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ABSTRACT

RAO’S QUADRATIC ENTROPY AND SOME NEW APPLICATIONS

Yueqin Zhao
Old Dominion University, 2010
Director: Dr. Dayanand N. Naik

Many problems in statistical inference are formulated as testing the diversity of popula-
tions. The entropy functions measure the similarity of a distribution function to the uni-
form distribution and hence can be used as a measure of diversity. Rao (1982a) proposed
the concept of quadratic entropy. Its concavity property makes the decomposition similar
to ANOVA for categorical data feasible. In this thesis, after reviewing the properties and
providing a modification to quadratic entropy, various applications of quadratic entropy
are explored. First, analysis of quadratic entropy with the suggested modification to ana-
lyze the contingency table data is explored. Then its application to ecological biodiversity
is established by constructing practically equivalent confidence intervals. The methods are
applied on a real dinosaur diversity data set and simulation experiments are performed to
study the validity of the intervals. Quadratic entropy is also used for clustering multinomial
data. Another application of quadratic entropy that is provided here is to test the associ-
ation of two categorical variables with multiple responses. Finally, the gene expression
data inspires another application of quadratic entropy in analyzing large scale data, where
a hill-climbing type iterative algorithm is developed based on a new minimum quadratic

entropy criterion. The algorithm is illustrated on both simulated and real data.
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CHAPTER 1

INTRODUCTION

Many problems in statistical inference are formulated as testing the diversity of popula-
tions. When the variables involved are continuous then variance is generally used as a
measure of diversity. However for categorical variables, there is no single measure of di-
versity. Entropy functions are generally used for this purpose. Entropy is a non-negative
function defined on the space of distribution functions and attains the maximum when the
distribution is uniform and attains minimum when the distribution is degenerate. The en-
tropy measures the similarity of a distribution with the uniform distribution and hence it is
used as a measure of diversity.

This chapter begins by introducing traditional diversity functions in Section 1.1. In
Section 1.2 Rao’s quadratic entropy will be introduced along with various examples and

decomposition. In Section 1.3, an overview of the thesis is presented.

I.1 ENTROPY FUNCTIONS

There are several entropy functions defined in the literature. We will provide a list here.
Let I1 = (m, m, ..., ;) be a vector of relative frequencies in s categories in a population,

then the following are entropy functions:

e Hg(IT) = — ¥ m;logn;, (Shannon entropy)

Hy(IT) = %, a > 0,a # 1, (a-order entropy of Havrda and Charvat)

e Hp(Il) = log®m%) oy 0, a # 1, (a-degree entropy of Renyi)

I-a

Hp(IT) = =Y mlogm; — ¥ (1 — m;)log(1 — m;), (paired Shannon entropy)

vz Ny
o Hy(IT) = %,7> 0,7 # 1, (y-entropy)

e Hg(I1) = 1 - Y x?, (Gini-Simpson entropy)

These entropy functions have been widely used in a variety of studies in genetics (Kar-
lin, Kenett, and Bonne-Tamir, 1979), in anthropology (Rao, 1977), in biology Lewontin,

This dissertation follows the style of Journal of Agricultural, Biological, and Environmental Statistics.



1972), in ecology (Pielou, 1975), in economics (Sen, 1973) and in sociology (Agresti and
Agresti, 1978), and so forth.

While some of these measures are derived from mathematically well postulated ax-
ioms, most are based on heuristic considerations and others are constructed assuming some
models for genetic and environmental mechanisms causing differences between individu-
als and populations. However, these entropies, as shown in Rao (1982b), do not possess
higher order convexity properties necessary for carrying out analysis of diversity (AN-
ODIV) similar to analysis of variance (ANOVA). Rao (1982a) introduced a new measure

called Rao’s quadratic entropy which possesses these properties.

I.2 RAO’S QUADRATIC ENTROPY

Rao (1982a) introduced a general diversity measure called Rao’s quadratic entropy (QE):
Ho(I) =YY dijmm; = ITATL, (1.2.1)

where A = (d;;), d;j is a nonnegative number representing the difference between the cat-
egories i and j, so that Hy(I1) is the average difference between two individuals drawn at
random from a population.

Letd;;j = 1,if i # j and d;; = 0; then

Hy(M) = 1-Y @’ = Hg,

which is Gini-Simpson entropy.

Generally, Rao’s quadratic entropy is determined by first choosing a non-negative sym-
metric function d(X;, X,), which is a measure of difference between two individuals with
X=X; and X=X,. The quadratic entropy of any distribution function with d(X;,X>) is
defined as the function (Rao, 1982c):

Hp= / d(Xy, X2)P(dX))P(dXs). 122)

This function d(X;,X>) is a kernel function and satisfies the following properties: (Liu,
1991; Liu and Rao, 1995)
(1) d(X1,X2) is symmetric and

>0 ifx; #xp; 123)
=0 ifx; =x. o

d(xl,xz){



(2) It is conditionally negative definite, i.e.,

M™M=

n
d(x,-,xj)a,-aj <0, (1.2.4)
=1

J

_.
Il
_

for every integer n and choices of xj, ..., x, and numbers ay,...,a, such that }7_;a; = 0.

L2.1 Examples of Rao’s Quadratic Entropy

In the following we provide two examples of Rao’s quadratic entropy.

Example 1.1: Let X € R™, a real vector space of m dimensions and A is a positive
definite matrix. Then define

d(X1,X2) = (X1 — X2)'A(X1 — X3).

Let X ~ (u;,X%;), (i.e., X is distributed with mean vector y; and variance matrix X; and not

necessarily multivariate normal). Then
H; = 2tr(AL;). (L.2.5)

Note 1.1: Under univariate case, define a kernel function d(x;,x2) = %(xl —x2)? which
satisfies (I1.2.3) and (1.2.4). Hence, H = E [%(xl — x2)?] is a quadratic entropy for i.i.d. xy,

x2. In this case, quadratic entropy is nothing but the variance.

Example 1.2: Let X = (x1, ..., Xy, ), Where x; can take only a finite number of values. In
such a case the kernel function between X; and X; is d(X),X2) =m —Y.d,, where d, = 1
if the rth components of X; and X, agree and zero otherwise. Let X, take different values

with probabilities (pir1, pir2, .-+, Pirk,) in population IT;. Define

kr
-]l(tr) = E(dr) - Z DirsP jrss

s=1

when X is drawn from IT; and X; is drawn from II;. Then

Hi=Y (1= ) =m(1-Js).
r=1



Note 1.2: When m=1, quadratic entropy is reduced to Gini-Simpson index,
r
H=1-Y p}.
i=1

From the examples above, it can be seen that the general approach in using quadratic
entropy is first to define a function d(X;,X;) measuring the difference between individuals
X; and X, and use the probability distribution of X; and Xj to find the average of d(X;,X3).
In practice, the function d(X1,X;) can be chosen to reflect some intrinsic dissimilarity
between individuals according certain investigation. This measure of entropy also is non-
negative, attains the maximum for the uniform distribution and has the minimum when the

distribution is degenerate.

L2.2 Decomposition of Quadratic Entropy

The concavity of quadratic entropy can be easily verified (Rao, 1982c). In Equation (1.2.5)
the quadratic entropy H; is defined as the average difference between two randomly drawn
individuals from IT;. Suppose that two individuals are from different populations, that is,

one individual is drawn from II; and another from IT;.

Hpi= / d(X1, X)P(dX,)P(dXy); Ho,j = / (X1, X2)Pi(dX,)P;(dXy).

Hgij = / d(X1,X2)P(dX1)Pj(dXy),

1
Dij=Hg,j— E(HQJ +Hg,j)-

For a mixed population ITy, where ITy = AIT;+ (1 —A)I1;,0 < A < 1 then
Hél = /d(X],Xz)P;L (dX, )Pl(dXZ) = leQ,i +(1— A)ZHQ,]' +2A(1— A)HQ’U.

Hg — (AHg,;+ (1—A)Hp ;) = 2A(1 - A)Dy;,

D;; > 0 ensures the concavity of Hp and vice versa (Rao, 1982c¢). D;; is also termed as the

Jensen difference which is a measure of dissimilarity between I1; and IT;.

Note 1.3: In the definition of quadratic entropy (Equation 1.2.5) no condition is im-
posed on the function d(X;,X3) except that it should be nonnegative. The logical require-
ment that the Jensen difference should be nonnegative restricts the choice of d(X;,X3) to

functions that induce a concave quadratic function.



The concavity property of Rao’s quadratic entropy enables us to decompose the diver-
sity in a mixed population in a natural way, as diversity between and within populations.
If P, P, ..., P are the distributions of X in IT;,Iy,...,IIy and 41,7, ..., A4 are the priori
probabilities (¥ A; = 1), then the diversity in the mixture Ay P; + 2P + ... + AP, can be

decomposed as,
Ho=H(MP + Py + ...+ MP) = Y. AiH;+ Y Y Aid;D;j = SSW +SSB,  (1.2.6)

where D;j = H;; — (H; + H;)/2 is the Jensen difference between IT; and I1;. SSW is the
weighted average of the diversities within populations. SSB is the weighted average of the
dissimilarity between all pairs of populations, which is nonnegative and vanishes only if
I = =... =11

Decomposition for Example 1.1: Let us consider k populations as in Example 1 of

Section 1.2.1. The m-vector variable X ~ (u;,%;),
H; = 2tr(AY)),

Hij = tr(AEi) + tr(AZj) + 6ile5ij,

where J;; = p; — u;. The Jensen difference D;; = 5i’jA5,- ; becomes Mahalanobis distance
between IT; and I1; if £y =X = ... =L, =YX and A = -1, Further let ITp be a mix-
ture of ITy,...,II; with a priori probabilities Ai,...,A;. Then using Equation (1.2.6), the

decomposition becomes
Hop=SSW+5SB=2m+Y Y Ai4;8,x76;. 12.7)

Thus the diversity within population is 2m and the diversity between populations is the
weighted combination of Mahalanobis D?’s for all pairs of populations. Note here the nor-

mality of X is not required.

Decomposition for Example 1.2: For multinomially distributed variables X =

(x15 -+, Xm), let the mixture of IIy,II,,...,IIx be denoted by Ilp with a priori probabilities
AL, Az, A
(1) = m(1 - ),

X
fl
M=

~
X

(1-j5) =m(1 -1,

I
M=

,‘
||
_



Then the Jensen difference

m Kk
Z Z (Pirs — PjrS)Z-

r=1s=1

N =

1
Dij= (H +H) = m{ i+ Jj5) = Jij] =
In this case, Equation (1.2.6) becomes,

HQ m[Zl(l_Ju +ZZA4;L Ju+ J]j Jij)]:

which is the decomposition obtained by Nei (1973).

1.3 OVERVIEW OF THESIS

The objective of this thesis is to provide modified methods to the analysis of diversity with
Rao’s quadratic entropy and then explore its new applications in analyzing categorical data
in several scenarios. This thesis consists of six chapters.

After the introduction of quadratic entropy in Chapter I, several distance matrices are
used to modify the quadratic entropy in Chapter II. The decomposition of quadratic en-
tropy is proposed for analyzing categorical data similar to analysis of variance (ANOVA)
for continuous data. Theoretically and empirically it is shown to have good performance.

The application of quadratic entropy in measuring and testing biodiversity is explored
in Chapter III. Practically equivalent confidence intervals are constructed to compare bio-
diversity with bootstrap methods. The simulation is performed to compare the methods
with those based on Shannon entropy. Simulation data and real dinosaur data are analyzed
for illustrations of the methods.

In Chapter IV, a new distance is constructed based on quadratic entropy to cluster
multinomially distributed data. Hierarchical methods are applied on both simulated and
real data to compare with Euclidean distance and Bhattacharyya distance.

The application of quadratic entropy to the multi-response data is studied in Chapter V.
A method based on bootstrap samples is proposed and compared with adjusted Pearson y2
statistics. Both real and simulated data sets are used to illustrate and evaluate the method.

Chapter VI is another application of quadratic entropy in cluster analysis. Large scale
data such as gene expression data is the focus of this chapter. A new minimum entropy
criterion is developed based on quadratic entropy. A hill-climbing type iterative algorithm
is applied to both simulation and real gene expression data. The quadratic entropy criteria
is compared with other standard clustering methods by applying the adjusted Rand index

as the measure of agreement.



CHAPTER II
ANALYSIS OF RAO’S QUADRATIC ENTROPY

In many statistical problems, the data can be formulated in the general factor-response
framework, where one is interested in the estimation and testing of the individual as well
as the interaction effects of the factors on the response variable. Practitioners familiar with
analysis of variance (ANOVA) have well developed techniques available for the analysis
of quantitative variables. However, for categorical variables they must use a completely
different set of techniques. Let I1 = (71, m..., 7r5) be the probability vector of a multinomial
population with s categories. Light and Margolin (1971) and Anderson and Landis (1980)

used Gini-Simpson entropy
He(I)=1-I'Ml=1 _Z”iz

to develop categorical analysis of variance (CATANOVA) for a nominal response vari-
able. The Gini-Simpson entropy can be interpreted (Rao, 1982a) as the expected distance
between two randomly selected individuals when the distance is defined as zero if they be-
long to the same category and unity otherwise. However in many applications, differences
between different categories may not all be equal and hence in those cases it may not be
appropriate to use Gini-Simpson entropy for the analysis. Since Rao’s quadratic entropy
(QE) is the expected distance between two randomly drawn individuals with a predefined
distance matrix, this entropy seems like an appropriate choice. Nayak (1986a,b) general-
ized CATANOVA using Rao’s QE,

Hy(TT) = IT'ATI, (I1.0.1)

where Ay s = (d;;) is a pre-determined distance matrix.

We will review the one-way analysis of diversity using Rao’s quadratic entropy in
Section II.1 and illustrate it with suggested A matrices proposed in Section I1.2. The dis-
tribution of the modified quadratic entropy statistics is discussed in Section I1.3. The per-
formance of this modified statistics will be tested with real and simulated data in Sections
I1.4 and IL.5.



II.1 ONE-WAY ANALYSIS OF DIVERSITY USING RAO’S QUADRATIC EN-
TROPY

In Section 1.2 we discuss the concavity properties of the Rao’s quadratic entropy and the
decomposition of total diversity within population and dissimilarity between populations.
These properties apply to categorical case. Let I1},I1,, ...,I1, be the probability vectors of r
multinomial populations and A;, A2, ..., A, (¥ A4; = 1) be the associated prior probabilities.
Then for the mixed population IT = ¥ A;,IT; we have the following decomposition of the
total diversity H(I1):

H(IT) = Y AH(TL) + Y A(TT; — ) A(TI; — 1),
SST = SSW + SSB.

In practice, usually the population probabilities are not known and they are estimated
from the sample observations. Nayak (1986a,b) derived standard errors and asymptotic
distributions of sample diversities for one factor X. In particular, he proved that asymp-
totically: (i) SST and SSB are independently distributed; and (ii) SSB is distributed as a
linear combination of x? variables. Below we briefly describe the findings from Nayak
(1986a,b).

Letn;j, i=1,...,r, j = 1,...,s, denote the number of responses in the j-th category for
the i-th level of X

ni =Y;nj,nj=Y;njandn_ =YY nj;

V; = (ni,...,nis)’, vector of frequencies in the i-th level of X;

V= (11,0 y Blss 1215 ooy Mgy ooy g )

;= n; ly.. the observed proportions in the i-th level of X;

= nf‘ Y V;, the observed proportions in the combined sample;

J=matrix of unit elements;

A ® B = (a;;B), the Kronecker product of A and B.

For a vector a = (ay,...,ay)’, we shall use D, to denote the diagonal matrix with ele-
ments ap, ..., dy,.

For statistical inference, we assume that the responses in different levels of X are
stochastically independent and V; follows multinomial law with parameters n; and IT; =
(i1 ey o).

With the above notations, the sample analogues of SST, SSW and SSB are as follows:

SST =TVAfl = n=2V'TV, where T = J,», QA.



SSW = n~ 1Y n; YTATL; = n~'V'WV, where W = diag(1/ny ,...,1/n.) QA.

SSB = SST — SSW =n"1V'BV, where B= (n_1T —W).

The sample diversities S8T, SSW and SSB are the maximum likelihood estimators of
the corresponding population diversities SST, SSW and SSB.

Nayak (1986a,b) derived the asymptotic distribution of the sample diversities and the
results are given in the following two theorems:

Theorem 1.1 Under Hy : I1; = II; = ... = I, = I1, asymptotically as n; — oo and
n; /n.. — A; (a fixed prior probability), n SST and n_SSB are independently distributed.

Theorem 1.2 Under Hy, asymptotically as n; — o and n; /n.. — A; (a fixed prior prob-
ability),

s—1

n.SSB~Y aixj, 1 (IL1.1)
i=1
where @;, i = 1,...,s — 1, are the possible nonzero eigenvalues of (—AX) and the { xiz(r_l)}

are independent 2 random variables with (r — 1) d.f.. Here £ = Dy — ITIT, where Dy =
diag(my, mp, ..., ).

The asymptotic distribution of SSB given in Equation (I.1.1) depends on a;, which
are functions of the unknown matrix X. Replacing o; by @ =} o;/(k — 1) in Equation
(I1.1.1) the distribution of n_SSB can be approximated by & x(zr_l)( k—1)° Using an unbiased
estimate of & = tr(—AX)/(k — 1) as n_SST/[(k— 1)(n_. — 1)], the distribution of Cp =
(k—1)(n.. — 1)SSB/SST can be approximated by X(zk—n (r—1)- Thus a simple test for Hy
provided by Nayak (1986b) is Cy, and reject Hy at level o when

Ca=(s—1)(n. = 1)S8B/SST > X3 1y(r_1)- (I.1.2)

See Nayak (1986a,b) for proof of these results and more details.

In Nayak (1986a,b)’s attempt for using analysis of diversity with Rao’s quadratic en-
tropy, one of the unresolved issue is the choice of A. In practice it is usually arbitrary and
based on an individual’s assessment of the differences with reference to the problem un-
der investigation. This has restricted the applications of quadratic entropy. Here we have
proposed several ways to select A based on the frequency table. However, it will make the
derivation of the asymptotic distribution of statistics SSB/SST difficult. Alternatively, SSB
can be used as the test statistics. X can be estimated by its unbiased estimator £ and o; be
replaced by its estimates. Then an algorithm proposed by Davis (1980) can be used to get
the exact distribution of the linear combination of x2 variables, that’s to say, the distribu-

tion of ):f;ll a,‘xiz(rql). However, as described later, we have resolved to using bootstrap
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method for determining the approximate distributions.

I1.2 VARIOUS CHOICES FOR MATRIX A

In this section we will discuss several methods that can be used to find the distance matrix
A. Liu (1991) and Liu and Rao (1995) described that in constructing quadratic entropy the
distance function d(x,x;) : X> — R has the properties:

e d(x1,x3) > 0if x1 # x2; d(x1,x2) = 0if x; = x7;

e d(-,-) is conditionally negative definite, i.e. Y7, Y’_,d(xi,xj)aia; < 0 for every

integer n and choices x1,...x, in X and ay, ...,ap in R such thata; + ax +... +a, =0.

The distance matrix A satisfying these two properties can be constructed in following ways.
1. A Based upon the Variables Measured Scores
The item d;; in A is the distance between the i-th level and j-th level of the variable. So,
we can use the scores to scale the ordinal variables and then compute the distance between
different levels as d;; = |S; — S| (Stokes, Davis, and Koch, 2005).

e Table Scores
For the ordinal variables, table scores (81;) are the values of the ordered levels. If the
variables are nominal, the table scores (S};) are the numeric value corresponding to

that level;

e Rank Scores
Rank scores, which are defined by the frequencies: Sy; = Y ;ns. + (ni. +1)/2;

e Ridit Scores
Ridit scores are standardized by the sample size and can be derived from rank scores

as S3; = S7i/m;

e Modified Ridit Scores
Modified ridit scores represent the expected values of the order statistics for the
uniform distribution on (0,1). Modified ridit scores are derived from rank scores as
S4; = S2/(n+1).

2. A Based upon Distances
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o LetU = (3,7%,...;%), Dy = Diag(U) and C; = (2 22 Zay)

n“,n“,... "1.’"2.’"" n,

Euclidean distance is defined as,

dij = \/ (Ci—C;)(Ci—Cj).

e Using the same notation as above, Chi-square distance between the i-th level and

Jj-th level of the variable is defined as,

dij =/ (€~ C;yDF (- C))

o Nei’s Distance between the i-th and j-th category of the response variable is defined

as
di = (0i—0;)(Qi— 0y,

ni ny i
where Q; = (n—‘l‘,ff,,','l——’:)'

o Ochiai’s Distance is suitable for binary data. When comparing the i-th and j-th
level of the variable, let a(1,1), b(1,0), ¢(0,1) and d(0,0) be the number of pairs for
value (1,1), (1,0), (0,1) and (0,0), where a+b+c+d=r, Ochiai’s distance is defined as

dij=/T-1;,

L= N S
where 1;; COIEh

3. A Based On Probabilities
We provide two choices for A here. Take A = (d;;), where

Al if it
dij= GO 2.1
0 if i=j
and )
0 if i=j
if ;= 7[_]' =0
dij= 9 |log(m;)|+1 if mj=0 (I1.2.2)
|log(m ;)| +1 if mi=0
llog(m;) —log(mj)|+1 else.

Here 7; and 7 ; are the corresponding probabilities at the i-th and j-th categories of n=

Y., ATl,. In practice they can be replaced by their estimators &; =n;/n..and & j =n _;/n...
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TABLE 1. Distribution of parties in neighborhoods

Neighbor
Party Bayside Highland Longview Sheffeld
Democrat 221 160 360 140
Independent 200 291 160 311
Republican 208 106 316 97

IL3 BOOTSTRAP FOR THE DISTRIBUTION OF SSB

Since the proposed A’s are to be estimated from the observed data, the asymptotic distri-
bution of the modified statistics SSB is more complicated than that in Equation (II.1.1).
However, if we base our tests on conditional distribution given the marginal frequencies,
the asymptotic distribution is a linear combination of Y ’s with positive coefficients. The
explicit expressions for these coefficients are very difficult to find. From the point of view
of application, it is necessary to find a more computable approach for approximating the

distribution of the statistic SSB. We propose to use the bootstrap method for this.

IL4 A REAL LIFE EXAMPLE

The data in Table 1 are from a study concerning the distribution of party affiliation in a city
suburb (Stokes et al., 2005). The data consists of a factor: Neighborhood (X) with 4 levels
(Bayside=1, Highland=2, Longview=3, and Sheffeld=4) and a response variable: Party
(Y) with 3 levels (Democrat=1, Independent=2, and Republican=3). Researcher might
be interested in whether there is an association between registered political party and the
neighborhood they live in.

To determine the effects of X on Y, we perform an analysis of diversity using the

following methods:
1. Pearson statistics
2. Fisher’s exact test

3. CATANOVA
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TABLE 2. Analysis of diversity for the political parties data

Methods P-value
Pearson x° < 0.0001
Fisher’s Exact 1.5182E-09
CATANOVA 1.601E-10
Ca, 2.71E-10
Ca, 2.5496E-09

4. Cp, = (s—1)(n.—1)SSB; /SST; with

A=

N o~ O

1
0
1

S =N

5. Ca, = n_SSB, and bootstrap approximation with A, = (d;;), where
(

0 if  i=j
1 if m=n=0
dij= < |log(m)|+1 if =0
llog(7;)| +1 if m=0
| |log(m;) — log(m;)| +1 else.

which based upon the data becomes,

0 1.088 1.192
Ar=1]1.088 0 1.280
1.192 1.280 O

The distribution of Cp, were simulated using a nonparametric bootstrap procedure with
B = 5000 bootstrap samples.

All methods indicate strong evidence against independence as shown in Table 2. If a
Bonferroni adjusted significance level of 0.05/6=0.0083 is used, the pair of Longview and

Sheffeld neighbor are found significantly different from each other.

ILS EMPIRICAL NULL DISTRIBUTION AND POWER COMPARISON

In this section, we will examine the accuracy of the approximate asymptotic null distribu-

tion theory by using simulated data. The performance of Rao’s quadratic entropy with the
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previously defined distances will be compared with Pearson %2 test, Fisher Exact test, and
Gini-Simpson test of Light and Margolin (1971).

Nayak (1986b) studied the empirical significance level of Cp test with reference to
critical points xé; (s=1)(r—1) for 13 populations with different distributions. See our Table
3. We use the same settings and two of the same distance matrices A; and A, used by
Nayak (1986b) for easy comparisons. In the examples, there are 3 response categories and
2 levels of X. We assume a common probability distribution for both levels of X, given
in the first column in Table 3. The second column in Table 3 gives the sample sizes, 1.e.,
the values of n;. and n, . All the distances proposed in Section II.2 have been explored.
However, the matrices A3 and A4 have produced more meaningful results. Hence, results

corresponding to only those are presented in Table 3.
0 1 15

A= 1 1
1.5 0

- O

A3 = (d3,;j), where
|mi—m;|+1 if i#j
d3ij= R
0 if i=j
A4 = (d4,ij)’ where

0 if i=]j
1 if Ti=m;=0
dajj=q |log(mi)|+1 if  mj=0
|log(m ;)| +1 if ;=0
| [log(m;) —log(m ;)| +1 else.

The distribution of Cy, and Cy, are approximated by Xﬁ,z as stated in Equation (11.1.2).
Because the distribution of Cy, = SSB3 and Cp, = SSB4 are very complicated, in that the
asymptotic distribution cannot be easily determined, the nonparametric bootstrap proce-
dure is used to determine the p-values. The algorithm is described in the following steps
(Efron and Tibshirani, 1993):
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(1) Take B re-samples of size n by randomly selecting subjects with replacement from
the original data set independently within each group;

(2) for each re-sample, calculate the test statistic, C3, forb=1,...,B and

(3) calculate the p-value as B~1Y, I(C} > Ca).

II.5.1 Empirical Level of Significance

The empirical type I errors are presented in Table 3 under test statistics as column headings.
In each case 10,000 independent samples were generated and used to compute the rejection
probabilities for ¢ = 0.1,0.05,0.01. For each sample, 500 bootstrap re-samples were
generated for the computations.

In Table 3, we see that the level of significance of all statistics are all close to o, except
that CATANOVA, which is very liberal; QF,, is more accurate than QE,,; QF,, is more
accurate than QF,,; among all the quadratic entropy statistics the empirical significance
level of QF,, is most close to o.. Hence one should feel comfortable using the distance

matrix A4 in practice, with p-values computed using the bootstrap method.

IL5.2 Empirical Power

We also compared the empirical powers of C, with Pearson 2, Fisher’s exact test and
CATANOVA for 10 different alternatives in the case of two levels of X and 3 response
categories. In each case n;. and ny_ were fixed at 100. The probabilities associated with
one level of X are IT; = (1/3,1/3,1/3) and the probabilities for the other level IT, are
given in Table 4, 5 and 6. In the first five cases I, is of the form (p, q,q) with p > 1/3 and
the departure of I, from I1; is towards a vertex of the simplex. For the last five cases the
departure is towards a base of the simplex. Since, unlike ¥ and Gini-Simpson entropy,
the powers of C, are not symmetric in the arguments of Il in our study. We have also
considered the permutation of I1; in out study. In each case 1000 independent samples
were used to estimate the empirical power for @=0.01, 0.05 and 0.10. For each sample,
500 bootstrap re-samples were generated for the computation. The results are reported in
Tables 4, 5 and 6.

In Tables 4, 5 and 6 we observe the following: (1) The powers of QE,,, QEa,, QFEa,
and QF,, are larger than CATANOVA; (2) The powers of QE,, are larger than QE,,, QF,,
and QF,,; (3) x? and Fisher test usually perform better than QE\,, QEa,, QE, and QF,,
for the departures of I, towards the base of the simplex.



TABLE 3. Empirical significance level of Rao's quadratic entropy statistics

Probability Structure Sample Size 3 F FISHER CATANOVA QE, QE,, OEp, QEn,
0.1 0.11 0.095 0.106 0.109 0.117 0.104 0.102

0.33,0.33,0.34 3030 0.05 0.047 0.042 0.05 0.051 0.057 0.044 0.044
0.01 0.011 0.011 0.009 0.011 0.013 0.009 0.009

0.1 0.121 0.111 0.127 0.12 0.124 0.121 0.113

0.30,0.30, 0.40 2540 0.05 0.059 0.059 0.056 0.056 0.062 0.052 0.052
0.01 0.008 0.007 0.008 0.011 0.014 0.01 0.011

0.1 0.112 0.103 0.119 0.125 0.124 0.118 0.111

0.25,0.30, 045 3030 0.05 0.051 0.046 0.059 0.055 0.062 0.058 0.055
0.01 0.008 0.008 0.006 0.012 0.015 0.006 0.006

0.1 0.108 0.086 0.091 0.105 0.096 0.09 0.099

0.25,0.50, 0.25 1515 0.05 0.043 0.04 0.041 0.042 0.05 0.04 0044
0.01 0.007 0.011 0.014 0.011 0.013 0.015 0.012

0.1 0.104 0.089 0.095 0.094 0.096 0.09 0.092

0.20, 0.50,0.30 2530 0.05 0.047 0.043 0.049 0.051 0.059 0.047 0.053
0.01 0.008 0.008 0.014 0.008 0.01 0.014 0.016

0.1 0.096 0.093 0.093 0.092 0.093 0.054 0.097

0.50, 0.30,0.20 5050 0.05 0.053 0.048 0.051 0.05 0.051 0.056 0.055
0.01 0.01 0.01 0.014 0.018 0.023 0.013 0.016

0.1 0.085 0.093 0.098 0.102 0.102 0.099 0.092

0.60, 0.30,0.10 3050 0.05 0.034 0.053 0.056 0.058 0.058 0.056 0.054
0.01 0.006 0.012 0.021 0.026 0.026 0.025 0.022

0.1 0.097 0.069 0.107 0.114 0.115 0.108 0.1

0.60, 0.10,0.30 2525 0.05 0.042 0.046 0.074 0.081 0.087 0.072 0.06
0.01 0.004 0.009 0.015 0.02 0.022 0.013 0.009

0.1 0.095 0.094 0.097 0.104 0.108 0.097 0.101

0.30, 0.60, 0.10 7070 0.05 0.048 0.044 0.052 0.048 0.052 0.05 0.051
0.01 0.01 0.01 0.017 0.014 0.019 0.019 0.012

0.1 0.096 0.089 0.098 0.102 0.11 0.101 0.109

0.70,0.15, 0.15 60 60 0.05 0.049 0.047 0.06 0.062 0.072 0.067 0.066
0.01 0.009 0.01 0.008 0.016 0.019 0.016 0.019

0.1 0.103 0.095 0.099 0.097 0.095 0.098 0.106

0.10, 0.70, 0.20 60 50 0.05 0.052 0.05 0.059 0.056 0.053 0.059 0.064
0.01 0.01 0.014 0.014 0.011 0.013 0.015 0.013

0.1 0.105 0.115 0.111 0.102 0.11 0.113 0.124

0.10, 0.80,0.10 3030 0.05 0.044 0.07 0.046 0.04 0.046 0.06 0.065
0.01 0.007 0.01 0.013 0.015 0.009 0.016 0.018

0.1 0.084 0.115 0.096 0.091 0.091 0.107 0.107

0.03,0.94,0.03 8080 0.05 0.037 0.069 0.065 0.046 0.044 0.083 0.082
0.01 0.001 0.021 0.011 0.006 0.004 0.018 0.022
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TABLE 4. Empirical power comparison of 2, Fisher's test, CATANOVA and QE tests

Probability Structure a x>  FISHER  CATANOVA  QEs  OEn, QFs,  OFa,
01 0201 0.197 02 0221 0226 0208 0209
0.40,030.030 005  0.134 0.133 0135 0158 0167 0133 0142
001 0045 0.045 0047 0064 0084 0047  0.048
01 0399 0.391 0408 0436 0433 0414 0419
044,028,028 005 0256 0.251 0268 0304 0311 0273 0277
00! 0103 0.102 0.126  0.148 017 0126  0.135
01 0.75%6 0.751 0784 0804 0801 0794  0.803
052,024,024 005 0674 0.67 072 0743 0748 0735 0744
001 0438 0.437 0495 0512 053 0502 0516
01 0971 097 0974 0981 0984 098 0.86
0.60,020,020 005 0945 0.944 096 0966 0969 0968 097
001 0838 0.839 0801 0897  08% 0906 0912
[i¥] T 1 T T T 1 T
0.72,0.14,0.14 005 0998 0.998 0.999 1 1 1 1
001  0.998 0.998 0999 0999  09% 0999 0999
0.1 0.189 0.185 0182 0194 0194 0186  0.189
0.36,036,028 005  0.099 0.096 0094 0104 0111 0099 0102
001 0027 0.025 0.021 004 0052 0021 0025
0.1 0467 0,462 0441 0477 0481 0449 0468
039,039,022 005 0345 0.343 0308 0357 038 0313 0327
001 0168 0.164 0151 0181 0204 0153  0.163
01 0822 0316 0791 0821 083 0805 0827
042,042,016 005 0721 0.718 0651 0707 0723 0678 0718
001 0521 0514 0415 049 0551 0449 0518
0.1 0986 0.985 0969 6975 0979 0976 0984
045,045,010 005 0955 0.955 0918 0947 0955 0935 0955
001 0889 0.386 0786 0846 0866 0828  0.892
0.1 i T 1 T ] T 1
048,048,004 005 1 1 0998 0999 099  0.999 1
001 099 0.996 0984 0988 0989 0989  0.99%4
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TABLE 5. Empirical power comparison of x2, Fisher's test, CATANOVA and QE tests (contin-

ued)
Probability Structure a x> FISHER  CATANOVA  QE,  OE,,  QFa,  OFa,
0.1 0.203 0.197 0.2 0.226 0.235 0.197 0.2
0.30, 0.30, 0.40 0.05 0.131 0.13 0.127 0.152 0.16 0.133 0.137
0.01 0.042 0.041 0.041 0.064 0.073 0.044 0.05
0.1 0.376 0.366 0.381 0.408 0.397 0.386 0.39
0.28,0.28,0.44 0.05 0.248 024 0.263 0.295 0.31 0.27 0.276
0.01 0.112 0.107 0.121 0.146 0.168 0.123 0.124
0.1 0.778 0.765 0.796 0818 03823 0.817 0.82
0.24,0.24,0.52 0.05 0.676 0.665 0.715 0.748 0.752 0.733 0.743
0.01 0.433 0.429 0.487 0.531 0.536 0.505 0.518
0.1 0.959 0.956 0.967 0.971 0.969 0971 0.973
0.20, 0.20, 0.60 0.05 0.943 0.941 0.959 0.963 0.962 0.959 0.963
0.01 0.83 0.829 0.885 0.899 0.901 0.895 0.908
0.1 1 1 1 1 1 1 1
0.14,0.14,0.72 0.05 1 1 1 1 1 1 1
G.01 0.996 0.996 0.999 0.999 0.999 0.999 0.999
01 0.177 0.177 0.172 0.189 0.198 0.173 0.173
0.28,0.36,0.36 005 0.104 0.101 0.1 0.118 0.126 0.1 0.099
0.01 0.021 0.021 0.02 0.027 0.037 0.02 0.022
0.1 0475 0.468 0.441 0.466 0.472 0.448 0.47
0.22,0.39,0.39 0.05 0.362 0.357 0.323 0.363 0.385 0.34 0.358
0.01 0.153 0.154 0.129 0.172 0.198 0.135 0.146
0.1 0.836 0.832 0.79 0.83 0.837 0.812 0.83
0.16,0.42, 0.42 0.05 0.754 0.748 0.695 073 0.746 0.715 0.749
0.01 051 0.508 0.425 05 0.541 0.459 0.505
0.1 0.986 0.985 0.976 0.984 0.985 0.986 0.987
0.10,0.45,0.45 0.05 097 097 0.949 0.962 0.97 0.96 0.972
0.01 0.893 0.89 0.8 0.853 0.873 0.839 0.89
0.1 1 0.984 1 1 1 1 1
0.04,048,0.48 0.05 1 0.98 1 0.999 0.999 1 1
0.01 0.998 0.978 0.979 0.987 0.988 0.992 0.998
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TABLE 6. Empirical power comparison of x2, Fisher's test, CATANOVA and QE tests (contin-

ued)
Probability Structure a x> FISHER  CATANOVA Qs  QEs, O,  OQFa,
0.1 0.24 0237 0.241 0.207 0.174 0.243 0.247
0.30. 0.40, 0.30 0.05 0.143 0.14 0.149 0.121 0.094 0.152 0.155
0.01 0.044 0.044 0.043 0.032 0.027 0.047 0.049
0.1 0.378 0.37 0.382 0.319 0.24 0.395 0.399
0.28,044,0.28 0.05 0.254 0.249 0.266 0.208 0.152 0272 0.281
0.01 0.105 0.106 0.117 0.067 0.041 0.12 0.127
0.1 0.791 0.785 0.813 0.743 0.636 0.825 0.833
0.24,052,0.24 0.05 0.677 0.667 0.715 0.607 0.439 0.738 0.744
0.01 0.401 0.398 0.465 0.319 0.171 0.49 0.514
0.1 0.967 0.966 0.977 0.957 0914 0.979 0.982
0.20, 0.60, 0.20 0.05 0.938 0.939 0.957 0.912 0.842 0.961 0.962
0.01 0.814 0.811 0.869 0.758 0.586 0.887 0.907
0.1 1 1 1 1 1 1 1
0.14,0.72,0.14 0.05 1 1 1 1 0.997 1 1
0.01 0.998 0.998 0.998 0.998 0.985 0.999 0.999
0.1 0.165 0.161 0.156 0.144 0.125 0.157 0.162
0.36, 0.28, 0.36 0.05 0.101 0.1 0.092 0.075 0.072 0.093 0.099
0.01 0.022 0.022 0.018 0.017 0.022 0.019 0.018
0.1 0.494 0.484 0.459 0.364 0.261 0.465 0.482
0.39, 0.22, 0.39 0.05 0.344 0.335 031 0.215 0.14 0.322 0.329
0.01 0.163 0.162 0.138 0.071 0.043 0.143 0.163
0.1 0.803 0.802 0.763 0.654 0.503 0.786 0.8
0.42,0.16,0.42 0.05 0.712 0.706 0.639 0.484 0.335 0.669 0.702
0.01 0.508 0.506 0.425 0.214 0.111 0.456 0.5
0.1 0.988 0.986 0.973 0.926 0.809 0.979 0.989
0.45,0.10, 0.45 0.05 0965 0.964 0.937 0.847 0.675 0.95 0.968
0.01 0.87 0.871 0.781 0.536 0.26 0.815 0.867
0.1 0.999 0.975 0.997 0.995 0.98 0.999 0.999
0.48,0.04,0.48 0.05 0.999 0.982 0997 0.982 0.905 0.999 0.999
0.01 0.999 0.979 0.987 0.896 0.643 0.996 0.998
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In this chapter, a new distance matrix is proposed to modify Rao’s quadratic entropy
statistics. Although it brings complication in computation, it makes the measure of diver-
sity generalizable. Nonparametric bootstrap methods are used for the hypothesis testing.
If the null hypothesis is rejected, a post-hoc test should be performed. It can be multiple
comparisons by applying similar method of analysis of quadratic entropy to each pair of
the groups; alternatively, confidence intervals can be constructed for the pairwise differ-
ences.

While Rao’s quadratic entropy based analysis of diversity can be used to test the inde-
pendence of response and factor(s), in some other data analysis problems, the entropy func-
tions can be directly applied, especially in ecology data. In the next chapter, we present a

case like that.
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CHAPTER HII

ANALYSIS OF BIODIVERSITY

Statistical tests of the equality of dinosaurs biodiversity of different era have been used for
determining whether the extinction of the dinosaurs was sudden or gradual over a period of
time. If the biodiversity of the community of dinosaur species was different from period to
period, then there is a reason to believe that the extinction was gradual; On the other hand,
if the biodiversity remained the same through different time periods, then there is a reason
to believe that the extinction might have been sudden due to asteroid collision. Sheehan,
Fastovsky, Hoffmann, Berghaus, and Gabriel (1991) and Fritsch and Hsu (1999) analyzed
a data set on Dinosaurs to check this theory. We provide that data set from Sheehan et al.
(1991) here, in Table 7.

The Dinosaur Data

Dinosaur bones deposited about 2.2 million years were collected from sites in North
Dakota and Montana. The formation was divided into three equal stratigraphic intervals,
with each third representing approximately 730,000 years. Although it is difficult to distin-
guish individual species of dinosaurs, it is relatively easy for researchers to classify bones
according to their family. In all, eight families were identified. Table 7 lists the name of
all eight dinosaur families and the number of individual dinosaurs of each families iden-
tified from the two research sites. There are several measures of biodiversity that can be
used for measuring the biodiversity of dinosaurs. Suppose in a biological community there
are s species and let I1 = (7, ..., ;)" be the vector of proportions of these species in the

community, then the two well known measures are:
» Shannon index (Hg): Hs = —Y #;lnm;,
e Gini-Simpson Index (Hg): Hg = 1 - Y. 7.

Suppose in a biological community there are N individuals from s species. Let ny,...,n;
be the abundance of each species and 7, ..., 7i; be the proportions of these species, that is,
#; = n;/N. To measure the biodiversity, Sheehan et al. (1991) used the Shannon index and
tested the hypothesis:

HO : Hsupper = Hsmiddle = HSlower'
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TABLE 7. List of the dinosaur families and frequency in each intervals.

Family Names Upper Interval Middle Interval Lower Interval
Ceratopsidae 50 53 19
Hadrosauridae 29 51 7
Hypsilophodontidae 3 2 1
Pachycephalosauridae 0 0 0
Tyrannosauridae 3 3 2
Ormnithominidae 4 8 0
Saurornithoididae 1 6 3
Dromaeosauridae 0 0 0

where, Hg,,,, is the biodiversity of the upper time period measured by Shannon index

Hs = —Y3 | #log(#;), and similarly, Hy,

aare and Hs,  are for the middie and lower

time period. Shannon entropy was used to define the biodiversity and utilized in ANOVA
and post-hoc test to analyze the dinosaur data and rejected the hypothesis that “the di-
nosaurian part of the ecosystem was deteriorating during the latest Cretaceous” (Sheehan
et al., 1991). Fritsch and Hsu (1999) argued that Sheehan et al. (1991) misinterpret the
large p-value and suggested that accepting null hypothesis may be caused by insufficient
data. Instead they proposed to construct equivalence confidence intervals for the differ-
ence between two Shannon indices from two time periods (Fritsch and Hsu, 1999). For
example:
Hy : |Hs, — Hs;| > 8 for some i # j

H,:|Hs,— Hs;| < 6 foralli# j

6(> 0) is a predetermined limit to control the difference. Then, the bootstrap-t techniques
were applied to determine confidence intervals.

However, Shannon index and Gini-Simpson index are based upon abundance of the
species only and they do not take differences in the species into consideration. In the other
hand, quadratic entropy (QE), as stated in Izsdk and Papp (2000), “is the only ecological
diversity index, the value of which reflects both the differences and abundances of the
species.” In this chapter, using the same dinosaur data, we show how one can analyze data
for determining biodiversity using Rao’s quadratic entropy. First, we will introduce Rao’s

quadratic entropy and its sampling distribution in Section IIL.1. In Section II.2 we will



22

provide various confidence intervals for the entropy function and provide simulation results
to show which of these intervals is the best. In Section II1.4 we will provide confidence
intervals for difference between the entropy’s and once again provide simulation results.

Finally, we will provide an analysis of dinosaurs data in Section II.4.

I11.1 QUADRATIC ENTROPY AND ITS SAMPLING DISTRIBUTION

Suppose in a biological community there are s species and let IT= (71, ..., 7;)’ be the vector
of proportions of these species in the community. A general diversity measure called Rao’s
guadratic entropy (QE) can be defined as (Rao 1982a,b,c):

Hy=Hp(I) =Y Y dijmm; =ITAI, (I11.1.1)

where A = (d;;) and d;; is a nonnegative number representing the difference between the
categories i and j, so that Hy is the average difference between two individuals drawn at
random from a population. In the special case, when d;; = 1 if i # j and d;; = O, that is,
A = J;—I;, where J; is an s X s matrix of all ones and I; is an s x s identity matrix, Hp =1 —
Y. n? = Hg, which is the Gini-Simpson entropy function. QE can also be used to construct
analysis of variance for categorical data, where the total diversity can be decomposed into
diversities between and within populations (Nayak 1986a,b). This analysis has found some
interesting applications in economics (Nayak and Gastwirth 1989).

Let ny,n,,...,n; be the abundance of each species in a sample of size N = Y} n;. Then,
assuming multinomial probability model, we get the maximum likelihood estimate of IT
as I1 = (#y,..., &), where #; = n;/N, i = 1,...,s. Note that E(IT) = I1, and Var(I1) =
x [diag(ITy —TIIT'] = %V. Here, diag(I1) is the diagonal matrix with the elements of IT as
its diagonal elements. Let an estimate of V be V = diag(IT) — I1IT. Also, by the standard
asymptotic theory, we have, :

IT =~ N(I1, }_VV)'

Then, the maximum likelihood estimate of Hy is Hp = ITAI1. Also,

N 1 1 N—-1
E(Hp) = tr(AﬁV) +ITAIT = tr(A x N[diag(H) —MIT'))+Hy = ——Ho:
and )
. 1
Var(Hp) = —2tr(AV)? + —4IT AVAIL.

ar(Ho) = 5 2r(AV) +

Then, by the delta theorem, as N — oo, we have,
N 1 2tr(AV)? ,
—— Hp~N(Hp, —|———2- +4ITAVAIT)). II.1.
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For the Gini-Simpson index Hg, we have

N 1 2tr(VV)

Hg~N(Hg, — 4IT'VII)).
N o= NHe, Z[—5—+ )

IIL2 INTERVAL ESTIMATION OF QUADRATIC ENTROPY

In this section, we provide various ways of constructing confidence intervals for Hp. The
first of which is based upon the asymptotic distribution of ﬁQ. Secondly, we propose a
variance stabilizing transformation and a method for constructing confidence intervals.
Further, we will use various bootstrap based methods and compare all the methods using

simulation.

I11.2.1 Confidence Interval Estimation

Normal Confidence Intervals

Based upon the asymptotic distribution of I:IQ given in (II1.1.2), one can provide an
approximate confidence interval for Hp, as follows. Suppose zg is the standard normal
upper /2 probability cutoff point and L; and U, respectively, are the lower and upper
100(1 — a)% confidence limits for Hp, then

L= NNTIﬁQ —Za/za'/\/ﬁ,
and
U= %ﬂg—kza/z&/\/ﬁ, where

1 . o
6% = 1—V2tr(AV)2 + 41T AV AL (I11.2.1)

Our simulations have shown that the distribution of the sample entropy, although more
closely centered around 0, does not agree well with the standard normal distribution in the
tail regions.

Variance Stabilizing Transformed Intervals

Given a certain distance matrix A, the QE reaches its minimum value when there is
only one family in the community and reaches its maximum value at a certain diversity
distribution. The maximum value can be calculated with an algorithm for certain choices of
dissimilarity matrix (Pavoine, Ollier, and Pontier 2005). With the maximum value known,

we can define a ratio index as

H,
(m=—2_
maxHg
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Note that I(IT) takes values between 0 and 1. If we estimate I(IT) by I(IT), then its asymp-

totic distribution is given by
. 1
I(11) — N(I(IT), ST (1 — (D).

By applying the usual variance stabilizing transformation for a binomial proportion, we

get
- 1
arcsiny/ I(IT) — N(arcsin/I(I1), Zﬁ)

or, in other form,

VN(arcsin(y/I(T1)) — arcsin(/I(IT))) — N(0, % ).

Then, the 100(1 — ) confidence interval for Hy is given by

[~ 1
L2 = maxHQ X sin2 [sin”l I(H) - Za/z—\/él.—TV]
/A 1
U2 :maxHQ XSinZ[Sin_l I(H)"‘Za/zm]

Bootstrap-t Confidence Intervals

By applying the bootstrap-t techniques (Efron and Tibshirani 1993) on the test statistic
N_Ay-H, .. AR,

%’ we gfat a bootstrap value of the test statistic W for each B bootstrap
samples. Here, Hé is the entropy computed from a typical bootstrap sample and 6 is its

corresponding standard deviation estimate. So, the bootstrap lower and upper 100(1 — )

confidence limits are

. N A \ A
Lb = ]V——-]HQ —ql_a/zc/\/ﬁ

N ~ b ~

where g7, , and ¢}_, , are the | B(ar/2)] +1 and | B(1 — a/2)] +1 order statistics of the

B bootstrap quantiles and |- | is the greatest integer function.

This method and the following two bootstrap confidence intervals can also be applied

to the variance stabilization transformation.
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Bootstrap Percentile Confidence Intervals
Suppose ﬁ*l,...,ﬂéB are B bootstrap estimates of Hp. Then, the lower and upper
100(1 — &) confidence limits are the |B(a/2)| and |B(1 — &/2)| order statistics of the

B ordered values of A Z;.

Bootstrap BC, Confidence Intervals

Let }AIE(Y) be the 100y percentile of A%}, ...,HéB, then
t{Hy < Ho}

=07 B

)’

where & is the standard normal distribution function. Then, the 100(1 — &) confidence
intervals for H are Hé(a') and I:IE(aZ), where

20+Za/2

o =P(Zp+ —a ,
! (%0 1-6&/2(20+za/2)

20+2(1-a/2)
1—&/2(Zo+2(1-a/2)) "

and & is the sample entropy computed without the ith observation, which is calculated

o =D(Z+

from ﬂg) as
Y (85— BY)

b= 2 A0S
6{21=1( Q_HQ )23

Here AL)is the average of I:Ig).

II1.2.2 Selection of Difference Matrices

One of the first steps in computing QE is to identify an appropriate A, the distance matrix.
If we assume the distance between each pair of the eight dinosaur families is the same, then
A is as given below. As noted earlier, in this case, the QE is same as the Gini-Simpson

index.
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TABLE 8. Diets of dinosaur families

Family Dietary

Ceratopsidae Herbivores

Hadrosauridae Herbivores

Hypsilophodontidae Herbivores

Pachycephalosauridae Herbivores/Omnivorous

Tyrannosauridae Carnivorous

Ornithominidae Omnivorous/Herbivorous

Saurornithoididae Carnivorous

Dromaeosauridae Carnivorous
(0111 1111]
10111111
11011111
11101111

Ag =

11110111
11111011
11111101
11111110

If dinosaur families with similar food chains have similar ecological characteristics,

then they can be assigned relatively a shorter distance than those who do not. Using the

dietary information about different dinosaur families given in Table 8, based upon Norman

(1991), we can suggest the following A; as an appropriate distance.

A=

W N W N = = O

W N W N e O =

W N WN O = =

2 323
23123
2323
0212
2021
1 202
2120
2121

O =N =N W W W

We have experimented with different ways of finding A using data and have proposed

the following:
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A2 = (dij), where

4

0 if i=j
1 if fi=#;=0
dij=q |log(#)|+1 if ;=0 (I11.2.2)
[log ()] +1 if fi=0
| |log(®:) —log(%j)|+ 1 otherwise.

1I1.2.3 Comparisons of Confidence Intervals Based upon Simulated Data

The accuracy of the confidence intervals were compared by the noncoverage probability
with simulated data. Data were generated from a multinomial (50, IT) distribution, where
I1 is defined by various geometric models with s = 8. Tables 9, 10, 11 list the percentage
of confidence bounds that fail to bound the true entropy value. “Below” and “Above”
represent the probability that the true entropy value falls below the lower limit, i.e. P(H <
L) and the true entropy value falls above the upper limit, i.e. P(H > U). The comparisons
of these two probabilities with a true significance level o will show the performance of
the confidence intervals. The noncoverage probabilities were based upon 5,000 simulated
data with 7,500 bootstrap samples.

When k& = 0.8, QE and the indices based upon QE have better simulated results than
Shannon entropy. When comparing confidence intervals based upon normal distributions
with those based upon bootstrap-t, bootstrap percentiles, bias adjusted and bias-corrected
and accelerated (BCy) techniques, the BC,, confidence intervals appear to be the most lib-
eral. Confidence bounds based upon bootstrap-t come closest to the desired 1 — 2¢;, when
compared with normal intervals and other bootstrap intervals, however, the bootstrap-t in-
terval based upon Shannon entropy and QE with Ag and the corresponding indices have
some imbalance in that the lower bound appears to be conservative, whereas its upper
bound appears to be liberal; and the imbalance is not found in confidence intervals based
upon other quadratic entropies and indices. The closest coverage is reached by using the
QE with A bootstrap-t confidence intervals; the QE index with A and the QE with Ag

produce the next closest coverage. Similar results are also observed in the case of k£ = 0.6.
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When k = 0.4, QEs and the indices based upon QEs continue to have better simulated
results than Shannon entropy; the BC,, confidence intervals remains to be the most liberal.
Bias adjustment improves the percentile method, especially for QE with Ag, making its
total coverage probability 1 — (Below + Above) the closest to the desired 1 — 2¢;, when
compared to other methods. The bootstrap-t confidence interval for QE with Ay produce
next closest coverage. Imbalance is observed in the bias adjusted percentile confidence
intervals for QE with Ag and A in that the lower bound appears to be liberal and its upper
bound appears to be conservative.

Overall, the proposed QE and QE indices are more accurate than Shannon entropy in
terms of coverage probability. The indices built on A; with the bootstrap-t intervals exhibit
the best performance when the distribution is set with larger k values. As k gets smaller, in-
dices based upon QE with Ay will produce a better result. Among entropy based intervals,
bias adjusted percentile intervals perform better than normal intervals and other bootstrap

intervals. The BC, confidence intervals appear to be the most liberal.

IIL.3 ESTIMATION OF DIFFERENCE BETWEEN TWO QUADRATIC EN-
TROPIES

In this section, we will derive the confidence bounds of the differences between two

quadratic entropies.

111.3.1 Confidence Intervals of Difference between Two Quadratic Entropies

Suppose Hgp; is the QE defined as in (III.1.1) for the ith population, each of which has s
species. Let N; be the number of observations from the ith population. Then, an estimate
of Hp; as before can be obtained as HQ,'. Let 6; be the estimated standard deviation, as in
(IIL.2.1) for the ith population. Then, we can provide the lower and upper limits of the
100(1 — ox)% confidence intervals for the difference Hp; — Hy; based upon the asymptotic

normal distribution as

Ni p N n 22 A2
Lij= g 7ei— §—7Hei —2ap2\/ 67 /Ni+ 6} /Ny,

N, . Nj ~ - )
U,'j= Ni_lHQi~—N—j_lHQj+Za/21/Gl-2/Ni+Gj/Nj.

and
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As before, we can provide bootstrap t-interval using the ordered bootstrap values,
Ni ~ N N A P A
Ni—'l'Héi - N'jilHéj - (HQi _HQi)
\J8%/Ni+ 8%/,
Also, the percentile based intervals can be obtained using the ordered bootstrap values

Ni
Ni—1

N;
N;—1

y* ag

Confidence intervals based on the index are also constructed as before.

111.3.2 Empirical Simulation for Difference of Two Entropies

The performance of QE in constructing confidence intervals of pair differences were tested
in simulated data. The data were generated from two multinomial (50, IT) distributions,
where IT is defined by one of the three geometric models with s = 8. The noncoverage
probabilities of confidence intervals were estimated based upon 5,000 sets of simulated
bounds; each bootstrap bound was computed using B = 7,500 bootstrap samples. Tables
12, 13, 14 list the estimated noncoverage probabilities of confidence intervals of Hy; —Hgpj.

If the distributions of two time intervals (groups) are similar, in other words, parameter
k is the same (k; = 0.6 and ky = 0.6), QE with Ay and the index based upon A, produce
more accurate results than other measures. While comparing confidence intervals based
upon normal distributions with those based upon bootstrap-t, bootstrap percentiles, and
BCy techniques, the BCy, confidence intervals appear to be the most liberal. When U;; and
L;j do not have coverage probabilities exactly equal to 1 — a, the size of the test that rejects
Héj , when [L; UJ] C [—8, 8], is (Berger and Hsu 1996)

ij?

max{supHi_HPsP(U,-j < H; _Hj)’supH,-——Hj<—5P(Lij > H; —Hj)}.

Therefore, the normal distribution bounds of the QE index based upon A, appears to be
the most accurate for assessing the practical equivalence of entropies because they have
the smallest max{Below, Above} for all ¢ values.

When the distributions of two time intervals (groups) differ, the normal confidence
bounds of the QE index based upon distance A, remain more accurate, because they have
the smallest max{Below, Above}. The QE and QE indices based upon Ag have the next
to the best coverage with bootstrap-t and bootstrap percentile confidence bounds. BCy

confidence bounds remain liberal throughout.
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II1.4 ANALYSIS OF THE DINOSAUR DATA

Let us revisit the dinosaur data and apply QE and the proposed indices to construct confi-
dence intervals for differences in entropy for all possible pairs of intervals.

First, we consider the simple distance matrix assuming equal distance between all pairs
of eight dinosaur families. As noted earlier, in this case, the QE is same as the Gini-
Simpson index. We also use two other distance matrices. The matrix A; given earlier is
based upon the diets of the dinosaur families listed in Table 8, which assumes that similar
diets will have similar food chains and hence shorter distances between families. We also
used A, in Equation (II1.2.2), which becomes:

0 1.338 4.012 5.804 3.725 3.319 3.501 5.804
1338 0 3.674 5.466 3.386 2.981 3.163 5.466
4.012 3674 0 2792 1.288 1.693 1.511 2.792
5.804 5.466 2792 0 3.079 3.485 3.303 1.000
3.725 3.386 1.288 3.079 0 1.405 1.223 3.079
3319 2981 1.693 3485 1405 O 1.182 3.485
3.501 3.163 1.511 3.303 1.223 1.182 0 3.303
i 5.804 5.466 2.792 1.000 3.079 3485 3303 O J

The practical equivalence confidence intervals can be used to analyze the dinosaur
data in Table 7. Table 15 gives the 95% practical equivalence intervals for the difference
in entropy for all pairs of upper, middle and lower intervals. Each bootstrap bound was
computed using B = 7,500 bootstrap samples.

It is found that confidence intervals involving only upper and middle intervals are rel-
atively narrower, while the intervals involving the lower intervals are quite a bit wider,
regardless of standard normal or bootstrap techniques, Shannon entropy of Rao’s QE. This
is because of the relatively large sample sizes for the upper and middle intervals (90 and
123, respectively) and relatively small samples for the lower interval (n=32). Given the
results in Section II1.4, practical equivalence inference should be based upon standard nor-

mal confidence intervals of QE index with Aj. Thus, to reject the null hypothesis

Hy : |Hgi —Hgj| > & for some i # j

VS.
H;: [HQ,'—HQ]‘| < o forall i;é Js
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TABLE 15. Dinosaur data revisit: 95 % confidence intervals for differences

in entropy for all possible pairs of intervals

Pairs of Intervals Methods Standard Normal Bootstrap-t Percentile BC,

Shannon | 0303 0096 | 0309 0126 | 0318 0093 | 0299 0073

OFy | 0124 0023 | 0126 0023 | 0133 0019 | -0.132 0019

QE, | 0424 0066 | 0424 0086 | 0421 0068 | -0416  0.061

Hupper — Hmiddle QF, | 0251 0433 | 0077 0411 | 0207 0252 | 0076 0132
i.QEy | 0177 0048 | 0152 0032 | 0161 0024 | -0.161  0.023

iQE, | 0209 0016 | 0231 0038 | 0232 0037 | -0228 0033

iL0E, | -0083 0142 | 0023 0126 | 0068 0082 | -0.025 0.043

Shannon | 0214 0344 [ 0315 0332 | 0159 0425 | 0243 0531

QEy | 0100 0171 | 0106 0189 | -0058 0215 | 0070 0237

QE, | 0520 0320 | 0621 0329 | 0478 0358 | 0509 0398

Huiddte — Hiower 0E, | 0603 0233 | 0620 0095 | 0270 0208 | 0538 0652
iQF | 00711 0193 | 0135 0198 | 0076 0257 | 0092 0.281

iQFE, | 0189 0075 | 0311 0159 [ 0273 0196 | 0297 0219

iQE, | 0192 0073 | 0188 0032 | -0088 0068 | 0.178 0222

Shannon | 0333 0255 | 0411 0264 | 0296 0316 | -0.354 0388

O | 0158 0128 | 0158 0141 | 0122 0159 | 0131 0175

QE, | 0713 0147 | 0802 0153 | 0.660 0.176 | -0.686  0.203

Hupper — Higwer QE, | 0535 0347 | 0470 0107 | 0279 0251 | -0416 0429
iQE) | 0152 0146 | 0194 0147 | 0153 0187 | -0164 0205

iQFE, | 0303 0005 | 0405 0065 | 0373 0097 | 0387 0.110

i0E | 0179 0119 | 0142 0030 | 0001 0082 | -0.136  0.140

the quantity 6 defining the boundary has be to at least 0.192, because the normal confi-
dence intervals based upon i_QF5 are (-0.083, 0.142), (-0.192, 0.073) and (-0.179, 0.119).
Note that the largest absolute value of the boundaries is 0.192. The value of 6 defining
practical equivalence of Shannon and Gini-Simpson entropies can be applied in a similar

way.

The quadratic entropy index reflects both the differences and abundances of the species.
When a species list is given without abundance data, using the QE index and postulating
equal abundances, one derives the only biodiversity index from a traditional ecological
index of diversity. Its extensive form is identical with the sum of differences or distances
between the species present. The QE index trivially satisfies monotonicity, an important
property for biodiversity indices.

As when constructing practical equivalence intervals for analyzing biodiversity, the
challenge still remains on how to choose the rejection boundaries. One possibility is to
consider an analogous community that has changed in biodiversity, then calculate the con-

fidence boundaries based upon before and after data to derive such a 6. Another approach
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is to build simulation geometric models and estimate the maximum boundaries for differ-

ences of two quadratic entropies to obtain the practical equivalence.
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CHAPTER 1V

CLUSTER ANALYSIS OF MULTINOMIAL DATA

Cluster analysis is a common data mining and analysis technique that has been used in
many fields such as biology (Eisen, Spellman, Brown, and Botstein, 1998), medicine
Romesburg, 2004), market research (Punj and Stewart, 1983) and social network anal-
ysis (Scott, 1988). The aim of cluster analysis is to cluster or group the observations into
disjoint clusters. Data clustering algorithms can be hierarchical or partitional. Hierarchical
algorithms find successive clusters using previously established clusters. These algorithms
can be either agglomerative (“bottom-up”) or divisive (“top-down”). Agglomerative algo-
rithms begin with each element as a separate cluster and merge them into successively
larger clusters. Divisive algorithms begin with the whole set and proceed to divide it
into successively smaller clusters. Partitional algorithms typically determine all clusters at
once.

An important step in any clustering is to select a distance measure, which will deter-
mine how the similarity of two elements is calculated. This will influence the shape of
the clusters, as some elements may be close to one another according to one distance and
may not according to another. Let X = (xy,...x,) and Y = (y1, ...y, ) be two vectors in real

m-space. Commonly used distance functions include:

e Euclidean distance:

Dg = \/(xl =12+t (B = ym)? =4 i(xi —yi)?
i=1

e Mahalanobis distance

Dytat =/ (X —YYE-1(X ~Y)

e Manhattan distance

m
Dpman = ||X_YH = lei"yil

i=1
All these distances are defined generally for continuous data. Not many methods have
been proposed to define distances for quantitative data, which brings challenge in cluster-

ing categorical data. Suppose we are interested in clustering the states with similar violent
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crime statistics as in the next example. The data in Table 16 are on states crime rate in
2007 for 50 states and District of Columbia (From now on referred as 51 states). These
are taken from Bureau of Justice Statistics web site (http://www.ojp.usdoj.gov/bjs) in the
Department of Justice for illustrative purpose. The violent crimes include murder and non-
negligent manslaughter, forcible rape, robbery and aggravated assault. The researcher may
be interested in the clustering 51 states into several clusters based upon the similarity of

violent crime rates.

TABLE 16. State violent crime statistics in 2007

State Murder Forcible rape Robbery Aggravated assault Violent crime total
Alabama 412 1545 7398 11377 20732
Alaska 44 529 583 3363 4519
Arizona 468 1856 9618 18658 30600
Arkansas 191 1268 3024 10524 15007
California 2260 9013 70542 109210 191025
Colorado 153 1998 3453 11302 16906
Connecticut 106 658 3607 4594 8965
Delaware 37 336 1706 3881 5960
District of Columbia 181 192 4261 3686 8320
Florida 1201 6151 38162 86366 131880
Georgia 718 2178 17340 26839 47075
Hawaii 22 326 1105 2048 3501
Idaho 49 578 233 2729 3589
Illinois 752 4103 23100 40573 68528
Indiana 356 1742 7872 11195 21165
Towa 37 904 1313 6551 8805
Kansas 107 1231 2016 9212 12566
Kentucky 204 1381 4069 6859 12513
Louistana 608 1393 6083 23233 31317
Maine 21 391 349 193 1554
Maryland 553 1179 13258 21072 36062
Massachusetts 184 1634 7006 19008 27832
Michigan 676 4579 13414 35319 53988
Minnesota 116 1873 4770 8244 15003
Mississippi 208 1040 2866 4388 8502
Missouri 385 1714 7165 20418 29682
Montana 14 290 191 2259 2754
Nebraska 68 527 1108 3664 5367
Nevada 192 1096 6932 11037 19257
New Hampshire 15 333 432 1027 1807
New Jersey 380 1050 12549 14622 28601
New Mexico 162 1032 2321 9570 13085
New York 801 2926 31094 45094 79915
North Carolina 585 2385 13548 25744 42262
North Dakota 12 207 70 622 911
Ohio 516 4452 18260 16132 39360
Oklahoma 222 1559 3373 12918 18072
Oregon 73 1255 2862 6587 10777
Pennsylvania 723 3450 19458 28151 51782
Rhode Island 19 256 751 1378 2404
South Carolina 352 1739 6346 26309 34746
South Dakota 17 308 112 910 1347
Tennessee 397 2174 11022 32787 46380
Texas 1420 8439 38769 73426 122054
Utah 58 908 1420 3824 6210
Vermont 12 123 80 557 772
Virginia 406 1745 7651 10996 20798
Washington 173 2629 6053 12691 21546
West Virginia 64 369 852 3702 4987
Wisconsin 183 1223 5474 9416 16296
Wyoming 16 160 84 991 1251

The four categories of violent crimes can be assumed to be categories of a multinomial

distribution. Since Euclidean distance, Manhattan distance and Mahalanobis distance are


http://www.ojp.usdoj.gov/bjs
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designed for the continuous data, none of them can catch the internal correlation of subcat-
egories of crimes and hence cannot be applied here. Bhattacharyya distance was proposed
by Bhattacharyya (1943) to measure the similarity of two discrete probability distributions
and can be used for this purpose.

Let X; denote the categorical group variables (type of crime) with s levels and n; be the
total frequencies (number of crime for i-th state). Let P, = (p;1, pi2, ---, Pis) be the vector of
relative frequencies. The Bhattacharyya distance between i-th and j-th subject (state) can
be calculated as (Bhattacharyya 1943),

Dgj = ):( W2 piiye (IV.0.1)

In this chapter we will propose a new distance based upon Rao’s quadratic entropy and
use it to cluster the multinomially distributed data. Rao and Boudreau (1984) have used
Gini-Simpson index for clustering blood group data in human populations. In Section
IV.1 we define the distance based upon Rao’s quadratic entropy; The performance of this
new distance will be compared with Euclidean distance, Bhattacharyya distance and Gini-
Simpson distance for simulated data in Section IV.2 and for state crime data in Section IV.3.
In Section IV.4 this quadratic entropy distance will be generalized to multiple variables
with clustering results on both simulated and state crime data. We will conclude this

chapter with some remarks.

IV.1 DEFINITION OF QUADRATIC ENTROPY DISTANCE

As discussed in Chapter I, the total quadratic entropy diversity (SST) can be decomposed
into two parts: SSW and SSB, where SSW measures the similarity of diversities among
populations and SSB measures the difference of diversities between populations. Hence
the quantity —gs%’i can serve as a distance between two populations.

Let X; denote the categorical variable (type of crime) with s levels and n; be the total
frequencies (number of crimes for the i-th state). Let P, = (p;1, pi2, ---, Pis) be the vector of
relative frequencies. The quadratic entropy distance can be defined as,

SSBij _ PAP — ﬂfn—P’AP —— 'j;n P/AP;

Dor.ij = sor. PAP ’

aV.1.1)

where P = (n;P;+nP;)/(n;+n;) and A can be a predetermined matrix or one derived from
data as proposed in Equation (I1.2.1) or (I11.2.2). It may be noted that this distance does
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not satisfy the triangle inequality. However, we can still use this for clustering purpose
(Mardia, Kent and Bibby, 1979).

IV.2 EMPIRICAL COMPARISONS

In this section, we generate a simulation data set to compare quadratic entropy distance
with Euclidean Distance and Bhattacharyya distance. The data set consists of samples
from geometric distributions (See Appendix A) with n =100, s =4 and k = 0.4, 0.6, and
0.8 to produce three sets of samples. Each set of data consists of 1,000 samples. The
quadratic entropy distances, along with Euclidean and Bhattacharyya distances are used in
hierarchical clustering methods with complete linkage algorithms.

The two difference matrices A and A; used for quadratic entropy are:

0111
1 011
Ay = 3
1101
1110
and A; = (d;j), where
( . . .
0 if i=j
1 if ni=m;=0
dij =9 |log(m:)|+1 if m;=0
|log(m ;)| +1 if =m,=0
| log(m;) —log(m ;)| +1 else.

To assess the quality of our algorithm, we need some objective external criteria. The
external criteria could be the true class information. In order to compare clustering results
against an objective external criteria, we employ the well known adjusted Rand index
(Hubert and Arabie, 1985; Steinley, 2004) as the measure of agreement. Rand index is
defined as the number of pairs of objects that are either in the same group or in different
groups in both partitions divided by the total number of pairs of objects. The Rand index
lies between 0 and 1. The adjusted Rand index is corrected-for-chance version of the
Rand index; and it has the maximum value of 1 and its expected value is O in the case of
random clusters. A larger adjusted Rand index means a higher agreement between two
partitions. The adjusted Rand index is recommended for measuring agreement even when

the partitions compared have different numbers of clusters. See Appendix B for details.



TABLE 17. Adjusted Rand index of the simulated data with k; = 0.4 and k; = 0.6

Cluster Euclidean Bhattacharyya QF\, QFE\,
2 0.618472 0.248051 0.618046 0.629427

3 0.570018 0.216502 0.613762 0.614215

4 0517917 0.271299 0.547501 0.553621

5 0.519915 0.194702 0.528180 0.530142

6 0.652023 0.295381 0.620194 0.660271

7 0.651715 0.259495 0.675896 0.676085

8 0.612986 0.198902 0.600519 0.635207

9 0.538132 0.148592 0.644494 0.645201

10 0.643204 0.225701 0.604661 0.643304

TABLE 18. Adjusted Rand index of the simulated data with k; =0.4 and &k, =0.8

Cluster Euclidean Bhattacharyya QF\, QFE\,
2 0.998881 0.999121 0.998961 0.999085

3 0.999440 0.999600 0.999240 0.999351

4  0.999121 0.999720 0.999041 0.999285

5 0.999080 0.999600 0.999001 0.999561

6 0.999400 0.999720 0.999441 0.999512

7 0.999041 0.999560 0.998722 0.999225

8 0.999282 0.999680 0.999241 0.999354

9 0.999200 0.999600 0.999043 0.999312

10 0.999081 0.999600 0.998801 0.999251




TABLE 19. Adjusted Rand index of the simulated data with k; = 0.6 and kp =0.8

Cluster Euclidean "Bhattacharyya QE, QE,,
2 0.889204 0.931127 0.872781 (.892051

3 0.863560 0.927207 0.888591 0.889517

4 0.838906 0.890506 0.838802 0.852143

5 0.840396 0.913819 0.885124 0.886521

6 0.839969 0.905943 0.843705 0.853210

7 0.884875 0.922546 0.865229 0.895130

8 0.870603 0.914243 0.859382 0.886218

9 0.899273 0.893167 0.897176 0.899042

10 0.813119 0.913582 0.864634 0.882682

Table 17, 18 and 19 list the adjusted Rand index achieved by hierarchical algorithms
for three type of distances. Quadratic entropy distance has a better partition than Euclidean
distance and Bhattacharyya distance when k; = 0.4 and k, = 0.6. In the case of k1 = 0.4
and k; = 0.8, or k1 = 0.6 and k; = 0.8, Quadratic entropy distance have a better partition
than Euclidean distance, but not better than Bhattacharyya distance. It is not surprising
that all three distances obtain the best results when the specified number of clusters is
correct since its model perfectly matches the data. However we often do not know the
exact number of clusters in practice. When the specified number of clusters is not correct,
quadratic entropy distance based method performs better than the methods based upon

Euclidean distance and better than Bhattacharyya distance in some cases.

IV.3 APPLICATION TO STATE VIOLENT CRIME DATA

Figure 1, 2 and 3 list the clustering results of state crime statistics data when different
distances are used.

In Figure 1 Euclidean distance puts most other inner states as one group; industrial
states in the north such as Ohio, Pennsylvania, Illinois, Michigan, New York, and south
states such as Arizona, Georgia, North Carolina, Tennessee, and Washington state as an-
other group; California, Texas, and Florida as three other separate groups.

In Figure 2 Bhattacharyya distance puts most mid-western states and northeastern
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states as as one group, Florida and Texas as another group; Illinois and New York as
one group; California as a separate group and the rest as one group.

In Figure 3 Rao’s quadratic entropy puts most inner states as one group; most states
near the ocean as one group; North Dakota and South Dakota as one group; Idaho, Mon-

tana and Wyoming as one group; New Jersey, Ohio and District of Columbia as one group.
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IV4 CLUSTER ANALYSIS FOR MULTIPLE VARIABLES

In most of clustering problems there will always be data on more than one variable. The
data in Table 20 on 51 states crime rate in 2007 (http://www.ojp.usdoj.gov/bjs) include
two type of crimes, namely, violent crime and property crime. Violent crime includes
murder and non-negligent manslaughter, forcible rape, robbery, and aggravated assault;
and property crime includes three types: burglary, larceny-theft, and motor vehicle theft.
The researcher may be interested in clustering 51 states into several clusters based upon

the similarity of both violent and property crime rates.

IV4.1 Quadratic Entropy Distance for Multiple Variables Clustering

We can easily generalize the quadratic entropy distance to the case of multiple variables.
Let X and Y denote the categorical variables (violent crime and property crime) with levels
s1 and s, and n and m be the total number (of crimes), respectively. Let P = (p1, p2, ..., Ps; )
be the vector of proportions of s; (violent crime) categories and Q = (g1,42, -..,4s,) be the
vector of proportions of s, (property crime) categories.

For characteristic variables X and Y, the Bhattacharyya distance between the i-th and
Jj-th subject (state) can be calculated as,

1/2 1/2
Z( —Pim)

_ 12 1 /2
D By = Z 9im —4; jm
The overall distance between i-th and j-th subject(state) is constructed as,

ni+nj
2n

m;+m;

Dp =
B 2m

Ds,, (IVA4.1)

where n; and m; are the frequencies in the i-th class for the two variables, respectively.
The between subjects quadratic entropy is measuring the dissimilarity between subjects

and can be used for calculating the distance between i-th and j-th subject as well.

Dgg x = PAP — P/AP, — P’AP,, (IV.4.2)

n;+n; ! n,—l-nj

DQE,y = Q_AQ -

L

QiAQj, (Iv4.3)


http://www.ojp.usdoj.gov/bjs
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where
P= (n,P, + anj)/Z,
0 = (niQi+n;Q;)/2,

and A can be a predetermined matrix or derived from data. The overall distance between

the i-th and j-th subject (state) is constructed as,
Dgr = (Dgex+DoEy)/2 (IV.4.4)

The between subjects quadratic entropy measures the dissimilarity between subjects

and the ratio of % can be used to calculate the distance between i-th and j-th subject as

well.
ni+n; . - m-+m; .. -
SSTQE xy = — o I PAXP+ ‘2m L OAy O,
ni—l—nj _ _ n; n;
SSB = PAxP — P/Ax P, — P, AxP;
QF xy 2n (PAx ni+n; ' ek ni+n; ’ xPj)+
mi+mj - = m; ’ m; ,
2T (OAVO — 'AvOi — AvO:
o (0AYQ mi+ij' y Qi mi+ij’ vQj)s
where

P = (m;P;+n;P;)/(ni+n;),
0 = (miQi+m;Q;)/(mi+m;).

Ax and Ay can be a predetermined matrix or derived from data. The overall distance

between i-th and j-th subject (state) is constructed as,

Dor = SSBoE xy/SSToE xy- (IV.4.5)

1V4.2 Application to State Violent and Property Crime Data

We illustrate these clustering methods with state violent and property crime data.

Figure 4, 5 and 6 list the clustering results of state crime statistics by Euclidean dis-
tance, Bhattacharyya distance and quadratic entropy distance, respectively.

In Figure 4 Euclidean distance clusters most west-mid inner state as one group; east
states as another group; Illinois and New York as one group; California, Texas and Florida
as three other separate groups.

In Figure 5 Bhattacharyya distance puts most mid-western states and northeastern
states as as one group, Florida and Texas as another group; Illinois and New York as

one group; California as a separate group and the rest as one group.
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In Figure 6 quadratic entropy distance puts most inner states as one group; most north
east states as one group; Montana and Wyoming as one group; Nevada as one group; Dis-

trict of Columbia as one group.

In this chapter, we proposed quadratic entropy distance for clustering multinomially dis-
tributed data. The simulation results show that our new method performs significantly
better than Euclidean distance and Bhattacharyya distance, especially when the number of
clusters is incorrectly specified. We were also able to generalize the methods to more than
one categorical variables. Our future work involves exploring these methods to clustering

data with both continuous and discrete variables.
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CHAPTER V
ANALYSIS OF MULTI-RESPONSE DATA

Surveys and other studies often result in categorical response measurements being made
on members of different populations or treatment groups. This arises often where indi-
viduals may mark all answers that apply when responding to a multiple-choice question
such as “What criminal offenses have you been arrested?” “What type of diseases have
you been diagnosed?” “What are your races?” These are all example questions appearing
on surveys where the respondent is supposed to choose maybe more than one responses
from a predefined list items. Survey data arising from questions of this type raise a unique
challenge for analysis because of the dependence among responses provided by individual
subjects.

To test the independence of two categorical variables where at least one of the cate-
gorical variables can have multiple responses, many familiar tests, such as, the Pearson
Chi-square test and Fisher’s exact test should not be used because of the within-subject
dependency among responses. Loughin and Scherer (1998) proposed a modified chi-
square test to test the multiple marginal independence (MMI) between one single response
and one multiple-response categorical variable by bootstrapping. They also examined a
test for conditional marginal independence (CMMI), where the conditioning is on a third
single-response variable. Agresti and Liu (1999) examined the association between two
multi-response categorical variables by testing simultaneous pairwise marginal indepen-
dence (SPMI). Bilder and Loughin (2004) suggested bootstrapping a modified Pearson
x? test to perform the test; Agresti and Liu (1999, 2001) and and Bilder and Loughin
(2007, 2009)suggested generalized log-linear models to test for SPML. Little research has
been done applying Rao’s quadratic entropy method on testing SPMI. In this chapter we
develop new approaches to test marginal independence between two multi-response cate-
gorical variables with Rao’s quadratic entropy.

We use the same data set from Bilder and Loughin (2004), which is from a survey
conducted by the department of animal science at Kansas State University. In this survey
two questions asked Kansas farmers about their “sources of veterinary information” and
their “swine waste storage methods”. For these questions, the farmers were permitted to
select as many responses as applied from a list of items. Two hundred and seventy-nine

farmers participated in the survey. Table 21 summarizes the data in a 4 x 5 table. For
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example, 34 farmers picked professional consultant as a source of veterinary information
and lagoon as a waste storage method. A researcher may be interested in determining the
association of waste storage methods and sources of veterinary information.

The traditional Pearson chi-square test for independence cannot be used here because
of the within-subjects dependency of responses. Instead, a test for marginal independence
should be performed. Specifically, 4 x 5 = 20 different 2 x 2 tables can be formed to
marginally summarize all possible responses to item pairs. Table 22 is the table for re-
sponses with professional consultant and Lagoon. A “1” denotes a farmer picked that item
and a “0” denotes the farmer did not pick that item. Instead of testing the independence
of 4 x 5 table, the independence of 20, 2 x 2 tables is tested simultaneously. If this test is
rejected, examination of the individual 2 x 2 tables can be followed to determine why the
rejection occurs. This is analogous to the post-hoc pairwise test in analysis of variance.

Rao’s quadratic entropy can be applied to perform the testing.

V.1 DERIVATION OF THE QUADRATIC ENTROPY TEST

Let W and Y denote the multiple-response categorical variables for an r X ¢ table’s row
and column variables, respectively. The derivation of the Rao’s quadratic entropy statis-
tics requires consideration of two different contingency table representation of groups and
responses. In the first, referred to as the original table, the r groups of units correspond to
rows of the table and the ¢ responses correspond to the columns, as in Table 21. Denote
the cell counts in this table by m;;, i=1,...,r; j = 1,...,c. Marginal counts are denoted by
-+ subscripts: m; is the total number of responses in row i, and m, ; is the total number of
responses in column j. Define 7;; to be the probability that a unit chosen at random from
the population falls into group i and responds positively to category j, and let 7 ; be the
marginal probability that a randomly chosen unit provides response category j.

As a second representation, let there be R = 2" rows and C = 2¢ columns, corresponding
to all possible combinations of responses. This table is referred to as the expanded table.
Counts in this table are denoted by np, h=1...,R; k = 1,...,C. Marginal counts are again
denoted by + subscripts, with n;, being the number of responses in row i, n; be the
number of responses in column & and n . being the total number of units in the study.

Joint probabilities are denoted by Ty, = P(W, = 1,Y; = 1).
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TABLE 22. Professional consultant and lagoon 2 x 2 table

Professional consultant

1 0
N 34 109
agoon 4 10 126

There exists a special relationship between

mji=1,.,r j=1,..c,

and
T,h=1,..R; k=1,...C
that is,
W= Y Thk- (V.1.1)
hjW=1&Y;=1

A similar relationship holds between
miji=1,..,r; j=1,.,c

and
ny,h=1,...R; k=1,...,C.

A “joint table” gives the cross-classification of responses to each possible set of item
responses for W and Y. This is similar to the joint table described in Bilder, Loughin, and
Nettleton (2000); Bilder and Loughin (2004). Table 23 gives the joint table for the Kansas
farmer data. For example, 15 farmers picked professional consultant as their only source
of veterinary information and lagoon as their only waste storage method. Cell counts in
the joint table are denoted by ny;, and the corresponding probability is denoted by 7.

Multinomial sampling is assumed within the entire joint table; thus Y ; T = 1.



; items correspond to the same ordering of the column and row items listed

TABLE 23. Joint table for the Kansas farmer data. The Y; and

Table 21

n

12

19

12

15

13

10

22

60
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Sparseness is usually the norm for the joint tables. The number of cells in the joint table
is 27t¢, which can be quite large even for small values of r and c. For the Kansas farmer
data example, there are 2° = 512 cells and 434 have zeros in them. This table sparseness
can have a detrimental effect on model based testing approaches that need to estimate all
Ty, from the joint table. Even when the model based approaches converged after lengthy
iteration, the interpretation of joint table is very complicated and not much of interest.

Thus we focus on the marginal table constructed by m;; as the number of observed
responses to W; = 1 and ¥; = 1. Table 21 is an example of marginal table. The marginal
probability of 7;; = {W; = 1;¥; = 1} can be estimated by its maximum likelihood estimate
(MLE) as

fij=—=,
where n =} Y m;;. The hypotheses for test of marginal independence are

Hy: Tij =Ty Ty fori=1,..rand j=1,...,c,

v§

H, : At least one equality does not hold.

Here m;j = PW; = 1,Y;=1), ;. = P(W; = 1) and n; = P(Y; = 1). This specifies
marginal independence between each W; and Y; pair. The hypotheses can also be writ-
ten in the way of odds ratio. Consider the rc, 2 x 2 pairwise item response tables formed
for each W; and Y; pair (analogous to Table 22) and suppose the cells contain probabili-
ties for each W; and Y; pair; i.e., P(W; = 1,Y; = 1) = m;;, P(W; = 1,Y; = 0) = miy — m;j,
PW;=0,Y;=1)=mny;—mjand P(W; =0,Y; =0) = 1— m;, — 7y j+ ;. If none of these

cells have 0 probability, the pairwise marginal independence hypotheses can be written as,
ORyy,;j=1, fori=1,..rand j=1,...,c,

where
ij(1 — My — 7oy j + ;5)
(T — i) (T4 j — Ti5)

Therefore, SPMI represents simultaneous independence in the rc, 2 X 2 pairwise item re-

ORwy ;ij =

sponse tables formed for each W; and Y; pair. The MLE for #;, and 7, ; are #; = —m;l—+ and
A My
==

Let m = (my1,m12,...,my) and m = (ny1,n12,...,n2r2c)’. Also, let G be a r x 2" matrix
with columns containing all possible values of (Wy,...,W,)’, and let H be a ¢ x 2¢ matrix

with columns containing all possible values of (Y1,...,Y.)".
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TABLE 24. 2 x 2 margin table

Column Response j

1 0
. n'. . 7[. — .. n-
Row Response i " o~ i
0 myj—my; 1-my—mj+m; 1—my
Ty j 1—-rmy j 1

For example, the column headers in Table 23 form H for the sources of veterinary in-
formation multiple-response categorical variable. Then (G @ H)n = m, where &) denotes
the Kronecker product. This can also be written equivalently as (GQH)% = &, where
£ =n/n and # = m/n. Define &% = (#;,,..., &) and &€ = (&4, ..., &yc)’. For each
marginal Table 24, let

R A oA A oA N N A N
Vij = (Bij, i — Rujy B j — Mij, 1 — iy — Ry + T
C A A A oA A a ~ a
Vij = (Bij, o j — Bijy R — Bijy 1 — Ry — Ry j+ i)
The test statistics is constructed as
Cija = (n—1)SSBR /SSTR+ (n— l)SSB /SSTE I

and SSTR, SSWR, SSBR and SSTC, SSWC, SSBC are defined as:
SST = VR T;VE, SST = VC TV, with T = Jx2 @A,

sswr —VR’W,,V,’j,SSW _VCW VS, with Wy = diag(1/m1,1/(1 - M1 )) @A

SSB(; —VR'B V%, S8Bf; = VS Bi;VS, with Bij = n™ ' T;; — Wy

and then the overall statistics is,

Ca=Y Y Cia (V.1.2)

i=1j=1

Using the joint asymptotic normality of £ and the delta method, it can be shown that Cy
has an asymptotic 7522, e(n—re) distribution.

V.2 DISTRIBUTION OF TEST STATISTICS BY BOOTSTRAP METHODS

The asymptotic distribution of Cy, based upon the convergence of the multinomial distri-

bution in the expanded table, is a multivariate normal. Because this table is of dimension



63

2" x 2¢, which can be very large even for relative small values of r and c, extremely large
sample sizes may be required to make the asymptotic distribution a reasonable approxi-
mation. Alternative methods need to be considered to estimate the distribution of C,. The
bootstrap (Efron and Tibshirani, 1993) is a computational technique that can be used to es-
timate the finite-sample sampling distribution of a statistic. In this section, nonparametric

bootstrapping and other alternatives are explored for estimating the p-values.

V.2.1 Nonparametric Bootstrap

The sampling distribution of Ca can be approximated using a nonparametric bootstrap
method. To re-sample under independence of W and Y, W; and Y; are independently re-
sampled with replacement from the data set. The test statistics calculated for the b re-
sample of size n is denoted by C. The p-value is calculated as B~1Y, I(C} > C,), where

B is the number of re-samples taken and /() is the indicator function.

V.2.2 Bootstrap P-Value Combination Methods

Each Cj; gives a test for independence between each W; and Y; pair for i = 1,...,r,j =
1,...,c. The p-values from each of these tests can be combined to form a new statistic, p.
Combination methods can be the product of the p-values or the minimum of the p-values.
Since the rc different tests are likely to be correlated, the usual p-values combination meth-
ods based upon the independence of the p-values are not appropriate. The bootstrap can
be used to approximate the sampling distribution of 5. Resamples for the bootstrap pro-
cedure are taken the same way as described before. The p-value for the combined test is
calculated as B~' Y, I(p} < p), where p}, is the combined p-value calculated for the b

re-sample.

V.2.3 Bonferroni Adjustment

As an alternative to the bootstrap procedures, a Bonferroni adjustment can be applied to
Ca. Hy is rejected if any C;ju is greater than the 1 — a/(rc) quantile of a x? distribution.
A Bonferroni adjusted p-value can also be calculated by multiplying the minimum of the
rc p-values by rc. The advantage of a Bonferroni adjustment approach is that it can be
calculated without knowing the joint table of responses. The disadvantage of this approach
is that for moderate to large r and c values, the Bonferroni adjustment to the critical value

may be severe leading to a conservative test.
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V.2.4 Post-hoc Test

If the hypothesis of marginal independence is rejected, one would want to know why it
is rejected. Since Cy in Equation (V.1.2) is written as the sum of rc different Chi-square
test statistics, each Ca;; can be used to determine where the rejection occurs. The indi-
vidual tests can be performed using chi-square approximation or the estimated sampling
distribution in the proposed bootstrap procedures. This is similar to the post-hoc test in the
analysis of variance for continuous data where a significant F-test is followed by multiple

comparison tests.

V.3 EMPIRICAL COMPARISONS

Thomas and Dacady (2000) suggested a Pearson statistic,

1_ Vv (% — %7 ))
s ”,;,; (1 - )(1— 7)) (v-3-D
Bilder et al. (2000) showed that the second order adjustment rcxg / pe1 lg can be ap-
proximated by a 2 random variable with degree freedom of rc?/ Yo A2, where A;'s are
eigenvalues of certain matrix. This Pearson statistics is used as a reference statistics for
comparisons.
We have performed a simulation study to compare which test in Section V.2 holds the
correct size under a range of different situations and has power to detect various alterna-
tive hypotheses. Each simulation uses 500 data sets and bootstrap method uses B=1000

bootstrap samples. The significance level is set as 0.05.

V.3.1 TypelError

For simulating of data under the null hypothesis, the ORyy ;; are set to 1 for each pair of
WiandYj,i=1,...,r;j=1,...,c. Odds ratios between W; and W/ pair and each Y}, Y]f pair

are calculated as

P(W;=1and Wy =1)/P(W; = 1 and Wy = 0)
P(W;=0and Wy = 1)/P(W; = 1 and Wy = 0)’

ORy it =

and
PYj=1andYy=1)/P(Y;j=1and Yy =0)

ORy,jj =
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The values of ORy ;» and ORy ; i are set at values of 2 and 25 in the simulations to represent
weak and strong pairwise dependence.

Table 25 and Table 26 show the estimated type I error rates for 2 X 2 marginal table
simulations. The 95% expected range of estimated type I error rates for testing methods
holding the correct size is 0.05 4 2(0.05(1 — 0.05)/500)!/2 = (0.0305,0.0695).

Pearson statistics by Bilder et al. (2000) in Equation (V.3.1) mostly holds the correct
size for the ORy ;7 = ORy ;; = 2 but rejects too often when an odds ratio of 25 is present.
Quadratic entropy statistics holds the correct size for the ORy ;» = ORy jj = 25 but rejects
too often when an odds ratio of 2 is present. All of the bootstrap methods generally hold
the correct size at most of the times. Bonferroni adjustment holds the correct size most of

the time but are too conservative sometimes.

V.3.2 Power

A limited simulation study was performed to examine the power of the quadratic entropy
statistics. We have excluded Modified Pearson’s y? test and quadratic entropy with chi-
square distribution from the power comparisons since they did not meet size conditions
in Tables 25 and 26. Data were simulated with marginal probabilities of 8 = (0.4,0.5)/,
7€ = (0.2,0.3)’; the sample size was set at n=100.

Table 27 for comparison of the empirical power indicates that the Bootstrap product of
p-values has larger power than the others in most cases. Nonparametric bootstrap tends to
have similar power to the bootstrap product p-value method. Bonferroni adjusted method
tends to have similar power to mininmum p-value method because of their statistics’ sim-

ilar construction.
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V4 APPLICATION TO THE KANSAS FARMER DATA

The testing procedures of Section V.2 are applied to the Kansas farmer data and the cor-
responding p-values are shown in Table 28. We have used 10,000 re-samples for the
bootstrap methods. All methods indicated strong evidence against marginal indepen-
dence. Using the post-hoc test outlined in Section V.2.4, the significant pairwise com-
binations are (W),Y;), (Wa,Y2), (Wh,Y3), (W3,Y3) and (W3,Y)) at the 0.05 significance
level. If Bonferroni adjusted significance level of 0.05/20 = 0.0025 is used instead, only

(W1, Y1)=(Lagoon, Professional consultant) is significant.

TABLE 28. Testing p-values for the Kansas farmer data

Testing Methods P-Values
Modified Pearson’s 2 3.07 x 1073
Quadratic Entropy 2.11x 1076
Nonparametric Bootstrap 0.0003
Bootstrap Product of P-values 0.0001
Bootstrap Minimum P-values 0.0027
Bonferroni Adjustment 0.0034

In this chapter, we provide a method to analyze multi-response data based upon Rao’s
quadratic entropy. The proposed methods of quadratic entropy for testing independence
are counterparts to the already developed methods for single-response categorical vari-
ables. While the bootstrap methods may be the most computationally intensive of the
testing methods, they most consistently hold the correct size and have higher power to
detect the significance. Bonferroni adjustment provide simpler methods but they can be
conservative at times. Model-based approaches to testing multiple-response data will be

the focus of our future study.
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CHAPTER V1

CLUSTERING GENE EXPRESSION DATA

DNA microarray technology has now made it possible to simultaneously monitor the gene
expression levels during biological process. Elucidating the patterns hidden in the gene
expression data offers a tremendous opportunity for understanding how genes are affected
by disease states and cellular environments. However, the high dimensional genes and the
complexity of biological structure brings great difficulty in interpreting the mass of data. A
preliminary and common methodology towards addressing this challenge is the clustering
technique.

As described in Chapter IV, clustering is a process of seeking a partition of given data
set based upon certain features so that the data points within a group are more similar to
each other than the points in different groups. Clustering can also be used to group genes
according to their expressions in a set of samples. The second type of clustering is to
cluster samples into homogeneous groups that may correspond to clinical syndromes or
cancer types. Clustering of samples can be challenging due to the small sample volume
and high genes dimensionality. The third type is subspace clustering, which is to capture
the coherence exhibited by the “blocks” with gene expression matrices. Here a “block™ is
a sub-matrix defined by a subset of genes on a subset of samples. _

There is a rich literature on cluster analysis and various techniques have been devel-
oped. Many conventional clustering methods such as k-means, hierarchical clustering have
been adopted or directly applied to gene expression data, and also new algorithm such as
graph-theoretical approaches, machine learning and neural network techniques have been
proposed specifically aiming at gene expression data. Jiang, Tang, and Zhang (2004) have
reviewed most of these techniques.

Although these clustering methods are often applied to clustering gene expression data,
they face several new challenges in practice (Jiang et al., 2004). First, cluster analysis
is typically the first step in data mining and knowledge discovery. Therefore, a good
clustering algorithm should depend as little as possible on prior knowledge. However,
most algorithms (except hierarchical clustering) require that the user specifies the “true”
number of clusters in advance, which is usually not available before a cluster analysis is
performed. Although hierarchical clustering does not need the number of clusters, it is

still up to the researcher to decide where to cut the tree of clustering and decide how many
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groups to cluster. Second, due to the complex procedures of microarray experiments, gene
expression data often contain a large amount of noise. k-means algorithm forces each gene
into a cluster, which cause the algorithm to be sensitive to noise.

It is well known that entropy is a measure of information and uncertainty of a random
variable. Hence it is natural to use entropy to measure the closeness within the cluster
and minimize the overall entropy for clustering. While simply minimizing the entropy
will cluster all the sample into one group, Li, Zhang, and Jiang (2004) proposed a mini-
mum entropy clustering algorithm. First, a minimum entropy criterion was constructed on

posteriori probabilities and then generalized to Havrda-Charvat’s structural a-entropy,

H%x)= (2" =17} p%(x) - 1],

where p(x) is the probability of variable x. With a nonparametric approach for estimat-
ing a posteriori probabilities, a hill-climbing iterative algorithm was then established to
minimize the entropy. When o = 2, Havrda-Charvat’s structural a-entropy becomes Gini-
Simpson index. As stated in Chapter I, Rao’s quadratic entropy can catch more information
of clusters by implementing difference of groups in A. The distance matrix A can be es-
timated from data as discussed in Chapter II. Using more “information” of clusters, this
algorithm has the potential to have better performance than the traditional k-means, hier-
archical methods, and the self learning minimum entropy algorithm in terms of adjusted
Rand index.

We introduce minimum entropy criterion for clustering and modify it for quadratic
entropy in in the next section. In Section V1.2, we estimate the posteriori probabilities
following a nonparametric approach, and then propose an iterative algorithm to minimize
the posteriori quadratic entropy. Section VI.3 compares the results of minimum entropy
algorithm with k-means and hierarchical methods on both simulated and real data. We will

end the chapter with some final comments.

VL1 MINIMUM QUADRATIC ENTROPY CLUSTERING CRITERION

In information theory, entropy is an important measure of information and uncertainty.
Both Shannon entropy and Gini-Simpson entropy measure the amount of disorder in a
system. Recall that

Hs(x) = — Y p(x)logp(x),
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and

As observed in previous chapters, quadratic entropy is a generalized form of Gini-Simpson

entropy and is defined as,
Ho(x) =)} d(x,x)p(x)p(x').
x ¥

The measurements of entropy are functional of the distribution of x and they do not depend
on the actual values of random variable x but only on the probabilities. In fact, Li and
Vitanyi (1997) shows that entropy is the minimum descriptive complexity of a random
variable. In gene expression clustering we hope that each cluster has a Jow entropy so that
data points in the same cluster would look similar. Hence, a straightforward minimum

entropy criterion could be defined as,

iH(x|Ci), (VL1.1)
i=1

where H(x|C;) is the entropy of cluster C;. This conventional minimum entropy clustering
strategy seems a reasonable criterion. However it is actually not adequate for clustering
because it neglects the semantic aspects of data. Data usually contain some hidden mean-
ing, which is suggesting a modular structure in the gene regulation system. In clustering,
the semantic information that we are interested in is the categories of genes. Hence we
naturally assume that in cluster analysis that data are drawn from a mixed source made up
with several components within each it is homogeneously statistically structured.

Li et al. (2004) proposed minimum entropy clustering criterion to reflect the relation-
ship between data points and clusters, which is measured on a posteriori probabilities. For
each cluster C;, a posterior entropy can be defined as H,(C) where C is the random variable
of category taking values in C},(;, ...,C,, and x is one object. For Rao’s quadratic entropy,
this posteriori measure becomes

C (4
Hpx(C) =Y Y dijp(Cilx)p(Cjlx), (VL1.2)
i=1j=1
where A, = (d; jlx) is the distance matrix between clusters given the information of x.
Here we compute posteriori probabilities p(Cj|x),i = 1, ..., ¢ to determine how much infor-
mation has been gained. Hp ,(C) is maximized when p(Ci|x), p(C3|x), ..., p(Cc|x) reach

certain level. In this case, the object x could come from any clusters and we do not know
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which cluster the object x should belong to. On the other hand, Hp ,(C) is minimized to
0 when one of the p(C|x), p(C2|x), ..., p(Cc|x) has value one but all the others are zero.
Thus, Hp »(C) can assess the dependence between objects x and clusters C.

Li et al. (2004) suggested to integrate x on the whole data space to find the clustering

criterion. If using Rao’s quadratic entropy, it becomes,
J= / Hg x(C)p(x)dx. (VL1.3)

The above quantity is actually the entropy of the random variable C given the random
variable x and it measures how uncertain we are of C on the average when we know x.

It is easy to prove that, for either Shannon, Gini-Simpson or quadratic entropy,
H(C|x) <H(C)

with equality if and only if x and C are independent (Li et al., 2004), which says that
knowing the random variable x can reduce the uncertainty in C on the average unless x and
C are independent. In the case of quadratic entropy,
c ¢
Hy(C) = Zl z,ldijP(Ci)P(Cj)a
i=1 j=
where Ac = (d;j) is the distance matrix between clusters without the information of x.
This indicates that the minimum of H(C|x) can be a good clustering criterion. This clus-
tering criterion has been illustrated for Shannon entropy and Havrda-Charvat’s structural
a-entropy in Li et al. (2004). As discussed in Chapter I and II, Rao’s quadratic entropy
allows to specify the distance between clusters and brings in “extra” self-learning infor-
mation to the clustering algorithm, and eventually improves the clustering performance.
Given a data set X = x, ..., X, the minimum quadratic entropy clustering (MQEC) crite-
rion is defined as,
12 £ <

= / Hgx(C)p(x)dx = ;kgi;j_Zldmkp(Cilxk)p(lexk), (VL14)
where Acjy, = (djjj) is the distance matrix between clusters given the information of x;.
Besides bringing in prior information of clusters by specifying Ac|,,, quadratic entropy
has another merit of recursivity. Suppose random variable C has the distribution P =
(p1,P2,.--,Pc)- Let us write Hyp(Clx) as Hg ¢(p1, P2, ---, Pc), then

14! P2 )
p1+p2’ p1+p2
holds for all ¢ > 3 (Kapur, 1994). This recursive property allows us to develop clusters

Ho(p1,p2;,-.-,pc) = Hp c—1(P1, P2, -, Pc) + 8(P1,P2)Hp 2(

when there exhibits a nesting relationship between different clusters.
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VI.2 MINIMUM QUADRATIC ENTROPY CLUSTERING ALGORITHM

By employing Equation (VI.1.4) as the clustering criterion, the clustering algorithm can
be developed at three steps: (1) estimating p(C|x); (2) defining the matrix A¢|,; and (3)
minimizing J = [ Hg (C)p(x)dx.

VI1.2.1 Estimation of Posterior Probabilities

To estimate the posterior probability p(C|x), we could employ some parametric method.
However, the choice of any particular distribution could lead to a very poor representa-
tion of the data if the data have a complex structure. We therefore apply a nonparametric
method for estimating the posterior probability. There are two kinds of nonparametric
techniques, Parzen density estimation and k-nearest neighbor density estimation (Devroye
and Gyotfi, 1985). They are fundamentally similar with some-different statistical proper-
ties. In what follows, we give a brief overview of Parzen density estimate and k-nearest
neighbor density estimate.

Consider estimating the value of a density function at a point x; a small window R(x)
can be set up around x and the probability mass of R(x) can be approximated by p(x) - v,
where v is the volume of R(x). On the other hand, the probability of R(x) can also be
estimated by drawing a large number (say n) of sample p(x), counting the number of
samples falling in R(x), say m and computing as m/n. Equating these two probabilities,
we obtain an estimate of the density function as

p(x) = % (VL2.1)

If we fix the volume v and let m be a function of x, we obtain Parzen density estimate; if

we fix m and let v be a function of x, we have the k-nearest neighbor density estimate.

By Bayes’s rule, we have

p(Ci) = P

We may use n;/n as an estimator of p(C;), where n; is the number of points in cluster C;.

If Parzen density estimate is employed, we have the posterior probability as,

n; , mxiC)
_ n’ nvoo m(xlcl)
PGl = mx)  m(x)

(VI1.2.2)
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Figure 7 is an illustration of Parzen density estimation. For data point x = a, for a small

window R(x) around x = a,

pCili—a) = "e ) 2

and ( |C) 4
. _mx=a 2 _
p(Colx=a) = m(x = a) 12°

Thus the estimate of p(C;|x) is just the ratio between the number of samples from cluster

C; and the number of all samples in the local region R(x). The MQEC becomes

1 & & m(x|C;) m(x|C;)
J=- d; C C; d; . VI2.3
n ; ;]g 1]|kp( llxk)p( Jlxk) n [;112112 ijlk x) m(x) ( )
If k-nearest neighbor estimate is used, we obtain
ni
P(Cyl) = D _ V) (VI24)
! n\r)'zx) v(x|cj)

Similarly, we can get a corresponding MQEC criterion.

V1.2.2 Estimation of Ac,

In this section, we propose methods to calculate distance matrix Acj, = (d; J-|x) so that
MQEC in Equation (V1.1.4) can be estimated. This matrix A should be a measure of
distance between clusters given each data point x. Traditional distance measures such as
Euclidean distance and Manhattan distance can be used to measure the distance between
each data point; and to measure the distance between two clusters C; and C,, we can use

one of the following distances:

e The maximum distance between elements of each cluster (also called complete link-

age clustering):

max{d(x,y) :x € C1,y € G };

e The minimum distance between elements of each cluster (also called single linkage

clustering):

min{d(x,y) : x € C1,y € G };



FIG. 7. An illustration of Parzen density estimation
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o The average distance between elements of each cluster (also called average linkage

clustering):

L Y Y d(x,y);

nin x€Cy ye(y

e The sum of all intra-cluster variance.

In what follows, we use Euclidean distance to measure the distance between data points
and use average linkage to define the distance between clusters. Figure 8 is an illustration

for measuring A in the previous example.

VL.2.3 Minimization of Quadratic Entropy

In this section, we develop a clustering algorithm to optimize the MQEC in Equa-
tion (VI1.2.3) with Parzen density estimation. However it is not suitable for directly
clustering the data because we can minimize Hg(C|x) to O by simply clustering all
data points into one group. Such a solution generally interferes with finding the
practically useful partitions. Hence, instead of directly clustering, we use an itera-
tive algorithm to reduce the entropy of an initial partition given by another cluster-
ing methods (e.g. k-means, hierarchical clustering). This hill-climbing type algorithm
starts with some initial configuration, and a standard rearrangement is applied to the
data set such that the objective function is improved (the MQEC is reduced); the re-
arranged partition then becomes the new configuration and the process is continued un-

til no further improvement can be made. This process is illustrated in Algorithm 1.
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FIG. 8. An illustration of Acy, estimation
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Input: A data set containing n objects, the number of clusters ¢ and an initial
partition given by k-means clustering method.

Output: A set of at most ¢ clusters that locally minimizes the entropy.

repeat

for every objects x in the data set do

if C; containing most of the neighbors of x is different from the current

cluster C; of x then
h— ¥,(Hp,(C) —Hp,(C))
where y are neighbors of x, and x is also regarded as the neighbor of
itself. Hp,,(C) and Hy, ,(C) are the entropy associated with y before and
after assigning x to the cluster C;, respectively.

end

if 2~ <O then
| assign x to the cluster C;

end

end

until no change ;

Algorithm 1: Minimum Quadratic Entropy Clustering Algorithm

Since the total entropy decreases in every step and the quadratic entropy is bounded
by 0, the Algorithm 1 converges after a sufficient number of iterations. In the experiments
of both simulation data and real gene expression data, it was found that the number of
iteration is often very small, usually less than 10.

Note that this algorithm could give a set of fewer than ¢ clusters when a cluster migrate
into another cluster to reduce MQEC during the iterations. This is different from most
other clustering methods, which always return a given number of clusters.

Figure 9 is an illustration of one iteration in the hill-climbing algorithm. For point
x = a, we can estimate the posterior probability with Parzen estimation, estimate the matrix
Acjx» and then we can calculate the entropy measure of H(C1|x = a) and H(C,|x = a).
Repeat this for each data point, we will get the J as in Equation (VI.2.3). As cluster C;
contains most of the neighbors of x = a, which is different from the current cluster C; of x,
then we assign x = a to cluster C, recalculate H(C1]x = a) and H(C|x = a) and also the
value of J' in Equation (VL.2.3). If J < J’, then keep x as in original cluster C; if J' < J,
then assign x to cluster C;. And the same process can be repeated to each data point in the

data set until there is no reduction of J can be found.



FIG. 9. An illustration of MQEC iteration algorithm
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V1.3 EXPERIMENTS AND RESULTS

In this section, we report the results of using minimum quadratic entropy criterion on a
simulated data and two real gene expression data sets. To assess the quality of algorithm,
we compare the clustering results with true class information or gene functional categories
by adjusted Rand index (Hubert and Arabie, 1985; Steinley, 2004) as the measure of agree-
ment.

The adjusted Rand index lies between 0 and 1. When the clustering results perfectly
agree with true clusters, the adjusted Rand index is 1; when the clustering is random, it
has the minimum value of 0. A larger adjusted Rand index means a higher agreement
between new cluster with true clusters. Another advantage is that adjusted Rand index can
be used to measure the agreement even when the number of cluster results D is different

from number of true clusters C (See Appendix B).

VI.3.1 Simulated Data

To illustrate of the new algorithm, we generate data similar to Li et al. (2004). Given

1 03 1 03
means as [0,0] and [2,2], variance-covariance matrices as | 03 1 ] and [ 03 1 1,

a two-dimensional data are simulated to follow Gaussian distribution. Then we compare
the adjusted Rand index between minimum quadratic entropy algorithm and the k-means

clustering method.

TABLE 29. Adjusted Rand index on the simulation data

Cluster Hierarchical k-means MQEC_Gini MQEC_QE

2 0.560538 0.571655 0.712 0.735
3 0.293405 0.408945 0.625 0.674
4 0.267715 0.309896 0.365 0.374
5 0.369879 0.241148 0.425 0.457
6 0.288235 0.208554 0.497 0.516
7 0.245126 0.170305 0.631 0.678
8 0.211185 0.153727 0.597 0.624
9 0.185435 0.139683 0.511 0.589
10 0.166678  0.13313 0.487 0.512
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Table 29 lists the adjusted Rand index achieved by Hierarchical clustering, k-means,
and minimum quadratic entropy algorithm based upon two distance matrices. Both
quadratic entropy algorithm improve the initial partitions given by k-means. When the
specified number of clusters is correct, the minimum quadratic entropy have some im-
provement from the k-means. When the specified number of clusters are not correct,
which is often the case, the minimum quadratic entropy still performs much better than

the k-means and hierarchical clustering methods.

VL3.2 Real Example I: Yeast Galactose Data

We used two gene expression data to test MQEC algorithm. The first data is the yeast
galactose data with 205 genes on 20 experiments from Yeung, Medvedovic, and Bumgar-
ner (2003), whose expression categories correspond to four functional categories in the
Gene Ontology listing. We used the four categories as the external knowledge to test the
clustering methods. Before clustering, we normalized the data for each gene to have mean

0 and and variance 1 across experiments.

TABLE 30. Adjusted Rand index on the yeast galactose data

Cluster Hierarchical k-means MQEC_Gini MQEC_QE

4 0.769948 0.705322 0.938605  0.948752
5 0.867503 0.937955 094702  0.956223
6 0.859209 0.831913 0946917  0.956121
7 0.860414 0.757277 0.937789  0.945148
8 0.855887 0.745214 0.937789  0.945148
9 0.689918 0.673045 0.842092  0.863605
10 0.660022 0.665898 0.842092  0.863605

The experimental results are listed in Table 30. Clearly the minimum entropy algo-
rithm based upon Gini-Simpson entropy performs better than k-means and hierarchical
clustering methods. When the specified number of clusters are far from the true number
of clusters, quadratic entropy criterion is even better than Gini-Simpson entropy. The min-
imum entropy criterion algorithm with quadratic entropy achieves a very high adjusted
Rand index (> 0.9), which indicates that this algorithm can effectively cluster genes into
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the same functional category according the expression levels. This algorithm can produce
a reasonable clustering even when the specified number of clusters is larger than the true
number (i.e. 4 in this case). One possible reason is, when the specified number of clusters
is larger than the correct number, the minimum quadratic entropy algorithm can use the
“extra” clusters to identify outliers and thus improve the quality of the final partition. In

this sense, this algorithm is capable of extracting useful information and detect outliers.

VL3.3 Real Example II: Yeast Cell Cycle Data

The second data set is the yeast cell cycle data set which contains approximately 6000
genes expressions data over two cell cycles. Yeung and Ruzzo (2001) extracted 384 genes
according to the peak time of genes, which were categorized into five phases of cell cycles
by peak times. Again, the data was normalized to have mean 0 and variance 1 across each
cell cycle. We took the five phases as the external knowledge and did the clustering. The

results are listed in Table 31.

TABLE 31. Adjusted Rand index on the yeast cell cycle data

Cluster Hierarchical k-means MQEC_Gini MQEC_QE

5 0.482783 0.493835 0.483573 0.489987
6 0.480931  0.45666 0.470363 0.478038
7 0.478222 0.479874 0.485095 0.491022
8 0.480002 0.358697 0.453583 0.461202
9 0.364068 0.44738 0.466551 0.476355
10 0.343015 0.322426 0.486782  0.490753

For yeast cell cycle data, the MQEC algorithm with Gini-Simpson entropy and
quadratic entropy still work better than k-means and hierarchical clustering methods, es-
pecially when the specified number of clusters is far from the true number of clusters.
Quadratic entropy criterion achieves higher adjusted Rand index than Gini-Simpson en-
tropy. However, all of them achieved low adjusted Rand indexes and quadratic entropy
does not improve the performance significantly. This does not necessarily mean that the
MQEC algorithm performed poorly, but maybe because that the peak time may not be the

best external criterion due to its lack of strong correlation with expression level (functional
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categories). It is used here because no better external information is available about the

subset of genes.

In this chapter we proposed MQEC method in clustering gene expression data by im-
plementing Rao’s quadratic entropy in minimum entropy criterion proposed by Li et al.
(2004). With a nonparametric approach for estimating a posteriori probabilities and a lo-
cally estimated difference matrix, an efficient iterative algorithm is used to minimize the
entropy. The simulated data and two real gene expression data sets show that our new
method performs significantly better than k-means, hierarchical clustering, and also better
than minimum entropy criterton with Gini-Simpson entropy. It is seen that this algorithm
performs very well even when the correct number of clusters is unknown and it is also

capable of effectively identifying outliers.
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APPENDIX A

GEOMETRIC MODEL

Among ecological models for species distribution, the geometric model is one of the most
compatible with the observed dinosaur data. If p; is the proportion of dinosaurs in the ith
family, then the model is

k(1 —kym

pm_l——(—l——W, m=1,...,s (0<k< 1)

Fritsch and Hsu (1999) showed that the sample proportions from the dinosaur data
among the three stratigraphic intervals, upper and lower intervals are very similar to the
geometric probability with k = 0.6. So we generated data from a range of geometric
models (k=0.4, 0.6 and (.8) to assess the accuracy of single biodiversity as well as the

biodiversity difference of two intervals.
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APPENDIX B

ADJUSTED RAND INDEX

Denote the data matrix as X = {x;; }nxm, where N is the number of samples and M is the
number of variables. The N samples coming from C true clusters are partitioned into D
groups. Let t.4 represent the number of subjects that were classified in the d-th cluster that
actually belongs to c-th cluster. Table 32 can be formed to indicate the clustering results.

The adjusted Rand index is to measure the agreement between the new cluster results
N
and true cluster based upon how pairs of subjects are classified in Table 32. Letting ( 5 )

represent the total number of pairs results in four different types of pairs: (a) subjects in
a pair coming from same true cluster are placed into same group; (b) subjects in a pair
coming from same true cluster are placed into different groups; (c) subjects in a pair com-
ing from different true clusters are placed into same groups; (d) subjects in a pair coming
from different true clusters are placed into different groups. This leads to an alternative
representation of the Table 32 as a 2 X 2 contingency table based upon (a), (b), (c) and (d).
The four cells of Table 33 are calculated as,

C D 2
- 2:c=l Zd:l led —N

. 1! , (B.0.1)
C C

b= Yo ’c2+ —chzl Z:dD=1 tczd , (B.0.2)
D 2 C vD 2
1ty Y1 2d—1?

o La-1ta Ec-lid—l ed (B.0.3)

TABLE 32. Data structure for calculating adjusted Rand index

Clusters Results

Group 1 2 .. D Total
True Cluster 1 t1 t2 ... Hp ty
2 1 tz .. bp ty
C ta ta .. top ey

ty1 42 . Lp B4 =N
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TABLE 33. 2 x 2 contingency table representation

Cluster Results
True Cluster Pairs Placed in Pairs Placed in Dif-
Same Group ferent Groups
Pairs Coming from Same Clusters a b
Pairs Coming from Different Clusters ¢ d

C D 2 2 wC 2 D 2
d= Yo Xamatog ¥ N =Y 0, —Yat,
5 )

Hubert and Arabie (1985) defined the adjusted Rand index as:

(B.04)

( IZ Wa+d)—{(a+b)(a+c)+(c+d)(b+d))
ARI = y . (B.0.5)
( ) 2 —[(a+b)a+c)+(c+d)(b+d)]
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APPENDIX C

THE COLLECTION OF SAS PROGRAMS

C.1 SUBROUTINES FOR CALCULATING DISTANCE BASED UPON PROBA-
BILITY

/********************************************************************************

/* The following subroutine calculates the distance based upon probability, */
/* which is estimated from the margin proportions. */
/********************************************************************************
START GETDELTA(MAT);

ROW=NROW(MAT);

COL=NCOL(MAT);

PII=J(ROW, COL, 0);

PI=J(COL,1,0);

LAMDA=J(ROW,1,0);

N_I=MAT*J(COL,1,1);

N_J=J(1,ROW,1)*MAT;

N=SUMMAT);

DELTA=J(COL,COL,0);

DO J=1 TO COL;

DO I=1 TO ROW;

IF N_I[I}]=0 THEN PII[1,J]=0;

ELSE PII[LI,J]=MAT[IJ}/N_I[T];

IF PII[I,J]=. THEN PRINT MAT,;

END;

END;

DO I=1 TO COL;

DO J=1 TO COL;

IF I=J THEN DELTA[],J]=0;

ELSE IF (NJ[I1"=0) & (N_J[J]"=0)

THEN DELTA[LJ]=ABS(LOG(N_J[I])-LOG(N_J[1]))+1;

ELSE IF (N_J[1]=0) & (N_J[J]"=0) THEN DELTA[LJ]I=LOG(N_J[J])+1;
ELSE IF (N_J[I]"=0) & (N_J[J]=0) THEN DELTA[LJ]=LOG(N_J[1])+1;
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ELSE DELTA[LJ]=1;
END;

END;
RETURN(DELTA);
FINISH GETDELTA;

C.2 SUBROUTINE FOR CALCULATING LINEAR COMBINATION OF y? DIS-
TRIBUTIONS

[ wkskkokskskokok sk e ke sk sk ok sk sk sk koo sk e sk o sk ke sk st seskeske s ke sk ke sk e s e e ok s ke stk skeoskoskok skeokokesk sk ok skoksk sk sk ke sk e e ke e eokok

/* The following subroutine calculates the linear combination of */
/*x? distribution.*/
/********************************************************************************

START QF(LB, NC, N, R, SIGMA, C, LIM, ACC) GLOBAL(_LB, NC, N,
R, SIGMA, _C, LIM, _ACC,QF, TRACE, IFAULT,PILLN28,SIGSQ,INTL1,INTL2,
ERSM1,ERSM2,LMAX,LMIN,MEAN,COUNT,NDTSRT,FAIL,TH,COUNT],
COUNT2,COUNT3,ACC1,SD);

LB=J(R,1,0.0);

_LB=LB;

NC=J(R,1,0.0);

NC=NC;

N=I(R,1,0);

N=N;

R=R;

SIGMA=SIGMA;

C=C;

_LIM=LIM;

ACC=ACC;

TRACE=1(7,1,0.0);
IFAULT=0;
QF=-1.0;



PI=3.14159265358979;
LN28=0.0866;
SIGSQ=_SIGMA*_SIGMA;
INTL1=0.0;
INTL2=0.0;
ERSM1=0.0;
ERSM2=0.0;
LMAX=0.0;
LMIN=0.0;
MEAN=0.0;
COUNT=0;
NDTSRT=1;

FAIL=0;

TH=J(R,1,0);

COUNT1=0;
COUNT2=0;
COUNT3=0;
ACC1=_ACC;
SD=S1GSQ;

START LN1 (X, FIRST);
X1=X;

_FIRST=FIRST;

IF ABS(X1) > 0.1 THEN IF FIRST=1 THEN LN1=LOG(1.0+_X1);
ELSE LN1=LOG(1.0+_X1)- X1;
ELSE DO;

Y=X1/(X1+2.0);
TERM=2.0*Y*Y*Y;

K=3.0;

IF _FIRST=1 THEN S=2.0*Y;
ELSE S=-_X1*Y;

Y=Y*Y;

S1=S+TERM/K;
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DO WHILE (S81°=S);
K=K+2.0;
TERM=TERM¥*Y;
S=S1;
S1=S+TERM/K;
END;

LN1=S;

END;

RETURN (LN1);
FINISH LN1;

START ORDER;

/* FIND ORDER OF ABSOLUTE VALUES OF _LB;*/
DO J=1 TO R;

LJ=ABS(_LB[J]);

DOK=J-1TO1BY -1;

IF LJ > ABS(_LB[TH[K]]) THEN TH[K+1]}=TH[K];
ELSE GOTO L.1;

END;

K=0;

L1:TH[K+1]=J;

END;

NDTSRT=0;

FINISH ORDER;

START ERRBD(U,CX) GLOBAL(_LB, NC, N, R, LIM,SIGSQ,COUNT1);

/¥ FIND BOUND ON TAIL PROBABILITY USING MGE. CUTOFF POINT RE-
TURNED TO CX */

_U1l=U;

/* RUN COUNTER;*/

COUNT1=COUNT1+1;

IF COUNT1 > _LIM THEN PRINT *"WARNING:COUNT1 > LIM’;

CONST=_U1*SIGSQ;



96

SUM1=_U1*CONST;

_U1=2.0*_U1;

DOJ=RTO1BY-1;

NJ=_N[J];

LJ=_LB[J];

NCJ=NC[J];

X=_U1*LJ;

Y=1.0-X;
CONST=CONST+HLI*(NCVY+NDH)/Y;
SUMI=SUM I+NCI*(X/Y)y*(X/Y)+NI*(X*X)/Y)+LN1(-X,0));
LN1=LN1(-X,0);

* PRINT "LN1=" LN1;

END;

ERRBD=EXP(-0.5*SUM1);
CX=CONST;

RETURN(ERRBD);

FINISH ERRBD;

START CTFF(ACCX,UPN) GLOBAL(LMAX, L. MIN,MEAN);
/*FIND CTFF SO THAT P(QF > CTFF) < ACCX IF UPN > 0, P(QF < CTFF) < ACCX
OTHERWISE */

ACCX1=ACCX;

U2=UPN;

U1=0.0;

C1=MEAN;

C2=0;

CONST=0;

IF U2 > 0.0 THEN RB=2.0*LMAX;

ELSE RB=2.0*LMIN;

U=U2/(1.0+U2*RB);

ERRBD=ERRBD(U, C2);

DO WHILE (ERRBD > _ACCX1);

U1l=U2;

C1=C2;



U2=2.0*U2;
U=U2/(1.0+U2*RB);
ERRBD=ERRBD(U, C2);
END;
U=(C1-MEAN)/(C2-MEAN);
DO WHILE (U < 0.9);
U=(U1+U2)/2.0;

IF (ERRBD(U/(1.0+U*RB),CONST) > _ACCX1) THEN DO;
Ul=U;

C1=CONST;

END;

ELSE DO;

U2=U;

C2=CONST;

END;
U=(C1-MEAN)/(C2-MEAN);
END;

CTFF=C2;

UPN=U2;

RETURN (CTFF);

FINISH CTFF;

START TRUNCATION(U, TAUSQ)
GLOBAL(_LB, NC, N, R, LIM,PLSIGSQ,COUNT?2);

/* BOUND INTEGRATION ERROR DUE TO TRUNCATION AT U*/
_U2=Uj;

_TAUSQI=TAUSQ;

COUNT2=COUNT2+1;
IF COUNT2 > LIM THEN PRINT *WARNING: COUNT2 > LIM.;

SUM1=0.0;
PROD2=0.0;
PROD3=0.0;



S=0;
SUM2=(SIGSQ+.TAUSQ1)*_U2*_U2;
PROD1=2.0*SUM2;

U2=2.0*_U2;

DO J=1TO R;

LJ=_LB[J];

NCJ=NC[J];

NJ=_NI[J];

X=(_U2*LI)*(_U2*LJ);
SUMI1=SUMI1+NCJ*X/(1.0+X);

IF X > 1.0 THEN DO;
PROD2=PROD2+NJ*LOG(X);
PROD3=PROD3+NJ*LN1(X,1);
S=S+NI;

END;

ELSE PROD1=PRODI1+NJ*LN1(X,1);
END;

SUM1=0.5*SUMI,;
PROD2=PROD1+PROD?2;
PROD3=PROD1+PROD?3;
X=(EXP(-SUM1-0.25*PROD?2))/PI;
Y=(EXP(-SUM1-0.25*PROD3))/PIL;
IF S=0 THEN ERR1=1.0;

ELSE ERR1=X%2.0/S;

IF PROD3 > 1.0 THEN ERR2=2.5*Y;
ELSE ERR2=1.0;

IF ERR2 < ERR1 THEN ERR1=ERR2;
X=0.5*SUM2;

IF X < =Y THEN ERR2=1.0;

ELSE ERR2=Y/X;

IF ERR1 < ERR2 THEN TRUNCATION=ERR]1;

ELSE TRUNCATION=ERR2;
RETURN (TRUNCATION);
FINISH TRUNCATION;
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START FINDU(UTX, ACCX);

/*FIND U SUCH THAT TRUNCATION(U) < ACCX & TRUNCATION(U/1.2) >
ACCX*/

ACCX2=ACCX;

UT=UTX;

U=UT/4.0;

IF TRUNCATION(U,0) > _ACCX2 THEN DO;
TRUN=TRUNCATION(U,0);

U=UT;

TRUN=TRUNCATION(U,0);

DO WHILE (TRUN > _ACCX2);

UT=UT*4.0;

U=UT;

TRUN=TRUNCATION(U,0);

END;

END;

ELSE DO;

uUT=U;

U=0U/4.0;

TRUN=TRUNCATION(U,0);

DO WHILE (TRUN <= _ACCX2);

uT=U;

U=uU/4.0;

TRUN=TRUNCATION(U,0);

END;

END;

U=UT/2.0;

IF TRUNCATION(U,0) <= _ACCX2 THEN UT=U;
U=UT/1.4;

IF TRUNCATION(U,0) <= _ACCX2 THEN UT=U;
U=UT/1.2;
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IF TRUNCATION(U,0) <= _ACCX?2 THEN UT=U;
U=UT/1.1;

IF TRUNCATION(U,0) <= _ACCX2 THEN UT=U;
UTX=UT;

FINISH FINDU;

START INTEGRATE(NTERM, INTERYV, TAUSQ, MAIN)
GLOBAL(_LB, NC, N, R, C, ACC,PLSIGSQ,INTL1,INTL2,ERSM1,ERSM2);
/#*CARRY OUT WITH NTERMS, AT STEPWISE INTERV. IF NOT MAIN THEN MUL-
TIPLY INTEGRAND BY 1.0-EXP(-0.5*TAUSQ*U*U)*/
NTERM=NTERM;

_INTERV=INTERYV;

_TAUSQ2=TAUSQ;

_MAIN=MAIN;

INPI=_INTERV/PI;

DO K=_NTERM TO 0 BY -1;

U=(K+0.5)*_ INTERYV;

SUM1=-2.0*U*_C;

SUM2=ABS(SUM1);

SUM3=-0.5*SIGSQ*U*U;

DO J=RTO1BY-1;

NJ=_N{I];

X=2.0*_ LB[J*U;

*PRINT *X=" X

Y=X*X;

SUM3=SUM3-0.25*NJ*LN1(Y,1);

Y=_NC[J]*X/(1.0+Y);

Z=NJ*ATAN(X)+Y;

SUM1=SUMI1+Z;

SUM2=SUM2+ABS(Z);

SUM3=SUM3-0.5*X*Y;

END;

X=INPI*(EXP(SUM3))/U;

IF ( MAIN=0) THEN X=X*(1.0-EXP(-0.5*_TAUSQ2*U*U));
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SUMI=SIN(0.5*SUM1)*X;
SUM2=0.5*SUM2*X;

IF ABS(SUM1) < _ACC THEN DO;
INTL1=INTL1+SUMI;
ERSM1=ERSM1+SUM2;
END;

ELSE DO;
INTL2=INTL2+SUM]I;
ERSM2=ERSM2+SUM2;
END;

END;

FINISH INTEGRATE;

START CFE(X)

GLOBAL(LB, NC, N, R, LIM,PILLN28,COUNT3,NDTSRT,FAIL,TH);
/* COEF OF TAUSQ IN ERROR WHEN CONVERGENCE FACTOR OF EXP(-
0.5*TAUSQ*U*U) IS USED WHEN DF IS EVALUATED AT X */
X2=X;

COUNT3=COUNT3+1;

IF COUNT3 > _LIM THEN PRINT *WARNING:COUNT3 > LIM’;
IF NDTSRT=1 THEN DO;

CALL ORDER;

END;

AXL=ABS(X2);

IF X2=0.0 THEN SXL=0.0;

ELSE IF X2 > 0.0 THEN SXL=1.0;

ELSE SXL=-1.0;

SUM1=0.0;

DO J=RTO 1BY -1;

T=TH[J];

IF LB[T]*SXL > 0.0 THEN DO;

LI=ABS(_LB[TY));

AXLI1=AXL-LJ*(_N[T]+_NC[TD);

AXL2=LJ/LN28;



IF AXL1 > AXL2 THEN AXL=AXL1I;
ELSE DO;

IF AXL > AXL2 THEN AXI.=AXIL2;
SUMI=(AXL-AXL1)/LJ;

DO K=J-1TO1BY -1;
SUM1=SUMI1+(_N[TH[K]]+_NC[TH[K]);
END;

GOTOL;

END;

END;

END;

L: IF SUM1 > 100.0 THEN DO;

CFE=1.0;

FAIL=1;

END;

ELSE CFE=EXP((LOG(2.0))*(SUM1/4.0))/(PT*AXL*AXL);
RETURN (CFE);

FINISH CFE;

*START QF;

DO J=1TO R;

NJ=_N[J];

LJ=_LB[J];

NCI=NC[J];

IF (NJ < 0) — (NCJ < 0.0) THEN DO;
IFAULT=3;

GOTO EXIT;

END;
SD=SD+LJ*LJ*(2*NJ+4.0*NCJ);
MEAN=MEAN+LJ*(NJ+NClJ);

IF LMAX < LI THEN LMAX=LJ;
ELSE IF LMIN > LJ THEN LMIN=LIJ;
END;

IF SD=0.0 THEN DO;
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IF C > 0.0 THEN QF=1.0;

ELSE QF=0.0;

GOTO EXIT;

END;

IF (LMIN=0.0) & (LMAX=0.0) & (_.SIGMA=0.0) THEN DO;
IFAULT=3;

GOTO EXIT;

END;

SD=SQRT(SD);

IF LMAX < -LMIN THEN ALMX=-LMIN;
ELSE ALMX=LMAX;

UTX=16.0/SD;
UP=4.5/SD;
UN=-UP;

CALL FINDU(UTX, 0.5*ACC1);

IF (_.C"=0.0) & (ALMX > 0.07*SD) THEN DO;
CFE=CFE(_C);

TAUSQ=0.25*ACC1/CFE;

IF FAIL=1 THEN FAIl =0;

ELSE IF TRUNCATION(UTX,TAUSQ) < (0.2*ACC1) THEN DO;

SIGSQ=SIGSQ+TAUSQ;

CALL FINDU(UTX,0.25*ACC1);
PRINT UTX;
TRACE[6]=SQRT(TAUSQ);
END;

END;

TRACE[5]=UTX;
ACC1=0.5*ACCl;

L1: D1=CTFF(ACC1,UP)-_C;
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IF D1 < 0.0 THEN DO;
QF=1.0;

GOTO EXIT;

END;
D2=_C-CTFF(ACC1,UN);,
IF D2 < 0.0 THEN DO;
QF=0.0;

GOTO EXIT;

END;

IF D1 > D2 THEN INTV=2.0*PI/D1;
ELSE INTV=2.0*PI/D2;

NT=INT(UTX/INTV);
NTM=INT(3.0/SQRT(ACC1));

IF NT > NTM*1.5 THEN DO;
INTV1=UTX/NTM;
X=2.0*P/INTV1;

IF X <= ABS(_.C) THEN GOTO L2;

TAUSQ=0.33*ACC1/(1.1*(CFE(_C-X)+CFE(_C+X)));
IF FAIL=1 THEN GOTO L2;

ACC1=0.67*ACCI;

IF NTM > _LIM THEN DO;

IFAULT=1;

GOTO EXIT;

END;

CALL INTEGRATE(NTM,INTV1,TAUSQ,0);
_LIM=_LIM-NTM;

SIGSQ=SIGSQ+TAUSQ;
TRACE[3)=TRACE[3]+1;
TRACE[2]=TRACE[2]+NTM+1;

CALL FINDU(UTX,0.25*ACC1);
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ACC1=0.75*ACCt;
PRINT UTX;
GOTO L1;

END;

L2: TRACE[4]=INTV;

IF NT > _LIM THEN DO;
IFAULT=1;

GOTO EXIT;

END;

CALL INTEGRATE(NT, INTV, 0, 1);
TRACE[3]=TRACEJ[3]+1;
TRACE[2]=TRACE[2]+NT+1;
QF=0.5-INTL1-INTL2;
TRACE[1]=ERSM1+ERSM2;
ERSM1=ERSMI1+ERSM?2;

PRINT ’QF=" QF;
X=ERSM1+_ACC/10.0;

IF X=ERSM1 THEN IFAULT=2;

IF 2#X=2*ERSM1 THEN IFAULT=2;
IF 4*X=4*ERSM1 THEN IFAULT=2;
IF 8*X=8*ERSM1 THEN IFAULT=2;

EXIT: TRACE[7]=COUNT1;

RETURN(QF);
FINISH QF;



106

C.3 SUBROUTINES FOR CALCULATING THE MAXIMUM VALUE OF RAO’S
QUADRATIC ENTROPY

/***************************************************************************/

/* Define the function of divc() to get the Rao’s diversity coefficient.*/
/***************************************************************************/
START DIVC(DF,DIS,SCALE);

IF ANY(DF < 0) THEN DO;

PRINT "NEGATIVE VALUE IN DF”;

STOP;

END;

IF DIS=J(NROW(DF),NROW(DF),0) THEN
DIS=J(NROW(DF),NROW(DF),1)-DIAG(REPEAT(1,NROW(DF)))*SQRT(2);
ELSE DO;

IF NROW(DF)"=NROW(DIS) THEN DO;

PRINT "NON CONVENIENT DF” STOP;

END;

END;

DIV=REPEAT(0,NCOL(DF));

DO I=1 TO NCOL(DF);

IF SUM(DF[,I]) < 1E-16 THEN DIV[L]}=0;

ELSE DIVIL]=(T(DF[I])*(DIS##2)*DF[I1)/2/(SUM(DFLI])**2);
END;

IF SCALE=1 THEN DO;

DIVCMAX=DIVCMAX(DIS);

DIV=DIV/DIVCMAX;

END;

RETURN(DIV);

FINISH DIVC;

/***************************************************************************/
/* Define the function of divcmax() to get the Maximal value of Rag’s*******/
/* diversity coefﬁcient ’**************************************************/
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START DIVCMAX(DIS, EPSILON,COMMENT) GLOBAL(RESULT);
IF EPSILON <= 0 THEN DO;

PRINT “EPSILON MUST BE POSITIVE”;

STOP;

END;

D2=DIS##2/2;

N=NROW(D2);

RESULT=J}(N,4,0);

MATTRIB RESULT COLNAME=(SIM PRO MET NUM);
RELAX=0;

X0=D2[,+}/SUM(D?2);

RESULT],1]=X0;

OBJECTIVEO=T(X0)*D2*X0;

IF COMMENT=1 THEN PRINT "EVOLUTION OF THE OBJECTIVE FUNCTION:";
XK=X0;

DO;

LOOPI1A: DO;

LOOP2A: MAXI_TEMP=T(XK)*D2*XK;

IF COMMENT=1 THEN PRINT MAXI_TEMP;
DELTAF=-2#D2*XK;
SATURE=J(NROW(XK),NCOL(XK),1);

DO I=1 TO NROW(XK);

DO J=1 TO NCOL(XK);

IF (ABS(XKII,J]) < EPSILON) THEN SATURE[1,J}=1;
ELSE SATURE[1J]=0;

END;

END;

IF RELAX"=0 THEN DO;

SATURE[RELAX]=0;

RELAX=0;

END;

YK=-DELTAF;

DO I=1 TO NROW(YK);

DO J=1 TO NCOL(YK);



IF SATURE({I,J]=1 THEN YKJIJ]1=0;

END;

END;

_COUNT=0;

_SUM=0;

DO I=1 TO NROW(YK);

DO J=1 TO NCOL(YK);

IF SATURE|1,J]=0 THEN DO;
_COUNT=_COUNT+1;

SUM=_SUM+YKJLJ];

END;

END;

END;

MEAN=_SUM/_COUNT;

DO I=1 TO NROW(YK);

DO J=1 TO NCOL(YK);

IF SATUREIL,J]=0 THEN YK][LJ]=YK][LJ]- MEAN;
END;

END;

IF MAX(ABS(YK)) < EPSILON THEN GOTO LOOP2B;
ALPHA MAX=1;

_RATIO=1;

DO I=1 TO NROW(YK);

DO J=1 TO NCOL(YK);

IF YK[LJ] < 0 THEN DO;
_RATIO=-XK|[ILJ)VYK]LJ];

IF _RATIO < ALPHA _MAX THEN ALPHA MAX=_RATIO;
END;

END;

END;

ALPHA _OPT=(-T(XK)*D2*YK)/(T(YK)*D2*YK);

IF (ALPHA OPT > ALPHAMAX) | (ALPHAOPT <

ALPHA=ALPHA MAX;
ELSE ALPHA=ALPHA OPT;

0)

108

THEN
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IF(ABS(MAXI_TEMP-T(XK+ALPHA*YK)*D2*(XK+ALPHA*YK)) < EPSILON)

THEN GOTO LOOP2B;
XK=XK+ALPHA*YK;

GOTO LOOP2A;

LOOP2B: END;

IF SUM(SATURE)=0 THEN DO;

IF COMMENT=1 THEN DO;

PRINT "KT1” XK;

END;

END;

IF SUM(SATURE)=0 THEN GOTO LOOPI1B;

VECTD2=D2*XK,
_COUNT_=0;

SUM_=0;

DO I=1 TO NROW(VECTD?2);
DO J=1 TO NCOL(VECTD?2);
IF SATUREJ[LJ}=0 THEN DO;
_COUNT_=_COUNT_+1;
_SUM_=_SUM_+VECTD2{1,J];

END;

END;

END;
_MEAN_=_SUM_/_COUNT;
_COUNT2_=0;

DO I=1 TO NROW(VECTD2);

DO J=1 TO NCOL(VECTD2);

IF SATURE(LJ]=1 THEN DO;
_COUNT2.=_COUNT2_+1;
_MAT_=_MAT_//SATURE(LJ};

END;

END;

END;
U=2#(J(_COUNT2_,1, MEAN_)- MAT.);



IF (MIN(U) > =0) THEN DO;

IF COMMENT=1 THEN DO;

PRINT "KT2” XK;

END;

END;

IF (MIN(U) > =0) THEN GOTO LOOP1B;
ELSE DO;

IF COMMENT=1 THEN DO;

PRINT "RELLAXATION” XK;

END;

DOI=1 TON;

IF SATURE][I}=1 THEN SATU=SATU/I,
END;

DO I=1 TO NROW(U);

DO J=1 TO NCOL(U);

IF UILJ}=MIN(U) THEN _RELAX =_RELAX_//SATUI[LJ];
END;

END;

RELAX=_RELAX][1];

END;

GOTO LOOP1A;

LOOP1B: END;

IF COMMENT=1 THEN PRINT OBJECTIVEO MAXI_TEMP;

RESULT[,4]=XK;

DO I=1 TO NROW(RESULT);

IF RESULT(I,4] < EPSILON THEN RESULT{L,4]=0;
END;

XK=X0/SQRT(SUM(X0#X0));

DO UNTIL MAX(XK-YK) <= EPSILON);
YK=D2*XK;

YK=YK/SQRT(SUM(YK#YK));

IF MAX(XK-YK) > EPSILON THEN XK=YK;
ELSE DO;

PRINT ”STOPS5”;
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END;

END;

X0=YK;

RESULTTY,2]=X0/SUM(X0);
RESULTI,3]=X0#X0;
RESTOT=DIVC(RESULTI,4],DIS,0);
PRINT RESULT RESTOT;
*RETURN(RESTOT);

FINISH DIVCMAX;

C.4 SUBROUTINES FOR CALCULATING DISTANCE IN TWO MULTINO-
MIAL POPULATIONS

/***************************************************************************/

/*The following subroutine calculate the Bhattacharyya Distance. */
/***************************************************************************/
START DISTB(XI1,XJ);

*X1,XJ ARE TWO MULTINOMIAL DISTRIBUTED VECTORS WITH TOTAL NUM-
BER IN THE LAST COLUMN;*/

NCOL=NCOL(XI);

SUM=0;

DO I=1 TO NCOL-1;

SUM=SUM-+(SQRT(XI[I)-SQRTXI[I]))**2;

END;

DISTB=SQRT(SUM);

RETURN(DISTB);

FINISH DISTB;

/***************************************************************************/

/*The following subroutine calculate the Rao’s Quadratic Entropy Distance. */

/***************************************************************************/

START DISTQE(XLXJ,DELTA);
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/*X1,XJ ARE TWO MULTINOMIAL DISTRIBUTED VECTORE WITH TOTAL NUM-
BER IN THE LAST COLUMN;*/

NCOL=NCOL(XI);
P_BAR=(XI[1:NCOL-1]+XJ[1:NCOL-1])/(XIINCOL]+XJ[NCOL]);
SST=P_BAR‘*DELTA*P_BAR;
SSW1=(XI[1:NCOL-11)**DELTA*(XI[1:NCOL-1])/(XI[NCOL]J*XI[NCOL]);
SSW2=(XJ[1:NCOL-1])**DELTA*(XJ[1:NCOL-1])/(XJINCOL]J*XJ[NCOL]);
DISTQE=(SST-SSW1*XI[NCOL}/(XI[NCOL]+XJ[NCOLY))
-SSW2*XJINCOLJ/(XI[NCOLJ+XIJ[NCOL]))/SST;

*PRINT SST SSW1 SSW2 DISTQE;

RETURN(DISTQE);

FINISH DISTQE;

C.5 SUBROUTINES FOR MINIMUM QUADRATIC ENTROPY CLUSTERING
ALGORITHM

/***************************************************************************/

/*The following subroutine calculates the minimum quadratic entropy */
[*clustering criterion. */
/***************************************************************************/
START MEC_QE(MAT,MAT1,DIST,C,V);

MINQE=0;

N=NROW(MAT);

DO I=1 TON;

K=1(1,C,0);

TOTAL=](C,2,0);

DO J=1TON;

IF DIST[1,J] <= V THEN DO;

K[MAT(J,2]]1=K[MAT{J,2]]+1;
TOTAL[MAT{J,2],]=TOTAL[MAT(J,2],]+MAT1{J,1:2];

END;

END;

DELTA=J(C,C,0);



DO II=1 TO C;
DO JJ=1 TOC;

IF [I=JJ THEN DELTA[ILJJ]=0;
ELSE IF K[1I]"=0 & K[JJ]"'=0 THEN
DELTA[ILJJ]=(TOTAL[ILVKI[II]-TOTAL[JJ, VK [JI)*T(TOTALL]/K{II]-

TOTAL[JJVK[IID);

ELSE IF K[1I]=0 & K[JJ]"'=0 THEN
DELTA[ILJJ]=(TOTAL[JJ,VK[JID*T(TOTAL[JI,V/K[J]);
ELSE IF K[1I]"=0 & K[JJ]=0 THEN
DELTA[ILN]=(TOTAL[IL J/K[II])*T(TOTALIIL/K{II]);

ELSE DELTA([ILJJ}=0;
END;

END;
*DELTA=GETDELTA1(K);
NN=K[+];

IF NN"=0 THEN DO;
QE=K/NN*DELTA*K‘/NN;
MINQE=MINQE+QE;
END;

END;

RETURN(MINQE);
FINISH MEC_QE;
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/***************************************************************************/

/*The following subroutine recluster data based on MQEC in hill-climbing */

[*iterations. */

/***************************************************************************/

START RC_QE(MAT,MAT1,DIST,C,V);

TEMPMAT=MAT;
N=NROW(TEMPMAT);
DO I=1 TON;

MINQE1=MEC_QE(TEMPMATMAT1,DIST,C,V);

CL=TEMPMATL,2];
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K=J(1,C,0);

DO J=1 TON;

IF DIST[1J] <=V & (I"=]) THEN K[TEMPMAT(],2]]=K[TEMPMATIJ,2]}+1;
END;

DO CC=1TOC;

IF K[CC]=MAX(K) THEN DO;

TEMPMATI(I,2]=CC;

cC=C;

END;

END;
MINQE2=MEC_QE(TEMPMAT,MAT1,DIST,C,V);

IF MINQE2 > =MINQE1 THEN TEMPMAT(1,2}=CL;
ELSE MINQE1=MINQE2;

END;

RETURN(TEMPMAT);

FINISH RC_QE;

/***************************************************************************/

/*The following subroutine calculates Huber and Arabie */
/*Adjusted Rand Index.*/

/***************************************************************************/

START RAND(MAT,C1,C2);
/*MAT HAS TO BE N*2 MATRIX WITH FIRST COLUMN AS TRUE CLUSTER, AND
SECOND COLUMN AS NEW CLUSTER*/

/*C1 1S THE NUMBER OF TRUE CLUSTERS, C2 IS THE NUMBER OF NEW CLUS-
TERS*/

NEWMAT=J(C1,C2,0);

N=NROW(MAT);

SUMSQII=0;

DO 1=1 TO CI;

DO J=1TO C2;

DO K=1 TO N;
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IF MAT[K, 1]=I & MATIK,2]=J THEN NEWMATILJ]=NEWMAT(LJ]+1;
END;

SUMSQ_J=SUMSQ_IJ+NEWMAT[LJ]*NEWMATI[LJ];

END;

END;

SUMSQ_I=NEWMAT[+,J*T(NEWMATL[+,));
SUMSQJ=T(NEWMATL,+])*NEWMATY,+];

A=(SUMSQ_TJ-N)/2;

B=(SUMSQ_J-SUMSQ_IJ)/2;

C=(SUMSQ_I-SUMSQ_1J)/2;

D=(SUMSQ_IJ+N*N-SUMSQ_I-SUMSQ _J)/2;
ARI=(COMB(N,2)*(A+D)-((A+B)*(A+C)+(C+D)*(B+D)))/((COMB(N,2))**2-
((A+B)*(A+C)+(C+D)*(B+D)));

RETURN(ARI):;

FINISH RAND;



116

VITA

Yueqin Zhao

Department of mathematics and statistics
Old Dominion University

Norfolk, VA 23529

Education
PhD Old Dominion University, Norfolk, VA, USA (May 2010)

Major: Computational and Applied Mathematics (Biostatistics)

MS  Old Dominion University, Norfolk, VA, USA (May 2004)
Major: Computational and Applied Mathematics (Biostatistics)

BS  Shanghai University of Finances & Economics, Shanghai, P.R.China. (July 2000)
Major: Statistics

Experience
Instructor and Biostatistician (Sep 2005—Current)

Eastern Virginia Medical School, Norfolk, VA
Graduate Research Assistant (Jan 2005-Sep 2005)
Eastern Virginia Medical School, Norfolk, VA
Graduate Teaching Assistant (Aug 2001-Dec 2004)
Old Dominion University, Norfolk, VA

Publications
Zhao, Y. and Naik, D. (2010), “Analysis of biodiversity with Rao’s quadratic entropy.”

Under preparation.

Typeset using I5IEX.



	Rao's Quadratic Entropy and Some New Applications
	Recommended Citation

	ProQuest Dissertations

