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Abstract 

Aims: Prenatal exposure to alcohol can have adverse effects on the developing fetus. Two of the 

hallmarks of children exposed to alcohol prenatally are attention deficits and hyperactivity. 

While hyperactivity has been observed in rats following prenatal ethanol exposure, few studies 

have examined these effects in mice. The present study investigated the effects of prenatal 

ethanol exposure on activity in mice from three inbred strains: C57BL/6 (B6), Inbred Long Sleep 

(ILS) and Inbred Short Sleep (ISS). Methods: On days 7 through 18 of gestation, mice were 

intragastrically intubated twice daily with either 3.0 g/kg Ethanol (E) or an isocaloric amount of 

Maltose-Dextrin (MD); Non-Intubated Control (NIC) litters were also generated. Offspring 

activity was monitored at 30, 60, 90 and 150 days of age. Results: While results showed no 

effects of prenatal ethanol exposure on any measures of activity, we did observe differences in 

baseline activity among the strains. ISS mice were more active than B6 and ILS for all activity 

measures except stereotypy; B6 mice had higher measures of stereotypy than ILS and ISS.  

Younger mice were more active than older mice. The only sex effects were on measures of 

stereotypy, where males had higher scores. Conclusions: Mice are an excellent organism to 

study genetic influences on many phenotypes. However, our study and others have shown few 

effects of prenatal ethanol exposure on behavior in mice. It appears as if the prenatal period in 

mice, corresponding to organogenesis, is not a sensitive period for producing behavioral deficits 

following ethanol exposure. It is likely that the first two weeks postnatally, corresponding to the 

brain growth spurt, is more sensitive for producing behavioral effects.      

 



 

 

 Introduction 

Women who consume alcohol (ethanol) during pregnancy place their offspring at risk for a 

number of teratogenic outcomes. The most severe cases are diagnosed as Fetal Alcohol 

Syndrome (FAS), a disorder defined by prenatal and/or postnatal growth retardation, a 

characteristic pattern of craniofacial abnormalities, and central nervous system dysfunction 

(Jones and Smith, 1973; Jones et al., 1973; Sokol et al., 2003). Because not all offspring exposed 

to alcohol prenatally display the full spectrum of FAS symptoms (particularly the facial 

dysmorphology), the term Fetal Alcohol Spectrum Disorders (FASD; Koren et al., 2003; Sokol 

et al., 2003) has been coined to describe varying degrees of ethanol teratogenesis. The estimated 

incidence of FASD in the United States is 1% (May and Gossage 2001; Sampson et al. 1997). 

Neurodevelopmental and behavioral deficits associated with FAS/FASD include developmental 

delay, attention deficits, hyperactivity, learning and memory impairments and diminished 

impulse control (Coles, 2001; Kelly et al., 1987; Kvigne et al., 2004; Sampson et al., 1997; Sokol 

et al., 2003).  

Hyperactivity and attention deficits are hallmarks of children exposed to alcohol prenatally 

(Mattson and Riley, 1998). Most studies have relied on naturalistic observations and have 

reported children (from a few hours after birth through high school) exposed to ethanol 

prenatally as hyperactive, tremulous, fidgety, restless, always on the go, unable to sit still and 

irritable (Hanson et al., 1976; Kvigne et al., 2004; Landesman-Dwyer et al., 1981; Nanson and 

Hiscock, 1990; Shaywitz et al., 1980; Steinhausen et al., 1993; Steinhausen and Spohr, 1998; 

Streissguth et al., 1978). This hyperactivity can occur in the absence of intellectual impairment, 



at relatively moderate levels of maternal ethanol consumption and persist throughout childhood. 

How to best model these behaviors in a rodent model is unclear. What behaviors in rats and mice 

best model “fidgety” or “restless” described in the human condition?  

Results of prenatal ethanol exposure on activity in rats have been mixed. While most studies 

have demonstrated increased activity (Martin et al., 1978; Osborne et al., 1979; Ulug and Riley, 

1983; Vorhees and Fernandez, 1986; for reviews see Bond, 1981; Meyer and Riley, 1986), others 

have not (Carneiro et al., 2005; Vorhees, 1989; Westergren et al., 1996; Wigal and Amsel, 1990). 

Results depend upon the pattern of ethanol administration, age at which offspring are tested and 

apparatus in which activity is measured. Most studies have used activity monitors (automated or 

observer scored) and reported total distance traveled, number of photocell beam interruptions, or 

number of squares entered/crossed. 

Somewhat surprisingly, few studies have examined hyperactivity in mice exposed to ethanol 

prenatally. Randall and colleagues have investigated the effects of in utero ethanol exposure on 

activity in C57BL/6J (B6) inbred mice. Their paradigms involved giving pregnant dams a liquid 

diet containing various ethanol concentrations on days 5/6 through 17/18 of gestation. They have 

reported greater activity in male and female offspring exposed to ethanol prenatally at 23 days of 

age (Randall et al., 1986), no effect of prenatal ethanol exposure on activity (male and female 

offspring) at 12, 20, or 36 days (Middaugh et al., 1988) and greater activity in female offspring 

exposed to ethanol prenatally when tested at 30 days of age (Becker and Randall, 1989). Mothes 

et al. (1996) reported increased activity (36-42 days of age) in the home cage, but not in an 

activity monitor, in B6 mice exposed to ethanol on days 14-18 of gestation. Allan et al. (2003) 

kept B6SJL/F1 dams on a liquid ethanol diet before and during pregnancy and reported no 

effects on offspring activity at 60-100 days. Finally, Gilliam and colleagues (Gilliam et al., 1987; 



Gilliam 1990) showed either no effect of prenatal ethanol exposure on activity in Long-Sleep 

(LS) or Short-Sleep (SS) mice (21-25 days of age), or an increase in activity in SS mice and mice 

derived from reciprocal crosses between SS and LS (150 days of age) exposed to ethanol 

prenatally. 

Studies have shown that, in humans, genetic factors can influence susceptibility and 

resistance to ethanol teratogenesis. Several case study reports indicate that monozygotic twins 

are more similarly affected than dizygotic twins (Chasnoff, 1985; Christoffel and Salafsky, 1975; 

Palmer et al., 1974; Riikonen, 1994). A more comprehensive study examined ethanol exposure 

in utero in both monozygotic and dizygotic twins. The rate of concordance for diagnosis was 5/5 

for monozygotic twins and 7/11 for dizygotic twins and the authors concluded that genes had a 

modulating influence on expression of the teratogenic effects of alcohol (Streissguth and 

Dehaene, 1993). More recently, several studies have shown that different alleles of the alcohol 

dehydrogenase gene (ADH), an enzyme involved in ethanol metabolism, can influence the 

severity of teratogenesis in different ethnic populations (Das et al., 2004; McCarver et al., 1997; 

Stoler et al., 2002; Viljoen et al., 2001). Therefore, characterizing mice for hyperactivity 

following prenatal ethanol exposure (or any prenatal alcohol trait) is important because mice are 

a much more tractable species than rat in which to examine genetics. Many more inbred, 

recombinant inbred, congenic and selectively bred lines of mice exist than rat. In addition, the 

mouse genome is much better annotated and many more strains of mice have been sequenced. 

Finally, it is currently much easier to manipulate the mouse genome (i.e. targeted mutagenesis) 

than the rat genome.       

In the present study, we examined activity following in utero ethanol exposure in mice from 

three inbred strains: Inbred Long-Sleep (ILS), Inbred Short-Sleep (ISS) and B6. We chose these 



strains because they are among the few mouse strains that have been characterized for any 

prenatal alcohol phenotypes. The ILS and ISS mice were derived from LS and SS mice, 

selectively bred for differential sensitivity to a hypnotic dose of alcohol (McClearn and 

Kakihana, 1981). Previous research has shown that LS mice are more susceptible than SS mice 

to several measures of teratogenesis, including activity as noted above (Gilliam 1990; Gilliam 

and Kotch, 1990; Gilliam and Kotch, 1996; Gilliam et al., 1989a; Gilliam et al, 1989b). This 

suggests that one or more genes that mediate differential sensitivity to the hypnotic effects of 

ethanol in SS and LS may also mediate differential sensitivity to ethanol teratogenesis. The ILS 

and ISS mice have not been characterized for any prenatal alcohol phenotypes.  

B6 mice are relatively susceptible to fetal weight deficits and kidney, limb and skeletal 

malformations following prenatal ethanol exposure (Boehm et al., 1997; Downing and Gilliam, 

1999; Gilliam and Irtenkauf, 1990; Gilliam et al., 1997; Webster et al., 1980). As discussed 

above, results have been mixed when B6 mice have been examined for hyperactivity following 

prenatal ethanol exposure.  

Methods 

Animals 

Male and female ILS, ISS and B6 mice were obtained from and housed in the specific 

pathogen-free (SPF) facility at the Institute for Behavioral Genetics, Boulder, CO. Males were 

individually housed while females were housed three to five per cage; mice were maintained on 

a 12-hr light/dark cycle (lights on at 7:00 am) and were given food and water ad libitum. The 

temperature was kept at a constant 22º C. All procedures were approved by the University of 

Colorado Institutional Animal Care and Use Committee, in accordance with National Institute of 

Health guidelines. 



Mating and Dosing 

Females weighed a minimum of 18 grams at mating. Two females were placed in each 

male’s cage overnight and examined for a seminal plug in the morning as evidence of mating. 

Plugged females were weighed, randomly assigned to a treatment condition (Ethanol, E; 

Maltose-Dextrin, MD or Nonintubated Control, NIC) and single-housed. The day of plug 

detection was designated as Day 0 of pregnancy (Gestational Day 0: GD 0). On GD 7, females 

were weighed to ascertain a 1.5 gram minimum weight gain. Pregnant dams were then intubated 

twice daily (9:00 am and 3:00 pm, GD 7 to GD 18) with either 3.0 g/kg ethanol (20% w:v) or an 

isocaloric amount of MD. Mice in the NIC group were weighed daily; this group served as a 

control to assess the effects of repeated handling and intubations in the E and MD groups.  

Dams were checked for births twice daily starting on GD 19. Once born (Postnatal Day 0; 

PND 0), litters were weighed and sexed. Litters were weighed again on PND 3 and offspring sex 

confirmed. Litters were then culled to four offspring, two males and two females when possible. 

Offspring were again weighed on PNDs 5, 10, 20 and subsequent days when activity testing took 

place. Pups were weaned on PND 28 and housed with same-sex mice, 4-5 per cage. Mothers 

who died during the intubation process or failed to deliver by GD 20 were sacrificed and the 

number of implantation sites was counted.  

Offspring Testing 

Offspring were tested for activity in two-day intervals on PNDs 30 and 31, 60 and 61, 90 and 

91, and 150 and 151. We chose the 30 and 60 day time-points because they represent a 

reasonable approximation of the adolescent and young adult stages in mice. We also tested 

offspring at 90 and 150 days to see if effects persisted into adulthood; Gilliam (1990) found 

effects of prenatal ethanol exposure on activity in offspring tested at 150 days of age. Testing 



took place between 9:00 am and 11:00 am. Mice were placed in an automated activity monitor 

for 15 minutes (3 successive 5-minute bins.). The activity monitoring system (Digiscan: 

Accuscan Instruments Inc., Columbus, Ohio) consists of a 16 beam photocell apparatus 

interfaced with a PC; the monitors consist of a 40 cm2 chamber with a 30.5 cm ceiling. Software 

interfacing with the monitors records the total photocell beam breaks, both vertical and 

horizontal. Computer software recorded a number of other activity measures, as described below.  

Maternal Blood Ethanol Concentration 

A separate group of pregnant females were examined for blood ethanol concentration (BEC). 

Dams were intubated twice daily with 3.0 g/kg ethanol from GD 7 to GD 18, as described above. 

Blood was drawn from the retro-orbital sinus 30, 60, 120 and 180 minutes after the second 

intubation (3:00 pm) on GD 18. Ten μl of retro-orbital blood was added to 200 μl of perchloric 

acid on ice to precipitate blood solids. Blood samples were vortexed and centrifuged at 4500 

RPM for 10 minutes. The plasma or supernatant was then removed from the pellet and an equal 

volume of KOH was added to the supernatant to neutralize the perchloric acid. The sample was 

then vortexed and stored in the freezer until analysis (once per week). BEC was determined by 

spectrophotometric analysis of an enzyme assay as described by Smolen et al. (1986). 

 Statistical Analyses 

Data were examined using Analysis of Variance (ANOVA) with strain (ILS, ISS and B6), 

treatment (E, MD, NIC) and sex as grouping factors. For maternal data, percent weight gain 

during pregnancy, litter size and postnatal mortality were examined. For offspring data, in order 

to control for litter effects and inflated sample size, litter means were the unit of analyses 

(Wainwright, 1998; Zorilla, 1997). Offspring weight at birth was examined using ANOVA. 

Body weight and activity measures from PND 3-151 were examined with repeated measures 



ANOVA (RM-ANOVA), with strain, treatment and sex as between-group factors and age as the 

within-group factor.  

The following activity variables were analyzed: horizontal activity, total distance traveled 

(cm), horizontal movement number, movement time, rest time, vertical movement number, 

vertical time, stereotypy number and stereotypy time. As noted earlier, most previous studies 

have simply looked at total distance traveled and number of beam breaks. Examining these 

additional activity variables should provide insights into what measures in mice may best model 

“hyperactivity” in children exposed to ethanol in utero. 

Activity data was analyzed in several ways. First, we analyzed data within each session. For 

almost every day and measure, we saw habituation; animals were less active in the last 5 minute 

bin compared to the first 5 minute bin. There were no effects of genotype, treatment or sex on 

habituation. We also analyzed 15 minute totals and found very few differences compared to 

individual 5 minute bins; therefore, we present data from 15 minute totals only. Data from the 

first day of each two-day session was analyzed separately (30, 60, 90 and 150), from the second 

day of each two-day session (31, 61, 91, 151), and all days (30, 31, 60, 61, 90, 91, 150, 151). 

While activity measures were generally lower when the second day was analyzed separately 

(likely habituation), the pattern of results was remarkably consistent. Thus, we present activity 

analyses (RM-ANOVA) from all days. Figures include means for two day averages (30 and 31, 

60 and 61, etc.).  



Results 

 Maternal Data 

Resorptions. One out of 11 ISS MD and 1 out of 14 ISS E dams lost their litters (didn’t give 

birth and had resorptions when sacrificed on GD 20). While no ILS dams lost their litters, 3 of 11 

E dams and 1 of 9 MD dams died following intubation. No B6 females died during intubations or 

lost their litters.    

Weight Gain, Litter Size and Postnatal Mortality. ANOVA showed significant main effects 

of strain (F(2,78) = 42.45, p < .001) and treatment (F(2,78) = 8.36, p < .01) and a significant 

strain by treatment interaction (F(4,78) = 4.16, p < .01) for percent maternal weight gain (Table 

1). Post hoc analyses showed that ISS dams put on less weight than ILS and B6 (p’s < .01). As 

expected, NIC dams gained more weight than E and MD treatment groups (p’s < .01). 

Decomposition of the strain by treatment interaction showed that E-treated B6 females put on 

significantly less weight than MD and NIC controls (p’s < .01). In addition, E- and MD-treated 

ILS females put on less weight than their NIC controls (p’s < .03 and .01, respectively).  

While there was a main effect of strain (F(2,80) = 32.83, p < .001), there was no effect of 

treatment and no strain by treatment interaction on litter size. Post hoc analysis showed that B6 

and ILS dams had larger litters than ISS dams (p’s < .001; Table 1). It should be noted that litter 

size is likely an underestimate. On GD 19, we examined dams for litters twice, in the morning 

and afternoon. In several cases, when litters were found, the dams had partially eaten one or 

more pups; these pups were included in our “litter size” variable and accounted for some of the 

postnatal mortality. It seems likely that there were a few dams that had completely eaten pups by 

the time litters were found, so litter size is likely a bit underestimated.  



Postnatal mortality was calculated as: (number of pups on PND 0 – number of pups on PND 

3 before culling)/ number of pups on PND 0. There were no main effects of strain or treatment 

on postnatal mortality.   

Blood Ethanol Concentration. Five pregnant dams per genotype were intubated with 3.0 g/kg 

ethanol, twice daily, from GD 7 to GD 18. Thirty, 60, 120 and 180 minutes following the last 

intubation on GD 18 (3:00 pm), blood was obtained and assayed for ethanol concentration. 

Blood ethanol levels averaged 317 mg/dl 30 minutes after the last injection and declined to 56 – 

117 mg/dl at 180 minutes (Figure 1). Data was analyzed using RM-ANOVA, with time after 

intubation (30, 60, 120, 180 minutes) as the within-group variable and strain as the between-

group variable. Results showed a significant main effect of time (p < .01) but no significant main 

effect of strain and no significant strain by time interaction. Within all strains, BECs declined 

across time.   

Offspring Data 

Birth Weight. Birth weight and offspring weight from PND 3-151 were analyzed using litter 

means for each sex as the unit of analysis. We found significant main effects of strain (F(2,119) 

= 47.49, p < .001), treatment (F(2,119) = 4.87, p < .01) and sex (F(1,119) = 6.82, p < .02) for 

offspring weight at birth, but no significant interactions among the variables. Post hoc analyses 

showed that ISS offspring weighed more than ILS and B6 (p’s < .001) and ILS offspring 

weighed more than B6 (p < .01); MD-treated litters weighed more than E-treated litters (p < .01) 

and NIC litters (p < .02); and males weighed more than females (p < .02; Table 1). 

Weight Gain. Offspring weight from PND 3-151 was analyzed using RM-ANOVA, with age 

as a within-subjects variable and strain, treatment and sex as between-subjects variables. 

ANOVAs involving repeated measures used the Greenhouse-Geisser adjustment factor to assess 



the significance of the observed F ratio. We found significant main effects of age (F(3.79,378) = 

12,680, p < .001), strain (F(2,100) = 23.32, p < .001) and sex (F(1,100 = 189.05, p < .001) on 

weight gain from PND 3-151, but no main effect of treatment. Not surprisingly, age accounted 

for 98% of the variance in weight gain (partial eta2). Age also interacted with strain (F(7.57, 378) 

= 23.67, p < .001) and sex (F(3.78, 378) = 186.08, p < .001) and there was a significant age by 

strain by sex interaction (F(7.57, 378 = 2.43, p < .02). Simple effects analysis (within strain) at 

each age showed that in general, ISS offspring gained more weight than the other three strains 

from PND 3-20, while ILS offspring gained less weight than the other 3 strains from PND 3-60; 

males gained more weight than females from PND 20-151 (p’s < .001).  

Measures of Activity. Total distance traveled (TDT) and horizontal activity (HACT) are the 

two most commonly used measures of behavioral activation in rodents. TDT indicates, in 

centimeters, the distance traveled during a given sample period, while HACT is the total number 

of beam breaks that occur in the horizontal plane during a given sample period. For TDT, RM-

ANOVA showed significant main effects of age (F(3.84, 421) = 12.55, p < .001) and strain 

(F(2,110) = 34.54, p < .001). There was no effect of treatment. Post-hoc analyses (Bonferoni 

corrected t-tests) showed that ISS offspring had greater TDT (Figure 2) compared to ILS and B6 

(p’s < .01); younger mice had a higher TDT than older mice (p’s < .01). RM-ANOVA also 

showed a significant age by strain interaction for TDT (F(7.67, 421) = 7.45, p < .001). ISS mice 

had higher TDT (Figure 2) than B6 and ILS at 30, 60 and 90 days of age (p’s < .05). We found 

identical results (with slightly different F-values; data not shown) for HACT. In general, all 

strains had a decrease in activity across days. This could reflect habituation or perhaps mice 

simply are not as active when they get older. Interestingly, the exception to this characterization 

is ILS mice, which had a large increase in activity at 150 days.  



Movement number (MOVNO) is the number of separate horizontal movements an animal 

makes in a given sample period. Movement time (MOVTIM) is the amount of time an animal 

ambulates (horizontally) in a given sample period while rest time (RSTIM) is the amount of time 

an animal does not ambulate. For all three variables, RM-ANOVA showed significant main 

effects of age and strain, and a significant age by strain interaction (all p’s < .001). There was no 

effect of treatment. As can be seen in Figure 3, ISS made more movements and spent more time 

ambulating than B6 and ILS (p’s < .01). Because RSTIM is simply the inverse of MVTIM, we 

present data from MVTIM only.   

 We examined two measures of vertical activity. Vertical movement number (VMVNO) is 

the number of movements an animal makes in the vertical plane (rearing), while vertical time 

(VTIM) is the amount of time an animal spends rearing. For VMVNO, ANOVA showed 

significant main effects of age (F(5.47, 601) = 22.38, p < .01) and strain (F(2, 110) = 24.09, p < 

.01) and a significant age by strain interaction (F(10.94, 601) = 13.22, p < .01). Post hoc analyses 

showed that ILS offspring made fewer vertical movements than B6 and ISS (p’s < .01; Figure 4). 

All three strains had a significant increase in vertical movements at the 90 day timepoint 

compared to the other timepoints (p’s < .01; Figure 4). For VTIM, ANOVA again showed 

significant main effects of age (F(5.14, 565) = 69.15, p < .01) and strain (F(2, 110) =  42.98, p < 

.01) and a significant age by strain interaction (F(10.28, 565) = 16.46, p < .01). Post hoc analyses 

showed that ISS offspring had significantly greater VTIM compared to B6 and ILS (p’s < .01; 

Figure 4). There were no treatment effects on either variable.   

If a mouse repeatedly breaks the same beam or set of beams, the mouse is exhibiting 

stereotypic behavior. We analyzed two measures of stereotypic behavior: Stereotypy number 

(STNO) is the number of times the monitor observed stereotypic behavior in the mouse; a break 



in stereotypy of one second or more is required to separate one stereotypic episode from the next. 

Stereotypy time (STIM) is the total amount of time that stereotypic behavior is exhibited. For 

STNO, RM-ANOVA showed significant main effects of age (F(5.27, 579) = 25.49, p < .01), 

strain (F(2,110) = 40.28, p < .01) and sex (F(1,100) = 6.91, p < .01) and significant age by strain 

(F(10.53, 579) = 6.30, p < .01) and strain by sex (F(2,110) = 3.97, p < .03) interactions. Post-hoc 

analyses showed that B6 offspring had significantly greater STNO than ILS and ISS, while ILS 

offspring had significantly less STNO than B6 and ISS (all p’s < .01). In addition, males had 

significantly more STNO than females at 60, 90 and 150 days of age (p’s < .05). As can be seen 

in Figure 5, the effect of sex was strain and age dependent. Similarly, for STIM, ANOVA 

showed significant main effects of age (F(5.01, 551) = 34.63, p < .01), strain (F(2, 110) = 46.08, 

p < .01) and sex (F(1,110) = 5.97, p < .02). Age also interacted with strain (F(10.02, 551) = 

10.25, p < .01) and sex (F(5.01, 551) = 2.32, p < .05). Post-hoc analyses showed that, similar to 

STNO, B6 had significantly greater STIM than ILS and ISS while ILS had significantly less 

STIM than B6 and ISS; males had significantly higher STIM than females (all p’s < .01). There 

was no effect of treatment on STNO or STIM.       

Discussion   

Attention deficits and hyperactivity are hallmarks of children exposed to ethanol in utero. 

While the effects of prenatal ethanol exposure on attention and activity have been fairly well 

characterized in rats, few studies have examined these effects in mice. For activity, while two 

studies have reported increased activity in B6 mice exposed to ethanol prenatally (Becker and 

Randall, 1989; Randall et al., 1986), two others have not (Middaugh et al., 1988; Mothes et al., 

1996). Allan et al. (2004) reported no effects of prenatal ethanol exposure on activity in B6 x 



SJL F1 mice. Results from our study showed no effects of prenatal ethanol exposure on any 

measures of activity in B6 offspring.  

LS and SS mice were selectively bred for sensitivity (LS) and resistance (SS) to the soporific 

effects of ethanol, as measured by loss of the righting reflex (LORE: Loss Of Righting due to 

Ethanol; McClearn and Kakihana1981). ILS and ISS were derived by subsequent inbreeding of 

LS and SS. In addition to the hypnotic effects of ethanol, LS, SS, ILS and ISS differ on many 

other behavioral and physiological traits. Compared to LS and ILS, SS and ISS mice have higher 

baseline activity and also show greater activation following a low dose of ethanol (Dudek and 

Abbott 1984; Owens et al. 2002; Phillips and Dudek 1991). In addition, these lines of mice differ 

in measures of functional tolerance following ethanol exposure (Bennett et al. 2007; Deitrich et 

al. 2000; Gill and Deitrich 1998) and in their responses to other sedative hypnotics (Christensen 

et al. 1996; Simpson et al. 1998).  

LORE is a measure of initial sensitivity to alcohol. Previous research has suggested that 

individual sensitivity to alcohol may influence susceptibility and resistance to some of the 

detrimental effects of prenatal alcohol exposure. Ethanol-sensitive LS mice are susceptible to 

fetal weight deficits, postnatal growth deficits, increased postnatal mortality, fetal brain weight 

reductions and skeletal malformations following prenatal alcohol exposure, while ethanol-

insensitive SS mice are relatively resistant (Gilliam and Irtenkauf 1990; Gilliam and Kotch 1990, 

1996; Gilliam et al. 1989a, 1989b; Goodlett et al. 1989). In addition, LS mice exposed to ethanol 

prenatally took significantly more trials to reach a passive avoidance criterion than their controls, 

while SS mice did not. Two studies have looked at hyperactivity in LS and SS mice following in 

utero ethanol exposure. Gilliam et al. (1987) reported no effects of prenatal ethanol exposure on 

activity in LS and SS mice. In contrast, Gilliam (1990) reported an increase in activity at 150 



days of age in SS, but not LS, mice exposed to alcohol prenatally. This increase in activity at 150 

days was not confirmed in ISS mice in the present study. It is interesting to note that Purkinje 

cells of the cerebellum of LS mice are much more sensitive to the depressant effects of ethanol 

than Purkinje cells of SS mice, as determined by electrophysiological measures (Basile A. et al. 

1983; Sorensen et al. 1980). Levels of aldehyde dehydrogenase in Purkinje cells of the 

cerebellum are higher in SS mice compared to LS mice (Zimatkin and Deitrich 1995).  Purkinje 

cells of the cerebellum are particularly vulnerable to neonatal (third trimester equivalent) ethanol 

exposure in rats (Goodlett et al. 1998; Light et al. 2002; Thomas et al. 1998a). 

ISS showed greater baseline activity than ILS on all measures. The differences in TDT and 

HACT verify results from previous studies (see above) and shows that these differences exist at 

younger ages than previously reported. This suggests that in addition to LORE, differences in 

baseline activity were also selected for in LS and SS, and were captured during the inbreeding 

process. B6 were intermediate on most measures of activity except for our two measures of 

stereotypy, where B6 were higher than both ISS and ILS. The only sex differences in baseline 

activity were also for stereotypy, where males displayed higher rates than females. 

Few studies have demonstrated effects on behavior in mice following prenatal alcohol 

exposure. This is likely due, at least in part, to behavior being correlated with brain 

development/functioning. This is one area where humans and mice differ. In mammals, a period 

of rapid central nervous system growth and proliferation (the “brain growth spurt”) occurs during 

the third trimester. While the third trimester of pregnancy occurs in utero in humans, it occurs 

during approximately the first two weeks postnatally in rodents (Dobbing and Sands, 1979). 

Thus, in order to mimic third trimester ethanol exposure in rodents, one must administer ethanol 

to neonatal pups. Only a handful of studies have examined behavior in mice following early 



postnatal ethanol exposure (Ciociola and Gautieri 1988; Pal and Alkana 1997; Pick et al., 1993; 

Wozniak et al., 2004; Yanai 1983; Yanai and Ginsburg 1977, 1979). When exposed to ethanol 

neonatally, rats reliably show changes in behavior (Goodlett and Johnson 1997; Goodlett et al. 

1987; Kelly et al. 1987; Melcer et al. 1994; Pauli et al. 1995; Thomas et al. 1998b, 2003). 

Therefore, researchers using mice for FASD research should begin to look at the early postnatal 

period for ethanol exposure when examining behavior.   
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Figure Legends 

Figure 1. Mean (SEM) blood ethanol concentration for pregnant C57BL/6J (B6), Inbred Long-

Sleep (ILS) and Inbred Short-Sleep (ISS) mice. Blood was drawn 30, 60, 120 and 180 

minutes following the last intubation on GD 18. RM-ANOVA showed only a main effect of 

timepoint (p < .01). 

Figure 2. Mean (SEM) total distance traveled (TDT) for B6, ILS and ISS mice. Bars represent 

the average of two days of testing. For example, day 30 equals the average TDT on days 30 

and 31. For figures 2-5, sample sizes (litters): B6 E = 13, B6 MD = 9, B6 NIC = 11; ILS E = 

7, ILS MD = 7, ILS NIC = 8; ISS E = 10, ISS MD = 9, ISS NIC = 9. * indicates ISS mice 

were more active than ILS and B6 on days 30, 60 and 90, p’s < .05. ** indicates that ILS were 

more active than B6 at 150 days, p < .01.  

Figure 3. Mean (SEM) movement number (MVNO) and movement time (MVTIM) in B6, ILS 

and ISS mice. Each timepoint represents a two-day average. * Indicates that ISS mice had 

greater MVNO than ILS at 30, 60 and 90 days of age (p’s < .001); ISS had greater MVNO 

than B6 at 30 and 90 days (p’s < .001). ** indicates ISS also had greater MVTIM than ILS at 

30, 60 and 90 days (p’s < .001); they also had greater MVTIM than B6 on all days tested (p’s 

< .001).  

Figure 4. Mean (SEM) vertical movement number and vertical movement time in B6, ILS and 

ISS mice. Each timepoint represents a two-day average. * indicates ILS had less VMOV than 

ISS and B6 at 30 and 60 days (p’s < .01); ** indicates that ILS had less VTIM than ISS and 

B6 at 30 and 60 (p’s < .01); *** indicates that ISS had greater VTIM than B6 at 60 (p < .05), 

90 and 150 days (p’s < .01) 



Figure 5. Mean (SEM) stereotypy number (STNO) in B6 (a), ILS (b) and ISS (c) mice. Each 

timepoint represents a two-day average. * indicates males had significantly greater STNO 

than females, p < .01. ** indicates males had significantly greater STNO than females, p < 

.05.  

 

 

 



Table 1.  Mean (± SEM) percent maternal weight gain, litter size, prenatal mortality and pup weight at birth.  

                                           C57BL/6                                           ILS                                                   ISS 

                            E               MD          NIC                 E             MD            NIC                E             MD               NIC 

                          (15)             (9)           (12)                 (7)            (7)             (8)                 (11)           (9)                (9) 

_________________________________________________________________________________________________________________________________    

% Wt Gaina   45b (4)        67 (3)      69 (5)             49 (3)           44 (5)         65c (2)           30 (2)         30 (5)             33 (4) 

Lit Sized        6.20 (.75)    7.78 (.72) 7.60 (.43)      5.29 (.42)    5.57 (.90)   6.88 (.40)      3.18 (.40)   3.38 (.32)     3.67 (.37)       

% PMe          56 (12)        22 (12)    14 (7)             4 (4)            32 (18)        8 (4)              22 (12)      15 (7)            11 (11)       

Pup Wt. ♀    1.23 (.05)   1.37 (.04) 1.34 (.04)       1.34 (.05)    1.49 (.06)    1.36 (.03)      1.53 (.03)   1.60 (.05)     1.59 (.04)  
 
Pup Wt. ♂    1.33 (.05)   1.33 (.03) 1.33 (.06)       1.51 (.08)    1.47 (.05)    1.46 (.03)      1.53 (.04)   1.86 (.13)     1.67 (.06) 

a Percent maternal weight gain calculated as: weight on GD 18 – weight on GD 7/weight on GD 7. 

b Ethanol-treated B6 dams put on less weight than MD and NIC controls, p’s < .01. 

c Ethanol- and Maltose-treated ILS dams put on less weight than NIC controls, p’s < .03 and .01, respectively. 

d B6 and ILS litters were larger than  ISS litters, p’s < .001. 

e Postnatal mortality calculated as: # of pups on PND 0 - # of pups on PND 3 before culling/# of pups on PND 0. 
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