
Discrete Structures

Grants Collection
Kennesaw State University

Rebecca Rutherfoord, Dawn Tatum, Susan VandeVen, Richard
Halstead-Nussloch, James Rutherfoord, and Zhigang Li

UNIVERSITY SYSTEM
OF GEORGIA

Grants Collection

Affordable Learning Georgia Grants Collections are intended to provide
faculty with the frameworks to quickly implement or revise the same
materials as a Textbook Transformation Grants team, along with the aims
and lessons learned from project teams during the implementation
process.

Each collection contains the following materials:

 Linked Syllabus
o The syllabus should provide the framework for both direct

implementation of the grant team’s selected and created
materials and the adaptation/transformation of these
materials.

 Initial Proposal
o The initial proposal describes the grant project’s aims in detail.

 Final Report
o The final report describes the outcomes of the project and any

lessons learned.

Unless otherwise indicated, all Grants Collection materials are licensed
under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

Initial Proposal

Application Details

Manage Application: Textbook Transformation Grants: Round Eleven

Team Members (Name, Email Address):

Dr. Becky Rutherfoord - brutherf@kennesaw.edu

Dr. Rich Halstead-Nussloch - rhalstea@kennesaw.edu

Award Cycle: Round 11

Internal Submission
Deadline:

Tuesday, January 23, 2018

Application Title: 354

Application ID: 002074

Submitter First Name: Rebecca

Submitter Last Name: Rutherfoord

Submitter Title: Department Chair, Professor of IT

Submitter Email Address: brutherf@kennesaw.edu

Submitter Phone Number: 470-578-7399

Submitter Campus Role: Proposal Investigator (Primary or additional)

Applicant First Name: Rebecca

Applicant Last Name: Rutherfoord

Applicant Email Address: brutherf@kennesaw.edu

Applicant Phone Number: 470-578-7399

Primary Appointment Title: Department Chair, Professor of IT

Institution Name(s): Kennesaw State University

Co-Applicant(s): Dr. Richard Halstead-Nussloch, Prof. Dawn
Tatum, Prof. Susan VandeVen, Prof. James
Rutherfoord, Zhigang Li

Submission Date: Tuesday, January 23, 2018

Proposal Title: 354

Proposal Category: No-Cost-to-Students Learning Materials

Final Semester of
Instruction:

Fall 2018

Are you using an OpenStax
textbook?:

No

1 of 35

Prof. Dawn Tatum - dtatum7@kennesaw.edu

Prof. Susan VandeVen - svandev@kennesaw.edu

Prof. Jim Rutherfoord - jruther3@kennesaw.edu

Dr. Zhigang Li - zli8@kennesaw.edu

Sponsor, (Name, Title, Department, Institution):

Dr. Rebecca H. Rutherfoord

Interim Assistant Dean of the College of Computing & software Engineering, and Department

Chair, Information Technology

Information Technology Department

Kennesaw State University

Course Names, Course Numbers and Semesters Offered:

IT 3123 - Hardware/Software Concepts- every semester - 3 fall, 3 spring, 2 summer

IT 3223 - Software Acquisition & Project Management- every semester - 3 fall, 3 spring, 2

summer

IT 4683 - Management of IT & Human Computer Interaction- every semester - 2 fall, 2 spring,

2 summer

IT 4723 - IT Policy and Law- every semester, every semester - 2 fall, 2 spring, 2 summer

CSE2300 - Discrete Structures- every semester - 4 fall, 4 spring, 2 summer

2 of 35

List the original course
materials for students

(including title, whether
optional or required, & cost

for each item):

1. IT 3123, The Architecture of Computer
Hardware, Systems Software, and
Networking: An Information Technology
Approach, Englander, 5th edition, John Wiley
and Sons, 2014; ISBN-13:978-1-118-32263-
5; required; cost: $150.00; yearly enrollment:
225; total cost: $33,750.2. IT 3223, a) Guide
to Software Development, Springer Pub.,
ISBN 978-1-4471-2299-9; required; cost:
$101.20; yearly enrollment 245; total cost:
$24,794 b) Fundamentals of Project
Management, 4th edition, AMACON; ISBN
978-0-8144-1748-5; required; cost: $18.75;
yearly enrollment 245; total cost: $4593.75.
Total for class cos: $29,387.75.3. IT 4683,
Using MIS 2017, Kroenke, 10th edition, ISBN
978-0-1346-0699-6; required; cost $223.15;
yearly enrollment 90; total cost:
$20,083.50.4. IT 4723, The Legal
Environment of Business and Online
Commerce, 8th edition, Cheeseman,
Prentice-Hall, ISBN: 978-013-397-3310; cost:
$148.15; yearly enrollment 140; total cost:
$20,741.5. CSE 2300, Discrete Mathematical
Structures, 6th ed, Pearson, ISBN: 978-0-13-
469644-7; cost: $94.97; yearly enrollment
425; total cost: $40,362.25All cost of books
are prices for new books.

Average Number of
Students per Course

Section:

29.6

Number of Course
Sections Affected by

Implementation in
Academic Year:

38

Average Number of
Students Per Summer

Semester:

216

Average Number of
Students Per Fall

Semester:

420

Average Number of
Students Per Spring

Semester:

425

3 of 35

Creation and Hosting Platforms Used ("n/a" if none):

Kennesaw State University D2L Brightspace

Project Goals:

In this project, we propose to take a department-wide effort to transform five required

undergraduate Information Technology major courses using no-cost-to-students learning

material. This project not only aims to reduce the financial burden imposed by high cost of

textbooks, but also strives to develop free and open-access learning materials that offer

equivalent or better educational effectiveness than traditional textbooks. These courses will

then be sent through the campus Quality Matters rubric to meet institutional standards of

excellence as the Information Technology degree can be completed face-to-face or completely

online.

Goals:

1. Transform five required undergraduate IT major courses using no-cost-to-students learning

materials

2. Create Quality Matters “ready” courses to meet institutional standards of excellence for

face-to-face and online courses.

Statement of Transformation:

Research According to Priceonomics (http://priceonomics.com/which-major-has-the-most-

expensive-textbooks/), an average undergraduate student annually spends $1,200 on

textbooks. In addition, out of 31 majors at the University of Virginia, Computer Science (and IT)

comes in 8th for the most expensive books. On the other side, the University of Virginia reports

that Computer Science (and IT) textbooks only have a 25% resale value based on the original

price. The highest resale value for other majors is up to 70%. Previous ALG Grant Information

Total Number of Students
Affected by Implementation

in Academic Year:

1125

Requested Amount of
Funding:

30,000

Original per Student Cost: $736.22

Post-Proposal Projected
Student Cost:

0

Projected Per Student
Savings:

$736.22

Projected Total Annual
Student Savings:

$144,324.50

4 of 35

One Team members was part of the round two of an "Affordable Learning Textbook

Transformation Grant" in 2015 (round two, award #119). They designed and evaluated the

effectiveness of no-cost-to-students learning materials for database courses in the IT

department, and saved students $110,419. The assessment results showed that the

developed free material offered equivalent or better learning experience than the textbooks

did. The preliminary results of the grant were published in the Proceedings of Southern

Association for Information Systems Conference (SAIS 2016), the final results were published

in the Proceedings of the ACM Special Interests Group in IT Education (SIGITE 2016),

"Transforming IT Education with No-Cost Learning Materials". They also hosted a panel

discussion on no-cost learning material in IT education, at SIGITE in October 2016. The panel

attracted a lot of attention among computing faculty. Many colleagues from different states

were impressed with the USG initiative and with course material developed by the team.

Building on our past success and lessons learned from the prior ALG grant, we will continue

our transformation efforts by developing no-cost learning material for five required

undergraduate IT courses. The Stakeholders There are two primary sets of stakeholders for

this proposal – the students taking the five required IT classes (both in-class and online

students), and the faculty developing and teaching those courses. The high cost of textbooks

puts a large financial burden on students and may become a road-block for students’ ability to

finish their education. Our team of investigators strives to make higher education more

affordable to the students. The information technology required courses listed for this grant

proposal have resources that are publicly accessible, free, or with an open license to use.

These materials include open and free tutorials, books, videos, labs, software, and services.

One of the major problems with using regular textbooks for IT courses is that information

technology material is constantly changing. Textbook publishing cannot keep up with these

fast changes in the technology field. In addition, tools and software packages that are part of a

textbook also become obsolete. As soon as a new version of a tool or software package is

released, the instructions in a textbook become obsolete. Therefore, we need to include the

latest available tools to prepare hands-on labs. Digital delivery of the learning materials makes

it easier to keep the content up-to-date. Developing and assembling a set of learning materials

for major courses is a unique approach. It will allow us to better align the learning material not

only with the outcomes of each course, but also with the outcomes of the Information

Technology program. Compared to traditional textbooks, the open source software and web

resources have many benefits: 1) the Web resources are generally free to use; 2) they are

constantly being updated and always reflect the latest trends and industrial development; and,

3) the materials from the Web are also more dynamic and interactive. The pitfalls of Web

resources are that they are often disorganized and may contain inaccurate information.

However, members of our team of investigators are not only subject matter experts in the

information security field, but also proficient educators who on average have more than 10

years teaching experience including online teaching. We will select, organize and integrate

resources from the web and transform the information into instructionally sound learning

materials for the proposed courses including content that the team members develop

themselves. We strongly believe that the new learning materials will offer up-to-date,

5 of 35

equivalent or better learning effectiveness compared to the original textbooks. Digital delivery

also allows us to add interactive elements into the learning materials. The interactive content

will not only engage the students, but also improve their learning experience. It will help to

enhance the learning outcomes and learning satisfaction. The Impact The impact of our

transformation efforts will be profound. By our estimates, more than 1125 students will benefit

from the no-cost learning material each year. Moreover, it will benefit more students in the

Bachelor of Science in Cybersecurity (eMajor) approved by the Board of Regents. One of the

required courses proposed for this grant is also part of the BS in Cybersecurity. Student

numbers are not included for the cybersecurity degree in this grant, but the expectation is that

there will be an additional 120 students for this course per year within two years. The goal of

eMajor is to reduce the cost of education by using prior learning assessments, lower tuition

and potentially no-cost learning materials (https://emajor.usg.edu). The proposed project is

expected to save current students $144,324.50 in textbook costs each year (not counting the

cybersecurity savings). Because of the cost savings from not having to buy textbooks,

students may be able to take a few more courses each year and graduate sooner. Having a

series of required IT courses adopting no-cost-to-student material not only offers better and

more consistent learning experience to students, but also makes our nationally renowned IT

programs more affordable. As a result, our IT programs could recruit more students and

produce more qualified IT professionals that Georgia needs. Our experience gained in this

transformation project could be useful to other programs or departments who want to lower the

cost of education to their students in IT programs across Georgia. In summary, we believe the

proposed project will have a positive impact in students’ retention, progression, and graduation

at program, department and institution levels. As shown in the following table, the textbooks

used in the five required IT undergraduate major courses are expensive. In fact, most

textbooks used in Information Technology are costly in general. In addition, due to the fast

evolving nature of the technology field, the textbooks used in the proposed courses are

updated frequently, which negatively impacts their resale value to the students. The goal of our

transformation is to replace the textbook used in the proposed courses with no-cost-to-

students learning materials that offer equal or higher educational effectiveness. Data Table 1:

Enrollments and Projected 2018 Enrollments of 5 IT courses Course Spring 2017 Summer

2017 Fall 2017 Total Projected 2018 Enrollment Number of Sections Total Number of students

IT3123 93 40 78 211 8 225 IT3223 112 39 84 235 8 245 IT4683 0 41 41 82 6 90 IT4723 50 38

47 135 6 140 CSE2300 170 58 170 398 10 425 Total 425 216 420 1061 38 1125 As shown in

the following table, the textbooks used in the five required IT undergraduate major courses are

expensive. In fact, most textbooks used in Information Technology are costly in general. In

addition, due to the fast evolving nature of the technology field, the textbooks used in the

proposed courses are updated frequently, which negatively impacts their resale value to the

students. The goal of our transformation is to replace the textbook used in the proposed

courses with no-cost-to-students learning materials that offer equal or higher educational

effectiveness. Table 2: Costs of Current Textbooks for 5 IT Courses Course Textbook Used

Cost per Student Projected Enrollment Projected Costs IT3123 IT 3123, The Architecture of

Computer Hardware, Systems Software, and Networking: An Information Technology

6 of 35

Approach, Englander, 5th edition, John Wiley and Sons, 2014; ISBN-13:978-1-118-32263-5;

required; $150.00 225 $33,750 IT3223 3223, a) Guide to Software Development, Springer

Pub., ISBN 978-1-4471-2299-9; required; cost: $101.20; total cost: $32,384. b) Fundamentals

of Project Management, 4th edition, AMACON; ISBN 978-0-8144-1748-5; required; cost:

$18.75 $119.95 245 $29,387.75 IT4683 IT 4683, Using MIS 2017, Kroenke, 10th edition, ISBN

978-0-1346-0699-6; required; $223.15 90 $20,083.50 IT4723 IT 4723, The Legal Environment

of Business and Online Commerce, 8th edition, Cheeseman, Prentice-Hall, ISBN: 978-013-

397-3310; cost: $148.15; yearly enrollment 200; total cost: $29, 630. $148.15 140 $20,741

CSE2300 CSE 2300, Discrete Mathematical Structures, 6th ed, Pearson, ISBN: 978-0-13-

469644-7; cost: $94.97 $94.97 425 $40,362.25 Total: $736.22 1125 $144,324.50

Transformation Action Plan:

With a coordinated effort, our team of investigators plan the following activities to transform 5

required Information Technology courses to completely use no-cost learning materials:

1. Research and identify no cost reading materials for each of the learning modules in each

course. The reading list includes both required readings and optional readings. All of these

readings will be publicly accessible, free to use, or openly licensed.

2. Research and identify no cost materials that can be shared across the courses.

3. Develop study guides and lecture notes for students’ use to review course content and key

learning points.

4. Adopt or develop content, assignments, exercises and lab materials that are no cost to

students to replace the ones in the textbooks.

5. Develop test banks to replace the ones in the textbooks.

6. Adopt open source or no-cost-to-student lab ware for students to gain hands-on experience.

7. Update the syllabus to include major resources and no cost materials.

8. Re-develop the proposed courses in our learning management system, D2L Brightspace,

following Quality MattersTM standards and get the course approved for online instruction.

The responsibilities of each investigator is described as follows.

Dr. Rebecca Rutherfoord, IT 3123, Project lead; Subject matter expert, course developer and

instructor of record of IT 3123.

Prof. Susan VandeVen, IT 3223, subject matter expert, course developer and instructor of

record for IT 3223.

7 of 35

Dr. Richard Halstead-Nussloch, IT 4683, subject matter expert, course developer and

instructor of record for IT 4683.

Prof. Dawn Tatum, IT 4723, subject matter expert, course developer and instructor of record

for IT 4723.

Prof. James Rutherfoord, CSE 2300, subject matter expert, course developer and instructor of

record for CSE 2300.

Dr. Zhigang Li, Provide Instructional Design Support to all five proposed courses.

All course design with the no-cost materials will be provided through D2L Brightspace for our

students and on the ALG website for the public access.

8 of 35

Quantitative & Qualitative
Measures:

The investigators plan to assess the
effectiveness of our proposal in two ways.
Qualitatively, we will design a survey and
gather inputs from the students after they
use the no-cost learning material.
Quantitatively, we will compare students’
performance data gathered from sections
using traditional textbooks and sections
using no-cost learning material. The
investigators will collect student performance
data such as pass rates from the five
proposed courses taught with a textbook by
team members for spring, summer and fall
2017. This data will be used as a baseline for
comparison of student performance in
courses with alternative no cost material. Our
assessment plan can be summarized as
follows. 1. Student performance measures.
This data is from the overall class
performance based on the grading of student
works. Metrics include:* Class average,
grades distribution, pass rate for each
grading item.* Overall letter grades
distribution, pass rate, withdraw rate, and fail
rate.* Percentage of students meeting or
exceeding learning outcomes2. Specific
survey on no-cost learning materials. A web-
based survey will be developed for all
proposed courses and be distributed at the
end of the semester to collect student
feedback. * Student perception and attitude
toward no cost materials including:ratings of
the no cost materials used in this
coursecomments and suggestions for course
improvements3. Student evaluation of the
instructor. Formal student evaluation of the
instructor can also provide information about
teaching effectiveness using no cost
materials. This evaluation is based on
standardized forms for every course.For
each of the measurement, the investigators
are going to conduct two levels of analysis:
1) comparing the achievement levels of the
course learning outcomes - generally, 75% is
the aimed passing rate in undergraduate
courses, and, 2) comparing the achievement
levels to those from past offerings where
costly textbooks were used. The
investigators will use the data from the
sections taught in the past 2 years.In

9 of 35

Timeline:

Spring 2018

Collect baseline statistics on each course (course developers – those faculty who are in

charge of the course for this study)

Course modules redesigned to use the no cost materials. These include all new content,

readings, lecture notes, video clips, exercises, labs, and assignments. The changes are

reflected in the learning module study guides. (completed by course developers)

Course level assessment and informational materials redesign. This includes quizzes, tests,

and syllabus. (course developers and instructional designer)

Submit the developed courses for instructional design review through Quality Matters.

(instructional designer and KSU Distance Learning Center office)

Submit the developed courses for subject matter expert review. (department Chair)

Summer 2018

Develop a survey on effectiveness of the no cost materials (all course developers and

instructional designer)

Teach:

IT 3123 – hardware/Software, Dr. Rutherfoord

CSE 2300 – Discrete Structures, Prof. Rutherfoord

Survey two summer courses and give student course evaluation (course developers and

instructional designer)

Fall 2018

Teach:

IT 3223 – Software Acquisition and Proj. Management, Prof. VandeVen

IT 4683 – Management Information Technology & HCI, Dr. Halstead-Nussloch

IT 4723 – IT Policy and Law, Prof. Tatum

Survey three fall courses and give student course evaluation (course developers and

instructional designer)

addition, Kennesaw State University requires
all online courses to be reviewed and
approved following an internal review
process using Quality Matters (QM)
standards. This review will insure the no-cost
learning materials used or developed for the
5 required IT courses are instructionally
sound. The College of Computing and
Software Engineering will also conduct
subject matter expert reviews for all
developed courses to ensure the quality of
the learning materials.

10 of 35

Complete final assessment data analysis and prepare a final report (all course developers

and instructional designer)

Budget:

The funding mainly compensates our team of investigator’s work and activity beyond normal

teaching load or other job responsibilities in order to successfully complete the project. For

each proposed course, course developers approximately will spend at least 80 hours in

developing the no-cost learning material and be the instructor of record, and, will spend 20

hours in course assessment. Instructional support will devote at a minimum 50 hours in

assisting course developers. Thus, we request the budget of this project as follows.

Dr. Rebecca Rutherfoord, Project lead; course developer and instructor of record of IT 3123,

$5,000

Prof. Susan VandeVen, course developer and instructor of record for IT3223, $5,000

Dr. Richard Halstead-Nussloch, course developer and instructor of record for IT 4683, $5,000

Prof. Dawn Tatum, course developer and instructor of record for IT 4723, $5,000

Prof. James Rutherfoord, subject matter expert, course developer and instructor of record for

CSE 2300, $5000

Dr. Zhigang Li, Provide Instructional Design Support to all five proposed courses, $1500

Travel: $3500, for project team members to attend the ALG kickoff and subsequent meetings

to bring back information to the team members. Our project team is also planning to submit a

paper to reputable IT education conference such as ACM SIGITE 2018 (Special Interest

Group in IT Education). Travel money will be used to attend conferences to present findings

from the grant.

Total Budget: $30,000

Only open source software or free software will be used in this project thus there is no

additional spending on software or equipment purchasing.

Sustainability Plan:

The IT department implemented a course coordinator/developer system for all courses. A

course coordinator/developer updates course content based on research, publications and

feedback from faculty, students, alumni and our Industrial Advisory Board. Each of the

investigators, except the instructional designer, is a course coordinator/developer for their

corresponding course. A course coordinator/developer creates and maintains the course

11 of 35

materials and teaching plans. He/she also teaches the course at least once a year to make

sure all resources are valid and makes necessary changes and updates. This makes sure all

no-cost materials and resources are highly sustainable in the future offerings of this course.

The coordinator/developer also brings major/minor course changes to the annual assessment

retreat for all IT faculty.

Final Semester of
Instruction:

Spring 2017

12 of 35

TATE ITY,

College of Computing and
Software Engineering
Information Tecluiology

January 19, 2018

ALG Grant Committee
University System of GA

Dear Colleagues:

This letter is in support of the Proposal "Staying Current in Information Technology-
Transforming Required Undergraduate IT Courses" submitted from Kennesaw State University,
Information Technology department faculty. As Department Chair for Information Technology,
I clearly see the need for bringing down costs for our students. The ALG grants assist faculty to
prepare no-cost courses that allow students to take courses without the monetary burden of
expensive textbooks.

Several faculty in the Information Technology Department at Kennesaw State University have
successfully carried out ALG grants for several of our undergraduate Information Technology
courses. The current proposal addresses five of our required undergraduate courses in the IT
curriculum. The savings already realized from the previous ALG grants encouraged our faculty
to develop this new ALG grant proposal to help our students save even more money.

I strongly support this proposal. This is a very sustainable proposal as we have two Information
Technology undergraduate degree programs. Many of our students take courses online as well
as in-class. Creating the no-cost for textbook version of our five required undergraduate IT
courses will allow students for many years to realize savings from not buying textbooks. As
Information Technology material is constantly changing, the concept of not relying on just
textbooks for courses is extremely important to our field.

This is a very solid proposal. All faculty participating in the previous ALG grants completed their
courses and offered them successfully. Papers for several conferences, and workshops about
the previous grants have been created and presented. This concept has been well received in
the information technology academic community. I believe that this new ALG proposal will
have the same student satisfaction and success that the previous ALG grants did. This new
proposal will have a unique impact as it addresses HIT courses. Thank you for your
consideration for this proposal.

Sincerely,

(i

Atrium Buildings 1100 S Marietta Pkwy, MD 9036 Marietta, GA 30060

Phone: 470-578-3803 www.kennesaw.edu

13 of 35

Rebecca H. Rutherfoord, Ed.D.

Interim Assistant Dean of the College of Computing & Software Engineering, Department

Chair for Information Technology, Professor of Information Technology

brutherfkennesaw.edu

14 of 35

KENNUSAW

College of Computing and
Software Engineering

January 19, 2018

Dear Affordable Learning Georgia (ALG) Grant Reviewers,

It is my pleasure to write this letter in support of the proposal titled "Staying Current in Information
Technology-Transforming Required IT Courses" submitted by Drs. Rutherfoord, Halstead-Nussloch, Li,
and Ms. Tatum, Ms. VandeVen, and Mr. Rutherfoord from our Information Technology (IT) Department
at Kennesaw State University.

In this project, the primary investigators will work as a team to replace existing, costly textbooks in five
undergraduate information technology courses with no-cost-to-students learning materials. Their efforts
will significantly lower the cost of education for students, saving over $ 144k per year and impacting over
1000 students per year at KSU. Additionally, this will generate a positive impact on the retention,
progression, and graduation for the College of Computing and Software Engineering. Additionally, given
the rapid change of the IT field, having digital materials available to students will improve the ability to
keep them updated with the latest advances in the field of information technology.

The proposers have past experience with a successful ALG projects, thus the quality and success of this
project is highly likely. The investigators in this project are also designated course architects who are
responsible for the development and the maintenance of the to-be-transformed courses.

In conclusion, I wholeheartedly support this effort to improve access to our IT program. This proposal has
the full support of the College of Computing and Software Engineering.

Sincerely,

Dr. Jon A. Preston
Interim Dean
College of Computing and Software Engineering
Kennesaw State University

Atrium . Suite J330 • 1100 S Marietta Pkwy • Marietta, GA 30060

Phone: 470-578-5572 • www.kennesaw.edu

15 of 35

Affordable Learning Georgia Textbook Transformation Grants
Rounds Ten and Eleven

For Implementations beginning Spring Semester 2018
 Running Through Fall Semester 2018

Proposal Form and Narrative

Submitter Name Rebecca H. Rutherfoord

Submitter Title Department Chair, Professor of Information Technology

Submitter Email brutherf@kennesaw.edu

Submitter Phone
Number

470-578-7399

Submitter
Campus Role

Proposal Investigator (Primary)

Applicant Name Rebecca Rutherfoord

Applicant Email brutherf@kennesaw.edu

Applicant Phone
Number

470-578-7399

Primary
Appointment
Title

Department Chair, Professor of Information Technology

Institution
Name(s)

Kennesaw State University

Team Members
Dr. Becky Rutherfoord - brutherf@kennesaw.edu

Dr. Rich Halstead-Nussloch - rhalstea@kennesaw.edu

Prof. Dawn Tatum - dtatum7@kennesaw.edu

Prof. Susan VandeVen - svandev@kennesaw.edu

Prof. Jim Rutherfoord - jruther3@kennesaw.edu

Dr. Zhigang Li - zli8@kennesaw.edu

[Proposal No.] 1 [Publish Date]

16 of 35

Sponsor, Title,
Department,
Institution

Dr. Rebecca H. Rutherfoord

Interim Assistant Dean of the College of Computing & software
Engineering, and Department Chair, Information Technology

Information Technology Department

Kennesaw State University

Proposal Title Staying Current in Information Technology-Transforming Required
Undergraduate IT Courses

Course Names,
Course Numbers
and Semesters
Offered

IT 3123 - Hardware/Software Concepts- every semester - 3 fall, 3 spring, 2
summer

IT 3223 - Software Acquisition & Project Management- every semester - 3
fall, 3 spring, 2 summer

IT 4683 - Management of IT & Human Computer Interaction- every
semester - 2 fall, 2 spring, 2 summer

IT 4723 - IT Policy and Law- every semester, every semester - 2 fall, 2
spring, 2 summer

CSE2300 - Discrete Structures- every semester - 4 fall, 4 spring, 2
summer

Final Semester of
Instruction

Fall 2018

Average Number
of Students Per
Course Section

29.6 Number of
Course Sections
Affected by
Implementation
in Academic
Year

38 Total Number of
Students
Affected by
Implementation
in Academic Year

1125

Average Number
of Students Per
Summer
Semester

216

[Proposal No.] 2 [Publish Date]

17 of 35

Average Number
of Students Per
Fall Semester

420

Average Number
of Students Per
Spring Semester

425

Award Category
(pick one)

☒ No-or-Low-Cost-to-Students Learning Materials
☐ Specific Core Curriculum Courses

Are you planning
on using an
OpenStax
textbook?

☐ Yes
☒ No

[Proposal No.] 3 [Publish Date]

18 of 35

List the original
course materials
for students
(including title,
whether optional
or required, &
cost for each
item)

Course Textbook Used Cost per Student

IT3123 IT 3123, The Architecture of Computer
Hardware, Systems Software, and
Networking: An Information Technology
Approach, Englander, 5th edition, John
Wiley and Sons, 2014;
ISBN-13:978-1-118-32263-5; required;

$150.00

IT3223 IT 3223, a) Guide to Software
Development, Springer Pub., ISBN
978-1-4471-2299-9; required; cost:
$101.20; total cost: $32,384. b)
Fundamentals of Project Management,
4th edition, AMACON; ISBN
978-0-8144-1748-5; required; cost:
 $18.75

$119.95

IT4683 IT 4683, Using MIS 2017, Kroenke, 10th
edition, ISBN 978-0-1346-0699-6;
required;

$223.15

IT4723 IT 4723, The Legal Environment of
Business and Online Commerce, 8th
edition, Cheeseman, Prentice-Hall,
ISBN: 978-013-397-3310; cost:
$148.15; yearly enrollment 200; total
cost: $29, 630.

$148.15

CSE230
0

CSE 2300, Discrete Mathematical
Structures, 6th ed, Pearson, ISBN:
978-0-13-469644-7; cost: $94.97

$94.97

 Total: $736.22

 [Material Title, optional or required]

Requested
Amount of
Funding

$30,000

Original Per
Student Cost

$736.22

[Proposal No.] 4 [Publish Date]

19 of 35

Post-Proposal
Projected Per
Student Cost

$0

Projected Per
Student Savings

$736.22

Projected Total
Annual Student
Savings

$144,324.50

[Proposal No.] 5 [Publish Date]

20 of 35

NARRATIVE

[Proposal No.] 6 [Publish Date]

21 of 35

1.1 PROJECT GOALS

In this project, we propose to take a department-wide effort to transform five required
undergraduate Information Technology major courses using no-cost-to-students learning
material. This project not only aims to reduce the financial burden imposed by high cost
of textbooks, but also strives to develop free and open-access learning materials that offer
equivalent or better educational effectiveness than traditional textbooks. These courses
will then be sent through the KSU online course review process using the Quality Matters
rubric to meet institutional standards of excellence as the Information Technology degree
can be completed face-to-face or completely online.
Goals:
1. Transform five required undergraduate IT major courses using no-cost-to-students
learning materials.
2. Create Quality Matters “ready” courses to meet institutional standards of excellence
for face-to-face and online courses.

[Proposal No.] 7 [Publish Date]

22 of 35

1.2 STATEMENT OF TRANSFORMATION

Research

According to Priceonomics
(http://priceonomics.com/which-major-has-the-most-expensive-textbooks/), an average
undergraduate student annually spends $1,200 on textbooks. In addition, out of 31 majors at the
University of Virginia, Computer Science (and IT) comes in 8th for the most expensive books.
On the other side, the University of Virginia reports that Computer Science (and IT) textbooks
only have a 25% resale value based on the original price. The highest resale value for other
majors is up to 70%.

Previous ALG Grant Information

One team member was part of the round two of an "Affordable Learning Textbook
Transformation Grant" in 2015 (round two, award #119). They designed and evaluated the
effectiveness of no-cost-to-students learning materials for database courses in the IT department,
and saved students $110,419. The assessment results showed that the developed free material
offered equivalent or better learning experience than the textbooks did. The preliminary results
of the grant were published in the Proceedings of Southern Association for Information Systems
Conference (SAIS 2016), the final results were published in the Proceedings of the ACM Special
Interests Group in IT Education (SIGITE 2016), "Transforming IT Education with No-Cost
Learning Materials". They also hosted a panel discussion on no-cost learning material in IT
education, at SIGITE in October 2016. The panel attracted a lot of attention among computing
faculty. Many colleagues from different states were impressed with the USG initiative and with
course material developed by the team. Building on our past success and lessons learned from
the prior ALG grant, we will continue our transformation efforts by developing no-cost learning
material for five required undergraduate IT courses.

The Stakeholders

There are two primary sets of stakeholders for this proposal – the students taking the five
required IT classes (both in-class and online students), and the faculty developing and teaching
those courses. The high cost of textbooks puts a large financial burden on students and may
become a road-block for students’ ability to finish their education. Our team of investigators
strives to make higher education more affordable to the students. The information technology
required courses listed for this grant proposal have resources that are publicly accessible, free, or
with an open license to use. These materials include open and free tutorials, books, videos, labs,
software, and services. One of the major problems with using regular textbooks for IT courses is
that information technology material is constantly changing. Textbook publishing cannot keep up
with these fast changes in the technology field. In addition, tools and software packages that are
part of a textbook also become obsolete. As soon as a new version of a tool or software package
is released, the instructions in a textbook become obsolete. Therefore, we need to include the
latest available tools to prepare hands-on labs. Digital delivery of the learning materials makes it
easier to keep the content up-to-date. Developing and assembling a set of learning materials for
major courses is a unique approach. It will allow us to better align the learning material not only

[Proposal No.] 8 [Publish Date]

23 of 35

http://priceonomics.com/which-major-has-the-most-expensive-textbooks/

with the outcomes of each course, but also with the outcomes of the Information Technology
program.

Compared to traditional textbooks, the open source software and web resources have many
benefits: 1) the Web resources are generally free to use; 2) they are constantly being updated and
always reflect the latest trends and industrial development; and, 3) the materials from the Web
are also more dynamic and interactive. The pitfalls of Web resources are that they are often
disorganized and may contain inaccurate information. However, members of our team of
investigators are not only subject matter experts in the information security field, but also
proficient educators who on average have more than 10 years teaching experience including
online teaching. We will select, organize and integrate resources from the web and transform the
information into instructionally sound learning materials for the proposed courses including
content that the team members develop themselves. We strongly believe that the new learning
materials will offer up-to-date, equivalent or better learning effectiveness compared to the
original textbooks. Digital delivery also allows us to add interactive elements into the learning
materials. The interactive content will not only engage the students, but also improve their
learning experience. It will help to enhance the learning outcomes and learning satisfaction.

The Impact

The impact of our transformation efforts will be profound. By our estimates, more than 1125
students will benefit from the no-cost learning material each year. Moreover, it will benefit more
students in the Bachelor of Science in Cybersecurity (eMajor) approved by the Board of Regents.
One of the required courses proposed for this grant is also part of the BS in Cybersecurity.
Student numbers are not included for the cybersecurity degree in this grant, but the expectation is
that there will be an additional 120 students for this course per year within two years. The goal of
eMajor is to reduce the cost of education by using prior learning assessments, lower tuition and
potentially no-cost learning materials (https://emajor.usg.edu). The proposed project is expected
to save current students $144,324.50 in textbook costs each year (not counting the cybersecurity
savings).

Because of the cost savings from not having to buy textbooks, students may be able to take a few
more courses each year and graduate sooner. Having a series of required IT courses adopting
no-cost-to-student material not only offers better and more consistent learning experience to
students, but also makes our nationally renowned IT programs more affordable. As a result, our
IT programs could recruit more students and produce more qualified IT professionals that
Georgia needs. Our experience gained in this transformation project could be useful to other
programs or departments who want to lower the cost of education to their students in IT
programs across Georgia. In summary, we believe the proposed project will have a positive
impact in students’ retention, progression, and graduation at program, department and institution
levels.

As shown in the following table, the textbooks used in the five required IT undergraduate major
courses are expensive. In fact, most textbooks used in Information Technology are costly in
general. In addition, due to the fast evolving nature of the technology field, the textbooks used in
the proposed courses are updated frequently, which negatively impacts their resale value to the

[Proposal No.] 9 [Publish Date]

24 of 35

https://emajor.usg.edu/

students. The goal of our transformation is to replace the textbook used in the proposed courses
with no-cost-to-students learning materials that offer equal or higher educational effectiveness.

Data

Table 1: Enrollments and Projected 2018 Enrollments of 5 IT courses

Course

Spring
2017

Summer
2017

Fall 2017

Total

Projected 2018 Enrollment

Number of Sections Total Number of students

IT3123 93 40 78 211 8 225

IT3223 112 39 84 235 8 245

IT4683 0 41 41 82 6 90

IT4723 50 38 47 135 6 140

CSE2300 170 58 170 398 10 425

Total 425 216 420 1061 38 1125

As shown in the following table, the textbooks used in the five required IT undergraduate major
courses are expensive. In fact, most textbooks used in Information Technology are costly in
general. In addition, due to the fast evolving nature of the technology field, the textbooks used in
the proposed courses are updated frequently, which negatively impacts their resale value to the
students. The goal of our transformation is to replace the textbook used in the proposed courses
with no-cost-to-students learning materials that offer equal or higher educational effectiveness.

Table 2: Costs of Current Textbooks for 5 IT Courses

[Proposal No.] 10 [Publish Date]

25 of 35

Course Textbook Used
Cost per
Student

Projected

Enrollment

Projected
Costs

IT3123

IT 3123, The Architecture of Computer
Hardware, Systems Software, and
Networking: An Information
Technology Approach, Englander, 5th
edition, John Wiley and Sons, 2014;
ISBN-13:978-1-118-32263-5; required;

$150.00 225 $33,750

IT3223

IT 3223, a) Guide to Software
Development, Springer Pub., ISBN
978-1-4471-2299-9; required; cost:
$101.20; total cost: $32,384. b)
Fundamentals of Project Management,
4th edition, AMACON; ISBN
978-0-8144-1748-5; required; cost:
$18.75

$119.95

245 $29,387.75

IT4683
IT 4683, Using MIS 2017, Kroenke,
10th edition, ISBN 978-0-1346-0699-6;
required;

$223.15 90 $20,083.50

IT4723

IT 4723, The Legal Environment of
Business and Online Commerce, 8th
edition, Cheeseman, Prentice-Hall,
ISBN: 978-013-397-3310; cost:
$148.15; yearly enrollment 200; total
cost: $29, 630.

$148.15 140 $20,741

CSE2300
CSE 2300, Discrete Mathematical
Structures, 6th ed, Pearson, ISBN:
978-0-13-469644-7; cost: $94.97

$94.97 425 $40,362.25

Total: $736.22 1125
$144,324.50

[Proposal No.] 11 [Publish Date]

26 of 35

https://www.amazon.com/Communications-Networking-Irwin-Computer-Science/dp/0073376221/ref=pd_lpo_sbs_14_img_0?_encoding=UTF8&psc=1&refRID=Y1NSFRFXY3NPHAXTAXXV

1.3 TRANSFORMATION ACTION PLAN

With a coordinated effort, our team of investigators plan the following activities to transform 5
required Information Technology courses to completely use no-cost learning materials:

 Research and identify no cost reading materials for each of the learning modules in each
course. The reading list includes both required readings and optional readings. All of
these readings will be publicly accessible, free to use, or openly licensed.

 Research and identify no cost materials that can be shared across the courses.

 Develop study guides and lecture notes for students’ use to review course content and key
learning points.

 Adopt or develop content, assignments, exercises and lab materials that are no cost to
students to replace the ones in the textbooks.

 Develop test banks to replace the ones in the textbooks.

 Adopt open source or no-cost-to-student lab ware for students to gain hands-on
experience.

 Update the syllabus to include major resources and no cost materials.

 Re-develop the proposed courses in our learning management system, D2L Brightspace,
following Quality MattersTM standards and get the course approved for online instruction.

The responsibilities of each investigator is described as follows.

Dr. Rebecca Rutherfoord, IT 3123, Project lead; Subject matter expert, course developer
and instructor of record of IT 3123.

Prof. Susan VandeVen, IT 3223, subject matter expert, course developer and instructor of
record for IT 3223.

Dr. Richard Halstead-Nussloch, IT 4683, subject matter expert, course developer and
instructor of record for IT 4683.

Prof. Dawn Tatum, IT 4723, subject matter expert, course developer and instructor of
record for IT 4723.

Prof. James Rutherfoord, CSE 2300, subject matter expert, course developer and
instructor of record for CSE 2300.

Dr. Zhigang Li, Provide Instructional Design Support to all five proposed courses.

[Proposal No.] 12 [Publish Date]

27 of 35

All course design with the no-cost materials will be provided through D2L Brightspace for our
students and on the ALG website for the public access.

[Proposal No.] 13 [Publish Date]

28 of 35

1.4 QUANTITATIVE AND QUALITATIVE MEASURES

The investigators plan to assess the effectiveness of our proposal in two ways. Qualitatively, we
will design a survey and gather inputs from the students after they use the no-cost learning
material. Quantitatively, we will compare students’ performance data gathered from sections
using traditional textbooks and sections using no-cost learning material.

The investigators will collect student performance data such as pass rates from the five proposed
courses taught with a textbook by team members for spring, summer and fall 2017. This data will
be used as a baseline for comparison of student performance in courses with alternative no cost
material. Our assessment plan can be summarized as follows.

1. Student performance measures. This data is from the overall class performance based on the
grading of student works. Metrics include:

* Class average, grades distribution, pass rate for each grading item.

* Overall letter grades distribution, pass rate, withdraw rate, and fail rate.

* Percentage of students meeting or exceeding learning outcomes

2. Specific survey on no-cost learning materials. A web-based survey will be developed for all
proposed courses and be distributed at the end of the semester to collect student feedback.

* Student perception and attitude toward no cost materials including:

 ratings of the no cost materials used in this course

 comments and suggestions for course improvements

3. Student evaluation of the instructor. Formal student evaluation of the instructor can also
provide information about teaching effectiveness using no cost materials. This evaluation is
based on standardized forms for every course.

For each of the measurement, the investigators are going to conduct two levels of analysis: 1)
comparing the achievement levels of the course learning outcomes - generally, 75% is the aimed
passing rate in undergraduate courses, and, 2) comparing the achievement levels to those from
past offerings where costly textbooks were used. The investigators will use the data from the
sections taught in the past 2 years.

In addition, Kennesaw State University requires all online courses to be reviewed and approved
following an internal review process using Quality Matters (QM) standards. This review will
insure the no-cost learning materials used or developed for the 5 required IT courses are
instructionally sound. The College of Computing and Software Engineering will also conduct
subject matter expert reviews for all developed courses to ensure the quality of the learning
materials.

[Proposal No.] 14 [Publish Date]

29 of 35

[Proposal No.] 15 [Publish Date]

30 of 35

1.5 TIMELINE

Spring 2018

 Collect baseline statistics on each course (course developers – those faculty who are in
charge of the course for this study)

 Course modules redesigned to use the no cost materials. These include all new content,
readings, lecture notes, video clips, exercises, labs, and assignments. The changes are
reflected in the learning module study guides. (completed by course developers)

 Course level assessment and informational materials redesign. This includes quizzes,
tests, and syllabus. (course developers and instructional designer)

 Submit the developed courses for instructional design review through Quality Matters.
(instructional designer and KSU Distance Learning Center office)

 Submit the developed courses for subject matter expert review. (department Chair)

Summer 2018

 Develop a survey on effectiveness of the no cost materials (all course developers and
instructional designer)

 Teach:

o IT 3123 – hardware/Software, Dr. Rutherfoord

o CSE 2300 – Discrete Structures, Prof. Rutherfoord

 Survey two summer courses and give student course evaluation (course developers and
instructional designer)

Fall 2018

 Teach:

o IT 3223 – Software Acquisition and Proj. Management, Prof. VandeVen

o IT 4683 – Management Information Technology & HCI, Dr. Halstead-Nussloch

o IT 4723 – IT Policy and Law, Prof. Tatum

 Survey three fall courses and give student course evaluation (course developers and
instructional designer)

[Proposal No.] 16 [Publish Date]

31 of 35

 Complete final assessment data analysis and prepare a final report (all course developers
and instructional designer)

[Proposal No.] 17 [Publish Date]

32 of 35

1.6 BUDGET

The funding mainly compensates our team of investigator’s work and activity beyond normal
teaching load or other job responsibilities in order to successfully complete the project. For each
proposed course, course developers approximately will spend at least 80 hours in developing the
no-cost learning material and be the instructor of record, and, will spend 20 hours in course
assessment. Instructional support will devote at a minimum 50 hours in assisting course
developers. Thus, we request the budget of this project as follows.

Dr. Rebecca Rutherfoord, Project lead; course developer and instructor of record of IT 3123,
$5,000

Prof. Susan VandeVen, course developer and instructor of record for IT3223, $5,000

Dr. Richard Halstead-Nussloch, course developer and instructor of record for IT 4683, $5,000

Prof. Dawn Tatum, course developer and instructor of record for IT 4723, $5,000

Prof. James Rutherfoord, subject matter expert, course developer and instructor of record for
CSE 2300, $5000

Dr. Zhigang Li, Provide Instructional Design Support to all five proposed courses, $1,500

Travel: $3,500, for project team members to attend the ALG kickoff and subsequent meetings to
bring back information to the team members. Our project team is also planning to submit a paper
to reputable IT education conference such as ACM SIGITE 2018 (Special Interest Group in IT
Education). Travel money will be used to attend conferences to present findings from the grant.

Total Budget: $30,000

Only open source software or free software will be used in this project thus there is no additional
spending on software or equipment purchasing.

[Proposal No.] 18 [Publish Date]

33 of 35

1.7 SUSTAINABILITY PLAN

The IT department implemented a course coordinator/developer system for all courses. A course
coordinator/developer updates course content based on research, publications and feedback from
faculty, students, alumni and our Industrial Advisory Board. Each of the investigators, except the
instructional designer, is a course coordinator/developer for their corresponding course. A course
coordinator/developer creates and maintains the course materials and teaching plans. He/she also
teaches the course at least once a year to make sure all resources are valid and makes necessary
changes and updates. This makes sure all no-cost materials and resources are highly sustainable
in the future offerings of this course. The coordinator/developer also brings major/minor course
changes to the annual assessment retreat for all IT faculty.

[Proposal No.] 19 [Publish Date]

34 of 35

1.8 REFERENCES & ATTACHMENTS

A letter of support must be provided from the sponsoring area (unit, office, department,
school, library, campus office of the Vice President for Academic Affairs, etc.) that will be
responsible for receipt and distribution of funding. Letters must reference sustainability.
In the case of multi-institutional affiliations, all participants’ institutions/departments
must provide a letter of support.

[Proposal No.] 20 [Publish Date]

35 of 35

Syllabus

CSE 2300 Discrete Structures
Developed by Jim Rutherfoord

CSE 2300 Course Syllabus

Module 1 – Importance of Discrete Structures
The purpose of this sub-module is to introduce you to the importance of discrete structures for computing. In
particular, on completion of this sub-module, you will be able to

1. Explain the term "discrete" as used in this context
2. Explain why discrete structures are so important in computing.

Please read http://cnx.org/content/m14586/latest/?collection=col10768/latest by They Duy Bui.
You can also watch the file "11-01-00: What kinds of problems are solved in discrete math?" from
http://www.oercommons.org/courses/discrete-mathematics/view. This is an introductory lecture by Shai
Simonson, but you will need to make sure you have RealPlayer or some other tool to display videos. Clearly, it
is an introduction to the course as taught by Dr. Simonson but it does provide some idea about what discrete
mathematics is and why it is important for computing.

Finally, there is some more information on pages ix and x in Thomas VanDrunen's book "Discrete Structures and
Functional Programming", which you can find at http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.115.9659&rep=rep1&type=pdf .

Module 2 – Propositional Logic

Logic is the study of valid reasoning and, as such, is relevant to much more than just computing. It turns out that
there are many different types of logic, of which we will consider two, namely propositional and first-order
predicate calculus, in some detail in this module. However, there is another logic that is of some interest in
computing, namely temporal logic, and we will very briefly cover temporal logic as well.

Moreover, since this course is about discrete structures in computing, we will also discuss a few examples of
how logic is relevant in computing.

As said, propositional logic is the simplest logic. It is used to reason about propositions or sentences that are
either true or false but not both. Not all sentences are propositions. For example, questions are sentences but are
not true or false and therefore are not propositions.

In propositional logic, we form complex propositions from simpler propositions using the connectives ~ (NOT) ,
& (AND), v (OR) and → (IMPLIES, or IF .. THEN), and we determine the truth value of a complex proposition
(i.e., whether it is true or false) from the truth value of the propositions that it is composed out of. Note that
different authors will use different symbols for the connectives.

Video: http://youtu.be/-svsnPl7qcQ

Video class lecture: http://www.youtube.com/watch?v=-v3u1VGXc6M

Video Class Lecture Axioms: http://www.youtube.com/watch?v=9J-jFz9iJLM

Free textbook chapter link: https://cnx.org/contents/IdMjj0pQ@1.1:LhBnDMwS@1/Discrete-Structures-Logic

Module 3: Predicate Logic

Class video: http://www.youtube.com/watch?v=FBWS3RNsI7A

https://kennesawedu-my.sharepoint.com/personal/lli13_kennesaw_edu/Documents/Grants/ALG%202018/Becky_ALG_2018/CSE%202300%20Syllabus.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.9659&rep=rep1&type=pdf
http://youtu.be/-svsnPl7qcQ
http://www.youtube.com/watch?v=-v3u1VGXc6M
http://www.youtube.com/watch?v=9J-jFz9iJLM
https://cnx.org/contents/IdMjj0pQ@1.1:LhBnDMwS@1/Discrete-Structures-Logic
http://www.youtube.com/watch?v=FBWS3RNsI7A

Video: http://youtu.be/YbNmPievBak

Link free textbook: https://cnx.org/contents/IdMjj0pQ@1.1:LhBnDMwS@1/Discrete-Structures-Logic

Module 4: Logic in Computing

Declarative logic: Normally, when you write a computer program, you not only instruct the machine what you
want it to achieve, you also tell it how to achieve it. Thus, the following code fragment shows how to calculate
the average of three numbers:

double average (int num1, int num2, int num3) {
 int sum = num1 + num2 + num3;

 double avg = sum/3;
 return avg;

 }

Note that in the above, we have to specify not only what is to be computed; we also have to specify how it is to
be computed. Clearly, this is a very simple example but, as you know, for large programs this gets more and
more complicated, and we typically have to comment the code to remind ourselves and others what the code is
meant to achieve.

An alternative style of programming is called "declarative programming", in which we tell the program what we
want it to determine for us, but leave it up to the program itself, or rather the interpreter or compiler for the
programming language in question, to determine how the result is computed.

We briefly discuss two examples of declarative programming languages, namely SQl and Prolog. Depending on
the major you are in, you will already have come accross at least one of them or will do so in the near future.

PROLOG: Another way in which logic is used in computing is through a programming paradigm called logic
programming. As you probably know, there are different approaches to creating programming languages, often
referred to as programming paradigms. In this module, we will very briefly discuss programming paradigms.
Programming paradigms are covered in great detail in CS3123 Programming Language Concepts.

There are four main programming paradigms, namely

Procedural programming
Object-oriented programming
Functional programming
Logic programming

In the procedural programming paradigm, a program is explicitly regarded as a sets of procedures. C is an
example. In object-oriented programming, a program is seen as a collection of objects interacting with each
other. Java and C++ are examples of object-oriented programming languages, although -in my opinion- poor
examples. In the functional programming paradigm, a program is seen as a collection of functions in the sense
in which this term is defined in mathematics and covered later in this course. Lisp is an example.
For our purposes, the programming paradigm that is more relevant is logic programming. Under this
programming paradigm, programs are seen as sets of logical sentences, expressing facts and rules about some
problem domain. Programming then becomes a matter of interrogating the program.
Perhaps the best known example of a programming language is Prolog. A Prolog consists of a series of facts
and rules, expressed as Horn clauses. A Horn class is a universally quantified conditionals, in which there is
only one statement in the consequence and the antecedent is a conjunction. The following is a very simple
example of a prolog program
sheep(sam)

 sheep(susie)

http://youtu.be/YbNmPievBak
https://cnx.org/contents/IdMjj0pQ@1.1:LhBnDMwS@1/Discrete-Structures-Logic

male(sam)
 female(susie)

 ram(X) :- sheep(X), male(X)
 ewe(X) :- sheep(X), female(X)

The first four lines simply give some facts, while the last two code up the rules that a male sheep is a ram, and a
female sheep is an ewe. Prolog uses capitals as variables. The last two prolog clauses can be rendered in the
language of predicate logic that we have used as
(∀x)[(sheep(x) & male(x)) → ram(x)]

 (∀x)[(sheep(x) & female(x)) → ewe(x)]
In order to interrogate a Prolog program, we simply ask the question we want the program to answer. Thus, if
we want to know whether Sam is a ram, we simply type
?- ram(sam).
and the program will eventually answer "yes".
We can also ask the program to find any rams. We would do so by using a variable:
?- ram(X).
and the program will answer
X = sam.
One of the main problems with Prolog from a logical point of view is the way in which it deals with negation.
Prolog uses "negation-as-failure". As your exercise for this sub-module, use the internet to find out what
negation-as-failure means, and give the definition and the source, and the explanation why negation-as-failure is
problematic from a logical point of view, in the associated drop box.

Module 5 – Program Correctness

A final appplication of logic in computing in general and computer science in particular is in the area of program
correctness. A program is correct when it does what it is intended to do, and it is formally correct if it can be
mathematically proven to be correct.

Normally, we use testing methods to determine program correctness. Suppose that you are asked to write a
program that prompts a user for a number and then calculates and displays the square of that number. Then,
once written, you will test the program by inputing a number of numbers and making sure that the number that is
displayed is indeed the square of the number that you input. You may also see what happens when the user
enters an illegal input, such as a string.

While this type of testing is acceptable for many applications, there are cases where you will want to be more
certain that the program is correct. An example might be a routine that controls a nuclear power plant. For
applications such as these, one would like to be able to mathematically prove that the program is correct.

Clearly, in order to be able to formally prove that a program is correct, you need a language in which to specify
very precisely what you want the program to achieve, and computer scientists and software engineers have
therefore develop a number of fomal specification languages, including Z (pronounced "zed", not "zee") and
VDM (http://en.wikipedia.org/wiki/Specification_language). Most formal specification languages are based on
formal logic.

Godel’s Incompleteness Algorithm: Logicians are interested in proving results about the various logics that they
have defined. Such results are often called "meta-logical" results, as they are results about the logic in question.

One particular interesting meta-logical result is Gödel's first incompleteness result. The theorem states that no
consistent system of axioms whose theorems can be listed by an effective procedure is capable of proving all
truths about the relations of the natural numbers
(http://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems). In other words, there is no
computer program that can prove everything that is true about arithmetic.

The technique that Gödel developed to prove this result can also be used to prove that the halting problem is
undecidable. The halting problem (http://en.wikipedia.org/wiki/Halting_problem) is essentially the problem of
deciding, given a program and an input, whether the program will eventually halt on this input or will run for
ever, and Turing proved that the halting problem is not decidable

Yet another was of reformulating the problem is in terms of predicate logic:

There is no computer program that, for any set of propositions Γ and a proposition φ, will be able to determine
whether φ follows from Γ or not.

In fact, predicate logic is semi-decidable: There is a computer program that will stop and say "yes" if φ actually
follows from Γ, but there is no program that will say "no" if it does not.

To illustrate the problem (and note this is an illustration and not a proof), consider the following proposition:

A person is Jewish if their mother is Jewish.

Assuming that we do not know directly whether Sam is Jewish or not, we could try to determine Sam's
Jewishness by figuring out whether Sam's mother is Jewish. Again, assuming that we have no direct evidence to
determine whether Sam' mother is Jewish, we could try to prove that the mother of Sam's mother is Jewish, and
so on. You see the problem.

Clearly, we are probably still interested in creating a computer program to automate reasoning in predicate logic,
often referred to as an automated theorem prover for first-order predicate calculus, but we also want to make
sure that the program does not run forever in the case that the proposition we want to prove does not follow.

The solution to this problem lies in the use of heuristics, rules-of-thumb that give the right answer in most cases,
but that are not guaranteed to give the right answer in all cases. The use of heuristics is prevalent in Artificial
Intelligence, and one could argue that one of the reasons for the emergence of Artificial Intelligence is the fact
that we are interested in finding solutions for problems for which we can prove that there are no solutions that
are guaranteed to work, such as automated theorem provers for first order predicate calculus.

An example of a heuristic that we can use in our example above is to stop searching once we have applied the
rule six times. In other words, once we cannot directly determine that the mother of the mother of the mother of
the mother of the mother of the mother of Sam is Jewish or not, we simply stop searching and assume that she
was not Jewish, and we conclude that we cannot prove that Sam is Jewish. You will see the problem: We would
draw the wrong conclusion if there actually is information stretching back 10 generations along Sam's maternal
lineage that the mother in question was Jewish.

Free Textbook chapter: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.115.9659&rep=rep1&type=pdf

Module 6 – Algorithms

Ted Video: https://youtu.be/6hfOvs8pY1k

What is an Algorithm: Perhaps the most fundamental concept in computing is the concept of an algorithm. An
algorithm is a finite set of unamniguous and precise instructions that

can be executed by a computer and that
takes an input, does some computaton, and produces an output, and
terminates.

It is an abstract computer program, if you will.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.9659&rep=rep1&type=pdf
https://youtu.be/6hfOvs8pY1k

Clearly, the problem with this definition is what it means to be "executable". The concept of an algorithm is
often explained by drawing an analogy with recipes (for example, a recipe to make rice-and-peas
(http://www.foodnetwork.com/recipes/bobby-flay/jamaican-rice-and-peas-recipe/index.html). However, there
are many well-written recipes in which the steps are not executable by every cook. For example, not all of us
know what to do when we are told to "deglaze the pan with white wine".
Fortunately, in the context of computing, we can define what we mean by an executable step, and we discuss this
in detail in the sub-module entitled "Algorithms".
Nor surprisingly, there are often many different algorithms to achieve a particular task. For example, there are at
least four well-understood algorithms for sorting a list. The question therefore naturally arises whether we can
compare different algorithms in some abstract, mathematical way, for example to determine whether one runs
faster than an other. The answer is that we can and the branch of discrete mathematics that allows us to do so is
called "Complexity Analysis". In complexity analysis we express the running time of an algorithm in terms of
the size of the input. Thus, we can express the running time of a sorting algorithm in terms of the numbers of
items in the list to be sorted. The sub-module "Complexity Analysis" provides more detail.
As we shall see as well, in calculating the complexity of an algorithm, we ignore a number of factors. As a
result, complexity analysis is not necessarily the best way to compare two algorithms, and in some cases, we
may want to turn to alternative ways of comparing algorithms. One option is to conduct a timing experiment. In
a timing experiment, we implement the different algorithms in a programming language and then measure the
time that each takes to run. As your term project for this course, you will conduct some timing experiments for
different sorting algorithms, and compare the results from your timing experiments with the results from a
complexity analysis.
Many of the concepts introduced in this module will be discussed in far greater detail in subsequent courses,
including the Data Structures course and the Analysis of Algorithms course. In this module, we will merely
scratch the surface, and we will for example only discuss iterative algorithms, and ignore recursive algorithms.

Term Algorithm: As said before, an algorithm is essentially an abstract computer program. As we said as well,
often there are many different algorithms for achieving the same task, and we want to find some way to formally
compare the different algorithms. This in turn means that we need to find some way to specify algorithms.

Since our algorithms take an input and produce an output, they are very similar to functions in the mathematical
sense (and discuss in some detail below). After all, functions take an input and produce an output that is specific
to that input. That is, functions always produce the same output on the same intput. Moreover, since we want
out algorithms to be executable by a computer, one could say that an algorithm is a computable function.
Mathematicians started to try to characterize what makes a function computable well before actual computers
had been built. Thus, the earliest definition of computable functions was provided by Alan Turing in 1936 when
he defined what he called a "Logical Computing Machine" and what later became known as a Turing machine
(http://en.wikipedia.org/wiki/Turing_machine). Other definitions included lambda calculus, register machines
and μ-recursive functions (see http://en.wikipedia.org/wiki/Computable_function for an overview and links to
the various definitions that have been proposed).
The good thing about all these definitions is that they are equivalent. For example, all functions that are
computable if you use Turing machines are also computable if you use lamba calculus, and vice versa, and the
same applies for all other definitions. The bad thing is that it is very hard if not impossible to specify algorithms
that do some real work in any of these formalisms, and we therefore need a more intuitive way of specifying
algorithms, and fortunately there is.
In order to specify an algorithm, we need the following constructs:

An assignment operator to assign a value to a variables and create an assignment statement (e.g., = in Java
or C++);
A series of operators to compare values (e.g, ==, <, >) and thus create tests;
Some logical operators to combine tests into more complex tests (e.g., && and || in Java and C++);
A conditional to branch depending on the outcome of a test (if-then-else);
A way to make a sequence of statements;
A way to repeat statements.

Free Textbook chapter: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.115.9659&rep=rep1&type=pdf

Module 7 – Complexity Analysis

Big O Complexity: As said, in many cases, there are different algorithms to achieve the same task, and for
obvious reasons, we will want to use the best algorithm to create the computer program. Now, there are many
ways to define "best". For example, one algorithm may be better than another because it is easier to understand,
and hence to translate into a programming language, like Java or C++. Or an algorithm may be better because it
uses less memory. However, in complexity analysis, we consider an algorithm better if it runs faster.

There are of course many factors that influence the speed of a computer program, other than just the algorithm
that underlies the program and the size of the input to the algorithm. For example, the type of computer and in
particular the speed of the processor in the computer have a big influence on the speed of the program, and there
is a somewhat corny joke among computer scientists that the best way to speed up a program is to save it to a
USB drive and wait for the next generation computer to come out.

However, since we are comparing algorithms, i.e. abstract computer programs, we can ignore most of these other
factors and we only consider the size of the input, and we express the running time of an algorithm as a function
of the size of the input. The notation that we use to express the complexity of an algorithm is O (big-Oh).
Moreover, when we give the complexity of an algorithm, we ignore all terms other than the term that most
determines the growth of the value. Thus, if we determine that an algorithm runs in n.log(n) + 73 time
units, where n is the size of the input, we state that the complexity of the algorithm is O(n.log(n)). The rationale
is that, as n gets sufficiently large, the contribution of the other terms to the value of the function that determines
the running time becomes negligible.

Link: http://www.youtube.com/playlist?list=PL2_aWCzGMAwI9HK8YPVBjElbLbI3ufctn

Determining Complexity Analysis: In the sub-module on algorithms, we saw that in order to specify an
algorithm, we needed

An assignment operator to assign a value to a variables and create an assignment statement (e.g., = in Java
or C++);
A series of operators to compare values (e.g, ==, <, >) and thus create tests;
Some logical operators to combine tests into more complex tests (e.g., && and || in Java and C++);
A conditional to branch depending on the outcome of a test (if-then-else);
A way to make a sequence of statements;
A way to repeat statements, for which we used iteration (e.g., for-loops).

We can use these constructs to determine the time-complexity of an algorithm by using the following rules:

The complexity of an assignment, a test and a combination of test is constant, i.e. it is O(1).
The complexity of an if-then-else statement is the maximum of the complexity of the then-part and the
else-part. Thus,

 O (if <some_test> { <then-part> } else { <else-part> }) =
 MAX(O(<then-part>), O(<else-part>))

The complexity of a sequence of statement is the maximum of the complexity of the statements in the
sequence. Thus,

 O (<statement-1>; <statement-2>; ; <statement-n>;) =
 MAX(O(<statement-1>), O(<statement-2>), ... , O(<statement-n>))

The complexity of a for loop is the complexity of the body of the loop times the number of times we go
throught the loop. Thus,

 O (for(i = 0; i < n; i++){<body>}) = n * O(<body>)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.9659&rep=rep1&type=pdf
http://www.youtube.com/playlist?list=PL2_aWCzGMAwI9HK8YPVBjElbLbI3ufctn

Watich the videos "Time complexity analysis - How to calculate running time?" and "Time complexity analysis -
some general rules" at http://www.youtube.com/playlist?list=PL2_aWCzGMAwI9HK8YPVBjElbLbI3ufctn for
more details and some examples. As before, you will have to watch some adverts. Also, the video "Time
complexity analysis - some general rules" mentions asymptotic notations and in particular theta. You can
understand the material without knowing additional details about these concepts, but if you are interested watch
the video "Time complexity analysis: asymptotic notations - big oh, theta ,omega" at the same site.

Video Complexity Analysis: http://www.youtube.com/playlist?
list=PL2_aWCzGMAwI9HK8YPVBjElbLbI3ufctn

Module 8 – Sets

Free textbook chapter: http://cnx.org/content/m15772/latest/?collection=col10768/latest

Video on Sets: https://youtu.be/t3XdRbPNtdg?list=PLUpS0WwSvA3e7HtgzNHMivo0T8V0etX_Z

Paradox of Sets: The material referenced above covers what Duy Bui calls "naive set theory". There is a
complication with naive set theory, which was first published by Bertrand Russell in 1901, although the problem
was known by some mathematicians before. Russell constructed the set of all sets that are not a member of
themselves, i.e.

{ x | x ∉ x }

and then asked whether this set is a member of itself. In other words, is

{ x | x ∉ x } ∈ { x | x ∉ x }?

A little thought will show the problem. If this set, let's call it R, is a member of itself, then it must satisfy the
condition of not being a member of itself. In other words,

R ∈ R → R ∉ R

On the other hand, if R is not a member of itself, then it satisfies the condition of of being a member of R. In
other words

R ∉ R → R ∈ R.

We therefore have a paradox that can only be resolved by complicating naive set theory. You can read more
about Russell's paradox and how mathematicians have dealt with it at
http://en.wikipedia.org/wiki/Russell%27s_paradox.

Link to Paradox: http://en.wikipedia.org/wiki/Russell%27s_paradox.

Relations: One of the topics covered in the material on relations is orders. You will also recall that creating an
ordered list of items is central to the term project in that you were asked to implement two different sorting
algorithms and compare their performance in a timinig experiment.

The question may arise why sorting is so important. The reason is that if you can sort a set of items, and you can
access any position in the set in a constant time, the complexity of determining whether a given item is an
element of that set goes down from O(n) to O(log(n)).

Clearly, if your set is not ordered (or if you cannot access any position in the set in a constant time), then the
only way in which you can determine whether a given item is an element of the set is to compare it with the first
element in the set. If they are identical, you are done; if they are not, you compare it with the next element in the

http://www.youtube.com/playlist?list=PL2_aWCzGMAwI9HK8YPVBjElbLbI3ufctn
http://cnx.org/content/m15772/latest/?collection=col10768/latest
https://youtu.be/t3XdRbPNtdg?list=PLUpS0WwSvA3e7HtgzNHMivo0T8V0etX_Z
http://en.wikipedia.org/wiki/Russell%27s_paradox

set, and so on. If the item is not an element of the set, then we will need to compare the item with every element
in the set, and we therefore make n comparison where n is the number of elements in the set. If the item is an
element of the set, then, on average, the item you are looking for will be somewhere half way down the list, and
you will therefore have to make on average 1/2n comparisons. In other words, you can expect to have to make
1/2n comparisons. Since we ignore the constant, the complexity of this type of search, which is called "linear
search" is O(n).

However, if the set is ordered, and we can access any position in the set in a constant time, we start by
comparing the item with the element in the middle of the set. If the item is identical to the element in the middle
of the set, then we are done; if it is not, and the item is smaller than the one in the middle, we know that the item,
if it is an element of the set, will be in the first half of the list; if it is larger, then it will be in the second half. So,
if it is smaller, we repeat the process for the lower half of the list; if it is larger then we repeat the process for the
larger half of the list. Since we keep dividing the list we are searching in half, and we can divide a list of size n
in half log(n) times, and the complexity of the algorithm, which is called "binary search", is O(log(n)).

Link: http://www.youtube.com/watch?v=wNVCJj642n4

Class Lecture: https://youtu.be/YlhJKoqzcdY

Module 9 – Relations

Free Textbook chapter: http://cnx.org/content/m15775/latest/?collection=col10768/latest

Class lecture: https://youtu.be/ikIyUks8HRI

Video on Relations: http://www.youtube.com/watch?
v=q3Z7PiW8FNg&list=PL_D1rGgPr31PjDJPnnsyDJo1eWweVeq03

Video 2 on Relations: http://www.youtube.com/watch?v=h34hZ_hynzE

Video 3 on Relations: http://www.youtube.com/watch?v=hM_iObXeno0

Database and relations: In the module on logic, we encountered an example of declarative programming in
SQL. You will recall that SQL is the most widely used language to interrogate databases.

There have been different models of building databases, but the model most widely used at the moment is the
relational model, which was due to Edgar F. Cobb. In the relational model, a database is a set of relations in the
sense in which we defined the term in this module, also called tables. You can find more details on the relational
model at

http://en.wikipedia.org/wiki/Relational_model,

and the model will be discussed in much greater detail in the database course.

Database researchers have also created two formal languages for creating, interrogating and analyzing databases,
namely relational calculus and relational algebra. You can find more details about relational algebra at

http://en.wikipedia.org/wiki/Relational_algebra

and about relational calculus at

http://en.wikipedia.org/wiki/Relational_calculus

http://www.youtube.com/watch?v=wNVCJj642n4
https://youtu.be/YlhJKoqzcdY
http://cnx.org/content/m15775/latest/?collection=col10768/latest
https://youtu.be/ikIyUks8HRI
http://www.youtube.com/watch?v=q3Z7PiW8FNg&list=PL_D1rGgPr31PjDJPnnsyDJo1eWweVeq03
http://www.youtube.com/watch?v=h34hZ_hynzE
http://www.youtube.com/watch?v=hM_iObXeno0
http://en.wikipedia.org/wiki/Relational_algebra
http://en.wikipedia.org/wiki/Relational_calculus

You will see that relational calculus has two different flavors, namely tuple relational calculus
http://en.wikipedia.org/wiki/Tuple_relational_calculus

 and domain relational calculus (http://en.wikipedia.org/wiki/Domain_relational_calculus

Module 10 – Functions

Free Textbook chapter: http://cnx.org/content/m15776/latest/?collection=col10768/latest

Class lecture: https://youtu.be/kykmBB74-HQ

Functional Programming: Under the functional programming paradigm, a program consists of a set of functions
in the mathematical sense of the word. The language ML that is used in Thomas VanDrunen's book is an
example of a functional programming language. Another -widely used- functional programming language is
LISP. LISP has a very simple syntax. Here is an example of a simple LISP program

(defun mult_through_add (a, b)
 (if (eq a 0)

 b
 a + mult_through_add(a, b - 1)

)
)

defun defines a new function and if is an in-built function in LISP which takes three arguments. It evaluates
the first argument and if it does not evaluate to false, it evaluates the second argument and otherwise it evaluates
the third. In other words, it is the if-then-else operator. Clearly, the definition assumes that b is a positive
number.

Once we have defined a function, we can either call it directly, or use it in the definition of another function.

Find out more details about LISP at

http://en.wikipedia.org/wiki/Lisp_%28programming_language%29

or

http://www.gigamonkeys.com/book/

and see an example of a larger LISP program at

http://www.csc.villanova.edu/~dmatusze/resources/lisp/lisp-example.html

Module 11 – Graphs

Class Lecture: https://youtu.be/vOomN71xYIg

Video on Graphs: http://www.youtube.com/watch?v=HmQR8Xy9DeM

http://en.wikipedia.org/wiki/Tuple_relational_calculus
http://en.wikipedia.org/wiki/Domain_relational_calculus
http://cnx.org/content/m15776/latest/?collection=col10768/latest
https://youtu.be/kykmBB74-HQ
http://en.wikipedia.org/wiki/Lisp_%28programming_language%29
http://www.gigamonkeys.com/book/
http://www.csc.villanova.edu/~dmatusze/resources/lisp/lisp-example.html
https://youtu.be/vOomN71xYIg
http://www.youtube.com/watch?v=HmQR8Xy9DeM

Video 2 on Graphs: http://www.youtube.com/watch?v=cOB85BQ8gX0

Video 3 on Graphs: http://www.youtube.com/watch?v=0t3i30T2NB0

Graphs as Networks: It will not come as a surprise that graphs are used heavily in order to analyze networks. In
this module, we will introduce some examples and show how the various properties of graphs that were
introduced in the previous sub-module and some of the algorithms that we will introduce can be used to
determine properties of networks that are relevant to some applications.

Connectedness - Graphs, perhaps not surprisingly, can prove extremely useful as a tool to analyze computer
networks. A good computer network is a connected graph. Given a set of network nodes and connections,
which we can obviously analyze as a set of vertices and edges, a useful algorithm would be one that can quickly
determine which the graph is connected.

There are different ways in which we can determine whether a graph is connected. One is through search: We
can start at an arbitrary vertex, use a graph search algorithm, and count all the vertices we can reach. If the
number of vertices we can reach is equal to the number of vertices in the graph, then the graph is connected.
There are different graph search algorithms. Two that are particularly useful are breadth-first and depth-first
search. Find out more about breadth first and depth first search, and use the dropbox "Graph Search" to show
the order in which you would visit the vertices in the graph below, starting at vertex v4.

Vertices {v1,v2,v3,v4,v5}
Edges {<v1,v3>,<v3,v2>,
<v4,v2>,<v4,v5>,<v5,v1>}

Adjancency graphs are also useful tool to determine whether a graph is connected. In order to show you how
this works, recall that an adjacency matrix is esentially a 2-dimensional array both of whose dimensions are the
same size. We will call this the size dimension of the array.

So, to determine whether a graph is connected from its adjacency graph M, we can use the following algorithm:

copy M into a new graph M';
 changed = 1;

 while (changed == 1) {
 changed = 0;

 for (i = 0; i < size dimension of M'; i++) {
 for(j = 0; j < size dimension of M'; j++) {

 if (M'[i,j] = 1) {
 for(k = 0; k > size dimension of M', k++) {

 if (M'[j,k] == 1 && M'[i,k] != 1)
 M'[i,k] = 1;

 changed = 1;
 }

 }
 }

 }
 }

 }

http://www.youtube.com/watch?v=cOB85BQ8gX0
http://www.youtube.com/watch?v=0t3i30T2NB0

If M' now completely consists of 1, G is connected.

Link Social Networks: http://en.wikipedia.org/wiki/Social_network

Link E/R Diagrams: http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

Link Semantic Networks: http://en.wikipedia.org/wiki/Semantic_network

Link Conceptual Graphs/Networks: http://en.wikipedia.org/wiki/Conceptual_graph

Module 12 – Trees

Link: http://www.saylor.org/site/wp-content/uploads/2011/09/CS202-Graphs1-Srini-Devadas.pdf

Link Definition: http://en.wikipedia.org/wiki/Tree_(data_structure)

Video: https://www.youtube.com/watch?v=58zSgcTj6ZQ&hd=1

Video 2: https://www.youtube.com/watch?v=HmQR8Xy9DeM&hd=1

Video 3: http://www.studyyaar.com/index.php/module/39-trees

Binary Search Trees

In our discussion of sorting, we saw that if a list is sorted, and you can access any item in a constant time,
you can use binary search, rather than linear search, and the complexity of determining whether an item
occurs in a list goes down from O(n) to O(log(n)). However, if you cannot access any item in a constant
time, then you cannot use binary search. Fortunately, binary search trees (BSTs) solve this problem.

Link: http://en.wikipedia.org/wiki/Binary_search_tree
Video: https://www.youtube.com/watch?v=pYT9F8_LFTM&hd=1
Video 2: https://www.youtube.com/watch?v=rVU_jXyHXqw&hd=1
Video 3: https://www.youtube.com/watch?v=pmsVitdSaVU&hd=1

http://en.wikipedia.org/wiki/Social_network
http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
http://en.wikipedia.org/wiki/Semantic_network
http://en.wikipedia.org/wiki/Conceptual_graph
http://www.saylor.org/site/wp-content/uploads/2011/09/CS202-Graphs1-Srini-Devadas.pdf
http://en.wikipedia.org/wiki/Tree_(data_structure)
https://www.youtube.com/watch?v=58zSgcTj6ZQ&hd=1
https://www.youtube.com/watch?v=HmQR8Xy9DeM&hd=1
http://www.studyyaar.com/index.php/module/39-trees
http://en.wikipedia.org/wiki/Binary_search_tree
https://www.youtube.com/watch?v=pYT9F8_LFTM&hd=1
https://www.youtube.com/watch?v=rVU_jXyHXqw&hd=1
https://www.youtube.com/watch?v=pmsVitdSaVU&hd=1

Final Report

Affordable Learning Georgia Textbook Transformation Grants

Final Report

Grant #354

To submit your Final Report, go to the Final Report submission page on the ALG website:
http://affordablelearninggeorgia.org/site/final_report_submission

Final report submission requires four files:

• This completed narrative document
• Syllabus or syllabi

o (if multiple files, compress into one .zip folder)
• Qualitative/Quantitative Measures data files

o (if multiple files, compress into one .zip folder)
• Photo of your team or a class of your students w/ at least one team member, minimum

resolution 800x600px
o (nearly all smartphones take photos larger than this size by default)

Follow the instructions on the webpage for uploading your documents. Based on receipt of this
report, ALG will process the final payment for your grant. ALG will follow up in the future with
post-project grantee surveys and may also request your participation in a publication,
presentation, or other event.

General Information
Date: 12/21/2018

Grant Round: 11

Grant Number: #354

Institution Name(s): Kennesaw State University

Project Lead: Rebecca Rutherfoord

Team Members (Name, Title, Department, Institutions if different, and email address for
each):

• Rebecca Rutherfoord, Interim Assistant Dean, College of Computing and Software
Engineering, Department Chair for Information Technology, and Professor of
Information Technology, brutherf@kennesaw.edu.

• Dawn Tatum, Senior Lecturer, College of Computing & Software Engineering,
Information Technology Department, dtatum7@kennesaw.edu

• Susan VandeVen, Senior Lecturer, College of Computing & Software Enginieering,
Information Technology Department, svandeve@kennesaw.edu

http://affordablelearninggeorgia.org/site/final_report_submission
mailto:brutherf@kennesaw.edu
mailto:dtatum7@kennesaw.edu
mailto:svandeve@kennesaw.edu

• Richard Halstead-Nussloch, Professor of Information Technology, College of Computing

& Software Engineering, Information Technology Department, rhalstea@kennesaw.edu
• James Rutherfoord, Senior Lecturer, College of Computing & Software Engineering,

Software Engineering & Game Design Department, jruther3@kennesaw.edu
• Zhigang Li, Assistant Professor of Information Technology, College of Computing &

Software Engineering, Information Technology Department, zli8@kennesaw.edu

Course Name(s) and Course Numbers:

• IT 3123 Hardware/Software: Rebecca Rutherfoord
• IT 4723 IT Policy & Law: Dawn Tatum
• IT 4683 Management of IT: Richard Halstead-Nussloch
• IT 3223 Software Acquisition & Project Management: Susan VandeVen
• CSE 2300 Discrete Structures: James Rutherfoord

Semester Project Began: Spring 2018

Final Semester of Implementation: Fall 2018

Total Number of Students Affected During Project:

Course Enrollment
IT 3123 112
IT 4723 15
IT 4683 92
IT 3223 78
CSE 2300 238
Total 535

1. Narrative
A. Describe the key outcomes, whether positive, negative, or interesting, of your project.
Include:

• Summary of your transformation experience, including challenges and
accomplishments

• Transformative impacts on your instruction
• Transformative impacts on your students and their performance

Our transformation effort is a great success. We have developed and implemented no-cost-to-
student learning material for the five proposed courses. The URLs of the learning material are

mailto:rhalstea@kennesaw.edu
mailto:jruther3@kennesaw.edu

listed in table one. 126 students have been impacted by our efforts. As shown in table two,
students’ opinions on Learning material we created are overwhelmingly positive. Our
assessment data shows that, the no-cost learning material we developed are as effectively as
the textbooks used in the corresponding classes.

Table 1. URL of No-Cost Learning Material

Course URL of No-Cost Learning Material Developer
IT 3123
Hardware/Software

http://ksuweb.kennesaw.edu/~lli13/ALG364/IT3123 Dr. Rebecca
Rutherfoord

IT 4723 IT Policy &
Law

http://ksuweb.kennesaw.edu/~lli13/ALG364/IT4723/IT4723.htm Prof. Dawn
Tatum

IT 4683
Management of IT

http://ksuweb.kennesaw.edu/~rhalstea/ALG/IT4683/index.html

Dr. Richard
Halstead-
Nussloch

IT 3223 Software
Acq & Proj Mgt

 Prof. Susan
VandeVen

CSE 2300 Discrete
Structures

http://ksuweb.kennesaw.edu/~lli13/ALG364/CSE2300.html Prof. James
Rutherfoord

Table 2. Students’ Opinion on No-Cost Learning Material

Statements Score
In general, the learning modules were organized 4.13
The content, links and other leaning module materials were sufficient to help me
learn. 4.22
 I liked not having to buy a textbook and instead used the materials that were
provided and free. 4.45
 I prefer using selected open source/free learning materials rather than a paid
textbook for this course. 4.47
Overall, compared to a potential paid textbook, open resource learning materials
provided the necessary assistance to learn the material. 4.62

I would take another course that uses open/free learning materials. 4.74
Note: in the survey, students are asked to express their opinion on a list of question using a 5-
points scale where 1 is mostly disagree, 3 is neutral, and 5 is mostly agree.

Our plan is to get many of our undergraduate Information Technology courses completed
without a textbook. The volatile area of Information Technology makes a no-textbook course
ideal! Our faculty are completely onboard with the no-cost course development that the ALG
grants provide.

http://ksuweb.kennesaw.edu/%7Elli13/ALG364/IT3123
http://ksuweb.kennesaw.edu/%7Elli13/ALG364/IT4723/IT4723.htm
http://ksuweb.kennesaw.edu/%7Erhalstea/ALG/IT4683/index.html
http://ksuweb.kennesaw.edu/%7Elli13/ALG364/CSE2300.html

From the instructors’ perspectives, collecting and organizing the learning material ourselves not
only enable us to better respond to dynamic nature of the information technology field, but
also give us the flexibility to customize the course content to better serve our students. On the
other hand, the transformation activities require significant efforts and time commitment from
the faculty to collect, organize, create, and maintain no-cost learning material that offers
equivalent learning experience as the textbooks. Our transformative efforts in replacing
textbooks in the proposed courses will not happen without the strong supports from the ALG
grant.

With our sustainability plan, the no-cost learning material will be continually used and
hundreds and thousands of students from the Information Technology undergraduate degree
Kennesaw State University will enjoy the cost savings and enhanced learning experience in the
future.

B. Describe lessons learned, including any things you would do differently next time.

IT3123

What worked well: The newly designed instructor created content, along with an online
free textbook assisted the students in learning the material. All of the links and videos were
also important for up-to-date material for the course.

What needs to be done still: New labs will need to be added to the course when the newly
created Information Technology lab goes into effect fall 2019.

IT 4683

What worked well: taking our the ISACA materials and replacing them with online links and
videos for the course outcomes.

IT 4723

What worked well: creating new content for the course, updating links and videos and
creating new labs for the course allowed the students to have several types of ways to learn
the material.

IT 3223

What worked well: Being able to replace two books for this course saved the students quite
a lot of money. Since this course looks at two major areas – software acquisition &
software life cycle, and then project management, the instructor was able to find up-to-
date material for both major areas of the course. Creating new course content, providing
links and videos has given the students current material to meet the course outcomes.

2. Quotes
• Provide three quotes from students evaluating their experience with the no-cost

learning materials.
“The IT3123 course has changed quite a bit from the previous version. I really liked
having everything online (including a free textbook), and felt that all of the modules
contained enough material for me to learn the outcomes of each module. I liked not
having to buy a textbook.” – an IT 3123 student

“I had heard from previous students that we had to buy two books for this course, so I
was surprised when we didn’t have to buy any books. This really saved me money and I
still felt I could learn everything I needed to from the materials provided.” – an IT 3223
student

“The IT 4683 course seemed fine without having a textbook. I didn’t have any trouble
learning the material for the course.” – an IT 4683 student

3. Quantitative and Qualitative Measures
3a. Uniform Measurements Questions
The following are uniform questions asked to all grant teams. Please answer these to the best of your
knowledge.

Student Opinion of Materials

Was the overall student opinion about the materials used in the course positive,
neutral, or negative?

Total number of students affected in this project: ___535_______

1. Positive: __91.1_____ % of ___102_____ number of respondents
2. Neutral: __6.45_____ % of ____102____ number of respondents
3. Negative: __2.45_____ % of ___102_____ number of respondents

Student Learning Outcomes and Grades

Was the overall comparative impact on student performance in terms of learning
outcomes and grades in the semester(s) of implementation over previous
semesters positive, neutral, or negative?

 Student outcomes should be described in detail in Section 3b.

 Student average GPA

Course Enrollment Semester with no-cost material Semester with textbooks
IT 3123 112 2.89 2.23
IT 4723 15 2.98 2.96
IT 4683 92 3.73 3.70
IT 3223 78 3.03 3.2
IT 2300 238 3.72 3.68

 Choose One:

• __X_ Positive: Higher performance outcomes measured over previous
semester(s)

• ___ Neutral: Same performance outcomes over previous semester(s)
• ___ Negative: Lower performance outcomes over previous semester(s)

Student Drop/Fail/Withdraw (DFW) Rates

Was the overall comparative impact on Drop/Fail/Withdraw (DFW) rates in the
semester(s) of implementation over previous semesters positive, neutral, or
negative?

Drop/Fail/Withdraw Rate:
Depending on what you and your institution can measure, this may also be known as a
drop/failure rate or a withdraw/failure rate.

 Drop/Fail/Withdraw Rate Comparison

Course Enrollment Current semester Previous semester
IT 3123 112 5% 15%
IT 4723 15 8% 8%
IT 4683 92 5% 0%
IT 3223 78 12% 11%
CSE 2300 238 5% 8%

___35____% of students, out of a total ___535____ students affected,
dropped/failed/withdrew from the course in the summer and fall semesters of
implementation.

Choose One:

• ___ Positive: This is a lower percentage of students with D/F/W than previous
semester(s)

• _X__ Neutral: This is the same percentage of students with D/F/W than previous
semester(s)

• ___ Negative: This is a higher percentage of students with D/F/W than previous
semester(s)

3b. Measures Narrative
In this section, summarize the supporting impact data that you are submitting, including all
quantitative and qualitative measures of impact on student success and experience. Include all
measures as described in your proposal, along with any measures developed after the proposal
submission.

For this ALG proposal, we proposed to use multiple data collection methods to measure the
success of our creating our no-cost courses. We looked at both quantitative and qualitative
measures.

Quantitatively, we compared students’ DFW rates, grades, and success in course learning
outcomes. The DFW rates are taken from student registration system. The student grades and
success in course learning outcomes are assessed Faculty Course Assessment Report (FCAR).
Faculty in IT department at Kennesaw State University are required to create a FCAR for every
course they teach for each semester. The FCAR includes students’ grade and success in
achieving the course learning outcomes.

Qualitatively, we developed a survey to collect students’ opinion on the learning material used
in the courses. Students rated their experience using a 5 points scale. Students also give the
opportunities to enter comments they may have. Based on the assessment data we collected,
the learning material we created offer the same level of the learning effectiveness as the
textbook. Some no-cost percentages were higher than textbook courses, and some were lower.
Students’ performance outcomes and DFW in generally stay the same pre-implementation and
post-implementation.

4. Sustainability Plan
• Describe how your project team or department will offer the materials in the course(s) in

the future, including the maintenance and updating of course materials.

The IT department at KSU has an individual course architect architect for all courses. A
course architect develops, updates and maintains course content based on research,
publications and feedback from students and alumni. He/she also teaches the course at
least once a year to make sure all resources are valid and make necessary changes. This
makes sure all no-cost materials and resources are highly sustainable in the future offerings
of this course.

5. Future Plans
• Describe any impacts or influences this project has had on your thinking about or

selection of learning materials in this and other courses that you will teach in the future.
• Describe any planned or actual papers, presentations, publications, or other professional

activities that you expect to produce that reflect your work on this project.

Information technology is dynamic field where existing technology frequently get updated
and new technology constantly comes out. Due to this reason, the no-cost learning material
model naturally fits better for IT curriculum than the traditional textbook models. The
faculty in the IT department already completed several individual and transform-at-scale
grants. The positive feedback from the students and our own development and
implementation process inspire more faculty in the IT to get involved with developing no
cost learning material for their courses.

A panel was presented at SIGITE 2018 on developing No-cost Materials for STEM fields by all
of the ALG participants. Dr. Rebecca Rutherfoord and Prof. James Rutherfoord also
presented a paper at the EDSIG 2018 conference on Creating No-Cost Materials for STEM
Courses.

6. Description of Photograph
• On the Final Report Submission page, you will be submitting a photo. In this document,

list the names of the people shown in this separately uploaded photograph, along with
their roles.

From Left: Dr. Richard Halstead-Nussloch, Dr. Rebecca Rutherfoord, Prof. Datn Tatum,
Professor Susan VandeVen

	354_cover_discretestructures
	description
	proposal_cover
	354_proposal
	syll_cover
	354_syllabus_discretestructures
	finalrpt_cover
	354_report
	General Information
	1. Narrative
	2. Quotes
	3. Quantitative and Qualitative Measures
	3a. Uniform Measurements Questions
	3b. Measures Narrative

	4. Sustainability Plan
	5. Future Plans
	6. Description of Photograph

