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ABSTRACT 

 

McKinney, Christopher John. Evaluation of the Performance of a Random Coefficient 

Regression Model Cumulative Summation Control Chart under Varying Model 

Conditions: With Human Services Applications.  Published Doctor of Philosophy 

dissertation, University of Northern Colorado, 2011 

  

 The use of quality control charts with metrics within the educational, behavioral, 

and other human services field has typically been considered very limited due to the 

complications imposed by nested structures, conditional relationships, and complex 

variance-covariance structures.  The current study evaluated the performance of the 

random coefficient regression model control chart (RCRMCC) under conditions found 

commonly in the human services fields. Derived from the Regression Control Chart 

(RCC), the RCRMCC utilizes the residuals of the random coefficient regression model as 

inputs for the quality control charts.  Using Monte Carlo simulations, the RCRMCC and 

RCC are compared, in regards to their average run lengths (ARL), under varying in-

control and out-of-control population conditions, within the Cumulative Summation 

(CUSUM) Control Chart framework.  It was found that the RCRMCC is advantageous 

under conditions similar to those found in the educational, behavioral, and other human 

services industries.  Applications of the findings and future directions with the RCRMCC 

are discussed.  
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CHAPTER I 

INTRODUCTION 

Background 

 Since the introduction of statistical process control (SPC) techniques in the early 

1900’s, multiple statistical tools have become available to ensure that products and 

services meet prescribed specifications (Montgomery, 2005b).  The most sophisticated of 

the SPC tools is the control chart, introduced by Walter Shewhart (1926) in the 1920’s.  

The benefits of the Shewhart type control charts have been well established in the 

manufacturing and service industries, where benefits have included improving 

productivity, prevention of defects, reduction in unnecessary process adjustments, 

providing process diagnostic information, and providing information about process 

stability (Montgomery, 2005b). Further advantages of the statistical quality control 

charts, focusing on the service industries, include: 1) assessing implementation of quality 

improvement techniques, 2) providing feedback to employees, and 3) effectively 

monitoring multiple processes occurring over time (Sulek, Marucheck, and Lind, 2006; 

Palm, Rodriquez, Spiring, and Wheeler, 1997; Mehring, 1995; Sulek, Lind, and 

Marucheck, 1995). Although advantages have been found in the use of quality control 

charts, their implementation in the services industry has remained limited (Harvey, 1998). 

  Reasons for this lack of implementation of process control techniques in the service 

industries may be due to the wide variety and complexity of the service and quality data 

collected, which some researchers believe imposes a limitation on the scope of SPC 
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techniques that can be utilized effectively with the data (Stewart, 2003).  Within the 

educational, public service, and healthcare services industries, data may exist within 

complicated nested structures, where environmental and organismic variables at higher 

levels may affect the relationships between the outcome(s) and identified covariate(s) at 

lower levels of the data hierarchy (Raudenbush & Bryk, 2002; Longford, 1993).  In order 

for the service industries to be able to adequately implement quality control techniques 

and process improvement, they need to overcome the issues of conditional relationships 

and nested structures.  The solution to this issue evolves from the basic idea of a 

regression control chart (RCC) introduced by Mandel (1969) as a way to compensate for 

the existence of a covariate that affected the expected value of a process outcome. 

Mandel (1969) introduced the problem of covariates in Shewhart-type control 

charts, with the example of monitoring the number of man hours required to sort 

incoming mail in a post office, where the volume of mail was the covariate.  Since a post 

office required more man hours to sort larger volumes of mail, simply monitoring the 

average and variance of the man hours per post office would result in erroneous 

identification of out-of-control post offices.  Mandel solved this problem by developing a 

regression model, predicting man hours as a function of mail volume, then establishing 

statistical limits about the regression line.  In this fashion the man hours for a specified 

post office would be compared to the estimated average man hours, corrected for the post 

office’s volume of mail. Though Mandel’s (1969) work enhanced our ability to monitor 

manufacturing and service processes, where covariates exist for the characteristic of 

interest, the RCC may not be appropriate for many service processes.  



 

3 

 
 

Under situations where there exist conditional relationships and nested data 

structures, the typical regression model, and thus the regression control chart would be 

inappropriate (Raudenbush & Bryk, 2002). For example, in the mental health services 

field, the needs level at intake and the rate of recovery of a consumer may be dependent 

on factors such as diagnosis, level of drug abuse, and type of treatment.  A consumer with 

a diagnosis of depression may start out with a lower level of initial level of service need 

and a lower rate of recovery than a consumer who has schizophrenia. Furthermore, a 

consumer with more resources, such as monetary savings, insurance, and close 

family/friends, typically would recover faster than a consumer without these resources.  

Given these differences in the initial level of service need and rate of recovery of the 

consumers, a single equation would not be appropriate, as some consumers may appear to 

be performing better than they really are, while others would appear to be doing poorly 

even though they are recovering as expected or better. In the situations where conditional 

relationships, such as differences in initial needs and rate of recovery, and nested 

regression models (rates of change within consumers) occur, the use of a conventional 

regression-adjusted control chart may result in increased erroneous out-of-control signals 

(false alarms), or the use of multiple control charts, needing corrections which adjust for 

the inflated type I error, both of which may be impractical. Though the typical regression 

control chart may not be appropriate in these situations, by extending the underlying 

regression model to a random coefficient regression model (RCRM) we are able to 

develop a set of control charts that account for nested data structures, while also allowing 

for conditional relationships among the outcomes and covariates. 
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The development and implementation of the RCRM (Longford, 1993), over the 

past three decades, has provided a solution to the issue of conditional relationships and 

nested structures common in the human service industries.  Introduced in the social and 

behavioral sciences as hierarchical linear modeling (Raudenbush & Bryk, 2002), 

group/cluster randomized trials (Murray, 1998), and multilevel modeling (Goldstein, 

1995), RCRM are a subset of the linear mixed effects models (LMM; Jiang, 2007; 

Raudenbush & Bryk).  RCRMs allow for the partitioning of the within and between 

units/groups variance (Raudenbush & Bryk), similar to the typical split-plot design 

(Montgomery, 2005a).  Furthermore, when covariates are used to adjust measures nested 

within units, RCRMs allow for the simultaneous estimation of conditional relationships 

based upon environmental and organismic characteristics of the units/groups at each level 

of the data hierarchy (Raudenbush & Bryk).  Provided the previously described 

characteristics, using the RCRM requires only one equation to create regression-adjusted 

control charts, where the relationship between the covariates and characteristic of interest 

varies according to environmental or organismic factors affecting the units/groups.   

Extending the regression control chart to encompass the RCRM would allow for 

more efficient monitoring of manufacturing and service processes.  The partitioning of 

variance would allow for monitoring of the random error and the variability among the 

units/groups.  Furthermore, the conditional regression coefficients would provide an 

overall model adaptive to the changing environment and organismic factors of the 

units/groups, increasing the likelihood of detecting a change in the process characteristic, 

while decreasing the rate of false alarms.  All of the estimations would also occur 

simultaneously reducing the overall type I error, therefore further reducing the rate of 
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false alarms.  The ability to monitor multiple variance components, adapt coefficients to 

changing environmental and organismic factors, and the decreased type I error provides 

for a more efficient regression control chart, for human services’ processes. 

Statement of the Problem 

 The existence of conditional relationships, in manufacturing and service process 

outcomes, can pose a problem with the implementation of a RCC and control charts in 

general.  The extension of the RCC to encompass the RCRM would assist in alleviating 

the problem of conditional relationships.  Though it is expected that a RCRM control 

chart (RCRMCC) would be beneficial as an SPC tool, there have been no studies that 

have established if a RCRMCC is beneficial, and if it is beneficial, under what 

circumstances the RCRMCC outperforms the typical RCC. 

 Several factors could affect the performance of RCRM and in turn the RCRMCC.  

These factors include the number of nested measurements per unit/group (m), the number 

of units/groups (J) upon which the measures are taken, the intra-class correlation 

coefficient (ICC; the ratio of the variance among the units in which the measures are 

nested (level 2 error) to the total variance in the model), and the coefficient of 

determination (R
2
) for the regression coefficients within units/groups (Level 1; the 

percentage of the within unit/group variance accounted for by the level 1 covariate) and 

between units/groups (Level 2; the percentage of the variance of the level 2 coefficient 

accounted for by the level 2 covariate).  It is expected that each of these factors will play 

a predominant role in the ability of the RCRMCC to detect a shift in the outcome of size 

delta (δ), as each is important in the calculation of power for the RCRM (Murray, 1998; 

Raudenbush & Bryk, 2002).   
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Purpose of the Study 

 The study examines: 

1. Under which system circumstances the RCRM CUSUM control chart 

produces higher in-control average run-lengths (ARL).  Factors evaluated are: 

a. ICC 

b. Levels 1 and 2 R
2
 

2. Under which system circumstances the RCRM CUSUM control chart 

produces lower out-of-control ARL for varying mean shifts (δ). Factors 

evaluated are: 

a. ICC 

b. Levels 1 and 2 R
2
 

Research Questions 

Q1 Does the RCRMCC result in higher in-control average run lengths than 

the RCC, under system conditions in which the ICC, Level 1 R
2
 and Level 

2 R
2
 vary and no mean shift has occurred?   

 

Q2   Does the RCRMCC result in lower out-of-control average run lengths than 

the RCC, under system conditions in which the ICC, Level 1 R
2
 and Level 

2 R
2
 vary and a mean shift has occurred? 

 

Significance of the Study 

 Providing a more effective control chart for mean shifts in the presence of 

conditional relationships and nested structures would be valuable to the human service 

industries.  Within these industries it is common for process outcomes to exist within a 

nested structure and for relationships between outcomes and certain covariates to be 

dependent on factors associated with the subject or group measured.  By implementing a 
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control chart to correct for this issue, these service industries would be able to more 

effectively improve the overall quality of services.   

Definitions 

In-Control Average Run Length – The average number of samples, evaluated from an in-

control system, until the control chart produces a false alarm. 

Out-of-Control Average Run Length – The average number of samples, evaluated from a 

system with a shift in the outcome (out-of-control), until the control chart produces an 

alarm. 
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CHAPTER II 

 

REVIEW OF LITERATURE 

This chapter reviews the literature pertinent to understanding the use of LMM in 

conjunction with the RCC, as applicable to the study. Provided the study is meant to be 

applicable primarily to the healthcare, behavioral health, and social (human) services 

sectors, the review of literature focuses on these areas. The chapter is broken down into 

five main parts: (1) a review of benefits and limitations of control charts to the behavioral 

and social services industries, (2) an overview of univariate statistical process control 

charts, (3) an overview of random coefficient regression models, (4) power of the RCRM 

and (5) the incorporation of mixed models into control charts.  

Control Charts in the Services Industries 

The use of SPC methods within the service industries is considered one of the most 

substantial advances in quality management of the last century (Wyckoff, 1984).  

Wyckoff argued that the use of quality control charts (QCC), a subset of SPC methods, 

can be effective in the evaluation of process quality by both managers and employees. 

Montgomery (2005b) also states that the QCC is an essential tool for the detection of 

unusual variation in the service’s performance data.  Multiple advantages associated with 

the utilization of the QCC has been demonstrated over the past several decades which 

include:  1) assessing implementation of quality improvement techniques, 2) providing 

feedback to employees, and 3) effectively monitoring of multiple processes occurring 

over time (Sulek, Marucheck, and Lind, 2006; Palm, Rodriquez, Spiring, and Wheeler, 
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1997; Mehring, 1995; Sulek, Lind, and Marucheck, 1995).  Although advantages have 

been associated with the use of the QCC, implementation of the QCC in the service 

industries has remained limited (Harvey, 1998).   

The limited use of control charts across the service industries is reflected within the 

field of mental healthcare, where the need for services is high, creating a great need for 

integration of quality control and efficiency techniques.  Approximately one in four 

American adults, or almost 58 million people in the United States, suffers from a 

diagnosable mental illness in a given year (National Institute of Mental Health, 2008), 

where nearly 80% of American children and more than 67% of American adults who 

need mental health and addictions treatment services do not receive them (National 

Council for Community Behavioral Healthcare, 2010).  As a result, mental disorders are 

the leading cause of disability in the United States and Canada for adults aged 18-44 

(World Health Organization, 2004).  Through the use of quality control techniques in the 

mental health services industry, more efficient use and allocation of resources can be 

obtained, allowing for a larger number of consumers to receive mental health treatment 

and promote greater and sustained mental health recovery, while mitigating costs to 

society as a whole.   

Herbstman and Pincus (2009) noted that over the past decade a proliferation of 

mental health and/or substance abuse indicators has been developed in the United States 

for use in programs to assess mental healthcare service performance at the federal, state, 

and individual provider level, yet these indicators have not been successfully 

implemented into a coherent quality management program.  Given the dynamic nature of 

mental health services outcomes and sometimes complicated nested structure of the 
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outcomes, implementing common QCCs  may be difficult. Even provided this issue, in 

general, grantors, particularly those providing public funds, require high accountability 

and compliance with practices as mandated by payers (LaGanga and Lawrence, 2009); 

therefore, it is necessary to develop a quality control system that can help an organization 

adhere to the established standards, while also allowing for enhanced allocation of 

resources and expanded efficiency. 

Similar to the mental healthcare services industry, other service industries have a high 

need to implement quality control practices in order to increase service quality, yet have 

similar nested data structures and conditional relationships related to environmental and 

unit/group factors/covariates.  Within education, criminal justice, and other social 

services areas numerous examples of conditional and nested relationships exist 

(Raudenbush & Bryk, 2002).  Another study demonstrated these structures can also be 

applied to political and opinion polling (Luke, 2004).  The need for implementation of the 

QCC in the service industries, specifically social and human services, is great. In order to 

help further the implementation of the QCC, the issues due to the conditional and 

hierarchical nature of the process characteristic of interest must be addressed in a manner 

that is practical for implementation.  

Overview of Univariate Statistical Process Control Charts 

 This section reviews several common univariate control charts used in the 

manufacturing and services industries.  The charts to be reviewed will be the Shewhart 

type charts, CUSUM charts, and the regression corrected control chart, as utilized with 

variable process characteristic data.   
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 Within all processes that are functioning as specified, referred to as in-control 

processes, there exist random variations in the process characteristic of interest, also 

known as chance variation.  When a systematic change occurs in the system, causing the 

system to be out-of-control, the mean and/or variance may shift.  These shifts are referred 

to as assignable cause variation, where the main function of statistical process control is 

to identify and remove these assignable causes (Montgomery, 2005b).   

One of the main tools utilized for SPC is the QCC.  The QCC can be effective at 

monitoring variability of a process characteristic, thereby the quality of a process, helping 

to identify the assignable cause of an out-of-control process (Montgomery, 2005b).  As 

the need to identify a variety of assignable causes under varying circumstances has 

grown, so has the number of QCC. 

 The most basic and utilized QCC are the Shewhart-type control charts.  

Introduced by Walter Shewhart (1926), these QCC monitor some specified process 

characteristic containing chance variation.  Two phases are used to develop and 

implement the Shewhart-type control charts.  Phase I involves the collection of a pre-

determined number of unit samples from the in-control process of interest, where a 

process measurement is taken on each sampled unit.  The measurements are then used to 

establish the mean and random variation of the process characteristic.  These parameter 

estimates are then used in Phase II to establish the warning and control limits, along with 

the center line (CL), which is used for further monitoring of the process (Tracy, Young, 

& Mason, 1992). During Phase II the CL is used as the expected value of the process 

characteristic, where control limits are established around the CL.  There is an upper 

control limit (UCL) and a lower control limit (LCL), along with upper and lower warning 
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limits.  These limits are expressed in terms of the number of standard deviations (σ; 

sigma) above and below the CL (Montgomery, 2005b).   

 In order to establish when a process is out-of-control the Western Electric 

Handbook (1956) suggests a series of rules to detect a nonrandom pattern in the control 

chart.  The Western Electric Handbook, as stated by Montgomery (2005b), assumes an 

out-of-control process if any of the following are found to be true regarding the control 

chart: 

(1) One point plots outside the three-sigma control limits 

(2) Two out of three consecutive points plot beyond the two-sigma warning 

limits 

(3) Four out of five consecutive points plot at a distance of one-sigma or 

beyond from the center line 

or 

(4) Eight consecutive points plot on one side of the center line (pg. 166) 

Interpretation of these rules is limited to one side, above or below the CL, at a time 

(Montgomery, 2005b). 

 The specific values of the CL, UCL, and LCL for an  ̅ chart can be computed 

using the range (R) or standard deviation (s) method, where the range and standard 

deviation can also be monitored through their respective R and s charts (Montgomery, 

2005b).  Assuming the process characteristic of interest is normally distributed and 

                is a sample of size n, then the mean of the sample is 

  ̅   
                  

 
       (2.01) 
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Now, let  ̅   ̅   ̅       ̅  be the average of each of m samples, then the best estimator 

of the true process average, µ, is  

  ̿   
 ̅      ̅            ̅ 

 
       (2.02) 

where  ̿ , the grand average, is used as the value of the CL.  The range for a single 

sample is computed as 

                    (2.03) 

where      is the largest value of                 and      is the smallest value.  

Using the R of each of m samples the average R is computed as 

  ̅   
               

 
        (2.04) 

The control limits of the  ̅ chart, based upon the range, is 

       ̿      ̅       (2.05) 

         ̿        (2.06) 

        ̿      ̅       (2.07) 

where    is a constant for a specified sample size as defined by Montgomery.  The 

corresponding R chart for detecting shifts in the variability of the process characteristic is 

established as 

         ̅        (2.08) 

         ̅       (2.09) 

          ̅        (2.10) 

where    and    are constants for a specified sample size as defined by Montgomery. 

The standard deviation (s) of a sample of size n is computed as  

    √
∑ (      ̅)

  
   

   
      (2.11) 
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where the average of s  for the m samples is  

  ̅   
 

 
∑   
 
        (2.12) 

such that    is the standard deviation of sample i.  Using the estimate of the average of s, 

the parameters of the  ̅ chart become 

       ̿      ̅       (2.13) 

         ̿       (2.14) 

        ̿      ̅      (2.15) 

and the parameters for the corresponding s chart are 

          ̅        (2.16) 

         ̅       (2.17) 

          ̅        (2.18) 

where   ,   , and    are constants dependent on the sample size, n, for each of the m 

samples, as specified by Montgomery.  Though the focus here is on mean values for each 

sample, the Shewhart charts can also be reframed for individual observations.  The 

adjustment of the Shewhart charts for individual observations is accomplished by using 

an average moving range, MR, comparing the present observation to the prior observation 

such that  

     |       |      (2.19) 

and  

   ̅̅̅̅̅   
∑    
 
   

 
      (2.20) 

 Though the Shewhart  ̅, R, and s control charts can be effective at monitoring for 

out-of-control processes, they tend to only detect large shifts in the process characteristic.  

In order to detect small shifts in the process characteristic the Cumulative Summation 
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(CUSUM) and Exponentially Weighted Moving Average (EWMA) control charts are 

recommended.  These charts are also recommended for Phase II control charts, versus 

continuing with a Shewhart-type chart.  Both control charts utilize previous information 

in the series to determine if a process is out-of-control (Montgomery, 2005b).   

 The CUSUM can be represented using the tabular or the V-mask method 

(Montgomery, 2005b).  This review focuses on only the tabular method.  Under the 

tabular method a series of samples of size i, with mean  ̅ , is assumed.  When the process 

is in-control, the observations are assumed to have a normal distribution with a mean or 

target value,   , and standard deviation, s.  The tabular CUSUM works by summing the 

derivations above or below the target value,   , using the upper (  
 )and lower (  

 ) 

CUSUM statistics respectively.  The statistics are computed as 

   
     [   ̅   (     )       

 ]   (2.21) 

   
     [  (     )   ̅       

 ]   (2.22) 

where   
  and   

  both start at a value of 0, i.e.   
    

   , where each resets to zero 

when either becomes negative.  K is generally called the allowance or slack value, which 

is usually chosen to be one-half of the magnitude of the out-of-control shift in the 

characteristic of interest (Montgomery, 2005b), such that 

    
 

 
         (2.23) 

where   is the magnitude of the shift in terms of number of standard deviations away 

from the target value.  If either   
  or   

  exceeds the decision interval, H, then the 

process is considered to be out-of-control.  Though there are multiple ways to choose H, 

one generally accepted method is five (5) times the process standard deviation 

(Montgomery, 2005b).  The CUSUM may also be extended to the monitoring of other 
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process parameters such as variability, by adjusting the target reference and standard 

deviations estimates to those appropriate for the process parameter.  Furthermore, the 

CUSUM can also be used to monitor individual observations similar to the Shewhart 

charts, where the target value and standard deviation are adjusted for the estimate of the 

parameters for the series of individual observations (Montgomery, 2005b). 

 The RCC can build upon the Shewhart or CUSUM methods.  Introduced by 

Mandel (1969), the RCC controls for variation due to a known covariate, to which the 

dependent variable is causally and linearly related.  The Shewhart-type RCC is 

constructed through the previously described two phases. The first phase estimates the in-

control coefficients for the identified covariates in regards to the process characteristic of 

interest.  Using the residual of the regression model, upper and lower control limits are 

defined about the fitted regression line.  In Phase II, all subsequently sampled units are 

then compared to the control limits about the regression line, where the value of the 

process characteristic of interest is compared to the expected value defined by the value 

of the covariate for the sampled unit.  The RCC is interpreted in the same fashion as a 

Shewhart control chart, with the main difference being that the expected values and 

control limits follow a linear relationship with the covariate versus having a constant 

value for all samples.  In order to use the RCC method with a CUSUM control chart the 

residuals from the expected value, based upon the estimated linear relationship, are used 

to determine the cumulative summation of the deviations from the target value (in this 

case the expected value due to the covariate). 
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The Random Coefficient Regression Model 

The RCRM, also known as the hierarchical linear model (HLM), multilevel model 

(MLM), and covariance components model in the social and behavioral sciences 

(Raudenbush and Bryk, 2002; Singer, 1998, Longford, 1993), is based upon the linear 

mixed effects model (Jiang, 2007), where the effects are allowed to vary across the units.  

The RCRM can be extended from the general form of the regression model (Jiang; 

Raudenbush and Bryk).  Assume an outcome (  ) and predictor (  ) are measured, such 

that n pairs of observations are taken, i.e. i = 1,…,n.  If a fixed intercept,   , and 

estimated relationship,   , for all of the    and    are assumed, then the general form of 

the regression model is 

                                               (2.28) 

where    is the residual from the predicted value of    given   , and is distributed 

normally with a mean of 0 and variance σ
2
.  

Now assume that the nj observations over time are nested within m individuals, and 

the intercept and estimated slopes are allowed to vary across the m individuals.  This 

model now assumes varying coefficients for the intercepts and slopes across the m 

individuals, such that the regression model now becomes 

                                                  (2.29) 

For each of the m individuals, an intercept,    , and an estimated slope,    , are 

calculated, such that j = 1,…,m, based upon the nj  nested measurements.  In this form, 

we assume m fixed intercepts and slopes, one for each individual.  In order to move this 

form of the regression model to a RCRM, it is assumed the varying intercepts and slopes 

are random. Since the intercepts and slopes are random across the m individuals, another 
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set of regression models can be used to estimate the intercept and slope from the 

characteristics of the individuals.  Assuming    is the covariate of interest in estimating 

the intercepts and slopes for the m individuals, the regression model for the random 

intercepts is 

                                                (2.30) 

where     is the average intercept across all m individuals,     is the effect of Wj on the 

intercept for unit j, and     is the residual for the intercept of each of the m individuals 

and is normally distributed with mean 0 and variance    .  In a similar fashion, we can 

create a model for the random slopes across all of the individuals such that 

                                                (2.31) 

where     is the mean slope across all m individuals,     is the effect of Wj on the mean 

slope for individual j, and     is the residual for the slope of each of the m individuals 

and is normally distributed with mean 0 and variance    .  Jointly,      and     are 

assumed to be bivariate normally distributed with variance-covariance (T) matrix: 

   [
   
   
]   [

      
      

]                                 (2.32) 

The correlation between the intercept and slope pairs  (       ) is: 

 (       )   
   

(√   √   )
⁄                (2.33) 

where     is the covariance between the intercepts and slopes.  Equations 2.30 and 2.31 

allow us to model the random slopes and intercepts across the individuals, such that 

variability in the intercepts and slopes can be explained using any number of W’s.    
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The final step towards developing the RCRM involves replacing     (intercepts) and 

    (slopes) in equation 2.29 with equations 2.30 and 2.31 respectively.  These combined 

equations provide the RCRM with form 

                                

                    (2.34) 

Thus, the final model given in equation 2.34 now contains three error terms, one each for 

the intercepts (    ), slopes (       ), and the residuals (    ), which partitions the 

variance among the nested levels.  This model can be extended to have numerous x’s for 

the nested measures, traditionally referred to as Level 1 covariates and W’s for the 

individual or groups in which the measures are nested, traditionally referred to as Level 2 

covariates.   

Power and the Random Coefficient Regression Model 

 In general, power is defined as the ability of a statistical model to detect a 

significant difference, when a difference actually exists (Cohen, 1988).  Since a QCC is 

developed to identify significant deviations from some target value, it is important to 

understand the components that are necessary to determine the power of a RCRM.  

Spybrook, Raudenbush, Congdon, and Martinez (2009) identify six general factors 

affecting the power of a RCRM, for any given  level; 1) size of the effect (), (2) the 

intra-class correlation (ICC), (3) the number of units/groups (J), (4) the number of 

measures/units (n) within each unit/group (m), (5) the amount of within unit/group 

variance accounted for by the Level 1 covariates (Level 1 R
2
), and (6) the amount of 

between unit/group variance accounted for by the Level 2 covariates (Level 2 R
2
). In 

regards to all of the factors except the ICC, an increase in the value of the factor results in 
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an increase in power, holding all other factors constant.  On the other hand a decrease in 

power is seen as the value of the ICC increases.  The decrease in power is shown by 

Murray (1998) to result from an increase in the variance estimate due to the larger ICC. 

In order to effectively evaluate the derived or simulated power of a RCRM, all six of the 

above listed factors should be taken into consideration. 

Random Coefficient Regression Model and the  

Cumulative Summation Control Chart 

 

Integrating the RCRM into the CUSUM control chart framework involves replacing 

the references to the target values,   , and raw values, xi, of equations 2.21 and 2.22 with 

the sum of the RCRM residuals,               , for each of the m individuals, i.e., 

  
      [  (   ̂     ̂       ̂)        

 ]               (2.35) 

  
      [  |   ̂     ̂       ̂|        

 ]                (2.36) 

In this fashion, the deviations of the raw scores from the target value are replaced with 

the individual’s deviation from the expected value provided by the RCRM.  The 

calculation of the sensitivity value, K, and of the decision interval, H, remain the same as 

presented in equation 2.23.  Reaching the decision interval indicates that the individual’s 

outcomes significantly differ from the RCRM estimated outcome, and thus review of the 

individual is warranted. 
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CHAPTER III 

METHODS 

 The study developed the foundation for a statistical QCC  based upon the RCRM.  

By extending the basic process for a RCC as developed by Mandel (1969), the RCRMCC 

can account for nested data structures, where relationships between the characteristic of 

interest and explanatory covariates may vary across the higher level units/groups.  The 

study utilized a Monte Carlo Simulation to compare the in-control and out-of-control 

ARL for the RCRMCC to those of the RCC within the CUSUM framework. 

 The first research question was answered through the evaluation of the in-control 

ARL under the RCRMCC and RCC, within the CUSUM framework. In order to identify 

under which system circumstances the RCRMCC CUSUM chart had a higher ARL than 

the RCC CUSUM chart, the following interacting factors, under an in-control system 

were evaluated. The in-control condition of a mean shift of zero (0) standard deviations 

in the intercept was utilized for this simulation. 

1) Intra-class Correlations (ICC): The control condition of an ICC of 0.0001 was 

utilized (nearly no variability among groups/units in which measures are nested, 

an ICC of 0 could not be used due to issues with the variance-covariance matrix 

of level 2 parameters), along with ICC’s of 0.05, 0.15, 0.25, 0.5.  These ICC 

values were consistent with ICC’s found to be common within the social and 

behavioral sciences (Hedges and Hedberg, 2007;) 
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2) Coefficient of Determination (R
2
): For level 1 and 2 equations (equations 2.30 and 

2.31), the R
2
 were varied among the values 0.01, 0.25, and 0.5 for R

2
, where both 

of the level 2 equations had the same R
2
 value.  These values are consistent with 

R
2
 values discussed in power studies with regression models (Cohen, 1988). The 

crossed R
2
 values provide a total of 9 cells being evaluated. 

The second research question was answered through the evaluation of the out-of-

control ARL under the RCRMCC and RCC, within the CUSUM framework. In order to 

identify under which system circumstances the RCRMCC CUSUM chart had a lower 

out-of-control ARL than the RCC CUSUM chart, the previous interacting factors in Part 

1 along with mean shift changes in the intercept () were evaluated.  

1) Mean Shifts (): The out-of-control conditions with mean shifts of 0.2, 0.5, and 

0.8 standard deviations were evaluated.  These values are consistent with another 

simulation study of HLM regression models carried out by Fang (2006).  The 

shifts in the slope were not evaluated. 

The total number of cells evaluated were 180 per control chart (RCRMCC versus 

RCC), given all system circumstances providing for an in-control and out-of-control 

system; five (5) ICC levels, nine (9) R
2
 values, and four (4) mean shifts. 

Apparatus/Instruments 

 All Monte Carlo Simulations were run under the R version 2.10.1 platform (R 

Development Core Team, 2009) utilizing the non-linear mixed effects (nlme; Pinheiro, 

Bates, Debroy, Sarkar, & The R Core Team, 2009) package to analyze the RCRM 

models.  The multivariate normal function (mvtnorm; Genz, Bretz, Miwa, Mi, Leisch, 
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Scheipl, & Hothorn, 2010) was utilized to create the random data for the control charts.  

Appendix A contains the R-scripts used to carry-out all simulations and analysis. 

Basic Model Structure 

The model evaluated was a two-level nested model with a covariate at each level.  

The two-level model provided a simple linear regression model at the first level with the 

conditional relationships being specified by one covariate at the first level.  A 

corresponding simple linear regression model was utilized as the comparison to the two-

level RCRM.  The RCRM was identical to the model specified by equation 2.34. 

Simulation Procedures 

 The following steps were utilized to produce the population values and 

subsequent sample values used to evaluate the ARL of the RCRMCC and RCC under 

varying system circumstances and out-of-control mean shifts as previously described.  

All R-scripts used to perform the simulations are provided in Appendix A. 

1. Under the in-control situation (no mean shift) a population of 1,000 groups was 

created where all the   ’s were randomly assigned to each group using a normal 

distribution with mean 0 and standard deviation determined as a function of the 

respective level 2 population parameters. These population values were saved for 

later simulations to ensure consistency in the Level 2 population parameters for 

each groups throughout the simulations.  The next step randomly created 1,000 

paired xij and outcome values within each group, utilizing the randomly assigned 

values of the   ’s. The mean of the random data points varied according to the 

mean and standard deviation of the within group parameters for the 45 ICC, Level 
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1 R
2
, and Level2 R

2
 parameter crosses.  The RCRM parameters utilized in the 

simulation model are shown in Table 1.   

2. The parameter estimates for the RCRM and regression models were produced for 

each of the 45 sets of system circumstances using R.  These parameter estimates 

were saved and used for all later residual calculations. 

3. Under each of the sets of crossed system parameters, data points were simulated, 

which were then evaluated under the in-control RCRM and regression models 

produced in step 1.  The residuals of the data points were evaluated under the 

CUSUM control chart, where data points were produced until the RCRMCC and 

RCC provided an out-of-control signal.   

4. Step 3 was repeated 10,000 times, where the number of data points until an out-

of-control signal were tabulated each time for both the RCC and RCRM CUSUM 

control charts. 

5. The average and standard deviation of the number of data points for each of the 

10,000 runs, under the RCRMCC and RCC, were calculated, for each crossed 

mean shift and sets of system circumstances. 
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Table 1 

 

RCRM Simulation Parameters 

 

 

 
 

ICC 
Level 

1 R
2
 

Level 

2 R
2
 

γ00 γ01 γ10 γ11 τ00 τ11 τ01 σ
2
 

0.0 0.0001 0.01 0.01 0.00 0.1 0.1 0.1 0.00 0.00 0 0.99 

0.0 0.0001 0.01 0.25 0.00 0.1 0.1 0.1 0.00 0.00 0 0.99 

0.0 0.0001 0.01 0.50 0.00 0.1 0.1 0.1 0.00 0.00 0 0.99 

0.0 0.0001 0.25 0.01 0.00 0.1 0.1 0.1 0.00 0.00 0 0.75 

0.0 0.0001 0.25 0.25 0.00 0.1 0.1 0.1 0.00 0.00 0 0.75 

0.0 0.0001 0.25 0.50 0.00 0.1 0.1 0.1 0.00 0.00 0 0.75 

0.0 0.0001 0.50 0.01 0.00 0.1 0.1 0.1 0.00 0.00 0 0.50 

0.0 0.0001 0.50 0.25 0.00 0.1 0.1 0.1 0.00 0.00 0 0.50 

0.0 0.0001 0.50 0.50 0.00 0.1 0.1 0.1 0.00 0.00 0 0.50 

0.0 0.05 0.01 0.01 0.00 0.1 0.1 0.1 0.02 0.02 0 0.94 

0.0 0.05 0.01 0.25 0.00 0.1 0.1 0.1 0.02 0.02 0 0.94 

0.0 0.05 0.01 0.50 0.00 0.1 0.1 0.1 0.01 0.01 0 0.94 

0.0 0.05 0.25 0.01 0.00 0.1 0.1 0.1 0.02 0.02 0 0.71 

0.0 0.05 0.25 0.25 0.00 0.1 0.1 0.1 0.02 0.02 0 0.71 

0.0 0.05 0.25 0.50 0.00 0.1 0.1 0.1 0.01 0.01 0 0.71 

0.0 0.05 0.50 0.01 0.00 0.1 0.1 0.1 0.02 0.02 0 0.48 

0.0 0.05 0.50 0.25 0.00 0.1 0.1 0.1 0.02 0.02 0 0.48 

0.0 0.05 0.50 0.50 0.00 0.1 0.1 0.1 0.01 0.01 0 0.48 

0.0 0.15 0.01 0.01 0.00 0.1 0.1 0.1 0.07 0.07 0 0.84 

0.0 0.15 0.01 0.25 0.00 0.1 0.1 0.1 0.06 0.06 0 0.84 

0.0 0.15 0.01 0.50 0.00 0.1 0.1 0.1 0.04 0.04 0 0.84 

0.0 0.15 0.25 0.01 0.00 0.1 0.1 0.1 0.07 0.07 0 0.64 

0.0 0.15 0.25 0.25 0.00 0.1 0.1 0.1 0.06 0.06 0 0.64 

0.0 0.15 0.25 0.50 0.00 0.1 0.1 0.1 0.04 0.04 0 0.64 

0.0 0.15 0.50 0.01 0.00 0.1 0.1 0.1 0.07 0.07 0 0.43 

0.0 0.15 0.50 0.25 0.00 0.1 0.1 0.1 0.06 0.06 0 0.43 

0.0 0.15 0.50 0.50 0.00 0.1 0.1 0.1 0.04 0.04 0 0.43 

0.0 0.25 0.01 0.01 0.00 0.1 0.1 0.1 0.12 0.12 0 0.74 

0.0 0.25 0.01 0.25 0.00 0.1 0.1 0.1 0.09 0.09 0 0.74 

0.0 0.25 0.01 0.50 0.00 0.1 0.1 0.1 0.06 0.06 0 0.74 

0.0 0.25 0.25 0.01 0.00 0.1 0.1 0.1 0.12 0.12 0 0.56 

0.0 0.25 0.25 0.25 0.00 0.1 0.1 0.1 0.09 0.09 0 0.56 

0.0 0.25 0.25 0.50 0.00 0.1 0.1 0.1 0.06 0.06 0 0.56 

0.0 0.25 0.50 0.01 0.00 0.1 0.1 0.1 0.12 0.12 0 0.38 



 

26 
 

 

Table 1, cont. 

 

 
 

 

 
 

ICC 
Level 

1 R
2
 

Level 

2 R
2
 

γ00 γ01 γ10 γ11 τ00 τ11 τ01 σ
2
 

0.0 0.25 0.50 0.25 0.00 0.1 0.1 0.1 0.09 0.09 0 0.38 

0.0 0.25 0.50 0.50 0.00 0.1 0.1 0.1 0.06 0.06 0 0.38 

0.0 0.50 0.01 0.01 0.00 0.1 0.1 0.1 0.25 0.25 0 0.50 

0.0 0.50 0.01 0.25 0.00 0.1 0.1 0.1 0.19 0.19 0 0.50 

0.0 0.50 0.01 0.50 0.00 0.1 0.1 0.1 0.13 0.13 0 0.50 

0.0 0.50 0.25 0.01 0.00 0.1 0.1 0.1 0.25 0.25 0 0.38 

0.0 0.50 0.25 0.25 0.00 0.1 0.1 0.1 0.19 0.19 0 0.38 

0.0 0.50 0.25 0.50 0.00 0.1 0.1 0.1 0.13 0.13 0 0.38 

0.0 0.50 0.50 0.01 0.00 0.1 0.1 0.1 0.25 0.25 0 0.25 

0.0 0.50 0.50 0.25 0.00 0.1 0.1 0.1 0.19 0.19 0 0.25 

0.0 0.50 0.50 0.50 0.00 0.1 0.1 0.1 0.13 0.13 0 0.25 

0.2 0.0001 0.01 0.01 0.20 0.1 0.1 0.1 0.00 0.00 0 0.99 

0.2 0.0001 0.01 0.25 0.20 0.1 0.1 0.1 0.00 0.00 0 0.99 

0.2 0.0001 0.01 0.50 0.20 0.1 0.1 0.1 0.00 0.00 0 0.99 

0.2 0.0001 0.25 0.01 0.20 0.1 0.1 0.1 0.00 0.00 0 0.75 

0.2 0.0001 0.25 0.25 0.20 0.1 0.1 0.1 0.00 0.00 0 0.75 

0.2 0.0001 0.25 0.50 0.20 0.1 0.1 0.1 0.00 0.00 0 0.75 

0.2 0.0001 0.50 0.01 0.20 0.1 0.1 0.1 0.00 0.00 0 0.50 

0.2 0.0001 0.50 0.25 0.20 0.1 0.1 0.1 0.00 0.00 0 0.50 

0.2 0.0001 0.50 0.50 0.20 0.1 0.1 0.1 0.00 0.00 0 0.50 

0.2 0.05 0.01 0.01 0.20 0.1 0.1 0.1 0.02 0.02 0 0.94 

0.2 0.05 0.01 0.25 0.20 0.1 0.1 0.1 0.02 0.02 0 0.94 

0.2 0.05 0.01 0.50 0.20 0.1 0.1 0.1 0.01 0.01 0 0.94 

0.2 0.05 0.25 0.01 0.20 0.1 0.1 0.1 0.02 0.02 0 0.71 

0.2 0.05 0.25 0.25 0.20 0.1 0.1 0.1 0.02 0.02 0 0.71 

0.2 0.05 0.25 0.50 0.20 0.1 0.1 0.1 0.01 0.01 0 0.71 

0.2 0.05 0.50 0.01 0.20 0.1 0.1 0.1 0.02 0.02 0 0.48 

0.2 0.05 0.50 0.25 0.20 0.1 0.1 0.1 0.02 0.02 0 0.48 

0.2 0.05 0.50 0.50 0.20 0.1 0.1 0.1 0.01 0.01 0 0.48 

0.2 0.15 0.01 0.01 0.20 0.1 0.1 0.1 0.07 0.07 0 0.84 

0.2 0.15 0.01 0.25 0.20 0.1 0.1 0.1 0.06 0.06 0 0.84 

0.2 0.15 0.01 0.50 0.20 0.1 0.1 0.1 0.04 0.04 0 0.84 

0.2 0.15 0.25 0.01 0.20 0.1 0.1 0.1 0.07 0.07 0 0.64 

0.2 0.15 0.25 0.25 0.20 0.1 0.1 0.1 0.06 0.06 0 0.64 

0.2 0.15 0.25 0.50 0.20 0.1 0.1 0.1 0.04 0.04 0 0.64 
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Table 1, cont. 

 

 
 

 

 
 

ICC 
Level 

1 R
2
 

Level 

2 R
2
 

γ00 γ01 γ10 γ11 τ00 τ11 τ01 σ
2
 

0.2 0.15 0.50 0.01 0.20 0.1 0.1 0.1 0.07 0.07 0 0.43 

0.2 0.15 0.50 0.25 0.20 0.1 0.1 0.1 0.06 0.06 0 0.43 

0.2 0.15 0.50 0.50 0.20 0.1 0.1 0.1 0.04 0.04 0 0.43 

0.2 0.25 0.01 0.25 0.20 0.1 0.1 0.1 0.09 0.09 0 0.74 

0.2 0.25 0.01 0.50 0.20 0.1 0.1 0.1 0.06 0.06 0 0.74 

0.2 0.25 0.25 0.01 0.20 0.1 0.1 0.1 0.12 0.12 0 0.56 

0.2 0.25 0.25 0.25 0.20 0.1 0.1 0.1 0.09 0.09 0 0.56 

0.2 0.25 0.25 0.50 0.20 0.1 0.1 0.1 0.06 0.06 0 0.56 

0.2 0.25 0.50 0.01 0.20 0.1 0.1 0.1 0.12 0.12 0 0.38 

0.2 0.25 0.50 0.25 0.20 0.1 0.1 0.1 0.09 0.09 0 0.38 

0.2 0.25 0.50 0.50 0.20 0.1 0.1 0.1 0.06 0.06 0 0.38 

0.2 0.50 0.01 0.01 0.20 0.1 0.1 0.1 0.25 0.25 0 0.50 

0.2 0.50 0.01 0.25 0.20 0.1 0.1 0.1 0.19 0.19 0 0.50 

0.2 0.50 0.01 0.50 0.20 0.1 0.1 0.1 0.13 0.13 0 0.50 

0.2 0.50 0.25 0.01 0.20 0.1 0.1 0.1 0.25 0.25 0 0.38 

0.2 0.50 0.25 0.25 0.20 0.1 0.1 0.1 0.19 0.19 0 0.38 

0.2 0.50 0.25 0.50 0.20 0.1 0.1 0.1 0.13 0.13 0 0.38 

0.2 0.50 0.50 0.01 0.20 0.1 0.1 0.1 0.25 0.25 0 0.25 

0.2 0.50 0.50 0.25 0.20 0.1 0.1 0.1 0.19 0.19 0 0.25 

0.2 0.50 0.50 0.50 0.20 0.1 0.1 0.1 0.13 0.13 0 0.25 

0.5 0.0001 0.01 0.01 0.50 0.1 0.1 0.1 0.00 0.00 0 0.99 

0.5 0.0001 0.01 0.25 0.50 0.1 0.1 0.1 0.00 0.00 0 0.99 

0.5 0.0001 0.01 0.50 0.50 0.1 0.1 0.1 0.00 0.00 0 0.99 

0.5 0.0001 0.25 0.01 0.50 0.1 0.1 0.1 0.00 0.00 0 0.75 

0.5 0.0001 0.25 0.25 0.50 0.1 0.1 0.1 0.00 0.00 0 0.75 

0.5 0.0001 0.25 0.50 0.50 0.1 0.1 0.1 0.00 0.00 0 0.75 

0.5 0.0001 0.50 0.01 0.50 0.1 0.1 0.1 0.00 0.00 0 0.50 

0.5 0.0001 0.50 0.25 0.50 0.1 0.1 0.1 0.00 0.00 0 0.50 

0.5 0.0001 0.50 0.50 0.50 0.1 0.1 0.1 0.00 0.00 0 0.50 

0.5 0.05 0.01 0.01 0.50 0.1 0.1 0.1 0.02 0.02 0 0.94 

0.5 0.05 0.01 0.25 0.50 0.1 0.1 0.1 0.02 0.02 0 0.94 

0.5 0.05 0.01 0.50 0.50 0.1 0.1 0.1 0.01 0.01 0 0.94 

0.5 0.05 0.25 0.01 0.50 0.1 0.1 0.1 0.02 0.02 0 0.71 

0.5 0.05 0.25 0.25 0.50 0.1 0.1 0.1 0.02 0.02 0 0.71 

0.5 0.05 0.25 0.50 0.50 0.1 0.1 0.1 0.01 0.01 0 0.71 
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Table 1, cont. 

 

 
 

 

 
 

ICC 
Level 

1 R
2
 

Level 

2 R
2
 

γ00 γ01 γ10 γ11 τ00 τ11 τ01 σ
2
 

0.5 0.05 0.50 0.01 0.50 0.1 0.1 0.1 0.02 0.02 0 0.48 

0.5 0.05 0.50 0.25 0.50 0.1 0.1 0.1 0.02 0.02 0 0.48 

0.5 0.05 0.50 0.50 0.50 0.1 0.1 0.1 0.01 0.01 0 0.48 

0.5 0.15 0.01 0.01 0.50 0.1 0.1 0.1 0.07 0.07 0 0.84 

0.5 0.15 0.01 0.25 0.50 0.1 0.1 0.1 0.06 0.06 0 0.84 

0.5 0.15 0.01 0.50 0.50 0.1 0.1 0.1 0.04 0.04 0 0.84 

0.5 0.15 0.25 0.01 0.50 0.1 0.1 0.1 0.07 0.07 0 0.64 

0.5 0.15 0.25 0.25 0.50 0.1 0.1 0.1 0.06 0.06 0 0.64 

0.5 0.15 0.25 0.50 0.50 0.1 0.1 0.1 0.04 0.04 0 0.64 

0.5 0.15 0.50 0.01 0.50 0.1 0.1 0.1 0.07 0.07 0 0.43 

0.5 0.15 0.50 0.25 0.50 0.1 0.1 0.1 0.06 0.06 0 0.43 

0.5 0.15 0.50 0.50 0.50 0.1 0.1 0.1 0.04 0.04 0 0.43 

0.5 0.25 0.01 0.01 0.50 0.1 0.1 0.1 0.12 0.12 0 0.74 

0.5 0.25 0.01 0.25 0.50 0.1 0.1 0.1 0.09 0.09 0 0.74 

0.5 0.25 0.01 0.50 0.50 0.1 0.1 0.1 0.06 0.06 0 0.74 

0.5 0.25 0.25 0.01 0.50 0.1 0.1 0.1 0.12 0.12 0 0.56 

0.5 0.25 0.25 0.25 0.50 0.1 0.1 0.1 0.09 0.09 0 0.56 

0.5 0.25 0.25 0.50 0.50 0.1 0.1 0.1 0.06 0.06 0 0.56 

0.5 0.25 0.50 0.01 0.50 0.1 0.1 0.1 0.12 0.12 0 0.38 

0.5 0.25 0.50 0.25 0.50 0.1 0.1 0.1 0.09 0.09 0 0.38 

0.5 0.25 0.50 0.50 0.50 0.1 0.1 0.1 0.06 0.06 0 0.38 

0.5 0.50 0.01 0.01 0.50 0.1 0.1 0.1 0.25 0.25 0 0.50 

0.5 0.50 0.01 0.25 0.50 0.1 0.1 0.1 0.19 0.19 0 0.50 

0.5 0.50 0.01 0.50 0.50 0.1 0.1 0.1 0.13 0.13 0 0.50 

0.5 0.50 0.25 0.01 0.50 0.1 0.1 0.1 0.25 0.25 0 0.38 

0.5 0.50 0.25 0.25 0.50 0.1 0.1 0.1 0.19 0.19 0 0.38 

0.5 0.50 0.25 0.50 0.50 0.1 0.1 0.1 0.13 0.13 0 0.38 

0.5 0.50 0.50 0.01 0.50 0.1 0.1 0.1 0.25 0.25 0 0.25 

0.5 0.50 0.50 0.25 0.50 0.1 0.1 0.1 0.19 0.19 0 0.25 

0.5 0.50 0.50 0.50 0.50 0.1 0.1 0.1 0.13 0.13 0 0.25 

0.8 0.0001 0.01 0.01 0.80 0.1 0.1 0.1 0.00 0.00 0 0.99 

0.8 0.0001 0.01 0.25 0.80 0.1 0.1 0.1 0.00 0.00 0 0.99 

0.8 0.0001 0.01 0.50 0.80 0.1 0.1 0.1 0.00 0.00 0 0.99 

0.8 0.0001 0.25 0.01 0.80 0.1 0.1 0.1 0.00 0.00 0 0.75 

0.8 0.0001 0.25 0.25 0.80 0.1 0.1 0.1 0.00 0.00 0 0.75 
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Table 1, cont. 

 

 
 

 

 
 

ICC 
Level 

1 R
2
 

Level 

2 R
2
 

γ00 γ01 γ10 γ11 τ00 τ11 τ01 σ
2
 

0.8 0.0001 0.25 0.50 0.80 0.1 0.1 0.1 0.00 0.00 0 0.75 

0.8 0.0001 0.50 0.01 0.80 0.1 0.1 0.1 0.00 0.00 0 0.50 

0.8 0.0001 0.50 0.25 0.80 0.1 0.1 0.1 0.00 0.00 0 0.50 

0.8 0.0001 0.50 0.50 0.80 0.1 0.1 0.1 0.00 0.00 0 0.50 

0.8 0.05 0.01 0.01 0.80 0.1 0.1 0.1 0.02 0.02 0 0.94 

0.8 0.05 0.01 0.25 0.80 0.1 0.1 0.1 0.02 0.02 0 0.94 

0.8 0.05 0.01 0.50 0.80 0.1 0.1 0.1 0.01 0.01 0 0.94 

0.8 0.05 0.25 0.01 0.80 0.1 0.1 0.1 0.02 0.02 0 0.71 

0.8 0.05 0.25 0.25 0.80 0.1 0.1 0.1 0.02 0.02 0 0.71 

0.8 0.05 0.25 0.50 0.80 0.1 0.1 0.1 0.01 0.01 0 0.71 

0.8 0.05 0.50 0.01 0.80 0.1 0.1 0.1 0.02 0.02 0 0.48 

0.8 0.05 0.50 0.25 0.80 0.1 0.1 0.1 0.02 0.02 0 0.48 

0.8 0.05 0.50 0.50 0.80 0.1 0.1 0.1 0.01 0.01 0 0.48 

0.8 0.15 0.01 0.01 0.80 0.1 0.1 0.1 0.07 0.07 0 0.84 

0.8 0.15 0.01 0.25 0.80 0.1 0.1 0.1 0.06 0.06 0 0.84 

0.8 0.15 0.01 0.50 0.80 0.1 0.1 0.1 0.04 0.04 0 0.84 

0.8 0.15 0.25 0.01 0.80 0.1 0.1 0.1 0.07 0.07 0 0.64 

0.8 0.15 0.25 0.25 0.80 0.1 0.1 0.1 0.06 0.06 0 0.64 

0.8 0.15 0.25 0.50 0.80 0.1 0.1 0.1 0.04 0.04 0 0.64 

0.8 0.15 0.50 0.01 0.80 0.1 0.1 0.1 0.07 0.07 0 0.43 

0.8 0.15 0.50 0.25 0.80 0.1 0.1 0.1 0.06 0.06 0 0.43 

0.8 0.15 0.50 0.50 0.80 0.1 0.1 0.1 0.04 0.04 0 0.43 

0.8 0.25 0.01 0.01 0.80 0.1 0.1 0.1 0.12 0.12 0 0.74 

0.8 0.25 0.01 0.25 0.80 0.1 0.1 0.1 0.09 0.09 0 0.74 

0.8 0.25 0.01 0.50 0.80 0.1 0.1 0.1 0.06 0.06 0 0.74 

0.8 0.25 0.25 0.01 0.80 0.1 0.1 0.1 0.12 0.12 0 0.56 

0.8 0.25 0.25 0.25 0.80 0.1 0.1 0.1 0.09 0.09 0 0.56 

0.8 0.25 0.25 0.50 0.80 0.1 0.1 0.1 0.06 0.06 0 0.56 

0.8 0.25 0.50 0.01 0.80 0.1 0.1 0.1 0.12 0.12 0 0.38 

0.8 0.25 0.50 0.25 0.80 0.1 0.1 0.1 0.09 0.09 0 0.38 

0.8 0.25 0.50 0.50 0.80 0.1 0.1 0.1 0.06 0.06 0 0.38 

0.8 0.50 0.01 0.01 0.80 0.1 0.1 0.1 0.25 0.25 0 0.50 

0.8 0.50 0.01 0.25 0.80 0.1 0.1 0.1 0.19 0.19 0 0.50 

0.8 0.50 0.01 0.50 0.80 0.1 0.1 0.1 0.13 0.13 0 0.50 

0.8 0.50 0.25 0.01 0.80 0.1 0.1 0.1 0.25 0.25 0 0.38 
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Table 1, cont. 

 

 
 

 

 
 

ICC 
Level 

1 R
2
 

Level 

2 R
2
 

γ00 γ01 γ10 γ11 τ00 τ11 τ01 σ
2
 

0.8 0.50 0.25 0.25 0.80 0.1 0.1 0.1 0.19 0.19 0 0.38 

0.8 0.50 0.25 0.50 0.80 0.1 0.1 0.1 0.13 0.13 0 0.38 

0.8 0.50 0.50 0.01 0.80 0.1 0.1 0.1 0.25 0.25 0 0.25 

0.8 0.50 0.50 0.25 0.80 0.1 0.1 0.1 0.19 0.19 0 0.25 

0.8 0.50 0.50 0.50 0.80 0.1 0.1 0.1 0.13 0.13 0 0.25 

  

Analysis of the Average Run Lengths 

 Differences in the operation of the two QCC, RCRMCC and RCC, were evaluated 

through direct comparison of the RCRMCC and RCC ARL table cells.   Further 

comparisons were made through graphical displays and descriptive summaries of the 

ARL table patterns, as appropriate.  
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CHAPTER IV 

RESULTS 

Parameter Estimates under the In-Control Population 

The SLR model produced estimates of the slope (Min: 0.098, Max: 0.100) and 

intercept (Min: -0.001, Max: 0.003) that were consistent with the in-control population 

parameters, across all level 1 and level 2 R
2
 values, under the ICC equal to 0.0001 

condition. See Table 2 for the 95% confidence intervals for the parameter estimates.  

When the ICC is at the 0.05 level or above, the slope estimates of the SLR model are no 

longer consistent with the in-control population parameters, with slope estimates ranging 

from -0.00064 to 0.00116.  Furthermore the range of estimates for the intercepts becomes 

much greater at -0.012 to 0.032.  There appeared to be no effect of the level 1 and level 2 

R
2
 values on the intercept and slope estimates.   Table 3 provides the intercept, slope and 

error estimates under all in-control population parameter crosses for the SLR models.  

The RCRM parameter estimates across all population conditions, though varied, were 

consistent with the in-control population parameters, see table 2 for the 95% confidence 

intervals for the parameter estimates.  The main variables that affected the estimation of 

the RCRM parameters were the level 1 and 2 R
2
 values, where greater deviation and 

variability of the parameter estimates is seen when either the level 1 or level 2 R
2
 values 

are 0.01, the effect is greatest when both R
2
 values are equal to 0.01.  Furthermore, the 

estimates of the RCRM parameters are also more widely varied and deviated when the 
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ICC is equal to 0.0001.  Table 4 provides the level 1 intercept and slope, level 2 covariate 

effects, and variance estimates under all in-control population parameter crosses. 

 

 



 

 

 
    

3
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Table 2

95% Confidence Intervals for the In-Control SLR and RCRM Model Parameter Estimates 

ICC L1R2 L2R2 

RCRM Model OLS Model 

Parameter  Parameters 

Intercept Xij Wj        Wj::Xij Intercept Xij 

Lower 

95% 

CI 

Upper 

95% 

CI 

Lower 

95% 

CI 

Upper 

95% 

CI 

Lower 

95% 

CI 

Upper 

95% 

CI 

Lower 

95% 

CI 

Upper 

95% 

CI 

Lower 

95% 

CI 

Upper 

95% 

CI 

Lower 

95% 

CI 

Upper 

95% 

CI 

0.0001 0.01 0.01 0.00 0.00 0.10 0.10 -0.42 0.17 -0.16 0.40 0.00 0.00 0.10 0.10 

  
0.25 0.00 0.00 0.10 0.10 0.08 0.19 0.03 0.14 0.00 0.00 0.10 0.10 

  
0.50 0.00 0.00 0.10 0.10 0.09 0.17 0.09 0.17 0.00 0.00 0.10 0.10 

 
0.25 0.01 0.00 0.00 0.10 0.10 -0.22 0.28 0.04 0.19 0.00 0.00 0.10 0.10 

  
0.25 0.00 0.00 0.10 0.10 0.03 0.12 0.10 0.12 0.00 0.00 0.10 0.10 

  
0.50 0.00 0.00 0.10 0.10 0.04 0.11 0.09 0.11 0.00 0.00 0.10 0.10 

 
0.50 0.01 0.00 0.00 0.10 0.10 -0.10 0.32 0.01 0.14 0.00 0.00 0.10 0.10 

  
0.25 0.00 0.00 0.10 0.10 0.09 0.17 0.09 0.11 0.00 0.00 0.10 0.10 

  
0.50 0.00 0.00 0.10 0.10 0.05 0.11 0.09 0.11 0.00 0.00 0.10 0.10 

0.05 0.01 0.01 -0.01 0.01 0.07 0.09 0.09 0.22 0.10 0.20 -0.01 0.00 0.00 0.00 

  
0.25 -0.01 0.01 0.07 0.08 0.08 0.10 0.07 0.09 0.00 0.00 0.00 0.00 

  
0.50 -0.01 0.01 0.09 0.10 0.09 0.10 0.09 0.10 0.00 0.01 0.00 0.00 

 
0.25 0.01 -0.01 0.01 0.09 0.11 0.06 0.19 0.02 0.14 0.00 0.01 0.00 0.00 

  
0.25 -0.01 0.01 0.09 0.11 0.09 0.11 0.09 0.11 -0.01 0.00 0.00 0.00 

  
0.50 -0.01 0.01 0.09 0.11 0.10 0.11 0.09 0.10 0.00 0.00 0.00 0.00 

 
0.50 0.01 -0.02 0.00 0.09 0.11 0.06 0.19 0.04 0.15 -0.01 0.00 0.00 0.00 

  
0.25 -0.01 0.01 0.09 0.11 0.09 0.11 0.09 0.11 0.00 0.00 0.00 0.00 

  
0.50 -0.01 0.01 0.09 0.10 0.10 0.11 0.09 0.10 -0.01 0.00 0.00 0.00 

0.15 0.01 0.01 -0.01 0.02 0.08 0.11 0.03 0.16 -0.01 0.10 0.00 0.01 0.00 0.00 

  
0.25 -0.02 0.01 0.08 0.11 0.10 0.12 0.07 0.09 0.00 0.00 0.00 0.00 

  
0.50 -0.01 0.01 0.09 0.11 0.10 0.11 0.09 0.10 0.00 0.00 0.00 0.00 
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ICC L1R2 L2R2 

RCRM Model OLS Model 

Parameter  Parameters 

Intercept Xij Wj Wj::Xij Intercept Xij 

Lower 

95% 

CI 

Upper 

95% 

CI 

Lower 

95% 

CI 

Upper 

95% 

CI 

Lower 

95% 

CI 

Upper 

95% 

CI 

Lower 

95% 

CI 

Upper 

95% 

CI 

Lower 

95% 

CI 

Upper 

95% 

CI 

Lower 

95% 

CI 

Upper 

95% 

CI 

 
0.25 0.01 -0.01 0.03 0.08 0.11 -0.02 0.11 0.03 0.15 0.01 0.01 0.00 0.00 

  
0.25 -0.01 0.02 0.09 0.12 0.08 0.11 0.09 0.11 0.02 0.02 0.00 0.00 

  
0.50 -0.01 0.02 0.08 0.11 0.09 0.10 0.10 0.11 -0.01 0.00 0.00 0.00 

 
0.50 0.01 -0.02 0.01 0.07 0.11 0.00 0.13 0.02 0.15 0.00 0.00 0.00 0.00 

  
0.25 0.00 0.02 0.09 0.12 0.09 0.11 0.09 0.11 0.01 0.01 0.00 0.00 

  
0.50 -0.01 0.01 0.09 0.11 0.09 0.11 0.09 0.11 0.00 0.01 0.00 0.00 

0.25 0.01 0.01 -0.04 0.01 0.07 0.11 0.08 0.21 0.06 0.16 -0.01 -0.01 0.00 0.00 

  
0.25 -0.03 0.01 0.05 0.09 0.09 0.11 0.07 0.10 -0.01 -0.01 0.00 0.00 

  
0.50 -0.02 0.01 0.09 0.12 0.09 0.10 0.09 0.11 -0.01 -0.01 0.00 0.00 

 
0.25 0.01 -0.01 0.03 0.09 0.13 0.04 0.16 0.03 0.15 0.01 0.01 0.00 0.00 

  
0.25 -0.02 0.02 0.06 0.10 0.09 0.12 0.08 0.10 0.00 0.00 0.00 0.00 

  
0.50 -0.01 0.02 0.08 0.11 0.10 0.11 0.09 0.10 0.01 0.01 0.00 0.00 

 
0.50 0.01 -0.02 0.03 0.08 0.12 0.03 0.16 0.03 0.15 0.01 0.01 0.00 0.00 

  
0.25 0.00 0.04 0.09 0.13 0.09 0.11 0.09 0.12 0.03 0.03 0.00 0.00 

  
0.50 -0.02 0.01 0.09 0.12 0.09 0.11 0.09 0.11 -0.01 -0.01 0.00 0.00 

0.50 0.01 0.01 -0.04 0.03 0.06 0.11 0.04 0.16 0.01 0.11 -0.01 0.00 0.00 0.00 

  
0.25 -0.04 0.01 0.06 0.11 0.08 0.11 0.07 0.09 -0.01 -0.01 0.00 0.00 

  
0.50 -0.03 0.02 0.08 0.12 0.10 0.11 0.09 0.10 0.01 0.01 0.00 0.00 

 
0.25 0.01 -0.02 0.04 0.09 0.16 0.05 0.18 0.07 0.19 0.00 0.01 0.00 0.00 

  
0.25 -0.01 0.05 0.06 0.12 0.09 0.11 0.08 0.10 0.00 0.00 0.00 0.00 

  
0.50 -0.01 0.03 0.07 0.11 0.09 0.11 0.09 0.11 0.02 0.03 0.00 0.00 

 
0.50 0.01 -0.02 0.04 0.09 0.15 0.05 0.18 0.13 0.25 0.01 0.01 0.00 0.00 
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Table 3

 

In-Control Population SLR Parameter Estimates 

** p < 0.05   ^^ p < 0.01 

 

ICC L1R2 L2R2 Parameters 

Intercept (SE) Xij (SE) r 

0.0001 0.01 0.01 0.003 (0.00100)^^ 0.100 (0.00099)^^ 1.00 

  
0.25 0.001 (0.00099) 0.099 (0.00098)^^ 0.99 

  
0.50 -0.001 (0.00100) 0.099 (0.00099)^^ 1.00 

 
0.25 0.01 -0.001 (0.00087) 0.099 (0.00017)^^ 0.87 

  
0.25 0.000 (0.00087) 0.098 (0.00017)^^ 0.87 

  
0.50 -0.001 (0.00087) 0.099 (0.00017)^^ 0.87 

 
0.50 0.01 0.000 (0.00071) 0.099 (0.00010)^^ 0.71 

  
0.25 0.000 (0.00071) 0.099 (0.00010)^^ 0.71 

  
0.50 0.000 (0.00071) 0.099 (0.00010)^^ 0.71 

0.05 0.01 0.01 -0.004 (0.00099)^^ 0.000 (0.00008)^^ 0.99 

  
0.25 0.002 (0.00099) 0.000 (0.00006)** 0.99 

  
0.50 0.006 (0.00099)^^ 0.000 (0.00001) 0.99 

 
0.25 0.01 0.003 (0.00099)^^ 0.000 (0.00001)^^ 0.99 

  
0.25 -0.004 (0.00099)^^ 0.000 (0.00001)^^ 0.99 

  
0.50 -0.001 (0.00099) 0.000 (0.00002)^^ 0.99 

 
0.50 0.01 -0.004 (0.00099)^^ 0.000 (0.00000)^^ 0.99 

  
0.25 0.000 (0.00099) 0.000 (0.00001)^^ 0.99 

  
0.50 -0.005 (0.00099)^^ 0.000 (0.00001)^^ 0.99 

0.15 0.01 0.01 0.003 (0.00096)^^ 0.000 (0.00003)^^ 0.96 

  
0.25 0.000 (0.00096) 0.000 (0.00001)^^ 0.96 

  
0.50 -0.001 (0.00096) 0.000 (0.00010)^^ 0.96 

 
0.25 0.01 0.009 (0.00096)^^ 0.000 (0.00001)^^ 0.96 

  
0.25 0.018 (0.00096)^^ 0.000 (0.00000)^^ 0.96 

  
0.50 -0.003 (0.00096)^^ 0.000 (0.00003)^^ 0.96 

 
0.50 0.01 -0.003 (0.00096)^^ 0.000 (0.00001)^^ 0.96 

  
0.25 0.008 (0.00096)^^ 0.000 (0.00002)^^ 0.96 

  
0.50 0.004 (0.00096)^^ 0.000 (0.00000)^^ 0.96 

0.25 0.01 0.01 -0.011 (0.00094)^^ 0.000 (0.00006)^^ 0.94 

  
0.25 -0.012 (0.00093)^^ 0.000 (0.00014) 0.93 

  
0.50 -0.008 (0.00094)^^ 0.000 (0.00011) 0.94 

 
0.25 0.01 0.012 (0.00093)^^ 0.000 (0.00002)^^ 0.93 

  
0.25 -0.001 (0.00094) 0.000 (0.00004)^^ 0.94 

  
0.50 0.007 (0.00094)^^ 0.000 (0.00001)^^ 0.94 

 
0.50 0.01 0.008 (0.00094)^^ 0.000 (0.00002)** 0.94 

  
0.25 0.032 (0.00093)^^ 0.000 (0.00003)^^ 0.93 

  

0.50 -0.007 (0.00093)^^ 0.000 (0.00000)^^ 0.93 
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ICC L1R2 L2R2 Parameters 

   Intercept (SE) Xij (SE) r 

0.50 0.01 0.01 -0.005 (0.00087)^^ 0.001 (0.00037)** 0.87 

  
0.25 -0.007 (0.00086)^^ 0.000 (0.00009)^^ 0.86 

  
0.50 0.008 (0.00087)^^ 0.000 (0.00014) 0.87 

 
0.25 0.01 0.006 (0.00087)^^ 0.000 (0.00002)^^ 0.87 

  
0.25 -0.002 (0.00087) 0.000 (0.00001)^^ 0.87 

  
0.50 0.025 (0.00087)^^ 0.000 (0.00002)^^ 0.87 

 
0.50 0.01 0.013 (0.00087)^^ 0.001 (0.00005)^^ 0.87 

  
0.25 -0.003 (0.00087)^^ 0.001 (0.00003)^^ 0.87 

    0.50 -0.010 (0.00086)^^ 0.001 (0.00002)^^ 0.86 
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Table 4 

 

In-Control RCRM Population Parameter Estimates 

** p < 0.05  ^^ p < 0.01 

 

   Parameter Estimates (Standard Error) 

ICC L1R2 L2R2 Intercept Xij Wj Wj::Xij u0j u1j rij Total 

0.0001 0.01 0.01 0.003 (0.01)^^ 0.10 (0.001)^^ -0.12 (0.15) 0.12 (0.14) 0.00 0.00 0.99 0.99 

  
0.25 0.001 (0.01) 0.10 (0.001)^^ 0.13 (0.03)^^ 0.08 (0.03)^^ 0.00 0.00 0.99 0.99 

  
0.50 -0.001 (0.01) 0.10 (0.001)^^ 0.13 (0.02)^^ 0.13 (0.02)^^ 0.00 0.00 0.99 0.99 

 
0.25 0.01 -0.001 (0.01) 0.10 (0.001)^^ 0.03 (0.13) 0.12 (0.04)^^ 0.00 0.00 0.75 0.75 

  
0.25 0.000 (0.01) 0.10 (0.001)^^ 0.07 (0.02)^^ 0.11 (0.01)^^ 0.00 0.00 0.75 0.75 

  
0.50 -0.001 (0.01) 0.10 (0.001)^^ 0.07 (0.02)^^ 0.10 (0.01)^^ 0.00 0.00 0.75 0.75 

 
0.50 0.01 0.000 (0.01) 0.10 (0.001)^^ 0.11 (0.11) 0.08 (0.03)^^ 0.00 0.00 0.50 0.50 

  
0.25 0.000 (0.01) 0.10 (0.001)^^ 0.13 (0.02)^^ 0.10 (0.01)^^ 0.00 0.00 0.50 0.50 

  
0.50 0.000 (0.01) 0.10 (0.001)^^ 0.08 (0.02)^^ 0.10 (0.01)^^ 0.00 0.00 0.50 0.50 

0.05 0.01 0.01 -0.004 (0.01) 0.08 (0.004)^^ 0.15 (0.03)^^ 0.15 (0.03)^^ 0.02 0.02 0.94 0.98 

  
0.25 0.002 (0.01) 0.08 (0.004)^^ 0.09 (0.01)^^ 0.08 (0.01)^^ 0.02 0.02 0.94 0.98 

  
0.50 -0.001 (0.01) 0.09 (0.004)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.01 0.01 0.94 0.97 

 
0.25 0.01 0.003 (0.01) 0.10 (0.005)^^ 0.12 (0.03)^^ 0.08 (0.03)** 0.03 0.02 0.71 0.76 

  
0.25 -0.001 (0.01) 0.10 (0.004)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.02 0.02 0.71 0.75 

  
0.50 -0.001 (0.01) 0.10 (0.004)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.01 0.01 0.71 0.74 

 
0.50 0.01 -0.006 (0.01) 0.10 (0.005)^^ 0.13 (0.03)^^ 0.10 (0.03)^^ 0.02 0.02 0.47 0.52 

  
0.25 0.003 (0.01) 0.10 (0.004)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.02 0.02 0.47 0.51 

  
0.50 0.001 (0.01) 0.10 (0.003)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.01 0.01 0.47 0.50 

0.15 0.01 0.01 0.006 (0.01) 0.10 (0.008)^^ 0.10 (0.03)^^ 0.05 (0.03) 0.07 0.05 0.84 0.96 

  
0.25 -0.002 (0.01) 0.10 (0.007)^^ 0.11 (0.01)^^ 0.08 (0.01)^^ 0.06 0.04 0.84 0.93 

  
0.50 -0.002 (0.01) 0.10 (0.006)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.04 0.03 0.84 0.91 

 



 

 
 
 
 
 

Table 4, cont. 
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   Parameter Estimates (Standard Error) 

ICC L1R2 L2R2 Intercept Xij Wj Wj::Xij u0j u1j rij Total 

 
0.25 0.01 0.010 (0.01) 0.10 (0.009)^^ 0.05 (0.03) 0.09 (0.03)^^ 0.07 0.07 0.64 0.78 

  
0.25 0.005 (0.01) 0.11 (0.008)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.06 0.06 0.64 0.75 

  
0.50 0.004 (0.01) 0.10 (0.006)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.04 0.04 0.64 0.71 

 
0.50 0.01 -0.002 (0.01) 0.10 (0.009)^^ 0.06 (0.03) 0.08 (0.03)** 0.08 0.07 0.42 0.57 

  
0.25 0.010 (0.01) 0.10 (0.008)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.06 0.06 0.42 0.54 

  
0.50 -0.001 (0.01) 0.10 (0.006)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.04 0.04 0.43 0.51 

0.25 0.01 0.01 -0.013 (0.01) 0.09 (0.010)^^ 0.15 (0.03)^^ 0.11 (0.03)^^ 0.13 0.08 0.74 0.95 

  
0.25 -0.012 (0.01) 0.07 (0.010)^^ 0.10 (0.01)^^ 0.09 (0.01)^^ 0.09 0.07 0.74 0.91 

  
0.50 -0.009 (0.01) 0.11 (0.008)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.06 0.06 0.74 0.87 

 
0.25 0.01 0.012 (0.01) 0.11 (0.011)^^ 0.10 (0.03)^^ 0.09 (0.03)^^ 0.12 0.12 0.56 0.80 

  
0.25 0.003 (0.01) 0.08 (0.010)^^ 0.10 (0.01)^^ 0.09 (0.01)^^ 0.10 0.09 0.56 0.74 

  
0.50 0.005 (0.01) 0.09 (0.008)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.06 0.06 0.56 0.68 

 
0.50 0.01 0.007 (0.01) 0.10 (0.011)^^ 0.10 (0.03)^^ 0.10 (0.03)^^ 0.13 0.11 0.37 0.62 

  
0.25 0.020 (0.01)** 0.11 (0.011)^^ 0.10 (0.01)^^ 0.11 (0.01)^^ 0.09 0.11 0.38 0.57 

  
0.50 -0.002 (0.01) 0.10 (0.008)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.06 0.06 0.37 0.50 

0.50 0.01 0.01 -0.006 (0.02) 0.08 (0.014)^^ 0.10 (0.03)^^ 0.06 (0.03)** 0.26 0.16 0.50 0.92 

  
0.25 -0.012 (0.01) 0.09 (0.013)^^ 0.10 (0.01)^^ 0.08 (0.01)^^ 0.18 0.14 0.49 0.82 

  
0.50 -0.003 (0.01) 0.10 (0.011)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.13 0.12 0.49 0.74 

 
0.25 0.01 0.008 (0.02) 0.13 (0.016)^^ 0.12 (0.03)^^ 0.13 (0.03)^^ 0.26 0.25 0.37 0.88 

  
0.25 0.020 (0.01) 0.09 (0.014)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.19 0.18 0.38 0.75 

  
0.50 0.010 (0.01) 0.09 (0.011)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.13 0.13 0.38 0.63 

 0.50 0.01 0.012 (0.02) 0.12 (0.016)^^ 0.12 (0.03)^^ 0.19 (0.03)^^ 0.25 0.24 0.25 0.74 
  0.25 -0.009 (0.01) 0.10 (0.014)^^ 0.11 (0.01)^^ 0.10 (0.01)^^ 0.19 0.19 0.25 0.63 
    0.50 -0.010 (0.01) 0.11 (0.011)^^ 0.10 (0.01)^^ 0.10 (0.01)^^ 0.13 0.13 0.25 0.50 
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Comparison of Regression Control Chart and Random  

Coefficient Regression Model Control Chart Average Run  

Lengths under In-Control Population Parameters 

 

 Under the in-control population parameters the RCRMCC had higher or equal 

ARL as compared to the RCC except under the ICC equal to 0.0001 crossed with the 

level 1 R
2
 equal to 0.01 conditions.  Under the ICC = 0.0001 crossed with the level 1 R

2
 = 

0.01 conditions, the RCC performs 1% more efficiently than the RCRMCC.  Under all 

other conditions the RCRMCC has an equal or higher ARL, with a percentage difference 

ranging from -1% to 58402%, where the percentage difference is the difference between 

the RCRMCC and RCC ARL divided by the RCC ARL.   As the ICC, level 1 R
2
, and 

level 2 R
2
 values increase the ARL differences also increase.   Tables 5 and 6 provide the 

RCC and RCRMCC ARL under each of the in-control population conditions, with 

figures 1 and 2 providing a graphical display of the ARL, respectively.  Table 7 provides 

the RCRMCC minus RCC ARL differences, with Table 8 providing the percentage of the 

differences relative to the RCC ARL estimate, which are also graphed in Figure 3.   

 

Table 5 

 

In-Control CUSUM RCC ARL 

 

    Intra-Class Correlation 

L1R2 L2R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 73 75 86 93 143 

0.01 0.25 72 75 85 98 159 

0.01 0.50 72 75 85 96 152 

0.25 0.01 150 75 85 97 144 

0.25 0.25 149 74 86 98 147 

0.25 0.50 148 75 86 100 151 

0.50 0.01 649 76 85 93 153 

0.50 0.25 646 75 84 95 139 

0.50 0.50 640 76 86 101 148 
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Table 6 

 

In-Control CUSUM RCRMCC ARL 

 

    Intra-Class Correlation 

L1R2 L2R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 72 82 106 153 670 

0.01 0.25 73 81 106 156 676 

0.01 0.50 72 82 101 151 693 

0.25 0.01 150 176 255 396 3035 

0.25 0.25 151 177 248 400 2909 

0.25 0.50 148 176 250 391 2905 

0.50 0.01 664 811 1413 2860 60427 

0.50 0.25 670 828 1459 3027 41405 

0.50 0.50 655 815 1513 3011 86050 

 

 

 

 
 

  

Figure 1.  

 

In-Control CUSUM RCC ARL. 
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Figure 2.   

 

In-Control CUSUM RCRMCC ARL.  

 

 

 

Table 7 

 

In-Control RCRMCC-RCC ARL Differences 

 

    Intra-Class Correlation 

L1R2 L2R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 -1 7 20 60 527 

0.01 0.25 1 6 21 58 517 

0.01 0.50 0 7 16 55 541 

0.25 0.01 0 101 170 299 2891 

0.25 0.25 2 103 162 302 2762 

0.25 0.50 0 101 164 291 2754 

0.50 0.01 15 735 1328 2767 60274 

0.50 0.25 24 753 1375 2932 41266 

0.50 0.50 15 739 1427 2910 85902 
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Table 8 

 

In-Control RCRMCC-RCC ARL Percentage Difference in Comparison to RCC ARL 

 

    Intra-Class Correlation 

Level 1 R2 Level 2 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 -1% 9% 23% 65% 369% 

0.01 0.25 1% 8% 25% 59% 325% 

0.01 0.50 0% 9% 19% 57% 356% 

0.25 0.01 0% 135% 200% 308% 2008% 

0.25 0.25 1% 139% 188% 308% 1879% 

0.25 0.50 0% 135% 191% 291% 1824% 

0.50 0.01 2% 967% 1562% 2975% 39395% 

0.50 0.25 4% 1004% 1637% 3086% 29688% 

0.50 0.50 2% 972% 1659% 2881% 58042% 

 

 

 

 
 

 

Figure 3.   

 

In-Control RCRMCC-RCC ARL percentage difference in comparison to RCC ARL. 
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Comparison of the Regression Control Chart and Random  

Coefficient Regression Model Control Chart Average  

Run Lengths under the Out-of-Control Population  

Parameters 

 

 The out-of-control populations were composed of three mean shifts in the 

intercept of the data values; 0.2, 0.5, and 0.8 standard deviations.  Under the condition of 

a mean shift of 0.2 standard deviations the RCRMCC had higher ARL than the RCC, 

except in the case of the ICC being equal to 0.0001 where under some conditions the 

RCRMCC had lower ARL.  The differences in the ARL relative to the RCC ARL ranged 

from -6% to 365%, with the percentage difference increasing with the ICC,  level 1 R
2
, 

and level 2 R
2
 values.  Tables 9 and 10 provide the RCC and RCRMCC ARL under each 

of the 0.2 standard deviation mean shift out-of-control population conditions, with figures 

4 and 5 providing graphical displays of the ARL, respectively.  Table 11 provides the 

RCRMCC minus RCC ARL differences, with Table 12 providing the percentage of the 

differences relative to the RCC ARL estimates and Figure 6 providing graphical displays 

of the percentage differences.  Under the condition of a mean shift of 0.5 standard 

deviations, the RCRMCC had higher or equal ARL than the RCC.  The differences in the 

ARL, relative to the RCC ARL, ranged from 0% to 18%, with the percentage difference 

increasing with the ICC, level 1 R
2
, and level 2 R

2
 values.  Tables 13 and 14 provide the 

RCC and RCRMCC ARL under each of the 0.5  standard deviations mean shift out-of-

control population conditions, with figures 7 and 8 providing graphical displays of the 

ARL, respectively.  Table 15 provides the RCRMCC minus RCC ARL difference, with 

Table 16 providing the percentage of the difference relative to the RCC  ARL estimate. 

Figure 9 provides the graphical display of the percentage differences. Under the condition 

of a mean shift of 0.8 standard deviations, the RCRMCC had ARL equal to the RCC.  
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Both the RCC and RCRMCC had an ARL of 10 for all of the crossed conditions.  Tables 

17 and 18 provide the RCC and RCRMCC ARL under each of the 0.8 standard deviation 

mean shift out-of-control population conditions, with figures 10 and 11 providing 

graphical displays of the ARL, respectively.  Table 19 provides the RCRMCC minus 

RCC ARL difference, with Table 20 providing the percentage of the difference relative to 

the RCC ARL estimate and Figure 12 providing a graphical display of the percentage 

differences. 

 

 

Table 9 

 

Out-of-Control CUSUM RCC ARL under Mean Shift of 0.2 Standard Deviations 

 

     Intra-Class Correlation 

Level 1 R2 Level 1 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 45 46 48 51 60 

0.01 0.25 45 45 48 52 63 

0.01 0.50 44 45 48 51 61 

0.25 0.01 62 45 48 51 61 

0.25 0.25 61 45 48 50 62 

0.25 0.50 63 45 48 52 61 

0.50 0.01 103 46 49 51 63 

0.50 0.25 103 46 48 52 61 

0.50 0.50 102 45 48 52 63 
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Table 10 

 

Out-of-Control CUSUM RCRMCC ARL under Mean Shift of 0.2 Standard Deviations 

 

    Intra-Class Correlation 

Level 1 R2 Level 2 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 44 48 53 64 102 

0.01 0.25 44 48 54 60 101 

0.01 0.50 45 47 55 61 108 

0.25 0.01 62 64 75 91 169 

0.25 0.25 62 68 82 90 159 

0.25 0.50 59 66 73 92 158 

0.50 0.01 104 110 125 148 288 

0.50 0.25 107 112 129 154 317 

0.50 0.50 102 113 126 151 293 

 

 

 

 
 

 

Figure 4.   

 

Out-of-Control CUSUM RCC ARL under mean shift of 0.2 standard deviations. 

 

 

 

 

 

0

20

40

60

80

100

120

L2 = 0.01
L1 = 0.01
L2 = 0.25L2 = 0.50L2 = 0.01

L1 = 0.25
L2 = 0.25L2 = 0.50L2 = 0.01

L1 = 0.50
L2 = 0.25L2 = 0.50

A
ve

ra
q

ge
 R

u
n

 L
e

n
gt

h
 (

A
R

L)
 

R-Squared Value 

ICC = 0.0001

ICC = 0.05

ICC = 0.15

ICC = 0.25

ICC = 0.50



 

46 
 

 

3
8
 

 
 

 

Figure 5.  

 

Out-of-Control CUSUM RCRMCC ARL under mean shift of 0.2 standard deviations. 

 

 

 

Table 11 

 

Out-of-Control RCRMCC-RCC ARL Differences under Mean Shift of 0.2 Standard 

Deviations 

 

    Intra-Class Correlation 

Level 1 R2 Level 2 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 -1 2 5 13 42 

0.01 0.25 -1 3 6 8 38 

0.01 0.50 1 2 7 10 47 

0.25 0.01 0 19 27 40 108 

0.25 0.25 1 23 34 40 97 

0.25 0.50 -4 21 25 40 97 

0.50 0.01 1 64 76 97 225 

0.50 0.25 4 66 81 102 256 

0.50 0.50 0 68 78 99 230 
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Table 12 

 

Out-of-Control RCRMCC-RCC ARL Percentage Difference in Comparison to RCC ARL 

under Mean Shift of 0.2 Standard Deviations 

 

    Intra-Class Correlation 

Level 1 R2 Level 2 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 -2% 4% 10% 25% 70% 

0.01 0.25 -2% 7% 13% 15% 60% 

0.01 0.50 2% 4% 15% 20% 77% 

0.25 0.01 0% 42% 56% 78% 177% 

0.25 0.25 2% 51% 71% 80% 156% 

0.25 0.50 -6% 47% 52% 77% 159% 

0.50 0.01 1% 139% 155% 190% 357% 

0.50 0.25 4% 143% 169% 196% 420% 

0.50 0.50 0% 151% 163% 190% 365% 

 

 

 

 
 

 

Figure 6. 

 

Out-of-Control RCRMCC-RCC ARL percentage difference in comparison to RCC ARL 

under mean shift of 0.2 standard deviations. 
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Table 13 

 

Out-of-Control CUSUM RCC ARL under Mean Shift of 0.5 Standard Deviations 

 

    Intra-Class Correlation 

Level 1 R2 Level 1 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 17 17 17 18 18 

0.01 0.25 17 17 17 18 18 

0.01 0.50 17 17 17 18 18 

0.25 0.01 18 17 17 18 18 

0.25 0.25 18 17 17 18 18 

0.25 0.50 18 17 17 17 18 

0.50 0.01 19 17 17 18 18 

0.50 0.25 19 17 17 18 18 

0.50 0.50 19 17 17 18 18 

 

 

 

Table 14 

 

Out-of-Control CUSUM RCRMCC ARL under Mean Shift of 0.5 Standard Deviations 

 

    Intra-Class Correlation 

Level 1 R2 Level 2 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 17 17 18 18 19 

0.01 0.25 17 17 18 18 20 

0.01 0.50 17 17 18 18 19 

0.25 0.01 18 18 19 19 20 

0.25 0.25 18 18 19 19 20 

0.25 0.50 18 18 19 19 20 

0.50 0.01 19 19 20 20 20 

0.50 0.25 19 20 20 20 20 

0.50 0.50 19 19 20 20 20 

 

 

 

 

 

 

 

 

 

 



 

49 
 

 

3
8
 

 
 

 

Figure 7. 

 

Out-of-Control CUSUM RCC ARL under mean shift of 0.5 standard deviations. 

 

 

 

 
 

 

Figure 8. 

 

Out-of-Control CUSUM RCRMCC ARL under mean shift of 0.5 standard deviations. 
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Table 15 

 

Out-of-Control RCRMCC-RCC ARL Differences under Mean Shift of 0.5 Standard 

Deviations 

 

    Intra-Class Correlation 

Level 1 R2 Level 2 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 0 0 1 0 1 

0.01 0.25 0 0 1 0 2 

0.01 0.50 0 0 1 0 1 

0.25 0.01 0 1 2 1 2 

0.25 0.25 0 1 2 1 2 

0.25 0.50 0 1 2 2 2 

0.50 0.01 0 2 3 2 2 

0.50 0.25 0 3 3 2 2 

0.50 0.50 0 2 3 2 2 

 

 

 

Table 16 

 

Out-of-Control RCRMCC-RCC ARL Percentage Difference in Comparison to RCC ARL 

under Mean Shift of 0.5 Standard Deviations 

 

    Intra-Class Correlation 

Level 1 R2 Level 2 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 0% 0% 6% 0% 6% 

0.01 0.25 0% 0% 6% 0% 11% 

0.01 0.50 0% 0% 6% 0% 6% 

0.25 0.01 0% 6% 12% 6% 11% 

0.25 0.25 0% 6% 12% 6% 11% 

0.25 0.50 0% 6% 12% 12% 11% 

0.50 0.01 0% 12% 18% 11% 11% 

0.50 0.25 0% 18% 18% 11% 11% 

0.50 0.50 0% 12% 18% 11% 11% 
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Figure 9. 

 

Out-of-Control RCRMCC-RCC ARL percentage difference in comparison to RCC ARL 

under mean shift of 0.5 standard deviations 

 

 

 

Table 17 

 

Out-of-Control CUSUM RCC ARL under Mean Shift of 0.8 Standard Deviations 

 

    Intra-Class Correlation 

Level 1 R2 Level 1 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 10 10 10 10 10 

0.01 0.25 10 10 10 10 10 

0.01 0.50 10 10 10 10 10 

0.25 0.01 10 10 10 10 10 

0.25 0.25 10 10 10 10 10 

0.25 0.50 10 10 10 10 10 

0.50 0.01 10 10 10 10 10 

0.50 0.25 10 10 10 10 10 

0.50 0.50 10 10 10 10 10 
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Table 18 

 

Out-of-Control CUSUM RCRMCC ARL under Mean Shift of 0.8 Standard Deviations 

 

    Intra-Class Correlation 

Level 1 R2 Level 2 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 10 10 10 10 10 

0.01 0.25 10 10 10 10 10 

0.01 0.50 10 10 10 10 10 

0.25 0.01 10 10 10 10 10 

0.25 0.25 10 10 10 10 10 

0.25 0.50 10 10 10 10 10 

0.50 0.01 10 10 10 10 10 

0.50 0.25 10 10 10 10 10 

0.50 0.50 10 10 10 10 10 

 

 

 

 
 

 

Figure 10. 

 

Out-of-Control CUSUM RCC ARL under mean shift of 0.8 standard deviations. 
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Figure 11. 

 

Out-of-Control CUSUM RCRMCC ARL under mean shift of 0.8 standard deviations. 

 

 

 

Table 19 

 

Out-of-Control RCRMCC-RCC ARL Differences under Mean Shift of 0.8 Standard 

Deviations 

 

    Intra-Class Correlation 

Level 1 R2 Level 2 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 0 0 0 0 0 

0.01 0.25 0 0 0 0 0 

0.01 0.50 0 0 0 0 0 

0.25 0.01 0 0 0 0 0 

0.25 0.25 0 0 0 0 0 

0.25 0.50 0 0 0 0 0 

0.50 0.01 0 0 0 0 0 

0.50 0.25 0 0 0 0 0 

0.50 0.50 0 0 0 0 0 
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Table 20 

 

Out-of-Control RCRMCC-RCC ARL Percentage Difference in Comparison to RCC ARL 

under Mean Shift of 0.8 Standard Deviations 

 

    Intra-Class Correlation 

Level 1 R2 Level 2 R2 0.0001 0.05 0.15 0.25 0.50 

0.01 0.01 0% 0% 0% 0% 0% 

0.01 0.25 0% 0% 0% 0% 0% 

0.01 0.50 0% 0% 0% 0% 0% 

0.25 0.01 0% 0% 0% 0% 0% 

0.25 0.25 0% 0% 0% 0% 0% 

0.25 0.50 0% 0% 0% 0% 0% 

0.50 0.01 0% 0% 0% 0% 0% 

0.50 0.25 0% 0% 0% 0% 0% 

0.50 0.50 0% 0% 0% 0% 0% 

 

 

  

 
 

 

Figure 12. 

 

Out-of-Control RCRMCC-RCC ARL percentage difference in comparison to RCC ARL 

under mean shift of 0.8 standard deviations 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Regarding the first research question, as expected, it was found that the RCRMCC 

has higher ARL than the RCC under the in-control population conditions, when the ICC 

is greater than or equal to 0.05.  When the ICC is equal to 0.0001 the RCRMCC and RCC 

have equivalent ARL, where this would be expected given that the SLR parameter 

estimates are best under the ICC equal to 0.0001 conditions.  Mixed results were found in 

regards to the second research question regarding the comparison of the RCRMCC and 

RCC under the out-of-control population conditions. The RCRMCC is found to be as 

efficient as the RCC under the out-of-control condition where the mean shift is equal to 

0.8 standard deviations.  Under the other out-of-control mean shifts the RCRMCC has a 

higher ARL than the RCC, but this is most likely due to the poor parameter estimates 

produced by the SLR for the RCC, resulting in larger residuals, thus producing the false 

appearance of having higher efficiency.  Overall the results indicate that the RCRMCC is 

preferable under conditions where the ICC is greater than or equal to 0.05, where false 

alarms would be minimized under the RCRMCC, when the process is in-control.   

Though the RCRMCC proved to be more advantageous than the RCC, a couple of 

abnormalities arose in the ARL obtained through the simulations.  Under both the in-

control and out-of-control conditions, the RCRMCC, under the ICC = 0.50 condition, 

and the RCC, under the ICC = 0.0001, produce very high ARL, under the level 1 R
2
 

equal to 0.5 condition, as compared to other ARL for the control charts. The increased 
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ARL are most likely due to the extremely low level of residuals produced by the RCRM 

and SLR models, see Tables 3 and 4, thereby producing much larger ARL since the small 

model residuals were less likely to increase the magnitude of the CUSUM statistics.  

Furthermore, I was unable to show that the RCRMCC was more efficient under the mean 

shifts of 0.2 and 0.5 standard deviations.  In these cases the RCC consistently had lower 

ARL than the RCRMCC.  This is most likely due to the poor estimation of the slope 

under the SLR model when the ICC is greater than or equal to 0.05.  In these cases the 

SLR model estimated slopes around 0, which resulted in larger residuals, thus inflating 

the CUSUM statistics and leading to an out-of-control signal sooner than expected.    

Though both abnormalities exist, either the effect on the operation of the RCRMCC 

would be minimal or procedures could be implemented that would alleviate the issues.  

The latter is discussed more fully in the Future Studies subsection. 

Overall when the ICC is greater than or equal to 0.05 the RCRMCC is more 

efficient (having a higher ARL) than the RCC under the in-control conditions and has 

equivalent efficiency (the same ARL) when a large mean shift has occurred in the system 

process.  Thus, the RCRMCC would provide fewer false alarms under in-control system 

conditions and be able to detect large shifts in the system process under conditions 

common in the human services industry.  Under the small and moderate mean shift out-

of-control conditions, the RCRMCC appears to not detect the shift as quickly but other 

modifications to the CUSUM control chart parameters may allow for more equivalent 

rates of detection by the RCC.   
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Implication of Findings 

 In human services fields where the variability of the higher level units has an ICC 

level of 0.05 or greater the most appropriate control chart to be utilized would be the 

RCRMCC.  Utilizing the RCRMCC would allow for fewer false alarms, simultaneous 

estimation of conditional relationships, and estimation of variability among units on 

which measures are taken.   The RCRMCC thus would allow for better quality control 

charts within the human services field, opening up a new era of quality control within 

these industries.   

 Being able to utilize a more efficient quality control chart would allow for 

increased quality in the human services industry as based upon quantitative quality 

metrics for the field.  By overcoming the obstacles associated with the conditional 

relationships and higher level variability, the RCRMCC allows for improved monitoring 

of human services process, identification of quality issues, and allowing for a minimal 

number of control charts to be utilized by the operator.  Together this would further the 

implementation of more sophisticated quality control charts in the human services field, 

providing the ability to increase the quality of processes across many human services 

industries. 

Limitations of Study 

 The current study focused on several key population characteristics that affect the 

estimation of parameters within the RCRM; ICC, level 1 R
2
, and level 2 R

2
 values.  

Though these parameters are integral to the estimation of the RCRM and thereby the 

performance of the RCRMCC, several other population characteristics would serve to 

further expand the application of the RCRMCC.  The foremost limitation on the 
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simulations was that the RCRM was limited to one level of nesting, i.e. measures within 

units.  Further levels of nesting can be accounted for in the RCRM, and thereby used to 

produce RCRMCCs with higher level conditional relationships.  Another limitation was 

that the effect of the level 2 covariate on the intercept and slope was forced to be the 

same due to restrictions on the level 2 variance-covariance matrix.  Since allowing for 

differing effects would have required differing variances of the effects, these variances 

were set to be fixed and equal to each other.  This equivalence of the level 2 covariate 

effect on the intercept and slopes would not be a common event in practical application, 

and thus more likely scenarios may be considered in future simulations.  A third 

limitation that should be considered is that both the RCC and RCRMCC CUSUM charts 

were set to detect a moderate shift in the mean, other settings may be of interest in future 

studies.  Lastly, the effect of the covariate on the intercept and slope was fixed to have no 

correlation.  In practical application this would not always be true, that the slopes and 

intercepts are completely independent of each other.  Though none of these limitations 

take away from the end results of the study, they would be important consideration in the 

further exploration of the performance of the RCRMCC. 

Human Services Applications 

 The implementation of the RCRMCC in human services industries would utilize 

the same two phase process utilizes for other control charts.  Phase I encompasses the 

identification of the quality metric of interest, nesting structure of the data, and covariates 

for each level of the RCRM.  While the process is in an in-control state, a random 

sampling of units would be taken and all relevant quality measures and covariatestaken 

on each unit.  Under the RCRM framework an appropriate and valid model would be 
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estimated from the randomly selected sample.  The estimated in-control model would 

then be used to produce residuals on subsequently sample units in Phase II.  Under Phase 

II a continuation of the sampling process would occur, where the residual from the in-

control model for each unit would be computed.  These residuals would then be fed into 

an appropriate QCC, i.e. CUSUM or Shewhart type, for monitoring of shifts in the 

process.  In order to illustrate this process an example from the mental health services 

field is provided.   

 Over the past several years the Mental Health Center of Denver (MHCD; Denver, 

CO) has incorporated a RCRMCC, utilizing the CUSUM framework, into their overall 

quality control management system (McKinney, Olmos-Gallo, DeRoche, & LaGanga, 

2009).  In MHCD’s system the level of nesting are measures over time (Level 1) within 

consumers (Level 2).  The quality metric of interest was an internally developed recovery 

scale that incorporated items related to symptom management, engagement in services, 

housing status, and interest in education and employment.  The level 1 covariate of 

interest was the number of months since treatment (rate of change in recovery), with level 

2 covariates of diagnosis (mood, thought, or other diagnosis), treatment type (high 

intensity, moderate intensity, or outpatient treatment) and substance abuse (history of 

abuse or no history).  During Phase I development, consumers were selected from 

programs known to be functioning at a high level of service fidelity.  The recovery metric 

and covariates were measured at 2 month intervals from intake until discharge on all 

selected consumers.  A RCRM was then developed and validated based upon the in-

control measures.  Under Phase II all consumer data were evaluated under the in-control 

RCRM model.  The residuals obtained were then fed into the CUSUM QCC framework.  
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Using the electronic medical record system, clinical service staff could then retrieve a 

graph of the CUSUM chart to determine how the consumer was performing compared to 

the expected progress of consumers with the same diagnosis, treatment type, and 

substance abuse disorder.  This helps to reduce the time the clinical service staff spend 

determining the progress of each of the consumers, while making it easier to detect 

consumers that may need further assistance or other services.  Graphical examples of a 

consumer recovering at a faster rate than expected, as expected, and at a lower rate than 

expected under the RCRMCC implemented at MHCD are provided in Figures 13, 14, and 

15 respectively. 

 

 

 

Figure 13. 

A CUSUM RCRMCC example where the consumer is recovering faster than expected. 
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Figure 14. 

A CUSUM RCRMCC example where the consumer is recovering as expected. 

 

 

 

Figure 15.   

A CUSUM RCRMCC example where the consumer is recovering at a lower rate than 

expected. 
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Limitations to the Application of the Random  

Coefficient Regression Model Control  

Chart 

 

 The RCRMCC has shown itself to be valuable under situations typical in the 

human services industries, but the level of sophistication needed to implement and 

monitor the RCRMCC may be beyond the training of most quality control persons within 

these industries.  Under Phase I of the implementation of the control chart the user must 

be able to adequately develop a RCRM, considering all of the nuances that are associated 

with the model.  Furthermore, if the RCRMCC is not needed then many hours completing 

complicated models would be wasted and non-beneficial to the operations.  A more 

commercially friendly version of this control chart should be developed to help alleviate 

some of the issues associated with the use of these models and implementing them for 

use in the RCRMCC. 

Future Studies 

 Though the current study focused on many of the key population characteristics 

related to the RCRMCC, future studies may want to focus on other areas that can help to 

better understand the performance of the RCRMCC for varying applications.  Due to the 

RCRMCC having ARL that were higher under the 0.2 and 0.5 standard deviation mean 

shifts, it would be pertinent to review the effect of Fast Initial Response (FIR; 

Montgomery, 2005b) on the performance of the RCRMCC as compared to the unadjusted 

RCC.  FIR is intended to provide a faster response to a change in the system by starting 

the RCRMCC with a predetermined accumulation of residuals, thus allowing the 

CUSUM to signal a change more quickly if a system change has occurred. Other studies 
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may also want to look at control charts that monitor the higher level variances, where 

there are many control charts that have been established previously that look at changes 

in variance.  Another item to consider in future studies would be the use of multivariate 

control charts to monitor the higher level effects and their relationship with the lower 

level covariates.  Further study of these items would allow for a broader perspective of 

the applications of the RCRMCC. 
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APPENDIX A 

 

R SCRIPTS USED FOR SIMULATIONS 

  



 

69 
 

 

3
8
 

CODE for In-Control Population Creation 

##45 tables for the in-control populations (no mean shifts) will be 

##produced through the following procedures.  The 45 populations will  

##represent the crosses of the ICC values (0, .05, .15, .25, and .50), 

##Level 1 R squared values of (0.01, 0.25, and 0.5), and Level 1 R  

##squared values of (0.01, 0.25, and 0.5). 

 

 

##Load multivariate distribution package 

##Needed for production of random multivariate data 

library(mvtnorm); 

##Needed for linear mized effects model estimation  

library(nlme); 

 

 

##Set constant paramters for RCRM model, Note: G stands for gamma 

##Set grand intercept over all units/pop 

##Implies the mean of all vaues is 0 

G00 <- 0.00; 

##Set effect of Wj's on unit/group intercepts 

##The unit increase for each value ofthe Wj's 

G01 <- 0.1; 

##Set grand slope over all units/pop 

##Overall slope for all units 

G10 <- 0.1; 

##Set effect of Wj's on unit/group slopes 

##Unit increase in slope for each unit increase in Wj's 

G11 <- 0.1; 

##Set Level 1 R quared values 

L1R2 <- c(0.01, 0.25, 0.50); 

##Set Level 2 R squared values 

L2R2 <- c(0.01, 0.25, 0.50); 

##Set ICC values 

ICC <- c(0.5, 0.25, 0.0001, 0.05, 0.15); 

##Set total Variance 

Totvar <- 1; 

 

for (ic in 1:5){ 

for (lr1 in 1:3){  

for (lr2 in 1:3){ 

 

##Step 1, simulate the values for the 1000 pop/units within each 

##population 

 

##Set mean values for Wj's, u0j, and u1j 

##Wj's will have a mean of zero, keeping the intercept at 0, where the u0j and u1j will 
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##have means of G00 and G10 

distmean<-c(0,G00,G10); 

 

 

##Set variance/co-variance matrix for Wj's, G00+u0j, and G10+u1j 

##Set base matrix assuming variance of Wj is 1, u0j is 1, and u1j is 1 

##Assumes the covariance between u0j and u1j is 0 

distsigma<-matrix(c(1,1,1,1,1,0,1,0,1), ncol=3); 

 

##Calculate true variance of u0j and u1j given system parameters 

##Assumes 1/2 of the variance at level 2 is due to intercept and 1/2 due to slope 

distsigma[2,2] <- distsigma[3,3] <- 1/2*ICC[ic]*Totvar; 

##Var(Wj) = Cov(Xij, rij)/(0.1) 

distsigma[1,1] <- (L2R2[lr2]* distsigma[2,2])/(G01*G01); 

##Calculate covariance of Wjs and uoj/u1j base on L2R2 

##Covariance formula is corr(x,y) * SDx * SDy 

##Variance of Wj given by equation for beta1 (slope) of ols equation, beta1 = Cov(Wj, 

u0j/u1j)/Var(Wj) 

distsigma[1,2] <- distsigma[2,1] <- distsigma[1,3] <- distsigma[3,1] <- sqrt(L2R2[lr2])* 

sqrt(distsigma[1,1]) * sqrt(distsigma[2,2]); 

 

##Produce matrix of Wj, uoj, and u1j values for 1000 groups 

grps <- rmvnorm(n=1000, mean=distmean, sigma=distsigma, method = "svd"); 

groups <- as.data.frame(grps); 

remove(grps); 

names(groups)<- c("Wj","u0j","u1j"); 

 

 

##Initalize population matrix for computing yij assign group numbers 1 through 1000 

##The sequence of subtracting and adding 1 is to appriately calculate the pop numbers 

group <- seq(1:1000000); 

group <- group -1; 

group <- group%/%1000; 

group <-group + 1; 

##Put data in a data frame for future calcs 

pop <- data.frame(group); 

##Removing extraneous data 

remove(group); 

 

 

##Loop that produces 1000 observations for each of 1000 groups 

 for (g in 1:1000){ 

   

  ##Set mean values for Xij's, and rij 

  ##Xij's and rijs will have a mean of zero and groups$u0j respectively, 

keeping the intercept at 0 
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  distmean<-c(0,groups$u0j[g]); 

 

  ##Set variance/co-variance matrix for Xij's and rij's base matrix 

  ##Assumes the covariance  is 0 

  distsigma<-matrix(c(1,0,0,1), ncol=2); 

 

  ##Calculate true variance of Xij and rij given system parameters 

  distsigma[2,2] <- Totvar * (1 - ICC[ic]); 

  ##Var(Wj) = Cov(Xij, rij)/(u1j) 

  distsigma[1,1] <- (L1R2[lr1]* 

distsigma[2,2])/(groups$u1j[g]*groups$u1j[g]); 

  ##Calculate covariance of Wjs and uoj/u1j base on L2R2 

  ##Covariance formula is corr(x,y) * SDx * SDy 

  ##Variance of Wj given by equation for beta1 (slope) of ols equation, 

beta1 = Cov(Wj, u0j/u1j)/Var(Wj) 

  distsigma[1,2] <- distsigma[2,1] <- (L1R2[lr1] * distsigma[2,2]) / 

groups$u1j[g] ; 

 

 

  ##Produce 1000 random numbers for group 

  xrij <- as.data.frame(rmvnorm(n=1000, mean = distmean, sigma = 

distsigma)); 

  names(xrij)<- c("Xij","Yij"); 

 

  ##Testing 

  ##OLStest <- glm(Yij ~ Xij, data=xrij); 

  ##summary(OLStest); 

  start <-((g-1)*1000+1); 

  end <- (g*1000) 

  pop$yij[start:end] <- xrij$Yij; 

  pop$xij[start:end] <- xrij$Xij; 

  pop$Wj[start:end] <- groups$Wj[g]; 

 

  }; 

   

  filename <- 

paste("C:/Dissertation/PoPData/Pop","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L2_",L2R2[l

r2],".RData", sep=""); 

  save(pop, file = filename); 

  filename <- 

paste("C:/Dissertation/PoPData/Groups","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L2_",L2R

2[lr2],".RData", sep=""); 

  save(groups, file = filename); 

}; 

}; 

}; 
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CODE for Estimation of Models from In-Control Populations 

##45 OLS and 45 RCRM models for the in-control populations (no mean shifts) will be 

##produced through the following procedures.  The 45 models will  

##represent the crosses of the ICC values (0, .05, .15, .25, and .50), 

##Level 1 R squared values of (0.01, 0.25, and 0.5), and Level 1 R  

##squared values of (0.01, 0.25, and 0.5). 

 

##Needed for linear mized effects model estimation  

library(nlme); 

 

##Set Level 1 R quared values 

L1R2 <- c(0.01, 0.25, 0.50); 

##Set Level 2 R squared values 

L2R2 <- c(0.01, 0.25, 0.50); 

##Set ICC values 

ICC <- c(0.0001, 0.05, 0.15, 0.25, 0.5); 

 

##index for model parameters 

ic <- 3; 

lr1 <- 3; 

lr2 <- 3; 

 

##Due to memory management problems each model needed to be ran independently 

##The above constants were used to run each model estimation procedure 

 

##Load in-control population data 

 

filenameData <- 

paste("C:/Dissertation/PoPData/Pop","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L2_",L2R2[l

r2],".RData", sep=""); 

load(filenameData); 

 

memory.size(3000); 

 

##Step 1, Obtain OLS and RCRM models for each in-control population as 

##previously simulated 

 

##RCRM Model, intercept and slopes vary within groups, where group is a random 

factor 

try(RCRMmodel <- lme(yij ~ 1*Wj + xij*Wj, random=~1+xij|group, data=pop,  

control = lmeControl(niterEM = 500,msMaxIter = 1000, maxIter = 1000, returnObject = 

TRUE))); 

##OLS Model 

try(OLSmodel <- lm(yij ~ 1 + xij, data=pop)); 

 

##Save Models 
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filenameO <- 

paste("C:/Dissertation/ModelData/OLSmodel","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L2_

",L2R2[lr2],".RModel", sep=""); 

filenameR <- 

paste("C:/Dissertation/ModelData/RCRMmodel","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L

2_",L2R2[lr2],".RModel", sep=""); 

save(RCRMmodel, file = filenameR); 

save(OLSmodel, file = filenameO); 

 

remove(RCRMmodel); 

remove(OLSmodel); 

 

}}}; 

##End repeated code 

 

##Obtain summaries for each model 

##This will be used to validate the population models 

##and verify all models were estimated approriately before  

##use in CUSUM control chart simulations 

 

coeftable <- matrix(rnorm(1125,0,1), nrow=45); 

count<-0; 

 

for (ic in 1:5){ 

for (lr1 in 1:3){ 

for (lr2 in 1:3){ 

 

filenameO <- 

paste("C:/Dissertation/ModelData/OLSmodel","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L2_

",L2R2[lr2],".RModel", sep=""); 

load(filenameO); 

 

filenameR <- 

paste("C:/Dissertation/ModelData/RCRMmodel","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L

2_",L2R2[lr2],".RModel", sep=""); 

load(filenameR); 

 

count<-count+1; 

coeftable[count,1]<-ICC[ic]; 

coeftable[count,2]<-L1R2[lr1]; 

coeftable[count,3]<-L2R2[lr2]; 

coeftable[count,4]<-summary(RCRMmodel)[[20]][[1]]; 

coeftable[count,5]<-summary(RCRMmodel)[[20]][[2]]; 

coeftable[count,6]<-summary(RCRMmodel)[[20]][[3]]; 

coeftable[count,7]<-summary(RCRMmodel)[[20]][[4]]; 

coeftable[count,8]<-summary(RCRMmodel)[[20]][[5]]; 
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coeftable[count,9]<-summary(RCRMmodel)[[20]][[6]]; 

coeftable[count,10]<-summary(RCRMmodel)[[20]][[7]]; 

coeftable[count,11]<-summary(RCRMmodel)[[20]][[8]]; 

coeftable[count,12]<-summary(RCRMmodel)[[20]][[17]]; 

coeftable[count,13]<-summary(RCRMmodel)[[20]][[18]]; 

coeftable[count,14]<-summary(RCRMmodel)[[20]][[19]]; 

coeftable[count,15]<-summary(RCRMmodel)[[20]][[20]]; 

coeftable[count,16:18]<-VarCorr(RCRMmodel)[,1]; 

coeftable[count,19]<-summary(OLSmodel)[[4]][[1]]; 

coeftable[count,20]<-summary(OLSmodel)[[4]][[2]]; 

coeftable[count,21]<-summary(OLSmodel)[[4]][[3]]; 

coeftable[count,22]<-summary(OLSmodel)[[4]][[4]]; 

coeftable[count,23]<-summary(OLSmodel)[[4]][[7]]; 

coeftable[count,24]<-summary(OLSmodel)[[4]][[8]]; 

coeftable[count,25]<-summary(OLSmodel)[[6]]; 

 

remove(RCRMmodel); 

remove(OLSmodel); 

 

}}}; 

 

ctable <- paste("C:/Dissertation/Tables/Parameters.RTable", sep=""); 

write.table(coeftable, file = ctable); 
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CODE for simulation of RCC 

##10,000 simulations of the in-control and three mean shift CUSUM charts 

##will be performed for each of the OLS and RCRM models, with system paramters of  

##produced through the following procedures. ICC values (0, .05, .15, .25, and .50), 

##Level 1 R squared values of (0.01, 0.25, and 0.5), and Level 1 R  

##squared values of (0.01, 0.25, and 0.5), being manipulated. 

 

 

##Load multivariate distribution package 

##Needed for production of random multivariate data 

library(mvtnorm); 

##Needed for linear mized effects model estimation  

library(nlme); 

 

 

##Set constant paramters for RCRM model, Note: G stands for gamma 

##Set grand intercept over all units/pop 

##Implies the mean of all vaues is 0 

G00 <- 0.00; 

##Set effect of Wj's on unit/group intercepts 

##The unit increase for each value ofthe Wj's 

G01 <- 0.1; 

##Set grand slope over all units/pop 

##Overall slope for all units 

G10 <- 0.1; 

##Set effect of Wj's on unit/group slopes 

##Unit increase in slope for each unit increase in Wj's 

G11 <- 0.1; 

##Set Level 1 R quared values 

L1R2 <- c(0.01, 0.25, 0.50); 

##Set Level 2 R squared values 

L2R2 <- c(0.01, 0.25, 0.50); 

##Set ICC values 

ICC <- c(0.0001, 0.05, 0.15, 0.25, 0.5); 

##Set total Variance 

Totvar <- 1; 

##Set Mean Shifts 

shift <- c(0.0, 0.2, 0.5, 0.8); 

 

turn<-0; 

avgTable<-1:45; 

varTable<-1:45; 

 

for (sh in 1:4){ 

 for (ic in 1:5){ 

  for (lr1 in 1:3){  
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   for (lr2 in 1:3){ 

 

    memory.size(3000); 

    ##Create the list of value to get residuals and feed into 

CUSUM simulations 

    ##Step 1, load the population paramters for each group 

    filename <- 

paste("C:/Dissertation/PoPData/Groups","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L2_",L2R

2[lr2],".RData", sep=""); 

    load(filename); 

    remove(filename); 

    ##Step 2Change mean of intercept for each group by mean 

shift.  Since overall variability is 1 

    ##this results in an equivelant change in the G00 

    groups$u0j<-groups$u0j+shift[sh]; 

    ##Step 3 load RCRM and OLS models 

    filenameO <- 

paste("C:/Dissertation/ModelData/OLSmodel","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L2_

",L2R2[lr2],".RModel", sep=""); 

    load(filenameO); 

    filenameR <- 

paste("C:/Dissertation/ModelData/RCRMmodel","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L

2_",L2R2[lr2],".RModel", sep=""); 

    load(filenameR); 

 

 

 

    ##Produce values and run through CUSUM 10,000 

 

    points<-1:10000; 

    H<-5; 

    for (cusum in 1:10000){ 

     Cp<-Cn<-0; 

     count <- 0; 

     while ((Cp < H) & (Cn < H)) { 

      count <- count +1; 

      ##Initalize population matrix for computing 

yij assign group numbers 1 through 1000 

      ##The sequence of subtracting and adding 1 

is to appriately calculate the pop numbers 

      memory.size(3000); 

      group <- trunc(runif(1)*999 + 1); 

      ##Put data in a data frame for future calcs 

      samp <- data.frame(group); 

      memory.size(3000); 
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      ##Set mean values for Xij's, and rij 

      ##Xij's and rijs will have a mean of zero and 

groups$u0j respectively, keeping the intercept at 0 

      distmean<-c(0,groups$u0j[group]); 

 

      ##Set variance/co-variance matrix for Xij's 

and rij's base matrix 

      ##Assumes the covariance  is 0 

      distsigma<-matrix(c(1,0,0,1), ncol=2); 

 

      ##Calculate true variance of Xij and rij 

given system parameters 

      distsigma[2,2] <- Totvar * (1 - ICC[ic]); 

      ##Var(Wj) = Cov(Xij, rij)/(u1j) 

      distsigma[1,1] <- (L1R2[lr1]* 

distsigma[2,2])/(groups$u1j[group]*groups$u1j[group]); 

      ##Calculate covariance of Wjs and uoj/u1j 

base on L2R2 

      ##Covariance formula is corr(x,y) * SDx * 

SDy 

      ##Variance of Wj given by equation for 

beta1 (slope) of ols equation, beta1 = Cov(Wj, u0j/u1j)/Var(Wj) 

      distsigma[1,2] <- distsigma[2,1] <- 

(L1R2[lr1] * distsigma[2,2]) / groups$u1j[group] ; 

 

 

      ##Produce random numbers for group 

      xrij <- as.data.frame(rmvnorm(n=1, mean = 

distmean, sigma = distsigma)); 

      names(xrij)<- c("Xij","Yij"); 

 

      samp$yij <- xrij$Yij; 

      samp$xij <- xrij$Xij; 

      samp$Wj <- groups$Wj[group]; 

 

      OLSpredict <- predict(OLSmodel, 

newdata=samp); 

 

      Cp <- max(0, samp$yij-

(OLSpredict[1]+(0.5/2)) + Cp); 

      Cn <- max(0, (OLSpredict[1]-(0.5/2)) - 

samp$yij + Cn);   

      }; 

     points[cusum]<-count; 

     }; 

    avg<-mean(points); 
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    vari<-var(points); 

    turn<-turn+1; 

    avgTable[turn]<-avg; 

    varTable[turn]<-vari; 

 

    filenameavg <- 

paste("C:/Dissertation/ModelData/OLSAVGTable","_shift_",shift[sh],".RTable", 

sep=""); 

    save(avgTable, file = filenameavg); 

    filenamevar <- 

paste("C:/Dissertation/ModelData/OLSVARTable","_shift_",shift[sh],".RTable", 

sep=""); 

    save(varTable, file = filenamevar); 

 

    }; 

   }; 

  }; 

 }; 
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CODE for the Simulation of RCRMCC 

##10,000 simulations of the in-control and three mean shift CUSUM charts 

##will be performed for each of the OLS and RCRM models, with system paramters of  

##produced through the following procedures. ICC values (0, .05, .15, .25, and .50), 

##Level 1 R squared values of (0.01, 0.25, and 0.5), and Level 1 R  

##squared values of (0.01, 0.25, and 0.5), being manipulated. 

 

 

##Load multivariate distribution package 

##Needed for production of random multivariate data 

library(mvtnorm); 

##Needed for linear mized effects model estimation  

library(nlme); 

 

 

##Set constant paramters for RCRM model, Note: G stands for gamma 

##Set grand intercept over all units/pop 

##Implies the mean of all vaues is 0 

G00 <- 0.00; 

##Set effect of Wj's on unit/group intercepts 

##The unit increase for each value ofthe Wj's 

G01 <- 0.1; 

##Set grand slope over all units/pop 

##Overall slope for all units 

G10 <- 0.1; 

##Set effect of Wj's on unit/group slopes 

##Unit increase in slope for each unit increase in Wj's 

G11 <- 0.1; 

##Set Level 1 R quared values 

L1R2 <- c(0.01, 0.25, 0.50); 

##Set Level 2 R squared values 

L2R2 <- c(0.01, 0.25, 0.50); 

##Set ICC values 

ICC <- c(0.0001, 0.05, 0.15, 0.25, 0.5); 

##Set total Variance 

Totvar <- 1; 

##Set Mean Shifts 

shift <- c(0.0, 0.2, 0.5, 0.8); 

turn<-0; 

avgTable<-1:45; 

varTable<-1:45; 

 

 

 

 

for (sh in 1:4){ 
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 for (ic in 1:5){ 

  for (lr1 in 1:3){  

   for (lr2 in 1:3){ 

 

    memory.size(3000); 

    ##Create the list of value to get residuals and feed into 

CUSUM simulations 

    ##Step 1, load the population paramters for each group 

    filename <- 

paste("C:/Dissertation/PoPData/Groups","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L2_",L2R

2[lr2],".RData", sep=""); 

    load(filename); 

    remove(filename); 

    ##Step 2Change mean of intercept for each group by mean 

shift.  Since overall variability is 1 

    ##this results in an equivelant change in the G00 

    groups$u0j<-groups$u0j+shift[sh]; 

    ##Step 3 load RCRM and OLS models 

    filenameO <- 

paste("C:/Dissertation/ModelData/OLSmodel","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L2_

",L2R2[lr2],".RModel", sep=""); 

    load(filenameO); 

    filenameR <- 

paste("C:/Dissertation/ModelData/RCRMmodel","_ICC_",ICC[ic],"_L1_",L1R2[lr1],"_L

2_",L2R2[lr2],".RModel", sep=""); 

    load(filenameR); 

 

 

 

    ##Produce values and run through CUSUM 10,000 

 

    points<-1:10000; 

    H<-5; 

    for (cusum in 1:10000){ 

     Cp<-Cn<-0; 

     count <- 0; 

     while ((Cp < H) & (Cn < H)) { 

      count <- count +1; 

      ##Initalize population matrix for computing 

yij assign group numbers 1 through 1000 

      ##The sequence of subtracting and adding 1 

is to appriately calculate the pop numbers 

      memory.size(3000); 

      group <- trunc(runif(1)*999 + 1); 

      ##Put data in a data frame for future calcs 

      samp <- data.frame(group); 
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      memory.size(3000); 

 

      ##Set mean values for Xij's, and rij 

      ##Xij's and rijs will have a mean of zero and 

groups$u0j respectively, keeping the intercept at 0 

      distmean<-c(0,groups$u0j[group]); 

 

      ##Set variance/co-variance matrix for Xij's 

and rij's base matrix 

      ##Assumes the covariance  is 0 

      distsigma<-matrix(c(1,0,0,1), ncol=2); 

 

      ##Calculate true variance of Xij and rij 

given system parameters 

      distsigma[2,2] <- Totvar * (1 - ICC[ic]); 

      ##Var(Wj) = Cov(Xij, rij)/(u1j) 

      distsigma[1,1] <- (L1R2[lr1]* 

distsigma[2,2])/(groups$u1j[group]*groups$u1j[group]); 

      ##Calculate covariance of Wjs and uoj/u1j 

base on L2R2 

      ##Covariance formula is corr(x,y) * SDx * 

SDy 

      ##Variance of Wj given by equation for 

beta1 (slope) of ols equation, beta1 = Cov(Wj, u0j/u1j)/Var(Wj) 

      distsigma[1,2] <- distsigma[2,1] <- 

(L1R2[lr1] * distsigma[2,2]) / groups$u1j[group] ; 

 

 

      ##Produce random numbers for group 

      xrij <- as.data.frame(rmvnorm(n=1, mean = 

distmean, sigma = distsigma)); 

      names(xrij)<- c("Xij","Yij"); 

 

      samp$yij <- xrij$Yij; 

      samp$xij <- xrij$Xij; 

      samp$Wj <- groups$Wj[group]; 

 

      RCRMpredict <- predict(RCRMmodel, 

newdata=samp); 

 

      Cp <- max(0, samp$yij-

(RCRMpredict[1]+(0.5/2)) + Cp); 

      Cn <- max(0, (RCRMpredict[1]-(0.5/2)) - 

samp$yij + Cn);   

      }; 

     points[cusum]<-count; 
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     }; 

    avg<-mean(points); 

    vari<-var(points); 

    turn<-turn+1; 

    avgTable[turn]<-avg; 

    varTable[turn]<-vari; 

 

    filenameavg <- 

paste("C:/Dissertation/ModelData/AVGTable","_shift_",shift[sh],".RTable", sep=""); 

    save(avgTable, file = filenameavg); 

    filenamevar <- 

paste("C:/Dissertation/ModelData/VARTable","_shift_",shift[sh],".RTable", sep=""); 

    save(varTable, file = filenamevar); 

 

    }; 

   }; 

  }; 

 }; 
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