
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Mathematics & Statistics Theses & 
Dissertations Mathematics & Statistics 

Spring 2010 

Rao's Quadratic Entropy and Some New Applications Rao's Quadratic Entropy and Some New Applications 

Yueqin Zhao 
Old Dominion University 

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_etds 

 Part of the Analysis Commons, and the Applied Statistics Commons 

Recommended Citation Recommended Citation 
Zhao, Yueqin. "Rao's Quadratic Entropy and Some New Applications" (2010). Doctor of Philosophy (PhD), 
Dissertation, Mathematics & Statistics, Old Dominion University, DOI: 10.25777/qgak-sf09 
https://digitalcommons.odu.edu/mathstat_etds/73 

This Dissertation is brought to you for free and open access by the Mathematics & Statistics at ODU Digital 
Commons. It has been accepted for inclusion in Mathematics & Statistics Theses & Dissertations by an authorized 
administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mathstat_etds
https://digitalcommons.odu.edu/mathstat_etds
https://digitalcommons.odu.edu/mathstat
https://digitalcommons.odu.edu/mathstat_etds?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_etds/73?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


RAO'S QUADRATIC ENTROPY AND SOME NEW 

APPLICATIONS 

by 

Yueqin Zhao 
B.S. July 2000, Shanghai University of Finance and Economics 

M.S. May 2004, Old Dominion University 

A Dissertation Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment of the 

Requirement for the Degree of 

DOCTOR OF PHILOSOPHY 

MATHEMATICS AND STATISTICS 

OLD DOMINION UNIVERSITY 

May 2010 

Dayanand N. %plnPirector) 

N. Rao Chaganty 

Larry D. Lg

Michael J. DoAyak 

David O. Matson 



ABSTRACT 

RAO'S QUADRATIC ENTROPY AND SOME NEW APPLICATIONS 

Yueqin Zhao 

Old Dominion University, 2010 

Director: Dr. Dayanand N. Naik 

Many problems in statistical inference are formulated as testing the diversity of popula

tions. The entropy functions measure the similarity of a distribution function to the uni

form distribution and hence can be used as a measure of diversity. Rao (1982a) proposed 

the concept of quadratic entropy. Its concavity property makes the decomposition similar 

to ANOVA for categorical data feasible. In this thesis, after reviewing the properties and 

providing a modification to quadratic entropy, various applications of quadratic entropy 

are explored. First, analysis of quadratic entropy with the suggested modification to ana

lyze the contingency table data is explored. Then its application to ecological biodiversity 

is established by constructing practically equivalent confidence intervals. The methods are 

applied on a real dinosaur diversity data set and simulation experiments are performed to 

study the validity of the intervals. Quadratic entropy is also used for clustering multinomial 

data. Another application of quadratic entropy that is provided here is to test the associ

ation of two categorical variables with multiple responses. Finally, the gene expression 

data inspires another application of quadratic entropy in analyzing large scale data, where 

a hill-climbing type iterative algorithm is developed based on a new minimum quadratic 

entropy criterion. The algorithm is illustrated on both simulated and real data. 
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CHAPTER I 

INTRODUCTION 

Many problems in statistical inference are formulated as testing the diversity of popula

tions. When the variables involved are continuous then variance is generally used as a 

measure of diversity. However for categorical variables, there is no single measure of di

versity. Entropy functions are generally used for this purpose. Entropy is a non-negative 

function defined on the space of distribution functions and attains the maximum when the 

distribution is uniform and attains minimum when the distribution is degenerate. The en

tropy measures the similarity of a distribution with the uniform distribution and hence it is 

used as a measure of diversity. 

This chapter begins by introducing traditional diversity functions in Section 1.1. In 

Section 1.2 Rao's quadratic entropy will be introduced along with various examples and 

decomposition. In Section 1.3, an overview of the thesis is presented. 

1.1 ENTROPY FUNCTIONS 

There are several entropy functions defined in the literature. We will provide a list here. 

Let Ft = (%\, %2, •••, Ks) be a vector of relative frequencies in s categories in a population, 

then the following are entropy functions: 

• Hs(U) = —YiKilognh (Shannon entropy) 

• Ha(n) = 2o=r~[ia > 0 , a / 1, (a-order entropy of Havrda and Charvat) 

• HR(IT) = log<^_nf\a > 0 , a / l , (a-degree entropy of Renyi) 

• Hpijl) = —Y,nd°gni — L( l — Ki)log(\ — Ki), (paired Shannon entropy) 

. Hr{U) = £%J , 7 > 0 , y ^ 1, (y-entropy) 

• HQ(JI) = 1 — Lnf, (Gini-Simpson entropy) 

These entropy functions have been widely used in a variety of studies in genetics (Kar-

lin, Kenett, and Bonne-Tamir, 1979), in anthropology (Rao, 1977), in biology Lewontin, 

This dissertation follows the style of Journal of Agricultural, Biological, and Environmental Statistics. 
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1972), in ecology (Pielou, 1975), in economics (Sen, 1973) and in sociology (Agresti and 

Agresti, 1978), and so forth. 

While some of these measures are derived from mathematically well postulated ax

ioms, most are based on heuristic considerations and others are constructed assuming some 

models for genetic and environmental mechanisms causing differences between individu

als and populations. However, these entropies, as shown in Rao (1982b), do not possess 

higher order convexity properties necessary for carrying out analysis of diversity (AN-

ODIV) similar to analysis of variance (ANOVA). Rao (1982a) introduced a new measure 

called Rao's quadratic entropy which possesses these properties. 

1.2 RAO'S QUADRATIC ENTROPY 

Rao (1982a) introduced a general diversity measure called Rao's quadratic entropy (QE): 

HQ(U) = YLduWj•• = n ,An> a.2.1) 

where A = (d,y), dtj is a nonnegative number representing the difference between the cat

egories i and j , so that HQ(H) is the average difference between two individuals drawn at 

random from a population. 

Let dij = 1, if i ̂  j and da — 0; then 

HQ(n) = i-J£^ = HG, 

which is Gini-Simpson entropy. 

Generally, Rao's quadratic entropy is determined by first choosing a non-negative sym

metric function d(X\, X2), which is a measure of difference between two individuals with 

X=X\ and X=X2. The quadratic entropy of any distribution function with d{X\,X2) is 

defined as the function (Rao, 1982c): 

HQ = Jd(X1,X2)P(dX1)P(dX2). (1.2.2) 

This function d(X\,X2) is a kernel function and satisfies the following properties: (Liu, 

1991; Liu and Rao, 1995) 

(1) d(X\,X2) is symmetric and 

At \S > 0 tf*i^*2; n~~ 
d(xux2)< (1.2.3) 

I = 0 lf*i =X2-
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(2) It is conditionally negative definite, i.e., 

n n 

££</(*,•,*>,•<!; < 0 , (1.2.4) 
1=1 7=1 

for every integer n and choices of x\,...,xn and numbers a i,...,a„ such that £"=1 a; = 0. 

1.2.1 Examples of Rao's Quadratic Entropy 

In the following we provide two examples of Rao's quadratic entropy. 

Example 1.1: Let X € Rm, a real vector space of m dimensions and A is a positive 

definite matrix. Then define 

d(Xl,X2) = (X1-X2)'A(Xl-X2). 

Let X ~ (|i,-,L,-), (i.e., X is distributed with mean vector ju; and variance matrix E, and not 

necessarily multivariate normal). Then 

Hi = 2tr(ALi). (1.2.5) 

Note 1.1: Under univariate case, define a kernel function d{x\ ,x2) = \{x\ —x2)
2 which 

satisfies (1.2.3) and (1.2.4). Hence, H = £[5(^1 — x2)
2\ is a quadratic entropy for i.i.d. JCI, 

x2. In this case, quadratic entropy is nothing but the variance. 

Example 1.2: Let X = (x\, ...,xm), where Xj can take only a finite number of values. In 

such a case the kernel function between X\ and X2 is d(X\ ,X2) =m — Y,dr, where dr = 1 

if the rth components of X\ and X2 agree and zero otherwise. Let Xr take different values 

with probabilities {pir\ ,ptr2, .-^Pirkr) m population 11/. Define 

(r) kr 

s=l 

when X\ is drawn from n , and X2 is drawn from IIj. Then 

m 1 \ 

Hi=l,(l-j<£))=m(\-Jii). 
r=l 
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Note 1.2: When m=l, quadratic entropy is reduced to Gini-Simpson index, 

i=\ 

From the examples above, it can be seen that the general approach in using quadratic 

entropy is first to define a function d(X\ ,X2) measuring the difference between individuals 

X\ and X2 and use the probability distribution of Xi and X2 to find the average of d{X\,X2). 

In practice, the function d(X\,X2) can be chosen to reflect some intrinsic dissimilarity 

between individuals according certain investigation. This measure of entropy also is non-

negative, attains the maximum for the uniform distribution and has the minimum when the 

distribution is degenerate. 

1.2.2 Decomposition of Quadratic Entropy 

The concavity of quadratic entropy can be easily verified (Rao, 1982c). In Equation (1.2.5) 

the quadratic entropy //, is defined as the average difference between two randomly drawn 

individuals from n, . Suppose that two individuals are from different populations, that is, 

one individual is drawn from 11/ and another from Ely. 

HQJ = f d{Xl,X2)Pi{dXl)Pi{dX2); HQJ = Jd(Xl,X2)Pj(dXi)Pj(dX2). 

HQ,U = j"d(Xi,X2)Pi{dXi)Pj(dX2), 

DU = HQ,U ~ 2 (HQJ + HQj)-

For a mixed population 11^, where 11^ = All, + (1 — X)Hj,0 < A < 1 then 

H% = J d{XuX2)Px{dXx)Px(dX2) = X2HQ^ + {\-X)2HQj + 2X{\-X)HQ^. 

HX
Q - (XHQ; + (1 - X)HQJ) = 2X{\- X)Dij, 

Dij > 0 ensures the concavity of HQ and vice versa (Rao, 1982c). / ) , , is also termed as the 

Jensen difference which is a measure of dissimilarity between n, and IIj. 

Note 1.3: In the definition of quadratic entropy (Equation 1.2.5) no condition is im

posed on the function d(X\ ,X2) except that it should be nonnegative. The logical require

ment that the Jensen difference should be nonnegative restricts the choice of d{X\ ,X2) to 

functions that induce a concave quadratic function. 
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The concavity property of Rao's quadratic entropy enables us to decompose the diver

sity in a mixed population in a natural way, as diversity between and within populations. 

If Pi,P2,...,Pk are the distributions of X in Hi,Yl2,...,Tlk and X\,X2,...,Xk are the priori 

probabilities (£A, = 1), then the diversity in the mixture XiPi + X2P2 + ••• + XkPk can be 

decomposed as, 

HQ = H{XxPi +X2P2 + - + hPk) = £ hHi + £ £ XiljDu = SSW + SSB, (1.2.6) 

where D,7 = Hij — (//, + # / ) / 2 is the Jensen difference between II,- and Hj. SSW is the 

weighted average of the diversities within populations. SSB is the weighted average of the 

dissimilarity between all pairs of populations, which is nonnegative and vanishes only if 

n{ = n2 =... = n*. 

Decomposition for Example 1.1: Let us consider k populations as in Example 1 of 

Section 1.2.1. The m-vector variable X ~ (ji;,E,-), 

Hi = 2tr{ALi), 

Htj = tr(AZi) + tr(ALj) + a&Afy, 

where $,- = jU, — fij. The Jensen difference D,y = S-jAdtj becomes Mahalanobis distance 

between 11,- and Uj if Zi = E2 = ••• = £fc = £ and A = E_ 1 . Further let HQ be a mix

ture of III,...,lift with a priori probabilities X\,...,Xk. Then using Equation (1.2.6), the 

decomposition becomes 

HQ = SSW + SSB = 2m + £ £ XjXj S/,!"1 fy. (1.2.7) 

Thus the diversity within population is 2m and the diversity between populations is the 

weighted combination of Mahalanobis D2 's for all pairs of populations. Note here the nor

mality of X is not required. 

Decomposition for Example 1.2: For multinomially distributed variables X = 

(xi,...,xm), let the mixture of ni,Il2,...,Ilfc be denoted by TIQ with a priori probabilities 

X\,X2,...,Xk. 
m 

Hi=Y,(l-tf) = m(l-Jii), 
r=\ 

m 
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Then the Jensen difference 

1 1 1 m ^ 
Dij = Hij--(Hi + Hj) = m[-(Jii + Jjj)-Jij] = -Y,Z(Pirs-Pjrs)2-

In this case, Equation (1.2.6) becomes, 

which is the decomposition obtained by Nei (1973). 

1.3 OVERVIEW OF THESIS 

The objective of this thesis is to provide modified methods to the analysis of diversity with 

Rao's quadratic entropy and then explore its new applications in analyzing categorical data 

in several scenarios. This thesis consists of six chapters. 

After the introduction of quadratic entropy in Chapter I, several distance matrices are 

used to modify the quadratic entropy in Chapter II. The decomposition of quadratic en

tropy is proposed for analyzing categorical data similar to analysis of variance (ANOVA) 

for continuous data. Theoretically and empirically it is shown to have good performance. 

The application of quadratic entropy in measuring and testing biodiversity is explored 

in Chapter III. Practically equivalent confidence intervals are constructed to compare bio

diversity with bootstrap methods. The simulation is performed to compare the methods 

with those based on Shannon entropy. Simulation data and real dinosaur data are analyzed 

for illustrations of the methods. 

In Chapter IV, a new distance is constructed based on quadratic entropy to cluster 

multinomially distributed data. Hierarchical methods are applied on both simulated and 

real data to compare with Euclidean distance and Bhattacharyya distance. 

The application of quadratic entropy to the multi-response data is studied in Chapter V. 

A method based on bootstrap samples is proposed and compared with adjusted Pearson %2 

statistics. Both real and simulated data sets are used to illustrate and evaluate the method. 

Chapter VI is another application of quadratic entropy in cluster analysis. Large scale 

data such as gene expression data is the focus of this chapter. A new minimum entropy 

criterion is developed based on quadratic entropy. A hill-climbing type iterative algorithm 

is applied to both simulation and real gene expression data. The quadratic entropy criteria 

is compared with other standard clustering methods by applying the adjusted Rand index 

as the measure of agreement. 
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CHAPTER II 

ANALYSIS OF RAO'S QUADRATIC ENTROPY 

In many statistical problems, the data can be formulated in the general factor-response 

framework, where one is interested in the estimation and testing of the individual as well 

as the interaction effects of the factors on the response variable. Practitioners familiar with 

analysis of variance (ANOVA) have well developed techniques available for the analysis 

of quantitative variables. However, for categorical variables they must use a completely 

different set of techniques. Let n = (K\, Tii..., Ks) be the probability vector of a multinomial 

population with s categories. Light and Margolin (1971) and Anderson and Landis (1980) 

used Gini-Simpson entropy 

HG(ir) = i -n 'n = i - £ ^ 

to develop categorical analysis of variance (CATANOVA) for a nominal response vari

able. The Gini-Simpson entropy can be interpreted (Rao, 1982a) as the expected distance 

between two randomly selected individuals when the distance is denned as zero if they be

long to the same category and unity otherwise. However in many applications, differences 

between different categories may not all be equal and hence in those cases it may not be 

appropriate to use Gini-Simpson entropy for the analysis. Since Rao's quadratic entropy 

(QE) is the expected distance between two randomly drawn individuals with a predefined 

distance matrix, this entropy seems like an appropriate choice. Nayak (1986a,b) general

ized CATANOVA using Rao's QE, 

#e(n) = n'An, (ii.o.i) 

where Asxs = (dij) is a pre-determined distance matrix. 

We will review the one-way analysis of diversity using Rao's quadratic entropy in 

Section II. 1 and illustrate it with suggested A matrices proposed in Section II.2. The dis

tribution of the modified quadratic entropy statistics is discussed in Section II.3. The per

formance of this modified statistics will be tested with real and simulated data in Sections 

II.4 and II.5. 
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IL1 ONE-WAY ANALYSIS OF DIVERSITY USING RAO'S QUADRATIC EN

TROPY 

In Section 1.2 we discuss the concavity properties of the Rao's quadratic entropy and the 

decomposition of total diversity within population and dissimilarity between populations. 

These properties apply to categorical case. Let II i, II2,..., II r be the probability vectors of r 

multinomial populations and X\,X2,...,K (LA, = 1) be the associated prior probabilities. 

Then for the mixed population ft = EAjIL we have the following decomposition of the 

total diversity H(U): 

H(fi) = J > H (n.-)+J>(n,- - n)'A(n;- - n), 

SST = SSW + SSB. 

In practice, usually the population probabilities are not known and they are estimated 

from the sample observations. Nayak (1986a,b) derived standard errors and asymptotic 

distributions of sample diversities for one factor X. In particular, he proved that asymp

totically: (i) SST and SSB are independently distributed; and (ii) SSB is distributed as a 

linear combination of x2 variables. Below we briefly describe the findings from Nayak 

(1986a,b). 

Let rtij, i = 1,..., r, j = 1, ...,s, denote the number of responses in the j-ih category for 

the i-th level of X; 

"i. = LjHij, n.j = Liiij and n.. = £ ! > ; / ; 

Vi = (riii,..., nis)', vector of frequencies in the i-th level of X; 

V = (nu,...,nis,n2\,...,n2s,:.,nrsy; 

ft; = njxVj, the observed proportions in the i-th level of X; 

II = n £Vi, the observed proportions in the combined sample; 

y=matrix of unit elements; 

A (8> B = (aijB), the Kronecker product of A and B. 

For a vector a = (a\,...,an)', we shall use Da to denote the diagonal matrix with ele

ments a\,...,an. 

For statistical inference, we assume that the responses in different levels of X are 

stochastically independent and Vi follows multinomial law with parameters n,. and II, = 

(7in,...,7tjk)'. 

With the above notations, the sample analogues of SST, SSW and SSB are as follows: 

SST = n'Aft = n-2V'TV, where T = .W<8>A. 
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SSW = n~lE«,-.n-AIT( = rrW'WV, where W = diag(l/nh,..., l/nr)® A. 

SSB = SST - SSW = n~lV'BV, where B = (n^T - W). 

The sample diversities SST, SSW and SSB are the maximum likelihood estimators of 

the corresponding population diversities SST, SSW and SSB. 

Nayak (1986a,b) derived the asymptotic distribution of the sample diversities and the 

results are given in the following two theorems: 

Theorem 1.1 Under Ho : Hi = II2 = ... = II r = II, asymptotically as «,-. —• °° and 

tiijn.. —> Xi (a fixed prior probability), n.SST and n„SSB are independently distributed. 

Theorem 1.2 Under HQ, asymptotically as n,-. —• °° and n,./n.. —• A, (a fixed prior prob

ability), 
5 - 1 

n . 5 5 B - £ a , ^ { r - i ) , (H.1.1) 

1=1 

where a,, 1 = 1, ...,s— 1, are the possible nonzero eigenvalues of (—AL) and the {^3r_i)} 

are independent %2 random variables with (r — 1) d.f.. Here E = £>n — niT', where D\\ = 

Jiflg(Wi,7T2,... ,^). 

The asymptotic distribution of SSB given in Equation (II. 1.1) depends on a,, which 

are functions of the unknown matrix Z. Replacing a ; by a = £G&/(fc— 1) in Equation 

(II.l.l) the distribution of n.SSB can be approximated by a^?r_1wfc_1y Using an unbiased 

estimate of a = tr(-AL)/(k- 1) as n.SST/[(k- l)(n . - 1)], the distribution of CA = 

(k — l)(n.. — l)SSB/SST can be approximated by ^?fc_jwr_j\. Thus a simple test for Ho 

provided by Nayak (1986b) is CA, and reject Ho at level a when 

CA = (s- l)(n.. - 1)S5B/SST > ^ ; ( , - i ) ( r - i ) - (H-l-2) 

See Nayak (1986a,b) for proof of these results and more details. 

In Nayak (1986a,b)'s attempt for using analysis of diversity with Rao's quadratic en

tropy, one of the unresolved issue is the choice of A. In practice it is usually arbitrary and 

based on an individual's assessment of the differences with reference to the problem un

der investigation. This has restricted the applications of quadratic entropy. Here we have 

proposed several ways to select A based on the frequency table. However, it will make the 

derivation of the asymptotic distribution of statistics SSB/SST difficult. Alternatively, SSB 

can be used as the test statistics. E can be estimated by its unbiased estimator E and a, be 

replaced by its estimates. Then an algorithm proposed by Davis (1980) can be used to get 

the exact distribution of the linear combination of X2 variables, that's to say, the distribu

tion of ££1/ 0Ci%f/r_jy However, as described later, we have resolved to using bootstrap 
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method for determining the approximate distributions. 

II.2 VARIOUS CHOICES FOR MATRIX A 

In this section we will discuss several methods that can be used to find the distance matrix 

A. Liu (1991) and Liu and Rao (1995) described that in constructing quadratic entropy the 

distance function d(xi ,Jt2): X2 —> R has the properties: 

• d(xi,X2) > Oifx\ 7^*2; d(x\,X2) = 0 i f x\ =X2\ 

• d(-,-) is conditionally negative definite, i.e. Y!i=iT!j=i^{xi^xj)aiaj < 0 f° r every 

integer n and choices x\,...xn inXandai, . . . ,a„ in R such that a 1 + «2+ •••+#« = 0. 

The distance matrix A satisfying these two properties can be constructed in following ways. 

1. A Based upon the Variables Measured Scores 

The item dij in A is the distance between the i-th level and j-ih level of the variable. So, 

we can use the scores to scale the ordinal variables and then compute the distance between 

different levels as dij = |S,- — Sj\ (Stokes, Davis, and Koch, 2005). 

• Table Scores 

For the ordinal variables, table scores (Si,-) are the values of the ordered levels. If the 

variables are nominal, the table scores (Si,) are the numeric value corresponding to 

that level; 

• Rank Scores 

Rank scores, which are defined by the frequencies: S2; = Y,s<ins. + («/. + l ) /2; 

• Ridit Scores 

Ridit scores are standardized by the sample size and can be derived from rank scores 

as S3,- = Sji/n; 

• Modified Ridit Scores 

Modified ridit scores represent the expected values of the order statistics for the 

uniform distribution on (0,1). Modified ridit scores are derived from rank scores as 

S4i = S2i/(n+l). 

2. A Based upon Distances 
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Euclidean distance is defined as, 

dij = y/(Q-Cj)'(Ci-Cj). 

• Using the same notation as above, Chi-square distance between the i-th level and 

y'-th level of the variable is defined as, 

dij = y/{Ci-Cj)'Du1{Ci-Cj) 

• Nei's Distance between the i-th and y'-th category of the response variable is defined 

as 
j2 

dfj = (Qi-Qj)'(Qi-Qj), 

where fl. = (2u, * . . . , * ) ' . 

• Ochiai's Distance is suitable for binary data. When comparing the i-th and j-th 

level of the variable, let a(l,l), b(l,0), c(0,l) and d(0,0) be the number of pairs for 

value (1,1), (1,0), (0,1) and (0,0), where a+b+c+d=r, Ochiai's distance is defined as 

dij — v 1 ~Uji 

where?,-, = 11 y/(a+b)(a+c)' 

3. A Based On Probabilities 

We provide two choices for A here. Take A = (dij), where 

dij = 
f \7C.i-7tj\ + l if i^j 

1 0 if i = j ' 
(n.2.i) 

and 

dij=< 

0 

1 

\log(3C.i)\ + l 

\log(nj)\ + l 

if i = J 

if n.t = n.j = 0 

if JCJ = 0 

if w.« = 0 

(H.2.2) 

( \log(3t.i)-log(Kj)\ + l else. 

Here Jr., and K.J are the corresponding probabilities at the i-th and y'-th categories of fl = 

£ r XIl r . In practice they can be replaced by their estimators JT,- = n.,/n.. and jij = nj/n... 
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TABLE 1. Distribution of parties in neighborhoods 

Party 
Democrat 
Independent 
Republican 

Bay side 
221 
200 
208 

Neighbor 
Highland Longview 

160 360 
291 160 
106 316 

Sheffeld 
140 
311 
97 

11.3 BOOTSTRAP FOR THE DISTRIBUTION OF SSB 

Since the proposed A's are to be estimated from the observed data, the asymptotic distri

bution of the modified statistics SSB is more complicated than that in Equation (II. 1.1). 

However, if we base our tests on conditional distribution given the marginal frequencies, 

the asymptotic distribution is a linear combination of Xr's 'with positive coefficients. The 

explicit expressions for these coefficients are very difficult to find. From the point of view 

of application, it is necessary to find a more computable approach for approximating the 

distribution of the statistic SSB. We propose to use the bootstrap method for this. 

11.4 A REAL LIFE EXAMPLE 

The data in Table 1 are from a study concerning the distribution of party affiliation in a city 

suburb (Stokes et al., 2005). The data consists of a factor: Neighborhood (X) with 4 levels 

(Bayside=l, Highland=2, Longview=3, and Sheffeld=4) and a response variable: Party 

(Y) with 3 levels (Democrat=l, Independent=2, and Republican=3). Researcher might 

be interested in whether there is an association between registered political party and the 

neighborhood they live in. 

To determine the effects of X on Y, we perform an analysis of diversity using the 

following methods: 

1. Pearson statistics 

2. Fisher's exact test 

3. CATANOVA 
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TABLE 2. Analysis of diversity for the political parties data 

Methods P-value 

Pearson % < 0.0001 
Fisher's Exact 1.5182E-09 
CATANOVA 1.60 IE-10 
CAl 2.7 IE-10 

4. CAl = (s-\)(n. 

CA2 

SB^SSTI with 

Ai = 

2.5496E-09 

0 1 2 

1 0 1 

2 1 0 

5. CA2 = n.5552 and bootstrap approximation with A2 = (dy), where 

du = < 

0 

1 

\log{Ki)\ + \ 

\log{Kj)\ + \ 

^ \log(ni)-log(Kj)\ + l 

which based upon the data becomes, 

A2 = 

0 1.088 

1.088 0 

1.192 1.280 

if i = j 

if TZi = TCj --

if Kj = 0 

»/ Jd = 0 

else. 

1.192 

1.280 

0 

= 0 

The distribution of CA2 were simulated using a nonparametric bootstrap procedure with 

B = 5000 bootstrap samples. 

All methods indicate strong evidence against independence as shown in Table 2. If a 

Bonferroni adjusted significance level of 0.05/6=0.0083 is used, the pair of Longview and 

Sheffeld neighbor are found significantly different from each other. 

II.5 EMPIRICAL NULL DISTRIBUTION AND POWER COMPARISON 

In this section, we will examine the accuracy of the approximate asymptotic null distribu

tion theory by using simulated data. The performance of Rao's quadratic entropy with the 
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previously defined distances will be compared with Pearson %2 test, Fisher Exact test, and 

Gini-Simpson test of Light and Margolin (1971). 

Nayak (1986b) studied the empirical significance level of CA test with reference to 

critical points x\-(s-\\iT-\\ f° r 13 populations with different distributions. See our Table 

3. We use the same settings and two of the same distance matrices Ai and A2 used by 

Nayak (1986b) for easy comparisons. In the examples, there are 3 response categories and 

2 levels of X. We assume a common probability distribution for both levels of X, given 

in the first column in Table 3. The second column in Table 3 gives the sample sizes, i.e., 

the values of n\_ and n^.. All the distances proposed in Section n.2 have been explored. 

However, the matrices A3 and A4 have produced more meaningful results. Hence, results 

corresponding to only those are presented in Table 3. 

A , = 

A2 = 

A3 = (̂ 3,0")» w n e r e 

A4 = (d4jj), where 

d4,ij = { 

d3,U = 

0 

1 

0 

1 

1.5 

0 

1 

2 

n.j 

1 1.5 

0 1 

1 0 

1 2 

0 1 

1 0 

+ 1 if 

if 

if 

if 

if 

if 

i + ) 
i = j 

i = j 

n.i — ft.j 

Kj = Q 

%.i = 0 

= 0 

\log(JC.i)\ + l 

\log(*j)\ + l 

\log(ic.i)-log(nj)\ + l else. 

The distribution of CA, and CA2 are approximated by Xa 2 a s s t a t ed in Equation (II. 1.2). 

Because the distribution of CA3 = SS63 and C ^ = 55^4 are very complicated, in that the 

asymptotic distribution cannot be easily determined, the nonparametric bootstrap proce

dure is used to determine the p-values. The algorithm is described in the following steps 

(Efron and Tibshirani, 1993): 
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(1) Take B re-samples of size n by randomly selecting subjects with replacement from 

the original data set independently within each group; 

(2) for each re-sample, calculate the test statistic, CA, for b = 1, ...,B and 

(3) calculate the p-value as B~l ^ / ( C ^ > CA)-

11.5 A Empirical Level of Significance 

The empirical type I errors are presented in Table 3 under test statistics as column headings. 

In each case 10,000 independent samples were generated and used to compute the rejection 

probabilities for a = 0.1,0.05,0.01. For each sample, 500 bootstrap re-samples were 

generated for the computations. 

In Table 3, we see that the level of significance of all statistics are all close to a, except 

that CATANOVA, which is very liberal; QE^ is more accurate than QE&2; QE^ is more 

accurate than QE&3; among all the quadratic entropy statistics the empirical significance 

level of QE^ is most close to a. Hence one should feel comfortable using the distance 

matrix A4 in practice, with p-values computed using the bootstrap method. 

II.5.2 Empirical Power 

We also compared the empirical powers of CA with Pearson £2 , Fisher's exact test and 

CATANOVA for 10 different alternatives in the case of two levels of X and 3 response 

categories. In each case n\_ and «2. were fixed at 100. The probabilities associated with 

one level of X are III = (1/3,1/3,1/3) and the probabilities for the other level II2 are 

given in Table 4, 5 and 6. In the first five cases II2 is of the form {p, q, q) with p > 1 /3 and 

the departure of IT2 from ITi is towards a vertex of the simplex. For the last five cases the 

departure is towards a base of the simplex. Since, unlike x2 a°d Gini-Simpson entropy, 

the powers of CA are not symmetric in the arguments of II2 in our study. We have also 

considered the permutation of II2 in out study. In each case 1000 independent samples 

were used to estimate the empirical power for a=0.01, 0.05 and 0.10. For each sample, 

500 bootstrap re-samples were generated for the computation. The results are reported in 

Tables 4, 5 and 6. 

In Tables 4, 5 and 6 we observe the following: (1) The powers of QE^, QE^2, QE&3 

and QE^ are larger than CATANOVA; (2) The powers of QE^ are larger than QE^X, QE&2 

and QE&3; (3) X2 a nd Fisher test usually perform better than QE^, QE&2, QE&3 and QE^ 

for the departures of II2 towards the base of the simplex. 



TABLE 3. Empirical significance 

Probability Structure Sample Size a X2 

0.1 0.11 
0.33.0.33,0.34 30 30 0.05 0.047 

0.01 0.011 
0.1 0.121 

0.30,0.30,0.40 25 40 0.05 0.059 
0.01 0.008 
0.1 0.112 

0.25,0.30,0.45 30 30 0.05 0.051 
001 0.008 
0.1 0.108 

0.25,0.50,0.25 15 15 0.05 0.043 
0.01 0.007 
0.1 0.104 

0.20,0.50,0.30 25 30 0.05 0.047 
0.01 0.008 
0.1 0.096 

0.50,0.30,0.20 50 50 0.05 0.053 
0.01 0.01 
0.1 0.085 

0.60,0.30,0.10 30 50 0.05 0.034 
0.01 0.006 
0.1 0.097 

0.60,0.10,0.30 25 25 0.05 0.042 
0.01 0.004 
0.1 0.095 

0.30,0.60,0.10 70 70 0.05 0.048 
0.01 0.01 
0.1 0.096 

0.70,0.15,0.15 60 60 0.05 0.049 
0.01 0.009 
0.1 0.103 

0.10,0.70.0.20 60 50 0.05 0.052 
0.01 0.01 
0.1 0.105 

0.10,0.80,0.10 30 30 0.05 0.044 
0.01 0.007 
0.1 0.084 

0.03,0.94,0.03 80 80 0.05 0.037 
0.01 0.001 

level of Rao's quadratic entropy statistics 

FISHER CATANOVA QE^ QE^ QE^ g£/s4 

0.095 0.106 0.109 0.117 0.104 0.102 
0.042 0.05 0.051 0.057 0.044 0.044 
0011 0.009 0011 0.013 0.009 0.009 
0.111 0.127 0.12 0.124 0.121 0.113 
0.059 0.056 0.056 0.062 0.052 0.052 
0.007 0.008 0.011 0.014 0.01 0.011 
0.103 0.119 0.125 0.124 0.118 0.111 
0.046 0.059 0.055 0.062 0.058 0.055 
0.008 0.006 0.012 0.015 0.006 0.006 
0.086 0.091 0.105 0.096 0.09 0.099 
0.04 0.041 0.042 0.05 0.04 0.044 

0.011 0.014 0.011 0.013 0.015 0.012 
0.089 0.095 0.094 0.096 0.09 0.092 
0.043 0.049 0.051 0.059 0.047 0.053 
0.008 0.014 0.008 001 0.014 0.016 
0.093 0.093 0.092 0.093 0.094 0.097 
0.048 0.051 0.05 0.051 0.056 0.055 
0.01 0014 0.018 0.023 0.013 0.016 

0.093 0.098 0.102 0.102 0.099 0.092 
0.053 0.056 0.058 0.058 0.056 0.054 
0.012 0.021 0.026 0.026 0.025 0.022 
0.069 0.107 0.114 0.115 0.108 0.1 
0.046 0.074 0.081 0.087 0.072 0.06 
0.009 0.015 0.02 0.022 0.013 0009 
0.094 0.097 0.104 0.108 0.097 0.101 
0.044 0.052 0.048 0.052 0.05 0.051 
0.01 0.017 0.014 0.019 0.019 0.012 

0.089 0.098 0.102 0.11 0.101 0.109 
0.047 0.06 0.062 0.072 0.067 0.066 
001 0.008 0.016 0.019 0.016 0.019 

0.095 0.099 0.097 0.095 0.098 0.106 
0.05 0.059 0.056 0.053 0.059 0.064 

0.014 0.014 0.011 0.013 0015 0.013 
0.115 0.111 0.102 0.11 0.113 0.124 
0.07 0.046 0.04 0.046 0.06 0.065 
0.01 0013 0.015 0.009 0.016 0.018 

0.115 0.096 0.091 0.091 0.107 0.107 
0.069 0.065 0.046 0.044 0.083 0.082 
0.021 0.011 0.006 0.004 0.018 0.022 
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TABLE 4. Empirical power comparison of %2, Fisher's test, CATANOVA and QE tests 

Probability Structure 

0.40,0.30.0.30 

0.44,0.28,0.28 

0.52,0.24,0.24 

0.60,0.20,0.20 

0.72,0.14,0.14 

0.36,0.36,0.28 

0.39,0.39,0.22 

0.42,0.42,0.16 

0.45,0.45,0.10 

0.48, 0.48, 0.04 

a 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

X1 

0.201 
0.134 
0.045 
0.399 
0.256 
0.103 
0.756 
0.674 
0.438 
0.971 
0.945 
0.838 

1 
0.998 
0.998 
0.189 
0.099 
0.027 
0.467 
0.345 
0.168 
0.822 
0.721 
0.521 

11
1 

1 
1 

0.996 

FISHER 

0.197 
0.133 
0.045 
0.391 
0.251 
0.102 
0.751 

0.67 
0.437 

0.97 
0.944 
0.839 

1 
0.998 
0.998 H

I 

0.462 
0.343 
0.164 

0.816 
0.718 
0.514 
0.985 
0.955 
0.886 

1 
1 

0.996 

CATANOVA 

0.2 
0.135 
0.047 

0.408 
0.268 
0.126 
0.784 

0.72 
0.495 
0.974 

0.96 
0.891 

1 
0.999 
0.999 
0.182 
0.094 
0.021 
0.441 
0.308 
0.151 
0.791 
0.651 
0.415 
0.969 
0.918 
0.786 

1 
0.998 
0.984 

Q£a , 

0.221 
0.158 
0.064 
0.436 
0.304 
0.148 
0.804 
0.743 
0.512 
0.981 
0.966 
0.897 

1 
1 

0.999 
0.194 
0.104 

0.04 
0.477 
0.357 
0.181 
0.821 
0.707 
0.496 
0.975 
0.947 
0.846 

1 
0.999 
0.988 

Q£d 2 

0.226 
0.167 
0.084 
0.434 
0.311 

0.17 
0.801 
0.748 
0.534 

0.984 
0.969 
0.896 

1 
1 

0.999 
0.194 
0.111 
0.052 
0.481 
0.385 
0.204 

0.83 
0.723 
0.551 
0.979 
0.955 
0.866 

1 
0.999 
0.989 

QEA, 

0.208 
0.133 
0.047 
0.414 
0.273 
0.126 
0.794 
0.735 
0.502 

0.98 
0.968 
0.906 

1 
1 

0.999 
0.186 
0.099 
0.021 
0.449 
0.313 
0.153 

0.805 
0.678 
0.449 
0.976 
0.935 
0.828 

1 
0.999 
0.989 

C £ 4 4 

0.209 
0.142 
0.048 
0.419 
0.277 
0.135 
0.803 
0.744 
0.516 
0.986 

0.97 
0.912 

1 
1 

0.999 
0.189 
0.102 
0.025 
0.468 
0.327 
0.163 
0.827 
0.718 
0.518 
0.984 
0.955 
0.892 

1 
1 

0.994 

TABLE 5. Empirical power comparison of %2< Fisher's test, CATANOVA and QE tests (contin

ued) 

Probability Structure 

0.30, 0.30,0.40 

0.28, 0.28, 0.44 

0.24,0.24,0.52 

0.20,0.20,0.60 

0.14,0.14,0.72 

0.28, 0.36,0.36 

0.22,0.39,0.39 

0.16,0.42,0.42 

0.10,0.45,0.45 

a 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

X1 

0.203 
0.131 
0.042 

0.376 
0.248 
0.112 

0.778 
0.676 
0.433 
0.959 
0.943 

0.83 
1 
1 

0.996 
0.177 
0.104 
0.021 

0.475 
0.362 
0.153 

0.836 
0.754 

0.51 
0.986 

0.97 
0.893 

FISHER 

0.197 
0.13 

0.041 
0.366 

0.24 
0.107 
0.765 
0.665 
0.429 
0.956 
0.941 
0.829 

1 
1 

0.996 
0.177 
0.101 
0.021 
0.468 
0.357 
0.154 

0.832 
0.748 
0.508 
0.985 

0.97 
0.89 

CATANOVA 

0.2 
0.127 
0.041 

0.381 
0.263 
0.121 
0.796 
0.715 
0.487 
0.967 
0.959 
0.885 

1 
1 

0.999 
0.172 

0.1 
0.02 

0.441 
0.323 
0.129 

0.79 
0.695 
0.425 
0.976 
0.949 

0.8 

2 £ A , 

0.226 
0.152 
0.064 
0.408 
0.295 
0.146 
0.818 
0.748 
0.531 
0.971 
0.963 
0.899 

1 
1 

0.999 
0.189 
0.118 
0.027 
0.466 
0.363 
0.172 

0.83 
0.73 

0.5 
0.984 
0.962 
0.853 

2%, 

0.235 
0.16 

0.073 
0.397 

0.31 
0.168 

0.823 
0.752 
0.536 
0.969 
0.962 
0.901 

1 
1 

0.999 
0.198 
0.126 
0.037 

0.472 
0.385 
0.198 
0.837 
0.746 
0.541 
0.985 

0.97 
0.873 

QE„, 

0.197 
0.133 
0.044 
0.386 

0.27 
0.123 
0.817 
0.733 
0.505 
0.971 
0.959 
0.895 

1 
1 

0.999 
0.173 

0.1 
0.02 

0.448 
0.34 

0.135 
0.812 
0.715 
0.459 
0.986 

0.96 
0.839 

0 £ 4 4 

0.2 
0.137 

0.05 
0.39 

0.276 
0.124 

0.82 
0.743 
0.518 
0.973 
0.963 
0.908 

1 
1 

0.999 
0.173 
0.099 
0.022 

0.47 
0.358 
0.146 

0.83 
0.749 
0.505 
0.987 
0.972 

0.89 
0.1 1 0.984 1 1 1 1 1 

0.04,0.48,0.48 0.05 1 0.98 1 0.999 0.999 1 1 
0.01 0.998 0.978 0.979 0.987 0.988 0.992 0.998 
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TABLE 6. Empirical power comparison of %2< Fisher's test, CATANOVA and QE tests (contin

ued) 

Probability Stnicture 

0.30.0.40,0.30 

0.28,0.44,0.28 

0.24,0.52.0.24 

0.20, 0.60, 0.20 

0.14,0.72,0.14 

0.36,0.28,0.36 

0.39,0.22,0.39 

0.42,0.16,0.42 

0.45,0.10,0.45 

a 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

X1 

0.24 
0.143 
0.044 
0.378 
0.254 
0.105 
0.791 
0.677 
0.401 
0.967 
0.938 
0.814 

1 
1 

0.998 
0.165 
0.101 
0.022 
0.494 
0.344 
0.163 
0.803 
0.712 
0.508 
0.988 
0.965 

0.87 

FISHER 

0.237 
0.14 

0.044 
0.37 

0.249 
0.106 
0.785 
0.667 
0.398 
0.966 
0939 
0.811 

1 
1 

0.998 
0.161 

0.1 
0.022 
0.484 
0.335 
0.162 
0.802 
0.706 
0.506 
0.986 
0.964 
0.871 

CATANOVA 

0.241 
0.149 
0.043 
0.382 
0.266 
0.117 

0.813 
0.715 
0.465 
0.977 
0.957 
0.869 

1 
1 

0.998 
0.156 
0.092 
0.018 
0.459 

0.31 
0.138 

0.763 
0.639 
0.425 
0.973 
0.937 
0.781 

G E A , 

0.207 
0.121 
0.032 
0.319 
0.208 
0.067 

0.743 
0.607 
0.319 
0.957 
0.912 
0.758 

1 
1 

0.998 
0.144 
0.075 
0.017 

0.364 
0.215 
0.071 
0.654 
0.484 
0.214 
0.926 
0.847 
0.536 

Q£4 2 

0.174 
0.094 
0.027 

0.24 
0.152 
0.041 
0.636 
0.439 
0.171 
0.914 
0.842 
0.586 

1 
0.997 
0.985 

o
d

d 

0.261 
0.14 

0.043 

0.503 
0.335 
0.111 
0.809 
0.675 

0.26 

QBA, 

0.243 
0.152 
0.047 

0.395 
0.272 

0.12 

0.825 
0.738 

0.49 
0.979 
0.961 
0.887 

1 
1 

0.999 
0.157 
0.093 
0.019 

0.465 
0.322 
0.143 

11
1 

0.979 
0.95 

0.815 

Q E A , 

0.247 
0.155 
0.049 
0.399 
0.281 
0.127 

0.833 
0.744 
0.514 
0.982 
0.962 
0.907 

1 
1 

0.999 
0.162 
0.099 
0.018 
0.482 
0.329 
0.163 

0.8 
0.702 

0.5 
0.989 
0.968 
0.867 

0.1 0.999 0.975 0.997 0.995 0.98 0.999 0.999 
0.48,0.04,0.48 0.05 0.999 0.982 0.997 0.982 O.905 0.999 0.999 

0.01 0.999 0.979 0.987 0.896 0.643 0.996 0.998 
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In this chapter, a new distance matrix is proposed to modify Rao's quadratic entropy 

statistics. Although it brings complication in computation, it makes the measure of diver

sity generalizable. Nonparametric bootstrap methods are used for the hypothesis testing. 

If the null hypothesis is rejected, a post-hoc test should be performed. It can be multiple 

comparisons by applying similar method of analysis of quadratic entropy to each pair of 

the groups; alternatively, confidence intervals can be constructed for the pairwise differ

ences. 

While Rao's quadratic entropy based analysis of diversity can be used to test the inde

pendence of response and factor(s), in some other data analysis problems, the entropy func

tions can be directly applied, especially in ecology data. In the next chapter, we present a 

case like that. 
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CHAPTER HI 

ANALYSIS OF BIODIVERSITY 

Statistical tests of the equality of dinosaurs biodiversity of different era have been used for 

determining whether the extinction of the dinosaurs was sudden or gradual over a period of 

time. If the biodiversity of the community of dinosaur species was different from period to 

period, then there is a reason to believe that the extinction was gradual; On the other hand, 

if the biodiversity remained the same through different time periods, then there is a reason 

to believe that the extinction might have been sudden due to asteroid collision. Sheehan, 

Fastovsky, Hoffmann, Berghaus, and Gabriel (1991) and Fritsch and Hsu (1999) analyzed 

a data set on Dinosaurs to check this theory. We provide that data set from Sheehan et al. 

(1991) here, in Table 7. 

The Dinosaur Data 

Dinosaur bones deposited about 2.2 million years were collected from sites in North 

Dakota and Montana. The formation was divided into three equal stratigraphic intervals, 

with each third representing approximately 730,000 years. Although it is difficult to distin

guish individual species of dinosaurs, it is relatively easy for researchers to classify bones 

according to their family. In all, eight families were identified. Table 7 lists the name of 

all eight dinosaur families and the number of individual dinosaurs of each families iden

tified from the two research sites. There are several measures of biodiversity that can be 

used for measuring the biodiversity of dinosaurs. Suppose in a biological community there 

are s species and let II = {n\, ..., ns)' be the vector of proportions of these species in the 

community, then the two well known measures are: 

• Shannon index (Hs): H$ = — £7T,ln7r,-, 

• Gini-Simpson Index (He): HG = 1 — £flf • 

Suppose in a biological community there are N individuals from s species. Let ni,...,ns 

be the abundance of each species and Jt\,..., 7ts be the proportions of these species, that is, 

% = rii/N. To measure the biodiversity, Sheehan et al. (1991) used the Shannon index and 

tested the hypothesis: 

0 • "Supper — "Smjrf<He — "Siower • 
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TABLE 7. List of the dinosaur families and frequency in each intervals. 

Family Names 

Ceratopsidae 
Hadrosauridae 
Hypsilophodontidae 
Pachycephalosauridae 
Tyrannosauridae 
Ornithominidae 
Saurornithoididae 
Dromaeosauridae 

Upper Interval 

50 
29 

3 
0 
3 
4 
1 
0 

Middle Interval 

53 
51 

2 
0 
3 
8 
6 
0 

Lower Interval 

19 
7 
1 
0 
2 
0 
3 
0 

where, Hsupper is the biodiversity of the upper time period measured by Shannon index 

Hs = -Lf=i Ttilog(fti), and similarly, HSmiddle and HSlower are for the middle and lower 

time period. Shannon entropy was used to define the biodiversity and utilized in ANOVA 

and post-hoc test to analyze the dinosaur data and rejected the hypothesis that "the di-

nosaurian part of the ecosystem was deteriorating during the latest Cretaceous" (Sheehan 

et al., 1991). Fritsch and Hsu (1999) argued that Sheehan et al. (1991) misinterpret the 

large p-value and suggested that accepting null hypothesis may be caused by insufficient 

data. Instead they proposed to construct equivalence confidence intervals for the differ

ence between two Shannon indices from two time periods (Fritsch and Hsu, 1999). For 

example: 

Ho : \HSi - HSj | > 8 for some i ^ j 

Ha:\HSi-HSj\<8foralli^j 

5(> 0) is a predetermined limit to control the difference. Then, the bootstrap-t techniques 

were applied to determine confidence intervals. 

However, Shannon index and Gini-Simpson index are based upon abundance of the 

species only and they do not take differences in the species into consideration. In the other 

hand, quadratic entropy (QE), as stated in Izsak and Papp (2000), "is the only ecological 

diversity index, the value of which reflects both the differences and abundances of the 

species." In this chapter, using the same dinosaur data, we show how one can analyze data 

for determining biodiversity using Rao's quadratic entropy. First, we will introduce Rao's 

quadratic entropy and its sampling distribution in Section III. 1. In Section III.2 we will 
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provide various confidence intervals for the entropy function and provide simulation results 

to show which of these intervals is the best. In Section 111.4 we will provide confidence 

intervals for difference between the entropy's and once again provide simulation results. 

Finally, we will provide an analysis of dinosaurs data in Section EII.4. 

III.1 QUADRATIC ENTROPY AND ITS SAMPLING DISTRIBUTION 

Suppose in a biological community there are s species and let n = (TTI ,..., KS)' be the vector 

of proportions of these species in the community. A general diversity measure called Rao's 

quadratic entropy (QE) can be defined as (Rao 1982a,b,c): 

HQ = HQ{YI) = Y£,*u*iXj = n , A n . O11-1-!) 

where A = (dy) and dy is a nonnegative number representing the difference between the 

categories i and j , so that HQ is the average difference between two individuals drawn at 

random from a population. In the special case, when d\j = 1 if i ^ j and da = 0, that is, 

A = JS — IS, where Js is an s x s matrix of all ones and Is is an s x s identity matrix, HQ = 1 — 

£ nf = HG, which is the Gini-Simpson entropy function. QE can also be used to construct 

analysis of variance for categorical data, where the total diversity can be decomposed into 

diversities between and within populations (Nayak 1986a,b). This analysis has found some 

interesting applications in economics (Nayak and Gastwirth 1989). 

Let n i, «2»• • •, ns be the abundance of each species in a sample of size N = £ n,;. Then, 

assuming multinomial probability model, we get the maximum likelihood estimate of n 

as fl = (£i,...,7Ts)', where % = rij/N, i = l,...,s. Note that E(tl) = n , and Var(tl) = 

jj [diag(H) — IOT'] = ^V. Here, diag(H) is the diagonal matrix with the elements of II as 

its diagonal elements. Let an estimate of V be V = diag(fl) — tltl'. Also, by the standard 

asymptotic theory, we have, 

U^NS(U,~V). 

Then, the maximum likelihood estimate of HQ is HQ = IT AIL Also, 

E(HQ) = tr{A^V) + n'ATI = tr(A x ^[diag{U)-UW}) +HQ = ^-HQ, 

and 

Var(HQ) = -^2tr{AV)2 + - 4 l f AVAIL 

Then, by the delta theorem, as Af —> oo, we have, 

N L7 l <2tr(AV)2 

N-
-HQ « N ( H Q , - [ K

N > +4n /AVAn]). (ni.1.2) 
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For the Gini-Simpson index He, we have 

N -HG*N(HG, h^Yl+^n'vni). 
N-l K "' Nl N 

III.2 INTERVAL ESTIMATION OF QUADRATIC ENTROPY 

In this section, we provide various ways of constructing confidence intervals for HQ. The 

first of which is based upon the asymptotic distribution of HQ. Secondly, we propose a 

variance stabilizing transformation and a method for constructing confidence intervals. 

Further, we will use various bootstrap based methods and compare all the methods using 

simulation. 

III.2.1 Confidence Interval Estimation 

Normal Confidence Intervals 

Based upon the asymptotic distribution of HQ given in (III. 1.2), one can provide an 

approximate confidence interval for HQ, as follows. Suppose z« is the standard normal 

upper a / 2 probability cutoff point and L\ and U\, respectively, are the lower and upper 

100(1 — a)% confidence limits for HQ, then 

N - „ , i-
L\ = ^—^HQ-Za/20/VN, 

and 
N ~ i— 

U\ = -Tj—rHQ + Za/io/vN, where 

a2 = -2tr(AV)2 + 4n'AVAIL (HI.2.1) 

Our simulations have shown that the distribution of the sample entropy, although more 

closely centered around 0, does not agree well with the standard normal distribution in the 

tail regions. 

Variance Stabilizing Transformed Intervals 

Given a certain distance matrix A, the QE reaches its minimum value when there is 

only one family in the community and reaches its maximum value at a certain diversity 

distribution. The maximum value can be calculated with an algorithm for certain choices of 

dissimilarity matrix (Pavoine, Oilier, and Pontier 2005). With the maximum value known, 

we can define a ratio index as 

/(n) = _^_ . 
ITIWCHQ 
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Note that I (TV) takes values between 0 and 1. If we estimate I (TV) by I(tl), then its asymp

totic distribution is given by 

I(ti)^N(I(Ti),±I(Tl)(\-I(TI))). 

By applying the usual variance stabilizing transformation for a binomial proportion, we 

get 

arcsin y7(ft) - N(arcsiny/I(TV), — ) 

or, in other form, 

vN(arcsin( 
'4' 

Then, the 100(1 — a) confidence interval for HQ is given by 

Li = ITIWCHQ x sin [sin y I (TV) — za/2 ,—:] 

U2 = maxHQ x sin2[sin yI(TV) + zaj2 ,—]• 

Bootstrap-t Confidence Intervals 

By applying the bootstrap-t techniques (Efron and Tibshirani 1993) on the test statistic 
W~* /°/N Q' w e ^ e t a b° o t s t r aP value of the test statistic w"' 6 ^ for each B bootstrap 

samples. Here, HQ is the entropy computed from a typical bootstrap sample and G* is its 

corresponding standard deviation estimate. So, the bootstrap lower and upper 100(1 — a) 

confidence limits are 

where qb
a/2 and ^ _ a / 2 are the [B(a/2)\ + 1 and [B(l — a/2)J + 1 order statistics of the 

B bootstrap quantiles and [J is the greatest integer function. 

This method and the following two bootstrap confidence intervals can also be applied 

to the variance stabilization transformation. 
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Bootstrap Percentile Confidence Intervals 

Suppose HQ,...,H^ are B bootstrap estimates of HQ. Then, the lower and upper 

100(1 — a) confidence limits are the \_B{a/2)\ and [5(1 — a/2)J order statistics of the 

B ordered values of HQ . 

Bootstrap BCa Confidence Intervals 

Let H*Q
{y) be the lOOypercentile of HQ

l, ...,HQ
B, then 

- ^-U^HQ<HQ\ 
Zo= ( B ^ 

where 4> is the standard normal distribution function. Then, the 100(1 — a) confidence 

intervals for H are HQ1' and HQ2', where 

"•=^°+l-a/2(fe + Z g /2) ' -

l - a / 2 ( z 0 + Z(i-a/2)) 

and a is the sample entropy computed without the ith observation, which is calculated 

LUH^-H^ 
from HQ as 

- Q Q a = ^ — 
HLIM^HV)2}1-5' 

Here # g is the average of HQ. 

III.2.2 Selection of Difference Matrices 

One of the first steps in computing QE is to identify an appropriate A, the distance matrix. 

If we assume the distance between each pair of the eight dinosaur families is the same, then 

A is as given below. As noted earlier, in this case, the QE is same as the Gini-Simpson 

index. 



TABLE 8. Diets of dinosaur families 

Family 
Ceratopsidae 
Hadrosauridae 
Hypsilophodontidae 
Pachycephalosauridae 
Tyrannosauridae 
Ornithominidae 
Saurornithoididae 
Dromaeosauridae 

Dietary 
Herbivores 
Herbivores 
Herbivores 
Herbivores/Omnivorous 
Carnivorous 
Omnivorous/Herbivorous 
Carnivorous 
Carnivorous 

Ao = 

0 1 1 1 1 1 1 

0 1 1 1 1 1 

0 1 1 1 1 

1 0 1 1 1 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 0 

1 1 1 1 1 0 

If dinosaur families with similar food chains have similar ecological characteristics, 

then they can be assigned relatively a shorter distance than those who do not. Using the 

dietary information about different dinosaur families given in Table 8, based upon Norman 

(1991), we can suggest the following Ai as an appropriate distance. 

Ai = 

0 

1 

1 

2 

3 

2 

3 

3 

1 

0 

1 

2 

3 

2 

3 

3 

1 

1 

0 

2 

3 

2 

3 

3 

2 

2 

2 

0 

2 

1 

2 

2 

3 

3 

3 

2 

0 

2 

1 

1 

2 

2 

2 

1 

2 

0 

2 

2 

3 

3 

3 

2 

1 

2 

0 

1 

3 

3 

3 

2 

1 

2 

1 

0 

We have experimented with different ways of finding A using data and have proposed 

the following: 
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A2 = {dij), where 

dij = < 

0 

1 

\log(7ti)\ + l 

IM*/)l + i 

if 
if 
if 

if 

i = j 

Hi = Kj = 0 

Aj = 0 

fti = 0 

(III.2.2) 

\log(7Ci) — log{%j)\ + 1 otherwise. 

III.2.3 Comparisons of Confidence Intervals Based upon Simulated Data 

The accuracy of the confidence intervals were compared by the noncoverage probability 

with simulated data. Data were generated from a multinomial (50, IT) distribution, where 

II is denned by various geometric models with 5 = 8. Tables 9, 10, 11 list the percentage 

of confidence bounds that fail to bound the true entropy value. "Below" and "Above" 

represent the probability that the true entropy value falls below the lower limit, i.e. P(H < 

L) and the true entropy value falls above the upper limit, i.e. P(H > U). The comparisons 

of these two probabilities with a true significance level a will show the performance of 

the confidence intervals. The noncoverage probabilities were based upon 5,000 simulated 

data with 7,500 bootstrap samples. 

When k = 0.8, QE and the indices based upon QE have better simulated results than 

Shannon entropy. When comparing confidence intervals based upon normal distributions 

with those based upon bootstrap-t, bootstrap percentiles, bias adjusted and bias-corrected 

and accelerated (BCa) techniques, the BCa confidence intervals appear to be the most lib

eral. Confidence bounds based upon bootstrap-t come closest to the desired 1 — 2a, when 

compared with normal intervals and other bootstrap intervals, however, the bootstrap-t in

terval based upon Shannon entropy and QE with Ao and the corresponding indices have 

some imbalance in that the lower bound appears to be conservative, whereas its upper 

bound appears to be liberal; and the imbalance is not found in confidence intervals based 

upon other quadratic entropies and indices. The closest coverage is reached by using the 

QE with A2 bootstrap-t confidence intervals; the QE index with A2 and the QE with Ao 

produce the next closest coverage. Similar results are also observed in the case of k = 0.6. 
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When k = 0.4, QEs and the indices based upon QEs continue to have better simulated 

results than Shannon entropy; the BCa confidence intervals remains to be the most liberal. 

Bias adjustment improves the percentile method, especially for QE with Ao, making its 

total coverage probability 1 — (Below + Above) the closest to the desired 1 — 2a, when 

compared to other methods. The bootstrap-t confidence interval for QE with A2 produce 

next closest coverage. Imbalance is observed in the bias adjusted percentile confidence 

intervals for QE with Ao and A2 in that the lower bound appears to be liberal and its upper 

bound appears to be conservative. 

Overall, the proposed QE and QE indices are more accurate than Shannon entropy in 

terms of coverage probability. The indices built on A2 with the bootstrap-t intervals exhibit 

the best performance when the distribution is set with larger k values. As k gets smaller, in

dices based upon QE with Ao will produce a better result. Among entropy based intervals, 

bias adjusted percentile intervals perform better than normal intervals and other bootstrap 

intervals. The BCa confidence intervals appear to be the most liberal. 

III.3 ESTIMATION OF DIFFERENCE BETWEEN TWO QUADRATIC EN

TROPIES 

In this section, we will derive the confidence bounds of the differences between two 

quadratic entropies. 

III.3.1 Confidence Intervals of Difference between Two Quadratic Entropies 

Suppose HQI is the QE defined as in (III. 1.1) for the ith population, each of which has 5 

species. Let Ni be the number of observations from the ith population. Then, an estimate 

of HQI as before can be obtained as HQI. Let d, be the estimated standard deviation, as in 

(ffl.2.1) for the ith population. Then, we can provide the lower and upper limits of the 

100(1 — a)% confidence intervals for the difference HQJ — HQJ based upon the asymptotic 

normal distribution as 

and 
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As before, we can provide bootstrap t-interval using the ordered bootstrap values, 

y/dl/Ni + alj/Nj 

Also, the percentile based intervals can be obtained using the ordered bootstrap values 

Confidence intervals based on the index are also constructed as before. 

III.3.2 Empirical Simulation for Difference of Two Entropies 

The performance of QE in constructing confidence intervals of pair differences were tested 

in simulated data. The data were generated from two multinomial (50, II) distributions, 

where II is defined by one of the three geometric models with 5 = 8. The noncoverage 

probabilities of confidence intervals were estimated based upon 5,000 sets of simulated 

bounds; each bootstrap bound was computed using B = 7,500 bootstrap samples. Tables 

12, 13, 14 list the estimated noncoverage probabilities of confidence intervals of HQI —HQJ. 

If the distributions of two time intervals (groups) are similar, in other words, parameter 

k is the same (k\ = 0.6 and k-i = 0.6), QE with An and the index based upon A2 produce 

more accurate results than other measures. While comparing confidence intervals based 

upon normal distributions with those based upon bootstrap-t, bootstrap percentiles, and 

BCa techniques, the BCa confidence intervals appear to be the most liberal. When Uij and 

Ltj do not have coverage probabilities exactly equal to 1 — a, the size of the test that rejects 

Hl
0

j, when [Lfj,Ufi] C [-8,3], is (Berger and Hsu 1996) 

max{supH._Hj>sP(Uu <Hi-Hj),supH._H.<_sP{Lij > Ht-Hj)}. 

Therefore, the normal distribution bounds of the QE index based upon A2 appears to be 

the most accurate for assessing the practical equivalence of entropies because they have 

the smallest max{Below, Above} for all a values. 

When the distributions of two time intervals (groups) differ, the normal confidence 

bounds of the QE index based upon distance A2 remain more accurate, because they have 

the smallest max{Below, Above}. The QE and QE indices based upon An have the next 

to the best coverage with bootstrap-t and bootstrap percentile confidence bounds. BCa 

confidence bounds remain liberal throughout. 
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III.4 ANALYSIS OF THE DINOSAUR DATA 

Let us revisit the dinosaur data and apply QE and the proposed indices to construct confi

dence intervals for differences in entropy for all possible pairs of intervals. 

First, we consider the simple distance matrix assuming equal distance between all pairs 

of eight dinosaur families. As noted earlier, in this case, the QE is same as the Gini-

Simpson index. We also use two other distance matrices. The matrix Aj given earlier is 

based upon the diets of the dinosaur families listed in Table 8, which assumes that similar 

diets will have similar food chains and hence shorter distances between families. We also 

used A2 in Equation (III.2.2), which becomes: 

0 

1.338 

4.012 

5.804 

3.725 

3.319 

3.501 

5.804 

1.338 

0 

3.674 

5.466 

3.386 

2.981 

3.163 

5.466 

4.012 

3.674 

0 

2.792 

1.288 

1.693 

1.511 

2.792 

5.804 

5.466 

2.792 

0 

3.079 

3.485 

3.303 

1.000 

3.725 

3.386 

1.288 

3.079 

0 

1.405 

1.223 

3.079 

3.319 

2.981 

1.693 

3.485 

1.405 

0 

1.182 

3.485 

3.501 

3.163 

1.511 

3.303 

1.223 

1.182 

0 

3.303 

5.804 

5.466 

2.792 

1.000 

3.079 

3.485 

3.303 

0 

The practical equivalence confidence intervals can be used to analyze the dinosaur 

data in Table 7. Table 15 gives the 95% practical equivalence intervals for the difference 

in entropy for all pairs of upper, middle and lower intervals. Each bootstrap bound was 

computed using 5 = 7,500 bootstrap samples. 

It is found that confidence intervals involving only upper and middle intervals are rel

atively narrower, while the intervals involving the lower intervals are quite a bit wider, 

regardless of standard normal or bootstrap techniques, Shannon entropy of Rao's QE. This 

is because of the relatively large sample sizes for the upper and middle intervals (90 and 

123, respectively) and relatively small samples for the lower interval (n=32). Given the 

results in Section III.4, practical equivalence inference should be based upon standard nor

mal confidence intervals of QE index with A2. Thus, to reject the null hypothesis 

HQ : \HQi -HQj\ > 8 for some i ^ j 

vs. 

Hi : \HQi - HQj\ < 8 for all i ^ j , 
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TABLE 15. Dinosaur data revisit: 95 % confidence intervals for differences 

in entropy for all possible pairs of intervals 

Pairs of Intervals Methods 

Shannon 

QE\ 
Hupper ~ Umiddle QE2 

i-QEo 

i-QEl 

Shannon 

QEo 
QEl 

^middle ~ Slower QE1 

i-Cfio 

i-G£2 

Shannon 
QEa 
QEi 

Hupper — Hlower Q&2 

i-QEo 

i-QE2 

Standard Normal 

-0.303 0.096 
-0.124 0.023 
-0.424 0.066 
-0.251 0.433 
-0.177 0.048 
-0.209 0.016 
-0.083 0.142 

-0.214 0.344 
-0.100 0.171 
-0.529 0.320 
-0.603 0.233 
-0.071 0.193 
-0.189 0.075 
-0.192 0.073 

-0.333 0.255 
-0.158 0.128 
-0.713 0.147 
-0.535 0.347 
-0.152 0.146 
-0.303 -0.005 
-0.179 0.119 

Bootstrap-t 

-0.309 0.126 
-0.126 0.023 
-0.424 0.086 
-0.077 0.411 
-0.152 0.032 
-0.231 0.038 
-0.023 0.126 

-0.315 0.332 
-0.106 0.189 
-0.621 0.329 
-0.620 -0.095 
-0.135 0.198 
-0.311 0.159 
-0.188 -0.032 

-0.411 0.264 
-0.158 0.141 
-0.802 0.153 
-0.470 0.107 
-0.194 0.147 
-0.405 0.065 
-0.142 0.030 

Percentile 

-0.318 0.093 
-0.133 0.019 
-0.421 0.068 
-0.207 0.252 
-0.161 0.024 
-0.232 0.037 
-0.068 0.082 

-0.159 0.425 
-0.058 0.215 
-0.478 0.358 
-0.270 0.208 
-0.076 0.257 
-0.273 0.196 
-0.088 0.068 

-0.296 0.316 
-0.122 0.159 
-0.660 0.176 
-0.279 0.251 
-0.153 0.187 
-0.373 0.097 
-0.091 0.082 

BCa 

-0.299 0.073 
-0.132 0.019 
-0.416 0.061 
-0.076 0.132 
-0.161 0.023 
-0.228 0.033 
-0.025 0.043 

-0.243 0.531 
-0.070 0.237 
-0.509 0.398 
-0.538 0.652 
-0.092 0.281 
-0.297 0.219 
-0.178 0.222 

-0.354 0.388 
-0.131 0.175 
-0.686 0.203 
-0.416 0.429 
-0.164 0.205 
-0.387 0.110 
-0.136 0.140 

the quantity 5 defining the boundary has be to at least 0.192, because the normal confi

dence intervals based upon LQE2 are (-0.083, 0.142), (-0.192, 0.073) and (-0.179, 0.119). 

Note that the largest absolute value of the boundaries is 0.192. The value of 8 defining 

practical equivalence of Shannon and Gini-Simpson entropies can be applied in a similar 

way. 

The quadratic entropy index reflects both the differences and abundances of the species. 

When a species list is given without abundance data, using the QE index and postulating 

equal abundances, one derives the only biodiversity index from a traditional ecological 

index of diversity. Its extensive form is identical with the sum of differences or distances 

between the species present. The QE index trivially satisfies monotonicity, an important 

property for biodiversity indices. 

As when constructing practical equivalence intervals for analyzing biodiversity, the 

challenge still remains on how to choose the rejection boundaries. One possibility is to 

consider an analogous community that has changed in biodiversity, then calculate the con

fidence boundaries based upon before and after data to derive such a 5. Another approach 
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is to build simulation geometric models and estimate the maximum boundaries for differ

ences of two quadratic entropies to obtain the practical equivalence. 
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CHAPTER IV 

CLUSTER ANALYSIS OF MULTINOMIAL DATA 

Cluster analysis is a common data mining and analysis technique that has been used in 

many fields such as biology (Eisen, Spellman, Brown, and Botstein, 1998), medicine 

Romesburg, 2004), market research (Punj and Stewart, 1983) and social network anal

ysis (Scott, 1988). The aim of cluster analysis is to cluster or group the observations into 

disjoint clusters. Data clustering algorithms can be hierarchical or partitional. Hierarchical 

algorithms find successive clusters using previously established clusters. These algorithms 

can be either agglomerative ("bottom-up") or divisive ("top-down"). Agglomerative algo

rithms begin with each element as a separate cluster and merge them into successively 

larger clusters. Divisive algorithms begin with the whole set and proceed to divide it 

into successively smaller clusters. Partitional algorithms typically determine all clusters at 

once. 

An important step in any clustering is to select a distance measure, which will deter

mine how the similarity of two elements is calculated. This will influence the shape of 

the clusters, as some elements may be close to one another according to one distance and 

may not according to another. LetX = (JCI, ...xm) and Y = (ji, ...ym) be two vectors in real 

m-space. Commonly used distance functions include: 

• Euclidean distance: 

DE = \A*i-yi)2 + ... + (*m-ym)2 = </f>(- -y;)2 

• Mahalanobis distance 

DMah = yJ{X-Y)1r^X-Y) 

• Manhattan distance 

m 

DMan=\\X-Y\\ = Y,\Xi-yi\ 

All these distances are defined generally for continuous data. Not many methods have 

been proposed to define distances for quantitative data, which brings challenge in cluster

ing categorical data. Suppose we are interested in clustering the states with similar violent 
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crime statistics as in the next example. The data in Table 16 are on states crime rate in 

2007 for 50 states and District of Columbia (From now on referred as 51 states). These 

are taken from Bureau of Justice Statistics web site (http://www.ojp.usdoj.gov/bjs) in the 

Department of Justice for illustrative purpose. The violent crimes include murder and non-

negligent manslaughter, forcible rape, robbery and aggravated assault. The researcher may 

be interested in the clustering 51 states into several clusters based upon the similarity of 

violent crime rates. 

TABLE 16. State violent crime statistics in 2007 

State Murder Forcible rape Robbery Aggravated assault Violent crime total 

Alabama 
Alaska 
Arizona 
Arkansas 
California 
Colorado 
Connecticut 
Delaware 
District of Columbia 
Florida 
Georgia 
Hawaii 
Idaho 
Illinois 
Indiana 
Iowa 
Kansas 
Kentucky 
Louisiana 
Maine 
Maryland 
Massachusetts 
Michigan 
Minnesota 
Mississippi 
Missouri 
Montana 
Nebraska 
Nevada 
New Hampshire 
New Jersey 
New Mexico 
New York 
North Carolina 
North Dakota 
Ohio 
Oklahoma 
Oregon 
Pennsylvania 
Rhode Island 
South Carolina 
South Dakota 
Tennessee 
Texas 
Utah 
Vermont 
Virginia 
Washington 
West Virginia 
Wisconsin 
Wyoming 

412 
44 

468 
191 

2260 
153 
106 
37 

181 
1201 
718 
22 
49 

752 
356 
37 

107 
204 
608 
21 

553 
184 
676 
116 
208 
385 

14 
68 

192 
15 

380 
162 
801 
585 

12 
516 
222 
73 

723 
19 

352 
17 

397 
1420 

58 
12 

406 
173 
64 

183 
16 

1545 
529 

1856 
1268 
9013 
1998 
658 
336 
192 

6151 
2178 
326 
578 

4103 
1742 
904 

1231 
1381 
1393 
391 

1179 
1634 
4579 
1873 
1040 
1714 
290 
527 

1096 
333 

1050 
1032 
2926 
2385 
207 

4452 
1559 
1255 
3450 
256 

1739 
308 

2174 
8439 
908 
123 

1745 
2629 
369 

1223 
160 

7398 
583 

9618 
3024 

70542 
3453 
3607 
1706 
4261 

38162 
17340 
1105 
233 

23100 
7872 
1313 
2016 
4069 
6083 
349 

13258 
7006 

13414 
4770 
2866 
7165 

191 
1108 
6932 
432 

12549 
2321 

31094 
13548 

70 
18260 
3373 
2862 

19458 
751 

6346 
112 

11022 
38769 

1420 
80 

7651 
6053 
852 

5474 
84 

11377 
3363 

18658 
10524 

109210 
11302 
4594 
3881 
3686 

86366 
26839 
2048 
2729 

40573 
11195 
6551 
9212 
6859 

23233 
.793 

21072 
19008 
35319 
8244 
4388 

20418 
2259 
3664 

11037 
1027 

14622 
9570 

45094 
25744 

622 
16132 
12918 
6587 

28151 
1378 

26309 
910 

32787 
73426 
3824 
557 

10996 
12691 
3702 
9416 
991 

20732 
4519 

30600 
15007 

191025 
16906 
8965 
5960 
8320 

131880 
47075 

3501 
3589 

68528 
21165 
8805 

12566 
12513 
31317 

1554 
36062 
27832 
53988 
15003 
8502 

29682 
2754 
5367 

19257 
1807 

28601 
13085 
79915 
42262 

911 
39360 
18072 
10777 
51782 
2404 

34746 
1347 

46380 
122054 

6210 
772 

20798 
21546 
4987 

16296 
1251 

The four categories of violent crimes can be assumed to be categories of a multinomial 

distribution. Since Euclidean distance, Manhattan distance and Mahalanobis distance are 

http://www.ojp.usdoj.gov/bjs
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designed for the continuous data, none of them can catch the internal correlation of subcat

egories of crimes and hence cannot be applied here. Bhattacharyya distance was proposed 

by Bhattacharyya (1943) to measure the similarity of two discrete probability distributions 

and can be used for this purpose. 

Let X( denote the categorical group variables (type of crime) with s levels and n, be the 

total frequencies (number of crime for i-th state). Let P, = (pn,Pi2, •••,Pis) be the vector of 

relative frequencies. The Bhattacharyya distance between i-th and j-th subject (state) can 

be calculated as (Bhattacharyya 1943), 

DB,ij=xrt(p}L2-p)L2)2 ov.0.1) 
V m=l 

In this chapter we will propose a new distance based upon Rao's quadratic entropy and 

use it to cluster the multinomially distributed data. Rao and Boudreau (1984) have used 

Gini-Simpson index for clustering blood group data in human populations. In Section 

IV. 1 we define the distance based upon Rao's quadratic entropy; The performance of this 

new distance will be compared with Euclidean distance, Bhattacharyya distance and Gini-

Simpson distance for simulated data in Section IV.2 and for state crime data in Section IV.3. 

In Section IV.4 this quadratic entropy distance will be generalized to multiple variables 

with clustering results on both simulated and state crime data. We will conclude this 

chapter with some remarks. 

IV.l DEFINITION OF QUADRATIC ENTROPY DISTANCE 

As discussed in Chapter I, the total quadratic entropy diversity (SST) can be decomposed 

into two parts: SSW and SSB, where SSW measures the similarity of diversities among 

populations and SSB measures the difference of diversities between populations. Hence 

the quantity ^ can serve as a distance between two populations. 

Let Xi denote the categorical variable (type of crime) with s levels and n, be the total 

frequencies (number of crimes for the i-th state). Let P, = (pa,Pi2, •••,Pis) be the vector of 

relative frequencies. The quadratic entropy distance can be defined as, 

eco.. PAP - - f -P/AP, - -^-P^AP, 
DQE,U --^jr- p£p > OV.1.1) 

where P = (mPi + n/P7)/(n,- + nj) and A can be a predetermined matrix or one derived from 

data as proposed in Equation (II.2.1) or (II.2.2). It may be noted that this distance does 
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not satisfy the triangle inequality. However, we can still use this for clustering purpose 

(Mardia, Kent and Bibby, 1979). 

IV.2 EMPIRICAL COMPARISONS 

In this section, we generate a simulation data set to compare quadratic entropy distance 

with Euclidean Distance and Bhattacharyya distance. The data set consists of samples 

from geometric distributions (See Appendix A) with n = 100, 5 = 4 and k = 0.4, 0.6, and 

0.8 to produce three sets of samples. Each set of data consists of 1,000 samples. The 

quadratic entropy distances, along with Euclidean and Bhattacharyya distances are used in 

hierarchical clustering methods with complete linkage algorithms. 

The two difference matrices Ai and A2 used for quadratic entropy are: 

Ai = 

0 1 1 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

and A2 = {dij), where 

du = < 

0 if 

1 if 

\log(xj)\ + l if 

\log(jc.j)\ + l if 

\log(nj)-log(jc.j)\ + l else. 

i = J 
n.i = n.j = 0 

n. 0 

jr., = 0 

To assess the quality of our algorithm, we need some objective external criteria. The 

external criteria could be the true class information. In order to compare clustering results 

against an objective external criteria, we employ the well known adjusted Rand index 

(Hubert and Arabie, 1985; Steinley, 2004) as the measure of agreement. Rand index is 

defined as the number of pairs of objects that are either in the same group or in different 

groups in both partitions divided by the total number of pairs of objects. The Rand index 

lies between 0 and 1. The adjusted Rand index is corrected-for-chance version of the 

Rand index; and it has the maximum value of 1 and its expected value is 0 in the case of 

random clusters. A larger adjusted Rand index means a higher agreement between two 

partitions. The adjusted Rand index is recommended for measuring agreement even when 

the partitions compared have different numbers of clusters. See Appendix B for details. 
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TABLE 17. Adjusted Rand index of the simulated data with k\ = 0.4 and k2 =0 .6 

Cluster Euclidean Bhattacharyya QE&1 QEA2 

2 
3 
4 
5 
6 
7 
8 
9 
10 

0.618472 

0.570018 

0.517917 

0.519915 

0.652023 
0.651715 

0.612986 
0.538132 

0.643204 

0.248051 

0.216502 

0.271299 

0.194702 

0.295381 

0.259495 
0.198902 

0.148592 

0.225701 

0.618046 
0.613762 

0.547501 

0.528180 

0.620194 

0.675896 

0.600519 
0.644494 

0.604661 

0.629427 

0.614215 

0.553621 

0.530142 

0.660271 

0.676085 

0.635207 

0.645201 

0.643304 

TABLE 18. Adjusted Rand index of the simulated data with ki = 0 . 4 and &2 =0 .8 

Cluster Euclidean Bhattacharyya QEA} QE\2 

2 
3 
4 
5 
6 
7 
8 
9 
10 

0.998881 

0.999440 

0.999121 

0.999080 

0.999400 

0.999041 

0.999282 

0.999200 

0.999081 

0.999121 

0.999600 

0.999720 

0.999600 

0.999720 

0.999560 

0.999680 

0.999600 

0.999600 

0.998961 

0.999240 

0.999041 

0.999001 

0.999441 

0.998722 

0.999241 

0.999043 

0.998801 

0.999085 

0.999351 

0.999285 

0.999561 

0.999512 

0.999225 

0.999354 

0.999312 

0.999251 
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TABLE 19. Adjusted Rand index of the simulated data with k\ =0 .6 and k2 = 0.8 

Cluster Euclidean Bhattacharyya QE\t QE&2 

2 
3 
4 
5 
6 
7 
8 
9 
10 

0.889204 

0.863560 

0.838906 

0.840396 

0.839969 
0.884875 

0.870603 

0.899273 

0.813119 

0.931127 

0.927207 

0.890506 

0.913819 

0.905943 

0.922546 

0.914243 

0.893167 

0.913582 

0.872781 

0.888591 
0.838802 

0.885124 

0.843705 

0.865229 
0.859382 

0.897176 

0.864634 

0.892051 

0.889517 

0.852143 

0.886521 

0.853210 

0.895130 

0.886218 

0.899042 

0.882682 

Table 17, 18 and 19 list the adjusted Rand index achieved by hierarchical algorithms 

for three type of distances. Quadratic entropy distance has a better partition than Euclidean 

distance and Bhattacharyya distance when k\ = 0.4 and ki = 0.6. In the case of ky = 0.4 

and &2 = 0.8, or k\ = 0.6 and &2 = 0.8, Quadratic entropy distance have a better partition 

than Euclidean distance, but not better than Bhattacharyya distance. It is not surprising 

that all three distances obtain the best results when the specified number of clusters is 

correct since its model perfectly matches the data. However we often do not know the 

exact number of clusters in practice. When the specified number of clusters is not correct, 

quadratic entropy distance based method performs better than the methods based upon 

Euclidean distance and better than Bhattacharyya distance in some cases. 

IV.3 APPLICATION TO STATE VIOLENT CRIME DATA 

Figure 1, 2 and 3 list the clustering results of state crime statistics data when different 

distances are used. 

In Figure 1 Euclidean distance puts most other inner states as one group; industrial 

states in the north such as Ohio, Pennsylvania, Illinois, Michigan, New York, and south 

states such as Arizona, Georgia, North Carolina, Tennessee, and Washington state as an

other group; California, Texas, and Florida as three other separate groups. 

In Figure 2 Bhattacharyya distance puts most mid-western states and northeastern 
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states as as one group, Florida and Texas as another group; Illinois and New York as 

one group; California as a separate group and the rest as one group. 

In Figure 3 Rao's quadratic entropy puts most inner states as one group; most states 

near the ocean as one group; North Dakota and South Dakota as one group; Idaho, Mon

tana and Wyoming as one group; New Jersey, Ohio and District of Columbia as one group. 
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IV.4 CLUSTER ANALYSIS FOR MULTIPLE VARIABLES 

In most of clustering problems there will always be data on more than one variable. The 

data in Table 20 on 51 states crime rate in 2007 (http://www.ojp.usdoj.gov/bjs) include 

two type of crimes, namely, violent crime and property crime. Violent crime includes 

murder and non-negligent manslaughter, forcible rape, robbery, and aggravated assault; 

and property crime includes three types: burglary, larceny-theft, and motor vehicle theft. 

The researcher may be interested in clustering 51 states into several clusters based upon 

the similarity of both violent and property crime rates. 

IV.4.1 Quadratic Entropy Distance for Multiple Variables Clustering 

We can easily generalize the quadratic entropy distance to the case of multiple variables. 

Let X and Y denote the categorical variables (violent crime and property crime) with levels 

si and S2 and n and m be the total number (of crimes), respectively. Let P=(pi,p2,---,pSl) 

be the vector of proportions of s \ (violent crime) categories and Q = (q i, qi,..., qS2) be the 

vector of proportions of S2 (property crime) categories. 

For characteristic variables X and Y, the Bhattacharyya distance between the i-th and 

j-th subject (state) can be calculated as, 

DBs=Ji(pii2-p)L2)2, 
V m=\ 

V m=\ 

The overall distance between i-th and j-th subject(state) is constructed as, 

DB = -~^DB^ + -L^-J-DBJ, (IV.4.1) 

where n, and m, are the frequencies in the i-th class for the two variables, respectively. 

The between subjects quadratic entropy is measuring the dissimilarity between subjects 

and can be used for calculating the distance between i-th and j-th subject as well. 

DQEJ = PAP- -^-PfAPi - -^—P'jAPj, (IV.4.2) 
iti + tij rii + nj J 

DQE,y = Q&Q - -^—Q^AQi - -^—Q'jAQj, (IV.4.3) 
ni + rij rii + nj J 

http://www.ojp.usdoj.gov/bjs
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where 

P=(niPi + njPj)/2, 

Q = (niQi + njQj)/2, 

and A can be a predetermined matrix or derived from data. The overall distance between 

the i-th and j-th subject (state) is constructed as, 

DQE = (DQES + DQEj)/2 (TV.4.4) 

The between subjects quadratic entropy measures the dissimilarity between subjects 
SSB 
SST and the ratio of fff can be used to calculate the distance between i-th and j-th subject as 

well. 
m + n; - - m; + mj -

SSTQE^ = ^PAxP+^rLQA¥Q, 

SSBQE^ = ^(PAxP 5-/?Ax/>- n±-?£xPj)+ 
2n rii + rij rii + rtj J 

m- -X- m • m: -4- m • •* J 
2m mi + rrij mi + rnj 

where 

P={niPi + njPj)/(ni + nj), 

Q = {mQi + mjQj)/(mi + rtij). 

Ax and Ay can be a predetermined matrix or derived from data. The overall distance 

between i-th and j-th subject (state) is constructed as, 

DQE = SSBQE^/SSTQE^. (IV.4.5) 

IV.4.2 Application to State Violent and Property Crime Data 

We illustrate these clustering methods with state violent and property crime data. 

Figure 4, 5 and 6 list the clustering results of state crime statistics by Euclidean dis

tance, Bhattacharyya distance and quadratic entropy distance, respectively. 

In Figure 4 Euclidean distance clusters most west-mid inner state as one group; east 

states as another group; Illinois and New York as one group; California, Texas and Florida 

as three other separate groups. 

In Figure 5 Bhattacharyya distance puts most mid-western states and northeastern 

states as as one group, Florida and Texas as another group; Illinois and New York as 

one group; California as a separate group and the rest as one group. 
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In Figure 6 quadratic entropy distance puts most inner states as one group; most north 

east states as one group; Montana and Wyoming as one group; Nevada as one group; Dis

trict of Columbia as one group. 

In this chapter, we proposed quadratic entropy distance for clustering multinomially dis

tributed data. The simulation results show that our new method performs significantly 

better than Euclidean distance and Bhattacharyya distance, especially when the number of 

clusters is incorrectly specified. We were also able to generalize the methods to more than 

one categorical variables. Our future work involves exploring these methods to clustering 

data with both continuous and discrete variables. 
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CHAPTER V 

ANALYSIS OF MULTI-RESPONSE DATA 

Surveys and other studies often result in categorical response measurements being made 

on members of different populations or treatment groups. This arises often where indi

viduals may mark all answers that apply when responding to a multiple-choice question 

such as "What criminal offenses have you been arrested?" "What type of diseases have 

you been diagnosed?" "What are your races?" These are all example questions appearing 

on surveys where the respondent is supposed to choose maybe more than one responses 

from a predefined list items. Survey data arising from questions of this type raise a unique 

challenge for analysis because of the dependence among responses provided by individual 

subjects. 

To test the independence of two categorical variables where at least one of the cate

gorical variables can have multiple responses, many familiar tests, such as, the Pearson 

Chi-square test and Fisher's exact test should not be used because of the within-subject 

dependency among responses. Loughin and Scherer (1998) proposed a modified chi-

square test to test the multiple marginal independence (MMI) between one single response 

and one multiple-response categorical variable by bootstrapping. They also examined a 

test for conditional marginal independence (CMMI), where the conditioning is on a third 

single-response variable. Agresti and Liu (1999) examined the association between two 

multi-response categorical variables by testing simultaneous pairwise marginal indepen

dence (SPMI). Bilder and Loughin (2004) suggested bootstrapping a modified Pearson 

X2 test to perform the test; Agresti and Liu (1999, 2001) and and Bilder and Loughin 

(2007, 2009)suggested generalized log-linear models to test for SPMI. Little research has 

been done applying Rao's quadratic entropy method on testing SPMI. In this chapter we 

develop new approaches to test marginal independence between two multi-response cate

gorical variables with Rao's quadratic entropy. 

We use the same data set from Bilder and Loughin (2004), which is from a survey 

conducted by the department of animal science at Kansas State University. In this survey 

two questions asked Kansas farmers about their "sources of veterinary information" and 

their "swine waste storage methods". For these questions, the farmers were permitted to 

select as many responses as applied from a list of items. Two hundred and seventy-nine 

farmers participated in the survey. Table 21 summarizes the data in a 4 x 5 table. For 
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example, 34 farmers picked professional consultant as a source of veterinary information 

and lagoon as a waste storage method. A researcher may be interested in determining the 

association of waste storage methods and sources of veterinary information. 

The traditional Pearson chi-square test for independence cannot be used here because 

of the within-subjects dependency of responses. Instead, a test for marginal independence 

should be performed. Specifically, 4 x 5 = 20 different 2 x 2 tables can be formed to 

marginally summarize all possible responses to item pairs. Table 22 is the table for re

sponses with professional consultant and Lagoon. A " 1 " denotes a farmer picked that item 

and a "0" denotes the farmer did not pick that item. Instead of testing the independence 

of 4 x 5 table, the independence of 20, 2 x 2 tables is tested simultaneously. If this test is 

rejected, examination of the individual 2 x 2 tables can be followed to determine why the 

rejection occurs. This is analogous to the post-hoc pairwise test in analysis of variance. 

Rao's quadratic entropy can be applied to perform the testing. 

V.l DERIVATION OF THE QUADRATIC ENTROPY TEST 

Let W and Y denote the multiple-response categorical variables for an r x c table's row 

and column variables, respectively. The derivation of the Rao's quadratic entropy statis

tics requires consideration of two different contingency table representation of groups and 

responses. In the first, referred to as the original table, the r groups of units correspond to 

rows of the table and the c responses correspond to the columns, as in Table 21. Denote 

the cell counts in this table by m,y, i = 1,..., r; j = 1,..., c. Marginal counts are denoted by 

+ subscripts: ra,+ is the total number of responses in row i, and m+y is the total number of 

responses in column j . Define %ij to be the probability that a unit chosen at random from 

the population falls into group i and responds positively to category j , and let Tt+j be the 

marginal probability that a randomly chosen unit provides response category j . 

As a second representation, let there be R = 2r rows and C = 2C columns, corresponding 

to all possible combinations of responses. This table is referred to as the expanded table. 

Counts in this table are denoted by n^, h=l...,R;k—l,...,C. Marginal counts are again 

denoted by + subscripts, with i%h+ being the number of responses in row i, n+k be the 

number of responses in column k and n++ being the total number of units in the study. 

Joint probabilities are denoted by TM = P(Wf, = 1,1^ = 1). 
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TABLE 22. Professional consultant and lagoon 2 x 2 table 

Lagoon 
1 
0 

Professional consultant 
1 

34 
10 

0 
109 
126 

There exists a special relationship between 

7lij,i= l , . . . ,r; j= l , . . .c, 

and 

xhk,h=l,...R; k=l,...,C 

that is, 

% = L Ttt- (V.l.l) 
A,fcW(=l&J';=l 

A similar relationship holds between 

mij,i= l,...,r; y = l,...,c 

and 

nhk,h=l,...,R; k=l,...,C. 

A "joint table" gives the cross-classification of responses to each possible set of item 

responses for W and Y. This is similar to the joint table described in Bilder, Loughin, and 

Nettleton (2000); Bilder and Loughin (2004). Table 23 gives the joint table for the Kansas 

farmer data. For example, 15 farmers picked professional consultant as their only source 

of veterinary information and lagoon as their only waste storage method. Cell counts in 

the joint table are denoted by n^k and the corresponding probability is denoted by T«-

Multinomial sampling is assumed within the entire joint table; thus YLhk %k= 1 • 



T
A

B
L

E
 2

3.
 J

o
in

t 
ta

bl
e 

fo
r 

th
e 

K
an

sa
s 

fa
rm

er
 d

a
ta

. 
T

h
e 

Y
j 

an
d 

W
* 

ite
m

s 
co

rr
es

po
nd

 t
o 

th
e 

sa
m

e 
or

de
rin

g 
o

f 
th

e 
co

lu
m

n 
an

d 
ro

w
 i

te
m

s 
lis

te
d 

in
 T

ab
le

 2
1 

0 0 0 0 0 0 0 0 

W
l 

0 
0 

0 
0 

0 
1 

0 
1 

1 
0 

1 
0 

1 
1 

1 
1 

0 
0 

0 
0 

0 
1 

0 
1 

1 
0 

1 
0 

1 
1 

1 
1 

1V
2 

W
, 

Y
, i"2
 

Y
i 

Y
~t

 
Y

s 

W
4 

0 0 0 0 0 0 0 2 0 4 0 0 0 11
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0 7 0 0 0 9 0 0 0 2 0 0 0 

0 0 0 1 0 0 3 19
 0 7 0 1 0 22
 1 2 0 1 0 1 0 

0 0 0 1 1 0 0 7 0 2 0 1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 2 12
 0 4 0 0 0 10
 

0 0 0 2 0 0 0 

0 0 1 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 

0 0 1 1 0 0 1 1 0 6 0 0 0 2 0 0 0 1 0 0 0 

0 0 1 1 1 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 

0 1 0 0 0 1 3 4 0 4 0 0 0 13
 

0 1 0 2 0 0 0 

0 1 0 0 1 0 0 3 0 2 0 0 0 1 0 0 0 4 0 0 0 

0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

0 1 0 1 1 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 

0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 0 0 0 3 0 0 0 0 0 3 0 1 0 0 0 0 0 

0 1 1 1 1 0 0 5 0 3 0 0 0 3 0 2 0 2 0 2 0 

1 0 0 0 0 0 0 2 0 3 0 0 0 
15

 0 0 0 1 0 0 0 

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 

1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 

1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 0 0 0 0 0 1 0 0 0 2 0 0 0 0 1 0 0 

0 0 0 0 3 0 1 0 3 0 1 0 4 0 0 0 

O
 



61 

Sparseness is usually the norm for the joint tables. The number of cells in the joint table 

is 2r+c, which can be quite large even for small values of r and c. For the Kansas farmer 

data example, there are 29 = 512 cells and 434 have zeros in them. This table sparseness 

can have a detrimental effect on model based testing approaches that need to estimate all 

?hk from the joint table. Even when the model based approaches converged after lengthy 

iteration, the interpretation of joint table is very complicated and not much of interest. 

Thus we focus on the marginal table constructed by ra,j as the number of observed 

responses to W{ = 1 and Yj — 1. Table 21 is an example of marginal table. The marginal 

probability of Ttij = {W/ = 1; Yj•, = 1} can be estimated by its maximum likelihood estimate 

(MLE) as 
mj KU = — . n 

where n = Y,Y,mij- The hypotheses for test of marginal independence are 

H0 : Ttij = Jli+lt+j for i=l,...r and j=\,...,c, 

vs 

H\ : At least one equality does not hold. 

Here KU = P{Wt = l,Yj = 1), Ki+ = P(Wt = 1) and %+j = P(Yj = 1). This specifies 

marginal independence between each W, and Yj pair. The hypotheses can also be writ

ten in the way of odds ratio. Consider the re, 2 x 2 pairwise item response tables formed 

for each W{ and Yj pair (analogous to Table 22) and suppose the cells contain probabili

ties for each Wt and Yj pair; i.e., P(Wt = \,Yj = l) = Ttij, P(Wt = l,Yj = 0) = Jli+ - %ij, 

P(Wi = 0,Yj = l) = iz+j - Kij and P(Wt = 0, Yj = 0) = 1 - jci+ - n+j + Ttij. If none of these 

cells have 0 probability, the pairwise marginal independence hypotheses can be written as, 

ORwY,ij = 1, fori= I,...rand j= l,...,c, 

where 
QR = 7Cij(l-Ki+-T[+j + TCij) 

WY'lJ (Jti+-jcij)(n+j-]Cij) ' 

Therefore, SPMI represents simultaneous independence in the re, 2 x 2 pairwise item re

sponse tables formed for each Wi and Yj pair. The MLE for #,+ and n+j are Hi = ^ and 

71J — n • 

L e t m = (m\\,m\2, ...,mrc)' andn = (nn,ni2,--,«2r2c)'- Also, let G be a r x 2 r matrix 

with columns containing all possible values of (W\,..., Wr)', and let H be a c x 2C matrix 

with columns containing all possible values of (Fi, ...,YC)'. 
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TABLE 24. 2 x 2 margin table 

Row Response i 

Column Response j 
1 0 

1 Kij ni+ - Kij 

0 K+j — Kij 1 — Ki+ — TC+j + Kij 

K+j 1 - Tt+j 
1 - ik+ 

1 

For example, the column headers in Table 23 form H for the sources of veterinary in

formation multiple-response categorical variable. Then (G®H)n = m, where (g) denotes 

the Kronecker product. This can also be written equivalently as (G®H)t = k, where 

t = n/n and k = m/n. Define kR = (k\+,...,kr+)' and if = (k+i,...,k+c)'. For each 

marginal Table 24, let 

v/j = {kij, ki+ - k^, k+j - kij, 1 - ki+ - k+j + % ) 

vfj = (kj, k+j - k^, ki+ - k^, 1 - ki+ - k+j + % ) 

The test statistics is constructed as 

CijA = (n- VSSBfj/SST? + ( « - ljSSBg/SSTf, 

and SSTR, SSWR, SSBR and SSTC, SSWC, 55fic are defined as: 

SST« = VffTijV/j, SST^j = VfjTijVfj, with Tu = 72x2 <g>A; 

SSwfj = VfjWijVf\, SSV/l = vffWijVfj, with Wu = diag(l/7n+, 1/(1 - Ki+))® A; 

55B* = Vj'fiyVi?. SSBC
tj = VfjBijVJj, with fly = n~xTu - Wu 

and then the overall statistics is, 

r c 
CA = EEC<7A- (V.1.2) 

Using the joint asymptotic normality of f and the delta method, it can be shown that CA 

has an asymptotic xlrctn-rc) distribution. 

V.2 DISTRIBUTION OF TEST STATISTICS BY BOOTSTRAP METHODS 

The asymptotic distribution of CA, based upon the convergence of the multinomial distri

bution in the expanded table, is a multivariate normal. Because this table is of dimension 
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2r x 2C, which can be very large even for relative small values of r and c, extremely large 

sample sizes may be required to make the asymptotic distribution a reasonable approxi

mation. Alternative methods need to be considered to estimate the distribution of C&. The 

bootstrap (Efron and Tibshirani, 1993) is a computational technique that can be used to es

timate the finite-sample sampling distribution of a statistic. In this section, nonparametric 

bootstrapping and other alternatives are explored for estimating the p-values. 

V.2.1 Nonparametric Bootstrap 

The sampling distribution of C& can be approximated using a nonparametric bootstrap 

method. To re-sample under independence of W and Y, Ws and Ys are independently re-

sampled with replacement from the data set. The test statistics calculated for the bth re-

sample of size n is denoted by C\. The p-value is calculated as B~l I ^ ( C A — ^A)> where 

B is the number of re-samples taken and /() is the indicator function. 

V.2.2 Bootstrap P-Value Combination Methods 

Each CyA gives a test for independence between each Wi and Yj pair for i = 1, ...,r,j = 

1, ...,c. The p-values from each of these tests can be combined to form a new statistic, p. 

Combination methods can be the product of the p-values or the minimum of the p-values. 

Since the re different tests are likely to be correlated, the usual p-values combination meth

ods based upon the independence of the p-values are not appropriate. The bootstrap can 

be used to approximate the sampling distribution of p. Resamples for the bootstrap pro

cedure are taken the same way as described before. The p-value for the combined test is 

calculated as B _ 1 Y.bKPt < />)» where p*b is the combined p-value calculated for the bth 

re-sample. 

V.2.3 Bonferroni Adjustment 

As an alternative to the bootstrap procedures, a Bonferroni adjustment can be applied to 

CA- HQ is rejected if any QJA is greater than the 1 — a/(re) quantile of a X\ distribution. 

A Bonferroni adjusted p-value can also be calculated by multiplying the minimum of the 

re p-values by re. The advantage of a Bonferroni adjustment approach is that it can be 

calculated without knowing the joint table of responses. The disadvantage of this approach 

is that for moderate to large r and c values, the Bonferroni adjustment to the critical value 

may be severe leading to a conservative test. 
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V.2.4 Post-hoc Test 

If the hypothesis of marginal independence is rejected, one would want to know why it 

is rejected. Since C& in Equation (V.1.2) is written as the sum of re different Chi-square 

test statistics, each C^ij can be used to determine where the rejection occurs. The indi

vidual tests can be performed using chi-square approximation or the estimated sampling 

distribution in the proposed bootstrap procedures. This is similar to the post-hoc test in the 

analysis of variance for continuous data where a significant F-test is followed by multiple 

comparison tests. 

V.3 EMPIRICAL COMPARISONS 

Thomas and Dacady (2000) suggested a Pearson statistic, 

Bilder et al. (2000) showed that the second order adjustment rcXs/Hp
c=i^p c a n be ap

proximated by a x2 random variable with degree freedom of t^c2/YJp
c
=\ hi, where X^s are 

eigenvalues of certain matrix. This Pearson statistics is used as a reference statistics for 

comparisons. 

We have performed a simulation study to compare which test in Section V.2 holds the 

correct size under a range of different situations and has power to detect various alterna

tive hypotheses. Each simulation uses 500 data sets and bootstrap method uses B=1000 

bootstrap samples. The significance level is set as 0.05. 

V.3.1 Type I Error 

For simulating of data under the null hypothesis, the ORwy,ij are set to 1 for each pair of 

Wi and Yj, i = l,...,r,j = 1, ...,c. Odds ratios between Wi and W( pair and each Yj, Yj pair 

are calculated as 

_ p(Wj = 1 and Wj> = \)/P(Wj = 1 and W? = 0) 
W'il' ~ P(Wt = 0and Wf = 1)/P(W, = 1 and Wf = 0) ' 

and 
= P(Yj = 1 and Yy = l)/P(Yj = 1 and Yf = 0) 

¥>JJ> P(Yj = 0and Yf = 1) /P(Yj = 1 and Yf = 0) ' 
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The values of ORw,w and ORyjf are set at values of 2 and 25 in the simulations to represent 

weak and strong pairwise dependence. 

Table 25 and Table 26 show the estimated type I error rates for 2 x 2 marginal table 

simulations. The 95% expected range of estimated type I error rates for testing methods 

holding the correct size is 0.05 ± 2(0.05(1 - 0.05)/500)1/2 = (0.0305,0.0695). 

Pearson statistics by Bilder et al. (2000) in Equation (V.3.1) mostly holds the correct 

size for the ORWiii = ORyjf — 2 but rejects too often when an odds ratio of 25 is present. 

Quadratic entropy statistics holds the correct size for the ORw,w = ORyjf = 25 but rejects 

too often when an odds ratio of 2 is present. All of the bootstrap methods generally hold 

the correct size at most of the times. Bonferroni adjustment holds the correct size most of 

the time but are too conservative sometimes. 

V.3.2 Power 

A limited simulation study was performed to examine the power of the quadratic entropy 

statistics. We have excluded Modified Pearson's X2 t e s t ano< quadratic entropy with chi-

square distribution from the power comparisons since they did not meet size conditions 

in Tables 25 and 26. Data were simulated with marginal probabilities of KR = (0.4,0.5)', 

7TC = (0.2,0.3)'; the sample size was set at n=100. 

Table 27 for comparison of the empirical power indicates that the Bootstrap product of 

p-values has larger power than the others in most cases. Nonparametric bootstrap tends to 

have similar power to the bootstrap product p-value method. Bonferroni adjusted method 

tends to have similar power to mininmum p-value method because of their statistics' sim

ilar construction. 
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V.4 APPLICATION TO THE KANSAS FARMER DATA 

The testing procedures of Section V.2 are applied to the Kansas farmer data and the cor

responding p-values are shown in Table 28. We have used 10,000 re-samples for the 

bootstrap methods. All methods indicated strong evidence against marginal indepen

dence. Using the post-hoc test outlined in Section V.2.4, the significant pairwise com

binations are (WuYi), (W2,Y2), (W2J3), (W3,F3) and {W3,Yi) at the 0.05 significance 

level. If Bonferroni adjusted significance level of 0.05/20 = 0.0025 is used instead, only 

(Wi,Fi)=(Lagoon, Professional consultant) is significant. 

TABLE 28. Testing p-values for the Kansas farmer data 

Testing Methods P-Values 

Modified Pearson's £ 2 3.07 x 10"5 

Quadratic Entropy 2.11 x 10~6 

Nonparametric Bootstrap 0.0003 
Bootstrap Product of P-values 0.0001 
Bootstrap Minimum P-values 0.0027 
Bonferroni Adjustment 0.0034 

In this chapter, we provide a method to analyze multi-response data based upon Rao's 

quadratic entropy. The proposed methods of quadratic entropy for testing independence 

are counterparts to the already developed methods for single-response categorical vari

ables. While the bootstrap methods may be the most computationally intensive of the 

testing methods, they most consistently hold the correct size and have higher power to 

detect the significance. Bonferroni adjustment provide simpler methods but they can be 

conservative at times. Model-based approaches to testing multiple-response data will be 

the focus of our future study. 
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CHAPTER VI 

CLUSTERING GENE EXPRESSION DATA 

DNA microarray technology has now made it possible to simultaneously monitor the gene 

expression levels during biological process. Elucidating the patterns hidden in the gene 

expression data offers a tremendous opportunity for understanding how genes are affected 

by disease states and cellular environments. However, the high dimensional genes and the 

complexity of biological structure brings great difficulty in interpreting the mass of data. A 

preliminary and common methodology towards addressing this challenge is the clustering 

technique. 

As described in Chapter IV, clustering is a process of seeking a partition of given data 

set based upon certain features so that the data points within a group are more similar to 

each other than the points in different groups. Clustering can also be used to group genes 

according to their expressions in a set of samples. The second type of clustering is to 

cluster samples into homogeneous groups that may correspond to clinical syndromes or 

cancer types. Clustering of samples can be challenging due to the small sample volume 

and high genes dimensionality. The third type is subspace clustering, which is to capture 

the coherence exhibited by the "blocks" with gene expression matrices. Here a "block" is 

a sub-matrix defined by a subset of genes on a subset of samples. 

There is a rich literature on cluster analysis and various techniques have been devel

oped. Many conventional clustering methods such as &-means, hierarchical clustering have 

been adopted or directly applied to gene expression data, and also new algorithm such as 

graph-theoretical approaches, machine learning and neural network techniques have been 

proposed specifically aiming at gene expression data. Jiang, Tang, and Zhang (2004) have 

reviewed most of these techniques. 

Although these clustering methods are often applied to clustering gene expression data, 

they face several new challenges in practice (Jiang et al., 2004). First, cluster analysis 

is typically the first step in data mining and knowledge discovery. Therefore, a good 

clustering algorithm should depend as little as possible on prior knowledge. However, 

most algorithms (except hierarchical clustering) require that the user specifies the "true" 

number of clusters in advance, which is usually not available before a cluster analysis is 

performed. Although hierarchical clustering does not need the number of clusters, it is 

still up to the researcher to decide where to cut the tree of clustering and decide how many 
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groups to cluster. Second, due to the complex procedures of microarray experiments, gene 

expression data often contain a large amount of noise, /c-means algorithm forces each gene 

into a cluster, which cause the algorithm to be sensitive to noise. 

It is well known that entropy is a measure of information and uncertainty of a random 

variable. Hence it is natural to use entropy to measure the closeness within the cluster 

and minimize the overall entropy for clustering. While simply minimizing the entropy 

will cluster all the sample into one group, Li, Zhang, and Jiang (2004) proposed a mini

mum entropy clustering algorithm. First, a minimum entropy criterion was constructed on 

posteriori probabilities and then generalized to Havrda-Charvat's structural a-entropy, 

Ha(x) = (21-a-l)-1\£pP(x)-\]t 
X 

where p(x) is the probability of variable x. With a nonparametric approach for estimat

ing a posteriori probabilities, a hill-climbing iterative algorithm was then established to 

minimize the entropy. When a = 2, Havrda-Charvat's structural a-entropy becomes Gini-

Simpson index. As stated in Chapter I, Rao's quadratic entropy can catch more information 

of clusters by implementing difference of groups in A. The distance matrix A can be es

timated from data as discussed in Chapter II. Using more "information" of clusters, this 

algorithm has the potential to have better performance than the traditional £-means, hier

archical methods, and the self learning minimum entropy algorithm in terms of adjusted 

Rand index. 

We introduce minimum entropy criterion for clustering and modify it for quadratic 

entropy in in the next section. In Section VI.2, we estimate the posteriori probabilities 

following a nonparametric approach, and then propose an iterative algorithm to minimize 

the posteriori quadratic entropy. Section VI.3 compares the results of minimum entropy 

algorithm with fc-means and hierarchical methods on both simulated and real data. We will 

end the chapter with some final comments. 

VL1 MINIMUM QUADRATIC ENTROPY CLUSTERING CRITERION 

In information theory, entropy is an important measure of information and uncertainty. 

Both Shannon entropy and Gini-Simpson entropy measure the amount of disorder in a 

system. Recall that 

X 
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and 

HG(x) = l-J£p2(x). 
x 

As observed in previous chapters, quadratic entropy is a generalized form of Gini-Simpson 

entropy and is defined as, 

HQ(x) = Y,Y,d(x,x')p(x)p(x'). 
X X1 

The measurements of entropy are functional of the distribution of x and they do not depend 

on the actual values of random variable x but only on the probabilities. In fact, Li and 

Vitanyi (1997) shows that entropy is the minimum descriptive complexity of a random 

variable. In gene expression clustering we hope that each cluster has a low entropy so that 

data points in the same cluster would look similar. Hence, a straightforward minimum 

entropy criterion could be defined as, 

£tf(x |Ci) , (vi.i.1) 

1=1 

where H(x\Q) is the entropy of cluster C,. This conventional minimum entropy clustering 

strategy seems a reasonable criterion. However it is actually not adequate for clustering 

because it neglects the semantic aspects of data. Data usually contain some hidden mean

ing, which is suggesting a modular structure in the gene regulation system. In clustering, 

the semantic information that we are interested in is the categories of genes. Hence we 

naturally assume that in cluster analysis that data are drawn from a mixed source made up 

with several components within each it is homogeneously statistically structured. 

Li et al. (2004) proposed minimum entropy clustering criterion to reflect the relation

ship between data points and clusters, which is measured on a posteriori probabilities. For 

each cluster C,-, a posterior entropy can be defined as HX(C) where C is the random variable 

of category taking values in C\, C%,..., Cc, and x is one object. For Rao's quadratic entropy, 

this posteriori measure becomes 
C C 

HQAC) = £ E dij^iQWpiCjlx), (VI.1.2) 
i = l v = l 

where Ac\x = {dij\x) is the distance matrix between clusters given the information of x. 

Here we compute posteriori probabilities p(C,,\x), i = 1,..., c to determine how much infor

mation has been gained. HQ^C) is maximized when p(Ci\x),p(C2\x),...,p(Cc\x) reach 

certain level. In this case, the object x could come from any clusters and we do not know 
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which cluster the object x should belong to. On the other hand, HQ^(C) is minimized to 

0 when one of the p(Ci\x),p(C2\x),...,p(Cc\x) has value one but all the others are zero. 

Thus, HQJ(C) can assess the dependence between objects x and clusters C. 

Li et al. (2004) suggested to integrate x on the whole data space to find the clustering 

criterion. If using Rao's quadratic entropy, it becomes, 

J = JHQs(C)p(x)dx. (VI. 1.3) 

The above quantity is actually the entropy of the random variable C given the random 

variable x and it measures how uncertain we are of C on the average when we know x. 

It is easy to prove that, for either Shannon, Gini-Simpson or quadratic entropy, 

H(C\x) < H(C) 

with equality if and only if x and C are independent (Li et al., 2004), which says that 

knowing the random variable x can reduce the uncertainty in C on the average unless x and 

C are independent. In the case of quadratic entropy, 
C C 

HQ(C) = ^1£dijp(Ci)p(Cj), 
i= l 7=1 

where Ac = (^,7) is the distance matrix between clusters without the information of x. 

This indicates that the minimum of H(C\x) can be a good clustering criterion. This clus

tering criterion has been illustrated for Shannon entropy and Havrda-Charvat's structural 

a-entropy in Li et al. (2004). As discussed in Chapter I and n, Rao's quadratic entropy 

allows to specify the distance between clusters and brings in "extra" self-learning infor

mation to the clustering algorithm, and eventually improves the clustering performance. 

Given a data set X = x\, ...,xc, the minimum quadratic entropy clustering (MQEC) crite

rion is defined as, 

J = I HQs(C)p{x)dx = - t H dwplCilxtMCjfa), (VIA A) 
J nk=\i=\j=\ 

where &c\Xk = (dij\k) is the distance matrix between clusters given the information of Xk-

Besides bringing in prior information of clusters by specifying &c\Xk, quadratic entropy 

has another merit of recursivity. Suppose random variable C has the distribution P = 

(pi,p2,...,Pc)- Let us writeHQ(C\x) as HQ,c(pi,p2,...,pc), then 

HQ,c(PUP2,~;Pc)=HQjC-i(pi,p2,...,Pc)+g(puP2)HQ2( ^ , ; ) 
P\+P2 PI+P2 

holds for all c > 3 (Kapur, 1994). This recursive property allows us to develop clusters 

when there exhibits a nesting relationship between different clusters. 
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VI.2 MINIMUM QUADRATIC ENTROPY CLUSTERING ALGORITHM 

By employing Equation (VI. 1.4) as the clustering criterion, the clustering algorithm can 

be developed at three steps: (1) estimating p(C\x); (2) defining the matrix &c\x> and (3) 

minimizing J = fHQrX(C)p(x)dx. 

VI.2.1 Estimation of Posterior Probabilities 

To estimate the posterior probability p(C\x), we could employ some parametric method. 

However, the choice of any particular distribution could lead to a very poor representa

tion of the data if the data have a complex structure. We therefore apply a nonparametric 

method for estimating the posterior probability. There are two kinds of nonparametric 

techniques, Parzen density estimation and ^-nearest neighbor density estimation (Devroye 

and Gyotfi, 1985). They are fundamentally similar with some different statistical proper

ties. In what follows, we give a brief overview of Parzen density estimate and ^-nearest 

neighbor density estimate. 

Consider estimating the value of a density function at a point x; a small window R(x) 

can be set up around JC and the probability mass of R(x) can be approximated by p(x) • v, 

where v is the volume of R(x). On the other hand, the probability of R(x) can also be 

estimated by drawing a large number (say n) of sample p(x), counting the number of 

samples falling in R(x), say m and computing as m/n. Equating these two probabilities, 

we obtain an estimate of the density function as 

171 
p(x) = . (VI.2.1) 

n-v 

If we fix the volume v and let m be a function of JC, we obtain Parzen density estimate; if 

we fix m and let v be a function of x, we have the ^-nearest neighbor density estimate. 

By Bayes's rule, we have 

P[LilX) ~ p(x) • 

We may use ni/n as an estimator of p{Ct), where n, is the number of points in cluster C,. 

If Parzen density estimate is employed, we have the posterior probability as, 

m . m(x\Cj) . . . 

p(Cl-|jc) = " / f = !&il. (VI.2.2) 
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Figure 7 is an illustration of Parzen density estimation. For data point x = a, for a small 

window R(x) around x = a, 

tn\ \ m(x = a\C\) 8 
m(x = a) 12 

and 
I ^ m ( * = a\C2> 4 

P(C2pC = a) = ; r— = — . 
KV ' ' m(x = a) 12 

Thus the estimate of p(Ci\x) is just the ratio between the number of samples from cluster 

Q and the number of all samples in the local region R(x). The MQEC becomes 

nk=\i=\j=\ nk=\i=\j=\ m W m\x) 

If A:-nearest neighbor estimate is used, we obtain 

Similarly, we can get a corresponding MQEC criterion. 

VI.2.2 Estimation of Aqx 

In this section, we propose methods to calculate distance matrix Aq,,. = (dij\x) so that 

MQEC in Equation (VI. 1.4) can be estimated. This matrix A should be a measure of 

distance between clusters given each data point JC. Traditional distance measures such as 

Euclidean distance and Manhattan distance can be used to measure the distance between 

each data point; and to measure the distance between two clusters C\ and C%, we can use 

one of the following distances: 

• The maximum distance between elements of each cluster (also called complete link

age clustering): 

max{d(x,y): x £ C\,y £ C2}; 

• The minimum distance between elements of each cluster (also called single linkage 

clustering): 

min{d(x,y) :x£C\,y£ C2}', 



FIG. 7. An illustration ofParzen density estimation 
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• The average distance between elements of each cluster (also called average linkage 

clustering): 

- E I d(x,y); 

• The sum of all intra-cluster variance. 

In what follows, we use Euclidean distance to measure the distance between data points 

and use average linkage to define the distance between clusters. Figure 8 is an illustration 

for measuring A in the previous example. 

VI.2.3 Minimization of Quadratic Entropy 

In this section, we develop a clustering algorithm to optimize the MQEC in Equa

tion (VI.2.3) with Parzen density estimation. However it is not suitable for directly 

clustering the data because we can minimize HQ(C\X) to 0 by simply clustering all 

data points into one group. Such a solution generally interferes with finding the 

practically useful partitions. Hence, instead of directly clustering, we use an itera

tive algorithm to reduce the entropy of an initial partition given by another cluster

ing methods (e.g. &-means, hierarchical clustering). This hill-climbing type algorithm 

starts with some initial configuration, and a standard rearrangement is applied to the 

data set such that the objective function is improved (the MQEC is reduced); the re

arranged partition then becomes the new configuration and the process is continued un

til no further improvement can be made. This process is illustrated in Algorithm 1. 
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FIG. 8. An illustration ofAc\x estimation 
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Input: A data set containing n objects, the number of clusters c and an initial 

partition given by &-means clustering method. 

Output: A set of at most c clusters that locally minimizes the entropy. 

repeat 

for every objects x in the data set do 
if Cj containing most of the neighbors ofx is different from the current 

cluster Q ofx then 

h^Zy(H>Qj(C)-HQ,y(C)) 

where y are neighbors of x, and x is also regarded as the neighbor of 

itself. HQJ{C) and H'Q (C) are the entropy associated with y before and 

after assigning x to the cluster Cj, respectively. 

end 

iffc<Othen 
| assign x to the cluster Cj 

end 

end 

until no change; 
Algorithm 1: Minimum Quadratic Entropy Clustering Algorithm 

Since the total entropy decreases in every step and the quadratic entropy is bounded 

by 0, the Algorithm 1 converges after a sufficient number of iterations. In the experiments 

of both simulation data and real gene expression data, it was found that the number of 

iteration is often very small, usually less than 10. 

Note that this algorithm could give a set of fewer than c clusters when a cluster migrate 

into another cluster to reduce MQEC during the iterations. This is different from most 

other clustering methods, which always return a given number of clusters. 

Figure 9 is an illustration of one iteration in the hill-climbing algorithm. For point 

x = a, we can estimate the posterior probability with Parzen estimation, estimate the matrix 

Aq-t, and then we can calculate the entropy measure of H(C\\x = a) and H{C2[x = a). 

Repeat this for each data point, we will get the J as in Equation (VI.2.3). As cluster C\ 

contains most of the neighbors of x = a, which is different from the current cluster C% of x, 

then we assign x = a to cluster C\, recalculate H(C\\x = a) and H(Cz\x = a) and also the 

value of J' in Equation (VI.2.3). If J < J', then keep x as in original cluster C2; if / ' < J, 

then assign x to cluster C\. And the same process can be repeated to each data point in the 

data set until there is no reduction of J can be found. 
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FIG. 9. An illustration ofMQEC iteration algorithm 
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VI.3 EXPERIMENTS AND RESULTS 

In this section, we report the results of using minimum quadratic entropy criterion on a 

simulated data and two real gene expression data sets. To assess the quality of algorithm, 

we compare the clustering results with true class information or gene functional categories 

by adjusted Rand index (Hubert and Arabie, 1985; Steinley, 2004) as the measure of agree

ment. 

The adjusted Rand index lies between 0 and 1. When the clustering results perfectly 

agree with true clusters, the adjusted Rand index is 1; when the clustering is random, it 

has the minimum value of 0. A larger adjusted Rand index means a higher agreement 

between new cluster with true clusters. Another advantage is that adjusted Rand index can 

be used to measure the agreement even when the number of cluster results D is different 

from number of true clusters C (See Appendix B). 

V 1.3.1 Simulated Data 

To illustrate of the new algorithm, we generate data similar to Li et al. (2004). Given 

r , r , r 1 ° -3 i r 1 ~ 0 - 3 , 

means as 0,0 and 2,21, variance-covariance matrices as and , 
0.3 1 -0 .3 1 

a two-dimensional data are simulated to follow Gaussian distribution. Then we compare 

the adjusted Rand index between minimum quadratic entropy algorithm and the &-means 

clustering method. 

TABLE 29. Adjusted Rand index on the simulation data 

Cluster Hierarchical &-means MQECLGini MQEC_QE 

2 
3 
4 
5 
6 
7 
8 
9 
10 

0.560538 

0.293405 

0.267715 

0.369879 

0.288235 

0.245126 

0.211185 

0.185435 

0.166678 

0.571655 

0.408945 

0.309896 

0.241148 

0.208554 

0.170305 

0.153727 

0.139683 

0.13313 

0.712 

0.625 

0.365 

0.425 

0.497 

0.631 

0.597 

0.511 

0.487 

0.735 
0.674 

0.374 

0.457 

0.516 

0.678 

0.624 

0.589 

0.512 
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Table 29 lists the adjusted Rand index achieved by Hierarchical clustering, £-means, 

and minimum quadratic entropy algorithm based upon two distance matrices. Both 

quadratic entropy algorithm improve the initial partitions given by fc-means. When the 

specified number of clusters is correct, the minimum quadratic entropy have some im

provement from the fc-means. When the specified number of clusters are not correct, 

which is often the case, the minimum quadratic entropy still performs much better than 

the &-means and hierarchical clustering methods. 

VI.3.2 Real Example I: Yeast Galactose Data 

We used two gene expression data to test MQEC algorithm. The first data is the yeast 

galactose data with 205 genes on 20 experiments from Yeung, Medvedovic, and Bumgar-

ner (2003), whose expression categories correspond to four functional categories in the 

Gene Ontology listing. We used the four categories as the external knowledge to test the 

clustering methods. Before clustering, we normalized the data for each gene to have mean 

0 and and variance 1 across experiments. 

TABLE 30. Adjusted Rand index on the yeast galactose data 

Cluster Hierarchical &-means MQEC_Gini MQEC_QE 

4 
5 
6 
7 
8 
9 
10 

0.769948 

0.867503 

0.859209 
0.860414 

0.855887 

0.689918 

0.660022 

0.705322 

0.937955 

0.831913 

0.757277 

0.745214 

0.673045 

0.665898 

0.938605 

0.94702 

0.946917 

0.937789 

0.937789 
0.842092 

0.842092 

0.948752 

0.956223 

0.956121 

0.945148 

0.945148 

0.863605 

0.863605 

The experimental results are listed in Table 30. Clearly the minimum entropy algo

rithm based upon Gini-Simpson entropy performs better than &-means and hierarchical 

clustering methods. When the specified number of clusters are far from the true number 

of clusters, quadratic entropy criterion is even better than Gini-Simpson entropy. The min

imum entropy criterion algorithm with quadratic entropy achieves a very high adjusted 

Rand index (> 0.9), which indicates that this algorithm can effectively cluster genes into 
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the same functional category according the expression levels. This algorithm can produce 

a reasonable clustering even when the specified number of clusters is larger than the true 

number (i.e. 4 in this case). One possible reason is, when the specified number of clusters 

is larger than the correct number, the minimum quadratic entropy algorithm can use the 

"extra" clusters to identify outliers and thus improve the quality of the final partition. In 

this sense, this algorithm is capable of extracting useful information and detect outliers. 

VI.3.3 Real Example II: Yeast Cell Cycle Data 

The second data set is the yeast cell cycle data set which contains approximately 6000 

genes expressions data over two cell cycles. Yeung and Ruzzo (2001) extracted 384 genes 

according to the peak time of genes, which were categorized into five phases of cell cycles 

by peak times. Again, the data was normalized to have mean 0 and variance 1 across each 

cell cycle. We took the five phases as the external knowledge and did the clustering. The 

results are listed in Table 31. 

TABLE 31. Adjusted Rand index on the yeast cell cycle data 

Cluster Hierarchical &-means MQEC_Gini MQEC-QE 

5 
6 
7 
8 
9 
10 

0.482783 

0.480931 

0.478222 

0.480002 

0.364068 

0.343015 

0.493835 

0.45666 

0.479874 

0.358697 

0.44738 

0.322426 

0.483573 

0.470363 

0.485095 

0.453583 

0.466551 

0.486782 

0.489987 

0.478038 
0.491022 

0.461202 

0.476355 

0.490753 

For yeast cell cycle data, the MQEC algorithm with Gini-Simpson entropy and 

quadratic entropy still work better than &-means and hierarchical clustering methods, es

pecially when the specified number of clusters is far from the true number of clusters. 

Quadratic entropy criterion achieves higher adjusted Rand index than Gini-Simpson en

tropy. However, all of them achieved low adjusted Rand indexes and quadratic entropy 

does not improve the performance significantly. This does not necessarily mean that the 

MQEC algorithm performed poorly, but maybe because that the peak time may not be the 

best external criterion due to its lack of strong correlation with expression level (functional 
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categories). It is used here because no better external information is available about the 

subset of genes. 

In this chapter we proposed MQEC method in clustering gene expression data by im

plementing Rao's quadratic entropy in minimum entropy criterion proposed by Li et al. 

(2004). With a nonparametric approach for estimating a posteriori probabilities and a lo

cally estimated difference matrix, an efficient iterative algorithm is used to minimize the 

entropy. The simulated data and two real gene expression data sets show that our new 

method performs significantly better than &-means, hierarchical clustering, and also better 

than minimum entropy criterion with Gini-Simpson entropy. It is seen that this algorithm 

performs very well even when the correct number of clusters is unknown and it is also 

capable of effectively identifying outliers. 
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APPENDIX A 

GEOMETRIC MODEL 

Among ecological models for species distribution, the geometric model is one of the most 

compatible with the observed dinosaur data. If pi is the proportion of dinosaurs in the ith 

family, then the model is 

Pm=
 1 _ / 1 _ f c ) 5 ' m = 1 ' - ' g ( ° < * < 1 ) 

Fritsch and Hsu (1999) showed that the sample proportions from the dinosaur data 

among the three stratigraphic intervals, upper and lower intervals are very similar to the 

geometric probability with k = 0.6. So we generated data from a range of geometric 

models (£=0.4, 0.6 and 0.8) to assess the accuracy of single biodiversity as well as the 

biodiversity difference of two intervals. 
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APPENDIX B 

ADJUSTED RAND INDEX 

Denote the data matrix as X = {XIJ}NXM, where N is the number of samples and M is the 

number of variables. The N samples coming from C true clusters are partitioned into D 

groups. Let tC(j represent the number of subjects that were classified in the d-th cluster that 

actually belongs to c-th cluster. Table 32 can be formed to indicate the clustering results. 

The adjusted Rand index is to measure the agreement between the new cluster results 

/ N ^ 
and true cluster based upon how pairs of subjects are classified in Table 32. Letting ( ) 

represent the total number of pairs results in four different types of pairs: (a) subjects in 

a pair coming from same true cluster are placed into same group; (b) subjects in a pair 

coming from same true cluster are placed into different groups; (c) subjects in a pair com

ing from different true clusters are placed into same groups; (d) subjects in a pair coming 

from different true clusters are placed into different groups. This leads to an alternative 

representation of the Table 32 as a 2 x 2 contingency table based upon (a), (b), (c) and (d). 

The four cells of Table 33 are calculated as, 

7 lFc=xlPd=,t2
cd-N 

2 ' 

h _ Lc= 1 lc+ Lc=lL*d=l lcd 

2 
YD t2 -Yc YD t2 

2 

TABLE 32. Data structure for calculating adjusted Rand index 
Clusters Results 

Group 1 2 ... D Total 

t\D h+ 

tcD tc+ 

t+D t++=N 

(B.0.1) 

(B.0.2) 

(B.0.3) 

True Cluster 1 
2 

C 

h\ 
ti\ 

tc\ 
' + i 

hi 

hi 

tcl 

t+i 
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TABLE 33. 2 x 2 contingency table representation 

Cluster Results 
True Cluster Pairs Placed in Pairs Placed in Dif-

Same Group ferent Groups 
Pairs Coming from Same Clusters a b 
Pairs Coming from Different Clusters c d 

2 

Hubert and Arabie (1985) defined the adjusted Rand index as: 

( )(a + d)-[(a + b)(a + c) + (c + d)(b + d)] 

ARI = . (B.0.5) 

( N )2-{(a + b)(a + c) + (c + d)(b + d)} 
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APPENDIX C 

THE COLLECTION OF SAS PROGRAMS 

C.1 SUBROUTINES FOR CALCULATING DISTANCE BASED UPON PROBA

BILITY 

/* The following subroutine calculates the distance based upon probability, */ 

/* which is estimated from the margin proportions. */ 

START GETDELTA(MAT); 

ROW=NROW(MAT); 

COL=NCOL(MAT); 

PII=J(ROW, COL, 0); 

PI=J(COL,1,0); 

LAMDA=J(ROW,1,0); 

NJ=MAT*J(COL,l,l); 

NJ=J(l,ROW,l)*MAT; 

N=SUM(MAT); 

DELTA=J(COL,COL,0); 

DO J=l TO COL; 

DO 1=1 TO ROW; 

IF N J[I]=0 THEN PH[I,J]=0; 

ELSE PII[I,J]=MAT[I,J]/N_I[I]; 

IF PII[I,J]=. THEN PRINT MAT; 

END; 

END; 

DO 1=1 TO COL; 

DO J=l TO COL; 

IF I=J THEN DELTA[I,J]=0; 

ELSE IF (NJ[ir=0) & (N J[J]"=0) 

THEN DELTA[I,J]=ABS(LOG(N J[I])-LOG(N J[J]))+1; 

ELSE IF (NJ[I]=0) & (NJ[Jr=0) THEN DELTA[I,J]=LOG(NJ[J])+l; 

ELSE IF (NJ[ir=0) & (NJ[J]=0) THEN DELTA[I,J]=L0G(NJ[I])+1; 
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ELSEDELTA[I,J]=1; 

END; 

END; 

RETURN(DELTA); 

FINISH GETDELTA; 

C.2 SUBROUTINE FOR CALCULATING LINEAR COMBINATION OF %2 DIS

TRIBUTIONS 

/* The following subroutine calculates the linear combination of */ 

l*%2 distribution.*/ 

START QF(LB, NC, N, R, SIGMA, C, LEVI, ACC) GLOBAL(XB, _NC, _N, 

_R, _SIGMA, _C, _LIM, _ACC,QF, TRACE, IFAULT,PI,LN28,SIGSQ,INTL1,INTL2, 

ERSM1 ,ERSM2,LMAX,LMIN,MEAN,COUNT,NDTSRT,FAIL,TH,COUNTl, 

COUNT2,COUNT3,ACCl,SD); 

XB=J(R, 1,0.0); 

_LB=LB; 

_NC=J(R, 1,0.0); 

_NC=NC; 

_N=J(R,1,0); 

_N=N; 

_R=R; 

_SIGMA=SIGMA; 

_C=C; 

XIM=LIM; 

_ACC=ACC; 

TRACE=J(7,1,0.0); 

IFAULT=0; 

QF=-1.0; 



94 

PI=3.14159265358979; 

LN28=0.0866; 

SIGSQ=_SIGMA*_SIGMA; 

INTL 1=0.0; 

INTL2=0.0; 

ERSM 1=0.0; 

ERSM2=0.0; 

LMAX=0.0; 

LMIN=0.0; 

MEAN=0.0; 

COUNT=0; 

NDTSRT=1; 

FAIL=0; 

TH=J(_R,1,0); 

COUNT1=0; 

COUNT2=0; 

COUNT3=0; 

ACC1=_ACC; 

SD=SIGSQ; 

START LN1 (X, FIRST); 

_X1=X; 

_FIRST=FIRST; 

IF ABS(_X1) > 0.1 THEN IF JFIRST=1 THEN LN1=LOG(1.0+_X1); 

ELSE LN1=LOG(1.0+_X1)-_X1; 

ELSE DO; 

Y=_Xl/(JCl+2.0); 

TERM=2.0*Y*Y*Y; 

K=3.0; 

IF _FIRST=1 THEN S=2.0*Y; 

ELSES=-JX1*Y; 

Y=Y*Y; 

S1=S+TERM/K; 
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DO WHILE (Sr=S); 

K=K+2.0; 

TERM=TERM*Y; 

S=S1; 

S1=S+TERM/K; 

END; 

LN1=S; 

END; 

RETURN (LN1); 

FINISH LN1; 

START ORDER; 

/* FIND ORDER OF ABSOLUTE VALUES OF _LB;*/ 

DO J=l TO _R; 

LJ=ABS(XB[J]); 

D0K=J-1T0 1BY-1; 

IF LJ > ABS(_LB[TH[K]]) THEN TH[K+1]=TH[K]; 

ELSE GOTO LI; 

END; 

K=0; 

L1:TH[K+1]=J; 

END; 

NDTSRT=0; 

FINISH ORDER; 

START ERRBD(U,CX) GLOBAL(XB,_NC,_N,_R,iIM,SIGSQ,COUNTl); 

/* FIND BOUND ON TAIL PROBABILITY USING MGF. CUTOFF POINT RE

TURNED TO CX */ 

_U1=U; 

/* RUN COUNTER;*/ 

COUNTl=COUNTl+l; 

IF COUNT1 > _LIM THEN PRINT 'WARNINGrCOUNTl > LIM'; 

CONST=_Ul*SIGSQ; 
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SUMl=_Ul*CONST; 

_U1=2.0*_U1; 

DOJ=_RTOlBY- l ; 

NJ=_N[J]; 

U=XB[J]; 

NCJ=_NC[J]; 

X=_U1*U; 

Y=1.0-X; 

CONST=CONST+(LJ*(NCJ/Y+NJ))/Y; 

SUM1=SUM1+NCJ*(XA^)*(XA')+NJ*(((X*X)A')+LN1(-X,0)); 

LN1=LN1(-X,0); 

* PRINT'LN1='LN1; 

END; 

ERRBD=EXP(-0.5*SUM1); 

CX=CONST; 

RETURN(ERRBD); 

FINISH ERRBD; 

START CTFF(ACCX,UPN) GLOBAL(LMAX,LMIN,MEAN); 

/*FTND CTFF SO THAT P(QF > CTFF) < ACCX IF UPN > 0, P(QF < CTFF) < ACCX 

OTHERWISE */ 

^CCX1=ACCX; 

U2=UPN; 

U 1=0.0; 

C1=MEAN; 

C2=0; 

CONST=0; 

IF U2 > 0.0 THEN RB=2.0*LMAX; 

ELSE RB=2.0*LMIN; 

U=U2/(1.0+U2*RB); 

ERRBD=ERRBD(U, C2); 

DO WHILE (ERRBD > _ACCX1); 

U1=U2; 

C1=C2; 
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U2=2.0*U2; 

U=U2/(1.0+U2*RB); 

ERRBD=ERRBD(U, C2); 

END; 

U=(C 1 -MEAN)/(C2-MEAN); 

DO WHILE (U < 0.9); 

U=(Ul+U2)/2.0; 

IF (ERRBD(U/(1.0+U*RB),CONST) > _ACCX1) THEN DO; 

U1=U; 

Cl=CONST; 

END; 

ELSE DO; 

U2=U; 

C2=CONST; 

END; 

U=(C 1 -MEAN)/(C2-MEAN); 

END; 

CTFF=C2; 

UPN=U2; 

RETURN (CTFF); 

FINISH CTFF; 

START TRUNCATION(U, TAUSQ) 

GLOBAL(iB,_NC,_N,_R,_LIM,PI,SIGSQ,COUNT2); 

/* BOUND INTEGRATION ERROR DUE TO TRUNCATION AT U*/ 

_U2=U; 

_TAUSQ1=TAUSQ; 

COUNT2=COUNT2+1; 

IF COUNT2 > XIM THEN PRINT 'WARNING: COUNT2 > LIM.'; 

SUM 1=0.0; 

PROD2=0.0; 

PROD3=0.0; 
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S=0; 

SUM2=(SIGSQ+_TAUSQ1)*JJ2*_U2; 

PROD1=2.0*SUM2; 

_U2=2.0*_U2; 

DO J=l TO _R; 

LJ=XB[J]; 

NCJ=_NC[J]; 

NJ=_N[J]; 

X=(_U2*LJ)*(_U2*LJ); 

SUM 1=SUM 1 +NCJ*X/( 1.0+X); 

I F X > 1.0 THEN DO; 

PROD2=PROD2+NJ*LOG(X); 

PROD3=PROD3+NJ*LNl(X, 1); 

S=S+NJ; 

END; 

ELSE PRODl=PRODl+NJ*LNl(X,l); 

END; 

SUM1=0.5*SUM1; 

PROD2=PRODl+PROD2; 

PROD3=PROD 1+PROD3; 

X=(EXP(-SUM1-0.25*PROD2))/PI; 

Y=(EXP(-SUM 1-0.25 *PROD3))/PI; 

IFS=0THENERR1=1.0; 

ELSE ERR1=X*2.0/S; 

IF PROD3 > 1.0 THEN ERR2=2.5*Y; 

ELSE ERR2= 1.0; 

IF ERR2 < ERR1 THEN ERR1=ERR2; 

X=0.5*SUM2; 

IF X < =Y THEN ERR2=1.0; 

ELSEERR2=Y/X; 

IF ERR1 < ERR2 THEN TRUNCATION=ERRl; 

ELSE TRUNCATION=ERR2; 

RETURN (TRUNCATION); 

FINISH TRUNCATION; 
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START FINDU(UTX, ACCX); 

/*FTND U SUCH THAT TRUNCATION(U) < ACCX & TRUNCATION(U/l .2) > 

ACCX*/ 

J^CCX2=ACCX; 

UT=UTX; 

U=UT/4.0; 

IF TRUNCATION(U,0) > _ACCX2 THEN DO; 

TRUN=TRUNCATION(U,0); 

U=UT; 

TRUN=TRUNCATION(U,0); 

DO WHILE (TRUN > _ACCX2); 

UT=UT*4.0; 

U=UT; 

TRUN=TRUNCATION(U,0); 

END; 

END; 

ELSE DO; 

UT=U; 

U=U/4.0; 

TRUN=TRUNCATION(U,0); 

DO WHILE (TRUN < = _ACCX2); 

UT=U; 

U=U/4.0; 

TRUN=TRUNCATION(U,0); 

END; 

END; 

U=UT/2.0; 

IF TRUNCATION(U,0) < = _ACCX2 THEN UT=U; 

U=UT/1.4; 

IF TRUNCATION(U,0) < = _ACCX2 THEN UT=U; 

U=UT/1.2; 
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IF TRUNCATION(U,0) < = _ACCX2 THEN UT=U; 

U=UT/1.1; 

IF TRUNCATION(U,0) < = _ACCX2 THEN UT=U; 

UTX=UT; 

FINISH FINDU; 

START INTEGRATE(NTERM, INTERV, TAUSQ, MAIN) 

GLOBAL(XB,_NC,_N,_R,_C,_ACC,PI,SIGSQ,INTLl,INTL2,ERSMl,ERSM2); 

/*CARRY OUT WITH NTERMS, AT STEPWISE INTERV. IF NOT MAIN THEN MUL

TIPLY INTEGRAND BY 1.0-EXP(-0.5*TAUSQ*U*U)*/ 

_NTERM=NTERM; 

JNTERV=INTERV; 

_TAUSQ2=TAUSQ; 

_MAIN=MAIN; 

INPI=JNTERV/PI; 

DO K=_NTERM TO 0 BY -1 ; 

U=(K+0.5)*JNTERV; 

SUM1=-2.0*U*_C; 

SUM2=ABS(SUM1); 

SUM3=-0.5*SIGSQ*U*U; 

DOJ=_RT0 1BY- l ; 

NJ=_N[J]; 

X=2.0*_LB[J]*U; 

*PRINT *X=' X; 

Y=X*X; 

SUM3=SUM3-0.25*NJ*LN1(Y,1); 

Y=_NC[J]*X/(1.0+Y); 

Z=NJ*ATAN(X)+Y; 

SUM1=SUM1+Z; 

SUM2=SUM2+ABS(Z); 

SUM3=SUM3-0.5*X*Y; 

END; 

X=INPI*(EXP(SUM3))/U; 

IF (_MAIN=0) THEN X=X*(1.0-EXP(-0.5*_TAUSQ2*U*U)); 
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SUM1=SIN(0.5*SUM1)*X; 

SUM2=0.5*SUM2*X; 

IF ABS(SUMl) < _ACC THEN DO; 

INTL1=INTL1+SUM1; 

ERSM1 =ERSM 1+SUM2; 

END; 

ELSE DO; 

INTL2=INTL2+SUM1; 

ERSM2=ERSM2+SUM2; 

END; 

END; 

FINISH INTEGRATE; 

START CFE(X) 

GLOBAL(XB,JSfC,_N,_R,_LIM,PI,LN28,COUNT3,NDTSRT,FAIL,TH); 

/* COEF OF TAUSQ IN ERROR WHEN CONVERGENCE FACTOR OF EXP(-

0.5*TAUSQ*U*U) IS USED WHEN DF IS EVALUATED AT X */ 

_X2=X; 

COUNT3=COUNT3+l; 

IF COUNT3 > XIM THEN PRINT 'WARNING:COUNT3 > LIM'; 

IF NDTSRT=1 THEN DO; 

CALL ORDER; 

END; 

AXL=ABS(_X2); 

IF JX2=0.0 THEN SXL=0.0; 

ELSE IF _X2 > 0.0 THEN SXL=1.0; 

ELSE SXL=-1.0; 

SUM1=0.0; 

D0J=_RTO1BY-1; 

T=TH[J]; 

IF _LB[T]*SXL > 0.0 THEN DO; 

LJ=ABS(XB[T]); 

AXL1=AXL-LJ*(_N[T]+3TC[T]); 

AXL2=LJ/LN28; 



IF AXL1 > AXL2 THEN AXL=AXL1; 

ELSE DO; 

IF AXL > AXL2 THEN AXL=AXL2; 

SUM 1 =(AXL-AXL1 )/LJ; 

D0K=J-1T0 1BY-1; 

SUM1=SUM1+(_N[TH[K]]+_NC[TH[K]]); 

END; 

GOTO L; 

END; 

END; 

END; 

L: IF SUM1 > 100.0 THEN DO; 

CFE=1.0; 

FAIL=1; 

END; 

ELSE CFE=EXP((LOG(2.0))*(SUM l/4.0))/(PI*AXL*AXL); 

RETURN (CFE); 

FINISH CFE; 

*START QF; 

DO J=l TO _R; 

NJ=_N[J]; 

LJ=_LB[J]; 

NCJ=_NC[J]; 

IF (NJ < 0) — (NCJ < 0.0) THEN DO; 

IFAULT=3; 

GOTO EXIT; 

END; 

SD=SD+LJ*LJ*(2*NJ+4.0*NCJ); 

MEAN=MEAN+LJ*(NJ+NCJ); 

IF LMAX < LJ THEN LMAX=LJ; 

ELSE IF LMIN > LJ THEN LMIN=LJ; 

END; 

IF SD=0.0 THEN DO; 



IF _C> 0.0 THEN QF=1.0; 

ELSE QF=0.0; 

GOTO EXIT; 

END; 

IF (LMIN=0.0) & (LMAX=0.0) & (_SIGMA=0.0) THEN DO; 

IFAULT=3; 

GOTO EXIT; 

END; 

SD=SQRT(SD); 

IF LMAX < -LMIN THEN ALMX=-LMIN; 

ELSE ALMX=LMAX; 

UTX=16.0/SD; 

UP=4.5/SD; 

UN=-UP; 

CALL FTNDU(UTX, 0.5*ACC1); 

IF (_C~=0.0) & (ALMX > 0.07*SD) THEN DO; 

CFE=CFE(_C); 

TAUSQ=0.25 * ACC1/CFE; 

IF FAIL=1 THEN FAIL=0; 

ELSE IF TRUNCATION(UTX,TAUSQ) < (0.2*ACC1) THEN DO; 

SIGSQ=SIGSQ+TAUSQ; 

CALL FINDU(UTX,0.25*ACC1); 

PRINT UTX; 

TRACE[6]=SQRT(TAUSQ); 

END; 

END; 

TRACE[5]=UTX; 

ACC 1 =0.5* ACC 1; 

LI: D1=CTFF(ACC1,UP)-_C; 



IFD1 < 0.0 THEN DO; 

QF=1.0; 

GOTO EXIT; 

END; 

D2=.C-CTFF(ACC 1 ,UN); 

IF D2 < 0.0 THEN DO; 

QF=0.0; 

GOTO EXIT; 

END; 

IF Dl > D2 THEN INTV=2.0*PI/D1; 

ELSE INTV=2.0*PI/D2; 

NT=INT(UTX/INTV); 

NTM=INT(3.0/SQRT(ACC1)); 

IF NT > NTM*1.5 THEN DO; 

INTV1=UTX/NTM; 

X=2.0*PI/INTV1; 

IF X < = ABS(_C) THEN GOTO L2; 

TAUSQ=0.33*ACC1/(1.1 *(CFE(_C-X)+CFE(_C+X))); 

IF FAIL=1 THEN GOTO L2; 

ACC1=0.67*ACC1; 

IF NTM > XIM THEN DO; 

IFAULT=1; 

GOTO EXIT; 

END; 

CALL INTEGRATE(NTM,INTV1,TAUSQ,0); 

XIM=XIM-NTM; 

SIGSQ=SIGSQ+TAUSQ; 

TRACE[3]=TRACE[3]+1; 

TRACE[2]=TRACE[2]+NTM+1; 

CALL FINDU(UTX,0.25*ACC1); 



ACC1=0.75*ACC1; 

PRINT UTX; 

GOTO LI; 

END; 

L2: TRACE[4]=INTV; 

IF NT > _LIM THEN DO; 

IFAULT=1; 

GOTO EXIT; 

END; 

CALL INTEGRATE(NT, INTV, 0, 1); 

TRACE[3]=TRACE[3]+1; 

TRACE[2]=TRACE[2]+NT+1; 

QF=0.5-INTL1-INTL2; 

TRACEf 1 ]=ERSM 1+ERSM2; 

ERSM1 =ERSM 1+ERSM2; 

PRINT 'QF=' QF; 

X=ERSM1+_ACC/10.0; 

IF X=ERSM1 THEN IFAULT=2; 

IF 2*X=2*ERSM1 THEN IFAULT=2; 

IF 4*X=4*ERSM1 THEN IFAULT=2; 

IF 8*X=8*ERSM1 THEN IFAULT=2; 

EXIT: TRACE[7]=COUNTl; 

RETURN(QF); 

FINISH QF; 
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C.3 SUBROUTINES FOR CALCULATING THE MAXIMUM VALUE OF RAO'S 

QUADRATIC ENTROPY 

i *Ji- *!• *£* «I* *1* *1* *t* *1* *1* *1* *l* ol* •!- •!•*!• «!• »I* •*!* *I* *1* *1* *i* •!* «1» *1* «ii* •!* *!* *9r *l* *!• •*!* ^ •&? *£• 4* ^ *>̂  *1* ^ ^ t ^ ^ *& ^ ^ ^ ^ *1» <^ ^* >fc» *!• *4* ^ ^ ^ ^ ^ ^ t ^ ^ ^ f̂e ^ ^ ^ ^ ^ Jtf ^ i t Ĵf f̂e Sltf / 
/>^ >f* *p *(C *p *p ?p * j* -p Jj* *|* Jp sp *f* jp "P"f* *F*I* *P *P *1* *1* *P " i * *** *P *t* *P *** *t* T* *•* ^ * * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ *n ^ ^ T* "1* ^ *F *f* ^ ^ ^ *r* ^ *^ ^ ^ **• *r* *$• *T* •?• *^ *r* *T* *T* *r* *T* / 

/* Define the function of divc() to get the Rao's diversity coefficient.*/ 

START DIVC(DF,DIS,SCALE); 

IF ANY(DF < 0) THEN DO; 

PRINT "NEGATIVE VALUE IN DF"; 

STOP; 

END; 

IF DIS=J(NROW(DF),NROW(DF),0) THEN 

DIS=J(NROW(DF),NROW(DF),l)-DIAG(REPEAT(l,NROW(DF)))*SQRT(2); 

ELSE DO; 

IF NROW(DFr=NROW(DIS) THEN DO; 

PRINT "NON CONVENIENT DF ' STOP; 

END; 

END; 

DIV=REPEAT(0,NCOL(DF)); 

DO 1=1 TO NCOL(DF); 

IF SUM(DF[,I]) < IE-16 THEN DIV[I,]=0; 

ELSEDrV[I,]=(T(DF[,I])*(DIS##2)*DF[,I])/2/(SUM(DF[,I])**2); 

END; 

IF SCALE=1 THEN DO; 

DIVCMAX=DIVCMAX(DIS); 

DIV=DrV/DrVCMAX; 

END; 

RETURN(DIV); 

FINISH DIVC; 

/* Define the function of divcmax() to get the Maximal value of Rao's*******/ 
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START DIVCMAX(DIS, EPSILON,COMMENT) GLOBAL(RESULT); 

IF EPSILON < = 0 THEN DO; 

PRINT "EPSILON MUST BE POSITIVE"; 

STOP; 

END; 

D2=DIS##2/2; 

N=NROW(D2); 

RESULT=J(N,4,0); 

MATTRIB RESULT COLNAME=(SIM PRO MET NUM); 

RELAX=0; 

X0=D2[,+]/SUM(D2); 

RESULT[,1]=X0; 

OBJECTIVE0=T(X0)*D2*X0; 

IF COMMENT=l THEN PRINT "EVOLUTION OF THE OBJECTFVE FUNCTION:"; 

XK=X0; 

DO; 

LOOP1A: DO; 

LOOP2A: MAXI_TEMP=T(XK)*D2*XK; 

IF COMMENT=l THEN PRINT MAXLTEMP; 

DELTAF=-2#D2*XK; 

SATURE=J(NROW(XK),NCOL(XK),l); 

DO 1=1 TO NROW(XK); 

DO J=l TO NCOL(XK); 

IF (ABS(XK[I,J]) < EPSILON) THEN SATURE[I,J]=1; 

ELSE SATURE[I,J]=0; 

END; 

END; 

IF RELAX~=0 THEN DO; 

SATURE[RELAX]=0; 

RELAX=0; 

END; 

YK=-DELTAF; 

DO 1=1 TO NROW(YK); 

DO J=l TO NCOL(YK); 



IF SATURE[I,J]=1 THEN YK[I,J]=0; 

END; 

END; 

_COUNT=0; 

_SUM=0; 

DO 1=1 TO NROW(YK); 

DO J=l TO NCOL(YK); 

IF SATURE[I,J]=0 THEN DO; 

_COUNT=_COUNT+l; 

_SUM=_SUM+YK[I,J]; 

END; 

END; 

END; 

JVIEAN=_SUM/_COUNT; 

DO 1=1 TO NROW(YK); 

DO J=l TO NCOL(YK); 

IF SATURE[I,J]=0 THEN YK[I,J]=YK[I,J]-JVIEAN; 

END; 

END; 

IF MAX(ABS(YK)) < EPSDLON THEN GOTO LOOP2B; 

ALPHAJVIAX=1; 

_RATIO=l; 

DO 1=1 TO NROW(YK); 

DO J=l TO NCOL(YK); 

IF YK[I,J] < 0 THEN DO; 

_RATIO=-XK[I, J]/YK[I, J]; 

IF _RATIO < ALPHA-MAX THEN ALPHA-MAX=_RATIO; 

END; 

END; 

END; 

ALPHA_OPT=(-T(XK)*D2*YK)/(T(YK)*D2*YK); 

IF (ALPHA_OPT > ALPHAJMAX) | (ALPHA_OPT < 

ALPHA=ALPHAJVIAX; 

ELSE ALPHA=ALPHA_OPT; 



IF(ABS(MAXI_TEMP-T(XK+ALPHA*YK)*D2*(XK+ALPHA*YK)) < 

THEN GOTO LOOP2B; 

XK=XK+ALPHA*YK; 

GOTO LOOP2A; 

LOOP2B: END; 

IF SUM(SATURE)=0 THEN DO; 

IF COMMENT=l THEN DO; 

PRINT "KT1" XK; 

END; 

END; 

IF SUM(SATURE)=0 THEN GOTO LOOPlB; 

VECTD2=D2*XK; 

_COUNT_=0; 

_SUM_=0; 

DO 1=1 TO NROW(VECTD2); 

DO J=l TO NCOL(VECTD2); 

IF SATURE[I,J]=0 THEN DO; 

_COUNT_=_COUNT_+l; 

_SUM_=_SUM_+VECTD2[I, J]; 

END; 

END; 

END; 

_MEAN_=_SUM7_COUNT_; 

_COUNT2_=0; 

DO 1=1 TO NROW(VECTD2); 

DO J=l TO NCOL(VECTD2); 

IF SATURE[U]=1 THEN DO; 

_COUNT2_=_COUNT2_+1; 

_MAT_=_MAT J/S ATURE[I, J]; 

END; 

END; 

END; 

U=2#(J(_COUNT2_, 1, _MEAN_)- _MAT_); 



IF (MEST(U) > =0) THEN DO; 

IF COMMENT=l THEN DO; 

PRINT "KT2" XK; 

END; 

END; 

IF (MIN(U) > =0) THEN GOTO LOOP1B; 

ELSE DO; 

IF COMMENT=l THEN DO; 

PRINT "RELAXATION" XK; 

END; 

DO 1=1 TO N; 

IF SATURE[I]=1 THEN SATU=SATU//I; 

END; 

DO 1=1 TO NROW(U); 

DO J=l TO NCOL(U); 

IF U[I,J]=MIN(U) THEN _RELAX_=_RELAXJ/SATU[I,J]; 

END; 

END; 

RELAX=_RELAX[1]; 

END; 

GOTO LOOP1A; 

LOOP1B: END; 

IF COMMENTS THEN PRINT OBJECTIVE0 MAXLTEMP; 

RESULT[,4]=XK; 

DO 1=1 TO NROW(RESULT); 

IF RESULT[I,4] < EPSILON THEN RESULT[I,4]=0; 

END; 

XK=X0/SQRT(SUM(X0#X0)); 

DO UNTIL (MAX(XK-YK) < = EPSILON); 

YK=D2*XK; 

YK=YK/SQRT(SUM(YK#YK)); 

IF MAX(XK-YK) > EPSILON THEN XK=YK; 

ELSE DO; 

PRINT "STOP5"; 



I l l 

END; 

END; 

XO=YK; 

RESULT[,2]=X0/SUM(X0); 

RESULT[,3]=X0#X0; 

RESTOT=DIVC(RESULT[,4],DIS,0); 

PRINT RESULT RESTOT; 

*RETURN(RESTOT); 

FINISH DIVCMAX; 

C.4 SUBROUTINES FOR CALCULATING DISTANCE IN TWO MULTINO

MIAL POPULATIONS 

/*The following subroutine calculate the Bhattacharyya Distance. */ 

START DISTB(XI,XJ); 

/*XI,XJ ARE TWO MULTINOMIAL DISTRIBUTED VECTORS WITH TOTAL NUM

BER IN THE LAST COLUMN;*/ 

NCOL=NCOL(XI); 

SUM=0; 

DOI=lTONCOL-l; 

SUM=SUM+(SQRT(XI[I])-SQRT(XJ[I]))**2; 

END; 

DISTB=SQRT(SUM); 

RETURN(DISTB); 

FINISH DISTB; 

/*The following subroutine calculate the Rao's Quadratic Entropy Distance. */ 

START DISTQE(XI,XJ,DELTA); 
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/*XI,XJ ARE TWO MULTINOMIAL DISTRIBUTED VECTORE WITH TOTAL NUM

BER IN THE LAST COLUMN;*/ 

NCOL=NCOL(XI); 

P_BAR=(XI[ 1 :NCOL-1 ]+XJ[ 1 :NCOL-1 ])/(XI[NCOL]+XJ[NCOL]); 

SST=P_BAR' *DELTA*P_BAR; 

SSWl=(XI[l:NCOL-l])'*DELTA*(XI[l:NCOL-l])/(XI[NCOL]*XI[NCOL]); 

SSW2=(XJ[ 1 :NCOL-1 ])' *DELTA*(XJ[1 :NCOL-1 ])/(XJ[NCOL] *XJ[NCOL]); 

DISTQE=(SST-SSWl*XI[NCOL]/(XI[NCOL]+XJ[NCOL]) 

-SSW2*XJ[NCOL]/(XI[NCOL]+XJ[NCOL]))/SST; 

*PRINT SST SSW1 SSW2 DISTQE; 

RETURN(DISTQE); 

FINISH DISTQE; 

C.5 SUBROUTINES FOR MINIMUM QUADRATIC ENTROPY CLUSTERING 

ALGORITHM 

/*The following subroutine calculates the minimum quadratic entropy */ 

/*clustering criterion. */ 

START MEC_QE(MAT,MAT1,DIST,C,V); 

MINQE=0; 

N=NROW(MAT); 

DO 1=1 TO N; 

K=J(1,C,0); 

TOTAL=J(C,2,0); 

DO J=l TO N; 

IF DIST[I,J] < = V THEN DO; 

K[MAT[J,2]]=K[MAT[J,2]]+1; 

TOTAL[MAT[J,2],]=TOTAL[MAT[J,2],]+MATl[J,l:2]; 

END; 

END; 

DELTA=J(C,C,0); 
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DO 11=1 TO C; 

DO JJ=1 TO C; 

IF H=JJ THEN DELTA[n,JJ]=0; 

ELSE IF K[lir=0 & K[Jjr=0 THEN 

DELTA[II,JJ]=(TOTAL[H,]/K[II]-TOTAL[JJ,]/K[JJ])*T(TOTAL[n,]/K[n]-

TOTAL[JJ,]/K[JJ]); 

ELSE IF K[II]=0 & K[JJr=0 THEN 

DELTA[IIJJ]=(TOTAL[JJ,]/K[JJ])*T(TOTAL[JJ,]/K[JJ]); 

ELSE IF K[lir=0 & K[JJ]=0 THEN 

DELTA[II,JJ]=(TOTAL[II,]/K[II])*T(TOTAL[II,]/K[II]); 

ELSE DELTA[II,JJ]=0; 

END; 

END; 

*DELTA=GETDELTA 1 (K); 

NN=K[+]; 

IF NN'=0 THEN DO; 

QE=K/NN*DELTA*K'/NN; 

MINQE=MINQE+QE; 

END; 

END; 

RETURN(MDSfQE); 

FINISH MEC_QE; 

/*The following subroutine recluster data based on MQEC in hill-climbing */ 

^iterations. */ 

START RC_QE(MAT,MAT1,DIST,C,V); 

TEMPMAT=MAT; 

N=NROW(TEMPMAT); 

DO 1=1 TO N; 

MINQE1=MEC_QE(TEMPMAT,MAT1 ,DIST,C,V); 

CL=TEMPMAT[I,2]; 
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K=J(1,C,0); 

DO J=l TO N; 

IF DIST[I,J] < = V & (F=J) THEN K[TEMPMAT[J,2]]=K[TEMPMAT[J,2]]+1; 

END; 

DO CC=1 TO C; 

IF K[CC]=MAX(K) THEN DO; 

TEMPMAT[I,2]=CC; 

CC=C; 

END; 

END; 

MINQE2=MEC_QE(TEMPMAT,MAT1,DIST,C,V); 

IF MINQE2 > =MINQE1 THEN TEMPMAT[I,2]=CL; 

ELSE MINQE1=MINQE2; 

END; 

RETURN(TEMPMAT); 

FINISH RC_QE; 

/*The following subroutine calculates Huber and Arabie */ 

/*Adjusted Rand Index.*/ 

START RAND(MAT,C1,C2); 

/*MAT HAS TO BE N*2 MATRIX WITH FIRST COLUMN AS TRUE CLUSTER, AND 

SECOND COLUMN AS NEW CLUSTER*/ 

/*C1 IS THE NUMBER OF TRUE CLUSTERS, C2 IS THE NUMBER OF NEW CLUS

TERS*/ 

NEWMAT=J(C1,C2,0); 

N=NROW(MAT); 

SUMSQJJ=0; 

DO 1=1 TO CI; 

DO J=l TO C2; 

DO K=l TO N: 
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IF MAT[K,1]=I & MAT[K,2]=J THEN NEWMAT[I,J]=NEWMAT[I,J]+1; 

END; 

SUMSQJJ=SUMSQJJ+NEWMAT[I,J]*NEWMAT[I,J]; 

END; 

END; 

SUMSQJ=NEWMAT[+,]*T(NEWMAT[+,]); 

SUMSQJ=T(NEWMAT[,+])*NEWMAT[,+]; 

A=(SUMSQJJ-N)/2; 

B=(SUMSQJ-SUMSQJJ)/2; 

C=(SUMSQ_I-SUMSQJJ)/2; 

D=(SUMSQ_U+N*N-SUMSQJ-SUMSQJ)/2; 

ARI=(COMB(N,2)*(A+D)-((A+B)*(A+C)+(C+D)*(B+D)))/((COMB(N,2))**2-

((A+B)*(A+C)+(C+D)*(B+D))); 

RETURN(ARI); 

FINISH RAND; 
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