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ABSTRACT

ESTIMATION OF PARAMETERS IN REPLICATED
TIME SERIES REGRESSION MODELS

Genming Shi
Old Dominion University, 2003
Director: Dr. Narasinga R. Chaganty

The time series regression model was widely studied in the literature by sev-
eral authors. However, statistical analysis of replicated time series regression models
has received little attention. In this thesis, we study the application of quasi-least
squares, a relatively new method, to estimate the parameters in replicated time se-
ries models with general ARMA(p, ¢) correlation structure. We also study several
established methods for estimating the parameters in those models, including the
maximum likelihood, method of moments, and the GEE method. Asymptotic com-
parisons of the methods are made by fixing the number of repeated measurements
in each series, and letting the number of replications n go to infinity. Our theoret-
ical as well as some simulation results show that the quasi-least squares estimates
are undoubtedly better than the moment estimates, and are good competitors and
more robust than the maximum likelihood estimates. Examples are presented to
illustrate the application of the quasi-least squares method to analyze real life data

situations.
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CHAPTER 1

INTRODUCTION

One of the most useful and widely studied statistical model is the linear
regression model where the outcomes are serially dependent and follow a time series
pattern. In this chapter, we formally state this model, also known as the time series
regression model, and present a review of the various methods of estimation. We
then discuss a replicated version of the time series regression model and summarize

the methods for estimating the parameters.

The organization of this chapter is as follows. In Section 1.1, we give a formal
definition of the replicated time series regression model. In Section 1.2, we briefly
summarize the traditional estimating methods: maximum likelihood and the mo-
ment method of estimation. We point out some drawbacks with those methods and
then introduce the quasi-least squares as an alternative method of estimation. In
Section 1.3, we present an overview of the organization of this thesis. In Section 1.4,

we give a summary of the notation and basic definition used in this thesis.

1.1 Replicated time series regression model

A popular model for analyzing repeated measurement data that occurs in real
life is the replicated time series regression model with a stationary autoregressive

moving average ARMA(p, ¢) error term. Indeed, time series analysis is developed

The model for this thesis is Jowrnal of the American Statistical Association.
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mainly to study a sequence of observations that occur with time. But there are
situations, especially in longitudinal data analysis, where we have independent se-
quences of repeated observations. Here the number of repeated observations is
small, whereas the number of independent sequences is large. Therefore, it is only
natural to find the limiting distributions as the number of independent sequences
converges to infinity, unlike in time series where the limiting distributions of the

estimates are obtained as the length of the series goes to infinity.

For simplicity, let us first consider a single time series regression model. Sup-

pose that {y,} follows a linear regression model of the form

/ B
y = xB+e;, j=1,...,¢ (1.1.1)
where x; = (%1,...,2;.) is a r-dimensional vector of deterministic or stochastic
covariates, and 3 = (0y,...,/4,) is the vector of unknown regression parameters

describing the relationship between y; and x;. Following Box et al. (1994), suppose
y;’s are dependent and the error term { €, } follows a stationary ARMA (p, ) process

with mean 0 and unknown variance o2, that is,
€= rgj1t o Gpyp Fa; —Ohay g — = 0405, (1.1.2)
or in terms of a;’s
o0
&5 = Z Vi,
k=0

where {a;} is a white noise process with mean 0 and unknown variance o2 and ;s

are unknown coefficients.

Let us denote the autoregressive parameters by ¢ = (¢1,...¢,)", and the
moving average parameters by 6 = (6y,...,6,)" and denote both set of parameters

by A = (¢',8')Y. A is unknown and satisfies certain condition so that {¢;} is
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stationary and invertible. Multiplying both sides of (1.1.2) by ¢;_ and taking
expectation, we see that the k™ lag autocovariance function 4, = Cov(e;,g44) of

{&;} satisfies the difference equation

Ve = ¢1'7k~1 + ot ¢pn/k:~p + f?’sa(k) - 017&a(k - 1) et Qq’)"sa(k - Q)
= ¢lﬁ/k—~1 +o pr'?’k—p - 0—2<0k'¢0 + 9k+1w1 +o qu)q—k> (1'1'3)
with the convention that g = —1. Here 7.,(k) is the cross covariance function

between & and a and is defined by v.o(k) = E(e;_x a;), whichis ¢, if £ <0 and 0

otherwise, E denotes the expected value. Equation (1.1.3) implies

Ve = ¢1A/k-1 + ¢27’k~2 +oee At Qﬁpﬁyk—p ) k Zq+ 17

Yo = it @yt ‘72(1 =i — - = 050,), (1.1.4)
where v, = o2 is the variance of {&;} and (1.1.4) has to be solved along with
the p equations (1.1.3) to obtain g, v1,...,7,. Suppose pr = 7g/v is the ke

autocorrelation function of {e;} . Then

P = O1Pr—1 + Papr—a + -+ PpPr_yp, kE>q+1, (1.1.5)

Pr = Q1px-1+ Gaprao+ -+ Opprp —
0 (Otho + Opathy + -+ + O, 1)
Prn+ G+ 021 = O1hy — o = Ogg)]

0<k<qg.

Now suppose we have n independent sequences of data. Given a sample of

t; (> 2p) observations, let y; = (yi1, ¥i2, ..., Yu,)" be a t; x 1 response vector for
replication ¢ == 1,2, ..., nand y = (yy,...,y,) contains all observations. The error
vector €; = (€41, --,&,) has mean O and covariance I';(A, (72), and hence y; has

mean X,;3 and covariance

Ti(A, 02) = 02P:(A) = o?Vi(A), (1.1.6)
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4

where T';(\, ¢%) is the #;-dimensional covariance matrix with the &k diagonal ele-
ments yx_1, P;(A) is the t;-dimensional autocorrelation matrix with the k™ diag-
onal elements p,_; and V;(A) = o2 P;(A\)/o?. The stationary condition implies
that T';,, P; and V; are positive definite. Define the #; x r covariates matrix as
X; = (%, .-, Xy,), and assume that X is of full rank r and satisfies the Grenander
conditions (see, e.g., Anderson 1971, P. 572). The model (1.1.1) may be expressed
in matrix notation as

1.2 Review of literature and research motivation

An important problem in the replicated time series regression model is the
estimation of the (r + p+ ¢ -+ 1) parameters (3, A, 0?) in the model (1.1.7). If we
treat the model as a regression model without any distributional assumptions, we
can use generalized estimating equation (GEE) approach. On the other hand, if
we treat the model as a time series model, we could use Box-Jenkins unconditional
least squares and Bayesian approaches (Box et al. (1994)). But the traditional
and popular techniques have been the moment (MOM) and the maximum likeli-
hood (ML) estimating methods. Recently, Cheang and Reinsel (2000) discussed
restricted maximum likelihood (REML) method for the model with AR(p) errors.
This research mainly focuses on deriving MOM and ML estimating methods and

making relative efficiency comparisons with respect to those methods.
If the vector of autoregressive and moving average parameters X is known, V

can be computed from A. Given V, the efficient estimates of regression parameters

can be computed using generalized least squares (GLS). That is, we minimize the
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adjusted sum of square errors
SBA) = Y& Vite,
= (- XYV i - X)
- Z”: [yiVily, - 28XV Yy + BXIVIKE] (128
with respect to 3. It can also be written as

S(B,A) = itr (Vi'u), (1.2.9)

where ‘tr’ means the frace, and

Ui(B) = eig; = (vi = XiB)(y: — XiB)"

On taking the partial derivative of S(8,A) in (1.2.8) with respect to 3, we obtain

7S T 2 .
(~—~ = -2 ZX;V;“;yi + 2 (Z X;V;IX.,i> 3,
d'g g==1 gel
which gives
n -1 7
B, = (Z X;V,;lxi) XV, (1.2.10)
=1 =1

where g stands for generalized least squares estimate and
1
Cov(3 ( ZX’ ) : (1.2.11)
An unbiased estimate of o is

f;jz — 5(8,2) —%}Ej (ViU (1.2.12)

where T = Y7, t,;/n. It is well known that the estimates of 3 and o2 are optimal

in many ways. Hence, in this thesis, we will focus on the estimation of A.
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Moment estimating method

The simplest method to estimate A is the moment estimating method. Given
the “residuals” &; = y; — X, from the regression model (1.1.7), we obtain the
moment estimate of A by setting E(e;e}) = &;€, and solving the equations, this

is equivalent to setting ['; = &€,

since T; = Cov(e;) = E(g;€}) — E(g;)E(g;) =
E(ese)). There are (f; — k) estimates for the k' lag autocovariance ~y; for the
it" replication, we estimate those by averaging them, hence 7 is estimated by
¢ro/(t — k), where

] otk

Crp =~ ;l* Z Z Eij Ci(j+k)s k= 0, 17 e, P (1213)

i=1 j=1

and ‘hat’ indicates evaluating based on the residuals. Some authors have used g/t
as the estimate for +; instead, this two estimates are close to each other when ¢;’s
are large. The k' vautocorrelation pr may thus be estimated as the k** sample
autocorrelation 7, = tog/((t — k) cop). A more general definition of ¢ may be
found in Section 4.1. For autoregressive error model, the parameter A reduces to
¢, the moment estimate of ¢ is the same as the Yule-Walker estimate and we
will discuss the details in Section 4.1; for moving average error model and mixed
autoregressive-moving average error model, the moment estimate of A’s are a little
difficult (Box et al. (1994) Chap.6, p.221, quadratically convergent process), and
we will discuss it in Section 4.2 only for MA(1) case. The moment estimates of 3
and o? are same as the GLS estimates (1.2.10) and (1.2.12). Since ,@g depends on A
and 5\9 depends on the “residuals” &;’s, which require the estimate of 3, we need to
solve for (3,., \,,) recursively by combining (1.2.10) with the estimating equation
of A and then obtain ¢2, using (1.2.12) plugging in (B, , A,,), where m stands for
moment estimates. One iterative method is the Newton-Raphson method (Ralston

and Wilf 1967, Carnahan et al. 1969), see Appendix I for a detailed discussion on
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the method.

Maximum likelihood estimating method

Another important and frequently used method is the maximum likelihood.
We will derive the maximum likelihood estimates (MLEs) from the likelihood func-
tion and the ML equations. The solutions of the equations are not always in a
closed form, therefore we solve the equations only for simple cases, e.g. AR(1) and
AR(2) error models, and use Newton-Raphson method solving the ML equations for
AR(p) error model, although an approximate maximum likelihood estimates were
suggested by Box et al. (1994, p.300). We will show these are no improvement
over the moment estimates in terms of efficiency. For more complicated models, e.g.

MA(1) error model, Newton-Raphson method is again used to obtain the MLEs.

Assuming that the error term g; is normal. The likelihood function of y is

1 Sy = XaB) Vi (y — Xi6)
5 eXp{ — 5 3
(2m02) % TIE /| V4] 20

L(B, A\ %) =

hence, the log-likelihood function is

o M ety o Y o
B, A 0%) = 5 log(27) 5 log(o?) 5 zzzzllog]Vz[ 2025(,8,/\), (1.2.14)

where S(B3,A) is as defined in (1.2.8). We will see that |V;] is independent of ¢;
for the AR(p) error model. In a single time series analysis (only one replication),
(1.2.14) is dominated by the term involving S{3, A) for moderate or large ¢, we can
ignore the term involving |V,| and hence obtain the unconditional least squares
estimates, which is also the first step quasi-least squares estimates as shown next.
Furthermore, if we estimate some initial values for a;, 7 < 0, we may obtain the

conditional least squares estimates (Box et al. (1994), p.226-227). But in our
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case, t;’s may be small and n is involved in both terms, we cannot ignore the term

involving |V;| when n is large.

Taking the partial derivative of (1.2.14) with respect to ¢? and 3 we obtain

a 1 98(8.A)
o8 202 98
- L [Sxvey (Sxvex) )
i=1 i=1
9o 207? 204
These yield
n -1 n
B = (zxzvzlxi) XYy, (1215)
i=1 i=1
1 1 &
2 = = == (V1U;). (1.2.
o — S(B,A) — Z:tl\VZ U,) (1.2.16)

Note that they have the same expressions as the GLS estimates shown in (1.2.10)
and (1.2.12), respectively. Now taking the partial derivative of (1.2.14) with respect

to A we get :
_Q_l_ 1 T Glog (V| 1 9S(B,A)
202 oA

Thus, the ML equation of A is

Y alogivi Zt( v z):o. (1.2.17)

i=1
Let JV;!/OX be the matrix of partial derivatives with respect to \,. Equation

(1.2.17) can also be written as

n -1 n ¢ -1
ot (%_ Uz—) oY (a;f; Vi) = 0. (1.2.18)
i=1 i=1

We write in this form only for the purpose of comparison with quasi-least squares

method. Here we used the identities:

Qgﬂ i (avi V.“l) ,
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ox ia/\

After plugging in the estimate of o2 in (1.2.16), equation (1.2.17) becomes

Zt (Vi UL) +ni - Zm( . Z):o‘ (1.2.19)

" 310 |Vl

>

=1

Note that the solution of (1.2.19) usually is not in a closed form. The ML estimates
(ﬁl, 5\1), where [ stands for maximum hkelihood estimate, are the simultaneous so-
lutions of the equations (1.2.15) and (1.2.19) subject to the set of feasible values of
; A, which ensures the stationary and invertibility of the process {¢;} . Finally, the

ML estimate of o2 is obtained by (1.2.16) plugging in (3;, A;).

Motivation

We have seen that there are several methods of estimating the parameters
in replicated time series regression model. However, each method has some limi- -
tations. The moment method estimate is not very efficient, while the ML method
needs the normality assumption of the data. Also, the MLEs are hard to obtain
numerically and may be highly biased even for moderately large samples. GEE
approach is mainly developed for general correlated regression model and has its
own drawbacks. It will be shown in Section 4.1.2 that the GEE methods may
be reduced to either moment or the maximum likelihood method in some cases.
Restricted ML estimating method is a modification of the regular ML estimating
method and is even more complicated than the ML method. The Box-Jenkins ap-
proach is normally used when we have only one series consisting a large collection
of repeated measurements. Bayesian method requires a prior and is not very pop-
ular in time series data analysis. Therefore, we introduce another method called

quasi-least squares estimating (QLS) method.
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The QLS method was introduced by Chaganty (1997) to the analysis of longi-
tudinal data, and then developed and generalized by Shults and Chaganty (1998),
Chaganty and Shults (1998) and Chaganty (2003) to the analysis of serially cor-
related data and growth curve models. It turns out to be a good competitor to
maximum likelihood estimating method in the sense that the estimate is easy to ob-
tain and has efficiency close to MLE. The QLS method does a great job especially
when the errors are equicorrelated or follow a first order autoregressive process
(Chaganty (2003)). More generally, when the errors follow an AR(p) process, QLS
method leads to a closed form unlike the ML method. Furthermore, we can verify
that, given the means and variances of the errors, the optimal unbiased estimat-
ing equation in the sense of Godambe (1960) for A is (1.2.17) or (1.2.18) without
making any distributional assumptions, see Chaganty and Naik (2002). But the
solution of this equation may not always exist in the feasible region, this leads to

the QLS method, which modifies the equation to obtain a feasible solution.

Quasi-least squares estimating method

The quasi-least squares estimating method is a two step process with regard-
ing to the estimation of 8 and A. It does not require any assumptions concerning
the distribution of the data, therefore, it can also be used even if y;’s are not nor-
mal. Technically, first, we set the first term of equation (1.2.18) to be 0 and get
a first stage estimate of A; second, setting the second term of (1.2.18) to be 0, we
solve this equation by plugging in the first stage estimate. This gives a way to find

a solution of (1.2.18), which always exists in the feasible region.

The first step of the QLS method consists of minimizing the objective function

S(B, A) with respect to 3 and A. This first step is also known as the unconditional
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least squares (ULS). Equating to 0 the partial derivative of (1.2.8) with respect to

A, we get

n 8V~_1
- L U; | =0. 2.
;m( FY UZ) 0 (1.2.20)

Suppose A, is the solution of (1.2.20), where u stands for unconditional least squares
estimate. Since (1.2.20) is not an unbiased estimating equation, that is, the ex-
pected value of the left hand side of the equation is not zero, we need to modify Ay

to be unbiased. This leads to the second step of the QLS method.

The second stage of QLS method consists of solving the equation

itr v(_avg/\(%), . VZ) =0 (1.2.21)

=1

to get a consistent estimate of A. Equating to zero the partial derivative of (1.2.8)
with respect to 3, we obtain (1.2.10). Given an estimate of 3, we obtain an estimate

X from (1.2.21), and then modify the estimate of 8 as

n -1 n )
B= (Z Xy 1(>\>X1z> DXV Ny (1.2.22)
=1 i=1

This procedure has to be done recursively until (3, A) converge to (Bq, j\q), where
g stands for quasi-least squares estimate. Finally, a consistent estimate of o2 based

on the residuals &; = y; — Xi,[:}q is given by

52 = L S(By Ag) = itr (VI'A)G), (1.2.23)

nt nt
where U; = ;&) /n. If we solve (1.2.10) and (1.2.20) recursively we can obtain the

ULS estimates of (3, \), and the estimate of o2 is then given by (1.2.12) plugging

in the estimates of (3, A).

As a summary, the three methods, i.e. MOM, ML and QLS, have the same

expressions for the estimations of @ and ¢2?. The main difference lies in how they
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estimate A. Note that the three estimates of 3 will have the same efficiency asymp-

totically as n — co.

1.3 Overview of thesis

This thesis consists of five chapters. Chapter I is the introduction. Here,
we introduced the general replicated time series regression model. The model is
described in a general setting including the notations. Several estimating methods
regarding to the unknown parameters in the model are presented. Again, these
methods are introduced in a general way without giving precise details. The com-
mon feature of the methods is that they share the same functional form for the
estimates of 3 and o2, which are the generalized least squares estimates. The main
difference between the methods is how they estimate A (¢ and ). The advantage
of quasi-least squares estimating method is that no assumptions about the distri-
bution of the data are required. In the last section of this chapter, the notation and
basic definition used in this thesis are listed. They may serve as an index for quick
reference to the notations and definitions if the reader prefers to read a separate

chapter or a section without going through the whole thesis.

In Chapter II, we study the application of the estimating methods to the
model with AR(1) errors, which is the most important model for many practical
situations. The methods are described in detail for this particular model. The
asymptotic properties are illustrated by theorems. The simulation results are pre-
sented in several tables and figures. We apply the estimating methods when the
data has a normal, Student t-distribution and Beta distribution, respectively. For
normally distributed data, we compare the methods by finding the asymptotic dis-

tributions; when the data has a Student t-distribution or a Beta distribution, we
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compare the methods by simulation. The asymptotic properties and t‘f;e simulation
results reveal that the quasi-least squares estimating method is better than the mo-
ment estimating method, and it is a good competitor to the maximum likelihood
estimating method. It is better than the ML method when the data has a Beta
distribution. Finally, a real data analysis is presented to illustrate the estimating

methods.

In Chapter 111, the application of the estimating methods to the model with
AR(2) errors is studied. As in Chapter I, the methods are described in detail for this
model, and we compare them by simulation, since explicit derivation of the asymp-
totic distributions is difficult in this case. The feasible region of the parameters is
a little more complicated. Special care is needed when calculating the numerical
value of the estimates, since they are much easier to go out of the boundary. A real

data analysis is also presented to illustrate the estimating methods.

Chapter 1V is the generalization of the results in the previous chapters. Here,
we study the model with autoregressive of order p, AR (p) and moving average
of order one, MA (1) errors. When the error is an AR(p) process, the feasible
region of the parameters is complicated and difficult to illustrate geometrically.
The asymptotic distributions are also extremely complicated. The exact MLEs
are hard to obtain and only a,pprommations are available. When the model has
a MA (1) errors, at first sight it appears to be easy, but actually it is very much
involved because the inverse of the correlation matrix is not in a simple form.
There are problems with convergence and appropriate approximations are needed
when obtaining the numerical values. Our final goal is to generalize the estimating
methods to the model with an ARMA (p, q) error, we will give a brief discussion of

these important research topics in Chapter V.

Chapter V gives details of future directions for further research. This includes
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generalization of the estimations methods to ARMA (p, q) model, and the model

with different autoregressive-moving average parameters for each groups.

Finally, the Appendices contain the discussion of Newton-Raphson method

and a SAS program example used in this thesis.

1.4 Notation and basic definition

Throughout this thesis, matrices are represented by upper case bold letters,
vectors by lower case bold letters. Greek lower case letters are used for parameters
and Greek boldfaced lower case letters are used for a collection of parameters. The

following notation and definitions are used throughout the thesis.

1. We assume that the series data {y,} is dependent and follows a linear regres-

sion model of the form

! .
y, = x;8+¢g;, j=1,...,¢
where ¢ > 2p is the number of observations and x; = (2j1,...,2) 1S & co-
variates vector. The unknown regression parameter vector 8 = (01,...,5.)

describes the relationship between y; and x;. Suppose there were n repli-
cations, but the response within replications are uncorrelated. For the 7"
replication, writing the responses as a single vector y,, the model in matrix
notation is

vi = X;B+¢€, i=1,...,n

The unknown regression parameter vector 3 is the same for all the replica-

tions.
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2. For the i replication, y; = (yi, Y2, - - ., ¥i,) 1s the #; x 1 response vector
and &; = (g;,...,€u,) is the error vector. The ¢, X r covariates matrix
X; = (x};,...,%;;,) is assumed to be of full rank r and assumed to satisfy the

Grenander conditions (see, e.g., Anderson (1971, p.572)).

3. AR(1) denotes an autoregressive process of degree 1. Similarly AR(2) denotes
an autoregressive process of degree 2. More generally, AR(p) denotes an
autoregressive process of degree p. Now MA(1) is an acronym for a moving
average process of degree 1 and MA(q) for a moving average process of degree
g. Finally, ARMA(p, q) stands for an autoregressive and moving average

process of degrees p and gq.

4. For any replication, the error series { £;} is assumed to be a stationary process
following an ARMA (p, q) (here p or g, but not both,' could be 0) model with

mean 0 and variance o2, that is,
Ej = ¢15j~1 4+ ¢p6"j_p -+ CLj — 91(1,3'_.1 e — anj—"qa

where {a;} is a white noise process with mean 0 and variance o®. Define

a; = (au) Ai2y - - -y a'it)/-

5. Denote the autoregressive parameters by ¢ = (¢1,...,¢,)’, the moving av-
erage parameters by 8 = (61,...,6,) and A = (¢',0'). We assume that A

satisfies appropriate conditions so that { ¢;} is stationary and invertible.

6. The k'™ lag autocovariance function of {£,} is 4, = Cov(e;, &) and the k"
lag autocorrelation function is py, = /70, where vy = o2 is the variance of the
series {€,;} . The ¢ x t autocovariance matrix I' made at ¢ successive times
is a Toeplitz matrix from (v, V1, -, V1) with the k™ diagonal elements
Yi-1- The t x t matrix P(\) is the autocorrelation matrix Toeplitzed from

(1,p1,--.,pi—1) with the k™ diagonal elements p, ;. Also define the ¢ x ¢
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matrix V = (02/0?) P. The matrices I', P and V with the subscript p means
the dimension is p instead of t. The stationarity conditions imply that I', P
and V are positive definite. The saraple autocorrelation matrix is represented
by the t x ¢t matrix R. The p-dimensional autocorrelation vector is defined
as p = (p1,p2,...,pp) and the sample autocorrelation vector is defined as
r = (ry,79,...,75). The lower triangular ¢ x ¢ matrix L is the Cholesky

decomposition of V3. Define A(@) = 1—¢'p = 1—d1p1 — apa— - — ppp.
7. The error €; has mean 0 and covariance I'; = ¢2P; = 0%V, that is,
E(g;) =0, Cov(e;) =T, for i=1,...,n,
where ‘B’ is the ezpected value and ‘Cov’ denotes the covariance.

8. Define

Ui(B) = e = (yi — XiB)(y: — XiB)

U, = U,(B), i=1,...,n.
9. The error sum of square errors is denoted by
S(BA) = Y evite
i=1
B itr (V;IUi> .
i=1

10. In order to obtain MLE, we need to assume that the error €; is normal. The

likelihood function of y == (v1,...,¥n) is

1 exp (* Py = XiB) Vi (yi — Xﬁ)) |
(2m0?)s 2, \/‘—\/—i! 902 ;

L(B, X 0%) =

1

where £ = 3.7, t;/n. Hence, the log-likelihood function is

nt 1 & 1
log(o?) — = Y log|Vi| — == .
5 og(o?) 2 2 log [Vl 52 S(B,X)

‘ i
(B, o) = —%— log(2m) —
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The information matrix based on y is I,(3, ¢, 0*). For other methods, we do

not need to make any assumptions about the distribution.

11. When the autocovariance matrix I' = 02V, the estimates of the autoregres-
sive and moving average parameters are denoted by the ‘hat’ symbol and this
is default symbol for all estimates; If T' = ¢2P, the estimates are denoted
by the ‘tilde’ symbol. In this thesis, we only discuss the case when writ-
ing I = 0V, except for the AR(1) case. The subscript of the estimates g
stands for generalized least squares estimate, [ stands for mazimum likelihood
estimate, m stands for moment estimate, q stands for quasi-least squares es-
timate, u stands for unconditonal least squares estimate, and al stands for
approzimate mazimum likelihood estimate. The asymptotic variance of the

estimates are denoted by v with corresponding subscripts.

12. ML is the abbreviation for mazximum lkelihood, AML is the abbreviation for
approzimate mazimum likelihood, MOM is the abbreviation for moment, and
QLS is the abbreviation for quasi-least sqﬁares. GLS is the abbreviation for
generalized least squares and ULS is the abbreviation for unconditional least
squares. MLE is the abbreviation for mazimum likelihood estimate. GEE is

the abbreviation for generalized estimating equations.

13. Define the t; x t; matrix C;;; such that Cy = Cypy and, for k > [, 2C;y
has (t; — k — ) one’s on the (k — [)'" diagonals above and below the main
diagonal, excluding the first and last [ elements on these diagonals, and zero’s
elsewhere, k = 1,...,p, {1 = 0,1,...,p. The matrix Cj, has (t; — 2k) one’s
on the main diagonal, excluding the first and last k elements, k=0, 1,....,p.
Note that Cigq is simply the ¢; x ¢; identity matrix (also denoted by I;). The

matrix Cgy with the superscript p means the dimension is p.
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14. The p x 1 vector € is a unit vector with one in the k'™ position and zero’s

elsewhere, k = 1,...,p — 1. The identity matrix of order ¢; is denoted by I,.

The diagonal matrix D has (1,2, ..., p) on the main diagonal and 0 elsewhere.
15. Define
1 n
e = =y tr(CmU;)
i
1 n  ti—k
= = Z Z E4iCi(j+k—1) k:0717"'7p7 l:0717"'7p7
23 =141
= cu/t—k—1), k=0,1,...,p, 1=0,1,...,p.
Note that ¢y = e, ¢f; = ¢f,. Further define ¢g = (e0,¢00,...,6p0)" and
¢y = (Clo: Chos - - - ,C;O)I. C is the p x p matrix with the (k, {)** element ¢y and

C* is the p x p matrix with the {k,1)"* element c},. We add a hat (*"’) to

these symbols to indicate evaluating at 3.

16. ‘B’ denotes expected value, ‘tr’ is an abbreviation for trace, ‘Var’ means vori-
ance, and ‘Cov’ means covariance. The operator ‘vec’ forms a vector by
stacking the columns of one matrix, and ® denotes the Kronecker product.

The symbol ~%, stands for converging wn distribution.

17. The partial derivation of a scalar function (3, ¢,0?) is a p X 1 vector

(B, ¢, 0% _ <8l(6, ¢, 0%) a8, ¢, az)>’
d¢ don T 0gy )

where ¢, ..., ¢, are the components of the vector ¢.

18. The second partial derivation of a scalar function (3, ¢, %) is a p x r matrix

P
a2l<ﬁ ¢7 02> ad)ldﬁl . 5¢>15@~
0poB T

96,08, 09,00,

where ¢1,...,¢, and B4,..., 3, are the components of the vector ¢ and 3.
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CHAPTER 11

APPLICATION OF THE ESTIMATING METHODS TO

THE MODEL WITH AR(1) ERRORS

In this chapter, we study in detail various methods of estimation and their
asymptotic properties for the first order autoregressive time series regression model.
In Section 2.1, we present the model with AR(1) and discuss the moment and
maximum likelihood methods for estimating the parameters in Section 2.2. The
quasi-least squares estimating method is presented in Section 2.3. Asymptotic
properties with explicit expressions of all three estimating methods are obtained
in Section 2.4, assuming the number of replications go to infinity. Section 2.5
summaries the results for a special case when all tilE t. Comparisons are made by
examining the asymptotic relative efficiencies through simulation in Section 2.6. We

contrast the different methods of estimation using a dental study data in Section 2.7.

2.1 Model

Suppose that the data come from a first order autoregressive (AR(1)) process.
The maximum likelihood approach for this model was discussed by Hasza (1980)

for a single replication. The model is given by (1.1.7) and while (1.1.2) reduces to
g5 = (,b(':jﬁl + Qaj. (211)

The process satisfies the invertible condition automatically, but the stationary con-

dition requires that |¢| < 1. Using (1.1.5), the autocorrelation function satisfies the
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first order difference equation
pr = opr—1, k=1,
which, with pg = 1, has the solution
pr = ¢* k= 0. (2.1.2)
On dividing throughout (1.1.4) by v = o2 and replace p; with ¢, the variance o2

can be written as
2

2 O
o, = 1= (2.1.3)
Thus, the error €; has mean 0 and covariance
Li(¢,0%) = 02Pi(¢) = 0> Vi(0) (2.1.4)

where T';(¢, o?) is the ; x t; covariance matrix, P;{(¢) is the t; X t; correlation ma-
trix with the k** diagonal element equal to ¢*~! and

1

Vz(¢) = m Pi(¢). , (2.1.5)

Note that V;(¢) is a function of ¢ only. The inverse of V,(¢) is given by
V;(¢) = Cioo — 2¢Ciyp + #*Cinn, (2.1.6)

where C,gq is simply the t;-dimensional identity matrix, 2 C;1q is a t; x t; tridiagonal
matrix with 0’s on the main diagonal and 1's on the upper and lower diagonals,
and C;y; is the identity matrix with the first and last elements zero. We can write
V. Y(¢) = L;L!, where L; is the Cholesky decomposition of V;'(¢), and L; is
lower triangular with first diagonal element equals to /1 — @7, remaining diagonal
elements equal to 1, elements in the first off diagonal is —¢, and 0 elsewhere, that

18

1—¢? (1) 0
L-| ¢ bt o0
O e ——gb j‘ Ly Xt
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The adjusted sum of square errors S(3, A) shown in (1.2.9) becomes

S@,6) = Lu(vy

= Nn- (COO ey 2(15610 -+ §b2611), (217)

where

1 1

Coo = o, - (Uﬂ) = n i1 Z] 1579"

Cilo = = 1( a0lU;) = % i 123 1 EigEi+1)s
X 1 2i—1

¢ = e 1(Cia Us) CAD DD PAaE

A more general deﬁmtmn of ¢i;’s 18 in Section 4.1.

2.2 Moment and maximum likelihood estimates

Recall that the GLS estimates of 8 and o? as in (1.2.10) and (1.2.12) are

given by
R T ~1 k2
B, = (Z XiV; 1X> S OXVi s, (2.2.8)
i=1 =1
-2 1 2
T, = %' (COO - chod) -+ C11¢ ), (229)

where = 3.7 ; t;/n. Given the “residuals” &, =y, — Xi,fi, by setting I’ = &€ the
variance of y,; is estimated by égo/%, and the first order autocovariance is estimated
by é10/(t — 1). Thus the moment estimate of p; = ¢ is

té10

o (2.2.10)

(/):7"1:

Hence, the moment estimates (,@m., qgm) are the simultaneous solutions of (2.2.8)
and (2.2.10) and 62, is obtained by (2.2.9) plugging in (8,,, ¢y). Note that some

authors have used the following moment estimate

L

d;' _ L=l Zji? éméz(frl)/(t - 1)
" =1 ] lgzj/t

(2.2.11)
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The exact expressions of MLEs are difficult to obtain, but not impossible in this

case. Assuming the error €;’s are normal, the likelihood function of y is given by

1 ;{~24“”&mwfm‘xﬁq.

27702(”2)/211?:1{\71-{1/2 ex 202

L(B,4,0%) =

The log-likelihood function is given by

bl 1A S(B.9)
UB,,0%) = == log(2m) — 5 log(o) = 5> log| Vil = =757,

(2.2.12)

where S(3, ¢) is defined in (2.1.7). Equating to zero the partial derivative of the
equation above with respect to 8 and o we obtain (2.2.8) and (2.2.9), respectively.

The determinant of V; is given by

1
1— g2’

Vil = |Ly| 7% =

which yields,
dlog|[Vi| 29

dp 1 —¢?
From (2.1.6) we obtain
oV (¢
9¢
Thus the partial derivative of the log-likelihood function (2.2.12) with respect to ¢
1s
ol & c11¢ — co
— = —n . 2.2.14
56~ " (1 g T (2:2.14)
This gives the ML equation of ¢ as
e — cro¢” — (e + 07)@ + ¢y = 0. (2.2.15)

If 02 is known, it has been shown by Haiza(1980) that (2.2.15) has exactly one root
in the interval (-1, 1) and can be obtained in a closed form; if o2 is unknown, we

substitute in (2.2.15) the estimate of o2 given in (2.2.9) and obtain

(T = Dend’ — (F— 2)c10¢” — (fenr + cop)9 + Tero = 0, (2.2.16)
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We can similarly show that there exists a unique closed solution in (—1,1)

b= (f—2)eyo — 2 ; 2.2.17
J 30 - Den I Jewo — 2acos(a)], ( )
where
a = L4 L arccos (a,’?’b)
3 3 ’
a = J(T— 22 +3( — Vewen + 38T — 1)y
1 _ , _ _
b = —i C1o ‘:2(15 - 2)SC%G -+ g(t - 1)(t - Q)COQCH

~9E(F — 1)(2F — 1)}, | -

Thus, the ML estimates (3,, ¢;) are the simultaneous solutions of (2.2.8) and

(2.2.17) and 67 is then obtained plugging in (8;, ¢) in (2.2.9).

2.3 Quasi-least squares estimates

We now derive the quasi-least squares estimating method. Equating to zero
the partial derivative of S(83, ¢) with respect to 8 we get (2.2.8). The estimate
of ¢ is obtained in two steps as follows. Equating to zero the partial derivative of

S(3, ¢) with respect to ¢ and noting (1.2.20), we get

o (V]!
tr | —=-U; | =0.
2 ( 5% U’) !

Using the result of (2.2.13) we have
2(c11¢ — c10) = 0.
This gives the first step estimate, which is also the ULS estimate as

n 10
qbu =
C11
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In step 2, we modify J)u to be consistent. Here we solve the equation

- avz_1<q3u> 2 s . ‘
;tr (T V@> == 1= (f)‘? ; [tI’(CﬂlPi)d)u — tr(C“OPi)]
2 & A N
T oIS (ti = 2)¢u — (8 = 1)g) =0

and the solution is

'\_:IL:'—Z - _(Z”‘2>C10

(2.3.18)

Thus the QLS estimates of (3,¢) are the simultaneous solutions of (2.2.8) and
(2.3.18), and the estimate of 67 is obtained plugging gzgq in (2.2.9). We can see that
the QLS estimate of ¢ will always be less than the ULS estimate and it will always
be greater than the moment estimate G, provided that all ¢;’s are equal and the

estimates of B are the same.

2.4 Asymptotic properties

In time series analysis, we usually consider the asymptotic properties when
the number of observations ¢; goes to infinity whereas here we consider it by fixing
t; and letting the number of replications n goes to infinity. For convenience, we first

derive the asymptotic property of the MLEs by finding the information matrix.

The asymptotic properties of MLEs

We have the following results regarding to the first and second derivatives of the

log-likelihood (2.2.12) with respect to (3, ¢,0?)

ol 1T SN e

% ) ;X1¢Vi Hy: — XuB),
ol neo n ,

5‘& = “1_¢2 - ;(01@*010),
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s DXV,

TL(l + sz) . Ci1
(1= o
nt n

3(o2)?2
2
B¢
2l
dB00?
2l
0020

Since

55d 56 (coo — 2¢ €10 + &°cnn),

1 & oVt
X et

; b o9
1 SN il
- ZXL'VZ' I(Yi — XiB),

A

<Yi - Xlﬁ)?

g2

n
; (0119’5 - Cm)-

7.2
E(Coo) = Tt—_agg
i 2
E(Cm) = @1 _1)(;;‘?
(t —2)o*

and using the formulas above we get

(&2
. (a—@?)

%1
b 3(o2)2 )

!

E 3[‘3802)
22l

E aﬂaas)

1 - 1571
~— LXIVi'X,
=1

nt

2047

Lo 20+ (E- 10— 67,

(1—¢?)

0,

0,

ng
(1- 2o

Thus the information matrix is given by
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[ ZJZ:] X;VZ-IXZ O/ O/ ]
o2
n (20 + (T~ 1)(1 - ¢%)] ng
A = 0 -
In(ﬁv ¢> g ) (1 . ¢2)2 (1 — ?2)0-2
0 e ot
_ (1= %) 20 |
(2.4.19)
Note that the determinant of the right bottom part B of I,(3, ¢, 0%) is
B - MIREE-D-g)] ot
N 201(1 ~ ¢2)? (1~ §)?
n?(t—1) [2¢° + {(1 — ¢?)]
204(1 — ¢?)? '
By finding the inverse of B, we get
oty (2.4.20)
n
where 3; = diag(vy, o), Loy = { ol 2}2;1 ] and
L1 1! |
no= o |- Z XIVi(9) XZJ , (2.4.21)
i=1
, (1 — ¢?)? o« oo
. e = . 2.4.22
T T DRE - )] o
2 4 2 2 T 1 — 2
(t = 129 + (1 - ¢%)]
2074(1 — &)
V231 =~ —

(f— D27 + (1 — ¢*)]

Thus, we have the following theorem,

Theorem 2.1 Consider the model (1.1.7). Assume that t;, < t < oo for all
1 = 1,...,n, and the errors €;’s are independent and normally distributed with
mean zero and covariance o2V, for i = 1,...,n. Let & = (B, ¢, 0®), and &, =

(B,, ¢1, 62) be the ML estimates of €. We have

n

éz*i’N(Sp I']), as n— oo,

where —% means converging in distribution and 17} is given by (2.4.20).
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It is clear from Theorem 2.1 that the ML estimate of 3 is uncorrelated with

(]Aﬁl and 67, but Q;g and 67 are negatively correlated.

Now we study the asymptotic properties of the moment and QLS estimates.
Since g;’s are independent, under simple conditions we can show that /@W and
Bq are consistent and asymptotically efficient as n — oo. Further, ggq and (/B.m
are consistent estimates of ¢ (see Theorem 2.2 and Remark 2.2). However, the
asymptotic distributions of ggm and QA')q depend on the higher order moments of the
errors €;’s. For comparison purpose, we assume normality for €;’s. First we state
Lemma 2.1 which is a simple extension of the result in Joe (1997, p. 301) and can
be proved by Taylor’s theorem. We will need this to establish Theorem 2.2.
<i<n

Lemma 2.1 Let z; be independent random vectors of dimensions t;, 1
Assume that t; < t for all . Let € be a parameter of fired dimension, and the
multivariate functions h,(2;,€) be such that

7t

> Elhi(z, &)] =0. (2.4.24)

i=1
Define M, (€) = L3577, Cov (hi(z;, €)) and L,(€) = =L 30 E(0h:(&)/0€). Here
1.(&) may not necessarily be the information matriz. Suppose é‘ 18 the solution of

the unbiased estimating equation

1 n
i
Then, under usual reqularity conditions we have

A 1
£E-4 N (5? ~I7'M, I,;l) . as n — 00. (2.4.26)
n
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Theorem 2.2 Consider the model (1.1.7). Assume that t; < t < oo for all
i = 1,...,n, and the errors €;’s are independent and normally distributed with
mean zero and covariance matriz o2V, fori = 1,...,n. Let & = (B, ¢), and
éq = (ﬁq, ggq)’ and €, = (B,,, dm) be the moment and the QLS estimates of &

respectively. Then we have
- d 1 .
52’ — N (51 _7; le) ’ as n-—+00, 1=m, ¢,

where 3y, = diag(vy, va), ¢ = m, q, vy is defined in (2.4.21) and

- 1 207\ 7rai? 7 2 L N AT L A\
Ugm = EQ(E—1)2(1~-¢2)2 [t (t—1)— 83t =5t +6)¢” + ({ — 1)(3T" — 4t + 4)¢

—~#( — 1)(f — 2)¢° + (‘i — (- 1)¢2)2 4 }nj ¢%} . (2.4.27)

ni5

- 1p Gélz')? (1—¢?)? [(f — D=2 -t -29E-T) ¢’

UVaq

n

. _ o S 4 1 :
+E(E-1DBE-8)¢" —T(T — 1)1 —2)¢® + - > :gb%i . (24.28)
2:1 4

Proof: Let P,(¢) and Cjy9, Ci1y are as defined in (2.1.4) and (2.1.6), we have the

following identities:

tr(P:) = 15,

tr(Cir Ps) =1~ 2,

tr(Ci10 P;) = (t; — 1),

v = (1= %) tr(Pi Py) =t;(1— ¢*) — 247 (1 — ¢™9),
vip = (1= ¢ tr(P; Cog ) =20{(t: = 1) —t:6* +¢™],
vis = (1= %) tr(P; Cipy Py) = 1;(1 — ¢*) — 2(1 — ¢™),

4 1
Vigo = (1 = ¢*)? tr(Ci1o P Cio Pi) = 5 !:(tz — (1 50" + Q56)

+(3t; — 7)¢* + 49,
Vins = (1 = ¢?)2 tr(Cin1 Py Cio Pi) = 2[(t; — 2)¢ — (i — 1)¢® + 9?71,
Vizg = (1 - ¢2>2 tr(Cm Pz Ci“ Pq) = (tz - 2) (1 - Q/Dll) — 2¢2(1 et ¢2t”—4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29
Now let us set up the notation needed in Lemma 2.1. Let z; = €; = y; — X; 3, note
that E(z;) = 0 and Cov(z;) = 0> V,(¢). Let £ = (3, ¢)' and

hi(€) = [XZXHES)ZZ }

where the matrix A;(¢) is a function of ¢ such that the estimate & is the solution

of (2.4.25). We have

(‘JV”1
vl ; :
T A
g —-2X'Ayz;  Z aa—g; Z;
which gives :
XV 0

This yields

vy }
L& =] 5 o 1 , (2.4.29)
[ N ErOr Z (%)

where vy is defined in (2.4.21). The covariance of h;(€) is given by

_ o?X!ViX; X!V E(z2) Ayz;)
Cov(hi(§)) = [ B (2,2, A7)V X, Var(z A; Zl) }

Under the assumption that z;’s are normally distributed we have

E(ZiZ:-A,iZi) = 0

IA . _ 2(]4 2
V&I’(Zi '13'62') = mtf(AzPZ) .
Hence
0.4/0;1 0/
= 201
M, (€) 0 o IZtrA P (2.4.30)

(1 —¢?)?

Now we just need to show that (2.4.24) is satisfied and find I;'M,I! for different

choice of A;(¢) . Clearly, E(x/V;'z,) = 0.
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a) For moment estimates, select A;(¢) = tCi190 — (f — 1)¢ Cipo. We have

n 0_2

;E(z;Aizi) = = 2 ZtrAP)

2

== 1 ¢2 {thr(CﬂgP t'— 1 ¢ th zOOP } = {},
- i=1

Thus equation (2.4.24) is satisfied. Since 9A;(¢)/0¢ = — (t —1)Cigp, which implies
that tr [(0A;/0¢)P;] = —(t — 1)t;, (2.4.29) becomes

0.2, 7 1 o
L,(¢) = l ; o2t — 1)} : (2.4.31)
1— ¢?

Further, we have
tT(AZPZ)Z - f2tf(ci10P¢Ci10Pi) - 2%(% — 1)¢tr(szP,P@) -+ (f - 1)2(b2tf<P2P7),
which yields,

1 & 1y -

= S Ttr(AP)E = 2 - 1) vam

n i 2

Substituting the expression above in (2.4.30) we get

oyt o
M, (&) = (T — 1) . (2.4.32)
Combining with (2.4.31) we get I''M, I =3,

b) For QLS estimates, select A;(¢) = (£ —2) Ciyp — (t — 1)¢ Ci11. We have

S E(ZAz) = > S tr(AP)
=1 1- ¢ i=1

which implies that (2.4.24) is satisfied. Since 0A;/0¢ = —(t — 1)C;11, we get
tr [(0A,;/09) P;] = —(f — 1)(t; — 2), and (2.4.29) reduces to

O'z’Ul 1 0/
IM@:{ o ﬁ@—U@~2ﬁ. (2.4.33)
(1—¢?)
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Further we have

tI'(A.iPz')Z = (% - 1)2¢2 tl"(CiuP.,;CﬂlPi) - 2@75(% - 1)(% — 2)tr(Ci11PZ—CﬂOP.i)

+ (f - 2) th(CnoPi Cz’lOPi) ’

which yields,

12 - 5
LS (AP = L (F - 120 — 2%,

n i1

[\

Substituting the expression above in (2.4.30) we get
atuy! 0
M, (§) = ot . : (2.4.34)

] m(t - 1)2(t - 2)2?)2,1

Combining with (2.4.33) we get I, M} = ¥;,. This complete the proof. <«

Remark 2.1 If we use (2.2.11) as the moment estimate of ¢, then the asymptotic

variance of ¢, 15 given by

v - 1 Ei 1 ___2_5_’: (6 — 5t; -+ 3t2)
am (1 - (;52)2 i (tz — 1} n i—1 t7 (tz - 1)2
(3152 At 4+4) " S (1 ¢2t i+
+ _— S A
nzl 2(ti—1) n;ti(t@ n71

8 n 242 4 7 2t;
IS SRS _,E?___Q
i=1 tz<tz — 1) n; (t2 - 1)

1

As we can see from Theorem 2.2, the moment and QLS estimates of 3 are
uncorrelated with both the estimates of ¢ and ¢®. However, the estimates of ¢ and
o? are correlated. The following Theorem 2.3 gives the asymptotic covariance of

the estimates of (¢, 02). In order to prove Theorem 2.3, we will need the following

Lemma 2.2.

Lemma 2.2 Consider the model (1.1.7). Assume that t; <t < oo, and the errors

g;’s are independent and normally distributed with mean zero and covariance o> V;.
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Let cio0 = t1(CinoUs), cino = tr(CinoUs), e = tr(CinnUy), ¢ = (cino, o, €in)’

I

fori=1,...,nand ¢ =3, &/n, where " " indicates evalualing at some estimate

of B. Then we have

1
& -2 N (uc, - EC> . as m - 0Q, (2.4.35)

(t, T-1)¢, 1—2), X, {vi; } with v;; = v;; and

where p@, = == ¢2)4

1—¢2
] 29 &
vy = t(1—¢4)—2¢2+%2¢%7
g=1
~ o 1 n »
v = 20 {(t~1)—t¢2+a}:¢%],
i=1
_ . 2
vy = (t—z)"t¢4+h‘z¢’2tiy
i=1
1. 4 6 Lo 2 25
v = (- 1)(1-50 +¢>+—<3t~?>@'+~52¢ g
2 =1

n z*l

— . 4 N
vy = ({—2)(1— ¢%) — 267 + - Z‘b% 2
i=1

Proof: Since that g; ~ N(0,0%V,}, we have
¢ % N (e, 2ie), as n—oo, for i=1 ..., n,

2

where Hie = T%g?f(th ( )¢7 t— 9)/ and Ezc - (/)2)? PP = - ¢9)1{szl} 1S
a symmetric matrix such that, v;i1, Vi, Uiz, Viaz, Vins, i3z are the identities defined
in the proof of Theorem 2.2. From the central limit theorem, we have
W d 1
c-—~+]\/<uc, —ZC), as n — 00,
n

where p, = S0, p,./n and B, = S, 3, /n. Note that 30, ¢*/n < ¢*, thus
3. is bounded. The proof of the lemma is completed by simplifying ¢, and 2.

<

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33
Theorem 2.3 Consider the model (1.1.7). Assume that t; < t < oo for all
v=1,...,n, and the errors g;’s are independent and normally distributed with mean
zero and covariance o2V, fori=1,...,n. Let & = (¢, 0*, and &,, = (Gm, 62)

and é’q = (cﬁq, 6‘2)’ be the moment and the quasi-least squares estimates of & respec-

tively. Then we have

where ig; = [ vai U2s } , &= m, g, Vo and vy, are defined in (2.4.27) and

(2.4.28), and

4otp? 204
3 = o Uam + =, 2.4.36
U3, 2= g7y Vom 7 _ ( )
4ot g? 204 | L -
Uz = _t”*(] o) Ugg + 7 [1 T ¢2)4—% , (2.4.37)
" 209 :
Jozs =  mmTrroe Ugg, B TNL 4.
234 0= 2 g

Proof:  We first consider the moment estimate. Since ém is a function of ¢ in
Lemma 2.2, we can apply delta theorem and then use (2.4.35) to prove it. Obviously,

£, (p.) = & We just need to find the asymptotic covariance. From (2.2.9) and

(2.2.10) we get

R __feig i 0
dé’m (f»l)cgo ) . (t—1)ego R
Ade! = i + 2610¢m _ 2éll¢§n _Q?m éllgb _9 ?jm ’
t Coo Coo 4 €10 t
which yields
A @) -8
dbr(12,) to? (T—1)o?
de! 1 2¢° 2¢ @?
i 7 t—-1 1
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Thus Xy, = [dém(uc) / dé’]‘ > [dé;n(p,c) /dé} and by simplifying it, we complete
the proof for the moment estimate. Next we consider the QLS estimate. Again,
ém is a function of ¢ also. And as before, we can apply delta theorem and then

use (2.4.35) to establish the result. Obviously, &,(¢,) = & and we need to find the

asymptotic covariance. From (2.2.9) and (2.3.18) we get

5 t—2 (T — 2)é1p
dé(’z = (t —1)én (-1 |,

1t —20,/(t—1) ¢p/(t-2)

which yields

. 1—¢° o(1 —¢%)
oltie) _ [ 0 mpm TEoge
Ut —2¢,/(t—1) ¢3/(t~2)

Thus X, = [dé’ )/ dé’i bR {dé;(uc) / dé} and after some simplification; we get

the result for the QLS estimate. This completes the proof of the theorem. <«

Remark 2.2 In proving Theorems 2.2 and 2.3, the normality assumption is used
only to derive explicitly the asymptotic variances of the estimates of { Brms o2) and
(gzgq, a?). The assumption is not needed to establish consistency of these estimates

q

nor to show that the estimates Bm and ,@q are asymptotically efficient.

Combining Theorems 2.1, 2.2 and 2.3 we have the following general theorem.

Theorem 2.4 Consider the model (1.1.7). Assume that t; < t < oo for all
i = 1,...,n, and the errors €;’s are independent and normally distributed with
mean zero and covariance o®V; fori = 1,....n. Let & = (8, ¢, o2Y, and £, =

(ﬁm,qgm, 62) and éq = (fiq,ng, &2)’ be the moment, ML and QLS estimates of &€
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respectively. Then we have
. d 1 .
£i~—+N(£, —2¢>, as n— o0, 1i=m,lq,
n

where E; = diag(vy, Xa;), ¢ = m, 1, q, v, Doy, and By, are defined in (2.4.21) and

Theorem 2.3, and %, is defined in (2.4.20).

Remark 2.3 As we can see from Theorem 2.4, the covariance between the esti-

2

mates of ¢ and o in all cases is

R _ 2
Cov(d, 63) = 0t

; =) Var( ¢; ), for i=m,l,q. (2.4.38)

2.5 A special case

Now, let us consider a special case by assuming that the data is balanced,
that is ¢; = t for all i. We drop the subscript ¢ and write V, C and ¢. Since ¢;’s are
all equal, U;’s have the same dimension. Let

1 n

We can check that -
coo = tr(U),

Cip = tl’(CmE)’
Ciy — tI(CHU).

The large sample property of the maximum likelihood estimate d;l, was originally
established by Fujikoshi et al. (1990). The following theorem summaries the results

regarding the asymptotical properties of the moment, ML and QLS estimates.

Theorem 2.5 Consider the model (1.1.7). Assume thatt; =t foralli=1,...,n,

and the errors €;’s are independent and normally distributed with mean zero and
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covariance o2V for any i. Let € = (B3, ¢, o%Y, and éz = (Bi,gz?)i, 62y, i=m,l,q, be
the moment, ML and QLS estimates of & respectively. All three estimates of (83,0%)

have the same expression

b = (ZXW*(&)&) XV By,
=1 3==1

6 = (oo + é11¢7’2 - 251()?7))/757
but

- téio

Om =

’ (t —_ 1)000
N 1

= = [{t — 2)¢39 — 2a cos{&)],

¢l 3(t w 1)&11 K )610 QCOS\Q)} ;
. t—2 - _ﬂ(t——2)ém

b0 = N T ey

where a and « are as defined in (2.2.17). Also,

. 1 :
£z~i—)]\r (57 “Ei>a as 7o O, /é:m7£79’7
\ n
. . V2; V23 .
where 3; = diag(vy, 3g;) with Xg; = }, i=m,l, g, and
U23i  Uszi
18 -
vy = o’ (;?_ Z X’l V(gﬁ) Xz) ,
=1
1 _
Vo = - [tQ(t — 1) — £(3t* — 5t + 6)¢*

A= 1P(1- )
+@—1xmﬁ-g+4mﬂ~ﬂr~D@~2Mﬁ+@f%f—@—1W31’

4ot ® 20%
Vam = m Vom, -+ T
t (1—¢%)7°
t—1 202 +t(1 — ¢?)
/ 20" 2¢% + (t = (1 - ¢%)]
BT T D) 207 + (1 — 62)]
1

0T T = 2P (1 - )2 [(t = 1)t = 2" —2(t = (31— )7

Vg =
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+(t—1)(3t — 8)6" — #(t — 1)(t — 2)¢° + 40|

dotep? _ 20" . 1
(¥ =R e ) r—— e
I CE O E (1—¢?)!
20%¢ : ]
i = T Uai, ?=m, i, q.
V23 H1 = 62 2 q

Proof:  The proof follows from Theorem 2.4, setting ¢; = t. The asymptotic
distribution of é, is found by (2.4.20) with the replacement of V; by V, by ¢ and
the asymptotic distribution of (qAﬁm, o2 and (d;q, 63) are obtained from (2.4.27)
and (2.4.28), respectively, replacing £ by ¢{. Since &; has a multivariate normal

distribution with mean 0 and covariance 0% V, we have

S 24 ,
vec(U) Ly N (O‘QVE}C(V), % V& V) . as  n— oo, (2.5.39)

where the operator vec(:) creates a column vector by stacking the columns of a
matrix below one another. Define ¢ = (égo, €10, ¢11). From (2.5.39) and delta
theorem we get

1
e -4 N (uc . Ec> ., as n — 00, (2.5.40)

where **’ means evaluating at 8, p, = I—i'—l-g(t, (t—1)p, t—2) and 3, = H%%%z{vkl}
is a symmetric matrix such that vy’s are the identities without the subscript 7 as
defined in the proof of Theorem 2.2 with the replacement of ¢; by ¢. The proof of

moment and quasi-least squares cases just follow the proof in Theorem 2.3. <«

In the next section, we will show that the QLS estimates are more efficient
than the moment estimates, and good competitors to the ML estimates. Moreover,
the QLS estimates are more efficient than the ML estimates when there is a slight

departure from normality of the data.
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Another form of estimates

Depending on how you write the covariance matrix I', the three estimating
methods can be derived in two forms by choosing different parameters to estimate.
One way is to write T’ = ¢ V(¢), which is the way we derived above, and hence
obtain the estimates of (3, ¢,0?); another way is to write T = ¢2 P(¢) and hence
obtain the estimates of (3, ¢,02). We will discuss the second form only for AR(1)
case. The estimates of 3 have the same efficiency no matter which form and method
you choose; while the estimates of 02 and o? are different in two forms, but have
the same expression for all three methods in either form. Thus, we will concentrate
on comparing the efficiencies of the estimates of ¢. The ML estimates of ¢ are the
same no matter which form. you choose because of the invariance property of the
MLE. The moment estimate of ¢ is less efficient than the QLS estimate. Thus we

| only need to compare the QLS estimates in the two forms and the ML estimate.
According to Chaganty (2003), the QLS estimate of ¢ in the second form may be

written as

. 2 B, 2¢
R e T (2.5.41)
1+¢2 oo+ Cn

where

3. = (Cop + €11) — \/(500 + 611)% — 483,

2¢1g
Note that d;q seems to be a combination of ¢, and $, in the first form, if we

approximate qf)m by é10/¢0. It was also shown that

~ B 1~
Oy~ N(¢, = Tay), as n— o0,
n

where

62q = (t N 1)2 {t(l - ¢2) - (1 - 4)%)}' (2542}
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One thing to note that is the first form estimate qAbq may not be feasible for some
data. This means the estimate of ¢ may lie outside the boundary. For instance,
assuming that the error { ¢;} has a normal distribution, if we choose n = 1 and &; =
—1.3,69 = 0.1,63 = 0.2 and ¢4, = 1, then (qu = 1.2 > 1. While one may show that
the second form estimate g7>q will always lie inside the boundary (Chaganty 1997,

p.51, Appendix A). But these are extreme cases occurring with small probability.

2.6 Asymptotic relative efficiency

We can compare the moment, ML and QLS estimates by finding the asymp-
totic relative efficiencies (AREs). Assuming that the error {£;} are normally dis-
tributed, we can obtain the AREs by taking the ratio of the asymptotic variances
since all estimates are consistent. As we can see, the AREs of the estimates of ¢ are
symmetric about ¢ = 0 and always equal to 1 when ¢ = 0. Theorem 2.4 shows that
three estimates of 3 have the same efficiency asymptotically, and the asymptotic

properties of the estimates of o2

are similar to the asymptotic properties of the
estimates of ¢ since the estimates of o2 have the same expression. Thus, we will
concentrate on comparing the estimates of ¢. The AREs of the moment and QLS
estimates of ¢ with respect to the ML estimate are defined as e((ﬁm; g%l) = vy /Vom,
and e(c?)q; c@z) = Uny/Vaq, Where Ugp,, vy, and vy, are defined in (2.4.27), (2.4.22) and
(2.4.28), respectively. For convenience, we assume t; = f. Table 2.1 contains the

AREs of ¢,, and oiq Vs él when t = 5, 10 and 30. The numbers in the parentheses

are the AREs of giq vs .

Figures 2.1 and 2.2 show the AREs of gﬁm and ng Vs ¢Eg when ¢ = 10 and 30,

respectively. The 3D plot of the ARE of éq Vs qASl is shown in Figure 2.3, where
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Table 2.1. AREs of ém and giq (in parentheses) vs &, when the data is normal.

¢

t=5

t=10

=30

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9940 (0.9993)
0.9759 (0.9971)
0.9455 (0.9926)
0.9028 (0.9845)

0.7841 (0.9431)
0.7125 (0.8918)
0.6350 (0.7885)

0.9964 (0.9999
0.9854 (0.9998
0.9662 (0.9994
0.9372 (0.9986
0.8961 (0.9970

0.7617 (0.9846
0.6606 (0.9573

0.9987 (1.0000)
0.9947 (1.0000)
0.9874 (1.0000)
0.9761 (1.0000)
0.9589 (0.9999)
0.9327 (0.9999)
0.8907 (0.9994)
0.8169 (0.9980)

(
(
(
0.8484 (0.9699)
(
(
(
(

0.9 0.5356 (0.5626) 0.5351 (0.8440
0.95 0.4357 (0.3494) 0.4464 (0.6453
0.98 0.2856 (0.1619)

0.6666 (0.9866)
0.5342 (0.9361)

)
)
)
)
)
0.8391 (0.9935)
)
)
)
)
) 0.4180 (0.7428)

0.3255 (0.3623

the z-axis is the value of ¢ ranges from —0.96 to 0.96, the y-axis is the value of ¢
ranges from 5 to 45, and the z-axis is the ARE. Also define the ARE of (pq VS O
as e(éq; (z;m}: Vo /U and the 3D plot is shown in Figure 2.4. It is clear from the
plofs that QASQ is better than g%m and is as good as ¢, for sufficiently large value of
t over the entire range of the parameter ¢. When |¢| approaches the boundary 1,
{&;} is highly correlated and the process turns to be non-stationary, the estimates
including the MLEs are not reliable in this case. We may apply a non-stationary
model instead, which is beyond the discussion of this thesis. One can take some
degree of differences of the data so that the new process is stationary and then
obtain the parameter estimates as usual. New, let’s define the AREs of 62, and 5’2
with respect to 67 as e(62; 67) = v31/Vam and e(62; 67) = vai/vsg, Where vz, vy
and v3, are defined in (2.4.36), (2.4.23) and (2.4.37), respectively. Figure 2.5 shows
the AREs of 62, and 67 vs 67 when t = 10. The 3D plot of the ARE of & vs 67 as
a function of ¢ and ¢ is shown in Figure 2.6, which is similar to Figure 2.3. Define
5o, as e(07; G1) = Vs /Usg, the 3D plot is shown

m

the ARE of 67 with respect to &

in Figure 2.7, which is similar to Figure 2.4. Hence, the QLS estimate of ¢? is also
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Figure 2.1. AREs of gfﬁm and _d;q VS éy; when the data 18 normal and t = 10.

better than the moment estimate and a good competitor to the ML estimate.

Now, let us compare the QLS estimates in the two forms. Define the ARE of
ggq with respect to q;q as e(éq; éq) = Uy, /Uaq, Where vy, and 7y, are given by (2.4.28)
and (2.5.42) respectively. Figure 2.8 shows the plot of e(qhﬁq; ¢,) as a function of ¢
when ¢t = 10. The 3D plot Figure 2.9 shows e(ggq; (;Nﬁq) as a function of ¢ and ¢. It is
clear from the plots that ¢, is better than ¢, for almost the entire feasible region of
¢ except for the boundary. Further, let us define the ARE of ng with respect to &,
as e(ng; (5;) = Uy /Tyq. Figure 2.10 shows the AREs of gim, ggq and ggq with respect
to ¢y as a function of ¢ when ¢ = 10. Based on the plot, the order of the goodness

of the estimates is clear. Result of the ARE of 67 with respect to 7 is similar.

Suppose now the data is from a distribution that is slightly different from

the normal. We will compare the estimates through simulation. Without loss of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

]
08 J;
1
i
=)
K 087
i 1
=
5 0.7 -
2 :
§0]
a(EJ ]
o 0.6 ':
05 -
04

-1.0

~0.8

-06

—-D.4

-02

MOM

0.0

phi

0.2

QLs

06 0.8

Figure 2.2. AREs of ggm and quﬁq vs {?),g when the data is normal and t = 30.

Efficiency

1.000

0.823

0.647

0470

0293
0.96

0.64

0.32

phi '

0.00

-0.32

-0.64

—pos S

10

15

40

35

25

Figure 2.3. ARFE of ggq vs ¢, when the data is normal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45




43

Efficiency

1.80

1.54

127

1.00

073 bl e Tl e e e
096 e L oy 38
088 el ot Ty

1'00 ~ T mmmmm———
0.99 -
0.98 -

0.97 -

10)

0.96 -
0.95 -

0.94

Efficiency (t

0.93

0.92

091 1

090 - _ - B

L e N i S B e e T T L R R i R S

—10 —~0.8 -06 -04 -02 0.0 0.2 04 0.6 0.8 1.0

Moment QLs

Figure 2.5. AREs of 67, and G2 vs 67 when the data is normal and t = 10.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Efficiency

1.000

0927 -7

0.854

0.781

Figure 2.6. ARE of 6% ws 67 when the data is normal.

Efficiency

1.044
1.005
0.867

0.928

Figure 2.7. ARE of &} vs 67, when the data is normal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44



: |

10 ‘J ’r ey . - s i e ‘4
09 -
08

0.7 -

Efficiency (t=10)

05 -

041

03 -~

e

[ .

i 1 ! I : i

~1.0 -0.8 -06 -04 -0.2 0.0 0.2 04 06 0.8 10

PR .

phi

Figure 2.8. ARE of ¢A'>q VS ng when the data is normal and t = 10.

Efficiency

1.089
0.892

0.696

0.499

0508 | T el }
0.96 . e R T <) %0
0.64 L S 30
0.32 g I Coal - o5

Figure 2.9. ARFE of ggq Vs ¢~)q when the data is normal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

09 -

08 -

10)

07 -

06 -

Efficiency (t

05 -

047 .

03 -

—-1.0 -08 -—-06 —-04 02 0.0 0.2 04 0.6 08 1.0
phi

MOM S QLS s QLS(P)

Figure 2.10. AREs of qAbm,-ng and gNBq when the data is normal and t = 10.

generality, we fix ¢? = 1 and assume 3 = 0. For fixed t and ¢, we generate a
t-dimensional vector € whose elements form a random sample from the Student-t
distribution with mean 0 and 5 degrees of freedom, and then let y = a\/gyng/ 2(p)e
and generate 10 (n = 10, small sample) of them. The y generated this way has
mean 0 and covariance 02 V(). Now the process is repeated 10000 times. For each
replication we compute the moment, normal ML (assuming the data is normal)
and QLS estimates of (¢, 0?), and then compute the mean square errors (MSEs).

h

Suppose ¢; is the estimate of ¢ for the i replication, ¢ = 1,..., 10000, then

MSE(¢) = 199904, — ¢)2/10000. The MSE calculated this way is an estimate of
the asymptotic variance of the asymptotically unbiased estimator. The AREs are
all defined with respect to the MLE this time, and are estimated by the ratio of
the MSEs. Table 2.2 gives the efficiencies when the data is Student-t distribution

for t = 5, 10 and 30. The numbers in the parentheses are the AREs of ng and ¢Sq.
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Table 2.2. ARFEs of qam, ¢Eq and éq (in parentheses) when the data is simulated

from Student-t distribution.

¢

t=5

t=10

t=30

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.94
0.98

1.0257 (0.9186, 1.0372)
1.0237 (0.8961, 1.0405)
1.0011 (0.8646, 1.0387)
0.9574 (0.8519, 1.0226)
0.9218 (0.8239, 1.0150)
0.8510 (0.8129, 0.9840)
0.8072 (0.8058, 0.9668)
0.7482 (0.7980, 0.9408)
0.6795 (0.7514, 0.9259)
0.6338 (0.6841, 0.9248)
0.5365 (0.4628, 0.9535)

N TN N S

1.0066 (0.9912, 1.0128)
1.0057 (0.9811, 1.0196)
0.9885 (0.9800, 1.0190)
0.9787 (0.9552, 1.0269)
0.9426 (0.9489, 1.0208)
0.9188 (0.9288, 1.0237)
0.8484 (0.9032, 1.0033)
0.7734 (0.8782, 0.9730)
0.6590 (0.8716, 0.9242)
0.5905 (0.8415, 0.8977)
0.5085 (0.6939, 0.9196)

1.0020 (0.9994, 1.0036)
1.0040 (0.9986, 1.0077)
0.9885 (0.9987, 1.0035)
0.9917 (0.9967, 1.0116)
0.9852 (0.9934, 1.0195)
0.9615 (0.9901, 1.0178)
0.9455 (0.9761, 1.0297)
0.9098 (0.9622, 1.0314)
0.7970 (0.9306, 1.0039)
0.7191 (0.9018, 0.9780)
0.5779 (0.8596, 0.9261)

Figure 2.11 shows the plot of the ARES of P, qbq and (.5@ when ¢ = 30. Figure 2.12
gives the 3D plot of the ARE of éﬁq. We found out that behavior of the ARE of q)q is
similar to the normal case, whereas the ARE of ng is greater than 1 for most values
of ¢. Both of them are better than the moment estimate. The same property also

holds for the estimates of o2.

Let us consider another case where the data is from Beta distribution, which is
similar to a bell shaped curve. As before, we fix 02 = 1 and assume 3 = 0, simulate
t of £; from Beta(1.01, 1.01) instead of Student-t distribution. The density plot of
Beta(1.01, 1.01) is shown in Figure 2.13. Let g, = (¢; — 1.01 - 1.01)/v/1.01 - 1.012,
suppose € is the vector contains the £;’s, and then let y = o VV?(¢)e. We choose
n = 30 and the process is replicated 10000 times. For each replication, we compute
the MSEs. This time, we only consider the moment, QLS first form and ML
estimates. Define the AREs as in the Student-t case. Table 2.3 gives the efficiencies

when the data is from Beta(1.01, 1.01) distribution for ¢ = 5, 10 and 30. The

numbers in the parentheses are the ARE of g/gq. Figure 2.14 shows the plot of the
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Figure 2.13. Density of Beta(1.01, 1.01) distribution.

ARFs of ¢, and (:bq when ¢t = 30. Figure 2.15 gives the 3D plot of the ARE of
wq We found out that the ARE of ggq is greater than 1 for most values of ¢. That
means the QLS estimates is better than the MLEs in this case. The same property

also holds for the estimates of ¢2.

In practice, it is hard to decide whether the data is normally distributed. If
the normality test fails, using ML estimates may not be the optimal method. Even
if we know the exact marginal distribution of the data, it may be hard to write
down the joint density of the data since the data is correlated within replication,
e.g. Beta distribution. The QLS estimates are better than the moment estimates,
and are good competitors to the MLEs and may be more robust than the MLEs.

Thus, the QLS estimates are good candidates when the normality is not tenable.
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Table 2.3. AREs of ¢, and ng (in parentheses) when the data is simulated from

Beta(1.01, 1.01) distribution.

¢

t=5

t=10

t=30

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.96

0.9914 (0.9989)
0.9874 (0.9968)
0.9536 (1.0024)
0.9030 (1.0134)
0.8417 (1.0136)
0.7537 (1.0258)
0.6710 (1.0000)
0.5847 (0.8972)
0.4237 (0.5247)
0.2714 (0.2295)

0.9940 (1.0002)
0.9830 (1.0012)
0.9522 (1.0043)
0.9305 (1.0055)
0.8822 (1.0100)
0.8289 (1.0126)
0.6792 (1.0385)
0.5729 (1.0147)
0.4506 (0.9098)
0.2791 (0.5012)

1.0022 (0.9999)
0.9900 (1.0003)
0.9956 (0.9999)
0.9764 (1.0005)
0.9487 (1.0015)
0.9276 (1.0017)
0.8895 (1.0021)
0.7841 (1.0099)
0.6015 (1.0276)
0.4024 {0.9654)
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2.7 Application to a dental study

We analyze the longitudinal data displayed in Table 1 of Potthoff and Roy
(1964). The data were collected by investigators at the University of North Car-
olina Dental School in a dental study of 27 subjects (11 girls and 16 boys). Each
measurement is the distance, in millimeters, from the center of each subjects pitu-
itary to pteryomaxillary fissure recorded at 8, 10, 12, 14 years of age. The reason
why there is an occasional instance where this distance decreases with age is that
the distance represents the relative position of two points. We will assume that
the (4 x 4) variance matrix of the 4 correlated observations is the same for all 27
individuals. The data is shown in Table 2.4 and the plot is given by Figure 2.16.

We fit the following regression model:
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Table 2.4. Measurements of distances (in millimeters) on 11 girls and 16 boys, at

4 different ages.

Girls group

Boys group

Age in years

Age in years

Individual 8 10 12 14 Individual 8 10 12 14
1 21 20 21.5 23 1 26 25 29 31
2 21 21.5 24 25.5 2 215 225 23 26.5
3 205 24 245 26 3 23 225 24 27.5
4 235 245 25 26.5 4 255 275 265 27
5 215 23 225 235 5 20 235 225 26
6 20 21 21 22.5 6 24.5 255 27 28.5
7 215 225 23 25 7 22 22 24.5 265
8 23 23 23.5 24 8 24 21.5° 245 255
9 20 21 22 21.5 9 23 205 31 26
10 16.5 19 19 19.5 10 275 28 31 31.5
11 24.5 25 28 28 11 23 23 235 25
12 21.5 235 24 28
13 17 245 26 29.5
14 225 255 255 26
15 23 245 26 30
16 22 215 235 25
Mean 21.18 22.23 23.09 24.09 Mean 22.87 23.81 2572 2747
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Table 2.5. Regression analysis of a dental study data using MOM, QLS and ML

methods with AR(1) correlation structure.

Parameter MOME QLSE MLE
By 17.3213 (1.6056) 17.3220 (1.6029) 17.3217 (1.6040)
By 16.5946 (1.3313) 16.5002 (1.3291) 16.5920 (1.3230)
Yy 0.4838 (0.1384) 0.4837 (0.1383) 0.4837 (0.1384)
- 0.7695 (0.1147)  0.7697 (0.1147)  0.7696 (0.1147)
¢ 0.6135 (0.453)  0.6028 (0.432)  0.6071 (0.404)
o2 3.0787 (2.283)  3.0046 (2.278)  3.0881 (2.264)

Hij = BgZin + BpTig + VgTir - Tz + WTip - 253, 1<5 <4, 14 <27,

where x;1, ;2 are indicators for the girl and boy, respectively, and z;5 is the sub-
ject’s age at the jth measurement time. The modél has also been studied by
Jennrich and Schluchter (1986). Assuming the error is an AR(1) process, we apply
the MOM and QLS methoeds and also apply the ML method assuming the data
is normal. Table 2.5 contains estimates for the regression parameters, the correla-
tion parameter and the scale parameter, computed using the MOM, QLS and ML
methods. The numbers in the parenthesis are the corresponding standard errors.
If we make the normality assumption, each measurement vector taken at four ages
will have the same variance-covariance matrix but different mean for girls and boys
group. The p-values of the tests based on the skewness for this two groups, which
should be close to 1 if it is normal, turn out to be 0.9725 and 0.0025, respectively.
Thus, the normality assumption of the girls group is satisfied, but not for the boys
group. Hence the QLS estimates may be more appropriate. The residual plot based
on the QLS estimates are given by Figure 2.17. We see that the residuals are almost

randomly distributed around 0 at each age, regardless the sex group.
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2.8 Summary

In this chapter, we studied the moment, maximum likelihood, and two forms
of the quasi-least squares estimates when the error is an AR(1) process. We focused
on comparing the estimates of ¢, since the efficiencies of the estimates of 8 and
o? will depend on the efficiency of the estimate of ¢. Theocratical and simulation
results showed that the maximum likelihood estimates are the best and the moment
estimates are the worst for normal data. However, when the data departs from
normal, the quasi-least squares methods may be better, especially the second form.

A dental study was presented to illustrate the three estimating methods.
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CHAPTER III

APPLICATION OF THE ESTIMATING METHODS TO

THE MODEL WITH AR(2) ERRORS

In this chapter, we study the time series regression model with errors that
follow an autoregressive process of order two (AR(2)). This is an important special
case of the model with AR(p) errors, which we study in the next chapter. The
organization of this chapter is as follows. In Section 3.1, we present the time series
regression model with AR(2) errors. The moment and the maximum likelihood
estimation methods will be discussed in Section 3.2, followed by the quasi-least
squares estimating method in Section 3.3. The results of the previous sections are -
suminarized for balanced data, that is, ; = ¢ in Section 3.4. In Section 3.5 we
derive the asymptotic variance of the maximum likelihood estimates by finding the
information matrix. In Section 3.6, simulation results are presented for comparisons
of all the three methods. The robust properties of the quasi-least squares estimates
are also studied in that section. Finally, an application to a dental study is presented

in Section 3.7.

3.1 The model with AR(2) correlation structure

Now, let us assume that the error series {£,} is a second order autoregressive
process. We assume that the data consists of n independent replications and t;
observations in the i replication. The model is represented as (1.1.7), while (1.1.2)

becomes
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£j = $1851 + dagj2 + 0. (3.1.1)

The stationary condition requires that |¢;] < 1 and |¢1] < 1 — ¢9. Using (1.1.5),
we can see that the autocorrelation functions satisfy the second order difference

equation

Pr = P1pp—1 + Papr-2, k=1 (3.1.2)

with py = 1. Putting &k = 1, 2, we get the Yule-Walker equations

P = o1+ Papr

P2 = P1p1 + Papo.

Let ¢ = (p1,82), p = (p1, p2), then ¢ and p have the following relationship

pi{l = ps)

i = 1T (1} < 1 — oy,
Y 7
2
Po — P ) .
2 = “Tjj;ri}» oo} < 1, (313)
and
¢
o= 1_1¢27 'p1‘<17 tp2I<1
i o _ 1
P2 = @2+ : Py < =(py + 1). (3.1.4)
1— ¢ 2

The plots of the feasible regions of (¢, ¢») and (p1, p2) are given by Figure 3.1

and Figure 3.2, respectively. Let

A = 1—¢1p1— D22
(14 ¢2)[(1 = ¢2)? — ¢
1— ¢ '

Equation (1.1.4) implies that the variance of {¢,} is
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M b

o2, (3.1.6)

According to (1.1.6), the covariance matrix of {¢;} made at ¢; successive times is

a*V,;(¢) and

Vi) = 5 Pi(g), (3.17)

where P;(¢) is the autocorrelation matrix. Cheang and Reinsel (2000, p1176)

showed that the inverse of V,;(¢) is
Vi—1<¢) = Cjp + @?Ciu + ¢§Ci22 + 20102C10 — 201 Ci10 — 2¢2Cip0, (3.1.8)

where C;q is the ¢; x t; identity matrix, C;;; is the identity matrix with the first
and last elements 0, and C;22 is the identity matrix with the first two and last
two diagonal elements 0. The ¢; x t; matrix 2C;, has 1's on the first off diagonals
and 0’s elsewhere, C;15 is the same as C;4 except thét the first and last nonzero
elements are 0. The Ez X t; matrix 2C;z has 1’s on the second off diagonals and
0’s elsewhere. Notice that Cipo, Ciio and Cij11 are already defined in (2.1.6). The
Cholesky decomposition of V;!(¢) is L; (see Cheang and Reinsel (2000, p1174),
that is

Vil(¢) = L

and L; is a lower triangular matrix with its first two main diagonal elements
equal to VA and /1 — @3, respectively, its remaining main diagonal elements
equal to 1, elements in the first off diagonal equal to —¢; except that L;[2,1] =

1—@3/(1 — &), elements in the second off diagonal equal to —¢,, and 0
elsewhere. The adjusted sum of square errors S(3, ¢) defined in (1.2.8) simplifies
to

$(8.4) = D tr[Vi()Ui(B)]

4 i
=1

= n (Coo + Cb?Cn + 4)3622 + 201¢2¢12 — 2¢1C10 — 2¢2620> , (3.1.9)
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where cgg, 10 and ¢;; are defined in (2.1.7), the remaining is defined as
e = L37 tr(CioUi) = 130, Y Peieia,

¢ = 3 t(CpUy) = YR, 237*32 €2,
Ciz = Co1 = i i tr(CipUs) = % =1 ngg Eig€i(i+1)-

3.2 Moment and maximum likelihood estimates

Recall that the generalized least squares (GLS) estimates of (3,0%) as in
(1.2.10) and (1.2.12) are given by

n -1
B, = (Z XV 1X¢) XVl (3.2.10)
i=1 i=1 »
g nt
1 2 . 1 i - e
= 3 (cop + Bierr + Baca + 201 Pacin — 2d1C1p — 2¢a02).  (3.2.11)

Given the ‘“residuals” &; = Vi — X;;@ from the mode}, the moment estimate
g%)m may be obtained by setting I'; = €;&]. First we estimate the first and second lag
autocorrelation p; and p, by the sample correlation r; and 7, and then estimate
¢1 and ¢, using the relationship between ¢ and p in (3.1.3). We can estimate the
k™ lag autocovariance 7y, by ¢ = éro/ (T —k), k = 0,1,2. Thus ry, 7, are estimated

N[ ok Ak [k . .
by &o/Cho and &5, /8, respectively, hence

. o Cw/(E—1)

&o Coo/T
o Con/ (T — 2

5 = D _w/t-2) (3.2.12)
Coo C’()()/t

Therefore, the estimate of (¢y, ¢») is given by

gg . P11~ pa) N 1050 — 530)
1 1 — ~2 — %2 o !
P Cop 010
- ~9
2 P2 — P ConCap — &
gy = 1= 7 = prosa (3.2.13)
1 00 — €10
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The moment estimates (¢,,,3,,) are then the simultaneous solutions of (3.2.13)

and (3.2.10), and 62, is given by (3.2.11) plugging in (¢,,, Bon)-

Obtaining the maximum likelihood estimates is challenging. The log-likelihood
function is given by (1.2.14). Equating to zero the partial derivative of the log-
likelihood function with respect to B and o2, we obtain (3.2.10) and (3.2.11) re-
spectively. Equating to zero the partial derivative of the log-likelihood function

with respect to ¢ and recalling (1.2.17) we get

o’ Zalog‘w th( _ 1):()? (3.2.14)

which is the ML equation for ¢». Note that |V;| = |V;!|~!, which implies

Diog [Vi] _
gp

hence (3.2.14) becomes

Q,w
I

/dV” r w -1 VY
Z‘tr\ 59 U, —-o Z_: vV ~—‘—::5,)-»/; = 0. {3.2.15)

In order to simplify (3.2.15), we first note

QYQL@ZQ[ Con G | wer-2( G ).

dop 12 Li22 120

where & denotes the Kronecker product, and I; is the identity matrix of order ¢,.

Thus the first term of (3.2.15) can be simplified as

n 1
2t (d;;) ) =2 (a) o) ( o > —on (G0 ). (3.2.16)

With some algebraic calculation, we can verify that

V@) = [Laf* = (1 + ¢) {(1 ~ $a)” — @ﬂ ; (32.17)

which yields
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Q%ﬂ = 20, (1+ by)?
W = 21+ ¢) [(1— ¢2)* = 6] = 2(1 — ) (1 + 62)°

“

= —2(1+¢o)(4] — 285 + 2¢0). (3.2.18)

Substituting (3.2.16), (3.2.17) and (3.2.18) in (3.2.15) we get

2

( gg %g ) ( ﬁ; ) N ( %8 ) + (1+ ¢) [(10.. $2)? — @] ( éz‘zf(zlgbéfz%@ ) -
2 i 1 2
(3.2.19)
Furthermore, replacing o2 by (3.2.11) we get
(t - jcn o
+(t = 2)(c12¢2 ~ e10)0]
- [(Coo — 2¢0¢9 + 022(}53) +Fepp (1~ (/52)2E o3}
—t(1 - ¢2)*(crad2 —cro) = 0,
(T 2end)
+[(— 4)(crapr — c20) — (T — 2)co0] 63
~{[(T = Dz + 2en] 67 + {(E — 4)cro — dexo]
— [t(ca0 — €22) — 2c00 — 4ca0) } ¢3
—{(f — 2)c1a¢s — [2e11 — Tean + (£ — 2)ca0] ¢7
+(ters + deqo) Py — [2¢00 + Ecan + €20)]} D2
+ end} = (Fers + 2010)¢5 + (coo + Foa) ] + E(cings — ex0)] = 0. (3.2.20)

The ML estimates (3,, ¢,) are the simultaneous solutions of (3.2.10) and (3.2.20),
and 67 given by (3.2.11). Note that the exact MLEs are not in closed forms since it
is hard to solve the “polynomial” equations (3.2.20). Approximate solutions could

be obtained by solving (3.2.20) recursively. Box et al. (1994, p.300) suggest an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

approximate MLE for ¢, by approximating the ML equation. This approximate
MLE is given by

Ak A% A% ok
7 22030 7 Cyaly
d)lal - 3

Chihs — &3
(3.2.21)

¢2al — 11+20 1? 107 (3222)

&165y — ¢13
where ‘al’ stands for approximate MLE, and ¢}, = ¢ /(f—-k—1), k =1,2, [ =0,1,2
and &y, is ¢y evaluating at B. We will discuss the details of this approximate MLE

in Section 4.1.

3.3 Quasi-least squares estimates

In order to obtain the quasi-least squares estimates of 3 and ¢, we need tc
minimize S(3, ¢) with respect to B and ¢. Differentiating S{3, ¢) with respect to
B3 and equating to zero we get (3.2.10). The QLS estimate of ¢ is obtained by two

steps as follows.

The first step is to solve equation (1.2.20), given by

n gV )
tr : Ui = 0.
2 I( ¢

This is equivalent to setting (3.2.16) to be 0, which yields

2 Ca2C10 — C12€720
¢1U = B E
C11C22 — (72
2 C11C20 — C12C10
fp, = 220 (3.3.23)

2
C11€22 — €99

The above estimates are the ULS estimates, which are almost the same as the

approximate MLEs in (3.2.22) when ¢ is large. In the second step, we modify
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&, = (b1u, du)’ to get consistent estimates. Recalling equation (1.2.21) we get

n (Vi) o e (VD) o
gm(w@qﬁ 'Vi) = A -Ztr( 5% ~PZ>

=1
- oy {[ SfEupy wERd ] o

- b ]}

Since

tr(CikkPi(p)) = (f - 2]{3),
tr(CioPi(p)) = (E—Fk)pp, k=12

tr(CuaPi(p)) = (- 3)p,

the above equations can be written as

12 E~3p | 5 (-1 —
RSV SV R B
Thus we have
Al . (t - 2>¢Alu
(t-1)— (F—3)pau
, (- 3)¢%, (t—4) -
P2 (t* 1) (E_S))ézu t“Q ¢2u
From (3.1.3) we obtain
b = V)
1 1 _ [31 )
b o= P25 pl. (3.3.24)
- /01

The QLS estimates (ﬁq, éﬂq) are the simultaneous solutions of (3.2.10) and (3.3.24),

and 67 is given by (3.2.11) plugging in 8, and ¢,.
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3.4 A special case

An important special case is when the data is balanced. Assuming that ¢; =1,
the notations of V,C and ¢ are the same as before, we just drop the subscript <.

Since t;’s are all equal, U;’s have the same dimension. Define

;CT - ']: Z Ui,
nos
then we have .
Coo — tr(U)7“

cro = tr(Cypl),
cn = tr(CpU),
coo = tr(CyU),
ez = tr(CyplU),
Cigp == Cy1 = tI‘(C}gU).

The moment estimate of ¢ is given by (3.2.13), where &g = éro/(t — k), k =
0,1, 2, the MLE of ¢ is given by (3.2.20) with { replaced by ¢, and finally the QLS

estimate of ¢ is given by (3.3.24) with f replaced by t.

3.5 Asymptotic properties

The asymptotic property of MLEs can be found by deriving the information

matrix. First let us recall the following simple identities,

p1 = 1+ dapn

P2 = O1p1+ Papr = G2 + 1,
(1+ @) (1 — ¢2)? — &7
1 — ¢
_ o Lp 1 L—¢y ¢
Ve o2 I = (1 — ¢2)A(P) { 1 ’ 1—1¢2

Vit = (e | T %,

A = 1—¢ip1 — Pap2 =
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where V, and I'; are V and T' with dimension 2. We have the following results

regarding to the partial derivative of the log-likelihood function with respect to 3,

¢, and o2
ol 1 &
= = = XVili(yi - X8
ap o? ;
ol n
53 = ~521Cé—co+TuDg]
ol nt ’ ’
30z “’2‘;+24(Coo~2¢00+¢c¢)
52l P
A D
o 202(1+ ¢3)  3¢u
—_— = 2V? [ 2 2) 50192 } }
Apog’ o2 { or(1+¢2)  ¢F + 265 +1D+0
0?1 n n , ,
8(0'2)2 = 2 - ——6_ (COO - 2¢ Co + ¢ C¢>
U m G Ciro
ap'op —2;{12@) - XiB)] ( Cin 122>{¢®I] (Cizo )}X2
L 1 e
50%98 = o Z X Vi (y: — X.8)
&l
e G
where C = ( gi; %g ), co = (C10,¢20) and D = diag(1,2). The expected values of

the second partial derivatives are given by

E 82[ - 1 Zn:X/V—IX‘
opog’ ) —  oer& TR T
9?1 o 2 [ 2¢2(14¢a) 312 7
E(a¢a¢f> = (TS A% ) - @-ory
5l nt
E(aw?)?) T 200
B ,
E(_aﬁ'aqb) =0
91
E(8026B> =0
92l n
E<a¢%2) - " v,Dg
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Thus, the information matrix is given by

EXLXVIX, o 0 ]
L.(8,¢,0%) = 0 n(t-2)Vy 5V,Dé J |
0 Z ¢’ DV, 2

Finally, the asymptotic variances of the ML estimates of (3, ¢, 0?) is given by
—1 2 1 L.
In (ﬂ, qb, g ) = E El = E chag(vl, 225),

where v; = o* (% P X;V;le«)ﬂl and

1 { kV;P + Do’ D —(T—2)0’Dgp } ’

AT kE-2) | —(t-2)0%¢D  (T-2)0"

where k =1(1 — 2)/2 — ¢'DV,D¢ . Here we used the results

A B\' (A '+FE'F -FE!
B, D - _E‘lF, E—l )

where E = D—B'A7'B and F = A7!B. Other useful results regarding the inverse

of a matrix include
(A ta)(vA™Y)
14+vA-lu '’
(A+BDB)"' = A -A'B(BA'B+D") BA™

(A+uv)' = A

= A" AT'BEB'A™' + A"'BE(E+ D) 'EBA’,

where E = (B’A~!B)~!. The asymptotic distribution of the moment and quasi-
least squares estimates could be established by finding the asymptotic distribution
of ¢go, Cig, €20, C11, C22 and c¢y5, and then applying the delta theorem. But the
exact forms are too complicated. We omit the tedious computations and study the

asymptotic properties using simulations.

3.6 Comparisons through simulation

Since the asymptotic properties of the estimates are so difficult to obtain the-

oretically, we will compare them by simulation. As we have studied previously, the
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asymptotic properties of 3 and ¢ derived from three methods will be similar to the
asymptotic properties of ¢ since they have the same functional forms. Therefore,
we will concentrate on comparing the estimates of ¢. By finding the asymptotic
relative efficiencies (AREs), we will show that MLEs will work best if the error is
normal, while QLS estimates may be better when the errors follow a contaminated
normal distribution. Without loss of generality, we assume 3 = 0 and 6% = 1 in our
simulation. For convenient purpose, we let ¢, = {. Since we have two parameters
to be estimated, it will be hard to simulate the data for all possible values of n and
t. Therefore, we will generate samples only when n = 30 and ¢ = 20. Generally
speaking, the efficiencies of QLS and MOM estimates with respect to MLEs will
increase when n and ¢ becomes larger. We chose n to be 30 in order to make sure
we have enough replications, and we chose t to be 20 to illustrate that the number

of repeated measurements for each replication may be small.

We now study the asymptotic properties of the estimates when the data is
normal. First we generate a sample of n = 30, ¢—dimensional (f = 20) vectors
£ whose elements are from a standard normal distribution, and then we let y =
o?V1%(¢)e (0* = 1). The y will have mean 0 and variance 2V (¢). The process
is then repeated 10000 times. For each replication, we compute the MOME, MLE
and QLSE of ¢, and then compute the biases and mean square errors (MSEs).
Obtaining the MLEs was hard since MLEs are not in closed forms. We have to
solve equations (3.2.20) simultaneously. One could use Newton-Raphson method to
solve the equations iteratively (see Appendix A), but we used the following method.
Given the £** step solution ébk, the (k+1)" step solution (}bkﬂ is obtained by solving
equations (3.2.20) substituting the ‘polynomial’ coefficients with [ﬁk We repeated
this procedure until the difference between &Hl and {zf" is in the neighborhood

of 107% or 1077. Our method turned out to be more efficient in the sense that
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the iterations converged faster. lf the iteration procedure still does not converge
after 500 steps (one can choose the maximum number of iteration differently, in
our simulation, 500 is enough for the iteration to converge for most cases). The
replications where the iterative process did not converge were excluded from the
analysis when calculating the biases and MSEs. The QLS estimates and moment
estimates are in closed forms. Given the estimate ¢y, i = 1, ... , 10000, the bias of
1 is computed as Bias(¢y) = 3219y — ¢1)/10000, and the MSE of ¢, is found
by MSE(¢;) = S219990(4,; — $,)?/10000. The bias and MSE of ¢, are obtained in
the same way. The biases of the estimates obtained through the three methods
are all close to 0 and do not differ much from each other, so the interest has been

focused on comparing the MSEs.

Let us define the ARE of (Ap'lq with respect to (Z)H as e((f)lq, g7>u) = MSEy/MSE,.
The subscript one is understandable to represent the notations associated with ¢4,
and ‘I, ‘¢’ stand for ‘Maximum likelihood estimate’ and ‘Quasi-least squares es-
timate’, respectively. The ARE of g:bgq with respect to by is defined similarly.
Table 3.1 and 3.2 contain the AREs of leq and gﬁzq, respectively. We can see that
the numbers are very close to one except when ¢ is near the boundary. Note that
the feasible region of ¢; and ¢, is triangular. Figures 3.3 and 3.4 are the 3D plots
of the ARFE of cﬁlq with respect to leh and the ARE of gﬁgq with respect to qggl, re-
spectively. The graphs are almost flat at one, except when ¢ is near the boundary
where the efficiencies are slightly below one. Therefore QLS estimate is as good as
the MLE on a wide region. Tables 3.3 and 3.4 contain part of the AREs of brm With
respect to (,7)1(1 and </32m with respect to (Z)gq, respectively. The contour plot of the
ARE of ng’hq with respect to (/511 (Figure 3.5) gives a more clear view. The contour
plot of the ARE of gﬁgq with respect to ¢ is similar to Figure 3.5. The plots of the

ARE of the moment estimate with respect to the MLE, which is the ratio of M SE,
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Table 3.1. ARE of gﬁlq Us g;)u when the data 13 normal.
P2
o —09 06 —03 0 0.3 0.6 0.9
—~1.8 0.8935
—-1.5 0.9411 0.9961
—1.2 0.9561 0.9931 0.9958
—0.9 0.9646 0.9991 0.9990 0.9976
—(0.6 0.9984 0.9997 1.0020 0.9999 0.9963
—0.3 0.9944 0.9993 0.9995 0.9997 1.0007 0.9941
0 0.9939 0.9987 0.9996 0.9998 0.9972 0.9990 0.8343
0.3 09989 0.9978 0.9995 1.0000 1.0008 0.9946
0.6  0.9972 0.9982 0.9986 1.0003 0.9964
0.9 0.9716 1.0031 0.9996 0.9980
1.2 0.9529 0.9986 0.9977
1.5 0.9124 0.9932
1.8 0.8693
Table 8.2. ARFE of égq vs ¢321 when the data is normal.
)
P -0.9 —0.6 —-0.3 0 0.3 0.6 0.9
—1.8 0.8708
~1.5 0.8695 0.9944
—1.2 0.8540 0.9839 0.9948
—-0.8 0.8971 0.9979 0.9971 0.9904
—~0.6 0.8560 0.9933 1.0021 0.9993 0.9911
—0.3 0.8859 0.9988 0.9987 1.0007 0.9983 0.9720
0 0.8550 0.9844 0.9972 0.9990 0.9983 0.9987 1.8638
0.3 0.8416 0.9968 0.9959 1.0001 0.9979 0.9820
0.6 0.8561 0.9904 1.0002 0.9976 0.9956
0.9 0.8826 0.9972 1.0003 0.9877
1.2 0.8635 1.0007 0.9989
1.5 0.8498 0.9911
1.8 0.8457
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Table 3.3. ARE of c,%lm 78 qglq when the data is normal.

$2

b1 -0.9 —0.6 —-0.3 6 0.3 0.6 0.9

-1.8 0.0093

—-1.5 (.1178 0.0758

—1.2 0.3073 0.4386 0.3276

—0.9 0.4622 0.6596 0.7629 0.7098

—{0.6 0.5528 0.8282 0.8595 0.9078 0.8540

—0.3 0.6581 0.9092 0.9611 0.9840 0.9775 0.8989

0 0.6815 0.9579 0.9950 1.0014 1.0073 0.9575 1.0966

0.3 0.6360 0.9419 0.9677 0.9812  0.9731 0.8966

0.6 0.5b77 0.8206 0.9126 0.9123 0.8389

0.9 0.4577 0.6651 0.7403 0.6744

1.2 0.3026 0.4582 0.3369

1.5 0.1128 0.0784

1.8 0.0078

Table 3.4. ARE of ¢A)2m VS c;A’ng when the data is normal.

¢2

b1 —0.9 —0.6 —0.3 0 0.3 0.6 0.9

-1.8 0.0107

-1.5 0.1511 0.0977

—-1.2 0.3515 0.5639 0.4113

—-0.9 0.4546 0.7076 0.8615 0.7485

-0.6 0.5499 0.7953 0.8980 0.9339 0.7507

—0.3 0.5917 0.8171 0.9516 0.9748 0.9479 0.7201

0 0.6346 0.8744 0.9851 1.0068 0.9604 0.8345 0.6312

0.3 0.6813 0.8276 0.9754 0.9791 09459 0.7084

0.6 0.5624 0.8169 0.9250 0.9642 0.6914

0.9 0.4247 0.7395 0.8501 0.7204

1.2 0.3265 0.5328 0.4223

1.5 0.1381 0.1023

1.8 0.0093
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Figure 3.5. ARE of qglq Vs (;Aﬁu when the data s normal.

Efficiency

1.007

0905 i

0.803
0.702

0.600 .
1.2 o o o os
" ' : 0.3
G0 o - 0.0
phil  —08 : - -03  phi2
-12 -06
—18 —09

Figure 3.4. ARE of égq vs &y when the data is normal.
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Figure 3.5. ARE of q’Slg vs ¢y, when the data is normal.

and MSFE,,, shows similar patterns.

Let us now compare the QLS estimates and the moment estimates. Define the
ARE of ¢,,, with respect to g%lq as e(qglq, ¢31m) = MSE,,/MSE,,, and define the
ARE of @y, with respect to (;32,1 similarly. Figures 3.6 and 3.7 give the 3D plots of
the AREs. We can see that the efficiencies are far away from one, especially when
¢ is close to the boundary. This fact is demonstrated more clear in the contour
plot of the ARE of qAﬁlm Vs qglq (Figure 3.8, the contour plot of the ARE of Qggm
VS ¢y, is similar). This shows that the QLS method is better than the moment
method. Now consider a special case when ¢, = 0, the AR(2) process reduces to
AR(1) process. Define the ARE of ¢Em with respect to ¢A>l as the ratio of M SE; and
MSE,,, and the ARE of gAbq with respect to (/51 as the ratio of M SE; and MSE,.
Since ¢, = 0, we only need to study the estimates of ¢;. Figure 3.9 shows the AREs

of J)l.m and @71q with respect to ggu, we can see that the curve representing the ARE
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Figure 3.6. ARE of Prm VS c?)lq when the data is normal.
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Figure 3.7. ARE of Gom VS gggq when the data is normal.
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Figure 8.8. ARE of f,l7>1m vs &1(1 when the data is normal.

of <131q with respect to (ﬁu stays around one, while the curve representing the ARE
of &lm with respect to qﬁu goes down quickly when ¢, approaches the boundary.

The result is consistent with the one in the previous chapter.

We now simulate the data from a contaminated normal distribution to study
the robustness of the estimates. We chose the distribution to be 0.5 N(0,4) +
0.5N(1,4). The mean and variance of this distribution are given by 0.5 and 4.25,
respectively. In general, for any two normal distributions N(u;,0%) and N(us,03),
if they are mixed evenly, the mean of the contaminated distribution is given by
(p1 + p2)/2, and the variance is given by (07 4+ 03)/2 + (11 — p2)?/4. The density
plot is shown in Figure 3.10. From the plot, we can see that the distribution is very
close to the normal distribution. In practice, it is easy to mistake the contaminated
normal distribution with the normal distribution. Thus, it is necessary to derive

an estimating method which is more reliable when the data may come from a
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Figure 3.9. ARFEs of g@lm and c,%lq 18 c/Bu when the data is normal and ¢ = 0.

distribution that differs from or is similar to the normal distribution. We choose -
the distribution 0.5 N(0, 4) + 0.5 N(1, 4) just for illustrating purpose; the results
should be similar for other contaminated normal distribution. Recall that in the
previous chapter, we simulated the data from a Beta distribution when the error of
the model is an AR(1) process, it should be noted that in AR(2) case, the results
when simulating the data from a Beta distribution are similar to the results when
simulating the data from a contaminated normal distribution, while the results are
more noticeable in the latter case. We now describe how the data was generated.
First we select a random number between 0 and 1, if the number is less than 0.5,
we generate € from N(0, 4); otherwise, we generate ¢ from N(1,4). The ¢ generated
this way will have mean 0.5 and variance 4.25, we modify £ to have mean 0 and
variance 1 by subtracting it from 0.5 and then dividing by v/4.25. We generated a

vector of £ of size ¢ = 20 consisting of £’s. Next, we generated a sample of n = 30
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Figure 3.10. The density of the contaminated normal distribution 0.5N(0,4) +

0.5N (1, 4).

vectors y = 02VV%(¢)e’s (02 = 1). The y will have mean 0 and variance 02 V{g}.
The process is then repeated 10,000 times. For each replication, we compute the
MOME, MLE and QLSE of ¢, and then compute the biases and mean square errors
(MSEs). When calculating the MLEs, we again use the method described before
instead of Newton-Raphson method, and exclude the solutions when the MLEs do
not converge. As before, let us define the ARE of (Z)q with respect to dA)Z as the ratio
of MSE;, and MSE,. Tables 3.5 and 3.6 contain the AREs of qh’)lq with respect to
gEu and Q’;Qq with respect to (;325, respectively. Figures 3.11 and 3.12 give the 3D
plots of the AREs of the QLS estimates with respect to the MLEs. We can see
that the most of the numbers are greater than one, especially when ¢, approaches
the positive boundary. The contour plot of the ARE of qglq with respect to b1,
(Figure 3.13) gives a more clear view. The contour plot of the ARE of qﬁzq with

respect to ¢A'21 is similar to Figure 3.13. Based on these plots, we can conclude that
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Table 3.5. ARE of <?)1q vs ¢n; when the data is simulated from contaminated

normal 0.5 N(0,4) + 0.5 N(1,4).

@2
& —0.4 —0.2 —0.1 0.1 0.2 0.3 0.4 0.5
—1:2  1.0068
—0.9 1.0044 1.0038 1.0052
-0.6 1.0038 1.0022 1.0026 1.0030 1.0054 1.0088
—0.3 1.0001 1.0008 1.0009 1.0011 1.0002 1.0027 1.0039 1.0091
0 1.0008 1.0001 1.0000 1.0008 1.0009 1.0024 1.0033 1.006b
0.3  0.9988 0.9997 1.0001 1.0016 1.0026 1.0077 1.0123 1.0581
0.4 0.9996 0.9991 1.0006 1.0027 1.0055 1.0609 1.0948 0.9938
0.5 1.0001 0.9990 1.0009 1.0816 1.0070 1.4403 0.9894
0.6 0.9993 0.9997 1.0015 1.0036 1.4658 0.9931
0.7 0.9960 1.0013 1.0011 1.5868 0.9960
0.9 0.9975 1.0047 2.1031
1.0 0.9962 1.4912 0.9929

1.2 1.7925

Table 3.6. ARE of &»2,; vs <f322 when the data is simulated from contaminated

normal 0.5N(0,4) + 0.5N(1,4).

P2
ol —0.4 —-0.2 -0.1 0.1 0.2 0.3 0.4 0.5
—-1.2 0.9996
—(0.9 1.0035 1.0010 0.9919
—0.6 1.0040 1.0002 0.9990 0.9958 0.9913 0.9929
—0.3 1.0033 1.0009 0.9996 0.9980 0.9989 0.9975 0.9955 0.9916
0 1.0036 1.6011 0.9999 0.9986 1.0005 1.0020 1.0082 1.0077
0.3 1.0012 0.9997 0.9997 1.0012 1.0058 1.0111 1.0210 1.1753
0.4 1.0039 1.0001 1.0004 1.0053 1.0136 1.2112 1.2191 0.9888
0.5 1.0012 0.9987 1.0015 1.2821 1.0147 1.9590 0.9980
0.6 1.0014 1.0015 1.0024 1.0170 1.9486 0.9932
0.7  0.9993 1.0019 1.0079 2.0838 0.9972
0.9 0.9997 1.0209 2.6084
1.0 0.9998 1.7222 1.0563
1.2 2.1639
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Figure 3.11. ARE of g%lq Vs 5511 when the data is contaminated mormal

0.5N(0,4) + 0.5N(1,4).

QLS estimates are better than the MLEs.

Now let us compare the QLS estimates and the moment estimates. Define
the ARE of ¢,, with respect to ¢, as the ratio of M.SE, and MSE,,. Tables 3.7
and 3.8 contain the AREs of ¢y, with respect to qAﬁlq and égm with respect to
q32q, respectively. Figure 3.14 and Figure 3.15 give the 3D plots of the AREs of the
moment estimates with respect to the QLS estimates. It is clear that the efficiencies
are almost all less than 1, especially when ¢ is close to the boundary. The contour
plot of the ARE of gzglm VS quq (Figure 3.16, the contour plot of the ARE of qAbzm V8
q52q is similar) shows a much more clear view. Based on the plots, we again see that
QLS method works much better than moment method. When ¢, = 0, the AR(2)
process reduces to AR(1) process. As before, define the ARE of ¢,,, with respect to
qAﬁl as the ratio of M SE;, and MSFE,,, and the ARE of ng with respect to (;2)1 as the
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Figure 3.12. ARE of $2q Vs (,52; when the data is contaminated normal

0.5N(0,4) + 0.5N(1,4).

Table 3.7. AREs of ¢A>1m 8 g?)lq when the data is simulated from contaminated

normal 0.5N(0,4) + 0.5N(1,4).

Il

P1
P2 —-0.9 —~0.6 —0.3 0 0.3 0.6 0.9

—1.8 0.0111

-1.5 0.1291 0.1148

—1.2 0.2869 0.4906 0.4587

—-0.9 0.3620 0.6957 0.7823 0.7422

—-0.6 0.5336 0.8063 0.9106 0.9390 0.8932

-0.3 06163 0.9003 0.9675 0.9926 0.9798 0.8987
0 0.6785 0.9592 0.9887 0.9995 0.9823 0.9543 1.0054
0.3  0.5674 0.9380 0.9641 0.9678 0.9607 0.7997
0.6 05197 09133 09211 09126 0.8288

0.9 0.4680 0.7315 0.7147 0.6101

1.2 0.2929 0.4675 0.9390

1.5  0.1262 0.0308

1.8 0.0047
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Figure 3.13. ARE of q%lq vs ¢y when the data is simulated from contaminated

normal 0.5N(0,4) +0.5N(1,4).

Table 3.8. ARFEs of bom VS C‘ggq when the data is simulated from eontaminated

normal 0.5N(0,4) + 0.5N(1,4).

b1
b9 —0.9 ~0.6 —-0.3 0 0.3 0.6 0.9
—1.8 0.0125
—1.5 0.1584 0.1475
—1.2 0.3199 0.6004 0.5541
—0.9 0.3952 0.7565 0.8776 0.7961
—-0.6 0.5371 0.7696 0.9335 0.9711 0.8622
—0.3 0.5391 0.8023 0.9536 0.9840 0.9801 0.8414
0 0.6336 0.8367 0.9802 0.9990 0.9532 0.8318 0.8052
0.3 0.6264 0.8272 0.9863 0.9771 0.8666 0.5637
0.6 0.5688 0.8234 0.9705 0.8881 0.6521
0.9  0.4547 0.7453 0.9243 0.5968
1.2 0.3446 0.6368 0.2386
1.5  0.1455 0.0417
1.8 0.0077
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Figure 3.14. ARFE of é—lm 8§ élq when the data is simulated from contaminated

normal 0.5N{0,4) + 0.5N(1,4).

ratio of MSE; and MSE,. Since ¢y = 0, we only need to study the estimates of
¢y. Figure 3.17 shows the AREs of c,/?)lm and (ﬁlq with respect to qAb”, we can see that
the curve representing the ARE of gglq with respect to du stays above 1, especially
when ¢; is close to the boundary, while the one representing the ARE of g@lm with
respect to qgu goes down quickly when ¢, approaches the boundary. The result is

also consistent with the one in the previous chapter.

Another criteria to compare estimates is the bias. Given the estimate ¢y,

t

i=1,...,10000, the bias of ¢; is found by Bias(¢1) = 2199 (gy; — ¢1)/10000. In
order to make comparisons, the bias has been changed to absolute value. Figure 3.18
shows the biases of all the three estimates when ¢o = —0.5, we see that the biases

of QLS estimates and the biases of MLEs are very close, while the biases of moment

estimate are far large than them. The bias of the estimate of ¢; as a function of
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Figure 3.15. ARFE of q@zm Vs quq when. the data is simulated from contaminated

normal 0.5N(0,4) +0.5N{1,4).

¢9 and the bias of ¢, as a function of ¢; are similar. This further is a convincing
evidence that the QLS estimates are slightly better than MLEs and much better
than moment estimates, when the data is simulated from a contaminated normal

distribution.

As a summary, we again demonstrate that, when the errors follow an AR(2)
process, QLS estimates are better than moment estimates, and good competitors
to MLEs. When the data is from a distribution which differs slightly from normal,

QLS estimates may be better than the MLEs.

3.7 Application to a dental study

Let us recall the dental study that we discussed in the previous chapter. The
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Figure 3.16. ARFE of gglm Us (1;51(1 when the data is simulated from contaminated

normal 0.5N(0,4) + 0.5N(1,4).

data is shown in Table 2.4 and the plot is given by Figure 2.16. We fit the same -

regression model as before:
i = Bgin + BoTio + YgTit - Tjz + NeTiz - 743, 1< <4, 1<i<27,

where z;1, Z;2 are indicators for the girl and boy, respectively, and z ;3 is the subject’s
age at the jth measurement time. Recall that the normality assumption of the girls
group is satisfied, but not for the boys group. Assume the error is AR(2) process,
we estimate the parameters using moment, maximum likelihood and quasi-least
squares methods. Table 3.9 contains estimates for the regression parameters, the
autoregressive parameters and the scale parameter. The residual plot based on
the quasi-least estimates is in Figure 3.19. We see that the residuals are almost
randomly distributed around 0 at different time, regardless of the patient group.

Note that a more appropriate model would be is to fit different covariance matrix
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Figure 3.17.  ARFEs of élm and gglq Vs g’AbN when the data is simulated from

contaminated normal 0.5N(0,4) + 0.5N(1,4) and ¢y = 0.

Table 3.9. Regression analysis of a dental study

Parameter Moment Quasi-least squares Maximum likelihood

B, 17.4041 17.4132 17.4046
Be 16.2600 16.2216 16.2581
Yq 0.4765 0.4757 0.4765
Vb 0.7951 0.7979 0.7953
1 0.3139 0.2569 0.3135
¢2 0.4869 0.5474 0.4924
o} 2.3249 2.2824 2.3100
o3 2.3249 2.2824 2.3100

Estimates of the parameters using moment, mezimum likelihood

and guasi-least squares methods.
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Figure 3.18. Bias of q@;m, g/31q and 0511 when the data is simulated from conlam-

inated normal 0.5N(0,4) + 0.5N(1,4) and ¢y = —0.5.

for each group, even if it is AR(1).

3.8 Summary

In this chapter, we studied the three methods of estimation, MOM, MLE and
QLS when the errors in the time series regression model follow an AR(2) process.
Through simulations, we showed that the quasi-least squares estimates may be bet-
ter than the MLE’s if the distribution is contaminated normal. The bias analysis
also shows that the quasi-least squares estimates are good competitors to the max-
imum likelihood estimates. An application to a dental study is presented again but
with an AR(2) error. The corresponding standard errors are not in a simple closed

form, except for the maximum likelihood estimates. The asymptotic distribution of
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

the maximum likelihood estimates are obtained by finding the information matrix.
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CHAPTER 1V

GENERALIZATION OF THE ESTIMATING METHODS

In Chapter IV, we extend the results in Chapters II and III to two important
cases, the time series regression model with autoregressive of order p (AR(p)) and
the moving average of order one (MA(1)) errors. The chapter is organized as fol-
lows: In Section 4.1, we present the model with AR(p) correlation structure and
its properties. We discuss the GEE method and its variations, moment method,
maximum likelihood method and quasi-least squares method, and the inter relation-
ships between the estimating procedures. We show that the GEE method reduces
to either the moment or maximum likelihood method in some cases. In this sec-
tion, we also demonstrate the robustness of the quasi-least squares estimates when
the distribution of the data is contaminated normal. In Section 4.2, we study the
properties of the model with MA(1) errors. We discuss the moment, maximum
likelihood and quasi-least squares methods. Simulation results are presented to
show that the quasi-least squares estimates are good competitors to the maximum

likelihood estimates.

4.1 The model with AR(p) errors

4.1.1 Model

In a seminal paper, Anderson (1978) introduced and studied some basic prop-

erties of the repeated measurements on autoregressive processes. The approxi-
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mate maximum likelihood method for those processes was studied by Harvey and
Phillips (1979), Laird, et al. (1987), Rochon and Helms (1989) and Rochon (1992).
Laird, et al. (1987) also discussed the maximum likelihood and restricted maximum
likelihood estimation procedures for the ARMA(p, q) model using the EM algo-
rithm. Recently, Cheang and Reinsel (2000) discussed the bias reduction for the

restricted maximum likelihood estimates for the AR(p) model.

Recall from (1.1.2) the autoregressive of order p errors satisfy the relation
€= Q1€+ dagj o o+ PpEjp +ay (4.1.1)
The stationary condition requires that the rootsof ¢(B) = 1— ¢ B—---—¢,B? =0

lie outside the unit circle, where B is the backward operator. Using (1.1.5), we can

check that the autocorrelation function satisfies the p** order difference equation

Pr = P1pr-1 + Gapr-2 + -+ Ppprp, k> 1 (4.1.2)

with pg = 1. Note that this is analogous to the difference equation satisfied by the

process { ¢;} itself. By putting k = 1,2,...,p, we obtain the Yule- Walker equations

po= + o + 0+ Ppppar
p2 = ¢r1;r + o + o+ dppp2
(4.1.3)
Pp = ¢]Pp-1 + ¢2pp~2 + e+ @/p'
Say ¢ = (¢1, G2, ..., &), p = (p1, p2, .., pp), ¢ and p have the following
relationship
¢ —P;'p, (41.4)

where P, is the p X p autocorrelation matrix {p;_;} (Note the only difference

between P, and P;(¢) is the dimension) and

p—1
P,=1,+2 3 Clyp,
k

=1
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where I, is the p-dimensional identity matrix, 2 C, is the p X p matrix with 1’s on
the k' off diagonal and 0’s elsewhere (Note the only difference between Cl, and

Cyo is the dimension). Thus p can be also written in terms of ¢ as
p—1
p=(I,—2 Y Clhde) o, (4.1.5)
k=1
where €, is the p x 1 unit vector with 1’s in the k** position and 0’s elsewhere,
k=1,2,...,p— 1. Expression (4.1.4) also implies that
¢'p = ¢Prod=pPlp,

and r = I'e,

where 1 = (r1,79,...,7,)" is the sample autocorrelation vector, and I is the covari-

ance matrix of €;. According to equation (1.1.4), the variance of {¢;} is

2 1 2 .

- = ) 41?\

7T AP T (4.1.6)

where A(@) = 1— ¢1p1 — Popa — -+ — ppp, = 1 — ¢’ p. From (1.1.6), the covariance

matrix of {e;} made at ¢; (¢; > 2p) successive times is °V;(¢), and

Vi(e) = AP Pi(¢), (4.1.7)

where P;(¢) is t;-dimensional as usual. Following Cheang and Reinsel (2000), the

model in matrix notation can be written as
Yi = X7ﬁ+€“ Lviai::a'u izl,...,TL7
where a; = (ay,as,...,as,)" and L; is the Cholesky decomposition of V; !, that is

V! =L L;. Specifically, L; is a lower triangular matrix with its first p diagonal el-

ements equal to AV2, (A/ADY? .. (AJA,_1)V/?, its remaining diagonal elements
P (&)
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equal to 1, elements in the (I, )" position equal to —¢;_;, , for j = 1,...,1—1
and [ = 2,...,p, equal to —¢_; for j =1 —p,...,l — 1 when [ > p, and 0 else-
where. In the first p rows of L;, the elements ¢}, = ¢u(A/A)Y? 1 = 1,... .k,
where ¢z, ..., Op, for k= 1,...,p— 1, are solutions for coeflicients ¢, -+, ¢ in
the system of the first k Yule- Walker equations in (4.1.3) with p set equal to k,
and Ag = 1 — ¢yppr — Parp2 — -+ — Grrpr. For example, ¢, = r1/rg = p1 and

Ay = 1 — p?. Thus, the determinate of V! is given by

Vi =Ll

which will not depend on t; as shown in the next section. The inverse of V;(¢) can

also be written

) P .
Vi) =T+ > 5 dCiui — 2 > ¢xCiro, (4.1.8)

where C,;; = C,y; 18 t;-dimensional and for k > [, 2Cy; has (t; — k — [} ones on the
(k —1)* diagonals above and below the main diagonal, excluding the first and last
[ elements on these diagonals, and 0’s elsewhere, k =1,...,p, { =0,1,...,p, Cuu
has (¢; — 2k) ones on the main diagonal, excluding the first and last k elements,
k=1,...,p. This implies

oV ()

/4
=2 (}: ¢ Copt — Ciko) Ck=1,...,p. (4.1.9)
Py, pat

Thus, the adjusted sum of square errors S(3, ¢) defined in (1.2.8) simplifies to

SB.9) = Yala =3 [V, ($)US)]

= T- (COO - 2¢,CQ -+ ¢,C¢) s (4110)

where ¢g = {cgo}, C = {eu}, k,1=1,...,pand

n k2

1 t;—k
tI‘(CiklUi) = ;; Z Z E45Ei(j+k—1)s k = 07 ey By = O, ey P

i=1 j=1+1

Cyp =

T
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4.1.2 Generalized estimation equation estimates

In recent years the most popular approach to the analysis of repeated mea-
surements or clustered data has been the generalized estimating equations (GEE).
Following Liang et al. (1992), the original approach by Liang and Zeger (1986)
will be referred to as GEELl. A variation or an alternative approach (GEE2) has
been suggested by Prentice and Zhao (1991). Hall and Severini (1998) proposed
“extended generalized estimating equations” (EGEE). We will show that in some
cases when the covariance follows an AR(p) model, the GEE methods are equiva-

lent to either moment or maximum likelihood method. In fact, this is true for any

ARMA (p, q) model.

GEE1

For the estimation of the nuisance parameters ¢ and o2, Liang and Zeger pro-
posed method of moment estimators based on the residuals &; =Y, —X; B Prentice
and Zhao (1991) generalized the method of moment approach by suggesting ad hoc
estimating equations for ¢. Based on the estimate of ¢, Liang and Zeger proposed
the estimate of 3 by solving a quasi-score equation following a quasi-likelihood

approach:
1 & =
o2 ZXiVi 1(3’@' - Xi8) =0,
=1

which implies
. n 1 n
B= (Z XQVZIX:) > XVl (4.1.11)
i=1 i=1
Since we assume that the covariance matrix follows an AR(p) model, there is

no “misspecification” issue. Under mild regularity conditions, the estimates of

(B, @, 0?) can be shown to be consistent, and the asymptotic covariance matrix of
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B is given by (1.2.11).

GEE2

In GEE2 and EGEE methods, the parameter ¢? is included in ¢ and all are
estimated by a combined estimating equation. Based on the assumption that Y;
follows a quadratic exponential model (which implies forms for the third and fourth

moments), the score equation for (3, ¢, o?) is
> DiEMfi=0, (4.1.12)
where

f=(uzX8)

N

with

veel(y: — XeB) (s — XiB)'} = vec(U;),

H

54

o = ovec(V;),

and D, is the derivative matrix respect to (3, ¢, 0?)
X,
T eE e, 0h) | 0 o (Ovec(V,)/0d") vec(Vy) )7

and ¥, is the dispersion of (y;, s;)’

2
o Y \ o°V; Cov(y;, s;) )
i = Var( Si ) - ( Cov(s;,y;) Var(s;) '

If the distribution of the data is symmetric (ex: normal data) then Cov(y;,s;) = 0.

Equation (4.1.12) becomes

im=]

n ( OZXiV;l 0 Vi “8
v ") =0,
> (())’ Vcé(Ve')c’(Vaz{sf)ﬁ2 ) ( vec(U;) — o?vec(V;) )
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which can be rewritten as,

i&w%wx@=:u (4.1.13)
i (%i—)),\/ar(si)_l {vec(Ui) - O‘QVGC<V@-)] = 0, (4.1.14)
Zvec Y Var(s;) ™ [VeC(Ui) — agvec(V@-)} = 0. (4.1.15)

Equation (4.1.13) automatically implies (4.1.11), and equation (4.1.15) implies

2 2?31 VeC(Vi),var(Si)—lvec(Ui)
o or  vec(V,; ) Var(s;) " tvec(V;) : (4.1.16)

Note that if we know the third and forth moments we should be able to find the
specific form of Var(s;) involved in (4.1.14) and (4.1.16). The preceding expression
(4.1.16) can be further simplified if we assume that the data is from a normal

distribution, because then we have
V&I’(Si/ = 20’4 Vr?‘, Y Vz 5

where ‘®’ is the Kronecker product. Since

av;! oV,

=-V;1 V7 k=1..,p,
Obx Oy P
which implies
Ovec(V; 1Y dvec(V,;Y
R S T A __V I e T Vv_l
Oy ‘ Iy, '
8vec(

i)'
== V; QV; k=1,...,p,

equation (4.1.14) becomes,

. [ Ovee(V;)\ -1 2
; (——8_(257—_) (20'4 VZ & Vz) [VGC(Ui) - VGC(V,&)} =0
that is,

204 Z (GVPC¢ )> {vec(Uz-) - ”QVEC(Vv:)] =0,

=1
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and can be further rewritten as

fjw ijtr (Wﬁ =0, (4.1.17)
i1 ¢

sv;! _ ov;! av? avy ' "
where tr( o0 Vi) = {tr (WV’) ,tr <~5¢—2~Vi) tr( . V H . Equation

(4.1.17) can be shown in the next section to be the ML equation for ¢ under

normal assumption. Equation (4.1.16) can also be reduced to

2 Sy vee( V) (Vi @ Vi vee(U;)
Yoy vee(V) (Vi1 @ Vi vee(V)

ot (ViViULV)
Htr(vv Vv

zy  tr (UZV;I)
mtr(ly)

i

1

= -_t: (COO - 2¢/C0 + ¢IC¢> . (4118)

Here we used the result
vec(ABC) = (C' @ A)vec(B).

In the next section we will show that equation (4.1.18) is equivalent to the ML
equation for o2 under normal assumption. Thus equations (4.1.13), (4.1.17), and
(4.1.18) which are the guasi-score equations for GEE2 under the normal assump-

tion, are exactly the ML equations.

EGEE

The score equation for EGEFE model is illustrated as below. First we use indez

notation (see for example, McCullagh, 1987) where subscripts and superscripts
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indicate vector or matrix components and a summation is implied over any index
which is repeated in a subscript and a superscript. In our notion v7* is the (j, k)%
element of V;, vy, is the (j, k)" element of V; 1. The partial derivative with respect
to the u'* element of ¢ will be denoted by ¢“. The partial derivatives of the resulting
extended guasi-likelihood function with respect to the components of 3, ¢ and o?

give the following estimating functions:

U = (Y —XI8) v (0(X*B)/08%), b=1,...,7
U e") = ”(Z/j - Xjﬁ)(?/k - Xkﬂ)'v_;"k + 'Ujk’U;'Lk: u=1,...,p
U o) = —( = XIB)(y* — XFB)(~vj/o*) + v (—v/o?),

where € = (8, ¢',0°%)'. Stacking these estimating functions and summing over
independent subjects yields the EGGE for &:

. _Uz'gééﬁ 1

L Ui(§: ¢ =0.

= L i€ 0?) |

In matriz notation, these can be written as:

iX-iV;;'l(waiﬁ) = 0, (4.1.19)
S (oveeViY (o oy =
g;(: o ) (si —oi) = 0, (4.1.20)
iVGC(Vf)’(Si—-ai) = 0. (4.1.21)

Equation (4.1.19) is exactly the same as (4.1.13) and gives (4.1.11). Equation

(4.1.20) and (4.1.21) can be further rewritten as

Eoot(VIUy) 5 & (anl )
—r g tr ! V,’ = 0,
R

n

2_tr(UVT) =03 u(l,) = 0,
i=1

i=1

which are exactly the same as (4.1.17) and (4.1.18).
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Relationship with generalized estimating equations

It can easily be seen that in EGEE method, the estimating equation for 3
corresponding to equation (4.1.19) is exactly the same as equation (4.1.2). There-
fore, as function of an estimator for ¢, the GEEL and EGEE estimators of 3 are
the same; if the distribution of the data is symmetric, GEE2 methods also gives the
same functional estimate of 8. Furthermore, if the data is normal, GEE2 method
and EGEE method are equivalent, and both give maximum likelihood estimates.
It is interesting to note that this relationship is always true regardless of the co-
variance structure. Thus the GEEl method is equivalent to the moment method
under the ARMA (p, ¢) covariance structure. Therefore, it is sufficient to study the

moment and maximum likelihood methods.

4.1.3 Moment and maximum likelihood estimates

According to Section 1.2, the generalized least squares (GLS) estimates of
3 and o? may be obtained as in (1.2.10) and (1.2.12), respectively, and can be

simplified as

n -1 n

B, = (ngvf(qa)xi) XV (Bl (4122
=1 =1

53 = % (CQ() - 2¢IC0 -+ ¢’C¢) . (4123)

Given the “residuals” from the model, the moment estimate of ¢ may be

obtained by setting I' = g;&/.

.. For the AR(p) errors case, the moment estimates
are the same as Yule- Walker estimates. The Yule- Walker method starts by esti-
mating ¢ from the sample autocorrelation function of the GLS residuals using the

Yule- Walker equations. Next, V,;(¢) is estimated from the estimate of ¢. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

autocorrelation corrected estimate of the regression parameter 3 is then computed
by (4.1.22) using the estimated matrix Vi(¢). Finally, the variance o2 is estimated

by (4.1.23) plugging in the estimates of 8 and ¢.

Define ¢y = éro/(t — k), k = 0,1,...,p, where "’ means evaluating based on
the residuals, then &, is the £ lag sample covariance and could be an estimate

of the k" lag autocovariance. We then obtain the following relations expressed in

terms of the estimated autocorrelations r, = &/¢5, E=1,...,p — 1,
e = Q%l + Q%zﬁ + o Qj)prp—l
T2 = ¢+ b + o G2
Ty = @7517110—1 ) + {bZTp—Q + o+ ¢Ap -

These are well-known Yule- Walker equations. In matrix notation, the estimate of
¢ is obtained by

¢ =R7r=C) e, (4.1.24)
where R and ég are the p x p sample autocorrelation and sample covariance matrix
with the (k — 1)!" diagonal elements r and ¢}, respectively, r = (r1,72,...,7p),
and &f = (&g, &g, - - -, Cpo)’- The moment estimates of (3, ¢) are the simultaneous
solutions of (4.1.22) and (4.1.24) and the moment estimate of o is (4.1.23) plugging
the estimates of (3, ¢). Notice that this is just an ad-hoc estimate, but it has been
widely used since it is easy to apply and gives us a quick answer. It also serves as

the preliminary estimates for other estimating methods.

If we approximate the sample variance 0’2 by éoo/t, the sample correlation
vector r by €y/¢po and the sample correlation matrix R by e /€00, where €y and C
are as defined in (4.1.10) evaluating based on residuals, this is true if ¢ is large, the

estimate of ¢ reduces to ¢ = C'¢y and (4.1.23) becomes

& ~ 521 -29T+ PR
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= &3(1 - é&lr),

which agrees with the population result

o’ =0 (1-¢'p).

In order to obtain the maximum likelihood estimates, we need to derive the
ML equations. Recalling the log-likelihood function (1.2.14) and the estimate of ¢

given by (4.1.23), we get
18, ¢) = "5 llog(2r) ~ loa{nf) +1] — 3 3" log Vi(@)] - 5 log (5, )
=1

— nt - =1/% 1 -1/7
= Const. — 5 log (Z IL,l ala;|L| .

PE

Thus, the ULS and QLS methods are to minimize )1 , ala,, while the ML method

VL

is to minimize Y27, &/4;, where &; = a;|L;|~1/*

=1/t Now, equating the partial derivative

of the log-likelihood function with respect to (3,0°) we get (4.1.22) and (4.1.23),

respectively. Taking the partial derivative with respect to ¢ we get

a1 alglVid) 1 9S(B,¢)
o 24 O 202 9¢
[0 & dlog Vi)
=~ %;Tﬂcqb—co) . (4.1.25)

According to Cheang and Reinsel (2000) (p.1174 Eq. (8)),

_(i Olog | V()|

2 8@75 = FL’)(¢:(—72)D¢7

where T',(¢h, 0?) is the p X p autocovariance matrix with the k" diagonal elements
v, and D is a diagonal matrix with (1,2,...,p) on the main diagonal and 0’s

elsewhere. Equating equation (4.1.25) to 0, we obtain the ML equations for ¢

T,(¢p,0%)D¢p + Cp — ¢, = 0. (4.1.26)
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Thus, the MLEs of (3, ¢,0%) are the simultaneous solutions of (4.1.22), (4.1.26)
and (4.1.23). It is noted that the exact MLEs are not in closed forms since (4.1.26)
is hard to solve. Box et al. (1994, p.300) suggested an approximate MLE for the
estimation of ¢. By using &, = & /(t—k—1) as an “estimate” of v, k, I =1,...,p,
that is T', &= C* = {&};}, note that v,_; has several different estimates in this sense,

the ML equation (4.1.26) becomes linear in ¢ after plugging in the estimate of 3

C*'¢ = ¢, (4.1.27)

which yields
¢, =C e, (4.1.28)

where ‘al’ stands for approximate MLE. Note that this is close to the moment esti-
mate (4.1.24). Actually, C is a better approximation of I', comparing to C*, and
Siﬂéé E(C*) = E(C), C* =~ Cg; hence if this is true, the approximate MLE reduces
to the moment estimate by replacing C* with C(’;. In this sense, the approxiﬁlate

MLEs will not be better than the moment estimates.

We can obtain the asymptotic property of the exact MLEs by finding the
information matrix. We have the following results regarding the partial derivatives

of the log-likelihood function with respect to (3, @, 0?):

a% - ;15 gxgvf(yi - X.3)

C% - ~%(FPD¢ + C¢ —co)

% - m% + (o — 2600 -+ 'C)
5%\% _ _% [5(1;505) N C}
d(a; 25)2 = = T (e — 2600 + $/Cp)
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J21 n & 8Ckl } n {6Ck0 }
TaAT T T3 v + = Tar
98'0¢ azg{aﬁ “t 98

9?1 1 &

s = o L XIVyi - Xif)
J0203 ot ;
9?1 n
dpda? ot (Ch —co)
Note that
Okt _ 2 S (y, — X,8) CuX
Lo T T i s gkl 4%,
oB ni3

which yields

Alsc we have

Elch)=0F-k—Dw kl1=0,...,p

which implies

E(C) = {(t~ k- Dy} = (I, -D)I, - T,D,
Bleo) ={(t—k)n} = (L, -D)Iy¢,

B(co) —E(C)¢ = T,Dg.

Say I', = 0>V, , then according to Cheang and Reinsel (2000), the (4, j)" element

-1 s
of V= is
N man{i,7)
vl =y (@i«kqﬁjwk - ¢p~(i—k)¢p~(j—k)> ;o Li=1...p,
k=1
with the convention that ¢g = —1. For example,

Vit = (1997

- 1 -3 —1 (1 + ¢o)
Va — 1 (1 + o) 1- ¢%
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The derivation of V' with respect to ¢ is

A
O,

p—k—1 P
_sz_z( > opCh— > qﬁzcg_k,p_l), k=1,...,p
1=0

l=p—k-+1
with C}, = 0, if K 4+ > p. Since

ar, 1 r ov 1

o a2 P O

we get
or,D¢)  [dI,
—= -2 rp {(MyV, D¢} + T, D.

Thus, we have

9?1 | R
E(@,Bd“?> == —;;Xz\f
21 no - Vo 7y
E a¢a¢, = '—;}:_2- [(pr - D)Fp -2 Fp {MkVp DQBH ~ ”’?’L(f - Q)Vp
) AT R
d{0?)? 204
9?1
= 0
E(aﬁ@¢)
5?1
B (8026ﬁ) =0
5l n
B (fa—i?qb(?a?) = V,Do.
Hence, the information matrix is given by
Ly XIViX 0o o 1
Ifn(ﬁ ¢ 0_2) = n(f - 2)Vp —(%VTiD¢
0 fgqﬁ'DVp 5’:—;%—

By finding the inverse of the bottom block matrix, we get

L8, ¢,0%) = % >, (4.1.29)
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where ¥; = diag(vy, Bq) with v; = 0? (% " X;V;IXO_l and

Sy =

1 [kV;' 4+ D@D —(I—2)0?D¢
Fi—2) | ~(F-2)0%¢D (-2t |’

where k = I({ — 2)/2 — ¢'DV,D¢ . This is the asymptotic variances of the ML

estimates of (3, ¢, 0?).

4.1.4 Quasi-least squares estimates

In order to obtain quasi-least squares estimates of ¢, we need to minimize
S(83,¢) with respect to 8 and ¢. Equating to zero the partial differentiate of
S(B, ¢) with respect to B we get (4.1.22). Estimate of ¢ is obtained by two steps

as follows.

The first step is to solve equation (1.2.20). From (4.1.9) we get

" av;t o\
S tr ( — U; | =2n(C¢ —cy) =0,
2"\"a )
which gives the ULS estimate
q,\bu = C‘ICQ.

Note that if we estimate yx_; by ¢ /T in stead of &, /(T — k —1) and y; by ¢ /1, then
&, is identical to ¢,;. The second step needs to modify ¢, to be consistent. From
(1.2.21) we get

nOVTYS,) o &, [0V,
Ztr(——“é&»—-vé) = A ~Ztr(-~5~qg———'Pi>

= 2A7L. [{gn(cmm)} &, — {znj tr(CikoPi)H

i=1

i=1
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Since that

tT(CiMP&:(ti—*k“l)pkwl, kzl,Q,...,p, 120,1,...710, izl,...,n,

the equation above simplifies to

=2 (f—3)m o = (p+ 1) pp
(t—3)p1 t—4 [t(P*‘Q)]sz}
:[5——(p+1)]pp-.1 :ﬁ—(p+2)]pp—z . :5—217

¢,
@ - 1)/91
_ (t —2)p2 - 0

@~ )

Let D, be a p x p tridiagonal matrix with k% diagonal elements in the order
{{—(k+2),t—(k+2-2),...,t—(2p—k)}, for k=0,1,2,...,p— 1. The equation

above becomes

p-i . B
(DO + Z kak)¢u - (tIP - D)p - 07
k=1
that is
~ p-1 ~ -
Do, + 3 Did,ehp —~ (L, ~D)p = 0.
i=1
This gives
—. p_l ~ ~
p=(fl, - D — 3" Dyd,e,) ' Dogp,.
k=1
From (4.1.4) we get
¢ =P, (p)p. (4.1.30)

The quasi-least squares estimates of 8 and ¢ are the simultaneous solutions of

(4.1.22) and (4.1.30), and &7 is obtained plugging 3, and ¢, in (4.1.23).
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4.1.5 Comparisons through simulation

The asymptotic distribution of the moment and quasi-least squares estimates
can be found by applying the delta theorem, but the formula will be very compli-
cated. To avoid the tedious computations, we will compare the three estimating
methods by simulation. The comparisons will be made with respect to the exact
maximum likelihood estimates by solving the maximum likelihood equations using
Newton-Raphson method. Our simulation results show that the approximate max-
imum likelihood estimates suggested by Box et al. (1994) are less efficient than
the moment estimates. As before, we concentrate on comparing the estimates of
¢. Particularly we choose n = 30 and p = 4. Without loss of generality, we as-
sume 3 = 0 and 0? = 1 in our simulation. The true parameters should be chosen
in such a way that the series is stationary and invertible. It is hard to study all
possible parameters, so we choose ¢ = (0.5, —0.2,0.1,0.2) for illustrating purposes,
and then study the asymptotic properties of the estimates as t ranges from 10 to

55.

First we study the asymptotic properties of the estimates when the data
is normal. As in previous chapters, we generate a t-dimensional vector € whose
elements are from a standard normal distribution. We then set y = o?VV/2(¢)e
and generate a sample of size n = 30. The process is then repeated 10000 times.
For each replication, we compute the moment, maximum likelihood and quasi-least
estimates of ¢, and then compute the mean square errors (MSEs). Since the MLE
of ¢ is not in a closed form, we use the Newton-Raphson method to solve the
ML equation. We set the precision to be 1e — 10 when solving the ML equation.
The QLS estimates and moment estimates are in closed forms. If the estimates
(including moment, ML and quasi-least squares estimates) are not feasible, that

sample was deleted and hence excluded from the analysis. It is interesting to note
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Table 4.1. ARE of ng and cAﬁm (in parenthesis) vs q;ﬁl when the data is simulated

from normal distribution

t

$1 (0.5)

¢2 (—0.2)

¢3 (0.1)

¢4 (0.2)

10
15
20
25
30
35
40
45
50
55

0.7450 (0.7911)
0.9695 (0.8634)
0.9853 (0.9124)
0.9875 (0.9270)
0.9930 (0.9336)
0.9966 (0.9517)
0.9971 (0.9594)
0.9965 (0.9609)
0.9975 (0.9593)
0.9982 (0.9722)

0.7934 (0.9702)
1.0714 (0.9672)
1.0546 (0.9946)
1.0442 (0.9951)
1.0383 (0.9922)
1.0327 (0.9960)
1.0296 (0.9877)
1.0252 (0.9994)
1.0236 (0.9971)
1.0217 (1.0000)

0.8043 (0.8820)
0.9768 (0.9308)
0.9900 (0.9534)
0.9958 (0.9716)
0.9967 (0.9695)
0.9992 (0.9710)
0.9999 (0.9769)
0.9999 (0.9771)
1.0001 (0.9917)
1.0002 (0.9868)

0.8928 (0.9965)
1.0289 (0.9710)
1.0261 (0.9703)
1.0241 (0.9790)
1.0214 (0.9796)
1.0183 (0.9781)
1.0182 (0.9816)
1.0139 (0.9847)
1.0146 (0.9787)
1.0118 (0.9844)

that when t = 10, quasi-least squares estimates are more likely to be unfeasible
(about 0.3%), while when ¢ is larger than 10, all estimates seem to be feasible. The

proportion of feasible estimates decreases as ¢ increases.

Define the ARE of ¢31q with respect to q@u as e((]hq; «’;515) = MSE;,/MSE,,,
and define the ARE of ¢y, with respect to ¢y similarly. The subscript ‘1’ is
understandable to represent the notations associated with ¢;. Define the ARE for
@2, @3 and ¢4 similarly. Table 4.1 contains the AREs of ¢p. Figure 4.1 gives the plot
of the ARFEs of the quasi-least squares and moment estimates of ¢; with respect to
the MLE. The ARE plots of ¢, ¢3 and ¢, are similar. Most of the efficiencies are
close to but less than 1. Some quasi-least squares efficiencies are even larger than
1 (such as 1.03) due to the fact that the MLEs are obtained approximately by the
Newton-Raphson method (exact solution is not possible, we set the precision to be
le — 10). It is clear from the plot that the efficiencies of the quasi-least squares
estimates are much large than those of the moment estimates, and approach 1 as ¢

increases.
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Figure 4.1. AREs of (;qu and (ﬁlm vs (]5” when the data is simulated from normal

distribution.

To study the robust property of the quasi-least squares estimates, we have
simulated data from a Student-t distribution. We generate a #-dimensional (2
ranges from 10 to 55) vector € whose elements form a random sample from the
Student-t distribution with mean 0 and 5 degrees of freedom, and then let y =
a\/% V'/2(¢)e and generate 30 of them. Now the process is repeated 10000
times. For each replication we computed the moment, normal ML (assuming the
data is normal) and quasi-least squares estimates of ¢, and then compute the mean
square errors. About 1% of the quasi-least squares estimates are not feasible when

= 10. All estimates are feasible when ¢ > 10. The asymptotic relative efficiencies
are defined as before. Table 4.2 gives the efficiencies. Figure 4.2 gives the plot
of the AREs of the quasi-least squares and moment estimates of ¢, with respect
to the MLE. From the plot we see that most efficiencies of the quasi-least squares

estimates are greater than 1, but the efficiencies of the moment estimates are not.
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Table 4.2. ARE of qAbq and ¢,, (in parenthesis) vs ¢, when the data is simulated

from Student-t distribution

t ¢ (0.5) ¢z (—0.2) ®3 (0.1) ¢4 (0.2)
10 0.6238 (0.7664) 0.6157 (0.9175) 0.6694 (0.8729) 0.7373 (1.0427)
15 0.9618 (0.8639) 1.0476 (0.9536) 0.9615 (0.9316) 0.9978 (1.0019)
20 0.9826 (0.8845) 1.0465 (0.9606) 0.9798 (0.9468) 1.0135 (0.9800)
25 0.9903 (0.9151) 1.0404 (0.9739) 0.9901 (0.9692) 1.0131 (0.9971)
30 0.9930 (0.9294) 1.0378 (0.9772) 0.9933 (0.9786) 1.0153 (0.9855)
35 0.9974 (0.9331) 1.0340 (0.9706) 0.9968 (0.9811) 1.0143 (0.9810)
40 0.9966 (0.9414) 1.0273 (0.9832) 0.9970 (0.9756) 1.0117 (0.9850)
45 0.9968 (0.9473) 1.0243 (0.9768) 0.9986 (0.9764) 1.0126 (0.9965)
50 0.9977 (0.9595) 1.0229 (0.9890) 0.9991 (0.9849) 1.0114 (0.9921)
55  0.9976 (0.9626) 1.0206 (0.9854) 0.9990 (0.9834) 1.0109 (0.9843)
Ctes T -
0905 |
> i \
g o8 :
R ] ‘
Q i
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Figure 4.2. ARFEs of qggq and Gay, vS bor when the data is simulated from Student-

t distribution.
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Table 4.3. ARE of cqu and éﬁm (in parenthesis) vs 9%1 when the data is simulated

from 0.5N(0,4) + 0.5N(1,4)

t

@ (0.5)

¢2 (~0.2)

#3 (0.1)

¢4 (0.2)

10
15
20
25
30
35
40
45
50

1.4227 (1.1181)
1.4418 (1.2663)
1.4168 (1.3300)
1.3739 (1.3264)
1.3311 (1.3091)
1.2966 (1.2801)
1.2663 (1.2642)
1.2413 (1.2440)
1.2216 (1.2245)

1.0123 (0.9776)
1.1217 (1.0083)
1.0650 (0.9840)
1.0346 (0.9584)
1.0179 (0.9554)
1.0076 (0.9538)
1.0008 (0.9509)
0.9977 (0.9520)
0.9953 (0.9545)

1.6454 (1.3734)
1.6202 (1.3710)
1.5187 (1.3079)
1.4384 (1.2706)

1.3318 (1.1989)
1.2970 (1.1782)
1.2683 (1.1616)
1.2438 (1.1488)

7.7692 (8.0616)
5.0855 (4.0307)
3.1647 (2.4736)
2.4562 (1.9226)
2.0795 (1.6485)
1.8568 (1.4993)
1.7054 (1.3987)
1.6051 (1.3308)
1.5250 (1.2863)

(
(
(
(
1.3802 (1.2260)
(
(
(
(
(

55 1.2028 (1.2101) 0.9935 (0.9534) 1.2235 (1.1333) 1.4640 (1.2479)

As t goes larger, the difference becomes less prominent. The efficiency plot of ¢y .
shows similar pattern, while the efficiencies of ¢, and ¢3 are still less than but close

to 1.

To further see the robust property of quasi-least squares estimates, we sinu-
late the data from a contaminated normal distribution. First we generate a random
number between 0 and 1, if the number is less than 0.5, we generate € from N(0,4);
otherwise, we generate € from N(1,4). We then modify ¢ to have mean 0 and
variance 1 by subtracting it from 0.5 and then dividing by v/4.25. Let € be a vector
of a size t consisting of random sample of £. Secondly, we let y = 0>V/2(¢h)e and
generate a sample of size n = 30. The whole process is then repeated 10,000 times.
For each replication, we compute the moment, maximum likelihood and quagi-least
squares estimates of ¢, and then compute the mean square errors. In this case
about 15% of the maximum likelihood estimates are not feasible! But all moment
and quasi-least squares estimates are feasible. Define the asymptotic relative ef-

ficiencies as before. Table 4.3 contains the AREs of ¢. Figure 4.3 gives the plot
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Figure 4.3.  AREs of ¢, and ¢,, vs ¢, when the data is simulated from

0.5N(0,4) + 0.5N(1,4).

of the AREs of the quasi-least squares and moment estimates with respect to the
maximum likelihood estimates of ¢. From the plot we see that most efficiencies of
the quasi-least squares estimates are much greater than 1, more so than the efh-
ciencies of the moment estimates. It is clear that the quasi-least squares estimates
are much better than the moment estimates. As t goes larger, the efficiencies all

approach 1.

Based on the plots, we again demonstrate that, when the error of the model is

an AR(p) process, quasi-least squares estimates are better than moment estimates,
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and good competitors to maximum likelihood estimates. When the data is from
a distribution which differs slightly from normal, quasi-least squares estimates are

more robust than maximum likelihood estimates.

The applications of the estimating methods for AR(p) (p > 2) model are
limited, since most of the data could be analyzed by fitting a simple AR(1) or
AR(2) model. For the simple model we have already studied the applications in the
previous chapters. However, in this chapter we did comparisons of the estimating
methods to provide guidelines if one is interested in fitting a more complicated

mode] for real data.
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4.2 The model with MA(1) errors

4.2.1 Model

A model that is complementary to the autoregressive process of order one
(AR(1)) is the moving average process of order one (MA(1)). Anderson (1975)
showed the basic properties of MA(1) process for time series regression model with
replications. The maximum likelihood approach was studied by Haddad (1995) for
a single series. Feigin, et al. (1996) studied the model using an alternative approach

with positive innovations. The model is given by (1.1.7), and (1.1.2) reduces to

&5 = a5 — g(lj_l, ] = 1, 2, N (4231)

The invertibility condition requires that |#] < 1. From (1.1.4), the variance of the
process 18 given by

70 = 02 = (1 + 0%). (4.2.32)

The autocorrelation satisfies

po= —, | <05 (4.2.33)

pr = 0, kE>2

according to (1.1.5). This implies that

1T
B , p#0
6= 2p

0, p =0,

(4.2.34)

where p is the abbreviation for p;. Figure 4.4 shows the relationship between 6 and

p. The error g; has mean 0 and covariance
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Figure 4.4. Relationship between § and p

I‘i(‘97 0-2) - O‘?PZ(p) = Uzvi(9)7 (4235}

where P;(p) is the t; x t; correlation matrix with p on the first off diagonal and
zero’s elsewhere, that is

Pi(p) =1, + 2 pCio,

and

Vi{0) = (1+6*)Pi(p)

where Cjjg is defined in (2.1.6) and I, is the ¢;—dimensional identity matrix. This

gives
AV

Haddad (1995) has shown that

1

-1 _ ) *
V) = o (€(0) + 95(6)
1
=g E0)
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1 t;—1

where the ¢; x t; matrix €;(8) = {01} is the ;- dimensional first order autocor-
relation matrix with parameter 6, £2(6) = (wy,) is given by
—6 (1 — DY /(1 — 7y i k=1, 1=1,...,1,
Wt = § Wi, (t~k+1) if k=t l=1,...,1,

0 elsewhere,

and C,o’s are defined as in (4.1.8). Note that €2,(6) is similar to P;(¢) in AR(1)
model. Generally speaking, the matrix €27 is close to 0 and negligible. But when
n is large the matrix cannot be ignored to get efficient estimates. If we ignore €27,

equation (4.2.38) implies

8V“1(9) 2 té"‘l k 1 / k - “
: = — e 2 41 -; ) \
a9 (1—62)2 {HI + Z‘ Ciro (k9 (K )0 )J ) (4.2.39)

but by taking derivative of the exact inverse of V with respect to ¢ we get

av; o) LOVL(0) .
—o8 = Vi Vi
= =2V (0L, — Cao)V;". (4.2.40)

The adjusted sum of square errors S(3,0) defined in (1.2.9) becomes
SB,0) = S tr(V,'U)
i=1

n f;—1
1 _}92 (n oo +2) ) tr(cilcOUi)gk) ; (4.2.41)

i=1 k=1

Q

where c¢g’s are as defined in (4.1.10).

4.2.2 Moment and Maximum likelihood estimates

Recall that the generalized least squares (GLS) estimates of (3,0?) as in

(1.2.10) and (1.2.12) respectively are given by
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n -1
B, = (; X;V;1Xi> ;XzV;‘yi (4.2.42)
2 = 15(8,0)= =3 (Vi
g nt v nt =

&Q

1 n t;—1 \ )
m (’f& Cop + 2 z Z tI‘ 'LkDU } (4243)

i=1 k=1

Given the “residuals” &, =y, — Xifi', the variance of y;; is estimated by coo/t

and the first order covariance is estimated by ¢;o/(f — 1). This yields

Clg/(% - 1) - fcm
cop/t (t — 1)cao

p=

By combining (4.2.42) and (4.2.34) after plugging in p and solving for # in the

feasible region (—1, 1), we obtain the moment estimate (8,,, 0n). The estimate
of 62 is obtained plugging in the estimates of 8 and ¢ in (4.2.43). More powerful
algorithms may be used to get the estimates (Box et al. 1994, p.221). These

methods avoid discussing the solution based on the value of 4.

The MLEs are derived as follows. Assuming the errors €;’s are normal, and

recalling (1.2.14), the log-likelihood function may be written

1B,0,0%) = ——2—10g(27r)———2—10g( o) — —Zloo Vi(6)] — (1725([3,9), (4.2.44)

where S(8, 0) is defined in (4.2.41). Equating to zero the partial derivatives of
(4.2.44) with respect to B and o? we obtain (4.2.42) and (4.2.43), respectively.

According to Haddad (1995), the determinate of V; is given by

1— 92t,+9
k
Vi = Z 0% =
which yields
dlog [V] 20 = N
90 1 - gt ;}9 — 6% | .
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Using the approximate V;, we get the partial derivative of (4.2.44) with respect to

g as
Al n 1]4;7;01 92k . tiQQti
90 - “9; 1 - p2(t+D)
nbcoy + Siy Sy tr{CinoUs) (kek"l — (k- 2)9k+1>

(1= 02)°

The ML estimate is found by setting the equation above to zero and solving for 6.
If we assume that ¢; = ¢, the equation above reduces to

ol O (SEHO% —t0%)  n[eood + SUZ ero (KOFT — (k — 2)6%)]
96 1 — g2+ - o2(1 — §2)2 .

Since ¢ =~ 0, k£ > 2, we obtain the approximate ML equation as

t—~1 t
o?0(1 — 6°) (Z o ~ t@”’) + (c10 + coof) + c106?) 3 67 = 0. (4.2.45)

=0 k=0

Substituting the estimate of o2 & (g + 2¢1060)/[t (1 — 6%)] and simplifying the
equation above we obtain
L =1
[chm + (+ Veood + (t+ 2)c106?| D 6% +1 (1 = 67)c106* = 0. (4.2.46)
k=0
If ¢ is large enough, 6% is close to 0, and the equation above becomes

teyo + (¢ + Degol + (£ + 2)ey08? = 0,

which gives

—(t + L)oo + /(£ + 1)2c3 — 4t(t + 2)ck,
g = 2(t + 2)(/'10 !
0) if Cig = 0.

if C1p 7é 0

If we do not assume ¢y = 0, the ML equation is given by

-+ 1) ( 1 1 ) ( t—1 3 t—1 r
; - Cop + 2 Z C}cOQ + Z kck(ﬁ” =0.
( t J\1—g2 12 =

k=1
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Now, let us find the exact ML equation. From (4.2.44) we get

ol 1&dlog|Vi®)] 1 3S(8,9)
90 ~ 24 08 2% 08
1 [&BVu(9)]/98 | nidS(B,6)/90
- 2{2 Vil 5(8,9) }
1 @& avael/en |t St [(9Vi(6)/90)U]
T2 ; Vil Y tr(ViUy)
€, (4.2.47)

after substituting the exact estimate of 0. If we assume #; = t particularly, the

exact ML equation can be simplified as

AV ()90  ttr [(V~1(6)/06)T]
V] tr(V-10)

For MA(1) case, we have

i
Vi = Y%,
k=0
ily_' — E‘ng%*l
99 k=1 7
av-HO) -\ A C)
tr(———aae U) = -V 50 Vv

= —2tr [V7'(#1, - Cyo) V']

The ML estimates (3,, §;) are the simultaneous solutions of (4.2.42) and (4.2.47),
and 67 is (4.2.43) plugging in (Bl, ég) In Section 4.2.5, we will use the exact ML

equation in the simulations instead of the approximate ML estimate.

4.2.3 Quasi-least squares estimates

To obtain QLS estimates, we need to minimize S(3,6) with respect to 3
and 6. Equating to zero the partial derivative of S(3,8) with respect to 3 we get

(4.2.42). The estimate of § is obtained by two steps as follows.
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Equating to zero the partial derivative of S(3,8) with respect to § we get

n oV (# notiel ) A

Ztr ( ( ) . Uz) ~7 (———5’2-55 !izl ’;1 tr ngU (k@k L (k’ _ 2)9L+1>
+n# coo ]

%o (4.2.48)

The solution involves solving the max(t;)-degree polynomial equation of 8, but since

cko = 0, k > 2, an approximation to (4.2.48) may be

Cio + (Co() + 2620)9 + 01092 = O,

which yields
—0 C10

~ == . {4.2.49
1+6%  cop+c : )

The ULS estimates of (3, #) is then obtained by solvix‘;g (4.2.42} and {4.2.49) recur-
sively. The estimate of 3 obtained this way is also the QLS estimate. Suppose 6,
is the ULS estimate, the second step of QLS method modifies 8, to be consistent.
Recalling (1.2.21) in the second step we need to solve

i=1

303 tr(CaPy) (K65 — (k — 2)05")

1+02 [n t;—1
i=1 k=1
+éu Ztr(P,) ]
=1

(-0

set 0.

Since

tf(Pi) = lLZ
tl"(Cil()Pi) = (tl—l)p

tI‘(CZ’kQPi) = 0, k 2 2,
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the equation above becomes

0, +F-1)1+6)p=0, (4.2.50)

which yields
_ -f —Hu . ECIO
t—1 1+é5 (£ — 1)(cop + €20)

Pq

From (4.2.34) we get

—(1+62) + \/(1 +62)2 — 40262
0, = 24,
0, it 8,=0,

(4.2.51)

where a = —{/(f — 1). The QLS estimate of o* is obtained plugging in ﬁq, éq in
(4.2.43). The simulation result next is based on the solution without the approxi-

mation ¢z = 0, k > 2.

4.2.4 The asymptotic distribution

The asymptotic distribution is obtained when n goes to infinity while ¢,’s are
held fixed. For simplicity, we assume that ¢; = t. The asymptotic distribution of
the maximum likelihood estimates were obtained by finding the information matrix,
while the distribution of the moment estimates and the quasi-least squares estimates
were obtained by finding the distribution of U and then applying the delta theorem.
We will first find the asymptotic distribution of the maximum likelihood estimates.
We will need the following results regarding the first and second derivatives of the

log-likelihood (4.2.44) with respect to 3,6, and o*:

al 1 &,

B - o2 ;Xiv (v: — XiB),

ol n[o|V]|/os  ow(V'U)/80
o6 2| |V] o2 ’
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o nli (VD)
do? 2|02 ot '
&l 1 &
“0 VX,
662 0_2 ;Xz X/
PL_ o [PV (9V]/o0)"  Pu(V-1T)/08
) V] V]| K ’
L nf2ax(V'O) ¢
o2 2 ob ot|’
&1 1 &, vt
9800~ o =iy i Xb)
821 1 & ey
3607~ o ;Xz—V (v: — X:i8),
#r n ou(VTU)
90200 204 00 ’
where
. 4
VI = Yo
k=0
AV b
= Y 2k
i T 2T
82V t
= 2k — 1)§72
P DE L
IV-I__ e
tr( 5 U) = —2tr [V7H{OL, - Cy0)V'T]
62v~1

|

062
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Since E(U) = ¢°V, we have

>) _ {aZm /967 (agvl /@9)2

2 V] V]
+8 1 [V7H(0L, — C10)V (6L ~ Co)| — 2 tx(V )],

et} nt
£ 6(02)2> T 207
R gl
B amw) B E(aﬁae)“o’
9?1 n 1
E 89602> = ——5tr [V~ Cy)].

1

Define v = o? (1 0, X;V1X,) " and

~B(0%1/06%) ~E(0%1/9000°) |

Ty = ,*' ~E(6°1/9050%) ~E(PU/a(0%)?) |

then the asymptotic variance of (,él, ég,., 67) is given by
-1 2 1
1(B,0,0%) = - 3,
n
where 3, = diag(v,, Xg;).

In order to find the distribution of the moment and quasi-least squares es-
timates, we have to know the third and forth moments of the distribution. For
convenience, we assume that the distribution is normal. The asymptotic variance
of all three estimates of 3 is given by v;. The efficiency of the estimates of o*
will be consistent with the efficiency of the estimates of 8. Thus we will only show
the asymptotic distribution of the estimates of #. Under normality assumption, we

have

i~ N(0, ¢c?V), i=1...,n,
this implies

E(vec(U,)) = o?vec(V),

Covivec(U;)) = 20"V®V, i=1,...,n
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Thus

,PRP
n

vec(U) Y (02(1 +8*)vec(P), 20"(1+0%) ) ,  as N — oo.

Let ¢ = (cgo, c10y C20) = (tr(ﬁ), tr(CmtT),tr(Czo—[‘T)),7 then
c-% N (uc, % Ec> ,  as n — 09, (4.2.52)
where p, = o?(1+62)(t, (t—1)p, 0)' and =, = 20*(1 +6%)*{v;;} is symmetric with
vy = tr(P-P)=t+2(t—1)p%
g = tr(P-Cy-P) =20t - 1)p,
vy = tr(CioP - CioP) = -;- (t— 1) + (3t — 5)0%,
vz = to(P-Cy-P) = (i —2)p%,

vy = tr(CioP - CyP) = (¢ =2)p

t—2 2ttt +2) |, 3p7 .
U3z — tr(CQOP . CQOP) = “’5"‘“(1 -+ ,G'\) -+ B“'\"gu - f. "g“, if ¢ is O(},d}.
Here we used the results
tr(Cm) = tl(c‘{’o) == O,
1
w(Ch) = 5(-1),
1
tr(Clp) = 7 (3t—5),
tl‘(CgQ) == tr(Cg()Cm) = tr(ng) = tl‘(ngC?o) = O,
t—2
tr(cgo) = )
2
1 3
2 . o . = . .
tr(CgpCrp)° = Szt(t +2) -] 35’ if ¢ is odd],
1
tr(CngOCm) = E(t - 2)
Recall that
. tegg
P (E — 1)C00 ’
R Leo
Pg =

(t—1)(coo + c20)
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This gives

6[)’7% - t _gl(}
N e S
Oy _ t o
dc  (t—1)(coo + ca0)? ( (o0 +ez0) ) ’
which implies
Opmltte) _ 1 (=1
dc o?(1+60%)e(t — 1) 0
apACI(IJ’c) — 1 (t - 1)_’%
dc A+t -1\ ¢t-1)p )

Using the delta theorem, we get

. 1 ’
f}m i) N <P: - Ep’m) s
i1
~ d 1
pg — N (P: -~ qu) a8 T 00,
where
1 | : ey
S = oy [P0 D+ 2= 316 (- 1],
1 ., f
S = FET [2(2 — 1) — (3¢5 — 106 + 9 + 2)p” + (¢ — 1)2(t — 2)p°

1
+(t =12 (2 4 34— 48) ~ 3, i ¢ s odd]}} .

Given the estimate p with asymptotic mean p and variance X,/n, the estimate of

0 is given by 0 = (=1 4+ /T =452)/(2p), p # 0. This gives

00py) _ 1 (1
op 2p2 VI—4p? )"

Applying the delta theorem again, we get,

. 00(p,) (2, 90(1,)
AN 6(1s. pL 28 L4 1 ) )
6 N ( (£e5), 57 - 7 , as n-— oo,

that is

N 1
Q—LN@, ——aZp), as n— o0,
n
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Figure 4.5. AREs of 6,, and éq when the data is normal.

where ¢ = (1 —2p% — /T~ 4p2> /(2p*(1—4p%)). Thus the asymptotic distributions

of ém and 9,, are given by

g, -2

where X9, = a X, and X9y = a X,,. The distribution of the exact quasi-least
squares estimates is not easy to find. We present the distribution of an approxima-
tion here. In the next section we use simulations for comparisons with the exact
quasi-least squares estimates. We first make theoretical comparisons of the mo-
ment, the maximum likelihood and the approximate quasi-least squares estimates.
Figure 4.5 shows the plot of the ARFEs of éq and #,, when ¢t = 30, and Figure 4.6
gives the 3D plot of the ARE of HAq‘ We see that the maximum likelihood estimates
are the best, while the moment estimates are the worst. It is not surprising that the
efliciency of the approximate quasi-least squares estimates are close to that of the

moment estimates, since the estimates differ only by cqy in the denominator. But
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Figure 4.6. ARE of éq when the data is normal.

as we will see the next section, the exact quasi-least squares estimates are much

better than the moment estimates.

4.2.5 Simulation Results

In this section we use simulations to make efficiency comparisons between the
exact maximum likelihood estimates and the quasi-least squares estimates for the
MA(1) model. We will use Newton-Raphson method to obtain both of those esti-
mates. As before, we assume 8 = 0 and ¢? = 1 in our simulation, and concentrate
on comparing the estimates of §. We choose t ranging from 5 to 45 and 6 ranging
from —0.95 to 0.95. We first study the asymptotic properties of the estimates when
the data is normal. We generate a t-dimensional vector € whose elements are from a

standard normal distribution, and then we let y = 0>V'/2¢ and repeat the process
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Table 4.4. AREs of éq, and 0., (in parentheses) when the data is stmulated from

normal distribution.

8

£=5

t=10

£=30

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95

1.0248 (1.0335)
1.0193 (0.9734)
0.9960 (0.8512)
0.9199 (0.7034)
0.9082 (0.5149)
0.9296 (0.5315)
0.9433 (0.5412)
1.0536 (0.5369)
2.9930 (1.1240)
0.2242 (0.1039)
0.0335 (0.0184)

1.0033 (1.0170)
1.0064 (0.9743)
0.9793 (0.8309)
0.9603 (0.6622)
0.9253 (0.4605)
0.8189 (0.2781)
0.7203 (0.2300)
0.5433 (0.2106)
0.5980 (0.1637)
0.6916 (0.3481)

)

1.0024 (1.0220)
0.9993 (0.9602)
0.9965 (0.8398)
0.9920 (0.6720)
0.9872 (0.4638)
0.9293 (0.2500)
0.8397 (0.1225)
0.6454 (0.0733)
0.3615 (0.0525)
0.2280 (0.0199)
0.0065 (0.0168)

0.0612 (0.0257

n = 30 times. The whole process is then repeated 10000 times. For each replication,
we compute the moment, maximum likelihood and quasi-least estimates of 0, and -
then compute the mean square errors (MSEs). We use Newton-Raphson method to
solve the exact ML equation and quasi-least squares estimating equation by setting
the precision to be le — 10. If any estimate is not feasible, the whole record was
deleted and hence excluded from the analysis. Define the ARE of éq with respect
to 6, as e(d,; g;) = MSE,/MSE,, and define the ARE of 6., with respect to 4,
similarly. Table 4.4 gives the efficiencies for ¢ = 5, 10 and 30. The efficiencies
are symmetric about § = 0, thus, only the efficiencies when 8 is non-negative are
shown. The numbers in the parentheses are the AREs of f,,. Figure 4.7 shows the
plot of the AREs of 961 and 6, when t = 30. Figure 4.8 gives the 3D plot of the
ARE of 94 We found out that the ARE of éq are larger than that of ém. Some
efficiencies are larger than one due to the approximation of the Newton-Raphson
iteration. Theoretically, the efficiencies should be one when # is 0. The bias plot

is given by Figure 4.9 when ¢ = 30. It is clear from the plot that the maximum
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Figure 4.8. ARE of éq when the data is simulated from normal distribution.
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Figure 4.9. Biases of 0,,, 0, and 6; when the data is simulated from normal

distribution.

likelihood estimates have the smallest bias, while the moment estimates have the
most bias. Thus, the maximum likelihood estimates are the best based on either

bias or mean square errors.

To further check the robust property of estimates, we simulate the data from
the Student-t distribution with mean 0 and 5 degrees of freedom. We generate
the samples as before but instead of normal we use the t-distribution. Table 4.5
gives the efficiencies for ¢ = 5, 10 and 30. The efficiencies are symmetric about
# = 0 and only the efficiencies when 6 is non-negative are shown. The numbers
in the parentheses are the AREs of 6,,. Figure 4.10 shows the plot of the AREs
of éq and §,, when ¢ = 30. Figure 4.11 gives the 3D plot of the ARE of éq. We
found out that the ARE of éq are larger than that of 6., but still smaller than
that of él, although it is larger than 1 when @ is close to 1 and t is small. When

@ is close to 1, the estimates become very unstable. We also tried contaminated
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Table 4.5. ARFEs of éq, and 6., (in parentheses) when the data is simulated from

Student-t distribution.

6

=5

t=10

t=30

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0430 (1.0754)
1.0235 (0.9932)
0.9843 (0.8280)
0.9623 (0.7314)
0.9166 (0.5555)
0.8607 (0.5471)
0.9123 (0.6166)
1.3067 (0.7652)
1.7350 (0.8421)
0.2831 (0.1682)

1.0088 (1.0274)
1.0016 (0.9838)
0.9936 (0.8624)
0.9488 (0.6402)
0.9104 (0.4663)
0.7693 (0.2845)
0.6781 (0.2614)
0.5802 (0.2452)
0.5117 (0.1759)
0.3866 (0.1970)

1.0016 (1.0010)
1.0008 (0.9591)
0.9942 (0.8626)
0.9923 (0.6704)
0.9351 (0.4607)
0.8923 (0.2609)
0.7406 (0.1243)
0.5900 (0.0864)
0.2448 (0.0508)
0.0889 (0.0228)

0.95 0.1005 (0.0633) 0.1300 (0.0707)

0.0057 (0.0175)

normal distribution, but still observed the same pattern unfortunately. The bias
plot is given by Figure 4.9 when ¢ = 30. It is clear from the plot that the maximum
likelihood estimates still have the smallest bias, while the moment estimates have
the most bias. Thus, the maximum likelihood estimates are still the best based
on either bias or mean square errors. But compared to moment estimates, the

quasi-least squares estimates are much better.

Some discussion of the computational and programming issues is in order.
The maximum likelihood estimates are not easy to compute numerically, even with
a high-speed computer. For example, for the program to find the determinant
of the matrix V and the determinant of the derivative matrix of V with respect
to d, the computer reported a “out of flow” error message. That is because the
determinants are very large when t is large. I have to find the ratio of this two
instead of finding each one separatively. Regarding the Newton-Raphson method,
choosing the efficiency of convergence and the number of iteration is very important.

Generally, if you want more efficiency, you have to let the program iterate more
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times. For efficiency to be le — 10, the normal iteration is about 10. We set the

maximum iteration to 30.

4.3 Summary

In this chapter, we studied the three estimating methods for the time series
regression model with AR(p) and MA(1) errors. We also proved that the GEE
methods including GEE1, GEE2 and EGEE reduce to either moment or maximum
likelihood methods in this particular case. Specifically, GEE1 can be reduced to
moment estimates, and GEE2 and EGEE can be reduced to maximum likelihood
estimates. This is true for the generalized ARMA (p,¢) model. Since we assume

that the covariance matrix does not depend on the regression parameter, the issue
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of misspecification does not arise. Theoretical and simulation results show that the
maximum likelihood estimates are the best when the data is normal. For the AR(p),
the quasi-least squares estimates may be more robust, for example, when the data
is from a contaminated distribution. While, for the MA(1) case, the pattern is

different, but the quasi-least squares estimates are still good competitors.
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CHAPTER V

CONCLUSIONS

Until now, we have studied the time series regression model with AR(p) and
MA(1) error. It is essential to obtain an efficient estimate of the autoregressive
and moving average parameters, since a more efficient estimate of the autoregres-
sive and moving average parameter will result a more efficient regression (3) and
scale (0?) parameter estimates. We found that the maximum likelihood estimates
are best when the data is normal, and the quasi-least squares estimates are good
competitors. We have not applied the methods to the model with MA(q) or mixed
errors yet, though these parts are more complicated and challenging. We see that
even in MA(1) case, the application of the moment, maximum likelihood and guasi-
least squares methods are very complicated. The method we used in MA(1) case
are actually generalized result for ARMA{p, q) model, except for moment method.
A quadratically convergent process was suggested by Box et al. (1994) (Chap.6,
p.221) for the moment method. QQuasi-least squares methods second step also needs
be modified a little bit according to different model. It’s no doubt that the efficien-

cles of the estimates will behavior the same as the models we just studied.

Sometimes, the data may be grouped due to the nature of the study. It
is desirable to fit the same order autoregressive-moving average model but with
different parameters for each group. Suppose that there are K treatment group
totally, and for the &% group, k = 1,..., K, there are n, replications, for the i

replication, there are t,,; repeated measurements. The model may be expressed
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in matrix notation as
Yki:in,B-!-Eki, z'::l,...,nk, ]‘J:L...,]{,

where g;; is an ARMA(p, q) process with parameter A,. We will reserve the

notations introduced before. The adjusted sum of square errors become

K ng

S(ﬁ; Ala"-))\K') = ZZE;W'V];-lEM
k=1 =1
K ng ‘
= 35 (v — XaeBY Vil (var — XaB).
k=1 i=1

On taking the partial derivative of S(3, Ay, ..., Ax) with respect to 8 and equating
to 0, we obtain

. - K- ng N _ - ng

'Bg = (Z Z X;civgilxki> Z Z X;ziv;c;}lyki-

k=1 1=1 k=1 i=1
The covariance is given by
- ‘ i K \
Cov(B) = o ("“K—"“‘ > ZngVﬁ:IX%) :
Zk::l T k=1 i=1

The estimate of o2 is hence given by

1

~2
- K :
g Zk:l Z:l:kl tkn;ﬂi

S(B, A1, ..., Ak).

The estimates of A;’s need to modified accordingly. It is noted that this generalized
model has more application than the regular one. For example, in the dental study
as presented in Chapter Il and III, we could have fitted the model with different

autoregressive parameter for each group, since that is more acceptable.

When the series fitted turn out to be unstable, it is convenient to take the
first or second order difference of the data and then fit the model again. Thus we
could generalize the methods to the ARIMA(p, q) model. Not just generalizing to
the time series model, we could generalize the methods to the growth curve model

(see Chaganty (2003)) or nonlinear model. Basically, the methods are just like
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generalized least squares method, whenever you need to estimate of the parameters
involved i a regression model, you can use all the methods. One important question
remains: which one would you pick? Well, it depends on the situation. When you
choose one method, always remember that there are some backups, and keep in

mind that you can verify your results by applying other methods.
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APPENDIX I

The Newton-Raphson Method

The Newton-Raphson method (Ralston and Wilf (1967), Carnahan et al.
(1969)) is a numerical iterative procedure that can be used to solve nonlinear equa-
tions. It can only find the real roots of equations. We discuss and illustrate the
use of the method by first considering a single nonlinear equation and then a set of

nonlinear equations.

Let f(€) = 0 be the equation to be solved for £. The Newton-Raphson method
requires an initial estimate of &, say é(), such that f( é()) is close to zero, preferably,

and then the first approximate iteration is given by

fi = 0 - f(fo /f (Cn)

where f'(&) is the first derivative of f(£) evaluated at &€ = &. In general, the

(k + 1)* iteration or approximation is given by

Exr1 = & — F(E)/F (&)

where f/ (ék) is the first derivative of f(£) evaluated at £ = . The iteration
terminates at the k'* iteration if f(ék) is close enough to zero or the difference
between fk and ék_l is negligible. The stopping rule is rather subjective. Acceptable
rules are that f(fk) or D =&, — &1 is in the neighborhood of 1078 or 1077,

The Newton-Raphson method can be extended to solve a system of equa-~
tions with more than one unknown. Suppose that we wish to find values of
€= (&,&,...,&) such that

f(¢) =0,

this section was written based on Lee, E. (1992) appendix A
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where f(£) = (fi(§), f2(£),..., fa(€)). Let a;; be the partial derivative of f; with

respect to &;, that is a;; = 0f;/9¢;. The matrix

311 s gw

21 ' Q24

J=1| . :
Aqr ' Oqq

is called the Jacobian matriz. Let the inverse of J, denoted by J™!, be

byy -+ bug
1= boy -+ bog
bar -+ bag

And let €* = (&8,¢5 ..., €%) be the approximate root at the k™ iteration and let
f* be the corresponding values of the functions f, that is, f¥ = £(£*) and J -1* he

J~1 evaluated at £€°. Then the next approximation is given by
Ay L J-tgk ‘ (A1)

Specifically, that is

S O (A U S 0 P SRR o )

T = & — (V5 f + bhfS e 5 R

a = 6= O bl o+ baaf).

The iterative procedure begins with a preselected initial approximate £7,£9, ... &5,
proceeds following (A.1), and terminates either when fi, f», ..., f4 are close enough
to zero or when differences in the & values at two consecutive iterations are negli-

gible.
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APPENDIX II

A SAS Program

Sk s o sk sk ok s sk Sk sk ok ke skeske ok stk sk sk sfeske sk sk skl ok sk sk sk sk st sk e stk sk sk sk sk skt stesk kol siotelok skokoiokskokoskok ok skorskokoksk

* This program simulates the data from a Student-t distribution, *
* assuming that the data is balanced and the error is an AR(1) *
* process. First, It will compute the estimates of ¢ and o2, *
* using moment, maximum likelihood and quasi-least squares *
* methods, respectively, and then calculate the mean square errors *
* (MSE) of all three estimates for each simulation. Finally the *
% %k

plots showing the comparisons of the efficiencies are generated.
sk sk ok ks ok sk o kR Stk ok ok ok ok Sk SR SO SR K SRR SRk R kR o Sk Rk sk sk ok sk o

proc iml;
sigsq = 1; * real value of o%;
n = 30; *no. of replications;
nsim = 10000; *no. of simulation;
seed = 843623; * random number seed;

* generate the data from o Student-t distribution with degrees of freedom
specified by the main program;

start rant{df, seed):
z = tinv(ranuni(seed), df) / sqrt( df/(df-2) );

return(z) ; finish rant;

* calculate 0%
start sigsqg(phi, <00, c10, cii, t);
sigsq = (c00 + clixphi*phi - 2%c10%phi) / t;

return(sigsq); finish sigsq;

* output the efficiencies to the file ‘data.dat’;

filename result ‘data.dat’;

il

do t=25 to 55 by 5; *t: no. of repeated measurements;

~0.98 to 0.98 by 0.02; * phi: the real value of ¢;

it

do phi

* keep tracking the program;

file log; put ‘Note! Executing ... ’ t phi; closefile log;
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* calculate the correlation matrix;
phii = 1;
do k 1 to t-1;
phii = phii // ( phiilk] = phi );

end;

corr = toeplitz(phii);

* define the matrices needed for calculating c10, c00, c11;
D11 = 0 |l j(1, t-2, 1) |l 0; Dii = diag(Dil);
D10 = toeplitz( O 1|lrepeat(0, 1, t-2) ) / 2.0;

* initial MSEs, ‘1’s mean the MSEs of o2 estimates;
mserl = 0; mserll = Q;
mserq = 0; mserql = 0;

mserm = 0; mserml = 0
do s = 1 to nsim;

* create a sample from the t-distribution with degrees of freedom 5;
data = j(n, t, O);
do i =1 tomn; do j=1tot;

datali, jl = rant(5, seed);

end; end;

* Cholesky decomposition of the covariance matriz, root function
creates an upper triangular matriz;

g = root( corr*sigsq / (1 - phixx2) );

* ‘error’ simulated is an AR(1) process with parameter ¢;

error = data * g;

ubar = error’ * error / n;

c00 = trace(ubar);
cll = trace( Dili*ubar );
c10 = trace( Di10*ubar );
a = sqrt((£-2)**2xc10*%*2+3% (£-1) *c00*c11+3%t* (t-1) *cli*x2);

cl0 * (2x(t-2)**3xcl0x*2-ktx (t-1) % (2xt-1) *xcli**2
+ 9% (t-1)*(£-2) %c00%c1l);

o
I
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alpha = arcos(1/2) + arcos( ax*{(-3)*Db / 2/ 3
phil = (1/(3*%(t-1)*cl11)) * ((t-2)*cl0 - 2*kaxcos(alpha));

* MLE of &;
phim = t*cl0 / ( (t-1)*c00 ); * MOM estimate of ¢;
phigq = (£-2)*c10 / ( (t-1)*cil ); * QLS estimate of ¢;

sigsql = sigsq(phil, c00, c10, cii, t); * MLE of 0%
sigsqm = sigsq(phim, c00, c10, cli, t); * MOM estimate of o2;
sigsqq = sigsq(phig, <00, c10, cli, t); * QLS estimate of o2

mserl = mserl + ssq( phil-phi);
mserq = mserq + ssq( phiq-phi);
mserm = mserm + ssq{ phim-phi);
mserll = mserll + ssq( sigsql-sigsq );
msergql = mserql + ssq( sigsqg-sigsq );
mserml = mserm! + ssq( sigsqmu-sigsq );

end;

* asymptotic relative efficiencies;

effq = mserl / mserq;:’ effql = mserll / msergl;

mserll / msermi,

it

effm = mserl / mserm; effml

file result;
put t 5.0 phi 10.2 sigsq 8.1 effq 12.7 effm 12.7
effql 12.7 effml 12.7;

end; end;
quit;

* input the asymptotic relative efficiencies;
data data,
infile ‘data.dat’;
input t phi sigsq effq effm effqgl effml;

run;
goptions reset = global gaccess = gsasfile gunit = pct
htitle = 6 htext = 3 autofeed
vorigin = Oin horigin = Oin

ftext = swiss ftitle = swissb cback = white
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hsize = 5.4in veize = 3.6in dev = pslepsfc;
symboll i = join v = circle ¢ = red;
symbol2 i = join v = X c = green;
symbol3 i = join v = triangle ¢ = blue;
legendl label = ( height =1 " " );

axisl label = (a = 90 h = 4.0 ‘Efficiency (t=10)’ );

* ARE of QLS vs MLE;
filename gsasfile ‘tqg3d.ps’;
proc g3d data = data;
plot phi*t = effg/grid rotate = 50 tilt = 70
xticknum = 9 yticknum = 7 zticknum = 5;

run; quit;

data datal; set data;
if t = 10;
label effm = ‘MOM’ effq = ‘QLS’;

run;

* all AREs when t = 10;
filename gsasfile ‘t10.ps’;
proc gplot data = datai;
plot (effm effqg)*phi/overlay legend=legendl vaxis=axisl vref=1;

run; quit;
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