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ABSTRACT

THE STRAGGLING GREEN’S FUNCTION METHOD FOR ION TRANSPORT

Steven Andrew Walker 
Old Dominion University, 2005 

Director: Dr. John Tweed

For many years work has been conducted on developing a concise theory and 

method for HZE ion transport capable of being validated in the laboratory. Previous 

attempts have ignored dispersion and energy downshift associated with nuclear 

fragmentation and energy and range straggling. Here we present a Green’s function 

approach to ion transport that incorporates these missing elements. This work forms the 

basis for a new version of GRNTRN, a Green’s function transport code. Comparisons of 

GRNTRN predictions and laboratory results for an 56Fe ion beam with average energy at 

the target of one GeV/amu or more are presented for various targets. Quantities 

compared are the energy deposited spectra for an Aluminum target and Graphite-Epoxy 

mix target, the fraction of primary beam surviving and track average LET for these and 

various other targets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGMENTS

I would like to thank my advisor Dr. John Tweed for his time, patience and 

encouragement throughout my research and writing. I would like to thank my committee 

for their time and effort in reading and rereading the various versions of this manuscript 

and for their suggestions and advice on how to smooth out the rough edges and clarify 

things. I would like to thank the entire Math department for the family-like atmosphere 

they have created. I would especially like to thank the departmental secretaries, Mrs. 

Barbara Jeffrey and Mrs. Gayle Tarkelson, for the invaluable assistance they have 

rendered in cutting through red tape and other bits of bureaucratic snafu.

I would like to thank my friends and family, especially my parents, for their 

encouragement and understanding while I was at graduate school. Their son, the 

‘professional student’, is finally graduating.

This research was supported under NASA Research Grant NCC-1-396 and NASA 

Research Grant NAG-1-03077. I would like to thank the radiation group headed by John 

Wilson of the Computational Structures and Materials Branch at NASA Langley 

Research Center for the funding and the assistance they have provided with this research. 

I would like to also thank Jack Miller and his group at the Lawrence Berkeley National 

Laboratory for sharing their experimental data with me.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

Page

LIST OF TABLES.................................................................................................................. vi

LIST OF FIGURES............................................................................................................... vii

Chapter

I. INTRODUCTION.................................................................................................... 1
BRIEF HISTORY OF SPACE RADIATION RESEARCH..................... 2
LABORATORY VALIDATION OF CODES........................................... 5
OBJECTIVE OF THIS DISSERTATION..................................................7

II. BOLTZMANN EQUATION................................................................................. 9
CROSS SECTIONS..................................................................................... 9
STRAIGHTAHEAD APPROXIMATION AND
THE ONE DIMENSIONAL BOLTZMANN EQUATION.....................14

III. ATOMIC AND NUCLEAR PROCESSES........................................................16
ATOMIC PROCESS AND ATOMIC GREEN’S FUNCTION 16
NUCLEAR ELASTIC SCATTERING..................................................... 17
NUCLEAR REACTIVE PROCESSES....................................................18

IV. THE GREEN’S FUNCTIONS...........................................................................20
THE ZERO ORDER GREEN’S FUNCTION......................................... 20
THE N™ ORDER GREEN’S FUNCTION............................................. 23
THE FIRST ORDER GREEN’S FUNCTION......................................... 25
THE SECOND ORDER GREEN’S FUNCTION.................................... 28
NON-PERTURBATIVE REMAINDER..................................................34

V. RESULTS AND COMPARISON WITH EXPERIMENTS.............................39
EXPERIMENTAL PROCEDURE............................................................ 40
DETECTOR MODEL................................................................................42
ENERGY DEPOSITED COMPARISONS.............................................. 43
FRACTION OF PRIMARY BEAM SURVIVING.................................46
TRACK AVERAGE LET..........................................................................48

VI. CONCLUSIONS AND FUTURE WORK...................................  52

REFERENCES.......................................................................................................................54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



V

Page

VITA........................................................................................................................................58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Table Page

1. Comparison between model calculations and preliminary experimental 
results for the fraction of primary ion surviving as measured in the detector
pair farthest downstream from the target................................................................. 48

2. Comparison between model calculations and preliminary experimental results
for the fraction of primary ion surviving as measured in the detector pair 
closest downstream for various targets....................................................................49

3. Comparison of computed track average LET with experimental results from
detectors farthest downstream of the various targets.............................................. 50

4. Comparison of computed track average LET with experimental results from
detectors closest downstream of the various targets................................................51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vii

LIST OF FIGURES

Figure Page

1. Graphical representation of the range/ energy relationship and its inverse............12

2. Computed Zero Order Green’s Function for an iron beam at various depths
in Aluminum............................................................................................................. 23

3. First generation 40 Ca fragment flux at various depths for the case s' -  0 ...........27

4. First generation 40Ca fragment flux at various depths for the case s' = 5 ...........28

5. First generation ]60  fragment flux at various depths for the case s' ~ 0 ..............29

6. First generation 160  fragment flux at various depths for the case s' = 5 ..............30

7. Second generation 40Ca fragment flux at various depths for the case s' -  0 .......33

8. Second generation 40Ca fragment flux at various depths for the case s' = 5 .......34

9. Second generation 160  fragment flux at various depths for the case s' = 0 .........35

10. Second generation i60  fragment flux at various depths for the case s' = 5 .........36

11. First and second generation 40Ca fragment flux and the non-perturbative
reminder at various depths in Aluminum................................................................ 38

12. Typical experimental detector setup (not to scale)...............................  40

13. Energy loss spectrum for 1037 MeV/amu 56Fe beam with spread of 5
MeV/amu striking 7mm of A1 as measured in detectors d3mm3/4 .................. 44

14. Energy loss spectrum for 1050 MeV/amu 56 Fe beam with spread of 5
MeV/amu striking 10 g  / cm2 of 50.92/49.08% Graphite-Epoxy mix, as 
measured in detectors d3mm3/4..............................................................................46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1

CHAPTER I 

INTRODUCTION

"Space, the final frontier...". These curiously prophetic words are as true today 

as they were back in the mid I960’s. Then, man had the goal to go to the moon; today, 

the goal is to revisit the moon, and then send people to Mars. One of the critically 

important problems to be solved facing space exploration as mankind travels deeper into 

our solar system, and beyond, is that of radiation protection for people and electronics. 

The protection issue that most needs to be resolved relates to particle radiation, 

particularly protection from ions. Ions are formed when the electrons in an atom are 

removed, leaving the positively charged nucleus behind. The transport of ions presents 

the area of radiation shielding in need of the most development.

The first of three major sources of ions in space is the sun. The fusion process 

that powers the sun produces an outward ion flow known as the solar winds. Upon 

occasion there is an expulsion of solar matter from the sun’s surface, called a solar flare. 

The largest, most violent events from the sun are coronal mass ejections, CME. Where 

the solar winds would be a light drizzle and the solar flares a heavy rain shower to 

thunderstorm, a CME would be a major hurricane. These solar particle events, SPE, 

(solar winds, flares, and CME) that strike earth are sometimes collectively denoted as 

solar rays or solar cosmic rays. The sun is also a contributor to the second major ion 

source, known as the van Allen belts. The van Allen belts are bands of ions and electrons 

trapped by the earth’s magnetic field. While not occupying a large volume, parts of the

The model for this dissertation was Nuclear Instruments and Methods in Physics Research B: Beam 
Interactions with Materials and Atoms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2

van Allen belts contain large numbers of particles and can be quite dangerous to humans 

and electronics. The third major ion source is galactic cosmic rays (GCR). These are 

ions that travel into the solar system from outside it. GCR sources are the winds, flares, 

and CME of other stars in the galaxy, the expulsion of matter as stars transition from one 

stage in their life cycle to another, and the explosion of stars known as novas (novae) and 

supernovas (supemovae). Solar cosmic rays typically have large fluences and relatively 

low energy, while galactic cosmic rays have low fluences and large energies. The 

fluence, or differential flux, is the number of particles moving in a given direction 

crossing one square cm of area per second with energy between E  and E + d E . Of these 

cosmic rays, the high charge and energy (HZE) component is the focus of most research, 

due to HZE ions presenting the greatest health risk in space. On earth we are somewhat 

protected by the earth’s magnetic field, creating the van Allen belts, and the atmosphere. 

In space, the only protection is what you take with you.

Brief History of Space Radiation Research

For a complete history of space radiation research, the reader is referred to the 

NASA publication Transport Methods and Interactions for Space Radiations [1]; what 

follows here is a brief summary up to its publication in 1991, and more detailed 

information on further developments since then.

In 1912, Hess’ balloon experiments into atmospheric ionization led to the 

discovery of cosmic rays [2], In 1948, Freier et al. found evidence for [3], and Freier, 

Lofgren, Ney, and Oppenheimer confirmed [4], a heavy ion component of cosmic rays in 

the Earth’s upper atmosphere. A year later at the meeting “Aero Medical Problems of 

Space Travel”, C. F. Gell stated that cosmic rays were a definite health risk, and
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potentially could be fatal, despite the current belief to the contrary, and urged that space 

radiation protection be further investigated [5]. In 1950, Gell’s concerns were verified by 

H. J. Schaefer, who’s data showed that radiation rates were over 100 times higher in the 

upper atmosphere than at sea level [6].

In 1956 the then largest recorded solar flare event occurred. This event had a 

great influence on the direction of radiation shielding design and studies. It was decided 

at the 1960 Conference on Radiation Problems in Manned Space Flight that for short 

manned missions the GCR background was not deemed a large safety issue; the major 

concern was shielding against large SPE [7].

NASA Langley Research Center began studying space radiation in the late 1950’s 

and continues this research today. The work gained prominence when the proposed U.S. 

Supersonic Transport Program (the precursor/ inspiration to today’s hyper-x program) 

was begun in the early 1960’s and when NASA Langley was tapped in 1964 to help 

resolve the FAA’s concern over radiation issues for high altitude commercial air flights.

At that time, all the codes for radiation transport were based on Monte Carlo 

methods. The most widely used of these codes was HETC, High-Energy Transport Code, 

based at Oakridge National Laboratory. The computers of the day, combined with the 

Monte Carlo method, gave HETC a very long run time for computations. The long runs, 

combined with HETC’s popularity, found Langley researchers waiting long times for 

code results. It was therefore decided that it would be advantageous to have a local 

transport code for Langley’s work. This was the start of radiation code development at 

the NASA Langley Research Center. The first code developed, PROPER-C, and its 

successor, PROPER-3C, were Monte Carlo based codes. They gave Langley researchers
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the results they needed, but still had long, and expensive, computation times.

In order to combat the long, expensive runs required for radiation calculations, 

researchers decided to switch from Monte Carlo based methods to deterministic methods 

in the mid 1970’s. Deterministic methods use perturbation techniques, the 

“straightahead” approximation, and the velocity conserving approximation to solve 

Boltzmann’s equation in one dimension. These methods have been the heart of transport 

development at the Langley Research Center for the last 30 years.

The first code developed at NASA Langley was BRYNTRN, baryon transport 

code, of the late 1980’s [1,8,9]. This code could handle lighter particles at various 

energies, and was designed for space shielding computations with a solar source. These 

computations were fine for the moon era space missions, but would need to be 

augmented for proposed longer missions in low earth orbit, the continuing Supersonic 

Transport program, and sending probes to other planets in the solar system. For such 

missions, the GCR background radiation, which has a strong HZE component, would 

play a large role in shielding concerns.

Thus, after completion of BRYNTRN, researchers turned their attention to the 

transport of heavy ions. This culminated in the development of GCRTRN, Galactic 

Cosmic Ray transport code, for heavy ion transport in the space environment [10-12], In 

the early 1990’s, BRYNTRN and GCRTRN were combined into HZETRN, high charge 

and energy transport, a one dimensional code capable of shielding computations for any 

space environment [1,13,14]. All these codes use the straightahead approximation and a 

numerical marching scheme in transport computations. To support HZETRN, a series of 

semiempirical nuclear fragmentation models, HZEFRG1 and NUCFRG2, were
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developed [15,16].

Laboratory Validation of Codes

It has long been recognized that any ion transport code needs to be validated with 

experimental results [17-19]. Codes based on numerical methods are fine in situations 

where radiation fields are smooth and slowly varying, like in space, but cannot handle 

situations where there are large variations in energy in a small area, like those occurring 

in a particle beam [20]. HZETRN is no exception to this. Only codes based on analytical 

methods have been identified to bridge this gap, with Green’s functions methods being 

emphasized [21].

Work to use the Green’s function methods for ion transport started in earnest in 

the 1970’s. The first major effort was the Energy Independent Green’s function method, 

first introduced by Wilson in 1977 [22]. This method formed the basis for the early 

versions of BRYNTRN, GCRTRN, and HZETRN [23]. The terms for the primary beam 

and the first generation fragments were derived [22], and Wilson later added the second 

generation fragment term in 1983 [11]. In this method nuclear cross section terms in 

Boltzmann’s equation are replaced by constant values. Fragmentation is handled using 

the “velocity conserving” approximation, which states that fragments have the same 

velocity (energy) as the parent particle.

Energy Independent methods also formed the basis for the first attempts to 

produce a code for validation in the laboratory setting. While this code did enjoy some 

success in predicting experimental results [17], the limitations of the method were soon 

recognized. The assumption of energy independent nuclear cross sections is more 

appropriate in a space setting, and not for ion beams of the day. Most of the experiments
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at that time were being done in the energy range of 400-600 MeV/amu. At these modest 

energies, the energy dependence of nuclear cross sections must be taken into account. 

Consequently, the Energy Dependent Green’s function method was introduced, and the 

attenuation term and lowest order collision term were derived [17,24]. This method still 

incorporated the velocity conserving approximation. Once this method was introduced, 

NUCFRG2 was updated to generate the new energy dependent cross sections [25], and 

HZETRN was modified to use the new nuclear data [26], With the inclusion of non- 

perturbative methods [1,27,28], the Energy Dependent method laboratory code, dubbed 

GRNTRN, for Green’s function transport [23,29], was able to model several experiments 

with acceptable accuracy [29,30]. It was recognized that higher order collision terms 

needed to be derived for both the monoenergetic ion beam and Gaussian ion beam.

As time progressed, more detailed models were required to more accurately 

reflect ion transport through targets and detectors [19]. The greater desired accuracy 

required a re-examination of the assumptions used in the current models. The velocity 

conserving approximation is one component that could use improvement. In a real 

collision, energy is lost in liberating the fragment(s), typically leaving the remaining 

nuclei and the fragment nuclei in an excited state, which results in further energy loss. A 

second factor that a new model could better reflect is the broadening of a particle beam, 

called straggling, as it passes through the target. Both of these factors are of small 

importance in space applications, but are critical for accurate comparisons to accelerator 

experiments.

The resolution of these issues was slow in coming. The first to be accomplished 

was the creation of a simple model for energy losses and dispersions in the fragmentation
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process, done by Tripathi, Townsend and Khan in 1994 [31]. This energy loss is 

referred to as collision energy downshift and the accompanying dispersion is the 

interaction energy width. A simple straggling model was not developed until 2002 by 

Wilson, Tweed, Tai and Tripathi [32]. A Green’s function transport theory which 

incorporates energy downshift and straggling, dubbed here as the Energy Dependent 

Straggling Green’s function method, was first introduced in 2002 by Tweed, Wilson and 

Tripathi [33,34]. Here the attenuation term and the first fragmentation term were derived. 

Objective of this Dissertation

In this dissertation a concise theory of ion transport using Green’s functions will 

be developed. Along the way, new notation will be introduced and utilized, replacing 

previous notation that becomes unwieldy as the theory is developed. The attenuation 

term will be introduced using the new notation, and a general procedure for determining a 

portion of the various collision terms will be derived. Based on this general procedure, 

the first fragmentation term will be re-derived. A semi-analytic approximate second 

collision term will be developed. The non-perturbative remainder will then be 

introduced, utilizing the Green’s function terms developed here. A computer code based 

on the initial beam, first and second fragmentation term, and non-perturbative remainder 

will be used to generate numerical data to be compared with a large number of 

experiments. This code is a new version of GRNTRN, and again uses the NUCFRG2 

nuclear database.

Chapter II introduces the Boltzmann transport equation, common perturbation 

expansions, and examines the cross sections terms, both before and after the 

straightahead approximation is used, and finishes with the one dimensional linear
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Boltzmann equation. Chapter III recasts the one dimensional Boltzmann equation in 

operator notation, examines the various perturbation solutions, and sets up the Green’s 

function problem for the Boltzmann operator. Chapter IV derives the 0th, nth, 1st, and 2nd 

generation Green’s functions and non-perturbative reminder. Chapter V compares the 

results from GRNTRN with a host of experiments done with a primary beam of 56Fe 

ions with energy at target of 1000 MeV/amu or more. Chapter VI will provide a 

summary, and outline further areas of potential research.
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CHAPTER II 

BOLTZMANN EQUATION

Ion transport is governed by the Boltzmann equation. Other applications of the 

Boltzmann equation are the behavior of fluids, and plasma physics, to name a few [35]. 

Due to their low energies, very short range, and negligible production of secondary 

particles, target fragments can be ignored. Thus we focus on the linear Boltzmann’s 

equation for the projectile fragments, which takes the form [1]

n -V 0 J(z ,n ,E)  = Y , \ v jk(n,n\E,E')</>k(z ,n ' ,E ' )dE 'da-a j (E)<f>J(z ,n ,E)  , (2.1)
k

where >̂. (z, fl, E) represents the flux of j  type ions at position z moving in direction 12

with energy E , ov (E) is the total macroscopic cross section for a j  type particle, and

cr^ (f2,£2',E,E') is the macroscopic production cross section. The production cross

section represents all the processes by which a k type ion moving in direction 12' with 

energy E' produces a j  type ion moving in direction 12 with energy E . The total cross 

section is then found by summing over all values of k .

Cross Sections

A cross section is an effective area an object presents a viewer, similar to the 

object’s shadow. For example, from any angle, the cross section of a sphere is a circle. 

The cross section of a can is a rectangle if viewed directly from the side, a circle if 

viewed directly from the top or bottom, and looks differently if viewed from other angles. 

In nuclear physics, a cross section is a measure of the probability that an interaction will 

occur, and is a different value for different kinds of interactions. If an ion moves a
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distance d , then the probability that it will have an interaction is <jj(E)d. The

macroscopic cross sections can be expanded in a series of physically perturbative terms 

as

a J (E ) =  o a;  (E ) +  <7e;  (.E) +  <Ty (E ) , (2.2)

where a *  (E) refers to interactions with atomic electrons, cfe‘{E) represents elastic 

nuclear scattering, and <jrj (E) are the various nuclear reactions. The production cross

section can likewise be expanded. In moving a distance of one centimeter through matter 

a projectile ion has many collisions with atomic electrons (~106) and a large number of 

elastic scattering collisions (~102-103), while nuclear reactions are separated by a fraction 

to several centimeters.

As an ion travels through ordinary matter and interacts with the electrons, it loses 

energy in discrete amounts called the atomic/molecular electron excitation energy levels, 

sn , measured in units of MeV. The corresponding atomic differential cross section,

cTjl (ft, ft', E, E ') , is modeled by

a a;k(Cl,Sl',E,E') = Y Jcr]‘n(E)dJkS (E -E '+  en)S(Sl - f t '- l ) / (2 /r ) , (2.3)
n

where Sjk is the Kronecker delta, e>( ) is the Dirac delta function, and en=en/ Ak , Ak

the mass of a k  type particle, in atomic mass units (amu). The sum is over all possible 

electron excitation energy levels and the ,n subscript is to emphasize that this subscript 

does not refer to a particle species. Interactions with electrons do not change the ion’s 

direction of travel; this is reflected in the c>(ft - f t' -1) term. It should be noted that

^  <yfn(Er) = o a‘ {E' ) . Due to the large number of atomic collisions, the series of
n
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discrete energy losses is customarily approximated as a smooth, continuous process. In

this continuous slowing down approximation, the amount of energy lost in moving a

distance dx is

dF ~
~~7~~ ^ j ( E ) . (2.4)

dx

The quantity Sj(E )  is the stopping power per unit mass, and is defined by

= (2-5)
n

Also from the continuous slowing down approximation can be derived the range/energy 

relationship,

(2 .6)
J Jo Sj(e)

which includes relativistic polarization effects [36], and its inverse, Rj (x) , with 

E  = RJ1 [i?7 (f?)]. From (2.6) it can be seen that

dRXE) 1
(2.7)

dE Sj (E)

This derivative will be used extensively throughout this dissertation.

Fig. 1 gives a qualitative representation of the range/energy relationship. A 

particle strikes the target with initial energy E' and will travel a distance of Rf (E ') , also

referred to as R 0, before stopping. This distance is the range of the particle. After 

traveling a distance x , the particle has energy E  remaining, and will travel a distance 

Rj ( E) more before it stops. The remaining energy, E , can be expressed in terms of the

initial energy and the penetration depth. We thus define the function E Xx,E') as
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E = Ej(x, E') = RJ1 [ * , ( £ ') - * ] ;  (2.8)

that is, Ej (x, E') represents the residual energy of a particle with initial energy E' after

penetrating a depth x . In a similar way, we can define a function Ej(x, E) to represent

the initial energy a particle had before it penetrated a distance x and has remaining 

energy E  as

E’ = Ej(x,E)  -  R]1 [* ,(£ )  + x ] . (2.9)

Both of these functions will be used extensively throughout this dissertation.

E’

E

X

Fig. 1. Graphical representation of the range/ energy relationship and its inverse. The 
projectile has initial energy E' and after traveling a distance x has energy E .

Nuclear elastic scattering is when the total kinetic energy of the interacting ions is 

the same both before and after the interaction. The ions behave as if they were perfect 

billiard balls. The projectile ion is no longer traveling in the same direction as it was 

originally. The elastic scattering differential cross sections are modeled here by

to',E,E') = , (2.10)
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where is the elastic scattering energy function.

Nuclear reactions, while not numerous, are very important due to the large 

changes in energy and the production of fragment particles. The produced particles fall 

broadly into two major groups. The first group is the particles that are emitted in a small 

cone about the projected forward path of the projectile, referred to as the forward 

component. Typically, these particles are remnants of the projectile and have large 

energies and momenta. The second group is all the remaining particles, called the 

isotropic component, because they are emitted isotropically about the struck nucleus.

Most of these particles are neutrons and light ions of low energy.

While it is possible to split the nuclear reactive cross section into a forward and 

isotropic component, this will not be done. Due to the low energies of the particles, and 

consequently their short range, most of the isotropic component does not emerge from the 

target and will be ignored. Therefore, the differential cross section for the nuclear 

reactive process is approximated by

a rjk( n ,n \E ,E ' )  = a ) E ' ) exp[-(E + X]k - E ' f  / i s ) , ] /> & ,*  , (2.11)

where Xjk is the collision energy downshift (MeV/amu) and sjk is the corresponding 

energy interaction width (MeV/amu) for the process by which a j  type particle is 

produced when a k type particle collides with a target atom. The energy downshift and 

interaction width are approximated from known heavy ion interactions using a Gaussian 

model [31]. There Xjk is approximated by

XJk(E)= p{E)Ps , (2.12)
Jk Ajim + E)

where the momentum downshift, p s, (MeV/c) is [31]
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(2.13)

Ak the projectile mass (amu), A} is the fragment mass, E  is the fragment energy, m is 

the energy equivalent of a proton mass, and

is the fragment momentum (MeV/amu/c). In a similar way, the interaction energy width 

is related to the momentum width crF (MeV/c) via

where crF is defined as [31]

Straightahead Approximation and the One Dimensional Boltzmann Equation

The Boltzmann equation is a formidable equation to solve. That is why many 

investigators have used approximations to simplify the equation. In a series of papers, 

the first of which appeared in 1965, Alsmiller et al. [37] and Alsmiller, Irving and Moran 

[38], validated the straightahead approximation for use in space shielding applications. 

Since then, many investigators have used the straightahead approximation when solving 

the Boltzmann equation (see for example the introduction to chapter 9 in [1] for a partial 

list spanning 1965- 1990 and all the papers on Green’s function methods cited in the 

introduction). The straightahead approximation simply states that any particles’, and 

their fragments’, direction is not changed by any nuclear interactions with the target

p(E) = ^ E 2 +2mE (2.14)

(2.16)
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material. In one dimension, this would mean that projectile particles and all secondary 

particles travel in the same direction. Mathematically, this requirement takes the form

«  f t ' = l .  (2.17)

Further, we will require that the position vector z be of the form

z = x ft. (2.18)

Thus, equation (2.1) reduces to the one dimensional linear Boltzmann equation

<219>

The solution of this equation is the focus of this dissertation.

The straightahead approximation also simplifies the cross sections. All the 

angular dependence for equations (2.10) and (2.11) is removed from the cross section 

terms and replaced by S(f l  ■ SI - l)/(2 ;r). With this, in one dimension, the angular 

dependence can be completely suppressed. Thus the elastic nuclear scattering differential 

cross section becomes

(£, E') = o f  (E')8,t S (E  -  ET) (2.20)

and the nuclear reactive cross section is

v rJt(E,E' )  = o-;(£ ')exp [-(£  + 2Jl - E' )2/ 2 s % ] / . (2.21)
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CHAPTER III 

ATOMIC AND NUCLEAR PROCESSES

Atomic Process and the Atomic Green’s Function

For convenience, Boltzmann’s equation will be put into operator form. We thus 

introduce the vector field function,

0  = [^ (x ,£ )] , (3.1)

the drift operator,

and interaction operator

D = [3J (3.2)

I = E - o  = Y j c T j ^ E ^ d E ' - a j i E ) (3.3)

The interaction operator I has three parts corresponding to the atomic, elastic, and 

nuclear reactive processes as described in (2.2) and the section in chapter 2 on cross 

sections. Thus the Boltzmann equation (2.19) can be written as

[ D - r ' - r ' + a n - ^ E r - o .  (3 .4 )

Consider a stream of particles incident on a slab of some material target at 

location x ' . To first approximation only the atomic terms in (2.2) contribute to the 

problem of finding the particle flux <f>j{x,E) and we must solve

D . 0  = 1" O . (3.5)

Using the continuous slowing down approximation (2.4), (3.5) can be written out as

dfijjx, E) d
dx dE

[Sj (E)</>j (x, £)] = 0 x> x ' ,E >  0, (3.6)
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subject to the boundary condition

</>J{x',E) = Fj {E).  (3.7)

The atomic problem is solved by a change of variables and then the method of 

characteristics with the resulting solution [39]

S AE Ax-x ' ,E )]  -  
=   S w  W >  (3-8)

Ej (x -  x', E') = R~l [Rj (E') + ( x -  x')].

In the special case of F-(E) = Sjk8(E -  E ' ) , the resulting solution for (j>j{x,E) is 

the atomic Green’s function, Gj‘k(x ,x ' ,E,E ' ) ,

S A E A x -x ^E )]
G% (x, x', E, E') =.........Sjk8[Ej { x - x ' ,E ) - E ' ] .  (3.9)

8j{E )

Using (2.4), (2.7) and the relationship 8 ( y -  y0) = 8 [ f  ( y ) - f ( y 0) \ f ' ( y0) , the atomic 

Green’s function can be simplified to

G% (x, x', E, E’) = Sjk8[E -  Ej (x -  xf, £ ')]. (3.10)

Nuclear Elastic Scattering

Nuclear elastic scattering requires the solution of

[D-r']-0)  = r / -O. (3.11)

Due to the assumed form of the elastic scattering cross sections (2.20),

r '- O ^ O ;  (3.12)

that is, in the approximation being considered, elastic scattering does not contribute to the 

solution. This is a consequence of the straightahead approximation coupled with 

Boltzmann’s equation being considered in only one dimension.
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Nuclear Reactive Processes

For nuclear reactive processes, Boltzmann’s equation takes the form

[ D - F '+ c  ] ® = E ® , (3.13)

with boundary condition = [Fj (£)]. The technique used to solve the atomic problem 

enables us to recast (3.13) as an integral equation, which in operator form is

® = [ D - F ' + « '] - ' + f  [D -I*  +<*T* ■ (3.14)

The solution to the homogenous form of (3.13),

[ D - I a< + o r]-® j8 = 0 , (3.15)

with a single particle incident at the boundary, is the zero order Green’s function for this 

problem, and is denoted as G ° . Equation (3.14) can be rewritten as

® = G° ®B+Q  G° E r <D, (3.16)

which is a Volterra integral equation and can be solved as a Neumann series as [1,34]

0> = [G °+Q -G 0-E '-G 0+ Q -G 0-Er -Q-G° •E '-G °+ ...]-® B

= [G°+G1+G 2+..]-Ob. (3.17)

This series has a physical interpretation. The G° • <DB term propagates the initial beam 

from the boundary to the target interior. The production density of the first generation of 

secondary (daughter) particles at the point £ is represented by Er -G° -®B. These 

particles are then propagated through the target by G° • Er • G° • , and then

G 1 =Q  G° E r G° ®B sums the propagated particles in the interval [x, x']. A

corresponding interpretation exists for the higher order terms. It is important to note the 

relationship [1,34]
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G"+1 =[Q*G°•Sr]-G", » > 0 ,  (3.18)

which, in principle, enables us to compute the Neumann series recursively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

CHAPTER IV 

THE GREEN’S FUNCTIONS

A Green’s function, also called a response function or influence function, is the 

solution to a differential equation with a delta function source term. It represents a 

system’s response to a single point source. A Green’s function is specific to the equation, 

boundary conditions and geometry from which it is derived; change one of these factors 

and the Green’s function changes. The power of this solution method is that once the 

Green’s function is found, the solution for an arbitrary nonhomogenous term can be 

found by multiplying it by the Green’s function and integrating the product over the 

appropriate region. For our purposes, if Hj(E)  is an arbitrary boundary condition and

GJk(x,x',E,E') is the Green’s function, then the solution becomes

</>j(x,E) = E C  GJk(x,x' ,E,F)Hk(F)dF (4.1)
k

The Zero Order Green’s Function

In the previous chapter, we demonstrated that the operator G °, called the zero 

order Green’s function, and the reactive integral operator, S'", are all that are needed to 

construct the Neumann series (3.17). We already have E r ; all that remains is to find G °.

As in the atomic problem, we take the boundary condition to be 

Fj(E) = Sjk8(E -  E') . Not surprisingly, the solution is similar to the atomic problem,

and G° is found to be [34]

P (E ')
G j(x ,x ',E,E') = SjkS [ E - E k( x - x ',E ')}. (4.2)

Pj(E)
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The nuclear attenuation factor, P. (E) , is defined to be [1]

PAE) = cxp - fJo SXe)
de (4.3)

and results from the factor of a '(E)  in equation (3.15).

In all the processes described so far, a delta function has been the input, and a 

delta function has been the output. This is not physically realistic. One would expect 

that as the ions move through the target some would lose more energy than others due to 

the inherent randomness of the actual atomic and nuclear processes. The delta function 

should represent the average energy at a depth x - x ' , with an appropriate spread about 

this mean. To this end, we take the boundary delta function to be represented by a 

Gaussian

S ( E - E ’)=  lim
1

v V 2 ^ , (x, E )
exp

t \ 2( E -E 'y
2s,(x,E)2

(4.4)

where the term S j ( x , E ) is the energy straggling parameter [32]. Utilizing this,

G°k (x, x', E, E ') now takes the form

G°k(x ,x \E ,E ' )  = ' j k

J ^ s k{ x - x \ E ' )  Pk[E]
P*[jE' ] exp \ \ E - Ek( .x -x \E ')Y

2 sk{ x - x \ E ' f
(4.5)

In a laboratory setting, a particle beam is not completely monoenergetic, but 

rather has the form of a highly peaked Gaussian about the beam energy. This would 

correspond to a boundary condition of the form

M F )  =
1 J ( F - £ ') l
 exp] - -

42ns' 2sa (4.6)

s' is the initial root mean square (rms) beam spread. The Green’s function for this
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boundary condition can be found from G b = G° • as

Gbjk(x,x' ,E,E’)= f  - j =  
J 00V2ff.

'jk p m
n;sk( x - x ' , F ) Pk[E]

exp
[ E - E k( x - x ' , F ) f

2 sk (x -  x', F)

1 f ( F - E ' f \ ^  
e x p /- -  ~^—>dF.

2s'

This integral may be approximated using saddle point technique as

Gbk(x,x',E,E') = Sjk Pk[E'}
y f b r s ^ x - x '  ,E') Pk[E]

exp-
£ ') f

2slk( x - x ' , E ’f

where

sbk (x -  x', E'Y = sk (x -  x \ £ ')  + j r V / (x -  x', E ' y ,

(4.7)

(4.8)

(4.9)

(4.10)

As expected, G* reduces to G° when s' approaches zero. For the rest of this work, the 

straggling form of G° will be used, as will the Gaussian boundary condition Green’s 

function G*.

Fig. 2 shows the computed G° term for a monoenergetic beam and a Gaussian 

beam of 56F e , with initial energy of 1000 MeV/amu, at various depths in an aluminum 

slab. The depths, x/R0 , are expressed as fractions of the projectile’s range. The solid

line is the monoenergetic beam, and the dashed line is the Gaussian beam, with an initial 

spread of 5 MeV/amu. The attenuation of both beams is clearly evident. The Gaussian 

beam attenuates at a slower rate due to the initial beam spread. It should be noted that as 

both beams propagate, the beam widens. The effects of the initial spread to broaden a
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beam are also evident. These effects will not necessarily be as prominent for higher order 

terms and their resulting fragments.

10°

E
rt
I

T”
>a
jg i t r

Eo

UL<£>

31 O’2

£■
14
E

10"

afiFe beam  with initial mean energy of 1000 MeV/amu and 
initial spread s ' MeV/amu at various depths in Aluminium

0-2 X/R„Solid line:s'=0 . 

Broken line:s'=5.

0.95

0.8

I
I I I

0.6

J_l I l i

0.4

J L
250 500 750

Energy, MeV/amu
1000

Fig. 2. Computed Zero Order Green’s Function for an iron beam at various depths in 
Aluminum. The solid line is for a monoenergetic beam, s' = 0, and the dashed line is for 
a Gaussian beam, s' = 5 MeV/amu. The effects of straggling and attenuation are clearly 
apparent.

The Nth Order Green’s Function

Now that we have identified G°, the relationship between G”+1 and G" can be 

found via the recurrence relationship (3.18). Writing this out we have
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A-i
Gnjk(x,x',E,E') = £  J_" Gl(x ,Z ,E ,F) \  E  J ” crrJp{ F ,H ) G ^ \ ^ x ' ,H ,E ' )d H  )dFd$ .(4.11)

,  p= j+ i

Utilizing (4.5) and (2.21), this can be expanded out to

Gnjk(x,x’, E , E ' ) = \ l \ [ p , m
1 Pj[E] y f l i r s A x - ^ F )

exp
2  s / x - £ F ) !

-exp<
(F  + AJp( F ) - H f

JP

G;;\Z,x ' ,H,E')dH dFd%.(4.12)

It is important to note that the integration with respect to the variable F  can be done 

independently of the other variables. We thus separate it out as

Pj[F] I [ E - E j ( x - ^ F ) r  I a rjp{H)
- expJ -  L

p , m 2sj (x -  4, F f  j  JlTTSj ( x  -  4, F)

•exp
(E2 +Ajp( F ) - H ) 2

2 s JP\ F )
dF

s[2jvsJp{F)
(4.13)

The first Gaussian reaches its maximum value when E  = E.(x -  4, F ) ,  or equivalently

when

F  = E A x - Z ,E ) . (4.14)

It is at this value of F  the slowly varying terms of P}, sj , and s jp will be evaluated.
JP

Next, E A x ~ 4 ,F )  will be approximated by atruncated Taylor series about (4.14) by

EJ(x~4 ,F )  « Ej(X- 4 , Ej) + [dpEj(X- 4 ,F)]Bj( F - E})

= E + ( F - E J) / p J( x - 4 , E j ).. (4.15)

where

p J( x - 4 , E J) = Sj [EJ] /SJ[E]. (4.16)
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Putting this all together, we get the following expression for G"k(x,x',E,E')

^  r* r -  G”-\%,x' ,H,E')

•exp ( / M V V 3 ) } ) 2

2 aJp( x - Z ,E j ) 2
dHd£, n> 1, (4.17)

where

r e r  ZJ1 1 ^  / / 1 ^ j 1 r r z_nCjp [x, 4,E,H] = - o - [ i f ]

and
a ^ x - t ' E , ) 2 = p l( x - Z , E l)2s l( x - t , E J)2 + e ip (E,.)2.J '  r  J

(4.18)

(4.19)

The procedures outlined here will be used to find higher order terms in the expansion. 

The First Order Green’s Function

The first order Green’s function for a laboratory beam can be found from 

G1 =[Q-G° -Sr]-G6. To find that for a monoenergetic beam simply let the initial beam

spread go to zero. Using the results from the nth order Green’s function, this can be 

expanded as

i , rx r°° Gik[x,^,E,F]Gjk(x,x , E ,E ) =  f J  —j=L------------— exp
Ĵ J -»V2x a ^ x - ^ E j )

PAFi T

( F - j E j + X ^ E j ) } ) 2 
2ajp (,x-£,Ej)

dFd%
2sbk ($ -  x \  E')2 J V2n sbt (4 -  x', E') '

(4.20)

Similar to what was done to derive the nth order Green’s function, the integration with 

respect to F  can be approximated by evaluating the slowly varying terms at Ek and then

integrating the remaining Gaussian product over all energy. This yields
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where, explicitly demonstrating the dependence on £ ,

g>(£)2 
2 s]k^ f

>dZ, (4.21)

gjk (£) = gjt [*, x', E, E'-£ | = Et ( £ -  x \  E') -  Ej ( x  - $ , E ) -  X}k [E, (x -  £  E)], (4.22)

AJk{t) = Ajk[x,x',E,E’-,fi

Pj [Ej (x -  £  E)]Pk [E ']S. [Ej ( x - Z ,  E)] 

Pi [E]Pk [Ek (£ -  x', E')]Sj [£]
a rjk[Ek( Z - x ' ,E ' ) l

(4.23)

and

sjk^ f  =sjk[x,x’,E ,E ' ^ ] 1 =aJp{ x - ^ E j { x - ^ E ) f  +sbk^ - x ’, E ' f . (4.24)

In order to perform the integration in (4.21) we will once again evaluate slowly varying 

terms at the peak of the Gaussian, which occurs when gjk (£) = 0. This value, xm, can be

found using standard root finding techniques. Upon integrating the resulting simplified 

expression for (4.21), we find that

2 g jk(xmy
erf

g Jk(x)

V2-v;A.(xm)
- e r f g jk(x')

V2sjk( x j
(4.25)

where the ' in gjk (xm)' signifies a derivative. When there is no ambiguity about a

derivative this convention will be used through out; otherwise the derivative will be 

explicitly stated.

Figs. 3 through 6 show a comparison between analytical and numerical 

approximations to the fluences of the first generation of 40Ca and 16O fragments for a 

1000 MeV/amu beam of 56Fe with an initial width of 0.0 or 5.0 MeV/amu at various

depths in an aluminum target. The solid line is for numerical integration and the broken
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36Fe beam with initial mean energy of 1000 MeV/amu
 ̂ . and initial spread s'=0 MeV/amu at various depths

_x1ir of Aluminium

Solid line: Numerical Integration

Broken line: Analytical Approximation0.08

0 4

0.06

0.04

0.95

Li-

200 400
Energy, MeV/amu

600
MeV/am

800 1000
u

Fig. 3. First generation 40Ca fragment flux at various depths for the case s' = 0. The 
solid line is from numerical integration, and the broken line is the first order Green’s 
function.

line is for the analytic approximation in all these figures. The agreement between the two 

is quite good, even at large depths. A comparison between the figures with s' -  0 and 

s' = 5 shows the effects of the initial spread on the amplitude and width rather clearly for 

the 40Ca fragments at all depths, but for l60  the effects are mostly lost at kirge depths, 

and only show up clearly at small depths.
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ssFe beam with initial mean energy of 1000 MeV/amu 
4 and initial spread s'=5 M eV/amu at various depths

Id

0.1 r x1ff of Aluminium

Solid line: Numerical Integration 

~ Broken line: Analytical Approximation

x/R„
0.2

400 600
Energy, MeV/amu

1000

Fig. 4. First generation mCa fragment flux at various depths for the case s' -  5. The 
solid line is from numerical integration, and the broken line is the first order Green’s 
function.

The Second Order Green’s Function

The second order Green’s function can be found from the relationship 

G 2 = [Q-G° •Sr]-G 1, which expands out to

k - 1ĝ , e,e')= £  j-r- cj*.e,e,r\_ *
p=j+i ix J b r a  (x -  £  E  ) ix J l x s  k [£  x \ F, E’\ tj]

' eXPi 2spktf ,x ' ,F,E';r}f  W
(F - iE '+ A ^ E j ) } ) -

2Qjp ( x -£ ,E j )
drjdFdi; . (4.26)
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0.2

SfiFe beam with initial mean energy of 1000 MeV/amu
4 and initial spread s ’=0 MeV/amu at various depths

-X 10’ of Aluminium
x/R„

£
- 0.1 -oto

X3

<u
03
(4

0.2

Solid line: Numerical Integration 

Broken line: Analytical Approximation

200 400 600
Energy, MeV/amu

800 1000

Fig. 5. First generation ]60  fragment flux at various depths for the case s' = 0. The solid 
line is from numerical integration, and the broken line is the first order Green’s function.

The first step in approximating this integral is to evaluate terms slowly varying in energy

at the peak of the second Gaussian in (4.26). This peak occurs at F = E -  E. +A. (E-) .

Thus G2Jk(x,x',E,E') is approximately

G j(x . * ',£ ,£ ') =  2  1 1  CjM -  6  E ■ K- ^  E'-1] £  exP I ~ 5 *  {t X ’ g
P = j+ 1 

1
j 2 x s pk[i;,x',E,E';Ti\

exp (■F - E f
2aJp( x - % , E j )

dFdrjcE;

<p.jtaJp( x - Z , E J)
(4.27)
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asFe beam with initial mean energy of 1000 MeV/amu
4 and initial spread s'=5 MeV/amu at various depths

0.2 r x  of Aluminium

3
E

*

£u
- 0.1 -

O
CD

£
<D
E09
19

x/R„
0.2

Solid line: Numerical Integration 

Broken line: Analytical Approximation

400 600 800
Energy, MeV/amu

1000

Fig. 6. First generation 160  fragment flux at various depths for the case s' = 5 . The solid 
line is from numerical integration, and the broken line is the first order Green’s function.

The next step in approximating the energy integral is to expand gpk in a Taylor series 

about E  as

gpk [4, x', F, E ’; tj] « gpk [£, x', E, E'; rj] = ^

-{1 + Apk[Ep( f  -  rj, E)] '}Pp[Ep^ - r j ,  E)](F -  E) '

With this expansion, the energy integral in (4.27) can be done approximately, resulting in 

the following expression for G2jk (x, x ,  E, E ’) ,
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p = j+ 1

•exp
gpk[t,x' ,E,E';rif

2ajpk(^ri)2

drjdi;
(4.29)

where
4 *  (£ 7 )  = a)pk [x,x',E,E';^,r]\ = spk[^ ,x ' ,E ,E '^ ]2 

+{1 + Apk [Ep {g -  7 7, E)]’ }2 p p [Ep {g -  /7 , E ) f  aJp2 (x -  £  Ej ). (4.30)

After integrating over energy, all that remains is to perform the two spatial 

integrals. To accomplish this, we first let x* = (x + x')/2 be chosen as a suitable mean 

value for the variable E, . We now let rj = x*m = x* (x*) be the root of

(4.31)

We then evaluate slowly varying terms at these values of E, and 7 7 , and integrate the 

remaining term with respect to 7 7 , yielding

G \(x ,x ' ,E ,E ' )» g  C „ Ix  ,E ,x „ ] I
p = j+1

erf
'feSjpk

- e r f Wiit)

'fefplc
\ d 4 ,  (4.32)

where

wl( t)  = g pk[{,x',E,E'-,{\,

w-’2 (%) = gPk[%’x '’E’E '’x ']’

sJpk =ajpk{ x \ x m)

(4.33)

(4.34)

(4.35)

and

Cjpk[ x \ E , x m] = -
Cjp[ x , x \ E , E } A Dk[x ,x ' ,E ,E ' - ,xm\

2{37gM[x* ,x' , £ , £ ’;7]}n=*m
(4.36)
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Consider the integral I (r>,

r(') j > /
w,(£)
42: jpk

d£  / = 1,2. (4.37)

Let be the root of = 0. We can approximate w.(£) by Taylor’s theorem as

(4-38)

and from differentiating (4.38) with respect to £ , w f f ) '  & w,(<Q'. Using these two 

relationships and integration by parts, we arrive at the following for 7(,),

/(') _ ^ SJPk
W ,(0 '

1
+-^=exp

4ft

w;(x)
42: jp k

2 s jp k 2

w,(x) Wj(x’)

f f e sjpk

US
1

1

1 wfx'f
~7=exp

2sjpk2

-erf
^ 2sjPk

i = 1,2. (4.39)

Using 7(,), we arrive at the final form of G2jk (x, x', L, £ ') ,

k - 1

G i(x ,x ',£ ,£ ')  = y ;C y,(x*,F,x„*)
7+1

V2.<jpk ^ (x )

exp
w f x f
2sjp k 44

exp
Wl(x')2

42:
erf

jp k

Wi(*)
42: jpk 'fesjpk

erf WiOO
4 2  sJpk

2sjp k

42 s,jpk

Wlkl) '

Wl(x)
42:

erf
jp k

W2 ( x )

JlSjpk

.2V j i f l  
42:

erf
jp k

wJx') 1 w2(xf 1!LjN
1

+-y=exp
4ft I 2sm \

/—exP 
-4 ft L 2^ 2 J

> (4.40)

Figs. 7 through 10 show a comparison between analytical and numerical 

approximations to the fluences of the second generation of i0Ca and 160  fragments for a 

1000 MeV/amu beam of 56Fe beam with an initial width of 0.0 or 5.0 MeV/amu at 

various depths in an Aluminum target. The solid line is for numerical integration and the
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broken line is for the analytic approximation in all these figures. The agreement for 40Ca 

is excellent for all but the largest depth, while for l60  the agreement is quite good only 

until about 50% of the range, and becomes progressively worse at larger depths. This is 

qualitatively typical for the G 2 term. Calcium is relatively close to iron, in a 

fragmentation sense, so the agreement is quite good between the two approximations. On 

the other hand, in the same sense, oxygen is some distance from iron, so the agreement is

E
(4

2  5  r x 1 tTe ssFe beam with initial mean energy of 1000 MeV/amu 
and initial spread s'=0 M eV/amu at various depths 

Solid line: N urn ericallnteg ration 

2  u  Broken line: Analytical Approximation

A
200 400 600 800

Energy, MeV/amu
1000

Fig. 7. Second generation 40Ca fragment flux at various depths for the case s' -  0. The 
solid line is from numerical integration, and the broken line is the second order Green’s 
function.
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2.5 r
1Q.a ssFe beam with initial mean energy of 1000 MeV/amu 

and initial spread s = 5  MeV/amu at various depths

2 -

Solid line: Numerical Integration 

B roken line: Analytical Approximation

400 600
Energy, MeV/amu

1000

Fig. 8. Second generation 40Ca fragment flux at various depths for the case s' = 5. The 
solid line is from numerical integration, and the broken line is the second order Green’s 
function.

not as good. Overall though, the agreement is still highly acceptable. 

Non-Perturbative Remainder

Nuclear cross sections are almost energy independent at very high energies, 

greater than 2 GeV/amu. This is true as long as the depth in question is not beyond the 

particles range; otherwise, the particle has been thermalized, brought to a complete stop 

in the material, and will not contribute. We define the integral fluences to be
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Fig. 9. Second generation 16O fragment flux at various depths for the case s' = 0. The 
solid line is from numerical integration, and the broken line is the second order Green’s 
function.

gJk( x - x ' ) =  \Gjk(x,x',E,E')dE.  (4.41)

With this, if we integrate the Boltzmann equation (2.19), we get approximately

{dx + ̂ j )g jk (x - x ') = J ] ^ j P8Pk(x -x ' )  x' < x< x '  + Rk(E') , (4.42)
p

with gjk(0) = Sjk. This problem has been solved by Wilson et al. [21, 27,28, 40], and

the solution is
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Fig. 10. Second generation 16O fragment flux at various depths for the case s' = 5. The 
solid line is from numerical integration, and the broken line is the second order Green’s 
function.

gJk (x -  xT) = 2  g f  (x -  x') = SJkg(k) + a Jkg(j,  *) + £  VjpVpkgU, P ,k )+ ■■■,( 4.43)
n=1 p

where the g-fimctions are found recursively via

g(i) = e a' ^ ,  = n > \ . (4.44)

The integral fluences (4.41) are quite accurate at small depths, and can be extended to 

greater depths using the convolution formula [27, 40]
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gjk( x - x ' )  = Y , g jp( x - y ) g pk( y - x ' )  x > y > x ' .  (4.45)
P

For n>2  there is little difference in the spectral shape of the fluences and we can make 

the simplifying assumption that

Gn]k{x,x',E,E') Gl(x ,x ' ,E,E')
g f ( x - x ’) g f ( x - x ' )

With this the Neumann series remainder can be approximated by the non-perturbative 

expression

np G l (x ,x ' ,E ,Er) ..
Gjt (*, E, £ ')  « * '  ’ £  *S’ (x ■- ■x'') =

g ) k ( x - x )  „

~ ^ 2\x -V j^  ̂ -gjk (x ~ X) ~ g(,k (x ~ X) ~ g* (x “ X<) ~ g (x ~ X>)] ■ (4'47)
Fig. 11 shows the first and second generation flux, and the non-perturbative 

remainder for 40Ca fragments at various depths in aluminum for a 1000 MeV/amu 

Gaussian beam of 56Fe with initial spread of 5.0 MeV/amu.
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CHAPTER V 

RESULTS AND COMPARISON WITH EXPERIMENTS

In order to validate the model, it is desirable to compare with actual experiments. 

Because of the extreme difficulty of testing materials in space, data from particle 

accelerators are used instead. Being able to make these comparisons is one of the 

strengths of this method. All calculations used the NUCFRG2 nuclear database [16, 25], 

which was based on the HZEFRG1 nuclear database, developed at the NASA Langley 

Research Center [15].

The light ions, z =1,2, have a strong angular dependence and there is a marked 

overprediction in their fluences. This is largely a consequence of the straightahead 

approximation because all particles produced are assumed to move parallel to the beam. 

Compounding the problem, the NUCFRG2 cross sections are somewhat inaccurate when 

it comes to the light ion multiplicities, meaning the same particle is created multiple 

times. If uncorrected, all the fluence data and everything derived from it would be 

incorrect, thereby making comparison to experiments meaningless. It is possible to 

correct for this by scaling (j)j (x, E) by an appropriate weight factor for each of the light

ions, thereby reducing their number, and subsequent error. The weight factors are 0.02 

for z =1 and 0.08 for z =2. These correction factors are empirically derived from 

comparisons with data reported by Miller et al. [41]. The corrections are incorporated 

into the fluence computations done by GRNTRN. Further refinement of the model will 

remove the need for these corrections.
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Experimental Procedure

Since coming online in late 1995, a great deal of potential shielding and 

construction materials for space use had been tested at Brookhaven National Labs 

Alternating Gradient Synchrotron (BNL AGS) using 56Fe as the incident ion. Iron was 

chosen because it is one of the heaviest ions that is present in large quantities in galactic 

cosmic rays (GCR), and thus has great biological significance. Typically for these 

experiments the beam energy extracted from the AGS was 1087 MeV/amu, and after 

passing through various upstream elements, had energy in the range of 1000-1050 

MeV/amu before impacting the target.

A typical solid state detector setup is shown schematically in Fig. 12. This setup, 

and similar ones used by the same group, is detailed more extensively in [41-46]. The 

detectors upstream of the target were used to identify iron beam particles via energy

Beam uu m
PSD1 d3mmU

Tanget
PSD2 d3mm1

d3mm2
d3mm3
d3mm4

Fig. 12. Typical experimental detector setup (not to scale). All detectors are lithium 
drifted silicon; the trigger TR defines the size of the usable beam spot.
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deposited. Data was recorded when an identified iron particle triggered a coincidence of 

signals in detectors TR and d3mmU. The trigger criterion was set to accept as many iron 

ions as possible, so fragments produced upstream within a few charges of iron also 

triggered events. These events, and instances where more than one iron ion passed 

through the system and was recorded, were eliminated in offline analysis. Once an event 

was triggered, the three pairs of detectors downstream of the target were used to 

determine fragment charges and energies. These detectors subtended small angles about 

the beam axis; a typical value for d3mm3 and d3mm4, collectively denoted as d3mm3/4, 

was 1 .

For each experimental setup, data is first taken without a target to measure the 

“background” fragmentation processes in order to eliminate this phenomenon from the 

gathered data. Runs without a target are called the “target out” runs. With or without a 

target, the experimental process is the same. For each event, position data is recorded 

from the two position detectors, PSD1 and PSD2; however this was subsequently not 

used in any analysis. Energy deposited in each detector, and additional high gain signals 

from d3mml-4, used to identify the lighter ions, was also recorded.

Once the data was recorded and the background production eliminated, the 

resulting data was analyzed, in a method similar to that done previously [41- 46]. 

Scatterplots and histograms were made of the energy deposited, AE , in the detectors.

The first set of graphical cuts eliminated the non-iron and multiple iron triggered events 

from the upstream detectors. The next set of cuts made sure that either a surviving iron 

beam, or one or more fragments, passed through each detector pair. A final series of cuts 

eliminated fragmentations occurring in the detectors downstream of the target. This
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resulted in a series of peaks, primarily dominated by a single individual charge, and 

valleys in between. The small number of counts where adjacent peaks overlapped 

significantly was resolved utilizing double Gaussian fits to the adjacent peaks.

Detector Model

The detectors used are primarily made of lithium drifted silicon. As an ion passes 

through, one electron hole pair is liberated per 3.6 eV of the incident ion. The resulting 

current is then recorded for analysis. Thus the direct measurement is energy deposited in 

the detectors. These detectors have a ‘dead layer’, estimated to be 3%± 1.5% of the total 

detector thickness. The energy deposited here is lost, presumably to recombination. The 

additional energy loss of high energy beams due to the production of delta rays (high 

energy electrons) that escape the detector will be incorporated into the dead layer. All 

this energy lost will be modeled by using an effective detector thickness modified by the 

dead layer.

When a monoenergetic beam of j  type particles of energy E' (MeV) and unit flux 

0.(0, E) = S ( E -  E') is incident on a silicon detector of effective thickness t (g /cm 2) the 

resulting flux is

emerging with energy E  has lost an amount of energy E' =E' - E . We define the unit 

spectral loss function f j ( t ,E ' ,E ')  to be

(5.1)

which is just the straggling form of the atomic Green’s function, (3.10). A particle
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(5.2)

Clearly, when incident flux is of a more general form 0j(E) , the emerging flux is given 
by

t l (t,E) = FJ(t,E)= (5.3)

In the special case of a Gaussian beam with initial spread s’ , (5.3) can be used to show 

the emerging flux to be approximately

'  [ E ' - E ' - E j ^ E ' ) ]
Fi (t,E) =

V2Ks'(t ,E')
exp-

2 s ' ( t ,E ')2
(5.4)

where
(5.5)

r0 [Ej (t, £ ')] = 1-5^ [Ej (t, E')\/Sj [E']. Generally, the incident flux consists of the 

primary beam and all of its fragments, so the total energy deposited is

F( i ,E' )  = Y jFi (i,E ') .
j= 2

(5.6)

The ion corresponding to the index j  = 1 in NUCFRG2 is the neutron, which is difficult 

for the detectors to measure, and is beyond the current theory here, and thus ignored. 

Energy Deposited Comparisons

The numerical procedure for computing the energy deposited for any experiment 

is done as follows. First the fluence emerging from each target material was generated 

using the GRNTRN code. The resulting fluence was then fed to the detector model 

described above and an approximate dead layer correction factor (DLCF) was found. To 

compare with experiments, the subsequent numerical data was appropriately scaled and 

graphed along with the experimental data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

The first experiment to be compared to is a 56Fe beam with initial energy 

extracted from the AGS at 1087 MeV/amu. The energy prior to striking the 7mm (1.89 

g/cm2) of Aluminum target was 1037 MeV/amu [41]. The beam spread prior to impact 

is not known, but data from similar experiments done within months of this one quote a 

spread of 5 MeV/amu [43], consequently this value was used for the impact spread. Fig. 

13 shows energy deposited in the d3mm3 and d3mm4 detectors from the experiment

10* f

fiaFe at 1037 MeV/amu on 0.7 cm Al 
&0 mm Si detector (DLCF=0.955}

E xperim ent 

GRNTRN

r
Li

250 500 750 1000 1250 1500 1750 2000
Energy Loss (MeV)

Fig. 13. Energy loss spectrum for 1037 MeV/amu 56Fe beam with spread of 5 MeV/amu 
striking 7mm of Al as measured in detectors d3mm3/4. The solid line is experimental 
measurements and the dashed line is model computations. The DLCF was found to be 
0.955.
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(solid line) and computed energy loss spectrum (dashed line). The DLCF was found to 

be 0.955, within the accepted range for these detectors. The rightmost peak in Fig. 13 is 

dominated by all ions with z =26. The next peak to the left is dominated by z =25, 

Manganese, followed by z =24, Chromium, and so forth. The contributions for z =10 and 

greater can clearly be seen. The Manganese peak is much lower than the experimental 

results, reflecting a known weakness in the NUCFRG2 cross sections [43]. The peak for 

Vanadium, z =23, is also lower than expected. The computed peaks failing to line up as 

we move to the right indicates that the simple model for computing energy downshift due 

to fragmentation could use some refinement for large mass removal. Further, it has been 

reported by Miller et al. [43], that the cross section for Aluminum generated by 

NUCFRG2 is not as good as for other tested target elements. Overall though, the 

agreement is quite acceptable.

Fig. 14 displays the results for a 56Fe beam with an energy of 1050 MeV/amu and 

assumed spread of 5 MeV/amu just prior to impact on 10 g/cm2 of 50.92/ 49.08% 

Graphite-Epoxy mix [42]. As with Fig. 13, the Manganese peak has the greatest disparity 

between experiment and computation. The rest of the peaks are closer to the 

experimental values here than for Fig. 13, suggesting that because the Graphite-Epoxy 

mix consists of fair number of elements, errors in cross sections for one element may be 

smoothed out for multi-element compounds. The energy downshift also is much more 

accurate than for Aluminum. The only concern is that the DLCF is found to be 0.95, just 

slightly below the lowest believed value of 0.955. This may be due to ignoring elastic 

scattering effects, which would lower the overall average energy, resulting in more 

energy being deposited by each particle, thus raising the DLCF.
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10*r

fi4Fe at 1050 MeV/amu on 10 g/ a ir  
Graphite-Epoxy n ix (50.92/49.08 %) 
6.0 mm Si detector (DLCF=Q95)
____________  E xperim ent

------------------ GRNTRN

Energy Loss (MeV)

Fig. 14. Energy loss spectrum for 1050 MeV/amu 56Fe beam with spread of 5 MeV/amu 
striking 10 g !cm 2 of 50.92/49.08 % Graphite-Epoxy mix, as measured in detectors 
d3mm3/4. The solid line is experimental measurements and the dashed line is model 
computations. The DLCF was found to be 0.95.

Fraction of Primary Beam Surviving

In addition to being able to record energy losses, the detectors are able to 

determine the charge of the ion depositing the energy. This allows the contribution 

sorted by charge of many quantities of interest. One of the most basic of these quantities 

is the fluence spectrum. It is very common for experimentalists to report the “fraction of 

primary beam surviving”, especially when they do not report the entire fragment spectra.
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What they mean is all of the ions emerging from the target with the same charge as the 

primary beam. Depending on the element used, a primary beam ion can lose one or more 

neutrons passing through the target. For example, all the experiments that will be 

compared to have 56Fe as the primary ion. What emerges from the target with z =26 is 

predominately 56F e , with a small amount of 55 Fe and 5AF e . Using the NUCFRG2 

database, the model can make this isotopic distinction, but experiments cannot. The 

fraction of type i ions surviving can be found by

F „ ^ s = f j , ^ , E ) d E .  (5.7)

Table 1 lists the fraction of iron surviving for several different materials. The first 

line consists of data reported by Miller el al. [41], and is the same experiment represented 

in Fig. 13, while the rest of Table 1 is experimental data consisting of preliminary results 

from the BNL AGS [47]. The exact beam characteristics just prior to impacting the 

various targets are not known; what is known is that the energy was around 1 GeV/amu 

and the impact spread was small. The unknown experiments were modeled with impact 

energy of 1000 MeV/amu and zero initial width. The model and the experiments agree 

quite well; the largest error is for 5 g/cm 2 Graphite-Epoxy mix and is less than 6 %.

Table 2 has the comparisons between calculations and preliminary experimental 

results from runs done in June 2004 [48]. As before, the experiments were modeled with 

impact energy of 1000 MeV/amu and zero initial spread. The reason for separating the 

results is twofold. First, all the runs for Table 1 were done within a year or so of each 

other, many years previous to the runs for Table 2. Second, and most importantly, the 

results for Table 2 are from the detector set closest to the target (analogous to the 

d3mml/2 detectors). Experimentalists compute the fraction of primary surviving by
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finding the percentage of primary ions recorded in the detector pair and then applying a 

correction factor found from the target out runs for the small number of primary 

fragmentations that occur in the detector pair. While the correction for moving from the 

d3mml/2 detector pair to the d3mm3/4 detector pair is believed to be small, it is unclear 

as to whether the change will bring the experimental results closer to model predictions, 

or farther away. Currently the largest error in Table 2 is 4.5%, and the change is not 

expected to make things any worse than the 6 % error of Table 1.

Table 1
Comparison between model calculations and preliminary experimental results for the 
fraction of primary ion surviving as measured in the detector pair farthest downstream 
from the target.___________________________________________________________

Material

Material
Thickness
(g /cm2)

Fraction of 
Iron surviving: 

Model

Fraction of 
Iron surviving: 

Experiment

Aluminum 1.89 .914 .93
Carbon 3.9 .711 .737
Aluminum 7 .719 .733
Lead 3.6 .926 .959
Polyethylene 1 0 .300 .300
Graphite-Epoxy 5 .635 .673
Graphite-Epoxy 1 0 .416 .427
Pure Epoxy 1.3 .878 . 8 8 8

Copper 11.3 .751 .741
Copper 6.13 .859 .830

Track Average LET

Linear energy transfer, LET, is the energy deposited in the attenuating material 

per unit path length of incident radiation, and is measured in units of keV/pm. LET and 

track average LET, <LET>trk, indirectly give a measure of health risk for people that the 

primary ion and its fragments pose after emerging from a target to a person if they were
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Table 2
Comparison between model calculations and preliminary experimental results for the 
fraction of primary ion surviving as measured in the detector pair closest downstream for 
various targets._____________________________________________________________

Material

Material
Thickness
(g/cm2)

Fraction of 
Iron surviving: 

Model

Fraction of 
Iron surviving: 

Experiment

Ultem 5.01 .632 .633
UDABDA1 4.87 .631 .636
Clay Epoxy 4.96 .599 .627
DDS Epoxy 4.86 .636 .641
AFDA Epoxy 5.14 .560 .585
Beryllium 5.05 .604 .602
AM 162 5.49 .644 .640
AM 140 6.38 .649 .638
Graphite, LDK1V9 4.07 .718 .733
Graphite Foam 4.61 . 6 8 6 .698
C-C Composite 5.31 .646 .659

right behind the target. Calculations derived from L E T  are typically used in measures of 

risk by biologists. Computed from the < L E T > tr k  are the dose, dose equivalent, and 

quality factors used to measure radiation risk. If the track average L E T  is found to be 

correct, then the derived quantities will be correct. The < L E T > tr k  can be computed from 

the formula

(LET)* = £  J i,(£ )4 (x,£)rf£ / £  j'^(x,E)dE, (5.8)
/ /  i

where (j)l (x, E) is the flux and L^E)  is the LET of the ilh particle type at energy E . In

order to be able to make comparisons with experimental data, we will take Lt(E) to be

LETm in water for particle i at energy E ; i.e., the stopping power, St(E),  for water.

Water is used because there are extensive published tables of the stopping power in water 

for many ions and neutrons at various energies.

Table 3 lists the < L E T > tr k  for the same materials represented in Table 1, and also
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includes published results for various thickness of polyethylene [44]. The agreement 

between experiments and model predictions are very good; most errors are very small, 

under 4%, with 11.3 g/cm2 of copper having the largest error of 7%. Table 4 has the 

analogous results for the materials from Table 2. The fact that the computed < L E T > tr k  

for materials in Table 4 is lower than experimental findings is encouraging. From 

previous experiments [41], it is known that the < L E T > tr k  will decrease from detectors 

d3mml/2 to detectors d3mm3/4. While the exact decrease depends on the target material 

and thickness, and is not known, it would reduce the overall error, thereby improving 

comparisons.

Table 3
Comparison of computed track average LET with experimental results from detectors 
farthest downstream of the various targets.____________________________________

Material
Material

Thickness
(g /cm2)

<LET>trk 
Model 

(keV / jum)

<LET>trk 
Experiment 
(keV / jum)

Aluminum 1.89 143.0 140
Polyethylene 1.94 133.9 135
Polyethylene 4.68 114.2 117
Polyethylene 9.35 93.5 95
Carbon 3.9 125.5 127.0
Aluminum 7 127.1 125.4
Lead 3.6 148.2 145.8
Polyethylene 1 0 92.3 91.4
Graphite-Epoxy 5 119.4 121.3
Graphite-Epoxy 1 0 98.7 98.5
Pure Epoxy 1.3 141.5 139.3
Copper 11.3 132.5 123.8
Copper 6.13 140.1 135.3
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Table 4
Comparison of computed track average LET with experimental results from detectors 
closest downstream of the various targets.____________________________________

Material

Material
Thickness
(g /cm2)

< L E T > tr k  

model 
(keV / jum)

< L E T > tr k  

experiment 
(keV / jum)

Ultem 5.01 118.1 1 2 2 . 1

UDABDA1 4.87 118.1 121.9
Clay Epoxy 4.96 115.7 122.5
DDS Epoxy 4.86 119.5 123.4
AFDA Epoxy 5.14 114.0 119.6
Beryllium 5.05 109.4 116.1
AMI 62 5.49 114.9 120.3
AMMO 6.38 116.7 120.3
Graphite, LDK1V9 4.07 124.3 129.0
Graphite Foam 4.61 1 2 1 . 2 126.7
C-C Composite 5.31 117.2 1 2 2 . 6
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK

In this work, a concise theory for ion transport has been developed. The 

Boltzmann transport equation was reduced to one dimension using the straightahead 

approximation. Common perturbation expansions were introduced, making the solution 

of Boltzmann’s equation a series of related problems. The Green’s function problem was 

formulated and the first three terms of the Neumann solution were derived. Each of these 

terms included energy dependent nuclear cross sections, energy downshift, collision 

interaction widths, and energy straggling. A non-perturbative remainder was used to 

complete the series.

Based on this solution a new version of GRNTRN, a code designed for 

comparison with laboratory experiments, using the NUCFRG2 nuclear database, was 

written. Data derived from GRNTRN was then compared to a large number of 

experiments done at the Brookhaven National Laboratory Alternating Gradient 

Synchrotron using a beam of 56Fe ions. The results were extremely good overall, which 

is encouraging when taking into account the large number of targets of various thickness 

used.

Despite the success, there are still key areas for future work. First, the addition of 

nuclear elastic scattering must be addressed. The inclusion of elastic scattering would 

help raise the DLCF and broaden out the peaks in comparisons with energy deposited in 

detectors. Elastic scattering would also incorporate more angular dependence into this 

model, and potentially eliminate the need, or at least provide a theoretical basis, for the
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angular correction factors for Hydrogen and Helium ions. Extending the results to 

multilayer/ nonuniform materials would have great impact on modeling space structures 

like the International Space Station, future space suits and the next generation space 

shuttle.

Unrelated to the model itself, but also a potential improvement in accuracy, is in 

the choice of nuclear data used. At present, NUCFRG2 is being used to generate the 

nuclear cross sections. Currently in development by F. A. Cucinotta is QMSFRG, a 

quantum multiple scattering fragmentation model [43]. Preliminary experiments 

demonstrate QMSFRG’s accuracy over NUCFRG2, with further planned refinements 

expected to increase this accuracy [43], Once QMSFRG is fully developed, GRNTRN 

should be converted to use the improved nuclear data and comparison made between the 

model results here using NUCFRG2 and those based on QMSFRG. All in all, the 

potential exists for years of research.
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