>>>>>    Notes for usage <<<<<<<<<<<<<<<<<<<   */ 
/* 1. Change the sampling distribution as needed, I used Normal, T,  */ 
/*    & Gamma.                                                       */ 
/* 2. Change the sampling size as desired.                           */ 
/* 3. Change teh smoothing parameter "lambda" as desired.            */ 
/*-------------------------------------------------------------------*/ 
 
dm 'output'  clear ; 
dm 'log'  clear ;  
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options   mlogic mprint FULLSTIMER compress=yes nonumber THREADS CPUCOUNT=ACTUAL ; 
libname out 'C:\SIMULATION_N5\SRMEWMA\SRMEWMA_PAHSEI_UCL_P5_N5'; 
 
/** -- to avoid the problem of filling SAS Log  
Window in display save the SAS log and listing to files;*/ 
proc printto  new 
log  =  'C:\SIMULATION_N5\SRMEWMA\SRMEWMA_PAHSEI_UCL_P5_N5\SRMEWMAP1N_P2N5_Xn.txt'  ; 
print = "C:\SIMULATION_N5\SRMEWMA\SRMEWMA_PAHSEI_UCL_P5_N5\Temp_LIST.txt";  
 
RUN;  
 
title 'SRMEWMA UCL PHASE I Simulation - Normal for (Estimated Covariance matrix and mean 
vector, from 100,000 samples) , p=5, n=5'; 
  
/*-----------------------------------------------------------------------*/; 
/** Clear old SAS data sets with tehe same name                           */; 
/*-----------------------------------------------------------------------*/; 
 
 
 
/*----------------------------------------------------------------*/ 
/* >>>>>>>>>>> Oja Centered Signed-Sank Vector  <<<<<<<<<<<<<<<<<< */ 
/*                                                                */ 
/* infile:   Specifies a name for the input SAS data set. The ith */ 
/*           observation is the ith observation vector. The jth   */ 
/*           variable is the jth element of the observation       */ 
/*           vector.                                              */ 
/* outfile:  Specifies a name for the output SAS data set.        */ 
/*           This data set will contain the Oja signed-rank       */ 
/*           vectors (Hettmansperger, Mottonen and Oja (1996).    */ 
/*           Affine invariant multivariate one-sample signed-rank */ 
/*           tests. Mathematics, University of Oulu).             */ 
/*----------------------------------------------------------------*/ 
/*----------------------------------------------------------------*/ 
/*----------------------------------------------------------------*/ 
/* Courtesy of:                                                   */ 
/*          Jyrki Mottonen, PhD                                   */ 
/*          Department of Mathematical Sciences,                  */ 
/*          University of Oulu,                                   */ 
/*          FIN-90570 Oulu,                                       */ 
/*          Finland                                               */ 
/*----------------------------------------------------------------*/ 
/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>> Module "Rn" <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<**/ 
/*----------------------------------------------------------------*/ 
 
proc iml; 
 
start Rn(n,k,i,X); /* Module "Rn" gives the signed-rank */ 
p=1:k;   s=j(k,1,0);   cnt=0; 
do until(lc=0); 
  cnt=cnt+1; 
  s=s+Qp(k,i,p,X); 
  run nextp(n,k,p,lc);   /* take next p */ 
end; 
return(s/(cnt*2**k)); /* cnt = N_p = "n choose k" */ 
/**/print s; 
finish Rn; 
/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>>>>>>>> Module "nextp" <<<<<<<<<<<<<<<<<<<<<<**/ 
/*----------------------------------------------------------------*/ 
start nextp(N,k,p,lc);    /* Module "nextp" gives the next k-subset of 
an N-set  */ 
          /* lc=0 if the previous k-
subset was the last k-subset */ 
lc=k; 
if(p[k]<N)then do; 
   p[k]=p[k]+1; 
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end;       /* returns the p-set combination 
{1,2,3}.  */ 
else do;         /*for example. Order is not important */ 
  flag=0; 
  do until((lc=0)|(flag=1)); 
    lc=lc-1; 
    if(lc>0)then do; 
      if(p[lc]<(N-k+lc))then flag=1; 
    end; 
  end; 
  if(lc>0) then do; 
    p[lc]=p[lc]+1; 
    do i=(lc+1) to k; 
      p[i]=p[i-1]+1; 
    end; 
  end; 
end; 
finish nextp; 
/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>>>> Module "Qp" <<<<<<<<<<<<<<<<<<<<<<<<<<<<<**/ 
/*----------------------------------------------------------------*/ 
start Qp(k,i,p,X);    /* Module "Qp" gives the vector (2.8) times 2**k */ 
s=j(k,1,0); 
temp=2##(0:(k-1));       /* temp = (1 2 4 ... 2**(k-1)) */ 
do j=0 to 2**k-1; 
  a=2*(band(temp,j)>0)-1;   /* a[m]=+1 or -1, m=1,...k */ 
  if(all(a#p-i))then do;    /* if i is in a#p, Spdp=0  */ 
    Y=repeat(a,k,1)#X[,p]; 
    s=s+Spdp(k,Y,X[,i]); 
  end; 
end; 
return(s); 
finish Qp; 
/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>>>>>>>> Module "Spdp" <<<<<<<<<<<<<<<<<<<<<<<**/ 
/*----------------------------------------------------------------*/ 
/* Module "Spdp" computes the vector S_pa()d_pa in (2.8) Mottenen paper */ 
 
start Spdp(k,Y,xi);  
W1=Y[,2:k]-repeat(Y[,1],1,k-1); /* (xi2-xi1,...,xik-xi1) */ 
W2=Y-repeat(xi,1,k);            /* (xi1-xi,...,xik-xi)   */ 
dp=j(k,1,0); 
do j=1 to k; 
  dp[j]=((-1)**j)*det(W1[remove(1:k,j),]); 
end; 
return(sign(det(W2))*dp);    /*sign function return 1,-1, or 0 */ 
finish Spdp; 
/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>>>>>>>> Module "score" <<<<<<<<<<<<<<<<<<<<<<**/ 
/*----------------------------------------------------------------*/ 
start score;     /*print"Oja signed-rank vectors";*/ 
        /*print"Signed-Rank Vectors"; 
*/ 
*use X; 
*read all into X; 
X=X`; 
N=ncol(X);          /* n = # of cols = # of observations 
*/ 
k=nrow(X);          /* k = # of rows = dimension         
*/ 
srank=j(k,N,0); 
do j=1 to N; 
  srank[,j]=Rn(n,k,j,X); 
end; 
Srank=Srank`; 
/*create OSR from srank [colname={SR1,SR2}]; 
append from srank;*/ 
finish score; 
/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>>>>>>>> Module "score" <<<<<<<<<<<<<<<<<<<<<<**/ 
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/*----------------------------------------------------------------*/ 
start score2;     /*print"Oja signed-rank vectors";*/ 
        /*print"Signed-Rank Vectors"; 
*/ 
*use X; 
*read all into X; 
G=X`; 
n=ncol(G);          /* n = # of cols = # of observations 
*/ 
k=nrow(G);          /* k = # of rows = dimension         
*/ 
srank=j(k,n,0); 
do j=1 to n; 
  srank[,j]=Rn(n,k,j,G); 
end; 
Srank=Srank`; 
/*create OSR from srank [colname={SR1,SR2}]; 
append from srank;*/ 
finish score2; 
 
/*-----------------------------------------------------------------------------*/ 
/*-> Srart Parameter estimation of signed-ranks means and covarioance matrix <-*/ 
/*-----------------------------------------------------------------------------*/ 
    NumSim=100000 ; 
  nn=5; 
 pp=5; 
 RESULT_SR_MEAN = j(NumSim,pp,.); 
 RESULT_SR_COV = j(pp,pp,0);  
 call randseed(12345); /* set seed for RANDGEN */  
 X =  j(nn,pp,.);  /* initialize X matrix with n rows and p columns (n x p)    
*/ 
 
do iii=1 to NumSim; 
 call RANDGEN(X,'NORMAL'); /* fill X values from normal distribution default 
parameters */ 
 *print X ; 
 run score2; 
 *print x Srank; 
 /*-----------------------------------------------------------------------------*/ 
 /*-> calculate the Signed-rank statistic SR                                  <-*/ 
 /*-----------------------------------------------------------------------------*/ 
 SR_MEAN=Srank[:,];     /* compute the column means of SR 
matrix */ 
 *print SR_MEAN;     
 RESULT_SR_MEAN[iii,]=SR_MEAN; /* save as the ith row of means matrix */ 
 COV_SR=cov (Srank);     /* compute the covariance matrix of X matrix 
*/ 
 RESULT_SR_COV = RESULT_SR_COV + COV_SR; 
end; 
 SR_D_BAR_MEAN_EST=RESULT_SR_MEAN[:,];/* calc. the samples means */ 
 COV_EST = RESULT_SR_COV / (NumSim*nn) ; /* Calc. the average cov matrix */ 
 print   COV_EST; 
 print   SR_D_BAR_MEAN_EST; 
 
/*-----------------------------------------------------------------------------*/; 
/**  END Estimatation of the covariance matrix and mean from 100,000 samples   */ 
/*-----------------------------------------------------------------------------*/; 
 
SIMS=10000 ; 
varNames = {"lambda" "kkk" "hhh" "Qt" "RL2"};     
Wm =  j(1,pp,.);  /* initialize Wm matrix with 1 row and p columns (1 x 2 ) */ 
W =   j(1,pp,.);  /* initialize W matrix with 1 row and p columns (1 x 2 ) */ 
X =  j(nn,pp,.);  /* initialize X matrix with n rows and p columns (5 x 2) */ 
RL2=. ; 
RESULT=j(SIMS,5,.); /* Result*/ 
call randseed(12345);/* set seed for RANDGEN */ 
 
/*----------------------------------------------------------------------*/ 
/*>>>  Start SRMEWMA simulation to find UCL for ARL0=200,500, &1000 <<< */ 
/*----------------------------------------------------------------------*/ 
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do ll= 5 to 5;      /* (1) Start iteration counter "do" loop */ 
    if ll=1  then lambda=0.01; 
    if ll=2  then lambda=0.02;  
    if ll=3  then lambda=0.03; 
    if ll=4  then lambda=0.05 ;  
    if ll=5  then lambda=0.1 ;  
    if ll=6  then lambda=0.2 ;  
    if ll=7  then lambda=0.5 ; 
 
 do hhh= 19. TO 19.3  BY 0.1  ;       /* (2) Test UCL limits from 7 to 40 
for each lambda */ 
    do kkk = 1 to SIMS   ;      /* (3) DO 10,000 
ITERATIONS */ 
    do mmm= 1 to 10000   until (flag=0) ;   /* (4) generate up to 15000 sample 
or until T > h */ 
   call RANDGEN(X,'NORMAL');   /* fill XX Matrix w/values from normal 
dist. default parms */ 
   run score2; 
   SR_MEAN=Srank[:,];      /*print SR_MEAN;*/ 
   if mmm=1 then flag=1;  
   if mmm=1 then W=SR_D_BAR_MEAN_EST;  /*W={0 0}*/ 
   Wm = (lambda * SR_MEAN)+ (1-lambda)* W;/* compute the W vectors recrusive 
SRMEWMA structure */  
   W=Wm ;      /* save W lag vectors for 
next vector in series */ 
   COV_Qt=(lambda/(2-lambda)) *  
             (1-(1-lambda)**(2*mmm) )* COV_EST; /*compute the covariance matrix of w 
matrix */ 
   Qt =  W * SOLVE(COV_Qt,W`);    /* compute the SRMEWMA 
charting statistic Qt  */ 
    if (Qt > hhh & flag=1) then  do; /* Check if Qt > UCL */ 
         RL2=mmm    ;  
         R = lambda || kkk || hhh || Qt|| RL2;   
         RESULT[kkk,]=R; 
     flag=0; 
     end;      
   end;       /* (4) close/end  (m) 
subgroup "do" loop */ 
   *print X Srank SR_MEAN lambda   KKK   hhh COV_Qt W  Qt  RL2; 
   end;    /* (3) close/end 10K iteration loop */ 
       append from RESULT;  /*Append 10000 iteration for eack lambda and UCL 
into SAS data set */ 
  end;        /* (2) close/end UCL 
loop */ 
end;         /* (1) close/end 
lambda loop */ 
 
proc means data=out.SRMEWMA_PhaseIUCL_Nl_P5_N5XSn   ; 
class lambda HHH; 
var RL2; 
output out=averages mean=ARL std=SDRL; 
run; 
    
data averages ; 
 keep Lambda UCL ARL STDERROR_ARL _FREQ_; 
 set averages ; 
 where _type_=3; 
 STDERROR_ARL=sdrl/100;         
 UCL=h; 
run; 
 
proc print data=averages    ; 
run; 
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/*-------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------*/ 
/* >>>>>>>>>>>>>>>>  SRMEWMA Phase II ARL Determination <<<<<<<<<<<< */ 
/*-------------------------------------------------------------------*/ 
/*-- A doctoral dissertation supplemental SAS code by Jamil Zeinab --*/ 
/*-------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------*/ 
/* 1. The IML SRMEWMA code generates 10,000 iterations of            */  
/*    of up to 15,000 p-variate samples from a                       */  
/*    sampling distribution and computes MEWMA                       */ 
/* 2. It creates a SRMEWMA chating statistic Qt                      */ 
/* 3. It calculates the UCLs for MEWMA  for which the                */  
/*    in-control average run length is ARL_0 = 200, 500, & 1000.     */ 
/* 4. Several versions of this code will exist based on the sampling */ 
/*    criteria below (distribution, p-vartiates).                    */ 
/*-------------------------------------------------------------------*/ 
/*                >>>> Sampling criteria <<<<<                       */ 
/* Distribution: Multivariate Normal (Normal Marginals)              */ 
/* Number of qualirty variables: p=2, n=5                            */ 
/* Estimated Covariance matrix & mean vector, from 100,000 samples  */ 
/*-------------------------------------------------------------------*/  
 
/*-------------------------------------------------------------------*/ 
/*  >>>>>>>>>>>>>>>>>>>    Notes for usage <<<<<<<<<<<<<<<<<<<   */ 
/* 1. Change the sampling distribution as needed, I used Normal, T,  */ 
/*    & Gamma.                                                       */ 
/* 2. Change the sampling size as desired.                           */ 
/* 3. Chamge the smoothing parameter "lambda" as desired.            */ 
/*-------------------------------------------------------------------*/ 
 
dm 'output'  clear ; 
dm 'log'  clear ;  
 
options   mlogic mprint FULLSTIMER compress=yes nonumber THREADS CPUCOUNT=ACTUAL ; 
libname out 'F:\ASRM2\SRM799_SIMULATION_WORK\PHASE_II\SRMEWMA\SRMEWMA_PHASEII_ARL_P2_N5'; 
  
/** -- to avoid the problem of filling SAS Log  
  Window in display save the SAS log and listing to files;*/ 
proc printto  new 
 log  =  'C:\SIMULATION_N5\SRMEWMA\SRMEWMA_PAHSEI_UCL_P5_N5\SRMEWMAP1N_P2N5_Xn.txt'  ; 
 print = "C:\SIMULATION_N5\SRMEWMA\SRMEWMA_PAHSEI_UCL_P5_N5\Temp_LIST.txt"; 
 
RUN; title 'SRMEWMA ARL PHASE II Simulation - Normal for ARL0=200 , p=2, n=5'; 
  
 
/*----------------------------------------------------------------*/ 
/* >>>>>>>>> Oja Centered Signed-Rank Vectors <<<<<<<<<<<<<<<<<<< */ 
/*                                                                */ 
/* infile:   Specifies a name for the input SAS data set. The ith */ 
/*           observation is the ith observation vector. The jth   */ 
/*           variable is the jth element of the observation       */ 
/*           vector.                                              */ 
/* outfile:  Specifies a name for the output SAS data set.        */ 
/*           This data set will contain the Oja signed-rank       */ 
/*           vectors (Hettmansperger, Mottonen and Oja (1996).    */ 
/*           Affine invariant multivariate one-sample signed-rank */ 
/*           tests. Mathematics, University of Oulu).             */ 
/*----------------------------------------------------------------*/ 
/*----------------------------------------------------------------*/ 
/*----------------------------------------------------------------*/ 
/* Courtesy of:                                           */ 
/*          Jyrki Mottonen, PhD                                   */ 
/*          Department of Mathematical Sciences,                  */ 
/*          University of Oulu,                                   */ 
/*          FIN-90570 Oulu,                                       */ 
/*          Finland                                               */ 
/*                                                                */ 
/*          E-mail: Jyrki.Mottonen@oulu.fi                        */ 
/*----------------------------------------------------------------*/ 
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/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>> Module "Rn" <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<**/ 
/*----------------------------------------------------------------*/ 
proc iml; 
 
 
start Rn(n,k,i,X); /* Module "Rn" gives the signed-rank */ 
p=1:k;   s=j(k,1,0);   cnt=0; 
do until(lc=0); 
  cnt=cnt+1; 
  s=s+Qp(k,i,p,X); 
  run nextp(n,k,p,lc);   /* take next p */ 
end; 
return(s/(cnt*2**k)); /* cnt = N_p = "n choose k" */ 
/**/print s; 
finish Rn; 
/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>>>>>>>> Module "nextp" <<<<<<<<<<<<<<<<<<<<<<**/ 
/*----------------------------------------------------------------*/ 
start nextp(N,k,p,lc);  /* Module "nextp" gives the next k-subset of an N-set  */ 
       /* lc=0 if the previous k-subset was the last k-
subset */ 
lc=k; 
if(p[k]<N)then do; 
   p[k]=p[k]+1; 
end;   /* returns the p-set combination {1,2,3}.  */ 
else do;     /*for example. Order is not important */ 
  flag=0; 
  do until((lc=0)|(flag=1)); 
    lc=lc-1; 
    if(lc>0)then do; 
      if(p[lc]<(N-k+lc))then flag=1; 
    end; 
  end; 
  if(lc>0) then do; 
    p[lc]=p[lc]+1; 
    do i=(lc+1) to k; 
      p[i]=p[i-1]+1; 
    end; 
  end; 
end; 
finish nextp; 
/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>>>> Module "Qp" <<<<<<<<<<<<<<<<<<<<<<<<<<<<<**/ 
/*----------------------------------------------------------------*/ 
start Qp(k,i,p,X);  /* Module "Qp" gives the vector (2.8) times 2**k */ 
s=j(k,1,0); 
temp=2##(0:(k-1));      /* temp = (1 2 4 ... 2**(k-1)) */ 
do j=0 to 2**k-1; 
  a=2*(band(temp,j)>0)-1;   /* a[m]=+1 or -1, m=1,...k */ 
  if(all(a#p-i))then do;    /* if i is in a#p, Spdp=0  */ 
    Y=repeat(a,k,1)#X[,p]; 
    s=s+Spdp(k,Y,X[,i]); 
  end; 
end; 
return(s); 
finish Qp; 
/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>>>>>>>> Module "Spdp" <<<<<<<<<<<<<<<<<<<<<<<**/ 
/*----------------------------------------------------------------*/ 
/* Module "Spdp" computes the vector S_pa()d_pa in (2.8) Mottenen paper */ 
start Spdp(k,Y,xi);     
W1=Y[,2:k]-repeat(Y[,1],1,k-1); /* (xi2-xi1,...,xik-xi1) */ 
W2=Y-repeat(xi,1,k);            /* (xi1-xi,...,xik-xi)   */ 
dp=j(k,1,0); 
do j=1 to k; 
  dp[j]=((-1)**j)*det(W1[remove(1:k,j),]); 
end; 
return(sign(det(W2))*dp);    /*sign function return 1,-1, or 0 */ 
finish Spdp; 
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/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>>>>>>>> Module "score" <<<<<<<<<<<<<<<<<<<<<<**/ 
/*----------------------------------------------------------------*/ 
start score;   /*print"Oja signed-rank vectors";*/ 
      /*print"Signed-Rank Vectors"; */ 
*use X; 
*read all into X; 
X=X`; 
N=ncol(X);       /* n = # of cols = # of observations */ 
k=nrow(X);       /* k = # of rows = dimension         */ 
srank=j(k,N,0); 
do j=1 to N; 
  srank[,j]=Rn(n,k,j,X); 
end; 
Srank=Srank`; 
/*create OSR from srank [colname={SR1,SR2}]; 
append from srank;*/ 
finish score; 
/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>>>>>>>> Module "score" <<<<<<<<<<<<<<<<<<<<<<**/ 
/*----------------------------------------------------------------*/ 
start score2;   /*print"Oja signed-rank vectors";*/ 
      /*print"Signed-Rank Vectors"; */ 
*use X; 
*read all into X; 
G=X`; 
n=ncol(G);        /* n = # of cols = # of observations */ 
k=nrow(G);        /* k = # of rows = dimension         */ 
srank=j(k,n,0); 
do j=1 to n; 
  srank[,j]=Rn(n,k,j,G); 
end; 
Srank=Srank`; 
/*create OSR from srank [colname={SR1,SR2}]; 
append from srank;*/ 
finish score2; 
/*----------------------------------------------------------------*/ 
/** >>>>>>>>>>>>>>>>>>>>>>> Module "score" <<<<<<<<<<<<<<<<<<<<<<**/ 
/*----------------------------------------------------------------*/ 
start score3;  /*print"Oja signed-rank vectors";*/ 
     /*print"Signed-Rank Vectors"; */ 
*use X; 
*read all into X; 
QQ=XX`; 
n=ncol(QQ);       /* n = # of cols = # of observations */ 
k=nrow(QQ);       /* k = # of rows = dimension         */ 
srank=j(k,n,0); 
do j=1 to n; 
  srank[,j]=Rn(n,k,j,QQ); 
end; 
Srank=Srank`; 
/*create OSR from srank [colname={SR1,SR2}]; 
append from srank;*/ 
finish score3; 
 
/*-----------------------------------------------------------------------------*/ 
/*-> Srart Parameter estimation of signed-ranks means and covarioance matrix <-*/ 
/*-----------------------------------------------------------------------------*/ 
    NumSim=100000 ; 
  nn=5; 
 pp=2; 
 RESULT_SR_MEAN = j(NumSim,pp,.); 
 RESULT_SR_COV = j(pp,pp,0);  
 var_x1= j (1,1,0); 
 call randseed(12345);  /* set seed for RANDGEN */  
 X =  j(nn,pp,.);    /* initialize X matrix with n rows and p 
columns (n x p)*/ 
 
do iii=1 to NumSim; 
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 call RANDGEN(X,'NORMAL');  /* fill X values from normal distribution default 
param. */ 
 *print X ; 
 run score2; 
 *print x Srank; 
 /*-----------------------------------------------------*/ 
 /*-> calculate the Signed-rank statistic SR          <-*/ 
 /*-----------------------------------------------------*/ 
 SR_MEAN=Srank[:,];     /* compute the column means of SR matrix */ 
 *print SR_MEAN;     
 RESULT_SR_MEAN[iii,]=SR_MEAN; /* save as the ith row of means matrix */ 
 COV_SR=cov (Srank);     /* compute the covariance matrix of X matrix 
*/ 
 RESULT_SR_COV = RESULT_SR_COV + COV_SR; 
end; 
 SR_D_BAR_MEAN_EST=RESULT_SR_MEAN[:,];/* calculate the samples means */ 
 COV_EST = RESULT_SR_COV/(NumSim*nn) ;/* Calculate teh average covariance matrix */ 
 var_X1= COV_EST[1,1]; 
 print   COV_EST; 
  print   var_x1; 
 
 print   SR_D_BAR_MEAN_EST; 
 
/*-----------------------------------------------------------------------------*/; 
/**  END Estimatation of the covariance matrix and mean from 100,000 samples   */ 
/*-----------------------------------------------------------------------------*/; 
 
SIMS=10000 ; 
varNames = {"lambda" "delta" "kkk" "hhh" "Qt" "RL2"};    
create out.SRMEWMA_200_PhaseII_ARL_N_P2 var varNames;  
Wm =  j(1,pp,.);  /* initialize Wm matrix with 1 row and p columns (1 x 2 ) */ 
W =   j(1,pp,.);  /* initialize W matrix with 1 row and p columns (1 x 2 ) */ 
XX =  j(nn,pp,.);  /* initialize X matrix with n rows and p columns (5 x 2) */ 
XX1= j(nn,1,.); 
XX2= j(nn,1,.); 
RL2=. ; 
RESULT=j(SIMS,6,.);  /* Result*/ 
call randseed(12345); /* set seed for RANDGEN */ 
 
/*----------------------------------------------------------------------*/ 
/*>>>  Start SRMEWMA simulation to find UCL for ARL0=200,500, &1000 <<< */ 
/*----------------------------------------------------------------------*/ 
 
do ll= 1 to 7;     /* (1) Start iteration counter "do" loop */ 
    if ll=1  then lambda=0.01; 
    if ll=2  then lambda=0.02;  
    if ll=3  then lambda=0.03; 
    if ll=4  then lambda=0.05 ;  
    if ll=5  then lambda=0.1 ;  
    if ll=6  then lambda=0.2 ;  
    if ll=7  then lambda=0.5 ; 
 if ll=1  then hhh=5.3; 
 if ll=2  then hhh=6.3; 
 if ll=3  then hhh=6.9; 
 if ll=4  then hhh=7.7; 
 if ll=5  then hhh=8.85; 
 if ll=6  then hhh=9.9; 
 if ll=7  then hhh=10.9; 
 do ss= 1 to 5;       /* (2) Test shift in first variable for each lambda 
*/ 
  if ss=1 then Delta=0.25 * sqrt(var_x1); 
  if ss=2 then Delta=0.5 *  sqrt(var_x1); 
  if ss=3 then Delta=1.0 *  sqrt(var_x1); 
  if ss=4 then Delta=1.5 *  sqrt(var_x1); 
  if ss=5 then Delta=2.5 *  sqrt(var_x1); 
 
    do kkk = 1 to SIMS ; /* (3) DO 10,000 ITERATIONS */ 
    do mmm= 1 to 15000   until (flag=0) ; /* (4) generate up to 15000 sample or 
until T > h */ 
        if mmm=1 then flag=1; 
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   call RANDGEN(XX1,'NORMAL'); /* fill x1 values from normal dist. 
default params */ 
       call RANDGEN(XX2,'NORMAL'); /* fill x2 values from normal dist. default 
params */ 
   XX1=XX1+Delta; 
   XX[,1]=XX1; 
   XX[,2]=XX2;  /* fill XX Matrix w/values from normal dist. 
default parameters */ 
   
   run score3; 
   SR_MEAN=Srank[:,];   /*print SR_MEAN;*/ 
    
   if mmm=1 then W=SR_D_BAR_MEAN_EST;   /*W={0 0}*/ 
   Wm = (lambda * SR_MEAN)+ (1-lambda)* W;   
   W=Wm ;      /* save W lag vectors for 
next vector in series */ 
   COV_Qt=(lambda/(2-lambda)) *  
   (1-(1-lambda)**(2*mmm) )* COV_EST;  /*compute the covariance 
matrix of w matrix */ 
   Qt =  W * SOLVE(COV_Qt,W`);    /* compute the SRMEWMA 
charting statistic Qt  */ 
    if (Qt > hhh & flag=1) then  do; /* Check if Qt > UCL */ 
         RL2=mmm    ;  
         R = lambda || delta || kkk || hhh || Qt|| RL2  ; 
         RESULT[kkk,]=R; 
     flag=0; 
     end;      
   end;     /* (4) close/end  (m) subgroup "do" 
loop */ 
   *print XX Srank SR_MEAN lambda   KKK   hhh COV_Qt W  Qt  RL2; 
 
   end;      /* (3) close/end 10K iteration loop 
*/ 
    append from RESULT;   /*  Append 10000 iteration for eack 
lambda and UCL into SAS data set */ 
  end;      /* (2) close/end UCL loop */ 
end;       /* (1) close/end lambda loop */ 
 
proc means data=out.SRMEWMA_200_PhaseII_ARL_N_P2   ; 
class lambda HHH delta ; 
var RL2; 
output out=averages mean=ARL std=SDRL; 
run; 
    
data averages2 ; 
 keep Lambda UCL ARL sdrl _FREQ_; 
 set averages ; 
 where _type_=7; 
  UCL=hhh; 
run; 
  
proc print data=averages2    ; 
run; 
   
/*-------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------*/ 
/* >>>>>>>>  Hotellings T^2  Phase I UCL Determination <<<<<<<<<<<<< */ 
/*-------------------------------------------------------------------*/ 
/*-- A doctoral dissertation supplemental SAS code by Jamil Zeinab --*/ 
/*-------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------*/ 
/* 1. The IML MEWMA code generates 10,000 iterations of              */  
/*    of up to 15,000 p-variate samples from a                       */  
/*    sampling distribution and computes MEWMA                       */ 
/* 2. It creates a MEWMA chating statistic T                         */ 
/* 3. It calculates the UCLs for MEWMA  for which the                */  
/*    in-control average run length is ARL_0 = 200, 500, & 1000.     */ 
/* 4. Several versions of this code will exist based on the sampling */ 
/*    criteria below (distribution, p-vartiates).                    */ 
/*-------------------------------------------------------------------*/ 



199 
 
/*                >>>> Sampling criteria <<<<<                       */ 
/* Distribution: Multivariate GAMMA (GAMMA Marginals)                */ 
/* Number of qualirty variables: p=2, n=5                            */ 
/* Estimated Covariance matrix & mean vector, from 100,000 samples  */ 
/*-------------------------------------------------------------------*/ 
 
/*-------------------------------------------------------------------*/ 
/*  >>>>>>>>>>>>>>>>>>>    Notes for usage <<<<<<<<<<<<<<<<<<<   */ 
/* 1. Change the sampling distribution as needed, I used Normal, T,  */ 
/*    & Gamma.                                                       */ 
/* 2. Change the sampling size as desired.                           */ 
/* 3. Change the smoothing parameter "lambda" as desired.            */ 
/*-------------------------------------------------------------------*/ 
dm 'output'  clear ;  
dm 'log'  clear ; 
 
options   mlogic mprint FULLSTIMER compress=yes nonumber THREADS CPUCOUNT=ACTUAL ; 
libname out 'E:\ASRM2\SRM799_SIMULATION_WORK\PHASE_I\HOTELLINGS'; 
 
/* to avoid the problem of filling SAS Log */  
/* Window in display save the SAS log and lis  to files */ 
proc printto  new 
 log  =  'C:\SIMULATION_N5\MEWMA\MEWMA_PHASEI_UCL_P2_N5\MEWMAP1G_P2N5_Xn.txt'  ; 
 print = "C:\SIMULATION_N5\MEWMA\MEWMA_PHASEI_UCL_P2_N5\Temp_LIST.txt";*/ 
 
  
  
/*-----------------------------------------------------------------------*/; 
/** Clear old SAS data sets with the same name                           */; 
/*-----------------------------------------------------------------------*/; 
/* 
proc datasets library=out;  
 delete   HOT2_PhaseIUCL_NORMAL_P2 ;  
Run;  
*/ 
%macro hotellings (variates); 
proc iml; 
 
/*-----------------------------------------------------------------------*/; 
/** START Estimate the covariance matrix and mean from 100,000 samples   */; 
/*-----------------------------------------------------------------------*/; 
 
 NumSim=100000 ; 
  n=5; 
 p=%eval(&variates); 
 RESULT_MEAN = j(NumSim,p,.); 
 RESULT_COV = j(p,p,0);  
 call randseed(1);    /* set seed for RANDGEN */  
 XX =  j(n,p,.);     /* initialize X matrix with n rows 
and p columns (n x p)*/ 
 do iii=1 to NumSim; 
  call RANDGEN(XX,'NORMAL');  /* fill X values from normal distribution 
default parameter */ 
     X_MEAN=XX[:,];     /* compute the column means of X matrix */ 
  RESULT_MEAN[iii,]=X_MEAN; /* save as the ith row of means matrix */ 
  COV_X=cov (XX);     /* compute the covariance matrix of X 
matrix */ 
  RESULT_COV = RESULT_COV + COV_X; 
 end; 
 X_BAR_BAR_EST=RESULT_MEAN[:,]; /* calcu. the samples means */ 
 COV_EST = RESULT_COV / (NumSim);/* Calc. the avg covariance matrix to estimate 
sample cov matrix */ 
 print   COV_EST;  /* This is the est. cov matrix of X samples */ 
 print   X_BAR_BAR_EST;  /* This is the est. mean vextor matrix of X samples, 
use as initial Z value */ 
 
/*-----------------------------------------------------------------------------*/; 
/**  END Estimatation of the covariance matrix and mean from 100,000 samples   */ 
/*-----------------------------------------------------------------------------*/; 
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  varNames = {"p" "K" "h" "T2" "RL"};          
   create out.HOT2_PhaseIUCL_NORMAL_P2 var varNames;  
   SIMS=500 ;            
  Z =  j(1,p,.);   /* initialize Z matrix with 1 row and p columns (1 x 
2 ) */ 
     X =  j(n,p,.);   /* initialize X matrix with n rows and p columns (5 x 2) */ 
     RL=. ; 
  RESULT=j(SIMS,5,.); /* Result*/ 
     call randseed(12345); /* set seed for RANDGEN */ 
 
/*----------------------------------------------------------------------*/; 
/**  Start Hotellings t simulation to find UCL for ARL0=200,500, &1000  */ 
/*----------------------------------------------------------------------*/ 
 
 do h= 10  to 21 by  .1;          /* (2) Test UCL limits 
from 7 to 40 for each lambda */ 
   do k = 1 to SIMS   ;       /* (3) DO 
10,000 ITERATIONS */ 
     do m= 1 to 15000   until (flag=0) ;     /* (4) generate up to 
15000 sample or until T > h */ 
      if m=1 then flag=1;  
       call RANDGEN(X,'NORMAL');       /* fill x1 values from 
normal distribution default parameters */ 
       X_MEAN=X[:,];        /* compute the 
column means of X matrix */ 
 
   if m=1 then Z=X_BAR_BAR_EST;   /* usew instead of 
Z={0 0} */ 
   T_X_MEAN=t(X_MEAN);      /* 
compute the transpose of the  X_MEANS matrix */ 
   INV_COV_EST=inv (COV_EST); 
   T2 =  ( X_MEAN * SOLVE(COV_EST,T_X_MEAN) ); /* compute the MEWMA 
charting statistic T**2 works as below*/ 
   *T2 =   X_MEAN * INV_COV_EST * T_X_MEAN ; /* compute the MEWMA 
charting statistic T**2 works as abiove^*/ 
 
 
    if (T2 > h & flag=1) then  do;  /* start T > h 
condition test loop   */ 
          RL=m     ;       /* set 
RL = number of subgroups or samples */ 
     R = p||K||h||T2||RL ;     /* 
Concatinate the X_MEAN, Z, & T matrices into one matrix R */ 
     RESULT[k,]=R; 
              flag=0; 
       end;  /* >> close T > h condition test loop << */ 
  end;       /* (4) close/end  (m) subgroup "do" loop */ 
 end;     /* (3) close/end 10K iteration loop */ 
    append from RESULT; /*  Append 10000 iteration for eack lambda and UCL into 
SAS data set */ 
  end;      /* (2) close/end UCL loop */ 
        /* (1) close/end lambda loop */ 
  
  
title 'Hotellings T^2 UCL PHASE I Simulation - Standard Normal, p=%eval(&variates)'; 
proc means data=out.HOT2_PhaseIUCL_NORMAL_P%eval(&variates)  ; 
proc means data=out.HOT2_PhaseIUCL_NORMAL_p2  ; 
 
class  H; 
var RL; 
output out=averages mean=ARL std=SDRL; 
run; 
  
data averages ; 
 keep Lambda UCL ARL sdrl _FREQ_; 
 set averages ; 
 where _type_=3; 
  UCL=h; 
run; 
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proc print data=averages    ; 
run; 
  
%mend Hotellings;   
%hotellings(2); 
%hotellings(3); 
%hotellings(4); 
%hotellings(5); 
 
 
/*-------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------*/ 
/* >>>>>>>>>  HOTELLING'S Phase II UCL Determination    <<<<<<<<<<<< */ 
/*-------------------------------------------------------------------*/ 
/*-- A doctoral dissertation supplemental SAS code by Jamil Zeinab --*/ 
/*-------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------*/ 
/* 1. The IML code generates 10,000 iterations of                    */  
/*    of up to 15,000 p-variate samples from a                       */  
/*    sampling distribution and computes Hotelling's chi square      */ 
/* 2. It creates a Hotelling's chi square chating statistic T^2      */ 
/* 3. It calculates the out of control ARL for each combination of   */  
/*    variates, shift, and UCL obtaioned from Phase I for ARL0=200,  */ 
/*    500, & 1000.                                                   */ 
/* 4. Several versions of this code will exist based on the sampling */ 
/*    criteria below (distribution, p-vartiates).                    */ 
/*-------------------------------------------------------------------*/ 
/*                >>>> Sampling criteria <<<<<                       */       
/* Distribution: Multivariate Normal (Normal Marginals)              */ 
/* Number of qualirty variables: p=2, n=5                            */ 
/* Estimated Covariance matrix & mean vector, from 100,000 samples  */ 
/*-------------------------------------------------------------------*/ 
 
/*-------------------------------------------------------------------*/ 
/*  >>>>>>>>>>>>>>>>>>>    Notes for usage <<<<<<<<<<<<<<<<<<<   */ 
/* 1. Change the sampling distribution as needed, I used Normal, T,  */ 
/*    & Gamma.                                                       */ 
/* 2. Change the sampling size as desired.                           */ 
/* 3. Change the smoothing parameter "lambda" as desired.            */ 
/*-------------------------------------------------------------------*/ 
 
  
 DM 'LOG; CLEAR';     
options   mlogic mprint SYMBOLGEN FULLSTIMER  nonumber THREADS CPUCOUNT=ACTUAL ; 
 
/** -- to avoid the problem of filling SAS Log Window 
in display save the SAS log and listing to files */ 
proc printto  new 
 log  =  'C:\SIMULATION_N5\MEWMA\MEWMA_PHASE_II_UCL_P2_N5\MEWMAP2N_P2N5_Xn.txt'  ; 
 print = "C:\SIMULATION_N5\MEWMA\MEWMA_PHASE_II_UCL_P2_N5\Temp_LIST.txt"; 
 
RUN;  
/*-----------------------------------------------------------------------*/ 
/** Clear old SAS data sets with the same name                           */ 
/*-----------------------------------------------------------------------*/ 
  
 libname out 'f:\ASRM2\SRM799_SIMULATION_WORK\PHASE_II\HOTELLINGS'; 
  
 
%macro Hotphase2(arl0200,ucl1,arl0500,ucl2,arl01000,ucl3,variates); 
proc iml; 
 
title " Hotelling's UCL PHASE II Simulation - MV t(df=5) for: (P=&variates)"; 
 
/*-----------------------------------------------------------------------*/ 
/** START Estimate the covariance matrix and mean from 100,000 samples   */ 
/*-----------------------------------------------------------------------*/ 
 
 NumSim=10000 ; 
  n=5; 
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 p=%eval(&variates); 
 var_x1=0; 
 RESULT_MEAN = j(NumSim,p,.); 
 RESULT_COV = j(p,p,0);  
 call randseed(12345);    /* set seed for RANDGEN */  
 XX =  j(n,p,.);      /* initialize X matrix with n 
rows and p columns (n x p)    */ 
 do iii=1 to NumSim; 
  call RANDGEN(XX,'T',5);    /* fill X values from normal distribution 
default parameters */ 
     X_MEAN=XX[:,];      /* compute the column means of X 
matrix */ 
  RESULT_MEAN[iii,]=X_MEAN;  /* save as the ith row of means 
matrix */ 
  COV_X=cov (XX);      /* compute the covariance 
matrix of X matrix */ 
  RESULT_COV = RESULT_COV + COV_X; 
 end; 
 X_BAR_BAR_EST=RESULT_MEAN[:,];  /* calculate the samples means */ 
 COV_EST = RESULT_COV / (NumSim *n); 
 var_x1=COV_EST[1,1]; 
 print   result_cov COV_EST; /* This is the est. cov. matrix of X samples */ 
  
 print   X_BAR_BAR_EST var_x1;/*The est. mean vextor matrix of X samples, use as 
initial Z value */ 
 
  
/*-----------------------------------------------------------------------------*/ 
/*   END Estimatation of the covariance matrix and mean from 100,000 samples   */ 
/*-----------------------------------------------------------------------------*/ 
 
  varNames = {"P" "ARL0" "Delta" "H" "T2" "RL"};    
  /* varNames = {"K" "h" "X1_BAR" "X2_BAR" "Z1" "Z2" "T" "RL"}; */ 
   create out.HHOT2_PII_ARL_Tdf5_P%eval(&variates) var varNames;  
   SIMS=10000 ;            
  Z =  j(1,p,.);  /* initialize Z matrix with 1 row and p columns (1 x 2)*/ 
     X =  j(n,p,.);  /* initialize X matrix with n rows and p columns (5 x 2)*/ 
  X1=  j(n,1,.); 
  X2=  j(n,1,.); 
     RL=. ; 
  RESULT=j(SIMS,6,.); /* define the Result matrix */ 
     *call randseed(12345); /* set seed for RANDGEN */ 
 
/*-------------------------------------------------------------------------------*/ 
/*Start Hotellling's T^2 To Generate Phase II ARL values for ARL0=200,500, &1000 */ 
/*-------------------------------------------------------------------------------*/ 
 
do l= 1 to 3;    /* (1) for each ARL0 and UCL */ 
 IF l=1 THEN ARL0= %eval(&arl0200) ; 
 IF l=2 THEN ARL0= %eval(&arl0500) ; 
 IF l=3 THEN ARL0= %eval(&arl01000);  
   
 if l=1  then H=&ucl1 ;  
 if l=2  then H=&ucl2 ;   
 if l=3  then H=&ucl3 ;   
 
 do ss= 1 to 5;            /* (2) Test shift in 
first variable  */ 
 if ss=1 then Delta= 0.25 * sqrt(var_x1); 
 if ss=2 then Delta= 0.50 * sqrt(var_x1); 
 if ss=3 then Delta= 1.00 * sqrt(var_x1); 
 if ss=4 then Delta= 1.50 * sqrt(var_x1); 
 if ss=5 then Delta= 2.50 * sqrt(var_x1); 
     
   do k = 1 to SIMS   ;       /* (3) DO 10,000 
ITERATIONS */ 
    do m= 1 to 15000   until (flag=0) ; /* (4) generate up to 15000 sample or 
until T > h */ 
     if m=1 then flag=1;  
     call RANDGEN(X1,'T',5); /* fill x1 values from normal dist. default parameters */ 
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     call RANDGEN(X2,'T',5); /* fill x1 values from normal dist. default parameters */ 
  X1D=X1+delta; 
  X[,1]=X1D; 
  X[,2]=X2; 
 
  X_MEAN=X[:,];      /* compute the column means 
of X matrix */ 
  X_MINUS=(X_MEAN) - (X_BAR_BAR_EST) ; 
  T_X_MINUS=t (X_MINUS); 
  T_X_MEAN=t(X_MEAN);    /* compute the transpose of 
the  X_MEANS matrix */ 
  INV_COV_EST=inv (COV_EST); 
  *T2 =  ( X_MEAN * SOLVE(COV_EST,T_X_MEAN)   T2 =   X_MINUS * 
INV_COV_EST * T_X_MINUS  
 
   if (T2 > h & flag=1) then  do;  /* start T > h 
condition test loop   */ 
         RL=m     ;      /* set RL = number of 
subgroups or samples */ 
    R = p||ARL0||delta||h||T2||RL ;   
 RESULT[k,]=R; 
             flag=0; 
      end;    /* (5) >> close T > h condition test loop << */ 
   end;      /* (4) close/end  (m) subgroup "do" loop */ 
  end;      /* (3) close/end 10K "k" iteration loop */ 
    append from RESULT;  /*  Append 10000 iteration for eack lambda and 
UCL into SAS data set */ 
 end;      /* (2) close/end "ss" or shift loop */ 
end;       /* (1) close/end "i" UCL loop */ 
             
       
   
quit; 
 
/****** Results Analysis **********/ 
  title " Hotelling's UCL PHASE II Simulation - t(df=5) for: (P=&variates)"; 
 
 
proc means data=out.HHOT2_PII_ARL_Tdf5_P%eval(&variates)  ; 
class p ARL0 h Delta; 
var RL; 
output out=out.HHOT2_PII_ARL_Tdf5_P%eval(&variates)_AVG mean=ARL std=SDRL; 
run; 
 
 
proc print data=out.HHOT2_PII_ARL_Tdf5_P%eval(&variates)_AVG; 
run;  
 
 
data out.HHOT2_PII_ARL_Tdf5_P%eval(&variates)_AVG2 ; 
 keep UCL Delta ARL sdrl _FREQ_; 
 set out.HHOT2_PII_ARL_Tdf5_P%eval(&variates)_AVG ; 
   UCL=h; 
   where _type_=15; 
run; 
 
proc print data=out.HHOT2_PII_ARL_Tdf5_P%eval(&variates)_AVG2    ; 
run; 
 
 %mend; 
 
 %Hotphase2(200,13.5,500,17.6,1000,21.5,2); 
 %Hotphase2(200,16.6,500,21.1,1000,25.6,3); 
 %Hotphase2(200,19.2,500,24.3,1000,29.2,4); 
 %Hotphase2(200,21.6,500,27.0,1000,32.4,5); 
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A SIGNED-RANK NUMERICAL EXAMPLE 
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A Signed-Rank Numerical Example  

The computations of the invariant signed-ranks are highly intensive and a 

stochastic algorithm is used to calculate the signed-rank estimates by sampling 

observation hyperplanes (Oja, 1983).   

Let 𝒙𝟏, 𝒙𝟐,𝒙𝟑 be a random sample from a continuous 3-variate distribution. X is 

defined in Equation 124 as a (3 x 3) matrix of three variables and three observations.  

Hence, k = 3 and n = 3, and 

 𝑋 = �
6 −10 12
−7 13 −11
5 7 15

�. (1) 

  𝑃 = {𝑝 = (𝑖1, 𝑖2, 𝑖3): 𝑖1 < 𝑖2 < 𝑖3 ≤ 𝑛} (2) 

be the set of 𝑁𝑝 = �𝑛𝑘� different k-tuples of index set {1,2,3}.  In this example, there is 

only one set of 𝑁 = �3
3� = 3!

3!
= 1.  Therefore, the set 𝑃 = {𝑝 = (1,2,3)}, and the index 

𝑝 ∈ 𝑃 refer to a k-subset of the original observations.  Recall the multivariate sign 

Equation 121 defined below as Equation 3.  

 𝑸𝑝
+(𝒙) = 2−𝑘�𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎

𝑎∈𝐴

 . (3) 

Since k=3,  

 𝑸𝑝
+(𝑿) =

1
8
�𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎
𝑎∈𝐴

. (4) 

Also, the signed-rank function from Equation 123 for 𝑁𝑃−1 = 1is 

 𝑹𝑛+(𝒙) = �𝑸𝑝
+(𝒙)

𝑝∈𝑃

. (5) 

Substituting Equation 126 into Equation 127, we get the empirical signed-rank function 
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 𝑹𝑛+(𝒙) =
1
8
�𝑺𝒑𝒂(𝒙)𝒅𝒑𝒂
𝒂∈𝑨

.  (6) 

The multivariate sign is an average of all possible vector set A, such that A is the set of 2k 

possible vectors(±1 , ±1, ±1).  Since k = 3, we have a set A with 8 possible vectors.  

 

𝐴 =  {𝑎0 = [−1 −1 −1], 

𝑎1 = [1 −1 −1], 

𝑎2 = [−1 1 −1], 

𝑎3 = [1 1 −1], 

𝑎4 = [−1 −1 1], 

𝑎5 = [1 −1 1], 

𝑎6 = [−1 1 1], 

𝑎7 = [1 1 1]} 

(7) 

Let  

 
𝑿` = �

6 −7 5
−10 13 7
12 −11 15

�. 

 

(8) 

1. The signed-rank vector 𝑹𝑛+(𝒙) for 𝒙`𝟏  

We start by calculating the sign vector 𝑸1
+(𝒙) and signed-rank vector 𝑹𝑛+(𝒙) for 𝒙`𝟏 =

�
6

−10
12

�. We will calculate the sign vector 𝑸1
+(𝒙) and signed-rank vector 𝑹𝑛+(𝒙) for the 

other vector components,𝒙`𝟐 = �
−7
13
−11

�, and 𝒙`𝟑 = �
5
7

15
� in the same manner. 
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Calculate all vectors 𝑎𝑡𝑝 ∶ 𝑡 = 0,1,2,3,4,5,6,7 and check if 𝑖 = 1 ∈ 𝒂𝒊𝒑. If 𝑖 = 1 ∈

𝒂𝒊𝒑, then 𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎 = 0, so that 

𝒂𝟎𝒑 = [−1 −1 −1]#[1 2 3] = [−1 −2 −3], 

𝒂𝟏𝒑 = [1 −1 −1]#[1 2 3] = [𝟏 −2 −3], 

𝒂𝟐𝒑 = [−1 1 −1]#[1 2 3] = [−1 2 −3], 

𝒂𝟑𝒑 = [1 1 −1]#[1 2 3] = [𝟏 2 −3], 

𝐚𝟒𝒑 = [−1 −1 1]#[1 2 3] = [−1 −2 3], 

𝒂𝟓𝒑 = [1 −1 1]#[1 2 3] = [𝟏 −2 3], 

𝒂𝟔𝒑 = [−1 1 1]#[1 2 3] = [−1 2 3], 

𝒂𝟕𝒑 = [1 1 1]#[1 2 3] = [𝟏 2 3], 

Note that 𝑖 = 1 ∈ 𝒂𝒊𝒑 for 𝑖 = 1, 3, 5, & 7.  Therefore, 𝑸𝑝
+(𝒙) = 1

8
∑ 𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎𝑎∈𝐴  is 

determined by vectors 𝒂𝟎,𝒂𝟐,𝒂𝟒, & 𝒂𝟔only.  We now calculate the component  

𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎 for 𝒂𝟎,𝒂𝟐,𝒂𝟒, & 𝒂𝟔only. 

Define  

 

𝒀𝒊 = 𝒂𝒊#𝑿`, 

𝑾𝟏 = (𝒀𝒊 = [ 𝒚𝟐 𝒚𝟑]) − [ 𝒙𝒊 𝒙𝒊] ∶ 𝒊 = 𝟏,𝟐,𝐨𝐫 𝟑, 

 

𝑾𝟐 = 𝒀𝟎 − [𝒙𝒊 𝒙𝒊 𝒙𝒊] ∶ 𝒊 = 𝟏,𝟐,𝐨𝐫 𝟑, 

 

𝒅𝒑𝒂 =  

⎣
⎢
⎢
⎢
⎢
⎡

 

(−1)1 �𝑾𝟏 = �
𝒘𝟐
𝒘𝟑

��

(−1)2 �𝑾𝟏 = �
𝒘𝟏
𝒘𝟑

��

(−1)3 �𝑾𝟏 = �
𝒘𝟏
𝒘𝟐

��⎦
⎥
⎥
⎥
⎥
⎤

, 𝑜𝑟 

(9) 
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𝒅𝒑𝒂 =  

⎣
⎢
⎢
⎢
⎢
⎡

 

−1 �𝑾𝟏 = �
𝒘𝟐
𝒘𝟑

��

1 �𝑾𝟏 = �
𝒘𝟏
𝒘𝟑

��

−1 �𝑾𝟏 = �
𝒘𝟏
𝒘𝟐

��⎦
⎥
⎥
⎥
⎥
⎤

, and 

 

𝑺𝒑𝒂𝒅𝒑𝒂 = 𝑠𝑖𝑔𝑛(|𝑾𝟐|𝒅𝒑𝒂). 

 

We now calculate 𝑾𝟏,𝑾𝟐,𝒅𝒑𝟎, and 𝑺𝒑𝟎𝒅𝒑𝟎 as follows 

 

  𝒀𝟎 = [−1 −1 −1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
−6 7 −5
10 −13 −7
−12 11 −15

�,  

we have 

𝑾𝟏 = (𝒀𝟎 = [ 𝒚𝟐 𝒚𝟑]) − [ 𝒙𝒊 𝒙𝒊], 

 

𝑾𝟏 = �
7 −5

−13 −7
11 −15

� − �
−6 −6
10 10
−12 −12

� = � 
13 1
−23 −17
23 −3

�, 

 

𝑾𝟐 = 𝒀𝟎 − [𝒙𝟏 𝒙𝟏 𝒙𝟏], 

 

𝑾𝟐 = �
−6 7 −5
10 −13 −7
−12 11 −15

� − �
6 6 6

−10 −10 −10
12 12 12

� = � 
−12 1 −11
20 −3 3
−24 −1 −27

�, 
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𝒅𝒑𝟎 =  

⎣
⎢
⎢
⎢
⎢
⎡

 

−1 �−23 −17
23 −3 �

1 �13 1
23 −3�

−1 � 13 1
−23 −17�⎦

⎥
⎥
⎥
⎥
⎤

= �
−1(460)
1(−62)

−1(−198)
� = �

−460
−62
198

�, 

and the sign vector is 

𝑺𝒑𝟎𝒅𝒑𝟎 = 𝑠𝑖𝑔𝑛�|𝑾𝟐|𝒅𝒑𝟎� = 𝑠𝑖𝑔𝑛 ��� 
−12 1 −11
20 −3 3
−24 −1 27

�� ∗ �
−460
−62
198

��=�
−460
−62
198

�. 

Using the same formulas in equation (3.18), we calculate 

𝑾𝟏,𝑾𝟐,𝒅𝒑𝟐, and 𝑺𝒑𝟐𝒅𝒑𝟐 for 𝐘𝟐,𝒀4, and 𝒀𝟔 as 

 

𝒀𝟐 = [−1 1 −1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
−6 −7 −5
10 13 −7
−12 −11 −15

�, 

𝑾𝟏 = (𝒀𝟐 = [ 𝒚𝟐 𝒚𝟑]) − [ 𝒙𝒊 𝒙𝒊], 

 

𝑾𝟏 = �
−7 −5
13 −7
−11 −15

� − �
−6 −6
10 10
−12 −12

� = � 
−1 1
3 −17
1 −3

�, 

 

𝑾𝟐 = 𝒀𝟐 − [𝒙𝟏 𝒙𝟏 𝒙𝟏] 

 

𝑾𝟐 = �
−6 −7 −5
10 13 −7
−12 −11 −15

� − �
6 6 6

−10 −10 −10
12 12 12

� = � 
−12 −13 −11
20 23 3
−24 −23 −27

�, 
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𝒅𝒑𝟐 =  

⎣
⎢
⎢
⎢
⎢
⎡

 

−1 �3 −17
1 −3 �

1 �−1 1
1 −3�

−1 �−1 1
3 −17�⎦

⎥
⎥
⎥
⎥
⎤

= �
−1(8)
1(2)

−1(14)
� = �

−8
2

−14
�, 

and the sign vector is 

𝑺𝒑𝟐𝒅𝒑𝟐 = 𝑠𝑖𝑔𝑛�|𝑾𝟐|𝒅𝒑𝟐� = 𝑠𝑖𝑔𝑛 ��� 
−12 −13 −11
20 23 3
−24 −23 −27

�� ∗ �
−8
2

−14
��=�

8
−2
14
�. 

 

 𝒀𝟒 = [−1 −1 1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
−6 7 5
10 −13 7
−12 11 15

�, 

𝑾𝟏 = (𝒀𝟒 = [ 𝒚𝟐 𝒚𝟑]) − [ 𝒙𝒊 𝒙𝒊], 

 

𝑾𝟏 = �
7 −5

−13 −7
11 −15

� − �
−6 −6
10 10
−12 −12

� = �−
13 11
23 −3
23 27

�, 

 

𝑾𝟐 = 𝒀𝟒 − [𝒙𝟏 𝒙𝟏 𝒙𝟏], 

 

𝑾𝟐 = �
−6 7 5
10 −13 7
−12 11 15

� − �
6 6 6

−10 −10 −10
12 12 12

� = � 
−12 1 −1
20 −3 17
−24 −1 3

�, 

 

𝒅𝒑𝟒 =  

⎣
⎢
⎢
⎢
⎢
⎡

 

−1 �−23 −3
23 27�

1 �13 11
23 27�

−1 � 13 11
−23 −3�⎦

⎥
⎥
⎥
⎥
⎤

= �
−1(−552)

1(98)
−1(214)

� = �
552
98

−214
�, 

and the sign vector is 
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𝑺𝒑𝟒𝒅𝒑𝟒 = 𝑠𝑖𝑔𝑛�|𝑾𝟐|𝒅𝒑𝟒� = 𝑠𝑖𝑔𝑛 ��� 
−12 1 −1
20 −3 17
−24 −1 3

�� ∗ �
552
98

−214
��=�

−552
−98
214

� 

 

𝑭𝑶𝑹: 𝒀𝟔 = [−1 1 1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
−6 −7 5
10 13 7
−12 −11 15

�, 

𝑾𝟏 = (𝒀𝟔 = [ 𝒚𝟐 𝒚𝟑]) − [ 𝒙𝒊 𝒙𝒊], 

 

𝑾𝟏 = �
−7 −5
13 −7
−11 −15

� − �
−6 −6
10 10
−12 −12

� = �
−1 11
3 −3
1 27

�, 

 

𝑾𝟐 = 𝒀𝟔 − [𝒙𝟏 𝒙𝟏 𝒙𝟏], 

 

𝑾𝟐 = �
−6 −7 5
10 13 7
−12 −11 15

� − �
6 6 6

−10 −10 −10
12 12 12

� = � 
−12 −13 −1
20 23 17
−24 −23 3

�, 

 

𝒅𝒑𝟔 =  

⎣
⎢
⎢
⎢
⎢
⎡

 

−1 �3 −3
1 27�

1 �−1 11
1 27�

−1 �−1 11
3 −3�⎦

⎥
⎥
⎥
⎥
⎤

= �
−1(84)
1(−38)
−1(−30)

� = �
−84
−38
30

�, 

and the sign vector is 

𝑺𝒑𝟔𝒅𝒑𝟔 = 𝑠𝑖𝑔𝑛�|𝑾𝟐|𝒅𝒑𝟔� = 𝑠𝑖𝑔𝑛 ��� 
−12 −13 −1
20 23 17
−24 −23 3

�� ∗ �
−84
−38
30

��=�
−84
−38
30

�. 

Applying Equations 128 through 132, the signed-rank vector for the original 𝑿`𝟏 =

�
6

−10
12

�  is 
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𝑹+(𝒙`𝟏) = �𝑸1
+(𝒙)

𝑝∈𝑃

=
1
8
�𝑆𝑝𝑎(𝒙)𝒅𝑝𝑎
𝑎∈𝐴

  

𝑹+(𝒙`𝟏) =
1
8
�𝑺𝒑𝟎𝒅𝒑𝟎 + 𝑺𝒑𝟐𝒅𝒑𝟐 + 𝑺𝒑𝟒𝒅𝒑𝟒 + 𝑺𝒑𝟔𝒅𝒑𝟔�  

𝑹+(𝒙`𝟏) =
1
8
��
−460
−62
198

� + �
8
−2
14
� + �

−552
−98
214

� + �
−84
−38
30

�� = �
−136
−25
57

�. 

2. The signed-rank vector 𝑹𝑛+(𝒙) for 𝒙`𝟐  

In the same manner, we calculate the sign vector 𝑸2
+(𝒙) and signed-rank vector 

𝑹𝑛+(𝒙) for 𝒙`𝟐 = �
−7
13
−11

�. 

Calculate all vectors 𝑎𝑡𝑝 ∶ 𝑡 = 0,1,2,3,4,5,6,7 and check if 𝑖 = 2 ∈ 𝑎𝑖𝑝. If 𝑖 = 1 ∈

𝒂𝒊𝒑, then 𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎 = 0 , so that  

𝒂𝟎𝒑 = [−1 −1 −1]#[1 2 3] = [−1 −2 −3], 

𝒂𝟏𝒑 = [1 −1 −1]#[1 2 3] = [1 −2 −3], 

𝒂𝟐𝒑 = [−1 1 −1]#[1 2 3] = [−1 𝟐 −3], 

𝒂𝟑𝒑 = [1 1 −1]#[1 2 3] = [1 𝟐 −3], 

𝒂𝟒𝒑 = [−1 −1 1]#[1 2 3] = [−1 −2 3], 

𝒂𝟓𝒑 = [1 −1 1]#[1 2 3] = [1 −2 3], 

𝒂𝟔𝒑 = [−1 1 1]#[1 2 3] = [−1 𝟐 3], 

𝒂𝟕𝒑 = [1 1 1]#[1 2 3] = [1 𝟐 3], 

Note that 𝑖 = 2 ∈ 𝒂𝒊𝒑 for 𝑖 = 2, 3, 6, & 7. Therefore, 𝑸𝑝
+(𝒙) = 1

8
∑ 𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎𝑎∈𝐴  is 

determined by vectors 𝒂𝟎,𝒂𝟏,𝒂𝟒, & 𝒂𝟓only. We now calculate the component  

𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎 for 𝒂𝟎,𝒂𝟏,𝒂𝟒, & 𝒂𝟓only. 



213 
 
Again, using the same formulas in Equation 132, we calculate 

𝑾𝟏,𝑾𝟐,𝒅𝒑𝟐, and 𝑺𝒑𝟐𝒅𝒑𝟐 for 𝐘𝟎,𝒀1,𝒀4and 𝒀𝟓: 

 𝒀𝟎 = [−1 −1 −1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
−6 7 −5
10 −13 −7
−12 11 −15

�, 

𝑺𝒑𝟎𝒅𝒑𝟎 = �
−460
−62
198

�, 

𝑭 𝒀𝟏 = [1 −1 −1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
6 7 −5

−10 −13 −7
12 11 −15

�, 

𝑺𝒑𝟏𝒅𝒑𝟏 = �
84
38
−30

�, 

𝒀𝟒 = [−1 −1 1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
−6 7 5
10 −13 7
−12 11 15

�, 

𝑺𝒑𝟒𝒅𝒑𝟒 = �
−552
−98
214

�, 

𝒀𝟓 = [1 −1 1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
6 7 5

−10 −13 7
12 11 15

� 

𝑺𝒑5𝒅𝒑5 = �
−8
2

−14
�. 

Applying Equations 128 through 132, the signed-rank vector for the original 𝑿`𝟐 =

�
−7
13
−11

�  is 

𝑹+(𝒙`𝟐) = �𝑸2
+(𝒙)

𝑝∈𝑃

=
1
8
�𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎
𝑎∈𝐴

  

𝑹+(𝑿`𝟐) =
1
8
�𝑺𝒑𝟎𝒅𝒑𝟎 + 𝑺𝒑𝟏𝒅𝒑𝟏 + 𝑺𝒑𝟒𝒅𝒑𝟒 + 𝑺𝒑𝟓𝒅𝑷𝟓�  



214 
 

𝑹+(𝑿`𝟐) =
1
8
��
−460
−62
198

� + �
84
38
−30

� + �
−552
−98
214

� + �
−8
2

−14
�� = �

−117
−15
46

� 

3. The signed-rank vector 𝑹𝑛+(𝒙) for 𝒙`𝟑  

And finally, in the same manner, we calculate the sign vector 𝑸3
+(𝒙) and signed-rank 

vector 𝑹𝑛+(𝒙) for 𝒙`𝟑 = �
5
7

15
�. 

Calculate all vectors 𝒂𝒕𝒑 ∶ 𝑡 = 0,1,2,3,4,5,6,7 and check if 𝑖 = 2 ∈ 𝑎𝑖𝑝. If 𝑖 = 1 ∈

𝒂𝒊𝒑, then 𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎 = 0, so that 

𝒂𝟎𝒑 = [−1 −1 −1]#[1 2 3] = [−1 −2 −3], 

𝒂𝟏𝒑 = [1 −1 −1]#[1 2 3] = [1 −2 −3], 

𝒂𝟐𝒑 = [−1 1 −1]#[1 2 3] = [−1 2 −3], 

𝒂𝟑𝒑 = [1 1 −1]#[1 2 3] = [1 2 −3], 

𝒂𝟒𝒑 = [−1 −1 1]#[1 2 3] = [−1 −2 𝟑], 

𝒂𝟓𝒑 = [1 −1 1]#[1 2 3] = [1 −2 𝟑], 

𝒂𝟔𝒑 = [−1 1 1]#[1 2 3] = [−1 2 𝟑], 

𝒂𝟕𝒑 = [1 1 1]#[1 2 3] = [1 2 𝟑], 

Note that 𝑖 = 3 ∈ 𝒂𝒊𝒑 for 𝑖 = 4, 5, 6,𝑎𝑛𝑑 7. Therefore, 𝑸𝑝
+(𝒙) = 1

8
∑ 𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎𝑎∈𝐴  is 

determined by vectors  𝒂𝟎,𝒂𝟏,𝒂𝟐, & 𝒂𝟑only . We now calculate the component  

𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎 for 𝒂𝟒,𝒂𝟓,𝒂𝟔, & 𝒂𝟕only. 

Again, using the same formulas in Equation132, we calculate 

𝑾𝟏,𝑾𝟐,𝒅𝒑𝟐, and 𝑺𝒑𝟐𝒅𝒑𝟐 for 𝐘𝟎,𝒀1,𝒀2 and 𝒀𝟑 𝑎𝑠 
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 𝒀𝟎 = [−1 −1 −1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
−6 7 −5
10 −13 −7
−12 11 −15

�, 

𝑺𝒑𝟎𝒅𝒑𝟎 = �
−460
−62
198

�, 

 𝒀𝟏 = [1 −1 −1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
6 7 −5

−10 −13 −7
12 11 −15

�, 

𝑺𝒑𝟏𝒅𝒑𝟏 = �
84
38
−30

�, 

𝒀𝟐 = [−1 1 −1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
−6 −7 −5
10 13 −7
−12 −11 −15

�, 

𝑺𝒑𝟐𝒅𝒑𝟐 = �
8
−2
14
�, 

 𝒀𝟑 = [1 1 −1]# �
6 −7 5

−10 13 7
12 −11 15

� = �
6 −7 −5

−10 13 −7
12 −11 −15

�, 

𝑺𝒑𝟑𝒅𝒑𝟑 = �
552
98

−214
�. 

Applying Equations128 through132, the signed-rank vector for the original 𝒙`𝟑 = �
5
7

15
�  is 

𝑹+(𝒙`𝟑) = �𝑸3
+(𝒙)

𝑝∈𝑃

=
1
8
�𝑺𝒑𝒂(𝒙)𝒅𝑝𝑎
𝑎∈𝐴

  

𝑹+(𝒙`𝟑) =
1
8
�𝑺𝒑𝟎𝒅𝒑𝟎 + 𝑺𝒑𝟏𝒅𝒑𝟏 + 𝑺𝒑𝟐𝒅𝒑𝟐 + 𝑺𝒑𝟐𝒅𝒑𝟑�  

𝑹+(𝒙`𝟑) =
1
8
��
−460
−62
198

� + �
84
38
−30

� + �
8
−2
14
� + �

552
98

−214
�� = �

23
9
−4

� 
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We now have 𝑅𝑛+ = [𝑹+(𝒙`𝟏) 𝑹+(𝒙`𝟐) 𝑹+(𝒙`𝟑)] = �
−136 −117 23
−25 −15 9
57 46 −4

�. 

The calculated signed-rank vectors  𝑹+(𝒙`1),𝑹+(𝒙`2), and 𝑹+(𝒙`𝟑) were generated for 

the transposed 𝑿 or 𝑿` = �
6 −7 5

−10 13 7
12 −11 15

�, and the signed-rank vectors or matrix is 

then transposed to give the final signed-ranks matrix  

𝑹𝒏+ = (𝑹𝒏+)` = �
−136 −25 57
−117 −15 46

23 9 −4
�. 

The above result is identical to the signed-rank vectors or matrix obtained by 

applying the SAS code and interactive matrix language (IML) routines for the 

computation of the purpose of calculating the Oja invariant signed-rank vectors in 

Appendix A.  
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Table 57 
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 200 from the Multivariate Normal 
Distribution 
 

p 
 2 3 4 5 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 
0.01 5.30 193 288 7.20 196. 295 8.8 201 301 10.4 200 289 

0.02 6.20 197 245 8.20 200 244 9.9 199 246 11.6 200 241 

0.03 6.80 194 223 8.80 193 220 10.7 203 232 12.3 195 222 

0.05 7.70 201 214 9.70 198 214 11.6 193 209 13.4 200 218 

0.10 8.80 201 205 11.0 209 214 12.9 200 203 14.7 199 201 

0.20 9.70 202 203 12.0 204 207 13.9 199 199 15.8 199 197 

0.50 10.40 198 200 12.6 195 194 14.7 201 201 16.6 197 195 

 

 

 

Table 58 
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 500 from the Multivariate Normal 
Distribution 
 

p 
 2 3 4 5 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 
0.01 7.0 505 625 9.0 504 635 10.8 500 623 12.5 499 625 

0.02 8.1 494 551 10.2 488 54 12.1 492 546 14.0 504 560 

0.03 8.8 501 537 11.0 495 521 13.0 503 530 14.8 494 520 

0.05 9.7 502 501 11.9 483 496 14.0 506 523 15.9 499 514 

0.10 10.8 498 505 13.0 473 475 15.2 505 513 17.1 488 489 

0.20 11.6 482 488 14.0 498 497 16.2 501 500 18.1 485 485 

0.50 12.3 504 504 14.6 490 485 16.8 496 502 18.8 495 493 
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Table 59 
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 1,000 from the Multivariate 
Normal Distribution  
 

p 
 2 3 4 5 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 
0.01 8.3 967 1,100 10.6 1,027 1,184 12.5 1,010 1,150 14.3 1,001 1,128 

0.02 9.6 976 1,030 11.8 942 1,002 13.9 962 1,011 15.8 996 1,049 

0.03 10.3 971 999 12.6 955 972 14.8 1,006 1,029 16.7 996 1,008 

0.05 11.2 968 996 13.6 995 1,004 15.8 1,004 1,032 17.7 980 1,015 

0.10 12.3 981 993 14.8 1,014 1,022 16.9 973 978 18.9 974 959 

0.20 13.1 987 973 15.6 994 992 17.8 1,006 1,003 19.8 974 965 

0.50 13.7 1,011 1,012 16.2 1,014 1,019 18.3 985 975 20.4 985 983 

  

 

Table 60 
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 200 from the Multivariate tp(5)- 
Distribution  
 

p 
 2 3 4 5 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 
0.01 5.3 200 290 7.1 199 294 8.8 192 280 10.4 192 280 

0.02 6.2 198 246 8.2 200 247 10.0 201 247 11.6 196 248 

0.03 6.8 195 224 8.9 201 234 10.8 201 233 12.5 200 229 

0.05 7.7 197 212 9.9 202 219 11.8 200 214 13.6 194 214 

0.10 9.0 202 208 11.3 199 206 13.2 196 204 15.2 201 209 

0.20 10.3 198 198 12.7 200 198 14.8 198 200 16.8 200 200 

0.50 12.3 200 200 15.0 198 199 17.5 199 197 19.7 197 194 
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Table 61 
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 500 from the Multivariate tp(5)- 
Distribution 
 

p 
 2 3 4 5 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 

0.01 6.9 493 605 9.0 507 634 10.8 488 617 12.6 496 619 

0.02 8.1 488 544 10.3 500 553 12.2 491 545 14.1 501 562 

0.03 8.9 492 528 11.1 492 434 13.2 498 547 15.0 496 534 

0.05 9.8 474 486 12.2 491 510 14.2 482 504 16.2 494 519 

0.10 11.2 489 496 13.7 493 500 15.9 504 521 17.8 490 498 

0.20 12.7 486 491 15.4 492 490 17.7 501 501 19.8 503 507 

0.50 15.7 500 501 18.8 507 510 21.5 493 494 23.9 486 489 

 

 

 

Table 62 
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 1,000 from the Multivariate tp(5)- 
Distribution 
 

p 
 2 3 4 5 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 
0.01 8.3 956 1,091 10.6 998 1,161 12.5 983 1,145 14.4 1,001 1,152 

0.02 9.7 975 1,047 12.0 985 1,076 14.0 971 1,029 16.0 1,007 1,068 

0.03 10.5 1,006 1,054 12.9 1,007 1,060 15.0 1,005 1,078 16.9 983 1,013 

0.05 11.5 984 1,010 14.0 1002 1,038 16.2 1,002 1,022 18.1 1,017 1,058 

0.10 13.0 984 982 15.6 1,006 1,026 17.9 1,002 1,019 19.9 992 995 

0.20 14.8 995 1,022 17.6 1,003 1,007 20.0 995 1,013 22.2 984 986 

0.50 18.8 997 993 22.1 964 966 25.3 985 1,002 27.9 996 1,090 
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Table 63 
 
The Upper Control Limits of the Multivariate Exponentially Weighted Moving Average 
That Achieved an In-Control Average Run Length ≈ 200, 500,𝑎𝑛𝑑 1,000 from the 
Gamma2 (α=3,β=1) Distribution with 𝜌12 = 0.5 
 
 IC ARL=200 IC ARL=500 IC ARL=1,000 

λ h1 ARL0≅ SDRL h1 ARL0≅ SDRL h1 ARL0≅ SDRL 
0.01 4,124.1 200.05 215.23 4,209.5 499.98 485.80 4,268.4 1,002 959.10 

0.02 2,116.6 200.1 201.53 2,175.5 500.45 480.18 2,211.7 1,002 993.84 

0.03 1,442.9 200.5 195.80 1.486.7 500.1 480.08 1,515.7 997.5 993.66 

0.05 896.6 200.0 192.00 928.5 500.3 490.50 948.8 1,000 995.40 

0.10 476.8 200.2 193.90 498.3 501.0 499.80 512.0 1,007 1,003.3 

0.20 257.8 200.2 196.60 272.6 498.0 503.80 282.8 1,001 993.05 

0.50 116.1 200.7 202.30 125.8 503.7 502.16 132.7 999 982.17 

 

 

Table 64 
 
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 200 from the 
Multivariate Normal Distribution 
 

p 
 2 3 4 5 

λ L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL 

0.01 5.30 
 

196 287 7.30 204 307 9.00 202 305 10.60 199 301 

0.02 6.30 206 253 8.30 197 257 10.30 201 263 12.60 202 273 

0.03 6.90 193 233 9.10 200 239 11.45 202 256 14.10 200 248 

0.05 7.70 198 213 10.20 201 221 13.05 200 230 16.90 201 231 

0.10 8.85 197 200 12.00 202 214 16.25 200 218 22.80 199 216 

0.20 9.90 196 197 14.45 200 206 21.45 200 210 33.50 201 208 

0.50 10.90 201 203 19.10 200 197 33.50 200 200 58.30 200 200 
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Table 65 
 
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 500 from the 
Multivariate Normal Distribution 
 

p 
 2 3 4 5 

λ L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL 
0.01 6.90 496 599 9.10 487 634 11.15 494  659 13.30 495 669 

0.02 8.10 492 556 10.50 497 568 12.90 494 585 15.90 500 615 

0.03 8.85 499 539 11.40 502 558 14.20 498 563 18.05 501 575 

0.05 9.75 494 517 12.65 500 533 16.30 498 541 21.90 503 556 

0.10 10.95 502 507 14.70 497 520 20.50 499 522 30.60 501 527 

0.20 11.95 491 484 17.60 497 505 27.65 500 515 46.90 501 507 

0.50 12.75 482 479 23.80 504 500 44.50 500 505 84.00 493 497 

 

 

Table 66 

The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 1,000 from the 
Multivariate Normal Distribution 

p 
 2 3 4 5 

λ L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL 
0.01 8.40 1,007 1,151 10.70 996 1,180 13.00 988 1,187 15.55 1,005 1,269 

0.02 9.60 985 1,047 12.20 993 1,019 15.00 988 1,121 18.60 1,010 1,178 

0.03 10.40 990 1,024 13.20 996 1,056 16.50 997 1,096 21.30 998 1,103 

0.05 11.35 1,003 1,033 14.20 1,004 1,035 18.85 1,000 1,078 26.10 1,006 1,092 

0.10 12.50 995 1,007 16.90 993 
 

1,010 23.95 1,001 1,053 37.50 998 1,046 

0.20 13.50 992 982 20.25 992 998 32.80 992 1,020  58.40 983 997 

0.50 14.20 967 960 27.40 994 1,019 53.60 989 989 107.9  983 973 
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Table 67 
 
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 200 from the 
Multivariate tp(5)- Distribution  
 

p 
 2 3 4 5 

λ L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL 

0.01 5.35 203 300 7.10 196 283 8.75 199 296 10.30 200 297 

0.02 6.30 201 248 8.35 200 253 10.35 198 252 12.69 201 262 

0.03 6.90 197 226 9.25 200 241 11.70 199 240 14.70 201 243 

0.05 7.85 200 221 10.70 200 227 14.00 201 229 18.60 202 231 

0.10 9.20 201 208 13.30 200 215 19.20 201 211 27.55 199 209 

0.20 10.70 199 205 17.65 200 206 28.30 199 206 43.80 200 208  

0.50 13.40 200 204 27.40 200 203 49.80 200 199 81.90 198 201 

 

 

Table 68 
 
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 500 from the 
Multivariate tp(5)- Distribution 
 

p 
 2 3 4 5 

λ L ARL0

≅ 
SDRL L ARL0

≅ 
SDRL L ARL0

≅ 
SDRL L ARL0

≅ 
SDRL 

0.01 6.95 495 609 9.20 504 650 11.30 501 667 13.70 498 663 

0.02 8.20 500 558 10.75 498 579 13.62 502 604 17.60 497 589 

0.03 8.95 497 539 11.95 503 564  15.60 506 578 20.90 497 563 

0.05 10.00 501 527 13.80 501 546 19.20 503 541 27.60 502 548 

0.10 11.55 493 500 17.50 500 516 27.60 501 521 43.40 498 519 

0.20 13.50 496 504 24.15 495 496 43.00 501 505 72.90 499 507 

0.50 17.50 501 501 
 

40.10 496 493 79.00 497 493 142.30 500 500 
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Table 69 
 
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 1,000 from the 
Multivariate tp(5)- Distribution 
 

p 
 2 3 4 5 

λ L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL 
0.01  8.40 991 1,132 10.90 997 1,179 13.50 998 1,246 16.90 996 1,238 

0.02 9.80 1,010 1,087 12.75 997 1,093 16.45 992 1,132 22.20 1,000 1,152 

 0.03 10.60 998 1,042 14.15 1,006 1,082 19.05 992 1,099 27.20 995 1,091 

0.05 11.75 993 1,020 16.40 998 1,076 23.95 999 1,041 37.30 996 1,059 

0.10 13.50 1,007 1,021 21.20 982 1,016 35.50 992 1,007 61.20 1,000 1,010 

0.20 15.80 997 1,015 30.20 996 1,002 58.00 988 984 106.9 1,000 1,009 

0.50 21.15 981 972 52.20 999 985  111.1 997 987 212.10 1,006 1,006 

 
  

 

Table 70 
 
The Upper Control Limits of the Signed-Rank Multivariate Exponentially Weighted 
Moving Average That Achieved an In-Control Average Run Length ≈ 200, 500,
𝑎𝑛𝑑 1,000 from the Gamma2 (α=3,β=1) Distribution with 𝜌12 = 0.5 
 
 IC ARL=200 IC ARL=500 IC ARL=1,000 

λ L ARL0≅ SDRL L ARL0≅ SDRL L ARL0≅ SDRL 
0.01 1,366.3 201 236.48 1419.9 499.4 513.19 1,460.0 994.0 988.60 

0.02 723.1 200 209.37 761.7 494.7 494.26 798.1 999.4 980.70 

0.03 505.6 200 200.50  537.4 498.5 495.26  559.3 999.4 966.63 

0.05 328.5 200 196.52 352.7 500 500.16 369.2 1,001 1,002.63 

0.10 190.3 200 199.56 207.7 500 497.38 219.4 997.0 990.75 

0.20 116.2 200 196.41 129.3 500 509.81 138.7 997.0 994.06 

0.50 65.9 201 200.60 76.7 502 502.64 84.5 1,000 997.33 
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Table 71 
 
The Upper Control Limits (h2) of the Hotelling’s χ2 That Achieved an In-Control 
Average Run Length ≈ 200, 500, 𝑎𝑛𝑑  1,000 under p-variates Multivariate Normal 
Distribution  
 

 ARL0 
p 200 500 1,000 
2 10.59 12.42 13.88 

3 12.83 14.79 16.26 

4 14.86 16.92 18.46 

5 16.74 18.90 20.51 

 

 

 

Table 72 
 
The Upper Control Limits(h2) of the Hotelling’s χ2 That Achieved an In-Control 
Average Run Length ≈ 200, 500,𝑎𝑛𝑑 1,000 under p-variates Multivariate tp(5)- 
Distribution  
 
 IC ARL=200 IC ARL=500 IC ARL=1,000 

p h2 ARL0≅ SDRL h2 ARL0≅ SDRL h2 ARL0≅ SDRL 
2 13.50 200 196.61 17.60 488 483.73 21.50 992 986.65 

3 16.60 200 196.61 21.10 494 493.82 25.60 998 978.42 

4 19.20 201 202.63 24.30 500 501.81 29.20 988 984.37 

5 21.60 201 198.70 27.00 494 493.68 32.40 1,000 990.61 
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Table 73 
 
The Upper Control Limits (h2) of the Hotelling’s χ2 That Achieved an In-Control 
Average Run Length ≈ 200, 500, 𝑎𝑛𝑑 1,000 under p-variates Multivariate 
Gamma2(α=3,β=1) Distribution  
 
 IC ARL=200 IC ARL=500 IC ARL=1,000 

p h2 ARL0≅ SDRL h2 ARL0≅ SDRL h2 ARL0≅ SDRL 
2 25.30 201 197.98 34.82 503 505.74 42.7 993 1,000.55 

3 15.50 200 202.82 18.95 501 507.26 21.6 995 983.80 

4 17.93 200 199.38 21.5 500 501.74 24.28 1,000 1,000.13 

5 20.00 200 197.66 23.6 500 491.81 26.45 999 1,011.04 

 

 

 

 

Figure 18.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 2 and in-control average run length = 200. 
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Figure 19.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 2 and in-control average run length = 500. 
 

 

 

Figure 20.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 2 and in-control average run length = 1,000. 
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Figure 21.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 3 and in-control average run length = 200. 
 
 
 

 

Figure 22.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 3 and in-control average run length = 500. 
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Figure 23.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 3 and in-control average run length = 1,000. 
 
 
 

 

Figure 24.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 4 and in-control average run length = 200. 
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Figure 25.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 4 and in-control average run length = 500. 
 
 
 
 

 

Figure 26.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 4 and in-control average run length = 1,000. 
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Figure 27.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 5 and in-control average run length = 200. 
 

 

 

Figure 28.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 5 and in-control average run length = 500. 
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Figure 29.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
normal, p = 5 and in-control average run length = 1,000. 
 

 

 

Figure 30.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
tp (df  = 5), p = 2 and in-control average run length = 200. 
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Figure 31.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
tp (df  = 5), p = 2 and in-control average run length = 500. 
 

 

 

Figure 32.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
tp (df  = 5), p = 2 and in-control average run length = 1,000. 
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Figure 33.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
tp (df  = 5), p = 3 and in-control average run length = 200. 
 

 

 

Figure 34.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
tp (df  = 5), p = 3 and in-control average run length = 500. 
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Figure 35.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
tp (df  = 5), p = 3 and in-control average run length  = 1,000. 
 
 
 
 

 

Figure 36.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
tp (df = 5), p = 4 and in-control average run length = 200. 
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Figure 37.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
tp (df = 5), p = 4 and in-control average run length  = 500. 
 
 
 

 

Figure 38.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
tp (df = 5), p = 4 and in-control average run length  = 1,000. 
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Figure 39.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
tp (df = 5), p = 5 and in-control average run length  = 200. 
 
 
 
 

 

Figure 40.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
tp (df = 5), p = 5 and in-control average run length  = 500. 
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Figure 41.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
tp (df = 5), p = 5 and in-control average run length  = 1,000. 
 

 

 

Figure 42.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
gamma2 (α = 3, β = 1), p = 2 and in-control average run length  = 200. 
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Figure 43.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
gamma2 (α = 3, β = 1), p = 2 and in-control average run length  = 500. 
 

 

 

Figure 44.  Multivariate exponentially weighted moving average and signed-rank 
multivariate exponentially weighted moving average upper control limit for multivariate 
gamma2 (α = 3, β = 1), p = 2 and in-control average run length  = 1,000. 



 
 
 
 
 
 
 
 
 
 
 

APPENDIX D 
 

PHASE II AVERAGE RUN LENGTH PERFORMANCE  
SIMULATION RESULTS 
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Table 74 
 
The Upper Control Limits and Average Run Length Values of the Multivariate 
Exponentially Weighted Moving Average That Achieved an In-Control Average Run 
Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ 

p     0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2 δ h1 5.30 6.20 6.80 7.7 8.8 9.7 10.40 
  0.00 

 
 193 

(288) 
197 

(245) 
194 

(223) 
201 

(214) 
201 

(205) 
202 

(203) 
198 

(200) 
 0.25 

 
 35.91 

(42.77) 
45.42 

(76.75) 
49.77 

(48.67) 
59.51 

(57.43) 
74.91 

(71.68) 
94.88 

(92.43) 
133.82 

(131.22) 
 0.50 

 
 13.06 

(13.57) 
16.12 

(14.56) 
18.19 

(15.51) 
20.77 

(16.87) 
25.17 

(20.79) 
33.84 

(30.71) 
62.70 

(61.51) 
 1.00 

 
 4.39 

(3.75) 
5.33 

(4.02) 
5.92 

(4.30) 
6.73 

(4.61) 
7.78 

(5.13) 
8.94 

(6.31) 
15.37 

(13.55) 
 1.50 

 
 2.44 

(1.67) 
2.92 

(1.92) 
3.16 

(2.02) 
3.58 

(2.17) 
4.01 

(2.34) 
4.46 

(2.56) 
6.06 

(4.44) 
 2.50 

 
 1.32 

(0.60) 
1.48 

(0.72) 
1.57 

(0.76) 
1.71 

(0.83) 
1.87 

(0.92) 
2.04 

(0.99) 
2.25 

(1.20-) 
3 δ h1 7.20 8.20 8.80 9.70 11.00 12.00 12.60 
  0.00 

 
 196 

(295) 
200 

(244) 
193 

(220) 
198 

(214) 
209 

(214) 
204 

(207) 
195 

(195) 
 0.25 

 
 42.86 

(48.77) 
51.46 

(52.06) 
56.38 

(54.32) 
65.63 

(62.80) 
83.18 

(80.16) 
110.95 

(109.87) 
142.83 

(143.54) 
 0.50 

 
 15.78 

(15.30) 
19.23 

(16.49) 
21.01 

(17.36) 
23.17 

(18.70) 
29.07 

(24.04) 
40.67 

(36.61) 
73.98 

(72.18) 
 1.00 

 
 5.51 

(4.30) 
6.48 

(4.67) 
6.97 

(4.83) 
7.68 

(5.06) 
8.73 

(5.70) 
10.49 
(7.56) 

18.70 
(16.91) 

 1.50 
 

 3.06 
(2.03) 

3.47 
(2.16) 

3.69 
(2.30) 

4.04 
(2.40) 

4.49 
(2.59) 

5.06 
(2.95) 

7.02 
(5.31) 

 2.50 
 

 1.60 
(0.78) 

1.79 
(0.83) 

1.79 
(0.88) 

1.92 
(0.94) 

2.07 
(0.99) 

2.23 
(1.06) 

2.45 
(1.317) 

4 δ h1 8.80 9.90 10.70 11.60 12.90 13.90 14.70 
  0.00 

 
 201 

(301) 
199 

(246) 
203 

(232) 
193 

(209) 
200 

(203) 
199 

(199) 
201 

(201) 
 0.25 

 
 44.09 

(52.03) 
55.30 

(55.12) 
61.93 

(60.20) 
71.22 

(67.50) 
89.81 

(86.98) 
116.74 

(115.13) 
156.31 
(15.30) 

 0.50 
 

 16.06 
(16.39) 

20.26 
(17.69) 

22.11 
(18.33) 

24.94 
(20.02) 

31.44 
(25.71) 

43.76 
(40.22) 

84.06 
(83.19) 

 1.00 
 

 5.42 
(4.48) 

6.69 
(5.00) 

7.48 
(5.24) 

8.28 
(5.51) 

9.57 
(6.19) 

11.34 
(8.07) 

21.64 
(19.52) 

 1.50 
 

 2.99 
(2.10) 

3.58 
(2.32) 

3.95 
(2.44) 

4.27 
(2.56) 

4.86 
(2.77) 

5.33 
(3.11) 

8.06 
(6.31) 

 2.50 
 

 1.53 
(0.76) 

1.75 
(0.88) 

1.87 
(0.93) 

2.01 
(0.98) 

2.18 
(1.05) 

2.35 
(1.12) 

2.70 
(1.47) 

5 δ h1 10.40 11.60 12.30 13.40 14.70 15.8 16.6 
  0.00 

 
 200 

(289) 
200 

(241) 
195 

(222) 
200 

(218) 
199 

(201) 
199 

(197) 
197 

(185) 
 0.25 

 
 49.80 

(55.27) 
59.12 

(58.57) 
66.05 

(64.05) 
77.00 

(74.76) 
95.78 

(93.40) 
123.33 

(122.15) 
160.37 

(160.06) 
 0.50 

 
 18.98 

(17.64) 
21.94 

(18.42) 
24.03 

(19.63) 
27.23 

(21.39) 
34.32 

(29.07) 
49.28 

(45.03) 
92.99 

(92.07) 
 1.00 

 
 6.65 

(4.99) 
7.66 

(5.35) 
8.11 

(5.52) 
8.91 

(5.83) 
10.05 
(6.43) 

12.40 
(8.74) 

25.05 
(23.05) 

 1.50 
 

 3.69 
(2.37) 

4.03 
(2.49) 

4.24 
(2.57) 

4.69 
(2.69) 

5.12 
(2.83) 

5.77 
(3.33) 

9.08 
(7.31) 

 2.50 
 

 1.83 
(0.91) 

1.94 
(0.95) 

2.04 
(1.00) 

2.18 
(1.05) 

12.34 
(1.12) 

2.50 
(1.18) 

2.86 
(1.56) 

Note. Standard deviation of run length is in parentheses. 
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Table 75 
 
The Upper Control Limits and Average Run Length Values of the Signed-Rank 
Multivariate Exponentially Weighted Moving Average That Achieved an In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ 

p     0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2 δ L 5.30 6.30 6.90 7.70 8.85 9.90 10.90 
  0.00 

 
 196 

(287) 
206 

(253) 
193 

(233) 
198 

(213) 
197 

(200) 
196 

(197) 
201 

(203) 
 0.25 

 
 38.65 

(43.62) 
46.86 

(47.19) 
51.45 

(49.27) 
59.11 

(57.49) 
74.92 

(73.52) 
97.13 

(93.66) 
141.65 

(142.57) 
 0.50 

 
 13.98 

(13.59) 
16.93 

(14.81) 
18.72 

(15.57) 
20.52 

(16.60) 
25.62 

(21.27) 
35.10 

(32.32) 
68.02 

(66.90) 
 1.00 

 
 4.96 

(3.84) 
5.71 

(4.17) 
6.21 

(4.47) 
6.88 

(4.71) 
7.81 

(5.14) 
9.36 

(6.62) 
16.82 

(15.41) 
 1.50 

 
 2.73 

(1.76) 
3.07 

(1.94) 
3.32 

(2.06) 
3.61 

(2.16) 
4.07 

(2.36) 
4.60 

(2.68) 
6.57 

(4.99) 
 2.50 

 
 1.43 

(0.66) 
1.56 

(0.74) 
1.63 

(0.79) 
1.74 

(0.84) 
1.90 

(0.90) 
2.08 

(0.98) 
2.34 

(1.21) 
3  L 7.30 8.30 9.10 10.20 12.00 14.45 19.10 
  0.00 

 
 204 

(307) 
197 

(257) 
200 

(239) 
201 

(221) 
202 

(214) 
200 

(206) 
200 

(197) 
 0.25 

 
 40.40 

(49.26) 
50.11 

(53.77) 
56.84 

(59.74) 
69.70 

(69.97) 
96.00 

(96.21) 
136.97 

(138.34) 
180.71 

(181.89) 
 0.50 

 
 14.19 

(15.12) 
18.15 

(16.79) 
20.79 

(17.95) 
24.29 

(20.31) 
33.60 

(29.27) 
61.03 

(59.21) 
132.92 

(133.35) 
 1.00 

 
 4.66 

(4.02) 
5.93 

(4.53) 
6.79 

(4.85) 
7.84 

(5.22) 
9.74 

(6.37) 
14.53 

(11.05) 
51.80 

(49.62) 
 1.50 

 
 2.47 

(1.71) 
3.21 

(2.08) 
3.60 

(2.22) 
4.12 

(2.41) 
4.92 

(2.71) 
6.32 

(3.65) 
19.03 

(17.17) 
 2.50 

 
 1.26 

(0.57) 
1.55 

(0.73) 
1.73 

(0.82) 
1.92 

(0.88) 
2.21 

(1.00) 
2.63 

(1.15) 
4.38 

(2.62) 
4  L 9.00 10.30 11.45 13.05 16.25 21.45 33.50 
  0.00 

 
 202 

(305) 
201 

(263) 
202 

(256) 
200 

(230) 
200 

(218) 
200 

(210) 
200 

(200) 
 0.25 

 
 46.90 

(54.48) 
56.33 

(61.76) 
67.32 

(71.02) 
84.7 

(87.25) 
123.19 

(131.13) 
171.09 

(174.35) 
196.13 

(195.50) 
 0.50 

 
 17.09 

(16.60) 
21.13 

(18.66) 
24.61 

(21.07) 
30.43 

(25.94) 
50.77 

(47.12) 
102.06 

(102.95) 
174.16 

(176.10) 
 1.00 

 
 6.08 

(4.55) 
7.33 

(5.13) 
8.20 

(5.49) 
9.62 

(6.23) 
13.10 
(8.60) 

28.11 
(24.39) 

114.80 
(114.95) 

 1.50 
 

 3.37 
(2.04) 

3.89 
(2.26) 

4.33 
(2.46) 

4.97 
(2.72) 

6.37 
(3.36) 

10.13 
(6.30) 

63.05 
(61.71) 

 2.50 
 

 1.67 
(0.73) 

1.88 
(0.81) 

2.05 
(0.87) 

2.28 
(0.97) 

2.75 
(1.16) 

3.65 
(1.51) 

14.35 
(11.92) 

5  L 10.60 12.60 14.10 16.90 22.80 33.50 58.30 
  0.00 

 
 199 

(301) 
202 

(273) 
200 

(248) 
201 

(231) 
199 

(216) 
201 

(208) 
200 

(200) 
 0.25 

 
 51.67 

(59.17) 
67.46 

(73.35) 
81.28 

(88.24) 
111.61 

(120.36) 
156.56 

(169.48) 
187.51 

(194.42) 
194.70 

(198.98) 
 0.50 

 
 19.86 

(18.21) 
25.44 

(22.09) 
30.00 

(25.34) 
41.03 

(36.27) 
82.16 

(80.09) 
147.13 

(147.88) 
191.50 

(189.93) 
 1.00 

 
 7.29 

(5.03) 
8.70 

(5.86) 
9.86 

(6.39) 
12.33 
(7.66) 

20.78 
(14.85) 

67.24 
(65.52) 

161.04 
(161.80) 

 1.50 
 

 4.08 
(2.22) 

4.73 
(2.52) 

5.18 
(2.78) 

6.28 
 (3.21) 

9.02 
(4.59) 

23.43 
(18.56) 

124.96 
(124.57) 

 2.50 
 

 1.99 
(0.76) 

2.25 
(0.98) 

2.43 
(0.96) 

2.81 
(1.11) 

3.66 
(1.41) 

5.79 
(2.30) 

55.24 
(52.50) 

Note. Standard deviation of run length is in parentheses. 
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Table 76 
 
The Upper Control Limits and Average Run Length Values of the Multivariate 
Exponentially Weighted Moving Average That Achieved an In-Control Average Run 
Length ≈ 500 from the Multivariate Normal Distribution  
 
   λ 

p δ    0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2  h1 7.00 8.10 8.80 9.70 10.80 11.60 12.30 
  0.00 

 
 505 

(625) 
494 

(551) 
501 

(537) 
502 

(501) 
498 

(505) 
482 

(488) 
504 

(504) 
 0.25 

 
 58.44 

(58.30) 
71.61 

(64.31) 
81.70 

(72.82) 
98.18 

(89.98) 
135.56 

(130.63) 
192.24 

(187.02) 
312.80 

(311.50) 
 0.50 

 
 19.22 

(16.96) 
23.18 

(18.18) 
25.57 

(19.01) 
29.10 

(21.38) 
36.58 

(30.27) 
54.61 

(50.51) 
126.77 

(124.78) 
 1.00 

 
 5.93 

(4.85) 
7.24 

(4.95) 
7.81 

(5.16) 
8.62 

(5.50) 
9.77 

(6.19) 
11.82 
(8.41) 

24.44 
(22.060) 

 1.50 
 

 3.06 
(2.07) 

3.72 
(2.29) 

4.02 
(2.40) 

4.40 
(2.48) 

4.90 
(2.69) 

5.45 
(3.07) 

8.13 
(6.19) 

 2.50 
 

 1.53 
(0.74) 

1.72 
(0.83) 

1.84 
(0.90) 

2.01 
(0.96) 

2.17 
(1.02) 

2.33 
(1.08) 

2.65 
(1.43) 

3  h1 9.00 10.20 11.00 11.90 13.00 14.00 14.60 
  0.00 

 
 504 

(635) 
488 

(541) 
495 

(521) 
483 

(496) 
473 

(475) 
498 

(497) 
490 

(485) 
 0.25 

 
 67.25 

(64.37) 
82.04 

(73.04) 
93.13 

(82.56) 
111.13 
(10.69) 

154.84 
(149.68) 

228.20 
(224.68) 

340.06 
(342.13) 

 0.50 
 

 22.73 
(18.91) 

26.91 
(19.66) 

29.42 
(21.33) 

33.09 
(24.54) 

42.25 
(35.25) 

66.77 
(62.48) 

153.04 
(15.85) 

 1.00 
 

 7.29 
(5.06) 

8.53 
(5.57) 

9.03 
(5.62) 

9.76 
(5.89) 

10.85 
(6.68) 

13.75 
(9.67) 

30.68 
(28.86) 

 1.50 
 

 3.85 
(2.37) 

4.30 
(2.51) 

4.64 
(2.62) 

4.95 
(2.70) 

5.41 
(2.89) 

6.06 
(3.44) 

9.58 
(7.70) 

 2.50 
 

 1.84 
(0.92) 

2.01 
(0.97) 

2.10 
(1.00) 

2.22 
(1.06) 

2.38 
(1.10) 

2.55 
(1.17) 

2.91 
(1.60) 

4  h1 10.80 12.10 13.00 14.00 15.20 16.20 16.80 
  0.00 

 
 500 

(623) 
492 

(546) 
503 

(530) 
506 

(523) 
505 

(513) 
501 

(500) 
496 

(502) 
 0.25 

 
 71.92 

(69.64) 
88.82 

(79.56) 
102.08 
(91.42) 

127.39 
(119.16) 

176.99 
(169.92) 

2.54.83 
(248.83) 

365.86 
(362.06) 

 0.50 
 

 23.80 
(20.28) 

28.44 
(21.60) 

31.96 
(23.37) 

36.44 
(27.36) 

48.13 
(39.80) 

78.83 
(74.97) 

177.91 
(177.33) 

 1.00 
 

 7.37 
(5.44) 

8.74 
(5.79) 

9.58 
(6.09) 

10.52 
(6.33) 

12.17 
(7.37) 

15.12 
(10.81) 

36.42 
(34.68) 

 1.50 
 

 3.82 
(2.51) 

4.50 
(2.69) 

4.90 
(2.83) 

5.34 
(2.93) 

5.83 
(3.19) 

6.70 
(3.82) 

11.34 
(9.30) 

 2.50 
 

 1.86 
(0.93) 

2.06 
(1.01) 

2.20 
(1.07) 

2.37 
(1.11) 

2.56 
(1.18) 

2.72 
(1.25) 

3.18 
(1.74) 

5  h1 12.50 14.00 14.80 15.90 17.10 18.10 18.80 
  0.00 

 
 499 

(625) 
504 

(560) 
494 

(520) 
499 

(514) 
488 

(489) 
485 

(485) 
495 

(493) 
 0.25 

 
 74.75 

(74.12) 
98.27 

(86.67) 
111.00 

(102.35) 
136.86 

(129.26) 
187.48 

(178.73) 
269.60 

(263.70) 
377.46 

(372.21) 
 0.50 

 
 26.87 

(21.24) 
31.66 

(23.50) 
34.47 

(24.52) 
39.28 

(29.06) 
53.20 

(45.89) 
87.29 

(82.18) 
199.40 

(196.75) 
 1.00 

 
 8.17 

(5.84) 
9.99 

(6.21) 
10.72 
(6.50) 

11.50 
(6.77) 

12.98 
(7.90) 

16.61 
(12.24) 

43.11 
(40.68) 

 1.50 
 

 4.55 
(2.73) 

5.03 
(2.83) 

5.36 
(3.00) 

5.79 
(3.10) 

6.24 
(3.26) 

7.12 
(4.01) 

12.91 
(10.88) 

 2.50 
 

 2.16 
(1.03) 

2.32 
(1.11) 

2.41 
(1.14) 

2.55 
(1.19) 

2.70 
(1.23) 

2.87 
(1.12) 

3.44 
(1.93) 

Note. Standard deviation of run length is in parentheses. 
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Table 77 
 
The Upper Control Limits and Average Run Length Values of the Signed-Rank 
Multivariate Exponentially Weighted Moving Average That Achieved an In-Control 
Average Run Length  ≈ 500 from the Multivariate Normal Distribution  
 
   λ 

p δ    0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2  L 6.90 8.10 8.85 9.75 10.95 11.95 12.75 
  0.00 

 
 496 

(599) 
492 

(556) 
499 

(539) 
494 

(517) 
502 

(507) 
491 

(484) 
482 

(479) 
 0.25 

 
 60.51 

 (58.07) 
72.30 

 (63.57) 
82.34 

 (73.68) 
99.10 

 (91.71) 
139.49 

 (134.16) 
205.31 

 (200.77) 
315.56 

 (309.19) 
 0.50 

 
 20.04 

 (16.58) 
23.60 

 (17.89) 
25.73 

 (19.28) 
29.07 

 (21.90) 
37.75 

 (30.95) 
58.31 

 (52.92) 
130.24 

 (125.96) 
 1.00 

 
 6.32 

 (4.61) 
7.42 

 (4.93) 
8.21 

 (5.31) 
8.81 

 (5.47) 
9.95 

 (6.24) 
12.32 
 (8.74) 

26.05 
 (23.92) 

 1.50 
 

 3.36 
 (2.09) 

3.83 
 (2.26) 

4.18 
 (2.44) 

4.51 
 (2.58) 

4.93 
 (2.67) 

5.60 
 (3.19) 

8.78 
 (6.95) 

 2.50 
 

 1.65 
 (0.80) 

1.81 
 (0.89) 

1.91 
 (0.91) 

2.06 
 (0.96) 

2.22 
 (1.02) 

2.40 
 (1.10) 

2.73 
 (1.46) 

3  L 9.10 10.50 11.40 12.65 14.70 17.60 23.80 
  0.00 

 
 487 

(634) 
497 

(568) 
502 

(558) 
500 

(533) 
497 

(520) 
497 

(505) 
504 

(500) 
 0.25 

 
 63.45 

 (66.68) 
83.17 

 (79.85) 
97.48 

 (91.36) 
124.44 

 (121.37) 
197.21 

 (193.48) 
309.43 

 (311.71) 
455.59 

 (456.01) 
 0.50 

 
 19.94 

 (18.20) 
25.64 

 (20.57) 
29.45 

 (22.79) 
35.21 

 (27.02) 
53.98 

 (47.88) 
121.00 

 (119.55) 
325.60 

 (323.42) 
 1.00 

 
 6.20 

 (4.89) 
8.00 

 (5.53) 
8.97 

 (5.80) 
10.24 
 (6.35) 

12.89 
 (8.05) 

21.95 
 (17.33) 

118.43 
 (117.12) 

 1.50 
 

 3.15 
 (2.15) 

4.06 
 (2.47) 

4.52 
 (2.61) 

5.09 
 (2.80) 

6.13 
 (3.22) 

8.15 
 (4.72) 

38.87 
 (36.49) 

 2.50 
 

 1.44 
 (0.70) 

1.84 
 (0.88) 

2.03 
 (0.94) 

2.28 
 (1.05) 

2.64 
 (1.14) 

3.13 
 (1.33) 

6.49 
 (4.48) 

4  L 11.15 12.90 14.20 16.30 20.50 27.65 44.50 
  0.00 

 
 494 

(659) 
494 

(585) 
498 

(563) 
498 

(541) 
499 

(522) 
500 

(515) 
500 

(505) 
 0.25 

 
 73.54 

 (73.97) 
95.05 

 (92.36) 
116.70 

 (115.55) 
168.17 

 (173.42) 
292.27 

 (306.87) 
414.18 

 (424.22) 
494.08 

 (501.77) 
 0.50 

 
 24.34 

 (21.19) 
30.61 

 (24.02) 
35.19 

 (27.19) 
47.32 

 (37.85) 
98.37 

 (94.88) 
244.56 

 (245.11) 
440.20 

 (438.85) 
 1.00 

 
 8.03 

 (5.53) 
9.53 

 (6.24) 
10.63 
 (6.68) 

12.84 
 (7.65) 

19.00 
 (12.31) 

57.38 
 (52.69) 

304.36 
 (304.84) 

 1.50 
 

 4.17 
 (2.44) 

4.98 
 (2.80) 

5.46 
 (2.93) 

6.32 
 (3.30) 

8.34 
 (4.21) 

16.53 
 (11.35) 

165.90 
 (162.85) 

 2.50 
 

 1.96 
 (0.86) 

2.25 
 (0.98) 

2.44 
 (1.05) 

2.75 
 (1.14) 

3.41 
 (1.37) 

4.75 
 (1.86) 

35.37 
 (33.16) 

5  L 13.30 15.90 18.05 21.90 30.60 46.90 84.00 
  0.00 

 
 495 

(669) 
500 

(615) 
501 

(575) 
503 

(556) 
501 

(527) 
501 

(507) 
493 

(497) 
 0.25 

 
 83.83 

 (83.77) 
119.63 

 (121.54) 
157.31 

 (160.08) 
251.28 

 (270.44) 
382.48 

 (399.29) 
472.85 

 (483.38) 
484.76 

 (488.94) 
 0.50 

 
 28.92 

 (24.10) 
37.00 

 (29.02) 
45.54 

 (36.24) 
74.17 

 (66.29) 
204.96 

 (205.60) 
391.20 

 (396.67) 
472.17 

 (476.26) 
 1.00 

 
 9.47 

 (6.15) 
11.58 
 (7.13) 

13.31 
 (7.97) 

17.39 
 (10.00) 

38.14 
 (29.00) 

180.66 
 (181.51) 

417.38 
 (409.12) 

 1.50 
 

 5.11 
 (2.71) 

5.95 
 (3.12) 

6.78 
 (3.46) 

8.39 
 (4.02) 

13.26 
 (6.60) 

61.01 
 (55.38) 

331.98 
 (330.77) 

 2.50 
 

 2.42 
 (0.94) 

2.70 
 (1.06) 

2.96 
 (1.15) 

3.55 
 (1.35) 

4.90 
 (1.75) 

9.38 
 (4.04) 

168.45 
 (165.21) 

Note. Standard deviation of run length is in parentheses. 
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Table 78 
 
The Upper Control Limits and Average Run Length Values of the Multivariate 
Exponentially Weighted Moving Average That Achieved an In-Control Average Run 
Length ≈ 1,000 from the Multivariate Normal Distribution  
 
   λ 

p δ    0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2  h1 8.30 9.60 10.30 11.20 12.30 13.10 13.70 
  0.00 

 
 967 

(1,100) 
976 

(1,030) 
971 

(999) 
968 

(996) 
981 

(993) 
987 

(973) 
1,011 

(1,012) 
 0.25 

 
 78.74 

(69.76) 
96.42 

(82.69) 
112.73 
(96.39) 

138.55 
(125.68) 

212.96 
(203.08) 

338.80 
(343.19) 

592.36 
(588.96) 

 0.50 
 

 24.17 
(19.26) 

29.03 
(20.94) 

31.34 
(22.06) 

35.93 
(25.79) 

48.32 
(39.95) 

80.86 
(76.00) 

220.45 
(215.62) 

 1.00 
 

 7.07 
(5.07) 

8.72 
(5.62) 

9.31 
(2.71) 

10.25 
(6.10) 

11.49 
(6.83) 

14.38 
(10.18) 

35.33 
(33.42) 

 1.50 
 

 3.63 
(2.30) 

4.20 
(2.48) 

4.62 
(2.63) 

5.07 
(2.76) 

5.53 
(2.94) 

6.18 
(3.45) 

10.19 
(8.04) 

 2.50 
 

 1.69 
(0.84) 

1.95 
(0.95) 

2.08 
(0.99) 

2.25 
(1.07) 

2.42 
(1.11) 

2.55 
(1.15) 

2.94 
(1.59) 

3  h1 10.60 11.80 12.60 13.60 14.80 15.60 16.20 
  0.00 

 
 1,027 

(1,184) 
942 

(1,002) 
955 

(972) 
995 

(1,004) 
1,014 

(1,022) 
994 

(992) 
1,014 

(1,019) 
 0.25 

 
 92.87 

(78.04) 
111.06 
(93.48) 

127.78 
(111.44) 

168.78 
(156.50) 

267.60 
(263.21) 

405.19 
(402.90) 

662.42 
(656.69) 

 0.50 
 

 29.02 
(21.38) 

33.67 
(23.43) 

35.84 
(24.70) 

41.28 
(29.69) 

58.42 
(48.81) 

101.07 
(96.38) 

281.23 
(283.71) 

 1.00 
 

 8.94 
(5.77) 

9.95 
(6.01) 

10.53 
(6.21) 

11.47 
(6.61) 

13.09 
(7.70) 

16.76 
(12.13) 

46.64 
(43.84) 

 1.50 
 

 4.57 
(2.65) 

4.98 
(2.75) 

5.36 
(2.89) 

5.75 
(2.98) 

6.22 
(3.18) 

6.91 
(3.84) 

12.62 
(10.48) 

 2.50 
 

 2.11 
(1.02) 

2.24 
(1.06) 

2.37 
(1.10) 

2.49 
(1.13) 

2.65 
(1.18) 

2.82 
(1.26) 

3.31 
(1.83) 

4  h1 12.50 13.90 14.80 15.80 16.90 17080 18.30 
  0.00 

 
 1,010 

(1,150) 
962 

(1,011) 
1,006 

(1,029) 
1,004 

(1,032) 
973 

(978) 
1,006 

(1,003) 
985 

(975) 
 0.25 

 
 99.18 

(85.03) 
122.45 

(102.24) 
147.80 

(128.73) 
192.27 

(179.86) 
291.72 

(281.78) 
449.13 

(446.28) 
693.38 

(691.43) 
 0.50 

 
 30.94 

(23.43) 
36.25 

(24.93) 
39.72 

(27.01) 
45.86 

(33.01) 
64.79 

(55.75) 
120.75 

(116.88) 
312.13 

(310.32) 
 1.00 

 
 9.11 

(6.16) 
10.50 
(6.40) 

11.48 
(6.67) 

12.44 
(7.13) 

13.96 
(8.47) 

18.81 
(13.74) 

55.72 
(53.39) 

 1.50 
 

 4.52 
(2.80) 

5.23 
(2.94) 

5.74 
(3.11) 

6.10 
(3.13) 

6.63 
(3.37) 

7.59 
(4.26) 

14.48 
(12.26) 

 2.50 
 

 2.04 
(1.04) 

2.34 
(1.12) 

2.49 
(1.17) 

2.65 
(1.22) 

2.83 
(1.26) 

2.99 
(1.33) 

3.55 
(1.99) 

5  h1 14.30 15.80 16.70 17.70 18.90 19.80 20.40 
  0.00 

 
 1,001 

(1,128) 
996 

(1,049) 
996 

(1,008) 
980 

(1,015) 
974 

(959) 
974 

(965) 
985 

(983) 
 0.25 

 
 110.24 

(90.26) 
135.81 

(113.43) 
161.01 

(142.45) 
209.37 

(195.36) 
320.54 

(308.27) 
482.92 

(485.13) 
732.91 

(730.76) 
 0.50 

 
 34.37 

(24.51) 
39.31 

(26.44) 
42.41 

(28.42) 
50.25 

(37.24) 
73.18 

(61.71) 
135.84 

(131.21) 
355.85 

(355.10) 
 1.00 

 
 10.44 

(6.40) 
11.78 
(6.86) 

12.41 
(6.96) 

13.37 
(7.41) 

15.13 
(8.91) 

20.98 
(5.79) 

67.22 
(64.83) 

 1.50 
 

 5.34 
(2.96) 

5.92 
(3.12) 

6.18 
(3.21) 

6.54 
(3.33) 

7.09 
(3.58) 

8.07 
(4.58) 

17.16 
(14.96) 

 2.50 
 

 2.44 
(1.14) 

2.60 
(1.20) 

2.71 
(1.24) 

2.82 
(1.26) 

2.98 
(1.32) 

3.16 
(1.40) 

3.88 
(2.23) 

Note. Standard deviation of run length is in parentheses. 
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Table 79 
 
The Upper Control Limits and Average Run Length Values of the Signed-Rank 
Multivariate Exponentially Weighted Moving Average That Achieved an In-Control 
Average Run Length ≈ 1,000 from the Multivariate Normal Distribution  
 
   λ 

p δ    0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2  L 8.40 9.60 10.40 11.35 12.50 13.50 14.20 
  0.00 

 
 1,007 

(1,151) 
985 

(1,047) 
990 

(1,024) 
1,003 

(1,033) 
995 

(1,007) 
992 

(982) 
967 

(960) 
 0.25 

 
 83.21 

 (71.13) 
96.92 

 (80.26) 
113.27 
 (97.61) 

145.00 
 (132.17) 

225.56 
 (222.12) 

356.92 
 (362.23) 

593.27 
 (595.55) 

 0.50 
 

 25.51 
 (19.38) 

29.46 
 (20.76) 

32.28 
 (22.32) 

37.22 
 (26.89) 

49.83 
 (40.86) 

87.85 
 (83.30) 

227.82 
 (229.10) 

 1.00 
 

 7.77 
 (5.20) 

8.92 
 (5.60) 

9.50 
 (5.77) 

10.34 
 (6.02) 

11.66 
 (6.90) 

15.19 
 (10.75) 

38.08 
 (35.63) 

 1.50 
 

 3.95 
 (2.37) 

4.48 
 (2.53) 

4.77 
 (2.62) 

5.16 
 (2.77) 

5.66 
 (2.97) 

6.40 
 (3.56) 

11.02 
 (9.11) 

 2.50 
 

 1.89 
 (0.91) 

2.04 
 (0.96) 

2.16 
 (1.00) 

2.31 
 (1.07) 

2.46 
 (1.11) 

2.64 
 (1.18) 

3.10 
 (1.68) 

3  L 10.70 12.20 13.20 14.20 16.90 20.25 27.40 
  0.00 

 
 996 

(1,180) 
993 

(1,019) 
996 

(1,056) 
1,004 

(1,035) 
993 

(1,010) 
992 

(998) 
994 

(1,019) 
 0.25 

 
 87.34 

 (81.08) 
113.84 

 (102.33) 
140.38 

 (127.29) 
179.71 

 (170.82) 
353.79 

 (356.41) 
606.84 

 (609.62) 
875.22 

 (888.06) 
 0.50 

 
 26.26 

 (21.75) 
32.44 

 (23.88) 
36.90 

 (26.94) 
43.56 

 (33.21) 
81.58 

 (74.49) 
208.82 

 (204.87) 
607.44 

 (623.17) 
 1.00 

 
 7.61 

 (5.63) 
9.64 

 (6.18) 
10.64 
 (6.49) 

11.81 
 (6.94) 

15.66 
 (9.71) 

30.78 
 (24.83) 

219.68 
 (218.42) 

 1.50 
 

 3.78 
 (2.46) 

4.77 
 (2.76) 

5.29 
 (2.90) 

5.77 
 (3.00) 

7.11 
 (3.60) 

10.11 
 (5.87) 

67.05 
 (66.02) 

 2.50 
 

 1.67 
 (0.83) 

2.11 
 (0.99) 

2.30 
 (1.05) 

2.50 
 (1.11) 

2.94 
 (1.26) 

3.58 
 (1.48) 

9.06 
 (6.66) 

4  L 13.00 15.00 16.50 18.85 23.95 32.80 53.60 
  0.00 

 
 988 

(1,187) 
988 

(1,121) 
997 

(1,096) 
1,000 

(1,078) 
1,001 

(1,053) 
992 

(1,020) 
989 

(989) 
 0.25 

 
 100.12 

 (92.87) 
136.53 

 (126.91) 
181.43 

 (179.26) 
290.42 

 (297.15) 
554.93 

 (563.57) 
819.76 

 (843.67) 
937.25 

 (936.07) 
 0.50 

 
 31.82 

 (24.77) 
38.37 

 (28.17) 
45.67 

 (34.27) 
63.16 

 (50.95) 
168.09 

 (163.65) 
489.67 

 (491.70) 
849.45 

 (843.00) 
 1.00 

 
 9.61 

 (6.41) 
11.43 
 (6.91) 

12.97 
 (7.59) 

15.41 
 (8.74) 

25.00 
 (16.09) 

106.08 
 (99.79) 

586.70 
 (575.21) 

 1.50 
 

 4.84 
 (2.75) 

5.74 
 (3.07) 

6.35 
 (3.30) 

7.36 
 (3.69) 

10.10 
 (4.85) 

24.93 
 (18.69) 

324.48 
 (323.49) 

 2.50 
 

 2.22 
 (0.97) 

2.54 
 (1.10) 

2.80 
 (1.17) 

3.15 
 (1.28) 

3.93 
 (1.52) 

5.79 
 (2.27) 

74.59 
 (71.30) 

5  L 15.55 18.60 21.30 26.10 37.50 58.40 107.90 
  0.00 

 
 1,005 

(1,269) 
1,010 

(1,178) 
998 

(1,103) 
1,006 

(1,092) 
998 

(1,046) 
983 

(997) 
983 

(973) 
 0.25 

 
 116.80 

 (108.83) 
180.93 

 (174.33) 
269.54 

 (283.60) 
472.39 

 (498.75) 
785.62 

 (813.27) 
920.76 

 (928.77) 
965.83 

 (958.74) 
 0.50 

 
 36.81 

 (28.26) 
47.84 

 (34.53) 
62.88 

 (47.81) 
118.70 

 (108.19) 
412.80 

 (427.53) 
774.33 

 (780.33) 
940.47 

 (946.45) 
 1.00 

 
 11.61 

 (7.14) 
14.12 
 (8.28) 

16.60 
 (9.30) 

22.45 
 (12.38) 

66.30 
 (55.39) 

384.64 
 (391.47) 

834.64 
 (824.48) 

 1.50 
 

 6.00 
 (3.12) 

7.06 
 (3.51) 

8.11 
 (3.88) 

10.10 
 (4.63) 

18.22 
 (9.24) 

132.42 
 (127.31) 

695.32 
 (691.56) 

 2.50 
 

 2.70 
 (1.06) 

3.10 
 (1.21) 

3.48 
 (1.33) 

4.15 
 (1.56) 

6.03 
 (2.07) 

14.32 
 (7.42) 

369..98 
 (363.46) 

Note. Standard deviation of run length is in parentheses. 
 
 



247 
 
Table 80 
 
The Upper Control Limits and Average Run Length Values of the Multivariate 
Exponentially Weighted Moving Average That Achieved an In-Control Average Run 
Length ≈ 200 from the Multivariate tp(5)- Distribution 
 
   λ 

p     0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2 δ h1 5.30 6.20 6.80 7.70 9.00 10.30 12.30 
  0.00 

 
 200 

(290.00) 
198 

(246) 
195 

(244) 
197 

(212) 
202 

(208) 
198 

(198) 
200 

(200) 
 0.25 

 
 38.31 

(43.17) 
45.63 

(46.42) 
50.12 

(49.19) 
59.11 

(55.92) 
77.35 

(74.18) 
105.85 

(104.85) 
160.7 

(159.49) 
 0.50 

 
 13.71 

(13.38) 
16.67 

(14.55) 
18.54 

(15.41) 
20.80 

(16.79) 
26.06 

(21.37) 
38.20 

(35.52) 
93.25 

(90.85) 
 1.00 

 
 4.79 

(3.77) 
5.62 

(4.11) 
6.13 

(4.33) 
6.93 

(4.63) 
8.04 

(5.27) 
9.80 

(6.90) 
24.24 

(22.49) 
 1.50 

 
 2.66 

(1.76) 
2.99 

(1.90) 
3.30 

(2.04) 
3.62 

(2.15) 
4.11 

(2.33) 
4.76 

(2.73) 
8.38 

(6.53) 
 2.50 

 
 1.40 

(0.65) 
1.50 

(0.70) 
1.60 

(0.77) 
1.73 

(0.83) 
1.93 

(0.92) 
2.12 

(0.99) 
2.64 

(1.38) 
3  h1 7.10 8.20 8.90 9.90 11.30 12.70 15.00 
  0.00 

 
 199 

(294) 
200 

(247) 
201 

(234) 
202 

(219) 
199 

(206) 
200 

(198) 
198 

(199) 
 0.25 

 
 41.48 

(47.57) 
51.54 

(51.58) 
56.16 

(55.02) 
67.63 

(65.77) 
88.96 

(86.71) 
118.18 

(116.92) 
166.60 

(163.88) 
 0.50 

 
 15.19 

(14.65) 
18.82 

(16.23) 
20.69 

(17.30) 
23.58 

(19.25) 
30.25 

(25.09) 
45.71 

(42.39) 
106.47 

(104.71) 
 1.00 

 
 5.26 

(4.12) 
6.31 

(4.63) 
6.90 

(4.80) 
7.70 

(5.03) 
9.11 

(5.84) 
11.37 
(8.15) 

30.70 
(29.04) 

 1.50 
 

 2.89 
(1.93) 

3.32 
(2.13) 

3.60 
(2.20) 

4.07 
(2.40) 

4.61 
(2.63) 

5.42 
(3.10) 

10.46 
(8.64) 

 2.50 
 

 1.50 
(0.72) 

1.65 
(0.80) 

1.78 
(0.87) 

1.89 
(0.91) 

2.12 
(1.01) 

3.34 
(1.08) 

3.02 
(1.63) 

4  h1 8.80 10.00 10.80 11.80 13.20 14.80 17.50 
  0.00 

 
 192 

(280) 
201 

(247) 
201 

(233) 
200 

(214) 
196 

(204) 
198 

(200) 
199 

(197) 
 0.25 

 
 47.11 

(52.38) 
57.57 

(56.97) 
64.36 

(62.77) 
72.97 

(71.38) 
92.65 

(92.28) 
125.48 

(127.11) 
176.02 

(171.98) 
 0.50 

 
 18.48 

(16.80) 
21.37 

(18.29) 
23.24 

(19.00) 
26.13 

(20.85) 
32.21 

(28.33) 
51.51 

(47.89) 
120.17 

(121.42) 
 1.00 

 
 6.68 

(4.84) 
7.31 

(5.10) 
7.80 

(5.33) 
8.56 

(5.54) 
9.87 

(6.36) 
12.76 
(9.23) 

38.23 
(36.96) 

 1.50 
 

 3.70 
(2.22) 

3.93 
(2.36) 

4.17 
(2.47) 

4.53 
(2.61) 

5.02 
(2.78) 

5.88 
(3.37) 

12.68 
(10.68) 

 2.50 
 

 1.89 
(0.88) 

1.94 
(0.94) 

1.99 
(0.95) 

2.10 
(0.99) 

2.28 
(1.06) 

2.52 
(1.16) 

3.41 
(1.90) 

5  h1 10.40 11.60 12.50 13.60 15.20 16.80 19.70 
  0.00 

 
 192 

(280) 
196 

(248) 
200 

(229) 
194 

(214) 
201 

(209) 
200 

(200) 
197 

(194) 
 0.25 

 
 47.31 

(55.68) 
58.18 

(60.50) 
65.21 

(64.69) 
77.10 

(75.39) 
102.13 

(102.23) 
130.92 
(12.85) 

176.93 
(175.00) 

 0.50 
 

 17.92 
(17.23) 

21.83 
(18.83) 

24.04 
(19.98) 

27.63 
(22.63) 

36.92 
(31.70) 

57.13 
(54.52) 

125.52 
(123.27) 

 1.00 
 

 6.15 
(4.91) 

7.31 
(5.38) 

8.09 
(5.56) 

8.92 
(5.84) 

10.56 
(6.74) 

13.97 
(10.09) 

44.35 
(43.08) 

 1.50 
 

 3.40 
(2.30) 

3.91 
(2.46) 

4.30 
(2.62) 

4.75 
(2.76) 

5.33 
(2.92) 

6.27 
(3.64) 

14.62 
(12.65) 

 2.50 
 

 1.70 
(0.86) 

1.89 
(0.93) 

2.02 
(0.99) 

2.19 
(1.04) 

2.40 
(1.13) 

2.65 
(1.25) 

3.72 
(2.14) 

Note. Standard deviation of run length is in parentheses. 
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Table 81 
 
The Upper Control Limits and Average Run Length Values of the Signed-Rank 
Multivariate Exponentially Weighted Moving Average That Achieved an In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5)- Distribution  
 
   λ 

p     0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2 δ L 5.35 6.30 6.90 7.85 9.20 10.70 13.40 
  0.00 

 
 230 

(300) 
201 

(248) 
197 

(226) 
200 

(221) 
201 

(208) 
199 

(205) 
200 

(204) 
 0.25 

 
 38.91 

 (43.33) 
47.36 

 (47.58) 
51.34 

 (49.45) 
60.82 

 (59.76) 
80.56 

 (77.97) 
112.22 

 (112.97) 
164.98 

 (164.07) 
 0.50 

 
 14.57 

 (13.90) 
17.05 

 (14.92) 
18.72 

 (15.79) 
21.49 

 (17.22) 
27.12 

 (22.43) 
41.68 

 (38.00) 
101.41 

 (101.40) 
 1.00 

 
 4.95 

 (3.71) 
5.80 

 (4.14) 
6.28 

 (4.32) 
7.03 

 (4.74) 
8.35 

 (5.36) 
10.63 
 (7.57) 

29.88 
 (27.75) 

 1.50 
 

 2.84 
 (1.79) 

3.17 
 (1.94) 

3.33 
 (2.00) 

3.72 
 (2.17) 

4.24 
 (2.40) 

4.98 
 (2.80) 

10.16 
 (8.33) 

 2.50 
 

 1.46 
 (0.68) 

1.56 
 (0.74) 

1.63 
 (0.76) 

1.78 
 (0.84) 

1.99 
 (0.92) 

2.19 
 (1.00) 

2.91 
 (1.53) 

3  L 7.10 8.35 9.25 10.70 13.30 17.65 2.40 
  0.00 

 
 196 

(283) 
200 

(253) 
200 

(241) 
200 

(227) 
200 

(215) 
200 

(206) 
200 

(203) 
 0.25 

 
 43.22 

 (49.03) 
53.22 

 (55.90) 
61.27 

 (61.59) 
79.69 

 (81.16) 
115.66 

 (118.31) 
163.46 

 (167.63) 
188.95 

 (190.11) 
 0.50 

 
 16.26 

 (15.06) 
19.71 

 (17.08) 
22.38 

 (18.44) 
27.18 

 (22.02) 
43.25 

 (38.55) 
91.76 

 (90.89) 
168.17 

 (166.17) 
 1.00 

 
 6.64 

 (4.00) 
6.75 

 (4.63) 
7.42 

 (4.95) 
8.72 

 (5.52) 
11.35 
 (7.08) 

22.39 
 (18.19) 

105.31 
 (103.6) 

 1.50 
 

 3.12 
 (1.82) 

3.59 
 (2.06) 

3.94 
 (2.22) 

4.51 
 (2.40) 

5.60 
 (2.91) 

8.48 
 (4.92) 

53.01 
 (51.02) 

 2.50 
 

 1.58 
 (0.69) 

1.75 
 (0.76) 

1.87 
 (0.81) 

2.08 
 (0.89) 

2.45 
 (1.03) 

3.18 
 (1.28) 

9.74 
 (7.29) 

4  L 8.75 10.35 11.70 14.00 19.20 28.30 49.80 
  0.00 

 
 199 

(296) 
198 

(252) 
199 

(240) 
201 

(229) 
201 

(211) 
199 

(206) 
200 

(199) 
 0.25 

 
 45.22 

 (53.34) 
60.28 

 (64.29) 
75.31 

 (79.62) 
105.20 

 (113.01) 
155.38 

 (164.26) 
191.56 

 (192.02) 
196.88 

 (197.67) 
 0.50 

 
 16.21 

 (15.70) 
22.00 

 (18.81) 
26.73 

 (21.96) 
36.33 

 (30.93) 
75.55 

 (74.50) 
146.52 

 (148.49) 
188.51 

 (186.32) 
 1.00 

 
 5.40 

 (4.02) 
7.29 

 (4.88) 
8.59 

 (5.54) 
10.71 
 (6.47) 

17.85 
 (11.50) 

58.89 
 (56.08) 

160.96 
 (162.93) 

 1.50 
 

 2.77 
 (1.68) 

3.79 
 (2.08) 

4.38 
 (2.32) 

5.36 
 (2.76) 

7.91 
 (3.86) 

18.75 
 (13.60) 

122.07 
 (122.30) 

 2.50 
 

 1.24 
 (0.52) 

1.76 
 (0.71) 

1.99 
 (0.79) 

2.41 
 (0.95) 

3.20 
 (1.21) 

4.94 
 (1.85) 

49.29 
 (48.18) 

5  L 10.30 12.69 14.70 18.60 27.55 43.80 81.90 
  0.00 

 
 200 

 (297) 
201 

 (262) 
201 

 (243) 
202 

 (231) 
199 

 (209) 
200 

 (208) 
198 

 (201) 
 0.25 

 
 54.42 

 (59.37) 
76.16 

 (78.89) 
96.06 

 (104.47) 
134.85 

 (150.44) 
178.49 

 (185.49) 
190.74 

 (196.67) 
198.43 

 (197.72) 
 0.50 

 
 20.86 

 (18.07) 
28.08 

 (22.45) 
34.70 

 (28.02) 
54.74 

 (48.94) 
120.79 

 (124.97) 
176.05 

 (178.26) 
196.04 

 (194.71) 
 1.00 

 
 7.14 

 (4.56) 
9.27 

 (5.66) 
11.01 
 (6.36) 

14.86 
 (8.46) 

32.98 
 (25.04) 

111.64 
 (110.42) 

183.36 
 (184.40) 

 1.50 
 

 3.85 
 (1.96) 

4.81 
 (2.37) 

5.65 
 (2.71) 

7.17 
 (3.32) 

11.98 
 (5.61) 

51.88 
 (47.46) 

162.28 
 (160.67) 

 2.50 
 

 1.82 
 (0.63) 

2.19 
 (0.80) 

2.53 
 (0.91) 

3.10 
 (1.10) 

4.46 
 (1.53) 

8.53 
 (3.37) 

107.64 
 (109.46) 

Note. Standard deviation of run length is in parentheses. 
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Table 82 
 
The Upper Control Limits and Average Run Length Values of the Multivariate 
Exponentially Weighted Moving Average That Achieved an In-Control Average Run 
Length ≈ 500 from the Multivariate tp(5)- Distribution  
 
   λ 

p δ    0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2  h1 6.90 8.10 8.90 9.80 11.20 12.70 15.70 
  0.00 

 
 493 

(605) 
488 

(544) 
492 

(528) 
474 

(486) 
489 

(496) 
486 

(491) 
500 

(501) 
 0.25 

 
 59.92 

(58.31) 
72.08 

(65.25) 
82.81 

(74.17) 
100.95 
(92.18) 

143.73 
(141.69) 

233.51 
(233.07) 

407.26 
(407.61) 

 0.50 
 

 19.46 
(169.61) 

23.58 
(18.03) 

26.44 
(19.40) 

29.77 
(22.28) 

39.81 
(33.39) 

69.90 
(66.05) 

237.60 
(235.31) 

 1.00 
 

 6.25 
(4.53) 

7.45 
(4.94) 

8.05 
(5.21) 

8.85 
(5.45) 

10.29 
(6.28) 

13.61 
(9.81) 

54.41 
(52.46) 

 1.50 
 

 3.29 
(2.04) 

3.84 
(2.29) 

4.14 
(2.38) 

4.47 
(2.51) 

5.14 
(2.73) 

6.00 
(3.33) 

15.00 
(12.80) 

 2.50 
 

 1.61 
(0.79) 

1.80 
(0.86) 

1.93 
(0.94) 

2.04 
(0.96) 

2.26 
(1.03) 

2.50 
(1.13) 

3.51 
(1.95) 

3  h1 9.00 10.30 11.10 12.20 13.70 15.40 18.80 
  0.00 

 
 507 

(634) 
500 

(553) 
492 

(434) 
491 

(510) 
493 

(500) 
492 

(490) 
507 

(510) 
 0.25 

 
 67.16 

(64.62) 
81.91 

(74.27) 
93.94 

(85.08) 
117.14 

(108.68) 
174.66 

(171.45) 
277.41 

(273.43) 
424.80 

(431.93) 
 0.50 

 
 22.31 

(18.73) 
26.54 

(20.10) 
29.03 

(21.65) 
34.05 

(25.79) 
46.57 

(39.43) 
89.49 

(85.61) 
274.92 

(274.27) 
 1.00 

 
 7.16 

(5.04) 
8.33 

(5.54) 
9.07 

(5.81) 
9.92 

(6.06) 
11.67 
(7.24) 

16.34 
(12.12) 

75.43 
(72.71) 

 1.50 
 

 3.67 
(2.29) 

4.19 
(2.50) 

4.53 
(2.59) 

5.07 
(2.83) 

5.68 
(3.00) 

6.82 
(3.91) 

20.00 
(17.63) 

 2.50 
 

 1.73 
(0.85) 

1.94 
(0.94) 

2.07 
(0.98) 

2.26 
(1.06) 

2.49 
(1.13) 

2.77 
(1.23) 

4.08 
(2.34) 

4  h1 10.80 12.20 13.20 14.20 15.90 17.70 21.50 
  0.00 

 
 488 

(617) 
491 

(545) 
498 

(498) 
482 

(504) 
504 

(521) 
501 

(501) 
493 

(494) 
 0.25 

 
 76.08 

(72.07) 
92.29 

(83.13) 
105.13 
(94.55) 

129.50 
(122.91) 

193.91 
(192.41) 

293.52 
(295.04) 

435.97 
(431.24) 

 0.50 
 

 26.12 
(20.48) 

30.06 
(22.02) 

32.91 
(23.67) 

36.89 
(27.27) 

53.60 
(45.68) 

102.60 
(99.35) 

304.80 
(305.58) 

 1.00 
 

 8.63 
(5.64) 

9.38 
(5.89) 

10.16 
(6.17) 

10.91 
(6.50) 

12.95 
(7.97) 

18.45 
(13.90) 

93.32 
(91.87) 

 1.50 
 

 4.58 
(2.58) 

4.91 
(2.73) 

5.16 
(2.80) 

5.54 
(2.95) 

6.18 
(3.26) 

7.39 
(4.14) 

24.75 
(22.33) 

 2.50 
 

 2.19 
(1.00) 

2.26 
(1.06) 

2.35 
(1.09) 

2.46 
(1.13) 

2.69 
(1.20) 

2.98 
(1.33) 

4.67 
(2.82) 

5  h1 12.60 14.10 15.0 16.20 17.80 19.80 23.90 
  0.00 

 
 496 

(619) 
501 

(562) 
496 

(534) 
494 

(519) 
490 

(498) 
503 

(507) 
486 

(489) 
 0.25 

 
 78.90 

(76.32) 
96.73 

(88.77) 
111.39 

(101.80) 
142.65 

(135.24) 
203.74 

(199.17) 
308.14 

(306.56) 
437.01 

(435.84) 
 0.50 

 
 26.14 

(21.87) 
30.69 

(23.33) 
34.73 

(25.18) 
40.29 

(30.48) 
56.97 

(48.46) 
115.58 

(112.66) 
323.66 

(326.35) 
 1.00 

 
 8.31 

(5.98) 
9.79 

(6.34) 
10.41 
(6.52) 

11.58 
(6.96) 

13.60 
(8.40) 

20.43 
(15.71) 

112.13 
(109.40) 

 1.50 
 

 4.32 
(2.68) 

4.93 
(2.85) 

5.31 
(2.99) 

5.84 
(3.14) 

6.53 
(3.39) 

8.00 
(4.57) 

30.13 
(27.82) 

 2.50 
 

 2.00 
(0.99) 

2.25 
(1.09) 

2.39 
(1.14) 

2.56 
(1.19) 

2.81 
(1.27) 

3.168 
(1.41) 

5.18 
(3.26) 

Note. Standard deviation of run length is in parentheses. 
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Table 83 
 
The Upper Control Limits and Average Run Length Values of the Signed-Rank 
Multivariate Exponentially Weighted Moving Average That Achieved an In-Control 
Average Run Length ≈ 500 from the Multivariate tp(5)- Distribution  
 
   λ 

p δ    0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2  L 6.95 8.20 8.95 10.00 11.55 13.50 17.50 
  0.00 

 
 495 

(609) 
500 

(558) 
497 

(539) 
501 

(527) 
493 

(500) 
496 

(504) 
501 

(501) 
 0.25 

 
 60.36 

 (57.74) 
73.90 

 (65.40) 
83.53 

 (76.69) 
104.71 
 (97.00) 

157.01 
 (152.40) 

259.49 
 (258.56) 

424.97 
 (416.26) 

 0.50 
 

 20.36 
 (17.03) 

23.97 
 (18.15) 

26.25 
 (19.83) 

30.67 
 (23.10) 

42.35 
 (35.54) 

82.33 
 (79.53) 

273.16 
 (272.22) 

 1.00 
 

 6.56 
 (4.49) 

7.57 
 (5.03) 

8.26 
 (5.26) 

9.19 
 (5.56) 

10.76 
 (6.64) 

15.34 
 (11.22) 

73.58 
 (71.69) 

 1.50 
 

 3.49 
 (2.07) 

3.94 
 (2.29) 

4.27 
 (2.42) 

4.63 
 (2.50) 

5.29 
 (2.78) 

6.47 
 (3.63) 

20.80 
 (18.90) 

 2.50 
 

 1.69 
 (0.79) 

1.86 
 (0.87) 

1.95 
 (0.91) 

2.09 
 (0.95) 

2.34 
 (1.04) 

2.65 
 (1.15) 

4.08 
 (2.31) 

3  L 9.20 10.75 11.95 13.80 17.50 24.15 40.10 
  0.00 

 
 504 

(650) 
498 

(579) 
503 

(564) 
501 

(546) 
500 

(516) 
495 

(496) 
496 

(493) 
 0.25 

 
 69.70 

 (67.86) 
87.95 

 (81.83) 
109.47 

 (104.44) 
155.02 

 (154.19) 
275.10 

 (282.80) 
414.57 

 (421.05) 
482.74 

 (480.92) 
 0.50 

 
 23.32 

 (19.20) 
28.06 

 (21.45) 
32.29 

 (23.93) 
41.94 

 (33.17) 
85.82 

 (81.15) 
248.76 

 (246.24) 
441.43 

 (438.39) 
 1.00 

 
 7.51 

 (5.00) 
8.90 

 (5.58) 
9.86 

 (5.97) 
11.70 
 (6.62) 

16.68 
 (10.24) 

51.99 
 (47.41) 

309.48 
 (306.82) 

 1.50 
 

 3.97 
 (2.25) 

4.58 
 (2.48) 

5.01 
 (2.66) 

5.80 
 (2.96) 

7.51 
 (3.68) 

14.17 
 (8.92) 

176.74 
 (174.33) 

 2.50 
 

 1.87 
 (0.81) 

2.08 
 (0.88) 

2.28 
 (0.96) 

2.55 
 (1.06) 

3.11 
 (1.24) 

4.33 
 (1.65) 

32.54 
 (30.00) 

4  L 11.30 13.62 15.60 19.20 27.60 43.00 79.00 
  0.00 

 
 501 

(667) 
502 

(604) 
506 

(578) 
503 

(541) 
501 

(521) 
501 

(505) 
497 

(493) 
 0.25 

 
 76.00 

 (76.59) 
109.75 

 (108.63) 
153.05 

 (154.96) 
244.85 

 (256.84) 
412.40 

 (425.25) 
483.72 

 (493.73) 
488.96 

 (494.61) 
 0.50 

 
 24.50 

 (20.77) 
33.43 

 (25.47) 
42.21 

 (32.29) 
69.86 

 (60.68) 
212.10 

 (214.56) 
400.25 

 (402.21) 
474.16 

 (471.84) 
 1.00 

 
 7.46 

 (5.16) 
10.15 
 (6.15) 

12.15 
 (7.06) 

15.97 
 (8.77) 

35.00 
 (25.36) 

191.11 
 (187.82) 

430.84 
 (430.54) 

 1.50 
 

 3.74 
 (2.19) 

5.08 
 (2.67) 

6.03 
 (2.97) 

7.62 
 (3.65) 

12.36 
 (5.64) 

60.62 
 (53.05) 

348.80 
 (348.90) 

 2.50 
 

 1.64 
 (0.72) 

2.21 
 (0.90) 

2.60 
 (1.02) 

3.19 
 (1.21) 

4.51 
 (1.60) 

8.45 
 (3.30) 

184.92 
 (185.17) 

5  L 13.70 17.60 20.90 27.60 43.40 72.90 142.30 
  0.00 

 
 498 

(663) 
497 

(589) 
497 

(563) 
502 

(548) 
498 

(519) 
499 

(507) 
500 

(500) 
 0.25 

 
 92.82 

 (91.76) 
158.47 

 (160.15) 
232.12 

 (245.54) 
350.48 

 (372.37) 
451.09 

 (466.83) 
484.18 

 (492.87) 
466.93 

 (487.79) 
 0.50 

 
 31.80 

 (24.63) 
45.37 

 (33.31) 
64.41 

 (49.44) 
136.87 

 (131.07) 
335.31 

 (348.58) 
444.15 

 (449.58) 
490.88 

 (492.93) 
 1.00 

 
 9.93 

 (6.00) 
13.41 
 (7.48) 

16.68 
 (8.83) 

25.01 
 (13.30) 

103.93 
 (96.48) 

339.13 
 (338.08) 

170.90 
 (467.27) 

 1.50 
 

 5.17 
 (2.54) 

6.67 
 (3.13) 

8.07 
 (3.64) 

11.00 
 (4.67) 

24.74 
 (13.55) 

196.52 
 (191.60) 

434.44 
 (436.35) 

 2.50 
 

 2.27 
 (0.85) 

2.91 
 (1.03) 

3.42 
 (1.21) 

4.46 
 (1.48) 

7.09 
 (2.20) 

29.54 
 (21.34) 

337.41 
 (338.54) 

Note. Standard deviation of run length is in parentheses. 
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Table 84 
 
The Upper Control Limits and Average Run Length Values of the Multivariate 
Exponentially Weighted Moving Average That Achieved an In-Control Average Run 
Length ≈ 1,000 from the Multivariate tp(5)- Distribution  
 
   λ 

p δ    0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2  h1 8.30 9.70 10.50 11.50 13.0 14.80 18.80 
  0.00 

 
 956 

(1,091) 
975 

(1,047) 
1,006 

(1,054) 
984 

(1,010) 
984 

(982) 
995 

(1,022) 
997 

(993) 
 0.25 

 
 79.61 

(69.69) 
100.02 
(84.86) 

116.35 
(100.40) 

146.30 
(135.15) 

248.20 
(243.19) 

451.94 
(456.02) 

829.65 
(836.81) 

 0.50 
 

 25.20 
(19.46) 

29.59 
(20.84) 

32.30 
(22.60) 

36.77 
(26.68) 

54.37 
(45.16) 

118.96 
(114.87) 

513.42 
(518.66) 

 1.00 
 

 7.60 
(5.14) 

8.94 
(5.54) 

9.67 
(5.80) 

10.58 
(6.24) 

12.31 
(7.41) 

17.93 
(13.24) 

113.52 
(110.85) 

 1.50 
 

 3.86 
(2.30) 

4.51 
(2.53) 

4.81 
(2.63) 

5.23 
(2.76) 

5.88 
(3.05) 

7.21 
(4.01) 

26.22 
(23.53) 

 2.50 
 

 1.81 
(0.86) 

2.03 
(0.96) 

2.15 
(1.02) 

2.31 
(1.06) 

2.53 
(1.13) 

2.83 
(1.22) 

4.47 
(2.57) 

3  h1 10.60 12.00 12.90 14.00 15.60 17.60 22.10 
  0.00 

 
 998 

(1,161) 
985 

(1,076) 
1,007 

(1,060) 
1,002 

(1,038) 
1,006 

(1,026) 
1,003 

(1,007) 
964 

(966) 
 0.25 

 
 93.00 

(78.46) 
111.44 
(95.51) 

135.13 
(118.27) 

179.27 
(167.31) 

306.13 
(300.75) 

524.51 
(521.30) 

847.64 
(842.48) 

 0.50 
 

 28.39 
(21.24) 

33.15 
(23.46) 

36.84 
(25.03) 

43.33 
(31.16) 

66.519 
(56.76) 

152.54 
(146.63) 

576.62 
(567.46) 

 1.00 
 

 8.58 
(5.60) 

9.88 
(6.15) 

10.73 
(6.41) 

11.79 
(6.74) 

13.88 
(8.18) 

21.76 
(16.63) 

159.32 
(160.23) 

 1.50 
 

 4.33 
(2.54) 

5.00 
(2.77) 

2.35 
(2.88) 

5.79 
(3.01) 

6.56 
(3.36) 

8.11 
(4.53) 

37.17 
(34.24) 

 2.50 
 

 1.97 
(0.95) 

2.19 
(1.03) 

2.36 
(1.09) 

2.54 
(1.14) 

2.78 
(1.22) 

3.16 
(1.35) 

5.39 
(3.33) 

4  h1 12.50 14.00 15.00 16.20 17.90 20.00 25.30 
  0.00 

 
 983 

(1,145) 
971 

(1,029) 
1,005 

(1,078) 
1,002 

(1,022) 
1,022 

(1,019) 
995 

(1,013) 
985 

(1,002) 
 0.25 

 
 103.37 

(86.73) 
125.64 

(106.06) 
150.27 

(134.04) 
202.22 

(187.93) 
343.43 

(334.60) 
576.40 

(574.35) 
914.15 

(912.51) 
 0.50 

 
 33.15 

(23.36) 
36.67 

(25.02) 
40.73 

(28.10) 
47.81 

(35.19) 
76.44 

(66.79) 
183.41 

(180.18) 
662.16 

(664.80) 
 1.00 

 
 10.33 

(6.19) 
11.20 
(6.57) 

11.96 
(6.73) 

13.03 
(7.26) 

15.34 
(9.23) 

25.41 
(20.08) 

211.76 
(209.37) 

 1.50 
 

 5.29 
(2.83) 

5.63 
(2.99) 

5.98 
(3.10) 

6.36 
(3.22) 

7.12 
(3.55) 

9.04 
(5.18) 

51.21 
(49.17) 

 2.50 
 

 2.45 
(1.09) 

2.53 
(1.14) 

2.63 
(1.17) 

2.77 
(1.12) 

3.01 
(1.31) 

3.40 
(1.46) 

6.45 
(4.20) 

5  h1 14.40 16.00 16.90 18.10 19.90 22.20 27.90 
  0.00 

 
 1,001 

(1,152) 
1,007 

(1,068) 
983 

(1,013) 
1,017 

(1,058) 
992 

(995) 
984 

(986) 
996 

(1,090) 
 0.25 

 
 108.14 

(93.45) 
134.88 

(115.57) 
160.42 

(144.71) 
216.90 

(203.83) 
367.53 

(360.77) 
597.20 

(590.33) 
895.20 

(892.94) 
 0.50 

 
 33.38 

(24.75) 
38.68 

(26.36) 
43.03 

(29.27) 
51.50 

(37.75) 
84.88 

(75.19) 
211.39 

(206.03) 
707.00 

(696.38) 
 1.00 

 
 10.09 

(6.59) 
11.62 
(6.89) 

12.51 
(7.30) 

13.57 
(7.74) 

16.24 
(9.76) 

28.588 
(22.90) 

251.83 
(246.78) 

 1.50 
 

 5.04 
(2.96) 

5.75 
(3.13) 

6.14 
(3.26) 

6.60 
(3.38) 

7.51 
(3.78) 

9.80 
(5.63) 

63.40 
(60.74) 

 2.50 
 

 2.28 
(1.12) 

2.52 
(1.18) 

2.69 
(1.22) 

2.86 
(1.28) 

3.13 
(1.34) 

3.57 
(1.51) 

7.36 
(4.97) 

Note. Standard deviation of run length is in parentheses. 
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Table 85 
 
The Upper Control Limits and Average Run Length Values of the Signed-Rank 
Multivariate Exponentially Weighted Moving Average That Achieved an In-Control 
Average Run Length ≈ 1,000 from the Multivariate tp(5) Distribution  
 
   λ 

p δ    0.01 0.02 0.03 0.05 0.1 0.2 0.5 
2  L 8.40 9.80 10.60 11.75 13.50 15.80 21.15 
  0.00 

 
 991 

(1,132) 
1,010 

(1,087) 
998 

(1,042) 
993 

(1,020) 
1,007 

(1,021) 
997 

(1,015) 
981 

(972) 
 0.25 

 
 82.39 

 (70.38) 
100.32 
 (84.64) 

118.13 
 (103.67) 

158.85 
 (149.20) 

276.64 
 (268.10) 

499.36 
 (495.19) 

876.76 
 (873.96) 

 0.50 
 

 25.77 
 (19.39) 

30.46 
 (21.47) 

32.82 
 (22.69) 

38.74 
 (28.05) 

59.31 
 (50.43) 

143.37 
 (140.85) 

579.86 
 (580.42) 

 1.00 
 

 7.86 
 (5.10) 

9.09 
 (5.60) 

9.87 
 (5.89) 

10.79 
 (6.10) 

12.91 
 (7.62) 

20.84 
 (15.56) 

159.60 
 (157.76) 

 1.50 
 

 4.08 
 (2.36) 

4.61 
 (2.55) 

4.90 
 (2.62) 

5.33 
 (2.75) 

6.16 
 (3.08) 

7.80 
 (4.37) 

38.24 
 (35.77) 

 2.50 
 

 1.91 
 (0.89) 

2.08 
 (0.95) 

2.22 
 (1.02) 

2.36 
 (1.06) 

2.64 
 (1.14) 

3.01 
 (1.27) 

5.52 
 (3.47) 

3  L 10.90 12.75 14.15 16.40 21.20 30.20 52.20 
  0.00 

 
 997 

(1,179) 
997 

(1,093) 
1,006 

(1,082) 
998 

(1,076) 
982 

(1,016) 
996 

(1,002) 
999 

(985) 
 0.25 

 
 94.32 

 (82.60) 
125.16 

 (111.37) 
164.19 

 (151.99) 
267.22 

 (267.45) 
556.61 

 (568.27) 
834.21 

 (844.72) 
942.23 

 (937.06) 
 0.50 

 
 29.50 

 (22.11) 
36.31 

 (25.40) 
42.31 

 (29.86) 
58.25 

 (44.98) 
158.50 

 (153.06) 
526.33 

 (520.62) 
880.94 

 (890.63) 
 1.00 

 
 9.23 

 (5.85) 
10.80 
 (6.31) 

12.03 
 (6.72) 

14.30 
 (7.87) 

22.57 
 (13.88) 

108.84 
 (100.71) 

665.17 
 (664.35) 

 1.50 
 

 4.63 
 (2.54) 

5.40 
 (2.80) 

5.89 
 (3.00) 

6.93 
 (3.28) 

9.28 
 (4.32) 

23.15 
 (16.30) 

409.59 
 (411.25) 

 2.50 
 

 2.11 
 (0.92) 

2.39 
 (1.00) 

2.60 
 (1.09) 

2.96 
 (1.17) 

3.69 
 (1.38) 

5.51 
 (2.07) 

93.19 
 (91.61) 

4  L 13.50 16.45 19.05 23.95 35.50 58.00 111.10 
  0.00 

 
 998 

(1,246) 
992 

(1,132) 
992 

(1,099) 
999 

(1,041) 
992 

(1,007) 
988 

(984) 
997 

(987) 
 0.25 

 
 108.38 

 (98.33) 
170.69 

 (162.48) 
270.31 

 (275.08) 
515.02 

 (522.18) 
817.43 

 (839.57) 
943.14 

 (947.81) 
996.9 

 (999.07) 
 0.50 

 
 32.36 

 (25.31) 
45.55 

 (31.84) 
59.66 

 (43.42) 
122.05 

 (111.14) 
465.15 

 (463.09) 
823.31 

 (840.16) 
982.98 

 (982.92) 
 1.00 

 
 9.39 

 (6.20) 
12.78 
 (7.36) 

15.48 
 (8.30) 

21.46 
 (11.09) 

67.87 
 (55.49) 

457.19 
 (464.79) 

890.51 
 (881.57) 

 1.50 
 

 4.56 
 (2.52) 

6.31 
 (3.12) 

7.41 
 (3.48) 

9.69 
 (4.27) 

17.58 
 (8.35) 

169.83 
 (163.55) 

783.17 
 (788.80) 

 2.50 
 

 1.94 
 (0.84) 

2.61 
 (1.05) 

3.08 
 (1.19) 

3.90 
 (1.42) 

5.85 
 (1.95) 

15.02 
 (7.67) 

483.22 
 (482.63) 

5  L 16.90 22.20 27.20 37.30 61.20 106.90 212.10 
  0.00 

 
 996 

(1,238) 
1,000 

(1,152) 
995 

(1,091) 
996 

(1,059) 
1,000 

(1,010) 
1,000 

(1,009) 
1,006 

(1,006) 
 0.25 

 
 142.27 

 (128.30) 
289.74 

 (292.96) 
491.37 

 (525.26) 
752.58 

 (796.65) 
910.47 

 (912.74) 
990.63 

 (998.40) 
973.42 

 (969.13) 
 0.50 

 
 42.49 

 (29.92) 
66.27 

 (45.24) 
109.66 
 (88.26) 

327.65 
 (328.63) 

738.87 
 (741.88) 

937.27 
 (940.32) 

979.06 
(1,001.09) 

 1.00 
 

 12.78 
 (7.23) 

17.60 
 (9.05) 

22.98 
 (11.25) 

39.70 
 (21.51) 

290.46 
 (287.43) 

746.42 
 (755.25) 

935.70 
 (940.07) 

 1.50 
 

 6.39 
 (3.03) 

8.61 
 (3.79) 

10.76 
 (4.48) 

15.69 
 (6.00) 

59.69 
 (44.92) 

518.06 
 (514.47) 

901.28 
 (902.16) 

 2.50 
 

 2.67 
 (1.00) 

3.61 
 (1.25) 

4.34 
 (1.48) 

5.94 
 (1.87) 

10.41 
 (3.13) 

122.44 
 (116.12) 

740.84 
 (748.72) 

Note. Standard deviation of run length is in parentheses. 
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Table 86 
 
The Upper Control Limits and Average Run Length Values of the Multivariate 
Exponentially Weighted Moving Average That Achieved an In-Control Average Run 
Length ≈ 200, 500, 𝑎𝑛𝑑 1,000 under Multivariate Gamma2 (α=3, β=1) Distribution  
 
   λ 
ARL0 δ    0.01 0.02 0.03 0.05 0.1 0.2 0.5 
200  h1 4,124.1 2,116.6 1,442.9 896.6 476.8 257.8 116.1 

  0.00 
 

 200 
(215.23) 

200 
(201.53) 

200 
(195.80) 

200 
(192.00) 

200 
 (193.90) 

200 
 (196.60) 

200 
 (202.30) 

 0.25 
 

 58.24 
 (47.74) 

62.89 
 (50.77) 

65.75 
 (53.43) 

73.06 
 (63.22) 

80.47 
 (73.11) 

95.80 
 (90.70) 

130.19 
 (129.27) 

 0.50 
 

 29.78 
 (18.94) 

31.05 
 (19.65) 

32.08 
 (21.15) 

32.95 
 (23.37) 

37.47 
 (31.23) 

47.43 
 (43.78) 

78.21 
 (76.99) 

 1.00 
 

 14.50 
 (6.43) 

14.73 
 (6.53) 

14.52 
 (6.66) 

14.22 
 (7.13) 

13.79 
 (8.10) 

15.53 
 (11.27) 

29.06 
 (27.52) 

 1.50 
 

 6.70 
 (3.47) 

9.54 
 (3.41) 

9.35 
 (3.35) 

8.68 
 (3.30) 

7.97 
 (3.46) 

7.90 
 (4.36) 

12.34 
 (10.50) 

 2.50 
 

 5.88 
 (1.60) 

5.71 
 (1.57) 

5.50 
 (1.49) 

5.03 
 (1.41) 

4.36 
 (1.33) 

3.81 
 (1.34) 

3.88 
 (2.16) 

500  h1 4,209.5 2,175.5 1,486.7 928.5 498.3 272.6 125.8 
  0.00 

 
 500 

 (485.80) 
500 

 (480.18) 
500 

 (480.08) 
500 

 (490.50) 
501 

 (499.80) 
498 

 (503.80) 
503 

 (502.16) 
 0.25 

 
 109.17 

 (77.90) 
115.43 
 (88.44) 

122.14 
 (102.09) 

135.68 
 (120.26) 

170.89 
 (161.73) 

217.21 
 (213.21) 

316.65 
 (318.75) 

 0.50 
 

 50.59 
 (26.06) 

49.42 
 (28.52) 

48.56 
 (30.40) 

51.75 
 (37.01) 

63.85 
 (53.76) 

93.26 
 (86.92) 

177.47 
 (173.15) 

 1.00 
 

 23.49 
 (8.42) 

21.62 
 (8.29) 

20.25 
 (8.46) 

18.91 
 (9.03) 

19.18 
 (11.23) 

24.13 
 (18.92) 

58.86 
 (56.08) 

 1.50 
 

 15.42 
 (4.47) 

13.69 
 (4.28) 

12.49 
 (4.03) 

11.28 
 (3.97) 

10.24 
 (4.42) 

10.55 
 (6.14) 

21.04 
 (18.51) 

 2.50 
 

 9.14 
 (2.00) 

7.98 
 (1.84) 

7.15 
 (1.73) 

6.30 
 (1.60) 

5.23 
 (1.50) 

4.53 
 (1.57) 

5.16 
 (3.21) 

1,000  h1 4,268.4 2,211.7 1,515.7 948.8 512.0 282.8 132.7 
  0.00 

 
 1,002 

 (959.10) 
1,002 

 (993.84) 
998 

 (993.66) 
1,000 

 (995.40) 
1,007 

(1,003.3) 
1,001 

 (993.05) 
999 

 (982.17) 
 0.25 

 
 159.02 

 (109.35) 
171.30 

 (135.49) 
185.61 

 (157.16) 
216.14 

 (197.23) 
288.32 

 (278.74) 
411.96 

 (404.02) 
601.31 

 (603.94) 
 0.50 

 
 67.21 

 (32.22) 
63.78 

 (36.21) 
64.41 

 (40.64) 
70.43 

 (52.68) 
93.85 

 (83.42) 
156.50 

 (149.59) 
331.37 

 (327.96) 
 1.00 

 
 29.91 

 (9.71) 
25.95 
 (9.43) 

24.17 
 (9.80) 

22.71 
 (10.55) 

23.47 
 (14.41) 

33.68 
 (27.83) 

98.39 
 (95.80) 

 1.50 
 

 19.28 
 (4.96) 

16.15 
 (4.55) 

14.70 
 (4.52) 

13.00 
 (4.43) 

11.75 
 (4.96) 

12.90 
 (7.76) 

32.58 
 (30.41) 

 2.50 
 

 11.37 
 (2.23) 

9.36 
 (1.99) 

8.33 
 (1.88) 

7.08 
 (1.72) 

5.18 
 (1.59) 

5.11 
 (1.78) 

6.53 
 (4.28) 

Note. Standard deviation of run length is in parentheses. 
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Table 87 
 
The Upper Control Limits and Average Run Length Values of the Signed-Rank 
Multivariate Exponentially Weighted Moving Average That Achieved an In-Control 
Average Run Length ≈ 200, 500, 𝑎𝑛𝑑 1,000 under Multivariate Gamma2 (α=3, β=1) 
Distribution  
 
   λ 
ARL0 δ    0.01 0.02 0.03 0.05 0.1 0.2 0.5 
200  L 1,366.3 723.1 505.6 328.5 190.3 116.2 65.9 

  0.00 
 

 201 
(236.48) 

200 
(209.37) 

200 
(200.50) 

200 
(196.52) 

200 
 (199.56) 

200 
 (196.41) 

201 
 (200.60) 

 0.25 
 

 10.46 
 (4.60) 

11.40 
 (5.10) 

11.53 
 (5.28) 

11.72 
 (5.81) 

12.38 
 (7.25) 

15.24 
 (11.33) 

30.93 
 (29.17) 

 0.50 
 

 5.24 
 (1.60) 

5.61 
 (1.68) 

5.56 
 (1.71) 

5.40 
 (1.77) 

5.18 
 (1.93) 

5.18 
 (2.42) 

8.04 
 (6.23) 

 1.00 
 

 2.97 
 (0.59) 

2.92 
 (0.61) 

2.87 
 (0.61) 

2.74 
 (0.62) 

2.51 
 (0.61) 

2.24 
 (0.62) 

2.14 
 (0.85) 

 1.50 
 

 2.00 
 (0.27) 

2.05 
 (0.32) 

2.02 
 (0.29) 

1.96 
 (0.28) 

1.83 
 (0.38) 

1.60 
 (0.49) 

1.26 
 (0.44) 

 2.50 
 

 1.21 
 (0.41) 

1.34 
 (0.47) 

1.26 
 (0.44) 

1.01 
 (0.31) 

1.00 
 (0.528) 

1.00 
 (0) 

1.00 
 (0) 

500  L 1,419.9 761.7 537.4 352.7 207.7 129.3 76.7 
  0.00 

 
 499 

 (513.19) 
494 

 (494.26) 
498 

 (495.26) 
500 

 (500.16) 
500 

 (497.38) 
500 

 (509.81) 
502 

 (502.64) 
 0.25 

 
 17.28 

 (6.17) 
16.79 
 (6.56) 

16.44 
 (6.90) 

16.15 
 (7.60) 

17.48 
 (10.46) 

23.76 
 (19.03) 

66.31 
 (64.08) 

 0.50 
 

 8.43 
 (2.10) 

7.95 
 (2.05) 

7.53 
 (2.04) 

7.05 
 (2.13) 

6.52 
 (2.3) 

6.69 
 (3.25) 

13.71 
 (11.65) 

 1.00 
 

 4.33 
 (0.74) 

4.03 
 (0.72) 

3.79 
 (0.71) 

3.44 
 (0.70) 

3.00 
 (0.68) 

2.65 
 (0.71) 

2.73 
 (1.17) 

 1.50 
 

 3.02 
 (0.43) 

2.82 
 (0.43) 

2.65 
 (0.48) 

2.37 
 (0.49) 

2.04 
 (0.33) 

1.85 
 (0.37) 

1.53 
 (0.51) 

 2.50 
 

 1.99 
 (0.05) 

1.97 
 (0.14) 

1.94 
 (0.22) 

1.77 
 (0.42) 

1.25 
 (0.43) 

1.00 
 (.045) 

1.00 
 (0.01) 

1,000  L 1,460.0 798.1 559.3 369.2 219.4 138.7 84.5 
  0.00 

 
 994 

 (988.60) 
1,000 

 (980.70) 
1,000 

 (966.63) 
1,001 

(1,002.63) 
997 

 (990.75) 
997 

 (994.06) 
1,000 

 (997.33) 
 0.25 

 
 22.55 

 (7.39) 
22.22 
 (7.90) 

20.09 
 (7.98) 

19.64 
 (9.27) 

21.79 
 (13.54) 

34.21 
 (28.56) 

115.95 
 (115.52) 

 0.50 
 

 10.88 
 (2.40) 

10.23 
 (2.41) 

8.96 
 (2.32) 

8.15 
 (2.33) 

7.50 
 (2.67) 

7.96 
 (3.89) 

20.60 
 (18.14) 

 1.00 
 

 5.49 
 (0.84) 

5.06 
 (0.83) 

4.42 
 (0.78) 

3.90 
 (0.75) 

3.33 
 (0.74) 

2.93 
 (0.76) 

3.27 
 (1.51) 

 1.50 
 

 3.97 
 (0.50) 

3.48 
 (0.53) 

3.03 
 (0.43) 

2.71 
 (0.47) 

2.25 
 (0.45) 

1.97 
 (0.35) 

1.70 
 (0.51) 

 2.50 
 

 2.42 
 (0.49) 

2.08 
 (0.28) 

1.99 
 (0.07) 

1.95 
 (0.22) 

1.58 
 (0.49) 

1.05 
 (0.23) 

1.00 
 (0.00) 

Note. Standard deviation of run length is in parentheses. 
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Table 88 
 
Average Run Length Values of the Hotelling’s T2 That Achieved an In-Control 
Average Run Length ≈ 200 under p-variates Multivariate Normal Distribution  
 
 p 
 2 3 4 5 

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 200.00   200.00   200.00   200.00   

0.25 162.11 160.46 175.80 174.36 182.42 180.29 186.44 186.26 

0.5 112.45 113.48 130.19 129.89 140.16 140.78 144.74 147.05 

1.0 41.50 41.28 53.42 53.31 60.59 60.09 68.62 69.67 

1.5 15.67 15.24 20.77 19.84 25.18 24.87 28.94 28.21 

2.5 3.61 3.08 4.46 3.95 5.27 4.72 6.03 5.58 
 

 

Table 89 
 
Average Run Length Values of the Hotelling’s T2 That Achieved an In-Control 
Average Run Length ≈ 500 under p-variates Multivariate Normal Distribution  
 

 p 
 2 3 4 5 

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 500.00  500.00  500.00  500.00  

0.25 395.29 397.41 413.52 420.55 444.34 443.09 461.89 463.25 

0.5 254.13 253.84 307.15 303.17 330.17 331.60 347.66 352.88 

1.0 83.13 82.97 111.56 110.77 130.83 128.88 148.05 148.71 

1.5 28.05 27.53 38.56 38.09 47.14 46.54 56.08 55.04 

2.5 5.14 4.57 6.57 6.07 7.90 7.39 9.19 8.51 
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Table 90 
 
Average Run Length Values of the Hotelling’s T2 That Achieved an In-Control Average 
Run Length ≈ 1,000 under p-variates Multivariate Normal Distribution  
 
 p 
 2 3 4 5 

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 1,000.00   1,000.00   1,000.00   1,000.00   

0.25 771.20 764.14 837.75 846.95 881.11 876.92 898.83 910.71 

0.5 474.75 483.32 577.60 578.22 640.94 641.13 669.04 674.43 

1.0 140.49 138.42 196.35 196.55 231.75 230.24 269.50 273.11 

1.5 43.55 43.93 63.09 63.10 77.30 77.85 92.68 91.56 

2.5 6.88 6.44 9.24 8.83 11.35 10.89 13.31 12.91 

 

 

Table 91 
 
Average Run Length Values of the Hotelling’s T2 That Achieved an In-Control Average 
Run Length ≈ 200 under p-variates Multivariate tp(5)- Distribution  
 
 p 
 2 3 4 5 

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 200.00 196.61 200.00 196.61 201.00 202.63 201.00 198.70 

0.25 173.44 170.68 183.13 180.89 185.73 184.26 189.25 187.77 

0.5 142.94 142.15 159.21 159.41 166.28 163.48 176.03 174.21 

1.0 76.65 75.09 100.52 101.41 110.14 110.60 120.05 120.40 

1.5 34.06 33.18 48.77 47.86 59.15 58.04 67.38 67.27 

2.5 6.78 6.23 10.04 9.52 12.70 12.42 15.88 15.19 
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Table 92 
 
Average Run Length Values of the Hotelling’s T2 That Achieved an In-Control Average 
Run Length ≈ 500 under p-variates Multivariate tp(5)- Distribution  
 
 p 
 2 3 4 5 

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 488.00 483.73 494.00 493.82 500.00 501.81 494.00 493.63 

0.25 439.56 436.29 449.27 449.74 464.87 463.89 477.49 483.03 

0.5 375.94 377.00 393.81 393.33 435.11 434.70 445.17 444.86 

1.0 212.54 211.93 265.61 264.29 301.30 297.92 325.54 323.34 

1.5 96.17 95.01 135.90 134.77 174.03 171.95 194.43 192.73 

2.5 16.08 15.62 25.48 25.35 37.06 36.35 45.63 45.19 

 

 

Table 93 
 
Average Run Length Values of the Hotelling’s T2 That Achieved an In-Control Average 
Run Length ≈ 1,000 under p-variates Multivariate tp(5)- Distribution  
 
 p 
 2 3 4 5 

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 992.00 986.65 998.00 978.42 988.00 984.37 1,000.00 990.61 

0.25 880.93 881.01 927.34 916.77 952.96 951.14 950.61 967.43 

0.5 774.23 769.71 844.34 855.33 864.67 877.62 921.47 936.77 

1.0 467.87 464.36 578.61 576.05 657.06 649.00 713.52 707.90 

1.5 230.38 225.60 323.24 325.44 411.02 403.19 478.71 488.31 

2.5 38.36 38.12 65.96 66.47 94.77 92.68 124.12 122.95 
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Table 94 
 
Average Run Length Values of the Hotelling’s T2 That Achieved an In-Control Average 
Run Length ≈ 200 under p-variates Multivariate Gammap(α=3,β=1) Distribution  
 

 p 
 2 3 4 5 

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 201.00 197.98 200.00 202.82 200.00 199.38 200.00 197.66 

0.25 146.77 148.19 159.24 158.20 169.50 170.27 171.74 171.20 

0.50 92.89 93.04 120.46 119.94 134.60 136.27 138.17 136.37 

1.00 30.32 29.92 60.17 60.77 73.02 72.75 76.62 77.76 

1.50 8.73 8.33 28.90 28.29 35.66 35.68 39.57 38.52 

2.50 1.05 0.22 7.31 6.93 8.97 8.47 10.07 9.45 

 

 

Table 95 
 
Average Run Length Values of the Hotelling’s T2 That Achieved an In-Control 
Average Run Length ≈ 500 under p-variates Multivariate Gammap(α=3,β=1) 
Distribution  
 
 p 
 2 3 4 5 

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 503.00 505.74 501.00 507.26 500.00 501.74 500.00 491.81 

0.25 363.96 363.06 397.45 395.36 412.64 417.49 412.11 410.32 

0.50 234.19 236.49 285.51 284.53 325.10 321.41 331.05 328.59 

1.00 76.57 77.11 139.67 138.28 166.91 166.25 177.37 175.75 

1.50 21.76 21.00 61.99 62.36 78.13 77.70 84.48 84.08 

2.50 1.65 1.04 13.38 12.86 17.01 16.44 19.02 18.44 
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Table 96 
 
Average Run Length Values of the Hotelling’s T2 That Achieved an In-Control Average 
Run Length ≈ 1,000 under p-variates Multivariate Gammap(α=3,β=1) Distribution  
 

 p 
 2 3 4 5 

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 993.00 

 
1,000.55 995.00 983.80 1,000.00 1,000.13 999.00 1,011.04 

0.25 731.07 737.23 771.44 767.91 837.93 847.06 828.34 822.73 

0.50 453.92 455.09 559.94 557.73 636.27 638.27 632.96 636.14 

1.00 148.01 148.15 261.96 262.37 312.41 315.38 336.51 336.29 

1.50 43.76 43.17 113.08 112.54 139.09 140.24 153.77 152.90 

2.50 3.20 2.65 21.73 20.98 27.85 27.17 31.48 31.31 
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Table 97 
 
Average Run Length Comparisons for p = 2, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 6.30 6.20 6.90 6.80 7.70 7.7 10.59 
  0.00   206 

(253) 
197 

(245) 
193 

(233) 
194 

(223) 
198 

(213) 
201 

(214) 
200 

 

 0.25 
 

 46.86 
(47.19) 

45.42 
(76.75) 

51.45 
(49.27) 

49.77 
(48.67) 

59.11 
(57.49) 

59.51 
(57.43) 

162.11 
(160.46) 

 0.50 
 

 16.93 
(14.81) 

16.12 
(14.56) 

18.72 
(15.57) 

18.19 
(15.51) 

20.52 
(16.60) 

20.77 
(16.87) 

112.45 
(113.48 

 1.00 
 

 5.71 
(4.17) 

5.33 
(4.02) 

6.21 
(4.47) 

5.92 
(4.30) 

6.88 
(4.71) 

6.73 
(4.61) 

41.50 
(41.28 

 1.50 
 

 3.07 
(1.94) 

2.92 
(1.92) 

3.32 
(2.06) 

3.16 
(2.02) 

3.61 
(2.16) 

3.58 
(2.17) 

15.67 
(15.42) 

 2.50 
 

 1.56 
(0.74) 

1.48 
(0.72) 

1.63 
(0.79) 

1.57 
(0.76) 

1.74 
(0.84) 

1.71 
(0.83) 

3.61 
(3.08) 

Note. Standard deviation of run length is in parentheses. 
 
  
 
Table 98 
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 8.85 8.8 9.90 9.7 10.90 10.40 10.59 
  0.00 

 
 197 

(200) 
201 

(205) 
196 

(197) 
202 

(203) 
201 

(203) 
198 

(200) 
200 

 

 0.25 
 

 74.92 
(73.52) 

74.91 
(71.68) 

97.13 
(93.66) 

94.88 
(92.43) 

141.65 
(142.57) 

133.82 
(131.22) 

162.11 
(160.46) 

 0.50 
 

 25.62 
(21.27) 

25.17 
(20.79) 

35.10 
(32.32) 

33.84 
(30.71) 

68.02 
(66.90) 

62.70 
(61.51) 

112.45 
(113.48 

 1.00 
 

 7.81 
(5.14) 

7.78 
(5.13) 

9.36 
(6.62) 

8.94 
(6.31) 

16.82 
(15.41) 

15.37 
(13.55) 

41.50 
(41.28 

 1.50 
 

 4.07 
(2.36) 

4.01 
(2.34) 

4.60 
(2.68) 

4.46 
(2.56) 

6.57 
(4.99) 

6.06 
(4.44) 

15.67 
(15.42) 

 2.50 
 

 1.90 
(0.90) 

1.87 
(0.92) 

2.08 
(0.98) 

2.04 
(0.99) 

2.34 
(1.21) 

2.25 
(1.20) 

3.61 
(3.08) 

Note. Standard deviation of run length is in parentheses. 
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Table 99 
 
Average Run Length Comparisons for p = 3, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 8.30 8.20 9.10 8.80 10.20 9.70 12.83 
  0.00 

 
 197 

(257) 
200 

(244) 
200 

(239) 
193 

(220) 
201 

(221) 
198 

(214) 
200 

 0.25 
 

 50.11 
(53.77) 

51.46 
(52.06) 

56.84 (59.74) 56.38 
(54.32) 

69.70 
(69.97) 

65.63 
(62.80) 

175.80 
(174.36) 

 0.50 
 

 18.15 
(16.79) 

19.23 
(16.49) 

20.79 
(17.95) 

21.01 
(17.36) 

24.29 
(20.31) 

23.17 
(18.70) 

130.19 
(129.89) 

 1.00 
 

 5.93 
(4.53) 

6.48 
(4.67) 

6.79 
(4.85) 

6.97 
(4.83) 

7.84 
(5.22) 

7.68 
(5.06) 

53.42 
(53.31) 

 1.50 
 

 3.21 
(2.08) 

3.47 
(2.16) 

3.60 
(2.22) 

3.69 
(2.30) 

4.12 
(2.41) 

4.04 
(2.40) 

20.77 
(19.84) 

 2.50 
 

 1.55 
(0.73) 

1.79 
(0.83) 

1.73 
(0.82) 

1.79 
(0.88) 

1.92 
(0.88) 

1.92 
(0.94) 

4.46 
(3.95) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
 
Table 100 
 
Average Run Length Comparisons for p = 3, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 12.00 11.00 14.45 12.00 19.10 12.60 12.83 
  0.00 

 
 202 

(214) 
209 

(214) 
200 

(206) 
204 

(207) 
200 

(197) 
195 

(195) 
200 

 0.25 
 

 96.00 
(96.21) 

83.18 
(80.16) 

136.97 
(138.34) 

110.95 
(109.87) 

180.71 
(181.89) 

142.83 
(143.54) 

175.80 
(174.36) 

 0.50 
 

 33.60 
(29.27) 

29.07 
(24.04) 

61.03 
(59.21) 

40.67 
(36.61) 

132.92 
(133.35) 

73.98 
(72.18) 

130.19 
(129.89) 

 1.00 
 

 9.74 
(6.37) 

8.73 
(5.70) 

14.53 
(11.05) 

10.49 
(7.56) 

51.80 
(49.62) 

18.70 
(16.91) 

53.42 
(53.31) 

 1.50 
 

 4.92 
(2.71) 

4.49 
(2.59) 

6.32 
(3.65) 

5.06 
(2.95) 

19.03 
(17.17) 

7.02 
(5.31) 

20.77 
(19.84) 

 2.50 
 

 2.21 
(1.00) 

2.07 
(0.99) 

2.63 
(1.15) 

2.23 
(1.06) 

4.38 
(2.62) 

2.45 
(1.317) 

4.46 
(3.95) 

Note. Standard deviation of run length is in parentheses. 
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Table 101 
 
Average Run Length Comparisons for p = 4, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 10.30 9.90 11.45 10.70 13.05 11.60 14.86 
  0.00 

 
 201 

(263) 
199 

(246) 
202 

(256) 
203 

(232) 
200 

(230) 
193 

(209) 
200 

 0.25 
 

 56.33 
(61.76) 

55.30 
(55.12) 

67.32 
(71.02) 

61.93 
(60.20) 

84.7 
(87.25) 

71.22 
(67.50) 

182.42 
(180.29) 

 0.50 
 

 21.13 
(18.66) 

20.26 
(17.69) 

24.61 
(21.07) 

22.11 
(18.33) 

30.43 
(25.94) 

24.94 
(20.02) 

140.16 
(140.78) 

 1.00 
 

 7.33 
(5.13) 

6.69 
(5.00) 

8.20 
(5.49) 

7.48 
(5.24) 

9.62 
(6.23) 

8.28 
(5.51) 

60.59 
(60.09) 

 1.50 
 

 3.89 
(2.26) 

3.58 
(2.32) 

4.33 
(2.46) 

3.95 
(2.44) 

4.97 
(2.72) 

4.27 
(2.56) 

25.18 
(24.87) 

 2.50 
 

 1.88 
(0.81) 

1.75 
(0.88) 

2.05 
(0.87) 

1.87 
(0.93) 

2.28 
(0.97) 

2.01 
(0.98) 

5.27 
(4.72) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 102 
 
Average Run Length Comparisons for p = 4, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 16.25 12.90 21.45 13.90 33.50 14.70 14.86 
  0.00 

 
 200 

(218) 
200 

(203) 
200 

(210) 
199 

(199) 
200 

(200) 
201 

(201) 
200 

 0.25 
 

 123.19 
(131.13) 

89.81 
(86.98) 

171.09 
(174.35) 

116.74 
(115.13) 

196.13 
(195.50) 

156.31 
(15.30) 

182.42 
(180.29) 

 0.50 
 

 50.77 
(47.12) 

31.44 
(25.71) 

102.06 
(102.95) 

43.76 
(40.22) 

174.16 
(176.10) 

84.06 
(83.19) 

140.16 
(140.78) 

 1.00 
 

 13.10 
(8.60) 

9.57 
(6.19) 

28.11 
(24.39) 

11.34 
(8.07) 

114.80 
(114.95) 

21.64 
(19.52) 

60.59 
(60.09) 

 1.50 
 

 6.37 
(3.36) 

4.86 
(2.77) 

10.13 
(6.30) 

5.33 
(3.11) 

63.05 
(61.71) 

8.06 
(6.31) 

25.18 
(24.87) 

 2.50 
 

 2.75 
(1.16) 

2.18 
(1.05) 

3.65 
(1.51) 

2.35 
(1.12) 

14.35 
(11.92) 

2.70 
(1.47) 

5.27 
(4.72) 

Note. Standard deviation of run length is in parentheses. 
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Table 103 
 
Average Run Length Comparisons for p = 5, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 12.60 11.60 14.10 12.30 16.90 13.40 16.74 
  0.00 

 
 202 

(273) 
200 

(241) 
200 

(248) 
195 

(222) 
201 

(231) 
200 

(218) 
200 

 0.25 
 

 67.46 
(73.35) 

59.12 
(58.57) 

81.28 
(88.24) 

66.05 
(64.05) 

111.61 
(120.36) 

77.00 
(74.76) 

186.44 
(186.26) 

 0.50 
 

 25.44 
(22.09) 

21.94 
(18.42) 

30.00 
(25.34) 

24.03 
(19.63) 

41.03 
(36.27) 

27.23 
(21.39) 

144.74 
(147.05) 

 1.00 
 

 8.70 
(5.86) 

7.66 
(5.35) 

9.86 
(6.39) 

8.11 
(5.52) 

12.33 
(7.66) 

8.91 
(5.83) 

68.62 
(69.67) 

 1.50 
 

 4.73 
(2.52) 

4.03 
(2.49) 

5.18 
(2.78) 

4.24 
(2.57) 

6.28 
 (3.21) 

4.69 
(2.69) 

28.94 
(28.21) 

 2.50 
 

 2.25 
(0.98) 

1.94 
(0.95) 

2.43 
(0.96) 

2.04 
(1.00) 

2.81 
(1.11) 

2.18 
(1.05) 

6.03 
(5.58) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 104 
 
Average Run Length Comparisons for p = 5, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 22.80 14.70 33.50 15.8 58.30 16.6 16.74 
  0.00 

 
 199 

(216) 
199 

(201) 
201 

(208) 
199 

(197) 
200 

(200) 
197 

(185) 
200 

 0.25 
 

 156.56 
(169.48) 

95.78 
(93.40) 

187.51 
(194.42) 

123.33 
(122.15) 

194.70 
(198.98) 

160.37 
(160.06) 

186.44 
(186.26) 

 0.50 
 

 82.16 
(80.09) 

34.32 
(29.07) 

147.13 
(147.88) 

49.28 
(45.03) 

191.50 
(189.93) 

92.99 
(92.07) 

144.74 
(147.05) 

 1.00 
 

 20.78 
(14.85) 

10.05 
(6.43) 

67.24 
(65.52) 

12.40 
(8.74) 

161.04 
(161.80) 

25.05 
(23.05) 

68.62 
(69.67) 

 1.50 
 

 9.02 
(4.59) 

5.12 
(2.83) 

23.43 
(18.56) 

5.77 
(3.33) 

124.96 
(124.57) 

9.08 
(7.31) 

28.94 
(28.21) 

 2.50 
 

 3.66 
(1.41) 

12.34 
(1.12) 

5.79 
(2.30) 

2.50 
(1.18) 

55.24 
(52.50) 

2.86 
(1.56) 

6.03 
(5.58) 

Note. Standard deviation of run length is in parentheses. 
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Table 105 
 
Average Run Length Comparisons for p = 2, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 500 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 8.10 8.10 8.85 8.80 9.75 9.70 12.42 
  0.00 

 
 492 

(556) 
494 

(551) 
499 

(539) 
501 

(537) 
494 

(517) 
502 

(501) 
500 

 

 0.25 
 

 72.30 
 (63.57) 

71.61 
(64.31) 

82.34 
 (73.68) 

81.70 
(72.82) 

99.10 
 (91.71) 

98.18 
(89.98) 

395.29 
(397.41) 

 0.50 
 

 23.60 
 (17.89) 

23.18 
(18.18) 

25.73 
 (19.28) 

25.57 
(19.01) 

29.07 
 (21.90) 

29.10 
(21.38) 

254.13 
(253.84) 

 1.00 
 

 7.42 
 (4.93) 

7.24 
(4.95) 

8.21 
 (5.31) 

7.81 
(5.16) 

8.81 
 (5.47) 

8.62 
(5.50) 

83.13 
(82.97) 

 1.50 
 

 3.83 
 (2.26) 

3.72 
(2.29) 

4.18 
 (2.44) 

4.02 
(2.40) 

4.51 
 (2.58) 

4.40 
(2.48) 

28.05 
(27.53) 

 2.50 
 

 1.81 
 (0.89) 

1.72 
(0.83) 

1.91 
 (0.91) 

1.84 
(0.90) 

2.06 
 (0.96) 

2.01 
(0.96) 

5.14 
(4.57) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 106 
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 500 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 10.95 10.80 11.95 11.60 12.75 12.30 12.42 
  0.00 

 
 502 

(507) 
498 

(505) 
491 

(484) 
482 

(488) 
482 

(479) 
504 

(504) 
500 

 

 0.25 
 

 139.49 
 (134.16) 

135.56 
(130.63) 

205.31 
 (200.77) 

192.24 
(187.02) 

315.56 
 (309.19) 

312.80 
(311.50) 

395.29 
(397.41) 

 0.50 
 

 37.75 
 (30.95) 

36.58 
(30.27) 

58.31 
 (52.92) 

54.61 
(50.51) 

130.24 
 (125.96) 

126.77 
(124.78) 

254.13 
(253.84) 

 1.00 
 

 9.95 
 (6.24) 

9.77 
(6.19) 

12.32 
 (8.74) 

11.82 
(8.41) 

26.05 
 (23.92) 

24.44 
(22.060) 

83.13 
(82.97) 

 1.50 
 

 4.93 
 (2.67) 

4.90 
(2.69) 

5.60 
 (3.19) 

5.45 
(3.07) 

8.78 
 (6.95) 

8.13 
(6.19) 

28.05 
(27.53) 

 2.50 
 

 2.22 
 (1.02) 

2.17 
(1.02) 

2.40 
 (1.10) 

2.33 
(1.08) 

2.73 
 (1.46) 

2.65 
(1.43) 

5.14 
(4.57) 

Note. Standard deviation of run length is in parentheses. 
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Table 107 
 
Average Run Length Comparisons for p = 3, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 500 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 10.50 10.20 11.40 11.00 12.65 11.90 14.79 
  0.00 

 
 497 

(568) 
488 

(541) 
502 

(558) 
495 

(521) 
500 

(533) 
483 

(496) 
500 

 0.25 
 

 83.17 
 (79.85) 

82.04 
(73.04) 

97.48 
 (91.36) 

93.13 
(82.56) 

124.44 
 (121.37) 

111.13 
(10.69) 

413.52 
(420.55) 

 0.50 
 

 25.64 
 (20.57) 

26.91 
(19.66) 

29.45 
 (22.79) 

29.42 
(21.33) 

35.21 
 (27.02) 

33.09 
(24.54) 

307.15 
(303.17) 

 1.00 
 

 8.00 
 (5.53) 

8.53 
(5.57) 

8.97 
 (5.80) 

9.03 
(5.62) 

10.24 
 (6.35) 

9.76 
(5.89) 

111.56 
(110.77) 

 1.50 
 

 4.06 
 (2.47) 

4.30 
(2.51) 

4.52 
 (2.61) 

4.64 
(2.62) 

5.09 
 (2.80) 

4.95 
(2.70) 

38.56 
(38.09) 

 2.50 
 

 1.84 
 (0.88) 

2.01 
(0.97) 

2.03 
 (0.94) 

2.10 
(1.00) 

2.28 
 (1.05) 

2.22 
(1.06) 

6.57 
(6.07) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 108 
 
Average Run Length Comparisons for p = 3, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 500 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 14.70 13.00 17.60 14.00 23.80 14.60 14.79 
  0.00 

 
 497 

(520) 
473 

(475) 
497 

(505) 
498 

(497) 
504 

(500) 
490 

(485) 
500 

 0.25 
 

 197.21 
 (193.48) 

154.84 
(149.68) 

309.43 
 (311.71) 

228.20 
(224.68) 

455.59 
 (456.01) 

340.06 
(342.13) 

413.52 
(420.55) 

 0.50 
 

 53.98 
 (47.88) 

42.25 
(35.25) 

121.00 
 (119.55) 

66.77 
(62.48) 

325.60 
 (323.42) 

153.04 
(15.85) 

307.15 
(303.17) 

 1.00 
 

 12.89 
 (8.05) 

10.85 
(6.68) 

21.95 
 (17.33) 

13.75 
(9.67) 

118.43 
 (117.12) 

30.68 
(28.86) 

111.56 
(110.77) 

 1.50 
 

 6.13 
 (3.22) 

5.41 
(2.89) 

8.15 
 (4.72) 

6.06 
(3.44) 

38.87 
 (36.49) 

9.58 
(7.70) 

38.56 
(38.09) 

 2.50 
 

 2.64 
 (1.14) 

2.38 
(1.10) 

3.13 
 (1.33) 

2.55 
(1.17) 

6.49 
 (4.48) 

2.91 
(1.60) 

6.57 
(6.07) 

Note. Standard deviation of run length is in parentheses. 
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Table 109 
 
Average Run Length Comparisons for p = 4, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 500 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 12.90 12.10 14.20 13.00 16.30 14.00 16.92 
  0.00 

 
 494 

(585) 
492 

(546) 
498 

(563) 
503 

(530) 
498 

(541) 
506 

(523) 
500 

 0.25 
 

 95.05 
 (92.36) 

88.82 
(79.56) 

116.70 
 (115.55) 

102.08 
(91.42) 

168.17 
 (173.42) 

127.39 
(119.16) 

444.34 
(443.09) 

 0.50 
 

 30.61 
 (24.02) 

28.44 
(21.60) 

35.19 
 (27.19) 

31.96 
(23.37) 

47.32 
 (37.85) 

36.44 
(27.36) 

330.17 
(331.60) 

 1.00 
 

 9.53 
 (6.24) 

8.74 
(5.79) 

10.63 
 (6.68) 

9.58 
(6.09) 

12.84 
 (7.65) 

10.52 
(6.33) 

130.83 
(128.88) 

 1.50 
 

 4.98 
 (2.80) 

4.50 
(2.69) 

5.46 
 (2.93) 

4.90 
(2.83) 

6.32 
 (3.30) 

5.34 
(2.93) 

47.14 
(46.54) 

 2.50 
 

 2.25 
 (0.98) 

2.06 
(1.01) 

2.44 
 (1.05) 

2.20 
(1.07) 

2.75 
 (1.14) 

2.37 
(1.11) 

7.90 
(7.39) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 110 
 
Average Run Length Comparisons for p = 4, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 500 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 20.50 15.20 27.65 16.20 44.50 16.80 16.92 
  0.00 

 
 499 

(522) 
505 

(513) 
500 

(515) 
501 

(500) 
500 

(505) 
496 

(502) 
500 

 0.25 
 

 292.27 
 (306.87) 

176.99 
(169.92) 

414.18 
 (424.22) 

2.54.83 
(248.83) 

494.08 
 (501.77) 

365.86 
(362.06) 

444.34 
(443.09) 

 0.50 
 

 98.37 
 (94.88) 

48.13 
(39.80) 

244.56 
 (245.11) 

78.83 
(74.97) 

440.20 
 (438.85) 

177.91 
(177.33) 

330.17 
(331.60) 

 1.00 
 

 19.00 
 (12.31) 

12.17 
(7.37) 

57.38 
 (52.69) 

15.12 
(10.81) 

304.36 
 (304.84) 

36.42 
(34.68) 

130.83 
(128.88) 

 1.50 
 

 8.34 
 (4.21) 

5.83 
(3.19) 

16.53 
 (11.35) 

6.70 
(3.82) 

165.90 
 (162.85) 

11.34 
(9.30) 

47.14 
(46.54) 

 2.50 
 

 3.41 
 (1.37) 

2.56 
(1.18) 

4.75 
 (1.86) 

2.72 
(1.25) 

35.37 
 (33.16) 

3.18 
(1.74) 

7.90 
(7.39) 

Note. Standard deviation of run length is in parentheses. 
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Table 111 
 
Average Run Length Comparisons for p = 5, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 500 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 15.90 14.00 18.05 14.80 21.90 15.90 18.90 
  0.00 

 
 500 

(615) 
504 

(560) 
501 

(575) 
494 

(520) 
503 

(556) 
499 

(514) 
500 

 0.25 
 

 119.63 
 (121.54) 

98.27 
(86.67) 

157.31 
 (160.08) 

111.00 
(102.35) 

251.28 
 (270.44) 

136.86 
(129.26) 

461.89 
(463.25) 

 0.50 
 

 37.00 
 (29.02) 

31.66 
(23.50) 

45.54 
 (36.24) 

34.47 
(24.52) 

74.17 
 (66.29) 

39.28 
(29.06) 

347.66 
(352.88) 

 1.00 
 

 11.58 
 (7.13) 

9.99 
(6.21) 

13.31 
 (7.97) 

10.72 
(6.50) 

17.39 
 (10.00) 

11.50 
(6.77) 

148.05 
(148.71) 

 1.50 
 

 5.95 
 (3.12) 

5.03 
(2.83) 

6.78 
 (3.46) 

5.36 
(3.00) 

8.39 
 (4.02) 

5.79 
(3.10) 

56.08 
(55.04) 

 2.50 
 

 2.70 
 (1.06) 

2.32 
(1.11) 

2.96 
 (1.15) 

2.41 
(1.14) 

3.55 
 (1.35) 

2.55 
(1.19) 

9.19 
(8.51) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 112 
 
Average Run Length Comparisons for p = 5, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 500 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 30.60 17.10 46.90 18.10 84.00 18.80 18.90 
  0.00 

 
 501 

(527) 
488 

(489) 
501 

(507) 
485 

(485) 
493 

(497) 
495 

(493) 
500 

 
 0.25 

 
 382.48 

 (399.29) 
187.48 

(178.73) 
472.85 

 (483.38) 
269.60 

(263.70) 
484.76 

 (488.94) 
377.46 

(372.21) 
461.89 

(463.25) 
 0.50 

 
 204.96 

 (205.60) 
53.20 

(45.89) 
391.20 

 (396.67) 
87.29 

(82.18) 
472.17 

 (476.26) 
199.40 

(196.75) 
347.66 

(352.88) 

 1.00 
 

 38.14 
 (29.00) 

12.98 
(7.90) 

180.66 
 (181.51) 

16.61 
(12.24) 

417.38 
 (409.12) 

43.11 
(40.68) 

148.05 
(148.71) 

 1.50 
 

 13.26 
 (6.60) 

6.24 
(3.26) 

61.01 
 (55.38) 

7.12 
(4.01) 

331.98 
 (330.77) 

12.91 
(10.88) 

56.08 
(55.04) 

 2.50 
 

 4.90 
 (1.75) 

2.70 
(1.23) 

9.38 
 (4.04) 

2.87 
(1.12) 

168.45 
 (165.21) 

3.44 
(1.93) 

9.19 
(8.51) 

Note. Standard deviation of run length is in parentheses. 
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Table 113 
 
Average Run Length Comparisons for p = 2, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 9.60 9.60 10.40 10.30 11.35 11.20 13.88 
  0.00 

 
 985 

(1,047) 
976 

(1,030) 
990 

(1,024) 
971 

(999) 
1,003 

(1,033) 
968 

(996) 
1,000 

 0.25 
 

 96.92 
 (80.26) 

96.42 
(82.69) 

113.27 
 (97.61) 

112.73 
(96.39) 

145.00 
 (132.17) 

138.55 
(125.68) 

771.20 
(764.14) 

 0.50 
 

 29.46 
 (20.76) 

29.03 
(20.94) 

32.28 
 (22.32) 

31.34 
(22.06) 

37.22 
 (26.89) 

35.93 
(25.79) 

474.75 
(483.32) 

 1.00 
 

 8.92 
 (5.60) 

8.72 
(5.62) 

9.50 
 (5.77) 

9.31 
(2.71) 

10.34 
 (6.02) 

10.25 
(6.10) 

140.49 
(138.42) 

 1.50 
 

 4.48 
 (2.53) 

4.20 
(2.48) 

4.77 
 (2.62) 

4.62 
(2.63) 

5.16 
 (2.77) 

5.07 
(2.76) 

43.55 
(43.93) 

 2.50 
 

 2.04 
 (0.96) 

1.95 
(0.95) 

2.16 
 (1.00) 

2.08 
(0.99) 

2.31 
 (1.07) 

2.25 
(1.07) 

6.88 
(6.44) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 114 
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2  
2 δ UCL 12.50 12.30 13.50 13.10 14.20 13.70 13.88 
  0.00 

 
 995 

(1,007) 
981 

(993) 
992 

(982) 
987 

(973) 
967 

(960) 
1,011 

(1,012) 
1,000 

 0.25 
 

 225.56 
 (222.12) 

212.96 
(203.08) 

356.92 
 (362.23) 

338.80 
(343.19) 

593.27 
 (595.55) 

592.36 
(588.96) 

771.20 
(764.14) 

 0.50 
 

 49.83 
 (40.86) 

48.32 
(39.95) 

87.85 
 (83.30) 

80.86 
(76.00) 

227.82 
 (229.10) 

220.45 
(215.62) 

474.75 
(483.32) 

 1.00 
 

 11.66 
 (6.90) 

11.49 
(6.83) 

15.19 
 (10.75) 

14.38 
(10.18) 

38.08 
 (35.63) 

35.33 
(33.42) 

140.49 
(138.42) 

 1.50 
 

 5.66 
 (2.97) 

5.53 
(2.94) 

6.40 
 (3.56) 

6.18 
(3.45) 

11.02 
 (9.11) 

10.19 
(8.04) 

43.55 
(43.93) 

 2.50 
 

 2.46 
 (1.11) 

2.42 
(1.11) 

2.64 
 (1.18) 

2.55 
(1.15) 

3.10 
 (1.68) 

2.94 
(1.59) 

6.88 
(6.44) 

Note. Standard deviation of run length is in parentheses. 
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Table 115 
 
Average Run Length Comparisons for p = 3, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 12.20 11.80 13.20 12.60 14.20 13.60 16.26 
  0.00 

 
 993 

(1,019) 
942 

(1,002) 
996 

(1,056) 
955 

(972) 
1,004 

(1,035) 
995 

(1,004) 
1,000 

 0.25 
 

 113.84 
 (102.33) 

111.06 
(93.48) 

140.38 
 (127.29) 

127.78 
(111.44) 

179.71 
 (170.82) 

168.78 
(156.50) 

837.75 
(846.95) 

 0.50 
 

 32.44 
 (23.88) 

33.67 
(23.43) 

36.90 
 (26.94) 

35.84 
(24.70) 

43.56 
 (33.21) 

41.28 
(29.69) 

577.60 
(578.22) 

 1.00 
 

 9.64 
 (6.18) 

9.95 
(6.01) 

10.64 
 (6.49) 

10.53 
(6.21) 

11.81 
 (6.94) 

11.47 
(6.61) 

196.35 
(196.55) 

 1.50 
 

 4.77 
 (2.76) 

4.98 
(2.75) 

5.29 
 (2.90) 

5.36 
(2.89) 

5.77 
 (3.00) 

5.75 
(2.98) 

63.09 
(63.10) 

 2.50 
 

 2.11 
 (0.99) 

2.24 
(1.06) 

2.30 
 (1.05) 

2.37 
(1.10) 

2.50 
 (1.11) 

2.49 
(1.13) 

9.24 
(8.83) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
 
Table 116 
 
Average Run Length Comparisons for p = 3, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 16.90 14.80 20.25 15.60 27.40 16.20 16.26 
  0.00 

 
 993 

(1,010) 
1,014 

(1,022) 
992 

(998) 
994 

(992) 
994 

(1,019) 
1,014 

(1,019) 
1,000 

 0.25 
 

 353.79 
 (356.41) 

267.60 
(263.21) 

606.84 
 (609.62) 

405.19 
(402.90) 

875.22 
 (888.06) 

662.42 
(656.69) 

837.75 
(846.95) 

 0.50 
 

 81.58 
 (74.49) 

58.42 
(48.81) 

208.82 
 (204.87) 

101.07 
(96.38) 

607.44 
 (623.17) 

281.23 
(283.71) 

577.60 
(578.22) 

 1.00 
 

 15.66 
 (9.71) 

13.09 
(7.70) 

30.78 
 (24.83) 

16.76 
(12.13) 

219.68 
 (218.42) 

46.64 
(43.84) 

196.35 
(196.55) 

 1.50 
 

 7.11 
 (3.60) 

6.22 
(3.18) 

10.11 
 (5.87) 

6.91 
(3.84) 

67.05 
 (66.02) 

12.62 
(10.48) 

63.09 
(63.10) 

 2.50 
 

 2.94 
 (1.26) 

2.65 
(1.18) 

3.58 
 (1.48) 

2.82 
(1.26) 

9.06 
 (6.66) 

3.31 
(1.83) 

9.24 
(8.83) 

Note. Standard deviation of run length is in parentheses. 
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Table 117 
 
Average Run Length Comparisons for p = 4, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 15.00 13.90 16.50 14.80 18.85 15.80 18.46 
  0.00 

 
 988 

(1,121) 
962 

(1,011) 
997 

(1,096) 
1,006 

(1,029) 
1,000 

(1,078) 
1,004 

(1,032) 
1,000 

 0.25 
 

 136.53 
 (126.91) 

122.45 
(102.24) 

181.43 
 (179.26) 

147.80 
(128.73) 

290.42 
 (297.15) 

192.27 
(179.86) 

881.11 
(876.92) 

 0.50 
 

 38.37 
 (28.17) 

36.25 
(24.93) 

45.67 
 (34.27) 

39.72 
(27.01) 

63.16 
 (50.95) 

45.86 
(33.01) 

640.94 
(641.13) 

 1.00 
 

 11.43 
 (6.91) 

10.50 
(6.40) 

12.97 
 (7.59) 

11.48 
(6.67) 

15.41 
 (8.74) 

12.44 
(7.13) 

231.75 
(230.24) 

 1.50 
 

 5.74 
 (3.07) 

5.23 
(2.94) 

6.35 
 (3.30) 

5.74 
(3.11) 

7.36 
 (3.69) 

6.10 
(3.13) 

77.30 
(77.85) 

 2.50 
 

 2.54 
 (1.10) 

2.34 
(1.12) 

2.80 
 (1.17) 

2.49 
(1.17) 

3.15 
 (1.28) 

2.65 
(1.22) 

11.35 
(10.89) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 118 
 
Average Run Length Comparisons for p = 4, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 23.95 16.90 32.80 17.80 53.60 18.30 18.46 
  0.00 

 
 1,001 

(1,053) 
973 

(978) 
992 

(1,020) 
1,006 

(1,003) 
989 

(989) 
985 

(975) 
1,000 

 0.25 
 

 554.93 
 (563.57) 

291.72 
(281.78) 

819.76 
 (843.67) 

449.13 
(446.28) 

937.25 
 (936.07) 

693.38 
(691.43) 

881.11 
(876.92) 

 0.50 
 

 168.09 
 (163.65) 

64.79 
(55.75) 

489.67 
 (491.70) 

120.75 
(116.88) 

849.45 
 (843.00) 

312.13 
(310.32) 

640.94 
(641.13) 

 1.00 
 

 25.00 
 (16.09) 

13.96 
(8.47) 

106.08 
 (99.79) 

18.81 
(13.74) 

586.70 
 (575.21) 

55.72 
(53.39) 

231.75 
(230.24) 

 1.50 
 

 10.10 
 (4.85) 

6.63 
(3.37) 

24.93 
 (18.69) 

7.59 
(4.26) 

324.48 
 (323.49) 

14.48 
(12.26) 

77.30 
(77.85) 

 2.50 
 

 3.93 
 (1.52) 

2.83 
(1.26) 

5.79 
 (2.27) 

2.99 
(1.33) 

74.59 
 (71.30) 

3.55 
(1.99) 

11.35 
(10.89) 

Note. Standard deviation of run length is in parentheses. 
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Table 119 
 
Average Run Length Comparisons for p = 5, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate Normal Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 18.60 15.80 21.30 16.70 26.10 17.70 20.51 
  0.00 

 
 1,010 

(1,178) 
996 

(1,049) 
998 

(1,103) 
996 

(1,008) 
1,006 

(1,092) 
980 

(1,015) 
1,000 

 0.25 
 

 180.93 
 (174.33) 

135.81 
(113.43) 

269.54 
 (283.60) 

161.01 
(142.45) 

472.39 
 (498.75) 

209.37 
(195.36) 

898.83 
(910.71) 

 0.50 
 

 47.84 
 (34.53) 

39.31 
(26.44) 

62.88 
 (47.81) 

42.41 
(28.42) 

118.70 
 (108.19) 

50.25 
(37.24) 

669.04 
(674.43) 

 1.00 
 

 14.12 
 (8.28) 

11.78 
(6.86) 

16.60 
 (9.30) 

12.41 
(6.96) 

22.45 
 (12.38) 

13.37 
(7.41) 

269.50 
(273.11) 

 1.50 
 

 7.06 
 (3.51) 

5.92 
(3.12) 

8.11 
 (3.88) 

6.18 
(3.21) 

10.10 
 (4.63) 

6.54 
(3.33) 

92.68 
(91.56) 

 2.50 
 

 3.10 
 (1.21) 

2.60 
(1.20) 

3.48 
 (1.33) 

2.71 
(1.24) 

4.15 
 (1.56) 

2.82 
(1.26) 

13.31 
(12.91) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 120 
 
Average Run Length Comparisons for p = 5, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate Normal Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 37.50 18.90 58.40 19.80 107.90 20.40 20.51 
  0.00 

 
 998 

(1,046) 
974 

(959) 
983 

(997) 
974 

(965) 
983 

(973) 
985 

(983) 
1,000 

 0.25 
 

 785.62 
 (813.27) 

320.54 
(308.27) 

920.76 
 (928.77) 

482.92 
(485.13) 

965.83 
 (958.74) 

732.91 
(730.76) 

898.83 
(910.71) 

 0.50 
 

 412.80 
 (427.53) 

73.18 
(61.71) 

774.33 
 (780.33) 

135.84 
(131.21) 

940.47 
 (946.45) 

355.85 
(355.10) 

669.04 
(674.43) 

 1.00 
 

 66.30 
 (55.39) 

15.13 
(8.91) 

384.64 
 (391.47) 

20.98 
(5.79) 

834.64 
 (824.48) 

67.22 
(64.83) 

269.50 
(273.11) 

 1.50 
 

 18.22 
 (9.24) 

7.09 
(3.58) 

132.42 
 (127.31) 

8.07 
(4.58) 

695.32 
 (691.56) 

17.16 
(14.96) 

92.68 
(91.56) 

 2.50 
 

 6.03 
 (2.07) 

2.98 
(1.32) 

14.32 
 (7.42) 

3.16 
(1.40) 

369..98 
 (363.46) 

3.88 
(2.23) 

13.31 
(12.91) 

Note. Standard deviation of run length is in parentheses. 
  



273 
 
Table 121 
 
Average Run Length Comparisons for p = 2, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 6.30 6.20 6.90 6.80 7.85 7.70 13.5 
  0.00 

 
 201 

(248) 
198 

(246) 
197 

(226) 
195 

(244) 
200 

(221) 
197 

(212) 
200 

(196.61) 

 0.25 
 

 47.36 
 (47.58) 

45.63 
(46.42) 

51.34 
 (49.45) 

50.12 
(49.19) 

60.82 
 (59.76) 

59.11 
(55.92) 

173.44 
(170.68) 

 0.50 
 

 17.05 
 (14.92) 

16.67 
(14.55) 

18.72 
 (15.79) 

18.54 
(15.41) 

21.49 
 (17.22) 

20.80 
(16.79) 

142.94 
(142.15) 

 1.00 
 

 5.80 
 (4.14) 

5.62 
(4.11) 

6.28 
 (4.32) 

6.13 
(4.33) 

7.03 
 (4.74) 

6.93 
(4.63) 

76.65 
(75.09) 

 1.50 
 

 3.17 
 (1.94) 

2.99 
(1.90) 

3.33 
 (2.00) 

3.30 
(2.04) 

3.72 
 (2.17) 

3.62 
(2.15) 

34.06 
(33.18) 

 2.50 
 

 1.56 
 (0.74) 

1.50 
(0.70) 

1.63 
 (0.76) 

1.60 
(0.77) 

1.78 
 (0.84) 

1.73 
(0.83) 

6.78 
(6.23) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 122 
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 9.20 9.00 10.70 10.30 13.40 12.30 13.5 
  0.00 

 
 201 

(208) 
202 

(208) 
199 

(205) 
198 

(198) 
200 

(204) 
200 

(200) 
200 

(196.61) 

 0.25 
 

 80.56 
 (77.97) 

77.35 
(74.18) 

112.22 
 (112.97) 

105.85 
(104.85) 

164.98 
 (164.07) 

160.7 
(159.49) 

173.44 
(170.68) 

 0.50 
 

 27.12 
 (22.43) 

26.06 
(21.37) 

41.68 
 (38.00) 

38.20 
(35.52) 

101.41 
 (101.40) 

93.25 
(90.85) 

142.94 
(142.15) 

 1.00 
 

 8.35 
 (5.36) 

8.04 
(5.27) 

10.63 
 (7.57) 

9.80 
(6.90) 

29.88 
 (27.75) 

24.24 
(22.49) 

76.65 
(75.09) 

 1.50 
 

 4.24 
 (2.40) 

4.11 
(2.33) 

4.98 
 (2.80) 

4.76 
(2.73) 

10.16 
 (8.33) 

8.38 
(6.53) 

34.06 
(33.18) 

 2.50 
 

 1.99 
 (0.92) 

1.93 
(0.92) 

2.19 
 (1.00) 

2.12 
(0.99) 

2.91 
 (1.53) 

2.64 
(1.38) 

6.78 
(6.23) 

Note. Standard deviation of run length is in parentheses. 
 
 
  



274 
 
Table 123 
 
Average Run Length Comparisons for p = 3, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 8.35 8.20 9.25 8.90 10.70 9.90 16.6 
  0.00 

 
 200 

(253) 
200 

(247) 
200 

(241) 
201 

(234) 
200 

(227) 
202 

(219) 
200 

(196.61) 

 0.25 
 

 53.22 
 (55.90) 

51.54 
(51.58) 

61.27 
 (61.59) 

56.16 
(55.02) 

79.69 
 (81.16) 

67.63 
(65.77) 

183.13 
(180.89) 

 0.50 
 

 19.71 
 (17.08) 

18.82 
(16.23) 

22.38 
 (18.44) 

20.69 
(17.30) 

27.18 
 (22.02) 

23.58 
(19.25) 

159.21 
(159.41) 

 1.00 
 

 6.75 
 (4.63) 

6.31 
(4.63) 

7.42 
 (4.95) 

6.90 
(4.80) 

8.72 
 (5.52) 

7.70 
(5.03) 

100.52 
(101.41) 

 1.50 
 

 3.59 
 (2.06) 

3.32 
(2.13) 

3.94 
 (2.22) 

3.60 
(2.20) 

4.51 
 (2.40) 

4.07 
(2.40) 

48.77 
(47.86) 

 2.50 
 

 1.75 
 (0.76) 

1.65 
(0.80) 

1.87 
 (0.81) 

1.78 
(0.87) 

2.08 
 (0.89) 

1.89 
(0.91) 

10.04 
(9.52) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 124 
 
Average Run Length Comparisons for p = 3, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 13.30 11.30 17.65 12.70 2.40 15.00 16.6 
  0.00 

 
 200 

(215) 
199 

(206) 
200 

(206) 
200 

(198) 
200 

(203) 
198 

(199) 
200 

196.61) 
 0.25 

 
 115.66 

 (118.31) 
88.96 

(86.71) 
163.46 

 (167.63) 
118.18 

(116.92) 
188.95 

 (190.11) 
166.60 

(163.88) 
183.13 

(180.89) 
 0.50 

 
 43.25 

 (38.55) 
30.25 

(25.09) 
91.76 

 (90.89) 
45.71 

(42.39) 
168.17 

 (166.17) 
106.47 

(104.71) 
159.21 

(159.41) 
 1.00 

 
 11.35 

 (7.08) 
9.11 

(5.84) 
22.39 

 (18.19) 
11.37 
(8.15) 

105.31 
 (103.6) 

30.70 
(29.04) 

100.52 
(101.41) 

 1.50 
 

 5.60 
 (2.91) 

4.61 
(2.63) 

8.48 
 (4.92) 

5.42 
(3.10) 

53.01 
 (51.02) 

10.46 
(8.64) 

48.77 
(47.86) 

 2.50 
 

 2.45 
 (1.03) 

2.12 
(1.01) 

3.18 
 (1.28) 

3.34 
(1.08) 

9.74 
 (7.29) 

3.02 
(1.63) 

10.04 
(9.52) 

Note. Standard deviation of run length is in parentheses. 
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Table 125 
 
Average Run Length Comparisons for p = 4, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 10.35 10.00 11.70 10.80 14.00 11.80 19.2 
  0.00 

 
 198 

(252) 
201 

(247) 
199 

(240) 
201 

(233) 
201 

(229) 
200 

(214) 
201 

(202.62) 

 0.25 
 

 60.28 
 (64.29) 

57.57 
(56.97) 

75.31 
 (79.62) 

64.36 
(62.77) 

105.20 
 (113.01) 

72.97 
(71.38) 

185.73 
(184.26) 

 0.50 
 

 22.00 
 (18.81) 

21.37 
(18.29) 

26.73 
 (21.96) 

23.24 
(19.00) 

36.33 
 (30.93) 

26.13 
(20.85) 

166.28 
(163.48) 

 1.00 
 

 7.29 
 (4.88) 

7.31 
(5.10) 

8.59 
 (5.54) 

7.80 
(5.33) 

10.71 
 (6.47) 

8.56 
(5.54) 

101.41 
(110.60) 

 1.50 
 

 3.79 
 (2.08) 

3.93 
(2.36) 

4.38 
 (2.32) 

4.17 
(2.47) 

5.36 
 (2.76) 

4.53 
(2.61) 

59.15 
(58.04) 

 2.50 
 

 1.76 
 (0.71) 

1.94 
(0.94) 

1.99 
 (0.79) 

1.99 
(0.95) 

2.41 
 (0.95) 

2.10 
(0.99) 

12.70 
(12.42) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
 
Table 126 
 
Average Run Length Comparisons for p = 4, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 19.20 13.20 28.30 14.80 49.80 17.50 19.2 
  0.00 

 
 201 

(211) 
196 

(204) 
199 

(206) 
198 

(200) 
200 

(199) 
199 

(197) 
201 

(202.62) 

 0.25 
 

 155.38 
 (164.26) 

92.65 
(92.28) 

191.56 
 (192.02) 

125.48 
(127.11) 

196.88 
 (197.67) 

176.02 
(171.98) 

185.73 
(184.26) 

 0.50 
 

 75.55 
 (74.50) 

32.21 
(28.33) 

146.52 
 (148.49) 

51.51 
(47.89) 

188.51 
 (186.32) 

120.17 
(121.42) 

166.28 
(163.48) 

 1.00 
 

 17.85 
 (11.50) 

9.87 
(6.36) 

58.89 
 (56.08) 

12.76 
(9.23) 

160.96 
 (162.93) 

38.23 
(36.96) 

101.41 
(110.60) 

 1.50 
 

 7.91 
 (3.86) 

5.02 
(2.78) 

18.75 
 (13.60) 

5.88 
(3.37) 

122.07 
 (122.30) 

12.68 
(10.68) 

59.15 
(58.04) 

 2.50 
 

 3.20 
 (1.21) 

2.28 
(1.06) 

4.94 
 (1.85) 

2.52 
(1.16) 

49.29 
 (48.18) 

3.41 
(1.90) 

12.70 
(12.42) 

Note. Standard deviation of run length is in parentheses. 
 
 
  



276 
 
Table 127 
 
Average Run Length Comparisons for p = 5, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 12.69 11.60 14.70 12.50 18.60 13.60 21.60 
  0.00 

 
 201 

 (262) 
196 

(248) 
201 

 (243) 
200 

(229) 
202 

 (231) 
194 

(214) 
201 

(198.70) 

 0.25 
 

 76.16 
 (78.89) 

58.18 
(60.50) 

96.06 
 (104.47) 

65.21 
(64.69) 

134.85 
 (150.44) 

77.10 
(75.39) 

189.25 
(187.77) 

 0.50 
 

 28.08 
 (22.45) 

21.83 
(18.83) 

34.70 
 (28.02) 

24.04 
(19.98) 

54.74 
 (48.94) 

27.63 
(22.63) 

176.03 
(174.21) 

 1.00 
 

 9.27 
 (5.66) 

7.31 
(5.38) 

11.01 
 (6.36) 

8.09 
(5.56) 

14.86 
 (8.46) 

8.92 
(5.84) 

120.05 
(120.40) 

 1.50 
 

 4.81 
 (2.37) 

3.91 
(2.46) 

5.65 
 (2.71) 

4.30 
(2.62) 

7.17 
 (3.32) 

4.75 
(2.76) 

67.38 
(67.27) 

 2.50 
 

 2.19 
 (0.80) 

1.89 
(0.93) 

2.53 
 (0.91) 

2.02 
(0.99) 

3.10 
 (1.10) 

2.19 
(1.04) 

15.88 
(15.19) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 128 
 
Average Run Length Comparisons for p = 5, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 200 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 27.55 15.20 43.80 16.80 81.90 19.70 21.60 
  0.00 

 
 199 

 (209) 
201 

(209) 
200 

 (208) 
200 

(200) 
198 

 (201) 
197 

(194) 
201 

(198.70) 
 0.25 

 
 178.49 

 (185.49) 
102.13 

(102.23) 
190.74 

 (196.67) 
130.92 
(12.85) 

198.43 
 (197.72) 

176.93 
(175.00) 

189.25 
(187.77) 

 0.50 
 

 120.79 
 (124.97) 

36.92 
(31.70) 

176.05 
 (178.26) 

57.13 
(54.52) 

196.04 
 (194.71) 

125.52 
(123.27) 

176.03 
(174.21) 

 1.00 
 

 32.98 
 (25.04) 

10.56 
(6.74) 

111.64 
 (110.42) 

13.97 
(10.09) 

183.36 
 (184.40) 

44.35 
(43.08) 

120.05 
(120.40) 

 1.50 
 

 11.98 
 (5.61) 

5.33 
(2.92) 

51.88 
 (47.46) 

6.27 
(3.64) 

162.28 
 (160.67) 

14.62 
(12.65) 

67.38 
(67.27) 

 2.50 
 

 4.46 
 (1.53) 

2.40 
(1.13) 

8.53 
 (3.37) 

2.65 
(1.25) 

107.64 
 (109.46) 

3.72 
(2.14) 

15.88 
(15.19) 

Note. Standard deviation of run length is in parentheses. 
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Table 129 
 
Average Run Length Comparisons for p = 2, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 500 from the Multivariate tp(5) Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 8.20 8.10 8.95 8.90 10.00 9.80 17.60 
  0.00 

 
 500 

(558) 
488 

(544) 
497 

(539) 
492 

(528) 
501 

(527) 
474 

(486) 
488 

(183.73) 
 0.25 

 
 73.90 

 (65.40) 
72.08 

(65.25) 
83.53 

 (76.69) 
82.81 

(74.17) 
104.71 
 (97.00) 

100.95 
(92.18) 

439.56 
(436.29) 

 0.50 
 

 23.97 
 (18.15) 

23.58 
(18.03) 

26.25 
 (19.83) 

26.44 
(19.40) 

30.67 
 (23.10) 

29.77 
(22.28) 

375.94 
(377.00) 

 1.00 
 

 7.57 
 (5.03) 

7.45 
(4.94) 

8.26 
 (5.26) 

8.05 
(5.21) 

9.19 
 (5.56) 

8.85 
(5.45) 

212.54 
(211.93) 

 1.50 
 

 3.94 
 (2.29) 

3.84 
(2.29) 

4.27 
 (2.42) 

4.14 
(2.38) 

4.63 
 (2.50) 

4.47 
(2.51) 

96.17 
(95.01) 

 2.50 
 

 1.86 
 (0.87) 

1.80 
(0.86) 

1.95 
 (0.91) 

1.93 
(0.94) 

2.09 
 (0.95) 

2.04 
(0.96) 

16.08 
(15.62) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 130 
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 500 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 11.55 11.20 13.50 12.70 17.50 15.70 17.60 
  0.00 

 
 493 

(500) 
489 

(496) 
496 

(504) 
486 

(491) 
501 

(501) 
500 

(501) 
488 

(183.73) 
 0.25 

 
 157.01 

 (152.40) 
143.73 

(141.69) 
259.49 

 (258.56) 
233.51 

(233.07) 
424.97 

 (416.26) 
407.26 

(407.61) 
439.56 

(436.29) 

 0.50 
 

 42.35 
 (35.54) 

39.81 
(33.39) 

82.33 
 (79.53) 

69.90 
(66.05) 

273.16 
 (272.22) 

237.60 
(235.31) 

375.94 
(377.00) 

 1.00 
 

 10.76 
 (6.64) 

10.29 
(6.28) 

15.34 
 (11.22) 

13.61 
(9.81) 

73.58 
 (71.69) 

54.41 
(52.46) 

212.54 
(211.93) 

 1.50 
 

 5.29 
 (2.78) 

5.14 
(2.73) 

6.47 
 (3.63) 

6.00 
(3.33) 

20.80 
 (18.90) 

15.00 
(12.80) 

96.17 
(95.01) 

 2.50 
 

 2.34 
 (1.04) 

2.26 
(1.03) 

2.65 
 (1.15) 

2.50 
(1.13) 

4.08 
 (2.31) 

3.51 
(1.95) 

16.08 
(15.62) 

Note. Standard deviation of run length is in parentheses. 
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Table 131 
 
Average Run Length Comparisons for p = 3, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 500 from the Multivariate tp (5) Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 10.75 10.30 11.95 11.10 13.80 12.20 21.1 
  0.00 

 
 498 

(579) 
500 

(553) 
503 

(564) 
492 

(434) 
501 

(546) 
491 

(510) 
494 

(493.82) 

 0.25 
 

 87.95 
 (81.83) 

81.91 
(74.27) 

109.47 
 (104.44) 

93.94 
(85.08) 

155.02 
 (154.19) 

117.14 
(108.68) 

449.27 
(449.74) 

 0.50 
 

 28.06 
 (21.45) 

26.54 
(20.10) 

32.29 
 (23.93) 

29.03 
(21.65) 

41.94 
 (33.17) 

34.05 
(25.79) 

393.81 
(393.33) 

 1.00 
 

 8.90 
 (5.58) 

8.33 
(5.54) 

9.86 
 (5.97) 

9.07 
(5.81) 

11.70 
 (6.62) 

9.92 
(6.06) 

265.61 
(264.29) 

 1.50 
 

 4.58 
 (2.48) 

4.19 
(2.50) 

5.01 
 (2.66) 

4.53 
(2.59) 

5.80 
 (2.96) 

5.07 
(2.83) 

135.90 
(134.77) 

 2.50 
 

 2.08 
 (0.88) 

1.94 
(0.94) 

2.28 
 (0.96) 

2.07 
(0.98) 

2.55 
 (1.06) 

2.26 
(1.06) 

25.48 
(25.35) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 132 
 
Average Run Length Comparisons for p = 3, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 500 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 17.50 13.70 24.15 15.40 40.10 18.80 21.1 
  0.00 

 
 500 

(516) 
493 

(500) 
495 

(496) 
492 

(490) 
496 

(493) 
507 

(510) 
494 

(493.82) 
 0.25 

 
 275.10 

 (282.80) 
174.66 

(171.45) 
414.57 

 (421.05) 
277.41 

(273.43) 
482.74 

 (480.92) 
424.80 

(431.93) 
449.27 

(449.74) 
 0.50 

 
 85.82 

 (81.15) 
46.57 

(39.43) 
248.76 

 (246.24) 
89.49 

(85.61) 
441.43 

 (438.39) 
274.92 

(274.27) 
393.81 

(393.33) 
 1.00 

 
 16.68 

 (10.24) 
11.67 
(7.24) 

51.99 
 (47.41) 

16.34 
(12.12) 

309.48 
 (306.82) 

75.43 
(72.71) 

265.61 
(264.29) 

 1.50 
 

 7.51 
 (3.68) 

5.68 
(3.00) 

14.17 
 (8.92) 

6.82 
(3.91) 

176.74 
 (174.33) 

20.00 
(17.63) 

135.90 
(134.77) 

 2.50 
 

 3.11 
 (1.24) 

2.49 
(1.13) 

4.33 
 (1.65) 

2.77 
(1.23) 

32.54 
 (30.00) 

4.08 
(2.34) 

25.48 
(25.35) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
 



279 
 
Table 133 
 
Average Run Length Comparisons for p = 4, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 500 from the Multivariate tp (5) Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 13.62 12.20 15.60 13.20 19.20 14.20 24.30 
  0.00 

 
 502 

(604) 
491 

(545) 
506 

(578) 
498 

(498) 
503 

(541) 
482 

(504) 
500 

(501.81) 
 0.25 

 
 109.75 

 (108.63) 
92.29 

(83.13) 
153.05 

 (154.96) 
105.13 
(94.55) 

244.85 
 (256.84) 

129.50 
(122.91) 

464.87 
(463.89) 

 0.50 
 

 33.43 
 (25.47) 

30.06 
(22.02) 

42.21 
 (32.29) 

32.91 
(23.67) 

69.86 
 (60.68) 

36.89 
(27.27) 

435.11 
(434.70) 

 1.00 
 

 10.15 
 (6.15) 

9.38 
(5.89) 

12.15 
 (7.06) 

10.16 
(6.17) 

15.97 
 (8.77) 

10.91 
(6.50) 

301.30 
(297.92) 

 1.50 
 

 5.08 
 (2.67) 

4.91 
(2.73) 

6.03 
 (2.97) 

5.16 
(2.80) 

7.62 
 (3.65) 

5.54 
(2.95) 

174.03 
(171.95) 

 2.50 
 

 2.21 
 (0.90) 

2.26 
(1.06) 

2.60 
 (1.02) 

2.35 
(1.09) 

3.19 
 (1.21) 

2.46 
(1.13) 

37.06 
(36.35) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
 
Table 134 
 
Average Run Length Comparisons for p = 4, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 500 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 27.60 15.90 43.00 17.70 79.00 21.50 24.30 
  0.00 

 
 501 

(521) 
504 

(521) 
501 

(505) 
501 

(501) 
497 

(493) 
493 

(494) 
500 

(501.81) 
 0.25 

 
 412.40 

 (425.25) 
193.91 

(192.41) 
483.72 

 (493.73) 
293.52 

(295.04) 
488.96 

 (494.61) 
435.97 

(431.24) 
464.87 

(463.89) 

 0.50 
 

 212.10 
 (214.56) 

53.60 
(45.68) 

400.25 
 (402.21) 

102.60 
(99.35) 

474.16 
 (471.84) 

304.80 
(305.58) 

435.11 
(434.70) 

 1.00 
 

 35.00 
 (25.36) 

12.95 
(7.97) 

191.11 
 (187.82) 

18.45 
(13.90) 

430.84 
 (430.54) 

93.32 
(91.87) 

301.30 
(297.92) 

 1.50 
 

 12.36 
 (5.64) 

6.18 
(3.26) 

60.62 
 (53.05) 

7.39 
(4.14) 

348.80 
 (348.90) 

24.75 
(22.33) 

174.03 
(171.95) 

 2.50 
 

 4.51 
 (1.60) 

2.69 
(1.20) 

8.45 
 (3.30) 

2.98 
(1.33) 

184.92 
 (185.17) 

4.67 
(2.82) 

37.06 
(36.35) 

Note. Standard deviation of run length is in parentheses. 
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Table 135 
 
Average Run Length Comparisons for p = 5, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 500 from the Multivariate tp(5) Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 17.60 14.10 20.90 15.0 27.60 16.20 27.00 
  0.00 

 
 497 

(589) 
501 

(562) 
497 

(563) 
496 

(534) 
502 

(548) 
494 

(519) 
494 

(493.63) 
 0.25 

 
 158.47 

 (160.15) 
96.73 

(88.77) 
232.12 

 (245.54) 
111.39 

(101.80) 
350.48 

 (372.37) 
142.65 

(135.24) 
477.49 

(483.03) 
 0.50 

 
 45.37 

 (33.31) 
30.69 

(23.33) 
64.41 

 (49.44) 
34.73 

(25.18) 
136.87 

 (131.07) 
40.29 

(30.48) 
445.17 

(444.86) 

 1.00 
 

 13.41 
 (7.48) 

9.79 
(6.34) 

16.68 
 (8.83) 

10.41 
(6.52) 

25.01 
 (13.30) 

11.58 
(6.96) 

325.54 
(323.34) 

 1.50 
 

 6.67 
 (3.13) 

4.93 
(2.85) 

8.07 
 (3.64) 

5.31 
(2.99) 

11.00 
 (4.67) 

5.84 
(3.14) 

194.43 
(192.73) 

 2.50 
 

 2.91 
 (1.03) 

2.25 
(1.09) 

3.42 
 (1.21) 

2.39 
(1.14) 

4.46 
 (1.48) 

2.56 
(1.19) 

45.63 
(45.19) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 136 
 
Average Run Length Comparisons for p = 5, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 500 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 .2 .5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 43.40 17.80 72.90 19.80 142.30 23.90 27.00 
  0.00 

 
 498 

(519) 
490 

(498) 
499 

(507) 
503 

(507) 
500 

(500) 
486 

(489) 
494 

(493.63) 
 0.25 

 
 451.09 

 (466.83) 
203.74 

(199.17) 
484.18 

 (492.87) 
308.14 

(306.56) 
466.93 

 (487.79) 
437.01 

(435.84) 
477.49 

(483.03) 
 0.50 

 
 335.31 

 (348.58) 
56.97 

(48.46) 
444.15 

 (449.58) 
115.58 

(112.66) 
490.88 

 (492.93) 
323.66 

(326.35) 
445.17 

(444.86) 
 1.00 

 
 103.93 

 (96.48) 
13.60 
(8.40) 

339.13 
 (338.08) 

20.43 
(15.71) 

170.90 
 (467.27) 

112.13 
(109.40) 

325.54 
(323.34) 

 1.50 
 

 24.74 
 (13.55) 

6.53 
(3.39) 

196.52 
 (191.60) 

8.00 
(4.57) 

434.44 
 (436.35) 

30.13 
(27.82) 

194.43 
(192.73) 

 2.50 
 

 7.09 
 (2.20) 

2.81 
(1.27) 

29.54 
 (21.34) 

3.168 
(1.41) 

337.41 
 (338.54) 

5.18 
(3.26) 

45.63 
(45.19) 

Note. Standard deviation of run length is in parentheses. 
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Table 137  
 
Average Run Length Comparisons for p = 2, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate tp(5) Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 

2 δ UCL 9.80 9.70 10.60 10.50 11.75 11.50 21.50 
  0.00 

 
 1,010 

(1,087) 
975 

(1,047) 
998 

(1,042) 
1,006 

(1,054) 
993 

(1,020) 
984 

(1,010) 
992 

(986.65) 

 0.25 
 

 100.32 
 (84.64) 

100.02 
(84.86) 

118.13 
 (103.67) 

116.35 
(100.40) 

158.85 
 (149.20) 

146.30 
(135.15) 

880.93 
(881.01) 

 0.50 
 

 30.46 
 (21.47) 

29.59 
(20.84) 

32.82 
 (22.69) 

32.30 
(22.60) 

38.74 
 (28.05) 

36.77 
(26.68) 

774.23 
(769.71) 

 1.00 
 

 9.09 
 (5.60) 

8.94 
(5.54) 

9.87 
 (5.89) 

9.67 
(5.80) 

10.79 
 (6.10) 

10.58 
(6.24) 

467.87 
(464.36) 

 1.50 
 

 4.61 
 (2.55) 

4.51 
(2.53) 

4.90 
 (2.62) 

4.81 
(2.63) 

5.33 
 (2.75) 

5.23 
(2.76) 

230.38 
(225.60) 

 2.50 
 

 2.08 
 (0.95) 

2.03 
(0.96) 

2.22 
 (1.02) 

2.15 
(1.02) 

2.36 
 (1.06) 

2.31 
(1.06) 

38.36 
(38.12) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 138 
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 13.50 13.0 15.80 14.80 21.15 18.80 21.50 
  0.00 

 
 1,007 

(1,021) 
984 

(982) 
997 

(1,015) 
995 

(1,022) 
981 

(972) 
997 

(993) 
992 

(986.65) 
 0.25 

 
 276.64 

 (268.10) 
248.20 

(243.19) 
499.36 

 (495.19) 
451.94 

(456.02) 
876.76 

 (873.96) 
829.65 

(836.81) 
880.93 

(881.01) 

 0.50 
 

 59.31 
 (50.43) 

54.37 
(45.16) 

143.37 
 (140.85) 

118.96 
(114.87) 

579.86 
 (580.42) 

513.42 
(518.66) 

774.23 
(769.71) 

 1.00 
 

 12.91 
 (7.62) 

12.31 
(7.41) 

20.84 
 (15.56) 

17.93 
(13.24) 

159.60 
 (157.76) 

113.52 
(110.85) 

467.87 
(464.36) 

 1.50 
 

 6.16 
 (3.08) 

5.88 
(3.05) 

7.80 
 (4.37) 

7.21 
(4.01) 

38.24 
 (35.77) 

26.22 
(23.53) 

230.38 
(225.60) 

 2.50 
 

 2.64 
 (1.14) 

2.53 
(1.13) 

3.01 
 (1.27) 

2.83 
(1.22) 

5.52 
 (3.47) 

4.47 
(2.57) 

38.36 
(38.12) 

Note. Standard deviation of run length is in parentheses. 
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Table 139 
 
Average Run Length Comparisons for p = 3, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate tp(5) Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 12.75 12.00 14.15 12.90 16.40 14.00 25.60 
  0.00 

 
 997 

(1,093) 
985 

(1,076) 
1,006 

(1,082) 
1,007 

(1,060) 
998 

(1,076) 
1,002 

(1,038) 
998 

(978.42) 

 0.25 
 

 125.16 
 (111.37) 

111.44 
(95.51) 

164.19 
 (151.99) 

135.13 
(118.27) 

267.22 
 (267.45) 

179.27 
(167.31) 

927.3 
(916.77) 

 0.50 
 

 36.31 
 (25.40) 

33.15 
(23.46) 

42.31 
 (29.86) 

36.84 
(25.03) 

58.25 
 (44.98) 

43.33 
(31.16) 

844.34 
(855.33) 

 1.00 
 

 10.80 
 (6.31) 

9.88 
(6.15) 

12.03 
 (6.72) 

10.73 
(6.41) 

14.30 
 (7.87) 

11.79 
(6.74) 

578.61 
(576.05) 

 1.50 
 

 5.40 
 (2.80) 

5.00 
(2.77) 

5.89 
 (3.00) 

2.35 
(2.88) 

6.93 
 (3.28) 

5.79 
(3.01) 

323.24 
(325.44) 

 2.50 
 

 2.39 
 (1.00) 

2.19 
(1.03) 

2.60 
 (1.09) 

2.36 
(1.09) 

2.96 
 (1.17) 

2.54 
(1.14) 

65.96 
(66.47) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 140 
 
Average Run Length Comparisons for p = 3, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
3 δ UCL 21.20 15.60 30.20 17.60 52.20 22.10 25.60 
  0.00 

 
 982 

(1,016) 
1,006 

(1,026) 
996 

(1,002) 
1,003 

(1,007) 
999 

(985) 
964 

(966) 
998 

(978.42) 
 0.25 

 
 556.61 

 (568.27) 
306.13 

(300.75) 
834.21 

 (844.72) 
524.51 

(521.30) 
942.23 

 (937.06) 
847.64 

(842.48) 
927.3 

(916.77) 

 0.50 
 

 158.50 
 (153.06) 

66.519 
(56.76) 

526.33 
 (520.62) 

152.54 
(146.63) 

880.94 
 (890.63) 

576.62 
(567.46) 

844.34 
(855.33) 

 1.00 
 

 22.57 
 (13.88) 

13.88 
(8.18) 

108.84 
 (100.71) 

21.76 
(16.63) 

665.17 
 (664.35) 

159.32 
(160.23) 

578.61 
(576.05) 

 1.50 
 

 9.28 
 (4.32) 

6.56 
(3.36) 

23.15 
 (16.30) 

8.11 
(4.53) 

409.59 
 (411.25) 

37.17 
(34.24) 

323.24 
(325.44) 

 2.50 
 

 3.69 
 (1.38) 

2.78 
(1.22) 

5.51 
 (2.07) 

3.16 
(1.35) 

93.19 
 (91.61) 

5.39 
(3.33) 

65.96 
(66.47) 

Note. Standard deviation of run length is in parentheses. 
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Table 141 
 
Average Run Length Comparisons for p = 4, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate tp(5) Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 16.45 14.00 19.05 15.00 23.95 16.20 29.20 
  0.00 

 
 992 

(1,132) 
971 

(1,029) 
992 

(1,099) 
1,005 

(1,078) 
999 

(1,041) 
1,002 

(1,022) 
988 

(984.37) 
 0.25 

 
 170.69 

 (162.48) 
125.64 

(106.06) 
270.31 

 (275.08) 
150.27 

(134.04) 
515.02 

 (522.18) 
202.22 

(187.93) 
952.96 

(951.14) 

 0.50 
 

 45.55 
 (31.84) 

36.67 
(25.02) 

59.66 
 (43.42) 

40.73 
(28.10) 

122.05 
 (111.14) 

47.81 
(35.19) 

864.67 
(877.62) 

 1.00 
 

 12.78 
 (7.36) 

11.20 
(6.57) 

15.48 
 (8.30) 

11.96 
(6.73) 

21.46 
 (11.09) 

13.03 
(7.26) 

657.06 
(649.00) 

 1.50 
 

 6.31 
 (3.12) 

5.63 
(2.99) 

7.41 
 (3.48) 

5.98 
(3.10) 

9.69 
 (4.27) 

6.36 
(3.22) 

411.02 
(403.19) 

 2.50 
 

 2.61 
 (1.05) 

2.53 
(1.14) 

3.08 
 (1.19) 

2.63 
(1.17) 

3.90 
 (1.42) 

2.77 
(1.12) 

94.77 
(92.68) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 142 
 
Average Run Length Comparisons for p = 4, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
4 δ UCL 35.50 17.90 58.00 20.00 111.10 25.30 29.20 
  0.00 

 
 992 

(1,007) 
1,022 

(1,019) 
988 

(984) 
995 

(1,013) 
997 

(987) 
985 

(1,002) 
988 

(984.37) 
 0.25 

 
 817.43 

 (839.57) 
343.43 

(334.60) 
943.14 

 (947.81) 
576.40 

(574.35) 
996.9 

 (999.07) 
914.15 

(912.51) 
952.96 

(951.14) 

 0.50 
 

 465.15 
 (463.09) 

76.44 
(66.79) 

823.31 
 (840.16) 

183.41 
(180.18) 

982.98 
 (982.92) 

662.16 
(664.80) 

864.67 
(877.62) 

 1.00 
 

 67.87 
 (55.49) 

15.34 
(9.23) 

457.19 
 (464.79) 

25.41 
(20.08) 

890.51 
 (881.57) 

211.76 
(209.37) 

657.06 
(649.00) 

 1.50 
 

 17.58 
 (8.35) 

7.12 
(3.55) 

169.83 
 (163.55) 

9.04 
(5.18) 

783.17 
 (788.80) 

51.21 
(49.17) 

411.02 
(403.19) 

 2.50 
 

 5.85 
 (1.95) 

3.01 
(1.31) 

15.02 
 (7.67) 

3.40 
(1.46) 

483.22 
 (482.63) 

6.45 
(4.20) 

94.77 
(92.68) 

Note. Standard deviation of run length is in parentheses. 
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Table 143 
 
Average Run Length Comparisons for p = 5, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate tp(5) Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 22.20 16.00 27.20 16.90 37.30 18.10 32.40 
  0.00 

 
 1,000 

(1,152) 
1,007 

(1,068) 
995 

(1,091) 
983 

(1,013) 
996 

(1,059) 
1,017 

(1,058) 
1,000 

(990.61) 

 0.25 
 

 289.74 
 (292.96) 

134.88 
(115.57) 

491.37 
 (525.26) 

160.42 
(144.71) 

752.58 
 (796.65) 

216.90 
(203.83) 

950.61 
(967.43) 

 0.50 
 

 66.27 
 (45.24) 

38.68 
(26.36) 

109.66 
 (88.26) 

43.03 
(29.27) 

327.65 
 (328.63) 

51.50 
(37.75) 

921.47 
(936.77) 

 1.00 
 

 17.60 
 (9.05) 

11.62 
(6.89) 

22.98 
 (11.25) 

12.51 
(7.30) 

39.70 
 (21.51) 

13.57 
(7.74) 

713.52 
(707.90) 

 1.50 
 

 8.61 
 (3.79) 

5.75 
(3.13) 

10.76 
 (4.48) 

6.14 
(3.26) 

15.69 
 (6.00) 

6.60 
(3.38) 

478.71 
(488.31) 

 2.50 
 

 3.61 
 (1.25) 

2.52 
(1.18) 

4.34 
 (1.48) 

2.69 
(1.22) 

5.94 
 (1.87) 

2.86 
(1.28) 

124.12 
(122.95) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 144 
 
Average Run Length Comparisons for p = 5, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 1,000 from the Multivariate tp(5) Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
5 δ UCL 61.20 19.90 106.90 22.20 212.10 27.90 32.40 
  0.00 

 
 1,000 

(1,010) 
992 

(995) 
1,000 

(1,009) 
984 

(986) 
1,006 

(1,006) 
996 

(1,090) 
1,000 

(990.61) 

 0.25 
 

 910.47 
 (912.74) 

367.53 
(360.77) 

990.63 
 (998.40) 

597.20 
(590.33) 

973.42 
 (969.13) 

895.20 
(892.94) 

950.61 
(967.43) 

 0.50 
 

 738.87 
 (741.88) 

84.88 
(75.19) 

937.27 
 (940.32) 

211.39 
(206.03) 

979.06 
(1,001.09) 

707.00 
(696.38) 

921.47 
(936.77) 

 1.00 
 

 290.46 
 (287.43) 

16.24 
(9.76) 

746.42 
 (755.25) 

28.588 
(22.90) 

935.70 
 (940.07) 

251.83 
(246.78) 

713.52 
(707.90) 

 1.50 
 

 59.69 
 (44.92) 

7.51 
(3.78) 

518.06 
 (514.47) 

9.80 
(5.63) 

901.28 
 (902.16) 

63.40 
(60.74) 

478.71 
(488.31) 

 2.50 
 

 10.41 
 (3.13) 

3.13 
(1.34) 

122.44 
 (116.12) 

3.57 
(1.51) 

740.84 
 (748.72) 

7.36 
(4.97) 

124.12 
(122.95) 

Note. Standard deviation of run length is in parentheses. 
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Table 145 
 
Average Run Length Comparisons for p = 2, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 200 with Multivariate Gamma Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 723.1 2,116.6 723.1 1,442.9 723.1 896.6 25.3 
  0.00 

 
 200 

(209.37) 
200 

(201.53) 
200 

(209.37) 
200 

(195.80) 
200 

(209.37) 
200 

(192.00) 
201 

(198.98) 
 0.25 

 
 11.40 

 (5.10) 
62.89 

 (50.77) 
11.40 
 (5.10) 

65.75 
 (53.43) 

11.40 
 (5.10) 

73.06 
 (63.22) 

146.77 
(148.19) 

 0.50 
 

 5.61 
 (1.68) 

31.05 
 (19.65) 

5.61 
 (1.68) 

32.08 
 (21.15) 

5.61 
 (1.68) 

32.95 
 (23.37) 

92.89 
(93.04) 

 1.00 
 

 2.92 
 (0.61) 

14.73 
 (6.53) 

2.92 
 (0.61) 

14.52 
 (6.66) 

2.92 
 (0.61) 

14.22 
 (7.13) 

30.32 
(29.92) 

 1.50 
 

 2.05 
 (0.32) 

9.54 
 (3.41) 

2.05 
 (0.32) 

9.35 
 (3.35) 

2.05 
 (0.32) 

8.68 
 (3.30) 

8.73 
(8.33) 

 2.50 
 

 1.34 
 (0.47) 

5.71 
 (1.57) 

1.34 
 (0.47) 

5.50 
 (1.49) 

1.34 
 (0.47) 

5.03 
 (1.41) 

1.05 
(0.22) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 146 
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 200 with Multivariate Gamma Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 190.3 2,116.6 116.2 1,442.9 65.9 896.6 25.3 
  0.00 

 
 200 

 (199.56) 
200 

(201.53) 
200 

 (196.41) 
200 

(195.80) 
201 

 (200.60) 
200 

(192.00) 
201 

(198.98) 

 0.25 
 

 12.38 
 (7.25) 

62.89 
 (50.77) 

15.24 
 (11.33) 

65.75 
 (53.43) 

30.93 
 (29.17) 

73.06 
 (63.22) 

146.77 
(148.19) 

 0.50 
 

 5.18 
 (1.93) 

31.05 
 (19.65) 

5.18 
 (2.42) 

32.08 
 (21.15) 

8.04 
 (6.23) 

32.95 
 (23.37) 

92.89 
(93.04) 

 1.00 
 

 2.51 
 (0.61) 

14.73 
 (6.53) 

2.24 
 (0.62) 

14.52 
 (6.66) 

2.14 
 (0.85) 

14.22 
 (7.13) 

30.32 
(29.92) 

 1.50 
 

 1.83 
 (0.38) 

9.54 
 (3.41) 

1.60 
 (0.49) 

9.35 
 (3.35) 

1.26 
 (0.44) 

8.68 
 (3.30) 

8.73 
(8.33) 

 2.50 
 

 1.00 
 (0.528) 

5.71 
 (1.57) 

1.00 
 (0) 

5.50 
 (1.49) 

1.00 
 (0) 

5.03 
 (1.41) 

1.05 
(0.22) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
 



286 
 
Table 147 
 
Average Run Length Comparisons for p = 2, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 500 with Multivariate Gamma Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 761.7 2,175.5 537.4 1,486.7 352.7 928.5 34.82 
  0.00 

 
 494 

 (494.26) 
500 

 (480.18) 
498 

 (495.26) 
500 

 (480.08) 
500 

 (500.16) 
500 

 (490.50) 
503 

(505.74) 

 0.25 
 

 16.79 
 (6.56) 

115.43 
 (88.44) 

16.44 
 (6.90) 

122.14 
 (102.09) 

16.15 
 (7.60) 

135.68 
 (120.26) 

363.96 
(363.06) 

 0.50 
 

 7.95 
 (2.05) 

49.42 
 (28.52) 

7.53 
 (2.04) 

48.56 
 (30.40) 

7.05 
 (2.13) 

51.75 
 (37.01) 

234.19 
(236.49) 

 1.00 
 

 4.03 
 (0.72) 

21.62 
 (8.29) 

3.79 
 (0.71) 

20.25 
 (8.46) 

3.44 
 (0.70) 

18.91 
 (9.03) 

76.57 
(77.11) 

 1.50 
 

 2.82 
 (0.43) 

13.69 
 (4.28) 

2.65 
 (0.48) 

12.49 
 (4.03) 

2.37 
 (0.49) 

11.28 
 (3.97) 

21.76 
(21.00) 

 2.50 
 

 1.97 
 (0.14) 

7.98 
 (1.84) 

1.94 
 (0.22) 

7.15 
 (1.73) 

1.77 
 (0.42) 

6.30 
 (1.60) 

1.65 
(1.04) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 148 
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈  500 with Multivariate Gamma Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 207.7 498.3 129.3 272.6 76.7 125.8 34.82 
  0.00 

 
 500 

 (497.38) 
501 

 (499.80) 
500 

 (509.81) 
498 

 (503.80) 
502 

 (502.64) 
503 

 (502.16) 
503 

(505.74) 

 0.25 
 

 17.48 
 (10.46) 

170.89 
 (161.73) 

23.76 
 (19.03) 

217.21 
 (213.21) 

66.31 
 (64.08) 

316.65 
 (318.75) 

363.96 
(363.06) 

 0.50 
 

 6.52 
 (2.3) 

63.85 
 (53.76) 

6.69 
 (3.25) 

93.26 
 (86.92) 

13.71 
 (11.65) 

177.47 
 (173.15) 

234.19 
(236.49) 

 1.00 
 

 3.00 
 (0.68) 

19.18 
 (11.23) 

2.65 
 (0.71) 

24.13 
 (18.92) 

2.73 
 (1.17) 

58.86 
 (56.08) 

76.57 
(77.11) 

 1.50 
 

 2.04 
 (0.33) 

10.24 
 (4.42) 

1.85 
 (0.37) 

10.55 
 (6.14) 

1.53 
 (0.51) 

21.04 
 (18.51) 

21.76 
(21.00) 

 2.50 
 

 1.25 
 (0.43) 

5.23 
 (1.50) 

1.00 
 (.045) 

4.53 
 (1.57) 

1.00 
 (0.01) 

5.16 
 (3.21) 

1.65 
(1.04) 

Note. Standard deviation of run length is in parentheses. 
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Table 149 
 
Average Run Length Comparisons for p = 2, λ =.02, .03, and .05, and In-Control 
Average Run Length ≈ 1,000 with Multivariate Gamma Distribution  
 
   λ  
p      .02 .03 .05  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 798.1 2,211.7 559.3 1,515.7 369.2 948.8 42.70 
  0.00 

 
 1,000 

 (980.70) 
1,002 

 (993.84) 
1,000 

 (966.63) 
998 

 (993.66) 
1,001 

(1,002.63) 
1,000 

 (995.40) 
993 

(1,000.55) 

 0.25 
 

 22.22 
 (7.90) 

171.30 
 (135.49) 

20.09 
 (7.98) 

185.61 
 (157.16) 

19.64 
 (9.27) 

216.14 
 (197.23) 

731.07 
(737.23) 

 0.50 
 

 10.23 
 (2.41) 

63.78 
 (36.21) 

8.96 
 (2.32) 

64.41 
 (40.64) 

8.15 
 (2.33) 

70.43 
 (52.68) 

453.92 
(455.09) 

 1.00 
 

 5.06 
 (0.83) 

25.95 
 (9.43) 

4.42 
 (0.78) 

24.17 
 (9.80) 

3.90 
 (0.75) 

22.71 
 (10.55) 

148.01 
(148.15) 

 1.50 
 

 3.48 
 (0.53) 

16.15 
 (4.55) 

3.03 
 (0.43) 

14.70 
 (4.52) 

2.71 
 (0.47) 

13.00 
 (4.43) 

43.76 
(43.17) 

 2.50 
 

 2.08 
 (0.28) 

9.36 
 (1.99) 

1.99 
 (0.07) 

8.33 
 (1.88) 

1.95 
 (0.22) 

7.08 
 (1.72) 

3.2 
(2.65) 

Note. Standard deviation of run length is in parentheses. 
 
 
 
Table 150 
 
Average Run Length Comparisons for p = 2, λ = 0.1, 0.2, and 0.5, and In-Control 
Average Run Length ≈ 1,000  with Multivariate Gamma Distribution  
 
   λ  
p     0.1 0.2 0.5  
   SRMEWMA MEWMA SRMEWMA MEWMA SRMEWMA MEWMA Hotelling’s T2 
2 δ UCL 219.4 512.0 138.7 282.8 84.5 132.7 42.70 
  0.00 

 
 997 

 (990.75) 
1,007 

(1,003.3) 
997 

 (994.06) 
1,001 

 (993.05) 
1,000 

 (997.33) 
999 

 (982.17) 
993 

(1,000.55) 

 0.25 
 

 21.79 
 (13.54) 

288.32 
 (278.74) 

34.21 
 (28.56) 

411.96 
 (404.02) 

115.95 
 (115.52) 

601.31 
 (603.94) 

731.07 
(737.23) 

 0.50 
 

 7.50 
 (2.67) 

93.85 
 (83.42) 

7.96 
 (3.89) 

156.50 
 (149.59) 

20.60 
 (18.14) 

331.37 
 (327.96) 

453.92 
(455.09) 

 1.00 
 

 3.33 
 (0.74) 

23.47 
 (14.41) 

2.93 
 (0.76) 

33.68 
 (27.83) 

3.27 
 (1.51) 

98.39 
 (95.80) 

148.01 
(148.15) 

 1.50 
 

 2.25 
 (0.45) 

11.75 
 (4.96) 

1.97 
 (0.35) 

12.90 
 (7.76) 

1.70 
 (0.51) 

32.58 
 (30.41) 

43.76 
(43.17) 

 2.50 
 

 1.58 
 (0.49) 

5.18 
 (1.59) 

1.05 
 (0.23) 

5.11 
 (1.78) 

1.00 
 (0.00) 

6.53 
 (4.28) 

3.2 
(2.65) 

Note. Standard deviation of run length is in parentheses. 
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Table 151 
 
The Aluminum Capacitor Data Set 
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1 443 5.81 21.5 51 443 4.29 14.9 101 454 4.47 18.6 151 449 4.63 31.5 

2 448 4.53 25.3 52 441 5.39 26.8 102 444 4.11 24.1 152 450 4.15 19.3 

3 443 4.23 33.7 53 443 4.43 15.3 103 465 3.95 45.9 153 442 4.72 28.2 

4 446 4.65 17.6 54 440 5.62 25.3 104 444 3.42 25.5 154 463 4.32 18.6 

5 439 3.65 20.7 55 444 4.19 18.4 105 444 3.98 17.9 155 446 5.62 19.8 

6 435 3.98 18.7 56 474 5.34 28.4 106 449 4.14 19.6 156 446 4.98 23.9 

7 447 4.17 19.5 57 469 4.25 21.2 107 450 4.09 21 157 445 3.95 19.5 

8 454 4.45 21.8 58 459 4.25 29.5 108 454 3.85 16.5 158 446 5.67 20.5 

9 445 5.39 20.8 59 443 5.39 24.5 109 443 4.47 36.7 159 448 4.41 31.2 

10 443 4.39 18.7 60 449 4.1 24.5 110 441 5.19 21 160 449 4.25 16.5 

11 442 4.67 31.1 61 443 4.29 20.4 111 449 4.67 27.9 161 434 3.49 17.9 

12 445 4.55 31.2 62 447 4.29 15.5 112 447 3.56 15.9 162 469 4.75 31.4 

13 446 4.41 29.6 63 466 4.85 26.6 113 437 4.47 21.5 163 439 4.49 15.3 

14 448 4.65 37.7 64 449 4.63 33.1 114 459 4.52 26.4 164 448 4.33 27.9 

15 446 4.32 18.2 65 456 4.36 14.7 115 445 4.25 16.5 165 456 3.47 27.2 

16 446 6.01 19.5 66 445 3.95 25.9 116 456 4.13 20.9 166 493 4.12 19.5 

17 459 4.54 16.5 67 442 5.68 23.5 117 485 3.96 27.5 167 447 3.95 21.2 

18 441 5.39 25.7 68 453 4.36 17.7 118 463 4.5 16.7 168 446 4.39 30.6 

19 439 5.39 20.8 69 441 4.34 18.3 119 465 4.97 26.8 169 449 3.98 20.4 

20 439 4.23 17.3 70 465 3.93 19.3 120 449 4.26 20.9 170 453 4.45 18.6 

21 454 4.47 16.5 71 473 4.32 29.6 121 446 4.30 30.9 171 456 4.36 15.3 

22 440 4.25 23 72 447 4.36 15.4 122 439 5.55 23.2 172 449 4.35 18.9 

23 440 4.69 31.3 73 449 4.36 19.5 123 457 4.53 25.9 173 459 4.19 27.5 

24 445 4.25 22.4 74 456 3.67 25.6 124 446 4.39 30.6 174 449 4.05 25.6 

25 469 3.85 23.6 75 449 4.77 24.9 125 447 4.25 15.2 175 446 5.63 21.9 

26 447 4.87 27.5 76 449 4.27 28.6 126 443 4.63 17.2 176 445 4.35 18.3 

27 463 3.49 20.9 77 446 4.37 30 127 434 4.27 15.9 177 443 4.69 26.5 

28 457 4.55 19.5 78 477 4.25 26.5 128 447 4.22 24.7 178 437 4.45 15.7 

29 438 6.32 19.8 79 445 5.39 18.7 129 470 4.83 30.5 179 441 4.56 35 

30 449 6.76 22.9 80 454 3.85 17.2 130 445 3.95 16.5 180 447 3.47 19.5 

31 440 4.82 19.2 81 445 4.25 20.7 131 446 4.59 36.7 181 440 4.08 20.5 

32 446 4.74 24.7 82 439 4.17 17.1 132 439 5.93 25.7 182 439 5.73 24.3 

33 445 4.25 17.6 83 445 5.61 23.9 133 445 4.95 33.5 183 436 3.92 17.4 

34 439 4.94 26.4 84 449 4.56 31.1 134 466 4.58 28.6 184 440 4.52 15.4 

35 463 4.64 27.6 85 450 4.65 30.7 135 459 4.09 17.7 185 446 5.62 19.9 
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36 471 4.91 30.1 86 449 3.59 23.9 136 440 4.98 21 186 439 4.47 16.7 

37 448 4.65 18.5 87 457 3.49 25.9 137 452 4.44 37.6 187 445 4.32 19.5 
 

38 445 5.23 20.8 88 442 4.52 31 138 446 4.24 15.6 188 439 4.27 20.1 

39 469 4.35 17.5 89 451 3.85 19.5 139 441 5.33 19.6 189 442 4.11 21.3 

40 453 4.25 18.2 90 444 5.8 21.9 140 444 4.5 30 190 442 4.98 29 

41 434 3.93 16.5 91 441 5.17 21.7 141 467 3.92 18.5 191 438 3.83 14.7 

42 459 4.37 18.5 92 471 4.65 31.3 142 468 4.58 34.8 192 453 4.27 17.3 

43 447 3.95 24.7 93 448 4.56 46.5 143 445 4.74 20 193 448 4.93 17.5 

44 445 4.27 17.5 94 440 5.98 23.9 144 446 4.55 21.9 194 447 4.39 19.8 

45 446 4.99 28.6 95 440 4.67 25.9 145 472 4.81 27 195 447 4.15 30.3 

46 441 5.31 19.8 96 441 4.87 32.8 146 436 5.63 29.1 196 447 4.52 17.5 

47 435 4.23 14.4 97 443 5.98 21.9 147 457 4.17 17.4 197 465 4.37 24.7 

48 450 4.04 20.8 98 448 4.13 19.9 148 448 4.32 29.6 198 447 4.47 17.2 

49 442 4.49 17.9 99 470 4.71 27.5 149 485 3.45 25.7 199 443 4.73 31.3 

50 451 4.37 17.2 100 447 4.15 16.7 150 450 4.67 29.5 200 456 4.37 16.7 
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