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ABSTRACT 

Bublitz Emsermann, Caroline. A Study of Statistical Efficiency on the Effects of Non-
compliant Reporting and Item List Size from the Indirect Questioning Techniques: 
Random Response and Non-random Response Models. Published Doctor of 
Philosophy dissertation, University of Northern Colorado, 2014. 

 
 

Estimating prevalent rates of sensitive behaviors using self-report measures 

generally resulted in bias estimates when direct questioning approaches were used. 

Random Response (RR) and Non-random Response (NRR) models were developed to 

provide an additional layer of confidentiality that was meant to illicit more honest 

reporting. Despite these efforts, there was evidence that survey participants using these 

techniques do not always report honestly, and as a result, estimates from these techniques 

were biased. The current study examined the statistical efficiency, using the ratio of MSE 

between the RR models, the unrelated question technique (UQT) and forced choice 

technique (FCT) and the NRR models, the item count technique (ICT), double item count 

technique (DICT) and the single sample count technique (SSC). Simulations of a large 

range of sensitive prevalent rates and sample sizes were performed where estimates were 

compared in terms of increasing levels of non-compliance. In addition, for NRR models 

exclusively, techniques were compared similarly by list size (3-item, 4-item, and 5-item) 

as well as between each of the NRR models (ICT, DICT, and SSC). Results of the study 

indicated that the UQT optimal model was the most efficient of the techniques in the 

presence of equivalent non-compliance rates. However, if the DICT optimal 5-item 
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model improved compliance, this model became more efficient depending on the 

sensitive prevalent rate estimated and the sample size. As a result, the study demonstrated 

that in certain situations, the non-random response double item count technique optimal 

model was as or more efficient than the random response unrelated questioning technique 

optimal model. Applications of the findings and the development of general guidelines 

were discussed. 
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CHAPTER I 

INTRODUCTION 

Background 

Self-reports in surveys have become increasingly relied upon to measure 

attributes of sensitive behaviors (Fox & Tracy, 1986). During the past three decades, 

survey instruments have been used to collect information and provide estimation for such 

sensitive topics as illicit drug use, the use of performance enhancing drugs (PED) among 

athletics, sexual behaviors, income and voting behaviors (Tourangeau & Yan, 2007). 

Surveys are the primary source of data collection of sensitive topics since actual data are 

either nonexistent (such as unreported victimization experiences among prisoners) or 

confidential (such as accessing patient’s medical records; Fox & Tracy, 1986). Since the 

administration of surveys rely entirely on self-report, due to the sensitive nature of these 

areas, estimates from questions eliciting information on sensitive topics were often 

misreported resulting in biased estimates that can be misleading (Fox & Tracy, 1986; 

Greenberg, Abul-Ela, Simmons, & Horvitz, 1969; Tourangeau & Yan, 2007; Warner, 

1965). 

The reason for such biases was due to the fact that human subjects were selected 

to represent target populations where estimation is based on self-report instead of actual 

measurements. Estimation by survey is subject to two additional sources of variation. The 

first is sampling error which is the variation in the data due to the fact that a sample of 



 

 

2

subjects were selected. Sampling error can be minimized prior to data collection if the 

sampling design or selection of subjects from the target population was made to be 

representative (Thompson, 2002). In addition, complex estimation procedures have been 

developed that minimize sampling error and improve efficiency of survey estimates (Fox 

& Tracy, 1986; Thompson, 2002). A more problematic source of variation, especially in 

the case of sensitive topics, was non-sampling error or systematic error. Thompson 

(2002) discussed several sources of non-sampling error including non-response, data 

entry error, or detectability problems. In general these sources could be categorized into 

two types of non-sampling error: random error which cancels out over repeated measures 

(data entry errors) and non-random error that does not cancel out over repeated samples 

(non-response). In the case of sensitive topics, Greenberg et al. (1969) discussed two 

particular problematic sources of non-random error that resulted in bias estimates: 

 1. Non-response or the refusal to answer the sensitive question. 

 2. Deliberate falsification of information or answering the sensitive question 

dishonestly.  

In the former case estimates were biased since a subset of survey participants choose not 

to respond to the sensitive question. This subset of non-respondents was generally not 

typical of the segment of the population as a whole. The sample therefore was 

unrepresentative of the population resulting in a bias estimate (Thompson, 2002). In 

addition to the bias, the variation of the estimate increased since the number of 

participants answering the question declined resulting in a less efficient statistic. In the 

latter case of deliberate falsification, validity of the survey instrument was undermined 

since estimates were distorted. Validity is defined as the extent to which the survey 
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instrument measures what it purports to measure, in this case the prevalence of the 

sensitive behavior. As a result, deliberate falsification also resulted in estimation bias that 

either over estimated the prevalence or under estimated the prevalence. Unlike random 

error which canceled out over repeated measurements, response bias remained intact and 

the distortion between the true and reported response persisted (Fox & Tracy, 1986). In 

the case of sensitive topics, response biases due to falsification are well documented in 

the literature (Belli, Traugott, & Beckmann, 2001; Fu, Darroch, Henshaw, & Kolb, 1998; 

Tourangeau & Yan, 2007)  

Tourangeau, Rips, and Rasinki (2000) classified three distinct reasons for these 

types of reporting biases: intrusiveness, threat of disclosure and socially desirable 

responding. Intrusiveness was where the participant feels as if their privacy has been 

violated. Examples include questions regarding personal income or religious beliefs. 

Threat of disclosure refers to participants who feel their confidentiality in disclosing 

sensitive information was not guaranteed. Even with the assurance of non-disclosure, 

participants may be hesitant to answer the sensitive question honestly. For instance, an 

employee could feel reluctant to truthfully respond to questions regarding marijuana use 

if the confidential survey were administered at their place of employment. Lastly, socially 

desirable responding was where participants respond to questions in a manner that 

conforms to socially acceptable behavior or norms. For instance a non-voter who claims 

to have voted in the last election may do so because of concerns that a truthful response 

would be seen as socially unacceptable. Socially desirable responding was especially 

influential and can lead to response bias that underestimates or overestimates prevalence 

rates depending on the behavior analyzed. Behaviors seen as socially undesirable such as 
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illicit drug use, abortion rates, or use of PED among athletes were often underestimated. 

In turn, behaviors seen as socially acceptable such as voting, seat belt usage, or 

exercising were often overestimated (Jann, Jerke, & Jrumpal, 2012).  

In an attempt to reduce these types of reporting biases, in 1965, Stanley L. Warner 

introduced a model designed to elicit indirect responses to sensitive questions. The 

random response (RR) model was designed to reduce systematic biases which Warner 

(1965) referred to as “evasive answer bias”. Warner argued that if survey participants felt 

that their response could not be directly linked to the sensitive behavior, they would 

answer more truthfully resulting in a decrease of evasive answer bias. Warner came up 

with an ingenuous method where the survey participant would respond to one of two 

complementary questions with a known probability:  

1. You are a member of population A (i.e., π), 

2. You are not a member of population A, (i.e., 1- π) 

where π is the proportion of those with the sensitive attribute. Since the two questions 

referred to complementary populations, the participant was either a member of one or the 

other. In Warner’s original model, a spinner was used which would select the sensitive 

question with probability, p and its complement with probability (1-p). Since then, 

randomized devices have included other mechanisms with known probabilities such as 

flipping coins, selecting cards, and rolling dice. The survey participant controls the 

device that was concealed from the interviewer, who has no knowledge of the question 

selected, only of the response given. After using the device to select the question, the 

participant responded either “yes” or “no”. The interviewer who does not know which 

question was selected simply tracks the number of “yes” and “no” responses. Since the 
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probabilities of selecting each question was known, prevalence of the sensitive behavior 

was estimated without directly linking the observed response and the variable of interest 

to the individual. As a result, in theory, the participant felt more compelled to answer 

honestly compared to direct questioning methods. 

Because of the randomized device, additional variation must be accounted for in 

the model. The variance of Warner’s estimate can be decomposed into two portions: the 

variation due to sampling (i.e., binomial variance) and the additional variation due to the 

randomized device. This additional variation was the cost associated with eliciting more 

honest responses compared to direct questioning. In fact, there was a direct correlation 

between the burden of cooperation of the survey participant and the randomized device or 

p (the probability the sensitive question is selected). If the probability of selection is close 

to 1, as Warner (1965) pointed out, the burden of cooperation falls to the survey 

respondent who was more likely to select the sensitive question and therefore feel 

exposed. For instance, if p = 1, the burden of cooperation fell entirely on the survey 

participant who in effect was asked directly if they were a member of the sensitive group. 

As p moves from 1 to 0.50, however, the burden of cooperation shifted to the interviewer 

since the survey participant was now less likely to select the sensitive question and 

therefore less exposed. In this case, the respondent provides useful but not absolute 

information regarding their sensitive behavior status. According to Warner, a p less than 

unity was expected to increase cooperation and at the same time reduced the evasive 

answering. Due to the additional variation, randomized response techniques were more 

beneficial than techniques of direct questioning if the trade off between additional 

variation and bias was warranted. In his original paper, Warner (1965) demonstrated that 



 

 

6

his randomized response technique produced more efficient estimates compared with the 

direct questioning technique when evasive answer bias was high. By comparing the mean 

squared errors for several values of p, a fixed sample size and the sensitive population 

prevalence between 0.50 and 0.60, Warner showed that as evasive answer bias and p 

increased so did the efficiency of the randomized response technique compared to 

estimates that used direct questioning (Warner, 1965). However, Warner’s efficiency 

study was limited in several aspects. The study assumed that participants always 

responded truthfully when the randomized response model was used but not when the 

self-direct technique was applied. As a result, statistical efficiency was not addressed in 

the case of biased estimates from the random response model. Secondly, the proportion 

of the sensitive behavior used in the simulations studies were larger than prevalence rates 

of more sensitive topics, such as drug use, or abortion rates. Lastly, since both questions 

in Warner’s model referred to the sensitive behavior, did the model truly reduce evasive 

response bias?  

In certain situations, Greenberg et al. (1969) showed that Warner’s technique 

produced less efficient estimates compared with the conventional method of direct 

questioning. By selecting smaller and more appropriate proportions of the sensitive 

attribute (between 10% and 20%), unless a substantial amount of evasive answer bias was 

present, Greenberg et al. (1969) demonstrated that estimates from Warner’s model were 

generally less efficient compared to the direct questioning technique. Greenberg et al. 

(1969) also noted the inefficiency of Warner’s method when p is closer to 0.50, which is 

the recommended level if complete cooperation were to be made. In addition, Greenberg 

et al. (1969) pointed out that both randomly selected questions in the model related 
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directly to the sensitive behavior since each referred to the complement population of the 

other. This could raise suspicions if the respondent feels as if a “mathematical trick” is at 

play and potentially result in a higher than expected rate of evasive answering (Fox & 

Tracy, 1986). In an attempt to reduce these limitations, Greenberg et al. (1969) provided 

the theoretical framework of the Random Response (RR) technique introduced by Walt 

R. Simmons (Horvitz, Shah, & Simmons, 1967), the unrelated question technique (UQT). 

Instead of using two complementary questions, Simmons’ technique posed two unrelated 

questions that were selected in the same manner - via a randomized device with known 

probabilities: 

1. You are a member of population A, (i.e., πs)  

2. You are a member of population Y, (i.e., πns) 

where population πs, the proportion of the population with the sensitive attribute and 

population πns, the proportion of the population with the innocuous attribute, were 

unrelated or in statistical terms, uncorrelated. For instance a researcher using the 

unrelated question technique to estimate prevalence among elite athletes utilizing PEDs 

could have participants use a randomized device to select one of the two unrelated 

questions: “During the past 12 months did you ever use any performance enhancing 

drugs (PEDs)?” or “Do you have a subscription to a local newspaper?” By posing a 

question that was completely independent of the sensitive question, participants were 

made to feel more secure since the population referred to in the innocuous question was 

not tied to the sensitive population. As a result, no direct connection would be made 

between the participant and the sensitive behavior. 
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In contrast to Warner’s model where one unknown population parameter was 

estimated, in the case of the unrelated question model, two unknown population 

parameters were estimated: the prevalence of the sensitive behavior, πs and the 

prevalence of the innocuous behavior, πns. When the prevalence of the innocuous 

behavior was unknown, the technique requires two separate samples, where participants 

from each were provided with the same survey questions, only the probability of 

selecting the sensitive question in the first sample, p1, is the complement of the 

probability of selecting the sensitive question in the second sample, p2 = 1- p 1. After 

selecting the appropriate parameters, under the assumption of truthful responses, both 

samples were used to calculate unbiased estimates of the sensitive and innocuous 

behavior. Greenberg provided an optimal method in which the selection of the model 

parameters p1, p2, πns, n1, n2 could be made in such a manner as to attain a variance as 

close to the binomial as possible. Although selecting the parameters in this fashion was 

meant to minimize variation, compromising the cooperation of the participant should be 

the researcher’s primary concern. Model parameters should therefore be selected in a 

manner that maximizes both confidentiality and statistical efficiency.  

In order to examine the gain (or loss) caused by the unrelated attribute, Greenberg 

et al. (1969) compared the efficiency of the unrelated technique to Warner’s technique. 

Unlike Warner, Greenberg et al. (1969) considered increasing levels of evasive answer 

bias, while holding all parameters in both models fixed. Prevalence rates of the sensitive 

attribute and innocuous attribute were kept relatively low (πs = 0.20, πns = 0.10) in 

accordance to the selection criteria described previously. By comparing the mean squared 

error of both models, Greenberg et al. (1969) determined that the unrelated question 
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technique was superior to Warner’s technique when the rate of truthful responses was 

greater than or equal to the corresponding rate in the Warner technique. As a result, 

Greenberg et al. (1969) demonstrated that if the unrelated question model improved even 

very slightly the probability of reporting truthfully a respondent’s membership in the 

sensitive behavior group, the mean squared error showed gains out of proportion to such 

increases in truthfulness.  

Efficiency, however, was improved if the prevalence of the innocuous behavior 

were actually known. According to Horvitz et al. (1967), if population parameters of the 

innocuous behavior were incorporated into the randomized device, the innocuous 

question would be eliminated entirely and a single sample used. As a result, the cost 

associated with estimating the innocuous behavior would be eliminated and a more 

efficient estimate of the sensitive behavior gained. This random response (RR) method 

became known as the forced response or forced choice technique (FCT) and was further 

developed by Boruch (1971). The technique used the random device to “force” the survey 

participant to answer the sensitive question in a specific way. An example of the 

technique would be using the sum of two dice to determine how the survey participant 

responds. For instance, if the sum of two dice were 2, 3, or 4, the participant would be 

instructed to respond “yes”, if instead the sum were between 5 and 10, the participant 

would be instructed to respond truthfully to the sensitive question and lastly if the sum 

were 11 or 12, the participant would be instructed to respond “no”. Since the associated 

probabilities of each outcome were known (i.e., 1/6, 3/4, and 1/12), maximum likelihood 

estimates of the sensitive behavior were derived. Greenberg et al. (1969) showed that for 

fixed prevalence of the sensitive behavior at the very low rates of πs = 0.20, and πs = 0.05, 
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estimates were more efficient compared to estimates from both the unrelated question 

model where the prevalence of the innocuous question was unknown and Warner’s 

model.  

Since their introduction, random response (RR) techniques have been further 

developed and improved (Kuk, 1990; Pal & Singh, 2012; Saha, 2010). In particular a 

great deal of effort has been made in increasing the efficiency of estimates (Lensvelt-

Mulders, Hox, & van der Heijden, 2005; Pal & Singh, 2012; Saha, 2010) as well as 

improving psychological features of the technique in such a way as to encourage more 

participation (Lensvelt-Mulders, Hox, & van der Heijden, 2005; Lensvelt-Mulders, Hox, 

van der Heijden, & Maas., 2005) performed an extensive meta-analysis on a variety of 

RR techniques and sensitive topics. The authors determined that random response 

techniques produced higher prevalence estimates of sensitive attributes compared with 

conventional methods such as direct questioning. In addition, response rates were 

generally higher when randomized techniques are used (Clark& Desharnais, 1998; Fox & 

Tracy, 1986).There were limiting factors to the technique, however. For one, there was 

the potential of point estimates falling out of the (0, 1) range. This was especially 

apparent in the unrelated question technique when model parameters were not selected 

properly (Greenberg et al., 1969). Another issue occurred when participants did not 

follow the instructions and responded in a manner that was not truthful. This type of 

responding was referenced in the literature by several terms including “cheaters” (Clark 

& Desharnais, 1998), non-compliance (van den Hout & Klugkist, 2009), and “self-

protected” (SP) response (Böckenholt & van der Heijden, 2004). In each case, the 

definition was similar, whether intentional or unintentional survey participants fail to 



 

 

11

follow instructions of the random response (RR) model resulting in misreporting. In the 

case of a SP response, the definition think you want to leave this capitalized--not 

hyphenated was extended somewhat by assuming that the response given by the 

participant provides no information. No matter what the selected question, whether the 

sensitive or innocuous or a forced response, the participant responded in the negative. In 

either case, when a substantial number of survey participants responded in these manners, 

the probabilities associated with the responses were no longer known. Prevalence 

estimates were therefore distorted which resulted in a biased estimate - defeating the 

primary purpose of using the RR technique in the first place.  

A review of the literature revealed several occurrences where estimates of 

sensitive behaviors from RR techniques under estimated prevalence of the behavior 

compared with more accurate data sources. Studies included underestimating abortion 

rates (Shimizu & Bonham, 1978), racial prejudice, political, and moral issues (Wiseman, 

Moriarty, & Schafer, 1975) and more recently the use of Mephedrone (Petróczi et al., 

2011). In each case non-compliance was cited as a potential biasing factor. In fact 

Wiseman et al. (1975) included a supplementary question asking participants if they were 

confident that the random device protected their anonymity. Since 20% of the RR 

participants felt the interviewer knew what question they selected, Wiseman et al. (1975) 

concluded that distrust in the randomized technique could have biased the results.  

Since RR models were not immune to “cheaters” or participants who are “non-

compliant” or are “self protected” (SP), estimates from RR models were subject to 

distortions. For the remainder of this project, the study chooses the terms non-compliant 

or SP response in reference to survey participants who do not follow instructions of the 
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randomized response technique. A review of the literature indicated that the primary 

focus of non-compliance in random response (RR) models has been the development of 

methods that estimate or adjust for the non-compliance resulting in an adjusted estimate 

of the sensitive behavior (Böckenholt, Barlas, & van der Heijden, 2009; Böckenholt & 

van der Heijden, 2004, 2007; Clark & Desharnais, 1998; Cruyff, van den Hout, van der 

Heijden, & Böckenholt, 2007; Ostapczuk, Moshagen, Musch, & Zhao, 2010; van den 

Hout, Böckenholt, & van der Heijden, 2010; van den Hout & Klugkist, 2009;). In all 

cases, no assumptions were made regarding the intentions of the participants who was 

non-compliant and with the exception of Böckenholt and Van der Hejiden (2007), non-

compliance was estimated in terms of the self-protected “no” response--where 

participants provide no information about either question. 

Other methods were developed using several surveys conducted in the 

Netherlands on social security regulation infringements that included a series of 

randomized response questions--using a variety of RR techniques including Kuk’s (1990) 

method and the forced response method--to estimate specific sensitive behaviors that 

included social security regulation infringements and social welfare fraud. Surveys were 

fielded in 2000, 2002, and 2004 and included a series of questions regarding the specific 

sensitive behaviors (i.e., social security fraud) that were ordered from less to more severe 

violations. Estimation of non-compliance included using item-response models that 

incorporated a person level estimate (Böckenholt & van der Heijden, 2004, 2007), 

mixture components (Böckenholt & van der Heljden, 2007) and log linear models 

(Böckenholt & van de Hejden, 2007 ) using semi-parametric item response models 

following directly from latent class models (Böckenholt et al., 2009). Bayesian 
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techniques were also used to estimate non-compliance (van den Hout & Klugkist, 2009). 

As a result, the primary focus was to develop methods that provide adjusted prevalence 

estimates of both the sensitive attribute and non-compliance. In general, these methods 

produced higher prevalent estimates of the sensitive attribute and better fit statistics than 

the models that do not adjust for non-compliance. With the exception of Greenberg et al. 

(1969) and Clark and Densharnais (1998), there were no extensive studies that compared 

the effects of non-compliance on estimates between RR techniques, such as the unrelated 

question technique (UQT) or the forced-choice technique (FCT). In particular, how 

different rates of non-compliance distorted estimates of differing sensitive behavior 

prevalence. In addition, although efficiency was studied in several empirical and 

simulation studies, there appeared to be no extensive research examining the efficiency 

between RR techniques in the presence of non-compliant distortions.  

Despite the effort to produce unbiased estimates of sensitive topics, RR models 

had several limitations. For one, they include an additional source of variation since a 

random device was used. Because of this, in order to improve efficiency, models 

generally required larger sample sizes compared to models that use a direct questioning 

approach. Secondly, since many of the techniques required a random device such as 

spinners, coins, and cards, additional costs were associated with the model. In addition, 

non-compliant responses distorted estimates despite the efforts of the randomized device 

to offer additional protection since survey participants were often forced to respond 

positively to behaviors they had never engaged or to directly respond to a sensitive 

question. 
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A second class of indirect response techniques, termed non-randomized response 

(NRR) models, improved on several of these limitations by eliminating the need of a 

randomized device and utilizing an even more evasive response method where survey 

participants indirectly responded to the sensitive question. Unlike the random response 

(RR) models, participants were asked to respond to a series or combination of questions 

in which they simply record the number of questions in the series or select a combination 

of questions for which they agree. This eliminated the need for the randomized device. 

The item count technique (ICT) was probably the most widely used of the non-random 

response (NRR) techniques. Also referred to as the list technique or the unmatched count 

technique (UCT), it was empirically demonstrated in a study by Dalton, Wimbush, and 

Daily (1994) that investigated illicit workplace behaviors of auctioneers, but was first 

introduced by Miller (1984). Since its introduction the technique has become widely used 

and referenced in the literature (Cobb, 2001; Dalton et al., 1994; Dalton, Daily, & 

Wimbush, 1997; Droitcour et al., 1991; Kuklinski & Cobb 1998; Kuklinski, Cobb, & 

Gilens, 1997; Kuklinski, Sniderman, et al., 1997; Miller, 1984; Miller, Cisin, & Harrel, 

1986; Sniderman & Grob 1996; Tsuchiya, Hirai, & Ono, 2007). The technique used an 

item list of questions that included a series of innocuous questions and the sensitive 

question. The innocuous questions could include, “I subscribe to a newspaper,” “I have 

resided in two or more states” and the sensitive question could be “I have cheated on my 

income taxes.” Subjects for the study were selected and randomly assigned to two 

groups. The first group of subjects was given a survey with an item list that only included 

the innocuous questions. They were then instructed to read each question and report the 

number of questions for which they agreed (i.e., number of “yes” responses). Since only 
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the aggregate of yes responses were required, there was no direct link between the actual 

questions for which agreement was made and the participant. The second group of 

subjects was given the same item list of innocuous questions with the addition of the 

sensitive question. They too were instructed to report the total number of questions for 

which they agree. By assuming that the prevalence rate of the innocuous behaviors were 

the same in both groups, an estimate of the sensitive attribute was made by simply 

subtracting the rate of positive responses between the two samples, referred to as the 

“difference-in-means” estimator. A more efficient form of the ICT was the double-lists 

version of item count (DICT; Droitcour et al., 1991; Glynn, 2013). The DICT reduced 

variability considerably compared to the ICT since the number of participants answering 

the sensitive question was doubled. In the technique, two samples of participants were 

used along with two sets of item lists, A and B. Each item list contained a set of 

innocuous or non-sensitive questions. For the first sample, participants responded to item 

list A, which included the addition of the sensitive question and then responded to the 

innocuous list of questions in item list B. The second sample received item list B with the 

addition of the sensitive question and then responded to the list of innocuous questions in 

item list A. As a result, all participants in the sample responded to the sensitive question, 

which doubled the number of participants responding to the sensitive question in the ICT. 

Because of this, the estimate of the DICT was more efficient. Recently, Petróczi et al. 

(2011) developed a fuzzy response model, the single sample count (SSC) technique in an 

attempt to simplify and provide a more economically savvy form of the ICT and DICT. 

In the Petróczi model, the need for an additional sample was eliminated by including 

innocuous questions in the item list with known probabilities of 0.50. By doing this, the 
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model was made more efficient since all survey participants were now used to estimate 

the sensitive behavior instead of “wasting” a proportion of the sampled respondents to 

estimate the rate of the innocuous behaviors. Examples of innocuous questions used in 

the single sample count technique (SSC) would be “My birthday is in the first 6 months 

of the year”, “My house number ends with an even number,” and “The last digit of my 

telephone number is even”. Since the number of innocuous questions in the item list were 

known and have a 50-50 chance of endorsement, the estimator of the sensitive behavior 

could be easily derived by simply subtracting the proportion of endorsed items in the 

sample from the expected value of the endorsed items from the innocuous list of 

questions.  

Even though the utilization of the item count technique (ICT) and double item 

count technique (DICT) had grown, the methodological research on the topic remained 

low. Recent methods that improve efficiency of the technique included analysis by 

subpopulations or domains (Tsuchiya, 2005), modification in the manner in which the 

sensitive item was included (Chaudhuri & Christofides, 2007), adjustments to the 

difference in means estimator (Glynn, 2013), correlation between non-sensitive items in 

the item list (Glynn, 2013), correlations between the two DICT item lists (Glynn, 2013) 

and the development of new nonlinear least squares and maximum likelihood estimators 

for multivariate analysis (Blair & Imai, 2012; Corstange, 2009; Imai, 2011).  

Studies using the ICT have reported mixed results, but were generally favorable. 

Several studies using the technique produced estimates that appeared to reduce social 

desirable reporting (Holbrook & Krosnick, 2010; Rayburn, Earleywine, & Davison, 

2003). Holbrook and Krosnick (2010) performed an extensive analysis of 48 studies 
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comparing estimates between the ICT to direct questioning and found that 63% of the 

studies reported higher prevalence rates of the sensitive attribute from surveys utilizing 

the ICT compared to those using direct questioning. Although the authors concluded that 

the item count technique (ICT) could actually improve the validity of self-reports by 

reducing bias associated with social desirability pressures, their results also indicated that 

the technique could not be immune to forms of evasive answer bias since 27% of the 

studies resulted in lower or similar prevalent rates compared to the direct questioning 

technique. Two additional studies using the technique also produced estimates that 

appeared to under report prevalence rates compared to direct questioning (Biemer & 

Wright, 2004; Droitcour et al., 1991). In other cases negative prevalent rates have been 

reported for both ICT and SSC (Petróczi et al., 2011; Tsuchiya et al., 2007). In their 

conclusion, Droitcour et al. (1991) determined that the ICT could be problematic for 

sensitive behaviors with low prevalence rates such as drug use. This particularly occurs 

when the variability in the rate of “yes” responses taken from the sample of subjects with 

the additional sensitive question was inflated. Tsuchiya et al. (2007) provided the first 

empirical study of the effects on estimates and variation as an increasing function of the 

number of innocuous questions included in the ICT item list. As a general rule of thumb, 

most ICTs included five total questions: 4 innocuous questions and 1 sensitive question 

but no empirical studies have been made to verify the optimality of this number. Results 

of Tsuchiya et al. (2007) study indicated no changes in prevalent rates of the sensitive 

behavior when the number of innocuous questions in the item list increases from 2 to 5; 

however, variation increased with the addition of more innocuous questions. Since 

Tsuchiya et al.’s study included sensitive attributes (blood donation, shoplifting) with 
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higher prevalence, the affects of list size on estimates of sensitive attributes with lower 

prevalence have not been formerly studied. As a result, no study has been done that 

would provide optimal list sizes for the item count technique (ICT), double item count 

technique (DICT) and single sample count technique (SSC) that maximize protection of 

exposure and at the same time minimizes variation.  

Tsuchiya et al. (2007) considered under-reporting a potential factor in the 

instability of estimates using ICT. Under-reporting occurred when participants did not 

fully endorse the number of innocuous items for which they belong. As a result, the 

estimated prevalence of the sensitive attribute was under-reported. In their study, 

Tsuchiya et al. (2007) determined that prevalent rates from innocuous item lists questions 

that were asked in a direct method were higher than corresponding rates from the same 

item lists asked in the ICT format. For the ICT, DICT, and SSC this type of falsification 

distorted prevalence and thus, could be used to define a form of non-compliant 

responding in these types of models. The affects of such distortions were not known since 

non-compliant responding in ICT, DICT and SSC models has not been formerly defined 

or studied.  

Statement of Problem 

Indirect questioning techniques such as RR, ICT, DICT, and newly developed 

SSC were developed to elicit more truthful responses to survey questions of sensitive 

behaviors, resulting in less biased estimates compared to estimates elicited from direct 

questioning. However, estimates from these techniques were often distorted since 

participants were non-compliant or failed to follow the instructions of the technique. For 

the RR model, methods were developed to estimate non-compliance and provided an 
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adjusted estimate of the sensitive attribute. These methods usually defined non-

compliance in terms of the self-protected no response where it was assumed that non-

compliant survey participants always answered in the negative regardless of the question 

selected. For ICT, DICT, and SSC non-compliance has not yet been formally defined or 

studied. Tsuchiya et al. (2007) determined that under-reporting of questions in the item 

list for the ICT, DICT, and SSC method resulted in underestimating the prevalence of the 

innocuous questions which resulted in a distorted estimate. Although studies examined 

the effects of under-reporting in the ICT (Blair & Imai, 2012; Corstange, 2009; Glynn, 

2013), no study has officially defined non-compliance for the ICT, DICT, or SSC. Nor 

has there been any study that examined under what conditions the random response (RR) 

techniques were less sensitive to non-complaint response bias compared with non-

random response (NRR) models such as the ICT, DICT, or SSC.  

Several factors have affected non-compliance rates of these models. For the RR 

models, eliciting truthful responses was a function of the probabilities associated with 

selecting the sensitive question--if chosen incorrectly this parameter could encourage 

non-compliant responding. For the ICT, DICT, and SSC models, eliciting truthful 

responses was a function of the total number of questions in the item list where a longer 

list of questions encouraged more honest responding since the likelihood of the 

participant endorsing all the items was very low. Although these confidentiality 

parameters were necessary in eliciting truthful responses, they increased variation. Thus 

there was a tradeoff between bias and variability that should be considered when 

selecting between these techniques. As a result, the number of sampled participants was 

another factor that needed to be considered in measuring the effects of non-compliance.  
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Purpose of Study 

 The study examined: 

 1. Under what conditions was the RR models more sensitive to non-

compliance compared to the item count technique (ICT), double item count technique 

(DICT), and single sample count (SSC)? Factors evaluated: 

a) Bias 

b) Efficiency 

c) Sample size 

d) Estimated prevalence of the sensitive attribute 

e) Confidentiality parameters  

i. probability of selecting the sensitive question (RR),  

ii. item list = the total number of innocuous questions in the 

item list (ICT, DICT, and SSC), 

iii. probabilities associated with the innocuous question(s) (ICT, 

DICT, and SSC)  

iv. correlations between the innocuous questions in the item list 

(ICT, DICT, and SSC) 

 2. Can an optimal number of innocuous questions included in the ICT, 

DICT, and SSC be found that maximizes compliance but minimizes additional variation? 

Factors evaluated 

a) Bias 

b) Efficiency 

c) Sample size 
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d) Estimated prevalence of the sensitive attribute 

e) Item list = the total number of innocuous questions in the item list 

(ICT, DICT, SSC)  

f) Probabilities associated with the innocuous question(s) (ICT, DICT, 

and SSC) 

g) Correlations between the innocuous questions in the item list (ICT, 

DICT, and SSC). 

Research Questions 

Q1 Are the indirect question techniques of the  ICT, DICT, and SSC models 
more efficient, in the presence of non-compliant reporting, as measured by 
their Mean Squared Error (MSE) compared to the MSE of the RR models 
using the unrelated question technique and forced-choice techniques? 

 
Q2 Is there an optimal number of innocuous questions in the item list for the 

ICT, DICT, and SSC techniques that will reduce non-compliance and 
minimize additional variation? 

 
Significance of Study 

 By studying the effects of distortion and the efficiency of estimates due to non-

compliant responding in models that utilized indirect responses, guidelines could be 

developed that describe under what circumstances certain techniques would be more 

beneficial than others. Guidelines would include sample size calculations necessary to 

determine efficient estimation as well as an optimal number of innocuous questions to be 

included in the item list for the ICT, DICT, and SSC techniques.  

Definitions 

 Efficiency. Used to compare statistical procedures and, in particular, refers to a 

measure of the optimality of an estimator by comparing the variances between estimators. 



 

 

22

A more efficient estimator requires fewer samples than a less efficient estimator. In 

general, ratios of Mean Squared Errors were used to estimate efficiency. 

 Item list. A series of innocuous survey questions included with a sensitive 

question that a survey participant can either endorse or not endorse.  

 Non-compliance. A type of response method where participants did not follow the 

instructions of a survey instrument and responded in a manner that was not truthful. 

Other terms include “cheaters” and “self protected no response.” 

 Self-protected no response. A type of non-compliance that was particularly 

evident in RR models and resulted when participants disregarded instructions and 

responded negatively to a question. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Background 

The chapter has been broken down into six main parts: (a) a review of benefits and 

limitations of random response (RR) models and non-randomr response (NRR) models 

compared with models using direct questioning technique (DQT); (b) an overview of the RR 

models, Warner’s unrelated question, and forced response; (c) an overview of the NRR 

models, item count technique (ICT), double item count technique (DICT), and single sample 

count (SSC); (d) an overview of the effects of non-compliance on estimators from RR and 

NRR models and how these are remedied; (e) the size effects of the item question list; and (f) 

an overview of the generation of correlated artificial binary data. 

Benefits and Limitations of Random 
Response and Non-random 

Response Models 
 

It has been well documented in the literature that estimates of sensitive topics 

from surveys utilizing the direct questioning technique (DQT) where participants are 

asked to respond to the sensitive question directly resulted in higher non-response (Fox & 

Tracy 1986; Tourangeau & Yan, 2007) and higher evasive response bias (Belli et al., 

2001; Fu et al., 1998; Greenberg et al., 1969; Tourangeau & Yan, 2007; Warner, 1965;). 

Tourangeau and Yan (2007), for instance, reviewed a series of studies comparing results 

from self-report illicit drug use to results from urinalyses and found that between 
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30%-70% of those testing positive to illicit drugs claimed they had not used drugs 

recently. In addition, Belli et al. (2001) found that 20% of participants of the American 

National Election Studies reported they had voted when they actually had not. This was 

determined after comparing self-report estimates to actual voting records. Fu et al. (1998) 

found that abortion rates were also under-reported. They compared self-report measures 

from the National Survey of Family Growth to data from abortion clinics and concluded 

that approximately 52% of total abortions were self reported.  

Random response (RR) and non-random response (NRR) techniques were 

developed in an attempt to encourage more honest responding by providing participants 

with an extra level of protection. In the RR model, protection was provided by having the 

participant respond to one of two questions, either the sensitive question or a second 

question, using a randomized device. Since the interviewer was unaware of the question 

selected and only provided the response, the survey participant was made to feel more 

secure in honestly answering the sensitive question if selected. In NRR techniques (i.e., 

ICT, DICT, and SSC), the sensitive question was embedded in a list of innocuous 

questions where the participant was only asked to state the number of questions that are 

true. Because RR and NRR models offer these additional protections, more honest 

responses were expected resulting in a less bias estimate of the sensitive attribute.  

The literature cites several studies where the estimate of the sensitive attribute 

was improved when a random response (RR) model or non-random response (NRR) 

model was used compared to direct response. Generally, improvements to estimators are 

determined if the technique produced a higher estimate compared to direct questioning 

when the behavior was socially unacceptable and a lower estimate when the behavior was 
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socially acceptable (Holbrook & Krosnick, 2010; Lensvelt-Mulders., Hox, van der 

Heijden, & Maas, C. J., 2005). Lensvelt-Mulders, Hox, van der Heijden, and Maas. 

(2005) performed an extensive meta-analysis on a variety of random response techniques 

and sensitive topics. The authors determined that random response techniques produced 

better prevalence estimates of sensitive attributes compared with conventional methods 

such as direct questioning. In addition, response rates were generally higher when 

randomized techniques were used (Clark & Densharnais, 1998). Holbrook and Krosnick 

(2010) performed an extensive analysis of 48 studies comparing estimates between the 

non-random response (NRR) ICT to direct questioning and found that 63% of the studies 

reported higher prevalence rates of the sensitive attribute from surveys utilizing the item 

count technique (ICT) compared to those using direct questioning. The authors went as 

far to suggest that the ICT may actually improve the validity of self-reports by reducing 

bias associated with social desirability pressures (Holbrook & Krosnick, 2010). In 

another study, Rayburn et al. (2003) compared estimates using the non-random response 

ICT against the direct questioning approach to measure base rates for anti-gay hate crime 

perpetration among college students. Results indicated higher prevalence rates of “getting 

into a fight with someone because they are gay OR destruction of property because they 

were gay” among the students surveyed using the ICT compared to the rates from those 

who were asked to respond directly. More recently, Holbrook and Krosnick (2010) used 

the technique to compare estimates of voter turnout rates compared with rates from the 

conventional direct question method. Fielding two types of surveys, telephone and self-

administered via a computer or over the internet, the authors concluded that voter turnout 

rates from the ICT were expectedly lower than those from direct questioning among 
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participants from the telephone surveys. Estimates from the computer survey were closer 

indicating that the manner in which surveys were administered (telephone vs. computer 

self-administration) potentially affect self-report measures. In an attempt to validate the 

item count technique (ICT), Tsuchiya et al. (2007) compared estimates using the ICT and 

direct question technique for the behaviors shoplifting and blood donation. These 

behaviors were selected since they were more prevalent in the population and are 

opposite in terms of socially acceptable behavior. The authors hypothesized that the 

validity of the ICT would be verified if the estimates of the less stigmatizing behavior 

from both techniques were similar and a higher estimate of the stigmatizing behavior 

occurred when the ICT was used. Results were conclusive where the prevalence rates of 

blood donation were similar between the two techniques and the prevalence rates of 

shoplifting were approximately 10% higher among the ICT. As a result, the authors were 

able to conclude that the ICT was practical for research of sensitive topics.  

Despite the effort to produce unbiased estimates of sensitive topics, random 

response (RR) and non-random response (NRR) models have several limitations 

compared to the direct questioning technique. For one, both models included additional 

sources of variation since a random device was used in the RR and an item list of 

innocuous questions was used in the NRR. In order to improve efficiency, each technique 

required larger sample sizes compared to models that use the direct questioning approach. 

As a result, when determining costs the experimenter must decide between accounting for 

less bias but additional variation and increased sample size using the RR or NRR models 

and a biased estimator with less variation using the direct questioning approach. 

Secondly, when using the RR technique, additional costs were acquired since a random 
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device--such as spinners, coins, and cards were necessary. Reproducibility was also an 

issue when using the random response (RR) technique since participant’s responded to 

questions in a random manner. For both techniques, instructions may prove difficult to 

follow and the participant may not respond appropriately, resulting in further distortion of 

the estimate. In addition, estimates from both techniques were not immune to non-

compliant responses which often times distort the prevalence despite the efforts of 

providing the participant with extra protection. Non-compliance was especially important 

since the purpose of these techniques was to encourage honest responding and therefore 

more accurate estimation. 

A review of the literature revealed several occurrences where these types of 

limitations resulted in mixed or problematic estimation. Shimizu and Bonham (1978), for 

instance, examined self-reported abortion rates from the 1973 National Survey of Family 

Growth (NSFG), a representative survey of women 14 to 44 years of age meant to 

produce national estimates for the non-institutional U.S. population. The survey used the 

unrelated question technique and fielded two separate samples of women to estimate 

abortion prevalence among married and unmarried women with children. Prevalence of 

the sensitive behavior from each sample differed significantly where the estimated 

prevalence from the first sample was 5.3 and the second was 0.6--a difference the authors 

reported as three times greater than the standard error of the difference. Although the 

randomized response technique produced a higher estimate than previously reported, the 

authors cautioned its use due to potential measurement errors and the additional variation 

associated with the randomized response technique. In another study comparing the 

effects of self-report between three survey techniques, self-administered, personal 
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interviewed, and the randomized response unrelated question technique. Wiseman et al. 

(1975) found that the prevalence rates from the randomized response technique of four of 

the five sensitive questions regarding racial prejudice, political and moral issues were 

similar to those from the personal interview technique. In addition, the prevalence rates 

from both methods differed significantly compared with the less liberal estimates from 

the sample of participants who self -administered the survey. In order to determine the 

level of confidence in the randomized model, Wiseman had included a supplementary 

question asking participants if they were confident that the random device protected their 

anonymity. Since 20% of the randomized response participants felt the interviewer knew 

what question they selected, Wiseman concluded that distrust in the randomized 

technique may have been one reason the random response estimates were similar to the 

estimates from the personal interviews. More recently, Petróczi et al. (2011) compared 

prevalence rates of Mephedrone usage between the forced response technique and the 

NRR single sample count technique (SSC) among 318 male volunteers in north Wales 

and urban areas of England. Volunteers completed two surveys with each technique--in 

random order. In addition, approximately half of the volunteers provided hair samples in 

order to estimate the actual prevalence rate. Prevalence of Mephedrone usage from the 

forced response model was 8.81 (95% confidence interval: 2.6 and 15.00), whereas 

prevalence rates from the hair samples was just 4%. Having not adjusted for non-

compliance rates, the authors concluded that self-protected or non-compliant responding 

potentially distorted their estimate. In a study that investigated intravenous drug use and 

receptive anal intercourse, Droitcour et al. (1991) compared the non-random response 

ICT to the direct question approach and found that estimates from the direct question 
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technique were higher for the entire sample. In another study Biemer and Wright (2004) 

used the item count technique (ICT) to estimate the prevalence of cocaine use and found 

that the prevalence estimates from self-direct questioning were also higher. In their 

conclusion, Droitcour et al. (1991) determined that the ICT is problematic for sensitive 

behaviors with low rates--such as drug use. This particularly occurs when the variability 

of the rate of “yes” responses taken from the sample of subjects with the additional 

sensitive question is inflated (Droitcour et al., 1991). Despite the effort to increase honest 

responses, RR and NRR techniques are not immune to estimate distortions as revealed in 

the literature when compared with the less costly more efficient direct response 

technique. The question then becomes how these types of distortions affect estimation 

when using the RR and NRR techniques and was one method more preferable in terms of 

reducing bias and increasing efficiency.  

Overview of Random Response Models 

 The random response (RR) model for proportions was first introduced in 1965 by 

Stanley L. Warner in his breakthrough paper, Randomized Response: A Survey Technique 

for Eliminating Evasive Answer Bias. The idea was to provide an alternative technique, 

other than direct questioning, that increased cooperation and reduce what Warner defined 

as "evasive answer bias". In his paper, Warner (1965) defined two types of “evasive 

answer bias.” The first, refusal or non-response bias, occurred when the survey 

participant refuses to answer the sensitive question. The second, response bias or bias due 

to falsification, occurred when the survey participant did not answer the sensitive 

question honestly. Warner does not distinguish between participants who refuse to 
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answer the question from those who choose to answer dishonestly. Instead, the method 

focused on reducing both types of biases collectively.  

 In Warner’s technique, instead of asking the survey participant directly if they 

possess the sensitive attribute, the participant randomly selected and responded “yes” or 

“no” to one of two complementary questions: 

 1. Are you a member of population A? (i.e., πs) 

 2. You are not a member of population A? (i.e., 1-πs) 

where population A is the population with the sensitive attribute (πs). 

Selection of the question is made via a randomized device with a known 

probability (p), controlled by the interviewee, such as tossing a die or selecting a card. In 

Warner’s model, a spinner was used which selected the first question with probability p 

and the second with probability 1-p. Since the survey participant controlled the device, 

the interviewer or researcher was unaware of the question selected, only the response 

given. Warner argued that the method theoretically increased honest reporting since the 

participant was less likely to respond to the sensitive question. The likelihood of 

answering the sensitive question depended on p. For instance, in the direct questioning 

technique, the probability of answering the sensitive question is 1 and therefore “yes” 

implies the participant possessed the sensitive attribute; whereas in Warner's RR 

technique, since the probability of answering the sensitive question is less than 1, a 

participant who reported ”yes” may or may not possess the sensitive attribute.  

 The model as defined by Warner (1965): 
  

Let 
 

  = the true probability of A  in the population, 
p = the probability the random device selects A , and  
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



norespondssubjectsampleiththeif

yesrespondssubjectsampleiththeif
X i 0

1
=  

 
Then 

 
1}={ iXP  =  p  + (1 -  )(1 - p ),  

0}={ iXP  = (1 -  ) p  +  (1 - p ),  

 
arranging the indexing of the sample so that the first 1n  report “yes” and the second ( n  - 

1n ) report "no", the likelihood of the sample was: 
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and the log of the likelihood was: 
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and necessary conditions on   for a maximum were 
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Then, supposing 
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p , the maximum likelihood estimate of   was 
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and the variance of ̂  was 
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Expression (2.6)  also set out the separate dependence of the variance of ̂  upon 

the choice of p . Identifying 
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From this, it is clear that the variance of   can be expressed as the sum of the variation 

due to sampling and the variation due to the random device. 

As is evident in expression (2.5),  is an unbiased estimator of π and since   is a 

maximum likelihood estimator, when n is large, can be assumed normally distributed. As 

a result, confidence intervals can be formed as usual. 
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 The selection of the parameter p was crucial to the model. Since the variability of 

π can be decomposed into the variability due to the sample and the additional variability 

due to the selection of p (2.7), it is not hard to see that as p moves from the endpoint (i.e., 

either 0 or 1) toward 0.50, the additional variation due to the parameter approaches 

maximum. Warner (1965) pointed out that this additional variation is necessary since in 

theory its purpose was meant to increase participant cooperation which in turn reduced 

evasive answering bias. However, with the additional variation, the precision of the 

estimate as compared to the estimate from direct questioning declined unless the sample 

size using the RR technique was increased. For instance, as demonstrated by Warner 

(1965), suppose π = 1/2 and p = 3/4, then the variance shown in (2.6) is 1/n. For an 

estimate with a standard deviation of 0.05, this implies a sample size of 400; whereas in 

the direct questioning technique (equivalent to p = 1), would take a sample of 

approximately 100 subjects. Thus, in Warner's model, although p was meant to increase 

cooperation and, therefore, reduce evasive answer bias, it came at a cost since p also 

increased model variability. Therefore, when using the RR technique, an experimenter 

must decide if the reduction in bias is worth the additional cost of variation. 

 In his original paper, Warner (1965) demonstrated that in certain situations the 

RR technique was superior to the technique of direct questioning. Under the assumption 

of truthful reporting when the RR technique was used and “less truthful” reporting when 

the direct questioning technique was used, Warner compared the mean squared errors of 

both techniques in a simulation study. For estimates of the direct questioning technique, 

Warner allowed for a combination of different levels of truthfulness from participants 

with the sensitive attribute (proportion of truthful responses ranged from 50% to 100%) 
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as well as those without the sensitive attribute (proportion of truthful responses ranged 

from 50% to 100%). For estimates of the RR technique, only truthful responses were 

assumed. Simulations for both techniques were calculated for selected values of p (0.60, 

0.70, 0.80, 0.90), fixed sample size (n = 1,000) and a sensitive prevalence of π = 0.50 and 

of π = 0.60. In his demonstration, Warner supposed a group of participants agreed to be 

surveyed. 

 For estimates of the direct questioning technique, he defined: 

T = Probability that the members of group A (sensitive population) tell the truth  

T = Probability that the members of group B (complement population) tell the truth 

 
Recalling: 
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then the conventional estimate of the true population proportion ̂  was 
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and the expected value, bias and variance given by (Warner, 1965) 
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Under the assumption that RR participants told the truth, Warner’s simulations demonstrated 

that the RR technique was more efficient if it is expected that between 30% to 50% of direct 

questioning participants in either population did not tell the truth.  

Greenberg et al. (1969) demonstrated that despite Warner’s effort to reduce evasive 

response bias, in cases of more stigmatizing behaviors (i.e., π = 0.05 or π = 0.10) where the 

probability of the random device low (p = 0.05, p = 0.20), unless false responding was high 

(i.e., between 25% and 50% of participants not responding truthfully), Warner’s technique 

proved less efficient compared to the direct question technique. Greenberg et al. (1969) 

selected prevalence levels that more accurately reflected socially stigmatizing behaviors (i.e., 

induced abortion, drug addiction) compared to the attribute rates selected by Warner (π = 

0.50 and of π = 0.60) - which are more descriptive of less stigmatizing activities such as 

voting behaviors. As pointed out by Greenberg et al. (1969), if membership into Group A 

(i.e., π ) was small (i.e., π = 0.05) and the selection of the sensitive question was also smaller 

(i.e., p = 0.05), holding the sample size fixed at 1,000 (i.e., no non-response bias) and 

assuming participants answer honestly, Warner’s technique was only 1/2 as efficient as the 

technique of direct questioning and only 1/10 as efficient if p = 0.20. If, on the other hand, 

members of group A responded truthfully only 90% of the time, Warner’s technique was 

2/3rds as efficient as direct questioning when p = 0.05 and 1/7th as efficient when p = 0.20. 

As evasive responding increased, Warner’s technique became superior. For instance, if 25% 

of members of group A do not respond honestly, Warner’s technique was two times as 

efficient compared with the direct questioning technique when p = 0.05 and 1/2 as efficient 

when p = 0.20. At 50% falsification, Warner’s technique was six times as efficient for p = 
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0.05 and 4/3rds as efficient for p = 0.20. Thus, for socially stigmatizing behaviors with 

smaller prevalence rates, Greenberg et al. (1969) demonstrated that the Warner technique 

only achieved superiority when a large proportion of members were expected to respond 

dishonestly. Because of this, the authors concluded that a more efficient random response 

(RR) technique was necessary since, in the presence of both non-response and/or large 

response falsification, using the direct questioning technique to estimate the sensitive 

attribute was inappropriate. As a result, the authors presented the theoretical framework of 

the RR model developed by Walt A. Simmons (Horvitz et al., 1967) which was known as the 

unrelated question technique (UQT).  

Recall, that both questions posed in the Warner model:  

1. Are you a member of population A (i.e., πs)? 

2. You are not a member of population A (i.e., 1 - πs)? 

referred to the sensitive population, πs. Because of this, participants may not cooperate as 

fully as Warner believed. For instance, if a member of population A were to select 

question 2, they may feel less secure in responding “no” since this would imply they were 

a member of the sensitive population. To address this issue, Simmons suggested posing 

the sensitive question with an unrelated or innocuous question such as, “were you born in 

the first half of the year?,” “are you left handed?,” or “were you born in the state of 

Colorado?” Thus, the two questions posed in the UQT were: 

 1. You are a member of population A, (i.e., πs)  

 2. You are a member of population Y, (i.e., πns) 

As was the case in Warner’s model, the participant responded to a question they selected 

using a random device (such as Warner’s spinner). However, the difference, if the second 

question was selected, a participant who was a member of population A, would feel less 
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embarrassed responding “no” since population Y was independent or unrelated to population 

A.  

Another difference between the unrelated question technique (UQT) and Warner’s 

technique was the additional parameter, πns which also must be estimated. This could be 

done in two ways: (a) where πns is unknown (i.e., were you born in the state of Colorado and 

(b) where πns was known or approximately known (i.e., were you born during the first half 

of the year?). The former case is discussed first.  

In the case of estimating unknown πns two independent non-overlapping samples 

were necessary. According to Greenberg et al. (1969), sample sizes did not need to be 

equal and could actually be made unequal to produce more efficient estimation. 

Participants from each sample were provided with the same two questions, the sensitive 

question and an innocuous question. Two random devices, one for each sample, were 

used to select between the questions where the probability of selecting the sensitive 

question in the first sample, p1, is different from the probability of selecting the sensitive 

question in the second sample, p2. 

Let 1p  be the probability that statement A was selected by the random device in 

the first sample and let 2p  be the probability statement A was selected by the random 

device in the second sample where 21 pp  . Similarily, let )(1 1p  be the probability that 

the random device selected statement Y in the first sample, that )(1 2p  be the 

probability of selecting statement Y in the second sample. 

 Under the assumption that respondents report with 100%  truthfulness, let 
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    nss pp  )(1= 11                                                                            (2.12) 

 
 
Similarly, let 

 
sampleondtheinreportedbewillanswersYe'athatyprobabilitthe sec=2 

 
     nss pp  )(1= 22                                                                          (2.13) 

 
 
One can construct the liklihood function as was done in Warner’s model above. Likewise 

the identical value was also obtained by solving (2.12) and (2.13) for (πs)u where u 

distinguished the estimate of the UQT 
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A similar expression was dreived for ns  as 
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1n  was the total number of “yes” responses from sample 1 and likewise, '
2n  was 

the total number of “yes” responses from sample 2. 
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 Thus, the sample estimate becomes: 
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The observed proportions, 1̂  and 2̂ , are distributed as binomial random 

variables with parameters ),( 11 n  and ),( 22 n , respectively. It therefore follows that the 

expression in (2.16) was unbiased and its variance was given by: 
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Estimates of the variation were made by substituting 1̂  and 2̂  in expression (2.17). 

Greenberg et al. (1969) outlined a method in which the selection of the model 

parameters p1, p2, πns, n1, n2 can be made in such a manner as to attain a variance as close 

to the binomial distribution as possible. Note that the denominator of (2.16) was very 

small when p1 is selected to be close to p2, which would produce an estimate of πs greater 

than unity. In order to ensure this does not happen, Greenberg et al. (1969) suggested an 

optimal choice of the randomized probabilities by selecting a p1 and p2 as far from each 

other as possible. This is best accomplished when p1 + p2 = 1 where such a choice has the 

additional benefit of affecting each sample in an identical but complementary manner by 

the randomized device. At the same time, the individual selection of each probability 

parameter should be made as far as possible from 0.50 which minimizes the additional 

variation due to both randomization devices. Greenberg et al. (1969) recommended 

selecting p1 at 0.80 or 0.20, + 0.10, which, in turn produces a similar but complementary 
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p2. Since the selection of both parameters would be closer to the parameter endpoints (0, 

1), the additional variation was minimized. Of course, first and foremost, both parameters 

needed to be selected in such a way as to encourage honest responding. In addition, 

selection of prevalence of the innocuous behavior, πns, should also be considered and was 

based on the expected prevalence of the sensitive behavior. Greenberg et al. (1969) 

recommended selecting πns on the same side of 0.50 as the expected prevalence of the 

sensitive behavior, πs but as far from 0.50 as possible--again in an effort to minimize 

variation. However, when selecting πns, the researcher must keep in mind compromising 

the cooperation of the survey participant. If the expected prevalence of the sensitive 

behavior were small, say 0.05 and the innocuous behavior was also small, say 0.10, the 

likelihood of a “yes” response would therefore be small. As a result, the participant with 

the sensitive attribute could feel less secure in responding ”yes”--since a ”yes” response 

appears suspect. In determining optimal sample sizes, Greenberg provided a formula 

based on the selection of the model parameters p1, p2, and πns. 

Although selecting the parameters in this fashion was meant to minimize 

variation, Greenberg noted that compromising the cooperation of the participant must be 

the researcher’s primary concern. If for instance, a selection of p1 closer to 0.50 was 

sufficient to guarantee cooperation, then selecting a p1 in accordance to recommendations 

above could compromise cooperation and encourage evasive answering. As a result, 

model parameters should be selected in a manner that maximized both confidentiality and 

statistical efficiency. 

In order to compare the loss or gain of introducing the unrelated characteristic into the 

RR model, Greenberg et al. (1969) compared the MSE from the unrelated question 
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technique (UQT) to the MSE from the Warner technique under the assumption of 

differing levels of non-compliance or not completely truthful reporting. In their 

simulation study, Greenberg et al. (1969) assumed non-compliance among the sensitive 

population (population A) and defined non-compliance occurring exclusively among 

members of population A who respond “no” when in actuality should have responded 

“yes.” Members of population Y were assumed to tell the truth. The simulation 

parameters were defined as follows: 

Let: 

]21[= sampleorsampleeitherinUQTintruththetellsAGroupofMemberPrTau

][= techniquesrWarneintruththetellsAGroupofMemberPrTaw   

where 10  uTa  and 10  wTa , and where wu TaTa   

 

From the statements above, note that Greenberg et al. (1969) assumed respondents of the 

Warner technique were either less likely or equally likely to respond truthfully compared 

with respondents of the UQT. This assumption was justified by the authors since in 

theory, the UQT contained the innocuous second question which, unlike the Warner 

technique, did not refer to the sensitive attribute. As a result, it was expected that a higher 

proportion of UQT respondents who are not members of population Y would respond 

truthfully (i.e., “no”) to the second innocuous question compared with members of 

population A (i.e., sensitive population) who selected the second question in the Warner’s 

technique--since a response of “no” to this question implied membership into population 

A. 

Under these assumptions, equation (2.12) and (2.13) became: 
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'
1                                                                    (2.18) 
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Similarly, let 
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and the expected value of the estimate in (2.16) was 
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The bias in this estimate was 
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In the case of Warner's estimate, the authors assumed non-compliance only 

occurred for members of population A. In this case, since both questions referred to the 

sensitive attribute, false reporting was assumed in the negative when members were 

asked the sensitive question (i.e., Are you a member of population A?) and the 

affirmative when members were asked the complementary question (i.e., You are not a 

member of population A?). Respondents who were not members of population A were 

assumed to respond truthfully. Thus, the probability of responding in the affirmative for 

the Warner method was: 
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Note, the value of (2.22) would be used as 
n

n1  in (2.4) to obtain ws )ˆ( . Therefore 

the bias was measured by: 
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Note that for equations (2.21) and (2.23) in the case of truthful reporting (i.e., Tau 

and Taw are both 1), the bias was 0; whereas in the case of less than truthful reporting 

(i.e., Tau and Taw are both < 1) the bias was negative. This implied that when non-

compliance was defined in these terms, both techniques underestimated πs. 

Using these equations, MSEs were simulated and efficiency compared between 

the two techniques by the authors for decreasing values of Tau and Taw (1.00, 0.90, 0.80, 

0.70, 0.60, 0.50), fixed sample size of 1,000 (where nw = 1,000, n1uqt and n2uqt were 

selected optimally), πs = 0.20, and pw = p1uqt = 1-p2uqt = 0.20. Results indicated that when 

the amount of truthful reporting was equal or more likely to occur in the unrelated 

question technique (UQT) compared with Warner’s technique, UQT was superior. Since 

MSE = (bias)2 + variance, as demonstrated by the authors, as the amount of untruthful 

reporting increased, so too did the contribution by the bias to the MSE. The authors 

therefore concluded that if the UQT improved even slightly more truthful reporting 

compared to Warner’s technique, the UQT would result in a more efficient MSE. 
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Suppose instead, the experimenter posed a second question with a known or 

approximately known population proportion, πns. Since πns would be known, only one 

sample would be sufficient to estimate πs. This in turn would reduce costs as well as the 

additional variability necessary in estimating πns. Examples of such questions would be, 

“were you born in the second half of the year?” or “are you left handed?” Prevalence 

estimates of these questions would be obtained from other data sources, such as the 

Census. Since only one parameter were to be estimated, using (2.12) define: 

 
sampletheinreportedbewillanswersYe'athatyprobabilitthe =1  

 nss pp  )(1= 11                                                                                (2.24) 

 
 
and the maximum likelihood estimator and sample variance as defined by Greenberg et 

al. (1969) were: 
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Note, estimates would be obtained by substituting 1̂  in each equation. 

 Greenberg et al. (1969) demonstrated that when the proportion of πns was known, 

the efficiency of the UQT estimate was superior to the estimate from both Warner's and 

the UQT when πns was not known. However, this assumed that known πns was without 

error, which in many cases was not accurate. For instance, an estimate using Census data 

of the population born during the first half of the year could include the entire U.S. 
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population. If the sample were drawn from residents of a specific state, say Colorado, this 

proportion may differ. As a result, the deviation from the true πns introduced additional 

bias into the estimator: 

Defining *
ns  as unrelated question technique (UQT) estimate of ns , where *

ns  

was obtained from another data source such as the Census. Assume further that 

Cnsns *=  . Then (2.25) becomes: 
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Continuing as before, with uTa  being the probability that respondents in the sensitive 

population responded truthfully, 
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where 

s  is the bias due to untruthful reporting of the sensitive characteristic and 

ns  is the bias due to the erroneous estimation of ns  from sources external to the 

survey.  
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Greenberg et al. (1969) presented findings that demonstrated when πns is approximately 

known, underestimating πns resulted in a more efficient estimate compared to the Warner 

estimate.  

Theoretically estimating πns in the unrelated question technique (UQT) by either 

use of two samples or using outside data was never necessary if the unrelated question 

were incorporated into the randomized device. This technique was first suggested by 

Richard Morton of the University of Sheffield (Greenberg et al., 1969) and became 

known as the Forced Choice Technique (FCRT). The technique uses three statements, 

each selected with separate probabilities that add to unity: p1 + p2 + p3 = 1. The first 

statement was the sensitive question, and was selected with probability p1, where the 

participant would be instructed to answer the question honestly. The second and third 

statements were non-sensitive statements, selected with probability p2 and p3, where 

participants were forced to respond “no” or “yes,” respectively. For instance the sum of 

two dice could be used to determine the appropriate response where, if a sum between 5 

and 10 were observed, survey participants would be instructed to respond to the sensitive 

question with probability 3/4ths. If instead the sum were between 2 and 4 the participant 

would be instructed to respond “yes” with probability 1/6th, and if the sum were greater 

than or equal to 11, the participant would be instructed to respond “no” with probability 

1/12th. From this, it follows that: 
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and the maximum likelihood estimator of the s  given ns  was 
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and the maximum likelihood estimator of the sample variance was: 
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When πns was incorporated into the randomized device, it would be truly known. 

As a result, no additional variation or bias would be present in the estimate. Because of 

this, the FCT, which was a derivative of the UQT, was the most efficient of the RR 

techniques (Fox & Tracy, 1986; Greenberg et al., 1969). 

The unrelated question technique (UQT) and forced choice technique (FCT) 

therefore improved on the RR model first developed by Warner. Greenberg et al. (1969) 

demonstrated that these techniques potentially reduced evasive response bias that is 

present in both the Warner’s technique and direct questioning, since the additional 

questions used in the UQT and FRT was unrelated to the sensitive attribute. This in turn 

encouraged and therefore theoretically increased more honest reporting which decreased 

bias. In addition, the variation of the UQT and FRT proved more efficient than Warner’s 

technique even in the presence of less than truthful reporting. As a result, the UQT and 

FCT were two of the more popular techniques used to estimate sensitive attributes.  
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Although random response (RR) models were widely used, they had limiting 

factors. For one, the technique can produce prevalent estimates outside the (0, 1) range. 

This was particularly true of the unrelated question technique (UQT) when model 

parameters are not defined properly (Greenberg et al., 1969). Secondly, RR models must 

account for the additional variation due to the randomized device and therefore, in order 

to produce as efficient estimates as direct questioning, sample sizes were generally larger. 

Additional costs were also necessary since a randomized device was used--such as dice, 

spinners or selecting cards. random response (RR) models contained instructions that 

were more difficult to follow compared to surveys that ask a question directly. Since 

subjects found the instructions difficult to follow, misreporting would result. 

Reproducibility was also an issue with RR models since responses were always 

randomized. Lastly and more importantly despite their best efforts, evidence of non-

compliance continued to plague the estimates causing bias and inefficiencies. 

Overview of Non-randomized 
Response Models 

 
 A second class of indirect response techniques was termed non-randomized 

response (NRR) models. These models utilized an even more evasive response method 

where survey participants never directly responded to the sensitive question. The item 

count technique (ICT) was probably the most widely used of the NRR models. Also 

referred to as the list technique and more commonly, the unmatched count technique 

(UCT), it was empirically demonstrated in a study by Dalton et al. (1994) but was first 

introduced by Miller (1984). The technique was closely related to the random response 

(RR) UQT where participants were randomized into two groups or samples. In the ICT 

however, participants from the first sample, referred to as the intervention group, were 



 

 

50

given an item list of innocuous questions including the additional sensitive question and 

the second sample, referred to as the control group, were given the same list of innocuous 

questions excluding the sensitive question. Participants were asked to read over each of 

the questions in the item list and respond by writing down the count of the total number 

of questions in the item list for which they belong. For instance, if three questions were 

asked in the item list, “I am left handed,” “I was born in the month of November,” and “I 

have utilized Performance Enhancing Drugs (PEDs),” and the participant belonged to two 

of these groups, would respond with “2.” As a result, the sensitive behavior would never 

be tied to the participant’s response since it was not known for which of the two 

questions the participant was a member. Thus, the expectation was that survey 

participants would answer more honestly.  

Using this technique, what was referred to as the “difference-in-means” estimate 

was used to estimate the prevalence of the sensitive attribute (Glynn, 2013). By 

subtracting the mean number of item responses between the two samples, an estimate of 

the proportion with the sensitive attribute was made since the average number of item 

responses from the sample that were not asked the sensitive question would differ by the 

estimated proportion of those with the sensitive attribute from the sample that was asked 

the sensitive question. 

For ICT, the difference in means estimator was an unbiased estimate of s  when 

the following two assumptions were met (Blair & Imai, 2012; Glynn, 2013): 

Letting: 
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for Jj 1...=  non-sensitive questions in the item list under treatment group status t = 1 

(intervention group receiving the sensitive question in the item list) and t = 0 (control 

group receiving only the non-sensitive questions in the list) 

Assumption 1: (No design effect). For each Ni 1.....=  assume  
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Assumption 2: (No liars). For each Ni 1....=   assume  

 
 .=(1) *

1,1,  jiJi ZZ                                                                                   (2.33) 

 
 

 where *
1, JiZ  represents a truthful answer to the sensitive item.  

 
 

Assumption 1 (2.32) assumed that the presence of the sensitive question in the list 

set of innocuous questions did not change the response patterns to the non-sensitive items 

between the intervention and control samples. It made no assumption about whether or 

not responses to the set of innocuous questions were truthful, only that the responses 

were similar between the two groups of participants (Blair & Imai, 2012). Assumption 2 

(2.33) on the other hand assumed that participants responded truthfully to the sensitive 

question. 

Given Assumptions 1 and 2, and defining Jj 1....=  non-sensitive questions for 

the tni 1.....=  subjects in the t = 0,1 group, where 0 indicates the control group not 

receiving the sensitive question and 1 indicates the intervention group receiving the 

sensitive question, then 
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was the sum of the Jj 1....=  non-sensitive questions for the 11.....= ni  subjects in 

intervention group, 
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was the sum of the “yes” responses to the sensitive question for the 11.....= ni  subjects in 

the intervention group and, 
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was the sum of the Jj 1....=  non-sensitive questions for the 01.....= ni  subjects in the 

control group. 

 An unbiased estimator of s  was therefore defined as: 
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The variance of s̂  was 
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Note that the variance of the estimator (2.38) was quite high, especially when the 

correlation between the sensitive question and the item list of non-sensitive items was 

positive. The correlation between the sensitive item and the item list of non-sensitive 

questions was the measure of the design effect (Blair & Imai, 2012; Glynn, 2013). If the 

covariance or correlation were zero no design effect was apparent, and responses to the 

innocuous item list were assumed similar between the two samples. If the correlation or 

covariance were positive or negative then a design effect was assumed and the responses 

to the non-sensitive items differed between the two samples. Although Blair and Imai 

(2012) derived a rudimentary statistical procedure to detect the presence of a design 

effect, no other studies have been done that either adjusted or explored the effects of the 

design effects in the presence of non-compliance (Blair & Imai, 2012). Another reason 

for high variability of the ICT was due to the fact that only one sample of subjects were 

asked the sensitive question (Glynn, 2013). Another more efficient version of the ICT 

was the double-lists version of item count (DICT; Droicteur et al., 1991; Glynn, 2013). 

The DICT reduced variability considerably by doubling the number of participants 

answering the sensitive question. For this technique, the study defined s1 as the set of 

participants from the first sample and s2 as the set of participants from the second sample. 

The method used two separate item count estimates taken from each sample A
sX 1  and A

sX 2  
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and B
sX 1  and B

sX 2  where A
sX 1  contained a series of innocuous questions along with the 

sensitive question and A
sX 2  contained the same series of innocuous questions excluding 

the sensitive question. Likewise for B
sX 2  and B

sX 1 , which contained a different item list of 

innocuous questions. Sample 1 then responded to item list A
sX 1  and B

sX 1  and Sample 2 

responded to item list A
sX 2  and B

sX 2 . Under Assumptions 1 (2.32) and 2 (2.33), an 

unbiased estimator of s  was made: 

Letting: 
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and defining: 
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as the sum of the Jj 1....=  non-sensitive questions for the slni 1.....=  subjects from the 

sample 1,2=l  receiving the sensitive question from list BAK ,= , 
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as the sum of the “yes” responses to the sensitive questions for the slni 1.....=  subjects 

from the sample 1,2=l  receiving the sensitive question from list BAK ,=  and, 
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as the sum of the Jj 1....=  non-sensitive questions for the slni 1.....=  subjects from the 

sample 1,2=l  not receiving the sensitive question from list BAK ,= . 

than the unbiased estimators of A
s  and B

s  were: 
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where 1sn  was the number of participants in the first sample receiving the sensitive 

question in list A (likewise receiving the list of innocuous questions in list B) and 2sn  

was the number of participants in the second sample receiving the sensitive question in 

list B (likewise receiving the list of innocuous questions in list A). 

 Averaging these equations, the unbiased estimator for s  was defined as: 
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If equal sample sizes were assumed (i.e., nnn ss == 21 ), equal weights to the 

average of the estimators in (2.42) and (2.43), and defining K
jsK

K
jsK XX ,1,   to be the 

implied unobservable differences between the lists (Glynn, 2013), then the variance of s̂  

was: 
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If Assumption 1 (2.32) was met (i.e., no design effect) then the covariances in 

(2.46) and (2.47) were 0 and the variance of the estimator was (2.45). Note that this 

variance includes a correlation or covariance between the item lists. If in fact, the two 

item lists were highly correlated, variation of the estimator would be further reduced 

using the double item count technique (DICT; Glynn, 2013). By doing this, it is easy to 

see that the variance of the DICT (2.45) was more efficient then the variance of the item 

count technique (ICT; 2.38). 

More recently, a fuzzy response model, the single sample count (SSC) technique 

was developed by Petróczi et al. (2011) in an attempt to simplify and provide a more 

economical form of the ICT. Like the relationship between the random response (RR) 

unrelated question technique (UQT) and FRT, in Petróczi’s model, the need for an 

additional sample was eliminated by including innocuous questions in the item list with 

known probabilities of 0.50. The model was made more efficient since the need to 

estimate prevalence of the innocuous behaviors was eliminated and instead all survey 

participants would be used to estimate the sensitive behavior. Examples of innocuous 

questions used in the SSC would be “My birthday is in the first 6 months of the year,” 

“My house number ends with an even number,” and “The last digit of my telephone 

number is even.” Since the number of innocuous questions in the item list would be 

known and have a 50-50 chance of endorsement, the estimator of the sensitive behavior 

could be easily derived by simply subtracting the proportion of endorsed items in the 

sample from the expected value of the endorsed items from the innocuous list of 

questions:  

Let  
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Setting 'n  to nm  and 
2

1
=p  for X  and 'n  to n  and sp =  for Y , if 5>` pn , 

5>)(1' pn  , and ( 0.979<<0.021 s ), then the general rules required to approximate a 

binomial distribution with a normal approximation can be made where: 
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Let the sum of all “yes” responses in the sample be defined as 
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Then the maximum likelihood estimator of s  would be: 
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Thus, s̂  was an unbiased estimator of s . 

The variance of s̂  would be 
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Since s̂ was a maximum likelihood estimator, point estimates, and confidence intervals 

of the sensitive attribute can be made as usual.  

Even though the utilization of the ICT and DICT has grown, the methodological 

research on the topic remained low. After a thorough review of the literature, there 

appeared to be no study--simulated or otherwise--comparing the efficiency of the 

technique to other techniques--such as randomized response or direct questioning. Recent 

methods that have improved efficiency of the technique included analysis by 

subpopulations or domains (Tsuchiya, 2005), modification in the manner in which the 

sensitive item was included (Chaudhuri & Christofides, 2007), adjustments to the 

difference in means estimator (Glynn, 2013) and the development of new nonlinear least 

squares and maximum likelihood estimators for multivariate analysis (Blair & Imai, 

2012; Corstange, 2009; Imai, 2011). Since the SSC has been only recently developed, 

statistical efficiency between other techniques has not been formally explored.  
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Effects of Non-compliance in Random 
Response and Non-random 

Response Models 
 

A review of the literature indicated that the primary focus of non-compliance in 

randomized response model has been to develop methods that estimated or adjusted for 

non-compliance resulting in an adjusted estimate of the sensitive behavior (Böckenholt et 

al., 2009; Böckenholt & van der Hejiden, 2004, 2007; Clark & Desharnais, 1998; Cruyff 

et al., 2007; Ostapczuk et al., 2010; van den Hout et al., 2010; van den Hout & Klugkist, 

2009). In all cases, no assumptions were made regarding the intentions of the participants 

who are non-compliant. Clark and Densharais (1998) pioneered the efforts by extending 

the random response model to include estimates of the sensitive behavior prevalence and 

non-compliance when one question was used to measure the sensitive attribute. The 

model estimated three distinct population parameters: Honest yes (i.e., the proportion of 

compliant and honest “yes” participants, πs), Honest no (i.e., the proportion of compliant 

and honest “no” participants, β) and SP (i.e., the proportion of non-compliant participants 

who respond negatively regardless of the randomized device, λ). A fourth proportion of 

participants, those who were non-compliant and responded “yes,” were assumed 

negligible. The technique required two samples of subjects following the method 

described by Greenberg et al. (1969) where the selection of the random device for each 

sample was different but complementary. Using maximum likelihood estimation, closed 

form solutions of the parameters were provided. The authors also included a likelihood 

ratio test used to determine if the proportion of non-compliance was significant. In 

addition, power calculations used to determine optimal sample sizes that were meant to 

minimize non-compliance and thus reduce response bias were provided and discussed. In 
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taking two separate samples, Clark and Densharais (1998) assumed that the level of non-

compliant behavior was the same for each sample. In addition, using the equations 

provided by the authors, parameter estimates could fall outside the acceptable range of (0, 

1). In order to improve on this limitation, using a medication non-adherence study, 

Ostapczuk et al. (2010) provided maximum likelihood estimates based on the more 

general family of multinomial models. Terming this the “cheating detection model” 

(CDM), the authors included an additional benefit of testing the significance of non-

compliance in more complex models that include moderator variables. Using the CDM, 

Osapczuk provided estimates of the sensitive attribute based on the significance of the 

non-compliance. When non-compliance was not significant, asymptotic unbiased 

estimates of the sensitive attribute would be made; whereas when non-compliance was a 

significant factor, lower and upper bounds of the sensitive attribute would be made 

assuming the estimated proportion of non-compliant participants either all engaged or did 

not engage in the sensitive behavior.  

Both Clark’s and Osapczuk’s models provided adjusted estimates of the sensitive 

behavior and non-compliance for random response models when only one sensitive 

question was used. Other methods were developed using several surveys from the 

Netherlands that included a series of randomized response questions--using a variety of 

randomized response techniques including Kuk’s (1990) method and the forced choice 

technique to estimate specific sensitive behaviors that included social security regulation 

infringements and social welfare fraud. Surveys were fielded in 2000, 2002, and 2004. 

Each survey contained a series of questions regarding the specific sensitive behaviors 

(i.e., social security fraud) that were ordered from less to more severe violations. 
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Böckenholt & van der Hejiden (2004, 2007) used the surveys and assumed an underlying 

non-compliant scale for the set of random response questions. They estimated non-

compliance using an item-response model that incorporated a person level estimate based 

on Fox (2005). In their 2004 study, they distinguished between three classes of item 

response models, a model that assumed homogeneous compliance among participants, a 

model that allowed for individual variation of compliance between participants and a 

third model that also allowed for individual variation between participants but assumed a 

subset of non-compliant behavior. The authors developed techniques using maximum 

likelihood estimation and generalized ratio tests to show that the third model--adjusting 

for respondent variation and non-compliance--produced the best fit. Böckenholt & van 

der Hejiden (2007) extended this model to include mixture components: a component for 

individuals who followed the instructions of the randomized model and another 

component for individuals who were non-compliant. Using the 2002 and 2004 surveys, 

the authors concluded that mixture-item response models produced more accurate 

estimates of non-compliance and a better fit compared with item response models that did 

not account for non-compliance. Böckenholt & van der Hejiden (2007) used the 2000 

survey to introduce a log linear model that provided adjusted estimates of the sensitive 

attribute prevalence as well as an estimate of non-compliance. They further developed 

this model by incorporating semi-parametric item response models that follow directly 

from latent class models (Böckenholt et al., 2009) using a dual design for direct 

questioning and the forced-choice randomized response technique. By adjusting for non-

compliance and person level variables based on a series of questions measuring attitudes 

toward the sensitive domain, the authors were able to produce higher prevalence 
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estimates of the sensitive behavior compared with models that did not adjust for these 

components. In addition, the model adjusting for non-compliance produced better fit 

statistics. By including person level attitude measures as well as non-compliance, the 

authors concluded, estimates of the sensitive attribute can be improved. van den Hout and 

Klugkist (2009) specified various models according to assumptions regarding non-

compliance in an effort to extend the models introduced by Böckenholt & van der 

Hejiden (2007). Using the methods described in Rudas, Clogg, and Lindsay (1994), the 

authors used decreasing values of a goodness of fit test statistic and Bayesian inferences 

to determine the component weights. They extended the mixture component model to 

include Bayesian inference in estimating extended models and select between them. Non-

compliance rates estimated using the Bayesian inferences were similar to those using the 

mixture component item-response models. As a result, the conclusion from the review of 

the literature in regards to non-compliance in random response model was to utilize 

methods that provided adjusted prevalence estimates of both the sensitive attribute and 

non-compliance. In general, these methods produced better fit statistics compared to the 

models that did not adjust for non-compliance. However there are no studies that 

demonstrated how different levels of non-compliance distorted prevalence estimates of 

the sensitive behavior especially between the UQT and FCT.  

For the ICT, DICT, and SSC several studies have suggested that these techniques 

were not immune to non-compliant reporting and in effect, the techniques have produced 

estimates that appear to be under reported (Biemer & Wright, 2004; Droitcour et al., 

1991; Holbrook & Krosnick, 2010; Kuklinski, Sniderman, et al., 1997). Tsuchiya et al. 

(2007) considered under-reporting a potential factor in the instability of estimates using 
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ICT. Under-reporting occurred when participants did not fully endorse the number of 

innocuous items for which they were members. As a result, the estimated prevalence of 

the sensitive attribute was under-estimated. In their study, Tsuchiya et al. (2007) 

determined that the prevalent rates of innocuous item lists questions asked in a direct 

questioning method were higher than corresponding rates from the same item lists asked 

in the item count technique (ICT) format. One reason highly cited in the literature for 

under-reporting in the ICT and DICT were the prevalence rates of each innocuous 

question in the item list (Blair & Imai, 2012; Corstange, 2009; Glynn, 2013). For the 

single sample count technique (SSC), this would not be an issue since prevalent rates of 

each innocuous question were approximately 0.50. However, literature regarding under-

reporting in the SSC has not yet surfaced since the SSC was a new technique. Under-

reporting was largely due to what is termed as “ceiling” or “floor” effects (Blair & Imai, 

2012; Glynn, 2013; Tsuchiya et al., 2007). These effects occur when the item list of non-

sensitive questions contained either a large proportion of highly prevalent items (ceiling 

effect) or an item list of non-sensitive questions with low prevalent items (floor effect). In the 

former case, since a high proportion of respondents possessed all characteristics on the item 

list, survey participants who possess the sensitive trait, could feel exposed and would 

therefore misreport their membership in the sensitive group. Likewise, for the latter case, 

since a high proportion of respondents possessed no characteristics of innocuous items, the 

survey participant with the sensitive attribute could again feel exposed, and under report their 

membership in the sensitive group. Blair and Imai (2012) demonstrated how ceiling and floor 

effects result in an under estimate of the sensitive attribute. This type of under-reporting 

membership in the sensitive group could be seen as non-complying. Kuklinski, Cobb, et al. 

(1997) had such a situation occur. In a study that examined non-southern attitudes toward 
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racial profiling using the ICT, a large portion of the control sample reported “yes” to all of 

the non-sensitive questions. Since subjects were randomly assigned to receive the control or 

intervention list, similar patterns were assumed among intervention subjects. As a result, the 

estimate of the sensitive attribute, “racial profiling” was negative. This type of under 

reporting led Glynn (2013) to define three generally accepted practices regarding the design 

of the item count technique (ICT) and double item count technique (DICT) that were meant 

to lower under-reporting (i.e., non compliance): 

1. Avoid large quantities of high prevalence non-sensitive items 

2. Avoid large quantities of low prevalence non-sensitive items, and 

3. Item lists should not be too short since shorter lists would increase the 

likelihood of ceiling effects and therefore under-reporting by the respondents 

with the sensitive attribute. However, at the same time item lists should not be 

made too long since longer lists increase variability 

According to Glynn (2013) although increasing the list size could reduce bias (i.e., reduces 

the likelihood of ceiling and floor effects), at the same time model variability would also 

increase. This becomes the typical tradeoff between a bias (i.e., resulting likelihood of a 

ceiling/floor effects) estimate or an estimate with higher variability (increasing list size). In 

order to simultaneously minimize ceiling effects and response variability without 

compromising privacy, Glynn (2013) suggested a method defining an optimal design for the 

NRR. First, optimally allocating subjects into the two randomized group only minimally 

reduces variation (Glynn, 2013). Thus, Glynn (2013) suggested equally allocating subjects 

into the two groups. In fact, Glynn (2013) demonstrated how equal sample sizes would 

actually benefit the design--especially in terms of the double list technique. A more potential 

method in reducing variation, however, was the selection of the innocuous questions, their 

prevalence rates and how the items correlated. Glynn (2013) suggested selecting innocuous 
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questions in the item list that correlate negatively. This would reduce the likelihood of ceiling 

and floor effects as well as variability since it decreased the number of “how many” items a 

respondent reported. For instance, two negatively correlated questions could be “I am not a 

pet owner” and “I shop at Petsmart”. Since the population of subjects who were not pet 

owners would most likely not be the same set of subjects who shopped at Petsmart, the 

number of “yes” responses would be reduced. Thus, for each technique (ICT, DICT, and 

SSC) by carefully correlating the questions in the innocuous item list, a researcher would 

effectively keep the list size relatively short and at the same time decrease the likelihood of 

ceiling or floor effects (Blair & Imai, 2012; Glynn, 2013). However, for the ICT, DICT, and 

SSC models with these optimal design features, a thorough examination of the effects of 

non-compliance on estimators has not been made. In addition, comparisons of statistical 

efficiency with other evasive response techniques--such as the RR--have also not been 

formerly studied. 

Size Effects of Item Lists 

For the ICT and SSC, the number of innocuous questions function as a 

cooperation variable much like the selection of p (the probability of selecting the 

sensitive question) in the RR models. If, for instance, a small number of innocuous 

questions were contained in the item list, there would be a higher likelihood of ceiling or 

floor effects (i.e., participant’s endorsing all/none of the questions) compared to a list 

with a larger number of innocuous questions. If this occurs, the participant’s membership 

to the sensitive group would be exposed and the purpose of the technique to increase 

cooperation would be compromised. However, at the same time, if the number of 

innocuous questions increased, not only would the survey become more burdensome to 

the participant, but the variation in the model would also increase. Of course ceiling and 
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floor effects would be reduced by selecting non-sensitive questions in the item list that 

were highly negatively correlated (Blair & Imai, 2012; Corstange, 2009). The number of 

innocuous questions in an item list, therefore, were subject to both sampling (increased 

variation) and non-sampling error (Biemer & Wright, 2004; Tsuchiya et al., 2007). This 

would also be true for the single sample count technique (SSC) technique, which 

included a set of innocuous questions (Petróczi et al., 2011). 

A review of the item count technique (ICT) literature suggests that for most 

models the optimal number of innocuous questions in the item list ranged between three 

and five (Ahart & Sackett 2004; Blair & Imai, 2012; Corstange, 2009; Dalton et al., 

1994; Glynn, 2013; Tsuchiya et al., 2007; Wimbush & Dalton 1997). However, no 

empirical study, simulated or theorized, was made to determine how item list size 

influences estimates of varying sensitive prevalent rates (i.e., small, medium, and large) 

in the presence of both truthful and non-complying (i.e., under reporting) reporting. Only 

one empirical study comparing ICT to direct questioning in terms of shoplifting and 

blood donation rates, was made to determine the effects on prevalence, sampling and 

non-sampling error of ICT estimates compared with estimates using direct questioning 

(Tsuchiya et al., 2007). In their study Tsuchiya et al. (2007) compared estimates between 

a ranging number of item lists (two to five questions) using both direct questioning and 

ICT. Separate samples of participants from Japan were conveniently selected from a list 

of subjects and completed an online survey. Participants were randomly placed into 4 

groups, where two of the groups completed the item lists in ICT format and two of the 

groups responded directly to each question in the item list. Item lists between each of the 

groups (i.e., the two ICT groups and the two direct question groups) alternated the 
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sensitive question per list. The authors than compared the estimates between each sample 

by item list size to determine if item count technique (ICT) estimates were similar in 

estimating blood donation prevalence--a socially accepted behavior - and statistically 

significantly higher in estimating shop lifting prevalence--a socially stigmatizing 

behavior. The results indicated estimated rates of blood donation did not differ between 

the two methods with the exception of the 4-item list, where blood donation rates 

reported in the ICT were lower compared with the direct questioning (Tsuchiya et al., 

2007). For shoplifting, the rates reported from the item list size of 2 and 4 using the ICT 

was statistically significantly higher compared to the corresponding item lists using the 

direct questioning technique (Tsuchiya et al., 2007). More importantly, even though the 

reported prevalent rates of shoplifting were higher from the ICT participants for item lists 

of size 4 and 5, the variation of these estimates was also higher. As a result, a statistically 

significant difference was not made between the two methods for these list sizes 

(Tsuchiya et al., 2007). Thus, the authors were able to demonstrate on an empirical level 

that although the ICT model may produce higher rate estimates compared to direct 

questioning, it also introduced a higher degree of statistical noise into the model. 

Thus, an optimal number of innocuous questions used in an ICT, DICT or SSC 

item list was never formerly examined. If an optimal list would be determined, based on 

the prevalent rates of the sensitive attribute, this would provide, in theory, a set of 

guidelines experimenters can use that would in affect maximize honest reporting (i.e., 

reduce bias) and minimize variation.  
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CHAPTER III 

METHODOLOGY 

Background 

This chapter has been broken down into three main parts: Part 1 includes a 

description of how the optimal design for the random response (RR) techniques (unrelated 

question [UQT] and forced choice [FCT]) and the non-random response (NRR) techniques 

(item count [ICT], double item count [DICT], and single sample count [SSC]) were 

determined. Part 2 describes the analytical methods used to evaluate the effects of non-

compliance of and between these techniques. Part 3 describes the analytical methods used to 

evaluate the effect of list size for the ICT, DICT, and SSC.  

 Restating the research questions: 

Q1 Are the indirect question techniques of the ICT, DICT, and SSC models 
more efficient, in the presence of non-compliant reporting, as measured by 
their Mean Squared Error (MSE) compared to the MSE of the RR models 
using the unrelated question technique and forced-choice techniques? 

 
Q2 Is there an optimal number of innocuous questions in the item list for the 

ICT, DICT, and SSC techniques that will reduce non-compliance and 
minimize additional variation? 

 
Selection of Optimal Design 

Prior to testing the statistical efficiency between the two types of techniques (i.e., 

each RR vs. each NRR) in order to study non-compliance and effective list size, optimal 

design parameters of each technique as a function of the prevalence of the sensitive attribute 

(πs) and sample size were found. Optimal designs were determined based on the selection of 

combined parameters from previous simulation studies regarding RR techniques (Greenberg 
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et al., 1969; Lensvelt-Mulders, Hox, & Van der Heijden 2005) and ICT (Blair & Imai 2012; 

Corstange, 2009). Thus, a selected range of values of πs similar to Lensvelt-Mulders, Hox, 

and van der Heijden (2005) arbitrarily categorized to represent small (i.e., 0.01, 0.03, and 

0.05), medium (i.e., 0.10, 0.15, and 0.20), and large (i.e., 0.25, 0.35, and 0.45) prevalence 

rates in combination with sample sizes similar to the simulations performed by Blair and Imai 

(2012) and arbitrarily categorized as small (n = 150), medium (n = 500), and large (n = 

1,500) were used. These same combinations of prevalence rates and sample sizes were also 

used in the simulation studies of non-compliance and list size.  

Using Monte-Carlo simulations, the optimal design for each combination prevalent 

rate and sample size was selected and used in set of simulations studying the effects of non-

compliance as well as studying the effects of list size. Thus, a total of 27 designs for each 

technique assessed non-compliance and list size. For the single sample count technique 

(SSC), πs = 0.01 was eliminated from the analysis since normal approximations at this level 

could not be made (Petróczi et al., 2011). Therefore, 26 designs were used to assess non-

compliance and list size for the SSC. Simulations selecting the optimal model were based 

on the efficiency study of Lensvelt-Mulders, Hox, and van der Heijden (2005). As was done 

in their study, truthful reporting (i.e., unbiased estimator) was assumed and since the direct 

question (DQT) technique was the most efficient (Greenberg et al., 1969; Lensvelt-Mulders, 

Hox, & van der Heijden, 2005), comparisons of the variance of each simulated technique to 

the variance of the direct questioning technique were made to determine the parameters of the 

optimal design (i.e., design parameters with the highest efficiency) for each of the 27 designs. 

Selecting optimal design parameters for each design within each technique were justified 

because it allows for an effective comparison of the effects of non-compliance by eliminating 

any additional source of variation due to the selection of the design parameters. Using the 
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literature as a guide, the optimal design was determined by varying the design parameters for 

each technique. 

 For this set of simulations, the assumptions : 

1. Truthful reporting (i.e., ̂ s is unbiased), 

 2. For the ICT, DICT, and SSC, no design effect, and 

3. For the DICT, the 2-item lists were assumed correlated at 0.85, a correlation 

that is arbitrarily selected but practical since, in practice, lists can potentially 

be created with very high correlations. In addition, simulations of lists with 

the between list correlation using the “rmvbin” function in R produced valid 

results (i.e., all simulations resulted in an approximate multivariate normal 

distribution with a positive definite covariance matrix). 

Relative reliability (RelRel) defined as the ratios of the variance of the DQT to the 

variance of the simulated technique (Kendall & Stuart, 1979; Lensvelt-Mulders, Hox, & 

van der Heijden, 2005) determined the most efficient design:  
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and sim  represents the variance of the comparing simulated technique (i.e., variance of 

the UQT, FCT, ICT, DICT, and SSC). 
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This type of analysis is known as a relative reliability study where variances between 

techniques are compared to determine statistical efficiency. The RelRel ratio is actually 

the inverse of the additional percentage of sampling units (in this case the unit would be 

survey participants) needed to obtain a variance comparable to the DQT technique. Thus 

if the sample size of both techniques were 100, a Rel Rel that is equal to 1/2 indicates that 

twice the number of participants (n = 200) from the comparing technique would be 

necessary to obtain a variance equal to the variance of the DQT; whereas a Rel Rel that is 

equal to 0.95 indicates that approximately the same number of sampling units (in this 

case increasing sample size of approximately five more participants) from the comparing 

technique would be necessary to obtain a variance equal to the variance of the DQT. In 

the first case, the comparing technique would be inefficient whereas in the second case, 

the comparing technique would be a more efficient estimator. 

Random Response Techniques 
Simulations 
 

For the unrelated question technique (UQT), the design parameters simulated 

include p1 (the probability of selecting the sensitive question in sample 1), p2 (the 

probability of selecting the sensitive question in sample 2) as well as the prevalence rate 

of the innocuous question (πns). As discussed in Chapter II, the literature suggested that 

the value of p1 and p2 was most optimal when the design parameters are set as far apart, 

and on the opposite sides of 0.50 as possible, where p1 + p2 = 1 (Greenberg et al., 1969, 

Lensvelt-Mulders, Hox, & van der Heijden, 2005). This not only reduced the additional 

variation due to the introduction of the innocuous question but allowed for a symmetric 

and opposite effect of the probability of selecting the sensitive question in each sample 

(Greenberg et al., 1969). The literature also suggested that p1 should range between 0.70 
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(+/- 0.10) and not exceed 0.80 (Greenberg et al., 1969; Lensvelt-Mulders, Hox, & van der 

Heijden, 2005). Since confidentiality was compromised when p1 was too high or too low, 

simulations varied p1 between 0.60-0.90 in increments of 0.10 (this, thus, varied p2 

between 0.10-0.40). These values were selected since they were similar to the simulations 

performed by Leansvelt-Mulder, Hox, and van der Heijden, (2005) which also 

encompassed the range of parameters simulated by Greenberg et al. (1969). For the 

prevalence rate of the innocuous question (πns), the literature suggested selecting an 

attribute with prevalence on the same side of 0.50 as the expected prevalent rate of the 

sensitive attribute (πs) but large enough to ensure confidentiality (Greenberg et al., 1969; 

Lensvelt-Mulders, Hox, & van der Heijden 2005). Since the prevalence rates of the 

sensitive attributes simulated in this study were less than 0.50, similar parameters 

suggested by Greenberg et al. (1969) were used. Three values of πns were examined to 

arbitrarily represent small (πns = 0.10), medium (πns = 0.20) and large (πns = 0.30) 

prevalent rates. Although suggestions of these design parameters were first introduced by 

Greenberg et al. (1969), they have also been shown to produce more efficient estimates in 

other simulation studies (Lensvelt-Molders, Hox, & van der Heijden , 2005; Soeken & 

Macready, 1982). In addition, for UQT exclusively, sample sizes were allocated to each 

sample as described by Greenberg et al. (1969), where the proportion of the total sample 

size was allocated as:  
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What this formula does is to use the two components of the )ˆvar( s  (see equation 2.17) 

to ensure that a larger portion of subjects is allocated to the sample where the probability 

of selecting the sensitive question (i.e., p1) is greater. For this method, since there are two 

varying design parameters, the method of Greenberg et al. (1969) was followed and 

simulations performed by first fixing p1 and running simulations for each (πns). Since 

optimal sample sizes were based on p1 and p2, changes in sample size were subsequently 

adjusted as p1 and p2 change. Thus, the simulation design parameters, based on previous 

simulation studies, for selecting the optimal UQT were defined as follows: 

1. The probability of selecting the sensitive question in sample 1 (p1): 0.60, 

0.70, 0.80, 0.90 

2. The probability of selecting the sensitive question in sample 2 (p2): 0.10, 

0.20, 0.30, 0.40 

3. The prevalence of the innocuous behavior (πns): 0.10, 0.20, 0.30 

Since the FCT was the equivalent of the UQT, where the prevalence of the 

innocuous question was incorporated into the randomized device (Greenberg et al., 

1969), a review of the literature determined that the most widely used design of this 

technique in examining non-compliance was the sum of two dice where p1 (the 

probability of a forced “yes”) was set at 1/6 (i.e., probability of observing a sum of 2, 3, 

or 4), p2 (the probability of responding to the sensitive question) was set at 3/4 (i.e., 

probability of observing a sum between 5 and 10) and p3 (the probability of a forced 

“no”) was set at 1/12 (i.e., probability of observing a sum of 11 or 12; Böckenholt & van 

der Hejiden, 2004; van den Hout et al., 2010). This study followed these authors by using 
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the FCT with these design parameters. Thus, for the FCT, the optimal model already been 

selected.  

In the simulation study, for both random response (RR) techniques, likelihood 

functions defined in Chapter II were used to derive the variance of each set of parameters 

based on sample size and πs. These were calculated exactly and compared against the 

corresponding variance of the DQT. For completeness, the variance of the FCT will also 

be compared. 

Indirect Question Techniques 
Simulations 
 

For the set of simulations regarding the indirect question techniques, the study 

assumed no design effect. That is the introduction of the sensitive question into the item 

list were assumed not to change the nature of responses to the non-sensitive questions in 

the item list.  

For the indirect question techniques (ICT and SSC), design parameters were 

determined by list size of the non-sensitive questions and included the correlation 

between these items in each list as well as the distribution of prevalence rates of each 

innocuous question in the list. For the DICT, an initial study of design parameters by list 

size of the non-sensitive questions included correlations between questions within a list 

and correlations of all questions between lists by performing simulations that used the 

“rmvbin” function in R. The “rmvbin” function was selected since it simulates 

multivariate binary distributions with specified correlations (Leisch, Weingessel, & 

Hornik, 1998) that draw samples from a corresponding multivariate normal distribution, 

with the same mean and covariance structure. Using this distribution, by thresholding, the 

algorithm converted multivariate normal data into multivariate binary data with the 
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appropriate mean and covariance structure. For a more detailed explanation, see Leisch et 

al. (1998). Recall that the double item count technique (DICT) contained two lists of 

questions, where list A contained a set of innocuous questions and list B contained a 

different set of innocuous questions. For each sample of participants, the first sample 

responded to list A with the inclusion of the sensitive question as well as list B, which 

only included the set of innocuous questions. The second sample then responded to list A 

which included just the set of innocuous questions and list B which included the 

additional sensitive question. Within list correlations occurred when two questions within 

the same list were negatively correlated. So for instance, if the list size were 3, 2 

questions (i.e., say, innocuous question 1 and innocuous question 2 in list A) within the 

item list were correlated. Between list correlations occurred when all innocuous questions 

between lists were positively correlated. So for instance in a 3-item list, a between list 

correlation would be positively correlating innocuous question 1 of each list, innocuous 

question 2 of each list and innocuous question 3 of each list. This, according to Glynn 

(2013), would reduce variation in the model. When both within and between correlations 

were attempted in simulations, the multivariate normal distribution used to simulate the 

list of binary data resulted in a non-positive definite covariance matrix for all list size, 

sample size and sensitive prevalent rates. Because of this, a second set of simulations 

were performed to determine if DICT models were more efficient when correlations 

within list items were made or correlations between list items were made. These sets of 

simulations are discussed in Chapter IV under the section detailing the analysis and 

results of the selection of the DICT optimal model. In short, the study indicated that the 

model with between list correlations was the most efficient. Because of this, for the 
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simulations determining the optimal DICT model, no within list correlations were made. 

Instead only between list correlations were simulated (see Chapter IV for a discussion of 

the results). 

According to the literature, list sizes usually ranged between three and five 

innocuous questions (Blair & Imai, 2012; Glynn, 2013; Tsuchiya et al., 2007). For this 

study, list sizes between three (small) and five (large) which were similar to the Tsuchiya 

et al. (2007) study were simulated. Since the literature suggested correlating questions in 

the list of innocuous questions not only reduced ceiling and floor effects (Blair & Imai, 

2012; Corstange, 2009; Glynn, 2013), but also variation (Blair & Imai, 2012; Corstange, 

2009; Glynn, 2013), negatively correlating pairs of non-sensitive questions within an item 

list were considered for the item count technique (ICT) and single sample count 

technique (SSC); whereas positive correlations between item lists were considered for the 

double item count technique (DICT). In addition, in his discussion of optimal design 

parameters for the ICT and DICT, Glynn (2013) suggested that ceiling and floor effects 

were further reduced if sensitive questions with high prevalence and low prevalence are 

avoided in abundance. Thus, this study chose to follow and expand on the simulation 

studies of Blair and Imai (2012) and Corstange (2009) who simulated distributions of the 

prevalent rate of innocuous questions based as “equal,” “not equal and symmetric,” and 

“not equal and not symmetric.” Each of the prevalent rate distributions, therefore, 

followed the suggestion of Glynn (2013) and were meant to simulate lists of non-

sensitive questions that control for ceiling and floor effects by reducing non-sensitive 

questions within the list with high and/or low prevalent rates in abundance. By doing this, 

conclusions regarding the distribution of the prevalent rates of the non-sensitive questions 
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and statistical efficiency were studied. Distributions of the non-sensitive item prevalent 

rates were determined based on list size (3-item, 4-item, and 5-item) for the item count 

technique (ICT) and double item count technique (DICT). Since prevalent rates of the 

single sample count technique (SSC) are 0.50 for all non-sensitive questions, this was not 

an issue, and the distribution for this technique was assumed “equal.” Because the study 

considers specific prevalent rates of non-sensitive items (i.e., “equal,” “not equal and 

symmetric,” and “not equal not symmetric”), in order to negatively correlate pairs of 

these items for the ICT and SSC the correlation selected must be valid given the marginal 

probabilities (i.e., prevalent rates of the non-sensitive questions to be correlated). In the 

case of two random variables, allowable correlations were restricted by the joint 

probability, which is bounded by the minimum marginal probability (Leisch et al., 1998). 

For instance, it is not possible to simulate two correlated binary variables at ρ = -0.50 

with marginal probabilities of 1/5 and 2/5 since the resulting joint probability would be -

0.018, which is not a valid probability. In the case of this simulation, the marginal 

probabilities represented the prevalent rates of the non-sensitive and sensitive questions 

in the item list. Since several distributions were explored in this study, a within list 

correlation of -0.50 and a between list correlation of 0.85 were selected since all selected 

correlated pairs of non-sensitive items resulted in valid joint probabilities. 

List sizes were simulated using Monte Carlo simulations by generating a series of 

Bernoulli random variables in the R program using the function, “rmvbin” for each of the 

three sample sizes (i.e., 150, 500, and 1,500). Correlations occurred in sequences of pairs 

based on the probability distribution of the innocuous questions (“equal,” “not equal and 

symmetric,” and “not equal and not symmetric”) and allowable correlation of -0.50 
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between pairs of sensitive questions. In addition, a Bernoulli random variable was also 

simulated to represent the sensitive question. This was based on the prevalent rate of the 

sensitive attribute being simulated (πs) where honest reporting was assumed. Since 

sample size does not substantially improve efficiency in the ICT and double item count 

technique (DICT; Blair & Imai, 2012; Glynn, 2013), sample sizes were allocated equally 

to each group (i.e., simulated group receiving the sensitive question, simulated group not 

receiving the sensitive question).  

The number of simulations performed was determined by a preliminary 

simulation study that ensured estimation of the variability of the variance within 0.01. 

Once this number was decided, simulations were made for each sample size and 

prevalent rate combination and each variation of list size (3 item, 4-item, and 5-item), 

correlation within a list (i.e., 0, -0.50 for ICT and SSC only) or between a list (0.85) and 

prevalence rate of the non-sensitive questions in the item list (“equal,” “not equal but 

symmetric,” and “not equal and not symmetric”). For each set of simulations, difference-

in-means and average difference-in-means estimates were obtained for the ICT and 

DICT, respectively, as well as estimators of SSC. Variances of these estimates were then 

compared with the variance of DQT to determine efficiency. Optimal models were found 

by list size, meaning there were a total of 27 optimal models (i.e., by sample size and 

prevalent rate combination) for each list size, with the exception of the SSC in which case 

26 optimal models were determined. 

Simulation parameters for the ICT were defined as: 

1. Item List size: (3, 4, and 5)  

2. Correlation within the item list: (0.0, -0.50) 
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3. Probabilities of the non-sensitive items: 

a. 3-item list (* indicate pairs of non-sensitive items to be correlated): 

i. Equal: (2/3, *2/3, and *2/3),  

ii. Not equal but symmetric: (1/4, *1/2, and *3/4) 

iii. Not equal and not symmetric: (1/4, *2/3, and *2/3) 

b. 4-item list (* and + indicate pairs of non-sensitive items to be 

correlated) 

i. Equal: (*2/3, *2/3, +2/3, and +2/3) 

ii. Not equal but symmetric: (1/5, 2/5, *3/5, and *4/5) 

iii. Not equal and not symmetric: (1/6, 3/6, *4/6, and *4/6) 

c. 5-item list (* and + indicate pairs of non-sensitive items to be 

correlated) 

i. Equal: (*2/3, *2/3, +2/3, +2/3, and 2/3) 

ii. Not equal but symmetric: (1/6, *2/6, +3/6, +4/6, and *5/6) 

iii. Not equal and not symmetric: (1/7, *3/7, +4/7, +5/7, and 

*5/7) 

Simulation parameters for the DICT were defined as: 

1. Item List size: (3, 4, and 5)  

2. Correlation between lists: 0.85 

3. Probabilities of the non-sensitive items: 

a. 3-item list: 

i. Equal: (2/3, 2/3, and 2/3),  

ii. Not equal but symmetric: (1/4, 1/2, and 3/4) 
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iii. Not equal and not symmetric: (1/4, 2/3, and 2/3) 

b. 4-item list:  

i. Equal: (2/3, 2/3, 2/3, and 2/3) 

ii. Not equal but symmetric: (1/5, 2/5, 3/5, and 4/5) 

iii. Not equal and not symmetric: (1/6, 3/6, 4/6, and 4/6) 

c. 5-item list:  

i. Equal: (2/3, 2/3, 2/3, 2/3, and 2/3) 

ii. Not equal but symmetric: (1/6, 2/6, 3/6, 4/6, and 5/6) 

iii. Not equal and not symmetric: (1/7, 3/7, 4/7, 5/7, and 5/7) 

Simulation parameters for the SSC were defined as: 

1. Item List size: (3, 4, and 5) 

2. Correlation within the item list: (0.0, -0.50; * and + indicate pairs of non-

sensitive items to be correlated) 

a. 3-item List (1/2, *1/2, and *1/2), 

b. 4-item List (*1/2, *1/2, +1/2, and +1/2) 

c. 5-item List (*1/2, *1/2, +1/2, +1/2, and 1/2) 

Studying the Effects of Non-compliance 

 In order to examine Research Question 1, Are the indirect question techniques of 

the ICT, DICT, and SSC models more efficient as measured by their Mean Squared Error 

(MSE) to non-compliant responding compared to the MSE of the RR models using the 

unrelated and forced-choice techniques, a second set of simulations were performed. For 

this study, examination of the effects of non-compliance based on the same range of 

values of πs that were previously used were made: small (i.e., 0.01, 0.03, and 0.05), 
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medium (i.e., 0.10, 0.15, and 0.20), and large (i.e., 0.25, 0.35, and 0.45) in combination 

with small (n = 150), medium (n = 500), and large (n = 1,500) sample sizes. However, in 

this set of simulations, the optimal design parameters of each technique for each πs, 

sample size combination from the previous simulation study were used.  

For this study, the simulation study of Greenberg et al. (1969) was followed, 

where compliance (T) was defined in terms of the percent of participants who responded 

truthfully and ranged between T = 1.00 (all respond truthfully) and T = 0.40 (only 40% of 

respondents answer truthfully) in increments of 0.10. This corresponds to non-

compliance rates ranging between 0.00 (no misreports) to 0.60 (60% of sensitive 

population misreports). Non-compliance was also defined as was done in the study of 

Greenberg et al. (1969), where non-compliance only occurred among participants with 

the sensitive attribute who were asked the sensitive question. Thus, non-complying 

responses for each technique were defined as: 

 1. Unrelated question technique (UQT): Both sets of participants (i.e., those 

with and without the sensitive trait) responded truthfully when asked the innocuous 

question, participants without the sensitive trait responded truthfully to the sensitive 

question (i.e., respond “no”). Misreporting will only occurred among participants with 

the sensitive trait when asked the sensitive question.  

 2. Forced choice technique (FCT): this assumed that both sets of participants 

(i.e., those with and without the sensitive trait) responded truthfully when forced to say 

“no” (i.e., sum of the dice is 11 or 12) or “yes” (i.e., sum of dice is between 2 and 4). 

Misreporting occurred among participants with the sensitive trait who are asked the 

sensitive question (i.e., sum of dice was between 5 and 10).  
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 3. For the indirect question techniques (ICT, DICT, and SSC), the study 

assumed that both sets of participants (i.e., those with and without the sensitive trait) 

responded truthfully to the list of non-sensitive questions and that participants without the 

sensitive trait responded truthfully to the sensitive question (i.e., respond “no”). 

Misreporting only occurred among participants with the sensitive trait, in which case the 

“yes” responses to the list of questions were under-reported by 1. 

Using the optimal design parameters of each technique, for each of the 27 sample 

size sensitive prevalent rate (πs) designs, non-compliance ranging from 0 (truthful) to 

0.40, in increments of 10 was examined. In each case, the ratio of the mean squared error 

(MSE) was calculated and used to compare the effects of non-compliance between 

techniques. For the random response (RR) techniques (UQT and FCT), maximum 

likelihood estimators were calculated directly. For the indirect question techniques (ICT, 

DICT, and SSC), simulations were made as was described previously for the selection of 

the optimal design. In this set of simulations, however, optimal design parameters for 

each list size (3-item, 4-item, and 5-item) were used. In order to account for the rate of 

non-compliance, using the “rmvbin” function in R, the simulated Bernoulli random 

variable meant to represent the prevalent rate of the sensitive question was based on the 

proportion of those expected to report truthfully (i.e., πs to Tπs). Variance and bias of 

these estimates were then used to calculate the MSE of each technique.  

Effects of non-compliance between techniques were made by comparing the ratio 

of MSEs between each of the RR techniques to each of the item count technique (ICT) 

techniques given the sample size (150, 500, and 1,500), prevalence of the sensitive 

attribute (πs), percentage of truthful reporting (0.40-1) by list size (3-item, 4-item, and 5-
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item) of the ICT, DICT, and SSC. So for instance to determine the effects of non-

compliance between techniques given a small sample size (i.e., n = 150), small sensitive 

prevalent rate (πns = 0.03), and a small percentage of non-compliance (i.e., T = 0.90), 

using optimal model parameters from simulation study 1, the MSE for each random 

response (RR) technique were compared to the MSE of each non-random response 

(NRR) technique by list size:  

 

iqt

rr

MSE

MSE
MSERatio =)( ,                                                                                      (3.4) 

 
 

where 

 
 )ˆ()ˆ(= ssrr BiasVarMSE   2 ,                                                              (3.5) 

 
 
 )ˆ()ˆ(= ssiqt BiasVarMSE   2.                                                               (3.6) 

 
 

As a result, based on sample size and expected sensitive prevalent rate, the technique that 

performs more efficiently in the presence of non-compliance was determined. 

Studying the Effects of List Size in the 
Item Count Technique, Double Item 

Count Technique, and Single 
Sample Count 

 
In order to examine Research Question 2, Is there an optimal number of 

innocuous questions in the item list for the item count technique (ICT) and single sample 

count technique (SSC) techniques that will reduce non-compliance and minimize 

additional variation?, the results of the previous two simulation studies were used to 

examine the effects of list size on statistical efficiency for each NRR technique by non-
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compliance rate. For this study, the effects of list size were examined based on the same 

range of values of πs that were previously used: small (i.e., 0.01, 0.03, and 0.05), medium 

(i.e., 0.10, 0.15, and 0.20), and large (i.e., 0.25, 0.35, and 0.45) in combination with small 

(n = 150), medium (n = 500), and large (n = 1,500) sample sizes, with the exception of 

the SSC in which πs = 0.01 was eliminated. However, no further simulations were made. 

Instead comparison of the ratio of the MSEs found in simulation study 2 within each 

technique (i.e., ICT, DICT, SSC) by sample size (150, 500, and 1,500), sensitive 

prevalent rate (0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45) and percent of non-

compliance (1.00-0.40 in increments of 10) across list size (3-item, 4-item, and 5-item) 

were used. Comparisons were made between all combinations of list sizes. So for 

instance, ratios of MSE for the ICT using the optimal design parameters of πs = 0.03 and 

complaint rate of T (i.e., percent of truthful reporting) = 0.90 were compared by all 

combinations of list size (3-item, 4-item, and 5-item). By examining the efficiency within 

each NRR technique by list size, the study was able to determine if smaller list sizes were 

just as efficient as larger list sizes in the presence of both truthful responding (simulation 

1) and non-compliance (simulation 2).  

In addition, efficiency between NRR techniques was also explored by comparing 

the ratios of the MSE found in simulation studies 1 and 2 by sample size (150, 500, and 

1,500), sensitive prevalent rate (0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45), 

percent of non-compliance (1-0.40 in increments of 10) and list size (3-item, 4-item, and 

5-item) between NRR techniques. So for instance, in order to determine if the DICT was 

more efficient than the ICT for a list size of 3 when πs = 0.03, n = 150, and compliance is 

T = 0.90, the ratios of the MSEs between these techniques at this list size, using optimal 
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design parameters, were analyzed descriptively. By examining the efficiency between 

each NRR technique by list size, the study was able to determine if certain NRR 

techniques were more efficient in the presence of both truthful responding (simulation 1) 

and non-compliance (simulation 2).  
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CHAPTER IV 

RESULTS 

Background 

This chapter has been broken down into four main parts. Part 1 includes a 

description of how the total number of simulations was determined for the study. Part 2 

describes the results of selecting the optimal design for the random response (RR) 

techniques (unrelated question [UQT], forced choice [FCT]) and the non-random 

response (NRR) techniques (item count [ICT], double item count [DICT]. and single 

sample count [SSC]). Part 3 describes the results of the study of non-compliance between 

RR techniques and NRR techniques. Finally, Part 4 describes the results for the effects of 

list size for the NRR techniques. 

Determining Number of 
Simulations 

 
Prior to running final simulations for item count technique (ICT), double item 

count technique (DICT), and single sample count technique (SSC) in determining optimal 

models as well as the effects of non-compliance and list size, a preliminary study was 

made to determine an efficient number of simulations to perform. In Chapter III, it was 

stated that the total number of simulations run would ensure estimation of the variability 

of the variance within 0.01. To determine this number, a simulation study of the variance 

based on the technique with the highest variability was made since it ensured techniques 
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with less variability would also be within this defined bound. Since the literature 

suggested that the DICT produced a more efficient estimator compared with the estimator 

of the item count technique (ICT; Glynn, 2013; Tsyuchiya et al, 2007), it was decided to 

examine the variability between the 5-item ICT and 5-item SSC procedures to determine 

which of these models produced the greatest amount of model variability. For this set of 

simulations, the models with the expected highest variability would be those with the 

smallest sample sizes (n = 150), no correlation between sensitive questions and with the 

largest sensitive prevalence rate (πs = 0.45). Each of these attributes contributed to higher 

model variability since smaller samples sizes generally increase variation, and, if the 

estimated sensitive attribute is large, this in turn increased the likelihood that the range of 

sums across each list would be wider (i.e., more likely to have sums range between 0 and 

6 than if the sensitive prevalence was smaller)--which would contribute to higher 

variability. In addition, models that do not take advantage of purposely correlating non-

sensitive items also are expected to result in higher variability (Glynn, 2013). 

For this set of simulations, an arbitrary number of 30 sets of 500 simulations were 

made for each of the 5-item list of ICT models by the distribution of the non-sensitive 

items: “equal,” “not equal and symmetric,” and “not equal and not symmetric.” In 

addition, 30 sets of 500 simulations were run for the 5-item list of SSC models. As a 

result, a total of four models were simulated. For each simulation, item lists of 75 per 

sample for the ICT and 150 per sample for the SSC were generated using the “rmvbin” 

function in R. The difference-in-means estimator and the expected value estimator were 

then calculated for the ICT and SSC, respectively. After simulating 500 sets of 

estimators, the variance was calculated and used as an estimate. This was repeated 30 
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times for each model resulting in 30 variances of each estimator. Using these 30 

variances, descriptive statistics including the mean, median, minimum, maximum, and 

variance were studied and compared between models. Table 1 displays the results of the 

simulation study. Results indicated that the 5-item ICT with “equally” distributed  

non-sensitive item prevalence rates had the highest variation compared with all other 

models and the 5-item ICT with a distribution of “not equal and not symmetric” 

prevalence rates had the highest variability of variances (Table 1).  

 
Table 1 
 
Simulation Study of Variability Between 5-Item Count Technique and 5-Item Single 
Sample Count to Determine Total Number of Study Simulations Performed 

Item Count Technique: Variances 

Descriptive  
Equal 

Not Equal & 
Symm 

Not Equal & 
Not Symm 

Single Sample 
Count: 

Variance 

Minimum 0.0307 0.0259 0.0273 0.0088 

Median 0.0329 0.0289 0.0303 0.0100 

Mean 0.0331 0.0288 0.0304 0.0100 

Maximum 0.0370 0.0316 0.0348 0.0113 

Variance 2.5613E-06 2.1742E-06 3.6404E-06 2.9485E-07 

Note. πs = 0.45, n = 150 

 
 

As a result, both the 5-item ICT with “equal” non-sensitive question prevalence 

rates (2/3, 2/3, 2/3, 2/3, and 2/3) and the 5-item ICT with “not equal and not symmetric” 

non-sensitive question prevalence rates were used in the next set of simulations. Using 

the literature as a guide (Blair & Imai, 2012; Cornstange, 2009), it was decided to test the 

effect of 1,000 simulations on the variability of both models. Simulations were performed 
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similarly to the previous simulation, where 100 sets of 1,000 5-item lists were generated 

using the “rmvbin” function in R for each model. For each of the 100 sets, a total of 

1,000 difference-in-means estimators were calculated and the variance of these simulated 

estimators taken. This resulted in a total of 100 variances of the ICT in which the 

variance of these variances were studied. For the ICT with “equal” non-sensitive 

prevalence rates, the variance of variances was 0.00000279, whereas for the ICT with 

“not equal and not symmetric” non-sensitive prevalence rates resulted in a variance of the 

variances of 0.00000196. Both sets of simulation resulted in variances well below the 

0.01 bound. Thus, for this study, it was determined 1,000 simulations would result in a 

good estimate of the variability in simulations for the ICT, DICT, and SSC. 

Determining the Optimal Model 

Unrelated Question Technique 
(UQT) 
 

Table 2 displays the results from the study determining the optimal model 

parameters for the UQT, optimal models for each sensitive prevalent rate and sample size 

are bolded in the table. As can be seen in Table 2, the model producing the highest 

relative reliability under the assumption of truthful reporting was the same across all 

sensitive prevalent rates and sample sizes. This model was the one adjusting for the 

lowest non-sensitive prevalence rate (πns = 0.10), where the probability of selecting the 

sensitive question in the first sample was the farthest (p1 = 0.90) from the complementary 

probability of selecting the sensitive question for the second sample (p2 = 0.10). This was 

not surprising since Greenberg et al. (1969) indicated that reduction of variation in the 

UQT occurred when model parameters were as far from 0.50 as possible. In fact, 

Greenberg et al. (1969) indicated that, for the UQT, variances could be made as close as 
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possible to the binomial if the probability of selecting the sensitive questions for each 

sample were as far apart from one another--and 0.50--as allowable. Likewise, the 

prevalence rate of the innocuous question should also be as far from 0.50 as possible 

since this too reduces variation (Greenberg, 1969). Table 2 also demonstrated that, when 

comparing the unrelated question technique (UQT) variability to the variability of the 

DQT, sample size was not a factor. This was due to the fact that since sample sizes were 

equal, when taking the ratio of the MSEs using the likelihood function, the sample size 

cancels out. In order to study the effects of the UQT model parameters on variation, 

Figure 1 displays the relative reliability ratios by the UQT parameters for the sensitive 

prevalence rates, πs = 0.05, πs = 0.20, and πs = 0.45, when n = 500. These rates were 

selected to represent sensitive prevalent rates that are small, medium and large. In 

examining the figure, it was clear that, by changing the parameter p1 (the probability of 

selecting the sensitive question in sample 1 and likewise sample 2), the variability of the 

UQT increased (i.e., relative reliability decreases) more substantially compared to the 

change in variability due to the parameter πns.  

Since the optimal model of the UQT selected in this study was not the most 

practical model--since according to Greenberg et al. (1969)--the probability of selecting 

the sensitive question in sample 1 was so high and the prevalence rate of the non-

sensitive question so low (πns = 0.10), confidentiality may be comprised if this model 

were used in practice. Since the UQT model with the lowest relative reliability (p1 = 0.60, 

p2 = 0.40 and πns = 0.30) was the model most likely to increase confidentiality, this model 

was also explored in the simulation study of non-compliance. 
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Table 2 
 
Unrelated Question Technique Relative Reliability, Selection of the Optimal Model 

 
 
πs 

 
 
πns 

 
 

p1 

Relative 
Reliability 

n = 150 

Relative 
Reliability 

n = 500 

Relative 
Reliability 
n = 1,500 

0.01 0.10 0.9 0.2756 0.2756 0.2756 
  0.8 0.1021 0.1021 0.1021 
  0.7 0.0359 0.0359 0.0359 
  0.6 0.0079 0.0079 0.0079 
 0.20 0.9 0.1764 0.1764 0.1764 
  0.8 0.0595 0.0595 0.0595 
  0.7 0.0202 0.0202 0.0202 
  0.6 0.0044 0.0044 0.0044 
 0.30 0.9 0.1325 0.1325 0.1325 
  0.8 0.0433 0.0433 0.0433 
  0.7 0.0145 0.0145 0.0145 
  0.6 0.0032 0.0032 0.0032 
      

0.03 0.10 0.9 0.4706 0.4706 0.4706 
  0.8 0.2162 0.2162 0.2162 
  0.7 0.0844 0.0844 0.0844 
  0.6 0.0196 0.0196 0.0196 
 0.20 0.9 0.3547 0.3547 0.3547 
  0.8 0.1435 0.1435 0.1435 
  0.7 0.0525 0.0525 0.0525 
  0.6 0.0118 0.0118 0.0118 
 0.30 0.9 0.2905 0.2905 0.2905 
  0.8 0.1104 0.1104 0.1104 
  0.7 0.0394 0.0394 0.0394 
  0.6 0.0088 0.0088 0.0088 
      

0.05 0.10 0.9 0.5528 0.5528 0.5528 
  0.8 0.2798 0.2798 0.2798 
  0.7 0.1158 0.1158 0.1158 
  0.6 0.0278 0.0278 0.0278 
 0.20 0.9 0.4473 0.4473 0.4473 
  0.8 0.2003 0.2003 0.2003 
  0.7 0.0772 0.0772 0.0772 
  0.6 0.0178 0.0178 0.0178 
 0.30 0.9 0.3831 0.3831 0.3831 
  0.8 0.1603 0.1603 0.1603 
  0.7 0.0597 0.0597 0.0597 
  0.6 0.0136 0.0136 0.0136 
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Table 2 (continued) 

 
 
πs 

 
 
πns 

 
 

p1 

Relative 
Reliability 

n = 150 

Relative 
Reliability 

n = 500 

Relative 
Reliability 
n = 1,500 

0.10 0.10 0.9 0.6400 0.6400 0.6400 
  0.8 0.3600 0.3600 0.3600 
  0.7 0.1600 0.1600 0.1600 
  0.6 0.0400 0.0400 0.0400 
 0.20 0.9 0.5596 0.5596 0.5596 
  0.8 0.2856 0.2856 0.2856 
  0.7 0.1188 0.1188 0.1188 
  0.6 0.0286 0.0286 0.0286 
 0.30 0.9 0.5061 0.5061 0.5061 
  0.8 0.2428 0.2428 0.2428 
  0.7 0.0973 0.0973 0.0973 
  0.6 0.0229 0.0229 0.0229 
      

0.15 0.10 0.9 0.6755 0.6756 0.6756 
  0.8 0.3966 0.3967 0.3967 
  0.7 0.1819 0.1819 0.1819 
  0.6 0.0463 0.0463 0.0463 
 0.20 0.9 0.6114 0.6114 0.6114 
  0.8 0.3321 0.3321 0.3321 
  0.7 0.1440 0.1441 0.1441 
  0.6 0.0355 0.0355 0.0355 
 0.30 0.9 0.5675 0.5675 0.5675 
  0.8 0.2925 0.2925 0.2925 
  0.7 0.1225 0.1225 0.1225 
  0.6 0.0296 0.0296 0.0296 
      

0.20 0.10 0.9 0.6931 0.6931 0.6931 
  0.8 0.4155 0.4155 0.4155 
  0.7 0.1934 0.1934 0.1934 
  0.6 0.0497 0.0497 0.0497 
 0.20 0.9 0.6400 0.6400 0.6400 
  0.8 0.3600 0.3600 0.3600 
  0.7 0.1600 0.1600 0.1600 
  0.6 0.0400 0.0400 0.0400 
 0.30 0.9 0.6033 0.6034 0.6034 
  0.8 0.3247 0.3247 0.3247 
  0.7 0.1399 0.1399 0.1399 
  0.6 0.0343 0.0343 0.0343 
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Table 2 (continued) 

 
 
πs 

 
 
πns 

 
 

p1 

Relative 
Reliability 

n = 150 

Relative 
Reliability 

n = 500 

Relative 
Reliability 
n = 1,500 

0.25 0.10 0.9 0.7017 0.7018 0.7018 
  0.8 0.4247 0.4247 0.4247 
  0.7 0.1990 0.1991 0.1991 
  0.6 0.0514 0.0514 0.0514 
 0.20 0.9 0.6568 0.6568 0.6568 
  0.8 0.3770 0.3770 0.3770 
  0.7 0.1700 0.1700 0.1700 
  0.6 0.0429 0.0429 0.0429 
 0.30 0.9 0.6258 0.6259 0.6259 
  0.8 0.3460 0.3460 0.3460 
  0.7 0.1519 0.1519 0.1519 
  0.6 0.0377 0.0377 0.0377 
      

0.35 0.10 0.9 0.7045 0.7045 0.7045 
  0.8 0.4268 0.4269 0.4269 
  0.7 0.2001 0.2001 0.2001 
  0.6 0.0516 0.0516 0.0516 
 0.20 0.9 0.6708 0.6708 0.6708 
  0.8 0.3915 0.3916 0.3916 
  0.7 0.1787 0.1787 0.1787 
  0.6 0.0454 0.0454 0.0454 
 0.30 0.9 0.6483 0.6484 0.6484 
  0.8 0.3684 0.3685 0.3685 
  0.7 0.1649 0.1650 0.1650 
  0.6 0.0414 0.0414 0.0414 
      

0.45 0.10 0.9 0.6943 0.6944 0.6944 
  0.8 0.4148 0.4149 0.4149 
  0.7 0.1922 0.1922 0.1922 
  0.6 0.0493 0.0493 0.0493 
 0.20 0.9 0.6688 0.6688 0.6688 
  0.8 0.3891 0.3891 0.3891 
  0.7 0.1771 0.1771 0.1771 
  0.6 0.0449 0.0449 0.0449 
 0.30 0.9 0.6527 0.6527 0.6527 
  0.8 0.3728 0.3728 0.3728 
  0.7 0.1675 0.1675 0.1675 
  0.6 0.0421 0.0421 0.0421 
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Figure 1. Relative Reliability, Direct Questioning Technique vs. Unrelated Question 
Technique under the assumption of truthful reporting, n = 500 
 
 
Forced Choice Technique (FCT) 

As was stated in Chapter III, a review of the literature determined that the most 

widely used FCT design in examining non-compliance was the sum of two dice where p1 

(the probability of a forced “yes”) was set at 1/6 (i.e., probability of observing a sum of 2, 

3, or 4), p2 (the probability of responding to the sensitive question) was set at 3/4 (i.e., 

probability of observing a sum between 5 and 10), and p3 (the probability of a forced 

“no”) was set at 1/12 (i.e., probability of observing a sum of 11 or 12; Böckenholt et al., 

2009; Böckenholt & van der Heijden, 2004, van den Hout et al., 2010). This study chose 

to follow these authors and use the FCT with these design parameters. Table 3 displays 

the relative reliability results of the FCT as compared with the DQT under the assumption 

of truthful reporting. As is evident in the table, the relative reliability was the same across 
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sample sizes. This was due to the fact that since sample sizes were equal, when taking the 

ratio of the MSEs using the likelihood function, the sample size cancels out.  

As is evident in Table 3, as the sensitive prevalent rate increased from very small 

(πs = 0.01) to very large (πs = 0.45) so to did the relative reliability. This was primarily 

due to the fact that the variance of the DQT was smallest when the prevalence rate was 

very small and approached maximum as the prevalence rate increased toward 0.50. 

Item Count Technique (ICT) 

 For the item count technique (ICT), two sets of simulations were run. In the first 

set, simulations of non-sensitive questions within the item list were not purposely 

correlated and in the second set, specific non-sensitive questions were correlated at -0.50 

as described in Chapter III. Simulations were then performed for each prevalent rate - 

sample size combination, where the distribution of prevalent rates of the non-sensitive 

items were either “equal,” “not equal but symmetric,” and “not equal and not symmetric,” 

resulting in a total of 81 simulations per list size. For each simulation, 1,000 pairs of item 

lists were created using the R function, “rmvbin,” resulting in a total of 1,000  

difference-in-means estimates for which the variance was calculated and used as an 

estimate of the variability in the ICT. For these simulations, honest reporting was 

assumed. 



 
 
 
 
 
 
 
Table 3 
 
Forced Choice Technique Relative Reliability as Compared to the Direct Questioning Technique 

 πs 

Sample Size 0.01 0.03 0.05 0.10 0.15 0.20 0.25 0.35 0.45 

n = 150 0.03872 0.10672 0.16444 0.27624 0.3564 0.41592 0.4611 0.52236 0.55691 

n = 500 0.03872 0.10672 0.16444 0.27624 0.3564 0.41592 0.4611 0.52236 0.55691 

n = 1,500 0.03872 0.10672 0.16444 0.27624 0.3564 0.41592 0.4611 0.52236 0.55691 
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 For each item list, relative reliability was compared to the DQT between the six 

models (i.e., three models with no purposeful correlations between non-sensitive 

questions and the three models with specific correlations between non-sensitive 

questions). These models are referred to as “Not-correlated” and “Correlated.” Results 

indicated that across list sizes, models that correlated at least one pair of non-sensitive 

questions proved more efficient (i.e., resulted in a higher relative reliability estimate as 

compared to DQT) compared to the models that did not correlate between non-sensitive 

questions. Because of this, the optimal model for each list size of the item count 

technique (ICT) was selected between the three correlated models. These results 

demonstrated what Glynn (2013) suggested that by purposefully correlating between non-

sensitive questions, model variation decreased and statistical efficiency improved in the 

ICT.  

Table 4 displays the relative reliability ratio for the three ICT correlated models 

by list size, sensitive prevalence rate, and sample size. The model with the greatest 

statistical efficiency was bolded in the table. In addition, Figures 2, 3, and 4 plot the 

relative reliability for each list size for the sensitive prevalence rates, πs = 0.05, πs = 0.20, 

and πs = 0.45, when n = 500. These rates were selected to represent sensitive prevalent 

rates that are small, medium and large. Comparisons of the relative reliability among the 

three ICT correlated models indicated that the selection of the optimal model differed by 

the distribution of the prevalent rates of the non-sensitive questions (i.e., “equal,” “not 

equal but symmetric,” and “not equal and not symmetric”) and list size (3-item, 4-item, 

and 5-item). As was evident in both Table 4 and Figure 3, for the 4-item ICT model, 

results were consistent where the model with “equal” non-sensitive prevalence rates 
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proved most efficient across all sensitive prevalence rates and sample size combinations. 

This was particularly evident in Figure 3, where relative reliability peaked when the 

distribution of the list of non-sensitive items is “equal” and correlated, indicating that in 

the even 4-item list correlation between similarly distributed sensitive questions reduced 

model variation compared to the models with correlated and unequal distributed sensitive 

questions (i.e., “not equal and symmetric,” “not equal and not symmetric”). Recall that 

for the 4-item ICT list, when the distribution of the prevalent rate of the non-sensitive 

items was equal, two pairs of non-sensitive items could be negatively correlated whereas 

for the two unequal distributions, just one pair of non-sensitive questions could be 

correlated. This suggested that for even number item lists, correlating the maximum 

number of pairs of non-sensitive items improved efficiency compared to distributions of 

prevalent rates of non-sensitive items that were not equal where only a limited number of 

pairs of non-sensitive questions were negatively correlated. For the 3-item and 5-item list, 

statistical efficiency fluctuated between non-sensitive item lists that are distributed as 

“not equal but symmetric” and “not equal and not symmetric,” indicating that unevenly 

distributed but correlated non-sensitive item lists reduced variation in item lists that are 

odd (i.e., 3-item and 5-item).  
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Table 4 
 
Item Count Technique Relative Reliability, Selection of the Optimal Model 

 
 
πs 

 
 

Item List Size 

 
 

Non-Sensitive Distribution 

Relative 
Reliability 

n = 150 

Relative 
Reliability 

n = 500 

Relative 
Reliability 
n = 1,500 

0.01 3-Item (Cor) Equal 0.0057 0.0056 0.0056 
  Not Equal but Symmetric 0.0060 0.0062 0.0062 
  Not Equal and Not Symmetric 0.0062 0.0058 0.0059 
 4-Item (Cor) Equal 0.0050 0.0059 0.0057 
  Not Equal but Symmetric 0.0040 0.0039 0.0042 
  Not Equal and Not Symmetric 0.0042 0.0041 0.0039 
 5-Item (Cor) Equal 0.0037 0.0039 0.0036 
  Not Equal but Symmetric 0.0044 0.0047 0.0044 
  Not Equal and Not Symmetric 0.0040 0.0046 0.0046 

0.03 3-Item (Cor) Equal 0.0161 0.0164 0.0146 
  Not Equal but Symmetric 0.0172 0.0170 0.0186 
  Not Equal and Not Symmetric 0.0173 0.0173 0.0169 
 4-Item (Cor) Equal 0.0154 0.0158 0.0159 
  Not Equal but Symmetric 0.0121 0.0121 0.0118 
  Not Equal and Not Symmetric 0.0125 0.0118 0.0122 
 5-Item (Cor) Equal 0.0105 0.0109 0.0106 
  Not Equal but Symmetric 0.0121 0.0117 0.0127 
  Not Equal and Not Symmetric 0.0125 0.0128 0.0133 

0.05 3-Item (Cor) Equal 0.0252 0.0249 0.0256 
  Not Equal but Symmetric 0.0258 0.0255 0.0285 
  Not Equal and Not Symmetric 0.0281 0.0280 0.0250 
 4-Item (Cor) Equal 0.0229 0.0259 0.0272 
  Not Equal but Symmetric 0.0186 0.0206 0.0184 
  Not Equal and Not Symmetric 0.0188 0.0187 0.0186 
 5-Item (Cor) Equal 0.0180 0.0175 0.0168 
  Not Equal but Symmetric 0.0208 0.0191 0.0210 
  Not Equal and Not Symmetric 0.0202 0.0203 0.0210 

0.10 3-Item (Cor) Equal 0.0438 0.0471 0.0450 
  Not Equal but Symmetric 0.0497 0.0490 0.0522 
  Not Equal and Not Symmetric 0.0502 0.0492 0.0506 
 4-Item (Cor) Equal 0.0488 0.0450 0.0428 
  Not Equal but Symmetric 0.0351 0.0347 0.0335 
  Not Equal and Not Symmetric 0.0329 0.0328 0.0340 
 5-Item (Cor) Equal 0.0319 0.0319 0.0304 
  Not Equal but Symmetric 0.0393 0.0381 0.0362 
  Not Equal and Not Symmetric 0.0383 0.0370 0.0361 

0.15 3-Item (Cor) Equal 0.0654 0.0637 0.0615 
  Not Equal but Symmetric 0.0699 0.0650 0.0600 
  Not Equal and Not Symmetric 0.0695 0.0672 0.0713 
 4-Item (Cor) Equal 0.0614 0.0633 0.0602 
  Not Equal but Symmetric 0.0460 0.0494 0.0467 
  Not Equal and Not Symmetric 0.0519 0.0494 0.0477 
 5-Item (Cor) Equal 0.0408 0.0422 0.0420 
  Not Equal but Symmetric 0.0563 0.0480 0.0552 
  Not Equal and Not Symmetric 0.0517 0.0494 0.0478 
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Table 4 (continued) 

 
 
πs 

 
 

Item List Size 

 
 

Non-Sensitive Distribution 

Relative 
Reliability 
 n = 150 

Relative 
Reliability 

n = 500 

Relative 
Reliability 
n = 1,500 

0.20 3-Item (Cor) Equal 0.0764 0.0747 0.0710 
  Not Equal but Symmetric 0.0869 0.0806 0.0895 
  Not Equal and Not Symmetric 0.0844 0.0893 0.0871 
 4-Item (Cor) Equal 0.0712 0.0720 0.0749 
  Not Equal but Symmetric 0.0536 0.0579 0.0615 
  Not Equal and Not Symmetric 0.0548 0.0557 0.0570 
 5-Item (Cor) Equal 0.0542 0.0556 0.0544 
  Not Equal but Symmetric 0.0561 0.0624 0.0627 
  Not Equal and Not Symmetric 0.0628 0.0619 0.0608 

0.25 3-Item (Cor) Equal 0.0830 0.0912 0.0920 
  Not Equal but Symmetric 0.0925 0.0958 0.0932 
  Not Equal and Not Symmetric 0.0898 0.0960 0.0940 
 4-Item (Cor) Equal 0.0845 0.0810 0.0858 
  Not Equal but Symmetric 0.0678 0.0617 0.0660 
  Not Equal and Not Symmetric 0.0645 0.0655 0.0665 
 5-Item (Cor) Equal 0.0578 0.0589 0.0673 
  Not Equal but Symmetric 0.0737 0.0716 0.0714 
  Not Equal and Not Symmetric 0.0696 0.0756 0.0737 

0.35 3-Item (Cor) Equal 0.1039 0.1041 0.1040 
  Not Equal but Symmetric 0.1145 0.1078 0.1039 
  Not Equal and Not Symmetric 0.1073 0.1101 0.1095 
 4-Item (Cor) Equal 0.0964 0.1052 0.1071 
  Not Equal but Symmetric 0.0805 0.0767 0.0808 
  Not Equal and Not Symmetric 0.0737 0.0752 0.0752 
 5-Item (Cor) Equal 0.0702 0.0736 0.0758 
  Not Equal but Symmetric 0.0817 0.0832 0.0811 
  Not Equal and Not Symmetric 0.0818 0.0815 0.0799 

0.45 3-Item (Cor) Equal 0.1059 0.1068 0.1086 
  Not Equal but Symmetric 0.1131 0.1241 0.1228 
  Not Equal and Not Symmetric 0.1121 0.1170 0.1182 
 4-Item (Cor) Equal 0.1143 0.1063 0.1181 
  Not Equal but Symmetric 0.0873 0.0846 0.0941 
  Not Equal and Not Symmetric 0.0877 0.0812 0.0850 
 5-Item (Cor) Equal 0.0762 0.0818 0.0729 
  Not Equal but Symmetric 0.0914 0.0908 0.0900 
  Not Equal and Not Symmetric 0.0840 0.0963 0.0869 
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Figure 2. Item Count Technique Item List 3 (Correlated), Relative Reliability by 
Sensitive Prevalent Rate, and Distribution of Non-sensitive Prevalent Rates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Item Count Technique Item List 4 (Correlated), Relative Reliability by 
Sensitive Prevalent Rate, and Distribution of Non-sensitive Prevalent Rates. 
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Figure 4. Item Count Technique Item List 5 (Correlated), Relative Reliability by 
Sensitive Prevalent Rate and Distribution of Non-sensitive Prevalent Rates. 
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from the model with the higher variation--necessary to obtain a variance similar to the 

model with less variability. If the relative reliability was close to unity, either model 

could be termed as optimal. Table 5 displays the descriptive statistics of the relative 

reliability analysis between these two model types by item list; and Figures 5 and 6 

display the plots of the relative reliability ratios by each sample size and item list, where 

the maximum relative reliability ratio is indicated in the plot by a “+”. As is seen in the 

table, the relative reliability between the model types for the 3-item lists ranged between 

1.00 and 1.19 with a mean and median of 1.05 and 1.04 and the relative reliability for the 

5-item list ranged similarly between 1.00 and 1.16 where the mean and median were 1.05 

and 1.03, respectively. For the ICT 3-item model and ICT 5-item model, the maximum 

relative reliability was 1.19 (not equal and not symmetric, n = 1,500, πs = 0.15) and 1.16 

(“not equal and symmetric,” n = 1,500, πs = 0.15). As a result, the optimal model for the 

3-item and 5-item ICT, was selected based on the maximum relative reliability ratio, 

where the model with the smaller variability was selected. For the ICT 3-item model, the 

optimal mode was the correlated model with sensitive items distributed as “not equal and 

not symmetric” (max rel rel = 1.19) and for the ICT 5-item model, the optimal model was 

the correlated model with sensitive items distributed as “not equal and symmetric” (max 

rel rel = 1.16). 
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Table 5 
 
Relative Reliability Study, Item Count Technique 3-Item and 5-Item Lists Comparing 
Models with “Not Equal and Symmetric” and “Not Equal and Not symmetric” 
Sensitive Prevalent Item Lists 

Descriptive Statistics 
Item Size 

Mean Stddev Median Minimum Maximum* 

3-Item 1.0500 0.0464 1.0352 1.0013 1.1889 

5-Item 1.0484 0.0382 1.0323 1.0007 1.1550 

* Model with the maximum rel rel occurred for πs = 0.15, n = 1,500. “not equal and not 
symmetric” (item list 3) and “not equal and symmetric” (item list 5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
+ Maximum rel rel occurred for πs = 0.15, n = 1,500. “not equal and not symmetric” 

 
 
Figure 5. Item Count Technique Item List 3 (Correlated), Relative Reliability by 
Sensitive Prevalent Rate and Distribution of Non-sensitive Prevalent Rates (Not Equal 
and Symmetric vs. Not Equal and Not Symmetric) 
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+ Maximum rel rel occurred for πs = 0.15, n = 1,500. “not equal and symmetric” 

 
 
Figure 6. Item Count Technique Item List 5 (Correlated), Relative Reliability by 
Sensitive Prevalent Rate and Distribution of Non-sensitive prevalent rates (Not Equal and 
Symmetric vs. Not Equal and Not Symmetric) 
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from the ICT simulations, in which only one sample received the sensitive question. For 

the simulated DICT lists, a between lists correlation of 0.85 implied that each non-

sensitive item in list A was correlated with the corresponding non-sensitive item in list B. 

Thus, what distinguished the double item count technique (DICT) model from the item 

count technique (ICT) and single sample count technique (SSC) models in this study was 

that all non-sensitive items were correlated in pairs since there were two lists. As a result, 

for this study, between list correlations were made and in order to demonstrate the 

reduction of model variability due to the between list correlation, and yet be practical to 

real world applications, it was determined that a between list correlation of 0.85 

(arbitrarily selected) would be adequate. When the two sets of simulations were 

attempted (i.e., simulations of between list correlations and simulations of between and 

within list correlations), the first set that considered correlations exclusively between lists, 

performed well. However, when correlations between non-sensitive items within lists 

were included, the multivariate normal approximation that would determine the threshold 

for the binary distribution resulted in a non-positive definite correlation matrix. As a 

result, simulations of the DICT that adjusted for both within and between item list 

correlations could not be done. Because of this, in order to determine optimal models for 

the DICT, an experiment was performed to determine which type of correlation--the 

between or within--reduced model variability more substantially in the DICT. This would 

then determine the correlation used in the set of simulations selecting the optimal DICT 

models.  
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Simulation Study of the None vs. 
Within vs. Between Correlation 
in the 5-item Double Item 
Count Technique 
 
 For this simulation study, the model with the highest expected variability was 

used. The 5-item DICT model for samples of 150 subjects was selected since it is 

expected to produce the highest amount of variability (Glynn, 2013; Tsuchiya et al., 

2007). Simulations were run for each of the nine sensitive prevalent rates in order to 

examine the models variability more thoroughly. 

 A total of three sets of simulations were defined by type of correlation (i.e., none, 

between list, within list). The first set did not purposely correlate either between lists or 

within lists; whereas the second set correlated between lists at 0.85 and no within list 

correlations, and the third set correlated within lists at -0.50 as outlined in Chapter III for 

the item count technique (ICT) and no between list correlations. For each of these 

correlation types, a total of 1,000 simulations were run by sensitive prevalent rate in 

combination with non-sensitive prevalent rate distributions (“equal,” “not equal and 

symmetric,” “not equal and not symmetric”), resulting in a total of 81 simulations (27 

simulations per correlation type). For each simulation, 1,000 double item count technique 

(DICT) 5-item lists per sample were simulated using the “rmvbin” function in R, 

resulting in 1,000 DICT estimates. Variances were than calculated. Using these 

variances, the relative reliability between correlation type models (none, between, and 

within) as defined by non-sensitive distribution type (“equal,” “not equal and symmetric,” 

and “not equal and not symmetric”) were taken for each sensitive prevalent rate. So for 

instance, comparisons between the variance of the 5-item DICT estimating sensitive 

prevalent rate πs = 0.01 where the non-sensitive item distribution was “equal” were 
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compared between models with no correlation, between correlation and within 

correlation. For this set of simulations, truthful reporting was assumed. As was done in 

the previous set of simulations used to determine the optimal model for the 3-item and 5-

item ICT, the relative reliability ratio measured the model with the maximum variation 

(numerator) versus the model with the minimum variation (denominator). So for instance, 

if the model with “no correlation” resulted in a larger variance compared with the model 

with “between” correlation, the former would be used as the numerator and the latter as 

the denominator. As a result, the measure would be in terms of the percent of sampled 

participants--from the model with the higher variation--necessary to obtain a variance 

similar to the model with less variability. If the relative reliability was not close to unity, 

the model with the smaller variability would be termed more efficient and used in the set 

of simulations to determine the optimal model for the double item count technique 

(DICT). Table 6 displays the results of the simulation study. As can be seen in the table, 

the relative reliability of the models indicates that DICT models with highly correlated 

between lists reduced model variability compared with DICT models within or no list 

correlation. This is apparent since the relative reliability across sensitive prevalent rates 

and non-sensitive item distribution type was substantially greater than unity. Because of 

this, for the simulations determining the optimal DICT model, no within list correlations 

were made. Instead only between list correlations were simulated and the optimal model 

was selected by the distribution of the non-sensitive prevalent rates (i.e., “equal,” “not 

equal and symmetric,” and “not equal and not symmetric”). 
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Table 6 
 
Double Item Count Technique Relative Reliability, Study of Within List, Between List, 
and No Correlation in the 5-Item Model 

Correlation 

Dist Type 
 
πs  
 

Variance 
Between 

Variance 
Within 

Variance 
None 

Relative 
Reliability: 
None vs. 
Within 

Relative 
Reliability: 
None vs. 
Between 

Relative 
Reliability: 
Within vs. 
Between 

Equal 0.01 0.0024 0.0093 0.0137 1.4734 5.6804 3.8552 

 0.03 0.0026 0.0090 0.0153 1.7027 5.8865 3.4571 

 0.05 0.0026 0.0091 0.0148 1.6362 5.7024 3.4852 

 0.10 0.0031 0.0093 0.0168 1.8063 5.4338 3.0082 

 0.15 0.0032 0.0098 0.0157 1.6042 4.8507 3.0237 

 0.20 0.0035 0.0097 0.0160 1.6560 4.6260 2.7935 

 0.25 0.0039 0.0100 0.0160 1.6009 4.1280 2.5785 

 0.35 0.0040 0.0105 0.0163 1.5464 4.0708 2.6324 

 0.45 0.0038 0.0106 0.0151 1.4303 3.9412 2.7555 

Not Equal 
& Symm 0.01 0.0021 0.0075 0.0139 1.8426 6.5532 3.5565 

 0.03 0.0023 0.0073 0.0126 1.7161 5.5463 3.2319 

 0.05 0.0024 0.0080 0.0131 1.6227 5.3869 3.3198 

 0.10 0.0026 0.0080 0.0133 1.6606 5.1459 3.0988 

 0.15 0.0027 0.0090 0.0137 1.5192 5.0179 3.3029 

 0.20 0.0033 0.0080 0.0135 1.6752 4.1152 2.4565 

 0.25 0.0030 0.0092 0.0146 1.5937 4.8602 3.0496 

 0.35 0.0036 0.0090 0.0141 1.5667 3.8780 2.4753 

 0.45 0.0038 0.0092 0.0138 1.5038 3.6286 2.4130 

Not Equal 
& Not 
Symm 0.01 0.0023 0.0077 0.0137 1.7750 5.9153 3.3325 

 0.03 0.0025 0.0079 0.0143 1.8089 5.6380 3.1169 

 0.05 0.0024 0.0072 0.0140 1.9430 5.7377 2.9529 

 0.10 0.0029 0.0080 0.0147 1.8495 5.0777 2.7454 

 0.15 0.0032 0.0081 0.0139 1.7242 4.3868 2.5443 

 0.20 0.0034 0.0097 0.0154 1.5913 4.4914 2.8225 

 0.25 0.0033 0.0089 0.0166 1.8615 5.0228 2.6983 

 0.35 0.0038 0.0088 0.0151 1.7205 3.9628 2.3033 

 0.45 0.0038 0.0097 0.0140 1.4404 3.7033 2.5710 
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Selecting the Optimal Double Item 
Count Technique Model 
 

Table 7 displays the relative reliability as compared with the DQT for the three 

double item count technique (DICT) between list correlated models by list size, sensitive 

prevalence rate and sample size. The model with the greatest efficiency is bolded in the 

table per sample size and sensitive prevalent rate combination. In addition, Figures 7, 8, 

and 9 plot the relative reliability for each list size for sensitive prevalent rates πs = 0.05 

(small), πs = 0.20 (medium), and πs = 0.45 (large). Comparisons of the relative reliability 

among the three DICT correlated models indicated no consistent results in the selection 

of the optimal model by the distribution of the prevalent rates of the non-sensitive 

questions (i.e., “equal,” “not equal but symmetric,” “not equal and not symmetric”) and 

list size (3-item, 4-item, and 5-item). As is evident in the table, efficiency for the 3-item 

and 4-item DICT fluctuated between each of the non-sensitive item distributions (i.e., 

“equal,” “not equal and symmetric,” and “not equal and not symmetric”). Figures 7 and 8 

also indicated no clear differences between the efficiency of the non-sensitive distribution 

types since the plot of the relative reliability appear flat and do not peak at any one list 

type. This was evident across all sensitive prevalent rates and sample sizes. For the 5-

item DICT, Table 7 indicated that efficient models fluctuated between the “not equal and 

symmetric” and “not equal and not symmetric” distribution of the non-sensitive items. 

The models with “equally” distributed non-sensitive questions were never selected as 

optimal. Figure 9, which plots the relative reliability for the 5-item DICT, demonstrated 

this since the plot peaked at either the “not equal and symmetric” or “not equal and not 

symmetric” models and valleyed at the “equal” models.  
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Table 7 
 
Double Item Count Technique Relative Reliability, Selection of the Optimal Model 

πs Item List Size Non-Sensitive Distribution n = 150 n = 500 n = 1,500 
0.01 3- tem (Cor Bet) Equal 0.0429 0.0447 0.0436 

  Not Equal but Symmetric 0.0436 0.0441 0.0422 

  
Not Equal and Not 

Symmetric 0.0455 0.0466 0.0464 
 4-Item (Cor Bet) Equal 0.0330 0.0390 0.0354 
  Not Equal but Symmetric 0.0321 0.0345 0.0369 

  
Not Equal and Not 

Symmetric 0.0352 0.0347 0.0357 
 5-Item (Cor Bet) Equal 0.0287 0.0277 0.0252 
  Not Equal but Symmetric 0.0315 0.0297 0.0324 

  
Not Equal and Not 

Symmetric 0.0294 0.0285 0.0295 
0.03 3-Item (Cor Bet) Equal 0.1165 0.1298 0.1193 

  Not Equal but Symmetric 0.1129 0.1099 0.1135 

  
Not Equal and Not 

Symmetric 0.1178 0.1240 0.1245 
 4-Item (Cor Bet) Equal 0.0941 0.0978 0.0873 
  Not Equal but Symmetric 0.0873 0.0979 0.0984 

  
Not Equal and Not 

Symmetric 0.0965 0.0928 0.0979 
 5-Item (Cor Bet) Equal 0.0748 0.0727 0.0744 
  Not Equal but Symmetric 0.0880 0.0863 0.0859 

  
Not Equal and Not 

Symmetric 0.0773 0.0865 0.0767 
0.05 3-Item (Cor Bet) Equal 0.1696 0.1808 0.1933 

  Not Equal but Symmetric 0.1805 0.1809 0.1726 

  
Not Equal and Not 

Symmetric 0.1910 0.1799 0.1878 
 4-Item (Cor Bet) Equal 0.1398 0.1492 0.1310 
  Not Equal but Symmetric 0.1489 0.1493 0.1350 

  
Not Equal and Not 

Symmetric 0.1421 0.1503 0.1553 
 5-Item (Cor Bet) Equal 0.1156 0.1184 0.1169 
  Not Equal but Symmetric 0.1285 0.1426 0.1406 

  
Not Equal and Not 

Symmetric 0.1351 0.1261 0.1327 
0.10 3-Item (Cor Bet) Equal 0.3138 0.3057 0.3128 

  Not Equal but Symmetric 0.2752 0.2980 0.2761 

  
Not Equal and Not 

Symmetric 0.2758 0.2756 0.2962 
 4-Item (Cor Bet) Equal 0.2424 0.2332 0.2523 
  Not Equal but Symmetric 0.2424 0.2467 0.2405 

  
Not Equal and Not 

Symmetric 0.2368 0.2698 0.2388 
 5-Item (Cor Bet) Equal 0.2181 0.2118 0.2125 
  Not Equal but Symmetric 0.2316 0.2213 0.2071 

  
Not Equal and Not 

Symmetric 0.2015 0.1972 0.2157 
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Table 7 (continued) 

πs Item List Size Non-Sensitive Distribution n = 150 n = 500 n = 1,500 
0.15 3-Item (Cor Bet) Equal 0.3958 0.4002 0.3623 

  Not Equal but Symmetric 0.3915 0.3680 0.3625 

  
Not Equal and Not 

Symmetric 0.3908 0.3868 0.3734 
 4-Item (Cor Bet) Equal 0.2928 0.3142 0.3138 
  Not Equal but Symmetric 0.3081 0.3117 0.3232 

  
Not Equal and Not 

Symmetric 0.3406 0.3217 0.3220 
 5-Item (Cor Bet) Equal 0.2609 0.2762 0.2791 
  Not Equal but Symmetric 0.2796 0.2994 0.3030 

  
Not Equal and Not 

Symmetric 0.2813 0.2824 0.2760 
0.20 3-Item (Cor Bet) Equal 0.4293 0.4506 0.3949 

  Not Equal but Symmetric 0.4294 0.4179 0.4438 

  
Not Equal and Not 

Symmetric 0.4564 0.4478 0.4348 
 4-Item (Cor Bet) Equal 0.3773 0.3589 0.3537 
  Not Equal but Symmetric 0.3512 0.3710 0.3741 

  
Not Equal and Not 

Symmetric 0.3793 0.3410 0.3956 
 5-Item (Cor Bet) Equal 0.2922 0.3000 0.2989 
  Not Equal but Symmetric 0.3518 0.3716 0.3257 

  
Not Equal and Not 

Symmetric 0.3336 0.3229 0.3594 
0.25 3-Item (Cor Bet) Equal 0.4712 0.4566 0.4660 

  Not Equal but Symmetric 0.4420 0.4780 0.4793 

  
Not Equal and Not 

Symmetric 0.4904 0.5080 0.4454 
 4-Item (Cor Bet) Equal 0.3632 0.3975 0.3886 
  Not Equal but Symmetric 0.4000 0.4193 0.4058 

  
Not Equal and Not 

Symmetric 0.4105 0.4303 0.4034 
 5-Item (Cor Bet) Equal 0.3287 0.3280 0.3463 
  Not Equal but Symmetric 0.3953 0.4064 0.3739 

  
Not Equal and Not 

Symmetric 0.3354 0.3707 0.3890 
0.35 3-Item (Cor Bet) Equal 0.5507 0.5376 0.4928 

  Not Equal but Symmetric 0.5367 0.4940 0.4924 

  
Not Equal and Not 

Symmetric 0.5153 0.4951 0.5051 
 4-Item (Cor Bet) Equal 0.4748 0.4501 0.4620 
  Not Equal but Symmetric 0.4414 0.4291 0.4065 

  
Not Equal and Not 

Symmetric 0.4339 0.4592 0.4497 
 5-Item (Cor Bet) Equal 0.3880 0.3797 0.4005 
  Not Equal but Symmetric 0.4398 0.4601 0.4548 

  
Not Equal and Not 

Symmetric 0.4219 0.4181 0.3991 
0.45 3-Item (Cor Bet) Equal 0.4929 0.5351 0.5268 

  Not Equal but Symmetric 0.5420 0.5379 0.5236 

  
Not Equal and Not 

Symmetric 0.4932 0.5181 0.5243 
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Table 7 (continued) 

πs Item List Size Non-Sensitive Distribution n = 150 n = 500 n = 1,500 
 4-Item (Cor Bet) Equal 0.4429 0.4529 0.4464 
  Not Equal but Symmetric 0.4453 0.4729 0.4825 

  
Not Equal and Not 

Symmetric 0.4636 0.5227 0.5055 
 5-Item (Cor Bet) Equal 0.3791 0.4090 0.3941 
  Not Equal but Symmetric 0.4018 0.4396 0.4603 

  
Not Equal and Not 

Symmetric 0.4537 0.4333 0.4746 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Double Item Count Technique Item List 3, Relative Reliability by Sensitive 
Prevalent Rate, and Distribution of Non-sensitive Prevalent Rates. 
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Figure 8. Double Item Count Technique Item List 4, Relative Reliability by Sensitive 
Prevalent Rate and Distribution of Non-sensitive Prevalent Rates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Double Item Count Technique Item List 5, Relative Reliability by Sensitive 
Prevalent Rate and Distribution of Non-sensitive Prevalent Rates. 
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As a result of this, a relative reliability analysis similar to the one performed for 

the 3-item and 5-item item count technique (ICT) was run to determine the optimal 

model. For this analysis, since all three non-sensitive distribution types were selected at 

some point for the 3-item and 4-Item double item count technique (DICT), all model 

types were included in the analysis. For the 5-item DICT, since models for which the 

non-sensitive questions were distributed “equally” were never selected, the relative 

reliability was examined between models where non-sensitive questions were distributed 

as “not equal and symmetric” and “not equal and not symmetric.” Relative reliability was 

measured in terms of the ratio of the model with the higher variability compared to the 

model with the smaller variability. In order to encompass all model types, for the 3-item 

and 4-item DICT, the model resulting in the maximum variance was compared to the 

model resulting in the minimum variance. For the 5-item DICT, the comparison was 

similar, where the comparison occurred between the models with non-sensitive prevalent 

rates distributed as “not equal and symmetric” to the models with non-sensitive prevalent 

rates distributed as “not equal and not symmetric.” As a result, the measures are in terms 

of the additional percentage of sampled participants--from the model with the higher 

variation--necessary to obtain a variance similar to the model with less variability. If the 

relative reliability was close to unity, either model could be termed as optimal. Table 8 

displays the descriptive statistics of the relative reliability analysis for the DICT by item 

list size; and Figures 10, 11, and 12 display the plots of the relative reliability ratios by 

each sample size and item list. In each plot, the maximum relative reliability is indicated 

by a “+”. As is seen in the table, the relative reliability between the model types for the 3-

item lists ranged between 1.01 and 1.18 with a mean and median of 1.08 and 1.09; 
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whereas the relative reliability for the 4-item list ranged similarly between 1.01 and 1.19 

with mean and median 1.09. For the 5-item double item count technique (DICT), the 

relative reliability also ranged similarly between 1.00 and 1.18 where the mean and 

median were 1.08 and 1.06, respectively. For the DICT 3-item, 4-item, and 5-item 

models, the maximum relative reliability was 1.18 (comparing “not equal and symmetric” 

to “equal” to, n = 500, πs = 0.03), 1.19 (comparing “equal” and “not equal and not 

symmetric,” n = 1,500, πs = 0.05), and 1.18 (comparing “not equal and not symmetric” to 

“not equal and symmetric,” n = 150, πs = 0.25) indicating that, at maximum, between 18 

and 19 percent additional subjects were necessary in order to produce equivalent models. 

As a result, the optimal model for the 3-item, 4-item, and 5-item DICT, was based on the 

maximum relative reliability ratio, where the model with the smaller variability was 

selected. For the DICT 3-item model, the optimal model was the between list correlated 

model with sensitive items distributed as “equal” (max rel rel = 1.18) and for the DICT 4-

item model, the optimal model was the between list correlated model with sensitive items 

distributed as “not equal and not symmetric” (max rel rel = 1.19). The optimal model 

selected for the DICT 5-item was the model with the between list correlation with 

sensitive items distributed as “not equal and symmetric” (max rel rel = 1.18). 
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Table 8 
 
Relative Reliability Study, Double Item Count Technique 3-Item, 4-Item, and 5-Item 
Lists Comparing Models with “Equal,” “Not Equal and Symmetric,” and “Not Equal 
and Not Symmetric” Sensitive Prevalent Item Lists 

Descriptive Statistics 
Item Size 

Mean Stddev Median Minimum Maximum 

3-Item 1.0812 0.0445 1.0875 1.0057 1.1813 

4-Item  1.0909 0.0483 1.0878 1.0078 1.1850 

5-Item 1.0764 0.0479 1.0621 1.0019 1.1786 

*Model with the maximum rel rel occurred for πs = 0.03, n = 500. “equal” (item list 3), 
πs = 0.05, n = 1,500. “not equal and not symmetric” (item list 4), πs = 0.25, n = 150. 
“not equal and symmetric” (item list 5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
+ Maximum rel rel occurred for πs = 0.03, n = 500. “equal” 

 
Figure 10. Double Item Count Technique Item List 3, Relative Reliability by Sensitive 
Prevalent Rate and Distribution of Non-sensitive Prevalent Rates (Equal vs. Not Equal, 
and Symmetric vs. Not Equal and Not Symmetric) 
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+ Maximum rel rel occurred for πs = 0.05, n = 1,500. “not equal and not symmetric” 

 
Figure 11. Double Item Count Technique Item List 4, Relative Reliability by Sensitive 
Prevalent Rate and Distribution of Non-sensitive Prevalent Rates (Equal vs. Not Equal 
and Symmetric vs. Not Equal and Not Symmetric) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
+ Maximum rel rel occurred for πs = 0.25, n = 150. “not equal and symmetric” 

 
Figure 12. Double Item Count Technique Item List 5, Relative Reliability by Sensitive 
Prevalent Rate and Distribution of Non-sensitive Prevalent Rates (Not Equal and 
Symmetric vs. Not Equal and Not symmetric) 
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Single Sample Count Technique (SSC) 

For the single sample count technique (SSC), two sets of simulations were run. In 

the first set, simulations of non-sensitive questions were not purposely correlated and in 

the second set, specific non-sensitive questions were correlated at -0.50 as outlined in 

Chapter III. Simulations were then performed for each prevalent rate (with the exception 

of πs = 0.01) - sample size combination. Since the distribution of prevalent rates of the 

non-sensitive items were equal and set at 0.50 for all non-sensitive questions, distribution 

of the sensitive questions was not a factor in these simulations. Thus, a total of 48 

simulations per list size were run. For each simulation, 1,000 item lists were created 

using the R function, “rmvbin,” resulting in a total of 1,000 expected value estimates for 

which the variance was calculated and used as an estimate of the variability in the SSC. 

For these simulations, honest reporting was assumed. 

For each item list, relative reliability was compared to the DQT between the two 

models (i.e., the model with no purposeful correlations between non-sensitive questions 

and the model with specific correlations between non-sensitive questions). Table 9 

displays the results of the relative reliability analysis. Optimal models by list size and 

sensitive prevalent rate are bolded in the table. Results indicated that across list sizes and 

sensitive prevalent rates, models that correlated at least one pair of non-sensitive 

questions proved more efficient (i.e., resulted in a higher relative reliability estimate as 

compared to DQT) compared to the models that did not correlate between non-sensitive 

questions. Because of this, the optimal model for each list size of the SSC was the model 

that correlated between at least one pair of sensitive questions. Like the ICT and DICT, 

these results demonstrated what Glynn (2013) suggested that by purposefully correlating 
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between non-sensitive questions, model variation decreased and statistical efficiency 

improved. 

 
 
Table 9 
 
Single Sample Count Relative Reliability, Selection of the Optimal Model 

Correlated Not Correlated 
πs List Size 

n = 150 n = 500 n = 1,500 n = 150 n = 500 n = 1,500 

0.03 3-Item 0.054563 0.057512 0.057261 0.038832 0.039217 0.035902 

 4-Item 0.048644 0.057113 0.0594859 0.028011 0.029640 0.027327 

 5-Item 0.036840 0.035354 0.036288 0.022017 0.022322 0.021286 

0.05 3-Item 0.078435 0.084802 0.0860270 0.059609 0.059331 0.057416 

 4-Item 0.087302 0.084969 0.095583 0.047117 0.046825 0.04518 

 5-Item 0.057595 0.060088 0.0569652 0.036235 0.039181 0.036715 

0.10 3-Item 0.153976 0.148668 0.1414304 0.117482 0.101291 0.106261 

 4-Item 0.157227 0.160248 0.1624203 0.082637 0.082438 0.084776 

 5-Item 0.104396 0.109390 0.1120014 0.064650 0.068787 0.069452 

0.15 3-Item 0.209415 0.209558 0.2106366 0.144481 0.145469 0.140555 

 4-Item 0.203272 0.201227 0.2182143 0.120184 0.107018 0.107828 

 5-Item 0.146633 0.144657 0.160424 0.083426 0.087641 0.088985 

0.20 3-Item 0.238186 0.273521 0.2307898 0.191087 0.165385 0.187770 

 4-Item 0.22999 0.237275 0.2390333 0.126577 0.138758 0.134126 

 5-Item 0.176778 0.164041 0.1799423 0.104794 0.106479 0.118225 

0.25 3-Item 0.282802 0.278962 0.2707125 0.197648 0.190178 0.202867 

 4-Item 0.268962 0.270955 0.2549287 0.154700 0.167569 0.167614 

 5-Item 0.207385 0.203666 0.1956293 0.129096 0.125561 0.127687 

0.35 3-Item 0.319831 0.325236 0.3159866 0.256686 0.234091 0.232354 

 4-Item 0.328424 0.318911 0.3204324 0.194757 0.192235 0.187512 

 5-Item 0.235264 0.236536 0.2198946 0.159811 0.147532 0.168111 

0.45 3-Item 0.334170 0.327620 0.3101452 0.235714 0.256463 0.241387 

 4-Item 0.338029 0.325328 0.3385486 0.194628 0.200729 0.190010 

 5-Item 0.247533 0.249735 0.2413803 0.175380 0.164462 0.171289 
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The Study of Non-Compliance 

Unrelated Question Technique 
(Optimal) vs. Non-random 
Response Techniques 
(Optimal) 
 

Table 10 displays the results of the non-compliance study, comparing the optimal 

UQT technique to each of the NRR optimal techniques. Figures 13, 14, and 15 display 

the ratio of MSE by the proportion of truthful reporting (0.90, 0.80, 0.70, and 0.60) and 

sample size (150, 500, and 1,500) for sensitive prevalent rates πs = 0.05 (small), πs = 0.20 

(medium), and πs = 0.45 (large). In each figure, the plot of the ratio of MSE by NRR 

technique is coded by line type, where plots of all item count technique (ICT) models are 

solid-broken, double item count technique (DICT) models are solid and single sample 

count technique (SSC) models are broken. Item list size are represented by plot type 

where the 3-item list is represented by triangles, the 4-item list represented by circles and 

the 5-item list is represented by squares. For these analyses, the study assumed that a 

ratio of MSE close to unity implied the models were similar in their efficiency. 

As is evident in the table and figures, when πs was small (i.e., 0.01, 0.03, and 

0.05) across all sample sizes, the UQT optimal model was generally more efficient than 

all NRR models.  

When πs was moderate (i.e., 0.10, 0.15, and 0.20), as πs increases the DICT 

optimal models approached the efficiency of the UQT for mid sample sizes (n = 500) and 

large sample sizes (n = 1,500) in the presence of high non-compliance (i.e., percent of 

truthful reporting < 0.70). For the optimal SSC, in the presence of high non-compliance 

(i.e., percent of truthful reporting < 0.70), as πs increased for larger sample sizes (i.e., 

1,500), the model was nearly as efficient as the UQT optimal. 



 
Table 10 
 
Study of Non-compliance: Unrelated Question Technique Optimal vs. Non-random Response Optimal Models 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response Model 
0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.01 ICT 3-Item 0.022 0.022 0.022 0.019 0.021 0.021 0.022 0.022 0.021 0.023 0.030 0.034 

 ICT 4-Item 0.021 0.019 0.019 0.018 0.019 0.019 0.020 0.022 0.020 0.022 0.027 0.031 

 ICT 5-Item 0.014 0.015 0.014 0.015 0.017 0.016 0.017 0.016 0.015 0.017 0.021 0.024 

 DICT 3-Item 0.150 0.152 0.145 0.148 0.146 0.148 0.153 0.167 0.160 0.163 0.189 0.199 

 DICT 4-Item 0.126 0.120 0.116 0.127 0.120 0.125 0.128 0.138 0.132 0.139 0.148 0.175 

 DICT 5-Item 0.099 0.104 0.098 0.100 0.102 0.110 0.122 0.111 0.106 0.120 0.138 0.179 

 SSC 3-Item* N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 SSC 4-Item* N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 SSC 5-Item* N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

0.03 ICT 3-Item 0.035 0.035 0.035 0.038 0.037 0.044 0.054 0.070 0.044 0.063 0.090 0.137 

 ICT 4-Item 0.031 0.032 0.034 0.039 0.035 0.039 0.047 0.061 0.038 0.056 0.093 0.123 

 ICT 5-Item 0.026 0.024 0.026 0.031 0.028 0.032 0.041 0.050 0.030 0.044 0.074 0.110 

 DICT 3-Item 0.244 0.241 0.244 0.250 0.247 0.287 0.345 0.418 0.278 0.344 0.484 0.647 

 DICT 4-Item 0.186 0.194 0.212 0.224 0.195 0.231 0.268 0.310 0.236 0.325 0.404 0.487 

 DICT 5-Item 0.178 0.169 0.185 0.200 0.187 0.201 0.273 0.293 0.203 0.283 0.351 0.463 

 SSC 3-Item 0.116 0.122 0.119 0.130 0.102 0.145 0.170 0.198 0.138 0.195 0.281 0.353 

 SSC 4-Item 0.117 0.116 0.113 0.133 0.124 0.139 0.167 0.206 0.132 0.187 0.282 0.362 

 SSC 5-Item 0.074 0.074 0.081 0.081 0.081 0.093 0.105 0.137 0.089 0.133 0.201 0.274 124 



 
Table 10 (continued) 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response Model 
0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.05 ICT 3-Item 0.045 0.053 0.058 0.072 0.052 0.075 0.097 0.139 0.068 0.127 0.198 0.284 

 ICT 4-Item 0.048 0.047 0.059 0.069 0.046 0.072 0.087 0.125 0.060 0.116 0.192 0.295 

 ICT 5-Item 0.036 0.040 0.045 0.053 0.039 0.050 0.081 0.104 0.050 0.096 0.152 0.226 

 DICT 3-Item 0.326 0.338 0.368 0.397 0.341 0.416 0.511 0.569 0.409 0.615 0.665 0.809 

 DICT 4-Item 0.274 0.268 0.314 0.322 0.269 0.363 0.440 0.532 0.352 0.499 0.611 0.786 

 DICT 5-Item 0.234 0.248 0.249 0.310 0.256 0.300 0.419 0.480 0.320 0.445 0.608 0.678 

 SSC 3-Item 0.150 0.157 0.189 0.223 0.171 0.207 0.281 0.371 0.197 0.334 0.495 0.576 

 SSC 4-Item 0.163 0.158 0.176 0.196 0.170 0.213 0.269 0.372 0.188 0.312 0.473 0.604 

 SSC 5-Item 0.101 0.106 0.124 0.147 0.107 0.159 0.207 0.269 0.150 0.240 0.339 0.462 

0.10 ICT 3-Item 0.078 0.098 0.125 0.166 0.098 0.156 0.243 0.348 0.138 0.323 0.450 0.613 

 ICT 4-Item 0.076 0.091 0.119 0.153 0.093 0.154 0.240 0.313 0.137 0.289 0.486 0.588 

 ICT 5-Item 0.064 0.075 0.091 0.130 0.069 0.121 0.210 0.291 0.108 0.240 0.384 0.511 

 DICT 3-Item 0.456 0.494 0.565 0.696 0.573 0.596 0.774 0.870 0.605 0.838 0.917 0.947 

 DICT 4-Item 0.404 0.443 0.542 0.611 0.446 0.609 0.736 0.836 0.570 0.738 0.883 0.902 

 DICT 5-Item 0.346 0.398 0.449 0.559 0.407 0.549 0.706 0.788 0.525 0.761 0.857 0.908 

 SSC 3-Item 0.228 0.299 0.351 0.437 0.289 0.414 0.550 0.651 0.392 0.598 0.786 0.869 

 SSC 4-Item 0.244 0.272 0.322 0.431 0.292 0.399 0.539 0.648 0.410 0.599 0.775 0.816 

 SSC 5-Item 0.171 0.204 0.275 0.298 0.202 0.307 0.434 0.589 0.284 0.492 0.649 0.795 
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Table 10 (continued) 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response Model 
0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.15 ICT 3-Item 0.098 0.141 0.211 0.327 0.141 0.276 0.386 0.524 0.225 0.488 0.667 0.809 

 ICT 4-Item 0.103 0.142 0.208 0.282 0.138 0.254 0.406 0.540 0.207 0.438 0.630 0.748 

 ICT 5-Item 0.084 0.109 0.163 0.224 0.116 0.222 0.351 0.434 0.172 0.411 0.589 0.723 

 DICT 3-Item 0.553 0.650 0.761 0.832 0.617 0.783 0.879 0.947 0.797 0.898 0.930 0.987 

 DICT 4-Item 0.486 0.594 0.666 0.750 0.604 0.736 0.834 0.923 0.691 0.872 0.951 0.976 

 DICT 5-Item 0.430 0.529 0.628 0.684 0.514 0.655 0.819 0.862 0.672 0.846 0.907 0.976 

 SSC 3-Item 0.323 0.406 0.471 0.609 0.391 0.578 0.715 0.808 0.547 0.753 0.868 0.913 

 SSC 4-Item 0.316 0.373 0.563 0.629 0.380 0.574 0.676 0.806 0.584 0.765 0.849 0.928 

 SSC 5-Item 0.247 0.294 0.390 0.498 0.296 0.455 0.606 0.768 0.444 0.645 0.827 0.875 

0.20 ICT 3-Item 0.126 0.212 0.297 0.394 0.173 0.352 0.525 0.651 0.331 0.595 0.721 0.889 

 ICT 4-Item 0.129 0.181 0.301 0.354 0.198 0.342 0.485 0.634 0.297 0.620 0.776 0.881 

 ICT 5-Item 0.114 0.167 0.237 0.324 0.154 0.293 0.457 0.586 0.264 0.500 0.685 0.817 

 DICT 3-Item 0.647 0.732 0.794 0.879 0.745 0.846 0.942 0.957 0.843 0.892 0.982 0.995 

 DICT 4-Item 0.548 0.662 0.733 0.800 0.664 0.815 0.920 0.948 0.795 0.884 0.972 0.996 

 DICT 5-Item 0.527 0.641 0.705 0.798 0.661 0.818 0.900 0.908 0.735 0.877 0.958 0.979 

 SSC 3-Item 0.438 0.516 0.620 0.714 0.467 0.739 0.828 0.887 0.707 0.827 0.926 0.956 

 SSC 4-Item 0.378 0.507 0.605 0.718 0.507 0.737 0.834 0.872 0.669 0.864 0.939 0.970 

 SSC 5-Item 0.310 0.372 0.498 0.602 0.365 0.545 0.724 0.849 0.585 0.811 0.885 0.926 
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Table 10 (continued) 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response Model 
0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.25 ICT 3-Item 0.161 0.239 0.382 0.506 0.245 0.476 0.617 0.752 0.417 0.652 0.871 0.868 

 ICT 4-Item 0.154 0.250 0.350 0.498 0.236 0.443 0.648 0.786 0.414 0.681 0.823 0.903 

 ICT 5-Item 0.123 0.220 0.324 0.445 0.206 0.424 0.582 0.652 0.372 0.639 0.815 0.882 

 DICT 3-Item 0.729 0.831 0.893 0.908 0.753 0.910 0.907 0.982 0.868 0.968 0.981 0.991 

 DICT 4-Item 0.652 0.730 0.820 0.869 0.695 0.884 0.912 0.975 0.836 0.956 0.971 0.977 

 DICT 5-Item 0.590 0.690 0.835 0.906 0.703 0.867 0.937 0.967 0.875 0.936 0.965 0.983 

 SSC 3-Item 0.450 0.518 0.718 0.833 0.596 0.734 0.868 0.913 0.724 0.909 0.936 0.967 

 SSC 4-Item 0.426 0.615 0.688 0.781 0.532 0.796 0.869 0.886 0.736 0.876 0.954 0.979 

 SSC 5-Item 0.332 0.469 0.645 0.680 0.479 0.682 0.840 0.863 0.638 0.899 0.940 0.958 

0.35 ICT 3-Item 0.223 0.356 0.546 0.599 0.358 0.677 0.780 0.854 0.558 0.832 0.907 0.950 

 ICT 4-Item 0.191 0.352 0.500 0.602 0.318 0.591 0.730 0.828 0.551 0.776 0.931 0.925 

 ICT 5-Item 0.175 0.320 0.465 0.608 0.264 0.530 0.718 0.795 0.475 0.791 0.863 0.919 

 DICT 3-Item 0.811 0.919 0.917 0.970 0.926 0.941 0.980 0.989 0.963 1.008 0.994 0.993 

 DICT 4-Item 0.731 0.813 0.931 0.911 0.820 0.926 0.944 0.972 0.941 0.965 0.986 1.001 

 DICT 5-Item 0.652 0.841 0.896 0.946 0.801 0.904 0.949 0.986 0.902 0.983 0.996 0.989 

 SSC 3-Item 0.562 0.690 0.813 0.871 0.652 0.822 0.897 0.967 0.839 0.964 0.971 0.975 

 SSC 4-Item 0.558 0.695 0.844 0.917 0.714 0.857 0.959 0.976 0.863 0.926 0.983 0.977 

 SSC 5-Item 0.413 0.619 0.753 0.817 0.553 0.785 0.873 0.942 0.773 0.931 0.966 0.981 
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Table 10 (continued) 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response Model 
0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.45 ICT 3-Item 0.270 0.490 0.658 0.722 0.431 0.689 0.842 0.909 0.664 0.900 0.933 0.963 

 ICT 4-Item 0.233 0.445 0.633 0.755 0.442 0.720 0.825 0.907 0.656 0.862 0.939 0.980 

 ICT 5-Item 0.231 0.398 0.586 0.659 0.353 0.627 0.809 0.855 0.570 0.841 0.937 0.975 

 DICT 3-Item 0.843 0.918 0.946 0.985 0.917 0.964 0.957 0.978 0.961 0.972 0.994 1.007 

 DICT 4-Item 0.812 0.928 0.923 0.945 0.856 0.950 0.971 0.994 0.923 0.989 0.992 1.002 

 DICT 5-Item 0.804 0.879 0.919 0.939 0.880 0.981 0.960 0.989 0.953 0.959 0.987 1.004 

 SSC 3-Item 0.666 0.783 0.889 0.951 0.785 0.909 0.958 0.975 0.895 0.966 0.979 0.982 

 SSC 4-Item 0.596 0.789 0.881 0.928 0.805 0.922 0.970 0.986 0.853 0.965 1.000 0.988 

 SSC 5-Item 0.519 0.695 0.898 0.889 0.692 0.840 0.907 0.945 0.799 0.948 0.975 0.978 

*The SSC assumption of using the normal approximation of a binomial for πs =.01 was not met. 
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Figure 13. Efficiency as It Relates to Non-compliance, Comparing Optimal Non-random 
Response models to the Unrelated Question Technique (optimal), n = 150 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Efficiency as It Relates to Non-compliance, Comparing Optimal Non-random 
Response models to the Unrelated Question Technique (optimal), n = 500 
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Figure 15. Efficiency as It Relates to Non-compliance, Comparing Optimal Non-random 
Response models to the Unrelated Question Technique (optimal), n = 1,500 
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= 500), as πs increased the DICT optimal models were nearly as efficient as the UQT 

optimal in the presence of moderate non-compliance rates (i.e., percent of truthful 

reporting < 0.80). When sample sizes increased to 1,500, all DICT optimal models 

approached the efficiency of the UQT across all non-compliant rates (i.e., percent of 

truthful reporting < 0.90). The optimal SSC 3-item model proved to be nearly as efficient 

as the UQT optimal for small sample sizes (i.e., n = 150) in the presence of high non-
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samples sizes (n = 500) the SSC 3-item and 4-item optimal models were nearly as 
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efficient as the UQT in the presence of moderate non-compliance rates (i.e., percent of 

truthful reporting < 0.80). This trend continued for all SSC optimal models when sample 

sizes were large (n = 1,500). For the optimal ICT, as πs increased, the model was nearly 

as efficient as the UQT optimal for mid-sample sizes (n = 500) when non-compliance 

was high (i.e., percent of truthful reporting = 0.60) and for large sample sizes (n=1,500) 

when non-compliance was also high (i.e., percent of truthful reporting < 0.70).  

As is evident, in the case of comparing the UQT optimal to the non-random 

response (NRR) optimal models, a pattern was apparent. Across all sample sizes, 

sensitive prevalent rates and equivalent non-compliance rates, the DICT optimal models 

were the most efficient of the NRR optimal models since the ratio of MSE as compared 

with the UQT optimal was greater than any of the corresponding ratio of MSE of the 

single sample count technique (SSC) and item count technique (ICT) optimal models. As 

is seen in each figure, the double item count technique (DICT) optimal 3-item list was 

most efficient followed by the DICT optimal 4-item and 5-Item list models. Only in the 

presence of high non-compliance (i.e., percent of truthful reporting > 0.70), larger sample 

sizes (n = 1,500) and larger sensitive prevalent rates (πs = 0.45) did the NRR optimal 

models and UQT optimal approach unity.  

Unrelated Question Technique 
(Practical) vs. Non-random 
Response Techniques 
(Optimal) 
 

Table 11 displays the results of the non-compliance study, comparing the practical 

UQT technique to each of the NRR techniques in the presence of non-compliance. 

Figures 16, 17, and 18 display the ratio of MSE by proportion of truthful reporting (0.90, 

0.80, 0.70, and 0.60) and sample size (150, 500, and 1,500) for sensitive prevalent rates 
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πs = 0.05 (small), πs = 0.20 (medium), and πs = 0.45 (large). In each figure, the plot of the 

MSE by NRR technique is coded by line and plot type as was described in the previous 

section. For these analyses, the study continued to assume that a ratio of MSE close to 

unity implied that the comparing models were similar in their efficiency. 

As is evident in the table and figures, when πs is small (i.e., 0.01, 0.03, and 0.05) 

across all sample sizes and non-compliance rates, the UQT practical model was less 

efficient than all NRR models. When πs was moderate (i.e., 0.10, 0.15, and 0.20), this 

trend continued where the UQT practical model was generally less efficient compared to 

all NRR optimal models. For larger πs (i.e., 0.25, 0.35, and 0.45), the UQT practical was 

generally less efficient compared with all NRR models except in the cases where sample 

sizes were large (n = 1,500) and non-compliance was high (i.e., percent of truthful 

reporting = 0.60). In these cases, the UQT practical was nearly as efficient as all NRR 

optimal models. 

 



 
Table 11 
 
Study of Non-compliance: Unrelated Question Technique Practical vs. Non-random Response Optimal Models 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response 
Model 

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.01 ICT 3-Item 1.980 2.074 2.041 1.826 1.916 1.893 1.900 1.810 1.846 1.828 2.049 1.974 

 ICT 4-Item 1.868 1.789 1.778 1.659 1.682 1.716 1.708 1.756 1.768 1.746 1.841 1.758 

 ICT 5-Item 1.299 1.421 1.320 1.404 1.479 1.430 1.421 1.315 1.334 1.365 1.438 1.388 

 DICT 3-Item 13.488 14.008 13.628 13.952 12.991 13.109 13.100 13.470 13.837 12.957 13.020 11.425 

 DICT 4-Item 11.341 11.052 10.908 11.963 10.687 11.096 10.956 11.137 11.486 11.080 10.174 10.021 

 DICT 5-Item 8.917 9.586 9.202 9.426 9.059 9.737 10.453 8.958 9.181 9.595 9.535 10.275 

 SSC 3-Item* N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 SSC 4-Item* N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 SSC 5-Item* N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

0.03 ICT 3-Item 1.933 1.923 1.808 1.789 1.936 1.990 1.951 1.924 2.012 1.922 1.767 1.787 

 ICT 4-Item 1.745 1.729 1.758 1.829 1.832 1.771 1.690 1.698 1.762 1.707 1.809 1.610 

 ICT 5-Item 1.434 1.340 1.359 1.470 1.476 1.435 1.486 1.377 1.386 1.339 1.437 1.434 

 DICT 3-Item 13.547 13.197 12.693 11.863 13.013 13.049 12.447 11.584 12.843 10.539 9.448 8.442 

 DICT 4-Item 10.320 10.608 10.989 10.619 10.257 10.482 9.671 8.593 10.900 9.960 7.901 6.350 

 DICT 5-Item 9.884 9.252 9.602 9.487 9.865 9.121 9.840 8.117 9.366 8.683 6.854 6.044 

 SSC 3-Item 6.436 6.675 6.157 6.177 5.389 6.583 6.122 5.474 6.380 5.972 5.484 4.609 

 SSC 4-Item 6.484 6.372 5.846 6.307 6.538 6.297 6.012 5.698 6.102 5.745 5.504 4.724 

 SSC 5-Item 4.079 4.069 4.206 3.863 4.278 4.229 3.780 3.802 4.119 4.090 3.931 3.578 133 



 
Table 11 (continued) 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response 
Model 

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.05 ICT 3-Item 1.879 2.058 1.934 1.990 1.962 2.094 1.878 1.868 2.032 2.014 1.807 1.685 

 ICT 4-Item 1.970 1.815 1.986 1.928 1.715 1.999 1.672 1.686 1.784 1.849 1.750 1.747 

 ICT 5-Item 1.505 1.552 1.491 1.465 1.460 1.405 1.554 1.395 1.490 1.534 1.390 1.337 

 DICT 3-Item 13.455 13.025 12.296 11.017 12.795 11.605 9.843 7.658 12.153 9.779 6.073 4.794 

 DICT 4-Item 11.316 10.319 10.492 8.925 10.075 10.116 8.486 7.158 10.480 7.938 5.585 4.658 

 DICT 5-Item 9.678 9.556 8.329 8.594 9.580 8.359 8.074 6.453 9.524 7.071 5.557 4.017 

 SSC 3-Item 6.201 6.035 6.314 6.191 6.405 5.781 5.425 4.990 5.869 5.305 4.522 3.410 

 SSC 4-Item 6.744 6.074 5.881 5.430 6.385 5.950 5.178 5.006 5.591 4.967 4.325 3.576 

 SSC 5-Item 4.163 4.092 4.129 4.091 4.023 4.446 3.986 3.613 4.469 3.817 3.099 2.736 

0.10 ICT 3-Item 2.063 2.087 1.951 1.884 2.108 1.938 1.794 1.702 1.969 1.960 1.550 1.471 

 ICT 4-Item 2.006 1.939 1.858 1.741 2.001 1.907 1.772 1.533 1.959 1.753 1.674 1.409 

 ICT 5-Item 1.709 1.585 1.420 1.478 1.483 1.499 1.550 1.424 1.542 1.452 1.322 1.226 

 DICT 3-Item 12.113 10.511 8.835 7.893 12.372 7.385 5.717 4.255 8.615 5.077 3.158 2.271 

 DICT 4-Item 10.717 9.427 8.473 6.938 9.640 7.550 5.433 4.087 8.122 4.470 3.043 2.163 

 DICT 5-Item 9.181 8.475 7.021 6.339 8.791 6.803 5.212 3.855 7.485 4.610 2.952 2.178 

 SSC 3-Item 6.055 6.365 5.482 4.954 6.238 5.127 4.064 3.184 5.589 3.626 2.709 2.084 

 SSC 4-Item 6.469 5.782 5.029 4.896 6.306 4.950 3.979 3.171 5.837 3.632 2.669 1.958 

 SSC 5-Item 4.547 4.348 4.297 3.380 4.363 3.809 3.204 2.882 4.053 2.979 2.234 1.907 
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Table 11 (continued) 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response 
Model 

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.15 ICT 3-Item 1.981 2.018 2.000 2.136 2.118 2.049 1.658 1.532 1.992 1.755 1.467 1.352 

 ICT 4-Item 2.095 2.022 1.973 1.846 2.063 1.888 1.743 1.580 1.829 1.576 1.386 1.250 

 ICT 5-Item 1.705 1.561 1.545 1.462 1.743 1.651 1.506 1.269 1.526 1.480 1.297 1.208 

 DICT 3-Item 11.214 9.282 7.227 5.439 9.256 5.811 3.780 2.768 7.051 3.229 2.046 1.649 

 DICT 4-Item 9.855 8.481 6.322 4.905 9.054 5.463 3.582 2.700 6.113 3.136 2.092 1.631 

 DICT 5-Item 8.709 7.544 5.966 4.474 7.713 4.865 3.521 2.519 5.944 3.042 1.996 1.631 

 SSC 3-Item 6.545 5.799 4.472 3.983 5.863 4.292 3.075 2.363 4.845 2.708 1.910 1.526 

 SSC 4-Item 6.411 5.329 5.351 4.112 5.698 4.259 2.907 2.358 5.168 2.753 1.867 1.551 

 SSC 5-Item 5.008 4.195 3.703 3.256 4.445 3.374 2.606 2.245 3.933 2.321 1.820 1.462 

0.20 ICT 3-Item 2.102 2.236 1.973 1.771 1.967 1.831 1.600 1.411 2.080 1.553 1.244 1.246 

 ICT 4-Item 2.146 1.907 1.998 1.593 2.258 1.779 1.479 1.373 1.870 1.620 1.340 1.235 

 ICT 5-Item 1.903 1.765 1.570 1.456 1.751 1.521 1.394 1.269 1.658 1.305 1.182 1.146 

 DICT 3-Item 10.796 7.734 5.270 3.954 8.489 4.397 2.872 2.074 5.305 2.329 1.696 1.395 

 DICT 4-Item 9.147 6.996 4.863 3.600 7.567 4.233 2.806 2.056 5.001 2.308 1.678 1.396 

 DICT 5-Item 8.798 6.775 4.681 3.591 7.529 4.249 2.745 1.968 4.622 2.291 1.654 1.373 

 SSC 3-Item 7.315 5.450 4.117 3.214 5.324 3.838 2.525 1.923 4.443 2.159 1.599 1.341 

 SSC 4-Item 6.310 5.354 4.012 3.231 5.774 3.826 2.544 1.890 4.206 2.257 1.621 1.359 

 SSC 5-Item 5.170 3.934 3.308 2.710 4.160 2.829 2.206 1.841 3.679 2.118 1.528 1.298 

135 



 
Table 11 (continued) 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response 
Model 

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.25 ICT 3-Item 2.303 1.984 1.932 1.742 2.236 1.899 1.489 1.349 2.024 1.378 1.302 1.103 

 ICT 4-Item 2.202 2.078 1.770 1.715 2.156 1.768 1.566 1.410 2.010 1.439 1.230 1.148 

 ICT 5-Item 1.765 1.832 1.641 1.532 1.884 1.693 1.406 1.170 1.804 1.350 1.218 1.121 

 DICT 3-Item 10.437 6.904 4.515 3.124 6.877 3.633 2.190 1.762 4.210 2.045 1.466 1.260 

 DICT 4-Item 9.329 6.069 4.150 2.989 6.341 3.526 2.203 1.750 4.052 2.020 1.451 1.242 

 DICT 5-Item 8.436 5.737 4.222 3.118 6.420 3.458 2.264 1.735 4.243 1.977 1.443 1.250 

 SSC 3-Item 6.444 4.305 3.633 2.867 5.444 2.928 2.096 1.637 3.509 1.921 1.399 1.230 

 SSC 4-Item 6.090 5.109 3.478 2.686 4.857 3.177 2.100 1.590 3.572 1.852 1.426 1.245 

 SSC 5-Item 4.743 3.899 3.263 2.338 4.371 2.723 2.028 1.548 3.094 1.899 1.405 1.218 

0.35 ICT 3-Item 2.511 2.046 1.878 1.445 2.317 1.878 1.412 1.235 1.867 1.362 1.160 1.094 

 ICT 4-Item 2.146 2.029 1.722 1.453 2.053 1.639 1.321 1.198 1.842 1.269 1.190 1.065 

 ICT 5-Item 1.965 1.842 1.599 1.465 1.708 1.472 1.299 1.150 1.588 1.295 1.104 1.058 

 DICT 3-Item 9.125 5.288 3.154 2.338 5.991 2.611 1.774 1.431 3.220 1.648 1.271 1.143 

 DICT 4-Item 8.220 4.677 3.203 2.196 5.299 2.569 1.709 1.407 3.144 1.579 1.261 1.153 

 DICT 5-Item 7.340 4.840 3.083 2.281 5.178 2.509 1.719 1.427 3.015 1.607 1.274 1.139 

 SSC 3-Item 6.326 3.972 2.797 2.101 4.217 2.280 1.623 1.400 2.805 1.578 1.241 1.123 

 SSC 4-Item 6.283 4.001 2.902 2.212 4.614 2.379 1.736 1.411 2.884 1.515 1.257 1.125 

 SSC 5-Item 4.652 3.565 2.590 1.970 3.573 2.177 1.579 1.363 2.585 1.523 1.235 1.129 
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Table 11 (continued) 

πs 
Non-random 

Response 
Model 

n = 150 n = 500 n = 1,500 

  Percent of Truthful Reporting 

  0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.45 ICT 3-Item 2.513 2.146 1.746 1.397 2.141 1.509 1.292 1.174 1.718 1.276 1.103 1.058 

 ICT 4-Item 2.164 1.947 1.679 1.462 2.191 1.577 1.264 1.171 1.699 1.222 1.109 1.077 

 ICT 5-Item 2.146 1.741 1.554 1.276 1.752 1.374 1.241 1.105 1.477 1.192 1.108 1.071 

 DICT 3-Item 7.839 4.017 2.509 1.907 4.552 2.110 1.466 1.264 2.488 1.379 1.175 1.106 

 DICT 4-Item 7.553 4.064 2.448 1.829 4.247 2.080 1.488 1.284 2.390 1.402 1.172 1.101 

 DICT 5-Item 7.470 3.849 2.437 1.818 4.365 2.149 1.471 1.277 2.468 1.360 1.166 1.103 

 SSC 3-Item 6.192 3.429 2.357 1.841 3.894 1.992 1.469 1.260 2.317 1.369 1.156 1.078 

 SSC 4-Item 5.541 3.453 2.337 1.797 3.994 2.020 1.486 1.274 2.208 1.367 1.182 1.085 

 SSC 5-Item 4.829 3.042 2.381 1.720 3.431 1.839 1.391 1.221 2.069 1.344 1.152 1.074 

*The SSC assumption of using the normal approximation of a binomial for πs =.01 was not met. 
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Figure 16. Efficiency as It Relates to Non-compliance, Comparing Optimal Non-random 
Response Models to the Unrelated Question Technique (Practical), n = 150 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17. Efficiency as It Relates to Non-compliance, Comparing Optimal Non-random 
Response Models to the Unrelated Question Technique (Practical), n = 500 
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Figure 18. Efficiency as It Relates to Non-compliance, Comparing Optimal Non-random 
Response Models to the Unrelated Question Technique (Practical), n = 1,500 
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Forced Choice Technique vs. 
Non-random Response 
(Optimal) 
 

Table 12 displays the results of the non-compliance study, comparing the optimal 

UQT technique to each of the NRR optimal techniques. Figures 19, 20, and 21 display 

the ratio of MSE by the proportion of truthful reporting (0.90, 0.80, 0.70, and 0.60) and 

sample size for sensitive prevalent rates πs = 0.05 (small), πs = 0.20 (medium), and πs = 

0.45 (large). In each figure, the plot of the MSE by NRR technique is coded by line and 

plot type as was described in previous sections. For these analyses, the study continued to 

assume that a ratio of MSE close to unity implied that the models were similar in their 

efficiency. 

As is evident in the table and figures, when πs was small (i.e., 0.01, 0.03, and 

0.05) across all sample sizes and non-compliance rates, the double item count technique 

(DICT) 3-Item optimal model was generally as or more efficient as the FCT model; 

whereas DICT 4-Item, 5-Item and optimal SSC and ICT models were less efficient then 

the FCT.  

When πs was moderate (i.e., 0.10, 0.15, and 0.20), as πs and non-compliance rates 

increased, the FCT approached the efficiency of the DICT 3-item optimal model across 

all sample sizes and non-compliance rates. For the optimal SSC models, when sample 

sizes were large (n = 1,500) and non-compliance was moderate to high (i.e., percent of 

truthful reporting < 0.70), the 3-item and 4-item optimal models were nearly as efficient 

as the FCT for increasing πs. The optimal ICT models generally were less efficient 

compared to the FCT. 



 
Table 12 
 
Study of Non-compliance: Forced Choice Technique vs. Non-random Response Optimal Models 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response 
Model 

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.01 ICT 3-Item 0.162 0.169 0.167 0.150 0.157 0.155 0.157 0.152 0.151 0.152 0.175 0.175 

 ICT 4-Item 0.152 0.146 0.146 0.136 0.137 0.141 0.141 0.147 0.145 0.145 0.157 0.156 

 ICT 5-Item 0.106 0.116 0.108 0.115 0.121 0.117 0.118 0.110 0.109 0.114 0.123 0.123 

 DICT 3-Item 1.100 1.144 1.116 1.146 1.061 1.076 1.085 1.129 1.134 1.079 1.113 1.011 

 DICT 4-Item 0.925 0.903 0.893 0.983 0.873 0.911 0.907 0.933 0.942 0.923 0.869 0.887 

 DICT 5-Item 0.727 0.783 0.753 0.774 0.740 0.799 0.866 0.751 0.753 0.799 0.815 0.909 

 SSC 3-Item* N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 SSC 4-Item* N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 SSC 5-Item* N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

0.03 ICT 3-Item 0.159 0.161 0.154 0.157 0.161 0.173 0.182 0.196 0.173 0.186 0.203 0.250 

 ICT 4-Item 0.144 0.144 0.150 0.161 0.153 0.154 0.158 0.173 0.151 0.165 0.208 0.225 

 ICT 5-Item 0.118 0.112 0.116 0.129 0.123 0.125 0.139 0.140 0.119 0.130 0.165 0.200 

 DICT 3-Item 1.116 1.102 1.083 1.043 1.084 1.135 1.160 1.181 1.102 1.021 1.087 1.179 

 DICT 4-Item 0.850 0.885 0.937 0.934 0.854 0.912 0.902 0.876 0.935 0.965 0.909 0.887 

 DICT 5-Item 0.814 0.772 0.819 0.834 0.822 0.793 0.917 0.827 0.803 0.841 0.789 0.844 

 SSC 3-Item 0.530 0.557 0.525 0.543 0.449 0.573 0.571 0.558 0.547 0.579 0.631 0.644 

 SSC 4-Item 0.534 0.532 0.499 0.555 0.544 0.548 0.560 0.581 0.523 0.557 0.633 0.660 

 SSC 5-Item 0.336 0.340 0.359 0.340 0.356 0.368 0.352 0.388 0.353 0.396 0.452 0.500 141
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Table 12 (continued) 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response 
Model 

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.05 ICT 3-Item 0.157 0.178 0.177 0.196 0.168 0.200 0.210 0.251 0.187 0.244 0.300 0.375 

 ICT 4-Item 0.164 0.157 0.181 0.190 0.147 0.191 0.187 0.226 0.165 0.224 0.290 0.389 

 ICT 5-Item 0.126 0.134 0.136 0.144 0.125 0.134 0.174 0.187 0.137 0.186 0.230 0.297 

 DICT 3-Item 1.122 1.124 1.123 1.084 1.097 1.109 1.101 1.028 1.121 1.183 1.007 1.067 

 DICT 4-Item 0.944 0.891 0.958 0.878 0.864 0.967 0.949 0.961 0.967 0.960 0.926 1.037 

 DICT 5-Item 0.807 0.825 0.761 0.846 0.821 0.799 0.903 0.866 0.879 0.855 0.922 0.894 

 SSC 3-Item 0.517 0.521 0.577 0.609 0.549 0.552 0.607 0.670 0.541 0.642 0.750 0.759 

 SSC 4-Item 0.562 0.524 0.537 0.534 0.547 0.569 0.579 0.672 0.516 0.601 0.717 0.796 

 SSC 5-Item 0.347 0.353 0.377 0.402 0.345 0.425 0.446 0.485 0.412 0.462 0.514 0.609 

0.10 ICT 3-Item 0.178 0.203 0.225 0.264 0.200 0.250 0.328 0.425 0.231 0.410 0.510 0.662 

 ICT 4-Item 0.174 0.189 0.214 0.244 0.190 0.246 0.324 0.383 0.230 0.367 0.551 0.634 

 ICT 5-Item 0.148 0.154 0.164 0.207 0.141 0.194 0.283 0.356 0.181 0.304 0.435 0.552 

 DICT 3-Item 1.048 1.023 1.018 1.106 1.172 0.954 1.045 1.063 1.012 1.061 1.040 1.023 

 DICT 4-Item 0.927 0.917 0.977 0.972 0.913 0.975 0.993 1.021 0.954 0.935 1.002 0.974 

 DICT 5-Item 0.794 0.825 0.809 0.888 0.833 0.879 0.953 0.963 0.879 0.964 0.972 0.981 

 SSC 3-Item 0.524 0.619 0.632 0.694 0.591 0.662 0.743 0.796 0.656 0.758 0.892 0.938 

 SSC 4-Item 0.560 0.562 0.580 0.686 0.597 0.640 0.727 0.792 0.685 0.759 0.879 0.882 

 SSC 5-Item 0.393 0.423 0.495 0.474 0.413 0.492 0.586 0.720 0.476 0.623 0.735 0.859 
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Table 12 (continued) 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response 
Model 

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.15 ICT 3-Item 0.179 0.227 0.297 0.418 0.227 0.357 0.447 0.575 0.301 0.546 0.705 0.836 

 ICT 4-Item 0.189 0.227 0.293 0.362 0.221 0.329 0.470 0.593 0.277 0.490 0.666 0.773 

 ICT 5-Item 0.154 0.175 0.229 0.287 0.186 0.287 0.406 0.476 0.231 0.460 0.623 0.748 

 DICT 3-Item 1.013 1.043 1.072 1.066 0.990 1.012 1.019 1.039 1.067 1.004 0.984 1.020 

 DICT 4-Item 0.891 0.953 0.937 0.961 0.969 0.951 0.966 1.014 0.925 0.975 1.006 1.009 

 DICT 5-Item 0.787 0.848 0.885 0.877 0.825 0.847 0.949 0.946 0.899 0.946 0.960 1.009 

 SSC 3-Item 0.591 0.652 0.663 0.780 0.627 0.747 0.829 0.887 0.733 0.842 0.919 0.944 

 SSC 4-Item 0.579 0.599 0.793 0.806 0.610 0.741 0.784 0.885 0.782 0.856 0.898 0.959 

 SSC 5-Item 0.453 0.472 0.549 0.638 0.475 0.587 0.703 0.843 0.595 0.722 0.875 0.905 

0.20 ICT 3-Item 0.199 0.292 0.368 0.456 0.239 0.411 0.570 0.686 0.396 0.633 0.743 0.905 

 ICT 4-Item 0.203 0.249 0.373 0.410 0.275 0.399 0.527 0.667 0.356 0.660 0.800 0.897 

 ICT 5-Item 0.180 0.230 0.293 0.375 0.213 0.342 0.497 0.617 0.315 0.532 0.706 0.832 

 DICT 3-Item 1.023 1.010 0.984 1.018 1.032 0.987 1.024 1.008 1.009 0.949 1.013 1.014 

 DICT 4-Item 0.867 0.913 0.908 0.927 0.920 0.950 1.000 0.999 0.951 0.940 1.002 1.014 

 DICT 5-Item 0.834 0.884 0.874 0.925 0.916 0.954 0.979 0.956 0.879 0.933 0.987 0.997 

 SSC 3-Item 0.693 0.712 0.769 0.828 0.647 0.862 0.900 0.934 0.845 0.880 0.954 0.974 

 SSC 4-Item 0.598 0.699 0.749 0.832 0.702 0.859 0.907 0.919 0.800 0.920 0.968 0.987 

 SSC 5-Item 0.490 0.514 0.618 0.698 0.506 0.635 0.786 0.895 0.700 0.863 0.912 0.943 
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Table 12 (continued) 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response 
Model 

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.25 ICT 3-Item 0.230 0.299 0.440 0.557 0.309 0.525 0.649 0.776 0.469 0.677 0.887 0.877 

 ICT 4-Item 0.220 0.314 0.404 0.548 0.298 0.489 0.683 0.811 0.466 0.708 0.839 0.913 

 ICT 5-Item 0.176 0.276 0.374 0.490 0.260 0.468 0.613 0.673 0.418 0.664 0.830 0.891 

 DICT 3-Item 1.041 1.042 1.029 0.999 0.950 1.005 0.955 1.014 0.975 1.005 0.999 1.002 

 DICT 4-Item 0.930 0.916 0.946 0.956 0.876 0.976 0.961 1.007 0.939 0.993 0.989 0.988 

 DICT 5-Item 0.841 0.866 0.962 0.997 0.887 0.957 0.987 0.998 0.983 0.972 0.983 0.994 

 SSC 3-Item 0.643 0.650 0.828 0.917 0.752 0.810 0.914 0.942 0.813 0.945 0.953 0.978 

 SSC 4-Item 0.607 0.771 0.793 0.859 0.671 0.879 0.916 0.915 0.827 0.910 0.972 0.990 

 SSC 5-Item 0.473 0.588 0.744 0.748 0.604 0.753 0.884 0.891 0.717 0.934 0.958 0.969 

0.35 ICT 3-Item 0.279 0.401 0.586 0.628 0.406 0.709 0.799 0.866 0.590 0.847 0.915 0.955 

 ICT 4-Item 0.238 0.398 0.537 0.631 0.360 0.619 0.748 0.840 0.582 0.789 0.938 0.930 

 ICT 5-Item 0.218 0.361 0.499 0.636 0.299 0.556 0.735 0.807 0.502 0.805 0.871 0.923 

 DICT 3-Item 1.013 1.037 0.984 1.016 1.049 0.986 1.004 1.004 1.018 1.025 1.002 0.998 

 DICT 4-Item 0.912 0.917 0.999 0.954 0.928 0.970 0.967 0.987 0.994 0.982 0.994 1.006 

 DICT 5-Item 0.814 0.949 0.962 0.991 0.907 0.948 0.973 1.001 0.953 0.999 1.005 0.994 

 SSC 3-Item 0.702 0.779 0.873 0.913 0.739 0.861 0.919 0.982 0.887 0.981 0.979 0.980 

 SSC 4-Item 0.697 0.784 0.906 0.961 0.808 0.898 0.983 0.990 0.912 0.942 0.992 0.982 

 SSC 5-Item 0.516 0.699 0.808 0.856 0.626 0.822 0.894 0.956 0.817 0.947 0.974 0.986 
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Table 12 (continued) 

n = 150 n = 500 n = 1,500 

Percent of Truthful Reporting πs 
Non-random 

Response 
Model 

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 

0.45 ICT 3-Item 0.312 0.525 0.685 0.740 0.463 0.706 0.853 0.916 0.683 0.908 0.937 0.966 

 ICT 4-Item 0.268 0.477 0.659 0.775 0.474 0.738 0.835 0.914 0.675 0.870 0.943 0.983 

 ICT 5-Item 0.266 0.426 0.609 0.677 0.379 0.643 0.820 0.862 0.587 0.848 0.941 0.978 

 DICT 3-Item 0.972 0.983 0.984 1.011 0.984 0.988 0.969 0.986 0.989 0.981 0.999 1.010 

 DICT 4-Item 0.936 0.995 0.960 0.969 0.918 0.974 0.983 1.002 0.950 0.998 0.997 1.005 

 DICT 5-Item 0.926 0.942 0.956 0.964 0.944 1.006 0.972 0.997 0.981 0.968 0.991 1.007 

 SSC 3-Item 0.768 0.839 0.925 0.976 0.842 0.932 0.970 0.983 0.921 0.975 0.983 0.984 

 SSC 4-Item 0.687 0.845 0.917 0.953 0.864 0.945 0.982 0.994 0.877 0.973 1.005 0.990 

 SSC 5-Item 0.599 0.744 0.934 0.912 0.742 0.861 0.919 0.953 0.822 0.956 0.979 0.981 

*The SSC assumption of using the normal approximation of a binomial for πs =.01 was not met. 
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Figure 19. Efficiency as It Relates to Non-compliance, Comparing Optimal Non-random 
Response Models to the Forced Choice Technique, n = 150 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20. Efficiency as It Relates to Non-compliance, Comparing Optimal Non-random 
Response Models to the Forced Choice Technique, n = 500 
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Figure 21. Efficiency as It Relates to Non-compliance, Comparing Optimal Non-random 
Response models to the Unrelated Question Technique, n = 1,500 
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sample sizes, sensitive prevalent rates and equivalent non-compliance rates, the double 

item count technique (DICT) optimal models were most efficient of the NRR optimal 

models since the ratio of MSE as compared with the FCT was greater than any of the 

corresponding ratio of MSE of the single sample count technique (SSC) and item count 

technique (ICT) optimal models. As is seen in each figure, the DICT optimal 3-item list 

was just as efficient as the FCT, followed by the DICT optimal 4-item and 5-Item list 

models. Only in the presence of high non-compliance (i.e., percent of truthful reporting < 

0.70), larger sample sizes (n = 1,500) and larger sensitive prevalent rates (πs =0.45) did 

the NRR optimal models and FCT approach unity.  

Unrelated Question Technique Optimal 
vs. Double Item Count Technique 
Optimal in the Presence of 
Differing Non-compliant 
Rates 
 

Because the results of this study indicated that in the presence of equally 

proportional non-compliance, the unrelated question technique (UQT) optimal was more 

efficient than all NRR optimal models, a secondary analysis was made following the 

study of Greenberg et al. (1969). In their study, the authors explored efficiency between 

Warner’s RR technique and the UQT assuming that the UQT improved compliance. 

Thus, Greenberg et al. (1969) performed an efficiency study comparing the MSE between 

the two models in cases where compliance was equal or where compliance was improved 

by the UQT. The authors were then able to conclude that in cases where the UQT 

improved compliance, it was more efficient than Warner’s technique (Greenberg et al., 

1969). Using this same logic, a secondary analysis exploring efficiency in the presence of 

differing compliance rates between the UQT optimal and the double item count technique 
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(DICT) optimal (all list sizes) was made. The DICT optimal models were selected for this 

analysis since, according to this study, they are the most efficient NRR optimal models. 

For this analysis, efficiency was compared by selected sensitive prevalent rate meant to 

represent small (πs = 0.05), medium (πs = 0.20), and large (πs = 0.45) by sample size (n = 

150, n = 500, and n = 1,500). In examining efficiency, the same principals from the 

previous analyses were used where models were termed similar if the ratio of the MSE 

approached unity. 

 Table 13 displays the results of this analysis. In the table, bolded ratios of MSE 

indicate cases where the DICT optimal model proved more, or as efficient, as the UQT 

optimal model. As is evident in the table, when πs was small (πs = 0.05), if the sample 

size was large (n = 1,500) and the expected proportion of non-complying in the unrelated 

question technique (UQT) optimal is higher (i.e., percent of truthful reporting is < 0.70) 

than the non-compliance in the double item count technique (DICT), than all DICT 

optimal models were as efficient or more efficient then the UQT optimal. For moderate 

(πs = 0.20) and large (πs = 0.45) sensitive prevalent rates, the results were similar. Across 

all sample sizes, where the percent of truthful reporting in the UQT optimal was less than 

the percent of truthful reporting in all DICT optimal models, the DICT optimal proved to 

be as efficient or more efficient compared to the UQT optimal. In the case where 90% of 

respondents of the DICT optimal reported truthfully and only 60% of respondents in the 

UQT optimal reported truthfully, for moderate and large πs (i.e., πs = 0.20, and πs = 0.45) 

across all sample sizes (n = 150, n = 500, and n = 1,500), all DICT optimal models (list 

sizes 3, 4, and 5) proved to be much more efficient (MSE > 2) than the UQT optimal. As 

a result, when the DICT optimal models improved compliance substantially over the 
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UQT optimal, in cases where sensitive prevalent rates were moderate (πs = 0.20) or large 

(πs = 0.45), estimates from these models were more efficient. This is also seen with 

smaller sensitive prevalent rates (πs=0.05) but only when sample sizes were large (n = 

1,500).  

The Study of Item-list Size in Non-random 
Response Models 

 
Efficiency Study Between 
List Sizes 
 

Tables 14, 15, and 16 displays the results of the efficiency study comparing NRR 

optimal models (ICT, DICT, and SSC) by their list size. In this analysis, the ratio of MSE 

within each NRR optimal model was compared by list size. Thus, for each prevalent rate, 

sample size and percent of truthful reporting (i.e., 100%, 90%, 80%, 70%, and 60%) 

combination, statistical efficiency was examined by list sizes (i.e., 3-item vs. 4-item, 3-

item vs. 5-item, and 4-item vs. 5-item). Comparisons between models were similarly 

explored as was done in the previous section, where models were termed “similar” if the 

ratio approached unity. For this analysis, the ratio of MSE was taken in terms of ‘smaller 

list size’ to ‘larger list size’:  
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Table 13 
 
Unrelated Question Technique Optimal vs. Double Item Count Technique Optimal Models in the Presence of Differing  
Non-compliance Rates 

Unrelated Question Technique  Optimal: Percent of Truthful Reporting 

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 
Double Item Count 

Technique  

Percent of 
Truthful 

Reporting 
πs = 0.05 πs = 0.20 πs = 0.45 

3-Item n = 150 0.9 0.326 0.346 0.396 0.474 0.647 1.031 1.695 2.639 0.843 2.007 3.956 6.690 

  0.8 0.318 0.338 0.387 0.463 0.460 0.732 1.204 1.875 0.385 0.918 1.808 3.058 

  0.7 0.303 0.322 0.368 0.441 0.303 0.483 0.794 1.237 0.202 0.480 0.946 1.600 

  0.6 0.273 0.290 0.332 0.397 0.215 0.343 0.564 0.879 0.124 0.296 0.583 0.985 

 n = 500 0.9 0.341 0.458 0.666 0.966 0.745 1.793 3.558 6.039 0.917 2.960 6.369 11.145 

  0.8 0.310 0.416 0.605 0.878 0.352 0.846 1.679 2.851 0.299 0.964 2.073 3.628 

  0.7 0.262 0.351 0.511 0.741 0.197 0.475 0.942 1.599 0.138 0.445 0.957 1.674 

  0.6 0.201 0.270 0.393 0.569 0.118 0.284 0.564 0.957 0.081 0.260 0.559 0.978 

 n = 1,500 0.9 0.409 0.779 1.410 2.302 0.843 2.689 5.777 10.106 0.961 3.546 7.856 13.890 

  0.8 0.323 0.615 1.113 1.817 0.280 0.892 1.916 3.352 0.264 0.972 2.155 3.810 

  0.7 0.193 0.367 0.665 1.085 0.143 0.457 0.982 1.718 0.122 0.449 0.994 1.758 

  0.6 0.144 0.274 0.496 0.809 0.083 0.265 0.569 0.995 0.070 0.257 0.570 1.007 

4-Item n = 150 0.9 0.274 0.291 0.333 0.398 0.548 0.873 1.436 2.236 0.812 1.934 3.812 6.446 

  0.8 0.252 0.268 0.306 0.367 0.416 0.662 1.089 1.696 0.390 0.928 1.830 3.094 

  0.7 0.259 0.275 0.314 0.376 0.280 0.446 0.733 1.141 0.197 0.468 0.923 1.561 

  0.6 0.221 0.235 0.269 0.322 0.196 0.312 0.514 0.800 0.119 0.284 0.559 0.945 
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Table 13 (continued) 

Unrelated Question Technique  Optimal: Percent of Truthful Reporting 

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 
Double Item Count 

Technique  

Percent of 
Truthful 

Reporting 
πs = 0.05 πs = 0.20 πs = 0.45 

 n = 500 0.9 0.269 0.360 0.524 0.760 0.664 1.598 3.171 5.383 0.856 2.762 5.942 10.398 

  0.8 0.270 0.363 0.527 0.765 0.339 0.815 1.617 2.744 0.294 0.950 2.044 3.576 

  0.7 0.226 0.303 0.440 0.639 0.193 0.464 0.920 1.562 0.140 0.451 0.971 1.698 

  0.6 0.188 0.252 0.367 0.532 0.117 0.282 0.559 0.948 0.082 0.264 0.568 0.994 

 n = 1,500 0.9 0.352 0.672 1.216 1.985 0.795 2.535 5.445 9.526 0.923 3.405 7.544 13.340 

  0.8 0.262 0.499 0.904 1.475 0.277 0.884 1.899 3.321 0.268 0.989 2.191 3.874 

  0.7 0.177 0.338 0.611 0.998 0.142 0.452 0.972 1.700 0.121 0.448 0.992 1.754 

  0.6 0.140 0.266 0.482 0.786 0.083 0.265 0.569 0.996 0.069 0.256 0.567 1.002 

5-Item n = 150 0.9 0.234 0.249 0.285 0.341 0.527 0.840 1.381 2.151 0.804 1.913 3.770 6.376 

  0.8 0.234 0.248 0.284 0.340 0.403 0.641 1.055 1.642 0.369 0.879 1.733 2.930 

  0.7 0.205 0.218 0.249 0.298 0.269 0.429 0.705 1.098 0.196 0.466 0.919 1.554 

  0.6 0.213 0.226 0.259 0.310 0.196 0.312 0.512 0.798 0.118 0.282 0.555 0.939 

 n = 500 0.9 0.256 0.343 0.498 0.723 0.661 1.590 3.155 5.356 0.880 2.839 6.108 10.688 

  0.8 0.223 0.300 0.436 0.632 0.340 0.818 1.623 2.755 0.304 0.981 2.112 3.695 

  0.7 0.215 0.288 0.419 0.608 0.189 0.454 0.900 1.529 0.138 0.446 0.960 1.679 

  0.6 0.170 0.227 0.331 0.480 0.112 0.270 0.535 0.908 0.081 0.263 0.565 0.989 
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Table 13 (continued) 

Unrelated Question Technique  Optimal: Percent of Truthful Reporting 

0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 
Double Item Count 

Technique  

Percent of 
Truthful 

Reporting 
πs = 0.05 πs = 0.20 πs = 0.45 

 n = 1,500 0.9 0.320 0.611 1.105 1.804 0.735 2.343 5.033 8.805 0.953 3.517 7.792 13.778 

  0.8 0.233 0.445 0.805 1.314 0.275 0.877 1.884 3.297 0.260 0.959 2.125 3.758 

  0.7 0.176 0.336 0.608 0.993 0.140 0.446 0.958 1.675 0.121 0.445 0.987 1.745 

  0.6 0.120 0.230 0.415 0.678 0.082 0.261 0.560 0.979 0.069 0.256 0.568 1.004 
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Table 14 
 
Study of Statistics Efficiency by Size of List: Item Count Technique Optimal 

Percent of Truthful Reporting 

4-Item 5-Item πs n List Size 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

0.01 150 3-Item 0.800 0.944 0.863 0.871 0.909 0.701 0.656 0.685 0.647 0.769 

  4-Item      0.875 0.695 0.794 0.742 0.846 

 500 3-Item 1.020 0.878 0.907 0.899 0.970 0.817 0.772 0.756 0.748 0.727 

  4-Item      0.802 0.879 0.833 0.832 0.749 

 1,500 3-Item 0.956 0.958 0.955 0.899 0.891 0.742 0.723 0.747 0.702 0.703 

  4-Item      0.776 0.755 0.782 0.781 0.790 

0.03 150 3-Item 0.893 0.903 0.899 0.972 1.023 0.702 0.742 0.697 0.752 0.822 

  4-Item      0.787 0.822 0.775 0.773 0.803 

 500 3-Item 0.914 0.946 0.890 0.866 0.882 0.676 0.762 0.721 0.762 0.716 

  4-Item      0.739 0.806 0.810 0.880 0.811 

 1,500 3-Item 0.938 0.876 0.888 1.024 0.901 0.753 0.689 0.697 0.813 0.802 

  4-Item      0.803 0.787 0.785 0.794 0.891 

0.05 150 3-Item 0.813 1.048 0.882 1.027 0.969 0.740 0.801 0.754 0.771 0.736 

  4-Item      0.910 0.764 0.855 0.751 0.760 

 500 3-Item 0.926 0.874 0.955 0.891 0.903 0.682 0.744 0.671 0.828 0.747 

  4-Item      0.736 0.851 0.703 0.929 0.827 

 1,500 3-Item 1.089 0.878 0.918 0.968 1.036 0.840 0.733 0.761 0.769 0.793 

  4-Item      0.772 0.836 0.829 0.794 0.765 
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Table 14 (continued) 

Percent of Truthful Reporting 

4-Item 5-Item πs n List Size 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

0.10 150 3-Item 0.973 0.973 0.929 0.952 0.924 0.782 0.829 0.759 0.728 0.785 

  4-Item      0.804 0.852 0.818 0.764 0.849 

 500 3-Item 0.915 0.949 0.984 0.988 0.901 0.775 0.704 0.773 0.864 0.837 

  4-Item      0.846 0.741 0.786 0.875 0.929 

 1,500 3-Item 0.847 0.995 0.895 1.080 0.958 0.717 0.783 0.741 0.853 0.834 

  4-Item      0.846 0.787 0.828 0.790 0.870 

0.15 150 3-Item 0.882 1.057 1.002 0.987 0.864 0.809 0.861 0.773 0.773 0.685 

  4-Item      0.917 0.814 0.772 0.783 0.792 

 500 3-Item 0.941 0.974 0.921 1.051 1.031 0.713 0.823 0.805 0.908 0.828 

  4-Item      0.758 0.845 0.874 0.864 0.803 

 1,500 3-Item 0.843 0.918 0.898 0.944 0.924 0.774 0.766 0.843 0.884 0.894 

  4-Item      0.918 0.834 0.939 0.936 0.967 

0.20 150 3-Item 0.843 1.021 0.853 1.012 0.899 0.665 0.906 0.789 0.796 0.822 

  4-Item      0.789 0.887 0.925 0.786 0.914 

 500 3-Item 0.806 1.148 0.971 0.925 0.973 0.699 0.890 0.831 0.871 0.900 

  4-Item      0.867 0.775 0.855 0.942 0.925 

 1,500 3-Item 0.859 0.899 1.043 1.076 0.991 0.720 0.797 0.840 0.950 0.920 

  4-Item      0.838 0.886 0.805 0.883 0.928 
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Table 14 (continued) 

Percent of Truthful Reporting 

4-Item 5-Item πs n List Size 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

0.25 150 3-Item 0.942 0.957 1.047 0.917 0.984 0.821 0.766 0.923 0.850 0.879 

  4-Item      0.871 0.801 0.882 0.927 0.893 

 500 3-Item 0.844 0.964 0.931 1.052 1.045 0.746 0.843 0.891 0.944 0.867 

  4-Item      0.883 0.874 0.957 0.898 0.830 

 1,500 3-Item 0.912 0.993 1.045 0.945 1.040 0.760 0.891 0.980 0.936 1.016 

  4-Item      0.833 0.898 0.938 0.990 0.977 

0.35 150 3-Item 0.898 0.855 0.991 0.917 1.005 0.761 0.783 0.900 0.852 1.014 

  4-Item      0.848 0.916 0.908 0.929 1.009 

 500 3-Item 0.955 0.886 0.873 0.935 0.970 0.755 0.737 0.784 0.920 0.931 

  4-Item      0.791 0.832 0.898 0.983 0.960 

 1,500 3-Item 0.978 0.987 0.932 1.026 0.974 0.741 0.851 0.951 0.952 0.967 

  4-Item      0.758 0.862 1.020 0.928 0.993 

0.45 150 3-Item 1.019 0.861 0.907 0.962 1.047 0.816 0.854 0.811 0.890 0.914 

  4-Item      0.800 0.992 0.894 0.925 0.873 

 500 3-Item 0.909 1.024 1.045 0.979 0.997 0.776 0.818 0.910 0.961 0.941 

  4-Item      0.854 0.799 0.871 0.982 0.943 

 1,500 3-Item 0.999 0.989 0.958 1.006 1.018 0.762 0.860 0.934 1.005 1.013 

  4-Item      0.762 0.869 0.975 0.999 0.995 
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Table 15 
 
Study of Statistical Efficiency by Size of List: Double Item Count Technique Optimal 

Percent of Truthful Reporting 

4-Item 5-Item πs n List Size 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

0.01 150 3-Item 0.821 0.841 0.789 0.800 0.857 0.734 0.661 0.684 0.675 0.676 

  4-Item      0.894 0.786 0.867 0.844 0.788 

 500 3-Item 0.778 0.823 0.846 0.836 0.827 0.665 0.697 0.743 0.798 0.665 

  4-Item      0.855 0.848 0.878 0.954 0.804 

 1,500 3-Item 0.820 0.830 0.855 0.781 0.877 0.743 0.663 0.741 0.732 0.899 

  4-Item      0.906 0.799 0.866 0.937 1.025 

0.03 150 3-Item 0.829 0.762 0.804 0.866 0.895 0.756 0.730 0.701 0.756 0.800 

  4-Item      0.912 0.958 0.872 0.874 0.893 

 500 3-Item 0.715 0.788 0.803 0.777 0.742 0.665 0.758 0.699 0.791 0.701 

  4-Item      0.930 0.962 0.870 1.018 0.945 

 1,500 3-Item 0.820 0.849 0.945 0.836 0.752 0.720 0.729 0.824 0.725 0.716 

  4-Item      0.878 0.859 0.872 0.867 0.952 

0.05 150 3-Item 0.838 0.841 0.792 0.853 0.810 0.758 0.719 0.734 0.677 0.780 

  4-Item      0.905 0.855 0.926 0.794 0.963 

 500 3-Item 0.831 0.787 0.872 0.862 0.935 0.789 0.749 0.720 0.820 0.843 

  4-Item      0.949 0.951 0.826 0.951 0.901 

 1,500 3-Item 0.803 0.862 0.812 0.920 0.972 0.727 0.784 0.723 0.915 0.838 

  4-Item      0.906 0.909 0.891 0.995 0.862 157 



 
Table 15 (continued) 

Percent of Truthful Reporting 

4-Item 5-Item πs n List Size 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

0.10 150 3-Item 0.755 0.885 0.897 0.959 0.879 0.738 0.758 0.806 0.795 0.803 

  4-Item      0.978 0.857 0.899 0.829 0.914 

 500 3-Item 0.883 0.779 1.022 0.950 0.961 0.724 0.711 0.921 0.912 0.906 

  4-Item      0.820 0.912 0.901 0.959 0.943 

 1,500 3-Item 0.763 0.943 0.880 0.963 0.952 0.662 0.869 0.908 0.935 0.959 

  4-Item      0.867 0.922 1.031 0.970 1.007 

0.15 150 3-Item 0.861 0.879 0.914 0.875 0.902 0.706 0.777 0.813 0.825 0.823 

  4-Item      0.821 0.884 0.890 0.944 0.912 

 500 3-Item 0.804 0.978 0.940 0.948 0.975 0.748 0.833 0.837 0.932 0.910 

  4-Item      0.931 0.852 0.891 0.983 0.933 

 1,500 3-Item 0.889 0.867 0.971 1.022 0.989 0.836 0.843 0.942 0.975 0.989 

  4-Item      0.941 0.972 0.970 0.954 1.000 

0.20 150 3-Item 0.884 0.847 0.905 0.923 0.910 0.820 0.815 0.876 0.888 0.908 

  4-Item      0.928 0.962 0.968 0.962 0.998 

 500 3-Item 0.757 0.891 0.963 0.977 0.991 0.825 0.887 0.966 0.956 0.949 

  4-Item      1.090 0.995 1.004 0.979 0.957 

 1,500 3-Item 1.002 0.943 0.991 0.989 1.001 0.825 0.871 0.983 0.975 0.984 

  4-Item      0.823 0.924 0.992 0.985 0.983 
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Table 15 (continued) 

Percent of Truthful Reporting 

4-Item 5-Item πs n List Size 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

0.25 150 3-Item 0.871 0.894 0.879 0.919 0.957 0.839 0.808 0.831 0.935 0.998 

  4-Item      0.963 0.904 0.945 1.017 1.043 

 500 3-Item 0.943 0.922 0.971 1.006 0.993 0.890 0.934 0.952 1.034 0.984 

  4-Item      0.944 1.012 0.981 1.028 0.991 

 1,500 3-Item 0.866 0.963 0.988 0.990 0.986 0.802 1.008 0.967 0.984 0.992 

  4-Item      0.927 1.047 0.979 0.994 1.006 

0.35 150 3-Item 0.788 0.901 0.884 1.015 0.939 0.799 0.804 0.915 0.977 0.976 

  4-Item      1.014 0.893 1.035 0.963 1.039 

 500 3-Item 0.854 0.885 0.984 0.963 0.983 0.856 0.864 0.961 0.969 0.998 

  4-Item      1.002 0.977 0.977 1.006 1.014 

 1,500 3-Item 0.913 0.977 0.958 0.992 1.008 0.923 0.936 0.975 1.002 0.996 

  4-Item      1.011 0.959 1.018 1.010 0.988 

0.45 150 3-Item 0.940 0.964 1.012 0.976 0.959 0.815 0.953 0.958 0.971 0.953 

  4-Item      0.867 0.989 0.947 0.996 0.994 

 500 3-Item 0.977 0.933 0.986 1.015 1.016 0.822 0.959 1.019 1.003 1.010 

  4-Item      0.841 1.028 1.033 0.989 0.994 

 1,500 3-Item 0.960 0.960 1.017 0.998 0.995 0.874 0.992 0.986 0.993 0.997 

  4-Item      0.911 1.033 0.970 0.995 1.002 
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Table 16 
 
Study of Statistical Efficiency by Size of List: Single Sample Count Optimal 

Percent of Truthful Reporting 

4-Item 5-Item πs n List Size 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

0.03 150 3-Item 0.892 1.008 0.955 0.950 1.021 0.675 0.634 0.610 0.683 0.625 

  4-Item      0.757 0.629 0.639 0.719 0.613 

 500 3-Item 0.993 1.213 0.956 0.982 1.041 0.615 0.794 0.642 0.617 0.695 

  4-Item      0.619 0.654 0.672 0.629 0.667 

 1,500 3-Item 1.039 0.956 0.962 1.004 1.025 0.634 0.646 0.685 0.717 0.776 

  4-Item      0.610 0.675 0.712 0.714 0.758 

0.05 150 3-Item 1.113 1.088 1.006 0.931 0.877 0.734 0.671 0.678 0.654 0.661 

  4-Item      0.660 0.617 0.674 0.702 0.753 

 500 3-Item 1.002 0.997 1.029 0.955 1.003 0.709 0.628 0.769 0.735 0.724 

  4-Item      0.707 0.630 0.747 0.770 0.722 

 1,500 3-Item 1.111 0.953 0.936 0.956 1.049 0.662 0.761 0.720 0.685 0.802 

  4-Item      0.596 0.799 0.769 0.717 0.765 
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Table 16 (continued) 

Percent of Truthful Reporting 

4-Item 5-Item πs n List Size 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

0.10 150 3-Item 1.021 1.068 0.908 0.917 0.988 0.678 0.751 0.683 0.784 0.682 

  4-Item      0.664 0.703 0.752 0.854 0.691 

 500 3-Item 1.078 1.011 0.966 0.979 0.996 0.736 0.699 0.743 0.788 0.905 

  4-Item      0.683 0.692 0.769 0.805 0.909 

 1,500 3-Item 1.148 1.044 1.002 0.985 0.939 0.792 0.725 0.822 0.825 0.915 

  4-Item      0.690 0.694 0.820 0.837 0.974 

0.15 150 3-Item 0.971 0.980 0.919 1.197 1.032 0.700 0.765 0.723 0.828 0.817 

  4-Item      0.721 0.781 0.787 0.692 0.792 

 500 3-Item 0.960 0.972 0.992 0.945 0.998 0.690 0.758 0.786 0.848 0.950 

  4-Item      0.719 0.780 0.792 0.897 0.952 

 1,500 3-Item 1.036 1.067 1.017 0.977 1.016 0.762 0.812 0.857 0.953 0.958 

  4-Item      0.735 0.761 0.843 0.975 0.943 

0.20 150 3-Item 0.966 0.863 0.982 0.975 1.005 0.742 0.707 0.722 0.804 0.843 

  4-Item      0.769 0.819 0.735 0.825 0.839 

 500 3-Item 0.867 1.085 0.997 1.008 0.983 0.600 0.781 0.737 0.874 0.957 

  4-Item      0.691 0.720 0.739 0.867 0.974 

 1,500 3-Item 1.036 0.946 1.045 1.014 1.014 0.780 0.828 0.981 0.956 0.968 

  4-Item      0.753 0.875 0.938 0.943 0.955 
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Table 16 (continued) 

Percent of Truthful Reporting 

4-Item 5-Item πs n List Size 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

0.25 150 3-Item 0.951 0.945 1.187 0.957 0.937 0.733 0.736 0.906 0.898 0.816 

  4-Item      0.771 0.779 0.763 0.938 0.871 

 500 3-Item 0.971 0.892 1.085 1.002 0.971 0.730 0.803 0.930 0.968 0.946 

  4-Item      0.752 0.900 0.857 0.966 0.974 

 1,500 3-Item 0.942 1.018 0.964 1.019 1.012 0.723 0.882 0.989 1.004 0.991 

  4-Item      0.767 0.866 1.026 0.985 0.979 

0.35 150 3-Item 1.027 0.993 1.007 1.038 1.053 0.736 0.735 0.898 0.926 0.937 

  4-Item      0.716 0.740 0.891 0.893 0.890 

 500 3-Item 0.981 1.094 1.043 1.070 1.008 0.727 0.847 0.955 0.973 0.974 

  4-Item      0.742 0.774 0.915 0.910 0.966 

 1,500 3-Item 1.014 1.028 0.961 1.013 1.002 0.696 0.921 0.965 0.995 1.006 

  4-Item      0.686 0.896 1.005 0.983 1.004 

0.45 150 3-Item 1.012 0.895 1.007 0.991 0.976 0.741 0.780 0.887 1.010 0.934 

  4-Item      0.732 0.872 0.881 1.019 0.957 

 500 3-Item 0.993 1.026 1.014 1.012 1.011 0.762 0.881 0.923 0.947 0.969 

  4-Item      0.768 0.859 0.910 0.936 0.958 

 1,500 3-Item 1.092 0.953 0.999 1.022 1.006 0.778 0.893 0.981 0.996 0.997 

  4-Item      0.713 0.937 0.983 0.975 0.990 
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 In examining the results of the analysis, it became evident that across all NRR 

optimal models, list size 3 models were nearly as efficient as list size 4-models (see 

Tables 14, 15, 16). The more important analysis was in examining the efficiency between 

3-item and 5-item models, since it was assumed that NRR models with larger list sizes 

provided higher levels of confidentiality which in theory resulted in a higher percentage 

of truthful reporting. As is evident in each table, the 3-item models were generally more 

efficient (i.e., MSE < 1) compared with the 5-item models when participants report 

truthfully (i.e., 100% truthful reporting). As truthful reporting declined from 100% to 

60%, a trend in model efficiency was apparent for each NRR optimal model where the 3-

item and 5-item lists became more similar in terms of efficiency and in fact approached 

unity. For each table, increasing efficiency trends are bolded. The difference in these 

trends between each NRR optimal model was where the trend begins and when unity was 

reached. For the optimal item count technique (ICT; Table 14), evidence of a trend in 

increasing efficiency between the 3-item and 5-item optimal model was most apparent 

when sensitive prevalent rates were large, (i.e., πs = 0.35, πs = 0.45) across all sample 

sizes (n = 150, n = 500, and n = 1,500) where unity was reached when non-compliance 

rates in both models was highest (i.e., 60% truthful reporting). For the optimal double 

item count technique (DICT; Table 15), evidence of increasing efficiency between the 3-

item and 5-item model in the presence of increasing non-compliance appeared when 

sensitive prevalent rates were moderate (i.e., πs = 0.10) across all sample sizes where 

unity was approached when non-compliance in both models was highest (i.e., 60% 

truthful reporting). Likewise, for the optimal SSC, evidence of increasing efficiency 

between the 3-item and 5-item model in the presence of increasing non-compliance also 
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appeared when sensitive prevalent rates were moderate. For larger sample sizes, (n = 500, 

n =1,500), the trend was evident at πs = 0.10, whereas for smaller sample sizes the trend 

began at πs = 0.20 where unity was approached when non-compliance between both 

models was highest (i.e., 60% truthful reporting). 

 In addition, for the optimal item count technique (ICT) and double item count 

technique (DICT) models, 3-item and 5-item models became more similar, as non-

compliance increased, when sensitive prevalent rates were moderate (i.e., πs = 0.25 for 

ICT optimal, πs = 0.20 for DICT optimal) across all sample sizes (n = 150, n = 500, and n 

= 1,500) whereas for the SSC optimal, 3-item, and 5-item models became more similar 

for large sensitive prevalent rates (πs = 0.45) across all sample sizes. 

Item List 5 vs. Item List 3: By Optimal 
Non-random Response Model in the 
Presence of Differing 
Non-compliant Rates 
 

Because the results of this study indicated that in the presence of equally 

proportional non-compliance, generally NRR optimal models with 3-item lists were more 

efficient compared to models with 5-item lists, a secondary analysis exploring the effects 

on efficiency between the two models in cases where compliance are equal or improved 

by the 5-item list were made. This analysis is similar to the secondary analysis that 

explored efficiency between the optimal DICT and optimal unrelated question technique 

(UQT) in the presence of differing compliance rates. As was done in the previous 

analysis, efficiency was compared by selected sensitive prevalent rate meant to represent 

small (πs = 0.05), medium (πs = 0.20), and large (πs = 0.45) by sample size (n = 150, n = 

500, and n = 1,500) and NRR optimal model (DICT, SSC, and ICT). In examining 



 

 

165

efficiency, the same principals from the previous analyses were used where models were 

termed similar if the ratio of MSE approached unity. 

 Table 17 displays the results of this analysis. In the table, bolded ratios of MSE 

indicated cases where the 5-item model and the 3-item model were greater than or equal 

to unity (i.e., ratio of MSE > 1). As is evident in the table, for the DICT optimal when πs 

was small (πs = 0.05), if the sample size was also small (n = 150), the 3-item double item 

count technique (DICT) optimal was generally more efficient than the 5-item DICT 

optimal. As sample sizes became moderate (n = 500) for πs small (πs = 0.05), when 

compliant rates decreased substantially in the 3-item DICT (i.e., percent of truthful 

reporting < 0.70) compared to the DICT optimal 5-item model, the 5-item model proved 

just as efficient. For larger sample sizes (n = 1,500) when πs was small (πs = 0.05), if 

compliant rates decreased substantially in the 3-item DICT (i.e., percent of truthful 

reporting < 0.70) compared to the DICT optimal 5-item model, the 5-item model was 

more efficient. For moderate (πs = 0.20) and large (πs = 0.45) sensitive prevalent rates, 

results were similar across all sample sizes, where if the optimal DICT 5-item model 

improved compliant rates compared to the DICT 3-item model, the DICT 5-item proved 

to be more efficient.  

 For the single sample count technique (SSC), when the sensitive prevalent rate 

was small (πs = 0.05), unless sample sizes were large (n = 1,500) and the non-compliance 

rate of the SSC optimal 3-Item model was high (i.e., percent of truthful reporting < 0.70) 

compared to the non-compliance rate of the optimal 5-item model (i.e., percent of truthful 

reporting < 0.90), the 5-item model was more efficient. When the sensitive prevalent rate 

was moderate (πs = 0.20), in smaller sample sizes (n = 150), when the non-compliance 
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rate of the SSC optimal 3-item model was high (i.e., percent of truthful reporting = 0.60) 

compared to the non-compliance rate of the optimal 5-Item model (i.e., percent of truthful 

reporting > 0.80), the SSC 5-item model was more efficient. For mid (n = 500) to large 

sample sizes (n = 1,500), when sensitive prevalent rates were moderate (πs = 0.20), if the 

SSC optimal 5-item model improved compliance compared to the optimal 3-item model, 

the 5-item model was more efficient. For large sensitive prevalent rates (πs = 0.45), across 

all sample sizes, when the single sample count technique (SSC) optimal 5-item model 

improved the compliance rate compared to the SSC optimal 3-item model, the 5-item 

model was more efficient. 

For the item count technique (ICT), when the sensitive prevalent rate was small 

(πs = 0.05), in general, the ICT optimal 3-item model was more efficient compared with 

the 5-iItem model across all sample sizes and compliance rates. When the sensitive 

prevalent rate was moderate (πs = 0.20), unless sample sizes were larger (n = 500, n = 

1,500) if the ICT 5-Item optimal model improved the compliance rate of the ICT-3 

optimal model, the 5-Item model was more efficient. For large sensitive prevalent rates 

(πs = 0.45), when sample sizes were small (n = 150) and the non-compliance rate of the 

ICT optimal 3-item model was high (i.e., percent of truthful reporting < 0.70) compared 

to the non-compliance rate of the optimal ICT 5-item model (i.e., percent of truthful 

reporting > 0.90), the 5-item model was more efficient. As sample sizes increased, for 

large sensitive prevalent rates (πs = 0.45), if the ICT optimal 5-item model improved the 

compliance rate compared to the ICT optimal 3-item model, the 5-item model was more 

efficient (see Table 17) 



 
Table 17 
 
Item List 3 vs. Item List 5: Non-random Response Optimal Models in the Presence of Differing Non-compliance Rates 

3-Item: Percent of Truthful Reporting 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

 

 
List Size 

 
n 

Percent of
Truthful 

πs = 0.05 πs = 0.20 πs = 0.45 

Double Item 
Count 

Technique 5 150 1.0 0.76 0.70 0.71 0.75 0.83 0.82 0.93 1.31 1.99 2.80 0.82 1.25 2.73 5.21 8.47 

   0.9 0.78 0.72 0.74 0.77 0.86 0.72 0.81 1.15 1.74 2.45 0.62 0.95 2.08 3.98 6.47 

   0.8 0.78 0.72 0.73 0.77 0.86 0.55 0.62 0.88 1.33 1.87 0.29 0.44 0.96 1.83 2.97 

   0.7 0.69 0.63 0.64 0.68 0.75 0.37 0.42 0.59 0.89 1.25 0.15 0.23 0.51 0.97 1.58 

   0.6 0.71 0.65 0.67 0.70 0.78 0.27 0.30 0.43 0.65 0.91 0.09 0.14 0.31 0.59 0.95 

  500 1.0 0.79 0.81 0.90 1.06 1.38 0.82 1.29 2.74 4.88 8.16 0.82 2.63 8.07 17.49 29.92 

   0.9 0.73 0.75 0.82 0.98 1.27 0.57 0.89 1.88 3.35 5.60 0.30 0.96 2.95 6.39 10.92 

   0.8 0.63 0.65 0.72 0.85 1.11 0.29 0.46 0.97 1.72 2.88 0.10 0.33 1.02 2.21 3.78 

   0.7 0.61 0.63 0.69 0.82 1.07 0.16 0.25 0.54 0.96 1.60 0.05 0.15 0.46 1.00 1.72 

   0.6 0.48 0.50 0.55 0.65 0.84 0.10 0.15 0.32 0.57 0.95 0.03 0.09 0.27 0.59 1.01 

  1,500 1.0 0.73 0.85 1.08 1.81 2.42 0.82 1.97 5.93 11.56 19.96 0.87 6.55 23.86 51.72 90.28 

   0.9 0.67 0.78 0.99 1.66 2.23 0.37 0.87 2.63 5.12 8.85 0.13 0.99 3.62 7.84 13.68 

   0.8 0.49 0.57 0.72 1.21 1.62 0.14 0.33 0.98 1.92 3.31 0.04 0.27 0.99 2.14 3.73 

   0.7 0.37 0.43 0.55 0.92 1.23 0.07 0.17 0.50 0.97 1.68 0.02 0.13 0.46 0.99 1.73 

   0.6 0.25 0.29 0.37 0.62 0.84 0.04 0.10 0.29 0.57 0.98 0.01 0.07 0.26 0.57 1.00 
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Table 17 (continued) 

Ite-3: Percent of Truthful Reporting 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

 

 
List Size 

 
n 

Percent of
Truthful 

πs = 0.05 πs = 0.20 πs = 0.45 

Single Sample 
Count 5 150 1.0 0.73 0.68 0.69 0.65 0.66 0.74 0.69 0.94 1.28 1.73 0.74 0.97 1.97 3.42 5.40 

   0.9 0.73 0.67 0.68 0.65 0.66 0.76 0.71 0.96 1.31 1.77 0.59 0.78 1.58 2.74 4.33 

   0.8 0.72 0.67 0.68 0.64 0.65 0.57 0.53 0.72 0.99 1.34 0.33 0.44 0.89 1.54 2.43 

   0.7 0.74 0.68 0.69 0.65 0.66 0.47 0.43 0.59 0.80 1.09 0.22 0.29 0.58 1.01 1.60 

   0.6 0.73 0.68 0.69 0.65 0.66 0.36 0.34 0.46 0.62 0.84 0.13 0.17 0.34 0.59 0.93 

  500 1.0 0.71 0.69 0.76 0.81 0.89 0.60 0.91 1.38 2.45 3.88 0.76 1.74 4.86 9.92 17.05 

   0.9 0.65 0.63 0.69 0.74 0.82 0.52 0.78 1.19 2.11 3.34 0.39 0.88 2.45 5.01 8.61 

   0.8 0.72 0.70 0.77 0.82 0.91 0.32 0.48 0.74 1.31 2.07 0.14 0.33 0.92 1.89 3.24 

   0.7 0.64 0.62 0.69 0.73 0.81 0.21 0.32 0.49 0.87 1.38 0.07 0.17 0.46 0.95 1.63 

   0.6 0.57 0.56 0.61 0.66 0.72 0.15 0.22 0.34 0.60 0.96 0.04 0.10 0.28 0.56 0.97 

  1,500 1.0 0.66 0.71 0.81 0.98 1.38 0.78 1.30 3.53 6.78 11.48 0.78 3.69 12.60 27.55 48.57 

   0.9 0.71 0.76 0.86 1.05 1.47 0.50 0.83 2.26 4.33 7.33 0.19 0.89 3.05 6.67 11.77 

   0.8 0.59 0.64 0.72 0.88 1.23 0.22 0.36 0.98 1.88 3.19 0.06 0.29 0.98 2.15 3.78 

   0.7 0.46 0.50 0.56 0.69 0.96 0.11 0.18 0.50 0.96 1.62 0.03 0.13 0.46 1.00 1.76 

   0.6 0.39 0.42 0.47 0.57 0.80 0.07 0.11 0.30 0.57 0.97 0.02 0.08 0.26 0.57 1.00 
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Table 17 (continued) 

Item-3: Percent of Truthful Reporting 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

 

 
List Size 

 
n 

Percent of
Truthful 

πs = 0.05 πs = 0.20 πs = 0.45 

Item Count 
Technique 5 150 1.0 0.74 0.81 0.73 0.77 0.74 0.66 0.77 0.73 0.85 1.00 0.82 0.89 1.16 1.71 2.63 

   0.9 0.73 0.80 0.72 0.76 0.74 0.79 0.91 0.86 1.01 1.18 0.79 0.85 1.12 1.64 2.54 

   0.8 0.77 0.83 0.75 0.80 0.77 0.72 0.83 0.79 0.92 1.09 0.57 0.62 0.81 1.19 1.84 

   0.7 0.74 0.81 0.73 0.77 0.75 0.62 0.72 0.68 0.80 0.94 0.43 0.46 0.61 0.89 1.37 

   0.6 0.73 0.80 0.72 0.76 0.74 0.55 0.63 0.60 0.70 0.82 0.28 0.31 0.40 0.59 0.91 

  500 1.0 0.68 0.71 0.66 0.74 0.76 0.70 0.94 1.10 1.47 2.01 0.78 1.15 2.33 4.10 6.65 

   0.9 0.71 0.74 0.70 0.78 0.79 0.66 0.89 1.05 1.40 1.91 0.55 0.82 1.65 2.91 4.72 

   0.8 0.69 0.72 0.67 0.75 0.77 0.53 0.70 0.83 1.11 1.52 0.30 0.45 0.91 1.60 2.60 

   0.7 0.76 0.79 0.74 0.83 0.84 0.41 0.55 0.65 0.87 1.19 0.18 0.27 0.55 0.96 1.56 

   0.6 0.67 0.70 0.65 0.73 0.75 0.31 0.42 0.49 0.66 0.90 0.11 0.16 0.33 0.58 0.94 

  1,500 1.0 0.84 0.76 0.78 0.91 1.03 0.72 0.97 1.71 3.04 4.30 0.76 1.85 5.04 10.78 18.46 

   0.9 0.81 0.73 0.75 0.87 0.99 0.59 0.80 1.41 2.51 3.55 0.35 0.86 2.34 5.00 8.56 

   0.8 0.82 0.74 0.76 0.88 1.00 0.35 0.47 0.84 1.49 2.11 0.14 0.34 0.93 2.00 3.42 

   0.7 0.71 0.65 0.66 0.77 0.87 0.23 0.30 0.54 0.95 1.35 0.07 0.17 0.47 1.00 1.72 

   0.6 0.65 0.59 0.60 0.70 0.79 0.15 0.21 0.37 0.65 0.92 0.04 0.10 0.28 0.59 1.01 
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As was evident in this analysis, NRR 5-item models were generally more efficient 

than the corresponding 3-item models when compliance was improved by the 5-item 

model, depending on the NRR model (DICT, ICT, and SSC), sample size, and sensitive 

prevalent rate. However, what was clear from this analysis, was that the DICT optimal 5-

item list models proved to be more efficient compared with the optimal DICT 3-item list 

models under the assumption that 5-item models improved compliance rates, at lower 

sensitive prevalent rates (πs = 0.05) and smaller sample sizes (n = 500) compared to the 

optimal SSC and optimal ICT models. 

Efficiency Study Between Non-random 
Response Models 
 

Table 18 displays the results of the efficiency study comparing NRR optimal 

models, by list size (3-item, 4-item, and 5-item), sample size (n = 150, n = 500, and n = 

1,500) and compliant rate (1, 0.90, 0.80, 0.70, and 0.60) between NRR optimal models 

(ICT, DICT, and SSC). Comparisons between models were similarly explored as was 

done in the previous sections, where models were termed “similar” if the ratio of MSE 

approaches unity. Ratios of MSE for which models are termed similar are bolded in the 

table. For this analysis, the ratios of MSE were made as follows for each list size 

comparison:  

  
DICT

ICT

MSE

MSE
MSERatio =)(                                                                        (4.4) 

 

  
DICT

SSC

MSE

MSE
MSERatio =)(                                                                       (4.5) 

 

 
ICT

SSC

MSE

MSE
MSERatio =)(                                                                         (4.6) 

 
 



 
Table 18 
 
Statistical Efficiency: Comparisons Between Non-random Response Optimal Models by Size of List 

Percent of Truthful Reporting 

Ratio of MSE: ICT/DICT Ratio of MSE: SSC/DICT Ratio of MSE: ICT/SSC List Size πs 
n 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

3-Item 0.01 150 6.878 6.812 6.753 6.677 7.641 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

  500 7.755 6.780 6.926 6.894 7.442 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

  1,500 7.349 7.497 7.088 6.354 5.789 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 0.03 150 6.749 7.009 6.862 7.021 6.631 2.134 2.105 1.977 2.062 1.920 3.162 3.330 3.471 3.405 3.453 

  500 7.493 6.721 6.557 6.380 6.020 2.257 2.415 1.982 2.033 2.116 3.320 2.784 3.308 3.138 2.845 

  1,500 7.054 6.385 5.483 5.345 4.725 2.083 2.013 1.765 1.723 1.832 3.387 3.172 3.107 3.103 2.580 

 0.05 150 6.031 7.161 6.328 6.357 5.536 2.162 2.170 2.158 1.948 1.779 2.790 3.300 2.932 3.264 3.111 

  500 6.459 6.522 5.541 5.243 4.100 2.133 1.998 2.007 1.815 1.535 3.029 3.265 2.760 2.889 2.672 

  1,500 7.732 5.981 4.855 3.361 2.845 2.247 2.071 1.843 1.343 1.406 3.441 2.888 2.634 2.502 2.024 

 0.10 150 6.247 5.872 5.035 4.528 4.190 2.038 2.000 1.651 1.612 1.593 3.066 2.935 3.049 2.810 2.630 

  500 6.215 5.869 3.810 3.187 2.500 2.056 1.983 1.440 1.407 1.336 3.023 2.959 2.645 2.266 1.871 

  1,500 6.184 4.375 2.591 2.038 1.544 2.212 1.542 1.400 1.166 1.090 2.796 2.838 1.850 1.748 1.417 

 0.15 150 5.692 5.661 4.599 3.614 2.547 1.890 1.713 1.601 1.616 1.366 3.012 3.304 2.873 2.236 1.865 

  500 5.951 4.371 2.835 2.279 1.806 1.910 1.579 1.354 1.229 1.171 3.116 2.768 2.094 1.854 1.542 

  1,500 5.079 3.540 1.840 1.395 1.220 1.720 1.455 1.193 1.071 1.081 2.953 2.432 1.543 1.302 1.129 

 0.20 150 5.086 5.136 3.459 2.671 2.233 1.802 1.476 1.419 1.280 1.230 2.822 3.480 2.437 2.086 1.815 

  500 5.044 4.316 2.401 1.795 1.470 1.648 1.595 1.146 1.137 1.079 3.062 2.706 2.096 1.578 1.363 

  1,500 4.531 2.551 1.500 1.363 1.119 1.711 1.194 1.079 1.061 1.041 2.648 2.136 1.390 1.284 1.076 171 



 
Table 18 (continued) 

Percent of Truthful Reporting 

Ratio of MSE: ICT/DICT Ratio of MSE: SSC/DICT Ratio of MSE: ICT/SSC List Size πs 
n 

1 0.9 0.8 0.7 0.6 1 0.9 0.8 0.7 0.6 1 0.9 0.8 0.7 0.6 

 0.25 150 5.249 4.533 3.479 2.338 1.793 1.666 1.620 1.604 1.243 1.090 3.150 2.798 2.169 1.881 1.645 

  500 4.758 3.076 1.913 1.471 1.306 1.637 1.263 1.241 1.045 1.076 2.907 2.435 1.542 1.407 1.214 

  1,500 4.956 2.080 1.484 1.126 1.142 1.721 1.200 1.064 1.048 1.025 2.879 1.734 1.394 1.075 1.114 

 0.35 150 5.131 3.634 2.584 1.679 1.618 1.722 1.442 1.331 1.128 1.113 2.980 2.519 1.941 1.489 1.454 

  500 4.882 2.586 1.390 1.256 1.158 1.653 1.420 1.145 1.093 1.022 2.953 1.820 1.214 1.149 1.133 

  1,500 4.499 1.725 1.210 1.096 1.045 1.559 1.148 1.045 1.024 1.019 2.885 1.503 1.158 1.070 1.026 

 0.45 150 4.397 3.120 1.872 1.437 1.365 1.475 1.266 1.171 1.064 1.035 2.981 2.464 1.598 1.350 1.318 

  500 4.574 2.127 1.398 1.135 1.076 1.633 1.169 1.060 0.999 1.003 2.800 1.819 1.320 1.137 1.073 

  1,500 4.457 1.448 1.080 1.066 1.046 1.699 1.074 1.007 1.016 1.026 2.624 1.348 1.073 1.049 1.019 

4-Item 0.01 150 7.053 6.070 6.178 6.135 7.210 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

  500 5.918 6.352 6.465 6.416 6.342 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

  1,500 6.306 6.496 6.347 5.526 5.700 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 0.03 150 6.264 5.915 6.134 6.252 5.805 1.984 1.591 1.665 1.880 1.684 3.157 3.717 3.685 3.326 3.448 

  500 5.862 5.600 5.919 5.723 5.062 1.625 1.569 1.665 1.609 1.508 3.606 3.569 3.555 3.558 3.356 

  1,500 6.171 6.187 5.836 4.368 3.945 1.645 1.786 1.734 1.436 1.344 3.751 3.464 3.366 3.042 2.935 

 0.05 150 6.214 5.744 5.686 5.283 4.629 1.627 1.678 1.699 1.784 1.644 3.819 3.423 3.347 2.961 2.816 

  500 5.795 5.873 5.060 5.074 4.245 1.769 1.578 1.700 1.639 1.430 3.275 3.722 2.976 3.096 2.969 

  1,500 5.705 5.875 4.293 3.192 2.667 1.625 1.874 1.598 1.291 1.303 3.511 3.134 2.686 2.472 2.048 
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Table 18 (continued) 

Percent of Truthful Reporting 

Ratio of MSE: ICT/DICT Ratio of MSE: SSC/DICT Ratio of MSE: ICT/SSC List Size πs 
n 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

 0.10 150 4.847 5.342 4.862 4.560 3.985 1.506 1.657 1.631 1.685 1.417 3.219 3.224 2.982 2.706 2.812 

  500 5.993 4.817 3.959 3.066 2.666 1.684 1.529 1.525 1.365 1.289 3.559 3.151 2.596 2.245 2.068 

  1,500 5.578 4.147 2.550 1.818 1.535 1.470 1.391 1.231 1.140 1.105 3.793 2.980 2.072 1.595 1.390 

 0.15 150 5.552 4.705 4.195 3.204 2.658 1.676 1.537 1.591 1.181 1.193 3.313 3.061 2.636 2.712 2.228 

  500 5.087 4.390 2.893 2.055 1.709 1.599 1.589 1.283 1.232 1.145 3.181 2.763 2.256 1.668 1.493 

  1,500 5.352 3.342 1.990 1.510 1.305 1.476 1.183 1.139 1.120 1.052 3.627 2.825 1.747 1.348 1.241 

 0.20 150 5.329 4.263 3.668 2.435 2.260 1.649 1.450 1.307 1.212 1.114 3.231 2.941 2.808 2.009 2.028 

  500 4.737 3.351 2.380 1.897 1.497 1.437 1.310 1.106 1.103 1.087 3.296 2.557 2.151 1.720 1.377 

  1,500 5.286 2.673 1.425 1.253 1.130 1.655 1.189 1.023 1.035 1.027 3.193 2.249 1.393 1.210 1.101 

 0.25 150 4.856 4.235 2.921 2.344 1.743 1.526 1.532 1.188 1.193 1.113 3.181 2.765 2.459 1.965 1.566 

  500 5.311 2.942 1.994 1.406 1.241 1.588 1.306 1.110 1.049 1.100 3.344 2.253 1.797 1.341 1.128 

  1,500 4.702 2.016 1.403 1.180 1.082 1.582 1.135 1.091 1.018 0.998 2.972 1.777 1.286 1.159 1.085 

 0.35 150 4.503 3.830 2.306 1.860 1.512 1.321 1.308 1.169 1.104 0.993 3.408 2.928 1.972 1.686 1.523 

  500 4.366 2.581 1.567 1.294 1.174 1.440 1.148 1.080 0.984 0.997 3.032 2.247 1.451 1.314 1.178 

  1,500 4.200 1.707 1.245 1.060 1.082 1.403 1.090 1.042 1.003 1.025 2.993 1.566 1.194 1.057 1.056 

 0.45 150 4.057 3.490 2.087 1.458 1.251 1.372 1.363 1.177 1.047 1.018 2.958 2.560 1.773 1.392 1.229 

  500 4.916 1.938 1.319 1.177 1.097 1.607 1.063 1.030 1.001 1.008 3.060 1.823 1.281 1.176 1.087 

  1,500 4.279 1.406 1.147 1.057 1.022 1.493 1.082 1.025 0.992 1.014 2.866 1.299 1.119 1.066 1.008 
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Table 18 (continued) 

Percent of Truthful Reporting 

Ratio of MSE: ICT/DICT Ratio of MSE: SSC/DICT Ratio of MSE: ICT/SSC List Size πs 
n 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

5-Item 0.01 150 7.206 6.867 6.746 6.973 6.715 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

  500 6.312 6.127 6.809 7.354 6.811 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

  1,500 7.360 6.881 7.031 6.629 7.402 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 0.03 150 7.262 6.892 6.903 7.063 6.455 2.389 2.423 2.274 2.283 2.456 3.040 2.844 3.036 3.094 2.628 

  500 7.370 6.685 6.355 6.621 5.893 2.441 2.306 2.157 2.604 2.135 3.019 2.899 2.947 2.543 2.761 

  1,500 6.742 6.757 6.483 4.769 4.216 2.367 2.274 2.123 1.744 1.689 2.848 2.972 3.054 2.735 2.496 

 0.05 150 6.180 6.431 6.157 5.586 5.867 2.231 2.325 2.335 2.017 2.101 2.770 2.766 2.637 2.769 2.793 

  500 7.472 6.562 5.949 5.196 4.626 2.373 2.381 1.880 2.026 1.786 3.148 2.756 3.164 2.565 2.590 

  1,500 6.692 6.391 4.611 3.999 3.005 2.469 2.131 1.852 1.793 1.468 2.711 2.999 2.489 2.230 2.047 

 0.10 150 5.896 5.371 5.346 4.946 4.287 2.219 2.019 1.949 1.634 1.875 2.658 2.660 2.743 3.027 2.287 

  500 5.808 5.928 4.538 3.362 2.708 2.023 2.015 1.786 1.626 1.337 2.871 2.942 2.541 2.067 2.024 

  1,500 5.714 4.854 3.176 2.232 1.777 1.849 1.847 1.548 1.321 1.142 3.090 2.628 2.052 1.690 1.555 

 0.15 150 4.969 5.107 4.833 3.862 3.059 1.907 1.739 1.798 1.611 1.374 2.606 2.937 2.688 2.397 2.226 

  500 6.244 4.426 2.947 2.337 1.986 2.070 1.735 1.442 1.351 1.122 3.017 2.551 2.044 1.730 1.770 

  1,500 5.485 3.894 2.056 1.539 1.350 1.889 1.511 1.311 1.097 1.115 2.904 2.577 1.569 1.404 1.210 

 0.20 150 6.268 4.622 3.839 2.982 2.466 1.990 1.702 1.722 1.415 1.325 3.149 2.716 2.230 2.107 1.861 

  500 5.952 4.301 2.792 1.969 1.550 2.265 1.810 1.502 1.244 1.069 2.627 2.376 1.860 1.583 1.450 

  1,500 5.193 2.788 1.756 1.398 1.198 1.810 1.256 1.082 1.082 1.057 2.869 2.219 1.623 1.292 1.133 
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Table 18 (continued) 

Percent of Truthful Reporting 

Ratio of MSE: ICT/DICT Ratio of MSE: SSC/DICT Ratio of MSE: ICT/SSC List Size πs 
n 

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6 

 0.25 150 5.366 4.780 3.133 2.572 2.035 1.906 1.779 1.471 1.294 1.334 2.815 2.687 2.129 1.988 1.526 

  500 5.678 3.408 2.043 1.610 1.483 1.995 1.469 1.270 1.116 1.120 2.846 2.320 1.609 1.442 1.324 

  1,500 5.235 2.351 1.464 1.184 1.115 1.911 1.371 1.041 1.027 1.026 2.739 1.714 1.406 1.153 1.087 

 0.35 150 5.384 3.735 2.627 1.928 1.557 1.870 1.578 1.357 1.190 1.158 2.880 2.367 1.936 1.619 1.345 

  500 5.529 3.032 1.705 1.323 1.241 1.945 1.449 1.153 1.088 1.047 2.843 2.092 1.479 1.216 1.185 

  1,500 5.605 1.899 1.242 1.154 1.077 2.068 1.166 1.055 1.031 1.009 2.710 1.628 1.176 1.119 1.068 

 0.45 150 4.394 3.481 2.211 1.568 1.424 1.623 1.547 1.265 1.024 1.057 2.707 2.250 1.747 1.532 1.348 

  500 4.841 2.492 1.565 1.186 1.156 1.760 1.272 1.169 1.058 1.046 2.750 1.959 1.339 1.121 1.105 

  1,500 5.114 1.671 1.141 1.053 1.030 1.907 1.193 1.012 1.012 1.026 2.681 1.401 1.127 1.040 1.003 
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Table 18 indicated that the efficiency patterns were similar across all list sizes (3-

item, 4-item, 5-item). In general, the double item count technique (DICT) optimal model 

was more efficient (i.e., ratio of MSE > 1) than the single sample count technique (SSC) 

optimal and item count technique (ICT) optimal models across all sample sizes, sensitive 

prevalent rates and non-compliance rates. In addition when comparing the ICT optimal 

model to the SSC optimal, the SSC was generally more efficient (i.e., ratio of MSE > 1) 

than the ICT optimal across all sample sizes, sensitive prevalent rates and non-

compliance rates. Thus, results from this study indicated that generally the optimal DICT 

model proved to be more efficient than the optimal SSC and ICT models, especially 

when estimating smaller to mid-size sensitive prevalent rates (i.e., 0.01 < πs  < 0.15) 

across all sample sizes.  
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CHAPTER V 

DISCUSSION 

Selecting the Optimal Model 

The idea of finding optimal models for these analyses was to minimize variability 

so that the models selected for the compliance and list-size analyses would be the most 

efficient. As a result, using the relative reliability, the variation of each technique for all 

simulated parameters were compared to the variation of the direct questioning technique 

(DQT), under the assumption of truthful reporting, since it was the most efficient. By 

doing this, the parameters of each technique selected ensured the variability of the model 

was as close to that of the DQT as possible. For this portion of the analysis, direct 

comparisons of each technique to the DQT were not made nor discussed. Recall that the 

random response (RR) and non-random response (NRR) techniques were developed as an 

attempt to improve honest reporting of sensitive behaviors since it was suspected that 

estimates of these behaviors using the DQT were extremely biased. As a result, there was 

no need to examine how each technique compared to the DQT especially under the 

assumption of truthful reporting since, if it were expected that respondents report 

honestly, the most efficient technique to use would be the DQT. 

The results of this analysis indicated that the unrelated question technique (UQT) 

model with parameters p1 = 0.90, p2 = 0.10, and πns = 0.10 proved most efficient against 

all other simulated UQT model parameters. This is not surprising since Greenberg et al. 

(1969) indicated that the variability of the UQT was minimized when the probability of 
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selecting the sensitive question for both samples were as far from 0.50 as possible and at 

the same time, as far apart from one another as possible. Additionally, the authors also 

pointed out that the selection of a non-sensitive behavior with low prevalence also 

reduced the variability of the unrelated question technique (UQT). The set of simulations 

performed in this study confirmed these assumptions. Moreover, the results demonstrated 

that the choice of p1 and p2 were especially important since these parameters were more 

influential on the variation of the UQT compared to the prevalence rate of the non-

sensitive behavior (i.e., πns). Figure 1 illustrated this by plotting the relative reliability of 

the UQT model as it compared to the variability of the DQT for sensitive prevalent rates 

meant to represent small (πns = 0.05) medium (πns = 0.20), and large (πns = 0.45). As is 

evident in the plot, where the figure peaks, the UQT model is closest to the variability of 

the DQT model and is more efficient. When the plot valleys, this indicated that the 

selected model parameters of the UQT increased model variability and the UQT was less 

efficient compared to the DQT. As was evident in the plot, as p1 decreases from 0.90 to 

0.60, the plot of the relative reliability decreased substantially, indicating that model 

variation had increased. Also evident in the plot, the variability of the UQT also increased 

as the prevalence of the non-sensitive behavior increased, but the increase to the variance 

was not as substantial. This is important to know, since researchers who utilize the UQT 

model need to be aware that their choice of how frequently the sensitive question was 

asked (i.e., p1, p2) in each sample impacts the models variation compared to the selection 

of the non-sensitive behavior (i.e., πns).  

For the forced choice technique (FCT), model parameters were already selected 

and based on the sum of two dice, where probabilities of selecting the sensitive question, 
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forcing the respondent to report “no” or “yes” were pre-determined. This model was 

selected since previous studies that investigated non-compliance used this version of the 

FCT (Böckenholt et al., 2009; Böckenholt & van der Heijden, 2004; van den Hout et al., 

2010). As a result, the FCT model was not studied for optimality in this analysis. 

For the NRR models, the results of this analysis were especially important since 

they test the assumptions made by Glynn (2013) in determining an optimal NRR. In order 

to simultaneously minimize ceiling effects and response variability without compromising 

privacy, Glynn (2013) suggested a method defining an optimal design for the NRR. First, 

equally allocate subjects into the two groups since as demonstrated by Glynn (2013) equal 

sample sizes can actually benefit the design--especially in terms of the double list technique. 

For the set of simulations, sample sizes were equally distributed between the two samples for 

the item count technique (ICT) and double item count technique (DICT). Since the single 

sample count (SSC) only used one sample of participants this was not necessary. According 

to Glynn (2013), a more potential method in reducing variation was the selection of the 

innocuous questions, their prevalence rates and how the items correlated. Recall that Glynn 

(2013) suggested avoiding a high number of non-sensitive questions with either high or low 

prevalent rates and in addition to select pairs of innocuous questions that correlate negatively. 

This would reduce the likelihood of ceiling and floor effects as well as variability since the 

number of “how many” items a respondent reports decreases. In addition, for the DICT 

model, since two lists were administered, if they were highly correlated, variability can 

further be reduced (Glynn, 2013). These assumptions were tested in the set of simulations 

that determined the optimal model for each NRR. Again, truthful reporting was assumed 

and NRR models were compared to the DQT for each of the sensitive prevalent rates, 

sample size and item list size combinations, in essence to select the model closest to the 
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DQT in efficiency. For the item count technique (ICT) and double item count technique 

(DICT) the distribution of the prevalent rates of the non-sensitive questions were 

explored by testing three distribution types: “equal,” “symmetric but not equal,” and “not 

symmetric and not equal.” These were meant to explore Glynn’s suggestion of avoiding 

in abundance non-sensitive questions with either high or low prevalent rates and followed 

previous studies that explored the effects of differing distribution rates of non-sensitive 

questions in an item list (Blair & Imai, 2012; Corstange, 2009). For the single sample 

count technique (SSC), this again was not necessary since the prevalent rates of the non-

sensitive questions were selected as 0.50 by design. In addition, simulations also explored 

the affects of negatively correlated pairs of non-sensitive questions in each item list as it 

pertains to statistical efficiency. This was done for the NRR models, the ICT and SSC. 

For the DICT, simulations that adjusted for both within and between list correlations 

could not be made. As a result, a simulation study using the DICT with the highest 

variability (i.e., the 5-item DICT estimating πs = 0.45) determined that the between list 

correlation was substantially more effective in reducing model variability compared to 

the within list correlation. Thus, for this study, two sets of simulations were performed 

for the ICT, SSC, and DICT in an effort to demonstrate the claims made by Glynn 

(2013). The first adjusted for within list (ICT, SSC) or between list correlation (DICT) 

arbitrarily selected at -0.50 and 0.85, respectively. The second set of simulations did not 

adjust for within (ICT, SSC) correlation between non-sensitive questions in the item list. 

Optimal models were then selected, by sensitive prevalent rate and sample size 

combination, if the efficiency of the model was closest to the efficiency of the DQT.  
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The results of this analysis revealed that for each NRR model, correlating 

between sensitive questions within a list (ICT, SSC) or between lists (DICT) effectively 

reduced model variation as postulated by Glynn (2013). For each NRR model, a model 

that correlated between or within a list was selected as optimal. In addition, in examining 

the distribution of prevalent rates of the non-sensitive questions (i.e., “equal,” “not equal 

but symmetric,” and “not equal and not symmetric”) the results of this analysis indicated 

that distribution type is more effective in reducing variation for the item count technique 

(ICT) compared to the DICT. In the former case, reduction in model variability by the 

distribution of non-sensitive questions were consistent across all sensitive prevalent rates 

and sample size combination and differed by list size. For the ICT 3-item and the ICT 5-

item models, distributions of non-sensitive questions that were not equal reduced 

variation compared to the corresponding models with equally distributed prevalent rates 

of non-sensitive questions. For the ICT 3-item, the “not equal and Not symmetric” 

distribution type was selected as the optimal model whereas for the ICT 5-item, “the 

symmetric and not equal” was selected as the optimal model. As a result, in general a 

distribution of non-sensitive items that are “not equal” appeared to reduce additional 

variation in the ICT 3-item and 5-item models. For the ICT 4-item, when the prevalence 

rate of non-sensitive questions are distributed equally, the model was more efficient in 

reducing variation compared to the ICT 4-item models where distribution of non-

sensitive prevalent rates were “not equal.” It is important to keep in mind that within each 

of these list items, pairs of sensitive questions were also negatively correlated at -0.50 

and this correlation also influenced the model’s variation. For the 3-item list, only one 

pair of questions could be negatively correlated whereas for the 5-item lists 2 pairs of 
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questions could be correlated. For the 4-item list, correlation between pairs of non-

sensitive questions were made based on the distribution type (i.e., “not equal but 

symmetric,” “not equal and not symmetric”) of the prevalent rates of the non-sensitive 

questions. This again was due to the constraints by the marginal probabilities on the 

allowable correlation (Leisch et al., 1998). Thus, for the 4-item list when the distribution 

of non-sensitive questions was unequal, only one pair of non-sensitive questions could be 

correlated. The reduction of variability in the item count technique (ICT), therefore, 

appeared to be influenced by the combination of both the distribution of prevalent rates of 

the non-sensitive questions and the number of negatively correlated pairings of non-

sensitive questions in the item list. For the 4-item list size, since two pairs of non-

sensitive questions could be negatively correlated if the distribution of the prevalent rate 

of non-sensitive questions was equal, compared to just one pair of negatively correlated 

non-sensitive questions when the prevalent rate distribution was not equal, the correlation 

appeared to have influenced the reduction in variation since the former model (“equal”) 

was selected as optimal. For list sizes that were odd (i.e., 3-item and 5-item), since all but 

one of the non-sensitive questions could be correlated, the distribution of the prevalent 

rates of the non-sensitive questions played a larger role in further reducing model 

variability. For both list sizes, correlations between non-sensitive items could be made for 

the maximum number of pairings (i.e., 1 pair in the 3-item model, 2 pairs in the 5-item 

model) across all non-sensitive prevalent rate distribution types (“equal,” “not equal but 

symmetric,” and “not equal and not symmetric”). In examinimg the selected optimal 

models for both list sizes, the non-sensitive question left uncorrelated in both the 3-item 

and 5-item model as defined in the simulation study, had the lowest prevalent rate (i.e., 
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1/4th for both the “not equal and symmetric” and “not equal and not symmetric” in the 3-

item model; 1/6th and 1/7th for the “not equal and symmetric” and “not equal and not 

symmetric” in the 5-item model). Thus, because the prevalent rate of the uncorrelated 

question was small, the number of “yes” responses to the non-sensitive questions were 

reduced which decreased the size of the sum across all questions in the list subsequently 

reducing model variation.  

Therefore, according to the results of this study, for the ICT the distribution of 

prevalent rates of non-sensitive questions in the item list as well as pairing of correlated 

non-sensitive questions both played a role in reducing model variation. For the double 

item count technique (DICT), the results of the study determined that the correlation 

between item lists more effectively reduced model variation compared to the correlation 

within list items or the distribution of the non-sensitive prevalent rates in the item list. In 

the former case, the relative reliability analysis that compared efficiency between DICT 

models with the highest expected variation (i.e., DICT 5-item, πs = 0.45, n = 150) when 

between and within item lists were left uncorrelated, selected within item lists were 

correlated at -0.50 and between list items were correlated at 0.85, the between list 

correlations were substantially more efficient. Therefore, the results of this study 

indicated that when between list correlations were high in the DICT, model variation was 

substantially reduced. Likewise for the SSC, the results of this study indicated that if 

pairs of non-sensitive questions were negatively correlated, model variation was also 

reduced. 

In determing the optimal models for the both RR and NRR models, this study 

confirmed the assumptions made by both Greenberg et al. (1969) and Glynn (2013). For 



 

 

184

the UQT model, by optimizing model parameters, variability was reduced and models 

were more similar to the DQT under the assumption of truthful reporting. Likewise, for 

the NRR models, negatively correlating non-sensitive questions within item lists for the 

item count technique (ICT) and single sample count technique (SSC) resulted in more 

efficient models; whereas positively correlating all items between lists in the double item 

count technique (DICT) reduced variation and in turn increased efficiency. These results 

were consistent across all sensitive prevalent rates and sample size combinations. Thus, 

in accordance to the results of this study, researchers who use RR and NRR models to 

estimate sensitive prevalent rates are now able to optimize the design of their survey. For 

those who choose to use the UQT, the probability of selecting the sensitive question in 

each sample (i.e., p1, p2) is especially important since this parameter affects the 

variability of the model more substantially than the choice of the non-sensitive prevalent 

rate (i.e., πns). For the NRR models, the results of this study indicated that correlating 

within item lists (ICT, SSC) or between item lists (DICT) reduced the variation of the 

model. Therefore, researchers should think carefully about the non-sensitive questions 

that make up the item list and consider negatively correlating pairs. In addition, if using 

the ICT, the distribution of prevalent rates of the non-sensitive questions should also be 

considered. In odd numbered lists, if only a selection of pairs of non-sensitive items were 

negatively correlated, sensitive prevalent rates distributed as not equal reduced model 

variation where the item left uncorrelated should have a lower prevalent rate. For the 

even item list if all non-sensitive items were negatively correlated in pairs, the 

distribution of the prevalent rates of the non-sensitive items reduced model variability 

when they were equal.  
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Study of Non-compliance: Random Response 
vs. Non-random Response and the Effects 

of List Size 
 

The results of this study indicated that the random response model, the unrelated 

question technique (UQT) optimal was generally more efficient (i.e., ratio of MSE > 1) 

than the NRR models, optimal DICT, SSC and ICT across all sample sizes, sensitive 

prevalent rates and equivalent non-compliance rates. In addition, the double item count 

technique (DICT) optimal 3-item and 4-item models were as efficient as the forced 

choice technique (FCT) model across all sample sizes, sensitive prevalent rates and non-

compliance rates. For the UQT practical model, the NRR models were generally more 

efficient (i.e., ratio of MSE > 1). In the comparison of each non-random response (NRR) 

model to each random response (RR) model, a similar pattern of the ratio of MSE 

emerged where the DICT optimal 3-item, 4-item, and 5-item models proved most 

efficient compared to the optimal single sample count technique (SSC) and item count 

technique (ICT) models since, when comparing these models to the corresponding RR 

models, the ratios of MSE were generally larger for the DICT models. The SSC optimal 

models, however, were more efficient than the ICT optimal models, which proved to be 

the least efficient of all the NRR techniques.  

The effects of list size on statistical efficiency among the optimal NRR models 

indicated that in general, across all sensitive prevalent rates, sample sizes and equivalent 

non-compliance rates, the 3-item and 4-item list sizes were similar in terms of efficiency 

whereas the 3-item list size proved more efficient than the 5-item list size. In terms of 

efficiency between NRR models, in general, the optimal DICT models proved most 

efficient (i.e., ratio of MSE > 1) compared to both the optimal SSC and ICT models 
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across all sample sizes, sensitive prevalent rates, non-compliance rates and list sizes. In 

turn, the optimal SSC was also more efficient compared to the optimal item count 

technique (ICT) models across all parameters and list sizes. However, for larger sensitive 

prevalent rates and increasing sample sizes, statistical efficiency between 3-item and 5-

item NRR models approached unity for increasing levels of non-compliance. 

In general, the results indicated that for all comparisons made in the study of non-

compliance, the measure of statistical efficiency through the ratio of MSE approached 

unity as sensitive prevalent rates, non-compliance rates and sample sizes increased. This 

approaching efficiency was primarily due to the two components of the MSE, the 

variance and the bias. The MSE is generally a measure of the goodness or closeness of an 

estimator to its estimate. (Mood, Graybill, & Boes, 1950). Since the MSE is the sum of 

the estimator’s variance and the square of its bias, when bias increases, its contribution to 

the MSE mounts rapidly, indicating that the estimator was further from the actual 

estimate. When comparing two estimators using the ratio of MSE, therefore, if the ratio 

of MSE was close to unity, one concludes that the models were similar in terms of each 

estimator’s closeness to the actual estimate. In this study, bias was defined by the rate of 

compliance which ranged between 90% truthful reporting to 60% truthful reporting. 

Because this study examined the effects of non-compliance for a range of sensitive 

prevalent rates (πs: 0 .01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25, 0.36, and 0.45) and sample 

sizes (n = 150, n = 500, and n = 1,500), these factors affected the magnitude of the bias 

and in turn the results of the study. When sensitive prevalent rates were small (πs = 0.01 - 

πs = 0.05), the resulting bias was generally less than the bias of larger sensitive prevalent 

rates. For example, if 60% of the respondents reported truthfully when the sensitive 
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prevalent rate is 0.05, the resulting square of the bias was 0.0004. However, if 60% of the 

respondents reported truthfully when the sensitive prevalent rate was 0.45, the resulting 

square of the bias was 0.0324, a much larger value. Therefore, in the presence of high 

non-compliance, the contribution of the bias to the MSE was particularly influential when 

estimating larger sensitive prevalent rates compared to smaller sensitive prevalent rates. 

At the same time, sample size also influenced the MSE since larger sample sizes 

generally reduce model variation. As a result, when estimates are biased, as sample sizes 

increase and variation decreases, the contribution of the bias to the MSE also increases 

and becomes more influential. Thus, for larger sensitive prevalent rates with larger 

sample sizes, in the presence of high non-compliance, the MSE was primarily a measure 

of the squared bias. To provide an example of this, for the unrelated question technique 

(UQT) optimal when πs = 0.05 and n = 150, if 60% of participants with the sensitive 

attribute reported honestly, the contribution of the square of the bias to the MSE was 

33%. When sample sizes are increased to n = 1,500, the contribution to the square of the 

bias of the MSE for UQT optimal increased to 83%. When πs = 0.45 and n = 150, if 60% 

of participants with the sensitive attribute report honestly, the contribution of the square 

of the bias to the MSE for the UQT optimal was 95% and increased to 99% when sample 

sizes were increased to n = 1,500. For the double item count technique (DICT) optimal 3-

item, when πs = 0.05, and n = 150, if 60% of participants with the sensitive attribute 

reported honestly, the contribution to the square of the bias of the MSE was 19%. When 

sample sizes were increased to n = 1,500, the contribution of the square of the bias to the 

MSE for DICT optimal 3-item increased to 73%. When πs = 0.45 and n = 150, if 60% of 

participants with the sensitive attribute reported honestly, the contribution of the square 



 

 

188

of the bias to the MSE for the DICT optimal 3-item was 93% and increased to 99% when 

sample sizes were increased to n = 1,500. As a result, since in this study bias was 

equivalent in both models, when comparing between the models for πs = 0.45 and n = 150 

or n = 1,500, since the ratio of MSE approached unity the models were termed efficiently 

similar due to the fact that the estimates from both models were so biased.  

As was seen in Figure 1, the variance of the UQT was influenced heavily by the 

selection of p1 and p2. In the optimal model, these parameters were selected as far from 

one another as possible (Sample 1: p1 = 0.90, p2 = 0.10, Sample 2: p1 = 0.10, p2 = 0.90) 

which in turn minimized the variance of the unrelated question technique (UQT). 

Therefore, the variance of the UQT optimal model was especially efficient. For the UQT 

practical, the selection of p1 and p2 were not optimal and in fact were made as close to 

0.50 as possible, which in turn maximized the variance of the UQT. Thus, the variance of 

the UQT practical model was less efficient. When comparisons were made between the 

UQT models with each NRR optimal, for smaller sensitive prevalent rates, since the bias 

was less influential to the MSE, the techniques with smaller model variability proved 

more efficient (i.e., optimal UQT vs. all optimal NRR models, all optimal NRR models 

vs. UQT practical). As sample sizes and sensitive prevalent rates increased, for higher 

levels of non-compliance, the bias of the estimate heavily influenced the MSE and 

models were termed more similar--due to the bias. For the forced choice technique (FCT) 

a similar pattern was noted, where the FCT and DICT optimal 3-item model were more 

efficient when sensitive prevalent rates were smaller but became more similar for 

increasing sensitive prevalent rates, sample sizes and non-compliance. Likewise, when 

comparing NRR models by list size to one another, similar patterns were also noted. 
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Thus, for NRR optimal and RR models used to estimate high sensitive prevalent rates 

with larger sample sizes, if high rates of non-compliance were present, models were 

primarily similar in terms of their bias. 

Because bias largely influenced the MSE in cases of larger sensitive prevalent 

rates and sample sizes when non-compliance rates were equivalent, it is difficult to assess 

the effects of non-compliance when comparing models at these parameter levels. As a 

result, secondary analyses were made that explored the statistical efficiency between 

selected models when compliance rates differed. For the study exploring effects of non-

compliance between RR models and NRR models, the unrelated question technique 

(UQT) optimal and double item count technique (DICT) optimal (all list sizes) were 

selected since, from this study, both models were the most efficient of their model class 

(i.e., RR vs. NRR). For the study exploring statistical efficiency between list sizes for 

each NRR model, the 3-item and 5-item models were selected to determine if there were 

situations in which, if the 5-item model improved compliance rates, it would be more 

efficient. For the analysis comparing the UQT optimal to the DICT optimal, the results 

indicated that for moderate to large sensitive prevalent rates (πs = 0.20, πs = 0.45), across 

list size (3-item, 4-item, and 5-item) and sample size (n = 150, n = 500, and n = 1,500), if 

the DICT optimal improved the compliance rate by 10% or more, the DICT optimal was 

just as or more efficient (i.e., ratio of MSE > 1). Efficiency increased between these 

models in the presence of differing non-compliance as sample sizes increased. For 

smaller sensitive prevalent rates (πs = 0.05), when sample sizes are large (n = 1,500), if 

the DICT optimal improved the compliance rate by 20% or more, the DICT optimal was 

more efficient. For the NRR comparisons between 3-item and 5-item models, results 



 

 

190

indicated that across all NRR models and sample sizes when sensitive prevalent rates 

were moderate or large (πs = 0.20, πs = 0.45), if the 5-item model improved compliance 

by at least 10% from the 3-item model, the 5-item model was just as or more efficient 

(i.e., ratio of MSE > 1.00). If improvement in compliance was 20% or more, the 5-item 

optimal double item count technique (DICT) and single sample count technique (SSC) 

were nearly twice as efficient as the corresponding 3-item model for moderate to larger 

sensitive prevalent rates. In addition, for smaller sensitive prevalent rates (πs = 0.05), if 

the DICT 5-item optimal improved compliance rates by 20%, when sample sizes were 

large (n = 1,500), the 5-item model was more efficient (i.e., ratio of MSE > 1.00) 

These results suggested that for moderate sensitive prevalent rates, across all 

samples sizes, if the DICT 5-item optimal model improved compliance, estimates were 

more efficient than the unrelated question technique (UQT) optimal. For smaller 

prevalent rates, when sample sizes were large (n = 1,500), the DICT 5-item list was more 

efficient if it improved substantially the amount of truthful reporting.  

These assumptions are not far fetched since the design of the UQT optimal was 

more prone to reduce model variability than increase confidentiality; whereas the design 

of the DICT 5-item model was meant to increase confidentiality at the cost of additional 

model variability. Recall that for the UQT optimal model, subjects randomized to the first 

sample responded to the sensitive question 90% of the time. In addition, since the 

prevalent rate of the non-sensitive question is low (i.e., πns = 0.10), if the sensitive 

attribute was more prevalent (i.e., πs > 0.10), participants with the sensitive trait could 

become suspicious since they would be more likely to respond “yes” to the sensitive 

question compared to the non-sensitive question. As pointed out by Greenberg et al. 
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(1969), although the UQT optimal minimized model variation at the same time the design 

parameters could potentially reduce confidentiality resulting in higher bias. On the other 

hand, NRR models were designed to increase confidentiality by embedding the sensitive 

question in a list of non-sensitive questions. Since the respondents only report the number 

of items from the list they endorse, participants never directly respond to the sensitive 

question. Confidentiality was further protected if the item list is longer since the 

probability of responding “yes” to all questions in a shorter item list was less likely to 

occur than responding “yes” to all questions in a longer item list. Therefore, it is not 

difficult to assume that the non-random response (NRR) double item count technique 

(DICT) 5-item optimal model could improve compliance compared to the optimal 

unrelated question technique (UQT) or 3-item DICT optimal. 

In estimating smaller sensitive prevalent rates, the results of this study were also 

useful since it suggested that if the double item count technique (DICT) optimal model 

can substantially improve compliance, estimates from these models were more efficient 

only when sample sizes were very large (n = 1,500). Since sensitive prevalent rate that 

are smaller, generally have less members, encouraging honest responding is essential in 

these populations. Also due to the small prevalence of the group, it is well known in 

sampling theory that drawing samples from these populations at higher rates improved 

efficiency. Thus, models that provide higher levels of confidentiality by encouraging 

honest reporting would be more useful for smaller populations if sample sizes were 

adequate. Since the UQT optimal was a “lower confidentiality” model, and the DICT 5-

item optimal was a “higher confidentiality” model, the results of this analysis suggested, 

that for large sample sizes, if the DICT 5-item improved compliance substantially (i.e., 
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by 20% or more), than the DICT 5-item model resulted in more efficient estimates 

compared to the UQT optimal. Results of this study, however, also suggested that for 

smaller sample sizes, the variability of the NRR models in estimating smaller sensitive 

prevalent rates proved inefficient compared to the UQT optimal.  

 In addition, the results of this study determined that non-random response (NRR) 

DICT optimal models were generally more efficient than the SCC and item count 

technique (ICT) optimal models and that the single sample count technique (SSC) 

optimal model was generally more efficient than the ICT optimal model. In fact, as 

shown by the results of this study, the ICT optimal models were the least efficient of all 

models with the exception of the unrelated question technique (UQT) practical. This was 

because both the double item count technique (DICT) and single sample count technique 

(SSC) optimal models estimated the sensitive prevalent rate using the entire sample of 

subjects since all subjects in these models responded to a list of questions containing the 

sensitive question. For the ICT, on the other hand, only one sample responded to a list 

containing the sensitive question. As a result, since a higher number of participants 

responded to the sensitive question when the DICT or SSC is utilized, the estimate of the 

sensitive prevalence rate was more efficient compared to the ICT that only utilized half 

the number of participants in estimating the sensitive prevalent rate. This inefficiency 

was apparent though out the study, where generally the ICT optimal models were less 

efficient than the UQT optimal, FCT, DICT optimal, and SSC optimal. The model that 

proved to be the most inefficient, however, was the UQT practical model since the 

parameters selected for this model maximized the variation.  
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Summary and Guidelines 

This study was the first to explore statistical efficiency between random response 

models (RR) and non-random response models (NRR) in an extensive simulation study 

that also examined the effects of non-compliance on estimation using these techniques, 

the effects of list size for NRR models and efficiency between NRR models. The study 

was extensive, encompassing a larger range of sensitive prevalent rates than previous 

studies. The effects of sample sizes were also included where samples were arbitrarily 

categorized as small (n = 150), medium (n = 500), and large (n = 1,500) and studied in 

the set of simulations. In addition, the study also focused on determining optimal model 

parameters for the unrelated question technique (UQT) and NRR models that would 

successfully reduce variation prior to studying the effects of non-compliance. The results 

of this study were especially important since they verified the assumptions made by 

Greenberg et al. (1969) and Glynn (2013). This was especially apparent for the NRR 

models, in which case has never been formerly explored, where the effects of correlating 

within (ICT, SSC) and between (DICT) non-sensitive items in the item list were 

especially noteworthy in reducing model variability. This is also the first extensive 

simulation study to explore the effects of non-compliance on estimates between RR and 

NRR models. The study revealed situations where if the non-random response (NRR) 

DICT optimal models can improve compliance rates compared to the UQT optimal, the 

DICT optimal was more efficient. Effects of NRR list sizes as it pertains to statistical 

efficiency in the presence of truthful and non-truthful reporting were also explored. In 

general, when the 5-item list improved compliance rates compared to 3-item lists, the 5-

item list proved more efficient for the optimal DICT and SSC models when sensitive 
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prevalent rates were moderate (πs = 0.20) or large (πs = 0.45), across all sample sizes. The 

study also examined statistical efficiency between NRR models and indicated that the 

techniques utilizing the entire sample to estimate the sensitive prevalent rate (i.e., DICT 

optimal and SSC optimal) proved more efficient compared to the model that utilized only 

half the sample of subjects to estimate the sensitive prevalent rates (i.e., ICT). Lastly, this 

was also the first study to provide an official definition of non-compliance for NRR 

models in terms of under-reporting the sensitive trait. 

In summary, based on the results of this study, the following guidelines and 

recommendations were developed:  

1. In order to effectively implement the unrelated question technique (UQT) 

model, careful consideration of the rate at which the sensitive question is asked in both 

samples should be thought through since this rate was more influential on model 

variability compared to the selection of the non-sensitive behavior (i.e., πns). Sample sizes 

and probabilities of selecting the sensitive question in both samples (i.e., p1, p2) should be 

selected as outlined by Greenberg et al. (1969), where p1 (the probability of selecting the 

sensitive question for sample 1) and p2 (the probability of selecting the sensitive question 

for sample 2) should be as far from 0.50 as possible and have the same but 

complementary effect (i.e., p1 + p2 = 1) in each sample. In terms of sample sizes, subjects 

should be optimally allocated into samples based on estimates of the sensitive prevalent 

rate as described by Greenberg et al. (1969).  

2. In order to effectively reduce the variation present in NRR models (i.e., 

ICT, DICT, and SSC), the suggestions of Glynn (2013) should be followed. For the 

DICT, highly correlated lists reduced model variation substantially; whereas negatively 
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correlating pairs of non-sensitive items within a list reduced model variation of the item 

count technique (ICT) and single sample count technique (SSC). In addition, depending 

on the number of paired correlations in an item list, for the 3-item and 5-item ICT, if the 

distribution of the non-sensitive items were made not equal, this would further reduce 

model variation. For the 4-item list, evenly distributed prevalent rates of non-sensitive 

behaviors in the item list reduced variation when all pairs of questions were correlated.  

3. The unrelated question technique (UQT) optimal model was the most 

efficient of the random response (RR) and non-random response (NRR) models 

compared in this study (i.e., FCT, ICT, DICT, and SSC) if the expected amount of 

truthful reporting is equivalent between models. If it is expected that any of the double 

item count technique (DICT) optimal models (i.e., item list sizes 3, 4, or 5) improved 

compliance rates by more than 10%, for moderate (i.e., πs = 0.10, 0.15, and 0.20) to 

larger (i.e., πs = 0.25, 0.35, and 0.45) sensitive prevalent rates across all sample sizes (n = 

150, n = 500, and n = 1,500), the DICT 5-item optimal model was more efficient. For 

smaller sensitive prevalent rates (i.e., πs = 0.01, 0.03, and 0.05), if it is expected that the 

DICT 5-item optimal model would improve compliance rates substantially (i.e., greater 

than 20%), when sample sizes are large (n = 1,500), the DICT 5-item optimal model was 

more efficient. 

4. In general, for the DICT optimal and SSC optimal, 3-item list sizes were 

more efficient in estimating sensitive prevalent rates unless the 5-item list size improved 

compliance rates. In the case of moderate (i.e., πs = 0.10, 0.15, and 0.20) to larger (i.e., πs 

= 0.25, 0.35, and 0.45) sensitive prevalent rates, these 5-item optimal models were more 

efficient than the 3-item model. For smaller prevalent rates (i.e., πs = 0.03, 0.05), for the 
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DICT optimal model exclusively, if the 5-item model improved compliance rates 

substantially (i.e., > 20%) then the 5-item model was more efficient when sample sizes 

were large (n = 1,500). 

5. In general, the item count technique (ICT) optimal and unrelated question 

technique (UQT) practical models were the least efficient NRR models. The DICT 

optimal model where non-sensitive item lists were highly correlated proved the most 

efficient of the NRR models. 

Limitations and Future Research 

There are several limitations of this study. For one, since the study of Greenberg 

et al. (1969) was followed, sample sizes for the unrelated question technique (UQT) were 

optimally allocated as the presence of non-compliance increased. In real world 

application, this would suggest that the researcher is aware of the non-compliance rate 

prior to the study and therefore is able to effectively allocate the sample. As a result, 

since the UQT optimal proved to be the most efficient in this study, an additional analysis 

where sample sizes are allocated based on the estimated sensitive prevalent rate and then 

held fixed at these levels should be studied to confirm these results. A second limitation 

of the study occurred with the single sample count technique (SSC) where it was assumed 

that the prevalent rates of the non-sensitive questions are fixed at 0.50. In reality, unless 

the prevalent rates of the non-sensitive questions were exactly 0.50, additional variation 

due to the estimation of the non-sensitive questions should be accounted for in the 

simulation study--especially since additional variation would reduce statistical efficiency. 

A third limitation of the study is due to the arbitrary selection of the correlation rates for 

the within and between list correlations (i.e., -0.50, 0.85). These were selected for 
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consistency since pairwise correlations could be simulated at these levels within each 

non-sensitive prevalent rate distribution type (i.e., “equal,” “not equal and symmetric,” 

and “not equal and not symmetric”) selected for this study. Based on these distributions, 

for the ICT 4-item list, when the distribution of the non-sensitive items was not equal, 

this restricted the number of allowable correlated pairs, since as discussed previously 

allowable correlations between two random variables were restricted by their marginal 

probabilities (i.e., in this case the marginal probabilities were the prevalent rates of the 

pair of non-sensitive questions). Because of this, changes to the probability distribution of 

the prevalent rates of non-sensitive items that allow for higher within list correlation 

could be studied in terms of increasing efficiency in the ICT. In addition, by restricting 

the within correlation to -0.50, the results of the single sample count technique (SSC) 

may have been undermined especially as it compares to the double item count technique 

(DICT). In a future study, an optimal correlation specific to the SSC could be explored 

and compared with an optimal DICT to determine if the SSC can be made as efficient. In 

addition, the arbitrary selection of the between list correlation for the DICT may have 

given this model an advantage since each of the non-sensitive questions could be highly 

correlated at 0.85. For the ICT and SSC, non-sensitive items were restricted to a smaller 

correlation (i.e., -0.50). Future studies, therefore should be attempted to determine 

optimal non-sensitive prevalent rate distributions and corresponding within and between 

list item correlations for the ICT and DICT in reducing model variation. In addition, 

simulations of the DICT that study effects on model variation due to both within and 

between list item correlations should also be explored. Once these optimal prevalent rate 

distributions and correlations are found, a similar simulation study of non-compliance 
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could be performed and compared to the results of this study. In addition, the distribution 

of the prevalent rates for the non-sensitive item list in the ICT and DICT were also 

arbitrarily determined. These distributions were explored in previous simulation studies 

(Blair & Imai, 2012; Corstange, 2009). However, it might be of interest to empirically 

study particular lists from actual NRR surveys where prevalence rates of the non-

sensitive items could be estimated and its effect on efficiency in the presence of non-

compliance simulated and studied. In addition, by empirically studying item lists, as is 

done in the development of surveys, reliable manufactured lists could be developed for 

each of the NRR models where predefined correlations and non-sensitive prevalent rate 

distributions are known. Once these lists are developed, a similar simulation study would 

be performed using these model parameters to study more effectively the effects of non-

compliance as it pertains to lists of real world applications. Fourthly, a further limitation 

of the study is the manner in which non-compliance was defined. The definition of non-

compliance was restricted to subjects with the sensitive trait in which misreporting only 

occurred when these subjects were asked the sensitive question. Otherwise, subjects were 

assumed to report truthfully. This restricted definition of non-compliance followed the 

study of Greenberg et al. (1969). However, as is indicated by the literature, non-

compliance also occurred with innocuous questions. For one, subjects who were forced to 

respond “yes” when the forced choice technique (FCT) was used, may be reluctant to 

comply with the rules especially if the subject was extremely sensitive, and instead 

respond “no.” This in turn results in a lower than expected number of “yes” responses, 

which results in additional bias. For the UQT technique, if subjects have control of the 

survey as was seen in the Petróczi et al. (2011) study, even though they were instructed to 
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answer the sensitive question, they may instead choose to respond to the non-sensitive 

question. When this occurs, “yes” responses were potentially inflated and the 

probabilities associated with the selection of each question were no longer valid. As a 

result, the sensitive prevalent rate was over estimated. Finally, for the NRR techniques, 

participants who possess a higher number of non-sensitive traits in the item list may 

under report their membership if they also possess the sensitive trait. As a result, under 

reporting may also occur for the non-sensitive questions in the item list, which would 

further bias the estimate. Because non-compliance occurs for innocuous questions in each 

technique, a more complex definition of non-compliance should be developed and the 

effects explored in a similar simulation study. Lastly, the study was also limited since 

simulations of the NRR techniques relied on an algorithm that used an approximate 

normal distribution as a threshold in simulating binary data. 

Conclusion 

In conclusion, this was the first extensive study to examine statistical efficiency 

between random response (RR) and non-random response (NRR) models in the presence 

of non-compliance. It is also the first study to provide a definition of non-compliance for 

the NRR techniques. In doing so, the study was able to develop general guidelines meant 

to help researchers determine, under certain situations, which techniques produce 

estimates that are more efficient. In general, the results of this study indicated that the 

unrelated question technique (UQT) optimal model was the most efficient of the 

techniques in the presence of equivalent non-compliance rates. However, if the DICT 

optimal 5-item model improved compliance, this model became more efficient depending 

on the sensitive prevalent rate estimated and the sample size. As a result, the study was 
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able to demonstrate that in certain situations, the non-random response (NRR) DICT 

optimal model was as or more efficient than the random response (RR) UQT optimal 

model.  
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Acronyms 

RR Random response models  

UQT Unrelated question technique (Random response model) 

FCT Forced choice technique (Random response model) 

NRR Non-random response models  

ICT Item count technique (Non-random response model) 

DICT Double item count technique (Non-random response model) 

SSC Single sample count technique (Non-random response model) 
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APPENDIX B 

R-CODE 
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R-Code: Determining number of simulations 

#Used to determine number of sims - based on ICT and SSC 
#Run initial check on variance to determine which model has highest variance 
#This will be based on 200 iterations of 500 simulations selected arbitrarily. 
 
*ICT - equal 
 
NRRICTE <- function() { 
#based on sample smallest sample size (150), smallest pi_s (0.01), no correlation, largest 
list size (5) 
#will determine which list (equal, unequal-sym,unequal - unsym) 
 
#cori will use cbind function of define the correlation matrix for the intervention group 
where there are no correlations between non-sensitive questions. 
 
#corc will use cbind function of define the correlation matrix for the control group where 
there are no correlations between non-sensitive questions. 
 
 
cori<-cbind(c(1,0,0,0,0,0),c(0,1,0,0,0,0),c(0,0,1,0,0,0),c(0,0,0,1,0,0), c(0,0,0,0,1,0), 
c(0,0,0,0,0,1)) 
corc<-cbind(c(1,0,0,0,0),c(0,1,0,0,0),c(0,0,1,0,0),c(0,0,0,1,0),c(0,0,0,0,1)) 
 
#define the probability distribution of non-sensitive questions: equal. Intervention group 
will have additional probability for sensitive question. 
 
ei<-c(2/3,2/3,2/3,2/3,2/3,.01) 
ec<-c(2/3,2/3,2/3,2/3,2/3) 
 
#Create binary lists for intervention & control group using the rmvbin function.  
 
int<-rmvbin(75, margprob=ei, bincorr=cori) 
cont<-rmvbin(75, margprob=ec, bincorr=corc) 
 
#Sum across rows to create difference – in means estimate. 
 
Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
Scontr<-rowSums (cont, na.rm = FALSE, dims = 1)  
 
#Difference in means estimate 
 
Pi_s <- mean(Sint) - mean(Scontr) 
# output difference in means estimate 
return(Pi_s) 
} 
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##This function will run 200 iterations of 500 simulations selected arbitrarily calling the 
function NRRICTE.  
 
NRRICTEV <- function(n1, n2) { 
 
#Create variance matrix for n1 variances. 
Varmat <- matrix(nrow = n1, ncol=1) 
 for (j in 1:n1) { 
#create estimator matrix with n2 estimates calling NRRICTE function. 
   MAT<- matrix(nrow = n2, ncol=1) 
   for (i in 1:n2) MAT[i,] <-NRRICTE() 
#Input n2 variances into var matrix. 
#Input  variance of each iteration. 
 Varmat[j,] <-var(MAT) 
 } 
#Take final variance of all n1 iterations. 
 VarSim<-var(Varmat) 
 return(VarSim)} 
 
#IRT - EQUAL BUT SYMMETRIC 
#This function is similar to the above function – only it uses the Equal but Symmetric 
distribution. 
 
NRRICTES <- function() { 
 
#based on sample smallest sample size (150), smallest pi_s (0.01), no correlation, largest 
list size (5) 
#will determine which list (equal, unequal-sym,unequal - unsym) 
 
#no corr  
 
cori<-cbind(c(1,0,0,0,0,0),c(0,1,0,0,0,0),c(0,0,1,0,0,0),c(0,0,0,1,0,0), c(0,0,0,0,1,0), 
c(0,0,0,0,0,1)) 
corc<-cbind(c(1,0,0,0,0),c(0,1,0,0,0),c(0,0,1,0,0),c(0,0,0,1,0),c(0,0,0,0,1)) 
 
#equal but symmetric distribution. 
 
esi<-c(1/6,2/6,3/6,4/6,5/6,.01) 
esc<-c(1/6,2/6,3/6,4/6,5/6) 
 
#Create lists for intervention and control ICT groups. 
int<-rmvbin(75, margprob=esi, bincorr=cori) 
cont<-rmvbin(75, margprob=esc, bincorr=corc) 
 
#Sum across rows to produce estimates. 
Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
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Scontr<-rowSums (cont, na.rm = FALSE, dims = 1)  
#Create diff in means estimator. 
Pi_s <- mean(Sint) - mean(Scontr) 
return(Pi_s) 
 
} 
 
#This function will produce n1 variances based on n2 simulated diff of means estimates 
using the unequal but symmetric distribution. 
 
NRRICTESV <- function(n1, n2) { 
#create variance matrix for n1 variances. 
Varmat <- matrix(nrow = n1, ncol=1) 
 for (j in 1:n1) { 
#create estimator variance for n1 estimates. 
  MAT<- matrix(nrow = n2, ncol=1) 
   for (i in 1:n2) MAT[i,] <-NRRICTES() 
 #obtain variance from n1 simulations  
 Varmat[j,] <-var(MAT) 
 } 
 #find variance from n2 variances. 
 VarSim<-var(Varmat) 
 return(VarSim) 
} 
 
#This function will be similar to previous functions – only will define for unequal and not 
#symmetric. 
 
NRRICTU <- function() { 
 
#based on sample smallest sample size (150), smallest pi_s (0.01), no correlation, largest 
list size (5) 
#will determine which list (equal, unequal-sym,unequal - unsym) 
 
#no corr  
 
cori<-cbind(c(1,0,0,0,0,0),c(0,1,0,0,0,0),c(0,0,1,0,0,0),c(0,0,0,1,0,0), c(0,0,0,0,1,0), 
c(0,0,0,0,0,1)) 
corc<-cbind(c(1,0,0,0,0),c(0,1,0,0,0),c(0,0,1,0,0),c(0,0,0,1,0),c(0,0,0,0,1)) 
 
#unequal and not symmetric – defined by user. 
eusi<-c(1/7,3/7,4/7,5/7,5/7,.01) 
eusc<-c(1/7,3/7,4/7,5/7,5/7) 
#create lists 
int<-rmvbin(75, margprob=eusi, bincorr=cori) 
cont<-rmvbin(75, margprob=eusc, bincorr=corc) 
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#sum across rows by list 
Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
Scontr<-rowSums (cont, na.rm = FALSE, dims = 1)  
#estimate 
Pi_s <- mean(Sint) - mean(Scontr) 
return(Pi_s) 
 
} 
#This function finds the variance of n1 variances from n2 diff in means estimators using 
the unequal and nonsymmetric distribution from above. 
NRRICTUSV <- function(n1, n2) { 
#create variance matrix with n1 rows. 
Varmat <- matrix(nrow = n1, ncol=1) 
 for (j in 1:n1) { 
#create estimator matrix with n2 rows. Call function n2 times. 
  MAT<- matrix(nrow = n2, ncol=1) 
   for (i in 1:n2) MAT[i,] <-NRRICTU() 
  #find variance of each n2 sims. 
 Varmat[j,] <-var(MAT) 
 } 
#find final variance. 
 VarSim<-var(Varmat) 
 return(VarSim) 
} 
#This function will determine variance for SSC – based on 200 simulations of 500 
expected value estimators. 
NRRSSC <- function() { 
 
#based on sample smallest sample size (150), smallest pi_s (0.01), no correlation, largest 
list size (5) 
 
#no corr  
 
cori<-cbind(c(1,0,0,0,0,0),c(0,1,0,0,0,0),c(0,0,1,0,0,0),c(0,0,0,1,0,0), c(0,0,0,0,1,0), 
c(0,0,0,0,0,1)) 
#input SSC distribution based on 5 item list. 
ei<-c(1/2,1/2,1/2,1/2,1/2,.01) 
#create list. 
int<-rmvbin(150, margprob=ei, bincorr=cori) 
#sum list. 
Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
#expected value estimator. 
Pi_s <- mean(Sint) - 2.5 
return(Pi_s) 
} 
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#This function will find the variance from n1 variances of n2 simulations. 
NRRSSCV <- function(n1, n2) { 
#Create variance matrix. 
Varmat <- matrix(nrow = n1, ncol=1) 
 for (j in 1:n1) { 
 #create estimator variance. 
  MAT<- matrix(nrow = n2, ncol=1) 
#input n2 estimates. 
   for (i in 1:n2) MAT[i,] <-NRRSSC()   
#find variance for n1 sims. 
 Varmat[j,] <-var(MAT) 
 } 
#get overall variance. 
 VarSim<-var(Varmat) 
 return(VarSim) 
} 
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R-Code: Determine Optimal Model for UQT compared to DQT 
 
#Determines optimal model for UQT 
#where Truth is defined as the proportion of participants with the sensitive attribute who 
respond truthfully, pins: proportion of participants with the non-sensitive attribute, p1 is 
the prob of selecting the sensitive question in sample 1, p2 is the probability of selecting 
the sensitive question in sample 2, n is the total number of participants. 
 
UQT <- function(Truth,pins, pis, p1, p2, n) { 
#Estimate proportion of those responding truthfully. 
pis_hat <- Truth*pis 
#estimate bias 
bias <- pis_hat - pis 
#calculate lambdas for each sample. 
lambda1<-p1*pis_hat + (1-p1)*pins 
lambda2<-p2*pis_hat + (1-p2)*pins 
#create temp variables representing those not responding to sensitive question in each 
sample. 
d1<-1-p2 
d2<-1-p1 
#allocates sample per Greenberg et al (1969) calculation. 
r<- sqrt((lambda1*(1-lambda1)*d1^2)/(lambda2*(1-lambda2)*d2^2)) 
 
optn2<-round(n/(1+r),0) 
optn1<- n-optn2 
#calc variance components. 
varc1<- (lambda1*(1-lambda1)*d1^2)/optn1 
varc2<- (lambda2*(1-lambda2)*d2^2)/optn2 
#denominator of variance. 
d3 <-p1-p2 
#calc variance 
varpis <- (varc1 + varc2)/d3^2 
#calc DQT variance. 
vardq<-(pis_hat*(1-pis_hat))/n 
#find variance for UQT (MSE) and DQ(RR) 
MSE <- varpis + bias^2 
rr <- vardq/MSE 
#input results and return. 
cell <- c(n, pis, pins, p1, p2, vardq, MSE, rr) 
return(cell) 
} 
 
#Sim1 will run simulations taking rel ratio for all combinations of pi, n, p1 and pins 
sim1<-      function(n) { 
#defined all pi from study 
sens              <-    c(0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, 0.45) 
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nonsens           <-    c(0.10, 0.20, 0.30) #non sens prev from study 
psens             <-    c(0.90, 0.80,0.70, 0.60) #prob of selecting sens question 
                    mat<-matrix(nrow = 8, ncol=108) 
#runs all combinations. 
            l = 0 
            for (i in 1:9) { 
                 for (j in 1:3) { 
                        
                        var1<-(12*i-11)+(j-1)*4 
                                                var2<-(12*i-11)+(j-1)*4+3 
                        for (k in var1:var2) mat[,k]<-UQT(1,nonsens[j],sens[i],psens[k-l*4],1-
psens[k-l*4],n)        
                        l=l+1 
                                                                                    
                                   }       
                              } 
                        return(mat)   
                         
} 
 
#Function will call Sim1 above and write results to an EXCEL file. 
runuqt <- function(n, outfile) { 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results" 
 
 fmat<-matrix(nrow=8,ncol=108) 
 fmat<- sim1(n) 
 #return(fmat) 
write.csv(fmat,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
} 
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RCODE for Forced Choice Technique compared to DQT 
 
#Run FC method and outputs rel ratio as compared to DQT 
#Truth: percent of sens subjects who report honestly 
#pis: sens prevalence 
#n1: sample size 
FC <- function(Truth,pis, n1) { 
pis_hat <- Truth*pis 
bias <- pis_hat - pis 
#calcs lambda 
lambda1<-(3/4)*pis_hat + 1/6 
#calcs variance of FCT 
varpis<- (lambda1*(1-lambda1))/(n1*(9/16)) 
#calcs var of DQT 
vardq<-(pis_hat*(1-pis_hat))/n1 
MSE <- varpis + bias^2 
#rel ratio 
rr <- vardq/MSE 
#returns rel ratio 
cell <- c(n1, pis,vardq, MSE, rr) 
return(cell) 
} 
 
#Run all sens prev for specified n 
 
simFC<-      function(n) { 
#creates vector of sens prev rates from study 
sens              <-    c(0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, 0.45) 
#runs all combinations of prev rates and same sizes 
                    mat<-matrix(nrow = 5, ncol=9) 
            l = 0 
            for (i in 1:9) { 
                      
                        mat[,i]<-FC(1,sens[i],n)        
            l=l+1 
                                                                                   
                                         
                            } 
 
                        return(mat)   
                         
} 
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# Run sims for sample sizes 
#Will call functions above and save rel ratios to excel spreadsheet. 
runfc <- function(n, outfile) { 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\FCT" 
 
 fmat<-matrix(nrow=5,ncol=9) 
 fmat<- simFC(n) 
 #return(fmat) 
write.csv(fmat,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
} 
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R-Code: Determine Optimal Model ICT – 3, 4 and 5 Item lists. 
 
#Uncorrelated, ICT – 3 Item 
 
NRRICTEQ003 <- function(n,type, mp1, mp2, outfile) { 
#where output will be save. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICT3ItemUnCorr" 
#define correlation. 
cori<-cbind(c(1,0,0,0),c(0,1,0,0),c(0,0,1,0),c(0,0,0,1)) 
corc<-cbind(c(1,0,0),c(0,1,0),c(0,0,1)) 
#define non-sens prev rates for each group. 
ei<-mp1 
ec<-mp2 
#performs 1000 sims  
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
    #generate lists. 
   int<-rmvbin(n, margprob=ei, bincorr=cori) 
   contr<-rmvbin(n, margprob=ec, bincorr=corc) 
    #sum rows 
   Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
   Scontr<-rowSums (contr, na.rm = FALSE, dims = 1) 
   #output estimate  
      MAT[i,] <- mean(Sint) - mean(Scontr) 
    } 
 #find var 
VarSim <-var(MAT) 
#sensitive attribute 
pis<-mp1[4] 
#variance of DQT 
vardq<-(pis*(1-pis))/(2*n) 
rr <- vardq/VarSim 
#outputs rel ratio by dist type. 
cell <- c(n,type, pis, vardq, VarSim, rr) 
#puts in excel. 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
 
} 
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#Uncorrelated: ICT-4 Item 
 
 
NRRICTEQ004 <- function(n,type, mp1, mp2, outfile) { 
#sets up excel sheet 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICT4ItemUnCorr" 
#covariance 
cori<-cbind(c(1,0,0,0,0),c(0,1,0,0,0),c(0,0,1,0,0),c(0,0,0,1,0), c(0,0,0,0,1)) 
corc<-cbind(c(1,0,0,0),c(0,1,0,0),c(0,0,1,0),c(0,0,0,1)) 
#Non-sens distribution 
ei<-mp1 
ec<-mp2 
#calculates lists, sums and estimates. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   #print(i)  
   int<-rmvbin(n, margprob=ei, bincorr=cori) 
   contr<-rmvbin(n, margprob=ec, bincorr=corc) 
 
   Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
   Scontr<-rowSums (contr, na.rm = FALSE, dims = 1)  
   #print(length(Sint)) 
   #print(length(Scontr)) 
 
   MAT[i,] <- mean(Sint) - mean(Scontr) 
    } 
 #variance 
VarSim <-var(MAT) 
#sensitive attribute being estimated. 
pis<-mp1[5] 
#DQT variance 
vardq<-(pis*(1-pis))/(2*n) 
#rel reli 
rr <- vardq/VarSim 
#outputs by non-sens dist type. 
cell <- c(n,type, pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#Uncorrelated ICT 5-Item 
 
#Item list 5, Uncorrelated 
 
 
NRRICTEQ005 <- function(n,type, mp1, mp2, outfile) { 
#Excel spreadsheet for output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICT5ItemUnCorr" 
#correlation matrix 
cori<-cbind(c(1,0,0,0,0,0),c(0,1,0,0,0,0),c(0,0,1,0,0,0),c(0,0,0,1,0,0), c(0,0,0,0,1,0), 
c(0,0,0,0,0,1)) 
corc<-cbind(c(1,0,0,0,0),c(0,1,0,0,0),c(0,0,1,0,0),c(0,0,0,1,0),c(0,0,0,0,1)) 
#dist of sens and non-sens prevalent rates 
ei<-mp1 
ec<-mp2 
#creates list, estimators 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   #print(i)  
   int<-rmvbin(n, margprob=ei, bincorr=cori) 
   contr<-rmvbin(n, margprob=ec, bincorr=corc) 
 
   Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
   Scontr<-rowSums (contr, na.rm = FALSE, dims = 1)  
   #print(length(Sint)) 
   #print(length(Scontr)) 
 
   MAT[i,] <- mean(Sint) - mean(Scontr) 
    } 
 #Calculates Rel Rel compared to DQT. 
VarSim <-var(MAT) 
#sens attribute being estimated 
pis<-mp1[6] 
vardq<-(pis*(1-pis))/(2*n) 
rr <- vardq/VarSim 
#outputs by distribution type. 
cell <- c(n,type, pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#Correlated ICT 3-Item 
 
NRRICTEQC03 <- function(n,type, mp1, mp2, outfile) { 
#Create excel doc for output 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICT3ItemCorr" 
#Define correlated matrix. 
cori<-cbind(c(1,0,0,0),c(0,1,-.50,0),c(0,-.50,1,0),c(0,0,0,1)) 
corc<-cbind(c(1,0,0),c(0,1,-.50),c(0,-.50,1)) 
#Prevalent rates for intervention & control groups. 
ei<-mp1 
ec<-mp2 
#Create lists, estimators 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   int<-rmvbin(n, margprob=ei, bincorr=cori) 
   contr<-rmvbin(n, margprob=ec, bincorr=corc) 
 
   Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
   Scontr<-rowSums (contr, na.rm = FALSE, dims = 1)  
    
   MAT[i,] <- mean(Sint) - mean(Scontr) 
    } 
 #Output variance and compare to DQT. 
VarSim <-var(MAT) 
#sens prev rate being estimated 
pis<-mp1[4] 
vardq<-(pis*(1-pis))/(2*n) 
rr <- vardq/VarSim 
cell <- c(n,type, pis, vardq, VarSim, rr) 
#output to excel. 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#Correlated ICT 4-Item 
 
#Item 4 Correlated 
#Correlate non-sensitive questions 1 and 2 and 3 and 4 
 
 
NRRICTEQC04 <- function(n,type, mp1, mp2, outfile) { 
#define excel document for output 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICT4ItemCorr" 
#define correlation matrix 
cori<-cbind(c(1,-.50,0,0,0),c(-.50,1,0,0,0),c(0,0,1,-.50,0),c(0,0,-.50,1,0), c(0,0,0,0,1)) 
corc<-cbind(c(1,-.50,0,0),c(-.50,1,0,0),c(0,0,1,-.50),c(0,0,-.50,1)) 
#prevalent rate distributions for cont and intervention groups. 
ei<-mp1 
ec<-mp2 
#1000 sims that create lists, estimators and output to matrix. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   int<-rmvbin(n, margprob=ei, bincorr=cori) 
   contr<-rmvbin(n, margprob=ec, bincorr=corc) 
   Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
   Scontr<-rowSums (contr, na.rm = FALSE, dims = 1)  
   ) 
   MAT[i,] <- mean(Sint) - mean(Scontr) 
    } 
 #variance 
VarSim <-var(MAT) 
#non sens being estimated. 
pis<-mp1[5] 
#DQT var 
vardq<-(pis*(1-pis))/(2*n) 
#rel ratio outputted 
rr <- vardq/VarSim 
cell <- c(n,type, pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#ICT - Unequal and Non-Symmetric, Correlated Type =2 
#Correlate non-sensitive questions 2 and 4 
 
NRRICTSYC04 <- function(n,type, mp1, mp2, outfile) { 
#Create excel spreadsheet. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICT4ItemCorr" 
#define correlation matris 
cori<-cbind(c(1,0,0,0,0),c(0,1,0,-.50,0),c(0,0,1,0,0),c(0,-.50,0,1,0), c(0,0,0,0,1)) 
corc<-cbind(c(1,0,0,0),c(0,1,0,-.50),c(0,0,1,0),c(0,-.50,0,1)) 
#prev rate distribution for controls/intervention. 
ei<-mp1 
ec<-mp2 
#Will run 1000 sims, creating lists, estimators and finding variance. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   int<-rmvbin(n, margprob=ei, bincorr=cori) 
   contr<-rmvbin(n, margprob=ec, bincorr=corc) 
   Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
   Scontr<-rowSums (contr, na.rm = FALSE, dims = 1)  
   MAT[i,] <- mean(Sint) - mean(Scontr) 
    } 
 #find variances and output rel rel to excel. 
VarSim <-var(MAT) 
#sens prevalent rate being estimated. 
pis<-mp1[5] 
vardq<-(pis*(1-pis))/(2*n) 
rr <- vardq/VarSim 
cell <- c(n,type, pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#ICT - Unequal and Non-Symmetric, Correlated 
#Correlate non-sensitive questions 3 and 4 
 
NRRICTNSC04 <- function(n,type, mp1, mp2, outfile) { 
#EXCEL file for output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICT4ItemCorr" 
#correlation 
cori<-cbind(c(1,0,0,0,0),c(0,1,0,0,0),c(0,0,1,-.50,0),c(0,0,-.50,1,0), c(0,0,0,0,1)) 
corc<-cbind(c(1,0,0,0),c(0,1,0,0),c(0,0,1,-.50),c(0,0,-.50,1)) 
#distribution of prev rate for intervention and control.ei<-mp1 
ec<-mp2 
#1000 sims will generate list, estimates and take variance. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   int<-rmvbin(n, margprob=ei, bincorr=cori) 
   contr<-rmvbin(n, margprob=ec, bincorr=corc) 
   Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
   Scontr<-rowSums (contr, na.rm = FALSE, dims = 1)  
   MAT[i,] <- mean(Sint) - mean(Scontr)   
 } 
#find variances, calc rel rel and output 
 VarSim <-var(MAT) 
#sens prev rate estimated. 
pis<-mp1[5] 
vardq<-(pis*(1-pis))/(2*n) 
rr <- vardq/VarSim 
cell <- c(n,type, pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#Correlated ICT 5-Item 
#Item list 5, Correlated 
 
 
NRRICTEQC05 <- function(n,type, mp1, mp2, outfile) { 
#Excel for output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICT5ItemCorr" 
#define corr matrix 
cori<-cbind(c(1,-.50,0,0,0,0),c(-.5,1,0,0,0,0),c(0,0,1,-.5,0,0),c(0,0,-.5,1,0,0), 
c(0,0,0,0,1,0), c(0,0,0,0,0,1)) 
corc<-cbind(c(1,-.50,0,0,0),c(-.5,1,0,0,0),c(0,0,1,-.50,0),c(0,0,-.50,1,0),c(0,0,0,0,1)) 
#prevalent rate dist for int and control samples. 
ei<-mp1 
ec<-mp2 
#1000 sims, creates list and estimators. Variance is calculated. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   int<-rmvbin(n, margprob=ei, bincorr=cori) 
   contr<-rmvbin(n, margprob=ec, bincorr=corc) 
   Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
   Scontr<-rowSums (contr, na.rm = FALSE, dims = 1)  
   MAT[i,] <- mean(Sint) - mean(Scontr) 
    } 
#Variances calculated and rel ratio calc and output.  
VarSim <-var(MAT) 
#sens rate estimated. 
pis<-mp1[6] 
vardq<-(pis*(1-pis))/(2*n) 
rr <- vardq/VarSim 
cell <- c(n,type, pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
 
#FOR BOTH UNEQUAL AND SYMM AS WELL AS UNEQUAL AND UNSYM, 
CORRELATE NONSENSITIVE QUESTIONS 2 AND 5 AND 3 AND 4 
 
NRRICTSYC05 <- function(n,type, mp1, mp2, outfile) { 
#Excel for output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICT5ItemCorr" 
#correlation matrix. 
cori<-cbind(c(1,0,0,0,0,0),c(0,1,0,0,-.50,0),c(0,0,1,-.50,0,0),c(0,0,-.50,1,0,0), c(0,-
.50,0,0,1,0), c(0,0,0,0,0,1)) 
corc<-cbind(c(1,0,0,0,0),c(0,1,0,0,-.50),c(0,0,1,-.50,0),c(0,0,-.50,1,0),c(0,-.50,0,0,1)) 
#prevalent rate distributions for control and intervention. 
ei<-mp1 
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ec<-mp2 
#1000 sims creating lists, estimators and taking variance. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   int<-rmvbin(n, margprob=ei, bincorr=cori) 
   contr<-rmvbin(n, margprob=ec, bincorr=corc) 
   Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
   Scontr<-rowSums (contr, na.rm = FALSE, dims = 1)  
   MAT[i,] <- mean(Sint) - mean(Scontr) 
   } 
#Find variances and calc rel rel and output.  
VarSim <-var(MAT) 
#prev rate estimated. 
pis<-mp1[6] 
vardq<-(pis*(1-pis))/(2*n) 
rr <- vardq/VarSim 
cell <- c(n,type, pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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R-Code: Optimal Model DICT, testing between, within and no correlation, 5-Item 
 
#between correlation - 5 Item List 
 
DICT5BT <- function(n, type, mp1, outfile) { 
#Excel file for output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\DICTCORCK" 
#correlation matrix for groups 1 and 2. 
cors1<-cbind( c( 1, 0, 0, 0, 0, 0, 0.85, 0, 0,
 0, 0), 
   c( 0, 1, 0, 0, 0, 0, 0, 0.85,
 0, 0, 0), 
   c( 0, 0, 1, 0, 0, 0, 0, 0,
 0.85, 0, 0), 
   c( 0, 0, 0, 1, 0, 0, 0, 0,
 0, 0.85, 0), 
   c( 0, 0, 0, 0, 1, 0, 0, 0,
 0, 0, 0.85), 
   c( 0, 0, 0, 0, 0, 1, 0, 0,
 0, 0, 0), 
   c( 0.85, 0, 0, 0, 0, 0, 1, 0,
 0, 0, 0), 
   c( 0, 0.85, 0, 0, 0, 0, 0, 1,
 0, 0, 0), 
   c( 0, 0, 0.85, 0, 0, 0, 0, 0,
 1, 0, 0), 
   c( 0, 0, 0, 0.85, 0, 0, 0, 0,
 0, 1, 0), 
   c( 0, 0, 0, 0, 0.85, 0, 0, 0,
 0, 0, 1)) 
mp<-mp1 
#1000 sims creating lists, estimators, and taking variance. 
MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   s1<-rmvbin(n, margprob=mp, bincorr=cors1) 
   s2<-rmvbin(n, margprob=mp, bincorr=cors1) 
   ints1<-s1[,1:6] 
            conts1<-s1[,7:11] 
   ints2<-s2[,1:6] 
        conts2<-s2[,7:11] 
   Sints1<-rowSums (ints1, na.rm = FALSE, dims = 1)  
   Sconts1<-rowSums (conts1, na.rm = FALSE, dims = 1)  
   Sints2<-rowSums (ints2, na.rm = FALSE, dims = 1)  
   Sconts2<-rowSums (conts2, na.rm = FALSE, dims = 1)  
   MAT[i,] <- ((mean(Sints1) - mean(Sconts2)) + (mean(Sints2) - 
mean(Sconts1)))/2 
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     } 
#variance.    
VarSim <-var(MAT) 
#sens estimated. 
pis<-mp1[6] 
#output. 
cell <- c(type, pis, VarSim) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
 
#Within correlation - 5 Item List 
 
DICT5WI <- function(n, type, mp1, outfile) { 
#Excel for output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\DICTCORCK" 
#Correlation matrix for both samples. 
cors1<-cbind(c( 1, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0), 
   c( 0, 1, 0, 0, -.50, 0, 0, 0, 0,
 0, 0), 
   c( 0, 0, 1, -.50, 0, 0, 0, 0, 0,
 0, 0), 
   c( 0, 0, -.50, 1, 0, 0, 0, 0, 0,
 0, 0), 
   c( 0, -.50, 0, 0, 1, 0, 0, 0, 0,
 0, 0), 
   c( 0, 0, 0, 0, 0, 1, 0, 0, 0,
 0, 0), 
   c( 0, 0, 0, 0, 0, 0, 1, 0, 0,
 0, 0), 
   c( 0, 0, 0, 0, 0, 0, 0, 1, 0,
 0, -.50), 
   c( 0, 0, 0, 0, 0, 0, 0, 0, 1,
 -.50, 0), 
   c( 0, 0, 0, 0, 0, 0, 0, 0, -.50,
 1, 0), 
   c( 0, 0, 0, 0, 0, 0, 0, -.50, 0,
 0, 1)) 
#distribution of prev rates for each group. 
mp<-mp1 
#run 1000 sims, create lists, estimators and outputs to find variance. 
MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   s1<-rmvbin(n, margprob=mp, bincorr=cors1) 
   s2<-rmvbin(n, margprob=mp, bincorr=cors1) 
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   ints1<-s1[,1:6] 
        conts1<-s1[,7:11] 
   ints2<-s2[,1:6] 
        conts2<-s2[,7:11] 
   Sints1<-rowSums (ints1, na.rm = FALSE, dims = 1)  
   Sconts1<-rowSums (conts1, na.rm = FALSE, dims = 1)  
   Sints2<-rowSums (ints2, na.rm = FALSE, dims = 1)  
   Sconts2<-rowSums (conts2, na.rm = FALSE, dims = 1)  
   MAT[i,] <- ((mean(Sints1) - mean(Sconts2)) + (mean(Sints2) - 
mean(Sconts1)))/2 
#Get variance.   } 
VarSim <-var(MAT) 
#prev of sens estimated 
pis<-mp1[6] 
cell <- c(type, pis, VarSim) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell)   
} 
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#No correlation - 5 Item List 
 
DICT5NO <- function(n, type, mp1, outfile) { 
#excel for output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\DICTCORCK" 
#correlation matrix. 
cors1<-cbind(c( 1, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0), 
   c( 0, 1, 0, 0, 0, 0, 0, 0, 0,
 0, 0), 
   c( 0, 0, 1, 0, 0, 0, 0, 0, 0,
 0, 0), 
   c( 0, 0, 0, 1, 0, 0, 0, 0, 0,
 0, 0), 
   c( 0, 0, 0, 0, 1, 0, 0, 0, 0,
 0, 0), 
   c( 0, 0, 0, 0, 0, 1, 0, 0, 0,
 0, 0), 
   c( 0, 0, 0, 0, 0, 0, 1, 0, 0,
 0, 0), 
   c( 0, 0, 0, 0, 0, 0, 0, 1, 0,
 0, 0), 
   c( 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0), 
   c( 0, 0, 0, 0, 0, 0, 0, 0, 0,
 1, 0), 
   c( 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 1)) 
#prev rate distribution for both samples. 
mp<-mp1 
#Runs 1000 sims, creating lists, sums, calc estimators and finding variance. 
MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   s1<-rmvbin(n, margprob=mp, bincorr=cors1) 
   s2<-rmvbin(n, margprob=mp, bincorr=cors1) 
   ints1<-s1[,1:6] 
        conts1<-s1[,7:11] 
   ints2<-s2[,1:6] 
        conts2<-s2[,7:11] 
   Sints1<-rowSums (ints1, na.rm = FALSE, dims = 1)  
   Sconts1<-rowSums (conts1, na.rm = FALSE, dims = 1)  
   Sints2<-rowSums (ints2, na.rm = FALSE, dims = 1)  
   Sconts2<-rowSums (conts2, na.rm = FALSE, dims = 1)  
   MAT[i,] <- ((mean(Sints1) - mean(Sconts2)) + (mean(Sints2) - 
mean(Sconts1)))/2 
     } 
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#output variances.    
VarSim <-var(MAT) 
pis<-mp1[6] 
cell <- c(type, pis, VarSim) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell)   
} 
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R-Code: Optimal Model DICT (Between Correlation), testing between equal, symmetric 
& not equal, not symmetric & not equal. Item list size 3, 4 and 5 
 
#Item list size 3 
 
#between correlation - 3 Item List 
 
DICT3BT <- function(n, type, mp1, outfile) { 
#excel for output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\DICT3ItemBet" 
#correlation matrix. 
cors1<-cbind( c(1, 0, 0, 0, .85, 0, 0), 
        c(0, 1, 0, 0, 0, .85, 0), 
        c(0, 0, 1, 0, 0, 0, .85), 
        c(0, 0, 0, 1, 0, 0, 0), 
        c(.85,0, 0, 0, 1, 0, 0), 
        c(0, .85, 0, 0, 0, 1, 0), 
        c(0, 0, .85, 0, 0, 0, 1)) 
#prev rate distr for both samples. 
mp<-mp1 
#1000 sims, create lists, sums rows, calcs estimators. 
MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   s1<-rmvbin(n, margprob=mp, bincorr=cors1) 
   s2<-rmvbin(n, margprob=mp, bincorr=cors1) 
   ints1<-s1[,1:4] 
        conts1<-s1[,5:7] 
   ints2<-s2[,1:4] 
        conts2<-s2[,5:7] 
   Sints1<-rowSums (ints1, na.rm = FALSE, dims = 1)  
   Sconts1<-rowSums (conts1, na.rm = FALSE, dims = 1)  
   Sints2<-rowSums (ints2, na.rm = FALSE, dims = 1)  
   Sconts2<-rowSums (conts2, na.rm = FALSE, dims = 1)  
   MAT[i,] <- ((mean(Sints1) - mean(Sconts2)) + (mean(Sints2) - 
mean(Sconts1)))/2 
     } 
#variances calculated and rel ratio compared to DQT and output.    
VarSim <-var(MAT) 
#sens prev rate. 
pis<-mp1[4] 
vardq<-(pis*(1-pis))/(2*n) 
rr <- vardq/VarSim 
cell <- c(n,type, pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#DICT Item list size 4 
 
#between correlation - 4 Item List 
 
DICT4BT <- function(n, type, mp1, outfile) { 
#EXCEL for output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\DICT4ItemBet" 
#correlation matrix for both sample. 
cors1<-cbind( c(1, 0, 0, 0, 0, .85, 0, 0, 0), 
   c(0, 1, 0, 0, 0, 0, 0.85, 0, 0), 
   c(0, 0, 1, 0, 0, 0, 0, 0.85, 0), 
   c(0, 0, 0, 1, 0, 0, 0, 0, 0.85), 
   c(0, 0, 0, 0, 1, 0, 0, 0, 0), 
   c(0.85, 0, 0, 0, 0, 1, 0, 0, 0), 
   c(0, 0.85, 0, 0, 0, 0, 1, 0, 0), 
   c(0, 0, 0.85, 0, 0, 0, 0, 1, 0), 
   c(0, 0, 0, 0.85, 0, 0, 0, 0, 1)) 
#prevalent rate distr for both samples. 
mp<-mp1 
#1000 sims, creates lists, sums rows, calcs estimators. 
MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   s1<-rmvbin(n, margprob=mp, bincorr=cors1) 
   s2<-rmvbin(n, margprob=mp, bincorr=cors1) 
   ints1<-s1[,1:5] 
        conts1<-s1[,6:9] 
   ints2<-s2[,1:5] 
        conts2<-s2[,6:9] 
   Sints1<-rowSums (ints1, na.rm = FALSE, dims = 1)  
   Sconts1<-rowSums (conts1, na.rm = FALSE, dims = 1)  
   Sints2<-rowSums (ints2, na.rm = FALSE, dims = 1)  
   Sconts2<-rowSums (conts2, na.rm = FALSE, dims = 1)  
   MAT[i,] <- ((mean(Sints1) - mean(Sconts2)) + (mean(Sints2) - 
mean(Sconts1)))/2 
     } 
#Calcs variance, outputs rel ratio for prev rate being estimated.    
VarSim <-var(MAT) 
pis<-mp1[5] 
vardq<-(pis*(1-pis))/(2*n) 
rr <- vardq/VarSim 
cell <- c(n,type, pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#DICT, Item list size 5 
 
#between correlation - 5 Item List 
 
DICT5BT <- function(n, type, mp1, outfile) { 
#Excel for output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\DICT5ItemBet" 
#correlation matrix. 
cors1<-cbind( c( 1, 0, 0, 0, 0, 0, 0.85, 0, 0,
 0, 0), 
   c( 0, 1, 0, 0, 0, 0, 0, 0.85,
 0, 0, 0), 
   c( 0, 0, 1, 0, 0, 0, 0, 0,
 0.85, 0, 0), 
   c( 0, 0, 0, 1, 0, 0, 0, 0,
 0, 0.85, 0), 
   c( 0, 0, 0, 0, 1, 0, 0, 0,
 0, 0, 0.85), 
   c( 0, 0, 0, 0, 0, 1, 0, 0,
 0, 0, 0), 
   c( 0.85, 0, 0, 0, 0, 0, 1, 0,
 0, 0, 0), 
   c( 0, 0.85, 0, 0, 0, 0, 0, 1,
 0, 0, 0), 
   c( 0, 0, 0.85, 0, 0, 0, 0, 0,
 1, 0, 0), 
   c( 0, 0, 0, 0.85, 0, 0, 0, 0,
 0, 1, 0), 
   c( 0, 0, 0, 0, 0.85, 0, 0, 0,
 0, 0, 1)) 
mp<-mp1 #prevalent rate distr for both samples. 
#1000 sims. Creates list, sums rows, calcs estimator. 
MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   s1<-rmvbin(n, margprob=mp, bincorr=cors1) 
   s2<-rmvbin(n, margprob=mp, bincorr=cors1) 
   ints1<-s1[,1:6] 
        conts1<-s1[,7:11] 
   ints2<-s2[,1:6] 
        conts2<-s2[,7:11] 
   Sints1<-rowSums (ints1, na.rm = FALSE, dims = 1)  
   Sconts1<-rowSums (conts1, na.rm = FALSE, dims = 1)  
   Sints2<-rowSums (ints2, na.rm = FALSE, dims = 1)  
   Sconts2<-rowSums (conts2, na.rm = FALSE, dims = 1)  
   MAT[i,] <- ((mean(Sints1) - mean(Sconts2)) + (mean(Sints2) - 
mean(Sconts1)))/2}     } 
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#Variances from each technique compared and outputted by sens prev rate.  
VarSim <-var(MAT) 
pis<-mp1[6] 
vardq<-(pis*(1-pis))/(2*n) 
rr <- vardq/VarSim 
cell <- c(n,type, pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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R-CODE: SSC, Finding optimal model, List sizes 3, 4 and 5 
#SSC, Optimal Model List Size 5 
#Not Correlated 
NRRSSC05 <- function(n, mp, outfile) { 
#excel spreadsheet for ouput. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\SSC5ItemUnCorr" 
#corr Q1 AND Q2, Q3 AND Q4  
cori<-cbind(c(1,0,0,0,0,0),c(0,1,0,0,0,0),c(0,0,1,0,0,0),c(0,0,0,1,0,0), c(0,0,0,0,1,0), 
c(0,0,0,0,0,1)) 
#prevalent rate dist. 
ei<-mp 
#1000 sims, create lists, sums rows, calcs estimator. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) {  
  int<-rmvbin(n, margprob=ei, bincorr=cori) 
  Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
  MAT[i,] <- mean(Sint) - 2.5 
     } 
#calcs variances for each technique and outputs by sens prev rate.  
VarSim <-var(MAT) 
pis<-mp[6] 
vardq<-(pis*(1-pis))/n 
rr <- vardq/VarSim 
cell <- c(n,pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#SSC, Optimal Model List Size 4 
 
NRRSSC04 <- function(n, mp, outfile) { 
#Excel for output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\SSC4ItemUnCorr" 
#correlation matrix. 
cori<-cbind(c(1,0,0,0,0),c(0,1,0,0,0),c(0,0,1,0,0),c(0,0,0,1,0), c(0,0,0,0,1)) 
#prev rate distr 
ei<-mp 
#1000 sims creating lists, summing rows, calc estimators. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) {  
  int<-rmvbin(n, margprob=ei, bincorr=cori) 
  Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
  MAT[i,] <- mean(Sint) - 2 
     } 
#variances calc, rel rel outputted by sens prev rate estimated.   
VarSim <-var(MAT) 
pis<-mp[5] 
vardq<-(pis*(1-pis))/n 
rr <- vardq/VarSim 
cell <- c(n,pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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SETUPSSC04("OMSSC4_0") 
 
#SSC, Optimal Model List Size 3, No correlation. 
 
NRRSSC03 <- function(n, mp, outfile) { 
#EXCEL output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\SSC3ItemUnCorr" 
#No Correlation 
cori<-cbind(c(1,0,0,0),c(0,1,0,0),c(0,0,1,0),c(0,0,0,1)) 
#prev rate dist 
ei<-mp 
#1000 sims, creating lists, sum rows, calcs estimator. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) {  
  int<-rmvbin(n, margprob=ei, bincorr=cori) 
  Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
  MAT[i,] <- mean(Sint) - 1.5 
     } 
#variance from each technique calc, rel rel calc and outputted by prevalent rate estimated. 
VarSim <-var(MAT) 
pis<-mp[4] 
vardq<-(pis*(1-pis))/n 
rr <- vardq/VarSim 
cell <- c(n,pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#Correlated 
 
#SSC, Optimal Model List Size 5 
#Correlated 
NRRSSCC5 <- function(n, mp, outfile) { 
#Excel output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\SSC5ItemCorr" 
#corr Q1 AND Q2, Q3 AND Q4  
cori<-cbind(c(1,-.50,0,0,0,0),c(-.5,1,0,0,0,0),c(0,0,1,-.5,0,0),c(0,0,-.5,1,0,0), 
c(0,0,0,0,1,0), c(0,0,0,0,0,1)) 
#prev rate distribution. 
ei<-mp 
#1000 sims, creating list, sum rows, calc estimators. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) {  
  int<-rmvbin(n, margprob=ei, bincorr=cori) 
  Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
  MAT[i,] <- mean(Sint) - 2.5 
     } 
#calc variances, calc rel rel, output by sens prev rate estimated. 
VarSim <-var(MAT) 
pis<-mp[6] 
vardq<-(pis*(1-pis))/n 
rr <- vardq/VarSim 
cell <- c(n,pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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SETUPSSCC5("OMSSC5_C") 
#SSC, Optimal Model List Size 4 
NRRSSCC4 <- function(n, mp, outfile) { 
#excel output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\SSC4ItemCorr" 
#CORRELATE Q1 AND Q2, Q3 AND Q4  
cori<-cbind(c(1,-.50,0,0,0),c(-.50,1,0,0,0),c(0,0,1,-.50,0),c(0,0,-.50,1,0), c(0,0,0,0,1)) 
#prev rate distribution. 
ei<-mp 
#1000 sims, creates list, sums row, calcs estimator. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) {  
  int<-rmvbin(n, margprob=ei, bincorr=cori) 
  Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
  MAT[i,] <- mean(Sint) - 2 
     } 
#calcs variance, rel rel and outputs by sens prev rate estimated.  
VarSim <-var(MAT) 
pis<-mp[5] 
vardq<-(pis*(1-pis))/n 
rr <- vardq/VarSim 
cell <- c(n,pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#SSC, Optimal Model List Size 3 
 
NRRSSCC3 <- function(n, mp, outfile) { 
#EXCEL output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\SSC3ItemCorr" 
#Correlate q2 and q3 
cori<-cbind(c(1,0,0,0),c(0,1,-.50,0),c(0,-.50,1,0),c(0,0,0,1)) 
#prev rate distribution. 
ei<-mp 
#1000 sims, creates lists, sums rows, calcs estimator. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) {  
  int<-rmvbin(n, margprob=ei, bincorr=cori) 
  Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
  MAT[i,] <- mean(Sint) - 1.5 
     } 
#cals variances, rel rel, outputs by sens prev rate estimated.  
VarSim <-var(MAT) 
pis<-mp[4] 
vardq<-(pis*(1-pis))/n 
rr <- vardq/VarSim 
cell <- c(n,pis, vardq, VarSim, rr) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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R-Code: Noncompliance, UQT Optimal, UQT Practical, FCT vs. ICT optimal 3-Item, 4-
Item, 5-Item lists. 
 
#Optimal Model for UQT based on efficiency test is: p1=.90, p2=.10, pi_ns = .10 - will 
set parameters to these values 
 
#Optimal Models: 
#UQT - p1=.9, pins =.10 (Optimal) 
#UQT - p1=.6, pins =.30 (Practical) 
#ICT - Item 3 (corr, nonsym) 
  #Item 4 (corr, equal) 
  #Item 5 (corr, symm) 
#DICT- #Item 3 (corr between, equal) 
  #Item 4 (corr between, nonsym) 
  #Item 5 (corr between, sym) 
#SSC - All models (corr) 
 
#Start with optimal model UQT 
 
UQTOP <- function(Truth, pis, n) { 
pis_hat <- Truth*pis 
bias <- pis_hat - pis 
 
lambda1<-.90*pis_hat + (1-.90)*.10 
lambda2<-.10*pis_hat + (1-.10)*.10 
#allocates sample sizes per Greenberg et al (1969) 
r<- sqrt((lambda1*(1-lambda1)*.9^2)/(lambda2*(1-lambda2)*.1^2)) 
#sample sizes calculated. 
optn2<-round(n/(1+r),0) 
optn1<- n-optn2 
#variance components calc. 
varc1<- (lambda1*(1-lambda1)*.90^2)/optn1 
varc2<- (lambda2*(1-lambda2)*.10^2)/optn2 
#variance cal. 
varpis <- (varc1 + varc2)/.80^2 
#MSE calc. 
MSE <- varpis + bias^2 
#output. 
cell <- c(MSE) 
return(cell) 
} 
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#Practical UQT Model 
#Truth – percent of those w/ sens attribute who respond truthfully. 
UQTPRAC <- function(Truth, pis, n) { 
pis_hat <- Truth*pis 
bias <- pis_hat - pis 
lambda1<-.60*pis_hat + (1-.60)*.30 
lambda2<-.40*pis_hat + (1-.40)*.30 
#allocate sample. 
r<- sqrt((lambda1*(1-lambda1)*.6^2)/(lambda2*(1-lambda2)*.4^2)) 
#create n for each sample. 
optn2<-round(n/(1+r),0) 
optn1<- n-optn2 
#calc variance components. 
varc1<- (lambda1*(1-lambda1)*.60^2)/optn1 
varc2<- (lambda2*(1-lambda2)*.40^2)/optn2 
#calc variance and MSE. 
varpis <- (varc1 + varc2)/.20^2 
MSE <- varpis + bias^2 
#output. 
cell <- c(MSE) 
return(cell) 
} 
 
 
#Run FC method 
#Truth – percent of those w/ sens attribute who respond truthfully. 
 
FC <- function(Truth,pis, n) { 
pis_hat <- Truth*pis 
bias <- pis_hat - pis 
#variance component. 
lambda1<-(3/4)*pis_hat + 1/6 
#variance. 
varpis<- (lambda1*(1-lambda1))/(n*(9/16)) 
MSE <- varpis + bias^2 
#output. 
cell <- c(MSE) 
return(cell) 
} 
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#3ICT - Correlated with nonsym - optimal model 
 
NRRICTEQC03 <- function(Truth,pis, n, outfile) { 
#Excel output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICTMSE" 
#Calculate the pis in presence of non-compliance 
pis_hat <- Truth*pis 
#Correlation matrix 
cori<-cbind(c(1,0,0,0),c(0,1,-.50,0),c(0,-.50,1,0),c(0,0,0,1)) 
corc<-cbind(c(1,0,0),c(0,1,-.50),c(0,-.50,1)) 
#simulate bias data 
#prev rate dist by int and control group. 
ei<-c(1/4,2/3,2/3,pis_hat) 
ec<-c(1/4,2/3,2/3) 
#1000 sims, create lists, sums rows and calc estimates. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   int<-rmvbin(n/2, margprob=ei, bincorr=cori) 
   contr<-rmvbin(n/2, margprob=ec, bincorr=corc) 
   Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
   Scontr<-rowSums (contr, na.rm = FALSE, dims = 1)  
   MAT[i,] <- mean(Sint) - mean(Scontr) 
    } 
#calc bias and MSE – output. 
Bias <- mean(MAT)- pis 
MSE <- var(MAT) + Bias^2 
cell <- c(MSE) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
 
#Equal 4 –item list. 
NRRICTEQC04 <- function(Truth,pis, n, outfile) { 
#Define output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICTMSE" 
#Calculate the pis in presence of non-compliance 
pis_hat <- Truth*pis 
#Correlation matrix 
cori<-cbind(c(1,-.50,0,0,0),c(-.50,1,0,0,0),c(0,0,1,-.50,0),c(0,0,-.50,1,0), c(0,0,0,0,1)) 
corc<-cbind(c(1,-.50,0,0),c(-.50,1,0,0),c(0,0,1,-.50),c(0,0,-.50,1)) 
#prev rate distr for each sample. 
ei<-c(2/3,2/3,2/3,2/3,pis_hat) 
ec<-c(2/3,2/3,2/3,2/3) 
#1000 sims. Creates list, sums rows, calcs estimator. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
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   int<-rmvbin(n/2, margprob=ei, bincorr=cori) 
   contr<-rmvbin(n/2, margprob=ec, bincorr=corc) 
   Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
   Scontr<-rowSums (contr, na.rm = FALSE, dims = 1)  
   MAT[i,] <- mean(Sint) - mean(Scontr) 
    } 
#Find bias and output MSE.  
Bias <- mean(MAT)- pis 
MSE <- var(MAT) + Bias^2 
cell <- c(MSE) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
 
 
 



 

 

248

#ICT 5-Item 
NRRICTSYC05 <- function(Truth,pis, n, outfile) { 
#excel output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICTMSE" 
#Calculate the pis in presence of non-compliance 
pis_hat <- Truth*pis 
#Correlation matrix 
cori<-cbind(c(1,0,0,0,0,0),c(0,1,0,0,-.50,0),c(0,0,1,-.50,0,0),c(0,0,-.50,1,0,0), c(0,-
.50,0,0,1,0), c(0,0,0,0,0,1)) 
corc<-cbind(c(1,0,0,0,0),c(0,1,0,0,-.50),c(0,0,1,-.50,0),c(0,0,-.50,1,0),c(0,-.50,0,0,1)) 
#prev distr. 
ei<-c(1/6,2/6,3/6,4/6,5/6,pis_hat) 
ec<-c(1/6,2/6,3/6,4/6,5/6) 
#1000 sims, creates list, sums rows and calcs estimator. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   int<-rmvbin(n/2, margprob=ei, bincorr=cori) 
   contr<-rmvbin(n/2, margprob=ec, bincorr=corc) 
   Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
   Scontr<-rowSums (contr, na.rm = FALSE, dims = 1)  
   MAT[i,] <- mean(Sint) - mean(Scontr) 
    } 
#cal MSE and output.  
Bias <- mean(MAT)- pis 
MSE <- var(MAT) + Bias^2 
cell <- c(MSE) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#Simulate and save MSE 
#Runs each of the sims above by sample size and calculates ratio MSE between all RR 
and NRR techniques. 
 
NCSIM1 <- function(Truth,pis, n)  { 
 UQTOMSE <-UQTOP(Truth, pis, n)  
 UQTPMSE <- UQTPRAC(Truth, pis, n) 
 FCMSE <-FC(Truth, pis, n) 
 ICT3 <- NRRICTEQC03(Truth, pis, n, "ICT3") 
 ICT4 <- NRRICTEQC04(Truth, pis, n, "ICT4") 
 ICT5 <-NRRICTSYC05(Truth, pis, n, "ICT5") 
#output and calc MSEs 
cell <- c(Truth, pis, n, UQTOMSE, UQTPMSE, FCMSE, ICT3, ICT4, ICT5, 
UQTOMSE/ICT3, UQTOMSE/ICT4, UQTOMSE/ICT5, 
   UQTPMSE/ICT3, UQTPMSE/ICT4, UQTPMSE/ICT5, 
   FCMSE/ICT3, FCMSE/ICT4, FCMSE/ICT5) 
return(cell) 
} 
 
#Run sim above for each non-compliance rate defined in study 
 
NCSIM2<-      function(n) { 
#define sens prev rates and non-compl rates for study. 
sens              <-    c(0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, 0.45) 
noncomp             <-    c(0.90, 0.80,0.70, 0.60) 
#create matrix for output and run all combinations using the R-functions defined above. 
                    matr<-matrix(nrow = 18, ncol=36) 
            l = 0 
            for (i in 1:9) { var1<-i +(i-1)*3 
                         var2<-i +(i-1)*3+ 3 
    for (k in var1:var2) matr[,k]<-NCSIM1(noncomp[k-
l*4],sens[i],n)        
                        l=l+1} 
                        return(matr)   
                       } 
 
#run simulations and output to excel spreadsheet. 
runncsim <- function(n, outfile) { 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICTMSE" 
 fmat<-matrix(nrow=18,ncol=36) 
 fmat<- NCSIM2(n) 
 #return(fmat) 
print(fmat) 
write.csv(fmat,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
} 
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R-Code: Noncompliance, UQT Optimal, UQT Practical, FCT vs. DICT optimal 3-Item, 
4-Item, 5-Item lists. 
 
#Optimal Model for UQT based on efficiency test is: p1=.90, p2=.10, pi_ns = .10 - will 
set parameters to these values 
#Optimal Models: 
#UQT - p1=.9, pins =.10 (Optimal) 
#UQT - p1=.6, pins =.30 (Practical) 
#DICT- #Item 3 (corr between, equal) 
  #Item 4 (corr between, nonsym) 
  #Item 5 (corr between, sym) 
 
#Start with optimal model UQT – this is same function defined previously. 
 
UQTOP <- function(Truth, pis, n) { 
pis_hat <- Truth*pis 
bias <- pis_hat - pis 
lambda1<-.90*pis_hat + (1-.90)*.10 
lambda2<-.10*pis_hat + (1-.10)*.10 
#allocate sample 
r<- sqrt((lambda1*(1-lambda1)*.9^2)/(lambda2*(1-lambda2)*.1^2)) 
#allocate sample 
optn2<-round(n/(1+r),0) 
optn1<- n-optn2 
#variance components. 
varc1<- (lambda1*(1-lambda1)*.90^2)/optn1 
varc2<- (lambda2*(1-lambda2)*.10^2)/optn2 
#calc variance and MSE and output. 
varpis <- (varc1 + varc2)/.80^2 
MSE <- varpis + bias^2 
cell <- c(MSE) 
return(cell) 
} 
 
#Practical UQT Model 
 
UQTPRAC <- function(Truth, pis, n) { 
pis_hat <- Truth*pis 
bias <- pis_hat - pis 
lambda1<-.60*pis_hat + (1-.60)*.30 
lambda2<-.40*pis_hat + (1-.40)*.30 
#allocate sample. 
r<- sqrt((lambda1*(1-lambda1)*.6^2)/(lambda2*(1-lambda2)*.4^2)) 
optn2<-round(n/(1+r),0) 
optn1<- n-optn2 
#variance components. 
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varc1<- (lambda1*(1-lambda1)*.60^2)/optn1 
varc2<- (lambda2*(1-lambda2)*.40^2)/optn2 
#calc variance and MSE and output. 
varpis <- (varc1 + varc2)/.20^2 
MSE <- varpis + bias^2 
cell <- c(MSE) 
return(cell) 
} 
 
#Run FC method 
FC <- function(Truth,pis, n) { 
pis_hat <- Truth*pis 
bias <- pis_hat - pis 
lambda1<-(3/4)*pis_hat + 1/6 
#varaince. 
varpis<- (lambda1*(1-lambda1))/(n*(9/16)) 
#MSE and output. 
MSE <- varpis + bias^2 
cell <- c(MSE) 
return(cell) 
} 
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#3DICT - Correlated with nonsym - optimal model 
 
DICT3BT <- function(Truth, pis, n, outfile) { 
#output excel. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICTMSE" 
#Calculate the pis in presence of non-compliance 
pis_hat <- Truth*pis 
#Correlation matrix 
cors1<-cbind( c(1, 0, 0, 0, .85, 0, 0), 
        c(0, 1, 0, 0, 0, .85, 0), 
        c(0, 0, 1, 0, 0, 0, .85), 
        c(0, 0, 0, 1, 0, 0, 0), 
        c(.85,0, 0, 0, 1, 0, 0), 
        c(0, .85, 0, 0, 0, 1, 0), 
        c(0, 0, .85, 0, 0, 0, 1)) 
#equal 
mp<-c(2/3,2/3,2/3, pis_hat ,2/3,2/3,2/3) 
#1000 sims. Creates list. Sums rows and calc estimator. 
MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   s1<-rmvbin(n/2, margprob=mp, bincorr=cors1) 
   s2<-rmvbin(n/2, margprob=mp, bincorr=cors1) 
   ints1<-s1[,1:4] 
         conts1<-s1[,5:7] 
   ints2<-s2[,1:4] 
         conts2<-s2[,5:7] 
   Sints1<-rowSums (ints1, na.rm = FALSE, dims = 1)  
   Sconts1<-rowSums (conts1, na.rm = FALSE, dims = 1)  
   Sints2<-rowSums (ints2, na.rm = FALSE, dims = 1)  
   Sconts2<-rowSums (conts2, na.rm = FALSE, dims = 1)  
   MAT[i,] <- ((mean(Sints1) - mean(Sconts2)) + (mean(Sints2) - 
mean(Sconts1)))/2    } 
#calc bias, MSE and output.    
Bias <- mean(MAT)- pis 
MSE <- var(MAT) + Bias^2 
cell <- c(MSE) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell)} 
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#between correlation - 4 Item List 
 
DICT4BT <- function(Truth,pis, n, outfile) { 
#output to excel 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICTMSE" 
#Calculate the pis in presence of non-compliance 
pis_hat <- Truth*pis 
#Correlation matrix 
cors1<-cbind( c(1, 0, 0, 0, 0, .85, 0, 0, 0), 
   c(0, 1, 0, 0, 0, 0, 0.85, 0, 0), 
   c(0, 0, 1, 0, 0, 0, 0, 0.85, 0), 
   c(0, 0, 0, 1, 0, 0, 0, 0, 0.85), 
   c(0, 0, 0, 0, 1, 0, 0, 0, 0), 
   c(0.85, 0, 0, 0, 0, 1, 0, 0, 0), 
   c(0, 0.85, 0, 0, 0, 0, 1, 0, 0), 
   c(0, 0, 0.85, 0, 0, 0, 0, 1, 0), 
   c(0, 0, 0, 0.85, 0, 0, 0, 0, 1)) 
#nonsym 
mp<-c(1/6,3/6,4/6,4/6, pis_hat,1/6,3/6,4/6,4/6) 
#1000 sims. Creates list, sums rows, calcs estimator. 
MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   s1<-rmvbin(n/2, margprob=mp, bincorr=cors1) 
   s2<-rmvbin(n/2, margprob=mp, bincorr=cors1) 
   ints1<-s1[,1:5] 
        conts1<-s1[,6:9] 
   ints2<-s2[,1:5] 
        conts2<-s2[,6:9] 
   Sints1<-rowSums (ints1, na.rm = FALSE, dims = 1)  
   Sconts1<-rowSums (conts1, na.rm = FALSE, dims = 1)  
   Sints2<-rowSums (ints2, na.rm = FALSE, dims = 1)  
   Sconts2<-rowSums (conts2, na.rm = FALSE, dims = 1)  
  MAT[i,] <- ((mean(Sints1) - mean(Sconts2)) + (mean(Sints2) - 
mean(Sconts1)))/2 
     } 
#calc bias and output MSE.    
Bias <- mean(MAT)- pis 
MSE <- var(MAT) + Bias^2 
cell <- c(MSE) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#between correlation - 5 Item List 
 
DICT5BT <- function(Truth,pis, n, outfile) { 
#Excel for output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICTMSE" 
#Calculate the pis in presence of non-compliance 
pis_hat <- Truth*pis 
#Correlation matrix 
cors1<-cbind( c( 1, 0, 0, 0, 0, 0, 0.85, 0, 0,
 0, 0), 
   c( 0, 1, 0, 0, 0, 0, 0, 0.85,
 0, 0, 0), 
   c( 0, 0, 1, 0, 0, 0, 0, 0,
 0.85, 0, 0), 
   c( 0, 0, 0, 1, 0, 0, 0, 0,
 0, 0.85, 0), 
   c( 0, 0, 0, 0, 1, 0, 0, 0,
 0, 0, 0.85), 
   c( 0, 0, 0, 0, 0, 1, 0, 0,
 0, 0, 0), 
   c( 0.85, 0, 0, 0, 0, 0, 1, 0,
 0, 0, 0), 
   c( 0, 0.85, 0, 0, 0, 0, 0, 1,
 0, 0, 0), 
   c( 0, 0, 0.85, 0, 0, 0, 0, 0,
 1, 0, 0), 
   c( 0, 0, 0, 0.85, 0, 0, 0, 0,
 0, 1, 0), 
   c( 0, 0, 0, 0, 0.85, 0, 0, 0,
 0, 0, 1)) 
#symmetric 
mp<-c(1/6,2/6,3/6,4/6,5/6, pis_hat,1/6,2/6,3/6,4/6,5/6) 
#100 sims, creates list, sums rows, calcs estimator. 
MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) { 
   s1<-rmvbin(n/2, margprob=mp, bincorr=cors1) 
  s2<-rmvbin(n/2, margprob=mp, bincorr=cors1) 
   ints1<-s1[,1:6] 
        conts1<-s1[,7:11] 
   ints2<-s2[,1:6] 
        conts2<-s2[,7:11] 
   Sints1<-rowSums (ints1, na.rm = FALSE, dims = 1)  
   Sconts1<-rowSums (conts1, na.rm = FALSE, dims = 1)  
   Sints2<-rowSums (ints2, na.rm = FALSE, dims = 1)  
   Sconts2<-rowSums (conts2, na.rm = FALSE, dims = 1)  
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   MAT[i,] <- ((mean(Sints1) - mean(Sconts2)) + (mean(Sints2) - 
mean(Sconts1)))/2 
     } 
#Calc bias and output MSE.    
Bias <- mean(MAT)- pis 
MSE <- var(MAT) + Bias^2 
cell <- c(MSE) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
 
#Simulate and save MSE 
 
NCSIM1 <- function(Truth,pis, n)  { 
#run all sims. 
 UQTOMSE <-UQTOP(Truth, pis, n)  
 UQTPMSE <- UQTPRAC(Truth, pis, n) 
 FCMSE <-FC(Truth, pis, n) 
 DICT3 <- DICT3BT(Truth, pis, n, "DICT3") 
 DICT4 <- DICT4BT(Truth, pis, n, "DICT4") 
 DICT5 <- DICT5BT(Truth, pis, n, "DICT5") 
#calc mse between RR and NRR techniques. 
cell <- c(Truth, pis, n, UQTOMSE, UQTPMSE, FCMSE, DICT3, DICT4, DICT5, 
UQTOMSE/DICT3, UQTOMSE/DICT4, UQTOMSE/DICT5, 
   UQTPMSE/DICT3, UQTPMSE/DICT4, UQTPMSE/DICT5, 
   FCMSE/DICT3, FCMSE/DICT4, FCMSE/DICT5) 
return(cell) 
} 
 
#Run by non-compliance rate 
#Runs all simulations in prevalent rate, non-compliance rate defined in study – for DICT. 
NCSIM2<-      function(n) { 
sens              <-    c(0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, 0.45) 
noncomp             <-    c(0.90, 0.80,0.70, 0.60) 
                    matr<-matrix(nrow = 18, ncol=36) 
            l = 0 
            for (i in 1:9) { 
     var1<-i +(i-1)*3 
                         var2<-i +(i-1)*3+ 3 
    for (k in var1:var2) matr[,k]<-NCSIM1(noncomp[k-
l*4],sens[i],n)        
                        l=l+1 
                            }       
                        return(matr)                           
} 
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#runs all sims above and saves to excel file. 
runncsim <- function(n, outfile) { 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICTMSEFN" 
 fmat<-matrix(nrow=18,ncol=36) 
 fmat<- NCSIM2(n) 
 #return(fmat) 
write.csv(fmat,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
} 
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R-Code: Noncompliance, UQT Optimal, UQT Practical, FCT vs. SSC optimal 3-Item, 4-
Item, 5-Item lists. 
 
#Optimal Model for UQT based on efficiency test is: p1=.90, p2=.10, pi_ns = .10 - will 
set parameters to these values 
#Optimal Models: 
#UQT - p1=.9, pins =.10 (Optimal) 
#UQT - p1=.6, pins =.30 (Practical) 
#ICT - Item 3 (corr, nonsym) 
  #Item 4 (corr, equal) 
  #Item 5 (corr, symm) 
#DICT- #Item 3 (corr between, equal) 
  #Item 4 (corr between, nonsym) 
  #Item 5 (corr between, sym) 
#SSC - All models (corr) 
#Start with optimal model UQT 
 
UQTOP <- function(Truth, pis, n) { 
pis_hat <- Truth*pis 
bias <- pis_hat - pis 
lambda1<-.90*pis_hat + (1-.90)*.10 
lambda2<-.10*pis_hat + (1-.10)*.10 
#allocate samples 
r<- sqrt((lambda1*(1-lambda1)*.9^2)/(lambda2*(1-lambda2)*.1^2)) 
optn2<-round(n/(1+r),0) 
optn1<- n-optn2 
#variance components. 
varc1<- (lambda1*(1-lambda1)*.90^2)/optn1 
varc2<- (lambda2*(1-lambda2)*.10^2)/optn2 
#variance. 
varpis <- (varc1 + varc2)/.80^2 
#MSE 
MSE <- varpis + bias^2 
#output. 
cell <- c(MSE) 
return(cell) 
} 
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#Practical UQT Model 
 
UQTPRAC <- function(Truth, pis, n) { 
pis_hat <- Truth*pis 
bias <- pis_hat - pis 
lambda1<-.60*pis_hat + (1-.60)*.30 
lambda2<-.40*pis_hat + (1-.40)*.30 
#allocate sample 
r<- sqrt((lambda1*(1-lambda1)*.6^2)/(lambda2*(1-lambda2)*.4^2)) 
optn2<-round(n/(1+r),0) 
optn1<- n-optn2 
#variance components. 
varc1<- (lambda1*(1-lambda1)*.60^2)/optn1 
varc2<- (lambda2*(1-lambda2)*.40^2)/optn2 
#variance. 
varpis <- (varc1 + varc2)/.20^2 
#MSE 
MSE <- varpis + bias^2 
#output. 
cell <- c(MSE) 
return(cell) 
} 
 
#Run FC method 
 
FC <- function(Truth,pis, n) { 
pis_hat <- Truth*pis 
bias <- pis_hat - pis 
lambda1<-(3/4)*pis_hat + 1/6 
#variance. 
varpis<- (lambda1*(1-lambda1))/(n*(9/16)) 
#MSE. 
MSE <- varpis + bias^2 
#output. 
cell <- c(MSE) 
return(cell) 
} 
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#SSC, Optimal Model List Size 3 
 
NRRSSCC3 <- function(Truth,pis, n, outfile) { 
#EXCEL output. 
#area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICTMSE" 
#Calculate the pis in presence of non-compliance 
pis_hat <- Truth*pis 
#Correlation matrix 
#Correlate q2 and q3 
cori<-cbind(c(1,0,0,0),c(0,1,-.50,0),c(0,-.50,1,0),c(0,0,0,1)) 
#simulate bias data 
ei<-c(1/2,1/2,1/2,pis_hat) 
#1000 sims, creates list, sums rows and calcs estimator. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) {  
  int<-rmvbin(n, margprob=ei, bincorr=cori) 
  Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
  MAT[i,] <- mean(Sint) - 1.5 
     } 
#calc bias, MSE and output. 
Bias <- mean(MAT)- pis 
MSE <- var(MAT) + Bias^2 
cell <- c(MSE) 
#write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#SSC, Optimal Model List Size 4 
 
NRRSSCC4 <- function(Truth,pis, n, outfile) { 
#define output. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICTMSE" 
#Calculate the pis in presence of non-compliance 
pis_hat <- Truth*pis 
#Correlation matrix 
#CORRELATE Q1 AND Q2, Q3 AND Q4  
cori<-cbind(c(1,-.50,0,0,0),c(-.50,1,0,0,0),c(0,0,1,-.50,0),c(0,0,-.50,1,0), c(0,0,0,0,1)) 
#prevalence rate dist. 
ei<-c(1/2,1/2,1/2,1/2,pis_hat) 
#1000 sims, creates list, sums rows, calcs estimator. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) {  
  int<-rmvbin(n, margprob=ei, bincorr=cori) 
  Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
  MAT[i,] <- mean(Sint) - 2 
     } 
#calcs bias, MSE and outputs. 
Bias <- mean(MAT)- pis 
MSE <- var(MAT) + Bias^2 
cell <- c(MSE) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
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#SSC, Optimal Model List Size 5 
#Correlated 
NRRSSCC5 <- function(Truth,pis, n, outfile)  { 
#output excel. 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICTMSE" 
#Calculate the pis in presence of non-compliance 
pis_hat <- Truth*pis 
#Correlation matrix 
#corr Q1 AND Q2, Q3 AND Q4  
cori<-cbind(c(1,-.50,0,0,0,0),c(-.5,1,0,0,0,0),c(0,0,1,-.5,0,0),c(0,0,-.5,1,0,0), 
c(0,0,0,0,1,0), c(0,0,0,0,0,1)) 
#prev rate distribution. 
ei<-c(1/2,1/2,1/2,1/2,1/2,pis_hat) 
#1000 sims, calcs list, sums rows and calcs estimator. 
 MAT <- matrix(nrow = 1000, ncol=1) 
  for (i in 1:1000) {  
  int<-rmvbin(n, margprob=ei, bincorr=cori) 
  Sint<-rowSums (int, na.rm = FALSE, dims = 1)  
  MAT[i,] <- mean(Sint) - 2.5 
     } 
#calc bias, MSE and output. 
Bias <- mean(MAT)- pis 
MSE <- var(MAT) + Bias^2 
cell <- c(MSE) 
write.csv(MAT,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
return(cell) 
} 
 
#Simulate and save MSE 
 
NCSIM1 <- function(Truth,pis, n)  { 
#sims and outputs all MSE for SSC functions. 
 UQTOMSE <-UQTOP(Truth, pis, n)  
 UQTPMSE <- UQTPRAC(Truth, pis, n) 
 FCMSE <-FC(Truth, pis, n) 
 SSC3 <- NRRSSCC3(Truth, pis, n, "SSC3") 
 SSC4 <- NRRSSCC4(Truth, pis, n, "SSC4") 
 SSC5 <-NRRSSCC5(Truth, pis, n, "SSC5") 
cell <- c(Truth, pis, n, UQTOMSE, UQTPMSE, FCMSE, SSC3, SSC4, SSC5, 
UQTOMSE/SSC3, UQTOMSE/SSC4, UQTOMSE/SSC5, 
   UQTPMSE/SSC3, UQTPMSE/SSC4, UQTPMSE/SSC5, 
   FCMSE/SSC3, FCMSE/SSC4, FCMSE/SSC5) 
return(cell) 
} 
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#Run by non-compliance rate and sens prev rate combination for SSC. 
 
NCSIM2<-      function(n) { 
sens              <-    c(0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, 0.45) 
noncomp             <-    c(0.90, 0.80,0.70, 0.60) 
                    matr<-matrix(nrow = 18, ncol=36) 
            l = 0 
            for (i in 1:9) { 
     var1<-i +(i-1)*3 
                         var2<-i +(i-1)*3+ 3 
 
    for (k in var1:var2) matr[,k]<-NCSIM1(noncomp[k-
l*4],sens[i],n)        
                        l=l+1 
                            }       
                        return(matr)   
} 
 
#runs all sims for SSC and saves output to excel. 
runncsim <- function(n, outfile) { 
area <- "C:\\D_DRIVE_Backup\\Dissertation\\Results\\ICTMSE" 
 fmat<-matrix(nrow=18,ncol=36) 
 fmat<- NCSIM2(n) 
 #return(fmat) 
print(fmat) 
write.csv(fmat,paste(area,paste(outfile,"csv",sep="."),sep="\\"),row.names=F) 
} 
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