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A B S T R A C T

INVARIANCE PROPERTIES OF STATISTICAL TESTS 

FOR DEPENDENT OBSERVATIONS

Akhil K. Vaish 

Old Dominion University, 1994 

Director: Dr. N. R. Chaganty

In this dissertation we assume that the observations axe from normal populations 

but are correlated and study the problem of characterizing the class of covariance 

structures such tha t the distributions of the populax test statistics remain invariant, 

that is, they remain the same except for a constant factor. We first obtain some simple 

extensions and variations of the well known Cauchy-Schwaxz inequality. Incidentally, 

several inequalities that axe useful in the detection of outliers can be deduced from 

our results.

Our main result is a characterization of the class of all nonnegative definite so­

lutions W  to the matrix equation A W  A  =  B, where A  is a symmetric and B  is 

a nonnegative definite matrix. We illustrate the proof of this chaxacterization by 

considering a special case where A =  B =  A* =  I  — — e e', I  is the identity matrix 

and e is a  vector of ones. We thus have an elegant chaxacterization of the class of 

all nonnegative definite g-inverses of the centering matrix A*. Next we present the
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statistical applications of our matrix theoretic results. For example, we show that 

the usual two sample i-statistic has a t-distribution if the observations in one of the 

samples axe positively equicorrelated and those in the other sample axe negatively 

equicorrelated with the same correlation in absolute value. More generally, we have 

a complete characterization of the class of covariance matrices for which the distribu­

tional properties of the quadratic forms in ANOVA problems remain invariant. These 

results axe contained in Chapter 3.

In Chapters 4 and 5, we generalize our results to the multivariate test statistics, 

first considering a special covariance structure that occurs in repeated measurements 

and later for an arbitrary covariance structure. These include invariance properties 

of the distributions of quadratic forms in MANOVA problems and one- and two- 

sample Hotelling’s T 2 statistics. As preliminaries to the multivariate results, we 

obtain a very general version of the Cochran’s theorem concerning the independence 

and Wishartness of the multivariate quadratic forms.

R e p ro d u c e d  with p e rm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Dedicated

to

Amma and Papa

ii

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



A C K N O W L E D G E M E N T S

I would like to thank my advisor, Dr. Narasinga Rao Chaganty for sharing his 

knowledge and enthusiasm with me. I sincerely appreciate his help and the tim e he 

spent in guiding me through this dissertation.

I am indebted to Dr. Ram C. Dahiya for all his help. I extend my heartfelt 

gratitude to Dr. Dayanand N. Naik for his constant encouragement. I am thankful 

to Dr. Edward P. Markowski for being on my dissertation committee. I am obliged 

to Mr. M. S. Hegde for painstakingly going through the manuscript and correcting 

numerous errors. Special thanks to Dr. Surya P. Dhakar for his help and support.

Last but not least, I thank Shri Krishana and Shakuntla Vaish, Alpana, Shampa 

and Amit for their love and moral support.

111

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Contents

1 In tro d u c tio n  1

1.1 S u m m a ry ....................................................................................................... 1

1.2 Notations and Conventions........................................................................  7

2 In eq u a litie s  for Positive  Sem idefin ite  M atrices  and  S ta tis tic a l

A pp lica tio n s  8

2.1 In troduction ..................................................................................................  8

2.2 Main R e s u l t s ............................................................................................... 9

2.3 Statistical A pplications...............................................................................  19

3 Inv arian ce  P ro p e r tie s  of C e rta in  U n iv a ria te  T est S ta tis tic s  27

3.1 In troduction ..................................................................................................  27

3.2 Results in Linear A lg e b r a ......................................................................... 28

3.3 Statistical Applications...............................................................................  38

iv

R e p ro d u c e d  with pe rm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



4 W ish a rtn e ss  and  Ind ep en d en ce  of Q u ad ra tic  Form s U n d e r Special 

C ovariance S tru c tu res : W ® V  48

4.1 In troduction ......................................................................................................  48

4.2 The Kronecker Product and Vec O p e ra to r ............................................  49

4.3 The Matrix Normal D istribution............................................................... 52

4.4 The Wishart Distribution ........................................................................  58

4.5 Multivariate Quadratic F o rm s ..................................................................  63

4.6 The Covariance Structure W  ® V ............................................................  65

4.7 Statistical Applications...............................................................................  77

5 W ish a rtn e ss  and  Ind ep en d en ce  of Q u ad ra tic  Form s U n d er A 

G en era l C ovariance S tru c tu re  94

5.1 In troduction ..................................................................................................  94

5.2 Results in Matrix T heory............................................................................  95

5.3 Wishartness and Independence of Quadratic F o r m s ............................  102

5.4 Statistical Applications...............................................................................  108

5.5 Summary and Conclusions.........................................................................  119

B ib liog raphy  120

v

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Chapter 1 

Introduction

1.1 Sum m ary

The common and popular statistical tests are derived under the assumption that sam­

ples are taken independently from one or more normal populations. In the study of 

robustness of these tests much research has been done on the effect of nonnormality on 

these tests, see Lehmann (1983) for an exposition. Typically, this part of the robust­

ness literature still makes the assumption of mutual independence of the observations. 

While the independence assumption may be approximately valid, due to the choice 

of experimental designs, the case of dependence between the observations is of prac­

tical as well as aesthetic interest. One can even argue tha t in practical applications, 

observations are frequently not independent and the physical systems responsible for 

generation of the observations automatically introduce some dependence among the 

observations. It is then clear that the statistical interest should be to determine if 

procedures valid under the independence assumption continue to remain valid with 

only a simple adjustment when independence assumption is violated.

1
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The main goal of this dissertation is to consider the above mentioned issue in the 

context of several common statistical problems. A plethora of literature exists in this 

general area; in particular, see Jensen (1989a, b, c), Huber (1981), Albers (1978), 

Ali (1973), Gastwirth and Rubin (1971), Basu and DasGupta (1991), Tukey (1960) 

and Walsh (1947). While the emphasis in these articles is on examining the effect of 

specific dependence structures, our goal is to obtain a simpler characterization of the 

covariance structures under which the usual procedures remain valid with possibly 

a scale factor adjustment. The organization of this dissertation is as follows: The 

main results of this dissertation are in Chapter 3 for the univariate test statistics 

and in Chapters 4 and 5 for the multivariate test statistics. The results presented 

in Chapter 2 are of independent interest and they play an important role in the 

simplification of some of the conditions in the main theorems. We now give a brief 

summary of each chapter in this dissertation.

In Chapter 2, we first obtain an inequality involving two quadratic forms; y ' A y  

and y 'B y  where y  6  A is a symmetric matrix and B is a positive semidefinite 

matrix. This result, stated as Theorem 2.2.1 in Section 2.2, is a simple extension of 

the well known Cauchy-Schwarz inequality and is used later in Chapter 3 to simplify 

some of the conditions in our main theorems. Theorem 2.2.1 can also be viewed 

as a maximization and minimization problem concerning the ratio, y ' A y /y ' B y  of 

the two quadratic forms. This alternative statement of Theorem 2.2.1 has a natural

2
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generalization which we state as Theorem 2.2.5. The special case of Theorem 2.2.5 

where the matrix B is assumed to be positive definite is known as the Courant-Fischer 

theorem in the literature. Another special case of Theorem 2.2.1 or Theorem 2.2.5 

where we assume the matrix A  to be of the form b  b ', for some vector b E has 

numerous applications in statistical methodology. We consider this special case in 

Theorem 2.2.3 because of its importance to statistics.

In a recent paper, Olkin (1992) presented an interesting survey of several inequal­

ities tha t are useful in the detection of outliers in statistical data analysis. In Sec­

tion 2.3, we deduce several of these inequalities from Theorems 2.2.1 and 2.2.3. Thus 

our results provide a unified treatment of the inequalities given in Olkin’s paper. Also 

in Section 2.3, as another application of Theorem 2.2.3, we derive Scheffe’s ^-method 

of constructing simultaneous confidence intervals for the case where the design matrix 

is not of full rank and the set of estimable functions are linearly dependent.

Our main purpose in Chapter 3 is to characterize the class of covariance matrices 

for which the distribution of common univariate test statistics remain invariant, that 

is, the distributions remain the same except for a scale factor. As an important step 

in achieving this goal, we first characterize, in Theorem 3.2.2, the class of nonnegative 

definite (n.n.d.) solutions W  for the consistent matrix equation

A W  A  =  B (1.1.1)

where A  is any symmetric matrix and B is any n.n.d. matrix. Theorem 3.2.2 is

3
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also useful in characterizing n.n.d. g-inverses of n.n.d. matrices. Several authors 

have obtained n.n.d. solutions W  to the matrix equation (1.1.1), for example, Bhi- 

masankaram and Majumdax (1980) and Khatri and M itra (1976). However, we take 

an entirely different approach to the problem and obtain a simpler and minimal 

representation of the class of all n.n.d. solutions to the matrix equation (1.1.1). 

Theorem 3.2.2 is crucial to the proof of several results including Theorem 5.2.1. To 

motivate the proof of our main Theorem 3.2.2, we consider in Theorem 3.2.1 a special 

case where A  =  B  =  A*, the centering matrix defined in Section 3.2. We thus ob­

tain an elegant characterization of the class, Qn, of n.n.d. g-inverses of the centering 

matrix. Another special case of Theorem 3.2.2 useful in ANOVA problems is given 

in Theorem 3.2.3.

The statistical applications of our theorems are presented in Section 3.3. In par­

ticular, in Theorem 3.3.2, we show that the sample variance for a set of correlated 

normal observations is distributed as chi-square except for a scale adjustment and is 

independent of the sample mean if and only if the observations are equicorrelated. 

We also show that the usual two sample i-statistic has a i-distribution if the obser­

vations in one of the samples are positively equicorrelated and those in the other 

sample are negatively equicorrelated with the same correlation in absolute value. In 

Theorem 3.3.5, we obtain a complete characterization of the class of covariance ma­

trices under which the distributions of various sums of squares in ANOVA problems

4
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are independent and distributed as chi-square except for a scale factor. The set of 

covariance matrices considered by Bhat (1962) in Theorem 2 and by Scariano and 

Davenport (1987) in Theorem 1 are subsets of the set of covariance matrices we obtain 

in Theorem 3.3.5. Thus we provide a complete solution to the problems considered 

by these authors.

In Chapter 4, we generalize the results of Chapter 3 to multivariate test statistics. 

Two important matrix operations, the Kronecker product <g> and the Vec operator 

vec, play an important role in the proofs of our theorems in this chapter. Section 4.2 

contains a comprehensive summary of the properties of these two matrix operations. 

In Sections 4.3 and 4.4, we define the m atrix normal distribution and the Wishart 

distribution. We also derive some important properties of these two multivariate 

distributions by extensively making use of the matrix operators ® and vec.

Suppose, we have correlated p-variate normal observations, Xi,X2, . . .  ,x n. Let 

S  be the covariance matrix of the vector x ' =  [x1'x 2' . . .  x „ '] . In Section 4.6, we 

assume S  =  W  ® V , that is, cou(x;,Xj) =  toy V  where W  =  (yjjj) and Y  are 

n.n.d matrices. The covariance structure W  ® V  occurs naturally in the analysis of 

multivariate repeated measurement designs where X i,x2, . . . , x „  can be thought of 

as multivariate measurements taken on the same subject at n different time periods. 

W ith this assumption, necessary and sufficient conditions for Wishartness and in­

dependence of multivariate quadratic forms and a multivariate generalization of the

5
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Cochran’s theorem are derived in Section 4.6. Basu et al. (1974) have shown that 

the sample mean and the covariance matrix are independent and their distributions 

remain invariant if the matrix W  has an equicorrelated structure. In Section 4.7, we 

show that the converse of this result holds as well (see Theorem 4.7.1); and further we 

characterize the class of matrices W  such that the distributions of the popular test 

statistics in MANOVA problems and one- and two-sample Hotelling’s T 2 statistics 

remain invariant for a fixed but unknown V.

In Chapter 5, we generalize the results obtained in Chapter 4 for the case where the 

covariance matrix S  is arbitrary and not necessarily of the form W  <g> V. 

Pavur (1987) derived a class of matrices S  such that the sample covariance matrix 

has a Wishart distribution and distributed independently of the sample mean vector. 

He also gave a characterization of S  under which quadratic forms in MANOVA prob­

lems have Wishart distribution and are mutually independent. Unfortunately, the 

collection of matrices S  given by Pavur contains matrices which are not n.n.d., see 

Remarks 5.2.5 and 5.4.2, therefore the collection is only sufficient but not necessary 

for the distributions to be invariant. In this chapter, we obtain elegant characteriza­

tions of the class of matrices E  such that the distributions of several test statistics 

remain invariant. These results are multivariate extensions of the theorems contained 

in Chapters 3 and 4.

6
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1.2 N otations and Conventions

The following notations and conventions are used throughout this dissertation. We 

denote a random variable having a chi-square distribution with m  degrees of free­

dom by X2{m )i a uoncentral chi-square distribution with m  degrees of freedom and 

noncentrality parameter S by x 2(m i ^)j a ^-distribution with m degrees of freedom 

by i(m ) and an ^-distribution with (mi, m2) degrees of freedom by F (m 1, m2). We 

write x  ~  y  or x  =  y  to mean tha t both x  and y  have the same probability distri­

bution. By x  ~  Np(n , X) we mean that the p x 1 random vector x  has a p-variate 

normal distribution with mean vector fi =  E (x) of order p x 1 and covariance matrix 

X =  V(x) of order p x p where E(.) denotes expected value and V(.) the covariance 

matrix of the corresponding random variable or vector.

We denote the column space, null space, rank, trace and transpose of the matrix 

A by M ( A), W (A), r(A ), tr{A) and A ', respectively. Also, A + and A " denote 

the Moore-Penrose inverse and ordinary g-inverse of A, respectively. We follow the 

definition given in Rao (1973), Table 1, page 67 concerning nonnegative definiteness 

of matrices. Also, all n.n.d. matrices are assumed to be symmetric. The vector e 

represents a  vector of ones of order n x l  whereas em denotes a vector of ones of order 

m x 1. Similarly, I  represents the identity matrix of order n  X n  whereas I TO denotes 

the identity matrix of order m x m. The vector 0 represents a  vector of zeros and O 

represents a  matrix of zeros of appropriate orders.

7
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Chapter 2

Inequalities for Positive 
Semidefinite Matrices and 
Statistical Applications

2.1 Introduction

The chaxacterization of eigenvalues of a real symmetric matrix as the extreme points 

of the quadratic form involving a symmetric matrix subject to some constraints has 

been very useful for several branches of science, including statistics. In its general form 

it is known as the Courant-Fischer min-max theorem, see Bellman (1970), page 115. 

This theorem is the basis of several inequalities, principal component analysis and 

other topics in multivariate statistical analysis. In Theorems 2.2.1 and 2.2.5 of this 

chapter we extend the Courant-Fischer theorem for the ratio of two quadratic forms 

involving a symmetric matrix A in the numerator and a positive semidefinite matrix 

B  in the denominator. Under an additional hypothesis tha t the column space of A 

is contained in the column space of B , Theorem 2.2.1 yields inequalities concerning 

positive semidefiniteness of the difference of the two matrices A  and B. This result is

8
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contained in Theorem 2.2.2. Theorems 2.2.1 and 2.2.2 restricted to the matrix A  = 

bb ' where b  is a vector in 3J", have numerous applications in statistical methodology. 

We treat this special case in Theorem 2.2.3.

In a recent paper, Olkin (1992) presented an interesting survey of several inequal­

ities tha t are useful in the detection of outliers in statistical data analysis. We deduce 

most of those inequalities as an application to our Theorems 2.2.2 and 2.2.3. Thus our 

theorems provide a unified treatment of those inequalities. As a second application to 

Theorem 2.2.3, we extend the Scheffe’s 5-method of constructing simultaneous con­

fidence intervals for the case where the design matrix is not of full rank and the set 

of estimable functions axe linearly dependent. Several applications of Theorems 2.2.2 

and 2.2.3 in studying invariance property of some statistical tests will be presented 

in later chapters. The organization of this chapter is as follows: The main theorems 

of this chapter are in Section 2.2 while the statistical applications are deferred to 

Section 2.3.

2.2 M ain R esults

We start with the following elementary and well known lemma. It plays a very 

important role in the proofs of the theorems in this chapter. The proof of Lemma 2.2.1 

can be found in Mirsky (1955), page 200 and in Marshall and Olkin (1979), page 216.

L em m a 2.2.1 Let C and D be two matrices of order n x  k and k x n, respectively. 

Assume that n > k. Then (n — k ) eigenvalues of the matrix CD are zeros and the

9
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remaining k eigenvalues of CD, some of which may be zeros, coincide with the k 

eigenvalues of the matrix D C .

We develop some preliminaries before stating the main theorems of this section. 

Let A  be a  symmetric matrix of order n x  n and B  a positive semidefinite matrix 

of order n  X n of rank equal to k. Let .M(B) denote the column space of B. Let 

B =  L L' be the rank factorization of B where L is a matrix of full column rank and 

of order n x k .  Let

R  =  L(L'L ) - 1

Aj =  R 'A R . (2.2.1)

Note that the Moore-Penrose inverse of B, see Searle (1982), page 220, is given by 

B + =  R R '.  Observe that the column spaces of B , B +, R  and L are all equal. We 

use this observation in the proofs of the results in this section without mentioning it 

explicitly. Let {Ai >  A2 >  • • • >  A*,} be an ordered set of eigenvalues of A i. Applying 

Lemma 2.2.1 for C =  R  and D =  R 'A  we can see that the set of eigenvalues of the 

matrix B + A  is given by {Ai >  A2 >  • • • >  Afc,0,. . .  ,0 ). It is possible that some of 

the Aj’s may be zeros and also, all the Aj’s may be negative. Therefore Ai need not 

be the largest eigenvalue of B + A. Similarly, A* need not be the smallest eigenvalue 

of B + A. In fact, the largest eigenvalue of B + A  is given by max{0, Ai} and the 

smallest eigenvalue of B + A is equal to min{0, Xk}- We are now ready to state an 

inequality concerning two quadratic forms.

10

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



T h eo rem  2.2.1 Let A  be a symmetric matrix of order n x n. Let B be a positive 

semidefinite matrix o f order n X  n and rank equal to k. Let {Ai >  A2 >  • • • > 

Afc, 0 , . . . ,  0} be the set o f n eigenvalues of B + A . Then

A*y/ B y < y ' A y < A 1 y 'B y  (2 .2.2)

for all y  € A4(B). There exists an eigenvector y i o /B +A corresponding to the 

eigenvalue Aj such that yi € .M(B) for  1 <  i <  k. Further, equality holds in the first 

and second inequality o f (2.2.2) if  we choose y  equal to y * and y i ,  respectively.

P roo f. Let B  =  L I /  be the rank factorization of B. Let R  and A i be as defined in

(2.2.1). Since Ai and Ak are the largest and the smallest eigenvalues of A i, by a well 

known inequality, see (lf.2.1) of Rao (1973), page 62, we have

Afc v 'v  <  v 'A i v  <  Ai v 'v  (2.2.3)

for all v  6  Let y  be a vector in M ( B )  and v  =  L'y. It is easy to verify that

y  =  R v , since y  is also in the column space of L. Thus, we have

v 'v  =  y 'B y  

v 'A xv  =  y 'A y . (2.2.4)

The assertion (2.2.2) follows from (2.2.3) and (2.2.4). We now proceed to show that 

the two inequalities in (2.2.2) become equalities for appropriate choices of y . For 

1 <  i < k, let Vi ^  0 be an eigenvector of A x corresponding to the eigenvalue A,- and

11
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yi =  R v ;. Note that y; ^  0, since R  is of full column rank and V; ^  0. We also have

B + A y t =  R R 'A R v j

=  R A iV ; =  A ,R v,

=  Aiy i . (2.2.5)

Thus yi is an eigenvector of B + A  corresponding to the eigenvalue A;. Clearly y i £ 

M .(B) since it is in the column space of R . Therefore from (2.2.4) we have v'- A i Vi =  

y[ A y i and v- v; =  y^B y;. Thus y -A y ; =  A;y<By; for 1 <  i <  k. Therefore, the 

first and second inequality in (2.2.2) become equalities if we choose y  equal to y*, and 

y i, respectively. This completes the proof of Theorem 2.2.1.

When Ai =  • • • =  A*, from (2.2.2), we have y 'A y  =  A iy 'B y  for all y  € Af(B). 

The following example shows that this need not be true and also (2.2.2) may not hold 

for vectors y  not in the A4(B).

E x am ple  2.2.1 Let A  = 1 0 
0 0

and B = 1/4 1/4 
1/4 1/4

Clearly, B  is positive

semidefinite matrix of rank k  =  1. The Moore-Penrose inverse of B  is given by

B+ = 1 1 
1 1

It is easy to verify that the set of eigenvalues of B + A  is given by 

{1, 0} and therefore Ai equals 1. Consider the vector y ' =  (2, 0) which is not in 

the column space of B. A little calculation shows tha t y 'B y  =  1 and y 'A y  =  4 

and hence y ' A y  >  Ax y 'B y .  Similarly, for y ' =  (0, 2), we have y ' A y  <  A jy 'B y .  

Therefore this example shows that the inequalities in (2.2.2) need not hold for all y.

12
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The following theorem gives sufficient condition for the inequality (2.2.2) to hold 

for all y  G

T h eo rem  2.2.2 Let A  be a symmetric matrix of order n  X n. Let B  be a positive 

semidefinite matrix o f order n  x n and rank equal to k. Let {Ai >  A2 >  • • • >  

Afc,0,. . .  ,0} be the set o fn  eigenvalues o f B + A . I f  M ( A )  C M ( B )  then the matrices 

Ax B  — A  and A  — Afc B are positive semidefinite.

P roof: Fix, y  G Then we can write y  =  y& +  y b , where y b is the projection of y

onto the column space of B and y f  =  y —y&- Note that B y f  =  0. If M ( A )  C M ( B ) ,

we also have A y^ =  0. Therefore,

y ' A y  =  y'6A y b

y ' B y  =  y^B yi .  (2.2.6)

Since y& 6  M ( B) by (2.2.2) of Theorem 2 .2.1, we have

A / ty jB y 4 < y j A y 6 <  Ax y j B y j .  (2.2.7)

Combining (2.2.6) and (2.2.7), we get

Afc y ' B y  <  y ' A y  <  Ax y ' B y .  (2.2.8)

Since y  G is arbitrary, (2.2.8) shows that the matrices Ax B — A  and A  — A* B are 

positive semidefinite.
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The following lemma shows that for any two symmetric matrices A  and B , if 

M ( A) C M (B) then the set of eigenvalues of B - A  is invariant of the choice of the 

g-inverse B "  of B. Thus we can replace B + by any g-inverse B -  of B  in the statement 

of Theorem 2.2.2.

L em m a 2.2.2 Let A  and B be two symmetric matrices both of order n  x n. I f  

•M(A)  C A t(B ) then the set o f eigenvalues o /B "  A is invariant of the choice o f the 

g-inverse B -  of B .

P roo f. Let A  and B be two symmetric matrices of order n x n  such that M {  A) C 

M ( B). By spectral decomposition, there exists an orthogonal matrix P  such that

A =  P A O 
O O P ' =  P a A P ;

where A is a  diagonal matrix and P  =  [Pi P 2]. Since M ( A) =  Ad(Pi) and 

M ( A) C M ( B), we have A f(P i) C M ( B). Hence we can write P i =  B U  for some 

matrix U . Therefore,

A =  P i A P ' 1 = B U A U ' B  =  B V B  (2.2.9)

where V  =  U  A U ' is a symmetric matrix. Let B~  be a g-inverse of B. Then, if we 

choose C =  B " B V  and D =  B , by Lemma 2.2.1, we get the same set of eigenvalues 

for B ~A  and B V. Thus, the eigenvalues of B -  A do not depend on the choice of 

the g-inverse B _ of B. This completes the proof of the lemma.

14
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2 0 
2 0

The following example shows that the conclusion of Lemma 2.2.2 need not be true 

if we do not assume that M ( A) is contained in Af(B).

E x am p le  2.2.2 Consider the matrices A and B as in Example 2.2.1. It is easy 

to verify that M ( A) is not contained in Af (B). We have seen in Example 2.2.1 

that the set of eigenvalues of B +A is given by {1, 0}. Consider another g-inverse 

of B. We can easily verify that the set of eigenvalues of B~ A  is given 

by {2, 0}, which is different from the set of eigenvalues of B +A. Thus, the conclusion 

of Lemma 2.2.2 need not be true if M ( A) is not contained in M ( B).

Let b  be a vector in 3ftTl. Theorems 2.2.1 and 2.2.2 restricted to the m atrix A  =  b b ' 

give rise to several interesting inequalities. We treat this special case in Theorem 2.2.3. 

In Section 2.3, we use Theorem 2.2.3 to obtain several inequalities that are useful in 

the detection of outliers in statistical data analysis.

T h eo rem  2.2.3 Let B be a positive semidefinite matrix of order n  x n. Let B + be 

the Moore-Penrose inverse o /B .  Let A4(B) denotes the column space o /B .  I f  b  is 

a n n x . 1  vector then

(b 'y )2 <  b ' B + b  y ' B y  (2.2.10)

for all y  £ M .(B). Moreover, equality holds in (2.2.10) if  we choose y  =  B + b . Also, 

if  rank o /B  equals 1 then equality holds in (2.2.10) for all y  £ B). I f b  £ M ( B)

then (2.2.10) holds for a l ly  £ equivalently, the matrix (b 'B +b) B —bb'  is positive

semidefinite.

15
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P roof. Let b be an n x  1 vector. Let us choose A  =  b  b ' in Theorems 2.2.1 and 2.2.2. 

Letting C =  B +b  and D  =  b ' in Lemma 2.2.1, we can see that the set of eigenvalues 

of B +A is given by {b 'B +b, 0 , . . . ,  0}. Let the rank of B be equal to k. Then, in the 

notation of Theorem 2.2.1, the eigenvalue Ai equals b 'B +b and A* =  Ai if k — 1 and 

A* =  0 if k > 2. Therefore, Theorem 2.2.3 follows from Theorems 2.2.1 and 2.2.2.

The following corollary is an easy consequence of Theorem 2.2.3. We apply this 

corollary in Section 2.3 to extend Scheffe’s S'-method of constructing simultaneous 

confidence intervals when the design matrix is not of full rank and the set of estimable 

functions are linearly dependent.

C oro lla ry  2.2.1 Let B  be a positive semidefinite matrix of order n  X n and B -  be 

a g-inverse of B . Let b € •M(B), then rj B — b b ' is positive semidefinite i f  and only 

i f r j>  b ' B -  b.

P roof: Let b  £ M ( B ) .  It is easy to verify that b 'B ~  b  =  b ' B + b for any choice of 

the g-inverse B -  of B. Suppose rj > b '  B + b, then from Theorem 2.2.3, we have

y'bb'y^ (b'B+b) y ' B y ^ y ' B y  (2.2.11)

for all y  £ Un. Therefore, 7? B  — b b ' is positive semidefinite. The other implication 

follows easily, if we choose y  =  B + b.

Theorem 2.2.3 essentially asserts that if B is a  positive semidefinite m atrix and
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b  6 9£", then

sup 0 ^ 1 !  =  b 'B+b. (2.2.12)
ye.M(B) y 'B y  

y^o

Thus we see that Theorem 2.2.3 generalizes the result contained in Appendix A4 of 

Seber (1977), page 388, where the above equality (2.2.12) was obtained for positive 

definite matrix B. Similarly, if A  is symmetric and B is positive semidefinite then 

the conclusion of Theorem 2.2.1 can be restated as

sup ^ = A a> ir f  ^  =  (2.2.13)
y  € Ad(B) y  y  € M ( B )  y 'B y

yjio y*°

where Ax and Ak axe the eigenvalues of B +A  defined in Theorem 2.2.1. A similar

representation is also true for the other eigenvalues Ap for 2 < p < (k — 1) and is

given in the following theorem.

T h eo rem  2.2.4 Let A  be a symmetric matrix of order n  x n. Let B be positive 

semidefinite matrix o f order n x n  and rank equal to k. Let {Ax >  • • • >  Afc,0,. . .  ,0} be 

the set o f n eigenvalues o /B + A . Then there exist eigenvectors {yx, . . . ,  y^} o /B +A

corresponding to the eigenvalues {Ax,...,Afc} such that y * € Af(B) and y£ B  y ;- =  0

for  1 <  i 7̂  j  < k. Further,

sup ^ = (2-214)
{y e # p ,  y ^ ° )  y  y

where Bp =  {y € A4(B) : y<By =  0, 1 <  i < (p -  1)} for  2 <  p < (k -  1).

17
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P roof. Let A  be symmetric and B  be positive semidefinite m atrix of rank equal to 

k and B + denote the Moore-Penrose inverse of B. Let L, R  and A i be as defined in

(2.2.1). Let {Ai >  • • • >  Afc} be the set of ordered eigenvalues of A i and Vi, . . . ,  Vfc be 

corresponding orthogonal eigenvectors. By Theorem 1 of Bellman (1970), page 113, 

we have

sup V' f  — =  Xp for 2 <  p <  (fc — 1). (2.2.15)
{v € : v- v  =  0} VV

Let y  =  R v ,  then as v  varies in the vector y  varies in A4(B) and by (2.2.4), we 

have v 'v  =  y ' B y  and v' Ai v  =  y ' A y .  Let us define y; =  R v ;  for 1 <  i < k. Then 

by Theorem 2.2.1, y, is the eigenvector of B + A corresponding to the eigenvalue A;. 

Further y( B y , =  0, since V; =  L' y; and v(vj =  0 for 1 <  i ^  j  < k .  The identity 

(2.2.14) now follows from (2.2.15).

The main drawback of Theorem 2.2.4 lies in the fact that it characterizes the 

eigenvalues Ap as functions of the eigenvectors {y;, 1 < i  < k } .  The following theorem 

removes this dependence on the eigenvectors and provides a characterization of Ap 

in the form of a min-max theorem. If we assume B to be a positive definite matrix, 

then the conclusion of Theorem 2.2.1 as restated in (2.2.13) and Theorem 2.2.5 below 

reduces to the theorem popularly known as the Courant-Fischer theorem.

T h eo rem  2.2.5 Let A  be a symmetric matrix o f order n  X n. Let 3  be a positive 

semidefinite matrix o f order n  x  n and rank equal to k. Let {Ai >  • • • >  A*, 0 , . . . ,  0}
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be the set o f n eigenvalues o f B + A. Then

Ap =  inf sup (2.2.16)
{ x i : x^B x; =  1} y e c p y  B y

y^o

I'l-r+i =  sup inf (2.2.17)
: x )B x i =  i} y  e c ,  y  ® y
i<t<(P-i)

where Cp = {y  € M (B) : x ; B y  =  0, 1 <  i < (p — 1)} for 2 <  p < (k — 1).

P roof. The proof of this theorem parallels the proof of Theorem 2.2.4. Let L, R  and 

A i be as defined in (2.2.1). Let {Ai >  • • • >  A*} be the set of ordered eigenvalues of 

Ai- Theorem 2 of Bellman (1970), page 115, applied to A j gives

Ap =  inf sup — t^ —, (2.2.18)
{v< : v (v t- =  l} { v : v ' v  =  0} v ' v

l<i<(P“ l) V?0

Afc_p+1 =  sup inf -  ^ -1— (2.2.19)
{v, : v<V;  =  l} { v : v | v  =  0} v 'v

i<t<(p—i )

for 2 <  p < (k — 1). The equalities (2.2.16) and (2.2.17) follow from (2.2.18) and 

(2.2.19) if we make the transformation y  =  R v  and X; =  R v ; for 1 <  i <  (k — 2) 

and by noting that v 'A jv  =  y ' A y  and v 'v  =  y 'B y .  This completes the proof of 

the theorem.

2.3 Statistical A pplications

In this section, we present some applications of the theorems in Section 2.2. Our first 

application deals with some inequalities that are useful for the  detection of outliers in
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statistical data. As a second application, we extend Scheffe’s S'-method of construct­

ing simultaneous confidence intervals when tlie design matrix is not of full rank and 

the set of given estimable functions axe lineaxly dependent.

A p p lica tion  2.3.1 In a recent paper, Olkin (1992) considered the following problem 

which is of great interest in the detection of outliers. Given, the mean and the 

standard deviation of a finite sample, find the maximum deviation of any particular 

observation from the sample mean as a  multiple of the sample standard deviation. 

More specifically, let {t/i,. . .  ,y n} be a sample of n observations then the problem is 

to find the minimum value of c such that

(Vk -  y f  <  -  y)2, fc =  l , . . . , r a  (2.3.1)
t= l

n
where y =  is the sample mean. The above problem and c =  (n — l ) /n  as the

«=l

best solution was first brought into the limelight by Samuelson (1968). The inequality

(2.3.1) with c =  (n — l ) / n  is now popularly known as Samuelson’s inequality. Some

extensions of Samuelson’s inequality can be found in the paper by Wolkowicz and

Styan (1979). Recently, Olkin (1992) gave an interesting survey of the known proofs of

Samuelson’s inequality and raised the question whether there is room for yet another

proof. He then provided a new proof with some generalizations. We now show that

Samuelson’s inequality and several other inequalities in Olkin (1992) follow from our

theorems of Section 2.2. Let B =  I — — e e'. Note tha t B is symmetric and idempotent
n
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matrix. Hence B is positive semidefinite and B + =  B. Fix, 1 <  k < n. Consider the

vector b i where the j th  component is given by

h j  =
1 -  -  if j  = k

1
n (2.3.2)

 if j  ^  k.
n

Since b j e =  0, we have b i G .Ad(B). Also, b ^B + bi =  b^b i  =  (n — l) /n .  If we 

choose b  =  b i, by the last assertion of Theorem 2.2.3, we have ((n — 1 )/n )  B — b b' 

a  positive semidefinite matrix. Thus for any y  € we get

y'b ib iy  < ^n— — y 'B y
n

(2.3.3)

which is equivalent to Samuelson’s inequality:

{ y k - y f  <  — — - f ^ ( y i - y ) 2-
n  i=i

(2.3.4)

In a  similar fashion, we can deduce inequalities (2.3) and (2.4) of Olkin (1992) as a 

consequence of Theorem 2.2.3 if we choose b =  and b =  b3, respectively. Where

the j th  component of the vectors b 2 and b 3 are respectively given by

b2j  —

r  — — if 1 <  J <  Ak n
if k +  1 <  j  <  n\

(2.3.5)

n

h j  -

1
k

if 1 <  j  < k

ii k + 1 < j  < k - \- r

0 if k +  r < j  < n.

1
r

(2.3.6)
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Also, the inequality in Olkin (1992) involving Gini mean difference due to Nair (1956) 

follows from Theorem 2.2.3, if we choose b =  b 4 where the j th  component of b 4 is 

given by

h i  =  { n if 1 <  j  < n. (2.3.7)( n(n  — 1)

Let us choose the vector b  =  bs in Theorem 2.2.3 where the j th  component of bs is 

given by

h j  =
- 1  if j  =  1 

1 if j  =  n  (2.3.8)
0 otherwise.

Cleaxly b 5 € M (B )  and bj B + bs =  b£ b s =  2. Thus, from Theorem2.2.3, 2 B —b 5 bg 

is a positive semidefinite matrix. For a vector y ' =  (t/i, . . . ,  yn) let y ' =  • • • > V(n))

where y^) ’s are the ordered values of the components of y. Since 2B — b 5 b's is 

positive semidefinite, we have

y ' b g b s y  <  2 y ' B y  (2.3.9)

which after simplification reduces to an inequality, due to Thomson (1955), given by

G/(n) -  2/(i))2 < 2 J ^ ( y i - y ) 2. (2.3.10)
1=1

We now show that the multidimensional inequalities contained in Olkin (1992) 

can also be deduced from our theorems. Let W  be a matrix of order I x n such that

W e  =  0 and W W ' =  I;. Let B =  I  — — e e ' and A  =  W 'W . Since B + =  B and
n

A e  =  0, we have M (A )  C M (B) and B + A =  A. Hence, the largest eigenvalue of
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B+ A equals the laxgest eigenvalue of A which in turn equals the largest eigenvalue 

of W  W '. Therefore Ai =  1 for this choice of B and A. Hence by Theorem 2.2.2, 

B — A is a positive semidefinite matrix. Thus, we get

y 'W 'W y  < y '( I  -  - e  e ')y  for all y  € iT . (2.3.11)
n

Therefore for any m x n  matrix Z, the matrix

Z ( I -  i e e ') Z '- Z W 'W Z ' (2.3.12)
n

is positive semidefinite. Hence inequality (3.6) in Olkin (1992) holds.

A p p lica tion  2.3.2 Our second application deals with multiple comparison proce­

dures in linear models. One of the most important problems in multiple comparisons 

is the problem of construction of simultaneous confidence intervals for a given set 

of estimable functions. Among the methods available, Scheffe’s technique has been 

the most popular and widely used method for the construction of simultaneous confi­

dence intervals. A very nice description of Scheffe’s 5-method can be found in Seber 

(1977), page 128. In many texts the 5-method is usually described by assuming tha t 

the design matrix is of full rank and the set of given estimable functions are linearly 

independent. However, this is rarely the case in practice. As an important application 

of the results of Section 2.2, we show that Scheffe’s 5-method can be extended to the 

case where the design matrix is not of full rank and the set of estimable functions are 

linearly dependent.
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Consider the linear model y  =  X/3 +  e where y  is an n x 1 vector of observations, 

/3 is a p X 1 vector of parameters, X  is a design matrix of order n x p  and e is an n  x 1 

vector of random errors. Let us assume that e is distributed as multivariate normal 

with mean 0 and covariance matrix a2I. Assume that the rank of X  is r, where 

r < p. Consider s estimable functions K'/3 where K pXs is a matrix of rank q < s. It 

is well known tha t the condition of estimability is equivalent to Ad(K) C M ( X 'X ) .  

Let G  be a g-inverse of X ' X  and (n — r) a2 =  y ' (I — X  G X!) y  . Prom Theorem 4.6 

of Seber (1977), it follows tha t the statistic

F  =  ( K ^  -  K '/3)‘ (K ' G  K)~ (K 'fl -  K 'P )/q  p  3 13)
a2

A

has an P-distribution with q and (n — r) degrees of freedom, where /3 is any solution 

to the equation X 'X /3  =  X 'y . Let F °n_r be the 100(1 -  a) percentile of the F- 

distribution with q and (n — r) degrees of freedom, then from (2.3.13), we have

1 -  c  =  F t (F  <

=  P r ((K '0  -  K'/3)' (K 'G K )- (K',3 -  K'/3) <

=  P r  ( b ' B - b  <  t? ) (2.3.14)

where q =  qa2 F *n_T, B  =  K ' G K  and b  =  K'(j3 -  (3). Note tha t b  G A4(B) since 

b  € A4(K'); and from Lemma 2.3.1, we have M ( K ') =  A 4(K 'G K) .  Since B  is a
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positive semidefinite matrix and b  € A f(B) by Corollary 2.2.1, we have that (2.3.14) 

is equivalent to

1 - a  =  P r  ( h ' b b ' h  <  7?h 'Bh f o r a l l h )

=  P r  ^ Ih^K '^  — K'/3)| <  y/ij h ' B h  f o r a l l h ) .  (2.3.15)

Therefore, we have simultaneous confidence intervals for any linear function h'(K'/3) 

of the estimable functions K'/3, namely,

h '( K ^ )  ±  P -3-16)

such tha t the overall probability for the whole class of such intervals is equal to (1—a).

The following lemma was used in Application 2.3.2.

L em m a 2.3.1 Let K  andH  be as given in Application 2.3.2. Suppose that M { K) C 

A 4(X 'X ). Let G  be a g-inverse o fX !X . then M ( K ') =  M ( K 'G K ) .

P roo f: Clearly, A 4 (K 'G K )  C M {K '). Let G  be a g-inverse of X ' X. Since M (K )  C 

A f(X 'X ), we can write K  =  ( X 'X ) D  for some m atrix D. Therefore, the rank of 

K ' G K  is the same as that of D '(X 'X )D  which in turn  equals the rank of D 'X '. 

Thus, we have

rank of (K ' G  K) =  rank of (D ' X')
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> rank of (K '). (2.3.17)

Since the other inequality always holds, we have that rank of K ' G K  equals rank of 

K '. This completes the proof of the lemma.
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Chapter 3 

Invariance Properties of Certain 
Univariate Test Statistics

3.1 Introduction

The basic results of this dissertation are contained in this chapter. The organization 

of this chapter is as follows: In Section 3.2, we obtain an elegant characterization 

of the class of all n.n.d. matrices W  satisfying the matrix equation A W  A =  B 

where A is any symmetric matrix and B is an n.n.d. matrix. This result is contained 

in Theorem 3.2.2. Special cases of this theorem which axe of statistical importance 

are presented in Theorems 3.2.1 and 3.2.3. The above mentioned matrix equation 

when restricted to  B  =  A  occurs frequently in the study of the chi-squaxedness of 

quadratic forms. In this case, the class of all n.n.d. W ’s is simply the class of all 

n.n.d. g-inverses of the matrix A.

The statistical applications of our matrix theoretic results are presented in Sec­

tion 3.3. For example, we show that the two sample t-statistic has a t-distribution 

if the observations in one of the samples axe positively equicorrelated and those in
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the other sample axe negatively equicorrelated with the same correlation in absolute 

value. Other applications include characterization of covariance matrices such that 

the independence and chi-squaredness of the quadratic forms occurring in ANOVA 

problems are preserved. We present a complete solution to some of the problems con­

sidered by Smith and Lewis (1980), Pavur and Lewis (1983), Bhat (1962) in Theorem 

2 and by Scariano and Davenport (1987) in Theorem 1.

3.2 R esults in Linear Algebra

In this section, we obtain a characterization of the class of all n.n.d. solutions to

a general matrix equation useful in statistics. To motivate the proof of our main

Theorem 3.2.2, we first consider the following special case in which we characterize the

class of all n.n.d. g-inverses of the centering matrix, A* =  I  — —e e;. The centering
n

matrix is of great importance in statistics because it is used in the representation of 

the sample variance as a quadratic form.

T h eo rem  3.2.1 The class of all n.n.d. g-inverses, Qn, of the centering matrix A* is 

given by

W  =  A* +  — (e a ' +  a e ')  — — e e ' (3.2.1)
n n

where a! =  ( a i , . . . ,  an) is such that

- Y ' U i - a ) 2 < a  (3.2.2)
n i=i

and a = ( a ' e ) /n  is the mean of the components of the vector a.
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P roof: Prom the result lb .5.2 of Rao (1973), it is easy to verify that a general solution 

to the equation A* W  A* = A* is given by

W  =  A* +  - ( e  a' +  a  e') -  - e  e' (3.2.3)
n n

where a  E 3Jn. Now, W  is n.n.d. if and only if x ' W x  >  0 for all x  E Let 

x  =  X1+X2 be the orthogonal decomposition of x  where Xi E M ( A*) and X2 E M (e). 

Since x 2 =  de  for some d, it is easy to verify that W  is n.n.d. if and only if

ria d2 +  2d a ' Xi +  x^ A* Xi >  0 (3.2.4)

for all d and for all Xi E -M(A*). Since the left hand side of (3.2.4) is a quadratic 

equation in d, the inequality (3.2.4) holds if and only if

(a 'X i)2 — (xi A* Xi)(na) <  0 (3.2.5)

for all Xi E M.{A*) and a >  0. Since A* is the Moore-Penrose inverse of itself, it 

follows from Theorem 2.2.3 that the inequality (3.2.5) holds if and only if

(a'A*a) <  ria (3.2.6)

which is equivalent to the condition (3.2.2). This completes the proof of the theorem.

R em ark  3.2.1 The representation of the class C?n, by matrices W  given by (3.2.1) 

is minimal in the sense tha t each set of {a i , . . . ,  an] satisfying (3.2.2) uniquely deter­

mines an n.n.d. g-inverse of the centering matrix A*. It is easy to show that (n — 2)
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of the eigenvalues of W  given by (3.2.1) are ones and the other two eigenvalues are 

the solutions of the following quadratic equation

A2 — A (1 +  a) +  (c — — (ai — a)2) =  0. (3.2.7)
n i=i

We can show that the two roots of the above equation (3.2.7) are nonnegative if 

and only if condition (3.2.2) is satisfied. Thus, we have an alternate proof of Theo­

rem 3.2.1.

R e m a rk  3.2.2 A different characterization of the class Qn was obtained by Jensen 

(1989c), however our characterization is elegant in the sense tha t it provides an easy 

method of generating a W  G Qn. All we need to do is to choose a set { a i , . . . , an) 

of n numbers and if the inequality (3.2.2) is not satisfied by the aj’s then translate 

them by an appropriate constant. Recall, translation of a set of numbers changes the 

mean but not the variance.

R em ark  3.2.3 Note that for d > 0, the class of all n.n.d. matrices W  satisfying the 

equation A* W  A* =  d A* is simply given by Q^n =  { d W  : W  G Qn }.

We now state a  lemma that enables us to obtain a generalization of Theorem 3.2.1. 

The following lemma is a  multivariate analogue of the simple problem of finding the 

restrictions on the coefficients of a quadratic equation f ( x )  — ax2 4- 2bx +  c such that 

f ( x )  > 0 for all x. It plays a crucial role in the proof of the main Theorem 3.2.2.
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This lemma is also useful in quadratic programming problems where the objective is 

to minimize the multivariate quadratic loss function.

L em m a 3.2.1 Let A. be a symmetric matrix o f order n x n  and b be a vector in 3£n. 

Let cbe a real number. In order that

/ (x )  = x ' A x  +  2 x ' b  +  c > 0  for all x  G 3£n, (3.2.8)

it is necessary and sufficient that (1) b G M .(A), (2) A  is an n.n.d. matrix and 

(3) c — b ' A -  b >  0. In particular, if  c =  0 then (3.2.8) holds if and only if  b =  0.

P roof: We prove the lemma by first showing that (3.2.8) implies (1) and (2). Next 

we assume (1), (2) and show that (3.2.8) holds if and only if (3) holds. Let us write 

b =  b i +  b 2 where b x G M (A )  and b 2 6 Af(A). Choosing x  =  a b 2 where a  is a real 

number, we can see tha t (3.2.8) implies

2o!b2b2 +  c >  0 for all a  G 9£, (3.2.9)

which is true if and only if b 2 =  0 and c >  0. Hence b  =  b i G Af(A). Now 

suppose tha t A  is not an n.n.d. matrix. Hence there exists an eigenvalue A of A  such 

that A <  0. Let u  be the normalized eigenvector of A  corresponding to A. Choosing 

x  =  /3 u  where (I is a real number, we can see that (3.2.8) implies

A/32 +  2 /3b 'u  +  c >  0 for all /3 G 3ft, (3.2.10)
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which is a contradiction since A <  0. Thus (3.2.8) implies tha t A  is n.n.d. Let us

now assume that (1) and (2) hold. Taking derivative of the function /(x )  in (3.2.8)

with respect to x  and equating to zero, we get

A x  =  —b (3.2.11)

which is a consistent equation since b  € M ( A ) .  Therefore, x 0 =  —A "  b is a point of 

m in im u m  for the function /(x )  since A  is an n.n.d. matrix. Thus

min /(x )  =  / ( x 0) =  c — b ' A " b; (3.2.12)

hence (3.2.8) holds if and only if c — b ' A " b >  0. I fc  =  0, then (3.2.8) holds if and

only if b  G M ( A) and b 'A "  b  =  0. It is easy to see that these two conditions are

equivalent to b  =  0. This completes the proof of the lemma.

We now state the main theorem of this section.

T h eo rem  3.2.2 Let A  be a symmetric matrix of order n  X n and B be an n.n.d. 

matrix of order n x n such that

A W  A =  B (3.2.13)

is a consistent equation. Let J  =  (I — A+ A). Then the class of all n.n.d. W ’s 

satisfying (3.2.13) is given by

W  =  A + B A + + J C  +  C J —J C J  (3.2.14)

where C is a symmetric matrix such that J  C J  is nonnull and it satisfies the following 

two conditions:

32

R e p ro d u c e d  with p e rm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



(a) M ( A C 3 ) C M ( B )

def(b) D  =  J C J - J C A B - A C J  is an n.n.d. matrix.

I f  J C  J  is a null matrix, then W  given by (3.2.14) is an n.n.d. solution for  (3.2.13)

if and only i fC 3  = 0 .

P roof: Let A  be a symmetric matrix and B be an n.n.d. matrix. We first note th a t by 

Theorem 2.3.2 of Rao and Mitra (1971), the equation (3.2.13) is consistent if and only 

if A A -  B A " A  =  B for any g-inverse A -  of A, in which case the general solution 

is given by (3.2.14) where C is an arbitrary matrix. Therefore, our problem reduces 

to characterizing the class of all C ’s such that W  given by (3.2.14) is symmetric and 

n.n.d. matrix. W ithout loss of generality we can take C to be symmetric if not, we 

can replace C by C* =  (C -f- C ')/2 . Note tha t C and C* generate the same W . We 

can rewrite the matrix W  in (3.2.14) as

W  =  A + B A + + J C  +  C J - J C J

=  A + B  A + -f J  C A +A  +  A + A C J + J C J .  (3.2.15)

Since A  is symmetric we have A + A =  A A + and A4(A+ A) =  M .(A). Let x  =  

x i +  x 2 be the orthogonal decomposition of x  where Xi € M (A + A) and x 2 € M ( J). 

It is easy to see that

x ' W  x  >  0, V x e f t"  (3.2.16)
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if and only if

x i A + B A +Xi +  2 x'x C x 2 +  x'2C x 2 >  0, Vxi € M { A) and Vx2 € A f(J).

(3.2.17)

Since (3.2.13) is a consistent equation we have A A + B  A + A  =  B. Therefore, from

(3.2.17) W  is n.n.d. if and only if

v ' B v  +  2 v ' A C J w  +  w/ J C J w  > 0 ,  Vv € 32” and Vw € 9?71. (3.2.18)

If J  C J  is a nonnull matrix then by Lemma 3.2.1 it follows tha t (3.2.18) holds if and 

only if the following two conditions are satisfied:

(1) A C J w  e -M(B), V w e S "

(2) w ' J C J w - w ' J C A B “ A C J w  >  0, V w e r .

It is easy to see that (1) is equivalent to (a) and condition (2) is equivalent to (b). 

If J C J  is a null matrix then by (3.2.18) and Lemma 3.2.1 W  is n.n.d. if and 

only if A  C J  w  =  0 for all w € 3ft71 or equivalently, A  C J  is a null matrix. Hence 

C J  =  C J  — J C J  =  (I — J ) C J  =  A + AC J  =  O, since we have assumed that J C J  

is a null matrix. This proves the last assertion of the theorem.

R e m ark  3.2.4 If J C J  is a nonnull matrix, it also follows from Lemma 3.2.1 that

(3.2.18) holds if and only if the following three conditions are satisfied:

(c) A f ( J C A )  C M ( J C J )
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(d) J  C J  is an n.n.d. matrix

(e) B — A  C J  (J  C J ) -  J  C A is an n.n.d. matrix.

Therefore conditions (a) and (b) are equivalent to conditions (c), (d) and (e).

R e m ark  3.2.5 Let C* =  ((J  C J ) + J  C A B "  A C J )  and Ai(C*) denotes the maxi­

mum eigenvalue of C*. If (c) and (d) hold then by Theorem 2.2.2, (b) is true if and 

only if

(f) Aa(C-) <  1.

Therefore, (a) and (b) are equivalent to (a), (c), (d) and (f). We can thus replace 

conditions (a) and (b) in the statement of Theorem 3.2.2 either with (c), (d) and (e) 

or with (a), (c), (d) and (f).

R em ark  3.2.6 The representation of the class of n.n.d. solutions W  in Theo­

rem 3.2.2 is minimal in the sense that two symmetric matrices C and C ' generate 

the same W  if and only if J  C =  J  C '. Also, from the proof of the above theorem 

it follows that the class of all positive definite (positive semidefinite) W ’s satisfying 

(3.2.13) is obtained by choosing C such that D is positive definite (positive semidef­

inite) matrix. In the case where J  C =  O, the only n.n.d. solution W  =  A + B A+ is 

positive definite or positive semidefinite according as B is positive definite or positive 

semidefinite matrix.
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An important application of Theorem 3.2.2 is the following characterization of 

the class of all n.n.d. g-inverses of an n.n.d. matrix A. Note that condition (a) of 

Theorem 3.2.2 is trivially satisfied if B  =  A.

E x am ple  3.2.1 Let A be an n.n.d. matrix of order n x n  and J  =  ( I—A + A). Then 

the class of all n.n.d. g-inverses of the matrix A is given by

W  =  A + + J C  +  C J - J C J  (3.2.19)

where C is a symmetric matrix such that J  C J  is nonnull and

D =  J C J  — J C A C J  (3.2.20)

is an n.n.d. matrix.

Let us now look at the case where A and B can be expressed as linear combinations 

of k orthogonal and idempotent matrices. We first state a lemma which is needed in 

the proofs of Theorems 3.2.3 and 3.3.4.

L em m a 3.2.2 Let A i, A 2, ■ ■ ■, Ak be symmetric and idempotent matrices o f order
k k

n x n  such that A i A j = O for all i j .  Let A =  ]P A ; and B =  J^CjA ; where
i=i i=i

Cj >  0 for  1 <  i <  k. Then A  W  A  =  B i f  and only if

= i  (3.2.21)

Further, M { A) =  M (B ).
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P roo f: The proof of the first assertion is easy. We proceed to show Af (A) =  A4(B).
k 2

Since A B  =  B , we have Af(B) C Af(A). Suppose x  =  A v  and let v* =  V) — A; v.
<=i *

It is easy to verify that x  =  Bv* and hence A) C M ( B). This completes the 

proof of the lemma.

The following special case of Theorem 3.2.2 is useful to study the invariance prop­

erties of common statistical tests for dependent observations.

T h eo rem  3.2.3 Let A i, A 2, . . . ,  A k and B  be as in Lemma 3.2.2. Suppose that
k

A, =  A* where A* is the centering matrix. Then the class o f all n.n.d. matrix
1=1

solutions for the equation

A * W A *  =  B (3.2.22)

is given by

W  =  B +  - ( e  a! + a  e#) -  - e  e' (3.2.23)
n n

where a  is an arbitrary vector satisfying

n h  *

Proof: We prove the theorem by simply verifying the conditions of Theorem 3.2.2. 

It is easy to check tha t A* B A* =  B and hence the equation (3.2.22) is consistent. 

Since A* is idempotent, we have (A*)+ =  A* and J  =  (I — A*) =  — e e'. Let C be
TV
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a 'e  . a
n2 n

a symmetric matrix and a ' =  e' C. Note that J  C J  =  —— e e ' =  —e e \  The general 

solution to the equation (3.2.22) is given by

W  =  B + J C + C J —J C J

=  B + - ( e a '  +  a e ' ) - - e e ' .  (3.2.25)
n n

It remains to show that W  given by (3.2.25) is n.n.d. if and only if the vector a 

satisfies inequality (3.2.24). By Lemma 3.2.2, we have M (A *)  =  A4(B) and there­

fore condition (a) of Theorem 3.2.2 is trivially satisfied. Let D be as defined in
k j

Theorem 3.2.2. It is easy to verify that B -  =  Y") — A;, A* B “ A* =  B “ and
fal

D =  J C J  — J C B “ C J

a' e . a'  B a
=  —- e e '  -—  ee.  (3.2.26)

n 2 nr

Since e e ' is an n.n.d. matrix, from (3.2.26) we can see tha t D is n.n.d. if and only if 

inequality (3.2.24) is satisfied. This completes the proof of the theorem.

3.3 S tatistical Applications

In this section, we present some statistical applications of the theorems of Section 

3.2. These applications are concerned with the problem of characterizing the class of

all covariance matrices such that the distributions of common test statistics remain
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invariant, that is, the distributions are preserved except for a scale factor. We begin 

with the following lemma regarding the distribution of quadratic forms in normal 

variates with n.n.d. covariance matrix.

L em m a 3.3.1 Let z ~  Nn(fi, W ) where W  is an n.n.d. matrix. Let A  and B be 

two symmetric matrices of order n  X n and a. be a vector in Then

(1) z 'A z  ~  X2(r(A); t1' -A-11)  i f  o.nd only if  A W  A =  A.

(2) I f  A  and B are n.n.d. matrices then z ' A z and z ' B z  are independent i f  and only

i f  A W  B  = O.

(3) z ' a  and z ' B z  are independent i f  and only i f  B W a  =  0 where B is an n.n.d.

matrix.

P roof: On using Corollary 2s.1 of Searle (1971) and Lemma 4.6.1 for p = 1, we get 

(1). Result (2) follows from Theorem 4s of Seaxle (1971) and Lem m a4.6.2 with p = l. 

Finally, Result (3) follows from (2).

The following examples are simple consequences of Lemma 3.3.1 and the results of 

the previous section.

E x am p le  3.3.1 Let z ~  Nn(fi, W ) where W  is an n.n.d. matrix. Let A  be an 

n.n.d. matrix of order n x  n. By Lemma 3.3.1 (1), we have

z 'A z  ~  x 2( r (A ) ;^ / A / t )  (3.3.1)
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if and only if A W  A =  A. Therefore, for a given n.n.d. matrix A , the class of all 

n.n.d. W ’s for which (3.3.1) holds is given by Example 3.2.1.

E x am ple  3.3.2 In Example 3.3.1, z 'A  z ~  d y 2(r(A);£) if and only if A W  A =  d A

where d >  0 and 6 = \  ft' A fi. Thus, we can use Theorem 3.2.2 to obtain a complete 
d

characterization of the covariance matrices W  such that y ' A y  ~  d x 2{r(A); S).

E x am ple  3.3.3 Let y  ~  Nn(pe, W ) where p is a constant and W  is an n.n.d. 

matrix. Let s2 be the sample variance of the vector y. Then, for any d > 0, we have 

(n — 1) s2 ~  d x 2{n — 1) if and only if W  € Qd,n-

T h eo rem  3.3.1 Let yi ~  N ni(pi eni, W i) and y 2 ~  iVn2(/z2e„2, W 2) where p i, pz 

are constants and W j, W 2 are n.n.d. matrices. Assume that yi is independent o f y2. 

Let s2 and s% be the sample variances of the vectors yi and y 2, respectively. Then for 

c >  0, we have s \ f s \  is distributed as c F(rii — 1, n2 — 1) i f  and only i f W i €  Qc&yn\ 

and W 2 G Qd,n2 f or some constant d > 0.

P roof: Since s2 and s \ are independent, it follows from a result of Baldessari (1965) 

that s2/ s i  is distributed as c F (ni — 1, n2 — 1) if and only if (ni — 1) s2 ~  cd y2 (ni — 1) 

and (n2 — 1) s i  ~  d%2(n2 — 1). The theorem now follows from Example 3.3.3.
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We now characterize the class of all covariance matrices such that the sample 

mean and variance are independent for a normal sample of dependent observations. 

Theorem 3.3.2 shows that the sample variance is distributed as chi-square except for a 

scale adjustment and is independent of the sample mean if and only if the observations 

are equicorrelated, that is, the correlation is same between each pair of observations.

T h eo rem  3.3.2 L e ty  ~  N n(fie, W ) where ji is a constant a n d W  is an n.n.d. ma­

trix. Let y and s2 be the mean and variance of the vector y . Then

(n — l ) s 2 ~  d x 2(ri — 1) and y is independent of s2 i f  and only if

f 1 —
W  =  d (I — ------- -ee') for some c > 0 and d > 0.

n

P roof: For any d > 0, by Lemma 3.3.3, we have (n — 1) s2 ~  d %2(n — 1) if and only 

if W  £ Qd,n• From Lemma 3.3.1 (3), y and s2 are independent if and only if

(I -  -  ee') W e  =  0. (3.3.2)
n

It is easy to check that W  £ Gd,n  and satisfies (3.3.2) if and only if

(I — —e e ')a  =  0. (3.3.3)
n

Now, (3.3.3) holds if and only if a =  ce where c = a > 0. Thus, (n—1) s2 ~  d x 2(n—1)

and s2 is independent of y if and only if

W  =  d f ( I — — ee') +  — (ea ' +  ae ') — — e e ')
\ n n  n J

41

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



where c >  0. This completes the proof of the theorem.

Our next result is concerned with an invariance property of the two sample t- 

test. Theorem 3.3.3 below shows that the commonly used two sample i-statistic has 

a t-distribution if one of the samples is positively equicorrelated and the other is 

negatively equicorrelated such that the correlation is same in absolute value in both 

the samples.

T h eo rem  3.3.3 Let y i ~  N ni(y.i eni, W i) and y 2 ~  Nn2(fi2en2, W 2) where 

/ii, /f2 are constants and W i, W 2 are n.n.d. matrices. Suppose that y i and y 2 

are independently distributed. Let yX) sj and y2) s\ be the mean and variance of the 

two vectors y i and y 2) respectively. Let s* =  [(ni — 1) s\ +  (n2 — 1) s2]/(n i +  rc2 — 2) 

be the pooled sample variance. Then

f o - y j - f o - w )  „  t ( n i + _ 2) (3 .3 .5)

SP V nl ^  ft2

if

Wx =  d +13 eBl e ' J  and W 2 =  d (I„2 -  /9 en2 e ' J  (3.3.6)
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for some constants /3 and d such that d > 0 and —l / n i < { 3 < l / n 2.

P roof: It follows from the proof of Theorem 3.3.2 that for any d > 0, (n; — l)s? is 

distributed as d%2(nt — 1) and s? is independent of if and only if

W i =  d ( I„i - 2 ^ e w e'„1)  (3.3.7)

where q  >  0 for z =  1, 2. Thus for ci, c2 >  0, we have 

( f t  “  ^ 2 ) ~  (/* 1 “  /*a)
Cl c2

s p \  1-------w ni n2

t(n i +  712 — 2) (3.3.8)

if W ;’s axe given by (3.3.7) for i = 1, 2. Now for (3.3.5) to hold we require

— +  — — (3.3.9)
ni n2 ni n2

or equivalently,

=  i l — =  )3 (say). (3.3.10)
n\ n2

Since ci, C2 >  0, we have — I fn i  < < l / n 2. The theorem now follows from (3.3.7),

(3.3.8) and (3.3.10).

We need the following version of Cochran’s theorem for the distribution of quadratic 

forms in normal variates with n.n.d. covariance matrix. Theorem 3.3.4 is useful to

obtain the invariance properties of the quadratic forms in ANOVA models.
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T h eo rem  3.3.4 Let A i, A 2, . . . ,  Ak be symmetric and idempotent matrices of order
k k

n x n such that A i A j  =  O for all i ^  j .  Let A  =  ^ A f  and B =  ^ c ; A t  where
8=1 i=1

ci > 0 for 1 < i < k. Let y  ~  N n(fj,, W ) where W  is an n.n.d. matrix. Let

Qi =  y ' A i  y  fo r  1 <  i < k. Then the quadratic forms Qi }s are pairwise independent

and distributed as CiX2(r (Ai)\8i) for  1 < i < k if and only i f  A W  A  =  B where

Si =  -  fj,' A t fi.
(k

P roof: From Example 3.3.2 and Lemma 3.3.1 (2), Q fs  axe pairwise independent and 

distributed as Ci x 2(r(Aj); Si) for 1 <  i <  k if and only if

The theorem now follows from Lemma 3.2.2.

In the next theorem, we obtain invariance property of the distributions of quadratic 

forms in the ANOVA table.

T h eo rem  3.3.5 Let A i, A 2, . . . ,  A k be symmetric and idempotent matrices of order
k k

n  x n such that A i A j = O for all i ^  j. Let ^  A i =  A* and B =  Ci A where
8=1 8=1

A* is the centering matrix and Cf >  0 for  1 <  i < k. Let y  ~  W )  where W

is an n.n.d. matrix. Let Qi = y ' A ; y  for  1 <  i < k. Then the quadratic forms Q i’s 

are pairwise independent and distributed as Cj x 2(r(A;); Sf) for  1 < i < k if  and only 

if  W  is o f the form  (3.2.23) where a. is an arbitrary vector satisfying (3.2.24) and 

Si = - n 1 A i f i .
Ci
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Proof: Prom Theorem 3.3.4, we get tha t Qi s are pairwise independent and dis­

tributed as C{ x 2(r(A j); Si) for 1 <  i < k if and only if A* W  A* =  B. The desired

result follows from Theorem 3.2.3.

R e m ark  3.3.1 In the above theorem, if pt = p e  where p is some constant then Q fs  

are pairwise independent and distributed as Ci x 2(r(A i)) for 1 <  i < k if and only if 

A* W  A* =  B.

As another simple application of the results of Section 3.2, we get the following 

characterization of the covariance matrices such that the null distribution of the 

quadratic forms in one way ANOVA remains invariant.

T h eo rem  3.3.6 Consider the one way ANOVA model

Z/ij =  +  £tj, j  =  l , . . . , n ;  and i = (3.3.12)

9
Let s ' =  (fin,. . . ,  £ini, . . . ,  eai , . . . ,  Sgng) and n = 'Yf/ n i. Assume that e ~  N n(0, W )

i= ini g ni
where W  is an n.n.d. matrix. Let y^ =  ^  2/tj/rci and y.. =  y  y  j/fj/n. Let S S R  =

j = 1 «= i j = i
9 9 ni

y )  m (fi. — y..)2 and S S E  =  y  y  (j/y — y^)2 be the treatment and the error sum of
t = l  i = l  i = 1

squares, respectively. Then, under the hypothesis, p, =  p for  1 < i < g  the following 

hold

(1) S S R  ~  d x 2{ g - l )
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(2) S S E  ~  d X\ n - g )

(3) S S R  is independent of S S E  

i f  and only i f  W  (E Gd,n fo r some constant d > 0.

P roo f: Let y' =  (yn , . . .  ,y ln ii. . .  ,y gl, . . .  ,ySTlg) and pi =  p  for 1 < i < g then we 

have y ~  N n(p e , W ). Note that y'A* y =  S S R  +  S S E . It follows from Remark 

3.3.1 and Theorem 3.3.5 with k  =  2 and c\ = c-i = d > 0 that (1), (2) and (3) hold if 

and only if A* W  A* =  d A* which is true if and only if W  £ Gd,n  hy Remark 3.2.3. 

This completes the proof of Theorem 3.3.6.

The next theorem concerns invariance property of the null distribution of the 

quadratic forms in one way ANOVA model where we assume that observations within 

each treatm ent axe correlated but observations between different treatments axe un­

correlated. Theorem 3.3.7 shows that the quadratic forms for testing the equality 

of g means axe independent and have chi-square distributions if and only if all the 

observations axe uncorrelated when g is greater than or equal to 3. The case g = 2 

was already considered in Theorem 3.3.3.

T h eo rem  3.3.7 Consider the one way ANOVA model as in Theorem 3.3.6. Let e\ =
9

(e;x,. . . ,  £im) ond n =  ^  n;. Assume that £ ; ’s are independent and e t- ~  Nni(0, W ;)
t=i

where W ;  ’s are n.n.d. matrices for  1 < i  < g. I f  g > 3 ,  under the hypothesis pi = p
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for  1 <  i < g, we have (1), (2) and (3) of Theorem 3.3.6 hold i f  and only i/W,- =  d lni 

fo r  1 <  i < g and for some d > 0.

P roo f: Let y ' =  (yn , . . . ,  ylni, . . . ,  ygl, . . . ,  ygng). Then, under the hypothesis m  = fi
3

for 1 <  i < g, we have y  ~  Nn(y,e, W ) where W  =  (J) W ,• and ©  denoting the
t = i

direct sum of W,-’s. By Theorem 3.3.6, we have (1), (2) and (3) hold if and only if 

W  6 Qd,n for some d >  0, that is,

W  =  d ( (I -  - e  e') +  - ( e  a' +  a  e') -  - e  (3.3.13)
\  n n n J

for some vector a  € satisfying inequality (3.2.2). Let to^ denotes the (i, j) th  

element of W . Since e;’s axe uncorrelated we require

W{j — d(ai + aj — (a +  1)) =  0 for 1 <  i < n i, n\ +  1 <  j  < n (3.3.14) 

and

r /  . r— . i  \ \  n f  ^  ” t”  1 ,  • • • ,  ^ 1  H "  ^ 2 j■Wii =  d(ai +  aj — (a-f-1)) =  0 for j = 1  ni>ni + n2 + l t , „ i n ,

(3.3.15)

Since g >  3, we have n > n \ + 1 1 2  and it is ea^y to check that (3.3.14) and (3.3.15) hold

if and only if a  =  e. Therefore, from (3.3.13), we get W  =  d l  and hence W ; =  d ln;

for 1 <  i < g. This completes the proof of the theorem.
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Chapter 4

W ishartness and Independence of 
Quadratic Forms Under Special 
Covariance Structures: W ® V

4.1 Introduction

The purpose of this chapter is to study the multivariate generalizations of the results 

presented in Chapter 3. As preliminaries, we summarize comprehensively the prop­

erties of the Kronecker product and the vec operator in Section 4.2. In Sections 4.3 

and 4.4, we introduce the definitions and prove some properties of the matrix nor­

mal distribution and the Wishart distribution. In Section 4.5, we study multivariate 

quadratic forms and state some known theorems relating to Wishartness and mutual 

independence of these quadratic forms.

The main results of this chapter are presented in Sections 4.6 and 4.7. Our results 

are very general and applicable to the singular and nonsingular Wishart distribution. 

In Section 4.6, we assume that the p-variate normal observations, X i,. . .  ,x„  are cor­

related, that is, cou(xt,Xj) =  Wij V  where W  =  (*%•) and V  are n.n.d. matrices.
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W ith this assumption, in Theorems 4.6.1 and 4.6.2, we give the necessary and suffi­

cient conditions for Wishartness and mutual independence of multivariate quadratic 

forms. Also, in Theorem 4.6.3, we prove a version of the Cochran’s theorem for mul­

tivariate observations with the above covariance structure. Finally, in Section 4.7, 

we obtain a characterization of the class of all covariance matrices W  such that the 

distributions of test statistics occurring in MANOVA problems remain invariant.

4.2 The Kronecker Product and Vec Operator

In this section, we present some matrix theory results related to the Kronecker product 

and the vec operator. We state these results without giving any proofs.

K ronecker P ro d u c t

Let A  =  (aij) and B =  (&;j) be m x n  and p x  q matrices, respectively. Then the 

Kronecker product

A  ® B =  (ayB) (4.2.1)

is a  mp x  nq matrix expressible as a partitioned matrix with a;jB as the ( i ,j) th  

partition for i — 1, . . . , m  and j  =  1, . . . ,  n\ that is,

an B • • • ainB
(4.2.2)

®ronB

The Kronecker product is also called the direct product. Some of the important and 

useful results pertaining to the Kronecker product are summarized below. These
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results are consequences of (4.2.1). For more discussion, we refer to Graybill (1969) 

and Henderson et al. (1983).

R esu lt 4.2.1

(a) 0 ® A = A ® 0 = 0

(b) (Ai +  A 2) ® B =  (Ai ® B) +  (A2 18) B)

(c) A  ® (Bi +  B 2) =  (A ® B i) +  (A ® B 2)

(d) aA  ® 6B =  abA  ® B

(e) (Ai ® B i )(A 2 ® B 2) =  A i A 2 ® B iB 2

(f) (A ® B) ® C =  A ® (B ® C)

(g) (A ® B )"1 =  A "1 ® B "1

(h) (A ® B )' =  A ' ® B '

(i) [Ai A 2] ® B =  [Ai ® B A 2 ® B]

(j) r(A  ® B) =  r(A ) r(B ) and tr(A  ® B) =  tr(A ) tr (B)

(k) Let the ith  eigenvalue of A  be Aj with corresponding eigenvector U; and j th  

eigenvalue of B be Vj with corresponding eigenvector Vj, then A  ® B has 

eigenvalues A £ Vj with corresponding eigenvectors U{ ® Vj for i — 1 , . . . ,  m  and

j  =  1
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(1) If A  and B axe n.n.d. matrices then A 0  B is also an n.n.d. matrix.

(m) (A 0  B)~ =  A -  0  B~

(n) P(A®B) =  P a  ® P b  where P x  denotes orthogonal projection matrix onto 

Af(X).

Vec O p e ra to r

A m atrix operation dating back nearly a century is that of stacking the columns of a 

matrix one under the other to form a single column. Over the years it has had variety 

of names, the most recent being vec. Thus for a matrix

X  =  [x i,x2,. . . ,x » ]

where X; is p X 1 vector for i =  1 , . . . ,  n; vec(X) is a vector of order np x 1 which is 

defined as
"  Xi

vec(X) =  \

. x "
Henderson and Searle (1979) give history, properties and many applications of vec 

operator. In the following lemma, we have combined some of the results given in 

Henderson and Searle (1979) and Neudecker (1969). It is assumed that the sizes of 

the matrices are such tha t all the statements make sense.

L em m a 4.2.1

(a) vec(A  +  B) =  uec(A) +  uec(B)
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(b) uec(ABC) =  (C ' ® A) uec(B)

(c) uec(PQ) =  (Q' ® I) vec(P) =  (Q ' ® P ) vec(I) =  (I ® P ) uec(Q)

(d) tr (A B C ) =  vec(A')' (10  B) vec(C)

(e) tr(P Q ) =  uec(P')'uec(Q)

(f) tr{A Z'B ZC ) =  vec(Zy{A 'C ' ® B) vec(Z) =  uec(Z)'(CA 0  B ') uec(Z)

4.3 T he M atrix N orm al D istribution

Let Xi, X2, . . . ,  x n be a sample of size n  from a p-dimensional population. Define p x n  

m atrix X  such that

®11 ‘ ’ ‘ n r *' i

x = : • • • : -  [x i,x 2, . .  . ,x n] = ;

Xp\ • • • xpn

---i
*>?*

where X j  =  [ x i j , . . . ,  x pj ] '  ( j  =  1, . . . ,  n )  is the j th  column of X  and x f  =  [x fi,. . . ,  X i n ] 

(i = 1 , . . .  ,p) is the zth row of X. Note that X j  represents p observations on the j th  

object or individual while x* represents n observations on the ith  variate. Geomet­

rically, Xj’s are n  points in serving for an examination of the relationship among 

different objects. On the other hand, x*’s are p points in serving for an investiga­

tion of the relationship among different variates. We call X , an observation matrix.

The sample mean vector and covariance matrix are denoted by a vector x  of order 

p x 1 and a matrix S of order p X p, respectively. The scatter of n  points in 3£p 

provides information on their location and variability. If the points are regarded as
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solid spheres, the sample mean vector x  given by (4.3.2) is the center of balance. 

Variability occurs in more than one direction and it is quantified by the sample 

covariance matrix S given by (4.3.3). The sample mean vector and covariance matrix 

of X  are defined below

x  =
■ X i  '

r i n i

n j=i
r 1 i-xT e

n

.  Z p .
i n
n ?  Xpj. i=1

1
~ x PeL n v J

=  —Xe
n

(4.3.2)

and

S = (•Sij) =  f̂ Xik ~  Xi^ Xjk ~  Xĵj =  ^  ~  e') Xi )

J _ X  ( i - I e e ' W .
n — 1 \  n  )

(4.3.3)

Now we are ready to define the matrix normal distribution.

Let X  =  [x i,x 2, . . .  ,x n] be an observation matrix of order p x n. Let Xj ~  

Np(fi j , S j)  for j  =  1 , . . . ,  n and M  =  [/xl t . . . ,  fin] be a matrix of order p x n. Also 

denote, x  =  uec(X), in  =  uec(M) and the covariance m atrix of x  by an n.n.d. matrix 

£  of order np x  np.

D efin ition  4.3.1 The p x n  observation matrix X  is said to have a matrix normal 

distribution and is denoted by X  ~  Np>n (M , £ )  i f x  ~  Npn (in, £ ) .

That is, the statements “X  ~  Np>n (M , S ) ” and “x  ~  Npn(m , £ ) ” are equivalent 

and we say that random matrix X  has a matrix normal distribution with matrix 

of means M  =  [/* !,..., fin] and tha t covariance matrix of x  is S . In this case, the
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observation matrix X  is called the normal observation matrix. The matrix normal 

distribution is nonsingular(singular) as £  is positive definite(positive semidefinite) 

matrix.

The singular matrix normal distribution is defined through the singular multivari­

ate normal distribution. That is, if £  is n.n.d. then by X  ~  Np<n (M , £ )  we mean 

tha t the probability distribution of x  is same as the probability distribution of m -fL z  

where L is a matrix of full column rank and of order n p x m  such that £  =  L L ' and 

z ~  iVTO(0 ,Im). In all our discussion, in this chapter and in the next chapter £  is 

assumed to be an n.n.d. matrix unless otherwise stated and P (X  =  O) =  0. In the 

following examples we consider two widely used covariance structures for £ .

E xam ple  4.3.1 Let X  =  [x i,x2, . . . , x n] be an observation matrix of order p x n 

such tha t Xj’s are independent and identically distributed (i.i.d.) Np(p ,,Y )  random 

vectors for j  =  1 , . . . ,  n. Also, let M  =  [p.,. . . ,  pt] be a matrix of order p x n  and V  

be an n.n.d. matrix then X  ~  NPtn (M, £ )  where M  =  pt e ' and £  =  I  <8> V.

E x am p le  4.3.2 Let X  =  [x i,x 2, . . .  ,x a] be an observation matrix of order p x n  

such tha t X j ~  Np(ptj,W jjY) and cou(x;, Xj )  =  io ;j V  for i ,  j  =  1 ,. . . , n. Let W  =  

(Wij) and V  be n.n.d. matrices then X  ~  Np>n (M, £ )  where M  =  [a*1s • • •, Md an(i 

E  =  W ® V .

In Theorem 4.3.1, we present a  nice characterization of the singular matrix normal 

distribution given in Example 4.3.2. This characterization is used in Theorem 4.6.1
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and 4.6.2 to obtain the necessary and sufficient conditions for the Wishartness and 

mutual independence of multivariate quadratic forms.

Let W  and Y  be as defined in Example 4.3.2. By rank factorization of W  and 

V , we have

W  =  T T ' and V  =  U U ' (4.3.4)

where T  and U  axe matrices of full column rank and of order n  x r  and p x s, 

respectively. Using property (e) of Kronecker product, we can show that

W ® V  =  ( T ® U ) ( T '® U ')  (4.3.5)

=  LL' (4.3.6)

where L =  T  ® U.

T h eo rem  4.3.1 Let X , M , W  and V  be as given in Example 4.3.2. Let W  be of 

rank r and V  be of rank s then X  ~  Np<n (M , W  ® V) i f  and only i /X  =  M + U  Z T ';  

that is, X  has the same probability distribution as that o /M  +  U Z T ' where T  and 

U  are defined in (4.3.4) and Z ~  NS)T (O, L  ® I s).

P roof: If X  ~  NPtn (M , W  ® V) then from Definition 4.3.1, we have

x  ~  Npn (m , W  ® V ) . It follows from a result given in Anderson (1984), page 32-33, 

that with probability one

x  =  m + ( T ® U ) z  (4.3.7)
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where z ~  Nrs (0, I r ® I s) . Rewriting (4.3.7) in matrix form, we have with probability 

one X  =  M  +  U Z T ' where Z ~  N S,T (O, I r ® I s) .

To prove the converse, note that

vec (X) =  vec (M +  U Z T ')  =  m + ( T ® U ) z  (4.3.8)

where z =  uec(Z). Hence x  =  m  +  (T ® U ) z ~  N np(m , W  ® V ), since z ~  

Nra (0, I r ® I a) . It follows from Definition 4.3.1 that X  ~  Np<n (M , W  ® V ) . This 

completes the proof of the theorem.

P ro p e r tie s  o f M a tr ix  N orm al D is trib u tio n

There axe several interesting properties of matrix normal distribution. We state two 

important properties which we use later in this chapter. We begin with the definition 

of the commutation matrix, K pn. The matrix K pn is called “commutation m atrix” 

because of its role in reversing (“commuting”) the order of Kronecker products. Hen­

derson and Seaxle (1981) call it a permutation matrix. We refer to Magnus and 

Neudecker (1979) and Henderson and Searle (1981) for various properties of K pn. 

The commutation matrix K p71 is defined as

K r» =  X ) S  (H « ® H j,) (4.3.9)
1=1 j = 1

where H y is a p x  n matrix with a one at the ( i ,j) th  position and zeros elsewhere. 

It follows from Theorem 3.1 of Magnus and Neudecker (1979) that
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Kpn uec(X) =  uec(X') (4.3.10)

and

K pn(W ® V )K ;n =  V  ® W  (4.3.11)

where X , W  and V  are matrices of order p x n, n  x n  and p X p, respectively.

We state some useful properties of matrix normal distribution in the following two 

theorems.

T h eo rem  4.3.2 Let X , M , W  and V  be as given in Example 4.3.2. I f  X  ~  

Np>n (M , W  0  V) then X '  ~  Nn<p (M ', V  0  W ) .

P roof: If X  ~  N p,n (M , W  0  V) then it follows from Definition 4.3.1 tha t uec(X) ~  

Npn (uec(M), W  0  V ) . From (4.3.10), we have

uec(X') ~  Nnp (K pnuec(M), K pn (W  0  V) K ^ )  . (4.3.12)

It follows from (4.3.10) and (4.3.11) that uec(X') ~  Nnp(vec{M '), V  ® W ) which 

implies X ' -  Nn>p (M ', V  ® W ) .

In the following theorem, we show that if X  has a matrix normal distribution then 

the m atrix of linear combinations of columns and rows of X  also has a matrix normal 

distribution.
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T h eo rem  4.3.3 Let X , M , W  and V  be as given in Example 4.3.2. I f  X  ~  

jVp,n (M, W  ® V) then A X B '~ J V m,s ( A M B ',B W B '® A V  A') where A and B 

are matrices o f known constants and of order m  X p and s x n, respectively.

Proof: Prom Lemma 4.2.1(b) it follows that

uec(A X B ') =  (B ® A) wec(X) (4.3.13)

=  Tuec(X) (4.3.14)

where T  =  B <8> A.

E X  ~  JVP,„ (M ,W ® V ) then Tuec(X ) ~  Nms (T  uec(M), T  (W  ® Y) T ') . It is 

easy to verify that

T  nec(M) =  uec(A M B ') and (4.3.15)

T ( W ® V ) T / =  B W B ' ® A  V  A '. (4.3.16)

Now, from Definition 4.3.1 we have the required result.

4.4 The W ishart D istribution

In this section, we present the definition of Wishart distribution along with some 

of its interesting properties. The definition given here is very general in the sense 

that the Wishart distribution is defined through matrix normal distribution without 

assuming the existence of the density function. Also, the following definition allows 

for Wishart distribution that axe singular. An additional advantage of using this
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definition is that we can derive most of the properties of Wishart distribution by 

exploiting its representation in the form of normal random vectors.

D efin ition  4.4.1 Let X i,...,X n  be i.i.d. Np(0, V) random vectors, that is, X  =
n

[x i,. . .  ,x n] ~  NPln (0 ,1  ® V) then W =  x, x': =  X  X ' is said to have the Wishart
1 = 1

distribution with n  degrees o f freedom and covariance matrix V . We will write that 

W ~  Wp(n, V ), the subscript on W  denoting the size of the matrix W.

R em ark  4.4.1 In the above definition, p and n are positive integers and V  is an 

n.n.d. matrix. The random matrix W has a  nonsingular Wishart distribution if and 

only if n > p and V  is a positive definite matrix, see Eaton 1983, page 304. From 

now onwards, in all our discussion, the covariance matrix V  is assumed to be n.n.d. 

unless otherwise stated. Also, since the definition of Wishart distribution does not 

require n >  p, we will not assume n >  p unless we need this restriction.

R em ark  4.4.2 Since X X ' is n.n.d., the Wishart distribution has all of its mass on

the set of n.n.d. matrices. If p =  1 then W =  x\-\----- |-x2 where x fs  are i.i.d. iV(0, cr2),

in this case it is clear that Wi(n, cr2) is same as the c 2 x2(n) distribution hence the 

Wishart distribution is a matrix generalization of the chi-square distribution. In fact, 

it plays the same role as that of a ^-distribution in multivariate regression analysis, 

MANOVA and more generally, in multivariate linear models.

R em ark  4.4.3 If X  ~  NPtn (M ,I  ® V) then X X ' is said to have a noncentral 

Wishart distribution, denoted by Wp(n, V; fl) where Q, =  M M ' is known as the
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noncentrality matrix. Note that the distribution of X X ' depends on M  only through 

H, see Eaton 1983, page 316.

R e m a rk  4.4.4 If W ~  Wp(n,V ) then we often write W =  X X ' where X  ~  

NPA  0 ,1  ® V ) , tha t is, the distribution of W is same as the distribution of X X '.

R e m a rk  4.4.5 The density function of a nonsingular Wishart distribution was first 

obtained by Fisher (1915) when p =  2 and for a general p by W ishart (1928) using a 

geometrical argument. It seems that the multivariate analysis has begun its successive 

and rapid progress with this discovery. There are various methods available for the 

derivation of the Wishart distribution, see for example, Wishart and B artlett (1933), 

Madow (1938), Hsu (1939a), Olkin and Roy (1954) and Janies (1954).

P ro p e r tie s  of W ish a rt D is tr ib u tio n

The W ishart distribution has several interesting properties. In this section, we present 

some of its properties that are useful for us in deriving the results given here and in 

the next chapter. The first property is important because it gives us a method to 

generate the family of singular Wishart distributions.

T h eo rem  4.4.1 I fW  ~  Wp(ra, V) and C is a r x p  matrix of constants then C W C ' ~  

Wrr (n ,C V C ') .

P roo f: Since W ~  Wp(n ,V ), we have W =  X X ' where X  ~  lVp>n (0 ,1  ® V ) . 

Thus C W C ' =  C X X ' C ' =  Y  Y ' where Y  =  C X . From Theorem 4.3.3, we have
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" Y * Nm ( 0 ,1  (8) C V  C ') . Hence by Definition 4.4.1 of Wishart distribution, we have 

the result.

R e m ark  4.4.6 We can easily show that if W ~  Wp(rc,V;fi) then 

C W C ' ~  Wr( n ,C V  C 'jC f lC ') ,

The following corollary is an easy consequence of Theorem 4.4.1.

C oro lla ry  4.4.1 Let U  be a matrix of full column rank and of order p x  s such that

V  =  U U ' then W ~  Ws(n ,Is) i f  and only i f  U  W U ' ~  Wp{n, V).

It is clear from the above corollary that the family of singular Wishart distributions, 

Wp(n, V ), can be generated from the Ws(n ,Is) distribution where s is the rank of V. 

Now, we state a  straightforward corollary of Theorem 4.4.1.

C oro llary  4.4.2 I f  W ~  Wp(n,V ) then c 'W c  ~  (c/ V c ) x 2(n) where c is a vector 

of constants of order p x 1.

The following theorem is stated without a proof and is useful to prove some of the 

results related to the Wishartness of multivariate quadratic forms. For a  proof, see 

Siotani et.al. (1985), page 66.

T h eo rem  4.4.2 Let W ~  Wp(n, V; Q) where V  is a diagonal matrix,

V  =  diag(crn,. . . ,  crpp), then the diagonal elements ton, • • •, wpp o /W  are all inde­

pendent and wa ~  oux2(n] So) for i =  1 , . . .  ,p  where 8u is the ith  diagonal element 

of SI.
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The following corollary is an easy consequence of the above theorem.

C o ro lla ry  4.4.3 Let W ~  Wp(n ,I;fl)  then tr(W )  ~  %2(np;ir(fi)).

We refer to Rao (1973), page 537-538 for a proof of the following theorem.

T h eo rem  4.4.3 Let Wi ~  Wp(n\, V ;f2i) and W2 ~  Wp(n2, V ;f t2) be independently 

distributed then W =  Wi +  W2 ~  Wp(ni +  n2, V; fli +  fl2).

We now proceed to define the Hotelling’s generalized T 2 statistic. Let W ~  

Wp(m, Y) where V  is a positive definite matrix and m > p .  Suppose, y  ~  Np(fi, ^V ) 

where c >  0. Let y  and W be independently distributed then Hotelling’s generalized 

T 2 statistic is defined by

r2 =  c m y 'W _1y. (4.4.1)

T h eo rem  4.4 .4  Let T 2 be as defined in (4.4.1) then

—  ~ F ( n , m - p  + \\8 )  (4.4.2)
m p

where 8 =  c f i 'V -1 pb and F {m \, m2;w) denotes a noncentral F - distribution with 

(m i, m2) degrees of freedom and noncentrality parameter u.

P roo f: See, Rao (1973), page 541-542 for a proof of the theorem. It is easy to see 

tha t the distribution is central F  if and only if fi =  0.
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4.5 M ultivariate Quadratic Forms

Multivariate quadratic forms are used in multivariate linear models in the construction 

of various test statistics such as Wilk’s lambda and the likelihood ratio tests. In this 

section, we first define a  multivariate quadratic form and then present the necessary 

and sufficient conditions for certain quadratic forms to be mutually independent and 

to follow a W ishart distribution.

Let X  =  [xi,x2, . . .  ,x n] be an observation matrix of order p X n. Let A  be a 

symmetric matrix of order n x n  then the multivariate quadratic form, Q (X ), is 

defined as

Q(X) =  («,-) =  (x*' A x ;)  =  X  A X ' (4.5.1)

where x f  represents the ith  row of X. Note that Q(X) is a symmetric matrix of order 

p x p. In the rest of the section, we present some basic results due to Khatri (1962).

T h eo rem  4.5.1 Let X  be an observation matrix o f order p x  n such that X  ~  

NP)Tl (M , I  ® V) where V  is a positive definite matrix. L etP (X ) =  X A X '+ ^ ( L X '+  

X L ') +  C where A  and C are symmetric matrices of order n x n  andpxp,  respectively 

and L  is of order p  x n. Then P (X ) ~  Wp(r(A), V; ft) i f  and only if

(i) A 2 =  A, (ii) L =  L A  and (iii) C =  ^  L A  L.' (4.5.2)

Also, i f  conditions (i), (ii) and (iii) are satisfied then ft =  P (M ).
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A proof of the corollary given below can be found in Siotani et.al. (1985), page

94.

C oro lla ry  4.5.1 The distribution of P (X ) in Theorem 4.5.1 is a central Wishart 

distribution, Wp(r(A ), V ), if  and only if

(i) A 2 =  A, (ii) L =  -2 M A  and (iii) C =  M  A M .' (4.5.3)

The following corollary is of special interest to us because in many practical sit­

uations (such as MANOVA problems) we work with multivariate quadratic forms 

of the type Q(X) defined in (4.5.1). We also know, from (4.3.3) tha t the sample 

covariance matrix S is in the form of Q(X). Hence it is important to study the distri­

butional properties of Q(X). Moreover, in the next section we generalize the following 

corollary.

C oro llary  4.5.2 Let the distribution ofX.  be as given in Theorem 4.5.1 and Q(X) 

be as defined in (4.5.1), then Q(X) ~  Wp(r(A ),V ;ft) if  and only if A 2 — A. Further, 

if  A 2 =  A  then ft =  Q(M ).

R em ark  4.5.1 The distribution of Q(X) in the above corollary is a central Wishart 

distribution, Wp(r(A ), V ), if and only if A M ' =  O.

We now present some results due to Khatri (1962) pertaining to the independence 

of two multivariate quadratic forms. We also give the necessary and sufficient condi­

tions for the independence of a multivariate quadratic form and a linear function of
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the observation matrix X  such as X K '. These results are multivariate generalizations 

of similar results obtained by many authors, for example, see Shanbhag (1966), Craig 

(1943) and Lancaster (1954) for the case when p =  1.

T h eo rem  4.5.2 Let X  be an observation matrix o f order p x  n such that X  ~  

NPin (M ,I®  V) where V  is a positive definite matrix. Let P i  (X) = X A X '+ ^ ( L X '+
Z

X  L') +  C  and P 2(X) =  X  B X ' +  ^-(K X ' +  X  K ') +  D where A  and B are symmetric
z

matrices o f order n  x n ,  C and D  are symmetric matrices o f order p x p, L and K  

are matrices o f order p x n. Then P i(X ) and P 2(X) are independently distributed if 

and only if

(i) A B  =  O, (ii) L B  =  O =  K  A and (iii) K L ' =  0 .  (4.5.4)

C oro lla ry  4.5.3 Let X  be an observation matrix o f order p x n such that X  ~

jVP)n( M , l 0  V) where V  is a positive definite matrix. Let P (X ) =  X A X ' +  ^ (L X 7 +
z

X L ') +  C. Then P (X ) and X K ' are independently distributed i f  and only if

(i) K  A  =  O and ( i i )K L ' =  0  (4.5.5)

where A , L, C and K  are as defined in Theorem 4.5.2.

4.6 The Covariance Structure W  0  V

Let X  be an observation matrix of order p  X n such that X  ~  Np>n (M , W  ® V) 

where M , W  and V  be as given in Example 4.3.2. In this section, we first obtain the
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distribution of Q(X) =  X  A X ' and later give the necessary and sufficient conditions 

for the independence of two multivariate quadratic forms. We then present a  multi­

variate version of the Cochran’s theorem; and some statistical applications related to 

the invariance properties of the Hotelling’s T 2 statistic and the MANOVA problems. 

For earlier works, we refer to Khatri (1962, 1959), Siotani et.al. (1985) and Roy and 

Gnanadesikan (1959).

Khatri (1962) has given the necessary and sufficient conditions for the Wishartness 

and independence of multivariate quadratic forms for the case when W  and V  are 

positive definite matrices whereas Siotani et.al. (1985) discussed the case when W  is 

n.n.d. and V  is a positive definite matrix. We first present two important lemmas. 

The following lemma is used in the proofs of some theorems related to Wishartness 

of multivariate quadratic forms in singular normal observation matrix.

L em m a 4.6.1 Let A and W  be symmetric matrices o f order n x n. Consider the 

following two conditions:

(a) W  is an n.n.d. matrix such that tr (A W ) =  r(A)

(b) r (A W ) =  r(A).

I f  the condition (a) or (b) holds then

(i) W  A W A W  =  W  A  W , ( ii)M A W  =  M A W  A W  and

(iii) M A M ' =  M A W  A M ' (4.6.6)
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if  and only i f

A W  A =  A  (4.6.7)

where M  is a matrix o f order p x n.

P roof: It is easy to see tha t (4.6.7) implies (i), (ii) and (iii) of (4.6.6). To prove the 

converse, let (a) be given then from (4.6.6)(i), we get

T 'A T T 'A T  =  T 'A T  (4.6.8)

where T  is defined in (4.3.4). Hence, we have r (T 'A T )  =  r(A ) which implies

r(A ) =  r (T 'A T )  <  r(A T ) <  r(A). (4.6.9)

Prom (4.6.9), we have M ( A T ) =  M ( A). Hence A  =  A T C  =  C 'T 'A  for some 

matrix C. We get (4.6.7), if wepre- and postmultiply (4.6.8) by C ' and C, respectively.

Suppose (b) is given, then M ( A W )  =  M ( A). Hence, we have A  W D  =  A  for 

some matrix D  such tha t A  W D  = D 'W A .  Pre- and postmultiplying (4.6.6)(i) by 

D ' and D , respectively, we get (4.6.7). This completes the proof of the lemma.

Lemma 4.6.2 is used to obtain the necessary and sufficient conditions for two 

multivariate quadratic forms to be independently distributed.

L em m a 4.6.2 Let A , B  and W  be symmetric matrices o f order n x n. Consider the 

following two conditions:

(a) A , B and W  are n.n.d. matrices
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(b) r(A  W ) =  r(A ) and r(B  W ) =  r(B ).

I f  the condition (a) or (b) holds then

(i) W A W B W  =  O, ( i i )W A W B M ' =  0  =  W B W A M ' and

(iii) M A W B M ' =  O (4.6.10)

if  and only if

A W B  =  O (4.6.11)

where M  is a matrix of order p  x n.

P roo f: It is easy to see that (4.6.11) implies (i), (ii) and (iii) of (4.6.10). Let (a) be 

given, then it follows from Shanbhag (1966) that (4.6.10)(i) and (4.6.11) are equivalent 

conditions.

Suppose now (b) is given then as shown in Lemma 4.6.1, we have A  W  C =  A

and B W D  =  B for some matrices C and D. Pre- and postmultiplying (4.6.10)(i)

by C ' and D , respectively, we get (4.6.11).

We now present one of our main theorems. This theorem generalizes Theorem 

2.8.5 of Siotani et.al. (1985) for the case of singular W ishart distribution and it 

is also a multivariate generalization of Theorem 2s of Searle (1971). For related 

works, we refer to Khatri (1963), Rayner and Livingstone (1965), Khatri (1968) and 

Shanbhag (1968).
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T h eo rem  4.6.1 L e t  X  =  [xi,X2, . . . , x n] b e  a n  o b s e r v a t i o n  m a t r i x  o f  o r d e r  p x n  

s u c h  t h a t  X j  ~  N p ( f i j , W j j V )  a n d  c o v ( x i ,  X j )  =  W { j  V  f o r  i , j  =  l , . . . , n ;  t h a t  i s ,  

X  ~  N Ptn  (M, W  ®  V ) w h e r e  W  =  ( t o y )  a n d  M  =  . . .  , / t t J .  L e t  W ,  V  b e  n . n . d .

m a t r i c e s  a n d  A  b e  a  s y m m e t r i c  m a t r i x  o f  o r d e r  n  x n .  T h e n  Q(X) =  X  A X ' ~  

Wp(r(A ),V ;Q (M )) i f  a n d  o n l y  i f  A W  A  =  A.

P roof: Let X  ~  Np>n (M , W  ® V) and A W  A =  A  then from Theorem 4.3.1 and 

4.3.3, we have X  =  M  +  Y T ' where Y  ~  JVP)T.(O, I r ® Y ), O is a matrix zeros of 

order p x r  and T  is as given in (4.3.4). Rewriting X  A X ' in terms of Y , we get

X A X ' =  (M  +  Y  T ') A  (M  +  Y  T ') '

=  (M  +  Y T ') A T T 'A ( M  +  Y T ') '

=  ( Y T 'A T  +  M  A T ) ( Y T 'A T  +  M A T ) '.  (4.6.12)

Let r ( T 'A T )  =  f, since the matrix T 'A T  is idempotent and symmetric, we have 

T 'A T  = H H ' where H  is of order r  x t  such that H 'H  =  I*. Hence from (4.6.12), 

we have

X A X ' =  (Y H  +  M A T H )  (Y H  +  M A T H ) ' (4.6.13)

since M A T  =  M A T T 'A T .  From Theorem 4.3.3, we have Y H  +  M A T H  ~  

iVP)t(M  A T H , I t ® V ). Now from Remark 4.4.3, we get X A X ' ~  Wp(r(A ), V;f2) 

where 0  =  (M A T H )( M A T H ) ' =  M A M ' =  Q(M ). Also note that r ( T 'A T )  =  

t r ( T f A T ) =  t r ( A W )  =  r(A ) since we have assumed A W  A =  A.
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To prove the converse, let V  =  U  U ' and C =  (U ' U) 1U ' where U  is as given in

(4.3.4). Let Q(X) ~  W"p(r(A ), V; Q(M )) then from Remark 4.4.6, we have

C Q(X) C ' ~  W s(r(A ),Ia; C  Q (M )C '). (4.6.14)

It follows from Corollary 4.4.3 that

tr(C  Q (X )C ') ~  x 2(s r(A); ir(C  Q (M )C ')). (4.6.15)

Prom Lemma 4.2.1(f), we obtain

ir(C  Q (X )C ') =  i r (C X A X 'C ')  =  ir (A X 'C 'C X )

=  uec(X)'(A  ® C 'C )i;ec(X ). (4.6.16)

Let £  =  W  ® V  then from the definition of m atrix normal distribution, we have 

uec(X) ~  Npn (uec(M), £ ) .  From Corollary 2s.1 of Searle (1971) and Lemma 4.6.1 

for p =  1, we get from (4.6.15) and (4.6.16) that

uec(X); (A ® C 'C )uec(X ) ~  X2(s r(A );£) 

which is equivalent to

(A ® C ' C) £  (A ® C ' C) =  A  ® C ' C (4.6.17)

where 6 = uec(M)' (A ® C' C) uec(M). It is clear from (4.6.17) tha t A W  A  =  A. 

This completes the proof of the theorem.
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R em ark  4.6.1 We also have a direct proof of the converse given above. This proof 

is more informative and is straightforward too. The proof is based on Theorem

4.4.2. We have to show that if Q(X) ~  Wp(r(A), V; Q(M )) then A W  A  =  A. 

Since X  ~  NPin (M , W  ® V ), from Theorem 4.3.2, we have X ' ~  Nn>p (M 7, V  ® W ). 

Hence x* ~  Nn(m *,vaW ) where x* and m* are the ith  columns of X 7 and M 7, 

respectively and vu is the ith  diagonal element of V. It follows from Theorem 4.4.1 

that x f  Ax* ~  vux2(r(A)\Su) where Su = m f  A m * and vu is a nonzero diagonal 

element of V. Note that, we can always find a nonzero vu since P (X  =  O) =  0. 

It follows from Corollary 2s.1 of Seaxle (1971) and Lemma 4.6.1 for p = 1 that 

A W  A  =  A.

R e m ark  4.6.2 If V  is a positive definite matrix or A M 7 =  O then the proof of the 

above theorem follows from Theorem 4.5.1 and Corollary 4.4.1.

C oro llary  4.6.1 The distribution of Q(X) in Theorem 4.6.1 is a central Wishart 

distribution, Wp(r(A ), V ), if and only i f  A M 7 =  O.

P roo f: It is easy to see that if A M 7 =  O then M A M 7 =  O. Hence Q(X) has 

a central Wishart distribution. To show the converse, let W  =  T T 7 where T  is 

given in (4.3.4) then M  A M 7 =  O implies M  A T  =  O. Which in turn implies that 

M A T T 7 A =  O. Hence A M 7 =  0  since A W  A  =  A.

C oro lla ry  4.6.2 Under the assumptions o f Theorem 4.6.1, we have 

Q(X) ~  dW p(r( A ), V; fX) if and only i /A W  A =  d A  where d > 0 and ft =  —Q(M ).
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In our next theorem, we present a multivariate generalization of Theorem 4s of 

Searle (1971). For earlier works, we refer to Khatri (1962, 1963), Shanbhag (1966), 

Good (1966) and Styan (1969).

T h eo rem  4.6.2 Let X  ~  JVPi„(M , W  <gi V) where X , M , W  and V  are as defined 

in Theorem 4.6.1. Let Q i(X ) =  X A X ' and Q 2(X) =  X B X ' where A and B are 

symmetric matrices of order n  X n. Consider the conditions: (a) A  and B are n.n.d. 

matrices and (b) r(A W ) =  r(A ) and r (B W ) =  r(B ). I f  the condition (a) or (b) 

holds then Q i(X ) and Q 2(X) are independently distributed i f  and only i f  A  W B  =  O.

P roof: Let X  ~  jVPiTl(M ,W ® V ) then from Theorem 4.3.2, we have

X ' ~  N niP (M ', V  ® W ). Hence x* ~  JVn(m*,u,-;W) where x* and m* are the ith  

columns of X ' and M ', respectively and vu is the ith  nonzero diagonal element of V. 

If Q i(X ) and Q2(X) are independently distributed then their ith  diagonal elements, 

x f  A x* and x f  Bx*, are also independently distributed. Let (a) or (b) be given, 

then it follows from Theorem 4s of Searle (1971) and Lemma 4.6.2 with p =  1 tha t 

A W B  =  O.

To prove the converse, let A W B  =  O then condition (i), (ii) and (iii) of Lemma 

4.6.2 are trivially satisfied. Since W  =  T T ',  it is easy to see that conditions (i), (ii) 

and (iii) are equivalent to

(ia) A i B i =  O, (iia) Li B i =  O =  K j A i and (iiia) K i L'x =  O

(4.6.18)
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where A : =  T 'A T ,  B i =  T 'B T ,  Lj =  M A T  and K : =  M B T . Since X  ~  

Np,n (M ,W  ® Y ) , from Theorem 4.3.1 and 4.3.3, we have X  =  M  +  Y T ' where 

N ,A  O, I r ® V ), O is a matrix zeros of order p x  r and T  is as given in (4.3.4). 

If we represent X A X ' and X  B X ' in terms of Y , we get

Qa (X) =  Y  A: Y ' +  Y  Li +  Lx Y ' +  C a

(4.6.19)

and

Q 2(X) =  Y  B i Y ' +  Y  K i +  Kx Y ' +  D i

(4.6.20)

where C i =  M  A M ' and D i =  M B M '. Prom Lemma 1 of Khatri (1962), we get

L i =  [LJ O] H ' and K a =  [O K*] H '; (4.6.21)

r a ? o o o
A 1 = H O 0 H ' and B 1 =  H 0 B I .

H ' (4.6.22)

where H  is of order r  x ( t  +  u )  such that H ' H  =  I t , t  =  r([Ai Li]), u  =  r([B i Ki]), 

A i and BJ are symmetric matrices of order t  x  t  and u  x  u ,  respectively ; LJ is of 

order p X t ,  KJ of order p X  u  and O is matrix of zeros of an appropriate order. Let 

Y * = Y H  then Y* ~  Np<t+V. (O, I i+U ® V ). Let Y* =  [Yi Y£] where YJ is of order 

p x t  and Y i is of order p x  u .  It is easy to see that YJ and Y£ are independently
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distributed. Now it follows from (4.6.19), (4.6.20), (4.6.21) and (4.6.22) tha t 

Q i(X ) =  YJ A I Y ?  +  Y ; L f  +  Y*' +  Cx

(4.6.23)

and

q 2(x )  =  Y j b ;  y ; ' + y *  k ; '  +  k ;  y ; '  +  d x.

(4.6.24)

Since Q i(X ) depends only on Y* and Q 2(X) on Y |,  we have Q i(X ) and Q 2(X) 

independently distributed. This completes the proof of the theorem.

R em ark  4.6.3 If V  is a positive definite matrix or A  M ' =  O then the proof of the 

above theorem follows from Theorem 4.5.2.

The proof of the following corollary follows from the above theorem and Corollary

4.5.3.

C oro lla ry  4.6.3 Let X  ~  Np>n (M ,W  <g> V) where X , M , W  and V  are as defined 

in Theorem 4.6.1. Then X A X ' and X L ' are independently distributed if  and only if  

A W L '=  O where A is an n.n.d. matrix o f order n x n and L is o f order p x n.

R e m a rk  4.6.4 Let Q i(X ) and Q 2(X) be as defined in Theorem 4.6.2. Let Q i(X ) ~  

Wp(r(A), V; Q i(M )) and Qa(X) ~  Wp(r(B ), V; Q 2(M )) then Q x(X) and Q 2(X) axe 

independently distributed if and only if A W B  =  O.
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R em ark  4.6.5 It is interesting to note that the necessary and sufficient conditions 

in Theorem 4.6.1 and 4.6.2 do not depend on M . Hence without loss of generality we 

can assume M  =  O.

We now present a multivariate analogue of the Cochran’s theorem, see Cochran 

(1934). The case p =  1 for singular normal random vector is discussed by Styan 

(1969), Rao and M itra (1971, section 9.3) and for nonsingulax normal random vector 

by several authors including Graybill and Maxsaglia (1957), Banerjee (1964) and 

Loynes (1966). Khatri (1962) has given a multivariate generalization of the Cochran’s 

theorem for nonsingulax matrix normal distribution.

T h eo rem  4.6.3 Let X  ~  Np>n (M ,W  ® V) where X , M , W  and V  are as defined

in Theorem 4.6.1. Let A; (i — 1 , . . . ,  k) and A  be symmetric matrices o f order n x n  
k

such that A  =  A;. Consider the following conditions:
i=1

(ai) X  A,- X ' ~  Wp(r(A i), V; «*) where SU = M  Ai M ' for i =  1 , . . . ,  k

(af) X  Ai X ' and X A j  X ' are mutually independent for i j  =  1 ,. . .  ,k

(a3) X A X ' ~  Wp(r(A ), V; H) where SI =  M A M '

(&i) Ai W  Ai =  Ai for  i =  1, . . . ,  fc 

(,b2) A,- W  A j =  O fo r  i ^ j  =  1 , . . . ,  fc

(63) A W  A  =  A
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(&4) £ > ( A 0  =  K A )-
t=l

Then

(1) any two o f the three conditions (af), (a2), (<23) or

(2) any two of the three conditions (&i); (62)̂  (63) or

(3) any two conditions (a,-) and (bj) for i ^  j  =  1,2,3 or

(4) (63) and (64) or

(5) (03) and (64)

are necessary and sufficient for all the remaining conditions: (ai) - (64).

P roof: The proof is based on Theorems 4.6.1, 4.6.2 and Theorem 1 of Graybill and 

Marsaglia (1957). We only prove (5), that is, (03) and (64) are necessary and sufficient 

for all the remaining conditions. We show that (03) and (64) imply all the remaining 

conditions since converse is trivially true.

Let (a3) and (64) be given, then from Theorem 4.6.1, we get (63). Let B  =  T 'A T  

and Bj =  T ' A, T  for i =  1 , . . . ,  k  where W  =  T T ' and T  is as defined in (4.3.4)
k

then B =  Also from (63), we get B 2 =  B. On using condition (64), we have
1=1

k k
r(A ) =  ir(A  W ) =  tr(B ) =  r(B ) <  X > (B f) <  X > (A ;) =  K A )

i=l i=l

(4.6.25)
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k
since t r (A W ) =  r (A W ) =  r(A ) from (63). Hence r(B ) =  ]>~V(B{). From Theorem

t=i
1 of Graybill and Marsaglia (1957), we get B f =  B; and B ;B j =  O for i ^  j  =  

1 , . . . ,  k. It follows from the following lemma that r(B ;) =  r(A t-) for i =

Hence from Lemmas 4.6.1 and 4.6.2, we get (61) and (62) and (ai) and (02) follow 

from Theorems 4.6.1 and 4.6.2.

L em m a 4.6.3 Let A*, B;, A  and B be as defined in Theorem 4.6.3. Let r(A) =  

^ r ( A j )  =  X M B 0  =  K B ) then r (B 0  =  r (A 0  /o r i =  1, . . . ,  Jfe.
t=i t=i

P roof: It is obvious from the definition of B ;’s that r(B t-) <  r(A t-) for i =  1 , . . . ,  k. 

Also, r(B,-) =  r(B ) -  r(B i ) =  r(A ) -  £  r(B j) >  r(A ) -  X ) K Ai) =  r(A{).
t=i i^t=i

Hence, repeating the same argument we can show that r(B ,) >  r(A{) for i = 1 , . . . ,  k.

4.7 S tatistical A pplications

In this section, we present multivariate generalizations of the applications presented 

in Chapter 3. Let X  ~  Np>n (M , W  <g> V) where X , M , W  and V  axe as defined in 

Theorem 4.6.1. Our goal in this section is to characterize the class of all n.n.d. W ’s 

such tha t the distribution of matrices corresponding to various sum of squares and 

cross products in MANOVA problems remain invariant, that is, the distributions are 

preserved except for a  scale factor.

Basu et al. (1974) defined a covariance structure called simply equicorrelated by 

taking W  = (1 — p) 1 + p e e1 and derived the distributions of the sample mean vector
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x, sample covariance matrix S and the Hotelling’s T 2 statistic. They showed that for 

this choice of W  the sample mean vector and covariance matrix axe independently 

distributed and their distributions are also preserved except for a constant factor. 

The converse of this result is given in Theorem 4.7.1. In Theorem 4.7.1, we show 

that x  and S are independently distributed and their distributions remain invariant if 

and only if the observations axe equicorrelated (or simply equicorrelated as mentioned 

above). As a simple consequence of Theorem 4.7.1, we show in Theorem 4.7.2 that the 

distribution of commonly used one sample Hotelling’s T 2 statistic remains invariant 

except for a  constant factor when the observations in the sample axe equicorrelated. 

We also show that the distribution of usual two sample Hotelling’s T 2 statistic remains 

invariant if the observations in one of the samples axe positively equicorrelated and 

those in the other sample axe negatively equicorrelated with the same correlation in 

absolute value. This result is contained in Theorem 4.7.3.

The next two examples give a characterization of the class of all n.n.d. W ’s such 

tha t the distribution of a  given multivariate quadratic form remains invariant.

E x am p le  4.7.1 Let X  ~  Np>n (M , W  ® V) where X , M , W  and V  axe e l s  defined 

in Theorem 4.6.1. Let A  be an n.n.d. matrix of order n x n. Then it follows from 

Theorem 4.6.1 that X A X '  ~  W'p(r(A ), V; Q(M )) if and only if A W  A  =  A  which 

is equivalent to characterizing the class of all n.n.d. g-inverses of the matrix A  and 

such a class is given in Example 3.2.1.
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Exam ple 4.7.2 In Example 4.7.1, Q(X) ~  e£Wp(r(A), V; ft) if and only if

A W  A  =  d A  where d >  0 and ft =  ^Q (M ). Therefore, from Theorem 3.2.2 we
d

can obtain the class of all n.n.d. W ’s such that A W  A =  d A.

In the next example we examine an invariance property of the distribution of 

sample covariance matrix S.

E x am p le  4.7.3 Let X  ~  Np>n (M, W  ® V) where X , M , W  and V  are as defined in

Theorem 4.6.1. Then for any d > 0, we have (re —1) S ~  d Wp(n — 1, V; ft) if and only

if W  G Qd,n  where class G d,n  is as defined in Remark 3.2.3, S is defined in (4.3.3) and

ft =  (I — —e e') M '. From Corollary 4.6.2, we get (re — 1) S ~  d Wp(n — 1, V; ft) 
a  re

1 1  1
if and only if ( I  e e') W  ( I  e e') =  d ( I  e e') which is true if and only if

re re re

W  G

We now characterize the class of all covariance matrices W  such that the sample 

mean vector and covariance matrix are independently distributed and their distribu­

tions are also preserved except for a constant factor.

T h eo rem  4.7.1 Let X  ~  jVPin(M ,W  ® V ) where X , M , W  and V  are as defined

in Theorem, 4.6.1. Then (re — 1)S ~  d Wp(n — 1,V; ft) and x  is independent o f S

f l c)
if and only if  W  =  d (I —  ------ - e e') for some c > 0, d > 0 and ft is as given in

re

Example 4.7.3.

P roof: From Example 4.7.3 for any d > 0, we have (re — 1) S ~  d Wp(n — 1, V; ft) if
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and only if W  € Qd.,n- From Corollary 4.6.3, x  is independent of S if and only if

(I — —e e') W  e =  0 . (4.7.26)
71

It is easy to check that W  G Qd,n and satisfies (4.7.26) if and only if

( I —- e e ' ) a  =  0 (4.7.27)
71

which in turn holds if and only if a  =  ce  where c =  a > 0. Thus (n — 1) S ~

d Wp(n — 1, V; fl) and x  is independent of S if and only if

W  =  d ( (I — — e e') +  — (e a' +  a  e') — — e e'̂ )
\ n n  n J

d f ( I  — — e e') +  — e e' — — e e'') 
\  n n n J

=  d ^ I - S - ^ - e e ^  (4.7.28)

where c >  0. This completes the proof of the theorem.

In the following theorem, we show that the distribution of commonly used one 

sample Hotelling’s T 2 statistic remains invariant except for a  constant factor when 

the observations in the sample are equicorrelated.

T h eo rem  4.7.2 Let X  ~  jVPiTl(M ,W  ® V ) where X , M , W  and V  are as defined 

in Theorem 4.6.1. Let M  = f i e 1 where /i is a vector o f order p x 1, V  be a positive 

definite matrix and n — 1 >  p. Then

n ( x - < . y S - » ( g - < « )  r ^ ± „ c F ^ n _ v )  ( 4 . 7 .2 9 )
n — 1 p
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f 1 “
i f  W  =  d (I —  ------ -  e e') for some c > 0 and d > 0.

P roof: It follows from Theorem 4.7.1 that for any d > 0, (n — 1) S ~  dW p(n  — 1, V) 

and x  is independent of S if and only if

W  =  d (I -  e e') (4.7.30)

d c
for some c >  0. From Theorem 4.3.3, we have x  ~  — V). Therefore, if c =  0

n

then x  is degenerate at y  and (4.7.29) trivially holds. If c >  0 then the result follows 

from Theorem 4.4.4.

R em ark  4.7.1 It is easy to see that if c ^  1 then all the observations are either 

positively equicorrelated or negatively equicorrelated according a s c > l o r 0 < c < l .  

Hence from the above theorem we can see that if in a sample all the observations axe 

either positively equicorrelated or negatively equicorrelated then the distribution of 

usual one sample Hotelling’s T 2 statistic is changed only by a constant factor. If c =  1 

then observations axe independent and in that case we have an exact distribution.

We now examine the invaxiance property of two sample Hotelling’s T 2 statistic. In 

the following theorem we show that the distribution of usual two sample Hotelling’s 

T 2 statistic remains invariant if the observations in one of the samples axe positively 

equicorrelated and those in the other sample axe negatively equicorrelated with the 

same correlation in absolute value.
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T h eo rem  4.7.3 Let Xjt =  Jxfc^xj^,.. . ,  x*„.fc] be an observation matrix o f order p x

nk such that x fcj. ~  Np(n k, wkjj V) and cov(xki x kj) =  wki- V  /o r i , j  =  l , . . . , n fc;

that is, Xjt ~  JVp,nfc ( /ifce ^ ,W jt ® V ) where W k =  (u>jfcy) for k = 1,2. Let W i

and W 2 be n.n.d. matrices, V  be a positive definite matrix, X i and X 2 6e mutually

independent and n \ n2 — 2 > p. Let x x, X2 6e the sample mean vectors and Sx,

S2 be the sample covariance matrices of X i and X.2, respectively. Also, let Sp =

[(ni — 1) Si +  (n2 — 1) S2]/(» i +  n2 — 2) and 6 — fi1 — fi2• Then

ni n2 ((x i -  x 2) -  0)' S" 1 ((xx -  x 2) -  6) (rcx +  n2 -  p -  1) 
n\ -{■ n2 n-i -j- ti2 — 2 p

~  F (p ,n t + n2 - p -  1)

(4.7.31)

if

W  1 = d (Ini +  eni e'ni) ant* W 2 =  d(I„2 - / 3  en2 e ' J  (4.7.32)

for some constants /3 and d such that d > 0 and —1 fn \  < ft < l / n 2.

P roof: If d > 0 then it follows from Theorem 4.7.1 that (nk — 1) S* ~  d Wp(nk — 1, V) 

and Xfc is independent of S k if and only if

w „  = d ( K -  e » ,< , )  (4.7.33)
Tlfc

where ck > 0 for k =  1,2. From Theorems 4.4.3 and 4.3.3, we get

ni + j - ~ 2 Sp ~  Wp(ni + n2 -  2, V) (4.7.34)
a 
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a n d

X ! - x 2 - 0 ~  JVp ( M ( ^ -  +  ^ - ) V )  (4.7.35)
\  ni n2 /

where 8 = f.i1 — fi2• Thus for cx > 0 and c2 > 0, from Theorem 4.4.4, we get

w in2 ((x i - x 2) -  8 )' S" 1 ((xi - x 2) - 8 ) (m +  re2 - p -  1)
ni + n 2 n i + n 2 — 2 p

ci n2 +  c2 n\ . .
~ ;---------F(j>, m  + n2 - p - l )

ni +  n2

(4.7.36)

if Wfc’a axe given by (4.7.33). Note that (4.7.36) is also true for ci =  0 or c2 =  0. If

we choose c\ =  n\ /? +  1 and c2 =  1 — n2 j3 where —1/n i < /? < 1 /n 2, we get (4.7.32)

and in tha t case (4.7.31) also holds.

R em ark  4.7.2 If cx =  c2 =  c where c > 0 then from (4.7.33), we get

(4.7.37)

for k = 1,2 and in that case from (4.7.36) we have

nx n2 ((xi -  x 2) -  8 )' S" 1 ((xx -  x 2) -  8 ) (m  + n2 -  p -  1) 
ni +  n 2 nx +  n2 — 2 p

~  c F (p , ni +  n2 — p — 1).

(4.7.38)

It is now clear from Remark 4.7.2 tha t if the observations in both the samples are 

positively equicorrelated (c >  1) or negatively equicorrelated (0 <  c <  1) then the
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distribution of usual two sample Hotelling’s T 2 statistic is changed only by a constant 

factor. On the other hand, if the observations in one of the samples are positively 

equicorrelated and those in the other sample are negatively equicorrelated with the 

same correlation in absolute value then the distribution remains the same.

We now present some applications related to MANOVA problems. The following 

theorem is useful in characterizing the class of all covariance matrices W  such that 

the distributions of various matrices of sum of squares and cross products remain 

invariant.

T h eo rem  4.7.4 Let A i, A 2, . . . ,  A k be symmetric and idempotent matrices of or-
k k

der n  X n such that A; A ;- =  O for all i /  j .  Let A  =  Z A i and B  =  Y") qA ,
t=i t=i

where Cj >  0 for 1 <  i <  k. Let X  ~  jVpin (M ,W  ® V ) where X , M , W  and 

V  are as defined in Theorem 4.6.1. Let Qi(X) =  X  Ai X ' for 1 <  i <  k. Then 

the multivariate quadratic forms Qi(X) ’s are pairwise independent and distributed as 

CiWp ^r(A j), V; — Qi(M )^ for  1 <  i < k i f  and only i f  A W  A =  B.

P roo f: From Example 4.7.2 and Theorem 4.6.2, we have Q,-(X)’s are pairwise in­

dependent and distributed as CiWp |r(A,-), V; for 1 <  i < k if and only

if

Mij i  (4-7-39>

The theorem now follows from Lemma 3.2.2.
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R em ark  4.7.3 In the above theorem, for a given matrix A, the class of all n.n.d. W ’s 

satisfying (4.7.39) is given by Theorem 3.2.2 and it contains the class of covariance 

matrices considered by Pavur (1987) in Corollary 1.

In all MANOVA problems the total corrected sum of squares and cross products 

matrix is decomposed into two or more orthogonal sum of squares and cross products 

matrices. Typically, for testing a sequence of k orthogonal hypotheses H0i (i —

1, . . . ,  k), we get the following decomposition of the total corrected sum of squares

and cross products matrix

X ( I - - e e ' ) X '  =  H i +  --- +  H *-(-E (4.7.40)
n

where Hi represents the sum of squares and cross products matrix used to test H0i 

and E  is the residual or error sum of squares and cross products matrix. It is well 

known that the underlying matrices of the quadratic forms H i’s and E are idempotent 

and mutually orthogonal. Therefore, the invariance property of the distributions of 

quadratic forms in a MANOVA table follows from the theorem given below.

T h eo rem  4.7.5 Let A i, A 2, . . . ,  A* be symmetric and idempotent matrices o f order
k k

n  X n such that Ai Aj  =  O for all i ^  j . Let ^  Ai =  A* and B =  Ci Ai where
t=i »=i

A* is the centering matrix and Ci > 0 for 1 <  i <  k. Let X  ~  Np>n{M ,W  ® V) 

where X , M , W  and V  are as defined in Theorem 4.6.1. Let Qi(X) =  X A i X '  for 

1 <  i <  k. Then the multivariate quadratic forms Qi(X) ’s are pairwise independent
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and distributed as CiWp ^r(A ;), V> — Q»(M)^ for 1 < i < k i f  and only i f  W  is of 

the form  (3.2.23) where a  is an arbitrary vector satisfying (3.2.24).

P roof: It follows Theorem 4.7.4 that the multivariate quadratic forms Q,-(X)’s are 

pairwise independent and distributed as Ci Wv ^r(A;), V ; — Q;(M )^ for 1 <  i < k  if 

and only if A* W  A* =  B. The desired result follows from Theorem 3.2.3.

We now give some interesting results related to one way MANOVA problems. 

Let Xfc =  [xfcjjXfcj,... ,XfcnJ  be the fcth observation matrix of order p x nk from 

fcth population such tha t Xfc ~  Np>nk {jxk e'nk, W k ® V ) where fxk, W k and V  are as
9

defined in Theorem 4.7.3 for k =  1 , . . . ,  <7 and n  =  nk. Let X  =  [Xi, X 2, . . . ,  X s]
k= 1

be the combined observation matrix of order p x n  then X  ~  Np>n (M , W  ® V ) where

M  =  e ^ j and W  is of order n  X n. In the usual one way MANOVA

W k =  Ink for all k  and samples from different populations are also independent hence

W  =  I. If samples from different populations are independent but correlated among
9

themselves then W  =  ^  Wfc where 0  denotes the direct sum of Wfc’s. If all the n
k= 1

observations are correlated then W  is some n.n.d. matrix with Wfc as the fcth block 

diagonal matrix.

Our goal is to test a hypothesis that all populations have the same mean vector. 

The usual one way MANOVA model to compare g population mean vectors is as 

follows:

x fci =  Mfc +  efcj5 k = and j  =  (4.7.41)
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where e^-’s are i.i.d. iVp(0, V ) vectors of random errors. We can also write the above 

model in terms of X  as given below

X  =  M  + U (4.7.42)

=  ® < + M .  (4.7.43)
k = l

Let U =  [ e n , . . . , e lril, . . . , e 5l , . . . , e 5ns] then U ~  JVPiri (0 ,1  ® V ) and X  ~  

iVp.n ( M , I ®  V ) .

In order to test a hypothesis of equal population means, the total corrected sum 

of squares and cross products matrix is partitioned into the treatment sum of squares 

and cross products matrix H  and residual sum of squares and cross products matrix 

E. The matrices H  and E axe defined below

H =  £  nk (xjfe -  x) (xfc -  x)' (4.7.44)
k=1

and

g n k
E  = £  £  (xjy -  Xfc) (xjy -  x ky (4.7.45)

k = 1 j=l

where xj, =  — Xfc en, and x  =  —X e . The total corrected sum of squares and cross 
nfc n

products matrix is given by

1 9
X  (I -  ±  e e') X ' = £  £  (Xfci ~  x) ( x kj -  x)' =  H  +  E. (4.7.46)

n  t e l  j = 1

We can also represent H  and E  in terms of the combined observation matrix X . Let

p  =  ® r e”* <  (4-7-47)te i
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then

H  =  X  (P  -  -  e e') X ' and E  =  X  (I -  P ) X '. (4.7.48)
n

It is well known that if the hypothesis of equal population means is true, that 

is, M  =  fie1 where fi represents the common mean vector and U ~  Np>n (0 ,1 ®  V) 

then H  ~  Wp(g — 1, V ) and E  ~  Wp(n -  g ,V ) . In the results given below, we first 

assume tha t U ~  Np<n (O, W  ® V) and then characterize the class of all n.n.d. W ’s 

such tha t distributions of H  and E  remain invariant. Later, we derive parallel results
9

assuming tha t W  =  @  W *.
k=1

Theorem  4.7.6 Consider the one way MANOVA model

Xitj =  fi-k +  s kj, k = l , . . . , g  and j  =  l , . . . , n fc. (4.7.49)

Let U — [ e n , . . . ,  e \ni, . . . ,  eai , . . . ,  ea%] be a matrix o f random errors o f order p x n
9

where n = Let U ~  NP)tl(0 , W  ® Y) where W  and V  are n.n.d. matrices
k=1

of order n  X n and p x p, respectively. I f  the hypothesis o f equal population means, 

fif. —  fi for k = 1, . . .  ,g, is true then

(1) H  ~  ci Wp(g — 1, V)

(2) E  ~ c 2Wp( n - g , V )

(3) H  is independent o / E
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if  and only if

W  =  c2I  +  (ci -  c2) P  +  —(e a ' +  a e ')  -  a ~̂~Cl e e'
n n

(4.7.50)

where a  is an arbitrary vector satisfying

a ' ( P - i e e ' ) a  a '( I  —P ) a  , .
—i-a —  +  —i < a, (4.7.51)

n ci n c 2

H , E  are defined in (4.7.48), P  is defined in (4.7.47) and c\ >  0, c2 > 0.

P roof: Let X  =  [xn , . . .  , x lni, . . .  , x gl, . . .  ,x 5TJ  and n k =  n  for k =  1, . . .  ,p then 

X  ~  NPin (/j,e \ W  ® V). It is clear from (4.7.46) and (4.7.48) that I  e e ' =
Th

(P  — — e e') +  ( I —P).  Letting A i =  P  — — e e' and A 2 =  I  — P  in Theorem 4.7.5, we 
x n n

have (1), (2) and (3) hold if and only if W  is of the form (4.7.50) with a  satisfying

(4.7.51).

R em ark  4.7.4 In the above theorem we have shown that if all the observations from 

all the populations are correlated with the covariance structure W  given in (4.7.50) 

then distributions of H  and E remain invariant except for a  constant factor.

C oro llary  4.7.1 Under the assumptions of Theorem 4.7.6, we have

(1) H ~ d W p( <? - l , V)

(2) E ~ d W p( n - < 7,V)
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(3) H  is independent o f E  

if  and only i f W  £ Qd,n f or some constant d > 0 .

P roo f: Putting c\ — C2 =  d in Theorem 4.7.6, we get from Remark 3.2.3 tha t (1),

(2) and (3) hold if and only if W  G Qd,n for some constant d > 0.

In some applications it is reasonable to assume that samples from different pop-
3

ulations are independent but correlated among themselves, that is, W  =  (J) W*.
te l

W ith this assumption in the next theorem we characterize the class of all n.n.d. W ’s 

such tha t the distributions of H  and E  remain invariant except for a constant factor.

T h eo rem  4.7.7 Consider the one way MANOVA model

Xkj = l*k + s kj, k = l , . . . , g  and j  =  l , . . . , n fc. (4.7.52)

Let Uk =  ejti,. . .  ,£fcnfe] be a 'matrix o f random errors from the kth population of
3

order j j x h j  and n  =  ^ 2 nk‘ Let 24 ~  NPi„k (0 ,W *  ® V) where W k and V  are
te l

n.n.d. matrices of order nk x n* and p x p, respectively for k =  1 , . . . ,  <7. Assume

that Uk ’s are independent andU  =  [Z4 , 24 , • • • Mg] be the combined random error
3

matrix from g populations, that is} U ~  NPiTI (O, W  (g> V) where W  =  @  W *. I f  the
tei

hypothesis of equal population means, fik = fi for k =  1, . . .  ,g, is true and g >  3 then

(1), (2) and (3) of Theorem 4.7.6 hold i f  and only if

w = ©  + (4-7.53)
te l  \  U k  /

where ci >  0 and c% > 0.
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P roof: X  =  [xn , . . . ,X iTll, . . . , x si , . . . , x 5% and n k =  n  for k =  1 , . . . ,g  then
9

X  ~  N PiTI ( f ie 1, W  <g> V ) where W  =  ®  W*,. It follows from Theorem 4.7.6 tha t (1),
k=1

(2) and (3) hold if and only if

W  =  c2I  +  (Cl -  c2) P  +  - f e a '  +  a e ')  -
n n

(4.7.54)

for some vector a  satisfying (4.7.51). Let Wij denote the (i, ji)th element of W . Since 

74’s are independent we also require that

w, a i  +  a j  — ( d  +  ci) =  0 for 1 < i < ni, rii +  1 <  j  < n (4.7.55)

and

i =  n\ +  1, . . . ,  n\ +w. . /__ , \ ni? — it-i j  ■‘■j" T

-  d i  +  d j  — (a +  ci) — 0 j  =  1 , . . . ,  n 1? n i  +  n 2 +  1 , . . . ,  n.

(4.7.56)

Since, g > 3 we have n > n\ +  rc2 and it is easy to check that (4.7.55) and (4.7.56) 

hold if and only if a  =  cx e. Therefore from (4.7.54), we get

W  =  c2I + ( c i - c 2) P  (4.7.57)

where ci >  0 and c2 >  0. The result now follows from (4.7.47).

R em ark  4.7.5 It is easy to note that if nj, =  m for k — 1 , . . . ,  g and c\ =  l + ( m — 1 )p, 

oi =  1 — p where —l / ( m  —1) <  p < 1 then Wfc =  (1 — p) ITO +  p em e'm for k = l , . . . , g .  

Hence for each sample, if the observations are positively equicorrelated (p > 0) or
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negatively equicorrelated (—l / ( m  — 1) <  p < 0) then the distributions of H  and E 

remain invariant except for a constant factor with different constant factors for H  

and E. If p =  0 then W  =  I  and we get exact distributions in one way MANOVA 

table. Hence, to have exact distributions of H  and E it is necessary and sufficient 

tha t p =  0.

R em ark  4.7.6 For unbalanced one way MANOVA problem, we see from (4.7.53) 

tha t if observations in each sample are positively equicorrelated (ci >  c2) or negatively 

equicorrelated (ci <  c2) then the distributions of H  and E  remain invariant except 

for a constant factor with different constant factors for H  and E. The case, when 

ci =  c2 is discussed in the following corollary.

C oro lla ry  4.7.2 Under the assumptions of Theorem 4.7.7, we have

(1) H  ~  dW p(g — 1, V )

(2) E  ~ d W p( n - g , V )

(3) H  is independent o fE

if and only i f W  = d I  for some d > 0.

P roof: Proof follows from Theorem 4.7.7 by letting ci =  c2 =  d where d > 0.

R e m ark  4.7.7 From the above corollary it is clear that in order to have exact dis­

tributions of H  and E  in one way MANOVA table it is necessary and sufficient that
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all the observations should be uncorrelated, that is, W  =  d l. It is interesting to note 

that if g =  2, we can allow some dependence as shown in Theorem 4.7.3 and still 

the distribution of the test statistic remains exact whereas for g =  1 and g > 3 all 

the observations must be uncorrelated in order to have exact distributions of the test 

statistics.
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Chapter 5

W ishartness and Independence of 
Quadratic Forms Under A  
General Covariance Structure

5.1 Introduction

Let X  =  [xi,X2, . . .  ,x„] be an observation matrix of order p x n  such that X  ~  

NPtU (M, S ) . In Chapter 4, under the assumption that S  =  W  ® V , we have charac­

terized the class of all n.n.d. W ’s such that the distributions of certain multivariate 

test statistics remain invariant. In this chapter, we derive analogous results for an 

arbitrary covariance matrix X.

Pavur (1987) considered the case when M  =  O and obtained necessary and suffi­

cient conditions for multivariate quadratic forms to be mutually independent and to 

have central and nonsingular Wishart distribution. We generalize this result for non­

central and singular Wishart distribution, see Theorems 5.3.1 and 5.3.2. Pavur also 

studied the distributional properties of certain quadratic forms for special covariance 

structures S . Some of the results of Pavur contain minor errors, that is, some classes
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of S 's  given by Pavur contain matrices tha t are not n.n.d. We give counter exam­

ples to point out those errors. In this chapter, we also give a complete and elegant 

characterization of covariance structures for the problems considered by Pavur. Our 

characterization of the class of S 's  is complete and elegant in the sense that it does 

not contain matrices tha t are not n.n.d. and the class is generated by an arbitrary 

matrix Q of order np X p as opposed to matrix H of order np x np used by Pavur in 

Theorem 2.

The organization of this chapter is as follows: Some results in matrix theory 

which are analogous to the results presented in Section 3.2 are given in Section 5.2. 

A version of the Cochran’s theorem for an arbitrary covariance matrix 13 is given in 

Section 5.3. The statistical applications are presented in Section 5.4.

5.2 R esu lts in M atrix Theory

The results presented here are generalizations of some of the results presented in 

Chapter 3. The following lemma is a straightforward generalization of Lemma 3.2.2.

L em m a 5.2.1 Let A i, A 2, . . . ,  A k be symmetric and idempotent matrices o f order
k k

n  x n such that A {A  j = O for all i j . Let A  =  £ A and B  =  £  q  A{ where
»=i »=i

Ci > 0 for 1 < i < k. Let V  be a positive definite matrix o f order p x p then 

(A 0  Ip) 23 (A ® Ip) =  B <g> V  i f  and only i f

(Ai ® I p ) £ (Aj ® Ip) =  |  ® ^  (5.2.1)
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Further, M .(A  ® Ip) =  .M(B ® V).

P roof: The proof of the first assertion is easy. We proceed to show M (A ® I p) =  

B  ® V ). Since A B  =  B, we have (A ® Ip) (B ® V) =  (B ® V). Hence 

M (B ®V) C M ( A  ®Ip). Suppose x  =  (A ® IP) v  and let v* =  A, ® V -1^ v.

It is easy to verify that x  =  (B ® V)v* and hence M ( A ®  Ip) C A4(B ® V ). This 

completes the proof of the lemma.

R em ark  5.2.1 The above theorem is also true if V  is an n.n.d. matrix except that 

in this case, we have M ( B ® V ) C M ( A  ® Ip).

In the following theorem we find the class of all n.n.d. solutions to the matrix 

equation (A ® Ip) S  (A ® Ip) =  B ® V  given in the above lemma.

T h eo rem  5.2.1 Let A i, A 2, . . . ,  A*, A , B  and V  be as defined in Lemma 5.2.1. 

Then the class of all n.n.d. solutions for the matrix equation

(A ® Ip) S  (A ® Ip) =  B  ® V  (5.2.2)

is given by

E  =  (B ® V ) +  J C  +  C J  — J C J  (5.2.3)

where J  =  ((I — A) ® Ip) and C is a symmetric matrix o f order np x np suck that

D == J C J  -  J C  (b - ® V " 1) C J  (5.2.4)
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is an n.n.d. matrix. I f  J C J  is a null matrix then 53 given by (5.2.3) is an n.n.d. 

solution for (5.2.2) i f  and only i f  C J  =  O.

P roof: It is easy to see that (5.2.2) is a consistent equation since (A <g) Ip) (B <8> 

V) (A ® Ip) =  B  ® V  by using the fact that A B =  B. The proof now follows easily 

from Theorem 3.2.2.

R e m ark  5.2.2 In the above theorem if V  is an n.n.d. matrix then 53 given by (5.2.3) 

is also an n.n.d. solution for (5.2.2) where now C is a symmetric matrix such that 

J C J -  J C  ( B-  ® V ” ) C J  is n.n.d. and M ( ( A  ®I p ) CJ )  C M ( B  ® V ). Also, if 

J C J  is a null matrix then 53 given by (5.2.3) is an n.n.d. solution for (5.2.2) if and 

only if C J  =  O.

The next theorem is a special case of Theorem 5.2.1 where we assume A  =  A*, 

the centering matrix. It plays an important role in characterizing the class of n.n.d. 

53’s such tha t the distributions of certain test statistics in MANOVA problems remain 

invariant.

T h eo rem  5.2.2 Let A i, A 2, . . . ,  A k, B and V  be as defined in Lemma 5.2.1. Sup- 
k

pose that A; =  A* where A* is the centering matrix. Then the class of all n.n.d.
i=i

solutions for the matrix equation

(A* <g> Ip) 53 (A* ® Ip) =  B ® V  (5.2.5)
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is given by

E  =  (B <S> V ) + - S Q ' + - Q £ '  - -  £ Q £ '  (5.2.6)
n n n

where Q! = [Q'i, . . . ,  Q„] is an arbitrary matrix of order p x np with Q i’s o f order

—  1 n
p x p for i =  1 , . . . ,  n such that Q — — V) Qi is a symmetric matrix,

n

Q .- - Q !  ( E - A i  ® V - 1)  Q (5.2.7)
n  \t= l )

is n.n.d. and £' =  [Ip, . . .  , I P] . I f  Q = O then £  given by (5.2.6) is an n.n.d. solution

for  (5.2.5) if and only if Q =  O.

P roof: We prove the theorem by simply applying the result given in Theorem 5.2.1. 

It is easy to see that equation (5.2.5) is consistent. The matrix J  in Theorem 5.2.1 

reduces to

J  =  — ( e  e ; <g> Ip) 
n

=  - S B '  (5.2.8)
n

where S '  =  [Ip, . . . , Ip] . Let C be a symmetric matrix of order np x np and C S  = Q

then J  C =  —£ Q !  and J C J  =  — B Q B 1 where Q  =  —£' C £. It is not difficult 
n n n

to verify that if Q !  is partitioned as Q' =  [Q[,. . . ,  Q'J with Q i  of order p X p for
«

i =  1 , . . .  , n  then £'  C £  =  E  Also note that Q is a symmetric matrix. Thus
»=i

k j
(5.2.3) reduces to (5.2.6). It is easy to verify B -  =  E  — At- From (5.2.4), we have

t=l
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£  given by (5.2.6) is an n.n.d. solution for (5.2.5) if and only if

D  =  J C J —J C ( B ~  ® V -1) C J

=  - £ Q £ ' ~  \ S Q ' ( B -  0  V "1) 
n n l

= - s  ( q - - q '{b ~ s v - ^ q)  S'
n \ n  )

-  (5.2.9)

is n.n.d. It is cleax from Lemma 2.2.1 that D is n.n.d. if and only if the m atrix (5.2.7) 

is n.n.d., since S' £  — Ip. The last assertion follows easily by noting that J C J  =  O if 

and only Q =  O and C J  =  O if and only if Q = O. In this case, we get from (5.2.6) 

that £  =  B  ® V.

R em ark  5.2.3 If V  is an n.n.d. matrix then £  given by (5.2.6) is also a solution to

(5.2.5). In this case £  is n.n.d. if and only if Q is such that .Ad((A* ® I P) QS' )  C 

M (B ® V) and Q — — Q! (B “ ® V - ) Q is n.n.d. If Q = O then S  given by (5.2.6)
Th

is n.n.d. if and only if Q =  O.

R em ark  5.2.4 It is interesting to note that the order of matrix given in (5.2.7) 

depends only on p  but not on n. Therefore, Theorem 5.2.2 reduces the problem of 

verifying the nonnegative definiteness of S  which is of order np x np to a simpler 

problem of verifying the nonnegative definiteness of the p x p  matrix given in (5.2.7).

R em ark  5.2.5 The class of covariance matrices given in Theorem 2 of Pavur (1987) 

has lot of redundancy in the sense that it also contains matrices which are not n.n.d.
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To see this, we present an example. Let p = 1, q  =  1 for ail i and

d d d

H  =

n n

0 0

n

0 (5.2.10)

0 0 ••• 0

where d >  0. Note that r(H ) =  1 and hence the matrix H  satisfies the rank condition

(r(H ) <  p) of Pavur. Let £  =  1 in Theorem 2 of Pavur then, we get a matrix,

' - d  - d ]
n n

then(I _  e' |  which is not n.n.d. Whereas, if we take Q! =
n  J

the condition (5.2.7) is violated and this choice of Q! is ruled out for generating a 

covariance matrix. Also, for the same H  given above, we can show that the covariance 

matrix V  given by Pavur in Theorem 4(a) is not n.n.d.

We now present a simple corollary of Theorem 5.2.2. The following corollary is 

used to characterize the class of S ’s such that sample covariance matrix S has a 

Wishart distribution.

C oro lla ry  5.2.1 Let A* be the centering matrix o f order n  x n and V  be a positive 

definite matrix of order p X p. The class of all n.n.d. solutions, Cnp(V ), for the 

equation

(A* ® Ip) £  (A* <g> Ip) =  A* ® V (5.2.11)

is given by

£  =  (A* <g> Y )  + - £ Q ' + - Q £ '  - - S Q S '  
v ' n n n

(5.2.12)
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where Q! =  [Qi , . . . ,  Q^] is an arbitrary matrix o f order p x  np with Qi }s o f order
  I  *

p x p for i =  1, . . . ,  n such that Q = — Yf. Qi is a symmetric matrix,
n i^i

Q -  -Q !  (A* ® V 1) Q (5.2.13)
n v 1

is n.n.d. and S' =  [Ip, . . .  , IP] . I fQ  =  O then S  given by (5.2.12) is an n.n.d. solution 

for  (5.2.11) if  and only if Q =  O.

P roof: The result follows from Theorem 5.2.2 if we choose Cj =  1 for i =  1 , . . . ,  k.

R em ark  5.2.6 Note that the class Cnp(Y )  is also the class of all n.n.d. g-inverses 

of the matrix A* ® V -1. Clearly, Cnp(Ip) is the class of all n.n.d. g-inverses of the 

matrix A* ® Ip.

R em ark  5.2.7 Note that for d >  0, the class of all n.n.d. solutions for the equation 

(A* ® Ip) S  (A* ® Ip) =  d (A* ® V) (5.2.14)

is simply given by C^np{Y) =  {dS  : S  6  Cnp(V)} .

R e m ark  5.2.8 If V  is an n.n.d. matrix then the class of all solutions, Cnp(V), for the

equation (5.2.11) is given by (5.2.12) where Q is such tha t the matrix

Q - I q? (a*  ® V ") Q is n.n.d. and M ((A* ® l ^ Q S ' )  C M { A* ® V). Also, 
n '  '

if Q =  O then S  given by (5.2.12) is n.n.d. if and only if Q =  O. Similarly, the class 

Cd,np(V) =  { d E  : H e  Cnp(V)} contains all n.n.d. solutions for the equation (5.2.14) 

when V  is n.n.d.

We now present the main theorems of this chapter.
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5.3 W ishartness and Independence o f Quadratic 
Forms

In this section, we present some results related to the distributions of multivariate 

quadratic forms and also give a necessary and sufficient condition for the mutual 

independence of a pair of quadratic forms when all the observations axe correlated 

with a general covariance matrix 53. At the end of this section, we present another 

version of the Cochran’s theorem. In the following theorem, we generalize Theorem 

1 of Pavur (1987) for the case of singular and noncentral W ishart distribution.

T h eo rem  5.3.1 LetX. =  [xj,X2, . . .  ,x„] be an observation matrix of orderpxn  such 

that Xj ~  E j) for j  =  1 , . . . ,  n. Let X  ~  NPtTl (M, 53) where M  =  [/xl5. . . ,  fin]

is o f order p x n and 53 =  V(uec(X)) is an n.n.d. matrix of order np x np. Let A  be 

n.n.d. of order n x n  then Q(X) =  X A X ' ~  Wp(r(A ), V; Q (M )) if  and only if

(A ®  Ip) 53 (A (8)1,) =  A ® V  (5.3.1)

where V  is n.n.d. of order p X p.

P roof: Let A = K K '  and V  =  U U '  where K  and U  are matrices of full column rank 

and of order n x m  and p x  s, respectively. Let (5.3.1) be given and X  ~  Np<n (M , 53). 

It is clear tha t (5.3.1) is equivalent to

(K ; ® I ,)  53 (K ® Ip) =  I m ® V. (5.3.2)
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Let X  =  Y  +  M  where Y  ~  jVP)T1 (O, S ) then

X  A X ' =  (Y +  M )K K '( Y  +  M )'

=  (Y K  +  M K ) (Y K  +  M K )'. (5.3.3)

It follows from the properties of vec operator and (5.3.2) that

nec(Y K ) =  (K ' ® Ip) uec(Y) ~  iVpm(0 , I ro ® V). (5.3.4)

Hence Y K  +  M K  ~  Np>m (M K ,Im ® V ) . Now, from Remark 4.4.3, it is clear 

that Q(X) ~  Wp(r(A ), V; Q (M )). To prove the converse, let C =  (U 'U )-1 U ' and 

Q(X) rw» Wp(r(A ), V; Q (M )) then as shown in Theorem 4.6.1, we get

ir(C  Q (X )C ') =  t>ec(X)'(A ® C ' C) uec(X) ~  * 2(s r(A);tf)

(5.3.5)

where S =  nec(M )'(A  ® C  C )nec(M ). Since X  ~  JVP)n(M ,S ), we have nec(X) ~  

Npn(vec(M ),53). From Corollary 2s.1 of Searle (1971) and Lemma 4.6.1 for p = 1, 

we get from (5.3.5)

(A ® C 'C )E (A  ® C 'C ) =  A ® C 'C . (5.3.6)

Let P v =  U  (IT U )-1 U ' then from (5.3.6), we get

(A ® P v) E  (A ® P v) =  A  ® V. (5.3.7)

Since Q(X) ~  Wp(r(A), V; Q (M )), from Remark 4.4.6, we have

(Ip -  P v) Q(X) (Ip -  P v) ~  Wp(r(A ), O; ft) (5.3.8)
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where ft =  (IP — P v) Q(M ) (Ip — P v). Now it is clear from (5.3.8) that

P  [(Ip -  P v) Q(X) (Ip -  P v) =  O] =  1 (5.3.9)

and hence

P [ ( I p - P v)X K  =  0 ] =  l. (5.3.10)

Since uec((Ip -  P V)X K )  =  (K ' ® (Ip -  P v)) t»ec(X), from (5.3.10), we get

P  [(K; ® (Ip -  P v)) vec(X) = 0] =  1. (5.3.11)

Hence, we have

(K ' ® (Ip -  P v)) E  (K ® (Ip -  P v)) =  O (5.3.12)

which is equivalent to

(A ® (Ip -  P v)) S  (A ® (Ip -  P v)) =  O. (5.3.13)

It follows from the following lemma that (5.3.7) and (5.3.13) are equivalent to

(A ® Ip) E  (A ® Ip) =  A  ® V. This completes the proof of the theorem.

L em m a 5.3.1 Let P v be as defined in the above theorem then

(A ® Ip) E  (A ® Ip) =  A ® V  (5.3.14)

i f  and only if

(A ® P v) S  (A ® P v) =  A ® V  (5.3.15)
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and

(A 0  (Ip -  P v)) S  (A <g> (Ip -  P v)) =  O. (5.3.16)

P roof: Since V  P v = Pv V  =  Y, it is cleax that (5.3.14) implies (5.3.15) and (5.3.16).

To show the converse, let (5.3.15) and (5.3.16) be given, then

(A 0  Ip) E (A ® Ip) =  (A 0  (Ip -  Pv +  Pv)) S  (A ® (Ip -  P v +  Pv))- 

(5.3.17)

Since E is n.n.d., (5.3.16) implies E (A <g) (Ip — Pv)) =  O = (A ® (Ip — Pv)) S . Using 

properties of the Kronecker product, from (5.3.15) and (5.3.17), we get (5.3.14).

R em ark  5.3.1 In the above theorem Q(X) ~  dW p(r (A ),V ;fi) if and only if 

(A 0  Ip) E  (A 0  Ip) =  d (A 0  V) where d > 0 and =  ^Q (M ).

In the following theorem, we give a  necessary and sufficient condition for a pair 

of multivariate quadratic forms to be independently distributed.

T h eo rem  5.3.2 Let X  =  [xi,X2, . . .  ,x n] be an observation matrix o f order p x n  such 

that Xj ~  E j) for j  =  1 , . . . ,  n. Let X  ~  N p>n (M , E ) where M  =  [^ l5 . . . ,

is o f order p x n  and E  =  Y(uec(X)) is an n.n.d. matrix o f order np x  np. Let 

Qx(X) =  X A X ' and Q 2(X) =  X B X ' then Q i(X ) and Q 2(X) are independently 

distributed i f  and only i f

(A 0  Ip) E  (B ® Ip) =  O (5.3.18)

where A and B  are n.n.d. matrices o f order n x n .
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Proof: Since A  and B  are n.n.d. matrices, we have A =  K K ' and B =  L I /  where 

K  and L are matrices of full column rank and of order n X m  and n  x s, respectively. 

Let (5.3.18) be given. It can be shown that (5.3.18) is equivalent to

(K ' <g> Ip) E  (L ® Ip) =  O. (5.3.19)

Let X i =  X K  and X 2 =  X L . Using the properties of vecoperator, we get uee(Xi) =  

(K; ® Ip) uec(X) and vec(X2) =  (L' <g> Ip) vec(X). Using the condition (5.3.19), we 

have

cou(uec(X1),uec(X2)) =  (K '®  Ip) S  (L ® Ip) (5.3.20)

=  O (5.3.21)

since vec(X ) ~  Npn(vec(M ),S ). Hence X i and X 2 are independently distributed.

By using this fact, X 2 X'x is independent of X 2 X'2. Hence Q i(X ) and Q2(X) are

independently distributed.

To show the converse, let Q i(X ) and Q 2(X) be independently distributed which 

implies ir(Q i(X )) and tr (Q 2(X)) are also independently distributed. Again using 

the properties of vec operator, we get

tr(Q i(X )) =  uec(Xy (A ® Ip) uec(X) (5.3.22)

and

tr(Q 2(X)) =  uec(X)' (B ® Ip) uec(X). (5.3.23)
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Since uec(X) ~  Npn(uec(M ),£); A ® Ip and B  ® Ip are n.n.d. matrices, on using

Theorem 4s of Searle (1971) and Lemma 4.6.2 for p =  1, we get

(A ® Ip) £  (B ® Ip) =  O. (5.3.24)

This completes the proof of the theorem.

We now state a simple and useful corollary to the above theorem.

C oro llary  5.3.1 Let X  ~  Np>ri (M , £ )  where X , M  and £  are as defined in The­

orem 5.3.2. Then X A X ' and X L ' are independently distributed if and only if 

(A ® Ip) £  (L' ® Ip) =  O where A  is an n.n.d. matrix of order n x  n and L is 

of order p x n .

In the following theorem we present another version of the Cochran’s theorem for 

an arbitrary covariance matrix £ .

T heo rem  5.3.3 Let X  ~  NPtn (M , £ )  where X , M  and £  are as defined in Theorem

5.3.2. Let At (i =  1 , . . . ,  k) and A  be symmetric matrices o f order n  x n such that
k

A =  Aj. Let V  be a positive definite matrix of order p x  p. Consider the following
»=i

conditions:

(ai) X  Aj X ' ~  Wp(r(Aj), V ; fi;) where 0* =  M  A» M ' for i =  1, . . . ,  k

(02) X  A{ X ' and X  Aj  X ' are mutually independent for i j  = l , . . . , k

(a3) X  A X ' ~  Wp(r(A), V ; £1) where ft =  M  A M '
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(&i) (A; ® Ip) S  (A t- ® Ip) =  Aj ® V  fo r  i = 1, . . .  , k  

0h ) (Aj ® Ip) S  (Aj ® Ip) =  O for i ±  j  = 1, . . . ,  k

(6 3) (A ® Ip) S  (A ® Ip) =  A ® V

( 6 4 )  $ > ( A j)  =  r(A ).
t= l

Then

(1) any two of the three conditions [af), ( a 2 ) ,  ( a 3 )  or

(2) any two o f the three conditions (&i), (&2), (63) or

(3) any two conditions (aj) and (bj) fo r i ^  j  = 1,2,3 or

(4) ( 6 3 )  and ( 6 4 )  or

( 5 )  ( a 3 )  and ( 6 4 )

are necessary and sufficient for all the remaining conditions: ( a j )  -  ( 6 4 ) .

P roof: The proof is similar to the proof of Theorem 4.6.3.

5.4 S tatistical A pplications

Let X  ~  Np<n (M , S ) where X , M  and S  axe as defined in Theorem 5.3.2. The 

statistical applications in this section axe analogous to the applications contained in 

Section 4.7. Note that, E  is an arbitrary covariance matrix and not necessarily of the 

form W ® V . In Theorem 5.4.1, we characterize the class of all covariance matrices E ,
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see (5.4.3), such that the sample mean vector x  and the sample covariance m atrix S are 

independently distributed and the distribution of S remains invariant. It is important 

to note, see Remark 5.4.3, that the distribution of one sample Hotelling’s T 2 statistic 

defined in Theorem 4.7.2 does not remain invariant with E  given in (5.4.3). The 

covariance structures for which the distribution of one sample Hotelling’s T 2 statistic 

remains invariant except for a scale factor are of the type S  =  W  ® V  where W  is 

given in Theorem 4.7.2. However, for all the other multivariate test statistics we do 

obtain invariance properties similar to the results in Section 4.7.

In the first example, we characterize the class of S ’s such tha t for a given n.n.d. 

m atrix A  the distribution of X  A X ' remains invariant.

E x am p le  5.4.1 Let X  ~  Np>n (M , S ) where X, M  and S  are as defined in Theorem

5.3.2. Let A  and V  be n.n.d. matrices of order n X n and p x  p, respectively. Then 

X  A X ' ~  Wp(r(A ), V; Q (M )) if and only if

E  =  ( A + ® V )  +  J C  +  C J - J C J  (5.4.1)

where J  =  ((I — A + A) ® Ip) and C is a symmetric matrix satisfying the following 

two conditions:

(a) A f ( ( A ® I p ) C J )  C A f ( A ® V )

(b) J  C J  — J  C (A ® V ") C J  is an n.n.d. matrix.

Also, if J  C J  is a null matrix then S  given by (5.4.1) is n.n.d. if and only if C J  =  O.
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From Theorem 5.3.1, we have X A X ' ~  Wp(r(A), V; Q (M )) if and only if

(A (g) Ip) E  (A (g) Ip) =  A  ® V  (5.4.2)

which is equivalent to characterizing the class of all n.n.d. E ’s satisfying the equation

(5.4.2) and such a class can be constructed by using Theorem 3.2.2. Also, if V  is 

a positive definite m atrix then condition (a) given above is trivially satisfied and in 

tha t case, we have V -1 instead of V -  in condition (b).

Similarly, using Remark 5.3.1 and Theorem 3.2.2, we can also chaxacterize the 

class of all E ’s such that X A X '  ~  d Wp(r(A ), Y; 0 ). We now characterize the class 

of all E ’s such th a t the sample covariance matrix S has a Wishart distribution.

E x am p le  5.4.2 Let X  ~  Np>n (M , E ) where X , M  and E  are as defined in Theorem

5.3.2. Let V  be an n.n.d. matrix of order p x p. Then for d > 0, we have (n — 1) S ~

dW p(n — 1, V; fi) if and only if E  € Cd,„p(V) where the class Cd,np(V) is defined in

Remark 5.2.8, S is defined in (4.3.3), fl =  A* M ' and A* is the centering matrix.
d

From Remark 5.3.1, we get (n — 1)S ~  d W p(n — 1,V ; O) if and only if 

(A* (g) Ip) E  (A* ® Ip) =  d(A* ® V ) which is true if and only if E  € Cd,np(V). 

Similarly, if V  is a  positive definite matrix then (n — 1) S ~  d Wp(n — 1, V; fl) if and 

only if E  € Cd,np(V) where Cd>np(V )  is defined in Remark 5.2.7.

We now chaxacterize the class of all covariance matrices E  such tha t the sample 

mean vector and covariance matrix axe independently distributed.
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T h eo rem  5.4.1 Let X  ~  NPtn (M, S ) where X , M  and S  are as defined in Theorem

5.3.2. Let V  be an n.n.d. matrix o f order p X p. Then (n — 1) S ~  d W p(n — 1, V; fi) 

where Q, is as given in Example 5.4.2 and x  is independent of S i f  and only if

S  =  d ^(1 ® V) -  (e e ' 0  ■V  ~ ~ )) (5-4-3)

where ’3/ is an n.n.d. matrix of order p x p and d > 0.

P ro o f: From Example 5.4.2 for d >  0, we have (n — 1) S ^  dWp(n — 1, V; f2) if and 

only if E G Cd,np("V). Also, from Corollary 5.3.1, x  is independent of S if and only if

(A*®Ip) S  ( ^ ® I P)  = 0 .  (5.4.4)

It is easy to verify tha t E  G Cdinp(V) and satisfies (5.4.4) if and only if

(A* ® Ip) Q = 0  (5.4.5)

which holds if and only if Q = where Q and £  are as defined in Corollary 5.2.1 

and $  is a symmetric matrix of order p x p. For E G C&,nP(V) to be n.n.d., Q =  £ 

must satisfy the following conditions:

(a) M (A *  ® Ip)QS') C A4(A* ® V)

(b) Q — — Q! (A* ® V -) Q is an n.n.d. matrix.

It is clear that Q = £'& trivially satisfies condition (a) since Q = £ \?  =  (e ® $ ). 

Also (b) holds for Q — £ $  if and only if $  is an n.n.d. matrix. Thus (n — 1) S ~
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dWp{n — 1, V; fi) and x  is independent of S if and only if

S  =  d ((A* ® +  (5.4.6)

=  d ( ( (I  -  ^-e e') (8) V) +  ^  £  W £ ')  (5.4.7)

=  d ^(1 <g> V) -  (e e ' ® ^ ~ ^ ))  (5.4.8)

since S  ^  S '  =  (e e') (g> This completes the proof of the theorem.

R em ark  5.4.1 In the above theorem, if $  =  cY  where c >  0 then

S  =  d [ I  — —— —e e ' ) (8) V  is the class of all covariance matrices we obtained in 
\  n  J

Theorem 4.7.1.

R em a rk  5.4.2 At this stage we point out another error in the covariance structure 

given by Pavur (1987) in Theorem 4(b). Let W  =  —S  in Theorem 4(b) of Pavur.

For this choice of W , we get a matrix V  which is not an n.n.d. matrix.

R em ark  5.4.3 If X  ~  JVPin (/ie ', S ) where S  is as given in (5.4.3) then it is easy to

d
verify tha t x  ~  N J u ,  — VP). It is interesting to note tha t the covariance matrix of x

n

does not depend on V . Due to this reason, the distribution of one sample Hotelling’s 

T 2 statistic, defined in Theorem 4.7.2, does not remain invariant with S  given in

(5.4.3). Hence, the only covariance structure for which the distribution of one sample 

Hotelling’s T 2 statistic remains invariant except for a scale factor are of the type 

E  =  W  <8> V  where W  is given in Theorem 4.7.2. Now, we examine the invariance 

property of the two sample Hotelling’s T 2 statistic defined in Theorem 4.7.3.
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T h eo rem  5.4.2 Let X* =  [x*13X/fc2, . . . ,x j :nJ  be an observation matrix o f order p x 

nk such that X* ~  Np>nk {jike'nk,Tlkj f o r k  =  1, 2 . Let S i  and S 2 be n.n.d. matrices, 

V  be a positive definite matrix of order p x p ,  X i and X 2 be mutually independent and 

n\ +  n2 — 2 >  p. Let Xi, x 2 be the mean vectors and S i; S2 be the sample covariance 

matrices o /X i and X 2; respectively. Also, let Sp =  [(rax — 1) Sx +  (n2 — 1) S2]/(n i +  

n2 — 2) and 8 =  /ft — \l2. Then

ni n 2 ((xi -  x 2) -  8)' S~1 ((xx -  x 2) -  8) (nx +  n2 -  p -  1)
ni +  n2 ni + n2 — 2 p

~  F (p ,n! + n 2 -  p -  1)

(5.4.9)

if

S i =  d ((Ini <g> V) +  (eni e ^  ® $ ) )  (5.4.10)

and

S 2 =  d ((ln2 ® V) -  (e„2 e^2 ® * ))  (5.4.11)

where $  is a symmetric matrix o f order p x p  such that

- 1 /n i  <  \p iV ~ 1 $ )  <  Ai(V-1 $ )  <  l / n 2

with Ai(V-1 4?) and AP(V -1 3?) denoting the maximum and the minimum eigenvalues 

o /V -1 respectively.
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P roo f: If d > 0, then it follows from Theorem 5.4.1 that (re* — 1) S* ~  d Wp{nk — 1, V ) 

and x* is independent of S* if and only if

S i = i  ((I*  ® V) -  ( i ,  <4, ® (5-4.12)

where is an n.n.d. m atrix for k — 1,2. Prom Theorem 4.4.3, we have

n i+ 7 !2 ~ -2 Sp ~  Wp(rex +  re2 -  2, V). (5.4.13)
a

It can be verified tixat

x 1 - x 2 - ^ ~ l V p f o , d ( ^  +  % N) (5.4.14)
\  rei re2 /

where 6 =  — f i2. Thus, with and $ 2 positive definite, for (5.4.9) to hold, we

must have

— + — = (i +  — ) V  (5.4.15)
re i re2 re i re2

or equivalently,

(8ay) (5.4.16)
rex re2

where $  is a symmetric matrix of order p x p .  It follows from the following lemma

that Ex and S 2 are positive definite matrices if and only if —1/rex <  AP(V -1 $ )  <

Ax(V_1 $ )  <  l/re2 with Ax(V_1 3?) and AP(V -1 $ )  denoting the maximum and the 

minimum eigenvalues of V -1 $ , respectively. From (5.4.16) and (5.4.12), we get

(5.4.10) and (5.4.11). And in this case (5.4.9) also holds.
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L em m a 5.4.1 Let (5.4.16) be given, then and \&2 are positive definite matrices if 

and only if

-  1 /m  < Aptv- 1 $ )  <  A ^V " 1 S )  <  1 fn 2 (5.4.17)

with Ai(V_1 3?) and AP(V -1 4?) denoting the maximum and the minimum eigenvalues 

o /V - 14>, respectively.

P roof: From (5.4.16), we have =  V  +  m $  and ^2  =  V  — m  From Theorem 

2.2.1, $2  is positive definite matrix if and only if Ai(V-1 4?) < l / n 2 and $1  is positive 

definite m atrix if and only if —1/m  < ^p(V-1 4>). Hence \I/i and $2  are positive 

definite matrices if and only if (5.4.17) holds.

R em ark  5.4.4 In the above theorem, let $  =  fi V  where /3 is a constant such that 

—1/m  <  fi <  1/m - Then the class of all covariance matrices we obtain in this case is 

the same as that in Theorem 4.7.3.

R em ark  5.4.5 Basu et al. (1974) called the covariance structures (5.4.10) and

(5.4.11) as equicorrelated covariance structures and pointed out that under the equicor­

related covariance structure the distributions of commonly used statistics are com­

plicated and do not correspond to the well known distributions for which tables are 

given. We concur with their statement regarding the distribution of one sample 

Hotelling’s T 2 statistic. However, we have shown that, under the equicorrelated co- 

variance structure the distribution of the two sample Hotelling’s T 2 statistic remains 

invariant.
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We now examine the invariance properties of certain test statistics occurring in 

MANOVA problems.

T h eo rem  5.4.3 Let A i, A 2, . . . ,  Afe be symmetric and idempotent matrices of order
k k

n x  n such that A i A j =  O for all i ^  j . Let A  =  £ )  A; and B =  CiA; where
t=i t=i

q  >  0 for 1 < i <  k. Let X  ~  Np<n (M , S ) where X , M  and S  are as defined in 

Theorem 5.3.2. Let V  be a positive definite matrix o f order p X p. Let Qi(X) =  

X  Ai X ' for  1 < i < k. Then the multivariate quadratic forms Qi(X) ’s are pairwise 

independent and distributed as CiWp ^r(A;), V; — Q,-(M)^ for 1 < i < k i f  and only 

if (A  ® IP)E  (A ® Ip) =  B (g> V .

P roof: Prom Remark 5.3.1 and Theorem 5.3.2, we have Q i(X )’s axe pairwise in­

dependent and distributed as c,- Wp ^r(Aj), V; — Q;(M )^ for 1 <  i <  k  if and only 

if

(Af ® Ip)S(A ,- ® \ ) =  |  V̂  “ * =  I  (5.4.18)

The theorem now follows from Lemma 5.2.1.

R em ark  5.4.6 In the above theorem, for a given matrix A, the class of all n.n.d. 

S ’s satisfying (5.4.18) is given by Theorem 5.2.1.

As we have mentioned in Chapter 4 that in all MANOVA problems the total 

corrected sum of squares and cross products matrix is decomposed into two or more 

orthogonal sum of squares and cross products matrices. In this case, the matrix A
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defined in the above theorem equals the centering matrix A*. Hence we obtain the 

following special case of the above theorem.

T h eo rem  5.4.4 Let A i, A 2, . . . ,  A k be symmetric and idempotent matrices o f order
k k

n x n  such that A; A j  =  O for all i ^  j .  Let A; =  A* and B =  q  A; where A*
t=i t=i

is the centering matrix and Cj >  0 for 1 <  i <  k. Let X  ~  Np>n (M , S ) where X , M  

and S  are as defined in Theorem 5.3.2. Let V  be a positive definite matrix of order 

p X p. Let Q i(X) =  X A jX ' for  1 <  i <  k. Then the multivariate quadratic forms 

Q;(X) ’s are pairwise independent and distributed as c,- Wv ^r(Aj), V ; — Qt-(M)^ for  

1 < i < k i f  and only if  S  is of the form  (5.2.6) where Q is an arbitrary matrix of 

order np x p satisfying (5.2.7).

P roof: It follows from the Theorem 5.4.3 that the multivariate quadratic forms 

Q*(X)’s axe pairwise independent and distributed as CiWp ^r(A i),V ; — Qj(M )^ for 

1 <  i < k if and only if (A* (8) IP)S  (A* <g) I p) =  B ® V. The desired result now 

follows from Theorem 5.2.2.

In the following theorem we characterize the class of all covariance matrices S  

such tha t the distributions of the error sum of squares and cross products matrix 

E  and the treatm ent sum of squares and cross products matrix H  remain invariant 

except for a  constant factor. For the following theorem we use the same notations as 

introduced after Theorem 4.7.5.
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T h eo rem  5.4.5 Consider the one way MANOVA model

x fcj =  Vk + Skj, k = l , . . . , g  and j  =  l , . . . , n fc. (5.4.19)

Let U =  [ s n , . . . ,  £ini, . . . ,  effi , . . . ,  be a matrix of random errors of order p x n
9

where n =  ^  n^. Let U ~  NPtTl( 0 , S )  where E  is an n.n.d. matrix. Let V  be a
k=l

positive definite matrix of order p x p. I f  the hypothesis of equal population means, 

fik = (i for k  =  1, . . .  ,g, is true then

(1) n ~ d W p( g- l , V)

(2) E  ~ d W p{ n - g , V )

(3) H  is independent o /E  

i f  and only i f  E  € Cd,np(V).

P roof: Let X  =  [ x u , . . .  ,Xini, .. . . .  ,x 3„9] and fik =  fi for k =  1, . . .  ,g then

X  ~  NPin (pt e', E ) . It is clear from (4.7.46) and (4.7.48) that I  — — e e ' =  (P  —

— ee ')  +  (I — P). From Theorem 5.4.4 with Ax =  P  — — e e ' and A 2 =  I  — P , we 
n n

have (1), (2) and (3) hold if and only if E  £ Cd,np(V).

Usually, samples from different populations are independent but correlated among
9

themselves, that is, E  =  ®  Efc where E* denotes the covariance matrix of the &th
k=1

population. In this case, if g > 3 then (1), (2) and (3) of Theorem 5.4.5 hold if and 

only if E  =  I np. We skip the proof since it is similar to the proof of Theorem 4.7.7 

and Corollary 4.7.2.
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5.5 Sum m ary and Conclusions

The most widely used statistical methods axe concerned with drawing inference for 

the parameters of the normal populations. In these problems the distributions of 

the test statistics axe derived under the assumption that the observations axe inde­

pendent and identically distributed. While the independence assumption may be 

approximately valid, due to the choice of the experimental designs, exploring the 

problem of dependence between the observations is of practical as well as aesthetic 

interest. In this dissertation, we have characterized the class of covariance matrices 

such tha t the distributions of the common test statistics remain invariant, tha t is, the 

distributions remain the same except for a scale factor. We have shown that in most 

cases the covariance structure need necessarily be equicorrelated for the distributions 

of the test statistics to remain invariant. We have achieved this by first obtaining an 

elegant characterization of the class of all nonnegative definite solutions to a  matrix 

equation that occurs in statistics.
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