Summer 2002

Nearly Balanced and Resolvable Block Designs

Brian Henry Reck
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_etds
Part of the Mathematics Commons, and the Statistics and Probability Commons

Recommended Citation

Reck, Brian H.. "Nearly Balanced and Resolvable Block Designs" (2002). Doctor of Philosophy (PhD), Dissertation, Mathematics \& Statistics, Old Dominion University, DOI: 10.25777/69nj-7r65
https://digitalcommons.odu.edu/mathstat_etds/55

This Dissertation is brought to you for free and open access by the Mathematics \& Statistics at ODU Digital Commons. It has been accepted for inclusion in Mathematics \& Statistics Theses \& Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
byBrian Henry ReckB.S. May 1991, University of RedlandsM.S. May 1995, Old Dominion University
A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of
DOCTOR OF PHILOSOPHY COMPUTATIONAL AND APPLIED MATHEMATICS OLD DOMINION UNIVERSITY August 2002
Approved by:
Johh P. Morgan (Difector)
N. Rao Chaganty (Member)
Dayanand N. Naik (Member)
$\overline{\text { Johnl Stufker ' (Member) }}$

ABSTRACT

NEARLY BALANCED AND RESOLVABLE BLOCK DESIGNS

Brian Henry Reck
Old Dominion University, 2001
Director: Dr. John P. Morgan

One of the fundamental principles of experimental design is the separation of heterogeneous experimental units into subsets of more homogeneous units or blocks in order to isolate identifiable, unwanted, but unavoidable, variation in measurements made from the units. Given v treatments to compare, and having available b blocks of k experimental units each, the thoughtful statistician asks, "What is the optimal allocation of the treatments to the units?" This is the basic block design problem. Let $n_{i j}$ be the number of times treatment i is used in block j and let N be the $v \times b$ matrix $N=\left(n_{i j}\right)$. There is now a considerable body of optimality theory for block design settings where binarity (all $n_{i j} \in\{0,1\}$), and symmetry or near-symmetry of the concurrence matrix $N N^{T}$, are simultaneously achievable. Typically the same classes of designs are found to be best using any of the standard optimality criteria. Among these are the balanced incomplete block designs (BIBDs), many species of two-class partially balanced incomplete block designs, and regular graph designs.

However, there are triples (v, b, k) in which binarity precludes near-symmetry. For these combinatorially problematic settings, recent explorations have resulted in new optimality results and insight into the combinatorial issues involved. Of particular interest are the irregular BIBD settings, that is, triples (v, b, k) where the necessary conditions for a BIBD are fuifilled but no such design exists. A thorough study of the smallest such setting, $(15,21,5)$, has produced some surprising optimal designs which will be presented in the first chapter of this document.

An incomplete block design is said to be resolvable if the blocks can be partitioned
into classes, or replicates such that each treatment appears in exactly one block of each replicate. Resolvable designs are indispensable in many industrial and agricultural experiments, especially when the entire experiment can not be completed at one time or when there is a risk that the experiment may be prematurely terminated. In chapters two and three we will investigate the classes of resolvable designs having five or fewer replications and two blocks of possibly unequal size per replicate. Theory for identifying the best designs with respect to important optimality criteria will be developed, and with the optimality theory in hand, optimal designs will be identified and constructions provided. We will conclude with a comment on the robustness of resolvable designs to the loss of a replicate.

Dedicated

to

Anne, Donald, and Jennifer Reck

whose unconditional love and support encourage me to pursue my dreams.

ACKNOWLEDGMENTS

I thank my friend and mentor J.P. Morgan for guiding me through the long process of completing this dissertation. His advice and encouragement will never be forgotten. I have also benefited greatly from the comments and advice of John Stufken, the external member of my dissertation committee. Appreciation is extended to N. Rao Chaganty and Dayanand N. Naik for being excellent instructors, for introducing me to the elegance and beauty of statistics, and for serving on my dissertation committee. Special thanks is extended to Ran C. Dahiya for extending the opportunity to join the statistics program.

I thank John J. Swetits and the Department of Mathematics and Statistics for inviting me to attend Old Dominion University and for providing financial support for most of my graduate study. I also thank John A. Adam, Charlie H. Cooke, John M. Dorrepaal, Hideaki Kaneko, Denny Kirwan, John Kroll, Constance M. Schober, Michael Toner, John Tweed.

Finally, I want to thank Barbara Jeffrey and Gayle Tarkelsen for the friendship and support they have provided me throughout the time I have been at Old Dominion University.

TABLE OF CONTENTS

Page
1 Nearly and Virtually Balanced Incomplete Block Designs 1
1.1 Introduction 1
1.2 Preliminaries 4
1.3 Definitions and Results 7
1.4 Search for the A- and D-optimal design 18
1.4.1 One Common Case 23
1.4.2 Two Common Case 30
1.4.3 A- and D-optimal Design 34
1.5 E-optimal Design in $D(15,21,5)$ 37
2 Resolvable Designs With Two Blocks Per Replicate: General The- ory 54
2.1 Introduction 54
2.2 General Results 66
2.3 Equal Concurrences 69
2.4 Special Cases: $\left(k_{1}-k_{2}\right) \leq 2$ 81
3 Application: Optimal Resolvable Designs With Up To Five Repli- cates and Two Blocks Per Replicate 83
3.1 Introduction 83
3.2 Resolvable Designs With Two Replicates 88
3.2.1 Schur-optimality 88
3.2.2 Special Cases: $\left(k_{1}-k_{2}\right) \leq 2$ 89
3.2.3 Construction of Optimal Designs in $D\left(v, 2 ; k_{1}, k_{2}\right)$ 90
3.2.4 Examples 90
Page
3.3 Resolvable Designs With Three Replicates 92
3.3.1 Introduction 92
3.3.2 (E,S)-optimal Designs in $D\left(v, 3 ; k_{1}, k_{2}\right)$ 95
3.3.3 A-optimal Design 96
3.3.4 Special Cases: $\left(k_{1}-k_{2}\right) \leq 2$ 99
3.3.5 Construction of Optimal Designs in $D\left(v, 3 ; k_{1}, k_{2}\right)$ 100
3.3.6 Examples of Optimal Resolvable Designs in $D\left(v, 3 ; k_{1}, k_{2}\right)$ 101
3.4 Resolvable Designs With Four Replicates 103
3.4.1 Introduction 103
3.4.2 (E,S)-Optimal Designs in $D\left(v, 4 ; k_{1}, k_{2}\right)$ 112
3.4.3 Schur-Optimality in $D\left(v, 4 ; k_{1}, k_{2}\right)$ 115
3.4.4 A-optimality in $D\left(v, 4 ; k_{1}, k_{2}\right)$ 120
3.4.5 Special Cases: $\left(k_{1}-k_{2}\right) \leq 2$ 128
3.4.6 Construction of Optimal Designs in $D\left(v, 4 ; k_{1}, k_{2}\right)$ 129
3.4.7 Examples of Resolvable Designs in $D\left(v, 4 ; k_{1}, k_{2}\right)$ 132
3.5 Resolvable Designs With Five Replicates 135
3.5.1 Introduction 135
3.5.2 (E,S)-Optimal Designs in $D\left(v, 5 ; k_{1}, k_{2}\right)$ 144
3.5.3 Special Cases: $\left(k_{1}-k_{2}\right) \leq 2$ 147
3.5.4 Construction of Optimal Designs in $D\left(v, 5 ; k_{1}, k_{2}\right)$ 150
3.5.5 Examples of Optimal Resolvable Designs in $D\left(v, 5 ; k_{1}, k_{2}\right)$ 162
3.6 Robustness of Optimal Designs 164
References 170
Appendices 173
Page
A Discrepancy Matrices 174
B Discrepancy Matrices Ranked by Maximum Eigenvalue 184
Vita 186

LIST OF TABLES

Table Page
1.1 Zhang's (1994) Most Efficient $D(15,21,5)$ Design 10
1.2 U-BIBD $(15,21,5 ; 4)$ Theoretical Block Sizes 19
1.3 U-BIBD $(15,21,5 ; 4)$ Theoretical Theta Pattern 20
1.4 U-BIBD $(15,21,5 ; 4)$ Theoretical Block Sizes - Reduced list 21
1.5 A U-BIBD ($15,21,5 ; 10$) Design 22
1.6 One-common Starter 23
1.7 Assignment Candidates - One-common Starter 24
1.8 Section One Arrangements - One-common Design 25
1.9 Two-common Starter 30
1.10 Assignment Candidates - Two-common Starter 31
1.11 An A- and D-optimal Design In $D(15,21,5)$ 35
1.12 A Design In $D(15,21,5)$ Having Discrepancy Matrix D10 36
1.13 A-, D-, and E-efficiencies Relative To An A- and D-optimal Design 36
1.14 A Discrepancy Matrix With Maximum Eigenvalue 1.6920 52
1.15 A Discrepancy Matrix With Maximum Eigenvalue 1.7321 52
1.16 An E-optimal Design In $D(15,21,5)$ 53
1.17 A-, D-, and E-efficiencies Relative To An E-optimal Design 53
2.18 A Resolvable Design In $D(9,4 ; 4,5)$ 55
2.19 A Schur-optimal $E C D(4)$ in $D(9,4 ; 6,3)$ 71
3.20 Schur-optimal Designs In $D\left(v, 2 ; k_{1}, k_{2}\right)$ 89
3.21 E - and Schur-comparisons Of $E C D \sin D\left(v, 3 ; k_{1}, k_{2}\right)$ 93
3.22 Block Concurrence Discrepancies For NECDs In $D\left(v, 3 ; k_{1}, k_{2}\right)$ 94
3.23 Concurrence Discrepancy Matrices for NECDs In $D\left(v, 3 ; k_{1}, k_{2}\right)$ 94
$3.24(\mathrm{E}, \mathrm{S})$ - and Schur-optimal Designs In $D\left(v, 3 ; k_{1}, k_{2}\right)$ 97
Table Page
3.25 A-, Type-1, and Schur-optimal Designs in $D\left(v, 3 ; k_{1}, k_{2}\right)$ 98
3.26 Parameters for A-optimal Designs In $D\left(v, 3, k_{1}, k_{2}\right)$ When $\frac{v}{2}<\gamma<\frac{3 v}{5}$ 100
3.27 E- and Schur-comparisons Of $E C D s$ In $D\left(v, 4 ; k_{1}, k_{2}\right)$ 104
3.28 Block Concurrence Discrepancies For NECDs In $D\left(v, 4 ; k_{1}, k_{2}\right)$ 105
3.29 Concurrence Discrepancy Matrices For $N E C D \sin D\left(v, 4 ; k_{1}, k_{2}\right)$ 106
3.30 Corollary 3.4.1 Results In $D\left(v, 4 ; k_{1}, k_{2}\right)$ 107
3.31 Majorization Intervals For $N E C D s \operatorname{In} D\left(v, 4 ; k_{1}, k_{2}\right)$ 108
3.32 (E,S)- and Schur-optimal Designs In $D\left(v, 4 ; k_{1}, k_{2}\right)$ 115
3.33 Remaining Optimality Candidates in $D\left(v, 4 ; k_{1}, k_{2}\right)$ 120
3.34 A-, Type-1, and Schur-optimal Designs In $D\left(v, 4 ; k_{1}, k_{2}\right)$ 126
3.35 A-optimal Design Counts In $D\left(v, 4 ; k_{1}, k_{2}\right)$ When $\frac{v}{2}<\gamma \leq \frac{3 v}{5}$ 127
3.36 E- and Schur-comparisons Of $E C D \sin D\left(v, 5 ; k_{1}, k_{2}\right)$ 136
3.37 Block Concurrence Discrepancies For NECD In $D\left(v, 5 ; k_{1}, k_{2}\right)$ 137
3.38 Concurrence Discrepancy Matrices For NECDs In $D\left(v, 5 ; k_{1}, k_{2}\right)$ 138
3.39 Corollary 3.5.1 Results In $D\left(v, 5 ; k_{1}, k_{2}\right)$ 141
3.40 (E, S)- and Schur-optimal Designs $\operatorname{In} D\left(v, 5 ; k_{1}, k_{2}\right)$ 148

LIST OF FIGURES

Figure Page
1.1 Proper Block Design Setting: b Blocks and k Plots Per Block 1
2.2 Resolvable Design With $s=2$, Arbitrary r, and $k_{1} \geq k_{2}$ 57
2.3 Replication n and n^{\prime} Block Concurrences 61

CHAPTER I

NEARLY AND VIRTUALLY BALANCED INCOMPLETE BLOCK DESIGNS

1.1 Introduction

A proper block design is the assignment of v treatments to $n=b k$ experimental units arranged in b blocks of identical size k, see figure 1.1. For these specified setting

1

1
2
3
\vdots
\vdots
k

2

1
2
3
\vdots
k

3

1
2
3
\vdots
k

4

1
2
3
\vdots
k

b

1
2
3
\vdots
\vdots
k

Figure 1.1: Proper Block Design Setting: b Blocks and k Plots Per Block parameters (v, b, k), there is a potentially large, but always finite, set of feasible designs from which an experimenter much choose. Denoting this class of all possible designs by $D(v, b, k)$, the task at hand is to choose a design $d \in D(v, b, k)$ that is best,

[^0]that is, that in some sense (to be made rigorous below) maximizes the experimental information that will result. When $k<v,(v, b, k)$ is referred to as an incomplete block design setting. For such settings, the balanced incomplete block designs (BIBDs) are known to be best with respect to all of the standard symmetric optimality criteria whenever they exist. Let $n_{\text {dij }}$ be the number of units in block j assigned treatment i by design d. Then a BIBD is any design d for which
(i) $n_{d i j}=0$ or 1 for all i, j,
(ii) $\sum_{j} n_{d i j}=r$ for all i,
(iii) $\sum_{j} n_{\text {dij }} n_{d i^{\prime} j}=\lambda$ for all $i \neq i^{\prime}$.

Thus a BIBD is (i) binary, (ii) equireplicate, and (iii) pairwise balanced. The common replication for a BIBD is r, and the common pairwise concurrence is λ. These two integer-valued auxiliary parameters satisfy $r=\frac{b k}{v}$ and $\lambda=\frac{b k(k-1)}{v(v-1)}$, thereby identifying two necessary conditions for the existence of a BIBD:

$$
\begin{equation*}
v \mid b k \quad \text { and } \quad v(v-1) \mid b k(k-1) . \tag{1.1}
\end{equation*}
$$

When the necessary conditions (1.1) are satisfied, $D(v, b, k)$ is called a $B I B D$ setting. That a BIBD need not exist in a BIBD setting (that is, the necessary conditions do not guarantee existence) has been long known; such a setting is called an irregular BIBD setting. Nandi (1945) proved that $D(15,21,5)$ is an irregular BIBD setting, and Hanani (1961) proved that (1.1) are sufficient for the existence of a BIBD for $k=3$ and 4 , establishing that the smallest block size for which a BIBD setting is irregular is $k=5$. A comprehensive list of BIBD settings for $r \leq 41$ along with whether a BIBD exists, does not exist, or is not known, is given in Mathon and Rosa (1996). From this list we see that the minimum value of v for which an irregular BIBD setting exists is $v=15$, and the unique setting is $D(15,21,5)$. The setting $D(22,33,12)$ has the minimum value of v for which the necessary conditions (1.1) are satisfied and for which it is not known whether a BIBD exists.

Again, if a BIBD exists, then it is optimal in a wide variety of senses. But what if a BIBD does not exist? That is, what is the best design in an irregular BIBD setting? W.G. Zang in his PhD. Thesis (1994) and Hedayat, Stufken, and Zhang (1995a, 1995b) employed a combinatorial approach to this problem, preserving the assignment properties (i) and (ii) while seeking a natural combinatorial approximation to the full balance (iii) of BIBDs. They show that the resulting designs are typically highly efficient under the commonly used optimality criteria.

Central to their approach are the concepts of unfinished balanced incomplete block designs and virtually balanced incomplete block designs (U-BIBDs and V-BIBDs, respectively). In any BIBD setting, a U-BIBD is an assignment of the first $v-w$ of the v total treatments so that BIBD properties (i)-(iii) hold for $i, i^{\prime} \leq v-w$; the parameter w, called the deficiency, is the number of treatments yet to be assigned. Completing an U-BIBD by assigning the remaining w treatments to the blocks so that (i) and (ii) hold, and further requiring them to appear simultaneously in a block with any other treatment either $\lambda-1, \lambda$, or $\lambda+1$ times, results in a V-BIBD. For a given V-BIBD d define its discrepancy δ_{d} as the number of treatment pairs $i<i^{\prime}$ occurring together in $\lambda-1$ blocks. Then the approach of Zang (1994) and Hedayat, Stufken, and Zhang (1995a,1995b) is a two-stage search procedure:

- first find a U-BIBD with minimum w, then
- among all completions of the unfinished design(s) so determined find the d with minimal discrepancy δ_{d}.

Essentially this approach seeks a design containing the largest possible "sub-BIBD" (the unfinished design with minimal deficiency), then controls the departure from the full balance (iii) of a BIBD by minimizing the discrepancy induced by the w deficient treatments. Although constructing V-BIBDs in this way is effective in finding highly efficient designs in various irregular BIBD settings (Hedayat, Stufken, and Zhang,

1995a,1995b), establishing exact optimality of designs in irregular BIBD settings remains elusive.

Morgan and Srivastav (2000) address this issue by determining sufficient conditions for a member of a certain design class to be optimal with respect to a type-1 optimality criterion in irregular BIBD settings. Though they did not search for any designs, they do note that for $D(22,33,8)$ the design found by Hedayat, Stufken, and Zhang (1995a, 1995b) with deficiency 2 and discrepancy 4 implies that their optimality conditions are met for the A- and D-criteria (BIBD existence is still not settled for this setting). The interesting contrast is that the combinatorial implications of Morgan and Srivastav's (2000) optimality work differ from the approach described above in that discrepancy plays a key role while treatment deficiency is not of explicit concern.

In this document the optimality results for irregular BIBD settings given by Morgan and Srivastav (2000) are extended. E-optimality is investigated, and it is found that an E-optimal design need not have minimum discrepancy. For the irregular BIBD setting $(15,21,5)$, an enumerative search is described through which the A-, D-, and E-optimal designs are found. The optimal designs do not possess minimal deficiency, though the U-BIBD concept is very helpful in sorting through the possibilities in arriving at optimal designs.

1.2 Preliminaries

Consider a proper block design setting $D(v, b, k)$. The $v \times b$ incidence matrix N_{d} for a design $d \in D(v, b, k)$ has elements $n_{d i j}$ that are nonnegative integers representing the number of times treatment i appears in block j. The concurrence matrix is the $v \times v$ matrix $N_{d} N_{d}^{T}$ whose off-diagonal elements $\sum_{j=1}^{b} n_{d i j} n_{d i} j=\lambda_{d i i^{\prime}}$, called concurrence parameters, are the number of times treatments i and i^{\prime} simultaneously appear in the same block. Under the usual additive linear model, the least squares
estimates of the treatment effects τ are found by solving the normal equations $C \tau=$ Q where $Q_{v \times 1}$ is a linear combination of the experimental measurements and $C_{d}=$ $\operatorname{diag}\left(r_{d 1}, r_{d 2}, \ldots, r_{d v}\right)-\frac{1}{k} N_{d} N_{d}^{T}$ is the $v \times v$ information matrix, also called the C matrix for design d. Here $\operatorname{diag}\left(r_{d 1}, r_{d 2}, \ldots, r_{d v}\right)$ is the $v \times v$ diagonal matrix containing the treatment replications. The information matrix C_{d} is positive semi-definite with zero sum rows, and the Moore-Penrose inverse C_{d}^{+}is an effective variance-covariance matrix for the treatment effect estimates. All contrasts of treatment effects are estimable using design d if and only if the rank of C_{d} is $v-1$, in which case d is said to be connected. Since it is desirable for all treatment contrasts to be estimable, $D(v, b, k)$ is henceforth restricted to be the class of all connected block designs. As earlier mentioned, design d is binary if $n_{\text {dij }}=0$ or 1 for all i and j, which is the condition for maximization of the trace of C_{d} over $d \in D(v, b, k)$. For a block design setting $D(v, b, k)$, define $M(v, b, k)$ as the binary subclass of $D(v, b, k)$ and $M_{0}(v, b, k)$ as the equireplicate subclass of $M(v, b, k)$.

Because of the relationship of the information matrix to estimate variances, design optimality conditions are usually defined in terms of non-increasing, real-valued functions f of the positive eigenvalues of $C_{d}: 0<z_{d 1} \leq z_{d 2} \leq \cdots \leq z_{d, v-1}$. A design $d \in D(v, b, k)$ is said to be ϕ_{f}-optimal provided $\phi_{f}\left(C_{d}\right)=\sum_{i=1}^{\nu-1} f\left(z_{d i}\right)$ is minimal over all designs in D. The function f is frequently chosen as a member of the family of type-1 criteria defined by Cheng (1978).

Definition 1.2.1 $\phi_{f}\left(C_{d}\right)=\sum_{i=1}^{v-1} f\left(z_{d i}\right)$ is a type-1 criterion if f is a convex, realvalued function for which
(i) f is continuously differentiable on ($0, \max _{d \in D(v, b, k)} \operatorname{tr} C_{d}$), and $f^{\prime}<0, f^{\prime \prime}>0$, $f^{\prime \prime \prime}<0$ on $\left(0, \max _{d \in D(v, b, k)} \operatorname{tr} C_{d}\right)$, and
(ii) f is continuous at 0 or $\lim _{x \rightarrow 0} f(x)=f(0)=\infty$.

Three commonly used type-1 criteria are the A-, D- and ϕ_{p}-criteria which are defined
by taking $f(x)=x^{-1}, f(x)=-\log x$, and $f(x)=x^{-p}, 0<p<\infty$, respectively. Since C_{d}^{+}is the variance-covariance matrix for the treatment effect estimates, then the average variance of all $v(v-1)$ elementary treatment contrast estimates is proportional to

$$
\begin{equation*}
\sum_{i=1}^{v-1} z_{d i}^{-1} \tag{1.2}
\end{equation*}
$$

If a design $d^{*} \in D(v, b, k)$ minimizes the average variance of the treatment contrast estimates, hence minimizes (1.2), over all competing $d \in D$, then d^{*} is A-optimal. Equivalently, the A-optimal design will minimize $\operatorname{tr} C_{d}^{+}$. In linear models with fully estimable parameter vector $\boldsymbol{\theta}$ in which $\operatorname{var}(\hat{\boldsymbol{\theta}})$ is nonsingular, the volume of the confidence ellipsoid for $\boldsymbol{\theta}$ is proportional to $|\operatorname{var}(\hat{\boldsymbol{\theta}})|=$ product of the eigenvalues of $\operatorname{var}(\overline{\boldsymbol{\theta}})$. The D -criterion in the block design setting is an analogous extension: since $\operatorname{var}\left(\widehat{\ell^{T} \theta}\right)=\sigma^{2} \ell^{T} C_{d}^{+} \ell$ for every estimable $\ell^{T} \tau_{\text {, we take as the relevant volume the }}$ product of the eigenvalues of C_{d}^{+}. Then the D -optimal design $d^{*} \in D$ minimizes

$$
\begin{equation*}
\prod_{i=1}^{v-1} z_{d i}^{-1} \tag{1.3}
\end{equation*}
$$

or, equivalently, minimizes

$$
\begin{equation*}
-\sum_{i=1}^{v-1} \log z_{d i} . \tag{1.4}
\end{equation*}
$$

Using the ϕ_{p}-criterion, which is a general class of optimality criteria given by

$$
\begin{equation*}
\phi_{p}=\left(\sum_{i=1}^{v-1} z_{d i}^{-p}\right)^{(1 / p)} \tag{1.5}
\end{equation*}
$$

a fourth widely used criterion, called the E-criterion, is defined by

$$
\begin{equation*}
\phi_{\infty}\left(C_{d}\right)=\lim _{p \rightarrow \infty} \phi_{p}\left(C_{d}\right)=\max _{1 \leq i \leq v-1} z_{d i}^{-1} . \tag{1.6}
\end{equation*}
$$

A design is E-optimal if it minimizes the maximum variance of normalized treatment contrast estimates over all competing designs in D. Furthermore, when $p=1$, minimizing (1.5) is equivalent to minimizing (1.2), that is, ϕ_{1}-optimal designs are A-optimal. Various optimality criteria and their statistical significance are discussed
in Kiefer (1958, 1974), Cheng (1978), Shah (1960), and Shah and Sinha (1989). In the subsequent discussion we will concentrate on designs that minimize the type-1 criteria:

$$
\begin{array}{ll}
\text { A-criterion: } & A_{d}=\sum_{i} z_{d i}^{-1} \\
\text { D-criterion: } & D_{d}=-\sum_{i} \log \left(z_{d i}\right) \tag{1.7}\\
\text { E-criterion: } & E_{d}=z_{d 1}^{-1} .
\end{array}
$$

Optimality criteria can also be used to compare two designs, d and \bar{d} say, using the relative efficiency of design d compared to design \bar{d}.

Definition 1.2.2 The relative efficiency of a design $d \in D$ compared to another design $\bar{d} \in D$ with respect to the $A-, D-$, and E-optimality criteria are:

$$
\text { A-efficiency }=\frac{A_{d}}{A_{d}}, \quad \text { D-efficiency }=\frac{D_{d}}{D_{d}}, \quad \text { and } \quad \text { E-efficiency }=\frac{E_{d}}{E_{d}} .
$$

When $D(v, b, k)$ is a BIBD setting, that is, when the necessary conditions (1.1) are satisfied, the average treatment concurrence λ is $\lambda=\frac{r(k-1)}{v-1}$ and a BIBD d achieves equality of treatment concurrences, that is, $\lambda_{\text {dii }}=\lambda$ for all $i \neq i^{\prime}$. If a BIBD exists, it is the universally optimal design in $D(v, b, k)$ (Kiefer, 1975), which includes optimality with respect to all type-1 criteria. Of concern here are the irregular BIBD settings, for which the conditions (1.1) hold but the combinatorics do not allow $\lambda_{\text {dii }}{ }^{\prime}=$ λ for all $i \neq i^{\prime}$. What is the optimal or most efficient design in an irregular BIBD setting? After reviewing and extending some previously known results concerning irregular BIBD settings, we will observe some of their surprising consequences in $D(15,21,5)$.

1.3 Definitions and Results

We begin by formally defining some of the concepts and terms introduced above. Afterward we will develop optimality theorems and proofs. In the next section we will apply the results to the irregular BIBD setting $(v, b, k)=(15,21,5)$.

Definition 1.3.1 An unfinished balanced incomplete block design with deficiency w, denoted by $\operatorname{U-BIBD}(v, b, k ; w)$, is a block design containing $v-w$ of v total treatments in b blocks of size k such that
(i) each $n_{d i j}=0$ or $1, i=1,2, \ldots, v-w$
(ii) each $r_{d i}=r, i=1,2, \ldots, v-w$
(iii) $\lambda_{d i i^{\prime}}=\lambda, i \neq i^{\prime} \in\{1,2, \ldots, v-w\}$.

Definition 1.3.2 A virtually balanced incomplete block design, denoted $\operatorname{V}-\operatorname{BIBD}(v, b, k ; w)$, for v treatments in b blocks of size k such that
(i) each $n_{d i j}=0$ or 1 ,
(ii) each $r_{d i}=r$,
(ii) $\lambda_{\text {dii }}=\lambda, i \neq i^{\prime} \in\{1,2, \ldots, v-w\}$, and
(iv) $\lambda_{d i i^{\prime}} \in\{\lambda-1, \lambda, \lambda+1\}, i>v-w$ or $i^{\prime}>v-w, i \neq i^{\prime}$.

Thus a V-BIBD $(v, b, k ; w)$ contains a $\operatorname{U-BIBD}(v, b, k ; w)$, and the remaining w treatments have been assigned in such a way that all of their concurrences are within one of the ideal common concurrence λ.

Definition 1.3.3 The concurrence range of a block design $d \in D(v, b, k)$ is a measure of its maximum pairwise unbalance and is given by

$$
l_{d}=\max _{i \neq i^{\prime}, j \neq j^{\prime}}\left|\lambda_{d i i^{\prime}}-\lambda_{d j j^{\prime}}\right|
$$

Definition 1.3.4 A nearly balanced incomplete block design $d \in D(v, b, k)$ with concurrence range l, or $\operatorname{NBBD}(l)$, is an incomplete block design satisfying the following conditions:
(i) each $n_{d i j}=0$ or 1 ,
(ii) each $r_{d i}=r$ or $r+1$,
(iii) $l_{d}=l$,
(iv) d minimizes $\operatorname{tr} C_{d}^{2}$ over all designs satisfying (i) - (iii).

Clearly in a BIBD setting, when $r_{d i}=r$ for all i and $l=0$, the definition of an $\operatorname{NBBD}(l)$ reduces to that of a BIBD. If for a design $d \in M(v, b, k)$, combinatorics force $\lambda_{\text {dii }} \leq \lambda-1$ for at least one treatment pair $i \neq i^{\prime}$, then for some other treatment pair $s \neq s^{\prime}, \lambda_{d s s^{\prime}} \geq \lambda+1$ and the nonexistence of a $\operatorname{NBBD}(l)$ with $l \leq 1$ follows. Such settings were generally referred to as category one settings by Morgan and Srivastav (2000) and include irregular BIBD settings. In an irregular BIBD setting a NBBD(2) is the V-BIBD having minimum $\operatorname{tr} C_{d}^{2}$. Thus in an irregular BIBD setting, NBBD(2)s are a subclass of V-BIBDs.

Definition 1.3.5 The pairwise concurrence discrepancy, for treatments i and i^{\prime}, $1 \leq i \neq i^{\prime} \leq v$, of a design $d \in D(v, b, k)$ is the quantity

$$
\delta_{d i i^{\prime}}=\lambda_{d i i^{\prime}}-\lambda .
$$

The concurrence discrepancy for d is

$$
\delta_{d}=\sum_{i<i^{\prime}} \max \left\{0,-\delta_{d i i^{\prime}}\right\}
$$

and is a measure of the combinatorial asymmetry of the design. The minimum discrepancy over the binary subclass $M(v, b, k)$ is denoted by

$$
\delta=\min _{d \in M} \delta_{d}
$$

If $d \in D(v, b, k)$ is a BIBD, then $\delta_{d}=0$ and consequently $\delta=0$. A BIBD setting is irregular if and only if $\delta \geq 2$. In the sequel, frequently the treatment concurrence discrepancy will be shortened to treatment discrepancy and the concurrence discrepancy to discrepancy. We now state a lemma relating the discrepancy of a design to the maximum treatment unbalance of the design.

Lemma 1.3.1 (Morgan and Srivastav, 2000) Let d be a binary, equireplicate design in a BIBD setting $D(v, b, k)$. Then $\delta_{d} \geq 2 \max _{i, i^{i}}\left|\delta_{d i i^{i}}\right|$.

Not much is known about optimality in irregular BIBD settings. Intuitively it is desirable to find a design with minimum discrepancy δ_{d}, i.e. the most balanced design, and evidence suggests the efficiency of a design improves as the design discrepancy decreases (Hedayat, Stufken, and Zhang; 1995a, 1995b), but determining the minimum discrepancy δ for a design setting can be combinatorially difficult. For the setting $D(15,21,5)$, Zhang (1994) and Hedayat, Stufken, and Zhang (1995a, 1995b) investigated A-, D-, and E-efficiency by constructing VBIBDs with minimum discrepancy δ_{d} for the smallest possible treatment deficiency w. They discovered that the smallest treatment deficiency for this settirg was $w=3$, and for $w=3$ the minimum discrepancy design reported was the $\delta_{d}=6$ shown in table 1.1. Although

Table 1.1: Zhang's (1994) Most Efficient $D(15,21,5)$ Design

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 |
| ---: |
| 2 | 2 | 3 | 4 | 5 | 7 | 8 | 3 | 4 | 5 | 6 | 8 | 4 | 5 | 6 | 7 | 5 | 7 | 8 | 6 | 6 |
| 3 | 6 | 9 | 6 | 9 | 10 | 11 | 11 | 7 | 10 | 11 | 9 | 6 | 7 | 8 | 12 | 8 | 9 | 10 | 7 | 9 |
| 4 | 7 | 10 | 12 | 13 | 12 | 15 | 12 | 9 | 13 | 13 | 10 | 10 | 8 | 9 | 14 | 11 | 11 | 13 | 10 | 12 |
| 5 | 8 | 11 | 13 | 15 | 14 | 14 | 13 | 15 | 14 | 14 | 12 | 15 | 13 | 14 | 15 | 12 | 14 | 15 | 11 | 15 |

this design was the most $\mathrm{A}-, \mathrm{D}-$, and E-efficient design they found in the class, having respective optimality values of $2.33781,-25.07125$, and 0.18149 , they did not claim that the minimum discrepancy for the class is $\delta=6$ nor did they claim their design to be the A-, D-, or E-optimal design in the class.

Morgan and Srivastav (2000) addressed the optimality problem by describing sufficient conditions for a NBBD(2) to be optimal in a category one design setting $D(v, b, k)$. Conditions for optimal designs in an irregular BIBD setting are consequences of their main result and are given explicitly as a corollary. First we will review and extend their main result, and later we will use the result to state and prove a slightly more general corollary for irregular BIBD settings.

For a general design setting $D(v, b, k)$, let $\bar{d} \in D$ be a NBBD (l) with discrepancy value δ_{d}. Optimality arguments can be constructed around \bar{d} as a function of the traces of its information matrix and its square, so define the quantities

$$
A=\operatorname{tr} C_{d} \quad \text { and } \quad B_{2}=\operatorname{tr} C_{d}^{2}+\frac{4}{k^{2}}
$$

where for a binary design d,

$$
\begin{equation*}
\operatorname{tr} C_{d}^{2}=\left(\frac{k-1}{k}\right)^{2} \sum_{i=1}^{v} r_{d i}^{2}+\frac{2}{k^{2}} \sum_{i<i^{\prime}} \lambda_{d i i^{\prime}}^{2} \tag{1.8}
\end{equation*}
$$

Let z_{1} and z_{1}^{*} be upper bounds for the minimum nonzero eigenvalues $z_{d 1}$ of designs in $M(v, b, k)$ and $D(v, b, k)$, respectively, which satisfy

$$
\left(A-z_{1}\right)^{2} \geq B_{2}-z_{1}^{2} \geq \frac{\left(A-z_{1}\right)^{2}}{(v-2)} \text { and }\left(A-z_{1}^{*}\right)^{2} \geq B_{2}-z_{1}^{* 2} \geq \frac{\left(A-z_{1}^{*}\right)^{2}}{(v-2)}
$$

Given z_{1} and for $P=\left[\left(B_{2}-z_{1}^{2}\right)-\frac{\left(A-z_{1}\right)^{2}}{(v-2)}\right]^{1 / 2}$, define z_{2} and z_{3} by
$z_{2}=\left[\left(A-z_{1}\right)-\sqrt{\frac{(v-2)}{(v-3)}} P_{2}\right] /(v-2)$ and $z_{3}=\left[\left(A-z_{1}\right)+\sqrt{(v-2)(v-3)} P_{2}\right] /(v-2)$.
Let $z_{4}=\left[A-(2 / k)-z_{1}^{*}\right] /(v-2)$ be the common nonzero eigenvalue of completely a symmetric information matrix with trace equal to $A-(2 / k)$. All of these quantities are integral to Morgan and Srivastav's (2000) main result, stated next, as well as the generalization for irregular BIBD settings to follow.

Theorem 1.3.2 (Morgan and Srivastav, 2000) Let $D(v, b, k)$ be a setting with $\delta>0$, let $\bar{d} \in D(v, b, k)$ be a NBBD(2) with information matrix C_{d} having nonzero
eigenvalues $z_{d 1} \leq z_{d 2} \leq \cdots \leq z_{d, v-1}$ and having $\delta_{\bar{d}}=\delta>0$, and let f be a convex, real-valued function satisfying the conditions of definition 1.2.1. Let $z_{1}=\frac{r(k-1)+\lambda-1}{k}$ and $z_{1}^{*}=\frac{r(k-1) v}{(u-1) k}$. Then if $z_{1} \leq z_{2}$ and

$$
\begin{equation*}
\sum_{i=1}^{v-1} f\left(z_{\bar{d}}\right)<f\left(z_{1}\right)+(v-3) f\left(z_{2}\right)+f\left(z_{3}\right) \tag{1.9}
\end{equation*}
$$

a ϕ_{f}-optimal design in $M(v, b, k)$ must be a $N B B D(2)$. If, moreover, $z_{1}^{*} \leq z_{4}$ and

$$
\begin{equation*}
\sum_{i=1}^{v-1} f\left(z_{\overline{d i}}\right)<f\left(z_{1}^{*}\right)+(v-2) f\left(z_{4}\right) \tag{1.10}
\end{equation*}
$$

then a ϕ_{f}-optimal design in $D(v, b, k)$ must be an NBBD(2).

Theorem 1.3.3 (Morgan and Srivastav, 2000) Let $D(v, b, k)$ be an irregular $B I B D$ setting, and let $\bar{d} \in D$ be a $N B B D(2)$ with $\delta_{d} \leq 4$. Taking $z_{1}=z_{i}^{*}=$ $\frac{\lambda v-1}{k}$, if (1.9) and (1.10) of Theorem 1.3.2 hold, then a ϕ_{f}-optimal design must be a $N B B D(2)$.

For irregular BIBD settings with $r \leq 41$, Morgan and Srivastav (2000) prove as a corollary to Theorem 1.3 .3 that a $\operatorname{NBBD}(2)$ is A- and D-optimal, provided that such a design exists and that $\delta \leq 4$. We will extend their result to $\delta \leq 5$, but first, we state their corollary and prove a slightly more general version of Theorem 1.3.3.

Corollary 1.3.4 Let $D(v, b, k)$ be an irregular BIBD setting in which $r \leq 41$. If there exists a a design \bar{d} satisfying the first three conditions of definition 1.3 .4 with $l_{d}=2$ and $\delta_{\bar{d}} \leq 4$, then a A-optimal design must be a $N B B D(2)$, and a D-optimal design must be a NBBD(2).

The next lemma will be necessary for the proof of our generalization of Theorem 1.3.3.

Lemma 1.3.5 Let $D(v, b, k)$ be an itregular BIBD setting, and suppose $d \in D$ has discrepancy $\delta_{d} \geq 2$ and concurrence range $l_{d} \geq 2$. If $\gamma_{d \alpha}^{+}$and $\gamma_{d \alpha}^{-}$are the number of
times $\lambda+\alpha$ and $\lambda-\alpha, \alpha=1,2, \ldots, l_{d}-1$, appear below the diagonal of the $v \times v$ concurrence matrix $N_{d} N_{d}^{T}$, respectively, then

$$
\begin{equation*}
\sum_{i<i^{\prime}} \lambda_{d i^{\prime}}^{2}=\frac{v(v-1)}{2} \lambda^{2}+2 \delta_{d}+\sum_{\alpha=2}^{l_{d}-1} \alpha(\alpha-1) \gamma_{d \alpha}^{+}+\sum_{\alpha=2}^{l_{d}-1} \alpha(\alpha-1) \gamma_{d \alpha}^{-} \tag{1.11}
\end{equation*}
$$

Proof Suppose $N_{d} N_{d}^{T}$ is the $v \times v$ concurrence matrix for a design $d \in D(v, b, k)$ having discrepancy δ_{d} and concurrence range l_{d}. If $N_{d} N_{d}^{\tau}$ has $\gamma_{d \alpha}^{+}$occurrences of $\lambda+\alpha$ and $\gamma_{d \alpha}^{-}$occurrences of $\lambda-\alpha, \gamma_{d \alpha}^{+} \geq 0, \gamma_{d \alpha}^{-} \geq 0$, and $\alpha=2,3, \ldots, l_{d}-1$, below the diagonal, then there are $\delta_{d}-\sum_{\alpha=2}^{l_{d}-1} \alpha \gamma_{d \alpha}^{+}$occurrences of $\lambda+1, \delta_{d}-\sum_{\alpha=2}^{l_{d}-1} \alpha \gamma_{d \alpha}^{-}$ occurrences of $\lambda-1$, and $\left[\frac{v(v-1)}{2}-2 \delta_{d}+\sum_{\alpha=2}^{l_{d}-1}(\alpha-1) \gamma_{d \alpha}^{+}+\sum_{\alpha=2}^{l_{d}=1}(\alpha-1) \gamma_{d \alpha}^{-}\right]$occurrences of λ below the diagonal. Therefore

$$
\begin{aligned}
\sum_{i<i^{\prime}} \lambda_{d i^{\prime}}= & \sum_{\alpha=2}^{l_{d}-1} \gamma_{d \alpha}^{+}(\lambda+\alpha)^{2}+\left(\delta_{d}-\sum_{\alpha=2}^{l_{d}-1} \alpha \gamma_{d \alpha}^{+}\right)(\lambda+1)^{2}+ \\
& \sum_{\alpha=2}^{l_{d}-1} \gamma_{d \alpha}^{-}(\lambda-\alpha)^{2}+\left(\delta_{d}-\sum_{\alpha=2}^{l_{d}-1} \alpha \gamma_{d \alpha}^{-}\right)(\lambda-1)^{2}+ \\
& {\left[\frac{v(v-1)}{2}-2 \delta_{d}+\sum_{\alpha=2}^{l_{d}-1}(\alpha-1) \gamma_{d \alpha}^{+}+\sum_{\alpha=2}^{l_{d}-1}(\alpha-1) \gamma_{d \alpha}^{-}\right] \lambda^{2} . }
\end{aligned}
$$

The result follows by expanding the above expression and collecting on λ.
Corollary 1.3.6 Let $D(v, b, k)$ be an irregular BIBD setting. If $\bar{d} \in D$ has $\left(\delta_{d}, l_{d}\right)=$ $(5,2)$, or $\left(\delta_{\bar{d}}, l_{\bar{d}}\right)=(4,3)$ with $\delta_{\bar{d} 2}^{-}+\delta_{\bar{d} 2}^{+}=1$, then

$$
\sum_{i<i^{\prime}} \lambda_{d i i^{\prime}}^{2}=\frac{v(v-1)}{2} \lambda^{2}+10 .
$$

Furthermore, if no design having $l_{d}=2$ has $\delta_{d} \leq 4$, then any $d \in D$ not satisfying the conditions of \bar{d} has

$$
\sum_{i<i^{\prime}} \lambda_{d i^{\prime}}^{2} \geq \frac{v(v-1)}{2} \lambda^{2}+12 .
$$

Theorem 1.3.7 Let $D(v, b, k)$ be an irregular BIBD setting for which a NBBD(2) with $\delta_{d} \leq 4$ does not exist. Let $\bar{d} \in D$ be a $N B B D(2)$ with $\delta_{\bar{d}}=5$, or a $N B B D(3)$ with $\delta_{\bar{d}}=4$ and $\gamma_{\bar{d} 2}^{\overline{2}}+\gamma_{\bar{d} 2}^{+}=1$. For $z_{1}=z_{i}^{*}=\frac{\lambda v-1}{k}$, if (1.9) and (1.10) of Theorem 1.3.2 hold, then a ϕ_{f}-optimal design must be a NBBD(2) or a NBBD(3).

Proof The bounds $z_{1}=z_{1}^{*}$ for $z_{d 1}$ follow from lemma 2.2 of Morgan and Srivastav (2000) for unequally replicated d and from propositions 3.1 and 3.2 of Jacroux (1980b) for equireplicated d. The relations $z_{1} \leq z_{2}$ and $z_{1}^{*} \leq z_{4}$ are easy to check. From the proof of Theorem 1.3.3 (Morgan and Srivastav, 2000, page 10), the ϕ_{f}-optimal design must be binary if condition (1.10) is satisfied for z_{1}^{*} and z_{4}.

Suppose binary $d \in M(v, b, k)$ is not a $\operatorname{NBBD}(2)$ or a $\operatorname{NBBD}(3)$ as described in the theorem. Then it must be true that either (i) d is not equireplicate; (ii) d is in M_{0}, has $l_{d} \geq l_{d}$, and $\delta_{d}>\delta_{d}$; (iii) d in M_{0}, has $l_{d}>l_{d}$, and $\delta_{d} \geq \delta_{d}$; or (iv) d is in M_{0}, has $\left(\delta_{d}, l_{d}\right)=(4,3)$, and $\gamma_{d 2}^{-}+\gamma_{d 2}^{+} \geq 2$. It will be established that for each of these cases, $\operatorname{tr} C_{d}^{2} \geq B_{2}$.

Case (i). If d is not equireplicate, then $\delta_{d} \geq 4$ (Morgan and Srivastav, 2000, page 18) which implies $l_{d} \geq 2$, and, from lemma 1.3.5, $\sum \sum_{i<i^{\prime}} \lambda_{d i i^{\prime}}^{2} \geq \frac{v(v-1)}{2} \lambda+8$. Thus, by corollary 1.3.6,

$$
\sum_{i<i^{\prime}} \lambda_{d i i^{\prime}}^{2}-\sum_{i<i^{\prime}} \sum_{d i i^{\prime}}^{2} \geq-2 .
$$

Furthermore, from the proof of Theorem 1.3.2 (Morgan and Srivastav, 2000, page 10),

$$
\sum_{i=1}^{u} r_{d i}^{2}-\sum_{i=1}^{u} r_{d i}^{2} \geq 2
$$

Therefore, from (1.8),

$$
\operatorname{tr} C_{d}^{2}-\operatorname{tr} C_{d}^{2} \geq 2\left(\frac{k-1}{k}\right)^{2}+\frac{2}{k^{2}}(-2)=\frac{2\left(k^{2}-2 k-1\right)}{k^{2}} \geq \frac{4}{k^{2}}
$$

for $k \geq 3$.
Case (ii). Suppose d is in M_{0}, has discrepancy $\delta_{d}>\delta_{d,}$ and concurrence range $l_{d} \geq l_{d}$. Then, from corollary 1.3 .6 ,

$$
\sum_{i<i^{\prime}} \lambda_{d i i^{\prime}}^{2}-\sum \sum_{i<i^{\prime}} \lambda_{d i i^{\prime}}^{2} \geq 2
$$

and, from (1.8),

$$
\operatorname{tr} C_{d}^{2}-\operatorname{tr} C_{d}^{2} \geq \frac{4}{k^{2}}
$$

Case (iii). Suppose d is in M_{0}, has discrepancy $\delta_{d} \geq \delta_{d}$, and concurrence range $l_{d}>l_{d}$. Then, from corollary 1.3.6,

$$
\sum_{i<i^{\prime}} \lambda_{d i i^{\prime}}^{2}-\sum \sum_{i<i^{\prime}} \lambda_{d i i^{\prime}}^{2} \geq 2
$$

and, from (1.8),

$$
\operatorname{tr} C_{d}^{2}-\operatorname{tr} C_{d}^{2} \geq \frac{4}{k^{2}}
$$

Case (iv). Suppose d is in M_{0}, has $\left(\delta_{d,} l_{d}\right)=(4,3)$, and $\delta_{d 2}^{-}+\delta_{d 2}^{+}=2$. Then, again from corollary 1.3.6,

$$
\sum_{i<i^{\prime}} \lambda_{d i i^{\prime}}^{2}-\sum_{i<i^{\prime}} \lambda_{d i i^{\prime}}^{2}=2
$$

and

$$
\operatorname{tr} C_{d}^{2}-\operatorname{tr} C_{d}^{2}=\frac{4}{k^{2}}
$$

The result follows from Theorem 1.3.2.

The information matrix for a design $d \in M_{0}(v, b, k)$ can be written as

$$
\begin{equation*}
C_{d}=\frac{\lambda v}{k}\left(I-\frac{1}{v} J\right)-\frac{1}{k} \Delta_{d} \tag{1.12}
\end{equation*}
$$

where Δ_{d} is the $v \times v$, possibly null, discrepancy matrix for the design and has elements

$$
\left(\Delta_{d}\right)_{i i^{\prime}}= \begin{cases}\delta_{d i i^{\prime}}, & \text { for } i \neq i^{\prime} \\ 0, & \text { for } i=i^{\prime}\end{cases}
$$

Equation (1.12) says that the information matrix for any design in M_{0} is completely described by the discrepancy matrix Δ_{d}, which depends on the discrepancy δ_{d} and concurrence range l_{d} of the design. Moreover, with an appropriate labeling, the treatments $i \neq i^{\prime}$ having $\lambda_{\text {dii }} \leq \lambda-1$ can, for some $s \leq v$, be restricted to the first s members of the treatment set, and hence, the nonzero elements of Δ_{d} can be restricted to the first s rows and columns. Furthermore, $C_{d} 1=0$ implies that $\Delta_{d} 1=$ 0 ; consequently, any $s \times s$ integer-valued matrix having zeros on the diagonal and zero-sum rows and columns is a principal minor for discrepancy matrices of designs in
$M_{0}(v, b, k)$ for all $v \geq s$. Therefore, by enumerating a complete list of nonisomorphic discrepancy matrices for fixed values of δ_{d} and l_{d}, optimality competitors for large classes of designs are characterized, and in some cases, as will seen in corollaries 1.3.4 and 1.3.8 below, conditions for optimality in irregular BIBD settings with respect to various criteria can be derived. The 11 discrepancy matrices having $\delta_{d} \leq 4$ and $l_{d}=2$ are provided by Morgan and Srivastav (2000, page 19), and we have enumerated the 40 discrepancy matrices having $\left(\delta_{d}, l_{d}\right)=(5,2)$, or $\left(\delta_{d}, l_{d}\right)=(4,3)$ and $\gamma_{d 2}^{-}+\gamma_{d 2}^{+}=1$. The complete list of the principal minors of all 51 discrepancy matrices can be found in Appendix A.

Corollary 1.3.8 Let $D(v, b, k)$ be an irregular BIBD setting in which $r \leq 41$ and for which a desing with $l_{d}=2$ and $\delta_{d} \leq 4$ does not exist. If there exists a design \bar{d} satisfying the first three conditions of the NBBD(l) definition and having $\left(\delta_{\bar{d}}, l_{\bar{d}}\right)=$ $(5,2)$, or $\left(\delta_{d}, l_{d}\right)=(4,3)$ with $\gamma_{d_{2}}^{-}+\gamma_{d 2}^{+}=1$, then an A-optimal design d must be a $N B B D(2)$ or a $N B B D(3)$, and a D-optimal design d must be a $N B B D(2)$ or a $N B B D(3)$.

Proof The corollary amounts to saying that conditions (1.9) and (1.10) of Theorem 1.3.2 hold for all equireplicate, binary designs \bar{d} having $\left(\delta_{\bar{d}}, l_{\bar{d}}\right)=(5,2)$, or $\left(\delta_{\bar{d}}, l_{\bar{d}}\right)=$ $(4,3)$ with $\gamma_{d 2}^{-}+\gamma_{d 2}^{+}=1$, in all irregular BIBD settings with $r \leq 41$. The list of settings $D(v, b, k)$ satisfying the necessary conditions for the existence of a BIBD with $r \leq 41$ for which either a BIBD does not exist or for which existence is not known found in Mathon and Rosa (1996) has 497 cases when complements are included. Since the proof of Theorem 1.3.7 establishes that designs d not satisfying the conditions of \bar{d} will have $\operatorname{tr} C_{d}^{2} \geq B_{2} \geq \operatorname{tr} C_{d}^{2}+\frac{4}{k^{2}}$, following a procedure analogous to the one used by Morgan and Srivastav (2000, pages 18-20) in their proof of corollary 1.3.4, the result can be established for all designs in irregular BIBD settings with $r \leq 41$, by checking (1.9) and (1.10) for each of the 51 conceivable information matrices listed in Appendix A in each of the 497 potentially irregular BIBD design settings. A
computer program written to accomplish this task found that conditions (1.9) and (1.10) do in fact always hold. Therefore, the theorem is established for essentially all of the cases of practical interest.

With corollaries 1.3.4 and 1.3.8 in hand, we return to the irregular BIBD setting $D(15,21,5)$. The discrepancy matrices in Appendix A are listed in A- and Dvalue order from smallest or optimal to largest for this setting (the order is the same with respect to both criteria). This ranking is not the same for E-values, nor necessarily maintained for different parameter sets (v, b, k). We can, however, make a few useful observations from the list. First, as explained by Morgan and Srivastav's (2000) corollary 1.3.4, designs $d \in D$ having a discrepancy matrix with $\delta_{d} \leq 4$ and $l_{d}=2$ are A- and D-superior to designs having any other discrepancy matrix in the list; however, designs with $\left(\delta_{d}, l_{d}\right)=(5,2)$ may either be A- and Dsuperior or inferior to $\left(\delta_{d}, l_{d}\right)=(4,3)$ designs. For example, design D12 is A- and D-superior to design D13 while design D13 is A- and D-superior to design D18. Also observe that minimum deficiency does not imply minimum discrepancy, and A- and D-value rank and design deficiency are not related. These facts are evident in the $\left(\delta_{d}, l_{d}\right)=(4,2)$ group. According to corollaries 1.3.4 and 1.3.8, Zhang's (1994) design $d \in D(15,21,5)$ having $\left(\delta_{d}, l_{d}, w\right)=(6,2,3)$ given in table 1.1 is A- and D-inferior to a design having any of the 51 discrepancy matrices shown in the appendix, whenever they exist. Furthermore, since the first step of Zhang's search for efficient designs was to minimize deficiency, thereby restricting the search to designs with $w=3$, there are 35 discrepancy candidates in the list with $w>3$ that, if a design in $D(15,21,5)$ exists corresponding to one of these candidates, is A- and D-superior to Zhang's design shown in table 1.1. We will use these observations in section 1.4 to construct the A-optimal and D-optimal design in $D(15,21,5)$, and in section 1.5 we will address the issue of finding the E-optimal design.

1.4 Search for the A- and D-optimal design

Now the theory of section 1.3 will be turned to the problem of finding optimal designs in $D(15,21,5)$. If we can construct a design $d \in D$ having one of the discrepancy matrices listed in Appendix A, then corollaries 1.3.4 and 1.3.8 guarantee the A- and D-optimal design exists and is either d itself or a design having one of the discrepancy matrices appearing sooner in the list than the discrepancy matrix contained in d. Thus our initial universe is possible designs $d \in D(15,21,5)$ having $\delta_{d} \leq 5$ and $l_{d}=2$, or $\left(\delta_{d}, l_{d}\right)=(4,3)$ and $\gamma_{d 2}^{-}+\gamma_{d 2}^{+}=1$. Moreover, the treatment deficiency for this class satisfies $2 \leq w \leq 5$.

In order to make our initial attempt at constructing the A- and D-optimal design more manageable, we will search for $\delta_{d} \leq 4$, and consequently, impose the limit $2 \leq w \leq 4$. These restrictions imply that a successful search will result in a design d containing a $\operatorname{U-BIBD}(15,21,5 ; w)$ for $w=4$ (the existence of U -BIBDs with $w=4$ is guaranteed by the fact that Zhang's design (1994) in table 1.1 has $w=3$). Therefore, our search will first concentrate on constructing an exhaustive list of nonisomorphic U-BIBDs for the smallest $w \geq 4$ that can be managed, say w^{*}. The list will be exhaustive because all possible placements of the first $v-w^{*}$ treatments into the blocks will be accounted for, and each U-BIBD will be nonisomorphic in that it will be unique with respect to all possible treatment relabelings and block relabelings. Once we have an exhaustive and nonisomorphic list of U-BIBDs for $w=w^{*}$, if $w^{*}>4$, we will enumerate all possible extensions of each design in the list to UBIBDs with $w=4$. Finally, all possible completions of each $\operatorname{U}-\operatorname{BIBD}(15,21,5 ; 4)$ in the list, by addition of the w^{*} missing treatments, will be enumerated taking into account the discrepancy and concurrence range restrictions described above.

In order to get a handle on the search, there are two lemmas concerning admissible block sizes and treatment placements that will be very useful to the process. Before we state and prove the lemmas, we will review two sets of equations given by Zhang
(1994).

If n_{i} is the number of blocks of size $i, 0 \leq i \leq k$, then the block sizes of a $\mathrm{U}-\mathrm{BIBD}(\mathrm{v}, \mathrm{b}, \mathrm{k} ; \mathrm{w})$ must satisfy the following block size equations:

$$
\begin{align*}
\sum_{i=0}^{k} n_{i} & =b \\
\sum_{i=1}^{k} i n_{i} & =r(v-w) \tag{1.13}\\
\sum_{i=2}^{k}\binom{i}{2} n_{i} & =\lambda\binom{v-w}{2}
\end{align*}
$$

If $\theta_{t i}$ is the number of blocks of size i containing treatment t, then any treatment t in a U-BIBD ($\mathrm{v}, \mathrm{b}, \mathrm{k} ; \mathrm{w}$) design must satisfy the following theta pattern equations:

$$
\begin{align*}
\sum_{i=1}^{k} \theta_{t i} & =r \tag{1.14}\\
\sum_{i=2}^{k}(i-1) \theta_{t i} & =\lambda(v-w-1)
\end{align*}
$$

From equations (1.13) and (1.14), the theoretically possible block sizes for a U$\operatorname{BIBD}(15,21,5 ; 4)$ are given in table 1.2, and from (1.14) the possible theta patterns

Table 1.2: U-BIBD $(15,21,5 ; 4)$ Theoretical Block Sizes

n_{1}	n_{2}	n_{3}	n_{4}	n_{5}
0	0	12	4	5
0	1	9	7	4
0	2	6	10	3
1	0	6	12	2
0	3	3	13	2
1	1	3	15	1
0	4	0	16	1
1	2	0	18	0

are given in table 1.3. Using table 1.3 we can reduce the theoretical block size list, table 1.2, by use of the following lemma.

Table 1.3: U-BIBD $(15,21,5 ; 4)$ Theoretical Theta Pattern

$\theta_{t 1}$	$\theta_{t 2}$	$\theta_{t 3}$	$\theta_{t 4}$	$\theta_{t 5}$
2	0	0	0	5
1	1	0	1	4
1	0	2	0	4
0	2	1	0	4
1	0	1	2	3
0	2	0	2	3
0	1	2	1	3
0	0	4	0	3
1	0	0	4	2
0	1	1	3	2
0	0	3	2	2
0	1	0	5	1
0	0	2	4	1
0	0	1	6	0

Lemma 1.4.1 The number of blocks of size five in a $U-B I B D(15,21,5 ; 4)$ is necessarily greater than one.

Proof Suppose $n_{5}=0$. Then from table $1.2 \mathrm{n}=\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=(1,2,0,18,0)$, and since $\theta_{t 5}=0 \forall t$, from table $1.3 \theta_{t}=\left(\theta_{t 1}, \theta_{t 2}, \theta_{t 3}, \theta_{t 4}, \theta_{t 5}\right)=(0,0,1,6,0) \forall t$. This is a contradiction because it is clearly not simultaneously possible for all $\theta_{\mathrm{t} 1}=0$ and $n_{1}=1$. Now suppose $n_{5}=1$. Then $n=(1,1,3,15,1)$ or $(0,4,0,16,1)$ and the possible $\boldsymbol{\theta}_{\mathrm{t}}$ are $\boldsymbol{\theta}_{\mathrm{t}(1)}=(0,0,1,6,0), \boldsymbol{\theta}_{\boldsymbol{t}(\mathbf{2})}=(0,0,2,4,1)$, or $\boldsymbol{\theta}_{\boldsymbol{t}(\mathbf{3})}=(0,1,0,5,1)$. Let x_{j} be the number of treatments with theta pattern $\theta_{t(j)}, j=1,2,3$. Then

$$
\sum_{j=1}^{3} x_{j} \theta_{t(j)}=\left(n_{1}, 2 n_{2}, 3 n_{3}, 4 n_{4}, 5 n_{5}\right)
$$

Thus

$$
\begin{equation*}
x_{1}(0,0,1,6,0)+x_{2}(0,0,2,4,1)+x_{3}(0,1,0,5,1)=(1,2,9,60,5) \text { or }(0,8,0,64,5) \tag{1.15}
\end{equation*}
$$

for the two respective values of n. The first system in (1.15) gives us the equations

$$
x_{3}=2
$$

$$
\begin{aligned}
x_{1}+2 x_{2} & =9 \\
6 x_{1}+4 x_{2}+5 x_{3} & =60 \\
x_{2}+x_{3} & =5 .
\end{aligned}
$$

These equations are inconsistent. The second system in (1.15) yields the equations

$$
\begin{aligned}
x_{3} & =8 \\
x_{1}+2 x_{2} & =0 \\
6 x_{1}+4 x_{2}+5 x_{3} & =60 \\
x_{2}+x_{3} & =5 .
\end{aligned}
$$

These equations are also inconsistent. Therefore $n_{5} \neq 1$, and $n_{5} \geq 2$.
The reduced list of possible block sizes for $\operatorname{U-BIBD}(15,21,5 ; 4)$ is shown in table 1.4.

Table 1.4: U-BIBD $(15,21,5 ; 4)$ Theoretical Block Sizes - Reduced list

n_{1}	n_{2}	n_{3}	n_{4}	n_{5}
0	0	12	4	5
0	1	9	7	4
0	2	6	10	3
1	0	6	12	2
0	3	3	13	2

We can assume the first five treatments of all U-BIBD $(15,21,5 ; 4)$ s occur in the first block, for otherwise, we can rename treatments and blocks so that this is the case. The placement of the first five treatments, requiring each treatment to be present in the first block, results in exactly one $\operatorname{U-BIBD}(15,21,5 ; 10)$. The design is shown in table 1.5. Notice that a U-BIBD $(15,21,5 ; 10)$ must use all 21 blocks.

When we extend table 1.5 to a $\operatorname{U-BIBD}(15,21,5 ; w), w \leq 10$ we can use the following useful lemma.

Table 1.5: A U-BIBD $(15,21,5 ; 10)$ Design

1	1	1	1	1	1	1	2	2	2	2	2	3	3	3	3	4	4	4	5	5
2	2	3	4	5			3	4	5			4	5			5				
3																				
4																				
5																				

Lemma 1.4.2 For any U - $B I B D(15,21,5 ; w), w \leq 10$ the following are true:

1. A block of size five can have at most two treatments in common with any other block, and
2. It is not possible for the design to contain two identical blocks of size four.

Proof The first statement follows immediately from the uniqueness of $\operatorname{UBIBD}(15,21,5 ; 10)$. If there are two identical blocks of size four, say

11
22
33
44 ,
then none of treatments 1-4 can occur again in a common block, but each must occur 5 more times. Hence 20 more blocks are required, a contradiction.

Since U-BIBD $(15,21,5 ; 4)$ s must have at least two blocks of size five, we will extend our U-BIBD $(15,21,5 ; 10)$ to a $\operatorname{U-BIBD}(15,21,5 ; w)$ containing two blocks of size five with the largest possible value of w (i.e. the maximum number of missing treatments), depending on the structure of the size five blocks. Since the treatments in a block of size five can have only one structure throughout the design (table 1.5) in addition to lemma 1.4.2, we can take advantage of this structure when adding treatments to the design. Thus, any two blocks of size five must have at least one and at most two treatments in common, and we need only investigate these two cases.

Since our U-BIBD $(15,21,5 ; 10)$ (table 1.5) is symmetric in all five treatments (i.e. any renaming of treatments will result in an identical design), we can assume in a design where the two size-five blocks have one treatment in common, that each sizefive block contains treatment 1 (one common case), and in a design where the two size-five blocks have two treatments in common, that each size-five block contains treatments 1 and 2 (the two common case).

1.4.1 One Common Case

If we extend our $\mathrm{U}-\operatorname{BIBD}(15,21,5 ; 10)$ to a $\mathrm{U}-\operatorname{BIBD}(15,21,5 ;$ w $)$ with exactly two blocks of size five having one treatment in common and having maximum w subject to lemma 1.4.2, then $w=6$ and $v-w=9$. The two blocks of size five are

1	1
2	6
3	7
4	8
5	9

and we begin with the structure shown in table 1.6.

Table 1.6: One-common Starter

$\underbrace{$| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 |
| :--- |
| 2 | 6 | 2 | 3 | 4 | 5 | | 3 | 4 | 5 | 4 | 5 | 5 | | | | | | | | |
| 3 | 7 | | | | | | | | | | | | | | | | | | | |
| 4 | 8 | | | | | | | | | | | | | | | | | | | |
| 5 | 9 | | | | | | | | | | | | | | | | | | | |
| section two |}$_{\text {section one }}$

Since $\lambda=2$, the sub-block candidates that must be added, all in separate blocks, to table 1.6 are shown in table 1.7.

For convenience, as can be seen in tables 1.7 and 1.6, treatment pairs will be referred to as doubles and single treatments as singles, and the seven blocks containing treatment 1 are referred to as section one, the remaining six blocks of size two as section two, and the other eight blocks of size one as section three in the following discussion.

Table 1.7: Assignment Candidates - One-common Starter

Since removing treatments 2 to 5 from the resulting $\operatorname{U-BIBD}(15,21,5 ; 6)$ will give a $\operatorname{U-BIBD}(15,21,5 ; 10)$, then treatment 1 with treatments 6 to 9 must have the same structure, for some ordering of the blocks, as the $\operatorname{U-BIBD}(15,21,5 ; 10)$ in table 1.5. From tables 1.6 and 1.7 , since 18 assignment candidates must be placed in 19 blocks, we know $n_{1} \leq 1$. Furthermore, from the block size equations (1.13) we know the possible block sizes for the U-BIBD $(15,21,5 ; 6)$ with exactly two blocks of size five and either one or zero blocks of size one are

n_{1}	n_{2}	n_{3}	n_{4}	n_{5}
0	7	9	3	2
1	4	12	2	2.

Clearly one replication of each of treatments 6 to 9 must be placed in section one, and the remaining replications in sections two and three. Since no block can have more than two treatments in common with a block of size five, blocks of section one can only receive singles from the candidate list. Once treatments 6 to 9 are added to section one, 13 singles and doubles will remain in the candidate list to be placed in the 13 blocks of sections two and three. Thus, if the $\operatorname{U-BIBD}(15,21,5 ; 6)$ has a block of size one, it must be in section one, and placement of treatments in section one will determine whether the design has zero or one block of size one. Using this observation and the theta pattern equations (1.14) given above, we have the following admissible theta-pattern list

$\theta_{t 1}$	$\theta_{t 2}$	$\theta_{t 3}$	$\theta_{t 4}$	$\theta_{t 5}$
0	3	0	3	1
0	2	2	2	1
0	1	4	1	1
0	0	6	0	1
1	0	4	0	2
0	2	3	0	2.

Since section one is symmetric in treatments 2 to 5 , there are only two nonisomorphic ways to place treatments 6 to 9 in section one. They are shown in table 1.8.

Table 1.8: Section One Arrangements - One-common Design

1	1			1		1	1	1	1	1	1	1
2	6			5		2	6	2	3	4	5	
3	7					3	7	6	7	8	9	
4	8					4	8					
5	9					5	9					

As can be seen in table 1.8, we will refer to designs having these section one arrangements as zero size one and one size one designs respectively. Given one of these arrangements, the admissible block sizes (1.16) and the possible theta patterns (1.17) determine the number of singles and doubles from the candidate list (table 1.7) that must be placed in sections two and three.

Zero Size One Designs

First we will investigate zero size one designs. In this case, treatments 6 to 8 must be placed in section two twice each, and treatment nine must be placed there three times, in order to have two concurrences with each of treatments 2 to 5 . Hence section two gets three doubles and three singles from the candidate list (table 1.6), and section three gets three doubles and five singles. Since treatment five needs to gain a total of eight treatment concurrences (two with each of treatments 6 to 9), and
there are five occurrences of treatment 5 in sections two and three, then treatment five must go with three doubles and two singles from the candidate set. Furthermore, from (1.17), since $\theta_{92} \leq 3$ we know that up to three doubles containing treatment 9 can be placed in section two, and that treatment 9 is required to be a part of at least one section two double candidate.

What, then, are the distinct ways of choosing three double candidates for section two? There are 20 ways to choose three doubles from the six doubles in the candidate set. Immediately we can eliminate the candidate doubles containing three 6 s , three 7 s , and three 8 s and the candidate containing zero 9 s . Since any permutation of treatments $2,3,4$ does not change sections 2 and 3, and permutations of treatments 6,7,8 combined with the same permutation of treatments $2,3,4$, does not change section one, we can reduce the remaining 16 ways of choosing three doubles from the candidate list to just four nonisomorphic double sets. Each double set determines a corresponding set of singles for adding to section two. The section two candidate collections are:

$$
\begin{array}{lllllll}
\text { Case 1: } & 6 & 7 & 8 & 6 & 7 & 8, \\
& 9 & 9 & 9 & & & \\
& & & & & & \\
\text { Case 2: } & 6 & 6 & 7 & 8 & 9 & 9, \\
& 7 & 8 & 9 & & & \\
& & & & & & \\
\text { Case 3: } & 6 & 6 & 7 & 7 & 8 & 9 \\
& 8 & 9 & 9 & & & \\
& & & & & & \\
\text { Case 4: and } \\
& 6 & 6 & 7 & 8 & 8 & 9
\end{array}
$$

Suppose the first candidate collection above is placed in section two. Then treatment 9 must be placed in two blocks containing treatment 5 in section two. Otherwise, since each section two double candidate contains treatment 9 and no section two single candidate contains treatment 9, fewer than two doubles from the candi-
date collection would be placed in a block containing treatment 5 in section two, and a treatment 9 single would be forced to go in a block containing treatment 5 at least once in section 3. This makes it impossible for three double candidates to be placed in a block containing treatment 5 in sections 2 and 3.

Once the design is completed using the first candidate collection above in section two, we can apply the permutation

$$
\left(\begin{array}{llll}
2 & 3 & 4 & 5 \tag{1.18}\\
6 & 7 & 8 & 9
\end{array}\right)
$$

(which preserves section one). Doing so transforms double candidates containing treatment 9 to blocks of size two containing treatment 5 , and blocks of size two containing treatment 5 to double candidates containing treatment 9 . Since two double candidates with treatment 9 go in a block containing treatment 5 in section two, and the third double candidate containing treatment 9 goes in a block not containing treatment 5 in section two, the permutation results in two double candidates containing treatment 9 and one double candidate without treatment 9 being placed in section two. This is clearly a case of candidate collection three or four above, thus we can eliminate the first collection. For example, the $\operatorname{U-BIBD}(15,21,5,6)$

1	1	1	1	1	1	1	2	2	2	3	3	4	2	2	3	3	4	4	5	5
2	6	2	3	4	5	9	3	4	5	4	5	5	7	8	6	9	6	9	7	6
3	7	6	7	8			8	7	6	6	8	7			7		8		8	
4	8						9		9			9								
5	9																			

is transformed to

1	1	1	1	1	1	1	2	2	2	3	3	4	2	2	3	3	4	4	5	5
2	6	2	3	4	5	9	3	4	5	4	5	5	7	9	6	6	7	6	7	8
3	7	6	7	8			7	8	6	9	8	6	8		8		9			
4	8								9		9	7								
5	9																			

by the permutation.
Suppose the second candidate collection is placed in section two. Three candidate doubles can not be placed in blocks containing treatment 5. If so, in order for treatment 9 to have two concurrences with treatment 5, a double candidate containing
treatment 9 would be forced to be placed in a block containing treatment 5 in section three causing treatment 5 to have more than two concurrences with treatment 6,7 , or 8. Assignment of two candidate doubles to blocks containing treatment 5 in section two will be transformed under the permutation (1.18) to two candidate doubles containing treatment 9 being placed in section two. This is a case of collection three or four. If one candidate double is placed in a block containing treatment five, then under the same permutation, the resulting design would be isomorphic to another case of collection two. Thus the assignments using collection two for section two may be restricted to those with one double assigned to a block containing treatment 5. An exhaustive search of the remaining possibilities for designs using collection two in section two revealed no possible U-BIBD $(15,21,5 ; 6)$ s.

Now consider placing the third candidate collection in section two. Placement of the section two candidate doubles into blocks having the form

$$
\begin{array}{lll}
\mathrm{a} & \mathrm{a} & \mathrm{~b} \\
\mathrm{~b} & 5 & 5
\end{array}
$$

will be transformed under the permutation (1.18) to the placement of candidate doubles having the form

$$
\begin{array}{lll}
a^{\prime} & a^{\prime} & b^{\prime} \\
b^{\prime} & 9 & 9
\end{array}
$$

in section two. This double candidate form is isomorphic to the double candidates in candidate collection four.

An exhaustive search for designs with collection three in section two revealed 42 possible U-BIBD $(15,21,5 ; 6) \mathrm{s}$, and three designs have the section two structure mentioned above. Thus there are 39 designs that may not be isomorphic. An exhaustive search for designs with collection four in section two resulted in 20 U $\operatorname{BIBD}(15,21,5 ; 6) s$. Therefore, there are 59 possible nonisomorphic zero size one U $\operatorname{BIBD}(15,21,5 ; 6) s$.

One Size One Designs

Now we will investigate one size one U-BIBD $(21,15,5 ; 6) \mathrm{s}$. In order to have two concurrences with treatments 2 to 5 , treatments 6 to 9 must be placed twice in section two and three times in section three. Thus section two gets two doubles and four singles from the candidate list in table 1.7 and section three gets four doubles and four singles from the candidate list. Of the 15 ways to select two doubles from the six double candidates, $\begin{array}{ll}6 & 6 \\ 7 & 8\end{array}$ and $\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}$ are the only nonisomorphic pairs under all permutations of treatments $6,7,8,9$ with the same permutation of treatments $2,3,4,5$ (thus preserving section one). Therefore we have two nonisomorphic section two candidate collections. They are

1. $\begin{array}{llllll}6 & 6 & 7 & 8 & 9 & 9 \\ 7 & 8 & & & & \end{array}$ and
2. $\begin{array}{llllll}6 & 8 & 6 & 7 & 8 & 9 \\ 7 & 9 & & & & \end{array}$.

Designs resulting from placing collection two in section two in such a way that the two double candidates are placed in blocks with one treatment in common are isomorphic under the permutation (1.18) to designs resulting from placing collection one candidates in section two. That is, if the placement of the collection two candidate doubles in section two has the form

n	n
a	b
6	8
7	9,

then under the permutation (1.18), the section two doubles have the new form

2	4
3	5
\mathbf{n}^{\prime}	n^{\prime}
a^{\prime}	b^{\prime}.

This new form will result in a design that is isomorphic to a design that results from placing collection one in section two.

An exhaustive computer search using collection two in section two resulted in 106 designs, but after eliminating the designs that are isomorphic to collection one designs, ten possibly nonisomorphic designs remain. An exhaustive computer search using collection one candidates in section two resulted in 27 possibly nonisomorphic designs. Therefore, there are at most 37 nonisomorphic one size one U $\operatorname{BIBD}(21,15,5 ; 6)$ s. Therefore, there are at most 96 nonisomorphic U-BIBD $(21,15,5 ; 6)$ in the one common case.

1.4.2 Two Common Case

If we build our $\operatorname{U-BIBD}(15,21,5 ; 10)$ into a $\operatorname{U}-\operatorname{BIBD}(15,21,5 ; w)$ with exactly two blocks of size five having two treatments in common and having maximum w, then $w=7$ and $v-w=8$. The two blocks of size five are

1	1
2	2
3	6
4	7
5	8

and we begin with the structure shown in table 1.9.

Table 1.9: Two-common Starter

$\underbrace{\text { section three }}_{$| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 3 | 3 | 4 | 4 | 5 | 5 |
| :--- |
| 2 | 2 | 3 | 4 | 5 | | | 3 | 4 | 5 | | | 4 | 5 | 5 | | | | | | |
| 3 | 6 | | | | | | | | | | | | | | | | | | | |
| 4 | 7 | | | | | | | | | | | | | | | | | | | |
| 5 | 8 | | | | | | | | | | | | | | | | | | | |
| section one |
| section two |$}$

Since removing treatments 3 to 5 from the resulting $\operatorname{U-BIBD}(15,21,5 ; 7)$ will give a $\mathrm{U}-\mathrm{BIBD}(15,21,5 ; 10)$, then treatments $1,2,6,7,8$ must have the same structure as in the $\mathrm{U}-\mathrm{BIBD}(15,21,5 ; 10)$ given above in table 1.5. From the block size equations (1.13) we know the possible block sizes for the $\operatorname{U-BIBD}(15,21,5 ; 7)$ with two blocks
of size five having two common treatments are

n_{1}	n_{2}	n_{3}	n_{4}	n_{5}
0	12	6	1	2
1	9	9	0	2.

From (1.14) and using (1.19), we have the admissible theta pattern set

$\theta_{t 1}$	$\theta_{t 2}$	$\theta_{t 3}$	$\theta_{t 4}$	$\theta_{t 5}$
1	2	2	0	2
0	4	1	0	2
0	3	2	1	1
0	2	4	0	1.

Since $\lambda=2$ the candidate list containing the sub-blocks that must be added, all in separate blocks, to the $\operatorname{U-BIBD}(15,21,5 ; 10)$ of table 1.9 is shown in table 1.10.

Table 1.10: Assignment Candidates - Two-common Starter

As before, we will refer to candidate sub-blocks in table 1.10 consisting of two treatments as doubles and those consisting of a single treatment as singles. As is shown in table 1.9, the 12 blocks containing treatments 1 and/or 2 are referred to as section one, the remaining three blocks of size two as section two, and the other six blocks of size one as section three.

Since treatments 1 and 2 need one concurrence with treatments 6 to 8 , then two replications of treatments 6 to 8 must be placed in section one. From lemma 1.4.2, we conclude that only singles of treatments 6 to 8 can be placed in section one. There are nine nonisomorphic ways one more replication of treatments 6 to 8 can be placed in section one. They are:

	1	1	1	1	1	1	1	2	2	2	2
2	2										
2	2	3	4	5	7	8	3	4	5	7	8
3	6	6					6				
4	7										
	5	8									

1	1	1		1	1	1	2	2	2	2	2	
2	2	3	4	5	7	8	3	4	5	7	8	
2. 3	6	6						6				
4	7											
5	8											
1	1	1	1	1	1	1	2	2	2	2	2	
2	2	3	4	5	7	8	3	4	5	6	8	
3. 3	6	6					7					
4	7											
5	8											
1	1	1	1	1	1	1	2	2	2	2	2	
2	2	3	4	5	7	8	3	4	5	6	8	
4. 3	6	6						7				
4	7											
5	8											
1	1	1	1	1	1	1	2	2	2	2	2	
2	2	3	4	5	8		3	4	5	7	8	
5. 3	6	6	7				6					
4	7											
5	8											
1	1	1	1	1	1	1	2	2	2	2	2	
2	2	3	4	5	8		3	4	5	7	8	
6.	6	6	7					6				
	7											
	8											
	1	1	1	1	1	1	2	2	2	2	2	
	2	3	4	5	8		3	4	5	7	8	
7.	6	6	7						6			
	7											
	8											
	1	1	1	1	1	1	2	2	2	2	2	
	2	3	4	5	8		3	4	5	6	7	
8.	6	6	7				8					and
	7											
	8											
	1	1	1	1	1	1	2	2	2	2	2	
	2	3	4	5	8		3	4	5	6	7	
9.	6	6	7						8			
	7											
	8											

Section two candidates are determined by a particular section one arrangement and treatment replications. For example, consider the first section one arrangement. Since treatment 6 has two concurrences with treatments 1 to 3 in section one and treatments 7 and 8 have two concurrences with treatments 1 and 2 only, then treatment 6 must have a total of four concurrences (two with treatments 4 and 5) in sections two and three, and treatments 7 and 8 require a total of six concurrences (two with treatments 3 to 6). Since there are a total of four occurrences of treatments 6 to 8 that need to be placed in sections iwo and three, treatment 6 must be placed in four blocks of size one and treatments 7 and 8 must be placed in two blocks of size two and one block of size one in sections two and three. Thus, zero occurrences of treatment 6 and two occurrences of treatments 7 and 8 must be placed in section two. Therefore, the candidate collection that must be placed in section two given the first section one arrangement is

In a similar manner we can construct section two candidate collections for the remaining eight section one arrangements. The section two candidate collection list and the corresponding section one arrangements are:

1. Section one arrangements 1 and 2
$\begin{array}{lll}7 & 7\end{array}$
8
2. Section one arrangements 3 and 4

6	7	8				
8			and	6	8	8

3. Section one arrangements 5 to 7

788 , and
4. Section one arrangements 8 and 9
678.

Given a particular section one arrangement and the corresponding section two candidate collection, an exhaustive numerical search of all possible admissible U $\operatorname{BIBD}(15,21,5 ; 7)$ s can be conducted. Once all admissible designs are listed for each arrangement/candidate pair, isomorphic designs can be eliminated by studying valid treatment permutations. For example, consider the first section one arrangement with the corresponding section two candidate collection (collection one). The numerical search results in two $U-\operatorname{BIBD}(15,21,5 ; 7) \mathrm{s}$, but under the permutation $\begin{array}{ll}4 & 5 \\ 5 & 4\end{array}$, the section one arrangement remains unchanged and one design is transformed into the second design. Thus, there is only one nonisomorphic U-BIBD ($15,21,5 ; 7$). In general, permutations that, when applied to section one arrangements, leave the arrangement unchanged can be applied to resulting $\mathrm{U}-\mathrm{BIBD}(15,21,5 ; 7) \mathrm{s}$ in order to eliminate isomorphic designs. A second example is arrangement two. Each of the permutations $\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}$ and $\begin{array}{ll}7 & 8 \\ 8 & 7\end{array}$ when applied to the arrangement leave it unchanged. An exhaustive numerical search using arrangement two and candidate collection one results in six U-BIBD $(15,21,5 ; 7) \mathrm{s}$, but by applying combinations of the aforementioned permutations, four isomorphic designs can be eliminated from this set.

Exhaustive numerical searches starting with every possible section one arrangement and corresponding section two candidate collection(s) results in 40 U-BIBD $(15,21,5 ; 7)$ s. Carefully applying appropriate permutations to the resulting designs as is described above reduces the list to 28 possibly nonisomorphic U $\operatorname{BIBD}(15,21,5 ; 7)$ s. This completes the two common case.

1.4.3 A- and D-optimal Design

The final step of the search for the A- and D-optimal design in $D(15,21,5)$ is an enumeration of the possible completions of the 96 possibly nonisomorphic U $\operatorname{BIBD}(15,21,5 ; 6)$ s and the 28 possibly nonisomorphic U-BIBD $(15,21,5 ; 7) s$
to $\operatorname{V}-\operatorname{BIBD}(15,21,5)$ s with $\delta_{d} \leq 4$ and $w \leq 4$. With respectively 42 and 49 total assignments of the remaining treatments still to be made, and in light of the fact that concurrence counts involving any one of treatments 11 to 15 can not be constant, this is a nontrivial exercise. The 124 candidate UBIBDs are too numerous to allow an analytic approach analogous to sections 1.4.1 and 1.4.2. However, the list of 124 designs is small enough to bring the completion problem within computational reach. Now an exhaustive blind computer enumeration can be performed by adding the remaining treatments to each U-BIBD in all possible ways, requiring only that $\lambda_{d i i^{\prime}} \in\{\lambda-1, \lambda, \lambda+1\}$ for all $i \neq i^{\prime}$, kicking out the resulting designs violating the restrictions on δ_{d} and w_{d}. Among the designs so found, only two distinct discrepancy patterns occur: D7 and D10, each with $\delta_{d}=w_{d}=4$.

This establishes that $\delta=4$ for $D(15,21,5)$, and minimum discrepancy is not achievable in conjunction with minimum deficiency for this class. The optimality values for designs having discrepancy matrix D7 are:

$$
\text { A-value }=2.33631, \quad D \text {-value }=-25.07572, \text { and } E \text {-value }=0.17857,
$$

and the optimality values for designs having discrepancy matrix D10 are:

$$
\text { A-value }=2.33635, \quad \text { D-value }=-25.07565, \quad \text { and } \quad E \text {-value }=0.18164
$$

An example of a design having discrepancy matrix D7 is in table 1.11, and an example of a design having discrepancy matrix D10 is in table 1.12. Of the two minimum

Table 1.11: An A- and D-optimal Design In $D(15,21,5)$

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 |
| ---: |
| 2 | 2 | 3 | 4 | 5 | 7 | 8 | 3 | 4 | 5 | 7 | 8 | 4 | 5 | 6 | 8 | 5 | 6 | 7 | 6 | 6 |
| 3 | 6 | 6 | 10 | 9 | 13 | 10 | 11 | 6 | 10 | 9 | 9 | 7 | 7 | 9 | 12 | 8 | 8 | 9 | 11 | 7 |
| 4 | 7 | 9 | 13 | 11 | 14 | 11 | 13 | 12 | 12 | 11 | 10 | 10 | 8 | 10 | 14 | 9 | 11 | 12 | 12 | 10 |
| 5 | 8 | 12 | 14 | 15 | 15 | 12 | 15 | 15 | 14 | 14 | 13 | 11 | 13 | 14 | 15 | 15 | 14 | 13 | 13 | 15 |

Table 1.12: A Design In $D(15,21,5)$ Having Discrepancy Matrix D10

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 |
| ---: |
| 2 | 2 | 3 | 4 | 5 | 7 | 8 | 3 | 4 | 5 | 7 | 8 | 4 | 5 | 6 | 8 | 5 | 6 | 7 | 6 | 6 |
| 3 | 6 | 6 | 12 | 9 | 10 | 11 | 10 | 6 | 9 | 9 | 10 | 7 | 7 | 12 | 9 | 8 | 8 | 9 | 10 | 7 |
| 4 | 7 | 9 | 13 | 12 | 11 | 14 | 13 | 11 | 11 | 12 | 12 | 11 | 8 | 13 | 11 | 10 | 9 | 10 | 11 | 14 |
| 5 | 8 | 10 | 14 | 15 | 13 | 15 | 14 | 15 | 13 | 14 | 15 | 12 | 13 | 15 | 14 | 14 | 13 | 15 | 12 | 15 |

discrepancy patterns found, D7 is A- and D-superior and thus, according corollary 1.3.4, produces A- and D-optimal designs.

The A-, D- and E-efficiencies for the design with discrepancy matrix D10 and for Zhang's design from table 1.1 relative to the A- and D-optimal design with discrepancy matrix D7 are provided in table 1.13.

Table 1.13: A-, D-, and E-efficiencies Relative To An A- and D-optimal Design

	D10	Zhang
A-efficiency	0.99998	0.99936
D-efficiency	0.99993	0.99554
E-efficiency	0.98311	0.98395

Are designs in $D(15,21,5)$ having discrepancy matrix D7 ϕ_{ρ}-better then these two competitors for $p \geq 2$? Is such a design ϕ_{p}-optimal in D in for any $p \geq 2$? Could it be E-optimal? The first question can be answered by calculating the ϕ_{p}-values for the three competitors, and the second question can be answered by checking the bounds 1.9 and 1.10 for the ϕ_{p}-optimality criterion (1.5). We discuss the question of E-optimality in detail in section 1.5.

We have calculated ϕ_{p}-values and bounds for $1 \leq p \leq 60$. From the calculations and the facts that $\dot{\phi}_{p}\left(C_{d}\right)=\left(\sum_{i=1}^{v-1} z_{d i}^{-p}\right)^{(1 / p)}$ is a monotone decreasing function of p and is bounded below by the E-value of $d, E_{d}=z_{d 1}^{-1}$, we can make three observations concerning ϕ_{p} optimality in $D(15,21,5)$:

1. Designs having discrepancy matrix D7 are ϕ_{p}-better than designs having dis-
crepancy matrix $D 10$ and Zhang's table 1.1 design for all $p \geq 1$.
2. Designs having discrepancy matrix D7 are ϕ_{p}-better than binary designs that are not an $\operatorname{NBBD}(2)$ for $1 \leq p \leq 3$.
3. Designs having discrepancy matrix D7 are ϕ_{p}-better than nonbinary designs for $1 \leq p \leq 6$.

The first observation follows from the fact that the ϕ_{p}-values for designs having discrepancy matrix D7 are less than those of the two competitors for $p<60$, and the ϕ_{p}-value of these competitors are less than the E-value of D7 at $p=60$. The others follow from checking (1.9) and (1.10).

1.5 E-optimal Design in $D(15,21,5)$

Let $D(v, b, k)$ be an irregular BIBD setting, and, as usual, denote the binary subclass of D by $M(v, b, k)$ and subclass of M containing only equireplicate designs by $M_{0}(v, b, k)$. Suppose the eigenvalue/vector pairs of the information matrix C_{d} for a design $d \in D$ are $\left(z_{d 1}, \mathbf{e}_{d 1}\right),\left(z_{d 2}, e_{d 2}\right), \ldots,\left(z_{d v}, \mathbf{e}_{d v}\right)$. It follows from the fact $C_{d} 1=0$ that $\left(z_{d i}, e_{d i}\right)=(0,1)$ for some i, say $i=v$. Moreover, since D contains only connected designs, $\operatorname{rank} C_{d}=v-1$ and $z_{d i}>0$ for all $1 \leq i \leq v-1$. Therefore, a set of eigenvalue/vector pairs for C_{d} corresponding to the nonzero eigenvalues are $\left(z_{d 1}, \mathbf{e}_{d 1}\right),\left(z_{d 2}, \mathbf{e}_{d 2}\right), \ldots,\left(z_{d, v-1}, \mathbf{e}_{d, v-1}\right)$, and $\mathbf{e}_{i}^{T} 1=0$, for all $i=1,2, \ldots v-1$. For notational simplicity, redefine the E-value of $d \in D$ given by (1.6) to be the minimum nonzero eigenvalue of C_{d}, or

$$
\begin{equation*}
E_{d}=\min _{i<v} z_{d i} . \tag{1.21}
\end{equation*}
$$

Then the E-optimal design $d^{*} \in D$, defined by (1.7), has E-value

$$
\begin{equation*}
E_{d^{+}}=\max _{d \in D} E_{d}=\max _{d \in D} \min _{i<v} z_{d_{i}} . \tag{1.22}
\end{equation*}
$$

In this section we will develop the theory for identifying E-optimal designs in $D(v, b, k)$ and outline a procedure for constructing these designs. Our results will be applied
to the setting $(v, b, k)=(15,21,5)$, and finally the surprising E-optimal design in $D(15,21,5)$ will be reported.

Recall from equation (1.12), the information matrix for a design $d \in M_{0}(v, b, k)$ is

$$
C_{d}=\frac{\lambda v}{k}\left(I-\frac{1}{v} J\right)-\frac{1}{k} \Delta_{d}
$$

where $\Delta_{d}=\left(\delta_{d i i^{\prime}}\right)$ is the discrepancy matrix for the design, Δ_{d} has zero sum rows and columns, and the nonzero elements of Δ_{d} can be restricted to the first $s \leq v$ rows and columns. Since $\Delta_{d} 1=0,(0,1)$ is an eigenvalue/vector pair for Δ_{d}, and any set of $v-1$ vectors mutually orthogonal to 1 constitute a set of eigenvectors for Δ_{d}. Then, if ($u_{d i}, e_{d i}$) is an eigenvalue/vector pair of Δ_{d}, the corresponding eigenvalue of C_{d} is

$$
\begin{equation*}
z_{d i}=\frac{\lambda v}{k}-\frac{1}{k} u_{d i} . \tag{1.23}
\end{equation*}
$$

Furthermore, if the maximum eigenvalue of the discrepancy matrix Δ_{d} is

$$
U_{d}=\max _{i} u_{d i}
$$

then the E-value for d given by (1.21) becomes

$$
\begin{equation*}
E_{d}=\frac{\lambda v}{k}-\frac{1}{k} U_{d} \tag{1.24}
\end{equation*}
$$

establishing a direct relationship between the E-value of a design $d \in M_{0}(v, b, k)$ and the maximum eigenvalue U_{d} of the discrepancy matrix Δ_{d} associated with the design.

The following two lemmas and corollary establish conditions for which a search for the E-optimal design in $D(v, b, k)$ can be restricted to the subclasses $M(v, b, k)$ and $M_{0}(v, b, k)$.

Lemma 1.5.1 Let \bar{d} be a binary design in an irregular BIBD setting $D(v, b, k)$ with discrepancy matrix Δ_{d} having maximum eigenvalue U_{d}. If $U_{d}<2$ then the E-optimal design must be in $M(v, b, k)$.

Proof Let d be a nonbinary design in an irregular BIBD setting $D(v, b, k)$ with E-value E_{d}. From the proof of Theorem 3.1 of Jacroux (1980b),

$$
E_{d} \leq \frac{[r(k-1)-2] v}{k(v-1)} \leq \frac{\lambda v-2}{k}
$$

From equation (1.24), the E-value of an equireplicate design \bar{d} is

$$
E_{d}=\frac{\lambda v}{k}-\frac{1}{k} U_{d}
$$

Design \bar{d} is E-better than nonbinary d if and only if $E_{d}>E_{d}$ which is true if

$$
E_{d}>\frac{\lambda v-2}{k}
$$

which implies $U_{\bar{d}}<2$.

Lemma 1.5.2 Let d be a nonequireplicate design in an irregular BIBD setting $D(v, b, k)$, and define $\rho_{d}=\max _{i}\left\{r-r_{d i}\right\}$. Let $\bar{d} \in D(v, b, k)$ be an equireplicate design with discrepancy matrix $\Delta_{\bar{d}}$ having maximum eigenvalue $U_{\bar{d}}$. If $U_{\bar{d}}<(k-1) \rho_{d}$ then \bar{d} is E-better thand.

Proof If E_{d} is the E-value of d then, by Theorem 3.1 of Jacroux (1980a),

$$
E_{d} \leq \frac{\left(r-\rho_{d}\right)(k-1) v}{(v-1) k}=\frac{\lambda v}{k}\left[1-\frac{\rho_{d}}{r}\right],
$$

the equality because $\frac{k-1}{u-1}=\frac{\lambda}{r}$ in a BIBD setting. From equation (1.24), the E-value for equireplicate \bar{d} is

$$
E_{d}=\frac{\lambda v}{k}-\frac{1}{k} U_{d}
$$

Design \bar{d} is E-better than d if and only if $E_{d}>E_{d}$ which is true if

$$
\begin{equation*}
U_{d}<\frac{v}{v-1}(k-1) \rho_{d} \tag{1.25}
\end{equation*}
$$

Inequality (1.25) is satisfied if $U_{d}<(k-1) \rho_{d}$.

Corollary 1.5.3 If there exists an equireplicate design $\bar{d} \in D(v, b, k)$ having $\delta_{\bar{d}} \leq 4$ and $\gamma_{\bar{d} 2}^{-}+\gamma_{d 2}^{+} \leq 1$, or $\left(\delta_{d}, l_{d}\right)=(5,2)$, then the E-best design in $D(v, b, k)$ must be equireplicate.

Proof Since nonexistence of a BIBD implies $k \geq 5$ and nonequireplicate designs $d \in M(v, b, k)$ have $\rho_{d} \geq 1$, we need establish that $U_{\bar{d}}<4$ for all 51 discrepancy matrices satisfying the conditions of the corollary, which are listed in Appendix A. The corresponding list of U_{d}-values is given in Appendix B , and the largest value is 3.44949 for D51.

Corollary 1.5.4 If there exists a binary, equireplicate design $d \in D(v, b, k)$ with discrepancy matrix Δ_{d} having maximum eigenvalue $U_{d}<2$, then the the E-optimal design must be in $M_{0}(v, b, k)$.

If Δ_{D} is the class of all admissible discrepancy matrices for designs in $M_{0}(v, b, k)$, that is, the class of all integer-valued square matrices of dimension $s \leq v$ having zeros on the diagonal and zero-sum rows and columns, the expression for the E-value of the E-optimal design $d^{*} \in M_{0}$ given by (1.22) is

$$
\begin{equation*}
E_{d^{\bullet}}=\frac{\lambda v}{k}-\frac{1}{k} \min _{\Delta_{D}} U_{d}=\frac{\lambda v}{k}-\frac{1}{k} U_{d^{*}} \tag{1.26}
\end{equation*}
$$

Solving (1.22) is equivalent to solving

$$
\begin{equation*}
U_{d^{\bullet}}=\min _{\Delta D} \max _{i} u_{d i} \tag{1.27}
\end{equation*}
$$

and using (1.26) to obtain the E-value of the E-optimal design in the class.
Now the fundamental question is: is it possible to solve (1.27) without enumerating all of the admissible discrepancy matrices $\Delta_{d} \in \Delta_{D}$? To attack this one must first ask: what is the relationship between E-value U_{d} design discrepancy δ_{d}, concurrence range $l_{d_{2}}$ and treatment deficiency w ? We begin to answer this question by ranking the discrepancy matrices listed in Appendix A by their maximum eigenvalue U_{d}, from largest to smallest, as shown in Appendix B. It is immediately clear
from the list that the E-ranking of a design is not a function of δ_{d}, l_{d}, and w alone. For example, designs having discrepancy matrix D1 with discrepancy $\delta_{d}=2$, if they exist, are E-inferior to $\delta_{d}=3$ designs with discrepancy matrix $\mathrm{D} 2, \delta_{d}=4$ designs with discrepancy matrix D5, and $\delta_{d}=5$ designs with discrepancy matrix D13, and the same designs are E-superior to designs with discrepancy matrices D3, D8, and D20 with discrepancies $\delta_{d}=3, \delta_{d}=4$, and $\delta_{d}=5$, respectively. Also, designs with discrepancy matrix D18 having discrepancy $\delta_{d}=4$ and concurrence range $l_{d}=3$ are E-inferior to some designs having discrepancy $\delta_{d}=4$ and concurrence range $l_{d}=2$ or $l_{d}=3$, for example designs having discrepancy matrix D5 or D12, and are E-superior to designs having discrepancy matrix D9 or D48 also with discrepancy $\delta_{d}=4$ and concurrence ranges $l_{d}=2$ and $l_{d}=3$.

Furthermore, suppose in a setting $M_{0}(v, b, k)$ no design having discrepancy matrix $D 2$ exists, but, for some $n \geq 2$, a design having discrepancy matrix $n D 2=I_{n} \otimes$ $D 2$, where \otimes is the kronecker product and I_{n} is the $n \times n$ identity matrix, exists. Since the eigenvalues for $n D 2$ are n copies of the eigenvalues of $D 2$, and designs having discrepancy matrix D2 are E-better than designs having any of the other 50 discrepancy matrices in Appendix A, then that $\delta_{d}=3 n \geq 6$ design would be Ebetter than any design having one of the discrepancy matrices in the list. Therefore, even if the existence question for designs having one of the discrepancy matrices in Appendix A has been completely solved, we then still may not know whether there exists a design with larger discrepancy and/or larger concurrence range that is E-better than the best of these. Clearly we need to investigate the discrepancy matrix/E-value relationship more thoroughly. The following three lemmas will help.

Lemma 1.5.5 Suppose $d \in M_{0}(v, b, k)$ has discrepancy matrix $\Delta_{d}=\left(\delta_{d i i^{\prime}}\right)$. If U_{d} is the maximum eigenvalue of Δ_{d} then

$$
\begin{equation*}
\min _{i \neq i^{\prime}} \delta_{d i i^{\prime}} \geq-U_{d} \tag{1.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{i \neq i^{\prime}} \delta_{d i i^{\prime}} \leq \frac{v-2}{v} U_{d} \tag{1.29}
\end{equation*}
$$

Proof A design $d \in M_{0}(v, b, k)$ with discrepancy matrix Δ_{d} will have information matrix $C_{d}=\left(c_{d i i^{r}}\right)$ given by (1.12) having E-value E_{d}. By Proposition 3.2 of Jacroux (1980b), for all $\lambda_{\text {dii' }}, i \neq i^{\prime}$,

$$
\begin{equation*}
E_{d} \leq \frac{r(k-1)+\lambda_{d i i^{\prime}}}{k} \tag{1.30}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{d} \leq \frac{\left[r(k-1)-\lambda_{d i i^{r}}\right] v}{(v-2) k} \tag{1.31}
\end{equation*}
$$

Since M_{0} is a BIBD setting, $r(k-1)=\lambda(v-1)$. Using this expression, the relationship $\lambda_{d i i^{\prime}}=\lambda+\delta_{d i i^{\prime}}$, and by writing E_{d} in terms of U_{d} using (1.24), inequality (1.30) may be written as

$$
\delta_{d i i^{\prime}} \geq-U_{d}, \quad \text { for all } i \neq i^{\prime},
$$

and, similarly, inequality (1.31) becomes

$$
\delta_{d i i^{\prime}} \leq \frac{v-2}{v} U_{d}, \quad \text { for all } i \neq i^{\prime}
$$

Inequalities (1.28) and (1.29) follow immediately.

Corollary 1.5.6 Let Δ_{d} and Δ_{d} be discrepancy matrices for designs $d \neq \bar{d}$ in an irregular BIBD setting $M_{0}(v, b, k)$. Suppose the maximum eigenvaiue of $\Delta_{d}=\left(\delta_{d i i^{\prime}}\right)$ is U_{d} and the maximum eigenvalue of $\Delta_{d}=\left(\delta_{d i i^{r}}\right)$ is U_{d}. If \bar{d} is E-better than d then

$$
\begin{equation*}
\min _{i \neq i^{\prime}} \delta_{d i i^{\prime}}>-U_{d} \tag{1.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{i \neq i^{\prime}} \delta_{\overline{d i i^{\prime}}}<\frac{v-2}{v} U_{d} \tag{1.33}
\end{equation*}
$$

Corollary 1.5.6 potentially can significantly limit the discrepancy matrix search for the E-optimal design by bounding the minimum and maximum treatment concurrences of designs that can be E-better than a known design d having discrepancy matrix Δ_{d} with maximum eigenvalue U_{d}. For example, if a design having discrepancy matrix D 2 or $I_{n} \otimes D 2$ exists, then $U_{d}=1.73205$, and the corollary says that the discrepancy matrix of a potentially E-better design can not have an element less than -1 or greater than 1. Consequently, potential E-better designs must have a concurrence range equal to 2 . The following two lemmas will lead to corollaries that provide more information about the discrepancy matrices of E-optimal designs, further limiting the number of discrepancy matrices for potentially E-better designs.

Lemma 1.5.7 Suppose $d \in M_{0}(v, b, k)$ has discrepancy matrix $\Delta_{d}=\left(\delta_{d i i^{\prime}}\right)$ with maximum eigenvalue U_{d}. Then, for all $m \leq v$,

$$
\begin{equation*}
\sum_{i<i^{\prime} \leq m} \delta_{d i i^{\prime}} \leq \frac{m(v-m)}{2 v} U_{d} \tag{1.34}
\end{equation*}
$$

Proof A design $d \in M_{0}(v, b, k)$ with discrepancy matrix Δ_{d} will have information matrix $C_{d}=\left(c_{d i i^{\prime}}\right)$ given by (1.12) having E-value E_{d} and by Lemma 3.2 (b) of Jacroux (1989), for all $m \leq v$,

$$
\begin{equation*}
E_{d} \leq \frac{v}{m(v-m)}\left(\sum_{i=1}^{m} c_{d i i}+\sum_{\substack{i=1 \\ m}}^{m} c_{d i^{\prime} i^{\prime}=1}^{i^{\prime} \neq i}<i<.\right. \tag{1.35}
\end{equation*}
$$

Substituting

$$
c_{d i i}=\frac{\lambda(v-1)}{k} \text { and } c_{d i i^{\prime}}=-\frac{\left(\lambda+\delta_{d i i^{\prime}}\right)}{k}
$$

into (1.35), writing E_{d} in terms of U_{d} using (1.24), and solving for $\sum \sum_{1 \leq i<i^{\prime} \leq m} \delta_{d i i^{\prime}}$ yields (1.34).

Corollary 1.5.8 Let Δ_{d} and Δ_{d} be the discrepancy matrices for designs $d \neq \bar{d}$ in $M_{0}(v, b, k)$. Suppose the maximum eigenvalue of Δ_{d} is U_{d} and the maximum
eigenvalue of Δ_{d} is $U_{\bar{d}}$. If \bar{d} is E-better than d then the elements of every $m \times m$, $m \leq v$, leading minor $\Delta_{d 11}=\left(\delta_{d i i^{\prime}}\right)$ of $\Delta_{d} m u s t$ satisfy

$$
\begin{equation*}
\sum_{i<i^{\prime}} \delta_{d i i^{\prime}} \leq \frac{m(v-m)}{2 v} U_{d} \tag{1.36}
\end{equation*}
$$

Lemma 1.5.9 Let Δ_{d} be the discrepancy matrix for a design $d \in M_{0}(v, b, k)$, and define $\Delta_{d 11}$ to be the $m \times m, m \leq v$, leading minor of Δ_{d}. Let $\left(u_{i}, \xi_{i}\right), 1 \leq i \leq m$, be the eigenvalue/vector pairs for $\Delta_{d 11}$, and write $x_{i}=\boldsymbol{\xi}_{i}^{T} 1$, where $1_{u \times 1}$ is a vector whose elements are all 1 . If U_{d} is the maximum eigenvalue of Δ_{d}, then

$$
\begin{equation*}
\max _{i}\left[\frac{v-x_{i}^{2}}{v}\right]^{-1} u_{i} \leq U_{d} \tag{1.37}
\end{equation*}
$$

Proof Since $\Delta_{\boldsymbol{d}}$ has row and column sums of zero,

$$
U_{d}=\max _{\substack{\mathbf{x}^{T} \boldsymbol{x}_{x=1} \\ \mathbf{x}_{l}=0}} \mathbf{x}^{T} \Delta_{d} \mathbf{x} .
$$

Partition Δ_{d} as

$$
\Delta_{d}=\left(\begin{array}{ll}
\Delta_{d 11} & \Delta_{d 12} \\
\Delta_{d 21} & \Delta_{d 22}
\end{array}\right)
$$

and consider the vector $\mathbf{y}^{\boldsymbol{T}}=\left(\mathbf{w}^{\boldsymbol{T}}, \mathbf{0}^{\boldsymbol{T}}\right), \mathbf{w}^{\boldsymbol{T}} \mathbf{w}=1$, so that

$$
\mathbf{y}^{T} \Delta_{d} \mathbf{y}=\mathbf{w}^{T} \Delta_{d 11} \mathbf{w}
$$

Then, provided $\mathbf{w}^{\boldsymbol{T}} \mathbf{1}=0$,

$$
U_{d} \geq \mathbf{w}^{T} \Delta_{d 11} w
$$

If $\mathbf{w}^{\boldsymbol{T}} \mathbf{1} \neq 0$, consider

$$
\begin{aligned}
\mathbf{y}^{*} & =\left(I-\frac{1}{v} J\right) \mathbf{y} \\
& =\mathbf{y}-\frac{1}{v} \sum y_{i} \mathbf{1} \\
& =\mathbf{y}-\frac{1}{v} \sum w_{i} \mathbf{1}
\end{aligned}
$$

where $I_{v \times v}$ is the identity matrix and $J_{v \times v}$ is the matrix whose elements are all 1. Then $y^{* T} \mathbf{1}=0$ and

$$
\begin{aligned}
\mathbf{y}^{* T} \mathbf{y}^{*} & =\mathbf{y}^{T} \mathbf{y}-\frac{2}{v}\left(\sum w_{i}\right) \mathbf{y}^{T} \mathbf{1}+\frac{1}{v^{2}}\left(\sum w_{i}\right)^{2} \mathbf{1}^{T} \mathbf{1} \\
& =\frac{v-\left(\sum w_{i}\right)^{2}}{v} \\
& =s, \text { say }
\end{aligned}
$$

Then

$$
\begin{aligned}
U_{d} \geq \frac{1}{s} \mathbf{y}^{* T} \Delta_{d} \mathbf{y}^{*} & =\frac{1}{s}\left(\mathbf{y}-\frac{1}{v} \sum w_{i} \mathbf{1}\right)^{T} \Delta_{d}\left(\mathbf{y}-\frac{1}{v} \sum w_{i} \mathbf{1}\right) \\
& =\frac{1}{s} \mathbf{y}^{T} \Delta_{d} \mathbf{Y} \quad\left(\text { since } \mathbf{1}^{T} \Delta_{d}=0\right) \\
& =\frac{1}{s} \mathbf{w}^{T} \Delta_{d 11} \mathbf{w} \\
& =\left[\frac{v-\left(\sum w_{i}\right)^{2}}{v}\right]^{-1} \mathbf{w}^{T} \Delta_{d 11} \mathbf{w} .
\end{aligned}
$$

Let $\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{m}$ be the eigenvectors of $\Delta_{d 11}$ with eigenvalues $u_{d 1}, u_{d 2}, \ldots, u_{d \pi}$, respectively, and suppose $\xi_{i}^{\tau} 1=x_{i}$, say. Then

$$
\begin{aligned}
U_{d} & \geq \max _{i}\left[\frac{v-x_{i}^{2}}{v}\right]^{-1} \xi_{i}^{T} \Delta_{d 11} \xi_{i} \\
& =\max _{i}\left[\frac{v-x_{i}^{2}}{v}\right]^{-1} u_{d i} .
\end{aligned}
$$

Corollary 1.5.10 Let Δ_{d} and $\Delta_{\bar{d}}$ be the discrepancy matrices for designs $d \neq \bar{d}$ in $M_{0}(v, b, k)$. Suppose the maximum eigenvalue of Δ_{d} is U_{d}, the maximum eigenvalue of Δ_{d} is U_{d}, and $\Delta_{d 11}$ is a $m \times m$ leading minor of Δ_{d} for any $m \leq v$. Let $\left(u_{d i}, \xi_{i}\right)$ be the eigenvalue/vector pairs for $\Delta_{d 11}$, and write $x_{i}=\xi_{i}^{T} 1$, where 1 is the $m \times 1$ vector whose elements are all 1 . If \bar{d} is E-better than d then

$$
\begin{equation*}
\max _{i}\left[\frac{v-x_{i}^{2}}{v}\right]^{-1} u_{\bar{d} i}<U_{d} \tag{1.38}
\end{equation*}
$$

With corollaries 1.5.6, 1.5.8, and 1.5 .10 in hand, given an irregular BIBD setting $D(v, b, k)$, we are ready to outline a procedure for finding the discrepancy matrices $\left\{\Delta_{d_{1}}, \Delta_{d_{2}}, \ldots, \Delta_{\mathbb{d}_{t}}\right\} \in \Delta_{D}, t \geq 1$, with maximum eigenvalue $U_{d^{*}}$ given in
(1.27), that is, finding the E-best discrepancy matrices in Δ_{D}. The procedure starts with a discrepancy matrix Δ_{d} having maximum eigenvalue $U_{d}<2.0$ for a design $d \in M_{0}(v, b, k)$ that is suspected to exist, and, consequently, assumes the search can be limited to designs in $M_{0}(v, b, k)$. It then enumerates a list of discrepancy matrices $\left\{\Delta_{d 1}, \Delta_{d 2}, \ldots, \Delta_{d n}\right\} \in \Delta_{D}$ having maximum eigenvalues $\left\{U_{d 1}, U_{d 2}, \ldots, U_{d n}\right\}$ such that $U_{d i} \leq U_{d}$ for each $i \leq n$, that is, it enumerates a list of E-better discrepancy matrices in Δ_{D}. If no such discrepancy matrix exists, the procedure will establish the fact. The $1 \leq t \leq n$ E-best discrepancy matrices will have maximum eigenvalue $U_{d^{*}}$ satisfying

$$
\begin{equation*}
U_{d^{\bullet}}=\min \left\{U_{d 1}, U_{d_{2}}, \ldots, U_{d n}, U_{d}\right\} \tag{1.39}
\end{equation*}
$$

The procedure is:

1. Apply conditions (1.32) and (1.33) from corollary 1.5 .6 to U_{d} in order to establish bounds for the maximum and minimum elements of a discrepancy matrix $\Delta_{\mathbb{d}}=\left(\delta_{\text {dii }}\right)$ that is E-better than Δ_{d}.
2. Create an exhaustive list of symmetric and nonisomorphic $m \times m$ matrices that could serve as the leading minor for a discrepancy matrix $\Delta_{\bar{d}}$ that is Ebetter than Δ_{d}, for a convenient value of $m \leq v$. Each matrix must satisfy the following requirements:
(a) All diagonal elements must be equal to zero.
(b) Each off-diagonal element must satisfy the bounds determined in step 1.
(c) The elements must satisfy condition (1.36) of corollary 1.5.8.
(d) If the rows and columns do not sum to zero, then $m<v$.

We will refer to this list of discrepancy matrices as the starter candidate list, and matrices in this list as starter candidates.
3. Remove starter candidates that do not satisfy condition (1.38) of corollary 1.5.10 (these are determined by computation).
4. For each remaining starter candidate enumerate all nonisomorphic one row and one column extensions to symmetric matrices satisfying conditions (a) - (d) of step 2 and step 3.
5. If any of the extensions have zero sum rows and columns, then they are discrepancy matrices and should be copied to the E-better discrepancy matrix list.
6. If there are no remaining extensions or the extensions are $v \times v$, the search is over.
7. The remaining extensions form a new list of starter candidates. Return to step 4.

Now we have a (hopefully small) list of E-competitive discrepancy matrices $\left\{\Delta_{d_{1}}, \Delta_{d_{2}}, \ldots, \Delta_{d_{n}}, \Delta_{d}\right\}$ and a corresponding list of maximum eigenvalues $\left\{U_{\bar{d} 1}, U_{d_{2}}, \ldots, U_{\overline{d n}}, U_{d}\right\}$. We are assured that this list is not empty because at minimum it will consist of Δ_{d}. However, it remains to determine if any corresponding designs can be constructed.

As an aside, if there exists an irregular BIBD setting $M_{0}\left(v^{\prime}, b^{\prime}, k^{\prime}\right), v^{\prime} \leq v$, discrepancy matrices from the E-competitive discrepancy matrix list can potentially serve as the discrepancy matrix for the E-best design $d^{\prime} \in D\left(v^{\prime}, b^{\prime}, k^{\prime}\right)$ provided their dimension is less than v^{\prime} and a design $d^{\prime} \in D\left(v^{\prime}, b^{\prime}, k^{\prime}\right)$ having the discrepancy matrix can be constructed.

We now apply the procedure outlined above to the irregular BIBD setting $D(21,15,5)$ discussed at the beginning of this chapter. From the A- and D-optimal design search in section 1.4 it was established that the only designs having $\delta_{d} \leq 4$ and
$l_{d}=2$ that exist in the setting have discrepancy matrix D7 or D10 listed in Appendix A. For our search we will conjecture that a design $d \in M_{0}(v, b, k)$ having the $\delta=6$ discrepancy matrix $I_{2} \otimes D 2$ exists, and consequently search for discrepancy matrices $\Delta_{\bar{d}}$ that are E-better than $\Delta_{d}=D 2$ having minimum eigenvalue $U_{\bar{d}}<1.73205=U_{d}$; such a design, if it exists, is E-better than D7 and D10 designs as well as Zhang's design of table 1.1. Now, according to conditions (1.32) and (1.33) from Step 1, the elements of discrepancy matrices for potentially E-better designs must be in the set $\{-1,0,1\}$. Thus, we will select our starter candidate list by partitioning the potential E-best discrepancy matrices into three cases according to the number of is (hence -1s) allowed to occur in a row of the discrepancy matrix and then by applying the element sum condition (1.36) of Step 2. The cases along with the candidate starter lists described in step two of the search procedure are:

Case 1: Discrepancy matrices with three or more ones in at least one row. Without loss of generality, we assume the first row (and column) of each starter has at least three ones. Therefore, Case 1 starters will have dimension four. Since condition (1.36) requires the sum of the elements below and above the diagonal to be less than or equal to two, the four nonisomorphic structures are:
(ii)
(iii)
(iv)

0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1
1	0	-1	-1	1	0	-1	-1	1	0	-1	-1	1	0	-1	0
1	-1	0	-1	1	-1	0	0	1	-1	0	1	1	-1	0	0
1	-1	-1	0	1	-1	0	0	1	-1	1	0	1	0	0	0

Case 2: Discrepancy matrices with no more that two ones in the same row and exactly two ones in at least one row. We assume the first row of each starter in this case has exactly two ones, and, consequently, each starter is of dimension three. Then, by condition (1.36), the sum of the elements below and above the diagonal must be less than or equal to two. The two nonisomorphic structures
are:

	(i)		$(i i)$			
0	1	1		0	1	1
1	0	-1		1	0	0
1	-1	0		1	0	0

Case 3: Discrepancy matrices with a single one in any row. The only possible structure clearly is:

$$
\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}
$$

For the first search (Case 1), Step 3 of the procedure that applies (1.38) to each starter candidate immediately eliminates 1 (iii), 1 (iv), and 2 (ii). Continuing the procedure with candidates 1 (i) and 1 (ii) does not result in an E-better discrepancy matrix, and, therefore, discrepancy matrices having three or more ones in any row are eliminated. Case 3 results in one discrepancy matrix, matrix D2. The interesting case is 2(i) for which we will demonstrate the search procedure.

Since Case 2 searches for discrepancy matrices having no more than two $1 s$ (and two -1s) in any row, for the first extension we require a -1 to be placed in the first row. There are three possible extensions, and they are:

Extension	$\max _{i}\left[\frac{v-x_{i}^{2}}{v}\right]^{-1} u_{d i}$
(E1a) $\begin{array}{rrrrr}0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0\end{array}$	1.15616
(E1b) $\begin{array}{rrrrr}0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 0 \\ 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0\end{array}$	1.5557
(E1c) $\begin{array}{rrrrr}0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0\end{array}$	1.1989

Continuing the process using ($E 1 c$) as a starter does not lead to any E-better discrepancy matrices; however, each of ($E 1 a$) and ($E 1 b$) ultimately yields one discrepancy matrix that is E-better than D2. Since the E-best discrepancy matrix results from using ($E 1 a$) as a starter, we continue the demonstration by extending matrix ($E 1 a$) and, since the first row can not receive any ls but needs two -1s in order to fulfill the zero-sum row requirement of a discrepancy matrix, without loss of generality, we will require a -1 to be placed in the first row of each extension. Two admissible matrices result, and they are:

Extension	$\max _{i}\left[\frac{v-x_{i}^{2}}{v}\right]^{-1} u_{d i}$
(E2a) $\begin{array}{rrrrrr}0 & 1 & 1 & -1 & -1 \\ 1 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 \\ & -1 & 0 & 1 & 0 & 0\end{array}$	1.6180
(E2b) $\begin{array}{rrrrrr}0 & 1 & 1 & -1 & -1 \\ 1 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & -1 & 0\end{array}$	1.6411

Attempts to extend matrix ($E 2 b$) with the requirement that a 1 be placed in the fifth row results in no admissible matrices. Using matrix ($E 2 a$) as a starter and enumerating all extensions having a -1 in the second row results in two admissible matrices. The resulting extensions are:

Extension	$\max _{i}\left[\frac{v-x^{2}}{v}\right]^{-1} u_{d i}$
(E3a) $\begin{array}{rrrrrrr}0 & 1 & 1 & -1 & -1 & 0 \\ 1 & 0 & -1 & 1 & 0 & -1 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 & 0 & 1 \\ & 0 & -1 & 0 & 1 & -1 & 0\end{array}$	1.6920
	1.6407

Enumerating all extensions of ($E 3 b$) requiring a 1 to be placed in the sixth row does
not produce any admissible matrices. The only admissible extension of (E3a) places a -1 in rows three and four and a 1 in rows five and six and produces the 7×7 discrepancy matrix $\Delta_{\tilde{d}}$ having $\delta_{d}=7$ and maximum eigenvalue $U_{d}=U_{d^{\bullet}}=1.6920$ shown in table 1.14. If a V-BIBD d with $w=5$ having this discrepancy matrix exists, then it will have E-value 5.66160 and be the E-best design in $D(15,21,5)$.

Table 1.14: A Discrepancy Matrix With Maximum Eigenvalue 1.6920

0	1	1	-1	-1	0	0
1	0	-1	1	0	-1	0
1	-1	0	0	1	0	-1
-1	1	0	0	0	1	-1
-1	0	1	0	0	-1	1
0	-1	0	1	-1	0	1
0	0	-1	-1	1	1	0

As mentioned above, using ($E 1 b$) as a starter also produces a discrepancy matrix. It is the 9×9 matrix shown in table 1.15 having discrepancy 6 and maximum eigenvalue 1.7321. This matrix is E-equivalent to the 12×12 discrepancy matrix $I_{2} \otimes D 2$ also having discrepancy 6.

Table 1.15: A Discrepancy Matrix With Maximum Eigenvalue 1.7321

0	1	1	-1	0	0	-1	0	0
1	0	-1	0	0	0	0	0	0
1	-1	0	0	0	0	0	0	0
-1	0	0	0	1	1	-1	0	0
0	0	0	1	0	-1	0	0	0
0	0	0	1	-1	0	0	0	0
-1	0	0	-1	0	0	0	1	1
0	0	0	0	0	0	1	0	-1
0	0	0	0	0	0	1	-1	0

The search for the A- and D-optimal design in the previous section enumerated all nonisomorphic U-BIBDs with $w=7$ and $w=6$. We can now use these designs to search for an E-optimal design by searching their extensions to V-BIBDs, requiring
the finished designs to contain a discrepancy matrix of the form in table 1.14. Doing so produces an E-optimal design having optimality values:

$$
\text { A-value }=2.33830, \text { D-value }=-25.06954, \text { and } E \text {-value }=5.66160
$$

The design is shown in table 1.16. The A-, D-, and E-efficiencies for designs with

Table 1.16: An E-optimal Design In $D(15,21,5)$

| 1 | 1 | 2 | 4 | 5 | 2 | 1 | 5 | 1 | 4 | 3 | 2 | 1 | 3 | 4 | 1 | 3 | 3 | 2 | 2 | 1 |
| ---: |
| 2 | 6 | 3 | 5 | 6 | 4 | 3 | 9 | 2 | 7 | 5 | 6 | 4 | 7 | 8 | 10 | 6 | 4 | 7 | 5 | 5 |
| 3 | 7 | 8 | 6 | 8 | 9 | 7 | 11 | 6 | 9 | 8 | 11 | 8 | 10 | 12 | 11 | 9 | 6 | 8 | 7 | 9 |
| 4 | 8 | 9 | 7 | 10 | 10 | 11 | 12 | 10 | 10 | 10 | 12 | 11 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 14 |
| 5 | 9 | 11 | 11 | 12 | 12 | 12 | 13 | 14 | 15 | 15 | 15 | 14 | 14 | 14 | 15 | 14 | 15 | 15 | 14 | 15 |

discrepancy matrices D7 and D10, and for Zhang's design from table 1.1 with respect to the E-optimal design with the discrepancy matrix in table 1.14 are provided in table 1.17.

Table 1.17: A-, D-, and E-efficiencies Relative To An E-optimal Design

	D7	D10	Zhang
A-efficiency	1.00085	1.00083	1.00021
D-efficiency	1.00620	1.00613	1.00172
E-efficiency	0.98912	0.97242	0.97324

We have calculated the ϕ_{p}-values of designs having discrepancy matrix D7 (that is, A- and D-optimal designs) and of E-optimal designs for $p \leq 100$. From these we conclude that discrepancy D7 designs are ϕ_{p}-better for $p \leq 38$, and E-optimal designs are ϕ_{p}-better for all $p \geq 39$ (the ϕ_{p}-value of E-best designs is less than $1 / 5.6=0.17857$ when $p=100$).

CHAPTER II

RESOLVABLE DESIGNS WITH TWO BLOCKS PER REPLICATE: GENERAL THEORY

2.1 Introduction

When an incomplete block design is used, it is sometimes necessary to conduct the experiment in stages. For example, consider an industrial experiment to compare the effect of nine, say, combinations of materials used to manufacture an airplane part on the overall weight and strength of the part. Suppose the company conducting the experiment has two machines that manufacture the part, one machine can produce five parts at a time, and the other four. The experiment then consists of a series of "runs" in which each material combination is used one time. Moreover, suppose the machines frequently break down, and, as a resuit, it may not be possible to complete the desired number of runs. The experimenter is interested in knowing the allocation of the material combinations to the machines in each of the runs that will provide the best weight/strength estimates and comparisons. There are many other examples of similar experimental designs in agricultural trials, see Patterson and Silvey (1980), for example. These types of experiments fall into the category of resolvable block designs and are the topic of this remainder of this manuscript.

A resolvable block design setting $D\left(v, r ; k_{1}, k_{2}, \ldots, k_{s}\right)$ with treatment replication r consists of r sets of blocks of sizes $k_{1}, k_{2}, \ldots, k_{s}$, where $\sum k_{j}=v$. A resolvable design is an assignment of v treatments to the $b=r s$ blocks in such a way that each treatment occurs once in each set, which is consequently called a replicate.

An example of a resolvable design in $D(9,4 ; 5,4)$ that can be used for the airplane part experiment described above is shown in table 2.18 with the blocks written as columns. Later we will prove that this design is optimal with respect to many useful optimality criteria.

Table 2.18: A Resolvable Design In $D(9,4 ; 4,5)$

1	6	1	4	1	2	1	3
2	7	2	5	4	3	2	5
3	8	3	8	5	8	4	7
4	9	6	9	6	9	6	9
5		7		7		8	

The origin of the concept of resolvability dates to the literature of the 19th century, for example, "Kirkman's schoolgirl problem" (Kirkman, 1850). A paper by Preece (1982) is an excellent source for many historical references of resolvable designs. Yates provided the first systematic study of resolvable designs when he introduced square lattice designs (1936, 1940), and the terms "resolvable design" and "affine resolvable" were introduced by Bose (1942). Yates' lattice designs were extended to rectangular lattices by Harshbarger (1946, 1949). Williams (1975) and Patterson and Williams (1976) introduced α-designs. Bailey, Monod, and Morgan (1995) discuss a class of designs that were introduced by Bose (1942) called affine resolvable designs. In that paper they provide constructions by using orthogonal arrays which were introduced by Rao (1947). A book by John and Williams (1995) and a manuscript by Morgan (1996) provide excellent summaries of these major classes of resolvable designs with references.

Virtually all of the references listed above describe design settings having equal block sizes; not much is known about resolvable designs with unequal block sizes. Two references for such such designs are Patterson and Williams (1976) and Kageyama (1988). Our treatment of resolvable designs will allow for unequal block sizes.

Cheng and Bailey (1991) have shown that square lattice designs are A-, D-, and E-optimal among the class of binary, equireplicate designs, and Bailey, Monod, and Morgan (1995) proved that affine-resolvable designs are optimal with respect to many optimality criteria, including A-, D-, and E-optimality, using Schur-optimality. Our concern will be A-, E-, Schur-, and type-1 optimality of resolvable designs.

We will restrict our discussion to the subclass of resolvable designs having $s=2$ blocks per replicate in this document; however, the theoretical framework introduced here can be extended (perhaps with considerable difficulty) to settings having $s>2$ blocks per replicate. We will leave that investigation for future work. The total number of blocks will be $b=2 r$. The sizes of the two blocks in each replicate may be unequal but will be the same for all replications. The size of the first block of each replicate will be denoted by k_{1}, the size of the second block by k_{2}, and, without loss of generality, we will assume $k_{1} \geq k_{2}$. Then $v=k_{1}+k_{2}$, and the block sizes vector is $\mathbf{k}=1 \otimes\left(k_{1}, k_{2}\right)^{\mathbf{T}}$ where 1 is the $r \times 1$ vector of $1 s$ and \otimes denotes the Kronecker product. The general setup is pictured in figure 2.2. The number of treatments v and the block sizes will be arbitrary.

Certain classes of optimal resolvable designs with $s=2$ and $r \geq v$ can be constructed from Balanced Incomplete Block Designs. Suppose $D(v, b, k)$ is a BIBD setting, and let $d \in D$ be a BIBD. It is well known that d is universally optimal (Kiefer, 1975). Let $S=\{1,2, \ldots, v\}$ be the set containing all of the available treatments for the setting D. A new design, \bar{d}, also having b blocks, can be obtained from d by taking each of the b blocks of \bar{d} to be the complement of the corresponding blocks of d. That is, if b_{i} and \bar{b}_{i} are the i th blocks of respectively d and \bar{d}, then $\bar{b}_{i}=S \backslash b_{i}, i=1,2, \ldots, b$. Design \bar{d} is called the complement or complementary design of d; it is a BIBD With parameters $\bar{v}=v, \bar{b}=b, \bar{k}=v-k, \bar{r}=b-r$, and $\bar{\lambda}=b-2 r+\lambda$, and are therefore universally optimal (Street and Street, 1987, page 45). Since $b_{i} \cup \vec{b}_{i}=S$ for each i, the design $d^{*}=d \cup \bar{d}$ is a resolvable design with

Figure 2.2: Resolvable Design With $s=2$, Arbitrary r, and $k_{1} \geq k_{2}$
$v^{*}=v$ treatments in $b^{*}=2 b$ blocks divided into $r^{*}=b$ replicates each containing two blocks of sizes $k_{1}^{*}=k$ and $k_{2}^{*}=v-k$. It follows from Fisher's inequality that $b^{*} \geq 2 v$, or $r^{*} \geq v$. Furthermore, the information matrix for d^{*}, which is

$$
\begin{equation*}
C_{d^{*}}=C_{d}+C_{\bar{d}}=\frac{b(v-2)}{v-1}\left(I-\frac{1}{v} J\right) \tag{2.40}
\end{equation*}
$$

is completely symmetric and of maximal trace, and, therefore, by Kiefer's result (1975), d^{*} is universally optimal.

For example, a design d in the BIBD setting $D(7,7,4)$ having $r=4$ and $\lambda=2$ with the blocks written as columns is

$$
\begin{array}{lllllll}
1 & 1 & 1 & 1 & 2 & 2 & 3 \\
2 & 2 & 3 & 4 & 3 & 4 & 4 \\
3 & 5 & 5 & 6 & 6 & 5 & 5 \\
4 & 6 & 7 & 7 & 7 & 7 & 6 .
\end{array}
$$

The complementary design $\bar{d} \in D(7,7,3)$ having $\bar{r}=3$ and $\bar{\lambda}=1$ is

$$
\begin{array}{lllllll}
5 & 3 & 2 & 2 & 1 & 1 & 1 \\
6 & 4 & 4 & 3 & 4 & 3 & 2 \\
7 & 7 & 6 & 5 & 5 & 6 & 7,
\end{array}
$$

and the universally optimal resolvable design $d^{*}=d \cup \bar{d}$ is

1	5	1	3	1	2	1	2	2	1	2	1	3	1
2	6	2	4	3	4	4	3	3	4	4	3	4	2
3	7	5	7	5	6	5	5	6	5	5	6	5	7
4		6		7		7		7		7		6.	

Despite the elegance of constructing resolvable designs using BIBDs and their complements, and the potential for generalizing this technique to irregular BIBD settings or to settings that do not satisfy the necessary conditions for a BIBD by applying some of the ideas of Chapter I or from Morgan and Srivastav (2000), our discussion of resolvable block designs will not utilize this approach. Our concern will be resolvable designs with a small number of replications, and the number of replications in designs constructed using the procedure described above require $r \geq v$ which is a relatively large number of replications. As a result, our optimality analysis will take the more traditional approach of directly working with the information matrix for various design settings. We will make the requirement that $v \geq b$, that is $r \leq \frac{v}{2}$, for reasons that will be apparent shortly. For the remainder of this chapter $D\left(v, r ; k_{1}, k_{2}\right)$ will denote the subclass of binary, connected, and equireplicate block designs that are resolvable and satisfy the conditions described above.

A design $d \in D$ has information matrix

$$
\begin{equation*}
C_{d}=r I-N_{d} \mathbf{k}^{-\delta} N_{d}^{T} \tag{2.42}
\end{equation*}
$$

where I is the identity matrix of order v, \mathbf{k}^{δ} is the $b \times b$ diagonal matrix whose diagonal elements are the elements of $\mathbf{k}, \mathbf{k}^{\boldsymbol{-} \boldsymbol{\delta}}$ is the inverse of $\mathbf{k}^{\boldsymbol{\delta}}$, and $N_{\boldsymbol{d}}$ is the $v \times b$ incidence matrix. Of concern to us is identifying and constructing the A- and Eoptimal designs $d \in D$ for various choices of r, v and $\left(k_{1}, k_{2}\right)$, requiring calculation of the eigenvalues of the information matrix C_{d}. This task is simplified by the following manipulation. If the treatments and blocks of design $d \in D$ are interchanged so that treatment i in block j becomes treatment j in block i, then we obtain a design having incidence matrix N_{d}^{T} that places b treatments into v blocks of equal size r
with treatment replication vector $\mathbf{k}=\mathbf{1} \otimes\left(k_{1}, k_{2}\right)^{T}$. This design is called the dual of d and has information matrix

$$
\begin{equation*}
C_{\mathrm{dual}}=\mathbf{k}^{\delta}-\frac{1}{r} N_{d}^{r} N_{d-} \tag{2.43}
\end{equation*}
$$

The $\left(j, j^{\prime}\right)$ th element of the concurrence matrix $N_{d}^{T} N_{d}$ of the dual design of d indicates the number of treatments simultaneously occurring in blocks j and j^{\prime}, that is, the number of block j and j^{\prime} block concurrences, of the corresponding $d \in D$. The elements of $N_{d}^{T} N_{d}$ are referred to as block concurrence counts.

If we multiply C_{d} by $\frac{1}{r}$, and if we right and left multiply $C_{\text {dual }}$ by $\mathbf{k}^{-\delta / 2}$, equations (2.42) and (2.43) become

$$
\begin{equation*}
\frac{1}{r} C_{d}=I-\frac{1}{r} N_{d} \mathbf{k}^{-\delta} N_{d}^{T}=C_{d}^{e} \tag{2.44}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{k}^{-\delta / 2} C_{\text {dual }} \mathbf{k}^{-\delta / 2}=I-\frac{1}{r} \mathbf{k}^{-\delta / 2} N_{d}^{\tau} N_{d} \mathbf{k}^{-\delta / 2}=C_{\text {dual }}^{*} \tag{2.45}
\end{equation*}
$$

where the $b \times b$ matrix $\mathbf{k}^{-\delta / 2}$ is the inverse of $\mathbf{k}^{\delta / 2}$, which is the diagonal matrix having the elements of $\sqrt{\mathbf{k}}=1 \otimes\left(\sqrt{k}_{1}, \sqrt{k}_{2}\right)^{T}$ on the diagonal. Define the $v \times b$ matrix $B_{d}=N_{d} \mathbf{k}^{-\delta / 2}$ and substitute into (2.44) and (2.45) to obtain

$$
\begin{equation*}
C_{d}^{*}=I-\frac{1}{r} B_{d} B_{d}^{\tau} \tag{2.46}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{\text {dual }}^{*}=I-\frac{1}{r} B_{d}^{\tau} B_{d} \tag{2.47}
\end{equation*}
$$

Suppose $a_{1}, a_{2}, \ldots, a_{b}$ are the eigenvalues of $B_{d}^{T} B_{d}$, then, since the nonzero eigenvalues of $B_{d} B_{d}^{T}$ and $B_{d}^{T} B_{d}$ are identical, the eigenvalues of $B_{d} B_{d}^{T}$ (for $v \geq b$) are $a_{1}, a_{2}, \ldots, a_{b}$ and $v-b$ copies of 0 . Note that $B_{d}^{T} B_{d} \mathbf{k}^{1 / 2}=r \mathbf{k}^{1 / 2}$; that is, $a_{i}=r$ for some i, say $i=b$. Thus, $C_{\text {dual }}^{*}$ has $b-1$ nonzero eigenvalues ($1-\frac{1}{r} a_{1}$), ($1-$ $\left.\frac{1}{r} a_{2}\right), \ldots,\left(1-\frac{1}{r} a_{b-1}\right)$ and one eigenvalue equal to 0 , and C_{d}^{*} has $b-1$ nonzero eigenvalues $\left(1-\frac{1}{r} a_{1}\right),\left(1-\frac{1}{r} a_{2}\right), \ldots,\left(1-\frac{1}{r} a_{b-1}\right)$, one eigenvalue equal to 0 , and $v-b$ eigenvalues
equal to 1. It follows that the eigenvalues of C_{d} are $\left(r-a_{1}\right),\left(r-a_{2}\right), \ldots,\left(r-a_{b-1}\right)$, 0 , and $v-b$ copies of r. Therefore, an eigenvalue-based optimality investigation of designs in $D\left(v, b ; k_{1}, k_{2}\right)$ can be performed by restricting our efforts to studying the eigenvalues of $C_{\text {dual }}^{*}$. Since we will be investigating design settings with a fixed number of blocks b but for a varying number of treatments v, the dimension of $C_{\text {dual }}$ will remain constant for all v. Furthermore, working with $C_{\text {dual }}$ requires us to focus on block concurrences in the formation of $N_{d}^{T} N_{d}$. This approach will significantly simplify our search for optimal designs in D.

Define the symmetric matrix $A_{d}=B_{d}^{T} B_{d}=\mathbf{k}^{-\delta / 2} N_{d}^{T} N_{d} \mathbf{k}^{-\delta / 2}$. Then $C_{\text {dual }}^{*}=$ $I-\frac{1}{r} A_{d}$. If $\left(a_{1}, \mathbf{x}_{1}\right),\left(a_{2}, \mathbf{x}_{2}\right), \ldots,\left(a_{b}, \mathbf{x}_{b}\right)$ are the eigenvalue/vector pairs of A_{d}, its spectral decomposition is

$$
\begin{equation*}
A_{d}=\sum_{i=1}^{b} a_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \tag{2.48}
\end{equation*}
$$

$\mathbf{x}_{i}^{T} \mathbf{x}_{i}=1$, and $\mathbf{x}_{i}^{T} \mathbf{x}_{j}=0$ for $i \neq j$. Since $A_{d} \mathbf{k}^{1 / 2}=r \mathbf{k}^{1 / 2}$, then $\left(r, \frac{\mathbf{k}^{1 / 2}}{\sqrt{\left(\mathbf{k}^{1 / 2}\right)^{T} \mathbf{k}^{1 / 2}}}\right)$ is one of the eigenvalue/vector pairs, the bth pair say. Note that this eigenvalue corresponds to the eigenvalue equal to zero that is common to $C_{\text {dual }}$ and C_{d}. The bth term of (2.48) is then

$$
a_{b} \mathbf{x}_{b} \mathbf{x}_{b}^{T}=r \frac{\mathbf{k}^{1 / 2}\left(\mathbf{k}^{1 / 2}\right)^{T}}{\left(\mathbf{k}^{1 / 2}\right)^{T} \mathbf{k}^{1 / 2}}=\frac{1}{k_{1}+k_{2}}\left[J \otimes\left(\begin{array}{cc}
k_{1} & \sqrt{k_{1} k_{2}} \tag{2.49}\\
\sqrt{k_{1} k_{2}} & k_{2}
\end{array}\right)\right]
$$

where J is a $r \times r$ matrix of 1 s . Subtracting (2.49) from (2.48) yields the new matrix

$$
A_{d}^{*}=A_{d}-\frac{1}{k_{1}+k_{2}}\left[J \otimes\left(\begin{array}{cc}
k_{1} & \sqrt{k_{1} k_{2}} \tag{2.50}\\
\sqrt{k_{1} k_{2}} & k_{2}
\end{array}\right)\right]=\sum_{i=1}^{b-1} a_{i} x_{i} x_{i}^{T}
$$

Clearly, $\left(a_{i}, x_{i}\right), 1 \leq i<b-1$ are eigenvalue/vector pairs for A_{d}^{*}, and for the eigenvector $\mathbf{x}_{b}, A_{d}^{*}$ has an eigenvalue of 0 . Furthermore, $\left(a_{i}, x_{i}\right)$ is an eigenvalue/vector of A_{d}^{*} if and only if ($1-\frac{1}{r} a_{i}, \mathbf{x}_{i}$) is an eigenvalue/vector pair of C_{d}^{*} if and only if $r-a_{i}$ is an eigenvalue of C_{d}. Therefore, we can obtain all the eigenvalue-based optimality information for any design $d \in D$ using equation (2.50) provided we can construct $N_{d}^{T} N_{d}$ for an arbitrary $d \in D$ in order to obtain an explicit expression for A_{d}^{*}.

We will construct the concurrence matrix for a dual design $N_{d}^{T} N_{d}$ by first observing the block concurrences for the blocks of two arbitrary replicates, n and n^{\prime} say, of a design $d \in D$. Replication $n, 1 \leq n \leq r$, contains blocks $2 n-1$ and $2 n$ which will be denoted by $b_{2 n-1}$ and $b_{2 n}$, respectively. Denote the $b_{2 n-1}$ and $b_{2 n^{\prime}-1}$ block concurrence counts by $\phi_{n n^{\prime}}$, and, without loss of generality, assume $1 \leq n \leq n^{\prime} \leq r$. The remaining $k_{1}-\phi_{n n^{\prime}}$ treatments in $b_{2 n^{\prime}-1}$ are also in $b_{2 n}$. If the k_{1} treatments in $b_{2 n-1}$ are labeled $1,2, \ldots, k_{1}$ and the k_{2} treatments in $b_{2 n}$ are labeled $k_{1}+1, k_{1}+2, \ldots, k_{1}+k_{2}$, then, since these labels are arbitrary, we can assume treatments $1,2, \ldots, \phi_{n n^{\prime}}$ are in $b_{2 n-1}$ and $b_{2 n^{\prime}-1}$, and treatments $k_{1}+1, k_{1}+2, \ldots, 2 k_{1}-\phi_{n n^{\prime}}$ are in $b_{2 n}$ and $b_{2 n^{\prime}-1}$. Now, the remaining $k_{1}-\phi_{n n^{\prime}}$ treatments in $b_{2 n-1}$ that are not in $b_{2 n^{\prime}-1}$, which are treatments $\phi_{n n^{\prime}}+1, \phi_{n n^{\prime}}+2, \ldots, k_{1}$, must also be in $b_{2 n^{\prime}}$, and the $k_{2}-k_{1}+\phi_{n n^{\prime}}$ treatments in $b_{2 n}$ that are not in $b_{2 n^{\prime}-1}$, which are treatments $2 k_{1}-\phi_{n n^{\prime}}+1,2 k_{1}-\phi_{n n^{\prime}}+2, \ldots, k_{1}+k_{2}$, are in $b_{2 n^{\prime}}$. Refer to figure 2.3 below to see the treatment placements. Thus, once
replication n

replication n^{\prime}

$b_{2 n^{\prime}-1}$	$b_{2 n^{\prime}}$
1	
2	
$\phi_{n n^{\prime}}+1$	
\vdots	
$\phi_{n n^{\prime}}$	
$k_{1}+1$	
k_{1} $2 k_{1}-\phi_{n n^{\prime}}+1$ \vdots $2 k_{1}-\phi_{n n^{\prime}}$	

Figure 2.3: Replication n and $\boldsymbol{n}^{\boldsymbol{\prime}}$ Block Concurrences
the $b_{2 n-1}$ and $b_{2 n^{\prime}-1}$ and the $b_{2 n}$ and $b_{2 n^{\prime}-1}$ block concurrences are chosen, all of the remaining replication n and n^{\prime} block concurrences are prescribed; moreover, the block concurrence counts for each pair of blocks is determined once $\phi_{n n^{\prime}}$ is chosen.

The intersection of rows $2 n-1$ and $2 n$ of N_{d}^{T} with columns $2 n^{\prime}-1$ and $2 n^{\prime}$ of N_{d} in $N_{d}^{T} N_{d}$, which makes up the submatrix of $N_{d}^{T} N_{d}$ corresponding to the block concurrence counts for the blocks in replications n and n^{\prime}, is

$$
\Phi_{n n^{\prime}}=\left(\begin{array}{cc}
\phi_{n n^{\prime}} & k_{1}-\phi_{n n^{\prime}} \\
k_{1}-\phi_{n n^{\prime}} & k_{2}-k_{1}+\phi_{n n^{\prime}}
\end{array}\right) .
$$

Note that, since n and n^{\prime} are arbitrary, the block concurrence submatrix for any two replications will have the same structure, and when $n=n^{\prime}$

$$
\Phi_{n n}=\left(\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right)
$$

Therefore, $N_{d}^{T} N_{d}$ is

Which may be written

$$
N_{d}^{T} N_{d}=\left(\begin{array}{cccc}
\Phi_{11} & \Phi_{12} & \cdots & \Phi_{1 r} \tag{2.51}\\
& \Phi_{22} & & \Phi_{2 r} \\
& & & \vdots \\
& & & \Phi_{r r}
\end{array}\right) .
$$

Clearly block concurrences will be constrained by a particular choice of $d \in D$. The question is, what are the admissible block concurrences and block concurrence counts? In particular, what range of values $\operatorname{can} \phi_{n n^{\prime}}, n \leq n^{\prime}$ assume? First consider the block concurrences for blocks b_{1} and b_{2} of replication one with blocks $b_{2 n^{\prime}-1}$ and
$b_{2 n^{\prime}}$ of replication $n^{\prime}, 1 \leq n^{\prime} \leq r$. When $n^{\prime}>1$, the b_{1} and $b_{2 n^{\prime}-1}$ block concurrence count $\phi_{1 n^{\prime}}$ must be less than or equal to k_{1}, and the $k_{1}-\phi_{1 n^{\prime}}$ block concurrences b_{2} has with $b_{2 n^{\prime}-1}$ must be less than or equal to k_{2}. Therefore, $k_{1}-k_{2} \leq \phi_{1 n^{\prime}} \leq k_{1}$ for all $1<n^{\prime} \leq r$, and when $n^{\prime}=1, \phi_{1 n^{\prime}}=k_{1}$.

Now we will investigate the replication two, containing blocks b_{3} and b_{4}, and replication $n^{\prime}\left(2 \leq n^{\prime} \leq r\right)$ block concurrences. The $\phi_{2 n^{\prime}}$ treatments common to blocks b_{3} and $b_{2 n^{\prime}-1}$ can be divided into two groups: treatments from b_{1} and treatments from b_{2}. The b_{3} and $b_{2 n^{\prime}-1}$ block concurrences among treatments from b_{1} must be in b_{1}, b_{3}, and $b_{2 n^{\prime}-1}$, and, consequently are among the ϕ_{12} treatments from b_{3} that are in b_{1} and the $\phi_{1 n^{\prime}}$ treatments from $b_{2 n^{\prime}-1}$ that are in b_{1}. Thus, the number of b_{3} and $b_{2 n^{\prime}-1}$ block concurrences with the treatments from b_{1} can be no larger than $\min \left\{\phi_{12}, \phi_{1 n^{\prime}}\right\}$. Similarly, the b_{3} and $b_{2 n^{\prime}-1}$ block concurrences among treatments from b_{2} must be in b_{2}, b_{3}, and $b_{2 n^{\prime}-1}$, and are among the $k_{1}-\phi_{12}$ treatments from b_{3} that are in b_{2} and the $k_{1}-\phi_{1 n^{\prime}}$ treatments from $b_{2 n^{\prime}-1}$ that are in b_{2}. Thus, the number of b_{3} and $b_{2 n^{\prime}-1}$ block concurrences with the treatments in b_{2} can be no larger than $\min \left\{k_{1}-\phi_{12}, k_{1}-\phi_{1 n^{\prime}}\right\}$, and $\phi_{2 n^{\prime}} \leq \min \left\{\phi_{12}, \phi_{1 n^{\prime}}\right\}+\min \left\{k_{1}-\phi_{12}, k_{1}-\phi_{1 n^{\prime}}\right\}$. Now, if $\phi_{12}+\phi_{1 n^{\prime}}>k_{1}$ then b_{3} and $b_{2 n^{\prime}-1}$ must have at least ($\phi_{12}+\phi_{1 n^{\prime}}$) $-k_{1}$ block concurrences from b_{1}, and if $\left(k_{1}-\phi_{12}\right)+\left(k_{1}-\phi_{1 n^{\prime}}\right)>k_{2}$ then b_{3} and $b_{2 n^{\prime}-1}$ must have at least $2 k_{1}-\left(\phi_{12}+\phi_{1 n^{\prime}}\right)-k_{2}$ block concurrences from b_{2}. Note that if $\phi_{12}+\phi_{1 n^{\prime}} \leq k_{1}$ or $\left(k_{1}-\phi_{12}\right)+\left(k_{1}-\phi_{1 n^{\prime}}\right) \leq k_{2}$, then b_{3} and $b_{2 n^{\prime}-1}$ need not have any block concurrences among the treatments in b_{1} or b_{2}, respectively. Therefore $\max \left\{0,\left(\phi_{12}+\phi_{1 n^{\prime}}\right)-k_{1}\right\}+\max \left\{0,2 k_{1}-\left(\phi_{12}+\phi_{1 n^{\prime}}\right)-k_{2}\right\} \leq$ $\phi_{2 n^{\prime}} \leq \min \left\{\phi_{12}, \phi_{1 n^{\prime}}\right\}+\min \left\{k_{1}-\phi_{12}, k_{1}-\phi_{1 n^{\prime}}\right\}, 2 \leq n^{\prime} \leq r$.

We will now generalize the previous discussion to the replication n with replication $n^{\prime}, 1<n \leq n^{\prime} \leq r$, block concurrences. As in the replication two and n^{\prime} case above, the $\phi_{n n^{\prime}} b_{2 n-1}$ and $b_{2 n^{\prime}-1}$ block concurrences can be divided into two groups, but now the groups are made up of treatments from b_{21-1} and treatments from $b_{2 l}$, for arbitrary $1 \leq l<n$. For each l and for the same reasons
outlined above in the replication two block concurrence argument replacing b_{1} with $b_{2 l-1}$ and b_{2} with $b_{2 l}, \phi_{n n^{\prime}} \leq \min \left\{\phi_{l n}, \phi_{l n^{\prime}}\right\}+\min \left\{k_{1}-\phi_{l n}, k_{1}-\phi_{l n^{\prime}}\right\}$, and $\phi_{n n^{\prime}} \geq$ $\max \left\{0_{1}\left(\phi_{l n}+\phi_{l n^{\prime}}\right)-k_{1}\right\}+\max \left\{0,2 k_{1}-\left(\phi_{l n}+\phi_{l n^{\prime}}\right)-k_{2}\right\}$. Then for $2 \leq n \leq n^{\prime} \leq r$, $\max _{1 \leq l<n}\left\{\max \left\{0,\left(\phi_{l n}+\phi_{l n^{\prime}}\right)-k_{1}\right\}+\max \left\{0,2 k_{1}-\left(\phi_{l n}+\phi_{l n^{\prime}}\right)-k_{2}\right\}\right\} \leq \phi_{n n^{\prime}}$ and $\phi_{n n^{\prime}} \leq \min _{1 \leq l<n}\left\{\min \left\{\phi_{l n}, \phi_{l n^{\prime}}\right\}+\min \left\{k_{1}-\phi_{l n}, k_{1}-\phi_{l n^{\prime}}\right\}\right\}$.

In summary, the block concurrence count for the first block of replication $n, b_{2 n-1}$, and the first block of replication $n^{\prime}, b_{2 n^{\prime}-1}$ must satisfy

$$
\begin{equation*}
k_{\mathrm{l}}-k_{2} \leq \phi_{1 \mathrm{n}^{\prime}} \leq k_{\mathrm{l}} \tag{2.52}
\end{equation*}
$$

when $n=1$ and

$$
\begin{align*}
& \max _{1 \leq l<n}\left\{\max \left\{0,\left(\phi_{l n}+\phi_{l n^{\prime}}\right)-k_{1}\right\}+\max \left\{0,2 k_{1}-\left(\phi_{l n}+\phi_{l n^{\prime}}\right)-k_{2}\right\}\right\} \\
& \quad \leq \phi_{n n^{\prime}} \leq \min _{1 \leq l<n}\left\{\min \left\{\phi_{l n}, \phi_{l n^{\prime}}\right\}+\min \left\{k_{1}-\phi_{l n}, k_{1}-\phi_{l n^{\prime}}\right\}\right\}, \tag{2.53}
\end{align*}
$$

when $2 \leq n \leq n^{\prime} \leq r$. The remaining block concurrence counts for each pair of blocks of any two replications n and n^{\prime} which are, $k_{1}-\phi_{n n^{\prime}}$ (twice) and $k_{2}-k_{1}+\phi_{n n^{\prime}}$, are expressions involving only the $\phi_{n n^{\prime}}$ s and block sizes k_{1} and k_{2}, and their constraints follow from (2.52) and (2.53). Therefore, the $b_{2 n-1}$ and $b_{2 n^{\prime}-1}$ block concurrence, that is, the block concurrence for the first block of replications n with the first block of replication n^{\prime}, once chosen determine a bound for the block concurrence counts for the remaining blocks of replications n and n^{\prime}. We will assume the $\phi_{n n^{\prime}}$ s satisfy (2.52) and (2.53).

Now that we have derived $N_{d}^{T} N_{d}$ for an arbitrary resolvable design $d \in D$, we are ready to write an explicit expression for $A_{d}=\mathbf{k}^{-\delta / 2} N_{d}^{T} N_{d} \mathbf{k}^{-\delta / 2}$ using (2.51). By rewriting $b \times b, b=2 r$, diagonal matrix $\mathbf{k}^{-\delta / 2}$ as

$$
I \otimes\left(\begin{array}{cc}
\frac{1}{\sqrt{k_{1}}} & 0 \\
0 & \frac{1}{\sqrt{k_{2}}}
\end{array}\right)=I \otimes \kappa^{-\delta / 2}
$$

it follows that

$$
\begin{align*}
& A=\left(\begin{array}{cccc}
\kappa^{-\delta / 2} \Phi_{11} \kappa^{-\delta / 2} & \kappa^{-\delta / 2} \Phi_{12} \kappa^{-\delta / 2} & \cdots & \kappa^{-\delta / 2} \Phi_{1 r} \kappa^{-\delta / 2} \\
& \kappa^{-\delta / 2} \Phi_{22} \kappa^{-\delta / 2} & & \kappa^{-\delta / 2} \Phi_{2 \tau} \kappa^{-\delta / 2} \\
& & & \vdots \\
& & & \kappa^{-\delta / 2} \Phi_{r \tau} \kappa^{-\delta / 2}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\Phi_{11}^{*} & \boldsymbol{\Phi}_{12}^{*} & \cdots & \boldsymbol{\Phi}_{1 r}^{*} \\
& \boldsymbol{\Phi}_{22}^{*} & & \boldsymbol{\Phi}_{2 r}^{*} \\
& & & \vdots \\
& & & \Phi_{r r}^{*}
\end{array}\right), \tag{2.54}
\end{align*}
$$

where $\Phi_{n n}^{*}=I$, the 2×2 identity matrix, and

$$
\Phi_{n n^{\prime}}^{*}=\left(\begin{array}{cc}
\frac{\phi_{n n^{\prime}}}{k_{1}} & \frac{k_{1}-\phi_{n n^{\prime}}}{\sqrt{k_{1}}} \tag{2.55}\\
\frac{k_{1}-\phi_{n n^{\prime}}}{\sqrt{k_{2}}} \\
\sqrt{k_{1} k_{2}} & \frac{k_{2}-k_{1}+\phi_{n n^{\prime}}}{k_{2}}
\end{array}\right)
$$

for $1 \leq n \leq n^{\prime} \leq r . A_{d}^{*}$ in (2.50) can now be easily obtained by subtracting

$$
\frac{1}{k_{1}+k_{2}}\left(\begin{array}{cc}
k_{1} & \sqrt{k_{1} k_{2}} \tag{2.56}\\
\sqrt{k_{1} k_{2}} & k_{2}
\end{array}\right)
$$

from each $\Phi_{n n^{\prime}}^{*}$ in (2.54). Since subtracting (2.56) from $\Phi_{n n}^{*}=I$ yields

$$
\frac{1}{k_{1}+k_{2}}\left(\begin{array}{cc}
k_{2} & -\sqrt{k_{1} k_{2}} \\
-\sqrt{k_{1} k_{2}} & k_{1}
\end{array}\right)
$$

and subtracting (2.56) from $\Phi_{n n^{\prime}}^{*}$ given in (2.55) yields

$$
\frac{\phi_{n n^{\prime}}\left(k_{1}+k_{2}\right)-k_{1}^{2}}{k_{1} k_{2}\left(k_{1}+k_{2}\right)}\left(\begin{array}{cc}
k_{2} & -\sqrt{k_{1} k_{2}} \\
-\sqrt{k_{1} k_{2}} & k_{1}
\end{array}\right)
$$

then

$$
A_{d}^{*}=\frac{1}{\left(k_{1}+k_{2}\right) k_{1} k_{2}}\left(\begin{array}{ccccc}
k_{1} k_{2} & \phi_{12}^{*} & \phi_{12}^{*} & \cdots & \phi_{1 r}^{*} \\
& k_{1} k_{2} & \phi_{23}^{*} & & \phi_{2 r}^{*} \\
& & k_{1} k_{2} & & \phi_{3 r}^{*} \\
& & & & \vdots \\
& & & & k_{1} k_{2}
\end{array}\right) \otimes\left(\begin{array}{cc}
k_{2} & -\sqrt{k_{1} k_{2}} \\
-\sqrt{k_{1} k_{2}} & k_{1}
\end{array}\right)
$$

where

$$
\phi_{n n^{\prime}}^{*}=\phi_{n n^{\prime}}\left(k_{1}+k_{2}\right)-k_{1}^{2} .
$$

Since the eigenvalues of $\left(\begin{array}{cc}k_{2} & -\sqrt{k_{1} k_{2}} \\ -\sqrt{k_{1} k_{2}} & k_{1}\end{array}\right)$ are 0 and $k_{1}+k_{2}$, then the $b=2 r$ eigenvalues of A_{d}^{*} are r copies of 0 and $\frac{1}{k_{2} k_{2}}$ times the r eigenvalues of

$$
M_{d}=\left(\begin{array}{ccccc}
k_{1} k_{2} & \phi_{12}^{*} & \phi_{13}^{*} & \cdots & \phi_{1 r}^{*} \tag{2.57}\\
& k_{1} k_{2} & \phi_{23}^{*} & & \phi_{2 r}^{*} \\
& & k_{1} k_{2} & & \phi_{3 r}^{*} \\
& & & & \vdots \\
& & & & k_{1} k_{2}
\end{array}\right) .
$$

Suppose the eigenvalue of M_{d} are $e_{1}, e_{2}, \ldots, e_{r}$. Then the eigenvalues of A_{d} are r, $r-1$ copies of 0 , and $\left(\frac{e_{1}}{k_{1} k_{2}}, \frac{e_{2}}{k_{1} k_{2}}, \ldots, \frac{e_{r}}{k_{1} k_{2}}\right)$; the eigenvalues of $C_{\text {dual }}^{*}$ are $0, r-1$ copies of 1 , and ($\left.1-\frac{e_{1}}{r k_{1} k_{2}}, 1-\frac{e_{2}}{r k_{1} k_{2}}, \ldots, 1-\frac{e_{r}}{r k_{1} k_{2}}\right)$; and the eigenvalues of C_{d} are $0, v-r-1$ copies of r, and ($r-\frac{e_{1}}{k_{1} k_{2}}, r-\frac{e_{2}}{k_{1} k_{2}}, \ldots, r-\frac{e_{r}}{k_{1} k_{2}}$). Therefore, an eigenvalue-based optimality analysis of resolvable designs $d \in D\left(v, r ; k_{1}, k_{2}\right)$ can focus on the matrix M_{d} for the corresponding set of block concurrence counts $\left\{\phi_{12}, \phi_{13}, \phi_{23}, \ldots, \phi_{r, r-1}\right\}$. We will use this fact in the following sections in which we discuss resolvable design settings for particular values of r.

2.2 General Results

Let $D\left(v, r ; k_{1}, k_{2}\right)$ be a resolvable design setting with $s=2$. Given values of k_{1}, k_{2}, and r, an experimenter is concerned with knowing the assignment of the treatments to the blocks that will yield the best possible information about the effect of the $v=k_{1}+k_{2}$ treatments, that is, they want to know the optimal design $d \in D$. As we saw in the introduction, there are many different ways in which a design $d \in D$ can be considered optimal, and for each type of optimality to be achieved, a specific optimality criteria must be satisfied. In this chapter we will primarily investigate Aand E-optimality, but will often find much more.

Since designs in D are differentiated from one another by their block concurrences $\left\{\phi_{12}, \phi_{13}, \phi_{23}, \ldots, \phi_{r, r-1}\right\}$, our optimality investigation will focus on describing the
structure of the matrix given by (2.57), which is

$$
M_{d}=\left(\begin{array}{ccccc}
k_{1} k_{2} & \phi_{12}^{*} & \phi_{13}^{*} & \cdots & \phi_{1}^{*} \\
& k_{1} k_{2} & \phi_{33}^{3} & & \underset{\phi_{2 r}}{\phi_{2}} \\
& & k_{1} k_{2} & & \phi_{3 r}^{3} \\
& & & & \vdots \\
& & & & k_{1} k_{2}
\end{array}\right)
$$

where

$$
\phi_{n n^{\prime}}^{*}=\phi_{n n^{\prime}}\left(k_{1}+k_{2}\right)-k_{1}^{2}
$$

for a design $d \in D$ that is optimal with respect to one or more eigenvalue optimality criterion. For convenience, we will refer to the matrix M_{d} as the Optimality Matrix for the design d.

Suppose the eigenvalues of an optimality matrix M_{d} are $e_{1} \geq e_{2} \geq \ldots \geq e_{r}$, then $\operatorname{tr} M_{d}=\sum_{i=1}^{r} e_{i}=r k_{1} k_{2}$ for any set of treatment concurrences, and the eigenvalues of C_{d}, which are $0<z_{d 1} \leq z_{d 2} \leq \cdots \leq z_{d, v-1}$, in terms of the eigenvalues of M_{d}, are 0 and

$$
z_{d i}= \begin{cases}r-\frac{e_{i}}{k_{1} k_{2}} & \text { if } 1 \leq i \leq r \tag{2.58}\\ r & \text { if } r-1 \leq i \leq v-1\end{cases}
$$

Now, if \mathcal{M} is the class of all optimality matrices for designs in D, the A-optimal design $d \in D$ with optimality matrix M_{d}, will have block concurrences that minimize

$$
\sum_{i=1}^{r}\left(r-\frac{e_{i}}{k_{1} k_{2}}\right)^{-1}
$$

over $M_{d} \in \mathcal{M}$, and the E-optimal design will maximize the minimum eigenvalue of C_{d}, that is, maximize

$$
\left(r-\frac{e_{1}}{k_{1} k_{2}}\right)
$$

over $M_{d} \in \mathcal{M}$ or, equivalently, minimize e_{1} over $M_{d} \in \mathcal{M}$. The Type-1 optimal design $d \in D$ will be the design that minimizes

$$
\begin{equation*}
\sum_{i=1}^{r} f\left(r-\frac{e_{i}}{k_{1} k_{2}}\right) \tag{2.59}
\end{equation*}
$$

over $M_{d} \in \mathcal{M}$ for all type-1 criteria f.

The following definitions from Inequalities: Theory of Majorization and Its Applications by Albert W. Marshall and Ingram Olkin (1979) will prove to be extremely useful for determining when a design $d \in D$ satisfies (2.59). After stating the definitions, we state a theorem, and, afterward, review some of their consequences that provide the link between the definition and Type-1 optimality.

Definition 2.2.1 Let $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{i}\right\}_{i=1}^{n}$ be nonincreasing sequences of real numbers such that $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$. If

$$
\sum_{i=1}^{l} x_{i} \leq \sum_{i=1}^{l} y_{i}, \quad \text { for all } 1 \leq l \leq n
$$

or, equivalently,

$$
\sum_{i=n}^{n-l+1} x_{i} \geq \sum_{i=n}^{n-l+1} y_{i}, \quad \text { for all } 1 \leq l \leq n
$$

then $\left\{y_{i}\right\}_{i=1}^{n}$ is said to majorize $\left\{x_{i}\right\}_{i=1}^{n}$.

Definitions 2.2.2 Suppose the eigenvalues, written in nonincreasing order, of the optimality matrices for designs d and d^{*} in $D\left(v, r ; k_{1}, k_{2}\right)$ are $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ and $\left\{e_{1}^{*}, e_{2}^{*}, \ldots, e_{r}^{*}\right\}$, respectively.

1. If $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ majorizes $\left\{e_{1}^{*}, e_{2}^{*}, \ldots, e_{r}^{*}\right\}$, and the two vectors are not identical, then design d^{*} is said to be Schur-better than design d, and d is said to be Schur-inferior to d^{*}.
2. Design d^{*} is defined to be Schur-optimal if it is Schur-better than every other design in D.

The following theorem is due to Hardy, Littlewood, and Pólya and can be found in Marshall and Olkin (1979, p. 108). It shows why the majorization relationship and Schur-optimality are important.

Theorem 2.2.1 Let $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{i}\right\}_{i=1}^{n}$ be sequences of real numbers such that $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$. For all continuous real-valued convex functions f,

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \leq \sum_{i=1}^{n} f\left(y_{i}\right)
$$

if and only if $\left\{y_{i}\right\}_{i=1}^{n}$ majorizes $\left\{x_{i}\right\}_{i=1}^{n}$.
Corollary 2.2.2 Let d and d^{*} be in $D\left(v, r ; k_{1}, k_{2}\right)$. If d^{*} is Schur-better than d, then d^{*} is superior to d with respect to every type-1 optimality criterion. Thus Schuroptimality implies optimality with respect to every type-1 criterion.

Let $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{i}\right\}_{i=1}^{n}$ be two nonincreasing sequences of real numbers such that $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$. The following facts about majorization will be used extensively in the subsequent sections.

Fact I: 1. If $x_{1} \geq x_{2}=x_{3}=\cdots=x_{n}$ and $y_{1} \geq x_{1}$, then $\left\{y_{i}\right\}_{i=1}^{n}$ majorizes $\left\{x_{i}\right\}_{i=1}^{n}$.
2. If $x_{1}=x_{2}=\cdots=x_{n-1} \geq x_{n}$ and $x_{n} \geq y_{n}$, then $\left\{y_{i}\right\}_{i=1}^{n}$ majorizes $\left\{x_{i}\right\}_{i=1}^{n}$.

Fact II: Let a and b be real numbers. If $\left\{y_{i}\right\}_{i=1}^{n}$ majorizes $\left\{x_{i}\right\}_{i=1}^{n}$ then $\left\{a-\frac{y_{i}}{b}\right\}_{i=1}^{n}$ majorizes $\left\{a-\frac{x_{i}}{b}\right\}_{i=1}^{n}$.

Fact III: Let $\{a\}_{i=1}^{m}$ be a sequence of real numbers. If $\left\{y_{i}\right\}_{i=1}^{n}$ majorizes $\left\{x_{i}\right\}_{i=1}^{n}$ then $\left\{\left\{y_{i}\right\}_{i=1}^{n} \cup\{a\}_{i=1}^{m}\right\}$ majorizes $\left\{\left\{y_{i}\right\}_{i=1}^{n} \cup\{a\}_{i=1}^{m}\right\}$.

2.3 Equal Concurrences

A resolvable design $d \in D\left(v, r ; k_{1}, k_{2}\right)$ having block concurrence counts $\phi_{12}=\phi_{13}=$ $\phi_{23}=\cdots=\phi_{r-1, r}=\theta$ for some $k_{1}-k_{2} \leq \theta \leq k_{1}$ is called an equal concurrence design with block concurrences equal to θ, or $\operatorname{ECD}(\theta)$. The optimality matrix (2.57) for an $\operatorname{ECD}(\theta)$ may be written in the following form

$$
\begin{equation*}
M_{d}=\left\{k_{1} k_{2}-\left[\theta\left(k_{1}+k_{2}\right)-k_{1}^{2}\right]\right\} I+\left[\theta\left(k_{1}+k_{2}\right)-k_{1}^{2}\right] J \tag{2.60}
\end{equation*}
$$

where I is the $r \times r$ identity matrix, and J is the $r \times r$ matrix of ones. The eigenvalues of M_{d} are $r-1$ copies of

$$
\begin{equation*}
k_{1} k_{2}+\left[k_{1}^{2}-\theta\left(k_{1}+k_{2}\right)\right] \tag{2.61}
\end{equation*}
$$

and one copy of

$$
\begin{equation*}
k_{1} k_{2}-(r-1)\left[k_{1}^{2}-\theta\left(k_{1}+k_{2}\right)\right] \tag{2.62}
\end{equation*}
$$

Theorem 2.3.1 Suppose $D\left(v_{1} r ; k_{1}, k_{2}\right)$ is a resolvable design setting for which ($k_{1}+$ $\left.k_{2}\right) \mid k_{1}^{2}$, and define

$$
\theta^{*}=\frac{k_{1}^{2}}{k_{1}+k_{2}}
$$

Then $E C D\left(\theta^{*}\right) s$ in D are Schur-optimal whenever they exist.

Proof Let $D\left(v, r ; k_{1}, k_{2}\right)$ be a resolvable design setting and suppose $\left(k_{1}+k_{2}\right) \mid k_{1}^{2}$. Since

$$
k_{1}-k_{2} \leq \frac{k_{1}^{2}}{k_{1}+k_{2}} \leq k_{1}
$$

then $\theta=\theta^{*}$ is an admissible value for the common treatment concurrences of an $E C D(\theta)$ in D. Since eigenvalues of the optimality matrix of an $E C D\left(\theta^{*}\right)$, which are $k_{1} k_{2}-(r-1)\left[k_{1}^{2}-\theta^{*}\left(k_{1}+k_{2}\right)\right]=k_{1} k_{2}+\left[k_{1}^{2}-\theta^{*}\left(k_{1}+k_{2}\right)\right]=k_{1} k_{2}$, are identical for $\theta=\theta^{*}$, then they are majorized by the eigenvalues of every competing design in D that is not an $E C D\left(\theta^{*}\right)$. Therefore, $E C D\left(\theta^{*}\right) \mathrm{s}$ are Schur-optimal.

Theorem 2.3.1 generalizes corollary 3.4 of Bailey, Monod, and Morgan (1995) when $s=2$, which established that affine-resolvable designs are Schur-optimal. We require only that the first blocks of each replicate have the same block concurrence, and we allow for unequal block sizes. When $k_{1}=k_{2}$ and $2 \mid k_{1}$, our designs are affine-resolvable designs.

Example Consider the setting $D(9,4 ; 6,3)$. Since $\left(k_{1}+k_{2}\right) \mid k_{1}^{2}$, then $\theta^{*}=4$, and if an $E C D(4)$ exists it is Schur-optimal. In fact, an $E C D(4)$ does exist and is shown in table 2.19.

Table 2.19: A Schur-optimal $E C D(4)$ in $D(9,4 ; 6,3)$

1	7	1	5	1	3	3	1
2	8	2	6	2	4	4	2
3	9	3	9	5	9	5	9
4		4		6		6	
5		7		7		7	
6		8	8		8		

Is some $E C D$ Schur-optimal when $\left(k_{1}+k_{2}\right) \gamma k_{1}^{2}$? If not, what are the optimal classes of designs for the various optimality criteria? Our subsequent discussion will first focus on optimal $E C D$ s when $\left(k_{1}+k_{2}\right) \gamma k_{1}^{2}$, and then will be extended to include designs that are not ECDs. We will leave the existence question for later.

Define the block concurrence parameter

$$
\begin{equation*}
\bar{\theta}=\operatorname{int}\left(\frac{k_{1}^{2}}{k_{1}+k_{2}}\right) \tag{2.63}
\end{equation*}
$$

Note that

$$
0 \leq \frac{k_{1}^{2}}{k_{1}+k_{2}}-\bar{\theta}<1
$$

or, with $v=k_{1}+k_{2}$,

$$
0 \leq \gamma<v
$$

where γ, the block irregularity, is defined by

$$
\gamma=k_{1}^{2}-v \bar{\theta}
$$

The irregularity is zero if and only if $\left(k_{1}+k_{2}\right) \mid k_{1}^{2}$.
Relative to $\bar{\theta}$, designs in $D\left(v, r ; k_{1}, k_{2}\right)$ fall into four categories:

1. $E C D(\theta)$ s having $\theta=\bar{\theta}$, or $E C D(\bar{\theta})$ s.
2. $E C D(\theta)$ s having $\theta=\bar{\theta}+1$, or $E C D(\bar{\theta}+1) \mathrm{s}$.
3. Designs having $\phi_{i i^{\prime}} \in\{\vec{\theta}, \bar{\theta}+1\}$ for all $1 \leq i \neq i^{\prime} \leq r$, with at least one $\phi_{i i^{\prime}}=\bar{\theta}$ and at least one $\phi_{j j^{\prime}}=\bar{\theta}+1,1 \leq j \neq j^{\prime} \leq r$, and $i \neq j$ or $i^{\prime} \neq j^{\prime}$.
4. Designs having $\phi_{i i^{\prime}}<\bar{\theta}$ or $\phi_{i i^{\prime}}>\bar{\theta}+1$ for at least one $1 \leq i \neq i^{\prime} \leq r$.

Designs falling into the first category are $\operatorname{ECD}\left(\theta^{*}\right) s$ when $\left(k_{1}+k_{2}\right) \mid k_{1}^{2}$. Designs falling into the third or fourth categories will be referred to as nearly equal concurrence designs or $N E C D$, and unequal concurrence designs, or UECDs, respectively. We will first investigate $E C D(\bar{\theta}) \mathrm{s}$ and $E C D(\bar{\theta}+1) \mathrm{s}$.

Define the block concurrence discrepancy matrix $\Delta_{d}=\left(\delta_{d i i^{\prime}}\right)$, where

$$
\delta_{d i i^{\prime}}= \begin{cases}\phi_{i i^{\prime}}-\bar{\theta} & \text { if } i \neq i^{\prime} \\ 0 & \text { if } i=i^{\prime} .\end{cases}
$$

For each $\mathrm{l} \leq i \neq i^{\prime} \leq r$, the off-diagonal elements of Δ_{d}, $\delta_{d i i^{\prime}}$, will be referred to as block concurrence discrepancies. The block concurrence discrepancies and the block concurrence discrepancy matrix are denoted using the same notation as pairwise concurrence discrepancies and the discrepancy matrix in Chapter 1. They both measure the total departure from symmetry of a design, but they are not the same. In Chapter 1, symmetry implies treatment concurrence balance; however, for the remainder of our discussion, symmetry will refer to block concurrence balance.

Define the symbol $p=k_{1} k_{2}$ for the product of the block sizes. The optimality matrix (2.57) can now be written

$$
\begin{equation*}
M_{d}=p I-\gamma(J-I)+v \Delta_{d} . \tag{2.64}
\end{equation*}
$$

Note that for $\operatorname{ECD}(\bar{\theta}) \mathrm{s}$, since $\phi_{i i^{\prime}}=\bar{\theta}$ for each $1 \leq i \neq i^{\prime} \leq r$ and $\Delta_{d}=0$,

$$
M_{d}=(p+\gamma) I-\gamma J
$$

and the eigenvalues of M_{d} are $r-1$ copies of

$$
\xi_{1}(\gamma)=p+\gamma
$$

and one copy of

$$
\xi_{2}(\gamma)=p-(r-1) \gamma
$$

and $\xi_{1}(\gamma) \geq \xi_{2}(\gamma)$. For $E C D(\bar{\theta}+1) \mathrm{s}, \phi_{i i^{\prime}}=\bar{\theta}+1$ and $\Delta_{d}=(J-I)$,

$$
M_{d}=[p-(v-\gamma)] I+(v-\gamma) J
$$

and the eigenvalues of M_{d} are $r-1$ copies of

$$
\xi_{1}(\gamma-v)=p-(v-\gamma)
$$

and one copy of

$$
\xi_{2}(\gamma-v)=p+(r-1)(v-\gamma)
$$

and $\xi_{2}(\gamma-v) \geq \xi_{1}(\gamma-v)$.
The following theorem due to Cheng (1978, Theorem 2.3) will be used to establish ϕ_{f}-optimality for certain classes of $E C D(\bar{\theta})$ s.

Theorem 2.3.2 If there exists a design $\bar{d} \in M(v, b, k)$ such that
(i) $C_{\bar{d}}$ has two distinct eigenvalues $z_{\bar{d} 1}=z_{\bar{d} 2}=\ldots=z_{\bar{d}, v-2} \leq z_{\bar{d}, v-1}$.
(ii) \bar{d} minimizes $\sum_{i=1}^{v-1} z_{\bar{d} i}$ over M_{d},
then \bar{d} is ϕ_{f}-optimal for all type-1 criteria with $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.
Theorem 2.3.3 When $0 \leq \gamma \leq \frac{v}{2}, E C D(\bar{\theta})_{s}$ minimize tr C_{d}^{2}, uniquely so if $\gamma<\frac{v}{2}$. Consequently, $E C D(\bar{\theta}) s$ are ϕ_{f}-optimal in $D\left(v, r ; k_{1}, k_{2}\right)$ for all type-1 criteria with $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.

Proof Let M_{d} be the optimality matrix for $d \in D\left(v, r ; k_{1}, k_{2}\right)$, and recall that tr $M_{d}=p r$ and $\left(M_{d}\right)_{i i^{\prime}}=\left(v \delta_{d i i^{\prime}}-\gamma\right)$. If $e_{1} \geq e_{2} \geq \cdots \geq e_{\tau}>0$ are the eigenvalues of M_{d} then

$$
\begin{aligned}
\operatorname{tr} C_{d}^{2} & =(v-r-1) r^{2}+\sum_{i=1}^{r}\left(r-\frac{e_{i}}{p}\right)^{2} \\
& =(v-1) r^{2}-\frac{2 r}{p} \operatorname{tr} M_{d}+\frac{1}{p^{2}} \operatorname{tr} M_{d}^{2} \\
& =(v-3) r^{2}+r+\frac{2}{p^{2}} \sum_{i<i^{\prime}}\left(v \delta_{d i i^{\prime}}-\gamma\right)^{2}
\end{aligned}
$$

so that $\operatorname{tr} C_{d}^{2}$ is minimized by designs that minimize $\sum \sum_{i<i i^{\prime}}\left(v \delta_{d i i^{\prime}}-\gamma\right)^{2}$. Since $\delta_{d i i^{\prime}}$ is integral, the unique minimum of $\operatorname{tr} C_{d}^{2}$ on $0 \leq \gamma<\frac{v}{2}$ is at $\delta_{d i z} \equiv 0$. For $\gamma=\frac{\eta}{2}$, any values $\delta_{d i i^{\prime}} \in\{0,1\}$ minimize tr C_{d}^{2}.

The eigenvalues of the information matrix for a design in $D\left(v, r ; k_{1}, k_{2}\right)$ are $0<$ $z_{d 1} \leq z_{d 2} \leq \cdots \leq z_{d r}$ and $v-r-1$ copies of r, and $\sum_{i=1}^{r} z_{d i}=r(r-1)$ is constant for all designs in D. For $E C D(\vec{\theta}) \mathrm{s}, z_{d i}=r-\frac{\xi_{1}(\gamma)}{p}, 1 \leq i \leq r-1$ and $z_{d r}=r-\frac{\xi_{2}(\gamma)}{p}$, and when $0 \leq \gamma \leq \frac{v}{2}$ they minimize $\sum_{i=1}^{r} z_{d i}^{2}$. Thus these eigenvalues satisfy the conditions of Theorem 2.3.2.

Corollary 2.3.4 When $\gamma=\frac{\nu}{2}$, if the eigenvalues of the information matrix for a $N E C D$ are identical to the eigenvalues of an $\operatorname{ECD}(\bar{\theta})$, then the $N E C D$ is ϕ_{f}-optimal in D and ϕ_{f}-equivalent to $E C D(\bar{\theta})$ sor all type- 1 criteria with $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.

In the remainder of this document we will take the phrase "type-1 optimal" to mean ϕ_{f}-optimal for all type-1 criteria f with $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.

Now define the F-criterion as the value of the largest eigenvalue of C_{d} that is not constrained by the setting to equal r, that is,

$$
\phi_{F}\left(C_{d}\right)=z_{d r}
$$

Although not a member of the type-1 family, this criterion can be important in establishing Schur-optimality. Since $z_{d r}=r-\frac{e_{r}}{p}, \operatorname{minimizing} \phi_{F}\left(C_{d}\right)$ over D is equivalent to maximizing e_{r} over \mathcal{M}. Here is another easily established fact about $E C D(\bar{\theta}) \mathrm{s}$.

Theorem 2.3.5 An $E C D(\bar{\theta})$ is Schur-better than a competitor with a different set of eigenvalues if and only if it is F-equivalent or better than that competitor. Consequently, $E C D(\vec{\theta})_{s}$ are Schur-optimal if and only if they are F-optimal.

Proof Let $d \in D\left(v, b ; k_{1}, k_{2}\right)$ be an $E C D(\vec{\theta})$. Then the eigenvalues of the optimality matrix for d are $r-1$ copies of $\xi_{1}(\gamma)$ and one copy of $\xi_{2}(\gamma)$, and $\xi_{1}(\gamma) \geq \xi_{2}(\gamma)$.

Suppose the optimality matrix for a competing design $\bar{d} \in D$ that is not an $E C D(\bar{\theta})$ has eigenvalues $e_{1} \geq e_{2} \geq \cdots \geq e_{r}$. Now, the $\operatorname{ECD}(\bar{\theta})$ is F-equivalent or better than \bar{d} if and only if $e_{\tau} \leq \xi_{2}(\gamma)$, which is a necessary and sufficient condition for the eigenvalues of the information matrix for \bar{d} to majorize the eigenvalues of the information matrix for the $E C D(\bar{\theta})$.

A result of similar flavor holds for $E C D(\bar{\theta}+1) \mathrm{s}$ using the E-criterion. As pointed out by Kunert (1985, page 385), facts $1-3$ of section 2.2 says that $E C D(\bar{\theta}+1)$ s are Schur-best whenever they are E-optimal. We state this as:

Theorem 2.3.6 An $E C D(\bar{\theta}+1)$ is Schur-better than a competitor with a different set of eigenvalues if and only if it is E-equivalent or better than that competitor. Consequently, $E C D(\bar{\theta}+1) s$ are Schur-optimal if and only if they are E-optimal.

Proof Let $d^{*} \in D\left(v, b ; k_{1}, k_{2}\right)$ be an $E C D(\bar{\theta}+1)$. Then the eigenvalues of the optimality matrix for d^{*} are $r-1$ copies of $\xi_{1}(v-\gamma)$ and one copy of $\xi_{2}(v-\gamma)$, and $\xi_{2}(v-\gamma) \geq \xi_{1}(v-\gamma)$. Suppose the optimality matrix for a competing design $d \in D$ that is not an $E C D(\bar{\theta}+1)$ has eigenvalues $e_{1} \geq e_{2} \geq \cdots \geq e_{r}$. Now, the $E C D(\bar{\theta}+1)$ is E-equivalent or better than d if and only if $e_{1} \geq \xi_{2}(v-\gamma)$, which is a necessary and sufficient condition for the eigenvalues of the information matrix for d to majorize the eigenvalues of the information matrix for the $\operatorname{ECD}(\bar{\theta}+1)$.

Corollary 2.3.7 $\operatorname{ECD}(\bar{\theta})$ s are Schur-better than $\operatorname{ECD}(\bar{\theta}+1) s$ if and only if

$$
\gamma \leq \frac{1}{r} v
$$

and $E C D(\bar{\theta}+1) s$ are Schur-better than $E C D(\bar{\theta})$ s if and only if

$$
\gamma \geq \frac{r-1}{r} v .
$$

Proof Note that the eigenvalues of $E C D(\bar{\theta}) s$ and $E C D(\bar{\theta}+1) s$ are never identical. $E C D(\bar{\theta})$ s are F-equivalent or better than $\operatorname{ECD}(\bar{\theta}+1)$ s if and only if $\xi_{1}(\gamma-v) \leq \xi_{2}(\gamma)$
which is equivalent to $\gamma \geq \frac{1}{r} v . E C D(\bar{\theta}+1) \mathrm{s}$ are E-equivalent or better than $E C D(\bar{\theta}) \mathrm{s}$ if and only if $\xi_{1}(\gamma) \geq \xi_{2}(v-\gamma)$ which is equivalent to $\gamma \leq \frac{r-1}{r} v$.

Corollary 2.3.8 $\operatorname{ECD}(\bar{\theta})_{s}$ are E-better than $\operatorname{ECD}(\bar{\theta}+1) s$ if and only if

$$
\gamma<\frac{r-1}{r} v
$$

and $E C D(\bar{\theta})_{s}$ and $E C D(\bar{\theta}+1) s$ are E-equivalent when

$$
\gamma=\frac{r-1}{r} v .
$$

Lemma 2.3.9 Suppose a design $d \in D\left(v, r ; k_{1}, k_{2}\right)$ has optimality matrix M_{d} and concurrence discrepancy matrix $\Delta_{d}=\left(\delta_{d i i}\right)$, and suppose the maximum eigenvalue of M_{d} is e_{1} and the minimum eigenvalue of M_{d} is e_{r}. If $\delta_{d 12} \leq 0$ then

$$
e_{1} \geq p+\gamma-v \delta_{d 12} \quad \text { and } \quad e_{r} \leq p-\gamma+v \delta_{d 12} .
$$

If $\delta_{d 12} \geq 0$ then

$$
e_{1} \geq p-\gamma+v \delta_{d 12} \quad \text { and } \quad e_{r} \leq p+\gamma-v \delta_{d 12} .
$$

Proof The leading 2×2 minor of M_{d}, which is $M_{d 11}=\left(p+\gamma-v \delta_{d 12}\right) I-\left(\gamma-v \delta_{d 12}\right) J_{2}$ has eigenvalues

$$
p+\gamma-v \delta_{d 12} \quad \text { and } \quad p-\gamma+v \delta_{d 12} .
$$

A Sturmian Separation Theorem (Rao, 1973, page 64) provides the bounds.

Corollary 2.3.10 Suppose $d \in D\left(v, b_{i} k_{1}, k_{2}\right)$ is a UECD with $\delta_{d i^{\prime}} \leq-\alpha$ for at least one $1 \leq i \neq i^{\prime} \leq r$, and for some integer $\alpha \geq 1$. ECD $(\bar{\theta})$ s are Schur-better than d if

$$
\gamma \leq \frac{\alpha}{r-2} v
$$

and $E C D(\bar{\theta}+1) s$ are Schur better than d if

$$
\gamma \geq \frac{r-\alpha-1}{r} v .
$$

Proof Let $d \in D$ be a $U E C D$ as described in the lemma and let e_{1} and e_{τ} be the maximum and minimum eigenvalues, respectively, of the optimality matrix for d. For a proper labeling of the design replications, $\delta_{d 12} \leq-\alpha$. Then from lemma 2.3.9, $e_{1} \geq p+\gamma-\alpha v$, and $p-\gamma+\alpha v \geq e_{\mathrm{r}}$. By Theorem 2.3.5, an $E C D(\bar{\theta})$ is Schur-better than d if $\xi_{2}(\gamma) \geq p-\gamma+v \alpha \geq e_{r}$, or

$$
\gamma \leq \frac{\alpha}{r-2} v
$$

By Theorem 2.3.6, an $E C D(\bar{\theta}+1)$ is Schur-better than d if $e_{1} \geq p+\gamma-v \alpha \geq \xi_{2}(\gamma-v)$, or

$$
\gamma \geq \frac{r-\alpha-1}{r} v .
$$

Corollary 2.3.11 When $r \leq 4$, all UECDs with $\delta_{\text {dii' }} \leq-1$ for some $1 \leq i \neq i^{\prime} \leq r$ are Schur-inferior to an ECD, and when $r=5$ or 6 , UECDs with $\delta_{d i i} \leq-2$ for some $1 \leq i \neq i^{\prime} \leq r$ are Schur-inferior to an ECD.

Corollary 2.3.12 Suppose $d \in D\left(v, b ; k_{1}, k_{2}\right)$ is a UECD with $\delta_{\text {dii }} \geq \alpha$ for at least one $1 \leq i \neq i^{\prime} \leq r$, and for some integer $\alpha \geq 2$. $\operatorname{ECD}(\bar{\theta})$ s are Schur-better than d if

$$
\gamma \leq \frac{\alpha}{r} v
$$

and $E C D(\bar{\theta}+1) s$ are Schur better than d if

$$
\gamma \geq \frac{r-\alpha-1}{r-2} v .
$$

Proof Let $d \in D$ be a $U E C D$ as described in the lemma, and let e_{1} and e_{r} be the maximum and minimum eigenvalue, respectively, of the optimality matrix for d. For a proper labeling of the design replications, $\delta_{d 12} \geq \alpha \geq 2$. Then from lemma 2.3.9, $e_{1} \geq p-\gamma+\alpha v$, and $p+\gamma-\alpha v \geq e_{r}$. By Theorem 2.3.5, an $E C D(\bar{\theta})$ is Schur-better than d if $\xi_{2}(\gamma) \geq p+\gamma-\alpha v \geq e_{r}$ or

$$
\gamma \leq \frac{\alpha}{r} v
$$

By Theorem 2.3.6, an $E C D(\bar{\theta}+1)$ is Schur-better than d if $e_{1} \geq p-\gamma+\alpha v \geq \xi_{2}(\gamma-v)$ or

$$
\gamma \geq \frac{r-\alpha-1}{r-2} v
$$

Corollary 2.3.13 When $r \leq 4$, all UECDs with $\delta_{\text {dii }} \geq 2$ for some $1 \leq i \neq i^{\prime} \leq r$ are Schur-inferior to an ECD, and when $r=5$ or 6 , UECDs with $\delta_{\text {dii }} \geq 3$ for some $1 \leq i \neq i^{\prime} \leq r$ are Schur-inferior to an $E C D$.

Corollaries 2.3 .11 and 2.3 .13 say that optimal designs in settings $D\left(v, r ; k_{1}, k_{2}\right)$ with $r \leq 4$ must be an $E C D(\bar{\theta})$, an $E C D(\bar{\theta}+1)$, or an $N E C D$, and optimal designs in settings with $r=5$ or 6 must have block concurrence discrepancies $\delta_{\text {dii }} \in\{-1,0,1,2\}$ for all $1 \leq i \neq i^{\prime} \leq r$. Now we will show that UECDs are always E-inferior to an $E C D(\vec{\theta})$, and $E C D(\vec{\theta})$ s are E-optimal when $0 \leq \gamma \leq \frac{\nu}{2}$.

Corollary 2.3.14 For all $r \geq 2$ and $0 \leq \gamma<v, \operatorname{ECD}(\bar{\theta})$ s are E-better than UECDs.

Proof Suppose $d \in D\left(v, r ; k_{1}, k_{2}\right)$ is an $U E C D$, and $\delta_{d i i^{\prime}} \leq-\alpha$ for some $1 \leq i \neq$ $i^{\prime} \leq r$ and integer $\alpha \geq 1$. Than, for a proper labeling of the design replications, $\delta_{d 12^{r}} \leq-\alpha$, and $e_{1} \geq p+\gamma-v \delta_{d 12}>\xi_{1}(\gamma)$, and $\operatorname{ECD}(\bar{\theta})$ s are E-better than d. Now suppose $\delta_{d i i^{\prime}} \geq \alpha$ for some $1 \leq i \neq i^{\prime} \leq r$ and integer $\alpha \geq 2$. Then, for a proper labeling of the design replications, $\delta_{d 12} \geq \alpha$ and $e_{1} \geq p-\gamma+v \delta_{d 12}>\xi_{1}(\gamma)$ and $E C D(\bar{\theta})$ s are E-better than d.

Corollary 2.3.15 When $0 \leq \gamma \leq \frac{y}{2}, E C D(\bar{\theta})$ s are E-optimal, uniquely so when $\gamma \neq \frac{0}{2}$.

Proof By corollary 2.3.8, $E C D(\bar{\theta})$ s are E-equivalent or better than $E C D(\bar{\theta}+1) s$ when $\gamma \leq \frac{v}{2}$, E-equivalent only when $r=2$ and $\gamma=\frac{v}{2} . \operatorname{ECD}(\bar{\theta})$ s are always E-better than UECDs by corollary 2.3.14. The maximum eigenvalue of the optimality matrix
for $E C D(\bar{\theta})$ s in any resolvable design setting $D\left(v, r ; k_{1}, k_{2}\right)$ is $\xi_{1}(\gamma)=p+\gamma$, and with a proper labeling of the replications, the optimality matrix of a $N E C D$ has $\delta_{d 12}=1$. Then, from 2.3.9, $z_{1} \geq p+(v-\gamma)$. Since $p+(v-\gamma)>\xi_{1}(\gamma)$ when $0<\gamma<\frac{v}{2}$, and $p+(v-\gamma)=\xi_{1}(\gamma)$ when $\gamma=\frac{\nu}{2}$, the result follows.

The next lemma provides bounds for the maximum and minimum eigenvalues of the optimality matrix in terms of the eigenvalues derived from the block concurrence discrepancy matrix for the design.

Lemma 2.3.16 Suppose e_{1} and e_{r} are the maximum and minimum eigenvalues, respectively, of the optimality matrix M_{d} for $d \in D\left(v, r ; k_{1}, k_{2}\right)$. If u_{1} and u_{r} are the maximum and minimum eigenvalues of $\Delta_{d 0}=P^{T} \Delta_{d} P$, where $P=\left(I-\frac{1}{r} J\right)$ and Δ_{d} is the block concurrence discrepancy matrix, then

$$
e_{1} \geq p+\gamma+v u_{1}
$$

provided $u_{1}>0_{\text {, }}$ and

$$
e_{r} \leq p+\gamma+v u_{r} .
$$

Proof

$$
\begin{align*}
& e_{1}=\max _{\mathbf{x}^{T} \mathbf{x}=1} \mathbf{x}^{T} M_{d} \mathbf{x} \tag{2.65}\\
& =\max _{\mathbf{x}^{T} \mathbf{x}=1} \mathbf{x}^{\mathbf{T}}\left[(p+\gamma) I-\gamma J+v \Delta_{d}\right] \mathbf{x} \\
& \geq \max _{\substack{\mathbf{x}^{T} \times 1 \\
\mathbf{x}^{T}=1}} \mathbf{x}^{T}\left[(p+\gamma) I-\gamma J+v \Delta_{d}\right] \mathbf{x} \\
& =p+\gamma+v \max _{\substack{x_{x}^{T} x=1 \\
\mathbf{x}_{\mathrm{I}}=0}} \mathbf{x}^{T} \Delta_{d} \mathbf{X} \\
& =p+\gamma+v \max _{\substack{\mathbf{x}^{T} x^{T}=1 \\
\mathbf{x}^{T}=0}} \mathbf{x}^{\boldsymbol{T}} P^{\boldsymbol{T}} \Delta_{d} P \mathbf{x} \\
& =p+\gamma+v \max _{\mathbf{x}^{T} x=1} \mathbf{x}^{T} P^{T} \Delta_{d} P \mathbf{x} \tag{2.66}\\
& =p+\gamma+v u_{1} \text {. }
\end{align*}
$$

Equality (2.66) holds since $u_{1}>0,1^{T} P^{T} \Delta_{d} P 1=0$, and $P^{T} \Delta_{d} P 1=01$ (that is, 1 is an eigenvector of $P^{T} \Delta_{d} P$ with eigenvalue 0). Likewise we find

$$
\begin{align*}
e_{\boldsymbol{r}} & =\min _{\mathbf{x}^{T} \mathbf{x}=1} \mathbf{x}^{T} M_{d} \mathbf{x} \\
& =\min _{\mathbf{x}^{T} \mathbf{x}=1} \mathbf{x}^{T}\left[(p+\gamma) I-\gamma J+v \Delta_{d}\right] \mathbf{x} \\
& \leq p+\gamma+v \min _{\substack{\mathbf{x}^{T} \mathbf{x}=1 \\
\mathbf{x}^{T}=0}} \mathbf{x}^{T} P^{T} \Delta_{d} P \mathbf{x} \\
& =p+\gamma+v u_{r} \tag{2.67}
\end{align*}
$$

Equality (2.67) is true provided $u_{r}<0$, for similar reasons to above. If $u_{r}>0$, the bound still holds, since

$$
e_{\mathrm{r}} \leq \frac{\operatorname{tr}\left(M_{d}\right)}{r}=p \leq p+\gamma+v u_{\mathrm{r}}
$$

We end this section with a corollary that provides conditions for when a design $d \in D$ is Schur-inferior to an $E C D$ and for when d is E-inferior to an $E C D(\bar{\theta})$.

Corollary 2.3.17 Let $d \in D\left(v, r ; k_{1}, k_{2}\right)$ be a resolvable design with optimality matrix M_{d}, whose eigenvalues are not identical to those of an $E C D(\bar{\theta})$ or an $\operatorname{ECD}(\bar{\theta}+1)$. Let u_{1} and u_{r} be the maximum and minimum eigenvalues, respectively, of $\Delta_{d 0}=$ $P^{\pi} \Delta_{d} P, P=\left(I-\frac{1}{r} J\right) . I f$

$$
\begin{equation*}
\gamma<-\frac{u_{r}}{r} v \tag{2.68}
\end{equation*}
$$

then $E C D(\vec{\theta})_{s}$ are Schur-better than d. If $u_{1}>0$ and

$$
\begin{equation*}
\gamma>\left(\frac{r-u_{1}-1}{r}\right) v \tag{2.69}
\end{equation*}
$$

then $E C D(\bar{\theta}+1) s$ are Schur-better than d. Furthermore, if

$$
\begin{equation*}
u_{1}>0 \tag{2.70}
\end{equation*}
$$

then $E C D(\bar{\theta}) s$ are E-better, but not necessarily Schur-better, than d.

Proof The result follows immediately from Theorems 2.3.5 and 2.3.6 and lemma 2.3.16.

2.4 Special Cases: $\left(k_{1}-k_{2}\right) \leq 2$

In this section we will investigate the three important special cases of k_{1} and k_{2} being equal or nearly so: that when $k_{2}=k_{1}$, that when $k_{2}=k_{1}-1$, and that when $k_{2}=k_{1}-2$. For each case, results that follow immediately from the theory earlier in this chapter are reported. If we write $k_{2}=k_{1}-n$, then $\left(k_{1}-k_{2}\right) \leq 2$ says that $n=0,1$, or 2 , and for any n

$$
\begin{equation*}
\frac{k_{1}^{2}}{k_{1}+k_{2}}=\frac{k_{1}^{2}}{2 k_{1}-n}=\frac{k_{1}}{2}+\frac{n}{4}+\frac{n^{2}}{4\left(2 k_{1}-n\right)} . \tag{2.71}
\end{equation*}
$$

Recall that $\bar{\theta}$ is the integer part of (2.71), and $\gamma=k_{1}^{2}-v \bar{\theta}$.
Lemma 2.4.1 When $k_{1}=k_{2}$, if $2 \mid k_{1}$ then $\gamma=0$, and if $2 \gamma k_{1}$ then $\gamma=\frac{v}{2}$.
Proof When $k_{1}=k_{2}, n=0$ and (2.71) becomes $\frac{k_{1}^{2}}{k_{1}+k_{2}}=\frac{k_{1}}{2}$, and the result clearly follows.

Corollary 2.4.2 Let $k_{1}=k_{2}$.
(i) If $2 \mid k_{1}$ then $\left(k_{1}+k_{2}\right) \mid k_{1}^{2}$ and $E C D\left(\theta^{*}\right)$ s are Schur-optimal.
(ii) If $2 / k_{1}$ then $E C D(\bar{\theta})$ s are E - and type- 1 optimal.

When $k_{1}=k_{2}$ and $v=2 \mid k_{1}$, the resulting design is an affine-resolvable design since every pair of blocks from different replicates have block concurrence $\theta^{*}=\frac{k_{1}}{2}$. Bailey, Monod, and Morgan (corollary 3.4, 1995) proved that affine-resolvable designs are Schur-optimal. For $2 \Downarrow k_{1}$, the result is from Theorem 2.3.3 and corollary 2.3.15. The optimality need not be uniquely so.

Lemma 2.4.3 When $k_{1}-k_{2}=1$, if $2 \mid k_{1}$ then $\gamma=\frac{k_{1}}{2}$, and if $2 \gamma k_{1}$ then $\gamma=\frac{3 k_{1}-1}{2}$.
Proof When $k_{1}-k_{2}=1$ then $n=1$ and the last term on the right hand side of (2.71) becomes $\frac{n^{2}}{4\left(2 k_{1}-n\right)}=\frac{1}{4\left(2 k_{1}-1\right)}$. Then

$$
\bar{\theta}=\left\{\begin{array}{ll}
\frac{k_{1}}{2} & \text { if } 2 \mid k_{1} \\
\frac{k_{1}-1}{2} & \text { if } 2 Y k_{1}
\end{array},\right.
$$

and, since $v=2 k_{1}-1, \frac{v}{4\left(2 k_{1}-1\right)}=\frac{1}{4}$, and

$$
\gamma= \begin{cases}\frac{k_{1}}{2} & \text { if } 2 \mid k_{1} \\ \frac{3 k_{1}-1}{2} & \text { if } 2 Y k_{1}\end{cases}
$$

Corollary 2.4.4 Let $k_{1}-k_{2}=1$.
(i) If $2 \mid k_{1}$, then $\frac{v}{4}<\gamma<\frac{v}{3}$, and $E C D(\bar{\theta})$ s are E - and type-1 optimal.
(ii) If 2$\rangle k_{1}$, then $\frac{3 v}{4}<\gamma \leq \frac{4 v}{5}$.

Lemma 2.4.5 When $k_{1}-k_{2}=2$, if $2 \mid k_{1}$ then $\gamma=k_{1}$, and if $2 \gamma k_{1}$ then $\gamma=1$.

Proof When $k_{1}-k_{2}=2$ then $n=2$ and the last term on the right hand side of (2.71) becomes $\frac{n^{2}}{4\left(2 k_{1}-n\right)}=\frac{1}{2\left(k_{1}-1\right)}$. Then

$$
\bar{\theta}= \begin{cases}\frac{k_{1}}{2} & \text { if } 2 \mid k_{1} \\ \frac{k_{1}+1}{2} & \text { if } 2 \gamma k_{1},\end{cases}
$$

and, since $v=2\left(k_{1}-1\right), \frac{v}{2\left(2 k_{1}-1\right)}=1$, and

$$
\gamma= \begin{cases}k_{1} & \text { if } 2 \mid k_{1} \\ 1 & \text { if } 2 Y k_{1}\end{cases}
$$

Corollary 2.4.6 Let $k_{1}-k_{2}=2$. Then $k_{1} \geq k_{2} \geq 2$ implies $k_{1} \geq 4$, and
(i) If $k_{1}=4$, then $\gamma=\frac{2 v}{3}$.
(ii) If $k_{1}=6$, then $\gamma=\frac{3 v}{5}$.
(iii) If $2 \mid k_{1}$ and $k_{1} \geq 8$, then $\frac{v}{2}<\gamma<\frac{3 v}{5}$.
(iv) If $2 \gamma k_{1}$, then $0<\gamma \leq \frac{v}{6}$, and $E C D(\bar{\theta})_{s}$ are $E-$ and type- 1 optimal.

CHAPTER III

APPLICATION: OPTIMAL RESOLVABLE DESIGNS WITH UP TO FIVE REPLICATES AND TWO BLOCKS PER REPLICATE

3.1 Introduction

Optimality in resolvable designs settings $D\left(v, r ; k_{1}, k_{2}\right)$ for $2 \leq r \leq 5$ will be investigated in this chapter. As stated in Chapter II, the primary goal is to determine Aand E-optimal designs, though often we can do much more. If the E-optimal design is not unique, the Schur-best of the E-optimal designs, or the (E,S)-optimal design will be identified.

Definition 3.1.1 A design d in a class of designs D is said to be (E, S)-optimal if
(i) d is E-optimal, and
(ii) among all E-optimal designs in D, d is Schur-optimal.

We review some important facts from section 2.3 concerning Schur- and type-1 optimality in $D\left(v, r ; k_{1}, k_{2}\right)$ before commencing our eigenvalue optimality discussion.

1. When $\left(k_{1}+k_{2}\right) \mid k_{1}^{2}, \operatorname{ECD}\left(\theta^{*}\right) s$ with

$$
\theta^{*}=\frac{k_{1}^{2}}{k_{1}+k_{2}}
$$

are Schur-optimal whenever they exist.
2. When $0 \leq \gamma \leq \frac{v}{2}, E C D(\bar{\theta}) \mathrm{s}$ with

$$
\bar{\theta}=\operatorname{int}\left(\frac{k_{1}^{2}}{k_{1}+k_{2}}\right)
$$

are type-1 and E-optimal, uniquely so when $\gamma<\frac{y}{2}$, whenever they exist.
3. When $r \leq 4$, UECDs are Schur-inferior to an $E C D(\bar{\theta})$ or an $E C D(\bar{\theta}+1)$ whenever the ECDs exist.
4. When $r=5, U E C D$ having at least one $\delta_{d i i^{\prime}} \leq-2$ or at least one $\delta_{d i i^{\prime}} \geq 3$ are Schur-inferior to an $E C D(\bar{\theta})$ or an $E C D(\bar{\theta}+1)$ whenever the $E C D$ s exist.

Therefore, in the sequal we will restrict our attention to ECDs and NECDs, when $r \leq 4$, or $E C D \mathrm{~s}, N E C D \mathrm{~s}$, and $U E C D$ s having $-1 \leq \delta_{d i i^{\prime}} \leq 2$, when $r=5$. From fact 2 it follows immediately that

Corollary 3.1.1 When $0 \leq \gamma \leq \frac{v}{2}, E C D(\bar{\theta})$ s are (E, S)-optimal, uniquely so when $\gamma<\frac{\nu}{2}$.

By lemma 2.3.15, when $\gamma=\frac{y}{2}, E C D(\bar{\theta}) \mathrm{s}$ are Schur-optimal but may not be uniquely so. Therefore, $\operatorname{ECD}(\bar{\theta})$ s are not uniquely (E, S)-optimal when $\gamma=\frac{v}{2}$ only when a competing design that is not an $\operatorname{ECD}(\bar{\theta})$ has identical eigenvalues to the $E C D(\bar{\theta})$.

The eigenvalues of the optimality matrix M_{d} of designs in resolvable design settings $D\left(v, b ; k_{1}, k_{2}\right)$ can be directly used to determine the Schur-, E -, and (E, S)optimal designs. Establishing A-optimality requires working with the eigenvalues of the information matrix C_{d} of the the designs; however, we can still restrict our efforts to working with the eigenvalues of M_{d} in A-optimality investigations, as shown next.

Recall that if $z_{1}, z_{2}, \ldots, z_{v-1}$ are the nonzero eigenvalues of the information matrix C_{d} for a resolvable design $d \in D\left(v, r ; k_{1}, k_{2}\right)$, then the A-value for the design is

$$
\begin{equation*}
\sum_{i=1}^{v-1} z_{i}^{-1} \tag{3.72}
\end{equation*}
$$

and the A-optimal design minimizes (3.72). Furthermore, if $\epsilon_{1} \geq e_{1} \geq \cdots \geq e_{r}$ are the eigenvalues of the the optimality matrix M_{d} of a design $d \in D$, then the eigenvalue of the information matrix C_{d} corresponding to each $e_{i}, 1 \leq i \leq r$, is $z_{i}=r-\frac{e_{1}}{p}$. Moreover, the eigenvalues of the information matrices for resolvable designs in D are $0, v-r-1$ copies of r, and $r-\frac{e_{1}}{p} \leq r-\frac{e_{2}}{p} \leq \cdots \leq r-\frac{e_{r}}{p}$. Thus, the class of designs that minimizes

$$
\begin{equation*}
\sum_{i=1}^{r}\left(r-\frac{e_{i}}{p}\right)^{-1} \tag{3.73}
\end{equation*}
$$

will also minimize (3.72), and, therefore, will be A-optimal.
The following three facts concerning bounds on $\frac{P}{v}$, and a lemma relating intervals of γ to ranges of values of k_{2} for fixed values of k_{1} and $\bar{\theta}$, will be needed to establish results on A-optimality.

Fact 3.1.2 If $k_{1} \geq k_{2} \geq 2$, then

$$
\frac{k_{1} k_{2}}{k_{1}+k_{2}} \geq 1
$$

Fact 3.1.3 If
(i) $k_{1} \geq k_{2} \geq 4$, or
(ii) $k_{2}=3$ and $k_{1} \geq 6$ then

$$
\frac{k_{1} k_{2}}{k_{1}+k_{2}} \geq 2
$$

Fact 3.1.4 If
(i) $k_{1} \geq k_{2} \geq 5$,
(ii) $k_{2}=4$ and $k_{1} \geq 7$, or
(iii) $k_{2}=3$ and $k_{1} \geq 15$
then

$$
\frac{k_{1} k_{2}}{k_{1}+k_{2}} \geq \frac{5}{2}
$$

Lemma 3.1.5 Suppose $k_{1} \geq k_{2}=n \geq 2$ for a given integer n, and let $x=$ int $\left(\frac{n^{2}}{k_{1}+n}\right)$. For any real numbers $0 \leq \alpha \leq \beta \leq 1$,

$$
\alpha v \leq \gamma \leq \beta v
$$

if and only if

$$
\frac{n^{2}-n(\beta+x)}{\beta+x} \leq k_{1} \leq \frac{n^{2}-n(\alpha+x)}{\alpha+x}
$$

Proof If $k_{1} \geq k_{2}=n$, then

$$
\frac{k_{1}^{2}}{k_{1}+k_{2}}=\frac{k_{1}^{2}}{k_{1}+n}=k_{1}-n+\frac{n^{2}}{k_{1}+n}
$$

If we define

$$
x=\operatorname{int}\left(\frac{n^{2}}{k_{1}+n}\right)
$$

then $\bar{\theta}=k_{1}-n+x$ and $\gamma=n^{2}-x\left(k_{1}+n\right)$. Now, for any real numbers $0 \leq \alpha \leq \beta \leq 1$, $\gamma \geq \alpha v$ if and only if

$$
k_{1} \leq \frac{n^{2}-n(\alpha+x)}{\alpha+x}
$$

and $\gamma \leq \beta v$ if and only if

$$
k_{1} \geq \frac{n^{2}-n(\beta+x)}{\beta+x}
$$

The following bounds will be useful to the constructions.

Lemma 3.1.6 Let k_{1} and k_{2} be two integers satisfying $3 \leq k_{1}$ and $2 \leq k_{2} \leq k_{1}$, and let $\bar{\theta}$ be as defined by (2.63). Then,

$$
\bar{\theta}+2 \leq k_{1} \leq \begin{cases}2 \bar{\theta}+1 & \text { if } k_{1} \text { odd } \tag{3.74}\\ 2 \bar{\theta} & \text { if } k_{1} \text { even } .\end{cases}
$$

Proof For a resolvable block design setting $D\left(v, r ; k_{1}, k_{2}\right)$, write

$$
\begin{equation*}
\frac{k_{1}^{2}}{k_{1}+k_{2}}=k_{1}-k_{2}+\frac{k_{2}^{2}}{k_{1}+k_{2}} . \tag{3.75}
\end{equation*}
$$

For a fixed value of $k_{1} \geq 3$, since (3.75) is a decreasing function of $k_{2}, 2 \leq k_{2} \leq k_{1}$, then

$$
\begin{equation*}
\frac{k_{1}}{2} \leq \frac{k_{1}^{2}}{k_{1}+k_{2}} \leq k_{1}-2+\frac{4}{k_{1}+2} \tag{3.76}
\end{equation*}
$$

Since $\frac{4}{k_{1}+2}<1$ for all $k_{1} \geq 3$ then, by taking the integer part of each term in (3.76), we have

$$
\left.\begin{array}{ll}
\frac{k_{1}-1}{2} & \text { if } k_{1} \text { odd } \tag{3.77}\\
\frac{k_{1}^{2}}{2} & \text { if } k_{1} \text { even }
\end{array}\right\} \leq \bar{\theta} \leq k_{1}-2 .
$$

Rewriting (3.77) in terms of k_{1} yields (3.74).
Corollary 3.1.7 Let $3 \leq k_{1}$ and $2 \leq k_{2} \leq k_{1}$ be integers, and let $\bar{\theta}$ be given by (2.63). Then, $2 k_{1}-\bar{\theta} \leq k_{1}+k_{2}$.

Lemma 3.1.8 Let k_{1} and k_{2} be two integers satisfying $3 \leq k_{1}$ and $2 \leq k_{2} \leq k_{1}$, and let $\bar{\theta}$ be as defined by (2.63). Then the following inequalities hold:

1. If $k_{1}=2 \bar{\theta}$ then $k_{1}-3 \leq k_{2} \leq k_{1}$.
2. if $k_{1}=2 \bar{\theta}+1$ then $k_{1}-1 \leq k_{2} \leq k_{1}$

Proof

1. Let $k_{1}=2 \bar{\theta}$. Then

$$
k_{1}=2 \operatorname{int}\left(\frac{k_{1}^{2}}{k_{1}+k_{2}}\right)
$$

if and only if

$$
\frac{k_{1}}{2} \leq k_{1}-\frac{k_{1} k_{2}}{k_{1}+k_{2}}<\frac{k_{1}}{2}-1
$$

if and only if

$$
k_{1}-4+\frac{8}{k_{1}+2}=\frac{k_{1}\left(k_{1}-2\right)}{k_{1}+2}<k_{2} \leq k_{1}
$$

then

$$
k_{1}-3 \leq k_{2} \leq k_{1}
$$

2. Similarly, if $k_{1}=2 \bar{\theta}+1$ then

$$
k_{1}-2 \operatorname{int}\left(\frac{k_{1}^{2}}{k_{1}+k_{2}}\right)+1
$$

if and only if

$$
k_{1}-2+\frac{2}{k_{1}+1}<k_{2} \leq k_{1}
$$

then

$$
k_{1}-2 \leq k_{2} \leq k_{1}
$$

3.2 Resolvable Designs With Two Replicates

3.2.1 Schur-optimality

For two replicates M_{d} has two eigenvalues, as given in section 2.3. It follows from lemma 2.3.9 that the eigenvalues of any design that is not an $E C D$ majorize the eigenvalues of at least one of $E C D(\bar{\theta})$ and $E C D(\bar{\theta}+1)$. Thus only $E C D$ s need to be considered in this section. The ECDs are:
$\operatorname{ECD}(\bar{\theta})$: The optimality matrix for $E C D(\bar{\theta})_{s}$ is $M_{d}=p I-\gamma(J-I)$. The eigenvalues of M_{d} are

$$
\begin{aligned}
\xi_{1}(\gamma) & =p+\gamma \\
\xi_{2}(\gamma) & =p-\gamma
\end{aligned}
$$

and they satisfy

$$
\xi_{1}(\gamma)>\xi_{2}(\gamma)
$$

$\operatorname{ECD}(\bar{\theta}+1):$ The optimality matrix for $\operatorname{ECD}(\bar{\theta}+1) \mathrm{s}$ is $M_{d}=p I-\gamma(J-I)+v(J-I)$. The eigenvalues of M_{d} are

$$
\begin{aligned}
\xi_{1}(\gamma-v) & =p-(v-\gamma) \\
\xi_{2}(\gamma) & =p+(v-\gamma)
\end{aligned}
$$

and they satisfy

$$
\xi_{2}(\gamma-v)>\xi_{1}(\gamma-v)
$$

Corollary 2.3.7 of Lemmas 2.3.5 and 2.3.6 establish conditions for when $\operatorname{ECD}(\bar{\theta}) \mathrm{s}$ are Schur-better than $E C D(\bar{\theta}+1) s$ and for when $E C D(\bar{\theta}+1) s$ are Schur-better than $E C D(\bar{\theta})$ s; see table 3.20.

Table 3.20: Schur-optimal Designs In $D\left(v, 2 ; k_{1}, k_{2}\right)$

3.2.2 Special Cases: $\left(k_{1}-k_{2}\right) \leq 2$

We now apply the optimality results from section 3.2.1 to the three special cases described in section 2.4.

Corollary 3.2.1 Suppose $k_{1}=k_{2}$ and $r=2$. Then
(i) If $2 \mid k_{1}$ then $\gamma=0$, and $\operatorname{ECD}\left(\theta^{*}\right)$ sexist and are Schur-optimal.
(ii) If $2 y k_{1}$ then $\gamma=\frac{v}{2}$, and $E C D(\bar{\theta}) s$ and $E C D(\bar{\theta}+1) s$ are identical and Schuroptimal.

Proof The optimality results follow immeditely from lemma 2.4.1 and the Schuroptimality discussion of section 3.2.1. When $k_{1}=k_{2}, r=2$, and $2 Y k_{1}$, the
first blocks of the two replicates of any $E C D(\bar{\theta})$ will have $\bar{\theta}=\frac{k_{1}-1}{2}$ concurrences. The second blocks of the two replicats of the $\operatorname{ECD}(\bar{\theta})$ will then have $\bar{\theta}+1=\frac{k_{1}+1}{2}$ concurrences. By exchanging the two blocks of each replicate, the $\operatorname{ECD}(\bar{\theta})$ becomes an $E C D(\bar{\theta}+1)$. Therefore, the $E C D(\bar{\theta})$ and $E C D(\bar{\theta}+1)$ are the same design.

Corollary 3.2.2 Suppose $k_{2}=k_{1}-1$ and $r=2$. Then
(i) If $2 \mid k_{1}$ then $\frac{y}{4}<\gamma<\frac{v}{3}$, and $E C D(\bar{\theta})$ s are Schur-optimal.
(ii) If $2 \gamma k_{1}$ then $\frac{3 v}{4}<\gamma<\frac{4 v}{5}$, and $E C D(\bar{\theta}+1)$ s are Schur-optimal.

Corollary 3.2.3 Suppose $k_{2}=k_{1}-2$ and $r=2$. Then
(i) If $2 \mid k_{1}$ then $\frac{v}{2}<\gamma<\frac{2 v}{3}$, and $E C D(\bar{\theta}+1)$ s are Schur-optimal.
(ii) If $2 Y k_{1}$ then $0<\gamma<\frac{y}{\overline{6}}$, and $E C D(\bar{\theta})$ s are Schur-optimal.

3.2.3 Construction of Optimal Designs in $D\left(v, 2 ; k_{1}, k_{2}\right)$

In this section constructions for $E C D$ s are provided. The common block concurrence $\theta^{*}, \bar{\theta}$, or $\bar{\theta}+1$ is denoted by L so that the constructions are valid for $\operatorname{ECD}\left(\theta^{*}\right)$ s, $E C D(\bar{\theta}) \mathrm{s}$, and $E C D(\bar{\theta}+1) \mathrm{s}$, respectively. Since all v treatments appear once in each replicate, only first-block treatment assignments need be given. The constructions are:

Block 1 of Replicate 1: $\left\{1 \ldots k_{1}\right\}$
Block 1 of Replicate 2: $\{1 \ldots L\} \cup\left\{k_{1}+1 \ldots 2 k_{1}-L\right\}$

3.2.4 Examples

We conclude this section by providing some examples of optimal resolvable designs in $D\left(v, 2 ; k_{1}, k_{2}\right)$ when $\left(k_{1}-k_{2}\right) \leq 2$. First we construct designs for the two cases when $k_{1}=k_{2}$.

Example Suppose $k_{1}=k_{2}=4$. Then, according to corollary 3.2.1 the Schuroptimal design is an $E C D\left(\theta^{*}\right)$. Applying the $E C D$ construction from section 3.2.3 with $L=\bar{\theta}=2$ yields the first block of each replicate. Adding the remaining four treatments to the second block produces a Schur-optimal $\operatorname{ECD}\left(\theta^{*}\right)$ which is:

1	5	1	3
2	6	2	4
3	7	5	7
4	8	6	8

Example Consider the case where $k_{1}=k_{2}=5$. Then, according to corollary 3.2.1 $E C D(\bar{\theta})$ s and $E C D(\bar{\theta}+1)$ s are identical and Schur-optimal. Applying the $E C D$ construction from section 3.2 .3 with $L=\bar{\theta}=2$ yields a Schur-optimal $\operatorname{ECD}(\bar{\theta})$ which is:

1	6	1	3
2	7	2	4
3	8	6	5
4	9	7	9
5	10	8	10

Now we investigate the two cases when $k_{1}-k_{2}=1$.
Example Consider the setting such that $k_{1}=6$ and $k_{2}=5$. By corollary 3.2.2, the Schur-optimal design is an $E C D(\bar{\theta})$. Applying the $E C D$ construction from section 3.2.3 with $L=\bar{\theta}=3$ produces a Schur-optimal $E C D(\bar{\theta})$ which is:

1	7	1	4
2	8	2	5
3	9	3	6
4	10	7	10
5	11	8	11
6		9	

Example Suppose $k_{1}=5$ and $k_{2}=4$. By corollary 3.2.2, the Schur-optimal design is the $E C D(\bar{\theta}+1)$. Applying the $E C D$ construction from section 3.2.3 with $L=\bar{\theta}+1=3$ produces a Schur-optimal $E C D(\bar{\theta}+1)$ which is:

1	6	1	4
2	7	2	5
3	8	3	8.
4	9	6	9
5		7	

Now we investigate the two cases when $k_{1}-k_{2}=2$.

Example Consider the setting such that $k_{1}=5$ and $k_{2}=3$. By corollary 3.2.3, the Schur-optimal design is the $E C D(\bar{\theta})$. Applying the $E C D$ construction from section 3.2.3 with $L=\bar{\theta}=3$ yields a Schur-optimal resolvable design which is

1	6	1	4
2	7	2	5
3	8	3	8.
4		6	
5		7	

Example Suppose $k_{1}=6$ and $k_{2}=4$. By corollary 3.2.3, the Schur-optimal design is the $E C D(\bar{\theta}+1)$. Applying the $E C D$ construction from section 3.2.3 with $L=\bar{\theta}+1=3$ yields a Schur-optimal resolvable design which is

1	7	1	5
2	8	2	6
3	9	3	9
4	10	4	10
5		7	
6		8	

3.3 Resolvable Designs With Three Replicates

3.3.1 Introduction

In this section we will study optimality for the resolvable design setting $D\left(v, 3 ; k_{1}, k_{2}\right)$. From section 2.3 we have:
$\operatorname{ECD}(\bar{\theta})$: The optimality matrix for $E C D(\bar{\theta}) / \mathrm{s}$ is $M_{d}=p I-\gamma(J-I)$. The eigenvalues of M_{d} are

$$
\begin{aligned}
& \xi_{1}(\gamma)=p+\gamma \quad \text { (2 copies) } \\
& \xi_{2}(\gamma)=p-2 \gamma
\end{aligned}
$$

and they satisfy

$$
\xi_{1}(\gamma)=\xi_{1}(\gamma)>\xi_{2}(\gamma)
$$

$\operatorname{ECD}(\bar{\theta}+1):$ The optimality matrix for $E C D(\bar{\theta}+1) s$ is $M_{d}=p I-\gamma(J-I)+v(J-I)$. The eigenvalues of M_{d} are

$$
\begin{aligned}
\xi_{1}(\gamma-v) & =p-(v-\gamma) \quad \text { (2 copies) } \\
\xi_{2}(\gamma) & =p+2(v-\gamma)
\end{aligned}
$$

and they satisfy

$$
\xi_{2}(\gamma-v)>\xi_{1}(\gamma-v)=\xi_{1}(\gamma-v) .
$$

Corollaries 2.3.7 and 2.3.8 of Lemmas 2.3.5 and 2.3.6 establish conditions for when $\operatorname{ECD}(\bar{\theta}) \mathrm{s}$ are E-better then or Schur-better than $\operatorname{ECD}(\bar{\theta}+1) \mathrm{s}$ and for when $\operatorname{ECD}(\bar{\theta}+$ 1)s E-better and Schur-better than $E C D(\bar{\theta})$ s; see table 3.21.

Table 3.21: E- and Schur-comparisons Of ECDs In $D\left(v, 3 ; k_{1}, k_{2}\right)$

Corollaries 2.3.11 and 2.3.13 eliminate UECDs from consideration. Conditions for Schur- and E-optimality of NECDs or ECDs can be established using lemma 2.3.17 and by direct eigenvalue comparisons. The optimality matrix M_{d} (in order to apply lemma 2.3.17) or the concurrence discrepancy matrix Δ_{d} must be derived for competing NECDs. Recall that NECDs have block concurrences discrepancies $\delta_{\text {dii }} \in\{0,1\}$ for all $1 \leq i \neq i^{\prime} \leq 4$ and have at least one block concurrence discrepensy equal to 0 and at least one equal to 1 . There are two cases of nonisomorphic NECDs; their block concurrence patterns, $\left\{\delta_{d 12}, \delta_{d 13}, \delta_{d 23}\right\}$, are listed in table 3.22 and the corresponding block concurrence discrepancy matrices are shown in table 3.23.

Table 3.22: Block Concurrence Discrepancies For $N E C D$ s In $D\left(v, 3 ; k_{1}, k_{2}\right)$

Case	$\delta_{d 12}$	$\delta_{d 13}$	$\delta_{d 23}$
I	1	0	0
$I I$	1	1	0

Table 3.23: Concurrence Discrepancy Matrices for NECDs $\operatorname{In} D\left(v, 3 ; k_{1}, k_{2}\right)$

$$
\Delta_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \Delta_{2}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Using the concurrence discrepancy matrices for the two cases of NECDs, we begin our eigenvalue optimality investigation by deriving explicit expressions for the eigenvalues of the optimality matrices for each case of NECDs. The eigenvalues and their ordering over the admissible region are given below.

Case I: The optimality matrix for Case I $N E C D$ s is $M_{1}=p I-\gamma(J-I)+v \Delta_{1}$, and the eigenvalues of M_{1} are

$$
\begin{aligned}
& e_{1}^{(1)}=p-(v-\gamma) \\
& e_{2}^{(1)}=p+\frac{v-\gamma}{2}+\frac{1}{2} \sqrt{8 \gamma^{2}+(v-\gamma)^{2}} \\
& e_{3}^{(1)}=p+\frac{v-\gamma}{2}-\frac{1}{2} \sqrt{8 \gamma^{2}+(v-\gamma)^{2}}
\end{aligned}
$$

and they satisfy

Case II: The optimality matrix for Case II $N E C D$ is $M_{2}=p I-\gamma(J-I)+v \Delta_{2}$,
and the eigenvalues of M_{2} are

$$
\begin{aligned}
& e_{1}^{(2)}=p+\gamma \\
& e_{2}^{(2)}=p-\frac{\gamma}{2}+\frac{1}{2} \sqrt{8(v-\gamma)^{2}+\gamma^{2}}, \\
& e_{3}^{(2)}=p-\frac{\gamma}{2}-\frac{1}{2} \sqrt{8(v-\gamma)^{2}+\gamma^{2}},
\end{aligned}
$$

and they satisfy

3.3.2 (E,S)-optimal Designs in $D\left(v, 3 ; k_{1}, k_{2}\right)$

Before we determine the E-optimal designs in $D\left(v, 3 ; k_{1}, k_{2}\right)$ we will make Schur comparisons of Case I designs with $E C D(\bar{\theta}) s$ and $E C D(\bar{\theta}+1) \mathrm{s}$ in order to eliminate it as an optimality competitor.

Lemma 3.3.1 When $0 \leq \gamma \leq \frac{v}{2}, E C D(\bar{\theta}) s$ are Schur-better than Case I designs.

Proof By Theorem 2.3.5, $E C D(\bar{\theta}) s$ are Schur-better than Case I designs if they are F-better. When $0 \leq \gamma \leq \frac{\eta}{2}, E C D s$ are F-better than Case I designs since $\xi_{2}(\gamma)>e_{3}^{(1)}$.

Lemma 3.3.2 When $\frac{v}{2}<\gamma<v, E C D(\vec{\theta}+1)$ s are Schur-better than Case I designs.

Proof By Theorem 2.3.6, $E C D(\bar{\theta}+1)$ s are Schur-better than Case I designs if they are E-better. When $\frac{v}{2}<\gamma<v, E C D(\vec{\theta}+1)$ s are E-better than Case I designs since $\xi_{1}(\gamma-v)<e_{2}^{(1)}$.

Now we will establish that Case II designs are (E,S)-optimal when $\frac{\square}{2}<\gamma<\frac{20}{3}$

Lemma 3.3.3 When $\frac{v}{2} \leq \gamma<v, E C D(\bar{\theta})$ s and Case II designs are E-equivalent.

Proof When $\frac{v}{2} \leq \gamma<v$ the largest eigenvalue of the optimality matrix for Case II designs is $e_{1}^{(2)}=\xi_{1}(\gamma)$.

Lemma 3.3.4 When $\frac{v}{2}<\gamma<v$, Case II designs are Schur-better than $E C D(\vec{\theta})$ s.
Proof The eigenvalues of $E C D(\bar{\theta})$ s are $\xi_{1}(\gamma)=\xi_{1}(\gamma)>\xi_{2}(\gamma)$, and when $\frac{v}{2}<\gamma<v$, the eigenvalues of Case II designs are $e_{1}^{(2)}>e_{2}^{(2)}>e_{3}^{(2)}$. Since $\xi_{1}(\gamma)=e_{1}^{(2)}>e_{2}^{(2)}$, then the eigenvalues of the optimality matrix for $\operatorname{ECD}(\vec{\theta})$ s majorize the eigenvalues of the optimality matrix for Case II designs.

Lemma 3.3.5 When $\frac{2 v}{3} \leq \gamma<v, E C D(\bar{\theta}+1)$ are Schur-better than Case II designs.

Proof By Theorem 2.3.6, $E C D(\bar{\theta}+1)$ s are Schur-better than Case II designs if they are E-better. When $\frac{2 v}{3}<\gamma<v, E C D(\bar{\theta}+1) \mathrm{s}$ are E-better than Case II designs since $e_{1}^{(2)}>\xi_{2}(\gamma-v)$. When $\gamma=\frac{2 v}{3}$, since $e_{1}^{(2)}=\xi_{2}(\gamma-v)$ and $e_{2}^{(2)}>\xi(\gamma-v)$, the eigenvalues of the optimality matrix for Case II designs majorize the eigenvalues of the optimality matrix for $\operatorname{ECD}(\bar{\theta}+1)$ s.

Therefore, for all values of $0 \leq \gamma<v$ there is either a unique Schur-optimal design or a unique (E, S)-optimal design. See table 3.24.

3.3.3 A-optimal Design

The lemmas of section 3.3.2 establish that $E C D(\bar{\theta})$ s are uniquely A-optimal when $0 \leq \gamma<\frac{v}{2}, E C D(\bar{\theta})$ s and Case II designs are identically A-optimal when $\gamma=\frac{v}{2}$, and $E C D(\bar{\theta}+1)$ s are uniquely A-optimal when $\frac{2 v}{3}<\gamma<v$; however, on the interval $\frac{y}{2}<\gamma<\frac{2 y}{3}, E C D(\bar{\theta}+1) s$ and Case II designs are A-optimal candidates. In order to find the design that minimizes (3.73) we need the expressions for the eigenvalues of the information matrices of the competing designs in terms of the eigenvalues of the optimality matrices. These are given below.

Table 3.24: (E, S)- and Schur-optimal Designs In $D\left(v, 3 ; k_{1}, k_{2}\right)$

$$
\begin{aligned}
& z_{1}^{(\bar{\theta}+1)}=\frac{2 p+(v-\gamma)}{p} \quad(2 \text { copies }) \\
& z_{2}^{(\bar{\theta}+1)}=\frac{2[p-(v-\gamma)]}{p}
\end{aligned}
$$

Case II:

$$
\begin{aligned}
z_{1}^{(2)} & =\frac{2 p-\gamma}{p} \\
z_{2}^{(2)} & =\frac{4 p+\gamma-\sqrt{8(v-\gamma)^{2}+\gamma^{2}}}{2 p} \\
z_{3}^{(2)} & =\frac{4 p+\gamma+\sqrt{8(v-\gamma)^{2}+\gamma^{2}}}{2 p}
\end{aligned}
$$

Lemma 3.3.6 When $\frac{3 v}{5} \leq \gamma<\frac{2 v}{3}, E C D(\bar{\theta}+1)$ s are A-better than Case II designs. When $\frac{v}{2}<\gamma<\frac{3 v}{5}, E C D(\bar{\theta}+1) s$ are A-better than Case II designs if and only if

$$
\begin{equation*}
-\gamma^{3}-2(p-2 v) \gamma^{2}+\left(8 p^{2}+6 v p-5 v^{2}\right) \gamma-2 v\left(2 p^{2}+2 p v-v^{2}\right)>0 \tag{3.78}
\end{equation*}
$$

Proof When $\frac{y}{2}<\gamma<\frac{2 y}{3}, E C D(\bar{\theta}+1) s$ are A-better than Case II designs if and only if $\frac{2}{x_{1}^{(1+1)}}+\frac{1}{z_{2}^{(+1)}}<\frac{1}{\sum_{1}^{(2)}}+\frac{1}{\sum_{2}^{(2)}}+\frac{1}{z_{3}^{(2)}}$ which holds if and only if condition (3.78) is satisfied. On the interval $\frac{3 v}{5} \leq \gamma<\frac{2 v}{3}$, a lower bound for the left hand side of (3.78),
obtained by substituting $\gamma=\frac{2 v}{3}$ into the negative terms and $\gamma=\frac{3 v}{5}$ into the positive terms, is

$$
\begin{equation*}
\frac{2}{675 v^{3}}\left[270\left(\frac{p}{v}\right)^{2}-435\left(\frac{p}{v}\right)-64\right] \tag{3.79}
\end{equation*}
$$

Setting (3.79) equal to zero and solving for ${ }_{v}^{p}$ yields

$$
\frac{p}{v}=\left(\frac{145-\sqrt{28705}}{180}, \frac{145+\sqrt{28705}}{180}\right)
$$

Since $\frac{3}{2} \leq \frac{145+\sqrt{28705}}{180} \leq \frac{7}{4}$, and when $\frac{g}{v}=2$, (3.79) is greater than zero, (3.78) is satisfied on $\frac{3 v}{5} \leq \gamma<\frac{2 v}{3}$ whenever $\frac{2}{v}>\frac{7}{4}$, and, by fact 3.1.3, this inequality holds when $k_{1} \geq k_{2} \geq 4$ or $k_{2}=3$ and $k_{1} \geq 6$. Thus, (3.78) may not be satisfied when $k_{2} \geq k_{1}=2$ or $5 \geq k_{1} \geq k_{2}=3$. By corollary 3.1 .5 , on $\frac{3 u}{5} \leq \gamma \leq \frac{2 v}{3}, k_{2}=2$ if and only if $k_{1}=4$ and $k_{2}=3$ if and only if $k_{1}=3,4$ or 5 . Since (3.78) is satisfied when $\left(k_{1}, k_{2}\right)=(4,2),(3,3),(4,3)$, and $(5,3), E C D(\bar{\theta}+1)$ s are A-better than Case II designs on the interval.

A summary of the A-best analysis is given in table 3.25 below.

Table 3.25: A-, Type-1, and Schur-optimal Designs in $D\left(v, 3 ; k_{1}, k_{2}\right)$

We have found that the A-optimal design in $D\left(v, 3 ; k_{1}, k_{2}\right)$ is uniquely an $E C D(\bar{\theta})$ when $0 \leq \gamma<v$ and uniquely an $\operatorname{ECD}(\bar{\theta}+1)$ when $\frac{3 v}{5} \leq \gamma<v$. When $\gamma=\frac{v}{2}$ the
optimality matrix for $E C D(\bar{\theta})$ and Case II designs have identical eigenvalues, and the $E C D(\bar{\theta})$ and Case II designs are A-optimal. When $\frac{v}{2}<\gamma<\frac{3 v}{5}$ the A-optimal design can either be an $E C D(\bar{\theta}+1)$ or a Case II design, and condition (3.78) must be checked in order to determine if the A-optimal design is an $\operatorname{ECD}(\bar{\theta}+1)$ or a Case II design. Table 3.26 lists the parameters k_{1}, k_{2}, and γ for ten A-optimal $E C D(\bar{\theta}+1) \mathrm{s}$ and Case II designs.

3.3.4 Special Cases: $\left(k_{1}-k_{2}\right) \leq 2$

We will now apply the optimality results from sections 3.3 .2 and 3.3 .3 to the three special cases described in section 2.4.

Corollary 3.3.7 Suppose $k_{1}=k_{2}$ and $r=3$. Then
(i) If $2 \mid k_{1}$ then $\gamma=0$, and $\operatorname{ECD}\left(\theta^{*}\right) s$ exist and are Schur-optimal.
(ii) If $2 Y k_{1}$ then $\gamma=\frac{v}{2}$, and $E C D(\bar{\theta})$ s and Case II are identical and $(E, S)-$ and ϕ_{f}-optimal.

Corollary 3.3.8 Suppose $k_{2}=k_{1}-1$ and $r=3$. Then
(i) If $2 \mid k_{1}$ then $\frac{v}{4}<\gamma<\frac{v}{3}$, and $E C D(\bar{\theta})$ s are Schur-optimal.
(ii) If $2 \ k_{1}$ then $\frac{3 v}{4}<\gamma<\frac{4 v}{5}$, and $E C D(\bar{\theta}+1)$ s are Schur-optimal.

Corollary 3.3.9 Suppose $k_{2}=k_{1}-2$ and $r=3$. Then
(i) If $k_{1}=4$ then $\gamma=\frac{2 v}{3}$, and $E C D(\bar{\theta}+1) s$ are Schur-optimal.
(ii) If $k_{1}=6$ then $\gamma=\frac{3 v}{5}$, Case II desigros are (E, S)-optimal, and $E C D(\bar{\theta}+1)$ s are A-optimal.
(iii) If $2 \mid k_{1}$ and $k_{1} \geq 8$ then $\frac{0}{2}<\gamma<\frac{3 v}{5}$, Case II designs are (E, S)-optimal, and either an $E C D(\bar{\theta}+1)$ or a Case II design is A-optimal.
(iv) If $2 \| k_{1}$ then $0<\gamma<\frac{v}{\bar{B}}$, and $E C D(\bar{\theta})$ s are Schur-optimal.

Table 3.26: Parameters for A-optimal Designs $\operatorname{In} D\left(v, 3, k_{1}, k_{2}\right)$ When $\frac{v}{2}<\gamma<\frac{3 v}{5}$

$\underline{E C D}(\bar{\theta}+1)$ A-optimal				
			$E C D(\bar{\theta}+1)$	Case II
k_{1}	k_{2}	$\frac{7}{v}$	A-value	A-value
8	6	. 57	1.51261	1.51398
10	8	. 56	1.50794	1.50851
11	5	. 56	1.51309	1.51400
12	7	. 58	1.50718	1.50845
12	10	. 55	1.50545	1.50575
13	3	. 56	1.52702	1.52739
14	12	. 54	1.50398	1.50415
16	14	. 53	1.50303	1.50313
17	6	. 57	1.50762	1.50848
17	8	. 56	1.50513	1.50570

Case II A-optimal				
			$E C D(\bar{\theta}+1)$	Case II
k_{1}	k_{2}	$\frac{7}{v}$	A-value	A-value
5	2	. 57	1.58385	1.57738
14	3	. 53	1.53069	1.52746
14	9	. 52	1.50600	1.50584
26	4	. 53	1.51471	1.51413
27	4	. 52	1.51571	1.51427
27	20	. 51	1.50139	1.50137
29	12	. 51	1.50255	1.50249
34	8	. 52	1.50422	1.50419
42	5	. 53	1.50874	1.50862
43	5	. 52	1.50912	1.50868

3.3.5 Construction of Optimal Designs in $D\left(v, 3 ; \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)$

ECD Constructions

Let L be the common $E C D$ treatment concurrence. Then for $E C D(\bar{\theta}) s, L=\bar{\theta}$, and for $E C D(\bar{\theta}+1) s, L=\bar{\theta}+1$.

Block 1 of Replicate 1: $\left\{1 \ldots k_{1}\right\}$
Block 1 of Replicate 2: $\{1 \ldots L\} \cup\left\{k_{1}+1 \ldots 2 k_{1}-L\right\}$
Block 1 of Replicate 3:
(i) $k_{1}<2 L$:

$$
\left\{1 \ldots 2 L-k_{1}\right\} \cup\left\{L+1 \ldots 2 k_{1}-L\right\}
$$

(ii) $k_{1} \geq 2 L$:

$$
\{L+1 \ldots 2 L\} \cup\left\{k_{1}+1 \ldots k_{1}+L\right\} \cup\left\{2 k_{1}-L+1 \ldots 3\left(k_{1}-L\right)\right\}
$$

Case II Constructions

Block 1 of Replicate 1: $\left\{1 \ldots k_{1}\right\}$
Block 1 of Replicate 2: $\{1 \ldots \bar{\theta}+1\} \cup\left\{k_{1}+1 \ldots 2 k_{1}-(\bar{\theta}+1)\right\}$
Block 1 of Replicate 3: $\left\{1 \ldots \underset{i f}{\left.2(\vec{\theta}+1)-k_{1}\right\} \cup\left\{\bar{\theta}+2 \ldots k_{1}\right\} \cup}\right.$ $\left\{k_{1}+1^{\text {if } k_{1}-L-2>0} 2 k_{1}-\bar{\theta}-2\right\} \cup\left\{2 k_{1}-\bar{\theta}\right\}$

3.3.6 Examples of Optimal Resolvable Designs in $\boldsymbol{D}\left(\boldsymbol{v}, \mathbf{3} ; \boldsymbol{k}_{\mathbf{1}}, \boldsymbol{k}_{\mathbf{2}}\right)$

We will conclude this section by providing some examples of resolvable designs in $D\left(v, 3 ; k_{1}, k_{2}\right)$ for various interesting $k_{1} \geq 3$ and $2 \leq k_{2} \leq k_{1}$. First we will construct designs for the two cases when $k_{1}=k_{2}$.

Example Suppose $k_{1}=k_{2}=4$. Then, according to corollary 3.3.7 the the Schuroptimal design is an $E C D\left(\theta^{*}\right)$. Applying the $E C D$ construction given above with $L=\bar{\theta}=2$ yields a Schur-optimal $E C D\left(\theta^{*}\right)$ which is:

1	5	1	3	3	1
2	6	2	4	4	2
3	7	5	7	5	7
4	8	6	8	6	8

Example Consider the case where $k_{1}=k_{2}=5$. Then, according to corollary 3.3.7 the $E C D(\bar{\theta})$ s and Case II designs are (E, S)- and type-1 optimal. Applying the $E C D$ construction given above with $L=\bar{\theta}=2$ produces an (E,S)- and type-1 optimal $E C D(\bar{\theta})$ which is:

1	6	1	3	3	1
2	7	2	4	4	2
3	8	6	5	6	5.
4	9	7	9	7	6
5	10	8	10	9	10

Now we will investigate the two cases when $k_{1}-k_{2}=1$.

Example Consider the setting such that $k_{1}=6$ and $k_{2}=5$. By corollary 3.3.8, the Schur-optimal design is an $E C D(\bar{\theta})$. Applying the $E C D$ construction given above with $L=\bar{\theta}=3$ produces a Schur-optimal $E C D$ which is:

1	7	1	4	4	1
2	8	2	5	5	2
3	9	3	6	6	3
4	10	7	10	7	10
5	11	8	11	8	11
6	12	9	12	9	12

Example Suppose $k_{1}=5$ and $k_{2}=4$. By corollary 3.3.8, the Schur-optimal design is an $E C D(\bar{\theta}+1)$. Applying the $E C D$ construction given above with $L=\bar{\theta}+1=3$ yields a Schur-optimal $E C D(\bar{\theta}+1)$ which is:

1	6	1	4	1	2
2	7	2	5	4	3
3	8	3	8	5	8.
4	9	6	9	6	9
5	10	7	10	7	10

Now we will investigate the two cases when $k_{1}-k_{2}=2$.

Example Consider the setting such that $k_{1}=8$ and $k_{2}=6$. By corollary 3.3.9, the Case II design is (E, S)-optimal, and the A-optimal design is either the Case II design or the $E C D(\bar{\theta}+1)$. Checking condition (3.78) establishes that the $E C D(\bar{\theta}+1)$
is A-optimal. Applying the Case II construction given above with $\bar{\theta}=4$ yields an (E, S)-optimal Case II design which is:

1	9	1	6	1	3
2	10	2	7	2	4
3	11	3	8	6	5
4	12	4	12	7	11
5	13	5	13	8	13
6	14	9	14	9	14
7		10		10	
8		11		12	

Applying the $E C D(\bar{\theta}+1)$ construction given above with $L=\bar{\theta}+1=5$ produces an A-optimal $E C D(\bar{\theta}+1)$ which is:

1	9	1	6	1	3
2	10	2	7	2	4
3	11	3	8	6	5
4	12	4	12	7	12
5	13	5	13	8	13
6	14	9	14	9	14
7		10		10	
8		11		11	

Example Suppose $k_{1}=5$ and $k_{2}=3$. By corollary 3.3.9, the Schur-optimal design is an $E C D(\bar{\theta})$. Applying the $E C D$ construction given above with $L=\bar{\theta}=3$ yields a Schur-optimal $E C D(\bar{\theta})$ which is:

1	6	1	4	1	2
2	7	2	5	4	3
3	8	3	8	5	8.
4		6		6	
5		7		7	

3.4 Resolvable Designs With Four Replicates

3.4.1 Introduction

In this section we study optimality for the resolvable design setting $D\left(v, 4 ; k_{1}, k_{2}\right)$. From section 2.3 we have:
$\operatorname{ECD}(\bar{\theta}):$ The optimality matrix for $E C D(\bar{\theta}) s$ is $M_{d}=p I-\gamma(J-I)$. The eigenvalues of M_{d} are

$$
\begin{aligned}
& \xi_{1}(\gamma)=p+\gamma \quad \text { (3 copies) } \\
& \xi_{2}(\gamma)=p-3 \gamma
\end{aligned}
$$

and they satisfy

$$
\xi_{1}(\gamma)=\xi_{1}(\gamma)=\xi_{1}(\gamma)>\xi_{2}(\gamma) .
$$

$\operatorname{ECD}(\bar{\theta}+1):$ The optimality matrix for $E C D(\bar{\theta}+1) s$ is $M_{d}=p I-\gamma(J-I)+v(J-I)$. The eigenvalues of M_{d} are

$$
\begin{aligned}
\xi_{1}(\gamma-v) & =p-(v-\gamma) \quad(3 \text { copies }) \\
\xi_{2}(\gamma) & =p+3(v-\gamma)
\end{aligned}
$$

and they satisfy

$$
\xi_{2}(\gamma-v)>\xi_{1}(\gamma-v)=\xi_{1}(\gamma-v)=\xi_{1}(\gamma-v)
$$

Theorem 2.3.3, lemma 2.3.7, and corollary 2.3.8 establish conditions for when $\operatorname{ECD}(\bar{\theta})$ s are E-better or Schur-better than $E C D(\bar{\theta}+1) \mathrm{s}$ and for when $E C D(\bar{\theta}+1) \mathrm{s}$ are E-better and Schur-better than $E C D(\bar{\theta})$ s; see table 3.27.

Table 3.27: E- and Schur-comparisons Of ECDs In $D\left(v, 4 ; k_{1}, k_{2}\right)$

As with all $r \leq 4$, corollaries 2.3.11 and 2.3.13 eliminate UECDs as optimality competitors. Conditions for Schur- and E-optimality of NECDs or ECDs can
be established using lemma 2.3.17 and by direct eigenvalue comparisons. The optimality matrix M_{d} (in order to apply lemma 2.3.17) or the concurrence discrepancy matrix Δ_{d} must be derived for competing NECDs. Recall that NECDs have block concurrence discrepancies $\delta_{\text {dii }} \in\{0,1\}$ for all $1 \leq i \neq i^{\prime} \leq 4$ and have at least one block concurrence discrepancy equal to 0 and at least one equal to 1 . There are nine cases of nonisomorphic NECDs; their block concurrence discrepancies, $\left\{\delta_{d 12}, \delta_{d 13}, \delta_{d 23}, \delta_{d 14}, \delta_{d 24}, \delta_{d 34}\right\}$ are listed in table 3.28 and the corresponding block concurrence discrepancy matrices are shown in table 3.29.

Table 3.28: Block Concurrence Discrepancies For NECDs In $D\left(v, 4 ; k_{1}, k_{2}\right)$

Case	$\delta_{d 12}$	$\delta_{d 13}$	$\delta_{d 23}$	$\delta_{d 14}$	$\delta_{d 24}$	$\delta_{d 34}$
I	0	1	1	1	1	1
$I I$	0	1	1	1	1	0
$I I I$	0	0	1	1	1	1
$I V$	0	0	1	0	1	1
V	0	0	0	1	1	1
$V I$	0	0	1	1	0	1
$V I I$	0	0	1	1	0	0
$V I I I$	0	0	0	0	1	1
$I X$	0	0	0	0	0	1

Using the concurrence discrepancy matrices for the nine cases of NECDs, we begin our eigenvalue optimality investigation with the following application of corollary 2.3.17.

Corollary 3.4.1 Let $d \in D\left(v, r ; k_{1}, k_{2}\right)$ be an NECD having optimality matrix $M_{d}=$ $p I-\gamma(I-J)+v \Delta_{d}$, and let u_{1} and u_{r} be the maximum and minimum eigenvalues, respectively, of $\Delta_{d 0}=P^{T} \Delta_{d} P$, where $P=\left(I-\frac{1}{4} J\right)$. If

$$
\gamma<-\frac{u_{r}}{4} v
$$

then $E C D(\bar{\theta})_{s}$ are Schur-better than d. If $u_{1}>0$ and

$$
\gamma>\left(\frac{3-u_{1}}{4}\right) v
$$

Table 3.29: Concurrence Discrepancy Matrices For NECDs $\operatorname{In} D\left(v, 4 ; k_{1}, k_{2}\right)$
Case I: $\quad \Delta_{1}=\left(\begin{array}{cccc}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right)$
Case II: $\quad \Delta_{\mathbf{2}}=\left(\begin{array}{cccc}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right)$
Case III: $\quad \Delta_{3}=\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right)$
Case VI: $\quad \Delta_{6}=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$
Case VII: $\quad \Delta_{7}=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$
Case VIII: $\quad \Delta_{8}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right)$
Case IV: $\quad \Delta_{\mathbf{4}}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right)$
Case V: $\quad \Delta_{5}=\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right)$
Case IX: $\quad \Delta_{9}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$
then $E C D(\bar{\theta}+1) s$ are Schur-better than d. Furthermore, if

$$
\begin{equation*}
u_{1}>0 \tag{3.80}
\end{equation*}
$$

then $E C D(\bar{\theta}) s$ are E-better, but not necessarily Schur-better, than d.

We now use these tools to eliminate as many designs as possible. For each $N E C D$, condition (3.80) was calculated with results given in table 3.30. Immediately we see all cases except Cases I, II, and V are E-inferior to $\operatorname{ECD}(\bar{\theta})$ s. Values of γ for which $E C D(\bar{\theta})$ s or $E C D(\bar{\theta}+1)$ s are Schur-better than $N E C D$ s having any of the concurrence discrepancy matrices listed in table 3.29 have been determined using corollary 3.4.1 and are also listed in table 3.30. We also know by Theorem 2.3.3 and corollary

Table 3.30: Corollary 3.4.1 Results In $D\left(v, 4 ; k_{1}, k_{2}\right)$

Case	$-\frac{u_{r}}{4}$	$\frac{3-u_{1}}{4}$	u_{1}
I	.375	.750	.000
$I I$.500	.750	.000
$I I I$.342	.658	.366
$I V$.250	.625	.500
V	.375	.750	.000
$V I$.405	.595	.618
$V I I$.250	.500	1.000
$V I I$.342	.658	.366
$I X$.250	.625	.500

2.3.15 that $E C D(\bar{\theta})$ s are type-1 and E-optimal on $0 \leq \gamma \leq \frac{\eta}{2}$, which is sufficient on this range for our primary goals of A-optimality. Here we get stronger optimality for a subset of $0 \leq \gamma<\frac{v}{2}$. Note that on $\frac{3 v}{4}<\gamma<v, E C D(\bar{\theta}+1)$ s are uniquely Schur-optimal.

The majorization results we have so far are summarized in table 3.31 which shows, for each of the nine cases, the range for which each $N E C D$ majorizes an $E C D$. We see that Case VII designs are Schur-inferior to $E C D(\bar{\theta}+1)$ s when $\frac{v}{2}<\gamma<v$. Thus Case VII designs are type-1 inferior to ECDs over the entire interval. Case VII is the only case that is completely eliminated from type-1 optimality contention, so in order to proceed, we must make direct eigenvalue comparisons. We need explicit expressions for the eigenvalues of the optimality matrices for each of the remaining eight $N E C D$ competitors when possible. The eigenvalues and their ordering over the admissible region are given below.

Case I: The optimality matrix for Case I NECDs is $M_{1}=p I-\gamma(J-I)+v \Delta_{1}$, and the eigenvalues of M_{1} are

$$
\begin{aligned}
& e_{\mathrm{I}}^{(\mathrm{l})}=p+\gamma \\
& e_{2}^{(\mathrm{l})}=p-(v-\gamma)
\end{aligned}
$$

Table 3.31: Majorization Intervals For NECDs In $D\left(v, 4 ; k_{1}, k_{2}\right)$

and they satisfy

Case II: The optimality matrix for Case II NECDs is $M_{2}=p I-\gamma(J-I)+v \Delta_{2}$, and the eigenvalues of M_{2} are

$$
\begin{aligned}
& e_{1}^{(2)}=p+\gamma \\
& e_{2}^{(2)}=p+\gamma \\
& e_{3}^{(2)}=p+3(v-\gamma)-v \\
& e_{4}^{(2)}=p+\gamma-2 v,
\end{aligned}
$$

and they satisfy

Case III: The optimality matrix for Case III NECDs is $M_{3}=p I-\gamma(J-I)+v \Delta_{3}$. Three of the eigenvalues of M_{3} can not be expressed in closed form. The fourth eigenvalue is

$$
e^{(3)}=p-(v-\gamma) .
$$

Case IV: The optimality matrix for Case IV NECDs is $M_{4}=p I-\gamma(J-I)+v \Delta_{4}$, and the eigenvalues of M_{4} are

$$
\begin{aligned}
& e_{1}^{(4)}=p-(v-\gamma) \\
& e_{2}^{(4)}=p-(v-\gamma)
\end{aligned}
$$

$$
\begin{aligned}
& e_{3}^{(4)}=p+(v-\gamma)+\sqrt{(v-\gamma)^{2}+3 \gamma^{2}} \\
& e_{4}^{(4)}=p+(v-\gamma)-\sqrt{(v-\gamma)^{2}+3 \gamma^{2}}
\end{aligned}
$$

and they satisfy

Case V: The optimality matrix for Case V NECDs is $M_{5}=p I-\gamma(J-I)+v \Delta_{5}$, and the eigenvalues of M_{5} are

$$
\begin{aligned}
& e_{1}^{(5)}=p+\gamma \\
& e_{2}^{(5)}=p+\gamma \\
& e_{3}^{(5)}=p-\gamma+\sqrt{3(v-\gamma)^{2}+\gamma^{2}} \\
& e_{4}^{(5)}=p-\gamma-\sqrt{3(v-\gamma)^{2}+\gamma^{2}},
\end{aligned}
$$

and they satisfy

Case VI: The optimality matrix for Case VI $N E C D$ s is $M_{6}=p I-\gamma(J-I)+v \Delta_{\sigma}$, and the eigenvalues of M_{6} are

$$
\begin{aligned}
& e_{1}^{(\delta)}=p-(v-\gamma)+\left(\frac{1+\sqrt{5}}{2}\right) v \\
& e_{2}^{(6)}=p-(v-\gamma)+\left(\frac{1-\sqrt{5}}{2}\right) v
\end{aligned}
$$

$$
\begin{aligned}
& e_{3}^{(6)}=p+(v-\gamma)-\frac{v}{2}+\frac{1}{2} \sqrt{4(v-2 \gamma)^{2}+v^{2}} \\
& e_{4}^{(6)}=p+(v-\gamma)-\frac{v}{2}-\frac{1}{2} \sqrt{4(v-2 \gamma)^{2}+v^{2}}
\end{aligned}
$$

and they satisfy

Case VIII: The optimality matrix for Case VIII NECDs is $M_{8}=p I-\gamma(J-I)+$ $v \Delta_{8}$. Three of the eigenvalues of M_{8} can not be expressed in closed form. The fourth eigenvalue is

$$
e^{(8)}=p+\gamma .
$$

Case IX: The optimality matrix for Case IX $N E C D$ is $M_{9}=p I-\gamma(J-I)+v \Delta_{9}$, and the eigenvalues of M_{9} are

$$
\begin{aligned}
& e_{1}^{(9)}=p+\gamma \\
& e_{2}^{(9)}=p-(v-\gamma) \\
& e_{3}^{(9)}=p+(v-\gamma)-\frac{v}{2}+\frac{1}{2} \sqrt{16 \gamma^{2}+v^{2}} \\
& e_{4}^{(9)}=p+(v-\gamma)-\frac{v}{2}-\frac{1}{2} \sqrt{16 \gamma^{2}+v^{2}}
\end{aligned}
$$

and they satisfy

We conclude this section with a lemma that uses the explicit expressions for the eigenvalues of the optimality matrices for the nine cases of NECDs and corollary 2.3.4 to determine Schur-optimality when $\gamma=\frac{v}{2}$.

Lemma 3.4.2 When $\gamma=\frac{v}{2}, \operatorname{ECD}(\bar{\theta})$ s, Case II and Case V designs are Schuroptimal.

Proof Since all cases of NECDs except for Cases I, II, and V are E-inferior to $\operatorname{ECD}(\bar{\theta}) \mathrm{s}$ when $\gamma=\frac{v}{2}$, the optimality matrices for these cases are the only ones that can potentially have eigenvalues that are identical to the eigenvalues of the optimality matrix for $E C D(\bar{\theta})$ s. Putting $\gamma=\frac{v}{2}$ into the eigenvalue expressions for these three cases gives the result.

3.4.2 (E,S)-Optimal Designs in $D\left(v, 4 ; k_{1}, k_{2}\right)$

Corollary 3.4.1 established that the only $N E C D$ s that can be E-optimal in the resolvable design setting $D\left(v, r ; k_{1}, k_{2}\right)$ are Cases I, II, and V designs. E-optimality will now be investigated in detail, but first we will review a few useful optimality results from above.

1. $E C D(\bar{\theta})$ s are E-optimal when $0 \leq \gamma \leq \frac{v}{2}$, uniquely so when $\gamma<\frac{v}{2}$.
2. The optimality matrices for $E C D(\bar{\theta})$, Case II, and V designs have identical eigenvalues when $\gamma=\frac{v}{2}$
3. $E C D(\bar{\theta}+1) \mathrm{s}$ are Schur-optimal when $\frac{3 v}{4} \leq \gamma<v$.

E-optimality is solved for $0 \leq \gamma<\frac{v}{2}$ and $\frac{3 v}{4}<\gamma<v ; E C D(\bar{\theta})$ s, Case II, and V designs are E-equivalent when $\gamma=\frac{v}{2}$; and Case I, II, and V designs may be E-optimal on $\frac{v}{2}<\gamma \leq \frac{3 v}{4}$. In this section we will find the E-optimal designs on $\frac{v}{2}<\gamma \leq \frac{3 v}{4}$, and if more than one design is E-optimal on a subinterval of $\frac{v}{2} \leq \gamma \leq \frac{3 v}{4}$, then the (E, S)-optimal design will be identified, see definition 3.1.1. Based on the conclusions above we can state

Corollary 3.4.3 When $0 \leq \gamma \leq \frac{v}{2}, E C D(\bar{\theta})$ s are (E, S)-optimal, uniquely so when $\gamma<\frac{v}{2}$. When $\frac{3 v}{4}<\gamma<v, E C D(\bar{\theta}+1)$ s are (E, S)-optimal.

The following lemma establishes exactly when Cases I, II, and V are E-optimal.

Lemma 3.4.4

1. $E C D(\bar{\theta})$, Case II, and V designs are E-equivalent and E-better than Case I designs when $\frac{v}{2} \leq \gamma<\frac{2 v}{3}$.
2. When $\frac{2 v}{3} \leq \gamma<\frac{3 v}{4}, \operatorname{ECD}(\bar{\theta}) s$, Case I, II, and V designs are E-equivalent.
3. When $\gamma=\frac{3 v}{4}, \operatorname{ECD}(\bar{\theta}) s, E C D(\bar{\theta}+1) s$, Case I, II, and V designs are E equivalent.

Proof The maximum eigenvalue of $E C D(\bar{\theta}) s$ is $\xi_{1}(\gamma)=p+\gamma$, and the maximum eigenvalue of $E C D(\bar{\theta}+1) \mathrm{s}$ is $\xi_{2}(\gamma-v)=p-(v-\gamma)$. On the interval $\frac{v}{2} \leq \gamma \leq \frac{3 v}{4}$, the maximum eigenvalue of Case II and V designs is $e_{1}^{(2)}=e_{1}^{(5)}=p+\gamma=\xi_{1}(\gamma)$; therefore, $E C D(\bar{\theta}) \mathrm{s}$, Case II, and V designs are E-equivalent. On $\frac{v}{2} \leq \gamma<\frac{2 v}{3}$, Case I designs are E-inferior to $E C D(\bar{\theta})$ s, Case II, and V designs since they have maximum eigenvalue $e_{3}^{(1)}=p+(v-\gamma)-\frac{v}{2}+\frac{1}{2} \sqrt{16(v-\gamma)^{2}+v^{2}}>\xi_{1}(\gamma)=e_{1}^{(2)}=e_{1}^{(4)}$. However, when $\frac{2 v}{3} \leq \gamma \leq \frac{3 v}{4}$, the maximum eigenvalue of Case I designs is $e_{1}^{(1)}=p+\gamma$ which is identical to the maximum eigenvalues of $\operatorname{ECD}(\bar{\theta})$ s, Case I , and V designs, and Case I is E-equivalent to $\operatorname{ECD}(\bar{\theta})_{\mathrm{s}}$, Case II, and V designs. When $\gamma=\frac{3 v}{4}, \xi_{2}(\gamma-v)=\xi_{1}(\gamma)$, and $E C D(\bar{\theta}) s, E C D(\bar{\theta}+1) \mathrm{s}$, Case I, II, and V are E-equivalent.

Now Schur comparisons of the E-optimal designs can be made.
Lemma 3.4.5 Case II designs are Schur-better than $\operatorname{ECD}(\bar{\theta})$ s when $\frac{v}{2}<\gamma<v$.

Proof When $\frac{v}{2}<\gamma<v$, the largest two eigenvalues of Case II designs, which are $e_{1}^{(2)}=e_{2}^{(2)}=p+\gamma=\xi_{1}(\gamma)$, are identical to each other and to the largest two
eigenvalues of $E C D(\bar{\theta})$ s. Since the third largest Case II eigenvalue $e_{3}^{(2)}$ is less than $e_{1}^{(2)}=e_{2}^{(2)}=\xi_{1}(\gamma)$ when $\frac{v}{2}<\gamma<0$, then the eigenvalues of $E C D(\bar{\theta})$ s majorize the eigenvalues of Case II designs on the interval, and, therefore, Case II designs are Schur-better.

Lemma 3.4.6 When $\frac{v}{2}<\gamma<v$, Case II is Schur-better than Case V.
Proof When $\frac{v}{2}<\gamma<v$, the largest two eigenvalues of Case V designs, $e_{1}^{(5)}=$ $e_{2}^{(5)}=p+\gamma$, are identical to each other and identical to $e_{1}^{(2)}=e_{2}^{(2)}$, the largest two eigenvalues of Case II designs. It is then necessary and sufficient for the eigenvalues of Case V designs to majorize the eigenvalues of Case II designs that the third largest eigenvalue of Case V designs be greater than or equal to the third largest eigenvalue of Case II designs, or $e_{3}^{(5)} \geq e_{3}^{(2)}$. This inequality is true if and only if $p-\gamma+\sqrt{3(v-\gamma)^{2}+\gamma^{2}} \geq p+3(v-\gamma)-v$ which is true if and only if $\gamma \geq \frac{v}{2}$. Therefore, Case II is Schur-better.

Lemma 3.4.7 When $\frac{2 v}{3} \leq \gamma \leq v$, Case I designs are Schur-better than Case II designs.

Proof When $\frac{2 v}{3} \leq \gamma \leq v$, Case I and Case II designs have the same maximum eigenvalue, which is $e_{1}^{(1)}=e_{1}^{(2)}=p+\gamma$. In order to establish the result, we will show that the remaining three eigenvalues of Case II designs $e_{2}^{(2)}>e_{3}^{(2)}>e_{4}^{(2)}$ majorize the remaining three eigenvalues of Case I designs $e_{3}^{(1)}>e_{2}^{(1)}>e_{4}^{(1)}$. Since $e_{2}^{(2)}=e_{1}^{(1)}>e_{3}^{(1)}$, we have the result if and only if $e_{4}^{(2)} \leq e_{4}^{(1)}$. This inequality holds if and only if $p+\gamma-2 v \leq p+(v-\gamma)-\frac{v}{2}-\frac{1}{2} \sqrt{16(v-\gamma)^{2}+v^{2}}$ which is true if and only if $8 v(v-\gamma) \geq 0$, that is when $\gamma \leq v$. Therefore, Case I designs are Schur-better than Case II designs.

Lemma 3.4.8 When $\gamma=\frac{3 v}{4}, E C D(\bar{\theta}+1)$ s are Schur-better than Case I designs.

Proof When $\gamma=\frac{3 v}{4}$, since the largest eigenvalue of Case I designs is equal to the largest eigenvalue of $E C D(\bar{\theta}+1) \mathrm{s}$, then $p+\gamma=e_{1}^{(1)}=\xi_{2}(\gamma-v)=p+3(v-\gamma)$. Since $e_{3}^{(1)}>e_{2}^{(1)}=\xi_{1}(\gamma-v)>e_{4}^{(1)}$ then the eigenvalues of Case I designs majorize the eigenvalues of $E C D(\bar{\theta}+1) \mathrm{s}$. Therefore $E C D(\bar{\theta}+1) \mathrm{s}$ are Schur-better.

Lemmas 3.4.4, 3.4.5, 3.4.6, and 3.4.7 guarantee that for $0 \leq \gamma<v$ and $\gamma \neq \frac{\nu}{2}$, there is a unique Schur-best design among the E-best designs, and when $\gamma=\frac{v}{2}$ three classes of designs, $E C D(\bar{\theta})$ s, Case II, and Case V, have identical eigenvalues and are Schur-best. The (E, S)-optimality breakdown is shown in table 3.32 .

Table 3.32: (E,S)- and Schur-optimal Designs In $D\left(v, 4 ; k_{1}, k_{2}\right)$

3.4.3 Schur-Optimality in $D\left(v, 4 ; k_{1}, k_{2}\right)$

From corollary 3.4.1, we know that $\operatorname{ECD}(\bar{\theta})$ s are Schur-optimal when $0 \leq \gamma \leq \frac{v}{4}$ and $E C D(\bar{\theta}+1) s$ are Schur-optimal when $\frac{3 v}{4}<\gamma<v$, and from Theorem 2.3.3, we know $E C D(\bar{\theta})$ s are type-1 optimal when $\frac{v}{4}<\gamma \leq \frac{v}{2}$. Now we will focus our attention on A-optimality, and along the way, establish some Schur-orderings. Before fully restricting to A-optimality in section 3.4.4, we will use the explicit expressions for the eigenvalues of the $E C D$ s and the five remaining cases of $N E C D$ competitors to identify subregions of $\frac{v}{2}<\gamma \leq \frac{3 v}{4}$ on which various cases are Schur-inferior to other
cases. In essence, we will use the eigenvalue expressions to obtain a more accurate version of table 3.31. Recall that Case V and VII designs are Schur-inferior to Case II designs and $E C D(\bar{\theta}+1)$ s, respectively, and we do not know the eigenvalues for Cases III and VIII.

Lemma 3.4.9 When $\frac{v}{2}<\gamma<v, E C D(\bar{\theta}+1)$ s are Schur-better than Case IV designs, and when $\gamma=\frac{\nu}{2}, E C D(\bar{\theta}+1)$ s and Case IV designs have identical eigenvalues.

Proof In order for the eigenvalues of Case IV design to majorize the eigenvalues of $E C D(\bar{\theta}+1) \mathrm{s}$, it is necessary and sufficient for the largest Case IV eigenvalue, which is $e_{3}^{(4)}=p+(v-\gamma)+\sqrt{(v-\gamma)^{2}+3 \gamma^{2}}$ when $\frac{v}{2} \leq \gamma<v$, to be greater than or equal to the largest $E C D(\bar{\theta}+1)$ eigenvalue $\xi_{2}(\gamma-v)=p+3(v-\gamma)$, which is true if and only if $\gamma \geq \frac{v}{2}$. When $\gamma=\frac{v}{2}, e_{3}^{(4)}=\xi_{2}(\gamma-v)$, and, since the second and third largest eigenvalues of Case IV designs are identical to the three smallest eigenvalues of $E C D(\bar{\theta}+1) \mathrm{s}$, Case IV and $E C D(\bar{\theta}+1)$ s have identical eigenvalues.

Lemma 3.4.10 When $\left(\frac{7-\sqrt{5}}{8}\right) v \leq \gamma \leq v, E C D(\bar{\theta}+1)$ s are Schur-better than Case VI designs.

Proof The eigenvalues of Case VI designs majorize the eigenvalues of $E C D(\bar{\theta}+1) s$ when the largest Case VI eigenvalue is greater than the unique largest $\operatorname{ECD}(\bar{\theta}+1)$ eigenvalue $\xi_{2}(\gamma-v)=p+3(v-\gamma)$. When $\left(\frac{\sqrt{5}+1}{2 \sqrt{5}}\right) v \leq \gamma \leq v$, the largest Case VI eigenvalue is $e_{1}^{(8)}=p-(v-\gamma)+\left(\frac{1+\sqrt{5}}{2}\right) v_{\text {, }}$ and $e_{1}^{(8)} \geq \xi_{2}(\gamma-v)$ if and only if $\left(\frac{7-\sqrt{5}}{8}\right) v \leq \gamma \leq v$. When $\gamma=\left(\frac{7-\sqrt{5}}{8}\right)$, since the four Case VI eigenvalues are unique, the $E C D(\bar{\theta}+1)$ and Case VI eigenvalues are not identical. Therefore, $E C D(\bar{\theta}+1) \mathrm{s}$ are Schur-better than Case VI eigenvalues when $\left(\frac{7-\sqrt{5}}{8}\right) v \leq \gamma \leq v$.

Lemma 3.4.11 When $\frac{v}{2}<\gamma<\frac{3 v}{4}$, Case I designs are Schur-better than Case IX designs, and when $\gamma=\frac{v}{2}$, Case I and Case IX designs have identical eigenvalues.

Proof On the interval $\frac{v}{2} \leq \gamma<v$, the ranking of Case IX eigenvalues is consistently $e_{3}^{(9)}>e_{1}^{(9)}>e_{2}^{(9)}>e_{4}^{(9)}$, and the third largest Case IX and Case I eigenvalues are identically $e_{2}^{(9)}=e_{2}^{(1)}=p-(v-\gamma)$. On $\frac{v}{2} \leq \gamma \leq \frac{3 v}{4}$, the largest two Case I eigenvalues are $e_{3}^{(1)}>e_{1}^{(1)}=e_{1}^{(9)}$, and Case IX eigenvalues majorize Case I eigenvalues if and only if $e_{3}^{(9)} \geq e_{3}^{(1)}$, if and only if $p+(v-\gamma)-\frac{v}{2}+\frac{1}{2} \sqrt{16 \gamma^{2}+v^{2}} \geq p+(v-\gamma)-\frac{v}{2}+$ $\frac{1}{2} \sqrt{16(v-\gamma)^{2}+v^{2}}$, if and only if $\gamma \geq \frac{v}{2}$.

Since it is possible to express in closed form only one of the eigenvalues of the optimality matrices for Case III designs and Case VIII designs, we will derive bounds for their maximum and minimum eigenvalues in order to eliminate them from optimality contention. As usual, let e_{1} and e_{r} be the maximum and minimum eigenvalues of an optimality matrix M_{d}, respectively. Then

$$
\begin{equation*}
e_{1}=\max _{\mathbf{x}^{T} \mathbf{x}=1}=\mathbf{x}^{\boldsymbol{T}} M_{d} \mathbf{x} \geq \mathbf{x}^{\bullet \boldsymbol{T}} M_{d} \mathbf{x}^{\bullet} \tag{3.81}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{r}=\min _{x^{T} \mathbf{x}=1} x^{T} M_{d} \mathbf{x} \leq \mathbf{x}^{\bullet T} M_{d} x^{\bullet} \tag{3.82}
\end{equation*}
$$

where x^{*} is any fixed, normalized vector. Typically we take, for a fixed value of $\gamma=\gamma^{*}, \mathbf{x}^{*}$ to be an eigenvector of $M_{d}^{*}=\left(p+\gamma^{*}\right) I-\gamma^{*} J+v \Delta_{d}$. Bounds obtained using this procedure are used in the next two lemmas.

Lemma 3.4.12 When $\frac{v}{2}<\gamma \leq \frac{2 v}{3}$, Case I designs are Schur-better than Case III designs

Proof Since the known eigenvalue of the optimality matrix for Case III designs $e^{(3)}=p-(v-\gamma)$, is identical to one of the eigenvalues of the optimality matrix for Case I designs, $e_{1}^{(1)}$, we need to show that the remaining three Case III eigenvalues majorize the remaining three Case I eigenvalues on the interval. When $\frac{v}{2}<\gamma \leq \frac{2 v}{3}$, the maximum Case I eigenvalue is $e_{3}^{(1)}=p+(v-\gamma)-\frac{v}{2}+\frac{1}{2} \sqrt{16(v-\gamma)^{2}+v^{2}}$ and the minimum Case I eigenvalue is $e_{4}^{(1)}=p+(v-\gamma)-\frac{v}{2}-\frac{1}{2} \sqrt{16(v-\gamma)^{2}+v^{2}}$. If
the maximum and minimum Case III eigenvalues are $e_{1}^{(3)}$ and $e_{4}^{(3)}$, respectively, then, since there are only three eigenvalues per case to compare, Case III eigenvalues majorize Case I eigenvalues when $e_{1}^{(3)} \geq e_{3}^{(1)}$ and $e_{4}^{(3)} \leq e_{4}^{(1)}$.

When $\gamma^{*}=\frac{v}{2}$,

$$
M_{3}^{*}=\left(\begin{array}{cccc}
p & -\gamma & -\gamma & -\gamma+v \\
-\gamma & p & -\gamma+v & -\gamma+v \\
-\gamma & -\gamma+v & p & -\gamma+v \\
-\gamma+v & -\gamma+v & -\gamma+v & p
\end{array}\right)
$$

and the normalized eigenvectors of M_{3}^{*} are

$$
\begin{aligned}
& \mathbf{x}_{1}^{*}=\frac{1}{2 \sqrt{5-\sqrt{5}}}(1-\sqrt{5}, 2,2,-1+\sqrt{5})^{T} \\
& \mathbf{x}_{2}^{*}=\frac{1}{2 \sqrt{5+\sqrt{5}}}(1+\sqrt{5}, 2,2,-1-\sqrt{5})^{T} \\
& x_{3}^{*}=\frac{1}{\sqrt{2}}(0,-1,1,0)^{T} \\
& \mathbf{x}_{4}^{*}=\frac{1}{\sqrt{2}}(1,0,0,1)^{T}
\end{aligned}
$$

Now, if $X^{*}=\left(\mathbf{x}_{1}^{*}\left|\mathbf{x}_{2}^{*}\right| \mathbf{x}_{3}^{*} \mid \mathbf{x}_{4}^{*}\right)$, then

$$
X^{* T} M_{3} X^{*}=\left(\begin{array}{c}
\mathbf{x}_{1}^{* T} M_{3} x_{1}^{*} \tag{3.83}\\
\mathbf{x}_{2}^{* T} M_{3} \mathbf{x}_{2}^{*} \\
\mathbf{x}_{3}^{* T} M_{3} x_{3}^{*} \\
\mathbf{x}_{4}^{* T} M_{3} x_{4}^{*}
\end{array}\right)=\left(\begin{array}{c}
p+\frac{\sqrt{5}}{5}(3 v-\gamma) \\
p-\frac{\sqrt{5}}{5}(3 v-\gamma) \\
p-(v-\gamma) \\
p+(v-\gamma)
\end{array}\right)
$$

The first two components of the vector on the right had side of (3.83) serve as the bounds defined by (3.81) and (3.82), respectively, that is, $e_{1}^{(3)} \geq p+\frac{\sqrt{5}}{5}(3 v-\gamma)$ and $e_{4}^{(3)} \leq p-\frac{\sqrt{5}}{5}(3 v-\gamma)$ for all $\frac{v}{2}<\gamma \leq \frac{3 v}{4}$. Since

$$
p+\frac{\sqrt{5}}{5}(3 v-\gamma) \geq e_{3}^{(1)}
$$

and

$$
p-\frac{\sqrt{5}}{5}(3 v-\gamma) \leq e_{4}^{(1)}
$$

Case I is Schur-better than Case III on the interval.

Lemma 3.4.13 When $\frac{v}{2}<\gamma \leq \frac{2 v}{3}$ Case I designs are Schur-better than Case VIII designs

Proof Since the known eigenvalue of the optimality matrix for Case VIII designs $e^{(8)}=p+\gamma$, is identical to one of the eigenvalues of the optimality matrix for Case I designs, $e_{2}^{(1)}$, we need to show that the remaining three Case VIII eigenvalues majorize the remaining three Case I eigenvalues on the interval. When $\frac{v}{2}<\gamma \leq \frac{2 v}{3}$, the maximum Case I eigenvalue is $e_{3}^{(1)}=p+(v-\gamma)-\frac{v}{2}+\frac{1}{2} \sqrt{16(v-\gamma)^{2}+v^{2}}$ and the minimum Case I eigenvalue is $e_{4}^{(1)}=p+(v-\gamma)-\frac{v}{2}-\frac{1}{2} \sqrt{16(v-\gamma)^{2}+v^{2}}$. If the maximum and minimum Case VIII eigenvalues are $e_{1}^{(8)}$ and $e_{4}^{(8)}$, respectively, then, since there are only three eigenvalues per case to compare, Case VIII eigenvalues majorize Case I eigenvalues when $e_{1}^{(8)} \geq e_{3}^{(1)}$ and $e_{4}^{(8)} \leq e_{4}^{(1)}$. When $\gamma^{*}=\frac{v}{2}$,

$$
M_{8}^{*}=\left(\begin{array}{cccc}
p & -\gamma & -\gamma & -\gamma \\
-\gamma & p & -\gamma & -\gamma+v \\
-\gamma & -\gamma & p & -\gamma+v \\
-\gamma & -\gamma+v & -\gamma+v & p
\end{array}\right)
$$

and the normalized eigenvectors of M_{8}^{*} are

$$
\begin{aligned}
& x_{1}^{*}=\frac{1}{2 \sqrt{5-\sqrt{5}}}(-2,-1+\sqrt{5},-1+\sqrt{5}, 2)^{T} \\
& x_{2}^{*}=\frac{1}{2 \sqrt{5+\sqrt{5}}}(-2,-1-\sqrt{5},-1-\sqrt{5}, 2)^{T} \\
& x_{3}^{*}=\frac{1}{\sqrt{2}}(0,-1,1,0)^{T} \\
& x_{4}^{*}=\frac{1}{\sqrt{2}}(1,0,0,1)^{T} .
\end{aligned}
$$

Now, if $X^{*}=\left(\mathbf{x}_{1}^{*}\left|\mathbf{x}_{2}^{*}\right| \mathbf{x}_{\mathbf{3}}^{*} \mid \mathbf{x}_{4}^{*}\right)$, then

$$
X^{* T} M_{8} X^{*}=\left(\begin{array}{c}
\mathbf{x}_{1}^{* T} M_{8} x_{1}^{*} \tag{3.84}\\
x_{2}^{* T} M_{8} x_{2}^{*} \\
x_{3}^{* T} M_{8} x_{3}^{*} \\
x_{4}^{* T} M_{8} x_{4}^{*}
\end{array}\right)=\left(\begin{array}{c}
p+\frac{\sqrt{5}}{5}(2 v+\gamma) \\
p-\frac{\sqrt{5}}{5}(2 v+\gamma) \\
p+\gamma \\
p-\gamma
\end{array}\right)
$$

The first two components of the vector on the right hand side of (3.84) will serve as the bounds defined by (3.81) and (3.82), respectively, that is, $e_{1}^{(8)} \geq p+\frac{\sqrt{5}}{5}(2 v+\gamma)$
and $e_{4}^{(8)} \leq p-\frac{\sqrt{5}}{5}(2 v+\gamma)$ for all $\frac{v}{2}<\gamma \leq \frac{3 v}{4}$. Since

$$
p+\frac{\sqrt{5}}{5}(2 v+\gamma) \geq e_{3}^{(1)}
$$

and

$$
p-\frac{\sqrt{5}}{5}(2 v+\gamma) \leq e_{4}^{(1)}
$$

Case I is Schur-better than Case VIII on the interval.

The results of the majorization analysis are summarized in table 3.33 in which, for subintervals of $0 \leq \gamma<v$, the cases not ruled out by majorization are listed. For example, when $\frac{v}{2}<\gamma \leq \frac{(7-\sqrt{5})}{8} v$, the A-best design is either an $\operatorname{ECD}(\bar{\theta}+1)$, Case I , II, or VI design.

Table 3.33: Remaining Optimality Candidates in $D\left(v, 4 ; k_{1}, k_{2}\right)$

3.4.4 A-optimality in $D\left(v, 4 ; \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)$

Now that we have eliminated as many designs as possible using majorization, eigenvalue optimality investigations must focus on specific functions of the eigenvalues of the information matrices for the remaining design competitors. In this section, we will find the A-optimal design(s) in $D\left(v, 4 ; k_{1}, k_{2}\right)$ on the interval $\frac{v}{2}<\gamma<\frac{3 v}{4}$ by
directly comparing the A-values of the designs that were not eliminated by majorization on the subinterval.

There are four classes of designs, $E C D(\bar{\theta}+1) \mathrm{s}$, and three classes of NECDs, that can potentially be optimal on the interval. Each class along with the interval on which the designs in the class are optimality competitors and the eigenvalues of the information matrix for the designs are listed below.
$\operatorname{ECD}(\bar{\theta}+1): \frac{v}{2}<\gamma<v$,

$$
\begin{aligned}
& z_{1}^{(\sigma+1)}=\frac{3 p+(v-\gamma)}{p} \quad(3 \text { copies }) \\
& z_{2}^{(\theta+1)}=\frac{3[p-(v-\gamma)]}{p}
\end{aligned}
$$

Case I: $\frac{v}{2}<\gamma \leq \frac{3 v}{4}$,

$$
\begin{aligned}
z_{1}^{(1)} & =\frac{3 p+(v-\gamma)}{p} \\
z_{2}^{(1)} & =\frac{3 p-\gamma}{p} \\
z_{3}^{(1)} & =\frac{6 p-2(v-\gamma)+v-\sqrt{16(v-\gamma)^{2}+v^{2}}}{2 p} \\
z_{4}^{(1)} & =\frac{6 p-(v-\gamma)+v+\sqrt{16(v-\gamma)^{2}+v^{2}}}{2 p}
\end{aligned}
$$

Case II: $\frac{v}{2} \leq \gamma \leq \frac{2 v}{3}$,

$$
\begin{aligned}
z_{1}^{(2)} & =\frac{3 p-\gamma}{p} \\
z_{2}^{(2)} & =\frac{3 p-\gamma}{p} \\
z_{3}^{(2)} & =\frac{3 p-3(v-\gamma)+v}{p} \\
z_{4}^{(2)} & =\frac{3 p-\gamma+2 v}{p}
\end{aligned}
$$

Case VI: $\frac{\underline{v}}{2}<\gamma \leq\left(\frac{7-\sqrt{5}}{8}\right) v$,

$$
z_{1}^{(6)}=\frac{6 p+2(v-\gamma)-(1+\sqrt{5}) v}{2 p}
$$

$$
\begin{aligned}
& z_{2}^{(6)}=\frac{6 p+2(v-\gamma)-(1-\sqrt{5}) v}{2 p} \\
& z_{3}^{(6)}=\frac{6 p-2(v-\gamma)+v-\sqrt{4(v-2 \gamma)^{2}+v^{2}}}{2 p} \\
& z_{4}^{(6)}=\frac{6 p-2(v-\gamma)+v+\sqrt{4(v-2 \gamma)^{2}+v^{2}}}{2 p}
\end{aligned}
$$

Now we will make A-value comparisons for the competitors on $\frac{v}{2}<\gamma<\frac{3 v}{4}$.
Lemma 3.4.14 When $\frac{v}{2}<\gamma \leq\left(\frac{7-\sqrt{5}}{8}\right) v$, Case II designs are A-better than Case VI designs.

Proof Case II designs are A-better than Case VI designs if and only if

$$
\frac{1}{z_{1}^{(2)}}+\frac{1}{z_{2}^{(2)}}+\frac{1}{z_{3}^{(2)}}+\frac{1}{z_{4}^{(2)}} \leq \frac{1}{z_{1}^{(6)}}+\frac{1}{z_{2}^{(6)}}+\frac{1}{z_{3}^{(6)}}+\frac{1}{z_{4}^{(6)}}
$$

if and only if

$$
\begin{align*}
& 6(2 p+v) \gamma^{4}+12 v^{2}(3 p+2 v) \gamma^{2}+18 p^{2}\left(9 p^{2}+2 v^{2}\right) \gamma+9 p^{2}\left(18 p^{2}+15 p v+4 v^{2}\right)- \\
& \quad\left[2 \gamma^{5}+v(16 v+27 p) \gamma^{3}+9 p^{2}(12 p+v) \gamma^{2}+2 v^{3}(9 p+8 v) \gamma+\right. \tag{3.85}\\
& \left.9 p^{2} v\left(9 p^{2}+2 v^{2}\right)\right] \geq 0
\end{align*}
$$

A lower bound for the left hand side of (3.85) on $\frac{v}{2} \leq \gamma \leq\left(\frac{7-\sqrt{5}}{8}\right) v$ can be obtained by substituting $\gamma=\frac{v}{2}$ into the positive terms and $\gamma=\left(\frac{7-\sqrt{5}}{8}\right) v$ into the negative terms. Doing so yields

$$
\begin{align*}
& v^{3}\left[-24192(1-\sqrt{5})\left(\frac{p}{v}\right)^{3}-\right. \tag{3.86}\\
& \left.\quad 288(27-7 \sqrt{5})\left(\frac{p}{v}\right)^{2}-16(1896-657 \sqrt{5})\left(\frac{p}{v}\right)-(20225-7817 \sqrt{5})\right]
\end{align*}
$$

If we can show that the lower bound (3.86) is greater than zero when $\underset{v}{p} \geq x$ for some real number $x<1$ then the result follows from corollary (3.1.2). Consider the function

$$
f(x)=-24192(1-\sqrt{5}) x^{3}-288(27-7 \sqrt{5}) x^{2}-16(1896-657 \sqrt{5}) x-(20225-7817 \sqrt{5})
$$

Clearly the lower bound (3.86) is greater than zero for all values of $\frac{p}{v}=x$ for which $f(x)>0$. The derivative of $f(x)$ is

$$
f^{\prime}(x)=-72576(1-\sqrt{5}) x^{2}-576(27-7 \sqrt{5}) x-16(1896-657 \sqrt{5})
$$

and $f^{\prime}(x)=0$ if and only if

$$
x=\frac{-9[(27-7 \sqrt{5}) \mp 2 \sqrt{-17890+8841 \sqrt{5}}]}{2268(1-\sqrt{5})}
$$

Since

$$
\begin{aligned}
&-\frac{1}{2}<\frac{-9[(27-7 \sqrt{5})-2 \sqrt{-17890+8841 \sqrt{5}}]}{2268(1-\sqrt{5})}<0 \\
&<\frac{-9[(27-7 \sqrt{5})+2 \sqrt{-17890+8841 \sqrt{5}}]}{2268(1-\sqrt{5})}<\frac{2}{3}
\end{aligned}
$$

$f^{\prime}\left(\frac{2}{3}\right)>0$, and $f\left(\frac{2}{3}\right)>0$, then $f(x)>0$ for all $x \geq \frac{2}{3}$. Therefore, Case II designs are A-better than Case VI designs on $\frac{0}{2} \leq \gamma \leq\left(\frac{T-\sqrt{5}}{8}\right) v$.

Lemma 3.4.15 When $\frac{3 v}{5} \leq \gamma \leq \frac{3 v}{4} E C D(\bar{\theta}+1)$ s are A-better than Case I designs, and when $\frac{v}{2} \leq \gamma<\frac{3 v}{5}, E C D(\bar{\theta}+1) s$ are A-better than Case I designs provided

$$
\begin{equation*}
-2 \gamma^{3}+10 v \gamma^{2}+\left(18 p^{2}+9 p v-14 v^{2}\right) \gamma-3 v\left(3 p^{2}-3 p v-2 v^{2}\right) \geq 0 \tag{3.87}
\end{equation*}
$$

Proof $E C D(\bar{\theta}+1) s$ are A-better than Case I designs if and only if

$$
\frac{3}{z_{1}^{(\hat{\theta}+1)}}+\frac{1}{z_{2}^{(\hat{\theta}+1)}} \leq \frac{1}{z_{1}^{(1)}}+\frac{1}{z_{2}^{(1)}}+\frac{1}{z_{3}^{(1)}}+\frac{1}{z_{4}^{(1)}}
$$

if and only if

$$
-2 \gamma^{3}+10 v \gamma^{2}+\left(18 p^{2}+9 p v-14 v^{2}\right) \gamma-3 v\left(3 p^{2}+3 p v-2 v^{2}\right) \geq 0
$$

which is (3.87). On $\frac{3 v}{5} \leq \gamma \leq \frac{3 v}{4}$, the left hand side of (3.87) is bounded below by

$$
\begin{equation*}
\frac{9}{160 v}\left[32\left(\frac{p}{v}\right)^{2}-64\left(\frac{p}{v}\right)-31\right] \tag{3.88}
\end{equation*}
$$

which is obtained by substituting $\gamma=\frac{3 v}{5}$ into the positive terms and $\gamma=\frac{3 v}{4}$ into the negative terms. Setting the bound (3.88) equal to zero and solving for ${\underset{v}{p}}_{p}$ yields

$$
\frac{p}{v}=\frac{8 \mp 3 \sqrt{14}}{8}
$$

Since

$$
-\frac{1}{2}<\frac{8-3 \sqrt{14}}{8}<0<\frac{8+3 \sqrt{14}}{8}<\frac{5}{2}
$$

and (3.88) is greater than zero when $\frac{p}{v} \geq \frac{5}{2}$, (3.87) is satisfied on $\frac{3 v}{5} \leq \gamma \leq \frac{3 v}{4}$ when $\underset{v}{P} \geq \frac{5}{2}$, and, by corollary 3.1.4, this inequality holds if $k_{1} \geq k_{2} \geq 5, k_{2}=4$ and $k_{1} \geq 7$, or $k_{2}=3$ and $k_{1} \geq 15$. Thus (3.87) may not be satisfied when $k_{1} \geq k_{2}=2$, $14 \geq k_{1} \geq k_{2}=3$, or $6 \geq k_{1} \geq k_{2}=4$. By lemma 3.1.2, when $\frac{3 v}{5} \leq \gamma \leq \frac{3 v}{4}$, $k_{2}=2$ if and only if $k_{1}=4,14 \geq k_{1} \geq k_{2}=3$ if and only if $k_{1}=9,10,11$, or 12 , and $6 \geq k_{1} \geq k_{2}=4$ if and only if $k_{1}=6$. Since condition (3.87) is satisfied when $\left(k_{1}, k_{2}\right)=(4,2),(9,3),(10,3),(11,3),(12,3)$, and $(6,4)$, then $E C D(\bar{\theta}+1) \mathrm{s}$ are A-better than Case I designs on the interval.

Lemma 3.4.16 When $\frac{3 v}{5} \leq \gamma \leq \frac{2 v}{3} E C D(\bar{\theta}+1)$ s are A-better than Case II designs. When $\frac{v}{2} \leq \gamma \leq \frac{3 v}{5}, E C D(\bar{\theta}+1)$ s are A-better than Case II designs provided

$$
\begin{equation*}
-2 \gamma^{3}+12 v \gamma^{2}+\left(18 p^{2}+15 p v-16 v^{2}\right) \gamma-3 v\left(3 p^{2}+4 p v-2 v^{2}\right) \geq 0 \tag{3.89}
\end{equation*}
$$

Proof $E C D(\bar{\theta}+1) \mathrm{s}$ are A-better than Case Π designs if and only if

$$
\frac{3}{z_{1}^{(\bar{\theta}+1)}}+\frac{1}{z_{2}^{(\hat{\theta}+1)}} \leq \frac{1}{z_{1}^{(2)}}+\frac{1}{z_{2}^{(2)}}+\frac{1}{z_{3}^{(2)}}+\frac{1}{z_{4}^{(2)}}
$$

if and only if

$$
-2 \gamma^{3}+12 v \gamma^{2}+\left(18 p^{2}+15 p v-16 v^{2}\right) \gamma-3 v\left(3 p^{2}+4 p v-2 v^{2}\right) \geq 0
$$

which is (3.89). On $\frac{3 v}{5} \leq \gamma \leq \frac{2 v}{3}$, the left hand side of (3.89) is bounded from below by

$$
\begin{equation*}
\frac{1}{675 v}\left[1215\left(\frac{p}{v}\right)^{2}-2025\left(\frac{p}{v}\right)-634\right] \tag{3.90}
\end{equation*}
$$

which results from substituting $\gamma=\frac{2 v}{5}$ into the positive terms and $\gamma=\frac{2 v}{3}$ into the negative terms. Since the bound (3.90) is equal to zero if and only if

$$
\begin{gathered}
\frac{p}{v}=\frac{225 \mp \sqrt{88665}}{270} \\
\frac{3}{10}<\frac{225-\sqrt{88665}}{270}<0<\frac{225+\sqrt{88665}}{270}<1.95
\end{gathered}
$$

and (3.90) is greater than zero when ${ }_{v}^{p}=2$, then (3.89) is satisfied on $\frac{3 v}{5} \leq \gamma \leq \frac{2 v}{3}$ when ${ }_{v}^{p} \geq 2$. By fact 3.1.3, this inequality holds when $k_{1} \geq k_{2} \geq 4$ or $k_{2}=3$ and $k_{1} \geq 6$. Thus, (3.89) may not be satisfied when $k_{2} \geq k_{1}=2$ or $5 \geq k_{1} \geq k_{2}=3$. On $\frac{3 v}{5} \leq \gamma \leq \frac{2 v}{3},\left(k_{1}, k_{2}\right)$ does not take on the values $(3,3),(4,3)$, or $(5,3)$, and by corollary 3.1.5, $k_{2}=2$ if and only if $k_{1}=4$. Since (3.89) is satisfied when $\left(k_{1}, k_{2}\right)=(4,2)$, then $E C D(\bar{\theta}+1)$ s are A-better than Case II designs on the interval.

Lemma 3.4.17 When $\frac{3 v}{5} \leq \gamma \leq \frac{2 v}{3}$, Case I designs are A-better than Case II designs, and when $\frac{v}{2} \leq \gamma<\frac{3 v}{5}$, Case I designs are A-better than Case II designs provided

$$
\begin{align*}
& 2 \gamma^{4}-2(3 p+8 v) \gamma^{3}-\left(18 p^{2}-21 p v-34 v^{2}\right) \gamma^{2}+ \tag{3.91}\\
& \quad 2\left(27 p^{3}+45 p^{2} v-6 p v^{2}-14 v^{3}\right) \gamma-v\left(27 p^{3}+54 p^{2} v-8 v^{3}\right) \geq 0 .
\end{align*}
$$

Proof Case I designs are A-better than Case II designs if and only if

$$
\frac{1}{z_{1}^{(1)}}+\frac{1}{z_{2}^{(1)}}+\frac{1}{z_{3}^{(1)}}+\frac{1}{z_{4}^{(1)}} \leq \frac{1}{z_{1}^{(2)}}+\frac{1}{z_{2}^{(2)}}+\frac{1}{z_{3}^{(2)}}+\frac{1}{z_{4}^{(2)}}
$$

if and only if

$$
\begin{aligned}
& 2 \gamma^{4}-2(3 p+8 v) \gamma^{3}-\left(18 p^{2}-21 p v-34 v^{2}\right) \gamma^{2}+ \\
& \quad 2\left(27 p^{3}+45 p^{2} v-6 p v^{2}-14 v^{3}\right) \gamma-v\left(27 p^{3}+54 p^{2} v-8 v^{3}\right) \geq 0
\end{aligned}
$$

which is (3.91). On $\frac{3 v}{5} \leq \frac{2 v}{3}$ (3.91) is bounded from below by

$$
\begin{equation*}
\frac{1}{16875 v^{3}}\left[91125\left(\frac{p}{v}\right)^{3}-135000\left(\frac{p}{v}\right)^{2}-37425\left(\frac{p}{v}\right)-49076\right] \tag{3.92}
\end{equation*}
$$

which results from substituting $\gamma=\frac{3 v}{5}$ into the positive terms and $\gamma=\frac{2 v}{3}$ into the negative terms. We will now show that the bound (3.92) is greater than zero on $\frac{3 v}{5} \leq \gamma \leq \frac{2 v}{3}$ when $\frac{p}{u} \geq 2$ by using the function

$$
f(x)=91125 x^{3}-135000 x^{2}-37425 x-49076
$$

since the bound is greater than or equal to zero when ${ }_{v}^{p}=x$ for values of x such that $f(x) \geq 0$. Since $f^{\prime}(x)=0$ if and only if

$$
\begin{gathered}
x=\frac{400 \mp \sqrt{62455}}{405} \\
-1.2<\frac{400-\sqrt{62455}}{405}<0<\frac{400+\sqrt{62455}}{405}<1.3
\end{gathered}
$$

and $f(2)=65074$, then (3.92) is greater than zero and (3.91) is satisfied when $\underset{v}{P} \geq 2$. From the proof of lemma 3.4 .16 we know the only pair (k_{1}, k_{2}) for which ${\underset{u}{u}} \geq 2$ on $\frac{3 v}{4} \leq \gamma \leq \frac{3 v}{3}$ is $(4,2)$, and it is easy to see that (3.91) is satisfied when $\left(k_{1}, k_{2}\right)=(4,2)$. Therefore, Case I designs are A-better than Case II designs on $\frac{3 u}{5} \leq \gamma \leq \frac{2 v}{3}$.

A summary of the A-best analysis is given in table 3.34 below.
Table 3.34: A-, Type-1, and Schur-optimal Designs In $D\left(v, 4 ; k_{1}, k_{2}\right)$

Note that the A-best design is uniquely an $E C D(\bar{\theta})$ when $0 \leq \gamma<\frac{0}{2}$ and uniquely an $E C D(\bar{\theta}+1)$ when $\frac{3 v}{4} \leq \gamma<v$. When $\gamma=\frac{v}{2}$ the eigenvalues for $E C D(\bar{\theta}) s$, Case II
and Case V designs are identical, and the same designs are A-best. On the interval $\frac{v}{2}<\gamma<\frac{3 v}{5}$, the A-best design can be either an $\operatorname{ECD}(\bar{\theta}+1)$, a Case I, or a Case II design; conditions (3.87), (3.89), and (3.91) must be checked in order to determine the A-best design. For $10,000 \geq k_{1} \geq 3$ and $k_{1} \geq k_{2} \geq 2$ with $\frac{v}{2}<\gamma<\frac{3 v}{5}$ the designs were ranked by their A-value with the following results:

Table 3.35: A-optimal Design Counts In $D\left(v, 4 ; k_{1}, k_{2}\right)$ When $\frac{v}{2}<\gamma \leq \frac{3 v}{5}$

A-optimal	interval	count
$E C D(\bar{\theta}+1)$	$.5 v<\gamma<.60 v$	$5,027,032$
Case I	$.5 v<\gamma \leq .53 v$	77
Case II	$.5 v<\gamma \leq .57 v$	18,034

k_{1}	Case II A-optimal, $\operatorname{ECD}(\bar{\theta}+1)$ second best				
			$E C D(\bar{\theta}+1)$	Case I	Case II
	k_{2}	$\frac{\gamma}{4}$	A-value	A-value	A-value
332	41	0.5067	1.33341528681224	1.33341528616835	1.33341529455844
615	61	0.5044	1.33336898681649	1.33336898657864	1.33336898804561
1026	85	0.5032	1.33335121489144	1.33335121481050	1.33335121515767
1589	113	0.5024	1.33334325422629	1.33334325419645	1.33334325429825
2328	145	0.5018	1.33333926800729	1.33333926799523	1.33333926803025
3267	181	0.5015	1.33333709653531	1.33333709653001	1.33333709654363
4430	221	0.5012	1.33333583303917	1.33333583303667	1.33333583304252
5841	265	0.5010	1.33333505784887	1.33333505784761	1.33333505785033
7524	313	0.5008	1.33333456108502	1.33333456108436	1.33333456108571
9503	365	0.5007	1.33333423094228	1.33333423094191	1.33333423094262

| | | | Case I A-optimal, | Case II second best | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | A-value | |
| k_{1} | k_{2} | $\frac{7}{v}$ | $E C D(\bar{\theta}+1)$ | Case I | Case II |
| 85 | 7 | 0.5326 | 1.33577654097824 | 1.33576851757101 | 1.33576872031938 |
| 113 | 8 | 0.5289 | 1.33518039792047 | 1.33517611041577 | 1.33517651436696 |
| 145 | 9 | 0.5260 | 1.33477950084018 | 1.33477701479240 | 1.33477739857049 |
| 181 | 10 | 0.5236 | 1.33449673022044 | 1.33449519480483 | 1.33449551298767 |
| 221 | 11 | 0.5216 | 1.33428971292312 | 1.33428871579687 | 1.33428896905532 |
| 265 | 12 | 0.5199 | 1.33413355144468 | 1.33413287687614 | 1.33413307629157 |
| 313 | 13 | 0.5184 | 1.33401281884187 | 1.33401234675116 | 1.33401250391211 |
| 365 | 14 | 0.5172 | 1.33391753469016 | 1.33391719472945 | 1.33391731931784 |
| 421 | 15 | 0.5161 | 1.33384100659906 | 1.33384075574521 | 1.33384085529994 |
| 481 | 16 | 0.5151 | 1.33377860909054 | 1.33377842004996 | 1.33377850029529 |
| 545 | 17 | 0.5142 | 1.33372706130054 | 1.33372691620282 | 1.33372698145427 |
| 613 | 18 | 0.5135 | 1.33368398324226 | 1.33368387006051 | 1.33368392357517 |
| 685 | 19 | 0.5128 | 1.33364761415738 | 1.33364752459940 | 1.33364756884820 |
| 761 | 20 | 0.5122 | 1.33361662859149 | 1.33361655681632 | 1.33361659368708 |
| 841 | 21 | 0.5116 | 1.33359001324405 | 1.33358995505806 | 1.33358998600468 |
| 925 | 22 | 0.5111 | 1.33356698266158 | 1.33356693500184 | 1.33356696115336 |

3.4.5 Special Cases: $\left(k_{1}-k_{2}\right) \leq 2$

We now apply the optimality results from sections 3.4.2 and 3.4.4 to the three special cases described in section 2.4.

Corollary 3.4.18 Suppose $k_{1}=k_{2}$ and $r=4$. Then
(i) If $2 \mid k_{1}$ then $\gamma=0$, and $\operatorname{ECD}\left(\theta^{*}\right)$ s exist and are Schur-optimal.
(ii) If $2 \ k_{1}$ then $\gamma=\frac{v}{2}$, and $E C D(\bar{\theta}) s$, Case II, and V are identical and $(E, S)-$ and type-1

Corollary 3.4.19 Suppose $k_{2}=k_{1}-1$ and $r=4$. Then
(i) If $2 \mid k_{1}$ then $\frac{4}{4}<\gamma<\frac{v}{3}$, and $E C D(\bar{\theta}) s$ are (E, S)- and type-1 optimal.
(ii) If 2$\rceil k_{1}$ then $\frac{3 v}{4}<\gamma<\frac{4 v}{5}$, and $E C D(\bar{\theta}+1)$ s are Schur-optimal.

Corollary 3.4.20 Suppose $k_{2}=k_{1}-2$ and $r=4$. Then
(i) If $k_{1}=4$ then $\gamma=\frac{2 v}{3}$, Case I designs are (E, S)-optimal, and $E C D(\bar{\theta}+1)$ s are A-optimal.
(ii) If $k_{1}=6$ then $\gamma=\frac{3 v}{5}$, Case II designs are (E, S)-optimal, and $E C D(\vec{\theta}+1)$ s are A-optimal.
(iii) If $2 \mid k_{1}$ and $k_{1} \geq 8$ then $\frac{v}{2}<\gamma<\frac{3 v}{5}$, Case II designs are (E, S)-optimal, and either an $E C D(\bar{\theta}+1)$, a Case I, or a Case II design is A-optimal.
(iv) If $2 \gamma k_{1}$ then $0<\gamma<\frac{v}{6}$, and $E C D(\bar{\theta})$ s are Schur-optimal.

3.4.6 Construction of Optimal Designs in $D\left(v, 4 ; \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)$

The A-, (E,S)-, type-1, and Schur-optimal resolvable designs in $D\left(v, 4 ; k_{1}, k_{2}\right), k_{1} \geq 3$ and $k_{1} \geq k_{2} \geq 2$, are $E C D(\bar{\theta}), E C D(\bar{\theta}+1)$, Case I, and Case II designs depending on the value of $0 \leq \gamma<v$. In particular, when $0 \leq \gamma<\frac{v}{2}, E C D(\bar{\theta})$ s are type-1 optimal; when $\gamma=\frac{v}{2}, E C D(\bar{\theta}) s$, Case II, and Case V designs are type-1 equivalent and type-1 optimal; when $\frac{3 v}{4} \leq \gamma<v, E C D(\bar{\theta}+1)$ s are Schur-optimal; and when $\frac{v}{2}<\gamma<\frac{3 v}{4}$, A- and (E, S)-optimal designs are $E C D(\bar{\theta}+1) \mathrm{s}$, Case I designs, and Case II designs. Furthermore, in the previous section we determined that, when $k_{1}-k_{2} \leq 1$, A-, (E,S)-, and Schur-optimal designs are ECDs and when $k_{1}-k_{2}=2$, A- and (E,S)optimal designs can be ECD, Case I, and Case II designs. However, we have yet to address the question of if and when the theoretically optimal designs exist, and if they do, provide a means for finding the optimal design. In this section we will determine constructions for ECDs, Case I, and Case II designs. The constructions for $E C D \mathrm{~s}$ will be described in such a way that they will be valid for $E C D\left(\theta^{*}\right) \mathrm{s}, E C D(\bar{\theta})_{\mathrm{s}}$ and $\operatorname{ECD}(\bar{\theta}+1) \mathrm{s}$.

Now we are ready to provide constructions for the first block of each replicate for values of k_{1} in the interval given by (3.74).

Construction of $\operatorname{ECD}(\bar{\theta}) \mathrm{s}$

Let L be the common $E C D$ treatment concurrence. Then for $E C D(\bar{\theta})$ s, $L=\bar{\theta}$, and for $E C D(\bar{\theta}+1) \mathrm{s}, L=\bar{\theta}+1$. Not that when $k_{1} \geq 2 L$, then by $3.74, L=\bar{\theta}$.

Block 1 of Replicate 1: $\left\{1 \ldots k_{1}\right\}$
Block 1 of Replicate 2: $\{1 \ldots L\} \cup\left\{k_{1}+1 \ldots 2 k_{1}-L\right\}$
Block 1 of Replicate 3:
(i) $k_{1}<2 L$ or ($k_{1}=2 L$ and L even):

$$
\left\{1 \quad \begin{array}{l}
\text { if } k_{1}<2 L \\
2 L
\end{array} k_{1}\right\} \cup\left\{L+1 \ldots 2 k_{1}-L\right\}
$$

(ii) $k_{1}=2 L$ and L odd:

$$
\begin{aligned}
& \left\{1 \ldots \frac{L-1}{2}\right\} \cup\left\{L+1 \ldots \frac{3 L+1}{2}\right\} \cup\left\{k_{1}+1 \ldots k_{1}+\frac{L+1}{2}\right\} \cup \\
& \left\{2 k_{1}+1-L \ldots 2 k_{1}-\frac{L+1}{2}\right\}
\end{aligned}
$$

(iii) $k_{1}=2 L+1$:

$$
\{L+1 \ldots 2 L\} \cup\left\{k_{1}+1 \ldots k_{1}+L\right\} \cup\left\{2 k_{1}+1-L \ldots 3\left(k_{1}-L\right)\right\}
$$

Block 1 of Replicate 4:
(i) $L+1 \leq k_{1} \leq \frac{3}{2} L$
$\left\{1 \ldots 3 L-2 k_{1}\right\} \cup\left\{2 L+1-k_{1} \ldots 2 k_{1}-L\right\}$
(ii) $\frac{3}{2} L<k_{1} \leq 2 L$ and L even:

$$
\begin{aligned}
& \left\{2 L+1-k_{1} \ldots \frac{5}{2} L-k_{1}\right\} \cup\left\{L+1 \ldots \frac{3}{2} L\right\} \cup \\
& \left\{k_{1}+1 \ldots k_{1}+\frac{L}{2}\right\} \cup\left\{2 k_{1}+1-L \ldots 3 k_{1}-\frac{5}{2} L\right\}
\end{aligned}
$$

(iii) $\frac{3}{2} L<k_{1}<2 L$ and L odd:
$\{1\} \cup\left\{2 L+1-k_{1} \ldots \frac{5 L-1}{2}-k_{1}\right\} \cup\left\{L+1 \ldots \frac{3 L-1}{2}\right\} \cup$
$\left\{k_{1}+1 \ldots k_{1}+\frac{L-1}{2}\right\} \cup\left\{2 k_{1}+1-L \ldots 3 k_{1}-\frac{5 L-1}{2}\right\}$
(iv) $k_{1}=2 L$ and L odd:

$$
\begin{aligned}
& \{1\} \cup\left\{L+1 \ldots \frac{3 L-1}{2}\right\} \cup\left\{k_{1}-\frac{L-3}{2} \ldots k_{1}\right\} \cup \\
& \left\{k_{1}+1 \ldots k_{1}+\frac{L-1}{2}\right\} \cup\left\{2 k_{1}-\frac{3}{2}(L-1) \ldots 2 k_{1}-L\right\} \cup \\
& \left\{3 k_{1}-\frac{5 L-1}{2}\right\}
\end{aligned}
$$

(v) $2 L<k_{1}<3 L$:

$$
\begin{aligned}
& \left\{1 \ldots 1+\operatorname{int}\left(\frac{3 L-k_{1}-2}{2}\right)\right\} \cup\left\{L+1 \ldots L+1+\operatorname{int}\left(\frac{3 L-k_{1}-1}{2}\right)\right\} \cup \\
& \left\{2 L+1 \ldots k_{1}\right\} \cup\left\{k_{1}+1 \ldots k_{1}+1+\operatorname{int}\left(\frac{3 L-k_{1}-1}{2}\right)\right\} \cup \\
& \left\{k_{1}+L+1 \ldots 2 k_{1}-L\right\} \cup\left\{2 k_{1}+1-L \ldots 2 k_{1}-2-2 \operatorname{int}\left(\frac{3 L-k_{1}-1}{2}\right)\right\} \\
& \cup\left\{3\left(k_{1}-L\right)+1 \ldots 3\left(k_{1}-L\right)+1+\operatorname{int}\left(\frac{3 L-k_{1}-1}{2}\right)\right\}
\end{aligned}
$$

(vi) $k_{1}=3 L$:

$$
\begin{aligned}
& \{2 L+1 \ldots 3 L\} \cup\left\{k_{1}+L+1 \ldots k_{1}+2 L\right\} \cup \\
& \left\{2 k_{1}+1-L \ldots 2 k_{1}\right\}
\end{aligned}
$$

Construction of Case I Designs

Block 1 of Replicate 1: $\left\{1 \ldots k_{1}\right\}$

Block 1 of Replicate 2: $\{1 \ldots \bar{\theta}\} \cup\left\{k_{1}+1 \ldots 2 k_{1}-\bar{\theta}\right\}$
Block 1 of Replicate 3: $\left\{1 \ldots 2(\bar{\theta}+1)-k_{1}\right\} \cup\left\{\bar{\theta}+1 \ldots k_{1}-1\right\} \cup$

$$
\left\{k_{1}+1 \ldots 2 k_{1}-(\bar{\theta}+1)\right\}
$$

Block 1 of Replicate 4:

(i) $\bar{\theta}+2 \leq k_{1} \leq \frac{3}{2}(\bar{\theta}+1):$

$$
\begin{aligned}
& \left\{1 \ldots 3 \bar{\theta}+4-2 k_{1}\right\} \cup\left\{2 \bar{\theta}+3-k_{1} \ldots \bar{\theta}\right\} \cup \bar{\theta} k_{1}+\bar{\theta}+2 \\
& \text { if } k_{1}>\bar{\theta}+2 \\
& \left\{k_{1}+1 \ldots 2 k_{1}-(\bar{\theta}+2)\right\} \cup\left\{2 k_{1}-\bar{\theta}\right\}
\end{aligned}
$$

(ii) $\frac{3}{2}(\bar{\theta}+1)<k_{1} \leq 2 \bar{\theta}+1$ and $\bar{\theta}$ even

$$
\begin{aligned}
& \{1\} \cup\left\{2 \bar{\theta}+3-k_{1} \ldots \frac{5}{2} \bar{\theta}-2>0\right. \\
& \left\{k_{1}+1 \ldots k_{1}+\frac{\bar{\theta}}{2}\right\} \cup\left\{k_{1}\right\} \cup\left\{2 k_{1}\right\} \cup\left\{\bar{\theta} \ldots 3 k_{1}-2-\frac{5}{2} \bar{\theta}\right\}
\end{aligned}
$$

(iii) $\frac{3}{2}(\bar{\theta}+1)<k_{1} \leq 2 \bar{\theta}+1$ and $\bar{\theta}$ odd

$$
\begin{aligned}
& \left\{2 \bar{\theta}+3-k_{1} \ldots \frac{5 \bar{\theta}+3}{2}-k_{1}\right\} \cup\left\{\bar{\theta}+1 \ldots \frac{3 \bar{\theta}+1}{2}\right\} \cup\left\{k_{1}\right\} \cup \\
& \left\{k_{1}+1 \ldots k_{1}+\frac{\bar{\theta}+1}{2}\right\} \cup\left\{2 k_{1}-\bar{\theta} \ldots 3 k_{1}-\frac{5}{2}(\bar{\theta}+1)\right\}
\end{aligned}
$$

Construction of Case II Designs

Block 1 of Replicate 1: $\left\{1 \ldots k_{1}\right\}$
Block 1 of Replicate 2: $\{1 \ldots \bar{\theta}\} \cup\left\{k_{1}+1 \ldots 2 k_{1}-\bar{\theta}\right\}$
Block 1 of Replicate 3: $\left\{1 \ldots 2(\vec{\theta}+1)-k_{1}\right\} \cup\left\{\bar{\theta}+1 \ldots k_{1}-1\right\} \cup$

$$
\left\{k_{1}+1 \ldots 2 k_{1}-(\bar{\theta}+1)\right\}
$$

Block 1 of Replicate 4:
(i) $\vec{\theta}+2 \leq k_{1} \leq \frac{3}{2}(\bar{\theta}+1)$:
(ii) $\frac{3}{2}(\bar{\theta}+1)<k_{1} \leq 2 \bar{\theta}+1$ and $\bar{\theta}$ even

$$
\left\{2 \bar{\theta}+3-k_{1} \ldots \frac{5}{2} \bar{\theta}+2-k_{1}\right\} \cup\left\{\bar{\theta}+1 \ldots \frac{3}{2} \bar{\theta}\right\} \cup\left\{k_{1}\right\} \cup
$$

$$
\left\{k_{1}+1 \ldots k_{1}+\frac{\bar{\theta}}{2}\right\} \cup\left\{2 k_{1}-\bar{\theta} \ldots 3 k_{1}-2-\frac{5}{2} \bar{\theta}\right\}
$$

(iii) $\frac{3}{2}(\vec{\theta}+1)<k_{1} \leq 2 \bar{\theta}+1$ and $\bar{\theta}$ odd

$$
\begin{aligned}
& \left\{2 \bar{\theta}+3-k_{1} \ldots \frac{5}{2}(\bar{\theta}+1)-k_{1}\right\} \cup\left\{\bar{\theta}+1 \ldots \frac{3 \bar{\theta}+1}{2}\right\} \cup \\
& \left\{k_{1}+1 \ldots k_{1}+\frac{\bar{\theta}-1}{2}\right\} \cup\left\{2 k_{1}-\bar{\theta} \ldots 3 k_{1}-\frac{5 \bar{\theta}+3}{2}\right\}
\end{aligned}
$$

3.4.7 Examples of Resolvable Designs in $D\left(v, 4 ; k_{1}, k_{2}\right)$

We will now use the constructions of the previous section to provide some examples of resolvable designs in $D\left(v, 4 ; k_{1}, k_{2}\right)$ for various interesting $k_{1} \geq 3$ and $2 \leq k_{2} \leq k_{1}$. First we construct designs for the two cases when $k_{1}=k_{2}$.

Example Suppose $k_{1}=k_{2}=8$. Then, according to corollary 2.4.2 the the Schuroptimal design is an $\operatorname{ECD}\left(\theta^{*}\right)$. Applying the $E C D$ construction given above with

$$
\begin{aligned}
& \left\{k_{1}\right\} \cup\left\{k_{1}+1 \ldots 2 k_{1}-(\bar{\theta}+2)\right\} \cup\left\{2 k_{1}-\theta\right\}
\end{aligned}
$$

$L=\bar{\theta}=4$, and using condition (i) for block 1 of replicarte 3 and condition (ii) for block 1 of replicate 4 yields a Schur-optimal $E C D\left(\theta^{*}\right)$ which is:

1	9	1	5	5	1	1	3
2	10	2	6	6	2	2	4
3	11	3	7	7	3	5	7
4	12	4	8	8	4	6	8
5	13	9	13	9	13	9	11
6	14	10	14	10	14	10	12
7	15	11	15	11	15	13	15
8	16	12	16	12	16	14	16

Example Consider the case where $k_{1}=k_{2}=3$. Then, according to corollary 2.4.2 the (E, S)- and typt-1 optimal design is an $E C D(\bar{\theta})$. Applying the $E C D$ construction given above with $L=\bar{\theta}=1$, condition (iii) for block 1 of replicate 3, and condition (vi) for block 1 of replicate 4 produces an (E, S)- and A-optimal resolvable $E C D(\bar{\theta})$ which is:

1	4	1	2	2	1	3	1
2	5	4	3	4	3	5	2
3	6	5	6	6	5	6	4

Now we investigate the two cases when $k_{1}-k_{2}=1$.

Example Consider the setting such that $k_{1}=6$ and $k_{2}=5$. By corollary 2.4.4, the (E, S)- and type-1 optimal design is an $E C D(\bar{\theta})$. Applying the $E C D$ construction given above with $L=\bar{\theta}=3$ using condition (i) for block 1 or replicate 3 and condition (ii) for block 1 or replicate 4 yields an (E, S)- and type-1 optimal $E C D(\bar{\theta})$ which is:

1	7	1	4	1	2	1	2
2	8	2	5	4	3	4	3
3	9	3	6	5	6	6	5
4	10	7	10	7	9	7	8
5	11	8	11	8	11	9	10
6		9		10		11	

Example Suppose $k_{1}=5$ and $k_{2}=4$. By corollary 2.4.4, the Schur-optimal design is an $E C D(\bar{\theta}+1)$. Applying the $E C D$ construction given above with $L=\bar{\theta}+1=3$ using condition (i) for block 1 of replicate 3 and condition (iii) for block 1 or replicate

4 produces the a Schur-optimal $E C D(\bar{\theta}+1)$ which is:

1	6	1	4	1	2	1	3
2	7	2	5	4	3	2	5
3	8	3	8	5	8	4	7
4	9	6	9	6	9	6	9
5		7		7		8	

Finally, for our last example we investigate a setting for which the (E, S)-optimal and A-optimal designs are not the same.

Example Consider the setting for which $k_{1}=12$ and $k_{2}=7$. For this setting $\bar{\theta}=7$ and $\gamma=.58 v$, and since $\frac{v}{2}<\gamma<\frac{3 v}{5}$, the (E, S)-optimal design is a Case II design and the A-optimal design may be an $E C D(\bar{\theta}+1)$, Case I, or a Case II design. In order to determine the A-optimal design, the optimality conditions (3.87), (3.89), and (3.91) must be checked, and in doing so, we observe that all three conditions are positive (81488,92508 , and 27236404 , respectively). Thus, $E C D(\bar{\theta}+1)$ s are A-better than both Case I and Case II designs, and Case I designs are A-better than Case II designs which means an $\operatorname{ECD}(\bar{\theta}+1)$ is A-optimal.

Applying the Case II construction for $\bar{\theta}=7$ using condition (iii) for block 1 or replicate 4 yields an (E,S)-optimal Case II design which is:

1	13	1	8	1	5	1	2
2	14	2	9	2	6	5	3
3	15	3	10	3	7	6	4
4	16	4	11	4	12	7	11
5	17	5	12	8	17	8	16
6	18	6	18	9	18	9	18
7	19	7	19	10	19	10	19
8	20	13	20	11	20	12	20
9		14		13		13	
10	15		14		14		
11	16		15		15		
12		17	16		17		

The E-value for this design is 2.86 and the A-value is 1.3383 . Since $2.86>2.71$ Case II is E-better than the $E C D(\bar{\theta}+1)$, and since $1.3377<1.3383$ the $E C D(\bar{\theta}+1)$ is A-better than the Case II design.

Applying the $E C D$ construction with $L=\bar{\theta}+1=8$ using condition (i) for block 1 if replicate 3 and condition (i) for block 1 of replicate 4 yields an A-optimal $E C D(\bar{\theta}+1)$ which is:

1	13	1	9	1	5	5	1
2	14	2	10	2	6	6	2
3	15	3	11	3	7	7	3
4	16	4	12	4	8	8	4
5	17	5	17	9	17	9	17
6	18	6	18	10	18	10	18
7	19	7	19	11	19	11	19
8	20	8	20	12	20	12	10
9		13		13		13	
10		14		14		14	
11		15		15		15	
12		16	16		16		

The E-value for this design is 2.71 and the A -value is 1.3377 .

3.5 Resolvable Designs With Five Replicates

3.5.1 Introduction

In this section we study optimality for the the resolvable design setting $D\left(v, 5 ; k_{1}, k_{2}\right)$. We will determine (E, S)-optimal designs, and the A-optimal designs in some special cases. We also exploit the majorization theory of Chapter II in so far as possible. From section 2.3 we have:
$\operatorname{ECD}(\bar{\theta})$: The optimality matrix for $E C D(\bar{\theta}) \mathrm{s}$ is $M_{d}=p I-\gamma(J-I)$. The eigenvalues of M_{d} are

$$
\begin{aligned}
\xi_{1}(\gamma) & =p+\gamma \quad \quad(4 \text { copies }) \\
\xi_{2}(\gamma) & =p-4 \gamma \\
\xi_{1}(\gamma) & =\xi_{1}(\gamma)=\xi_{1}(\gamma)>\xi_{2}(\gamma)
\end{aligned}
$$

$\operatorname{ECD}(\bar{\theta}+1):$ The optimality matrix for $E C D(\bar{\theta}+1) \mathrm{s}$ is $M_{d}=p I-\gamma(J-I)+v(J-I)$.

The eigenvalues of M_{d} are

$$
\begin{aligned}
& \xi_{1}(\gamma-v)=p-(v-\gamma) \quad \text { (4 copies) } \\
& \xi_{2}(\gamma-v)=p+4(v-\gamma), \\
& \xi_{2}(\gamma-v)>\xi_{1}(\gamma-v)=\xi_{1}(\gamma-v)=\xi_{1}(\gamma-v)
\end{aligned}
$$

Theorem 2.3.3, lemma 2.3.7, and corollary 2.3.8 establish conditions for when $E C D(\bar{\theta}) / \mathrm{s}$ are E-better or Schur-better than $E C D(\bar{\theta}+1)$ s and for when $E C D(\bar{\theta}+1)$ s are E-better and Schur-better than $E C D(\bar{\theta})$ s; see table 3.36.

Table 3.36: E- and Schur-comparisons Of $E C D \sin D\left(v, 5 ; k_{1}, k_{2}\right)$

Conditions for Schur- and E-optimality of NECDs or ECDs can be established using lemma 2.3.17 and by direct eigenvalue comparisons. The optimality matrix M_{d} (in order to apply lemma 2.3 .17) or the concurrence discrepancy matrix Δ_{d} must be derived for competing NECDs. Recall that NECDs have block concurrences $\phi_{i i^{\prime}} \in\{\bar{\theta}, \bar{\theta}+1\}$ for all $1 \leq i \neq i^{\prime} \leq 4$ and have at least one block concurreace equal to $\bar{\theta}$ and at least one equal to $\bar{\theta}+1$. There are 32 cases of nonisomorphic $N E C D$ s; their block concurrence patterns, $\left\{\phi_{12}, \phi_{13}, \phi_{14}, \phi_{15}, \phi_{23}, \phi_{24}, \phi_{25}, \phi_{34}, \phi_{35}, \phi_{45}\right\}$ are listed in table 3.37 and the corresponding block concurrence discrepancy matrices are shown in table 3.38.

Table 3.37: Block Concurrence Discrepancies For NECD In $D\left(v, 5 ; k_{1}, k_{2}\right)$

Case	$\delta_{d 12}$	$\delta_{d 13}$	$\delta_{d 14}$	$\delta_{d 15}$	$\delta_{d 23}$	$\delta_{d 24}$	$\delta_{d 25}$	$\delta_{d 34}$	$\delta_{d 35}$	$\delta_{d 45}$
I	1	0	0	0	0	0	0	0	0	0
$I I$	1	1	0	0	0	0	0	0	0	0
$I I I$	1	0	0	0	0	0	0	1	0	0
$I V$	1	1	1	0	0	0	0	0	0	0
V	1	1	0	0	1	0	0	0	0	0
$V I$	1	0	0	0	1	0	0	1	0	0
$V I I$	1	1	0	0	0	0	0	0	0	1
$V I I I$	1	1	1	1	0	0	0	0	0	0
$I X$	1	1	1	0	1	0	0	0	0	0
X	1	1	1	0	0	0	0	0	0	1
$X I$	1	1	0	0	0	0	0	1	0	1
$X I I$	1	0	1	0	1	0	0	1	0	0
$X I I I$	1	1	0	0	1	0	0	0	0	1
$X I V$	1	1	1	1	1	0	0	0	0	0
$X V$	1	1	1	0	1	0	0	1	0	0
$X V I$	1	1	1	0	1	0	0	0	1	0
$X V I I$	1	1	1	0	1	0	0	0	0	1
$X V I I I$	1	1	0	0	1	0	1	0	1	0
$X I X$	1	0	0	1	1	0	0	1	0	1
$X X$	1	1	1	1	1	0	0	1	0	0
$X X I$	1	1	1	1	1	0	0	0	0	1
$X X I I$	1	1	1	0	1	1	0	1	0	0
$X X I I I$	1	1	1	0	1	1	0	0	1	0
$X X I V$	1	1	1	0	1	0	1	0	1	0
$X X V$	1	1	1	0	0	0	1	0	1	1
$X X V I$	1	1	1	1	1	0	0	1	0	1
$X X V I I$	1	1	1	1	1	1	0	1	0	0
$X X V I I I$	1	1	1	1	1	1	1	0	0	0
$X X I X$	1	1	1	0	1	1	0	0	1	1
$X X X$	1	1	1	1	1	1	1	1	0	0
$X X X I$	1	1	1	1	1	1	1	0	1	0
$X X X I I$	1	1	1	1	1	1	1	1	1	0

Table 3.38: Concurrence Discrepancy Matrices For NECDs $\operatorname{In} D\left(v, 5 ; k_{1}, k_{2}\right)$

$$
\begin{aligned}
& \Delta_{1}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \Delta_{2}=\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \Delta_{8}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \Delta_{4}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \Delta_{5}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& 1
\end{aligned} 0
$$

Table 3.38: Continued

$$
\left.\begin{array}{ll}
\Delta_{15} & =\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\Delta_{16} & =\left(\begin{array}{lll}
0 & 1 & 1
\end{array} 1\right. \\
1 & 0
\end{array} 1-0,0\right)\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Table 3.38: Continued

$$
\begin{array}{ll}
\Delta_{29}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right) \\
\Delta_{30}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right) & \Delta_{31}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right) \\
& \Delta_{32}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right)
\end{array}
$$

Using the concurrence discrepancy matrices for the 32 cases of $N E C D$ s, we begin our eigenvalue optimality investigation by applying the following corollary of lemma 2.3.17.

Corollary 3.5.1 Let $d \in D\left(v, 5 ; k_{1}, k_{2}\right)$ be an NECD having optimality matrix $M_{d}=$ $p I-\gamma(I-J)+v \Delta$, and let u_{1} and u_{r} be the maximum and minimum eigenvalues, respectively, of $P^{r} \Delta P$, where $P=\left(I-\frac{1}{5} J\right)$. If

$$
\gamma<-\frac{u_{r}}{5} v
$$

then $E C D(\bar{\theta}) s$ are Schur-better than d. If $u_{1}>0$ and

$$
\gamma>\left(\frac{4-u_{1}}{5}\right) v
$$

then $E C D(\bar{\theta}+1)$ s are Schur-better than d. Furthermore, if

$$
\begin{equation*}
u_{1}>0 \tag{3.93}
\end{equation*}
$$

then $E C D(\bar{\theta})_{s}$ are E-better, but not necessarily Schur-better, than d.
We now use these tools to eliminate as many designs as possible. For each $N E C D$, condition (3.93) was calculated with results given in column four of table 3.39. We see all cases except Cases VIII, XXV, XXVIII, and XXXII are E-inferior to $E C D(\bar{\theta}) s$.

Table 3.39: Corollary 3.5.1 Results In $D\left(v, 5 ; k_{1}, k_{2}\right)$

Case	$-\frac{u_{r}}{5}$	$\frac{4-u_{1}}{5}$	u_{1}
I	0.200	0.680	0.600
$I I$	0.276	0.684	0.580
$I I I$	0.200	0.600	1.000
$I V$	0.316	0.724	0.380
V	0.200	0.640	0.800
$V I$	0.324	0.676	0.618
$V I I$	0.274	0.566	1.169
$V I I I$	0.320	0.800	0.000
$I X$	0.282	0.689	0.554
X	0.359	0.645	0.773
$X I$	0.343	0.600	1.000
$X I I$	0.400	0.720	0.400
$X I I I$	0.200	0.520	1.400
$X I V$	0.305	0.695	0.525
$X V$	0.305	0.695	0.525
$X V I$	0.324	0.676	0.618
$X V I I$	0.334	0.579	1.104
$X V I I I$	0.305	0.695	0.525
$X I X$	0.324	0.676	0.618
$X X$	0.311	0.718	0.410
$X X I$	0.280	0.600	1.000
$X X I I$	0.200	0.680	0.600
$X X I I I$	0.355	0.641	0.797
$X X I V$	0.355	0.641	0.797
$X X V$	0.480	0.800	0.000
$X X V I$	0.324	0.676	0.618
$X X V I I$	0.276	0.684	0.580
$X X V I I I$	0.360	0.800	0.000
$X X I X$	0.434	0.726	0.369
$X X X$	0.316	0.724	0.380
$X X X I$	0.316	0.724	0.380
$X X X I I$	0.320	0.800	0.000

Values of γ for which $E C D(\bar{\theta})$ s or $E C D(\bar{\theta}+1) \mathrm{s}$ are Schur-better than $N E C D$ s having any of the concurrence discrepancy matrices listed in table 3.38 have been determined using corollary 3.5.1 and are also listed in table 3.39. $E C D(\bar{\theta})$ are uniquely Schuroptimal on $0 \leq \gamma<\frac{v}{5}$, and $E C D(\bar{\theta}+1)$ are uniquely Schur-optimal on $\frac{4 v}{5}<\gamma<v$.

Since none of the four remaining NECDs cases are completely eliminated from (E, S)-optimality contention, in order to proceed we must make direct eigenvalue comparisons; consequently, we need explicit expressions for the eigenvalues of whe optimality matrices. The eigenvalues and their ordering over the admissible region are given below.

Case VIII: The optimality matrix for Case VIII NECDs is $M_{8}=p I-\gamma(J-I)+$ $v \Delta_{8}$, and the eigenvalues of M_{8} are

$$
\begin{array}{ll}
e_{1}^{(8)} & =p+\gamma \\
e_{2}^{(8)} & =p+\gamma \\
e_{3}^{(8)} & =p+\gamma \\
e_{4}^{(8)} & =p-\frac{3 \gamma}{2}+\frac{1}{2} \sqrt{16(v-\gamma)^{2}+9 \gamma^{2}} \\
e_{5}^{(8)} & =p-\frac{3 \gamma}{2}-\frac{1}{2} \sqrt{16(v-\gamma)^{2}+9 \gamma^{2}}
\end{array}
$$

Case XXV: The optimality matrix for Case XXV NECDs is $M_{25}=p I-\gamma(J-$ $I)+v \Delta_{25}$, and the eigenvalues of M_{25} are

$$
\begin{array}{ll}
e_{1}^{(25)} & =p+\gamma \\
e_{2}^{(25)} & =p+\gamma \\
e_{3}^{(25)} & =p+\gamma \\
e_{4}^{(25)} & =p-\frac{3 \gamma}{2}+\frac{1}{2} \sqrt{24(v-\gamma)^{2}+\gamma^{2}} \\
e_{5}^{(25)} & =p-\frac{3 \gamma}{2}-\frac{1}{2} \sqrt{24(v-\gamma)^{2}+\gamma^{2}}
\end{array}
$$

Case XXVIII: The optimality matrix for Case XXVIII NECDs is $M_{28}=p I-$ $\gamma(J-I)+v \Delta_{28}$, and the eigenvalues of M_{28} are

$$
0
$$

$$
\begin{aligned}
e_{1}^{(28)} & =p+\gamma \\
e_{2}^{(28)} & =p+\gamma \\
e_{3}^{(28)} & =p-(v-\gamma) \\
e_{4}^{(28)} & =p-\frac{(3 \gamma-v)}{2}+\frac{1}{2} \sqrt{(v+\gamma)^{2}+24(v-\gamma)^{2}} \\
e_{5}^{(28)} & =p-\frac{(3 \gamma-v)}{2}-\frac{1}{2} \sqrt{(v+\gamma)^{2}+24(v-\gamma)^{2}} \\
e_{4}^{(28)}>e_{1}^{(28)} & =e_{2}^{(28)}>e_{3}^{(28)}>e_{5}^{(28)} \quad 1 \\
& e_{1}^{(28)}=e_{2}^{(28)}>e_{4}^{(28)} \\
&
\end{aligned}
$$

Case XXXII: The optimality matrix for Case XXXII NECDs is $M_{32}=p I-\gamma(J-$ $I)+v \Delta_{32}$, and the eigenvalues of M_{32} are

$$
\begin{array}{ll}
e_{1}^{(32)} & =p+\gamma \\
e_{2}^{(32)} & =p-(v-\gamma) \\
e_{3}^{(32)} & =p-(v-\gamma) \\
e_{4}^{(32)} & =p+\frac{2 v-3 \gamma}{2}+\frac{1}{2} \sqrt{(2 v-\gamma)^{2}+24(v-\gamma)^{2}} \\
e_{5}^{(32)} & =p+\frac{2 v-3 \gamma}{2}-\frac{1}{2} \sqrt{(2 v-\gamma)^{2}+24(v-\gamma)^{2}}
\end{array}
$$

We conclude this section by settling the case $v=\frac{v}{2}$.

Lemma 3.5.2 When $\gamma=\frac{v}{2}, E C D(\bar{\theta})$ s, Case VIII and Case $X X V$ designs are type-1 equivalent.

Proof Since all cases of NECDs except for Cases VIII, XXV, XXVIII, and XXXII are E-inferior to $E C D(\bar{\theta}) \mathrm{s}$, when $\gamma=\frac{\nu}{2}$, the optimality matrices for these cases are the only optimality matrices that can potentially have eigenvalues that are identical to the eigenvalues of the optimality matrix for $\operatorname{ECD}(\bar{\theta}) \mathrm{s}$ and, therefore, be type-1 equivalent to $E C D(\bar{\theta})$ s. When $\gamma=\frac{\nu}{2}$, it is easy to prove that the eigenvalues of the optimality matrices for $E C D(\bar{\theta}) \mathrm{s}$, Case VIII, and XXV designs are identical, and the eigenvalues of the optimality matrix for Case XXVIII and XXXII designs are not identical to those of $E C D(\bar{\theta}) / s$ using the explicit expressions for the eigenvalues.

3.5.2 (E,S)-Optimal Designs in $D\left(v, 5 ; \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)$

In section 3.5.1 we proved that the only NECDs that can be E-optimal in a resolvable design setting $D\left(v, 4 ; k_{1}, k_{2}\right)$ are Cases VIII, XXV, XXVIII, and XXXII. Before investigating E-optimality in detail we will review a few useful optimality results from above.

1. $E C D(\bar{\theta})$ s are uniquely Schur-optimal when $0 \leq \gamma<\frac{\mathrm{v}}{5}$,
2. $E C D(\bar{\theta})$, Case VIII, and XXV designs are type-1 equivalent when $\gamma=\frac{v}{2}$
3. $E C D(\bar{\theta}) s$ and $E C D(\bar{\theta}+1) s$ are E-equivalent when $\gamma=\frac{4 v}{5}$.
4. $E C D(\bar{\theta}+1)$ s are uniquely Schur-optimal when $\frac{4 v}{5}<\gamma<v$.

Thus, all UECDs are E-inferior to an $E C D$; on $0 \leq \gamma<\frac{v}{2}, E C D(\bar{\theta})$ s are E-optimal; $E C D(\bar{\theta}) s$, Case VIII, and XXV designs are E-equivalent when $\gamma=\frac{v}{2}$; Case VIII, XXV, XXVIII, and XXII designs can be E-optimal on $\frac{v}{2}<\gamma \leq \frac{4 v}{5}$; and $E C D(\bar{\theta}+1)$ s are E-optimal when $\frac{4 v}{5}<\gamma<v$. In this section we will find the E-optimal designs on $\frac{v}{2}<\gamma \leq \frac{4 v}{5}$, and when the E-optimal design is not unique, the (E, S)-optimal design will be identified.

Lemma 3.5.3

1. $E C D(\bar{\theta})$, Case VIII, and XXV designs are E-equivalent and E-better than Case XXVIII and Case XXXII designs when $\frac{v}{2} \leq \gamma<\frac{2 v}{3}$.
2. When $\frac{2 v}{3} \leq \gamma<\frac{3 v}{4}, E C D(\bar{\theta})_{s}$, Case VIII, XXV, and XXVIII designs are Eequivalent and E-better than Case XXXII designs.
3. When $\frac{3 v}{4} \leq \gamma<\frac{4 v}{5}, E C D(\bar{\theta}) s$, Case VIII, XXV, XXVIII, and XXXII designs are E-equivalent.
4. When $\gamma=\frac{4 v}{5}, E C D(\bar{\theta}) s, E C D(\bar{\theta}+1) s$, Case VIII, XXV, XXVIII, and XXXII designs are E-equivalent.

Proof The maximum eigenvalue of the optimality matrix for $\operatorname{ECD}(\bar{\theta}) \mathrm{s}$ is $\xi_{1}(\gamma)=$ $p+\gamma$, and the maximum eigenvalue of the optimality matrix for $\operatorname{ECD}(\bar{\theta}+1) \mathrm{s}$ is $\xi_{2}(\gamma-v)=p-(v-\gamma)$. On the interval $\frac{v}{2} \leq \gamma<v$, the maximum eigenvalue of the optimality matrices for Case VIII and XXV designs is $e_{1}^{(8)}=e_{1}^{(25)}=\xi_{1}(\gamma)$; therefore, $\operatorname{ECD}(\bar{\theta}) s$, Case VIII, and XXV designs are E-equivalent on the interval, and $\operatorname{ECD}(\bar{\theta}) \mathrm{s}$, Case VIII, XXV, and $E C D(\bar{\theta}+1)$ s are E-equivalent when $\gamma=\frac{4 v}{5}$. On the interval $\frac{v}{2}<\gamma<\frac{2 v}{3}$, the maximum eigenvalue of the optimality matrix for Case XXVIII is $e_{4}^{(28)}>\xi_{1}(\gamma)$, and on $\frac{2 v}{3} \leq \gamma<v$ the maximum eigenvalue of the optimality matrix for

Case XXVIII designs is $e_{1}^{(28)}=\xi_{1}(\gamma)$. Thus, when $\frac{v}{2}<\gamma<\frac{2 v}{3}$, Case XXVIII designs are E-inferior to $E C D(\bar{\theta}) s$, when $\frac{2 v}{3} \leq \gamma<\frac{4 v}{5}$ Case XXVIII designs are E-equivalent to $E C D(\bar{\theta}) \mathrm{s}$, and when $\gamma=\frac{4 v}{5}$ Case XXVIII designs are E-equivalent to $E C D(\bar{\theta}) \mathrm{s}$ and $E C D(\vec{\theta}+1) \mathrm{s}$. On the interval $\frac{v}{2}<\gamma<\frac{3 v}{4}$ the maximum eigenvalue of the optimality matrix for Case XXXII designs is $e_{4}^{(32)}>\xi_{1}(\gamma)$, and when $\frac{3 v}{4} \leq \gamma<v$ the maximum eigenvalue of the optimality matrix for Case XXXII designs is $e_{1}^{(32)}=\xi_{1}(\gamma)$. Therefore, Case XXXII designs are E-inferior to $\operatorname{ECD}(\bar{\theta})$ s when $\frac{v}{2}<\gamma<\frac{3 v}{4}$, Case XXXII designs are E-equivalent to $E C D(\bar{\theta})$ s when $\frac{3 v}{4} \leq \gamma<\frac{4 v}{5}$, and Case XXXII designs are E-equivalent to $E C D(\bar{\theta}) s$ and $E C D(\bar{\theta}+1) s$ when $\gamma=\frac{4 v}{5}$.

Now Schur comparisons of the E-optimal designs can be made.
Lemma 3.5.4 Case XXV designs are Schur-better than Case VIII when $\frac{v}{2}<\gamma<v$.

Proof When $\frac{0}{2}<\gamma<v$, the eigenvalues of the optimality matrix for Case VIII designs are $e_{1}^{(8)}=e_{2}^{(8)}=e_{3}^{(8)}>e_{4}^{(8)}>e_{5}^{(8)}$ and the eigenvalues of the optimality matrix for Case XXV designs are $e_{1}^{(25)}=e_{2}^{(25)}=e_{3}^{(25)}>e_{4}^{(25)}>e_{5}^{(25)}$. Since $e_{1}^{(8)}=$ $e_{2}^{(8)}=e_{3}^{(8)}=e_{1}^{(25)}=e_{2}^{(25)}=e_{3}^{(25)}$ and $e_{4}^{(8)} \geq e_{5}^{(8)}$ then the eigenvalues of the optimality matrix for Case VIII designs majorize the eigenvalues of the optimality matrix for Case XXV designs.

Lemma 3.5.5 Case XXVIII designs are Schur-better than Case XXV when $\frac{2 v}{3} \leq$ $\gamma<v$.

Proof When $\frac{2 v}{3} \leq \gamma<v$ the eigenvalues of the optimality matrix for Case XXV designs are $e_{1}^{(25)}=e_{2}^{(25)}=e_{3}^{(25)}>e_{4}^{(25)}>e_{5}^{(25)}$, and the eigenvalues of the optimality matrix for Case XXVIII designs are $e_{1}^{(28)}=e_{2}^{(28)} \geq e_{4}^{(28)}>e_{3}^{(28)}>e_{5}^{(28)}$. Since $e_{1}^{(25)}=e_{2}^{(25)}=e_{3}^{(25)}=e_{1}^{(28)}=e_{2}^{(28)} \geq e_{4}^{(28)}$ and $e_{5}^{(25)}<e_{5}^{(28)}$, then the eigenvalues of the optimality matrix for Case XXV designs majorize the eigenvalues of the optimality matrix for Case XXVIII designs.

Lemma 3.5.6 Case XXXII designs are Schur-better than Case XXVIII when $\frac{3 v}{4}<$ $\boldsymbol{\gamma}<\boldsymbol{v}$.

Proof When $\frac{3 v}{4} \leq \gamma<v$ the eigenvalues of the optimality matrix for Case XXVIII designs are $e_{1}^{(28)}=e_{2}^{(28)} \geq e_{4}^{(28)}>e_{3}^{(28)}>e_{5}^{(28)}$, and the eigenvalues of the optimality matrix for Case XXXII designs are $e_{1}^{(32)} \geq e_{4}^{(32)}>e_{2}^{(32)}=e_{3}^{(32)}>e_{5}^{(32)}$. Since $e_{1}^{(28)}=e_{2}^{(28)}=e_{1}^{(32)} \geq e_{4}^{(32)}$ and $e_{4}^{(28)}>e_{3}^{(28)}=e_{2}^{(32)}=e_{3}^{(32)}$ then the eigenvalues of the optimality matrix for Case XXVIII designs majorize the eigenvalues of the optimality matrix for Case XXXII designs.

Lemma 3.5.7 $E C D(\bar{\theta}+1) s$ are Schur-better than Case $X X X I I$ when $\gamma=\frac{4 v}{5}$.
Proof When $\gamma=\frac{4 v}{5}$ the eigenvalues of the optimality matrix for Case XXXII designs are $e_{1}^{(32)} \geq e_{4}^{(32)}>e_{2}^{(32)}=e_{3}^{(32)}>e_{5}^{(32)}$, and the eigenvalues of $E C D(\bar{\theta}+1 / s$ are $\xi_{2}(\gamma-v)>\xi_{1}(\gamma-v)=\xi_{1}(\gamma-v)=\xi_{1}(\gamma-v)=\xi_{1}(\gamma-v)$. Since $e_{1}^{(32)}=\xi_{2}(\gamma-v)$ and $e_{4}^{(32)}>\xi_{1}(\gamma-v)=e_{2}^{(32)}=e_{3}^{(32)}>e_{5}^{(32)}$ then the eigenvalues of the optimality matrix for Case XXXII designs majorize the eigenvalues for $E C D(\bar{\theta}+1) \mathrm{s}$.

Lemmas 3.5.3, 3.5.4, 3.5.5, 3.5.6, and 3.5.7 guarantee that for $\frac{v}{2}<\gamma \leq \frac{4 v}{5}$ there is a unique Schur-best design among the E-best designs, and when $\gamma=\frac{\mathrm{u}}{2}$ three classes of designs, $E C D(\bar{\theta})$ s, Case VIII, and XXV, have identical eigenvalues and are Schur-best. The (E, S)-optimality breakdown is shown in table 3.40.

3.5.3 Special Cases: $\left(k_{1}-k_{2}\right) \leq 2$

We will now apply the optimality results in the setting $D\left(v, 5 ; k_{1}, k_{2}\right)$ from section 3.5.2 to the three special cases when $\left(k_{1}-k_{2}\right) \leq 2$ described in section 2.4.

Corollary 3.5.8 Suppose $k_{1}=k_{2}$ and $r=5$. Then
(i) If $2 \mid k_{1}$ then $\gamma=0$, and $\operatorname{ECD}\left(\theta^{*}\right)$ s exist and are Schur-optimal.

Table 3.40: (E,S)- and Schur-optimal Designs In $D\left(v, 5 ; k_{1}, k_{2}\right)$

(ii) If $2 \ k_{1}$ then $\gamma=\frac{\nu}{2}$, and $E C D(\bar{\theta}) s$, Case VIII, and $X X V$ are type -1 and (E,S)-optimal

Corollary 3.5.9 Suppose $k_{2}=k_{1}-1$ and $r=5$. Then
(i) If $2 \mid k_{1}$ then $\frac{y}{4}<\gamma<\frac{v}{3}$, and $E C D(\bar{\theta})$ s are type-1 and (E, S)-optimal.
(ii) If $2 \gamma k_{1}$ then $\frac{3 v}{4}<\gamma<\frac{4 v}{5}$, and Case XXII is (E, S)-optimal.

By corollary 2.3.17, when $\frac{3 v}{4}<\gamma<\frac{4 v}{5}$, the optimality candidates are Case VIII, XXV, XXVIII, XXXII, and $E C D(\bar{\theta}+1)$ s, see table 3.39. On the interval, Cases VIII, XXV, and XXVIII were eliminated by majorization in section 3.5.2, leaving only Case XXXII and $E C D(\bar{\theta}+1)$ s as optimality candidates. We will state an A-optimality result for corollary 3.5.9 after proving the following lemma.

Lemma 3.5.10 When $\frac{3 v}{4}<\gamma<\frac{4 v}{5}, E C D(\bar{\theta}+1) s$ are A-better than Case XXXII designs.

Proof Recall that if $e_{i}, i=1,2, \ldots, 5$ is an eigenvalues of the optimality matrix for a design $d \in D\left(v, 5 ; k_{1}, k_{2}\right)$, then $5-\frac{e_{i}}{p}$ is a corresponding eigenvalue of the information matrix of d, and the A-value of the design in terms of the eigenvalues of
the optimality matirx is $\sum_{i=1}^{5} \frac{p}{5 p-e_{i}}$. Since $e_{2}^{(32)}=e_{3}^{(32)}=\xi_{1}(\gamma-v)$, then $E C D(\vec{\theta}+1) \mathrm{s}$ are A-better than Case XXXII designs if and only if

$$
\begin{equation*}
\frac{2 p}{5 p-\xi_{1}(\gamma-v)}+\frac{p}{5 p-\xi_{2}(\gamma-v)}<\frac{p}{5 p-e_{1}^{(32)}}+\frac{p}{5 p-e_{4}^{(32)}}+\frac{p}{5 p-e_{5}^{(32)}} \tag{3.94}
\end{equation*}
$$

Substituting the closed form expressions for the eigenvalues of $E C D(\bar{\theta}+1) \mathrm{s}$ and Case XXXII designs from section 3.5.1 into (3.94) yields

$$
\begin{equation*}
-3 \gamma^{3}+2(2 p+9 v) \gamma^{2}+\left(32 p^{2}+12 p v-27 v^{2}\right) \gamma-4 v\left(4 p^{2}+4 p v-3 v^{2}\right)>0 \tag{3.95}
\end{equation*}
$$

A lower bound for the left hand side of (3.95) on the interval $\frac{3 v}{4} \leq \gamma \leq \frac{4 v}{5}$ obtained by substituting $\gamma=\frac{3 v}{4}$ into the negative terms and $\gamma=\frac{4 v}{5}$ into the postitive terms is

$$
\begin{equation*}
p^{2} v\left[8\left(\frac{p}{v}\right)^{2}-\frac{19}{4}\left(\frac{p}{v}\right)-\frac{1011}{1000}\right] \tag{3.96}
\end{equation*}
$$

Setting (3.96) equal to zero and solving for ${ }_{v}^{p}$ yields

$$
\frac{p}{v}=\frac{475 \mp \sqrt{3461145}}{1600}
$$

Since $\frac{475-\sqrt{3461145}}{1600}<0<\frac{475+\sqrt{3461145}}{1600}<1.5$, and when ${ }_{v}^{p}=2,(3.96)$ is greater than zero, then (3.95) is satisfied whenever ${ }_{v}^{p} \geq 2$. By fact 3.1.3, this inequality holds when $k_{1} \geq k_{2} \geq 4$ or when $k_{2}=3$ and $k_{1} \geq 6$. Thus, (3.89) may not be satisfied when $k_{2} \geq k_{1}=2$ or $5 \geq k_{1} \geq k_{2}=3$. On $\frac{3 v}{5} \leq \gamma \leq \frac{2 v}{3},\left(k_{1}, k_{2}\right)$ does not take on the values $(3,3),(4,3)$, or $(5,3)$, and by corollary $3.1 .5, k_{2}=2$ if and only if $k_{1}=3$. Since (3.89) is satisfied when $\left(k_{1}, k_{2}\right)=(3,2)$, then $E C D(\bar{\theta}+1)$ s are A-better than Case XXXII designs on the interval.

Corollary 3.5.11 Suppose $k_{2}=k_{1}-1, r=5$, and $2 \ k_{1}$. Then $\frac{3 v}{4}<\gamma<\frac{4 v}{5}$, Case XXXII is (E, S)-optimal, and ECD $(\bar{\theta}+1)$ s are A-optimal.

Corollary 3.5.12 Suppose $k_{2}=k_{1}-2$ and $r=5$. Then
(i) If $k_{1}=4$ then $\gamma=\frac{2 v}{3}$, Case XXVIII designs are (E, S)-optimal.
(ii) If $2 \mid k_{1}$ and $k_{1} \geq 6$ then $\frac{v}{2}<\gamma \leq \frac{3 v}{5}$, and Case $X X V$ designs are (E, S)-optimal.
(iii) If $2 \ k_{1}$ then $0<\gamma<\frac{v}{8}$, and $\operatorname{ECD}(\bar{\theta})$ s are uniquely Schur-optimal (hence (E,S)-optimal).

3.5.4 Construction of Optimal Designs in $D\left(v, 5 ; \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)$

The (E,S)- and Schur-optimal resolvable designs in $D\left(v, 5 ; k_{1}, k_{2}\right), k_{1} \geq 3$ and $k_{1} \geq$ $k_{2} \geq 2$, are $E C D(\bar{\theta}), E C D(\bar{\theta}+1)$, Case XXV, Case XXVIII, and Case XXXII depending on the value of $0 \leq \gamma<v$. Now we will provide constructions for these optimal deisngs designs. The constructions for $E C D$ s will be described in such $\mathfrak{2}$ way that they will be valid for $\operatorname{ECD}\left(\theta^{*}\right) \mathrm{s}, \operatorname{ECD}(\bar{\theta}) \mathrm{s}$ and $E C D(\bar{\theta}+1) \mathrm{s}$. For brevity, treatment arrangements for the first block of each replicate only are given.

Construction of $\operatorname{ECD}(\bar{\theta})$ s

Let L be the common $E C D$ treatment concurrence. When $\gamma \leq \frac{v}{2}, L=\bar{\theta}$, and the design is an $E C D(\bar{\theta})$, and when $\gamma>\frac{v}{2}, L=\bar{\theta}+1$, and the design is an $E C D(\bar{\theta}+1)$.

Block 1 of Replicate 1: $\left\{1 \ldots k_{1}\right\}$
Block 1 of Replicate 1: $\left\{1 \ldots k_{1}\right\}$
Block 1 of Replicate 2: $\{1 \ldots L\} \cup\left\{k_{1}+1 \ldots 2 k_{1}-L\right\}$
I. If $k_{1} \leq 4 / 3 L$

Block 1 of Replicate 3: $\left\{1 \ldots 2 L-k_{1}\right\} \cup\left\{L+1 \ldots 2 k_{1}-L\right\}$
Block 1 of Replicate 4: $\left\{1 \ldots 3 L-2 k_{1}\right\} \cup\left\{2 L-k_{1}+1 \ldots 2 k_{1}-L\right\}$
Block 1 of Replicate 5: $\left\{3 L-2 k_{1}+1 \ldots 2 k_{1}-L\right\}$
If $k_{1}<4 L / 3$
Block 1 of Replicate 5: $\left\{1 \ldots 4 L-3 k_{1}\right\}$
II. If $\left(4 / 3 L<k_{1}<3 / 2 L\right.$ and $\left.k_{1}>7\right)$ or ($k_{1}=3 / 2 L, k_{1} \geq 7$ and $\left.k_{1} \neq 15\right)$

Let $x=\operatorname{int}\left(\frac{k_{1}-L}{3}\right)$

Block 1 of Replicate 3: $\left\{1 \ldots 2 L-k_{1}+x\right\} \cup\left\{L+1 \ldots k_{1}-x\right\} \cup$

$$
\left\{k_{1}+1 \ldots 2 k_{1}-L-x\right\} \cup\left\{2 k_{1}-L+1 \ldots 2 k_{1}-L+x\right\}
$$

Block 1 of Replicate 4: $\left\{1 \ldots 3 L-2 k_{1}+2 x\right\} \cup\left\{2 L-k_{1}+x+1 \ldots L\right\} \cup$

$$
\begin{aligned}
& \left\{L+1 \ldots k_{1}-x\right\} \cup\left\{k_{1}+x+1 \ldots 2 k_{1}-L\right\} \cup \\
& \left\{2 k_{1}-L+1 \ldots 2 k_{1}-L+x\right\}
\end{aligned}
$$

Block 1 of Replicate 5: $\left\{3 L-2 k_{1}+2 x+1 \ldots 2 L-k_{1}\right\} \quad U$

$$
\begin{aligned}
& \left\{2 L-k_{1}+x+1 \ldots L\right\} \cup\left\{L+x+1 \ldots k_{1}\right\} \cup \\
& \left\{k_{1}+1 \ldots 2 k_{1}-L-x\right\} \cup\left\{2 k_{1}-L+1 \ldots 2 k_{1}-L+x\right\} \\
& \text { If } 4 L-3 k_{1}+4 x>0
\end{aligned}
$$

Block 1 of Replicate 5: $\cup\left\{1 \ldots 4 L-3 k_{1}+4 x\right\}$
III. If $\left(3 / 2 L<k_{1}<2 L\right),\left(k_{1}=3 / 2 L\right.$ and $\left.k_{1}=6\right)$ or $\left(k_{1}=3 / 2 L\right.$ and $\left.k_{1}=15\right)$
A. If $2 \mid\left(k_{1}-L\right)$

Block 1 of Replicate 3: $\left\{1 \ldots \frac{3 L-k_{1}}{2}\right\} \cup\left\{L+1 \ldots \frac{k_{1}+L}{2}\right\} \cup$

$$
\left\{k_{1}+1 \ldots \frac{3 k_{1}-L}{2}\right\} \cup\left\{2 k_{1}-L+1 \ldots \frac{5 k_{1}-3 L}{2}\right\}
$$

Block 1 of Replicate 4: $\left\{1 \ldots \frac{3 L-k_{1}}{2}\right\} \cup\left\{\frac{k_{1}+L+2}{2} \ldots k_{1}\right\} \cup$

$$
\left\{\frac{3 k_{1}-L+2}{2} \ldots 2 k_{1}-L\right\} \cup\left\{2 k_{1}-L+1 \ldots \frac{5 k_{1}-3 L}{2}\right\}
$$

1. If $4 \mid\left(k_{1}-L\right)$

Block 1 of Replicate 5: $\left\{1 \ldots 2 L-k_{1}\right\} \cup\left\{\frac{3 L-k_{1}+2}{2} \ldots L\right\} \cup$

$$
\begin{aligned}
& \left\{L+1 \ldots \frac{k_{1}+3 L}{4}\right\} \cup\left\{\frac{k_{1}+L+2}{2} \ldots \frac{3 k_{1}+L}{4}\right\} \cup \\
& \left\{k_{1}+1 \ldots \frac{5 k_{1}-L}{4}\right\} \cup\left\{\frac{3 k_{1}-L+2}{2} \ldots \frac{7 k_{1}-3 L}{4}\right\} \cup \\
& \left\{2 k_{1}-L+1 \ldots \frac{5 k_{1}-3 L}{2}\right\}
\end{aligned}
$$

2. If $4 Y\left(k_{1}-L\right)$

Block 1 of Replicate 5: $\left\{1 \ldots 2 L-k_{1}\right\} \cup\left\{\frac{3 L-k_{1}+2}{2} \ldots L\right\} \cup$

$$
\begin{aligned}
& \text { if } k_{1} \geq L_{1+3} \\
& \left\{L+1 \ldots \frac{k_{1}+3 L-2}{4}\right\} \cup\left\{\frac{k_{1}+L+2}{2} \ldots \frac{3 k_{1}+L+2}{4}\right\} \cup \\
& \left\{k_{1}+1 \ldots \frac{5 k_{1}-L+2}{4}\right\} \cup\left\{\frac{3 k_{1}-L+2}{2} \ldots \frac{7 k_{1} \geq 2 L-3}{4}\right\} U \\
& \left\{2 k_{1}-L+1 \ldots \frac{5 k_{1}-3 L}{2}\right\}
\end{aligned}
$$

B. If $2 Y\left(k_{1}-L\right)$

Block 1 of Replicate 3: $\left\{1 \ldots \frac{3 L-k_{1}-1}{2}\right\} \cup\left\{L+1 \ldots \frac{k_{1}+L+1}{2}\right\} \cup$

$$
\left\{k_{1}+1 \ldots \frac{3 k_{1}-L+1}{2}\right\} \cup\left\{2 k_{1}-L+1 \ldots \frac{5 k_{1}-3 L-1}{2}\right\}
$$

Block 1 of Replicate 4: $\left\{1 \ldots 2 L-k_{1}\right\} \cup\left\{\frac{3 L-k_{1}+1}{2} \ldots L-1\right\} \cup$

$$
\begin{aligned}
& \{L+1\} \cup\left\{\frac{k_{1}+L+3}{2} \ldots k_{1}\right\} \cup\left\{k_{1}+2 \ldots \frac{3 k_{1}-L+3}{2}\right\} \cup \\
& \left\{2 k_{1}-L+1 \ldots \frac{5 k_{1}-3 L-1}{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \{L\} \cup\left\{L+2 \ldots \frac{k_{1}+L+3}{2}\right\} \cup\left\{k_{1}+1\right\} \cup \\
& \left\{\frac{3 k_{1}-L+3}{2} \ldots 2 k_{1}-L\right\} \cup\left\{2 k_{1}-L+1 \ldots \frac{5 k_{1}-3 L-1}{2}\right\}
\end{aligned}
$$

IV. If $k_{1}=2 L$
A. If $2 \mid L$

Block 1 of Replicate 3: $\left\{L+1 \ldots k_{1}\right\} \cup\left\{k_{1}+1 \ldots 2 k_{1}-L\right\}$
Block 1 of Replicate 4: $\{1 \ldots L / 2\} \cup\{L+1 \ldots 3 / 2 L\} \cup$

$$
\left\{k_{1}+1 \ldots k_{1}+L / 2\right\} \cup\left\{2 k_{1}-L+1 \ldots 2 k_{1}-L / 2\right\}
$$

Block 1 of Replicate 5: $\{1 \ldots L / 2\} \cup\left\{3 / 2 L+1 \ldots k_{1}\right\} \cup$

$$
\left\{k_{1}+1 / 2 L+1 \ldots 2 k_{1}-L\right\} \cup\left\{2 k_{1}-L+1 \ldots 2 k_{1}-1 / 2 L\right\}
$$

B. If $2 \boldsymbol{\gamma} L$

Block 1 of Replicate 3: $\{1\} \cup\left\{L+1 \ldots k_{1}-1\right\} \cup$

$$
\left\{k_{1}+1 \ldots 2 k_{1}-L-1\right\} \cup\left\{2 k_{1}-L+1\right\}
$$

Block 1 of Replicate 4: $\left\{2 \ldots \frac{L+1}{2}\right\} \cup\left\{L+1 \ldots \frac{3 L-1}{2}\right\} \cup$

$$
\left\{k_{1} \ldots \frac{2 K_{1}+L-1}{2}\right\} \cup\left\{2 k_{1}-L \ldots \frac{4 k_{x}-L-1}{2}\right\}
$$

Block 1 of Replicate 5: $\left\{2 \ldots \frac{\text { if } L>3}{} \ldots \frac{L-1}{2}\right\} \cup\left\{\frac{L+3}{2}\right\} \cup\left\{\frac{3 L+1}{2} \ldots k_{1}\right\} \cup$ $\left\{\frac{2 k_{1}+L+1}{2} \ldots \frac{4 k_{1}-L-1}{2}\right\}$
V. If $k_{1}=2 L+1$

Block 1 of Replicate 3: $\{L+1 \ldots 2 L\} \cup\left\{k_{1}+1 \ldots k_{1}+L\right\} \cup$

$$
\left\{2 k_{1}-L+1\right\}
$$

A. If $2 \mid L$ and $k_{1}>5$

Block 1 of Replicate 4: $\left\{1 \ldots \frac{L-2}{2}\right\} \cup\{L+1 \ldots 3 / 2 L\} \cup$

$$
\left\{k_{1} \ldots \frac{2 k_{1}+L}{2}\right\} \cup\left\{2 k_{1}-L\right\} \cup \text { if } L>4
$$

Block 1 of Replicate 5: $\left\{1 \ldots \frac{\text { if } L>4}{2}\right\} \cup\{L / 2\} \cup\left\{\frac{3 L+2}{2} \ldots k_{1}\right\} \cup$

$$
\left\{\frac{2 k_{1}+L+2}{2} \ldots 2 k_{1}-L\right\} \cup\left\{2 k_{1}-L+2 \ldots \frac{4 k_{1}-L+2}{2}\right\}
$$

B. If $2 Y L$ and $k_{1}>7$

Block 1 of Replicate 4: $\left\{1 \ldots \frac{L-1}{2}\right\} \cup\left\{L+1 \ldots \frac{3 L-1}{2}\right\} \cup$

$$
\left\{k_{1} \ldots \frac{2 k_{1}+L-1}{2}\right\} \cup\left\{2 k_{1}-L \ldots \frac{4 k_{1}-L+1}{2}\right\}
$$

Block 1 of Replicate 5: $\left\{1 \begin{array}{l}\text { if } L>5 \\ \frac{L-4}{2}\end{array}\right\} \cup\left\{\frac{L+2}{2} \ldots \frac{L+4}{2}\right\} \cup$

$$
\begin{aligned}
& \left\{\frac{3 L_{+1}}{2} \ldots k_{1}-2\right\} \cup\left\{k_{1}\right\} \cup\left\{\frac{2 k_{1}+L+1}{2} \ldots 2 k_{1}-L-2\right\} \cup \\
& \left\{2 k_{1}-L \ldots \frac{4 k_{1}-L+1}{2}\right\}
\end{aligned}
$$

The ECD constructions given above are valid for all $k_{1} \geq 3$ and $k_{1} \geq k_{2} \geq 2$ except for the following seven (k_{1}, k_{2}) pairs:

Pair	k_{1}	k_{2}	$\bar{\theta}$	$\frac{7}{v}$
1	3	2	2	.80
2	3	3	1	.50
3	5	5	2	.50
4	6	2	4	.50
5	7	2	5	.44
6	7	3	4	.90
7	7	7	3	.50

Constructions do not exist for pairs 1, 2, 4, and 5; however, valid constructions exist for the remaining three (3,6 , and 7). The first block of each replicate (written in columns) of these designs are:

Pair 3:

	$\left(k_{1}, k_{2}\right)=(5,5)$			
	1	3	3	1
2	2	4	5	4
3	6	6	6	8
4	7	7	8	9
5	8	9	10	10

Pair 6:

	$\left(k_{1}, k_{2}\right)=(7,3)$			
	1	1	1	1
2	2	2	2	2
3	3	3	3	3
4	4	6	4	4
5	5	7	6	7
6	8	8	8	9
7	9	9	10	10

Pair 7:

	$\left(k_{1}, k_{2}\right)=(7,7)$			
1	1	4	1	2
2	2	5	4	5
3	3	6	7	7
4	8	8	8	9
5	9	9	11	11
6	10	10	12	12
7	11	12	13	14

Construction of Case XXV Designs

Since Case XXV designs are (E, S)-optimal on $\frac{v}{2}<\gamma<\frac{2 v}{3}$, then the following constructions are valid for values of (k_{1}, k_{2}) that produce a value of γ in the interval.

Block 1 of Replicate 1: $\left\{1 \ldots k_{1}\right\}$

Block 1 of Replicate 2: $\{1 \ldots \bar{\theta}\} \cup\left\{k_{1}+1 \ldots 2 k_{1}-\bar{\theta}\right\}$
Block 1 of Replicate 3: $\left\{1 \ldots 2 \bar{\theta}-k_{1}+2\right\} \cup\left\{\bar{\theta}+1 \ldots k_{1}-1\right\} \cup$

$$
\left\{k_{1}+1 \ldots 2 k_{1}-\bar{\theta}-1\right\}
$$

I. If $k_{1}<3 / 2 \bar{\theta}$

Block 1 of Replicate 4: $\left\{1 \ldots 2 k_{2}-4 k_{1}+5 \bar{\theta}+4\right\} \quad U$

$$
\begin{aligned}
& \left\{2 \bar{\theta}-k_{1}+3 \ldots k_{1}-k_{2}\right\} \cup\left\{\bar{\theta}+1 \ldots 2 k_{1}-k_{2}-\bar{\theta}-2\right\} \cup \\
& \left\{k_{1} \ldots 3 k_{1}-k_{2}-2 \bar{\theta}-2\right\} \cup\left\{2 k_{1}-\bar{\theta} \ldots k_{2}+k_{1}\right\}
\end{aligned}
$$

A. If $k_{1}<k_{2}+\bar{\theta}$

Block 1 of Replicate 5: $\left\{1 \ldots 4 k_{2}-7 k_{1}+8 \bar{\theta}+6\right\} \cup$

$$
\begin{aligned}
& \left\{2 k_{2}-4 k_{1}+5 \bar{\theta}+5 \ldots k_{1}-k_{2}\right\} \cup\left\{k_{2}-k_{1}+2 \bar{\theta}+2 \ldots k_{1}\right\} \cup \\
& \left\{k_{2}+\bar{\theta}+2 \ldots k_{1}+k_{2}\right\}
\end{aligned}
$$

B. If $k_{1}=k_{2}+\bar{\theta}$

Block 1 of Replicate 5: $\left\{1 \ldots 4 \bar{\theta}-3 k_{1}+6\right\} \cup$

$$
\begin{aligned}
& \left\{3 \bar{\theta}-2 k_{1}+5 \ldots \bar{\theta}\right\} \cup\left\{k_{2}-k_{1}+2 \bar{\theta}+2 \ldots k_{1}\right\} \cup \\
& \left\{k_{2}+\bar{\theta}+2 \ldots k_{1}+k_{2}\right\}
\end{aligned}
$$

C. If $k_{1}>k_{2}+\bar{\theta}$

Block 1 of Replicate 5: $\left\{k_{2}-k_{1}+2 \bar{\theta}+2 \ldots k_{1}\right\} \cup$

$$
\left\{k_{2}+\bar{\theta}+2 \ldots k_{1}+k_{2}\right\}
$$

II. If $3 / 2 \bar{\theta} \leq k_{1}<2 \bar{\theta}+1$
A. If $2 \mid\left(k_{1}-\bar{\theta}-1\right)$

Block 1 of Replicate 4: $\left\{1 \ldots 2 \bar{\theta}-k_{1}+1\right\} \cup$

$$
\begin{aligned}
& \left\{2 \bar{\theta}-k_{1}+3 \ldots \frac{3 \bar{\theta}-k_{1}+5}{2}\right\} \cup\left\{\bar{\theta}+1 \ldots \frac{k_{1}+\bar{\theta}-1}{2}\right\} \cup \\
& \left\{k_{1}+1 \ldots \frac{3 k_{1}-\bar{\theta}-1}{2}\right\} \cup\left\{2 k_{1}-\bar{\theta}+1 \ldots \frac{5 k_{1}-3 \bar{\theta}-1}{2}\right\}
\end{aligned}
$$

Block 1 of Replicate 5: $\left\{1 \ldots 2 \overline{\text { if } k_{1}<2 \bar{\theta}}-k_{1}\right\} \quad U$

$$
\begin{aligned}
& \left\{2 \bar{\theta}-k_{1}+2 \ldots \frac{3 \bar{\theta}-k_{1}+5}{2}\right\} \cup\left\{\frac{k_{1}+\bar{\theta}+1}{2} \ldots k_{1}-1\right\} \cup \\
& \left\{\frac{3 k_{1}-\bar{\theta}+1}{2} \ldots 2 k_{1}-\bar{\theta}-1\right\} \cup\left\{2 k_{1}-\bar{\theta}+1 \ldots \frac{5 k_{1}-3 \bar{\theta}-1}{2}\right\}
\end{aligned}
$$

B. If $2 \boldsymbol{Y}\left(k_{1}-\bar{\theta}-1\right)$

Block 1 of Replicate 4: $\left\{1 \ldots 2{ }^{\text {if } k_{1}<2 \bar{\theta}}-k_{1}\right\} \quad U$

$$
\begin{aligned}
& \left\{2 \bar{\theta}-k_{1}+3 \ldots \frac{3 \theta-k_{1}+6}{2}\right\} \cup\left\{\bar{\theta}+1 \ldots \frac{\theta+k_{1}}{2}\right\} \cup \\
& \left\{k_{1}+1 \ldots \frac{3 k_{1}-\theta}{2}\right\} \cup\left\{2 k_{1}-\bar{\theta}+1 \ldots \frac{5 k_{1}-3 \bar{\theta}-2}{2}\right\}
\end{aligned}
$$

1. If $3 / 2 \bar{\theta} \leq k_{1}<2 \bar{\theta}-1$

$$
\begin{aligned}
& \left\{2 \bar{\theta}-k_{1}+1 \ldots \frac{3 \bar{\theta}-k_{1}+6}{2}\right\} \cup\left\{\frac{\bar{\theta}+k_{1}}{2} \ldots k_{1}-1\right\} \cup \\
& \left\{\frac{3 k_{1}-\bar{\theta}}{2} \ldots 2 k_{1}-\bar{\theta}-1\right\} \cup\left\{2 k_{1}-\bar{\theta}+1 \ldots \frac{5 k_{1}-3 \theta-2}{2}\right\}
\end{aligned}
$$

2. If $k_{1}=2 \bar{\theta}-1$

Block 1 of Replicate 5: $\left\{3 \ldots \frac{3 \theta-k_{1}+4}{2}\right\} \cup\left\{\frac{3 \bar{\beta}-k_{1}+8}{2}\right\} \cup$

$$
\begin{aligned}
& \left\{\frac{\bar{\theta}+k_{1}}{2} \ldots k_{1}-1\right\} \cup\left\{\frac{3 k_{1}-\bar{\theta}}{2} \ldots 2 k_{1}-\bar{\theta}-1\right\} \cup \\
& \left\{2 k_{1}-\bar{\theta}+1 \ldots \frac{5 k_{1}-3 \bar{\theta}-2}{2}\right\}
\end{aligned}
$$

3. If $k_{1} \geq 2 \bar{\theta}$

Block 1 of Replicate 5: $\left\{3 \ldots \frac{\bar{\theta}+6}{2}\right\} \cup \underset{\substack{\text { if } \bar{\theta}>6}}{\left\{\frac{\bar{\theta}+k_{1}}{2} \ldots k_{1}-1\right\} \cup}$ $\left\{\frac{3 k_{1}-\bar{\theta}}{2} \ldots 2 k_{1}-\bar{\theta}-1\right\} \cup\left\{2 k_{1}-\bar{\theta}+1 \ldots \frac{4 k_{1}-\bar{\theta}-6}{2}\right\} \cup$ $\left\{\frac{5 k_{1}-3 \bar{\theta}}{2} \ldots \frac{5 k_{1}-3 \bar{\theta}+2}{2}\right\}$

The Case XXV constructions given above are valid for all $k_{1} \geq 3$ and $k_{1} \geq k_{2} \geq 2$ such that $\frac{v}{2}<\gamma<\frac{2 v}{3}$ except for the following four (k_{1}, k_{2}) pairs:

Pair	k_{1}	k_{2}	$\bar{\theta}$	$\frac{7}{v}$
1	5	2	3	.57
2	6	4	3	.60
3	8	6	4	.57
4	11	5	7	.56

Constructions do not exist for the fist pair; however, valid constructions exist for the remaining three (pairs 2, 3 and 4). The first block of each replicate (written in columns) of these designs are:

Pair 3:

	$\left(k_{1}, k_{2}\right)=(6,4)$			
	1	1	1	2
1	1	2	3	3
2	2	2	4	5
3	3	4	4	5
4	7	5	6	6
5	8	7	7	8
6	9	8	9	9

Pair 6:

	$\left(k_{1}, k_{2}\right)=(8,6)$			
1	1	1	1	1
2	2	2	3	3
3	3	5	4	4
4	4	6	5	7
5	9	7	6	8
6	10	9	11	9
7	11	10	12	10
8	12	11	13	13

Pair 7:

	$\left(k_{1}, k_{2}\right)=(11,5)$			
	1	1	1	1
2	2	2	2	4
3	3	3	3	5
4	4	4	6	6
5	5	5	7	7
6	6	8	8	9
7	7	9	9	10
8	12	10	11	11
9	13	12	12	13
10	14	13	13	14
11	15	14	15	15

Construction of Case XXVIII Designs

Since Case XXVIII designs are (E, S) -optimal on $\frac{2 v}{3} \leq \gamma<\frac{3 v}{4}$, then the following constructions are valid for values of (k_{1}, k_{2}) that produce a value of γ in the interval.

Block 1 of Replicate 1: $\left\{1 \ldots k_{1}\right\}$

Block 1 of Replicate 2: $\{1 \ldots \bar{\theta}+1\} \cup\left\{k_{1}+1 \ldots 2 k_{1}-\bar{\theta}-1\right\}$
Block 1 of Replicate 3: $\left\{1 \ldots 2 \bar{\theta}-k_{1}+2\right\} \cup\left\{\bar{\theta}+2 \ldots k_{1}\right\} \cup$

$$
\left\{k_{1}+1 \ldots 2 k_{1}-\bar{\theta}-1\right\}
$$

I. If $k_{1}<3 / 2 \bar{\theta}$

Block 1 of Replicate 4: $\left\{1 \ldots 2 k_{2}-4 k_{1}+5 \bar{\theta}+4\right\} \quad U$

$$
\begin{aligned}
& \left\{2 \bar{\theta}-k_{1}+3 \ldots k_{1}-k_{2}+1\right\} \cup\left\{\bar{\theta}+2 \ldots 2 k_{1}-k_{2}-\bar{\theta}-1\right\} \cup \\
& \left\{k_{1}+1 \ldots 3 k_{1}-k_{2}-2 \bar{\theta}-2\right\} \cup\left\{2 k_{1}-\bar{\theta} \ldots k_{1}+k_{2}\right\}
\end{aligned}
$$

Block 1 of Replicate 5: $\left\{1 \ldots 4 k_{2}-7 k_{1}+8 \bar{\theta}+6\right\}$

$$
\begin{aligned}
& \left\{2 k_{2}-4 k_{1}+5 \bar{\theta}+5 \ldots 2 \bar{\theta}-k_{1}+2\right\} \cup\left\{2 \bar{\theta}-k_{1}+3 \ldots k_{1}-k_{2}+1\right\} \cup \\
& \left\{k_{2}-k_{1}+2 \bar{\theta}+3 \ldots k_{1}\right\} \cup\left\{k_{2}+\bar{\theta}+2 \ldots 2 k_{1}-\bar{\theta}-1\right\} \cup \\
& \left\{2 k_{1}-\bar{\theta} \ldots k_{1}+k_{1}\right\}
\end{aligned}
$$

II. If $k_{1} \geq 3 / 2 \bar{\theta}$ and $k_{1} \neq 13$
A. If $2 \mid\left(k_{1}-\bar{\theta}-1\right)$

Block 1 of Replicate 4: $\left\{1 \ldots 2 \bar{\theta}-k_{1}+1\right\} \cup$

$$
\begin{aligned}
& \left\{2 \bar{\theta}-k_{1}+3 \ldots \frac{3 \bar{\theta}-k_{1}+5}{2}\right\} \cup\left\{\bar{\theta}+2 \ldots \frac{k_{1}+\bar{\theta}+1}{2}\right\} \cup \\
& \left\{k_{1}+1 \ldots \frac{3 k_{1}-\vec{\theta}-1}{2}\right\} \cup\left\{2 k_{1}-\bar{\theta} \ldots \frac{5 k_{1}-3 \bar{\theta}-3}{2}\right\}
\end{aligned}
$$

Block 1 of Replicate 5: $\left\{1 \ldots 2 \vec{\theta}-k_{1}\right\} \quad U$

$$
\begin{array}{ll}
\left\{2 \bar{\theta}-k_{1}+2 \ldots \frac{3 \hat{\theta}-k_{1}+5}{2}\right\} & \cup\left\{\frac{k_{1}+\bar{\theta}+3}{2} \ldots k_{1}\right\} \cup \\
\left\{\frac{3 k_{1}-\bar{\theta}+1}{2} \ldots 2 k_{1}-\bar{\theta}-1\right\} & \cup\left\{2 k_{1}-\bar{\theta} \ldots \frac{5 k_{1}-3 \theta-3}{2}\right\}
\end{array}
$$

B. If $2 \\left(k_{1}-\bar{\theta}-1\right)$

Block 1 of Replicate 4: $\left\{1 \ldots 2 \bar{\theta}-k_{1}\right\} \cup$

$$
\begin{aligned}
& \left\{2 \bar{\theta}-k_{1}+3 \ldots \frac{3 \bar{\theta}-k_{1}+\delta}{2}\right\} \cup\left\{\bar{\theta}+2 \ldots \frac{\bar{\theta}+k_{1}+2}{2}\right\} \cup \\
& \left\{k_{1}+1 \ldots \frac{3 k_{1}-\bar{\theta}}{2}\right\} \cup\left\{2 k_{1}-\bar{\theta} \ldots \frac{5 k_{1}-3 \bar{\theta}-4}{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{2 \bar{\theta}-k_{1}+1 \ldots \frac{3 \bar{\theta}-k_{1}+6}{2}\right\} \cup\left\{\frac{\bar{\theta}+k_{1}+2}{2} \ldots k_{1}\right\} \cup \\
& \left\{\frac{3 k_{1}-\bar{\theta}}{2} \ldots 2 k_{1}-\bar{\theta}-1\right\} \cup\left\{2 k_{1}-\bar{\theta} \ldots \frac{5 k_{1}-3 \bar{\theta}-4}{2}\right\}
\end{aligned}
$$

The Case XXVIII constructions given are valid for all $k_{1} \geq 3$ and $k_{1} \geq k_{2} \geq 2$ such that $\frac{2 v}{3} \leq \gamma<\frac{3 v}{4}$ except for $\left(k_{1}, k_{2}, \bar{\theta}\right)=(4,2,1)$ and (13, 9,7). A construction for $\left(k_{1}, k_{2}\right)=(4,2)$ does not exist; however, there does exist a vaild construction for $\left(k_{1}, k_{2}\right)=(13,9)$ which is:

	$\left(k_{1}, k_{2}\right)=(13,9)$			
1	1	1	1	2
2	2	2	4	4
3	3	3	5	5
4	4	9	6	6
5	5	10	7	7
6	6	11	9	11
7	7	12	10	12
8	8	13	11	13
9	14	14	14	16
10	15	15	15	17
11	16	16	16	18
12	17	17	19	19
13	18	18	20	21

Construction of Case XXXII Designs

Since Case XXXII designs are (E,S)-optimal on $\frac{3 u}{4} \leq \gamma<\frac{4 v}{5}$, then the following constructions are valid for values of (k_{1}, k_{2}) that produce a value of γ in the interval.

Block 1 of Replicate 1: $\left\{1 \ldots k_{1}\right\}$

Block 1 of Replicate 2: $\{1 \ldots \bar{\theta}+1\} \cup\left\{k_{1}+1 \ldots 2 k_{1}-\bar{\theta}-1\right\}$
Block 1 of Replicate 3: $\left\{1 \ldots 2 \bar{\theta}-k_{1}+2\right\} \cup\left\{\bar{\theta}+2 \ldots k_{1}\right\} \cup$

$$
\left\{k_{1}+1 \ldots 2 k_{1}-\bar{\theta}-1\right\}
$$

I. If $k_{1}<3 / 2 \bar{\theta}$

Block 1 of Replicate 4: $\left\{1 \ldots 2 k_{2}-4 k_{1}+5 \bar{\theta}+5\right\} \quad \cup$

$$
\begin{aligned}
& \left\{2 \bar{\theta}-k_{1}+3 \ldots k_{1}-k_{2}\right\} \cup\left\{\bar{\theta}+2 \ldots 2 k_{1}-k_{2}-\bar{\theta}-1\right\} \cup \\
& \left\{k_{1}+1 \ldots 3 k_{1}-k_{2}-2 \bar{\theta}-2\right\} \cup\left\{2 k_{1}-\bar{\theta} \ldots k_{1}+k_{2}\right\}
\end{aligned}
$$

A. If $k_{1} \leq \frac{4 k_{2}+8 \hat{\theta}+7}{7}$

Block 1 of Replicate 5: $\left\{1 \ldots 4 k_{2}-7 k_{1}+8 \bar{\theta}+8\right\} \cup$

$$
\text { if } \frac{3 k_{1}+5 d+7}{5} \leq k_{1} \leq \frac{4 k_{x}+8 d+7}{7}
$$

$$
\left\{2 k_{2}-4 k_{1}+5 \bar{\theta}+6 \ldots k_{1}-k_{2}-1\right\} \cup\left\{k_{1}-k_{2}+1\right\} \cup
$$

$$
\left\{k_{2}-k_{1}+2 \bar{\theta}+3 \ldots k_{1}\right\} \cup\left\{k_{2}+\bar{\theta}+2 \ldots k_{1}+k_{2}\right\}
$$

B. If $k_{1}>\frac{4 k_{2}+8 \bar{\theta}+7}{7}$

Block 1 of Replicate 5:

$$
\begin{aligned}
& \left\{2 k_{2}-4 k_{1}+5 \bar{\theta}+6 \ldots 4 k_{2}-8 k_{1}+10 \bar{\theta}+10\right\} \cup \\
& \left\{2 \bar{\theta}-k_{1}+3 \ldots 3 k_{2}-6 k_{1}+8 \bar{\theta}+7\right\} \cup \\
& \left\{k_{1}-k_{2}+1 \ldots 8 k_{1}-5 k_{2}-8 \bar{\theta}-7\right\} \cup\left\{k_{2}-k_{1}+2 \bar{\theta}+3 \ldots k_{1}\right\} \cup \\
& \left\{k_{2}+\bar{\theta}+2 \ldots k_{1}+k_{2}\right\}
\end{aligned}
$$

II. If $k_{1} \geq 3 / 2 \bar{\theta}$ and $k_{1} \neq 7$
A. If $2 \mid\left(k_{\mathrm{l}}-\bar{\theta}-1\right)$

Block 1 of Replicate 4: $\left\{1 \ldots \frac{3 \bar{\theta}-k_{1}+3}{2}\right\} \cup\left\{\bar{\theta}+2 \ldots \frac{k_{1}+\bar{\theta}+1}{2}\right\} \cup$

$$
\left\{k_{1}+1 \ldots \frac{3 k_{1}-\bar{\theta}-1}{2}\right\} \cup\left\{2 k_{1}-\bar{\theta} \ldots \frac{5 k_{1}-3 \bar{\theta}-3}{2}\right\}
$$

Block 1 of Replicate 5: $\left\{1 \ldots \frac{3 \theta-k_{1}+1}{2}\right\} \cup\left\{\frac{3 \sigma-k_{1}+5}{2}\right\} \cup$

$$
\begin{aligned}
& \left\{\frac{k_{1}+\bar{\theta}+3}{2} \ldots k_{1}\right\} \cup\left\{\frac{3 k_{1}-\bar{\theta}+1}{2} \ldots 2 k_{1}-\bar{\theta}-1\right\} \cup \\
& \left\{2 k_{1}-\bar{\theta} \ldots \frac{5 k_{1}-3 \bar{\theta}-3}{2}\right\}
\end{aligned}
$$

B. If $2 Y\left(k_{1}-\bar{\theta}-1\right)$

$$
\begin{aligned}
& \left\{2 \bar{\theta}-k_{1}+3 \ldots \frac{3 \bar{\theta}-k_{1}+4}{2}\right\} \cup\left\{\bar{\theta}+2 \ldots \frac{\overline{\bar{\theta}}+k_{1}+2}{2}\right\} \cup \\
& \left\{k_{1}+1 \ldots \frac{3 k_{1}-\bar{\theta}}{2}\right\} \cup\left\{2 k_{1}-\bar{\theta} \ldots \frac{5 k_{1}-3 \bar{\theta}-4}{2}\right\}
\end{aligned}
$$

1. If $k_{1}<2 \bar{\theta}$

Block 1 of Replicate 5: $\left\{1 \ldots 2 \bar{\theta}-k_{1}\right\} \cup\left\{2 \bar{\theta}-k_{1}+2\right\} \cup$

$$
\left\{2 \bar{\theta}-k_{1}+3 \ldots \frac{3 \bar{\theta}-k_{1}+2}{2}\right\} \cup\left\{\frac{3 \bar{\theta}-k_{1}+6}{2}\right\}
$$

2. If $k_{1}=2 \bar{\theta}$

Block 1 of Replicate 5: $\{1\} \cup\left\{2 \bar{\theta}-k_{1}+3 \ldots \frac{7 \overline{-}-3 k_{1}}{2}\right\} \cup$ $\left\{\frac{3 \bar{\theta}-k_{1}+6}{2}\right\} \cup\left\{\frac{3 \bar{\theta}-k_{1}+8}{2}\right\}$
3. If $k_{\mathrm{L}}=2 \bar{\theta}+1$

Block 1 of Replicate 5: $\left\{2 \bar{\theta}-k_{1}+3 \ldots \frac{7 \bar{\theta}-3 k_{1}+2}{2}\right\} \quad U$ $\left\{\frac{3 \hat{\beta}-k_{1}+6}{2}\right\} \cup\left\{\frac{3 \bar{\beta}-k_{1}+8}{2}\right\}$
Block 1 of Replicate 5: \{blocks from 1 to 3 above\} U

$$
\begin{aligned}
& \left\{\frac{\bar{\theta}+k_{1}+2}{2} \ldots k_{1}\right\} \cup\left\{\frac{3 k_{1}-\bar{\theta}}{2} \ldots 2 k_{1}-\bar{\theta}-1\right\} \cup \\
& \left\{2 k_{1}-\bar{\theta} \ldots \frac{5 k_{1}-3 \bar{\theta}-4}{2}\right\}
\end{aligned}
$$

The Case XXXII constructions given above are valid for all $k_{1} \geq 3$ and $k_{1} \geq$ $k_{2} \geq 2$ such that $\frac{3 v}{4} \leq \gamma<\frac{4 v}{5}$ except for the pair $\left(k_{1}, k_{2}, \bar{\theta}\right)=(7,6,3)$. The vaild construction for $\left(k_{1}, k_{2}\right)=(7,6)$ is:

$\left(k_{1}, k_{2}\right)=(7,6)$				
1	1	1	2	2
2	2	5	3	4
3	3	6	5	6
4	4	7	6	7
5	8	8	8	9
6	9	9	9	10
7	10	10	11	12

3.5.5 Examples of Optimal Resolvable Designs in $\left.\boldsymbol{D (v , 5 ;} \boldsymbol{k}_{\mathbf{1}}, \boldsymbol{k}_{\mathbf{2}}\right)$

We conclude this chapter by providing some examples of resolvable designs in $D\left(v, 5 ; k_{1}, k_{2}\right)$ and for various interesting $k_{1} \geq 3$ and $2 \leq k_{2} \leq k_{1}$. First we construct designs for the two cases when $k_{1}=k_{2}$.

Example Suppose $k_{1}=k_{2}=8$. Then, according to corollary 2.4.2 the the Schuroptimal design is an $E C D\left(\theta^{*}\right)$. Applying the $E C D$ construction given above with $L=\bar{\theta}=4$, yields a Schur-optimal $E C D\left(\theta^{*}\right)$ which is:

1	9	1	5	5	1	1	3	1	3
2	10	2	6	6	2	2	4	2	4
3	11	3	7	7	3	5	7	7	5
4	12	4	8	8	4	6	8	8	6
5	13	9	13	9	13	9	11	11	9
6	14	10	14	10	14	10	12	12	10
7	15	11	15	11	15	13	15	13	15
8	16	12	16	12	16	14	16	14	16

Example Consider the case where $k_{1}=k_{2}=11$. Then, according to corollary 2.4.2 the (E, S)- and type-1 optimal design is an $E C D(\bar{\theta})$. Applying the $E C D$ construction given above with $L=\bar{\theta}=5$ produces an (E,S)- and type-1 optimal design which is:

1	12	1	6	6	1	1	3	3	1
2	13	2	7	7	2	2	4	4	2
3	14	3	8	8	3	6	5	8	5
4	15	4	9	9	4	7	8	9	6
5	16	5	10	10	5	11	9	11	7
6	17	12	11	12	11	12	10	14	10.
7	18	13	18	13	17	13	14	15	12
8	19	14	19	14	19	17	15	17	13
9	20	15	20	15	20	18	16	18	16
10	21	16	21	16	21	19	21	19	21
11	22	17	22	18	22	20	22	20	22

Now we investigate the two cases when $k_{1}-k_{2}=1$.

Example Consider the setting such that $k_{1}=6$ and $k_{2}=5$. By corollary 2.4.4, the (E, S)- and type-1 optimal design is an $E C D(\bar{\theta})$. Applying the $E C D$ construction
given above with $L=\bar{\theta}=3$ yields an (E,S)- and type-1 optimal design which is:

1	7	1	4	1	2	2	1	3	1
2	8	2	5	4	3	4	3	5	2
3	9	3	6	5	6	6	5	6	4
4	10	7	10	7	9	7	8	8	7
5	11	8	11	8	11	9	11	9	11
6		9		10		10		10	

Example Suppose $k_{1}=13$ and $k_{2}=12$. By corollary 3.5.11, the (E, S)-optimal design is a Case XXXII design, and the A-optimal design is an $\operatorname{ECD}(\bar{\theta}+1)$. Applying the Case XXXII construction given above with $\bar{\theta}=6$ produces an (E,S)-optimal design which is:

1	14	1	8	1	2	1	5	1	4
2	15	2	9	8	3	2	6	2	6
3	16	3	10	9	4	3	7	3	7
4	17	4	11	10	5	4	11	5	8
5	18	5	12	11	6	8	12	11	9
6	19	6	13	12	7	9	13	12	10
7	20	7	20	13	20	10	17	13	14
8	21	14	21	14	21	14	18	17	15
9	22	15	22	15	22	15	19	18	16
10	23	16	23	16	23	16	23	19	23
11	24	17	24	17	24	20	24	20	24
12	25	18	25	18	25	21	25	21	25
13	19		19	22		22			

Applying the $E C D$ construction given above with $L=\bar{\theta}+1=7$ produces an A-optimal design which is:

1	14	1	8	1	5	1	5	1	2
2	15	2	9	2	6	2	6	5	3
3	16	3	10	3	7	3	7	6	4
4	17	4	11	4	11	4	8	7	9
5	18	5	12	8	12	11	9	8	10
6	19	6	13	9	13	12	10	11	13
7	20	7	20	10	17	13	14	12	16
8	21	14	21	14	18	17	15	14	18
9	22	15	22	15	19	18	16	15	19
10	23	16	23	16	23	19	23	17	23
11	24	17	24	20	24	20	24	20	24
12	25	18	25	21	25	21	25	21	25
13		19	22	22	22				

Four our final example we investigate a setting for which $k_{1}-k_{2}=2$.

Example Suppose $k_{1}=12$ and $k_{2}=10$. Then by corollary 3.5.12, the (E, S)optimal design is a Case XXV design. Applying the Case XXV construction for $\bar{\theta}=6$ yields an (E, S)-optimal design which is:

1	13	1	7	1	3	3	1	3	1
2	14	2	8	2	4	4	2	4	2
3	15	3	9	7	5	5	10	5	7
4	16	4	10	8	6	6	11	6	8
5	17	5	11	9	12	7	12	9	12
6	18	6	12	10	18	8	16	10	13
7	19	13	19	11	19	9	17	11	14
8	20	14	20	13	20	13	18	15	18
9	21	15	21	14	21	14	21	16	19
10	22	16	22	15	22	15	22	17	20
11		17		16		19		21	
12	18		17	20		22			

3.6 Robustness of Optimal Designs

As was mentioned in the airplane part manufacturing example of section 2.1, an important question regarding optimal resolvable designs with r replications is whether optimality holds if fewer than r replicates of the experiment are completed. That is, is optimality of a resolvable design in $D\left(v, r ; k_{1}, k_{2}\right)$ robust to the loss of an arbitrary replicate. With the optimality results of the previous few sections in hand, we are now ready to investigate robustness, but first we need the following definition.

Definition 3.6.1 Let d be a resolvable design in $D\left(v, r ; k_{1}, k_{2}\right)$. A design $d^{*} \in$ $D^{*}\left(v, r^{*} ; k_{1}, k_{2}\right), r^{*}<r$, is said to be a subdesign of d if the r^{*} replicates of d^{*} are also replicates of d.

Recall that the optimal resolvable design in $D\left(v, r, k_{1}, k_{2}\right)$ depends on the location of $\gamma=k_{1}^{2}-\bar{\theta} v$ in the interval $0 \leq \gamma<v$. The value of γ does not depend on the number of replicates r; however, subintervals of $0 \leq \boldsymbol{\gamma}<\boldsymbol{v}$ on which various classes
of designs are optimal does depend on r, see tables $3.20,3.24,3.25,3.32,3.34$, and 3.40 .

The intervals on which the optimality of ECDs is robust to the loss of replicates for the various criteria are established by the following two lemmas.

Lemma 3.6.1 Let $D\left(v, r ; k_{1}, k_{2}\right)$ be a resolvable design setting such that $0 \leq \gamma \leq \frac{v}{2}$, and let $d \in D$ be an $E C D(\bar{\theta})$. If $d^{*} \in D^{*}\left(v, r^{*} ; k_{1}, k_{2}\right)$, is any subdesign of d, then d^{*} is an $E C D(\bar{\theta})$ and is type-1 and (E, S)-optimal.

Proof Since all subdesigns of an $E C D$ clearly are necessarily also an $E C D$, then d^{*} is an $E C D(\bar{\theta})$. By corollaries 2.3.4 and 2.3.15, $E C D(\bar{\theta}) s$ are at least type-1 and (E,S)-optimal for all r when $0 \leq \gamma \leq \frac{\nu}{2}$.

Lemma 3.6.2 Let $D\left(v, r ; k_{1}, k_{2}\right)$ be a resolvable design setting, and let $d \in D$ be a Schur-optimal ECD. If $d^{*} \in D^{*}\left(v, r^{*} ; k_{1}, k_{2}\right)$, is any subdesign of d, then d^{*} is an $E C D$ and the following are true about the Schur-optimality of d^{*}.

1. If $r=5$, and $0 \leq \gamma \leq \frac{v}{5}$ or $\frac{4 v}{5} \leq \gamma<v$, then d^{*} is Schur-optimal.
2. If $r=4$, and $0 \leq \gamma \leq \frac{v}{4}$ or $\frac{3 v}{4} \leq \gamma<v$, then d^{*} is Schur-optimal.
3. If $r=3$, and $0 \leq \gamma \leq \frac{v}{3}$ or $\frac{2 v}{3} \leq \gamma<v$, then $d \in D\left(v, r^{*} ; k_{1}, k_{2}\right)$ is Schuroptimal.

Proof Corollary 2.3 .17 provides the subintervals of $0 \leq \gamma<v$ on which $E C D$ s are Schur-optimal.

When $\frac{v}{2}<\gamma<\frac{4 v}{5}$, regions of the interval on which various resolvable designs are optimal are determined by the design replication r. A robustness argument for these values of γ must involve direct comparisons of optimal designs for different values of \boldsymbol{r}.

Lemma 3.6.3 Let $D\left(v, 3 ; k_{1}, k_{2}\right)$ be a resolvable design setting, and suppose $\frac{v}{2}<\gamma<$ $\frac{2 v}{3}$. If $d \in D$ is an (E, S)-optimal Case II design, then $2 / 3$ of the possible subdesigns $d^{*} \in D^{*}\left(v, 2 ; k_{1}, k_{2}\right)$ of d are (E, S)-optimal and the remaining $1 / 3$ are not.

Proof The discrepancy matrix for the (E,S)-optimal Case II design $d \in D\left(v, 3 ; k_{1}, k_{2}\right)$ is

$$
\Delta_{2}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Removing row column two or three from Δ_{2} produces the discrepancy matrix for a Schur-optimal $E C D(\bar{\theta}+1)$ in $D^{*}\left(v, 2 ; k_{1}, k_{2}\right)$. Removing row and column one from Δ_{2} produces the discrepancy matrix for an $E C D(\bar{\theta})$ in D^{*} which is not optimal on the interval. Therefore, two of the three subdesigns are Schur-optimal.

Lemma 3.6.4 Let $D\left(v, 3 ; k_{1}, k_{2}\right)$ be a resolvable design setting, suppose $\frac{v}{2}<\gamma<\frac{2 v}{3}$, and let $d \in D$ be an A-optimal design. If $d^{*} \in D^{*}\left(v, 2 ; k_{1}, k_{2}\right)$ is a subdesign of d then the following are true.

1. If $\frac{v}{2}<\gamma<\frac{3 v}{5}$, and d is an A-optimal $E C D(\bar{\theta}+1)$, then d^{*} is Schur-optimal.
2. If $\frac{v}{2}<\gamma<\frac{3 v}{5}$, and d is an A-optimal Case II design, then $2 / 3$ of the possible d^{*} are Schur-optimal and 1/3 are not optimal.
3. If $\frac{3 v}{5}<\gamma<\frac{2 v}{3}$, then d^{*} is A-optimal

Proof If $\frac{v}{2}<\gamma<\frac{3 v}{5}$ and the A-optimal $d \in D\left(v, 3 ; k_{1}, k_{2}\right)$ is an $E C D(\bar{\theta}+1)$, then a subdesign $d^{*} \in D^{*}\left(v, 2 ; k_{1}, k_{2}\right)$ is a Schur-optimal $\operatorname{ECD}(\bar{\theta}+1)$. If $\frac{v}{2}<\gamma<\frac{3 v}{5}$ and the A-optimal $d \in D$ is a Case II design, then it was established in the previous lemma that $2 / 3$ of the subdesigns $d^{*} \in D^{*}$ are Schur-optimal $E C D(\bar{\theta}+1) s$ and $1 / 3$ of the subdesigns d^{*} are $E C D(\bar{\theta}) s$ and are not optimal. If $\frac{3 v}{5}<\gamma<\frac{2 v}{3}$, the A-optimal design $d \in D$ is an $E C D(\bar{\theta}+1)$, and any subdesign $d^{*} \in D^{*}$ is a Schur-optimal $E C D(\bar{\theta}+1)$.

Lemma 3.6.5 Let $D\left(v, 4 ; k_{1}, k_{2}\right)$ be a resolvable design setting, suppose $d \in D$ is an (E, S)-optimal design, and let $d^{*} \in D^{*}\left(v, 3 ; k_{1}, k_{2}\right)$ be a subdesign of d.

1. If $\frac{v}{2}<\gamma<\frac{2 v}{3}$, then d^{*} is (E, S)-optimal.
2. If $\frac{2 v}{3}<\gamma<\frac{3 v}{4}$, then $1 / 2$ of the subdesigns d^{*} of d are Schur-optimal and the remaining $1 / 2$ are not optimal.

Proof When $\frac{v}{2}<\gamma<\frac{2 v}{3}$, Case II designs in $D\left(v, 4 ; k_{1}, k_{2}\right)$ are (E,S)-optimal and have discrepancy matrix

$$
\Delta_{2}=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Removing any one of the four rows and columns from $\Delta_{\mathbf{2}}$ produces the discrepancy matrix for an (E,S)-optimal Case II design $d^{*} \in D^{*}\left(v, 3 ; k_{1}, k_{2}\right)$.

When $\frac{2 v}{3}<\gamma<\frac{3 v}{4}$, Case I designs in D are (E,S)-optimal and have discrepancy matrix

$$
\Delta_{1}=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Removing row and column one or two from Δ_{1} produces the discrepancy matrix of a Schur-optimal $E C D(\bar{\theta}+1)$ in D, and removing row and column three or four produces the discrepancy matrix of a Case II design d^{*} which is not optimal on the interval.

Lemma 3.6.6 Let $d \in D\left(v, 4 ; k_{1}, k_{2}\right)$ be an A-optimal resolvable design, suppose $\frac{\mathrm{v}}{2}<\gamma<\frac{3 \mathrm{v}}{4}$, and let $d^{*} \in D^{*}\left(v, 3 ; k_{1}, k_{2}\right)$ be a subdesign of d.

1. If $\frac{\mathrm{y}}{2}<\gamma<\frac{3 \mathrm{v}}{5}$, an $E C D(\bar{\theta}+1)$ is A-optimal in D, and an $E C D(\bar{\theta}+1)$ is A-optimal in D^{*}, then d^{*} is always A-optimal.
2. If $\frac{v}{2}<\gamma<\frac{3 v}{5}$, an $E C D(\bar{\theta}+1)$ is A-optimal in D, and a Case II design is A-optimal in D^{*}, then d^{*} is never optimal.
3. If $\frac{v}{2}<\gamma<\frac{3 v}{5}$, a Case I design is A-optimal in D, and an $E C D(\bar{\theta}+1)$ is A-optimal in D^{*}, then $1 / 2$ of the possible d^{*} are A-optimal and $1 / 2$ are not optimal.
4. If $\frac{u}{2}<\gamma<\frac{3 v}{5}$, a Case I design is A-optimal in D, and a Case II design is A-optimal in D^{*}, then $1 / 2$ of the possible d^{*} are A-optimal and $1 / 2$ are not optimal.
5. If $\frac{v}{2}<\gamma<\frac{3 v}{5}$, a Case II design is A-optimal in D, and an $E C D(\bar{\theta}+1)$ is A-optimal in D^{*}, then d^{*} is never optimal.
6. If $\frac{p}{2}<\gamma<\frac{3 v}{5}$, a Case II design is A-optimal in D, and a Case II design is A-optimal in D^{*}, then d^{*} is always A-optimal.
7. If $\frac{3 v}{5}<\gamma<\frac{3 v}{4}$, then d^{*} is always Schur-optimal.

Proof Since all subdesigns of $\operatorname{ECD}(\bar{\theta}+1)$ s are $\operatorname{ECD}(\bar{\theta}+1)$ s, then 1,2 , and 7 follow immediately, and $3,4,5$, and 6 follow from the previous lemma.

Lemma 3.6.7 Let $D\left(v, 5 ; k_{1}, k_{2}\right)$ be a resolvable design setting, suppose $d \in D$ is an (E, S)-optimal design, and let $d^{*} \in D^{*}\left(v, 4 ; k_{1}, k_{2}\right)$ be a subdesign of d.

1. If $\frac{v}{2}<\gamma<\frac{2 v}{3}$, then $3 / 5$ of the possible d^{*} are (E, S)-optimal and the remaining 2/5 are E-optimal.
2. If $\frac{2 v}{3} \leq \gamma<\frac{3 v}{4}$, then $3 / 5$ of the possible d^{*} are (E, S)-optimal and the remaining $2 / 5$ are E-optimal.
3. If $\frac{3 v}{4} \leq \gamma<\frac{4 v}{5}$, then $2 / 5$ of the possible d^{*} are Schur-optimal and the remaining 3/5 are not optimal.

Proof When $\frac{v}{2}<\gamma<\frac{2 v}{3}$, Case XXV designs in $D\left(v, 5 ; k_{1}, k_{2}\right)$ are (E,S)-optimal and have discrepancy matrix

$$
\Delta_{25}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

Removing row and column two, three, or four from Δ_{25} produces the discrepancy matrix of an (E,S)-optimal Case II design $d^{*} \in D^{*}\left(v, 4 ; k_{1}, k_{2}\right)$, and removing row and column one or five from Δ_{25} produces the discrepancy matrix of an E-optimal Case V design d^{*}.

When $\frac{2 u}{3}<\gamma<\frac{3 v}{4}$, Case XXVIII designs in D are (E, S)-optimal and have discrepancy matrix

$$
\Delta_{28}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

Removing row and column three, four, or five from Δ_{28} produces the discrepancy matrix of an (E, S)-optimal Case I design $d^{*} \in D^{*}$, and removing row and column one or two produces the discrepancy matrix for a E-optimal Case V design d^{*}.

When $\frac{3 v}{4}<\gamma<\frac{4 v}{5}$, Case XXXII designs in D are (E, S)-optimal and have discrepancy matrix

$$
\Delta_{32}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right) .
$$

Removing row and column three or four from Δ_{32} produces the discrepancy matrix for a Schur-optimal $E C D(\bar{\theta}+1)$ in D^{*}, and removing row and column one, two, or three produces the discrepancy matrix for a Case I design d^{*} which is not optimal on the interval.

REFERENCES

Bailey, R. A., Monod H., and Morgan, J.P. (1995). construction and optimality of affine resolvable designs. Biometrika 82, 187-200.

Bose, R. C. (1942). A note on the resolvability of balanced incomplete block designs. Sankhyā 6, 105-110.

Cheng, C. S. (1978). Optimality of certain asymmetrical experimental designs. Ann. Statist. 6, 1239-1261.

Cheng, C. S and Bailey, R. A. (1991). Optimality of some two-associate-class partially balanced incomplete block designs. Ann. Statist. 19, 1667-1671.

Hanani, H. (1961). The existence and construction of balanced incomplete block designs. Ann. Statist. 32, 361-386.

Harshbarger, B. (1946). Preliminary report on the rectangular lattices. Biometrics 2, 1115-1119.

Harshbarger, B. (1949). Triple rectangular lattices. Biometrics 5, 1-13.
Hedayat, A. S., Stufken, J., and Zhang, W. G. (1995a). Virtually balanced incomplete block designs for $v=22, k=8$, and $\lambda=4$. J. Combin. Designs 3, 195-201.

Hedayat, A. S., Stufken J., and Zhang, W. G. (1995b). Contingently and virtually balanced incomplete block designs and their efficiencies under various optimality criteria. Statistica Sinica 5, 575-591.

Jacroux, M. (1980a). On the determination and construction of E-optimal block designs with unequal number of replicates. Biometrika 67, 661-667.

Jacroux, M. (1980b). On the E-optimality of regular graph designs. J. R. Statist. Soc. B. 42, 205-209.

Jacroux, M. (1985). Some sufficient conditions for the type I optimality of block designs. J. Statist. Plann. Inf. 11, 385-396.

Jacroux, M. (1989). Some sufficient conditions for the type I optimality with applications to regular graph designs. J. Statist. Plann. Inf. 23, 195-215.

John, J. A. and Mitchell, T. J. (1977). Optimal incomplete block designs. J. Royal Statist. Soc. B 39, 39-43.

John, J. A. and Williams, E. R. (1995). Cyclic and Computer Generated Designs. 2nd edition. Chapman \& Hall, London. First edition 1987, published as Cyclic Designs .

Kageyama, S. (1988). Two methods of construction of affine resolvable balanced designs with unequal block sizes. Sankhyā Ser. B 50, 195-199.

Kiefer, J. (1958). On the nonrandomized optimality and randomized nonoptimality of symmetrical designs. Ann. Statist. 29, 675-699.

Kiefer, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2, 849-879.

Kiefer, J. (1975). Construction and optimality of generalized Youdan designs. In A Survey of Statistical Designs and Linear Models, Ed. J. N. Srivastava, pp. 333-353. Amsterdam, North Holland.

Kirkman, T. P. (1851). Query VI on "Fifteen young ladies ...". Lady's and Gentleman's Diary No. 148 48,

Kunert, J. (1985). Optimal repeated measurements designs for correlated observations and analysis of weighted least squares. Biometrika 72, 375-389.

Lee, K. Y. and Jacroux, M. (1997). Some sufficient conditions for the E- and MVoptimality of block designs having blocks of unequal size. Ann. Inst. Statist. Math. 39, 385-397.

Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and Its Applications. Academic Press, Inc., New York.

Mathon, R. and Rosa, A. (1996). $2-(v, k, \lambda)$ designs of small order. In The CRC Handbook of Combinatorial Designs, Ed. C. J. Colbourn and J. H. Dinitz, pp. 3-41. CRC Press, Boca Raton.

Morgan, J. P. and Srivastav, S. K. (2000). On the type-1 optimality of nearly balanced incomplete block designs with small concurrence range. Statist. Sinica 10, 1091-1116.

Morgan, J. P. (1996). Nested Designs. In Handbook of Statistics, Vol. 13, Ed. E. Ghosh and C. R. Rao, Elsevier Science B.V., Amsterdam. 939-976.

Nandi, H. K. (1945). On the relation between certain types of tactical configurations. Bull. Calcutta Math. Soc. 37, 92-94.

Patterson, H. D. and Silvey, V. (1980). Statutory and recommended list trials of crop varieties in the United Kingdom. J. Roy. Statist. Soc. A 31, 219-252.

Patterson, H. D. and Williams, E. R. (1976). A new class of resolvable incomplete block designs. Biometrika 63, 83-92.

Preece, D. A. (1982). Balance and designs: another terminological triangle. Utilitas Math. 21C, 85-186.

Rao, C. R. (1947). Factorial arrangements derivable from combinatorial arrangements. J. Roy. Statist. Soc. Ser. C 21, 85-186.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications (second edition). Wiley, New York.

Searle, S. R. (1971). Linear Models. Wiley, New York.
Shah, K. R. (1960). Optimality criteria for incomplete block designs. Ann. Math. Statist. 31, 791-794.

Shah, K. R. and Sinha, B. K. (1989). Theory of Optimal Designs. Springer-Verlag, New York.

Street, A. P. and Street, D. J. (1987). Combinatorics of Experimental Design. Oxford University Press,New York.

Williams, E. R. (1975). A new class of resolvable designs. Ph.D. dissertation. University of Edinburgh.

Williams, E. R., Patterson, H. D. and John, J. A. (1976). Resolvable designs with two replications. J. Roy. Statist. Soc. B 38, 296-301.

Yates, F. (1936). A new method or arranging variety trials involving a large number of varieties. J. Agricult. Sci. 26, 424-455.

Yates, F. (1940). Lattice Squares. J. Agricult. Sci. 30, 672-687.
Zhang, W. G. (1994). Virtually balanced incomplete block designs. Ph.D. dissertation. University of Illinois at Chicago, USA.

APPENDIX A

DISCREPANCY MATRICES

D4

$$
\begin{array}{rrrrrr}
0 & -1 & -1 & 1 & 1 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & -1 & -1 \\
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
\\
\delta=4, l=2, w=3
\end{array}
$$

D6

\[

\]

D8

0	-1	-1	1	1	0	0
-1	0	0	0	0	1	0
-1	0	0	0	0	0	1
1	0	0	0	0	-1	0
1	0	0	0	0	0	-1
0	1	0	-1	0	0	0
0	0	1	0	-1	0	0

$$
\delta=4, l=2, w=3
$$

D10

\[

\]

D7

D9

$$
\begin{array}{rrrrrr}
0 & -1 & -1 & 1 & 1 & 0 \\
-1 & 0 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 1 & -1 & -1 & 0
\end{array}
$$

$$
\delta=4, l=2, w=2
$$

D11

$$
\delta=4, l=2, w=3
$$

D12

$$
\begin{array}{rrrrr}
0 & -2 & 1 & 1 & 0 \\
-2 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & -1 & -1 \\
1 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
\delta=4, l=3, w=3
\end{array}
$$

D14

0	-1	-1	1	1	0	0	0
-1	0	0	0	0	-1	1	1
-1	0	0	0	0	1	0	0
1	0	0	0	-1	0	0	0
1	0	0	-1	0	0	0	0
0	-1	1	0	0	0	0	0
0	1	0	0	0	0	0	-1
0	1	0	0	0	0	-1	0

$$
\delta=5, l=2, w=5
$$

D16

$$
\begin{array}{rrrrrrr}
0 & -1 & -1 & 1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 1 & -1 \\
-1 & 1 & 0 & 0 & 0 & -1 & 1 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 \\
\\
\delta=5, l=2, w=4
\end{array}
$$

D13

0	1	1	-1	-1	0	0
1	0	-1	0	1	-1	0
1	-1	0	1	0	0	-1
-1	0	1	0	0	0	0
-1	1	0	0	0	0	0
0	-1	0	0	0	0	1
0	0	-1	0	0	1	0

$$
\delta=5, l=2, w=4
$$

D15

0	1	1	-1	-1	0	0	0
1	0	-1	1	0	-1	0	0
1	-1	0	0	0	0	0	0
-1	1	0	0	0	0	0	0
-1	0	0	0	0	0	1	0
0	-1	0	0	0	0	0	1
0	0	0	0	1	0	0	-1
0	0	0	0	0	1	-1	0
$\delta=5, l=2, w=4$							

D17

$$
\begin{array}{rrrrrr}
0 & 1 & 1 & -1 & -1 & 0 \\
1 & 0 & -1 & 1 & 0 & -1 \\
1 & -1 & 0 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 & 0 & 1 \\
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 \\
\\
\delta=5, l=2, w=4
\end{array}
$$

D18

$$
\begin{array}{rrrrrr}
0 & -2 & 1 & 1 & 0 & 0 \\
-2 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -1 & 0
\end{array}
$$

$$
\delta=4, l=3, w=4
$$

D20

\[

\]

D19

\[

\]

D21

D22

\[

\]

D23

0	1	0	0	0	0	0	0	0	
1	0	-1	0	0	0	0	0	0	0
0	-1	0	1	0	0	0	0	0	0
0	0	1	0	-1	0	0	0	0	0
0	0	0	-1	0	1	0	0	0	0
0	0	0	0	1	0	-1	0	0	0
0	0	0	0	0	-1	0	1	0	0
0	0	0	0	0	0	1	0	-1	0
0	0	0	0	0	0	0	-1	0	1
-1	0	0	0	0	0	0	0	1	0

D24

0	1	-1	0	0	0	0	0	0	0
1	0	0	-1	0	0	0	0	0	0
-1	0	0	1	0	0	0	0	0	0
0	-1	1	0	0	0	0	0	0	0
0	0	0	0	0	1	-1	0	0	0
0	0	0	0	1	0	0	-1	0	0
0	0	0	0	-1	0	0	0	1	0
0	0	0	0	0	-1	0	0	0	1
0	0	0	0	0	0	1	0	0	-1
0	0	0	0	0	0	0	1	-1	0

D25

0	1	1	-1	-1	0	0	0	0
1	0	0	0	0	-1	0	0	0
1	0	0	0	0	0	-1	0	0
-1	0	0	0	0	0	0	1	0
-1	0	0	0	0	0	0	0	1
0	-1	0	0	0	0	1	0	0
0	0	-1	0	0	1	0	0	0
0	0	0	1	0	0	0	0	-1
0	0	0	0	1	0	0	-1	0

D26

0	1	1	-1		0	0	0	0
1	0	-1	0	0	0	0	0	0
1	-1	0	0	0	0	0	0	0
-1	0	0	0	1	0	0	0	0
-1	0	0	1	0	0	0	0	0
0	0	0	0	0	0	1	-1	0
0	0	0	0	0	1	0	0	-1
0	0	0	0	0	-1	0	0	1
0	0	0	0	0	0	-1	1	0

D27

0	1		-1		0	0	0	0
1	0	0	0	0	-1	0	0	0
1	0	0	0	0	0	-1	0	0
-1	0	0	0	0	1	0	0	0
-1	0	0	0	0	0	0	1	0
0	-1	0	1	0	0	0	0	0
0	0	-1	0	0	0	0	0	1
0	0	0	0	1	0	0	0	-1
0	0	0	0	0	0	1	-1	0

D28

$$
\begin{aligned}
& \begin{array}{rrrrrrrr}
0 & 1 & 1 & -1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & -1 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 & 0 & 0
\end{array} \\
& \text { D29 } \\
& \begin{array}{rrrrr}
0 & 1 & 1 & -1 & -1 \\
1 & 0 & -1 & 1 & -1 \\
1 & -1 & 0 & -1 & 1 \\
-1 & 1 & -1 & 0 & 1 \\
-1 & -1 & 1 & 1 & 0 \\
\delta=5, l=2, w=5
\end{array} \\
& \delta=5, l=2, w=4
\end{aligned}
$$

D30

D32

$$
\delta=5, l=2, w=4
$$

D34
$\begin{array}{rrrrrrrr}0 & -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0\end{array}$

$$
\delta=5, l=2, w=4
$$

D31

\[

\]

D33

$$
\delta=5, l=2, w=4
$$

D35

$$
\delta=5, l=2, w=3
$$

D36

\[

\]

D38

0	1	0	1	-1	-1	0
1	0	-1	-1	0	0	1
0	-1	0	0	1	1	-1
1	-1	0	0	0	0	0
-1	0	1	0	0	0	0
-1	0	1	0	0	0	0
0	1	-1	0	0	0	0

$$
\delta=5, l=2, w=3
$$

D40

\[

\]

D37

\[

\]

D39

0	-2	1	1	0	0
-2	0	0	0	1	1
1	0	0	0	-1	0
1	0	0	0	0	-1
0	1	-1	0	0	0
0	1	0	-1	0	0

$$
\delta=4, l=3, w=3
$$

D41

0	1	1	-1		0	0	0	0
1	0	0	0	0	-1	0	0	0
1	0	0	0	0	0	-1	0	0
-1	0	0	0	1	0	0	0	0
-1	0	0	1	0	0	0	0	0
0	-1	0	0	0	0	0	1	0
0	0	-1	0	0	0	0	0	1
0	0	0	0	0	1	0	0	-1
0	0	0	0	0	0	1	-1	0

D42

\[

\]

D44

0	1	1	-1	-1	0	0	0
1	0	0	0	0	1	-1	-1
1	0	0	0	0	-1	0	0
-1	0	0	0	1	0	0	0
-1	0	0	1	0	0	0	0
0	1	-1	0	0	0	0	0
0	-1	0	0	0	0	0	1
0	-1	0	0	0	0	1	0

$$
\delta=5, l=2, w=5
$$

D46

\[

\]

D43

$\begin{array}{rrrrrrr}0 & -1 & -1 & 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 1 & -1 \\ -1 & 1 & 0 & -1 & 0 & 0 & 1 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0\end{array}$

$$
\delta=5, l=2, w=4
$$

D45

\[

\]

D47

$$
\begin{array}{rrrrrr}
0 & 1 & 1 & -1 & -1 & 0 \\
1 & 0 & -1 & -1 & 0 & 1 \\
1 & -1 & 0 & 1 & 0 & -1 \\
-1 & -1 & 1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0
\end{array}
$$

$$
\delta=5, l=2, w=4
$$

D48

0	2	-1	-1	0	0
2	0	0	0	-1	-1
-1	0	0	1	0	0
-1	0	1	0	0	0
0	-1	0	0	0	1
0	-1	0	0	1	0
$\delta=4, l=3, w=4$					

D50

0	-1	-1	1	1	0	0
-1	0	1	0	-1	1	0
-1	1	0	-1	0	0	1
1	0	-1	0	0	0	0
1	-1	0	0	0	0	0
0	1	0	0	0	0	-1
0	0	1	0	0	-1	0
$\delta=5, l=2, w=4$						

D49

\[

\]

D51

0	2	-1	-1	0
2	0	-1	0	-1
-1	-1	0	1	1
-1	0	1	0	0
0	-1	1	0	0

$$
\delta=4, l=3, w=3
$$

APPENDIX B

DISCREPANCY MATRICES RANKED BY MAXIMUM EIGENVALUE

rank	Matrix	δ_{d}	l_{d}	w	U_{d}
1	D2	3	2	4	1.73205
2	D13	5	2	4	1.87939
3	D23	5	2	5	1.90211
4	D5	4	2	4	1.93543
5	D1	2	2	2	2.00000
6	D7	4	2	4	2.00000
7	D14	5	2	3	2.00000
8	D15	5	2	3	2.00000
9	D24	5	2	5	2.00000
10	D6	4	2	4	2.00000
11	D4	4	2	3	2.00000
12	D20	5	2	5	2.13452
13	D16	5	2	4	2.23607
14	D3	3	2	3	2.23607
15	D26	5	2	5	2.23607
16	D29	5	2	5	2.23607
17	D17	5	2	4	2.29240
18	D25	5	2	5	2.30278
19	D27	5	2	5	2.35829
20	D21	5	2	3	2.37720
21	D28	5	2	3	2.37951
22	D12	4	3	3	2.41421
23	D41	5	2	5	2.42534
24	D8	4	2	3	2.44949
25	D22	5	2	4	2.45585
26	D10	4	2	4	2.47283
27	D30	5	2	3	2.52434
28	D19	5	2	3	2.52543
29	D32	5	2	3	2.56155
30	D33	5	2	3	2.56155

rank	Matrix	δ_{d}	l_{d}	w	U_{d}
31	D44	5	2	3	2.56155
32	D45	5	2	4	2.56155
33	D31	5	2	3	2.56155
34	D18	4	3	4	2.56155
35	D34	5	2	3	2.61050
36	D35	5	2	3	2.64575
37	D42	5	2	3	2.69963
38	D36	5	2	4	2.71519
39	D37	5	2	3	2.79793
40	D38	5	2	3	2.79793
41	D46	5	2	3	2.81361
42	D9	4	2	2	2.82843
43	D43	5	2	4	2.85323
44	D47	5	2	4	2.89511
45	D11	4	2	3	2.90321
46	D48	4	3	4	3.00000
47	D39	4	3	3	3.00000
48	D40	4	3	3	3.00000
49	D50	5	2	4	3.04892
50	D49	5	2	3	3.15633
51	D51	4	3	3	3.44949

VITA

Brian Henry Reck was born in Las Vegas, NV on January 5, 1968. In 1991 he earned a Bachelor of Science degree in mathematics from the University of Redlands. After spending a year working as a Resident Director at the University of Redlands, Brian began his graduate studies at Old Dominion University. He earned a Master of Science in Computational and Applied Mathematics at Old Dominion University in 1995. He will obtain a Doctorate in Statistics in August 2002.

Brian has worked as an instructor at Old Dominion University and Averett University and as a statistical consultant at the Center for Pediatric Research and Eastern Virginia Medical School while attending Old Dominion University. With the completion of his Ph.D., Brian hopes to obtain a tenure-track job at a research university.

PUBLICATIONS:

Block Design Optimality In The Irregular BIBD Setting $(v, b, k)=(15,21,5)$, by B.H. Reck and J.P. Morgan, in preparation.

Resolvable Block Designs With $r \leq 4$ Replications and $s=2$ Blocks Per Replicate, by J.P. Morgan and B.H. Reck, in preparation.

PRESENTATIONS:

E-optimality: Results for Combinatorially Problematic Settings, Poster Presentation, DAE 1, July 2002

E-optimality: Results for Combinatorially Problematic Settings, VAS, Hampton University, May 2002

Block Design Optimality: Results for Combinatorially Problematic Settings, SSC/ WNAR/IMS 2001, Simon Fraser University, June 2001.

Analysis of the Breastfeeding Habits of a Sample of Mexican Mothers, Virginia Academy of Science, Old Dominion University, May 1999.

This document was prepared by the author using $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.

[^0]: The Model Journal used for this dissertation is Statistica Sinica.

