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A B S T R A C T

NEARLY BALANCED AND RESOLVABLE BLOCK DESIGNS

Brian Henry Reck 
Old Dominion University, 2001 
Director: Dr. John P. Morgan

One of the fundamental principles of experimented design is the separation of 

heterogeneous experimental units into subsets of more homogeneous units or blocks 

in order to isolate identifiable, unwanted, but unavoidable, variation in measurements 

made from the units. Given v treatments to compare, and having available b blocks 

of k  experimental units each, the thoughtful statistician asks, “W hat is the optimal 

allocation of the treatments to the units?” This is the basic block design problem. 

Let riij be the number of times treatment i is used in block j  and let N  be the v x b 

matrix N  =  (n„). There is now a considerable body of optimality theory for block 

design settings where binarity (all e  {0 , 1 }), and symmetry or near-symmetry 

of the concurrence matrix iViVT, are simultaneously achievable. Typically the same 

classes of designs are found to be best using any of the standard optimality criteria. 

Among these are the balanced incomplete block designs (BIBDs), many species of 

two-class partially balanced incomplete block designs, and regular graph designs.

However, there are triples (v, 6 , k) in which binarity -precludes near-symmetry. For 

these combinatorially problematic settings, recent explorations have resulted in new 

optimality results and insight into the combinatorial issues involved. Of particular 

interest are the irregular BIBD settings, that is, triples (u, 6 , k) where the necessary 

conditions for a BIBD are fulfilled but no such design exists. A thorough study of 

the smallest such setting, (15,21,5), has produced some surprising optimal designs 

which will be presented in the first chapter of this document.

An incomplete block design is said to  be resolvable if the blocks can be partitioned
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into classes, or replicates such that each treatment appears in exactly one block of 

each replicate. Resolvable designs are indispensable in many industrial and agricul­

tural experiments, especially when the entire experiment can not be completed at one 

time or when there is a risk that the experiment may be prematurely terminated. In 

chapters two and three we will investigate the classes of resolvable designs having five 

or fewer replications and two blocks of possibly unequal size per replicate. Theory 

for identifying the best designs with respect to important optimality criteria will be 

developed, and with the optimality theory in hand, optimal designs will be identified 

and constructions provided. We will conclude with a comment on the robustness of 

resolvable designs to the loss of a replicate.
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C H A P T E R  I

N E A R L Y  A N D  V I R T U A L L Y  B A L A N C E D  I N C O M P L E T E
B L O C K  D E S I G N S

1.1 Introduct ion

A proper block design is the assignment of v treatments to n =  bk experimental units 

arranged in 6  blocks of identical size k, see figure 1.1. For these specified setting

1 2 3 4 b

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

k k k k k

Figure 1 .1 : Proper Block Design Setting: 6  Blocks and k  Plots Per Block

parameters (u, b, k), there is a potentially large, but always finite, set of feasible 

designs from which an experimenter much choose. Denoting this H ass of all possible 

designs by D{y, b, k), the task at hand is to choose a  design d e  D(v, 6 , k) that is best, 

The Model Journal used for this dissertation is Statistica Sinica.

R e p ro d u c e d  with p e rm iss ion  of  th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



2

that is, that in some sense (to be made rigorous below) maximizes the experimental 

information that will result. W hen k < u, (u, b, k) is referred to as an incomplete block 

design setting. For such settings, the balanced incomplete block designs (BIBDs) are 

known to be best with respect to all of the standard symmetric optimality criteria 

whenever they exist. Let n&j be the number of units in block j  assigned treatm ent 

z by design d. Then a BIBD is any design d for which

(i) naij =  0  or 1  for all z', j ,

(ii) njij =  r  for all z,

(iii) n ^ n ^ j  =  A for all z #  i'.

Thus a BIBD is (i) binary, (ii) equireplicate, and (iii) pairwise balanced. The common 

replication for a BIBD is r, and the common pairwise concurrence is A. These 

two integer-valued auxiliary parameters satisfy r  =  ^  and A =  , thereby

identifying two necessary conditions for the existence of a BIBD:

v\bk and v(v — 1 )| bk(k — 1 ). (1 *1 )

When the necessary conditions (1.1) are satisfied, D(y,b, k) is called a BIBD setting. 

That a BIBD need not exist in a  BIBD setting (that is, the necessary conditions do 

not guarantee existence) has been long known; such a setting is called an irregular 

BIBD setting. Nandi (1945) proved that D (15,21,5) is an irregular BIBD setting, 

and Hanani (1961) proved th a t (1.1) are sufficient for the existence of a BIBD for 

k  =  3 and 4, establishing that the smallest block size for which a BIBD setting is 

irregular is k =  5. A comprehensive list of BIBD settings for r  <  41 along with

whether a BIBD exists, does not exist, or is not known, is given in Mathon and Rosa

(1996). From this list we see tha t the minimum value of v for which an irregular 

BIBD setting exists is v =  15, and the unique setting is D(15,21,5). The setting 

D(22,33,12) has the minimum value of v for which the necessary conditions (1.1) 

are satisfied and for which it is not known whether a BIBD exists.
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3

Again, if a BIBD exists, then it is optimal in a wide variety of senses. But what 

if a BIBD does not exist? That is, what is the best design in an irregular BIBD 

setting? W.G. Zang in his PhD. Thesis (1994) and Hedayat, Stufken, and Zhang 

(1995a, 1995b) employed a combinatorial approach to this problem, preserving the 

assignment properties (i) and (ii) while seeking a  natural combinatorial approxima­

tion to the full balance (iii) of BIBDs. They show that the resulting designs are 

typically highly efficient under the commonly used optimality criteria.

Central to their approach are the concepts of unfinished balanced incomplete block 

designs and virtually balanced incomplete block designs (U-BIBDs and V-BIBDs, 

respectively). In any BIBD setting, a U-BIBD is an assignment of the first v — w 

of the v toteil treatments so that BIBD properties (i)-(iii) hold for i, i' < v — to; the 

parameter w, called the deficiency, is the number of treatments yet to be assigned. 

Completing an U-BIBD by assigning the remaining w treatments to the blocks so 

that (i) and (ii) hold, and further requiring them to appear simultaneously in a block 

with any other treatment either A — 1 , A, or A -F 1 times, results in a V-BIBD. For 

a given V-BIBD d define its discrepancy 8d as the number of treatm ent pairs i < i' 

occurring together in A — I blocks. Then the approach of Zang (1994) and Hedayat, 

Stufken, and Zhang (1995a,1995b) is a two-stage search procedure:

•  first find a U-BIBD with minimum w, then

• among all completions of the unfinished design(s) so determined find the d  with 

minimal discrepancy 8d.

Essentially this approach seeks a design containing the largest possible “sub-BIBD” 

(the unfinished design with minimal deficiency), then controls the departure from the 

full balance (iii) of a BIBD by minimizing the discrepancy induced by the w  deficient 

treatments. Although constructing V-BIBDs in this way is effective in finding highly 

efficient designs in various irregular BIBD settings (Hedayat, Stufken, and Zhang,
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1995a,1995b), establishing exact optimality of designs in irregular BIBD settings 

remains elusive.

Morgan and Srivastav (2000) address this issue by determining sufficient condi­

tions for a member of a certain design class to be optimal with respect to a type - 1  

optimality criterion in irregular BIBD settings. Though they did not search for any 

designs, they do note that for £>(22,33,8 ) the design found by Hedayat, Stufken, and 

Zhang(1995a,1995b) with deficiency 2 and discrepancy 4 implies th a t their optimal­

ity conditions are met for the A- and D-criteria (BIBD existence is still not settled 

for this setting). The interesting contrast is that the combinatorial implications of 

Morgan and Srivastav’s (2000) optimality work differ from the approach described 

above in th a t discrepancy plays a  key role while treatment deficiency is not of explicit 

concern.

In this document the optimality results for irregular BIBD settings given by 

Morgan and Srivastav (2000) are extended. E-optimality is investigated, and it 

is found that an E-optimal design need not have minimum discrepancy. For the 

irregular BIBD setting (15,21,5), an enumerative search is described through which 

the A-, D-, and El-optimal designs are found. The optimal designs do not possess 

minimal deficiency, though the U-BIBD concept is very helpful in sorting through 

the possibilities in arriving a t optimal designs.

1.2 Preliminaries

Consider a proper block design setting D(v, 6 , k). The i / x i  incidence matrix Nd for 

a design d €  D(v, 6 , k) has elements n<gy that are nonnegative integers representing 

the number of times treatment i appears in block j .  The concurrence m atrix is 

the v x  v matrix iVrfiVj whose off-diagonal elements £y = 1  n^ -n^y  =  A^v, called 

concurrence parameters, are the number of times treatments t and i’ simultaneously 

appear in the same block. Under the usual additive linear model, the least squares
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5

estimates of the treatment effects r  are found by solving the normal equations C t  =  

Q where Qoxl is a linear combination of the experimental measurements and Cd = 

diag(r£fl, r ^ , . . . ,  r ^ )  — is the v x v information matrix, also called the C-

matrix for design d. Here diag(r(fl, r<c,. . . ,  r*,) is the v x v  diagonal matrix containing  

the treatment replications. The information matrix Cd is positive semi-definite with 

zero sum rows, and the Moore-Penrose inverse C£ is an effective variance-covariance 

matrix for the treatment effect estimates. All contrasts of treatment effects are 

estimable using design d if and only if the rank of Cd is v — 1 , in which case d is 

said to be connected. Since it is desirable for all treatment contrasts to be estimable, 

D (v , 6 , k) is henceforth restricted to be the class of all connected block designs. As 

earlier mentioned, design d is binary if =  0  or 1  for all i and j ,  which is the 

condition for maximization of the trace of Cd over d e  D(v, b, k). For a block design 

setting D{v, b, k), define M(u, 6 , k) as the binary subclass of D(v, b, k) and M0(v, b, k) 

as the equireplicate subclass of M{v, b, k).

Because of the relationship of the information matrix to estimate variances, de­

sign optimality conditions are usually defined in terms of non-increasing, real-valued 

functions /  of the positive eigenvalues of Cd- 0  <  <  z<e <  - - • <  Zd,o-i- A design

d 6  D(v, b, k) is said to be ^/-optim al provided <f>f(Cd) =  HiZi f ( z<n) is minimal over 

all designs in D. The function /  is frequently chosen as a member of the family of 

type - 1  criteria defined by Cheng (1978).

Definition 1.2.1 <t>f{Cd) =  S i= i f ( z<n) is a type - 1  criterion if /  is a convex, real- 

valued function for which

(i) /  is continuously differentiable on (0 , maxdeD[v,bje) tr  Cd), and / '  <  0 , / "  >  0 ,

/'"  <  0  on (0 , TnaXdeD{v,b,k) tr  Cd), and

(ii) /  is continuous at 0  or Zimx _ , 0  f{ x )  =  / ( 0 ) =  oo.

Three commonly used type- 1  criteria are the A-, D- and 0p-criteria which are defined
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6

by taking /(x )  =  x~l , f ( x ) =  — logx, and /(x )  =  x -p, 0  <  p < oo, respectively. 

Since C£ is the variance-covariance matrix for the treatment effect estimates, then 

the average variance of all v(v — 1 ) elementary treatment contrast estimates is pro­

portional to

£ * * •  ( 1 -2 )
i=l

If a  design <2* £ D(v, 6 , k) minimizes the average variance of the treatment contrast 

estimates, hence minimizes (1.2), over all competing d £  D, then d* is A-optimal. 

Equivalently, the A-optimal design will minimize trC£. In linear models with fully 

estimable parameter vector 9  in which var(9) is nonsingular, the volume of the 

confidence ellipsoid for 9  is proportional to |var(0)| =  product of the eigenvalues of 

var(9). The D-criterion in the block design setting is an analogous extension: since 

var(£T 9) = a2 t?  C£ £ for every estimable C r ,  we take as the relevant volume the 

product of the eigenvalues of . Then the D-optimal design dm £ D minimizes

n  ** (i*3 )
i=l

or, equivalently, minimizes
B-l

-£ lo g z < « . (1.4)
i=i

Using the (pp-criterion, which is a  general class of optimality criteria given by

/V— 1 \ Ci/p)
=  ( E * - )  . (1-5)

a fourth widely used criterion, called the E-criterion, is defined by

<Po={Cd) =  Hm 0 p(Cd) =  t z#K (1 .6 )

A design is E-optimal if it minimizes the maximum variance of normalized treatment 

contrast estimates over all competing designs in D. Furthermore, when p = 1 , 

minimizing (1.5) is equivalent to minimizing (1.2), that is, (^-optimal designs are 

A-optimal. Various optimality criteria and their statistical significance are discussed
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in Kiefer (1958, 1974), Cheng (1978), Shah (1960), and Shah and Sinha (1989). In 

the subsequent discussion we will concentrate on designs that minimize the type - 1  

criteria:

A-criterion: Ad — ^2  - * 1

i
D-criterion: Dd =  — ^  log(z<ft) (1.7)

i
E-criterion: Ed =  .

Optimality criteria can also be used to compare two designs, d and d  say, using 

the relative efficiency of design d compared to design d.

Definition 1.2.2 The relative efficiency of a design d € D  compared to another 

design d E D  with respect to the A-, D-, and E-optimality criteria are:

A-efficiency =  D-efficiency =  and E-efficiency =
Ad Dd Ed

When D (v , 6 , k) is a BIBD setting, that is, when the necessary conditions (1.1) are 

satisfied, the average treatment concurrence A is A =  and a BIBD d achieves

equality of treatment concurrences, that is, A*v =  A for all i #  i'. I f a  BIBD 

exists, it is the universally optimal design in D(v, b, k) (Kiefer, 1975), which includes

optimality with respect to all type - 1  criteria. Of concern here are the irregular BIBD

settings, for which the conditions ( 1 .1 ) hold but the combinatorics do not allow AAi» =  

A for all i ^  i1. W hat is the optimal or most efficient design in an irregular BIBD 

setting? After reviewing and extending some previously known results concerning 

irregular BIBD settings, we will observe some of their surprising consequences in 

£>(15,21,5).

1.3 Definitions and Results

We begin by formally defining some of the concepts and terms introduced above. 

Afterward we will develop optimality theorems and proofs. In the next section we 

will apply the results to the irregular BIBD setting (v, b, k) =  (15,21,5).
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Definition 1.3.1 An unfinished balanced incomplete block design with deficiency w, 

denoted by U-BIBD(i/, 6 , A:; w), is a  block design containing v —w  of v total treatments 

in b blocks of size k such that

(i) each n ^ j =  0  or 1 , t =  1 , 2 , . . . ,  v — w

(ii) each r^i = r, i =  1 , 2 , . . . ,  v — w

(iii) \ m > =  A, i #  i' €  { 1 ,2 ,. . . ,  v — u/}.

D efinition 1.3.2 A virtually balanced incomplete block design, denoted 

V-BIBD(i/, 6 , k; w), for v treatments in b blocks of size k  such that

(i) each n&j =  0  or 1 ,

(ii) each r#  =  r,

(ii) =  A, i ^  i' e  ( 1 ,2 , . . . ,  v -  u/}, and

(iv) A 6  {A — 1 , A, A +  1}, i > v — w or t' > v — w, i #  i'.

Thus a V-BIBD(i/, 6 , k; w) contains a U-BIBD(i/, b, k; it/), and the remaining w treat­

ments have been assigned in such a way that all of their concurrences are within one 

of the ideal common concurrence A.

Definition 1.3.3 The concurrence range of a block design d €  D(v, b,k) is a mea­

sure of its maximum pairwise unbalance and is given by

Iti — max ) AtOi* Â , [.
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D efin ition  1.3.4 A nearly balanced incomplete block design d € D(v, b, k) with con­

currence range I, or NBBD(Z), is an incomplete block design satisfying the following 

conditions:

(i) each ndij =  0  or 1 ,

(ii) each r*- =  r  or r  +  1 ,

(iii) ld =  I,

(iv) d minimizes tr  Cd over all designs satisfying (i) — (iii).

Clearly in a BIBD setting, when r*  =  r  for all i and I =  0, the definition of an 

NBBD(Z) reduces to that of a BIBD. If for a design d € M (v ,b ,k ), combinatorics 

force Xdii1 < A —1 for at least one treatment pair i ±  i ', then for some other treatment 

pair s #  s', Adssf >  A + 1 and the nonexistence of a NBBD(Z) with Z <  1 follows. Such 

settings were generally referred to as category one settings by Morgan and Srivastav 

(2000) and include irregular BIBD settings. In an irregular BIBD setting a NBBD(2) 

is the V-BIBD having minimum tr  C j. Thus in an irregular BIBD setting, NBBD(2)s 

are a subclass of V-BIBDs.

D efinition 1.3.5 The pairwise concurrence discrepancy, for treatments i and i', 

1 < i #  i' <  v, of a design d 6  D(v, b, k) is the quantity

Sdii' — Xdii' A.

The concurrence discrepancy for d is

=  ^2 ^ 2  max{0 , -<W }
»<«'

and is a measure of the combinatorial asymmetry of the design. The minimum  

discrepancy over the binary subclass Af(u,6 , k) is denoted by

5 — min£rf.d£M
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If d 6  D(v, b, k) is a  BIBD, then <5* =  0 and consequently 8 =  0. A BIBD setting 

is irregular if and only if 6 > 2. In the sequel, frequently the treatment concurrence 

discrepancy will be shortened to treatment discrepancy and the concurrence discrep­

ancy to discrepancy. We now state a lemma relating the discrepancy of a design to 

the maximum treatm ent unbalance of the design.

L em m a 1.3.1 (Morgan and Srivastav, 2000) Let d be a binary, equireplicate design 

in a BIBD setting D (v ,b ,k ). Then 84 > 2 maxj,,- |<WI-

Not much is known about optimality in irregular BIBD settings. Intuitively it 

is desirable to find a design with minimum discrepancy 84, i.e. the most balanced 

design, and evidence suggests the efficiency of a  design improves as the design dis­

crepancy decreases (Hedayat, Stufken, and Zhang; 1995a, 1995b), but determining 

the minimum discrepancy 8 for a design setting can be combinatorially difficult. 

For the setting D (15,21,5), Zhang (1994) and Hedayat, Stufken, and Zhang (1995a, 

1995b) investigated A-, D-, and E-efficiency by constructing VBIBDs with minimum 

discrepancy for the smallest possible treatment deficiency w. They discovered 

that the smelliest treatment deficiency for this setting was w =  3, and for w =  3 the 

minimum discrepancy design reported was the 8̂  — 6 shown in table 1.1. Although

Table 1 .1 : Zhang’s (1994) Most Efficient D (15,21,5) Design

1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5
2 2 3 4 5 7 8 3 4 5 6 8 4 5 6 7 5 7 8 6 6
3 6  9 6  9 10 11 11 7 10 11 9 6  7 8  12 8  9 10 7 9
4 7 10 12 13 12 15 12 9 13 13 10 10 8  9 14 11 11 13 10 12
5 8  11 13 15 14 14 13 15 14 14 12 15 13 14 15 12 14 15 11 15

this design was the most A-, D-, and E-efficient design they found in the class, having 

respective optimality values of 2.33781, -25.07125, and 0.18149, they did not claim 

that the minimum discrepancy for the class is 8 =  6  nor did they claim their design 

to be the A-, D-, or E-optimal design in the class.
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Morgan and Srivastav (2000) addressed the optimality problem by describing 

sufficient conditions for a NBBD(2) to be optimal in a category one design setting 

D(v, b, k). Conditions for optimal designs in an irregular BIBD setting are conse­

quences of their main result and are given explicitly as a corollary. First we will 

review and extend their main result, and later we will use the result to state and 

prove a slightly more general corollary for irregular BIBD settings.

For a general design setting D(v,b, k), let d G D  be a NBBD(Z) with discrepancy 

value 8g. Optimality arguments can be constructed around d as a function of the 

traces of its information matrix and its square, so define the quantities

Let Z\ and z\ be upper bounds for the minimum nonzero eigenvalues zji of designs 

in M (v ,b ,k ) and D(v, 6 , fc), respectively, which satisfy

Let z4  — [A — (2fk )  — z{\f (v — 2) be the common nonzero eigenvalue of completely a 

symmetric information m atrix with trace equal to A — (2/fc). All of these quantities 

are integral to Morgan and Srivastav’s (2000) main result, stated next, as well as the 

generalization for irregular BIBD settings to follow.

T h eo rem  1.3.2 (M o rg an  a n d  S rivastav , 2000) Let D (v, b, k) be a setting with 

8 > 0, let d E D {y,b ,k) be a NBBD(2) with information matrix Cg having nonzero

where for a binary design d,

(1.8)

Given zx and for P  = [(B2  — z f)  — define z2  and z3 by

z2  =  [ ( A - z O - .  | | p 2 ] /( t> - 2 ) and z3  =  [(A -zO  +  ̂ u  -  2)(v -  3)P2J /(v -2 ) .
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eigenvalues z ^  < Z& < ■ ■ • < Zfo-i and having 6j = 6 > 0, and let f  be a convex, 

real-valued function satisfying the conditions o f definition 1.2.1. Let z\ — - ^ 7 -l ^~l~A ~ 1 

and z{ =  y r f f . Then i f  Z\ <  z3 and

£  /(*&) < /(*  1) + ( v -  3) f ( z 2) 4- f ( z 3), (1.9)
1=1

o <f>f-optimal design in M {y,b,k) must be a NBBD(2). If, moreover, z[ < 2 4  and

E  /(« * ) <  / M )  +  (» -  2  ) / ( * ) .  ( 1 -1 0 )
i=l

fhen a 0 / -optimal design in D (v,b,k) must be an NBBD(2).

Theorem  1.3.3 (M organ and Srivastav, 2000) Let D(v, b, fc) be an irregular 

BIBD setting, and let d €  D be a N B B D (2) with Sj < 4. Taking zi =  z{ =  

t /  and (1.10) o f Theorem 1.3.2 hold, then a 4>f-optimal design must be a 

N B B D (  2 ).

For irregular BIBD settings with r  <  41, Morgan and Srivastav (2000) prove as 

a corollary to Theorem 1.3.3 that a NBBD(2) is A- and D-optimal, provided that 

such a design exists and that 5 < 4. We will extend their result to 5 < 5, but first, 

we state their corollary and prove a slightly more general version of Theorem 1.3.3.

Corollary 1.3.4 Let D (v,b ,k) be an irregular BIBD setting in which r  <  41. I f  

there exists a a design d satisfying the first three conditions of definition 1.3.4 with 

Id — 2  and <5j <  4, then a A-optimal design must be a NBBD(2), and a D-optimal 

design must be a NBBD(2).

The next lemma will be necessary for the proof of our generalization of Theorem 

1.3.3.

Lem m a 1.3.5 Let D(v, b, k) be an irregular BIBD setting, and suppose d G D has 

discrepancy 5* > 2 and concurrence range ld >  2. I f  7 ^  and 7 ^  are the number of
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times A +  a  and A — a , a  =  1 ,2, — 1 , appear below the diagonal o f the v x v

concurrence matrix N jN J , respectively, then

Y  Y  A*»' =  — A2 +  25d +  Yi a (Q -  !) 7*, +  Y  Q(Q ~  l) Ida- C1-11)
i<i' Z a=2 o=2

P roof Suppose N d N J  is the v x v concurrence matrix for a design d £  D{v, b, k )  

having discrepancy Sd and concurrence range Id- If NdN J  has 7 ^  occurrences of 

A +  a  and 7 ^  occurrences of A — a, > 0, 7 ^, >  0, and a  =  2 ,3 , . . . ,  Id — 1, below 

the diagonal, then there are Sd — Z o = 2  & 7da occurrences of A +  1, 8d — T,a=2 a 7&» 

occurrences of A—1 , and ["C"-1? - 2 Jd+ S o = 2l (Q!~  I)7 & » + E ^ 2I(a ~  f)7A»] occurrences 

of A below the diagonal. Therefore

Y Y Xda> = Y  7<L(A +  a)2 +  Y, a 7 i )  (A +  l )2 +
»<»' 0 = 2  \  o= 2  )

U-1 (  u - i  \
Y  Vda (X -  a )2 +  \5d -  Y  (X -  !)2 +
a=2 V o=2 I

-  2Sd + £ >  -  1) 7 i  +  £  (a  -  1) 7 i
£ a=2 a=2

A2.

The result follows by expanding the above expression and collecting on A. □

C oro llary  1.3.6 Let D(v, b, k) be an irregular BIBD setting. I f  d €  D has (Sj, lj) =

(5,2), or (<5j, ld) =  (4,3) with S& +  = 1, then

£ £  4 c =  ^ - ^ A =  +  1 0 .
i<i' ^

Furthermore, i f  no design having Id =  2 has Sd <  4, then any d £  D not satisfying 

the conditions o f d has

»<i» 2

T heorem  1.3.7 Let D [y,b ,k) be an irregular BIBD setting for which a NBBD(2) 

with Sd < 4 does not exist. Let d £  D be a NBBD(2) with <Sj =  5, or a NBBD(3) 

with S i — 4 and 7 ^  +  7 ^  =  1. For = z ’ — i f  (1 .9 ) and (1-10) of Theorem

1.3.2 hold, then a <f>f-optimal design must be a NBBD(2) or a NBBD(3).
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P roof The bounds z x =  z [  for z j i  follow from lemma 2 . 2  of Morgan and Srivastav 

(2000) for unequally replicated d and from propositions 3.1 and 3.2 of Jacroux (1980b) 

for equireplicated d. The relations z \  <  z2  and z \  < z4  are easy to  check. From the 

proof of Theorem 1.3.3 (Morgan and Srivastav, 2000, page 10), the ^/-optimal design 

must be binary if condition ( 1 .1 0 ) is satisfied for z [  and z A.

Suppose binary d 6  M (v, b, k) is not a NBBD(2) or a NBBD(3) as described in 

the theorem. Then it must be true that either (i) d is not equireplicate; (ii) d is in 

M0, has U > lj, and Sd > Sj; (iii) d in M0, has Id > lg, and Sd > Sg; or (iv) d is in 

Mq, has (Sd, Id) =  (4,3), and 7 ^  +  7 ^  >  2. It will be established that for each of 

these cases, tr  C j >  £?2.

Case (i). If d is not equireplicate, then Sd > 4 (Morgan and Srivastav, 2000, page 

18) which implies Id > 2, and, from lemma 1.3.5, £  ^dii' — A +  8 . Thus, 

by corollary 1.3.6,

51 51 ̂ dii' _ 5Z5Z ̂ dii' —

i<»' i<i'
Furthermore, from the proof of Theorem 1.3.2 (Morgan and Srivastav, 2000, page 

10),

± * - £ , 4  > 2 .
i=l i=l

Therefore, from (1.8),

2  2 , n. 2 (fc2  -  2 fc -  1 1  4
tr  (  it )  + ^ - 2) = s - t >—

for k > 3.

Case (ii). Suppose d is in Ma, has discrepancy Sd > Sg, and concurrence range 

U >  Then, from corollary 1.3.6,

S  51 ̂ d ii' ~  52 51 ̂ g ii’ —

i<i’ i<i'

and, from (1 .8 ),

t r  C l -  tr  C f >
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Case (iii). Suppose cf is in M0, has discrepancy 8d > and concurrence range 

Id > Id- Then, from corollary 1.3.6,

52 52 ^dn' —  5252
i<i' i<i'

and, from ( 1 .8 ),

tr  C l -  tr  C \>  p .

Case (iv). Suppose d is in M0, has (8d, ld) =  (4,3), and -I- Sg, =  2. Then, again 

from corollary 1.3.6,

52 52 ^ d i i '  ~  52 52 =
«<i' i<»'

and

tr C l -  tr C l = p .

The result follows from Theorem 1.3.2. □

The information matrix for a design d E Mq(v , b, k) can be written as

=  <1 1 2 >

where Arf is the v  x u, possibly null, discrepancy matrix  for the design and has 

elements
/ a \   f  &dn' » for i  #  1(A* ) , , . - | 0 fori = i-.

Equation (1.12) says that the information matrix for any design in M0 is completely 

described by the discrepancy matrix A*, which depends on the discrepancy Sd and 

concurrence range ld of the design. Moreover, with an appropriate labeling, the 

treatments i  #  i' having A*v <  A — 1 can, for some s  <  v, be restricted to the 

first s  members of the treatment set, and hence, the nonzero elements of A d can be 

restricted to the first s rows and columns. Furthermore, Cd 1 =  0 implies that A< * 1  =  

0; consequently, any s x  s integer-valued matrix having zeros on the diagonal and 

zero-sum rows and columns is a principal minor for discrepancy matrices of designs in
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M0(v, 6 , k) for all u >  s. Therefore, by enumerating a complete list of nonisomorphic 

discrepancy matrices for fixed values of 5d and fy, optimality competitors for large 

classes of designs are characterized, and in some cases, as will seen in corollaries 1.3.4 

and 1.3.8 below, conditions for optimality in irregular BIBD settings with respect to 

various criteria can be derived. The 11 discrepancy matrices having 5d <  4 and ld = 2 

are provided by Morgan and Srivastav (2000, page 19), and we have enumerated the 

40 discrepancy matrices having (Sd, ld) =  (5,2), or (5d, ld) =  (4,3) and 7 <£> +  7 <q =  1- 

The complete list of the principal minors of all 51 discrepancy matrices can be found 

in Appendix A.

C oro lla ry  1.3.8 Let D(v, b, k) be an irregular BIBD setting in which r  <  41 and 

for which a desing with ld = 2 and 5d <  4 does not exist. I f  there exists a design d 

satisfying the first three conditions o f the NBBD(l) definition and having (5d, If) =

(5.2), or (8j, If) =  (4,3) with 7 ^ + 7 ^  =  1, then an A-optimal design d must be 

a NBBD(2) or a NBBD(3), and a D-optimal design d must be a NBBD(2) or a 

NBBD(3).

P ro o f  The corollary amounts to saying that conditions (1.9) and (1.10) of Theorem

1.3.2 hold for all equireplicate, binary designs d having (5dJ If) =  (5,2), or (8d,lf)  =

(4.3) with 7 (&+7 (fc =  1 , in all irregular BIBD settings with r  < 41. The list of settings 

D(v, b, k) satisfying the necessary conditions for the existence of a BIBD with r  <  41 

for which either a BIBD does not exist or for which existence is not known found in 

Mathon and Rosa (1996) has 497 cases when complements are included. Since the 

proof of Theorem 1.3.7 establishes that designs d not satisfying the conditions of d 

will have tr  >  B2  >  tr  C | +  ^r, following a procedure analogous to the one used 

by Morgan and Srivastav (2000, pages 18-20) in their proof of corollary 1.3.4, the 

result can be established for all designs in irregular BIBD settings with r  <  41, by 

checking (1.9) and (1-10) for each of the 51 conceivable information matrices listed 

in Appendix A in each of the 497 potentially irregular BIBD design settings. A
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computer program written to accomplish this task found that conditions (1.9) and 

(1.10) do in fact always hold. Therefore, the theorem is established for essentially 

all of the cases of practical interest. □

W ith corollaries 1.3.4 and 1.3.8 in hand, we return to the irregular BIBD setting 

D (15,21,5). The discrepancy matrices in Appendix A are listed in A- and D- 

value order from smallest or optimal to largest for this setting (the order is the 

same with respect to both criteria). This ranking is not the same for E-values, 

nor necessarily maintained for different parameter sets (v ,b ,k ). We can, however, 

make a few useful observations from the list. First, as explained by Morgan and 

Srivastav’s (2000) corollary 1.3.4, designs d 6  D having a  discrepancy matrix with 

64 <  4 and I* = 2 are A- and D-superior to designs having any other discrepancy 

matrix in the list; however, designs with (64, 14) =  (5,2) may either be A- and D- 

superior or inferior to (64, 14) =  (4,3) designs. For example, design D12 is A- and 

D-superior to design D13 while design D13 is A- and D-superior to design D18. Also 

observe that minimum deficiency does not imply minimum discrepancy, and A- and 

D-value rank and design deficiency are not related. These facts are evident in the 

(5d, ld) =  (4,2) group. According to corollaries 1.3.4 and 1.3.8, Zhang’s (1994) design 

d 6  D (15,21,5) having (84, 14, w) =  (6 ,2 ,3) given in table 1.1 is A- and D-inferior to 

a design having any of the 51 discrepancy matrices shown in the appendix, whenever 

they exist. Furthermore, since the first step of Zhang’s search for efficient designs was 

to minimize deficiency, thereby restricting the search to designs with w  =  3, there 

are 35 discrepancy candidates in the list with w > 3 that, if a  design in D(15,21,5) 

exists corresponding to one of these candidates, is A- and D-superior to Zhang’s 

design shown in table 1.1. We will use these observations in section 1.4 to construct 

the A-optimal and D-optimal design in D (15,21,5), and in section 1.5 we will address 

the issue of finding the E-optimal design.
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1.4 Search for the A- and D-optimal design

Now the theory of section 1.3 will be turned to the problem of finding optimal designs 

in D( 15,21,5). If we can construct a  design d €  D  having one of the discrepancy 

matrices listed in Appendix A, then corollaries 1.3.4 and 1.3.8 guarantee the A- and 

D-optimal design exists and is either d  itself or a design having one of the discrepancy 

matrices appearing sooner in the list than the discrepancy matrix contained in d. 

Thus our initial universe is possible designs d 6  D(15,21,5) having Sj < 5 and 

Id = 2, or (Sd, Id) =  (4,3) and 7 ^  -t- 7 ^  =  1. Moreover, the treatment deficiency for 

this class satisfies 2 < w < 5.

In order to make our initial attem pt at constructing the A- and D-optimal design 

more manageable, we will search for 8d <  4, and consequently, impose the limit 

2  <  w <  4. These restrictions imply that a successful search will result in a design d 

containing a U-BIBD(15,21,5; w) for w =  4 (the existence of U-BIBDs with w =  4 is 

guaranteed by the fact that Zhang’s design (1994) in table 1 . 1  has w =  3). Therefore, 

our search will first concentrate on constructing an exhaustive list of nonisomorphic 

U-BIBDs for the smallest w > 4 th a t can be managed, say w‘. The list will be 

exhaustive because all possible placements of the first v — wm treatments into the 

blocks will be accounted for, and each U-BIBD will be nonisomorphic in that it will 

be unique with respect to all possible treatment relabelings and block relabelings. 

Once we have an exhaustive and nonisomorphic list of U-BIBDs for w  =  w ', if 

it/* >  4, we will enumerate all possible extensions of each design in the list to U- 

BIBDs with w =  4. Finally, all possible completions of each U-BIBD(15,21,5;4) in 

the list, by addition of the w* missing treatments, will be enumerated taking into 

account the discrepancy and concurrence range restrictions described above.

In order to get a handle on the search, there are two lemmas concerning  admissible 

block sizes and treatment placements that will be very useful to the process. Before 

we state and prove the lemmas, we will review two sets of equations given by Zhang
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(1994).

If is the number of blocks of size i, 0 <  i  < k, then the block sizes of a 

U-BIBD(v,b,k;w) must satisfy the following block size equations:

=  b
»=o
k

Y  irii — r(v — w) (1-13)

s ( 0 - - * ( ' * " ) -
If dti is the number of blocks of size i containing treatment t, then any treatment t 

in a U-BDBD(v,b,k;w) design must satisfy the following theta pattern equations:

y e *  = r (1.14)
i=i

5 Z(* -  i ) 0 «t = x(v -  w - 1 ).
t= 2

From equations (1.13) and (1.14), the theoretically possible block sizes for a U-

BIBD(15,21,5;4) cire given in table 1.2, and from (1.14) the possible theta patterns

Table 1.2: U-BIBD(15,21,5;4) Theoretical Block Sizes

n  i «3 n4 n 5
0 0 1 2 4 5
0 1 9 7 4
0 2 6 1 0 3
1 0 6 1 2 2

0 3 3 13 2

1 1 3 15 1

0 4 0 16 1

1 2 0 18 0

are given in table 1.3. Using table 1.3 we can reduce the theoretical block size list, 

table 1.2, by use of the following lem m a.
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Table 1.3: U-BIBD(15,21,5;4) Theoretical Theta Pattern

Ba &t2 da 8t4 Bts
2 0 0 0 5
1 1 0 1 4
1 0 2 0 4
0 2 1 0 4
1 0 1 2 3
0 2 0 2 3
0 1 2 1 3
0 0 4 0 3
1 0 0 4 2

0 1 1 3 2

0 0 3 2 2

0 1 0 5 1

0 0 2 4 1

0 0 1 6 0

Lem m a 1.4.1 The number o f blocks o f size five in a U-BIBD(15,21,5;4) is neces­

sarily greater than one.

P roof Suppose n 5  =  0. Then from table 1 . 2  n =  (nj, n2, n3t n4, n5) =  (1,2,0,18,0), 

and since =  0 V £, from table 1.3 9 t =  (0u» 0 t3 , &ts) =  (0 ,0 ,1 ,6 ,0) V t. This

is a contradiction because it is clearly not simultaneously possible for all 6ti = 0 and 

ni =  1. Now suppose n 5  =  1. Then n =  (1,1,3,15,1) or (0,4,0,16,1) and the 

possible 9t are 0 t(1) =  (0 ,0 ,1 , 6 ,0), 0 t(2) =  (0 ,0 ,2 ,4 ,1 ), or 0t(3) =  (0,1 ,0 ,5 ,1). Let 

Xj be the number of treatments with theta pattern j  = 1. 2 , 3. Then
3

^ X j 0 £(j) =  (nx, 2 n 2 ,3n 3 ,4n 4 ,5n5). 
i=i

Thus

xt (0 ,0 ,1 , 6 ,0) +  x 2 (0 ,0, 2,4,1) +  x3 (0 ,1,0,5,1) =  (1,2,9,60,5) or (0,8,0,64,5)

(1.15)

for the two respective values of n. The first system in (1-15) gives us the equations
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xi +  2x2 — 9 

6a:! -F 4x2 +  5x3 =  60 

Z2 +  x3 =  5.

These equations are inconsistent. The second system in (1.15) yields the equations

x3 =  8 

x i  +  2x 2 =  0 

6xt -F 4x2 +  5x3 =  60 

X2 +  x3 =  5.

These equations are also inconsistent. Therefore n5 ^  1 , and n 5  >  2 . □

The reduced list of possible block sizes for U-BIBD(15,21,5;4) is shown in table

1.4.

Table 1.4: U-BIBD(15,21,5;4) Theoretical Block Sizes - Reduced list

ni n 2 n3 n 4 n5
0 0 1 2 4 5
0 1 9 7 4
0 2 6 1 0 3
1 0 6 1 2 2

0 3 3 13 2

We can assume the first five treatments of all U-BIBD(15,21,5;4)s occur in the 

first block, for otherwise, we can rename treatments and blocks so that this is the 

case. The placement of the first five treatments, requiring each treatment to be 

present in the first block, results in exactly one U-BIBD(15,21,5;10). The design is 

shown in table 1.5. Notice that a U-BIBD(15,21,5;10) must use all 2 1  blocks.

When we extend table 1.5 to a U-BIBD(15,21,5;w), w  <  10 we can use the 

following useful lemma.
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Table 1.5: A U-BIBD(15,21,5;10) Design

1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5  
2 2 3 4 5  3 4 5  4 5  5
3
4
5

Lem m a 1.4.2 For any U-BIBD(15,21,5;w), w < 10 the following are true:

1. A block of size five can have at most two treatments in common with any other 

block, and

2. It is not possible for the design to contain two identical blocks of size four.

P ro o f  The first statem ent follows immediately from the uniqueness of 

UBIBD(15,21,5;10). If there are two identical blocks of size four, say

1  1  

2 2
3 3
4 4,

then none of treatments 1-4 can occur again in a common block, but each must occur 

5 more times. Hence 20 more blocks are required, a contradiction. □

Since U-BIBD(15,21,5;4)s must have at least two blocks of size five, we will ex­

tend our U-BIBD(15,21,5;10) to a U-BIBD(15,21,5;w) containing two blocks of size 

five with the largest possible value of w  (i.e. the maximum number of missing treat­

ments), depending on the structure of the size five blocks. Since the treatments in 

a block of size five can have only one structure throughout the design (table 1.5) in 

addition to lemma 1.4.2, we can take advantage of this structure when adding treat­

ments to the design. Thus, any two blocks of size five must have at least one and 

at most two treatments in common, and we need only investigate these two cases.
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Since our U-BIBD(15,21,5;10) (table 1.5) is symmetric in all five treatments (i.e. 

any renaming of treatments will result in an identical design), we can assume in a 

design where the two size-five blocks have one treatment in common, that each size- 

five block contains treatment 1  (one common case), and in a design where the two 

size-five blocks have two treatments in common, that each size-five block contains 

treatments 1  and 2  (the two common case).

1.4.1 One Common Case

If we extend our U-BIBD(15,21,5;10) to a U-BEBD(15,21,5;w) with exactly two blocks 

of size five having one treatment in common and having maximum w subject to 

lemma 1.4.2, then w =  6  and v — w = 9. The two blocks of size five are

1  1  

2 6
3 7 ,
4 8

5 9

and we begin with the structure shown in table 1 .6 .

Table 1.6: One-com m on Starter

1 1 1 1 1 1 1  2 2 2 3 3 4  2 2 3 3 4 4 5 5  
2 6 2 3 4 5  3 4 5 4 5 5
3 7
4 8

5 9
>  ^  I y  / V  v  *

section one section two section three

Since A =  2, the sub-block candidates that must be added, all in separate blocks, to 

table 1.6 are shown in table 1.7.

For convenience, as can be seen in tables 1.7 and 1.6, treatment pairs will be referred 

to  as doubles and single treatments as singles, and the seven blocks containing treat­

ment 1  are referred to as section one, the remaining six blocks of size two as section 

two, and the other eight blocks of size one as section three in the following discussion.
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Table 1.7: Assignment Candidates - One-common Starter

6 6 6 7 7 8  6 6 6 7 7 7 8 8 8 9 9 9  
7 8  9 8  9 9

. . . v . . .» ■ v ^
doubles singles

Since removing treatments 2 to 5 from the resulting U-BIBD(15,21,5;6) will give 

a U-BIBD(15,21,5;10), then treatm ent 1 with treatments 6  to  9 must have the same 

structure, for some ordering of the blocks, as the U-BIBD(15,21,5;10) in table 1.5. 

Prom tables 1.6 and 1.7, since 18 assignment candidates must be placed in 19 blocks, 

we know nx < 1 . Furthermore, from the block size equations (1.13) we know the 

possible block sizes for the U-BIBD(15,21,5;6) with exactly two blocks of size five 

and either one or zero blocks of size one are

n x Tt 2 n3 n 4 ns
0 7 9 3 2

1 4 1 2 2 2 .
(1.16)

Clearly one replication of each of treatments 6  to 9 must be placed in section one, 

and the remaining replications in sections two and three. Since no block can have 

more than two treatments in common with a block of size five, blocks of section one 

can only receive singles from the candidate list. Once treatments 6  to 9 are added 

to section one, 13 singles and doubles will remain in the candidate list to be placed 

in the 13 blocks of sections two and three. Thus, if the U-BIBD(15,21,5;6) has a 

block of size one, it must be in section one, and placement of treatments in section 

one will determine whether the design has zero or one block of size one. Using this 

observation and the theta pattern equations (1.14) given above, we have the following 

admissible theta-pattem  list
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da dt2 6a 0t4 0ts
0 3 0 3 1

0 2 2 2 1

0 1 4 1 1

0 0 6 0 1

1 0 4 0 2

0 2 3 0 2 .

(1.17)

Since section one is symmetric in treatments 2 to 5, there are only two noniso­

morphic ways to place treatments 6  to 9 in section one. They are shown in table 

1.8 .

Table 1.8: Section One Arrangements - One-common Design

1 1 1 1 1 1 1 1 1 1 1 1 1  1

2 6 2 3 4 5 9 2 6 2 3 4 5
3 7 6 7 8 3 7 6 7 8 9
4 8 4 8

5 9 5 9
zero size one one size one

As can be seen in table 1.8, we will refer to designs having these section one ar­

rangements as zero size one and one size one designs respectively. Given one of 

these arrangements, the admissible block sizes (1.16) and the possible theta patterns 

(1.17) determine the number of singles and doubles from the candidate list (table 

1.7) that must be placed in sections two and three.

Zero Size One Designs

First we will investigate zero size one designs. In this case, treatments 6  to 8  must 

be placed in section two twice each, and treatment nine must be placed there three 

times, in order to have two concurrences with each of treatments 2 to 5. Hence 

section two gets three doubles and three singles from the candidate list (table 1 .6 ), 

and section three gets three doubles and five singles. Since treatment five needs to 

gain a total of eight treatment concurrences (two with each of treatments 6  to 9), and
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there are five occurrences of treatment 5 in sections two and three, then treatment 

five must go with three doubles and two singles from the candidate set. Furthermore, 

from (1.17), since # 9 2  <  3 we know that up to three doubles containing treatment 

9 can be placed in section two, and that treatment 9 is required to be a part of at 

least one section two double candidate.

W hat, then, are the distinct ways of choosing three double candidates for section 

two? There are 20 ways to choose three doubles from the six doubles in the candidate 

set. Immediately we can eliminate the candidate doubles containing three 6 s, three 

7s, and three 8 s and the candidate containing zero 9s. Since any permutation of 

treatments 2,3,4 does not change sections 2 and 3, and permutations of treatments 

6,7,8 combined with the same permutation of treatments 2,3,4, does not change sec­

tion one, we can reduce the remaining 16 ways of choosing three doubles from the 

candidate list to just four nonisomorphic double sets. Each double set determines 

a corresponding set of singles for adding to section two. The section two candidate 

collections are:

Case 1 :

Case 2 :

6  7 8  6  7 8

9 9 9

6  6  7 8  9 9
7 8  9

n  0  6 6 7 7 8 9  ,
C ase3: 8  9  9  . “ d

Case 4: 6  6  7 8  8  9
7 9 9

Suppose the first candidate collection above is placed in section two. Then treat­

ment 9 must be placed in two blocks containing treatment 5 in section two. Other­

wise, since each section two double candidate contains treatment 9 and no section 

two single candidate contains treatment 9, fewer than two doubles from the candi-
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date collection would be placed in a block containing treatment 5 in section two, and 

a treatment 9 single would be forced to  go in a block containing treatment 5 at least 

once in section 3. This makes it impossible for three double candidates to be placed 

in a block containing treatment 5 in sections 2 and 3.

Once the design is completed using the first candidate collection above in section 

two, we can apply the permutation

< » * >

(which preserves section one). Doing so transforms double candidates containing 

treatment 9 to blocks of size two containing treatment 5, and blocks of size two con­

taining treatment 5 to double candidates containing treatment 9. Since two double 

candidates with treatment 9 go in a block containing treatment 5 in section two, and 

the third double candidate containing  treatment 9 goes in a block not containing  

treatment 5 in section two, the permutation results in two double candidates con­

taining treatment 9 and one double candidate without treatment 9 being placed in 

section two. This is clearly a case of candidate collection three or four above, thus 

we can elim inate the first collection. For example, the U-BIBD(15,21,5,6)

1 1 1 1 1 1 1 2 2 2 3 3 4 2 2 3 3 4 4 5 5
2 6 2 3 4 5 9 3 4 5 4 5 5 7 8 6 9 6 9 7 6

3 7 6 7 8 8 7 6 6 8 7 7 8 8

4 8 9 9 9
5 9 

is transformed to
1 1 1 1 1 1 1 2 2 2 3 3 4 2 2 3 3 4 4 5 5
2 6 2 3 4 5 9 3 4 5 4 5 5 7 9 6 6 7 6 7 8

3 7 6 7 8 7 8 6 9 8 6 8 8 9
4 8 9 9 7
5 9

by the permutation.

Suppose the second candidate collection is placed in section two. Three candidate 

doubles can not be placed in blocks containing treatment 5. If so, in order for treat­

ment 9 to have two concurrences with treatm ent 5, a  double candidate containing
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treatment 9 would be forced to  be placed in a block containing treatment 5 in section 

three causing treatm ent 5 to  have more than two concurrences with treatment 6 , 7, 

or 8 . Assignment of two candidate doubles to blocks containing treatment 5 in sec­

tion two will be transformed under the permutation (1.18) to two candidate doubles 

containing treatment 9 being placed in section two. This is a  case of collection three 

or four. If one candidate double is placed in a block containing treatment five, then 

under the same permutation, the resulting design would be isomorphic to another 

case of collection two. Thus the assignments using collection two for section two may 

be restricted to those with one double assigned to a block containing treatment 5. 

An exhaustive search of the remaining possibilities for designs using collection two 

in section two revealed no possible U-BIBD(15,21,5;6)s.

Now consider placing the third candidate collection in section two. Placement of 

the section two candidate doubles into blocks having the form

a a b
b 5 5

will be transformed under the permutation (1.18) to the placement of candidate 

doubles having the form

a’ a ’ b’
b’ 9 9

in section two. This double candidate form is isomorphic to the double candidates 

in candidate collection four.

An exhaustive search for designs with collection three in section two revealed 

42 possible U-BIBD(15,21,5;6)s, and three designs have the section two structure 

mentioned above. Thus there are 39 designs tha t may not be isomorphic. An 

exhaustive search for designs with collection four in section two resulted in 20 U- 

BIBD(15,21,5;6)s. Therefore, there are 59 possible nonisomorphic zero size one U- 

BIBD(15,21,5;6)s.
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O ne Size One Designs

Now we will investigate one size one U-BIBD(21,15,5;6)s. In order to have two

concurrences with treatments 2 to 5, treatments 6  to 9 must be placed twice in

section two and three times in section three. Thus section two gets two doubles and

four singles from the candidate list in table 1.7 and section three gets four doubles

and four singles from the candidate list. Of the 15 ways to select two doubles from the
6 6 6 8six double candidates, _ 0  and _ Q are the only nonisomorphic pairs under all7 o 7 y

permutations of treatments 6 ,7,8 ,9 with the same permutation of treatments 2 ,3,4,5 

(thus preserving section one). Therefore we have two nonisomorphic section two 

candidate collections. They are

, 6  6  7 8  9 9
l - 7 8  “ d

6  8  6  7 8  9
7 9

Designs resulting from placing collection two in section two in such a way that 

the two double candidates are placed in blocks with one treatment in common are 

isomorphic under the permutation (1.18) to designs resulting from placing collec­

tion one candidates in section two. That is, if the placement of the collection two 

candidate doubles in section two has the form

n n 
a b 
6 8 
7 9,

then under the permutation (1.18), the section two doubles have the new form

2 4
3 5 
n’ n’ 
a ’ b’.

This new form will result in a  design that is isomorphic to a design that results from 

placing collection one in section two.
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An exhaustive computer search using collection two in section two resulted in 

106 designs, but after eliminating the designs that are isomorphic to collection 

one designs, ten possibly nonisomorphic designs remain. An exhaustive computer 

search using collection one candidates in section two resulted in 27 possibly noni­

somorphic designs. Therefore, there are at most 37 nonisomorphic one size one U- 

BIBD(21,15,5;6)s. Therefore, there are a t most 96 nonisomorphic U-BIBD(21,15,5;6) 

in the one common case.

1.4.2 Two Common. Case

If we build our U-BIBD(15,21,5;10) into a U-BIBD(15,21,5;w) with exactly two 

blocks of size five having two treatments in common and having maximum w, then 

w — 7 and v — w = 8. The two blocks of size five are

1  1  

2 2
3 6 ,
4 7
5 8

and we begin with the structure shown in table 1.9.

Table 1.9: Two-common Starter

1 1 1 1 1 1 1 2 2 2 2 2  3 3 4  3 3 4 4 5 5
2 2 3 4 5  3 4 5  4 5 5
3 6

4 7
5 8

 —  ^   ^   ^   ---

section one section two section three

Since removing treatments 3 to 5 from the resulting U-BIBD(15,21,5;7) will give 

a  U-BIBD(15,21,5;10), then treatments 1,2,6 ,7 , 8  must have the same structure as 

in the U-BIBD(15,21,5;10) given above in table 1.5. From the block size equations 

(1.13) we know the possible block sizes for the U-BIBD(15,21,5;7) with two blocks
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of size five having two common treatments are

ni 712 n3 n 4 «5
0 1 2 6 1 2

1 9 9 0 2 .

Prom (1.14) and using (1.19), we have the admissible theta pattern set

6a 0t2 6*3 &t4 6*5
1 2 2 0 2

0 4 1 0 2

0 3 2 1 1

0 2 4 0 1 .
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(1.19)

(1.20)

Since A =  2 the candidate list containing the sub-blocks that must be added, all in 

separate blocks, to the U-BIBD(15,21,5;10) of table 1.9 is shown in table 1.10.

Table 1.10: Assignment Candidates - Two-common Starter

8  8  8  8

doubles singles

As before, we will refer to candidate sub-blocks in table 1.10 consisting of two treat­

ments as doubles and those consisting of a single treatm ent as singles. As is shown 

in table 1.9, the 12 blocks containing treatments 1 and/or 2 are referred to as section 

one, the remaining three blocks of size two as section two, and the other six blocks 

of size one as section three.

Since treatments 1  and 2  need one concurrence with treatments 6  to 8 , then two 

replications of treatments 6  to 8  must be placed in section one. Prom lemma 1.4.2, 

we conclude that only singles of treatments 6  to 8  can be placed in section one. There 

are nine nonisomorphic ways one more replication of treatments 6  to 8  can be placed 

in section one. They are:

1 1 1 1 1 1 1 2 2 2 2 2
2 2 3 4 5 7 8 3 4 5 7 8

1. 3 6  6  6

4 7
5 8
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1 1 1 1 1 1 1 2 2 2 2 2

2 2 3 4 5 7 8 3 4 5 7 8

2 . 3 6 6 6

4 7
5 8

1 1 1 1 1 1 1 2 2 2 2 2

2 2 3 4 5 7 8 3 4 5 6 8

3. 3 6 6 7
4 7
5 8

1 1 1 1 1 1 1 2 2 2 2 2

2 2 3 4 5 7 8 3 4 5 6 8

4. 3 6 6 7
4 7
5 8

1 1 1 1 1 1 1 2 2 2 2 2

2 2 3 4 5 8 3 4 5 7 8

5. 3 6 6 7 6

4 7
5 8

1 1 1 1 1 1 1 2 2 2 2 2

2 2 3 4 5 8 3 4 5 7 8

6 . 3 6 6 7 6

4 7
5 8

1 1 1 1 1 1 1 2 2 2 2 2

2 2 3 4 5 8 3 4 5 7 8

7. 3 6 6 7 6

4 7
5 8

1 1 1 1 1 1 1 2 2 2 2 2

2 2 3 4 5 8 3 4 5 6 7
8 . 3 6 6 7 8

4 7
5 8

1 1 1 1 1 1 1 2 2 2 2 2

2 2 3 4 5 8 3 4 5 6 7
9. 3 6 6 7 8

4 7
5 8
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Section two candidates are determined by a particular section one arrangement 

and treatment replications. For example, consider the first section one arrangement. 

Since treatment 6  has two concurrences with treatments 1  to 3 in section one and 

treatments 7 and 8  have two concurrences with treatments 1 and 2 only, then treat­

ment 6  must have a to tal of four concurrences (two with treatments 4 and 5) in 

sections two and three, and treatments 7 and 8  require a total of six concurrences 

(two with treatments 3 to 6 ). Since there are a total of four occurrences of treatments 

6  to 8  that need to be placed in sections two and three, treatment 6  must be placed 

in four blocks of size one and treatments 7 and 8  must be placed in two blocks of 

size two and one block of size one in sections two and three. Thus, zero occurrences 

of treatment 6  and two occurrences of treatments 7 and 8  must be placed in section 

two. Therefore, the candidate collection that must be placed in section two given 

the first section one arrangement is

7 7 8

8

In a similar manner we can construct section two candidate collections for the re­

maining eight section one arrangements. The section two candidate collection list 

and the corresponding section one arrangements are:

1 . Section one arrangements 1  and 2

7 7 8

8

2 . Section one arrangements 3 and 4
6  7 8  , 6  8  8

8  “ d  7

3. Section one arrangements 5 to 7

7 8  8 , and

4. Section one arrangements 8  and 9

6  7 8 .
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Given a particular section one arrangement and the corresponding section two

candidate collection, an exhaustive numerical search of all possible admissible U-

BIBD(15,21,5;7)s can be conducted. Once all admissible designs are listed for each

arrangement/candidate pair, isomorphic designs can be eliminated by studying valid

treatment permutations. For example, consider the first section one arrangement

with the corresponding section two candidate collection (collection one). The numer-
4 5ical search results in two U-BIBD(15,21,5;7)s, but under the permutation . ,D 4

the section one arrangement remains unchanged and one design is transformed into 

the second design. Thus, there is only one nonisomorphic U-BIBD(15,21,5;7). In 

general, permutations that, when applied to section one arrangements, leave the ar­

rangement unchanged can be applied to resulting U-BEBD(15,21,5;7)s in order to

eliminate isomorphic designs. A second example is arrangement two. Each of the
1 2 3 4 7 8permutations _ _ and Q when applied to the arrangement leave it
L 1 4 o o 7

unchanged. An exhaustive numerical search using arrangement two and candidate 

collection one results in six U-BIBD(15,21,5;7)s, but by applying combinations of the 

aforementioned permutations, four isomorphic designs can be eliminated from this 

set.

Exhaustive numerical searches starting with every possible section one arrange­

ment and corresponding section two candidate collection (s) results in 40 

U-BIBD(15,21,5;7)s. Carefully applying appropriate permutations to the result­

ing designs as is described above reduces the list to 28 possibly nonisomorphic U- 

BIBD(15,21,5;7)s. This completes the two common case.

1.4.3 A- and D-optim al Design

The final step of the search for the A- and D-optimal design in D (15,21,5) is 

an enumeration of the possible completions of the 96 possibly nonisomorphic U- 

BIBD(15,21,5;6)s and the 28 possibly nonisomorphic U-BIBD(15,21,5;7)s
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to V-BIBD(15,21,5)s with 8a <  4 and w < 4. W ith respectively 42 and 49 total 

assignments of the remaining treatments still to be made, and in light of the fact 

that concurrence counts involving any one of treatments 11 to 15 can not be con­

stant, this is a nontrivial exercise. The 124 candidate UBEBDs are too numerous to 

allow an analytic approach analogous to sections 1.4.1 and 1.4.2. However, the list of 

124 designs is small enough to bring the completion problem within computational 

reach. Now an exhaustive blind computer enumeration can be performed by adding 

the remaining treatments to each U-BIBD in all possible ways, requiring only that 

Xfiu1 € E  {A — 1, A, A -t-1} for all i  #  i \  kicking out the resulting designs violating the 

restrictions on 84 and ur*. Among the designs so found, only two distinct discrepancy 

patterns occur: D7 and DIO, each with 84 =  Wd = 4.

This establishes that 8 =  4 for 0(15,21,5), and minimum discrepancy is not 

achievable in conjunction with minimum deficiency for this class. The optimality 

values for designs having discrepancy matrix D7 are:

A-value =  2.33631, D-value =  —25.07572, and E-value =  0.17857,

and the optimality values for designs having discrepancy matrix DIO are:

A-value =  2.33635, D-value =  —25.07565, and E-value =  0.18164.

An example of a design having discrepancy matrix D7 is in table 1.11, and an example 

of a design having discrepancy matrix DIO is in table 1 .1 2 . Of the two minimum

Table 1.11: An A- and D-optimal Design In .0(15,21,5)

1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5
2 2 3 4 5 7 8 3 4 5 7 8 4 5 6 8 5 6 7 6 6
3 6  6  10 9 13 10 11 6  10 9 9 7 7 9 12 8  8  9 11 7
4 7 9 13 11 14 11 13 12 12 11 10 10 8  10 14 9 11 12 12 10
5 8  12 14 15 15 12 15 15 14 14 13 11 13 14 15 15 14 13 13 15
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Table 1.12: A Design In £>(15,21,5) Having Discrepancy Matrix DIO

1 1 1 1 1 1 1 2 2 2 2 1 3 3 3 3 4 4 4 5 5
2 2 3 4 5 7 8 3 4 5 7 8 4 5 6 8 5 6 7 6 6
3 6  6  12 9 10 11 10 6  9 9 10 7 7 12 9 8  8  9 10 7
4 7 9 13 12 11 14 13 11 11 12 12 11 8  13 11 10 9 10 11 14
5 8  10 14 15 13 15 14 15 13 14 15 12 13 15 14 14 13 15 12 15

discrepancy patterns found, D7 is A- and D-superior and thus, according corollary

1.3.4, produces A- and D-optimal designs.

The A-, D- and E-efficiencies for the design with discrepancy matrix D10 and for 

Zhang’s design from table 1.1 relative to the A- and D-optimal design with discrep­

ancy matrix D7 are provided in table 1.13.

Table 1.13: A-, D-, and E-efficiencies Relative To An A- and D-optimal Design

D10 Zhang
A-effidency
D-effidency
E-effidency

0.99998 0.99936 
0.99993 0.99554 
0.98311 0.98395

Are designs in £>(15,21,5) having discrepancy matrix D7 <£p-better then these 

two competitors for p > 2? Is such a design 0 p-optimal in D  in for any p > 2? Could 

it be E-optimal? The first question can be answered by calculating the 0p-values 

for the three competitors, and the second question can be answered by checking the 

bounds 1.9 and 1.10 for the <£p-optimality criterion (1.5). We discuss the question of 

E-optimality in detail in section 1.5.

We have calculated <£p-values and bounds for 1 < p < 60. From the calculations 

and the facts that <?>p(Cd) =  ^  is a monotone decreasing function of p

and is bounded below by the E-value of d, =  z ^ ,  we can make three observations

concerning <pp optimality in £>(15,21,5):

1. Designs having discrepancy matrix D7 are <£p-better than designs having dis-
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crepancy m atrix DIO and Zhang’s table 1 . 1  design for all p > 1 .

2. Designs having discrepancy matrix D7 are 0p-better than binary designs that 

are not an NBBD(2) for 1  <  p < 3.

3. Designs having discrepancy matrix D7 are 0 p-better than nonbinary designs 

for 1  <  p < 6 .

The first observation follows from the fact that the <£p-values for designs having 

discrepancy m atrix D7 are less than those of the two competitors for p <  60, and the 

^p-value of these competitors are less than the E-value of D7 at p = 60. The others 

follow from checking (1.9) and (1.10).

1.5 E-optimal Design in £>(15,21,5)

Let D(v, b, k) be an irregular BD3D setting, and, as usual, denote the binary sub­

class of D by M (v, 6 , k) and subclass of M  containing only equireplicate designs by 

M0{v,b,k). Suppose the eigenvalue/vector pairs of the information matrix Cd for a 

design d  € D are {zdi, e^x), (zd2, e<c),. . . ,  (zdv, e*,). It follows from the fact Cdl  =  0 

that (zdi, e<fj) =  (0 ,1 ) for some i, say i = v. Moreover, since D contains only con­

nected designs, rank Cd = v — 1  and z^  >  0 for all 1  <  * < v — 1. Therefore, a 

set of eigenvalue/vector pairs for Cd corresponding to the nonzero eigenvalues are 

(zdi.edx), (z .c .e .e ) ,. . . ,  (2 <f,0 -i,e«f(t,_i), and e f l  =  0, for all i =  1 ,2 , . .  .v  - 1. For no- 

tational simplicity, redefine the E-value of d  €  D given by (1.6) to be the minimum  

nonzero eigenvalue of Cd, or

=  minz«fi. (1 -2 1 )i<v

Then the E-optimal design d* e  D, defined by (1.7), has E-value

Erf. =  max Erf =  m axm inz*. (1 .2 2 )
d€D deD  i<v v '

In this section we will develop the theory for identifying E-optimal designs in D(v, 6 , k) 

and outline a procedure for constructing these designs. Our results will be applied
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to the setting (v, 6, k) = (15,21,5), and finally the surprising El-optimal design in 

D (15,21,5) will be reported.

Recall from equation (1-12), the information matrix for a  design d € M0(v, 6 , k)

is
_ \ v , T 1  1

c * =  T ( "  v J) ~  k ^ '  

where A<* =  (<W) is the discrepancy matrix for the design, Arf has zero sum rows 

and columns, and the nonzero elements of can be restricted to the first s < v 

rows and columns. Since A ^l — 0, (0 , 1 ) is an eigenvalue/vector pair for A</, and any 

set of v — 1 vectors mutually orthogonal to 1 constitute a set of eigenvectors for A</. 

Then, if (u^, e^) is an eigenvalue/vector pair of A*, the corresponding eigenvalue of 

Cd is
\ v  1

zdi =  -ji (^*23)

Furthermore, if the maximum eigenvalue of the discrepancy matrix Ad is

Ud =  maxu.fi,K

then the E-value for d given by (1.21) becomes

E i =  t ~  s 0 *  <124)

establishing a direct relationship between the E-value of a design d 6  iVf0 (t7 , 6 , k) and 

the maximum eigenvalue Ud of the discrepancy matrix Ad associated with the design.

The following two lemmas and corollary establish conditions for which a search 

for the E-optimal design in D{v, 6, fc) can be restricted to the subclasses M (v, 6, k) 

and M0(v,b,k).

Lemma 1.5.1 Let d be a binary design in an irregular BIBD setting D(v, b, k) with 

discrepancy matrix A j having maximum eigenvalue Ug. IfUg < 2  then the E-optimal 

design must be in M (v,b , A;).
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P ro o f  Let d be a nonbinary design in an irregular BIBD setting D(y,b,k)  with 

E-value Ed- From the proof of Theorem 3.1 of Jacroux (1980b),

T7* ^  ir (k  -  1) -  2]t» ^  Xv -  2
B- -  k(v -  1 ) -  ~ k ~ -

From equation (1-24), the E-value of an equireplicate design d is

EJ = - -  -U j. 
d k k 1

Design d is E-better them  nonbinary d if and only if E j>  E* which is true if

_ Xv — 2 
d >  ~ k ~ '

which implies Uj < 2 . □

Lemma 1.5.2 Let d be a nonequireplicate design in an irregular BIBD setting D(v, b, k)T 

and define Pd =  maxj{r — rdi}. Let d E D(v, b, k) be an equireplicate design with dis­

crepancy matrix A j having maximum eigenvalue Ud. I f Uj < (k — l)pd then d is

E-better than d.

P ro o f  If Ed is the E-value of d then, by Theorem 3.1 of Jacroux (1980a),

c  ^  (r  -  Pd)(k  -  Xv r, Prfl
B i - — =

the equality because =  7  in a BIBD setting. From equation (1.24), the E-value 

for equireplicate d is

B i = T ~  \ Ui’
Design d is E-better than d if and only M Ed > Ed which is true if

Ug < - A r ( f c  -  l)Af- (1-25)v  — i

Inequality (1.25) is satisfied if Ug < (k — 1  )pd. □
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Corollary 1.5.3 I f  there exists an equireplicate design d €  D(v,b,k) having <  4 

and 7 ^  +  7 ^  <  1 , or (6j,lj) =  (5,2), then the E-best design in D(v, b, k) must be 

equireplicate.

P roof Since nonexistence of a BIBD implies k > 5 and nonequireplicate designs

d €  M{y,b,k)  have pd > 1, we need establish that C/j < 4 for all 51 discrepancy

matrices satisfying the conditions of the corollary, which are listed in Appendix A. 

The corresponding list of values is given in Appendix B, and the largest value is 

3.44949 for D51. □

Corollary 1.5.4 I f  there exists a binary, equireplicate design d € D(y, b, k) with 

discrepancy matrix Ad having maximum eigenvalue Ud <  2, then the the E-optimal 

design must be in Mo(v,b,k).

If A D is the class of all admissible discrepancy matrices for designs in M0(v, b, k), 

that is, the class of all integer-valued square matrices of dimension s < v having 

zeros on the diagonal and zero-sum rows and columns, the expression for the E-value 

of the E-optimal design dm 6  M0  given by (1.22) is

_  Xv 1  . Xv l rr
d' ~  t  ~  a '* ?  d = t  ~  k  (1-26)

Solving (1.22) is equivalent to solving

Ud' =  min max: u* (1*27)
A D >

and using (1.26) to obtain the E-value of the E-optimal design in the class.

Now the fundamental question is: is it possible to solve (1.27) without enumer­

ating all of the admissible discrepancy matrices Ad €  A D? To attack this one must 

first ask: what is the relationship between E-value Ud, design discrepancy <5*, con­

currence range Id, and treatment deficiency it/? We begin to answer this question by 

ranking the discrepancy matrices listed in Appendix A by their maximum eigen­

value Ud, from  largest to smallest, as shown in Appendix B. It is immediately clear
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from the list that the E-ranking of a design is not a function of Sj, Id, and w alone. 

For example, designs having discrepancy matrix D l with discrepancy 5* =  2, if they 

exist, are E-inferior to 5* =  3 designs with discrepancy m atrix D2, 6* =  4 designs 

with discrepancy m atrix D5, and 5* =  5 designs with discrepancy matrix D13, and 

the same designs are E-superior to designs with discrepancy matrices D3, D8 , and 

D20 with discrepancies Sj =  3, 5* =  4, and 5* = 5, respectively. Also, designs with 

discrepancy matrix D18 having discrepancy 8* =  4 and concurrence range U =  3 are 

E-inferior to some designs having discrepancy 8d =  4 and concurrence range Id =  2 or 

Id =  3, for example designs having discrepancy matrix D5 or D12, and are El-superior 

to designs having discrepancy matrix D9 or D48 also with discrepancy 6d = 4 and 

concurrence ranges U =  2 and Id — 3.

Furthermore, suppose in a setting M0(v, 6 , k) no design having discrepancy matrix 

D2 exists, but, for some n > 2, a design having discrepancy matrix nD2 = In ® 

D2, where <8 > is the kronecker product and /„  is the n  x n  identity matrix, exists. 

Since the eigenvalues for nD2 are n copies of the eigenvalues of D2, and designs 

having discrepancy matrix D2 me E-better than designs having any of the other 50 

discrepancy matrices in Appendix A, then that 8d =  3n >  6  design would be El- 

better than any design having one of the discrepancy matrices in the list. Therefore, 

even if the existence question for designs having one of the discrepancy matrices 

in Appendix A has been completely solved, we then still may not know whether 

there exists a design with larger discrepancy and/or larger concurrence range that 

is E-better than the best of these. Clearly we need to investigate the discrepancy 

matrix/El-value relationship more thoroughly. The following three lemmas will help.

Lemma 1.5.5 Suppose d  €  M0(v,b,k) has discrepancy matrix A d =  I fU d is

the maximum eigenvalue o f Ad then

ima<W >  —Ud (1-28)
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P ro o f  A design d € Mq(v , b, k) with discrepancy matrix will have information 

matrix C* =  (c*y) given by (1.12) having E-value Ed. By Proposition 3.2 of Jacroux 

(1980b), for all Arfii- , i ±  i',

Ed < r(fc ~ 1]u + Xdii' (1.30)
k

and
E  <  [r(fc -  1 ) -  Arf,y]t;

Since Mo is a BIBD setting, r(fc—1) =  A(u—1 ). Using this expression, the relationship 

Xdii- =  A +  8dii>, and by writing Ed in terms of Ud using (1.24), inequality (1.30) may 

be written as

5dn> > —Ud, for all i #  i', 

and, similarly, inequality (1.31) becomes

<W < V- ^ U d, for all i #  i'. v

Inequalities (1.28) and (1.29) follow immediately. □

C o ro lla ry  1.5.6 Let Ad and A j  be discrepancy matrices for designs d ^  d in an 

irregular BIBD setting Mq(v , b, k). Suppose the maximum eigenvalue o f A  j  =  (Sfc, ) 

is Ug and the maximum eigenvalue of Ad =  (<W) is Ud. I f  d is E-better than d then

“unfe* >  ~Ud (1-32)t^V

and

maxSgii- < - — -U d (1.33)i^i' v
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Corollary 1.5.6 potentially can significantly limit the discrepancy matrix search 

for the E-optimal design by bounding the minimum and maximum treatment con­

currences of designs th a t can be E-better than a known design d having discrepancy 

matrix Ad with maximum eigenvalue Ud- For example, if a design having discrep­

ancy matrix D2 or /„ <g> D2 exists, then Ud =  1.73205, and the corollary says that 

the discrepancy m atrix of a potentially E-better design can not have an element 

less than - 1  or greater than 1 . Consequently, potential E-better designs must have 

a concurrence range equal to 2. The following two lem m as will lead to corollaries 

that provide more information about the discrepancy matrices of El-optimal designs, 

further limiting the number of discrepancy matrices for potentially El-better designs.

L em m a 1.5.7 Suppose d 6  Mo(v,b,k) has discrepancy matrix Ad =  ((W ) with 

maximum eigenvalue Ud• Then, for all m < v,

£  Y . S m < ml-V ~ m ) Ud (1.34)
«»'<m

P ro o f  A design d €  Mq(v , b, k) with discrepancy m atrix Ad will have information 

matrix Cd — (c*v) given by (1.12) having E-value Ed and by Lemma 3.2 (b) of 

Jacroux (1989), for all m < v,

 ̂m m m

m (v — m) )  ' Qfii "+■ )  ! ^  ' cdii' 
t=l i=l i'=l

\  /

(1.35)

Substituting
_  X(v -  1 ) _  (\  + 8dii>)

Cdii — , and Cdn' —fc k

into (1.35), writing Ed in terms of Ud using (1.24), and solving for £  £i<»<»'<m ^  

yields (1.34). □

C oro llary  1.5.8 Let Ad and A j be the discrepancy matrices for designs d ^  d 

in M0(v, b, k). Suppose the maximum eigenvalue o f Ad is Ud and the maximum
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eigenvalue o f Ag  is Ug. I f  d is E-better than d then the elements o f every m  x m, 

m  < v, leading minor A j u  =  (Sg^i) of Ag must satisfy

E E ^ < m( l ,~ m W  (1.36)
i<i' i v

L em m a 1.5.9 Let A d be the discrepancy matrix for a design d £  M0 (u ,6 , Jfc), and 

define Adii to be the m  x m , m  < v, leading minor o f Ad- Let (u*•,£*)» 1  <  i <  m, 

6 e the eigenvalue/vector pairs for  A^n, and write X{ = £ f l ,  where l„ xi is a vector 

whose elements are all 1. I fU d is  the maximum eigenvalue of Ad, then

v — x ? l - l
max Ui < Ud- (1.37)

P ro o f  Since Ad has row and column sums of zero,

Ud =  max x T Ad x.
XTX~l
xTl=0

Partition Ad as
A (  Adii Adi2 \

and consider the vector y T =  (wT, 0 T), w r w  =  1 , so that

Then, provided w Tl  =  0,

If w r l  ^  0, consider

y T A(iy  =  wr A(filw.

Ud > w  A,ni w.

y- =  ( / - l j ) y
V

=

=
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where Ivxv is the identity matrix and J uxu is the matrix whose elements are all 1 . 

Then y*Tl  =  0 and

y * V  =  y V -  ^ ( £ > i ) y Tl +  

v -  (E  m )2

Then

=  s, say

Ud > \ y ' T &dy m =  ^ ( y - i ^ t £ 7 ,  l ) TAd( y -
S  S  V V

=  - y T Ady  (since 1 T Ad =  0)
3

=  -Wr Arfi! w 
s
'v  -  (E  m )21 _l wr  A<ni W.

Let £2> • • t b e  the eigenvectors of A^n with eigenvalues u^i,U& ,. . . ,  u*„, re­

spectively, and suppose 1 =  xit say. Then

Ud > max

=  max

v — xf
v

v — xf

- l

- i

C oro lla ry  1.5.10 Let A<* and A j 6 e the discrepancy matrices for designs d ^  d in 

M o(y,b,k). Suppose the maximum eigenvalue o f A d is Ud, the maximum eigenvalue 

o f A j is Ug, and A ^  is a m  x m leading minor o f A j for any m  < v. Let (u*, £*) 

be the eigenvalue/vector pairs for  A ^ ,  and write x* =  £ f l ,  where 1  is the m  x 1  

vector whose elements are all 1. I f  d is E-better than d then

v — x? 1  - I
max (1.38)

W ith corollaries 1.5.6, 1.5.8, and 1.5.10 in hand, given an irregular BIBD set­

ting D(v, b, k), we are ready to outline a procedure for finding the discrepancy ma­

trices {A *, A * ,. . . ,  A *} €E Ad , t  > 1, with maximum eigenvalue Ud- given in
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(1.27), that is, finding the E-best discrepancy matrices in A d - The procedure starts 

with a discrepancy m atrix A<* having maximum eigenvalue Ud < 2.0 for a design 

d € M0(v, b, k) tha t is suspected to exist, and, consequently, assumes the search can 

be limited to designs in Mq(v, 6 , k). It then enumerates a list of discrepancy matri­

ces {A&, A&,. . . ,  A<jn} 6  A d having maximum eigenvalues {U&, U&,. . . ,  U ^}  such 

that Ufi < Ud for each i <  n, that is, it enumerates a list of E-better discrepancy 

matrices in A d- If no such discrepancy matrix exists, the procedure will establish 

the fact. The 1  <  t  <  n E-best discrepancy matrices will have maximum eigenvalue 

Ud- satisfying

Ud' =  min{Ufa U& , . . . ,  U ^, Ud}- (1.39)

The procedure is:

1. Apply conditions (1.32) and (1.33) from corollary 1.5.6 to Ud in order to estab­

lish bounds for the maximum and minimum elements of a discrepancy matrix 

A j =  (S fa ) th a t is E-better than A*.

2. Create an exhaustive list of symmetric and nonisomorphic m  x m  matrices 

that could serve as the leading minor for a discrepancy matrix A j that is El- 

better than A*, for a convenient value of m < v. Each matrix must satisfy the 

following requirements:

(a) All diagonal elements must be equal to zero.

(b) Each off-diagonal element must satisfy the bounds determined in step 1.

(c) The elements must satisfy condition (1.36) of corollary 1.5.8.

(d) If the rows and columns do not sum to zero, then m  < v.

We will refer to this list of discrepancy matrices as the starter candidate list, 

and matrices in this list as starter candidates.
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3. Remove starter candidates that do not satisfy condition (1.38) of corollary 

1.5.10 (these are determined by computation).

4. For each remaining starter candidate enumerate all nonisomorphic one row and 

one column extensions to symmetric matrices satisfying conditions (a) - (d) of 

step 2 and step 3.

5. If any of the extensions have zero sum rows and columns, then they are dis­

crepancy matrices and should be copied to the E-better discrepancy matrix 

list.

6 . If there are no remaining extensions or the extensions are v x v, the search is 

over.

7. The remaining extensions form a new list of starter candidates. Return to step 

4.

Now we have a (hopefully small) list of E-competitive discrepancy matrices 

(Adi,A,g>,. . . , Ajn,A d} and a corresponding list of maximum eigenvalues 

{Uft, Ufa, . . . ,  Ujn, Ud}. We are assured that this list is not empty because at min­

imum it will consist of A*. However, it remains to  determine if any corresponding 

designs can be constructed.

As an aside, if there exists an irregular BIBD setting v' < v, dis­

crepancy matrices from the E-competitive discrepancy matrix list can potentially 

serve as the discrepancy matrix for the E-best design d! 6  D(t/', 6 ', k1) provided their 

dimension is less than v' and a design d! 6  D(v', IY, k!) having the discrepancy matrix 

can be constructed.

We now apply the procedure outlined above to the irregular BIBD setting 

D (21,15,5) discussed at the beginning of this chapter. From the A- and D-optimal 

design search in section 1.4 it was established that the only designs having 8* <  4 and
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la = 2 tha t exist in the setting have discrepancy matrix D7 or DIO listed in Appendix 

A. For our search we will conjecture that a design d 6  M0(v, 6 , k) having the 5 =  6  

discrepancy matrix I2  ® D2 exists, and consequently search for discrepancy matrices 

A j that are E-better than A<* =  D2 having minimum eigenvalue Ug <  1.73205 =  U&\ 

such a design, if it exists, is E-better them D7 and DIO designs as well as Zhang’s 

design of table 1 .1 . Now, according to conditions (1.32) and (1.33) from Step 1 , the 

elements of discrepancy matrices for potentially E-better designs must be in the set 

{—1,0,1}. Thus, we will select our starter candidate list by partitioning the potential 

E-best discrepancy matrices into three cases according to the number of Is (hence 

-Is) allowed to occur in a row of the discrepancy matrix and then by applying the 

element sum condition (1.36) of Step 2. The cases along with the candidate starter 

lists described in step two of the search procedure are:

C ase 1: Discrepancy matrices with three or more ones in at least one row. Without 

loss of generality, we assume the first row (and column) of each starter has at 

least three ones. Therefore, Case 1  starters will have dimension four. Since 

condition (1.36) requires the sum of the elements below and above the diagonal 

to be less them or equal to two, the four nonisomorphic structures are:

(*) («) (*«) (**)
0 1 1 1  0 1 1 1  0 1 1 1  0 1 1 1
1 0 - 1 - 1  1 0 - 1 - 1  1 0 - 1 - 1  1 0 - 1 0
1 - 1 0 - 1  1 - 1 0  0 1 - 1 0  1 1 - 1 0  0
1 - 1  - 1  0 1 - 1  0 0  1 - 1  1 0  1 0 0 0

C ase 2 : Discrepancy matrices with no more tha t two ones in the same row and 

exactly two ones in a t least one row. We assume the first row of each starter in 

this case has exactly two ones, and, consequently, each starter is of dimension 

three. Then, by condition (1-36), the sum of the elements below and above the 

diagonal must be less than or equal to two. The two nonisomorphic structures
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are:
(*) (“ )

O i l  O i l
1 0 - 1  1 0  0

1 - 1 0  1 0  0

C ase 3: Discrepancy matrices with a single one in any row. The only possible

structure clearly is:
0 1  

1  0

For the first search (Case 1 ), Step 3 of the procedure that applies (1.38) to each starter 

candidate immediately eliminates l(iii), l(iv), and 2 (ii). Continuing the procedure 

with candidates l(i) and l(ii) does not result in an E-better discrepancy matrix, and,

therefore, discrepancy matrices having three or more ones in any row are eliminated.

Case 3 results in one discrepancy matrix, matrix D2. The interesting case is 2(i) for 

which we will demonstrate the search procedure.

Since Case 2 searches for discrepancy matrices having no more than two Is (and 

two -Is) in any row, for the first extension we require a - 1  to be placed in the first 

row. There are three possible extensions, and they are:
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Extension max» [^ ]

0  1 1 - 1

. 1 0 - 1 1  

(E ia ) 1 —1. 0 0 1.15616

- 1 1 0  0

0  1 1 - 1

M 1 0 - 1 0  

{Elb) 1 - 1 0  0
1.5557

- 1 0  0  0

0  1 1 - 1

. 1 0 - 1 1  

{Elc) 1 - 1 0  1
1.1989

- 1 1 1 0

Continuing the process using {Elc) as a starter does not lead to any E-better discrep­

ancy matrices; however, each of {Ela) and (£16) ultimately yields one discrepancy 

matrix that is E-better than D2. Since the E-best discrepancy matrix results from 

using (E la ) as a starter, we continue the demonstration by extending matrix (E la ) 

and, since the first row can not receive any Is but needs two -Is in order to fulfill the 

zero-sum row requirement of a discrepancy matrix, without loss of generality, we will 

require a -1 to be placed in the first row of each extension. Two admissible matrices 

result, and they are:
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- i
Extension

- 1  - 1

(E2a) 1.6180

1.6411

Attempts to extend matrix (£26) with the requirement that a 1  be placed in the 

fifth row results in no admissible matrices. Using matrix (£2a) as a starter and 

enumerating all extensions having a - 1  in the second row results in two admissible 

matrices. The resulting extensions are:

Extension r u—if 1 max, U(H

0  1  1 - 1 - 1  0  

1  0 - 1  1  0 - 1  

1 - 1 0  0  1 0  

(E3a) - 1  0  I 0  0 - 1  

- 1  1  0  0  0  1  

0 - 1  0  1 - 1  0

1.6920

0  1  1 - 1 - 1  0  

1  0 - 1  1  0 - 1  

, . 1 - 1  0  0  1 - 1  

(B34) - 1  1  0  0  0  0  

- 1 0  1 0  0  0  

0 - 1 - 1  0  0  0

1.6407

Enumerating all extensions of (£36) requiring a  1  to be placed in the sixth row does

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



52

not produce any admissible matrices. The only admissible extension of (EZa) places 

a - 1  in rows three and four and a 1  in rows five and six and produces the 7 x 7

discrepancy matrix A j having Sj =  7 and maximum eigenvalue U& =  Ud- =  1.6920

shown in table 1.14. If a V-BIBD d with w — 5 having this discrepancy matrix 

exists, then it will have E-value 5.66160 and be the E-best design in £>(15,21,5).

Table 1.14: A Discrepancy Matrix W ith Maximum Eigenvalue 1.6920

0  1  1 - 1 - 1  0  0

1 0 - 1  1 0 - 1  0
1 - 1  0 0 1 0 - 1

- 1  1 0 0 0 1 - 1
- 1 0  1 0  0 - 1 1  

0 - 1  0 1 - 1  0 1
0  0 - 1 - 1  1  1  0

As mentioned above, using (£16) as a starter also produces a discrepancy matrix. 

It is the 9 x 9  matrix shown in table 1.15 having discrepancy 6  and maximum 

eigenvalue 1.7321. This matrix is E-equivalent to the 12 x 12 discrepancy matrix 

I-x ® D2 also having discrepancy 6 .

Table 1.15: A Discrepancy Matrix W ith Maximum Eigenvalue 1.7321

0 1 1 - 1 0 0 - 1 0 0
1 0 - 1 0 0 0 0 0 0
1 - 1 0 0 0 0 0 0 0

- 1 0 0 0 1 1 - 1 0 0
0 0 0 1 0 - 1 0 0 0
0 0 0 1 - 1 0 0 0 0

- 1 0 0 - 1 0 0 0 1 1
0 0 0 0 0 0 1 0 - 1
0 0 0 0 0 0 1 - 1 0

The search for the A- and D-optimal design in the previous section enumerated 

all nonisomorphic U-BIBDs with w  =  7 and w =  6 . We can now use these designs to 

search for an E-optimal design by searching their extensions to V-BIBDs, requiring
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the finished designs to contain a discrepancy matrix of the form in table 1.14. Doing 

so produces an E-optimal design having optimality values:

A-value =  2.33830, D-value =  —25.06954, and E-value =  5.66160

The design is shown in table 1.16. The A-, D-, and E-efficiencies for designs with

Table 1.16: An E-optimal Design In D(15,21,5)

1 1 2 4 5 2 1 5 1 4 3 2 1 3 4 1 3 3 2 2 1

2 6 3 5 6 4 3 9 2 7 5 6 4 7 8 1 0 6 4 7 5 5
3 7 8 6 8 9 7 1 1 6 9 8 1 1 8 1 0 1 2 1 1 9 6 8 7 9
4 8 9 7 1 0 1 0 1 1 1 2 1 0 1 0 1 0 1 2 1 1 1 2 13 13 13 13 13 13 14
5 9 1 1 1 1 1 2 1 2 1 2 13 14 15 15 15 14 14 14 15 14 15 15 14 15

discrepancy matrices D7 and DIO, and for Zhang’s design from table 1.1 with respect 

to the E-optimal design with the discrepancy matrix in table 1.14 are provided in 

table 1.17.

Table 1.17: A-, D-, and E-efficiencies Relative To An E-optimal Design

D7 D10 Zhang
A-effidency
D-effidency
E-effiriency

1.00085 1.00083 1.00021 
1.00620 1.00613 1.00172 
0.98912 0.97242 0.97324

We have calculated the <£p-values of designs having discrepancy matrix D7 (that 

is, A- and D-optimal designs) and of E-optimal designs for p  <  100. Prom these 

we conclude tha t discrepancy D7 designs are 0 p-better for p <  38, and E-optimal 

designs are 0 p-better for all p >  39 (the <6 p-value of E-best designs is less than 

1/5.6 =  0.17857 when p =  100).
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C H A P T E R  I I

R E S O L V A B L E  D E S I G N S  W I T H  T W O  B L O C K S  P E R  
R E P L I C A T E :  G E N E R A L  T H E O R Y

2.1 Introduction

When an incomplete block design is used, it is sometimes necessary to conduct the 

experiment in stages. For example, consider an industrial experiment to compare the 

effect of nine, say, combinations of materials used to manufacture an airplane part 

on the overall weight and strength of the part. Suppose the company conducting the 

experiment has two machines that manufacture the part, one machine can produce 

five parts at a  time, and the other four. The experiment then consists of a series of 

“runs” in which each material combination is used one time. Moreover, suppose the 

machines frequently break down, and, as a result, it may not be possible to complete 

the desired number of runs. The experimenter is interested in knowing the allocation 

of the material combinations to the machines in each of the runs that will provide the 

best weight/strength estimates and comparisons. There are many other examples of 

similar experimental designs in agricultural trials, see Patterson and Silvey (1980), 

for example. These types of experiments fall into the category of resolvable block 

designs and are the topic of this remainder of this manuscript.

A resolvable block design setting D(v, r; fclt fc2, . . . ,  k») with treatment replication 

r  consists of r  sets of blocks of sizes fclt fc2, • - • >&*» where 52 kj = v. A resolvable 

design is an assignment of v treatments to the b = rs  blocks in such a way that 

each treatment occurs once in each set, which is consequently called a replicate.
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An example of a resolvable design in £>(9,4; 5,4) that can be used for the airplane 

part experiment described above is shown in table 2.18 with the blocks written as 

columns. Later we will prove that this design is optimal with respect to  many useful 

optimality criteria.

Table 2.18: A Resolvable Design In D (9,4; 4,5)

1  6 1 4 1  2 1 3
2 7 2 5 4 3 2 5
3 8 3 8 5 8 4 7
4 9 6  9 6  9 6  9
5 7 7 8

The origin of the concept of resolvability dates to the literature of the 19th cen­

tury, for example, “Kirkman’s schoolgirl problem” (Kirkman, 1850). A paper by 

Preece (1982) is an excellent source for many historical references of resolvable de­

signs. Yates provided the first systematic study of resolvable designs when he in­

troduced square lattice designs (1936, 1940), and the terms “resolvable design” and 

“affine resolvable” were introduced by Bose (1942). Yates’ lattice designs were ex­

tended to  rectangular lattices by Harshbarger (1946, 1949). Williams (1975) and 

Patterson and Williams (1976) introduced a-designs. Bailey, Monod, and Morgan 

(1995) discuss a class of designs th a t were introduced by Bose (1942) called affine 

resolvable designs. In that paper they provide constructions by using orthogonal ar­

rays which were introduced by Rao (1947). A book by John and Williams (1995) and 

a  manuscript by Morgan (1996) provide excellent summaries of these major classes 

of resolvable designs with references.

Virtually all of the references listed above describe design settings having equal 

block sizes; not much is known about resolvable designs with unequal block sizes. 

Two references for such such designs are Patterson and Williams (1976) and Kageyama 

(1988). Our treatment of resolvable designs will allow for unequal block sizes.
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Cheng and Bailey (1991) have shown that square lattice designs are A-, D-, and 

E-optimal among the class of binary, equireplicate designs, and Bailey, Monod, and 

Morgan (1995) proved that affine-resolvable designs are optimal with respect to many 

optimality criteria, including A-, D-, and E-optimality, using Schur-optimality. Our 

concern will be A-, E-, Schur-, and type - 1  optimality of resolvable designs.

We will restrict our discussion to the subclass of resolvable designs having s =  2 

blocks per replicate in this document; however, the theoretical framework introduced 

here can be extended (perhaps with considerable difficulty) to settings having s > 2  

blocks per replicate. We will leave th a t investigation for future work. The total 

number of blocks will be 6  =  2r . The sizes of the two blocks in each replicate may be 

unequal but will be the same for all replications. The size of the first block of each 

replicate will be denoted by ku  the size of the second block by fc2, and, without loss 

of generality, we will assume fci >  fc2. Then v =  fci +  fc2, and the block sizes vector 

is k  =  1  ® (fci, fc2)T where 1  is the r x l  vector of Is and ® denotes the Kronecker 

product. The general setup is pictured in figure 2.2. The number of treatments v 

and the block sizes will be arbitrary.

Certain classes of optimal resolvable designs with s =  2  and r > v can be con­

structed from Balanced Incomplete Block Designs. Suppose D (v,b ,k)  is a  BIBD 

setting, and let d 6  D  be a BIBD. It is well known that d is universally optimal 

(Kiefer, 1975). Let S  =  { 1 ,2 , . . . ,  v}  be the set containing all of the available treat­

ments for the setting D. A new design, d, also having b blocks, can be obtained 

from d  by taking each of the b blocks of d to be the complement of the corresponding 

blocks of d. That is, if 6 * and 6 t- are the ith  blocks of respectively d and d, then 

bi = S\bi, i — 1 , 2 , . . . ,  b. Design d is called the complement or complementary de­

sign of d; it is a BIBD W ith parameters u =  u, 6  =  6 , k = v — k, f  = b — r , and 

A =  6  — 2r -t- A, and are therefore universally optimal (Street and Street, 1987, page 

45). Since 6 f U 6 4 = S  for each t, the design dm — d U d is a  resolvable design with
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1 1

2 2

3 3

k2

ki

Figure 2.2: Resolvable Design W ith s = 2, Arbitrary r, and k i >  k2

v ' =  v  treatments in 6* =  26 blocks divided into r* =  6 replicates each containing  

two blocks of sizes k{ = k  and =  v — k. It follows from Fisher’s inequality that 

6 * >  2v, or r* > v. Furthermore, the information matrix for d*, which is

c d. = C d +  Cd = ( /  -  - 7) , (2.40)
v — 1 V v )

is completely symmetric and of maximal trace, and, therefore, by Kiefer’s result

(1975), d* is universally optimal.

For example, a design d in the BIBD setting D {7,7,4) having r  =  4 and A =  2 

with the blocks written as columns is

1 1 1 1 2  2 3
2 2 3 4 3 4 4
3 5 5 6  6  5 5
4 6  7 7 7 7 6 .

The complementary design d E D (7,7,3) having f  =  3 and A =  1 is

5 3 2 2 1 1 1
6  4 4 3 4 3 2
7 7 6  5 5 6  7,
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and the universally optimal resolvable design dm =  d U d is

1 5 1 3 1 2 1  2 2 1 2 1 3 1

2 6 2 4 3 4 4 3 3 4 4 3 4 2

3 7 5 7 5 6 5 5 6 5 5 6 5 7
4 6 7 7 7 7 6 .

(2.41)

Despite the elegance of constructing resolvable designs using BIBDs and their 

complements, and the potential for generalizing this technique to irregular BIBD 

settings or to settings that do not satisfy the necessary conditions for a BIBD by 

applying some of the ideas of Chapter I or from Morgan and Srivastav (2000), our 

discussion of resolvable block designs will not utilize this approach. Our concern 

will be resolvable designs with a small number of replications, and the number of 

replications in designs constructed using the procedure described above require r  > v 

which is a relatively large number of replications. As a result, our optimality analysis 

will take the more traditional approach of directly working with the information 

matrix for various design settings. We will make the requirement that v > 6 , th a t is 

r  < I , for reasons that will be apparent shortly. For the remainder of this chapter 

D {y,r-,ki,ki) will denote the subclass of binary, connected, and equireplicate block 

designs that are resolvable and satisfy the conditions described above.

A design d £  D  has information matrix

Cd = r I  — N4 k~* N j (2.42)

where I  is the identity matrix of order v, is the 6 x 6  diagonal matrix whose 

diagonal elements sure the elements of k, k~* is the inverse of k 5, and Nd is the v x 6  

incidence matrix. Of concern to us is identifying and constructing the A- and El- 

optimal designs d  €  D  for various choices of r , v  and (fclt fc2), requiring calculation of 

the eigenvalues of the information matrix Cd- This task is simplified by the following 

manipulation. If the treatments and blocks of design d  E D  are interchanged so 

that treatment i  in block j  becomes treatm ent j  in block i, then we obtain a design 

having incidence matrix N J  that places 6  treatments into v blocks of equal size r

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



59

with treatment replication vector k  =  1  ® (fci, hi)*. This design is called the dual of 

d and has information matrix

Cdual =  ks - ~ N j N d. (2.43)
T

The (j, j ') th  element of the concurrence matrix N JN d of the dual design of d indicates 

the number of treatments simultaneously occurring in blocks j  and f ,  that is, the 

number of block j  and j '  block concurrences, of the corresponding d €  D. The 

elements of N JN d are referred to as block concurrence counts.

If we multiply Cd by p, and if we right and left multiply CdUai by k~s/2, equations 

(2.42) and (2.43) become

- C d = I  - -  Nd k~s NJ = C'd (2.44)r r

and

k - < f / 2  Cdual k " ^ 2  =  /  -  -  k - ^ 2  N J Nd k ~S/2 =  (2.45)r

where the 6 x 6  matrix k ~s?2 is the inverse of k ^ 2. which is the diagonal matrix 

having the elements of s/k  =  1  ® (%/fci, y/k2)T on the diagonal. Define the v x 6  

matrix B d = Nd k ~s/2 and substitute into (2.44) and (2.45) to obtain

C'd = I - - B dB j  (2.46)r

and

C * *  =  l  -  i  B lB d . (2.47)

Suppose at, a2, . . . ,  a& are the eigenvalues of BJB d, then, since the nonzero eigen­

values of BdBJ  and B JB d are identical, the eigenvalues of BdB J  (for v > 6 ) are 

ai,a2, and v — 6  copies of 0 . Note that BJB dk l / 2  =  r k 1/2; that is, a* = r

for some i, say i =  6 . Thus, ^dual has 6  — 1  nonzero eigenvalues ( 1  — pat ), ( 1  — 

£a2) , . . . ,  ( 1  — and one eigenvalue equal to 0 , and CJ has 6 — 1  nonzero eigenval­

ues (1 —£ai), (1 —i a 2), - - -, ( 1 —jraft-i), one eigenvalue equal to 0 , and v —b eigenvalues
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equal to 1. It follows th a t the eigenvalues of C& are (r — at), (r  — 0 2 ), - - -, (r — a&_i), 

0, and v — 6  copies of r. Therefore, an eigenvalue-based optimality investigation 

of designs in D(v, b; ku  fc2) can be performed by restricting our efforts to studying 

the eigenvalues of ^dual • Since we will be investigating design settings with a fixed 

number of blocks b but for a  varying number of treatments v, the dimension of Cdual 

will remain constant for all v. Furthermore, working with Cduai requires us to focus 

on block concurrences in the formation of N JN d- This approach will significantly 

simplify our search for optimal designs in D.

Define the symmetric m atrix Ad =  B J B j  =  k"<V2 N JN Jk~S12. Then =

I  — \Ad- If (ax,xx), (a2 , x 2) , . . . ,  (aft.Xft) are the eigenvalue/vector pairs of Ad, its 

spectral decomposition is
b

Ad =  £ a i Xi xf ,  (2-48)
» = 1

xfx< =  1 , and x fx j  =  0  for i ^  j .  Since Ad k 1 ' 2  =  rk 1/2, then (r, )

is one of the eigenvalue/vector pairs, the 6 th  pair say. Note that this eigenvalue 

corresponds to the eigenvalue equal to zero that is common to Cdual and Cd- The 

6 th  term of (2.48) is then

k ^ C k 1 ' 2 ) 1a&x6 x^ =  r )] <2'49>(k t/2 )rk l/2 fcl + fc2

where J i s a r x r  matrix of Is. Subtracting (2.49) from (2.48) yields the new matrix

1

AZ =  A t —
A v * K ) ] “ ! w r  ( 2 - 5 o )fcl +  fc2

Clearly, (ox.x,), 1  <  i  <  6  — 1  are eigenvalue/vector pairs for A J  and for the eigen­

vector x&, A'd has an eigenvalue of 0 . Furthermore, (a,-, x*) is an eigenvalue/vector of 

A*d if and only if ( 1  — f a ,  x*) is an eigenvalue/vector pair of Cj if and only if r  — a* 

is an eigenvalue of Cd- Therefore, we can obtain all the eigenvalue-based optimality 

information for any design d €  D  using equation (2.50) provided we can construct 

N JN d for an arbitrary d E D m. order to obtain an explicit expression for A J
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We will construct the concurrence matrix for a dual design NJNd  by first observ­

ing the block concurrences for the blocks of two arbitrary replicates, n  and n' say, of a 

design d € D. Replication n, 1 < n < r, contains blocks 2 n — 1  and 2n which will be 

denoted by &2 „ - i and 6 2 m respectively. Denote the 6 2 1 1 - 1  and 6 2 n '- i block concurrence 

counts by <f>nn>, and, without loss of generality, assume 1  <  n <  n ' <  r. The remain­

ing fci — <f>nn> treatments in b^n'-i are also in 6 2 n. If the fci treatments in 6 2 n- i  are 

labeled 1 ,2 , . . . ,  fci and the treatments in &2 n are labeled fci 4-1, fci -F 2 , . . . ,  ki +  fc2, 

then, since these labels are arbitrary, we can assume treatments 1 , 2 , . . . ,  4>nn> are in 

b^n-i and &2 n'-i> and treatments fct+1, fci+ 2 , . . . ,  2fci—0nn» are in 6 2 ,, and Now,

the remaining fci —<2W  treatments in 6 2 „-i that tire not in 6 2 n'-i> which are treatments 

<f>nn' + 1 . 0 nn' +  2 , . . . ,  fci, must also be in 6 2 ,,/, and the fc2  — fci +  0 nn' treatments in 6 2 ,, 

that are not in bon'-i, which are treatments 2 fci — 0 nn# -i-1 , 2 fci — 0 nn» -I- 2 , . . . ,  fci +  fc2, 

are in 6 2 ^ .  Refer to figure 2.3 below to see the treatment placements. Thus, once

replication n  replication n'

In—1

Figure 2.3: Replication n and nr Block Concurrences
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the &2n - i and &2n '-i and the &2n and &2n'-i block concurrences are chosen, all of 

the remaining replication n and n ' block concurrences are prescribed; moreover, the 

block concurrence counts for each pair of blocks is determined once 0 nn< is chosen.

The intersection of rows 2n — 1 and 2n of N J  with colum ns 2 n ' — 1 and 2 n' of 

Nd in N J N d, which makes up the submatrix of N JN d corresponding to the block 

concurrence counts for the blocks in replications n and n', is

*  =  (  (f>nn' ^i ~  ^ nn> ^
nn' \ k i -  k2 - k i +  4>nn> )  '

Note that, since n and n' are arbitrary, the block concurrence submatrix for any two 

replications will have the same structure, and when n —n'

/ f c i  0 \  
VO k2 )■

Therefore, N JN d is

 ̂k\ 0  tf>\2 k\ — <f>\2 013 kl — 013 01 r kl — 0lr ^
0  k2 ki — 0i2 k2 — ki +  0i2 k\ — 012 k2 — fci +  012 . . . kl — 01r k2 — fci -F 0 ir

fci 0 023 kl — 023 02r kl — 02r
0  k2 kl ~  023 k2 — kl +  023 kl — 02r k2 — fci +  02r

ki 0 03r kl — 03r

\

0 k2 kl — 03r

ki
0

k2 — kl +  03r 

0

fc2 /

Which may be written

iVjiVrf =

(  ^ 1 1  ^ 1 2  

$ 2 2

$ lr  \  
$ 2 r

$rr )

(2.51)

Clearly block concurrences will be constrained by a particular choice of d €  D. 

The question is, what are the admissible block concurrences and block concurrence 

counts? In particular, what range of values can <£nn», n < n1 assume? First consider 

the block concurrences for blocks &x and 6 2  of replication one with blocks 6 2 ^ - 1  and
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&2 n' of replication n', 1  <  n ' <  r. When n' > 1 , the &i and b̂ n’- i  block concurrence 

count 0 x„/ must be less than or equal to  fci, and the fci — <p\n> block concurrences 6 2  

has with bm'-i must be less than or equal to fc2. Therefore, fci — fc2  <  0 in' <  fci for 

all 1  <  n! <  r , and when n' =  1 , =  fct .

Now we will investigate the replication two, containing blocks 63 and 64, and repli­

cation n' (2 <  n' < r) block concurrences. The <fen> treatm ents common to  blocks 63 

and bin*-1 can be divided into two groups: treatm ents from 61 and treatm ents from 

63. The 63 and 62^-1 block concurrences among treatm ents from 61 m ust be in 61, 

63, and b2n>-1, and, consequently are among the 0 i2 treatm ents from 63 th a t are in &i 

and the treatm ents from bin'- i  th a t  are in 61. Thus, the number of 63 and 62^-1 

block concurrences with the treatm ents from 61 can be no larger than m in{0i2,0 i„/} . 

Similarly, the 63 and 62,,'-1 block concurrences among treatm ents from 62 m ust be in 

62, 63, and 62„'_i, and are among the fci—0 i2 treatm ents from 63 th a t are in 62 and the 

fci—0in' treatm ents from &2n'-i th a t are in 62- Thus, the number of 63 and 6271'-1 block 

concurrences with the treatm ents in 62 can be no larger than min{fci — 0 i2, fci — 0 in'} , 

and 02n' <  m in{0i2,0 in'}  -I- min{fci — 0 i2, fci — 0 in'}- Now, if 0 i2 +  0 i n' >  fci then 

63 and 62,,'-! m ust have a t least (0 i2 4- 0 i„ ') — fci block concurrences from 61, and if 

(fci—0i2) +(fci — 0in') >  fc2 then 63 and &2n'-i m ust have a t least 2fci — (0 i2+ 0 inO —fc2 

block concurrences from 62. Note th a t if 0 i 2+ 0 in' <  fci or (fci—0i2)+(fci—0 inO <  fc2» 

then 63 and bm'-i need not have any block concurrences among the treatm ents in 61 or 

62, respectively. Therefore max{0, (0i 2+ 0m ')—fci}+max{0, 2fci—(0i2+ 0 in/) —fc2} <  

02n' <  m in{0i2,0 in '}  +  min{fci -  0 i2, fci -  0i„/}, 2 <  n ' <  r .

We will now generalize the previous discussion to the replication n  with repli­

cation n ', 1 <  n <  n1 < r, block concurrences. As in the replication two and 

nf case above, the 0 nn/ bin-i and 6 2 n '- i block concurrences can be divided into 

two groups, but now the groups are made up of treatments from 6 2 1 - 1  and treat­

ments from bn, for arbitrary 1  <  I < n. For each I and for the same reasons
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outlined above in the replication two block concurrence argument replacing 6i w ith

&2/—l and 62 With 621, 0nn' ^  ®in{01nr^ta'} “f- niin{fci ^In'}i and <f>nn‘ —

max{0, (4>in +  4>m) — fci} +  max{0, 2fci — (<f>i„ +  <f>in>) — fc2}. Then for 2 <  n  <  n ' <  r , 

m axi</<„{max{0, (0t„ +  -  fci} +  max{0,2fci -  {<t>in +  <?W) -  *2}} <  <?W and

<Pnn' <  min1<i<„{min{0,n, <f)M } +  min{fci -  0{n, fci -  0j„-}}.

In summary, the block concurrence count for the first block of replication n, &2n-i> 

and the first block of replication n ', &2n' - i  m ust satisfy

when 2 <  n  < n ' < r . The remaining block concurrence counts for each pair of blocks 

of any two replications n and n' which are, fci — <j>nnt (twice) and fc2 — fci +  <j>nn>, are 

expressions involving only the <f)nn>s and block sizes fci and fc2, and their constraints 

follow from (2.52) and (2.53). Therefore, the 620-1 and 62^-1 block concurrence, 

th a t is, the block concurrence for the first block of replications n w ith the first block 

of replication n ', once chosen determine a  bound for the block concurrence counts 

for the remaining blocks of replications n  and n '. We will assume the <f>nn's  satisfy 

(2.52) and (2.53).

Now th a t we have derived iVJiVrf for an arbitrary resolvable design d  E D , we 

are ready to  write an explicit expression for A 4 =  k ~ s^2iVJiVrfk _<J/2 using (2.51). By 

rewriting 6 x  6, & =  2r, diagonal m atrix  k ~ s/2 as

fci fc2 — 4*\n‘ ^  fci, (2.52)

when n  =  1 and

max{max{0, (0,n +  <(>M ) -  fci} +  max{0,2fcx -  (0/n +  <f>ln.) -  fc2}}L<J<n

<  <  mun {min{0{n, <f>M } +  min{fct -  0 tn, fci -  <&„'}}, (2.53)
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i t  follows tha t

A =

(  k  ^ 2$ u k  k  s /2 $ 12k  6/2 
K~S/2^ 22K~S/2

K -S/2$ lrK~S/2 \  
K -S'2$ 2rK- S'2

k~s/2$ „ k -*'2

♦ »

\

•L. N 
♦i.

$'rr

(2.54)

where $*n =  I, the 2 x 2 identity m atrix, and 

for 1 <  n < n ' < r . Amd in (2.50) can now be easily obtained by subtracting

*1 ~V  \
l~K"’ ITEST k2 )

fci
y/Tti

(2.55)

1  /  ki y/k\k2 \
fci +  fc2 \  yjk\k2 k2 )

from each $*„, in (2.54). Since subtracting (2.56) from $*n =  I  yields

—y/kik2

(2.56)

1 /  k 2 —y / k i k 2 \
tl +  k 2 ^  y / k \ k 2 k i  Jki ■+• k2 V V k ik 2 ki 

and subtracting (2.56) from <£*n, given in (2.55) yields

0nn'(fci 2̂ ) k2 f  k2 —y/kik2 \
kik2(ki +  k2) V - y /k ik 2 ki J ’

then

A* — _____ 1 _____
** (fci +■ k2)kik2

 ̂ k ik 2 0 i 2  0 1 2  ' * ' 0 * r  ^

k i k 2 023 02r
kik2 4>lr

kik-

f  k2  - y / k i k 2 \
y - y / k i k 2 ki J

where

0nn' — 0nn'(fcl +  & )  ~  t f -
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(
j,_____ _ jj. \

_ J n ~  fc 1 2 J 3X6 ® fci +  ^2 t then the 6  =  2 r  

eigenvalues of AJ are r  copies of 0  and times the r  eigenvalues of

Afc =

( k\lC2 4>\2 013   0Jr ^
fcl&2 023 02r

fclfc2 0^ (2.57)

V fclfc2 /

Suppose the eigenvalue of M* axe ei, e2, • • - ,er . Then the eigenvalues of A j  are r, 

r  — 1  copies of 0 , and , *7 *7 ): the eigenvalues of C^ ,  are 0 , r  — 1  copies

of 1 , and ( 1  — 1  — • • • > ! -  ); and the eigenvalues of C j are 0 , v — r  — 1

copies of r, and (r — -j^-, r  — j**-,. . . ,  r  — Therefore, an eigenvalue-based

optimality analysis of resolvable designs d E D(v, r; fci, fc2) can focus on the matrix 

M i  for the corresponding set of block concurrence counts {0 1 2 , 0 1 3 , 0 23, . . . ,  0 r,r_i}. 

We will use this fact in the following sections in which we discuss resolvable design 

settings for particular values of r.

2.2 General Results

Let D(v, r; fci, fc2) be a resolvable design setting with s =  2. Given values of fci, fc2, 

and r, an experimenter is concerned with knowing the assignment of the treatments 

to the blocks that will yield the best possible information about the effect of the 

v =  fci +  fc2  treatments, that is, they want to know the optimal design d E D. As 

we saw in the introduction, there are many different ways in which a design d € D 

can be considered optimal, and for each type of optimality to be achieved, a specific 

optimality criteria must be satisfied. In this chapter we will primarily investigate A- 

and E-optimality, but will often find much more.

Since designs in D  are differentiated from one another by their block concurrences 

{0 1 2 , 0 i3 » 0 2 3 . - * *. 0 r,r—i}. our optimality investigation will focus on describing the
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structure of the m atrix given by (2.57),which is

(  k ik 2 4>U <f>\3 • • •  <t>\r \
k\K2 <p-n <f>2r

M d  =  4>lr

\ kik2 /

where

4>nn' =  <i>nn'{k\ +  k2) ~  k f ,

for a design d  E D  th a t is optimal with respect to one or more eigenvalue optimality 

criterion. For convenience, we will refer to the matrix Md as the Optimality Matrix 

for the design d.

Suppose the eigenvalues of an optimality matrix Md are ex >  e2 > ■ • ■ > er , then 

tr  Md — H ^x ti — rk ik2 for any set of treatment concurrences, and the eigenvalues 

of Cd, which are 0  <  Zdi <  2 (C < • • • <  zd,u- i ,  in terms of the eigenvalues of Md, are 

0  and

Now, if Ad is the class of all optimality matrices for designs in D ,  the A-optimal 

design d  E D  with optimality matrix M d, will have block concurrences that m i n i m i z e

over Md 6  Ad, and the E-optimal design will maximize the m i n i m u m  eigenvalue of 

Cd, that is, maximize

over Md E  Ad or, equivalently, minimize ex over Md E  Ad. The Type-1 optimal 

design d  E D  will be the design that minimizes

(2.58)

(2.59)

over Md €  Ad for all type - 1  criteria / .
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The following definitions from Inequalities: Theory of Majorization and Its Ap­

plications by Albert W. Marshall and Ingram Olkin (1979) will prove to be extremely 

useful for determining when a  design d €  D satisfies (2.59). After stating the defi­

nitions, we state a theorem, and, afterward, review some of their consequences that 

provide the link between the definition and Type-1 optimality.

D efin ition  2.2.1 Let {x,}-Ll and {yt}i*=i be nonincreasing sequences of real num­

bers such that Xi =  £ " = 1  &. If

i i
for all 1  <  I <  n,

t=l i=l

or, equivalently,
n—I+l n—t+I

Xi — ^   ̂  ̂ — 71 isn i=n

then is said to majorize {xj}"=1.

D efinitions 2 .2 . 2  Suppose the eigenvalues, written in nonincreasing order, of the 

optimality matrices for designs d and dm in D(v, r; fci, fc2) are {e1 ,e 2 , . . . , e r } and 

{ej, ej, - ..  ,e*}, respectively.

1 . If {ei, e2, - . . ,  er } majorizes {ej, e%,. . . ,  e‘}, and the two vectors are not identi­

cal, then design d" is said to be Schur-better than design d, and d is said to be 

Schur-inferior to d '.

2 . Design d' is defined to be Schur-optimal if it is Schur-better than every other 

design in D.

The following theorem is due to Hardy, Littlewood, and Polya and can be found 

in Marshall and Olkin (1979, p. 108). It shows why the majorization relationship 

and Schur-optimality are important.
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T h e o rem  2.2.1 Let {xi}JL1 and {y»KLx be sequences of real numbers such that 

S t= i x i ~  2?=! y»- For all continuous real-valued convex functions f ,

i=l i=l

i f  and only */{yi}"=x majorizes {x<}"=1.

C oro lla ry  2.2.2 Let d and d* be in D(v, r; fcx, fc2). I f  cT is Schur-better than d, then 

d* is superior to d with respect to every type-1 optimality criterion. Thus Schur- 

optimality implies optimality with respect to every type-1 criterion.

Let and {yi}"=i be two nonincreasing sequences of real numbers such that

££=i Xj =  £"_i yi. The following facts about majorization will be used extensively 

in the subsequent sections.

F act I: 1. If xx > x2  =  x 3  =  - • - =  xn and yi > n ,  then {y»}£:X majorizes {xi}"=1.

2. If xi =  x2  =  • • • =  x„_i > x„ and x„ > yn, then {yi}£_x majorizes

{x»}t=i-

F act II: Let a and b be real numbers. If {y»}^x majorizes { x j} ^  then {a — 5^ } " _ 1 

majorizes {a — ^ } ”=x.

F act H I: Let {a}™ x be a sequence of real numbers. If {y,}"=l majorizes {xi}J* _ 1  

then {{yi} " = 1  U {a}£ x} majorizes {{&}£=! U {a}£x}.

2.3 Equal Concurrences

A resolvable design d €  D{v, r; fcx> fc2) having block concurrence counts 0 X 2 =  <px 3  =  

f ix  =  • - - =  0r_x>r =  9 for some fcx — fc2  <  9 < fcx is called an equal concurrence 

design with block concurrences equal to 9, or ECD(9). The optimality matrix (2.57) 

for an ECD(9) may be written in the following form

Md =  {fcxfc2  -  [0(fcx -t- fc2) -  fc?]}/ +  [0(fcx +  fc2) -  fc*]Jt (2.60)
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where I  is the r x r  identity matrix, and J  is the r x r  matrix of ones. The eigenvalues 

of M i are r  — 1  copies of

fcifc2  +  [ f c f  — 0 (fci +  fc2)] (2-61)

and one copy of

fcifc2  — (r  — l ) [ f c f  — 8{k i -f* fc2)]. (2-62)

T h eo rem  2.3.1 Suppose D (v , r; fci, fc2) is a resolvable design setting for which (fci -F 

fc2) | f c f ,  and define
fc2

0*  =  * *  -
fci +  fc2

Then ECD(6m)s in D are Schur-optimal whenever they exist.

P ro o f  Let D{y, r; fci, fc2) be a resolvable design setting and suppose (fci +  fc2) | fcf. 

Since
fc2fci — fc2  < -— 1—  < fci 

fci +  fc2

then 8 =  0 * is an admissible value for the common treatment concurrences of an 

ECD(8) in D. Since eigenvalues of the optimality matrix of an ECD(8m), which are 

fcifc2  — (r — l)[fcf — 9m(ki + fc2)J =  fcifc2  4- [fcf — 0*(fci +  fc2)| =  fcifc2, are identical for 

9 = 0*, then they are majorized by the eigenvalues of every competing design in D 

that is not an ECD(9’). Therefore, ECD(8m)s are Schur-optimal. □

Theorem 2.3.1 generalizes corollary 3.4 of Bailey, Monod, and Morgan (1995) 

when s =  2, which established tha t affine-resolvable designs are Schur-optimal. We 

require only tha t the first blocks of each replicate have the same block concurrence, 

and we allow for unequal block sizes. When fci =  fc2  and 2 1 fci, our designs are 

affine-resolvable designs.

E xam ple Consider the setting D(9,4 ;6 ,3). Since (fci +  fc2) | fcf, then 0* =  4, and 

if an ECD(4) exists it is Schur-optimal. In fact, an ECD(4) does exist and is shown 

in table 2.19.
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Table 2.19: A Schur-optimal ECD(4) in D(9,4 ;6 ,3)

1 7 1 5 1 3 3 1
2  8 2  6 2 4 4 2
3 9 3 9 5 9 5 9
4 4 6 6

5 7 7 7
6 8 8 8

Is some ECD Schur-optimal when (fci -+- kz) /  fcf? If not, what are the optimal 

classes of designs for the various optimality criteria? Our subsequent discussion will 

first focus on optimal ECDs when (fci +  kz) /  fcf, and then will be extended to include 

designs that are not ECDs. We will leave the existence question for later.

Define the block concurrence parameter

9 = tat (fcTTfcj)'  ( 2 ' 6 3 )

Note that

or, with v = fci + kz,

k2 
fci -i- kz

0  <  7  <  v

where 7 , the block irregularity, is defined by

7  =  fcf — v9.

The irregularity is zero if and only if (fci +  kz) | fcf.

Relative to 8, designs in D(v, r; fci, k2) fall into four categories:

1 . ECD(9)s having 9 = 8, or ECD(8)s.

2. ECD(9)s having 6 = 8 + 1, or ECD(8 +  ljs .

3. Designs having <bn> E {8, 8 + 1} for all 1 <  i #  i' <  r, with at least one 4>a> — 8 

and a t least one <bjy =  9 + 1 , 1  <  j  j '  < r, and i  #  j  or i' ^  f .
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4. Designs having f a  < 9  or f a  > 9 +  1  for at least one 1 <  * #  i' <  r.

Designs falling into the first category are ECD(9*)s when (fci+A^) | fcf- Designs falling

designs or NECDs, and unequal concurrence designs, or UECDs, respectively. We 

will first investigate ECD(9)s and ECD(9 +  ljs .

Define the block concurrence discrepancy matrix Ad =  (<W)> where

For each 1 < i #  i' <  r , the off-diagonal elements of Ad, <W, will be referred to as 

block concurrence discrepancies. The block concurrence discrepancies and the block 

concurrence discrepancy matrix are denoted using the same notation as pairwise 

concurrence discrepancies and the discrepancy matrix in Chapter 1 . They both 

measure the total departure from symmetry of a design, but they are not the same. 

In Chapter 1 , symmetry implies treatment concurrence balance; however, for the 

remainder of our discussion, symmetry will refer to block concurrence balance.

Define the symbol p =  fcifca for the product of the block sizes. The optimality 

matrix (2.57) can now be written

into the third or fourth categories will be referred to as nearly equal concurrence

Md — p i  — 7 {J — I)  +  vAd . (2.64)

Note that for ECD(9)s, since f a  =  9 for each 1  <  i ^  i' < r  and A d =  0,

Md =  (p + 1)1  — y J

and the eigenvalues of Md are r  — 1  copies of

€1(7 ) = P  +  7

and one copy of

6 ( 7 )  =  P ~  (r  -  1)7 ,
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and £1(7) >  $2(7)- For ECD(d +  l js , <f>w =  8 + 1  and A d =  (J  — I ) ,

M d =  [p — (u — 7 )] / +  (u — 7) J

and the eigenvalues of M d are r  — 1 copies of

Ci (7 - v ) = p - ( v -  7)

and one copy of

£2(7 “  v) =  p +  ( r  -  1 )(y -  7),

and &(7 ~  v) > Ci(7 ~  v)-

The following theorem due to Cheng (1978, Theorem 2.3) will be used to establish 

^/-optimality for certain classes of ECD(8)s.

Theorem  2.3.2 I f  there exists a design d € M{v, 6, k) such that

(i) Cg has two distinct eigenvalues zdl = Z&, — . . .  =  zd v_2 < zg<v_1.

(ii) d minimizes zdi over Md,

then d is <f>/ -optimal for all type-1 criteria with limI _r0+ f ( x ) =  0 0 .

Theorem  2.3.3 When 0 <  7 <  | ,  ECD(8)s minimize tr  0%, uniquely so i f  7 < | .  

Consequently, ECD(8)s are <f>f-optimal in D(v, r; ki, k2) for all type-1 criteria with 

limc_>0+ /(x )  =  0 0 .

P roof Let Md be the optimality matrix for d 6 D (v ,r ;k i , k 2), and recall that tr  

Md =  pr and (Md)a> = {vS#? — 7). If ei >  e2 > - - - >  eT >  0 are the eigenvalues of 

Md then

=  (v — l ) r 2  — — tr M d -(- -^ tr  M dp  p*

=  (1/ -  3)1* +  r  +  £  (U(W  “  7 )2,
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so th a t t r  Cd is minimized by designs th a t minimize £  (w<W — y )2. Since 5<t& 

is integral, the unique minimum of t r  C j on 0 <  7  <  |  is a t 5#?  =  0. For 7  =  | ,  

any values 8## E {0, 1} minimize t r  Cd.

The eigenvalues of the information matrix for a design in D(v, r; ki, k2) are 0 < 

< z<t2 <  * • • < *dr and v — r  — 1  copies of r, and 2 *- =  r ( r  — 1 ) is constant 

for all designs in D. For ECD(9)s, zdi = r  — 1  <  i <  r  — 1  and zdr = r  —

and when 0  <  7 <  |  they minimize £ i = i  2*-. Thus these eigenvalues satisfy the 

conditions of Theorem 2.3.2. □

Corollary 2.3.4 When 7  =  t/ the eigenvalues o f the information matrix for a 

NECD are identical to the eigenvalues o f an ECD(d), then the NECD is <pf-optimal 

in D and 4>f-equivalent to ECD(9)s for all type-1 criteria with limx_>0+ f ( x )  =  00.

In the remainder of this docum ent we will take the phrase “type-1 optim al” to 

mean d>/-optimal for all type-1 criteria /  with limx_,0+ f ( x )  =  00.

Now define the F-criterion as the  value of the largest eigenvalue of Cd th a t is not 

constrained by the setting to  equal r ,  th a t is,

<f>p(Cd) =  Zfr.

Although not a  member of the  type-1 family, this criterion can be im portant in 

establishing Schur-optimality. Since 2*  =  r  — m i n i m i z i n g  <f>p(Cd) over D is 

equivalent to  maximizing eT over M.. Here is another easily established fact about 

ECD(9)s.

Theorem  2.3.5 An ECD(6)  is Schur-better than a competitor with a different set 

of eigenvalues i f  and only i f  it is F-equivalent or better than that competitor. Conse­

quently, ECD(9)s are Schur-optimal i f  and only i f  they are F-optimcd.

P ro o f Let d E D(v, b; kx, k2) be an ECD(9). Then the eigenvalues of the optim ality 

m atrix  for d  are r  — 1 copies of £1(7) and one copy of £2(7), and £1(7) >  £2(7).
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Suppose the  optim ality m atrix  for a  competing design d €  D  th a t is not an ECD(9) 

has eigenvalues et > e2 >■ - ■> er. Now, the ECD(8) is F-equivalent or better 

than  d if and only if er <  £2(7), which is a  necessary and sufficient condition for 

the eigenvalues of the information m atrix  for d to  majorize the  eigenvalues of the 

information m atrix  for the ECD(d) . □

A result of similar flavor holds for ECD(9 -t- l j s  using the E-criterion. As pointed 

out by K unert (1985, page 385), facts 1-3 of section 2.2 says th a t ECD(8 +  l js  are 

Schur-best whenever they are El-optimal. We state  this as:

Theorem . 2.3.6 An ECD(9 + I)  is Schur-better than a competitor with a different 

set o f eigenvalues i f  and only i f  it is E-equivalent or better than that competitor. 

Consequently, ECD(9 -F 1  )s are Schur-optimal i f  and only i f  they are E-optimal.

P ro o f  Let d* 6  D(v, b; fci, fc2) be an ECD(9 -t- 1 ). Then the eigenvalues of the 

optimality matrix for d* are r  — 1  copies of fi(u  — 7) and one copy of £2(u — 7 ), and 

&(v — 7 ) > fi(u  — 7 ). Suppose the optimality matrix for a  competing design d € D 

that is not an ECD(9 -F1 ) has eigenvalues > e2  > • •  • >  er . Now, the ECD(8 + 1)  

is El-equivalent or better than d if and only ife i > f 2(v — 7 ), which is a  necessary and 

sufficient condition for the eigenvalues of the information matrix for d  to majorize 

the eigenvalues of the information m atrix for the ECD(8 +-1 ) . □

C o ro lla ry  2.3.7 ECD(8)s are Schur-better than ECD(9 + l)s  i f  and only if

1
7  <  - v ,  r

and ECD(9 +  l ) s  are Schur-better than ECD(9)s i f  and only i f

r  — 1
7   v-r

P ro o f  Note th a t the eigenvalues of ECD(9)s and ECD(9 -+- l j s  are never identical. 

ECD(8)s are F-equivalent or b e tter th an  ECD(8 +- 1/s if and only if & (7 — v) < £2(7)
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which is equivalent to  7  > ^v. ECD(9+ l)s  are E-equivalent or be tter than  ECD(9)s 

if and only if £1(7) >  — 7) which is equivalent to  7  <  ^ - v .  □

Corollary 2.3.8 ECD(9)s are E-better than ECD(9 + l)s  i f  and only i f

r — 1
7 <  v

r

and ECD(9)s and ECD(9 +  l)s  are E-equivalent when

r  — 1 
7  =  v.

T

Lemma 2.3.9 Suppose a design d €  D(v, r ;  fcx, fc2) has optimality matrix M d and 

concurrence discrepancy matrix A j =  (£<&?), and suppose the maximum eigenvalue 

of Md is ex and the minimum eigenvalue o f Md is e,.. I f  8412 < 0 then

ex >  p -t- 7 -  vSdi2 and er < p  — 7  +  vfow-

I f  8<ti2 > 0 then

ei >  P — 7  +  wd<n2 Cr <  P +  7  — vSdi2 .

P roof The leading 2 x 2  minor of Afd, which is M m  — ( p + 7 —uJ<n2) f —(7 —08,02) J ,  

has eigenvalues

p + j  — vSdi2 and p — 7  +  t/5<n2- 

A Sturm ian Separation Theorem (Rao, 1973, page 64) provides the bounds. □

Corollary 2.3.10 Suppose d 6  D(y, b; fcx, fc2) is a UECD vrith 8d& < —a  for at least 

one 1 < j 7^ i ' < r, and for some integer a  >  1. ECD(9)s are Schur-better than d i f

a

and ECD(9 +  1 )s are Schur better than d i f

1—  a  — 1 
7 > ------------ v.
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P ro o f  Let d €  D  be a UECD as described in the lemma and let ei and er be the 

maximum and minimum eigenvalues, respectively, of the optimality matrix for d. 

For a proper labeling of the design replications, 8 ^ 2  <  — oc. Then from lemma 2.3.9, 

ei >  p +  7  — an/, and p — 7  +  av > er. By Theorem 2.3.5, an ECD(S) is Schur-better 

than d if £2 (7 ) >  p  — 7  +  v a  >  er , or

,  oc 
7 < r r F .

By Theorem 2.3.6, an ECD (9+l) is Schur-better than d if ex > p+'y—va > €2(7 —v), 

or
r  — a  — 1

7  > -------------v.

Corollary 2.3.11 When r  <  4, all UECDs with 8da> < —1 for some 1  <  * #  t' <  r  

are Schur-inferior to an ECD, and when r  =  5 or 6, UECDs with 8#j* < —2 for  

some 1  <  * #  i1 <  r  are Schur-inferior to an ECD .

Corollary 2.3.12 Suppose d 6  D(v, b; ki, Â ) «  a UECD with 8 ^  > a  for at least

one 1 < i i£ i' < r, and for some integer a  > 2. ECD(9)s are Schur-better than d i f

,  oc 
7  <  -v,

T

and ECD (9 +  1 )s are Schur better than d i f

/—  a  — 1

P ro o f  Let d E D  be a UECD as described in the lemma, and let ei and er be the 

maximum and minimum eigenvalue, respectively, of the optimality matrix for d. For 

a proper labeling of the design replications, Sa 2  >  a  > 2. Then from lemma 2.3.9, 

ei >  p — 7  +  av, and p -f 7  — on/ >  er . By Theorem 2.3.5, an ECD(9) is Schur-better 

than d if £2 (7 ) > p  + 7 ~ o t v > e T or

,  Oc 
7 <  —u. r
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By Theorem 2.3.6, an ECD(9+1) is Schur-better than d i f e i  > p —f+ a v  >  £2 (7 —v) 

or

□

C oro llary  2.3.13 When r < A, all UECDs with 5&i> >  2 for some 1  <  * #  i' <  r  

are Schur-inferior to an ECD, and when r  =  5 or 6, UECDs with 5du> > 3 for some 

1  <  i ^  i' < r are Schur-inferior to an ECD .

Corollaries 2.3.11 and 2.3.13 say that optimal designs in settings D(v, r ;k i , k2) 

with r  < 4 must be an ECD (9) , an ECD(9+1) , or an N EC D , and optimal designs in 

settings with r  =  5 or 6  must have block concurrence discrepancies 5 ^  £  {—1,0,1,2} 

for all 1 < * #  x' <  r. Now we will show that UECDs are always E-inferior to an 

ECD(9), and ECD(9)s are El-optimal when 0 < 7  <  §.

C oro lla ry  2.3.14 For all r  >  2  and 0 <  7  <  v, ECD(9)s are E-better than UECDs.

P ro o f  Suppose d 6  D(v, r; ky, k2) is an UECD, and < —a  for some 1  <  z #  

i' < r and integer a  >  1. Than, for a  proper labeling of the design replications, 

5d\y <  —a, and ei > p +  7  — vS m  > €1(7 ), and ECD(9)s are E-better than d. Now 

suppose 5aa> > a  for some 1  <  t /  i ' <  r  and integer a  >  2. Then, for a proper 

labeling of the design replications, Sji2 > at and e\ > p — 7  +  v6ji2 > ^1 (7 ) and 

ECD (9)s are El-better than d. □

C o ro lla ry  2.3.15 When 0  <  7  <  | ,  ECD(9)s are E-optimal, uniquely so when 

7 # § -

P ro o f  By corollary 2.3.8, ECD(9)s are El-equivalent or better than ECD(9 +  ljs  

when 7  <  | ,  E-equivalent only when r  =  2 and 7  =  §. ECD(9)s are always E-better 

than UECDs by corollary 2.3.14. The maximum eigenvalue of the optimality matrix
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for ECD(9)s in any resolvable design setting D(v,  r; kx, fc2) is £1 (7 ) =  p4- 7 , and with 

a proper labeling of the replications, the optimality matrix of a NECD has 5* 2  =  1. 

Then, from 2.3.9, zi >  p 4 - (v — f). Since p 4- (u — 7 ) >  £1 (7 ) when 0 <  7  <  | ,  and 

p 4- (u — 7 ) =  Ci(7) when 7  =  5 , the result follows. □

The next lemma provides bounds for the maximum and minimum eigenvalues of 

the optimality matrix in terms of the eigenvalues derived from the block concurrence 

discrepancy matrix for the design.

L em m a 2.3.16 Suppose e\ and er are the maximum and minimum eigenvalues, 

respectively, of the optimality matrix Md for d 6  D(v, r; ki, fc2). I f  ux and ur are the 

maximum and minimum eigenvalues o f A<#) =  PTAdP, where P =  (7 — ^J) and Ad 

is the block concurrence discrepancy matrix, then

ei > p  4* 7  4- vu i

provided Ui > 0 , and

er < p  4- 7  4- tmr .

P ro o f

ei == m ax x r  M ^x
XT X = I

(2.65)

=  m ax x T[(p 4- 7 ) /  — 7 J  4- vAd]x

>  m ax x T[(p 4- 7 ) /  — 7 J  4- wA<*]x

=  p  4- 7  4- v  m ax x TA</X«rx=i
xr  1=0

=  p 4- 7  4- u m ax x TP TA<fPx

xrx=l (2.66)

=  p  4 -7  4- v u i.
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Equality (2.66) holds since ui >  0, l TP TArfPl =  0, and P^’A jP l  =  01 (that is, 1  is 

an eigenvector of P TA jP  with eigenvalue 0). Likewise we find.

er =  min x TM*x
XTX=l

=  min x r [(p +  7 ) /  — 7 J  +  w A jx
XTX=1

< p 4- 7  +  u min x TP T AdP x
* T x = l

XT 1=0

=  P +  7 +  (2.67)

Equality (2.67) is true provided ur <  0, for similar reasons to above. If ur > 0, the 

bound still holds, since

tr(iWd)
er <  ---------=  p < p + 7 4- vur. □

r

We end this section with a corollary that provides conditions for when a design 

d € D  is Schur-inferior to an ECD and for when d is E-inferior to an ECD(&) .

C o ro lla ry  2.3.17 Let d 6  D(v, r; ki, k^) be a resolvable design with optimality ma­

trix Md, whose eigenvalues are not identical to those of an ECD(d) or an ECD(6+1). 

Let ui and Ur be the maximum and minimum eigenvalues, respectively, of A^o =  

P TArfP , P  =  ( / - i J ) .  I f

7 <  —— v  (2.68)
r

then ECD(Q)s are Schur-better than d. I f  u 1  >  0 and

7  >  ^ v (2.69)

then ECD(6 + l)s  are Schur-better than d. Furthermore, i f

ut > 0 (2.70)

then ECD(6)s are E-better, but not necessarily Schur-better, than d.

P ro o f  The result follows immediately from Theorems 2.3.5 and 2.3.6 and lemma 

2.3.16. □
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2.4 Special Cases: (fci — fc2) <  2

In this section we will investigate the three important special cases of fci and kz 

being equal or nearly so: that when kz =  fci, that when kz =  fci — 1 , and that when 

k2 = ki — 2. For each case, results that follow immediately from the theory earlier 

in this chapter are reported. If we write k2 =  fci — n, then (fci — fc2) <  2 says that 

n =  0 , 1 , or 2 , and for any n

" 2  ( 2 .7 1 )
fci -F kz 2fci — n 2 4 4(2fci — n)

Recall that 8 is the integer part of (2.71), and 7  =  f c f  — v9.

L em m a 2.4.1 When fci =  fc2, i /2  | fci then 7  =  0 , and t /2 /fc i then 7  =  | .

P ro o f  When fci =  fc2, n =  0 and (2.71) becomes k *}kj =  and the result clearly 

follows. □

C oro lla ry  2.4.2 Let fci =  fc2.

(i) I f  2 | fci then (fci +  fc2) | f c f  and ECD(dm)s are Schur-optimal.

(ii) I f  2 /fci then ECD(9)s are E- and type-1 optimal.

When fc 1  =  k2 and v =  2 | fci, the resulting design is an affine-resolvable design 

since every pair of blocks from different replicates have block concurrence 9* =  fy. 

Bailey, Monod, and Morgan (corollary 3.4,1995) proved that affine-resolvable designs 

are Schur-optimal. For 2 /fci, the result is from Theorem 2.3.3 and corollary 2.3.15. 

The optimality need not be uniquely so.

L em m a 2.4.3 When fct — fc2 =  1, i f  2 | fci then 7  =  and i f  2 /  fci then 7  =  3fĉ ~I .

P ro o f  When fci — fc2  =  1  then n =  1  and the last term  on the right hand side of

(2.71) becomes =  5 ^ ^ .  Then

* _ / § ■  i f 2 |fci 
I * 5 *  t f 2 /fci ’
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and, since v = 2k\ — 1 , 4̂ 1- 1) =  i>

i £ 2 | f c 1 
7  \  i f  2 /  fci '

□

C o ro lla ry  2.4.4 Let fcx — fc2  =  1.

(i) I f 2 | fcx, then |  <  7  <  j ,  and ECD(8)s are E- and type-1 optimal.

(xi) I f  2 /fcu t h e n 3f <  j < f .

L em m a 2.4.5 Wien fcx — fc2  =  2, */21 fcx ffcen 7  =  fcx, ond t /  2 /  fcx ffcen 7  =  1 .

P ro o f  When fcx — fc2  =  2 then n =  2 and the last term  on the right hand side of

(2.71) becomes =  2 ^ 1 ) - Then

i f  2 1 fcx

1  S ± i if 2 /fcx - 

and, since 1/ =  2 (fcx — 1 ), 2 (2 A"_f) =  1 , and

_ J  fcx i f  2  | fcx
7 ~  \  1  i f  2 / f c x  ‘

□

C o ro lla ry  2.4.6 Let fcx — fc2  =  2. Then fcx >  fc2  >  2 implies fcx > 4 ,  and 

/ / f c x  = 4 ,  then 7 =

(ii) I f k i  =  6 , ffcen 7  =

(Hi) I f 2 \ki and fcx > 8 , ffcen |  <  7  <

(iv) I f  2 /  ki, then 0 < 7  <  | ,  and ECD(9)s are E- and type-1 optimal.
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C H A PT E R  H I

APPLICATION: OPTIM AL RESOLVABLE DESIGNS  
W ITH  U P  TO FIVE REPLICATES A N D  TWO BLOCKS

PE R  REPLICATE

3.1 Introduction

Optimality in resolvable designs settings D(v, r ; fci, fc2) for 2 <  r  <  5 will be investi­

gated in this chapter. As stated in Chapter II, the primary goal is to determine A- 

and E-optimal designs, though often we can do much more. If the E-optimal design 

is not unique, the Schur-best of the E-optimal designs, or the (E,S)-optimal design 

will be identified.

D efin ition  3.1.1 A design d in a class of designs D is said to be (E,S)-optimal if

(i) d  is El-optimal, and

(ii) among all El-optimal designs in D, d is Schur-optimal.

We review some important facts from section 2.3 concerning Schur- and type-1 

optimality in D(v,  r; k i, fc2) before commencing our eigenvalue optimality discussion.

1. When (fct 4- fc2) | fcf, ECD(9m)s with

fc2Q. _  * 1

fci +  fc2

are Schur-optimal whenever they exist.
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2. When 0 <  7  <  | ,  ECD(O)s with

0 =  int

are type-1 and E-optimal, uniquely so when 7  <  | ,  whenever they exist.

3. When r  <  4, UECDs are Schur-inferior to an ECD(B) or an ECD(8 + I)

whenever the ECDs exist.

4. When r  =  5, UECDs having at least one $<&' < —2 or a t least one (W  >  3 are

Schur-inferior to an ECD(B) or an ECD(8 +  1  ̂whenever the ECDs exist.

Therefore, in the sequal we will restrict our attention to ECDs and NECDs, when 

r  <  4, or ECDs, NECDs, and UECDs having —1 <  Sdw <  2, when r  =  5. From fact 

2  it follows immediately that

C o ro lla ry  3.1.1 When 0 <  7  <  | ,  ECD(8)s are (E,S)-optimal, uniquely so when

By lemma 2.3.15, when 7 = 2 , ECD(B)s are Schur-optimal but may not be 

uniquely so. Therefore, ECD(B)s are not uniquely (E,S)-optimal when 7  =  |  only 

when a competing design that is not an ECD(B) has identical eigenvalues to the 

ECD (8).

The eigenvalues of the optimality matrix M<* of designs in resolvable design set­

tings D(v,b;k i ,k2) can be directly used to determine the Schur-, E-, and (E,S)- 

optimal designs. Establishing A-optimality requires working with the eigenvalues of 

the information matrix Cd of the the designs; however, we can still restrict our efforts 

to working with the eigenvalues of Md in A-optimality investigations, as shown next.

Recall that if zlt z2, . - .,  Zv-i are the nonzero eigenvalues of the information matrix 

Cd for a resolvable design d €  D{v, r; fclt fc2), then the A-value for the design is

(3.72)
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and the A-optimal design minimizes (3.72). Furthermore, if ei >  ex > - - - >  er 

are the eigenvalues of the the optimality m atrix Md of a design d 6  D, then the 

eigenvalue of the information matrix Cd corresponding to each e», 1  <  i <  r , is 

z,- =  r  — St. Moreover, the eigenvalues of the information matrices for resolvable 

designs in D  are 0, v — r  — 1 copies of r , and r  — ^  < r  — ^  < • - • <  r  — Thus, 

the class of designs that minimizes

will also m inim ize (3.72), and, therefore, will be A-optimal.

The following three facts concerning bounds on and a  lemma relating intervals

F act 3.1.3 If

(i) k \ > k 2 > 4, or

(ii) k2 =  3 and ki > 6  then

F act 3.1.4 I f

(i) k i>  k2 > 5,

(ii) k2 = 4 and >  7, or 

(Hi) k2 =  3 and ki  >  15

(3.73)

of 7  to ranges of values of k2 for fixed values of ki and 9, will be needed to establish 

results on A-optimality.

Fact 3.1.2 I f k i  > k 2 > 2 ,  then

k\k-
k\ +  k2
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then
kik2 5

ki +  k2 2

Lem m a 3.1.5 Suppose ky > k2 — n > 2 for a given integer n, and let x  

int • For any real numbers 0 < a  < 0  < I,

av  < i  < 0v

i f  and only i f
n2  — n(0  + x) n2 — n (a  +  x)
 a----------- — kl S   •0  +  x a  +  x

P ro o f  If fct >  fc2  =  n, then

n2
 ----- — =    =  fci — n +    .fci +  k2 ki +  n fci +  n

If we define

■ f  n  Mx =  int  -------
\fci +  n j

then 6 =  fci—n-Fx and 7 — n 2 —x(fct + n). Now, for any real numbers 0 < a  < 0  <  1, 

7 >  av  if and only if
n * - n ( a ,  +  i )

a  +  x

and 7 < 0v  if and only if

0  + x

The following bounds will be useful to the constructions.

L em m a 3.1.6 Let fci and k2 be two integers satisfying 3 <  fci and 2  <  k2 < fci, and 

let 6 be as defined by (2.63). Then,

* +  2 <  fc! <  (  +  1  * ^ 1  0<f<i (3.74)( 28 tfki even.
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P ro o f  For a  resolvable block design setting D(v, r; fci, k2), write

fc2 fc2
1  =  fct -  fc2  +  — 2— . (3.75)ki +  k2 k\ -F k2

For a fixed value of fci >  3, since (3.75) is a decreasing function of k2, 2 < k2 < fci, 

then

TT ^  t. <  fci -  2 +  T - ~ z -  (3.76)2 fci -F fc2 fci -F 2

Since <  1  for all ki >  3 then, by taking the integer part of each term in (3.76), 

we have

^ l ° dd } < * < * , - 2 .  (3.77)if ki even J v ’

Rewriting (3.77) in terms of fci yields (3.74).

C o ro lla ry  3.1.7 Let 3 <  fci and 2 <  k2 <  ki be integers, and let 9 be given by 

(2.63). Then, 2fct — 9 < fci + k2.

L em m a 3.1.8 Let k i and k2 be two integers satisfying 3 <  fci and 2 <  k2 < fci, and 

let 9 be as defined by (2.63). Then the following inequalities hold:

1. I f  ki = 29 then fct — 3 < k2 < ki.

2. i f  ki = 2 9 + 1  then fci — 1  <  k2 < fct 

P ro o f

1. Let fci =  29. Then

if and only if

if and only if

then

^fci + k2J

fci U  _  fcl fc2 fci _  ,
2  -  1 fct - h f c 2 2

8 fci (fci — 2) ,
fci — 4  -F  - --------— = -— ---------——  <  fc2 <  fci

fct  -F  2 fcx +  2 ~

fci — 3 <  fc2  <  fci-
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2. Similarly, if fci =  29 +  1 then

fci — 2  int ( ---- -— ^ -+■ 1

1 Vfcl + fc2 >/

if and only if
2

fci — 2 4-  ----- - < k2 <  fci
fci + 1

then

fci — 2 <  k i  <  fci- □

3.2 Resolvable Designs With Two Replicates

3.2.1 Schur-optimality

For two replicates M has two eigenvalues, as given in section 2.3. It follows from 

lemma 2.3.9 that the eigenvalues of any design that is not an ECD majorize the 

eigenvalues of at least one of ECD(9) and ECD(9 + 1). Thus only ECDs need to be 

considered in this section. The ECDs are:

E C D (0): The optimality matrix for ECD(9)s is M j = p i —~f(J—I).  The eigenvalues 

of Md are

£1(7) =  P +  7 

£2(7) =  P ~  7 .

and they satisfy

6 ( 7 )  >  6 ( 7 ) .

E C D (0  -(- 1 ): The optimality matrix for ECD (9+l)sis Md — p I —'y(J—I)+ v (J —I). 

The eigenvalues of Md are

6 ( 7  -  v) = p - { v -  7 )

6 ( 7 )  =  P + ( t » - 7 ) .
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and they satisfy

6 (7  -  v) > fi(7  -  u)-

Corollary 2.3.7 of Lemmas 2.3.5 and 2.3.6 establish conditions for when ECD(9)s 

are Schur-better than ECD(9 -F 1 /s and for when ECD(9 -F 1 /s are Schur-better than 

ECD(6)s; see table 3.20.

Table 3.20: Schur-optimal Designs In D(v, 2; fci, k2)

ECD (9) 
ECD (9 +  i ;  

Identical 1

ECD(9) Schur-optimal ECD(9 -F 1/ Schur-optimal

3.2.2 Special Cases: (fci — kz) <  2

We now apply the optimality results from section 3.2.1 to the three special cases 

described in section 2.4.

C o ro lla ry  3.2.1 Suppose ki =  k2 and r  =  2 . Then

(i) I f 2 \ k i  then 7  =  0, and ECD(9m)s exist and are Schur-optimal.

(ii) I f 2 f k i  then 7 =  and ECD(9)s and ECD(9 +  1 /s  are identical and Schur- 

optimal.

P ro o f  The optimality results follow immeditely from lemma 2.4.1 and the Schur- 

optimality discussion of section 3.2.1. When ki =  k2, r  =  2, and 2 /  fci, the
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first blocks of the two replicates of any ECD (9) will have 9 = concurrences. 

The second blocks of the two replicats of the ECD(d) will then have 9 -F 1 =  

concurrences. By exchanging the two blocks of each replicate, the ECD(9) becomes 

an ECD(9 + \ )  . Therefore, the ECD(9) and ECD(9 + I)  are the same design. □

Corollary 3.2.2 Suppose k2 =  fci — 1 and r =  2. Then

(i) I f  2 | ki then % < 7 < §, and ECD(9)s are Schur-optimal.

(ii) I f 2 j [ k i  then <  7 <  y , and ECD(9 +  l j s  are Schur-optimal.

Corollary 3.2.3 Suppose k2 =  ki — 2  and r  =  2. Then

(i) I f  2 | fci then |  <  7 < y ,  and ECD(9 + l)s  are Schur-optimal.

(ii) / / 2 / f c i  then 0 < 7  <  and ECD(9)s are Schur-optimal.

3.2.3 Construction of Optimal Designs in D ( v , 2; fci, fc2)

In this section constructions for ECDs are provided. The common block concurrence 

0*, 9, or 9 +  1  is denoted by L so th a t the constructions are valid for ECD(9m)s, 

ECD(9)s, and ECD(9 +  Ijs, respectively. Since all v treatments appear once in each 

replicate, only first-block treatment assignments need be given. The constructions 

are:

Block 1 o f  R eplicate 1: {1 . . .  fci}

Block 1 o f  R eplicate 2: {1 . . .  L }  (J (fct +  1 - - - 2fci — L }

3.2.4 Exam ples

We conclude this section by providing some examples of optimal resolvable designs 

in D(i/,2;fci,fc2) when (fcx — fc2) <  2. First we construct designs for the two cases 

when fci =  fc2.
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E xam ple  Suppose fci =  fc2  =  4. Then, according to corollary 3.2.1 the Schur- 

optimal design is an ECD(9m). Applying the ECD construction from section 3.2.3 

with L = 9 =  2 yields the first block of each replicate. Adding the remaining four 

treatments to the second block produces a Schur-optimal ECD(d') which is:

1 5 1 3
2  6 2 4
3 7 5 7 '
4 8 6  8

E xam ple  Consider the case where fcx =  fc2  =  5. Then, according to corollary 

3.2.1 ECD(8)s and ECD(8 + lJs are identical and Schur-optimal. Applying the ECD 

construction from section 3.2.3 with L = 9 = 2 yields a Schur-optimal ECD(8) which 

is:
1 6 1 3
2 7 2 4
3 8 6 5 .
4 9 7 9
5 1 0 8 1 0

Now we investigate the two cases when fct — fc2  =  I.

E xam ple  Consider the setting such that fct =  6  and fc2  =  5. By corollary 3.2.2, the 

Schur-optimal design is an ECD (9). Applying the ECD construction from section

3.2.3 with L =  9 =  3 produces a Schur-optimal ECD(9) which is:

1 7 1 4
2  8 2 5
3 9 3 6

4 10 7 10 ’
5 11 8  1 1

6 9

E xam ple  Suppose fcx =  5 and fc2  =  4. By corollary 3.2.2, the Schur-optimal 

design is the ECD(9 +  l j .  Applying the ECD construction from section 3.2.3 with 

L  =  9 +  1  =  3 produces a Schur-optimal ECD(8 +  1) which is:

1  6 1 4
2 7 2 5
3 8 3 8 .
4 9 6  9
5 7
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Now we investigate the two cases when fci — fc2  =  2.

E xam ple  Consider the setting such that ki =  5 and fc2  =  3. By corollary 3.2.3, the 

Schur-optimal design is the ECD(9). Applying the ECD construction from section

3.2.3 with L = 9 = 3 yields a Schur-optimal resolvable design which is

1  6 1 4
2 7 2 5
3 8 3 8 .
4 6

5 7

E xam ple  Suppose fci =  6  and fc2  =  4. By corollary 3.2.3, the Schur-optimal 

design is the ECD(9 +  1). Applying the ECD construction from section 3.2.3 with 

L = 9 +  1 =  3 yields a Schur-optimal resolvable design which is

1 7 1 5
2  8 2  6

3 9 3 9
4 10 4 10 '
5 7
6 8

3.3 Resolvable Designs With Three Replicates

3.3.1 Introduction

In this section we will study optimality for the resolvable design setting D{v, 3; fci, fc2 ). 

Prom section 2.3 we have:

E C D (0): The optimality matrix for ECD(9)s is M* =  p i — 7  (•/—/) . The eigenvalues 

of iVfd are

fi(7) =  P +  7  (2 copies)

6 ( 7 )  =  P - 2 7 ,

and they satisfy

Ci(7) =  &(7) >  6 (7 )-
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E C D (0  -+- 1 ): The optimality matrix for ECD(9+l)s is Md =  p I —~f(J—I ) + v ( J —I) .  

The eigenvalues of Md are

f i ( 7  — v ) = p — (y — 7 ) ( 2  copies)

€2 (7 ) =  P +  2(u — 7 ),

and they satisfy

6 ( 7  - v ) >  £1 ( 7  - v )  = 6 ( 7  -  v ).

Corollaries 2.3.7 and 2.3.8 of Lemmas 2.3.5 and 2.3.6 establish conditions for when 

ECD(9)s are E-better then or Schur-better than ECD(9 + l)s  and for when ECD(9 +  

ljs  E-better and Schur-better than ECD(9)s; see table 3.21.

Table 3.21: E- and Schur-comparisons Of ECDs In D(v, 3; fci, &2)

I I
ECD(O) Schiur-better I ECD(9) E-better I ECD(9 +  l j  Schur-better

I I
- f -----------------------------1---------------------------*----------------------------b - y

0  !  ?

Corollaries 2.3.11 and 2.3.13 eliminate UECDs from consideration. Conditions 

for Schur- and E-optimality of NECDs or ECDs can be established using lemma 

2.3.17 and by direct eigenvalue comparisons. The optimality matrix Md (in order 

to apply lemma 2.3.17) or the concurrence discrepancy matrix must be derived 

for competing NECDs. Recall that NECDs have block concurrences discrepancies 

<W € {0,1} for all 1 <  i #  i' < 4 and have at least one block concurrence discrepcnsy 

equal to 0 and a t least one equal to 1 . There are two cases of nonisomorphic NECDs; 

their block concurrence patterns, {<£*1 2 , $*1 3 , fes} . are listed in table 3.22 and the 

corresponding block concurrence discrepancy matrices are shown in table 3.23.
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Table 3.22: Block Concurrence Discrepancies For NECDs In D(v,  3; fci,fc2)

Case &dl2 8<nz 5,C3
I 1 0 0

I I 1 1 0

Table 3.23: Concurrence Discrepancy Matrices for NECDs In D{v, 3; fci, fc2) 

Ai =
0  1 0

1 0  0

0 0 0
A 2  =  1 0  0

1 0  0

Using the concurrence discrepancy matrices for the two cases of NECDs, we 

begin our eigenvalue optimality investigation by deriving explicit expressions for the 

eigenvalues of the optimality matrices for each case of NECDs. The eigenvalues and 

their ordering over the admissible region are given below.

C ase I: The optimality matrix for Case I NECDs is M x = p i  — 7 ( /  — I) + v A x, 

and the eigenvalues of M x are

e(il) =  P ~  {v ~  7),

4l) =  P +

4 l) =  P +

-l) =  " -** ^- 5 -^ +  + ( v -  7)2.

and they satisfy

e?} > eiX) > 4 l) e™ > e™ > ef>
- f -  7

C ase  II: The optimality matrix for Case II NECDs is M2 = p l  — 7 (J  — I) -b uA2,
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and the eigenvalues of M2 are

4 2) =  P ~  |  +  ^ v/ 8 ( t ; - 7 ) 2  +  72 1

4 2) =  P ~ \ ~  — 7 ) 2  +  72t

and they satisfy

0 t/2

3.3.2 (E ,S)-optim al Designs in D{y , 3; fci, fc2 )

Before we determine the E-optimal designs in Z?(v, 3; &i, Afe) we will make Schur 

comparisons of Case I designs with ECD(9)s and ECD(9 -f- 1 ,/s in order to elim inate  

it as an optimality competitor.

Lem m a 3.3.1 When 0 < 7  <  ECD(9)s are Schur-better than Case I  designs.

P ro o f  By Theorem 2.3.5, ECD(9)s are Schur-better than Case I designs if they 

are F-better. When 0 < 7  <  ECDs are F-better than Case I designs since 

6 ( 7 ) > 4 l) . □

Lem m a 3.3.2 When |  < 7  <  v, ECD(9 + \)s  are Schur-better than Case I  designs.

P ro o f  By Theorem 2.3.6, ECD(9 +  l js  are Schur-better than Case I designs if they 

are E-better. When |  <  7  <  v, ECD(9 -i- l js  are E-better them Case I designs since

& (7  - » )  <  4 l )- a

Now we will establish th a t Case II designs are (E,S)-optimal when |  <  7  <  y
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Lemma 3.3.3 When |  <  7  < v, ECD(9)s and Case I I  designs are E-equivalent.

P r o o f  W hen |  <  7 <  v  the  largest eigenvalue of the optim ality m atrix  for Case II 

designs is =  £1(7). □

Lemma 3.3.4 When |  <  7  < v, Case I I  designs are Schur-better than ECD(9)s.

P r o o f  The eigenvalues of ECD(6)s are £1(7) =  £1(7) >  £2 (7 ), and when |  <  7 < u, 

the eigenvalues of Case II designs are e[2) >  e ^  > e ^ . Since £1(7) =  e^2* >  e ^ \  

then the eigenvalues of the  optim ality m atrix  for ECD(9)s majorize the eigenvalues 

of the optimality m atrix  for Case II designs. □

Lemma 3.3.5 When y  <  7  <  v, ECD(9 + l)are Schur-better than Case II  designs.

P r o o f  By Theorem 2.3.6, ECD(9 +  l^s are Schur-better than  Case II designs if 

they are E-better. W hen y  <  7  <  v, ECD(9 +  l^s are El-better than  Case II designs 

since e[2* > £2(7 — v).  W hen 7 =  y ,  since =  £2(7 — v) and e ^  > ^(7 — u), the 

eigenvalues of the optim ality m atrix  for Case II designs majorize the eigenvalues of 

the optimality m atrix  for ECD(9 +  Ijs. □

Therefore, for all values of 0 <  7  <  v there is either a  unique Schur-optimal 

design or a unique (E,S)-optimal design. See table 3.24.

3.3.3 A-optim al Design

The lemmas of section 3.3.2 establish th a t ECD(9)s are uniquely A-optimal when 

0 <  7 <  §, ECD(9)s and Case II designs are identically A-optimal when 7 =  | ,  

and ECD(9 + l)s  are uniquely A-optimal when —■ < 7 <  v; however, on the interval 

|  <  7 <  y ,  ECD(9 +  IJs and Case II designs are A-optimal candidates. In order to 

find the design th a t minimizes (3.73) we need the expressions for the eigenvalues of 

the  information matrices of the  competing designs in term s of the  eigenvalues of the 

optim ality matrices. These are given below.
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Table 3.24: (E,S)- and Schur-optimal Designs In D(v,  3; fci, k2)

ECD(8)

Case II 

i Identical i

ECD (8)
1 ECD (8) 

I (E.S)-  
1 optimal

CaseH 1 

(B.S)- |
optimal |

ECD(8 + l )
Schur-optimal Schur-optimal

-{ ------------------------------ -------------- (------------- b~ ---------------------------y -
2v
3

ECD (0 +  1):

2 ,J + l )  =  2 p + ( . - T ) ( 2 c o p i e s )

P
_(#+!) _ 2\p -  {v -  7 )]
Z2 —   --------

P

Case II:

(2 ) _  2 p - 7

1 — ~ P
(2) _  4P +  7 ~  ^ 8 (u - 7 ) 2  + 7 2

2 2  ~  2 p___________
(2 ) 4p +  7 +  ^ /8 (u -7 ) 2 -i-72

2 3  -  2 p

L em m a 3.3.6 When y  < 7  <  y , ECD(8 + l)s  are A-better than Case I I  designs. 

When |  <  7  <  y ,  ECD(8 + l)s  are A-better than Case I I  designs i f  and only if

—7 3  — 2(p — 2i>)72  4- (8 p2  4- 6 vp — 5u2)7 — 2u(2p2  4- 2pu — u2) >  0. (3.78)

P ro o f  When § <  7  <  y ,  ECD(8 -I- Ijs  are A-better than Case II designs if and 

only if ~ ^ 2  4 - {Sl+l) <  -(- 4 - -^y which holds if and only if condition (3.78) is
2l  *2  *1 Z2  z3

satisfied. On the interval y  <  7  <  y ,  a lower bound for the left hand side of (3.78),
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obtained by substitu ting 7  =  x  into the negative term s and 7  =  x  into the positive

terms, is

675u3 [270 ( f ) 2 -  4 3 5 ( f ) - 6 4  . (3.79)

Setting (3.79) equal to zero and solving for ® yields

p  _  (145  — -y/28705 145 4 - \ / 287Q5 \
H 180 180

Since § <  145~t1f f i 70S <  and when j| =  2, (3.79) is greater than zero, (3.78) is 

satisfied on |  <  7  <  j  whenever ® >  | ,  and, by fact 3.1.3, this inequality holds 

when £]. >  &2 >  4 or &2 =  3 ^  6. Thus, (3.78) may not be satisfied when

fc2 >  fci =  2 or 5 >  fci >  fc2 =  3. By corollary 3.1.5, on 7? <  7 <  y ,  &2 =  2 if 

and only if fci =  4 and fc2 =  3 if and only if fci =  3,4  or 5. Since (3.78) is satisfied 

when (fct, fc2) =  (4, 2), (3 ,3), (4,3), and (5,3), E C D (6 +  l j s  are A -better than Case II 

designs on the interval. □

A summary of the A -best analysis is given in table 3.25 below.

Table 3.25: A-, Type-1, and Schur-optimal Designs in D(v ,  3; fci, fc2)

Case II

ECD (9)  E C D (9 +  1) 

^.Identical/ A-optimal
I

E C D (9)  Schur-optimal

E C D  (9) 0+1
type-1 or n

optim al A-best

E C D (0 +  1) Schur-best

3u 2v
5 3

We have found th a t th e  A-optimal design in D{v,  3; fci, fc2) is uniquely an ECD (9)

when 0 <  7 <  v  and uniquely an E C D (9 -+ 1) when ^  <  7  <  v. W hen 7  =  5 the
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optimality matrix for ECD(9)and Case II designs have identical eigenvalues, and 

the ECD(d)and Case II designs are A-optimal. When § <  7  <  x  the A-optimal 

design can either be an ECD(9 + 1) or a  Case II design, and condition (3.78) must be 

checked in order to determine if the A-optimal design is an ECD(9 -I- 1) or a Case II 

design. Table 3.26 lists the parameters fci, fc2, and 7  for ten A-optimal ECD(9 +  ljs  

and Case II designs.

3.3.4 Special Cases: (fci — kz) <  2

We will now apply the optimality results from sections 3.3.2 and 3.3.3 to the three 

special cases described in section 2.4.

C oro llary  3.3.7 Suppose fci =  fc2  and r  =  3. Then

(i) I f  2 | fci then 7  =  0, and ECD(9m)s exist and are Schur-optimal.

(ii) I f  2 /  fci then 7  =  and ECD(9)s and Case II  are identical and (E , S )— and 

4>f-optimal.

C oro llary  3.3.8 Suppose fc2  =  fci — 1  and r  =  3. Then

(i) I f  2  | fci then |  <  7  <  | ,  and ECD(9)s are Schur-optimal.

(ii) I f  2 /  fci then y  < 7  <  y ,  and ECD(9 + l)s  are Schur-optimal.

C oro lla ry  3.3.9 Suppose fc2  =  fci — 2 and r  =  3. Then

(i) I f  fci =  4 then 7  =  y ,  and ECD (9 + l)s  are Schur-optimal.

(ii) I f  hi =  6  then 7  =  y ,  Case I I  designs are (E,S)-optimal, and ECD(9 + l)s  are 

A-optimal.

(Hi) I f  2 i fci and fci >  8  then |  <  7  <  y ,  Case I I  designs are (E,S)-optimaI, and 

either an ECD(9 + 1) or a Case I I  design is A-optimal.

(iv) I f  2 /  fci then 0 <  7  <  | ,  and ECD(9)s are Schur-optimal.
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Table 3.26: Parameters for A-optimal Designs In D(v, 3, fci, ki) When § <  7  <

ECD(Q + 1) A-optimal

ECD (9 + I) Case II
fci ki 2n A-value A-value

8 6 .57 1.51261 1.51398
1 0 8 .56 1.50794 1.50851
1 1 5 .56 1.51309 1.51400
1 2 7 .58 1.50718 1.50845
1 2 1 0 .55 1.50545 1.50575
13 3 .56 1.52702 1.52739
14 1 2 .54 1.50398 1.50415
16 14 .53 1.50303 1.50313
17 6 .57 1.50762 1.50848
17 8 .56 1.50513 1.50570

fct ki

Case II A-optimal

ECD(9 + 1)
J A-value

Case II 
A-value

5 2 .57 1.58385 1.57738
14 3 .53 1.53069 1.52746
14 9 .52 1.50600 1.50584
26 4 .53 1.51471 1.51413
27 4 .52 1.51571 1.51427
27 2 0 .51 1.50139 1.50137
29 1 2 .51 1.50255 1.50249
34 8 .52 1.50422 1.50419
42 5 .53 1.50874 1.50862
43 5 .52 1.50912 1.50868

3.3.5 Construction of O ptim al Designs in D(v,  3; fc i, fc2)
ECD Constructions

Let L be the common ECD  treatment concurrence. Then for ECD(9)s, L =■ 9, and 

for ECD(9 ■+• l^s, L  — 9 ■+■ 1 .
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Block 1  o f  R ep lica te  1 : { 1  . . .  fci}

Block 1  o f  R ep lica te  2: { 1  . . .  L} U {fci +  1 - - - 2fci — L}

Block 1  o f  R ep lica te  3:

(i) fc! <  2 L:

{ 1  . . .  2L -fc !>  U {£ -f-1 . . .  2fci — L}

(ii) fci >  2 L:
if fci=2£+l

{L  +  1  . . .  2L } U {fci + 1  . . .  fci +  L} U {2fci -  L +  1  . . .  3(fci -  L)} 

C ase I I  C o n stru c tio n s  

B lock 1 o f  R ep lica te  1: {1 . . .  fci}

B lock 1  o f  R ep lica te  2 : { 1  . . .  9 -t* 1 } (J {&i +  1 - • • 2fci — (9 4 - 1 )}

Block 1  o f  R ep lica te  3: { 1  . . .  2(9 +  1) — fci} U {& + 2  . . .  fci} U
if fct—£—2>0

{fci +  1  . . .  2 fci -  9 -  2 } U {2 fci -  9}

3.3.6 Examples o f O ptim al Resolvable Designs in D {v , 3; fci, fc2)

We will conclude this section by providing some examples of resolvable designs in 

D(v, 3; fci, fc2) for various interesting fci > 3 and 2 <  fc2  <  fci. First we will construct 

designs for the two cases when fci =  fc2.

E xam ple Suppose fci =  fc2  =  4. Then, according to corollary 3.3.7 the the Schur- 

optimal design is an ECD(9m). Applying the ECD construction given above with 

L  =  9 =  2 yields a Schur-optimal ECD(9*) which is:

1 5 1 3 3 1
2  6 2 4 4 2
3 7 5 7 5 7 '
4 8 6  8 6  8
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E xam ple  Consider the case where fci =  fc2  =  5. Then, according to corollary 3.3.7 

the ECD(9)s and Case II designs are (E,S)- and type - 1  optimal. Applying the ECD 

construction given above with L — 9 =  2  produces an (E,S)- and type - 1  optimal 

ECD(9) which is:
1  6 1 3 3 1
2 7 2 4 4 2
3 8 6  5 6  5 .
4 9 7 9 7 6

5 10 8  1 0 9 10

Now we will investigate the two cases when fci — fc2 =  1 .

E xam ple  Consider the setting such that fct =  6  and fc2  =  5. By corollary 3.3.8, 

the Schur-optimal design is an ECD(9). Applying the ECD construction given above 

with L = 9 — 3 produces a Schur-optimal ECD which is:

1 7 1 4 4 1

2 8 2 5 5 2

3 9 3 6 6 3
4 1 0 7 1 0 7 1 0  '
5 1 1 8 1 1 8 1 1

6 1 2 9 1 2 9 1 2

E xam ple Suppose fct =  5 and fc2  =  4. By corollary 3.3.8, the Schur-optimal design 

is an ECD(9 + 1). Applying the ECD construction given above with L = 9 -(-1 =  3 

yields a Schur-optimal ECD(9 + 1) which is:

1  6 1 4 1  2

2 7 2 5 4 3
3 8 3 8 5 8  .
4 9 6  9 6  9
5 10 7 10 7 10

Now we will investigate the two cases when fct — fc2  =  2.

E xam ple  Consider the setting such that fct =  8  and fc2  =  6 . By corollary 3.3.9, 

the Case II design is (E,S)-optimal, and the A-optimal design is either the Case II 

design or the ECD(9-h i) .  Checking condition (3.78) establishes that the ECD(9 + 1)
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is A-optimal. Applying the Case II construction given above with 0 =  4 yields an 

(E,S)-optimal Case II design which is:

1 9 1  6 1 3
2  1 0 2 7 2 4
3 11 3 8 6  5
4 12 4 12 7 11
5 13 5 13 8  13 '
6  14 9 14 9 14
7 1 0 1 0

8 1 1 1 2

Applying the BCD(9 + \ )  construction given above with L  =  0 + 1  =  5 produces an 

A-optimal ECD(9 + 1) which is:

1 9 1  6 1 3
2  1 0 2 7 2 4
3 11 3 8 6  5
4 12 4 12 7 12
5 13 5 13 8  13 '
6  14 9 14 9 14
7 1 0 1 0

8 1 1 1 1

E xam ple Suppose fci =  5 and fc2  =  3. By corollary 3.3.9, the Schur-optimal design 

is an ECD(6). Applying the ECD construction given above with L = 9 = 3 yields a 

Schur-optimal ECD(9) which is:

1  6 1 4 1  2

2 7 2 5 4 3
3 8 3 8 5 8  .
4 6 6

5 7 7

3.4 Resolvable Designs With. Four Replicates

3.4.1 Introduction

hi this section we study optimality for the resolvable design setting D(v,A; k i ,k 2). 

From section 2.3 we have:
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ECD(0): The optimality matrix for ECD(9)s is M i =  p i — 7  {J —I). The eigenvalues 

of M i are

fi(7) =  P + 7 (3 copies)

£2 (7 ) =  P ~  37,

and they satisfy

£1 (7 ) =  £1 (7 ) =  €1 (7 ) > 6 (7 )-

EC D(0 -f 1 ): The optimality matrix for ECD(8+l)s is M i — p i —j ( J —I)+ v (J —I). 

The eigenvalues of Afy are

£1 ( 7  ~  v) =  P ~  (v — 7 ) (3 copies)

62(7 ) =  P +  3 ( i / - 7 ),

and they satisfy

6 ( 7  -  w) > ( 7  -  ») =  Ci( 7  -  w) =  Ci( 7  -  «)-

Theorem 2.3.3, lemma 2.3.7, and corollary 2.3.8 establish conditions for when ECD(9js 

are E-better or Schur-better than ECD(8+lJs and for when ECD(8+l)s are E-better 

and Schur-better them  ECD(8)s; see table 3.27.

Table 3.27: E- and Schur-comparisons Of ECDs In D(v, 4; fcx, ki)

ECD (9) _ ECD(9 + l)
I ECD(9) E-better I

Schur-better 1 1 Schur-better

£  £  3v
4 2 4

As with all r  <  4, corollaries 2.3.11 and 2.3.13 eliminate UECDs as optimal­

ity competitors. Conditions for Schur- and E-optimality of NECDs or ECDs can
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be established using lemma 2.3.17 and by direct eigenvalue comparisons. The op­

timality matrix Md (in order to apply lemma 2.3.17) or the concurrence discrep­

ancy matrix A d must be derived for competing NECDs. Recall that NECDs have 

block concurrence discrepancies 5da> €  {0,1} for all 1  <  i  ^  i' <  4 and have at 

least one block concurrence discrepancy equal to 0  and at least one equal to 1 . 

There are nine cases of nonisomorphic NECDs; their block concurrence discrepan­

cies, {Sdi2jSdi3,Sd23,Sdi4jSd24,Sd34} are listed in table 3.28 and the corresponding 

block concurrence discrepancy matrices are shown in table 3.29.

Table 3.28: Block Concurrence Discrepancies For NECDs In D{v, 4; kx, fe2)

Case S dl2 5<tl3 &d23 $dl4 Sd24 £<G4
I 0 1 1 1 1 1

I I 0 1 1 1 1 0

I I I 0 0 1 1 1 1

I V 0 0 1 0 1 1

V 0 0 0 1
*11 1

V I 0 0 1 1 0 1

V I I 0 0 1 1 0 0

V I I I 0 0 0 0 1 1

I X 0 0 0 0 0 1

Using the concurrence discrepancy matrices for the nine cases of NECDs, we begin 

our eigenvalue optimality investigation with the following application of corollary 

2.3.17.

Corollary 3.4.1 Let d 6  D(v, r; kx, k2) be an NECD having optimality matrix M d  =  

p i  — 7  ( I  — J) + vAd, and let and ur be the maximum and minimum eigenvalues, 

respectively, of Ado =  PT AdP, where P  =  ( /  — \J ) .  I f

^  Ur  7  <  — - v
4

then ECD(9)s are Schur-better than d. I f u x > 0 and
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Table 3.29: Concurrence Discrepancy Matrices For NECDs In D (v,  4; fci, fc2)

Case I: A i  =

Case II: A 2  —

Case HI: —

Case IV: A 4  =

Case V: A 5  =

( 0 0 1 1 \
0 0 1 1
1 1 0 1

U 1 1 0 /

0 0 1 1 \
0 0 1 1
1 1 0 0

u 1 0 0 )

( 0 0 0 1 \
0 0 1 1
0 1 0 1

u 1 1 0 )

( 0 0 0 0 \
0 0 1 1
0 1 0 1

V 0 1 1 0 )

( ° 0 0 1 \
0 0 0 1
0 0 0 1

v i 1 1 0)

Case VT: A« =

Case VII: A 7  =

Case VTII: Aa =

Case DC: A n  =

( ° 0 0 1 \
0 0 1 0
0 1 0 1

V I 0 1 0 /

/  0 0 0 1 \
0 0 1 0
0 1 0 0

V I 0 0 0 /

/  0 0 0 0 \
0 0 0 1
0 0 0 1

V 0 1 1 0  y

/  0 0 0 0 \
0 0 0 0
0 0 0 1

VO 0 1 0 )

then ECD(§ + l)s  are Schur-better than d. Furthermore, i f

ui >  0

then ECD(d)s are E-better, but not necessarily Schur-better, than d.

(3.80)

We now use these tools to eliminate as many designs as possible. For each NECD, 

condition (3.80) was calculated with results given in table 3.30. Immediately we see 

all cases except Cases I, II, and V are E-inferior to ECD(Q)s. Values of 7  for which 

ECD(9)s or EC D (9+\)s  are Schur-better than NECDs having any of the concurrence 

discrepancy matrices listed in table 3.29 have been determined using corollary 3.4.1 

and are also listed in table 3.30. We also know by Theorem 2.3.3 and corollary
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Table 3.30: Corollary 3.4.1 Results In D (v ,  4; ku  fo)

Case _ “n4
3"tti

4 «i
I .375 .750 .000
I I .500 .750 .000
I I I .342 .658 .366
I V .250 .625 .500
V .375 .750 .000
V I .405 .595 .618
V I I .250 .500 1.000
V I I I .342 .658 .366
I X .250 .625 .500

2.3.15 that ECD(d)s are type- 1  and E-optimal on 0 < 7 <  §, which is sufficient on 

this range for our primary goals of A-optimality. Here we get stronger optimality 

for a subset of 0 <  7 < | .  Note that on ^  < 7  <  v, ECD(0 + l js  are uniquely 

Schur-optimal.

The majorization results we have so far are sum m arized in table 3.31 which shows, 

for each of the nine cases, the range for which each NECD majorizes an ECD. We see 

that Case VII designs are Schur-inferior to ECD(3 +  1 >  when |  <  7 < v. Thus Case

VII designs are type-1 inferior to ECDs over the entire interval. Case VII is the only

case that is completely eliminated from type- 1  optimality contention, so in order to 

proceed, we must make direct eigenvalue comparisons. We need explicit expressions 

for the eigenvalues of the optimality matrices for each of the remaining eight NECD 

competitors when possible. The eigenvalues and their ordering over the admissible 

region are given below.

C ase  I: The optimality matrix for Case I NECDs is Mi =  p i  — 7 ( J  — I) +  uAt , 

and the eigenvalues of M i are

( i )e i =  P + 7

4 l) =  p - ( v -  7 )
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Table 3.31: Majorization Intervals For NECDs In D (v ,  4; fci, k2)

Case I f / w w w w ) — 7

.37u 3u
4

Case II —
3u
4

qvy\>vrtf»y\yTcW\/>/v>/\^— 7

.34u ! .6 6 n ^

Case IV —[ w w w w v < > - a w w V w w w w v ) — 7

•63t/ t

Case V — l a a a / > a «̂ vyvvvAjru\/vv)— 7

.37u 3u
4

.40v .60t/

Case VII —[ w v w w w >

0

3u
4

3tr
4

Case VTII — — 

0 |  .34u

Case EX —fv/\y-v/\>\/v/\/VAj«>----------

.66v ^

.63v ^  V

41'

4°

p +  (u -  7 ) ~  |  +  ^ y / l 6 ( v - y ) 2 + v 2 

p +  (v -  7 ) -  |  -  i ^ / l 6( u - 7 )2 +  u2,

and they satisfy
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C ase II: The optimality matrix for Case II NECDs is M2 — p i — 7 ( J  — I) + v&2, 

and the eigenvalues of M2 are

and they satisfy

e f ] =  p +  7  

4 2) =  P + 7

e32* =  p -F 3(v — 7 ) — v 

e42) =  p + 7 — 2v,

e<2) > e<2) =  e f  >  4 2) I e(2) =  e<2> > e<2) >  e<2) 
---------------------i---------1-------------------1------------------- 1--------- 1---------------------------- ) -  7

tr 2 « 2v 3t»
4 3 2 3 4

C ase H I: The optimality matrix for Case H t NECDs is M3  = p l  — 7 (J  — I) + uA3. 

Three of the eigenvalues of M3  can not be expressed in closed form. The fourth 

eigenvalue is

= p — (y — y).

C ase IV : The optimality matrix for Case IV NECDs is M4  =  p i  — 7 (J  — I) + uA4, 

and the eigenvalues of M4  are

ei4) =  P -  (v -  7 )

4 4) =  P -  (» -  7)
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e34) =  P +  (v — 7 ) +  \/(v  -  7)2 +  372 

ei4) =  P +  (v ~  7) ~  y/(v -  t ) 2  +  372,

110

and they satisfy

I

> ei*> > <£’ =  4"1 ! 4 4) > e(4> =  e<4) >  e‘4>

£  £  £  2u 3u
4 3 2 T  T

C ase V : The optimality matrix for Case V NECDs is M5 = p i  — y (J  — I) •+■ t/A5, 

and the eigenvalues of Ms are

and they satisfy

e(5)ei =  P +  7

4 5) =  P +  7

4 5) =  p - 7  + sjz{y -- y)2 +  7:

e f =  P - 7  “ y jz(v -- 7)2 +  7:

e<5> >  e<5) =  ef* >  e<5) , e[5) =  e<5) >  e<5) >  e f

£  £  2v 3u
3 2 3 4

C ase V I: The optimality matrix for Case VI NECDs is M6 — p i  — ~y(J —1)+  vA e, 

and the eigenvalues of Me are

ei#) =  P - ( v - 7 ) +  (~I~ 2V̂ )  v 

4 6) =  p - ( t ; - 7 ) - h ^ 1

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Ill

e («)
e 3

e (6)e 4

p +  (t/ -  7 )  -  |  +  ^ 4(u -  27)2 +  u2 

p +  (u -  7 ) ~  - 2 i ) 2 + v 2,

and th ey  satisfy

e f  > e f  >  e f  >  e f e f  >  e f  > e f  > e f , e f  >  4 ** >  4 6) > e f  
-H ------------------------- ) -  7

2 w
3

( ^ ) «

3u
4

( « r t -

C ase  V III: T he optim ality  m atrix for Case VTH NECDs is iVf8 =  p i  — j ( J  — I) + 

uAg. Three o f th e  eigenvalues o f  Ma can not be expressed in closed form. The 

fourth eigenvalue is

e*8* =  p +  7 .

C ase IX : T he optim ality m atrix for Case DC NECDs is M g — p i  — 7 ( J  — I)  4- vA g ,  

and the eigenvalues o f M g  are

e(9)ei

e(9)
e 2

=  P +  7 

=  P - ( v ~  7)

49) =  P + fa “  7) -  |  +  ^y/l& Y2 +  v2

e f  =  P +  (w -  7 ) -  ?  -  \ y j l& 1 2 +  v2,

and th ey  satisfy

49) >  e f  >  e f  >  e f  , e f  >  e f  >  e f  >  e f

£  £  £  2v 3tr
4 3 2 3 4
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We conclude this section w ith a  lemma th a t uses the explicit expressions for the 

eigenvalues of the optim ality matrices for the  nine cases of NECDs and corollary 

2.3.4 to determine Schur-optimality when 7 =  §•

L em m a 3.4.2 When 7  =  £, ECD(d)s, Case I I  and Case V designs are Schur- 

optimal.

P ro o f  Since all cases of NECDs except for Cases I, II, and V are El-inferior to 

ECD(9)s when 7  =  §, the  optim ality matrices for these cases are the only ones th a t 

can potentially have eigenvalues th a t are identical to  the eigenvalues of the optim ality 

m atrix  for ECD(9)s. Pu tting  7 =  |  into the  eigenvalue expressions for these three 

cases gives the result. □

3.4.2 (E ,S)-O ptim al Designs in D ( v , 4; fcj., kz)

Corollary 3.4.1 established th a t the  only NECDs th a t can be El-optimal in the re­

solvable design setting D(v, r; ki ,  fc2) are Cases I, II, and V designs. El-optimality will 

now be investigated in detail, bu t first we will review a few useful optim ality results 

from above.

1. ECD(9)s are El-optimal when 0 <  7  <  §, uniquely so when 7 <  | .

2. The optim ality matrices for ECD(S), Case II, and V designs have identical 

eigenvalues when 7  =  §

3. ECD(9 -f- l)s  are Schur-optimal when ^  <  7  <  u.

El-optimality is solved for 0 <  7  <  § and ^  <  7 <  v; ECD(d)s, Case II, and V designs 

are El-equivalent when 7  =  and Case I, n ,  and V designs may be E^optimal on 

|  <  7 <  x -  ^  secti°n we will find the E^optimal designs on |  <  7 <  ^ ,  

and if more than  one design is El-optimal on a subinterval of |  <  7 <  then the 

(E,S)-optimal design will be identified, see definition 3.1.1. Based on the conclusions 

above we can sta te
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C o ro lla ry  3.4.3 When 0 <  7  <  ECD(8)s are (E,S)-optimal, uniquely so when 

7 <  §. When y  < 7 < u, ECD(8 + l)s  are (E,S)-optimal.

The following lemma establishes exactly when Cases I, II, and V are E-optimal. 

L em m a 3.4.4

1. ECD(8), Case II, and V  designs are E-equivalent and E-better than Case I  

designs when § <  7  < y .

2. When y  <  7  <  y , ECD(8)s, Case I, II, and V designs are E-equivalent.

3. When 7  =  y ,  ECD(8)s, ECD(8 +  ljs , Case I, II, and V designs are E- 

equivalent.

P r o o f  The maximum eigenvalue of ECD(8)s is £1(7) =  p +  7, and the maximum 

eigenvalue of ECD(8 4- 1,1s is £2(7 — v) =  p — (v — 7). On the interval § < 7 < y ,  

the maximum eigenvalue of Case II and V designs is e ^  =  ê 5' =  p +  7 =  £1(7); 

therefore, ECD(8)s, Case II, and V designs are E-equivalent. On § < 7 < y ,  Case I 

designs are E-inferior to ECD(8)s, Case II, and V designs since they have maximum 

eigenvalue =  p +  (u — 7) — |  +  \y jl6 (v  — j ) 2 -t- v2 > £1(7) =  . However,

when y  <  7 <  y ,  the maximum eigenvalue of Case I designs is =  p-F 7  which is 

identical to the maximum eigenvalues of ECD(8)s, Case I, and V designs, and Case I 

is E-equivalent to ECD(8)s, Case n ,  and V designs. When 7 =  y ,  £2(7 — w) — £1(7), 

and ECD(8)s, ECD(8 +  l^s, Case I, II, and V are E-equivalent. □

Now Schur comparisons of the El-optimal designs can be made.

L em m a 3.4.5 Case I I  designs are Schur-better than ECD(8)s when |  <  7  <  u.

P ro o f  When |  <  7  <  v, the largest two eigenvalues of Case II designs, which 

are e|2* =  ê 2* =  p +  7  =  £1(7), are identical to each other and to the largest two
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eigenvalues of ECD(S)s. Since the third largest Case II eigenvalue e ^  is less than 

ei2* =  e22) =  Cx (7 ) when |  <  7  <  0, then the eigenvalues of ECD(9)s majorize the 

eigenvalues of Case II designs on the interval, and, therefore, Case II designs are 

Schur-better. □

L em m a 3.4.6 When |  <  7  <  v, Case I I  is Schur-better than Case V.

P ro o f  When § <  7 < v, the largest two eigenvalues of Case V designs, ej5* =  

ei5) =  p +  7, are identical to each other and identical to e[2) =  e £ \  the largest two 

eigenvalues of Case II designs. It is then necessary and sufficient for the eigenvalues 

of Case V designs to majorize the eigenvalues of Case II designs that the third 

largest eigenvalue of Case V designs be greater than or equal to the third largest 

eigenvalue of Case II designs, or > e ^ .  This inequality is true if and only if 

P ~  7 +  v 3 (u ~  ^ 2  ^ 2  — P +  ~  l )  ~  v which is true if and only if 7  >  | .

Therefore, Case II is Schur-better. □

L em m a 3.4.7 When y  < 7 <  v, Case I  designs are Schur-better than Case I I  

designs.

P ro o f  When y  <  7  <  v, Case I and Case II designs have the same maximum 

eigenvalue, which is =  p +  7. In order to establish the result, we will

show tha t the remaining three eigenvalues of Case II designs e ^  > 

majorize the remaining three eigenvalues of Case I designs > ê 1*. Since

e22) =  ei1) >  we have the result if and only if <  e ^ .  This inequality holds 

if and only if p +  7  — 2v < p + [ v  — 7) — § — 5 ^ 1 6 (1/ — j ) 2 + v2 which is true if and 

only if 8v(v — 7) >  0, that is when 7 <  v. Therefore, Case I designs are Schur-better 

than Case II designs. □

L em m a 3.4.8 When 7  =  y ,  ECD(6 +  1  )s  are Schur-better than Case I  designs.
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P ro o f  W hen 7 =  ^ ,  since the largest eigenvalue of Case I designs is equal to  the 

largest eigenvalue of ECD(9 + IJs, then p +  7  =  eiX) =  $2(7 — v) = p + 3(v — 7). 

Since e ^  >  =  £1(7 — v) >  e^1* then the eigenvalues of Case I designs majorize

the eigenvalues of ECD(9 -F ljs . Therefore ECD(9 +  l js  are Schur-better. □

Lemmas 3.4.4, 3.4.5, 3.4.6, and 3.4.7 guarantee that for 0 <  7  <  v and 7  #  §, 

there is a unique Schur-best design among the El-best designs, and when 7  =  |  three 

classes of designs, ECD(9)s, Case II, and Case V, have identical eigenvalues and are 

Schur-best. The (E,S)-optimality breakdown is shown in table 3.32.

Table 3.32: (E,S)- and Schur-optimal Designs In D(v, 4; k i ,k 2)

Case II 

Case V
Case I

ECD(9)
. Identical y ( E ^ P ^

ECD(9) | ECD(9) 
Schur-optimal I (E,S)-optimal

Case II 1

(E,S)- |
optimal |

i ----------------------1--------------------- 1--------------*-----b
n £  » 2v 3u
U 4 2 3 4

I
I ECD(9 + \ )
I Schur-optimal

3.4.3 Schur-Optimality in D ( v , 4; ^1 ,^ 2 )

From corollary 3.4.1, we know that ECD(9)s are Schur-optimal when 0  <  7  <  |  

and ECD(9 + Ijs  are Schur-optimal when ^  <  7  <  v, and from Theorem 2.3.3, we 

know ECD(9)s are type-1 optimal when |  <  7  <  | .  Now we will focus our attention 

on A-optimality, and along the way, establish some Schur-orderings. Before fully 

restricting to A-optimality in section 3.4.4, we will use the explicit expressions for 

the eigenvalues of the ECDs and the five remaining cases of NECD competitors to 

identify subregions of |  <  7  <  ^  on which various cases are Schur-inferior to  other
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cases. In essence, we will use the  eigenvalue expressions to obtain a  more accurate 

version of table 3.31. Recall th a t Case V and VII designs are Schur-inferior to  Case 

II designs and ECD(0 -F 1,/s, respectively, and we do not know the eigenvalues for 

Cases III and VIII.

L em m a 3.4.9 When |  <  7  <  v, ECD(8+l)s are Schur-better than Case IV  designs, 

and when 7  =  ECD(8 -f 1 )s and Case IV  designs have identical eigenvalues.

P ro o f  In order for the eigenvalues o f Case IV design to majorize the eigenvalues of 

ECD(9 -F 1,/s, it is necessary and sufficient for the largest Case IV eigenvalue, which 

is =  p  +  (v — 7) +  \J(v — 7 )2 -F 372 when |  <  7 <  v, to be greater than  or 

equal to the largest ECD(9 +  1)  eigenvalue £2(7 — v) =  p + 3(u — 7), which is true 

if and only if 7  >  | .  When 7 =  §, =  f2(7 — u), and, since the second and third

largest eigenvalues of Case IV designs are identical to  the three smallest eigenvalues 

of ECD(6 -F 1,/s, Case IV  and ECD(9 -F 1,/s have identical eigenvalues. □

L em m a 3.4.10 When ( ^ g ^ )  v < 7  < v, ECD(8 + l)s  are Schur-better than Case 

VI designs.

P ro o f  The eigenvalues of Case VI designs majorize the eigenvalues of ECD(9 -t- 1 ,/s 

when the largest Case VT eigenvalue is greater than the unique largest ECD(9 -¥1) 

eigenvalue 6 2 ( 7  — v) = p  +  3(v — 7 ). When ( :!̂ ^ )  v < 7  <  v, the largest Case 

VI eigenvalue is ej8* = p — (v — 7 ) +  ( I"tr2v̂ ) v, and >  ^2 ( 7  — u) if and only if 

( 7 ~8 ^ ) v — 7 — v- 7 =  ( ^ s ^ )  , since the four Case VI eigenvalues are unique,

the ECD(Q +  1  ̂ and Case VI eigenvalues are not identical. Therefore, ECD(9 + l)s  

are Schur-better than Case VI eigenvalues when ( T~8̂ ) v < 7  <  v. □

L em m a 3.4.11 When |  <  7  <  ^ ,  Case I  designs are Schur-better than Case IX  

designs, and when 7  =  Case I  and Case IX  designs have identical eigenvalues.
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P ro o f  On the interval § <  7  <  v, the ranking of Case IX eigenvalues is consistently 

e£9* > ei.9) >  e29  ̂ >  e49̂ > the th ird  largest Case IX and Case I eigenvalues are 

identically e ^  =  =  p —(u—7). On § <  7  <  the largest two Case I eigenvalues

are =  e ^ ,  and Case DC eigenvalues majorize Case I eigenvalues if and

only if >  e ^ ,  if and only if p -F (1/ — 7) — |  4- +  v2 > p  +  (v — 7) — |  +

| ^ 16(u — 7)2 +  v2, if and only if 7 >  | .  □

Since it is possible to express in closed form only one of the eigenvalues of the 

optimality matrices for Case HI designs and Case VTII designs, we will derive bounds 

for their maximum and minimum eigenvalues in order to eliminate them from opti­

mality contention. As usual, let e\ and er be the maximum and minimum eigenvalues 

of am optimality matrix M j, respectively. Then

et =  max =  xTMrfX >  x 'TMdx ‘ (3.81)
XT X = 1

and

er =  min x TM'(tx  <  x^iWrfX* (3.82)
XT X = l

where x* is any fixed, normalized vector. Typically we take, for a fixed value of 

7  =  7 *. x* to be an eigenvector of M j = (p + 7 *)/ — 7 * 7  4- t/A*. Bounds obtained 

using this procedure are used in the next two lemmas.

L em m a 3.4.12 When § < 7  <  Case I  designs are Schur-better than Case III  

designs

P ro o f  Since the known eigenvalue of the optimality matrix for Case EH designs 

e*3) =  p — (t; — 7 ), is identical to one of the eigenvalues of the optimality matrix for 

Case I designs, e*1*, we need to shew that the remaining three Case EH eigenvalues

majorize the remaining three Case I eigenvalues on the interval. When |  <  7  <  y ,

the maximum Case I eigenvalue is ejX) =  p +  (u — 7 ) — |  -F 16(u — y)2 -F v2 and 

the minimum Case I eigenvalue is =  p  -F (u — 7 ) — § — 5 ^ 1 6 (1/ — y)2 -Fv2. If
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the maximum and minimum Case HI eigenvalues are and e43\  respectively, then, 

since there are only three eigenvalues per case to compare, Case HI eigenvalues 

majorize Case I eigenvalues when ej3* > and e43' <  ê 1*.

When 7 * =  | ,

m ;  =
(  P —7 — 7  ~ 7 +  v \

— 7  p — 7  +  V  — 7  +  V
— 7  — 7  + v p — 7  +  V

\  — 7  +  v — 7  +  1/ — 7  +  V p

and the normalized eigenvectors of Afj are

1x, = ( 1  -  n/5, 2 , 2 , - 1  +  n/5)’
2 y j b - y / l

x£ =  7 - - 1  (1 +  x /5 ,2 ,2 ,- 1 - n /5 ) 1

2y/h + y /l

* 3  =  ^ (0’ ~ 1’ 1’0)T

x 4  =
x/ 2

( 1, 0 , 0, 1)T.

Now, if X* =  (Xj | x^ | x j | x4), then

X '  M3X m =

'  x^t M3 xJ \ /
xX'MixZ
x*t M3 x ’

V x 4TiVf3x 4 ^ V

p -  * f(3 v  -  7 ) 
p - ( v -  7 )

(3.83)

The first two components of the vector on the right had side of (3.83) serve as the 

bounds defined by (3.81) and (3.82), respectively, that is, >  p +  ^ ( 3 u  — 7 ) and 

e43* < p — ^ ( 3 v  — 7 ) for all |  <  7  <  ^ .  Since

p +  -^ (3 u  -  7 ) >  4 1}

and
a/ 5 ,
5

p -  -^(31/ -  7 ) <  e^5,

Case I is Schur-better than  Case HI on the interval. □

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



119

L em m a 3.4.13 When § <  7  <  3 1 Case I  designs are Schur-better than Case VIII 

designs

P ro o f  Since the known eigenvalue of the optimality matrix for Case VTII designs 

eW =  p 4 - 7 , is identical to one of the eigenvalues of the optimality matrix for Case 

I designs, ej11, we need to show that the remaining three Case VIII eigenvalues 

majorize the remaining three Case I eigenvalues on the interval. When |  <  7  <

the maximum Case I eigenvalue is =  p 4- (1/ — 7) — £ 4- \ \ J  16(v — j )2 4 - v2 and

the minimum Case I eigenvalue is = p  +  (v — 7) — |  — |^ /l6 (u  — 7)2 -I- v2. If the

maximum and minimum Case VIII eigenvalues are ej8* and e*£\ respectively, then, 

since there are only three eigenvalues per case to compare, Case VIII eigenvalues 

majorize Case I eigenvalues when e[8' >  and ê 8' <  e^K W hen 7* =  | ,

/  p  - 7

M l =
- 7  - 7  \

— 7  p — 7  — 7  4* v
— 7  — 7  p ~ 7  4- v

\  7 —7 4- 1/ — 7  4- u p

and the normalized eigenvectors of M l are

1x, =

* 2  =

X, =

2^/5 -  y/E

2y/b + y/S 

~  (0 ,-1 ,1 ,  O f

=  ( 1 , 0 , 0 , I f .

(—2, —1 4- -\/5, —1 4- a/5, 2)1 

(—2, —1 — VE, —1 — \ / 5 , 2)’

Now, if X* =  (x* | x^ | X3  | x j), then

X m MaX* =

/  xfiVf8 x* \ /
x f  Af8 x ;
x f M 8xJ

V x f  M8 x* V
p -  & {2v  4- 7 ) 

P +  7
p - 7

(3.84)

The first two components of the vector on the right hand side of (3.84) will serve as 

the bounds defined by (3.81) and (3.82), respectively, th a t is, e[8) > p 4  ^ ( 2 u  4- 7 )
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and <  p  — ^ ( 2t/ +  7) for all |  <  7 <  ^2. Since

P +  ^ ( 2v +  7 ) >  4 l)

and

p - ^ - ( 2v  + y )  <  e£l),

Case I is Schur-better than  Case VIII on the interval. □

The results of the m ajorization analysis are summarized in table 3.33 in which, 

for subintervals of 0 <  7 <  v, the cases not ruled out by m ajorization are listed. For 

example, when \  < 7 <  the A-best design is either an E C D (9 +  1A Case I,

II, or VI design.

Table 3.33: Remaining Optim ality Candidates in D(v ,  4; ki ,  fc2)

n , V ,0  

1 Identical 1

ECD(9)

Schur-optimal

ECD(d)  

type-1 optimal

I 1

, 1

n 1
1  1

1 n
VI 0 + 1  |

1 0 + 1

. 9+ 1 1

E C D (9 +  I )  

Schur-optimal

■f  1 — I f-
2v
3

3tf
4

( ^ ) »

3.4.4 A -optim ality in D ( v , 4; fei, k%)

Now th a t we have eliminated as many designs as possible using majorization, eigen­

value optim ality investigations must focus on specific functions of the eigenvalues 

of the information matrices for the remaining design competitors. In this section, 

we will find the A-optimal design(s) in D(v,A; k i , k 2) on the  interval |  <  7  <  ^  by
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directly comparing the A-values of the designs th a t were not eliminated by majoriza­

tion on the subinterval.

There are four classes of designs, ECD(S -F Ijs , and three classes of NECDs, th a t 

can potentially be optim al on the interval. Each class along w ith the interval on 

which the designs in the  class are optim ality com petitors and the eigenvalues of the 

information m atrix  for the designs are listed below.

ECD (0 +  1 ): § < 7 < u ,

Case I: § < 7 <  7 ,

z(l)Z1

z (l)z2

2 (1)zz

z {l)Z4

z;9+„  =  3P +  ( » - T >  (3 c o p ie s )
P

_(*+!) _  3[p -  (u -  7)]
- -   1---------p

3 p-b(v — 7)
P

3p — 7

6 p — 2(u — 7) +  v — yj 16(u — 7)2 4- v2

2 P _____________
6 p — (v — 7) +  V  +  yj 16(l/ — 7)2 +  V -  

2 p

Case H: § < 7  < f ,

_(2) _  3p -  7
1  — — “—P
(2) _  3p — 7

^ 2  — --------
P

(2) _ 3p — 3(v — 7) -F u
2 3  ~    -----------P

(2) _  3p — 7 +  2uZ* — ---------------

Case VI: |  < 7  < ( I=̂ )  v,

z (6) -zi —
6p +  2(u — 7) — (1 +  VE)v

2 p
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(6 ) _  6 P +  2{v -  7 ) -  ( 1  -  y/5)v 
“ 2  2 p

6 p — 2 (u — 7 ) -I- v — yjA{u — 2 7 )2 -F v2
2 3  =  2 p

(6) 6 p — 2(v — 7 ) 4- v 4- ^/4(u — 2 7 )2 4- v2
24 =  2p

Now we will make A-value comparisons for the competitors on |  <  7  <  2 2 .

L em m a 3.4.14 When § <  7  <  ( 7 ~g^) u, Case / /  designs are A-better than Case 

VI designs.

P ro o f  Case II designs are A-better than Case VI designs if and only if

1  1  1  1 1  1  1  1

(2 ) +  (2 ) +  (2) +  (2 ) -  (6 ) +  («) +  (6 ) +  (6 )
Z \  Z 2  * 3  Z4 Z i  Z 2  Z  3  Z4

if and only if

6(2p 4- v ) j4 4- 12u2 (3p 4- 2v)y2 4 - 18p2(9p2 4- 2v2)y  4- 9p2(18p2 4- 15pu -I- 4 ir)—

[2 7 s -I- t/(16v 4- 27p)73 -I- 9p2 (12p 4- v ) j2 4- 2v3(9p 4- 8 ^ ) 7  4- (3.85)

9p2 u(9p2  4- 2u2)j > 0

A lower bound for the left hand side of (3.85) on |  <  7  <  ( 7~ ^ ) v can be obtained 

by substituting 7  =  |  into the positive terms and 7  =  ( 7— v into the negative 

terms. Doing so yields

i/3[—24192(1 -  y/l)  -  (3.86)

288(27 -  7>/5) -  16(1896 -  657v/5) ( ? )  -  (20225 -  7817>/5)].

If we can show that the lower bound (3.86) is greater than zero when ® >  x  for 

some real number x  <  1  then the result follows from corollary (3.1.2). Consider the 

function

/(x )  =  —24192(1—y/5)x3—288(27—7>/5)x2 —16(1896—657n/5)x—(20225—7817^^5) -
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Clearly the lower bound (3.86) is greater than zero for all values of £ =  x for which 

/(x )  >  0. The derivative of /(x )  is

/ '(x )  =  -72576(1 -  y/h)x2 -  576(27 -  7v^5)x -  16(1896 -  657y/S),

and / '(x )  =  0  if and only if

- 9  [(27 -  7y/5) =F 2^/—17890 +  8 8 4 1 ^
—   =  ■ _

2268(1 -  y/l)

Since

1 - 9  [(27 -  7y/5) -  2 ^ —17890 +  8841\/5

2  2268(1 -  y/5)
<  0

- 9  [(27 -  7y/5) +  2^-17890 +  8 8 4 1 ^ 2
<  o.2268(1-> /5 )  3 ’

/ '  ( I )  > 0, and /  ( ! )  > 0, then /(x ) >  0 for all x > | .  Therefore, Case II designs 

are A-better than Case VI designs on § <  7  <  ( * ~ ^ ) v. □

L em m a 3.4.15 When y  <  7  <  ^  ECD(9 +  l)s  are A-better than Case I  designs,5

1and when |  <  7  <  y ,  ECD(9 +  l^s are A-better than Case I  designs provided

—2 7 3  +  1 0 t/7 2  +  (18p2 +  9pv — 14u2)7 — 3v(3p2  — 3pv — 2v2) > 0 (3.87)

P ro o f  ECD(9 +  I js  are A-better than Case I designs if and only if

3 1 1 1 I 1

+  -7 iT -r7  <  -77T  +  -7TT +  -7T T  +r(*+l) JS+l) ~  J l)  -U) -U> Jl)
z l  z 2 z \  H  z 3 24

if and only if

—2 7 s +  IO1 /7 2  +  (18p2 +  9pu — 14u2)7 — 3w(3p2  +  3pt/ — 2v2) > 0,

which is (3.87). On y  <  7  <  y ,  the left hand side of (3.87) is bounded below by

9 , „ / P \ 2
160v P2 ( f )  - 6 4  ( | ) -311, (3.88)
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which is obtained by substituting 7  =  y  into the positive terms and 7  =  y  into the 

negative terms. Setting the bound (3.88) equal to zero and solving for £ yields

p _  8  qF 3 \/l4  
v 8

Since
1 8  — 3%/l4 . 8  +  3 \/l4  5

- 2 < — 8 — < 0 < — 8 — < 2 ’

and (3.88) is greater than zero when f  (3.87) is satisfied on y  <  7  <  y  when 

f  >  §, and, by corollary 3.1.4, this inequality holds if fcx > fc2  > 5, Ar2  =  4 and 

&i > 7, or fc2  =  3 and fcx > 15. Thus (3.87) may not be satisfied when fcx >  fc2  =  2 , 

14 >  ki > fc2  =  3, or 6  >  fcx >  fc2  =  4. By lemma 3.1.2, when y  < 7  <  y ,  

fc2  =  2 if and only if fcx =  4, 14 >  fcx >  fc2  =  3 if and only if fcx =  9,10,11, or 

12, and 6  >  fcx > fc2  =  4 if and only if fcx =  6 . Since condition (3.87) is satisfied 

when (fcx,fc2) =  (4,2 ), (9,3), (10,3), (11,3), (1 2 ,3), and (6,4), then ECD(8 + l ) s  are 

A-better than Case I designs on the interval. □

L em m a 3.4.16 When y  < 7  <  y  ECD(9 +  1 )s are A-better than Case I I  designs. 

When |  <  7 <  y ,  ECD(Q +  l ) s  are A-better than Case I I  designs provided

—2 7 3  -I- 1 2 u7 2  -f- (18p2 +  15pv — 16t/2)7 — 3t/(3p2  -I- 4pv — 2v2) >  0. (3.89)

P ro o f  ECD(8 +  l js  are A-better than Case II designs if and only if

3 1 1 1 1 1
+  “ 7T T T T  <  ~Hi\ +  ~7Z\ +  ~i*\ +„(*+U ^  jtf+ D  ~  , ( 2) J 2) ^  r(2) ^  _(2)-1 22 2 1 “ 3 *4

if and only if

—2 7 s -I- 12VJ2 +  (18p2 +  15pu — 16u2)7 — 3u(3p2  +  4pv — 2v2) > 0

which is (3.89). On y  <  7  <  y ,  the left hand side of (3.89) is bounded from below 

by

( f ) 2 - 2 0 2 5 ( f ) -634], (3.90)
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which results from substituting 7 =  y  into the positive terms and 7  =  y  into the 

negative terms. Since the bound (3.90) is equal to zero if and only if

p 225 T a/88665 
v ~  270

3 225 -  a/88665 225 +  a/88665 , _- -  < ------ — -------< 0 < ------- — --------< 1.95,10 270 270

and (3.90) is greater than zero when f  =  2, then (3.89) is satisfied on |  <  7  <  |  

when 2  >  2. By fact 3.1.3, this inequality holds when ki >  k2 > 4 or fc2  =  3 and 

ki > 6 . Thus, (3.89) may not be satisfied when fc2  >  kx = 2 or 5 >  ki > fc2  =  3. On 

y  <  7  <  y , (fci> ^2 ) does not take on the values (3,3), (4,3), or (5,3), and by corollary 

3.1.5, fc2  =  2  if and only if ki =  4. Since (3.89) is satisfied when (fci,fc2) =  (4,2), 

then ECD(9 -t- l)s  are A-better than Case II designs on the interval. □

L em m a 3.4.17 When y  <  7  < y ,  Case I  designs are A-better than Case I I  de­

signs, and when |  <  7  < y ,  Case I  designs are A-better than Case I I  designs 

provided

274 — 2(3p +  8 u)7 3  — (18P2 — 21 pv — 34u2)72-(- (3.91)

2(27p3 + 45p2v —  6pv2 — 14i/3)7 — u(27p3 +  54p2u — 8u3) > 0.

P ro o f  Case I designs are A-better than Case II designs if and only if

if and only if

2 7 4  — 2(3p +  8 u)7 3  — (18p2 — 21 pv — 34i/2 ) t 2-(-

2(27p3 +  45p2u — 6 pv2 — 14u3)7 — v(27p3 +  54p2v — 8 t>3) >  0.

which is (3.91). On y  < y  (3.91) is bounded from below by

T i ik * ' 91125 ( i ) 1 -  135000 ( ; ) 2 -  37425 ( ? )  -  4907°1 (3-92)
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which results from substitu ting  7  =  x  into the positive term s and 7  =  y  into the 

negative terms. We will now show th a t the bound (3.92) is greater than  zero on 

X  — 7  — T  wken „ >  2 by using the function

/ (x )  =  91125x3 -  135000X2 -  37425x -  49076.

since the bound is greater th an  or equal to zero when £ =  x  for values of x such th a t 

/(x )  >  0. Since f ' { x )  =  0 if and only if

400= F \/62455
x =

405

, 400 -  V/62455 „ 400 +  n/62455
_ 1 -2 < --------7777--------<  0 <  ----------7777-------- <  1.3,405 405

and / ( 2) =  65074, then (3 .92) is greater than  zero and (3 .91) is satisfied when £ >  2. 

Prom the proof of lemma 3.4 .16 we know the only pair (k\, k2) for which ^ 2 on

X <  7 <  y  Is (4 ,2), and it is easy to  see th a t (3.91) is satisfied when (ki, k2) =  (4 ,2 ). 

Therefore, Case I designs are A -better than  Case II designs on f  < 7 < ^ -  □

A summary of the A-best analysis is given in table 3.34 below.

Table 3.34: A-, Type-1, and Schur-optimal Designs In D (v ,  4; &lt fc2)

Case II 

Case V 

ECD(S)

.Iden tica l/

ECD(d)

Schur-best

I ECD(d)

I type - 1  best

0+1

IorH

A-best

I ECD(B-i-l) | ECD(d  +  1  ̂

1 A-best 1 Schur-best

3w
5

I

3v
4

-b- 7

Note th a t the A-best design is uniquely an ECD (8)  when 0 <  7 <  |  and uniquely 

an E C D (6 + 1)  when ^  <  7  <  v.  W hen 7  =  |  the eigenvalues for ECD(d)s, Case II
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and Case V designs are identical, and the same designs are A-best. On the interval 

|  <  7  <  j ,  the A-best design can be either an ECD(Q +  LJ, a  Case I, or a  Case II 

design; conditions (3.87), (3.89), and (3.91) must be checked in order to determine 

the A-best design. For 10,000 >  fcx >  3 and k\ > k2 > 2 with |  <  7  <  y  the 

designs were ranked by their A-value with the following results:

Table 3.35: A-optimal Design Counts In D(v, 4; fcx, £2 ) When § <  7  <  y

A-optimal interval count
ECD(9 + l ) .5v <  7  <  .60v 5,027,032
Case I .5v <  7  <  .53u 77
Case II .5v <  7  <  .57v 18,034

Case II A-optimal, ECD(9 + \ )  second best

ECD(6 + 1) Case I Case II
fcx k2 2t A-value A-value A-value

332 41 0.5067 1.33341528681224 1.33341528616835 1.33341529455844
615 61 0.5044 1.33336898681649 1.33336898657864 1.33336898804561
1026 85 0.5032 1.33335121489144 1.33335121481050 1.33335121515767
1589 113 0.5024 1.33334325422629 1.33334325419645 1.33334325429825
2328 145 0.5018 1.33333926800729 1.33333926799523 1.33333926803025
3267 181 0.5015 1.33333709653531 1.33333709653001 1.33333709654363
4430 2 2 1 0.5012 1.33333583303917 1.33333583303667 1.33333583304252
5841 265 0.5010 1.33333505784887 1.33333505784761 1.33333505785033
7524 313 0.5008 1.33333456108502 1.33333456108436 1.33333456108571
9503 365 0.5007 1.33333423094228 1.33333423094191 1.33333423094262
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Case I A-optimal, Case H second best

ki k2 2V ECD(9 + l )
A-value 
Case I Case II

85 7 0.5326 1.33577654097824 1.33576851757101 1.33576872031938
113 8 0.5289 1.33518039792047 1.33517611041577 1.33517651436696
145 9 0.5260 1.33477950084018 1.33477701479240 1.33477739857049
181 1 0 0.5236 1.33449673022044 1.33449519480483 1.33449551298767
2 2 1 1 1 0.5216 1.33428971292312 1.33428871579687 1.33428896905532
265 1 2 0.5199 1.33413355144468 1.33413287687614 1.33413307629157
313 13 0.5184 1.33401281884187 1.33401234675116 1.33401250391211
365 14 0.5172 1.33391753469016 1.33391719472945 1.33391731931784
421 15 0.5161 1.33384100659906 1.33384075574521 1.33384085529994
481 16 0.5151 1.33377860909054 1.33377842004996 1.33377850029529
545 17 0.5142 1.33372706130054 1.33372691620282 1.33372698145427
613 18 0.5135 1.33368398324226 1.33368387006051 1.33368392357517
685 19 0.5128 1.33364761415738 1.33364752459940 1.33364756884820
761 2 0 0.5122 1.33361662859149 1.33361655681632 1.33361659368708
841 2 1 0.5116 1.33359001324405 1.33358995505806 1.33358998600468
925 2 2 0.5111 1.33356698266158 1.33356693500184 1.33356696115336

3.4.5 Special Cases: (fei — £ 2 ) <  2

We now apply the optimality results from sections 3.4.2 and 3.4.4 to the three special 

cases described in section 2.4.

C o ro lla ry  3.4.18 Suppose k\ =  k2 and r  =  4. Then

(i) I f 2 \ k i  then 7  =  0, and ECD(9*)s exist and are Schur-optimal.

(ii) I f  2 /  ki then 7  =  §, and ECD(9)s, Case II, and V  are identical and (E ,S )—

and type-1

C o ro lla ry  3.4.19 Suppose fc2  =  ki — 1  and r  =  4. Then

(i) I f  2 | ki then |  <  7  <  | ,  and ECD(9)s are (E,S)- and type-1 optimal.

(ii) I f  2 /  fcx then ^  <  7 <  ^ ,  and ECD(9 -F 1 /s  are Schur-optimaL
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C o ro lla ry  3.4.20 Suppose k2 =  kx — 2 and r  =  4. Then

(i) I f  ki = 4  fAen 7  =  y ,  Case /  designs are (E,S)-optimal, and ECD(9 -r 1 /s are 

A-optimal.

(ii) I fk i  =  6  fAen 7  =  y ,  Case / /  designs are (E,S)-optimal, and ECD(9 + l)s  are 

A-optimal.

(Hi) I f 2 \ k i  and >  8  £Aen |  <  7  <  y ,  Case / /  designs are (E,S)-optimal, and 

either an ECD(9 +  1 ) ,  a Case I, or a Case I I  design is A-optimal.

(iv) I f 2 f k x then 0 <  7  <  | ,  and ECD(9)s are Schur-optimal.

3.4.6 Construction of Optim al Designs in D(v,  4; fci, fc2)

The A-, (E,S)-, type-1, and Schur-optimal resolvable designs in D{v, 4; kx, k2), kx > 3 

and kx > k2 >  2 , are ECD(9) , EC D (9+ \) , Case I, and Case II designs depending on 

the value of 0 < 7  <  v. In particular, when 0 < 7  <  | ,  ECD(9)s are type- 1  optimal; 

when 7 = 5 , ECD(9)s, Case II, and Case V designs are type- 1  equivalent and type- 1  

optimal; when y  <  7  <  u, ECD(9 +  l^s are Schur-optimal; and when |  <  7  <  y ,  

A- and (E,S)-optimal designs are ECD(9 -i- 1 ,/s, Case I designs, and Case II designs. 

Furthermore, in the previous section we determined that, when kx — k^ <  1, A-, 

(E,S)-, and Schur-optimal designs are ECDs and when kx — k2 — 2, A- and (E,S)- 

optimal designs can be ECD, Case I, and Case II designs. However, we have yet 

to address the question of if and when the theoretically optimal designs exist, and 

if they do, provide a means for finding the optimal design. In this section we will 

determine constructions for ECDs, Case I, and Case II designs. The constructions for 

ECDs will be described in such a way that they will be valid for ECD(9')s, ECD(9)s 

and ECD(9 -f- 1 /s.

Now we are ready to provide constructions for the first block of each replicate for 

values of k x in the interval given by (3.74).
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C o n stru c tio n  o f  E C D ( 0 )s

Let L  be the common ECD  treatment concurrence. Then for ECD(9)s, L  =  8, and 

for ECD(3 +  ljs , L =  9 +  1 . Not that when fcx >  2L, then by 3.74, L = 9.

B lock 1  o f  R ep lica te  1: {1 . . .  fcx}

B lock 1  o f  R ep lica te  2: {1 . . .  L} U {fcx 4-1 . . .  2kx — L }

Block 1  o f  R ep lica te  3:

(i) fcx <  2L  or (fct =  2L  and L even):
i f  k i< 2 L

( 1  . . .  2 L -fcx }  U {£ +  1 . . .  2 fcx - L }

(ii) fcx =  2L  and L odd:

{ 1  . . .  ^ } U {L + 1  . . .  5^1} u  {fci +  1  . . .  fcx +  ^ i }  u

{2 fcx +  1  -  L . . .  2 fcx -  

(Hi) fcx =  2L +  1 :

{L -F 1 . . .  2L} U {*i +  1 - • • fci +  L} U {2fct +  1 -  L . . .  3(fcx -  L)}  

B lock 1  o f  R ep lica te  4:

(i) L +  1  <  fcx <  \L
i f  2 k i< 3 L

{ 1  . . .  3L -  2 fcx} U ( 2 L +  1  — fcx . . .  2 fcx — L}

(ii) |L  < k x < 2L  and L even:

{2 L +  l - f c x  . . .  |L  — fcx} U {£ +  1 \L }  U

■{fcx +  l . . . f c x  +  ^} U {2fcx +  1 — L . . .  3fcx —

(Hi) |L  <  fcx < 2L  and L odd:

{1 } u  {2 L +  l - f c x  . . . ^ p l - f c x }  u  {L  + 1  . . .  2 ^1}  u  

{fcx +  1  . . .  fci +  *=±} U {2 fcx +  l - L  . . .  3 f c x - ^ }
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(iv) k i  =  2L  and L  odd:

{1} U {£  +  1  . . .  “ f l >  U { * , - i f 2 . . .  i i }  U

{ it  +  1 . . .  fc! +  4=l} U {2fci — §(£ — 1) . . .  2 k , - L ]  U

{ 3 k ,  -  5i=i}

(v) 2 L  <  k i  <  3 L :
if ki <3L—2

{1 . . .  l - t - in t (3£-*i- 2) }  U {£  +  1 . . .  £  +  1 +  int ( 3L~2 1~1)}  U 

{2£ +  1 . . .  k i }  U {fci +  1 . . .  k i  +  l  +  w t ( & = * = ± ) }  U
if L-3-2 int(3£~*»~l )>o 

{fcx +  £  +  l  . . .  2 k \  — L }  U {2fcx +  l - £  . . .  2fct - 2 - 2  int(5£=£^

U {3(fci — L )  +  1 . . .  3(A?! -  £) +  1 +  int ( ^ -~1) }

(vi) k i  = 3£:

{2£ +  1 . . .  3£} U { k i  +  £  +  1 . . .  ^  +  2£} U 

{2fct +  l  - £  . . .  2k t }

Construction o f  Case I Designs  

Block 1 o f  Replicate 1: {1 . . .  fcx}

Block 1 o f  Replicate 2: {1 . . .  0} U {*i +  1 . . .  2fct — 0}

Block 1 o f  Replicate 3: {1 . . .  2(0 +  1) -  fct} U {0 +  1 . . .  fcx — 1} U

{fcx + 1  . . .  2fct -  (0 +  1)}

Block 1 o f  Replicate 4:

(i) 0 +  2 <  fcx < |(0  +  1):
if fcl >S+2

{1 . . .  30 +  4 -2 fcx }  U {20 +  3 - fc t  . . .  0} U {0 +  1 --- Art —1}
iffci>0+2

{*i +  l  . . .  2fc1 - ( 0  +  2)} U {2 fc i-0 }

(ii) |  (0 +  1) < fcx <  20 +  1 and 0 even
if S—2>0 _

{1} U {20 +  3 -fcx  . . .  |0  + 1  -  fcx} U {0 +  1 . . .  §0} U 

{fcx +  1 . . .  fcx +  f} u {fci} U {2 fcx- 0  . . .  3 f c x - 2 - | 0 }
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(iii) § (0 +  1 ) <  ki < 29 +  1  and 8 odd
if 0 >l

{26 + 3 — ki . . .  U {0 +  1 --- U {fci} U

{fci +  1 . . .  fci 4- ^2 -̂} U {2fci — 6 . . .  3fci — | (9 +  1)}

C o n s tru c tio n  o f Case I I  D esigns 

B lock 1  o f  R ep lica te  1 : { 1  . . .  k i}

B lock 1  o f  R ep lica te  2: { 1  . . .  0} U {fet +  1  . . .  2fci — 0}

B lock 1  o f  R ep lica te  3: { 1  . . .  2(6 +  1 ) — k i} (J {9 +  1 . . .  fci — 1 } U

{fci +  1  . . .  2ki — (6 +  1 )}

B lock 1  o f  R ep lica te  4:

(i) 9 + 2 < ki < | (9 +  1 ):
if fci >0+2 _ if fci >0 + 2

{ 1  . . .  30 +  4 - 2 f c t } (J { 2 0 +  3 - fc i  . . .  9} U {0 +  1 . . .  k t - 2 }  (J
if fci >0 + 2

{fci} U {fci +  1  . . .  2 fct - ( 0  +  2 )} U {2 fci -  0}

(ii) | ( 0  +  1 ) < fci <  2 0  +  1  and 0  even

{ 2 0  +  3 - fc i . . .  § 0  +  2  - fc i}  U {0 +  1 . . .  §0} U {fci} U

{fci +  1 . . .  fci +  f } U {2fcx -  0 . . .  3fci -  2 -  §0}

(iii) | ( 0  +  1 ) <  fci < 2 0  +  1  and 0  odd

{ 2 0  +  3 - fc i  . . .  § ( 0  +  l ) - f c i }  U {0 +  1 . . .  ̂ }  U
if 0+l>O

{fei +  l . . . fci  +  «=I} U {2 fci - 0  . . .  3 f c i - ^ }

3.4.7 Examples o f Resolvable Designs in D(v,  4; fci, £ 2 )

We will now use the constructions of the previous section to provide some examples 

of resolvable designs in D(v, 4; fci, fc2) for various interesting fci > 3 and 2  <  fc2  <  fci- 

First we construct designs for the two cases when fci =  k2.

E x am p le  Suppose kt =  =  8 . Then, according to  corollary 2.4.2 the the Schur-

optimal design is an ECD(9*). Applying the ECD construction given above with
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L = 9 = 4, and using condition (i) for block 1  of replicarte 3 and condition (ii) for 

block 1  of replicate 4 yields a  Schur-optimal ECD (9*} which is:

1 9 1 5 5 1 1 3
2 1 0 2 6 6 2 2 4
3 1 1 3 7 7 3 5 7
4 1 2 4 8 8 4 6 8

5 13 9 13 9 13 9 1 1 '
6 14 1 0 14 1 0 14 1 0 1 2

7 15 1 1 15 1 1 15 13 15
8 16 1 2 16 1 2 16 14 16

E xam ple  Consider the case where fcv =  fc2  =  3. Then, according to corollary 2.4.2 

the (E,S)- and typt - 1  optimal design is an ECD(9). Applying the ECD construction 

given above with L  =  9 =  1, condition (iii) for block 1 of replicate 3, and condition

(vi) for block 1  of replicate 4 produces an (E,S)- and A-optimal resolvable ECD(9) 

which is:
1 4 1  2 2  1 3 1
2 5 4 3 4 3 5 2 .
3 6 5 6 6  5 6  4

Now we investigate the two cases when — k2 =  1-

E xam ple  Consider the setting such that ki =  6  and k2 = 5. By corollary 2.4.4, 

the (E,S)- and type - 1  optimal design is an ECD(9). Applying the ECD construction 

given above with L = 9 = 3 using condition (i) for block 1  or replicate 3 and condition

(ii) for block 1  or replicate 4 yields an (E,S)- and type - 1  optimal ECD(9) which is:

1 7 1 4 1 2 1 2

2 8 2 5 4 3 4 3
3 9 3 6 5 6 6 5
4 1 0 7 1 0 7 9 7 8  ‘
5 1 1 8 1 1 8 1 1 9 1 0

6 9 1 0 1 1

E xam ple  Suppose Art =  5 and fc2  =  4. By corollary 2.4.4, the Schur-optimal design 

is an ECD(9 -F 1). Applying the ECD construction given above with L =  9 4- 1  =  3 

using condition (i) for block 1 of replicate 3 and condition (iii) for block 1 or replicate
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4 produces the a Schur-optimal ECD(9 +  I )  which is:

1  6 1 4 1  2 1 3
2 7 2 5 4 3 2 5
3 8 3 8 5 8 4 7 .
4 9 6  9 6  9 6  9
5 7 7 8

Finally, for our last example we investigate a setting for which the (E,S)-optimal 

and A-optimal designs are not the same.

E x am p le  Consider the setting for which fci. =  1 2  and ki =  7. For this setting 9 = 7 

and 7  =  .58v, and since |  <  7  < y ,  the (E,S)-optimal design is a Case II design 

and the A-optimal design may be an ECD(9 +  1,/, Case I, or a Case II design. In 

order to determine the A-optimal design, the optimality conditions (3.87), (3.89), 

and (3.91) must be checked, and in doing so, we observe that all three conditions are 

positive (81488, 92508, and 27236404, respectively). Thus, ECD(9 + l)s  are A-better 

than both Case I and Case II designs, and Case I designs are A-better than Case II 

designs which means an ECD(9 +  l)is A-optimal.

Applying the Case II construction for 9 =  7 using condition (iii) for block 1 or 

replicate 4 yields an (E,S)-optimal Case II design which is:

1 13 1 8 1 5 1 2

2 14 2 9 2 6 5 3
3 15 3 1 0 3 7 6 4
4 16 4 1 1 4 1 2 7 1 1

5 17 5 1 2 8 17 8 16
6 18 6 18 9 18 9 18
7 19 7 19 1 0 19 1 0 19
8 2 0 13 2 0 1 1 2 0 1 2 2 0

9 14 13 13
1 0 15 14 14
1 1 16 15 15
1 2 17 16 17

The E-value for this design is 2.86 and the A-value is 1.3383. Since 2.86 >  2.71 Case 

H is E-better than the ECD(9 + 1), and since 1.3377 <  1.3383 the ECD(9 + 1) is 

A-better than the Case U design.
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Applying the ECD construction with L =  9 +  1 =  8 using condition (i) for 

block 1 if replicate 3 and condition (i) for block 1 of replicate 4 yields an A-optimal 

ECD(9 +  1) which is:

1 13 1 9 1 5 5 1
2 14 2 10 2 6 6 2
3 15 3 11 3 7 7 3
4 16 4 12 4 8 8 4
5 17 5 17 9 17 9 17
6 18 6 18 10 18 10 18
7 19 7 19 11 19 11 19 ’
8 20 8 20 12 20 12 10
9 13 13 13

10 14 14 14
11 15 15 15
12 16 16 16

The E-value for this design is 2.71 and the A-value is 1.3377.

3.5 Resolvable Designs With Five Replicates

3.5.1 Introduction

In this section we study optimality for the the resolvable design setting D{v, 5; k t , k2). 

We will determine (E,S)-optimal designs, and the A-optimal designs in some special 

cases. We also exploit the majorization theory of Chapter II in so far as possible. 

Prom section 2.3 we have:

E C D (0 ): The optimality matrix for ECD(9)s is Md =  p i The eigenvalues 

of Md are

?i(7) =  P +  7 (4 copies)

6 ( 7 )  =  P  -  47,

£1 (7 ) =  fi(7) =  Ci(7 ) >  &(7)

E C D (0  -f- 1): The optimality m atrix for ECD (9+l)sis Md =  p I—/y (J —I)+ v (J —I).
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The eigenvalues of M j are

& ( 7  -  u) =  p -  (v -  7 ) (4 copies)

6 (7  - v )  =  p + 4 ( v -  7 ),

6 ( 7  ~ v ) >  £1 ( 7  -  v) = & ( 7  -  v) =  & ( 7  -  v)

Theorem 2.3.3, lemma 2.3.7, and corollary 2.3.8 establish conditions for when ECD(9)s 

are E-better or Schur-better than ECD(9+l)s  and for when ECD(9+l)s are E-better 

and Schur-better than ECD(9)s; see table 3.36.

Table 3.36: E- and Schur-comparisons Of ECDs In D(v, 5; k ly k2)

ECD(9) 1 _ ' ECD(9 4 - 1 )
I ECD(9) E-better I

Schur-better | I Schur-better

i ------------------ 1-------------------------- 1---------------------------1---------------y - 1
0  !  I  f  v

Conditions for Schur- and E-optimality of NECDs or ECDs can be established 

using lemma 2.3.17 and by direct eigenvalue comparisons. The optimality matrix 

Md (in order to apply lemma 2.3.17) or the concurrence discrepancy matrix A* 

must be derived for competing NECDs. Recall that NECDs have block concurrences 

4>at s  {£, 9 H-l} for all 1 < i #  i' < 4  and have at least one block concurrence equal to 

9 and a t least one equal to 9 + 1 . There are 32 cases of nonisomorphic NECDs; their 

block concurrence patterns, {<£1 2 , <£1 3 , 0m, 0is, 0231 024* 025* 034* 035* 04s} are listed in 

table 3.37 and the corresponding block concurrence discrepancy matrices are shown 

in table 3.38.
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Table 3.37: Block Concurrence Discrepancies For NECD  In D (v ,  5; ku k2)

Case 5<ci2 $<0.3 <$rf!4 Sd23 £<04 £<125 $ 84 £i35 S<t45
I  1 0 0 0 0 0 0 0 0 0
I I  1 1 0 0 0 0 0 0 0 0
I I I  1 0 0 0 0 0 0 1 0 0
I V  1 1 1 0 0 0 0 0 0 0
V  1 1 0 0 1 0 0 0 0 0
V I  1 0 0 1 0 0 1 0 0
V I I  1 1 0 0 0 0 0 0 0 1
V I I I  1 1 1 1 0 0 0 0 0 0
I X  1 1 1 0 1 0 0 0 0 0
X  1 1 1 0 0 0 0 0 0 1
X I  1 1 0 0 0 0 1 0 1
X I I  1 1 0 1 0 0 1 0 0
X I I I  1 1 0 1 0 0 0 0 1
X I V  1 1 1 1 1 0 0 0 0 0
X V  1 1 1 0 1 0 0 1 0 0
X V I  1 1 1 0 1 0 0 0 1 0
X V I I  1 1 1 0 1 0 0 0 0 1
X V I I I  1 1 0 1 0 1 0 1 0
X I X  1 1 1 0 0 1 0 1
X X  1 1 1 1 1 0 0 1 0 0
X X I  1 1 1 1 1 0 0 0 0 1
X X I I  1 1 1 0 1 1 0 1 0 0
X X I I I  1 1 1 0 1 1 0 0 1 0
X X I V  1 1 1 0 1 0 1 0 1 0
X X V  1 1 1 0 0 0 1 0 1 1
X X V I  1 1 1 1 1 0 0 1 0 1
X X V I I  1 1 1 1 1 1 0 1 0 0
X X V I I I  1 1 1 1 1 1 1 0 0 0
X X I X  1 1 1 0 1 1 0 0 1 1
X X X  1 1 1 1 1 1 1 1 0 0
X X X I  1 1 1 1 1 1 1 0 1 0
X X X I I  1 1 1 1 1 1 1 1 1 0
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Table 3.38: Concurrence Discrepancy Matrices For NECDs  In D {v,  5; ku k2)

f  0
1 0 0 ON f O 1 1 1 IN

1 0 0 0 0 1 0 0 0 0

A t  = 0 0 0 0 0 A g  = 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

l o 0 0 0 oj u 0 0 0 0 /

f  0 1 1 0 ON f  0 1 1 1 ON
1 0 0 0 0 1 0 1 0 0

A 2  = 1 0 0 0 0 A g  = 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0

Vo 0 0 0 0 ) Vo 0 0 0 0 /

f O 1 0 0 ON f O 1 1 1 0 N
1 0 0 0 0 1 0 0 0 0

A 3  = 0 0 0 1 0 A 1 0  = 1 0 0 0 0
0 0 1 0 0 1 0 0 0 1

l o 0 0 0 oj Vo 0 0 1 0 /

f 0 1 1 1 ON f o 1 1 0 ON
1 0 0 0 0 1 0 0 0 0

^ 4  = 1 0 0 0 0 A n  = 1 0 0 1 0
1 0 0 0 0 0 0 1 0 1

Vo 0 0 0 oj Vo 0 0 1 0 /

f O 1 1 0 ON f  0 1 0 1 0 N
1 0 1 0 0 1 0 1 0 0

a 5  = 1 1 0 0 0 A 12 = 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0

Vo 0 0 0 oj Vo 0 0 0 0 /

f  0 1 0 0 ON f o 1 1 0 0 N
1 0 1 0 0 1 0 1 0 0

A« = 0 1 0 1 0 A j 3  — 1 1 0 0 0
0 0 1 0 0 0 0 0 0 1

Vo 0 0 0 0 ; Vo 0 0 1 0 /

f o 1 1 0 ON f o 1 1 1 IN
1 0 0 0 0 1 0 1 0 0

a 7  = 1 0 0 0 0 A X4  = 1 1 0 0 0
0 0 0 0 1 1 0 0 0 0

Vo 0 0 1 oj Vi 0 0 0 oy
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Table 3.38: Continued

( ° 1 1 1
0  ^

f o 1 1 1 0 \

1 0 1 0 0 1 0 1 1 0

a 15 = 1 1 0 1 0 A  22 = 1 1 0 1 0

1 0 1 0 0 1 1 1 0 0

l o 0 0 0 0 ) V O 0 0 0 o y

f o 1 1 1 0  \ f o 1 1 1 0  \

1 0 1 0 0 1 0 1 1 0

A i e  = 1 1 0 0 1 A  23 = 1 1 0 0 1

1 0 0 0 0 1 1 0 0 0

l o 0 1 0 o j l o 0 1 0 0 /

( 0 1 1 1 0  \ f o 1 1 1
0  \

I 0 1 0 0 1 0 1 0 1

A i t  = 1 1 0 0 0 A 24 = 1 1 0 0 1

1 0 0 0 1 1 0 0 0 0

K* 0 0 1 0 ) l o 1 1 0 0 /

f o 1 1 0 0  N f o 1 1 1
0  \

1 0 1 0 1 1 0 0 0 1

A i 8  = 1 1 0 0 1 A  25 = 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1

l o 1 1 0 0 ) 1 1 1 o y

f o 1 0 0 l \ f o 1 1 1 1 \

1 0 1 0 0 1 0 1 0 0

A 19 = 0 1 0 1 0 A  26 = 1 1 0 1 0

0 0 1 0 1 1 0 1 0 1

u 0 0 1 o j u 0 0 1 ° y

f o 1 1 1 l \ f o 1 1 1 1 \

1 0 1 0 0 1 0 1 1 0

A 20 = 1 1 0 1 0 A 27 = 1 1 0 1 0
1 0 1 0 0 1 1 1 0 0

u 0 0 0 o j 0 0 0 0  y

f o 1 1 1 1 \ f o 1 1 1 1 \

1 0 1 0 0 1 0 1 1 1

A 2 i  = 1 1 0 0 0 A  28 = 1 1 0 0 0
1 0 0 0 1 1 1 0 0 0

0 0 1 o j 1 0 0 0 )
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Table 3.38: Continued

( 0 i 1 1 0 \ (  0 1 1 1 1 \
1 0 1 1 0 1 0 1 1 1
1 1 0 0 1 II1—* M<1 1 1 0 0 1
1 1 0 0 1 1 1 0 0 0

\ o 0 1 1 o j u 1 1 0 0 )

( 0 1 1 1 n
(  0 1 1 1 1 \

1 0 1 1 i 1 0 1 1 1
1 1 0 1 0 A  32 = 1 1 0 1 1
1 1 1 0 0 1 1 1 0 0

V i 1 0 0 0 J u 1 1 0 o ;

Using the concurrence discrepancy matrices for the 32 cases of NECDs, we begin 

our eigenvalue optimality investigation by applying the following corollary of lemma 

2.3.17.

C oro lla ry  3.5.1 Let d €  D(y, 5; ki, ki) be an NECD having optimality matrix M& =  

p i  — 7(7  — J) 4- t/A , and let u\ and ur be the maximum and minimum eigenvalues, 

respectively, of P7A P , where P  =  (7 — |7 ) .  I f

 ̂ Ur 7<-_„
then ECD(9)s are Schur-better than d. I f  u\ > 0 and

7 =■ ( H 51) v'

then ECD(§ 4-1 )s are Schur-better than d. Furthermore, i f

«i >  0 (3.93)

then ECD(9)s are E-better, but not necessarily Schur-better, than d.

We now use these tools to eliminate as many designs as possible. For each NECD, 

condition (3.93) was calculated with results given in column four of table 3.39. We 

see all cases except Cases VIII, XXV, XXVIII, and XXXII are E-inferior to ECD(9)s.
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Table 3.39: Corollary 3.5.1 Results In D (v ,  5; ku fc2)

Case Ur
5

4 —tit 
5 « i

I 0.200 0.680 0.600
I I 0.276 0.684 0.580
I I I 0.200 0.600 1 . 0 0 0

IV 0.316 0.724 0.380
V 0.200 0.640 0.800
V I 0.324 0.676 0.618
V I I 0.274 0.566 1.169
V I I I 0.320 0.800 0 . 0 0 0

I X 0.282 0.689 0.554
X 0.359 0.645 0.773
X I 0.343 0.600 1 . 0 0 0

X I I 0.400 0.720 0.400
X I I I 0.200 0.520 1.400
X I V 0.305 0.695 0.525
X V 0.305 0.695 0.525
X V I 0.324 0.676 0.618
X V I I 0.334 0.579 1.104
X V I I I 0.305 0.695 0.525
X I X 0.324 0.676 0.618
X X 0.311 0.718 0.410
X X I 0.280 0.600 1 . 0 0 0

X X I I 0.200 0.680 0.600
X X I I I 0.355 0.641 0.797
X X I V 0.355 0.641 0.797
X X V 0.480 0.800 0 . 0 0 0

X X V I 0.324 0.676 0.618
X X V I I 0.276 0.684 0.580
X X V I I I 0.360 0.800 0 . 0 0 0

X X I X 0.434 0.726 0.369
X X X 0.316 0.724 0.380
X X X I 0.316 0.724 0.380
X X X I I 0.320 0.800 0 . 0 0 0

Values of 7  for which ECD(9)s or ECD(9 + \)& are Schur-better than NECDs having 

any of the concurrence discrepancy matrices listed in table 3.38 have been determined 

using corollary 3.5.1 and are also listed in table 3.39. ECD(6)are uniquely Schur- 

optimal on 0 <  7  <  §, and ECD(6 +  ljare  uniquely Schur-optimal on |  <  7  <  u.
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Since none of the four remaining NECDs cases are completely eliminated from 

(E,S)-optimality contention, in order to proceed we must make direct eigenvalue 

comparisons; consequently, we need explicit expressions for the eigenvalues of »he 

optimality matrices. The eigenvalues and their ordering over the admissible region 

are given below.

C ase VULL: The optimality matrix for Case VTH NECDs is Mg =  p i  — 7 (J  — I) + 

t/Ag, and the eigenvalues of Mg are

ei8) =  p + 7

48) =  P + 7

4 8) =  P +  7

4 8) =  P -  Y  +  £ \ / 16(v  “  T')2 +  97 2 

4 8) =  P ~  y  -  ^ 1 6 ( u - 7 ) 2 +  972.

ei8) >  e<8) =  e<8> =  e f  > >  e<8) ' e(8) =  e™ =  eg* > e™ > e™

C ase X X V : The optimality matrix for Case X X V  NECDs is M2 5  — p i  — 7 (7 

/ )  +  UA2 5 , and the eigenvalues of M2 5  are

e(125) =  p +  7

4251 =  P +  7

4 251 =  P + 7

e425) =  P -  y  +  i ^ / 2 4 ( u - 7 ) 2 +  7 2

e52S) =  P -  y  ~  \ y l m v  ~ 7 ) 2 + 1 2
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e f 1' >  e f 8* =  e™  =  >  e f  >' c f 81 =  e?8* =  e™  > e f  > >  e£(25)

+

C ase X X V III: The optimality matrix for Case XXVIII NECDs is M2g =  p i  

7 (J  — I) + vA tt, and the eigenvalues of are

e(i28) =  p + 7

e p 8 )  =  p +  7

e328) =  P -  (v -  7)

ep8’ =  p -  - -^ 2 ^  (u +  7)2 +  24(v -  7)2

=  p - (3 7  _  1 v/(u +  7 )2 +  2 4 ( u - 7 )2J 2 8 )
e 5

1 - ( 2 8 )  _  ( 2 8 )  ( 2 8 )  
( 2 8 )  ( 2 8 )  _  ( 2 8 )  ( 2 8 )  ( 2 8 )  |  e l ~  e2 > 6 4

4  1  _  2  3  5  ,  ^  - ( 2 8 )  -  ( 2 8 )
I e 3  e 5

2u
3

Case X X X II: The optimality matrix for Case XXXII NECDs is M3 2  = p i — 

I)  +  uA32, and the eigenvalues of Af3 2  are

ei32) =  P +  7

4 32> =  P -  ( u  -  7 )

fi332> =  P -  (»  -  7 )

e (3 2 ) =  p  +  +  I ^ / ( 2t ,  -  7)2  +  2 4 ( u  -  7 )2

432) = p+ 2t/ 2 37 -   ̂V(2v “ 7)2+24(u “ 7)2
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We conclude this section by settling the case v =

L em m a 3.5.2 When 7 =  §, ECD(9)s, Case VIII and Case X X V  designs are type-1 

equivalent.

P ro o f  Since all cases of NECDs except for Cases VIII, XXV, XXVIII, and XXXII 

are El-inferior to ECD(9)s, when 7 =  §, the optimality matrices for these cases are 

the only optimality matrices that can potentially have eigenvalues that are identical 

to the eigenvalues of the optimality matrix for ECD(9)s and, therefore, be type-I 

equivalent to ECD(9)s. When 7  =  | ,  it is easy to prove that the eigenvalues of the 

optimality matrices for ECD(9)s, Case VIII, and XXV designs are identical, and the 

eigenvalues of the optimality matrix for Case XXVIII and XXXII designs are not 

identical to those of ECD(9)s using the explicit expressions for the eigenvalues. □

3.5.2 (E ,S)-O ptim al Designs in D(v,  5; ki ,  fe2)

In section 3.5.1 we proved that the only NECDs that can be El-optimal in a resolvable 

design setting D(u,4; fct , k2) are Cases VTH, XXV, XXVIII, and XXXII. Before in­

vestigating El-optimality in detail we will review a few useful optimality results from 

above.

1. ECD(9)s are uniquely Schur-optimal when 0 < 7  < | ,

2. ECD(9), Case VTII, and XXV designs are type-1 equivalent when 7  =  |

3. ECD(9)s and ECD(9 -f- l^s are El-equivalent when 7  =  t?.
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4. ECD(9 +  1/s are uniquely Schur-optimal when y  <  7  <  u.

Thus, all UECDs are E-inferior to an ECD\ on 0 <  7  <  | ,  ECD(9)s are E-optimal; 

ECD(9)s, Case VIII, and XXV designs are E-equivalent when 7  =  Case VTII, 

XXV, XXVm, and XXII designs can be E-optimal on |  <  7  <  y ; and ECD(9 +  1/s 

are E-optimal when y  <  7  <  v. In this section we will find the E-optimal designs on 

§ <  7  <  , and when the E-optimal design is not unique, the (E,S)-optimal design

will be identified.

Lemma 3.5.3

1. ECD(9), Case VIII, and X X V  designs are E-equivalent and E-better than Case 

X X V III and Case X X X II designs when |  <  7  <  y .

2. When ^  <  7  <  ECD(9)s, Case VIII, XXV, and X X V III designs are E- 

equivalent and E-better than Case X X X II designs.

3. When ^  <  7  <  f , ECD(9)s, Case VIII, XXV, XXVIII, and X X X II designs 

are E-equivalent.

4. When 7  =  ECD(9)s, ECD(9 +  ljs , Case VIII, XXV,  XXVIII, and X X X II  

designs are E-equivalent.

P r o o f  The maximum eigenvalue of the optim ality m atrix  for ECD(9)s is £1(7) =  

p +  7 , and the  maximum eigenvalue of the optim ality m atrix  for ECD(9 -f 1,/s is 

£2(7 — v) = p — (v — 7 ). On the interval |  <  7  <  v, the maximum eigenvalue of the 

optim ality m atrices for Case VTH and XXV designs is =  e*25* =  £1(7); therefore, 

ECD(9)s, Case VIII, and XXV designs are E-equivalent on the interval, and ECD(9)s, 

Case V m , XXV, and ECD(9 +  1,/s are E-equivalent when 7  =  y .  On the interval 

|  <  7  <  y ,  the maximum eigenvalue of the optim ality m atrix  for Case XXVIII is 

ê 28* >  £1(7), and on y  <  7  <  v the maximum eigenvalue of th e  optim ality m atrix for
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Case X X V m  designs is ej28* =  £1(7). Thus, when § <  7 <  y ,  Case XXVIII designs 

are E-inferior to  ECD(9)s, when | < 7 < |  Case XXV III designs are E-equivalent 

to  ECD(9)s, and when 7  =  y  Case XXVIII designs are E-equivalent to  ECD(9)s 

and ECD(9 +  ljs . On the interval |  <  7  <  y  the maximum eigenvalue of the 

optim ality m atrix  for Case XXXII designs is e*32* >  £1(7), and when y  <  7  <  v  the 

maximum eigenvalue of the optim ality m atrix  for Case XXXII designs is ê 32* =  £1(7). 

Therefore, Case XXXII designs are E-inferior to  ECD(9)s when § <  7  <  y ,  Case 

XXXII designs are E-equivalent to ECD(9Js when y  <  7  <  y ,  and Case XXXII 

designs are E-equivalent to  ECD(9)s and ECD(9 -(-ljs  when 7 =  □

Now Schur comparisons of the El-optimal designs can be made.

L em m a 3.5.4 Case X X V  designs are Schur-better than Case VIII when |  <  7  < v.

P ro o f  When |  <  7 < v, the eigenvalues of the optimality matrix for Case VTH 

designs are ê 8* =  ê 8* =  ê 8* > ê 8* > eg8* and the eigenvalues of the optimality 

matrix for Case XXV designs are ej25* =  ê 25* =  ê 25* >  ê 25* >  eg25*. Since e[8* =  

e28) =  ei8) =  e*25* =  ê 25* =  e f>  and ê 8* > eg8* then the eigenvalues of the optimality 

matrix for Case VTEI designs majorize the eigenvalues of the optimality matrix for 

Case XXV designs. □

L em m a 3.5.5 Case X X V III designs are Schur-better than Case X X V  when y  <

7  <  v.

P ro o f  When y  < 7  <  v the eigenvalues of the optimality matrix for Case XXV 

designs are ej25* =  ê 25* =  ê 25* > ê 25* >  eg25*, and the eigenvalues of the optimality 

matrix for Case XXVIII designs are e*28* =  ê ,28* >  ê 28* >  ê 28* >  eg28*. Since 

ê 25* =  ê 25* =  ej25* =  e f8* =  ê 28* >  ê 28* and eg25* < eg28*, then the eigenvalues of the 

optimality m atrix for Case XXV designs majorize the eigenvalues of the optimality 

matrix for Case XXVIII designs. □
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L em m a 3.5.6 Case X X X II  designs are Schur-better than Case X X V III when ^  < 

7  <  v.

P ro o f  When ^  < 7  <  v the eigenvalues of the optimality m atrix for Case XXVTII 

designs are ell28) =  e ^  > ê 28* > ê 28* >  e ^ ,  and the eigenvalues of the optimality 

matrix for Case XXXII designs are el32* >  e432) >  ê 32* =  e332) > eg32’. Since 

ej28* =  ê 28* =  e[32) >  ê 32* and ê 28* >  ê 28* =  =  ê 32* then the eigenvalues

of the optimality matrix for Case XXVTII designs majorize the eigenvalues of the 

optimcility matrix for Case XXXII designs. □

L em m a 3.5.7 ECD(6 + l) s  are Schur-better than Case X X X II when 7  =  y .

P ro o f  When 7 =  y  the eigenvalues of the optimality m atrix for Case XXXII 

designs are e f2) > ê 32* >  ê 32* =  > e$32*, and the eigenvalues of ECD(6 +  l^s

are 6 ( 7  -  v) > 6 (7  ~ v ) =  6 ( 7  -  w) =  6 (7  -  w) =  6 ( 7  -  *>)• Since e(t32) =  6 (7  -  v) 

and ê 32* > 6 (7  ~  v ) =  e232) =  ei32) > e532) then the eigenvalues of the optimality 

m atrix for Case XXXII designs majorize the eigenvalues for ECD(0 + l)s. □

Lemmas 3.5.3, 3.5.4, 3.5.5, 3.5.6, and 3.5.7 guarantee tha t for |  <  7  <  there 

is a unique Schur-best design among the E-best designs, and when 7  =  |  three 

classes of designs, ECD(0)s, Case VTII, and XXV, have identical eigenvalues and are 

Schur-best. The (E,S)-optimality breakdown is shown in table 3.40.

3.5.3 Special Cases: (fci — £ 2 ) <  2

We will now apply the optimality results in the setting D(v, 5; k u k2) from section 

3.5.2 to the three special cases when (fci — fc2) < 2 described in section 2.4.

C o ro lla ry  3.5.8 Suppose ki = k2 and r  =  5. Then

(i) I f  2 \ hi then 7  =  0, and ECD(6m)s exist and are Schur-optimal.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



148

Table 3.40: (E ,S)- and Schur-optimal Designs In D (v ,  5; fclt k2)

(E,S)-optimalIdentical

ECD(d) | BCD (9)

ECD(9) Case XXVm  
Case VTTT (E,S)-optimal

Case XXV Case XXXII
^IdenticalJ (E,S)-optimal

Schur-optimal I (E,S)-optimal ’ I I I  Schur-optimal
a I

V5

(ii) I f  2 /  ki then j  =  §, and ECD(9)s, Case VIII, and X X V  are type-1 and 

(E,S)-optimal

C oro llary  3.5.9 Suppose k2 — ki — 1 and r  =  5. Then

(i) I f 2 \ k i  then |  <  7  <  and ECD(9)s are type-1 and (E,S)-optimal.

(ii) I f  2 /  ki then ^  <  7 <  and Case X X II is (E,S)-optimal.

By corollciry 2.3.17, when j < 7 < y ,  the optimality candidates are Case VTH, 

XXV, XXVTII, XXXII, and ECD(9 + l)s, see table 3.39. On the interval, Cases VIII, 

XXV, and XXVIII were eliminated by majorization in section 3.5.2, leaving only Case 

XXXII and ECD(9 +  l js  as optimality candidates. We will state an A-optimality 

result for corollary 3.5.9 after proving the following lemma.

L em m a 3.5.10 When ^  <  7  <  ECD(9 l j s  are A-better than Case X X X II  

designs.

P ro o f  Recall th a t if et, i  =  1 , 2 , . . . ,  5 is an eigenvalues of the optimality matrix 

for a design d  €  D(u,5;fcl, fc2), then 5 — ^  is a corresponding eigenvalue of the 

information matrix of d, and the A-value of the design in terms of the eigenvalues of
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the optimality matirx is X)f= 1  Ep- et - Since =  ê 32* =  ^ ( 7  — u), then ECD(9 + l)s  

tire A-better than Case XXXII designs if and only if

Substituting the closed form expressions for the eigenvalues of ECD(9+ 1  )s and Case 

X X X n  designs from section 3.5.1 into (3.94) yields

—3 7 3  +  2(2p -F 9v)72 +  (32p2 +  12pt/ — 27i/2)7 — 4t/(4p2  +  4pv — 3u2) >  0. (3.95)

A  lower bound for the left hand side of (3.95) on the interval y  <  7 <  y  obtained 

by substituting 7 =  y  into the negative terms and 7 =  y  into the postitive terms is

Since 4 7 5  ^ f - 1— < 0 <  47—) ^ )gu— < 1.5, and when f  =  2, (3.96) is greater than

zero, then (3.95) is satisfied whenever £ >  2. By fact 3.1.3, this inequality holds 

when fci > k2 >  4 or when k2 = 3 and > 6. Thus, (3.89) may not be satisfied 

when fc2 > fei =  2 or 5 >  fci > ^  =  3. On y  < 7  <  y ,  (ki, k2) does not take on 

the values (3,3), (4,3), or (5,3), and by corollary 3.1.5, k2 =  2 if and only if k t =  3. 

Since (3.89) is satisfied when (fclt fc2) =  (3,2), then ECD(9 -+- 1/s are A-better than 

Case XXXII designs on the interval. □

C oro llary  3.5.11 Suppose k2 =  An — 1, r  =  5, and 2 /  k\. Then y  < 7  <  y , Case 

X X X II is (E,S)-optimal, and ECD(9 -F 1/s are A-optimal.

C oro llary  3.5.12 Suppose k2 =  ki — 2 and r  =  5. Then

(i) I f  ki =  4 then 7  =  y ,  Case X X V III designs are (E,S)-optimal.

2P , P P

(3.96)

Setting (3.96) equal to zero and solving for £ yields

p _  475 =F V3461145 
v 1600
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(ii) I f  2 | ki and ki > 6  then |  <  7  <  ^ ,  and Case X X V  designs are (E,S)-optimal.

(Hi) I f  2 /  ki then 0 <  7  <  | ,  and ECD(9)s are uniquely Schur-optimal (hence 

(E,S)-optimal).

3.5.4 Construction o f Optim al Designs in D(t7, 5; fci, fc2)

The (E,S)- and Schur-optimal resolvable designs in D(v, 5; fci, fc2), >  3 and fci >

k2 > 2, are ECD(6) , ECD(9 +  1 /  , Case XXV, Case XXVin, and Case XXXII 

depending on the value of 0 <  7  <  v. Now we will provide constructions for these

optimal deisngs designs. The constructions for ECDs will be described in such a

way that they will be valid for ECD(0*)s, ECD(9)s and ECD(9 -f- 1 ,/s. For brevity, 

treatment arrangements for the first block of each replicate only are given.

C o n stru c tio n  o f  E C D ( 0 )s

Let L  be the common ECD treatment concurrence. When 7  < | ,  L  =  9, and the 

design is an ECD(9), and when 7  >  §, L = 9 -r 1, and the design is an ECD(9 +  \) .

B lock 1  o f R ep lica te  1 : { 1  . . .  fci}

Block 1  o f R eplicate 1 : { 1  . . .

Block 1  o f  R ep lica te  2 : { 1  . . .  L}  U {fci +  1 . • - 2 — L}

I. If k t < 4 /3L

B lock 1  o f  R ep lica te  3: { 1  . . .  2L — kx} (J {L +■ 1 . . .  2k\ — L}

Block 1 o f  R ep lica te  4: { 1  . . .  3L — 2Ari} U {2L — Jbi +  1  . . .  2 ki — L }

Block 1  o f  R ep lica te  5: {3 L — 2ki +  1 . . .  2  ki — L}

If fct <  4L/3 

B lock 1 o f  R ep lica te  5: { 1  . . .  AL — 3 ^ }
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I I .  If (4/3L < kx <  3/21/ and fci >  7) or (fci =  3/2L, fci >  7 and fct ^  15)

Let x =  in t ( ^ f ^ )

B lock 1 o f  R ep lica te  3: {1 . . .  2L — fct + x} U {L +  1 - - • fci — *} U 

{fci +  1 . . .  2ki — L — x }  1J {2ki — L +  1 . . .  2ki — L + x}

B lock 1 o f  R ep lica te  4: {1 . . .  ZL—2kl+2x} U {2L—fci+x+1 . . .  L} (J 

{L + 1 . . .  ki — x} (J {fci 4- x +  1 . . .  2k\ — L} (J 

{2k\ — L + 1 . . .  2ki — L + x}

B lock 1 o f R ep lica te  5: {3 L — 2 fci + 2x + l  . . .  2 L  — fct } IJ 

{ 2 £ — ki + x  + 1 . . .  L}  (J {L +  x +  1 . . .  ki}  U 

{fci +  1 . . .  2ki — L — x} U {2ki — L + 1 . . .  2ki — L + x}

If 4L -  3fci +  4x > 0 

B lock 1 o f  R ep lica te  5: U (1 • • - 4L — 3fci +  4x}

H I. If (3/2L < ki < 2L), (ki =  3/2L  and fct =  6) or (fct =  3/2L  and fci =  15)

A. If 2 | (kx -  L)

B lock 1 o f  R ep lica te  3: {1 . . .  3̂ fel } U {L +  1 . . .  U

{fci +  1 . . .  U { 2 k i - L  + l  . . .

Block 1 o f  R ep lica te  4: {1 . . .  3L J 1fcl } U { kl+£ +2 ^ 1 } U

{3| i r ^ 2  . . .  2 k i - L }  U {2fci - L  + 1 . . .  ^

1. If 4 | (Ax — L)

B lock 1 o f  R ep lica te  5: {1 . . .  2 L — fci} (J {3X,~*lt2 . . .  L}  U

{L +  l  . . .  ^±3^} (J y —  . . .  U

{ fcl +  l  . . .  5 ^ 4 }  (j {2*l̂ ± 2  . . .  1 ^ 5 4 }  u  

{ 2 ^ - L  +  l  . . .  5*1^24}

2. If 4 /  (fci — L)
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Block 1 o f  R eplicate 5: {1 . . .  2 L  — k i }  U { 3L~ * t + 2  . . .  L} |J
if k i> L + 3

{L +  l  . . .  * n y - » } □ . . .  y
if  k i> L + 3

{Jfel  +  1 . . .  § * ^ ± 2 }  y  { 3 * l ^ ± g  . . .  7kx - 3 L - 2 y  y

{ 2 k i  — L +  l  . . .  § * ^ }

B . If 2 /  (fct -  L)

B lock 1  o f  R eplicate 3: {1 . . .  3L~ *i ~l } y  {L +  l  . . .  kL±£ +1} U 

{fct +  l  . . .  3fcl~L+1} U {2fct - L  +  l  . . .  5fci-3 £ -ij.

B lock  1 o f R eplicate 4: {1 . . .  2L — fct} U { 3Z,~*lt - . . .  L -  1} U 

{L +  l}  U . . .  h }  U {fci+ 2  . . .  a*i -*+3} U

{2fct -  L +  l  . . .  5̂ ~3£- 1}
if k i> L + 5

B lock 1  o f R eplicate 5: {1 . . .  2L —fci} U { 2L=|i±I . . .  L —2} U 

{L} U {L +  2  . . .  * ^ }  U (fci + 1 }  U 

{ 3fr-- / + 3 . . . 2 k i - L }  U {2fci —L +  l  . . .  ^ 1 = ^ = 1 }

IV . If fci =  2L

A . If 2 | L

Block 1 o f R eplicate 3: {L +  l  . . .  fci} U {fci +  1 . . .  2fci — L}

Block 1  o f R eplicate 4: {1 . . .  L /2} U {L +  l  . . .  3/2L} U

{fci + 1  . . .  fci +  L/2} U {2fci - L + l  . . .  2fcx -  L/2}

B lock 1  o f R eplicate 5: {1 . . .  L /2} U {3/2L +  1  . . .  fci} U

{fci +  1/2L +  1 . . .  2fci -  L} U {2fci - L  +  l  . . .  2fct -  1/2L}

B . If 2 /  L

Block 1  o f R eplicate 3: {1} U {L +  1 . . .  fci — 1 } U 

{fci +  1 . . .  2fci — L — 1 } U {2fci - L  +  l}

B lock 1 o f R eplicate 4: {2 . . .  L±l} y  {L +  l  . . .  ^ 1 }  y  

{fci . . .  y  { 2 f c i - L . . .  4* ^ -~-1}

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



153

if  L>3
Block 1 o f  R e p lic a te  5: {2 . . .  U { ^ }  U - • fci} U

 ̂2k\ +L+1 4Jci —L—l j

V . If fcr =  2L +  1

B lock 1 o f  R ep lica te  3: {L + l  . . .  2L}  U {fci +  1 . . .  fci +  L} U 

{2fci — L +  l}

A . If 2 | L and fci > 5

B lock 1 o f  R ep lica te  4: {1 . . .  U {L +  l  . . .  3/2 L} U

{ki . . .  U {2fci -  L} U {2fci — L +  2 . . .  4*i^±2}
if L>4

Block 1 o f  R ep lica te  5: {1 . . .  ^=*} (J {L/2} U {-L±1 k l} U

{2k,.+L+2 2fct -  L} U {2fci -  L +  2 . . .  ^ ~ / +2}

B . If 2 /  L and fct >  7

Block 1 o f  R ep lica te  4: {1 . . .  ^ }  U {L +  l  . . .  5̂ i } U 

{fci . . .  ^ ^ 1 }  U {2 fc i - L  . . .  ^ ± i }
if L >5

Block 1 o f  R ep lica te  5: {1 . . .  ^y*} (J {fc±2 (j

{ U±1 . . . k l - 2} u  {fci} U { ^ 1 ^  . . .  2 fci — L — 2 } U 

{2fci — L . . .  4fĉ 1}

The ECD constructions given above are valid for all fci > 3 and fci > fc2 >  2 

except for the following seven (fci, fc2) pairs:

Pair fci fc2 e l
V

1 3 2 2 .80
2 3 3 i .50
3 5 5 2 .50
4 6 2 4 .50
5 7 2 5 .44
6 7 3 4 .90
7 7 7 3 .50
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Constructions do not exist for pairs 1 , 2 , 4, and 5; however, valid constructions exist 

for the remaining three (3, 6 , and 7). The first block of each replicate (written in 

columns) of these designs are:

pail* Q*
(fci,fc2) =  (5,5)

1 1 3 3 1

2 2 4 5 4
3 6 6 6 8

4 7 7 8 9
5 8 9 1 0 1 0

P a ir  6 :
(fci, fc2) == (7,3)

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3
4 4 6 4 4
5 5 7 6 7
6 8 8 8 9
7 9 9 1 0 1 0

P a ir  7:
(fci, fc2) =  (7,7)

1 1 4 1 2

2 2 5 4 5
3 3 6 7 7
4 8 8 8 9
5 9 9 1 1 1 1

6 1 0 1 0 1 2 1 2

7 1 1 1 2 13 14

C o n s tru c tio n  o f  C ase X X V  D esigns

Since Case XXV designs are (E,S)-optimal on |  <  7  <  j ,  then the following con­

structions are valid for values of (fci, fc2) that produce a value of 7  in the interval.

B lock 1  o f  R eplicate 1 : { 1  . . .  fci}
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Block 1  o f  R ep licate 2: { 1  . . .  0} U {fci +  1 - - - 2fci — 0}

Block 1  o f  R eplicate 3: { 1  . . .  20 — fci +  2 } U {0 +  1 . . .  fci — 1 } U

{fci + 1  . . .  2 fcr -  0  -  1 }

I. If fc! < 3/20

Block 1  o f  R eplicate 4: { 1  . . .  2 fc2 — 4fci +  50 +  4} U

{ 2 0  — fc! +  3 . . .  fci — fc2} U { 9  +  1 - • • 2 fci -  fc2 -  0  -  2 } U

{fci . . .  3fci — fc2 — 2 0  — 2 } |J {2fci — 0 . . .  fc2 +  fci}

A . If fci < fc2 +  0

B lock 1  o f R eplicate 5: { 1  . . .  4fc2 — 7fci +  80 +  6 } U

{2 fc2 —4fci +  50 +  o . . .  fci — fc2} U {^<2 — fci +  2 0  +  2  . . .  fci} U 

{fc2 +  0  +  2  . . .  fci +  fc2}

B . If fci =  fc2 +  0

B lock 1  o f  R eplicate 5: { 1  . . .  40 — 3fci +  6 } U

{30 -  2 fci +  5 . . .  0 } (J {fc2 -  fci +  2 0  +  2  . . .  fci} U 

{fc2 +  0  +  2  . . .  fci +  fc2}

C. If fci > fc2 +  0

B lock 1  o f  R eplicate 5: {fc2 — fci +  20 +  2  . . .  fct} U 

{fc2 +  0  +  2  . . .  fci +  fc2}

n .  If 3/20 <  fci < 2 0  +  1

A. If 2 | (fci- 0 - 1 )

Block 1 o f  R eplicate 4: {1 . . .  20 — fct +  1 } |J

{20 -  fci +  3 . . .  3|=|l±5J. JJ 1 *lii=I} (J

{fci+ 1  . . .  y  {2 fci — 0  +  1  . . .  5*1^ 1 }
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if  ifci<20
B lock 1 o f R ep lica te  5: {1 . . .  20 — fci} (J

{29 -  fci +  2 . . .  M=|i±5} y  {*i±$±± . . .  fct -  1} U

{ 3fcl~*+I . . .  2fci -  9 -  1 } U {2fci - 0  +  1 . . .

B . If 2 /  (fci -  9 -  1 )
if  fci <20

B lock 1  o f R ep lica te  4: { 1  . . .  29 — fci} U

{ 2 9 - k i + Z  . . .  2*=§i±«} (J {0 +  1 . . .  r} u

{fci+  1  . . .  24l=I} U ( 2 fci — 0  +  1  . . .  5̂ - ^ - 2}

1. If 3/20 < fci < 2 0 -  1
if  fc, < 2 0 -2

B lock 1  o f  R ep lica te  5: { 1  . . .  20 — fct — 2} U

{ 2 0  -  fci + 1  . . .  a*=fa**} u  {^T 1- - fci -  1 } U

{ 5 ^  . . .  2 f c i - 0 - l }  U {2 fci — 0  +  1  . . .  §*1^5=2}

2. If fci =  20 -  1

B lock 1  o f  R ep lica te  5: {3 . . .  ^£^±1} y  {^~*i±g} (j

{ ^  . . .  f c i - 1 } U 2 fci — 0  — 1 } U

{2 fct -  0  +  1  . . .  5 fci- ^ ~ 2}

3. If fci > 2 0

Block 1  o f  R ep lica te  5: {3 . . .  ^ }  U { ^ r 1- . . .  fci — 1 } U
if 0>6

{2*l=£ . . .  2fci -  0 -  1} (J {2fci - 0  +  1 . . .  <*i - .*~g} (j
^5fci-30  5k, —38+2 j

The Case XXV constructions given above are valid for all fci > 3 and kx > k - i > 2  

such that |  <  7  <  y  except for the following four (fci, fc2) pairs:

Pair fci fc2 0 2
tr

1 5 2 3 .57
2 6 4 3 .60
3 8 6 4 .57
4 1 1 5 7 .56
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Constructions do not exist for the fist pair; however, valid constructions exist for 

the remaining three (pairs 2, 3 and 4). The first block of each replicate (written in 

columns) of these designs are:

Pair 3:

Pair 6 :

Pair 7:

t:
(fci, k2) =  (6,4)

1 1 1 1 2
2 2 2 3 3
3 3 4 4 5
4 7 5 6 6
5 8 7 7 8
6 9 8 9 9

i:
(fci, *2 ) = (8,6)

1 1 1 1 1
2 2 2 3 3
3 3 5 4 4
4 4 6 5 7
5 9 7 6 8
6 10 9 11 9
7 11 10 12 10
8 12 11 13 13

(fci,fc*) = (11,5)
1 1 1 1 1
2 2 2 2 4
3 3 3 3 5
4 4 4 6 6
5 5 5 7 7
6 6 8 8 9
7 7 9 9 10
8 12 10 11 11
9 13 12 12 13

10 14 13 13 14
11 15 14 15 15
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Construction, o f Case X X V III Designs

Since Case XXVIII designs are (E,S)-optimal on y- < 7  <  then the following 

constructions are valid for values of (fci, fc2) that produce a value of 7  in the interval.

B lock 1  o f R ep lica te  1 : {1 . . .  fci}

B lock 1  o f  R ep lica te  2 : { 1  . . .  0 +  1 } U {fci +  1  . . .  2fci — 0 — 1 }

B lock 1  o f R ep lica te  3: {1 . . .  20 — fci +  2 } U ( 0 4 - 2 . . .  fci} U

■{fci +  1  . . .  2 fci — 0  — 1 }

I. If fci <  3/20

Block 1 o f R ep lica te  4: { 1  . . .  2fc2  — 4fct -t- 50 +  4} U

{20 — fci +  3 . . .  fci — fc2  + 1 } U {9 +  2 . . .  2fci — fc2  — 9 — 1 } IJ 

{fct +  1  . . .  3fci -  fc2  -  29 -  2} U {2fci -  9 . . .  fci +  fc2}

Block 1  o f  R ep lica te  5: { 1  . . .  4fc2  — 7fci + 8 0  +  6 } U

{2fc2  — 4fci +  50 +  5 . . .  20 — fci +  2} U {20 — fci +  3 . . .  fci — fc2  +1} (J

{fc2  — fci +  20 +  3 . . .  fci} (J {fc2  +  0 +  2 . . .  2fci — 0 — 1} (J

{2 fci — 8 . . .  fci +  fci}

H . If fci >  3/20 and fci ^  13

A. If 2 | (fci -  0 -  1 )

B lock 1  o f  R ep lica te  4: {1 . . .  20 — fci +  1} U

{20 — fci +  3 . . .  2i=|i±5} |J {0 +  2 . . .  IJ

{fci + 1  . . .  ^ # ^ }  U {2 fci- 0  . . .  5 fĉ f - 3}

Block 1  o f  R ep lica te  5: {1 . . .  20 — fci} (J

{ 2 0  — fci +  2  . . .  5£=|i±5} u  k i y y

{ 3- ^ - ~ ^ 1 . . .  2fci -  0 -  1} U {2fci - 9  . . .  5 *i-^ ~ 3}
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B . If 2 /  (fcr — 9 — 1)

Block 1 o f R ep lica te  4: {1 . . .  29 — fci} U

{26 -  kx +  3 . . .  35=|i±6} y  {§ +  2 . . .  g±*j-±2} y

{fci +  1 . . .  y  {2k\ - 6  . . .  5fci~ ^ r4 }
if  fci < 2 0 -2

B lock 1 o f R ep lica te  5: {1 . . .  20 — fci — 2} U

{ 2 0 - f c t +  l  . . .  2*= |i±«} y  . . .  fcl} y

. . .  2ki -  9 -  1} U {2^  - 9  . . .

The Case XXVIII constructions given are valid for all fci >  3 and k v > k2 > 2 

such that y  <  7  <  x  except for (fct, fc2, 0) =  (4,2,1) and (13, 9,7). A construction 

for (fclt fc2) =  (4,2) does not exist; however, there does exist a vaild construction for 

(fct,fc2) =  (13,9) which is:

(fci, fc2) =  (13, 9)
1 1 1 1 2
2 2 2 4 4
3 3 3 5 5
4 4 9 6 6
5 5 10 7 7
6 6 11 9 11
7 7 12 10 12
8 8 13 11 13
9 14 14 14 16

10 15 15 15 17
11 16 16 16 18
12 17 17 19 19
13 18 18 20 21

C onstruction o f  Case X X X II D esigns

Since Case XXXII designs are (E,S)-optimal on ^  < 7  <  y ,  then the following 

constructions are valid for values of (fclt fc2) th a t produce a value of 7  in the interval.

Block 1  o f  R eplicate 1 : { 1  . . .  fct}
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Block 1 o f  R eplicate 2: {1 . . .  0 +  1} U {fci +  1 - - • 2fct — 9  — 1 }

Block 1 o f  R eplicate 3: {1 . . .  2 9  — fci 4-2} U {£ +  2 . . .  fci} U 

{fci +  1 . . .  2 k v -  9  -  1}

I. If fc! < 3/29

Block 1 o f R eplicate 4: (1 . . .  2fc2 — 4fci + 50  +  5} U

{20 — fci +  3 . . .  fci — £2 } U {^ +  2 . . .  2A?i — — 0 — 1} U

{fci +  1 . . .  3fci -  fc2 -  2 9  -  2 }  U {2fci -  0 . . .  fct +  fc2}

A. If fci <  * 2 ± M ± 1

Block 1 o f  R eplicate 5: {1 . . .  4fc2 — 7fct +  80 +  8} U
if mi +y+7<kX<^ y +r 

{2fc2 — 4fci +  50 +  6 . . .  fci — &2 — 1} U {fci — fc2 +  1} U

{fc2 — fci +  20 +  3 . . .  fci} U {fc2 +  0 +  2 . . .  fci +  fc2}

B. If fci >  i*adi£±I

Block 1 o f R eplicate 5:

{2fc2 — 4fci + 50  +  6 . . .  4fc2 — 8fci +  100 +  10} IJ

{20 -  fci +  3 . . .  3fc2 -  6fci +80 +  7} U

{fci—&2+1 . . .  8fci—5fc2—80—7} U {fc2—fci+ 20+ 3 . . .  fci} U

{fc2 +  0 +  2 . . .  fci +  fc2}

H. If fci > 3/20 and fci #  7

A . If 2 | (fci -  0 -  1)

Block 1 o f  R eplicate 4: {1 . . .  } (j {0 +  2 . . .  kl+£+1} U

{fci +  1 . . .  3fĉ #~1} U {2fci - 9  . . .  5*i-^ ~ 3}

Block 1 o f  R eplicate 5: {1 . . .  } U { 3̂ ~*1+5} U

fci} y  2fct —0 — 1} U

{2fci — 0 . . .  5*i-3*-3}
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B . If 2 /  (fci —5 — 1)
if * t< 20

Block 1  o f  R ep lica te  4: { 1  . . .  26 — kt +  1 } U

{26 - fc i- I -3 . . .  3a~~^+4} U {6 + 2 . . .  *±^±2} U 

{*! +  ! . . .  5 ^ }  U {2*i - 6  . . .  § * 1 ^ 1 }

1. If *i <  26

Block 1  o f  R ep lica te  5: { 1  . . .  26 — k i} (J {26 — k t + 2 } U

{26 - k t  +  3  . . .  3£=|id=2} y  {3*du±§}

2. If kv = 26

Block 1  o f  R ep lica te  5: {1 } U {26 — k i+ 3  . . .  7- ~£kl } U
{ 3 1 ^ }  y

3. If fct =  26 +  1

B lock 1  o f  R ep lica te  5: {26 — ki + 3 . . .  — } IJ
{ ^ ± 6 }  y

Block 1  o f  R ep lica te  5: {blocks from 1 to 3 above} |J 

{ * ± ^ 2  . . . k t }  U { ^  - - - 2ki  -  6 -  1}  U

( 2 *t - 6  . . .  5-fci -3*-3}

The Case XXXII constructions given above are valid for all *i >  3 and *i >

k2 > 2 such that ^  <  7  <  y  except for the pair (*t, k2,S) =  (7,6,3). The vaild

construction for {ki, k2) =  (7 ,6 ) is:

(*lr *2) = (7 ,6)

1 1 1 2 2
2 2 5 3 4
3 3 6 5 6
4 4 7 6 7
5 8 8 8 9
6 9 9 9 10
7 10 10 11 12
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3.5.5 Examples o f O ptim al Resolvable Designs in D (v , 5; k2)

We conclude this chapter by providing some examples of resolvable designs in D(v, 5; fci, k2) 

and for various interesting ki > 3 and 2 <  fc2  <  k l . First we construct designs for 

the two cases when =  k2.

E x am p le  Suppose ki = k2 =  8 . Then, according to corollary 2.4.2 the the Schur- 

optimal design is an ECD(9m). Applying the ECD construction given above with 

L  =  9 =  4, yields a  Schur-optimal ECD(9m)  which is:

1 9 1 5 5 1 1 3 1 3
2 1 0 2 6 6 2 2 4 2 4
3 1 1 3 7 7 3 5 7 7 5
4 1 2 4 8 8 4 6 8 8 6

5 13 9 13 9 13 9 1 1 1 1 9 '
6 14 1 0 14 1 0 14 1 0 1 2 1 2 1 0

7 15 1 1 15 1 1 15 13 15 13 15
8 16 1 2 16 1 2 16 14 16 14 16

E x am p le  Consider the case where ki =  k2 = 11. Then, according to corollary 2.4.2 

the (E,S)- and type- 1  optimal design is an ECD(9). Applying the ECD construction 

given above with L = 9 = 5 produces an (E,S)- and type- 1  optimal design which is:

1 1 2 1 6 6 1 1 3 3 1

2 13 2 7 7 2 2 4 4 2

3 14 3 8 8 3 6 5 8 5
4 15 4 9 9 4 7 8 9 6

5 16 5 1 0 1 0 5 1 1 9 1 1 7
6 17 1 2 1 1 1 2 1 1 1 2 1 0 14 1 0

7 18 13 18 13 17 13 14 15 1 2

8 19 14 19 14 19 17 15 17 13
9 2 0 15 2 0 15 2 0 18 16 18 16

1 0 2 1 16 2 1 16 2 1 19 2 1 19 2 1

1 1 2 2 17 2 2 18 2 2 2 0 2 2 2 0 2 2

Now we investigate the two cases when ki — k2 =  1.

E x am p le  Consider the setting such th a t fcx =  6  and k2 =  5. By corollary 2.4.4, 

the (E,S)- and type - 1  optimal design is an ECD(9). Applying the ECD construction
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given above with L =  9 =  3 yields an (E,S)- and type-1 optimal design which is:

1 7 1 4 1 2 2 1 3 1

2 8 2 5 4 3 4 3 5 2

3 9 3 6 5 6 6 5 6 4
4 1 0 7 1 0 7 9 7 8 8 7 '
5 1 1 8 1 1 8 1 1 9 1 1 9 1 1

6 9 1 0 1 0 1 0

E xam ple  Suppose =  13 and k2 =  1 2 . By corollary 3.5.11, the (E,S)-optimal 

design is a Case XXXII design, and the A-optimal design is an ECD(9+ 1 ). Applying 

the Case XXXII construction given above with 9 = 6 produces an (E,S)-optimal 

design which is:

1 14 1 8 1 2 1 5 1 4
2 15 2 9 8 3 2 6 2 6

3 16 3 1 0 9 4 3 7 3 7
4 17 4 1 1 1 0 5 4 1 1 5 8

5 18 5 1 2 1 1 6 8 1 2 1 1 9
6 19 6 13 1 2 7 9 13 1 2 1 0

7 2 0 7 2 0 13 2 0 1 0 17 13 14 .
8 2 1 14 2 1 14 2 1 14 18 17 15
9 2 2 15 2 2 15 2 2 15 19 18 16

1 0 23 16 23 16 23 16 23 19 23
1 1 24 17 24 17 24 2 0 24 2 0 24
1 2 25 18 25 18 25 2 1 25 2 1 25
13 19 19 2 2 2 2

Applying the ECD construction given above with L =  9 + 1  =  7  produces an 

A-optimal design which is:

1 14 1 8 1 5 1 5 1 2

2 15 2 9 2 6 2 6 5 3
3 16 3 1 0 3 7 3 7 6 4
4 17 4 1 1 4 1 1 4 8 7 9
5 18 5 1 2 8 1 2 1 1 9 8 1 0

6 19 6 13 9 13 1 2 1 0 1 1 13
7 2 0 7 2 0 1 0 17 13 14 1 2 16 .
8 2 1 14 2 1 14 18 17 15 14 18
9 2 2 15 2 2 15 19 18 16 15 19

1 0 23 16 23 16 23 19 23 17 23
1 1 24 17 24 2 0 24 2 0 24 2 0 24
1 2 25 18 25 2 1 25 2 1 25 2 1 25
13 19 2 2 2 2 2 2
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Four our final example we investigate a setting for which ki — k2 =  2.

E xam ple  Suppose =  12 and k2 = 10. Then by corollary 3.5.12, the (E,S)- 

optimal design is a Case XXV design. Applying the Case XXV construction for 

9 = 6 yields an (E,S)-optimal design which is:

1 13 1 7 1 3 3 1 3 1

2 14 2 8 2 4 4 2 4 2

3 15 3 9 7 5 5 1 0 5 7
4 16 4 1 0 8 6 6 1 1 6 8

5 17 5 1 1 9 1 2 7 1 2 9 1 2

6 18 6 1 2 1 0 18 8 16 1 0 13
7 19 13 19 1 1 19 9 17 1 1 14 '
8 2 0 14 2 0 13 2 0 13 18 15 18
9 2 1 15 2 1 14 2 1 14 2 1 16 19

1 0 2 2 16 2 2 15 2 2 15 2 2 17 2 0

1 1 17 16 19 2 1

1 2 18 17 2 0 2 2

3.6 Robustness of Optimal Designs

As was mentioned in the airplane part manufacturing example of section 2 .1 , an im­

portant question regarding optimal resolvable designs with r  replications is whether 

optimality holds if fewer than r  replicates of the experiment are completed. That is, 

is optimality of a resolvable design in D(v, r; klt k2) robust to the loss of an arbitrary 

replicate. W ith the optimality results of the previous few sections in hand, we are 

now ready to investigate robustness, but first we need the following definition.

D efin ition  3.6.1 Let d  be a  resolvable design in D (v ,r ;k u k2). A design d* € 

D m(v, rm; fci, k2), r* <  r , is said to be a subdesign of d  if the r* replicates of d ' are 

also replicates of d.

Recall that the optimal resolvable design in D(v, r, ki, k2) depends on the location 

of 7  =  — 9v in the interval 0 <  7  <  v. The value of 7  does not depend on the

number of replicates r; however, subintervals of 0  <  7  <  v on which various classes
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of designs are optimal does depend on r, see tables 3.20, 3.24, 3.25, 3.32, 3.34, and 

3.40.

The intervals on which the optimality of ECDs is robust to the loss of replicates 

for the various criteria are established by the following two lemmas.

L em m a 3.6.1 Let D (v, r; ku  fc2) be a resolvable design setting such that 0 <  7  <  §, 

and let d G D be an ECD(Q). I f  d* G Z?*(u,r*; fclt fc2), is any subdesign of d, then dm 

is an ECD(Q) and is type-1 and (E,S)-optimal.

P roof Since all subdesigns of an ECD clearly are necessarily also an ECD , then 

( f  is anECD(6). By corollaries 2.3.4 and 2.3.15, ECD(6Js are at least type- 1  and 

(E,S)-optimal for all r  when 0 <  7  <  §. □

L em m a 3.6.2 Let D(v, r; A:j., k2) be a resolvable design setting , and let d G D be 

a Schur-optimal ECD. I f  d* G D m(v, r*;fc!,fc2), is any subdesign o f d, then dm is an 

ECD and the following are true about the Schur-optimality o f d*.

1. I f  r  =  5, and 0 < 7 < |  or ^  <  7  <  u, then d* is Schur-optimal.

2. I f r  = 4, and 0  <  7  <  |  or ^  < 7  <  u, then d" is Schur-optimal.

3. I f  r  =  3, and 0 < 7 < | o r y < 7 < u ,  then d  G D (v ,rm;k i ,k 2) is Schur- 

optimal.

P roof Corollary 2.3.17 provides the subintervals of 0 <  7  <  v  on which ECDs are 

Schur-optimal. □

When |  <  7 < X* reSiQns of the interval on which various resolvable designs are 

optimal are determined by the design replication r. A robustness argument for these 

values of 7  must involve direct comparisons of optimal designs for different values of 

r .
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Lem m a 3.6.3 Let D (v, 3; ku k2) be a resolvable design setting, and suppose |  <  7  <  

y .  I f  d G D is an (E,S)-optimal Case I I  design, then 2 /3  o f the possible subdesigns 

d* G D '(v, 2; fclt k2) o f d are (E,S)-optimal and the remaining 1/3 are not.

P ro o f  The discrepancy m atrix for the (E ,S )-o p tim a l  Case II design d G D{v, 3; ki, k2) 

is

Removing row column two or three from A 2 produces the discrepancy matrix for a 

Schur-optimal ECD(9 +  1/ in Dm(v, 2; ki, k2). Removing row and column one from 

A 2 produces the discrepancy matrix for an ECD(9) in D m which is not optimal on 

the interval. Therefore, two of the three subdesigns are Schur-optimal. □

Lem m a 3.6.4 Let D (v,3; k u k2) be a resolvable design setting, suppose § < 7 < 

and let d G D be an A-optimal design. I f  d’ G D ’(v, 2; ki, k2) is a subdesign o f d 

then the follovhng are true.

1. / / 1 < 7 < y , and d is an A-optimal ECD(9 +  1  ̂ , then d* is Schur-optimal.

2. I f  |  <  7 <  y ,  and d is an A-optimal Case I I  design, then 2 /3  o f the possible 

d" are Schur-optimal and 1/3 are not optimal.

3. I f  t? < 7 <  y ,  then cT is A-optimal

P roof If |  <  7  <  Tp and the A-optimal d G D(v, 3; fclt k2) is an ECD(9 +  1,1, then 

a subdesign d* G D m{v, 2; fci ,  k2) is a Schur-optimal ECD(9 + 1). If |  <  7  <  ^  and 

the A-optimal d G D  is a Case II design, then it was established in the previous 

lemma that 2/3 of the subdesigns d ' G Dm are Schur-optimal ECD(9 +  1/s and 1/3 of 

the subdesigns d' are ECD(9)s  and are not optimal. If y  <  7 <  y ,  the A-optimal 

design d G D  is an ECD(9 +  1/ , and any subdesign d ' G D ' is a Schur-optimal 

ECD(9 + I). □
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Lem m a 3.6.5 Let D (v, 4; fct , k2) be a resolvable design setting, suppose d  6  D is an 

(E,S)-optimal design, and let d* G D m(v, 3; ku k2) be a subdesign of d.

1. I f  |  < 7  <  y , then d* is (E,S)-optimal.

2. / /  y  <  7  <  j ,  then 1/2 of the subdesigns cT of d are Schur-optimal and the 

remaining 1 /2  are not optimal.

P ro o f  When § <  7 <  y ,  Case E  designs in D (v, 4; ki, k2) are (E,S)-optimal and 

have discrepancy matrix
/ 0  0 1 1 \

0 0 1 1  
1 1 0  0 

V i  i  o o )

Removing any one of the four rows and columns from A 2  produces the discrepancy 

matrix for an (E,S)-optimal Case II design d* €  Dm(v, 3; k lt k2).

When y  < 7 < x> Case I designs in D are (E,S)-optimal and have discrepancy 

matrix

A, =

/ 0  0 1 1 \
0 0 1 1  
1 1 0  1 

\ 1  1  1  0 /
Removing row and column one or two from Ai produces the discrepancy matrix 

of a Schur-optimal ECD(Q +  1  ̂ in D, and removing row and column three or four 

produces the discrepancy matrix of a Case II design d* which is not optimal on the 

interval. □

L em m a 3 .6 .6  Let d € D {v ,4 ;k i,k2) be an A-optimal resolvable design, suppose 

|  <  7  <  y ,  and let dm 6 D m(v ,3 ;k i,k2) be a subdesign of d.

1- / /  |  <  7  <  y r on ECD(9 -h 1  ̂ is A-optimal in D, and an ECD(9 + 1) is 

A-optimal in D m, then d* is always A-optimal.

2. I f  |  <  7  <  y ,  an ECD(9 + 1) is A-optimal in D , and a Case I I  design is 

A-optimal in D m, then d* is never optimal.
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3. I f  |  <  7  <  y ,  a Case I  design is A-optimal in D , and an ECD(9 + I )  is 

A-optimal in D ’ , then 1/2 o f the possible d* are A-optimal and 1/2 are not 

optimal.

4- I f  |  <  7  <  y ,  a Case I  design is A-optimal in D , and a Case I I  design is 

A-optimal in D m, then 1/2 o f the possible d ' are A-optimal and 1/2 are not 

optimal.

5. I f  |  <  7  <  y ,  a Case I I  design is A-optimal in D , and an ECD(9 +  1) is 

A-optimal in D m, then dm is never optimal.

6. I f  |  <  7  <  y ,  a Case I I  design is A-optimal in D, and a Case I I  design is 

A-optimal in D m, then d* is always A-optimal.

7. / /  y  < 7  <  then d* is always Schur-optimal.

P ro o f  Since all subdesigns of ECD(9 +  l)s  are ECD(9 + ljs , then 1 , 2, and 7 follow 

immediately, and 3, 4, 5, and 6 follow from the previous lemma. □

Lem m a 3.6.7 Let D(v, 5; ki, fc2) be a resolvable design setting, suppose d € D is an 

(E,S)-optimal design, and let d* €  D*(u, 4; ki, fc2) be a subdesign o f d.

1. I f  |  <  7  <  y ,  then 3 /5  o f the possible d* are (E,S)-optimal and the remaining 

2/5 are E-optimal.

2. / / y  <  7 <  y ,  then 3 /5  o f the possible dm are (E,S)-optimal and the remaining 

2/5  are E-optimal.

3- I f  y  <  7  <  y ,  then 2 /5  o f the possible d* are Schur-optimal and the remaining 

3/5 are not optimal.
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P ro o f  When § <  7  <  y ,  Case XXV designs in D(y, 5; fci, k2) are (E,S)-optimal 

and have discrepancy m atrix

A  25 =

fQ  1 1 1 0 \  
1 0 0 0 1 
1 0 0 0 1 
1 0 0 0 1 
0 1 1 1 0

Removing row and column two, three, or four from A 2 5  produces the discrepancy 

matrix of an (E,S)-optimal Case II design d* € D '(u ,4; fcl t fc2), and removing row 

and column one or five from A 2 5  produces the discrepancy matrix of an E-optimal 

Case V design d*.

When y  < 7  <  y ,  Case XXVTH designs in D are (E,S)-optimal and have 

discrepancy matrix

A^a =

/ 0  1 1 1 1 \
1 0  1 1 1  
1 1 0  0 0 
1 1 0  0 0 

V 1  1  0  0  0  j
Removing row and column three, four, or five from A2s produces the discrepancy 

m atrix of an (E,S)-optimal Case I design d* 6  £>*, and removing row and column 

one or two produces the discrepancy matrix for a E-optimal Case V design d*.

When y  < 7  <  y ,  Case XXXII designs in D are (E,S)-optimal and have dis­

crepancy matrix
/ 0  1 1 1 1 \

1 0  1 1 1  
1 1 0  1 1  
1 1 1 0  0 

\  1 1 1 0 0 }
Removing row and column three or four from A32 produces the discrepancy matrix 

for a  Schur-optimal ECD(Q -+-1) in D m, and removing row and column one, two, or 

three produces the discrepancy matrix for a Case I design d* which is not optimal 

on the interval. □

A 3 2  =
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A P PE N D IX  A

D ISCREPAN CY MATRICES

D2
D1 D3

0 - 1 1 0 0 0
0 - 1 1 0 - 1 0 0 0 1 0
1 0 0 1 1 0 0 - 1 0 0
1 0 0 - 1 0 0 - 1 0 0 1
0 1 - 1 0 0 1 0 0 0 -1

0 0 0 1 -1 0

0 - 1 - 1  1 1
- 1 0  1 0  0
- 1 1 0  0 0

1 0  0 0 - 1
1 0  0 - 1 0

6 =  2, I =  2, w  =  2

D 4

0 - 1 - 1 1 1 0
- 1 0 0 1 0 0
- 1 0 0 0 0 1

1 1 0 0 - 1 - 1
1 0 0 - 1 0 0
0 0 1 - 1 0 0

2, w =  3 5 =  3, I =

D5

0 -1 - 1 1 1 0 0
- 1 0 0 0 0 1 0
- 1 0 0 0 0 0 1

1 0 0 0 - 1 0 0
1 0 0 - 1 0 0 0
0 1 0 0 0 0 - 1
0 0 1 0 0 - 1 0

5 =  4, / =  2, w =  3 5 =  4, 1 = 2, w = A
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D6

0 - 1 1 0 0 0 0 0
-1 0 0 0 1 0 0 0

1 0 0 - 1 0 0 0 0
0 0 - 1 0 0 0 1 0
0 1 0 0 0 - 1 0 0
0 0 0 0 - 1 0 0 1
0 0 0 1 0 0 0 - 1
0 0 0 0 0 1 - 1 0

5 = 4, 1 = 2, w = 4

D 8

0 - 1 -1 1 1 0 0
- 1 0 0 0 0 1 0
- 1 0 0 0 0 0 1

1 0 0 0 0 --1 0
1 0 0 0 0 0 - 1
0 1 0 - 1 0 0 0
0 0 1 0 --1 0 0

5 = 4, 1 = 2, w = 3

DIO

0 - 1 -1 1 1 0 0
- 1 0 1 0 0 0 0
- 1 1 0 0 0 0 0

1 0 0 0 0 --1 0
1 0 0 0 0 0 - 1
0 0 0 - 1 0 0 1
0 0 0 0 -1 1 0

5 = 4, 1 = 2, w = 4

D7

0 - 1 1 0 0 0 0 0
- 1 0 0 1 0 0 0 0

1 0 0 - 1 0 0 0 0
0 1 - 1 0 0 0 0 0
0 0 0 0 0 - 1 1 0
0 0 0 0 - 1 0 0 1
0 0 0 0 1 0 0 - 1
0 0 0 0 0 1 - 1 0

5 =  4, 1 = 2, u/ =  4

D9

0 - 1  --1 1 1 0
- 1  0 0 0 0 1
- 1  0 0 0 0 1

1 0 0 0 0 - 1
1 0 0 0 0 - 1
0 1 1 - 1  --1 0

5 =  4, I = 2, w 

D l l

=  2

0 - 1  --1 1 1 0
- 1  0 1 - 1 0 1
- 1  1 0 0 0 0

1 - 1 0 0 0 0
1 0 0 0 0 - 1
0 1 0 0 --1 0

5 =  4, I = 2, w =  3
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D12

0 - 2 1 1 0  
- 2 0 1 0 1  

1 1 0 - 1 - 1  
1 0 - 1 0 0  
0 1 - 1 0  0

5 = 4 , 1 = 3, w = 3

D14
0 - 1 -1 1 1 0 0 0

-1 0 0 0 0 --1 1 1
- 1 0 0 0 0 1 0 0

1 0 0 0 - 1 0 0 0
1 0 0 --1 0 0 0 0
0 - 1 1 0 0 0 0 0
0 1 0 0 0 0 0 - 1
0 1 0 0 0 0 - 1 0

5 — 5, I = 2, w —*5

D16

0 - 1 - 1 1 1 0 0
- 1 0 1 0 0 1 - 1
- 1 1 0 0 0 - 1 1

1 0 0 0 - 1 0 0
1 0 0 - 1 0 0 0
0 1 - 1 0 0 0 0
0 - 1 1 0 0 0 0

5 = 5, 1 = 2, w = 4

D13

0 1 1 - 1 - 1 0 0
1 0 - 1 0 1 - 1 0
1 - 1 0 1 0 0 - 1

- 1 0 1 0 0 0 0
- 1 1 0 0 0 0 0

0 - 1 0 0 0 0 1
0 0 - 1 0 0 1 0

5 =  5, I = 2, w =  4

D15

0 1 1 --1 - 1 0 0 0
1 0 -1 1 0 --1 0 0
1 - 1 0 0 0 0 0 0

- 1 1 0 0 0 0 0 0
- 1 0 0 0 0 0 1 0

0 - 1 0 0 0 0 0 1
0 0 0 0 1 0 0 - 1
0 0 0 0 0 1 --1 0

5 =  5, I = 2, w =  4

D 17

0 1 1 - 1  --1 0
1 0 --1 1 0 --1
1 -1 0 - 1 1 0

- 1 1 --1 0 0 1
- 1 0 1 0 0 0

0 -1 0 1 0 0

5 =  5, 1 = 2, w =  4
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D18

0 1 to 1 1 0 0
2 0 0 0 1 1
1 0 0 -1 0 0
1 0 -1 0 0 0
0 1 0 0 0 -1
0 1 0 0 -1 0

6 =  4, I =  3, w =  4

D id

1 1 1 - 1 - 1 - 1
0 - 1 - 1 1 0 0

- 1 0 0 0 0 0
- 1 0 0 0 0 0

1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

6 =  5 ,1 =  2, w =  3

D20

0 1 1 - 1 - 1 0 0 0 0
1 0 - 1 0 0 0 0 0 0
1 - 1 0 0 0 0 0 0 0

- 1 0 0 0 0 1 0 0 0
- 1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 - 1 0
0 0 0 0 1 0 0 0 - 1
0 0 0 0 0 - 1 0 0 1
0 0 0 0 0 0 - 1 1 0

5 =  5, 1 =  2, w =  5

D21

0 1 1 - 1 - 1 0 0 0
1 0 0 1 0 - 1 - 1 0
1 0 0 0 0 0 0 - 1

- 1 1 0 0 0 0 0 0
- 1 0 0 0 0 1 0 0

0 - 1 0 0 1 0 0 0
0 - 1 0 0 0 0 0 1
0 0 - 1 0 0 0 1 0

6 =  5, 1 =  2, w =  4

D22

0 1 1 - 1 - 1 0 0
1 0 - 1 0 0 - 1 1
1 - 1 0 1 0 0 - 1

-1 0 1 0 0 0 0
-1 0 0 0 0 1 0

0 - 1 0 0 1 0 0
0 1 - 1 0 0 0 0

5 = 5, 1 = 2, w = 4
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D 23

0 1 0 0 0 0 0 0 0 - 1
1 0 - 1 0 0 0 0 0 0 0
0 - 1 0 1 0 0 0 0 0 0
0 0 1 0 - 1 0 0 0 0 0
0 0 0 - 1 0 1 0 0 0 0
0 0 0 0 1 0 - 1 0 0 0
0 0 0 0 0 - 1 0 1 0 0
0 0 0 0 0 0 1 0 - 1 0
0 0 0 0 0 0 0 - 1 0 1

- 1 0 0 0 0 0 0 0 1 0

6 = 5, 1 = 2, w = 5 

D24

0 1 - 1 0 0 0 0 0 0 0
1 0 0 - 1 0 0 0 0 0 0

- 1 0 0 1 0 0 0 0 0 0
0 - 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 - 1 0 0 0
0 0 0 0 1 0 0 - 1 0 0
0 0 0 0 - 1 0 0 0 1 0
0 0 0 0 0 - 1 0 0 0 1
0 0 0 0 0 0 1 0 0 - 1
0 0 0 0 0 0 0 1 - 1 0

6 = 5, 1 = 2, w = 5

D25

0 1 1 -1 - 1 0 0 0 0
1 0 0 0 0 ■-1 0 0 0
1 0 0 0 0 0 --1 0 0

- 1 0 0 0 0 0 0 1 0
- 1 0 0 0 0 0 0 0 1

0 - 1 0 0 0 0 1 0 0
0 0 - 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 - 1
0 0 0 0 1 0 0 - 1 0

6 = 5,1 = 2, w = 5
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D 26

0 1 1 -1 - 1 0 0 0 0
1 0 - 1 0 0 0 0 0 0
1 - 1 0 0 0 0 0 0 0

- 1 0 0 0 1 0 0 0 0
- 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 - 1 0
0 0 0 0 0 1 0 0 - 1
0 0 0 0 0 --1 0 0 1
0 0 0 0 0 0 - 1 1 0

6 = 5,1 =  2, w =  5

D27

0 1 1 -1 - 1 0 0 0 0
1 0 0 0 0 --1 0 0 0
1 0 0 0 0 0 - 1 0 0

- 1 0 0 0 0 1 0 0 0
- 1 0 0 0 0 0 0 1 0

0 -1 0 1 0 0 0 0 0
0 0 - 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 - 1
0 0 0 0 0 0 1 - 1 0

6 = 5, I =  2, w =  4

D28

0 1 1 - 1 - 1 0 0 0
1 0 0 1 0 - 1 - 1 0
1 0 0 0 0 0 0 - 1

- 1 1 0 0 0 0 0 0
-1 0 0 0 0 0 0 1

0 - 1 0 0 0 0 1 0
0 - 1 0 0 0 1 0 0
0 0 - 1 0 1 0 0 0

D29

0 1 1 - 1 - 1
1 0 - 1  1 - 1
1 - 1  0 - 1  1

- 1  1 - 1  0 1
- 1 - 1  1 1 0

6 = 5, 1 = 2, w = 5

6 = 5 , 1 = 2, w = 4
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D30

0 0 0 0 - 1  --1 1 1
0 0 -1 1 1 0 --1 0
0 - 1 0 0 0 1 0 0
0 1 0 0 0 0 0 - 1

-1 1 0 0 0 0 0 0
- 1 0 1 0 0 0 0 0

1 - 1 0 0 0 0 0 0
1 0 0 --1 0 0 0 0

<5=  5, I = 2, w =  4

D32

0 1 1 --1 - 1 0 0 0
1 0 0 0 0 1 - -I - 1
1 0 0 0 0 --1 0 0

-1 0 0 0 0 0 1 0
- 1 0 0 0 0 0 0 1

0 1 -1 0 0 0 0 0
0 - 1 0 1 0 0 0 0
0 - 1 0 0 1 0 0 0

8 =  5, I = 2, w =  4

D34

0 - 1 -1 1 1 0 0 0
- 1 0 0 --1 0 1 1 0
-1 0 0 0 0 0 0 1

1 - 1 0 0 0 0 0 0
1 0 0 0 0 0 0 - 1
0 1 0 0 0 0 --1 0
0 1 0 0 0 --1 0 0
0 0 1 0 - 1 0 0 0

8 =  5, I = 2, w =  4

D31

0 0 0 0 - 1  --1 1 1
0 0 - 1  --1 1 1 0 0
0 - 1 0 1 0 0 0 0
0 - 1 1 0 0 0 0 0

- 1 1 0 0 0 0 0 0
- 1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 - 1
1 0 0 0 0 0 --1 0

8 =  5, I = 2, w =  4

D33

0 - 1 -1 1 1 0 0 0
- 1 0 0 0 0 --1 1 1
- 1 0 0 0 0 1 0 0

1 0 0 0 0 0 --1 0
1 0 0 0 0 0 0 - 1
0 - 1 1 0 0 0 0 0
0 1 0 --1 0 0 0 0
0 1 0 0 - 1 0 0 0

8 =  5, I = 2, w =  4

D35

0 0 0 0 - 1  --1 1 1
0 0 -1 0 1 1 --1 0
0 - 1 0 1 0 0 0 0
0 0 1 0 0 0 0 - 1

- 1 1 0 0 0 0 0 0
- 1 1 0 0 0 0 0 0

1 - 1 0 0 0 0 0 0
1 0 0 --1 0 0 0 0

8 =  5, 1 = 2, w =  3
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D36 D37
0 1 1 1 - 1  --1 --1 0
1 0 -1 0 0 0 0 0
1 - 1 0 0 0 0 0 0
1 0 0 0 0 0 0 - 1

—1 0 0 0 0 1 0 0
—1 0 0 0 1 0 0 0
—1 0 0 0 0 0 0 1

0 0 0 --1 0 0 1 0

6 =  5, I = 2, w =  4

0 1 - 1 - 1 1 0 0
1 0 0 0 --1 1 - 1

- 1 0 0 1 0 - 1 1
- 1 0 1 0 0 0 0

1 - 1 0 0 0 0 0
0 1 - 1 0 0 0 0
0 -1 1 0 0 0 0

6 = 5,1 =  2, w =  3

D38

0
1

1 - 1  - 1
0 - 1  - 1

0 - 1  0 
1 - 1 0  

- 1 0  1 
-I 0 1
0 1 - 1

0
0
0
0
0

0
1
0
0
0
0

0
0 1
1 - 1  
0 0
0 0
0 0
0 0

6 = 5, 1 = 2, w = 3

D40

0 2 --1 - 1 0 0
2 0 0 0 --1 - 1

- 1  0 0 0 1 0o1 0 0 0 1
0 - 1 1 0 0 0
0 - 1 0 1 0 0

II I = 3, w — 3

D39

0 - 2 1 1 0 0
- 2 0 0 0 1 1

1 0 0 0 - 1 0
1 0 0 0 0 - 1
0 1 - 1 0 0 0
0 1 0 - 1 0 0

6 = 4, 1 = 3, w =  3

D41

0 1 1 -1 - 1 0 0 0 0
1 0 0 0 0 -1 0 0 0
1 0 0 0 0 0 - 1 0 0

- 1 0 0 0 1 0 0 0 0
- 1 0 0 1 0 0 0 0 0

0 - 1 0 0 0 0 0 1 0
0 0 - 1 0 0 0 0 0 1
0 0 0 0 0 1 0 0 - 1
0 0 0 0 0 0 1 - 1 0

6 = 5, 1 = 2, w = 4
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D42

0 - 1  •-1 1 1 0 0 0
- 1 0 0 --1 0 1 1 0
- 1 0 0 0 0 0 0 1

1 - 1 0 0 0 0 0 0
1 0 0 0 0 --1 0 0
0 1 0 0 - 1 0 0 0
0 1 0 0 0 0 0 - 1
0 0 1 0 0 0 --1 0

5 =  0, 1 = 2, w =  4

D 44

0 1 1 --1 - 1 0 0 0
1 0 0 0 0 1 --1 - 1
1 0 0 0 0 --I 0 0

- 1 0 0 0 1 0 0 0
- 1 0 0 1 0 0 0 0

0 1 -1 0 0 0 0 0
0 - 1 0 0 0 0 0 1
0 - 1 0 0 0 0 1 0

5 =  5, I = 2, w =  5

D46

0 - 1 -1 1 1 0 0 0
- 1 0 1 --1 0 1 0 0
- 1 1 0 0 0 0 0 0

1 - 1 0 0 0 0 0 0
1 0 0 0 0 0 --1 0
0 1 0 0 0 0 0 - 1
0 0 0 0 - 1 0 0 1
0 0 0 0 0 --1 1 0

5 =  5, 1 = 2, w =  4

D43

0 - 1 - 1  1 1 o 0
- 1 0  1 0  0 1 - 1  
- 1 1 0 - 1 0 0 1  

1 0 - 1  0 0 0 0
1 0 0 0 0 - 1  0
0 1 0  0 - 1 0 0  
0 - 1  1 0 0 0 0

5 = 5, 1 = 2, u/ =  4

D45

0 1 1 -1 - 1 0 0
1 0 - 1 0 0 - 1 1
1 - 1 0 0 0 1 - 1

- 1 0 0 0 1 0 0
- 1 0 0 1 0 0 0

0 - 1 1 0 0 0 0
0 1 - 1 0 0 0 0

5 = 5, 1 = 2, w = A

D47

0  1 1 1 1- 1 0
1 0  -- 1 - 1 0 1
1 - 1 0 1 0 - 1

- 1  - 1 1 0 1 0

1 ►-
*

o 0 1 0 0
0  1 -- 1 0 0 0

O
) II y

\ 1 = 2 , w — 4
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D48

0 2 - 1 - 1 0 0
2 0 0 0 - 1 - 1
1 0 0 1 0 0
1 0 1 0 0 0
0 - 1 0 0 0 1
0 - 1 0 0 1 0

5 =  4, I =  3, w =  4

D49

0 - 1  - 1  - 1  1 1 1 
- 1 0  1 1 - 1 0  0 
- 1  1 0 0 0 0 0
- 1  1 0 0 0 0 0

1 - 1  0 0 0 0 0
1 0 0 0 0 0 - 1
1 0 0 0 0 - 1  0

5 = 5, 1 = 2, w = 3

D50
D51

0 - 1 - 1 1 1 0 0
- 1 0 1 0 --1 1 0 0 2 - 1  - 1 0
- 1 1 0 - 1 0 0 1 2 0 - 1  0 - 1

1 0 - 1 0 0 0 0 - 1  - 1 0 1 1
1 - 1 0 0 0 0 0 - 1  0 1 0 0
0 1 0 0 0 0 - 1 0 - 1 1 0 0
0 0 1 0 0 - 1 0

On II =  3, w =  3
5 == 5, I =  2, w =  4
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A PPE N D IX  B

D ISC R EPA N C Y  MATRICES RANKED B Y  M A X IM U M  
EIGENVALUE

rank Matrix sd U w ud
1 D2 3 2 4 1.73205
2 D13 5 2 4 1.87939
3 D23 5 2 5 1.90211
4 D5 4 2 4 1.93543
5 D l 2 2 2 2.00000
6 D7 4 2 4 2.00000
7 D14 5 2 3 2.00000
8 D15 5 2 3 2.00000
9 D24 5 2 5 2.00000
10 D6 4 2 4 2.00000
11 D4 4 2 3 2.00000
12 D20 5 2 5 2.13452
13 D16 5 2 4 2.23607
14 D3 3 2 3 2.23607
15 D26 5 2 5 2.23607
16 D29 5 2 5 2.23607
17 D17 5 2 4 2.29240
18 D25 5 2 5 2.30278
19 D27 5 2 5 2.35829
20 D21 5 2 3 2.37720
21 D28 5 2 3 2.37951
22 D12 4 3 3 2.41421
23 D41 5 2 5 2.42534
24 D8 4 2 3 2.44949
25 D22 5 2 4 2.45585
26 DIO 4 2 4 2.47283
27 D30 5 2 3 2.52434
28 D19 5 2 3 2.52543
29 D32 5 2 3 2.56155
30 D33 5 2 3 2.56155
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rank Matrix
31 D44
32 D45
33 D31
34 D18
35 D34
36 D35
37 D42
38 D36
39 D37
40 D38
41 D46
42 D9
43 D43
44 D47
45 D ll
46 D48
47 D39
48 D40
49 D50
50 D49
51 D51

Id w u d
2 3 2.56155
2 4 2.56155
2 3 2.56155
3 4 2.56155
2 3 2.61050
2 3 2.64575
2 3 2.69963
2 4 2.71519
2 3 2.79793
2 3 2.79793
2 3 2.81361
2 2 2.82843
2 4 2.85323
2 4 2.89511
2 3 2.90321
3 4 3.00000
3 3 3.00000
3 3 3.00000
2 4 3.04892
2 3 3.15633
3 3 3.44949

Sd
5
5
5
4
5
5
5
5
5
5
5
4
5
5
4
4
4
4
5
5
4
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