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ABSTRACT 

Piccone, Adam Vincent. A Comparison of Three Computational Procedures for Solving 
the Number of Factors Problem in Exploratory Factor Analysis. Published Doctor 
of Philosophy dissertation, University of Northern Colorado, (2009). 

 
Three computational solutions to the number of factors problem were investigated 

over a wide variety of typical psychometric situations using Monte Carlo simulated 

population matrices with known characteristics. The standard error scree, the minimum 

average partials test, and the technique of parallel analysis were evaluated head-to-head 

for accuracy. The question of using principal components-based eigenvalues versus 

common factors-based eigenvalues in the analyses was also investigated. As a 

benchmark, the commonly used eigenvalues-greater-than-one criterion was included. 

Across all conditions, the principal components-based version of parallel analysis was 

found to most accurately recover dimensionality using sample correlation matrices drawn 

from populations with known, simple factor structures. The high degree of accuracy 

observed for this method suggests that a workable solution to the age-old number of 

factors problem may be close at hand. 
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CHAPTER I 

INTRODUCTION 

Background 

Factor analysis, especially the particular incarnation broadly known as 

exploratory factor analysis (EFA), has long been recognized as an indispensable 

statistical and psychometric tool (Thompson & Daniel, 1996). Basically, the purpose of 

this technique is to describe the covariance relationships of a large number of observed 

random variables in terms of a relatively smaller number of unobserved random 

quantities, usually called factors1 (Johnson & Wichern, 2002). Since its modern 

beginnings in the early 20th century, factor analysis has been closely tied to the field of 

psychometrics. Karl Pearson, Charles Spearman, and Louis Thurstone pioneered the 

modern application of this computationally intensive procedure in research focusing on 

the measurement of abstract psychological concepts such as intelligence. The ability to 

quantify aspects of intangible constructs proved highly attractive to psychologists. Later, 

the advent of computer technology and easy-to-use statistical software (e.g., SAS and 

SPSS) sparked an explosion of factor analytic research in all branches of the social 

sciences. Perhaps too expansive, in fact, has been the proliferation of factor analytic 

research to this point, for it has been suggested that researchers have begun to rely more 

                                                
1 Throughout this dissertation, the term “factor” will be used primarily in its less formal sense, and the 
more strict distinction between the terms “factor” and “component” may not be implied. 
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upon default software settings than upon sound statistical methodology (Fabrigar, 

Wegener, MacCallum, & Strahan, 1999; Preacher & MacCallum, 2003). 

One reason for this reliance may be the noticeable lack of a clear consensus as to 

what constitutes sound factor analytic methodology. Illustrative of this point is the 

ongoing battle in the literature over the merits of principal components extraction versus 

extractions based on the common factor model. At its pinnacle, large portions of 

methodological journals (even entire issues) were devoted solely to the resolution of this 

feud (e.g., Sociological Methods and Research, Volume 17, Issue 4, 1989; Multivariate 

Behavioral Research, Volume 25, Issue 1, 1990). This controversy and others will be 

expounded upon in greater detail in subsequent sections. Adding to the general confusion 

among researchers have also been various methodological setbacks, such as the 

unfortunate rise of overly simplistic heuristics like the “Little Jiffy” approach advocated 

by Kaiser (1970). Little Jiffy advises retaining all factors with eigenvalues greater than 

unity, using a principal components extraction algorithm, and employing a varimax 

rotation prior to interpretation of the solution. Despite shortcuts in the vein of Little Jiffy, 

the inconvenient fact remains, as Fabrigar et al. (1999) put it, “Perhaps more than any 

other commonly used statistical method, EFA requires a researcher to make a number of 

important decisions with respect to how the analysis is performed” (p. 273). Those 

authors go on to identify no less than five major methodological choices that face the 

diligent factor analyst, each of which can have major implications for the results of the 

study. These include choices concerning the size and make-up of the sample, the variable 

selection stratagem, the model fit algorithm, the method of rotation, and the number of 

factors to include in the model. 
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The Number of Factors Problem 

Of the multiple decisions confronting the factor analyst, perhaps the most 

interesting is the question of the number of factors or components to extract prior to 

rotation. According to Zwick and Velicer (1986), “The determination of the number of 

components or factors to retain is likely to be the most important decision a researcher 

will make” (p.432). In the psychometric literature, this decision has become commonly 

referred to as the number of factors “problem” (Glass & Taylor, 1966, p. 566). The 

negative connotation of this particular nomenclature is reflective of the harmful impact of 

extracting an improper number of factors or components. These consequences, which 

will be outlined in greater detail later, include the appearance of split factors, the 

emergence of false factors, and the calculation of unreliable factor loadings. Recent 

extensions of the factor analysis model, such as confirmatory factor analysis, do have 

some utility when applied to the number of factors question. However, as Hubbard and 

Allen (1987a) mention, “…it is instructive to note that confirmatory factor analysis has 

not solved the [number of factors] problem (p. 173-174). Researchers must resist the 

temptation to interpret the word “confirmatory” in too literal a sense. Instead, it is 

important to remember that data can never positively confirm a model; they can only fail 

to disconfirm one (Popper, 1959). So apprehensive are methodologists about widespread 

over-reliance on the ostensibly named “causal” models, that some have found it 

necessary to restate such elementary views of scientific methodology explicitly in the 

context of confirmatory factor analysis (e.g., Cliff, 1983). The results of a properly 

conducted confirmatory factor analysis, for example, may reveal that a particular three-

factor model is a good fit for a set of data. The correct interpretation of such a result is 
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only that this three-factor model cannot be disconfirmed by the data. However, 

innumerable other models, including ones with alternative dimensionality, have also 

failed to have been disconfirmed. 

Statement of the Problem 

In psychometrics, the number of factors or components extracted in EFA relates 

expressly to the dimensionality of a psychometric instrument. Although theory and prior 

research normally dictate the dimensionality of any psychometric instrument, it can be 

unclear in practice just how many dimensions or factors might actually subsume a 

particular set of items. This dilemma is especially relevant in the case of test construction 

and development. Through the years, various recommendations for determining the 

number of factors to extract have been made. As will be discussed later, most are simply 

inadequate. Unfortunately, some clearly weak decision rules still pervade mainstream 

research methodology. For instance, the infamous eigenvalues-greater-than-one rule 

(Kaiser, 1960), which has been roundly criticized in the psychometric literature for years, 

still remains the most widely used decision rule in the social sciences (Conway & 

Huffcutt, 2003; Fabrigar et al. 1999; Ford, MacCallum, & Tait, 1986). The persistent use 

of Kaiser’s rule is almost certainly because it is easy to use, and because it remains the 

default option in most popular statistical software packages. In fact, it is usually the only 

option (other than the express specification of a hard number) available to software 

users—unless custom programming statements are added. Alternative computational 

methods do exist, however, and are gradually becoming both easier to implement and less 

time-consuming. The present study will evaluate and directly compare the leading 

computational methods for determining the number of factors to extract in EFA. This 
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evaluation and comparison will focus on situations and covariance structures commonly 

encountered in applied psychometrics. 

Methods for Determining the Number of Factors 

Statistical Approaches 

Myriad solutions to the number of factors problem have been proposed through 

the years. Statistical approaches, such as the maximum likelihood ratio test (Lawley, 

1940, 1941) and Bartlett’s Chi-square significance test (1950, 1951), are among the 

earliest. However, since these procedures are functions of sample size, even trivial factors 

can become highly significant when samples are large (Gorsuch, 1973; Harris & Harris, 

1971; Hubbard & Allen, 1987a; Jackson & Chan, 1980). The use of these two tests for 

determining the number of factors to retain is no longer recommended (Velicer, Eaton, & 

Fava, 2000). 

Eigenvalues-Greater-than-One Rule 

As previously mentioned, the eigenvalues-greater-than-one rule proposed by 

Kaiser (1960) has achieved virtual sacrosanctity among researchers despite being 

repeatedly shown to be unsatisfactory (Browne, 1968; Cattell & Vogelmann, 1977; 

Hubbard & Allen, 1987a; Gorsuch, 1997; Jackson, 1993; Lee & Comrey, 1979; Linn, 

1968; Revelle & Rocklin, 1979; Tucker, Koopman, & Linn, 1969; Yeomans & Golder, 

1982; Zwick & Velicer, 1982, 1986). Kaiser first suggested this rule in a famous speech 

to APA members in September of 1959, and presented it as “…a ‘best’ answer to the 

question of the number of factors” (Kaiser, 1960, p.145). He based this idea mainly upon 

his own personal experience, but also upon a generalization of a well-known algebraic 

result by Guttman (1954). Since that time, the rule has become widely known as the 
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Kaiser-Guttman criterion, although it is now clear that Kaiser took Guttman’s proof 

(which considered only population correlation matrices) too far when he extended it to 

include sample correlation matrices (see Schönemann, 1990). As Cliff (1988) explains, 

“Sampling effects tend to increase the number of eigenvalues greater than one, so the rule 

tends to overestimate the number of factors when applied to sample matrices” (p. 279). 

Further erroneous support for the eigenvalue-one rule stemmed from Kaiser’s contention 

that for a component to have positive KR-20 reliability (Kuder & Richardson, 1937), its 

eigenvalue must exceed one. However, Cliff argues, “…Kaiser’s rationale for relating the 

reliability of components to the number of eigenvalues greater than unity was based on a 

misapplication of a common formula for the reliability of a composite…” (p. 276). Cliff 

goes on to demonstrate the reliability of a principal component depends upon the 

reliability of the measures, not upon the size of eigenvalues. Through time, then, the 

theoretical rationale behind Kaiser’s recommendation has severely eroded. Meanwhile, 

empirical evidence exposing the weaknesses of this rule has mounted. In fact, in the wake 

of a virtual maelstrom of published denunciation, Preacher and MacCallum (2003) were 

compelled to remind readers, “The Kaiser criterion will at least occasionally yield a 

correct estimate of the number of factors to retain” (p. 29). Currently, though, most 

authors (including Preacher and MacCallum) call for the abandonment of the 

eigenvalues-greater-than-one criterion for determining the number of factors (Hubbard & 

Allen, 1987a; Merenda, 1997; Velicer et al., 2000). 

Parallel Analysis 

Horn (1965) was one of the first to recognize that Kaiser’s (1960) eigenvalues-

greater-than-one criterion would not properly account for the effects of sampling. Horn 
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demonstrated that, on average, the latent roots extracted from normally distributed 

random data will be greater than unity for half of the total number of roots, simply due to 

the effects of sampling. This fact alone seriously undermines the theoretical foundation of 

the Kaiser criterion. To account for sampling error, Horn proposed the technique of 

parallel analysis (PA). In PA, the researcher compares eigenvalues calculated from the 

sample data to eigenvalues calculated from one or more sets of random data with the 

same number of variables and observations. Instead of using unity as the cutoff criterion, 

only those factors with observed eigenvalues greater than the corresponding eigenvalues 

from random data are retained. Unfortunately, Horn’s sample-based version of the Kaiser 

rule proved to be too far ahead of its time; the computing power necessary to conduct PA 

properly would not be broadly available for decades. Even now, implementing PA is 

moderately difficult programmatically. So, Horn’s idea languished as easier solutions to 

the number of factors problem flourished. Nonetheless, PA has recently resurfaced, 

enjoying growing recognition as one of the best approaches to the number of factors 

problem (Conway & Huffcutt, 2003; Gorsuch, 2003; Hayton, Allen, & Scarpello, 2004; 

Lance, Butts, & Michels, 2006; Merenda, 1997; Thompson & Daniel, 1996; Velicer et 

al., 2000). 

Scree Test 

Also unhappy with Kaiser’s eigenvalues-greater-than-one criterion, yet hoping to 

find a method with similar ease of use, Cattell (1966) developed the visual scree test. 

Conceptually, the visual scree can be thought of as a geometric analogue to Bartlett’s 

Chi-square test (Horn & Engstrom, 1979). This popular procedure is indeed easy to use, 

but has received mixed criticism in the literature (Cattell & Vogelmann, 1977; Cliff, 
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1970; Crawford & Koopman, 1979; Jackson, 1993; Kanyongo, 2005; Streiner, 1998; 

Tucker et al., 1969; Zwick & Velicer, 1982). In a comprehensive review of several 

number of factors procedures, Velicer et al. (2000) recommend the use of the visual scree 

only as an adjunct procedure. Even though great pains have been taken to outline a 

specific, standardized approach to the visual scree (Cattell, 1978; Cattell & Vogelmann, 

1977), researchers still must choose a cut-point visually. This inherent subjectivity has 

been seen as a major weakness (Finch & West, 1997; Humphreys & Montanelli, 1975; 

Streiner, 1998). For example, Finch and West complain, “The primary problem with the 

scree test is that it is an ‘eyeball test’; the point of the break in the plot can be difficult to 

determine or there may be more than one such break” (p. 466). Over the years, several 

objective methods for determining the cut-point utilizing regression-based approaches 

have been proposed (Gorsuch & Nelson, 1981; Zoski & Jurs, 1993, 1996). Since these 

new methods remove the subjectivity component, and since they can be easily automated 

for computer applications, they are quite promising in their utility. Recently, Nasser, 

Benson, and Wisenbaker (2002) evaluated the performance of four of these regression-

based variations of the visual scree test in terms of ability to identify the true number of 

factors in sample correlation matrices drawn from populations with a known structure. 

The standard error scree (SEscree) procedure of Zoski and Jurs (1996) emerged as the 

most accurate of the regression-based methods, and performed comparably to the 

traditional visual method. Although use of this promising new procedure is still rare in 

practice (e.g., Natsopoulos, Kiosseoglou, Xeromeritou, & Alevriadou, 1998) 

methodologists in the social sciences have started recommending use of the SEscree to 
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help solve the number of factors problem (Benson & Nasser, 1998; Goodwin & 

Goodwin, 1999). 

Minimum Average Partial Test 

Another potential solution to the number of factors problem is the minimum 

average partial (MAP) test suggested by Velicer (1976). In MAP, the researcher makes 

use of the off-diagonal elements of partial correlation matrices. The partial correlation 

matrix is the matrix of correlations that remain after successive factors are partialed out 

of the sample correlation matrix. In its original form, the average of the squared partial 

correlations is taken for every principal component. The component number 

corresponding to the minimum of these averages indicates the number of non-trivial 

components that should be extracted. MAP can be conceptualized as a measurement of 

the size of residuals left over after successive numbers of factors have been removed. In 

this way it is similar to the model fit indices used in CFA, such as those described by 

Bentler (1989). In fact, Gorsuch (2003) calls MAP “an index of the residuals in EFA” 

(p. 159). Velicer simply standardizes the residuals by converting them to partial 

correlations. In simulation studies, MAP performs superbly, second only to PA in 

accuracy (Peres-Neto, Jackson, & Somers, 2005; Zwick & Velicer, 1982, 1986). 

Delimitation of the Present Study 

Candidates for Comparison 

Of the countless heuristics for determining the number of factors to extract in 

EFA, only a few have survived the rigors of scientific scrutiny and emerged as the most 

robust. To date, the three most reliable methods for determining the number of factors in 

exploratory factor analysis are the PA technique developed by Horn (1965), the MAP test 
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suggested by Velicer (1976), and the SEscree test proposed by Zoski and Jurs (1996). 

The first two methods are older, and have thus faced the most scrutiny; but, they have 

consistently emerged as accurate (Velicer et al., 2000; Zwick & Velicer, 1986)—usually 

much more accurate than other methods. The third method, SEscree, is newer. But, it is 

the most promising of the automated versions of Cattell’s (1966) popular visual scree. 

Direct Comparison of PA, MAP, and SEscree 

As mentioned above, regression-based analogs of the visual scree test are 

emerging as viable solutions to the number of factors problem in EFA. Nasser et al. 

(2002) compared the performance of some of these regression-based variations in a 

Monte Carlo simulation study. In the past, simulation studies have been extensively used 

to compare the performance of different stopping rules (e.g., Hubbard & Allen, 1987a; 

Velicer, Peacock & Jackson, 1982; Zwick & Velicer, 1982, 1986). These types of 

simulations typically involve the generation of a population correlation matrix from a 

pattern matrix with a known common factor structure. Then, sample correlation matrices 

can be drawn from the population correlation matrix, usually by means of the Kaiser-

Dickman (1962) method. The Nasser et al. study used methodology similar to previous 

research, and concluded that the SEscree was the most accurate of the regression-based 

methods. Furthermore, the SEscree test was determined to have accuracy comparable to 

the traditional visual method. These results suggest that the SEscree may be on par with 

proven procedures such as PA and MAP. Unfortunately, as Nasser et al. ultimately 

concede, a major limitation of their work was that these three methods were never 

directly compared. One purpose of the present study is to extend the results of Nasser et 

al. by directly comparing the SEscree procedure to PA and MAP in a similar Monte Carlo 
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simulation. Additionally, the results of the commonly used eigenvalues-greater-than-one 

rule were calculated for comparison. 

Population Correlation Structure 

Another limitation of Nasser et al. (2002) involved the structure of population 

matrices from which the Monte Carlo samples were drawn. Velicer et al. (1982) define a 

useful nomenclature for these population “target patterns.” In their terms, only “ideal” 

patterns in the population matrix were examined by Nasser et al. That is, all variable 

loadings were exactly equal in size, the patterns were “simple” in structure, and all 

variables loaded on exactly one factor. Of course, this circumstance would probably 

never present itself in practice. A more realistic situation to expect would be for the 

loadings to vary in saturation from large to small, and for “unique” indicator variables to 

sometimes exist in the data. So, in the interest of practicality, only varied saturation 

population patterns were examined in this study. 

Thurstone (1935) introduced the concept of simple structure as it relates to factor 

analysis. Basically, this is the idea that all indicator variables comprising a psychometric 

instrument should have exactly one salient factor loading on exactly one of the factors 

underlying the instrument. As a consequence, the measure of each factor is comprised 

strictly of items that have salient loadings on the underlying factor, and trivial loadings 

on all other factors. By this definition, any items that do not have a salient loading on any 

factor, or have non-trivial loadings on more than one factor are poor items, and should be 

rewritten, rethought, or discarded altogether during test development. As Stewart (1981) 

puts it, “The ultimate goal of any factor analysis should be the identification of not only 

interpretable factors but also simple structure” (p. 61). 
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Often, in practice, researchers will discover some indicator variables (which are 

expected to load on one and only one factor) may actually have salient loadings on 

multiple factors, or perhaps on none. In their work comparing principal components 

extraction to common factor analysis, Velicer et al. (1982) consider what they call 

“complex” population target matrices—that is, ones which contain indicators with 

multiple factor loadings. They also include items which do not load on any factor in the 

population, the so-called unique variables. Wood, Tataryn, and Gorsuch (1996) found 

that the addition of unique variables was important when examining the effects of over- 

and under-extraction in factor analysis. In this study, then, the effect of including unique 

variables was investigated as it relates to the accuracy of the methods under examination. 

Complex population targets; however, were not included in the present design. Instead, 

population targets with simple structure remain the focus of this dissertation. 

Principal Components versus Common 

Factor Analysis 

No other issue related to factor analysis elicits more passionate controversy than 

the question of whether to employ a principal components or a common factor model. 

This subject will be discussed in greater detail later, but it brings up a related 

methodological question. Almost all of the published controversy surrounding this issue 

focuses on which model should be used for the actual analysis (i.e., after the number of 

factors to extract has been determined). Relatively little has been written about which 

model should be used for deciding the number of factors or components to retain. 

Generally, methods for determining the number of factors to extract use eigenvalues 

derived from the sample correlation matrix. In principal components analysis, this 
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correlation matrix always contains unities in the diagonals. Guttman (1954) refers to this 

matrix as the unreduced correlation matrix. By definition, factor analytic procedures 

utilize a correlation matrix with communality estimates inserted into the diagonals with 

values less than unity. Guttman calls this matrix the reduced correlation matrix. 

Since little has been written concerning the choice of matrix from which to 

compute the eigenvalues for computational methods of determining the number of 

factors, a common assumption may be that one should just use the same model during 

both phases of the analysis. Some (e.g., Hakstian & Muller, 1973; Hubbard & Allen, 

1987a; Humphreys & Illgen, 1969; Montanelli & Humphreys, 1976; Widaman, 1993) 

have argued that if the eventual goal is to conduct a common factor analysis, then 

communalities should be placed on the diagonal of the correlation matrix used to produce 

the eigenvalues examined to determine the number of factors. However, some rules, like 

the famous eigenvalues-greater-than-one criterion and the visual scree test were 

originally developed using eigenvalues from the unreduced correlation matrix. 

Additionally, many credible methodologists have offered advice specifically contrary to 

using only the reduced correlation matrix to solve the number of factors problem before 

conducting a common factor analysis. 

A notable example of this advice comes from Johnson and Wichern (2002). In a 

section entitled “A Strategy for Factor Analysis” these authors are quick to mention the 

choice of the number of factors as the single most important decision facing the 

exploratory factor analyst, yet offer no methodology for arriving at even a practical 

starting point. They do, however, advise performing “a principal component factor 

analysis” on the data as the first step in their strategy. They explain, “This method is 
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particularly appropriate for a first pass through the data” (p. 517). As rationale for their 

claim, Johnson and Wichern make the point that for principal component analysis, it is 

not required that the sample correlation matrix be nonsingular. A method based on the 

principal components from a first pass could be performed concurrently to estimate the 

number of factors, giving at least a reasonable starting point for subsequent analyses. 

Cliff (1988) suggests just such an approach, first using a method based on principal 

components as a basis for solving the number of factors problem, and then using a 

common factor model for subsequent analysis and the estimation of loadings. This 

methodology is also advocated by Velicer et al. (2000). 

Interestingly, a careful examination of the seminal articles describing the visual 

scree also lends credence to this strategy. Cattell and Vogelmann (1977) introduce the 

visual scree test thusly: 

To be precise about the scree procedure, it consists in entering unities in 
the diagonal of the given correlation matrix and extracting successive 
latent roots by a principal axis program down to n roots, when n is the 
number of variables (the last root may be zero). (p .292). 
 

So, the original scree test is a procedure, based on the eigenvalues from an unreduced 

correlation matrix, used to provide insight on the number of factors problem prior to a 

common factor analysis. However, a researcher might choose to construct the scree plot 

using eigenvalues computed from a reduced correlation matrix. In fact, the SEscree 

procedure has been applied in exactly that way (Nasser, 1997; Nasser et al., 2002). 

Interestingly, both PA and SEscree can be based on eigenvalues from either the 

unreduced or a reduced correlation matrix. Similarly, Gorsuch (1990) claims that the 

MAP test—which was most decidedly developed using eigenvalues from the unreduced 

correlation matrix—can be adapted into a common-factor based procedure (p. 33). He 
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suggests simply computing MAP using residuals from a common factor analysis of the 

reduced correlation matrix (R. L. Gorsuch, personal communication, February 18, 2008). 

Thus, all three procedures under examination here can be based on either a 

principal components or a common factor model; but, which model should the researcher 

choose when determining the number of factors to retain during EFA? A thorough review 

of the research literature failed to reveal a single previous empirical investigation into this 

question. Here, it will be argued that the model which provides the most accurate solution 

to the number of factors problem should be used as a first step, regardless of which model 

is ultimately used for the actual analysis. To that end, the effects of applying the common 

factor model versus using principal components when determining the number of factors 

to retain will be compared in the present study by varying which correlation matrix, a 

reduced or an unreduced one, is used in the model. 

As mentioned previously, the eigenvalues-greater-than-one rule is to be used as a 

benchmark for comparison in the current examination. As such, it will be calculated for 

every population and sample correlation matrix generated in the study. It is important to 

reiterate here that this rule, unlike the other three methods, is clearly misapplied when 

eigenvalues from the reduced correlation matrix are used (see Fabrigar et al., 1999, 

p. 278; see also Gorsuch, 1980; Gorsuch, 2003; Guttman, 1954; Horn, 1969). However, 

for comparison and in the interest of completeness, the eigenvalues-greater-than-one 

criterion was applied to eigenvalues computed from both the unreduced (principal 

components) and the reduced (common factor) correlation matrices. 
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Purpose of the Present Study 

The purpose of the present study was to directly compare the leading 

computational methods for determining the dimensionality of a population covariance 

matrix based on a sample covariance matrix. This evaluation was based on each method’s 

ability to indicate the correct number of factors in population covariance matrices with 

known factor structures, using samples generated through Monte Carlo simulation. The 

effect of adding unique indicators was considered, and the magnitude of item loadings 

was systematically varied. Conditions that closely resemble a wide variety of 

psychometric situations were simulated. The present examination also provides the most 

comprehensive empirical evidence to date regarding the use of unreduced versus reduced 

correlation matrices, and its effects on the accuracy of the methods. 
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Research Questions 

In an effort to succinctly outline the goals of the present work, six specific 

research questions were carefully constructed. This dissertation systematically 

investigates the following: 

Q1 Do any of the three leading computational procedures have 
difficulty identifying the dimensionality of population correlation 
matrices with known, simple factor structures? 

 
Q2 Which of the three procedures most accurately recovers 

dimensionality using sample correlation matrices drawn from 
populations with known, simple factor structures? 

 
Q3 How does the eigenvalues-greater-than-one rule perform in 

comparison to the other procedures? 
 
Q4 How does the addition of unique (noise) indicator variables affect 

the performance of the methods? 
 
Q5 Does any single procedure perform well over a wide variety of 

typical psychometric situations? 
 
Q6 What effect does using the reduced correlation matrix (i.e., applying 

a common factor model) versus using the unreduced correlation 
matrix (principal components) have on the accuracy of the methods? 
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Assumptions and Limitations 

First, this dissertation focuses only on combinations of variables, loadings, and 

interfactor correlations that closely resemble conditions commonly encountered in 

applied psychometric settings. These conditions may not generalize to some other 

applications of EFA in other disciplines, such as genetic research. Second, the present 

design focuses specifically on population target patterns with simple structure. In 

practice, items will often have more complex loading patterns, with salient loadings on 

multiple factors. Next, although countless methods for estimating communalities under 

the common factor model exist, the method of principal axis common factoring was 

selected to represent common factor analysis. As such, the reduced correlation matrix 

associated with the use of this procedure was the basis of all calculations of common 

factors-based eigenvalues. Additionally, the current study employs only variables that, 

when standardized, are distributed approximately standard normal. In applied settings, 

psychometric indicator variables may have a skewed or bifurcated distribution which can 

affect the results of EFA, although such variables are usually undesirable. Another 

assumption of the current design is that all variables comprising each sample correlation 

matrix are continuous measures made on continuous latent variables, and therefore can be 

thought of as continuous random variables. Sometimes in applied psychometric research, 

however, discrete measures (such as items anchored to a Likert scale) are employed. In 

these cases additional methodology, such as the use of a tetrachoric or polychoric 

correlation matrix, may be necessary to satisfy assumptions of continuity. Finally, 

although the sample correlation matrices generated in this study reflect sampling error, 

and the addition of unique indicators introduce some random error, no error was 
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specifically introduced into the population matrices. Some authors (e.g., Hong, 1999; 

MacCallum & Tucker, 1991) have recommended the introduction of noise to the 

population matrix to more closely approximate a “lack of fit” between EFA models and 

the underlying population. 

Significance of the Study 

This dissertation seeks to uncover whether, given an equal chance in direct 

comparison on the same data, a computational method for determining the number of 

factors to extract in EFA will emerge that is clearly superior to others over a wide variety 

of common psychometric situations. At the very least, this work seeks to discover any 

shortcomings of the methods under scrutiny, and to identify specific situations which 

may cause a procedure to fail. This dissertation also seeks to provide practical empirical 

evidence for those unsure of which correlation matrix to employ when attempting to 

solve the number of factors problem prior to analysis—a reduced or an unreduced 

correlation matrix. This work represents the first time this particular variable was 

systematically manipulated in a Monte Carlo study of this type. The eventual goal of such 

endeavors is to provide enough compelling evidence as to warrant the inclusion of one or 

more of these computational methods as pre-programmed options in future statistical 

packages, and to outline the situations for which they are appropriate. Thus, the factor 

analyst of tomorrow would have a choice other than the default eigenvalues-greater-than-

one criterion from which to start a thoughtful investigation of dimensionality. 
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Definition of Terms 

Communality – The proportion of variance for an indicator variable that can be attributed 

to the common factors. 

Eigenvalue – In the context of EFA, the eigenvalue represents the amount of variance in a 

correlation matrix that is explained by each factor or component. 

Eigenvector – The set of orthogonal vectors each describing, in descending order, the 

maximal amount of variance in a correlation matrix. 

Extraction – The method used for estimating factor loadings and communalities for a 

correlation matrix. 

Rotation – A geometric transformation of the original factor solution to produce a matrix 

of factor loadings that is more interpretable. 

Salient – A meaningful factor loading for an individual indicator variable. 

Uniqueness – The proportion of variance for an indicator variable that is unique or not 

attributable to the common factors. 
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CHAPTER II 

REVIEW OF LITERATURE 

Factor Analysis in the Social Sciences 

For decades, factor analysis has been recognized as one of the most flexible and 

widely used research tools in the social sciences. Once hailed as the “…reigning queen of 

the correlational methods” (Cattell, 1978, p. 4), its application to the field of 

psychological measurement and testing has been particularly significant. Even from its 

venerable beginnings over a century ago, factor analysis has been closely associated with 

the identification and disentanglement of abstract psychological constructs, such as the 

various facets of human intelligence (Spearman, 1904, 1927). For decades, the role of 

factor analysis in evaluating and refining psychological measurement instruments and in 

demonstrating construct validity has been well defined (American Psychological 

Association, 1954; Cronbach, 1971; Cronbach & Meehl, 1955; Gorsuch, 1983; Guilford, 

1946; Kerlinger, 1973; Nunnally, 1978; Nunnally & Bernstein, 1994; see also Thompson 

& Daniel, 1996, for a discussion). Less well defined, however, has been a clear decision-

making strategy vis à vis the myriad subjective choices facing the factor analyst. These 

decisions include, but are certainly not limited to, the choice of extraction method, the 

selection of an appropriate geometric rotation, and the determination of the number of 

non-trivial factors or components to be retained. All of these decisions have 
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consequences that can directly affect the outcome of factor analysis (Armstrong & 

Soelberg, 1968; Comrey 1978; MacCallum, 1983; Weiss, 1976). 

Exploratory Factor Analysis versus Confirmatory 

Factor Analysis 

Before jumping too quickly into a discussion of the relative minutiae of any 

particular factor analytic procedure, it is first appropriate to present a review of factor 

analytic methods from a more macroscopic perspective. To begin with, factor analysis 

has evolved into a somewhat loosely defined term that actually refers to a broad family of 

multivariate approaches to data analysis. Normally, these procedures are associated with 

the systematic examination of inter-item correlation and/or covariance matrices. 

Subsumed within the broad category of factor analysis, then, are two main classes (Floyd 

& Widaman, 1995; Thompson & Daniel, 1996). The first class has been termed 

exploratory factor analysis (EFA); the other is confirmatory factor analysis (CFA). The 

former will become the focus of the present study, but the latter merits some attention 

here, in the interest of clarity. CFA can actually be thought of as a special type of 

structural equation model that focuses on proper psychometric structure. Conventionally, 

CFA has been most often associated with the use of LISREL-type programs, based on 

maximum likelihood computations (Jöreskog, 1969; Jöreskog & Sörbom, 1996). 

Conceptually, the chief difference between CFA and EFA lies in whether the 

number of factors or components to be extracted during the procedure is known to the 

factor analyst a priori. Ideally, EFA would be used as a precursor to CFA, since one 

purpose of EFA is to provide suitable insight into the question of the number of factors to 

be modeled in CFA. So, having a cogent indication of the number of factors is a 
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prerequisite to performing CFA, the results of which then provide confirmatory evidence 

for the viability of the entire model (Hurley et al., 1997). During earlier stages of 

research, though, and throughout the initial development of a psychometric instrument, 

exploratory procedures are more appropriate (Hurley et al.; Thompson & Daniel, 1996). 

In fact, as Hurley et al. put it most succinctly: 

EFA [is] appropriate for scale development while CFA would be 
preferred where measurement models have a well developed 
underlying theory for hypothesized patterns of loadings. A line of 
research would start out with studies utilizing EFA while later 
work would show what can be confirmed (p. 668). 

 
Along these lines, a Monte Carlo study by Gerbing and Hamilton (1996) found that EFA, 

when used prior to cross-validation, can contribute to the improved specification of the 

CFA model. 

Modes of Factor Analysis 

Historically, within the larger class of exploratory procedures, significance has 

been placed on the manner in which the data are collected and organized for analysis. 

Distinctions of this type have given rise to a taxonomy that defines six different modes of 

factor analysis (see Stewart, 1981, for a summary). For example, in P-mode factor 

analysis, data are collected on just one person or entity. The factors, then, are loaded 

across variables; but, the indices of association are computed across different occasions. 

Cattell and Adelson (1951) and Cattell (1953) give examples of the use of the 

P technique for analyzing changes in demographic and economic characteristics of a 

nation over time. In the present study, focus will be restricted exclusively to R-mode 

factor analysis. In R-mode, rows are cases, columns are variables, and cell entries are 

scores of the cases on the variables. R-mode is by far the most common technique of 
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factor analysis, so much so that it is normally assumed and not specifically labeled as 

such (Garson, 2007). In R-mode, the factors are clusters of variables on a set of people or 

other entities, at a given point in time. This technique permits the factor analyst to 

examine the relationships among items or variables for a sample of individuals. 

Although somewhat different conceptually, Stewart (1981) explains, “all of the 

various modes of factor analysis [P-mode, Q-mode, etc.] provide information about the 

dimensional structure of data” (p. 52). In psychometrics, the number of factors or 

components extracted in EFA relate expressly to the dimensionality of a psychometric 

instrument. In fact, as previously mentioned, the association between factor analysis and 

construct validity has been long understood within the framework of classical test theory. 

Factor Analysis as a Tool for Establishing 

Construct Validity 

Since the time of Spearman (1927) and Thurstone (1947), factor analysis has been 

inexorably linked to questions of validity in the psychometric literature. Guilford (1946) 

even makes early mention of the term “factorial validity.” He defined this term as the 

kind of validity that answers the question, “Does this test measure what it is supposed to 

measure?” (p. 428). Guilford argued that the factorial validity of a test was reflected by 

its loadings on meaningful, common, reference factors. Later, in an effort to codify 

testing standards during the 1950s, the American Psychological Association (APA) began 

formally defining several different types of validity in psychological measurement. The 

older concept of factorial validity was reintroduced under the novel name “construct 

validity.” The connection with factor analytical methods remained a point of emphasis, 

“Factor analysis is another way of organizing data about construct validity” (APA, 1954, 
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p. 14). Cronbach and Meehl (1955) would later explain that construct validation 

specifically addresses the question, “What constructs account for variance in test 

performance?” (p 282). The juxtaposition of psychological and statistical terms was 

purposeful and typical for authors such as Cronbach (APA president, 1957), who were 

seeking to instill more substance into the field of psychological measurement and testing. 

Decades later, an occasional reference to factorial validity could still be found (e.g., 

Nunnally, 1978, p. 87), but most mainstream nomenclature had since shifted toward 

terms more in line with Cronbach and the APA. Meanwhile, the close connection 

between construct validation and factor analytical methods never waned. 

Whenever psychometric instruments are utilized in scientific research, the 

importance of providing empirical reliability and validity evidence simply cannot be 

understated. Some regard evidence of validity—especially evidence of construct 

validity—as fundamental to the entire discipline of psychology. Clark and Watson (1995) 

write, “…the process of establishing construct validity represents a key element in 

differentiating psychology as a science from other, nonscientific approaches to the 

analysis of human behavior” (p. 310). Floyd and Widaman (1995) offer some detailed 

examples of how exploratory factor analysis has been used to examine construct validity, 

and to provide insight into the multidimensional structure of particular measurement 

instruments. 

While EFA can certainly aid in scale development, and both EFA and CFA can 

provide evidence for the construct validity of a certain measurement model, clean factor 

analytic results alone do not “prove” that a psychometric instrument is valid. As 

mentioned previously, it is a widely accepted tenet in the social sciences (and in other 
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scientific disciplines) that data can never positively confirm a model; they can only fail to 

disconfirm one (Popper, 1959). Similarly, finding evidence of construct validity does not 

confirm the present measurement model, but it is helpful in lending credence to the 

measurements obtained. Cronbach and Meehl (1955) explain this concept thusly, “One 

does not validate a test, but only a principle for making inferences” (p. 297). Clark and 

Watson (1995) warn against light-handed approaches to scale validation, and explicate 

the rigor expected within the field of psychology. They specify, “…a series of 

investigations is required to even begin the process of identifying the psychological 

construct that underlies a measure” (p. 310). It is this prior research and theory that serve 

to develop and define the constructs underlying psychometric instruments. Then, in the 

process of applied scale development, EFA is the usual mechanism for providing 

empirical evidence for construct validity (Kerlinger, 1973). So, use of EFA can aid in 

identifying, describing, and naming the factors and constructs that subsume psychological 

phenomena. Cliff (1983) reminds researchers, however, to guard against the nominalistic 

fallacy—simply naming a factor does not explain it. 

Principal Components versus Common 

Factor Analysis 

A distinction of varying degree has historically been drawn between the method 

of principal components and common factor analysis. This distinction runs the gamut 

from fundamental to pedantic. At one end of this spectrum are theorists who regard the 

differences between principal components and common factor analysis as major. These 

theorists are divided, however, between those who would recommend principal 

components over the common factor model, and those who promote the opposite view. 



27 
 

 

The classic problem of factor indeterminacy (Guttman, 1955) is one inherent difference 

between the two methods. Schönemann (1990) reminds researchers, “Components are by 

definition linear combinations of the observed tests, and hence determinate. Factors, on 

the other hand, are only implicitly [italics his] defined by the factor model…it leaves the 

factors indeterminate” (p. 48). Incidentally, it is this vital conceptual difference—that 

components are linear combinations of actual measurements, while factors are not 

directly observable—which accounts for the pervasive use of the decidedly 

incommutable terms “factor” and “component” throughout the psychometric literature. 

Since factor indeterminacy causes multiple problems with the computation and 

interpretation of individual factor scores, some see this as enough to warrant the complete 

abandonment of the common factor model in favor of principal components (e.g., Steiger 

& Schönemann, 1978). But, since psychometricians are generally more concerned with 

properties of the factors themselves than with individual factor scores (especially during 

the initial exploratory stages of test development) these concerns are not widely shared. 

Instead, most who emphasize the distinction between the two methods advocate the 

common factor model over the use of principal components. This stems from a 

convention within the principal components model that sets all communalities equal to 

one. Mathematically, this removes the error partition from the communalities, and 

literally implies that the model assumes all measures to be perfectly reliable. This 

assumption is enough to force any thoughtful psychometrician to balk, and to seriously 

reconsider ever employing a principal components extraction. The common factor model 

assumes all communalities are less than one, allowing for the modeling of error. 

Unfortunately in practice, communalities are unknown, and must therefore be estimated 
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in some way. Finding a desirable method of estimating these communalities—the so-

called communality problem—has given rise to the present multitude of common factor 

analysis extraction techniques. 

At the other extreme of the component versus factor debate are applied 

researchers (e.g., Velicer & Jackson, 1990a; 1990b) who point to the basic algebraic 

similarity between the two methods. Gorsuch (1990) puts it in simple terms, “Common 

factor analysis is the general case of which component analysis is a special case” (p. 33). 

Researchers of this ilk tend to blur the lines between the two methods. Johnson and 

Wichern (2002) even go so far as to refer to the method of principal components as 

“principal component factor analysis” (p. 517). In SAS, one may conduct a principal 

component analysis using PROC FACTOR, with communalities set to one. From these 

perspectives, factor analysis and principal component analysis are algebraic equivalents. 

Bentler and Kano (1990) noted during the zenith of the raging factor versus 

component controversy, “Debates on the virtues of common factor analysis versus 

principal component analysis, and their variations, go back about 50 years to the time of 

Thurstone and Hotelling” (p. 67). Tracing the debate through the literature, one can 

clearly sense the approach of a showdown in the wake of the so many unsatisfactory 

attempts to solve the communality problem. As Velicer and Jackson (1990b) put it, “We 

view the existence of so many alternative approaches to factor analysis and the lack of a 

clear consensus with regard to the best method to be problematic, particularly at this 

stage in the development of the method” (p. 99). A statement by Wilkinson (1986) in the 

Version 3 manual of SYSTAT—a common desktop statistical application—that 

“Principal component and common factor solutions for real data rarely differ enough to 
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matter” sparked an at times nasty argument between applied methodologists and 

theoretical statisticians in the pages of Sociological Methods and Research (see Borgatta, 

1989; Borgatta, Kercher, & Stull, 1986; Hubbard & Allen, 1987b, 1989; Wilkinson, 

1989a, 1989b). Soon after, a full-blown debate would also erupt in the psychometric 

literature, resulting in the publication of a special issue of Multivariate Behavioral 

Research (Volume 25, Issue 1, 1990) devoted entirely to the dispute. After much clamor 

and a spirited exchange of opinion, theory, and empirical evidence, the editors of that 

classic issue gave the proponents of principal components analysis the final word. In their 

closing article, Velicer and Jackson (1990b) remained dissuaded from their original 

assertion. They insistently concluded: 

1. The algebraic differences between the methods are minimal; 
algebraically, these differences disappear in the limit. 

2. For most data sets, there will be no practical differences 
between the methods. (p. 110). 

 
Velicer and his colleagues have maintained that the fundamental differences 

between common factor analysis and principal components analysis are theoretical and 

not empirical. Though the procedures can be interpreted to be quite dissimilar in theoretic 

terms (e.g., Widaman, 1993, p. 308), the evidence does not seem to reveal vast numeric 

differences. This finding is particularly pronounced when the data come from a well-

designed study (Jackson & Chan, 1980; Velicer & Jackson, 1990a, 1990b; Velicer et al., 

2000). Furthermore, the fact that so many alternative approaches to factor analysis exist 

with no clear consensus with regard to the best method is clearly problematic (Velicer & 

Jackson, 1990b). Even when the factor analyst does decide upon a specific common 

factor approach, the exact numeric values will differ depending upon choice of computer 

program (Wilkinson, 1989b). Principal components will at least yield values calculated in 
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a standard, replicable way. A point that has been conceded by those in favor of principal 

components, however, relates to early suspicions that principal components analysis 

tends to produce somewhat inflated estimates of the factor loadings (Stewart, 1981). 

More recent findings by Snook and Gorsuch (1989)—later replicated and extended by 

Widaman (1993)—have shown principal components analysis to produce a bias toward 

higher loadings, especially when the ratio of indicator variables to factors is low. 

At this point, the consensus of the entire principal component versus common 

factor analysis debate appears to be that the greatest discrepancies between the methods 

occur when a combination of poorly identified factors and low variable saturation exist. 

That is, the differences are most significant when the ratio of variables per factor is very 

small and the loadings of the indicator variables on the factor are very low. Concerning 

this, Velicer and Jackson (1990b) are quick to point out, “…it should be recognized that a 

data set which yields poorly identified factors with low saturations is an inadequate 

starting point for performing either a factor analysis or a component analysis” (p. 100). In 

their conclusions, Velicer and Jackson go on to remind readers that although much has 

been written concerning the controversy surrounding the choice of factor analytic 

methods, perhaps this profusion of attention is unwarranted. After all, choice of methods 

is but one major decision facing the factor analyst; and, as it turns out, it is perhaps of the 

least practical importance. They warn that analysts should not fuss unduly with the 

relatively slight distinctions between principal components and common factor analysis, 

especially at the detriment of more vital decisions, such as the selection of variables and 

participants for inclusion in the study. It seems clear that as long as researchers exercise 

diligence regarding other fundamental factor analytic choices, including intelligent 
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variable selection, thoughtful participant sampling, and careful attention to the number of 

factors problem, then the choice of extraction method becomes much less pivotal. 

Importance of Rotating the Correct 

Number of Factors 

Watkins (2006) contends, “Of all the decisions made in exploratory factor 

analysis, determining the number of factors to extract is perhaps the most critical because 

incorrect specification will obscure the factor structure” (p. 344). A great deal of previous 

research has exposed the deleterious effects that extraction of inappropriate numbers of 

factors in a model can have on the results obtained (e.g., Comrey, 1978; Fava & Velicer, 

1992a, 1996; Levonian & Comrey, 1966; Wood et al., 1996). For example, Fava and 

Velicer (1992a) demonstrated that under-extraction leads to a substantial degradation of 

factor scores for both principal components analysis and maximum likelihood factor 

analysis. While under-extraction has long been acknowledged as a non-trivial problem, 

over-extraction has traditionally been regarded as less serious (Thurstone, 1947; Cattell, 

1978). However, more recent evidence has dispelled this notion a bit. Fava and Velicer 

(1992a) and Wood et al. show that over-extraction with varimax rotation can lead to 

factor splitting, and to the creation of false factors at the expense of true ones (see also 

Comrey, 1978; Lee & Comrey, 1979). For example, if data are truly unidimensional, 

variance from the single, real factor can be spread out over one or two false ones. 

Extracting an erroneous number of factors also affects the calculation of factor loading 

estimates. In general, under-extraction introduces much more error into the loading 

estimates than does over-extraction (Fava & Velicer, 1996; Wood et al.), but the factor 
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splitting caused by over-extraction can obfuscate the true factor structure enough to 

invalidate psychometric interpretation and severely hamper scale development. 

Methods for Solving the Number of 

Factors Problem 

Eigenvalues-Greater-than-One Rule 

In a search to solve the communality problem, Guttman (1954) defined his 

“weakest” lower bound for the minimum rank of a population correlation matrix to be the 

number of characteristic roots (i.e., eigenvalues) greater than unity. As outlined in 

Chapter One, Kaiser (1960) extended Guttman’s result into his infamous eigenvalues-

greater-than-one stopping rule for use with sample-based correlation matrices, even 

though Guttman specifically warns readers: 

In the present paper, we do not treat the problem of ordinary 
sampling error, that is, of sampling a population of respondents. 
We assume throughout that population parameters are used, and 
not sample statistics. (p. 151). 

 
Even in the face of early complaints that it overestimated the true number of 

factors (e.g., Browne, 1968) Kaiser would not immediately abandon the promotion of his 

criterion (Kaiser & Rice, 1974). Soon, though, the empirical evidence began mounting 

that the rule was quite likely to over-extract components (Revelle & Rocklin, 1979; 

Zwick & Velicer, 1982, 1986). In one Monte Carlo simulation study, Fava and Velicer 

(1992a) observe, “…the Kaiser eigenvalue-greater-than-one rule…typically retains 

approximately m = p/3 components regardless of structure” (p. 395). Merenda (1997) 

describes Kaiser’s rule as nothing less than “one of the poorest” (p. 159) and Gorsuch 

(2003) even goes so far as to call it “…the prime candidate for the worst criterion ever 
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tried” (p. 157). Ultimately, the technique was unceremoniously rejected even by Kaiser 

himself (Gorsuch, 1990, p. 38). 

It is now apparent that the disappointing performance of the eigenvalues-greater-

than-one criterion in empirical studies is because the rule imprudently ignores the effects 

of sampling error. Horn (1965) demonstrated that, on average, sampling variation alone 

would produce eigenvalues greater than unity for half of sample eigenvalues from 

random data. Despite severe criticism on these grounds (e.g., Karr & Martin, 1981; 

Jackson, 1993), as Peres-Neto et al. (2005) recently noted, “…this method is still very 

popular among data analysts” (p 980). In an effort to explain researchers’ unabated 

adherence to Kaiser’s imperfect criterion, Thompson and Daniel (1996) offer, “This 

extraction rule is the default option in most statistical packages and therefore may be the 

most widely used decision rule, also by default” (p. 200). 

Parallel Analysis 

The technique of parallel analysis (PA) was first suggested by Horn (1965) as a 

modification to the eigenvalues-greater-than-one rule that would take into account the 

effects of sampling. In PA, the researcher compares the eigenvalues calculated from the 

observed data to eigenvalues calculated from one or more parallel sets of random data. 

The random data sets are usually generated using a Monte Carlo approach, such that 

several matrices of random normal deviates are created with the same number of rows 

and columns as are in the observed data matrix. Then, eigenvalues are computed and 

averaged together over all the random data sets. Only those factors with observed 

eigenvalues greater than the corresponding eigenvalues from the random data are 

retained. 
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Some important improvements to PA have been suggested (Longman, Cota, 

Holden, & Fekken, 1989; see also Buja & Eyuboglu, 1992; Glorfeld, 1995). These 

authors recommend using a quantile (e.g., 95th percentile) of the random data 

eigenvalues instead of the mean; this adjustment controls for Type I error in selecting the 

number of factors. Buja and Eyuboglu also outline a more non-parametric 

implementation of PA in which random permutations of the raw data are used in lieu of 

the normally distributed random deviates. This modification eliminates any assumption 

of multivariate normality, provided that the permutations are truly random. Castellan 

(1992) provides a computer algorithm that guarantees the correct random shuffling of 

data matrices. The existence of a non-parametric implementation of PA looks to be a 

powerful tool in applied settings where assumptions of normality may be invalid. 

Notably, though, Buja and Eyuboglu report that even in the parametric instance, PA 

appears to be highly robust against departures from normality assumptions. 

Some possible weaknesses of the PA procedure have been uncovered in the 

psychometric literature, though. For example, Turner (1998) and Beauducel (2001) both 

found that PA may underestimate the number of factors or components to retain when the 

first eigenvalue is large. Furthermore, Beauducel showed that PA may underestimate the 

number of components when a data set has oblique simple structure. Beauducel found the 

problem was alleviated as sample size increased, but more research on this issue is surely 

warranted. 

As discussed in Chapter One, PA has been recommended over the eigenvalues-

greater-than-one rule almost uniformly among researchers familiar with the number of 

factors problem. However, in 2004, Hayton et al. conducted a review of the applied 
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literature, looking for instances of the use of PA in the psychological subfield of 

industrial and organizational management. According to that research, a thorough 

appraisal of the Academy of Management Journal and the Journal of Management from 

the years 1990 to 1999 found 142 articles employing EFA techniques. Exactly zero of 

those articles used PA as a decision criterion for the number of factors to rotate. Results 

such as these raise (yet again) a question once asked by Hubbard and Allen (1987a): 

Why has this test been virtually ignored by researchers? Two 
responses suggest themselves. First, as noted earlier, many applied 
researchers may be unfamiliar with alternative stopping rules and 
hence over rely on the [eigenvalues-greater-than-one] criterion. 
Second, some researchers may be reluctant to adopt a method 
whose implementation requires considerable time and effort…. 
(p 186). 

 
Over time, various efforts have been undertaken to assuage the apparent 

apprehension felt by applied researchers facing a decision to employ PA. For instance, 

some authors (e.g., Allen & Hubbard, 1986; Longman et al., 1989; Longman, Holden, 

Fekken, & Xinaris, 1993; Montanelli, & Humphreys, 1976) have proposed the use of 

various linear extrapolations and regression equations to approximate the results of the 

time-consuming Monte Carlo portions of PA. Perhaps most helpful, however, have been 

the recent geometric improvements in computer processing speeds, coupled with well-

documented public domain copies of the scripting commands for executing PA in the 

syntax languages of the leading statistical computing packages, such as SAS and SPSS 

(see O’Connor, 2000a). Also, despite early indications (e.g., Crawford & Koopman, 

1973) that parallel analysis may not work in conjunction with principal axis common 

factoring—which involves the use of squared multiple correlations on the diagonals of 

the reduced correlation matrix—PA has now been successfully adapted for this purpose 
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(see O’Connor, 2000b). According to O’Connor, his program produces results that are 

equivalent to those yielded by the Montanelli and Humphreys equation. Overall, it would 

appear that the traditional obstacles impeding the broader use of PA are eroding, leaving 

few excuses for the assiduous factor analyst. 

Scree Tests 

In Chapter One, the visual scree test (Cattell, 1966) was introduced, and 

weaknesses related to its historical unreliability were exposed. Recently, for example, 

Kanyongo (2005) found that the accuracy of the visual scree test was not reliable when 

used on a set of Monte Carlo generated samples from known populations. Kanyongo 

went on to recommend the use of MAP and/or PA in conjunction with a visual scree test. 

Similarly, and as mentioned previously, Velicer et al. (2000) recommend use of the visual 

scree only as an adjunct. Even in this role, however, some researchers may still eschew 

the visual scree test because, as Wood et al. (1996) point out, “…the [visual] scree test is 

sometimes avoided because it requires a subjective decision by the factor analyst” 

(p. 354). These authors prefer a more objective procedure be used to solve the delicate 

number of factors problem, if available. 

The inherent subjectivity of the visual scree test can be further complicated by 

issues of scale. For example, interpretation of the visual scree can be affected by the 

aspect ratio of the eigenvalue plot. The third of Cattell and Vogelmann’s (1977) famous 

four rules for interpreting a scree plot recommends that the change of the angle should be 

about 30° or greater, providing that “.10 on the vertical scale is drawn equal to 1.0 on the 

horizontal” (p. 311-312). However, as Streiner (1998) points out, “…the majority of 

people use the scree plots produced by computer programs, where the ratio of the axis 
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scales is variable and dependent on the number of factors” (p. 688). Streiner, who 

reported reliability estimates less than .40 in all cases, pointed to the variability of the 

aspect ratios in scree plots generated by standard computer packages as a possible cause. 

He was quick to point out that using those scree plots represented the naturalistic 

condition; realistically, a typical factor analyst will not take the trouble to generate a new 

plot with the correct aspect ratio. 

Despite its inherent subjectivity, in studies of inter-rater reliability, some have 

found the visual scree test performs satisfactorily (e.g., Cliff, 1970; Tucker et al., 1969; 

Zwick & Velicer, 1982). Not surprisingly, the results improve when factor saliencies are 

high, sample sizes are large, and the ratio of indicator variables to factors is not low (Cliff 

& Hamburger, 1967; Linn, 1968). More problems arise, however, when factor structures 

are complex, and especially when no clear breaks in the scree are present, or when two or 

more apparent breaks exist (Hayton et al., 2004). 

The SEscree was proposed by Zoski and Jurs (1996) as an objective counterpart 

to Cattell’s (1966) visual scree test. As previously mentioned, a principal criticism of the 

visual scree test is its inbuilt subjectivity. To address this criticism, Zoski and Jurs 

developed an objective method based on linear regression. Their work capitalized on 

guidelines set forth in Cattell (1978). Recall that when the eigenvalues from factor 

analysis are plotted on the ordinate of a graph, and the factor sequence is plotted on the 

abscissa, a “cliff” of non-trivial factors becomes distinct from the “scree” of trivial 

factors. Cattell specifies that the points that make up the scree should fit a line tightly. 

Since standard error can be thought of as a measure of the tightness of a linear fit, Zoski 

and Jurs recommend a systematic examination of the standard errors produced by 
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regressing successive points in the scree plot. These standard errors are calculated 

according to the usual formula for calculating the standard error of a regression line 

(Snedecor & Cochran, 1989, p 154): 

푠 · = 푌 − 푌 / (푛 − 2) 

Once the standard error 푠 ·  drops below a certain threshold (specifically, the inverse of 

the total number of characteristic roots), the scree points have been sufficiently modeled, 

and the remaining points correspond to the eigenvalues of the non-trivial factors. The 

threshold chosen by Zoski and Jurs, which they dub the “arbiter,” is based on 

observations by Horn and Engstrom (1979) that the proportion of error variance in 

regression tends to be inversely related to sample size. 

In their original article, Zoski and Jurs (1996) never explicitly mention whether 

they recommend using eigenvalues from a reduced or from an unreduced correlation 

matrix. In the comparison study by Nasser et al. (2002), from which SEscree emerged as 

the clear victor among regression-based variations of the visual scree test, the eigenvalues 

from a reduced correlation matrix were employed. Specifically, squared multiple 

correlations (SMCs) were placed on the diagonals of each correlation matrix, as is the 

practice when conducting a principal axis common factor analysis. Of course, the 

eigenvalues from an unreduced correlation matrix could easily be used instead, as is the 

case in Cattell’s (1966) original scree test design. 

The Minimum Average Partial 

Originally developed for use only in conjunction with unreduced correlation 

matrices, Velicer (1976) suggested a criterion based on the average partial correlation 
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between variables after removing the effects of the first k principal components. Each of 

these “average partials” is defined as: 

푓 = 푟 · /푝(푝 − 1) 

where p is the total number of indicator variables, and 푟 ·  is the partial correlation 

between variables i and j when the variance associated with the first k components has 

been removed. Velicer suggests that the number of components that should be extracted 

corresponds to the number of components k that provides the smallest 푓 . Checking each 

average partial to find this minimum value has become known as Velicer’s minimum 

average partial (MAP) test. As mentioned earlier, MAP has performed exceptionally well 

in simulation studies; but, the previous research on this test has been conducted wholly 

within the framework of principal components analysis. Fabrigar et al. (1999) write that 

MAP is only for principal components, and has not been developed for use with common 

factor analysis. Similarly, Conway and Huffcutt (2003) contend, “…a limitation of 

[MAP] is that its use has not been extended to common factor analysis” (p. 152). 

However, Gorsuch (1990) writes, “…the logic of MAP can be common factor based” 

(p. 33). Gorsuch conceptualizes each partial correlation as a standardized index of the 

size of the residuals left after removing k components (Gorsuch, 2003). In order to extend 

MAP to work in the context of the common factor model, Gorsuch offered the following 

advice, “As MAP is computed from the residuals, just compute it on the residuals from [a 

common factor] extraction” (R. L. Gorsuch, personal communication, February 18, 

2008). These residuals can be easily computed during a common factor analysis of the 

reduced correlation matrix. 
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Use of the Number of Factors Methods in 

the Literature 

In a landmark editorial outlining modern standards for conducting factor analytic 

research, the editors of Educational and Psychological Measurement weighed in on the 

question of how to determine the number of factors to extract in EFA (Thompson & 

Daniel, 1996). They counseled that “…more researchers should employ more 

sophisticated strategies for making these decisions, including parallel analysis…” 

(p 200). Apparently, this sound advice has thus far gone mostly unheeded in the 

mainstream psychometric literature. For example, in the industrial/organizational branch 

of psychology, where applied EFA research is quite common, high-quality EFA decisions 

are still apparently not. In recent years, three large-scale meta-analyses reviewed EFA 

articles from key journals in the industrial/organizational field (Conway & Huffcutt, 

2003; Fabrigar et al., 1999; Ford et al., 1986). These three studies reviewed hundreds of 

articles from high-profile journals such as the Journal of Applied Psychology, Personnel 

Psychology, and Organizational Behavior and Human Decision Processes over three 

progressively more recent time periods. The results of these three meta-analyses are as 

follows. One common theme was immediately evident; in 30 to 40 percent of all the 

reviewed factor analytic studies, the method used to determine the number of factors 

went completely unreported. Given recent discussions regarding the consequences of this 

EFA decision, such a finding is quite alarming. On a slightly more positive note, the use 

of the eigenvalues-greater-than-one rule has been steadily trending down from about 22 

percent to just about 15 percent since 1990. However, recall that the consensus in the 

psychometric literature currently calls for outright abandonment of this method. The 
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exclusive use of the visual scree test also seems to be on the decline, recently dropping 

from over 15 percent to just under 6 percent of cases. Unfortunately, only four studies 

were found which employed PA as the method for determining the number of factors, 

accounting for less than one percent of all the studies reviewed. The only really positive 

news from these meta-analyses is that the number of studies employing multiple criteria 

to solve the number of factors problem has been steadily rising over the years, from about 

14 percent to almost 22 percent in 2003. Unfortunately, it is unclear how many of the 

studies using multiple criteria employed PA, MAP, or the SEscree test. However, these 

percentages do suggest that even in the mainstream psychological literature, the number 

of thoughtful investigations into the number of factors problem seems to be on the rise. 
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CHAPTER III 

METHODOLGY 

The current study was designed to compare the accuracy, consistency, and 

direction of error for PA, MAP, and the SEscree procedure in determining the number of 

factors underlying population and sample covariance matrices generated in a Monte 

Carlo simulation. First, population correlation matrices with known factor structures, 

representing a wide variety of typical psychometric situations, were constructed and 

analyzed. Then, sample correlation matrices, drawn from these population correlation 

matrices, were simulated using the Kaiser-Dickman (1962) method. The sample 

correlation matrices were each analyzed by all three of the number of factors procedures. 

The procedures were benchmarked against one another, as well as against the well-

known Kaiser-Guttman eigenvalues-greater-than-one criterion. Each procedure was 

evaluated for accuracy and consistency as follows. Accuracy was measured by the mean 

percent of times (hit rate) the procedure identified the correct number of factors. 

Consistency was measured by the standard error of that mean, and the direction of error 

was determined by examining the mean differences of any over/underestimation. 

Monte Carlo Simulation Rationale 

This study is another in a long line of Monte Carlo simulations designed to create 

and analyze artificial sample covariance matrices drawn from populations with known 

structures. Numerous factor analytic studies have been conducted through the years that 
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employ Monte Carlo simulation as a fundamental aspect of their methodology, and 

several have examined issues related to the number of factors problem (e.g., Fava & 

Velicer, 1992a, 1992b; Guadagnoli & Velicer, 1988; Hubbard & Allen, 1987a; 

Montanelli & Humphreys, 1976; Nasser et al., 2002; Tucker et al., 1969; Velicer & Fava, 

1998, Velicer, Peacock & Jackson, 1982; Zwick & Velicer, 1982, 1986). Simulation 

studies such as these are particularly useful in the case of factor analysis, because the 

myriad variables of interest (e.g., sample size, number of indicators per factor, interfactor 

correlations, etc.) can be systematically manipulated (Hutchinson & Bandalos, 1997). 

Additionally, the true number of factors underlying each population covariance matrix is 

objectively known, since it is defined a priori and explicitly used in the computation of 

the population correlation matrices. Studies that evaluate the usefulness of factor analytic 

procedures using real data are inherently constrained to employ subjective interpretations 

of what might constitute the true number of factors for a given population. The ability to 

arbitrarily define and manipulate the different variables important to factor analysis gives 

researchers the control necessary to replicate a wide variety of psychometric situations 

that might be encountered in practice. 

Independent Variables 

In the past, simulation studies exploring the number of factors question have 

focused on a relatively limited number of independent variable combinations. 

Presumably, the limited focus of previous research was because Monte Carlo studies of 

this nature are particularly resource intensive, and computationally time-consuming. 

Additionally, the programming proficiency required to facilitate a systematic 

manipulation of the numerous independent variables involved in a more comprehensive 
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study is beyond the skill of the typical factor analyst. For this dissertation, however, a 

fully automated SAS/IML macro was written to generate and analyze the population and 

sample correlation matrices of interest. This macro, executed in parallel on computers 

with today’s faster processing speeds, allowed for a combination of independent variables 

to be simulated in the present study that represents an unusually comprehensive 

examination of assorted psychometric situations. 

The levels of the independent variables included in this dissertation were chosen 

in accordance with the literature reviewed in Chapter Two. Even though efforts were 

made to include as many levels as possible, practical and theoretical considerations 

limited the final list of values for each independent variable to being less than exhaustive. 

The following is a discussion of the rationale behind each list of values for the 

independent variables that were manipulated in the present study. 

Number of Factors in the Population (m = 1, 2, 3, 4, 5, 8, 10) 

Many psychometric instruments that were originally envisaged by their designers 

to measure multiple hypothetical factors during development may turn out to only reflect 

a single overarching or omnibus dimension upon empirical validation (e.g., The Nurse’s 

Professional Values Scale; see Leners, Roehrs, & Piccone, 2006). The ability to 

recognize a single factor, and distinguish it from potential noise factors, is a crucial 

benchmark for procedures addressing the number of factors problem. Therefore, a single 

factor was the lower bound for the number of factors present in the population. On the 

other end of the continuum, instruments with more than about 10 distinguishable, 

nontrivial factors are rare in applied psychometric research. Thus, 10 was used as the 

upper bound for the number of factors in this study. Otherwise, relatively high granularity 
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between 1 and 10 factors was considered important to the present design, especially from 

1 to 5 factors. 

Number of Indicator Variables per Factor (p:m = 3, 5, 8, 10, 15) 

For any given population matrix in this study, an equal number of indicator 

variables was assumed to load on each factor. However, this ratio of items to factors was 

systematically manipulated from population matrix to population matrix. To ensure 

identifiability in a given population, the lower bound for the ratio of items to factors in 

factor analysis is 3:1 (Anderson & Rubin, 1956). This ratio is commonly known as the 

minimum identifiability constraint, and is in accordance with usual psychometric 

guidelines advocating the use of at least three items in the construction of any 

unidimensional scale (DeVellis, 2003, chap. 3; Garson, 2007). For these reasons, no ratio 

of items to factors less than three was considered in the present study. It should be noted, 

however, that some researchers recommend using a bare minimum of four indicators per 

variable, based on observations of the appearance of false factors in random normal data 

(Humphreys, Ilgen, McGrath, & Montanelli, 1969). While it is estimated that about half 

of published factor analytic studies have item to factor ratios of 6:1 or higher (Fabrigar et 

al., 1999) instruments with more than about 15 items per factor are rare in practice. More 

than 15 items per factor may be undesirable for practical reasons, such as instrument 

length. Also, 15 well-written items should certainly be enough to saturate the domain of 

interest. Therefore, 15 was used as the upper bound for the number of items per factor in 

most cases. In a couple of extreme instances (specifically, when m = 8 and when m =10) 

an upper bound of 10 was used for the number of items per factor. 
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Magnitude of Factor Loadings (l = High, .6 to .8; Wide, .3 to .8; Low, .3 to .5) 

Factor loadings were allowed to vary in saturation in three specific ways. High, 

wide, and low ranges of factor loading coefficients were assigned following a 

methodology adapted from Tucker et al. (1969). For the high range of loadings, 

coefficients were allowed to vary in equally spaced intervals between .6 and .8. The 

loadings in the low range were uniformly varied from .3 to .5, while the wide range 

employed coefficients stretching from .3 to .8. In applied psychometric settings, factor 

loadings above .8 are rare. Also, items with factor loadings below .3 are normally not 

considered to be important indicators in practice. Horn (1969) recommends using only 

salient item indicators, and argues that doing so will enhance the reliability of a factor or 

component score. Tables 1 through 3 contain the specific variable factor loadings for 

each of the six p:m ratios across the high, low, and wide ranges of factor loadings. 
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Table 1 

Varied Saturation Factor Loadings (High, .6 to .8) 

 
Note. Loadings rounded to three decimal places. 

i = indicator number, p:m = indicator to factor ratio. 

  

i 3:1 5:1 8:1 10:1 15:1
1 0.800 0.800 0.800 0.800 0.800
2 0.700 0.750 0.771 0.778 0.786
3 0.600 0.700 0.743 0.756 0.771
4 0.650 0.714 0.733 0.757
5 0.600 0.686 0.711 0.743
6 0.657 0.689 0.729
7 0.629 0.667 0.714
8 0.600 0.644 0.700
9 0.622 0.686

10 0.600 0.671
11 0.657
12 0.643
13 0.629
14 0.614
15 0.600

p:m
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Table 2 

Varied Saturation Factor Loadings (Low, .3 to .5) 

 
Note. Loadings rounded to three decimal places. 

i = indicator number, p:m = indicator to factor ratio. 

 

i 3:1 5:1 8:1 10:1 15:1
1 0.500 0.500 0.500 0.500 0.500
2 0.400 0.450 0.471 0.478 0.486
3 0.300 0.400 0.443 0.456 0.471
4 0.350 0.414 0.433 0.457
5 0.300 0.386 0.411 0.443
6 0.357 0.389 0.429
7 0.329 0.367 0.414
8 0.300 0.344 0.400
9 0.322 0.386

10 0.300 0.371
11 0.357
12 0.343
13 0.329
14 0.314
15 0.300

p:m
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Table 3 

Varied Saturation Factor Loadings (Wide, .3 to .8) 

 
Note. Loadings rounded to three decimal places. 

i = indicator number, p:m = indicator to factor ratio. 

 

Presence of Unique Indicator Variables (True, False) 

In a Monte Carlo simulation study comparing principal components analysis to 

image component analysis and maximum likelihood factor analysis, Velicer et al. (1982) 

augmented their population factor patterns with variables that were uncorrelated with any 

other variables. These “unique” indicator variables were included as a source of random 

error, and made for a more realistic and generalizable simulation. Although the addition 

of these unique variables did not have much of an effect in the Velicer et al. study, Wood 

et al. (1996) observed that the addition of uncorrelated variables could significantly affect 

the mean standard error of factor loadings when over- and under-extracting factors. Since 

i 3:1 5:1 8:1 10:1 15:1
1 0.800 0.800 0.800 0.800 0.800
2 0.550 0.675 0.729 0.744 0.764
3 0.300 0.550 0.657 0.689 0.729
4 0.425 0.586 0.633 0.693
5 0.300 0.514 0.578 0.657
6 0.443 0.522 0.621
7 0.371 0.467 0.586
8 0.300 0.411 0.550
9 0.356 0.514

10 0.300 0.479
11 0.443
12 0.407
13 0.371
14 0.336
15 0.300

p:m
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one goal of the present study was to simulate a wide variety of common applied 

psychometric situations, and since uncorrelated variables are commonly uncovered in 

practice, the addition of unique indicator variables was systematically manipulated. The 

number of unique variables augmenting the population factor pattern was set equal to the 

number of variables per factor in all cases. Table 4 illustrates a population target factor 

pattern when no unique indicator variables are present, while Table 5 is an example of the 

same target pattern when unique indicator variables are included. 
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Table 4 

Example of a Population Target Matrix with Varied Saturation and No Unique 

Indicator Variables (Loadings = Wide) 

 
Note. Indicator to factor ratio (p:m) = 5. p = number of indicators, m = number 

of factors. 

 

p = 25 1 2 3 4 5
1 0.800 0 0 0 0
2 0.675 0 0 0 0
3 0.550 0 0 0 0
4 0.425 0 0 0 0
5 0.300 0 0 0 0
6 0 0.800 0 0 0
7 0 0.675 0 0 0
8 0 0.550 0 0 0
9 0 0.425 0 0 0

10 0 0.300 0 0 0
11 0 0 0.800 0 0
12 0 0 0.675 0 0
13 0 0 0.550 0 0
14 0 0 0.425 0 0
15 0 0 0.300 0 0
16 0 0 0 0.800 0
17 0 0 0 0.675 0
18 0 0 0 0.550 0
19 0 0 0 0.425 0
20 0 0 0 0.300 0
21 0 0 0 0 0.800
22 0 0 0 0 0.675
23 0 0 0 0 0.550
24 0 0 0 0 0.425
25 0 0 0 0 0.300

m = 5
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Table 5 

Example of a Population Target Matrix with Varied Saturation and Unique 

Indicator Variables Present (Loadings = Wide) 

 
Note. Indicator to factor ratio (p:m) = 5. p' = total number of indicators, 

m = number of factors. 

 

p' = 30 1 2 3 4 5
1 0.800 0 0 0 0
2 0.675 0 0 0 0
3 0.550 0 0 0 0
4 0.425 0 0 0 0
5 0.300 0 0 0 0
6 0 0.800 0 0 0
7 0 0.675 0 0 0
8 0 0.550 0 0 0
9 0 0.425 0 0 0

10 0 0.300 0 0 0
11 0 0 0.800 0 0
12 0 0 0.675 0 0
13 0 0 0.550 0 0
14 0 0 0.425 0 0
15 0 0 0.300 0 0
16 0 0 0 0.800 0
17 0 0 0 0.675 0
18 0 0 0 0.550 0
19 0 0 0 0.425 0
20 0 0 0 0.300 0
21 0 0 0 0 0.800
22 0 0 0 0 0.675
23 0 0 0 0 0.550
24 0 0 0 0 0.425
25 0 0 0 0 0.300
26 0 0 0 0 0
27 0 0 0 0 0
28 0 0 0 0 0
29 0 0 0 0 0
30 0 0 0 0 0

m = 5
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Magnitude of Interfactor Correlations (r = 0, .2, .4) 

An interfactor correlation of zero represents the case where factors in the 

underlying population are not correlated with one another, and is the true lower limit for 

an interfactor correlation. This population structure would manifest itself most clearly 

after an orthogonal rotation of the original factor solution. Typically one would use a 

varimax rotation (Kaiser, 1956, 1958) when the underlying factor structure is thought to 

be orthogonal. Oblique rotations of the factor solution are employed to reveal simple 

structure when correlations between the factors are suspected. Correlations between 

factors may have an effect on the performance of computational methods for determining 

the number of factors. For example, Beauducel (2001) found that the method of PA 

tended to underestimate the true number of factors when dealing with data sets that had 

oblique simple structure and more than eight factors. 

In applied psychometric settings, some correlation between factors is common 

and expected. High correlations, however, are problematic. When factors begin to 

correlate with one another too highly, it may be an indication that the factors are not 

practically distinguishable phenomena. Therefore, .4 was set as the upper limit for 

interfactor correlations in this study. The values between the upper and lower limits were 

chosen to provide reasonable granularity along this continuum. 

Sample Size (n = 250, 500, 1000) 

The size of each random sample drawn from a population was fixed at 250, 500, 

or 1000; as such, this independent variable was not completely crossed with all levels of 

the other independent variables. Instead, the sample size was set to 250 in situations with 

fewer factors and indicators, and the sample size was set to 1000 in situations with more 
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factors and indicators—based on traditional guidelines in the psychometric literature 

recommending sample sizes exceeding 5 to 10 times the number of indicators (Comrey, 

1978; Comrey & Lee, 1992; Gorsuch, 1983; Guilford, 1946). Additionally, however, 

sample sizes were adjusted in accordance with recommendations by Mundfrom, Shaw, 

and Ke (2005), who showed that sample sizes should be larger when the p:m ratio is low, 

but can be smaller when the ratio is high. The three sample sizes correspond to small, 

moderate, and large sized studies respectively, and were considered adequate to produce 

a stable and replicable factor solution in all cases. Table 6 summarizes the specific design 

conditions used in the current study. 

Principal Components versus Common Factors (Reduced, Unreduced) 

As explained in previous sections, the choice of whether to use principal 

components or to apply the common factor model when examining the number of factors 

problem condenses to a choice between using the reduced or the unreduced correlation 

matrix when computing the eigenvalues and residuals necessary as inputs to the 

computational procedures. From a pragmatic standpoint, the choice which yields the most 

accurate recovery of the dimensionality of the population target pattern will be 

considered the most appropriate, regardless of the model ultimately used in the analysis. 



55 
 

 

Table 6 

Design Conditions for Sample Data 

 
Note. n = sample size, p = number of indicators, p' = total number of indicators when 

unique indicators are present, and m = number of factors. 

The unreduced correlation matrix has unities in the diagonal. In the case of a 

reduced correlation matrix, the unities in the diagonal are replaced with communality 

estimates less than unity. The estimation of these communalities corresponds directly to 

n p p ' p:m n p p ' p:m

m  = 1 m  = 2
250 3 6 3:1 250 6 9 3:1
250 5 10 5:1 250 10 15 5:1
250 8 16 8:1 250 16 24 8:1
250 10 20 10:1 250 20 30 10:1
250 15 30 15:1 250 30 45 15:1

m  = 3 m  = 4
500 9 12 3:1 500 12 15 3:1
500 15 20 5:1 500 20 25 5:1
500 24 32 8:1 500 32 40 8:1
500 30 40 10:1 500 40 50 10:1
500 45 60 15:1 500 60 75 15:1

m  = 5 m = 8
1000 15 18 3:1 1000 18 21 3:1
500 25 30 5:1 500 40 45 5:1
500 40 48 8:1 500 64 72 8:1
500 50 60 10:1 500 80 90 10:1
500 75 90 15:1

m  = 10
1000 30 33 3:1
500 50 55 5:1
500 80 88 8:1
500 100 110 10:1
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which flavor of common factor analysis is being employed for the analysis. In this 

dissertation, SMCs will be inserted into the diagonals of the correlation matrix prior to 

the use of a principal axis program to compute eigenvalues and residuals. This very 

specific method of common factor analysis is called principal axis factoring, and is the 

same variety of common factor model used in the Nasser et al. (2002) study and the 

Humphreys and Illgen (1969) paper. Although Crawford and Koopman (1973) warn that 

PA may not work in conjunction with principal axis factoring, O’Connor (2000b) claims 

that his public domain software—which allows for PA of both the unreduced correlation 

matrix and the reduced correlation matrix with SMCs on the diagonals—has produced 

results essentially identical to those yielded through the use of the Montanelli and 

Humphreys (1976) equation. Clearly, more empirical investigation of this issue is needed. 

Other Design Specifications 

The number of sample correlation matrices generated per condition was held 

constant at 100 replications. This number was considered sufficient for a resampling 

design, and is the same number of sample correlation matrices used by Nasser (1997) and 

Beauducel (2001). The number of population iterations for PA was set to 50. Longman 

and Holden (1992) suggest using at least 40 permutations of the raw data to provide good 

estimates of the mean eigenvalues. The percentile cutoff for PA was fixed at 95 percent. 

Setting the percentile cutoff for PA to 95 percent is equivalent to setting a 5 percent 

significance level for the inclusion of a factor (Buja & Eyuboglu, 1992). These authors 

recommend setting the cutoff for PA to 95 percent. When data are suspected to deviate 

greatly from normality, the nonparametric form of PA should be implemented, in which 

random permutations of the raw data matrix are employed. PA is easier to implement, 
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however, and less computationally intensive in its parametric form, which utilizes only 

random normal deviates. Interestingly, Buja and Eyuboglu, who first described the non-

parametric implementation of PA, also found that the parametric form of PA is quite 

robust against departures from assumptions of normality. The probability distribution of 

the indicator variables in each sample was assumed to be standard normal. Although 

encountered in practice, variables with distributions deviating severely from assumptions 

of normality were considered to be beyond the scope of this dissertation. 
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Summary of the Study Design 

Independent Variables 

1. Number of factors in the population (1, 2, 3, 4, 5, 8, 10). 

2. Number of indicators (items) per factor – not completely crossed (3, 5, 8, 10, 15). 

3. Magnitude of factor loadings (High, .6 to .8; Wide, .3 to .8; Low, .3 to .5). 

4. Presence of unique indicator variables (True, False). 

5. Magnitude of interfactor correlations (0, .2, .4). 

6. Sample Size – not completely crossed (250, 500, 1000). 

7. Principal components versus common factors (Reduced, Unreduced). 

Other Design Specifications 

1. Number of sample correlation matrices generated per condition (100). 

2. Number of population iterations for PA (50). 

3. Percentile cutoff for PA (95th). 

4. Form of PA (Parametric, Random Normal Deviates). 

5. Probability distribution of the variables in each sample (Standard Normal). 

Completely-crossed m conditions: (5 levels of m) × (5 levels of p:m). 

Extreme m conditions: (2 levels of m) × (4 levels of p:m). 

Factor loading conditions: (3 levels of l). 

Unique indicator conditions: (2 levels). 

Interfactor correlation conditions: (3 levels of r). 

Eigenvalue conditions: (2 levels). 

 

Total number of design conditions: (5×5+2×4)×3×2×3×2 = 1188 
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Computer Program 

To empirically investigate the six research questions outlined in Chapter One, a 

SAS/IML software macro was coded in SAS version 9.1.3 for Windows. An annotated 

copy of the entire program can be found in Appendix A. Portions of the code have been 

adapted from open source code for conducting PA, MAP, and the SEscree procedure. The 

code for conducting PA and MAP was based on programs published by O’Connor 

(2000a). However, modifications to this original code were made based on software 

found in the public domain (see “SAS program for determining the number of 

components using parallel analysis,” 2006; “SAS program for determining the number of 

components using Velicer’s MAP test,” 2006). The MAP procedure was adapted to be 

based on the residuals from either a reduced or an unreduced correlation matrix according 

to guidelines set forth by R. L. Gorsuch (personal communication, February 18, 2008) as 

described in Chapter Two. The code for conducting the SEscree procedure as well as 

parts of the data generation subroutine was adapted from scripted SAS commands found 

in Nasser (1997) and Nasser et al. (2002). 

Data Generation 

In 1962, Kaiser and Dickman developed a method for generating sample 

correlation matrices from a given population matrix using the fundamental postulate of 

component analysis. Let 풁 ×  be the population score matrix. Then, 

풁 × = 푭 ×  푿 ×  

where 푭 ×  is a principal components factoring of the positive definite population 

correlation matrix 푹 ×  and 푿 ×  is a population score matrix on the components 

represented in 푭 × . To empirically investigate the research questions outlined in 
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Chapter One, a SAS/IML macro was coded utilizing this relationship to generate 

population and sample correlation matrices by the Kaiser-Dickman method. 

For each combination of the independent variables summarized previously, the 

following procedure was applied. First, a population target pattern matrix 푷 ×  was 

constructed according to the values specified by each independent variable. Then, the 

population correlation matrix 푹 ×  was computed, based on the common factor model 

(Gorsuch, 1983). This computation utilized a matrix of uniform interfactor correlations 

푪 ×  as well as a diagonal uniqueness matrix 푼 ×  such that 

푹 × = 푷 × 푪 × 푷 × + 푼 ×  

The values in 푼 ×  were calculated using the relationship 

푢 = 1− ℎ , 

where ℎ  (푗 = 1,2, … , 푝) was the communality of each indicator. In the population, these 

communalities have been shown to be equal to the squared multiple correlation 

(Guttman, 1940). Application of this relationship guaranteed that unities were on the 

diagonals of every 푹 × . 

Next, from each population correlation matrix 푹 × , a population principal 

components pattern matrix 푭 ×  was derived. To generate each sample data matrix 풁 ×  

the population principal components pattern matrix 푭 ×  was multiplied by a matrix of 

random standard normal deviates 푿 ×  as follows: 

풁 × = 푭 × 푿 ×  



61 
 

 

To be specific, the random standard normal deviates generated by SAS are pseudo-

random standard normal numbers based on a Box-Muller transformation of the 

UNIFORM function (Box & Muller, 1958). 

Finally, each sample data matrix 풁 ×  was used to compute each sample 

correlation matrix 푹 × . These sample correlation matrices were used as the main input 

for each of the three computational methods for determining the number of factors to 

extract. In the special case of non-parametric PA, the sample data matrix 풁 ×  can be 

used directly. 

Data Analysis 

To evaluate the performance of the three computational rules, 100 random sample 

correlation matrices were generated for each cell of the experimental design, drawn from 

a population correlation matrix constructed as described above. So, for each combination 

of the independent variables under consideration in the present design, the three 

computational methods were employed to determine a solution to the number of factors 

problem for each of the 100 sample correlation matrices, as well as for the population 

correlation matrix. Additionally, the eigenvalues-greater-than-one rule was applied to 

each of the sample correlation matrices, and to each population correlation matrix. 

Since each target population pattern was constructed a priori, the true or target 

number of factors underlying the population correlation matrix was known a priori as 

well. The accuracy of each of the computational procedures and of the eigenvalues-

greater-than-one rule was measured by the mean percent of times the procedure or rule 

identified the target number of factors (i.e., the mean hit rate). As previously mentioned, 

consistency was measured by the standard error of the mean hit rate, and the direction of 
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error, or tendency to over- or under-extract, was measured by mean differences. The 

measures were compared across the conditions specified above, and applied to each of 

the six empirical research questions under investigation in this dissertation. 
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CHAPTER IV 

RESULTS 

In all, 1188 population matrices were generated for this study, each satisfying a 

specific condition as outlined in Chapter Three. From each of the population matrices, 

100 sample matrices were drawn, and the number of accurate hits were counted for each 

of the number of factors procedures, as well as the size and direction of any difference. 

For a given population condition, the hit rates and differences were taken directly. For a 

given sample condition, the hit rates and differences were first averaged across the 100 

samples. Table 7 shows the overall accuracy of each of the computational procedures 

under investigation here, over all of the various psychometric conditions outlined above. 

Population Results 

Standard Error Scree Test 

In line with Nasser et al. (2002), the common factors-based version of the SEscree 

appeared to have little trouble identifying the correct number of factors present in 

population correlation matrices, with a mean hit rate of over 92 percent, and a tendency 

to just slightly over-factor. When using eigenvalues from an unreduced population 

correlation matrix, however, the accuracy of the SEscree declined sharply to 46 percent. 

Additionally, the mean discrepancy between the true number of factors present in the 

population and the number recommended by SEscree approached ten factors too many. 
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Table 7 

Overall Accuracy of the Number of Factors Methods 

 
Note. Accuracy was measured over all conditions, n = 594 for each mean hit rate and for 

each mean difference. A positive mean difference indicates a tendency to over-factor, 

while negative mean differences are indicative of under-factoring. 

Minimum Average Partials Test 

The common factors version of MAP was 100 percent accurate when examining 

population matrices, while its principal components-based analogue was much less 

accurate. Principal components-based MAP correctly identified the true number of 

factors present in population matrices only about 30 percent of the time, with a mean 

overestimation of almost seven factors. 

Parallel Analysis 

PA was flawlessly accurate at detecting the correct number of factors present in 

population correlation matrices, regardless of whether eigenvalues from the reduced or 

the unreduced population correlation matrix were used for the analysis. 

Matrix Hit Rate Diff Hit Rate Diff Hit Rate Diff Hit Rate Diff

Population

Unreduced 46.0% 9.61 31.3% 6.71 100.0% 0.00 100.0% 0.00

Reduced 92.1% 0.42 100.0% 0.00 100.0% 0.00 68.7% -1.35

Sample

Unreduced 38.6% 5.33 66.4% -1.43 91.7% -0.10 23.2% 5.87

Reduced 44.7% 4.42 4.6% 15.02 83.3% 0.19 68.2% -1.09

SEscree MAP PA KG
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Eigenvalues-Greater-than-One Rule 

As a baseline, the Kaiser (1960) criterion was applied to all eigenvalues generated 

in the present work. Not surprisingly, in population matrices, the number of principal 

components eigenvalues greater than one always corresponded to the true number of 

factors present in the population. Using eigenvalues from a principal axis factoring of the 

population matrix, however, hampered accuracy. Hit rates in this situation dropped to 

about 69 percent, although the mean difference was only -1.35 factors. 

Sample Results 

Standard Error Scree Test 

As shown in Figure 7, the promising common factors-based version of the 

SEscree described by Nasser et al. (2002) failed to identify the correct number of factors 

more than half of the time. When the procedure was incorrect, it tended to recommend 

over-factoring by more than four factors on average. These findings are far less 

impressive than the Nasser et al. results might have implied. As a separate replication 

check, a single sample matrix from each of the 120 population conditions described by 

Nasser et al. was evaluated using the software developed for this study. In every case, the 

common factors-based SEscree procedure retained a number of factors within a single 

standard deviation of the published means (Nasser et al. p. 406-409). It appears, then, that 

the performance of the common factors-based SEscree procedure degrades with the 

addition of more realistic and extended study conditions, such as those in the present 

design. Unfortunately, the use of eigenvalues from an unreduced correlation matrix did 

nothing to improve the accuracy of this procedure. The hit rate for this principal 

components-based incarnation of the SEscree was an unimpressive 38.6 percent, and the 



66 
 

 

technique exhibited a tendency to overestimate the true number of factors by more than 

five. 

Minimum Average Partials Test 

When using principal components-based eigenvalues as intended by Velicer 

(1976), MAP was found to be highly accurate across various psychometric conditions. 

The original version of MAP correctly identified the true number of factors in sample 

correlation matrices almost two-thirds of the time, and tended to under-extract by an 

average of only 1.43 factors. However, across the various study conditions, the common 

factors version of MAP performed the most poorly of all the methods under examination 

here. This method, which was flawlessly accurate when used to examine population 

correlation matrices, simply collapsed when applied to sample correlation matrices. 

Parallel Analysis 

Of all the methods under examination in the present study, the most accurate 

method was clearly the principal components-based version of PA, which hit the correct 

number of factors an impressive 91.7 percent of the time across all study conditions. 

When it did miss, this procedure was only off by an average of -.10 factors. Although PA 

has been demonstrated to outperform other procedures time and again—as detailed in 

Chapter One—this level of accuracy across so many combinations of psychometric 

conditions was surprising. Almost as impressively, the common factors-based analogue 

of PA was observed to be dead-on accurate over 83 percent of the time, and tended to 

only slightly over-factor (mean difference = 0.19). 
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Eigenvalues-Greater-than-One Rule 

The Little Jiffy approach (Kaiser, 1970) which advises the use of principal 

components-based characteristic roots evaluated according to the eigenvalues-greater-

than-one criterion performed exactly as indicated by the psychometric literature. As 

mentioned above, this strategy performed flawlessly for population matrices, but 

incorrectly identified the true number of factors in sample correlation matrices more than 

three-quarters of the time. On average, Little Jiffy recommended the extraction of almost 

six extra factors when incorrect. Using the Kaiser criterion to evaluate eigenvalues 

calculated from the reduced sample correlation matrices proved more successful. The 

mean hit rate using this approach was near 68 percent, and actually resulted in some 

slight under-extraction, on average. 

Effects of Specific Design Conditions 

In the section that follows, the overall results outlined above will be broken down 

in more detail, controlling for specific design conditions. The impact of specific target 

conditions on performance will be examined, one by one. The effects of the different 

ranges of factor loadings, the number of factors and indicator variables present in the 

target population, the various interfactor correlations, and the presence or absence of 

unique indicator variables will be individually considered. For each comparison, the 

results will be presented separately for the principal components-based methods and for 

the common factors-based methods. 
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Figure 1. Mean hit rates (+SE) over all conditions by range of factor loadings (principal 

components-based methods). 

 

Figure 1 and Figure 2 show the effects of the three different loading conditions on 

the accuracy of the number of factors procedures. As expected, lower salient factor 

pattern coefficients had a detrimental effect on accuracy for all of the methods. As shown 

in Figure 1, the principal components-based version of PA performed almost flawlessly 

over all conditions when the loading range was high, and remained highly accurate when 

the loading range was wide. The common factors-based version of PA appeared to be less 

resilient than its principal components-based cousin when the range of factor loadings 

was wide and when it was low. 
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Figure 2. Mean hit rates (+SE) over all conditions by range of factor loadings (common 

factors-based methods). 

 

As depicted in Figure 3 and Figure 4, the performance of each method for solving 

the number of factors problem declines as the number of factors present in the target 

population increases. The SEscree procedure appears particularly susceptible to this 

phenomenon, and its performance degrades rapidly as the number of factors present 

increases. Overall, the principal components-based version of PA performs at a high 

level, even when the number of factors present in the population reaches ten. At this 

extreme, PA still achieves a hit rate of more than 80 percent. 
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Figure 3. Mean hit rates (+SE) across all conditions by number of factors (principal 

components-based methods). 
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Figure 4. Mean hit rates (+SE) across all conditions by number of factors (common 

factors-based methods). 
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Figure 5. Mean hit rates (+SE) across all conditions by interfactor correlations (principal 

components-based methods). 
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Figure 6. Mean hit rates (+SE) across all conditions by interfactor correlations (common 

factors-based methods). 

 

The effects on performance of each of the number of factors methods as 

interfactor correlations become increasingly oblique are illustrated in Figure 5 and in 

Figure 6. Performance appears reasonably stable across methods as long as interfactor 

correlations are low, but degrades somewhat when factors become more highly 

correlated. Recall that Beauducel (2001) found principal components-based PA tended to 

underestimate the true number of factors when dealing with data sets that had oblique 

simple structure and more than eight factors. Table 8 shows how this finding was 

replicated in the present study. Hit rates for the PCA version of PA were observed to drop 

to approximately 65 percent when the number of factors and the magnitude of interfactor 
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correlations were both large. Additionally, when performance was observed to decline, 

the method typically erred toward under-extraction, in agreement with the Beauducel 

result. The common factors-based variations of SEscree, MAP, and PA, however, appear 

to be more impervious to degradation, with PA far outperforming the others, but not quite 

reaching the levels of accuracy seen in its principal components-based cousin. 

 

Table 8 

Accuracy of PA when the Number of Factors is Large 

 
Note. Values are for the principal components-based version of PA. 

m = number of factors; r = interfactor correlations. 

 

 

The effect of introducing uncorrelated or unique indicator variables into the 

population correlation matrix is depicted in Figure 7 and in Figure 8. The addition of 

these variables appears to be generally detrimental, adversely affecting performance in 

most cases. Notable exceptions to this generality are the principal components variants of 

MAP and PA. The common factors-based application of the eigenvalues-greater-than-one 

rule also appears resistant to the addition of these noise factors. 

Hit Rate Diff Hit Rate Diff Hit Rate Diff

94.4% 0.06 91.5% -0.02 72.7% -0.79

92.8% 0.08 87.5% -0.07 65.6% -1.32

r  = 0 r  = .2 r  = .4

m  = 8

m  = 10
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Figure 7. Mean hit rates (+SE) across all conditions by presence of unique indicator 

variables (principal components-based methods). 
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Figure 8. Mean hit rates (+SE) across all conditions by presence of unique indicator 

variables (common factors-based methods). 
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Figure 9. Mean hit rates (+SE) across all conditions by number of items per factor 

(principal components-based methods). 
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Figure 10. Mean hit rates (+SE) across all conditions by number of items per factor 

(common factors-based methods). 

 
Figure 9 and Figure 10 give some insight into the cause of the disappointing 

overall performance results observed for the promising SEscree procedure. As the 

number of items per factor increases, the accuracy of the methods was expected to 

increase. This was indeed the case for PA and for the principal components version of 

MAP; however, this was decidedly not the case for SEscree. Clearly, more items per 

factor hurt the performance of SEscree. This finding is actually consistent with tabled 

values found in Nasser et al. (2002, p. 406) which hint that SEscree may begin to 

severely over-factor when the total number of indicator variables is large. This problem is 

likely due to problems with the “arbiter” threshold suggested by Zoski and Jurs (1996), 
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which is calculated as a function of the total number of characteristic roots present in the 

data. 

Special attention was given to the specific situation when the number of factors 

was high, the interfactor correlations were high, and the range of salient factor loadings 

was low. This combination of events presented the steepest challenge to all of the 

methods, and was the one area where the performance of principal components-based PA 

appeared to falter. Given this specific combination of events (m = 10; r = .4; l = Low), 

principal components-based PA was observed to under-factor by an average of 3.27 

factors. Interestingly, even in this troublesome situation, PA actually found the correct 

number of factors over 28 percent of the time, while each of the other methods was 

observed to completely blow up, with hits rates below three percent, and mean 

differences ranging from -9 to +41. 
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CHAPTER V 

DISCUSSION 

The purpose of this study was to directly compare the three leading computational 

methods for determining dimensionality in exploratory factor analysis. The evaluation 

was based on each method’s ability to indicate the correct number of factors in 

population correlation matrices with known factor structures, using samples generated 

through Monte Carlo simulation. In the section that follows, the results reported in the 

previous chapter will be related back to each of the six research questions outlined toward 

the end of Chapter One. Then, the results will be articulated within the framework of 

each specific computational procedure under examination in the present work. A 

discussion of the implications of these findings, as well as relevant recommendations to 

factor analysts, limitations of the study design, and suggestions for future research will 

round out this investigation into the number of factors problem. 

Resolution of Research Questions 

In Chapter One, six empirically testable research questions were developed to 

guide the current investigation of potential solutions to the number of factors problem. 

Now, given the observations reported in Chapter Four, each will be systematically 

addressed. 
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Q1 Do any of the three leading computational procedures have 
difficulty identifying the dimensionality of population correlation 
matrices with known, simple factor structures? 

 

A desirable quality for any computational method for solving the number of 

factors problem would be that it have little trouble correctly identifying the true number 

of factors present in population correlation matrices. In the present study, only PA was 

able to correctly identify the number of factors present in all 1188 population matrices 

generated. The accuracy of each of the other methods depended upon whether the 

eigenvalues being analyzed were calculated from a reduced or from an unreduced 

correlation matrix. 

 

Q2 Which of the three procedures most accurately recovers 
dimensionality using sample correlation matrices drawn from 
populations with known, simple factor structures? 

 

In the present head-to-head comparison of three computational procedures for 

determining the number of factors to extract in exploratory factor analysis, PA was 

observed to most accurately recover dimensionality. This generalization was uniformly 

true over a wide variety of typical psychometric situations. The differences between the 

two types of PA studied here, and some of the observed limitations of this procedure will 

be discussed in more detail in the next section.  
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Q3 How does the eigenvalues-greater-than-one rule perform in 
comparison to the other procedures? 

 

The first step of the Little Jiffy approach (Kaiser, 1970) involves retaining all 

principal components with eigenvalues greater than unity. Prior research has shown that 

this solution to the number of factors problem is inaccurate when conducting an analysis 

of sample correlation matrices, and usually results in the erroneous over-extraction of 

factors (Fava & Velicer, 1992a; Revelle & Rocklin, 1979; Zwick & Velicer, 1982, 1986). 

Not surprisingly, the present work found that Kaiser’s approach performed just as the 

literature anticipated; it was generally quite inaccurate, with a tendency toward 

significant over-extraction. In contrast, using the eigenvalues-greater-than-one rule on 

characteristic roots computed from a reduced sample correlation matrix was found to be a 

more defensible approach. This variant was found to be fairly accurate, resulting in some 

slight under-extraction when missing the mark. In general, however, the accuracy of the 

eigenvalues-greater-than-one rule paled in comparison to the accuracy of either 

incarnation of PA, both of which towered above all other procedures. 

 

Q4 How does the addition of unique (noise) indicator variables affect 
the performance of the methods? 

 

The potential presence of unique indicator variables is common in applied 

psychometric research. A desirable characteristic of any candidate method for solving the 

numbers of factors problem would be a demonstrated resiliency against the presence of 

indicator variables which are uncorrelated with any common factors. Of all the various 
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methods tested in the present study, only the principal components-based variation of PA 

demonstrated this ability, while maintaining a high level of accuracy.  

 

Q5 Does any single procedure perform well over a wide variety of 
typical psychometric situations? 

 

Clearly, the principal components version of PA is the superior method for 

determining the number of factors present in a target population matrix across the wide 

variety of psychometric situations simulated in this study. Its accuracy was found to be 

exceptionally high, and the method was even found to be resilient to the presence of 

unique indicator variables. The one weakness with the method appears to be in the 

presence of more than eight highly correlated factors, a situation that was also seen to 

greatly degrade the performance of the other methods. 

 

Q6 What effect does using the reduced correlation matrix (i.e., applying 
a common factor model) versus using the unreduced correlation 
matrix (principal components) have on the accuracy of the methods? 

 

The type of correlation matrix used when calculating the eigenvalues used by the 

computational methods for determining the number of factors had a major effect on the 

accuracy of the methods. Different methods were affected in different ways. As argued in 

previous chapters, the method used to determine the number of factors to extract should 

be the one empirically demonstrated to be the most accurate across a wide range of 

psychometric situations, and can be employed independently of the model ultimately 

applied in the factor analysis. For example, a viable approach would be to use the 

principal components-based version of PA as a “first-pass” to accurately determine the 



84 
 

 

number of factors for subsequent extraction in another type of common factor analysis—

perhaps one based upon maximum likelihood calculations. 

Performance of the Procedures 

Standard Error Scree Test 

The standard error scree test, as originally described by Zoski and Jurs (1996), 

was later evaluated by Nasser et al. (2002) against other regression-based variations of 

Cattell’s (1966) visual scree test. In Nasser et al., the promising SEscree test emerged as 

the most accurate of the regression-based methods, and its superior performance was 

found to warrant further investigation alongside more rigorously examined methods, such 

as PA and MAP. One purpose of the present study was to implement a head-to-head 

comparison of the three. 

Using SAS/IML code adapted directly from Nasser et al. (2002), replication was 

indeed achieved across the limited combination of variables and conditions outlined in 

the original study. However, in an attempt to extend those results across a wider variety 

of typical psychometric situations, the performance of the SEscree was observed to 

severely deteriorate. This irregularity was detected not only as the number of factors 

increased, but also as the number of items per factor increased. One possible source of 

this marked performance decline for SEscree may involve the total number of variables 

(items), which is a function of both the number of factors and the number of items per 

factor. For reference, the maximum number of total items examined in Nasser et al. was 

only 48. Here, conditions were scrutinized where the total number of items exceeded 100. 

The results reported above may expose a weakness in the choice of arbiter (1/m) 

recommended by Zoski and Jurs (1996). Those authors assert that an arbiter should be 
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inversely related to the number of characteristic roots of the correlation matrix under 

examination, citing an observation by Horn and Engstrom (1979) in which the proportion 

of error variance tended to be inversely related to sample size. The arbiter described by 

Zoski and Jurs, then, is a function of the total number of items in the correlation matrix. 

However, according to empirical evidence generated by this study, when this total 

number of items is large, the accuracy of the SEscree procedure was observed to decline, 

and the procedure began to recommend over-factoring—often to an extreme. Perhaps an 

adjustment of the arbiter is necessary, or perhaps the assumption of the inverse 

relationship between lack-of-fit error variance and m is simply erroneous. The 

investigation of such questions, being thus raised, will not be considered here. For the 

purposes of the present work, it is sufficient to conclude that the SEscree procedure, as 

implemented by Zoski and Jurs, and as advocated by Nasser et al. (2002), can be 

eliminated as a practicable solution to the number of factors problem in typical 

psychometric research. 

Minimum Average Partials Test 

The principal components-based version of Velicer’s (1976) MAP test was found 

to perform reasonably well when applied to sample correlation matrices, in agreement 

with prior research. Unfortunately, MAP was observed to have trouble identifying the 

true dimensionality of population matrices. This phenomenon may be viewed as an 

intuitively unappealing characteristic of any purported solution to the number of factors 

problem. Additionally, the accuracy of principal components-based MAP was never 

observed to exceed the accuracy of principal components-based PA. 
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The common factors-based analogue of MAP, while performing flawlessly for population 

matrices, flatly blew up when evaluating sample correlation matrices. Recall that this 

experimental procedure utilized residuals calculated from a principal axis common 

factoring of each correlation matrix, based on recommendations from Gorsuch (personal 

communication, February 18, 2008). Closer scrutiny into this method reveals that no 

residuals can be calculated for a factor whose eigenvalues are less than zero. Negative 

eigenvalues are common when SMCs are on the diagonal of the correlation matrix, 

because the matrix is no longer of full rank. Originally, it was thought that this situation 

would not negatively impact the efficacy of the common factors-based version of MAP; 

however, given its poor empirical performance, the negative eigenvalues situation must 

be considered as one conceivable cause. Development and troubleshooting of unproven 

computational methods for solving the number of factors problem was outside the scope 

of the current investigation, however, and it is satisfactory to report simply that this 

particular incarnation of a common factors-based MAP was not the most accurate 

procedure evaluated in the present study. 

Parallel Analysis 

The most accurate procedure evaluated in the present study was the principal 

components-based version of Horn’s (1965) parallel analysis. This public domain 

SAS/IML application—developed by O’Connor (2000a)—was clearly the most accurate 

computational procedure for solving the number of factors problem under evaluation 

here. An appealing characteristic of this procedure was its ability to identify the correct 

number of factors present in the target population matrices without fail. The one 

weakness of this method surfaced in the psychometrically undesirable situation where 



87 
 

 

salient factor loadings were low, the number of factors in the target population was high, 

and the interfactor correlations were oblique. Conceivably, if such conditions were 

suspected a priori, PA could still prove valuable—as long as the factor analyst employed 

PA with the caveat that it will tend to recommend under-factoring in this situation. The 

factor analyst would at least gain a substantive idea of the lower limit for the true number 

of factors, and be provided with a reasonable starting point for a cogent investigation of 

dimensionality. 

The common factors-based adaptation of PA was also found to be highly 

accurate. Like the principal components-based construction, it was flawlessly accurate 

when evaluating population matrices. When considering sample matrices drawn from the 

population targets, the common factors-based incarnation proved only slightly less 

accurate than the principal components-based version over a wide variety of 

psychometric situations. This empirical evidence contradicts predictions made by 

Crawford and Koopman (1973). 

Study Limitations and Suggestions for 

Future Research 

Although one intention of this study was to construct target population matrices to 

represent a wide variety of applied psychometric situations and conditions, the true 

complexity of most factor analytic research extends far beyond the scope of any one 

Monte Carlo study. Assumptions and conventions present in the design of this 

dissertation include normality in the indicator variables, simple factor structure, and equal 

numbers of items per factor. One cannot assume that PA will perform well outside of 

these constraints. For example, a major limitation of the present design was an 
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assumption of continuity in the measured items. Quite often in applied psychometric 

studies, discrete measures (such as items anchored to a Likert scale) or dichotomous 

variables (true-false questions) are used instead. Research extending the results of this 

study to other such typical situations is still necessary. 

Turner (1998) and Beauducel (2001) caution that PA may underestimate the 

number of factors or components to retain when the first eigenvalue is large. Future 

studies should focus on this potential weakness by manipulating the number of indicator 

items per factor to vary within each population correlation matrix. Also, the distribution 

of the factor loadings, although reflecting varied saturation in the present design, could 

have been varied in different ways. For example, a future design might involve varying 

the item saturations randomly within the high, wide, and low limits, instead of uniformly 

dividing these ranges. In the present work, the number of unique indicator variables 

added was set equal to the number of items per factor—another possible design 

weakness. The consequences of increased complexity in the factor patterns should also be 

investigated. For example, how does PA perform when the data contain indicator 

variables that load on more than one factor? One observation—described by Beauducel, 

and replicated in the present work—implies that PA may begin to underestimate the true 

number of factors when dealing with data sets that have oblique simple structure and 

more than eight factors. Another avenue of future study would be to reexamine the 

performance of PA, focusing on situations when more than eight or ten factors are 

present in the target population. 

As mentioned previously, the indicator variables generated for this study were 

standardized to follow a normal distribution. Such is rarely the case for indicator 
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variables in practice. An investigation into the performance of PA in the presence of non-

normal indicator variables is surely warranted. The current design employed the 

parametric construction of PA, which Buja and Eyuboglu (1992) indicate to be robust 

against departures from normality. However, those authors also describe a non-

parametric variation of PA, which O’Connor (2000a) has conveniently developed 

alongside the parametric version—it is actually available via an option switch in the same 

SAS/IML code. Research into the accuracy of non-parametric PA is another necessary 

direction for future empirical exploration. 

Another potential limitation of the present work involves the convention of using 

eigenvalues from a principal axis factoring to represent common factors eigenvalues. 

Certainly, numerous alternate common factors procedures exist, which may have 

produced different sets of eigenvalues—potentially with contrasting results. 

Investigations into the use of eigenvalues other than those resultant from a principal axis 

factoring are warranted. Future research could focus on using eigenvalues computed 

using any factor analytic procedure which does not require the number of factors to be 

specified a priori. 

Implications and Recommendations 

In the present study, the principal components-based version of PA was found to 

be the superior solution to the classic number of factors problem. This method had an 

overall accuracy of over 90 percent, and was within one factor of the correct solution 

most of the time. Some weaknesses were manifest when the number of factors was high, 

the interfactor correlations were high, and the range of salient factor loadings was low. 
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However, when confronted with this situation, PA was observed to only slightly under-

factor—by an average of around three to four factors. 

Based on the empirical evidence presented here, it is suggested that a factor 

analyst can confidently adopt the use of PA (based on principal components eigenvalues) 

as a first-pass solution to the number of factors problem in many commonly encountered 

psychometric applications of exploratory factor analysis. Upon reaching a solution using 

PA, the factor analyst can revise this estimate according to previously existing theory, 

situational considerations, and/or any other traditionally available criteria. Then, the 

factor analyst is well-prepared to proceed with a second-stage analysis, using the factor 

analytic procedure of his or her choice. 

The continued use of the SEscree procedure is not supported by evidence 

presented here, especially when the number of items under consideration is high. The use 

of the principal components version of MAP may be employed as an adjunct, with the 

caveat that PA is generally much more accurate. Use of the Kaiser (1960) criterion, 

especially as defined by the Little Jiffy heuristic, is also not supported by the evidence 

reported here. However, this rule, when used in conjunction with common factors-based 

eigenvalues, actually performs better than first anticipated. In fact, it rivals the 

performance of the common factors-based version of PA in certain situations, such as 

when the number of items per factor is high, and when unique indicator variables are 

present. However, the performance of this variant of the Kaiser rule was calculated only 

for completeness here, as its actual use is considered theoretically unsound (see Fabrigar 

et al., 1999, p. 278; see also Gorsuch, 1980; Gorsuch, 2003; Guttman, 1954; Horn, 1969). 

Even so, the positive observed results for the common factors-based version of the 
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eigenvalues-greater-than-one rule may indicate potential utility in investigations of 

dimensionality; its use in certain specific situations is now at least empirically defensible. 

Further scrutiny into this matter is necessary. 

The results of the present study offer yet another empirical demonstration of the 

effectiveness and accuracy of the powerful PA procedure. Although not infallible in its 

present form, one would think that a preponderance of the empirical evidence would at 

some point be established such that the use of PA would begin to proliferate more in 

practice. Realistically, however, this proliferation may be slow to manifest until such 

time as PA becomes a more-easily-implemented proprietary option in the major statistical 

software packages. As the evidentiary support mounts for the use of parallel analysis as 

the best first-pass solution to the number of factors problem, it is hereby propounded that 

the time for action is close at hand.  
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DM LOG 'CLEAR';                               / *Clear Log Window    */ 
DM OUTPUT 'CLEAR';                            / *Clear Output Window */ 
 
PROC DATASETS LIB=WORK KILL NOLIST; RUN; QUIT;/* Kill Data & Graphs  */ 
GOPTIONS RESET=GLOBAL;                        /* Reset Graph Options */ 
 
OPTION nonotes nomprint NODATE PAGENO = 1 nosource; 
 
 
%let path=T:\Adam\m1 low\; 
 
 
libname SIM "&path";  
filename dummyout dummy 'any_file_name'; 
 
 
proc printto log="&path.GENCORR.log" new print=dummyout; 
run; 
 
 
%macro GENCORR(f,nv,p,r,m,u,n,s,np,per,ty,sh); 
 
title1; 
title2; 
 
data time; /* Initialize start time for each condition */ 
time1 =datetime(); 
run; 
 
/**********************************************************/ 
 
%if &u eq 1 %then %let g = &f; /* No Unique Factor */ 
%if &u eq 2 %then %let g = %eval(&f+1); /* Add a Unique Factor */ 
 
proc iml; 
reset fuzz; /* Rounds extremely small values to zero */ 
 
 
/* Input pattern matrix*/ 
do i=1 to &g; /* Creates and concatenates g factor matrices into a 
pattern matrix */ 
 
 
 x=j(&nv, &g, 0); /* Creates nv x g submatrix of zeros */ 
  
 y=j(&nv, 1, &p); /* Creates nv x 1 column vector of p's */ 
  
 min_loading=&m;  /* Minimum loading for varied saturation 
condition */ 
 max_loading=&p;  /* Maximum loading for varied saturation 
condition */ 
 interval = (max_loading-min_loading)/(nrow(y)-1); 
 
 do j=1 to &nv; 
 
 y[j,1]=round(max_loading-((j-1)*interval),.01);  /* Loadings for 
varied saturation condition, rounded to hundredths */ 
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 if (&u = 2 & &g = i) then y[j,1]=0; /* Unique Factor Loadings are 
Zero */ 
 
 end; 
 
 
 x[,i]=y; /* Inserts p's into the ith column of the nv x g 
submatrix */ 
 p=p//x; /* Vertically concatenates each factor submatrix into the 
pattern matrix, p */ 
 u=u//y; /* Vertically concatenates each loading into a vector of 
for computing uniquenesses, u */ 
 
end; 
 
if (&u = 2) then p=p[,1:ncol(p)-1]; /* If Adding a Unique Factor, Trim 
Extra Column */ 
 
v=nrow(p); ** Total number of variables; 
call symput('v',strip(char(v))); 
 
* need to output pattern matrix; 
 
*PRINT 'Pattern Matrix', p ; /* Pattern matrix */ 
 
x=j(ncol(p),ncol(p),&r); /* Creates square matrix of r's */ 
c=x<>i(ncol(p)); /* Creates interfactor correlation matrix, c */ 
 
*print 'Interfactor Correlation Matrix', c; /* Interfactor Correlation 
Matrix */ 
 
 
u=diag(1-u##2); /* Compute Diagonal Matrix of Uniquenesses */ 
 
*PRINT 'Diagonal Matrix of Uniquenesses', u ; /* Diagonal Matrix of 
Uniquenesses */ 
 
r=p * c * T(p) + u; /* Adds a matrix of SMC's as communalities, 
guarantees 1's in all diagonals */ 
 
*PRINT 'Population Correlation Matrix', r ; /* Population Correlation 
Matrix */ 
 
create temp from r; /* Creates SAS dataset */  
append from r; 
 
quit; 
 
data popcorr; /* Population correlation matrix */ 
set temp; 
length _type_ $ 8; 
_type_ = 'CORR'; 
run; 
 
data popcorr; /* Adds name variable to population correlation matrices 
*/ 
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set popcorr; 
length _name_ $ 8; 
do i=1 to &v; 
_name_=strip('COL'||put(_n_, 8.-L)); 
call symput('name'||put(_n_, 8.-L),_name_); 
end; 
drop i; 
run; 
 
data descriptives1;  /* Calculates descriptives to population 
correlation matrix */ 
length _type_ $ 8; 
_type_='MEAN'; 
%do nameindex=1 %to &v; 
&&name&nameindex=0; 
%end; 
output; 
_type_='STD'; 
%do nameindex=1 %to &v; 
&&name&nameindex=1; 
%end; 
output; 
_type_='N'; 
%do nameindex=1 %to &v; 
&&name&nameindex=10000; 
%end; 
output; 
run; 
 
data popcorr(type=corr); /* Reorder variables and specify dataset as a 
correlation matrix */ 
retain _type_ _name_; 
set descriptives1 popcorr; 
run; 
 
*proc print data=popcorr; /* Population correlation matrix */ 
 
/* Create principal components matrix from which sample will be 
generated (Kaiser-Dickman Method)*/ 
proc factor data=popcorr n=&v outstat=patmat noprint;  
var col1-col&v;  
run; 
 
*proc print data=patmat; 
 
data patmat; 
set patmat; 
if _type_='PATTERN'; 
run; 
 
*proc print data=patmat; /* Population Principal Components Matrix */ 
 
proc iml; 
reset fuzz; 
seed=&seed; /* Random number seed */ 
 
/* Create SAS datasets */ 
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dum = j(1,&v+1,0); 
create rout1 from dum; 
create rout2 from dum; 
 
/* Import data and create population pattern matrix, f */ 
use patmat;   
read all into f;  
 
*print 'Principal Components Matrix', f; /* Principal Components Matrix 
*/ 
 
 
/* Generate sample correlation matrices (n samples of size s)*/ 
do loop=1 to &n;  
 lvec1=loop*j(&v,1,1); /* Creates a v x 1 column vector of index 
numbers */ 
 lvec2=loop*j(&s,1,1); /* Creates an s x 1 column vector of index 
numbers */ 
 
 d= normal(j(&s,&v,seed)) * f;  /* Generates an s x v matrix of 
pseudo-random standard normal numbers 
                                      (based on the Box-Muller 
transformation of the UNIFORM function) 
                                   and then multiplies it by the 
population pattern matrix to create 
                                   a random sample data matrix, d 
(Kaiser-Dickman Method)*/ 
 
 *print d; /* Sample data matrix */ 
 
 nn=nrow(d); /* Finds sample size */ 
 sum=d[+,];  /* Creates a 1 x s column vector of column sums */ 
 xpx= (T(d)*d - T(sum)*sum/nn)/(nn-1); 
 dg=inv(sqrt(diag(xpx))); 
 r=dg*xpx*dg;     /* Computes sample correlation matrix, r */ 
 
    dum1=r || lvec1;    /* Concatenate an index vector to each 
correlation matrix */ 
 setout rout1; /* Sets rout1 for data ouput */ 
 append from dum1;  /* Append each correlation matrix to a SAS 
data set */ 
 
 dum2=d || lvec2; /* Concatenate an index vector to each sample 
data matrix */ 
 setout rout2;  /* Sets rout2 for data ouput */ 
 append from dum2; /* Append each sample data matrix to a SAS data 
set */ 
 
end; 
 
store seed; /* Retain seed, free all other variables */ 
free / seed; 
 
 
quit; 
 



113 
 

 

data work.corr;       /* Saves data set, n vertically concatenated 
correlation matrices with index column */  
set rout1; 
length _type_ $ 8; 
_type_='CORR'; 
index=4; 
run; 
 
data work.raw;        /* Saves data set, n vertically concatenated 
sample data matrices with index column */  
set rout2; 
run; 
 
data corr;   /* Adds name variable to correlation matrices */  
set corr; 
length _name_ $ 8; 
offset=(col%eval(&v+1)-1)*&v; 
_name_=left(trim('COL'||put(_n_-offset, 8.-L))); 
drop offset; 
run; 
 
data corr;  /* Reorder variables */  
retain _type_ _name_ ; 
set corr; 
run; 
 
proc means data=work.raw noprint; /* Calculates descriptives for 
correlation matrices */ 
by col%eval(&v+1); 
output out=descriptives2; 
run; 
 
data descriptives2;               /* Selects appropriate descriptives 
for data set */ 
set descriptives2; 
if _stat_='MIN' then delete; 
if _stat_='MAX' then delete; 
drop _type_ _freq_; 
run; 
 
data descriptives2; /* Rename variables correctly */  
set descriptives2; 
_type_=_stat_; 
if _type_='MEAN' then index=1; 
if _type_='STD' then index=2; 
if _type_='N' then index=3; 
drop _stat_; 
run; 
 
proc sort data=descriptives2; /* Sort */  
by col%eval(&v+1); 
run; 
 
data corr; /* Add descriptives to data set */ 
set corr descriptives2; 
by col%eval(&v+1); 
run; 
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proc sort data=corr; /* Sort descriptives */  
by col%eval(&v+1) index; 
run; 
 
data temp2; 
set popcorr; 
COL%eval(&v+1)=0; 
run; 
 
data corr(type=corr); /*  Specify as a correlation matrix */ 
set temp2 corr; 
drop index; 
run; 
 
/********************** End Data Generation **************************/ 
 
/********************** Start SEscree ********************************/ 
 
%let priors=; 
 
/* Principal Components Analysis of the n sample correlation matrices 
*/ 
%if &ty eq 1 %then %do; 
%let priors=one; 
%end; 
 
/* Principal Axis Factor Analyze the n sample correlation matrices */ 
%if &ty eq 2 %then %do; 
%let priors=smc; 
%end; 
 
/* Compute eigenvalues for population and all sample correlation 
matrices */ 
proc factor data=work.corr method=principal n=&v rotate=varimax 
priors=&priors outstat=eigen noprint riter=10000;  
var col1-col&v; 
by col%eval(&v+1); /* By variable is the index column */ 
run; 
 
data eigen; 
set eigen; 
keep col1-col&v; 
if _type_='EIGENVAL'; 
run; 
 
 
*** Experimental MAP Part ***; 
 
************ No Outputs **************; 
ODS RESULTS OFF; 
*filename dummyout dummy 'any_file_name'; 
*proc printto print=dummyout; * Prints results to dummy file; 
*run; 
**************************************; 
 
%do resid=1 %to &v; 
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 proc factor data=work.corr method=principal mineigen=0 n=&resid 
priors=&priors residuals; /* Calculate residuals for PAF MAP */ 
 var col1-col&v; 
 by col%eval(&v+1); /* By variable is the index column */ 
 ods select ParCorrControlFactor;  
 ods output ParCorrControlFactor = resid&resid; 
 run; 
 
 data resid&resid; 
 retain extracted; 
 set resid&resid; 
 extracted=&resid; 
 run; 
 
%end; 
 
********** Restore Outputs ************; 
ODS RESULTS ON; 
*proc printto; * Releases Print file; 
*run; 
**************************************; 
 
 
data resid; /* Initialize */ 
run; 
 
%do resid=1 %to &v; /* Concatenate residuals */ 
data resid; 
set resid resid&resid; 
if col1=. then delete; 
run; 
 
proc datasets nolist; /* Clean up */ 
delete resid&resid; 
run; 
 
%end; 
*****************; 
 
*proc print data=kgeigen; /* Data set of n+1 rows of principal 
components eigenvalues for KG benchmark */  
 
*proc print data=eigen; /* Data set of n+1 rows of eigenvalues of the 
sample correlation matrices, the first row contains population 
eigenvalues */  
 
proc datasets nolist; /* Clean up */ 
delete temp temp2 popeigen descriptives1 descriptives2; 
run; 
 
 
proc iml; 
 
use eigen; 
read all into g; /* Creates an n+1 x v matrix, g, with n row vectors of 
eigenvalues of the sample correlation matrices, the first row contains 
population eigenvalues */  
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*print g; /* Matrix of sample and population eigenvalues */ 
 
/********************** Start SEscree 
**********************************/ 
 
do ij=1 to nrow(g); /* Loop to do procedure for all samples */ 
 
 e=t(g[ij,]); /* Creates a v x 1 column vector of eigenvalues, e, 
from g */ 
 
 *print e; /* Vector of sample eigenvalues */ 
 
 f=j(&v,1,1); 
 o=j(&v,1,1); /* Creates a v x 1 column vector of 1's */ 
 
 do i=1 to &v; /* Creates a v x 1 column vector of ordered 
integers from 1 to v */ 
 f[i]=i; 
 end; 
 *print f o; 
 
 mrmse=j(%eval(&v-2),1,0); /* Vector of the mean square for scree 
*/ 
 rmse=j(%eval(&v-2),1,0); /* Vector of the mean square residual 
(scree) */ 
  do i=1 to %eval(&v-2); 
  y=e[i:&v,]; 
 
  x=f[i:&v,]||o[i:&v,]; 
  *print x; 
  b=inv(x`*x)*x`*y; */ 2 x 1 Column vector of betahats */ 
 
  print b; 
 
  mp=%eval(&v+1)-i; /* N, Number of variables used in the SE 
calculation */ 
  rmse[i]=(y`*y - b`*x`*y); /* (Y - Yhat)squared */ 
   if rmse[i]<0 then rmse[i]=0; /* Keep numerator non-
negative */ 
  mrmse[i]=rmse[i]/(mp-2); /* Denominator is N - Rank of X 
matrix (2)*/ 
  *print rmse mp mrmse; 
 
  end; 
 
 vmrmse=mrmse[><,]; /* Finds element minimum */ 
 
 *print vmrmse; 
 
  do i=1 to %eval(&v-2); 
  if abs(mrmse[i]-vmrmse)<.000001 then mrmse[i]=vmrmse; 
  end; 
 
  sqmrmse=sqrt(mrmse); /* Creates a v x 1 column vector of 
standard error of estimates */ 
  *print ij sqmrmse; 
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  fscree=.; 
 
  do i=1 to %eval(&v-2); 
  if sqmrmse[i] < (1/&v) then do; /* This is the heart of 
SEscree */ 
    fscree=i-1; 
    goto jump1; 
    end; 
 
  end; 
  jump1: ;  
 
 dum1=dum1//fscree; /* Saves results */ 
 
 
end; 
 
/********************** End SEscree **********************************/ 
 
/********************** Start MAP ************************************/ 
 
/*  Velicer's Minimum Average Partial (MAP) Test */ 
 
do i=0 to &n; /* Do all n matrices */ 
 
 USE work.corr; 
 read all into cr where (col%eval(&v+1)=i); 
 
 cr=cr[4:nrow(cr),1:&v]; /* Extracts v x v sample correlation 
matrix, Trims descriptives */ 
 
 *call eigen (eigval,eigvect,cr);  
 *loadings = eigvect * sqrt(diag(eigval)); /* Can't take square 
root of negative eigenvalues, MAP crashes for PAF */ 
 
 fm = j(nrow(cr),2,-9999); 
 fm[1,2] = (ssq(cr) - ncol(cr))/(ncol(cr)*(ncol(cr)-1)); 
 
 do m = 1 to ncol(cr) - 1; 
  USE work.resid; 
  read all into partials where (col%eval(&v+1)=i & 
extracted=m); 
  pr=partials[1:nrow(partials),3:ncol(partials)]; /* Extracts 
v x v partial correlation matrix, Trims indices */ 
  fm[m+1,2] = (ssq(pr)-ncol(cr)) / (ncol(cr)*(ncol(cr)-1)); 
 end; 
 
 *print fm; 
 /* identifying the smallest fm value & its location (= the of 
factors) */ 
 minfm = fm[1,2]; 
 nfactors = 0; 
 do s = 1 to nrow(fm); 
 fm[s,1] = s - 1; 
 if ( fm[s,2] < minfm ) then do; 
 minfm = fm[s,2]; 
 nfactors = s - 1; 
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 end; 
 end; 
 
/*  print, "Velicer's Minimum Average Partial (MAP) Test:"; 
 print  "Velicer's Average Squared Correlations", fm[format=12.6]; 
 print  "The smallest average squared correlation is", 
minfm[format=12.6]; 
 print  "The number of components is", nfactors; */   
 
dum2=dum2//nfactors; /* Saves results */ 
 
end; 
 
free / dum1 dum2; /* Free all variables except results */ 
 
/********************** End MAP **********************************/ 
 
/********************** Start PA *********************************/ 
 
/* Parallel Analysis Program For Raw Data and Data Permutations 
 
  This program conducts parallel analyses on data files in which 
  the rows of the data matrix are cases/individuals and the 
  columns are variables;  Data are read/entered into the program 
  using the READ command (see the READ command below); 
  Alternative procedures for entering data in PROC IML include 
  the USE, READ, INFILE, INPUT, and EDIT commands; 
  There can be no missing values; 
 
  You must also specify: 
  -- the # of parallel data sets for the analyses; 
  -- the desired percentile of the distribution and random 
     data eigenvalues; 
  -- whether principal components analyses or principal axis/common 
     factor analysis are to be conducted, and 
  -- whether normally distributed random data generation or 
     permutations of the raw data set are to be used in the 
     parallel analyses; 
 
  WARNING: Permutations of the raw data set are time consuming; 
  Each parallel data set is based on column-wise random shufflings 
  of the values in the raw data matrix using Castellan's (1992, 
  BRMIC, 24, 72-77) algorithm; The distributions of the original 
  raw variables are exactly preserved in the shuffled versions used 
  in the parallel analyses; Permutations of the raw data set are 
  thus highly accurate and most relevant, especially in cases where 
  the raw data are not normally distributed or when they do not meet 
  the assumption of multivariate normality (see Longman & Holden, 
  1992, BRMIC, 24, 493, for a Fortran version); If you would 
  like to go this route, it is perhaps best to (1) first run a 
  normally distributed random data generation parallel analysis to 
  familiarize yourself with the program and to get a ballpark 
  reference point for the number of factors/components; 
  (2) then run a permutations of the raw data parallel analysis 
  using a small number of datasets (e.g., 10), just to see how long 
  the program takes to run; then (3) run a permutations of the raw 
  data parallel analysis using the number of parallel data sets that 
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  you would like use for your final analyses; 100 datasets are 
  usually sufficient, although more datasets should be used 
  if there are close calls. */ 
 
 
/* Define Modules outside of do loop */ 
 
/* set diagonal to a column vector module */ 
start setdiag(matname,vector); 
do i = 1 to nrow(matname); 
do j = 1 to ncol(matname); 
if (i = j) then;  matname[i,j] = vector[i,1]; 
end;end; 
finish; 
 
/* row sums module */ 
start rsum(matname); 
rsums =j(nrow(matname),1); 
do rows = 1 to nrow(matname); 
dumr = matname[rows,]; 
rsums[rows,1]=sum(dumr); 
end; 
return(rsums); 
finish; 
 
/* Pearson correlation matrix module */ 
start corrcoef(matname); 
ncases   = nrow(matname); 
nm1 = 1 / (ncases-1); 
vcv = nm1 * (t(matname)*matname - 
((t(matname[+,])*matname[+,])/ncases)); 
d = inv(diag(sqrt(vecdiag(vcv)))); 
r = d * vcv * d; 
return(r); 
finish; 
 
 
load seed; 
 
 
/* Enter your specifications: */ 
 
/* Enter or read a raw data matrix, where rows = cases, 
   & columns = variables 
   Use the following name for the raw data matrix: "raw". 
   Cases with missing values are not permitted in the data file. */ 
 
do in=0 to &n; /* Do all n matrices */ 
 
 if in=0 then do; * Population Data; 
 
  USE work.corr; 
   read all into r where (col%eval(&v+1)=0); 
   r=r[4:&v+3,1:&v]; /* Imports v x v population 
correlation matrix */ 
   *print r;  /* Population correlation matrix */ 
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  /* Enter the desired number of parallel data sets here */ 
  ndatsets = &np; 
 
  /* Enter the desired percentile here */ 
  percent  = &per; 
 
  /* Specify the desired kind of parellel analysis, where: 
     1 = principal components analysis 
     2 = principal axis/common factor analysis */ 
  kind = &ty ; 
 
  /* Enter either 
    1 for normally distributed random data generation 
parallel analysis, or 
    2 for permutations of the raw data set */ 
  randtype = 1; 
 
  /* End of required user specifications */ 
 
  ncases   = 10000; 
  nvars    = ncol(r); 
 
  /* principal components analysis & random normal data 
generation */ 
  if kind = 1 & randtype = 1 then do; 
  realeval = eigval(r); 
  evals = j(nvars,ndatsets,-9999); 
  do nds = 1 to ndatsets; 
  evals[,nds] = eigval(corrcoef(normal(j(ncases,nvars)))); 
  end; 
  end; 
 
  /*  PAF/common factor analysis & random normal data 
generation  */ 
  if kind = 2 & randtype = 1 then do; 
  smc = 1 - (1 / vecdiag(inv(r)) ); 
  run setdiag(r,smc); 
  realeval = eigval(r); 
  evals = j(nvars,ndatsets,-9999); 
  do nds = 1 to ndatsets; 
  r = corrcoef(normal(j(ncases,nvars))); 
  smc = 1 - (1 / vecdiag(inv(r)) ); 
  run setdiag(r,smc); 
  evals[,nds] = eigval(r); 
  end; 
  end; 
 
  /* identifying the eigenvalues corresponding to the desired 
  percentile */ 
  num = round((percent*ndatsets)/100); 
  results = j(nvars,4,-9999); 
  results[,1] = t(1:nvars); 
  results[,2] = realeval; 
  do root = 1 to nvars; 
  ranks = rank(evals[root,]); 
  do col = 1 to ndatsets; 
  if (ranks[1,col] = num) then do; 
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  results[root,4] = evals[root,col]; 
  col = ndatsets; 
  end; 
  end; 
  end; 
  results[,3] = evals[,+] / ndatsets; 
 
  reig=results[,2]; 
  rpct=results[,4]; 
   
  *print reig rpct; 
 
  *print realeval; * Eigenvalues from sample data generated 
by PA in IML; 
 
  do i=1 to nrow(reig); 
  if reig[i] < rpct[i] then do; /* This is the heart of PA */ 
    fpa=i-1; 
    goto jump2; 
    end; 
 
  end; 
  jump2: ;  
 
  dum3=dum3//fpa; /* Saves results */ 
 
 end; 
 else do; * Sample data; 
 
  USE work.raw; 
   read all into raw where (col%eval(&v+1)=in); 
 
   raw=raw[1:&s,1:&v]; /* Imports the next s x v sample 
data matrix */ 
 
   *print raw;  /* Raw sample data matrix */ 
 
 
  /* Enter the desired number of parallel data sets here */ 
  ndatsets = &np; 
 
  /* Enter the desired percentile here */ 
  percent  = &per; 
 
  /* Specify the desired kind of parellel analysis, where: 
     1 = principal components analysis 
     2 = principal axis/common factor analysis */ 
  kind = &ty ; 
 
  /* Enter either 
    1 for normally distributed random data generation 
parallel analysis, or 
    2 for permutations of the raw data set */ 
  randtype = &sh ; 
 
  /* End of required user specifications */ 
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  ncases   = nrow(raw); 
  nvars    = ncol(raw); 
 
 
  /* principal components analysis & random normal data 
generation */ 
  if kind = 1 & randtype = 1 then do; 
  realeval = eigval(corrcoef(raw)); 
  evals = j(nvars,ndatsets,-9999); 
  do nds = 1 to ndatsets; 
  evals[,nds] = eigval(corrcoef(normal(j(ncases,nvars)))); 
  end; 
  end; 
 
  /* principal components analysis & raw data permutation */ 
  if kind = 1 & randtype = 2 then do; 
  realeval = eigval(corrcoef(raw)); 
  evals = j(nvars,ndatsets,-9999); 
  do nds = 1 to ndatsets; 
  x = raw; 
  do lupec = 1 to nvars; 
  do luper = 1 to (ncases -1); 
  k = int( (ncases - luper + 1) * uniform(seed) + 1 )  + 
luper - 1; 
  d = x[luper,lupec]; 
  x[luper,lupec] = x[k,lupec]; 
  x[k,lupec] = d; 
  end; 
  end; 
  evals[,nds] = eigval(corrcoef(x)); 
  end; 
  end; 
 
  /*  PAF/common factor analysis & random normal data 
generation  */ 
  if kind = 2 & randtype = 1 then do; 
  r = corrcoef(raw); 
  smc = 1 - (1 / vecdiag(inv(r)) ); 
  run setdiag(r,smc); 
  realeval = eigval(r); 
  evals = j(nvars,ndatsets,-9999); 
  do nds = 1 to ndatsets; 
  r = corrcoef(normal(j(ncases,nvars))); 
  smc = 1 - (1 / vecdiag(inv(r)) ); 
  run setdiag(r,smc); 
  evals[,nds] = eigval(r); 
  end; 
  end; 
 
  /*  PAF/common factor analysis & raw data permutation  */ 
  if kind = 2 & randtype = 2 then do; 
  r = corrcoef(raw); 
  smc = 1 - (1 / vecdiag(inv(r)) ); 
  run setdiag(r,smc); 
  realeval = eigval(r); 
  evals = j(nvars,ndatsets,-9999); 
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  do nds = 1 to ndatsets; 
  x = raw; 
  do lupec = 1 to nvars; 
  do luper = 1 to (ncases -1); 
  k = int( (ncases - luper + 1) * uniform(seed) + 1 )  + 
luper - 1; 
  d = x[luper,lupec]; 
  x[luper,lupec] = x[k,lupec]; 
  x[k,lupec] = d; 
  end; 
  end; 
  r = corrcoef(x); 
  smc = 1 - (1 / vecdiag(inv(r)) ); 
  run setdiag(r,smc); 
  evals[,nds] = eigval(r); 
  end; 
  end; 
 
  /* identifying the eigenvalues corresponding to the desired 
  percentile */ 
  num = round((percent*ndatsets)/100); 
  results = j(nvars,4,-9999); 
  results[,1] = t(1:nvars); 
  results[,2] = realeval; 
  do root = 1 to nvars; 
  ranks = rank(evals[root,]); 
  do col = 1 to ndatsets; 
  if (ranks[1,col] = num) then do; 
  results[root,4] = evals[root,col]; 
  col = ndatsets; 
  end; 
  end; 
  end; 
  results[,3] = evals[,+] / ndatsets; 
 
 /* 
  print, "Parallel Analysis:"; 
  if (kind = 1 & randtype = 1) then; 
  print, "Principal Components & Random Normal Data 
Generation"; 
  if (kind = 1 & randtype = 2) then; 
  print, "Principal Components & Raw Data Permutation"; 
  if (kind = 2 & randtype = 1) then; 
  print, "PAF/Common Factor Analysis & Random Normal Data 
Generation"; 
  if (kind = 2 & randtype = 2) then; 
  print, "PAF/Common Factor Analysis & Raw Data Permutation"; 
  specifs = (ncases // nvars // ndatsets // percent); 
  rlabels = {"Ncases" "Nvars" "Ndatsets" "Percent"}; 
  print,  "Specifications for this Run:", 
specifs[rowname=rlabels]; 
  clabels={"Root" "Raw Data" "Means" "Prcntyle"}; 
  print  "Raw Data Eigenvalues, & Mean & Percentile Random 
Data Eigenvalues", 
         results[colname=clabels format=12.6]; 
 */ 
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  reig=results[,2]; 
  rpct=results[,4]; 
   
  *print reig rpct; 
  *print realeval; * Eigenvalues from sample data generated 
by PA in IML; 
 
  do i=1 to nrow(reig); 
  if reig[i] < rpct[i] then do; /* This is the heart of PA */ 
    fpa=i-1; 
    goto jump3; 
    end; 
 
  end; 
  jump3: ;  
 
  dum3=dum3//fpa; /* Saves results */ 
 
 end; 
end; 
 
 
/************************** END PA ******************************/ 
 
/********************** Start KG Benchmark **********************/ 
 
 
use eigen; 
read all into kg; /* Creates an n+1 x v matrix, g, with n row vectors 
of eigenvalues of the sample correlation matrices, the first row 
contains population eigenvalues */  
 
*print kg; /* Matrix of population and sample principal components 
eigenvalues */ 
 
do i=1 to nrow(kg); /* Loop to do KG procedure for all samples */ 
 temp=j(ncol(kg),1,0); 
 do j=1 to ncol(kg); 
  if kg[i,j]>1 then temp[j,1]=1; 
 end; 
 kgnum=temp[+]; 
 dum4=dum4//kgnum; 
end; 
 
/*********************** End KG Benchmark ***********************/ 
 
/************** Concatenate and organize results ****************/ 
 
 
dum=j(&n+1,1,0); 
 
/* Generates an index for each iteration */ 
do i=0 to &n; 
dum[i+1]=i; 
end; 
 
dum=dum||dum1||dum2||dum3||dum4; 



125 
 

 

*print dum; 
 
create results from dum; /* Saves results for all three methods and KG 
Benchmark*/ 
append from dum; 
 
quit; 
 
 
/**************************** Time Stamp Code ************************/ 
data time; 
set time; 
 
time2=datetime(); 
 
time_s=INTCK( 'second', time1, time2 ) ; 
time_m=int(time_s/60) ; 
time_h=int(time_m/60) ; 
 
time_s=time_s-(time_m*60); 
time_m=time_m-(time_h*60); 
 
d1=datepart(time1); 
d2=datepart(time2); 
t1=timepart(time1); 
t2=timepart(time2); 
 
format d1 d2 worddate16.; 
format t1 t2 timeampm13.; 
 
 
put "***************************** Timer 
*********************************"; 
put; 
put "   Condition &condnum of &numcond "; 
put; 
put "   Macro started on " d1 "at " t1; 
put "   Macro finished on " d2 "at " t2; 
put; 
put "   Macro took " time_h "Hour(s), " time_m "Minute(s), and " time_s 
"Second(s)"; 
put; 
put 
"*********************************************************************"
; 
 
run; 
/**********************************************************************
*/ 
 
%mend; 
 
 
 
/***************** MACRO GENCORR *************** 
*                                              * 
*      %GENCORR(f,nv,p,r,m,n,s,np,per,tp,sh)   * 
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*                                              * 
*       f = # of factors                       * 
*      nv = # of variables/factor              * 
*       p = Factor loadings                    * 
*       r = Interfactor correlations           * 
*       m = Minimum loading                    * 
*       u = Unique factors|No Unique factors   * 
*       n = # of sample correlation matrices   * 
*       s = size of each random sample         * 
*                                              * 
*      np = # of Random Shufflings in PA       * 
*     per = %tile cutoff for PA                * 
*      ty = Principal Components|PAF           * 
*      sh = Random normal|Shuffle raw data     * 
*                                              * 
***********************************************/ 
 
/* (f = 4, v = 24, p = .8, N = 250, r = .4) */ 
 
*%GENCORR(4, 6, .8, .4, 100, 250, 100); /* Example from Article */ 
*%GENCORR(4, 4, .5, .4, 100, 250, 100); /* Example from Dissertation */ 
 
%macro main; 
 
/* Initialize data sets for final output */ 
data sim.results; 
f=0; nv=0; p=0; v=0; r=0; m=0; u=0; n=0; s=0; np=0; per=0; ty=0; sh=0; 
col1=0; col2=0; col3=0; col4=0; col5=0; 
delete; 
 
label  
f   = 'Factors'  
nv  = 'Variables per Factor' 
p   = 'Loadings'                     
v  = 'Total Variables' 
r  = 'Interfactor Correlations'            
m     = 'Minimum Loading' 
u     = 'Unique Factor' 
n  = 'Number of Sample Corr Matrices'    
s  = 'Sample Size'          
np  = 'Number of PA Permutations'        
per = 'Percentile'                 
ty  = 'Model Type'      
sh  = 'Normal or Data Permutation' 
col1 = 'Iteration Index'      
col2 = 'SEscree' 
col3 = 'MAP' 
col4 = 'PA' 
col5 = 'KG'; 
run; 
 
data sim.time; 
time1 =0; 
delete; 
run; 
 
%global numcond condnum v; 
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%let numcond=0; * Initialize variable to count the overall number of 
conditions to be run; 
%let condnum=0; * Initialize variable to count the current conditions 
being run; 
/********************************************************************* 
**          MAIN SIMULATION ROUTINE    
     ** 
*********************************************************************/ 
%do cond=1 %to 2; %*Constant;       %** Used to find number of 
conditions apriori (Do Not Change); 
 
 %do f_=1 %to 1;      %** Number of factors; 
 %do nv_=3 %to 15;    %** Number of variables per 
factor; 
 %do p1_=5 %to 5;    %** Factor loadings;    
 %do r1_=0 %to 4 %by 2;   %** Interfactor correlations;  
 %do m1_=3 %to 3;    %** Minimum Saturation (Set 
equal to Factor Loading for Constant Saturation);  
 %do u_=1 %to 2;        %** No Unique Factor(1) 
| Unique Factor(2); 
 %do n_=100 %to 100; %*Constant; %** Number of sample 
correlation matrices; 
 
 %do np_=50 %to 50; %*Constant; %** Number of Population 
Iterations for PA; 
 %do per_=95 %to 95; %*Constant; %** Percentile cutoff for PA; 
 %do ty_=1 %to 2;    %** Principal Components(1) | 
PAF(2); 
 %do sh_=1 %to 1; %*Constant; %** Random normal(1) | Shuffle raw 
data(2); 
 
 
 %if %sysfunc(strip(&nv_)) eq %quote(4) %then %let 
nv_=%eval(&nv_+1); %* Skip specific values; 
 %if %sysfunc(strip(&nv_)) eq %quote(6) %then %let 
nv_=%eval(&nv_+1); %* Skip specific values; 
 %if %sysfunc(strip(&nv_)) eq %quote(7) %then %let 
nv_=%eval(&nv_+1); %* Skip specific values; 
 %if %sysfunc(strip(&nv_)) eq %quote(9) %then %let 
nv_=%eval(&nv_+1); %* Skip specific values; 
 %if %sysfunc(strip(&nv_)) eq %quote(11) %then %let 
nv_=%eval(&nv_+1); %* Skip specific values; 
 %if %sysfunc(strip(&nv_)) eq %quote(12) %then %let 
nv_=%eval(&nv_+1); %* Skip specific values; 
 %if %sysfunc(strip(&nv_)) eq %quote(13) %then %let 
nv_=%eval(&nv_+1); %* Skip specific values; 
 %if %sysfunc(strip(&nv_)) eq %quote(14) %then %let 
nv_=%eval(&nv_+1); %* Skip specific values; 
 
 %let s_=250; %* Specific sample value; 
 
 
 
 %let p_=&p1_./10;  %* Convert to decimals; 
 %let r_=&r1_./10;  %* Convert to decimals; 
 %let m_=&m1_./10;  %* Convert to decimals; 
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 %if &cond=2 %then %do; %* Run macro only after counting all 
conditions; 
 
 %let seed=0; %* Set the global seed value ******** Important!! 
*********; 
 
 %let condnum=%eval(&condnum+1); %* Keep track of current condtion 
number; 
 %GENCORR(&f_,&nv_,&p_,&r_,&m_,&u_,&n_,&s_,&np_,&per_,&ty_,&sh_); 
%* Actual macro call; 
 
 data work.results; %* Merge all condition variables with results 
variables; 
 set work.results; 
 f=&f_; nv=&nv_; p=&p_; v=&v; r=&r_; m=&m_; u=&u_; n=&n_; s=&s_; 
np=&np_; per=&per_; ty=&ty_; sh=&sh_; 
 run; 
 
 data sim.results; /* Concatenate Results */ 
 set sim.results work.results; 
 run; 
 
 data sim.time; /* Concatenate Time Calculations */ 
 set sim.time work.time; 
 run; 
 
 proc datasets nolist lib=work; /* Clean Up Datasets */ 
 delete results rout rout1 rout2; 
 run; 
 %end; 
 %else %let numcond=%eval(&numcond+1); %* Count the overall number 
of conditions to be run; 
 
 
 
 %end; 
 %end; 
 %end; 
 %end; 
 %end; 
 %end; 
 
 %end; 
 %end; 
 %end; 
 %end; 
 %end; 
 
%end; 
 
 
%mend; 
 
 
*************** Main Macro Area ******************; 
 
%main; /* Runs the main loop */ 
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/************** Compute data for time summary ***********/ 
data sim.time; 
set sim.time end=last; 
if _n_=1 then timeIni=time1; 
if last then timeFin=time2; 
run; 
data work.temp1; 
set sim.time; 
if timeIni=. then delete; 
drop timeFin time1 time2 t1 t2 d1 d2 time_h time_m time_s; 
run; 
data work.temp2; 
set sim.time; 
if timeFin=. then delete; 
drop timeIni time1 time2 t1 t2 d1 d2 time_h time_m time_s; 
run; 
data work.temp1; 
set work.temp1; 
merge work.temp2; 
 
time1=timeIni; 
time2=timeFin; 
 
drop timeIni timeFin; 
 
time_s=INTCK( 'second', time1, time2 ) ; 
time_m=int(time_s/60) ; 
time_h=int(time_m/60) ; 
 
time_s=time_s-(time_m*60); 
time_m=time_m-(time_h*60); 
 
d1=datepart(time1); 
d2=datepart(time2); 
t1=timepart(time1); 
t2=timepart(time2); 
format d1 d2 worddate16.; 
format t1 t2 timeampm13.; 
 
it ='Total'; 
 
run; 
 
data sim.time; 
set sim.time work.temp1; 
drop time1 time2 timeIni timeFin; 
label 
it  = 'Condition' 
d1  = 'Start'  
t1  = 'Time' 
d2  = 'Finish' 
t2  = 'Time' 
time_h = 'Hr(s)' 
time_m = 'Min(s)' 
time_s = 'Sec(s)'; 
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if it ne 'Total'  then it = _n_; 
run; 
 
option notes; 
 
data sim.results (compress=binary); * Compress Results; 
set sim.results; 
run; 
 
 
 
dm 'ENDSAS'; 
run; 
 
QUIT; 
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