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ABSTRACT

ESTIMATION OF PARAMETERS IN REPLICATED 
TIME SERIES REGRESSION MODELS

Genming Shi 
Old Dominion University, 2003 

Director: Dr. Narasinga R. Chaganty

The time series regression model was widely studied in the literature by sev­

eral authors. However, statistical analysis of replicated tim e series regression models 

has received little attention. In this thesis, we study the application of quasi-least 

squares, a relatively new method, to estim ate the param eters in replicated time se­

ries models with general ARMA(p, q) correlation structure. We also study several 

established methods for estim ating the param eters in those models, including the 

maximum likelihood, m ethod of moments, and the GEE method. Asymptotic com­

parisons of the methods are made by fixing the number of repeated measurements 

in each series, and letting the number of replications n  go to  infinity. Our theoret­

ical as well as some simulation results show th a t the quasi-least squares estimates 

are undoubtedly better than  the moment estimates, and are good competitors and 

more robust than  the maximum likelihood estimates. Examples are presented to 

illustrate the application of the quasi-least squares m ethod to  analyze real life data 

situations.
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CHAPTER I

1

INTRODUCTION

One of the most useful and widely studied statistical model is the linear 

regression model where the outcomes are serially dependent and follow a time series 

pattern. In this chapter, we formally state  this model, also known as the time series 

regression model, and present a review of the various m ethods of estimation. We 

then discuss a replicated version of the time series regression model and summarize 

the methods for estim ating the parameters.

The organization of this chapter is as follows. In Section 1.1, we give a formal 

definition of the replicated tim e series regression model. In Section 1.2, we briefly 

summarize the traditional estim ating methods: maximum likelihood and the mo­

ment method of estimation. We point out some drawbacks w ith those methods and 

then introduce the quasi-least squares as an alternative m ethod of estimation. In 

Section 1.3, we present an overview of the organization of this thesis. In Section 1.4, 

we give a summary of the notation and basic definition used in this thesis.

1.1 R ep licated  tim e series regression  m odel

A popular model for analyzing repeated measurement d a ta  th a t occurs in real 

life is the replicated tim e series regression model with a stationary  autoregressive 

moving average ARMA(p, q) error term. Indeed, time series analysis is developed

The model for th is thesis is Journal o f the Am erican Statistical Association.
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2

mainly to  study a sequence of observations th a t occur with time. But there are 

situations, especially in longitudinal data analysis, where we have independent se­

quences of repeated observations. Here the number of repeated observations is 

small, whereas the number of independent sequences is large. Therefore, it is only 

natural to  find the limiting distributions as the number of independent sequences 

converges to  infinity, unlike in time series where the limiting distributions of the

estimates are obtained as the length of the series goes to  infinity.

For simplicity, let us first consider a single time series regression model. Sup­

pose th a t {yj}  follows a linear regression model of the form

Vj =  x '/3  +  £j, j  = 1, . . . ,  t, (1.1.1)

where Xj =  {Xjj , . . . .  Xjr Y is a r-dimensional vector of deterministic or stochastic 

covariates, and /3 =  ( A ,  ■ • • ' , -PrY  is the vector of unknown regression param eters 

describing the relationship between yj and x 7-. Following Box et al. (1994), suppose 

yYs are dependent and the error term  { Ej} follows a stationary ARMA (p, q) process 

with mean 0 and unknown variance of, th a t is,

= tfri £ j- i  +  • ■ • +  (j>p£j-p +  a,j — d id j- i — • • • — 8 qa,j__qi (1.1.2)

or in terms of a ^s
OO

£i ~  Y’kflj-k; 
k=0

where {a?} is a white noise process with mean 0 and unknown variance a 2 and ky.’s 

are unknown coefficients.

Let us denote the autoregressive param eters by (f> =  (4>i,. . .  <pP Y , and the 

moving average param eters by 0  =  ((91 ; . . .  , 6 q Y  and denote both  set of param eters 

by A =  {4>, Q'Y. A is unknown and satisfies certain condition so th a t { Ej} is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

stationary and invertible. Multiplying both sides of (1.1.2) by £j^k and taking 

expectation, we see th a t the k th lag autocovariance function qy =  Cov(ej,£j+k) of 

{ £j} satisfies the difference equation

Ik = <f>llk~l +  • • • +  fip'lk-p +  7ea(k) -  d a £a{k -  1) --------- 6 qlea{k ~  q)

= 4>llk-l +  ' ’ ' +  ^plk-p  ~  ^{dktpO +  dk+l4’l +  ' • ' +  dqi’q-k) (1.1.3)

with the convention th a t 0O — —1. Here f̂ea(k) is the cross covariance function

between e and a and is defined by yea(fc) =  E (sj-h %); which is ip~k if k < 0 and 0 

otherwise, E denotes the expected value. Equation (1.1.3) implies

Ik — 4>llk-l +  4>2 lk - 2  +  • • ■ +  <f>plk-p ; k > q + 1,

To =  (bill +  • ■ • +  0p7p +  (y2{l — dilpi — ■ • • — dqljjq) , (1.1.4)

where y0 =  of is the variance of { t j }  and (1.1.4) has to  be solved along with 

the p equations (1.1.3) to  obtain 70, 71, . . . ,  yp. Suppose pk =  77/70 is the k th 

autocorrelation function of { s 7-} . Then

Pk = 4>lPk-l +  <p2 pk—2 +  • • ■ +  4>ppk-p, k > q  + 1, (1.1.5)

Pk — (plpk-l +  4>2Pk-2 +  • • • +  (ppPh-p ~

<?2 {Qk̂ 0  +  &k+lVh +  • • • +  dqtpq-k) 0  < k <
<7x71 3------- 1 0p7p +  <72(1 -  6*1 ip i----------6 q'ipq) ’ “

Now suppose we have n  independent sequences of data. Given a sample of 

U (>  2p) observations, let y t =  (yn, yi2, . . . ,  y u j '  be a U x 1 response vector for 

replication i = 1 , 2 , . . .  , n  and y  =  (ya, . . . , y n) contains all observations. The error 

vector £i =  (tj!; • ■ • has mean 0 and covariance I l f  A, a 2), and hence y* has

mean X j(3 and covariance

r , ( A ,a 2) =  of P j (A) =  cr2Vj(A), (1.1.6)
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4

where 1A(A, a 2) is the t,;-climensional covariance m atrix with the k th diagonal ele­

ments Pj(A) is the L-dimensional autocorrelation m atrix w ith the k th diag­

onal elements pk- i  and V*(A) =  a 2 Pj(A)/cr2. The stationary condition implies 

th a t Ti, P.; and Vi are positive definite. Define the £* x r  covariates m atrix as 

Xj =  (x^x,.. -, XjtJ', and assume th a t X* is of full rank r  and satisfies the Grenander 

conditions (see, e.g., Anderson 1971, P. 572). The model (1.1.1) may be expressed 

in m atrix notation as

Yi = Xi/3 +  £i, i — 1, . . . ,  n. (1-1.7)

1.2 R eview  o f literature and research m otivation

An im portant problem in the replicated time series regression model is the 

estimation of the (r +  p + q +  1) param eters (/3, A, a 2) in the model (1.1.7). If we 

trea t the  model as a regression model w ithout any distributional assumptions, we 

can use generalized estimating equation (GEE) approach. On the other hand, if 

we trea t the model as a time series model, we could use Box-Jenkins unconditional 

least squares and Bayesian approaches (Box et al. (1994)). B ut the traditional 

and popular techniques have been the moment (MOM) and the maximum likeli­

hood (ML) estim ating methods. Recently, Cheang and Reinsel (2000) discussed 

restricted maximum likelihood (REML) m ethod for the model w ith AR.(p) errors. 

This research mainly focuses on deriving MOM and ML estim ating methods and 

making relative efficiency comparisons w ith respect to  those methods.

If the vector of autoregressive and moving average param eters A is known, V  

can be computed from A. Given V, the  efficient estimates of regression param eters 

can be computed using generalized least squares (GLS). T hat is, we minimize the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



adjusted sum of square errors

n

SIP, A) =  X U 'V . r 'e ,
i - 1

= E ( y i - x , / 3 ) ' v - ‘( y , - X i/3)
i = l

n

=  E [y;vr'y, - 2/3'X'VrVi + /TXJVr'X ]̂ (1.2.8)
i = l

with respect to (3. It can also be w ritten as

S (A  A) =  i >  ( v p U i )  , (1.2.9)
i = l

where ‘t r ’ means the trace, and

U m  = e ^ ^ - X ^ X y . - X ^ ) ' .

On taking the partial derivative of S{(3, A) in (1.2.8) with respect, to  f3, we obtain

o n  n / n  \

■̂ 3 =  ~ 2 E  x r w V ,  +  2 ( y  X ' v p x , )  3,

which gives

A =  E X 'V - 'X .  . E X 'V r V ,- ,  (1.2.10)
\i=l /  i=l

where g stands for generalized least squares estimate and

C o v 0 ) = a 2 ^ E X ' V r 1̂  . (1.2.11)

An unbiased estim ate of a 2 is

1
^  =  S S (/3.A) =  5  E t r ( V : - > U . ) .  (1.2.12)

where t = XXu U/n- It is well known th a t the estimates of (3 and a are optimal 

in many ways. Hence, in this thesis, we will focus on the estim ation of A.
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M om ent estim ating m ethod

The simplest m ethod to  estim ate A is the moment estim ating method. Given 

the “residuals” e* =  — Xj/3 from the regression model (1.1.7), we obtain the

moment estimate of A by setting E(eye)) =  £ii[ and solving the equations, this 

is equivalent to setting F* =  since Fj =  Cov(£j) =  E(er*£') — E(£j)E(£j)' =  

E (SiS'ft). There are (C — k) estim ates for the k th lag autocovariance 7 for the 

ith replication, we estim ate those by averaging them, hence 7 is estimated by 

Cfco/(? — A:), where

n. t i —k

CkQ = ~  12  £H (?+*)> k = 0, l , . . . , p  (1.2.13)
n  1=1 j = l

and ‘h a t’ indicates evaluating based on the residuals. Some authors have used ck0/ t  

as the estimate for 7y instead, this two estimates are close to each other when tfts 

are large. The kth autocorrelation pk may thus be estim ated as the km sample 

autocorrelation 77 =  t ckoj ( ( t  — k) coo). A more general definition of cki may be 

found in Section 4.1. For autoregressive error model, the param eter A reduces to 

(ft, the moment estim ate of (ft is the same as the Yule- Walker estimate and we 

will discuss the details in Section 4.1; for moving average error model and mixed 

autoregressive-moving average error model, the moment estim ate of A s are a little 

difficult (Box et al. (1994) C hap.6, p .221, quadratically convergent process), and 

we will discuss it in Section 4.2 only for MA(1) case. The moment estimates of (3 

and a 2 are same as the GLS estim ates (1.2.10) and (1.2.12). Since (3g depends on A 

and Xg depends on the “residuals” eft's, which require the estim ate of (3, we need to 

solve for {j3m, Xm) recursively by combining (1.2.10) w ith the estim ating equation 

of A and then obtain a 2m using (1.2.12) plugging in {(3m, X m), where rn stands for 

m om ent estimates. One iterative m ethod is the Newton-Raphson m ethod (Ralston 

and Wilf 1967, Carnahan et al. 1969), see Appendix I for a detailed discussion on
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the method.

M axim um  likelihood estim ating m eth od

Another im portant and frequently used m ethod is the maximum likelihood. 

We will derive the maximum likelihood estimates (MLEs) from the likelihood func­

tion and the ML equations. The solutions of the equations are not always in a 

closed form, therefore we solve the equations only for simple cases, e.g. AR(1) and 

AR(2) error models, and use Newton-Raphson m ethod solving the ML equations for 

AR(p) error model, although an approximate maximum likelihood estimates were 

suggested by Box et al. (1994, p.300). We will show these are no improvement 

over the moment estim ates in term s of efficiency. For more complicated models, e.g. 

MA(1) error model, Newton-Raphson method is again used to obtain the MLEs.

Assuming th a t the  error term  £j is normal. The likelihood function of y  is

L((3, A, a*) = ---------   j =  e x p ------------------------— -------------------- ,
n ^ y ^ i w j  \  2 (7  )

hence, the log-likelihood function is

r t f  r ) f  1 ^ _ 1

l ( /3,X,a2) = log(2?r) -  —  log(<x2) -  - ^ l o g | V 2| -  —  S( f 3 , \ ) ,  (1-2.14)

where S((3, A) is as defined in (1.2.8). We will see th a t (Vjj is independent of 

for the AR(p) error model. In a single time series analysis (only one replication), 

(1.2.14) is dominated by the  term  involving S((3, A) for m oderate or large t, we can 

ignore the term  involving |Vjj and hence obtain the unconditional least squares 

estimates, which is also the first step quasi-least squares estim ates as shown next. 

Furthermore, if we estim ate some initial values for aj, j  <  0, we may obtain the 

conditional least squares estim ates (Box et al. (1994), p.226-227). B ut in our
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case, ti s may be small and n  is involved in both terms, we cannot ignore the term 

involving |Vj| when n  is large.

Taking the partial derivative of (1.2.14) with respect to  a 2 and (3 we obtain 

81 1 dS((3, A)
d(3

dl 
d a 2

2a 2 d(3
1

a c
£x 'vyy.:+ Wxjvpx, ta

U=1 W=1
n t S{(3, A) 

2cr2 2(74

\ i = 1

These yield
(  n \  n

(1.2.15)

(1.2.16)

Note th a t they have the same expressions as the GLS estimates shown in (1.2.10)

/  n  \  ~ 1 n

P = ( E xrv?lx*) E x 'v / ’b
1 n1

CT = 5 soj,A) = s E ‘'(vr,u.).
1 =  1

and (1.2.12), respectively. Now taking the partial derivative of (1.2.14) with respect 

to  A we get
-  _ I  y - d l°g lv *l 1 dS(/3,  A) 

dX  2 —̂  dX  2 a 2 dX

Thus, the ML equation of A is

a E
1= 1

<31og |Vj| 
dX + E tr

'dV. - i

t=i dX
U,; =  0. (1.2.17)

Let d Y j  1 j d X  be the  m atrix  of partial derivatives w ith respect to  A*,. Equation 

(1.2.17) can also be w ritten as

\  ” /  f W ~ l \
(1.2.18)

dX

We write in this form only for the purpose of comparison with quasi-least squares 

method. Here we used the identities:

W  =  1V. | . t r ^ V 7 g
dX dX
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After plugging in the estim ate of a 2 in (1.2.16), equation (1.2.17) becomes

i  • t  tr (v r1 u,) + n t . t  tr U,) = 0 . (1.2.19)

Note th a t the solution of (1.2.19) usually is not in a closed form. The ML estimates 

(/3/, Ai), where I stands for maximum likelihood estimate, are the simultaneous so­

lutions of the equations (1.2.15) and (1.2.19) subject to  the set of feasible values of 

A, which ensures the stationary and invertibility of the process { } . Finally, the

ML estim ate of a 2 is obtained by (1.2.16) plugging in Ai).

M otivation

We have seen th a t there are several m ethods of estimating the param eters 

in replicated time series regression model. However, each m ethod has some limi­

tations. The moment m ethod estim ate is not very efficient, while the ML m ethod 

needs the normality assumption of the data. Also, the MLEs are hard to obtain 

numerically and may be highly biased even for moderately large samples. GEE 

approach is mainly developed for general correlated regression model and has its 

own drawbacks. It will be shown in Section 4.1.2 th a t the GEE methods may 

be reduced to  either moment or the maximum likelihood m ethod in some cases. 

Restricted ML estim ating m ethod is a modification of the regular ML estim ating 

method and is even more complicated than  the ML method. The Box-Jenkins ap­

proach is normally used when we have only one series consisting a large collection 

of repeated measurements. Bayesian m ethod requires a prior and is not very pop­

ular in time series da ta  analysis. Therefore, we introduce another m ethod called 

quasi-least squares estim ating (QLS) method.
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The QLS method was introduced by Chaganty (1997) to the analysis of longi­

tudinal data, and then developed and generalized by Shults and Chaganty (1998), 

Chaganty and Shults (1998) and Chaganty (2003) to  the analysis of serially cor­

related data  and growth curve models. It turns out to be a good com petitor to 

maximum likelihood estimating m ethod in the sense th a t the estim ate is easy to  ob­

tain  and has efficiency close to MLE. The QLS m ethod does a great job especially 

when the errors are equicorrelated or follow a first order autoregressive process 

(Chaganty (2003)). More generally, when the errors follow an AR(p) process, QLS 

m ethod leads to  a closed form unlike the ML method. Furthermore, we can verify 

tha t, given the means and variances of the errors, the optimal unbiased estim at­

ing equation in the sense of Godambe (1960) for A is (1.2.17) or (1.2.18) without 

making any distributional assumptions, see Chaganty and Naik (2002). But the 

solution of this equation may not always exist in the feasible region, th is leads to 

the  QLS method, which modifies the equation to obtain a feasible solution.

Quasi-least squares estim ating m ethod

The quasi-least squares estim ating m ethod is a two step process w ith regard­

ing to  the estim ation of (3 and A. It does not require any assumptions concerning 

the distribution of the data, therefore, it can also be used even if yds are not nor­

mal. Technically, first, we set the first term  of equation (1.2.18) to  be 0 and get 

a first stage estim ate of A; second, setting the second term  of (1.2.18) to  be 0, we 

solve this equation by plugging in the first stage estimate. This gives a way to  find 

a solution of (1.2.18), which always exists in the feasible region.

The first step of the QLS m ethod consists of minimizing the objective function 

S(f3, A) with respect to  (3 and A. This first step is also known as the unconditional
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least squares (ULS). Equating to  0 the  partial derivative of (1.2.8) with respect to 

A, we get

£ t r ( l » ~ U i )  = 0 . (1.2.20)

Suppose Xu is the solution of (1.2.20), where u  stands for unconditional least squares 

estimate. Since (1.2.20) is not an unbiased estimating equation, th a t is, the ex­

pected value of the left hand side of the equation is not zero, we need to modify Xu 

to be unbiased. This leads to the second step of the QLS method.

The second stage of QLS m ethod consists of solving the equation

^ ( ^ • V , ) = 0  (1.2.21)

to  get a consistent estim ate of A. Equating to  zero the partial derivative of (1.2.8) 

with respect to  (3, we obtain (1.2.10). Given an estim ate of (3, we obtain an estimate 

A from (1.2.21), and then modify the estim ate of j3 as

( n \  n

y x ' v y w x ,  . y x ' v r ' f A j y , .  (1.2.22)

i = l  /  i = 1

This procedure has to  be done recursively until (/3, A) converge to  (j3q, Xq), where 

q stands for quasi-least squares estimate. Finally, a consistent estim ate of cr2 based 

on the residuals =  y, — is given by

d  =  h  =  h  £ * r (V '~I(T ) U , )  , (1.2-23)

where U* =  e ^ J n .  If we solve (1.2.10) and (1.2.20) recursively we can obtain the 

ULS estimates of (j3, A), and the estim ate of a 2 is then given by (1.2.12) plugging 

in the estimates of (f3, A).

As a summary, the three m ethods, i.e. MOM, ML and QLS, have the same 

expressions for the estimations of j3 and a 2. The main difference lies in how they
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estim ate A. Note th a t the three estim ates of /3 will have the same efficiency asymp­

totically as n  —> oo.

1.3 O verview  o f  th esis

This thesis consists of five chapters. Chapter I is the introduction. Here, 

we introduced the general replicated tim e series regression model. The model is 

described in a general setting including the notations. Several estim ating methods 

regarding to the unknown param eters in the model are presented. Again, these 

m ethods are introduced in a general way without giving precise details. The com­

mon feature of the methods is th a t they share the same functional form for the 

estim ates of (3 and a 2, which are the generalized least squares estimates. The main 

difference between the m ethods is how they estimate A (<j> and 0). The advantage 

of quasi-least squares estim ating m ethod is th a t no assumptions about the distri­

bution of the data  are required. In the last section of this chapter, the notation and 

basic definition used in this thesis are listed. They may serve as an index for quick 

reference to  the notations and definitions if the reader prefers to  read a separate 

chapter or a section w ithout going through the whole thesis.

In Chapter II, we study the application of the estim ating m ethods to  the 

model with AR(1) errors, which is the most im portant model for many practical 

situations. The methods are described in detail for th is particular model. The 

asymptotic properties are illustrated by theorems. The simulation results are pre­

sented in several tables and figures. We apply the estim ating m ethods when the 

da ta  has a normal, Student t-d istribution and Beta distribution, respectively. For 

normally distributed data, we compare the methods by finding the  asymptotic dis­

tributions; when the data  has a Student t-distribution or a B eta distribution, we
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compare the methods by simulation. The asymptotic properties and the simulation 

results reveal th a t the quasi-least squares estim ating m ethod is better than  the mo­

ment estim ating method, and it is a good competitor to  the maximum likelihood 

estim ating method. It is better than  the ML m ethod when the data has a Beta 

distribution. Finally, a real d a ta  analysis is presented to  illustrate the estimating 

methods.

In Chapter III, the application of the estim ating m ethods to the model with 

AR(2) errors is studied. As in Chapter I, the methods are described in detail for this 

model, and we compare them  by simulation, since explicit derivation of the asymp­

totic distributions is difficult in this case. The feasible region of the parameters is 

a little more complicated. Special care is needed when calculating the numerical 

value of the estimates, since they are much easier to  go out of the boundary. A real 

data  analysis is also presented to  illustrate the estim ating methods.

Chapter IV is the generalization of the results in the previous chapters. Here, 

we study the model w ith autoregressive of order p, AR (p) and moving average 

of order one, MA (1) errors. W hen the error is an AR(p) process, the feasible 

region of the param eters is complicated and difficult to  illustrate geometrically. 

The asymptotic distributions are also extremely complicated. The exact MLEs 

are hard to obtain and only approximations are available. W hen the model has 

a MA (1) errors, a t first sight it appears to be easy, bu t actually it is very much 

involved because the inverse of the correlation m atrix  is not in a simple form. 

There are problems with convergence and appropriate approximations are needed 

when obtaining the numerical values. Our final goal is to  generalize the estim ating 

methods to the model w ith an ARMA {p, q) error, we will give a brief discussion of 

these im portant research topics in Chapter V.

Chapter V gives details of future directions for further research. This includes
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generalization of the estimations methods to ARMA (p , q) model, and the model 

with different autoregressive-moving average param eters for each groups.

Finally, the Appendices contain the discussion of Newton-Raphson method 

and a SAS program example used in this thesis.

1.4 N ota tio n  and basic defin ition

Throughout, this thesis, matrices are represented by upper case bold letters, 

vectors by lower case bold letters. Greek lower case letters are used for parameters 

and Greek boldfaced lower case letters are used for a collection of parameters. The 

following notation and definitions are used throughout the thesis.

1. We assume th a t the series data { t j j }  is dependent and follows a linear regres- . 

sion model of the form

Vj = x'jP + Sj, j  =  1, t,

where t  > 2 p  is the number of observations and x ?- =  (X ji, . . . ,  x tr ) '  is a co- 

variates vector. The unknown regression param eter vector (3 =  (/? i,. . .  ,(3r)' 

describes the relationship between yj and x^. Suppose there were n  repli­

cations, but the response within replications are uncorrelated. For the i th 

replication, writing the responses as a single vector y ,, the model in m atrix  

notation is

y,; =  X i j3 + £l , i =  1, . . . ,  n.

The unknown regression param eter vector (3 is the same for all the replica­

tions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

2. For the ith replication, y* =  (yn, • ■ ■, VitiY is the U x 1 response vector 

and £i = (e,;i,. . . ,  £iti)! is the error vector. The U x r  covariates m atrix

is assumed to  be of full rank r  and assumed to  satisfy the 

Grenander conditions (see, e.g., Anderson (1971, p.572)).

3. AR(1) denotes an autoregressive process of degree 1. Similarly AR(2) denotes 

an autoregressive process of degree 2. More generally, AR(p) denotes an 

autoregressive process of degree p. Now MA(1) is an acronym for a moving 

average process of degree 1 and MA(g) for a moving average process of degree 

q. Finally, ARMA(p, q) stands for an autoregressive and moving average 

process of degrees p  and q.

4. For any replication, the error series { £j}  is assumed to  be a stationary process 

following an ARMA (p, q) (here p  or q, bu t not both, could be 0) model with 

mean 0 and variance of, th a t is,

£j = (pi£j~i A • • • +  (ppZj-p +  aj OiCij^i — • • • — 8qa,j-q, 

where {aj}  is a white noise process w ith mean 0 and variance a 2. Define

5. Denote the autoregressive param eters by cj> = (4>\, ■ ■ ■ ,<f>py ,  the moving av­

erage param eters by 9 = (9 i,. . .  ,9q)' and A = (4>', &’)' ■ We assume th a t A 

satisfies appropriate conditions so th a t { £ j}  is stationary and invertible.

6. The k th lag autocovariance function of { £?-} is =  Cov(eJ-, £j+k) and the kth 

lag autocorrelation function is pk =  "fk/lo, where 70 =  a 2 is the variance of the 

series { £j} . The t x t autocovariance m atrix  F  made at t  successive times 

is a Toeplitz m atrix  from (70, 7i, • • •, 7t~i) w ith the kth diagonal elements 

jk - i-  The t  x t m atrix P(A) is the autocorrelation m atrix  Toeplitzed from 

(1, p i , . . . ,  p t-\)  with the k th diagonal elements pk~i- Also define the t  x t
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m atrix  V  =  (a 2£/ a 2) P . The matrices F , P  and V  with the subscript p means 

the dimension is p instead of t. The stationarity  conditions imply th a t F ,P  

and V  are positive definite. The sample autocorrelation m atrix is represented 

by the  t x t  m atrix R . The p-dimensional autocorrelation vector is defined 

as p  = (p i,p 2 , ■ ■ ■, pPY and the sample autocorrelation vector is defined as 

r  =  ( r1; r 2, . . .  , r p)'. The lower triangular t  x t  m atrix L is the Cholesky 

decomposition of V -1 . Define A(<p) =  1 — <f>'p =  1 — <j>\P\ — <p2 P2 ----- • — (fipPp-

7. The error eq has mean 0 and covariance R  =  cr2P* =  a 2Y i,  th a t is,

E (e ;) =  0, Cov(sj) =  Pj, for i =  1 , . . . ,  n, 

where ‘E ’ is the expected value and ‘Cov’ denotes the covariance.

8. Define

I Jt (f3) =  £ie ,i = (y i - X i/3)(yi - X i (3Y 

t ] t =  U i i P ) ,  i  =

9. The error sum of square errors is denoted by

S((3, A) =  y > 'V - V ,
i— 1 

n

=  E t f i v r ' u , ) .
i = l

10. In order to obtain MLE, we need to  assume th a t the error eq is normal. The 

likelihood function of y  =  (y1; . . . ,  y n) is

r , 2N 1 (  (y* -  (y,: -  X j/3)^L{(3, A, a  ) = ---------   t =  e x p ------------------------— --------------------  ,
(27ra2)ir n?=1 ^f\V~\ \  2<r- )

where t =  J2i=i U /n. Hence, the log-likelihood function is

T) f  n ' t  1 - n  _ 1
l(/3- A, cr2) = -  —  log(27r) -  —  log(cr2) -  -  E M ^ I  -  2^2

i=1
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The information m atrix  based on y  is I n(/3, <fi, a 2). For other methods, we do 

not need to make any assumptions about the distribution.

11. W hen the autocovariance m atrix  F  =  a 2 V , the estimates of the autoregres­

sive and moving average param eters are denoted by the ‘h a t’ symbol and this 

is default symbol for all estimates; If F  =  o fP , the estimates are denoted 

by the ‘tilde’ symbol. In this thesis, we only discuss the case when writ­

ing r  =  cr2V , except for the AR(1) case. The subscript of the estimates g 

stands for generalized least squares estimate, I stands for maximum likelihood 

estimate, m  stands for m om ent estimate, q stands for quasi-least squares es­

timate, u stands for unconditonal least squares estimate, and al stands for 

approximate maximum likelihood estimate. The asym ptotic variance of the 

estimates are denoted by v  w ith corresponding subscripts.

12. ML is the abbreviation for m aximum likelihood, AML is the abbreviation for 

approximate maximum likelihood, MOM is the abbreviation for moment, and 

QLS is the abbreviation for quasi-least squares. GLS is the abbreviation for 

generalized least squares and ULS is the abbreviation for unconditional least 

squares. MLE is the abbreviation for maximum likelihood estimate. GEE is 

the  abbreviation for generalized estimating equations.

13. Define the L x L m atrix C iki such th a t =  C iki and, for k > I, 2 C lki 

has (ti — k — I) one’s on the (k — l)th diagonals above and below the main 

diagonal, excluding the first and last I elements on these diagonals, and zero’s 

elsewhere, k = 1 , . . .  ,p, I =  0 .1 , . . .  ,p. The m atrix C ikk has (L — 2k) one’s 

on the main diagonal, excluding the first and last k elements, k — 0, 1, . . .  ,p. 

Note th a t C i0o is simply the  ti x t.t identity m atrix (also denoted by I*). The 

m atrix C kQ with the superscript p means the dimension is p.
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14. The p x 1 vector ek is a unit vector with one in the k th position and zero’s 

elsewhere, k = t , . . .  ,p  — 1. The identity m atrix of order ti is denoted by I,;. 

The diagonal m atrix D  has (1, 2 , . . .  ,p) on the main diagonal and 0 elsewhere.

15. Define

n T= i
j n  t j —k

^ ^ ^ 0,1,. . . , /?,  / 0, 1, . . . ,p,
71 i=Z 1 j=l + l

c h  =  c k i / ( t  — k  —  I ) ,  fc =  0,1, . . .  ,p,  ̂ =  0 , 1 , . . . , p.

Note th a t ckl = cik, c*kl =  c*lk. Further define c0 =  (ci0, c2o, • • ■, Cpo)' and 

Cq =  (cl0, c^o, . . . ,  c*0);. C  is the p x p m atrix with the (A;, l)th element cki and 

C* is the p x p m atrix with the (k, l)th element c*kl. We add a hat (‘ ~ ’) to 

these symbols to  indicate evaluating at {3.

16, ‘E ’ denotes expected value, ‘t r ’ is an abbreviation for trace, ‘Var' means vari­

ance, and £Cov’ means covariance. The operator ‘vec’ forms a vector by 

stacking the columns of one m atrix, and (g> denotes the  Kronecker product. 

The symbol —̂  stands for converging in distribution.

17. The partial derivation of a scalar function l((3, <fi, cr2) is a p x 1 vector

dl((3, 4 >, a 2) / dl((3, 0 , a 2) dl({3, p , a 2) V
d p  \

where p i , . . .  ,p p are the components of the vector p .

18. The second partial derivation of a scalar function l(f3, p , a 2) is a p x r  m atrix

(  d2l d2l \

d 2 l((3, p , a 2)
dpd(3'

dpjdP i d<p\d(3r

d2l d 2l
\  dppdPi d 4>pdfir )  

where p i , . . . ,  pp and j3 i,. . .  ,(dr are the components of the vector p> and (3.
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APPLICATION OF THE ESTIMATING METHODS TO 

THE MODEL WITH AR(1) ERRORS

In this chapter, we study in detail various methods of estimation and their 

asymptotic properties for the first order autoregressive tim e series regression model. 

In Section 2.1, we present the model with AR(1) and discuss the moment and 

maximum likelihood m ethods for estimating the param eters in Section 2.2. The 

quasi-least squares estim ating m ethod is presented in Section 2.3. Asymptotic 

properties with explicit expressions of all three estim ating methods are obtained 

in Section 2.4, assuming the number of replications go to  infinity. Section 2.5 

summaries the results for a special case when all U =  f. Comparisons are made by 

examining the asymptotic relative efficiencies through simulation in Section 2.6. We 

contrast the different methods of estimation using a dental study data  in Section 2.7.

2.1 M odel

Suppose th a t the data  come from a first order autoregressive (AR(1)) process. 

The maximum likelihood approach for this model was discussed by Hasza (1980) 

for a single replication. The model is given by (1.1.7) and while (1.1.2) reduces to

£j — d>£j—\ T  clj ■ (2.1.1)

The process satisfies the invertible condition automatically, bu t the stationary con­

dition requires th a t \q>\ < 1. Using (1.1.5), the autocorrelation function satisfies the
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first order difference equation

P k  t p P k —I; k  1,

which, w ith po = 1 , has the solution

Pk = 4>k.,k >  0. (2.1.2)

On dividing throughout (1.1.4) by 70 =  a 2 and replace px with 0, the variance cr 

can be w ritten as

y  =  P-i-3)

Thus, the error eq has mean 0 and covariance

10(0, a 2) = a 2P ,(0) =  cr2V j(d) (2.1.4)

where 10(0 , a 2) is the U x tx covariance matrix, P i (0 ) is the t x x tx correlation -ma­

trix  with the k th diagonal element equal to  0 fc~1 and

v i W ) = l T ^ i p i W -  (2.i.5)

Note th a t Vj(0) is a function of 0 only. The inverse of V*(0) is given by

V 0 X(0) =  Qoo -  20C ilo +  0 2Q U , (2.1.6)

where C^oo is simply the tj-dimensional identity m atrix, 2  C iXQ is a f  x ti tridiagonal

m atrix with 0’s on the main diagonal and Ts on the upper and lower diagonals,

and G in is the identity m atrix  with the first and last elements zero. We can write 

V ~ l ((f)) — LjL', where L* is the Cholesky decomposition of V 0 1 (0), and L, is

lower triangular with first diagonal element equals to  \ / l  — (jr, remaining diagonal 

elements equal to  1, elements in the first off diagonal is —0 , and 0 elsewhere, th a t 

is
0 ••• 0

- 0  1 • • •  0

0 ••• - 0  1 J^xti
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2 1

The adjusted sum of square errors S(/3, A) shown in (1.2.9) becomes

s ( t3 A )  =  E t n w ' u . )
i=i

where

n ■ (cqo — 2 (/)Ciq +  02Cn), (2.1.7)

=  ; n „ t t ( D . )  =

cio = iSt.tK Cn.U ,) = £ EE, Efct
o-n = i E",i trfCaiUi) = J E"., E'E1 -2

A more general definition of Cki s is in Section 4.1.

3=
ti
<j= 2 c ij*

2.2 M om ent and m axim um  likelihood estim ates

Recall th a t the GLS estimates of (3 and a 2 as in (1.2.10) and (1.2.12) are 

given by

K  =  ( E x ' v r ' x A  - y x ' v r V i .  (2.2.8)
\ i = l  J  i = 1

a g = ■= (coo — 2CJO0 +  Cn02), (2.2.9)

where t =  )C”=1 tj/n . Given the “residuals” e* =  y* — X*/3> by setting F  =  eye) the 

variance of y i3 is estim ated by coo/7, and the first order autocovariance is estim ated 

by c10/ ( t  — 1). Thus the moment estim ate of p\ =  cf) is

i  = n =  . % < - - (2.2-10)
(£ — l)C oo

Hence, the moment estimates {J3m. <pm) are the simultaneous solutions of (2.2.8) 

and (2.2.10) and b 2m is obtained by (2.2.9) plugging in (f3m,(j)m). Note th a t some 

authors have used the following moment estim ate

?' _  1 £ i j £ i ( j  +  l ) / { U  ~  1 )
— V n sr̂ U ~2 U, ' (Z.A.Ll)

2-/i=1 Z^j=l H
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The exact expressions of MLEs are difficult to obtain, but not impossible in this 

case. Assuming the error eps are normal, the likelihood function of y  is given by

m  * ' a ) = p I  ^ --------------------)  •

The log-likelihood function is given by

l{(3, (p, <7 2) = - j  log(27r) -  y  log(u2) -  ^  £  log I Vi I -  (2.2.12)
i = 1

where S({3,4>) is defined in (2.1.7). Equating to  zero the partial derivative of the 

equation above with respect to  (3 and a 2 we obtain (2.2.8) and (2.2.9), respectively. 

The determ inant of Vj is given by

1
I ̂  i =  |L , r 2 =

i -

which yields,

From (2.1.6) we obtain

Slog jVi| 26
d4>

d v ; l (6 ) =  2 (C iU(j> — C i10). (2.2.13)
8 6

Thus the partial derivative of the log-likelihood function (2.2.12) with respect to 8  

is

This gives the ML equation of tp as

ci i0 3 ~~ c1 0 6 2 — (on  +  o" " ) 8  +  cio =  0. (2.2.15)

If a 2 is known, it has been shown by Haiza(1980) th a t (2.2.15) has exactly one root 

in the interval (-1, 1) and can be obtained in a closed form; if a 2 is unknown, we 

substitute in (2.2.15) the estim ate of a 2 given in (2.2.9) and obtain

(t — l )c n 0 3 — (t — 2)cio02 ~~ (ten  +  Cqo)6  +  teio =  0. (2.2.16)
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We can similarly show that there exists a unique closed solution in (—1,1)

2.3 Q uasi-least squares estim ates

We now derive the quasi-least squares estimating method. Equating to zero 

the partial derivative of 5(/3, <p) with respect to (3 we get (2.2.8). The estimate 

of 4> is obtained in two steps as follows. Equating to zero the partial derivative of 

S(/3, <fi) with respect to  </> and noting (1.2.20), we get

(2.2.17)

where

7T 1 /__o. \
a  =  — +  - a r c c o s ( a  b) ,

3 3

a =  y  (t -  2)2cf0 +  3(t -  l)c00cn +  3t( t  -  l ) 4 i , 

b =  -  cio 2(£ — 2)3Cj0 +  9(t — l) ( t  — 2)conCn

- 9 £ ( £ - l ) ( 2 £ - l ) Cy .

Thus, the ML estimates {(3l, <pi) are the simultaneous solutions of (2.2.8) and

(2.2.17) and of is then obtained plugging in (f3h 4>i) in (2.2.9).

Using the result of (2.2.13) we have

2 (c u 4> — Cio) — 0.

This gives the first step estim ate, which is also the ULS estim ate as
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In step 2, we modify 0U to  be consistent. Here we solve the equation

f >  l ^ * 1 v.) = r ^ f : [ t r { C . 11P , ) ^ - t e ( C „ „ P , )

o  n

=  t z Tp 5Z [(** “  ^  i =  0
1 V  i = l

and the solution is

Thus the QLS estimates of (/3, <p) are the simultaneous solutions of (2.2.8) and

(2.3.18), and the estim ate of aq is obtained plugging <f>q in (2.2.9). We can see tha t 

the QLS estim ate of <f> will always be less than  the ULS estim ate and it will always 

be greater than  the moment estim ate <pm, provided th a t all U’s are equal and the 

estim ates of (3 are the same.

2.4 A sym p totic  properties

In time series analysis, we usually consider the asym ptotic properties when 

the number of observations U goes to infinity whereas here we consider it by fixing 

ti and letting the number of replications n  goes to infinity. For convenience, we first 

derive the asymptotic property of the MLEs by finding the information matrix.

The asym ptotic properties o f MLEs

We have the following results regarding to the first and second derivatives of the 

log-likelihood (2.2.12) with respect to  (/3, 6 , a 2)

|  -  i g x ' v r ‘ ( y . - x i/3,.

dl ncf) n  ,
:(Cn<P ~  cio),d(j) 1 — 02 a 2
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dl n t n , n , 2
+  X 7  ( c o o  — 2 0  C l0 +  0  C n ) ,

<9cr2 2<j 2 2 cr4
£32/ 1 n

5/3 cr fr{
d2l n{ 1 +  0 2) Cn
d<f>2 (1 — 02)2 O'2 ’

5 2/ r?i n , „ , 2
 ^ (coo — 20 Cio +  0  cu ),

<9(a2)2 2er4 <t6

a g *  =

a| 0  =  - 2 t W ( y . - W ) ,

d 2i
d a 2d(p cr4

- j  ( c n 0  — Cio)-

Since

E(c00) =

E(cio) =  

E (cn) =

and using the formulas above we get

ta
1 —  02 
it  — 1 )(J20 

1 — 0 2 
(f -  2)er2 

1 - 0 2 ’

e ( § )  =

/  52/ \  n£
U ( a 2)2 j  ”  2a4’

E f e )  =  - ( T ^ ^  +  P - W - * ’ )].

E & )  -  o.

E { m )  = ° '
d2l \  ncp

E
d(j)da2 J (1 — 0 2)cr2

Thus the information m atrix is given by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

l n ( f3 ,< f ,a 2) =

E"=1 x ^ x . ,  Q/

n  [202 + ( i -  1)(1 -  0 2)]
0

0

O'
710

(1 -  02)2 
710

(1 — 02)cr2

(1 — 0 2)c72 
rrt

2 M
(2.4.19)

Note th a t the determ inant of the right bottom  part B  of I n(/3, 0. a 2) is

n 2t [202 +  (f — 1)(1 — 0 2)] n 20 2
IBI

2a4 (1 — 0 2)2 cr4(l — 02)"
n 2(t — 1) [202 +  t ( l  — 0 2)]

2cr4(l — 02)2 

By finding the inverse of B, we get

i ; 1 =  -  s , ,n

where X/ =  diagfyi, S 2i), ^  ] and

t ’l  =  (7

"  1 . 1

V-21 =

-̂’31 =

'̂ 232 =

f( l -  0 2)2 \ 2

(t -  1)[202 +  t ( l  -  0 2)]
2 cr4 [2 0 2 +  (£ — 1 ) (1  — 0 2)] 

( t  -  1 ) [ 2 0 2 +  t ( l  -  0 2 )] 

2<r20 ( l  -  0 2)

(t — 1)[202 +  i ( l  — 0 2)] ’

Thus, we have the following theorem,

(2.4.20)

(2.4.21)

(2.4.22)

(2.4.23)

T h e o re m  2.1 Consider the model (1.1.7). Assum e that t% < t < oo fo r  all 

i =  l , . . . , n ,  and the errors e*’s are independent and normally distributed with 

mean zero and covariance cr2V,; for i = 1 , . . .  ,ri. Let £ =  ((3, 0, a 2)', and — 

(/3Z, 0;, o f f  be the M L estimates o f £. We have

N  f o ,  I0 1) , as n   ̂ oo,

where —̂  means converging in distribution and I n x is given by (2 .4 -2 0 ).
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It is clear from Theorem 2.1 th a t the ML estim ate of j3 is uncorrelated with 

4>i and df , but <f>i and of are negatively correlated.

Now we study the asymptotic properties of the moment and QLS estimates. 

Since e^s  are independent, under simple conditions we can show th a t {3m and 

/3g are consistent and asymptotically efficient as n  —> oo. Further, <j>q and <pm 

are consistent estimates of <fi (see Theorem 2.2 and Remark 2.2). However, the 

asymptotic distributions of <f>m and tpq depend on the higher order moments of the 

errors e fs .  For comparison purpose, we assume normality for £ ,’s. First we state 

Lemma 2.1 which is a simple extension of the result in Joe (1997, p. 301) and can 

be proved by Taylor’s theorem. We will need this to establish Theorem 2.2.

L e m m a  2.1 Let zj be independent random vectors o f dimensions ti, 1 <  i <  n. 

Assume that t t < t fo r all i: Let .£ be a parameter o f fixed dimension, and the 

multivariate functions  Lj(z,, ■£) be such that

I„(£) may not necessarily be the information matrix. Suppose £ is the solution of 

the unbiased estimating equation

n

(2.4.24)

Define M n(£) =  ^ E(Li Cov ( h ^ ,  £)) and I n(C) =  - f E f =1 E (d h t ( 0 / d £ ) .  Here

0  =  0.
2 = 1

(2.4.25)

Then, under usual regularity conditions we have

as n  —> oo. (2.4.26)
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T h e o re m  2.2 Consider the model (1.1.7). Assume that U < t < oo fo r all 

i =  1 and the errors e, ’s are independent and normally distributed with

mean zero and covariance matrix <r2V j fo r  i =  1 , . . . ,  n. Lei £ =  (/3, 0)', and 

=  (/3?, 09); and =  (/3m, 6e the m om ent and the QLS estimates o f £ 

respectively. Then we have

k i  ^  , as n - >  oo, i =  m, g,

w/iere S i ,  =  diag(t>i. r 2i), * =  m ,q, V\ is defined in (2 .4 -2 1 ) and

v2m =  [i2( i - 1) - i ( 3i 2 - 5 t  +  6)^2 +  ( t —l)(3t2 - 4 i  +  4)^4

. 9 z! n
(2.4.27)-*(i -  l )( i  -  2 )<j>6 + (t - ( t -  l ) f 2f  -  £  <t>2ti

n i=i

(t -  I )2 ( i - 2 ) 2 ( l~<p2)2
(f -  1)(/; -  2)2 -  t (t -  2)(3t - 7 )  (P:2

4 n 1
+ t  (t -  i)(3 i -  8) <j)A ~ t ( t -  1 )(t -  2) + <P2U . (2.4.28)

n i=i

P ro o f: Let P *(</>) and C^o, C jn  are as defined in (2.1.4) and (2.1.6), we have the 

following identities:

tr(P j)  =  th

tr(C jn  P i) = ^  — 2,

tr(Cjio P i) =  (ti -  l ) f ,

t in  =  (1 -  4>2)2 t r ( P i P t) =  L( 1 -  ©4) - 2 f 2 (1 -  <p2ti),

t l i 2 =  (1 -  f 2 ) 2 t r ( P i C m  P ?) =  2f  [(L -  1) -  L (f2 +  <f)2ti},

=  (1 -  «>2)2 t r ( P Q n  P,.) =  L(1 - f 4) -  2 ( 1 -  <p2tQ,

v l2 2 = (1 -  (p2 ) 2 tr (C ll0 P , C ll0 P i )  =  I  [(U -  1)(1 -  5 # ' +  0 6)

+(3f, -  7)<f>2 +  4024*],

fx23 -  (1 -  d>2)2 tr(C,;n P , C il0 P i)  =  2 l(ti -  2)0 -  (ti -  1 )03 +  4>2t'~ l) ,

va 3  =  (1 -  f 2 ) 2 t r ( Q „  P , C ,u  P ,)  =  (ti -  2) (1 -  04) -  2 02(1 -  0 2t- 4).
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Now let us set up the notation needed in Lemma 2.1. Let z* =  e, =  y* — Xj /3, note 

th a t E (z*) =  0 and Cov(Zi) = a 2 V j(0). Let £ =  (/3, 0)' and

hi(€) =
x ' v - ^ k

z 'Ai ( 0)  z*

where the m atrix A j(0) is a function of d> such th a t the estim ate £ is the solution 

of (2.4.25). We have

which gives

This yields

E

dht(£)
d g

' dhj(€)

, a v - 1
- X 'V ^ X . ,  X

* o<p
f)A .

—2X'AjZj z' z,.
dp

-X J V ^ X *

O' u 2tr  ( ^  V,-'
dp

U € )  -

2 —1 <7 ty

0

O'

172(1 -  <h2) n j?x \ d p  

where vx is defined in (2.4.21). The covariance of A(£) is given by

^ X 'V ^ X ;  X 'V ” 1 E (zjz 'A i Zj
E/(ziz 'A jZ i)V L1Xj Var(z(A,z,)Co v ()m{£)) =

Under the assumption th a t z^s are normally distributed we have

E(z.jz'A.jZj) =  0

V ar(z 'A ?:Zj) =
2(7

(1  — d>2) 2
tr (A jP j)2

Hence

M „ ( 0  =
a 4 v ^ 0'

0
2u4 1

(1 — p 2)2 n- J X A i P * ) 5
i=l

(2.4,29)

(2.4.30)

Now we just need to show th a t (2.4.24) is satisfied and find I n 1M nI n 1 for different 

choice of Ai (p)  . Clearly, E (x 'V j“1zi) =  0.
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a) For moment estimates, select A *(0) =  fQio — {t — 1)0 Cioo- We have

_2 nE E K 'A ^ )  =  E t r ( A , P a
i = l ?;=i

1 — 02
f E t r ( Q i o P i )  -  ( t -  1)0 E t r (C *ooP*) =  0 .
. i= 1 i=l

Thus equation (2.4.24) is satisfied. Since <9A,(0)/00 =  — (t — l)Ciooj which implies 

th a t tr  [(<9Ai/c?0)Pj] =  —(t — 1)0, (2.4.29) becomes

In(€)
(i2u r 1 o'

o
<j2t( t - 1) 

l  -  02
(2.4.31)

Further, we have

tr (A jP j)2 =  t tr (C iloP iC iioP i) -  2t ( i  -  l)0 tr (C iloP ,;P l) +  (t -  l ) 202tr ( P lP i),

which yields,

i: E t r (A *p 0 2 =  - 1 )n i—1
Substituting the expression above in (2.4.30) we get

(T4U1 1 O'

M^ )  = n
( i - 0 2)2

Combining with (2.4.31) we get I “ 1M nI “ 1 =  E lm.

b) For QLS estimates, select A 0 0 ) = (t — 2) C iW — (t — 1)0 Q n .  We have

2 n

V 2 r.
(2.4.32)

E  E(z'AjZi) =
a

E t r ( A , P ,
i = l i= 1

(f -  2) E  tr (C ll0P i) -  (i  -  1)0 E  ^ ( Q n P , )
2 = 1 2 = 1

which implies th a t (2.4.24) is satisfied. Since dAi/d(j> =  —(t — QC-ai, we get 

tr  {(dAJdcj)) P 4] =  — (t -  1)(L -  2), and (2.4.29) reduces to

In(£)
< r V

0

O'
a 2it  — 1)(£ — 2)

( T ^ )
(2.4.33)
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Further we have

tr(A jP j) =  (t -  I f f 2 t r ( Q „ P 7;Q n P ,)  -  2 f ( t  -  l ) ( t  -  2 )tr(C ,11P JQ 1oPl)

+(t  — 2)2tr(C iioP  jCjxoPj),

which yields,
1 n 1
- £ t r (A *P *)2 =  -  (t -  1 )2(t -  2 f v 2q.
n  i=i z

Substituting the expression above in (2.4.30) we get

O'
(T4 . _

0
M„(C) =

a 4v 1 1

(t -  1 Y ( t  ~  2 f v 2q
(2.4.34)

(1 -  f 2 ) 2

Combining with (2.4.33) we get =  X 1?. This complete the proof. <3

R e m a rk  2.1 I f  we use (2.2.11) as the m om ent estimate o f f ,  then the asymptotic 

variance of <J>m is given by

(1 -  f 2)2
1
n

1

S  (** - !)
4>2 y ,  (6 -  5ti +  3ff)
n i=i

, 0 4 ^  (3t2 — 4ti +  4) ^  (t* -  2)
+  T T Z . 127+ TI ~  2 ^n i— 1 t 2 {U -  1) 7 1 “  t i { t i  -  1) 71 “  t j

2 U+2 4 n

n §  (*i -  I ) 2.

As we can see from Theorem 2.2, the moment and QLS estimates of (3 are 

uncorrelated with both  the estimates of d> and a 2. However, the estimates of <f and 

a 2 are correlated. The following Theorem 2.3 gives the asym ptotic covariance of 

the estimates of (<p, a 2). In order to prove Theorem 2.3, we will need the following 

Lemma 2.2.

L em m a  2.2 Consider the model (1.1.7). Assume that ti < t < oo. and the errors 

S i ’s are independent and normally distributed with mean zero and covariance u 2Vj.
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L et  c.joo ■— tr(CiooUj), Cjio — tr(CjioUj), c-m tr(CjnUj), Cj (c?do> Nun Qii) 

f o r  i =  1 , . . . ,  n  and  c =  Yh=\ &i/n , where l'' ’ indicates evaluating at som e estim ate  

o f  (3. T hen  we have

c N  ( n c, — S c j , as  n —* oo, (2.4.35)

where f i c — (0 (/ 1)/;  ̂ 2) , S c — (1—<̂>2)4 { ^ i j} with Vji Vjj and

Vn -  t < l - ^ ) - 2 ^ + 2d t ± 4 , 2‘-,
n  r-fZ = 1

’̂12 — 20
1

(! -  1) -  t0 2 +  -  $3 l2U
n i—l

v 13 =  (t -  2) -  f 04 +  - J 2  >

v22 =  1)(1 -  5 /4 +  06) +  i(3 t  -  7)02 +  ^2t‘>
2 i n  i=1

2̂3 — 2 (t — 2)0 — (t — .l.)03 4— 1
  Ti=l

3̂3 — {t — 2)(i  — 0^) — 20s +  — y : /2ij—2
n ,=l

Proof: Since that £?: ~  0/(0, cr2Vj), we have

N  ( n ic, S ic) ,  as  n  ->■ 00 , /o r  « =  1,

where /xic =  j ^ i U ,  (U -  1)0, U -  2)' and £ ic =  ^ 2<x 7 P ® P

a symmetric matrix such that, v iU , Vn2, v m ,  ^ 22, ^ 23> ^33 are the identities defined 

in the proof of Theorem 2.2. From the central limit theorem, we have

1
c -2L> N  {^ ic, — S ĉ  , as  n  —>• 00 ,

where /xc = ]y"=i n ic/ n  and S c =  X/Li ^ W n - Note that XT=i 0 2ti/'n  < 02t, thus 

S c is bounded. The proof of the lemma is completed by simplifying | i c and E c. 

<1
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T h e o re m  2.3 Consider the model (1.1.7). Assume that ti < t < oo fo r  all 

i = 1, . . .  ,n . and the errors e *’s are independent and normally distributed with mean 

zero and covariance u 2V j  fo r i =  1 , . . . .  n. Let £  =  ((f), a 2 ) ' , and =  ( f m, a f f ) '  

and =  (d>q, a 2)’ be the moment and the quasi-least squares estimates o f £ respec­

tively. Then we have

N  ($ , ~  E 2i) , as n  —> oo, i = m , q,

where =  

(2.4.28), and

V 2 i  V-23i 

V23 i v 3i
, % =  rn, q, v2m and v2q are defined in (2-4-27) and

V3rn 

v 3q 

t ’23 i

4 o 4 <p2 2 a 4
~o------------- t?2m 4----=— ■f ( l ~  ( f A f  t  '

4a4 if)2 2 cr4

1,25 + x
2 a 2 6  

t (  1 — (f>2)

( 1 - 02)4

(2.4.36)

(2.4.37)

P ro o f: We first consider the moment estim ate. Since is a function of c in

Lemma 2.2, we can apply delta theorem and then use (2.4.35) to  prove it. Obviously, 

em(Mc) =  e  w e  just need to  find the  asym ptotic covariance. From (2.2.9) and 

(2.2.10) we get

WlO i
d tn
dc'

which yields

( ( t - l ) c g 0  ̂  ̂ ( t - l ) c o o

1 2ci0<^m 2 c i i 4>2m  2 (f)m  ( C\\( f)

\  t Coo c00 C-10

0 \

A
i  }

d,9m(P'C)
dc1

(  0(1 -  0 2) 1 -
ta 2 (t — 1 )a 2 

1 2 <f2 2 (f) if) 2

' t -  1 t I
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Thus X 2m =  ^d.£m({ic)/ dc'\ X c jd£m(/zc)/d c  and by simplifying it, we complete 

the proof for the moment estimate. Next we consider the QLS estimate. Again, 

is a function of c also. And as before, we can apply delta theorem and then 

use (2.4.35) to  establish the result. Obviously, i q(fic) =  $ and we need to find the 

asym ptotic covariance. From (2.2.9) and (2.3.18) we get

dfi (  n ? ~ 2 (* ~  2)Oo \
-  1 ( i - i ) a „  ( i -  i n ,dc

which yields

4g(Mc)*q\r~cJ  _

dc'

l / t  —2 d>q/{ t  -  1) 2) J

(  ft i  -  <P2 ^ ( i  -  4>2)
( f t -  1)(72 (t -  2)a2 

\  l / t  - 2 <pq/ ( t - l )  (f>2J( t -  2)

Thus X 2g =  [d£q(fjtc)/dc' \  E c [ d |?(/x e)/<icj and after some simplification, we get 

the result for the QLS estimate. This completes the proof of the theorem. <

R e m a rk  2.2 In  proving Theorems 2.2 and 2.3, the normality assumption is used 

only to derive explicitly the asymptotic variances of the estimates o f (d>m , off) and 

(4>q, of).  The assumption is not needed to establish consistency o f these estimates 

nor to show that the estimates (3m and j3q are asymptotically efficient.

Combining Theorems 2.1, 2.2 and 2.3 we have the following general theorem.

T h e o re m  2.4 Consider the model (1.1.7). Assume that U < t < oo fo r  all 

i =  1 and the errors £ i ’s are independent and normally distributed with

mean zero and covariance o 2V i fo r  i =  1 , . . .  ,n . Let £ =  (/3,<f, o'2)1, and =  

(/3m) 4>m, off)'  and =  0  ,<fq, of ) '  be the moment, ML and QLS estimates o f £
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respectively. Then we have

i i  N  , as n  —> oo, i — ,

where E* =  diag(t;1, S 2i), * =  m, /, g, rq , X 2m and X 2g are defined in (2 -4 -2 1 ) and 

Theorem 2.3, and E; 2s defined in (2.4-20).

R e m a rk  2 .3 .As we can see from  Theorem 2.4, the covariance between the esti­

mates o f <f> and a 2 in all cases is

Cov( f a , a 2 ) =  . 2 ( 7 ..f- Var( fa ), fo r  i =  m , I, q. (2.4.38)
t {  I — qr)

2.5 A  special case

Now, let us consider a special case by assuming th a t the da ta  is balanced,

th a t is ti = t  for all i. We drop the subscript i and write V , C  and c. Since t f s  are

all equal, U j’s have the same dimension. Let

— 1 n 
u  =  -  y u , .

n  £ i

We can check th a t _
coo =  t r ( U ) , _
Cio — tr (C 1oU), 
c-u — t r ( Cu U) .

The large sample property of the maximum likelihood estim ate fa, was originally 

established by Fujikoshi et al. (1990). The following theorem summaries the results 

regarding the asymptotical properties of the moment, ML and QLS estimates.

T h e o re m  2.5 Consider the model (1.1.7). Assume that U = t fo r  all i — 1 , . . . ,  n, 

and the errors e ,-’s are independent and normally distributed with mean zero and
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covariance <j2V  for any i. Let £ — (/3, <p, a 2)', and =  (/3i7 0*, a 2) ', i =  m, l,q, be 

the moment, ML and QLS estimates o f £ respectively. A ll three estimates of (/3, o 2) 

have the same expression

p  = E x :v _ , W)x . ' E E ^ ' W y . ,
v<i=i i=1

a

but

0 m
tCio

(1 -  l ) c o o ’

[(t -  2)c10 -  2a cos(a)]

0g

3(0 — l)c n  
t ~  2  2 (t — 2)cxo
t  -  1 ™ (1 -  l)c n  ’

where a and a  are as defined in (2.2.17). Also.

£• —̂  N  (%, — H i ) . as n —> oo, i — m , I, q,
\  n

where Sj =  diag(ua, S 2l) with £ 2j = ^2i ^23i
^23i «3i

, i = m , I, q, and

- i

'Uj = o

^2 m

n E x; v(3) xf
i=i

1
t2(t — 1) — i(3 t2 — 51 +  6)02

l 2 ( l - l ) 2 ( l - 0 2) 2

+(1 -  1)(312 -  41 +  4)04 -  1(1 -  1)(1 -  2)06 +  402t (f -  (1 -  1)02) ‘

4cr40 2 2ct4
^3m TE71----- E v9 W2m H----E"i2(i  -  p2y  1

t ( 1 - 0 2)2
'̂ 22 : 1 — 1 2(f)2 +  1(1 — 0 2)

2cr4 [202 +  (1 — 1)(1 — 0 2)]
(1 -  1) [202 -f t{ 1 -  02)]

1 [( ( -  1)(i -  2)2 -  t [t -  2)(St -  7 )7
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+t{t -  l){3 t -  8)<j>4 -  t{t -  1 )(t -  2)<56 +  402tl

i -  1
4<j 402 2cr4

^  =  t2(1 _  ^ 2  +  —

2 a 2 (l) . ,
^23? 777 / 9 \ 2̂?;  ̂ ^5 7̂ 9*£ ( l - 0 2)

Proof: The proof follows from Theorem 2.4, setting tj =  t. The asymptotic

distribution of £, is found by (2.4.20) with the replacement of V) by V , t b y t  and 

the asymptotic distribution of d^J and (0g, d 2) are obtained from (2.4.27) 

and (2.4.28). respectively, replacing t by t. Since e* has a multivariate normal 

distribution with mean 0 and covariance a 2 V , we have

vec(IJ) N  ( u 2vec(V), ^  V  ® V j  , as n -+ oo, (2.5.39)

where the operator vec(-) creates a column vector by stacking the .columns of a 

m atrix below one another. Define c =  (co0, Cio, .'Cu)'. From (2.5.39/ and delta 

theorem we get

c —7  TV ^/xc , £  , as n  —> oo, (2.5.40)

where means evaluating at /3, juc =  (F ( t —1)0, t — 2 )' and X c =  Ft /}

is a symmetric m atrix such th a t Vki’s are the identities w ithout the subscript % as 

defined in the proof of Theorem 2.2 with the replacement of t* by t. The proof of 

moment and quasi-least squares cases just follow the proof in Theorem 2.3. <3

In the next section, we will show th a t the QLS estim ates are more efficient 

than the moment estimates, and good com petitors to  the ML estimates. Moreover, 

the QLS estimates are more efficient than  the ML estim ates when there is a slight 

departure from norm ality of the data.
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A nother form of estim ates

Depending on how you write the covariance m atrix F, the three estim ating 

methods can be derived in two forms by choosing different parameters to  estimate. 

One way is to write F  =  a 2 which is the way we derived above, and hence

case. The estimates of {3 have the same efficiency no m atter which form and m ethod

the same expression for all three methods in either form. Thus, we will concentrate 

on comparing the efficiencies of the estimates of 4>. The ML estimates of <f> are the 

same no m atter which form you choose because of the  invariance property of the 

MLE. The moment estim ate of 4> is less efficient than  the QLS estimate. Thus we 

only need, to compare the QLS estimates in the two forms and the ML estimate. 

According to Chaganty (2003), the QLS estim ate of <fi in the second form may be 

w ritten as

Note th a t <j)q seems to  be a combination of <pm and <f>u in the first form, if we 

approximate 4>m by c10/c 0o. It was also showm th a t

obtain the estimates of (/3, <f>, a 2)] another way is to write F =  P(<f>) and hence

obtain the estimates of (/3, tfi, of). We will discuss the second form only for AR(1)

you choose; while the estimates of a 2 and a 2 are different in two forms, bu t have

2 <pu 2c10
(2.5.41)

1  +  4>1 Coo +  C l l  ’

where

1
V 2 q ) ,  CIS 71 — > OO

n

where

■52,  =  ~ r r j -2 m  -  A2) -  (1 ~ (2.5.42)
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One thing to  note th a t is the first form estim ate <f>q may not be feasible for some 

data. This means the estimate of 0 may lie outside the boundary. For instance, 

assuming th a t the error { £j} has a normal distribution, if we choose n  =  1 and £1 — 

—1.3, £2 =  0.1, £3 =  0.2 and e4 =  1, then (f>q =  1.2 >  1. While one may show tha t 

the second form estimate <pq will always lie inside the boundary (Chaganty 1997, 

p.51, Appendix A). B ut these are extreme cases occurring with small probability.

2.6 A sym p totic  relative efficiency

We can compare the moment, AIL and QLS estimates by finding the asymp­

totic relative efficiencies (AREs). Assuming th a t the error {y,}  are normally dis­

tributed, we can obtain the AREs by taking the ratio of the asym ptotic variances 

sincemlLestimates are consistent. As we can see, the AREs of the estim ates of 0  are 

symmetric about 0 =  0 and always equal to  1 when 0 =  0. Theorem 2.4 shows th a t 

three estimates of j3 have the same efficiency asymptotically, and the asymptotic 

properties of the estimates of a 2 are similar to  the asymptotic properties of the 

estimates of 0  since the estimates of a 2 have the same expression. Thus, we will 

concentrate on comparing the estim ates of 0. The AREs of the moment and QLS 

estimates of 0 with respect to the ML estim ate are defined as e(0m; 00  =  v2i / v2m 

and e(0g; 00  =  V2i /v 2q, where v2m, v21, and v2q are defined in (2.4.27), (2.4.22) and

(2.4.28), respectively. For convenience, we assume 0  =  t. Table 2.1 contains the 

AREs of 0m and <j)q vs 0/ when 7 =  5, 10 and 30. The numbers in the parentheses 

are the AREs of <pq vs 4>i-

Figures 2.1 and 2.2 show the AREs of 0m and 09 vs <pi when t — 10 and 30, 

respectively. The 3D plot of the ARE of 09 vs 0 ; is shown in Figure 2.3, where
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Table 2.1. AR E s o f <pm and <pq (in parentheses) vs d>i when the data is normal.

4> t==5 t==10 t==30

0.1 0.9940 (0.9993) 0.9964 0.9999) 0.9987 1.0000)
0.2 0.9759 (0.9971) 0.9854 0.9998) 0.9947 1.0000)
0.3 0.9455 (0.9926) 0.9662 0.9994) 0.9874 1.0000)
0.4 0.9028 (0.9845) 0.9372 0.9986) 0.9761 1.0000)
0.5 0.8484 (0.9699) 0.8961 0.9970) 0.9589 0.9999)

0.6 0.7841 (0.9431) 0.8391 0.9935) 0.9327 0.9999)
0.7 0.7125 (0.8918) 0.7617 0.9846) 0.8907 0.9994)

0.8 0.6350 (0.7885) 0.6606 0.9573) 0.8169 0.9980)
0.9 0.5356 (0.5626) 0.5351 0.8440) 0.6666 0.9866)
0.95 0.4357 (0.3494) 0.4464 0.6453) 0.5342 0.9361)
0.98 0.2856 (0.1619) 0.3255 0.3623) 0.4180 0.7428)

the x-axis is the value of <p ranges from —0.96 to 0.96, the y -axis is the value of t 

ranges from 5 to  45, and the 2-axis is the  ARE. Also define the ARE of <pq vs <f>m 

as e{(j)q; <pm) — DimAw and the 3D plot is shown in Figure 2.4. It is clear from the 

plots th a t 4>q is better than  <fm and is as good as for sufficiently large value of 

t over the entire range of the param eter (p. W hen \4>\ approaches the boundary 1. 

{ e7} is highly correlated and the  process turns to  be non-stationary, the estimates 

including the MLEs are not reliable in this case. We may apply a non-stationary 

model instead, which is beyond the discussion of this thesis. One can take some 

degree of differences of the d a ta  so th a t the new process is stationary and then 

obtain the param eter estimates as usual. New, le t’s define the AREs of d 2m and df 

with respect to  d f  as e{d2m\ d f)  =  v3i/v 3m and e(df; of) =  v3l/v 3q, where v3m, v3l 

and v3q are defined in (2.4.36), (2.4.23) and (2.4.37), respectively. Figure 2.5 shows 

the AREs of d 2m and a 2 vs d f  when t =  10. The 3D plot of the ARE of d f vs df as 

a function of (p and t  is shown in Figure 2.6, which is similar to  Figure 2.3. Define 

the ARE of d f  with respect to  of, as e(df; df,) =  v3m/v 3q, the 3D plot is shown 

in Figure 2.7, which is similar to Figure 2.4. Hence, the QLS estim ate of a 2 is also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

1.0

0.9 1

1.0

Figure 2.1. A R E s o f <j>m and <pq vs <pi when the data is normal and t — 10.

better than  the moment estim ate and a good competitor to  the  ML estimate.

Now, let us compare the QLS estim ates in the two forms. Define the ARE of 

<pq with respect to  f>q as e(</>9; <pq) = v2qfv 2q, where v2q and v2q are given by (2.4.28) 

and (2.5.42) respectively. Figure 2.8 shows the plot of e(<p?; <pq) as a function of <p 

when t = 10. The 3D plot Figure 2.9 shows e(4>q\ <f>q) as a function of <f and t. I t is 

clear from the plots th a t is better than  <pq for almost the entire feasible region of 

d> except for the boundary. Further, let us define the ARE of <pq w ith respect to  4>i 

as e{4>q\(pi) =  v2i/v 2q. Figure 2.10 shows the AREs of <f>m, <j>q and <pq with respect 

to  pi as a function of d> when t =  10. Based on the plot, the order of the goodness 

of the estimates is clear. Result of the  ARE of d q with respect to  dq is similar.

Suppose nowT the data  is from a distribution th a t is slightly different from 

the normal. We will compare the estim ates through simulation. W ithout loss of
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Figure 2.2. A R E s of <f>m and <f>q vs fa when the data is normal and t — 30.

Efficiency

Figure 2.3. A R E  o f <pq vs fa when the data is normal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ef
fic

ie
nc

y 
(t

=1
0)

Efficiency

1.80

1.54

1.27

1.00

0.73 
0.96

0.64
0.32

0.00 t
phi -0 .32  , 15

-0.64 ; 10
-0 .96  5

25
20 t

30
35

40
45
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Figure 2.10. AR Es o f <j)m, 6q and cbq when the data is normal and t — 10,

generality, we fix a 2 =  1 and assume (3 — 0. For fixed t and cp, we generate a 

i-dimensional vector e whose elements form a random sample from the Student-t 

distribution with mean 0 and 5 degrees of freedom, and then let y  =  a ^ j3 /5 V 1/,2(0)e 

and generate 10 (n =  10, small sample) of them. The y  generated this way has 

mean 0 and covariance cr2V(</>). Now the process is repeated 10000 times. For each 

replication we compute the moment, normal ML (assuming the d a ta  is normal) 

and QLS estimates of (0 ,a 2), and then  compute the mean square errors (MSEs). 

Suppose <fi is the estim ate of <f> for the  i th replication, i =  1 , . . . ,  10000, then 

MSE(</>) =  Sj1=°100(g»i — 0 )2/lOOOO. The MSE calculated this way is an estim ate of 

the asymptotic variance of the asym ptotically unbiased estim ator. The AREs are 

all defined with respect to  the MLE this time, and are estim ated by the ratio of 

the MSEs. Table 2.2 gives the efficiencies when the data  is S tudent-t distribution 

for t =  5, 10 and 30. The numbers in the parentheses are the AREs of <pq and <pq.
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Table 2.2. AR Es of (pm, (pq and <pq (in parentheses) when the data is simulated

from  Student-t distribution.

6 t= 5 t=10
oOOII4-3

0.1 1.0257 0.9186, 1.0372) 1.0066 (0.9912, 1.0128) 1.0020 (0.9994, 1.0036)
0.2 1.0237 0.8961, 1.0405) 1.0057 (0.9811, 1.0196) 1.0040 (0.9986, 1.0077)

0.3 1.0011 0.8646, 1.0387) 0.9885 (0.9800, 1.0190) 0.9885 (0.9987, 1.0035)
0.4 0.9574 0.8519, 1.0226) 0.9787 (0.9552, 1.0269) 0.9917 (0.9967, 1.0116)
0.5 0.9218 0.8239, 1.0150) 0.9426 (0.9489, 1.0208) 0.9852 (0.9934, 1.0195)
0.6 0.8510 0.8129, 0.9840) 0.9188 (0.9288, 1.0237) 0.9615 (0.9901, 1.0178)
0.7 0.8072 0.8058, 0.9668) 0.8484 (0.9032, 1.0033) 0.9455 (0.9761, 1.0297)
0.8 0.7482 0.7980, 0.9408) 0.7734 (0.8782, 0.9730) 0.9098 (0.9622, 1.0314)

0.9 0.6795 0.7514, 0.9259) 0.6590 (0.8716, 0.9242) 0.7970 (0.9306, 1.0039)
0.94 0.6338 0.6841, 0.9248) 0.5905 (0.8415, 0.8977) 0.7191 (0.9018, 0.9780)
0.98 0.5365 0.4628, 0.9535) 0.5085 (0.6939, 0.9196) 0.5779 (0.8596, 0.9261)

Figure 2.11 shows the plot of the AREs of <pm, (pq and <pq when t  =  30. Figure 2.12 

gives the 3D plot of the ARE of <pq. We found out th a t behavior of the ARE of cpq is 

similar to  the normal case, whereas the ARE of (pq is greater than  1 for most values 

of (p.- Both of them  are better than  the moment estimate. The same property also 

holds for the estimates of a 2.

Let us consider another case where the data  is from B eta distribution, which is 

similar to  a bell shaped curve. As before, we fix a 2 = 1 and assume (3 = 0 , simulate 

t  of Ej from Beta(1.01, 1.01) instead of Student-t distribution. The density plot of 

Beta(1.01, 1.01) is shown in Figure 2.13. Let Ej = (ej — 1.01 • 1.01)/a/L01 • 1.012, 

suppose £  is the vector contains the  e fs ,  and then let y  =  a \ x̂ 2{(p)s. We choose 

n  =  30 and the process is replicated 10000 times. For each replication, we compute 

the MSEs. This time, we only consider the moment, QLS first form and ML 

estimates. Define the AREs as in the Student-t case. Table 2.3 gives the efficiencies 

when the data is from Beta(1.01, 1.01) distribution for t = 5, 10 and 30. The 

numbers in the parentheses are the ARE of <pq. Figure 2.14 shows the plot of the
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Figure 2.11. A R E s o f <j>m, and <fq when the data is simulated from, Student-t 

distribution.
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Figure 2.12. A R E  o f <pq when the data is Simula,ted from  Student-t distribution.
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Figure 2. IS. Density of B eta(1.01, 1.01) distribution.

AREs of and <j>q when i  =  30. Figure 2.15 gives the 3D plot; of the ARE of 

(pq. We found out th a t the  ARE of <pq is greater than  1 for most values of (p. T hat 

means the QLS estim ates is better than  the MLEs in this case. The same property 

also holds for the  estim ates of a 2.

In practice, it is hard to decide whether the da ta  is normally distributed. If 

the normality test fails, using ML estimates may not be the optimal method. Even 

if we know the exact marginal distribution of the data, it may be hard to write 

down the joint density of the data since the da ta  is correlated within replication, 

e.g. Beta distribution. The QLS estimates are be tter than  the moment estimates, 

and are good com petitors to the MLEs and may be more robust than  the MLEs. 

Thus, the QLS estim ates are good candidates when the normality is not tenable.
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Table 2.3. A R E s o f <pm and <fq (in parentheses) when the data is simulated from

Beta(1.01, 1.01) distribution.

<i> t=5 t=10 t--30

0.1 0.9914 (0.9989) 0.9940 (1.0002) 1.0022 (0.9999)
0.2 0.9874 (0.9968) 0.9830 (1.0012) 0.9900 (1.0003)

0.3 0.9536 (1.0024) 0.9522 (1.0043) 0.9956 (0.9999)
0.4 0.9030 (1.0134) 0.9305 (1.0055) 0.9764 (1.0005)

0.5 0.8417 (1.0136) 0.8822 (1.0100) 0.9487 (1.0015)

0.6 0.7537 (1.0258) 0.8289 (1.0126) 0.9276 (1.0017)

0.7 0.6710 (1.0000) 0.6792 (1.0385) 0.8895 (1.0021)

0.8 0.5847 (0.8972) 0.5729 (1.0147) 0.7841 (1.0099)

0.9 0.4237 (0.5247) 0.4506 (0.9098) 0.6015 (1.0276)
0.96 0.2714 (0.2295) 0.2791 (0.5012) 0.4024 (0.9654)
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Figure 2. I f .  A R E s of <j>m and 4>q when the data is simulated from Beta(1.01, 

1.01) distribution and t — 30.
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Efficiency

Figure 2.15. A R E  of <pq when the data is simulated from  B eta( 1.01, 1.01) 

distribution.
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Figure 2.16. Measurements o f distances on 11 girls and 16 boys, at 4 different 

ages.

2.7  A pplication  to  a dental stu d y

We analyze the longitudinal d a ta  displayed in Table 1 of Potthoff and Roy 

(1964). The da ta  were collected by investigators at the University of North Car­

olina Dental School in a dental study of 27 subjects (11 girls and 16 boys). Each 

measurement is the distance, in millimeters, from the center of each subjects p itu­

itary to  pteryomaxillary fissure recorded a t 8, 10, 12, 14 years of age. The reason 

why there is an occasional instance where this distance decreases with age is th a t 

the distance represents the relative position of two points. We will assume th a t 

the (4 x 4) variance m atrix of the 4 correlated observations is the  same for all 27 

individuals. The data  is shown in Table 2.4 and the plot is given by Figure 2.16. 

We fit the following regression model:
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Table 2.4 . Measurements o f distances (in millimeters) on 11 girls and 16 boys, at

4 different ages.

Girls group Boys group

Individual 8
Age in years 

10 12 14 Individual 8
Age in years 

10 12 14

1 21 20 21.5 23 1 26 25 29 31
2 21 21.5 24 25.5 2 21.5 22.5 23 26.5
3 20.5 24 24.5 26 3 23 22.5 24 27.5
4 23.5 24,5 25 26.5 4 25.5 27.5 26.5 27
5 21.5 23 22.5 23.5 5 20 23.5 22.5 26
6 20 21 21 22.5 6 24.5 25.5 27 28.5
7 21.5 22.5 23 25 7 22 22 24,5 26.5
8 23 23 23.5 24 8 24 21.5 24.5 25.5
9 20 21 22 21.5 9 23 20,5 31 26
10 16.5 19 19 19.5 10 27.5 28 31 31.5
11 24.5 25 28 28 11 23 23 23.5 25

12 21.5 23.5 24 28
13 17 24.5 26 29.5
14 22.5 25,5 25.5 26
15 23 24.5 26 30
16 22 21.5 23.5 25

Mean 21.18 22.23 23.09 24.09 Mean 22.87 23.81 25.72 27.47
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Table 2.5. Regression analysis o f a dental study data using MOM, QLS and ML 

methods with A R (1) correlation structure.

Parameter MOME QLSE MLE

Pg 17.3213 (1.6056) 17.3220 (1.6029) 17.3217 (1.6040)

A) 16.5946 (1.3313) 16.5902 (1.3291) 16.5920 (1.3230)

7g 0.4838 (0.1384) 0.4837 (0.1383) 0.4837 (0.1384)

7 b 0.7695 (0.1147) 0.7697 (0.1147) 0.7696 (0.1147)
0.6135 (0.453) 0.6028 (0.432) 0.6071 (0.404)

a2 3.0787 (2.283) 3.0946 (2.278) 3.0881 (2.264)

Hij =  PgXn + (3bx i2 +  tigXn ■ x jZ +  7f,xi2 - X j z ,  1 <  j  <  4, 1 <  i < 27,

where Xu, are indicators for the girl and boy, respectively, and Xj% is the sub­

jec t’s age a t the j t h  measurement time. The model has also been studied by 

Jennrich and Schluchter (1986). Assuming the error is an AR,(1) process, we apply 

the MOM and QLS m ethods and also apply the ML m ethod assuming the data  

is normal. Table 2.5 contains estimates for the regression param eters, the correla­

tion param eter and the scale param eter, computed using the MOM. QLS and ML 

methods. The numbers in the parenthesis are the corresponding standard errors. 

If we make the normality assumption, each measurement vector taken a t four ages 

will have the same variance-covariance m atrix  but different mean for girls and boys 

group. The p-values of the tests based on the skewness for this two groups, which 

should be close to 1 if it is normal, tu rn  out to  be 0.9725 and 0.0025, respectively. 

Thus, the normality assum ption of the girls group is satisfied, but not for the boys 

group. Hence the QLS estim ates may be more appropriate. The residual plot based 

on the QLS estimates are given by Figure 2.17. We see th a t the residuals are almost 

randomly distributed around 0 a t each age, regardless the sex group.
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Figure 2.17. Residual plot based on the Quasi-least squares estimates, assuming 

the error is an A R (  1) process.
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2.8 Sum m ary

In th is chapter, we studied the moment, maximum likelihood, and two forms 

of the quasi-least squares estimates when the error is an AR(1) process. We focused 

on comparing the estimates of <fi, since the efficiencies of the estimates of /3 and 

a 2 will depend on the efficiency of the estim ate of <b. Theocratical and simulation 

results showed th a t the maximum likelihood estimates are the best and the moment 

estimates are the worst for normal data. However, when the data  departs from 

normal, the  quasi-least squares methods may be better, especially the second form. 

A dental study was presented to illustrate the three estim ating methods.
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APPLICATION OF THE ESTIMATING METHODS TO 

THE MODEL WITH AR(2) ERRORS

In this chapter, we study the tim e series regression model with errors tha t 

follow an autoregressive process of order two (AR(2)). This is an im portant special 

case of the model with AR(p) errors, which we study in the next chapter. The 

organization of this chapter is as follows. In Section 3.1, we present the time series 

regression model with AR(2) errors. The moment and the maximum likelihood 

estimation m ethods will be discussed in Section 3.2, followed by the quasi-least 

squares estim ating m ethod in Section 3.3. The results of the previous sections are 

summarized for balanced data, th a t is, i, =  t in Section 3.4. In Section 3.5 we 

derive the asymptotic variance of the maxim um  likelihood estimates by finding the 

information matrix. In Section 3.6, simulation results are presented for comparisons 

of all the three methods. The robust properties of the quasi-least squares estimates 

are also studied in th a t section. Finally, an application to a dental study is presented 

in Section 3.7.

3.1 T he m odel w ith  A R (2 ) correlation structure

Now, let us assume th a t the error series { e 3-} is a second order autoregressive 

process. We assume th a t the da ta  consists of n  independent replications and f* 

observations in the ith replication. The model is represented as (1.1.7), while (1.1.2) 

becomes
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£j — (f>\£j~i +  02 £7-2 +  aj- (3.1.1)

The stationary condition requires th a t |02| < 1 and |0 i| < 1  — 02- Using (1.1.5), 

we can see th a t the autocorrelation functions satisfy the second order difference 

equation

Pk — (f>lpk-l +  4>2Pk-2, k > 1 (3.1.2)

with po =  1. Putting  k  =  1,2, we get the Yule- Walker equations

Pi — <j>i +  4*2 Pi 

P2 =  ©1P1+02P2-

Let <0 =  (0i, 02)/, p  =  {pi, P2 )1, then <fi and p  have the following relationship

P i^ l - J h )

1 - p ?
0 X =  UU |0i | < 1

,,2

f y - 0  I W < 1 .  (3 13!1 - P 1

and

^  _    |pi | < 1, !p2I <  1
1 - 0 2

P 2 — 02 T   ̂ ^(j)2 ’ (3.1.4)

The plots of the feasible regions of (0 i, 0 2) and (pi, p2) are given by Figure 3.1 

and Figure 3.2, respectively. Let

A — 1 — 01 Pi — 02 p2

_ (1 +  02) [(L -  02)2 -  0 i] 
1 —  02

Equation (1.1.4) implies th a t the variance of { £j} is

(3.1.5)
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According to (1.1.6), the covariance m atrix of { £j}  made at C successive times is 

a 2Yi(<p) and

Vi(0) = t  P,(4>), (3-1-7)

where P j(0 )  is the autocorrelation matrix. Cheang and Reinsel (2000, p i 176) 

showed th a t the inverse of Vi(4>) is

V* 1(<P) — Cjoo +  0 iC ju  +  (j>\Ci22 +  2^>i<p2Cji2 — 2</>1C il0 — 2020^0) (3.1.8)

where C l00 is the U x t* identity matrix, C.m  is the identity m atrix with the first 

and last elements 0, and C,22 is the identity m atrix w ith the first two and last 

two diagonal elements 0. The U x tH m atrix 2 Q 0 has 1’s on the first off diagonals 

and 0’s elsewhere, 0 ^ 2  is the same as C^o except th a t the first and last nonzero 

elements are 0. The T x C m atrix 2Cjao has 1’s on the second off diagonals and 

0’s elsewhere. Notice th a t C i0o, C ll0 and C iU are already defined in (2.1.6). The 

Cholesky decomposition of ~V~1((p) is L,: (see Cheang and Reinsel (2000. p ll7 4 ), 

th a t is

Y~\4> ) -  LJL.-

and Li is a lower triangular m atrix with its first two main diagonal elements 

equal to  \ fK  and y  1 — <pl, respectively, its remaining main diagonal elements 

equal to  1, elements in the first off diagonal equal to — (pi except th a t L ,[2 ,1] =  

— y 1 — <72/(1 ~  fa ), elements in the second off diagonal equal to —cj>2, and 0 

elsewhere. The adjusted sum of square errors S(j3, 4>) defined in (1.2.8) simplifies 

to

S(P,4>) =  E t r f V r 1^ ) ^ ^ ) ]
i=i J

=  n  Ĉoo +  4>\cn  +  (p2 c 22 +  2(/>id>2Ci2 ~  2(j)\CiQ — 2<p2C2o) 5 (3.1.9)
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where cqq, c\q and cu  are defined in (2.1,7), the remaining is defined as

020 = inufK C aoU ,) =

C22 -  iEttMCmO,) -  i
<*»-<* = i a ,  tr(c,12u.) = j n?,1E‘do,,£j(2+».

3.2 M om ent and m axim um  likelihood estim ates

Recall th a t the generalized least squares (GLS) estimates of (/3, a 2) as in 

(1.2.10) and (1.2.12) are given by

/  n  \ —1 n
K  =  ( E W X . )  - E X ' V ' - y *  (3.2.10)

, a _  S((3,4.) 
nt

— J  (c00 +  01cli +  (p2c22 +  2<Pi</>2Ci2 “  2&i Ciq — 202C2q). (3.2.11)

Given the  “residuals” e* =  y 2 — X '/3 from the model, the moment estim ate 

<pm may be obtained by setting I\- =  First we estim ate the first and second lag 

autocorrelation pi and p2 by the sample correlation r\ and r 2, and then estimate 

4>i and 02 using the relationship between <p and p in (3.1.3). We can estim ate the

kth lag autocovariance j k by c*k0 =  Cko/(t — k),  k — 0,1, 2. Thus 7q, r2 are estim ated

by Ci0/cq0 and c\0/cq0, respective^, hence

(3.2.12)

(3.2.13)
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Pi =  

f>2 =

a;0 _ c10/ ( t - i )
Coo Coo / t
c2o c20/ ( t  -  2)
-00 Coo A

Therefore, the estim ate of (</q, 02) is given by

P i(l ~  P2) Cio(cqo ~  ^20)
01 = 1 g2 T*21 PI c00 c10

P 2 ~~ Pi _  CqqC^o ~  ^10
1   s2  ~*2   a*2
1 Pi C00 c 10



The moment estimates (0 m, /3m) are then the simultaneous solutions of (3.2.13)

and (3.2.10), and a 2m is given by (3.2.11) plugging in (cj)m7f3m).

Obtaining the maximum likelihood estim ates is challenging. The log-likelihood 

function is given by (1.2.14). Equating to  zero the partial derivative of the log- 

likelihood function with respect to (3 and a 2, we obtain (3.2.10) and (3.2.11) re­

spectively. Equating to  zero the partial derivative of the log-likelihood function 

with respect to  0  and recalling (1.2.17) we get

which is the ML equation for 0 . Note th a t |V j| =  |V) 1| x, which implies

where denotes the Kronecker product, and I* is the identity m atrix of order 

Thus the first term  of (3.2.15) can be simplified as

<91°g I Vi I (3.2.14)

a o g iv . i  =  s i y r 1
<90 <90

hence (3.2.14) becomes

In order to simplify (3.2.15), we first note

(3.2.16)

W ith some algebraic calculation, we can verify th a t

v r ' ( 0 ) i  =  m 2 =  ( i  +  0 2)2 [(i -  0 2)2 -  0 2] (3.2.17)

which yields
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d i v - ' m
d(t>i

d \V 7 l m
d(f>2

— —2ce>i (1 +  0 2)2 

=  2(1 +  02 ) (1 — 02)2 —  — 2(1 — 02)(1 +  (p2 )

=  —2(1 +  <p2)(0 2 — 202 +  202). (3.2.18)

Substituting (3.2.16), (3.2.17) and (3.2.18) in (3.2.15) we get

Cn C12 \  (  4>\ 
Cl 2 C22 - ( § ! )  +

cr______________________  01 (1 +  02) f  _  q
(1 + 02) [(1 -  02)2 -  0f] V 0f -  202 + 202 )

(3.2.19)

Furthermore, replacing cr2 by (3.2.11) we get

(t -  l)c n 0 i 

+ (t -  2) (C'1202 -  C1O)0i

-  [(c00 -  2c2O02 +  C2202 ) +  £cn (l ~  02) | 0 

- t ( l  -  0 2 ) 2 (C ;1202  -  C io ) 0,

( t -

+  [(t — 4)(c1201 — c20) — (t — 2)c22] 02

— {[(t — l)c 22 +  2cn] 0J +  [(t — 4)ci2 — 4Cio] 01

-  P ( c 2o -  C22) -  2c00 -  4c20]} 02

— {(? — 2)C1201 ~  [2C11 — tc22 +  (I — 2 )c 2o] 01 

+  (tC i2 +  4c1O)0l -  [2c00 +  i(c22 +  C2 0 ) ] }  02

C1101 — (ic,i2 +  2cio)0i +  (COD +  tc2o)0i +t(Cl201 — C2o)| =  0. (3.2.20)

The ML estimates (f3u 0 0  are the simultaneous solutions of (3.2.10) and (3.2.20), 

and of given by (3.2.11). Note th a t the  exact MLEs are not in closed forms since it 

is hard to solve the “polynomial” equations (3.2.20). Approximate solutions could 

be obtained by solving (3.2.20) recursively. Box et al. (1994, p .300) suggest an
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approxim ate MLE for <f>, by approximating the ML equation. This approximate 

MLE is given by

C22C10 C12C20
<k a l  -  ^  2

M1 22 c12
(3.2.21)

^  (3-2.22)
cl l c22 C12

where laV stands for approximate MLE, and =  c^ / ( t  — k — l), k — 1,2, I =  0 ,1 ,2  

and is cw evaluating at /3. We will discuss the details of this approximate MLE 

in Section 4.1.

3.3 Q uasi-least squares estim ates

In order to  obtain the quasi-least squares estimates of (3 and <p, we need to 

minimize S{3 , <ft) with respect to  (3 and <ft- Differentiating S{/3, <p) with respect to 

/3 and equating to  zero we get (3.2.10). The QLS estimate of <fi is obtained by two 

steps as follows.

The first step is to solve equation (1.2.20), given by

i>(WH
This is equivalent to setting (3.2.16) to  be 0, which yields

? C22C1G ~~ C!2C20(plu — -------------------5— ,
C11C22 -  c f2

? CU C20 — C i2 C 10 Q
4> 2u — --------------5— ■ (3.3.23)

Cllc22 ~  C\2

The above estimates are the  ULS estim ates, which are almost the same as the

approximate MLEs in (3.2.22) when t is large. In the second step, we modify
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(f>u =  (4>iu, 4>2uY to get consistent estimates. Recalling equation (1.2.21) we get

i=l

=  2a - x :
i—1

tr (C jn P i)  trfC ii2P j) 
tr (C il2P i) tr (C i22P i) <t>u

set 0.

tr(Q io P i)
. tr (C i20P t) .

Since

tr (C iWcP 0 p ) )  =  (t — 2k), 

tv (C ik0P i(p ))  =  (t - k ) p k, A; =  1,2,

tr (C a2P i(p ))  =  (t -  3)pi,

the above equations can be w ritten as

t — 2 (t — 3)/?i
(t ~  3)pi t  -  4

( t  - I )  Pi  1 _  n
L (t -  2)P2 J " u-

Thus we have

Pi =

p2 =

(t -  2)4>lu
(t -  1) -  (t -  3)<q.2u

(t ~  3Win , ( t - 4) 
(i -  1) -  (t -  3)02m 1 ~  2

02u

From (3.1.3) we obtain

01

02

P l( l  -  02)
Pi

P 2  ~  P i

i  -  pi,2 '
(3.3.24)

The QLS estimates (j3q, <pq) are the simultaneous solutions of (3.2.10) and (3.3.24), 

and <j2q is given by (3.2.11) plugging in (3q and <pq.
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An im portant special case is when the d a ta  is balanced. Assuming th a t U =  t, 

the notations of V , C  and c are the same as before, we just drop the subscript i. 

Since L ’ s are all equal, U j’s have the same dimension. Define

__ 1 n 
U  =  -  ] T U „

n  ft—i

then we have _
c00 =  t r ( U ) ,_
Cio =  tr(C ioU ),
Cii — tr ( C n U ),
C20 =  tr (C 2oU), 
c22 =  tr (C 22U ),

C12 =  c2i =  t r ( C 12U ).

The moment estim ate of <fc is given by (3.2.13), where C*k0 =  Cfco/(t -  k), k = 

0,1, 2, the MLE of (f> is given by (3.2.20) with t replaced by t, and finally the QLS 

estim ate of (ft is given by (3.3.24) with t replaced by t.

3.5 A sym p totic  properties

The asymptotic property of MLEs can be found by deriving the information 

matrix. First let us recall the following simple identities,

Pi

P2

A

V 2

V - 1 v  2

=  4>i +  4*2 p i

=  <j)iPi +  (P2P2 =  02 +  4>lPl

, , ( I  +  -  (j>2? ^  4>\)
=  1 -  0 \P \  -  (P2 P2 =  -------

1
2 —O'" (1 -  A>)A(0)

( i + « [ A 2

i ~4>2 
-  <j>2 4>1
di 1 — <5
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where V 2 and r 2 are V  and T with dimension 2. We have the following results 

regarding to  the partial derivative of the log-likelihood function w ith respect to (3, 

4>, and a 2:

01
d p
dl_

d(p
dl

d a 2
d 2l 

d(3d(3' 

d 2l 
d<pd(p' 

d2l 
d  (a2)2 

d 2l 
d(3'd<p 

d 2l 
d a 2d(3 

d 2l 
d(j>do2

<7 i = l

n
=  r  [ C 0  -  C0 +  r 2D ^>]

a

i= 1

n 242(1 +  42) 34 i42
4 i ( i  +  42) 4 i +  24:

r 2D + c
n n

2cr4 & 
2

(cqo ~  2<//co +  4>'C<p>)

E { [ I 2 ® ( y , - X , « ] ( § ■ ;  g -
^ i=l

- h E x ' v r ’ t y . - x , ^

[4 ® I;] - Cjio
C j20 X,

i = l

n
cr4

(C 4  -  c0)

where C  =  ( c22 ) > c° =  (cio, c2o); and D  =  diag(l, 2). The expected values of

the second partial derivatives are given by

■ ( w )

- ^ E x j v r 1̂

E
d 2i

E

d ( a

i  dH

2 \ 2

n  [9-17-2 (  242(1 +  42) 3 4 i4 2
o 2 . 2 v 41(1 +  42) 4? +  2 4 2

-n(* -  2 )V 2 

n t  
"2a*

+ ( t -  D)r2

\df3'd<p

E

\4(72<9/3 J 
(  d 2l 
\d<t>da2

O'

0

n
V 2 D<4.
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Thus, the information m atrix is given by

I  n{p,(f>,a2) =
££=i X 'V ^ x *  

0
0

O' O'
n (t -  2)V 2 £ V 2D 4>

ft aJ4>'DV2 n t
2 a 4

Finally, the asymptotic variances of the ML estimates of ((3, <p, a 2) is given by

I^ ( /3 , 0 , a 2) =  -  S i =  i  d i a g K  E *), 
n n

where m =  a 2 (± X 'V ^ X ,)  ~ and

= k (t — 2)
k V 2 1 +  D ^ 0 'D  — (t — 2)a2D(f> 
— (t — 2)a2(p'T} (t — 2)a4

where k = t( t  — 2)/2  — ^ 'D V 2D ^  . Here we used the results

-1 / * - i  i r 'tr- i 'C 'A  B  
B ' D

A -1 +  F E -1F ' 
- E ^ F '

F E
E ” 1

where E  =  D  — B 'A  1B  and F  =  A  XB. Other useful results regarding the inverse 

of a m atrix include

(a w ) -  =  A - - W X h 2 p ,
1 +  v 'A  %  

(A +  B D B  )” 1 -  A " 1 -  A ^ 1B ( B 'A “ 1B  +  D " 1) “ 1B /A “ 1

=  A - 1 -  A _1B E B 'A  1 +  A ~1B E (E  +  D )_1E B A /_1,

where E  =  (B /A ~1B )~ 1. The asym ptotic distribution of the  moment and quasi­

least squares estimates could be established by finding the asym ptotic distribution 

of Coo, c10, c2o, Cn, c22 and cJ2, and then applying the delta theorem. But the 

exact forms are too complicated. We omit the tedious com putations and study the 

asymptotic properties using simulations.

3.6 C om parisons through  sim ulation

Since the asym ptotic properties of the estimates are so difficult to obtain the­

oretically, we will compare them  by simulation. As we have studied previously, the
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asymptotic properties of (3 and a 2 derived from three methods will be similar to the 

asymptotic properties of <j> since they have the same functional forms. Therefore, 

we will concentrate on comparing the estimates of 4>. By finding the asymptotic 

relative efficiencies (AREs), we will show th a t MLEs wall work best if the error is 

normal, while QLS estim ates may be better when the errors follow a contaminated 

normal distribution. W ithout loss of generality, we assume (3 = 0 and cr2 =  1 in our 

simulation. For convenient purpose, we let t% =  t. Since we have two parameters 

to  be estimated, it will be hard to simulate the data  for all possible values of n  and 

t. Therefore, we will generate samples only when n =  30 and t  =  20. Generally 

speaking, the efficiencies of QLS and MOM estim ates with respect to MLEs will 

increase when n  and t  becomes larger. We chose n  to  be 30 in order to  make sure 

we have enough replications, and we chose t to  be 20 to  illustrate th a t the number 

of repeated measurements for each replication may be small.

We now study the asym ptotic properties of the estimates when the da ta  is 

normal. First we generate a sample of n = 30, t —dimensional (t = 20) vectors 

e whose elements are from a standard normal distribution, and then we let y  =  

a 2V 1/2((/>)e (c r2 =  1). The y  will have mean 0  and variance o 2V {<£>). The process 

is then repeated 10000 times. For each replication, we compute the MOME, MLE 

and QLSE of <f>, and then compute the biases and mean square errors (M SEs). 

Obtaining the MLEs was hard since MLEs are not in closed forms. We have to 

solve equations (3.2.20) simultaneously. One could use Newton-Raphson m ethod to 

solve the equations iteratively (see Appendix A), bu t we used the following method.
/s /c *,*s /c |

Given the kth step solution (ft , the (k + l ) th  step solution 4> is obtained by solving 

equations (3.2.20) substitu ting the ‘polynomial’ coefficients with 4>". We repeated 

this procedure until the difference between <p and (ft is in the neighborhood 

of 10~6 or 10“7. O ur m ethod turned out to  be more efficient in the sense th a t
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the iterations converged faster. If the iteration procedure still does not converge 

after 500 steps (one can choose the maximum number of iteration differently, in 

our simulation, 500 is enough for the iteration to converge for most cases). The 

replications where the iterative process did not converge were excluded from the 

analysis when calculating the biases and MSEs. The QLS estimates and moment 

estim ates are in closed forms. Given the estim ate (f>u, i =  1 , . . . ,  10000, the bias of 

4>x is computed as B ias(^i) =  X̂ £°i°°(</>n: — d>i)/10000, and the MSE of 4>i is found 

by M SE(^i) =  )Ci=i°°(0n — 0 t)2/lOOOO. The bias and MSE of </>2 are obtained in 

the same way. The biases of the estimates obtained through the three methods 

are all close to  0 and do not differ much from each other, so the interest has been 

focused on comparing the MSEs.

Let us define the ARE of <piq with respect to  (fru as e(<piq. 4>n) — M S E u jM S E x q. 

The subscript one is understandable to  represent the notations associated with <ft\ , 

and T , V  stand for ‘Maximum likelihood estim ate’ and ‘Quasi-least squares es­

tim ate’, respectively. The ARE of q)2q with respect to  (p2i is defined similarly. 

Table 3.1 and 3.2 contain the AREs of <piq and <j>2q, respectively. We can see th a t 

the numbers are very close to  one except when <fi is near the boundary. Note th a t 

the feasible region of 4>i and <p2 is triangular. Figures 3.3 and 3.4 are the 3D plots 

of the ARE of 4>iq with respect to  d>u, and the ARE of <p2q with respect to  (p2i , re­

spectively. The graphs are almost flat a t one, except when <p is near the boundary 

where the efficiencies are slightly below one. Therefore QLS estim ate is as good as 

the MLE on a wide region. Tables 3.3 and 3.4 contain part of the AREs of </>lm with 

respect to (jhq and (j>2m with respect to (p2qi respectively. The contour plot of the 

ARE of (p\q w ith respect to (j>n (Figure 3.5) gives a more clear view. The contour 

plot of the ARE of (f>2q with respect to <p2i is similar to  Figure 3.5. The plots of the 

ARE of the moment estim ate with respect to  the MLE, which is the ratio of M S E i
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Table 3.1. A R E  of 4>iq vs 4>u when the data is normal.

4*2

o>©1 - 0 .6 -0 .3 0 0.3 0.6 0.9

-1 .8 0.8935
-1 .5 0.9411 0.9961

-1 .2 0.9561 0.9931 0.9958
- 0 .9 0.9646 0.9991 0.9990 0.9976
-0 .6 0.9984 0.9997 1.0020 0.9999 0.9963
-0 .3 0.9944 0.9993 0.9995 0.9997 1.0007 0.9941

0 0.9939 0.9987 0.9996 0.9998 0.9972 0.9990 0.8343
0.3 0.9989 0.9978 0.9995 1.0000 1.0008 0.9946
0.6 0.9972 0.9982 0.9986 1.0003 0.9964
0.9 0.9716 1.0031 0.9996 0.9980
1.2 0.9529 0.9986 0.9977
1.5 0.9124 0.9932
1.8 0.8693

Table 3.2. A R E  o f 4>2q vs (j)2i when the data is normal.

4*i
4*2

- 0 .9 -0 .6 -0 .3 0 0.3 0.6 0.9

-1 .8 0.8708
-1 .5 0.8695 0.9944
-1 .2 0.8540 0.9839 0.9948
-0 .9 0.8971 0.9979 0.9971 0.9904
-0 .6 0.8560 0.9933 1.0021 0.9993 0.9911
-0 .3 0.8859 0.9988 0.9987 1.0007 0.9983 0.9720

0 0.8550 0.9844 0.9972 0.9990 0.9983 0.9987 0.8688
0.3 0.8416 0.9968 0.9959 1.0001 0.9979 0.9820
0.6 0.8561 0.9904 1.0002 0.9976 0.9956
0.9 0.8826 0.9972 1.0003 0.9877
1.2 0.8635 1.0007 0.9989
1.5 0.8498 0.9911
1.8 0.8457
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Table 3.3. A R E  of 0 im vs <p\q when the data is normal.

4>i

4*2

-0 .9 -0 .6 -0 .3 0 0.3 0.6 0.9

-1 .8 0.0093

-1 .5 0.1178 0.0758
-1 .2 0.3073 0.4386 0.3276
-0 .9 0.4622 0.6596 0.7629 0.7098
-0 .6 0.5528 0.8282 0.8595 0.9078 0.8540
-0 .3 0.6581 0.9092 0.9611 0.9840 0.9775 0.8989

0 0.6815 0.9579 0.9950 1.0014 1.0073 0.9575 1.0966
0.3 0.6360 0.9419 0.9677 0.9812 0.9731 0.8966
0.6 0.5577 0.8206 0.9126 0.9123 0.8389
0.9 0.4577 0.6651 0.7403 0.6744
1.2 0.3026 0.4582 0.3369

1.5 0.1128 0.0784
1.8 0.0078

Table S.f. A R E  o f 02m vs <p2q when the data, is norm al

02

4> i -0 .9 -0 .6 -0 .3 0 0.3 0.6 0.9

-1 .8 0.0107

-1 .5 0.1511 0.0977
-1 .2 0.3515 0.5639 0.4113
-0 .9 0.4546 0.7076 0.8615 0.7485
-0 .6 0.5499 0.7953 0.8980 0.9339 0.7507
-0 .3 0.5917 0.8171 0.9516 0.9748 0.9479 0.7201

0 0.6346 0.8744 0.9851 1.0058 0.9604 0.8345 0.6312
0.3 0.6813 0.8276 0.9754 0.9791 0.94-59 0.7084
0.6 0.5624 0.8169 0.9250 0.9642 0.6914
0.9 0.4247 0.7395 0.8501 0.7204

1.2 0.3265 0.5328 0.4223
1.5 0.1381 0.1023
1.8 0.0093
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Figure 3.3. A R E  o f <f>iq vs <pu when the data is normal.
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Figure 3.4- A R E  of 4>2q vs d 2i when the data is normal.
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Figure 3.5. A R E  of <p\q vs <pu when the data is normal.

and M S E m, shows similar patterns.

Let us now compare the QLS estim ates and the moment estimates. Define the 

ARE of 4>im with respect to (plq as e(<piq, <pim) — M S E \qjM S E \m and define the 

ARE of <p2m with respect to ip2q similarly. Figures 3.6 and 3.7 give the 3D plots of 

the AREs. We can see th a t the efficiencies are far away from one, especially when 

<p is close to  the boundary. This fact is dem onstrated more clear in the contour 

plot of the ARE of <pim vs <pXq (Figure 3.8, the contour plot of the ARE of (p2m

vs ip2q is similar). This shows th a t the QLS m ethod is be tter than  the moment

method. Now consider a special case when <f>2 = 0, the  AR(2) process reduces to 

AR(1) process. Define the ARE of <pm w ith respect to  (pi as the ratio of M S E i and 

M S E m, and the ARE of <pq w ith respect to ipi as the ratio  of M S E i and M S E q. 

Since (f>2 =  0, we only need to  study the estimates of <f>i. Figure 3.9 shows the AREs 

of (j>im and (piq with respect to ipn, we can see th a t the curve representing the ARE
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Figure 3.6. A R E  o f f v s  <f>iq when the data is normal.
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Figure 3 .7. A R E  of <?)2m vs <p2g when the data is normal.
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Figure 3.8. A R B  of f \ rn vs <f>iq when the data is normal.

of 4>Xq with respect to  f u  stays around one, while the curve representing the ARE 

of 0 im with respect to  0n goes down quickly when 0i approaches the boundary. 

The result is consistent with the one in the previous chapter.

We now simulate the data  from a contam inated normal distribution to  study 

the robustness of the estimates. We chose the distribution to  be 0.5 IV(0,4) +  

0.5 N ( l ,  4). The mean and variance of this distribution are given by 0.5 and 4.25, 

respectively. In general, for any two normal distributions and N (fi2,cr|),

if they are mixed evenly, the mean of the contam inated distribution is given by 

(px +  /i2)/2 , and the variance is given by (a j T  cr|)/2  +  (/q — ^if)2/F  The density 

plot is shown in Figure 3.10. From the plot, we can see th a t the distribution is very 

close to  the normal distribution. In practice, it is easy to  mistake the  contam inated 

normal distribution w ith the normal distribution. Thus, it is necessary to  derive 

an estimating m ethod which is more reliable when the data  may come from a
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Figure 3.9. A R E s of <f>\m and f i q vs d>u when the data is normal and <f>2 =  0.

distribution th a t differs from or is similar to  the normal distribution. We choose 

the distribution 0.5 iV(0, 4) +  0.5 N ( l ,  4) ju st for illustrating purpose; the results 

should be similar for other contam inated normal distribution. Recall th a t in the 

previous chapter, we simulated the d a ta  from a Beta distribution when the error of 

the model is an AR(1) process, it should be noted th a t in AR(2) case, the results 

when simulating the data  from a B eta distribution are similar to  the results when 

simulating the da ta  from a contam inated norm al distribution, while the results are 

more noticeable in the la tter case. We now describe how the d a ta  was generated. 

First we select a random number between 0 and 1, if the number is less than  0.5, 

we generate e from N (0 ,4); otherwise, we generate e from iV(l, 4). The e generated 

this way will have mean 0.5 and variance 4.25, we modify c to  have mean 0 and

variance 1 by subtracting it from 0.5 and then dividing by -y/4.25. We generated a 

vector of e of size t  — 20 consisting of e ’s. Next, we generated a sample of n  =  30
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Figure 3.10. The density o f the contaminated normal distribution 0.577(0,4) +  

0.577(1,4).

vectors y  =  a 2V 1l2(<f>)e,s (cr2 =  1). The y  will have mean 0 and variance a 2V(4>}. 

The process is then repeated 10,000 times. For each replication, we compute the 

MOME, MLE and QLSE of 0 , and then compute the biases and mean square errors 

(MSEs). W hen calculating the MLEs, we again use the m ethod described before

instead of Newton-Raphson method, and exclude the solutions when the MLEs do

not converge. As before, let us define the ARE of <pq with respect to  (pl as the ratio 

of M S E i  and M S E q. Tables 3.5 and 3.6 contain the AREs of <plq with respect to 

4>n and (p2q with respect to respectively. Figures 3.11 and 3.12 give the 3D 

plots of the AREs of the QLS estim ates with respect to the MLEs. We can see 

th a t the most of the numbers are greater than  one, especially when cj)X approaches 

the positive boundary. The contour plot of the ARE of <fXq w ith respect to  <j>u 

(Figure 3.13) gives a more clear view. The contour plot of the ARE of (I)2q with 

respect to <p2i is similar to  Figure 3.13. Based on these plots, we can conclude th a t
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Table 3.5. A R E  of 4>\q vs <fu when the data is simulated from  contaminated

n o r m a l  0 .5 iV (0 ,4) +  0 .5 iV ( l,4 ) .

4> 2
(pl -0 .4 -0 .2 -0 .1 0.1 0.2 0.3 0.4 0.5

- 1 : 2 1.0068
—0.9 1.0044 1.0038 1.0052
-0 .6 1.0038 1.0022 1.0026 1.0030 1.0054 1.0088
-0 .3 1.0001 1.0008 1.0009 1.0011 1.0002 1.0027 1.0039 1.0091

0 1.0008 1.0001 1.0000 1.0008 1.0009 1.0024 1.0033 1.0065
0.3 0.9988 0.9997 1.0001 1.0016 1.0026 1.0077 1.0123 1.0581
0.4 0.9996 0.9991 1.0006 1.0027 1.0055 1.0609 1.0948 0.9938
0.5 1.0001 0.9990 1.0009 1.0816 1.0070 1.4403 0.9894
0.6 0.9993 0.9997 1.0015 1.0036 1.4658 0.9931
0.7 0.9960 1.0013 1.0011 1.5868 0.9960
0.9 0.9975 1.0047 2.1031
1.0 0.9962 1.4912 0.9929
1.2 1.7925

'able 3 .6 . A R E  o f  f>2 q vs f>2 i w h e n  th e  d a ta  is  s im u la te d  f r o m  c o n ta m in a ti

n o r m a l  0.5Ar(0 ,4) +  0.5Ar( l ,  4).

4> 2
<Pi -0 .4 -0 .2 -0 .1 0.1 0.2 0.3 0.4 0.5

-1 .2 0.9996
-0 .9 1.0035 1.0010 0.9919
-0 .6 1.0040 1.0002 0.9990 0.9958 0.9913 0.9929
-0 .3 1.0033 1.0009 0.9996 0.9980 0.9989 0.9975 0.9955 0.9916

0 1.0036 1.0011 0.9999 0.9986 1.0005 1.0020 1.0082 1.0077

0.3 1.0012 0.9997 0.9997 1.0012 1.0058 1.0111 1.0210 1.1753
0.4 1.0039 1.0001 1.0004 1.0053 1.0136 1.2112 1.2191 0.9888
0.5 1.0012 0.9987 1.0015 1.2821 1.0147 1.9590 0.9980
0.6 1.0014 1.0015 1.0024 1.0170 1.9486 0.9932
0.7 0.9993 1.0019 1.0079 2.0838 0.9972
0.9 0.9997 1.0299 2.6084
1.0 0.9998 1.7222 1.0563
1.2 2.1639
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Figure 3.11. A R E  o f <piq vs d>u when the data is contaminated normal 

0.5iV(0,4) +  0.5JV(1,4).

QLS estimates are better than  the MLEs.

Now let us compare the QLS estimates and the moment estimates. Define 

the ARE of <f>m w ith respect to  (pq as the ratio  of M S E q and M S E m. Tables 3.7 

and 3.8 contain the AREs of with respect to <f>iq and with respect to 

4>2q, respectively. Figure 3.14 and Figure 3.15 give the 3D plots of the AREs of the 

moment estimates with respect to  the QLS estimates. It is clear th a t the efficiencies 

are almost all less than  1, especially when <f> is close to the boundary. The contour 

plot of the ARE of vs 6 Xq (Figure 3.16, the contour plot of the ARE of 02m vs 

q>2q is similar) shows a much more clear view. Based on the plots, we again see th a t 

QLS method works much better than  moment method. W hen <f>2 =  0, the AR(2) 

process reduces to AR(1) process. As before, define the ARE of (j)m w ith respect to  

<fi as the ratio of M S E i  and M S E rn, and the ARE of w ith respect to f>\ as the
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Figure 3.12. A R E  of (fkZq vs vjhen the data is contaminated normal 

0.5JV(0, 4) +  0.5iV(l, 4).

Table 3 .7. A R E s of </>lm vs fig  when the data is simulated from contaminated

normal 0.5iV(0,4) +  0.5iV(l, 4).

9 i
f l -0 .9 -0 .6 -0 .3 0 0.3 0.6 0.9

—1.8 0.0111
—1.5 0.1291 0.1148
-1 .2 0.2869 0.4906 0.4587
-0 .9 0.3620 0.6957 0.7823 0.7422
-0 .6 0.5336 0.8063 0.9106 0.9390 0.8932
-0 .3 0.6163 0.9003 0.9675 0.9926 0.9798 0.8987

0 0.6785 0.9592 0.9887 0.9995 0.9823 0.9543 1.0054
0.3 0.5674 0.9380 0.9641 0.9678 0.9607 0.7997
0.6 0.5197 0.9133 0.9211 0.9126 0.8288
0.9 0.4680 0.7315 0.7147 0.6101
1.2 0.2929 0.4675 0.9390

1.5 0.1262 0.0308
1.8 0.0047

  0.3
o.o

-0.3 phi2

0.6
0.9
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Figure 3,13. A R E  o f <piq vs <t>u when the data is simulated from  contaminated

normal 0.5iV(0,4) +  0.5Ar(l, 4).

Table 3.8. A R E s o f 02m vs f 2g when the data is simulated from  contaminated

normal 0.5iV(0,4) +  0.5 iV (l,4).

01
02 -0 .9 -0 .6 -0 .3 0 0.3 0.6 0.9

—1.8 0.0125
—1.5 0.1594 0.1475
-1 .2 0.3199 0.6004 0.5541
-0 .9 0.3952 0.7565 0.8776 0.7961
-0 .6 0.5371 0.7696 0.9335 0.9711 0.8622
-0 .3 0.5391 0.8023 0.9536 0.9840 0.9801 0.8414

0 0.6336 0.8367 0.9802 0.9990 0.9532 0.8318 0.8052
0.3 0.6264 0.8272 0.9863 0.9771 0.8666 0.5637
0.6 0.5688 0.8234 0.9705 0.8881 0.6521
0.9 0.4547 0.7453 0.9243 0.5968
1.2 0.3446 0.6368 0.2386
1.5 0.1455 0.0417
1.8 0.0077

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

Efficiency

-1.8 -0-9

Figure 3.14- A R E  o f <j>-Lm vs <fiq when the data is simulated from  contaminated 

normal 0.5Ar(0, 4) +  0.5JV(1, 4).

ratio of M S E i  and M S E q. Since rp2 =  0, we only need to study the estim ates of 

(/>!. Figure 3.17 shows the AREs of d>Xm and <piq with respect to  (pin we can see tha t 

the curve representing the ARE of <fiq w ith respect to  f u  stays above 1, especially 

when (f>i is close to  the boundary, while the one representing the ARE of 4>im with 

respect to  <pu goes down quickly when <px approaches the boundary. The result is 

also consistent w ith the one in the previous chapter.

Another criteria to  compare estim ates is the bias. Given the estim ate <Fu, 

i = 1, . . .  , 10000, the bias of 4>i is found by Bias(<jh) =  Y2l=i°{4>u — <pi)/10000. In 

order to  make comparisons, the bias has been changed to absolute value. Figure 3.18 

shows the biases of all the three estim ates when <f>2 =  —0.5, we see th a t the biases 

of QLS estimates and the biases of MLEs are very close, while the biases of moment 

estimate are far large than  them. The bias of the estim ate of <pi as a function of
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Figure 3.15. A R E  of Y m  vs 4>2q when the data is simulated from  contaminated 

normal 0.oN(Q, 4) +  0.5iV (l,4).

<f2 and the bias of 02 as a function of <j>x are similar. This further is a convincing 

evidence th a t the QLS estim ates are slightly better than  MLEs and much better 

than  moment estimates, when the da ta  is simulated from a contam inated normal 

distribution.

As a summary, we again dem onstrate th a t, when the errors follow an AR(2)

process, QLS estim ates are be tter than  moment estimates, and good competitors

to MLEs. W hen the data  is from a distribution which differs slightly from normal, 

QLS estim ates may be better than  the MLEs.

3.7 A p plication  to  a dental stu d y

Let us recall the dental study th a t we discussed in the previous chapter. The
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Figure 3.16. A R E  of (bim vs (f>ig when the data is simulated from  contaminated 

normal 0.5JV(0, 4) +  0.5Ar(l, 4).

da ta  is shown in Table 2.4 and the plot is given by Figure 2.16. We fit the same 

regression model as before:

IM3 = PgXn + f3bx i2 + igXn ■xj3 + 'ybx i2 - x j3, 1 <  j  < 4, 1 < i < 27,

where Xn, Xi2 are indicators for the girl and boy, respectively, and Xj3 is the subject’s 

age a t the j th  measurement time. Recall th a t the norm ality assumption of the girls 

group is satisfied, but not for the boys group. Assume the  error is AR(2) process, 

we estim ate the param eters using moment, maximum likelihood and quasi-least 

squares methods. Table 3.9 contains estim ates for the regression parameters, the 

autoregressive param eters and the scale param eter. The residual plot based on 

the quasi-least estim ates is in Figure 3.19. We see th a t the residuals are almost 

randomly distributed around 0 a t different time, regardless of the patient group. 

Note th a t a more appropriate model would be is to fit different covariance m atrix
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Figure 3.17. A R E s o f tp\m and <j>iq vs <pu when the data is simulated from  

contaminated normal 0.5iV(0, 4) +G.5JV(1,4) and f>2 — 0.

Table 3.9. Regression analysis o f a dental study

Parameter Moment Quasi-least squares Maximum likelihood

fig 17.4041 17.4132 17.4046

fib 16.2600 16.2216 16.2581

1g 0.4765 0.4757 0.4765

lb 0.7951 0.7979 0.7953

4>l 0.3139 0.2569 0.313-5

f>2 0.4869 0.5474 0.4924
2 2.3249 2.2824 2.3100

a 2°2 2.3249 2.2824 2.3100

E s tim a te s  o f the  p aram eters  u sing  m o m en t, m a x im u m  likelihood

and quasi-least squares m ethods.
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Figure 3.18. Bias o f 4>im, and <j>xi when the data is simulated from contam­

inated normal 0.577(0, 4) +  0.577(1,4) and f 2 =  —0.5.

for each group, even if it is AR(1).

3.8 Sum m ary

In this chapter, we studied the three m ethods of estimation, MOM, MLE and 

QLS when the errors in the tim e  series regression model follow an AR(2) process. 

Through simulations, we showed th a t the quasi-least squares estimates may be bet­

ter than the M LE’s if the distribution is contam inated normal. The bias analysis 

also shows th a t the quasi-least squares estim ates are good competitors to  the  m ax­

imum likelihood estimates. An application to  a dental study is presented again but 

with an AR(2) error. The corresponding standard  errors are not in a simple closed 

form, except for the maximum likelihood estim ates. The asymptotic distribution of
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the maximum likelihood estimates are obtained by finding the information matrix.
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90

GENERALIZATION OF THE ESTIMATING METHODS

In Chapter IV, we extend the results in Chapters II and III to  two im portant 

cases, the tim e series regression model with autoregressive of order p (AR(p)) and 

the moving average of order one (MA(1)) errors. The chapter is organized as fol­

lows: In Section 4.1, we present the model with AR(p) correlation structure and 

its properties. We discuss the GEE m ethod and its variations, moment method, 

maximum likelihood m ethod and quasi-least squares method, and the  inter relation­

ships between the estim ating procedures. We show th a t the  GEE m ethod reduces 

to either the moment or maximum likelihood m ethod in some cases. In this sec­

tion, we also dem onstrate the robustness of the quasi-least squares estimates when 

the distribution of the da ta  is contam inated normal. In Section 4.2, we study the 

properties of the model with MA(1) errors. We discuss the moment, maximum 

likelihood and quasi-least squares methods. Simulation results are presented to 

show th a t the quasi-least squares estimates are good com petitors to  the maximum 

likelihood estimates.

4.1 The m odel w ith  A R (p ) errors

4.1.1 Model

In a seminal paper, Anderson (1978) introduced and studied some basic prop­

erties of the repeated measurements on autoregressive processes. The approxi­
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m ate maximum likelihood m ethod for those processes was studied by Harvey and 

Phillips (1979), Laird, et al. (1987), Rochon and Helms (1989) and Rochon (1992). 

Laird, et al. (1987) also discussed the maximum likelihood and restricted maximum 

likelihood estimation procedures for the ARMA(p, q) model using the EM algo­

rithm. Recently, Cheang and Reinsel (2000) discussed the bias reduction for the 

restricted maximum likelihood estimates for the AR(p) model.

Recall from (1.1.2) the autoregressive of order p errors satisfy the relation

£ j  —  +  4>2£j-2 +  ‘ ' ' +  f i p ^ j - p  +  a j -  (4.1.1)

The stationary condition requires th a t the roots of 4>(B) — 1 — 0 iB  —   4>PB P =  0

lie outside the unit circle, where B  is the backward operator. Using (1.1.5), we can 

check th a t the autocorrelation function satisfies the p th order difference equation

- Pk — 4>lPk-l +  02Pfc-2 +  ‘ ‘ ' +  <t>pPk-pi k  A 1 (4.1.2j

with po =  1. Note th a t this is analogous to the difference equation satisfied by the

process { £,-} itself. By putting  k = 1, 2 , . . .  ,p, we obtain the Yule- Walker equations

Pi =  01 +  02Pl +  ' ' ' +  (frpPp-l

P2 =  01 Pi + 0 2  +  • ' ' +  (fipPp-2

(4-L3)

Pp — 0lPp—1 +  02 Pp— 2 +  ' ' ' +  0p •

Say 4> =  (01; 02, ■ • •, 4>p)', P =  (pi, p2, • • •, Pp) ', 4> and p  have the following

relationship

4> = v ; l P, (4.1.4)

where P p is the p x  p autocorrelation m atrix (Note the only difference

between P p and Pj(<0) is the dimension) and

P„ =  I,. +  2 K  c i oPk,
k—1
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where \ p is the p-dimensional identity matrix, 2 C^0 is the p x p matrix with l ’s on 

the kth off diagonal and 0’s elsewhere (Note the only difference between C f0 and 

Cfco is the dimension). Thus p  can be also w ritten in terms of 0  as

P =  (If -  2 E  C S o K r V ,  (4.1.5)
fc=l

where e*, is the p x  1 unit vector with l ’s in the k th position and 0’s elsewhere, 

k — 1 , 2 , . . .  ,p — 1. Expression (4.1.4) also implies th a t

0 'p  -  0 'P p0  =  pTP; :lP ,

and r  =  F 0 ,

where r  =  ( r1; r 2, . . . ,  rp)' is the sample autocorrelation vector, and F  is the covari­

ance m atrix of e*. According to  equation (1.1.4), the variance of { is

( 4 L 6 )

where A (0) =  1 — <p\P\ — (f>2 p2  4>pPp =  1 “  <fi P- From (1.1.6), the covariance

m atrix of { Ej} m ade at f* (i,- >  2p) successive times is cr2V,;(0 ), and

V , W = A ( 0 ) P i W ’ <4L7)

where P,:(0) is tj-dimensional as usual. Following Cheang and Reinsel (2000), the 

model in m atrix notation can be written as

Yi =  X ?:/3 +  Ei, Lj£i  =  a*, t =  1, . . . ,  n,

where a, =  (al5 a2, . . . ,  ati)' and L,: is the Cholesky decomposition of V 0 1, th a t is

V ” 1 =  L' Lj. Specifically, L ?: is a lower triangular m atrix  w ith its first p  diagonal el­

ements equal to  A 1//2, ( A / A i ) 1/2, . . . ,  (A /A p .j)1/2, its remaining diagonal elements
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equal to  1, elements in the ( l , j ) th position equal to — for j  = 1, . . . ,  I — 1

and I =  2 , . . .  ,p, equal to  for j  =  I — p , . . .  ,1 — 1 when 1 >  p, and 0 else­

where. In the first p  rows of L*, the elements <f>*k — cj)ik( A /A k)1//2,l  ~  1 , . . .  ,k,  

where , 0/.*., for k =  1 , . . .  , p — 1, are solutions for coefficients (f>i, ■ ■ • ,d>k in

the system of the first k Yule- Walker equations in (4.1.3) with p set equal to k,

and A k — 1 — <plfcpi -  fakpz   4>kkpk- For example, (j)n  = n / r 0 =  px and

Ai =  1 — p2. Thus, the determinate of V p  is given by

| v r 1i =  |Lil2,

which will not depend on t t as shown in the next section. The inverse of V ?:(0) can 

also be w ritten

v r ^ )  =  i  +  E E W i c ^ - 2 E ^ c ifc0] (4.1.8)
k =  1 I—1 fc=l

where Cuk — &iki is tj-dimensional and for k > I, 2C ki has (fi — k — I) ones on the 

(k — l)th diagonals above and below the main diagonal, excluding the first and last 

I elements on these diagonals, and 0’s elsewhere, k =  1 , . . .  ,p, I = 0 , 1 , . . .  ,p, C ikk 

has (ti — 2k) ones on the main diagonal, excluding the first and last k elements, 

k = 1 , . . .  ,p. This implies

=  2 (X ) -  C ifc0̂  , k = l , . . . , p .  (4.1.9)

Thus, the adjusted sum of square errors S(/3, <p>) defined in (1.2.8) simplifies to

n n

S((3,</,) =  y a ; a j =  y t r [ v y ( ^ ) U , ( / 3 ) '
i = l  i =  1

=  n ■ (c00 — 2<//c0 + (f)'Ccf>), (4.1.10)

where c0 =  {ck0}, C  =  {ckl}, k , l  = l , . . . , p  and

1 71 1 71 ^ ^
Ckl =  7- E  t r ( c <Hu . )  =  -  E E ■) & 0, . . • , p, I 0, . . . , p.

n  i= 1 n  i = 1 j = l + l
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4.1.2 Generalized estimation equation estimates

In recent years the most popular approach to the analysis of repeated mea­

surements or clustered data has been the generalized estim ating equations (GEE). 

Following Liang et al. (1992), the original approach by Liang and Zeger (1986) 

will be referred to as GEE1. A variation or an alternative approach (GEE2) has 

been suggested by Prentice and Zhao (1991). Hall and Severini (1998) proposed 

“extended generalized estimating equations” (EGEE). We will show th a t in some 

cases when the covariance follows an AR(p) model, the GEE methods are equiva­

lent to  either moment or maximum likelihood method. In fact, this is true for any 

ARMA (p, q) model.

GEE1

For the estim ation of the nuisance param eters <p and a 2, Liang and Zeger pro­

posed m ethod of moment estimators based on the residuals £j =  Y j—Xj (3. Prentice 

and Zhao (1991) generalized the m ethod of moment approach by suggesting ad hoc 

estim ating equations for <fi. Based on the estim ate of 4>, Liang and Zeger proposed 

the estim ate of (3 by solving a quasi-score equation following a quasi-likelihood 

approach:

4  y X , V - ‘(y ,- .X ./3 )  =  0,
a s .

which implies

C n  \ “1 n

^ X ' V - ’X .  y x ' v p y . -  (4.1.11)

i - 1 /  i= I

Since we assume th a t the covariance m atrix  follows an AR(p) model, there is 

no “misspecification” issue. Under mild regularity conditions, the estim ates of 

((3, <fi, a 2) can be shown to  be consistent, and the asymptotic covariance m atrix of
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/3 is given by (1.2.11).

G E E 2

In GEE2 and EGEE methods, the param eter o 2 is included in <fi and all are 

estim ated by a combined estim ating equation. Based on the assumption th a t Y , 

follows a quadratic exponential model (which implies forms for the  th ird  and fourth 

moments), the score equation for (/3, <fi, o 2) is

y D ' E p / ^ O ,  (4.1.12)
i — 1

where

with

=  vec[(t/?: -  Xi(3)(yi -  Xj/3)'} =  vec(U*),

o-j =  cr2vec (Vj),

and D j is the derivative m atrix respect to ((3', <f>', o 2)

=  d { Xd ? )  =  f  X,: 0 0
r d { ( 3 ' , a 2) V 0 a 2 ( d v e c iV ^ /d f t )  vec(Vi)

and E i is the dispersion of {yiy s*)'

If the distribution of the data  is symmetric (ex: normal data) then  Cov(y,, st) =  0. 

Equation (4.1.12) becomes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

which can be rewritten as,

i=I

J2  Var(s*) 1 [vec(Uj) -  <j2vec(Vj)]

0 , (4.1.13)

0 , (4.1.14)

0 . (4.1.15)
i=1

Equation (4.1.13) autom atically implies (4.1.11), and equation (4.1.15) implies

2 E?=i vec(Vi)/Var(si)~1vec(Ui) T4 1161
E E i vec(Vi),Vax(si)-1vec(Vi) ' 1 ;

Note th a t if we know the th ird  and forth moments we should be able to find the

specific form of Var(sj) involved in (4.1.14) and (4.1.16). The preceding expression

(4.1.16) can be further simplified if we assume th a t the da ta  is from a normal 

distribution, because then  we have

Var(sj) =  2a 4 Y t ® V* ,

where ‘0 ’ is the Kronecker product. Since

o4>k 0<j>k

which implies

d vec(V r7  .x dvec(Vty  ,
d<f>k * d<f>k

d v e c ( V i ) '

d(pk

equation (4.1.14) becomes,

VT ---- » V )
'k

( V ^ V * ) - 1 , k  =  l , . . . , p ,

J 2  (2<j4 V i 0  V 0  1 [vec(u ») -  cr2vec(V.j)J =  0,

th a t is,

2 a 4
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and can be further rewritten as

where tr  f ] = 84>i" ' 1 j  ’ VL y 8 <j>2 '  y  > "  ' >11 ^ 8 <pp T 1 1 • Equation

(4.1.17) can be shown in the next section to be the ML equation for (p under 

normal assumption. Equation (4.1.16) can also be reduced to

E?=i vec(Vi),(V 71 0  V - 1)vec(Ul)
a 2

E?=i vec(Vty (V71 0  V y 1)vec(Vj)

EEi tr (ViV^UiVr1'
E?=itr (ViVr'ViVr1

E E : t r ( I J

— j  (coo — 2<̂ 7co -f (p'Ccp). (4.1. IS)

Here we used the result

vec(A B C ) =  (C ; 0  A )vec(B).

In the next section we will show th a t equation (4.1.18) is equivalent to  the ML 

equation for a 2 under normal assumption. Thus equations (4.1.13), (4.1.17), and

(4.1.18) which are the quasi-score equations for G E E 2  under the normal assump­

tion, are exactly the ML equations.

EG EE

The score equation for E G E E  model is illustrated as below. First we use index 

notation (see for example, McCullagh, 1987) where subscripts and superscripts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

indicate vector or m atrix  components and a summation is implied over any index 

which is repeated in a subscript and a superscript. In our notion vjk is the (j , k)th 

element of Vj, Vjk is the (j, k ) th element of V f 1- The partial derivative with respect 

to the uth element of (p will be denoted by 6 U. The partial derivatives of the resulting 

extended quasi-likelihood function with respect to  the components of (3, <p and a 2 

give the following estim ating functions:

U ( t P b) = (yj - X > (3) vja (d (X a(3)/d{3b), b = l , . . . , r

U{t4>u) =  - W  -  Xi(3)(yh -  X k(3)vujk +  vjhv%, u = l , . . . , p  

U(t:cr2) =  - ( y i  -  X>(3)(yk -  X k(3 ) (-v 3k/ a A) +  v>k( - v jk/ a 4),

where £ =  (f3', <p\ a 2)1. Stacking these estim ating functions and summing over 

independent subjects yields the EGGE for £:

£
C.(S;/3)
u,k;4>)

i— 1

In matrix notation, these can be w ritten as:

0.

y , - X , / 3 )  =  0, (4.1.19)
i= 1

t ( ^ p )  = o.

^  vec(V ” 1)/(sj -  (Ji) =  0. (4.1.21)
i - 1

Equation (4.1.19) is exactly the same as (4.1.13) and gives (4.1.11). Equation

(4.1.20) and (4.1.21) can be further rew ritten as

j a g s . , £ . ( $ : . , ) .  *
n n

=  0.
i- 1 i=l

which are exactly the  same as (4.1.17) and (4.1.18).
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It can easily be seen th a t in EG EE method, the estimating equation for (3 

corresponding to  equation (4.1.19) is exactly the same as equation (4.1.2). There­

fore, as function of an estim ator for <j>, the GEE1 and EGEE estimators of (3 are 

the same; if the distribution of the d a ta  is symmetric, GEE2 methods also gives the 

same functional estim ate of f3. Furthermore, if the data  is normal, GEE2 method 

and EG EE m ethod are equivalent, and bo th  give maximum likelihood estimates. 

It is interesting to  note th a t this relationship is always true regardless of the co- 

variance structure. Thus the GEE1 m ethod is equivalent to the moment method 

under the  ARMA (p, q) covariance structure. Therefore, it is sufficient to study the 

moment and maximum likelihood methods,

4.1.3 Moment and m a x im u m  likelihood estimates

According to Section 1.2, the generalized least squares (GLS) estimates of

/3 and a 2 may be obtained as in (1.2.10) and (1.2.12), respectively, and can be

simplified as

0 » =  ( E X 'V - 'W X . )  - E X 'V r ‘ (0 )y , (4.1.22)
\z= l  /  1 = 1

a 2 =  -= (coo — 2<//c0 -j- 4>'C<t>) . (4.1.23)

Given the “residuals” from the model, the moment estim ate of <fi may be 

obtained by setting T =  £;£(. For the AR.(p) errors case, the moment estimates 

are the same as Yule- Walker estimates. The Yule- Walker m ethod starts  by esti­

mating <p from the sample autocorrelation function of the GLS residuals using the 

Yule-Walker equations. Next, V i s  estim ated from the estim ate of </>. The
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autocorrelation corrected estim ate of the regression param eter f3 is then computed 

by (4.1.22) using the estimated m atrix  V j(0 ) . Finally, the variance a 2 is estimated 

by (4.1.23) plugging in the estimates of (3 and 0 .

Define ckQ =  Cko/(t — k), k — 0 ,1 , . . .  ,p, where ‘~ ’ means evaluating based on 

the residuals, then c£0 is the kth lag sample covariance and could be an estimate 

of the k th lag autocovariance. We then obtain the following relations expressed in 

term s of the estim ated autocorrelations r k = c*kQ/c*m , k — 1, . . .  ,p  — 1, 

f‘ i =  (jh +  02D +  ••• +  (pprp^i
r 2 =  +  <}>2 +  • • • +  4>Pr P-2

r p — (Plr p ~ l  +  4>2?'p—2 +  ’ ‘ ■

These are well-known Yule- Walker equations. In m atrix notation, the estimate of 

(j) is obtained by

0  =  R r ’r  =  (4.1.24)

where R  and Cq are the p x p  sample autocorrelation and sample covariance matrix 

w ith the (k — l ) th diagonal elements r k and c*kQ respectively, r  =  ( r l5 r 2, . . . , rp)', 

and Cq =  (c*0, c^q, • ■ ■, c*0)'. The moment estim ates of (/3, <fi) are the  simultaneous 

solutions of (4.1.22) and (4.1.24) and the moment estim ate of a 2 is (4.1.23) plugging 

the estimates of (/3, <p). Notice th a t this is ju st an ad-hoc estimate, but it has been 

widely used since it is easy to  apply and gives us a quick answer. It also serves as 

the preliminary estimates for other estim ating methods.

If we approximate the sample variance a 2 by Cqq/I, the sample correlation 

vector r  by £q/cqq and the sample correlation m atrix R  by C /c“oo, where c0 and C 

are as defined in (4.1.10) evaluating based on residuals, this is true  if t  is large, the 

estim ate of 0  reduces to  0  =  C ^C q and (4.1.23) becomes

a 2 ss (j2 (1 — 2 0  r  +  0  R 0 )
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= ^(1 -  0r),

which agrees with the population result

o-2 =  cx2( l  -  4>'p).

In order to obtain the maximum likelihood estimates, we need to derive the 

ML equations. Recalling the log-likelihood function (1.2.14) and the estimate of a 2 

given by (4.1.23), we get

7lf 1 n Tit
l{(3,4>) =  -  —  [log(2yr) -  log(nt) +  1] -  -  log ^ ( 0 ) 1  -  —  log S(f3, (f))

n t
-  Const. -  — log ^  |L,;| 1/ta 'a i |Li - l i t

Vi—1

Thus, the ULS and QLS methods are to minimize Y%=i a(aj, while the ML method 

is to  minimize YZ*\ where =  a^Lib 'C L Now, equating the partial derivative 

of the log-likelihood function with respect to ((3, a 2) we get (4.1.22) and (4.1.23), 

respectively. Taking the partial derivative w ith respect to  <fi we get

d(j)
l ^ a i o g |Y , ( 0 ) |  1 dS(l3,<f>)
2 fi=i
n
<j

d<p 2 a 2 d<p

2 n <91og[V,(0)|

2n h d(p +  ( C 4> -  Co)

According to Cheang and Reinsel (2000) (p.1174 Eq. (8)),

cr2 d lo g |V i(0 ) |
d<p

= T p(<P,a2)-D4>)

(4.1.25)

where T p(<fi, cr2) is the p x p autocovariance m atrix w ith the  k th diagonal elements 

7 ,̂ and D is a diagonal m atrix  w ith ( 1 ,2 , . . . ,  p) on the main diagonal and 0’s 

elsewhere. Equating equation (4.1.25) to  0, we obtain the  ML equations for cf>

Tp(4>; a 2 )D<p +  C 4> -  c0 =  0. (4.1.26)
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Thus, the  MLEs of (/3, </>, cr2) are the simultaneous solutions of (4.1.22), (4.1.26) 

and (4.1.23). It Is noted th a t the exact MLEs are not in closed forms since (4.1.26) 

is hard to  solve. Box et al. (1994, p.300) suggested an approximate MLE for the 

estim ation of <p. By using c*kl =  cki / ( t —k —l) as an “estim ate” of =  1

th a t is F p ~  C* =  {c*kl}, note th a t 7k~i has several different estimates in this sense, 

the ML equation (4.1.26) becomes linear in <f> after plugging in the estimate of f3

C >  =  Cq, (4.1.27)

which yields

■h =  C - ' c ; ,  (4,1.28)

where ‘a /’ stands for approximate MLE. Note th a t this is close to the moment esti­

m ate (4.1.24). Actually, Cq is a better approximation of F p comparing to  C*, and 

since E ( C*) =  E (C l) ,  C* ss C ĵ; hence if this is true, the approximate MLE reduces 

to  the moment estim ate by replacing C* with Cq. In this sense, the  approximate 

MLEs will not be better than  the moment estimates.

We can obtain the asym ptotic property of the exact MLEs by Ending the 

information m atrix. We have the following results regarding the partial derivatives 

of the log-likehhood function w ith respect to (/3, <fi, a 2):

§  =  ^ E X ' V - ' ( y , - X . /3)
i— 1

dl n
Qcj) ~  a 2 (rpD<^ +  C<^ ~  C°)
dl n t n . „ ,, ,.

a v  =  ~ 2^  +  2^ { Cm~ 24,C « +
rt2l 1 n

w  g x i v r ’x .

d 2l n
2d 4>d<p'

d2l
a *

d{TpD(f>)
d #

+  C

2 ^  (c“ _  24,'c" + 4,'c ‘p)
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d 2l
d(3'84>

d 2l
d a 2 d/3

d 2l
d(f>da2

f den71

~ ^ k \ w

n  f dc.fcO
a 2 \  d/3'

i=l
n

= - ( C 0 - c „ )
CT

Note th a t

which yields

Also we have

dcki 2
3/3' n

J2(Yi -  X t/3)'ClWX,,

E(cw) =  { t - k -  l)nfk-i M  =  0, ■ ■ • ,p,

which implies

E(C ) =  {(I — A: — =  (Hp -  D )r p -  FPD,

E(co) =  { (£ -  fcbfe} =  (Hp -  D ) r p 0,

E (co) - E ( C ) 0  =  F pD 0 .

Say Fp =  <r2Vp , then according to  Cheang and Reinsel (2000), the (i , j ) th element

of V p 1 is

m i n ( i . j )

J 2  \(Pi-k<Pj- 
fc=i

j ~ k  4*p—(i—k)4>p—(j~k)J  5 h j  1- • • • ;P; 

with the convention th a t 0o =  —1- For example,

v -1 = ( l - / ) " 1,
V -1 =V  2  —

1 -4 %  -d ) i( l  +  <p2) 
01 (1 +  02) 1 — 02
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The derivation of V p 1 with respect to  <j>k is

/TV-1 f p - k - i  v
r - 2 M * - 2  £  AC  I  -  £  A C p * ,_ , , t - 1 ,

dfik y 1=0 l=p-k+1

with =  0, if k + l > p. Since

arB i „ ^v-1

we get

 ~JL _  i f  p  p  u  —  i  n
O  / ~  9  X  P  o  J ■* - ? ’ /V —  -L, . . .  , p ,d<j)k a 2 y d(pk

d (T p D0) _  fc>rp
(D 0 ) + T P D

= - 2  rp {MfcVp D 0 } + rp d .

Thus, we have

E
/  dH \  
1 ^ 3 7

E(w)
' d2l 
d (a 2)2

• a 2/ \
d{3'd(p J

KsS,)

E

E

E
/  a 2*

- A i : x ' v p x ,
a z
71 —

= — 2 l(tlp -  D ) r p -  2 T p {MfcVp D0}] ~  —n(t

i =  1

nt
2a4

O'

0

n
=   , Vp 13©.

\d<pda2 j

Hence, the information m atrix is given by

1 E I U X 'V ^ X ,
o 
0

O' 0'

nt  
2 o-4

By finding the inverse of the bottom  block m atrix, we get

v

2)V P

(4.1.29)
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where £« =  diag(t>1;S 20 with v x =  a 2 U  YJLx X iV ?; l x *) and

k(t -  2)
k V ~ l +  D 0 0 'D  —(t — 2)a2 D(p

-(t — 2 )a 2 (ft'I) ( t -  2)cr

where k — t(t — 2)/2 — ^ /D V ^ D ^  . This is the asymptotic variances of the ML 

estimates of {(3, (ft, a 2).

4.1.4 Quasi-least squares estimates

In order to  obtain quasi-least squares estimates of (ft, we need to minimize 

S((3, (ft) w ith respect to  (3 and (ft. Equating to zero the partial differentiate of 

S(/3, (ft) with respect to (3 we get (4.1.22). Estim ate of (ft is obtained by two steps 

as follows.

The first step is to solve equation (1.2.20). From (4.1.9) we get 

n f  B V ”1 \
£ tr U i  j =  2n(C(ft -  c 0 ) =  0,

which gives the ULS estim ate

k  =  c ^ c 0 .

Note tha t if we estim ate 7k-i  by cki / t  in stead of cki j ( t  — k — l) and 77 by ck/ t ,  then 

k  is identical to <ftal. The second step needs to  modify (ftu to  be consistent. From

(1.2.21) we get

i = l  \  t J  i —i

=  2 A "1

s_et q

| y  tr (C a , P . ) |  -  { f > ( C iMP,)
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Since th a t

tr(CjfciPj) (tj k  , k  1 , 2 , . . . ,  p,  I 0 , 1 , . . . ,  p, i  1 , . . . ,  n,

the equation above simplifies to

t — 9 
( t  -  3)Pl

(t -  3)pi 
t - 4

[t -  (p +  1)] pp-1 
[i -  0  +  2)] Pp_2

[ t - ( p  + 1)] pp - 1  [t -  (p +  2)] pp—2 t — 2 p

<Pu

(t -  l)p l
( t  -  2)P2

(t -  p)plp

=  0 .

Let Dfc be a p x p tridiagonal m atrix  with k th diagonal elements in the order 

{t  — (k + 2),t — (k + 2 • 2 ) . . . . ,  t  — (2p  — k)},  for k = 0 ,1 ,2 ,. .  . ,p  — 1. The equation , 

above becomes
p - i

(D0 +  51 DfcPfc)0u -  (3p -  D)p =  0,
fc=i

th a t is
p - i

D o<4 +  5Z D * < 4 4 p  “  (a p -  D )p  =  0.
i=i

This gives
p - i

k=l

From (4.1.4) we get

(p = P p (p)p. (4.1.30)

The quasi-least squares estim ates of /3 and (ft are the simultaneous solutions of

(4.1.22) and (4.1.30), and aq is obtained plugging (3q and 4>q in (4.1.23).
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The asymptotic distribution of the moment and quasi-least squares estimates 

can be found by applying the delta theorem, bu t the formula will be very compli­

cated. To avoid the tedious computations, we will compare the three estimating 

m ethods by simulation. The comparisons will be made w ith respect to the exact 

maximum likelihood estimates by solving the maximum likelihood equations using 

Newton-Raphson method. Our simulation results show th a t the approximate max­

imum likelihood estim ates suggested by Box et al. (1994) are less efficient than 

the moment estimates. As before, we concentrate on comparing the estimates of 

cp. Particularly we choose n — 30 and p = 4. W ithout loss of generality, we as­

sume (3 = 0 and cr2 =  1 in our simulation. The true param eters should be chosen 

in such a way th a t the series is stationary and invertible. It is hard to study all 

possible parameters, so we choose <p =  (0.5, —0.2,0.1,0.2) for illustrating purposes, 

and then study the asym ptotic properties of the estim ates as t  ranges from 10 to 

55.

First we study the asym ptotic properties of the estim ates when the data 

is normal. As in previous chapters, we generate a t-dimensional vector e whose 

elements are from a standard normal distribution. We then  set y =  a 2V 1l2 (<p)e 

and generate a sample of size n  =  30. The process is then  repeated 10000 times. 

For each replication, we compute the moment, maximum likelihood and quasi-least 

estimates of (pi and then compute the mean square errors (MSEs). Since the MLE 

of <p is not in a closed form, we use the Newton-Raphson m ethod to solve the 

ML equation. We  set the precision to  be le  — 10 when solving the  ML equation. 

The QLS estimates and moment estim ates are in closed forms. If the estimates 

(including moment, ML and quasi-least squares estim ates) are not feasible, th a t 

sample was deleted and hence excluded from the analysis. It is interesting to  note
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Table 4-1. A R E  o f <f>q and <fim (in parenthesis) vs <pl when the data is simulated

from normal distribution

t 4>1 (0.5) &  ( -0 .2 ) <f>3 (0.1) 3>4 (0.2)
10 0.7450 (0.7911) 0.7934 (0.9702) 0.8043 (0.8820) 0.8928 (0.9965)
15 0.9695 (0.8634) 1.0714 (0.9672) 0.9768 (0.9308) 1.0289 (0.9710)
20 0.9853 (0.9124) 1.0546 (0.9946) 0.9900 (0.9534) 1.0261 (0.9703)
25 0.9875 (0.9270) 1.0442 (0.9951) 0.9958 (0.9716) 1.0241 (0.9790)
30 0.9930 (0.9336) 1.0383 (0.9922) 0.9967 (0.9695) 1.0214 (0.9796)
35 0.9966 (0.9517) 1.0327 (0.9960) 0.9992 (0.9710) 1.0183 (0.9781)
40 0.9971 (0.9594) 1.0296 (0.9877) 0.9999 (0.9769) 1.0182 (0.9816)
45 0.9965 (0.9609) 1.0252 (0.9994) 0.9999 (0.9771) 1.0139 (0.9847)
•50 0.9975 (0.9593) 1.0236 (0.9971) 1.0001 (0.9917) 1.0146 (0.9787)
55 0.9982 (0.9722) 1.0217 (1.0000) 1.0002 (0.9868) 1.0118 (0.9844)

th a t when t — 10, quasi-least squares estim ates are more likely to  be unfeasible 

(about 0.3%), while when t is larger than  10, all estimates seem to  be feasible. The 

proportion of feasible estim ates decreases as t  increases.

Define the ARE of 4>iq w ith respect to <pu as e(cf>\q:,4>n) =  M S E u / M S E i q, 

and define the ARE of <flm w ith respect to  <fu similarly. The subscript ‘1’ is 

understandable to  represent the notations associated w ith <%. Define the ARE for 

4>2, and (j)4 similarly. Table 4.1 contains the AREs of 0 . Figure 4.1 gives the plot 

of the AREs of the quasi-least squares and moment estim ates of 0 i with respect to 

the MLE. The ARE plots of d>2, and 04 are similar. Most of the efficiencies are 

close to but less than  1. Some quasi-least squares efficiencies are even larger than  

1 (such as 1.03) due to  the fact th a t the MLEs are obtained approximately by the 

Newton-Raphson m ethod (exact solution is not possible, we set the precision to  be 

le  -- 10). It is clear from the plot th a t the efficiencies of the quasi-least squares 

estimates are much large than  those of the moment estimates, and approach 1 as t 

increases.
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Figure f . l .  A R E s  of q>ig and 0 lm vs <fu when the data is simulated from normal 

distribution.

To study the robust property of the quasi-least squares estimates, we have 

simulated da ta  from a Student-f distribution. We generate a t-dimensional (t 

ranges from 10 to 5-5) vector e  whose elements form a random sample from the 

Student-t distribution with mean 0 and 5 degrees of freedom, and then let y  =  

(7^3/5 V 1'/2(</>) e and generate 30 of them. Now the process is repeated 10000 

times. For each replication we computed the moment, normal ML (assuming the 

data is normal) and quasi-least squares estim ates of 0 , and then compute the mean 

square errors. A bout 1% of the quasi-least squares estim ates are not feasible when 

t = 10. All estim ates are feasible when t > 10. The asym ptotic relative efficiencies 

are defined as before. Table 4.2 gives the efficiencies. Figure 4.2 gives the plot 

of the AREs of the quasi-least squares and moment estimates of 4>o w ith respect 

to the MLE. From the  plot we see th a t most efficiencies of the quasi-least squares 

estimates are greater than  1, but the efficiencies of the moment estim ates are not.
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Table 4-2. A R E  o f <pq and <j>m (in parenthesis) vs <ftl when the data is simulated

from Student-t distribution

t fa  (0-5) fa  ( -0 .2 ) fa  (o.i) fa  (0-2)
10 0.6238 (0.7664) 0.6157 (0.9175) 0.6694 (0.8729) 0.7373 (1.0427)
15 0.9618 (0.8639) 1.0476 (0.9536) 0.9615 (0.9316) 0.9978 (1.0019)
20 0.9826 (0.8845) 1.0465 (0.9606) 0.9798 (0.9468) 1.0135 (0.9800)
25 0.9903 (0.9151) 1.0404 (0.9739) 0.9901 (0.9692) 1.0131 (0.9971)
30 0.9930 (0.9294) 1.0378 (0.9772) 0.9933 (0.9786) 1.0153 (0.9855)
35 0.9974 (0.9331) 1.0340 (0.9706) 0.9968 (0.9811) 1.0143 (0.9810)
40 0.9966 (0.9414) 1.0273 (0.9832) 0.9970 (0.9756) 1.0117 (0.9850)
45 0.9968 (0.9473) 1.0243 (0.9768) 0.9986 (0.9764) 1.0126 (0.9965)
50 0.9977 (0.9595) 1.0229 (0.9890) 0.9991 (0.9849) 1.0114 (0.9921)
55 0.9976 (0.9626) 1.0206 (0.9854) 0.9990 (0.9834) 1.0109 (0.9843)

1.05 j

1.00 I

0.95 II1
0.90 i 

0.85 1S*c03o
e  o.8o
LU

0.75 j
J

0.70 J  ■ 

0.65 j ;

0.60 I,..... 

10 20 30

MOM

40

QLS

50

Figure 4-2. A R E s o f f  2q and fa m vs fai when the data is simulated from Student- 

t distribution.
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Table 4-3. A R E  of (j>q and <f>m (in parenthesis) vs <f>l when the data is simulated

from  0.5iV(0,4) +  0-5A (l,4)

t fa 0.5) fa  ( - 0 .2) 03 (0.1) 04 (0-2)
10 1.4227 1.1181) 1.0123 (0.9776) 1.6454 (1.3734) 7.7692 (8.0616)
15 1.4418 1.2663) 1.1217 (1.0083) 1.6202 (1.3710) 5.0855 (4.0307)
20 1.4168 1.3300) 1.0650 (0.9840) 1.5187 (1.3079) 3.1647 (2.4736)
25 1.3739 1.3264) 1.0346 (0.9584) 1.4384 (1.2706) 2.4562 (1.9226)
30 1.3311 1.3091) 1.0179 (0.9554) 1.3802 (1.2260) 2.0795 (1.6485)
35 1.2966 1.2801) 1.0076 (0.9538) 1.3318 (1.1989) 1.8568 (1.4993)
40 1.2663 1.2642) 1.0008 (0.9509) 1.2970 (1.1782) 1.7054 (1.3987)
45 1.2413 1.2440) 0.9977 (0.9520) 1.2683 (1.1616) 1.6051 (1.3308)
50 1.2216 1.2245) 0.9953 (0.9545) 1.2438 (1.1488) 1.5250 (1.2863)
55 1.2028 1.2101) 0.9935 (0.9534) 1.2235 (1.1333) 1.4640 (1.2479)

As t goes larger, the difference becomes less prominent. The efficiency plot of 0 4 

shows similar pattern, while the efficiencies of fa  and fa  are still less than  but close 

to 1.

To further see the robust property of quasi-least squares estimates, we simu­

late the da ta  from a contam inated normal distribution. First we generate a random 

number between 0 and 1, if the number is less than  0.5, we generate e from N ( 0,4); 

otherwise, we generate e from A (1,4). We then modify e to  have mean 0 and 

variance 1 by subtracting it from 0.5 and then dividing by v4i25. Let £ be a vector 

of a size t consisting of random sample of e. Secondly, we let y  =  a 2V 1//2((fi)e and 

generate a sample of size n — 30. The whole process is then repeated 10,000 times. 

For each replication, we compute the moment, maximum likelihood and quasi-least 

squares estimates of <f>, and then compute the mean square errors. In this case 

about 15% of the maximum likelihood estim ates are not feasible! But all moment 

and quasi-least squares estimates are feasible. Define the asym ptotic relative ef­

ficiencies as before. Table 4.3 contains the AREs of <p. Figure 4.3 gives the plot
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Figure 4-3- AR Es of <f>q and 4>m vs (pl when the data is simulated from  

0 .5N (0 ,4) +  0.51V(1, 4).

of the AREs of the quasi-least squares and moment estim ates w ith respect to  the 

maximum likelihood estimates of <f>. From the plot we see th a t most efficiencies of 

the quasi-least, squares estim ates are much greater than  1, more so than  the effi­

ciencies of the moment estimates. It is clear th a t the quasi-least squares estimates 

are much better than  the moment estimates. As t goes larger, the efficiencies all 

approach 1.

Based on the plots, we again dem onstrate tha t, when the error of the model is 

an AR(p) process, quasi-least squares estim ates are better th an  moment estimates,
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and good competitors to  maximum likelihood estimates. W hen the data is from 

a distribution which differs slightly from normal, quasi-least squares estimates are 

more robust than maximum likelihood estimates.

The applications of the estim ating methods for AR(p) (p > 2) model are 

limited, since most of the da ta  could be analyzed by fitting a simple AR(1) or 

AR(2) model. For the simple model we have already studied the applications in the 

previous chapters. However, in this chapter we did comparisons of the estimating 

methods to  provide guidelines if one is interested in fitting a more complicated 

model for real data.
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4.2.1 Model

A model th a t is complementary to  the autoregressive process of order one 

(AR(1)) is the moving average process of order one (MA(1)). Anderson (1975) 

showed the basic properties of MA(1) process for tim e series regression model with 

replications. The maximum likelihood approach was studied by Haddad (1995) for 

a single series. Feigin, et al. (1996) studied the model using an alternative approach 

with positive innovations. The model is given by (1.1.7), and (1.1.2) reduces to

£j =  dj — 9aj- i ,  j  — 1, 2 , . . . ,  t. (4.2.31)

The invertibility condition requires th a t \6\ < 1. From (1.1.4), the variance of the 

process is given by

7o =  cj£2 = a2{l + 92). (4.2.32)

The autocorrelation satisfies

Pi = |p i| < 0.5 (4.2.33)

pk — 0, k > 2

according to (1.1.5). This implies th a t

- 1  +  V I -  4p2 p V 0
9 = { 2p ’ r  / (4.2.34)

0, P =  0;

where p is the abbreviation for p x. Figure 4.4 shows the relationship between 9 and 

p. The error £*• has mean 0 and covariance
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Figure 4-4■ Relationship between 6 and p

r t(e ,a 2) = a*Pt ( p ) = v 2V,(9), (4.2.35)

where Pj(p) is the t% x t,; correlation m atrix  with p on the first off diagonal and 

zero’s elsewhere, th a t is

P j(p) =  +  2 p Q io ,

and

V t(0) = (1 +  02) P j(p)

=  (l +  02) I t i - 2 0 C ilo, (4.2.36)

where Cuo is defined in (2.1.6) and I ti is the U—dimensional identity m atrix. This 

gives
dV.,,
dd

(4.2.37)

Haddad (1995) has shown that

1
v i ( 0 )  =  — - w y ( o , ( 0 )  +  o ; ( P ) )i  - e 2

i
r zT]p n t (0)
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]_ /  u -1

i - e 2
Iti +  2 E  C iko0k , (4.2.38)

k=1

where the T x m atrix £li(9) =  {9^k *■} is the U~ dimensional first order autocor­

relation m atrix  with param eter 9, O*(6) =  (cuki) is given by

(  - 6 l + 1 ( 1 -  02(ti-/+l))/( 1 _  02^+2) if k  =  1; / =

|  /c-ei) i f  It T ,  / — i —  ? T ,

[ 0 elsewhere,

and Cjfco’s are defined as in (4.1.8). Note th a t 0^(0) is similar to P»(0) in AR(1) 

model. Generally speaking, the m atrix O* is close to 0 and negligible. But when 

n  is large the m atrix  cannot be ignored to  get efficient estimates. If we ignore O*, 

equation (4.2.38) implies

9V)-1 (ff)
89 (1 -  92)2

u - i
9h  +  E  C ^o (k9k~1 -  (k -  2)9k+1)

fe=i
(4.2.39)

but by taking derivative of the exact inverse of V  with respect to 6 we get

a v r 1^ )  =
89 1 89 1

=  —2 — C j10)V v 1. (4.2.40)

The adjusted sum of square errors S(/3, 9) defined in (1.2.9) becomes

S(P,9) =  y t r f v - ' U ,
i = 1

/  n  ti — 1

n c00 +  2 E  E  t r ( Q fc0U ,) ^  , (4.2.41)
1 y \  i=i fc=i /

where cfc0’s are as defined in (4.1.10).

4.2.2 Moment and Maximum likelihood estimates

Recall th a t the generalized least squares (GLS) estimates of ((3, a 2) as in 

(1.2.10) and (1.2.12) respectively are given by
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P 9 -  - E ^ v r V ,  (4.2.42)
\ i =  1 /  i = 1

*2 = 3 s l W ) ^ t ' r(v ^ >2—1
i f  "  t i - 1  ' \

n Coo +  2 E E M C  ifcoUj)0  ̂ I . (4.2.43)
^ ( !  -  0 2 )  \  i = i  * = i

Given the “residuals” £* =  y* — Xi/3, the variance of ipj is estim ated by Cqo/1 

and the first order covariance is estim ated by c10/(?  — l). This yields

c io /(i -  1) fc10
p  =

Coo/t ( t - l ) c o o '

By combining (4.2.42) and (4.2.34) after plugging in p and solving for 0 in the 

feasible region ( —l, l) , we obtain the moment estim ate (/3m, 9m). The estimate 

of is obtained plugging in the estim ates of (3 and 6 in (4.2.43). More powerful 

algorithms may be used to get the estim ates (Box et al. 1994, p.221). These 

methods avoid discussing the solution based on the value of p.

The MLEs are derived as follows. Assuming the errors e f s  are normal, and 

recalling (1.2.14), the log-likelihood function may be written

71. f  7 l f  1 n  1
l(/3 ,0 ,a2) = log(2?r) -  —  log(a2) -  - E log lv i(0)| -  — £(/3,0), (4.2.44)

i —1

where S(j3, 6) is defined in (4.2.41). Equating to zero the partial derivatives of 

(4.2.44) with respect to  (3 and a 2 we obtain (4.2.42) and (4.2.43), respectively. 

According to  Haddad (1995), the determ inate of V* is given by

^ 1   Z}2t?;+2
|v ,l  =  E « “  =  V V ’

k—Q 1 °

which yields
d lo g |V t;| 26

dd i _ 0 2 ( t i+D . . n\ k —0
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Using the  approximate V ,, we get the partial derivative of (4.2.44) with respect to 

9 as

m  =  A S
m  h i -  « 2 < * * + 1 >i = 1

ndcQ0 +  E IU  Efc=i tr(CjfcoUj) f a * " 1 -  (fc -  2)9k+1) 
cr2( 1 _  5)2̂ 2

The ML estimate is found by setting the equation above to  zero and solving for 6. 

If we assume th a t L =  t, the equation above reduces to

dl ne  ( E ^ o  02k -  te2t) n [cqqO +  c*0 ( k d ^ 1 -  (k -  2)9k+l)}
de  ~  i  -  e2^+l) <t2(i  -  e2)2

Since cko ~  0, k > 2, we obtain the approximate ML equation as

a 2e{ \  -  e2) ( f V -  t e ’A  + (c10 +  cme +  cl0e2) j z  ®2k = o. (4.2.45)
l\ f c = 0 fc=0

Substituting the estim ate of cr2 (c00 + 2ci09)/[t (1 — 62)\ and simplifying the 

equation above we obtain

jtcio +  (t +  l)c0o# +  (f +  2)c10d2J ZZ ®2k +  f (1 ~  92)cw 02t = 0. (4.2.46)
k = o

If t is large enough, 92t is close to 0, and the equation above becomes

icio +  {t +  l)coo$ +  (t +  2)ciq62 =  0,

which gives

9 =
~ ( t  + 1 )cqo +  \J it  +  1) Coo “  4 f ( t  +  2)c2

10
2(t +  2)c10

0,

if cio 7̂  0

i f  Cjo =  0 .

If we do not assume ck0 ~  0, the ML equation is given by 

't  + 1 \ /  1 1 \
t ) \ i - e 2 \ - e 2t+2

)  fcoo +  2 ] r  Ck0A  +  x ;  kck09k =  0.
'  \  k = 1 /  fc= 1
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Now, let us find the exact ML equation. From (4.2.44) we get

di i ^aiog|Vi(^)| i as cm)
89 2 89 2a2 89

I * %! i v J )

d \ v , m / d e  n i  E ? ,1t r [ ( g v r 1(9 )/a9 )u i]

(4.2.47)

after substituting the exact estim ate of cr2. If we assume U = t  particularly, the 

exact ML equation can be simplified as

equation in the simulations instead of the approximate ML estimate.

4.2.3 Quasi-least squares estimates

To obtain QLS estimates, we need to minimize S(/3 ,9) w ith respect to  (3 

and 9. Equating to  zero the partial derivative of S(/3 ,9) w ith respect to  (3 we get

(4.2.42). The estim ate of 9 is obtained by two steps as follows.

d \V (9)\/d6  t t r  l ( d V - 1(9)/d9)U}

For MA(1) case, we have

|V | =

2 t r [ V " 1(W, - C , „ ) V “ 'U  .

The ML estimates §t) are the simultaneous solutions of (4.2.42) and (4.2.47), 

and of is (4.2.43) plugging in (/3h 9j). In Section 4.2.5, we will use the exact ML
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Equating to  zero the partial derivative of 5 (/3 ,9) with respect to 6 we get

2
de (1 - e2)2 E E t r (C ^ 0U ,) (k9k~l -  ( k - 2)<?fc+1

i= l fc=l

cqo

set q (4.2.48)

The solution involves solving the max(f;)~degree polynomial equation of 9, but since 

Cfco se 0, k > 2, an approximation to  (4.2.48) may be

cio T  (coo +  2020)6* +  cl092 =  0,

which yields

ClO

1  +  9 2 Cqo +  C20
(4.2.49)

The ULS estimates of (/3, 9) is: then obtained by solving (4.2.42) and (4.2.49) recur­

sively. The estim ate of (3 obtained this way is also the QLS estimate. Suppose 6W 

is the ULS estimate, the second step of QLS m ethod modifies 9U to  be consistent. 

Recalling (1.2.21) in the second step we need to solve

£ j a v r \ e . )
i= 1 de

•V,;
2(1 + 92) 

(1 -  <%)2

n ti  - 1

i =  1 k= 1

E  E  tr (C ,w P .) -  (k -  2)»*+>)

+ K  E t r ( P , )
i=1

set Q_

Since

tr (P ^  

tr (C ,10P  i)

tr (C lfcoPi)

(U -  1 ) p

0, k > 2,
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the equation above becomes

tOu +  (t — 1)(1 +  @u) P — 0) (4.2.50)

which yields
   ̂ '"U

t — 1 1 -f 02 (t — l)(coo + c20)
t  ~ 0 U tcwtc 10

From (4.2.34) we get

(i +  eS) + v/(i +  «S)2 - 4 a 2#?
2a0u (4.2.51)

0 if =  0,

where a — — 1). The QLS estim ate of a 2 is obtained plugging in (3q, 6 q in

(4.2.43). The simulation result next is based on the solution without the approxi­

m ation Cfco ~  0, k > 2.

4.2.4 T h e  asymptotic distribution

The asym ptotic distribution is obtained when n  goes to infinity while tys are 

held fixed. For simplicity, we assume th a t U = t. The asymptotic distribution of 

the maximum likelihood estimates were obtained by finding the information matrix, 

while the distribution of the moment estimates and the quasi-least squares estimates 

were obtained by finding the distribution of U  and then applying the delta theorem. 

We will first find the asymptotic distribution of the maximum likelihood estimates. 

We will need the following results regarding the first and second derivatives of the 

log-likelihood (4.2.44) with respect to (3,9, and a 2:

d \V \/d 9  d tx { Y - l \J)/dB
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where

81
d a 2
d 2l
80*

8H
802

8 2l 
d ip 2')2 

d 2l 
8(389 

8 2l 
8(38a2 

8 2l 
da'2 89

n
"2

1

a 2

n
2

a
t
T a

E X 'V - 1! , ,
i=1

n 
“ 2 
1 n

82\V \/8 9 2 ( 8 \V \ /d 9 \ 2 8 2 t r ( V ^ U ) /d 9 2

m v iv i J +
2 tr(V _1U ) t

fju a *
(9V” 1

i=1 89
1

a i=l
n d t r Q / - 1!!)  

2cr4 89

tr

tr

|V |

8 \V\
' ~ W

a2|v|
892

' 8 V - 1 x

 ̂ 89 
3 2V _1 

d02

g2k
k—0

^ 2  k 0 2k~l
fc=1

t
Y  2 k{2 k -  1)9
k=1

2k—2

U J  =  —2 tr  |V  (0It — G 10)V  U

u j  =  8 tr  [ v - ^ I t  -  C io)V “ 1(0It -  C 10)V ” 1U

—2 tr(V _1V _1U ).
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d/3da2J -  \ d p d d j  ~  ’

Define t>i =  a 2 (£ £ ”=1 X 'V ^ X , ) " 1 and

S -1 -  -  -  n
- E  (dH /dd2) - E ( d 2 l/d 9 d a 2) 
- E  (d 2 l/dOdcr2) - E  (d 2 l /d ( a 2)2)

then the asymptotic variance of (j3;, 9i, a 2) is given by

r l {/3 ,6 ,a2) =  -  E/.
n

where E; =  diag(t’!, S 2|).

In order to find the distribution of the moment and quasi-least squares es­

tim ates, we have to know the th ird  and forth moments of the distribution. For 

convenience, we assume th a t the distribution is normal. The asymptotic variance 

of all three estimates of j3 is given by tq. The efficiency of the estimates of a 2 

will be consistent with the efficiency of the estimates of 9. Thus we will only show 

the asymptotic distribution of the estim ates of 9. Under norm ality assumption, we 

have

Sj N  (0, a 2 V ), i — 1 , . . .  ,n ,

this implies

E(vec(Uj)) — a 2 vec(V),

Cov(vec(TU)) =  2 a 4V  ® V , i =  1
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Let c =  (e00, c10, c20)' =  (tr(U ), t r (C i0U ), tr (C 20U )) , then

c N  (jac, — E c^ , as n  —► oo, (4.2.52)

where fxc =  cr2(l +  02)(f, (f — l)p, 0)' and E c =  2cr4(l +  d2)2{t>i:?} is symmetric with

vu  =  t r (P  • P )  =  t +  2(t -  l)p 2,

v l 2  =  tr (P  • Cio • P )  =  2(t -  l)p ,

n22 =  tr (C 10P  ■ C 10P ) =  i  (t -  1) +  (3t -  5)p2,

u13 =  tr (P  • C 20 • P )  =  (t -  2)p2,

h23 =  tr(C io P  • C 20P )  — (t — 2)p
,  ̂ ”  2 , p2f(t +  2) r 3p2 . . r,

n33 =  tr (C 20P  • C 20P ) =  - — -(I . +  p) H if t is odd].
Z  0  0

Here we used the results

tr(C io) =  tr(C f0) =  0, 

tr(C?„) =  i  ( « -  1). 

tr(Cf0) =  i  (3( -  5),

ti'(C 2o) =  tr (C 2oCio) =  tr (C 20) =  tr (C 2oCf0) =  0,

tr(C20) =  ~~2 ~ ’

t r (C 20C 10)2 =  — ^(t +  2) -  [ if t is odd], 

tr (C 10C 20Cio) =  ^ ( f - 2 ) .

Recall tha t

tcw
P m

Pq  ~

(t ~  l)Coo ’ 
tClO

( t  ~  l ) ( c oo  +  C2 0 )
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This gives

which implies

dpra
dc

dpq
dc

dc

dpqM  _

t (  °w \
(:t -  l)4o \ °0 j  ’

t (  cio

( t - - l ) ( c w + c M) T “ (C“  +  Ĉ

 1_______  /  (t -  !)p  \
a 2( l  +  92) t ( t -  1)  V 0  )

a -  D j \
dc <t2(1 + 92)t{t -  1) ^ (t _  i ) p J

Using the delta theorem, we get

Pm -V U

P, -+-> N( p ,

n
1
n

■‘pm

JPQ as n  —*■ oo,

where

1
f2(t — 1) +  2t(f — 3)p2 +  4(f — I )3p4 ,

[t2(t — 1) — (3f3 -  10t2 +  91 + 2)p2 +  (t -  l ) 2(f -  2)p3

+ - ( t  — l ) 2p4 | ( t 2 +  34t — 48) — [ 3, if t  is odd

Given the estim ate p w ith asymptotic mean p and variance S p/n , the estimate of

6  is given by 0 =  ( - 1  +  >/l -  4p2)/(2p), p V 0. This gives

dfl(Mp) _  ^  _  1 ^
dp’ 2 p2 \  v i  -  4p2 y '

Applying the delta theorem again, we get,

SP(M,j) / '£ „ \  80{P#;
6 JV 0(P ,),

<9p; \  n j  dp
as n  —̂ oo,

th a t is

0  N  (9, — a T,p ) , as n  —> oo,
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Figure 4.5. AR Es of 9rn and 6q when the data is normal.

where a =  (T — 2p2 — -\fl — 4p2j /(2p4( l  —4p2)). Thus the asymptotic distributions 

of 6m and 0q are given by

1
Or,

en

N  [ 9, -  S 2m
n
1 ^

— ±j2q I , as n  —> 00, 
n 1

N O

where S 2m =  a T,prn and S 2g =  a S pg. The distribution of the exact quasi-least 

squares estimates is not easy to  find. We present the distribution of an approxima­

tion here. In the next section we use simulations for comparisons with the exact 

quasi-least squares estimates. We first make theoretical comparisons of the mo­

ment, the maximum likelihood and the approxim ate qua,si-least squares estimates. 

Figure 4.5 shows the plot of the AREs of 9q and 0m when t  =  30, and Figure 4.6 

gives the 3D plot of the ARE of 6q. We see that, the maximum likelihood estim ates 

are the best, while the moment estimates are the worst. It is not surprising th a t the 

efficiency of the approximate quasi-least squares estimates are close to th a t of the 

moment estimates, since the estimates differ only by c2o in the denominator. B ut
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Figure 4-6. A R E  o f 9 q when the data is normal.

as we will see the next section, the exact quasi-least squares estimates are much 

better than  the moment estimates.

4.2.5 Simulation Results

In this section we use simulations to  make efficiency comparisons between the 

exact maximum likelihood estimates and the quasi-least squares estim ates for the 

MA(1) model. We will use Newton-Raphson m ethod to obtain both  of those esti­

mates. As before, we assume (3 — 0 and a 2 =  1 in our simulation, and concentrate 

on comparing the estimates of 9. We choose t ranging from 5 to 45 and 9 ranging 

from —0.95 to  0.95. We first study the asym ptotic properties of the estim ates when 

the data  is normal. We generate a t-dimensional vector e whose elements are from a 

standard normal distribution, and then  we let y =  a 2~Vlj/2£ and repeat the process
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Table 4-4■ AREs of 9q, and 9m (in parentheses) when the data is simulated from

normal distribution.

0 t=5 t==10 t==30

0.0 1.0248 (1.0335) 1.0033 (1.0170) 1.0024 (1.0220)
0.1 1.0193 (0.9734) 1.0064 (0.9743) 0.9993 (0.9602)
0.2 0.9960 (0.8512) 0.9793 (0.8309) 0.9965 (0.8398)
0.3 0.9199 (0.7034) 0.9603 (0.6622) 0.9920 (0.6720)
0.4 0.9082 (0.5149) 0.9253 (0.4605) 0.9872 (0.4638)
0.5 0.9296 (0.5315) 0.8189 (0.2781) 0.9293 (0.2500)
0.6 0.9433 (0.5412) 0.7203 (0.2300) 0.8397 (0.1225)
0.7 1.0536 (0.5369) 0.5433 (0.2106) 0.6454 (0.0733)
0.8 2.9930 (1.1240) 0.5980 (0.1637) 0.3615 (0.0525)
0.9 0.2242 (0.1039) 0.6916 (0.3481) 0.2280 (0.0199)
0.95 0.0335 (0.0184) 0.0612 (0.0257) 0.0065 (0.0168)

n — 30 times. The whole process is then repeated 10000 times. For each replication, 

we com pute the moment, maximum likelihood and quasi- least estimates of 9. and 

then com pute the mean square errors (MSEs). We use Newton-Raphson m ethod to 

solve the exact ML equation and quasi-least, squares estim ating equation by setting 

the precision to  be le  — 10. If any estim ate is not feasible, the whole record was 

deleted and hence excluded from the  analysis. Define the ARE of 9q w ith respect 

to  9i as e(9q; 8{) = M S E i/M S E q, and define the ARE of 6m w ith respect to (9; 

similarly. Table 4.4 gives the efficiencies for t  = 5, 10 and 30. The efficiencies 

are symmetric about 9 = 0, thus, only the  efficiencies when 9 is non-negative are 

shown. The numbers in the parentheses are the AREs of 9m. Figure 4.7 shows the 

plot of the AREs of 9q and 9m when t  = 30. Figure 4.8 gives the 3D plot of the 

ARE of 8q. We found out th a t the ARE of 9q are larger than  th a t of 9m. Some 

efficiencies are larger than  one due to  the approximation of the Newton-Raphson 

iteration. Theoretically, the efficiencies should be one when 9 is 0. The bias plot 

is given by Figure 4.9 when t = 30. It is clear from the plot th a t the maximum
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distribution.

likelihood estimates have the smallest bias, while the moment estimates have the 

most bias. Thus, the maximum likelihood estimates are the best based on either 

bias or mean square errors.

To further check the robust property of estimates, we simulate the data  from 

the Student-t distribution w ith mean 0 and 5 degrees of freedom. We generate 

the samples as before but instead of normal we use the t-distribution. Table 4.5 

gives the efficiencies for t = 5, 10 and 30. The efficiencies are symmetric about 

9 = 0 and only the efficiencies when 9 is non-negative are shown. The numbers 

in the parentheses are the AREs of 9m. Figure 4.10 shows the plot of the AREs 

of 9q and 9,m when t =  30. Figure 4.11 gives the 3D plot of the ARE of 9q. We 

found out th a t the ARE of 9q are larger than  th a t of 9m, but still smaller than  

th a t of 9i, although it is larger than  1 when 9 is close to  1 and t  is small. W hen 

9 is close to 1, the estim ates become very unstable. We also tried contam inated
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Table 4-5. AREs of 9q, and 9m (in parentheses) when the data is simulated from

Student-t distribution.

9 t==5 t=TO t==30

0.0 1.0430 (1.0754) 1.0088 1.0274) 1.0016 1.0010)
0.1 1.0235 (0.9932) 1.0016 0.9838) 1.0008 0.9591)
0.2 0.9843 (0.8280) 0.9936 0.8624) 0.9942 0.8626)
0.3 0.9623 (0.7314) 0.9488 0.6402) 0.9923 0.6704)
0.4 0.9166 (0.5555) 0.9104 0.4663) 0.9351 0.4607)
0.5 0.8607 (0.5471) 0.7693 0.2845) 0.8923 0.2609)
0.6 0.9123 (0.6166) 0.6781 0.2614) 0.7406 0.1243)
0.7 1.3067 (0.7652) 0.5802 0.2452) 0.5900 0.0864)
0.8 1.7350 (0.8421) 0.5117 0.1759) 0.2448 0.0508)
0.9 0.2831 (0.1682) 0.3866 0.1970) 0.0889 0.0228)
0.95 0.1005 (0.0633) 0.1300 0.0707) 0.0057 0.0175)

normal distribution, bu t still observed the same pattern  unfortunately. The bias 

plot is given by Figure 4.9 when t  — 30. It is clear from the  plot th a t the maximum 

likelihood estimates still have the smallest bias, while the  moment estim ates have 

the most bias. 'Thus, the maximum likelihood estimates are still the best based 

on either bias or mean square errors. B ut compared to  moment estimates, the 

quasi-least squares estim ates are much better.

Some discussion of the com putational and programming issues is in order. 

The maximum likelihood estim ates are not easy to  compute numerically, even w ith 

a high-speed computer. For example, for the program to  find the determ inant 

of the m atrix V  and the determ inant of the derivative m atrix of V  with respect 

to  6, the computer reported a “out of flow” error message. T hat is because the 

determinants are very large when t is large. I have to  find the ratio of this two 

instead of finding each one separatively. Regarding the Newton-Raphson method, 

choosing the efficiency of convergence and the number of iteration is very im portant. 

Generally, if you want more efficiency, you have to let the program iterate  more
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Figure 4-11- A R E  of 6q when the data is simulated from  Student-t distribution.
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Figure f.12 . Biases o f 9m, 6q and 0i when the data is simulated from  Student-t 

distribution.

times. For efficiency to  be le  — 10, the normal iteration is about 10. We set the 

maximum iteration to  30.

4.3 Sum m ary

In this chapter, we studied the three estim ating methods for the tim e series 

regression model w ith AR(p) and MA(1) errors. We also proved th a t the GEE 

methods including GEE1, GEE2 and EG EE reduce to  either moment or maximum 

likelihood methods in this particular case. Specifically, GEE1 can be reduced to 

moment estimates, and GEE2 and EGEE can be reduced to  maximum likelihood 

estimates. This is true  for the generalized ARMA (p, q) model. Since we assume 

th a t the covariance m atrix  does not depend on the regression param eter, the issue
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of misspecification does not arise. Theoretical and simulation results show th a t the 

maximum likelihood estimates are the best when the da ta  is normal. For the AR(p), 

the quasi-least squares estimates may be more robust, for example, when the data 

is from a contam inated distribution. While, for the MA(1) case, the pattern is 

different, bu t the quasi-least squares estimates are still good competitors.
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CHAPTER V

CONCLUSIONS

Until now, we have studied the time series regression model with AR(p) and 

MA(1) error. It is essential to  obtain an efficient estim ate of the autoregressive 

and moving average param eters, since a more efficient estim ate of the autoregres­

sive and moving average param eter will result a more efficient regression (J3) and 

scale (cr2) param eter estimates. We found th a t the maximum likelihood estimates 

are best when the data  is normal, and the quasi-least squares estim ates are good 

competitors. We have not applied the methods to the model w ith MA(q) or mixed 

errors yet, though these parts are more complicated and challenging. We see tha t 

even in MA(1) case, the application of the moment, maximum likelihood and quasi­

least squares methods are very complicated. The m ethod we used in MA(1) case 

are actually generalized result for ARMA(p, q) model, except for moment method. 

A quadratieally convergent process was suggested by Box et al. (1994) (Chap.6, 

p .221) for the moment method. Quasi-least squares m ethods second step also needs 

be modified a little bit according to  different model. I t ’s no doubt th a t the efficien­

cies of the estimates will behavior the same as the models we just studied.

Sometimes, the d a ta  may be grouped due to the nature of the study. It 

is desirable to fit the same order autoregressive-moving average model but with 

different parameters for each group. Suppose th a t there are K  treatm ent group 

totally, and for the k th group, k =  1, K , there are nk replications, for the ith 

replication, there are tknki repeated measurements. The model may be expressed
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in m atrix notation as

y ki =  X fo:/3 +  £ki; i =  1, . . .  ,rafe, fc =  1,

where e ki is an ARMA(p, q) process with param eter A*,. We will reserve the 

notations introduced before. The adjusted sum of square errors become

K  n k

S( /3 , \ u . . . , X k ) =
fc= l i =  1 

K  n k

k = 1 i=1

On taking the partial derivative of 5(/3, A*, . . . ,  A#) w ith respect to  (3 and equating 

to 0, we obtain

(K  n k y " 1 K  n k

fe= l j= 3 /  /c = l  i = l

The covariance is given by

/  1 K Ttk
cov(p)=«r2 - y  y  x'tv.yxit

U k fc=1 i~ -l

The estim ate of cr2 is hence given by

2-^k—l Z->i=l l k n ki

The estimates of \ k s need to modified accordingly. I t is noted th a t this generalized 

model has more application than  the regular one. For example, in the dental study 

as presented in C hapter II and III, we could have fitted the model with different 

autoregressive param eter for each group, since th a t is more acceptable.

When the series fitted tu rn  out to be unstable, it is convenient to take the 

first or second order difference of the da ta  and then fit the model again. Thus we 

could generalize the m ethods to the ARIMA(p, q) model. Not just generalizing to 

the time series model, we could generalize the m ethods to  the  growth curve model 

(see Chaganty (2003)) or nonlinear model. Basically, the m ethods are just like
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generalized least squares method, whenever you need to  estim ate of the parameters 

involved in  a  regression model, you can use all the methods. One im portant question 

remains: which one would you pick? Well, it depends on the situation. W hen you 

choose one method, always remember th a t there are some backups, and keep in 

mind th a t you can verify your results by applying other methods.
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T h e  N ew ton -R ap h son  M ethod

The Newton-Raphson m ethod (Ralston and Wilf (1967), Carnahan et al. 

(1969)) is a  numerical iterative procedure th a t can be used to solve nonlinear equa­

tions. It can only find the real roots of equations. We discuss and illustrate the 

use of the  method by first considering a single nonlinear equation and then a set of 

nonlinear equations.

Let /(C ) =  0 be the equation to  be solved for C- The Newton-Raphson method 

requires an initial estim ate of Cj. say Co> such th a t /(Co) is close to  zero, preferably, 

and then the first approxim ate iteration is given by

Cl =  Co -  /(C o)//'(C o)

where /'(Co) is th e  first derivative of /(C ) evaluated a t C =  Co- In general, the  

(fc +  l ) th iteration  or approxim ation  is given by

ik+i = ik -  / ( & ) / / '( & )

where /'(Cfc) is the first derivative of /(C ) evaluated at C =  Cfc- The iteration 

term inates at the kth iteration if /(Cfc) is close enough to  zero or the difference 

between Cfc and Cfc-i is negligible. The stopping rule is ra ther subjective. Acceptable 

rules are that /(Cfc) or D  =  Cfc — Cfc-1 is in the neighborhood of 10"6 or 10"7.

The Newton- Raphson m ethod can be extended to  solve a system of equa­

tions with more th an  one unknown. Suppose th a t we wish to find values of 

C =  (Ci)C2) - - - ; Crf)/ such th a t

f(C) = o,
this section was w ritten based on Lee, E. (1992) appendix A
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where f(£) =  (/i(£)> / 2(C); ■ • -, fd(£)Y- Let be the partial derivative of / j  with 

respect to  th a t is =  d fi/d ^ j .  The m atrix

• h i
®21

-  Odi • • • Odd

is called the  Jacobian matrix. Let the inverse of J , denoted by J ^ 1, be

r—l

fell

&21
bid
bid

bdi • • • bda

And let £ k =  (£k,€ k, • • • >£d)' be the approximate root at the kth iteration and let 

f k be the corresponding values of the functions f, th a t is, f k — f (£fc) and J -1* be 

J -1 . evaluated a t £k. Then the next approximation is given, by

- k + 1 (A .l)

Specifically, that, is

fc+i
s  

e j+1

d +I = +

The iterative procedure begins with a preselected initial approximate , . . . .  

proceeds following (A.l), and term inates either when / 1, / 2, . . . ,  f d are close enough 

to  zero or when differences in the £ values a t two consecutive iterations are negli­

gible.
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APPENDIX II

A SAS Program

* This program simulates the data  from a Student-t distribution, *
* assuming th a t the data  is balanced and the error is an AR(1) *
* process. First, It will compute the estim ates of <f> and a 2, *
* using moment, maximum likelihood and quasi-least squares *
* m ethods, respectively, and then calculate the mean square errors *
* (MSE) of all three estimates for each simulation. Finally the *
* plots showing the comparisons of the efficiencies are generated. *

)

proc i m l ;

s i g s q  = 1; * real va lue  o f  a 2',

n = 30;  * no . o f  rep lica tions]

nsim = 10000;  * no, o f  s im u la tio n ]

s e e d  = 843623;  * ra n d o m  n u m b e r  seed:

* generate the data from  a Student-t distribution with degrees o f freedom 
specified by the main program:

s t a r t  r a n t ( d f , s e e d ) ;

z  = t i n v ( r a n u n i ( s e e d ) , d f )  /  s q r t ( d f / ( d f - 2 )  ) ;  

r e t u r n ( z ) ; f i n i s h  r a n t ;

* calculate a 2]
s t a r t  s i g s q ( p h i ,  cOO, c lO,  e l l , t ) ;

s i g s q  = (cOO + c l l * p h i * p h i  -  2 * c l 0 * p h i )  /  t ;  

r e t u r n ( s i g s q ) ; f i n i s h  s i g s q ;

* output the efficiencies to the file ‘data.dad7: 
f i l e n a m e  r e s u l t  ‘d a t a . d a t ’ ;

do t  = 5 t o  55 by 5; * t: no. o f repeated measurements;
do ph i  = - 0 . 9 8  t o  0 . 9 8  by 0 . 0 2 ; * phi: the real value o f <p:

* keep tracking the program ;
f i l e  l o g ;  put  'Note!  E x e c u t i n g  . . .  ’ t  p h i ;  c l o s e f i l e  l o g ;
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* calculate the correlation matrix] 
p h i i  = 1;

do k  = 1 t o  t - 1 ;

p h i i  = p h i i  / /  ( p h i i [ k ]  * ph i  ) ;

end;

c o r r  = t o e p l i t z ( p h i i ) ;

* define the matrices needed fo r calculating clO, cOO, e l l ; 
D ll = 0 | |  j ( 1 ,  t - 2 , 1) I| 0; D l l  = d i a g ( D l l ) ; 

DIO = t o e p l i t z C  0 1 1 | r e p e a t ( 0 ,  1, t - 2 )  ) /  2 . 0 ;

* initia l MSEs, ‘l ’s mean the M SEs o f a 2 estimates]
m s e r l  = 0 

mserq = 0 

mserm = 0

m s e r l 1 = 0 

m serql  = 0 

mserml = 0

do s  = 1 t o  nsim;

* create a sample from  the t- distribution with degrees o f freedom 5] 

d a t a  = j ( n ,  t , 0 ) ;

do i  = 1 t o  n,  do j = 1 t o  t ;

d a t a [ i a j ]  = r a n t ( 5 ,  s e e d ) ;  

e n d ; e n d ;

* Cholesky decomposition o f the covariance matrix, root function  
creates an upper triangular matrix]

g = r o o t (  c o r r * s i g s q  /  (1 -  p h i* * 2 )  ) ;

* ‘error’ simulated is an A R (1 )  process with parameter <p] 
e r r o r  = d a t a  * g;

ubar = e r r o r ’ * e r r o r  /  n;  

cOO = t r a c e ( u b a r ) ; 

e l l  = t r a c e ( D l l * u b a r  ) ;  

clO = t r a c e ( D10*ubar ) ;

a = s q r t ( ( t - 2 ) * * 2 * c l 0 * * 2 + 3 * ( t - l ) * c 0 0 * c l l + 3 * t * ( t - 1 ) * c 11**2)  

b = clO * ( 2 * ( t - 2 ) * * 3 * c l 0 * * 2 - 9 * t * ( t - l ) * ( 2 * t - l ) * c l l * * 2

+ 9 * ( t - l ) * ( t - 2 ) * c 0 0 * c l l )
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a l p h a  = a r c o s ( l / 2 )  + a r c o s (  a * * ( - 3 ) * b  /  2 ) /  3;

p h i i  = ( l / ( 3 * ( t - l ) * c l l ) )  * C ( t - 2 ) * c l 0  -  2 * a * c o s ( a l p h a ) ) ;

* MLE of  6 ;

phim = t * c lO  /  ( ( t - l ) * c O O  ) ;  * M O M  estimate o f  </>;

p h i q  = ( t - 2 ) * c l 0  /  ( ( t - l ) * c l l  ) ;  * QLS estimate o f f :

s i g s q l  = s i g s q ( p h i l ,  cOO, clO,  e l l ,  t ) ; * M LE of a 2]
s i g s q m  = s igsqC phim, cOO, c l O , e l l ,  t )  ; * M OM  eMimate of
s i g s q q  = s ig s q C p h i q ,  cOO, c lO,  e l l , t ) ; * QLS estimate o f a

m s e r l  = m se r l  + s s q (  p h i 1 - p h i ) ; 

mserq = mserq + s s q (  p h i q - p h i ) ; 

mserm = mserm + s s q (  p h i m - p h i ) ; 

m s e r l l  = m s e r l l  + s s q (  s i g s q l - s i g s q  ) ;  

m se r q l  = m serql  + s s q (  s i g s q q - s i g s q  ) ; 

mserml = mserml + s s q (  s i g s q m - s i g s q  ) ;  

end;

* asymptotic relative efficiencies;
e f f q  = m se r l  /  mserq; e f f  q l  = m s e r l l  /  msei’q l ;

e f fm  = m se r l  /  mserm; e f f m l  = m s e r l l  /  mserml,

f i l e  r e s u l t ;

put  t  5 . 0  p h i  1 0 . 2  s i g s q  8 . 1  e f f q  1 2 . 7  e f fm  1 2 .7  

e f f q l  1 2 . 7  e f f m l  1 2 .7 ;

e n d ; e n d ; 

q u i t ;

* input the asymptotic relative efficiencies', 
d a t a  data;

i n f i l e  £ d a t a . d a t ’ ;

in put  t  p h i  s i g s q  e f f q  e ffm e f f q l  e f f m l ;

run;

g o p t i o n s  r e s e t  = g l o b a l  g a c c e s s  = g s a s f i l e  g u n i t  = p e t  

h t i t l e  = 6 h t e x t  = 3 a u t o f e e d

v o r i g i n  = Oin h o r i g i n  = Oin

f  t e x t  = s w i s s  f  t i t l e  = s w i s s b  cback  = w h i t e
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hsize = 5.4in vsize = 3.6in dev = pslepsfc

symbol1 i  = j o i n  v = c i r c l e  c = red;  

symbol2 i  = j o i n  v = X c = green;

symbols  i  = j o i n  v = t r i a n g l e  c = b l u e ;  

l e g e n d l  l a b e l  = ( h e i g h t  = 1 " " ) ;

a x i s l  l a b e l  = ( a  = 90 h = 4 . 0  ' E f f i c i e n c y  ( t = 1 0 ) ’ ) ;

* A R E  o f Q LS vs MLE: 
f i l e n a m e  g s a s f i l e  ' t q 3 d . p s ’ ; 

proc  g3d d a t a  = da ta ;

p l o t  p h i * t  = e f f q / g r i d  r o t a t e  = 50 t i l t  = 70

xt icknum = 9 y t icknum = 7 zt i cknum = 5

run; q u i t ;

d a t a  d a t a l ; s e t  da ta ;  

i f  t  = 10;

l a b e l  e f fm  = 'MOM’ e f f q  = £QLS>;

run;

* all A R E s when t = 10; 
f i l e n a m e  g s a s f i l e  ' t l Q . p s ?; 

proc  g p l o t  d a t a  = d a t a l ;

p l o t  ( e f fm  e f f q ) * p h i / o v e r l a y  l e g e n d = l e g e n d l  v a x i s = a x i s l  v r e f  

run; q u i t ;
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