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ABSTRACT

ZERO-INFLATED MODELS TO IDENTIFY TRANSCRIPTION 
FACTOR BINDING SITES IN CHIP-SEQ EXPERIMENTS

Sameera Dhananjaya Viswakula 
Old Dominion University, 2015 
Director: Dr. Norou Diawara

It is essential to determine the protein-DNA binding sites to understand many bi­
ological processes. A transcription factor is a particular type of protein that binds to 
DNA and controls gene regulation in living organisms. Chromatin immunoprecipita- 
tion followed by highthroughput sequencing (ChlP-seq) is considered the gold stan­
dard in locating these binding sites and programs use to identify DNA-transcription 
factor binding sites are known as peak-callers. ChlP-seq data are known to exhibit 
considerable background noise and other biases. In this study, we propose a nega­

tive binomial model (NB), a zero-inflated Poisson model (ZIP) and a zero-inflated 
negative binomial model (ZINB) for peak-calling. Using real ChlP-seq datasets, we 

show that ZINB model is the best model for ChlP-seq data. Then we incorporate 
control data, GC count information, and mappability information into the ZINB 
regression model as covariates using two link functions. We implemented this ap­
proach in C++, and our peak-caller chooses the optimal parameter combination for 
a given dataset. Performace of our approach is compared with two frequently used 
peak-callers: QuEST and MACS.
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CHAPTER 1

INTRODUCTION

Deoxyribonucleic acid (DNA) and protein are two of the most important 
biornolecules in any living organism. DNA carries genetic information, and pro­

teins execute and regulate the life processes. As a result, protein-DNA interactions 
play a crucial role in central biological processes such as transcription of genes into 
ribonucleic acid (RNA) and repair of damaged DNA. It is essential to determine 
the way proteins interact with DNA molecules to better understand biological pro­
cesses. Specifically, proteins can promote the transcription of genes near the binding 
site by binding to certain DNA segments [1]. These kinds of proteins are referred 

to as transcription factors (TFs). Transcription factors control the transcription of 
genetic information in living cells from DNA to mRNA, and any malformations in 

this process can cause serious diseases such as cancer [2]. For this reason, it is of 
vital importance to identify the positions and intensities of transcription factor bind­

ing sites (TFBS) across the genome. Chromatin immunoprecipitation followed by 
massively parallel sequencing (ChlP-seq) is the most successful approach to identify 
such protein-DNA interactions in vivo on a genome-wide scale [3]. In this study, 
we statistically model ChlP-seq data and determine the actual transcription factor 
binding sites and their intensities using a novel computer algorithm.

Protein-DNA interactions are studied both computationally and in wet labs. Tra­
ditional methods are very slow and laborious. While wet lab experiments provide 
data and problems for computational methods to solve, computational methods test 
hypotheses and guide additional lab experiments. As the sequencing cost has con­
tinued to drop, several new high-throughput methods have been introduced. These 
Next Generation Sequencing (NGS) techniques can provide comprehensive binding 
information much more rapidly and generate several gigabytes (GBs) of data from a 
single experiment.
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1.1 EVOLUTION OF NUCLEIC ACID SEQUENCING

The method of determining the order of nucleotides in a given DNA or RNA 

molecule is called nucleic acid sequencing [4]. After the completion of the Human 

Genome Project in 2003, the use of nucleic acid sequencing was dramatically in­
creased. The Human Genome Project was an international achievement to sequence 

and map all of the chromosomes of human beings, and it took 13 years and cost 3 bil­

lion dollars. It was accomplished with first-generation sequencing, known as "Sanger 

sequencing” [5]. Sanger sequencing was developed by Edward Sanger in 1975. For 
the subsequent two and a half decades, it was considered the gold standard for nucleic 
acid sequencing.

However, due to the limited throughput, high cost, and the huge amount of 
time involved with Sanger-sequencing, demand for cheaper and faster methods has 
increased substantially. This demand lias driven the development of second genera­

tion or Next Generation Sequencing (NGS) methods. NGS platforms perform mas­
sively parallel sequencing which enables researchers to sequence the entire genome 

in less than one day [4], Over the past few years, several NGS platforms have been 
developed, and these platforms provide low-cost and high-throughput sequencing. 

Amongst these platforms, four commonly used platforms are Illuinina MiSeq/ HiSeq, 
Roche 454, Ion Torrent, and SOLiD Technologies. For more detailed discussion of 
each technique, one can refer to the review article by Mardis [6].

The Illumina Genome Analyzer is widely used, and it generates mainly three 
types of data: ChlP-seq, DNA-seq, and RNA-seq [7]. DNA-seq is used to measure 
the Single Nucleotide Polymorphism (SNPs) or DNA copy number variation and 

RNA-seq is used to examine gene expression. ChlP-seq is used to study protein 
binding patterns. In this study, our goal is to investigate DNA-protein binding using 
ChlP-seq data.

1.2 CHIP-SEQ DATA ANALYSIS: W ORKFLOW /PROTOCOL

Methods for mapping TF binding occupancy across the genome by chromatin 

immunoprecipitation (ChIP) were developed more than a decade ago [8]. In CliIP 
assays, a transcription factor or other chromatin protein of interest is enriched by 
immunoprecipitation from cross-linked cells along with its associated DNA. In earlier
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days, genomic DNA sites enriched in this manner were identified by DNA hybridiza­
tion to a microarray. This technique is known as Chip-chip or ChlP-on-chip [9]. 

More recently, chromatin immunoprecipitation followed by high-throughput sequenc­
ing (ChlP-seq) was introduced to determine the location of DNA binding sites 011 

the genome for a particular protein of interest [10-13]. ChlP-seq has become the 

most widely used procedure for genome-wide assays of protein-DNA interaction [14]. 

ChlP-seq reports the count of reads that map to a particular location of interest. 
It uses only short reads to align to the genome and, as a result, it requires millions 
of them to provide meaningful data [15]. Due to this requirement, most platforms 
generate an enormous amount of data within a short period of time, and the cost in­
volved with the techniques are drastically decreasing. For example, Illumina’s Solexa 
1G NGS produces up to 30 million 21-35 base-pairs (bp) reads per run.

A typical ChlP-seq experimental protocol is as follows. Cells or tissues are treated 
with a chemical agent, usually formaldehyde, to cross-link proteins covalently to 
DNA. Formaldehyde is often used because it is heat-reversible. Cross linking is 
followed by cell disruption and sonication or, in some cases, enzymatic digestion, to 

shear the chromatin to millions of 100-300 bp fragments [9]. Then the TF with its 
bound DNA is enriched using a specific antibody by purification (Figure 1).

After immuno-enrichment, the DNA fragments are separated from the protein 
by reverse cross-linking. Then these fragments are amplified by polymerase chain 
reaction (PCR). These DNA fragments are sequenced in a series of 20-80 bp on one 
end (in single-end tag sequencing/ SET data) or on both ends (in paired-end tag 
sequencing/ PET data) of the fragment, producing millions of short read sequences. 
These short sequences are usually known as “tags.” ChlP-seq was one of the first 
methods to make use of the power of massively parallel or NGS. using significantly 
advance real-time PCR and array-based methods. The use of NGS provides relatively 
high resolution, low noise, and high genomic coverage compared with ChlP-chip 
assays [16].

Millions of reads generated in each ChIP experiment need to be analyzed, and 
this analysis begins with alignment to a reference genome. This alignment is done 
computationally using specially designed algorithms. Bowtie [17], ELANDv2 [18], 
and MAQ [19] have been the most widely used mapping software for NGS data. 
Each has its unique set of capabilities, parameters, and options, but these aligners are 

similar in many ways [20]. The objective of this alignment step is to determine all the
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Genomic DNA

<1 >

Cross - linking and shearing

^  Immunoprecipitation

Figure 1 C hlP-seq protocol (a): (1) Transcription factor (TF) is cross-linked 
to its binding site in genomic DNA. (2) DNA is sheared into small fragments by 
ultrasound sonication. (3) A protein specific antibody (shown as symbol Y) is used 
to separate only the cross-linked fragments.

locations in a reference genome that show perfect or near perfect matches to a given 
read. This process has to be done for each short read in the dataset [21]. Usually, 
mapping is done while allowing for a small number (1-3) of sequence mismatches. 
Different alignment algorithms trade speed for quality of the final alignment, and 
usually they report the quality of each map in their output.

ChlP-seq analysis begins with mapping of sequence reads to a reference genome. 

Then peak-calling algorithms are used to find peaks. Differential binding or motif 
analyses are conducted during the last stages of the ChlP-seq workflows [15]. In this 
study, our focus is on the peak-calling process.
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Figure 2 C hlP-seq protocol (b): (4) Fragments are purified by reverse cross- 
linking the TFs and amplified by polymerase chain reaction (PCR). (5) Then the 
the first few bases of fragment ends are sequenced (usually 20-80 bp). (6) These 
short sequences, “tags,” are mapped back to a reference genome.

1.3 PEAK-CALLERS

The raw ChlP-seq data are not readily interpretable. ChlP-seq data are a set 
of alignments of reads across the whole genome. The potential binding sites are 
identified on the basis of the significant tag accumulation at particular genomic loci. 
High concentration of tags at a particular location forms a peak as shown in Figure 3. 
The programs dedicated to identifying potential DNA-protein binding sites identify 
these tag accumulations one way or the other. Since they identify “peaks,” these 
programs are known as peak-callers.
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Positive
strand

TF

Negative
strand

Distribution 
of tags

Aligned short 
reads

Reference genome

Figure 3 Tag accumulation and peak-calling. Arrow represents the directional­
ity of the binding. The sequenced fragments are mapped back to a reference genome. 
In a given location, there can be one or more mapped tags. These tag accumulations 
are the basis of peak-calling.

1.4 CHALLENGES IN CHIP-SEQ DATA A N D  PO TENTIAL  
IM PROVEM ENTS OF EXISTING PEAK-CALLERS

1.4.1 OM ITTING STR A N D  INFORM ATION

In 1953, James Watson and Francis Crick proposed a structure for the DNA 
molecule. Their structure suggested the underlying mechanism of DNA replication, 
and they proposed that DNA is composed of two side-by-side chains of DNA running 
anti-parallel to each other [22]. These chains are known as “strands” and are twisted 
into the shape of a double helix. These two strands are fastened by weak associations 
between bases of each strand, forming a structure like a spiral staircase. These 
associations are weak hydrogen bonds, and they are base specific. That means A
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(adenine) can only form hydrogen bonds with T  (thymine) and C  (cytosine) binds 
only with G (guanine). In other words, if you know the sequence of bases in one 
strand, you know the respective sequence of bases on the other strand.

The backbone of each strand is a repeating phosphate-sugar polymer. Based 

on the numbering convention of the carbons of sugar groups, each sugar-phosphate 

backbone is said to have a 5’-to-3’ polarity [23]. Since the DNA is double-stranded 
and two backbones are in opposite directions, when one strand is oriented 5’ —> 

3’, the other strand is 3’ -> 5’. The DNA strand with the 5’ -» 3’ is referred to 
as the left (forward/positive/Watson) strand and the other one is called the right 
(backward/negative/Crick) strand.

If a transcription factor has a sharply focused binding site, in a successful ChlP- 
seq experiment, one should be able to observe two peaks, one on each strand [24]. 
The reason for these two peaks (shown in Figure 4 using a typical region of STAT1 
ChlP-seq dataset) is that a fragment is always sequenced from its ends toward its 
midpoint. Therefore, the actual transcription factor binding site is located in between 
the peak on the left strand (as shown by the left peak in Figure 3) and the peak on 

the right strand (as shown by the right peak in Figure 3) [24]. For this reason, a 
challenge of peak calling in ChlP-Seq data is how to combine the tag counts from the 
two strands to increase the power of detecting real protein-DNA interaction sites [25].
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Figure 4 Two peak structure of a successful C hlP-seq experim ent. If the
experiment is successful, one peak on each strand is observed.

Several peak calling programs have been published since 2008, including MACS 
[26], SPP [27], and QuEST [28]. MACS [26] estimates a global peak shift size from 
regions with significant fold changes. After estimating the global peak shift size, 
MACS then shifts and combines all forward and reverse strand tags toward the 
center by the estimated shift size and calls peaks on the combined tags using a 
Poisson model through sliding windows. SPP [27] first selects a global peak shift size 
by maximizing a linear Pearson correlation of the tag counts between forward and 
reverse strands. SPP then chooses a window size based on the estimated peak shift 
size, and it utilizes a sliding window and calls peaks using a score based method. 
QuEST [28] also determines a global peak shift size. It calls peaks based on a 
combined score profile created by incorporating the estimated peak shift.
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All of the peak-callers mentioned above, estimate a global peak shift size for all 
potential binding regions. They simply merge the forward and the reverse strand 

tags and then call the peaks. Therefore, they may lose spatial resolution. Also, 

when the two strands are combined, some valuable information that can be used to 
distinguish real binding locations from spurious peaks is also lost.

1.4.2 M ODELING OBSERVED TAG COUNTS

As explained in section 1.2, ChlP-seq experiments generate millions of mapped 

tags. A typical peak-caller would retain only uniquely mapped tags and summarize 
total tag counts in each small nonoverlapping interval of the genome (referred to as 
a bin or a window). Poisson distribution is a simple choice for modeling count data, 

and it assumes the equality of mean and variance. If the variability of tag counts far 
exceeds the mean (over-dispersion), then a Poisson model is not the best fit for the 
data. The negative binomial distribution can be treated as an extension of Poisson 
distribution to handle overdispersion. Also, ChlP-seq data are usually zero-inflated. 
Therefore, there is still room for improvement.

1.4.3 BACK G RO UND NOISE

In the ChlP-seq protocol, most of the unbound DNA fragments are washed out 
in the imrnuno-precipitation procedure. However, considerable “noil-useful” frag­
ments remain in the library due to the random protein-DNA or antibody samples 
that are not position-specific. Reads sequenced from these fragments are spread 
throughout the genome and are considered “background” noise. Therefore, the reads 
in a ChIP sample can be regarded as a mixture of enrichment “signal” reads and 
“background” noise reads [29]. Therefore, the peak-calling problem is a process of 
separating noise from the background. In early ChlP-seq applications without a con­
trol, the distribution of the noise was assumed to be uniform [11], However, recent 
studies demonstrated that the uniform model is too unrealistic due to the various 
factors such as sequencing and mapping biases, chromatin structure and genome copy 
number variations [26,30]. For this reason, the adjustment of these intrinsic biases 
requires a negative control, which could be generated using non-specific antibody or 
input DNA [29].

For example, when shearing the DNA, open chromatin regions tend to be frag­
mented more efficiently than the closed areas. This phenomenon can cause an uneven
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distribution of sequence tags across the genome. These open chromatin regions may 
be associated with higher background signals [31]. Also, repetitive sequences might 
seem to be enriched because of inaccuracies in the number of copies of the repeats in 

the assembled genome. Therefore, it is important to compare a peak in the ChlP-seq 
profile with the corresponding region in a negative control sample [24].

There are three types of commonly used negative control samples. The first type 
is total DNA input control (Input DNA), where non-immunoprecipitated DNA is 
sheared and sequenced. The second type is Mock IP control, where a nonspecific 
antibody like the immunoglobulin G (IgG ) is used most of the time. The third 
type includes all specially designed controls. For instance, if the ChIP is performed 
on stimulated cells, then using the same antibody on unstimulated cells is a good 
negative control [21,32]. Input DNA is the most commonly used control in two- 
sample ChlP-seq data analysis [12,13].

Some of the commonly used tools for ChlP-seq analysis require a matched control 

sample for significant peak detection. Most of them use the fold enrichment, calcu­
lated as the ratio of IP and control counts over a region, to identify significant peaks 

and screen out weak peaks [33,34]. However, Ho et al. [35] carried out a systematic 
analysis of ChlP-seq and ChlP-chip datasets and revealed that the input data have 

variable effects on peak finding. They pointed out the urgency of high-quality input 
samples for peak-calling. Incorporating control data in our model is discussed in 
detail in section 3.2.

1.4.4 A D JU STIN G  FOR GC BIAS

GC content bias is the dependence between G and C bases in a region and the 
count of ChlP-seq reads in it [7], This is mainly due to PCR amplification bias in 
the sample preparation step [36]. Theoretically, this kind of bias can result in an 
over-representation of GC-rich regions in peaks [3]. GC bias is a well-documented 
problem, and when modeling ChlP-seq data, this bias should be corrected. Dohm 
et al. [36] first, described this GC bias and stated that ChlP-seq tags are correlated 
with GC content. In particular, they showed that regions with higher GC content 
exhibit a greater number of tags. Until recently, GC effect is assumed to be positively 
correlated with the tag count. Kuan et al. [37] and Benjamini et al. [7] showed that, 
this GC effect is unimodal, and it is not consistent with repeated experiments or 
their own reports.
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Most current correction methods use the following scheme. They bin both tag 

counts and GC counts. This bin size is arbitrary. Then a curve describing the 
conditional mean tag count per GC value is estimated either by binning or smoothing. 

This estimated curve is used to determine the predicted count for each bin based on 
its GC count. These predicted values are used to normalize the original signal. While 

these methods remove most of the GC effect, they do not take the prior information 

such as the unimodality of the GC curve into account [7]. However, those methods 

consider the entire genome or the overall distribution of the ChlP-seq data when 
estimating the GC curve [3]. When finding potential peaks, our focus is only on the 
ChlP-enriched regions. For this reason, it is important to focus only on the GC effect 
of those areas of the genome and the tags on them.

1.4.5 M APPABILITY BIAS

In the ChlP-seq experiment, millions of sequence reads are produced. Then, these 
reads should be mapped to a reference genome. During this process, a read can be 
mapped to a unique location in the genome or it can be mapped to multiple locations. 

As a result, mapping is not uniform across the genome. This mappability bias should 
be corrected before finding peaks [33,37]. First, the locations that can be mapped 
uniquely should be identified. A mappable location on a genome is a position that 
a tag can be mapped uniquely. If a tag cannot be mapped uniquely to a location 
on the genome, those loci are referred to as unmappable locations. Mapping on a 
genome depends on the length of the sequence tag. For example, a tag with 25 
bp would map differently across the genome than a tag with 35 bp. In this study, 
a mappability map generator program Peak-Seq Suite, published by Rozowsky et 
al. [33] was used to identify the locations with and without unique maps across the 
genome. This program was run on an HPC cluster and took about seven days to 
output a mappability map for a given tag length. It outputs a set of binary files, and 
the P yth on  script that comes with Peak-Seq Suite can be used to read them. This 
P yth on  script was modified to output 1 if the location is a mappable location and 
0 otherwise. This mappability information is used in our program to adjust for the 
mappability bias.

Although numerous algorithms have been proposed recently for analyzing the 
large ChlP-seq datasets, their relative dominances and constraints remain unclear 
in practical applications [38-41]. Most of the peak-callers use a window/bin based
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method, and all the nucleotides within each genomic window are assumed to have 
the same characteristic score (i.e. tag counts, GC, mappability, control count, etc.). 

There are several disadvantages of these window-based methods. These window 

sizes are decided based on a couple of datasets; therefore, their applicability for new 
datasets is questionable. Most of the peak-callers have an option to change the 

default window size. However, it can be time-consuming to tune these parameters 
for each dataset. Moreover, GC bias should be considered for each fragment instead 
of a bin, which is generally much shorter than a fragment.

Kim et al. [42] proposed a “per-base model” for predicting TFBS using a normal- 
exponential density, and their peak-caller, “NEXT-Peak” is available at http://ww w . 

people.vcu.edu/~nkkim/nextpeak.html. This study is a further development of their 
work. The NEXT-Peak algorithm is explained in section 2.2. In the next section, 
methods of three commonly used peak-callers are discussed.

1.5 EXISTING M O DELS/ PROGRAM S

In this study, we compare our technique with two commonly used peak-callers: 
QuEST [28] and MACS [26]. An overview of these programs are given below.

1.5.1 QUANTITATIVE ENRICH M ENT OF SEQUENCE TAGS: QUEST

Quantitative enrichment of sequence tags (QuEST) is a statistical method based 
on the kernel density estimation approach [28], It first constructs two separate pro­
files: one for forward tags and the other for reverse tags. These profiles are character­
ized by areas of substantial enrichment where tags abound. The distance between the 
forward and reverse profiles is not known and varies from experiment to experiment. 

QuEST estimates this distance from a robust subset of the data. Then the forward 
and reverse profiles are shifted and summed to produce the combined density pro­
file (CDP). QuEST then identifies candidates for CDP as positions in the reference 
genome corresponding to local maxima of the CDP with sufficient enrichment in the 
control data. The CDP threshold value can vary from experiment to experiment. For 
this reason, QuEST identifies the false positives by separating the control data into 
two sets and then identifies peaks, treating one set as a pseudo-IP and the other as a 
control sample. Then the false discovery rate is calculated as the ratio of the number 
of peaks predicted by the pseudo-IP analysis to the number of peaks identified in the 
real ChIP experiment. By doing this, QuEST lets users set a specific threshold and

http://www
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determine a false discovery rate.

1.5.2 M ODEL-BASED ANALYSIS OF CHIP-SEQ: MACS

MACS uses a dynamic Poisson distribution to capture local biases in the genome. 
It takes advantage of the bimodal pattern of ChlP-seq data to empirically model the 

shifting size [26]. One of the main differences in MACS and other commonly used 
peak-callers is that MACS removes duplicate tags based on a binomial distribution 

p-value calculated using the sequencing depth of the dataset. It captures both mean 

and variance of the distribution using a single parameter, Abg (Poisson rate). MACS 
shifts all tags by d/2  toward the 3’ ends, where “d” is the distance between the inodes 
of the two strands. Then it slides 2d windows across the genome to find candidate 

peaks with a significant tag enrichment. MACS merges the overlapping enriched 
peaks, and each tag position is extended d bases from its center. The location with 
the highest fragment pileup is predicted as the binding location.

When control data are available, MACS uses a dynamic parameter, \ i ocai- defined 
for each candidate peak as:

A local TTIUX̂ X BGi 1̂/cj Ajq/̂ ),
where Au, X5k and Aiofc are A estimates from 1 kb, 5kb or 10 kb peak centered 
window in the control sample. If a control sample is not available, A;OCQ( is calculated 
the same way without Xlk using only an IP sample. MACS uses Alocai to calculate 
the p-value of each candidate peak and removes the potential false positives based 
on a threshold p-value. MACS defines the ratio between the ChlP-seq tag count and 

AiOCai as the fold.enrichment and reports in the final output.

1.6 USE OF M OTIF SITES FOR VALIDATION

Since peak-calling algorithms predict different numbers of binding sites for a given 
dataset, it is of foremost importance to compare the performances of peak-callers by 
assessing the validity of these predicted sites. However, actual binding sites are not 
available. A DNA-TF interaction depends on the DNA sequence. Many of these TFs 
recognize a specific DNA sequence pattern, known as a motif, that binds to these 
locations. A motif is a DNA sequence pattern with a biological meaning, which 
repeatedly occurs in DNA sequences. Typically, motifs are 5-15 bp long. As a result, 
performances of peak-callers are often compared using the sites with a high similarity 
with a motif [40].
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However, these motif sites are statistically or computationally predicted entities, 
and transcription factor binding sites are real biological entities. Finding a motif is a 

well-known problem in bioinformatics, and there are many motif finding algorithms 
available in the literature including web tools with user-friendly interfaces [43]. JAS- 

PAR [44] and TRANSFAC [45] are among the most frequently used motif databases. 

Motif sites from the JASPAR database were downloaded for this analysis.

1.7 CHIP-SEQ DATA

For the first part of the study, we used three ChlP-seq datasets correspond­
ing to transcription factors (TFs) NRSF, ZNF143 and STAT1. The NRSF 
[SRA:SRR577995] and ZNF143 [SRA:SRR243553] datasets were downloaded from 
the SRA database at http://www.ncbi.nlm.nih.gov/sra. The STAT1 dataset [11] was 
downloaded at h ttp : / /www.bcgsc.ca/downloads/chiptf/human/STAT 1 /stimulated/  
july.23.2008/.

For the second part of the analysis, we used NRSF, STATl, GABP and STAT6 
datasets. The NRSF IP and input [GEO:GSE49570] datasets, STATl IP and input 

[GEO:GSE12782] datasets and STAT6 IP and input [GEO:GSE41317] datasets were 
downloaded from the GEO database at http://www.ncbi.nlm.nih.gov/geo/. GABP 

IP and input datasets were downloaded from http://rriendel.stanford.edu/sidowlab/ 
downloads/quest/. STAT6 is a paired-end tag dataset and all other datasets are 
single-end tag datasets. Table 1 gives the number of tags and the sequenced tag 
length in each dataset.

http://www.ncbi.nlm.nih.gov/sra
http://www.bcgsc.ca/downloads/chiptf/human/STAT
http://www.ncbi.nlm.nih.gov/geo/
http://rriendel.stanford.edu/sidowlab/
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TABLE 1 Description of datasets used in this analysis
D ataset Number o f Tags Tag Length Genome

NRSF 33,075,991 36 hgl9
STAT1 15,126,001 27 hgl8

ZNF143 25,155,931 36 hgl8
NRSF - IP 124,107,966 51 hgl9

NRSF - Control 182,058,733 51 hgl9

STAT1 - IP 9,538,797 28 hgl8
STAT1 - Control 15,202,326 28 hgl8
GABP - IP 7,857,864 24 hgl8
GABP - Control 17,249,435 24 hgl8
STAT6- IP 42,164,376 50 mm8
STAT6 - Control 38,436,442 50 mm8

1.7.1 PREPROCESSING DATA

Raw sequence reads for NRSF, ZNF143 and STAT6 were in the SRA binary 

format, and the “fastq-dump” tool of the SRA Toolkit was used to convert them 
into the “fastq” format. This conversion generates a “fastq” file for each raw file. 
For example, for the NRSF.sra file, the NRSF.fastq file is created. Figure 5 shows 
three sequences from the NRSF.fastq file. Each sequence begins with an “(b)” sign 
and usually has four lines per sequence.

These raw reads were then mapped to their corresponding genomes (hgl8, hgl9 
or mm8) using Bowtie2 [17] software. Human and mouse genome reference se­
quences were downloaded from the University of California Santa Cruz (UCSC) 
Genome Browser at http://genome.ucsc.edu/ [46]. More information about datasets 
is given in Table 1. These ChlP-seq datasets are typically 2-5GBs in size, and 
high-performance computers are needed to process and manipulate data. High- 
performance computing (HPC) clusters at Old Dominion University and the Depart­
ment of Biostatistics of Virginia Commonwealth University in Virginia were used to 
run Bowtie2 [17] and all other programs used in this study. A typical dataset with 10

http://genome.ucsc.edu/
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0SR R 948187.7  HISEQ2: 2 0 5 :D07H3ACXX:2 :1 1 0 1 :1 2 1 7 :2 2 3 0  le n g th = 5 1  
TCTNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNTGTGTTTTCATAAGCT 
+SE E 948187 .7  HISEQ2:205:D07H3ACXX:2:1 1 0 1 :1 2 1 7 :2 2 3 0  le n g th = 5 1  
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  

0S E E 948187.8  HISEQ2: 2 0 5 :D07H3ACXX:2 :1 1 0 1 :1 4 5 8 :2 0 4 5  le n g th = 5 1  
NTCAGNACTNTGGGAGGCTGAGGCAGGAGAATCGCTTGAACCTGGAAGGTG 
+ SE E 948187.8  HISEQ2: 2 0 5 :D07H3ACXX:2 :1 1 0 1 :1 4 5 8 :2 0 4 5  le n g th = 5 1  
# 0 ; =?#2=®#2=?®®@?@??@?®????<???<?>=<?5>???; ; ?????3=  
® SEE948187.9  HISEQ2: 2 0 5 :D07H3ACXX:2 :1 1 0 1 :1 2 6 3 :2 0 4 6  le n g th = 5 1  
NGAAGNNNNNNNNNNNNNNNNNNNNNNGNNNNNNNTAAGCAGCTGCCGGAA 
+ SE E 948187.9  HISEQ2: 2 0 5 :D07H3ACXX:2 :1 1 0 1 :1 2 6 3 :2 0 4 6  le n g th = 5 1  
# 0 7 ;? # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

Figure 5 Three sequences in fastq format. SRA binary format was converted 
to fastq format using the fastq-dump tool of the SRA Toolkit. Each sequence begins 
with an sign followed by a sequence identifier. The second line is the raw 
sequence letters. The third line gives optional information followed by a “+ ” sign, 
and the fourth line gives the quality value of the sequence specified in line 2.

million sequences would take about 6 hours to map to a genome on an Intel Xeon E5- 
2660 v2 2.2GHz computer with 128GB memory. Bowtie2 outputs alignment details 
in “SAM” format (Figure 6). Alignments for the three sequences shown in Figure 5 
are presented in Figure 6.

In the SAM format, there are at least 12 fields available. There can be additional 
fields after the 12th column, depending on the experiment. These fields are tab- 
delimited. The first field of the SAM format is the name of the read that has been 
aligned to a reference sequence, i.e. SRR948187.7, SRR948187.8, and SRR948187.9. 
In Figure 5, the name of the first sequence is SRR948187.7 in the Bowtie2 output in 
Figure 6; the first line denotes the corresponding mapped tag. The second field gives 

the sum of the flags for the map. These flags are necessary to identify the strand of 
the alignment, i.e. forward/left or reverse/right. For example, a flag of zero means 
alignment occurred in the forward strand. If the flag is 16, the sequence is aligned 
to the reverse strand. One can refer to the Bowtie2 [17] manual for more details.

The name of the reference sequence is given in the third field. A means the
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SR R 948187.7  4  * 0 0 * *
0 0
TCTNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNTGTGTTTTCATAAGCT
###################################################
YT:Z:UU YF:Z:NS
SR R 948187.8  0 ch r5  1 7 5 5 5 5 6 9 4  2 51M
* 0 0
NTCAGNACTNTGGGAGGCTGAGGCAGGAGAATCGCTTGAACCTGGAAGGTG 
# 0 ; =?#2=@ #2=?®®®?®??®?®????<???<?>=<?5>???; ; ?????3=  AS: i : -1 6  
X S: i : - 1 8  X N :i:0  X M :i:7  X 0 : i : 0  XG: i :0  N M :i:7
MD:Z :0C0C3C0T0A1T0C40 YT:Z :UU
SR R 948187.9  4  * 0 0 * *
0 0 NGAAGNNNNNNNNNNNNNNNNNNNNNNGNNNNNNNTAAGCAGCTGCCGGAA 
# 0 7 ;? # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
YT:Z :UU YF:Z:NS

F ig u r e  6  B o w t ie 2  o u t p u t  fo r  t h r e e  s e q u e n c e s .  Fastq  form at sequences were 
aligned  to  a genom e using B ow tie2  and SA M  ou tp u t for the three sequences show n  
in F igure 5 are presented here. Each line con sists o f at least 12 fields separated by 
tabs. Here th e  sequence file nam e is “S R R 948187” in th is  illu stration .

sequence is not mapped to any one of the reference sequences (i.e. to chromosomes 
in our case). It can be seen that, in Figure 6, the second sequence is mapped to 
the fifth chromosome (chr5). However, the third field of the first alignment is a 
This means that, the third sequence read was not mapped to any reference sequences. 
The fourth field gives the left-most location of the alignment if it is mapped and 
otherwise. The quality of the map is provided in the fifth field. A higher mapping 
quality score implies a map with greater uniqueness. Since we only need the location 

of the alignment, a reference sequence, and the aligned strand, the rest of the fields 
are not discussed here. For the rest of this study, these mapped sequence reads are 
called “tags.” A P erl script is written to extract the required information from the 
Bowtie2 output. This script is included in Appendix A.I. Figure 7 shows a few lines 
from the P e rl output. The first column represents the strand ( + / - ) ,  and the sec­
ond column is the aligned reference sequence, i.e. chromosome information. X and Y
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chromosomes are renamed chromosome 23 and 24 respectively for the convenience. 
The leftmost position of the alignment is given in the third column.

+ 5 175555694
+ 23 153603448
+ 14 59931821
- 10 76498794
- 10 69443718
+ 2 231460158
+ 12 5389085

Figure 7 F orm at of ex trac ted  inform ation  from  SAM  file. A Perl script is 
used to extract only the strand, the aligned chromosome and the leftmost position 
of the alignment for each tag from the SAM output.

1.7.2 PA IR E D -E N D  TAG SE Q U E N C IN G  (P E T ) DATA

So far, we discussed the data from single-end sequencing (SET) where only one 
end of the DNA fragment is sequenced. In paired-end tag sequencing data (PET), 
20-80 bp from both ends of the DNA fragment are sequenced (Figure 8). For this 
reason, these paired-ends can reduce the alignment ambiguity, resulting in high- 
quality mapping. Also, it can improve the mapping rates [47]. Since both ends of 
the fragments are sequenced and mapped to a reference genome, the actual fragment 
length can be determined by the mapped locations. This is the main advantage of 
using PET data compared to SET data. Since these fragment lengths are unknown in 

SET data, peak-callers usually estimate the mean fragment length as an intermediate 
step. However, PET data are not widely used in peak-calling.
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L - Fragment length

d - T a g  length d

Sequenced short read 
-  ~ -  Reference
_  Genome

Figure 8 Paired-end tag sequence alignment. 20-80 bp from both ends of the 
fragments are sequenced and mapped to a reference genome.

Different sets of options should be used with fastq-dump and Bowtie2 programs 
when preprocessing PET data. In a raw SRA file, information for both mates is 
available, i.e. sequences of the two ends of the fragment. First, a SRA-formatted 
PET data file is converted into the fastq format. During the conversion, mates are 
separated into two different fastq files (Figures 9 and 10).

SSTAT6.1 HW I-ST183:2 6 5 :B0AJWABXX:4 :1 1 0 1 :1 1 3 6 :2 0 4 0  le n g th = 5 0  
TAGAAAGGACATCAGAATAACAGATTCAAAACACGTCATAAATCAAGTCA 
+STAT6.1 HW I-ST183:2 6 5 :B0AJWABXX:4 :1 1 0 1 :1 1 3 6 :2 0 4 0  le n g th = 5 0  
@@®ADDDDFFHFHB <FGGEHG11GGIGFHH> EGIGDHGGGD * 7BDHGDEF

Figure 9 Fastq format for PET data - m ate 1. Raw PET sequence file is 
converted using the fastq-dump tool and a fastq formatted file for each mate is 
generated. This figure shows a sequence of the mate 1.

In Figure 9, the raw sequence is from the STAT6 ChlP-seq dataset. Both mate 
1 and mate 2 files should be specified when running the Bowtie2 program. Bowtie2 

creates two records for each pair, one for each mate (Figure 11). The first line, 
starting from STAT6, gives the alignment information for mate 1, and the second 
line gives it for mate 2. In Figure 11, it can be seen that both mates 1 and 2 are 
mapped to chromosome 13. Column 4 of the first line gives the alignment location 
of the first mate, and column 8 of the second line gives that of the second mate. The 
fragment length is given in the ninth column.
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3STAT6.1 HW I-ST183:2 6 5 : BOAJWABXX: 4 :1 1 0 1 :1 1 3 6 :2 0 4 0  le n g th = 5 0

+STAT6.1  H W I-ST183:2 6 5 : BOAJWABXX: 4 :1 1 0 1 :1 1 3 6 :2 0 4 0  le n g th = 5 0  
«®®DDBDFGB>FF®GHFGAB>GBGFFGIJBFDCFGIGGGEDHIEEDGGCG

Figure 10 Fastq format for PET data - m ate 2. The second fastq formatted 
file with the mate 2 sequences is shown in this figure. The second line gives the mate 
2 sequences in each record.

STAT6.1 83 c h r l3  6 3 3 4 8 5 3 2  42 50M = 6 3 348472

-1 1 0  TGACTTGATTTATGACGTGTTTTGAATCTGTTATTCTGATGTCCTTTCTA

FEDGHDB?*DGGGHDG IGE>HHFGIGGIIGHEGGF<BHFHFFDDDDA®®®

AS: i :0 X N : i : 0  XM: i : 0  X 0 : i : 0  X G: i : 0  NM: i : 0  MD:Z:50 Y S : i : 0  YT:Z:CP

STAT6.1 163 c h r l3  6 3 3 4 8 4 7 2  42 50M = 633 4 8 5 3 2

®®3DDBDFGB>FF®GH FGAB>GBGFFGIJBFDCFGIGGGEDHIEEDGGCG

AS: i :0 XN: i :0 XM: i : 0  X 0 : i : 0  X G : i : 0  NM: i : 0  MD:Z:50 Y S : i : 0  YT:Z:CP

Figure 11 Bowtie2 output for PET data. Each sequence tag consists of two 
alignments. The first line is for the alignment of the first mate, and the second line 
is for the alignment of the second mate. Column 9 gives the length of the fragment, 
and a negative fragment length means the second mate is mapped to the left strand.

In a SAM output for a PET dataset, the second column, i.e. the flags, plays a 
significant role. These bitwise flags indicate setting for a group of parameters. There 
are eight flags associated with a SAM format, and their values are 1,2,4,8,16,32,64 
and 128. As specified in the Bowtie2 [17] manual, each flag has its definition. The 
second column of the SAM output gives the sum of these flags, and that value should 
be decoded first. For example, a flag sum of 83 can be decoded into 83 =  64+16+2+1. 
Then, the flag definitions can be used to understand the alignment.
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After carefully considering all the possibilities, it was found that 99, 83, 147, and 
163 are the only required flag sums for our analysis. Then, the P erl script given 

in Appendix A.2 was used to extract only the required information for our analysis 
(Figure 12).

13 6 3 3 4 8 5 3 2

+ 13 6 3 3 4 8 4 7 2

15 7 4 0 6 3 9 0 9

+ 15 7 4 0 6 3 8 3 3

7 5 1 4 1 0 5 0

+ 7 5 1 4 0 9 1 7

14 112561353

+ 14 112561213

+ 1 129202533

1 129202661

Figure 12 Format of extracted information from PET Bowtie2 output.
Strand information, chromosome number and the starting location of the alignment 
are extracted using a Perl script.

For the STAT6 data shown in Figure 12, the sequence length is 50 bp, i.e. 50bp 
from both ends of the fragment were sequenced. The starting position of mate 1 of 
the first sequence is 633485532 and that of mate 2 is 63348472. In addition, mate 1 
is mapped to the forward strand, and mate 2 is mapped to the reverse strand.

The next chapter introduces and describes the normal-exponential model for 
ChlP-seq data. After explaining the existing Poisson model, a negative binomial, 
a zero-inflated Poisson model and a zero-inflated negative binomial model are pre­
sented, and their performances are compared. Then the best model is selected for 
the rest of the analysis.
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CHAPTER 2

MODELING TAG COUNTS

This chapter explains our approach for identifying the TF binding sites. Since 

this study is a further development of the NEXT-peak [42] technique, a peak-caller 
for ChlP-seq based on the normal-exponential two-peak distribution, we first give an 
overview of the workflow of the NEXT-peak and then explain the basic model for 
the tag distribution. Then, three new models are proposed, and performances are 
compared. The optimal model is used for the rest of the implementations and the 
analysis.

2.1 N EXT-PEAK  WORKFLOW

As explained in Kim et al. [42], workflow of the NEXT-peak [42] program is 
described as follows (Figure 13):
(1) Read the input file with the mapped tag locations.
(2) Define regions using a sliding window. The window length and the minimum tag 
count for the window can be specified by the user, and default values are 150 and 
15 respectively. The number of tags in each sliding window is counted. If the tag 
count of the neighboring window is more than the minimum count, two windows are 
combined.
(3) When the locations of the motif sites are available, obtain the maximum likelihood 
estimates of a and ft (see section 2.2). For a known TF, a publicly available motif 
pattern is used, e.g., from JASPAR [44]. For an unknown motif, it is recommended to 
run the NEXT-peak program with default values (a — 30 and f3 =  50), and identify 
the strongest motif from a motif search. One can estimate these parameters with 

selected regions as well.
(4) For each region found in step 2, obtain the maximum likelihood estimates of //, 
and v  (see section 2.2). Then compute the standard deviation estimates. A goodness- 
of-fit test is performed for each region.
(5) The region length and the p-value cutoff recommendations are computed.
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(1 )

(2)

(3)

(4)

(5)

Read mapped 
tag

Create output

Motif sites given?

Select regions

Estimate a and P 
using anchored data

Estimate g and v for 
each region

Compute cutoff for 
spurious regions

Use defau lt a  and  |3 
Estim ate ^  and  v fo r each  region 
Identify s tro n g est m otif w ith 
regions having to p  peaks

Figure 13 A flowchart for NEXT-peak algorithm. First, the program reads 
the mapped tags. Then, it selects regions based on the tag count with a user- 
specified length of the window (default: 150) and a user-specified minimum count 
(default: 15). If motif site locations are provided, it estimates a and fi using motif 
site locations. For an unknown motif, run the NEXT-peak program with default 
values (a = 30 and f3 — 50), and identify the strongest motif from a motif search. 
For each region, the program estimates //. and v. It computes the standard deviation 
estimates for these estimates. As a post-processing step, the program computes the 
region length and p-value cut-off recommendations to screen out potential spurious 
regions when the motif site information is available [42],
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This chapter focuses on step 4 above. We propose three new models for count 
data, and each model has a different set of parameters. Those models are discussed 
in detail in the following sections. For the rest of the analysis, we assume that 
mapped tags are read and the regions are identified. A “region” is a segment of 

DNA that has a significantly higher tag accumulation. Table 2 illustrates a set of 

regions found using the NEXT-peak algorithm. Therefore, after the second step, we 
have the starting position, the ending position, the number of observed tags and the 

corresponding chromosome for each region, in addition to the observed tag count for 
each location from preprocessed data.

TABLE 2 A part of regions found in step (2) for STAT1 dataset
Region No. Chromosome Start End Length Number of Tags

1 1 556608 556905 298 57

2 1 559702 559851 150 36

3 1 703832 703990 159 7

4 1 846298 846447 150 11

5 1 865701 865850 150 6

6 1 865916 866065 150 9

7 1 866087 866236 150 4

8 1 938338 938832 495 37

9 1 1005061 1005210 150 5

10 1 1041388 1041813 426 23

If the ChlP-seq experiment is of good quality, each peak will show a two-peak 
pattern as shown in Figure 14. However, due to experimental artifacts and various 
other reasons, ChlP-seq experiments introduce a considerable amount background 
noise. As a result, there can be regions satisfying the minimum tag number and the 

minimum length even without the two-peak pattern (Figures 15 and 16).
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Figure 14 A region with tags primarily due to ChIP signal. When the ChlP- 
seq experiment is of good quality, each strand shows a peak forming the two-peak 
structure. This region is found for the NRSF dataset. Tags mapped to the left, 
and the right strands are represented in the top and the bottom parts of the plot 
respectively.
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Figure 15 A region without two peak pattern. This region is obtained for the 
STAT1 dataset. The top and the bottom areas of the plot represent the tags mapped 
to the left and the right strands respectively. The total observed tag count for the 
region is greater than the minimum tag count (default =  15). As a result, the region 
finding algorithm picks this stretch of DNA as a candidate region.
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Figure 16 A region with a significantly high background noise. This region is 
found for the NRSF dataset. The upper and the lower parts of the plot represent the 
left and the right tags respectively. Although there is a considerably large number of 

tags (166 left and 310 right tags) observed within this region, the expected two-peak 
pattern is not visible. Therefore, these tags mainly represent the background noise.

A region length can be 150 bases (default minimum value) to a few thousand 
bases. Our objective is to identify the exact binding location, i.e. the location of the 
peak, in each of these regions. In a typical dataset, there can be 10,000-80,000 or 
even more candidate regions.

In each region, there are at least two parameters to be estimated depending
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on the model, and this estimation process is time-consuming. For this reason, the 
NEXT-peak algorithm was implemented in C++, and our extensions are implemented 

in the same environment as well. The next section describes the basic model in the 

NEXT-peak program.

2.2 CONSTRUCTING  BASIC MODEL

Assume that a heuristic algorithm identified potential genomic regions, Rr(r = 

1, , S).  Consider a specific genomic region R s, where s £  { 1 ,... ,5 } , and let the 

width of R s be ws, with the nucleotide bases having coordinates 1 ,... ,w s. Call the 
forward and backward DNA strands “left” and “right” respectively such that a base 
at location j  on the left strand is the complementary base of the right strand (A = T  

and G = C). Thus, j  =  1 , . . . ,  ws.

Let xfj € { 1 ,... ,  W{} be the j th, j  =  { l , . . . ,  n f }, mappable tag location relative 
to the start location of the i th genomic region. Here, rcf is the total number of 
“left tags” observed on the left strand within the i th genomic region. Subscripts “L” 

and "R'n distinguish quantities relating to the left and right strands, respectively 
throughout this manuscript. Let X° denote the set of locations within R a where 
a tag sequence is not unique within the genome, resulting in ambiguous mapping. 

Therefore, the observed tags for a given genomic region i can be represented by the

As discussed in section 1.2, in a ChlP-seq experiment, TFs are cross-linked to 
the DNA, and it is assumed that these unobservable cross-link locations have a 
random shift from the binding site. Let denote this random shift and assume 
Gj ~  N(fa,  a 2) for mathematical convenience. Here fa is the true binding site location 
of the i th region and a2 is the variance of the shift.
The density of the distribution of & is

where </>(•) is a standard normal density function.
Unless it’s mentioned otherwise, we assume that there’s only one binding event 

on each genomic region. As the next step of the ChlP-seq protocol, the DNA is 
randomly sheared into millions of fragments. These fragment lengths depend on the 
experiment and the platform. Usually, average fragment sizes are 100-500 bases. 
Assume that this shearing process follows a Poisson process over the entire genome.

vector X = (x . , z £ * , X 0) [42,48],

*■(61/4., ff2) =  - 0 ( - — —) ( 1)a a
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The fragments are sequenced only on one end, in most of the experiments (Single-End 
Tags - SET), and only the first dozens of bases are sequenced. In “Paired-End Tags” 

(PET), dozens of bases on each end of the fragment are sequenced as explained

read is about 20-80 bases long. These end reads are usually somewhere near the 
corresponding cross-link location. However, the shearing process causes randomness 

in the exact distance between tag ends and cross-link location, and the short reads 
on the two DNA strands show different systematic biases in their average position 
relative to the cross-link location [48]. That is, as shown in Figure 17, the short reads 
mapped to the left strand are expected to demonstrate a shift from the cross-link 
location to the left. The short reads mapped to the right strand are supposed to 
demonstrate a shift from the cross-link location to the right (Figure 18).

in section 1.7.2. These sequenced sub-fragments are called “reads,” and a typical

Mi f t

5'
3'

3'
5'

Cross-link

Sheared DNA 
fragment

Tag sequence

Figure 17 Cross-link for a short read mapped to left strand.

The shifting of the tags (:ft — f t  and f t  -  f t )  is assumed to have an exponential 
distribution under the Poisson process assumption. Kim et al. [42] assumed that this
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Figure 18 Cross-link for a short read mapped to right strand.

exponential mean, j3, is common for all regions. Therefore, for the right tag location 
zj*, with the cross-link location £/■, the density can be denoted by

/?) =  4 exp  I{x*  > £*), (2)

where /(■) is an indicator function.
Therefore, the joint density of the is

i ( a s  -  ^ i)2\  i  (  ( z j j - d j ) } ,,  „ w
ex P - ^ 7 - 0 - o ex P ----------- "o 7 (j:o >  )•
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Then, the marginal distribution of the joint density is obtained by integrating over

S>lj i

rRiA\a\ _  a\q _2\/  (j|0) = )

_2\ AtR
(4)

J — +  cr2/ / 5 ) ^  1 ____ f  1 2
= *  J  ^ x p  | - - ( j  -  (*  +  a V 2 /3 )) |,

where $(•) is the cumulative distribution function (CDF) of the standard normal dis­
tribution. Kim et al. [42] named this marginal distribution the “Normal-Exponential” 
distribution.

Similarly, the left tag location xfj can be denoted with a given cross-link location 

itj as,

*■(&!/?) = ^exp j  / ( XJ  < f j ) .  (5)

Hence, after integration over £/■, the density of xF is 

f L(J\0) =  7r(jj[3, a2)

(6)

1 _  $  , J -  O', -  ^2//0
(7 ^ e x p |^ ( j  -  -  a 2/2^))

Here, the model parameters //,, a. and j3 are the same for both left and right tags of 
the i th region. Therefore, the complete density can be given by,

Wt

7T( x i j i  ■ ■ ■ i X in L ' X i j '  ' ■ ■ i ° ”2 ) =  I I
j t m a p p a b l e

W i

X n  K{x?j\f3,LiuO-2). (7)
j € mappab l e

The overlaid Normal-Exponential densities for both left and right strands are shown 
in Figure 19. These asymmetric density curves clearly reflect the duality of the kernel 
as well as the mirror image feature [48].
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Figure 19 Norm al-exponential density. One peak on each strand was observed.

Figure 20 shows the frequency plot of the tags mapped to the left and the right 
strands around the high-scoring motif sites for STAT1. The overlaid curve is the 
proposed dual normal-exponential kernel with (3 = 74.1 and a — 42.3 [42]. As 
Park [24] suggested, any peak that does not reflect this mirror image characteristic 
can be considered as peaks only due to background noise. In fact, extremely high 
block shaped peaks at repetitive regions or flat signals across the region can be 
observed.

As Kim et al. [42] proposed, an alternative representation is useful in proposing 

a model for count data. Let y\- and be the number of left tags and right tags ob­
served at location j ,  respectively. Tags cannot be observed at unmappable locations.
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Thus, for all practical purposes, (y£ ,. . . ,  y ^ ,  y ^ , . . . ,  y /^ , X°) can be used instead of
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Figure 20 Anchored tag distribution of STAT1.

In high-throughput sequencing experiments, raw data are millions of reads which 
are aligned to genomic locations. As a result, for each genomic location there can 
be a zero, one or multiple aligned reads. Thus, a suitable distribution for modeling 
the observed tag counts in each genomic position should have a support on the non­
negative integers. All existing peak-callers use a fixed or a sliding window of genomic 
locations when modeling the observed tag counts. For example, MACS [26] uses a 
variable rate Poisson model, where the model mean is determined from control data
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by taking the maximum of average tag counts computed on lkb, 5kb, lOkb, and 
genome-wide intervals. MOSAiCS [37] divides the genome into small nonoverlapping 

bins of size 50 bp and uses a negative binomial model for count data.
As mentioned earlier, Kim et al. [42] were the first research group to consider 

a per base or a location-wise model, and they assumed a Poisson distribution for 

modeling the observed read counts.

For the rest of the analysis, I use the following notations. 
f Lm  =  [l -  4- i eXp { i ( j  -  („, -  <r2/2/?))},

! Rm  =  *  i e x p  { - i ( j  -  (p. +  <7 7 2 /3) ) ) ,

and d is defined earlier in this section.
In the following sections, the Poisson regression model of the NEXT-peak program 

is explained. Then a negative binomial regression model, a zero-inflated Poisson 
regression model, and a zero-inflated negative binomial regression model are proposed 
to model observed tags. Then, the performances are compared, and the best model 
is selected as the base model for the rest of the analysis.

2.3 POISSON REGRESSION MODEL FOR TAG COUNTS

The Poisson distribution is widely used in modeling count data. A position and 
strand dependent mean parameters, \ !- and Af  for left and right strands respectively, 
are considered, and tag counts in each genomic location are assumed to have Poisson 
distributions with corresponding mean parameter Â  or XR. Note that tag counts 
in each region (set of adjacent genomic locations) are a set of independent random 
variables.

For the region s, i.e. within Rs. let vs be the expected number of right tags 
for TF binding, ps be the uniform background intensity of right tags and XR be 
the expected number of right tags at location j .  Assume Aj' =  vsf L{j\6) +  ps and 

Af  = v»fR( M  +  ps [42],
Let YjL be the random variable that counts left tags at j ,  and assume Yj" has a 
Poisson distribution with mean Aj\ i.e.,

P r ( Y ‘' = y) = e x p ( - \ f ) ^ - ,  (8)
y'-

for y t {0,1,2,...}. Similarly, let Y R be the random variable that counts right tags
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at j , and assume Y R has a Poisson distribution with mean XR, i.e.,

Pr(YJ* = y) = e x p ( - \ f ) ^ ,  (9)y\

for y <. {0,1,2,...}. Note that for the Poisson distribution, E[YjL] — XR, E \ Y R] =  XR, 

Var{Y]L) = Xf, and Var[YR} = Xf.

Let 6S =  (us, vs , ps). Under the NEXT-peak model [42], the likelihood of the data 

in R s is

L(a,l3.9s) =  n ^ o  [P r (Y R = y \ a j , 0 s) • P r (T /  =  y\a ,p ,0a)] . (10)

Thus, the likelihood for the entire set of regions is

L{ct, M )  - r i ;S=1L(rr,/?,^), (11)

where 6 = (0r : r = 1,.., S).

2.4 NEGATIVE BINOM IAL REGRESSION MODEL FOR TAG 

COUNTS

Although a Poisson model is the simple choice for count data, there are limitations 
to using a Poisson model in ChlP-seq data. For example, the Poisson model assumes 

the variance of data to be equal to the mean. However, in ChlP-seq experiments, this 
is not the case. The negative binomial can be considered as an extension of Poisson 
distribution to handle overdispersion. That is, the situation where the variance of 
the counts is larger than expected by a Poisson distribution. Ji et al. [49] illustrated 
that a negative binomial distribution provides a better fit to count data from ChlP- 
seq experiments than a Poisson distribution. CisGenome [49], MOSAiCS [37] and 
QuEST [28] are among the peak-callers which use a negative binomial (NB) model. 
Furthermore, edgeR [50] uses a NB model to fit RNA-seq in differential expression 
analysis. RNA-seq is also an NGS technique that uses High Throughput Sequencing 

(HTS) and is used for differential analysis instead of peak-calling. However, all these 
techniques are window-based, and our approach is a per-base model.

Hilbe [51] stated that there are about 13 separate types of derivations for the NB 
distribution. Usually, those who are using the NB distribution have no idea that their 
parameterization of the NB may differ from the parameterization being utilized by 
another. The “traditional negative binomial.” which is now commonly symbolized
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as “NB2,” is derived from a Poisson-gamma mixture distribution [51]. One can refer 
to Hilbe [51] for the derivation of the NB2 model from a Poisson-gamma mixture. 

In this study, we use the NB2 parameterization of the negative binomial distribution 
shown in Equation (12).

Let Y R be the random variable that counts right tags at j ,  and assume V)L has a NB 
distribution with mean Â  and dispersion a.

< « >r ( a  ^ l  +  aAj 'y  \ l  +  aA 

for y e {0,1,2,...}.

Similarly, P r ( Y R = y) can be written for y t {0,1,2,...}.
Note that E [ Y R] = Xf, E [ Y R\ = Af ,  Var[Yf]  = Xf + a (X f )2, and V a r \Y R] = 

Xf  +  a(A? )2.

Let 0S =  (ns,i/s,ps,a).  Under the NB model, the likelihood of the data 

(?/f, 2 / f , i n  R s is

L{cr, /?,0„) = n ^ xo [Pr(YR = y\a, a, 0S) • P r ( Y f  = y\a, 0,)] . (13)

Thus, the likelihood for the entire set of regions is

L(o ,p ,e )  = X\sr==lL{o,(3,a,6s), (14)

where 0 = (0r : r = 1,.., S ).
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2.5 ZERO-INFLATED MODELS

In addition to the over-dispersion, NGS data are often zero-inflated as well. In 
their manuscript, Kuan et al. [37] pointed out that bins with zero mappability always 

yield zero tag counts under the standard preprocessing protocol, and that gives rise 

to excess zeros in the observed data. Also, an experiment with insufficient total 
number of reads (small sequence depth) results in excess zeros [37].

In our proposed method, we do not use the entire genome. We only focus on the 

areas where tag accumulation is significantly high, i.e. regions, and identify these 
areas using a unique technique. For NRSF and ZNF143 datasets, regions were found 
for chromosome 22, and histograms were obtained (Figures 21 and 22).
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Figure 21 Histogram of tag counts for ZNF143 dataset.
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Figure 22 Histogram of tag counts for NRSF dataset.

In the NRSF and ZNF143 datasets, 87.5% and 80.3% of the locations had zero 
tag counts, respectively. These histograms show the urgency of handling excess zero 
counts that might not be explained by Poisson and NB models.

Lambert [52] showed a zero-inflated Poisson model is better than a Poisson re­
gression in fitting a dataset with many zeros. Rashid et al. [53] and Dias et al. [54] 
proposed zero-inflated models to improve model fit in ChlP-seq data. However, they 
used window-based methods. In zero-inflated models, for each observation, there are 
two possible data generation processes. It assumes that, with probability 7r, the only 
possible observation is 0, and with probability 1 — 7r, a Poisson or a NB random 
variable is observed from g{yi\xi) [52,55].
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In general:

{ 0 with probability 7r,

Vi, Vi ~  with probability 1 — tt.

The probability of {Yi = yl\Xl, n)  is

/
7r +  ( l - 7 r ) t / ( 0 | X i ) ,  yi =  0,

= yi\Xi .n)  =  <
(1 -  y > 0.\

In this study, we propose two zero-inflated per-base models, a zero-inflated Pois­
son model and a zero-inflated negative binomial model for the comparison.

2.5.1 ZERO INFLATED POISSON (ZIP) REGRESSION MODEL FOR  
TAG COUNTS

In this section, a ZIP model is formulated. For the region s, let vs be the expected 

number of the right tags for TF binding, ps be the uniform background intensity of 
right tags and be the expected number of the right tags at location j  [42].
Let T /  be the random variable that counts right tags at j ,  and assume V'L has a
zero-inflated Poisson distribution with parameters Xj and 7r.

. f  7r + (1 — Tr)e~~xj , if y — 0
Pr(Yf ‘ =  y) =  { LixL);  (15)

[ (1 — 7r)e i if y =  1,2,3..
where 0 < ir < 1 and A j > 0.
Similarly, P r ( Y R — y) can be formulated. Note that

E  [y /]  =  (1 -  tt)Ajl , E [ Y r } = (1 -  ir)Xf, Var[YjL] = (1 -  tt)(1 + nX})X} and 
Var[YR} =  (1 -  tt)(1 + nXf)X f .

Let 8S — ps). Under the ZIP model, the likelihood of the data
in R s is

L(a,  /3, e„) = Tlm 0  [Pr(YR = y\a . /3,9S) ■ Pr{Y3L = y\a, J,  0,)] (16)
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2.5.2 ZERO INFLATED NEGATIVE BINOM IAL (ZINB) REGRESSION  
MODEL FOR TAG COUNTS

The formulation of the ZINB model is explained in this section. For the region 

s, assume i/s, ps, AR and X f  are defined as in section 2.5.1. Let YjL be the random 

variable that counts right tags at j ,  and assume Y}L has a zero-inflated negative bi­
nomial distribution with parameters A j and n.

where a  is the negative binomial dispersion parameter, 0 < n < 1 and A j > 0. 
Similarly, Pr(YJn = y ) can be written for y t {0,1,2,...}.

Note that

Under the ZINB model, the likelihood of the data (yf, ...,y^ ,y f, ■ X°) in R s is

w h e r e  0S = (ps, vs, ps, a, 7r).

2.6 PARAM ETER ESTIMATION

The parameters of the above four models are estimated by minimizing the negative 
log-likelihood. The parameters a and 0  do not depend on the region R s. Therefore, 
they are estimated globally using the motif site locations as discussed in section 1.6. 
After finding the maximum likelihood estimates (MLEs), a and 0, the values of 
the a and 0  are fixed, (a — a and 0  =  3). Then the remaining parameters are 
estimates as follows. For the Poisson model, the remaining parameters p.s, and 
p„ are estimated for each region s by minimizing the corresponding negative log- 
likelihoods. For the NB model, the dispersion parameter a  is estimated globally and 
fixed before estimating the regional parameters. These global and local estimation 
processes are iterated until the system of parameters is to stable.

The zero-inflated parameter, jt, of the ZIP model is estimated globally, i.e. con­
sidering all the regions and with the regional parameters estimated iteratively. For

7r +  (1 — 7r) (l + aAj')

(1 ~Ar(y+1/a)___& &
{ ’ U1 / ^ ! ( i+ c ^ f

(17)

£ [y /]  = (1 -  p)Xf, E[Y3r } = (1 -  p)Xf,  Var[Yf] = Xf  + ( ^  + ^ )  (Xj)2 and 
Var[U/] = A f + ( Tf ,  +  T̂ ) ( A ^ .

L(a, 0, ds) = % xo [Pr(YR =  y\a, 0 , 6a) ■ Pr{Y}L =  y|n, 0 , 0,)] (18)
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the ZINB model, both 7r and a  are estimated globally whereas /i,, us and ps are es­
timated locally. In a ChlP-seq dataset with 10 million tags, there can be 15,000 - 
20,000 regions. Therefore, there are a large number of parameters to be estimated, 
and the estimation process should be efficient. The bisection method [56], the limited 

memory BFGS method [57], and Brent’s method [58] were used to find the estimates; 

it was found that Brent’s method was more suitable for this study. These methods 

were implemented in C++ from scratch, and optimization functions were validated 

using a simulated scheme. Since our final outcome of this study is to release a user 
friendly peak-calling program, we did not use the GNU Scientific Library (GSL) [59] 
or any other scientific libraries for the optimization. Therefore, users can download 
and run the C++ executable file or compile the source files without installing any 
other libraries. Installing libraries on public domains, for example on HPC clusters, 
requires administration privileges and often it is an extra burden for users.

2.7 CHOOSING THE BEST MODEL

The previously proposed models were implemented in C++, and three ChlP-seq 
datasets (ZNF143, NRSF, and STAT1) were used for the comparison. For each 
dataset, candidate regions were found, and corresponding local and global parameters 

for each model were estimated. AIC [60] and BIC [61] values were then calculated 
as follows.

AIC =  - 2  • ln(L) - 2  ■ k,
(19)

BIC =  - 2  ■ ln(L) + k • In(n),

where k  is the number of free parameters to be estimated, L is the maximum value 
of the likelihood of the model, and n  is the number of observations.

TABLE 3 Summary measures for ZNF143 dataset

M odel (-2)Log Likelihood AIC BIC 7r Q

Poisson 195824 196712 201102 NA NA
NB 180423 181 757 188 352 NA 0.512

ZIP 147213 148 547 154 967 0.164 NA
ZINB 137944 139 280 145 709 0.040 0.427
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TABLE 4 Summary measures for NRSF dataset

M odel (-2)Log Likelihood AIC BIC 7T a

Poisson 203326 205406 216 297 NA NA

NB 201916 205 038 221384 NA 0.156
ZIP 191313 194 435 210 598 0.128 NA
ZINB 181990 185114 201 288 0.010 0.135

TABLE 5 Summary measures for STAT1 dataset

Model (-2)Log Likelihood AIC BIC 7f a

Poisson 113380 114824 122126 NA NA
NB 109794 111962 122926 NA 2.226
ZIP 95135 97303 108101 0.577 NA
ZINB 94 751 96921 107729 0.488 0.615

From Tables 3, 4 and 5 it can be seen that ZINB has the lowest AIC and BIC 
values. Therefore, the ZINB model is selected as the basic model in this study. In 
the next, chapter, different covariates are introduced to the ZINB regression model, 
and their statistical significances are evaluated.
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CHAPTER 3 

ADDING COVARIATES TO ZERO-INFLATED 

NEGATIVE BINOMIAL REGRESSION MODEL

3.1 GLM MODEL FOR CO UNT DATA

When the response is a count variable and both over-dispersion and zero inflation 
are present, the zero-inflated negative binomial model can be considered for such 
data. As shown in Chapter 2, the ZINB model was the best model for ChlP-seq data 
among considered. The ZINB regression model is a generalized linear model (GLM) 
and three main components of a GLM for count data are: a random component, 
a systematic component, and a link function. The random component is the ZINB 

distribution which models the count data. In our model, the systematic component 
is v3f ( j \d 3) + ps. Although, a log link is frequently used for count data, Kim et al. [42] 
showed that the identity link is a good fit for Poisson regression set up.
Kim et al. [42] assumed

E [ Y JL] = \ f  = v J L(j\ds) + Ps, (20)

and
E [ Y jR} = X f  = usf R(j\es) + p s . (21)

The main reason for using a log link is that for count data, the mean of the data 
always should be zero or greater, and a log link guarantees a non-negative mean. In 
Equations (20) and (21), vs is the expected number of tags due to the TF molecule 
within region s, and ps is the uniform background intensity. Therefore, both vs and 
ps are positive. In addition, normal-exponential densities f L{j\0s) and f R(j\9s) are 
also non-negative for j  £ {1, . . . ,  re,} from the basic properties of a density function. 
Thus, the mean number of tags at any given location j  is non-negative, and the 
identity link is appropriate.



44

The ZINB regression model from Chapter 2 is

7r +  (1 -  7r) (l +  aAj') n if y  =  0
rfa+l/q) (axf)
r(i/a)y! if y = 1,2,3...

(22 )

and
7T +  (1 — 7r) ( l  +  aA j1)

n  _  ~.W(y+i/«) (nXf)  
V > r ( l /a ) y !  ( 1+qA R)» ify  =  1,2,3....

(23)

Here, Y)L and Y j 1 are the random variables that count left and right tags at 
location j  respectively, a  is the negative binomial dispersion parameter, 0 < tt < 1 
and X j  > 0, and 9S = us, ps, a , n). The expected number of left and right tags at 
location j  are as given in Equations (20) and (21), respectively. The covariates are 
introduced to this ZINB regression model in the following sections.

As discussed in section 1.4.3, control data might help to identify the true signal 

in ChlP-seq experiments. When using a control dataset, one of the main problems 
researchers have to deal with is the different sequence depths of the ChIP (IP) and 

the control samples. That is, the total number of reads in the IP sample is different 
from the control sample. Therefore, in order to make the correct use of a control 

sample, one would have to make the samples comparable before doing any analysis. 
A common strategy is to linearly scale the sequencing depth ratio. This factor 
is known as the “normalization factor.” It is crucial to estimate the normalizing 
factor correctly because identification of the weak enrichment sites solely depends on 

the value of the normalizing factor. Commonly used peak-callers use a normalizing 
factor to calculate p-values under their hypothesized distribution or to calculate false 
discovery rates (FDRs) using a sample swapping method [62],

Rozowsky [33] showed that background noise of the ChlP-seq sample and the 
control sample are approximately linearly related. As summarized by Liang and 
Keles [62], a standard approach of estimating the normalization factor is as follows. 
The reference genome is divided into non-overlapping bins of width w. Let n t, and 
ri,2i denote the total number of reads in the i th bin in the IP sample and the control 
sample, respectively. Let rq =  riu +  ri2 i denote the total number of IP and control 
reads for bin i. Then the IP/control ratio is estimated using Equation (24).

3.2 INCORPORATING CONTROL DATA TO THE MODEL
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r = ]CiGJ3 n li (24)
E ,€S  n2« ’

where B is the set of indexes of the bins coming from the background region.
Each normalization factor estimation method utilizes a slightly different approach 

for estimating B. However, all of those methods first divide the entire genome into 

non-overlapping bins, while our model is a per-base model. For this reason, we 
incorporate control data into our model at base level. Observed IP and control tag 
distributions across a region in the NRSF dataset are shown in Figure 23. The main 
reason for using the control data is to account for the background noise present in 
the ChlP-seq data. Background noise can result in a considerable tag accumulation 
without exhibiting the expected two-peak profile.

Therefore, if a region shows an unexpected pattern from the two-peak profile or if 
a couple of large IP tag counts are present in a region, control data might be useful to 
better estimate the peak. It can be seen in Figure 23 that a few outlying tag counts 
in the IP sample are explained by the control tag count in respective locations. This 
plot is obtained before normalizing the control tag counts. For the NRSF dataset,

^  Total IP tag counts „ „ „
Normalization Factor =  ——  -----------------   =  0.682.

Total control tag counts

This ratio suggests that the observed control tag counts in each location should 

be multiplied at least by this global IP/control ratio to get the correct picture. For 
example, an observed control count of 15 is scaled down to 15x0.682 =  10.23. This 
process of multiplying the individual or binned control counts by a factor is known 
as normalization of control data. This method is a naive normalizing technique, and 
we propose a better method to incorporate control data.
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Figure 23 IP and control tags across a region. IP and control tags for both 

left and right strands are plotted. The top and the bottom sections of the plot are 
for the observed tags in the left and the right strands respectively.

Let W j 1 and W '1 be the left and right tags at location j  in the control sample. 
Furthermore, assume that ps is the uniform background intensity in the IP sample 
as before. Therefore, the signal and the background in the IP sample are already 
accounted for in our model. In order to take the control data into account, we 
introduce a new parameter k , and we call it a “scaling factor” in our model. Although 
this parameter normalizes the control data, this is different from the “normalization 
factors” available in the literature. The main difference is that this parameter is 
estimated at a base level, i.e. no binning is done.
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Assume

— vsf L{j\Qs) + ps + KsWf', (25)

and

$  = i ' , fRU\0,) + p, + KsWjt (26)

where W f  and W j1 are the observed number of left and right control tags at location 
j ,  respectively.

Note that newly added terms in equations (25) and (26) («,, W f ,  and Wj*) are all 
non-negative. Therefore, the non-negative mean requirement is still preserved under 
this model. It was found that estimating k  using all the regions (i.e., globally) is 
efficient, and the loss of the estimated value of the likelihood function is negligible 
when compared to the models with regional scaling factors. Therefore, the scaling 
factor is globally estimated in this study (i.e. k s =  k). In addition to the above 
identity link model, we propose another model with a logit link.
Assume

^  = VsfL( M )  + Ps + KWJL, (27)

X f  = VsfRU\es) + Ps + KWJR, (28)

and

logit(nj) = log ^  =  rs +  5s( W f  + W f ) .  (29)

The model parameters r  and <5 will be estimated globally (i.e. t s , <5s) or regionally 
(i.e. r, 6). Furthermore, we introduce a new region finding algorithm to the NEXT- 
peak [42] program. When the control data are available, the NEXT-peak program 
finds the regions as follows.

First, the genome is binned into non-overlapping bins of 50 bases. Then, in the IP
sample, the number of left tags and right tags are counted in each bin. Then, the total
number of tags (left strand +  right strand) for each bin is recorded. This technique is
repeated to find the total number of control tags in each bin. Then, the total number
of tags (left strand +  right strand) for each bin is recorded. Fold change (FC) of a 
given bin is defined as the ratio of IP and control tags in that particular bin. For 
each bin, FC is calculated, and for convenience, these are converted into a log scale. 
That is, the log fold change (LFC) =  log(IP/control). Then, LFC’s are standardized, 
and these standardized LFC values are used to combine the neighboring bins.
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The rest of the process has two main steps: finding an initial bin and combining 
its neighboring bins (Figure 24). For each chromosome, we start from the first bin. 
If the ith bin passes the cutoff LFC (default value is 3), we check for the LFC of the 

(i +  l) s< bin. If the LFC of the (i + l)s< is greater than a cutoff (default value of the 
second cutoff is 1.5), we combine ith and (i + l ) s< bins (we call it the joint bin). This 

process is continued until the adjacent bin fails to pass the second cutoff.

^ = 50 bps

i-1 i i+1 i+2

■■■ m m  ^ m  ^ m  w m m m m m  m m  m m  m m  m m  m m  tmm ^ m

< >< >< >< >< >

<2>  —  |---------------------

Start End

Figure 24 An exam ple of combining bins to  form a candidate region. (1)
Check the LFC of the i lh bin. If the LFC is larger than the cutoff value, continue 
to the (i +  l ) s< bin. (2) If the LFC is greater than the second cutoff value, proceed 
to the (i -f 2)nd bin. (3) If the LFC of the (i +  2)nd is larger than the second cutoff 
value, proceed to the (i +  3)rd bin. (4) Assume that LFC of the (i + 3)rd bin is not 
greater than the required second cutoff. Therefore, join the i — (i + 3) bins to form 
a region and output the start and the end locations.

When the check for the combining process is done, the starting and the ending 
coordinates of the joint bin are reported as a candidate region. Then the next initial 
bin is sought, and the process continues until all the bins are exhausted. This is the 
basic idea of the region finding algorithm when control data are available.

For STAT1 dataset, peaks were found using both existing and new algorithms.
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Then those peaks were ranked based on the expected number of tags due to binding 
(i.e. i/s), and 50 peak intervals were considered in increasing fashion, i.e. the top 

50 peaks, top 100 peaks, top 150 peaks, and so on. Then the number of true peaks 

were computed for each interval and percentages of true peaks were plotted (Figure 
25). A peak was considered a true peak if the location of the predicted binding site, 

fj.s, is within 100 bps from a motif site. The motif sites for STAT1 were obtained 

as discussed in section 1.6. The existing algorithm does not take the control data 

into account whereas the new algorithm considers the control tag distribution when 
defining the regions.
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F igure  25 STAT1: E xisting  vs. new  region finding algorithm s. Peaks were 
found from existing and new algorithms and were ranked based on the corresponding 
vs values. Next, they were examined in increasing 50 peak intervals such as top 50 
peaks, top 100 peaks, etc. A predicted peak was considered a true positive if it was 
within 100 bps from a motif site. Then for each interval, the percentage of peaks 

containing a motif site was computed.
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It can be seen in Figure 25 that regions found using the new algorithm captured 
more true binding sites than the existing one. Performances of these algorithms 

were also compared for the GABP and STAT1 datasets, and better performance 
was observed for the algorithm using the control tag distribution to define regions. 
Therefore, for the rest of the analysis, control data were used to define regions when 
available.

3.2.1 COM PARING IDEN TITY  A N D  LOGIT LINK MODELS

The following models are used for the comparison, and the model with the lowest 
AIC value is selected.

M odel A: Identity link with no control data

= vsf L{j\9s) + ps,

and

A? =  K j R { j \ 0 s )  +  Ps-

M odel B: Identity link with control data

><f =  ^ f L ( M )  +  Ps  +  ^ w JL ,

and

Af =  v . f R(j\Ba) + ps + kW *

M odel C: Logit link with no control data in the identity link

a} =  vaf L{j\ea) + ps,

A f  = v , f R(j\Ba) + Ps,

and

logit(nj) = log ^ ^ =  rs + &S{W ^ +  W f) .

M odel D: Logit link with control data in the identity link

A^ — V s f l ( j \ 0 s )  +  Ps +  1

^  = ^ f R(M) + pK + Kwp,
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and

logit{-Kj) = log ^  J  =  rs +  +  W f) .

M odel E: Logit link with global r , <5 and no control data in the identity link

Aj =  l/s f L t i \ 8 s )  +  Ps,

Af = v , f R(j\6a) + ps,

and

logit( TTj) = log Q ^  J  = r  +  5{W*f 4- W p).

M odel F: Logit link with global r, 5 and with control data in the identity link

A f  =  v , f L( j \6s)+Ps +  KWj', 

a? =  v , f R(j\ea) +  Ps +  K\vj t ,

and

logit(nj) = log ^ =  r  +  + W f) .

The six models above were fitted for NRSF, STATl and GABP datasets. Chro­
mosome 1 is the largest chromosome, and it is about 9% of the entire human genome. 

Therefore, we used tags mapped only to the first chromosome during the model se­
lection stage for a computational consideration.
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1. NRSF dataset
For NRSF data, 1471 regions were found in chromosome 1, and a model summary 

is shown in Table 6.

TABLE 6 M odel comparison for N R SF dataset

M odel LogLike AIC BIC

ZINB Model F -313,262 635,354 685,287
ZINB Model E -313,218 635,266 685,199
ZINB Model A -308,712 626,254 673,126
ZINB Model B -308,675 626,181 673,054
ZINB Model D -272,927 560,565 599,506
ZINB Model C -272,912 560,536 599,477

It can be seen from Table 6 that ZINB model C, the logit model with no control

data in the identity link, achieved the lowest AIC and BIC values. Therefore, ZINB
model C was selected as the best model for the NRSF dataset.

2. STAT1 dataset
For the STAT1 dataset, 757 regions were found in chromosome 1. A summary is

shown in Table 7.

TABLE 7 M odel comparison for STATl dataset

M odel LogLike AIC BIC

ZINB Model A -132,835 270,216 294,026
ZINB Model B -132,650 269,846 293,656
ZINB Model E -132,443 269,433 294,818
ZINB Model F -132,096 268,738 294,124

ZINB Model C -128,862 265,296 282,823
ZINB Model D -126,622 260,816 278,342
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ZINB model D, the logit model with the control data in the identity link, achieved 

the lowest AIC and BIC values. Therefore, ZINB model D was selected for further 
analysis.

3. G ABP D ataset
For GABP data, 1090 regions were found in chromosome 1, and from Table 8 it 

can be seen that ZINB model C performed better than the other five models.

TABLE 8 M odel comparison for G A BP dataset

M odel LogLike AIC BIC

ZINB Model F -482,219 970,981 1,008,860
ZINB Model B -451,697 909,938 945,553
ZINB Model A -447,671 901,887 937,501
ZINB Model D -444,722 900,346 927,568
ZINB Model E -444,610 895,764 933,646
ZINB Model C -442,402 895,705 922,927

Our program fits these six models for a given dataset using only the largest 
chromosome of the genome. For example, observed tags from chromosome 1 are 
selected for the model selection step in both human and mouse genomes. Then, the 
model with the lowest AIC is selected as the best model. Next, GC and mappability 
covariates are introduced to the model. Once the best model is selected, peaks are 
estimated for the entire dataset using the selected model. Models with the GC count 
and the mappability information are discussed in the next two sections.

3.3 INTRO DUCING  GC CO UNT TO ZINB MODEL

As described in section 1.4.4, the GC content bias can cause problems when calling 
peaks. Literature in the past used bin-based methods and estimated the GC curve 
on a global scale, i.e. using the entire genome. Our approach is a per-base method, 
and we focus only on the areas with higher tag accumulations. First, we identify 
the regions as described in 3.2.1. The NEXT-peak program estimates the fragment
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size, L. The average distance between a fragment end and a cross-link is 3 under the 
NEXT-peak model. As a result, the average distance between the fragment ends is 

20 + d - l .  Here, d is the tag length for the dataset.

L - Fragment length

d - Tag length

n
Aligned 

I | | short read
 Reference
  Genome

Figure 26 Fragment length vs. tag length. The fragment length is the length of 
the fragmented DNA sequence produced during the sonication process. In the NGS 
techniques, only several dozens of bases of the fragments are sequenced. The length 
of the sequenced portion of the fragment is called the tag length.

We consider this fragment size, L  as the width of the sliding window. Starting 

from the first location of the region, the number of C  and G bases within the sliding 
window is counted and stored in the first location of the window. This window is slid 
until the entire region is exhausted. Similarly, corresponding GC counts are stored 
for all the regions. Then, the GC counts are converted to a ratio and rounded to 
the nearest tenths, i.e. we convert GC counts to 0 .0 ,0 .1 ,..., 1.0. For example, if 
L =  80 and the GC count is 35, the GC ratio is 35/80 =  0.4375, and when it is 
rounded to the nearest tenth, the GC ratio becomes 0.4. GC ratios were found for 
the first chromosome of the NRSF dataset. For NRSF data, (3 =  46.69 and d =  51. 
Therefore, 2x/3 +  d - l  =  143.38. Therefore, L was set to 144. The histogram of 
GC ratios is shown in Figure 27.
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Figure 27 Histogram of GC ratios. For the regions found in the first chromosome 
of the the NRSF dataset, a sliding window of 144 bases was used to find the number 
of G and C  bases. For each sliding window, the ratio of GC bases were recorded. 
Then the histogram of GC ratios was obtained.

It can be seen from the histograms that the effects on the observed tags due to 

the GC percentages are unimodal. The shapes of the histograms of GC ratios for 
STAT1 and GABP datasets were also similar. Next, the effect of the GC ratios on 
the observed tag counts was considered, and a smoothed density plot was obtained. 
Figure 28 shows the marginal effects of the GC ratios on the observed counts.
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Figure 28 Sm oothed scatter plot o f GC ratios. The smoothed scatter plot 
for the regions found in the first chromosome of the the NRSF dataset. Number 

of observed tags are plotted against the corresponding GC ratios. Darker areas 
represent a higher number of cases.

It can be seen that a lower number of tags were observed in locations with rela­
tively high or low GC ratios, so the marginal GC effect is unimodal. Therefore, to 
estimate the GC effect, a vector of GC parameters is introduced to the systematic 
component of the GLM as in Equations 30 and 31:

e  [y /] [ v s f L ( j \ 0 s )  +  Ps] exp 7 c c f (30)

and

E [ Y « '• j  J -  '\J -  [ v Bf R ( j \ 0 a )  + Pa] exp 7c c f  , (31)

where 7  is a vector such that, 7  = {7 0 .0 , 7 0 .1 , ■ • • , 7 i . o }  and G C f and G C f  refer to 
the GC ratio at location j  on the left and right strands respectively. Note that there 
are 11 parameters to be estimated. 7  parameter was estimated along with the other 
parameters in the model by minimizing the negative log likelihood and their values 
were plotted against the corresponding parameters. Figures 29 and 30 show the 
shapes of the gamma estimates for the NRSF and GABP datasets respectively.
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Figure 29 Plot of gamma parameter estim ates for N R SF dataset.
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Figure 30 Plot of gamma parameter estim ates for G A BP dataset.
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The GC covariate was introduced to the previously selected models for each 
dataset, and parameters were estimated minimizing the log likelihood values. A 
summary for each dataset is shown in Table 9.

TABLE 9 Comparison of models w ith and without GC covariates

M odel LogLike AIC BIC

NRSF
ZINB Model C 
ZINB Model C +  GC

-272,912
-277,263

560,536
569,260

599,477
608,259

STAT1
Model D
ZINB Model D +  GC

-126,622

-151,846
260,816
311,287

278,342
328,865

G A BP
Model C
ZINB Model C + GC

-442,402

-506,433
895,705

1,023,790
922,927

1,051,070

It can be seen that when the GC covariate was introduced, both AIC and BIC 

values were increased. This suggests that the GC covariate should not be included 
in the models. Therefore, the selected models in the previous section are the best 
models for each dataset, i.e. ZINB model C for the NRSF and GABP datasets and 
ZINB model D for STAT1 dataset.

3.4 INCORPORATING M APPABILITY INFORM ATION

Mappability information is found as described in section 1.4.5 for each genomic 
location. When calculating the profile likelihood value in eaeh parameter estima­
tion, mappability information for each chromosome is read and stored in a boolean 
vector. Then, the boolean value is checked for each location before calculating the 
profile likelihood. In the second line of the following code, maskjp[chr][m] holds a 
boolean value for mappability information, and the negative log-likelihood value was 
calculated only if that location is mappable.
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for  ( s i z e . t  m =  re g L e ftE n d s  [ i ] ; m <  reg R ig h tE n d s [ i ] ; m f-f) { 

i f ( m ask.p [ chr ] [m ])

n e g lo g lik  - =  ( cn tM appedT ags.p  [0] [ chr ] [m] * 
log  ( lam bda 1 [m -reg ion  L eft E nds [ i ] ])

+  cn tM appedT ags.p  [ 1 ][ chr ] [m] * 

lo g  ( lam bda2 [m -reg ion  L eft E nds [ i ] ] ) ) ;

}

—  Without mappability 
  With mappability
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Figure 31 STAT1 dataset with and without mappability information. Num­
ber of true binding sites were determined based on the motif site locations and cu­
mulative plots were obtained.

From Figure 31 it can be seen that, model with the mappability information 
performed better than the model without the mappability information.
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3.5 PAIRED EN D  DATA

So far, we analyzed three single-end tag (SET) datasets and found the best model. 
In this section, a paired-end tag (PET) dataset, STAT6, is considered. ChlP-seq data 

for STAT6 was preprocessed as explained in section 1.7.2 and Poisson, NB, ZIP, and 

the previously discussed six ZINB models were fitted. Table 10 gives a summary of 
the models.

TABLE 10 Summary measures for STAT6 dataset

Model LogLike AIC BIC

Poisson -454,144.0 912,885.0 937,723.0
ZIP -197,622.0 402,143.0 437,015.0
ZINB M odel F -102,802.0 212,502.0 249,765.0
ZINB M odel E -102,797.0 212,493.0 249,756.0
ZINB M odel B -102,290.0 211,478.0 246,351.0
ZINB M odel A -102,289.0 211,476.0 246,349.0
NB -102,037.0 210,970.0 245,833.0
ZINB M odel D -96,663.1 204,818.0 233,816.0
ZINB M odel C -96,660.6 204,813.0 233,811.0

Table 10 is ordered from largest to smallest AIC values. It can be seen that ZINB 
model C achieved the lowest AIC and BIC values. Figure 32 is a percentage plot 
of the true peaks found for the fitted models. From the percentage plot it is also 
evident that ZINB model C found the highest number of true positives based on the 
motif site locations.
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Figure 32 M odel comparison for STAT6 dataset. A percentage plot was 
obtained for all the models. Poisson, NB and ZIP models performed worse than all 
the ZINB models.

The GC covariate was introduced to the model as in the SET data model, and 
it was found that the GC covariate is not significant in the model. Therefore, ZINB 
model C is selected as the best model for the STAT6 dataset. Our program finds 
the best ZINB regression model using only the regions in the largest chromosome 
of the corresponding genome. Next, the GC covariate is added to see if there is an 
improvement in the AIC value. The model with the lowest AIC value is assumed to 
be the best model for that specific dataset and fj.s, us and other respective parameters 
of that model are estimated for the entire set of regions.

Likelihood, AIC and BIC values are indicators of the overall fit of the model. 
In the next section, model fit is compared for selected regions, and it will help us 
understand how some models outperform others.
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3.6 PERFO RM ANCE COM PARISON

In section 2.7, based on AIC and BIC values, it was shown that the ZINB model 

performed better than the Poisson, NB and ZIP models. To further demonstrate 

the advantages of using the ZINB model, predicted mean values were overlaid for 
several regions selected in the NRSF, STAT1 and GABP datasets. The expected 
number of tags due to binding in a given region, u, measures the strength of the TF 

binding; therefore, it is used to rank the peaks. Thus, the reliable v  estimates are 
essential. Heights of the peak in the overlaid plots are proportional to the value of 
the v  estimates plus the p estimates.

Figure 33a is a region with a relatively higher number of locations with zero 
counts, and it has two high tag accumulations. The location of the motif site is 
denoted by a thick vertical line. As explained in chapter 1, the estimated binding 
site lies between the left and the right peaks. Figure 34a shows a region found for the 
NRSF dataset. It can be seen that the NB model showed left shift in its estimated 
peak location. The ZINB model estimated the closest binding site to the motif site 
location. Also, its u estimate is the largest. In Figures 34b-34d it is evident that the 
ZINB model fitted observed data better than the other three models.

Figures 35a-35d show four regions found for STAT1 dataset. The ZINB model 
fitted observed data better than the Poisson, NB and ZIP models.



63

o>
£

XI
£

<z CN
O
a3
£3
Z  *■

' x. <•

'

a ? ?r

-----Poisson
NB 

- - ZIP 
-----  ZINB

~T~ I
0 100 200 300 400 500 600

Relative Position 
GABP Chromosome 1: Start Position 63021850

oV)CD
(2
0)
o

Q
<9a)O)

£

o Poisson
NB
ZIP
ZINB

<ux>
£
^ CT>

0 100 200 300 400
Relative Position 

GABP Chromosome 1: Start Position 85514550

Uio>

o

O
<5

X>
£3z

w

O

x: inO)
&
0
1 s 
£3z

Poisson
NB
ZIP
ZINB

0 200 400 600 800 1000
Relative Position 

GABP Chromosome 1: Start Position 84716900

</)

o
<5
£3z

©
WO)
£
XID)
a: ro

Poisson
NB
ZIP
ZINB

0 100 200 300 400
Relative Position 

GABP Chromosome 1: Start Position 53458300

Figure 33 Performance comparison using G A BP regions. For the GABP 
dataset, observed tag counts were modeled using Poisson, NB, ZIP and ZINB models. 
Panel (a) shows two high tag accumulation areas in each strand. The thick vertical 
line denotes the observed motif site location within the region. Poisson, NB and ZIP 
models estimated the wrong peak.
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Figure 34 Performance comparison using NRSF regions. Regions were found 
in the first ehromosome, and the Poisson, NB, ZIP, and ZINB models were fitted. 
Then the estimated mean values were plotted against the observed tags. Thick 
vertical lines in (a) and (d) denote the location of the motif sites within the region. 
There were no motif sites observed in regions (b) and (c). The height of the peak is 
proportional to the estimated u value plus the estimated p value. In all four regions, 
the ZINB model fits better than the other three models.
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Figure 35 Performance comparison using STAT1 regions. This plot shows 
four regions with relatively smaller tag frequencies (< 8). Higher peaks indicate a 
larger u value. Since regions are ranked based on the value of the u parameter, it is 
important to have reliable v  estimates.

From all these plots, it is evident that the ZINB model performed better, cap­
turing the higher variability and the zero counts in the ChlP-seq data. Next, the 
performance of the ZINB model is compared with the two existing peak-callers.
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Figure 36 Percentage plot for G A BP dataset. Peaks were estimated from the 
ZINB model and were ranked based on the corresponding us values. Then, QuEST 
and MACS peak-callers were also used to find peaks for GABP data. Next, they were 
examined in increasing 50 peak intervals such as the top 50 peaks, top 100 peaks, 
and so on. A predicted peak was considered a true positive if it was within 100 bps 
from a motif site. Then for each interval, the percentage of peaks containing a motif 
site was computed.
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Figure 37 Percentage plot for STAT1 dataset. Cumulative percentages were 
calculated for STAT1 data and plotted. The ZINB model performed better than 
QuEST and MACS.
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From Figures 36 and 37, it can be seen that our ZINB model performed bet­

ter than QuEST and MACS. These cumulative percentage plots were obtained by 
treating the motif site locations as the true binding sites. However, true binding site 

locations can be different from the motif site locations. Also, there can be true bind­
ing site locations that were not captured during the motif search. For example, in 

Figures 33-35, there are many regions with the two peak pattern. Nevertheless, only 

a few regions reported having a motif site nearby (shown using a thick vertical line). 
Thus, a well formulated simulation scheme is needed to account for the variability, 
zero-inflation and other biases such as GC bias and mappability bias of ChlP-seq 
experiments. This would be a future extension of this study.
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CHAPTER 4

DISCUSSION

In this dissertation we have developed a per-base, zero-inflated negative bino­
mial (ZINB) regression model to identify transcription factor binding sites in chro­

matin immunoprecipitation followed by massively parallel sequencing (ChlP-seq) 
data. First, we proposed three new per-base regression models: negative binomial 
(NB), zero-inflated Poisson (ZIP), and zero-inflated negative binomial (ZINB). Then, 
using NRSF, ZNF143, and STAT1 datasets, it was shown that the ZINB regression 
model fit the ChlP-seq data best. A new algorithm was implemented to find the high 
tag accumulated domains (a.k.a. regions) across the genome. For all three testing 
datasets (NRSF, STAT1 and GABP), the new algorithm performed better than the 

existing one. Using an identity link and a logit link, we introduced the GC covariates 
and the control data into the ZINB regression model. Three single-end tag (SET) 
IP and control datasets- NRSF, STAT1 and GABP- and a paired-end tag (PET) IP 

and control dataset (STAT6) were used for the model comparison.
For the NRSF and GABP datasets, the ZINB regression model with the logit 

link and the identity link with no control data achieved the lowest AIC values. Logit 
model with the control data in the identity link showed the lowest AIC value for 

the STATl dataset. The GC covariate was not significant in all three datasets. 
For the PET dataset, the logit model with no control data in the identity link was 
significant. Furthermore, the GC covariate had no significant effect on the peak 
prediction. The estimated number of tags due to binding (i.e., u) is used to rank 
peaks. The performance of the ZINB models over other models was illustrated using 
some selected regions. When the mappability information was incorporated, the 
performances of the ZINB models improved.

Performance of the chosen ZINB models was compared with two existing peak- 
eallers: MACS and QuEST. Known motif site locations were used for the comparison, 
and any predicted peak within 100 bases from a motif site was considered a true bind­
ing site. ZINB models outperformed the MACS and QuEST peak-callers. Although 
motif sites are being widely used to compare performances of peak-callers, the use
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of a well structured simulation scheme would help effectively understand the correct 
picture.

Our program is coded in C++ for faster computation. Using only the largest 

chromosome, six ZINB models are fitted, and the model with the lowest AIC value 
is chosen as the best model for the dataset. The selected model is then fitted using 

the entire dataset, and peaks are found for each region. A Linux executable and the 

source code is freely available at http://www.people.vcu.edu/~nkkim/nextpeak.html 
and https://sites.google.com/site/sameeraviswakula/downloads.

http://www.people.vcu.edu/~nkkim/nextpeak.html
https://sites.google.com/site/sameeraviswakula/downloads
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APPENDIX A

PERL CODES USED TO PREPROCESS DATA

A .l PERL CODE TO EXTRACT FIELDS FROM BOW TIE2 
O U TPU T

# ! /  u s r / b i n / p e r i  —w 

w h ile  (<>){
i f  ( / \ S + \ s  +  ( \ d + ) \ s + c h r ( \ d + ) \ s  +  ( \ d + ) . * / ) {

i f  ($1 =  0){
pr i nt  ”+ ” , ” \ t ” , $2 , ” \  t ” , $3 , ” \ n ” ;

}
e l s i f ($1 =  16){

pr i nt  , ” \ t ” , $2 , ” \  t ” , $ 3 , ” \ n ” ;

}
} e l s i f  ( / \ S + \ s  +  ( \d + ) \ s +chrX\ s  +  ( \d + ) . * / ) {  

i f  ($1 =  0){
pr i nt  ”+ ” , ” \ t ” , ” 23” ,” \ t ” ,$2 , ” \ n ” ;

}
e l s i  f ($1 =  16){

pr in t  , ” \ t ” , ” 23” , ” \ t ” , $ 2 , ”\ n ” ;

}
} e l s i f  ( / \ S + \ s  + ( \ d + ) \ s +c h rY \ s  +  ( \d + ) . * / ) {  

i f  ($1 =  0){
pr i nt  ”+ ” , ” \ t ” , ” 24” , ” \ t ” ,$2 , ” \ n ” ;

}
e l s i f ($1 =  16){

pr i nt  , ” \ t ” , ” 24” , ” \ t ” ,$2 , ” \ n ” ;

}
}

}
e x i t  ;
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A .2 PERL CODE TO EXTRACT FIELDS FROM BOW TIE2 PET  
O U TPU T

# ! / u s r / b i n / p e r l  —w 

whi le(  <>) {
i f  ( / \ S + \ s + ( \ d + ) \ s + c h r  ( \ d + ) \ s + ( \ d  +  ) . * / ) {  

i f  ( $1 =  99) {

pr i nt  ”+ ” , ” \ t ” , $ 2 , ” \ t ” , $ 3 , ” \ n ” ;

}
e 1se i f ($1 =  147){

pr i nt  , ” \ t ” , $ 2 , ” \ t ” ,$3 , ” \ n ” ;

}
}
i f  ( / \ S + \ s  +  ( \ d + ) \ s + c h r ( \ d + ) \ s  +  ( \ d + ) . * / ) {  

i f  ($1 =  83) {
pr i nt  , ” \ t ” ,$2 , ” \ t ” ,$3 , ” \ n ” ;

}
e l s e i f ($1 =  16 3){

pr i nt  ”+ ” , ” \ t ” , $ 2 , ” \ t ” , $ 3 , ” \ n ” ;

}
}
i f  ( / \ S+ \ s - | - ( \ d+) \ s+chrX ( \ d + ) \ s  + ( \d + ) . * / ) {  

i f  (Si  =  99) {
pr i nt  "+” , ” \ t ” , $ 2 , ” \ t ” , $ 3 , ” \ n ” ;

}
e l s e i f ($1 =  147){

pr i nt  , ” \ t ” ,$2 ,$3 , ” \ n ” ;

}
}
i f  ( / \ S + \ s  + ( \ d + ) \ s + c h r X ( \ d + ) \ s  +  (\d + ) . * / ) {  

i f  ( SI =  83) {
pr i nt  , ” \ t ” , $2 , ” \  t ” , $ 3 , ” \ n ” ;

}
e l s e i f ($1 =  163){

pr i nt  ”+ ” , ” \ t ” ,$2 , ” \ t ” ,$3 , ” \ n ” ;
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}
}
i f  ( / \ S + \ s  + ( \d + )\s+ ch rY  ( \ d + ) \ s - f  ( \ d +  ) . */ )  { 

i f  ($1 =  99) {
pr in t  ”+ ” , ” \ t ” ,$2 , ” \  t ” , $ 3 , ” \ n ” ;

}
e l s e i f ( S I  =  147){

p r in t , ” \ t ” , $ 2 , ” \ t ” , $ 3 , ” \ n ” ;

}
}
i f  ( / \ S + \ s  +  ( \d + ) \s+ c h rY  ( \ d + ) \ s  +  ( \ d +  ) . * / ) {

i f  ($1 =  83) {
pr i nt  , ” \ t ” , $ 2 , ” \ t ” , $ 3 , ” \ n ” ;

}
e l s e i f ($1 =  163){

pr i nt  ”+ ” , ” \ t ” , $2 , ” \  t ” , $ 3 , ” \ n ” ;

}
}

}
e x i t  ;
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