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ABSTRACT 
 
 

Green, Sheridan. Assessing Sensitivity of Early Head Start Study Findings to  
Manipulated Randomization Threats. Published Doctor of Philosophy 
dissertation, University of Northern Colorado, 2013.  
 
Increasing demands for design rigor and an emphasis on evidence-based practice 

on a national level indicated a need for further guidance related to successful 

implementation of randomized studies in education.  Rigorous and meaningful 

experimental research and its conclusions help establish a valid theoretical and evidence 

base for educational interventions and curricula.  The validity of findings derived from an 

experimental design largely depends on the quality of the randomization and the study 

implementation.  This study’s purpose was to systematically examine how the magnitude 

and type of typical randomization problems affected study results.  I used secondary data 

from a randomized national study, the Early Head Start Research and Evaluation Project, 

to examine the manipulated effects of threats to randomization on selected child 

developmental outcomes.  Data were exposed to 1 of 27 different threat conditions and 

were compared with randomized data using sensitivity analysis to assess effects on 

intervention-control balance on covariates and results bias introduced by the threat (Type 

I and II error, mean percent bias, and effect size differences).  The conditions varied by 

overall sample size (small, medium, large), proportion of the sample disrupted (5%, 15%, 

25%), and the type of disruption (allocation bias, noncompliance, differential attrition).  
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The effects of post hoc statistical adjustments, propensity score analysis, and analysis of 

covariance were also examined.  

The introduction of imbalance and bias in baseline covariates generally led to bias 

in the results under threat conditions.  The allocation bias scenario was most affected by 

imbalance under the threat condition, although a high level of imbalance was also 

introduced in the noncompliance scenarios and a moderate amount in the differential 

attrition conditions.  Baseline imbalance and bias were greatest for the large samples and 

for the samples that were threatened at the 25% threat level.  As expected, the greater the 

proportion of the sample affected by the threat scenario, the greater the likelihood of 

baseline imbalance, bias, and biased results. 

The threat scenario under which the outcomes results were most sensitive was 

allocation bias, matching the larger baseline imbalance and bias introduced.  Examination 

by sample size indicated a relatively high rate of Type I error was found for the small 

samples, while the highest rates of Type I and Type II error were among the large 

samples.  Overall bias was highest among the small samples; 35% of the tests were 

biased either in terms of the significance test, the mean effect size difference, or mean 

percent bias.  The samples that were affected by the largest proportion of threat were the 

most sensitive to the disruption, again matching the levels of introduced baseline 

imbalance and bias.  For this group, the high mean percent bias (14.3%) was notably 

higher than the 15% and 5% threat levels.  Overall, the adjustment techniques introduced 

more bias than they corrected.  

The well-respected randomized design is susceptible to any number of design 

threats which, depending on the circumstances, might bias effect estimates of interest. 
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Implications for researchers, regardless of study sample size, include measuring sufficient 

baseline covariates to conduct balance checks, preventing design threats by closely 

monitoring research practices, and generally using various means, such as literature 

review and replication, to cross-check findings.  Statistical adjustment methods 

appropriate to the threat type are warranted when bias is likely to be present.  The 

reliance on randomization to prevent all internal validity problems should be in direct 

proportion to efforts taken to maintain the design’s integrity. 
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CHAPTER I 
 
 

INTRODUCTION AND BACKGROUND 
 
 

Increasing focus on reform and accountability over the past decade has driven 

numerous political, methodological, and statistical advances to support more rigorous and 

effective research and programs in education in the United States (Burtless, 2001; 

Hostetler, 2005; Institute of Education Sciences, U.S. Department of Education [IES], 

2008; National Research Council [NRC], 2002; No Child Left Behind, 2002).  The call 

for evidence-based programs in education founded on scientifically-based research (i.e., 

grounded in rigorous principles and methods; NRC, 2002) has grown ever louder since 

2001, advocating the use of randomized experimental designs, comparing outcomes for 

intervention and control groups, and promoting the conduct of more rigorous quasi-

experiments.  

Randomized experimental studies are known by a variety of names: randomized 

controlled trials, randomized field experiments, and, simply, experiments.  Experiments 

employ the technique of randomization, also called random assignment, and can be 

classified into different design types (Campbell & Stanley, 1963).  Random assignment is 

defined as the selection method in an experiment by which an experimental subject or 

participant has an equal probability of being chosen for one of n available interventions, 

treatments, or conditions (Fisher, 1935; Hall, 2002; Levi, 1983).  Gueron (2001) 

described random assignment another way, explaining that random assignment uses a 
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“lottery-like process” to allocate participants to two or more groups to be compared to 

determine the intervention’s “net impact,” with the net impact referring to the outcomes 

achieved that would not have resulted without the intervention (p. 18).  

Chapter II of this work more thoroughly describes the purpose and advantages of 

random assignment; however, in brief, the historic and current advocacy for random 

assignment is aimed mainly at improving researchers’ ability to determine the causal 

effects of interventions, e.g., educational programs and curricula implementation.  The 

goal is to understand whether (and to what extent) educational interventions have an 

impact on the outcomes under study while controlling for other potential influences 

called confounds or extraneous variables.  Gall, Gall, and Borg (2003) described 

extraneous variables as any variable or aspect of the situation other than the intervention 

that might affect the study outcome if not controlled in the context of the experiment (p. 

368). 

Random assignment is valued for many reasons, one being its ability to reduce 

selection bias, i.e., bias associated with systematic differences between intervention and 

control groups.  Bias refers to any systematic error encountered in a study.  Random 

assignment increases the ability to obtain unbiased causal estimates (i.e., results) because 

at pretest, the intervention and control groups are considered equivalent on relevant 

covariates (Steiner, Cook, Shadish, & Clark, 2010).  Other benefits include the ability to 

minimize or control most threats to internal validity (Berger, 2005; Campbell & Stanley, 

1963; Gall et al., 2003).  The fear with poorly executed research designs that are intended 

to describe causal relationships is that differentiation between spurious, indirect, and 

causal associations becomes very difficult (Grimes & Schulz, 2002). 
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The following provocative statement made by key leaders in educational and 

cross-disciplinary research (Cook & Shadish, 2011) reflects both the hope and frustration 

of the field: “the state of causal research in education is sorry, but improving” 

(Northwestern University, 2011, p. 1).  Indeed, relatively recent innovations have 

contributed to considerable improvements in quasi-experiments of education 

interventions.  For example, increased use of propensity score analysis and regression 

discontinuity design improves study rigor by helping reduce group assignment selection 

bias and has arguably improved researchers’ ability to make causal claims.  To briefly 

explain, propensity score methods involve the statistical computation of a score that can 

be used to equate intervention and control groups on those covariates through matching, 

stratification, weighting, regression, or ANCOVA (Analysis of Covariance; Clark, 2008; 

Shadish & Steiner, 2010).  This is generally an unnecessary process in randomization 

because by definition the groups are considered equivalent by chance.  Regression 

discontinuity design is a method that compares intervention and control groups’ scores 

within a relatively narrow band around a cut-off point or threshold.  Regression 

discontinuity design is considered the next-best method to RA in reducing selection bias 

(Schochet et al., 2010).  

Regardless of these advances, no matter what field or sector, randomizing study 

participants to intervention or control groups is still considered the most effective way to 

obtain unbiased average intervention effects (Fisher, 1925, 1935; Gall et al., 2003; Hall, 

2007; National Research Council, 2002; Steiner, Cook, Shadish, & Clark, 2010).  These 

benefits remain the justification for continued advocacy for using randomized designs in 

educational intervention research.  Evidence suggests, however, that randomized studies 
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have not been frequently conducted in education research compared with other fields 

(Boruch, DeMoya, & Snyder, 2001; Cook, 2002, 2003; Cook & Shadish, 1994), although 

their numbers are slowly increasing.  Indeed, U.S. research in education is barely 100 

years old (National Research Council, 2002). 

Despite the potential benefits of using an experimental design, unsuccessful, 

inappropriate, or incorrect implementation of this design could weaken or eliminate the 

bias-reducing advantages of random assignment.  It is within this context that the current 

research was conducted.  Threats to successful randomization are numerous and 

comprised the primary focus of this study.  The following paragraphs of this chapter 

describe the problems researchers face with regard to randomization threats, provide a 

rationale for the study, and briefly explain the context of the study.  This chapter also 

contains a description of the study’s purpose, research questions, limitations, and 

implications.  

Problem Statement 

Researchers generally agree that random assignment, when properly 

implemented, remains the best way to ensure unbiased study conclusions regarding 

intervention effectiveness and to enhance potential for inferring causality with respect to 

intervention or treatment effects (Fisher, 1925, 1935; National Research Council, 2002; 

Papineau, 1994).  Berger (2005) admitted, however, that there is a continuum of quality 

among randomized studies that often goes unacknowledged (i.e., not all randomized 

studies are alike).  He argued that when the term random assignment is used, the internal 

validity of the study findings is assumed, when in fact it is not guaranteed. Perfectly 

implemented randomized intervention studies in the social sciences are incredibly rare 
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(Dunn, Maracy, & Tomenson, 2005).  While successful implementation of random 

assignment is powerful and effective, unsuccessful implementation or post-randomization 

problems clearly pose serious threats to the design’s inherent benefits.  Researchers’ 

ability to interpret study findings and infer causality diminishes when random assignment 

is compromised.  The added problem is that the degree to which, and under what 

conditions, certain random assignment problems do affect the results is unknown, 

particularly in educational intervention studies.  A limited number of causal 

investigations using randomized designs exists in education (Boruch et al., 2001; 

Maxwell, 2004; Vinovskis, 2002).  Thus, more than a little potential for design 

implementation problems exists from a lack of cumulative experience.  A possible 

explanation for the lack of experimental studies in education has been inconsistent 

political support and funding for evaluation in education over the last century (see 

Vinovskis, 2002, for a brief history of development and evaluation at the U.S. 

Department of Education). 

The assumption that the use of a randomized design just “takes care” of design 

problems is to a large degree true when it is implemented appropriately.  In fact, 

implementing random assignment seems relatively simple compared with the challenging 

statistical techniques and adjustments required to produce good quasi-experiments.  

However, random assignment studies are commonly hijacked by problems such as biased 

allocation, noncompliance, and differential attrition (Downs, Tucker, Christ-Schmidt, & 

Wittes, 2010), making them more vulnerable than generally recognized. 

Randomization disruption, contamination, or failure might occur via various 

problems associated with the randomization process itself.  For example, flawed 
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randomization might occur in using methods inappropriate for the design, sample 

characteristics, or desired level of analysis.  Randomization failure is likely when there is 

biased (flawed) allocation (e.g., when the assignment to groups intended to be random is 

not).  Alternatively, disruption might be caused by post-randomization problems like 

intervention noncompliance or differential attrition.  To define, noncompliance occurs 

when research participants fail to follow their allocated intervention assignments (Chen et 

al., 2009; Dunn et al., 2005; Frangakis & Rubin, 1999).  For instance, a control 

participant might unexpectedly receive intervention or a participant allocated to 

intervention might not attend scheduled intervention sessions.  This is a problem because 

comparison of the intervention effects by group might become attenuated.  Differential 

attrition is essentially a missing data/nonresponse problem and it refers to systematic 

differences between the intervention and control groups that might influence the study 

results.  Differential attrition is considered to be one of the greatest threats to internal 

validity (Foster & Bickman, 1996) and is common in longitudinal, randomized 

experiments (Shadish, Hu, Glaser, Kownacki, & Wong, 1998).  Both small and large 

scale studies are at risk of encountering threats to randomization of one kind or another.  

These problems also lead to biased and invalid effect estimates for the intervention study. 

The use of a randomized design is specifically intended to ward off selection bias; 

however, it cannot prevent measurement bias (i.e., how the outcome was measured) and 

intervention bias (e.g., noncompliance).  On the other hand, the latter bias types can 

disrupt the advantages gained by randomizing.  Incorrect findings can foster 

misconceptions in interpretations and conclusions that ultimately mislead the field.  As an 
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added insult, they can destroy the utility of said findings in supporting the development 

of effective evidence-based policies and interventions.  

The climate, culture, and context of educational interventions make for a unique 

combination and possible increased likelihood of randomization difficulties (De Anda, 

2007; Falaye, 2009; National Research Council, 2002; Ong-Dean, Hofstetter, & Strick, 

2010).  For example, conducting randomized studies in education is still not particularly 

well supported by families, school and program staff, and local school administration 

(Gueron, 2001).  This lack of support comes from many factors including a widespread 

perception of unfairness or that it is unethical to withhold program or educational 

services from one group but not another (Dunford, 1990; Gueron, 2001).  Given this 

belief, randomization processes might be thwarted in some cases. 

Clearly, advancement and innovation have contributed to quality improvements in 

methods and overall rigor in design; however, warnings about inferring causation in 

quasi-experimental designs and poorly implemented experiments remain.  Intentional 

efforts to improve the state of causal research in education are needed to enhance the 

quality of research findings and the validity of conclusions.  Threats to randomization are 

in direct opposition to this effort. 

Context for the Current Study 

A number of theoretical, political, and cultural contexts influenced the conduct 

and exigency of this study.  The framework of causality is well matched with the 

relatively recent emphasis on ensuring educational programming is developed on 

scientifically-based research.  The focus of this study was to understand the impact of 

design threats on the ability to ultimately make valid causal claims.  It is essential to 
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know what interventions and programs work.  The evidence base of what works (and 

what does not work) in educational programs has been growing but is still inadequate. 

Likewise, improved methodological knowledge related to the implementation of 

randomized designs is necessary (Cook, 2002; Gueron, 2001; Imai, Keele, Tingley, & 

Yamamoto, 2011; Shadish & Steiner, 2010; Towne & Hilton, 2003).  Chapter II provides 

a more thorough discussion of causality and what is known as the counterfactual 

framework. 

Call for Increased Rigor 

Perhaps in reaction to their scarcity, a broad increase in the number of randomized 

studies in education is expected due to recent legislative changes and political shifts. 

Legislation guides the mission and functions of the U.S. Department of Education and its 

stance toward scientific research.  The Education Sciences Reform Act of 2002 specified 

the establishment of the U.S. Department of Education, Institute of Education Sciences 

(IES), and its various centers for research, evaluation, and statistics.  Within the Act, 

standards for the conduct and evaluation of research are outlined, clearly setting the 

expectations for adherence to and development of scientifically-based research standards 

(Education Sciences Reform Act, 2002).  Institute of Education Sciences’(2011) 

subsequent evolution over the last decade is highlighted by the development of research 

priorities emphasizing increased rigor and relevance, which includes heightened 

provision of methodological and analytic support.  It is within this national context of 

improving research in education that the current study is housed--one of increasing 

demands for research rigor and causal claims. 
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No Child Left Behind Legislation 
 

No Child Left Behind (NCLB; 2002) provided another contextual influence on 

the current study.  The climate fostered by NCLB and other current accountability 

frameworks is characterized by a top down, audit-like approach to accountability, 

assessment, and evaluation.  Evaluators focused on educational evaluation theory face 

many challenges in the accountability evaluation legislated by No Child Left Behind 

(Ryan, 2004, p. 444).  This presents difficulties with regard to teacher support of 

evaluation at the classroom and school levels.  Within a culture of fear of losing one’s 

job, teachers are likely to view evaluation with much more suspicion and reluctance 

(Gueron, 2001).  With the added obligations associated with the requirements of a 

randomized design, teachers are even more likely to withhold support for research and 

evaluation in their classrooms.  In many ways, the climate set by NCLB detracts from the 

goals to grow a deeper understanding from research about what works in educating 

young children; yet this climate does demand that more dedicated attention and energy go 

toward examining the state of affairs in policy and research in education.   

What is not clearly articulated in the research literature or written governmental 

guidance is how standards of methodological rigor must be employed and maintained 

within the context of a randomized design.  In addition, no formal guidance is available 

on the magnitude of detrimental effects (caused by certain types of randomization 

problems) on the accuracy of study results.  With the understanding that no perfect 

implementation of randomization exists in research in education, it would certainly 

behoove researchers to be familiar with the comparative effects of small, medium, and 

large problems affecting randomization.  So far the message is simply to use, whenever 
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possible, randomization or an approximate, observational study alternative, meaning 

quasi-experiments carefully crafted to achieve accurate, unbiased study results. 

Study Rationale 

With the current climate of increasing demands for design rigor and an emphasis 

on evidence-based practice on a national level, it is apparent that further guidance is 

needed regarding successful implementation of randomized studies in education. 

Rigorous and meaningful experimental research and its conclusions help establish a valid 

theoretical and evidence base for educational interventions and curricula.  The quality of 

findings that result from using an experimental design largely depends on the quality of 

RA implementation, the degree of the design’s success in eliminating confounds and 

selection bias, and achieving balance across intervention and control groups.  Balance in 

this sense means that intervention and control groups have equivalent distributions on 

available pre-intervention covariates (Hansen & Bowers, 2008; Steiner et al., 2010).  As 

stated earlier, problems encountered in implementing randomization or in maintaining 

balance can lead to poor quality studies.  Certainly one could argue that researchers are 

ethically obligated to understand, avoid, and combat the potential problems associated 

with the best-advocated, gold standard of research design.  In the field of education, little 

comprehensive guidance on the differential effects of common randomization threats on 

study results exists, particularly as part of a strategic methodological comparison.  

Rather, in the rare instances when randomization problems are mentioned in the 

literature, they are typically an a posteriori explanation of studies-gone-wrong (Downs et 

al., 2010).  Threats to randomization studies in education need to be examined because 

(a) they are relatively common; (b) conditions in the field of education pose a unique 



11 
 
combination of threats to randomization; (c) the effects of randomization failure might 

lead to invalid study findings and interpretations; and (d) findings resulting from 

randomized studies in education have high stakes implications for policies and 

programming.  

In the current study, I investigated different types and magnitudes of 

randomization threats in terms of their comparative effects on study results in the context 

of an early childhood intervention study.  Most of the prior research in this area has been 

conducted using simulated data (Bruhn & McKenzie, 2009; Davies, Williams, & 

Yanchar, 2008; Manolov, Solanas, Bulté, & Onghena, 2010); thus, a further rationale for 

this study was the need to examine potential threats to randomization within a more 

complex real life situation with “real” data (see the limitations section below for a 

summary of the relative pros and cons of conducting this study using real versus 

simulated data).  Understanding the effects of randomization disruption, particularly on 

real, rather than simulated, intervention data might support more vigilant research 

practices and increase awareness and prevention of potential problems.  It was also 

intended that the study would address a critical question of “how much” disruption a 

study of this type could be tolerated before the assumption of strongly ignorable 

intervention assignment was violated, thus diminishing the bias-reducing advantages of 

the design by introducing confounds.  

The rationale for this study centered on a need to make explicit the effects of 

common randomization threats to the accuracy and validity of study results.  The 

intention was to explore whether the findings, obtained by analyzing data under a variety 

of manipulated randomization threat conditions, correctly matched the original 
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randomized study findings.  It was hoped that this study would contribute practical 

information in a realistic framework to the research improvement efforts so desired in the 

field of education.  Falaye (2009) suggested there is a “need for researchers to update 

their skills in the use of randomized experiments through capacity building to ensure that 

findings from educational research and evaluation are creditable and defensible” (p. 21). 

Thus, gaining a better understanding of how common randomization threats in education 

studies affect the accuracy of study findings might help improve researchers’ capacity to 

address problematic random assignment designs.  

Purpose of the Study 

The purpose of this study was to systematically examine how the magnitude and 

type of typical randomization problems affect study results.  More specifically, I used 

secondary data from a randomized, national early childhood study, the Early Head Start 

Research and Evaluation Project (EHSRE), to examine the manipulated effects of threats 

to randomization on selected child developmental outcomes.  In Phases I through III of 

the study, copies of foundation datasets were each exposed to 1 of 27 different threat 

conditions (using two methods of threat exposure each) and were compared with the 

EHSRE randomized datasets using sensitivity analysis to assess effects on the following: 

(a) intervention-control balance on covariates, (b) bias levels, (c) Type I and II error rates 

(depending on significance of findings on non-threatened samples), and (d) results on 

child outcome measures.  The 27 conditions varied by overall sample size, proportion of 

the sample disrupted, and the type of disruption.  

In Phase IV, I examined several statistical approaches to correcting or adjusting 

differences between the threatened and randomized data to reduce bias that might be 
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introduced when randomization is compromised.  In this phase, the tested variables 

included the types of corrective techniques employed and the dependent variables 

included the rates of successful correction to outcome and the percentage of bias 

reduction achieved by each method.  The study was intended to increase knowledge of 

the potentially differential effects of randomization threats and the comparative effects of 

subsequent post-randomization statistical adjustment techniques commonly used in quasi-

experimental and randomized designs. 

Research Questions 

Q1 What are the comparative effects of 27 randomization threat conditions on  
 the randomization of the EHSRE data?  

a. What evidence of intervention-control group covariate imbalance  
 (i.e., baseline inequivalence between intervention and control 
 groups) is revealed in each of 27 threat conditions? 

b. What is the level of bias introduced by each of 27 threat conditions?  

Q2 How sensitive are EHSRE study results to randomization threat conditions  
that include manipulations of threat type (i.e., biased allocation, 
noncompliance, and differential attrition), overall sample size, and 
proportion of sample exposed to the threat condition? Specifically, 
 
a. To what extent do threatened and non-threatened samples differ on  
 child outcome scores and observed effect sizes?  

b. What is the rate of Type I and Type II error associated with the  
threatened samples compared with the associated non-threatened 
sample for each of the child outcome variables? 
 

Q3 To what degree are corrective statistical methods effective in restoring or  
distorting results in the face of typical randomization threat conditions? 
Specifically, 
 
a.  What effect do corrective methods have on findings (means,  
 significance, and effect sizes) from threatened samples? 
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b. Within threat types, what is the comparative effectiveness of two  
 corrective techniques in reducing bias introduced under threat  
 conditions? 

Limitations and Scope 

The scope of this investigation addressed three typical types of randomization 

disruption that could potentially occur.  It is unknown the extent to which the study 

findings could generalize to what might be found across other randomization threat 

conditions.  However, given that the set of underlying problems created by those threats 

(i.e., introduction of selection bias, missing data problems, and internal design validity 

problems) was similar across threat types, the chances for generalizability were good.  In 

addition, since the study examined what occurred in a variety of sample size conditions, 

findings have a greater likelihood of applicability to both large, medium, and small 

studies. 

Findings could pertain to studies of similar design, type, function, and size; this 

study might offer a good road map to design vigilance in the context of early childhood 

interventions.  This study’s findings were somewhat limited in terms of the correction 

methods employed.  Replication of this study’s findings would certainly be necessary for 

independent confirmation of findings.  However, the correction methods I used were 

selected for their high frequency of use in the field to reduce selection bias and address 

missing data.  

Perhaps the most important limitation of the study was that since a Monte Carlo 

simulation study was not conducted, the study did not achieve a simulated level of 

precise control over conditions.  However, the trade-off was the results would be 

contextualized in a real-life intervention setting.  Using these data provided a deliberate 
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avenue for examining more realistic study situations that accurately reflected the 

complexity and quantity of independent and dependent variables common in large, 

randomized research.  Because the intention of the study was to (a) present the effects of 

realistic, potential randomization disruption scenarios in an applied data setting; (b) 

understand the effects of said randomization disruption on complex study conclusions; 

and (c) offer realistic ameliorative strategies, it was decided that it would be more 

effectual to vary conditions within a real, randomized data set.  Although a Monte Carlo 

simulation study would no doubt result in a greater degree of control with regard to the 

strict manipulation of levels of bias, the intent of this study was to examine these threats 

within the complexity of the existing biases of this large scale, randomized early 

childhood study. 

Study Implications 

The findings from this study have implications for the prevention, identification, 

and amelioration of randomization disruption in research studies in education.  The 

results from this study were also used to develop a set of cautions and recommendations 

for researchers with respect to identifying, preventing, understanding, and correcting 

randomization problems under a variety of research and intervention conditions (see 

Discussion in Chapter V).  It is intended that this information will enhance researchers’ 

ability to obtain more accurate study findings about whether interventions work.  

Findings from well-run randomized studies in education will ultimately lead to better 

evidence about how to enhance children’s achievement and well-being (Boruch et al., 

2001).  Ultimately, the consistent application of high quality research to practice in 

education is the key.  
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Summary 

The current study was intended to investigate the differential effects of problems 

commonly occurring in studies using randomized designs.  It used a secondary dataset 

from an experimental national early childhood intervention study.  While experimental 

design is known for its many advantages in supporting causal claims with regard to the 

effectiveness of educational interventions, potential pitfalls within each of the phases of 

implementing such a design might dramatically and negatively affect the accuracy of 

study findings.  Given the need and call for increased rigor in research and evaluation in 

education, supporting advances in what is known about potential challenges in RA 

implementation could not occur at a better time.  It is hoped this study’s findings provide 

a timely and relevant addition to the educational research literature. 

Chapter II provides an overview of causal frameworks and discusses implications 

of randomization problems with regard to important design assumptions.  A brief history 

of randomizations, its advantages, and the potential randomization threats are discussed.  

In addition, a description of statistical strategies for correcting the effects of 

randomization disruption is provided.  Chapter III describes the procedures and use of the 

longitudinal data from the national Early Head Start Research and Evaluation Project as 

the basis for investigating the different conditions of randomization disruption and the 

subsequent effects on study findings.  Chapter III also provides an explanation of the key 

study variables and addresses the statistical and analytical plans to answer the research 

questions. 



 

 

 
 

CHAPTER II 
 
 

REVIEW OF LITERATURE 
 
 

Overview 

Chapter II provides a review of the conceptual and research literature associated 

with the current methodological study.  It begins with a brief history of the theoretical 

frameworks in which this study was housed.  The study links evaluation theory within a 

causal framework in the context of the field of education, its relationship with 

experimental design, and the linked assumption of strongly ignorable intervention 

assignment.  Then, I describe the role of randomization in experimentation, its origins, 

purpose, and advantages.  Next, I discuss the supporting literature for the main premise of 

the study: threats to randomization and their implications for causal evaluation research 

in education.  This discussion provides a brief overview of different types and causes of 

randomization threats and their consequences and contains a more thorough focus on the 

threats under investigation in the current study.  

The three types of randomization threats I investigated in this dissertation study, 

which are discussed in greater detail in this chapter, include biased allocation, 

intervention noncompliance, and differential attrition.  After this section, a review of 

methods that have been used to identify/recognize randomization threats is provided 

along with a summary of corrective statistical methods used in the literature to ameliorate 

the problems associated with failed design assumptions: analysis of covariance, 
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propensity score analysis, complier average causal effect analysis, and multiple 

imputation.  

Finally, the chapter concludes with a description of the Early Head Start Research 

and Evaluation Study (EHSRE) that served as the secondary data source employed in the 

current study.  I provide an overview of the goals, structure, and general findings of the 

EHSRE study. 

Causality and the Role of Randomization 

Causal Frameworks, Counterfactuals, and 
the Assumption of Strong Ignorability 
  

Guo and Fraser (2010) described program evaluation as the study of cause and 

effects (p. 21).  They explained that causality in an evaluation context is the net gain or 

loss in the outcome of the intervention group that can be attributed to the intervention. 

The aim of clearly identifying causes and effects is central to intervention studies (Rubin, 

1972; Ward, 2009).  Causal and counterfactual frameworks provided the conceptual basis 

for this research study (Guo & Fraser, 2010; Heckman, 2005; Holland, 1986; Rubin, 

1972).  Heckman (2005) described causation in relation to the stability of the effect of 

intervention.  If, in holding all factors constant except one (i.e., the intervention), an 

effect or change occurs, it is considered a causal effect (Heckman, 2005, p. 1).  Sekhon 

(2008) described causal effects as the difference between two potential outcomes; 

however, only one of the two potential outcomes is observed.  This is a reference to the 

outcomes resulting from the intervention and the outcomes that would have resulted in 

the absence of the intervention (called the counterfactual).  

The origin of the counterfactual framework is attributed to Neyman and Rubin 

(Sekhon, 2007).  Guo and Fraser (2010) described the counterfactual framework as the 
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way in which causality is investigated.  The counterfactual is the potential outcome if the 

participants had not received the intervention (Guo & Fraser, 2010, p. 24).  Control or 

comparison groups are often referred to as counterfactual groups.  The counterfactual 

framework is helpful in considering the purpose and benefits of randomization.  The 

counterfactual group is meant to represent what would have happened to the same 

intervention participants if they had not participated in the intervention.  It stands to 

reason that we would want the counterfactual group to be as close to identical to the 

intervention group as possible.  This forms the basis of the rationale for establishing 

baseline group equivalence prior to the intervention.  Holland (1986) suggested that “the 

language and framework of experiments” is the model for causal inference (p. 946).  

 Related to this, the concept of strong ignorability is an essential premise in 

estimating causal effects in observational studies (Rosenbaum & Rubin, 1983; Steiner et 

al, 2010).  Strong ignorability is a critical treatment assignment assumption that 

Rosenbaum and Rubin (1983) described as met when assignment to the intervention 

group or the control group is independent of the potential outcomes, holding all 

covariates constant.  When the assumption of strong ignorability in treatment assignment 

is met, the outcome results are unconfounded or have little or no bias (error; Pearl, 2010; 

Shadish & Steiner, 2010).  If the treatment assignment is balanced on all covariates, then 

it is considered strongly ignorable (Emura, Wang, & Katsuyama, 2008; Pearl, 2010; 

Shadish & Steiner, 2010).  Violations of strong ignorability lead to biased estimates of 

average treatment effects.  Testing the assumption of strong ignorability is described as a 

statistical issue of considerable importance but little literature addresses how to assess the 

assumption (Emura et al., 2008).  No “supreme test” of the assumption exists according 
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to Will Shadish (Personal communication, August 10, 2011).  When the assumption of 

strong ignorability is violated in a randomized design, it means that selection bias is 

present and the benefits of the design might diminish dramatically.  When group 

assignment is not strongly ignorable, the intervention and control groups might not match 

on important characteristics; thus the control group no longer serves as a good 

counterfactual. 

Origin of Randomization 

Experimentation originated in the physical sciences; its success was due to the 

fact that the study of physical matter was amenable to the context of a controlled 

laboratory setting (Gall et al., 2003).  In Fisher’s (1925) first work clarifying his position 

on experimental design--Statistical Methods for Research Workers (with many reprint 

editions in subsequent years), he claimed the apotheosis of randomization, although he 

only discussed experimental design briefly in the book.  His experiments and connections 

with researchers in agriculture and biology shaped his view on the benefits of 

randomization (Fisher, 1925, 1935; Hall, 2002, 2007; Yates, 1951).  Hall’s (2002) 

dissertation, an exposition on randomization and its history, focused primarily and 

comprehensively on the role of Fisher.  She attributed the change from systematic design 

to the randomized design of experiments that occurred in the first half of the 20th century 

to Fisher.  Mention of earlier experimental design is also present in Hall’s work.  She 

cited the research of Peirce and his student Jastrow, who are known to be the first to 

randomize in experiments in the late 1800s.  However, the practice presumably halted 

until Fisher’s work (Hall, 2007). 
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Fisher’s (1935) advocacy for randomization grew from his research with small 

samples and understanding the role randomness plays with regard to sampling.  He 

reasoned that randomization eliminated experimental bias and enabled tests of 

significance to be performed (Hall, 2002).  Twenty-five years after Statistical Methods 

for Research Workers was published, Yates (1951) described the vast influence Fisher’s 

work had on scientific research, terming it a “complete revolution” (p. 19).  However, 

according to Hall’s (2002) research, it was not initially well received.  Fisher’s special 

contribution to experimental design was the development of analysis of variance and his 

strong view of the necessity of randomization, which would help ensure that the 

“estimates of error and tests of significance should be fully valid” (Yates, 1951, p. 26).  

Yates believed the use of experimental design was increasingly appropriate given its 

benefits in improving the accuracy and certainty of experimental results (p. 33).  Later 

work by Fisher was characterized by more specificity around how to design and conduct 

randomization and replication; for example, he published a historic work called The 

Design of Experiments in 1935. 

With a different take on the history of social experiments (i.e., those conducted 

outside a laboratory), Dehue (2001) provided an historical reconstruction of an earlier 

and more gradual influence of the field of psychology on the randomized controlled 

design.  She claimed that as early as the 1870s, psychologists (or as she called them, 

psychophysical researchers) were deliberately forming intervention groups with control 

comparisons (p. 289).  In terms of the field of education, experimentation came into play 

in some of the early 1900 studies of school children (Dehue, 2001). 
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The work of Campbell and Stanley in the 1960s and beyond provided deeper 

examples of the types of experimental and quasi-experimental designs, their relative 

contributions to internal validity, and implications of experimentation for policy 

(Campbell, 1969; Campbell & Stanley, 1963).  A 1994 article from Cook and Shadish 

reviewed developments in social experiments across multiple disciplines including 

psychology and education over the preceding 15 year period.  They claimed a substantial 

change in the “dominant theory” of social experimentation during this time was 

characterized by an increase in the use of causation theories and more specific definitions 

and priorities regarding internal and external validity.  Some advances in quasi-

experimentation and concerns about generalized causal inferences were also discussed 

(Cook & Shadish, 1994).  They also highlighted key aspects of designing and 

maintaining a randomized experiment, which were of central interest to the current study 

and are addressed below.  Also of relevance, Cook and Shadish stated that much of the 

discussion about randomized experiments during this time was related to implementing 

them better and more often (p. 557).  This has continued to be the state of affairs in recent 

years. 

Purpose of Randomization 

Experimental designs, i.e., research studies employing randomization, are the 

most powerful quantitative research method of establishing a causal relationship between 

two or more variables (Fisher, 1925, 1935; Gall et al., 2003; Hall, 2007; National 

Research Council, 2002; Steiner et al., 2010).  In education, the purpose of using random 

assignment is primarily to help determine whether educational practices, interventions, 

and strategies have a true effect on recipient outcomes (recipients being, for example, 
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students, teachers, administrators, or parents taking part in the intervention).  In other 

words, using random assignment helps researchers answer research questions that seek 

whether and to what extent an intervention actually causes positive outcomes for 

recipients of the intervention while controlling for the effects of other potential causes.  

In the absence of random assignment, confounding or extraneous variables might lead to 

incorrectly attributing change to the intervention when it was the extraneous variables 

that led to the difference.  Random assignment controls for confounds such as personal or 

demographic characteristics that might lead to differences at posttest. 

Quasi-experimental or correlational studies (i.e., those not using random 

assignment) might suggest causal relationships; however, these could be misleading or 

altogether incorrect.  Gall et al. (2003) described an example in education in which 

correlational findings suggested a causal relationship that had implications for 

modifications to teacher practice.  However, an experimental study found the relationship 

was not corroborated. 

Clearly though, the purpose of random assignment is not to answer all types of 

research questions in education.  Random assignment is not meant to answer questions 

such as “How do students develop a sense of school belonging?”, which is better 

addressed by qualitative methods, or “What are the mechanisms or factors that mediate 

the relationship between organizational structure and teacher perceptions of support?”, 

which is more likely investigated by other quantitative designs using statistical 

techniques such as structural equation modeling.   Random assignment is not meant to be 

used to answer all research questions--only those that are focused on determining whether 

treatments or interventions work. 
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Advantages/Benefits of Randomization 

 The chief advantages of employing random assignment include eliminating 

selection bias attributable to pre-existing group differences, controlling for confounds or 

extraneous influences on the outcome under study, and upholding internal and external 

validity of study findings.  Again, random assignment controls for diverse selection 

processes that might influence whether the comparisons of intervention and control 

groups are valid (Ong-Dean et al., 2011).  Random assignment offers a unique power in 

an intervention study in answering the question, “Does it make a difference?” (Gueron, 

2001, p. 15).  The randomness of the process is what helps produce a control group that 

can be used as a convincing and unbiased estimate of the counterfactual, i.e., what would 

have happened to the intervention group had they not received the intervention (Gueron, 

2001, p. 18).  “When perfectly implemented, random assignment generates unbiased 

causal estimates because at pretest the intervention and control groups are equivalent on 

expectation over all possible covariates” (Steiner et al., 2010, p. 250).  A related 

advantage of random assignment is that it enables researchers to “make inferences 

without modeling assumptions” (i.e., assumptions such as equivalent selection; Papineau, 

1994, p. 448), which means we can claim a causal relationship.  Random assignment has 

the ability to provide control not only for confounds we know about but it is especially 

helpful with respect to “nuisance” variables we do not know about (Papineau, 1994).  In 

random assignment, all such influences are probabilistically independent of the 

intervention.  
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Randomization Threats and Disruption 

Threats-in-General 

Failures of random intervention assignment account for many of the problems in 

large-scale experiments (King, Neilson, Coberley, Pope, & Wells, 2011).  Threats to 

randomization include a whole host of problems from the beginning to the end of a study. 

If randomization is threatened and ultimately disrupted, then the aforementioned 

advantages are likely to be lost.  Gueron (2001) indicated it is an “all-or-nothing process” 

and that the design cannot be “a little bit” randomized; “once the process is undercut, the 

study cannot recover” (p. 26).  In this current study, I aimed to test whether at least partial 

recovery from randomization disruption was possible.  While experiments are a powerful 

research design, they are not perfect (Gall et al., 2003).  Popper (1968) further explained 

that no single experiment proves cause and effect and that experiments must be 

replicated.  Random assignment might be threatened during one or more general study 

phases including (a) design of random assignment strategies, (b) allocation of participants 

to assigned group, (c) intervention and data collection, (d) data and randomization 

checking, and (e) data analysis.  Downs et al. (2010) described practical problems in 

implementing randomization from the basis of their collective experience illustrated in 

clinical case examples.  They indicated that at least three types of problems could occur 

in randomization: the first pertained to judgment errors in the choice of randomization 

method; the second type of errors occurred during the actual implementation of the 

chosen method; and the third type related to human errors that occurred during the trial, 

specifically by those managing the randomization process (Downs et al., 2010). 
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Selection of an inappropriate randomization type for an experimental study is a 

problem that might occur in the study planning phase.  The type of intervention, sample, 

data, and intended levels of analysis are all important considerations in the selection of a 

design and randomization process best suited to realize the benefits.  Corroborating this, 

King et al. (2011) stated that random assignment is the “defining feature of modern 

experimental design” (p. S-11); yet errors in design, implementation, and analysis often 

result in the failed realization of its benefits.  They discussed problems including control 

of variability, levels of randomization, size of intervention arms (groups), power to detect 

causal effects, as well as many other problems that commonly lead to post-intervention 

bias.  Unexpected problems can arise from myriad sources such as the research 

participants, school officials, teachers, politicians, or others interested in affecting the 

assignment of people to intervention and control groups or affecting the subsequent 

results.  It is a serious problem when researchers do not anticipate and prevent these or 

other issues in the design and do not later respond to them by choosing statistical 

methods to correct such problems (King et al., 2011).  

While it is not known how frequently major errors in randomization occur, it is 

considered fairly rare because it is not often mentioned in the research literature.  Downs 

et al. (2010) stated this is false and that, based on their experience, errors in the 

intervention allocation process are “surprisingly common” (p. 236).  Dunford (1990) also 

indicated that many issues affecting randomization, such as ethical and legal issues, 

liability risks, known manipulation of allocation outcomes, and hidden threats to 

randomization “regularly surface” during the implementation and operation of 

experiments; if not addressed, they can “wreck otherwise outstanding research designs” 
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(p. 125).  He also claimed that practical guidance for the implementation of 

randomization is lacking (Dunford, 1990).  Even well-designed experiments could face 

complications such as noncompliance and missing data (Jin & Rubin, 2009).  Baker and 

Kramer (2008) referred to such complications as real world problems, citing loss-to-

follow up (attrition), missing outcomes, noncompliance, and nonrandom selection among 

the issues.  Other potential problems similar to noncompliance include treatment 

diffusion in which control participants might improve on outcomes from indirect 

exposure to the intervention or treatment contamination (when control participants 

receive aspects of the intervention when they should not).  Post-randomized differential 

attrition might “corrupt group balance” even when groups are randomized (Guo & Fraser, 

2010, p. 280).  Phrased another way, when intervention or control participants 

differentially drop out, it might cause selection bias.  

Arceneaux, Alan, and Green (2004) described another type of randomization 

problem that could be experienced in the analytic phase of the study.  By using incorrect 

randomization check procedures (e.g., statistical comparison of intervention and 

treatment groups on baseline variables), randomization failure would remain 

undiscovered.  For example, they showed that invalid conclusions could result from 

conducting randomization checks at the incorrect level of analysis, e.g., checking at the 

individual level when randomization is at the group level, as in cluster randomized 

studies. 

In summary, many ways exist in which randomization and its associated benefits 

might be disrupted.  The context and challenges of research in education lead to an 

increased likelihood of certain types of randomization threats (Cook, 2003; Ong-Dean et 
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al., 2004).  The randomization threats selected for examination in the current study 

included biased allocation procedures, intervention noncompliance, and differential 

attrition.  Each of these is described in more detail in the paragraphs below. 

Biased Allocation 

 Randomization processes make use of random allocation or distribution of 

participants to the intervention and control groups.  Allocation processes (i.e., how 

participants are assigned to a group) might not be implemented as intended.  The 

allocation process might thus be biased in a manner that could ruin the randomization by 

creating an imbalance in the covariates across the intervention and control groups (i.e., 

introducing selection bias; Berger & Weinstein, 2004).  For example, the investigators 

might not have provided adequate instructions to those who recruited and enrolled 

participants into the study.  Other times, it might be that those responsible for conducting 

the allocation into intervention and control groups did so incorrectly even with good 

instructions but poor monitoring.  Downs et al. (2010) described examples when those 

responsible for carrying out the randomization made mistakes such that the actual 

implementation differed substantially from the planned method.  Again, such mistakes 

could have derived from a lack of understanding or clarity around the allocation 

procedures or could be related to technical problems in programming randomization 

algorithms (Down et al., 2010).  In some cases, intentional deviations from the planned 

procedures might occur.  Gueron (2001) explained that program staff or teachers 

generally tend to dislike random assignment (p. 26).  She described how program staff 

prefer to allocate based on their own methods: allocations based on their personal values  

--first come/first served, serving the most in-need, or serving the most motivated or those 
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who most desire the service.  Gueron stated further, “It is critical to design the actual 

random assignment process so that it cannot be gamed by intake staff” (p. 28).  Berger 

and Weinstein (2004) described another example of allocation bias in which patterns of 

random assignment could be predicted based on the previous assignments; this advanced 

knowledge could influence strategic rather than random placement into groups. 

Intervention Noncompliance 

 Another common issue in randomization disruption is when study participants do 

not take part in their respective intervention assignments as intended.  Intervention 

noncompliance might refer to situations in which participants in the intervention group 

did not receive the intervention at all or in the intended dosage, intensity, or frequency 

(Chen et al., 2009).  Many educational situations exist in which participants assigned to 

the intervention did not actually receive the intervention as intended.  For instance, 

children enrolled in a classroom-based intervention might have poor attendance.  Parents 

involved in a literacy intervention might not engage with program staff in meaningful 

ways, thereby affecting their children’s reading outcomes.  Teachers might not attend all 

sessions of a professional development workshop under study.  Noncompliance in a 

random assignment study could lead to biased estimates of the intervention effects 

(Bijwaard & Ridder, 2005; Esterling, Neblo, & Lazer, 2011).  Esterling et al. (2011) went 

so far to say that noncompliance could “destroy” randomization.  Indeed, noncompliance 

might severely limit the internal validity of the experiment (Atchade & Wantcheckon, 

2005).  In many cases, noncompliance might be accompanied by missing data (i.e., 

nonresponse; Chen et al., 2009).  
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Differential Attrition 

 Differential attrition (also called mortality) is characterized by a systematic 

difference in the participants who drop out of the study compared to those who stay. 

Foster and Bickman (1996) called attrition “nonresponse in a longitudinal context” (p. 

695).  Participants might drop out for a variety of reasons: difficulties in complying with 

the research protocol, actual mortality or illness, or mobility/moving away from the study 

area.  Some evidence exists that attrition might vary by ethnicity; however, since it is 

contextually dependent, it might differ study to study (Sangi-Haghpeykar, Meddaugh, 

Liu, & Grino, 2009).  Greater attrition among some samples in education might also 

exist.  Kubitskey et al. (2012) suggested that attrition among teachers is a new challenge 

for researchers given that professional development is increasingly a topic of randomized 

study.  Another specific type of attrition is based on the participants’ level of satisfaction 

with or preference for their group assignment.  McKnight, McKnight, Sidani, and 

Figueredo (2007) discussed that this division between the intervention (satisfied/not 

satisfied) and control (satisfied/not satisfied) groups could drive some dropout among the 

“disappointed” individuals (p. 30). 

As part of a trial attrition study group, Hewitt, Kumaravel, Dumville, and 

Torgerson (2010) found that nearly 25% of randomized controlled trials had more than 

10% of the study outcome data missing.  They reported that balance in the baseline 

characteristics across groups might be ruined.  Likewise, attrition can have negative 

effects on the internal and external validity of a study (Flick, 1988; Foster & Bickman, 

1996; Marczyk, DeMatteo, & Festinger, 2005; McKnight et al., 2007; Shadish, Cook, & 

Campbell, 2002).  Marcellus (2004) claimed attrition is underreported and understudied 
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despite its potential to bias study findings.  Hewitt et al. (2010) reported that “although 

attrition is common, it is unclear when it becomes a serious threat to trial validity” (p. 

1265).  Following this recommendation, this present study intends to add to what is 

known about when attrition threatens the validity of findings.  

The loss of participants (i.e., decrease in sample size) might also lead to a loss of 

both statistical power and an ability to detect group differences if they exist.  Further data 

analytic problems could result from loss of data.  For instance, the intervention groups 

might no longer have equal sample sizes; this could contribute to violations of the 

assumptions of normality (distribution of error) and homogeneity of variance (McKnight 

et al., 2007).  Inequality in analyzable cell sizes might be a large part of why attrition 

causes so many validity problems.  Marczyk et al. (2005) suggested that if the 

participants who dropped out were substantially different from those who stayed, it might 

limit the study’s generalizability.  Not only would the findings be non-generalizable in 

the sense of the immediate study but McKnight et al. (2007) explained that attrition might 

negatively influence the synthesis of results across studies and hinder the knowledge base 

in the field and associated theory development (p. 35).  Fitzmaurice (2003) indicated that 

the attrition is nonignorable when the likelihood of dropping out is fundamentally related 

to the outcome.  In this case, biased effect estimates are likely be found (Hewitt et al., 

2010).  

 Differential attrition is essentially a missing data problem (McKnight et al., 2007). 

When the missingness is nonignorable, meaning that it is differential, nonrandom, and 

causes imbalance in the intervention and control group, then strategies must be used to 

address the missingness (Foster et al., 2004).  Unfortunately, a well randomized study 



32 
 
cannot prevent dropout; however, a well-designed and monitored study might.  

Purposeful follow-up with participants to maintain buy-in and rapport, individualization 

of retention strategies, and provision of substantial incentives could help stave off 

attrition and missing data issues. 

Implications of Randomization Disruption 

To reiterate, random assignment disruption in its various forms might diminish a 

study’s internal and external validity.  Campbell and Stanley (1963) provided a thorough 

review of the factors affecting the internal and external validity of experiments.  They 

described eight different classes of extraneous variables that might result in confounds 

with the effects of the intervention: validity threats due to history, maturation, testing, 

instrumentation, statistical regression, differential selection bias, experimental mortality 

(or differential attrition), and selection maturation interaction.  Gall et al. (2003), for 

instance, effectively described these and a few more from Cook and Campbell (1979): 

experimental intervention diffusion, compensatory rivalry by the control group, 

compensatory equalization of interventions, and resentful demoralization.   

Threats to randomization equate to threats to validity and are subsequently 

associated with biased intervention effect estimates.  Thus, the implications of failed 

randomization are clear: researchers might lose the ability to rule out any other potential 

causes of change on the posttest beyond the intervention effects. 

Identification of Randomization Problems 

Methods of identifying random assignment problems include proactive and 

diligent monitoring of random assignment processes and the performance of 

randomization checks that statistically examine group differences after baseline data 
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collection.  Problems could be identified by researchers who closely monitor the random 

assignment processes.  This might involve masking the allocation sequence, conducting 

site visits for quality control, checking the dates of randomization to see if reasonable 

numbers of individuals are randomized within a given time period, or whether 

participants are randomized on unexpected days or patterns. 

Randomization checks are also known as balance tests.  Randomization checks 

include standard statistical tests to examine differences between the intervention and 

control groups on baseline variables, which were preferably collected prior to 

randomization, so the randomization process and the knowledge of assignment do not 

influence the measurement (Cook & Campbell, 1979; Marczyk et al., 2005).  These 

procedures generally include comparing intervention and control groups on demographic 

variables such as gender, ethnicity, level of education, and other participant 

characteristics.  In addition, baseline outcome measures might be compared.  If 

differences are found on variables, Marczyk et al. (2005) suggested that researchers 

should examine whether those variables are correlated with the outcome variables and, if 

so, they should be controlled for in the final analyses.  

Mutz and Pemantle (2011) stated that randomization checks serve a useful 

purpose when assessing threats to the execution of the randomization procedures.  They 

claimed that these checks are the most important to conduct when there is some reason to 

believe the randomization did not work properly (p. 3).  Another form of randomization 

check to perform when attrition is evident is to (a) compare the differences between the 

remaining intervention and control participants and also (b) compare the dropouts with 
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those who remained in the study on those baseline measures to identify whether attrition 

was, in fact, differential. 

Corrective Techniques for Selection, Noncompliance,  
and Attrition Biases  

 In this section, I briefly describe methods researchers might use to correct bias 

across a variety of designs under a number of conditions.  The goal of these techniques is 

uniform around increasing the validity of study results and interpretations but the 

methods might reach the goal in different ways.  Later in the section, I more specifically 

discuss the use of analysis of covariance, propensity score analysis (PSA) for reducing 

selection bias, compliance average causal effect (CACE) for addressing noncompliance, 

and multiple imputation (MI) for tackling the nonrandom missing data associated with 

differential attrition as these techniques were considered for use in this study.  Note that 

within this investigation, it was not my intention to disregard the fact that avoidance and 

prevention of systematic errors through careful research design and monitoring was much 

preferred to the use of post hoc statistical corrections.  Rather, the idea was to explore 

ways to salvage flawed studies. 

The most common strategy when a variable has failed a balance test (i.e., has 

shown a statistically significant difference at baseline between intervention and control 

groups which might lead to bias) is to include that variable as a covariate in the statistical 

analyses (Mutz & Pemantle, 2011).  However, Mutz and Pemantle (2011) asserted that 

the literature “reveals considerable divergence of opinion on the use of correcting for 

imbalance in experimental designs” (p. 9).  This is due in part to the fact, even in 

randomization, that some imbalances are likely due to chance and some corrective 

procedures might overcorrect the problem.  In addition, groups might differ on baseline 
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measures of outcomes.  Other strategies to ameliorate problems associated with 

imbalance are post-stratification (e.g., weighting the intervention and control samples 

prior to outcome analyses to force them to coincide/equalize on some imbalanced 

variable or by conducting analyses by subpopulation) or re-randomization (i.e., this can 

be done if balance checks are performed before the intervention begins and before 

participants are notified about inclusion in the intervention; Hansen & Bowers, 2008; 

Mutz & Pemantle, 2011).  

To correct selection bias in quasi-experimental and other designs, often sample 

matching techniques are employed.  Treatment and comparison groups might be matched 

prior to outcome analyses on one or more characteristics such as gender, age, or ethnicity. 

Propensity score analysis (PSA) is a technique used to reduce selection bias in primarily 

quasi-experimental studies but can be applied in a variety of designs (Clark, 2008).  The 

propensity score is the probability of receiving treatment that is predicted by a set of 

covariates preferably linked to both selection and outcome.  The propensity score can 

also be used as a composite covariate to match samples, hence propensity score 

matching.  Propensity score analysis is discussed more thoroughly below. 

To correct for intervention noncompliance, one consideration is whether the 

noncompliance co-occurs with nonresponse (missing data).  In the presence of missing 

data, different strategies or combinations of strategies might be used to attempt correction 

(Chen et al., 2009; Dunn et al., 2005; Jin & Rubin, 2009, Little & Yau, 1998; Taylor & 

Zhou, 2009).  In many cases, researchers might attempt to adjust for the compliance 

processes in analyses to be able to make a correct counterfactual comparison between the 

intervention and control groups (Esterling et al., 2011).  This means that the variables 
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associated with participants’ compliance level might be identified and used as controls in 

the statistical analysis.  Observing the compliance process might involve an examination 

of the measured covariates, e.g., demographic characteristics for those who complied 

versus those who did not, to see if there were differences between the two groups. 

Researchers might also try to model or predict participants’ latent compliance type from 

other behavioral measures used in the study.  For instance, researchers might use latent 

class analysis to analyze patterns of factors associated with compliance type, e.g., 

participation in program activities and level of involvement, and thereby categorize 

participants by their type of compliance (i.e., group membership; Hagenaars & 

McCutcheon, 2002). Commonly though, the compliance process is driven by unmeasured 

variables, i.e., it is unknown what led to compliance variability.  For example, consider a 

situation in which measured pretest characteristics might not be related to dropout such as 

perceived incompetence of the intervention provider.  A group of participants might leave 

because they are not benefitting but might not disclose their dissatisfaction.  

The instrumental variables method (IV) is widely used to address the problem of 

noncompliance with the intervention when the compliance process is unobservable 

(Angrist, Imbens, & Rubin, 1996; Angrist & Krueger, 2001).  Instrumental variables is a 

method commonly used to estimate causal effects when it is not possible to conduct a 

randomized experiment.  In the instrumental variables method, a variable (called an 

instrument) that is correlated with the intervention but does not directly lead to change in 

the outcome is used to control for confounding (Greenland, 2000). 

Usually researchers tend to conduct intent-to-treat (ITT) analysis in which 

noncompliance is essentially ignored and groups are analyzed as randomized (Hewitt, 
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Torgerson, & Miles, 2006).  Intent-to-treat analyses retain the original assignments of 

cases regardless of whether they received the intervention or not.  The rationale is that by 

not doing so, worse bias would be introduced to the findings by compromising the 

randomization.  In ITT, noncompliance is philosophically seen as just part of the 

response to the intervention (Atchade & Wantcheckon, 2005; Baker & Kramer, 2007); in 

this light, some researchers believe a person’s compliance is not meaningfully separable 

from the effectiveness of the intervention.  However, Atchade and Wantcheckon (2005) 

indicated that ITT estimates are reported to be highly biased compared with the real 

intervention effects, especially in situations when the noncompliance patterns change 

over time (or are really severe).  However, standard recommended practice, in at least the 

medical field, is to conduct ITT analyses and then also provide results from per-protocol 

(compliers only) or on-treatment (treated only) analysis to estimate treatment effects 

(Hewitt et al., 2006).  The problem with per-protocol and on-treatment analyses is that 

selection bias is introduced by abandoning the randomization.  Another approach to 

handling noncompliance is called complier average causal effect analyses and is 

described below.   

Statistical techniques for handling missingness in differential attrition include a 

wide array of strategies from simple to complex.  Choice of technique is often guided by 

the type of analyses required to address the research questions and whether the 

missingness is random or systematic.  Strategies briefly include data deletion (the 

common listwise or pairwise deletion), data augmentation (a model-based procedure such 

as maximum likelihood), and single and multiple imputation techniques (McKnight et al., 
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2007).  Multiple imputation is described in more detail below as it is a common technique 

for addressing missingness due to attrition. 

Analysis of Covariance 

 Another common method of handling biases or confounding in a statistical 

comparison of intervention and control groups is to include additional baseline 

explanatory variables (also called covariates) in the analysis (Clason & Mundfrom, 2012; 

Little, An, Johanns, & Giordani, 2000; Taylor & Innocenti, 1993).  When comparing 

groups, this adjustment method is called analysis of covariance (ANCOVA). Analysis of 

covariance is considered an extension of ANOVA that adjusts the estimates of 

intervention and control mean differences (Raykov, 2010).  Analysis of covariance is also 

described as a combination of ANOVA and regression (Cochran, 1957; Taylor & 

Innocenti, 1993).  

 Researchers cited numerous benefits of using ANCOVA: enhanced potential for 

increasing the power to detect findings, the ability to detect and estimate interactions, and 

improved handling of measurement error (Egger, Coleman, Ward, Reading, & Williams, 

1985; Forsythe, 1987; Little et al., 2000; Taylor & Innocenti, 1993). Taylor and Innocenti 

(1993) stated that ANCOVA could be helpful in the context of a randomized design even 

when careful attention was paid to allocation procedures.  In experiments, the statistical 

method reduced unexplained (within-group) outcome variance and thus increased the 

power of the intervention effects (Van Breukelen, 2010).  The use of ANCOVA has been 

known to increase the precision of intervention estimates in randomized designs 

(Cochran, 1957; Liu, 2012).  Liu (2012) indicated that the addition of a covariate could 

account for a portion of the variance in the residual error, thereby reducing the standard 
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errors of the effect estimate.  Egger et al (1985) suggested that in clinical trials, 

ANCOVA is most often used when baseline differences between intervention and control 

groups are significant but made the recommendation that it be used more routinely to 

adjust for confounding.  However, they cautioned that the use of ANCOVA with very 

small samples could further bias effect estimates. 

Propensity Score Analysis 

Propensity score analysis is increasingly used within many design types to reduce 

selection bias.  It is not considered a panacea or permanent replacement for an 

experimental randomized design but is an advantageous method when randomization is 

impractical or not possible.  Careful attention to the limitations of the method is strongly 

warranted and omnipresent in the literature.  For instance, Mitra and Heitjan (2007) 

stated, “No adjustment method, even propensity scores, can completely eliminate 

potential bias from imbalance on covariates that do not appear in the data set” (p. 1399).   

Created by Rosenbaum and Rubin in 1983, propensity scores are the conditional 

probabilities of selection into the intervention group.  This means that they represent how 

likely it is that a participant would be selected either into the intervention or the control 

group.  Propensity scores are constructed using variables that explain the selection 

process so that selection bias might be controlled for in analyses.  The scores are 

predicted (often using logistic regression) using an array of covariates correlated with 

both selection and outcome (Clark, 2008).  Their values range from 0 to 1; scores above 

.5 predict being in one group (intervention) and scores below predict being in the other. 

The scores can be used in a variety of procedures including matching, covariate 

adjustment, and weighting (Guo & Fraser, 2009).  In propensity score matching, the 
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propensity score (as if it is a composite of many covariates) is used to match participants 

from the control and intervention groups to create group balance prior to outcome 

analyses.  It is intended to mimic randomization by controlling selection bias. 

In propensity score analysis, it is absolutely critical to know and measure the 

selection process, i.e., how subjects are selected into study groups (Shadish & Steiner, 

2010).  In Shadish and Steiner’s (2010) guide to propensity score analysis, they described 

the iterative process of choosing the best combination of covariates to maximize bias 

reduction.  Lack of access to unmeasured covariates contributes to the biggest challenge 

in using propensity score analysis (i.e., cannot adjust with variables that were not 

measured).  Steiner et al. (2010) investigated how different sets of covariates performed 

in terms of minimizing selection bias in observational studies.  They theorized that “…the 

most important covariates for supporting strong ignorability were those closely related to 

both the real selection process and study outcomes” (Steiner et al., 2010, p. 250).  They 

found this was indeed the case--unrelated covariates did not substantively reduce 

selection bias and the actual statistical adjustment method did not particularly matter.  

The goal of propensity score analysis is to imitate the baseline covariate balance 

between intervention and control groups achieved through randomization.  Such balance 

is accomplished when the distributions of the baseline covariates are nearly identical for 

intervention and control, and likewise for the two distributions of propensity scores 

(Shadish & Steiner, 2010, p. 21).  Propensity score analysis does this by controlling for 

the selection process. 
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Complier Average Causal Effect  
Estimation 

 Complier average causal effect (CACE; Angrist et al., 1996) estimation, also 

called the local average treatment effect, is the measured causal effect of the intervention 

among compliers randomized to the intervention group.  It is used to improve causal 

intervention effect estimates by reporting the intervention effects for those who both 

received the intervention and were compliant.  The influence of those in the intervention 

group who did not receive the intervention is removed from the estimate.  When 

noncompliers are included in the estimates, they have what is called a downward bias, 

meaning that the mean effects are attenuated.  Complier average causal effect estimation 

(CACE) corrects for this bias.  The advantage of using CACE, compared with per-

protocol (assessing complier only) and on-treatment (assessing treated only) analyses, is 

that CACE retains the original random assignment of the participants (Hewitt et al., 2006, 

p. 347).  Hewitt et al. (2006) still recommended using this method in combination with 

ITT analyses but preferred CACE to the bias introduced by other analyses that go against 

the randomization.  Dunn et al. (2005) emphasized Angrist et al.’s (1996) assertion that 

compliers who were randomly assigned to the treatment were the only group whose 

average treatment effects could be viewed without bias (p. 376).  Essentially in CACE, 

the outcome results for compliers who were randomized to the intervention group are 

compared to the same proportion of participants estimated to be compliers in the control 

group (i.e., given randomization the assumption is that the distribution of compliers is the 

same across groups).  Complier average causal effect estimation results are typically also 

compared with the ITT results to assess the relative improvement in the estimation of 

treatment effects.  The analysis section in Chapter III provides a description of the step-
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by-step approach for using CACE.  Another way to boost the effectiveness of this 

method, in providing a more valid (less biased) estimate of treatment effects, is to add a 

covariate to the analysis that explains compliance behavior (Hewitt et al., 2006).  The 

goal with CACE is to improve estimates of average treatment effects affected by 

noncompliance. 

Multiple Imputation 

 Schafer (1999) described imputation as the practice of “filling in” missing data 

with plausible values (p. 3).  McKnight et al. (2007) cited many champions for multiple 

imputation for the statistical handling of missing data.  They described it as easy to 

implement and effective in producing sound parameter estimates including the standard 

errors (McKnight et al., 2007, p. 196).  In addition, multiple imputation can provide 

information about the effect of missing data on the results beyond just knowing the 

proportion of data missing.  Clearly, higher rates of missing information have a more 

biasing effect on study results (Barnes, Lindborg, & Seaman, 2006; McKnight et al., 

2007).  Multiple imputation was first proposed by Rubin in 1977 and can be generalized 

to a variety of datasets and statistical problems (McKnight et al., 2007; Schafer, 1999).  It 

is known to be statistically valid when large samples are used for treating missing data 

(McKnight et al., 2007; Rubin, 1977); although Barnes et al. (2006) tested it successfully 

with some small clinical samples.  Sassler and McNally (2003) suggested that the 

patterns of attrition should be examined carefully to be able to effectively identify 

variables to include in the imputation. 

Barnes et al. (2006) summarized multiple imputation succinctly by indicating 

three steps: imputing missing values M times, analyzing the M imputations, and 
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combining the M analyses.  Different imputation routines could be used (McKnight et al., 

2007; Sassler & McNallyy, 2003) such as random normal values and hot deck values. 

McKnight et al. (2007) provided concrete guidance on the step by step process including 

the additional step of calculating the missing information estimate; these steps are 

presented in the data analysis section of Chapter III.  The imputations are computed using 

an iterative process from the observed data deemed to be the most “information rich” 

including important covariates and other variables that can provide additional information 

about the variability of the data and potential explanations of the nonresponse.  Rubin 

(1977) referred to the likelihood of being a nonrespondent as a “probabilistic function” of 

these important predictive background variables (p. 540).  In other words, multiple 

imputation is used to create a small number of independent draws of the outcome 

variables from a predictive distribution (Schafer, 1999).  Multiple imputation is 

considered to be appropriate to use in many different missing data situations.  Little and 

Rubin (1987) described the classification of missing data that includes three different 

mechanisms (i.e., not explanations) by which data might be missing. When outcome data 

are considered to be missing-completely-at-random, the reason for the missingness is due 

to random processes and not related to the outcome, i.e., there are no systematic patterns 

in how the data are missing.  In the case of missing-at-random, the missingness is 

potentially a function of some independent variables; however, correct inferences might 

be made if explanatory variables are used as controls.  Missing-completely-at-random 

and missing-at-random missingness is considered ignorable.  Missing-not-at-random 

(MNAR) is considered to be nonignorable with the probability of missingness dependent 

upon the outcomes in a non-predictable way (Little & Rubin, 1987; McKnight et al., 
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2007).  Multiple imputation is used most often in missing-at-random situations but has 

been found to be flexible enough to be effective in missing-not-at-random conditions 

(McKnight et al., 2007). 

Early Head Start Research and Evaluation Project 
 

An overview of the Early Head Start Research and Evaluation Project (EHSRE) is 

found on the Administration for Children and Families (U.S. Department of Education, 

2002a, 2002b) website.  The initiative, funded through the Office of Planning, Research, 

and Evaluation, is described as a rigorous, large-scale, random-assignment evaluation of 

Early Head Start (EHS).  It was designed to carry out the recommendation of the 

Advisory Committee on Services for Families with Infants and Toddlers for a strong 

research and evaluation component to support continuous improvement within the EHS 

program and to meet the 1994 reauthorization requirement for a national evaluation of the 

new infant-toddler program.  

 The EHSRE study waves were intended to examine whether the programs’ child 

development, parenting, and family development services were effective in promoting 

positive parent and child outcomes.  The study was designed and carried out by the EHS 

Research Consortium.  Program services were tailored to the needs of low-income 

pregnant women and families with infants and toddlers.  The families were diverse (U.S. 

Department of Education, 2002a, p. 25) and program activities were particularly effective 

in improving child development and parenting outcomes of African American 

participants (U.S. Department of Education, 2002a, p. 8).  Program approaches included 

center-, home-, and combination-based services.  While the EHS programs across the 17 

sites used different approaches for delivering their services to children and families, all 
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approaches produced positive impacts on child and parent outcomes (U.S. Department of 

Education, 2002a).   

 Early Head Start promoted numerous positive child and family outcomes. 

“Overall impacts were modest, with effect sizes in the 10 to 20 percent range, although 

impacts were considerably larger for some subgroups, with some effect sizes in the 20 to 

50 percent range” (U.S. Department of Education, 2002a, p. 3).  Statistically significant 

gains on standardized assessment of cognitive development were found at age 2 and 

sustained at age 3.  In addition, the program intervention group scored significantly 

higher than did the children in the control group.  Likewise, significant positive effects 

were also found for language development and for other social-emotional development 

indicators such as aggression. Administration for Children and Families (U.S. 

Department of Education, 2002a) also found evidence that the positive effects on children 

when they were 3-years-old were associated with positive changes in parenting when 

children were 2-years-old, consistent with the programs’ theories of change (p. 5). 

Positive gains were also made toward family self-sufficiency with significant 

positive outcomes related to participation in education and job training activities.  The 

intervention and study also had a strong fathering component.  While the program did not 

show a positive effect on maternal depression (there was a very high rate of depression 

among EHS families), mothers in the program group showed improved parenting 

interactions and relationships with their children (U.S. Department of Education, 2006). 

The EHS sites each had a local research team that helped carry out the national 

data collection as well as the data collection for the local research questions.  Numerous 

supplemental studies and associated papers, symposia, and reports were produced from 
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these national and local data.  One such study by Raikes et al. (2006) addressed the 

question of “Under what conditions is home visiting an effective service strategy?” (p. 3).  

They identified a number of predictors of home visiting involvement and the linkages 

with child and parent outcomes.  The findings from Raikes et al. and other articles and 

reports helped guide the selection of variables (described in greater detail in Chapter III) 

for use in the current study.  

Summary 

 It is disappointing that even the greatest design available for estimating causal 

effects is so commonly susceptible to disruption.  The elegant benefits afforded by 

randomizing research participants to groups, e.g., achieving balance to ensure baseline 

equivalence, might be thwarted by other challenges encountered during the study.  If only 

time travel were possible so researchers could go back to observe outcomes for the 

intervention participants for whom intervention could also be withheld!  Then a truer 

understanding of the efficacy of the intervention would be made clear when the effects of 

treatment and the effects of no treatment are studied using the exact same subjects. 

Challenges such as allocation bias, intervention noncompliance, and differential attrition 

in different contexts pose different degrees of threats to internal and external validity by 

creating biases that were hoped to be avoided by using the randomized design.  Certainly 

researchers might take steps to avoid bias by more careful monitoring of processes, 

partners, and participants.  In the event problems do occur, it is important to have an 

arsenal of effective, corrective techniques to combat threats to the power of 

randomization.  
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It is clearly known that randomization disruption might create problems in a 

research design that leads to invalid findings.  What is not precisely known is how much 

disruption must be present to bias findings.  In other words, it is not well understood how 

robust randomization is to common threats and how sample size affects the magnitude of 

disruption. 

 Chapter III provides a description of the current study’s design, data source, 

variables, procedures, and analysis intended to shed light on the degree of threat common 

study problems pose to randomization using a national set of early childhood educational 

intervention data.  A selection of corrective techniques and the resources used to carry 

out the procedures is described. 

  
 
 
 
 



 

 

 

CHAPTER III 

 

METHODOLOGY 

 

 The design, data source, variables, procedures, and analyses for this study are 

described within this chapter.  A detailed description of the randomization threat 

scenarios and associated conditions are also provided along with an explanation of how 

these conditions were constructed with and applied to the Early Head Start Research and 

Evaluation Project (EHSRE) datasets for comparative analyses. 

Design 
 

To address the research questions, this methodological study employed a 

comparative, multi-condition design to examine differential effects of randomization 

threats on randomization and on EHSRE study outcomes.  I also compared the relative 

efficacy of two corrective techniques in restoring data findings when randomization was 

disrupted by imposed threat conditions.  In addition, I also examined whether the 

corrective techniques, under some conditions, might further distort the results found 

under threat conditions.  

Fifty-four different datasets were created, each representing 1 of 27 

randomization threat conditions and created by two different methods.  The 54 datasets 

were constructed with two methods using three types of threats representing typical study 

problem situations, three sample sizes representing study samples of different sizes, and 

three proportions of the sample exposed to the threat condition representing 
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degree/severity/frequency of the threat.  Each of these 27 conditions was tested using four 

different child outcome measures from the EHSRE data to see if disruption of 

randomization varied by outcome type.  The intention of using these conditions was to 

increase the present study’s generalizability by providing results representing a variety of 

potential problem types, sample sizes, and degrees of problem.  Figure 1 provides a 

summary of the threat conditions.  

 

 
 
Figure 1.  Randomization threat conditions. 
 
 
 
Threat Type 

The conditions were founded on three typical randomization threat types: biased 

allocation, intervention noncompliance, and differential attrition.  The biased allocation 

threat involved a scenario in which the randomization procedures were disrupted and the 

proportion of families with higher needs was increased in the intervention group.  The 
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noncompliance threat involved a scenario in which the proportion of noncompliers in the 

intervention was increased.  For differential attrition, the proportion of cases in the 

intervention sample with fewer risk factors was increased (dropout of higher risk cases). 

In the procedures section in the Phase II dataset construction section, I provide a 

descriptive scenario that includes a plausible background for the threat type and the 

method of dataset construction. 

Proportion Exposed 

The percentages of data exposed to the threat condition were intended to represent 

levels of increasing severity/frequency of the threat to randomization.  The proportions of 

the sample exposed to the threat were 5%, 15%, and 25%.  Foster et al. (2004) reported 

that it is a common goal of researchers to have no more than 20% attrition.  The threat 

percentages applied in the current study provided values above and below that level to 

help learn when problems begin to arise.  The proportions were also selected on guidance 

from Grimes and Schulz (2002) who suggested that attrition of 5% or lower was unlikely 

to introduce bias, while 20% was likely to be a problem.  However, the effect depended 

on whether the attrition was random or nonrandom (Hewitt et al., 2010).  Hewitt et al. 

(2010) suggested that a wide range of attrition levels should be studied with many 

different covariates to add to “rules of thumb” regarding when attrition is likely to be a 

problem (p. 1269). 

Sample Size 

To increase the generalizability of the current study’s findings, three different 

sample sizes were used within the conditions to understand the differential effects of the 

three types of threats for studies of small, medium, and large size.  The large sample size 
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conditions were based on the cases available in the original Early Head Start data.  The 

average sample size across data collection time points for the outcome measures was 

approximately 1,700.  To obtain the large sample datasets, 1,400 cases were randomly 

sampled from the original Early Head Start database with 700 in the intervention group 

and 700 in the control group. 

The small sample size conditions were based on average small sample sizes 

represented in the educational evaluation literature.  Slavin and Smith (2009) investigated 

the relationship between sample sizes and effect sizes in a systematic review in education 

studies.  In the process of their review, they described smaller samples were comprised of 

fewer than 200 to 250 subjects (Slavin & Smith, 2009, p. 500).  They considered very 

small studies to be those with sample sizes below 50.  Thus, a sample size of 125 for 

control and 125 for intervention groups was selected based on this small sample 

guidance.  The 250 sample size represented approximately 18% of the large sample size 

condition.  The medium sample size condition was chosen as a midpoint between the two 

sizes--600 total with 300 control and 300 intervention.   

Institutional Review Board Application  
and Data Protection 

Upon acceptance of the research proposal by the University of Northern Colorado 

(UNC) Graduate School and prior to the commencement of the study, online application 

was made to obtain Institutional Review Board (IRB) review of the study’s compliance 

with required conduct and standards for research.  The request proposed the use of a de-

indentified secondary dataset not requiring new individual participant informed consent 

procedures.  The UNC electronic IRB system was used to apply and address any 

subsequent IRB comments and questions.  After approval, research activities for the 
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study commenced (see Appendix A). Databases and associated documentation were 

stored on a secured, password-protected personal computer and measures were taken to 

ensure the protection of the data from unauthorized access and viewing. 

Data Source 

For the present study, I used secondary data originally collected during the first 

wave (Birth to Three) of the national Early Head Start Research and Evaluation Project 

(EHSRE).  The original randomized study was funded by the U.S. Department of Health 

and Human Services, Administration for Children and Families (ACF; 2002a), Office of 

Planning, Research, and Evaluation.  Data were collected through the Early Head Start 

(EHS) Research Consortium which was comprised of representatives from ACF, 

evaluation contractors, 15 local research teams, and 17 EHS programs.  I obtained 

permission from the EHS Research Consortium to use the public and private EHSRE 

datasets for dissertation work and was provided access to the secure online repository 

storing the data (see Appendix B).  In addition, substantive documentation files and 

explanatory materials were provided to help in interpretation and use of these data.  

The first wave of EHSRE was conducted from 1996 to 2001 and the study files 

containED program, parent, and child data from both the implementation and impact 

evaluations. The data files were constructed and maintained by researchers and analysts 

from Mathematica Policy Research, Inc. (MPR, one of the evaluation contractors), who 

also created numerous evaluation reports describing the methods and findings for the 

EHSRE project. 

At enrollment, as reported by ACF (2002a), the EHSRE study sample was 

comprised of families receiving public assistance of some kind: 77% were receiving 
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Medicaid, 88% were receiving Women, Infants, and Children (WIC) benefits, 50% 

received food stamps, and about 36% were receiving Temporary Assistance for Needy 

Families (TANF).  Early Head Start applicants were the primary caregivers for the 

eligible children (99% mothers).  They were on average 23-years-old and about a third 

were teenage parents.  About a quarter of these families lived with a spouse.  One-third of 

the families were African American, 25% were Latino, a little over a third were 

Caucasian, and a small percentage were other ethnicities.  About 20% of the primary 

caregivers did not speak English as their primary language.  About half of the primary 

caregivers lacked a high school diploma, 23% were employed, 22% were in 

school/training, and 55% were neither employed nor in school.  About 25% of the 

caregivers enrolled while they were pregnant.  To be eligible for the study, the research 

families had to be pregnant or have a child younger than 12 months old.  About 50% of 

the children were younger than 5-months-old at enrollment, 61% were first born children, 

and 10% were considered low birth weight.  

There were two essential prerequisites for using these Early Head Start Research 

and Evaluation Project (EHSRE) data for the present study: (a) the randomization for the 

original study was implemented properly and (b) research nonresponse did not cause 

randomization failure.  Both of these conditions were met. MPR was responsible for 

oversight of the randomization process used at each of the 17 programs which involved 

using computer-generated random numbers to assign eligible families to a research status. 

They reported that the process used to randomize was implemented correctly, and that 

staff at the programs and local research sites followed the specified procedures (ACF, 

2002b, p. D.5).  Mathematica Policy Research compared the characteristics of the 
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intervention and control group families (collected at baseline prior to randomization) to 

determine whether the random assignment process was implemented correctly.  They 

found that the research groups had equivalent characteristics (ACF, 2002b, p. D.12). 

Given that appropriate implementation of the random assignment was a critical, sine qua 

non precursor to using these data for the current study, this was a positive finding and 

further justified the use of these data. 

With regard to the issue of study nonresponse (i.e., whether participants complied 

with research activities, such as interviews and assessments), Mathematica Policy 

Research found, upon comparison, some differences between research respondents and 

non-respondents but the differences were not large and were similar for both the 

intervention and control groups (ACF, 2002b, p. D.31).  They concluded that the 

resulting impact estimates were likely to be unbiased because the characteristics of the 

respondents in each of the research groups were similar. 

Study Variables and Measures 

Child Outcome Measures  

 Four different child outcome variables were examined in the current study to 

determine the comparative effects of each threat condition.  The child variables examined 

included one from each of four developmental domains: cognitive, language, behavior, 

and social emotional.  A variety of outcome variables were selected to help determine 

whether effects would be similar across domains, again supporting the generalizability of 

potential findings. 

 Child outcome variables investigated included assessment data collected when the 

children were 24 and 36 months of age; the variables included (a) mental developmental 
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index (MDI) scores on the Bayley Scales of Infant Development-Second Edition (BSID-

II; Bayley, 1993); (b) standard scores from the Peabody Picture Vocabulary Test-III 

(PPVT-III; Dunn & Dunn, 1997); (c) Child Behavior Checklist--aggression subscale 

scores (CBCL; Achenbach & Rescorla, 2000); and (d) the Engagement of Parent scores 

on a parent-child, semi-structured play interaction (Three Box coding scales; National 

Institute of Child Health and Human Development [NICHD] Early Child Care Research 

Network, 1997, 1999). 

 The BSID-II is a direct, individual child assessment battery comprised of five 

scales: cognitive, motor, language, and two parent questionnaires to assess social-

emotional development and adaptive behavior.  It is a norm-referenced assessment with 

strong evidence of reliability and validity for both research and the detection of 

developmental delays based on a variety of low/high income, diverse samples.  The MDI 

was used to assess intervention versus control differences across present study conditions. 

The MDI is a standardized score based on national norms that take into account the 

infant’s chronological age at the time of testing (adjusted for premature birth) to assess 

whether children are on track developmentally.  Scores from the standardization sample 

were normally distributed with a mean of 100 and a standard deviation of 15 (Gauthier, 

Bauer, Messinger, & Closius, 1999). 

The PPVT-III is a well-known and frequently used standardized measure of 

children’s receptive vocabulary.  It is also a direct child assessment and is administered 

using a booklet of pictures; children are instructed to point to the slide that shows the 

word spoken by the assessor.  This test, as with the BSID-II, yields age-based standard 

scores with a mean of 100 and standard deviation of 15. 
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The CBCL, for ages 1½ to 5 years, is a parent-report questionnaire that assesses 

children’s competencies and behavioral and emotional problems.  While the full CBCL 

contains 118 items, only the aggression subscale was assessed for EHSRE.  This subscale 

included 19 child behavior problem items.  Scores range from 0 (no incidence of 

aggression) to 38 (if all behaviors are often observed). 

A semi-structured, free play task was coded from videotape according to scales 

adapted from the NICHD (1997, 1999) study of Early Child Care’s Three Box Task.  

Only one of the three child scales for this scheme, Engagement of Parent, was used in the 

current study.  The scale was coded on a 7-point scale and reflected the extent to which 

the child showed, initiated, and/or maintained interaction with the parent.  “This may be 

expressed by approaching or orienting toward parent, establishing eye contact with 

parent, positively responding to parent’s initiations, positive affect directed to parent, 

and/or engaging parent in play” (ACF, 2002b, p. C-10).  Table 1 shows the outcome 

variables by construct, domain, and method of data collection. 

According to ACF (2002b), the child measures were originally selected for the 

EHSRE project based on the following guiding principles: (a) relevance to intervention 

goals and hypotheses, (b) appropriateness to children’s age and developmental level, (c) 

appropriateness for the EHS population, (d) adequate psychometric properties, (e) prior 

use in large-scale intervention evaluations, and (f) low cost and burden.  These variables 

were selected for the current study from the 24- and 36-month data collection age points. 

However, the PPVT data were not collected at 24 months so the analysis for that one 

variable was point-in-time only (see analysis section below). 
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Table 1 

Child Measures and Outcomes by Domain and Collection Method  
 
Measure Outcome 

Variable 
Developmental 
Domain 

Method 

BSID-III  MDI Score Cognitive  Individual 
Assessment by 
Researcher 
 

PPVT-III* Standard Score Receptive 
Language 

Individual 
Assessment by 
Researcher 
 

CBCL Aggression 
Subscale Score 
 

Behavioral Parent-Report 
Survey 

Semi-structured 
Play Interaction 

Engagement of 
Parent Score 

Social- 
Emotional 

Observational 
Coding by 
Researcher 

* Collected at 36 months only. 

 

These outcome measures were selected because they represented different 

developmental domains.  The careful selection of age-appropriate and high psychometric 

quality measures for the original study further supported the justification for their use in 

the current study.  

Family and Child Baseline  
Characteristics 

 Baseline characteristics were used to gauge the equivalence of the intervention 

and control groups after data were subjected to each threat condition.  Thus, this set of 

variables was used to test the degree of disruption of randomization.  For consistency, I 

used the EHSRE’s 12 key variables for establishing research group equivalence used in 

the original study.  Family variables included age of mother at random assignment, 

mother’s level of education, race and ethnicity, primary occupation, English language 
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ability, living arrangements, household income as a percent of the poverty level, public 

assistance receipt, food stamps receipt, and maternal risk index.  Child baseline variables 

included age at enrollment, gender, and born more than three weeks early.  These 

variables were also used in Phase IV of the present study to assess the efficacy of the 

corrective procedures.  

Early Head Start Attendance and  
Service Use 

 The degree of attendance, involvement, and service use in the Early Head Start 

(EHS) service were important variables for the current study.  They were used to help 

create datasets subjected to threat conditions under the noncompliance scenario.  I created 

a constructed variable of overall involvement in program activities and used it to 

identify/characterize families along the continuum of participation.  The individual 

variables used to measure participation and collected with the project’s 26-month parent 

services interview included (a) length of participation in EHS in months, (b) frequency of 

participation in EHS activities, (c) time per month parent spent in EHS activities (hours), 

and (d) time per month the focus child spent in EHS activities (hours) including child 

development services.  The EHSRE study created composites regarding participation 

based on patterns of these variables. 

Procedures 

The project had four primary procedural phases.  Phase I operated as a pilot to 

serve as both a data preparation stage and a preliminary run-through of one full 

randomization threat condition.  During Phase II, data were generated to specification for 

each of the remaining threat conditions.  Phase III addressed Research Questions 1 and 2 

by performing diagnostic and comparative sensitivity analyses to assess differences in 
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each study condition compared to findings from the pure, randomized sample. To address 

Research Question 3, Phase IV involved examining the comparative performance of data 

analytic techniques to attempt corrections or adjustments of data to improve the accuracy 

of the results. 

Phase I: Data Preparation and Pilot with  
One Threat Condition 

Phase I (preparation and pilot) was used to conduct the subsequent phases of the 

study in the most efficient and effective way.  It was anticipated that Phase I would 

provide an opportunity to (a) gain a deeper understanding of the existing data structure 

and the relationships among the study databases and variables, (b) construct the 

foundation datasets, (c) pilot a single condition, and (d) refine the covariate list for 

propensity score analysis and other adjustment methods used in Phase IV of the study. 

 Foundation datasets.  Since there were 20 different databases with original 

EHSRE data, I first merged together only the variables to be used in the study to 

construct a new, parsimonious, easier-to-manipulate dataset.  From this new original base 

set (OBS), I constructed the large-sample foundation dataset (labeled FL for Foundation 

Large) that randomly sampled 1,400 cases from the OBS (i.e., 700 intervention and 700 

control).  I created the medium sample foundation dataset (N = 600; FM for Foundation 

Medium) by randomly selecting cases equally from the OBS intervention and control 

groups.  I also created the small sample-sized dataset (N = 250; FS for Foundation Small) 

by randomly selecting cases equally from the OBS.  These steps formed the three 

foundation groups and retained the randomization and group status for the selected 

participant samples.  
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Pilot threat condition 1. Next, for the pilot study, I used the FS dataset and 

subjected it to Threat Condition 1 (dataset FSC1).  I followed this single condition 

through Phases II and II of the study to apply lessons-learned to the procedures for the 

remaining study conditions.  For example, I used this process to create needed syntax 

files for analyses and to determine the most efficient sequence of analyses.  I used the 

results to assist in the refinement of the covariate list for the corrective procedures as 

described below. 

Refining covariate list.  As the final part of Phase I, I identified a refined 

covariate list to use in the Phase IV adjustment techniques, e.g., constructing the 

propensity scores.  While some variables were preliminarily identified in my proposal, 

Phase I provided an opportunity to explore the best and most parsimonious list of 

potential covariates to use in Phase IV analyses to maximize effectiveness.  Justifying 

this in-depth consideration, Steiner et al. (2010) acknowledged that it is rarely possible to 

identify covariates meeting the strict requirements for propensity score analysis (PSA) in 

the planning phase of a study, meriting exploration during Phase I.  They held that the 

importance of the covariate selection far outweighed the actual adjustment method 

ultimately used (Steiner et al., 2010).  The determination of the covariates to use in PSA 

was decided in two ways: (a) developing a theory of selection (i.e., deciding what 

variables might be related to how cases were included in the two groups) and (b) using an 

iterative process of assessing the reduction of selection bias afforded by the adjustment 

(i.e., try different covariate combinations to form the propensity scores).  Ultimately, the 

best covariate selection was based on those variables that were the most highly correlated 
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with the selection process and the outcomes (Steiner et al., 2010) and those that provided 

the greatest bias reduction (Shadish & Steiner, 2010).  

Phase II: Dataset Generation for Randomization  
Threat Conditions 

The foundation datasets were manipulated in each condition to represent the 

specific threats to randomization.  Realistic and plausible problem-scenarios guided the 

strategic exclusion of cases from the foundation datasets.  This exclusion process was 

used to threaten the randomization balance of covariates between the intervention and 

control groups.  To identify participant cases for exclusion, two different methods for 

each threat type were used to categorize or label cases according to the scenario context 

(described below).  The purpose in using two different methods of strategic exclusion 

was to provide an alternative opportunity to confirm potential bias effects. 

For the allocation bias scenario, I used the following as the basis for case 

exclusion: (a) baseline maternal risk index (summed composite of the presence of risk 

factors including teen mother, no high school, on public assistance, unemployed, and 

single mother--ranges from 0 to 5) and (b) baseline maternal welfare receipt (single 

covariate--ranges from 0 to 1).  Maternal risk status was a computed variable already 

present in the EHS datasets as was the welfare variable. 

For the noncompliance scenario, I used (a) a service intensity constructed variable 

present in the EHS datasets that was derived based on reported patterns of program 

participation at the 26-month interview (dichotomous variable indicating high or low 

intensity services based on a defined threshold--ranges 0 to 1), and (b) latent class 

analysis to identify cases’ latent compliance classes (see Phase II analysis section for 

description). 
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For the differential attrition scenario: I used  (a) a parent resources survey score 

reported at the 26-month interview (scores ranged from79 to 195) and (b) parents’ 

average number of hours worked at the time of the 26-month interview (single score-- 

ranges from 0 to 74). 

Labeling Datasets for  
Conditions 1-27 

A table follows each scenario description that shows each condition: the labels for 

the dataset threatened by the condition for both exclusion methods 1 and 2, a description 

of the condition, and the randomized comparison set to which the threatened set was 

compared.  Again, FS, FM, and FL refer to the small foundation, medium foundation, and 

large foundation datasets.  For example, FSC1 is the label for the data derived from the 

small foundation set subsequently exposed to Condition 1.  The R label refers to the 

randomized data sampled from the foundation set to achieve the same sample size for 

equitable comparison.  For example, FSC1-R is the label for the set randomly sampled 

from the small foundation dataset to equal that condition’s sample size.  The tables 

provide the labels and description for each of the datasets referred to in the procedures 

below. 

Threat scenario 1: Allocation bias (conditions 1-9).  This fictitious, yet 

plausible scenario involves a situation in which program staff are responsible for 

recruitment, enrollment, and subsequent randomization.  They received instructions on 

how to randomly assign participants to groups but their implementation of the random 

assignment was insufficiently monitored by the researchers.  The intended procedures 

involved staff opening the next envelope in an ordered stack of envelopes to reveal the 

assignment status for a newly enrolled participant.  However, the assignment was 
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insufficiently concealed and program staff were able to see through the envelopes and 

view the assignment printed on a paper inside.  In one, two, or three sites (based on 

condition, sites were selected randomly), staff were not clear about the purpose of the 

random assignment or alternatively believed that random assignment was unethical due 

to withholding services from those most in need.  After they examined the enrollment 

paperwork, they acted on their preference for serving the families with the highest level 

of risk.  They selected envelopes out of sequence that ensured the families with the 

highest risk got into the EHS intervention group. 

The end-goal for this scenario was that the highest risk families were no longer 

equally distributed across the intervention and control groups (as per the randomization) 

because staff placed a greater proportion of families with a higher risk composite in the 

intervention group.  Since it was not possible to actually move highest risk families from 

the intervention group to the control group in the secondary dataset that was used, I 

created a targeted exclusion process to increase the proportion of higher risk families in 

the intervention group.  In other words, I selected the specified proportion of the top 

highest-risk cases to exclude from the control group and I also selected an equal 

proportion of the bottom lowest-risk cases to remove from the intervention group.  A 

multi-step process was used to create 18 datasets in this scenario (nine from each 

exclusion method).  

Step 1: Determine level of risk across all cases in the sample. As described 

above in the introductory paragraph for Phase II, the maternal risk index was used to 

identify the level of risk associated with each case.  The distribution of high-risk families 
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in the original sample was over 25%, enabling exclusion sampling as described below 

(ACF, 2002b).  

Step 2a: Create conditions 1-3.  This began with the randomly selected, small-

sample foundation dataset (FS).  In Condition 1, the top 12.5% of the highest risk cases 

were removed from the control group and the bottom 12.5% of the lowest risk cases were 

removed from the intervention group (new set FSC1).  In Condition 2, the top 7.5% of 

the highest risk cases were removed from the control group and the bottom 7.5% of the 

lowest risk cases were removed from the intervention group (set FSC2).  In Condition 3, 

the top 2.5% of the highest risk cases were removed from the control group and the 

bottom 2.5% of the lowest risk cases were removed from the intervention group (FSC3).  

Step 2b: Create conditions 4-6.  This step began with the randomly selected, 

medium-sample foundation dataset (FM).  In Condition 4, the top 12.5% of the highest 

risk cases were removed from the control group and the bottom 12.5% of the lowest risk 

cases were removed from the intervention group (new set FMC4).  In Condition 5, the 

top 7.5% of the highest risk cases were removed from the control group and the bottom 

7.5% of the lowest risk cases were removed from the intervention group (set FMC5).  In 

Condition 6, the top 2.5% of the highest risk cases were removed from the control group 

and the bottom 2.5% of the lowest risk cases were removed from the intervention group 

(FMC6). 

Step 2c: Create conditions 7-9.  This step began with the randomly selected, 

large-sample foundation dataset (FL).  In Condition 7, the top 12.5% of the highest risk 

cases were removed from the control group and the bottom 12.5% of the lowest risk cases 

were removed from the intervention group (new set FLC7).  In Condition 8, the top 7.5% 
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of the highest risk cases were removed from the control group and the bottom 7.5% of the 

lowest risk cases were removed from the intervention group (set FLC8).  In Condition 9, 

the top 2.5% of the highest risk cases were removed from the control group and the 

bottom 2.5% of the lowest risk cases were removed from the intervention group (FLC9). 

Step 3: Modify large sample foundation, medium sample foundation, and small 

sample foundation datasets to match sample sizes.  In this step, I randomly deselected 

cases to create comparison datasets with equal sample sizes to the sets for Conditions 1-9.  

Note that as cases were selectively removed, the sample sizes decreased, thus the need for 

creating comparison groups that matched sample size. 

Step 4: Conduct diagnostic and comparative analysis.  This is described below 

in the analysis section and included examination of all four outcome variables for each 

threat condition. 

Step 5: Repetition.  Steps 2-4 were repeated using the single covariate method of 

exclusion (single risk factor of welfare receipt).  Table 2 presents a summary of the nine 

conditions. 
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Table 2 

Summary of Nine Conditions 
 

Condition 

Set Labels 

Description 

Randomized 
Comparison 

Set 
Method 

1 
Method 

2 

1 FSC1 FSC1-2 allocation bias - small sample - 
large exposure FSC1-R 

2 FSC2 FSC2-2 allocation bias - small sample - 
medium exposure FSC2-R 

3 FSC3 FSC3-2 allocation bias - small sample - 
small exposure FSC3-R 

4 FMC4 FMC4-2 allocation bias - medium sample - 
large exposure FMC4-R 

5 FMC5 FMC5-2 allocation bias - medium sample – 
med. exposure FMC5-R 

6 FMC6 FMC6-2 allocation bias - medium sample - 
small exposure FMC6-R 

7 FLC7 FLC7-2 allocation bias - large sample - 
large exposure FLC7-R 

8 FLC8 FLC8-2 allocation bias - large sample – 
med. exposure FLC8-R 

9 FLC9 FLC9-2 allocation bias - large sample - 
small exposure FLC9-R 

     
 

 

Threat scenario 2: Early Head Start program noncompliance (Conditions 10-

–18).  In this scenario, as in the original sample, there were EHS intervention participants 

who do not participate in program activities at levels sufficiently believed to affect 

positive outcome change.  While the reasons for nonparticipation were not important for 

this scenario per se, potential reasons might include high mobility or homelessness, for 

example.  What was important was the pattern of EHS participation among individuals in 

the intervention group.  The manipulation in this scenario involved increasing the 

proportion of noncompliers in the intervention group (i.e., those who participated in EHS 
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activities the least often) by removing the designated proportions of EHS participants 

who were the most highly involved from the intervention group.  Since in this scenario 

there was no variability in program use in the control group (i.e., should already equal 

zero participation in EHS), a random sample of participants was removed from the 

control group to match the sample size in the intervention group (i.e., controlling for 

potential sample size differences).  As in Scenario 1, a similar multi-step process to create 

the datasets was subjected to the Scenario 2 threat conditions. 

Step 1: Determine level of compliance across all participants in the sample. 

Again, the patterns of program use and involvement were thoroughly documented for the 

original sample.  Recall that the involvement variables as measured in the 26-month 

parent services interview included (a) length of participation in EHS in months (divided 

into categories by quartile); (b) frequency of participation in EHS activities (categorical, 

numerous items specifying different activities); (c) time per month that parent spent in 

EHS activities (hours, reported in categories); and (d) time per month the focus child 

spent in EHS activities (hours, reported in categories) including child development 

services.  A dichotomous service intensity variable was created based on these variables 

by MPR and is present in the original data (ACF, 2002b). 

Step 2a: Create conditions 10-12.  This began with the randomly selected, small-

sample foundation dataset (FS).  In Condition 10, the top 25% of the most highly 

involved/compliant cases were removed from the intervention group and 25% of the 

sample was randomly selected for removal from the control group (set FSC10).  In 

Condition 11, the top 15% of the most highly involved/compliant cases were removed 

from the intervention group and 15% of the sample was randomly selected for removal 
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from the control group (set FSC11).  In Condition 12, the top 5% of the most highly 

involved/compliant cases was removed from the intervention group and 5% of the sample 

was randomly selected for removal from the control group (FSC12).  

Step 2b: Create conditions 13-15.  This step began with the randomly selected, 

medium-sample foundation dataset (FM).  In Condition 13, the top 25% of the most 

highly involved/compliant cases were removed from the intervention group and 25% of 

the sample was randomly selected for removal from the control group (set FMC13).  In 

Condition 14, the top 15% of the most highly involved/compliant cases were removed 

from the intervention group and 15% of the sample was randomly selected for removal 

from the control group (set FMC14).  In Condition 15, the top 5% of the most highly 

involved/compliant cases were removed from the intervention group and 5% of the 

sample was randomly selected for removal from the control group (FMC15). 

Step 2c: Create conditions 16-18.  This step began with the randomly selected, 

large-sample foundation dataset (FL).  In Condition 16, the top 25% of the most highly 

involved/compliant cases were removed from the intervention group and 25% of the 

sample was randomly selected for removal from the control group (set FLC16).  In 

Condition 17, the top 15% of the most highly involved/compliant cases were removed 

from the intervention group and 15% of the sample was randomly selected for removal 

from the control group (set FLC17).  In Condition 18, the top 5% of the most highly 

involved/compliant cases were removed from the intervention group and 5% of the 

sample was randomly selected for removal from the control group (FLC18). 

Step 3: Modify large sample foundation, medium sample foundation, and small 

sample foundation datasets to match sample sizes.  In this step, I randomly deselected 
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cases to create comparison datasets with equal sample sizes to the sets for Conditions 10-

18.  Note that as cases were selectively removed, the sample sizes decreased, thus the 

need for creating comparison groups that matched sample size. 

Step 4: Conduct diagnostic and comparative analysis.  These procedures are 

described below in the data analysis section. This step included examination of all four 

outcome variables for each threat condition. 

Step 5: Repetition.  Steps 2-4 were repeated using the categorical and 

dichotomous variables (as required by the analysis; e.g., Eid, Langeheine, & Diener, 

2003).  The variables included participation variables for home visits, child care 

attendance, social events, and parenting classes.  Latent class analysis was used to 

determine the class or group to which each participant belonged, representing their latent 

participation pattern.  This method is described below in the data analysis section.  Table 

3 presents a summary of Conditions 10-18. 
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Table 3 

Summary of Conditions 10-18 
 

Condition 

Set Labels 

Description 

Randomized 
Comparison 

Set 
Method 

1 
Method 

 2 

10 FSC10 FSC10-2 
noncompliance bias-small sample-
large exposure FSC10-R 

11 FSC11 FSC11-2 
noncompliance bias-small sample-
medium exp. FSC11-R 

12 FSC12 FSC12-2 
noncompliance bias-small sample-
small exposure FSC12-R 

13 FMC13 FMC13-2 
noncompliance bias-medium 
sample-large exp. FMC13-R 

14 FMC14 FMC14-2 
noncompliance bias-medium 
sample-medium exp. FMC14-R 

15 FMC15 FMC15-2 
noncompliance bias-medium 
sample-small exp. FMC15-R 

16 FLC16 FLC16-2 
noncompliance bias-large sample-
large exposure FLC16-R 

17 FLC17 FLC17-2 
noncompliance bias-large sample-
med. exposure FLC17-R 

18 FLC18 FLC18-2 
noncompliance bias-large sample-
small exposure FLC18-R 

 
 

Threat scenario 3: Differential attrition (conditions 19-27).  In this scenario, it 

was supposed that Early Head Start (EHS) program families who had stronger 

employment and overall resources left the EHS study before the 36 months data 

collection point because they no longer believed they needed EHS services.  Guo and 

Fraser (2010) indicated that participants who were more likely to drop out were often the 

ones who perceived they no longer received benefits from the intervention (p. 280).  

Thus, there becomes a missing-not-at-random (MNAR) problem.  The goal in this 

scenario was to decrease the proportion of the sample in the intervention group at 36 

months who were employed and had higher resources. It was presumed they were too 
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busy to participate in EHS home visits because they were working. They could now 

afford other child care situations; thus, they dropped out of the research and the EHS 

program.  Because they were not involved in the EHS services or home visits, the control 

group attrition occurred at random.  Thus, a random proportion was removed from the 

control group.  

Step 1: Determine level of resource across all participants in the sample.  The 

variables used to create this composite variable included employment, high school 

diploma, and the reported adequacy-of-resources variables from the 26-month parent 

services interview.  The interview examined the adequacy of resources including food, 

housing, money, medical care, transportation, child care, support from friends, and parent 

information.  The summed composite of the presence of employment, high school 

diploma, and the nine resource variables ranged from 0 to 11. 

Step 2a: Create conditions 19-21.  This step began with the randomly selected, 

small-sample foundation dataset (FS).  In Condition 19, the top 25% of the most highly 

resourced cases were deselected from the intervention group and 25% of the sample was 

randomly deselected from the control group (set FSC19).  Note that the term deselected 

was used rather than removed, as in previous scenarios, because these excluded cases 

(minus their 36-month outcome data) needed to remain in the dataset for use in Phase II 

and IV analyses.  In Condition 20, the top 15% of the most highly resourced cases was 

deselected from the intervention group and 15% of the sample was randomly deselected 

from the control group (set FSC20).  In Condition 21, the top 5% of the most highly 

resourced cases was deselected from the intervention group and 5% of the sample was 

randomly deselected from the control group (FSC21).  
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Step 2b: Create conditions 22-24.  This step began with the randomly selected, 

medium-sample foundation dataset (FM).  In Condition 22, the top 25% of the most 

highly resourced cases was deselected from the intervention group and 25% of the 

sample was randomly deselected from the control group (set FMC22).  In Condition 23, 

the top 15% of the most highly resourced cases was deselected from the intervention 

group and 15% of the sample was randomly deselected from the control group (set 

FMC23).  In Condition 24, the top 5% of the most highly resourced cases was deselected 

from the intervention group and 5% of the sample was randomly deselected from the 

control group (FMC24). 

Step 2c: Create conditions 25-27.  This step began with the randomly selected, 

large-sample foundation dataset (FL).  In Condition 25, the top 25% of the most highly 

resourced cases was deselected from the intervention group and 25% of the sample was 

randomly deselected from the control group (set FLC25).  In Condition 26, the top 15% 

of the most highly resourced cases was deselected from the intervention group and 15% 

of the sample was randomly deselected from the control group (set FLC26).  In Condition 

27, the top 5% of the most highly resourced cases was deselected from the intervention 

group and 5% of the sample was randomly deselected from the control group (FLC27). 

Step 3: Modify large sample foundation, medium sample foundation, and small 

sample foundation datasets to match sample sizes.  In this step, I randomly deselected 

cases to create comparison datasets with equal sample sizes to the sets for Conditions 19–

27.  Note that as cases were selectively excluded, the sample sizes decreased, thus the 

need for creating comparison groups that matched sample size. 
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Step 4: Conduct diagnostic and comparative analysis.  These procedures are 

described below in the data analysis section.  This included examination of all four 

outcome variables for each threat condition. 

Step 5: Repetition.  Steps 2-4 were repeated using a single score for parent 

resource, i.e., the number of hours worked at the time of the 26-month interview (single 

score ranged from 0 to 1), excluding cases on the basis of greater hours worked (see 

Table 4 for summary of conditions 19-27). 

 

Table 4 
 
Summary of Conditions 19-27 
 

Condition 

Set Labels 

Description 

Randomized 
Comparison 

Set 
Method 

1 Method 2 

19 FSC19 FSC19-2 
diff attrition bias-small sample-
large exposure FSC19-R 

20 FSC20 FSC20-2 
diff attrition bias-small sample-
medium exp. FSC20-R 

21 FSC21 FSC21-2 
diff attrition bias-small sample-
small exposure FSC21-R 

22 FMC22 FMC22-2 
diff attrition bias-medium 
sample-large exp. FMC22-R 

23 FMC23 FMC23-2 
diff attrition bias-medium 
sample-medium exp. FMC23-R 

24 FMC24 FMC24-2 
diff attrition bias-medium 
sample-small exp. FMC24-R 

25 FLC25 FLC25-2 
diff attrition bias-large sample-
large exposure FLC25-R 

26 FLC26 FLC26-2 
diff attrition bias-large sample-
med. exposure FLC26-R 

27 FLC27 FLC27-2 
diff attrition bias-large sample-
small exposure FLC27-R 
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 Table 5 summarizes each scenario, the manipulation performed for intervention 

and control groups (exclusion factors), and the hypothesized effects on the outcomes. 

 

Table 5 
 
Summary of Threat Scenarios and Manipulations by Group 
 

Group 
Scenario 1: 

Biased 
Allocation 

Scenario 2: 
EHS Noncompliance 

Scenario 3: 
Differential Attrition 

 
Premise 
 
 
 
 
 
 

Increase 
proportion of high 
risk cases in 
intervention 
group 
 

Increase proportion of 
cases less intensely 
involved in EHS 
services 

Decrease proportion of 
cases in the intervention 
group who are highly 
resourced 

Manipulation to 
Threatened 
Intervention 
Group 
 
 

Remove cases 
with lower risk 
composite scores 
 

Remove cases with 
highest intensity of EHS 
service involvement 

Remove cases with the 
lowest resource scores 

Manipulation to 
Threatened 
Control Group 
 
 
 
 

Remove cases 
with higher risk 
scores 

Remove a randomly 
selected sample to 
match sample size in 
intervention group 

1.Remove a randomly 
selected sample to match 
sample size in intervention 
group  
2. Retain same sample size 
in control group* 

Randomized 
Comparison 
Group 
 
 
 
 
 
 
 
 
 
 

Use random 
samples from 
foundation sets to 
match on sample 
size to isolate bias 
not power effects. 

Use random samples 
from foundation sets to 
match on sample size to 
isolate bias not power 
effects. 

1. Use random samples 
from foundation sets to 
match on sample size to 
isolate bias not power 
effects. 
2. Use actual foundation 
sets (FL, FM, FS)  to more 
realistically  mimic attrition 
from intervention only 
(sample size will be larger 
for the randomized 
comparison) 

* For consistent methodology, I created equal sample sizes for intervention and control to 
isolate bias versus power effects. 
** If attrition were occurring in the intervention sample only, as proposed here, then the 
sample size for the control would remain unchanged.  This is part of the problem with 
differential attrition (McKnight et al., 2007). 
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Phase III and IV Procedures 

 Since Phases III and IV are fully data analytic phases, they are described below in 

the next section. 

Data Analysis 

 Numerous analytic tools and strategies were employed in the different phases of 

the study.  Several statistical software packages and data management tools were used to 

perform the analyses: Excel (for organizing data outputs, conducting simple calculations, 

and creating charts and tables); SPSS version 18 (to conduct descriptive, univariate, and 

multivariate techniques including chi-square tests, t-tests, repeated measures ANOVA, 

and logistic regression); and Mplus version 5 (Muthén & Muthén, 1998–2011) for the 

latent variables.  

 The following research questions guided the study: 

Q1 What are the comparative effects of 27 randomization threat conditions on  
 the randomization of the EHSRE data?  

a. What evidence of intervention-control group covariate imbalance  
 (i.e., baseline inequivalence between intervention and control 
 groups) is revealed in each of 27 threat conditions? 

b. What is the level of bias introduced by each of 27 threat conditions?  

Q2 How sensitive are EHSRE study results to randomization threat conditions  
that include manipulations of threat type (i.e., biased allocation, 
noncompliance, and differential attrition), overall sample size, and 
proportion of sample exposed to the threat condition? Specifically, 
 
a. To what extent do threatened and non-threatened samples differ on  
 child outcome scores and observed effect sizes?  

b. What is the rate of Type I and Type II error associated with the  
threatened samples compared with the associated non-threatened 
sample for each of the child outcome variables? 
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Q3 To what degree are corrective statistical methods effective in restoring or  
distorting results in the face of typical randomization threat conditions? 
Specifically, 
 
a.  What effect do corrective methods have on findings (means,  
 significance, and effect sizes) from threatened samples? 

b. Within threat types, what is the comparative effectiveness of two  
 corrective techniques in reducing bias introduced under threat  
 conditions? 

Phase I Analysis 

To gain a clearer understanding of the variables included in the Early Head Start 

(EHS) databases, I used SPSS to conduct descriptive and frequency analyses in Phase I to 

examine the means, standard deviations, ranges, frequencies, and distributions of the 

variables of interest (i.e., covariates and outcomes).  I also examined the relationships 

among the variables selected for the study by conducting bivariate Pearson correlations. 

In addition, further investigation of the relationships of the covariates to the outcome 

variables was conducted using a series of analyses in SPSS to determine which covariates 

to use in each of the corrective methods.  Each of the above analyses took place using the 

unthreatened original EHSRE data.  The analyses for the pilot study underwent the 

appropriate steps described in Chapter IV. 

Phase II Analysis  

 Since Phase II involved the creation of a variety of datasets through sampling, 

exploratory analyses were used to verify that the foundation datasets retained the balance 

achieved through randomization.  The statistical analyses I conducted to check the 

randomization, i.e., verifying the similarity of the intervention and control groups, 

included (a) independent samples t-tests to compare variable means between the 

intervention and control groups for the continuous variables and (b) chi-square tests of 
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independence to compare distributions of categorical variables between the intervention 

and control groups.  These were tested to determine if the difference was significantly 

different at the .10 level using a two-tailed test.  The use of these analyses and this 

significance level was selected based on the precedent set by MPR for the original 

EHSRE (ACF, 2002b).  By remaining consistent with the original method, I generally 

referred to differences or similarities between the present study’s findings and the 

original.  

Each of the datasets subsequently constructed from the foundation sets to 

represent various threat conditions were also analyzed as described in the paragraph 

above to address Research Question 1a.  To address Research Question 1b, single-sample 

t-tests and chi-square tests were used to compare threatened means and frequencies to 

randomized means and frequencies (see Table 6).   

 

Table 6 

Addressing Research Questions 1a and 1b 
 
Research 
Question Assessing Comparison 

Type Analyses Criteria 

1a imbalance intervention 
v. control 

independent samples t-
tests and chi-square 
tests of baseline 
characteristics and 
outcomes 

sig difference at α = 
.1, two tailed1 and no 
more than 10% of 
tests may be 
significantly 
different 
 

1b bias threatened 
v. 
randomized 

single-sample t-tests 
and chi-square tests of 
baseline characteristics 
and outcomes for 
continuous variables 
 

sig difference at α = 
.1, two tailed 
 
 

1Precedent set in EHSRE analysis (ACF, 2002b). 
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Assessing Compliance Type Using  
Latent Class Analysis 

  To identify the proportions of intervention cases (in the nine noncompliance 

datasets) by latent compliance type so I could strategically exclude proportions of strong 

compliers, I used Mplus version 5 to conduct latent class analysis (LCA) and guidance 

using Hagenaars and McCutcheon’s (2002) text, Applied Latent Class Analysis.  The 

purpose of the LCA was to (a) create a model that permitted categorization of 

intervention participants into different types/classes of Early Head Start (EHS) program 

compliers such as non and weak compliers, moderate compliers, and strong compliers; 

(b) confirm how many latent classes of compliers best fit the data; (c) categorize cases by 

compliance type; and (d) identify how many cases (i.e., the proportion) would be 

considered strong compliers.  Two relevant hypotheses guided this work.  First, from the 

Raikes et al. (2006) study, I expected that there would be four latent classes of 

compliance types, justifying the use of this confirmatory procedure.  In actuality, the best 

model fit was with five classes (see Chapter IV for results).  Then, I hypothesized that the 

proportion of strong compliers would exceed 25%, thus enabling the exclusion of the 

specified proportions for the conditions based on evidence in the ACF (2002b) reports; 

this was indeed the case.  The analyses involved the following steps: 

Step 1: Data preparation.  The Statistical Package for the Social Sciences 

(SPSS) was used to output an ASCII version of the data for input into Mplus.  Data were 

verified to ensure that the input file was successfully formed.  

Step 2: Model specification.  Using the variables identified in Step 1 of the 

description of Threat Scenario 2, I specified models in Mplus.  The variables describing 

service use were used to cluster cases around their shared variability. The method of 
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estimation I selected was the MLR estimator, which is an iterative maximum likelihood 

(robust) estimator used with an expectation-maximization (EM) algorithm, commonly 

used in LCA per Hagenaars and McCutcheon (2002).  In Mplus, the variable names, the 

number of classes (four), the analysis type, desired plots, and outputs are specified.  

Step 3: Model evaluation.  The outputs showed the classification of cases based 

on their most likely class membership.  The output also provided the number of cases in 

each class; it indicated the means for each of the input variables and how they combined 

to form/describe the classes (Muthén & Muthén, 1998–2011).  Statistical tests for 

evaluating the fit of a latent class model are based on a comparison of the observed 

frequencies of the response patterns and the frequencies of the response patterns expected 

on the basis of a latent class model (Eid et al., 2003).  I assessed goodness-of-fit and 

reviewed information criteria.  Criteria for model evaluation included the Pearson chi-

square, the likelihood ratio chi-square, the Akaike information criteria, and the Bayesian 

information criteria.  The Pearson chi-square is a measure of the comparison of the actual 

response patterns (of variables in the model) with what is expected under the model.  If 

the model has a low p value, then it is does not have good fit.  Lower likelihood ratio chi-

square, Akaike information criteria, and Bayesian information criteria values suggest 

better fit.  Akaike information criteria and Bayesian information criteria are model 

comparison measures and are used to decide how many classes provide the best fit for the 

data.  These measures were taken together to decide which model and number of classes 

was best (Garraza, Azur, Stephens, & Walrath, 2010; Hagenaars & McCutcheon, 2002). 

Step 4: Determine number of classes/compliance types.  After the model was 

confirmed, I used the proportion of cases that fit into the strongest compliance types to 
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form the basis of the exclusion criteria for data generation in Phase II.  Given the patterns 

of compliance evident in the EHSRE study, I hypothesized that a strong complier class 

would emerge from the data and this was true. 

Phase III Analysis: Sensitivity  
Analysis 

Sensitivity analyses allow a researcher to assess the impact that changes across 

study conditions or parameters have on the study results and conclusions.  They are often 

used in simulation studies, in econometrics, or in medical research to describe the effects 

of different scenarios on the outcomes of interest.  Taylor (2009) described the simplest 

form of sensitivity analysis is to simply vary one value in the model by a given amount 

and examine the impact the change has on the model’s results.  One-way sensitivity 

analysis is when one parameter is changed at a time, i.e., the changes from 5% to 15% in 

the proportion of sample affected by the threat condition.  The sensitivity analyses 

included comparative examination of the main effects of intervention group differences 

and change-over-time on each of the four outcome variables across each of the 27 

conditions (each created using two different methods) to determine if results differed 

between the randomized data set and threatened datasets.   

As a first step, routine analyses were conducted to examine changes in outcomes 

over time and to determine differences between treatment and control in threatened and 

non-threatened, randomized sets.  Point-in-time group comparisons (using data collected 

at 24 and 36 months), change over time (within and between for all points available in the 

dataset), and estimates of the intervention effects (level of significance and effect sizes) 

were also examined.  Point-in-time comparisons were conducted using independent 

samples t-tests to compare intervention and control groups on each of the estimated 
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intervention effects of the four outcomes measures at 24 and 36 months.  These tests were 

conducted for both the sample-under-threat and the randomized sample.  The PPVT was 

only collected at 36 months so was not included in the change over time analyses.  The 

CBCL, BSID-II, and the Engagement of Parent variables were examined for change over 

time using repeated measures ANOVA (see Table 7 for a summary of the routine 

analyses and sensitivity analyses).  At the second stage of analysis to address Research 

Questions 2a and 2b regarding the sensitivity analyses, mean and effect size differences 

were compared for threatened and non-threatened samples.  To assess mean differences, a 

percent bias estimate was computed, indicating the difference between the outcome mean 

under threat condition and the expected mean from the randomized comparison using the 

formula below: 

B(y̅c) = ((y̅c - y̅r ) / y̅r) * 100%, 

where y̅c is the mean outcome score for the sample under a threat condition and y̅r is the 

mean outcome score for the randomized comparison sample.  I also assessed the rate of 

Type I and Type II error in the threatened samples.  Thus, I was interested in examining 

whether the threatened samples would falsely find statistically significant effects or 

whether they would falsely reveal no statistically significant findings.  

 For effect size differences, I examined the effect size confidence intervals and the 

magnitude of the effect size differences between threatened and randomized findings.  

Table 8 displays the comparison and associated criteria.  Ultimately, these various pieces 

of evidence were intended to be taken together to assess whether different conclusions 

would be drawn from threatened samples compared with the randomized samples. 

Chapter IV results provide both individual condition and summarized results on each of 
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these indicators, a judgment of overall bias derived from the findings-as-whole, and the 

likelihood of a different conclusion being drawn. 

 

Table 7 

Addressing Research Questions 2a and 2b 
 

Research 
Question 

Step 1 
Outcome 
Analyses 

Step 1 
Comparison 

Assesses 

Step 2 
Sensitivity 
Analyses 

Step 2  
Assesses 

2a and 2b 1) point-in-
time analysis 
of outcome 
variables 
using 
independent t-
tests 
 
2)Change 
over time 
repeated 
measures 
ANOVA 

1) statistically 
sig 
differences 
between 
intervention 
and control 
 
 
2) statistically 
sig 
differences 
over time 
within groups 
and between 
intervention 
and control  

1&2) 
comparison of 
effect size 
estimate 
confidence 
intervals1 and 
magnitude of 
effect size 
differences2; 
comparison of 
means using 
percent bias3; 
and  
assessment of 
type I and II 
error in 
threatened 
samples 

 

1&2) for threatened 
v. randomized: 
differences in effect 
sizes and differences 
in findings of 
significance (Type I 
and Type II error 
rate among 
threatened samples); 
and overall percent 
bias introduced by 
the threat condition 

Note: All tests of significance were conducted at α = .05, two tailed  
1 Examination of confidence intervals was in terms of overlap; non-overlapping CIs are 
consistent with effect size differences (Thompson, 2007).  
2 Any effect size differences greater than .20 was considered analogous to a small effect 
(Cohen, 1988), thus would effectually result in a different conclusion being drawn. 
3 The percent bias criterion used to indicate meaningful bias was any percent bias greater 
than 5% (using a 95% reference) for a value greater than the expected proportion of 
values different from the mean (Johnson, 2008). 
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Phase IV Analysis: Corrective  
Techniques 

For each of the threat types, two corrective techniques were employed to attempt 

adjustments when bias was introduced to the findings by the threat conditions.  The 

adjustment techniques used in the study were propensity score analysis and analysis of 

covariance.  The corrective techniques were also applied when bias was not introduced to 

assess the overall effects of unneeded adjustment and to mimic what might occur in 

practice.  The comparison of findings across threatened and non-threatened samples 

within threat types was intended to assess whether a given adjustment technique 

improved the accuracy of the findings (i.e., after adjustment, do the findings more closely 

resemble the randomized outcome mean, significance, effect size) or whether the 

correction further distorted the findings (i.e., greater difference from the randomized 

outcome means, significance, effect size).  I also examined the percentage of bias 

reduction (or increase) found upon comparison of the corrected/adjusted outcome 

analyses with those analyses from the randomized samples.  Since this was not a crossed 

design, meaning that not every corrective technique was applied to every threat type, 

comparisons of adjustment effectiveness within, not across, threat types were made.  I 

compared the relative efficacy between the two techniques (within, not across threat 

types) in the amount of bias reduction realized.  

Propensity score analysis using propensity scores as weights was used to attempt 

adjustment across all three threat types.  The second adjustment used was a simple 

covariate adjustment (ANCOVA) using variables associated with the outcome variables.  

These variables were selected because they were continuous variables associated with 

differences in the outcome variables.  In the case of allocation bias, the mother’s age was 
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used as the covariate.  For noncompliance and differential attrition adjustment 

procedures, I used the total number of hours the parent worked as the covariate.  

Following the analyses to apply the corrective techniques, the same patterns of 

outcome and sensitivity analyses were conducted as were described for Research 

Question 2 to address Research Question 3; however, the results were compared across 

randomized, threatened and corrected samples to gauge whether the corrected/adjusted 

findings improved the estimates or, in other words, if the results resembled the 

randomized data more closely than the threatened data.  

Simple covariate adjustment.  The most common method of handling imbalance 

between intervention and control groups is to include variables for which there are 

significant differences between the two groups as covariates (Taylor & Innocenti, 1993).  

For this analysis, I used ANCOVA (after checking appropriate assumptions) to control 

for baseline differences to obtain new estimates of the intervention effects (means, 

significance level, and effect size) for all the aforementioned comparisons.  

Propensity score analysis.  Several resources supported the steps and procedures 

needed to construct propensity scores and to use them in subsequent analyses to adjust for 

covariate imbalance between the intervention and control groups.  In particular, the 

following resources were particularly helpful: A Primer on Propensity Score Analysis 

(Shadish & Steiner, 2010), Some Practical Guidance for the Implementation of 

Propensity Score Matching (Caliendo & Kopeinig, 2008), Propensity Score Analysis and 

its Applications (workshop materials from Guo & Fraser, 2010), and Practical 

Applications of Propensity Scores (Clark, 2008). 
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Step 1: Covariate selection.  The baseline variables selected to construct the 

propensity scores were limited to the variables collected as part of the EHSRE study; 

however, as alluded to earlier, there was a substantial number from which to choose from 

the baseline data collection prior to randomization.  Otherwise, theoretically, the number 

of covariates that could be included in the model was not limited in the literature for 

parsimony’s sake.  The covariates selected as part of the Phase I investigation of these 

variables helped identify variables that were related to selection into the intervention and 

related to the outcome.  

Step 2: Logistic regression to obtain propensity scores.  Propensity scores were 

estimated using the covariate set to predict each participant case’s likelihood of selection 

into the intervention group using logistic regression in SPSS.  The predicted probabilities 

were saved in the dataset to use for diagnostics and subsequent analyses.  Model 

adequacy was checked, for example, through examining the equivalence of the 

distributions of the propensity scores in the intervention and control groups, as well as 

calculating the ratio of the intervention and control variances of the propensity scores 

(ratios close to 1; Shadish & Steiner, 2010).  In addition, baseline covariate balance was 

checked again using independent t-tests. 

Step 3: Weighting and outcome analysis.  In SPSS, the propensity scores were 

applied as weights (using the weighting function in SPSS to adjust the analysis) and the 

same outcome and sensitivity analyses described for Phase III were repeated. 

Step 4: Repetition.  Steps 1 through 3 were repeated for each of the threatened 

conditions. 
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Step 5: Conduct sensitivity analysis.  To assess the degree to which the 

propensity score analysis assisted or thwarted attempts to correct imbalance and to 

improve outcome estimates, I conducted the same set of sensitivity analyses as were 

performed for the threatened versus randomized outcomes.  These analyses included 

calculation of effect size differences, examination of Type I and Type II errors, and 

percent mean bias.  These analyses were compared across the threatened, adjusted, and 

randomized findings to determine relative effects. 

Propensity score analysis to adjust for differential attrition bias.  As an 

alternative adjustment approach, propensity score analysis can be used to reduce selection 

bias due to differential attrition.  This procedure can rebalance the intervention and 

control groups to restore equivalence; however, it does not replace missing data. 

Following the steps described to adjust for allocation bias, propensity score analyses were 

used and examined for their comparative effectiveness in restoring results achieved 

through randomization. 

Summary 

 Phases I through IV of the current study were conducted using the procedures as 

specified.  To reiterate, Phase I was a data preparation and pilot phase and Phase II 

comprised the datasets generation for the 27 threat conditions (two exclusion methods 

each for a total of 54 threatened datasets); analyses from the threat conditions were used 

to answer Research Question 1.  Phase III examined sensitivity of the EHS study results 

to each of the threat conditions to respond to Research Question 2 and Phase IV explored 

the effectiveness of the corrective methods in restoring or distorting the data under threat 
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conditions to address Research Question 3.  In the results section (see Chapter IV), I 

provide narrative and tabular results to organize and synthesize the study findings.  

 



 

 
 
 
 

CHAPTER IV 
 
 

RESULTS 
 
 

Phase I: Data Merging and Pilot Analyses 
 

The initial phase of the analysis involved the development of the original base set 

(OBS), which was derived by gathering the necessary variables from each of the original 

Early Head Start databases and combining them into a single database for use in this 

study.  A total of 94 variables and 1,756 cases were the results of this effort.  This 

database was subsequently randomly subsampled to create three foundation datasets of 

large, medium, and small sample sizes.  The final sample sizes, prior to Phase II analyses, 

were as follows: (a) foundation large, N = 1,400 (700 control and 700 program); (b) 

foundation medium, N = 600 (300 control and 300 program); and (c) foundation small, N 

= 250 (125 control and 125 program).  After creating the foundation sets, independent 

samples t-tests (using α = .10) were performed to examine whether the subsampling 

process affected the intervention-control balance on 12 baseline characteristics. 

Randomization was retained for each of the foundation datasets in terms of their baseline 

characteristics. 

The pilot study, involving a full run-through of Condition 1 (FSC1; small sample, 

high proportion [25%] affected), resulted in the development of a process for strategically 

excluding cases using SPSS.  Condition 1 (with exclusion method 1) involved using the 

categorical maternal risk composite variable to identify and randomly deselect 12.5% of 



89 
 
cases from the small foundation dataset with a high level of risk from the control group 

and to randomly deselect 12.5% of cases from the same dataset with a low level of risk 

from the intervention group.  Another new dataset was created to serve as the randomized 

comparison by randomly deselecting cases from the same small foundation dataset to 

match the intervention and control sample sizes in the FSC1 sample (see descriptive 

statistics in Tables 8-19).  

For the pilot analysis that correspond to the later Phase II analyses for the other 

conditions, the balance checks of the data (using independent samples t-tests and chi-

square tests of independence) indicated the control and intervention groups were 

statistically significantly different for 5 of the12 baseline characteristic, showing that 

imbalance was created.  The variables that differed between intervention and control in 

the threatened sample were parent age, education, primary occupation, living 

arrangement, and maternal risk.  Which variables were different, however, was 

immaterial for the purpose of this analysis--to determine how many variables of the 12 

were out of balance.  If more than one was out of balance, then this was considered out of 

balance. 

Three tests indicated statistically significant differences between the threatened 

and randomized comparison sets using one-sample t-tests with the randomized dataset 

means used as the target means (education, living arrangement, and maternal risk). 

Similar to the balance tests, the quantity, rather than the variables themselves, was of 

interest; thus, if more than one test was determined to indicate bias between threatened 

and randomized, then threat condition was determined to have introduced biased.  Thus, 
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this analysis showed that bias was created in the FSC1 threatened condition (see Tables 

8-19 for the pilot’s detailed baseline balance and bias analytic results). 

Table 8 shows the means and standard deviations of the threatened and 

randomized sets for the pilot.  This is one example of the descriptive analyses that were 

performed for each of the threat conditions and corresponding randomized datasets. 

 

Table 8 

Pilot Means and Standard Deviations by Group for Foundation Small Condition 1 and 
Foundation Small Condition 1-Randomized on Five Continuous Baseline Characteristics 
  

  FSC1 FSC1-R 

 Group n Mean SD n Mean SD 

Mother Age C 93 23.409 5.634 93 22.355 5.183 
I 93 21.763 6.478 94 22.872 6.193 

        
Child 
Gender 

C 93 .505 .503 93 .559 .499 
I 94 .596 .493 94 .543 .501 

        
Child 
Premature 

C 62 .129 .338 65 .077 .269 
I 68 .162 .371 65 .154 .364 

        
Welfare 
Receipt 

C 76 .250 .436 76 .276 .450 
I 71 .282 .453 69 .188 .394 

        
Food 
Stamps 
Receipt 

C 86 .337 .476 87 .414 .495 

I 89 .427 .497 89 .292 .457 

Key: C = control group; I = intervention group; FSC1 refers to the “foundation small 
condition 1” threat condition, and FSC1-R refers to the randomized comparison set. 
 
 
 
 Slight mean differences are observed between threatened and randomized data on 

each of the variables.  These were tested for statistical significance with results shown in 

Table 16.  While means were computed for the five continuous variables presented in 
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Table 8, Tables 9 through 15 display the frequencies for the seven categorical baseline 

variables.  The pilot’s descriptive and frequency tables are examples of the types of tables 

that were calculated for every threat condition (created using method 1 and method 2) 

and for every corresponding randomized set.  Note that later in the Phase II through 

Phase IV results, these detailed tables were not presented because there are several 

hundred pages of results.  I have instead selected examples to display in Appendices C 

through E.  Summary tables, however, are presented that show the overall results 

aggregated in different ways over conditions.    

 Table 9 shows frequencies on the counts for the categorical variable of race.  

Because the sample sizes are equivalent, the counts might be directly compared in each 

cell.  Slightly different numbers of participants by race are found in the threatened 

condition versus the randomized data.  Results of the statistical significance tests of the 

differences in frequencies of race across the cell (Chi-square tests) are presented in Table 

17, as are the findings for the next five categorical variables. 

 

Table 9 

Pilot Frequencies by Experimental Group for Foundation Small Condition 1(Method 1) 
and Foundation Small Condition 1-Randomized for Race 
 

  FSC1 FSC1-R 
Race Group A B C O Total A B C O Total 

 C 37 25 24 5 91 43 27 17 4 91 
 I 32 31 22 3 88 35 27 23 2 87 
 Total 69 56 46 8 179 78 54 40 6 178 

Key: A = White; B = African American; C = Hispanic/Latino; O = Other Race; C = 
control group; I = intervention group. 
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Table 10  

Pilot Frequencies by Experimental Group for Foundation Small Condition 1 (Method 1) 
and Foundation Small Condition 1-Randomized for Education 
 

  FSC1 FSC1-R 
Education Group A B C Total A B C Total 

 C 26 30 30 86 34 28 25 87 
 I 50 25 11 86 36 29 23 88 
 Total 76 55 41 172 70 57 48 175 

Key: A = Less than 12th grade; B = High School Diploma or GED; C = More than High 
School Education; C = control group; I = intervention group. 
 
 
 
Table 11 

Pilot Frequencies by Experimental Group for Foundation Small Condition 1 (Method 1) 
and Foundation Small Condition 1-Randomized for Primary Occupation 
 

  FSC1 FSC1-R 
Primary 

Occupation Group A B O Total A B O Total 

 C 31 12 42 85 26 16 45 87 
 I 14 22 50 86 17 20 50 87 
 Total 45 34 92 171 43 36 95 174 

Key: A = Employed; B = School or Training; O = Other primary occupation; C=control 
group; I = intervention group. 
 
 
 
Table 12 

Pilot Frequencies by Experimental Group for Foundation Small Condition 1 (Method 1) 
and Foundation Small Condition 1-Randomized for English Language Ability 
 

  FSC1 FSC1-R 
Language 

Ability Group A B C Total A B C Total 

 C 71 2 14 87 76 2 10 88 
 I 70 6 9 85 70 7 9 86 
 Total 141 8 23 172 146 9 19 174 

Key: A = Parent's primary language is English; B = Primary language is not English but 
the parent speaks English well; C = The primary language is not English and the parent 
does not speak English well; C = control group; I = intervention group. 
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Table 13 

Pilot Frequencies by Experimental Group for Foundation Small Condition 1 (Method 1) 
and Foundation Small Condition 1-Randomized for Living Arrangement 
 

  FSC1 FSC1-R 

Living 
Arrange-

ment 
Group A B C Total A B C Total 

 C 34 28 31 93 25 34 34 93 
 I 19 46 29 94 28 39 27 94 
 Total 53 74 60 187 53 73 61 187 

Key: A = Lives with husband; B = Lives with Other Adults; C = Lives alone; C = control 
group; I = intervention group. 
 
 

Table 14 

Pilot Frequencies by Experimental Group for Foundation Small Condition 1 (Method 1) 
and Foundation Small Condition 1-Randomized for Maternal Risk Index 
 

  FSC1 FSC1-R 

Maternal 
Risk Group A B C Total A B C Total 

 C 51 27 0 78 37 30 15 82 
 I 16 31 31 78 39 22 21 82 
 Total 67 58 31 156 76 52 36 164 

Key: A = 0, 1, or 2 risks; B= 3 risks; C = 4, 5 risks; C = control group; I = intervention 
group. 
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Table 15 

Pilot Frequencies by Experimental Group for Foundation Small Condition 1 (Method 1) 
and Foundation Small Condition 1-Randomized for Child Age 
 

  FSC1 FSC1-R 

Child Age Group A B C Total A B C Total 
 C 22 33 38 93 21 32 40 93 
 I 22 37 35 94 25 35 34 94 
 Total 44 70 73 187 46 67 74 187 

Note: Child’s age at EHS application; A = Mother Pregnant; B = Child Less than 5 
months old; C = Child More than 5 months old; C=control group; I=intervention group. 
 
 
 

Tables 16 and 17 show the pilot results of the balance check comparing the 

equivalence of the baseline characteristics between intervention and control.  What to 

look for is the introduction of imbalance (i.e., more than one statistically significantly 

different test of the 12 tests) in the threatened condition (here labeled FSC1) and the 

retention of balance in the randomized data on the same baseline characteristics (i.e., no 

more than one statistically significantly different test of the 12 tests).  These tests were 

conducted at the 10% level to match methods from the EHSRE study. 

Note in Table 16 for FSC1, one of the baseline characteristics is statistically 

significantly different between intervention and control groups and similarly for FSC1-R.  

Then, when combined with the results in Table 17, FSC1 has four more statistically 

significantly different intervention versus control tests to make a total of 5 of the 12 

baseline characteristics that are different.  Thus, imbalance was introduced in the 

threatened condition.  The randomized set, with its reduced sample size, retained balance 

with only the one significant test.   
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Table 16 

Foundation Small Condition 1 and Foundation Small Condition 1-Randomized Pilot 
Balance Check: Independent Samples t-Tests for Continuous Characteristics 
 

 
FSC1 FSC1-R 

 

  t df  Sig. (2-
tailed) t df Sig. (2-

tailed) 
Mother's Age 1.848 184 .066* -.619 185 .536 
Child Gender -1.241 185 .216 .227 185 .821 
Child Premature -.524 128 .601 -1.372 117 .173 
Welfare -.432 145 .666 1.254 142 .212 
Food Stamps -1.219 173 .224 1.692 172 .092* 

Note: Asterisk (*) indicates statistically significant difference at alpha = .10. 

 

Table 17 

Foundation Small Condition 1 and Foundation Small Condition 1-Randomized Pilot 
Balance Check: Chi-squares Test of Independence for Categorical Characteristics 
 

 FSC1 FSC1-R 

 X2 df Sig. (2-
sided) X2 df Sig. (2-

sided) 
Race 1.542 3 .673 .230 3 .973 
Education 16.838 2 <.001* .152 2 .927 
Primary Occupation 10.054 2 .007* 2.591 2 .274 
Language Ability 3.071 2 .215 3.054 2 .217 
Living Arrangement 8.685 2 .013* 1.310 2 .519 
Maternal Risk Index 49.559 2 <.001* 2.283 2 .319 
Child's Age .347 2 .841 .963 2 .618 

Note: Asterisk (*) indicates statistically significant difference at alpha = .10. 

 

 Tables 18 and 19 combined demonstrate that bias was introduced as a result of the 

threat exclusion process for FSC1.  Three of the 12 significance tests showed differences 

between threatened and randomized data corresponding to those three variables (recall 

criteria that no more than one may be significantly different to remain unbiased on 

baseline characteristics). 
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Table 18 

Foundation Small Condition 1 Pilot Bias Check for Continuous Variables (Comparing 
Disrupted to Randomized Standard, One Samples t-Tests) 
 

 
FSC1 

 
  N Mean      SD   t        df       sig. 

Mother's Age 186 22.586 6.110 -0.065 185 .948 
Child Gender 187 0.551 0.499 0.000 186 1.000 
Child Premature 130 0.146 0.355 0.989 129 .325 
Welfare  147 0.265 0.443 0.843 146 .401 
Food Stamps 175 0.383 0.487 0.829 174 .408 

  
 
 
 None of the continuous baseline variable means differed between threatened and 

randomized datasets (i.e., used the randomized mean as the target for the threatened mean 

in one-samples t-test).  However, in Table 19, the categorical variables of parent 

education, living arrangement, and maternal risk are statistically significantly different 

between threatened and randomized, thus indicating bias introduced in the threat 

condition.  The direction of the difference was not hypothesized; the variable itself had 

limited relevance for the purpose of simply assessing the number of tests that showed a 

difference. 
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Table 19 

Foundation Small Condition Pilot Phase II Bias Check for Categorical Variables 
 

 
FSC1 

  
N X2 df Sig. 

 (2-sided) 
Race 179 3.016 3 .389 
Education 171 15.282 2 <.001* 
Primary Occupation 171 2.891 2 .236 
Language Ability 172 2.072 2 .355 
Living Arrangement 187 8.861 2 .012* 
Maternal Risk Index 156 42.605 2 <.001* 
Child's Age 187 0.683 2 .711 
Note: Asterisk (*) indicates statistically significant difference at alpha = .10. 

 
 
 
While the previous pilot tables showed examples of assessment of baseline 

balance and bias that were found in Phase II, the next set of pilot analyses and tables 

exemplify what was found in Phase III.  Recall that Phase III was designed to conduct 

outcome and sensitivity analysis with the threatened and randomized datasets.  

In the pilot’s analyses using FSC1 (method 1) and FSC1-R, the results between 

the two sets differed on a few outcomes, namely child engagement of parent at both 24 

months and 36 months.  The subsequent sensitivity analyses were used to assess whether 

the outcome results using the threatened dataset differed meaningfully (recall criteria 

from Tables 6 and 7) from those obtained using the matching randomized dataset.  Table 

20 shows that the effect sizes for child engagement were not only different by about a 

medium effect size but were in the opposite direction.  For child engagement at 24 

months, a false statistically significant difference between intervention and control was 

found (i.e., compared to no differences found in the randomized data).  
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Table 20 

Foundation Small Condition 1 Pilot: Intervention vs. Control Point-in-Time Child 
Outcome Analyses  
 

 
Threatened Dataset  Randomized Dataset 

 

Test 
Value 

(t) 
df 

Sig 
Level 
α=.05 

Effect 
Size 
(d) 

Test 
Value (t) df 

Sig 
Level 
α=.05 

Effect 
Size 
(d) 

24m Child 
Engagement 2.039 155 .043* 0.33 .442 158 .659 -0.070 

 
36m Child 
Engagement 

-1.716 130 .089 -0.29 -1.433 140 .154 0.233 

 
24m BSID-
II MDI 

.192 152 .848 -0.03 .424 152 .672 -0.068 

 
36m BSID-
II MDI 
 

-.634 146 .527 0.10 -.300 148 .765 0.049 

24m CBCL 1.273 175 .205 -0.19 .967 178 .335 -0.144 
         
36m CBCL 1.224 179 .223 -0.18 .128 178 .899 -0.019 
         
36m PPVT -.593 122 .555 0.11 -.329 128 .743 0.058 

Note. Asterisk (*) indicates statistically significant difference at alpha = .10. 
 
 
 
Table 21 displays the pilot results of the sensitivity analysis, which include an 

assessment of error type, assessment of overlap of the effect size confidence intervals, the 

magnitude of the difference between effect sizes found between threatened and 

randomized, the percent bias computed from the means, and an overall assessment of bias 

made from the preponderance of evidence from the preceding sensitivity analyses.  The 

overall assessment of bias was rated “yes” for biased when the results for an individual 

outcome variable differed in the interpretation of the results from threatened to 

randomized.
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Table 21 

Foundation Small Condition 1 Pilot: Sensitivity Analyses for Point-in-Time Child 
Outcomes (Threatened vs. Randomized)  
 

 
Error Type 

Overlapping  
Effect Size 

C.I.s 

Effect 
Size 

Difference 

Percent 
Bias 

Overall 
Bias 

 Type I or 
Type II 

Y=yes, 
N=no 

 
|d|>.20 %>10% Y=yes, 

N=no 
24m Child 
Engagement Type I Y -0.40 0.43% Y 

 
36m Child 
Engagement 

None Y 0.52 -0.36% Y 

 
24m BSID-
II MDI 

None Y -0.04 -0.69% N 

 
36m BSID-
II MDI 

None Y -0.06 -0.74% N 

 
24m CBCL None Y 0.05 0.22% N 

 
36m CBCL None Y 0.16 -0.31% N 

 
36m PPVT None Y -0.05 0.23% N 

 
 
 
 Table 21 shows a Type I error, (i.e., a false statistically significant difference 

between intervention and control) for 24-month child engagement. In this case, for the 

threatened data, the control group mean is falsely shown to be higher than that of the 

intervention group (4.51 and 4.13, respectively).  The effect sizes for the threatened data 

also show meaningful differences from randomized on 24 and 36 month child 

engagement.  These larger effects changed the overall interpretation compared with the 

randomized data.  Errors in the significance testing or meaningful effect size differences 

were not found for the other point-in-time measures.  Percent bias was under 10% for 
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these tests as well, indicating that overall threatened mean values did not differ from the 

randomized means.  Another method of looking at the effect size differences was the 

computation of effect size confidence intervals.  In this case, the confidence intervals 

showed the effect sizes overlapped (were not different), which conflicted with the more 

practical calculation of effect size differences which, for the two variables, showed a 

change in the interpretation from the randomized data. 

 Table 22 shows statistically significant differences between 24 and 36 months on 

the within groups child engagement for both threatened and randomized conditions.  

Thus, the sensitivity analysis shows no Type I or Type II errors.  The situation is similar 

for the child behavior checklist means from 24 to 26 months.  A notable difference was 

found for the effect size for the between groups (intervention versus control) on the 

CBCL.  Table 23 shows that the effect size found for the threatened condition was highly 

inflated (by at least a medium effect; thus a very different interpretation) when compared 

with what was found for the randomized set. 
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Table 22 

Foundation Small Condition 1: Repeated Measures Analysis of Variance Child Outcomes 
(Threatened vs. Randomized)  
 

 
Threatened Dataset 1 Randomized Dataset 

 

Test 
Value 

Sig 
Level 

(α=.05) 

Effect 
Size 

(Cohen's 
d) 

Test 
Value 

Sig Level 
(α=.05) 

Effect 
Size 

(Cohen's 
d) 

Child 
Engagement 
(within) 

15.663 <.001* .684 17.164 <.001* .708 

 
Child 
Engagement 
(between) 

.011 .918 .018 .813 .369 .154 

 
BSID-II 
(within) 

4.222 .042* .362 3.251 .074 .316 

 
BSID 
(between) 

.410 .523 .113 .036 .851 .033 

 
CBCL 
(within) 

11.556 .001* .523 9.835 .002* .480 

 
CBCL 
(between) 

2.402 .123 .749 .448 .504 .102 

Note. Asterisk (*) indicates statistically significant difference at alpha = .10. 
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Table 23 

Foundation Small Condition 1 Pilot: Sensitivity Analyses for Change-Over-Time Child 
Outcomes (Threatened vs. Randomized) 
 

 
Error 
Type 

Overlapping  
Effect Size 

C.I.s 
ES 

Difference 
Percent 

Bias 
Overall 
Biased 

 Type I or 
Type II 

Y=yes, 
 N=no 

Criteria: 
 |d| > .2 

Criteria: 
 % > .05 

Y=yes, 
N=no 

Child 
Engagement 
(within) 

None Y 0.024 0.85% N 

 
Child 
Engagement 
(between) 

None N 0.136 110.93% Y 

 
BSID-II 
(within) 

Type I  Y -0.046 -17.48% Y 

 
BSID 
(between) 

None Y -0.080 -241.90% Y 

 
CBCL 
(within) 

None Y -0.043 -11.60% Y 

 
CBCL 
(between) 

None N -0.647 -146.87% Y 

Note.  The confidence intervals are for the effect size estimates, not the mean estimates; 
thus, they are not indicative of the error type of the significance test which is based on the 
means. 
 
 
 
 Table 23’s summary of the sensitivity analysis is similar to what is described 

below in the results for the Phase III analysis.  In the pilot, the threatened condition 

resulted in one Type I error and one highly inflated effect size.  In addition, the percent 

bias showed over 10% bias (in some cases substantially over) for the threatened outcome 

data for five of the six repeated measures analyses.  The negative sign on the percent bias 

means that the threatened data’s means are higher than the randomized data’s means. 
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 The last set of pilot analyses (see Table 24) involved the use of propensity score 

weights to create adjusted estimates with respect to the randomized and threatened data. 

The adjustment did not correct the Type I error found for 24 month engagement but the 

effect size difference was over a small effect size (i.e., .20) less.  For the 36 month child 

engagement, the estimate became worse and introduced a Type I error that was not found 

in the original threatened data, though again the effect size more closely resembled that 

of the randomized compared to the threatened data.  Generally speaking, the propensity 

score-adjusted data were not helpful with regard to error rate but did improve effect size 

estimates in three cases and reduced percent bias in two cases.  Table 24 is a preview of 

results found for Phase IV. 



104 
 

Table 24 

Foundation Small Condition 1 Pilot: Effects Propensity Score Analysis and Analysis of Covariance Adjustments  
 

 

Bias 
Introduced 
in Threat 
Condition 

Error 
Type 

Assessment 
of Error 

Type 
ES 

Difference 

Assessment 
of ES 

Difference 
Percent Bias 
Reduction 

Percent 
Bias 

Assessment 

 

Y=yes, 
N=no 

Type I 
or 

Type 
II 

W=worse, 
B=better, 
NC=No 
change 

2ESr-ESa 

W=worse, 
B=better, 
NC=No 
change 

pos=improved Chg>10% 

24m Child Engagement Y Type I NC -0.21 B -0.46% NC 
36m Child Engagement Y Type I W -0.02 B -2.06% NC 
24m BSID-II MDI N None NC 0.07 NC 0.59% NC 
36m BSID-II MDI N None NC -0.02 NC 0.66% NC 
24m CBCL N None NC -0.06 NC -1.32% NC 
36m CBCL N None NC -0.19 NC -1.91% NC 
36m PPVT N None NC 0.02 NC -2.72% NC 
Child Engagement 
(within) N None NC -0.32 W -20.00% W 

Child Engagement 
(between) Y None NC 0.09 NC -28.58% W 

BSID-II (within) Y Type I NC -0.22 W -35.11% W 
BSID (between) N None NC -0.10 NC -55.82% W 
CBCL (within) Y None NC -0.03 NC 1.67% B 
CBCL (between) Y Type I W -0.13 B 126.24% B 
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 A third and final purpose of the Phase I analysis (i.e., in addition to creating the 

foundation datasets and conducting the pilot) was to identify baseline characteristics that 

would be effective to use in the Phase IV corrective analyses.  Each of the 12 primary 

baseline characteristics used in the sample balance and bias diagnostics were examined as 

well as any additional variables that were used for the exclusion processes.  Multiple 

linear regression models were analyzed to determine the relationships among the baseline 

characteristics and outcome variables.  Significant predictors included maternal risk, 

family resources, child gender, parent race, parent education, child age at enrollment, 

living arrangement, and child prematurity.  Thus, these were initially selected for use in 

the corrective procedures. 

Phase II: Threatened and Randomized Dataset  
Creation and Assessment 

Creating Datasets 

 Recall the primary purpose of Phase II analyses was to address Research Question 

1.  The first step was to create each of the threatened and randomized conditions.  Each of 

the datasets representing a threat condition was created using the foundation datasets 

created in Phase I using two different exclusion methods for each condition as specified 

in Chapter III.  Unthreatened datasets, maintaining randomization, were also created from 

the corresponding foundation sets to use as comparisons by randomly selecting cases to 

match the threatened datasets on sample size (i.e., to eliminate sample size as a potential 

confound).  

Six different variables were used in the exclusion processes, five of which were 

present in the original EHS data as individual case characteristics.  The sixth variable, 

used in the noncompliance scenario, was created specifically for the current study using 
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latent class analysis with variables related to EHS service compliance.  Latent class 

models from one class to seven classes were consecutively estimated and compared.  The 

model specification included variables related to the receipt of the following EHS 

services: case management, child care/development, parent support groups, regular 

weekly home visits, parenting classes, parent-child group activities, and group 

socialization events.  Comparison of the models indicated a well-fitting five-class model 

of intervention group compliance in terms of multiple fit indices, parsimony, and 

interpretability.  Results for the latent class analyses are shown in Tables 25 and 26.  

 

Table 25 

Compliance Groups Resulting from Latent Class Analysis 
 

Class Class Name 
Proportion of 

Sample in 
Each Class 

Probability of 
Class Membership 

1 Very Low Service 
Compliance  
 

.067 1.00 

2 Highly Compliant Except 
Moderate on Home Visits 
 

.204 .96 

3 Highly Compliant Except 
Low on Home Visits 
 

.137 .72 

4 Moderately Compliant in 
All Services 
 

.038 .76 

5 Highly Compliant in All 
Services 
 

.554 .87 
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Table 26 

Model Fit Indices for Four-, Five-, and Six-Class Models of Latent Compliance 
 
Fit Statistic Four Classes Five Classes Six Classes 
Log Likelihood -2397.219 -2379.698 -2369.525 
 
Akaike Info 
Criteria 
 

4856.439 4837.395 4833.050 

Bayesian Info 
Criteria (BIC) 
 

5004.651 5023.857 5057.760 

Sample Size 
Adjusted BIC 
 

4906.202 4900.001 4908.498 

Chi-square Test of 
Model Fit 
 

192.601 101.53 49.602 

Chi-square p-value <.001 .137 .997 
    
Likelihood Ratio 
(LR) 107.244 62.723 51.856 

    
LR p-value .203 .977 .994 

 
 
 

The five-class model was selected on the basis of several indicators.  First, the 

five-class model had a non-significant chi-square value compared to the significant chi-

square of the four-class model; second, a more favorable adjusted BIC index was found 

for the five-class model compared to the six-class model; and third, the five-class model 

was interpretable while the six-class model was not interpretable and had two classes that 

consisted of 5% or less of the sample.  As a final test, the resultant class variable was 

correlated with the second compliance exclusion variable (i.e., program-assessed program 

participation) to determine the degree of association between the two compliance-

measuring variables (r = .498, p < .001).  The resultant variable indicating latent 
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compliant class was merged into the OBS prior to creating the three foundation datasets 

so that it would be present in all conditions for use in exclusion processes. 

Assessing Datasets 

Closely matching the procedures outlined in the original EHSRE study to test 

control-program group equivalence (thus assessing the degree of imbalance introduced in 

the threatened conditions), I performed univariate independent samples t-tests and chi-

square tests to examine control versus program differences (using the 10% alpha level).   

In the case of these analyses, the criterion set for imbalance (i.e., differences between 

intervention and control participants in the threatened datasets) or bias (i.e., differences 

between participants in the threatened and randomized datasets) was if more than one 

baseline characteristic (of the 12 tested) was statistically significantly different. 

In the Phase II section of this chapter, results are presented in the following order: 

(a) first, the combined results by manipulation are presented; then, (b) summary tables for 

the threat scenario results by individual condition are presented (i.e., for allocation bias, 

noncompliance, and differential attrition); and (c) summary tables indicating the level of 

balance retention for each of the randomized datasets matched on sample size are shown. 

Examples of the detailed tabular results for each individual condition tested in Phase II 

are presented in Appendix C because of space limitations.  Appendix C includes 

examples of tables containing the means, standard deviations, frequencies for the baseline 

characteristics tested, t-test and chi-squares tests of significance comparing first 

intervention and control, and then threatened versus randomized values.  

Phase II analyses were used to provide indication of whether imbalance in 

baseline characteristics was created within the threat conditions (i.e., statistically 
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significant differences between intervention and control in proportions of the sample 

with selected characteristics) and across the scenarios.  They also show whether bias was 

introduced within the threatened conditions (i.e., statistically significant differences found 

between the threatened and randomized sets in terms of the same set of characteristics) 

and across the scenarios.   

Combined Summary Results  
by Manipulation 

 Table 27 shows the overall number and proportion of tests that became 

imbalanced and biased with the introduction of the randomization threat.  Representing 

the greatest proportion of tests out of balance, 100% of the nine method 1 allocation bias 

conditions resulted in intervention-control imbalance on the baseline characteristics.  The 

scenario that had the lowest proportion of imbalanced conditions (44%) was differential 

attrition for method 1.  Generally speaking, the proportions of conditions in which 

imbalance was introduced were greater than the proportion of bias between threatened 

and randomized that was found.  Ultimately, this means that not all conditions resulted in 

imbalance and bias. 
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Table 27 
 
Phase II Combined Summary Results for Baseline Imbalance and Bias by Scenario 
 
Method Threat 

Scenario 
Intervention-Control  
Baseline Imbalance 

Threatened-Randomized 
Baseline Bias 

  Avg number 
and rate 

(12) of sig 
diff tests per 

condition 

Proportion of 
conditions in 

which 
imbalance was 
created (of 9) 

Avg number  
and rate (of 

12) of sig diff 
tests per 
condition 

Proportion of 
conditions in 

which bias was 
introduced 

(of 9) 
1 Allocation 

Bias 5.2 (43%) 100% 3.0 (25%) 67% 

 Non-
compliance 2.1(18%) 78% 2.0 (17%) 56% 

 Differential 
Attrition 1.1 (9%) 44% 2.2 (19%) 33% 

      
2 Allocation 

Bias 3.7 (31%) 78% 2.8 (23%) 67% 

 Non-
compliance 1.9 (16%) 56% 2.4 (20%) 56% 

 Differential 
Attrition 3.0 (25%) 89% 2.8 (23%) 56% 

 
 
 

Descriptively, the findings across the two methods for allocation bias (and 

similarly for the two methods for noncompliance) were fairly alike, indicating they were 

similar in terms of the magnitude of imbalance and bias created in the samples.  The two 

methods of exclusion for differential attrition, however, yielded different results in terms 

of overall intervention-control imbalance created (44% vs. 89% of conditions).  The 

differential attrition conditions overall resulted in less imbalance and bias in baseline 

characteristics than the other two threat scenarios.  However, even at the lowest level of 

imbalance and bias observed across scenarios and methods (i.e., the imbalance bias 

introduced in the differential attrition conditions using method 1), 44% of the conditions 
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resulted in intervention versus control imbalance and 33% resulted in threatened versus 

randomized bias on 12 baseline characteristics.  

Sample size mattered in terms of data sets’ susceptibility to imbalance and bias on 

baseline characteristics, given the results shown in Table 28.  The pattern showed that as 

sample sizes increased, the intervention-control imbalance and the threat bias increased; 

however, this was reversed for the small and medium sets created using method 2 (see 

Table 29).  No striking method differences were observed.  The average number of tests 

that differed between intervention and control group increased as sample size increased; 

similarly, the number of tests that differed between threatened and randomized data 

increased as sample size increased.  This was somewhat unexpected in the sense that 

researchers assume that larger datasets might be more resistant to imposed problems. 

 

Table 28 
 
Phase II Combined Summary Results for Baseline Imbalance and Bias by Sample Size 
 

Method Sample 
Size 

Intervention-Control  
Baseline Imbalance 

Threatened-Randomized 
Baseline Bias 

  
Avg number  
and rate (12) 

of sig diff 
tests per 
condition 

Proportion of 
conditions in 

which 
imbalance 

was created 
(of 9) 

Avg number 
and rate (of 

12) of sig diff 
tests per 
condition 

Proportion of 
conditions in 
which bias 

was 
introduced  

(of 9) 
1 Small 1.9 (16%) 67% 1.7 (14%) 56% 
 Medium 3.0 (25%) 78% 2.7 (22%) 44% 
 Large 3.6 (30%) 89% 2.9 (24%) 56% 
      
2 Small 1.9 (16%) 78% 1.9 (16%) 44% 
 Medium 3.2 (27%) 67% 2.9 (24%) 67% 
 Large 3.4 (29%) 89% 3.2 (27%) 67% 
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Table 29  

Phase II Combined Summary Results for Baseline Imbalance and Bias Based on 
Proportion of Sample Affected by Threat Condition 
 

Method 

Proportion 
of Sample 
Affected 
by Threat 

Intervention-Control 
Baseline Imbalance 

Threatened-Randomized 
Baseline Bias 

 

 

Avg number 
and rate (12) 

of sig diff 
tests per 
condition 

Proportion 
of 

conditions 
in which 

imbalance 
was created 

(of 9) 

Avg number 
and rate (of 
12) of sig 

diff tests per 
condition 

Proportion 
of 

conditions 
in which 
bias was 

introduced 
(of 9) 

1 25% 4.2 (35%) 100% 4.6% (38%) 100% 
 15% 2.8 (23%) 67% 2.4 (20%) 56% 
 5% 1.4 (12%) 56% .22 (2%) 0% 
      
2 25% 4.0 (33%) 100% 4.4 (37%) 89% 
 15% 2.9 (24%) 78% 3.3 (28%) 89% 
 5% 1.3 (11%) 44% .22 (2%) 2% 

 
 
 

The proportion of the sample affected by the threat condition had the biggest 

impact in terms of increasing imbalance and bias compared to sample size and threat 

type, particularly when the threat affected a large proportion of the sample.  For all 

samples threatened at the 25% level, an average of 4.2 baseline characteristics became 

imbalanced between intervention and control and an average of nearly 5 was biased from 

the matched, randomized set.  For the conditions at 25% threat using method 1, all 

(100%) of the datasets became imbalanced and biased.  The sets, however, appeared to 

tolerate a 5%-of-the-sample-threat with minimal bias levels observed (0-2%).  As with 

the sample-size manipulations, few method differences were observed with the exception 
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of the 15% conditions introducing a greater proportion of bias in method 2.  Individual 

condition summary results are provided by scenario in the sections below. 

Phase II Allocation Bias  
Conditions 

 Table 30 shows the summary for each of the allocation bias conditions.  Again, 

the individual analyses that made up this summary resembled those shown in the pilot 

Phase II analyses.  Examples are also found in Appendix C.    

 

Table 30 

Summary of Phase II Allocation Bias Threat Conditions (Method 1) 
 

  

Imbalance in Baseline 
Characteristics 

 (Intervention vs. Control) 

Bias Introduced by Threat 
Condition 

 (Threatened vs. Randomized) 

Condition 
Number (and %) of 

Tests with Sig 
Difference 

Imbalance 
 Created 

Number (and %) of 
Tests with Sig 

Difference 

Bias 
 Created 

FSC1 5 (42%) Yes 3 (25%) Yes 

FSC2 2 (17%) Yes 3 (25%) Yes 

FSC3 2 (17%) Yes            0 (0%) No 

FMC4 7 (58%) Yes 4 (33%) Yes 

FMC5 7 (58%) Yes 5 (42%) Yes 

FMC6 2 (17%) Yes            1 (8%) No 

FLC7 9 (75%) Yes 5 (42%) Yes 

FLC8 8 (67%) Yes 5 (42%) Yes 

FLC9 5 (42%) Yes            1 (8%) No 
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 As shown in the overall summary Table 27, 100% of the method 1 allocation bias 

conditions became imbalanced with the introduction of the threat condition.  Table 30 

displays the number (out of 12 tests) that were statistically significantly different on 

intervention and control (second column) and the number that were different between 

threatened and randomized data sets (fourth column).  Foundation large condition 7 

(FLC7; large sample with 25% threat level) had the greatest number of differences in 

terms of both imbalance and bias.  The least affected condition was FSC3, the small 

dataset that had a 5% threat imposed; while imbalance was created, bias was not. 

Method 2 allocation bias conditions (see Table 31) yielded similar findings; 

however, a few differences included the lack of imbalance and corresponding lack of bias 

created in FSC3 and FMC6 (two of the conditions in which only 5% of the sample was 

affected by the threat).  The numbers of significant tests also varied slightly from method 

1 to method 2.   
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Table 31 

Summary of Allocation Bias Threat Conditions (Method 2) 
 

  

Imbalance in Baseline 
Characteristics 

 (Intervention vs. Control) 

Bias Introduced by Threat 
Condition 

 (Threatened vs. Randomized) 

Condition 
Number (and %) 
of Tests with Sig 

Difference 

Imbalance 
Created 

Number (and %) of  
Tests with Sig 

Difference 

Bias 
Created 

FSC1 3 (25%) Yes 2 (17%) Yes 

FSC2 3 (25%) Yes 5 (42%) Yes 

FSC3 0 (0%) No 0 (0%) No 

FMC4 7 (58%) Yes 5 (42%) Yes 

FMC5 4 (33%) Yes 2 (17%) Yes 

FMC6 1 (8%) No 0 (0%) No 

FLC7 7 (58%) Yes 7 (58%) Yes 

FLC8 6 (50%) Yes 3 (25%) Yes 

FLC9 2 (17%) Yes 1 (8%) No 

 
 
 

Table 32 affirms that the randomized samples created to match the threatened 

conditions on sample size retained their balance, thus making them appropriate 

comparison sets for the Phase III and Phase IV analyses.  While still in balance between 

intervention and control, only two of the conditions had zero significant differences. 
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Table 32 

Retention of Balance in Random Subsamples of Randomized Datasets  
for Comparison with Allocation Bias Samples 
 

Condition Number (and %) of 
Tests with Sig Difference 

Imbalance 
Created 

FSC1-R 1 (8%) No 

FSC2-R 1 (8%) No 

FSC3-R 0 (0%) No 

FMC4-R 1 (8%) No 

FMC5-R 0 (0%) No 

FMC6-R 1 (8%) No 

FLC7-R 1 (8%) No 

FLC8-R 1 (8%) No 

FLC9-R 1 (8%) No 
 
 
 
Phase II Noncompliance Conditions 

 Similar to the allocation bias conditions, the following tables present summary 

results for the noncompliance conditions.  For method 1 (see Table 33), imbalance was 

created for all of the 25%- and 15%-affected conditions.  As with the allocation bias 

conditions, imbalance was not created in two of the 5%-affected conditions and bias was 

not created for any of the 5% conditions. 
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Table 33  

Summary of Noncompliance Threat Conditions (Method 1) 
 

  

Imbalance in Baseline 
Characteristics 

 (Intervention vs. Control) 

Bias Introduced by Threat 
Condition 

 (Threatened vs. Randomized) 

Condition 
Number (and %) of 

 Tests with Sig 
Difference 

Imbalance 
 Created 

Number (and %) of 
Tests with Sig 

Difference 

Bias 
 Created 

FSC10 3 (25%) Yes 3 (25%) Yes 

FSC11 3 (25%) Yes 2 (17%) Yes 

FSC12 0 (0%) No 0 (0%) No 

FMC13 4 (33%) Yes 5 (42%) Yes 

FMC14 2 (17%) Yes 1 (8.3%) No 

FMC15 2 (17%) Yes 0 (0%) No 

FLC16 3 (25%) Yes 2 (17%) Yes 

FLC17 2 (17%) Yes 5 (42%) Yes 

FLC18 0 (0%) No 0 (0%) No 
 
 

 
 Table 33 also shows that the method 1 noncompliance condition that was the most 

disrupted by the threat was FMC13, the medium sized data affected at the 25% level.  It 

had 33% imbalance and 42% bias.  Bias was not introduced in FMC14, which was 

affected at the 15% level.  While generally similar results were found for the method 2 

conditions (see Table 34), bias was introduced for FMC14 and a greater proportion of 

imbalance and bias was found for FLC16 (42% for both). 
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Table 34 

Summary of Noncompliance Threat Conditions (Method 2) 
 

  

Imbalance in Baseline 
Characteristics 

(Intervention vs. Control) 

Bias Introduced by Threat 
Condition 

(Threatened vs. Randomized) 

Condition 
Number (and %) 
of Tests with Sig 

Difference 

Imbalance 
Created 

Number (and %) of 
 Tests with Sig 

Difference 

Bias 
Created 

FSC10 2 (17%) Yes 4 (33%) Yes 

FSC11 2 (17%) Yes 1 (8%) No 

FSC12 1 (8%) No 0 (0%) No 

FMC13 3 (25%) Yes 6 (50%) Yes 

FMC14 1 (8%) No 3 (25%) Yes 

FMC15 0 (0%) No 0 (0%) No 

FLC16 5 (42%) Yes 5 (42%) Yes 

FLC17 3 (25%) Yes 3 (25%) Yes 

FLC18 0 (0%) No 0 (0%) No 
 
 
 

The randomized comparison datasets for the noncompliance conditions retained 

their balance as desired.  Three of the conditions had zero significant baseline differences 

between intervention and control (see Table 35). 
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Table 35 

Retention of Balance in Random Subsamples of Randomized Datasets  
for Comparison with Noncompliance Samples 
 

Condition Number (and %) of 
Tests with Sig Difference 

Imbalance 
Created 

FSC10-R 1 (8%) No 

FSC11-R 0 (0%) No 

FSC12-R 0 (0%) No 

FMC13-R 0 (0%) No 

FMC14-R 1 (8%) No 

FMC15-R 1 (8%) No 

FLC16-R   1 (17%) No 

FLC17-R 1 (8%) No 

FLC18-R 1 (8%) No 

  
 
 
Phase II Differential Attrition  
Conditions 

 As mentioned earlier, the differential attrition conditions resulted in relatively less 

imbalance and bias than the other two threat scenarios and this is reflected in Table 36. 

Only one of the conditions affected at the 5% level became imbalanced and that was for 

the large dataset (FLC27).  Imbalance and bias were uniformly introduced for all of the 

conditions affected at the 25% level in the method 1 conditions (i.e., FSC19, FMC22, and 

FLC25). 
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Table 36 

Summary of Differential Attrition Threat Conditions (Method 1) 
 

  

Imbalance in Baseline 
Characteristics 

 (Intervention vs. Control) 

Bias Introduced by Threat 
Condition 

 (Threatened vs. Randomized) 

Condition 
Number (and %) of 

Tests with Sig 
Difference 

Imbalance 
 Created 

Number (and %) of 
Tests with Sig 

Difference 

Bias 
 Created 

FSC19 2 (17%) Yes 3 (25%) Yes 

FSC20 0 (0%) No 1 (8.3%) No 

FSC21 0 (0%) No 0 (0%) No 

FMC22 3 (25%) Yes 8 (67%) Yes 

FMC23 0 (0%) No 0 (0%) No 

FMC24 0 (0%) No 0 (0%) No 

FLC25 2 (17%) Yes 7 (58%) Yes 

FLC26 1 (8.3%) No 1 (8.3%) No 

FLC27 2 (17%) Yes 0 (0%) No 
 
 
 
 Method 2 (see Table 37) had twice as many conditions that resulted in imbalance 

compared with method 1 (i.e., eight out of nine, compared to four), appearing more 

effective as a threat method.  Threat condition FMC22 (medium sample, 25% threat 

level) across both methods yielded the greatest number of statistically significant 

differences between the randomized and threatened sets.  The high level of bias found in 

method 1 FLC25 (seven significantly different tests) was reduced to three significantly 

different tests in method 2. 
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Table 37  

Summary of Differential Threat Conditions (Method 2) 
 

  

Imbalance in Baseline 
Characteristics 

 (Intervention vs. Control) 

Bias Introduced by Threat 
Condition 

 (Threatened vs. Randomized) 

Condition 
Number  and %) of 

Tests with Sig 
Difference 

Imbalance 
Created 

Number (and %) of 
 Tests with Sig 

Difference 

Bias 
Created 

FSC19 2 (17%) Yes 1 (8.3%) No 

FSC20 2 (17%) Yes 4 (33.3%) Yes 

FSC21 2 (17%) Yes 0 (0%) No 

FMC22 5 (42%) Yes 7 (58%) Yes 

FMC23 4 (33.3%) Yes 3 (25%) Yes 

FMC24 4 (33.3%) Yes 0 (0%) No 

FLC25 5 (42%) Yes 3 (25%) Yes 

FLC26 1 (8%) No 6 (50%) Yes 

FLC27 2 (17%) Yes 1 (8.3%) No 

 
 
 

The randomized comparison datasets for the differential attrition conditions 

retained their balance as desired (see Table 38).  As with noncompliance randomized 

sets, three of the condition had zero significant baseline differences between intervention 

and control. 
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Table 38  

Retention of Balance in Random Subsamples of Randomized  
Datasets for Comparison with Differential Attrition Samples 
 

Condition Number ( and %) of 
 Tests with Sig Difference 

Imbalance 
 Created 

FSC19-R 1 (8%) No 

FSC20-R 0 (0%) No 

FSC21-R 0 (0%) No 

FMC22-R 0 (0%) No 

FMC23-R 1 (8%) No 

FMC24-R 1 (8%) No 

FLC25-R 1 (8%) No 

FLC26-R 1 (8%) No 

FLC27-R 1 (8%) No 

 
 
 

Phase III: Sensitivity Analyses 

 The analytic Phase III was intended to answer Research Question 2a and 2b 

regarding the extent to which randomization disruption affected study results overall.  For 

this phase, outcome analyses were performed using each threatened and randomized 

dataset and corresponding analyses were compared.  The outcome analyses included the 

following components: (a) descriptive and frequency analysis to examine means and 

standard deviations and from which to compute effect sizes (Cohen’s d), effect size 

confidence intervals, effect size differences, and percent bias estimates; (b) independent 

samples t-tests to compare intervention and control groups on point-in-time outcomes; 
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and (c) repeated-measures ANOVA to test the main effects of change over time and 

differences between intervention and control groups. 

 Examples of the detailed outcome and sensitivity results tables for each individual 

condition are presented in Appendix D.  Phase III summary results for each of the 

sensitivity analyses are shown below by (a) threat scenario (i.e., allocation bias, 

noncompliance, differential attrition); (b) sample size (i.e., small, medium, large); (c) 

proportion of sample affected by the threat (i.e., 5%, 15%, 25%); (d) by analysis type 

(i.e., point-in-time, repeated measures within groups, repeated measures between groups); 

and (e) child outcome measure (i.e., child engagement of parent, cognitive development, 

behavior problems, and receptive vocabulary).  The summary results presented in this 

chapter were created by aggregating the sensitivity analyses in SPSS. 

 The sensitivity analyses were performed for all conditions and outcome measures.  

There were [(27 method 1 conditions + 27 method 2 conditions) X 13 outcome analyses] 

for a total of 702 outcome analyses results for which the set of four types of sensitivity 

analyses were performed.  The assessment of Type I and Type II error rates was intended 

to determine whether the findings of the intervention vs. control significance test in the 

threatened conditions would differ from randomized data.  The assessment of effect size 

differences (i.e., between threatened and randomized, the magnitude of the effect size 

differences and the rate of non-overlap of the effect size confidence intervals) was 

conducted to see if there were practical differences in the magnitude of the effects.  The 

mean percent bias assessment was intended to look at the magnitude of differences 

between threatened and randomized means.  The overall bias assessment was made using 
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the preponderance of evidence from the sensitivity analyses in terms of meeting bias 

criteria.   

Table 39 below shows the array of sensitivity analysis by threat scenario for 

method 1 conditions.  In alignment with the findings in Phase II, the higher rates of 

baseline characteristic imbalance and bias introduced in the allocation bias threat 

conditions appeared to have resulted in slightly higher rates of disruption of the outcome 

analytic results.  The rates of Type I and Type II error were higher for allocation bias 

conditions and the overall rate of bias.  All of the mean effect size differences were very 

small, indicating very little deviation from the randomized effects.  The rates of percent 

bias were similar across the conditions and, overall, the disruption to the outcome results 

was low. 

 

Table 39 

Sensitivity Analyses by Threat Scenario (Method 1) 
 

 

Rate of 
Type I 
Error 

Rate of 
Type II 
Error 

Mean 
Effect 
Size 

Difference 
(SD) 

Rate of 
Non-

Overlap in 
ES 

Confidence 
Intervals 

Mean 
Percent 

Bias (SD) 

Overall 
Bias 
Rate 

Allocation Bias 5.1% 6.8% .06 (.09) 47.9% 7.6% (.48) 39.3% 

Noncompliance 2.6% 6.0% .02 (.02) 53.0% 7.6% (.34) 35.0% 

Differential 
Attrition 2.6% 3.4% .04 (.06) 29.1% 7.8% (.53) 28.2% 
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Findings across exclusion method 1 and 2 were relatively similar (see Table 40). 

No large differences across threat scenarios were found in terms of rates of Type I and 

Type II errors (all close to 5% level that one might find by chance).  The rate of Type I 

errors was highest for noncompliance in the second exclusion method. Type II errors 

were greatest for allocation bias for both exclusion methods.  Mean effect size differences 

were very small (not reaching Cohen’s criteria for a small effect at .20) and equivalent 

across the scenarios.  Likewise, mean percent bias was the same for all scenarios except 

for noncompliance scenarios created using exclusion method 2 that almost reached the 

10% level criteria.  

 

Table 40 

Sensitivity Analyses by Threat Scenario (Method 2) 
 
 

Rate of 
Type I 

Error 

Rate of 
Type II 

Error 

Mean 
Effect 
Size 

Difference 
(SD) 

Rate of 
Non-

Overlap in 
ES 

Confidence 
Intervals 

Mean 
Percent Bias 

(SD) 

Overall 
Bias 
Rate 

Allocation Bias 3.4% 6.8% .06 (.08) 45.3% 7.98% (.47) 35.9% 

Noncompliance 6.8% 3.4% .05 (.03) 48.7% 9.60% (.65) 29.9% 

Differential 
Attrition 1.7% 3.4% .02 (.03) 26.5% 5.72% (.26) 24.8% 

 
 
 

While the rate of non-overlapping effect size confidence intervals was lower for 

the differential attrition threat scenarios (e.g., around 30% compared to nearly 50% found 

in the other two scenarios), these differences in effects sizes overall did not meaningfully 

change the interpretation of the size of the effects.  Given the uniformity of findings 
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across threat scenarios, these results provided some evidence of the similarity of effects 

of use of the exclusion methods used to create these scenarios. 

Examination of the results by sample size (see Table 41) indicated that the highest 

rate of Type I error was found for the small samples, while the highest rate of Type II 

error (12%) was found for the large samples.  Mean effect size differences did not differ 

much across the sample sizes and were very small.  The rate of non-overlap (also 

indicating effect size differences) in the confidence intervals increased with the size of 

the sample.  The large sample size showed an “above-the-10%-criteria” level of percent 

bias.  Again, this might contradict some researchers’ expectations that large samples are 

more robust to threats.  Equivalent across the three sample sizes, the rate of bias overall 

was about a third of the conditions. 

 

Table 41  

Sensitivity Analyses by Sample Size (Method 1) 
 

 

Rate of 
Type I 
Error 

Rate of 
Type II 
Error 

Mean 
Effect 
Size 

Difference 
(SD) 

Rate of 
Non-

Overlap in 
ES 

Confidence 
Intervals 

Mean 
Percent Bias 

(SD) 

Overall 
Bias 
Rate 

Small 6.0% 1.7% .05 (.09) 18.8% 1.46%  (.55) 35.0% 

Medium .9% 2.6% .03 (.05) 46.2% 9.44% (.38) 35.9% 

Large 3.4% 12.0% .03 (.05) 65.0% 12.04% (.42) 31.6% 
Note: Foundation sample sizes were small = 250, medium = 600, and large = 1,400. 
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Sample size comparisons for the method 2 (see Table 42) show the higher rates of 

Type I and Type II errors for the large sample with the small sample Type I error slightly 

lower than for method 1.  The rate of Type I error for the medium sample was very low 

for method 2 conditions.  The overall bias rate was highest for the small sample at 35% 

taking all evidence into consideration.  Another difference from the method 1 conditions 

was the lower mean percentage bias rate for the large sample (7.6% versus 12.0%).  

 

Table 42 

Sensitivity Analyses by Sample Size (Method 2) 
 

 

Rate of 
Type I 
Error 

Rate of 
Type II 
Error 

Mean 
Effect 
Size 

Difference 
(SD) 

Rate of 
Non-

Overlap in 
ES 

Confidence 
Intervals 

Mean 
Percent Bias 

(SD) 

Overall 
Bias 
Rate 

Small 5.1% 2.6% .05 (.08) 23.9% 4.87% (.50) 35.0% 

Medium .9% 2.6% .04 (.07) 41.0% 10.8% (.51) 28.2% 

Large 6.0% 8.5% .04 (.05) 55.6% 7.6% (.45) 27.4% 

Note: Foundation sample sizes were small = 250, medium = 600, and large = 1,400. 

 

Table 43 shows the sensitivity analysis by threat level (method 1).  Because of the 

relatively higher proportion of baseline imbalance and bias created in the conditions 

threatened at 25% of the sample, the equivalence of the rates of Type I error across threat 

proportions was somewhat unexpected.  However, the increase in the rate of Type II error 

as the threat proportion increased was not surprising as was the larger mean percent bias 

rate.  All of the mean effect size differences were very small with a slightly higher 
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difference for the 25% group.  Overall, the larger the proportion of the sample affected by 

the threat condition, the greater outcome results disruption.  In this case, over 46% of the 

outcome analyses resulted in bias for the 25% group (over double the rate for the 5%-

affected samples). 

 

Table 43 

Sensitivity Analyses by Proportion of Sample Affected by Threat (Method 1) 
 

 

Rate of 
Type I 
Error 

Rate of 
Type II 
Error 

Mean 
Effect 
Size 

Difference 
(SD) 

Rate of 
Non-

Overlap in 
ES 

Confidence 
Intervals 

Mean 
Percent Bias 

(SD) 

Overall 
Bias 
Rate 

Small (5%) 3.4% 1.7% .01 (.02) 23.1% 2.63% (.16) 22.2% 

Medium (15%) 3.4% 6.8% .03 (.04) 52.2% 5.99% (.33) 34.2% 

Large (25%) 3.4% 7.7% .07 (.10) 54.7% 14.32% (.70) 46.2% 

 
 
 

The method 2 conditions (see Table 44) resulted in very similar findings for the 

proportion of sample affected by the threat.  The rate of Type I and Type II errors was the 

same for the 25% threat group at 6.0% and the effect size differences were slightly higher 

for the 25% group.  The mean percent bias rate was much higher for the 25% group than 

for the 15% and 5% groups.  At 16.6%, this exceeded the criteria for overall bias; 

however, the composite judgment of overall bias was lower for the 25% group for 

method 2 compared with method 1.  
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Table 44  

Sensitivity Analyses by Proportion of Sample Affected by Threat (Method 2) 
 

 

Rate of 
Type I 
Error 

Rate of 
Type II 
Error 

Mean 
Effect Size 
Difference 

(SD) 

Rate of 
Non-

Overlap in 
ES 

Confidence 
Intervals 

Mean Percent 
Bias (SD) 

Overall 
Bias 
Rate 

Small (5%) 2.6% 1.7% .01 ( .02) 21.4% 2.68% (.14) 21.4% 

Medium (15%) 3.4% 6.0% .05 (.06) 52.1% 4.01% (.47) 31.6% 

Large (25%) 6.0% 6.0% .06 ( .09) 47.9% 16.62% (.68) 37.6% 

 
 
 

While analyzing data, I noticed that a differential pattern was emerging for the 

outcome analysis types in terms of the rates of bias introduced.  Examining the summary 

of results in Table 45, it is clear that the means negatively influenced by the threat 

conditions were strongly biased by the between groups results in terms of the mean 

percent bias.  Over 33% of the outcomes resulted in biased findings.  This led to an 

overall bias rate of 81.5% for the findings that resulted from the between group repeated 

measures analysis, indicating exaggerated positive or negative findings in terms of 

intervention effectiveness. 

 

  



130 
 
Table 45  

Sensitivity Analyses by Type of Outcome Analysis (Method 1) 
 

 

Rate of 
Type I 
Error 

Rate of 
Type II 
Error 

Mean 
Effect 
Size 

Difference 
(SD) 

Rate of 
Non-

Overlap in 
ES 

Confidence 
Intervals 

Mean 
Percent Bias 

(SD) 

Overall 
Bias 
Rate 

Point-in-Time 
(t-tests) 
 

3.2% 5.8% .06 (.07) 45.0% .09% (.02) 14.8% 

Repeated 
Measures 
ANOVA 
(within) 
 

3.7% 2.5% .02 (.03) 42.0% .33% (.22) 32.1% 

Repeated 
Measures 
ANOVA 
(between) 

3.7% 7.4% .02 (.07) 40.7% 33.25% (.88) 81.5% 

 
 
 

Somewhat similar findings emerged from the method 2 analyses (see Table 46).  

The point-in-time analyses yielded higher Type I and Type II error rates than the repeated 

measures within-groups tests but the between groups ANOVAs had the highest error 

rates.  Again, a high mean percent bias rate indicated a high overall rate of bias for the 

results of the between-groups tests.  
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Table 46  

Sensitivity Analyses by Type of Outcome Analysis (Method 2) 
 

 

Rate of 
Type I 
Error 

Rate of 
Type II 
Error 

Mean 
Effect 
Size 

Difference 
(SD) 

Rate of 
Non-

Overlap in 
ES 

Confidence 
Intervals 

Mean 
Percent Bias 

(SD) 

Overall 
Bias 
Rate 

Point-in-Time 
(t-tests) 4.2% 4.2% .07 (.08) 40.2% .30% (.01) 12.2% 

 
Repeated 
Measures 
ANOVA 
(within) 

1.2% 3.7% .01 (.02) 37.0% 2.11% (.13) 18.5% 

 
Repeated 
Measures 
ANOVA 
(between) 

6.2% 6.2% .01 (.04) 43.2% 30.85% (.97) 84.0% 

 
 
 

Although presented in Tables 47 and 48, the receptive vocabulary results should 

be interpreted with caution given that they represent a much smaller proportion of the 

outcomes examined (i.e., due to the fact that the PPVT results were only available at 36 

months, it precluded the completion of 24 month and the repeated measures analysis).  A 

slightly higher rate of Type I error was found for child engagement compared with the 

other outcome types and a much larger rate of Type II error was found compared to that 

of the BSID-II and CBCL results (although somewhat less of a difference in the method 2 

data shown  in Table 48).  While initially the interest was in examining the effect of 

disruption on different developmental domains, this finding was likely more of an artifact 

of the data type (ordinal 7-point scale compared with the continuous data of the other 

measures).  Regardless, this result was not borne out in the method 2 findings.    
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Table 47  

Sensitivity Analyses by Type of Child Outcome (Method 1) 
 

 

Rate of 
Type I 
Error 

Rate of 
Type II 
Error 

Mean 
Effect 
Size 

Difference 
(SD) 

Rate of 
Non-

Overlap in 
ES 

Confidence 
Intervals 

Mean 
Percent Bias 

(SD) 

Overall 
Bias 
Rate 

Cognitive 
Development 3.7% 1.9% .03 (.05) 44.4% 8.19% (.48) 40.7% 

Child Behavior 2.8% 1.9% .03 (.07) 45.4% 6.83% (.46) 27.8% 

Child 
Engagement of 
Parent 

4.6% 11.1% .04 (.08) 38.9% 9.77% (.49) 39.8% 

Receptive 
Vocabulary* 0.0% 11.1% .07 (.05) 48.1% .24% (.01) 11.1% 

*Only 7.7% of the analyses were of receptive vocabulary scores because these data were 
only available at the 36 month age point. 
 
 
 
 The method 2 results (see Table 48) show a larger mean percent bias for the 

BSID-II cognitive development scores for the threatened sets compared to the 

randomized data.  Given the otherwise similar sensitivity findings across the outcome 

measures in method 1 and 2, and the issue with the PPVT data, no clear conclusions 

about differential effects of outcome type could be made. 
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Table 48 

Sensitivity Analyses by Type of Child Outcome (Method 2) 
 

 

Rate of 
Type I 
Error 

Rate of 
Type II 
Error 

Mean 
Effect 
Size 

Difference 
(SD) 

Rate of 
Non-

Overlap in 
ES 

Confidence 
Intervals 

Mean 
Percent Bias 

(SD) 

Overall 
Bias 
Rate 

Cognitive 
Development 2.8% 1.9% .04 (.07) 42.6% 17.97% (.46) 36.1% 

Child Behavior 2.8% 2.8% .03 (.06) 33.3% .54% (.52) 20.4% 

Child 
Engagement of 
Parent 

6.5% 7.4% .04 (.07) 44.4% 6.63% (.52) 38.0% 

Receptive 
Vocabulary 3.7% 11.1% .08 (.08) 40.7% .45% (.01) 14.8% 

 

 

Phase IV: Corrective Procedures 

 The corrective procedures employed in the study included the commonly used 

method of using a covariate in the model as a statistical control to improve effect 

estimates.  Another form of adjustment used in the study was the application of 

propensity score weights to improve intervention-control balance (tested via same 

baseline characteristics used in the study’s Phase II) and subsequently to improve the 

accuracy of the statistical estimates.  Adjusted estimates for outcome analyses for all 

three threat scenarios and their corresponding conditions were obtained using these two 

corrective methods.   

The propensity score analysis was conducted as specified in Chapter III with the 

inclusion of the following covariates for the predictive logistic regression:  family 
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mobility, maternal risk, single parent, child gender, parent race, parent education level, 

child age at enrollment, family living arrangement, receipt of food stamps, teen mother, 

parent primary occupation, English language ability, child first born, family poverty, and 

receipt of Medicaid.  The model fit, classification quality, intervention-control ratios of 

propensity scores and of squared residuals, and balance restoration were assessed each 

time the model was used with a condition.  In addition, significant predictors were 

identified, although they varied across the conditions.  Maternal risk, education level, and 

living arrangement were typically significant predictors in the model.  

The model’s goodness of fit was assessed with the Hosmer and Lemeshow (2000) 

test and the quality of classification was set at a minimum criterion of 70% correctly 

classified.  The intervention versus control ratios of propensity scores and that of the 

squared standardized residuals were close to 1 (demonstrating equivalence).  In all of the 

imbalanced conditions, balance between intervention and control baseline covariates was 

restored. 

This set of predictors worked consistently well for all conditions with a few 

exceptions.  In those exception cases, variables were removed to improve the model. The 

exceptions included the following (variables removed to improve fit and performance of 

model are indicated in the parentheses): FLC7 method 1 (maternal risk) and method 2 

(parent education level); and FSC10 method 1 (maternal risk) and 2 (living arrangement 

and poverty).  

Originally, two other procedures were considered for the statistical adjustments. 

Complier average causal effects (CACE) analyses were proposed for one of the 

noncompliance adjustment techniques; however, it was discovered that the methods used 
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to create the threatened conditions (i.e., the exclusion process) imposed a violation of a 

critical assumption of the analyses.  The assumption specified that, due to the 

randomization processes, one could infer that the same proportions of participants by 

compliance type or pattern would be found in both the intervention and control groups.  

In other words, the analyses relied on the premise that the same proportion of participants 

who were compliers in the intervention group was likely to be found in the control group 

had they been offered the intervention.  Unfortunately, the way the exclusion process 

manipulated compliers in the intervention group disrupted the natural proportion of 

compliers and noncompliers, which would not resemble the original proportions assumed 

in the control group.  Because of this, I did not use this procedure. 

Replacing CACE, I conducted the noncompliance outcome analyses with the 

propensity scores weights to correct for imbalance along with the originally proposed 

ANCOVA adjustment.  In light of the fact that I also used those two procedures for the 

allocation bias adjustments, it seemed advantageous to create a balanced design by using 

the same two corrective procedures for all three threat scenarios. Thus, I proceeded with 

using PSA weights and ANCOVA for all conditions.  I intended to additionally examine 

the adjusted results for differential attrition using multiple imputation; however, 

difficulties in running the multiple imputation pooling procedures following imputation 

with repeated measures ANOVA (attempted with three different software packages and 

consultation) prohibited completion of that analysis.  Thus, the results shown here 

effectively enabled a balanced comparison of the two corrective procedures effects across 

all conditions. 
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The adjusted results are shown below for all threat conditions created using the 

method 1 exclusion process and were split by biased or unbiased data (i.e., where bias 

had been introduced, or not, by the threat as per Phase III sensitivity analyses).  In this 

way, the effects when the corrective procedure was warranted could be viewed separately 

from the effects when the adjustment was superfluous.  In addition, the findings were 

disaggregated by the same categories presented  in the Phase III analyses, specifically by 

(a) threat scenario (i.e., allocation bias, noncompliance, differential attrition); (b) sample 

size (i.e., small, medium, large); (c) proportion of sample affected by the threat (i.e., 5%, 

15%, 25%); (d) analysis type (i.e., point-in-time, repeated measures within groups, 

repeated measures between groups); and (e) by child outcome measure (i.e., child 

engagement of parent, cognitive development, behavior problems, and receptive 

vocabulary).  Tabular results for the exclusion method 2 are presented within the chapter 

for the threat scenario comparisons only; in all other cases, any differences on the 

comparative results from exclusion method 2 are commented on in the paragraphs below 

each method 1 table. 

The adjusted results, using the same criteria for determining bias in Phase III, 

were assessed in terms of whether the adjustment improved, worsened, or did not change 

the estimates for each of the point-in-time and the repeated measures analyses.  Findings 

for both the propensity score-adjusted and the ANCOVA-adjusted analyses are presented 

side-by-side for comparison of their relative effects.  Note that positive percent bias 

reduction is desired, meaning that the adjustment procedure reduced bias in the 

threatened means. 
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Effects of the Corrective/Adjustment Procedures 
 

Table 49 shows the propensity score-adjusted (PSA) and the covariate-adjusted 

results for each of the three threat scenarios and corresponding conditions for which the 

outcome results were biased.  Type I and Type II error rates reflect both uncorrected error 

and newly introduced error.  The next two columns show the proportions of outcome 

analyses for which errors were corrected and the rate of new errors.  For the PSA- 

adjusted results, the Type I error was comparatively higher for allocation bias threat 

conditions; however, no Type II error was observed.  The rate of corrected errors 

superseded the rate of newly introduced errors, which resulted from overcorrection to the 

point of finding statistically significant results when they did not exist for the randomized 

sets.  For the noncompliance (NC) and differential attrition (DA) conditions, the error 

rates remained high and about 14% of the outcome analyses resulted in new errors in the 

significance tests.  Only 5.3% and 2.9%, respectively, of the NC and DA, PSA-adjusted 

results showed the correction of error.   

A substantial number of the effect size differences became worse with the 

adjusted results; in particular, for DA, 45.7% of the ANCOVA-adjusted results yielded 

larger effect size differences (i.e., subtracted from the randomized effect sizes) compared 

to the threatened effect sizes.  Propensity score-adjusted allocation bias conditions had 

a10% rate of effect size difference improvement, while the ANCOVA-adjusted allocation 

bias had a 14% improvement rate.  The adjustment techniques were not effective in 

reducing effect size difference for noncompliance or in ANCOVA-adjusted DA 

conditions.  Mean percent bias improved somewhat for the PSA-adjusted DA conditions 

and generally rates of improvement were higher than rates of worse mean bias.
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Table 49 

Adjusted Versus Threatened-Biased Sensitivity Analyses by Threat Scenario (Method 1) 
 

Method Threat 
Type 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Change in Error 
Rate 

Mean 
ES Diff 

(SD) 

Change in ES 
Difference 

Mean 
Percent Bias 
Reduction 

(SD) 

Change in 
Percent Bias 

    B W  B W  B W 

PSA AB 32.0% 0% 18.0% 22.0% .09 (.10) 10.0% 8.0% -4.2% (.10) 34.0% 10.0% 

PSA NC 15.8% 15.8% 5.3% 13.2% .13 (.14) 2.6% 15.8% -2.8% (1.46) 28.9% 26.3% 

PSA DA 22.9% 8.6% 2.9% 14.3% .08 (.06) 8.6% 5.7% 7.8% (.41) 8.6% 5.7% 

AC AB 4.0% 20.0% 16.0% 12.0% .12 (.13) 14.0% 14.0% 1.28 (.13) 18.0% 4.0% 

AC NC 5.3% 18.4% 7.9% 5.3% .08 (.10) 0% 13.2% -.41 (.03) 21.1% 21.1% 

AC DA 8.6% 11.4% 0% 0% .05 (.08) 0% 45.7% -1.90 (.11) 34.3% 25.7% 

Note:  PSA = propensity score analysis, weights adjustment, AC = ANCOVA adjusted; AB = allocation bias, NC = noncompliance, 
DA = differential attrition; and for or change columns B = better, W = worse and remaining percentage (of 100%) resulted in no 
change on the bias measure. Again, note that positive percent bias is desired, since it indicates a reduction in bias in the threatened 
means..

138 
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It is important to note that Table 50 shows the effects of statistical adjustment 

when the data were not biased; thus, these generally are undesired effects, potentially 

correcting results when they do not need adjustment.  For PSA adjustment, no Type II 

errors were created for any of the three threat scenarios.  This was not the case, however, 

for the ANCOVA adjusted results in which low rates of Type II error were found.  

Propensity score analysis tended to maintain a higher level of Type I errors than did 

ANCOVA, i.e., a higher rate of statistically significant differences between intervention 

and control groups was observed that was not found in the randomized data.  For both 

corrective methods, a larger proportion of the error rates became worse rather than better, 

which is understandable given that these results were from the threatened sets that did not 

become biased by the threat.  Thus, the correction created new bias.
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Table 50 

Adjusted Versus Threatened-Unbiased Sensitivity Analyses by Threat Scenario (Method 1) 
 

Method Threat 
Type 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Change in Error 
Rate 

Mean 
ES Diff 

(SD) 

Change in ES 
Difference 

Mean Percent 
Bias 

Reduction (SD) 

Change in 
Percent Bias 

    B W  B W  B W 

PSA AB 16.4% 0% 0% 16.4% .06 (.10) 0.0% 3.0% -4.18% (.10) 0.0% 14.9% 

PSA NC 12.7% 0% 0% 12.7% .06 (.09) 0.0% 3.8% -2.65% (.14) 0.0% 5.1% 

PSA DA 15.9% 0% 0% 15.9% .06 (.07) 8.5% 24.4% -3.20% (.17) 0.0% 8.5% 

AC AB 1.5% 6.0% 0% 7.5% .12 (.13) 0.0% 20.9% 1.28% (.13) 3.0% 0.0% 

AC NC 3.8% 3.8% 0% 6.3% .08 (.10) 0.0% 10.1% -.41% (.03) 0.0% 2.5% 

AC DA 3.7% 8.5% 0% 11.0% .05 (.08) 1.2% 4.9% -1.90% (.11) 0.0% 3.7% 

Note:  PSA = propensity score analysis, weights adjustment, AC = ANCOVA adjusted; AB = allocation bias, NC = noncompliance, 
DA = differential attrition; and for or change columns B = better, W = worse and remaining percentage (of 100%) resulted in no 
change on the bias measure. 
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 The most striking difference in the method 2 conditions (see Table 51) is the 

larger mean percent bias findings, both positive and negative, as seen in the PSA-adjusted 

allocation basis conditions (mean bias improved by over 33%) and the PSA-adjusted 

differential attrition conditions, in which mean bias worsened by 21.5%.  These results 

and those in the other corrected conditions contributed to overall higher rates of 

improvement with regard to mean bias reduction; however, the proportion of analyses 

that became worse was also high across conditions (range from 6% to 37% worse).  For 

the ANCOVA-adjustments, a higher rate of Type II errors was found in method 2.
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Table 51 

Adjusted Versus Threatened-Biased Sensitivity Analyses by Threat Scenario (Method 2) 
  

Method Threat 
Type 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Change in Error 
Rate 

Mean 
ES Diff 

(SD) 

Change in ES 
Difference 

Mean Percent 
Bias Reduction 

(SD) 

Change in 
Percent Bias 

    B W  B W  B W 
PSA AB 28.0% 0.0% 16.0% 24.0% .08 (.08) 8.0% 4.0% 33.94% (2.0) 22.0% 20.0% 

PSA NC 23.7% 7.9% 2.6% 18.4% .08 (.07) 8.6% 5.7% 7.03% (.56) 31.6% 23.7% 

PSA DA 20.0% 5.7% 5.7% 20.0% .06 (.05) 2.6% 2.6% -21.54% (.63) 11.4% 37.1% 

AC AB 4.0% 22.0% 4.0% 10.0% .12 (.10) 6.0% 12.0% 2.34% (25) 10.0% 6.0% 

AC NC 5.3% 13.2% 2.6% 5.3% .10 (.11) 0.0% 7.9% -9.24% (.42) 18.4% 21.1% 

AC DA 2.9% 8.6% 2.9% 2.9% .18 (.31) 0.0% 25.7% -1.89% (.17) 14.3% 17.1% 
Note:  PSA = propensity score analysis, weights adjustment, AC = ANCOVA adjusted; AB = allocation bias, NC = noncompliance, 
DA = differential attrition; and for or change columns B = better, W = worse and remaining percentage (of 100%) resulted in no 
change on the bias measure. 
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The unbiased data shown in Table 52 were subjected to quite a bit of unnecessary 

adjustment, alternately making improvements and making results more biased for almost 

all conditions for both adjustment types.  In terms of error rates, effect size differences, 

and percent bias, higher proportions of analyses resulted in more biased outcome 

estimates compared with those that were improved.  Very little (unneeded) improvement 

was found for effect size differences, which in this case was a positive finding.  The rate 

of increased (worse) effect size differences was high for two of the allocation bias and 

noncompliance PSA conditions and two of the ANCOVA conditions.  Mean bias 

reduction was proportionally less for the unbiased analyses compared with the biased, 

indicating greater efficacy of the adjustment for the biased results.
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Table 52 

Adjusted Versus Threatened-Unbiased Sensitivity Analyses by Threat Scenario (Method 2) 
 

Method Threat 
Type 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Change in Error 
Rate 

Mean ES 
Diff (SD) 

Change in ES 
Difference 

Mean 
Percent Bias 
Reduction 

(SD) 

Change in 
Percent Bias 

    B W  B W  B W 
PSA AB 31.3% 0.0% 0% 31.3% .09 (.14) 1.5% 13.4% -7.34% (.36) 1.5% 13.4% 

PSA NC 24.1% 1.3% 0% 22.8% .07 (.06) 7.3% 22.0% -5.15% (.21) 0.0% 10.1% 

PSA DA 15.9% 0.0% 0% 14.6% .05 (.05) 1.3% 2.5% -.32% (.12) 1.2% 6.1% 

AC AB 4.5% 3.0% 0% 7.5% .11 (.13) 0.0% 20.9% -1.48% (.13) 3.0% 0.0% 

AC NC 2.5% 5.1% 0% 3.8% .10 (.10) 2.5% 10.1% .44% (.08) 1.3% 2.5% 

AC DA 6.1% 13.4% 0% 14.6% .08 (.17) 0.0% 7.3% -.82% (.06) 2.4% 2.4% 
Note:  PSA = propensity score analysis, weights adjustment, AC = ANCOVA adjusted; AB = allocation bias, NC = noncompliance, 
DA = differential attrition; and for or change columns B = better, W = worse and remaining percentage (of 100%) resulted in no 
change on the bias measure. 
.
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 In Table 53, the findings are presented by sample size.  Sample-size comparisons 

of adjustment effects for biased data showed greater vulnerability for small samples, both 

in terms of ability to improve and to create worse estimates.  This was reflected in the 

high rate of introduction of error in the significance tests (22.7%) as well as in the high 

rates of improvement and worsening in terms of the changes in effect size differences.  

The PSA adjustment for the small sample size resulted in a large mean percent bias 

increase and corresponding rate of change for the worse for means.
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Table 53 

Adjusted Versus Threatened-Biased Sensitivity Analyses by Sample Size (Method 1) 
 

Method Sample 
Size 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Change in Error 
Rate 

Mean 
ES Diff 

(SD) 

Change in ES 
Difference 

Mean Percent 
Bias Reduction 

(SD) 

Change in 
Percent Bias 

    B W  B W  B W 
PSA L 21.6% 16.2% 18.9% 13.5% .07 (.07) 5.4% 2.7% 9.78% (.22) 24.3% 2.7% 

PSA M 16.7% 2.4% 4.8% 14.3% .07 (.06) 0.0% 4.8% 3.57% (2.67) 31.0% 26.2% 

PSA S 34.1% 4.5% 6.8% 22.7% .15 (.14) 15.9% 20.5% -17.14% (1.41) 31.8% 29.5% 

AC L 2.7% 29.7% 10.8% 0.0% .25 (.45) 0.0% 24.3% .24% (.45) 8.1% 13.5% 

AC M 2.4% 11.9% 0.0% 9.5% .13 (.11) 0.0% 19.0% -.93% (.26) 21.4% 11.9% 

AC S 11.4% 11.4% 15.9% 9.1% .13 (.11) 15.9% 25.0% 11.02% (.49) 38.6% 20.5% 
Note:  PSA = propensity score analysis, weights adjustment, AC = ANCOVA adjusted; Foundation sample sizes were S = small (250), 
M = medium (600), and L = large (1,400); B = better, W = worse, NC = no change. 
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For the PSA-adjusted method 2 data, a higher number of worse error rates was 

found (compared to method 1 above) for the medium sample size (30.5% compared with 

14.3%), while this rate was reversed for the small sample size (13.6% compared with 

22.7%).  The rate of increased bias in effect size differences was lower in the small 

sample for PSA-adjusted method 2 data (4.5% compared with 20.5% using method 

1data).  Methods 1 and 2 were comparable on change in mean percent bias for PSA-

adjusted data. 

Lower rates of effect size bias increase were found in method 2 for medium and 

small samples.  With the ANCOVA-adjusted results, lower rates of effect size difference 

(improvements) were found for both medium and small sizes (2.3% and 9.1%, 

respectively, compared to the results above).  A lower rate of percent bias improvement 

was found in the ANCOVA-adjusted method 2 findings (4.8 compared with 21.4% 

above). 

Sample-size comparisons of adjustment effects with unbiased results seen in 

Table 54 show that the Type I error rate was highest for the PSA-adjusted medium 

samples.  Notably, no Type II errors were found in the corrected data for the PSA group.  

The large samples adjusted with ANCOVA, however, did introduce Type II error to over 

12% of outcome analyses.  As with most of the findings in Phase IV, mean effect size 

differences were very small for all sample sizes, although bias was introduced in 6.7% 

(medium samples with ANCOVA adjustment) to 16.4% (small samples adjusted with 

PSA) of outcome analyses.  Little differences were found in mean percent bias reduction; 

however, 15% of the PSA-adjusted small samples analyses introduced new mean bias. 
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Table 54 

Adjusted Versus Threatened-Unbiased Sensitivity Analyses by Sample Size (Method 1) 
 

Method Sample 
Size 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Change in Error 
Rate 

Mean 
ES Diff 

(SD) 

Change in ES 
Difference 

Mean 
Percent Bias 

(SD) 

Change in 
Percent Bias 

    B W  B W  B W 

PSA L 5.0% 0.0% 0% 5.0% .03 (.02) 1.3% 7.5% -2.09% (.13) 0.0% 3.8% 

PSA M 24.0% 0.0% 0% 24.0% .05 (.06) 4.0% 9.3% -4.05 (.19) 0.0% 9.3% 

PSA S 16.4% 0.0% 0% 16.4% .10 (.13) 4.1% 16.4% -3.84 (.09) 0.0% 15.1% 

AC L 0.0% 12.5% 0% 10.0% .07 (.09) 0.0% 13.8% .01% (.02) 0.0% 0.0% 

AC M 1.3% 1.3% 0% 2.7% .07 (.09) 0.0% 6.7% -1.27% (.10) 0.0% 4.0% 

AC S 8.2% 4.1% 0% 11.0% .09 (.13) 1.4% 13.7% -.11% (.14) 2.7% 2.7% 

Note: PSA = propensity score analysis, weights adjustment, AC = ANCOVA adjusted; Foundation sample sizes were S = small (250), 
M = medium (600), and L = large (1,400); B = better, W = worse, NC = no change. 
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A few differences were found in the method 2 unbiased findings.  For the large 

samples adjusted with PSA, an increased rate of bias was found using method 2 data 

(13.8% compared to 5.0%).  Also, the rate of Type I error for the PSA-adjusted small 

samples was much worse at 28.8% compared to 16.4%.  With respect to mean percent 

bias reduction in ANCOVA method 2 data, small samples had much higher rates of better 

and worse change compared with method 1, i.e., 27.3% of adjustments improved the 

percent bias while 15.9% became worse within the method 2 data. 

The proportion-of-sample-affected comparisons of adjustment effects for biased 

outcome data revealed high rates of Type I error in the PSA-adjusted conditions (see 

Table 55).  While some Type I and Type II error was reduced from the threatened 

sample, a larger proportion of new error was introduced yielding biased estimates.  For 

the ANCOVA-adjusted 25% group, the mean effect size difference reached the criteria 

for a small effect.  In this case, this was not a positive finding as most of the effect size 

differences were larger than were found for the threatened data.  While it was hoped to 

see a positive adjustment with these techniques, particularly given the large outcome-

biasing effect of the 25%-threat conditions, any positive changes were overshadowed by 

the proportion of tests that became worse.  On the other hand, for the 25%-threat 

conditions adjusted by PSA, the mean percent bias reduction was meaningful (over 10%), 

which was a positive result.  In fact all the mean percent bias reduction values showed 

some positive bias reduction.  
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Table 55 

Adjusted Versus Threatened-Biased Sensitivity Analyses by Proportion of Sample Affected (Method 1) 
 

Method Threat 
Proportion 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Change in Error 
Rate 

Mean 
ES Diff 

(SD) 

Change in ES 
Difference 

Mean Percent 
Bias (SD) 

Change in 
Percent Bias 

    B W  B W  B W 

PSA 25% 23.5% 11.8% 7.8% 21.6% .13 (.11) 9.8% 15.7% 12.16% (2.74) 29.4% 29.4% 

PSA 15% 21.4% 7.1% 16.7% 11.9% .09 (.09) 7.1% 4.8% 7.60% (.22) 33.3% 9.5% 

PSA 5% 30.0% 0% 3.3% 16.7% .06 (.09) 3.3% 6.7% 2.17% (.52) 23.3% 20.0% 

AC 25% 5.9% 21.6% 5.9% 7.8% .20 (.35) 5.9% 23.5% 1.31% (.32) 29.4% 17.6% 

AC 15% 7.1% 19.0% 9.5% 2.4% .17 (.22) 0% 21.4% 2.10% (.14) 23.8% 9.5% 

AC 5% 3.3% 6.7% 13.3% 10.0% .10 (.10) 13.3% 23.3% 10.00% (.50) 13.3% 20.0% 

Note:  PSA = propensity score analysis, weights adjustment, AC = ANCOVA adjusted; proportions of sample affected were Large (L) 
= 25%, Medium (M) = 15%, and Small (S) = 5%; B = better, W = worse, NC = no change. 
.
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Method 2 biased data analyses included the following differences from method 1 

findings.  For the 5% threat group adjusted with PSA, method 2 findings indicated a 

lower (i.e., better) rate of worse analyses in terms of error rate (6.7% compared with 

16.7%), although method 1 findings indicated a higher improvement rate for the PSA 

15% threat group.  Proportions of error rate changes were generally lower in method 2 

ANCOVA findings compared with method 1.  For effect size differences, the PSA results 

were similar for methods 1 and 2; however, the method 2 ANCOVA 25%-threat group 

had a lower rate of worse effect size results than did method 1.  For the 5%-threat group 

adjusted with PSA, the rate of worse results was much higher for method 2 at 46.7%.  For 

ANCOVA-adjusted results, method 1 showed higher rates of improvement in percent 

mean bias than were found for method 2 comparisons. 

With the unbiased data presented in Table 56, the comparison of effects by the 

proportion of the sample affected indicated no Type II errors in the PSA-corrected data.  

This means that Type II errors were not introduced; however, some moderate 

overcorrection occurred within the PSA-adjusted data in the form of the Type I errors to 

find significant differences when they did not exist in the randomized data.  The 

ANCOVA procedures did not yield as high of Type I error rates, although they did have 

small rates of Type II error introduction.  In terms of effect size differences, mean 

differences were equivalent across adjusted conditions.  Unfortunately, the proportion of 

larger (worse) effect size differences was higher across the board for all conditions than 

the improvement rates.  Not much effect was observed in terms of mean percent bias 

reduction (which was favorable since these were already unbiased) except in the case of 
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the PSA-adjusted 15% and 25% groups’ moderately worse rates of mean percent bias 

(over 10%). 
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Table 56 

Adjusted Versus Threatened-Unbiased Sensitivity Analyses by Proportion of Sample Affected (Method 1) 

Method Threat 
Proportion 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Change in Error 
Rate 

Mean 
ES Diff 

(SD) 

Change in ES 
Difference 

Mean 
Percent Bias 

(SD) 

Change in 
Percent Bias 

    B W  B W  B W 

PSA 25% 10.6% 0% 0% 10.6% .08 (.10) 4.5% 15.2% -3.09% (.09) 0% 12.1% 

PSA 15% 12.0% 0% 0% 12.0% .06 (.07) 1.3% 12.0% -6.00% (.22) 0% 10.7% 

PSA 5% 20.7% 0% 0% 20.7% .04 (.08) 3.4% 6.9% -1.11% (.05) 0% 5.7% 

AC 25% 3.0% 7.6% 0% 10.6% .08 (.09) 1.5% 10.6% 1.50% (.12) 1.5% 0% 

AC 15% 0% 5.3% 0% 5.3% .08 (.12) 0% 10.7% -1.84% (.12) 0% 5.3% 

AC 5% 5.7% 5.7% 0% 8.0% .08 (.10) 0% 12.6% -.74% (.05) 1.1% 1.1% 

Note:  PSA = propensity score analysis, weights adjustment, AC = ANCOVA adjusted; proportions of sample affected were Large (L) 
= 25%, Medium (M) = 15% and Small (S) = 5%; B = better, W = worse, NC = no change. 
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Differences in findings from method 2 unbiased data included the following.  A 

worse rate of error was found in method 2 for the PSA-adjusted 15%-threat group (24% 

compared with 12.0%).  No mean percent bias differences in the PSA adjusted data were 

observed between methods 1 and 2.  No differences in the rates of change observed for 

error rate, effect size differences, or mean percent bias were found for ANCOVA from 

method 1 to method 2. 

Comparisons of adjustment effects for biased data by analysis type (see Table 57) 

revealed that the PSA adjustments were successful in mitigating a high proportion of 

error (27.6%) for the point-in-time analyses with minimal rates of estimates becoming 

worse.  This was not the case for the repeated measure between-groups tests in which this 

finding was reversed (26.9% of tests had false significance results).  For ANCOVA, the 

Type II error rates were comparatively higher than those for the PSA adjustments.  The 

ANCOVA adjusted results were also inconsistent with regard to improved or worsened 

rates of change.  A high improvement rate for the point-in-time analyses was found but 

for the repeated measures within-groups analyses, 25.9% of the analyses had imposed 

Type I and Type II errors.  

A positive effect for improvements in effect size differences was observed for the 

point-in-time analyses.  However, as with the error rate assessments, the results for the 

effects of adjustment on the repeated measures analyses were not favorable.  The 

repeated measure between-groups analyses yielded both high rates of improvement and 

worsening for mean percent bias reduction.  Overall, the PSA adjustment on the repeated 

measures between groups had a favorable effect on mean percent bias (19% improvement 

rate).  
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Table 57 

Adjusted Versus Threatened-Biased Sensitivity Analyses by Analysis Type (Method 1) 
  

Method 
Analys

is 
Type 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Change in Error 
Rate 

Mean 
ES Diff 

(SD) 

Change in ES 
Difference 

Mean 
Percent Bias 

(SD) 

Change in 
Percent Bias 

    B W  B W  B W 

PSA PIT 24.1% 13.8% 27.6% 3.4% .09 (.06) 27.6% 3.4% -.55% (.01) 3.4% 0% 

PSA RMW 14.8% 7.4% 0% 7.4% .16 (.13) 0% 25.9% -5.78 (.14) 18.5% 25.9% 

PSA RMB 28.4% 4.5% 6.0% 26.9% .08 (.10) 1.5% 6.0% 19.07 (2.41) 44.8% 26.9% 

AC PIT 10.3% 27.6% 20.7% 0% .09 (.08) 20.7% 0% -.14 (.01) 0% 0% 

AC RMW 11.1% 25.9% 7.4% 25.9% .19 (.12) 0% 48.1% 5.48% (.16) 40.7% 3.7% 

AC RMB 1.5% 9.0% 4.5% 1.5% .19 (.34) 1.5% 22.4% 4.64 (.44) 26.9% 26.9% 

Note:  PSA = propensity score analysis, weights adjustment, AC = ANCOVA adjusted; PIT  = point-in-time, RMW = repeated-
measures ANOVA within, RMB = repeated-measures ANOVA between; B = better, W = worse. 
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Differences in findings from the method 2 biased data showed that the PSA- 

adjusted point-in-time analyses had 17.2% of results with increased rates of error in the 

significance test compared with method 1’s 3.4%.  The rate of worse effect size 

differences for the PSA-adjusted repeated-measures within-groups analyses was 14.8% in 

method 2 compared with 25.9% in method 1.  The mean percent bias was lower in 

method 2 (7.4% compared to 18.5%) for the PSA-adjusted repeated-measures within 

analyses.  In terms of the effects of the ANCOVA adjustments, a lower proportion of 

tests resulted in improvements of significance errors for the point-in-time analyses (6.9% 

compared with 20.7%).  A lower rate of error introduction was found for repeated-

measures within analyses corrected by ANCOVA in the method 2 data (14.8% compared 

with 25.9% in method 1).  The rates of improvement and worsening seen across analysis 

types in method 1 in terms of effect size differences were less pronounced for method 2.  

In the ANCOVA repeated-measures within analyses, the method 2 rate of improvement 

in mean percent bias was substantially lower than that of method 1 (14.8% compared 

with 40.7%). 

With unbiased data shown in Table 58, the PSA adjustments again were 

unnecessary; thus, any improvements or worse findings contributed to an increase in 

parameter estimate bias.  Similar to what was found in Table 56 for the comparisons of 

the proportions of the sample affected by the threat, no Type II error was introduced in 

the PSA conditions although small Type I and Type II error rates were found in the 

ANCOVA conditions.  Moderately high rates of Type I error were found for the PSA 

point-in-time and the repeated-measures between analyses.  The proportion of analyses 

that resulted in new significance errors was highest for PSA compared with ANCOVA.   
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A mean effect size difference equivalent to a small effect (.20) resulted from the 

ANCOVA-adjusted repeated-measures within analyses, which was not a favorable 

finding as the change was in the wrong direction (effect sizes became more different from 

randomized than was found in the unadjusted, threatened condition).  A large, 

unfavorable, negative mean percent bias was introduced in the repeated measures 

analyses adjusted with PSA (23.5% mean bias increase), which was also reflected in the 

rate of the increase in unfavorable mean percent bias estimates for this analysis type. 
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Table 58 

Adjusted Versus Threatened-Unbiased Sensitivity Analyses by Analysis Type (Method 1) 
 

Method 
Analys

is 
Type 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Change in Error 
Rate 

Mean 
ES Diff 

(SD) 

Change in ES 
Difference 

Mean Percent 
Bias (SD) 

Change in 
Percent Bias 

    B W  B W  B W 

PSA PIT 18.1% 0% 0% 18.1% .05 (.05) 4.4% 11.9% -.29% ( .01) 0% 0.0% 

PSA RMW 3.7% 0% 0% 3.7% .10 (.15) 0% 11.1% -6.96% (.16) 0% 27.8% 

PSA RMB 21.4% 0% 0% 21.4% .03 (.04) 0% 0% -23.50% (.42) 0% 42.9% 

AC PIT 3.1% 5.0% 0% 7.5% .04 (.03) .6% 0% -.05% (.004) 0% 0% 

AC RMW 3.7% 9.3% 0% 11.1% .21 (.14) 0% 48.1% -.44% (.07) 1.9% 1.9% 

AC RMB 0% 7.1% 0% 0% .04 (.03) 0% 0% -5.00% (.39) 7.1% 28.6% 

Note:  PSA = propensity score analysis, weights adjustment, AC = ANCOVA adjusted; PIT  = point-in-time, RMW = repeated-
measures ANOVA within, RMB = repeated-measures ANOVA between; B = better, W = worse. 
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Differences in findings from method 2 unbiased data indicated that the PSA 

point-in-time analyses’ rate of increased error in significance results was 26.9% for 

method 2 compared with 18.1% in method 1.  The assessment of the number of worse 

error rate for PSA-adjusted repeated-measured between analyses was 35.7% for method 2 

compared with 21.4% for method 1.  No method differences were found for changes in 

effect size differences or changes in mean percent bias reduction for the PSA or 

ANCOVA results. 

The final set of analyses pertaining to the adjustment techniques was intended to 

compare the effectiveness of the adjustments by child outcome type.  For the biased 

outcomes, the rates of bias after adjustment are presented in Table 59.  In terms of PSA-

adjusted estimates, the BSID-II data were the most negatively affected by the attempted 

correction.  Over 22% of the analyses introduced significance test errors and the mean 

percent bias increase was nearly 17%.  Propensity score analysis adjustment, however, 

had a favorable effect on the CBCL mean percent bias reduction (at 57.5%).  Across the 

measures, PSA appeared to create or maintain a moderate amount of Type I errors, while 

these rates were less for the ANCOVA adjusted findings.  The ANCOVA adjustment also 

had a positive impact on the mean percent bias reduction for the CBCL measure.  

However, the ANCOVA adjustment negatively increased the effect size differences for 

the BSID-II results.  The improvements seen in the mean percent bias (for both PSA and 

ANCOVA results) were likely not worth the proportion of tests for which the estimates 

became more biased.
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Table 59 

Adjusted vs. Threatened-Biased Sensitivity Analyses by Child Outcome Measure (Method 1) 
 

Method Outcome 
Measure 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Change in Error 
Rate 

Mean 
ES Diff 

(SD) 

Change in ES 
Difference 

Mean Percent 
Bias (SD) 

Change in 
Percent Bias 

    B W  B W  B W 

PSA BSID 29.5% 4.5% 0% 22.7% .09 (.10) 0% 11.4 -16.89% (1.29) 27.3% 22.7% 

PSA CBCL 26.7% 3.3% 0% 20.0% .12 (.12) 3.3% 16.7 57.50% (3.17) 40.0% 33.3% 

PSA CE 17.8% 11.1% 22.2% 11.1% .09 (.09) 17.8% 4.4% 2.84% (.54) 26.7% 11.1% 

PSA PPVT 25.0% 25.0% 50.0% 0% .09 (.03) 0% 0% -1.00% (.01) 0% 0% 

AC BSID 6.8% 9.1% 4.5% 6.8% .17 (.29) 2.3% 27.3% 1.55% (.16) 25.0% 9.1% 

AC CBCL 6.7% 10.0% 6.7% 13.3% .21 (.40) 3.3% 23.3% 11.90% ( .59) 36.7% 26.7% 

AC CE 4.4% 24.4% 13.3% 2.2% .14 (.11) 8.9% 20.0% .67% (.20) 15.6% 15.6% 

AC PPVT 0% 75.0% 25.0% 0% .12 (.08) 25.0% 0% 0% (.00) 0% 0% 

Note:  PSA = propensity score analysis, weights adjustment, AC = ANCOVA adjusted; BSID = Bayley Scales of Infant Development-
II Scale Score, CBCL = Achenbach Child Behavior Checklist, CE = Child Engagement with Parent, PPVT = Peabody Picture 
Vocabulary Test.  Caution interpreting PPVT results, only n = 4 biased tests (thus, 25% represents one test). 
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Differences in findings from method 2 biased data included a lower rate found in 

method 2 analyses for the BSID effect size differences for PSA (2.3% were worse 

compared to 11.4% in method 1).  For the PSA-adjusted BSID results, there was a higher 

rate of worse mean percent bias (34.1% compared with 22.7%).  For the PSA-adjusted 

child engagement, a lower rate of improvement in mean percent bias was found (16.7% 

compared to 40%).  For the ANCOVA adjustments, 0% of results were better for child 

engagement in terms of the error rate (compared with 13.3%).  For ANCOVA-adjusted 

BSID results, the rate of results that were worse was 15.9% for method 1.  Thus, method 

differences were inconsistent in terms of the direction of the effects. 

Outcome measure comparisons of the (unneeded) adjustment effects for unbiased 

data shown in Table 60 reveal that, again, the PSA adjustment did not create new Type II 

error; rather, it improved those issues.  However, it was at the expense of unbiased 

significance testing as Type I errors were more common than for the ANCOVA-adjusted 

results.  The proportion of analyses for which a significance error was observed was 

equally poor for BSID and for child engagement.  No large mean effect size differences 

were found for either ANCOVA or PSA for any of the child outcome measures, which 

was a positive finding.  However, the rate of worse results in terms of effect size 

difference was equally high for both PSA- and ANCOVA-adjusted child engagement.  

The adjustments did not have a large effect on mean percent bias reduction, though again, 

the PSA-adjusted child engagement data were susceptible to a greater mean bias increase 

compared with the other measures. 
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Table 60 

Adjusted Versus Threatened-Unbiased Sensitivity Analyses by Child Outcome Measure (Method 1) 
 

Method Outcome 
Measure 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Change in Error 
Rate 

Mean 
ES Diff 

(SD) 

Change in ES 
Difference 

Mean 
Percent Bias 

(SD) 

Change in 
Percent Bias 

    B W  B W  B W 

PSA BSID 17.2% 0% 0% 17.2% .05 (.07) 0% 15.6% -1.83% (.08) 0% 4.7% 

PSA CBCL 11.5% 0% 0% 11.5% .06 (.08) 1.3% 1.3% -5.41% (.21) 0% 11.5% 

PSA CE 17.5% 0% 0% 17.5% .07 (.11) 9.5% 22.2% -3.25% (.10) 0% 14.3% 

PSA PPVT 13.0% 0% 0% 13.0% .04 (.04) 0% 0% -.30% (.01) 0% 0% 

AC BSID 4.7% 3.1% 0% 6.3% .05 (.06) 0% 3.1% -.22% (.14) 3.1% 3.1% 

AC CBCL 5.1% 9.0% 0% 11.5% .08 (.09) 1.4% 7.7% -.35% (.10) 0% 2.6% 

AC CE 0% 6.3% 0% 6.3% .12 (.15) 0% 28.6% -.95% (.03) 0% 1.6% 

AC PPVT 0% 4.3% 0% 4.3% .04 (.03) 0% 0% -.04% (.002) 0% 0% 

Note:  PSA = propensity score analysis, weights adjustment, AC = ANCOVA adjusted; BSID = Bayley Scales of Infant Development-
II Scale Score, CBCL = Achenbach Child Behavior Checklist, CE = Child Engagement with Parent, PPVT = Peabody Picture 
Vocabulary Test.  Caution interpreting PPVT results, only n = 23 unbiased tests (thus, 4.3% represents one test). 
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Differences in findings from method 2 unbiased data showed that the PSA-

adjusted CBCL data had a more unfavorable rate of analyses that resulted in significance 

test errors (30.8% compared with 11.5% for method 1).  No other method differences 

were found in terms of effect size differences or mean percent bias reduction for the 

PSA-adjusted results.  None of the method 2 findings differed for the measures using 

ANCOVA adjustments.  

Chapter Summary 

The introduction of randomization disruption was successful; generally speaking, 

the introduction of imbalance and bias in baseline characteristics led to bias in the results 

under threat conditions.  The allocation bias scenario was most affected by imbalance 

under the threat condition; however, a high level of imbalance was also introduced in the 

noncompliance scenarios and a moderate amount in the differential attrition conditions. 

Significant baseline differences between threatened and randomized data by scenario 

were not as prevalent and ranged from affecting 33% to 67% of the tested differences. 

Baseline imbalance and bias were greatest for the large samples and for the samples that 

were threatened at the 25% threat level.  As was expected, the greater the proportion of 

the sample affected by the threat scenario, the greater the likelihood of baseline 

imbalance, bias, and, subsequently, biased results. 

The threat scenario under which the outcomes results were most sensitive was 

allocation bias, matching the larger baseline imbalance and bias introduced.  Examination 

by sample size indicated a relatively high rate of Type I error was found for the small 

samples, while the highest rates of Type I and Type II error were among the large 

samples.  Overall bias was highest among the small samples with 35% of the tests biased 
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either in terms of the significance test, the mean effect size difference, or mean percent 

bias.  The samples that were affected by the largest proportion of threat were the most 

sensitive to the disruption, again matching the levels of introduced baseline imbalance 

and bias.  For this group, the high mean percent bias (14.3%) was notably higher than the 

15% and 5% threat levels. 

Overall, the adjustment techniques introduced more bias than they appeared to 

correct.  The inconsistency in findings warrants much caution with regard to the reliance 

on these techniques for salvaging biased effect estimates.  The final section of this work 

(Chapter V) includes a comprehensive discussion of the findings, their implications, and 

the recommendations for the field. 

 



 
 
 
 
 

CHAPTER V 
 
 

DISCUSSION 
 

 
It is clear that research studies including the well-respected randomized design are 

susceptible to any number of design threats which, depending on the circumstances, 

might bias effect estimates of interest.  Increasing understanding of when such threats 

might meaningfully obscure accurate and precise study findings is essential, particularly 

when stakes are high, e.g., when the results are intended to promote best practices in 

child and family programming.  Downs et al. (2010) categorized potential randomization 

problems as occurring in the design phase (i.e., choice of randomization method), the 

implementation phase (i.e., allocation process), and errors occurring during the study. 

This study focused on elucidating understanding of the latter two problem types. 

Overall, the current study’s goals--to introduce and examine rates of imbalance 

and bias in baseline characteristics, to test the sensitivity of study results to such 

problems, and to attempt statistical adjustment of introduced bias--were mostly 

successfully achieved.  This study has contributed steps toward furthering understanding 

of the effects of design threats on randomized study data.  While extracting the salient 

findings from Chapter IV, several key themes emerged that deserve emphasis.  

This discussion is organized by presenting the key findings for each phase of the 

analytic results, summarizing how the results are connected, and addressing what these 

results might indicate to the field.  In addition, this chapter provides a discussion of 
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challenges and issues that arose during the research and analytic process, shares how they 

were addressed, and offers recommendations for other educational and methodological 

researchers.  Finally, the chapter closes with recommendations for future studies of this 

nature. 

Key Findings and Implications of Phase II Results 

 The rate of imbalance introduced between intervention and control groups across 

the manipulated conditions ranged from 44% of conditions imbalanced in the method 1 

differential attrition data to 100% of the nine conditions imbalanced by the method 1 

allocation bias exclusion procedures.  It is difficult to address whether this variability 

existed due to the different exclusion methods in and of themselves or the different 

variables used for exclusion.  The differences in imbalance rates seen for method 2 

attempts do not offer much insight into this question.  More experimentation with this 

sort of exclusion process would clearly be helpful.  However, it is notable that allocation 

bias was very clearly a selection bias threat and had an obvious connection to the 

imbalance created.  Methodologically speaking, the noncompliance and attrition 

problems were less clearly associated with selection issues.  To clarify, the manipulated 

variables were baseline characteristics related to whether a participant was included in the 

intervention versus the control group in the allocation bias scenario; whereas the 

noncompliance scenario manipulation was with data about program participation and the 

differential attrition scenario used variables collected about participants’ resources at the 

26-month time point. 

Baseline differences for threatened versus randomized data (bias) were relatively 

lower than those achieved between intervention and control (imbalance).  The results 
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indicated that a range of 33% to 67% of the conditions became biased.  Since the 

allocation bias conditions were more heavily threatened, it was expected that a high level 

of outcome bias would be found in the sensitivity analyses compared to the other two 

threat scenarios; that was indeed the case.  With the same rationale and because the 

method 1 differential attrition data contained fewer conditions in which imbalance and 

bias were introduced, it was expected that less outcome bias would be observed in Phase 

III. 

The categorical variables used in the balance and bias checking process generally 

seemed to be more influenced by the threat conditions than the continuous variables. 

Despite this finding, it is important in this type of diagnostic assessment to include a 

variety of categorical and continuous variables because it is not clear how consistent this 

pattern would be in different studies with alternative variable sets and conditions.  A 

future study topic could focus on identifying commonly used variables across studies that 

tend to be more susceptible to balance disruption.  Because of the scope of this study, I 

included a rather parsimonious list of baseline covariates; however, a greater number 

might have resulted in greater variability in the levels of imbalance and bias across the 

threat conditions.  The variables and procedures selected for the balance check are 

important in identifying bias and their relative efficacy might differ across studies.  In 

this vein, Arceneaux et al. (2004) warned about using incorrect randomization check 

procedures such as conducting the significance tests at the wrong level of analysis (e.g., 

checking at the individual level when randomization is at the group level as in cluster 

randomized studies). 
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Key Findings and Implications of Phase III Results 

Phase III sensitivity results did differ by threat scenario, sample size, proportion 

of sample affected by the threat, analysis type, and child outcome measures.  In terms of 

the threat scenarios, as mentioned earlier, the allocation bias outcome results were more 

sensitive to the threat conditions with higher Type I and Type II error rates and a higher 

overall bias rate than noncompliance and differential attrition, potentially for the reasons 

mentioned in the discussion of Phase II in the previous section.  This finding was only 

weakened slightly in the method 2 results.  Addressing Hewitt et al.’s (2010) suggestion 

that it is unclear when attrition becomes a serious threat to trial validity, the results here 

showed that bias occurred in approximately 25% of the outcome analyses.  According to 

Foster and Bickman (1996), differential attrition is one of the greatest threats to internal 

validity; this certainly seemed to play out in this study. 

The combined results of the Phase II and Phase III analyses led me to recommend 

that researchers and evaluators carefully avoid randomization threats that are so closely 

connected with the selection process, such as allocation bias based on participant 

characteristics or status.  For example, a less obvious way that selection bias could be 

introduced into a randomized design includes allocating participants to intervention or 

control, informing them of their group status, and then delaying the commencement of 

the intervention for a substantial period of time.  The promise of the intervention (or lack 

of) might cause the intervention and control groups to diverge in meaningful ways, e.g., 

the control group might seek other services immediately.  This aligns with Dunford’s 

(1990) indications that hidden threats to randomization might surface during the 
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implementation and operation of experiments, e.g., ethical, legal, or liability issues that 

are also related to the selection process. 

Given the goal of randomization to create intervention and control groups that 

were as similar as possible, any selection bias introduced might lead to violation of the 

assumption of strongly ignorable treatment assignment (Emura et al., 2008; Pearl, 2010; 

Shadish & Steiner, 2010).  If this occurs, then group outcome differences might be 

incorrectly attributed to the intervention rather than a pre-existing imbalance.  

Sample size comparisons showed that the highest rate of Type I error was found 

for the small samples, while the highest rate of Type II error  was found for the large 

samples.  The large-sample results indicated a slightly greater rate of mean percent bias 

introduced.  The increased rate of Type II error for the large samples was curious given 

the increased power due to sample size to detect findings.  Ultimately, the large sample 

rate of Type II error was not particularly high but as was stated in Chapter IV, the 

important note here is that large samples are not immune to threats and might in fact have 

unique problems (such as a greater likelihood of biased means) compared with smaller 

samples.  The larger samples might potentially have produced greater mean bias because 

of increased variability on the outcome scores that was introduced with the threat 

conditions.  Also, the threat condition itself eliminated much of the sample with the 

exclusion characteristic.  The explanatory power of the exclusion characteristics appeared 

to have affected the outcome means in a way that made significant intervention versus 

control differences difficult to detect. 

The biasing power of the largest (25%) proportion-of-the-sample-affected-by-the- 

threat condition was expected.  This was especially true for the allocation bias scenarios 
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and for the larger sample sizes.  The introduction of a proportionally larger threat did 

indeed create relatively higher rates of Type I and Type II errors and elevated mean 

percent bias.  The message here is that randomized studies might be able to (and do) 

tolerate a small amount of disruption.  This is a subtle contrast to Gueron’s (2001) 

statement, indicating it is an “all-or-nothing” process; once problems are introduced, the 

study cannot recover.  Clearly, the amount of bias they are able to tolerate is related to the 

maintenance of the integrity of other components of the research, such as measurement 

issues, and other issues that affect internal validity.  The recommendation here is to 

prevent large threats to a study’s design and closely monitor the research activities to 

ensure rigorous practices are maintained.  The reliance on randomization to prevent all 

internal validity problems should be in direct proportion to the energy put into 

maintaining a quality design.  

The differences in levels of biased outcome results across analysis types also have 

implications for the selection of outcome analyses.  It was somewhat surprising that the 

repeated measures between-groups analyses yielded higher rates of bias than the other 

types.  A more in-depth investigation of the ways different analyses might emphasize or 

de-emphasize study bias is clearly warranted in the field.  Similarly, this study showed 

that the selection of particular measurement strategies and tools could influence the 

masking or realization of study bias.  The child engagement measure, a socio-emotional 

assessment of the children’s engagement with parent, was a play session coded and 

scored by video.  More variability in the sensitivity results was observed of this measure 

compared with the Bayley Scales of Infant Development (1993) with a continuous range 

of scale scores.  
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Another study implication for consideration is that, to some extent, intervention 

studies attempting to improve outcomes that historically have small effect sizes in the 

literature are faced with a greater challenge of potentially losing barely detectable results 

in the face of small biasing effects.  This might happen, for instance, when the 

intervention is not very powerful, e.g., when it has limited efficacy within a particular 

population or geographic region or is difficult to implement. 

Key Findings and Implications of Phase IV Results 

 The Phase IV results for the study were at least consistent in the mutual 

introduction of new bias and the correction of old bias (i.e., originating in the threat 

condition).  The results implied that much caution should be used in applying post-hoc 

procedures and that the selection of the best adjustment techniques for the problem be 

made (see challenges listed in the next section).  While propensity score analysis (PSA) 

adjustment resulted in some improvements, the method used in this study overcorrected 

in many cases.  Analysis of covariance (ANCOVA) was slightly more consistent with 

relatively lower rates of Type I and Type II errors.  It seemed to be a much more 

conservative approach to control for extraneous variance. 

 It is not a good idea to adjust data unless there is very clear evidence that 

significant bias exists to warrant the risk of overcorrection.  As was expected, all of the 

adjustment with unbiased conditions revealed the substantial introduction of problems.  

In the adjustment analyses, very small mean effect size differences were found regardless 

of threat scenario, sample size, proportion of threat, analysis type, and child outcome 

measure. 



172 
 

Interestingly, in the original Early Head Start Research and Evaluation (EHSRE) 

study, implementation of adjustment procedures with the full national dataset indicated 

the outcome estimates were fairly stable, likely because not much correction was needed 

unlike in the threat conditions employed in the current study (U.S. Department of 

Education, Administration for Children and Families, 2002a).  Overall, the adjustment 

procedures were inconsistent across the comparisons and resulted in as much (or more) 

new bias as correction. 

Methodological Successes and Challenges 

 Using the 10% alpha criterion for significance testing around imbalance was a 

choice initially based on an attempt to match the EHSRE’s methods so there was 

continuity with the original study and so that expectations for imbalance could be set.   

Later, the question of the selected alpha level arose.  Whereas the 5% level might initially 

have been perceived as the more conservative cutoff for significance, on reflection, the 

10% alpha level was considered advantageous and more prudent with respect to the goal 

of the analyses.  In other words, it is helpful to identify even minimal imbalance as it is 

not clear how much intervention and control differences could affect results in every 

circumstance. Thus, I selected the 10% alpha to increase the sensitivity of the tests to 

detect potential imbalance. 

In Phase I of the study, the identification of latent compliance types using latent 

class analysis in Mplus proved to be a successful method in modeling underlying 

compliance type based on patterns of program participation in the study.  For programs of 

this sort, foreknowledge of participant compliance types might help support the 

development of extra supports for families who characteristically resemble others who 
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have demonstrated low compliance behaviors with a given intervention.  Ongoing 

interventions might benefit from the use of such analytic strategies to help craft effective 

programs for families. 

 One of the methodological challenges encountered in the study was in the 

development and execution of the exclusion methods to obtain the threatened datasets.  

Originally, I anticipated that the process would be nearly identical across the three threat 

scenarios; however, this was not the case.  The primary difference was because, in the 

allocation bias scenario, I threatened both the intervention and the control groups; 

whereas, I only threatened the intervention group (and randomly subsampled from the 

control group) in the other two scenarios.  Thus, while the pilot study was valuable in 

terms of identifying the general methods for creating the threat conditions, more specific 

details were not understood until faced with the challenges.  Subtle differences across the 

scenarios were found in the appropriate way to obtain the proportions of threatened 

samples in intervention and control groups, which resulted in some backtracking.   

For example, one challenge experienced during the exclusion method for 

differential attrition was that I needed to derive the baseline imbalance and bias estimates 

with the appropriate cases excluded; thus, as in the two other scenarios, I deleted them.  

However, I belatedly recognized that I needed the data for the cases to remain in the 

dataset to use for the later adjustment procedures.  In this case, I replaced the excluded 

case data and created files in which only the 36-month data were excluded (the intended 

missing data per the differential attrition threat).  Since I created this exclusion method 

myself and there were no clear guidelines in the literature about a process such as this, it 

was a bit of trial-and-error to obtain the desired conditions. 
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As discussed in Chapter IV, the noncompliance exclusion method inadvertently 

violated one of the assumptions of the complier average causal effect (CACE) analysis, 

which I believed would have ultimately been a more effective method for reducing bias 

introduced in the noncompliance threat conditions since it was specifically intended for 

that purpose.  More foreknowledge related to this methodological clash would have been 

helpful given the lack of precedence for the exclusion processes used.  

Likewise, there is a strong preference for conducting multiple imputation with 

missing data due to differential attrition.  It is unfortunate that the outcome analyses 

proposed for this study were not well-matched to the multiple imputation procedures. 

Undoubtedly, using a multi-level or linear mixed effects model or growth curve modeling 

for the repeated measures investigation would have been more in line with the more 

modern multiple imputation procedure.  

Given the rate of error and bias introduced in the PSA-adjusted outcomes and the 

inconsistency in terms of the effects of the adjustments in general, I suspect the use of 

propensity score weights might have not been as helpful as propensity score matching 

would have been.  The reason the weighting method was selected was to enable the 

retention of as many cases in the data as possible, particularly since a part of the overall 

investigation involved examination of sample size.  It is common that cases are lost in 

propensity score matching (i.e., when there is no good match); thus the decision was 

made to use weighting.  In hindsight, the matching procedure might have been more 

effective in achieving intervention-control group balance on baseline characteristics and, 

ultimately, more effective in reducing bias in outcome estimates.  In the correction of 

randomized data, suitable matches would likely be available given that the initial 
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allocation would be at least partly successful in creating group equivalence.  Because of 

the inconsistency of the PSA findings, I would recommend using alternative PSA 

methods to researchers facing identified imbalance between their intervention and control 

groups.  

 A typical concern in research design is whether the intervention and independent 

variables selected for use in the study adequately explain all the aspects of variation in 

the outcome variables.  One limitation of this study was that I had only the use of the 

covariates the original EHSRE study measured.  In this study, I needed to select 

covariates for the imbalance testing, some exclusion processes, and to develop the 

propensity scores.  I included the top 12 covariates the original study deemed influential 

for the baseline testing and selected covariates for the exclusion process I believed were 

the best measures of the exclusion variables for the realistic scenarios I invented.  

Because the EHSRE study gathered so many covariates, there were many variables from 

which to choose and include in the propensity score models as it was favorable to use a 

“kitchen sink” (i.e., non-parsimonious) approach (Shadish & Steiner, 2010). 

Recommendations for choosing covariates include using those that are highly connected 

with the selection process (Steiner et al., 2010). 

Additional Implications for Researchers and Evaluators 

 The execution of real-life evaluation studies in education is complex, involving 

numerous stakeholders, high-stakes decisions, and often underfunded budgets.  Creating 

and conducting studies sufficiently rigorous (in terms of the ability to make valid causal 

claims) and in harmony with other aspects of the program and political climate is 

challenging indeed.  While the system-level challenges might be tricky even in the best of 
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circumstances, they could be compounded by research and design difficulties.  For 

example, sample size is sometimes difficult to control if there are limitations to how 

many participants can be included in an intervention or if eligibility criteria are stringent. 

If it is impossible to obtain a large enough sample, researchers can assume they might 

have difficulty identifying imbalance.  If significance tests cannot detect baseline 

imbalance, any bias or randomization failure might also not be detectable, leading to a 

greater vulnerability to biased study results, subsequent interpretation, and action related 

to the results. 

Researchers and evaluators may never know if their results are valid and not 

biased in some way.  It is difficult to detect the influence of study flaws that might lead to 

biased results.  On the other hand, there are some precautions and preventative actions 

researchers can take.  They might compare their study results with those from other 

similar studies and programs reported in the literature or by conducting meta-analyses. 

Unexpected findings might indicate randomization or program implementation problems. 

They might keep close track and document the quantity and severity of problems 

encountered during randomization and program implementation.  Researchers might 

choose to implement the randomization procedures themselves rather than rely on 

program staff.  This information could give researchers a “trustworthiness” factor with 

which to view results.  Close monitoring and adherence to program fidelity could help 

reduce other biasing effects, i.e., researchers could help prevent/avoid noncompliance and 

attrition issues by closely communicating with program staff.  Certainly conducting 

baseline group equivalence checks is important as well as testing balance in the sample 

for which complete data were collected.  Finally, researchers could commit to the use of 
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high quality measurement tools and indicators to help improve the accuracy of the 

findings.  Each of these actions taken together could help improve the rigor and quality of 

the study, thus helping to ensure more accurate results. 

A larger issue related to the rationale behind the selection of any given design is 

worth mentioning.  Certainly there are circumstances in which an experimental design is 

not only non-feasible but will not answer the research questions of interest.  Furthermore, 

there are situations in which an experimental design might be contraindicated based on 

the likelihood of failure given the complexity of the intervention, the program and 

research staff attitudes, skills, understanding, and overall support of such a design.  In 

some cases, gaining program buy-in by using a quasi-experimental design might improve 

the quality of the research because staff would support allocation procedures and adhere 

more firmly to program implementation guidelines.  In cases when the benefits of using a 

randomized design have limited chance of materializing, the trade-offs inherent in the 

design might not be worth it (e.g., withholding intervention from a control group without 

the global benefit of improved causal claims of the intervention’s effectiveness). 

With the increase in methodological innovations in terms of improving 

researchers’ ability to estimate causal effects, researchers and programs could be less 

apologetic for using well-executed, highly effective quasi-experiments.  This is 

particularly true in cases when a randomized design is not possible.  More flexibility in 

federally funded educational research is needed so the overall quantity and quality of 

research is achieved.  More strict standards about what constitutes strong evidence of 

program efficacy are needed at the federal level as well as clearer documentation of the 

circumstances under which a program is found to be effective.  For example, when 
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programs are recommended as best practices, it would be helpful if the research evidence 

was consistently accompanied by detailed population and geographic information as well 

as program implementation guidelines and fidelity measures.  In addition, more 

transparent research implementation practices and pitfalls would help future program 

staff and researchers understand the limitations of the originally designed research. 

Recommendations for Future Study 

Using an actual real world dataset brought an authenticity to the complexity of the 

study and its findings.  It is recommended that these findings be cross-checked and 

compared with those issued from other studies using real data and perhaps from those of 

Monte Carlo simulations.  Understanding the ways in which threats to randomization 

affect precisely controlled, simulated data would help in setting clearer expectations and 

hypotheses for what would be found in complex real data derived from human subjects.  

Testing more specific directional hypotheses would also help isolate explanations for 

inconsistent results found in real life studies.  

Another recommendation would be to examine a broader range of statistical 

corrective procedures to specifically increase knowledge about best practices for different 

threat types and study designs.  Studying the comparative effects of an array of 

adjustment procedures with variously biased data would help reveal whether particular 

threats were better addressed with specific types of corrective procedures.  Since the 

correct choice of corrective procedure could be vital to finding accurate and valid results, 

clearer guidelines are needed for matching adjustment procedures to the type and 

magnitude of bias. 
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Implications for Policy and Practitioners 

It is recommended that practitioners, program leaders, and policy-makers use 

caution when adopting programs or interventions even when they are based on a 

seemingly rigorous evidence base.  Simply trusting a study on the basis of having used a 

randomized design might lead to the implementation of programs that have not been used 

in a given region, school type, age group, or population in which program staff are 

interested.  It might also be helpful to look for clues in published articles about the 

quality of the research and randomization implementation and adherence to quality 

control procedures.  Good practice also involves selecting interventions based on more 

than one large rigorous study (replication of findings regarding an intervention’s 

effectiveness is important).  It is critical to implement programs with demonstrated 

efficacy that were tested under a variety of conditions, circumstances, and budgets. 

Implementing the best programs with the highest chance of promoting positive change in 

education is an imperative we can no longer ignore. 
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APPENDIX C 
 

PHASE II DATA TABLES



Noncompliance Conditions 1-9 
Table 61  

Means and Standard Deviations by Group for Foundation Small Condition 2 (Method 1), Foundation Small Condition 2  
(Method 2), and Foundation Small Condition 2-Randomized on Five Continuous Baseline Characteristics 
 

  FSC2 FSC2-2 FSC2-R 

 Group        n Mean SD       n Mean    SD        n Mean    SD 

Mother  
Age 

C 106 23.349 5.679 106 22.774 5.535 106 22.745 5.849 
I 105 22.248 6.295 105 22.276 6.257 105 22.590 6.437 

Child  
Gender 

C 106 .472 .502 106 .500 .502 106 .491 .502 
I 106 .575 .497 106 .528 .502 106 .585 .495 

Child 
Premature 

C 72 .125 .333 71 .113 .318 71 .099 .300 
I 75 .160 .369 77 .130 .338 77 .156 .365 

Welfare 
Receipt 

C 86 .244 .432 85 .306 .464 84 .298 .460 
I 80 .250 .436 81 .222 .418 84 .202 .404 

Food Stamps 
Receipt 

C 99 .364 .483 100 .450 .500 100 .430 .498 
I 101 .376 .487 101 .366 .484 103 .350 .479 

 
Table 62  

Frequencies by Group for Foundation Small Condition 2 (Method 1), Foundation Small Condition 2 (Method 2), and  
Foundation Small Condition 2-Randomized for Race 
 

  FSC2 FSC2-2 FSC2-R 
Race Group A B C O Total A B C O Total A B C O Total 

 C 43 26 29 6 104 46 32 22 4 104 44 26 28 6 104 
 I 37 36 24 3 100 40 33 25 2 100 39 35 27 3 104 
 Total 80 62 53 9 204 86 65 47 6 204 83 61 55 9 208 

Key: A = White; B = African American; C = Hispanic/Latino; O = Other Race.  

200 



Table 63 

Frequencies by Group for Foundation Small Condition 2 (Method 1), Foundation Small Condition 2 (Method 2), and Foundation 
Small Condition 2-Randomized for Education 
 

  FSC2 FSC2-2 FSC2-R 
Education Group A B C Total A B C Total A B C Total 

 C 38 31 30 99 33 36 30 99 45 31 24 100 
 I 51 31 16 98 52 39 7 98 47 32 23 102 
 Total 89 62 46 197 85 75 37 197 92 63 47 202 

Key: A = Less than 12th grade; B = High School Diploma or GED; C = More than High School Education. 
 
 
Table 64 

Frequencies by Group for Foundation Small Condition 2 (Method 1), Foundation Small Condition 2 (Method 2), and Foundation 
Small Condition 2-Randomized for Primary Occupation 

 
  FSC2 FSC2-2 FSC2-R 

Primary 
Occupation Group A B O Total A B O Total A B O Total 

 C 32 17 49 98 33 17 49 99 28 17 54 99 
 I 20 23 55 98 20 26 52 98 18 29 54 101 
 Total 52 40 104 196 53 43 101 197 46 46 108 200 

Key: A = Employed; B = School or Training; O = Other primary occupation.  

 

 100 
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Table 65  

Frequencies by Group for Foundation Small Condition 2 (Method 1), Foundation Small Condition 2 (Method 2), and Foundation 
Small Condition 2-Randomized for English Language Ability 
 

  FSC2 FSC2-2 FSC2-R 
Language 

Ability Group A B C Total A B C Total A B C Total 

 C 80 3 16 99 86 4 9 99 79 5 15 99 
 I 80 7 10 97 80 5 12 97 82 8 11 101 
 Total 160 10 26 196 166 9 21 196 161 13 26 200 

Key: A = Parent's primary language is English; B = Primary language is not English but the parent speaks English well; C = The  
primary language is not English and the parent does not speak English well. 

 

Table 66 

Frequencies by Group for Foundation Small Condition 2 (Method 1), Foundation Small Condition 2 (Method 2), and Foundation 
Small Condition 2-Randomized for Living Arrangement 
 

  FSC2 FSC2-2 FSC2-R 
Living 

Arrange-
ment 

Group A B C Total A B C Total A B C Total 

 C 34 37 35 106 28 39 39 106 29 37 40 106 
 I 27 48 31 106 26 51 29 106 28 50 28 106 
 Total 61 85 66 212 54 90 68 212 57 87 68 212 

Key: A = Lives with husband; B = Lives with Other Adults; C = Lives alone. 100 
202 



Table 67 

Frequencies by Group for Foundation Small Condition 2 (Method 1), Foundation Small Condition 2 (Method 2), and Foundation 
Small Condition 2-Randomized for Maternal Risk Index 
 

  FSC2 FSC2-2 FSC2-R 
Maternal 

Risk Group A B C Total A B C Total A B C Total 

 C 51 36 4 91 47 27 19 93 40 32 20 92 
 I 28 31 31 90 34 25 31 90 39 26 29 94 
 Total 79 67 35 181 81 52 50 183 79 58 49 186 

Key: A = 0, 1, or 2 risks; B = 3 risks; C = 4, 5 risks. 

 

Table 68  

Frequencies by Group for Foundation Small Condition 2 (Method 1), Foundation Small Condition 2 (Method 2), and Foundation 
Small Condition 2-Randomized for Child Age 
 

  FSC2 FSC2-2 FSC2-R 

Child Age Group A B C Total A B C Total A B C Total 
 C 25 35 46 106 25 39 42 106 25 41 40 106 
 I 27 42 37 106 25 41 40 106 25 41 40 106 
 Total 52 77 83 212 50 80 82 212 50 82 80 212 

Key (Child’s age at EHS application): A = Mother Pregnant; B = Child Less than 5 months old; C = Child More than 5 months old. 
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Table 69 

Foundation Small Condition 2 (Method 1), Foundation Small Condition 2 (Method 2), and Foundation Small Condition 2-
Randomized Balance Check: Independent Samples t-Tests (for Continuous Characteristics) 
 

 
FSC2 FSC2-2 FSC2-R 

 

t df Sig. (2-
tailed) t df Sig. (2-

tailed) t df Sig. (2-
tailed) 

Mother's Age 1.335 209 .183 .612 209 .541 .183 209 .855 
Child Gender -1.514 210 .132 -.410 210 .682 -1.377 210 .170 
Child Premature -.603 145 .548 -.318 146 .751 -1.037 146 .301 
Welfare -.086 164 .931 1.222 163.524 .224 1.426 166 .156 
Food Stamps -.184 198 .854 1.205 198.648 .230 1.174 201 .242 

 
 
Table 70  

Foundation Small Condition 2 (Method 1), Foundation Small Condition 2 (Method 2), and Foundation Small Condition 2-
Randomized Balance Check: Chi-squares Test of Independence (for Categorical Characteristics) 
 
 FSC2 FSC2-2 FSC2-R 

 X2 df Sig. (2-
sided) X2 df Sig. (2-

sided) X2 df Sig. (2-
sided) 

Race 3.457 3 .326 1.214 3 .750 2.647 3 .449 
Education 6.155 2 .046 18.660 2 .000 .061 2 .970 
Primary Occupation 4.015 2 .134 5.157 2 .076 5.285 2 .071 
Language Ability 2.965 2 .227 .736 2 .692 1.344 2 .511 
Living Arrangement 2.469 2 .291 3.145 2 .208 4.078 2 .130 
Maternal Risk Index 27.893 2 .000 4.996 2 .082 2.265 2 .322 
Child's Age 1.689 2 .430 .099 2 .952 .000 2 1.000 
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Table 71  

Foundation Small Condition 2 (Method 1) and Foundation Small Condition 2 (Method 2) Bias Check for Continuous (Comparing 
Disrupted to Randomized Standard, One Samples t-tests) 
 

 
FSC2 FSC2-2 

 
n Mean SD t df sig. n Mean SD t df sig. 

Mother's Age 211 22.801 6.005 .321 210 .748 211 22.526 5.896 -.350 210 .727 
Child Gender 212 .524 .501 -.411 211 .682 212 .514 .501 -.684 211 .494 
Child 
Premature 147 .143 .351 .499 146 .618 148 .122 .328 -.251 147 .802 

Welfare  166 .247 .433 -.090 165 .929 166 .265 .443 .438 165 .662 
Food Stamps 200 .370 .484 -.561 199 .575 201 .408 .493 .540 200 .590 

 
 
Table 72  

Foundation Small Condition 2 (Method 1) and Foundation Small Condition 2 (Method 2) Bias Check for Categorical Variables 

 FSC2 FSC2-2 

  n X2 df Sig. 
 (2-sided) n X2 df Sig. 

 (2-sided) 
Race 179 3.016 3 .389 204 4.774 3 .189 
Education 172 15.282 2 .001 197 25.005 2 .000 
Primary Occupation 171 2.891 2 .236 197 4.712 2 .095 
Language Ability 172 2.072 2 .355 196 6.416 2 .040 
Living Arrangement 187 8.861 2 .012 212 5.814 2 .055 
Maternal Risk Index 156 42.605 2 .000 183 9.881 2 .007 
Child's Age 212 2.187 2 .335 212 .198 2 .906 
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Noncompliance Conditions 10-18 
Table 73 

Means and Standard Deviations by Group for Foundation Small Condition 10 (Method 1), Foundation Small Condition 10 (Method -
2), and Foundation Small Condition 10-Randomized on Five Continuous Baseline Characteristics 
 

  FSC10 FSC10-2 FSC10-R 

 Group n Mean SD n Mean SD n Mean SD 

Mother Age C 62 23.355 6.135 62 23.484 5.977 62 22.806 5.188 
I 62 22.742 6.583 62 22.161 6.438 61 22.918 6.515 

Child Gender C 62 .452 .502 62 .452 .502 62 .468 .503 
I 62 .565 .500 62 .500 .504 62 .629 .487 

Child Premature C 47 .064 .247 46 .130 .341 40 .175 .385 
I 42 .190 .397 45 .111 .318 47 .170 .380 

Welfare Receipt C 50 .300 .463 51 .294 .460 51 .314 .469 
I 47 .255 .441 49 .204 .407 50 .260 .443 

Food Stamps 
Receipt 

C 57 .439 .501 61 .410 .496 60 .433 .500 
I 60 .350 .481 58 .379 .489 60 .417 .497 

 

Table 74 
 
Frequencies by Group for Foundation Large Condition 10 (Method 1), Foundation Large Condition 10 (Method 2), and Foundation 
Large Condition 10-Randomized for Race 
 

  FLC10 FLC10-2 FLC10-R 
Race Group A B C O Total A B C O Total A B C O Total 

 C 23 16 18 4 61 24 19 16 2 61 27 14 18 3 62 
 I 19 25 15 1 60 20 23 15 1 59 22 17 17 1 57 
 Total 42 41 33 5 121 44 42 31 3 120 49 31 35 4 119 

Key: A = White; B = African American; C = Hispanic/Latino; O = Other Race.  
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Table 75 

Frequencies by Group for Foundation Large Condition 10 (Method 1), Foundation Large Condition 10 (Method 2), and Foundation 
Large Condition 10-Randomized for Education 
 

  FLC10 FLC10-2 FLC10-R 
Education Group A B C Total A B C Total A B C Total 

 C 25 18 15 58 22 17 21 60 26 22 12 60 
 I 30 16 13 59 27 17 14 58 26 21 9 56 
 Total 55 34 28 117 49 34 35 118 52 43 21 116 

Key: A = Less than 12th grade; B = High School Diploma or GED; C = More than High School Education. 

 

 

Table 76  

Frequencies by Group for Foundation Large Condition 10 (Method 1), Foundation Large Condition 10 (Method 2), and Foundation 
Large Condition 10-Randomized for Primary Occupation 
 

  FLC10 FLC10-2 FLC10-R 
Primary 

Occupation Group A B O Total A B O Total A B O Total 

 C 17 8 33 58 24 9 26 59 19 7 33 59 
 I 14 21 25 60 13 19 25 57 13 11 33 57 
 Total 31 29 58 118 37 28 51 116 32 18 66 116 

Key: A = Employed; B = School or Training; O = Other primary occupation.  
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Table 77 

Frequencies by Group for Foundation Large Condition 10 (Method 1), Foundation Large Condition 10 (Method 2), and Foundation 
Large Condition 10-Randomized for English Language Ability 
 

  FLC10 FLC10-2 FLC10-R 
Language 

Ability Group A B C Total A B C Total A B C Total 

 C 46 2 10 58 44 4 10 58 46 3 11 60 
 I 49 4 6 59 50 6 2 58 42 7 7 56 
 Total 95 6 16 117 94 10 12 116 88 10 18 116 

Key: A = Parent's primary language is English; B = Primary language is not English but the parent speaks English well; C = The 
primary language is not English and the parent does not speak English well. 
 
 

Table 78 

Frequencies by Group for Foundation Large Condition 10 (Method 1), Foundation Large Condition 10 (Method 2), and Foundation 
Large Condition 10-Randomized for Living Arrangement 
 

  FLC10 FLC10-2 FLC10-R 
Living 

Arrangement Group A B C Total A B C Total A B C Total 

 C 17 19 26 62 16 20 26 62 16 21 25 62 
 I 13 31 18 62 13 30 19 62 17 29 16 62 
 Total 30 50 44 124 29 50 45 124 33 50 41 124 

Key: A = Lives with husband; B = Lives with Other Adults; C = Lives alone. 
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Table 79  

Frequencies by Group for Foundation Large Condition 10 (Method 1), Foundation Large Condition 10 (Method 2), and Foundation 
Large Condition 10-Randomized for Maternal Risk Index 
 

  FLC10 FLC10-2 FLC10-R 
Maternal 

Risk Group A B C Total A B C Total A B C Total 

 C 24 17 11 52 30 17 10 57 26 20 12 58 
 I 22 15 17 54 23 16 15 54 20 13 18 51 
 Total 46 32 28 106 53 33 25 111 46 33 30 109 

Key: A = 0, 1, or 2 risks; B= 3 risks; C = 4, 5 risks. 

 

Table 80  

Frequencies by Group for Foundation Large Condition 10 (Method 1), Foundation Large Condition 10 (Method 2), and Foundation 
Large Condition 10-Randomized for Child Age 
 

  FLC10 FLC10-2 FLC10-R 

Child Age Group A B C Total A B C Total A B C Total 
 C 12 24 26 62 13 24 25 62 17 21 24 62 
 I 18 22 22 62 13 23 26 62 12 30 20 62 
 Total 30 46 48 124 26 47 51 124 29 51 44 124 

Key (Child’s age at EHS application): A = Mother Pregnant; B = Child Less than 5 months old; C = Child More than 5 months old. 
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Table 81  

Foundation Small Condition 10 (Method 1), Foundation Small Condition 10 (Method 2), and Foundation Small Condition 10-
Randomized Balance Check: Independent Samples t-Tests (for Continuous Characteristics) 
 

 
FSC10 FSC10-2 FSC10-R 

 

t         df Sig. (2-
tailed)       t df Sig. (2-

tailed)       t df Sig. (2-
tailed) 

Mother's Age .536 122 .593 1.185 122 .238 -.105 121 .916 
Child Gender -1.255 122 .212 -.536 122 .593 -1.814 122 .072 
Child Premature -1.780 67.082 .080 .280 89 .780 .058 85 .954 
Welfare .486 95 .628 1.037 97.353 .302 .592 99 .555 
Food Stamps .976 115 .331 .338 117 .736 .183 118 .855 

 
 
Table 82  

Foundation Small Condition 10 (Method 1), Foundation Small Condition 10 (Method 2), and Foundation Small Condition 10-
Randomized Balance Check: Chi-squares Test of Independence (for Categorical Characteristics) 
 
 FSC10 FSC10-2 FSC10-R 

      X2 df Sig. (2-
sided) X2 df Sig. (2-

sided)       X2 df Sig. (2-
sided) 

Race 4.421 3 .219 1.077 3 .783 1.622 3 .654 
Education .707 2 .702 1.877 2 .391 .314 2 .855 
Primary Occupation 7.190 2 .027 6.829 2 .033 1.980 2 .372 
Language Ability 1.753 2 .416 6.116 2 .047 2.536 2 .281 
Living Arrangement 4.868 2 .088 3.399 2 .183 3.286 2 .193 
Maternal Risk Index 1.460 2 .482 1.875 2 .392 3.030 2 .220 
Child's Age 1.620 2 .445 .041 2 .980 2.814 2 .245 

  210 



Table 83 

Foundation Small Condition 10 (Method 1) and Foundation Small Condition 10 (Method 2) Bias Check for Continuous (Comparing 
Disrupted to Randomized Standard, One Samples t-Tests) 
 

 
FSC10 FSC10-2 

 
n Mean   SD t      df    sig.      n Mean SD t     df    sig. 

Mother's Age 124 23.048 6.345 .327 123 .744 124 22.823 6.222 -.070 123 .944 
Child Gender 124 .508 .502 -.895 123 .373 124 .476 .501 -1.612 123 .110 
Child 
Premature 89 .124 .331 -1.391 88 .168 91 .121 .328 -1.499 90 .137 

Welfare  97 .278 .451 -.191 96 .849 100 .250 .435 -.852 99 .396 
Food Stamps 117 .393 .491 -.702 116 .484 119 .395 .491 -.668 118 .506 

 
 
Table 84  

Foundation Small Condition 10 (Method 1) and Foundation Small Condition 10 (Method 2) Bias Check for Categorical Variables 

 FSC10 FSC10-2 

  
n X2 df Sig. 

 (2-sided) n X2 df Sig. 
 (2-sided) 

Race 121 5.621 3 .132 120 5.209 3 .157 
Education 117 5.099 2 .078 118 12.080 2 .002 
Primary Occupation 118 11.461 2 .003 116 11.130 2 .004 
Language Ability 117 3.019 2 .221 116 5.749 2 .056 
Living Arrangement 124 1.622 2 .444 124 1.626 2 .444 
Maternal Risk Index 106 1.250 2 .535 111 3.041 2 .219 
Child's Age 124 7.399 2 .025 124 4.928 2 .085 
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Differential Attrition Conditions 
Table 85 
 
Means and Standard Deviations by Group for Foundation Small Condition 19 (Method 1), Foundation Small Condition 19 (Method 
2), and Foundation Small Condition 19-Randomized on Five Continuous Baseline Characteristics 
 

  FSC19 FSC19-2 FSC19-R 

 Group n    Mean       SD n     Mean      SD n       Mean       SD 

Mother Age C 62 22.468 5.288 62 22.919 6.165 62 22.806 5.188 
I 62 23.661 6.719 61 23.131 6.187 61 22.918 6.515 

Child Gender C 62 .387 .491 62 .468 .503 62 .468 .503 
I 62 .597 .495 62 .597 .495 62 .629 .487 

Child Premature C 41 .146 .358 45 .111 .318 40 .175 .385 
I 46 .196 .401 42 .190 .397 47 .170 .380 

Welfare Receipt C 52 .269 .448 49 .224 .422 51 .314 .469 
I 51 .216 .415 47 .213 .414 50 .260 .443 

Food Stamps 
Receipt 

C 61 .410 .496 58 .414 .497 60 .433 .500 

I 61 .393 .493 58 .431 .500 60 .417 .497 
I 62 22.468 5.288 62 22.919 6.165 62 22.806 5.188 

 
 
Table 86  

Frequencies by Group for Foundation Small Condition 19 (Method 1), Foundation Small Condition 19 (Method 2), and Foundation 
Small Condition 19-Randomized for Race 
 

  FSC19 FSC19-2 FSC19-R 
Race Group A B C O Total A B C O Total A B C O Total 

 C 25 17 16 2 60 25 15 18 2 60 27 14 18 3 62 
 I 20 16 20 2 58 19 24 17 0 60 22 17 17 1 57 
 Total 45 33 36 4 118 44 39 35 2 120 49 31 35 4 119 

Key: A = White; B = African American; C = Hispanic/Latino; O = Other Race.  
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Table 87 

Frequencies by Group for Foundation Small Condition 19 (Method 1), Foundation Small Condition 19 (Method 2), and Foundation 
Small Condition 19-Randomized for Education 
 

  FSC19 FSC19-2 FSC19-R 
Education Group A B C   Total A B C Total A B C Total 

 C 28 15 16 59 28 18 13 59 26 22 12 60 
 I 27 20 10 57 30 17 13 60 26 21 9 56 
 Total 55 35 26 116 58 35 26 119 52 43 21 116 

Key: A = Less than 12th grade; B = High School Diploma or GED; C = More than High School Education. 

 

 

Table 88 

Frequencies by Group for Foundation Small Condition 19 (Method 1), Foundation Small Condition 19 (Method 2), and Foundation 
Small Condition 19-Randomized for Primary Occupation 
 

  FSC19 FSC19-2 FSC19-R 
Primary 

Occupation Group A B O Total A B O Total A B O Total 

 C 19 13 27 59 19 9 31 59 19 7 33 59 
 I 13 13 32 58 9 16 34 59 13 11 33 57 
 Total 32 26 59 117 28 25 65 118 32 18 66 116 

Key: A = Employed; B = School or Training; O = Other primary occupation  
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Table 89  

Frequencies by Group for Foundation Small Condition 19 (Method 1), Foundation Small Condition 19 (Method 2), and Foundation 
Small Condition 19-Randomized for English Language Ability 
 

  FSC19 FSC19-2 FSC19-R 
Language 

Ability Group A B C Total A B C Total A B C Total 

 C 45 5 7 57 42 4 11 57 46 3 11 60 
 I 42 3 11 56 45 5 9 59 42 7 7 56 
 Total 87 8 18 113 87 9 20 116 88 10 18 116 

Key: A = Parent's primary language is English; B = Primary language is not English but the parent speaks English well; C = The 
primary language is not English and the parent does not speak English well. 
 
 
 
Table 90  

Frequencies by Group for Foundation Small Condition 19 (Method 1), Foundation Small Condition 19 (Method 2), and Foundation 
Small Condition 19-Randomized for Living Arrangement 
 

  FSC19 FSC19-2 FSC19-R 
Living 

Arrange-
ment 

Group A B C Total A B C Total A B C Total 

 C 14 24 24 62 16 22 24 62 16 21 25 62 
 I 19 31 12 62 18 26 18 62 17 29 16 62 
 Total 33 55 36 124 34 48 42 124 33 50 41 124 

Key: A = Lives with husband; B = Lives with Other Adults; C = Lives alone. 
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Table 91  

Frequencies by Group for Foundation Small Condition 19 (Method 1), Foundation Small Condition 19 (Method 2), and Foundation 
Small Condition 19-Randomized for Maternal Risk Index 
 

  FSC19 FSC19-2 FSC19-R 
Maternal 

Risk Group A B C Total A B C Total A B C Total 

 C 26 15 16 57 23 21 10 54 26 20 12 58 
 I 23 17 14 54 22 14 20 56 20 13 18 51 
 Total 49 32 30 111 45 35 30 110 46 33 30 109 

Key: A = 0, 1, or 2 risks; B= 3 risks; C = 4, 5 risks. 

 
 
Table 92 

Frequencies by Group for Foundation Small Condition 19 (Method 1), Foundation Small Condition 19 (Method 2), and Foundation 
Small Condition 19-Randomized for Child Age 
 

  FSC19 FSC19-2 FSC19-R 
Child Age Group A B C Total A B C Total A B C Total 

 C 15 24 23 62 12 27 23 62 17 21 24 62 
 I 14 26 22 62 17 19 26 62 12 30 20 62 
 Total 29 50 45 124 29 46 49 124 29 51 44 124 

Key (Child’s age at EHS application): A = Mother Pregnant; B = Child Less than 5 months old; C = Child More than 5 months old. 
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Table 93  

Foundation Small Condition 19 (Method 1), Foundation Small Condition 19 (Method 2), and Foundation Small Condition 19-
Randomized Balance Check: Independent Samples t-Tests (for Continuous Characteristics) 
 

 
FSC19 FSC19-2 FSC19-R 

 

     t       df Sig. (2-
tailed)    t    df Sig. (2-

tailed)    t      df Sig. (2-
tailed) 

Mother's Age -1.099 122 .274 -.190 121 .850 -.105 121 .916 
Child Gender -2.369 122 .019 -1.440 122 .152 -1.814 122 .072 
Child Premature -.602 85 .549 -1.024 78.492 .309 .058 85 .954 
Welfare .629 101 .531 .137 94 .891 .592 99 .555 
Food Stamps .183 120 .855 -.186 114 .852 .183 118 .855 

 

Table 94  

Foundation Small Condition 19 (Method 1), Foundation Small Condition 19 (Method 2), and Foundation Small Condition 19-
Randomized Balance Check: Chi-squares Test of Independence (for Categorical Characteristics) 
 

 FSC19 FSC19-2 FSC19-R 

   X2 df Sig. (2-
sided)     X2 df Sig. (2-

sided)     X2 df Sig. (2-
sided) 

Race .997 3 .802 4.924 3 .177 1.622 3 .654 
Education 2.083 2 .353 .089 2 .956 .314 2 .855 
Primary Occupation 1.540 2 .463 5.670 2 .059 1.980 2 .372 
Language Ability 1.484 2 .476 .380 2 .827 2.536 2 .281 
Living Arrangement 5.648 2 .059 1.308 2 .520 3.286 2 .193 
Maternal Risk Index .361 2 .835 4.721 2 .094 3.030 2 .220 
Child's Age .137 2 .934 2.437 2 .296 2.814 2 .245 
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Table 95  

Foundation Small Condition 19 (Method 1) and Foundation Small Condition 19 (Method 2) Bias Check for Continuous (Comparing 
Disrupted to Randomized Standard, One Samples t-Tests) 
 
 FSC19 FSC19-2 

 
     n Mean    SD t     df    sig.       n Mean SD t     df    sig. 

Mother's Age 124 23.065 6.051 .373 123 .710 123 23.024 6.152 .293 122 .770 
Child Gender 124 .492 .502 -1.253 123 .213 124 .532 .501 -.359 123 .720 
Child 
Premature 87 .172 .380 .000 86 1.000 87 .149 .359 -.598 86 .552 

Welfare  103 .243 .431 -1.045 102 .298 96 .219 .416 -1.612 95 .110 
Food Stamps 122 .402 .492 -.524 121 .601 116 .422 .496 -.056 115 .955 

 

Table 96 

Foundation Small Condition 19 (Method 1) and Foundation Small Condition 19 (Method 2) Bias Check for  
Categorical Variables 

 
FSC19 FSC19-2 

  n X2 df Sig. 
 (2-sided) n   X2 df Sig. 

 (2-sided) 
Race 118 3.117 3 .374 120 4.844 3 .184 
Education 116 3.912 2 .141 119 4.120 2 .127 
Primary Occupation 117 6.628 2 .036 118 4.226 2 .121 
Language Ability 113 7.381 2 .025 116 2.038 2 .361 
Living Arrangement 124 2.092 2 .351 124 .707 2 .702 
Maternal Risk Index 111 5.153 2 .076 110 1.229 2 .541 
Child's Age 118 3.117 2 .374 124 11.143 2 .004 
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APPENDIX D 
 

SAMPLE PHASE III OUTCOME AND SENSITIVITY ANALYSIS



Condition 1 Phase III Data Tables 

Table 97 

Foundation Small Condition 1: Child Outcome Sample Sizes, Means, and Standard Deviations 

 Threatened Method 1 Threatened Method 2 Randomized 
  N Mean SD N Mean SD N Mean SD 

24m Child 
Engagement 

control 73 4.51 1.00 75 4.36 1.18 79 4.33 1.15 

program 84 4.13 1.27 83 4.14 1.22 81 4.25 1.20 

36m Child 
Engagement 

control 71 4.65 1.04 72 4.79 1.10 73 4.68 1.05 

program 78 4.91 0.79 79 4.76 0.87 79 4.91 0.88 

24m BSID-
II MDI 

control 75 90.13 12.84 74 90.62 13.24 78 90.97 12.21 

program 79 89.75 12.10 77 89.77 13.17 76 90.13 12.45 

36m BSID-
II MDI 

control 72 90.10 13.94 72 90.69 14.10 75 91.17 11.64 

program 76 91.46 12.18 73 90.33 11.94 75 91.77 12.86 

24m CBCL 
control 86 22.35 11.23 87 22.65 11.53 87 22.02 10.49 

program 91 20.31 10.13 90 20.16 10.25 93 20.54 9.96 

36m CBCL 
control 89 19.57 11.32 89 20.49 11.92 91 18.73 10.65 

program 92 17.62 10.05 90 17.67 9.86 89 18.54 9.51 

36m PPVT control 62 81.79 16.70 68 82.10 17.15 65 81.98 16.19 
program 62 83.40 13.44 60 81.97 13.20 65 82.83 13.00 
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Table 98 

Foundation Small Condition 1: Point-in-Time Outcomes (Intervention vs. Control Differences) 

 Threatened Dataset 1 Threatened Dataset 2 Randomized Dataset 

 
Test 

Value df 
Sig 

Level 
(α=.05) 

Effect 
Size 

(Cohen's 
d) 

Test 
Value df 

Sig 
Level 
(α=.05) 

Effect 
Size 

(Cohen's 
d) 

Test 
Value df 

Sig 
Level 
(α=.05) 

Effect 
Size 

(Cohen's 
d) 

24m Child 
Engagement 2.04 155 .04 0.33 1.12 156 .26 .18 .44 158 .66 -0.07 

36m Child 
Engagement -1.72 130 .09 -0.29 .20 149 .84 .03 -1.43 140 .15 0.23 

24m BSID-II 
MDI .19 152 .85 -0.03 .40 149 .69 .06 .42 152 .67 -0.07 

36m BSID-II 
MDI -.63 146 .53 0.10 .17 143 .87 .03 -.30 148 .76 0.05 

24m CBCL 1.27 175 .20 -0.19 1.52 175 .13 .23 .97 178 .33 -0.14 

36m CBCL 1.22 179 .22 -0.18 1.73 177 .09 .26 .13 178 .90 -0.02 

36m PPVT -.59 122 .55 0.11 .05 126 .96 .01 -.33 128 .74 0.06 
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Table 99 

Foundation Small Condition 1: Sensitivity Analysis on Point-in-Time Results (Threatened vs. Randomized Differences) 

Method 1 Method 2 

Error 
Type 

Overlap
ping  
Effect 
Size 
C.I.s 

ES 
Differenc
e 

Bias 
(SMD) 

Percent 
Bias 

Overall 
Biased 

Error 
Type 

Overlap
ping  
Effect 
Size 
C.I.s 

ES 
Difference 

Bias 
(SMD) 

Percent 
Bias 

Overall 
Biased 

Type I 
or Type 
II 

Y=yes, 
 N=no 

Criteria: 
 |d| > .2 

Criteria: 
 |d| > .2 %>.05 Y=yes, 

N=no 

Type I 
or Type 
II 

Y=yes,  
N=no 

Criteria: 
 |d| > .2 

Criteria: 
 |d| > .2 %>.10 Y=yes, 

N=no 

Type I Y -0.40 -0.25 -0.43% Y None N -0.25 0.03 0.95% Y 

None Y 0.52 0.20 0.36% Y None N 0.20 0.03 0.58% Y 

None Y -0.04 -0.13 0.69% N None Y -0.13 0.03 0.41% N 

None Y -0.06 0.02 0.74% N None Y 0.02 0.08 1.05% N 

None Y 0.05 -0.37 -0.22% N None N -0.37 -0.01 -0.59% Y 

None N 0.16 -0.28 0.31% N None N -0.28 -0.04 -2.33% Y 

None Y -0.05 0.05 -0.23% N None Y 0.05 0.02 0.45% N 
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Table 100 

Foundation Small Condition 1: Repeated Measures Analytic Results (Intervention vs. Control Differences) 

 Method 1 Method 2 Randomized 

 
Test 
Value 

Sig 
Level 

Effect 
Size 
(Cohen's 
d) 

Test 
Value 

Sig 
Level 

Effect 
Size 
(Cohen's 
d) 

Test 
Value 

Sig 
Level 

Effect 
Size 
(Cohen's 
d) 

Child Engagement 
(within) 15.66 .00 .68 17.34 .00 .71 17.16 .00 .71 

Child Engagement 
(between) 
 

.01 .92 .02 .27 .61 .09 .81 .37 .15 

BSID-II (within) 4.22 .04 .36 2.54 .11 .28 3.25 .07 .32 

BSID (between) .41 .52 .11 .01 .91 .02 .04 .85 .03 

CBCL (within) 11.56 .00 .52 8.41 .00 .45 9.83 .00 .48 

CBCL (between) 2.40 .12 .75 3.92 .05 .31 .45 .50 .10 
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Table 101 

Foundation Small Condition 1: Sensitivity Analysis on Repeated Measures Results (Threatened vs. Randomized Differences) 

Method 1 Method 2 

Error Type 
Overlapping  
Effect Size 
C.I.s 

ES 
Difference Bias Overall 

Biased Error Type 
Overlapping  
Effect Size 
C.I.s 

ES 
Difference Bias Overall 

Biased 

Type I or 
Type II 

Y=yes, 
 N=no 

Criteria: 
 |d| > .2 

Criteria: 
 % > .10 

Y=yes, 
N=no 

Type I or 
Type II 

Y=yes, 
N=no 

Criteria: 
 |d| > .2 

Criteria: 
 % > .10 

Y=yes, 
N=no 

None Y .02 0.85% N None Y .00 -3.73% N 

None N .14 110.93% Y None Y .07 157.28% Y 

Type I  Y -.05 -17.48% Y None Y .03 4.98% N 

None Y -.08 -241.90% N None Y .01 39.82% Y 

None Y -.04 -11.60% Y None Y .03 7.87% N 

None N -.65 -146.87% Y Type I Y -.20 -228.44% Y 

 

223 



 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX E 
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Table 102 

Foundation Small Condition1 (Method 1): Child Outcome Sample Sizes, Means, and 
Standard Deviations 
 
 PSA-Adjusted Covariate-Adjusted 
  N Mean  SD  N      Mean      SD 
24m Child 
Engagement 

control 133 4.48 0.96 73 4.51 1.00 
program 140 4.18 1.26 83 4.11 1.26 

36m Child 
Engagement 

control 127 4.80 1.03 71 4.65 1.04 
program 131 5.03 0.78 77 4.90 .79 

24m BSID-II MDI control 135 90.47 12.12 75 90.13 12.84 
program 125 90.47 12.68 78 89.51 11.99 

36m BSID-II MDI control 122 90.99 13.46 72 90.10 13.94 
program 126 91.80 11.85 75 91.07 11.77 

24m CBCL control 146 22.75 11.55 86 22.35 11.23 
program 153 20.47 10.60 90 20.26 10.17 

36m CBCL control 158 20.18 10.81 89 19.57 11.32 
program 153 17.89 11.01 91 17.60 10.11 

36m PPVT control 115 84.56 18.03 62 81.79 16.70 
program 97 85.16 13.85 61 83.05 13.26 
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Table 103 

Foundation Small Condition 1 (Method 1): Point-in-Time Adjusted Outcome Estimates 

 PSA-Adjusted Estimates Covariate-Adjusted Estimates 
 Test 

Value  
(t) 

df 
Sig 
Level 
(α=.05) 

Effect 
Size 
(Cohen's 
d) 

Test 
Value  
(F) 

df 
Sig 
Level 
(α=.05) 

Effect 
Size 
(Cohen's 
d) 

24m Child 
Engagement 
 

2.29 260 .023 -0.28 3.91 2 0.05 0.32 

36m Child 
Engagement 
 

-2.04 236 .042 0.26 2.66 2 0.10 0.27 

24m BSID-II 
MDI 
 

-.01 257 .995 0.00 0.07 2 0.79 0.04 

36m BSID-II 
MDI 
 

-.50 245 .615 0.06 0.17 2 0.68 0.07 

24m CBCL 1.78 296 .076 -0.21 2.23 2 0.14 0.23 

         
36m CBCL 1.85 309 .065 -0.21 1.82 2 0.18 0.20 
         
36m PPVT -.27 208 .788 0.04 0.29 2 0.59 0.10 
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Table 104 

Foundation Small Condition 1 (Method 1): Repeated Measures Adjusted Outcome 
Estimates 
 

 PSA-Adjusted Estimates Covariate-Adjusted Estimates 
 

Test Value  
(F) Sig Level Effect Size 

(Cohen's d) 
Test Value  
(F) Sig Level Effect Size 

(Cohen's d) 

Child 
Engagement 
(within) 

60.94 .00 1.03 7.11 .01 .46 

Child 
Engagement 
(between) 

.23 .63 .06 .02 .88 .03 

BSID-II 
(within) 14.69 .00 .54 3.20 .08 .32 

BSID 
(between) 

.86 .36 .13 .21 .65 .08 

CBCL 
(within) 17.76 .00 .50 2.69 .10 .25 

CBCL 
(between) 

3.85 .05 .23 2.95 .09 .27 

 



Table 105 

Foundation Small Condition 1 (Method 1): Overall Propensity Score Analysis-Adjusted Results 

 

Bias 
Introduced in 

Threat 
Condition 

Error Type Assessment of 
Error Type ES Difference Assessment of 

ES Difference 
Percent Bias 

Reduction 
Percent Bias 
Assessment 

 
Y=yes, 
N=no 

Type I or Type 
II 

W=worse, 
B=better, 
NC=No 
change 

2ESr-ESa 

W=worse, 
B=better, 
NC=No 
change 

pos=improved Chg>10% 

24m Child 
Engagement Y Type I NC -0.21 B -0.46% NC 

36m Child 
Engagement Y Type I W -0.02 B -2.06% NC 

24m BSID-II 
MDI N None NC 0.07 NC 0.59% NC 

36m BSID-II 
MDI N None NC -0.02 NC 0.66% NC 

24m CBCL N None NC -0.06 NC -1.32% NC 
36m CBCL N None NC -0.19 NC -1.91% NC 
36m PPVT N None NC 0.02 NC -2.72% NC 
Child 
Engagement 
(within) 

N None NC -0.32 W -20.00% W 

Child 
Engagement 
(between) 

Y None NC 0.09 NC -28.58% W 

BSID-II (within) Y Type I NC -0.22 W -35.11% W 
BSID (between) N None NC -0.10 NC -55.82% W 
CBCL (within) Y None NC -0.03 NC 1.67% B 
CBCL (between) Y Type I W -0.13 B 126.24% B 
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Table 106 

Foundation Small Condition 1 (Method 1): Overall Covariate-Adjusted Results 

 

Bias Introduced 
in Threat 
Condition 

Error Type Assessment of 
Error Type ES Difference Assessment of 

ES Difference 
Percent Bias 
Reduction 

Percent Bias 
Assessment 

 

Y=yes,  
N=no 

Type I or Type 
II 

W=worse, 
B=better, 
NC=No change 

2ESr-ESa 
W=worse, 
B=better, 
NC=No change 

pos=improved Chg>10% 

24m Child 
Engagement Y Type I NC -0.28 B 0.00% NC 

36m Child 
Engagement Y None NC -0.04 B 0.00% NC 

24m BSID-II 
MDI N None NC 0.02 NC 0.00% NC 

36m BSID-II 
MDI N None NC -0.03 NC 0.00% NC 

24m CBCL N None NC -0.05 NC 0.00% NC 
36m CBCL N None NC -0.16 NC 0.00% NC 
36m PPVT N None NC -0.03 NC 0.00% NC 
Child 
Engagement 
(within) 

N None NC -0.32 W -2.73% NC 

Child 
Engagement 
(between) 

Y None NC 0.09 NC -16.12% W 

BSID-II (within) Y None B -0.22 W 16.71% B 
BSID (between) N None NC -0.10 NC 100.07% B 
CBCL (within) Y Type II W -0.03 NC 10.65% B 
CBCL 
(between) Y None B -0.13 B 129.79% B 
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