
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Mathematics & Statistics Theses & 
Dissertations Mathematics & Statistics 

Summer 2015 

Supervised Classification Using Copula and Mixture Copula Supervised Classification Using Copula and Mixture Copula 

Sumen Sen 
Old Dominion University 

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_etds 

 Part of the Probability Commons, and the Statistical Methodology Commons 

Recommended Citation Recommended Citation 
Sen, Sumen. "Supervised Classification Using Copula and Mixture Copula" (2015). Doctor of Philosophy 
(PhD), Dissertation, Mathematics & Statistics, Old Dominion University, DOI: 10.25777/82tv-y953 
https://digitalcommons.odu.edu/mathstat_etds/60 

This Dissertation is brought to you for free and open access by the Mathematics & Statistics at ODU Digital 
Commons. It has been accepted for inclusion in Mathematics & Statistics Theses & Dissertations by an authorized 
administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mathstat_etds
https://digitalcommons.odu.edu/mathstat_etds
https://digitalcommons.odu.edu/mathstat
https://digitalcommons.odu.edu/mathstat_etds?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/212?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/213?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_etds/60?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


SUPERVISED CLASSIFICATION USING COPULA AND  

MIXTURE COPULA

by

Sumen Sen 
B.Sc. 2006, Calcutta University, India 

M.Sc. 2008, IIT Kharagpur, India 
M.S. 2011, University of Central Florida, FL

A Dissertation Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment of the 

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

MATHEMATICS AND STATISTICS

OLD DOMINION UNIVERSITY 
August 2015

Approved by:

Norou Diawara (Director)

N. Rao Chaganty (Membprt

Michael J. Dov%k (Member)

Khan M. Iftekharuddin (Member)



ABSTRACT

SUPERVISED CLASSIFICATION USING COPULA AND 
MIXTURE COPULA

Sumen Sen 
Old Dominion University, 2015 
Director: Dr. Norou Diawara

Statistical classification is a field of study that has developed significantly after 
1960’s. This research has a vast area of applications. For example, pattern recogni­
tion has been proposed for automatic character recognition, medical diagnostic and 
most recently in data mining. Classical discrimination rule assumes normality. How­
ever in many situations, this assumption is often questionable. In fact for some data, 
the pattern vector is a mixture of discrete and continuous random variables. In this 
dissertation, we use copula densities to model class conditional distributions. Such 
types of densities are useful when the marginal densities of a pattern vector are not 
normally distributed. This type of models are also useful for a mixed discrete and 
continuous feature types. Finite mixture density models are very flexible in building 
classifier and clustering, and for uncovering hidden structures in the data. We use 
finite mixture Gaussian copula and copula of the Archimedean family based mixture 
densities to build classifier. The complexities of the estimation are presented. Under 
such mixture models, maximum likelihood estimation methods are not suitable and 
regular expectation maximization algorithm may not converge, and if it does, not 
efficiently. We propose a new estimation method to evaluate such densities and build 
the classifier based on finite mixture of copula densities. We develop simulations sce­
narios to compare the performance of the copula based classifier with classical normal 
distribution based models, the logistic regression based model and the Independent 
model. We also apply the techniques to real data, and present the misclassification 
errors.
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CHAPTER 1

INTRODUCTION

1.1 STATISTICAL CLASSIFICATION

Statistical classification is a field of study that has developed significantly af­
ter 1960. Significant findings have been obtained in this area. This method has a 
vast area of applications in many different regions, for example automatic character 
recognition, medical diagnostic and most recently in data mining. Using this tech­
nology one can build a machine with “brain-like” performance. Where one can train 
an algorithm using a training data set and then the algorithm will eventually learn 
and be able to classify the unknown patterns. This type of classification is called 
Supervised classification. Where as in unsupervised classification you don’t have a 
labeled traning data set, and the algorithm tries to cluster the data into different 
groups. In recent year, there have been many extensions both in the methodology and 
application point of views. These developments include kernel-based methods and, 
Bayesian methods. Suppose there are two or more distinct populations or character­
istics associated with data. Discriminant analysis is a search tool used to regulate 
which population or characteristics an observation come from, underline mechanism 
is called discriminant rule. Standard classification methods are quadratic discrimi­
nant analysis (QDA), linear discriminant analysis (LDA) and regularised discrimi­
nant analysis (RDA) (Friedman (1989). These methods are well investigated in the 
literature such as associated probabilities, adaptability, use of priors. Robustness of 
the discrimination rule to outliers is discussed by Todorov et al. (1994). Aeberhard 
et al. (1994) showed that RDA performs better compare to LDA only when the class 
covariance matrices are identical and if a large training set is available. Alternative 
approaches to the problem of discriminant analysis with singular covariance matrices 
are described by Krzanowski et al. (1995). When the mechanism rule is well cho­
sen the misclassification error will be minimised. Extensions of linear and quadratic 
discriminant analysis to data sets where the patterns are curves or functions are de­
veloped by James and Hastie (2001). All above methods assume marginal normally.
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However, most of the time the features and characteristics associated are such that 
data violates normality assumption. There are data sets where all the features are 
discrete or some of them are continuous and some of them are discrete, that is data 
is mixed. Analysis must find a way to capture the dependency. Copulas are very use­
ful tools in statistics for modelling dependence and derive multivariate distribution 
with specific margins (Joe (2014)). More recently copula based models have been 
used in different areas such as climate (Scholzel (2008)), oceanography (De-Waal et 

al. (2005)), insurance claims (Claudia et al. (2012)), engineering (Grigoriu (2007)). 
Using copula, one can construct multivariate density for a mixed data, where the 
marginal distributions are discrete and continuous or both. Salinas-Gutierrez (2011) 
used copula model for discriminant analysis assuming all the marginal distributions 
are continuous. Leon & Wu (2011) used copula based models, under latent variable, 
for pattern recognition. In this dissertation, we used copula and finite mixture cop­
ula models for classification. We also introduced two stage estimation process for 
mixture copula models and used those models for classification in simulated and real 
data sets.

1.1.1 STATISTICAL CLASSIFICATION PROBLEM

In this section we describe the basic model structure for the statistical clas­
sification. We use the term “pattern” to denote the p-dimensional data vector 
x  =  (xy, x2, . . . ,  xPY of measurements. The components of the pattern vector 
are measurements of the features of an object. Features are variables specified 
by the investigator and thought to be important for classification. We also as­
sume there are G groups or classes, denoted by • • • ,uq}- There are two
types of classification: Supervised classification and Unsuperuised classification. In 
this dissertation, we concentrate only on supervised classification. Under super­
vised classification method we assume we have a set of patterns of known class 
{(xi ,z ig),i = 1, 2, . . .  ng] g = 1,2. . .G},  where cc, G Rp and zig =  1 if the pattern 
belongs to ug and zig =  0 otherwise, for g = 1, 2 , . . . ,  G. This set of data is called 
design set and will be used to build a classifier.
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1.1.2 BAYES’ DECISION RULE

Consider G classes, . . .  ,ujg with known

prior probabilities p(ui),p(u2 ) , . . .  ,p(uq). If we had no information regarding an 
pattern x  other than the class probability distribution then, in order to minimize the 
probability of making an error, we would assign x  to class uig if:

p(ojg) > p(wk) for all g — 1,2 , . . . ,  G and g ^  k.

For classes with equal prior probabilities, patterns are assigned arbitrarily between 
those classes. However, we do have an observation vector a?, and a decision rule 
based on probabilities is to assign x  to class ug if the probability of class ug given 
the observation x,  that is p(ujg\x), is greatest over all G classes. That is, assign x  to 
class a)g if:

p{uig\x) > p(uk\x) for all g — 1, 2 ,G and g ^  k. (1)

Now, using Bayes’ theorem one can write:

* “ •!-> =  P>

Then using Equation (1) and (1) Bayes’ minimum error rule can be written as: 
assign the unknown pattern vector x  to class u g if

p(ujg)p(x\ojg) > p(uk)p(x\uk) for all g = 1, 2, . . . ,  G and g ±  k. (3)

The probability of making an error, p(error), can be expressed as:

G

p(error) =  ^^p(error\ojg)p(ojg).
9=1

In the above expression p(error\ug) g — 1,2, . . .  ,G is the probability of the mis-
classifying pattern from the class ug. The decision rule in Equation (3) minimizes
the error, as shown in Webb and Copsey (2011) . Assuming the prior probabilities 
p(oJg) are known, then in order to make a decision we need to estimate the class 
conditional densities p(x\ujg). Estimation of the density is based on a sample of 
observation {x \ , x \ , . . . ,  x ®s} (xf e  RP) from class cug.
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1.2 QUADRATIC DISCRIM INANT ANALYSIS:

Quadratic Discriminant analysis (QDA) is one of the most widely used classifier, 

and it’s based 011 multivariate normal distribution. In this method, for gth class 
the class conditional density is assumed to be multivariate normal distribution, with 
mean pg and covariance matrix Eg. Then the quadratic discriminant rule allocates 
observations x  to class ug after minimizing the square Mahalanobis distance between 
x  and the class u>g. Class conditional density p{x\uig) defined as:

P (*kr) =  ,* L  , i eXP(27T)2 | £ g |2
^ ( x -  Hg)TEgl ( x -  n g) (4)

Classification is done by assigning a pattern vector x  to class for which the posterior 
probability p(ug\x) or equivalently log(p(ajg\x)) is the greatest. If the prior is avail­
able from each population, we can use that information under Bayes’ rule. Using 
Bayes’ rule and the normality assumption in Equation (4) for the conditional density, 
we can write:

p K I* )
P{x\Ug)p(Ug)

p(x)
=*• log(p(u9\x)) = log(p(x\ujg)) +  log(p(ug)) -  log(p(x))

= t*g) - ^ l o g ( |Eff|)

~ ^ ° g ( 2tt) +  log(p(ug)) -  log(p(x)). (5)

As p(x) does not depend on class u g, the discriminant rule is: assign x  to u g if 
Sg > 5k for all g, k e  {1, 2 , . . . ,  G\g 7̂  k} where Sg is given by:

6g(x) = log{jp{u)g)) -  l ( x  -  n g)TY,g\ x  -  fig) -  hog{ |E9|), (6)

for g E {1,2, . . . ,  G}. Based on a training sample, the quantities pg and Eg are 
replaced by their estimates. Classifying a pattern vector based on the values of Sg(x), 
g =  1,2, . . . ,  G is called normal-based quadratic discriminant function (McLachlan 
1992).

1.3 LINEAR DISCRIM INANT ANALYSIS:

Linear Discriminant Analysis (LDA), also called Fisher’s linear discriminant anal­
ysis assumes the pattern vector x  is normally distributed in each class but unlike
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QDA this approach assumes class covariance matrices, that is Si =  £2 =  • • •, £g =  £  
are same. Then, ignoring the terms that are not changing with class, the discriminant 
rule in Equation (6) can be written as:

6g(x) = log(p(ujg)) + (7)

The parameters can be estimated based on a sample. To get the estimated discrim­
inant rule, we replace in Equation (7) fj,g by x 9, the arithmetic mean of gth class. 
Correlation matrix £  can be estimated by

g = l  i - 1

where x f , i — 1 , 2 , ,  ng are observations from gth class, and N  =  X^jLi ne> the 
total number of observation in all class. Fahrmeir and Hamerle (1984) discussed 
briefly about this method.

1.4 REGULARIZED DISCRIM INANT ANALYSIS

Regularized discriminant analysis method was proposed by Friedman (1989) It 
is applicable when sample size is small and dimension is high. Two parameters are 
involved in this method: a complexity parameter, denoted by A € [0, 1], providing
an intermediate between a linear and a quadratic discriminant rule; and a shrinkage
parameter for covariance matrix updates, denoted by 7 € [0,1]. In this method the

/S
covariance matrix Eg for g class is replaced by a linear combination, £*, of the 
sample covariance matrix £ g and the pooled covariance matrix Sp as:

(1 -  A)ngY,g XNSP 
9 (1 — A)ng +  NX ’ { )

where Sp — Second parameter, 7 is used to regularized the sample
class covariance further beyond that provided by Equation (9).

s y  = (1 -  7 ) s sJ + v , ( X ) i r, (10)

where Ip is a pxp  identity matrix, and cg(X) = trace(Hg)/p, the average of eigenvalues 
of £*. Finally the matrix £ g’7 is used as a plug-in estimate of the covariance matrix 
in the normal based discriminant rules. This method can improve classification 
performance when the covariance matrices axe not equal or the sample size is too 
small for quadratic discriminant analysis to be viable.
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1.5 PERFORM ANCE OF A CLASSIFIER

In the literature, several methods have been proposed to estimate the classification 

error (Gupta and Dordrect (1987) and Mclachlan (1976)). Three major methods are 
discussed below:

•  The re-substitution method: In this method all observations are used to 
design the classifier and used again to estimate its performance.

• Hold-out method: Let the total sample size be N  — Y fgLi ngi then in this 
method one portion of the set of observations is used to design the classifier, 
and the remaining (JV — k) observations, known as test set, are used to estimate 
the error rate.

• Random Sub-sampling: In this method, kg samples are chosen randomly 
from each group ug g = 1, 2 , . . . ,  G. Classifier is designed by those kg samples. 
Then misclassification error Ei is estimated using remaining sample from each 
group. This process is repeated k times and true error E  is obtained as the 
average of Ei s.

The re-substitution method can be used only when the sample size is significantly 
large, shown analytically in Rudys (1978). Hold-out error counting has basic draw­
backs. Misclassification error rates highly depend on the split. If we change the 
split estimated error rate can significantly change. To overcome these problems we 
used random sub-sampling method to estimate error rates. For small sample size 
bootstrap methods can be used to estimate error rate.

1.6 OVERVIEW OF THE DISSERTATION

From the previous discussion, we can see that the method of constructing a clas­
sifier is not just a density estimation problem but a computational algorithm. A 
decision rule can be constructed through explicit estimation of the class conditional 
densities: p(x\u)g). In this dissertation, we use copula based model to parameterize 
the class conditional densities. In Chapter 2 we provide an introduction of copulas 
and their estimation process. We discussed MLE estimation and Inference Func­
tion Method (IFM) estimation process and provide simulation results. In Chapter 
3 we introduce finite Gaussian and Archimedean copula mixture distributions and 
developed an estimation method for such mixture densities. Implementation of the
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proposed estimation method for several finite copula mixture distributions are dis­
cussed using simulated data. In Chapter 4 Gaussian copula based models and finite 
mixture Gaussian copula models are applied for classification. We provide decision 
rules and decision boundaries for those copula and mixed copula based classifiers. In 
this chapter we also discussed other classical methods, IM and LR, for classification. 
In Chapter 5 we implemented these methods and compared performance (misclas­
sification rate) with the classical normal based methods, independence model and 
logistic regression. We implement these models in simulated data and real life data 
and compare misclassification errors. Finally we conclude our study in Chapter 6 

and in the Appendix we provide expressions of score functions and R  code we used 
to obtain the estimates.
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CHAPTER 2 

COPULA AND ESTIMATION

2.1 DEFINITION AND EXAMPLES

One of the modern approach to derive a multivariate distribution with specified 
marginal is through copula. Joe (2014) and Song (2007) has briefly described these 
methods in their books. Copula is a multivariate distribution with univariate margins 
that are uniform on the interval [0,1]. The basic idea behind the construction of a 
multivariate distribution using copula is probability integral transform. For a given 
continuous random variable variable X  with a CDF F(.), the transformation F(X)  
follows a uniform distribution on [0,1], and the definition of copula is give below:

Definition 1. A p-dimension copula is a function C : [0, l]p -» [0,1] with the fol­
lowing properties.

1. C ( l , . . . ,  , 1) — Ui \/i — 1, 2, . . .  ,p and € [0,1].

2. C(ui, u2, • ■ • ,«P) =  0 if at least one w, =  0 for i = 1, 2, . . .  ,p.

3. For any u^, u»2 £ [0,1] with un < ui2, for % =  1,2,. . .  ,p,
2 2 2E E - E  ( - i y ,+* +- +*c'(u1j „ u Jil .. ..upir) > o.

j l  =  lj2  =  l jp =  l

2.1.1 EXAMPLES OF COPULAS

In this sub-section, we provide some examples of well known copulas.

Example 1. The independence copula is a function given by
v

C'(u1,u2, ...Up) =  J J it j ,  Uj € [0,1]. (11)
t=i

Example 2. . The Comonotonicity Copula is a function is given by

C(ui ,u2). ■-up) = min{u1,u2, ■ ■ ■ ,up}, Ui e  [0, 1]. (12)
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Exam ple 3. The Clayton Copula is a function is given by

C(ui,u2, ■ ■ ■ ,up) =  (max{ufe +  uf' 9  b u~e -  p +  1, 0}) 1 , 6  ,

0 € [ - l , o o ) - { O } ,  Ui € [0,1]. (13)

Exam ple 4. The bivariate Frank Copula is a function given by

1 /  (e~Ul9 -  l)(e~U26 -  11 \c(Ul,u2\o) = - - l o g  (1  +  ̂ R -  W - 1̂4)

In this dissertation the theory is developed focusing on Gaussian copula. This 
type of copula is very popular in the literature and the association structure is similar 
to multivariate normal distribution. When dimension is large, then estimation of the 
parameter is relatively simple, on the other hand for other type of copula complexity 
increases as dimension increases.

Exam ple 5. . The copula associated with standard multivariate gaussian distnbution 
is called Gaussian copula. The Gaussian Copula is a function given by

C*(uu u2, • ■ • up\R(r)) =  $ n (r)($ _1(ui). $ _1(u2) , . . . ,  $ _1(up)), (15)

where u\ ,u2, ■ ■ -up G R and is the inverse cumulative distribution function of a
standard normal and $R(r) ls joint cumulative distribution function of a standard
multivariate normal distribution covariance matrix equal to the correlation matrix 
R(r). Gaussian copula density, c$ ,in Equation (16), density is defined as:

QP
c<f,(ul ,u2, . . . , u p\R(r)) =  ^  qu Q^-C$(uu u2, . . . u p\R(r))

where U  = (<3> 1 (ui) $  1 (u2) . . . <t> l (up))T. Figure 1 shows bivariate Gaussian 
copula density under different correlation values.
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Figure 1. Bivariate Gaussian copula density for different values of r.

The most fundamental theorem related to copula is Sklar’s theorem, which allows 
us to glue the known marginal densities through a copula.

Theorem 2.1.1. (Sklar’s Theorem) Let X x, X 2, .. .  , X p be random variables with 
marginal distribution functions Fx, F2, . . . ,  Fp and joint cumulative distribution func­
tion F. Then the followings hold.

1. There exist a p dimensional copula C such that for all x x,x 2, . . . ,  xp e  (—oo, oo)

F(x u x2, . . . ,  xp) = C(Fi(xi), F2(x2), Fp(xp)).
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2. I f  X i,  X 2 . . . ,  X p are continuous, the copula C in unique. Otherwise C can be 

uniquely determined on a n dimensional rectangle Range(F\) x Range{F2) x 
• • • x Range(Fp).

More discussion in copulas and their properties is presented in Joe (2014), Nelsen 
(2006) and Jaworski et al. (2010).

2.2 M AXIMUM LIKELIHOOD AND IFM ESTIMATION OF 
COPULA

Our goal is to use copula based densities for classification. In order to build clas­
sifiers we need to estimate parameters in the copula density, using most efficient and 
fast method of estimation available in the literature. This section describes briefly 
two estimation process of copula densities. There are two methods one can estimate 
the parameters in a copula density. One method maximizes the likelihood function 
(MLE) to obtain estimates. Another method is Inference Function for Margin (IFM) 
method; this second method was introduced by Joe (2005), and he also showed this 
method is as efficient as MLE. For a p dimensional joint density, this method consist 
of doing p separate optimization of the univariate likelihoods, followed by an opti­
mization of the multivariate likelihood as a function of dependence parameter vector. 
This method is simple to implement and its converges quickly compared to MLE. We 
used one additional iteration step to IFM method of estimating parameters. Steps 
of this estimation method is given bellow:

Stepl: Ignoring the dependence parameter R, estimate each marginal parameters 
9 by maximizing each univariate likelihoods.

Step2: In the second step use those estimated values of 9 from the previous step and 
maximize the complete data likelihood to get an estimate of the dependence 
parameter R.

Step3: Finally using the estimated value of R  obtained from the previous step, 
maximize the complete data likelihood to obtain final estimates of 9.

We will show few examples of MLE and IFM estimation methods for discrete, 
continuous and mixed joint distribution using Gaussian copula distributions and 
compare their standard errors.
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2.3 JO IN T  CO N TIN U O U S D ISTR IB U TIO N  U SIN G  GAUSSIAN 
CO PU LA  AND ESTIM A TIO N

According to Theorem 2.1.1, any joint distribution function F  with continuous 
marginal distributions Fx. F2.. .. Fp can be associated to a copula function C$. If we 
know the marginal distributions, we can derive the joint probability density function 
using Sklar’s Theorem. Let X x, X 2... X p be continuous random variables with prob­
ability density functions f x, / 2, . . . ,  f p. Then the joint density /  of ( X i ,X 2, . . . ,  X p) 
can be written as

p

f ( x u x2. . . ,  xp) =  c* (Fj (.tj), F2(x2), . . . ,  Fp(xp)\R(r)) f t{xt), (17)
i= 1

where c$(u) =  9Cg ^  is the Gaussian copula density function. One advantage of us­
ing Gaussian copula is flexible correlation structure. Different correlation structures 
and their estimation is provided in the next section.

2.3.1 ST R U C TU R E  OF R

If the dimension of the random variable X  is p we have (^) elements in the associ­

ation matrix R. As p increases, the number of parameter increases dramatically. If in 
a model, there are too many parameters to estimate, estimation can be computation­
ally challenging and also efficiency can be lost. To avoid these, in this dissertation 
we assume structured R  matrix.
1) Equi-correlation Structure:
Under this structure we assume R(r) =  r l l*  — (1 — r)lp, where Ip is a p dimensional 
identity matrix, r  € (— 1), and 1 is p dimensional column vector of ones. It 
follows from Olkin and Pratt (1958) that:

< 1 8 >

2) AR-1 structure:
Under this structure, the (i , j ) th element of R(r) is given by with r € ( — 1, 1). 
The inverse of this matrix is given below (Chaganty 1997)

R ~'(r) = ~  -  rMi). (IS)

where M2 = diag(0,1, . . . ,  1,0) and M x is a tridiagonal matrix with 0 on the main 
diagonal and 1 on the upper and lower diagonals.
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2.3.2 ESTIMATION

Consider a random variable X  =  (X \ ,X 2, . . . .  X p) with the marginal pdf and cdfs 
are fj  Fj(xj\0j) respectively, for j  — 1,2,. . .  ,p. Then the joint distribution
can be written as:

f { x u x 2 • • ■ , . r p |0 , R ( r ) )  =  c *  | 0 i ) ,  F2(x2\02), ■ • ■, Fp(xp\0p)\R(r) )
v

x  <2 ° )  

3 = 1

where 0  =  (0 i,..., .0P) is the parameter vector. Then, based on a random sample- 
of size n, X  = ( X 1, X 2, . . . , X n), the log likelihood function is given by:

n

Z(©|X) =  ^ c * ( F 1(arii|0i),F2(a:2i|02),.--,Fp(a:pi|®p)|/J(r))
i—1 

n p

+  ^ 2 ^ 2 l° 9 ( f j ( xj i\e j ) )
i= 1 j —1

=  ^ o 9 m r ) \  -  £  \ q ‘( R ( r ) - '  -  Ip) q , + ' £ T , los ( f i l.x i - \ » i M ^ )
1=1 1=1 j = 1

where qi =  (qlt, fe , • ■ •, <7Pi) with components <7̂  = $ - 1(Fj(xJ-i)), for i =  1, 2 , . . . ,  n 
and j  =  1,2, . . . ,  p. The score functions for the parameters can be obtained by taking

dl
- 2 ^ 2 ^  i r - " m  m : — 2 ^ j w , ( R{-r) ~ ^ )q-dOj f(Xij\9j) dOj dOj3 t= l 7 = 1  3  3 /  3 i=1 3

dl d ( n
dr dr ~ l ° g \R ( r ) \  trace((R (r ) 1 -  Ip)QiQ\)\

i=1 /

(22)

= ^  y~ ^og \R (r ) \  -  ^ trace(R(r) ' q r f  -  q r f )

= ^-7,l°9\R(r)\ ~  ^ ra c e (F ( r ) - 1 • (23)

As the score functions are highly nonlinear, closed form expression of MLE estimates 
are not available. We use numerical methods to solve those score equations and
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obtain MLE estimates of the parameter. A popular choice numerical algorithm would 
be Quasi-Newton method given in Nash (1979). The algorithm can be describe as 
follows:

Step l. Start with an initial estimate 0* of 0  

Step2. (k + l ) th step iteration proceeds as:

Qfe+i  =  Qk _  S B { e k)i{Qk)

where B(S)  is an approximation to the inverse of the Hessian matrix, 

i(&) — and <5 is a constant.

Step3. Repeat Step 2 until 0 fc+1 =  0 fc and take 0  = 0 fc+1 as the MLE.

2.3.3 EXAMPLE

We use Sklar’s theorem to construct bivariate gamma density using a Gaussian 
copula. We consider two random variables X x and X 2 with the density:

f t(xi\ai, pi) = for i = L 2, (24)

with Xi 6 (0, oo), a, > 0, Pi > 0. Using Equation (20) we can construct the bivariate 
gamma distribution. The joint density of X 1 and X 2 is given below:

f ( x i , x 2\a1, p l , a 2, P2,R{r) )  =  c$(F1(xi|o:1,f t ) ,  F2(x2\a2, ft)|fl(r))

x f i ( x i \a i ,p l ) f2(x2\a2,P2), (25)

where Fj(.) is the CDF of gamma density, and c$, is the bivariate Gaussian copula 
density, defined as:

-  ~ k r  ( -5  ( J - 2 )  (fl" ■ /2) ( J - 5 ) )  ■ (26)

where u\ ,u2 £ [0, 1], $  is the standard normal distribution function, / 2 is a 2 x 2 

identity matrix and R(r) = () j') is a 2 x 2 symmetric matrix, called association 

matrix and for continuous marginal distribution r is the Pearson correlation between 
two normal scores. That is r can be expressed as:

r =  cor[$--1{F1(X1) } , $ - 1{F2(A2)}].
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Using Equations (26) and (25) the joint density function become:

/(•Ti,.t2K ,  A , n?2, /?2,r) =    — exp (  - / ...1 2(q\ + q2 -  2qlq2r)
' \ 2 V l r

+ +  92)) x / i(* i |a i> /W 2(z2|a 2,/?2), (27)

where q\ =  ^ '{ F i^ lc q ,/? ] ) }  and q2 =  fii)}- Figure 2 shows the plot
of the joint distribution of (X UX 2) defined in Equation (25).

Using the method described in Nelsen 2006 we can simulate random number from 
the joint pdf in Equation (25). Based on a random sample X { — (â *, x2i) of size n 
the log-likelihood function is given by:

1{9\X) = -~ log{  1 -  r 2) -  _ r2  ̂ +  f e 2) -  2ququ }

1 n
+ ^  + îi) + n ia i l°9{Pi) +  Oi2log{ji2))

i=  1
n  n

+  ( a l  -  X) Y 2  l ° 9 ( X l i )  +  ( Q 2 -  1 )  +  l o d ( X 2i)
i -  1 i —1

n

-  n{/o^(r(o!1)) + /oy(r(a2))} -  53 + ^ 2̂ 2i, (28)
i = i

where © = (ax, /31, a2, /?2, p), gu = $ - 1(Fx(a;u )) , g2i = ^ ~ 1(F2{x2i)) and p is the 
association parameter. From Equation (28) we can see that direct maximization of 
the likelihood function is tedious and numerically unstable, because the marginal 
parameters ax, fli, a2, fi2 appear in the likelihood through a complex normal score 
function <F-1(.). We apply the numerical algorithm describe in previous section to 
obtain MLEs of the parameters. Simulation results for different sample sizes are 
given in Table 1.  We also implemented IFM method and compare standard errors of 
the estimates.
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(b) r — .90

Figure 2. Bivariate gamma density using Gaussian copula.



17

Table 1
Parameter estimates using MLE and IFM method for bivariate gamma density

based on Gaussian copula

MLE
Sample Size=100 Sample size=500

Parameters Estimates SE Estimates SE
ai=5.1 5.4026 0.8028 5.1132 0.3376
ft=3.2 3.3963 0.5439 3.2046 0.2254
a 2= 2.1 2.1833 0.3221 2.1043 0.1218
/32=1.2 1.2577 0.2179 1.2037 0.0830
r=0.25 0.2410 0.0858 0.2487 0.0425

IFM
ax=5.1 5.4025 0.8029 5.1118 0.3379
A=3.2 3.3960 0.5440 3.2036 0.2258
a 2= 2.1 2.1834 0.3219 2.1044 0.1217

to II to 1.2578 0.2178 1.2037 0.0831
r=0.25 0.2411 0.0858 0.2487 0.0424

2.3.4 EXAMPLE

Consider X  =  (Xy,X2, X 3) be a random variable. Marginal densities are given 
below.

= V - * 1*1, xi G [0,oo), (29)

f 2 (^2 \^2 ) = A2e *2*2, x2 6 [0,00), (30)

f 3(x3\a,/3) = x3a~le~l3x3, x3 G (0, 00), (31)
1 ( a )

with (Al tA2, A3, a , 0) G (0,00). Then using Theorem [2.1.1] we can derive the joint 
density as:

f ( x  1, x2, x3|Ax, A2, a, /0, R(r)) =  ^(/^(xxlAj), F2(x2|A2), F3(x3 |a, (3)\R(r))

x  / i (® i |A i ) / i ( a r 2 |A2) / 3( x 3|a , /0 ) ,  (32)

where F^ay) are the corresponding distribution function for i = 1,2,3. We simu­
late random sample from the above density and used numerical methods to obtain 
estimates of the parameters. We used equi-correlation structure for the simulation. 
Results are given Table 2.
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Table 2
Parameter estimates and standard errors(SE) for trivariate joint distribution with

exponential and gamma margins.

MLE
Sample Size=100 Sample size=500

Parameters Estimates SE Estimates SE
Aj=2 1.9274 0.1429 1.9324 0.0660
A2=5 4.8738 0.2189 4.8555 0.1095
a=3.5 3.3816 0.4668 3.3271 0.2120
/?=1.3 1.3452 0.1863 1.3123 0.0825
,0=0.15 0.1964 0.0651 0.1968 0.0302

IFM
Ai=2 1.9917 0.1456 1.9967 0.06638
A2=5 5.0417 0.2196 5.0196 0.1086
a=3.5 3.5889 0.4584 3.5290 0.2116
^=1.3 1.3451 0.1872 1.3103 0.0819
p=0.15 0.1643 0.0558 0.1654 0.0264

2.4 JOINT DISCRETE DISTRIBUTION USING GAUSSIAN  
COPULA AND ESTIMATION

Using copula we can derive joint discrete distribution also. When the marginal 
distributions, Fi (x i \0i ),F2(x2\02), •••, Fp(xp\6p) are discrete then we can obtain joint 
probability mass function using copula as follows :

f{x \&,R(r))  =  P{Xl = x l , X 2 = x2, . . . ,Xp = xp\e,R(r))
2 2 2

= J 2  ‘ ( - l ) jl+i2+"'+jpC*{ulh , u2h . . . ,  upjp\R(r)),
j l = l j 2 = l  j p = 1

(33)

where © =  (0\ , ...,0p), C$(.|/?(r)) is the Gaussian copula with association matrix 
R(r), Uji =  Fj(xj) and uj2 =  Fj(xj- ) .  Here Fj(xj—) is the left-hand limit of F} at 
Xj, which is equal to Fj(xj — 1).

2.4.1 ESTIMATION

Based on random sample X  =  (A d ,..., X „) the log-likelihood function can be
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written as :
n

i(e\x) = Y , ‘°g(f(®\x.y (34)
i = l

Then score functions is given by :

dl(&\X)  ^  1____d _ t ( a \ X \ fvrt
d0i Z t f ( @\X ^)^e3

where,

dJ§ ^  = E E - E h ) * ^
3 i i=ij2=i jP=l

w  \  '  dC $(unj1, Ui2j2 . . . ,  UiPjp | / 2 ( t ' ) )  duikjk (i}G\

h  ^  ~ w  ( }

Now as we are using Gaussian copula, the expression above can further simplified as:

d C * ( u a j l t  Ui“2j2 • • • i u>ipjp lfl(r)) _ d $ p(u n h ,Ui2j2 ■ ■ • , Ujpj p 10, -R(r))
d'^ikjk d ‘̂%kjk

=  $ p _ i ( w _ fc| / x_ fc, / L fc( r ) )

x  0 ( u i(fc)ifc |0) l ) t  ( 3 7 )

where u  =  ( u ^ , •  •■,ityfcM)jfc_1,^(JM-i)jfc+lJ.. .  ,uipjp), fi_k and R - k(r) is the corre­
sponding mean and association matrix of the vector u. Finally

< 9 / ( © l * i )  + * < + - ..+i„dC<s,(uUh,u i2j2 ■ ■ ■ i UipjP\R(r )) ^

with,

dr drn=ij2=i jP=i

dC*(ullh,ui2j2. . . , u ipjp\R(r)) =  /**“ r*~ Wipip) dlog(<t>p(x\R(r)))
dr  io o  Joo dr

x ^p(a;|J?(r))
/•* 1{uip3p) o / i

- L  - L  ~ r { ! ° ^  
1

+^trace(i?(r) W icjJ <̂p(x|i?(r)). (39)

Solving the score function numerically, we obtain MLE of the parameters.
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2.4.2 EXAMPLE

Lets consider a random vector X  — (Xx, X 2) with marginal probability mass 
functions are given bellow:

AXle~Al
f ( x 1) = P { X i = x 1) =  1 , x i e  0,1,2,... (40)

\ X2e~X2
f ( x 2) =  P (X 2 = x2) =  — ..... , x2 e  0,1,2,... (41)

x2\

with Aj > 0 and A2 > 0. Then the joint probability mass function f ( X  =  X \ ,X 2 =
x2) can be obtain using Equation (33). Plot of such density is given in Figure 3. R
is used to simulate data and numerical methods were used to obtain estimates of the 
parameters. Simulation results are given in Table 3.

Table 3
Parameter estimates and standard errors (SE) for bivariate Poisson.

MLE
Sample Size=100 Sample size=500

Parameters Estimates SE Estimates SE
A! =6 5.6158 0.2525 5.6204 0.1266
A2=4 3.7378 0.1922 3.7458 0.0995

r=0.60 0.6201 0.0518 0.6139 0.0243
IFM

Ai=6 6.0050 0.2523 6.0049 0.1271
A2=4 3.9971 0.1968 4.0015 0.1006

r=0.60 0.6155 0.0539 0.6092 0.0252
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(b) r =  .90

Figure 3. Bivariate Poisson density using Gaussian copula.
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2.5 JOINT MIXED DISTRIBUTION USING GAUSSIAN COPULA  
AND ESTIMATION:

When the margins appear to be mixed, say the first p\ margins are continuous 

and rest P2 = P — Pi are discrete, then the joint pdf can be written as (Song 2005):

j = P l  2 2

/(* )  =  n / ^ ' )  s  • • • ^ ( - i )jpi+i+" +jp
j=i jpi+i=i jp=i

* • • •) Fpilxp^, Upi+i,jPl+i i • • • >up,jp)j (42)

where, UjX =  Fj(xj) and u]2

-

2.5.1 EXAMPLE

We use above expression of density function to obtain a bivariate pdf with mixed 
margins. Consider two random variable (Xj, X?) with distributions f i(xi)  and / 2(x2), 
where

fi(xi\a,/3) = x i 6 (Ô 00)- (43)

\ X 2 e ~ Xl
f f a )  =  P{X2 = x2) = -J— — , x2 €0 ,1 ,2 , ... (44)

x 2\

Joint density of (Xi, X 2) can be obtain using Equation (42). As the density itself is 
complicated and the score functions are not is a closed form, closed form solution for 
maximum likelihood estimates are not available. Numerical optimization method is 
used to obtain MLE’s. Data were simulated from this density and, both estimation 
methods, IFM and MLE, were applied to obtain estimated. Simulation results are 
given in Table 4. In all the above cases we can see the IFM method is as efficient as 
MLE, and this true for not only continuous distributions but also for discrete and 
mixed types of models. This estimation method is efficient in terms of computing 
time. As the goal of this research is to use copula based densities to build classifier, 
a fast estimation method is needed to estimate the classifier. In Chapter 4 we use 
this IFM method to build copula based classifiers. In the next chapter we introduced 
finite copula mixture model and their estimation along with simulation studies.

Fj [Xj —) and, 

dpi
dui... du.PI
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Table 4
Parameter estimates and standard errors(SE) for Poisson and gamma mixed

density.

MLE
Sample Size=30 Sample size=130

Parameters Estimates SE Estimates SE
cti=3.5 3.6138 0.5423 3.4234 0.2293
A=6.3 6.7202 1.0957 6.3498 0.4533
Aj=3 3.0023 0.1692 3.0012 0.0858

r=0.20 0.1974 0.0951 0.2051 0.0459
IFM

c*i=3.5 3.7036 0.5436 3.5086 0.2292
A=6.3 6.6879 1.0893 6.3067 0.4512
Ai=3 3.0020 0.1691 3.0012 0.0858

r=0.20 0.1889 0.0864 0.1968 0.0421
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CHAPTER 3

GAUSSIAN COPULA MIXTURE MODEL AND

ESTIMATION

Finite mixture model is a probabilistic model represented as a weighted sum of a 
few parametric densities. Lindsay (1995) and McLachlan and Peel (2000) have shown 
that this type of mixture model is very useful for uncovering hidden structures in 
the data. Combining copulas as a finite mixture model helps us to not only fully un­
derstand the different dependence patterns between observed random variables, but 
also add more flexibility into the model. Vrac et al. (2005) used a mixture model of 
Frank copulas. Cuvelier and Noirhomme-Fraiture (2005) proposed a mixture model 
of Clayton copulas for clustering in data mining. Hu (2006) used a mixture of three 
copulas (Gaussian, Gumbel and Gumbel-Survival) to model dependence of monthly 
returns between a pair of stock indexes. In all the above cases, authors constructed 
a mixture copula by mixing different copulas as components of the finite mixture, 
and from there used the new mixture copula function to construct multivariate dis­
tribution functions using Sklar’s Theorem. But here we construct the distribution 
first and then use them as components of finite mixture model. Due to complexity of 
these types of mixture models, most of the cases, MLE method of estimation is not 
convergent, and EM algorithm (Dempster et al. (1977)) may converge but the con­
vergence process is too slow. In this section we propose a new estimation algorithm 
to estimate parameters for such mixture models.

3.1 GAUSSIAN M IXTURE COPULA MODEL

A mixture model is a powerful tool to investigate hidden structure in the data 
and represent complex probability density functions. The mixture model is semi- 
parametric in that it does not put much structure to the data, unlike a fully paramet­
ric density, and does not produce model estimates highly dependent on the observed 
data, opposed to a fully non-parametric model (Lindsay 1995; McLachlan and Peel 
(2000)). In this section, we introduced mixture copula model and there estimation 
methods.
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3.1.1 FINITE M IXTURE

A p-dimensional random vector X  =  ( X j , X p) is said to be generated from a 
mixture of M-component densities if its density function can be written as:

M

fmix(x |0) =  ^  nj f j (X\03' RJ(V))’ (45)
J=1

where, ® =  (01,0 2, . . . ,  0M), 0J =  (0lr  02j, • ••, 0Pj)\ Rj (r) is the correlation matrix 
of j th mixture component, ttj is the mixing proportion of the j th component satisfying 

0 < 7Tj < 1 and YIjLi 71 j =  1- Consider the finite continuous copula mixture model 
where all the margins are continuous and assume that each fj (x \0j , Rj {r)) defined 
as:

p
fj(x\0J,R 3{r)) =  c$ (FiixilOu), F2(x2\02j),. . . ,  Fp(xp\0pj)\R]{r))

k = \

(46)

where, c(tt) — ^ |v )  js the copula density function, as defined in Equation (26). 
To simplify the notations we will write f j ( x \0 \ W ( r ) )  as f 3(x\0]). Our goal is to 
build a likelihood function so that estimation of parameters can be performed for the 
mixture of M  classes.

3.1.2 LIKELIHOOD AND ESTIMATION

In this section, we develop the likelihood function using a latent variable and 
also provide brief discussion about proposed estimation process. One way to build a 
likelihood function is to introduce a latent variable Zij defined as:

f  1 if Xi e j thc\ass j  = 1,2,.... M, z =  1,2, . . . ,  n, 
zij = s (47)

[ 0 otherwise, with x t =  (xlt, x2l. - . . ,  xpi) e

Then, the random variable Zi  =  (ztl, . . . ,  zlM) is a multinomial random variable with 
parameter 7r =  (7̂ , . . . ,  7Tm)- Based on a random sample of size n the mixture model 
can be formulated by generating latent unobserved variable zt] defined as above.
Using such discrete latent variables, the log-likelihood function of the complete data
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can be written as:
n M

l(@\x) =  ' Y ^ ^ z lj{logiXj +logfj(xi\0J)}
» = 1  j = 1 

n M

= EE Zij i logiXj  +  ' y ' j ° g f k ( T k i \ O k J) }
i =  1 j —1 fc = i

n  M

+ EE
t = i  j = i

71 M= EE ZijilogiTj  +  l o g f i ( x i i \ 0 i j ) }  +  . . .
7= 1  j = 1

n M  n M+ EE 2tJ{/o</7I- +  / o ^ / p ( x pt| 0 pJ)}  +  EE Zi j { { l  - p ) l o g i t j }
2—1 j —\ i=1 j = l

n  M

+  E E  ( F i ^ i i l f i y ) ,  F 2 ( x 2i | 0 2j ) ,  • • ■ , ip (® p i l^p j)  I#* (2*)) }
7 = 1  J  =  1

77 M

_  i l + i j  + ... +  ip + tc + £ £
7 = 1  j  =  1

where,

4  =  4 (« i )
77 M

= XZ XZ zv { l°9Kj + logfk(xki\ekj)}, k = 1,2, . . .  ,p,  and (49)
7=1 j  — 1

Lc =  Lc{0\R(r*))
n M

-  EE z ijlog{c<f> ( F x( x u \ 0xj), F2{x2i\ 0 2j ), • • •, Fp(xPt|0 p j) |F -7( r ) ) } ,
7=1 J = 1

(50)

with the parameter set © = {6j ,R?(r)|1 < j  < M}, 6j =  {Oij, 02j, 0Pj},  and
7r =  (ttx, 7t2, . •., 7tm) £ [0,1]M. Now without the help of the latent indicator variable 
z tj  the log likelihood is derived as:

M

/(©, I*) =  l°g
i= 1 Lj=i

(51)

where / ,( .) ’s are given by Equation (46). Because of the complexity of the density 
and likelihood function, obtaining estimates by maximizing the likelihood function is



27

computationally challenging. Quasi Newton method described in Chapter 2 does not 
converge for these types of complex functions. One can use EM algorithm to estimate 
the parameters, but EM algorithm is too slow, as the optimization To estimate the 
parameters © = {0J, 7r, W(r)},  we propose a two stage estimation process, using 
the EM algorithm. Algorithm for this two stage method is given below.

3.1.3 TWO STAGE ALGORITHM

We propose a two stage estimation procedure to obtain near optimal solution. 
Under the Equation (48), we can break up the likelihood in to two parts; the marginal 
likelihood functions given in Equation (49) and the likelihood functions of copulas 
given in Equation (50). Our approach is to:

1. Maximize each likelihood lk given in Equation (49), to obtain 0 an estimate 
of the set of parameter 6F. Use EM algorithm to obtain 0kj for k = 1,2, ...,p 
and j  — 1,2, ...,M. For each k =  1,2, ...,p, at Ith iteration step start with a 
initial value 0 ^ ^ .  At E step, using Bayes’ rule, calculate:

E{Zij\xkl) = T^l(xkl\0kj{l))

_  n f  f k(xki\Okj{l))
at each i = 1,2, . . . ,  n. (52)

E  A M * / ’)

Now, in M step find the parameters that maximize the function:

n  M

^ 2 ^ 2 Tijk(xki\Okj(l)){lo9^j + logfk(xki\0kj)}, (53)
t=i j = i

and set

( n M  \EE + logfk(xki\0kj)} J . (54)

* = i  j = i  /

Repeat the process until convergence, to obtain & =  (0ij,02j , ..., 8PJ).

2. Now use 0 and maximize the likelihood function given below:

( n M  \

E l o g J 2 7Tj f i ( x j \ d 3 i R3(r))) • (55)
i = i  j = i  /
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After estimating the first set of parameters and obtaining 03, we choose to use 
the likelihood given by Equation (51) instead of using the likelihood function given 
by Equation (48). As the copula function is complicated and EM algorithm is an 
iterative optimization process, this will lead to a very slow algorithm. For compli­
cated objective function EM algorithm is not that helpful. That is the reason behind 
using the likelihood function in Equation (51) to obtain estimates for second set of 
parameters.

3.2 EXAMPLES

In this section few examples of copula mixture models and their estimation using 
two stage algorithm as discussed in previous section.

M ixture exponential distribution:

Consider a mixture copula distribution with exponential margins. The theory 
is developed for a p variate mixture with M  mixing components. Simulation for 
bivariate and multivariate mixtures models were performed. A p-variate exponential 
mixture density is given as below:

M

fmix(x I©) = Y ^ njf j (x\X3,R :i(r)), (56)
j-1

where, 0  = (A1, A2, r j , 7r), = (A -̂, \ 2j, . . . ,  Xpj), 7r =  (7rx, n2, . . . ,  nM) are the
mixing proportions with J^jLi nj ~  ^  -R(rJ )> is the p x p association matrix for j th 
mixture component and

p

fc=i
x c» (F (l1|A1j ) ,F ( i2|A2J) , . . . , F ( i 1|A,j )|JP(r)), J  =  1 ,2 , . . . , A/.

(57)

In Equation (57), F(.) is CDF of exponential distribution and c<j,(.) is Gaussian 
copula density function. For bivariate case plot of this type of mixture density is 
given in the Figure 4.
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Figure 4. Bivariate exponential mixture density using Gaussian copula.
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To estimate the parameters, based on a sample of size n, we used two stage 
estimation process, described in previous section.
Step 1 : For each j  — 1,2 ,. . . ,  M  and k =  1,2,. . .  ,p, start with an initial estimate 
(Ag,7f[°) and calculate T^k as:

V I  =    ;ii)....■ J =  1,2, . . . ,M,  * = l , 2 , . . . , p .  (58)

Now choose

( n M  \

~ ̂ kjXki} ) • (59)

i= 1 j = l  /

Maximizing the above function given in Equation (59) we get the set of estimates at 
(I +  l ) th iteration step as:

^  j,{l)
^ k j X) = ' n i?1 ’ j  =  1,2, . . . ,  M and fc =  1,2,. . .  ,p. (60)

Z ^ i= l xkiT{jk

Then repeat the process until convergence to obtain final set of estimates Akj-

Step 2: In this step use the set of estimates obtained from Step 1 to maximize 
the likelihood given below:

n  M  p

l ( R 3( r ) , i r \ x )  =  J I { A fcj}e { - s fc=iA« Xfci>c# ( ^ X n l A y ) ,  • • •
»=i  j = i  fc=i

■••»^(a:pi|Apj)|i2J( r ) ) .  (61)

As the likelihood function given by Equation (61) is complex and highly nonlinear, 
we used numerical optimization method to obtain the estimates W { r ) ,  and nj ,  for 
j  = 1,2, . . . ,  M. Simulations for three scenarios are carried out results are given in 
the Tables 5, 6 and 7 below. The results show that MSE is lower as we increase the 
sample size and MSE is a function of the value of the parameter magnitude.

We performed simulation for tri-variate mixtures, for an unstructured association 
matrix. As we increase the dimension p or number of component M , number of 
parameters will increase rapidly. To avoid such situation one can impose simple 
structure on the association matrix R j (r) ,  as defined in Section 2.3.2.
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Table 5
Bivariate exponential mixture density.

Simulation-l(p=2,M=2)
Sample Size=500 Sample size=1000

Parameters Estimates MSE Estimates MSE
An =3.5 3.5326 0.0823 3.5279 0.0522
M2—10.8 0.7945 0.0077 0.7981 0.0061
A21=5.6 5.6523 0.2702 5.6420 0.0932
A22=l-6 1.5810 0.0271 1.6103 0.0170
r 1=0.65 0.6319 0.0019 0.6435 0.0007
r2=0.15 0.1355 0.0128 0.1398 0.0045
^=0.70 0.6997 0.0021 0.6954 0.0016

Table 6
Tri-variate exponential mixture density with unstructured correlation.

Simulation (p=3,M=2)
Sample Size=500 Sample size=1000

Parameters Estimates MSE Estimates MSE
A„=11.5 11.7562 1.6921 11.4484 0.8162
A21=12.1 12.2357 1.1821 12.0342 0.5887
A31=10.6 10.9668 1.9678 10.7698 0.9593
Ai2=3.1 3.2250 0.3511 3.0983 0.1155
A22=1.6 1.6278 0.0349 1.5892 0.0149
A32=2.1 2.1369 0.0975 2.1241 0.0446
^ = 0 .5 5 0.5342 0.0019 0.5451 0.0009
rj3= 0.65 0.6321 0.0015 0.6401 0.0009
r23=0-45 0.4351 0.0027 0.4454 0.0001
rj2=0.35 0.3292 0.0073 0.3381 0.0033
r?3=0.15 0.1354 0.0102 0.1298 0.0053
r23= 0'22 0.2221 0.0924 0.2058 0.0042
7Ti =0.68 0.6730 0.0018 0.6793 0.0003
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Table 7
Tri-variate exponential mixture density with equi-correlation structure.

Simulation (p=3,M;=2)
Sample Size=500 Sample size=1000

Parameters Estimates MSE Estimates MSE
An=14.5 14.6357 2.6232 14.4363 1.2205
A2i =12.6 12.6628 1.1530 12.6359 0.4866
A31=10.6 11.0340 2.1073 10.7667 0.8656
Ai2=3.1 3.1129 0.1576 3.0776 0.0873
A22—1-6 1.6103 0.0373 1.5982 0.1997
A32=2.1 2.1602 0.1309 2.1473 0.0478
^=0.55 0.5439 0.0009 0.5479 0.0006
r 2=0.22 0.2241 0.0032 0.2227 0.0015
TTi-0.70 0.6948 0.0005 0.6967 0.0002

M ixture gamma model

Gaussian copula can capture dependence in many non Gaussian densities. In 
this example, we consider marginal distribution to be of gamma type. The mixture 
density is given below:

M

fmix {x |0 )  =  TTj f j  (x | OL3, f t , R3 (r) ), (62)
3=1

where © = ( a 3 , f t ,  R?(r), 7r) ,  a? =  {otkj\j = 1,2, . . . ,  M and k =  1,2, . . .  ,p} are 
the shape, f t  =  {0kj\j = 1,2,. ..  , M  and k = 1,2, . . .  ,p) are the scale, R(rj ) is the 
p x p association matrix, and

. . . ,  F(xp\apj, Ppj)\R3(r)) , (63)

where, c$(.) denotes the p-variate Gaussian copula density and F(.) is gamma 
distribution function. Plot of the density is given by Figure 5. As the density is not 
easily tractable obtaining MLE’s turns out to be challenging. Two step estimation 
method, described in previous section, was implemented to obtain the estimates.
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Figure 5. Bivariate gamma mixture density using Gaussian copula
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Two step algorithm for multivariate mixture gamma model using Gaussian copuls 
is given below:
Step 1: In this step start with a initial set of estimates , j3kj  and . Using this 

initial set of estimates calculate:

T {1) -  '  ^  ^  1641I ijk — _ to • ib4l.. o(0 akj „(0_, -fn
y M ju ih i  l xan X

^  rfai'j) Zki e

Then use numerical optimization methods to get:

/  n  M

(4 j+1>»P {£ 1]) =  o-rgmax I ] T ] T T®{logir j  -  a kjlogPkj -  l ogT{akj)
\*=i j =i

+  (akj -  1 )logxki (65)

To get final estimates ( a kj ,  0 k j ) , j  — 1,2, . . . ,  M and k =  1 ,2 , . . . , p  repeat the process 
until convergence.

Step 2 : In this step, use the estimates obtained from step 1 and maximize the 
likelihood given below to obtain ttj and W (r)  as:

{ n j , W { r ) )  =  a r g m a x  ^

c* ( ^ F i x u l a x j ^ i j ) , . . . ,  F ( x pi\apj , ^pj) \RJ( r ) ) ^  . (66)

Data from bivariate and tri-variate gamma are simulated, and different correlation
structures are imposed on them. Simulation results are given in Table 8, 9 and 10.
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Table 8
Bivariate gamma mixture density.

Simulation (p=2,M==2)
Sample Size=500 Sample size II <=5

Parameters Estimates MSE Estimates MSE
<*u =  2.3 2.1992 0.1036 2.2996 0.0234
fti=0.2 0.1870 0.0115 0.1893 0.0015

Qi2—10.2 10.2918 1.9478 10.4239 0.9135
012=3.3 2.9817 0.6623 3.0506 0.2133
<*21 =  1-9 1.8971 0.0176 1.9115 0.0024
021=3.2 3.1880 0.0702 3.2040 0.0053

(*22 =  12.5 12.8645 1.9448 12.5107 0.9881
022—9.3 9.1872 1.4355 9.3341 0.5173
ri=0.65 0.6484 0.0487 0.6564 0.0225
r2=0.25 0.2270 0.0061 0.2346 0.0024
7^=0.68 0.7012 0.0004 0.7001 0.0001

Table 9
Tri-variate gamma mixture density, with equi-correlation structure.

Simulation (p=3,M=2)
Sample Size=500 Sample size=1000

Parameters Estimates MSE Estimates MSE
£*h =2.3 2.3120 0.0239 2.3347 0.0156
0ii=3.2 3.1857 0.0629 3.1848 0.0396

Oi 12=12.2 12.4811 1.5713 12.3412 0.6885
0i2=13.3 13.0438 1.1543 13.1937 0.7740
(*2i=5.9 5.9629 0.2332 5.9846 0.1745
021 = 1-2 1.1892 0.0808 1.1917 0.0063

(* 22 =  10.5 10.6835 1.4592 10.6078 0.6452
022 =  11-3 11.2237 1.3791 11.2138 0.6823
(*3i=8.9 8.2628 0.7701 9.0093 0.6284
031=4.2 4.0433 0.1541 4.1834 0.1167

<*32 = 16.5 16.6993 1.3089 16.5341 0.7102
032=7.2 7.1805 0.5237 7.2318 0.4481
r!=0.60 0.5958 0.0081 0.5974 0.0004
r2=0.20 0.1929 0.0031 0.1987 0.0009
7T!=0.60 0.5985 0.0025 0.6001 0.0014
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Table 10
Tri-variate gamma mixture density, with unstructured correlation.

Simulation (p=3,M-= 2 )

Sample Size=500 Sample size=1000
Parameters Estimates MSE Estimates MSE

<*„=2.3 2.3091 0.0230 2.3224 0.0147
A i = 3 .2 3.2054 0.0503 3.1727 0.0318

c t i2 = 1 2 .2 12.3913 1.6012 12.2499 1.1529
012=13.3 13.2185 1.7219 13.3517 1.5085
C *21=5.9 5.9434 0.1816 5.9675 0.1015
021 =  1-2 1.1954 0.1147 1.1869 0.0411

022 =  10.5 10.7406 1.3784 10.6559 0.5861
022 = 11-3 11.2384 1.0139 11.2019 0.5983
031=8.9 9.0390 0.6536 9.0162 0.2796
031=4.2 4.1618 0.1743 4.1542 0.0674

o 32= 1 6 .5 16.9413 1.7396 16.6165 1.5676
032=7.2 7.1975 1.3007 7.1712 0.6177
4 = 0 .6 0 0.5976 0.0369 0.5961 0.0035
rj3=0.40 0.3930 0.0218 0.3978 0.0063
4 = 0 .5 0 0.4972 0.0166 0.4987 0.0083
4 = 0 . 2 0 0.1952 0.0059 0.2005 0 .0 0 0 2

4 = 0 .1 5 0.1557 0.0062 0.1456 0.0031
4 = 0 .3 3 0.3421 0.0554 0.3237 0.0028
7Ti = 0 .6 6 0.6599 0.0036 0.6594 0.0009
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3.3 FINITE M IXTURE OF MULTIVARIATE DISCRETE  

DISTRIBUTIONS

The idea behind the two stage algorithm is to apply EM algorithm to each 
marginal and estimate the parameters and using those estimates maximize the full 
likelihood function to obtain estimates of mixing proportion and association matrix. 
We applied this estimation method for discrete mixture distributions. For discrete 
random variable X  = (AT1, AT2, . . . ,  X p) the M  component mixture density is given 

by:

M

fmix(x |0) = 'Y^'Kj f j (x\03,R 1(r)), (67)
3 =1

where,

f j{x\0i,Ri{r))  = P(X, = x u X 2 = x2, . . . ,  =  x ^ ,  Rj (r))

= EE--E(-1)“+II+"+,’c'» « .“k. • • • ■
o = u 2=i tp=1 

. . . ,  , (68)

with, C$(.) is the Gaussian copula with association matrix R(r)  given in Equa­
tion (15), and u3kl = F3k (xk\Ok:>), u{2 =  F£(xk -  \ 0kj), for k = 1,2, . . . , p  and
j  = 1,2, . . . ,M .  In the above expression, Fj(xk — \0kj) is the left-hand limit the 
distribution function Fj at xk. Implementation of the estimation process is given 
below for different mixture distributions. When the data is discrete, copula function 
offers an approach to capture the correlation. We consider mixture of multivariate 
Poisson distribution using Gaussian copula.

Mixture Poisson distribution:

We apply the proposed two stage estimation method to mixed Poisson dis­
tribution, and performed simulation. For a p-variate random variable X  =
( X i ,X 2, . . . , X 3), with X k € {0,1,2,3. . . ,},  k = 1 , 2 , . . . , p; and FJ(xk\Xkj) is the 
Poisson distribution function, mixed Poisson density is given by Equation (67) and 
(68). Density plot is given by Figure 6.
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For a p-variate mixture Poisson model, based on a sample of size n, the two stage 
estimation process is given below:
Step 1: First use EM algorithm, with initial estimates Xkj  and and, calculate:

/i) ̂ y x<kj)
Tijl = -----1-----Ifc!' _ m > j  = 1,2. . .  M  and k = 1,2,. . .  ,p. (69)

ny  

_(Qy M Â >e k3
^ 3 = 1  n 3 x k\

Using the above value update the set of estimates by:

^(i+l) _  z£i=l XkiTjjl

EU rp(l)
i=l ijk

Afej+1) =  •̂ n1 K\ ! j k i j  = 1> 2, • • •, M  and k = 1,2, . . .  ,p. (70)

Continue the process until convergence to obtain final set of estimates Akj- 
Srep 2: Obtain W(r)  and nj by:

________ n /  M  2 2 2

(i?(r j ), 7?̂ ) =  argmax £ < 0 9  £ > £ £ • • •  £ ( - i ) ‘'+«  ■+" c i ( % , „ . . .
i=i \ i = i  *i=i *2=1 tp=l

uJ• • • > uiptpI f l ' (r ) ) ) ,  (71)
where, uJikl =  FJk(xkl\Xkj), u\k2 =  FJk(xki -  l|Afej), for k = 1,2, . . .  ,p and j  =

I ,2 , . . . ,  M. Applications of this algorithm for mixture Poisson are given in Tables
II, 12, and 13 below:

Table 11
Bivariate Poisson mixture density.

Simulation-l(p=2,M =2)
Sample Size=500 Sample size=1000

Parameters Estimates MSE Estimates MSE
An =5 4.7299 0.3615 4.4516 0.3161
Ai2=8 8.0585 0.1081 8.0201 0.0413
A2i=3 2.6725 0.1670 2.6325 0.1509
A22=7 6.5768 0.2705 6.7704 0.2141

rj=0.60 0.6033 0.0024 0.6225 0.0012
r2=0.30 0.3062 0.0041 0.3070 0.0021
7Tj =0.68 0.6417 0.0038 0.6573 0.0026
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Table 12
Tri-variate Poisson mixture density with unstructured correlation.

Simulation (p=3,M=2)
Sample Size=500 Sample size=1000 

Parameters Estimates MSE Estimates MSE
An=5 4.8017 0.0585 4.8385 0.0307
A21=3 2.8985 0.0202 2.9242 0.0065
3̂1 =2 1.8990 0.0147 1.9404 0.0062

Ai2=8 8.2462 0.1177 8.2942 0.1019
A22—9 8.9578 0.0663 9.0721 0.0409
a32= t 6.9544 0.0913 7.0728 0.0398

r{2=0.55 0.5603 0.0043 0.5621 0.0022
r]3=0.30 0.3708 0.0468 0.3512 0.0014

0.4025 0.0278 0.3898 0.0118
f i2= 0.20 0.1716 0.0072 0.1921 0.0051
rj3=0.40 0.3724 0.0764 0.4109 0.0071
r223=0.65 0.6274 0.0556 0.6417 0.0061
tt̂ O.70 0.7149 0.0017 0.7055 0.0008

Table 13
Trivariate Poisson mixture density with equi-correlation structure.

Simulation (p=3,M—2)
Sample Size—500 Sample size=1000

Parameters Estimates MSE Estimates MSE
An —5 4.6474 0.1542 4.6787 0.1123
A2i =3 2.7842 0.2585 2.7901 0.0508
A3i=2 1.8212 0.0481 1.8181 0.0376
A12=8 8.1772 0.0712 8.1507 0.0368
A22=9 8.7528 0.1735 8.7638 0.1371
A32=7 6.7123 0.1685 6.8067 0.1119

r^O .55 0.5821 0.0150 0.5734 0.0013
r 2=0.25 0.2644 0.0022 0.2565 0.0008
7t1= 0 .6 4 0.6539 0.0014 0.6527 0.0002
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Figure 6. Bivariate Poisson mixture density using Gaussian copula
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3.4 FINITE M IXTURE OF MULTIVARIATE MIXED  
DISTRIBUTIONS

Consider a p dimensional random variable X  = (Xx, X 2, . . . ,  X p), where first px 
random variables are continuous and rest P2 = p — P\ of them are discrete. Then the 
joint density is given by Equation (42). We applied the proposed estimation method 
to estimate parameters for mixture of those densities given in Equation (42). Using 
the same notation as we used in Equation (45), consider the mixture density as:

M

fmix{xI©) = ^Tt irj f j (x\03, R3(r)), (72)
j=i

where,

/ > ( * =  n / f c W e * ,)  E
k — l Ip—1

x C$(F\(x \ |#ij), • • •, Fpi(xpi\0pij),u3pi+l l̂ +i, . . .  ,m^ ) ,  (73) 

with, u3kl =  Fk(xk\Okj) and uJk2 =  Fk(xk -  \0kj) and,

QPi
C%l (u) =  - -------------- --— ( ? * ( « ! ,  u2, . . . , u pi , . . . , u p).

O U l , , O U pi

3.4.1 EXAMPLE:

As an example, we mixed data from gamma and Poisson distribution. Consider a 
bivariate random variable X  =  (Xx, X 2), with joint mixture bivariate copula density 
as:

2

fmix(x |0) = ^ T T j f j i x i e 3, R3(r)), (74)
j=1

where

81 , __£j_
r)) = - x T ‘- ' e ^  (C i(F 1( i 1|a lj ,A i )1F2( l 2|A2J)|iP'(r))

-  F2(x2 -  l|A2j)|i?-’( r ) ) ) , (75)

with marginal distributions are mixtures of gamma and Poisson respectively. 
F\(.\ot\j, fiij) and F2(.|A2j) are CDF of gamma and Poisson distribution and the
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function C 1̂ ) is given by:

Cl(ui ,u2\r) = -^ -C ^(u u u2\R(r))

d I («i) r® («2) j
 --------- . /  I e x p { - - x R ( r )~ lx}dxdux 27ry(r=72) J_x  </_oo ^  2 V '  '

=  1 r 1[U2) crvl  ^ ~ l ^ ~ X2)2)dr,
27rv^ I ^ ) l 00 " P{ 2(1 — r 2) } ‘ 2

-  . p t o p t i )

Plot of this type of density is given in Figure 7. To estimate the parameters we used 
two stage algorithm and results are given in the Table 14.

Table 14
Bivariate gamma and Poisson mixture density.

Simulation (p=3,M=2)
Sample Size—500 Sample size=1000

Parameters Estimates MSE Estimates MSE
Qfji—3.3 3.3464 0.2901 3.3135 0.2019
A i = l -2 1.1916 0.1152 1.1993 0.0790

012 =  11.3 11.2245 1.1271 11.3085 0.8268
012=4.3 4.3342 0.4264 4.2885 0.3239
\ 2i—2 1.9978 0.1223 2.0079 0.089400IIININ-S 7.9481 0.2378 8.0130 0.1851

r 1=0.60 0.5813 0.0358 0.5958 0.0258
r 2—0.35 0.3424 0.0567 0.3461 0.0396
7r1= 0.54 0.5524 0.0011 0.5404 0.0008
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Figure 7. Bivariate gamma and Poisson mixture density using Gaussian copula
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3.5 FINITE M IXTURE MODEL USING OTHER COPULAS

We can also construct finite mixture copula model using other Archimedean cop­

ula such as Clayton and Frank. A copula is called Archimedean if it can be written 
as:

C ( u u u2, - . . , up \9) ^  . . .  , ip(u2,9)) .  (77)

In the above equation ip{.) is a continuous function, called generator, satisfies the 
conditions below:

• ip : [0, oo) —»■ [0,1], with ^(0) =  1 and l im ^ ^  ip(x) = 0.

• ip~l is given by ip-1 — in f{v  : ip(v) <  x} .

•  ip is strictly decreasing on [0, ip’

Clayton and Frank copulas are the special cases of Archimedean copula. One of 
the advantage of using Archimedean copula is to reduce number of parameter in the 
model. In Archimedean copulas there is only one dependence parameter. In this 
section, we simulate data from multivariate exponential mixture using Clayton and 
Frank copula, and used two stage algorithm to estimate parameters. Results are 
given Tables 15 and 16.

Table 15
Tri-variate exponential mixture density using Clayton copula.

Simulation (p=3,M = 2)
Sample Size II O! <=2 Sample size=1000

Parameters Estimates MSE Estimates MSE
An =14.5 14.5802 1.2281 14.5080 1.0529
A21=12.6 12.7528 1.2099 12.4603 0.8378
A31=10.6 10.4453 0.5664 10.5193 0.7040
A12=3.1 3.0678 0.1489 3.1686 0.1033

to to II I—* 1.6672 0.0388 1.6107 0.0164
A32—2.1 2.0444 0.0936 2.1227 0.0391

9X~7 6.5926 0.2837 6.7956 0.1792
92= 3 2.8943 0.1933 2.9145 0.0682

ttĵ O.70 0.7043 0.0017 0.7064 0.0010
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Table 16
Tri-variate exponential mixture density using Frank copula.

Simulation (p=3,M==2)
Sample Size=500 Sample size II

Parameters Estimates MSE Estimates MSE
An=14.5 14.3768 1.4601 14.5102 0.9058
A21=12.6 12.4761 0.8795 12.5928 0.5274
A31=10.6 10.5177 1.0625 10.5814 0.4829
Ai2=3.1 3.0808 0.1897 3.0861 0.0763
A22—1.6 1.6227 0.0470 1.6158 0.0194
A32=2.1 2.1238 0.0957 2.1229 0.0369

9l=7 6.8281 0.1842 6.9782 0.0752

to

CO 2.9358 0.2339 3.1283 0.1119
7̂  =0.70 0.7106 0.0052 0.7047 0.0002

Discussion:

In this chapter we proposed a two stage algorithm to estimate parameters for 
a finite mixture copula models. We performed simulation studies and showed this 
method is applicable for continuous, discrete and mixed types distributions. We also 
performed simulation using Archimedean copula (Clayton and Frank). This method 
is very fast, as we split the estimation process in two stages. For this types of finite 
mixture densities where direct maximization of the likelihood function by Quasi 
Newton Raphson method do not converge, this two stage method is very useful.
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CHAPTER 4

APPLICATION TO CLASSIFICATION

In Chapter 2 we showed the estimation process of multivariate copula densities 
and in Chapter 3 we proposed an estimation process for finite mixture of those den­

sities. In this chapter, we applied these estimation techniques to pattern recognition 
problem. Rogelio Salinas-Gutierrez et al. (2011) used copula based classifiers for 
image data, where all the feature vectors were continuous. We first extend this clas­
sification methods for discrete and mixed types of features. Finite mixture models are 
useful for classification, Hastie and Tibshirani (1996) used finite mixture under nor­
mal model with common correlation for classification. Finite copula mixture models, 
described in previous chapter, will be used to build the classifier for discrete or mixed 
type of data, and under other copula. We compared the classification power of these 
copula based models with logistic regression method and models with assumption of 
independence. For finite mixture models two stage estimation, describes in Chapter 
3, is used to estimate parameters.

4.1 PROBABILISTIC CLASSIFIER USING GAUSSIAN COPULA

In this section, we used copula based densities to model the class conditional 
density when the features are discrete and mixed type.

4.1.1 DISCRETE FEATURES

Assuming we have G classes ,ojq} and a discrete feature vector x 9=
(xf, x f , . . . , xp) from ojg, with marginal pmf and cdf as f? and F9, respectively. When 
all the features are discrete, then using Gaussian copula we can model the class 
conditional distribution as:

2 2 2

P (* K ) = £  £  ' ■ £  (-1  t + n ^ +j’C M n  “ ?*,). (78)
i i=i =l iP=i

where u9-x = F?(xj) and u9j2 = Fj(xj -  1), g — 1,2, . . . ,  G and the support of F9 is 
formed by integers. Associated parameters can be estimated based on a sample of
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size ng observations {xf ,x f , . -. } (®f € W3) from class ug, 1 < g < G. Using
the class conditional density in Equation (78) one can build the classifier as:

5g(x) = log(p(ug)) + log(p{x\ug))

( 2 2  2

j l =  lj2  =  l j p = 1

x C\(ugln ,ug2j2. . . , u l Jp)^ , (79)

where prior probabilities are estimated as p(ojg) =  ■=£*— , g — 1, 2 , . . . ,  G. Assign
2 ^ 9 = 1  n 9

the vector x  to the class u>g, if

<5g(a;) = argmax 5fe(a:); k — 1, 2 , . . . ,  G. (80)
k

Parameters in Equation (79) are replaced by their estimates obtained by using IFM 
method of maximizing the likelihood function. The decision boundary between two 
classes g and / given by:

{x  ; Sg(x) =  8t(x)}, (81)

or the following holds:

E U  Y . U  • • • E U ( ~ 1),'1+ia+"4 ^ W v  4 ,  - ,  < P) =
X U  X U  • • ‘ X 2jp=l( - W ' +» +- uij2. . . , ulpjp) •  ̂ j

4.1.2 MIXED TYPE FEATURES

Now consider the case of mixed feature vector x  = (.Ti, x2, . . . ,  xpi, . . . ,  xp), where 
the first pi features are continuous and the rest of the p2 — p~P\  features are discrete.
Then using Gaussian copula, model the class conditional density for gth class as:

p (x \u9) = f [ f l ( x k) . . . ^ ( - i ) j p i+ i+ -+ jp
k = 1 Jp—1

x ■■■,■??.(*,, ) ,«’1+liJpi+1, . . . , < jp), (83)

where
dpi

/

<P '(“pi+i) r<t> !(«p) r 1

1
+ 29i9j i dx2’
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with Xj = (xu x2,...xpi), x 2 = {xPl+l ,...xp), qx =  (<p \ u x), l {up ,)), q2 = 

(0_1 (uP l + 1 0_1(up)) and utJt’s are as defined in Equation (78). Assuming the 
prior probabilities are known in this case, one can build the classifier as:

8g(x) = log(p{ug)) + log(p{ x \ug))
Pi  2 2

= ^ ( p K ) )  + +  M  X  • • • ^ ( - i ) * i +i+- +j'"
j = 1 J p l + l = l  jp—1

x (85)

and classify the feature x  in to the class ug if:

5g(x) =  argmax 8k(x); k = 1, 2, . . . ,  G. (86)
k

Parameters in Equation (86) are replaced by their estimates obtained based on a 
training sample of size ng from the class ujg. We use IFM method to obtain the 
estimates. In this case the decision boundary between class g and class I is given by:

{x  : 6g(x) = 5t(x)}, (87)

or the following holds:

E jL  i log(ff(Xj)) +  logiC? (x|</))
=  i, (88)

EjL i  log(flj(xj)) +  log(C?(x\l)) 

where C?(x\k) = C ? (Ff txi ) , . . . ,  F^(xpi), ukpi+1Jpi+1, . . . , uk jp) for k = g j .

4.1.3 FINITE M IXTURE COPULA MODELS

Finite copula mixture models, as described in Chapter 3, can also be use to model 
the class conditional densities. This section shows how to implement such type of 
models for continuous and mixed types of features. We model the class conditional 
density as:

M

p(*k>) = X nU ! ( x \d j ’ R 9 j( r ))- (89)
j=i

with 7rJ G [0,1] and EjL i  nj =  1.9 = 1,2, . . . ,  G. Based on the features: whether they 
are continuous, discrete and mixed type. In each cases, the form of f^{x\9g, Rg{r)) 
is given by Equations (17), (68) and (73), respectively. To estimate the parameters 
we use two stage estimation as proposed in Chapter 3.
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For continuous features:

Consider the feature vector cc=(x1, . . . ,  xv) is continuous. Then model the class 
conditional density, p(x\ug) as a mixture of M  multivariate densities using Gaussian 
copula:

M

P (* K ) = X M c<i> (Fif f 0g2j), - - -, F9(xp\09pj)\R9(r))
j=1

n/f(%i»%). • (so)
fc=i

Based on the equation above, classifier can be written as:

( M

Y  nj c« (F? > Fpixp\99pj)\R9j ( r ))

j=i

i

Using the above function, $g(x), in Equation (91) one can classify the feature vector 
x  in to the class u>g if:

8g(x) =  argmax 8k(x ); k = 1,2, . . . ,  G. (92)
k

The parameters in Equation (91) can be estimated based on a labeled sample and 
using the algorithm proposed in Chapter 3.

D iscrete case:

If the feature x —(xi, . . . , x p) is discrete then one can model the class conditional 
density, p(a;|u;9), as:

M  2 2 2

P (* K ) = Y * 9 Y  Y  ' ■' Y  ( - ^ ) jl+j2+" +jpC^(u9ln ,u92j2. . . ,  U9pjp). (93)
j=1 jl = lj2 = l jp=1

In this case, the classifier can be built as:

( M  2 2 2

j = 1 jl=lj2 = l jp = 1

“ t v  ■.<„))■ <94)

(91)
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Using Equation 94 assign the feature vector x  to the class g if:

Sg(x) =  argmax 8k(x ); k = 1, 2, . . . ,  G. (95)
k

Estimates of the parameters can be obtained from a test data set and using the 
algorithm described in Chapter 3.

Mixture case:

If the feature vector, cc=(xi,.. .  ,xPl, . . . , xp), is mixed; that is first px random

To estimate the parameters we used the algorithm describe in Chapter 3.

4.2 OTHER CLASSIFIER

When the features are of discrete or mixed types, then one should not model the 
class conditional density using multivariate normal. For such cases, two methods are 
very popular the Naive Bayes or independent model and the logisticregression.

4.2.1 INDEPENDENT MODEL

variables are continuous and rest of them are discrete then model the class conditional
density as:

M pi  2 2

j —1 k —1 j p i + i —1 j p —1

Define 8g(x) as:

(96)

M  p i 2 2

5g(x) = log(p{u3g)) +  ^ n9 R  fk (xk) J 2  • • • " +Jp
j=i  k=i jP1+1 = 1  jP=i

(97)

The the decision rule can be written as: 
Assign the feature x  to the class g if:

8g(x ) = argmax 8k(x)-, k = 1,2 , . . . ,  G. (98)
k

This model assumes a conditional independence among the features. This model 
can be considered as a special case of the copula models when the correlation matrix
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is the identity matrix. Because of its structure, this model is easy to implement. 
This model is very useful even the features are highly correlated (Zhang 2004). In 
this model, we modelthe class conditional density as:

p

P(*9lws) =  T [ f i ( x i)i 0 = 1>2, . . . ,G x  = ( x u . . . , x p ).  (99)
i=1

4.2.2 LOGISTIC REGRESSION

Logistic regression is considered as a classification tool when the features are dis­
crete or mixed. In the literature, many authors have compared the classification 
power of logistic regression (LR) and LDA, QDA (Efron 1975, Maja Pohar et al. 
2004). LDA is a more appropriate method when the explanatory variables are nor­
mally distributed. But whenever the assumptions of LDA are not met, LR is another 
popular alternative and it gives good results regardless of the distribution. As the 
estimates for LR are obtained by the maximum likelihood method, they have a num­
ber of asymptotic properties as well. In the next chapter, we propose simulation and 
real data example for each of the scenarios, and present misclassification error rates.
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CHAPTER 5

SIMULATION AND APPLICATIONS

Having discussed all the techniques of building copula classifier and estimation 
process, simulations are great tools to evaluate the performance of the proposed 

method. We will compare the performance of our proposed copula model with the 
independent and logistic regression models when the features are of discrete and 
mixed types. For simplicity, we present our simulations for G =  2 classes.

5.1 COPULA CLASSIFIER

In this simulation setup, we consider trivariate feature vector x  = (xx,x 2, £3), 
and we also assume we have only two classes, that is G — 2. Setup for simulations 
are given in Table 17.

Table 17
Simulation setup.

Class 1 Class 2
Simuk

X x ~  Gamma(ax =  3.2, = 1.3) 
X 2 ~  Poisson(Xx = 5.4)
X 3 ~  G eom etric^ — 0.28)

ition-1
Ax ~  Gamma(a2 =  2.3, /32 = 4.3) 
X 2 ~  Poisson(\2 = 4.4)
X 3 ~  Geometric(p2 =  0.32)

Simuk
X i ~  Gamma(ai = 5.2, fjx = 3.3) 
X 2 ~  Poisson(\i =  3.4)
X 3 ~  G eom etric^ = 0.18)

ition-2
X x ~  Gamma(a2 = 6.3, 02 = 2.1) 
X 2 ~  Poisson(\2 =  5.3)
A3 ~  Geometric(p2 =  0.12)

Simuk
X x ~  Dernoulli{pn — 0.30)
X 2 ~  Bernoulli(pi2 — 0.35) 

rx =  0.65

ition-3
X x ~  Bernoulli(p2i — 0.25) 
X 2 ~  Bernoulli(p22 = 0.55) 

n  = 0.20
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The statistical software R is used to simulate data with above marginal distribu­
tions for different values of association parameters rx and r2, where r\ and r\ are the 
correlations between features in group 1 and group 2, respectively . Sample size of 

each group was 200. A selection of 80% observations were randomly chosen, without 
replacement, to build the classifier. Then, the remaining 20 observations were used 

to estimate misclassification error. This process was repeated 20% times and the true 
error was obtained as the average of those estimated errors obtained in each steps.

In the simulation apart from using Gaussian copula, we also used couple of 
Archimedean copula family, the Clayton and Frank copula. Misclassification rates of 
Gaussian copula (GC), Clayton copula (CC), Frank copula (FC), logistic regression 
(LR) and independent model (IM) models are given in Table 18 and 19, for a fixed 
value of Tj and various values of r,- i j ,  i, j  = 1,2. Surface plot the misclassification 
errors for Gaussian copula, logistic regression, independent model and are given in 
Figures 8, 9 and 10. For simulation 3, we simulated correlated binary data for two 
class, and modeled the class conditional density as multivariate binary distribution 
using Gaussian copula. Results are given in the Table 20.
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Table 18
Misclassification error of Copula LR and IM model for simulation 1.

r \  = 0.1

r2 GC CC FC LR IM
0.1 0.4120 0.4158 0.4249 0.4235 0.4188
0.2 0.4116 0.4155 0.4211 0.4190 0.4179
0.3 0.4051 0.4125 0.4381 0.4156 0.4087
0.4 0.3787 0.3995 0.4325 0.4121 0.4112
0.5 0.3556 0.3868 0.4201 0.4108 0.4045
0.6 0.3154 0.3611 0.3590 0.4035 0.4041
0.7 0.2875 0.3310 0.3648 0.3650 0.4227
0.8 0.2425 0.2913 0.3260 0.3829 0.3905
0.9 0.1675 0.2315 0.2587 0.3724 0.4031

'<’2 = 0.1

n GC CC FC LR IM
0.1 0.3895 0.4021 0.4110 0.3859 0.3952
0.2 0.4258 0.4301 0.4212 0.4095 0.4128
0.3 0.3925 0.3975 0.3960 0.3910 0.4005
0.4 0.3770 0.3890 0.4210 0.3790 0.3845
0.5 0.3597 0.3782 0.3845 0.4125 0.4230
0.6 0.3315 0.3675 0.3715 0.4150 0.4292
0.7 0.3082 0.3315 0.3522 0.3975 0.4150
0.8 0.2462 0.2890 0.3020 0.3960 0.4320
0.9 0.1875 0.2210 0.2580 0.3475 0.4125



Table 19
Misclassification error of Copula LR and IM model for simulation 2.

rx =  0.5

r-2 GC CC FC LR IM
0.1 0.2971 0.3196 0.3507 0.3046 0.3257
0.2 0.3000 0.3214 0.3201 0.3571 0.3714
0.3 0.2914 0.3017 0.3339 0.2928 0.3182
0.4 0.3103 0.3082 0.3725 0.3118 0.3303
0.5 0.2760 0.2853 0.3207 0.2817 0.3028
0.6 0.2803 0.2832 0.3400 0.2810 0.3025
0.7 0.3107 0.3360 0.3639 0.3103 0.3332
0.8 0.2261 0.2325 0.2610 0.2482 0.3085
0.9 0.1767 0.2078 0.2221 0.2196 0.3471

Tl =: 0.5

T\ GC CC FC LR IM
0.1 0.3114 0.3177 0.3358 0.3127 0.3351
0.2 0.2911 0.2860 0.3242 0.3096 0.3214
0.3 0.3125 0.3118 0.3425 0.3142 0.3196
0.4 0.2757 0.3085 0.3496 0.2828 0.3167
0.5 0.2750 0.2792 0.3060 0.2778 0.3267
0.6 0.2735 0.2989 0.3439 0.2825 0.3235
0.7 0.2767 0.3053 0.3250 0.3093 0.3850
0.8 0.2328 0.2764 0.3253 0.2868 0.3225
0.9 0.1711 0.2203 0.2968 0.2378 0.3307

Table 20
Misclassification errors of Copula, LR, IM model for simulation 3.

Gaussian Copula LR IM
0.3237 0.4337 0.4025
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Figure 8. Surface plot of misclassification error using Gaussian copula
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Figure 9. Surface plot of misclassification error using logistic regression
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Figure 10. Surface plot of misclassification error using IM
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Prom the simulation study, we can see the copula, LR and IM model produces 
similar misclassification rate when the association between the features are same 
among the groups. When association between the features are not equal, then copula 
models outperform other two models.

To extend the results of single copula classification, we propose simulations to a 
mixture of copula models.

5.2 USING M IXTURE COPULA MODEL

In this simulation study, we use finite mixture copula models for continuous fea­
tures and mixed features. For simplicity we assume we have two groups (G = 2), 
two mixture components (M = 2), and p = 2, that is dimension is also two.

5.2.1 CONTINUOUS FEATURES

We assume all the features are continuous. Data were simulated from the mixture 
density given below for two sets of parameters.

2

f m i x ( x \ Q )  = Tlj f  j(x\ot? , f t , R3(r)), (100)
j=i

where 0  =  (a*, f t , Rj (r), tt), a j = {akj\j = 1,2 and k = 1,2}, f t  = {/3kj\j =
1.2 and k — 1,2}, Rj (r) is the 2 x 2  association matrix, and

 ̂ Q &kj ,™2 Jfc

fc=l  ̂ k j '

F(x2\a2jf t 2j)\W (r)). (101)

Chosen set of parameters for each classes are given in Table 21. For each class, 
model the class conditional density, p(x9\ug), as a mixture copula density as given in 
Equation (100). We simulated 1000 samples from each group, and randomly choose 
800 sample for training and the rest 200 samples to estimate misclassification error. 
We repeat this process 20 times to obtain average misclassification error rate. In this 
case we also compared the misclassification error with multivariate normal mixture 
model (MVN mixture). Results are given in Table 22.
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Table 21
Parameter sets for simulation.

S a m p l e  s i z e = 1 0 0 0  ( p = 2 , M = 2 )

C l a s s - 1 C l a s s - 2

c r i i = 2 . 3 o n = 5 . 1

A i= 3 .4 0n= 1.2
o 1 2 = 1 2 . 2 O i 2 = 1 7 . 3

0 1 2  =  1-3 0 1 2 = 4 . 3

0 2 1 = 5 . 9 0 2 1 = 3 . 9

021 =  1.2 021=2.2
0 2 2  =  1 0 . 5 0 2 2  =  1 3 . 5

0 2 2 = 4 . 3 0 2 2 = 7 . 3

r j - 0 . 6 5 r 1 = 0 . 2 5

r 2 = 0 . 5 5 7 2 = 0 . 3 5

tti- 0 . 5 7 7 n = 0 . 6 7

Table 22
Misclassification errors of mixture copula, QDA, LDA, IM model and MVN

nuxture.

Mixture Copula QDA LDA IM MVN mixture 
0.2142 0.3517 0.3942 0.5592 0.3102

In the above table we can see mixture copula model out performed the classical 
methods.

5.2.2 DISCRETE FEATURES

In this simulation study, we assume all the marginal distributions are discrete. 
We simulated data from the mixture copula density given in Equation (67) assuming 
all the margins are Poisson. For the gth class fit the class conditional density, p(x\ug),
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M

p { x \ u 9) =  f ^ lx{ x \ e g) =  Y ,  K j f j ( x \ 0 3g, R i ( r ) ) ,  5 = 1,2, (102)
i =i

where f j( x \6 jg, R?g{r)) is given by Equation (68). Simulation setup for two classes 
are given in Table 23. As mentioned above from a sample of size 1000, we randomly 
choose a sample of size 800 sample for training and 200 samples to estimate misclas­
sification error, and repeat this process 20 times average misclassification errors are 
given in Table 24.

Table 23
Parameter sets for simulation.

Sample size=1000 (p=2, M=2) 
Class-1 Class-2
X] ] =2 An =15
Ai2=T0 Ai2=3
A21 =3 A21=12
A22=12 A22—4
n=0.62 rx=0.55
r2=0.33 r2=0.25
tt̂ O.70 7Tx=0.60

Table 24
Misclassification errors of mixture copula, LR and IM model.

Mixture Copula LR IM
0.2812 0.3315 0.4259

5.2.3 MIXED FEATURES

Finite mixture copula models can be applied on mixed type features. In this 
simulation, we assume one discrete and one continuous feature, and simulated data
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from the density given by Equation (73), assuming the margins are Poisson and 
gamma. For classification, model gth class conditional density as in Equation (102), 
where each mixture density is given by Equation (73). Simulation setup is given by 
the Table 25.

Tabie 25
Parameter sets for simulation.

Sample size=1000 (p=2, M=2)
Class-1 Class-2
a n = 2 . 3 On—12.3
£  u = 0 . 2 £u=0.3

Oi2=10.2 Oi2=5.1
/?i2=3.5 £i2=2.2
A i2= 2 A i2= 3

> to to II —I A22= 9
ri=0.60 ri=0.65
r2=0.45 r2=0.15
7Ti = 0 .6 5 7Ti =0.72

From a sample of size 1000, we randomly choose 800 samples for training and 
the rest 200 samples for testing, we repeated this process for 20 times to estimate 
misclassification error rates for mixture copula, LR and IM models are given in Table 
26.

Table 26
Misclassification errors of mixture copula, LR and IM model.

Mixture Copula LR IM
0.052 0.320 0.091

From the above simulation we can see that finite copula mixture models outper­
formed classical models. Unlike the classical models copula models do not assume
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any normality of independence, and these models can be applied for discrete and 
mixed type features.

5.3 APPLICATION TO REAL LIFE DATA

In this section we apply copula models and mixture copula models to real life 
data, and compare the misclassification rates with classical methods.

5.3.1 APPLICATION OF COPULA MODELS IN ACUTE INFLAMMA­
TIONS DATA

Copula classification model is implemented to Acute inflammations data, used by 
a medical expert as a data set to test the expert system, which will perform the pre­
sumptive diagnosis of two diseases of urinary system. This data set is available online 
in UCI machine learning archive (http://archive.ics.uci.edu/ml/). It has five binary 
variables and one continues variable. At first, two binary variables, (1) Continuous 
need for urination and (2) Micturition pain was chosen and copula, logistic regres­
sion and independent methods were implemented. Nephritis of renal pelvis origin 
was chosen as a class variable. Ni =  50 of the patients have nephritis and N2 =  70 
of them does not have nephritis. Cross-validation method was used to obtain mis­
classification error. For each group 80% of the sample were used for estimation and 
20% sample for testing.

Table 27 shows that copula model outperforms LR and IM models. Further 
another continuous variable, Temperature of patient is included. Histograms for the 
two continuous variables, displayed in Figure 11, suggest that assuming Weibull and 
Cauchy distributions for the variables is reasonable. We then build misclassification 
error rates under these input arguments, and show comparisons with IM and LR. All 
three models were implemented, Table 27 summarizes the findings.

Results show that with two binary variable copula model has the lowest error 
rate. But at the same time when the continuous variable was added copula with 
unstructured (UN) association matrix R  outperforms LR and IM model.
One should only impose a structure R  if the dimension is high. That will reduce 
number of parameters we need to estimate and increase the efficiency of the compu­
tation.

http://archive.ics.uci.edu/ml/


Group 1: Patient temperature Group 2: Patient temperature

(a) Weibull variable (b) Cauchy variable

Figure 11. Histograms of continuous variables for Acute inflammations data.

Table 27
Misclassification error of Copula LR and IM model.

Copula(UN) Copula(Equi) LR IM 
Two binary variables: 0.2250 0.5012 0.5208

Continuous variable included: 0.0588 0.1332 0.1188 0.1375

5.3.2 APPLICATION OF FINITE M IXTURE COPULA MODELS IN  
WILT DATA SET

In this section, we applied finite mixture copula model in to Wilt data set. The 
pine sawyer beetle is primary causes of Japanese Pine Wilt (JPW) disease, and the 
oak platypodid beetle is primary cause for Japanese Oak Wilt (JOW) disease. This 
data set contains training and testing data from the study done by Johnson et al. 
This data involved detecting diseased trees in Quickbird imagery. Rapid detection 
of newly infected trees are very important, as without any treatment this can spread 
rapidly in to the forest. This data set consists of image segments, generated by
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segmenting the pansharpened image. Discription of the data set can be found in 
Johnson et al. (2013). Training data set contains 4339 observations and test data 
set has 500 samples. There are few training samples for the “diseased trees” class 
(74) and many for “other land cover” class (4265). Attribute information for this 
data set is given below:

1. Class: “w” (diseased trees), “n” (all other land cover).

2. GLCM_Pan: GLCM mean texture (Pan band).

3. Mean_G: Mean green value.

4. Mean_R: Mean red value.

5. Mean_NIR: Mean NIR value.

6. SD_Pan: Standard deviation (Pan band).

From above information, we can see there are five feature variables and one binary 
class variable. We choose three feature variables Mean_G, Mean_R, and Mean_NIR 
and model the class conditional density, p ( x \ u j ) ,  as in Equation (62) and (63) with 
two mixture component (M — 2) and as the training sample size for the “diseased 
trees” class is large we assume equi-correlation structure for association martix R. 
Training data set was use for estimation and testing data set was use to estimate 
misclassification error rate. Estimates of the parameters for mixture copula model 
and Misclassification error rates for mixture copula model, LDA and QDA are given 
by the tables below:

Table 28
Misclassification error of mixture Copula, Copula, LDA, QDA and MVN mixture

methods.

Mixture Gaussian Copula(Equi) Gaussian Copula(Equi) LDA QDA MVN mixture 
0 .1 9  0 .3 7  0 .38  0 .2 3  0.22
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Table 29
Estimates and SE for Wilt data.

Wilt data
Class 1 (other land cover) Class 2(diseased trees)

Estimates SE Estimates MSE
a  11= 99.2486 0.4559 33.7613 1.0598
Pn = 2.2301 0.0103 0.6041 0.0341

<*12 = 69.6198 0.9625 87.9913 2.0041
Pl2~ 0.5366 0.0029 1.0793 0.2404

<*21 = 10.3254 0.3497 19.7540 1.4679
P2\~ 44.5061 0.8249 3.4988 0.5144
<*22 == 9.2675 0.2045 47.8965 1.5628
p22 = 38.4753 0.0673 0.4860 0.0385
<*31 =: 3.3903 0.0695 100.4856 2.9416
Pi\ — 42.3946 0.9014 1.2637 0.1195
<*32 = 25.4736 0.3837 25.2849 1.4810
Ps2 — 24.4573 0.7974 18.3809 1.1329
f\  = 0.4654 0.0043 0.27297 0.2306
h = 0.2780 0.0078 0.50302 0.2292
7Ti = 0.7043 0.0018 0.16516 0.0887

From the above table we can see that mixture copula model performs better 
than other models (LDA, QDA, Mixture Multivariate normal and Copula). Mixture 
copula models can perform better than copula models without mixture components.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation we have proposed supervised classification using copula. Gaus­
sian copula has nice properties. It is relatively simple and inherits good properties to 
uncover the hidden structure of the correlation in the multivariate normal. The com­
ponents of the vector are independent if the correlation matrix is diagonal. According 
to Song (2007), the theoretical and numerical complexity of the Gaussian copula re­
mains the same regardless of the dimension of the vector. By using the proposed 
copula, one can use different correlation structures, such as the Auto regressive or 
equi- correlation or unstructured. We have used Gaussian and Archimedean copula 
based distribution for statistical classification. We have used these types of density 
for mixed type of features. We have also proposed an estimation process for the 
mixture copula model and used these models for statistical classification. This esti­
mation process is also applicable for heterogeneous mixture distribution. Along with 
simulations, two real life data set were used to implement this types of model and 
compared their performance with classical methods. We have introduced copula and 
aspects of copula theory but extension to Bayesian analysis formulation methods will 
have substantial impact on applied multivariate data. In future, we would like to 
work on building more efficient algorithm, in terms of computing time, for estimating 
mixture copula models. Non parametric estimation process of copulas are popular in 
literature, as and they are very efficient (Chen and Huang (2007). We would like to 
extent those methods for finite copula mixture case. Finally we would like to work on 
building nonparametric copula classifiers and compare their error rate with existing 
non parametric methods like “k” nearest neighbor, decision tree and random forest. 
We would also like to extent those methods for finite copula mixture case.



68

REFERENCES

Aeberhard, S., D. Coomans, and 0 . de Vel. 1994. Comparative analysis of 
statistical pattern recognition methods in high dimensional settings. Pattern 
Recognition. 27(8), 10651077.

Chaganty, N. Rao. 1997. An alternative approach to the analysis of longitudinal 
data via generalized estimating equations. Journal of Statistical Planning and 
Inference. 63, 39-54.

Cortez, R, A. Cerdeira, F. Almeida, T. Matos and J. Reis. 2009. Modeling 
wine preferences by data mining from physicochemical properties in Decision 
Support Systems. Elsevier. 47(4), 547-553, ISSN: 0167-9236.

Cuvelier, E. and M. Noirhomme-Fraiture. 2005. Clayton copula and mixture 
decomposition, In Janssen, J., Lenca, P., (Eds.), Applied Stochastic Models 
and Data Analysis (ASMDA 2005). Brest, France, May, 699-708.

Czado, C. , R. Kastenmeier, E. C. Brechmannl, A. Min. 2012. A mixed copula 
model for insurance claims and claim Sizes. Scandinavian Actuarial Journal. 
(4), 278305.

De Leon, A. R. & B. Wu. 2011. Copula-based regression models for a bivariate 
mixed discrete and continuous outcome. Statistics in Medicine. 30(2), 175- 
185.

Dempster A.P., N.M. Laird , D.B. Rubin. 1977. Maximum Likelihood from 
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical 
Society. Series B (Methodological). 39(1), 1-38.

De-Waal, D.J., P.H.A.J.M. Van-Gelder. 2005. Modelling of extreme wave heights 
and periods through copulas. Extremes. 8(4), 345356.

Efron, B. 1975. The Efficiency of Logistic Regression Compared to Normal 
Discriminant Analys. Journal of the American Statistical Association. 70, 
892-898.

Fahrmeir, L., Hamerle A. and Tutz G. 1984. Multivariate statistische Verfahren 
(1st ed.). de Gruyter, Berlin, 1984.



69

Friedman, J.H. 1989. Regularized discriminant analysis. Journal of the Ameri­
can Statistical Association. 84, 165-175.

Grigoriu, M. 2007. Multivariate distributions with specified marginals: Ap­
plications to Wind Engineering. Journal of Engineering Mechanics. 133(2), 
174184.

Gupta, A.K. , Ed Dordrect. 1987. Error rate estimation in discriminant analv- 
sis:Recent advances. Advances in Multivariate Statistical Analysis, 233-252.

Hastie, T.J. and R.J. Tibshirani. 1996. Discriminant analysis by Gaussian mix- 
turee. Journal of the Royal Statistical Society Series B. 58(1), 155176.

Hu, L. 2006. Dependence patterns across financial markets: a mixed copula 
approach. Applied Financial Economics. 16(10), 717-729.

James, G.M. and T.J. Hastie. 2001. Functional linear discriminant analysis for 
irregularly samples curves.

Jaworski, P., F. Durante, W. K. Hrdle, T. Rychlik. 2010. Copula Theory and 

Its Applications Lecture Notes in Statistics. Springer. Journal of the Royal 
Statistical Society Series B. 3(3), 533-550.

Joe, H. 2005. Asymptotic efficiency of the two-stage estimation method for 
copula-based models” , Journal of Multivariate Analysis. 94, 401-419.

Joe, H. 2014. Dependence Modeling with Copulas, Chapman & Hall/CRC Mono­
graphs on Statistics & Applied Probability.

Johnson, B., R. Tateishi, N. Hoan. 2013. A hybrid pansharpening approach and 
multiscale object-based image analysis for mapping diseased pine and oak 
trees. International Journal of Remote Sensing. 34(20), 6969-6982.

Krzanowski, W. J., P. Jonathan, W.V. McCarthy, and M.R. Thomas, Discrim­
inant analysis with singular covariance matrices, methods and applications 
to spectroscopic data. Applied Statistics. 44(1), 101-115.

Lindsay, B.G. 1995. Mixture Models: Theory, Geometry and Applications, In: 
NSF-CBMS Regional Conference Series in Probability and Statistics, Vol.5.



70

Institute of Mathematical Statistics and the American Statistical Association, 
Alexandria, Virginia.

McLachlan, G.J. 1992. Discriminant Analysis and Statistical Pattern Recogni­
tion. John Wiley and Sons, Ltd.

McLachlan, G. J. 1976, The bias of the apprent error rate in discriminant 
analysis. Biometrica, 63, 239-272.

McLachlan, G.J., D. Peel. 2000. Finite Mixture Models, Wiley.

Nash, J. C. 1978. Compact Numerical Methods for Computers: Linear Algebra 
and Function Minimisation. Second Edition. Hilger, New York.

Nelsen, R. B. 2006. An introduction to copulas. Spinger series in statistics.

Olkin, I., J. W. Pratt. 1958. Unbiased Estimation of Certain Correlation Coef­
ficients. The Annals of Mathematical Statistics. 29(1), 201-211.

Peter, X.K. Song,Y. FAN, and J. D. Kalbfleisch. 2005. Maximization by parts 
in likelihood inferance, Journal of the American Statistical Association. 
100(472), 1145-1167.

Peter, X.K. Song. 2007. Correlated Data Analysis: Modeling, Analytics, and 
Applications (1st ed.). Springer Series in Statistics vol. 365. New York, NY: 
Springer.

Pohar, M., M. Bias, and S. Turk. 2004. Comparison of Logistic Regression and 
Linear Discriminant Analysis. Metodoloki zvezki. 1(1), 143-161.

Raudys, S. J. and Anil K. Jain. 1991. Small samle size effects in statistical 
pattern recognization: Recommendation for practitioners. IEEE transactions 
on pattern analysis and mechine intelligence, 13(3), 252-264.

Salinas-Gutierrez, R., A. Hernandez-Aguirre, M. J. J. Rivera-Meraz, and E. R. 
Villa-Diharce. Using Gaussian Copulas in Supervised Probabilistic Classifi­
cation” . Soft Computing for Intelligent Control and Mobile Robotics Studies 
in Computational Intelligence, 318, 355-372.



71

Scholzel, C. and P. Friederichs. 2008. Multivariate non-normally distributed ran­
dom variables in climate research and introduction to the copula approach. 
Nonlin. Processes Geophys. 15, 761-772.

Song, Xi C. and T. M. Huang. 2007. Nonparametric estimation of copula func­
tions for dependence modelling, The Canadian Journal of Statistics /  La 
Revue Canadienne de Statistique. 35(2), 265-282.

Todorov, V., N. Neyko, P. Neytchev. “Stability of High Breakdown Point 

Robust PCA, in Short Communications”, COMPSTAT’94; Physica Verlag, 
Heidelberg.

Webb, Andrew R. and Keith D. Copsey. 2011. Statistical pattern recognization- 
3rd ed. John Wiley & Sons, Ltd.

W.J. Krzanowski, W.J. 1993. The location model for mixtures of categorical 
and continuous variables. Journal of Classification, 10(1), 25-49.

Vrac, M., A. Chdin, E. Diday. 2005. Clustering a Global Field of Atmospheric 
Profiles by Mixture Decomposition of Copulas, Journal of Atmospheri and 
Oceanic Technology. 22(10), 1445-1459.

Zhang, H. 2004. The Optimality of Naive Bayes. FLAIRS 2004 conference, 
(available online: PDF (http:/ /  www. cs. unb. ca/ profs/ hzhang/publica­
tions/ FLAIRS04ZhangH. pdf)).



72

APPENDIX A 

EXPRESSIONS OF THE SCORE FUNCTION OF FINITE 

MIXTURE COPULA DENSITY

A .l CONTINUOUS COPULA M IXTURE DENSITY

Here we provide the expression of the derivatives of the copula mixture densities 
described in chapter 3. When all the marginal distributions are continuous mixture 
copula density is given by:

M

f m i x { x |0 ) = ' ^ 2 n j f j ( x \ 0 j , R j { r ) ) ,  (103)
3=1

where, f j { x \ 0 ^ , W { r ) )  defined as:

£(*19*,  W  (r))  =  c ,  ( F . t n l f lu ) ,  F2(x2 |02j) , . , . ,  Fv(xr \Brl) \ W ( r ) ) f { h ( Xh\Bt j )
k= 1

(104)

To estimate the parameters we used the proposed two stage method described in 
Chapter 3. In the first stage use EM algorithm to estimate {0 \ j , . . .  ,6pj). In the 
second stage we used those estimated values to estimate Rj (r) and by maximizing 
the likelihood function below:

n M

/(■7r, /?^(r)|a;) =
i=l j=l

Expression of the derivatives of this function with respect to iXj and RJ((r)) is given 
below:

dl Ofc=l f k { x k W k j ) c <P ( R \  • • • ) R p ( x p i W p j ) \ R ^ { r ) \
—  = V ----------------------------- -̂---       L----r- (106)

j  i= 1 E ^ I  Kj  I I L i  f k { x k \ 0 k j ) c *  { F i ( x u \ 0 i j ) ,  ■■■,  F p ( x Pi \ O p j ) \ R j { r ) }

dl  IIfc=i fk{x k \ & k j ) (“̂ i * )> • • • i Fp(xPi\0pj)\R^(r)\
/ ' =  > -----------------------------------7---------—------------------ —----------- r- (107)

d R j ( r ) ^  M x k W k j ) c t  (F l(xij|fllJ)........Fp(x*|«„-)|fl>(r))
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Where, 

d d
-QjjC*{q\,...,qp\R) = Q ^log(c^{qi,...,q j \R))c9 (q i,...,q p\R)

= ~ \ § R { l° 9 \R \ +  q T (R  l
1 d= -2^{ log\R\+qTR~lq - q TIq}c<t,{q1,...,qp\R)

= ~ \{ R ~ l + R~1qqTR~1}c ^ (q i,...,q p\R), (108)

with q =  (<?i, ?2i • • • j qP)- Equating the equations given by Equations (106) and (107) 
to zero, and solving them numerically MLE estimates can be obtained.

A .2 DISCRETE COPULA M IXTURE DENSITY

Here we provide the expressions of the derivatives of the discrete copula density, 
described in chapter 3. The joint mixture density is given by Equation (67) and (68). 
After obtaining the estimates in the first stage we used these estimates to obtain 
estimates of Rj (r) and 7r5-, by maximizing the likelihood function below:

M  2 2

l{Rj (r), n \x) =
i=l \ j=l ti = lt2=l tp=1

V?-‘ • 5 aiptp\W (r)))  (109)

Where u3ikl = F t(xki\6kj), u\k2 = FJk(xki -  1|9kj), for k = 1 ,2 ,... ,p  and 
j  = 1 ,2 ,.. . ,  M.

Score functions are given below:

di ^  E l ^ - - - E 2tp= i( - i) tl+'''+tpC* ( « k - - - ’^ PtPljRj(r*))
dm ~  v-̂ 2 v^2 / /~i xV  ̂ '

i=l E " i  T . U  ■ ■ ■ £ U < -  1)“ +" +,' c » ( “ii., • - ■ ■. ^ I ^ W )

and

dl y ,  ni E?,=i ■ ■ ■ ( “«».- • • • ;

9W M  “  h  E “ , ^ E ? „ i  • • • ( s k . ■ ■ ■
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where

d_
dR
d f - M  d lo g M xIK ))m Ct  , |f i )  _  . J  -

x (pp(x\R)dx
/ <J>~1(qi) /*$-1(<?p) ft / I

.  - L  - m { ^ m ) i x

+^trace(R~1x tx) J (f)p(x\R)dx

/ $ 1(9i) /■$ 1(qp) i
. . .  - ~ ( f l -1 -  i r W ; r % ( x | i ? ) d a :

oo J—00 ^

/O’- 1 (9l) /’$_1(9p) 1
. . .  — -R ~ 1(R — x x t)R~1<fip(x\R)dx.

•OO */ —OO " (112)

Solving the Equations (110) and (111) one can obtain MLE.

A .3 MIXED COPULA M IXTURE DENSITY

Expression of the score functions for the mixed type of copula, density defined 
in Chapter 3, is given in this section. The likelihood function using the estimates 
obtained in the first stage of estimation process can be written as:

n  M  p i  2 2

l{Rj {r), n \ x )  =  12 • • • J ] ( - 1 ) ipi+1+'"+ 'P
fc= l  Ip —-1

X C g i F i i x u  | 0 y ) ,  • • ■,FPA xpAQpxj )Si\Pl+hlpi+1,- ■ • ^ i P,ip\Rj {r))},

(113)

with, uJikl =  Fk(xkl\Gkj) and uJlk2 =  Fk(xki -  \Gkj), k — p i , . . .  ,p  and,
Q P i

C £(u\R) = - --------- -— C9(uu u2, . . . , u pl, . . . , u p\R)
d\i\ , •. . ,  dupi

= (27 r)-# |R |-5y  - J  e x p ^ - f a ^ R T 1

{ q i ,  *2*)* + d x a- (114)

with qi = (<J>-1(u1) , . . .  , $ -1(ttpi)). Score functions are given below:

dl f j i x ^ & i r ) )
= n  (US)
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d l  _  A  R j (r ) )
5^ '( r )  »'(*•))

where /j(a;j|0j, RJ{r)) is given by Equation (73). Now to obtain d^ r f J(x l\Bri R?(r)) 
we need to derive the expression for -^C ^(.\R ).

d  d  p i  i r ^ K - i + i )  r * ~ l ( * P )  r i
=  - ( 2 * ) - ,  \R \- ,  . . . J ^  e i p ( - - ( 9 l * , ' ) « - >

/ • $ ~ 1(uP1+ i)  p $ - 1 (uP) f t  f  1
= Const x j  •• J  _ { |^ | - 2 } e x p | - - ( q 1<,X2i) i? '1

(fliSaa*)*} +

/ ^ ‘ S u )  /**_1(«p) _ i  , r i
•■• /  —-|/?|2.R~1exp < — -(qq*, x 2t)R~1

OO J “OO " I ^

( t f i W ) 4} -

exp j  —  fai*, aa4)4 j  da2, (117)

where Const — (2 tt) ~ S2 exp{\qt tqx}. All in the above cases score functions are highly 
nonlinear, we used numerical methods to solve then and obtain MLE’s.



APPENDIX B

SELECTED R CODE

B .l MLE ESTIMATES FOR TRIVARIATE GAMMA USING  
GAUSSIAN COPULA

algori thm  
l ibrary  (optimx) 
l ibrary  (mixtools)  
l ibrary  ( copula) 
l ibrary  (mvtnorm) 
ssize  =500 
probl =0.57 
s l = s s i z e * p r o b l ; si  
s2=ssize — s i  ; s2
d l = r e p ( l , times=285,each = 1) 
d2=rep(0 , times=215,each = 1) 
d=c(dl ,d2)  
z=sample(d) 
l e n g t h ( z )
all=a21=bll=b21=al2=a22=bl2=b22=al3=c()  
a23=bl3=b23=rl=r2=r3=r4=r5=r6=pi=c () 
for (v  in 1:20)

{
datal=matrix(0 , ssize ,3) 
for(kk in 1: s s ize  )
{ i f  (z [kk] = = l)
{copgl = normalCopula(c(0.6 ,0.4 ,0 .5)  ,dim = 3 ,d i sp s tr  = ”un” ) 

mvdcgl <  mvdc(copgl , c ( ”gamma” , ’’gamma” , ’’gamma” ) , 
l i s t  ( l i s t  ( shape = 2 .3 , sca le  =3 .2 ) ,
l i s t  ( shape = 5.9, sca le  = 1 . 2 ) , l i s t (  shape = 8.9, sca le  = 4 .2) ) )  
s e t . seed (v+88595+100*kk) 
datal [kk,]=rMvdc(l , mvdcgl)

}
e lse
{ copg2 = normalCopula(c (0.2 ,0.15 ,0 .33)  ,dim = 3 ,d i sp s tr  = ”un” ) 

mvdcg2 < -  mvdc(copg2 , c ( ’’gamma” gamma” ,”gamma” ) ,
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l i s t  (1 i s t  ( shape = 12.2 , s ca le  = 13.3),
l i s t  ( shape = 10.5, sca le  = 11.3),  l i s t  ( shape = 16.5 , s ca le  = 7.2)))  
s e t . seed (v+78865+20*kk) 
datal [kk,] = rMvdc(l ,mvdcg2)

}
}
outl=gammamixEM(datal [ ,1 
,maxres tarts=20,epsi lon  = 
out2=gammamixEM( datal  
,maxrestarts=20,  epsilon  
out3=gammamixEM( datal  
, maxres tarts =20, epsi lon
a l l v] = outl$gamma. pars 1]
a21 v] = outl$gamma. pars 3]
b l l v] = outl$gamma. pars 2]
b21 v] = outl$gamma. pars 4]
al2 v] = out2$gamma. pars 1]
a22 v] = out2$gamma. pars 3]
bl2 v] = out2$gamma. pars 2]
b22 v] = out2$gamma. pars 4]
al3 v] = out3$gamma. pars 1]
a23 v] = out3$gamma. pars 3]
bl3 v] = out3$gamma. pars 2]
b23 v] = out3$gamma. pars 4]

, lambda=c (1 /  2 ,1 /  2) 
Le — 8, maxit =5000)
, lambda=c (1 /  2 , 1 /  2 ) 

Le—8, maxit =5000)
, lambda=c (1/2,1/2) 

Le—8, maxit =5000)

n=length ( datal  [ , 1 ])
gcopula<— funct ion (ul , u2 , u3 , rl , r2 , r3 )
{ i f ( ( u l  = = l)| (u2 = = l) | (u3==l) )

{ u l = 0 . 999999 
u2 = 0.999999 
u3 = 0.999999

}
U=c (qnorm( u 1) ,qnorm(u2) ,qnorm( u3))
R=matrix(c (1 , rl , r2 , rl , 1 , r3 , r2 , r3 ,1) ,3 ,3)
I=m atr ix (c ( l  , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 )  , 3,3)
as . n u m er ic ( l / ( s q r t  ( det (R) )) *exp( - 0 . 5 * ( t (U)%*%(solve(R)-I)%*9&J)))

}
log . l i k l < - fu n c t io n  ( p , data)
{ sm=c ()

f o r ( i i in 1:n)
{ sm[ i i ] = log (p [7] *dgamma(data [ ii , 1 j , shape=all  [ v] , s c a le = b l l  [ v ]) 

*dgamma(data [ ii ,2] , shape=al2 [v] , sca le=bl2  [v] ) *
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dg3mma(data[ ii ,3] , shape=al3 [v] , sca le=bl3  [ v ] ) * 
gcopula (pgamma(data [ ii , 1 ] , shape=all  [ v J , s c a le = b l l  [ v ])
,pgamma(data [ ii ,2] , shape=al2 [v] , sca le=bl2  [v] ) ,pgamma(data [ ii ,3] , 
s hape=al 3[v ] , s c a l e = b l 3 [v ] ) , p [ 1 ] , p [ 2 ] , p [3]) + (1—p [7])
*dgamma( data [ ii , 1 ] , shape=a21 [ v] , scale=b21 [ v ])
*dgamma(data[ ii ,2] , shape=a22 [v] , scale=b22 [ v ] )
*dgamma( data [ ii ,3] , shape=a23 [v] , scale=b23 [ v ] )
* gcopula (pgamma( data [ ii ,1] , shape=a21 [v] , scale=b21 [ v] ) , 
pgamma(data [ ii ,2] , shape=a22 [v] , s c a le —b22 [ v ] )
,pgamma(data [ ii ,3] , shape=a23 [ v] , scale=b23 [ v ] ) ,p [4] , p [5] ,p [6]))

}
-sum(sm)

}
p=c ( 0 . 5 , 0 . 3 3 , 0 . 4 , 0 . 1 5 , 0 . 1 0 , 0 . 2 2 , 0 . 5 )  
log . l ik 1 ( p , d a t a l )
opl=optimx(p,  log . l ikl  ,data=datal  , method=” Nelder -Mead” )
rl [v] = opl$pl
r2 [v] = opl$p2
r3 [ v] = opl$p3
r4 [ v] = opl$p4
r5 [ v] = opl$p5
r6 [ v]=opl$p6
pi [v]=opl$p7

}
# Estimates  and SE

mean( a l l ); sd ( a l l ) ;mean( a21); sd( a21) ;mean( b l l ) ; s d ( b l l )  ;mean(b21) 
sd( b21) ;mean( al2 ); sd ( al2 ) ;mean( a22 ); sd( a22 ) ;mean( b l 2 ) ; s d ( b l 2 )  
mean(b22 ); sd (b22 )mean( al3 ); sd( al3 ) ;mean( a23 ); sd( a23 ) ;mean( b l 3 ) 
sd(bl 3  ) ;mean(b23 ); sd(b23 ) ;mean( rl ); sd( rl ) ;mean( r2 ); sd( r2 ) 
mean( r3 ); sd ( r3 ) ;mean( r4 ); sd ( r4 ) ;mean( r5 ); sd( r5 ) 
mean( r6 ); sd( r6 ) ;mean( pi ); sd ( p i )
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