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ABSTRACT 

AN ADAPTIVE METHOD FOR CALCULATING 

BLOW-UP SOLUTIONS 

Charles F. Touron 
Old Dominion University, 2009 

Director: Dr. David G. Lasseigne 

Reactive-diffusive systems modeling physical phenomena in certain situations develop 

a singularity at a finite value of the independent variable referred to as "blow-up." The 

attempt to find the blow-up time analytically is most often impossible, thus requiring a nu

merical determination of the value. The numerical methods often use a priori knowledge 

of the blow-up solution such as monotonicity or self-similarity. For equations where such 

a priori knowledge is unavailable, ad hoc methods were constructed. The object of this 

research is to develop a simple and consistent approach to find numerically the blow-up 

solution without having a priori knowledge or resorting to other ad hoc methods. The 

proposed method allows the investigator the ability to distinguish whether a singular so

lution or a non-singular solution exists on a given interval. Step size in the vicinity of a 

singular solution is automatically adjusted. The programming of the proposed method is 

simple and uses well-developed software for most of the auxiliary routines. The proposed 

numerical method is mainly concerned with the integration of nonlinear integral equations 

with Abel-type kernels developed from combustion problems, but may be used on similar 

equations from other fields. To demonstrate the flexibility of the proposed method, it is 

applied to ordinary differential equations with blow-up solutions or to ordinary differential 

equations which exhibit extremely stiff structure. 
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CHAPTER I 

INTRODUCTION 

This monograph describes a simple and consistent approach to the numerical integration 

of a class of nonlinear integral equations with Abel-type kernels formed from reactive-

diffusive systems. In certain situations, the solution develops a singularity referred to 

as blow-up. Solving such integral equations employing standard finite-difference time-

marching schemes is a difficult task because of complexities caused by the singularity in 

the solution. 

Time-marching the numerical scheme assumes that the solution exists at each specified 

value of the independent variable. This assumption is not valid when the singularity is con

tained in the interval under consideration. However, in the special case where the solution 

is known to be monotone, solving the inverse problem eliminates the inherent difficulties 

by interchanging the independent and dependent variables. In the context of combustion 

and ignition problems, the interchange of variables converts the time-marching scheme 

into a temperature-marching scheme, with the temperature being prescribed and the time 

value associated with the temperature being sought. The advantage of this approach is its 

ability to avoid time-stepping past the singularity in the solution and automatically adjust

ing the temporal step-size to be sufficiently small near the singularity. 

The use of the inverse problem to find the solution is justified only for solutions known 

to be monotone. Switching the independent and dependent variables fails to work in the 

cases where the monotonicity of the solution is unknown, omitting a large class of reactive-

diffusive systems. A nonlinear integral equation for which solving the inverse problem is 

justified results from investigating the ignition problem in reactive media. The solution of 

this nonlinear integral equation represents the temperature perturbation above the tempera

ture solution in a similar but unreactive media. This problem was formulated in Linan and 

Williams [52], "The ignition of a reactive solid by a constant energy flux." Olmstead [56] 

used analytical techniques to prove that the solution to the nonlinear Volterra integral equa

tion derived by Linan and Williams [52] is both monotone and singular. The singularity in 

the integral equation solution occurs at a finite time, and this decisive event unambiguously 

defines the ignition time. Although the singularity is proven to exist, the integral equation 

must be solved numerically in order to determine the value of this "blow-up" time. 

The Journal model is SIAM Journal on Scientific Computing (SISC). 
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Solving the inverse problem is unjustified for the integral equation developed by Las-

seigne and Olmstead [49]. The one-parameter nonlinear integral equation includes the 

effects of reactant consumption in the problem of ignition by a constant energy flux. The 

parameter is a measure of the heat release of the reaction and a measure of the initial re

actant level. The analytical techniques used by Olmstead to provide a prion knowledge of 

the monotonicity of the solution when reactant consumption is excluded fail to provide the 

same a priori knowledge when reactant consumption is included. Furthermore, these ana

lytic techniques fail to prove that the solution to the new one-parameter integral equation 

is singular for all values of the parameter. Upon numerical integration, a critical value of 

the parameter is determined such that no singularity in the solution exists for small values 

of the heat release. This absence of a singularity is interpreted as a non-ignition event. 

Lasseigne and Olmstead [49] took an ad hoc numerical approach by seeking a solution 

using the interchange of independent and dependent variables previously described and 

monitoring the process for the possibility of a non-singular solution. If a non-singular so

lution is found, then the calculation is redone without the interchange of independent and 

dependent variables to verify the original result. 

Recent numerical methods by Haynes and Turner [68] to determine blow-up in dif

ferential or partial differential equations use a Sundman transformation so that the finite 

blow-up time is transferred to infinity in the new variable. One drawback of the Sundman 

transformation is that the new Active temporal variable depends on the solution as does the 

arc length transformation used by Hirota and Ozawa [34] and Shoheile and Stockie [67]. 

C.J. Budd and others use a Sundman-like transformation in their solutions of partial differ

ential equations exhibiting blow-up behavior [20,19,17,18]. These methods use adaptive 

spatial meshes that depend on the solution much like time depends on the solution in the 

Sundman transformation. 

The proposed method of solving the temporal blow-up problem, unlike the Sundman 

transformation methods, is independent of the solution. If applied to a partial differential 

equation, the proposed method would be compatible with spatial mesh adaptation that 

is independent of the solution, e.g., Wavelet Optimized Finite Difference [32, 22]. The 

simple and consistent numerical scheme proposed here allows the investigator the ability 

to determine whether the solution is singular or not singular, avoiding ad hoc methods 

to determine the solution's characteristics. The solution is found by using the natural 

variables of temperature perturbation as the dependent variable and time as the independent 

variable. When a singular solution is found, the time-step is adjusted appropriately to 
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maintain accuracy. The numerical scheme allows the use of well-developed software to 

interpolate the solution and integrate accurately within the presence of Abel-type kernels. 

The programming is straightforward and does not introduce complex or low-order finite-

difference schemes. 

The thesis is organized as follows: In Chapter II background information, definitions, 

examples of blow up, and Volterra integral equations are presented. Three of the main 

numerical methods used to solve Volterra integral equations: quadrature methods, Runge-

Kutta methods, and collocation, are also summarized in Chapter II. A reader interested in 

the main results of the proposed method may wish to skip Chapter II altogether and begin 

directly with Chapter III. The proposed method of solving the blow-up problem is applied 

to test Volterra integral equations in Chapter III. In Chapter IV the proposed method of 

solving the blow-up problem is applied to test ordinary differential equations (ODE's). 

Concluding remarks are given in Chapter V 
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CHAPTER II 

BACKGROUND INFORMATION 

n.l Blow-Up 

Linear and non-linear evolution equations are used to model many different physical situa

tions, such as the dynamics of chemical reactions, the dynamics of biological systems, and 

the motion of waves in fluids and electromagnetic fields. The evolution equations take the 

form of systems of ordinary differential equations (ODE's), partial differential equations, 

or integral equations. This paper is mostly concerned about the numerical solution of blow

up problems developed as Volterra integral equations and ODE's from reaction-diffusion 

problems. 

Blow-up is the explosive growth in the solution or a derivative of the solution in a 

finite time. Mathematically, blow-up manifests itself as a singularity in the solution. Other 

terms describing blow-up, depending on context, are thermal runaway, finite escape time, 

first infinity, self-focusing, wave collapse, chemotactic collapse and gravitational collapse. 

The following questions naturally arise while investigating blow-up: 

• Does blow-up occur? 

• If blow-up occurs, when, where, and how does it occur? 

• How does the blow-up point change when the problem is perturbed? 

• How is the blow-up point computed numerically? 

The following subsections contain examples are know to exhibit blow-up phenomena. 

A reader interested in the proposed method may skip Chapter II altogether and begin 

directly with Chapter III. 

II.1.1 ODE Examples 

Some very simple ODE's demonstrate the blow-up phenomenon and allow us to develop 

the basic tools and intuition required to study blow-up. These ODE's have explicit for

mulas defining the blow-up point and blow-up behavior. The scalar quadratic growth 

equation, 
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du 

It = u\ t > 0, K(0) = «o > 0, (II.l.l) 

has the unique solution, 

u(t) = 
1 

t*-t 
, t<r, (II. 1.2) 

where t* = 1/UQ gives the dependence of the blow-up time on the initial value. The solution 

smoothly evolves for time t < t* and approaches infinity as t —• t*. 

The pth-order growth equation, 

du 

dt 
= up, t> 0, u(0) = «o > 0, (II. 1.3) 

has the solution 

u(t) = { 

,P 

P<\. 
(II. 1.4) 

[ ( ( i - p ) ^ - ' ) 1 ^ 

When p > 1, the solution approaches infinity as t approaches t* where t* is the blow-up 

time given by 

A-P 
t = 

p-\ 

Blow-up does not occur when 0 < p < 1, and the solution exists for all time. 

Upon generalizing, the growth equation is given by 

-rf = / (" ) . '>°> "(0) = wo>0, dt 

for any positive and continuous function / . The growth equation has solution 

f" du 

(II. 1.5) 

(II.1.6) 

f" da _ 
Jun f(u) 

t. 

Blow-up occurs if the function / fulfills the Osgood's condition [57], 

(II.1.7) 

Jim 
(II.1.8) 

' ds 

'«o /(*) 

a necessary and sufficient condition formulated around 1898 for positive initial data. If 

/ («) = exp(«) in (II. 1.6), the solution is 
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u(f) = -ln|f*-f| , (II.1.9) 

where t* = exp(wo) is the blow-up time. The solution grows logarithmically as t —• t*. 

This logarithmic blow-up behavior is especially challenging to capture numerically. 

II.1.2 Partial Differential Equation Examples 

11.1.2.1 Reaction-Diffusion Equations 

Reaction-diffusion systems describe how the concentration of one or more substances, 

which are distributed in space, change under the influence of two processes: a) local chem

ical reactions in which reactants are transformed into products while possibly generating 

or conserving thermal energy, and b) diffusion which attempts to eliminate the spatial dis

tribution of reactants along with the spatial distribution of the thermal energy products. 

As this description implies, reaction-diffusion systems are naturally applied in chem

istry. However, reaction-diffusion equations also describe dynamical processes of non-

chemical nature in fields such as biology, geology, physics and ecology. Mathematically, 

reaction-diffusion systems take the form of semi-linear parabolic partial differential equa

tions such as 

^=DAq + R(q) (DLL 10) 

where each component of the vector q(x,t) represents the concentration of one substance 

or the thermal energy, D is a matrix of diffusion coefficients, and R accounts for all local 

reactions. The solutions of reaction-diffusion equations display a wide range of behaviors, 

including the formation of traveling waves, wave-like phenomena, and self-organizing 

patterns like stripes, hexagons or more intricate structure like dissipative solitons [1, 66]. 

Solitons are self-localized nonlinear waves maintained by equilibrium between dispersion 

and nonlinearity. Dissipative solitons are soliton-like localized modes in dissipative sys

tems that are distant from thermal equilibrium, i.e., hydrodynamics, granular media, gas 

discharges and nonlinear optics. 

11.1.2.2 The Nonlinear Heat Equation 

The nonlinear heat equation, a scalar semilinear parabolic reaction-diffusion equation 

modeling explosive phenomena, is given by 
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-£ = Au + f{u), t>0, u(0) = u0. (II.l.ll) 

at 

The Laplacian term is dissipative, giving a negative contribution to the time derivative at 

the local spatial maximum. Thus, the Laplacian tends to drive the solution towards a con

stant value. The positive and increasing nonlinear term contributes the most to the temporal 

derivative when u is large, leading to possible blow-up behavior. Omitting the Laplacian 

term and leaving the nonlinear and time-derivative terms model a spatially uniform solu

tion which assumes the use of no-flux boundary conditions. These conditions result in the 

ODE examples previously discussed. Conversely, omitting the time-derivative term and 

leaving the nonlinear and Laplacian terms model a steady non-uniform solution, which 

requires energy to be lost at the boundary to dissipate heat from the reaction. 

In particular, if f(u) = 8 exp(w), the exponential reaction model or the Frank-

Kamenetskii equation, models solid (rigid) fuel ignition. Bebernes and Eberly [7] inves

tigated the initial-value problem subject to Dirichlet boundary conditions and the related 

steady-state problem. Their book is a summary of the works of Ball [4], Bellout [11], 

Bebernes [8, 9, 10], Kassoy [40, 41, 42, 43], Kaplan [38], Kapila [36], Lacey [46, 47], 

Frank-Kamenetskii [24], Friedman [25, 26, 27], Fujita [28], Weissler [72] and others. 

Specifically, they studied 

~-Au = 8e\p(u), (x,t)eQ.x(0,T), (II. 1.12) 
at 
u(*,0)=0, xeQ, (III 13) 

u(x,t)=0, (x,t)£d£lx(0,T), (11.1.14) 

and the related steady-state problem 

-Aw = 5exp(w), xe£l, (II. 1.15) 

u(x) = 0, xedCl. (II. 1.16) 

When solutions to (II. 1.12)-(II. 1.14) exist for all time, they converge to the steady-state 

solution. Investigating the steady-state solution leads to the determination of the domain-

dependent Frank-Kamenetskii parameter, 8 FK- When 8 < 8 FK, the temporal solution 

evolves toward the steady-state solution as time approaches infinity. When 8 > 8FK, 

blow-up (thermal runaway) occurs since there is no steady state toward which to evolve. 
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Bebernes and Eberly also investigate the solid fuel ignition model [7] using a general 

reaction-rate term f(u) subject to general initial conditions and various boundary condi

tions. Their investigation included the requirements on the function /(«) in a given domain 

that causes blow-up to occur. 

The p-th order growth reaction model where f(u) = up with p > 1 models the inclusion 

of reactant consumption during the ignition process. The p-th order growth reaction model 

is also used in the biological and social science fields as a population model describing 

the population change given an amount of species w. In 1966, Fujita [28] showed that the 

only positive steady-state solution of the p-th order growth reaction model with a Cauchy 

domain D = RN is the trivial one, u — 0, if 1 < /? < 1 + 2/N. Fujita also proved that 

solutions blow-up in finite time t when the initial condition is sufficiently large and if 

p>\ +2/N. In 1973, Hayakawa [31] showed that all solutions blow-up if the initial data 

are sufficiently large and if p — 1 + 2/N. The investigation of blow-up has been extended 

to other domains and functions, see [5,6]. Analytic methods [7, 8,47,48,70,51] show that 

if the initial condition is large enough and has a single maximum in a closed interval, there 

is finite blow-up time for both, the exponential and p-th order growth reaction models. 

II. 1.2.3 The Keller-Segel model for Chemotaxis 

Chemotaxis is the movement of cells influenced by the spatial distribution of chemicals. 

The cells move toward favorable conditions and avoid unfavorable conditions. Chemo

taxis occurs in embryogenesis, immune response, tumor growth, wound healing, amoebae 

aggregation, and the formation of patterns on animal skins. In 1953, Patlak [60] first de

veloped a mathematical model for chemotaxis, and in 1970, Keller and Segel [44, 45] 

expanded the mathematical model. The Keller-Segel or Patlak-Keller-Segel chemotaxis 

model of slime mold {Dictyostelium discoideum) is an advection-diffusion system of two 

coupled parabolic equations: 

^ = V(DVp-XpVS), (II.1.17) 

^ = D0AS+(p(S,p), (II.1.18) 

where p = p(x,t) > 0 is the cell density at position x and time t, S = S(x,t) > 0 is the 

density of the chemoattractant, and # > 0 is the chemotactic sensitivity. The diffusivity of 

the chemoattractant Do and the diffusivity of the cells D are positive constants. Blow-up 
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in this context, referred to as chemotactic collapse, is the formation of dense aggregates 

of the predator population, i.e., mold or bacteria. Blow-up depends on the initial data and 

the spatial dimension d. It does not occur in one spatial dimension (d = 1) but does arise 

with small initial conditions when d > 3. Borderline cases occur in two spatial dimension 

(d — 2) where the solution may or may not blow-up depending on the size of the initial 

conditions. 

The system of parabolic equations (II. 1.17)-(II. 1.18) can be used to study problem of 

gravitational collapse (Jeans instability). In this context, 5 is the gravitational potential, 

X is the gravitational sensitivity and p is the mass density. Equations (II. 1.17)-(II. 1.18) 

are the diffusive limit of a kinetic model [33, 58] and are either called a gravitational 

drift-diffusion-Poisson or Smoluchowsky-Poisson system [13]. 

II.1.2.4 The Nonlinear Schrodinger Equation 

The nonlinear Schrodinger equation (NLS) models the propagation of waves such as the 

propagation of light in optical fibers, the vibrations of DNA molecules, water waves, 

continuous laser beams, and plasma waves. A specific NLS, given by the semi-linear 

Schrodinger equation 

— = iAu + i\u\p~lu, u = u(t,x), t e R + , x e Rd, (II.1.19) 
at 

is the simplest non-linear model of perturbations of the linear wave equation. The solution 

exhibits a magnifying envelope to the plane-wave solution. The nonlinear effect occurs 

through the dependence of the propagation speed on the wave amplitude, i.e., the speed 

decreases as amplitude decreases. In geometric optics, this leads to the extreme increase 

of the field amplitude called self-focusing. 

Blow-up in this example is more subtle than blow-up in the nonlinear heat equation 

equation since the nonlinearity does not lead explicitly to blow-up. For example, the 

equation has conserved quantities, and under certain conditions, the existence of a global 

solution is guaranteed. If blow-up occurs, its structure is still unknown and remains an 

active area of research. Blow-up is best understood for the cubic nonlinear Schrodinger 

equation p — 3 which describes the propagation of a laser beam in a medium whose in

dex of refraction is sensitive to the wave amplitude; water waves at the free surface of 

an ideal fluid; or plasma waves. In one-dimension (d = 1), the equation is well studied, 
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is known to be integrable, and has a global solution. For the case of d > 2 with energy 

invariant initial conditions, the cubic NLS has solutions that become infinite at a single 

point in a finite time while conserving the two quantities: mass M = J \u\2dx and energy 

E = J\Vu\2 - \u\4/2dx. In the 1970's, Vlasoc, Petritshev and Talanov [69] and Glassey 

[29] showed that the solution blows up when d > 2 and the energy is negative. In 1983, 

Weinstein [71] proved that if the mass is suitably small, M < Mc where Mc is a critical 

mass, the solution exists globally showing that the ground-state of the cubic NLS is im

portant in determining the blow-up. 

Explicit equations for radially symmetric blow-up solutions when d > 2 are written 

by using the dilation symmetry property, u(x,t) —> Xu(Xx,X2t), of the NLS equation. In 

particular, the blow-up solution has the form 

»(<••<> = ^ e x p ( ^ ) R ( ^ ) , (II.1.20) 

where R(r) is the unique positive solution (Townes soliton) of 

- ( / ? " + - J R')+R - / ? 3 = 0 , #'(0) = 0. (II.1.21) 

Radially symmetric blow-up solutions in the case d > 2 have the form 

»M = whwMH^)Hwir^)' <IU-22) 

where K is a positive constant dependent on d and Q(r) is a solution of 

- (Q" + lQ') +Q- \Q\2Q + iK{Q + rQ') =0 , g'(O) = 0. (II.1.23) 

These self-similar solutions show the structure and asymptotic behavior of the singular 

solutions near the blow-up. Self-similar solutions play an important role in the analysis of 

qualitative properties of the solution to several nonlinear problems, and numerical calcula

tions taking advantage of self-similarity are more easily performed by converting a partial 

differential equation into a system of ODE's. 

The method of lines or other transformation methods (Sundman, Fourier, etc.) convert 

partial differential equations into a system of ODE's that are solvable by an ODE solver. 

The behavior of the solution to a nonlinear system of partial differential equations is diffi

cult to predict. The solution's complex behavior makes numerical computation nontrivial 
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even in ideal conditions and misleading results are easily generated. There is a danger in 

using similarity properties to develop a numerical scheme since this might force a certain 

behavior on the solution. It is always wise to verify the solution by using a method that is 

independent of the similarity properties. 

II.2 Volterra Integral Equation Example 

II.2.1 Reaction-Diffusion Problem 

Blow-up in a chemical system describes a dramatic increase in temperature leading to ig

nition. Blow-up in the absence of external energy input is identified with self-ignition or 

explosion. Knowledge of when and how blow-up occurs might be the difference between 

life and death. The solution of many reaction-diffusion systems may be found by solving 

the inverse problem, i.e., the conversion of the initial value problem into an integral equa

tion. Reaction-diffusion problems may also be formulated directly as integral equations. 

A class of Volterra integral equations modeling a diffusive media that may experience 

explosive behavior is given by 

u(t) = Tu(t)= / k(t-s)G[u(s),s]ds, t>t0, (II.2.1) 
Jt0 

where the nonlinearity is generally allowed to have the form 

G[u(t),t]=r(t)g[u(t) + h(t)], (II.2.2) 

with g(u) nonlinear and positive increasing. Commonly, g(u) either follows a power law 

or is an exponential function. The nontrivial functions r(t) and h(t) enhance the explosive 

behavior if they are nondecreasing. The kernel is also assumed to be nonnegative, de

creasing and continuously differentiable except possibly at endpoint discontinuities. The 

most well known Volterra integral equation incorporating explosive behavior is given by 

Olmstead [56] as 

rt e"(')+s 
u(t)= ds, t>-oo. (II.2.3) 

J-oo ^n(t — s) 

The solution depends on the interaction between the nonlinear function and the kernel. The 

nonlinear function corresponds to the source term imposed upon a linear parabolic partial 

differential equation. The kernel corresponds to the diffusive part and is a decreasing 
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function. 

II.3 Integral Equations 

An Integral equation is any functional equation with the unknown function within an in

tegration sign. Integral equations are found in many branches of science: potential theory, 

acoustics, elasticity, fluid mechanics, radiative transport, population theory, etc. The inte

gral equation is often created by converting a boundary-value problem or an initial-value 

problem associated with a partial or ordinary differential equation. Other integral equa

tions are formed directly because the physical problem cannot be formulated in terms of 

differential equations. Integral equations are derived from the global behavior of the sys

tem where differential equations are derived from the local behavior of the system. The 

Fredholm integral equation uses a fixed region of integration and is often considered anal

ogous to a boundary-value ODE. The Volterra integral equation uses a variable integration 

region and is often considered analogous to an initial-value ODE. 

A simple example of a Fredholm equation has the form 

cy(x)=f(x)+ f K(x,S,y(Z))dt, a<x<b, (II.3.1) 
Ja 

and a simple example of a Volterra equation has the form 

cy(t) = f(t)+ f K(t,s,y(s))ds, a<t. (II.3.2) 
Ja 

The known functions are the forcing function f(t) and the kernel function K(t,s,y(s)). 

The unknown function is y(t). When c is zero, the integral equation is said to be of 

the first-kind, and when c is nonzero, the integral equation is said to be of the second-

kind. An integral equation is called linear when the kernel is K(t, s,y(s)) = k(t,s)y(s) 

and nonlinear otherwise. The kernel of a convolution integral equation has the form 

K{t,s,y(s)) — k(t — s)g(s,y(s)), and the integral equation is linear when g(s,y(s)) = y(s). 

An integral equation is called homogeneous if the function f(t) = 0 and is called non-

homogeneous or inhomogeneous when fit) ^ 0. A singular integral equation has a kernel 

containing a singularity or has an infinite integration range. A weakly singular integral 

equation has an unbounded but integrable kernel such that a suitable change of variables 

transforms the unbounded kernel into a bounded kernel. An Abel type integral equation 

belongs to a class of weakly singular Volterra integral equations first investigated by Niels 

Henrik Abel in 1823 while solving the problem of tautochronous motion. The Volterra 
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integral equations investigated in this thesis are nonlinear, non-homogeneous, of second 

kind, and with weakly singular kernels of Abel type. 

II.4 A Short History of Volterra Integral Equations 

This short history is taken from H. Brunner's books [14, 16] on the numerical solution of 

Volterra equations that enumerate the history of Volterra integral equations with a com

prehensive bibliography of sources. Abel in the 19th century is credited with the first 

investigation of the quantitative theory of integral equations with variable upper limits of 

integration. He investigated the problem of finding the equation of the curve in the verti

cal plane such that the time taken for a mass point, under the influence of gravity, sliding 

along this curve is constant irrespective of the starting height. The first-type Abel Volterra 

integral equation modeling this motion is 

f ^—ds = g(t), t>0, (II.4.1) 
JO y/(t-s) 

and a generalization of equation (II.4.1) is 

Abel's inversion formula when a e (0,1) provides the solution 

. , sin(a^) d \ f , ., N„_i , 
/ > 0. (II.4.3) 

Liouville independently investigated the problem of inverting the generalized Abel equa

tion (II.4.2) and second-kind integral equations in the late 1830's. A paper on electro

statics lead Volterra to investigate first-kind integral equations in 1884. Volterra in 1896 

published a general theory on the inversion of linear integral equations of the first-kind -

f K(t,s)y(s)ds = g(t), g(0) = 0. (II.4.4) 
Jo 

The inversion requires transforming the equation by taking the derivative with re

spect to / in order to form a second-kind integral equation with kernel K(t,s) = 

-(dK(t,s)/dt)/K(t,t) and forcing function g(t) = g'(t)/K{t,t). When K(t,t) does not 

vanish on the interval (0, T) and the derivatives of both the kernel and forcing function are 

continuous, the unique solution of equation (II.4.4) is given by the inversion formula 



14 

y{t) = g(t) + f R(t,s)g{s)ds, t e (0, T), (II.4.5) 
Jo 

where i?(f,.y) is the resolvent kernel of K(t,s) given by R(t,s) = lim„_i.0o.Kn(M) in terms 

of the iterated integrals, 

Kn{t,s) = I K(t,u)Kn-i(u,s)du, n>2, (II.4.6) 
Jo 

&i(t,s) = K(t,s). (II.4.7) 

Volterra proved the above series is absolutely and uniformly convergent for any kernel 

satisfying the stated conditions. 

Du Bois-Reymond in 1888 is given credit for first using the term "integral equations." 

Hilbert was first to use the terms first- and second-kind to describe integral equation types 

while investigating Fredholm integral equations. Lalesco in 1908 coined the term "Volterra 

integral equation." Lauricella in 1908 wrote a survey on integral equations with variable 

upper limits of integration. Sonine in 1884 extended the inversion formula to cover first-

kind integral equations with convolution kernels. Volterra in 1896 extended his general 

ideas to linear integral equations of the first type with weakly singular kernels by using 

Abel's approach to develop the inversion formula (II.4.5) showing that the equation 

£«_MM±=g((), oe((U), (IL4.8) 
is transformable into an equation of first type with a regular kernel. 

G. C. Evan in 1910 and 1911 first investigated second-kind Volterra integral equation 

with weakly singular kernels. Hille and Tamarkin in 1930 used the Mittag-Leffler function 

to relate the solution to certain Volterra integral equation with weakly singular kernels. 

The unique solution v of the Volterra integral equation 

y(t) =y0 + X f(t- s)-ay(s)ds, t > 0, (II.4.9) 
Jo 

for any interval [0, T] with 0 < a < 1, is 

y(t) = Ei-aiXTil - ay-a)yQ, t > 0, (II.4.10) 
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where Ep (z) is the Mittag-Leffler function 

E^^fdTwy '>°- (I,A11) 

and T(s) is the gamma function. The function is an entire function of order p = 1//3 for 

positive p. When /? = 1 the exponential function is recovered, and when j3 = 1/2, the 

Mittag-Leffler function is 

£,(±z2) = exp(z)[l+erf(±z2)] (II.4.12) 

= exp(z)erfc(±z2), (II.4.13) 

where erf(x) and erfc(*) are the error and complementary error functions. 

While the above examples are equations with analytic solutions, most equations of 

practical interest must be solved numerically. 

II.5 Numerical Schemes for Volterra Integral Equations 

The literature on the numerical treatment and solution of integral equations is considerable 

owing to the many equations arising as models for different scientific problems. Linear 

operator theory allows the exact solution of many linear integral equations by analytical 

methods. Nonlinear or more elaborate linear integral equations often require numerical 

methods to find solutions. 

Anderssen and De Hoog [2] conclude that using discrete methods to evaluate Abel's 

inversion formula is computationally difficult and simple mathematical transformations do 

not remove the associated difficulties. A perturbation analysis of the discretization leads 

to a step-size dependent amplification factor that demonstrates the difficulties, i.e., when 

using a finite difference scheme, the amplification factor has order hi. Numerically, the 

amplification factor introduces a minimum grid spacing, where the step-size must not fall 

below the minimum spacing, in order for reliable approximations; otherwise, a loss in 

resolution occurs. 

The details of the numerical methods outlined below mainly come from the works of 

Baker [3] and Brunner [14, 16]. Three main methods to solve Volterra integral equations 

are: quadrature methods, Runge-Kutta methods, and collocation. The specific solution 

strategy for each method develops after constructing a grid. 



16 

n.5.1 Grid 

A grid or mesh is built as 

I:=t0<t1<t2<-<t„-l<tn<-<tN = T, h„:=tn+i-tn. (II.5.1) 

The width or diameter of the grid is h(I) := sup/z„ :tnE I. The grid is uniform if hn = 

h = T/N for all n and quasi-uniform if there exists a finite k such that sup/in < Jcinfhn The 

grid is finite if TN := max„tn = 7 < <*>. The finite grid is graded with grading exponent a 

if /„ - r0 = (n/N)a or geometric if r„ - f0 = (5N~n(T - to) for some 0 < j3 < 1. Volterra 

integral equations with weakly singular kernels often use graded meshes. 

II.5.2 Quadrature 

Having defined a grid, each definite integral 

[<!>} = / 4>(t)dt, (II.5.2) 
Ja 

where a and b are two not necessarily successive grid points, is numerically approximated 

by the (m+ 1)-point quadrature formula 

m 

Im[0] = £cmj<K*mj), (H.5.3) 
y=o 

where tmQ <tm,\ <••• < tmm we points or abscissas, not necessarily in [a,b], and the cmj 

are the coefficients. The approximation or quadrature error is the difference between the 

integral and the numerical approximation E[0] = I[0] — Im[0]. The coefficients are chosen 

to make the quadrature error vanish for all test functions 0 in a test space. For example, 

the interpolatory quadrature formula of m polynomial test functions has coefficients 

„,,• = / LmJ(t)dt, (II.5.4) 
Ja 

where 

m t — t 
W0 = IIr-3r-' i*j- ( IL5-5> 

/=0 lm J lm<1 

Newton-Cotes formulas are created when the points have equal spacing h = (tmj — 

tmj-i)/m and the coefficients are defined by (II.5.4). A Newton-Cotes formula of closed 
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type uses a = tmp and b = tm^m, a Newton-Cotes formula of open type uses a = tm$ — h 

and b = tm,m + h, and a Newton-Cotes formula half-open type uses either a = fmo and 

b = tmjm + h, or a = tmfi — h and b = tm,m. The first three closed Newton-Cotes formulas 

are the trapezoidal rule (m = 1), Simpson's rule (m = 2), and Simpson's three-eights rule 

(m = 3). The trapezoidal rule is first-order accurate (i.e., E[Q] is proportional to h2 ) and 

both of the Simpson's rules are third-order accurate (i.e., E[$\ is proportional to h4). 

The Gauss-Legendre formulas produce the greatest accuracy for fixed m by using the 

zeros of the Legendre polynomials zm j to generate the points 

tm — tm—\ tm—\-\-tm 
tmj = 2 Zm'J + 2 ' •/ = 0 ' 1 ' - ' " ' (II.5.6) 

along with the coefficients 

^n — tm—\ T̂T ,- 7 , 
CmJ~(i-zmJnp^(zmJr

 (IL5J) 

For Gauss-Legendre formulas, E[Q] is proportional to h2m+3. Although, the Gauss-

Legendre formulas produce the highest order of accuracy for a given m, the Gauss-

Legendre formulas are open formulas that do not include evaluation at the endpoints. The 

Radau formulas include one of the endpoints and then maximize the precision by choosing 

appropriate abscissa. The Lobatto formulas include both endpoints and then maximize the 

precision by choosing appropriate abscissa. The order of accuracy are 2m + 2 and 2m + 1, 

respectively. Applying the formulas involving evaluation of the function at points differ

ent from the grid points to solve a Volterra integral equation directly is difficult. Thus, 

Newton-Cotes formulas are the most common quadrature formulas used to solve Volterra 

integral equations. 

IL5.2.1 Primitive Solution Schemes 

A family of methods that solve Volterra integral equations is defined by using a low-order 

Newton-Cotes quadrature rule on each grid interval 

/ : 
J+l Q(s)dsfahj[{l-e)<Htj) + 6Q(tj+i)\, O < 0 < 1 . (II.5.8) 

The Euler rule is obtained when 0 = 0, the backwards Euler rule is obtained when 8 = 1, 

and the trapezoid rule is obtained when 8 = 1/2. A repeated application of equation 

(II.5.8) gives the relationship 
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['" <j>(s)ds * £ hj[{\ - 6)<j)(tj) + 04>(tj+1)], (II.5.9) 

and discretizing the second-kind Volterra integral equation 

y(t) = g(t) + / K(t,s,y(s))ds, t0 < t < T, (II.5.10) 

with equation (II.5.9) produces the series of algebraic equations 

y(tn+i) = g(t„+i) + Y,hA(l-eMtn+htj,ntj)) + OK(tn+\,tj+hy{tj+i))} (H5.li) 
7=0 

where, for each value of n, the approximate value y{tn+\) is the unknown. Equations 

(II.5.11) are recastable into a single summation 

n+l 
y(tn+1) = g(tn+i)+ £ Wn+1JK(tn+l,tj,y(tj)) (II.5.12) 

j=o 

where W„+ij are referred to as the weights. The 6— rules are low order requiring many 

functional evaluations to obtain an accurate approximation. Alternatively, higher-order 

methods such as the combination of Simpson's rule and Simpson's three-eights rule require 

fewer functional evaluations for comparable accuracy. However, higher-order methods 

require more complex programming. 

A primitive solution scheme to solve Abel-type Volterra integral equations is found by 

approximating 

^ - r ^ * (n-5-i3) 
with one of the following formulas: 

*<«•>"&{/, fcz^}*'*01 (II'5'15) 

http://H5.li
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^ / x "f"1 f f'i+1 ds tj+l-s*r ^ 

; -° *> ' v ' J (II.5.16) 
/•O+i ds s-tj.f .\ 

which generalize the Euler, backwards Euler and trapezoid rules, respectively. Extending 

(II.5.14) - (II.5.16) to higher order is more difficult than extending (II.5.9) to higher order. 

II.5.2.2 Schemes Based on ODE Methods 

Methods solving the initial value ODE, 

J(t)=f(t,y(t)), t>t0, y(to)=yo, (II.5.17) 

are connectible to methods of solving Volterra integral equations of the second-kind. The 

initial value ODE in integrated form is a second-kind Volterra integral equation 

y(t)=yo+ ['f(s,y(s))ds, t>t0. (II.5.18) 
JtQ 

Alternatively, Volterra integral equations (II.5.10) with separable kernels K(t,s,v) = 

T!j=\ Tj(t)Sj(s,v) or exponential kernels K(t,s, v) = (t — s)nexp{—oc(t — s)}v reduce to 

a system of ODE's. For example, if K(t,s,v) = T\(t)S\(s,v) + T2(t)S2(s,v), then, upon 

defining 

ui(t) = f Si(s,v)ds, (II.5.19) 
Jo 

u2(t) = I S2(s,v)ds, (II.5.20) 
Jo 

the system of ODE's is 

u\{t) = Si(t,g(t) + Ti(t)u1(t) + T2(t)u2(t)), m(0)=0, (0.5.21) 

u2(t) = S2(t,g(t) + Ti(t)in(t) + T2(t)u2(t)), ii2(0) = 0. (II.5.22) 
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Numerical schemes to solve an ODE are often cast into the summation form 

k k 

Y,ocjyn-j = h1£Pjfn.j (II.5.23) 

which is similar to the primitive integral equation schemes (II.5.12). 

A scheme is explicit when the calculation of the solution of an equation at the current 

time is found by using the solution at the previous times. Quadrature methods of the form 

(II.5.12) are explicit if Wn+\tn+\ = 0 and ODE methods of the form (II.5.23) are explicit 

if j3o = 0. A scheme is implicit when the calculation of the solution of an equation at 

the current time is found by using both the solution at the current and previous times. 

Quadrature methods of the form (II.5.12) are implicit if Wn+it„+\ ^ 0 and ODE methods 

of the form (II.5.23) are implicit if /3o ^ 0. Implicit methods require a nonlinear algebraic 

solver and significantly more function evaluations. However, implicit methods usually 

lead to more accurate solutions and a more stable routine. Predictor-corrector schemes are 

simple methods to integrate ODE's that combine the advantages of implicit and explicit 

methods by first using an explicit formulation as a predictor and then using the predicted 

value in the implicit formula instead of an algebraic solver. 

Single-step methods do not use information from the previous steps. Two popular 

high-order single-step methods are the Runge-Kutta method and the Taylor-series method. 

The simplest high-order single-step method uses the higher derivatives calculated from 

(II.5.17) in a truncated Taylor expansion. However, the Taylor-series method becomes 

problematic when expressions for the higher derivatives, derivable from (II.5.17), are 

overly complicated. Runge-Kutta methods provide a high-order scheme and do not re

quire symbolic derivatives as in the Taylor-series method. Runge-Kutta methods also 

work when the right-hand side of (II.5.17) is only known numerically. The Runge-Kutta 

and the Taylor-series methods are not castible into the form of (II.5.23). 

Multi-step methods use information from the previous integration steps to construct 

high-order approximations. Multi-step methods are more efficient than single-step meth

ods, using fewer function evaluations per step for the same accuracy; however multi-step 

methods are less flexible than the single-step methods when changing step size. Further

more, multi-step schemes require independent initial approximations at the desired accu

racy for the first few initial steps, while single-step methods only require knowledge of 

the initial condition. Popular linear multi-step families of methods are the Adams and the 
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backwards-differentiation formula. For example, the 3-step explicit Adams method is 

f 23 16 5 1 
yn+l = yn + h I —fn - —fn-i + -^fn-2j, (II.5.24) 

and the 3-step implicit backwards-differentiation formula is 

18 9 2 6 
yn+i - yyy* + YY^"-1 ~ JT^""2 = nhf"+1 • (n.5.25) 

Both are in the form of (II.5.23). In principle, every ODE method (multi-step methods, 

Runge-Kutta methods, and general linear methods) generates a corresponding integral 

equation method for second-kind Volterra integral equation. Likewise, every integral equa

tion method for second-kind Volterra integral equation generates an ODE method. For 

example, a predictor-corrector method with variable order and variable step-size was de

veloped by Jones and McKee [35] to solve Volterra integral equations with smooth kernels 

using a similar strategy to change the step-size as used in the ODE method. 

Lubich [30, 54, 55] uses fractional powers of linear multi-step methods to numerically 

solve weakly singular Volterra integral equations. Lubich constructs convolution quadra

tures for integrals of fractional order from a linear multi-step method. The convolution 

quadrature has the same convergence properties and similar stability properties of the orig

inal multi-step method. The convolution quadratures for integrals of fractional order gen

erate integration rules for constructing uniform meshes in discretizing Abel equations. 

Lubich approximates the fractional integrals of order 1 — v; 

1 /•'" 6 (s) 
jVl4>Ktn) = ¥ir—J vr^ds' 0 < o < i , (H.5.26) 

r ( i - v ) y f 0 {tn-s)v 

with the sums 

" ° r i " r l 

j=0 7=>io+l 

where tn = to 4- nh. The second sum in the approximation is called the convolution part. 

The starting weights w„j are chosen so that the approximation is exact for 

<t>(s) = (s-t0)*, Hi e R, (II.5.28) 



22 

where 
y(t)~ao + al(t-to)^+a2(t-to)>l2+a3(t-t0)^ + ---, (II.5.29) 

as t ->to, with jui < ju2 < M3 < • • • < Mm-

II.5.3 Runge-Kutta Methods for Integral Equations 

Runge-Kutta methods are popular choices for numerically solving ODE initial value prob

lems. Runge-Kutta methods were first formulated around the 1900's, while modern 

Runge-Kutta methods using J.C. Butcher's theories date to the 1960's. In the 1960's, 

R Pouzet [62] and B.A. Bel'tyukov [12] extended Runge-Kutta methods to second-kind 

Volterra integral equations. H. Brunner, E. Hairer, and S. N0rbert [15] systematically ana

lyzed Runge-Kutta methods for second-kind Volterra integral equations in the 1980's. 

To develop the Runge-Kutta method for Volterra integral equation rewrite the general 

equation (II.5.18) using a uniform mesh tn — nh as 

y(t) = Fn(t) + f k(t,s,y(s))ds, t E [tn,T], (II.5.30) 
Jt„ 

where Fn is the lag or tail term given by 

Fn(t)=g(t)+ ftnk(t,s,y(s))ds, n = 0,...,N-l, (II.5.31) 
Jo 

and the increment function 4>(f) on the subinterval [f„,f„+i] is 

h&n(t)= [ k(t,s,y(s))ds, te[tn,T], n = 0,...,N-l. (II.5.32) 
Jtn 

A Runge-Kutta method requires two independent approximation schemes: (i) an approxi

mation scheme for the increment function on the subinterval [f„,f„+i] producing a discrete 

representation of the increment function <$>(t) called the Volterra-Runge-Kutta formula and 

(ii) an approximation scheme for the lag term on the interval [0, t„] producing a discrete 

lag term F„(t). The solution at t = tn+\ = tn + h is approximated as 

y„+i=F„(tn + h) + h®(tn + h), n = 0,...,N-l. (II.5.33) 

For example, an m-stage Volterra-Runge-Kutta formula for the increment function has 

the form 



23 

*»(0 = L W + (*; - 1 )Mn+cA r„,y-) (H.5.34) 
7=1 

where 7„j are approximations to y at points between tn and f„+i given by 

~ m 
yB,7 = F„ {t„ + Bjh) + h £ a,v*(f + dyV7i, fn + c«7i, r„,«), j = 1,..., m. (II.5.35) 

1=1 

The constants a,b,c,d,e are suitably chosen to produce sufficient accuracy and to maintain 

stability. Other choices of approximation schemes are possible. 

II.5.4 Collocation 

Collocation methods used to solve Volterra integral equations are often based on polyno

mial spline approximations. Let y~-{t) be the polynomial of degree m approximating y(t) 

to the left of tn and y+ (t) be the polynomial of degree m approximating y(t) to the right of 

tn. The spline of continuity class k with knots TN = {tn}^ C T is created by setting 

y+(tn)=y.(tn), y+(tn)=yJ_(tn), •••, y^\tn) =y^\tn). (0.5.36) 

The polynomial spline is a piecewise linear continuous approximation when m = 1,^ = 0, 

and the polynomial spline is a classical cubic spline approximation when m = 3,k = 2. 

Any approximation y(t) to the solution to the second-kind Volterra integral equation, 

y(t)=g(t)+ f K(t,s,y(s))ds, t E [to,T], (II.5.37) 
Jto 

has a defect 

8(y(-);t) :=y(t) - L(t) +J^K(t,s,y(t))ds\ (t E [t0,T)). (II.5.38) 

If equation (II.5.37) has a unique solution, then the defect is zero for all t if and only 

if y(-) =y(-)- This suggests that the best approximation would be one with the smallest 

defect. Collocation methods seek approximations with zero defect on the set of collocation 

points. The defect depends on the dimension d of the space and is uniquely determined by 

d parameters. The defect approximation satisfies k+ 1 continuity conditions (II.5.36) at 
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each point /„ and also satisfies Nm collocation conditions 

8(y(-);tn,r):=0, n = 0,l,2,-,N-U r e {1,2,- ,m}. (II.5.39) 

The defect vanishes at the distinct collocation points tHjr = t„ + -&rhn and for t e[tn,tn + l] 

is 

m-Y.t) = m-8(*)+ ( I fi+1 K(t,s,y(t))ds 
U'=° ° (II.5.40) 

+ j f A-(M,;y*(j))<fr}, 

where >̂( •) is a polynomial of degree #n in each interval (fy, fy+1 ]. 

Spline collocation provides a continuous and smooth approximation as opposed to 

the approximation at a discrete set of points provided by Runge-Kutta and other finite 

difference schemes. However, spline collocation requires numerically evaluating n new 

integrals at each step. When the integral equations are generated by ODE's, spline col

location methods are equivalent to Runge-Kutta methods if the integrals are interpolated 

by quadratures. Uniform meshes cannot be used with polynomial collocation to solve 

Volterra integral equations with weakly singular kernels and smooth data, since the solu

tions' derivatives are unbounded at the left endpoint of the integration range. This problem 

is resolved by using graded meshes or uniform meshes with non-polynomial collocation 

as discussed in Brunner [14] and the works cited in that survey. 

II.6 Blow-up Problems 

All of the previously mentioned non single-step integration techniques cannot be applied 

directly to integral equations with solutions that blow up at a finite time. These methods 

are based upon an a priori designated grid, and the appropriate grid for a blow-up solution 

cannot be known a priori. Runge-Kutta methods can be used if the step size is adjusted 

appropriately near the singularity. However, this still requires a monitoring of the solution 

to prevent time-stepping past the singularity. Furthermore, Runge-Kutta methods are more 

complicated for Able-type equations. 

The purpose of this research is to utilize simple well-known numerical methods and 

ready-made software to numerically solve Volterra integral equations. A consistent method 
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of solution is presented in Chapter III that allows the investigator to easily distinguish be

tween a singular solution and a non-singular solution, thus, avoiding the use of ad hoc ap

proaches. Upon determining that a singular solution exists, the time step is appropriately 

adjusted to maintain accuracy. The technique uses well-developed software that interpo

lates the solution and that accurately integrates in the presence of an Abel singularity. The 

programming is straightforward and intuitive. 
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CHAPTER III 

VOLTERRA INTEGRAL EQUATIONS 

in. l Introduction 

The study of ignition problems in reactive media by deriving nonlinear integral equations 

whose solutions represent temperature perturbations above the temperature solutions in 

a similar but unreactive media started with two classic problems by Linan and Williams 

[52] & [53]: a) ignition of a reactive solid by a constant energy flux, and b) ignition of 

a reactive solid by a step in surface temperature. By using analytic techniques, Olmstead 

[56] proved that the solution to the nonlinear Volterra integral equation derived in Linan 

and Williams [52] is both monotone and singular. The singularity in the solution of the 

integral equation occurs at a finite time, and this decisive event unambiguously defines 

the ignition time for this problem. Although the singularity is proven to exist, the integral 

equation must be solved numerically in order to determine the value of this "blow-up" 

time. When approximating the solution of this nonlinear Volterra integral equation using 

a standard finite-difference time-marching scheme, significant difficulties arise owing to 

the singularity in the solution. Time marching requires assuming a solution exists at each 

specified value of the independent variable, but this assumption fails to hold when the sin

gularity of the solution is on the interval under consideration. Interchanging the dependent 

and independent variables resolves the inherent difficulty when the solution is known to 

be monotone. Instead of time marching, the solution proceeds by "temperature marching", 

i.e., the temperature is prescribed and the time value corresponding to this temperature 

is sought. By using this interchange, time-stepping past the singularity in the solution is 

avoided, and the temporal step size automatically becomes appropriately small near the 

singularity. 

Since Olmstead [56] proved that the solution to the integral equation derived in Linan 

and Williams [52] is both monotone and singular, solving the inverse problem instead of 

the direct problem is justified. However, interchanging the independent and dependent 

variables fails to determine numerically the solution for other integral equations resulting 

from reactive-diffusive systems. For example, Lasseigne and Olmstead [49] derive a one-

parameter nonlinear integral equation by including the effects of reactant consumption in 

the problem of ignition using a constant energy flux. The parameter includes a measure of 

the heat release of the reaction and a measure of the initial reactant level. The analytical 
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techniques used by Olmstead to provide a priori knowledge of the monotonicity of the so

lution when reactant consumption is excluded fail to provide the same a priori knowledge 

as to the monotonicity of the solution when reactant consumption is included. Further

more, these analytic techniques fail to prove that the solution to the new one-parameter 

integral equation is singular for all values of the parameter. Upon numerical integration, 

a critical value of the parameter is determined such that no singularity in the solution ex

ists for small values of the heat release. This absence of a singularity is interpreted as a 

non-ignition event. Lasseigne and Olmstead [49] took an ad hoc approach by seeking a 

numerical solution using the interchange of independent and dependent variables previ

ously described and monitoring the process for the possibility of a non-singular solution. 

If a non-singular solution is found, a recalculation without the interchange of independent 

and dependent variables verifies the result. 

A consistent method of solution is presented below that allows the investigator to eas

ily distinguish between a singular solution and a non-singular solution, thus, avoiding 

the ad hoc approach used in the past. Furthermore, the solution develops in the natu

ral variables where the temperature perturbation is the dependent variable and time is the 

independent variable. Upon determining that a singular solution exists, the time step is 

appropriately adjusted to maintain accuracy. Another virtue of the present technique is the 

use of well-developed software that interpolates the solution and that accurately integrates 

in the presence of an Abel-type singularity. The programming is straightforward and in

tuitive without introducing the complexity and low-order of solving by finite differences. 

The solution method is used to solve all of the integral equations given in Table 1, and any 

necessary modifications for a particular equation is discussed in the text. 

III.2 Numerical Routine 

When developing a numerical approximation of the solution to an equation, one usually 

looks for the simplest method that produces an accurate solution. For an integral equation 

with a non-singular kernel and a well-behaved solution, the method of finite differences 

provides a straightforward method to obtain an accurate approximation. The simplest ver

sions of finite differences applied to an integral equation are equivalent to approximating 

the integral with the trapezoid rule or with Simpson's rule. The method of finite differ

ences also provides a straightforward approximation scheme for integral equations having 

singular kernels, but with reduced accuracy compared with the same technique applied to 

integral equations with non-singular kernels. 



TABLE 1 

Integral equations solved. 
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Description 

Ignition of a 

Combustible Solid [56] 

Ignition with 

Marginal Heating [50] 

Ignition with 

Reactant Consumption[49] 

Equation 

"(»?)-/T / * e^'^dt, 
J—y/ic{r\-£) 

J-oy/ic(ri-S) 

where F(x) = and v(|) = / «"(«')+«' </£' 

The finite-difference scheme that solves the general, nonlinear, Abel-like Volterra in

tegral equation 
m l 

(III.2.1) 

is of the form 

ho y/n(r\-Z) 

M(J7n) = Ewi«/r("(T?0)T?<;^i^2---) n>\. (III.2.2) 
i=0 

Making appropriate approximations to F(M(TJ),T];AI,A.2 ...) on each sub-interval deter

mines the weights Wi„. The simplest (and lowest order) approximation replaces F by a 

straight line over each sub-interval. Replacing the function F with a parabola fitted through 

three points provides a higher-order approximation, but the square-root singularity in the 

kernel destroys the symmetry that makes Simpson's rule so accurate for non-singular ker

nels. 

If the solution is well-behaved, using evenly spaced steps, Tj;+i = TJ, +ATJ, keeps the 
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finite-difference scheme relatively simple. Time marching determines the solution at each 

successive point starting from UQ = M(TJO) = 0. Upon assigning n = 1, equation (III.2.2) 

becomes a non-linear algebraic equation for the unknown u\ = u(rji) whose value is de

termined using a root finding program. The solution process continues by setting n = 2 

to obtain a non-linear algebraic equation for the unknown U2 — u(t]2) which depends on 

the previously determined values MO and u\. The time marching continues until the so

lution is determined on the required interval. At each r\n, the non-linear algebraic equa

tion explicitly depends on all of the previous solution points, i.e., the solution depends on 

Mo, «i, . . . , M„_I . For integral equations derived from reaction-diffusive systems, the solu

tion might be singular at some finite point, say 7]*. Thus, when using evenly spaced steps 

in a finite-difference scheme, r\i+\ = TJ( + ATJ , the solution at the point T}# does not exist if 

T]N-\ <rj* < rjN', however, the value of N is unknown a priori. Thus, an attempt is made 

to find the nonexistent quantity UN = M(TJAT). Since the non-linear algebraic equation is 

only an approximation to the integral equation, a false value for u^ might be found, and 

the time stepping would continue to search for the nonexistent solution u^+\- Interchang

ing the independent and dependent variables prevents stepping past the singularity in the 

solution, but this interchange is inappropriate if the solution is not known to be monotone. 

If a priori knowledge of the monotonicity of the solution is unavailable, one is limited to 

using the time-stepping method, monitoring the solution, dynamically adjusting the step 

size to maintain accuracy, and preventing stepping past the singularity (if one exists). Since 

extending finite differences with unevenly spaced time steps to higher-order approxima

tions is problematic from a programming perspective, using low-order methods is neces

sary. Thus, very small step sizes are required to accurately determine the solution near the 

point of singularity as the validity of the polynomial approximations becomes question

able. These difficulties are sometimes eliminated by exploiting the special (asymptotic) 

nature of the particular solution which produces an ad hoc approach to determining the 

blow-up point for each individual integral equation. 

Lasseigne and Olmstead [49, 50] and others [64, 65] have taken this ad hoc approach 

in the past; however, the need to once again solve a similar problem justifies seeking a 

general approach. A general approach is developed here using the following integration 

criteria (IC): 

• ICi: the integral is numerically approximated by existing software that accounts for 

the Abel-type singularity and adapts to a rapidly changing function; 
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• IC2: the singular or non-singular nature of the solution is unambiguously determined 

on a given time interval; 

• IC3: if a point of singularity is determined to exist, the time step is adjusted in a 

straightforward manner to approximate the solution near this point accurately. 

In order to satisfy the first criteria (ICi), a robust interpolation scheme is needed to provide 

a reasonable approximation to the unknown function for all values of the independent 

variable. In the interest of simplicity, as well as accuracy, a cubic-spline interpolation is 

a logical choice; however, because a singularity might exist in the solution, a cubic-spline 

interpolation directly applied to a discretized representation of the solution loses accuracy 

in the vicinity of the singularity. A specific change of variables is employed to satisfy the 

second criteria (IC2) and is key to the technique presented here. The change of variables 

is suggested by the asymptotic analysis of the nonlinear integral equation 

M(7]) = f / eu®+S dl; (III.2.3) 

as developed by Olmstead [56]. Olmstead proved that a solution exists on the interval 

77 6 (—°°, — 1) and that a solution cannot exist when 77 > 0. Thus, the solution is singular 

at some point 77* e [—1,0) which has been numerically determined to be 77* ss — .431. The 

analysis proceeded by introducing the variables 

77 = 7 7 ° - ^ $=r)°--r u{p) = u{r\) (III.2.4) 

and thereby, converting integral equation (III.2.3) to 

u(p) = y/pe^ F 1 ea^-l'rr'3l2dr. (III.2.5) 
Jo ^/x(p-r) 

The lower limit changes from minus infinity to zero, and the variable 77 approaches 77 ° 

as p approaches infinity. Three possibilities for the value of 77 ° exist. If 77 ° < 77*, it is 

easily determined that u(p) —> U(T]°) as p —> °°. If 770 is the ignition time (i.e., 7}° = 

77*), then w(p) —> 00 as p —> «>. Finally, if 770 > 77*, thermal runaway occurs for a finite 

value of p i.e., u(p) —> °° as p —• p*, and the analysis of (III.2.5) is as difficult as the 

analysis of (III.2.3). This last case is irrelevant to mathematical analysis developed by 

Olmstead [56]; however, considering 770 > 77* is important in developing the numerical 

scheme satisfying integration criteria (IQ) and (IC2). The proposed method is illustrated 
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by a general discussion of the numerical solution of equations (III.2.3) and (III.2.5). 

Upon using the asymptotic solution as T] —>• — °o given by 

u(n)~en + ... (III.2.6) 

equation (III.2.3) is approximated as 

M(TJ) = f ° , 1 £ dt, + r t
 l e^+S d% (III.2.7) 

when T]o is chosen as a large negative number with large absolute value. A numerical so

lution to equation (III.2.7) has been successfully determined using a linear interpolation of 

the quantity eu^+^ in a finite-difference approximation to the second integral in (III.2.7) 

and interchanging the roles of the dependent and independent variables. Choosing a grid 

for values of u{r\i) results in a series of nonlinear algebraic equations to be solved for the 

values r\i. By using this interchange approach, stepping past the ignition point is not pos

sible, and the temporal step size adjusts automatically near the ignition point. However, 

this exchange of dependent and independent variables is only valid when the solution is 

known to be one-to-one. 

Now, imagine attempting to solve (III.2.7) while keeping time as the independent vari

able and using an adaptive numerical routine such as QUADPACK's D4QAWS [61] to ap

proximate the integral with a square-root singularity. Using an adaptive numerical routine 

has the virtue of increasing the accuracy of the solution as opposed to the linear interpola

tion used previously. However, two problems exist. First, choosing a fixed, temporal step 

size leads to attempting to solve the discretized equations in a region where the solution 

does not exist (i.e., time-marching past the singularity). Second, the integrand is known 

only at the discretization points, and the adaptive numerical routine requires a value of 

u{y\) for all TJ. A cubic-spline interpolation scheme provides values of W(TJ) between the 

discretization points. Away from the ignition point, the cubic spline is an excellent choice 

providing both accuracy and simplicity; however, even with the smaller and smaller step-

sizes used near the ignition point, cubic-spline interpolation can fail in this crucial region. 

Numerically approximating the solution to equation (III.2.5) instead of equation 

(III.2.3) resolves both difficulties. By using the asymptotic solution to take the first time 
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FIG. 1 Solution of benchmark equation in p variable, (a) Solution without a singularity, 

TJ° < 77*. (b) Solution with a singularity, TJ° > 77*. 
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step, the equation to solve numerically is 

Jo y/n{p-r) 

(III.2.8) 

Jpo y/K(p-r) 

with po some suitably small number. The numerical integration of (III.2.8) cannot begin 

until a choice is made for the parameter TJ°. This choice affords the user control over 

the behavior of the solution. If 77° < J]*, the solution in the p variable is similar to that 

seen in Figure 1(a), and approximating the integral by using QUADPACK's D4QAWS 

[61] routine and by interpolating the solution in the p variable with cubic splines produces 

excellent results. However, the solution is obtained on the interval (—°°, T7°) and not the 

required interval (—00,17*). In fact' there is not yet any indication as to the value of r)*, 

which is the purpose of the numerical integration. A second (larger) choice of T70 must be 

made, and the solution to equation (III.2.8) is again determined numerically. Assuming 

that this time, 770 > r/*, a singularity exists at some finite point P*(TJ°) , and the solution 

is as seen in Figure 1(b). Thus, a clear delineation exists between solutions which have 

singularities and solutions which do not have singularities. Upon determining that the 

solution with the second choice of TJ° has a singularity, a search routine, e.g., bisection, 

can be constructed to find a value of TJ° as close to rj* as possible. However, the integral 

equation must be solved numerous times, leading to a repetition of effort. In order to 

prevent this inefficiency, the following two-grid method is applied to equation (III.2.3): 

• a coarse grid in the rj variable is chosen as 

Vi+i = r],1 + Srii i = 0 , l , . . . ; (III.2.9) 
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• the integral is written in three terms 

+ P l eu^+S dk (Hl.2.10) 
•''to y/n{ri-$) 

+ P , 1 «»«>+* </g; 

- the first integral is approximated by using the asymptotic value of the solution 

for the interval over (—°°, Tjo); 

- the second integral is approximated by using a cubic spline interpolation in 

the r] variable along with QUADPACK'S D4QAG [61] adaptive quadrature 

routine for the integral over (ryo, TJ,-); 

- the change of variables 

71 = Tli+i~Y^' ^ = r ? ' + i - r ^ ' "(*?)="(p) (ni.2.11) 

is introduced in the third integral, 

P — <**)+*# = 

(III.2.12) 

y/8r]i{\+p)e^ P 1 efiM-8mni+r)(i + r)-3/2d/. 
Jo y/jc(p-r) 

and the numerical approximation proceeds on a fine grid chosen as 

Py+l=Py(l + 5p), %• = »?«•+!-T5T' l<J<Jnux- (HI.2.13) 

Thus, for each new interval (TJ,-,TJJ+I), the solution is calculated on the fine grid, T],y, 

by time stepping in the p variable. Using the p variable in lieu of the variable r\ provides 

a mechanism for satisfying integration criteria (IC2). If TJ, < TJ* < T],+i, then upp becomes 

positive on the interval. Otherwise, upp remains negative for the entire interval, and u(p) 



35 

approaches w(r7,+i) (a constant) as p approaches infinity. If the solution is determined to 

be singular on a given interval, the integration on this interval is discarded, and a smaller 

value of 8r]i (i.e., a new value of 7],+i) is chosen. The process continues until the interval 

with a singularity is found using the smaller 5rj,-. Again, the integration over the interval 

with the singularity is discarded, and an even smaller value of 5T], is chosen. Thus, the time 

step is adjusted in a straightforward manner near the point of singularity which satisfies 

integration criteria (IC3). The process is demonstrated in the next section by calculating 

the solution of integral equation (III.2.3). 

III.3 Numerical Solution of Benchmark Equation 

The numerical solution of equation (III.2.3), restated here as 

11ft) = f / e^)Hd^ (II1-3-1) 

is sought. The solution exhibits a logarithmic singularity of the form 

M 1in(T7* - 77) - 77* -ln(2/A/^) -h 0(T7* - ry) (III.3.2) 

where the finite blow-up time is TJ* « — .431. Previous numerical integrations have deter

mined this value by interchanging the dependent and independent variables during the nu

merical integration. While this interchange is certainly appropriate for this integral equa

tion, it is inappropriate for other integral equations that are not known to be monotone a 

priori. Therefore, integral equation (III.3.1) provides a significant challenge (as well as a 

benchmark) to a general purpose solver that uses time marching. 

To present our technique, we start with equation (III.2.10), the coarse grid given by 

(III.2.9), and the fine grid defined by (III.2.13). The asymptotic behavior of the solution 

is given by W(T?) ~ e^ as r] —> — °°, and using this value to approximate the first integral 

gives 

P - = L = e " « > + « d^ ~ ^ e r f c ( ^ F ^ ) . (III.3.3) 

The second integral is zero if 1 = 1. For i > 1, the second integral is approximated using the 

numerical integration routine DQAG and interpolating u{B,) with a cubic spline through 

the solution u^ and u^j a t the coarse grid points Tfe and a subset of the fine grid points rj*/. 

The third integral is converted to the integral over the variable p on the interval (0, py) and 
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FIG. 2 Benchmark solution as function of fine-grid variable p for each coarse-grid interval. 

Insets show solution in original rj variable, (a) 8r\ = \, (b) 8r\ = \, (c) 8r\ = A, (d) 8r\ = .01, 
(e)8ri = .001, (f)8r\ = .0001. 
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approximated by using the numerical integration routine DQAWS which appropriately 

handles the integrand's square root singularity at the upper limit. The integration process 

time marches the solution by first finding the value w,j = w(py) when j = I and then 

determining successively the solution when j = 2,3,..., j m a x . Values of w(p) for all values 

of p are provided to the subroutine DQAWS using a cubic spline interpolation through 

K/+1 * at the points Pk with — 2 < k < j . The last two points from the previous interval, 

k = — 2 and k = —1, are put in terms of the variables on the new interval where p_2 and 

p_i are negative. The point on the coarse grid is represented by k = 0 where po = 0. A 

nonlinear scalar equation of the form 

Ui+ij = *(«,-+! j) (III.3.4) 

results, and the equation is solved for the unknown value «,+i,y = u(t]ij) = u(pj) using a 

root finding method. 

At this point, all of the quantities except for the solution on the coarse grid M,+I are 

well defined. To define this quantity, the numerical solution on the fine grid must be ex

trapolated in the limit p —* °°. Upon using the solution through the points {py-2, Py-i, Pj} 

and the expansion 

w ~ w,+i — a b—x + ..., (III.3.5) 
p p^ 

the approximation to the solution on the coarse grid uj+l is found by solving the three-by-

three system: 

Uij-2 = u\' , - a b^5 h . . . (III.3.6) 
Pj-2 Pj-2 

Uij-i = u{ y-a- b-^— + ... (III.3.7) 
+ Pj-i Pj-i 

uu = u[,x-a b-j + ... (III.3.8) 
+ Pj Pj 

Extrapolation is deemed to converge when the relative error between two successive 

approximations 

K'+l "i'+l 
- M l 

(III.3.9) 

falls below a set tolerance level. 
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To start the integration, the discretization parameters that must be chosen are: 770, 8r\i, 

P\, 8p, and j m a x . Also, the relative and absolute error variables ERRREL and ERRABS for 

the subroutines D4QAG and D4QAWS must be specified. First, we present the converged 

solution using the values: 770 = - 8 , 5T], = \,px = .01, dp = .01, ;'max = 1000, ERRREL = 

10~7, and ERRABS = 10~14. For consistency, the relative tolerance in the extrapolation 

that determines the value on the coarse grid is set to ERRREL. 

Figure 2 shows the solution for each interval of the coarse grid. Figure 2(a) uses a 

logarithmic scale owing to the initial exponential behavior of the solution. As p increases 

from zero to infinity, the solutions are smooth and concave down for the integrations over 

the intervals corresponding to 77 — (—8,-1). The solution has a different character for the 

integration corresponding to the last interval 77 = (—1,0) which is seen in Figure 2(b). The 

solution curve becomes concave upwards on this interval representing a rapidly increasing 

solution in which a decrease in step size is needed for resolution. By halting the integra

tion and decreasing the step size, time marching past a singularity (if one exists) is avoided. 

The inset shows that in the original 77 variable, the solution is smooth and seems to demon

strate singular behavior at some value of 77. Since this singular behavior is on the interval 

77 = (—1,0), the solution on this interval is recomputed using 8t]i = A while keeping the 

fine grid parameters the same. The change in 577, increases the grid density by a factor 

often. Figure 2(c) shows that the solution corresponding to the interval 77 = (—.5,—.4) 

differs from the solutions corresponding to the sub-intervals on 77 = (—1, —.5) in the same 

way that the solution corresponding to the interval 77 = (—1,0) differed from the solu

tions corresponding to the sub-intervals on77 = (—8, —1). Therefore, the last integration 

is discarded, and the solution over 77 = (—.5, —.4) is recomputed using 5TJ,- = .01 with the 

results shown in Figure 2(d). The same pattern is repeated on this finer interval. By chang

ing to the p variable and properly adjusting the time steps, the solution near the singular 

point is accurately calculated without ever stepping past the point of singularity. Further 

refinements are shown in Figure 2(e) and Figure 2(f) on the interval 77 = (—.44, —.43) with 

577, = .001 and on the interval 77 = (-.432, -.431) with 577/ = 0001, respectively. 

The progression of the coarse grid is illustrated in the schematics, Figures 3(a)-(c). 

The integration time marches from the starting value 770 = —8 in increments of 677 = 1. 

The solution is found to increase rapidly over the interval (777,77s) = (—1,0) (Figure 3(a)), 

and this last integration is discarded in favor of integration using a smaller 8r\ as demon

strated in Figure 3(b). Again, the solution is found to increase rapidly over the interval 

(7712,7713) = (—.5, —.4). The integration over this last interval is replaced by the integration 
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FIG. 3 Schematic showing tine and coarse grids for benchmark solution, (a-c) Coarse 
grids with 5T] = 1, dr) = .1, and 8r] = .01. (d) Fine-grid solution without blowup, (e) Fine-
grid solution with blowup. 
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using 5T] = .01 (Figure 3(c)). This process continues until the desired degree of accuracy 

is achieved or until reaching the limits of accuracy imposed by the various approximations 

and truncation errors. The schematics, Figures 3(d)-(e), illustrate the integration process 

over the fine grid. On coarse grid intervals that do not contain the blow-up point, the inte

gration in the p variable continues until the extrapolation to p = °o converges, Figure 3(d). 

On a coarse grid interval that contains the blow-up point, the integration continues until p 

nears p* at which point a "blow-up criteria" (involving the second derivative with respect 

to p) is met, Figure 3(e). Both fine grids show the points from the previous interval that 

are used in the cubic spline approximation when integrating in the p variable. 

III.3.1 Convergence and Accuracy Analysis of Numerical Routine 

Nominally, the time-stepping routine has been successful. With minimal effort, the blow

up point has been determined to four digits of accuracy, and this value is consistent with 

the value determined using other methods. The next step is to determine the degree of 

accuracy possible with this approach. Four issues affecting the accuracy are addressed: 

• How accurate is the numerical integration near the point of singularity? 

• How accurate are the cubic-spline interpolations in both the T] and p variables? 

• How accurate is the determination of upp and uppp near the point of singularity? 

• How does the extrapolation of the solution from the fine grid to the coarse grid affect 

the solution? 

We start with evaluating the accuracy of the derivatives, as this analysis highlights 

important factors in determining the accuracy of the interpolation and integration. 

III.3.1.1 Derivative Evaluation 

When considered as a function of p, the solution on the interval which contains the sin

gularity is markedly different than the solution on the intervals that do not contain the 

singularity. In particular, upp > 0 for a significant region in the interval which contains 

the singularity, and developing a blowup criteria based on the value of the second deriva

tive seems natural. Thus, determining the accuracy of the approximation to this important 

quantity is necessary. The first, second and third derivatives of u at the fine-grid point p„_2 

are determined by using a five-point finite-difference approximation. The finite-difference 
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scheme is based on the Taylor-series approximation which is known to breakdown near the 

singular point. To examine the accuracy of the derivatives, the known asymptotic behav

ior of the integral equation solution near the point of singularity provides a test function. 

Thus, the logarithmic test function 

f/(7]) = - ^ l n ( 7 7 + - T j ) - f i * - l n ( 2 / v ^ ) (III.3.10) 

is converted to the p variable, and the exact derivatives are compared to the solutions 

of the four-by-four linear system of equations representing the finite-differences scheme 

using the values of u at the five points p„, pn-i, Pn-2, Pn-3, and pn-4- The system is 

solved by using Gaussian elimination. 

Figures 4(a)-(c) and Figures 5(a)-(c) show the relative errors of the derivative approx

imations for a generic interval 77 = (—1, — .9) and for each refinement of the coarse grid 

represented by smaller values of 5 77 in the 77-interval immediately before blow-up. The 

absolute errors of the second derivative approximations in the 77-interval containing blow

up are shown in Figure 4(d) and Figure 5(d). Choosing 77* = —.431111111111111 for 

these calculations produces nearly self-similar solutions since the solution near blow-up 

behaves as —.5 *ln(p* — p) + 0(1) and since p* is the same on each interval containing 

the blow-up point. The calculations presented in Figure 4 and Figure 5 represent different 

choices of the fine grid spacing 8p and jmax. 

The change to the p variable is designed so that Taylor-series approximations in the p 

variable are valid in each region without a singularity. The results for the generic interval 

77 = (—1,—.9) indicate that the second derivative approximations in the p variable have 

relative errors in the range of 10~9 when p is near zero and which increase with increasing 

p but never above 10~4. As p gets large, the solution asymptotes to a constant value 

and all derivatives become small in absolute value; therefore, the values of u at the five 

points differ by only a small amount. In addition, the absolute change in p , Ap, = p, — 

p,_i = p ; j5p, is at its largest value. Thus, the loss of accuracy in the derivatives as p 

gets large is expected. Inaccuracies start to appear near p = 0 for the other sub-intervals 

when 77 is near TJ*. These problems are partly attributable to the truncation error inherent 

in the difference fj* — 77 when calculating the exact value of ln(f/* — 77) as seen by the 

increase in relative errors when 8 77 decreases making the values of 77 even closer to 77*. 

Since the function is nearly self similar in the p variable, the presence of errors when 

calculating the values of U{r\) is the only explanation for the increasing relative errors 
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FIG. 4 Relative error in derivative approximations and absolute error near blowup for 8p = 
.05, 

jmax = 1000. (a)-(c) Relative error in derivative approximations, 8p = .05, jmax = 

1000. 
(d) Absolute error near blowup. 
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jmox = 10000. (d) Absolute error near blowup. 
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in the derivatives. However, a second parameter also affects the size of relative errors. 

Compare the results presented in Figure 4 using Sp — .05 with the results presented in 

Figure 5 using Sp = .005. Nearp = 0, the absolute change in p,Ap, =p,—p,_i — p^Sp, 

is at its smallest value, and additional truncation errors in the differences calculated during 

Gaussian elimination increase the relative errors in the derivative approximations. 

Of prime importance to the method employed in this manuscript is the calculation of 

the second derivative with respect to the p variable. This value is paramount in determin

ing whether a singularity exists on a given rj interval. Figure 4(d) and Figure 5(d) show 

the absolute error when calculating this important quantity on an interval containing a sin

gularity. As p approaches p*, the errors increase rapidly owing to the inaccuracy of the 

Taylor-series approximation in this region. However, the sign of the second derivative and 

its magnitude within a couple of digits of accuracy can still be determined for most values 

of p, and this is what the blowup criteria is based upon. 

m.3.1.2 Spline Fit 

The numerical solution of the integral equation provides solution estimates at discrete 

points. The estimates differ from the true solution through previous use of numerical in

tegration, interpolation, extrapolation and truncation. The first of the integration criteria 

(ICi) states: "the integral is numerically approximated by existing software that accounts 

for the Abel-type singularity and adapts to a rapidly changing function." This criterion is 

satisfied by choosing the numerical integration routines from QUADPACK [61]. However, 

these routines require the values of the solution at all points along the path of integration. 

Thus, an interpolation scheme must provide the missing solution values from the approx

imate solution values at the discrete points. The accuracy and robustness of the interpo

lation scheme must be assessed for the unique conditions pertaining to the solution of the 

integral equation. 

For this study, the cubic-spline is chosen as the appropriate interpolation scheme and 

is calculated by using the FORTRAN subroutines SPLINE and SEVAL from Computer 

Methods for Mathematical Computations, by Forsythe, Malcolm, and Moler [23]. This 

particular version of the cubic spline is not the natural cubic spline in which the second 

derivative at the endpoints are set to zero, but rather matches the third derivative of the first 

cubic spline to the third derivative of the unique cubic polynomial passing through the first 

four points and matches the third derivative of the last cubic spline to the third derivative 

of the unique cubic polynomial passing through the last four points. Considering that the 
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second derivative of the solution approaches infinity near any singular point, this cubic 

spline should be a better representation of the solution in the region of the singularity 

than the natural cubic spline which would force the approximation to have a zero second 

derivative. The accuracy of the cubic spline interpolation is well known if applied to 

a smooth continuous function; however, the accuracy near a singular point depends on 

both the discretization scheme and the type of singularity. To test the accuracy of the 

interpolation scheme (independently of the numerical solution of the integral equation), 

the cubic spline is applied to the test function U(r\) (defined in equation (III.3.10)) with 

the same singularity as the expected solution while using the same discretization near the 

point of singularity as used during the solution of the integral equation. 

First, the spline is applied in the r\ variable on intervals not containing the singularity 

by evaluating the test function at every fifth fine grid point and at every coarse grid point 

over the interval [—2.0, TJ,-]. The endpoints, TJ,-, are the coarse grid points as in Figure 3 and 

equation (III.2.9). The maximum relative error and average relative error are calculated by 

selecting one-hundred evenly-spaced points in the test intervals [TJ,-_I,TJ,-] for i > 7. The 

results are presented in Table 2. For each level of ATJ , the accuracy degrades as the interval 

with the singularity is approached, but the accuracy is recovered when the value of ATJ 

is decreased. The relative accuracy over all the tested intervals is easily maintained as 

less than 10~8 by decreasing the value of 8p, and thereby, adding more points within the 

interval. 

m.3.1.3 Numerical Integration 

In solving the integral equation, the method relies on using well developed software for 

achieving the actual quadrature. In this case, the adaptive routines D4QAG and D4QAWS 

from QUADPACK [61] have been chosen in order to handle the Abel-type singularity. 

However, it should be noted that these routines are applied to integrands in which the non-

kernel part is itself singular, and the accuracy of this application needs to be examined. 

Therefore, the numerical quadrature of the well defined integral 

Wn) = f - _ L = ^ « ) + « ^ (ni.3.11) 
J no \fn{r\-£) 

with 

£/(T7) = - l l n ( f r - r 7 ) - r - l n ( 2 / v ^ ) (111.3.12) 
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is investigated. The coarse and fine grid structure developed for the solution of the integral 

equation is used to calculate the test integral which has the asymptotic solution 

W T ? ) ~ - ^ l n ( T T - » ? ) + 0(l) as 77^77*. (IIL3.13) 

The effects of using both direct calculation of the integrand and approximation of the 

integrand by cubic spline are investigated. 

The results of calculating the test integral using direct evaluation of the integrand with 

the value 77* = -.43111111111111 are plotted versus uasy(r]) = -ln(fj* - T J ) / 2 . If the 

numerical results are correct, the resulting graph should be a straight line with a slope of 

unity in the limit uasy(rj) —> °°. As seen in Figure 6(a), the chosen numerical routines 

sufficiently capture the singular nature of the result when using the coarse and fine grids 

proposed for the solution of the integral equation. The level of AT] for the coarse grid is 

indicated on the graph, and the points in between have been calculated using the p variable. 

The agreement of the test integral with the asymptotic form is quantitatively investigated 

in Figure 6(b) where the difference of the slope of the line in 6(a) 

_ Itest{f]i,j+\) — hest(l]i,i) 

Uasyi'HiJ+l) ~ "asy(^i,j) 

from unity is shown versus tWy(Ti). As expected, the difference of the slope from unity 

approaches zero as uasy(ri) —> <», at least, until the changes in the coarse grid AT) become 

too small. At this point, truncation errors in calculating the test integrand along with 

normal quadrature errors compromise the accuracy. As a further check on the calculations, 

computation of the test integral using the cubic spline interpolation rather than a direct 

evaluation of the test integrand was performed and no significant difference was found. 

HI.3.1.4 Extrapolation 

As mentioned previously, the solution on the coarse grid is found by extrapolation using 

the asymptotic form 
1 1 

u~ui+i-a b^ + .... (III.3.14) 
P P2 
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FIG. 6 Investigation of numerical integration routines, (a) Value of test integral versus 
asymptotic form. Values of r\* — t] are indicated, (b) Variation of slope from unity. 
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The approximation to the solution on the coarse grid uj+l is found by solving the three-

by-three system: 

uij-2 = « / + ! - * - b^~ + --- (III.3.15) 
Pj-2 P/_2 

ui j - \ = uJ
;,,—a b—~ (-... (III.3.16) 
+ Py-l Pj-i 

"ij = uj+l-a ^ - 2 + . . . (III.3.17) 
+ Py P; 

Extrapolation is deemed to converge when the relative error between two successive ap

proximations 

K+i-Mi+i l (IH.3.18) 

falls below a set tolerance level. 

Since it is possible for a '"false"' convergence to occur by happenstance, it is required 

that the relative error remains below the tolerance level for five successive values of the fine 

grid index j . Once the extrapolation criteria is satisfied, the integration over the interval 

(TJ,, T],+I) is deemed complete (even if j < jmax), and the integration continues on the next 

coarse grid interval. 

The discretization parameters chosen for this part of the study are: T\Q, 5TJ,, po, 8p, 

and jmax. Also, the relative and absolute error variables ERRREL and ERRABS for the 

subroutines D4QAG and D4QAWS must be specified. We present the converged solution 

using the values: T]0 = -8.0000001, % = .5, pi = .01, Sp = .01, ERRREL = 10"8, and 

ERRABS = 10~14. Two values of the relative tolerance in the extrapolation, 10 - 9 and 10~7 

along with two values for the maximum number of points on the fine grid, jmax = 1000 
a n d jmax = 1250, are investigated. On coarse grid intervals that do not terminate early due 

to extrapolation, the solution on the coarse grid point 77,+1 is taken as the final extrapolated 

value M/^J* which occurs for the p value Pmax = Po(l + 5p)7mai. 

Tables 3, 4, 5 show the results of the calculations. With the value of 10~9 for the 

relative tolerance in the extrapolation, the integration terminated early for the intervals 

(—8,-1) and went to the maximum for all intervals (—.5,77*). The only difference 

found between the solutions when jmax = 1000 and 
jmax — 1250 is that the solution 

terminated early by extrapolation on the interval (—1,— .5) when jmax = 1250 but not 
w h e n jmax = 

1000. When 
jmax — 1000, the value of 77* was found to lie on the interval 

(-.431155610, -.431155605); when jmax = 1250, the value of 77* was found to lie on the 



TABLE 3 

Relative tolerance of the extrapolation 10~9 with j , 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

»?« 
-8.00000010 
-7.50000010 
-7.00000010 
-6.50000010 
-6.00000010 
-5.50000010 
-5.00000010 
-4.50000010 
-4.00000010 
-3.50000010 
-3.00000010 
-2.50000010 
-2.00000010 
-1.50000010 
-1.00000010 
-0.50000010 
-0.45000010 
-0.44500010 
-0.44000010 
-0.43500010 

-0.43115605 
-0.43115600 
-0.43115595 
-0.43115590 
-0.43115585 
-0.43115580 
-0.43115575 
-0.43115570 
-0.43115565 
-0.43115565 
-0.43115564 
-0.43115564 
-0.43115563 
-0.43115563 
-0.43115562 
-0.43115562 
-0.43115561 

i)i+\ 
-7.50000010 
-7.00000010 
-6.50000010 
-6.00000010 
-5.50000010 
-5.00000010 
-4.50000010 
-4.00000010 
-3.50000010 
-3.00000010 
-2.50000010 
-2.00000010 
-1.50000010 
-1.00000010 
-0.50000010 
-0.45000010 
-0.44500010 
-0.44000010 
-0.43500010 
-0.43450010 

-0.43115600 
-0.43115595 
-0.43115590 
-0.43115585 
-0.43115580 
-0.43115575 
-0.43115570 
-0.43115565 
-0.43115565 
-0.43115564 
-0.43115564 
-0.43115563 
-0.43115563 
-0.43115562 
-0.43115562 
-0.43115561 
-0.43115561 

;' 
916 
916 
917 
916 
917 
915 
905 
919 
921 
909 
928 
939 
959 
991 
1001 
1001 
1001 
1001 
1001 
1001 

1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 

Pmax 
90.0 
90.0 
90.9 
90.0 
90.9 
89.1 
80.6 
92.7 
94.6 
83.9 
101.4 
113.1 
138.0 
189.7 
209.6 
209.6 
209.6 
209.6 
209.6 
209.6 

209.6 
209.6 
209.6 
209.6 
209.6 
209.6 
209.6 
209.6 
209.6 
209.6 
209.6 
209.6 
209.6 
209.6 
209.6 
209.6 
209.6 
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TABLE 4 

Relative tolerance of the extrapolation 10~9 with jmox = 1250. 

I 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

*?/ 
-8.00000010 
-7.50000010 
-7.00000010 
-6.50000010 
-6.00000010 
-5.50000010 
-5.00000010 
-4.50000010 
-4.00000010 
-3.50000010 
-3.00000010 
-2.50000010 
-2.00000010 
-1.50000010 
-1.00000010 
-0.50000010 
-0.45000010 
-0.44500010 
-0.44000010 
-0.43500010 

-0.43116510 
-0.43116010 
-0.43115960 
-0.43115910 
-0.43115860 
-0.43115810 
-0.43115760 
-0.43115710 
-0.43115705 
-0.43115700 
-0.43115695 
-0.43115690 
-0.43115685 

n<+i 
-7.50000010 
-7.00000010 
-6.50000010 
-6.00000010 
-5.50000010 
-5.00000010 
-4.50000010 
-4.00000010 
-3.50000010 
-3.00000010 
-2.50000010 
-2.00000010 
-1.50000010 
-1.00000010 
-0.50000010 
-0.45000010 
-0.44500010 
-0.44000010 
-0.43500010 
-0.43450010 

-0.43116010 
-0.43115960 
-0.43115910 
-0.43115860 
-0.43115810 
-0.43115760 
-0.43115710 
-0.43115705 
-0.43115700 
-0.43115695 
-0.43115690 
-0.43115685 
-0.43115680 

J 
916 
916 
917 
916 
917 
915 
905 
919 
921 
909 
928 
939 
959 
991 
1142 
1251 
1251 
1251 
1251 
1251 

1251 
1251 
1251 
1251 
1251 
1251 
1251 
1251 
1251 
1251 
1251 
1251 
1251 

Pmax 
90.0 
90.0 
90.9 
90.0 
90.9 
89.1 
80.6 
92.7 
94.6 
83.9 
101.4 
113.1 
138.0 
189.7 
852.5 
2521.8 
2521.8 
2521.8 
2521.8 
2521.8 

2521.8 
2521.8 
2521.8 
2521.8 
2521.8 
2521.8 
2521.8 
2521.8 
2521.8 
2521.8 
2521.8 
2521.8 
2521.8 
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interval (—.43115685, —.43115680). Thus, a difference in the sixth significant digit exists. 

Using the value of 10 -7 for the relative tolerance in the extrapolation and jmax = 1250, the 

integration terminated early for the intervals (—8,—.45) and on most intervals between 

(—.45, T]*). Furthermore, it was necessary to impose an additional condition that extrapo

lation cannot converge unless p > 10 to prevent premature extrapolation. The value of r\* 

was found to lie on the interval (-.431149870, -.431149865). This is a difference in the 

fifth significant digit as compared to the results using a relative tolerance of 10~9. 

III.3.2 Determining If the Solution is Singular on the Active Interval 

When considered as a function of p, the solution on the interval which contains the sin

gularity is markedly different than the solution on the intervals that do not contain the 

singularity. In particular, upp > 0 for a significant region in the interval containing a sin

gularity. A blowup criteria is developed using the derivatives of u at the point p„_2- If 

Upp > UpPcrU, Uppp > 0, and up > uPcrjl, then the blow-up point is assumed to exist on the 

current interval. If this switch is tripped, the solution on the current interval is recalculated 

using a smaller value of 5TJ, and proceeds as before until the switch is tripped on the new 

(smaller) interval indicating the singularity is found. The solution on this last interval is 

recalculated by again reducing the value of 5T],. Thus, the accuracy of determining r\* is 

improved recursively. The last criteria is necessary to prevent premature tripping of the 

switch determining blow-up. As seen in the previous section, errors in the second and 

third derivatives first appear near p = 0 whenever errors appear in the u variable. The 

fluctuations in the second and third derivatives owing to these errors can easily trip the 

switch even when the singularity is not in the current computational interval. By requiring 

Up to be significantly large also, the switch is tripped only near the singularity. Using the 

value upPcrit = 20 and uPcrit — 1 was sufficient for the benchmark problem when Sp is small 

enough to capture the developing singularity. 

IIL4 Solution of Second Benchmark Problem 

The second benchmark problem is derived by considering the effect of replacing the usual 

external heating conditions with marginal heating conditions in the ignition problem. The 

governing integral equation as derived in Lasseigne and Olmstead [50] is 
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Lasseigne and Olmstead [50] proved that a bounded (i.e., non-blowup) solution exists if 

the value of the parameter 7 satisfies 7 < .303; and they proved that a blowup solution 

exist if the parameter 7 satisfies 7 > .825. Thus, it is important to be able to numerically 

integrate the governing equation in a way that takes into account both possibilities, and 

providing this ability is the purpose of the scheme proposed and investigated in this thesis. 

The integral was divided as 

rf" -_L=^««,<i« = 
J—»\/ic(n-t) 

(III.4.2) 

J-°° v TT(T? - <fj) Jm yjn{r) - £) 

2 
where Tjo is a sufficiently large negative number so that the asymptotic form of u(r\) ~ e~^ 

found in Lasseigne and Olmstead [50] was applicable. For r\ slightly greater than Tjo and 

still a large negative number, the solution determined through numerical integration agreed 

with the asymptotic solution. 

The following parameters were chosen for the integration: Tjo, 5TJ,, p\, 8p, and jmax. 

Also, the relative and absolute error variables ERRREL and ERRABS for the subroutines 

DQAG and DQAWS must be specified. First, we present the converged solution using 

the values: TJ0 = - 8 , 5TJ, = 1, pi = .01, dp = .01, jrnax = 1000, ERRREL = 10"8, and 

ERRABS = 10-14. The initial integral is calculated by using QUADPACK's [61] D4QAGI 

routine to integrate over infinite intervals not containing singularities. 

The solution for 7G (0,3.0) by A7= .5 is shown in Figure 7(a). Obviously, M(TJ) = 0 

when 7 = 0, but blowup is found for all other investigated values of 7 in this range. The 

blowup time 77 * (7) increased rapidly between 7 = 1 and 7 = .5; thus, the next investigation 

considered 7 6 (0,1.0) by A7 = .1 which is shown in Figure 7(b). These curves clearly 

show that the critical value of 7lies on the interval (.4, .5). In order to determine the critical 

value 7c, as well as, the behavior T]*(y) as 7—> 7+, the investigation continues by starting 

from 7 = .5 and using A7= —.01. The results are shown in Figure 8(a), and the value of yc 

is determined to lie between (.46, .47). This investigation is repeated using A7= —.001, 

A7= -.0001, and A7= -.00001. Some of the results for A7= -.001 and A7= -.0001 

are shown in Figure 8(a), and the value of yc is determined to lie between (.4631, .4630). 

The results for A7 = —.00001. are seen in Figure 8(b). 

Figure 9(a-b) and Figure 10 show closeups of the results all the way to A7= —10~10, 
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(a) 
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~m—*—*—m—*—*—»—*—*—*. m" m*-* 

0.5 

y=3.0 
y=2.5 
Y=2.0 
7=1.5 
T-r.o-
Y=0.5 

-1 

u(ri) 

FIG. 7 Second benchmark solution as a function oft] depending on y. (a) y e (0,3.0) by 
Ay= -0.5, (b)ye (0,1.0) byAy= -0 .1 . 



56 

10 1 ' ' — 
! y=0.46310 
! 7=0.46309 
i 7=0.46308 
? 7=0.46307 
J 7=0.46306 

7=0.46305 

(b) 

0.46310 0.46307 

11 
FIG. 8 Second benchmark solution as a function ofr\ depending on y. (a) y e (0.46,0.5) 

by Ay = -0.01 and Ay = -0.001, (b)ye (0.4631,0.46305) by Ay = -0.0001. 
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U(T1) 

7=0.463070 
y = 0.463069 
7=0.463068 
7=0.463067 
7=0.463066 
7=0.463065 
7=0.463060 

0.463065 

10 1 
7=0.4630660 
7=0.4630659 
7=0.4630658 
7=0.4630657 
7=0.4630656 
7=0.4630655 
7=0.4630654 
7=0.4630653 
7=0.4630652 
7=0.4630650 

U(T1) 

(b) 

0.4630660 

1.2 1.4 1.6 1.8 

FIG. 9 Second benchmark solution as a function of r] depending on y. (a) y e 
(0.46307,0.46306) byAy= -0.00001, (b)ye (0.463066,0.463065) byAy= -0.000001. 
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0.4630660000 0.4630652825 

0.4630652930 

0.4630652900 

0.4630653000 

7 ̂  0.4630660000 
y 4 0.4630650000 
y =? 0.4630659000 
p 0.4630658000 
7 - 0.4630657000 
f= 0.4630656000 
y = 0.4630655000 
p 0.4630654000 
y=0.4630653000 • 
Y - 0.4630652000 
Y = 0.4630652900 
Y - 0.4630652800 
'H&.4630652830 • 
y = 0.4630652820 
Y ̂  0.4630652825 
Y - 0.4630652824 

- B ~ -

I %:••• 

•i'11 ;/ &**\ 

1.4 2.2 2.6 3 

\ 
FIG. 10 Second benchmark solution as a function of r\ depending on y. y e 

(0.463065,0.4630652824) byAy= -O.OOOOOl, Ay = -O.OOOOOOl and Ay = -O.OOOOOOOl. 
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and the resulting curve for r\*(y) is given in Figure 11. Clearly, t]*{y) —> °° as y —» y+ 

which is determined to lie on the interval (.4630652824,-4630652825); however, this 

growth appears to be very slow. Thus, it is surmised that the rate of growth is logarith

mic, and an investigation to follow shows this to be so. In all cases, whether or not the 

solution attains blowup is determined through the criteria previously prescribed which did 

not need to be adjusted even for the extremely small values of Ay. For these calculations, 

the extrapolation feature was not used since this would introduce inconsistencies in the 

approximate solutions and only allow determination of yc to four or five decimal places. 

Of course, the results determined above apply to the numerical approximation scheme at 

the current numerical precision and not necessarily to the solution of the integral equation. 

The above analysis can be continued, and the approximate value of yc determined to more 

than nine decimal places; however, this value will not agree with the real value of yc to that 

many decimal places unless the numerical precision of the integration and cubic spline 

schemes are greatly increased. 

Upon examining the solutions, it is surmised that T]*(y), determined from the approxi

mation scheme, satisfies 

T7*(y)~Aln(y-yc) (III.4.3) 

a s y _> y+_ Thjs conjecture is examined by forming a table of the values T]*(y,) where 

yc < jj+i < Yj. The differences 

, » t o + , ) - , - ( y j ) 
ln(7;+i-y c)- ln(y;-y c) 

should converge to A as Hindoo Yj —> 7c, if the value of yc is known to infinite precision. 

Since yc remains unknown, a number of approximate values to yc, say y ,̂ are chosen and 

the differences A*- are plotted versus —\n{yj — Yc)- Figure 12 shows the results of this 

investigation. 

XXI.5 Solution of Third Benchmark Problem 

The third benchmark problem is derived by considering the effect of reactant consumption 

on the ignition problem. The governing integral equation as derived in Lasseigne and 

Olmstead [49] is 

nft) = f —=L=e<^F(Xv(^)d^ (III.5.1) 
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< 

FlG. 12 Investigation scheme fit to rj*(y) ~Aln(y— yc). Plot of the Â  vs — ln(y/ —y*). 
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with 

\-e~x 

v(«) = t e^'^'di,'. 
J —oo 

This integral equation reduces to the first benchmark case as A —•> 0. It was shown by 

analytical and numerical methods that a solution to this integral equation exists for all 

values of r/ if A > Xc and that a blowup solution to the equation exists if A <XC. Upon 

using an ad hoc numerical method based on low-order finite differences, the critical value 

was determined as Xc ~ 1.089. 

TABLE 6 

The blowup value TJ* VS X <XC. 

X 
0.0 
0.1 
0.5 
1.0 
1.08 
1.085 

ri* 
-0.4311 
-0.3943 
-0.2099 
0.2980 
0.6627 
0.7500 

Here, we apply the proposed routine to determine the critical value of A by numerically 

integrating equation III.5.1. The following parameters were chosen for the integration:rjo, 

5TJ,, pi, 5p, and jmax- Also, the relative and absolute error variables ERRREL and 

ERRABS for the subroutines DQAG and DQAWS are specified. The converged solution 

using the values: TJ0 = -10, Sri, = 1, pi = .01, dp = .01, jmax = 1250, ERRREL = 10~8, 

and ERRABS = 10-14. The results are presented in a series of graphs below. Since there 

was some discrepancy between the previously published values of the ignition time Tj* 

for certain values of A, we verified the current results by once again solving the inverse 

problem using a temperature marching scheme, but this time, the integration is performed 

using spline approximations and the QUADPACK quadrature schemes. The new results 

are listed in Table 6. As to be discussed, the critical value of A is determined to lie on 

the interval Xc e (1.0882232,1.0882233) when using the indicated parameter values in 
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FIG. 13 Third benchmark solution as a function ofr] depending on X. (a) X G (0,3.0), (b) 
X €(1.0,1.5). 
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h= 1.089 
k = 1.0883 
ft. =1.0882 
k =1.0881 
k = 1.088 

FlG. 14 Third benchmark solution as a function ofr\ dependingonX. (a)X e (1.08,1.09), 
(b) A €(1.088,1.089). 
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the scheme. It is conceivable that a slight change in the critical value could occur upon 

using higher numerical precision. We also test the assumption that TJ*(A) °C — ln(Ac — A) 

as A —> X~. 

The results of integrating equation III.5.1 using the values 

AG {0,0.5,1.0,1.08,1.088224,1.09,1.1,1.2,1.5,2.0,2.5,3.0} 

are shown in Figure 13(a). Consistent with previous work, blowup solutions exist when 

A < 1.08 and non-blowup solutions exist when X > 1.09. The non-blowup solutions are 

seen to grow proportional to ,Jr\ as r\ —> oo and the proportionality constant is inversely 

related to X as predicted analytically. For reference, the solution with X — 1.088224 is 

shown on this graph to demonstrate that a non-blowup solution with X very near Xc closely 

follows the blowup solutions before the temperature declines rapidly. This solution also 

demonstrates growth proportional to yfx\ as T] —> °°. It should be noted that u(r\\X2) is 

not always greater than u{r\\X\) when Xi < X\ for all r\. Furthermore, the solutions are 

not monotone in r\ for X between Xc and the value A«1.2, Determining these solutions 

requires a time-marching scheme and not a temperature marching scheme. A close up 

view using 

X G {1.0,1.01,1.03,1.05,1.07,1.08,1.09,1.1,1.2,1.5} 

is shown in Figure 13(b). Of particular note is the almost complete overlap of the solutions 

on the interval t] G (—2,-1). The solutions presented in the next series of graphs emerge 

from the small region lying between the solutions for X = 1.08 and X = 1.09. 

Figure 14(a) shows the solution for 

X G {1.08,1.081,1.083,1.085,1.087,1.088,1.089,1.09}. 

Clearly, the critical value is seen to lie on Xc G (1.088,1.089). Figure 14(b) shows the 

solution for 

X G {1.088,1.0881,1.0882,1.0883,1.089}, 

and the critical value is seen to lie on Xc G (1.0882,1.0883). Note that the solutions for 

r] G (T]O,0.5) are almost identical for these last values of X. Figure 15 shows the solu

tions for values of X on the interval (1.0882,1.0883). As a function of A, the solutions 

progress in a monotone manner until the values of lambda are narrowed to the interval 

(1.088223,1.088224). With further refinement of the parameter A (starred values in the 
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uoi) 

X = 1.08830000 
X= 1.08824000 
A =1.08823000 
A. = 1.08822400 
X = 1.08822330 
A.= 1.08822324 
X= 1.08822323 
X= 1.08822322 
X= 1.08822320 
X= 1.08822310 
X= 1.08822300 
A.= 1.08822200 
X= 1.08822000 
X= 1.08821000 
A. = 1.08820000 

5 h 

0.7 0.8 1.2 1.3 1.4 1.5 

FIG. 15 Third benchmark solution as a function of r\ depending on Xfor A 6 
(1.0883,1.08822322). 
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figure), the solutions are not necessarily dependent on A in a monotone manner. It is 

suspected that the limit of numerical precision has been reached. The resulting curve for 

77*(A) is given in Figure 16. 

Upon examining the solutions, it is surmised that TJ*(A), determined from the approx

imation scheme, satisfies 

T7*(A)~Aln(Ac-A) (III.5.2) 

as A —* A,T. This conjecture is examined by forming a table of the values T]*(A7) where 

Xj < Xj+i < Ac. The differences 

A T(A;-+I)-TT(A,) ( I I L 5 3 ) 
; ln(Ac - Xj+i) - ln(Ac - Ay) 

should converge to A as lim^oo Ay —• Ac, if the value of Ac is known to infinite precision. 

Since Ac remains unknown, a number of approximate values to Ac, say A*, are chosen and 

the differences Ay are plotted versus — ln(A/ — A*). Figure 17 shows the results of this 

investigation. 
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FIG. 17 Investigation scheme fit tor]* (A) ~ A ln(Ac- A). Plot ofthe A*- vs -ln(X^ -Xj). 
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CHAPTER IV 

ORDINARY DIFFERENTIAL EQUATIONS 

IV.l Introduction 

The method of solution from Chapter III is applied to test ordinary differential equations 

(ODE's) with known blow-up solutions or regions of rapid change. The method allows the 

investigator to easily distinguish between a singular solution and a non-singular solution, 

thus, avoiding the ad hoc approach used in the past. Furthermore, the solution develops 

in the natural variables where the temperature is the dependent variable and time is the 

independent variable. Upon determining that a singular solution or a region of extreme 

stiffness exists, the time step is adjusted appropriately to maintain accuracy. Another virtue 

of the present technique is the use of well-developed software. In this case, a standard 

Runge-Kutta method is used to integrate the given ODE. When applying a Runge-Kutta 

method in the regular time variable, an interval of integration must be specified. If this 

interval contains a singularity or region of extreme stiffness, the integration will fail. Thus, 

the current solution algorithm is used to solve all of the ODE's given in Table 7 by avoiding 

attempts to integrate over a region containing the singularity. Any necessary modifications 

for a particular equation is discussed in the text. 

TABLE 7 

Ordinary differential equations solved. 

Description 

pth order growth 

Exponential growth 

Kassoy's thermal explosion 

Equation 

%=AuP, u(t0) = uo, t>0, p>0, p^l, A>0 

^r=Aexp(w), w(f0) = "o, t > 0, A>0 

f = j(i+/3-r)exP(^)I r(o) = i 
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IV.2 Runge-Kutta 

The Runge-Kutta method is a method of numerically integrating ordinary differential 

equations by using a trial step in the interval to cancel out lower-order error terms. The 

method requires evaluating the function several times, eliminating the need to compute 

higher derivatives. The fourth-order Runge-Kutta (RK4) method is the most popular and 

is a good choice for practical use since it is accurate, stable and easy to program. Higher 

order Runge-Kutta methods, with higher computational costs, are not required since the 

fourth-order method can be made more accurate by either using a smaller step size globally 

or adapting the step size to the solution characteristics. 

The fourth-order Runge-Kutta method, when used to solve initial value problems, sam

ples the slope at intermediate points as well as the end points to find a good average of the 

slope across the interval. The RK4 formula used here to compute the next solution is: 

yi+i = yi+h - (iv.2.1) 

where 

Kx = f(t0,y0) (IV.2.2) 

K2 = f(to + \h,y0 + ^hK^ (IV.2.3) 

^3 = f(to + \h,yo + ^hK2\ (IV.2.4) 

K4 = f(to + h,yo + hK3). (IV.2.5) 

One way to check the accuracy of the solution to an initial value problem is to solve 

the problem twice, once with step size h and a second time with step size h/2 and then 

compare the answers. If the solutions agree, they are deemed accurate. If differences 

in the approximate solutions are too large, the smaller step size solution is adopted and 

checked by solving again with an even smaller step size. This is inefficient if the solution 

is only problematic in a small region of the domain. In such a case, an adaptive method is 

desirable. 

The Runge-Kutta-Fehlberg (RKF45) method is an adaptive Runge-Kutta method that 

uses two separate calculations, one of 0(h4) and the other 0(h5), to determine if the step 

size is sufficiently small and allows for the appropriate modification of the step size to 

the optimal step size. The Runge-Kutta-Fehlberg method adds flexibility to the standard 
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Runge-Kutta method. 

The Runge-Kutta-Fehlberg method samples the slopes with linear combinations of the 

of the previous slopes. 

K\ = f(to,yo) (IV.2.6) 

K2 = fU + \h,y0 + ^hK^ dV.2.7) 

K3 = / ^ o + |A,yo + | ^ 2 ) (IV.2.8) 

KA = fU + ^yo + ^hKs^ (IV.2.9) 

K5 = f(to + h,yo + f^j (IV.2.10) 

K6 = fU + \h,y0 + ^hK5} (IV.2.11) 

where 

K2 = \K\ + \KI (IV.2.12) 

161 600 608 
*3 = l ® * " ! ® * * ! ® * (IV213) 

~ _ 8341 32832 29440 845 

*4 - ^ ^ - W ^ + W ^ 3 " ^ * 4 (IVZ14) 

6080 41040 28352 
*5 = - i o 2 6 o ^ + m a * "10260^ ( I V 2 1 5 ) 

9295 5643 
10260 4 10260 5 ' 

Then two approximations to the solution are made: a) by using a Runge-Kutta method of 

order four: 

, 2375#i + 11264^3 + 10985/^ -4104£5 , „ r „ , ^ 
yM =yi + h — ; (IV.2.16) 

and b) by using a Runge-Kutta method of order five: 

, 33440^1 + 146432^3 + 142805/sT4 -50787tf5 + 10260/sT6 m „ t „ 
Zi+i=Zi + h 282150 • ( I Y 2 - 1 7 ) 
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Lastly, the step size is adjusted dynamically, h —> s/z, where the scalar s is 

s=[- 1 (IV.2.18) 

and e is the user specified error control tolerance [63, 21]. The RKF45 FORTRAN code 

adjusts the step size by the following rule 

'o.5h s<0.l, 

h=l sh 0 . 1 < J < 4 , (IV.2.19) 

4h s>4. 

If the step size is smaller than 10 13 the routine stops. Even adaptive Runge-Kutta meth

ods are not sufficient to solve blow-up problems. 

IV.3 Initial Value Problem Examples 

IV.3.1 Blow-up Conditions 

Some nonlinear ODE's exhibit solutions with blow-up behavior. A few examples with 

known solutions are Bernoulli, exponential growth and pth-order growth equations. The 

Bernoulli type reaction-diffusion differential equation 

y\t) = Xy(t)+AyP(t), t>0, X < 0, y(0)=yQ>Q, A > 0 (IV.3.1) 

reduces to the pth-order growth equation when A = 0. The pth-order growth equation has 

the solution 

* H I r- P<1. (IV-32) 

When p > 1, the solution approaches infinity as t approaches t* where t* is the blow-up 

time given by 

t*=J° 1V (IV.3.3) 

Blow-up does not occur when 0 < p < 1, and the solution exists for all time. Likewise, 
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the solution to the initial value problem (IV.3.1) of the Bernoulli type reaction-diffusion 

differential equation when X < 0 and p > 1 is 

i 
P-\ 

y(t) = j — — r (IV.3.4) 
\(lylP + l)exp[(l-p)Xt} + l) 

which is singular with blow-up time 

t* = ,t
 l , , In ( — j ^ | . (IV.3.5) 

(1-P)A \XylP + lJ 
In addition to the Bernoulli type reaction-diffusion differential equation, the general

ized growth equation given by 

^r = / ( " ) , ' > 0 , u(0) = u0>0, (IV.3.6) 
at 

for any positive and continuous function / , also has a known solution given by 

'"^=t- (IV.3.7) / 
JIM 

Blow-up occurs if the function / fulfills the Osgood's condition [57], 

ds f f,,<°°, dV.3.8) 
«o f(s) 

a necessary and sufficient condition formulated around 1898 for positive initial data. If 

/(«) = exp(«) in (IV.3.6), the solution is 

K(0 = -ln|f*-f | , (IV.3.9) 

where /* = exp(wo) is the blow-up time. The solution grows logarithmically as t —> /*. 

This logarithmic blow-up behavior is especially challenging to capture numerically. 

The pth-order growth equation has an algebraic singularity while the exponential 

growth equation has a logarithmic singularity. The current algorithm is shown below to 

readily handle these two cases. Perhaps more challenging is to capture the solution to Kas-

soy's thermal explosion problem where even computing values for the analytic solution is 

problematic owing to the extreme stiffness of the solution. The solution to this problem 

will be discussed in greater detail. 
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FIG. 18 Self-similar solutions to the Exponential and pth-order growth equations, (a) 
exponential growth solution, (b) pth-order growth solution. 
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IV.4 Solution to the Exponential Growth Equation 

The exponential growth equation, 

— = Aexp(w), u(t0) = wo, t > 0, A > 0, (IV.4.1) 
at 

has the exact solution u(t) = — ln(exp(—wo) — A(f — to)) and is singular at t* = to + 

exp(—uo)/A. The numerically computed solution is shown in Figure 18(a) for to = 0, 

wo = 0, and various values of A. Clearly, the routine captures the strong singularity in the 

solution at t* = I/A. Furthermore, the solution evolved such that no attempt was made to 

integrate past the point of singularity. 

IV.5 Solution to the pth-order Growth Equation 

The pth order growth, 

-^=Aup, u(to) = uo, f > 0 , p>0, p^l, A > 0 , (IV.5.1) 
at 

has the exact solution u{t) = lA(l — p)(t — to) + uQ
 p J and the solution is singular 

when p > 1 and t* = to — u0~
p/(A(l —p)). 

The numerically computed solution is shown in Figure 18(b) for to = 0, MO = 1, A = 2, 

and various values of p > 2. Clearly, the routine captures the singularity in the solution at 

t* = l/(2(p — I)) for these values; however, the strength of the singularity weakens as p 

decreases to unity. The issue of a weakening singularity was further investigated. It was 

found that even for p = 1.7, which is not very close to the critical value of pc = 1, an ex

cessive number of calculational points are required to resolve the rapidly growing solution 

in the regions away from the singular point. Furthermore, the criteria used to determine if 

a singular solution resides on a particular coarse grid is often tripped prematurely owing 

to the excessively large solution and large values of the solution derivatives. With some 

modification, the criteria could possibly be adapted to capture these weak singularities. 
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IV.6 Solution to Kassoy's Thermal Explosion Problem 

The third test problem is a nonlinear spatially homogeneous thermal explosion based on 

the work of Kassoy [39] given in Kapila [37]. The physical situation considers a well-

stirred insulated container in which a one-step irreversible exothermic reaction A —• B 

governed by Arrhenius kinetics occurs. The equations are 

§ = -^"(if) (IV-61) 

with the initial conditions: 

7(0) = Y0, f (0) = 7b. (IV.6.3) 

The independent variable is time and the dependent variables are Y, the mass fraction of 

reactant, and temperature t. There are five positive constants: the specific heat c, the heat 

of reaction Q, a pre-exponential factor A, the activation energy E and the universal gas 

constant R. 

Manipulating equations (IV.6.1) and (IV.6.2) shows that f + QY/c is a constant calcu

lable from the initial conditions, f + QY/c = To + QYQ/C. The mass fraction of reactant is 

eliminated from consideration, and the temperature only equation is 

^ = / 1 ( 3 b + ^ 0 _ f ) e x p ( z | ) , f ( 0 ) = 7b. (.V.6.4) 

The equation is made dimensionless by defining T = f/To and t = i/tQ. The characteristic 

time is chosen to be 

to = 4 ^ exp (I-\ (IV.6.5) 
AQY0E

 r \RTQ 

which gives 

^ = ^ ( l + / 3 - r ) e x p ( ^ ) , r(0) = l. (IV.6.6) 
~dt~~fi 

The heat release parameter is denoted as ft = QYQ/(CTQ), and the reciprocal of the dimen 

sionless activation energy is denoted by £ = RTQ/E. 
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IV.6.1 Unique Solution of Initial Value Problem 

The initial value problem, equation (IV.6.6), has an unique solution [59, 37] that is mono-

tonically increasing from 1 to 1+ J3 as t —» <». The solution is given by the implicit relation: 

t — te + tT (IV.6.7) 

where 

h 
0 
e 

P 
U = - -

(IV.6.8) 

(IV.6.9) 

with the exponential integral function defined as the Cauchy principle value integral 

Ei(jc) = P.V. f •dy. (IV.6.10) 

The exact solution is often disregarded in combustion reactions involving small e be

cause the solution's behavior is not clearly understood owing to the difficulty of numer

ically computing the exponential and the exponential integral for large arguments. To 

alleviate this difficulty, Kassoy [39] constructed an asymptotic approximation to the solu

tion for fixed j3 and small positive e. It is determined that the time subsequent to the major 

part of the explosion is given by 

l + [ 2 + ^ ) e + 0(£2). (IV.6.11) 

The numerical solution, presented below, explores the validity of this expansion. 

IV.6.2 The Numerical Solution for the Initial Value Problem 

In this problem, it is known that the solution is bounded by 1 + j3 for all time. Thus, a 

singularity does not exist. However, it is also known that the solution contains regions 

of extreme stiffness in the limit as £ —• 0. The stiffness is so great that standard adaptive 

time-step routines fail. Thus, we adapt our proposed routine to handle this integration. 

Figure 19(a) shows the solutions with j3 = 2 and £ = {2,1, .5, .2, .1} on the interval 

t e (0,5). On this time interval, it appears that the solution for £ = . 1 is developing regions 
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e= 0.08 
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£= 0.01 

FIG. 19 Solutions of Kassoy problem, (a) Solutions with j3 = 2 and e = {2,1, .5, .2, .1} 
on the interval t e (0,5). (b) Solutions with p = 2 and e = {.1,.08, .06, .05,.04,.02, .01} on 
the interval t G (0,2). The insert shows the approach to the final value l+^fore — .08 and 
e = .04. The turn is sharper for small e. 
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of stiffness, especially as the temperature nears the limiting value of 1 + j8. Figure 19(b) 

shows the solutions with /3 = 2 and e = {. 1, .08, .06, .05, .04} on the interval / e (0,2). On 

this time interval, the solution for e = . 1 does not appear to be stiff; however, the solution 

for e = .08 is developing a region of extreme stiffness as the temperature nears the limiting 

value of 1 + j3. For the values e = {.06, .05, .04}, the solutions show an "almost" singular 

behavior at finite time, but the solutions reach a value near 1 + j3 where it ceases to grow. 

The approach to the final value 1 + (5 is seen in the figure insert for e = .08 and e = .04. 

Clearly, the turn becomes sharper as e decreases. 

A measure of the stiffness of the solution is the number of refinements of the coarse 

grid used to capture the structure, and this information is provided in Table 8. Clearly, this 

number increases as e —> 0 with "extreme stiffness" starting around the value e = .04. 

TABLE 8 

Number of coarse grid refinements vs £. 

£ 

0.08 
0.06 
0.05 
0.04 
0.02 

number of refinements 
0 
2 
2 
4 
8 

Once the solution nears the final value of 1+/3, the refinement in the 7]-grid is not nec

essary because the solution has lost its stiffness. Thus, we must allow the grid to unrefine 

or backup in scale. Once refinement of the coarse grid has been initiated, the number of 

coarse grid steps at each level is counted. If twenty coarse grid steps are executed on any 

one level, then it is assumed that the integration has passed the region of stiffness. At this 

point, the coarse grid scale is increased by a factor of ten. This unrefinement of the grid 

continues until the original time step is reached. 

Figure 19(b) also shows the solutions with j8 = 2 and e = {.02, .01} on the interval t £ 

(0,2). One quickly notes that the solution does not continue to its final value of 1 + /3. For 

these values of £, the maximum number of refinements is reached as the program attempts 

to resolve the stiffness in the solution. This maximum number of refinements allowed is 

based on the numerical precision of the computation; in theory, the maximum number of 

refinements can be increased by recalculating the solution with greater numerical precision 
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(say, 128 bit precision rather than 64 bit precision). With greater precision, one expects 

the solutions for these values of e to have the same properties as the solutions with e = 

{.06, .05,.04}. 

Figure 20(a) shows the solutions with j3 = 2 and e = {.01, .005, .001} on the interval 

t E (0,1.2), and Figure 20(b) shows a close-up of the same solutions on the interval t e 

(.9,1.1). Even with the extreme stiffness of the solution, our proposed routine is able to 

capture the near singularity. Table 9 shows the "blow-up" time as a function of e. From 

this table, it is clear that we have verified the accuracy of the asymptotic solution (IV.6.11). 

TABLE 9 

The "blow-up" time vs e. 

e 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 

0.005 
0.001 

0.0005 
0.0001 

t* 
1.4201029887 
1.1889999977 
1.1217996477 
1.0996219149 
1.0542505281 
1.0260021947 

1.0127965757 
1.0025253124 

1.0012540173 
1.0002512893 

IV.6.3 Comparison of the Numerical Solution and the Analytic Solution 

As mentioned previously, the calculation of the analytic solution presents many numerical 

difficulties, especially in the limit e —• 0. Thus, we first investigate the differences between 

the calculated solution and the numerically evaluated analytic solution for the moderately 

small value e = .1. This investigation determines that the weakest point of the proposed 

algorithm is the extrapolation used to terminate the integration at the end of each fine grid 

calculation. 

The analytic solution (IV.6.7) is an implicit relation. Thus, a value of t is found for 

each given u. Figure 21 shows the relative difference in the time variables calculated in the 

following manner: 
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FIG. 20 Solutions of Kassoy problem, (a) Solutions with j3 = 2 and e = {.01, .005, .001} 
on the interval t G (0,1.2). (b) Close-up the solutions on the interval t £ (.9,1.1). 
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• The fine grid solution n,-y is determined for the time variable f,-y = tj+\ — 8ti/{\ + p7), 

• The time variable predicted by the numerical evaluation of equation (IV.6.7) for the 

u value uij is calculated and designated as tfj, 

• The relative difference Atre[ = (tfj — t'J)/tij is determined. 

For reference, the solution as a function of time is displayed in Figure 21(c). Figure 21(a) 

shows the calculated relative difference subject to St, = .1, the initial coarse grid spacing, 

po = .01, Ap = .01, and pmax = p0(l + A p ) ^ with j M = 1000 or j m a x = 2000. In 

proposing the current algorithm, it was assumed that the integration on the fine grid could 

be terminated by extrapolating to the coarse grid value of u = M,+I in the limit p —> °° 

(see equation (III.3.5)). In calculating the solution using this early extrapolation, the value 

of the relative difference is seen to jump at the end of the first coarse grid, and then the 

relative difference remains steady. Allowing the fine grid integration to proceed until the 

value Pmax is achieved reduces the relative difference significantly, and the larger Pmax 

produces a smaller relative difference. The calculation of Figure 21(a) is repeated using 

an initial coarse grid St( = .01, and the results are shown in Figure 21(b). As expected, 

using smaller initial step sizes reduces the relative differences, but highlights the transition 

between the coarse grids produces the greatest numerical errors. This effect is perhaps 

greater for an ordinary differential equation as opposed to an integral equation where the 

effects of these minor errors are "smoothed over" by the integration. 

One might be concerned with the great increase in the relative differences in the times 

that occurs once t > 1.5; however, by examining the solution itself, see Figure 21(c), 

one notices that the solution is extremely close to its maximum value u = 1+ /3. Under 

this circumstance, the difficulty in numerically evaluating the analytic solution (IV.6.7) is 

greatest. Therefore, we assume the growing differences are attributable to this problem 

and not the direct numerical evaluation of the differential equation. 

In Figure 22, the relative difference calculation of Figure 21 is repeated for £ = .05. 

The solution as a function of time is displayed in Figure 22(c). Figure 22(a) shows the 

relative difference calculated for the initial coarse grid spacing, 8t,; = .1, po = .01, Ap = 

.01, and Pmax = po(l + Ap)-7™" with j m a x = 1000 or j , ^ = 2000. The calculation is 

repeated using an initial coarse grid 5f, = .01, and the results are shown in Figure 22(b). 
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CHAPTER V 

CONCLUSIONS 

The objective of this research is to develop a simple and consistent approach to determine 

numerically whether an equation has a singular or non-singular solution on a given interval 

without constructing an ad hoc method based on a priori knowledge of the solution. The 

investigation studied two types of equations: integral equations and ordinary differential 

equations (ODE's). First, three integral equations were solved using the developed method. 

The three integral equations are combustion type reaction-diffusion equations with Able-

type singularities in the kernel. In two cases, a parameter determined whether a blow-up 

solution at a finite value of the independent variable existed or whether a solution existed 

for all values of the independent variable. This is the first method proposed that is capable 

of determining both types of solutions with the same scheme. 

The proposed method used the following integration criteria (IC): 

• ICi: the integral is numerically approximated by existing software that accounts for 

the Abel-type singularity and adapts to a rapidly changing function; 

• IC2: the singular or non-singular nature of the solution is unambiguously determined 

on a given time interval; 

• IC3: if a point of singularity is determined to exist, the time step is adjusted in a 

straightforward manner to accurately approximate the solution near the singularity. 

The first criteria (ICi) is satisfied by using quadrature schemes from QUADPACK [61] 

and by using a cubic-spline interpolation scheme to provide a reasonable approximation to 

the unknown function for all values of the independent variable. The second criteria (IC2) 

is satisfied by employing a specific change of variables. The third criteria (IC3) is satisfied 

by employing a two-grid method: a coarse grid and a fine grid. 

The coarse grid proceeds in the original time variable 77 while the fine grid proceeds 

in a pseudo time variable p. Thus, for each new interval, the solution is calculated on the 

fine grid by time stepping in the p variable. Using the p variable in lieu of TJ provides 

a mechanism for satisfying integration criteria (IC2). If the blow-up time 77* satisfies 

T], < TJ* < rj(+i, then the second derivative with respect to p becomes positive on the 

interval. Otherwise, the second derivative remains negative for the entire interval, and the 

solution approaches a constant as p approaches infinity. If the solution is determined to 
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be singular on a given interval, the integration on this interval is discarded, and a smaller 

value of 8r]i is chosen. The process continues recursively with the interval containing a 

singularity being found by using successively smaller 5r}{. Thus, the time step is adjusted 

in a straightforward manner near the point of singularity which satisfies integration criteria 

(IC3). 

The degree of accuracy possible with this approach was measured by investigating the 

following four issues: 

• How accurate is the numerical integration near the point of singularity? 

• How accurate are the cubic-spline interpolations in both the r\ and p variables? 

• How accurate is the determination of second and third derivatives near the point of 

singularity? 

• How does the extrapolation of the solution from the fine grid to the coarse grid affect 

the solution? 

To demonstrate the flexibility of the proposed method, it is applied to ordinary dif

ferential equations with blow-up solutions or to ordinary differential equations which ex

hibit extremely stiff structure. Two of the ordinary differential equations tested are classic 

"blow-up" problems. The last ODE test equation is a problem with an extremely stiff struc

ture without "blow-up." The proposed method was successful in determining and captur

ing numerically whether an integral equation or an ordinary differential equation contains 

a singularity or a region of extreme stiffness. The proposed method of solving the tem

poral blow-up problem is independent of the solution. If applied to a partial differential 

equation, the proposed method would be compatible with spatial mesh adaptation that is 

independent of the solution such as Wavelet Optimized Finite Difference [32]. Applying 

this method to partial differential equations will be the major focus of future work. 
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