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ABSTRACT

Rogers, Justin Leslie.  A Comparison Of Multivariate Methods For Measuring Change
From Pretest To Posttest.  Published Doctor of Philosophy dissertation,
University of Northern Colorado, 2011.

Three multivariate methods for measuring change from pretest to posttest are

compared with respect to statistical power over various levels and combinations of

effect size, alpha level, sample size, number of dependent variables, number of

significantly different dependent variables, correlation between corresponding pretest

and posttest scores, and correlation between unrelated pretest and posttest scores.  The

method utilizing posttests as the dependent variables and pretests as covariates was

found to have superior statistical power in the majority of the scenarios examined. 

However, there were scenarios where the method utilizing change scores as dependent

variables and the method utilizing only posttests as the dependent variables displayed

greater power.  Using results from the Monte Carlo simulations, comparisons are

presented that reveal the conditions under which each of the three multivariate

methods displayed greater statistical power than the other two.  In addition to the

immediate implications of the current study, suggested future avenues of research that

could expand upon the current findings are discussed.
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CHAPTER I

INTRODUCTION

A pretest measurement of the dependent variable is often captured in an

independent two-group study design to more precisely evaluate the impact of a

treatment upon a posttest measurement.  In randomized experiments, the purpose for

collecting both pretest and posttest scores for the same dependent variable often lies in

the intuitive meaning of the subtraction of the pretest from the posttest.  The researcher

is interested in the amount of change for each subject; a subtraction of the pretest from

the posttest reflects that amount of change for each subject, and therefore a change

score per subject is a logical choice for the dependent variable (or outcome measure). 

Although the same motivation exists in quasi-experimental designs (non-randomized

group membership), an additional and often problematic reason sometimes underlies

the use of a change score.  In this case, an adjustment is required because the two

comparison groups (e.g., a treatment group and a control group) are not, on average,

the same in value on the dependent variable prior to the treatment.  Without an

adjustment for this initial difference, conclusions could be misleading in that baseline

group differences might simply carry over after the treatment.  It has been argued that

by subtracting the pretest from the posttest score that the two comparison groups have

been equalized at baseline on the dependent variable (Lord, 1967).
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Why the use of the change score to make this adjustment is problematic,

especially in a quasi-experiment, is discussed later.  The immediate point is that

problems caused by change scores within a quasi-experimental setting have left the

change score, regardless of the experimental design (even if randomized), with a

somewhat tarnished reputation.  Indeed, many influential articles, such as Lord (1967),

Cronbach and Furby (1970), and Linn and Slinde (1977), have been written over the

years criticizing the use of change scores.  As Maxwell and Howard (1981) note, “An

unfortunate by-product of these articles seems to have been the creation of the belief

among many researchers that the use of change scores is universally misleading and

therefore should be avoided at all costs” (p. 747).

In a broad sense, the current study adds to a growing number of others such as

Maxwell and Howard (1981), Zimmerman and Williams (1982), and Allison (1990)

that attempt to resurrect the change score.  Indeed, it is quite useful and researchers

need not avoid it if care is taken to address the problems so vigorously pointed out by

Cronbach and Furby (1970) and Linn and Slinde (1977).  In the narrow sense, this

study is about using the change score in randomized experiments that require a

multivariate array of dependent variables, and hence are analyzed using multivariate

analysis of variance (MANOVA) or multivariate of covariance (MANCOVA) to

capture the full treatment effect.  In one fashion or another, the remainder of this

dissertation addresses this point.
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Historical Criticism of the Change Score

Although the change score has been criticized on a number of grounds

(Kessler, 1977; Linn & Slinde, 1977; O’Connor, 1972), a key paper by Cronbach and

Furby (1970) stands out as a classic assault on change scores.  Kessler (1977) suc-

cinctly summarizes the critical argument of the paper, pointing out that change scores

based upon imperfectly measured components (i.e., the pretest and posttest measure-

ments) are even less reliable than their individual components.  A review of the

Cronbach and Furby (1970) paper reveals many of the reasons that one might not want

to use the change score as an outcome variable, a number of corrective actions that are

possible if the change score is used, and what alternatives are available that preclude

the need for the change score altogether.  The despair over change scores that

Cronbach and Furby exhibit is captured in their opening remarks: 

“Raw change” or “raw gain” scores formed by subtracting pretest scores from
posttest scores lead to fallacious conclusions, primarily because such scores are
systematically related to any random error of measurement.  Although the
unsuitability of such scores has long been discussed, they are still employed,
even by some otherwise sophisticated investigators.  (p. 68)

An overview of Cronbach and Furby’s (1970) position forms a backdrop and

context within which the current study rests.  First, the diminished reliability of raw

change scores is addressed by showing how such scores can be modified so that future

investigators who use them (regardless of advisability) will do so with less error. 

Relying on earlier presentations by Lord (1956, 1958, 1963) and McNemar (1958),

Cronbach and Furby present several methods whereby the investigator can more

accurately estimate the true change score, each better than the former, using regression
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models.  The final and superior method involves covariates (in addition to the pretest

score) that are thought to correlate with the estimation of a true score.  In all instances,

the procedures provided by Cronbach and Furby require estimates of the reliabilities of

the pretest and posttest measurements, the variances for these measurements, and the

covariance between these measurements (Linn & Slinde, 1977).  Separate formulas are

presented for situations where uncorrelated (or independent) pretest and posttest scores

are expected and situations where correlated errors of measurement (linked observa-

tions) would be suspected.  Finally, these authors conclude by presenting additional

alternative estimators that utilize residual scores around the pretest score to posttest

score regression line.

Second and more importantly, Cronbach and Furby (1970) discourage the use

of the corrected gain scores they present, arguing that alternative analysis strategies

that do not rely on change scores should be used.  They then match analysis methodol-

ogies that avoid the use of change scores to distinct research settings.  Of great

importance to Cronbach and Furby is that these methodologies do not use change

scores and actually make the need for them unnecessary.

Essential Limitations of the Change Score

Subsequent to Cronbach and Furby’s (1970) classical presentation on the topic,

Allison (1990) has made the point that the foundational problems with change scores

are essentially twofold, and it is because of these two reasons that warnings about

change scores have come about.  The first reason involves the issue of reliability,

which was the main motivation behind Cronbach and Furby’s classic presentation. 



5

The second is the closely related problem of regression toward the mean (also referred

to as regression effects in the literature).  This phenomenon arises from the idea that

individuals who score high on the pretest tend to score lower (or move down as

Allison referred to it) on the posttest, and individuals who score low on the pretest

tend to score higher (or move up) on the posttest.  Therefore, individuals with more

extreme (very high or very low) pretest scores have a tendency to obtain less extreme

posttest scores.

The first problem, in its most fundamental form, is noted by Kessler (1977) and

summarized by Allison (1990): “Change scores tend to be much less reliable than the

component variables” (p. 94).  To illustrate this point, Allison notes that in the case

1 2where the pretest (Y ) and posttest (Y ) scores are equally reliable and have the same

1 2variance, the reliability of the change score (Y  – Y ) is simply 

y 12ñ  –  ñ2

_______

12 1 – ñ

12 1 2 ywhere ñ  is the correlation between Y  and Y , and ñ  is their common reliability. 2

12Allison then points out in reference to ñ , “If this correlation is positive (as it almost

yalways is), then the reliability of the change score must be less than ñ , often much2

less” (p. 95).

To clarify the second point regarding regression toward the mean, Allison

(1990) states, 
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Because of the almost universal phenomenon of regression toward the mean

1from the pretest to posttest measurements, Y  will usually be negatively

1 2correlated with Y  – Y .  Thus, individuals with high pretest scores will tend to
move down on the posttest, while individuals with low pretest scores will tend

1to move up.  Consequently, if X (or any other variable) is correlated with Y , it

1 2will tend to have a spuriously negative relationship with Y  – Y  (Markus,
1980).  For these reasons, methodologists in the social sciences have repeatedly
warned against the use of change scores.  (p. 95)

An Early Example of the Ambivalence 
Towards Change Scores

Without a doubt, the sobering warning of the dangers inherent in the use of

change scores has impacted research that might have otherwise thoughtlessly used

them.  However, the relevance of change scores has never been completely dismissed

in the literature.  Responses to the criticism of change scores have varied widely. 

Some responses have claimed that change scores simply should not be used

(O’Connor, 1972) and advocated the use of experimental designs that avoid them

(Cronbach & Furby, 1970).  However, some responses have also included analyses

that correct for them (Williams & Zimmerman, 1996), clarification of circumstances

under which they escape the problematic status assigned to them (Zimmerman &

Williams, 1982), and the description of selected circumstances that demand them

(Maxwell & Howard, 1981).  These points are discussed further in the next chapter.  In

general, change scores are much better understood now than was once the case, and

over time the literature has come to present a more balanced view of their use.

One article of early interest pertaining to the ambivalence surrounding the use

of change scores is that by Lord (1960).  It demonstrates the agony inherent within this

issue.  Lord (1960) starts by noting that a simple analysis of covariance (ANCOVA)
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with two treatment groups, one covariate (the pretest), and one dependent variable (the

posttest) can be conceptualized as a simple t-test carried out on the posttest scores

regressed back to a common value (zero) on the covariate (pretest).  This analysis has

been frequently used to equate the treatment and control groups on the pretest score in

quasi-experiments where baseline differences on the score exist.  Lord (1960) then

notes that if measurement error is associated with the covariate (pretest), even when

the pretest and posttest are perfectly correlated and should regress back to a common

score when the covariate value is zero, the scatter of x values away from the regression

line (due to error of measurement) will force the treatment and control group to regress

back to different values of the posttest score (even though the assumed perfect

correlation should result in regressed scores to a common value).  This observation led

Lord (1960) to the conclusion that “the usual covariance analysis, which ignores the

fallibility of X, will reach the erroneous conclusion that the difference between groups

A and B on variable Y cannot be accounted for by the difference on variable X” (p.

309).  That is, Lord (1960) concluded that the ANCOVA, when the covariate is

measured imperfectly (contains error), can and often will lead to an unreliable conclu-

sion.  Indeed, Lord (1960) shows that a true difference between the treatment and

control group can be obscured, as can a true equivalence between these groups.  In an

attempt to solve this issue, Lord (1960) presents a large sample covariance analysis

approach that uses two pretest scores (rather than the typical single pretest score) to

estimate and correct for the fallibility associated with the pretest measurement.
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Interestingly, Cronbach and Furby (1970) state that when comparing treatment

groups not formed at random, if ANCOVA is carried out, the comparison should be

done using Lord’s (1960) procedure.  However, Cronbach and Furby also refer to this

procedure as being “no more than a palliative” (p. 78).  They go on to reinforce this

point by quoting another paper written by Lord (1967) seven years after he first

proposed the ANCOVA procedure that utilizes two pretest measures where he says,

“there simply is no logical or statistical procedure that can be counted on to make

proper allowances for uncontrolled preexisting differences between groups” (p. 305).

This example characterizes the tone of many articles that oppose the change score as a

valid assessment option.

Experimental Design and the Analysis of Change Scores

A major recommendation that develops from the scrutiny of change scores is

that randomized experimental designs should be used if possible, and quasi-experi-

mental designs should be avoided.  Campbell and Stanley (1963) made this point early

on in the debate.  To this end, the literature divides in general along the lines of quasi-

experimental methods and randomized experiments, with the positive role of change

scores more pronounced in randomized studies.  However, a great deal of work also

exists that clarifies the conditions under which change scores can play a beneficial role

in quasi-experimental designs.  Interestingly, relatively little information exists

concerning the use of change scores when multivariate statistics are required, particu-

larly if the underlying design is quasi-experimental.  It became more evident that a
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primary objective of the current effort was the extension of knowledge concerning the

use of change scores in multivariate randomized designs.

In general, the analysis of change scores can be considered within the context

of the following four designs: univariate randomized experiment, univariate quasi-

experiment, multivariate randomized experiment, and multivariate quasi-experiment. 

Most of the discussion lies within the realm of the univariate case.  Little insight is

available for multivariate analyses, and discussion appears to be non-existent for

quasi-experimental designs, with only a limited discussion pertaining to randomized

multivariate designs.  However, it becomes evident in what follows that change scores

can play an important and legitimate role in multivariate randomized designs.

Univariate Randomized Design

Confusion has existed concerning which of four different methods are best in

experiments with both pretest and posttest scores available.  The four common

approaches are the analysis of posttest only, the analysis of the posttest with the pretest

as a covariate, the use of change scores as the dependent variable, and the inclusion of

the pretest and posttest score as a repeated measures factor in a two-way analysis of

variance (ANOVA) with one repeated measure.  Unfortunately, as Maxwell and

Howard (1981) point out, much of this confusion exists because applied researchers

who are unfamiliar with the nuances of statistical models have failed to understand the

impact of randomization upon the expected values of the underlying models for the

three latter approaches that were just described.  It is evident from the literature that

the four approaches are mathematically similar within randomized experiments in that
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all yield an unbiased test of treatment effect, although a consideration of the degrees of

freedom available under each model for a statistical test of treatment may lead the

researcher to prefer one method over another.  In experimental designs where random-

ization has been used to create the treatment and control groups, the literature has

shifted away from recommending that change scores not be used to a focus on whether

their use weakens or enhances the statistical power.

Univariate Quasi-
Experimental Design

The literature in this area discusses the liabilities inherent in the analysis of

quasi-experiments using change scores.  A great deal of attention is paid to the fact

that the limitations of change scores rest upon the reality that the pretest and posttest

measurements are nearly always imperfect, meaning that measurement error is present. 

In univariate quasi-experiments, this fact leads to issues caused by a lack of reliability

in the change score and by the regression of change scores toward the mean.  Both the

problem of reliability and regression toward the mean can lead to false conclusions. 

The literature strives to make known specific instances when change scores are

appropriate or desirable in quasi-experimental designs.  One prominent feature of the

literature concerns the use of ANCOVA in quasi-experimental settings.  Although the

ANCOVA often does not avoid the problems inherent in the use of change scores,

corrections can be applied that improve the interpretability of covariance analysis used

in quasi-experiments under certain conditions.  The most recent articles take the

position that both change score analysis and ANCOVA, depending on the prevailing

circumstances of a given experiment, can be useful approaches to the analysis of
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quasi-experiments.  A number of articles, such as Allison (1990), Maxwell and

Howard (1981), and Fitzmaurice, Laird, and Ware (2004) describe the conditions

under which a given method might be preferred.  More recently, authors such as

Cribbie and Jamieson (2004) conclude that Structural Equation Models are the best

solution for measuring change in quasi-experiments.

Multivariate Randomized Design

As in the univariate case, both ANCOVA and analysis using change scores

yield unbiased conclusions.  However, Maxwell and Howard (1981) conjecture that

unlike the univariate case, the use of change scores in multivariate true experiments

could increase statistical power relative to MANCOVA and certainly could do so

relative to the analysis of a posttest vector alone.  As explained later, this observation

forms the basis of the research presented in this dissertation.

Multivariate Quasi-
Experimental Design

As previously noted, the literature review did not find any discussion of the use

of multivariate quasi-experiments involving change scores.  Although it is not the

focus of this paper, attention to the advantages and disadvantages of change scores and

covariance analysis in quasi-experimental multivariate settings provides an important

focus for future statistical research.

Justification for This Study

A repeated issue throughout the literature on change scores concerns which of

the following approaches to the analysis of a two-group randomized study is best.  The

three possible options that give unbiased tests of the treatment effect are ANOVA
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applied to only the posttest score, ANCOVA employing the pretest as a covariate and

the posttest as the dependent variable, and ANOVA with the change score as the

dependent variable.  The important issue is that of power.  Maxwell and Howard

(1981) as well as Delaney and Maxwell (1980) make this point very clear.  Bock

(1975) and Huck and McLean (1975) address the issue of power in the univariate case. 

Both papers found, as Maxwell and Howard (1981) summarize, that in general the

ANCOVA “is the most powerful of the three approaches” (p. 749).

However, it is important to emphasize that the literature above was referring

strictly to the univariate case where there is a single dependent variable, and not a

vector containing multiple dependent variables.  The MANOVA using only a posttest

vector of dependent variables, the MANOVA using the pretest vector as covariates

and the posttest vector as outcomes, and the MANOVA using a vector of change

scores as outcomes, all provide unbiased tests of the main effect.  This point was not

lost to Maxwell and Howard (1981), when they raised the issue of power available to

two of the three multivariate options just mentioned, namely the MANCOVA and the

multivariate analysis applied to change scores.  Although Maxwell and Howard do not

consider the case of a multivariate analysis applied to posttest scores only, it is easy to

see how this analysis also might have played a role in their thought process.  They note

that the analysis of change scores may be useful when, 

the design is a multivariate pretest–posttest design.  For example, pretest scores
on p measures may be obtained for each subject prior to an experimental
manipulation.  After the manipulation, scores are obtained for the same set of p
measures.  If subjects have been randomly assigned to groups, either
multivariate analysis of covariance (MANCOVA) or a MANOVA on the p
change scores tests the same null hypothesis of no treatment effect.  The
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primary factor influencing which technique should be used is statistical power,
which is a complex function of mean differences, sample sizes, number of
variables, and covariance matrices.  (p. 751)  

This comparison brings up some interesting points.  Maxwell and Howard

(1981) go on to say that error sum of squares will typically be smaller with the

MANCOVA model than with the MANOVA, however the degrees of freedom for the

error term in the MANOVA model must be larger than the degrees of freedom for the

MANCOVA model.  This difference could mean that the MANOVA model will be

more powerful in situations where the number of posttest scores is large relative to the

sample size.  Another point that they make is the fact that the MANCOVA model, by

design, necessitates that each posttest measure must be adjusted for by each pretest

measure.  At times, this can make the results difficult to interpret.  On the other hand,

the MANOVA design using change scores adjusts each posttest using only the

corresponding pretest.

The discussion by Maxwell and Howard (1981) points to an important issue

and an important possibility, specifically that a MANOVA design applied to change

scores may at times provide greater statistical power than a MANCOVA design

applied to the same multivariate data.  It is not a large step to also consider how both

of these tests compare to a MANOVA applied to posttest scores only in terms of

statistical power.  As was noted previously, many different research fields attempt to

measure change in some fashion.  This study gives an important recommendation of

how that analysis should be done.
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Purpose and Research Question

This study extends the work of Maxwell and Howard (1981), Bonate (2000),

and Tu, Blance, Clerehugh, and Gilthorpe (2005) by comparing the following three

statistical techniques: MANOVA applied to posttest scores only, MANCOVA

utilizing the posttest vector as outcomes and the pretest vector as covariates, and

MANOVA with change scores as the vector of outcomes.  The following research

question is addressed:

Q When pretest and posttest scores are collected, how does statistical power
under different sample sizes, effect sizes, numbers of dependent variables,
and degrees of correlation within and between the pretest and posttest scores
compare between a MANOVA that uses change scores (posttest minus
pretest) as dependent variables, a MANOVA that uses only posttest scores
as dependent variables and a MANCOVA that uses posttest scores as
dependent variables and pretest scores as covariates?

Limitations

This dissertation considered only the situation where the assumptions of

multivariate normality, homogeneity of variance–covariance matrices, and linearity

among all pairs of predictors exist.  Therefore, the results of this study cannot be

extrapolated to experiments when these assumptions are not met.  This study only

examined scenarios where the pretests are assumed to be equal between groups, thus

the results found herein are not appropriate for studies where pretests are not assumed

to be equal, such as a quasi-experimental design where group assignment was based on

pretest scores.  Also, only the two-group case was considered, so these results do not

apply to studies that use three or more groups.
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Conclusion

This chapter has shown the need for further research in the area of multivariate

pretest–posttest designs.  Maxwell and Howard (1981) introduced the idea that using

change scores as outcome variables may be preferable in multivariate designs relative

to the use of posttest scores as outcome variables and pretest scores as covariates. 

Bonate (2000) performed a Monte Carlo simulation examining the performance of 11

different methods for measuring change, including change scores and ANCOVA with

posttest scores as the dependent variable and pretest scores as the covariate, but all of

the comparisons made were within the univariate realm.  Tu et al. (2005) performed a

Monte Carlo simulation as well that examined posttest only, change scores, percent

change, ANCOVA with the posttest as the dependent variable and pretest as the

covariate, a random effects model, and MANOVA.  However, the MANOVA model

differed substantially from the three models under examination in this dissertation. 

They used the pretest score and the corresponding posttest score as the two dependent

variables.  This model is not intuitive and is not a natural extension of the models

ordinarily used in the univariate case.  In short, a formal comparison of the three most

common univariate models applied to change scores, when generalized to the

multivariate case, does not yet exist.  As it stands, a multivariate analysis has not been

done up to this point examining the multivariate situation previously described.  This

dissertation examined, under varying conditions, which type of pretest–posttest

multivariate analysis is preferable with respect to statistical power.  The specific

conditions under which these comparisons occur are discussed in Chapter III.
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Terminology

The following terminology will be used in this dissertation:

Change score.  The difference obtained from subtracting the pretest score from

the posttest score is a change score (also referred to as a difference score, gain score, or

growth score in the literature).  

Effect size.  This is the difference between the means of two groups for a given

variable expressed in terms of standard deviation units. 

Power.  This is the probability that a statistical test will correctly reject the null

hypothesis when a statistically significant difference between two groups exists.

Pretest–posttest experimental design.  This is an experiment comparing two

groups using paired data where a subject or experimental unit is measured at either

two separate points in time or at the same time under two different testing conditions. 

The first measurement is referred to as the pretest or baseline, and the second as the

posttest.  The researcher is interested in determining whether or not a statistically

significant difference exists between the pretest and the posttest or if two or more

groups have significantly different measurements between pretest and posttest. 



CHAPTER II

REVIEW OF LITERATURE

As was previously discussed, this study extends the work of Maxwell and

Howard (1981), Bonate (2000), and Tu et al. (2005) to the multivariate realm in order

to compare and contrast three statistical methods for examining pretest–posttest

designs.  

This chapter is broken up into the following three sections:

1. The history and debate of how to measure change in pretest–posttest study

designs.

2. A brief history and background of MANOVA and MANCOVA.

3. A closer look at the Maxwell and Howard (1981) paper and the Monte

Carlo simulation studies performed by Bonate (2000) and Tu et al. (2005)

for univariate pretest–posttest designs.

History and Debate of How to Measure Change Over Time
in Pretest–Posttest Designs

In Chapter I, the debate over best practices for the analysis of change over two

time points—pretest and posttest—was introduced.  It was shown that debate over the

advantages and disadvantages of using change scores often has been fueled by research

where change scores were used to allegedly overcome baseline discrepancies between
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a treatment and control group in a quasi-experimental setting where random assign-

ment had not been used.  A consideration of the general debate exposed various

viewpoints and themes.  These embraced a scattering of reasons not to use change

scores (Cronbach & Furby, 1970; Linn & Slinde, 1977; Lord, 1967; O’Connor, 1972),

reasons to use change scores (Allison, 1990; Maxwell & Howard, 1981; Zimmerman

& Williams, 1982; Zumbo, 1999), corrective actions that may improve change scores

(Cronbach & Furby, 1970; Lord, 1960; Williams & Zimmerman, 1996), and analyses

or experimental designs that avoid change scores altogether (Campbell & Stanley,

1963; Cribbie & Jamieson, 2004; Cronbach & Furby, 1970).

In general, considerations surrounding the use of change scores were threefold. 

The first concern focused on the decreased reliability of a change score relative to each

of the two scores comprising it.  The second addressed the closely related phenomenon

of regression toward the mean over time when the pretest is measured with imperfect

reliability.  The third concern, forming the emphasis of this dissertation, was that of

available statistical power in true experiments that employ randomization.

The following articles by Gottman and Krokoff (1989, 1990) and Woody and

Costanzo (1990) illustrate the sometimes heated discussions that have occurred over

how one should measure change.  Although the quasi-experimental study used in this

illustrative study differs from that of a true experiment, which is assumed in this

dissertation, these articles are representative of the confusion and debate surrounding

the use of change scores.
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Gottman and Krokoff (1989) performed a study with the goal of predicting

marital satisfaction from micro-component measurements of anger, contempt, fear,

sadness, and whining as measured by the Marital Interaction Coding System, the

Couples Interaction Scoring System, and the Specific Affect Coding System.  Marital

satisfaction was determined by the use of the Locke–Wallace (Locke & Wallace,

1959) and the Locke–Williamson (Burgess, Locke, & Thomes, 1971) scales and was

measured at baseline and three years later.  Regression analysis was used to assess the

predictive value of the micro-components.  Specifically, the micro-components of the

husband and wife were regressed on a change score consisting of the marital satisfac-

tion posttest score minus the marital satisfaction pretest score.  A major conclusion

was as follows:

Wives who are positive and compliant fare better in terms of their husband’s
concurrent negative affect at home and concurrent marital satisfaction, but the
marital satisfaction of these couples deteriorates over time.  On the other hand,
the stubbornness and withdrawal of husbands may be most harmful to the
longitudinal course of marital satisfaction.  In terms of specific emotions, the
marital satisfaction of wives improves over time if wives express anger and
contempt during conflict discussions but declines if the wives express sadness
or fear.  For husbands, only whining predicts change in marital satisfaction
over time, and it predicts the deterioration of both partners’ marital satisfac-
tion.  Thus, we cannot say that the same negative affects are equally positive or
negative, in a longitudinal sense, for husbands and wives.  In terms of recom-
mendations for marriage, our results suggest that wives should confront
disagreement and should not be overly compliant, fearful, and sad but should
express anger and contempt.  Husbands should also engage in conflict but
should not be stubborn or withdrawn.  Neither spouse should be defensive. 
(Gottman & Krokoff, 1989, p. 51)

Of interest here is that in this quasi-experimental study, a change score served as the

dependent variable and that a heated debate over its use, as shown below, soon arose.
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Shortly after the publication of that article, Woody and Costanzo (1990)

published a strongly worded objection to Gottman and Krokoff’s (1989) use of change

scores in the marital satisfaction study.  Their response consisted of arguments

founded on “traditional psychometric concerns” (p. 499) that were assured by mea-

surement error (less than perfect reliability) in the pretest, posttest, and micro-compo-

nent scores, as well as the problem of regression towards the mean.  Their first point,

focusing on traditional psychometric concerns, is captured in the following statement:

Gottman and Krokoff measure 3-year change in marital satisfaction by sub-
tracting each initial score from the score obtained 3 years later.  They then
correlate the interaction variables with these difference scores.  Now, the
correlation of a variable v with a difference score (a–b) may be expressed as
(Cohen & Cohen, 1983, p. 416).

 

a bTo see the implications of this equation, let us assume that SD  = SD .  Then
Equation 1 reduces to

From this equation we can see that the correlation of a variable v, such as an
interaction measure with Time 1 scores on marital satisfaction, b, can make a
substantial inverse contribution to the correlation of v with the 3-year change
score (a–b).  (pp. 499-500)

Woody and Costanzo (1990) drew the conclusion that the negative correlations

cited by Gottman and Krokoff (1989), which underlie important aspects of their

reported findings, were due to a statistical artifact.  It should be noted that even if a

and b were simply two measurements of a constant attribute and differed from one
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another only through lack of perfect measurement reliability, that Woody and

Costanzo’s observation would hold.  Thus, their argument is driven in part by the lack

of reliability that will invariably exist between a pretest and a posttest measurement.

The second concern that Woody and Costanzo (1990) address is regression to

the mean across time.  They state:

It is highly likely that the scores of both highs and lows will regress toward the
mean at Time 2 (because the correlation of Time 1 with Time 2 marital satis-
faction is substantially less than one).  This means that at Time 2 the scores of
the lows will have increased, whereas those of highs will have decreased.  As a
result, the variance of marital satisfaction will be less for Time 2 than for Time
1.  That is, referring back to Equation 1, the extreme-groups nature of the

a bsample will make SD  less than SD .  This reduction of variance from Time 1
to Time 2 worsens the confounding of the difference scores, (a–b), with the
initial scores, b.  To see this, note that the numerator of the expression in
Equation 1 is

va a vb br SD  – r SD .

va vb v(a-b)The contribution of each correlation, r  and r  to r  is weighted by the

vbassociated standard deviation of a and b.  Hence, r  (the correlation of the
interaction variable with Time 1 marital satisfaction) contributes more heavily

v(a-b)to r , again in an inverse fashion.  (p. 500)

The main point of these criticisms is that the inverse correlations that ground

the substantive conclusions made by Gottman and Krokoff (1989) are promoted by

statistical artifacts stemming from lack of reliability (at least in part) and regression

towards the mean.  Woody and Costanzo (1990) go on to offer two solutions, one

involving structural equation models and the other the ANCOVA.  Regarding the

latter, they suggest as a partial solution to the problem, the use of a residualized scores

analysis, which is simply the use of the pretest score as a covariate in an ANCOVA

containing the pretest and one or more of the micro-component measurements and
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posttest score as the dependent variable.  However, Woody and Costanzo admit that

this approach “raises its own issues” (p. 500), but nevertheless believe that many

methodologists would consider it to be “an important step in the right direction” (p.

500).

In what amounts to a third full journal article dedicated to this debate, Gottman

and Krokoff (1990) offered a detailed rebuttal to the above criticisms.  They review

five methods that might be used to analyze the data—four of which embrace

residualized scores (utilize an ANCOVA method) and one that embraces change

scores.  Gottman and Krokoff (1990) algebraically manipulate each formula of the five

methods, and conclude that “the suggestion made by Woody and Costanzo (1990) on

the issues of statistical approaches to the study of longitudinal change is no real

improvement in the statistical sense” (p. 503).

Gottman and Krokoff (1990) also address the criticism of Woody and Costanzo

(1990) that refers to regression toward the mean.  They state that “regression toward

the mean does not imply that the variance decreases from initial to final score” (p.

502).  They also make the following important point:

The problem of regression to the mean is exacerbated by a distribution more
humped near the mean that at its tails.  The problem of regression to the mean
is reduced when the distribution is rectangular (i.e. when each part of the
sampling distribution is equally likely).  Because this is the case, oversampling
the tails of a distribution (that is, the oversampling of extreme groups) forces
the distribution to be more rectangular and reduces regression to the mean. 
This was the logic of our sampling procedure (Gottman and Krokoff, 1989),
and our distribution is indeed nearly rectangular.  Hence, rather than exacerbat-
ing the problems, as Woody and Costanzo contend, the oversampling of the
tails is actually at the core of solving the problem of regression toward the
mean.  Thus it is not the case that extreme groups may “exacerbate this contam-
ination” (p. 500), as Woody and Costanzo suggest.  (p. 502)
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As a final point, Gottman and Krokoff (1990) claim that the change score most

accurately captures their intent.  Lord (1967) states that some people,

assert that deviation from the regression line is the real measure of change, and
that the ordinary difference between initial and final measurement is not a
measure of change.  This can hardly be correct.  If certain individuals gained
300 ounces, this is a definite fact, not a result of an improper definition of
growth.  (p. 23)

Gottman and Krokoff (1990) mirror this idea when they describe the use of change

scores as being “clear and simple in the sense that it has a precise interpretable

physical meaning.  It is, quite simply, the amount of change.  The deviation from a

regression line is a more complex statistic to interpret” (p. 504).  Finally, in contrast to

Woody and Costanzo’s (1990) sentiment that “the prediction of raw change may be

devoid of interest” (p. 500), Gottman and Krokoff (1990) go on to point out that the

prediction of raw change was exactly what their research was interested in.

By reviewing the Gottman and Krokoff (1989) article and the exchanges that

followed (Woody & Costanzo, 1990, and Gottman & Krokoff, 1990), the importance

of the three earlier noted considerations that underlie the use of change scores

(measurement error, regression toward the mean, and the use of randomized versus

quasi-experimental design) may be seen.  Measurement error and regression toward

the mean underlie both the criticism offered by Woody and Costanzo (1990) and the

response to it by Gottman and Krokoff (1990).  Although not directly raised by either

group of authors, the failure to examine the research question using a randomized

design allows the debate to exist.  Rather than focusing on the statistical power

available to different statistical approaches applied to unbiased estimators made



24

possible by randomization (as will be discussed later), a great deal of energy was

exerted toward the creation of the proper adjustment to compensate for this fundamen-

tal limitation in research design.  In what immediately follows, literature bearing on

various implicit and explicit issues raised by this illustrative debate are examined in

greater depth.

The research question (or hypothesis) is actually very important in deciding

whether one should use ANOVA with change scores or ANCOVA with posttest scores

as the dependent variable and pretest scores as the covariate.  By claiming to have

discovered a paradox, Lord (1967) seems to have caused much confusion and led

many researchers astray by failing to understand what is being tested by each of the

two methods he imagines might be used to evaluate a research question (Fitzmaurice

et al., 2004).  He incorrectly assumes that both methods are testing the same hypothe-

sis, and therefore finds it paradoxical that situations exist in which the two methods

could come to completely different conclusions.  The hypothetical example Lord

(1967) uses to illustrate this paradox is a measurement on males and females at two

different time points when a diet program is started at their university.  Both the group

of males and group of females exhibited the exact same weight gain, even though the

males weighed more than the females at the start of the study.  Using two different

approaches to analyze the data from his hypothesized experiment, Lord (1967)

determined that change scores did not detect a significant difference between the

groups, but ANCOVA did detect such a difference.  Lord (1967) concludes that

“confused interpretations may arise from such studies” (p. 305) and in his opinion,
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“there simply is no logical or statistical procedure that can be counted on to make

proper allowances for uncontrolled pre-existing differences between groups” (p. 305). 

Cronbach and Furby (1970) echoed Lord’s (1967) sentiment when they recommend

that “investigators who ask questions regarding gain scores would ordinarily be better

advised to frame their questions in other ways” (p. 80).  This matter has come to be

known as Lord’s paradox.  

The problem is that Lord (1967) failed to recognize that the two methods

answer different research questions.  Fitzmaurice et al. (2004) say that using a change

score “addresses the question of whether the two groups differ in terms of their mean

change over time” (p. 124).  In contrast, ANCOVA, using posttest as the dependent

variable and the pretest as a covariate, tests whether a difference exists between the

posttest scores of two or more groups after adjusting for differences that may have

existed at the pretest.  That is, ANCOVA tests whether two or more groups improved

(or declined) at the same rate starting from the same mathematically determined

baseline mean value.  Fitzmaurice et al. say that ANCOVA “addresses the question of

whether an individual belonging to one group is expected to change more (or less) than

an individual belonging to the other group, given that they have the same baseline

response” (p. 124).  This analysis contrasts with the absolute amount of change,

regardless of baseline, that is the focus of a change score analysis.  Thus, Fitzmaurice

et al. conclude that the choice to use the change score method or the ANCOVA

method should depend upon the research question.
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Although it was not his most well known paper in regard to the measurement

of change, Lord’s (1956) article may have sparked the debate over change scores by

introducing two of the points of contention previously noted: measurement reliability

and regression toward the mean (also referred to as regression effect).  In calculating

the reliability of change scores, Lord (1956) makes the assumption that the variance of

the posttest score will be equal to the pretest score.  As shown in the first chapter,

Allison (1990) gives an illustration of how the reliability of change scores must be low

when the assumptions by Lord (1956) are followed.  From his derived formulas, Lord

(1956) concludes that “[d]ifferences between scores tend to be much more unreliable

than the scores themselves” (p. 429).

McNemar (1958) pointed out that Lord (1956) is actually incorrect in assuming

that the variances of the pretest and posttest scores will be equal.  He felt that Lord’s

(1956) assumption was unrealistic and too restrictive for what is seen in typical

research.  The assumption of equal variances is actually untenable when considering

most situations in which growth would be measured, such as mental or educational

growth.  He goes on to show that the reliability of gain scores is much better when an

assumption of equal variances is not present.  However, as evidenced by the appear-

ance after his publication of articles (Cronbach & Furby, 1970; Linn & Slinde, 1977)

that utilized Lord’s (1956) argument to oppose change scores, McNemar’s attempt to

clarify the debate of change scores with respect to reliability was in large part unno-

ticed.
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Cronbach and Furby (1970) felt that both Lord (1956) and McNemar (1958)

had sidestepped the “philosophically troublesome question, Are pretest and posttest

‘measuring the same variable’?” (p. 69).  Linn and Slinde (1977) explain that the best

way to obtain better reliability of change scores is to have low correlation between the

pretest and posttest scores.  If this is the case, though, they question whether the “pre-

and postmeasures are getting at the same construct, which would seem to be a prereq-

uisite for the difference score to be interpreted as an index of growth” (pp. 123–124). 

Therefore, they felt it was risky to make important decisions based on change scores

because they presume researchers will either encounter low pretest–posttest correlation

or apparently low measurement reliability.  Linn and Slinde went on to show that the

reliability for the ANCOVA method is better than that of the change score method, but

is still disappointingly low when the correlation between pretest and posttest scores is

high.

Overall and Woodward (1975), Zimmerman and Williams (1982), and Rogosa

(1988) defended change scores with regard to reliability.  Overall and Woodward

demonstrated that the statistical power of change scores is actually maximized when

the subsequent reliability is zero, and therefore not a valid argument against them. 

However, Zimmerman and Williams and Rogosa make an even more convincing

argument, saying that the assumptions used by Lord (1956) and Linn and Slinde

(1977) are incorrect.  Zimmerman and Williams pointed out that it is not necessarily

the case that the reliabilities of the pretest and posttest are always equal.  They also

pointed out that McNemar (1958) was correct in saying that the variances (and
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therefore the standard deviations) will most likely be unequal.  Rogosa noted that the

variance of the posttest will oftentimes be greater than that of the pretest.  Zimmerman

and Williams demonstrate that the reliability of the change scores are consistently high

when their assumptions of unequal reliabilities and unequal variances are true.  Rogosa

extended the argument, saying that previous authors such as Linn and Slinde (1977)

had confused the observed correlation with measurement error and the true correlation

(which is free of error) with the assumption that the variance of a measure remains

stable over time.  Rogosa deduced that this confusion has lead to incorrect conclusions

and has misled researchers when, in fact, “the difference score is an unbiased estimator

of true change” (p. 180).

The other issue that Lord (1956) introduced was regression toward the mean. 

Cronbach and Furby (1970), O’Connor (1972), and Linn and Slinde (1977) attacked

the use of change scores using regression toward the mean as the basis of their

argument.  They argued that this effect occurs due to the negative correlation between

the pretest score and the change score.  O’Connor explains that the “correlation

between change and initial status is biased in a negative direction by errors in the

pretest because the pretest error is also present in the change score but with the

opposite sign” (p. 74).  Therefore, these authors believed that the results from an

ANOVA with change scores would be biased due to this regression effect.  It is of

interest to note that this phenomenon is typically attributed to situations where

randomization has not been used to create group membership (Maxwell & Delaney,

2004).  In randomized controlled study designs, both the change score method and the
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ANCOVA method are unbiased because of the assumption that no baseline differences

exist between the groups (Oakes & Feldman, 2001).

Zimmerman and Williams (1982) pointed out that the correlation between the

pretest score and the change score can actually be positive or zero and not just

negative.  Again, this incorrect premise by Cronbach and Furby (1970) and Linn and

Slinde (1977) stems from the incorrect assumption that the variances of the pretest and

posttest scores are equal (Rogosa, 1988).  Regression toward the mean only occurs

when the variances of pretest and posttest scores are equal.  Rogosa considered the

occurrence of equal variances to be a very rare event as variance typically increases

over time.  He also pointed out that even when stable variances do occur, using the

ANCOVA method does not necessarily avoid the problem.  Finally, Maris (1998)

states, “regression toward the mean is not a reason for not using the gain score estima-

tor” (p. 325).  Maris regarded regression toward the mean and a biased change score

estimator as,

two aspects of the same data pattern, and there is no logical relation between
the two phenomena.  In particular (a) regression toward the mean does not
imply that ô8  is biased, and (b) the absence of regression toward the meangain

does not imply unbiasedness of ô8 .  (pp. 322–323)gain

Here, note that Maris used ô8  to represent the change score estimator.gain

Many authors (Linn & Slinde, 1977; Lord, 1956; O’Connor, 1972) have

detailed examples of situations that could arise and lead to bias from using change

scores.  Ironically, both Allison (1990) and Oakes and Feldman (2001) pointed out that

in such non-randomized situations, the change score is actually less biased than the

ANCOVA method, if it is biased at all.  On the other hand, Fitzmaurice et al. (2004)
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showed that when differences exist in the pretest scores between groups, the

ANCOVA method can lead to biased or misinterpreted results.  In such a situation,

covariates can introduce spurious relationships between the variable denoting group

membership and the posttest.  The researcher could come to the conclusion that there

is no difference between groups when one truly existed, simply because the covariate

explained away the meaningful group differences.  Furthermore, Fitzmaurice (2001)

shows that in situations with nonequivalent groups, the ANCOVA method often does

not answer the intended research question.

In the discussion concerning change scores immediately above, it was noted by

way of reference to Maxwell and Delaney (2004) and Oakes and Feldman (2001) that

neither ANOVA using change scores nor ANCOVA using posttest scores as the

dependent variable and pretest scores as the covariate provide biased estimates in

randomized trials.  This concept is of great importance to the basis of this dissertation,

which assumes the setting of a randomized controlled trial.  Without the concern of a

biased estimation, statistical power becomes the focus.  Oakes and Feldman explain

that studies lacking sufficient statistical power can lead to incorrect conclusions and

waste resources, doing more harm than good.  Therefore, it is important to use the test

statistic that provides the greatest amount of statistical power.

Many studies (Bonate, 2000; Fitzmaurice et al., 2004; Maxwell & Delaney,

2004; Maxwell & Howard, 1981; Tu et al., 2004) have compared the statistical power

between the ANCOVA method and the change score method in univariate randomized

controlled trials.  In contrast to the disagreement around the use of change scores in the
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quasi-experimental setting (summarized above), these authors largely (but not com-

pletely as described later) arrived at a common conclusion.  

It is generally thought that ANCOVA has an advantage in terms of power when

compared to change scores.  Bonate (2000) and Tu et al. (2004) used Monte Carlo

simulation studies to examine statistical power, and both sets of authors concluded that

the ANCOVA method exhibited an advantage with regard to existing statistical power. 

Maxwell and Delaney (2004) conjectured that diminished power in the case of change

scores is due to the fact that the error variance of the ANCOVA method tends to be

smaller than the error of the change score method.  They argued that this fact gives the

change score method less power and less precision than ANCOVA because, poten-

tially, a smaller amount of error around the regression line exists in ANCOVA.  Thus,

change scores may miss a difference that ANCOVA is able to detect due to the

improvement in power and precision.

There are also two plausible exceptions to the power comparisons that gener-

ally have been agreed upon in the literature.  Oakes and Feldman (2001) believed that

“the common assumption that ANCOVA models are more powerful rests on the

untenable assumption that pretests are measured without error.  In the presence of

measurement error, change–score models may be equally or even more powerful” (p.

18).  Also, Maxwell and Delaney (2004) suggested that with small samples in the two-

group case, change scores could potentially offer more power because there is one less

parameter to estimate than in ANCOVA. 
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In the case of univariate analysis conducted in a randomized controlled study,

there is, for the most part, a consensus concerning the available power when ANOVA

with change scores is compared to ANCOVA using posttest as the dependent variable

and pretest as the covariate.  The ANCOVA method seems to consistently display

greater power in simulation studies when compared to the change score method. 

However, the available power still remains to be decided in the multivariate realm,

since there has not yet been a study that has taken on this task.  The goal of this

dissertation was to extend previous work just described into a multivariate realm.

History and Background of MANOVA and MANCOVA

Hershberger (2005) states that MANOVA was built on the foundations of Karl

Pearson’s chi-square distribution that was derived in 1900, W.S. Gossett’s (student’s) t

distribution that was derived in 1902, and R.A. Fisher’s ANOVA that was introduced

in 1923.  Hershberger notes that Fisher’s ANOVA was derived to test population

differences on p = 1 dependent variable, but the interest was soon turned to testing

population differences on p > 1 dependent variables.  Within a decade, Wilks (1932)

extended Fisher’s (1922) application of maximum likelihood estimation from the

comparison of multiple groups on one dependent variable to multiple groups on

multiple dependent variables simultaneously based on the generalized likelihood-ratio

(LR).  However, it was not until 1946 that the actual term, multivariate analysis of

variance (MANOVA), was coined by Roy (1946).

A detailed description of the derivation of MANOVA can be found in numer-

ous textbooks, such as Johnson and Wichern (2002).  Briefly, Wilks (1932) assumed a



33

multivariate normal probability density function and a likelihood of a sample from this

0 0 1distribution as L  for the null hypothesis (H ) and L  for the alternative hypothesis

1 0 1(H ).  The ratio of L /L  can be used to test the null hypothesis that all k samples are

drawn from the same population versus the alternative hypothesis that at least one of

the k samples is drawn from a different population.  Tabachnick and Fidell (2001)

explain that the test statistic derived is similar to ANOVA, since ANOVA uses a ratio

of variances, or mean squares, to test main effects and interactions.  The numerator

represents the between-groups variance, and the denominator represents the total

variance.  In MANOVA, the determinants of the cross-products matrices are analogous

to the mean squares, and the ratios of determinants test the main effects and interac-

tions.  Wilks’s lambda thus follows the general form of

errorIn this formula, |S | is the determinant of the error cross-products matrix. and

effect error|S  + S | is the determinant of the sum of the error and effects cross-products

matrices.

In order to evaluate Ë, Bartlett (1939) proposed an approximation based on the

÷  distribution.  Other approximations were later derived.  Rao (1952) developed an F2

statistic that better approximated the Ë cumulative probability densities than the chi-

square distribution.  Since Rao’s book, other commonly used test statistics based on

the F distribution were developed such as Hotelling’s trace, Pillai’s trace, and Roy’s

greatest common root criterion (Tabachnick & Fidell, 2001).  However, according to



34

Haase and Ellis (1987), all of these test statistics are identical to Wilks’s lambda in

situations where there are only two groups being compared.

Finally, Hershberger (2005) describes and illustrates that,

as ANOVA can be extended to the analysis of covariance (ANCOVA),
MANOVA can be extended to testing the equality of group means after their
dependence on other variables has been removed by regression.  In the
multivariate analysis of covariance (MANCOVA), we eliminate the effects of
one or more confounding variables (covariates) by regressing the set of de-
pendent variables on them; group differences are then evaluated on the set of
residualized means.  (p. 867)

Bartlett (1947) is credited as the first person to publish an analysis utilizing

MANCOVA.

A Closer Look at Key Sources

In the final section of this chapter, key sources that lay the groundwork for the

present study were highlighted and more carefully considered.  Maxwell and Howard

(1981), in their defense of the use of change scores, were the first to suggest that

change scores might be useful in multivariate analyses.  Maxwell and Howard state

that in univariate randomized pretest–posttest study designs, ANCOVA using the

posttest as the dependent variable and the pretest as a covariate is a more powerful test

than an ANOVA using the change score as the dependent variable.  However, they

point out that change scores are still valid in randomized controlled trials because

using them is mathematically equivalent to a repeated measures analysis and still

provides unbiased results.  Maxwell and Howard go on to say that there are at least

two other situations where change scores might be the preferred method of analysis for
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pretest–posttest studies: multivariate analyses (which is the focus of this dissertation)

and when response–shift bias is present.

Maxwell and Howard (1981) describe the logic behind their assertion that

change scores could be superior in multivariate pretest–posttest settings.  They

explained that if subjects are randomly assigned to groups, a MANOVA with p change

scores or a MANCOVA with p posttest scores and the p corresponding pretest scores

as covariates are both appropriate methods for testing the same null hypothesis of no

treatment effect.  They state that the primary determining factor for choosing which

one of these two methods to use should be statistical power, “which is a complex

function of .mean differences, sample sizes, number of variables, and covariance

matrices” (p. 751).

Maxwell and Howard (1981) compared the two multivariate methods based on

the error sum of squares and the error degrees of freedom.  They note that the error

sum of squares for the MANCOVA model with posttest scores as the dependent

variables and corresponding pretest scores as covariates were typically smaller than the

MANOVA with change scores, just as in the univariate case.  However, they point out

that the error degrees of freedom must always be smaller for a MANOVA with change

scores.  Maxwell and Howard illustrate this idea by giving an example in the two

1 2group scenario: the error degrees of freedom is n  + n  – p – 1 in the MANOVA case,

1 2but  n  + n  – 2p – 1  in the MANCOVA case.  Finally, they conjecture that the smaller

error degrees of freedom for the MANOVA with change scores could counteract the

typically smaller error sum of squares for the MANCOVA with posttests as the
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dependent variables and pretests as the covariates, allowing the MANOVA with

change scores to have more power.  However, they do not discuss any further under

what conditions this concept may or may not be true.

In a Monte Carlo simulation study, Bonate (2000) examined 11 different

methods for analyzing univariate two-group randomized controlled pretest–posttest

studies.  Of interest was which of the 11 methods were more powerful than others

given different correlations between the pretest and posttest.  Among the 11 methods

studied were ANOVA with posttest only, ANOVA with change scores as the depend-

ent variable, and ANCOVA with posttest as the dependent variable and pretest as the

covariate, which are directly relevant to this dissertation.

To perform the Monte Carlo simulation, Bonate (2000) used n = 10 subjects in

each of the two groups and á = 0.05 to determine a statistically significant group

difference.  The correlation between pretest and posttest was systematically varied for

effect sizes of 0, 1.0, 1.5, and 2.0.  The correlation values used were 0, 0.25, 0.50,

0.75, 0.90, and 0.95.  One thousand simulations were run for each combination of

correlation and effect size.

Bonate (2000) made several observations of interest with regard to his simula-

tion results.  The percent of simulations to correctly reject the null hypothesis of no

treatment effect increased as effect size increased, as expected.  However, there were

differences seen between some of the methods of analysis used.  Bonate observed that,

in general, when the correlation between pretest and posttest was less than 0.50,

ANCOVA models had greater power than ANOVA models.  Conversely, when the
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correlation increased to 0.75 or above, ANOVA models with change scores as the

dependent variable displayed slightly better power than ANCOVA with posttest as the

dependent variable and pretest as the covariate.  The power of the ANCOVA models

tended to decrease as correlation increased, while the power of the ANOVA models

remained relatively constant.  On the other hand, the power of ANOVA with posttest

only “dropped like a rock falling off a cliff” (p. 141) as the correlation between pretest

and posttest increased.  Bonate concludes that, in general, ANCOVA with posttest as

the dependent variable and pretest as the covariate is the most powerful test.

Other recent literature has also touched on the idea of the use of multivariate

analysis to measure change.  Tu et al. (2005) performed a Monte Carlo simulation

study examining six different methods for analyzing change in two-group randomized

controlled pretest–posttest studies.  Although their paper resided solely in the realm of

univariate trials, it is important to note that one of the six analysis methods studied was

a MANOVA.

Tu et al. (2005) compared a t test on posttest scores, a t test on change scores, a

t test on percent change scores, an ANCOVA models with posttest as the dependent

variable and pretest as the covariate, a random effects model (REM), and a MANOVA

model with the pretest and posttest as the dependent vector.  It is important to note that

the t tests performed in their study are mathematically equivalent to a two-group

ANOVA performed on the same variables (Rosner, 2000).  Because their study either

used univariate models or used MANOVA with the dependent vector comprised of the

pretest and posttest score, the Tu et al. study is different than the current study.  This
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dissertation does not treat pretest scores as dependent variables in the MANOVA and

MANCOVA models being examined; instead, the pretest scores are only utilized as

covariates or in calculating the change scores.  Therefore, the Tu et al. study differs

from this dissertation because their paper only examines the univariate case (in the

sense that their comparative conditions never include more than a single posttest

variable), because unlike the current dissertation the pretest appears as an element in

the dependent vector in the single multivariate model found among their comparison

conditions, and because the single multivariate model in their study is always com-

pared to a univariate model (never another multivariate model as in this dissertation).  

Although these differences establish that the purpose of the study by Tu et al.

(2005) is quite different than that of the current dissertation, their findings are not

devoid of interest in the present setting.  Indeed, they found a selected utility in the use

of MANOVA rather than some of the five univariate models against which it was

compared.  Tu et al. found that their MANOVA method had greater power than

change score, percent change score, and REM when the correlation between pretest

within withinand posttest (ñ ) was low.  However, when (ñ ) was high, MANOVA was not as

powerful compared to the other methods.  This finding establishes the fact that

MANOVA can, under certain conditions, provide greater power than a univariate test,

even though the univariate and multivariate analyses used identical pretest and posttest

scores (with the exception that one univariate model used only the posttest score).  The

finding that their multivariate model sometimes provided greater power than a

univariate approach gives some justification for the comparison of different
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multivariate models that involve both a pretest and posttest score, which is the focus of

this dissertation.

The assertion that change scores may be the preferred and more powerful

method compared to using posttests as the dependent variables and pretests as the

covariates in multivariate pretest–posttest situations by Maxwell and Howard (1981),

as well as the Monte Carlo simulation studies by Bonate (2000) and Tu et al. (2005),

have laid the foundation for the current study.  As will be seen Chapter III, many of the

same independent variables that were systematically varied in the Bonate and Tu et al.

Monte Carlo simulation studies are considered.  The goal of this dissertation was to

test Maxwell and Howard’s assertion under many conditions by extending these

previously studied univariate Monte Carlo simulations to the multivariate realm.



CHAPTER III

METHODOLOGY

The following research question will be addressed in this dissertation:

Q When pretest and posttest scores are collected, how does statistical power
under different sample sizes, effect sizes, numbers of dependent variables,
and degrees of correlation within and between the pretest and posttest scores
compare between a MANOVA that uses change scores (posttest minus
pretest) as dependent variables, a MANOVA that uses only posttest scores
as dependent variables and a MANCOVA that uses posttest scores as
dependent variables and pretest scores as covariates?

This dissertation helps to answer an open issue concerning the statistical power

for these three models that was raised by Maxwell and Howard (1981).  The issue of

power has been systematically addressed in this dissertation using Monte Carlo

simulations.  Results of the Monte Carlo simulations were obtained after manipulating

certain variables that could impact the outcome of the simulation.  These variables

were cross-classified so that each manipulated variable in the cross-classification

scheme could be considered in light of the others.  Note that these manipulated

variables are called independent variables throughout this dissertation.  In the present

context, the term independent variable does not refer to the parameter in the statistical

model that differentiates the control from the treatment group or any covariate in any

one of the three multivariate models under study, but rather refers to the manipulated
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dimensions described in this chapter that form the backdrop within which comparisons

of available power are made.

Assuming a constant Type I error rate, the available statistical power

(1 – P(Type II error)) was compared between MANOVA applied to change scores,

MANOVA applied to posttest scores only, and MANCOVA using the posttest scores

and pretest scores as dependent variables and covariates, respectively.  A Monte Carlo

simulation procedure, described in detail later, was used to calculate the available

power for each multivariate model when differences are intentionally created between

two multivariate normal distributions on the mean vectors of each.  In the Monte Carlo

simulation, each of the multivariate models listed above, when parameterized to

capture the difference in mean vectors between the two multivariate normal popula-

tions for a give Type I error rate, successfully discovered the difference between the

mean vectors some of the time.  The percent of successful discoveries is the power of

the test.  Likewise, each model failed to successfully reject the null hypothesis some of

the time, the percent of which is Type II error.  In other words, upon simulating two

multivariate normal distributions that have different mean vectors and also meet the

assumptions of the particular multivariate model under study, samples can be repeat-

edly drawn from the two multivariate normal distributions and a multivariate test

statistic can be calculated each time.  With repeated draws (replications) of the

samples from the population, one can obtain the power, that is, one can capture the

percent of times that the test statistic from the multivariate model successfully rejects

the null hypothesis at a given Type I error rate.
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The Monte Carlo simulation just described was used to obtain the power

available to each of the three multivariate models being studied for the purpose of

comparison.  However, to carry out the Monte Carlo simulation, the following

independent variables had to be specified: the effect size, the sample size drawn from

the multivariate normal populations, the number of dependent variables, the correla-

tion between the posttests and corresponding pretests, as well as the correlation

between the unrelated pretest and posttest measurements, the Type I error rate, and the

number of dependent variables that are statistically significant.  Each of these inde-

pendent variables is discussed in what follows.

Independent Variables

Effect Size between Treatment
and Control Groups

Cohen (1988) has used the index d to define the difference between the means

of two univariate normal populations.  Specifically, Cohen defines d as the difference

between “population means expressed in raw (original measurement) unit” divided by

“the standard deviation of either population (since they are assumed equal)” (p. 20). 

Cohen further defines effect sizes of small, medium, and large to be 0.2, 0.5, and 0.8,

respectively.  Note that if there were no difference between the means in the univariate

normal populations under consideration, then the effect size would be zero.

Cohen (1988) provides a rationale for his values, stating that small, medium,

and large effect sizes are relative, yet also useful.  He states the following:
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The terms “small,” “medium” and “large” are relative, not only to each other,
but to the area of behavioral science or even more particularly to the specific
content and research method being employed in any given investigation. . . . In
the face of this relativity, there is a certain risk inherent in offering conven-
tional operational definitions for these terms for use in power analysis in as
diverse a field of inquiry as behavioral science.  This risk is nevertheless
accepted in the belief that more is to be gained than lost by supplying a com-
mon conventional frame of reference which is recommended for use only when
no better basis for estimating the ES index is available.  (p. 25)

In this study, Cohen’s assessment of usefulness is accepted and his effect sizes

of small (0.2), medium (0.5), and large (0.8) have been extended to the multivariate

case.  These effect sizes are assigned to each statistically significant dependent

variable in the dependent vector so that the multivariate distribution representing the

treatment group is separated from the control group distribution in a uniform manner. 

That is, the effect size remains constant across the significant dependent variables in

the dependent vector.  The population mean vectors that have been selected for use in

the Monte Carlo simulation for this dissertation are displayed in Table 1 for different

numbers of dependent variables (which is discussed later in greater detail).
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Table 1

Effect Sizes between Treatment and Control Groups for the Population Mean Vectors

_____________________________________________________________________

                     Effect size                                      Mean vectors
 _____________________________________________________________________

p = 2

d = .2

d = .5

d = .8

_____________________________________________________________________

p = 3

d = .2

d = .5

d = .8

_____________________________________________________________________

p = 5

d = .2

_____________________________________________________________________

(table continues)
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Table 1 (continued)

_____________________________________________________________________

                     Effect size                                      Mean vectors
 _____________________________________________________________________

p = 5

d = .5

d = .8

_____________________________________________________________________

p = 8

d = .2

d = .5

_____________________________________________________________________
(table continues)
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Table 1 (continued)

_____________________________________________________________________

                     Effect size                                      Mean vectors
 _____________________________________________________________________

p = 8

d = .8

_____________________________________________________________________

Sample Size

1 2A simulation study by Bonate (2000) used n  = n  = 10 to compare and contrast

11 methods of examining pretest-posttest within the univariate context.  Likewise,

1 2O’Brien, Parenté, and Schmitt (1982) used n  = n  = 10 to evaluate four common

MANOVA criterion tests (Wilks’s lambda, Roy’s greatest root, Hotelling-Lawley

trace, and Pillai’s trace) with regard to the robustness of these test statistics under

varying levels of bias.  Stevens (1980) used 15, 25, 50, and 100 subjects per group to

develop an approximating table to determine power in an independent groups design

(control compared to treatment).  Jamieson (1995) used 25 subjects per group in a

computer simulation to examine the effects of a negative correlation between baseline

and change on two measures of change, namely, change from baseline scores and
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covariance adjusted scores.  Tu et al. (2005) used sample sizes of 10, 20, and 30 per

group in a Monte Carlo simulation study to examine six different methods typically

used for measuring change in a univariate context.  

This dissertation expands the sample size dimension to cover the greater

number of scenarios that may be encountered in the social sciences and in so doing

follows in the steps of two prior Monte Carlo simulations involving multivariate

analyses that have used larger sample sizes.  In an unpublished dissertation, Heiny

(2006) used samples of 50, 100, 200, and 500 subjects per group to examine

discriminant analyses as a follow-up to a significant MANOVA.  Expanding on

Heiny’s study, Chandran (2009) used samples of 100, 250, and 500 per group to

examine the partial R-square and F test criteria in stepwise discriminant analysis as a

follow-up to a significant MANOVA.

One perspective on the values used by the previously noted authors is achieved

if they are considered against a backdrop of the per group sample size requirements to

detect a small, medium, and large effect size as defined by Cohen (1988), namely, to

detect effect sizes of 0.2, 0.5, and 0.8 standardized difference units between two means

of univariate normal populations.  Using SAS® PROC POWER and a Type I error

rate of 0.05 and power of 80%, an equal variance t-test used to carry out a two-sided

test for inequality between group means will require 394 subjects per group to detect

Cohen’s small effect size of 0.2, 86 subjects per group to detect a medium effect size

of 0.5 and 26 subjects per group to detect a large effect size of 0.8.
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In this study, per group sample sizes of 25, 50, 100, and 250 were used.  These

values cover the range of sample sizes in the articles cited previously and also corre-

spond to the range of sample sizes required to detect the effect sizes that Cohen (1988)

believes capture a majority of the experiments in the social sciences.

Number of Dependent Variables

In an unpublished dissertation, Schneider (2002) performed a simulation

examining discriminant analysis as a post hoc follow-up procedure to a significant

MANOVA.  In the process, a wide range of studies performed in the social sciences

were examined.  Schneider found that p = 2, 5, and 8 provided a good representation

of a small, medium, and large number of dependent variables in MANOVA studies,

respectively.  Heiny (2006) and Chandran (2009) expanded upon the number of

dependent variables Schneider had used.  Both dissertations used p = 2, 3, 4, 5, 6, 7,

and 8.  It is the author’s belief that, in general, most researchers use a small to medium

number of dependent variables.  Based on this idea and these previous Monte Carlo

simulations, this study used p = 2, 3, 4, 5, and 8 to examine the behavior of the three

multivariate designs.

Within Correlation and
Background Correlation of
Pretest and Posttest Scores

Zimmerman and Williams (1982) point out that “correlated errors are probably

the rule rather than the exception in pretest–posttest measurements” (p. 153).  Indeed,

this is the nature of pretest–posttest designs.  It normally is expected that an individ-

ual’s pretest and posttest scores will not be independent from one another.  However,
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as some authors have pointed out, the degree to which pretest scores and posttest

scores are correlated can vary a great deal.  Horst, Tallmadge, and Wood (1975)

believe that standardized tests can yield correlations between the pretest and posttest as

high as 0.80 and 0.90, and Bonate (2000) observed that the average correlation

between pretest and posttest is about 0.6 in psychological research and possibly even

higher in medical research.  Monte Carlo simulations by Yap (1979) used

pretest–posttest correlation values of 0.25, 0.50, and 0.75 to evaluate the accuracy of

withinregression models based on within-subject correlation (ñ ).  Bonate also used

correlations of 0.25, 0.50, and 0.75 in Monte Carlo simulations to compare univariate

statistical tests in evaluating different pretest–posttest methods, but also included the

values of 0, 0.90, and 0.95.  In another Monte Carlo simulation study, Tu et al. (2005)

used pretest–posttest correlation values of 0.10, 030, 0.50, 0.70, and 0.90 to analyze

six different statistical methods for measuring change in univariate randomized

controlled trials.  The present simulation mimics a combination of the values used by

Bonate and Tu et al. to cover the wide spectrum of possible correlations found in

pretest-posttest research.  Therefore, pretest scores are systematically varied with

regard to the degree of association that they exhibit with the corresponding posttest

withinscores to have correlation values of ñ  = 0, 0.10, 0.30, 0.50, 0.70, and 0.90.

backgroundThe background correlation (ñ ) was also manipulated in this study.  In

the context of this dissertation, the background correlation is the correlation between

backgroundthe p pretests and the correlation between the p posttests.  The values that ñ

may assume are 0.10, 0.30, and 0.50.  These values have been presented by Cohen
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(1988) as small, medium, and large effect sizes, respectively, when the Pearson

product-moment correlation (r) is used to express the degree of relationship between

two variables.  As Cohen notes, r values of 0.10, 0.30, and 0.50 explain 1%, 9%, and

25%, respectively, of variation in “either variable which may be predicted by (or

accounted for, or attributed to) the variance of the other, using a straight-line relation-

ship” (p. 78).  These values span a range of commonly found correlations that exist in

a variety of research situations.  However, Tabachnick and Fidell (2001) point out that

the best choice of dependent variables may be ones that are uncorrelated with one

another (i.e., independent).  Therefore, in addition to the small, medium, and large

backgroundvalues already described, a background correlation of 0 is used.  Thus, ñ  may

assume the values of 0, 0.10, 0.30, and 0.50 in this dissertation.

The correlation structure submitted to the simulation does not look like a

typical correlation matrix that one might expect to see.  The reason for this difference

is because the simulation must—as was just discussed—account for the correlation

between all variables at both the pretest and posttest level.  One good way to explain

the correlation structure is by way of illustration.  An example of four correlation

backgroundstructures (one for each assumed ñ  value of 0.0, 0.1, 0.3, and 0.5) can be seen in

Table 2.  The illustration uses two dependent variables (each having a pretest and a

withinposttest) and a value of ñ  equal to 0.90.  The intersections of columns and rows of

ijeach correlation matrix represent each variable X  where i = 1 for the first dependent

variable and 2 for the second dependent variable and j = 1 for the pretest and 2 for the

posttest.  There are, therefore, four columns and four rows in each correlation matrix
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for this example.  The two samples are drawn from independent multivariate normal

populations assuming that the correlation structure for both control and treatment

groups is the same.

Type I Error Rate

In this study, Type I error rates (levels of á) of 0.01 and 0.05 are used.  These

values are typically found in the tables of textbooks (e.g., Rosner, 2000) and articles

(Hubbard, Bayarri, Berk, & Carlton, 2003) and are, therefore, representative of the

alpha values often used in social science research.

Number of Significantly Different
Dependent Variables

For each dependent vector of a given size (p = 2, 3, 4, 5, or 8 as described

previously), the number of dependent variables in the outcome vector with a statisti-

cally significant difference between the treatment and control groups is varied.  The

purpose of this scheme is to determine if the multivariate models differ in their ability

to correctly detect multivariate statistical significance between the treatment and

control when different numbers of dependent variables in the outcome vector exhibit

univariate statistical significance.  Due to the magnitude of possibilities over depend-

ent vectors of size 2, 3, 4, 5, and 8, a representative sample of the possible number of

univariate statistically significant variables within each dependent vector of a given

size was used.  The selected numbers of statistically significant dependent variables

for outcome vectors of size 2, 3, 4, 5, and 8 are displayed in Table 3.
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Table 2

Population Correlation Matrices
_____________________________________________________________________

Correlation structure 
_____________________________________________________________________

backgroundOne (ñ  = 0.0)

ñ = 

backgroundTwo (ñ  = 0.1)

ñ = 

backgroundThree (ñ  = 0.3)

ñ = 

backgroundFour (ñ  = 0.5)

ñ = 

_____________________________________________________________________

withinNote.  p = 2, ñ  = 0.90.
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Table 3

Number of Statistically Significant Dependent Variables per Total Dependent
Variables

_____________________________________________________________________

significant                                                                        p
                         _________________________________________________________

            p            1               2               3               4               5              6               8
_____________________________________________________________________

2 x x - - - - -

3 x - x - - - -

4 x x - x - - -

5 x - x - x - -

8 x x - x - x x
_____________________________________________________________________

Number of Replications

Studies have been done previously that investigated the effects of the number

of replications used in Monte Carlo simulations.  In an unpublished dissertation,

Supawan (2004) examined six published articles that discussed the number of replica-

tions necessary for regression simulation studies.   The number of replications was

increased until the results were stable.  It was found that fewer replications were

needed to obtain consistent results for power than for Type I error.  It was recom-

mended that around 1,250 replications should be used for power, and between 4,200

and 4,600 replications should be used for Type I error.
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Preecha (2004) examined the number of replications necessary for power and

Type I error in ANOVA simulations in an unpublished dissertation.  The conclusions

were similar to those of Supawan (2004) in that more replications were required to

examine Type I error than power.  Preecha recommended that the number of replicates

for power be approximately 5,000, and that the number of replicates for Type I error

be between 5,000 and 10,000.  Based on these two studies, it is reasonable to expect

that 5,000 replications will provide stable results when examining power.  Thus, 5,000

replicates were used in the simulations presented in this study.

Test Statistic

O’Brien et al. (1982) evaluated the robustness of four commonly used

MANOVA statistics, namely, Wilks’s lambda, Roy’s largest root test, Hotelling-

Lawley trace, and the Pillai-Bartlett trace by systematically altering the level of

restricted sampling in the multivariate distributions underlying these tests.  Because

Wilks’s lambda was found to be the least affected when the underlying distributions

were restricted, it was used in this study.  However, the authors noted that when there

are only two groups being compared, all four of the test statistics are equal.

Procedures

A Monte Carlo simulation was performed using SAS IML (Interactive Matrix

Language) and SAS PROC GLM (General Linear Models).  Two independent p-

1 2 multivariate normal populations having mean vectors µ  and µ were simulated for

each of the scenarios previously described.  The effect size, d, separating the simulated

data between the two multivariate normal populations was set by manipulating the
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mean values within the mean vector corresponding to each distribution.  The effect

1 2size describing the difference between µ  and µ  was set to the specified values that

were discussed earlier and the number of significantly different posttest scores

significant(p ) displaying the given effect size was also varied in the manner described

above.  The same effect size was assumed across all of the statistically significant

posttest scores in a given simulation.  The correlation matrix, ñ, was also constructed

with SAS IML using values previously described.  The same correlation matrix was

used for each of the two populations that were compared within each simulated

scenario.

A random sample of size n was drawn from each of the two populations 5,000

times.  The number 5,000 was used for the reasons previously discussed.  The samples

were then evaluated using each of the three multivariate models by SAS PROC GLM

at each of the two levels of á (0.01 and 0.05) previously discussed.  SAS PROC GLM

tested the hypothesis that the two group populations were the same given the effect

sizes and correlation matrices that were assumed (i.e., the assumed scenario).  A

statistically significant test statistic (i.e., Wilks’s lambda having a corresponding

p-value less than or equal to á) meant that SAS PROC GLM had successfully detected

an a priori difference between the treatment and control groups.  The same simulation

was performed for each possible scenario using each of the three pretest-posttest

designs that were the focus of this dissertation.  The power was calculated for each

scenario by assessing the percent of detections (p-value # 0.01 or p-value # 0.05) that

occurred in the 5,000 replications.



CHAPTER IV

ANALYSIS

The following research question is addressed in this section:

Q When pretest and posttest scores are collected, how does statistical power
under different sample sizes, effect sizes, numbers of dependent variables,
and degrees of correlation within and between the pretest and posttest scores
compare between a MANOVA that uses change scores (posttest minus
pretest) as dependent variables, a MANOVA that uses only posttest scores
as dependent variables and a MANCOVA that uses posttest scores as
dependent variables and pretest scores as covariates?

To address this research question, simulated statistical power was calculated

for each of the three multivariate methods while systematically varying each of the

aforementioned independent variables under study in this dissertation.  The resulting

number of power estimates for each of the statistical models considered may be

determined by multiplying together the number of levels that have been examined for

each of the independent variables.  There were three levels for effect size (0.2, 0.5, and

0.8), four levels for sample size (25, 50, 100, and 250), five levels for the number of

outcome variables (2, 3, 4, 5, and 8), six levels for the within correlation (0, 0.1, 0.3,

0.5, 0.7, and 0.9), four levels for the background correlation (0, 0.1, 0.3, and 0.5), two

levels for alpha (0.01 and 0.05), and between two and five levels for the number of

significantly different dependent variables (depending on the number of outcome

variables), which totals to 15.  Thus, 3 x 4 x 6 x 4 x 2 x 15 = 8,640 Monte Carlo
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simulations were required to calculate the power for each of the three statistical

models, or 25,920 total scenarios.  The power for these scenarios was calculated by

running each one 5,000 times and calculating the proportion of times that the given

method successfully rejected the null hypothesis of no group effect for the given alpha

level.  In the dataset on the DVD-ROM and the figures that follow, the method with

change scores as the outcome variables is denoted by the term, change score, the

method with posttests as the outcome variables and pretests as covariates is denoted by

the term, MANCOVA, and the method utilizing only posttest scores as outcome

variables is denoted by the term, posttest only.

The attached DVD-ROM contains the simulated power for each statistical

model and for each unique cross-classification of the independent variables described

above.  Here, the multivariate method with the greatest statistical power for a given

scenario would be the preferred method over the other two.  Each of the independent

variables can be examined individually in order to understand under what conditions

one method might be superior to the other two.  Also, one or more combinations of

independent variables that give one method an advantage over the other two can be

singled out.  Researchers confronted with which of these three models to use will

obviously benefit from knowing how each independent variable while holding all

others constant can affect the models with respect to statistical power, as well as how

the independent variables interact with one another to affect statistical power. 

Therefore, the following two sections take steps to provide a better understanding of
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how the independent variables and their interactions relate to statistical power for the

three multivariate models under examination.  

First, the influence of each of the independent variables on statistical power has

been examined across the three multivariate models while controlling for all other

independent variables.  Here, the average power for each method across the levels of

the particular independent variable of interest was examined when the levels of all the

other independent variables were collapsed.  In other words, the marginal power for

each independent variable of interest was examined.  For example, the change score

method, MANCOVA method, and the posttest only method were compared across

withineach level of ñ  (correlation between pretest and corresponding posttest) by

withinobtaining an average for each ñ  level by combining all levels of all other independ-

withinent variables.  In this fashion, the influence of ñ  on power for each model was

isolated and examined.

Second, the circumstances under which one statistical method tended to have

superior statistical power relative to the other two were explored.  Since the interaction

between multiple independent variables could cause one multivariate method to have

greater statistical power than the other two, the scenarios that produced greater

simulated power in a multivariate method than in the other two were grouped together. 

The group of scenarios belonging to a given multivariate method—when that method

exhibited higher power than the other two—was profiled to determine the underlying

characteristics of that particular group of scenarios.  In this fashion, a general under-

standing was formed concerning what combination of independent variable values
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would lead to higher statistical power for a given statistical method relative to the

other two.

Relationship Between Each Independent Variable
and Statistical Power

Effect size was examined relative to the three multivariate methods while

averaging across all of the other independent variables.  As expected, the power for

each of the methods increased as effect size increased.  MANCOVA with posttests as

the outcome variables and pretests as covariates displayed greater power than the other

two methods across all values of effect size (0.2, 0.5, and 0.8).  The change score

method had less power than the MANCOVA method at each time point, but greater

power than the posttest only method for effect sizes of 0.2 and 0.5.  However, at an

effect size of 0.8, the posttest only method displayed greater statistical power than the

change score method.  Figure 1 gives a graphical representation of these findings.

In the same manner, power was compared at each level of sample size for each

of the three methods.  As expected, power increased for all three multivariate methods

as sample size increased.  The MANCOVA method consistently displayed greater

statistical power than the other two methods as can be seen in Figure 2.  The change

score method consistently displayed the second best statistical power, and the posttest

method displayed the lowest power at each sample size.  It may be of interest to note

that as the sample sizes increased, the power of the posttest only method approached

that of the change score method.
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d

Figure 1.  Power for effect size, controlling for all other independent variables.
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Figure 2.  Power for sample size, controlling for all other independent variables.

As can be seen in Figure 3, the three multivariate methods are consistent with

respect to order of superior statistical power when examined at the two levels of alpha. 

The MANCOVA method has greater power at both levels of alpha, followed by the

change score method.  The posttest only method was less powerful than the other two

multivariate methods at both levels of alpha.  As expected, the statistical power for

each method increased as the level of alpha increased.
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Figure 3.  Power for levels of significance, controlling for all other independent
variables.

Comparing the within correlation (correlation between pretests and their

corresponding posttests), it can be seen in Figure 4 that the three multivariate methods

behaved differently with regard to statistical power at various levels of correlation. 

The posttest only method had relatively consistent power across all levels of within

correlation, which was to be expected since this method ignores the relationship

between the pretests and posttests.  It had the second highest power at lower values of

within correlation, but because the change score method and MANCOVA method
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improved as within correlation increased while the posttest only method remained

fairly constant, the posttest only method had the lowest power at higher values of

within correlation.  The MANCOVA method had the highest statistical power for

within correlation values at 0, 0.1, 0.3, 0.5, and 0.7.  However, the change score

withinmethod slightly surpassed the MANCOVA method at ñ  = 0.9.  This occurred

withindespite the fact that the change score method had the least power at ñ  = 0, 0.1, and

0.3.

within                                                        ñ

Figure 4.  Power for within correlation, controlling for all other independent variables.
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In Figure 5, it can be seen that the MANCOVA method consistently had

greater power than the change score and posttest only methods at each background

correlation value, and that its power increased as the background correlation increased. 

The power of the change score method was nearly identical to that of the posttest only

backgroundmethod at ñ  = 0, but as the background correlation increased, the change score

method was slightly better than the posttest only method.  The posttest method

displayed a near constant level of power across all of the values, but was consistently

backgroundlower than the other two methods at ñ  = 0.1, 0.3, and 0.5.

background                                                ñ

Figure 5.  Power for background correlation, controlling for all other independent
variables.
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The three multivariate methods maintained the same ranking across the number

of dependent variables when averaging across all other independent variables as can be

seen in Figure 6.  The MANCOVA method had the highest power, followed by the

change score method, while the posttest only method exhibited the lowest power for p

= 2, 3, 4, 5, and 8.  There appeared to be a drop in power for all three methods at p = 4

as well as a slight drop at p = 8, which could be an artifact of the number of signifi-

cantly different dependent variables that were chosen for examination in the scenarios

with an even number of dependent variables.

                                                         p

Figure 6.  Power for the number of dependent variables, controlling for all other
independent variables.
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Since the number of significantly different dependent variables was unique to

each level of number of dependent variables, Figures 7 through 11 display the simu-

lated power for the three multivariate methods by the number of dependent variables. 

As one would have expected, the simulated power to detect a significant difference

between two treatment groups increased for all three methods as the number of

significantsignificantly different dependent variables, p , increased.  Again, the

MANCOVA method had the highest statistical power at each level of significantly

different dependent variables within each level of number of dependent variables.  The

change score method had either the lowest power of the three or was nearly equivalent

significantto the posttest method at p  = 1, regardless of the number of dependent variables. 

This pattern appears to have held true until more than half of the dependent variables

were significantly different, at which point the change score method became more

powerful than the posttest method.  When all of the dependent variables were signifi-

cantly different from one another, the simulated power of the change score method

approached that of the MANCOVA method.  Meanwhile, the simulated power for the

posttest only method leveled off as the number of significantly different dependent

variables increased, and appeared to even drop off when p was medium to large (p = 5

and 8).
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significant                                                   p

Figure 7.  Power for the number of significantly different dependent variables,
controlling for all other independent variables at p = 2.
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significant                                                    p

Figure 8.  Power for the number of significantly different dependent variables,
controlling for all other independent variables at p = 3.
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significant                                                    p

Figure 9.  Power for the number of significantly different dependent variables,
controlling for all other independent variables at p = 4.
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significant                                                     p

Figure 10.  Power for the number of significantly different dependent variables,
controlling for all other independent variables at p = 5.
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significant                                                    p

Figure 11.  Power for the number of significantly different dependent variables,
controlling for all other independent variables at p = 8.

Scenarios Where One Model Exhibits Greater Statistical
Power Than the Other Two

Although, thus far, it appears that MANCOVA is consistently more powerful

than the change score and posttest only methods, this idea does not convey the entire

picture.  There were a number of scenarios in which the change score or the posttest

only methods were superior.  There are also scenarios in which one—if not

both—methods are equivalent to the MANCOVA method (such as when both the
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sample size and effect size are large).  However, because the MANCOVA method

does seem to be the preferred method, it is appropriate to discuss the performance of

the change score and posttest methods relative to it.

A fairly obvious trend can be seen in the dataset on the DVD-ROM when

examining the circumstances in which the posttest only method was superior to the

other two.  The posttest only method appeared to typically have greater statistical

power than the MANCOVA method and the change score method when the back-

ground correlation was greater than or equal to the within correlation.  In other words,

if the correlation between pretests and their corresponding posttests was less than the

correlation between the unrelated pretests and posttests, the posttest method was often

better.  However, sample size and effect size also played a part in these results in

addition to this interaction between the two types of correlation.  As both of these

independent variables decreased, the posttest method had more power than the other

two methods with greater frequency.  Also, the number of dependent variables played

a role, since the posttest method had more power with greater frequency as the number

of dependent variables increased.  At the same time, these results were more promi-

nent when there were fewer significantly different dependent variables.  These results

did not appear to be dependent upon the level of alpha, as the number of scenarios

displaying this phenomenon was nearly equal in each level of alpha.  Therefore, the

posttest method was typically more powerful when background correlation was greater

than within correlation, sample size was low, effect size was low, the number of



73

dependent variables was large, and the number of significantly different dependent

variables was low.

A trend for the scenarios where the change score method had the greatest

power compared to the MANCOVA and posttest methods also exists in the dataset

included in the DVD-ROM.  The change score method displayed greater statistical

power than the other two multivariate methods when the correlation between pretests

and their corresponding posttests was high, the sample size was small, the number of

dependent variables was large, the number of significantly different dependent

variables had either a value of one or the highest possible number, and the effect size

was small. This phenomenon was evidenced by the proportion of scenarios where the

change score method had the highest power increasing as within correlation and the

number of dependent variables increased, the sample size decreased, and the number

of significantly different dependent variables moved to the minimum or maximum

possible values.  As was the case when the posttest method was compared to the

change score and MANCOVA methods, there was little effect by alpha level.  Here,

the proportion of scenarios where the change score method was superior does not vary

by background correlation either.



CHAPTER V

CONCLUSIONS AND DISCUSSION

Chapter IV described the scenarios under which each multivariate method

demonstrated greater statistical power than the other two methods.  Researchers may

find the information afforded by this dissertation useful when planning their studies

and subsequent analyses.

Conclusions

As was expected, statistical power increases for all three of the multivariate

models examined as the effect size, sample size, and alpha level increase.  Although

the MANCOVA method is the most powerful under the majority of instances, there

are important circumstances that argue against a one method fits all approach.  The

difference between all the methods diminishes when effect sizes are high (d = 0.8) and

the difference between the MANCOVA, and the change score methods dissipates as

the within correlation increases and as the number of dependent variables and the

number of significantly different dependent variables increases.  Additionally, there

are important conditions under which the posttest only approach evidences greater

power than the other two methods, and this statement is also true for the change score

method.
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The posttest only method often displayed superior statistical power over the

MANCOVA and change score methods when the within correlation was less than or

equal to the background correlation.  This result occurred with increased frequency if

the sample size was small, the number of dependent variables was large, and the

number of significantly different dependent variables was small.  Therefore, research-

ers may find they require a smaller sample size and/or are be less likely to commit a

Type II error if their study has these characteristics and they use the posttest only

method to perform the multivariate analysis.  However, it should be pointed out that

the scenarios just described may only occur very rarely, if at all.  If the correlation

between the pretests and corresponding posttests in a study is less than the background

correlation between unrelated pretests and posttests, then the researcher would have to

question whether or not the pretests and posttests that have been selected are appropri-

ate for use in the study.

The change score method had more statistical power than the other two

methods when within correlation was high, the sample size was small, the number of

dependent variables was large, the number of significantly different dependent

variables was either one or the highest possible number, and the effect size was small. 

Therefore, researchers would benefit from using the change score method when their

studies have these characteristics. A possible explanation for this finding is that the

change score method uses information contributed jointly by the pretests and posttests,

whereas the posttest method uses less information because the pretest is deleted and

the MANCOVA method requires a greater number of degrees of freedom to estimate
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parameters.  This explanation was, in fact, anticipated by Maxwell and Howard

(1981).  From the current research it is interesting to note that as sample size increases,

the degrees of freedom used by the covariates in the MANCOVA method appear to

become relatively less important.  Thus, the MANCOVA method is associated with

disproportionately increasing statistical power relative to the change score approach as

sample size increases.

The above considerations aside, it remains true that the MANCOVA method

exhibited greater power under many more scenarios than did either the change score or

the posttest only methods.  Excluding those scenarios just described and scenarios

where the MANCOVA method and one or both of the other methods had 100% power,

the MANCOVA method was superior to the other two methods in all other scenarios

with regard to power.  In the scenarios where the MANCOVA method did not have the

highest power, it had less than a 5% difference in power relative to the superior

method 98.6% of the time.  Therefore, if a researcher must choose a method a priori

without knowing the characteristics of the study, it is recommended that the researcher

use the MANCOVA method.  However, if the researcher suspects scenarios compati-

ble with greater power for the posttest only method or the change score method, this

dissertation provides a defensible rationale for selecting one of these two alternative

methods.

Finally, it is important to remember that power can be adjusted by manipulat-

ing factors other than the selected statistical model for analysis.  In this dissertation,

the implicit assumption has been that if sample size and alpha are held constant then a



77

researcher would use, for a given scenario defined by the independent variables

examined here, the model exhibiting the most power in order to perform his or her

analysis.  This situation, however, is not always true.  At times, one analysis method

may be preferred over the other for reasons not directly related to statistical power. 

For example, the cost of collecting a pretest score might be greater than the cost of

increasing sample size.  In this case, the posttest only method might be preferred

regardless of the scenario, and the lesser amount of power relative to the other

methods might be compensated by increasing the sample size.  A final example relates

to an earlier point made by Fitzmaurice et al. (2004).  These authors pointed out that

the analysis method selected must directly address the research question at hand.  In

the multivariate setting, the change score method tests whether there is a statistically

significant difference between one or more mean change scores of two or more groups,

regardless of whether the baseline values are equal between treatments.  On the other

hand, the MANCOVA method tests whether one or more mean posttest scores differ

significantly between two or more groups after adjusting for differences that may have

existed between the pretest scores.  The research questions are quite similar but indeed

different, and depending on the purpose of the study, one may be preferred over the

other.  If the change score method answers the research question but exhibits less

power for the expected scenario, then perhaps parameters impacting statistical power,

such as sample size, should be altered to allow the use of the model that answers the

research question best.  This dissertation offers insight not only into which model

provides the greatest statistical power under a fixed scenario, but also insight into the
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degree of power that might need to be compensated for if a multivariate method with

less power were used for reasons like those just presented.

Discussion

This study focused on three methods that could be used to analyze change

when multiple pretests and corresponding posttests exist.  Two of these methods

involve models that utilize both the pretest and posttest scores (MANCOVA with

pretest scores as covariates and MANOVA with change scores).  The third method

ignores pretest information altogether (MANOVA with posttest scores only).  While

the findings presented above are of considerable applied relevance, this study also

serves as a starting point for additional research that examines issues surrounding the

analysis of multivariate change.

This dissertation concentrated on situations analyzing the difference in change

from pretest to posttest between two independent groups.  Certainly, researchers

sometimes desire to know the difference in change from pretest to posttest between

three or more groups.  The work presented here could be extended to cover studies

with more than two comparison groups and a comparison of statistical power of the

multivariate methods could be performed based on this potential independent variable.

In addition to studying the statistical power for the three multivariate models,

Type I error could also be examined.  The decision to use one of the three methods

examined here instead of the other two should not depend solely on statistical power,

but also on how well each method controls for Type I error.  If one method displays

more power than the others, but differences exist in the nominal alpha level as a
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function of sample size, effect size, within correlation, background correlation, and/or

the number of dependent variables, then this too constitutes an important area of future

investigation.

The multivariate methods surveyed in this dissertation are not the only ones

that can be used to analyze multivariate studies where subjects have an array of

posttest outcomes with corresponding pretest values available.  Bonate (2000) and Tu

et al. (2005) present numerous other univariate methods for analyzing situations

involving a single pretest and corresponding posttest.  These methods could be

generalized to the multivariate case and compared with the models examined in this

dissertation or with each other.  These comparisons could be conducted with respect to

power and/or Type I error.  A few examples of these methods are using percent change

scores, using log-transformed change scores, using ranked normal pretest scores and

ranked normal posttest scores, and using both pretest and posttest scores as outcome

variables in a multivariate analysis of variance.

While this dissertation focused on scenarios where the pretests of each of the

two comparison groups were assumed to be equal, other scenarios commonly occur in

research.  In the univariate case, Bonate (2000) provided a number of different

possible scenarios and performed Monte Carlo simulations to address them.  Such

scenarios could easily be extended to the multivariate realm and examined using

Monte Carlo simulations similar to the ones used in this dissertation.  Some of the

scenarios presented by Bonate are when subjects are put into groups based on their

pretest scores, when the variance of posttest scores does not equal the variance of



80

pretest scores, or when marginal distributions of the pretest scores and posttest scores

are not normally distributed.  These issues, with respect to both power and Type I

error, provide a number of important areas for future research.
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**********************************************
**** Justin L. Rogers                     ****
**** SAS code for Monte Carlo simulations ****
**** p=2                                  ****
**********************************************;

dm output 'clear'; dm log 'clear';

options nonotes nodate;

**** Specify location to store permanent datasets ****;
libname dds "C:\Dissertation Datasets";

**** Print start time to log ****;
data _null_;
  start=datetime();
  format start datetime.;
  put start=;
run;

**** Create base dataset to append to ****;
  data dds.p2_alldata_25;
    input group rep effect_size sig_diff within_corr backg_corr alpha 
          col1 col2 col3 col4 diff1 diff2;                       
    cards;
  run;

  data dds.p2_alldata_50;
    input group rep effect_size sig_diff within_corr backg_corr alpha 
          col1 col2 col3 col4 diff1 diff2;
    cards;
  run;

  data dds.p2_alldata_100;
    input group rep effect_size sig_diff within_corr backg_corr alpha 
          col1 col2 col3 col4 diff1 diff2;
    cards;
  run;

  data dds.p2_alldata_250;
    input group rep effect_size sig_diff within_corr backg_corr alpha 
          col1 col2 col3 col4 diff1 diff2;
    cards;
  run;

**** Begin macro to generate data for analyses ****;
%macro mkdata(n=);

  **** Effect Sizes ****;
  %do e=2 %to 8 %by 3;
    data _null_;
      temp="&e";
      e_s=round(temp/10,.1);
      call symput('e_s',e_s);
    run;

    %let e_s=&e_s;
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    **** Number of Significantly Different Posttests ****;
    %do dv=1 %to 2;

**** Within Correlation ****;
%do w=1 %to 11 %by 2;
  data _null_;

          temp="&w";
          w_c1=round(temp/10,.1);

    if w_c1=1.1 then w_c=0;
    else w_c=w_c1;

          call symput('w_c',w_c);
        run;

        %let w_c=&w_c;

  **** Background Correlation ****;
        %do b=1 %to 7 %by 2;

    data _null_;
            temp="&b";
            b_c1=round(temp/10,.1);

if b_c1=.7 then b_c=0;
else b_c=b_c1;

           call symput('b_c',b_c);
          run;

          %let b_c=&b_c;

    **** Alpha Level ****;
          %do a=1 %to 5 %by 4;

      data _null_;
              temp="&a";
              alpha=round(temp/100,.01);
              call symput('alpha',alpha);
            run;

            %let alpha=&alpha;

              **** Number of replications per scenario ****;
              %do rep=1 %to 5000;

  **** Create Correlation Matrix ****;
              proc iml;
                R={1    &w_c &b_c &b_c,
                   &w_c 1    &b_c &b_c,

             &b_c &b_c 1    &w_c,
             &b_c &b_c &w_c 1   };

    **** Define vector of standard devations ****;
    Ds=Diag({1 1 1 1});

    **** Compute covariance matrix ****;
                S=Ds*R*Ds;

                **** Compute Choleski Root for transformation ****;
                T=Root(S);
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    **** Specify number of observations per sample ****;
    n=&n;

                
               **** Create GROUP 1 (Treatment) ****;

    **** Specify random number seed ****;
    Seed1=0;

    **** Create data vector using seed ****;
    X1=J(n,NRow(S),Seed1);

               **** Generate independent normal distribution ****;
    X1=rannor(X1);

    **** Transform for covariance structure ****;
    Y1=X1*T;
    

               **** Create dataset of GROUP1 (Treatment) data ****;
               create group1 from Y1;

    append from Y1;
    close group1;

    **** Create GROUP 2 (Control) ****;
    **** Specify random number seed ****;
    Seed2=0;

               **** Create data vector using seed ****;     
               X2=J(n,NRow(S),Seed2);

               **** Generate independent normal distribution ****;
   X2=rannor(X2);

   **** Transform for covariance structure ****;
   Y2=X2*T;
    

               **** Create dataset of GROUP2 (Control) data ****;
           create group2 from Y2;

   append from Y2;
   close group2;

              **** End IML ****; 
              quit;

              **** Give the posttest of GROUP1 (Treatment) the ****
              **** specified effect size                       ****;
              data group1; set group1;

          if &dv=2 then do;
                  array col col1-col4;
    do i=2 to 4 by 2;

    col[i]=col[i]+&e_s;
  end;
drop i;

    end;
else if &dv=1 then do;
  col2=col2+&e_s;
end;
group=1;

    run;
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    data group2; set group2;
group=2;

    run;

    **** Merge GROUP1 (Treatment) and GROUP2     ****
                **** (Control) into one dataset for analyses ****;

    data allgroups;
      merge group1 group2;

by group;
rep=&rep;
effect_size=&e_s;
sig_diff=&dv;
within_corr=&w_c;
backg_corr=&b_c;
alpha=&alpha;

**** create change scores for each pretest and****
                  **** corresponding posttest                   ****;

diff1=col2-col1;
diff2=col4-col3;

keep group rep effect_size sig_diff within_corr
                       backg_corr alpha col1 col2 col3 col4 diff1
                       diff2;

     run;

     **** Compile the datasets into one so that there****
                 **** will only be one dataset per sample size  ****;

     proc append base=dds.p2_alldata_&n data=allgroups 
                             force;

     run;

  **** Close DO loops ****;
            %end;
          %end;

  %end;
      %end;
    %end;
  %end;
  
  **** Sort data for BY variable analyses ****;
  proc sort data=dds.p2_alldata_&n;
    by effect_size sig_diff within_corr backg_corr alpha rep;
  run;

**** End macro ****;
%mend;

**** Call macro for each given sample size ****;
%mkdata(n=25);
%mkdata(n=50);
%mkdata(n=100);
%mkdata(n=250);

**** Suppress output ****;
ods listing close;
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**** Begin macro to run the three multivariate analyses on the ****
**** data                                                      ****;
%macro analyze(n=);

  **** BEGINNING OF ANALYSES ****;

  ************************
  **** MANCOVA method ****
  ************************;
  proc glm data=dds.p2_alldata_&n;
    by effect_size sig_diff within_corr backg_corr alpha rep;
    class group;
    model col2 col4=group col1 col3;
    manova h=_all_;
    ods output multstat=p2_mancova_&n;
  run;
  quit;

  **** Select results testing group effect using Wilks Lambda ****;
  **** Output permanent results dataset ****;
  data p2_mancova_&n; set p2_mancova_&n;
    length method $ 20;
    if hypothesis="group";
    if statistic="Wilks' Lambda";

    **** Determine if a Type II Error was committed ****;
    if probf > alpha then type2error=1;
    else type2error=0;
    method="MANCOVA";
  run;

  *****************************
  **** Change Score Method ****
  *****************************;
  proc glm data=dds.p2_alldata_&n;
    by effect_size sig_diff within_corr backg_corr alpha rep;
    class group;
    model diff1 diff2=group;
    manova h=_all_;
    ods output multstat=p2_diff_&n;
  run;
  quit;

  **** Select results testing group effect using Wilks Lambda ****;
  **** Output permanent results dataset ****;
  data p2_diff_&n; set p2_diff_&n;
    length method $ 20;
    if hypothesis="group";
    if statistic="Wilks' Lambda";

    **** Determine if a Type II Error was committed ****;
    if probf > alpha then type2error=1;
    else type2error=0;
    method="Change Score";
  run;
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  ******************************
  **** Posttest Only Method ****
  ******************************;
  proc glm data=dds.p2_alldata_&n;
    by effect_size sig_diff within_corr backg_corr alpha rep;
    class group;
    model col2 col4=group;
    manova h=_all_;
    ods output multstat=p2_post_&n;
  run;
  quit;

  **** Select results testing group effect using Wilks Lambda ****;
  **** Output permanent results dataset ****;
  data p2_post_&n; set p2_post_&n;
    length method $ 20;
    if hypothesis="group";
    if statistic="Wilks' Lambda";

    **** Determine if a Type II Error was committed ****;
    if probf > alpha then type2error=1;
    else type2error=0;
    method="Posttest Only";
  run;

  **** END OF ANALYSES ****;

  **** Merge all results for given sample size together ****;
  data p2_all_res_&n;
    merge p2_mancova_&n p2_diff_&n p2_post_&n;
     by method effect_size sig_diff within_corr backg_corr alpha rep;
     n=&n;
  run;

  **** Sort dataset for calculation of power ****;
  proc sort data=p2_all_res_&n;
   by method n effect_size sig_diff within_corr backg_corr alpha rep;
  run;

**** End macro ****;
%mend;

**** Call macro for each given sample size ****;
%analyze(n=25);
%analyze(n=50);
%analyze(n=100);
%analyze(n=250);

**** Combine all results ****;
data dds.p2_all_res;
  merge p2_all_res_25 p2_all_res_50 p2_all_res_100 p2_all_res_250;
  by method n effect_size sig_diff within_corr backg_corr alpha rep;
run;

**** Calculate proportion of analyses where Type II Error was ****
**** not committed                                            ****;
**** This proportion will be the simulated statistical power ****;
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proc freq data=dds.p2_all_res;
  by method n effect_size sig_diff within_corr backg_corr alpha;
  table type2error / out=p2_power;
run;

**** Allow output ****;
ods listing;

**** Create permanent dataset containing calculated statistical power
****;
data dds.p2_power; set p2_power;
  if type2error=0;
  p=2;
run;

**** Print end time to log ****;
data _null_;
  end=datetime();
  format end datetime.;
  put end=;
run;

**** END OF SAS PROGRAM ****;
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