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ABSTRACT
NEARLY BALANCED AND RESOLVABLE BLOCK DESIGNS

Brian Henry Reck
Old Dominion University, 2001
Director: Dr. John P. Morgan

One of the fundamental principles of experimental design is the separation of
heterogeneous experimental units into subsets of more homogeneous units or blocks
in order to isolate identifiable, unwanted, but unavoidable, variation in measurements
made from the units. Given v treatments to compare, and having available b blocks
of k experimental units each, the thoughtful statistician asks, “What is the optimal
allocation of the treatments to the units?” This is the basic block design problem.
Let n;; be the number of times treatment ¢ is used in block j and let .V be the v x b
matrix NV = (n;;). There is now a considerable body of optimality theory for block
design settings where binarity (all n;; € {0,1}), and symmetry or near-symmetry
of the concurrence matrix N N7, are simultaneously achievable. Typically the same
classes of designs are found to be best using any of the standard optimality criteria.
Among these are the balanced incomplete block designs (BIBDs), many species of
two-class partially balanced incomplete block designs, and regular graph designs.

However, there are triples (v, b, k) in which binarity precludes near-symmetry. For
these combinatorially problematic settings, recent explorations have resulted in new
optimality results and insight into the combinatorial issues involved. Of particular
interest are the irregular BIBD settings, that is, triples (v, b, k) where the necessary
conditions for a BIBD are fulfilled but no such design exists. A thorough study of
the smallest such setting, (15,21,5), has produced some surprising optimal designs
which will be presented in the first chapter of this document.

An incomplete block design is said to be resolvable if the blocks can be partitioned
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into classes, or replicates such that each treatment appears in exactly ore block of
each replicate. Resolvable designs are indispensable in many industrial and agricul-
tural experiments, especially when the entire experiment can not be completed at one
time or when there is a risk that the experiment may be prematurely terminated. In
chapters two and three we will investigate the classes of resolvable designs having five
or fewer replications and two blocks of possibly unequal size per repiica.te. Theory
for identifying the best designs with respect to important optimality criteria will be
developed, and with the optimality theory in hand, optimal designs will be identified
and constructions provided. We will conclude with a comment on the robustness of

resolvable designs to the loss of a replicate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dedicated
to
Anne, Donald, and Jennifer Reck

whose unconditional love and support encourage me to pursue my dreams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv



ACKNOWLEDGMENTS

I thank my friend and mentor J.P. Morgan for guiding me through the long
process of completing this dissertation. His advice and encouragement will never
be forgotten. I have also benefited greatly from the comments and advice of John
Stufken, the external member of my dissertation committee. Appreciation is ex-
tended to N. Rao Chaganty and Dayanand N. Naik for being excellent instructors,
for introducing me to the elegance and beauty of statistics, and for serving on my
dissertation committee. Special thanks is extended to Ran C. Dahiya for extending
the opportunity to join the statistics program.

I thank John J. Swetits and the Department of Mathematics and Statistics for
inviting me to attend Old Dominion University and for providing financial support
for most of my graduate study. I also thank John A. Adam, Charlie H. Cooke, John
M. Dorrepaal, Hideaki Kaneko, Denny Kirwan, John Kroll, Constance M. Schober,
Michael Toner, John Tweed.

Finally, I want to thank Barbara Jeffrey and Gayle Tarkelsen for the friendship
and support they have provided me throughcut the time I have been at Old Dominion

University.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

Page

1 Nearly and Virtually Balanced Incomplete Block Designs 1
1.1 Imtroduction . . . . . . . . .. . . .. ... 1
1.2 Preliminaries . . . .. . ... . ... ... ... ... ... 4
1.3 Definitionsand Results . . . . . . .. .. ... ... ... ... .. 7
1.4 Search for the A- and D-optimaldesign . . . . .. ... ... ..... 18
141 OneCommonCase .. ... ................... 23

142 TwoCommonCase . . ... ................... 30

143 A-andD-optimalDesign. . . . ... ... ... ... ..... 34

1.5 E-optimal Design in D(15,21,5) . . . . . . . ... ... ... ..... 37

2 Resolvable Designs With Two Blocks Per Replicate: General The-

ory 54
21 Imtroduction . . . . . . . . . . ... ... 54
22 GeneralResults . . . . ... ... ... .. ... ... .. ..... 66
23 EqualConcurrences . . . . . . . .. . . .. ... 69
2.4 Special Cases: (k; —k2) <2 . . . . . . . e 81
3 Application: Optimal Resolvable Designs With Up To Five Repli-
cates and Two Blocks Per Replicate 83
3.1 Imtroduction . . . . . . . .. .. ... ... 83
3.2 Resolvable Designs With Two Replicates . . . . . . ... ... ... 88
3.2.1 Schur-optimality . ... ... ... .. ... .......... 88
3.2.2 Special Cases: (k; —kp) <2 . . .. ... .. ... ....... 89
3.2.3 Construction of Optimal Designs in D(v,2; k1,k2) - - - - . . . 90
324 Examples . . ... .. ... ... ... ... e 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Page

3.3 Resolvable Designs With Three Replicates . . . . . . ... ... ... 92
3.31 Imtroduction . . . . . ... .. .. ... ... 92
3.3.2 (E,S)-optimal Designs in D(v, 3; k1, k2) . . . . . . . ... ... 95
333 AwoptimalDesign . . ... ... ... ... ... ..., 96
3.34 SpecialCases: (ky —k2) <2 . ... ... ... .. ... ... 99
3.3.5 Construction of Optimal Designs in D(v, 3;k1,k2) . . . . . . . 100
3.3.6 Examples of Optimal Resolvable Designs in D(v, 3; k1, k) . . . 101

3.4 Resolvable Designs With Four Replicates . . . . . . ... ... ... .. 103
341 Imtroduction . . ... ... ... ... ... L. 103
3.4.2 (E,S)-Optimal Designs in D(v,4; ky,k2) - - . . . . . ... ... 112
3.4.3 Schur-Optimality in D(v,4; k1, k2) - . . . . . ... .. .. ... 115
344 A-optimalityin D(v,4;ky,k2) . . . . - . . . ... ... ... 120
345 Special Cases: (k1 —k2) <2 . ... ... ... ... ..., 128
3.4.6 Construction of Optimal Designs in D(v,4;k;,k2) . . . . . .. 129
3.4.7 Examples of Resolvable Designs in D(v,4; ki, k2) - . . . . . . . 132

3.5 Resolvable Designs With Five Replicates . . . . . .. ... ... ... 135
3.5.1 Imtroduction . . . . . ... ... ... ..., 135
3.5.2 (E,S)-Optimal Designs in D(v,5; ki, k2) . . . . .. . ... ... 144
3.5.3 Special Cases: (k; —k2) <2 . ... ... ... .. ... ... 147
3.5.4 Construction of Optimal Designs in D(v, 5; k1, k2) - . . . . . . 150
3.5.5 Examples of Optimal Resolvable Designs in D(v, 5; ky,k2) . . . 162

3.6 Robustness of Optimal Designs . . . . . . .. ... ... ....... 164
References 170
Appendices 173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A Discrepancy Matrices

B Discrepancy Matrices Ranked by Maximum Eigenvalue

Vita

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page

174

184

186



LIST OF TABLES

Table

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
2.18
2.19
3.20
3.21
3.22
3.23
3.24

Zhang's (1994) Most Efficient D(15,21,5) Design . . . . .. ... ..
U-BIBD(15,21,5;4) Theoretical Block Sizes . .. ... ... ... ..
U-BIBD(15,21,5;4) Theoretical Theta Pattern . . . . . . .. ... ..
U-BIBD(15,21,5;4) Theoretical Block Sizes - Reduced list . ... ..
A U-BIBD(15,21,5;10) Design . . . . .. ... .. ... .. ......
One-common Starter . . . . . . . ... ... ... ... ........
Assignment Candidates - One-common Starter . . .. ... ... ..
Section One Arrangements - One-common Design

Two-common Starter . . . . . . . . . . . i e e e e e e

Assignment Candidates - Two-common Starter

An A- and D-optimal Design In D(15,21,5) . ... .. ... .....
A Design In D(15, 21, 5) Having Discrepancy Matrix D10

A-, D-, and E-efficiencies Relative To An A- and D-optimal Design
A Discrepancy Matrix With Maximum Eigenvalue 1.6920 . . .. . .
A Discrepancy Matrix With Maximum Eigenvalue 1.7321 . . . . . .
An E-optimal Design In D(15,21,5) . ... ... ... ........
A-, D-, and E-efficiencies Relative To An E-optimal Design

A Resolvable Design In D(9,4;4,5) . . ... ... ... ... ....
A Schur-optimal ECD(4) in D(9,4;6,3) . . .. ... .. .......
Schur-optimal Designs In D(v, 2; k1. k2) . - . . . . . . ... ... ..
E- and Schur-comparisons Of ECDs In D(v,3;k1,k2) . - . . . . . ..
Block Concurrence Discrepancies For NECDs In D(v, 3; k1, k) - . . .
Concurrence Discrepancy Matrices for NECDs In D(v, 3; k1, k2)

(E,S)- and Schur-optimal Designs In D(v,3;ky,k2) - - . .. . .. ..

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page



Table Page
3.25 A-, Type-1, and Schur-optimal Designs in D(v, 3;k;,k2) . . . . . .. 98
3.26 Parameters for A-optimal Designs In D(v, 3, k1, k2) When $ <y < ¥ 100

3.27 E- and Schur-comparisons Of ECDs In D(v,4;ky,k2) . . . . . .. .. 104
3.28 Block Concurrence Discrepancies For NECDs In D(v,4;ky,k;) . . . . 105
3.29 Concurrence Discrepancy Matrices For NECDs In D(v,4;k,,k2) . . . 106
3.30 Corollary 3.4.1 Results In D(v,4;ky,k2) . . . . ... ... ... ... 107
3.31 Majorization Intervals For NECDs In D(v,4;ky,ks) . . . . . . . . .. 108
3.32 (E,S)- and Schur-optimal Designs In D(v,4;k;,k2) . . . . .. .. .. 115
3.33 Remaining Optimality Candidates in D(v,4;ky,k2) . . . . .. .. .. 120
3.34 A-, Type-1, and Schur-optimal Designs In D(v,4;k1,k2) . . . . . .. 126
3.35 A-optimal Design Counts In D(v, 4; k;, k2) When § <y <% . .. .. 127
3.36 E- and Schur-comparisons Of ECDs In D(v,5; k1, k2) . . . . . . . .. 136
3.37 Block Concurrence Discrepancies For NECD In D(v, 5; ky,k2) . . . . 137
3.38 Concurrence Discrepancy Matrices For NECDs In D(v,5;k,k2) . . . 138
3.39 Corollary 3.5.1 Results In D(v,5;k1,k2) . . . . . . . . ... ... .. 141
3.40 (E,S)- and Schur-optimal Designs In D(v, 5; k1, k2) - . - . . . . . .. 148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure
1.1 Proper Block Design Setting: b Blocks and k Plots Per Block
2.2 Resolvable Design With s = 2, Arbitrary r,and k; >k, ... .. ..

2.3 Replication n and n’ Block Concurrences . . ... ... ... ....

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page



CHAPTER 1

NEARLY AND VIRTUALLY BALANCED INCOMPLETE
BLOCK DESIGNS

1.1 Introduction

A proper block design is the assignment of v treatments to n = bk experimental units

arranged in b blocks of identical size k, see figure 1.1. For these specified setting

1 2 3 4 b
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
k k k k k

Figure 1.1: Proper Block Design Setting: b Blocks and k Plots Per Block

parameters (v,b, k), there is a potentially large, but always finite, set of feasible
designs from which an experimenter much choose. Denoting this class of all possible
designs by D(v, b, k), the task at hand is to choose a design d € D(v, b, k) that is best,

The Model Journal used for this dissertation is Statistica Sinica.
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2

that is, that in some sense (to be made rigorous below) maximizes the experimental
information that will result. When k < v, (v, b, k) is referred to as an incomplete block
design setting. For such settings, the balanced incomplete block designs (BIBDs) are
known to be best with respect to all of the standard symmetric optimality criteria
whenever they exist. Let ng; be the number of units in block j assigned treatment

i by design d. Then a BIBD is any design d for which

(i) naj =0or 1 for all ¢, j,
(i) X, nai; =r for all 4,
(iii) Y Naijnar; = A for all ¢ # 7.

Thus a BIBD is (i) binary, (ii) equireplicate, and (iii) pairwise balanced. The common
replication for a BIBD is r, and the common pairwise concurrence is A. These
two integer-valued auxiliary parameters satisfy r = "{‘- and A = "T"((:_—'ll)l, thereby

identifying two necessary conditions for the existence of a BIBD:
v|bk and v(v — 1)|bk(k — 1). (1.1)

When the necessary conditions (1.1) are satisfied, D(v, b, k) is called a BIBD setting.
That a BIBD need not exist in a BIBD setting (that is, the necessary conditions do
not guarantee existence) has been long known; such a setting is called an irregular
BIBD setting. Nandi (1945) proved that D(15,21,5) is an irregular BIBD setting,
and Hanani (1961) proved that (1.1) are sufficient for the existence of a BIBD for
k = 3 and 4, establishing that the smallest block size for which a BIBD setting is
irregular is £ = 5. A comprehensive list of BIBD settings for r < 41 along with
whether a BIBD exists, does not exist, or is not known, is given in Mathon and Rosa
(1996). From this list we see that the minimum value of v for which an irregular
BIBD setting exists is v = 15, and the unique setting is D(15,21,5). The setting
D(22, 33,12) has the minimum value of v for which the necessary conditions (1.1)

are satisfied and for which it is not known whether a BIBD exists.
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3

Again, if a BIBD exists, then it is optimal in a wide variety of senses. But what
if a BIBD does not exist? That is, what is the best design in an irregular BIBD
setting? W.G. Zang in his PhD. Thesis (1994) and Hedayat, Stufken, and Zhang
(1995a, 1995b) employed a combinatorial approach to this problem, preserving the
assignment properties (i) and (ii) while seeking a natural combinatorial approxima-
tion to the full balance (iii) of BIBDs. They show that the resulting designs are
typically highly efficient under the commonly used optimality criteria.

Central to their approach are the concepts of unfinished balanced incomplete block
designs and virtually balanced incomplete block designs (U-BIBDs and V-BIBDs,
respectively). In any BIBD setting, a U-BIBD is an assignment of the first v — w
of the v total treatments so that BIBD properties (i)-(iii) hold for ¢,# < v — w; the
parameter w, called the deficiency, is the number of treatments yet to be assigned.
Completing an U-BIBD by assigning the remaining w treatments to the blocks so
that (i) and (ii) hold, and further requiring them to appear simultaneously in a block
with any other treatment either A — 1, A, or A + 1 times, results in a V-BIBD. For
a given V-BIBD d define its discrepancy 4 as the number of treatment pairs 7 < ¢
occurring together in A — 1 blocks. Then the approach of Zang (1994) and Hedayat,
Stufken, and Zhang (1995a,1995b) is a two-stage search procedure:

e first find a U-BIBD with minimum w, then

e among all completions of the unfinished design(s) so determined find the d with

minimal discrepancy d4.

Essentially this approach seeks a design containing the largest possible “sub-BIBD”
(the unfinished design with minimal deficiency), then controls the departure from the
full balance (iii) of a BIBD by minimizing the discrepancy induced by the w deficient
treatments. Although constructing V-BIBDs in this way is effective in finding highly
efficient designs in various irregular BIBD settings (Hedayat, Stufken, and Zhang,
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4

1995a,1995b), establishing exact optimality of designs in irregular BIBD settings
remains elusive.

Morgan and Srivastav (2000) address this issue by determining sufficient condi-
tions for a member of a certain design class to be optimal with respect to a type-1
optimality criterion in irregular BIBD settings. Though they did not search for any
designs, they do note that for D(22, 33, 8) the design found by Hedayat, Stufken, and
Zhang(1995a,1995b) with deficiency 2 and discrepancy 4 implies that their optimal-
ity conditions are met for the A- and D-criteria (BIBD existence is still not settled
for this setting). The interesting contrast is that the combinatorial implications of
Morgan and Srivastav’s (2000) optimality work differ from the approach described
above in that discrepancy plays a key role while treatment deficiency is not of explicit
concern.

In this document the optimality results for irregular BIBD settings given by
Morgan and Srivastav (2000) are extended. E-optimality is investigated, and it
is found that an E-optimal design need not have minimum discrepancy. For the
irregular BIBD setting (15,21, 5), an enumerative search is described through which
the A-, D-, and E-optimal designs are found. The optimal designs do not possess
minimal deficiency, though the U-BIBD concept is very helpful in sorting through

the possibilities in arriving at optimal designs.
1.2 Preliminaries

Consider a proper block design setting D(v, b, k). The v x b incidence matrix Ny for
a design d € D(v,b, k) has elements ng; that are nonnegative integers representing
the number of times treatment i appears in block j. The concurrence matrix is
the v x v matrix NyN] whose off-diagonal elements 3)_, ngjnar; = Agw. called
concurrence parameters, are the number of times treatments ¢ and #' simultaneously

appear in the same block. Under the usual additive linear model, the least squares
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5

estimates of the treatment effects 7 are found by solving the normal equations Cr =
Q where Q. is a linear combination of the experimental measurements and Cyq =
diag(ra, T, - --,Taw) — tN4N7T is the v x v information matrix, also called the C-
matrix for design d. Here diag(ra, e, - - - : Tév) is the v x v diagonal matrix containing
the treatment replications. The information matrix Cy is positive semi-definite with
zerc sum rows, and the Moore-Penrose inverse C; is an effective variance-covariance
matrix for the treatment effect estimates. All contrasts of treatment effects are
estimable using design d if and only if the rank of Cy; is v — 1, in which case d is
said to be connected. Since it is desirable for all treatment contrasts to be estimable,
D(v, b, k) is henceforth restricted to be the class of all connected block designs. As
earlier mentioned, design d is binary if ng; = 0 or 1 for all ¢ and 7, which is the
condition for maximization of the trace of C4 over d € D(v, b, k). For a block design
setting D(v, b, k), define M (v, b, k) as the binary subclass of D(v, b, k) and My(v, b, k)
as the equireplicate subclass of M (v, b, k).

Because of the relationship of the information matrix to estimate variances, de-
sign optimality conditions are usually defined in terms of non-increasing, real-valued
functions f of the positive eigenvalues of Cy: 0 < zgn < zgp < -+ - < 244-1- A design
d € D(v, b, k) is said to be ¢s-optimal provided ¢;(Cy4) = V=] f(z4;) is minimal over
all designs in D. The function f is frequently chosen as a member of the family of
type-1 criteria defined by Cheng (1978).

Definition 1.2.1 ¢4(C4) = 7=} f(z&) is a type-1 criterion if f is a convex, real-
valued function for which

(1) f is continuously differentiable on (0, maz4epw sy tr Ca), and f' <0, f* > 0,
(v,b.k)

f" < 0 on (0, maZdep(v bk tr Ca), and
(ii) f is continuous at 0 or lim._ f(z) = f(0) = oco.

Three commonly used type-1 criteria are the A-, D- and ¢,-criteria which are defined
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6

by taking f(z) = 7!, f(z) = —logz, and f(z) = 7, 0 < p < oo, respectively.
Since CJ is the variance-covariance matrix for the treatment effect estimates, then
the average variance of all v(v — 1) elementary treatment contrast estimates is pro-

portional to

'ffz;‘. (1.2)

i=1

If a design d* € D(v, b, k) minimizes the average variance of the treatment contrast
estimates, hence minimizes (1.2), over all competing d € D, then d* is A-optimal.
Equivalently, the A-optimal design will minimize trCJ. In linear models with fully
estimable parameter vector @ in which var(@) is nonsingular, the volume of the
confidence ellipsoid for @ is proportional to |var(8)| = product of the eigenvalues of
va.r(a). The D-criterion in the block design setting is an analogous extension: since
var(£T ) = g2 €7 C} £ for every estimable £7r, we take as the relevant volume the

product of the eigenvalues of C;. Then the D-optimal design d* € D minimizes

v—-1
I1 =& (1.3)
i=1
or, equivalently, minimizes
v—1
- log z4:- (1.4)

i=1

Using the ¢@,-criterion, which is a general class of optimality criteria given by

u—1 (1/p)
¢p = (Z z;-") : (1.5)

=1

a fourth widely used criterion, called the E-criterion, is defined by
b0(Ca) = lim $5(Ca) = max zz'. (1.6)

A design is E-optimal if it minimizes the maximum variance of normalized treatment
contrast estimates over all competing designs in D. Furthermore, when p = 1,
minimizing (1.5) is equivalent to minimizing (1.2), that is, ¢;-optimal designs are

A-optimal. Various optimality criteria and their statistical significance are discussed
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7

in Kiefer (1958, 1974), Cheng (1978), Shah (1960), and Shah and Sinha (1989). In
the subsequent discussion we will concentrate on designs that minimize the type-1
criteria:

A-criterion: Aq = Y zz!

D-criterion: Dy = —)_log(za) (1.7)

E-criterion: Ejy4 zn'

Optimality criteria can also be used to compare two designs, d and d say, using

the relative efficiency of design d compared to design d.

Definition 1.2.2 The relative efficiency of a design d € D compared to another
design d € D with respect to the A-, D-, and E-optimality criteria are:
A-efficiency = %;—I , D-efficiency = I-D)f, and E-efficiency = %.

When D(v, b, k) is a BIBD setting, that is, when the necessary conditions (1.1) are
satisfied, the average treatment concurrence A is A = -'-g%)- and a BIBD d achieves
equality of treatment concurrences, that is, Agr = A for all ¢ # . If a BIBD
exists, it is the universally optimal design in D(v, b, k) (Kiefer, 1975), which includes
optimality with respect to all type-1 criteria. Of concern here are the irregular BIBD
settings, for which the conditions (1.1) hold but the combinatorics do not allow Agy =
A for all i # . What is the optimal or most efficient design in an irregular BIBD
setting? After reviewing and extending some previously known results concerning

irregular BIBD settings, we will observe some of their surprising consequences in

D(15,21, 5).

1.3 Definitions and Results

We begin by formally defining some of the concepts and terms introduced above.
Afterward we will develop optimality theorems and proofs. In the next section we
will apply the results to the irregular BIBD setting (v, b, k) = (15, 21, 5).
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Definition 1.3.1 An unfinished balanced incomplete block design with deficiency w,
denoted by U-BIBD(v, b, k; w), is a block design containing v—w of v total treatments
in b blocks of size k such that

(i) eachngj=0or1l,i=12,...,v—w
(ii) each rgs; =7,1=1,2,...,v—w

(i) Aaw = A, i#7 €{,2,...,v—-w}

Definition 1.3.2 A virtually balanced incomplete block design, denoted
V-BIBD(v, b, k; w), for v treatments in b blocks of size k such that

(i) each ng; =0or 1,

(ii) each rg =,

(i) Mg =X i #7€{1,2,...,v—w}, and

(iv) A €e{A-LAA+1},i>v—word >v—w, i #17.

Thus a V-BIBD(v, b, k; w) contains a U-BIBD(v, b, k; w), and the remaining w treat-
ments have been assigned in such a way that all of their concurrences are within one

of the ideal common concurrence A.

Definition 1.3.3 The concurrence range of a block design d € D(v,b, k) is a mea-

sure of its maximum pairwise unbalance and is given by

ld = igg.:j’ IA&"-: - ’\tﬁj’l'
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Definition 1.3.4 A nearly balanced incomplete block design d € D(v, b, k) with con-

currence range [, or NBBD(l), is an incomplete block design satisfying the following

conditions:

(i) each ng; =0o0r 1,

(ii) each rg =rorr+1,

(iii) la =1,

(iv) d minimizes tr C3 over all designs satisfying (i) — (#%i).

Clearly in a BIBD setting, when r4 = r for all ¢ and [ = 0, the definition of an
NBBD(!) reduces to that of a BIBD. If for a design d € M(v, b, k), combinatorics
force Agiiv < A—1 for at least one treatment pair ¢ # ¢, then for some other treatment
pair s # §’, Agsy > A+1 and the nonexistence of a NBBD(!) with [ < 1 follows. Such
settings were generally referred to as category one settings by Morgan and Srivastav
(2000) and include irregular BIBD settings. In an irregular BIBD setting a NBBD(2)
is the V-BIBD having minimum tr C3. Thus in an irregular BIBD setting, NBBD(2)s
are a subclass of V-BIBDs.

Definition 1.3.5 The pairwise concurrence discrepancy, for treatments i and 7',

1<i#1¢ <wu,of adesignde D(v,b,k) is the quantity
54{,': = ’\dii’ - A

The concurrence discrepancy for d is

64 = 2 2 max{O, —64,-,-1}
i<t

and is a measure of the combinatorial asymmetry of the design. The minimum

discrepancy over the binary subclass M (v, b, k) is denoted by

6= ‘I‘Ielig‘lad.
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If d € D(v,b, k) is a BIBD, then §; = 0 and consequently § = 0. A BIBD setting
is irregular if and only if § > 2. In the sequel, frequently the treatment concurrence
discrepancy will be shortened to treatment discrepancy and the concurrence discrep-
ancy to discrepancy. We now state a lemma relating the discrepancy of a design to

the maximum treatment unbalance of the design.

Lemma 1.3.1 (Morgan and Srivastav, 2000) Let d be a binary, equireplicate design
in a BIBD setting D(v,b, k). Then 64 > 2max; ¢ |04z |-

Not much is known about optimality in irregular BIBD settings. Intuitively it
is desirable to find a design with minimum discrepancy 44, i.e. the most balanced
design, and evidence suggests the efficiency of a design improves as the design dis-
crepancy decreases (Hedayat, Stufken, and Zhang; 1995a, 1995b), but determining
the minimum discrepancy & for a design setting can be combinatorially difficult.
For the setting D(15, 21,5), Zhang (1994) and Hedayat, Stufken, and Zhang (1995a,
1995b) investigated A-, D-, and E-efficiency by constructing VBIBDs with minimum
discrepancy d4 for the smallest possible treatment deficiency w. They discovered
that the smallest treatment deficiency for this setticg was w = 3, and for w = 3 the

minimum discrepancy design reported was the §; = 6 shown in table 1.1. Although

Table 1.1: Zhang’s (1994) Most Efficient D(15, 21, 5) Design

11111112 2 2 2 23 3 3 3 4 4 4 5 5
2 23 4 5 7 8 3 4 5 6 8 4 5 6 7 5 7 8 6 6
3 6 9 6 9101111 71011 9 6 7 812 8 910 7 9
4 7101213 12 1512 913 13 1010 8 9 14 11 11 13 10 12
5 811131514 14 13 15 14 14 12 15 13 14 15 12 14 15 11 15

this design was the most A-, D-, and E-efficient design they found in the class, having
respective optimality values of 2.33781, -25.07125, and 0.18149, they did not claim
that the minimum discrepancy for the class is § = 6 nor did they claim their design
to be the A-, D-, or E-optimal design in the class.
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Morgan and Srivastav (2000) addressed the optimality problem by describing
sufficient conditions for a NBBD(2) to be optimal in a category one design setting
D(v,b,k). Conditions for optimal designs in an irregular BIBD setting are conse-
quences of their main result and are given explicitly as a corollary. First we will
review and extend their main result, and later we will use the result to state and
prove a slightly more general corollary for irregular BIBD settings.

For a general design setting D(v, b, k), let d € D be a NBBD(I) with discrepancy
value §;. Optimality arguments can be constructed around d as a function of the

traces of its information matrix and its square, so define the quantities

A=trC; and Bg=trC§+%
where for a binary design d,
2 k—1\*¢ 2, 2 2
tr C = T 'erdi + ‘kizz A&‘il- (1.8)
i= i<y
Let 2, and 2] be upper bounds for the minimum nonzero eigenvalues z4 of designs
in M(v,b, k) and D(v,b, k), respectively, which satisfy

(A- 21)2
(v-2)

2 (A4- z{)z

(A—Zl)zng—Zfz and(A—z;)2232—z;. 2 (v_z)'

Given z, and for P = [(B; — z%) — %))—:-]1/ 2, define z, and z3 by

22 = [(A—zl)—,’ E—Z—Ei—;—Pg]/(v—2) and z3 = [(A—zl)-i-\/(v - 2)(v - 3)Py]/(v—-2).

Let z3 = [A —(2/k) — z;]/(v — 2) be the common nonzero eigenvalue of completely a

symmetric information matrix with trace equal to A — (2/k). All of these quantities
are integral to Morgan and Srivastav’s (2000) main result, stated next, as well as the

generalization for irregular BIBD settings to follow.

Theorem 1.3.2 (Morgan and Srivastav, 2000) Let D(v,b, k) be a setting with
6 >0, let d € D(v,b,k) be a NBBD(2) with information matriz C; having nonzero
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eigenvalues zzy < zp < --- < 23,1 and having 65 = 6 > 0, and let f be a convez,

real-valued function satisfying the conditions of definition 1.2.1. Let z; = 5("—'1,:”\-)—'1

and z; = %"_;11){‘-' Then if z; < zy and

v—1
Y f(za) < f(z1) + (v — 3)f(22) + f(23), (1.9)

i=1
a ¢s-optimal design in M(v,b, k) must be ¢ NBBD(2). If, moreover, z; < z4 and
v—1
Y f(zx) < (&) + (v — 2)f(z4), (1.10)
=1

then a ¢s-optimal design in D(v,b, k) must be an NBBD(2).

Theorem 1.3.3 (Morgan and Srivastav, 2000) Let D(v,b,k) be an irregular
BIBD setting, and let d € D be ¢ NBBD(2) with 65 < 4. Taking z; = z} =

o=l if (1.9) and (1.10) of Theorem 1.3.2 hold, then a ¢s-optimal design must be a

NBBD(2).

For irregular BIBD settings with r < 41, Morgan and Srivastav (2000) prove as
a corollary to Theorem 1.3.3 that a NBBD(2) is A- and D-optimal, provided that
such a design exists and that § < 4. We will extend their result to § < 5, but first,

we state their corollary and prove a slightly more general version of Theorem 1.3.3.

Corollary 1.3.4 Let D(v,b, k) be an irregular BIBD setting in which r < 41. If
there erists a a design d satisfying the first three conditions of definition 1.3.4 with
la = 2 and 65 < 4, then a A-optimal design must be ¢ NBBD(2), end a D-optimal
design must be a NBBD(2).

The next lemma will be necessary for the proof of our generalization of Theorem
1.3.3.

Lemma 1.3.5 Let D(v,b, k) be an irregular BIBD setting, and suppose d € D has

discrepancy 84 > 2 and concurrence range I3 > 2. If v}, and vz, are the number of
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times A+aand A —a, a =1,2,...,l4 — 1, appear below the diagonal of the v x v

concurrence matric NyNj, respectively, then

-1 - I4—1 Ig—1
SY M= ﬂ—z—-—-)-)\’ +20a+ Y ala—1)yL + > ala-1)vz.  (1.11)
i<i a=2 a=2

Proof Suppose NgNVj is the v x v concurrence matrix for a design d € D(v, b, k)
having discrepancy &4 and concurrence range ly. If NyNJ has v}, occurrences of
A+ and vz, occurrences of A —a, 75, 20, vz, > 0,and a = 2,3,...,l4— 1, below
the diagonal, then there are §; — ZL‘;; a vy, occurrences of A + 1, 64 — 25;‘;21 Ve
occurrences of A—1, and [22-1 — 26, + ¢"} (a — 1)7}, + £, (e —1)7z,] occurrences
of A below the diagonal. Therefore
Ig—1 Iy—1
zz Ny = Z YR (A +a)?+ (64 - Z a‘y}’a) (A+1)2+

i<y a=2 a=2

ldil Ya (A —a)? + (64 - 'dz-l a’yd';) (A-1P2+

a=2 a=2

g~ g =
[U(v—;l-)- — 204 + Zl(a -1)vL + lz:l(a -1) 74—0] 2.

a=2 a=2

The result follows by expanding the above expression and collecting on A. O

Corollary 1.3.6 Let D(v,b, k) be an irregular BIBD setting. Ifd € D has (63,13) =
(5,2), or (82,14) = (4,3) with 65, + 6% = 1, then

5 A= "("2— Dy ¢ 10.

i<i’
Furthermore, if no design having ly = 2 has d4 < 4, then any d € D not satisfying
the conditions of d has
)P DRI Lt PR )

i<¥
Theorem 1.3.7 Let D(v,b,k) be an irregular BIBD setting for whick a NBBD(2)
with 84 < 4 does not erist. Letd € D be a NBBD(2) with 65 = 5, or a NBBD(3)
with 6 = 4 and 5, +v5 = 1. For z; = z; = =1, if (1.9) and (1.10) of Theorem
1.3.2 hold, then a ¢y-optimal design must be a NBBD(2) or a NBBD(3).
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Proof The bounds z; = z] for z4 follow from lemma 2.2 of Morgan and Srivastav
(2000) for unequally replicated d and from propositions 3.1 and 3.2 of Jacroux (1980b)
for equireplicated d. The relations z; < 2; and 2] < z4 are easy to check. From the
proof of Theorem 1.3.3 (Morgan and Srivastav, 2000, page 10), the ¢,-optimal design
must be binary if condition (1.10) is satisfied for 2] and z4.

Suppose binary d € M(v, b, k) is not a NBBD(2) or a NBBD(3) as described in
the theorem. Then it must be true that either (i) d is not equireplicate; (ii) d is in
My, has Iy > Iz, and 84 > 6g; (iil) d in My, has Iy > I, and 84 > dy; or (iv) d is in
My, has (64,14) = (4,3), and v5 + 75 = 2. It will be established that for each of
these cases, tr C2 > B,.

Case (i). If d is not equireplicate, then 64 > 4 (Morgan and Srivastav, 2000, page
18) which implies Iy > 2, and, from lemma 1.3.5, & ¥;cp A%y > “%7HA + 8. Thus,
by corollary 1.3.6,

Z 2 ’\?ﬁi' - ZZ ’\ezi'ii' 2 -2
i<if i<i’
Furthermore, from the proof of Theorem 1.3.2 (Morgan and Srivastav, 2000, page
10),

v

Sri-Yrhz2
=1

i=1

Therefore, from (1.8),

2
trCﬁ—trcgzz(f-_l) +%(_2)=2(k2—2k—1) >i

k2 - k2

k
for k > 3.
Case (ii). Suppose d is in My, has discrepancy 84 > d3, and concurrence range
l4 > l;. Then, from corollary 1.3.6,
ZZ ’\i’i’ - ZZ ’\i'i' > 2,
<’ i<y
and, from (1.8),

trCf—-trcgz:—z.
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Case (iii). Suppose d is in My, has discrepancy d4 > dz, and concurrence range
lg > lz. Then, from corollary 1.3.6,
Zz /\?ﬁ.‘-r - zz Aﬁ'ﬁr Z 2,
i<i’ i<é!
and, from (1.8),

trCﬁ—trCfZ%-

Case (iv). Suppose d is in M, has (0q4,14) = (4,3), and 65 + 05 = 2. Then, again
from corollary 1.3.6,

SY M - L X M =2

i<’ i<y

and

4
trCf—trC§=§.

The result follows from Theorem 1.3.2. O

The information matrix for a design d € My(v, b, k) can be written as
Av 1 1
Ca=17(I-_J)~ £8q (1.12)

where Ay is the v x v, possibly null, discrepancy matriz for the design and has

elements

T Jdiil, for i # i
(A = { 0, for i =17'.

Equation (1.12) says that the information matrix for any design in Mj is completely
described by the discrepancy matrix Ay, which depends on the discrepancy 44 and
concurrence range [y of the design. Moreover, with an appropriate labeling, the
treatments ¢ # ¢ having Agy < A — 1 can, for some s < v, be restricted to the
first s members of the treatment set, and hence, the nonzero elements of A4 can be
restricted to the first s rows and columns. Furthermore, C;1 = 0 implies that A4l =
0; consequently, any s x s integer-valued matrix having zeros on the diagonal and

zero-sum rows and columns is a principal minor for discrepancy matrices of designs in
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My(v, b, k) for all v > s. Therefore, by enumerating a complete list of nonisomorphic
discrepancy matrices for fixed values of d4 and l4, optimality competitors for large
classes of designs are characterized, and in some cases, as will seen in corollaries 1.3.4
and 1.3.8 below, conditions for optimality in irregular BIBD settings with respect to
various criteria can be derived. The 11 discrepancy matrices having 6 < 4and [y =2
are provided by Morgan and Srivastav (2000, page 19), and we have enumerated the
40 discrepancy matrices having (84, ls) = (5,2), or (d4,14) = (4,3) and v +v5 = 1.
The complete list of the principal minors of all 51 discrepancy matrices can be found
in Appendix A.

Corollary 1.3.8 Let D(v,b, k) be an irregular BIBD setting in which r < 41 and
for which a desing with l; = 2 and §; < 4 does not ezist. If there ezists a design d
satisfying the first three conditions of the NBBD(l) definition and having (6, 13) =
(5,2), or (82,13) = (4,3) with v5 + 75 = 1, then an A-optimal design d must be
a NBBD(2) or a NBBD(3), and a D-optimal design d must be a NBBD(2) or a
NBBD(3).

Proof The corollary amounts to saying that conditions (1.9) and (1.10) of Theorem
1.3.2 hold for all equireplicate, binary designs d having (8z,13) = (5,2), or (63 13) =
(4,3) with vz +73 = 1, in all irregular BIBD settings with r < 41. The list of settings
D(v, b, k) satisfying the necessary conditions for the existence of a BIBD with r < 41
for which either a BIBD does not exist or for which existence is not known found in
Mathon and Rosa (1996) has 497 cases when complements are included. Since the
proof of Theorem 1.3.7 establishes that designs d not satisfying the conditions of d
will have tr C3 > B, > tr C3 + 3, following a procedure analogous to the one used
by Morgan and Srivastav (2000, pages 18-20) in their proof of corollary 1.3.4, the
result can be established for all designs in irregular BIBD settings with r < 41, by
checking (1.9) and (1.10) for each of the 51 conceivable information matrices listed
in Appendix A in each of the 497 potentially irregular BIBD design settings. A
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computer program written to accomplish this task found that conditions (1.9) and
(1.10) do in fact always hold. Therefore, the theorem is established for essentially

all of the cases of practical interest. O

With corollaries 1.3.4 and 1.3.8 in hand, we return to the irregular BIBD setting
D(15,21,5). The discrepancy matrices in Appendix A are listed in A- and D-
value order from smallest or optimal to largest for this setting (the order is the
same with respect to both criteria). This ranking is not the same for E-values,
nor necessarily maintained for different parameter sets (v, b, k). We can, however,
make a few useful observations from the list. First, as explained by Morgan and
Srivastav’s (2000) corollary 1.3.4, designs d € D having a discrepancy matrix with
04 < 4 and Iy = 2 are A- and D-superior to designs having any other discrepancy
matrix in the list; however, designs with (d4,ls) = (5,2) may either be A- and D-
superior or inferior to (d4,l4) = (4, 3) designs. For example, design D12 is A- and
D-superior to design D13 while design D13 is A- and D-superior to design D18. Also
observe that minimum deficiency does not imply minimum discrepancy, and A- and
D-value rank and design deficiency are not related. These facts are evident in the
(64,14) = (4, 2) group. According to corollaries 1.3.4 and 1.3.8, Zhang’s (1994) design
d € D(15,21,5) having (44, l4, w) = (6, 2, 3) given in table 1.1 is A- and D-inferior to
a design having any of the 51 discrepancy matrices shown in the appendix, whenever
they exist. Furthermore, since the first step of Zhang's search for efficient designs was
to minimize deficiency, thereby restricting the search to designs with w = 3, there
are 35 discrepancy candidates in the list with w > 3 that, if a design in D(15, 21, 5)
exists corresponding to one of these candidates, is A- and D-superior to Zhang's
design shown in table 1.1. We will use these observations in section 1.4 to construct
the A-optimal and D-optimal design in D(15, 21, 5), and in section 1.5 we will address
the issue of finding the E-optimal design.
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1.4 Search for the A- and D-optimal design

Now the theory of section 1.3 will be turned to the problem of finding optimal designs
in D(15,21,5). If we can construct a design d € D having one of the discrepancy
matrices listed in Appendix A, then corollaries 1.3.4 and 1.3.8 guarantee the A- and
D-optimal design exists and is either d itself or a design having one of the discrepancy
matrices appearing sooner in the list than the discrepancy matrix contained in d.
Thus our initial universe is possible designs d € D(15,21,5) having §4 < 5 and
la =2, or (84,14) = (4,3) and v + v5 = 1. Moreover, the treatment deficiency for
this class satisfies 2 < w < 5.

In order to make our initial attempt at constructing the A- and D-optimal design
more manageable, we will search for 64 < 4, and consequently, impose the limit
2 < w < 4. These restrictions imply that a successful search will result in a design d
containing a U-BIBD(15, 21, 5; w) for w = 4 (the existence of U-BIBDs with w =4 is
guaranteed by the fact that Zhang's design (1994) in table 1.1 has w = 3). Therefore,
our search will first concentrate on constructing an exhaustive list of nonisomorphic
U-BIBDs for the smallest w > 4 that can be managed, say w*. The list will be
exhaustive because all possible placements of the first v — w* treatments into the
blocks will be accounted for, and each U-BIBD will be nonisomorphic in that it will
be unique with respect to all possible treatment relabelings and block relabelings.
Once we have an exhaustive and nonisomorphic list of U-BIBDs for w = w*, if
w*® > 4, we will enumerate all possible extensions of each design in the list to U-
BIBDs with w = 4. Finally, all possible completions of each U-BIBD(15,21,5;4) in
the list, by addition of the w* missing treatments, will be enumerated taking into
account the discrepancy and concurrence range restrictions described above.

In order to get a handle on the search, there are two lemmas concerning admissible
block sizes and treatment placements that will be very useful to the process. Before

we state and prove the lemmas, we will review two sets of equations given by Zhang
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(1994).
If n; is the number of blocks of size i, 0 < i < k, then the block sizes of a

U-BIBD(v,b.k;w) must satisfy the following block size equations:

k

2m = b

=0

k

dYoing = r(v-w) (1.13)
=1

(5)m = 2("3")

If 8,; is the number of blocks of size i containing treatment ¢, then any treatment ¢

in a U-BIBD(v,b,k;w) design must satisfy the following theta pattern equations:

Zk:ﬁﬁ =T (1.14)
i=1

i(i —1)8s = Av-w-—1).

i=2

From equations (1.13) and (1.14), the theoretically possible block sizes for a U-
BIBD(15,21,5;4) are given in table 1.2, and from (1.14) the possible theta patterns

Table 1.2: U-BIBD(15,21,5;4) Theoretical Block Sizes
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are given in table 1.3. Using table 1.3 we can reduce the theoretical block size list,

table 1.2, by use of the following lemma.
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Table 1.3: U-BIBD(15,21,5;4) Theoretical Theta Pattern

B 6 B3 6 b5
2 0 0 0 5
1 1 0 1 4
1 0 2 0 4
0 2 1 0 4
1 0 1 2 3
0o 2 0 2 3
o 1 2 1 3
0O 0 4 0 3
1 0 0 4 2
0 1 1 3 2
0 0 3 2 2
0 1 0 5 1
0 0 2 4 1
0 0 1 6 O

Lemma 1.4.1 The number of blocks of size five in a U-BIBD(15,21,5;4) is neces-

sarily greater than one.

Proof Suppose ns = 0. Then from table 1.2 n = (n;, ns, n3, ng, ns) = (1, 2,0, 18, 0),
and since ;5 = 0 V ¢, from table 1.3 8, = (6,1, 02, O¢3, 04, 6:5) = (0,0,1,6,0) V ¢. This
is a contradiction because it is clearly not simultaneously possible for all 6,; = 0 and
n; = 1. Now suppose ns = 1. Then n = (1,1,3,15,1) or (0,4,0,16,1) and the
possible 8, are @;) = (0,0, 1,6,0), 02 = (0,0,2,4,1), or O3 = (0,1,0,5,1). Let
z; be the number of treatments with theta pattern 6,(;, j =1, 2, 3. Then

.23:1 z;0y) = (n1, 2n2, 3n3, 4n4, 5ns).

j=

Thus

£,(0,0,1,6,0) + £2(0,0,2,4,1) + 25(0,1,0,5,1) = (1, 2,9, 60, 5) or (0,8, 0,64, 5)
(1.15)

for the two respective values of n. The first system in (1.15) gives us the equations

1‘3=2
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Ty +2zy = 9
6z, + 4z, +5z3 = 60
Ia+z3 = 9.

These equations are inconsistent. The second system in (1.15) yields the equations

z3 = 8

T1+2z0 = 0
6x; +4z2 +5z3 = 60
Io+zI3 = 5.

These equations are also inconsistent. Therefore ns # 1, and ns > 2. O

The reduced list of possible block sizes for U-BIBD(15,21,5;4) is shown in table
1.4.

Table 1.4: U-BIBD(15,21,5;4) Theoretical Block Sizes - Reduced list

My Nz N3 N4 nNs
G 0 12 4 5
0 1 9 7 4
0 2 6 10 3
1 0 6 12 2
0 3 3 13 2

We can assume the first five treatments of all U-BIBD(15,21,5;4)s occur in the
first block, for otherwise, we can rename treatments and blocks so that this is the
case. The placement of the first five treatments, requiring each treatment to be
present in the first block, results in exactly one U-BIBD(15,21,5;10). The design is
shown in table 1.5. Notice that a U-BIBD(15,21,5;10) must use all 21 blocks.

When we extend table 1.5 to a U-BIBD(15,21,5;w), w < 10 we can use the

following useful lemma.
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Table 1.5: A U-BIBD(15,21,5;10) Design

11 222333344455
5

1111 2 2
2 3 45 3 4 4 5 b}

UL W

Lemma 1.4.2 For any U-BIBD(15,21,5;w), w < 10 the following are true:

1. A block of size five can have at most two treatments in common with any other

block, and

2. It is not possible for the design to contain two identical blocks of size four.

Proof The first statement follows immediately from the uniqueness of

UBIBD(15,21,5;10). If there are two identical blocks of size four, say

W N =
= D N =

-

then none of treatments 1-4 can occur again in a common block, but each must occur

5 more times. Hence 20 more blocks are required, a contradiction. O

Since U-BIBD(15,21,5;4)s must have at least two blocks of size five, we will ex-
tend our U-BIBD(15,21,5;10) to a U-BIBD(15,21,5;w) containing two blocks of size
five with the largest possible value of w (i.e. the maximum number of missing treat-
ments), depending on the structure of the size five blocks. Since the treatments in
a block of size five can have only one structure throughout the design (table 1.5) in
addition to lemma 1.4.2, we can take advantage of this structure when adding treat-
ments to the design. Thus, any two blocks of size five must have at least one and

at most two treatments in common, and we need only investigate these two cases.
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Since our U-BIBD(15,21,5;10) (table 1.5) is symmetric in all five treatments (i.e.
any renaming of treatments will result in an identical design), we can assume in a
design where the two size-five blocks have one treatment in common, that each size-
five block contains treatment 1 (one common case), and in a design where the two
size-five blocks have two treatments in common, that each size-five block contains

treatments 1 and 2 (the two common case).

1.4.1 One Common Case

If we extend our U-BIBD(15,21,5;10) to a U-BIBD(15,21,5;w) with exactly two blocks
of size five having one treatment in common and having maximum w subject to

lemma 1.4.2, then w = 6 and v — w = 9. The two blocks of size five are

(SN S U
-~

and we begin with the structure shown in table 1.6.

Table 1.6: One-common Starter

1111111 2223342233445 35
26 23 45 34545 5
3 7
4 8
5 9
section one section two sectio:three

Since A = 2, the sub-block candidates that must be added, all in separate blocks, to
table 1.6 are shown in table 1.7.

For convenience, as can be seen in tables 1.7 and 1.6, treatment pairs will be referred
to as doubles and single treatments as singles, and the seven blocks containing treat-
ment 1 are referred to as section one, the remaining six blocks of size two as section

two, and the other eight blocks of size one as section three in the following discussion.
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Table 1.7: Assignment Candidates - One-common Starter

6 6 6 778 66 6777888999
78 9899

doubles singles

Since removing treatments 2 to 5 from the resulting U-BIBD(15,21,5;6) will give
a U-BIBD(15,21,5;10), then treatment 1 with treatments 6 to 9 must have the same
structure, for some ordering of the blocks, as the U-BIBD(15,21,5;10) in table 1.5.
From tables 1.6 and 1.7, since 18 assignment candidates must be placed in 19 blocks,
we know n; < 1. Furthermore, from the block size equations (1.13) we know the
possible block sizes for the U-BIBD(15,21,5;6) with exactly two blocks of size five

and either one or zero blocks of size one are

ny nNe Nz N4 nNs
0 7 9 3 2 (1.16)
1 4 12 2 2.

Clearly one replication of each of treatments 6 to 9 must be placed in section one,
and the remaining replications in sections two and three. Since no block can have
more than two treatments in common with a block of size five, blocks of section one
can only receive singles from the candidate list. Once treatments 6 to 9 are added
to section one, 13 singles and doubles will remain in the candidate list to be placed
in the 13 blocks of sections two and three. Thus, if the U-BIBD(15,21,5;6) has a
block of size one, it must be in section one, and placement of treatments in section
one will determine whether the design has zero or one block of size one. Using this
observation and the theta pattern equations (1.14) given above, we have the following

admissible theta-pattern list
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b b2 O3 b Ois
0 3 0 3 1
0 2 2 2 1
0 1 4 1 1 (1.17)
0 0 6 0 1
1 0 4 0 2
0 2 3 0 2

Since section one is symmetric in treatments 2 to 5, there are only two noniso-
morphic ways to place treatments 6 to 9 in section one. They are shown in table

1.8.

Table 1.8: Section One Arrangements - One-common Design

1111111 1111111
26234509 262345
376738 3767389
4 8 4 8

59 59

zero sivze one one si;e one

As can be seen in table 1.8, we will refer to designs having these section one ar-
rangements as zero size one and one size one designs respectively. Given one of
these arrangements, the admissible block sizes (1.16) and the possible theta patterns
(1.17) determine the number of singles and doubles from the candidate list (table

1.7) that must be placed in sections two and three.

Zero Size One Designs

First we will investigate zero size one designs. In this case, treatments 6 to 8 must
be placed in section two twice each, and treatment nine must be placed there three
times, in order to have two concurrences with each of treatments 2 to 5. Hence
section two gets three doubles and three singles from the candidate list (table 1.6),
and section three gets three doubles and five singles. Since treatment five needs to

gain a total of eight treatment concurrences (two with each of treatments 6 to 9), and
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there are five occurrences of treatment 5 in sections two and three, then treatment
five must go with three doubles and two singles from the candidate set. Furthermore,
from (1.17), since 632 < 3 we know that up to three doubles containing treatment
9 can be placed in section two, and that treatment 9 is required to be a part of at
least one section two double candidate.

What, then, are the distinct ways of choosing three double candidates for section
two? There are 20 ways to choose three doubles from the six doubles in the candidate
set. Immediately we can eliminate the candidate doubles containing three 6s, three
7s, and three 8s and the candidate containing zero 9s. Since any permutation of
treatments 2,3,4 does not change sections 2 and 3, and permutations of treatments
6,7,8 combined with the same permutation of treatments 2,3,4, does not change sec-
tion one, we can reduce the remaining 16 ways of choosing three doubles from the
candidate list to just four nonisomorphic double sets. Each double set determines

a corresponding set of singles for adding to section two. The section two candidate

collections are:

Cuer: § 18678
Case 2: 72;899,
Case 3: sggTSQ,and
Cosets 587889

Suppose the first candidate collection above is placed in section two. Then treat-
ment 9 must be placed in two blocks containing treatment 5 in section two. Other-
wise, since each section two double candidate contains treatment 9 and no section

two single candidate contains treatment 9, fewer than two doubles from the candi-
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date collection would be placed in a block containing treatment 5 in section two, and
a treatment 9 single would be forced to go in a block containing treatment 5 at least
once in section 3. This makes it impossible for three double candidates to be placed
in a block containing treatment 5 in sections 2 and 3.

Once the design is completed using the first candidate collection above in section

two, we can apply the permutation

2345
(6789) (1.18)

(which preserves section one). Doing so transforms double candidates containing
treatment 9 to blocks of size two containing treatment 5, and blocks of size two con-
taining treatment 5 to double candidates containing treatment 9. Since two double
candidates with treatment 9 go in a block containing treatment 5 in section two, and
the third double candidate containing treatment 9 goes in a block not containing
treatment 5 in section two, the permutation results in two double candidates con-
taining treatment 9 and one double candidate without treatment 9 being placed in
section two. This is clearly a case of candidate collection three or four above, thus

we can eliminate the first collection. For example, the U-BIBD(15,21,5,6)

1 11111122 23 3 4 2 2 3 3 4 4 5 5
2 6 2 3 45 9 3 45 4 5 5 7 86 96 9 76
3 76 7 8 8 7 6 6 8 7 7 8 8
4 8 9 9 9
5 9

is transformed to
i 111111 2 2 3 3 4 2 2 3 3 4 4 5 5
2 6 23 45 9 3 45455 79 6 6 7 6 7 8
3 76 7 8 7 8 6 9 8 6 8 8 9
4 8 9 9 7
5 9

by the permutation.
Suppose the second candidate collection is placed in section two. Three candidate
doubles can not be placed in blocks containing treatment 5. If so, in order for treat-

ment 9 to have two concurrences with treatment 5, a double candidate containing
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treatment 9 would be forced to be placed in a block containing treatment 5 in section
three causing treatment 5 to have more than two concurrences with treatment 6, 7,
or 8. Assignment of two candidate doubles to blocks containing treatment 5 in sec-
tion two will be transformed under the permutation (1.18) to two candidate doubles
containing treatment 9 being placed in section two. This is a case of collection three
or four. If one candidate double is placed in a block containing treatment five, then
under the same permutation, the resulting design would be isomorphic to another
case of collection two. Thus the assignments using collection two for section two may
be restricted to those with one double assigned to a block containing treatment 5.
An exhaustive search of the remaining possibilities for designs using collection two
in section two revealed no possible U-BIBD(15,21,5;6)s.

Now consider placing the third candidate collection in section two. Placement of

the section two candidate doubles into blocks having the form

b
5

[S 0]

a
b
will be transformed under the permutation (1.18) to the placement of candidate

doubles having the form

in section two. This double candidate form is isomorphic to the double candidates
in candidate collection four.

An exhaustive search for designs with collection three in section two revealed
42 possible U-BIBD(15,21,5;6)s, and three designs have the section two structure
mentioned above. Thus there are 39 designs that may not be isomorphic. An
exhaustive search for designs with collection four in section two resulted in 20 U-

BIBD(15,21,5;6)s. Therefore, there are 59 possible nonisomorphic zero size one U-

BIBD(15,21,5;6)s.
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One Size One Designs

Now we will investigate one size one U-BIBD(21,15,5;6)s. In order to have two
concurrences with treatments 2 to 5, treatments 6 to 9 must be placed twice in
section two and three times in section three. Thus section two gets two doubles and
four singles from the candidate list in table 1.7 and section three gets four doubles
and four singles from the candidate list. Of the 15 ways to select two doubles from the

six double candidates, 6 6 and 6 8 are the only nonisomorphic pairs under all

7 8 79
permutations of treatments 6,7,8,9 with the same permutation of treatments 2,3,4,5
(thus preserving section one). Therefore we have two nonisomorphic section two

candidate collections. They are

6 7 8 9 9
- and

6

8

8 6 7 8 9
9 .

~ o

Designs resulting from placing collection two in section two in such a way that
the two double candidates are placed in blocks with one treatment in common are
isomorphic under the permutation (1.18) to designs resulting from placing collec-
tion one candidates in section two. That is, if the placement of the collection two

candidate doubles in section two has the form

n n
a b
6 8
7T 9,

then under the permutation (1.18), the section two doubles have the new form

2 4
3 5
n’ n’
a’ b.

This new form will result in a design that is isomorphic to a design that results from

placing collection one in section two.
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An exhaustive computer search using collection two in section two resulted in
106 designs, but after eliminating the designs that are isomorphic to collection
one designs, ten possibly nonisomorphic designs remain. An exhaustive computer
search using collection one candidates in section two resulted in 27 possibly noni-
somorphic designs. Therefore, there are at most 37 nonisomorphic one size one U-
BIBD(21,15,5;6)s. Therefore, there are at most 96 nonisomorphic U-BIBD(21,15,5;6)

in the one common case.

1.4.2 Two Common Case

If we build our U-BIBD(15,21,5;10) into a U-BIBD(15,21,5;w) with exactly two
blocks of size five having two treatments in common and having maximum w, then

w =7 and v — w = 8. The two blocks of size five are
1

U W
00~ OtV -

and we begin with the structure shown in table 1.9.

Table 1.9: Two-common Starter

111111122222 334 334455
223 45 3 4 5 4 5 5
3 6
4 7
5 8
section one section two section three

Since removing treatments 3 to 5 from the resulting U-BIBD(15,21,5;7) will give
a U-BIBD(15,21,5;10), then treatments 1,2,6,7,8 must have the same structure as
in the U-BIBD(15,21,5;10) given above in table 1.5. From the block size equations
(1.13) we know the possible block sizes for the U-BIBD(15,21,5;7) with two blocks
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n Ny Nz Ng N5

0 12 6 1 2 (1.19)

1 9 9 0 2

From (1.14) and using (1.19), we have the admissible theta pattern set

b b O3 64 Ois

1 2 2 0 2

0 4 1 0 2 (1.20)
0 3 2 1 1

0 2 4 0 1.

Since A = 2 the candidate list containing the sub-blocks that must be added, all in
separate blocks, to the U-BIBD(15,21,5;10) of table 1.9 is shown in table 1.10.

Table 1.10: Assignment Candidates - Two-common Starter

6 6 7 6 6 66 77 77882828
7 8 8

doubles singles

As before, we will refer to candidate sub-blocks in table 1.10 consisting of two treat-
ments as doubles and those consisting of a single treatment as singles. As is shown
in table 1.9, the 12 blocks containing treatments 1 and/or 2 are referred to as section
one, the remaining three blocks of size two as section two, and the other six blocks
of size one as section three.

Since treatments 1 and 2 need one concurrence with treatments 6 to 8, then two
replications of treatments 6 to 8 must be placed in section one. From lemma 1.4.2,
we conclude that only singles of treatments 6 to 8 can be placed in section one. There
are nine nonisomorphic ways one more replication of treatments 6 to 8 can be placed

in section one. They are:

1111111222 22

2 23 4 578 3 45 78
1. 3 6 6 6 .

4 7

5 8
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111111122 2 2 2

5 7 8 3 4 5 7 8
6

4

A O b~ 00

(S B B Ve

11111112 2 2 2 2
2 2 3 4578 3 45 6 8

© b 00

e 2 Vel

111111122 2 22
2 2 3 4 5 7 8 3 4 5 6 8

© b~ 00

M T

11111112 2 2 2 2

2 2 3 4 5 8

3 4 5 7 8

O b~ 00

e o]

1 12 2 2 2 2

11
5 8

2 2 3 4

3 4 5 7 8

WO b~ 00

e Vo]

2 2 2

2
3 4 5 7 8

1 111111 2

2 2 3 4 5 8

O b~ 0

M 0

1111111222 22

2 23 4 5 8

3 4 5 6 7

, and

© b~ 00

™M D

11111112 2 2 2 2

2 2 3 4 5 8

3 4 5 6 7

© b~ 00

M &N
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Section two candidates are determined by a particular section one arrangement
and treatment replications. For example, consider the first section one arrangement.
Since treatment 6 has two concurrences with treatments 1 to 3 in section one and
treatments 7 and 8 have two concurrences with treatments 1 and 2 only, then treat-
ment 6 must have a total of four concurrences (two with treatments 4 and 5) in
sections two and three, and treatments 7 and 8 require a total of six concurrences
(two with treatments 3 to 6). Since there are a total of four occurrences of treatments
6 to 8 that need to be placed in sections iwo and three, treatment 6 must be placed
in four blocks of size one and treatments 7 and 8 must be placed in two blocks of
size two and one block of size one in sections two and three. Thus, zero occurrences
of treatment 6 and two occurrences of treatments 7 and 8 must be placed in section
two. Therefore, the candidate collection that must be placed in section two given

the first section one arrangement is

7 7 8
8 .

In a similar manner we can construct section two candidate collections for the re-
maining eight section one arrangements. The section two candidate collection list

and the corresponding section one arrangements are:

1. Section one arrangements 1 and 2

7T 7 8
8 T
2. Section one arrangements 3 and 4
6 7 8 6 8 8
8 and 5 :

3. Section one arrangements 5 to 7

7 8 8 ,and

4. Section one arrangements 8 and 9

6 7 8.
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Given a particular section one arrangement and the corresponding section two
candidate collection, an exhaustive numerical search of all possible admissible U-
BIBD{15,21,5;7)s can be conducted. Once all admissible designs are listed for each
arrangement/candidate pair, isomorphic designs can be eliminated by studying valid
treatment permutations. For example, consider the first section one arrangement

with the corresponding section two candidate collection (collection one). The numer-

4 5
5 4°
the section one arrangement remains unchanged and one design is transformed into

ical search results in two U-BIBD(15,21,5;7)s, but under the permutation

the second design. Thus, there is only one nonisomorphic U-BIBD(15,21,5;7). In
general, permutations that, when applied to section one arrangements, leave the ar-
rangement unchanged can be applied to resulting U-BIBD(15,21,5;7)s in order to
eliminate isomorphic designs. A second example is arrangement two. Each of the

permutations 2. 34 and 78 when applied to the arrangement leave it

21 4 3 8 7
unchanged. An exhaustive numerical search using arrangement two and candidate
collection one results in six U-BIBD(15,21,5;7)s, but by applying combinations of the
aforementioned permutations, four isomorphic designs can be eliminated from this
set.

Exhaustive numerical searches starting with every possible section one arrange-
ment and corresponding section two candidate collection(s) results in 40
U-BIBD(15,21,5;7)s. Carefully applying appropriate permutations to the result-
ing designs as is described above reduces the list to 28 possibly nonisomorphic U-
BIBD(15,21,5;7)s. This completes the two common case.

1.4.3 A- and D-optimal Design

The final step of the search for the A- and D-optimal design in D(15,21,5) is
an enumeration of the possible completions of the 96 possibly nonisomorphic U-

BIBD(15,21,5;6)s and the 28 possibly nonisomorphic U-BIBD(15,21,5;7)s
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to V-BIBD(15,21,5)s with 64 < 4 and w < 4. With respectively 42 and 49 total
assignments of the remaining treatments still to be made, and in light of the fact
that concurrence counts involving any one of treatments 11 to 15 can not be con-
stant, this is a nontrivial exercise. The 124 candidate UBIBDs are too numerous to
allow an analytic approach analogous to sections 1.4.1 and 1.4.2. However, the list of
124 designs is small enough to bring the completion problem within computational
reach. Now an exhaustive blind computer enumeration can be performed by adding
the remaining treatments to each U-BIBD in all possible ways, requiring only that
Agiv € {A—1,\, A + 1} for all ¢ # ¢, kicking out the resulting designs violating the
restrictions on §4 and wy. Among the designs so found, only two distinct discrepancy
patterns occur: D7 and D10, each with é4 = wq = 4.

This establishes that § = 4 for D(15,21,5), and minimum discrepancy is not
achievable in conjunction with minimum deficiency for this class. The optimality

values for designs having discrepancy matrix D7 are:
A-value = 2.33631, D-value = —-25.07572, and E-value = 0.17857,
and the optimality values for designs having discrepancy matrix D10 are:
A-value = 2.33635, D-value = —25.07565, and E-value = 0.18164.

An example of a design having discrepancy matrix D7 is in table 1.11, and an example

of a design having discrepancy matrix D10 is in table 1.12. Of the two minimum

Table 1.11: An A- and D-optimal Design In D(15, 21, 5)

1 11111122 2 2 2 3 3 3 3 4 4 4 5 5
2 2 3 4 57 8 3 45 7 8 45 6 85 6 7 6 6
3 6 610 9131011 610 9 9 7 7 912 8 8 911 7
4 7 913 11 14 11 13 12 12 11 10 10 8 10 14 9 11 12 12 10
5 812 14 1515121515 14 14 13 11 13 14 15 15 14 13 13 15
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Table 1.12: A Design In D(15, 21, 5) Having Discrepancy Matrix D10

1 1111112 2 2 213 3 3 3 4 4 4 5 5
2 2 3 4 5 7 8 3 4578 45 6 8 5 6 7 6 6
3 6 612 9101110 6 9 910 7 712 9 8 8 910 7
4 7 9131211 14 13 11 11 12 12 11 8 13 11 10 9 10 11 14
5 810 14 15 13 15 14 15 13 14 15 12 13 15 14 14 13 15 12 15

discrepancy patterns found, D7 is A- and D-superior and thus, according corollary
1.3.4, produces A- and D-optimal designs.

The A-, D- and E-efficiencies for the design with discrepancy matrix D10 and for
Zhang’s design from table 1.1 relative to the A- and D-optimal design with discrep-

ancy matrix D7 are provided in table 1.13.

Table 1.13: A-, D-, and E-efficiencies Relative To An A- and D-optimal Design

D10 Zhang

A-efficiency | 0.99998 0.99936
D-efficiency | 0.99993 0.99554
E-efficiency | 0.98311 0.98395

Are designs in D(15, 21, 5) having discrepancy matrix D7 ¢,-better then these
two competitors for p > 2? Is such a design ¢,-optimal in D in for any p > 2? Could
it be E-optimal? The first question can be answered by calculating the ¢,-values
for the three competitors, and the second question can be answered by checking the
bounds 1.9 and 1.10 for the ¢,-optimality criterion (1.5). We discuss the question of
E-optimality in detail in section 1.5.

We have calculated ¢,-values and bounds for 1 < p < 60. From the calculations

)(I/P) .

and the facts that ¢,(Cy) = (2',’;11 zzP is a monotone decreasing function of p

and is bounded below by the E-value of d, E; = z,;l‘, we can make three observations

concerning ¢, optimality in D(15,21, 5):

1. Designs having discrepancy matrix D7 are ¢,-better than designs having dis-
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crepancy matrix D10 and Zhang’s table 1.1 design for all p > 1.

2. Designs having discrepancy matrix D7 are @,-better than binary designs that
are not an NBBD(2) for 1 <p < 3.

3. Designs having discrepancy matrix D7 are ¢,-better than nonbinary designs

for1<p<6.

The first observation follows from the fact that the ¢,-values for designs having
discrepancy matrix D7 are less than those of the two competitors for p < 60, and the
#p-value of these competitors are less than the E-value of D7 at p = 60. The others
follow from checking (1.9) and (1.10).

1.5 E-optimal Design in D(15,21,5)

Let D(v,b,k) be an irregular BIBD setting, and, as usual, denote the binary sub-
class of D by M(v,b, k) and subclass of M containing only equireplicate designs by
Mo(v, b, k). Suppose the eigenvalue/vector pairs of the information matrix Cy for a
design d € D are (zq41,ea). (242, e®); - - - » (24u, €dv). It follows from the fact Cyl =0
that (z4;,es) = (0, 1) for some i, say ¢ = v. Moreover, since D contains only con-
nected designs, rank Cy = v — 1 and 25 > 0 for all 1 < i < v — 1. Therefore, a
set of eigenvalue/vector pairs for Cy corresponding to the nonzero eigenvalues are
(za1,eq), (22, €22), - - -, (Zdu~1,€dv—1), and €]1 =0, foralli = 1,2,...v — 1. For no-
tational simplicity, redefine the E-value of d € D given by (1.6) to be the minimum

nonzero eigenvalue of Cy, or

Ed = minzdn,-. (1.21)

i<v

Then the E-optimal design d* € D, defined by (1.7), has E-value

Ed- = tgeagc Ed = %leabx?&l?z‘ﬁ- (1-22)

In this section we will develop the theory for identifying E-optimal designs in D(v, b, k)
and outline a procedure for constructing these designs. Our results will be applied
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to the setting (v,b,k) = (15,21,5), and finally the surprising E-optimal design in
D(15,21,5) will be reported.

Recall from equation (1.12), the information matrix for a design d € My(v, b, k)

Ca= A?v([ - %J) - %Ad,

where Ay = (84 ) is the discrepancy matrix for the design, A4 has zero sum rows
and columns, and the nonzero elements of Ay can be restricted to the first s < v
rows and columns. Since A41 =0, (0, 1) is an eigenvalue/vector pair for A4, and any
set of v — 1 vectors mutually orthogonal to 1 constitute a set of eigenvectors for Ag4.
Then, if (ug, €4) is an eigenvalue/vector pair of Ay, the corresponding eigenvalue of
Ciis

i = 7~ E"di- (1.23)

Furthermore, if the maximum eigenvalue of the discrepancy matrix A4 is
Uy = maxug,

then the E-value for d given by (1.21) becomes

Av 1
Eq = = EUdy (1.24)

establishing a direct relationship between the E-value of a design d € My(v, b, k) and
the maximum eigenvalue Uy of the discrepancy matrix A4 associated with the design.
The following two lemmas and corollary establish conditions for which a search

for the E-optimal design in D(v, b, k) can be restricted to the subclasses M(v,b, k)
and Mo(‘U, b, k).

Lemma 1.5.1 Let d be a binary design in an irregular BIBD setting D(v, b, k) with
discrepancy matriz A; having mazimum eigenvalue Uz. If Uz < 2 then the E-optimal
design must be in M(v,b, k).
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Proof Let d be a nonbinary design in an irregular BIBD setting D(v,b, k) with
E-value E4. From the proof of Theorem 3.1 of Jacroux (1980b),

[rk-1)—2v I -2
Bas -1 <%

From equation (1.24), the E-value of an equireplicate design d is

Design d is E-better than nonbinary d if and only if E; > E4 which is true if

Av —2
E; > P

which implies Uz < 2. O

Lemma 1.5.2 Let d be a nonequireplicate design in an irregular BIBD setting D(v, b, k),
and define pg = max;{r —r4}. Letd € D(v,b, k) be an equireplicate design with dis-
crepancy matriz Ag having mazimum eigenvalue Uz. If U; < (k — 1)pg then d is
E-better than d.

Proof If E; is the E-value of d then, by Theorem 3.1 of Jacroux (1980a),

(r=pa)(k=1)v _ X[ _p
s Coplicie s

the equality because £=1 = 2 in a BIBD setting. From equation (1.24), the E-value

v—1

for equireplicate d is

Av 1
Ej= " ‘k"UJ.

Design d is E-better than d if and only if E; > E4 which is true if
v
Us < 5 —(k = 1)pa- (1.25)

Inequality (1.25) is satisfied if Uz < (k — 1)pg. O
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Corollary 1.5.3 If there erists an equireplicate design d € D(v, b, k) having 63 < 4
and vp + 75 < 1, or (83,13) = (5,2), then the E-best design in D(v,b, k) must be

equireplicate.

Proof Since nonexistence of a BIBD implies ¥ > 5 and nonequireplicate designs
d € M(v,b, k) have p; > 1, we need establish that U; < 4 for all 51 discrepancy
matrices satisfying the conditions of the corollary, which are listed in Appendix A.
The corresponding list of Uz-values is given in Appendix B, and the largest value is
3.44949 for D51. O

Corollary 1.5.4 If there ezists a binary, equireplicate design d € D(v,b, k) with
discrepancy matriz A4 having mazimum eigenvalue Uy < 2, then the the E-optimal
design must be in My(v, b, k).

If Ap is the class of all admissible discrepancy matrices for designs in My(v, b, k),
that is, the class of all integer-valued square matrices of dimension s < v having
zeros on the diagonal and zero-sum rows and columns, the expression for the E-value
of the E-optimal design d* € M, given by (1.22) is

Av 1 Av 1
Ed' = T - Elg.lélUd = —k— - gUd-. (1.26)

Solving (1.22) is equivalent to solving
Us = minmaxug; (1.27)
Ap i

and using (1.26) to obtain the E-value of the E-optimal design in the class.

Now the fundamental question is: is it possible to solve (1.27) without enumer-
ating all of the admissible discrepancy matrices Agy € Ap? To attack this one must
first ask: what is the relationship between E-value Uy, design discrepancy &4, con-
currence range [y, and treatment deficiency w? We begin to answer this question by
ranking the discrepancy matrices listed in Appendix A by their maximum eigen-

value Uy, from largest to smallest, as shown in Appendix B. It is immediately clear
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from the list that the E-ranking of a design is not a function of d4, {4, and w alone.
For example, designs having discrepancy matrix D1 with discrepancy d4 = 2, if they
exist, are E-inferior to ;4 = 3 designs with discrepancy matrix D2, ;4 = 4 designs
with discrepancy matrix D5, and 84 = 5 designs with discrepancy matrix D13, and
the same designs are E-superior to designs with discrepancy matrices D3, D8, and
D20 with discrepancies 64 = 3, 84 = 4, and §4 = 5, respectively. Also, designs with
discrepancy matrix D18 having discrepancy 44 = 4 and concurrence range [y = 3 are
E-inferior to some designs having discrepancy é; = 4 and concurrence range [y = 2 or
l4 = 3, for example designs having discrepancy matrix D5 or D12, and are E-superior
to designs having discrepancy matrix D9 or D48 also with discrepancy 64 = 4 and
concurrence ranges Iy = 2 and g = 3.

Furthermore, suppose in a setting My(v, b, k) no design having discrepancy matrix
D2 exists, but, for some n > 2, a design having discrepancy matrix nD2 = I, ®
D2, where ® is the kronecker product and I, is the n x n identity matrix, exists.
Since the eigenvalues for nD2 are n copies of the eigenvalues of D2, and designs
having discrepancy matrix D2 are E-better than designs having any of the other 50
discrepancy matrices in Appendix A, then that ;4 = 3n > 6 design would be E-
better than any design having one of the discrepancy matrices in the list. Therefore,
even if the existence question for designs having one of the discrepancy matrices
in Appendix A has been completely solved, we then still may not know whether
there exists a design with larger discrepancy and/or larger concurrence range that
is E-better than the best of these. Clearly we need to investigate the discrepancy

matrix/E-value relationship more thoroughly. The following three lemmas will help.

Lemma 1.5.5 Suppose d € My(v,b,k) has discrepancy matriz Ag = (0sir). If Uy is

the mazimum eigenvalue of A4 then

indg > — )
%Jﬁ: > -Us (1.28)
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and
v—2

t?g-lx Jdﬁl < Ud. (1-29)

Proof A design d € My(v,b, k) with discrepancy matrix A, will have information
matrix Cy = (cg;r) given by (1.12) having E-value E;4. By Proposition 3.2 of Jacroux
(1980b), for all ’\dii' , ] ¢ i’,

S T(k - lk) + A&i’

Eq (1.30)

and
< [T(k - 1) - Ad{i’]'v.
- (v-2)k

Since My is a BIBD setting, r(k—~1) = A(v—1). Using this expression, the relationship

Eq

(1.31)

Adgiz = A+ d4iir, and by writing Fy in terms of Uy using (1.24), inequality (1.30) may
be written as

54,'," > —Ud, for all ¢ # i',
and, similarly, inequality (1.31) becomes

5¢ii'$v—2

v Ud, for all z # i

Inequalities (1.28) and (1.29) follow immediately. O

Corollary 1.5.6 Let Ay and Az be discrepancy matrices for designs d # d in an
trregular BIBD setting My(v, b, k). Suppose the mazimum eigenvaiue of Az = (0gy)

is Uz and the mazimum eigenvalue of Ay = (64¢) is Uy. If d is E-better than d then

indz, > — 1.32
min gy > —Us (1.32)
and
v—2
rgéai.,x&;i,-. < Uq (1.33)
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Corollary 1.5.6 potentially can significantly limit the discrepancy matrix search
for the E-optimal design by bounding the minimum and maximum treatment con-
currences of designs that can be E-better than a known design d having discrepancy
matrix A4 with maximum eigenvalue Uy. For example, if a design having discrep-
ancy matrix D2 or I, ® D2 exists, then Uy = 1.73205, and the corollary says that
the discrepancy matrix of a potentially E-better design can not have an element
less than -1 or greater than 1. Consequently, potential E-better designs must have
a concurrence range equal to 2. The following two lemmas will lead to corollaries
that provide more information about the discrepancy matrices of E-optimal designs,

further limiting the number of discrepancy matrices for potentially E-better designs.

Lemma 1.5.7 Suppose d € My(v,b,k) has discrepancy matriz Ay = (O4i¢) with
mazimum eigenvalue Uy. Then, for allm < v,
m(v —m), .
S0 baw <"y, (1.34)
i<i'<m 2

Proof A design d € My(v, b, k) with discrepancy matrix A, will have information
matrix C4 = (cgi) given by (1.12) having E-value E4 and by Lemma 3.2 (b) of
Jacroux (1989), for all m < v,

Bes s | e+ 35 car | (1.35)
i=1 l’=l
4 #s
Substituting
A - 1 3t
N YCEL R )

into (1.35), writing E4 in terms of Uy using (1.24), and solving for ¥~ X i<icir<m Oci

yields (1.34). O

Corollary 1.5.8 Let Ay and Ag be the discrepancy matrices for designs d # d

in My(v,b,k). Suppose the marimum eigenvalue of Ag is Uz and the mazimum
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eigenvalue of Az is Uz. If d is E-better than d then the elements of every m x m,
m < v, leading minor Az, = (0zy) of Ag must satisfy

TY 6ge < 2Ty, (1.36)

i<t 2v

Lemma 1.5.9 Let Ay be the discrepancy matriz for a design d € My(v,b, k), and
define Agq to be the m x m, m < v, leading minor of Ag4. Let (u;,§;), 1 <i < m,
be the eigenvalue/vector pairs for Aq,, and write z; = €71, where 1, is a vector

whose elements are all 1. If Uy is the mazimum eigenvalue of A4, then

[u-z?

-1
max | — ‘] u; < Uy (1.37)

H

Proof Since A, has row and column sums of zero,

Ud = max x” Ad X.

xrx==l
xT1=0
Partition A4 as
Agqy Aaqs
A; =
¢ ( Ap1 Ame

and consider the vector y* = (w7, 07), wiw = 1, so that
Y Mgy =w' A w.

Then, provided w71 =0,

Us>wiAg w.

If w71 # 0, consider

. _ 1
y' =« vJ)y
1
= Y—;Zyil
= y—%Zw,l
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where I, is the identity matrix and J,x, is the matrix whose elements are all 1.

Then y**1 = 0 and

oT e 2 1
Yy = ¥yy- ;(Z w)y'1 + U—z(z w;)?171

_ v — (X w;)?
v
= s, say
Then
1 .. . 1, 1 . 1
UJZEY Ayt = ;(y—gzwil) Ad(}’-;}'zwil)

= %yr Agy (since 1T Ay = 0)

1
= ~wAqw
s

-1
['U - (% wi)z] wT Adll w.

Let &,,&,, ..., &, be the eigenvectors of Ay, with eigenvalues ugy, o, - - -, Udm, Te-

]

spectively, and suppose &7 1 = z;, say. Then
v—1z}
v

Us > max
3

-1
] & Aqui &

-1
= max [v—z;‘.'] ug. O

i v

Corollary 1.5.10 Let Ay and Aj be the discrepancy matrices for designs d # d in
My(v,b, k). Suppose the mazimum eigenvalue of Ay is Uy, the mazimum eigenvalue
of Ag is Uz, and Ag, is a m x m leading minor of Ag for any m < v. Let (ug,§;)
be the eigenvalue/vector pairs for Ag,, and write z; = €71, where 1 is the m x 1

vector whose elements are all 1. If d is E-better than d then

v—12

-1
mfnc[ ” "] ugk < Uy (1.38)

With corollaries 1.5.6, 1.5.8, and 1.5.10 in hand, given an irregular BIBD set-
ting D(v, b, k), we are ready to outline a procedure for finding the discrepancy ma-

trices {Af,Ag,---.Ag} € Ap, t > 1, with maximum eigenvalue Uy given in
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(1.27), that is, finding the E-best discrepancy matrices in Ap. The procedure starts
with a discrepancy matrix A4 having maximum eigenvalue Uy < 2.0 for a design
d € My(v, b, k) that is suspected to exist, and, consequently, assumes the search can
be limited to designs in My(v, b, k). It then enumerates a list of discrepancy matri-
ces {Ag,Ap, --., A3} € Ap having maximum eigenvalues {Ug,Up, . - ., Uz, } such
that Uy < Uy for each i < n, that is, it enumerates a list of E-better discrepancy
matrices in Ap. If no such discrepancy matrix exists, the procedure will establish
the fact. The 1 <t < n E-best discrepancy matrices will have maximum eigenvalue
Ug- satisfying

Us = min{Us.,Ug, - - -, Ugn, Ua}- (1.39)

The procedure is:
1. Apply conditions (1.32) and (1.33) from corollary 1.5.6 to Uy in order to estab-

lish bounds for the maximum and minimum elements of a discrepancy matrix

Ag = (8zy) that is E-better than Ag.

2. Create an exhaustive list of symmetric and nonisomorphic m x m matrices
that could serve as the leading minor for a discrepancy matrix Aj; that is E-
better than A4, for a convenient value of m < v. Each matrix must satisfy the
following requirements:

(a) All diagonal elements must be equal to zero.

(b) Each off-diagonal element must satisfy the bounds determined in step 1.
(c) The elements must satisfy condition (1.36) of corollary 1.5.8.

(d) If the rows and columns do not sum to zero, then m < v.

We will refer to this list of discrepancy matrices as the starter candidate list,

and matrices in this list as starter candidates.
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3. Remove starter candidates that do not satisfy condition (1.38) of corollary

1.5.10 (these are determined by computation).

4. For each remaining starter candidate enumerate all nonisomorphic one row and
one column extensions to symmetric matrices satisfying conditions (a) - (d) of

step 2 and step 3.

5. If any of the extensions have zero sum rows and columns, then they are dis-

crepancy matrices and should be copied to the E-better discrepancy matrix
list.

6. If there are no remaining extensions or the extensions are v x v, the search is

over.

7. The remaining extensions form a new list of starter candidates. Return to step

4.

Now we have a (hopefully small) list of E-competitive discrepancy matrices
{As, Agy-- -, Dgn, Ag} and a corresponding list of maximum eigenvalues
{Ua,Ugp, ..., Ugn, Ua}. We are assured that this list is not empty because at min-
imum it will consist of A4. However, it remains to determine if any corresponding
designs can be constructed.

As an aside, if there exists an irregular BIBD setting My(v',V,k’), v’ < v, dis-
crepancy matrices from the E-competitive discrepancy matrix list can potentially
serve as the discrepancy matrix for the E-best design d' € D(v’, ¥, k') provided their
dimension is less than v’ and a design d’ € D(v', ¥, ¥’) having the discrepancy matrix
can be constructed.

We now apply the procedure outlined above to the irregular BIBD setting
D(21,15,5) discussed at the beginning of this chapter. From the A- and D-optimal
design search in section 1.4 it was established that the only designs having 64 < 4 and
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l4 = 2 that exist in the setting have discrepancy matrix D7 or D10 listed in Appendix
A. For our search we will conjecture that a design d € My(v, b, k) having the § = 6
discrepancy matrix I, ® D2 exists, and consequently search for discrepancy matrices
Aj; that are E-better than Ay = D2 having minimum eigenvalue Uz < 1.73205 = Uy;
such a design, if it exists, is E-better than D7 and D10 designs as well as Zhang’s
design of table 1.1. Now, according to conditions (1.32) and (1.33) from Step 1, the
elements of discrepancy matrices for potentially E-better designs must be in the set
{-1,0, 1}. Thus, we will select our starter candidate list by partitioning the potential
E-best discrepancy matrices into three cases according to the number of 1s (hence
-1s) allowed to occur in a row of the discrepancy matrix and then by applying the
element sum condition (1.36) of Step 2. The cases along with the candidate starter

lists described in step two of the search procedure are:

Case 1: Discrepancy matrices with three or more ones in at least one row. Without
loss of generality, we assume the first row (and column) of each starter has at
least three ones. Therefore, Case 1 starters will have dimension four. Since
condition (1.36) requires the sum of the elements below and above the diagonal

to be less than or equal to two, the four nonisomorphic structures are:

(?) (i) (31) (iv)
0 1 1 1 0 1 1 1 0 1. 1 1 0 1 1 1
1 0-1-1 1 0-1-1 1 0-1-1 1 0-1 O
1-1 0-1 1-1 0 0 1-1 0 1 1-1 0 O
1-1-1 0 1-1 0 O 1-1 1 0 1 0 0 O

Case 2: Discrepancy matrices with no more that two ones in the same row and
exactly two ones in at least one row. We assume the first row of each starter in
this case has exactly two ones, and, consequently, each starter is of dimension
three. Then, by condition (1.36), the sum of the elements below and above the

diagonal must be less than or equal to two. The two nonisomorphic structures
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are:
(3) (#)
011 011
1 0-1 100
1-1 0 100

Case 3: Discrepancy matrices with a single one in any row. The only possible
structure clearly is:
01
10
For the first search (Case 1), Step 3 of the procedure that applies (1.38) to each starter
candidate immediately eliminates 1(iii), 1(iv), and 2(ii). Continuing the procedure
with candidates 1(i) and 1(ii) does not result in an E-better discrepancy matrix, and,
therefore, discrepancy matrices having three or more ones in any row are eliminated.
Case 3 results in one discrepancy matrix, matrix D2. The interesting case is 2(i) for
which we will demonstrate the search procedure.
Since Case 2 searches for discrepancy matrices having no more than two 1s (and
two -1s) in any row, for the first extension we require a -1 to be placed in the first

row. There are three possible extensions, and they are:
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-1
Extension max; [5’-_"-32'-] Ug
0 1 1-1
1 0-1 1
(Ble) | _| o0 o 1.15616
-1 10 0
0 1 1-1
1 0-1 0
(E1) | _7 o0 o 1.5557
-1 0 0
0 1 1-1
(Ble) 1 175 1 11989
-1 1 1 0

Continuing the process using (E1lc) as a starter does not lead to any E-better discrep-
ancy matrices; however, each of (Ela) and (E1b) ultimately yields one discrepancy
matrix that is E-better than D2. Since the E-best discrepancy matrix results from
using (Ela) as a starter, we continue the demonstration by extending matrix (Ela)
and, since the first row can not receive any 1s but needs two -1s in order to fulfill the
zero-sum row requirement of a discrepancy matrix, without loss of generality, we will
require a -1 to be placed in the first row of each extension. Two admissible matrices

result, and they are:
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. v—z3 -t
Extension max; [-—"-'-] Ugi

0 1 1-1-1
1 0-1 1 O

(E2a) 1-1 0 0 1 1.6180
-1 1. 0 0 O
-1 0 1 0 O
0 1 1-1-1
1 0-1 1 O

(E2b) 1-1 0 0 0 1.6411
-1 1 0 0-1
-1 0 0-1 0

Attempts to extend matrix (E2b) with the requirement that a 1 be placed in the
fifth row results in no admissible matrices. Using matrix (E2a) as a starter and
enumerating all extensions having a -1 in the second row results in two admissible

matrices. The resulting extensions are:

-1
Extension max; [%:] U

0 1 1-1-1 O
1 0-1 1 0Q-1
1-1 0 0 1 O

(E3a) 1 0 1 0 0-1 1.6920
-1 1 0 0 0 1
0-1t 0 1-1 O
0 1 1-1-1 O
1 0-1 1 0-1
1-1 0 0 1-1

(E3b) 1100 0 0 1.6407
-1 0 1 0 0 O
0-1-1 0 0 O

Enumerating all extensions of ( E3b) requiring a 1 to be placed in the sixth row does
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not produce any admissible matrices. The only admissible extension of (E3a) places
a -1 in rows three and four and a 1 in rows five and six and produces the 7 x 7
discrepancy matrix A; having §; = 7 and maximum eigenvalue Uz = Uy. = 1.6920
shown in table 1.14. If a V-BIBD d with w = 5 having this discrepancy matrix
exists, then it will have E-value 5.66160 and be the E-best design in D(15, 21, 5).

Table 1.14: A Discrepancy Matrix With Maximum Eigenvalue 1.6920

0 1. 1-1-1 0 O
1 0-1 1 0-1 O
1-1 0 0 1 0-1
-1 1 0 0 0 1-1
-1 01 0 0-1 1
0-1 0 1-1 0 1
0 0-1-1 1 1 O

As mentioned above, using (E1b) as a starter also produces a discrepancy matrix.
It is the 9 x 9 matrix shown in table 1.15 having discrepancy 6 and maximum
eigenvalue 1.7321. This matrix is E-equivalent to the 12 x 12 discrepancy matrix

I, ® D2 also having discrepancy 6.

Table 1.15: A Discrepancy Matrix With Maximum Eigenvalue 1.7321

0 1 1-1 0 0-1 0 O
1 0-1 0 0 0 0 O O
1-1 0 0 0 0 0 0 O
-1 0 0 01 1-1 0 O
0 0 01T 0-1 0 0 O
0 0 0 1-1 0 0 0 O
-1 0 0-1 0 0 O 1 1
0 0 00 0 0 1 0-1
0 6 0 0 0 0 1-1 0

The search for the A- and D-optimal design in the previous section enumerated
all nonisomorphic U-BIBDs with w = 7 and w = 6. We can now use these designs to

search for an E-optimal design by searching their extensions to V-BIBDs, requiring
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the finished designs to contain a discrepancy matrix of the form in table 1.14. Doing
so produces an E-optimal design having optimality values:

A-value = 2.33830, D-value = —25.06954, and E-value = 5.66160
The design is shown in table 1.16. The A-, D-, and E-efficiencies for designs with

Table 1.16: An E-optimal Design In D(15, 21, 5)

1 12 45 21 5 1 43 213 413 3 2 21
2 6 3 56 43 9 2 75 6 4 7 810 6 4 7 5 5
3 7 8 6 8 9 711 6 9 811 810121 9 6 8 7 9
4 8 9 710 10 11 12 10 10 10 12 11 12 13 13 13 13 13 13 14
5 911 11 12 12 12 13 14 15 15 15 14 14 14 15 14 15 15 14 15

discrepancy matrices D7 and D10, and for Zhang’s design from table 1.1 with respect
to the E-optimal design with the discrepancy matrix in table 1.14 are provided in
table 1.17.

Table 1.17: A-, D-, and E-efficiencies Relative To An E-optimal Design

D7 DI0  Zhang
A-efficiency | 1.00085 1.00083 1.00021
D-efficiency | 1.00620 1.00613 1.00172
E-efficiency | 0.98912 0.97242 0.97324

We have calculated the @p,-values of designs having discrepancy matrix D7 (that
is, A- and D-optimal designs) and of E-optimal designs for p < 100. From these
we conclude that discrepancy D7 designs are ¢,-better for p < 38, and E-optimal
designs are ¢p-better for all p > 39 (the ¢,-value of E-best designs is less than
1/5.6 = 0.17857 when p = 100).
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CHAPTER 11

RESOLVABLE DESIGNS WITH TWO BLOCKS PER
REPLICATE: GENERAL THEORY

2.1 Introduction

When an incomplete block design is used, it is sometimes necessary to conduct the
experiment in stages. For example, consider an industrial experiment to compare the
effect of nine, say, combinations of materials used to manufacture an airplane part
on the overall weight and strength of the part. Suppose the company conducting the
experiment has two machines that manufacture the part, one machine can produce
five parts at a time, and the other four. The experiment then consists of a series of
“runs” in which each material combination is used one time. Moreover, suppose the
machines frequently break down, and, as a result, it may not be possible to complete
the desired number of runs. The experimenter is interested in knowing the allocation
of the material combinations to the machines in each of the runs that will provide the
best weight/strength estimates and comparisons. There are many other examples of
similar experimental designs in agricultural trials, see Patterson and Silvey (1980),
for example. These types of experiments fall into the category of resolvable block
designs and are the topic of this remainder of this manuscript.

A resolvable block design setting D(v,r; k1, k2, - - . , k) with treatment replication
r consists of r sets of blocks of sizes k;,k,...,k,, where 3 k; = v. A resolvable
design is an assignment of v treatments to the b = rs blocks in such a way that

each treatment occurs once in each set, which is consequently called a replicate.
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An example of a resolvable design in D(9, 4;5,4) that can be used for the airplane
part experiment described above is shown in table 2.18 with the blocks written as
columns. Later we will prove that this design is optimal with respect to many useful

optimality criteria.

Table 2.18: A Resolvable Design In D(9, 4; 4, 5)

16 14 12 13
27125 43 25
3 8 3 8 58 | 47
49 69 6 9 69
) 7 7 8

The origin of the concept of resolvability dates to the literature of the 19th cen-
tury, for example, “Kirkman's schoolgirl problem” (Kirkman, 1850). A paper by
Preece (1982) is an excellent source for many historical references of resolvable de-
signs. Yates provided the first systematic study of resolvable designs when he in-
troduced square lattice designs (1936, 1940), and the terms “resolvable design” and
“affine resolvable” were introduced by Bose (1942). Yates’ lattice designs were ex-
tended to rectangular lattices by Harshbarger (1946, 1949). Williams (1975) and
Patterson and Williams (1976) introduced «-designs. Bailey, Monod, and Morgan
(1995) discuss a class of designs that were introduced by Bose (1942) called affine
resolvable designs. In that paper they provide constructions by using orthogonal ar-
rays which were introduced by Rao (1947). A book by John and Williams (1995) and
a manuscript by Morgan (1996) provide excellent summaries of these major classes
of resolvable designs with references.

Virtually all of the references listed above describe design settings having equal
block sizes; not much is known about resolvable designs with unequal block sizes.
Two references for such such designs are Patterson and Williams (1976) and Kageyama
(1988). Our treatment of resolvable designs will allow for unequal block sizes.
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Cheng and Bailey (1991) have shown that square lattice designs are A-, D-, and
E-optimal among the class of binary, equireplicate designs, and Bailey, Monod, and
Morgan (1995) proved that affine-resolvable designs are optimal with respect to many
optimality criteria, including A-, D-, and E-optimality, using Schur-optimality. Our
concern will be A-, E-, Schur-, and type-1 optimality of resolvable designs.

We will restrict our discussion to the subclass of resolvable designs having s = 2
blocks per replicate in this document; however, the theoretical framework introduced
here can be extended (perhaps with considerable difficulty) to settings having s > 2
blocks per replicate. We will leave that investigation for future work. The total
number of blocks will be b = 2r. The sizes of the two blocks in each replicate may be
unequal but will be the same for all replications. The size of the first block of each
replicate will be denoted by k,, the size of the second block by k,, and, without loss
of generality, we will assume k; > k». Then v = k; + k,, and the block sizes vector
is k = 1 ® (k;, k2)T where 1 is the r x 1 vector of 1s and ® denotes the Kronecker
product. The general setup is pictured in figure 2.2. The number of treatments v
and the block sizes will be arbitrary.

Certain classes of optimal resolvable designs with s = 2 and » > v can be con-
structed from Balanced Incomplete Block Designs. Suppose D(v,b,k) is a BIBD
setting, and let d € D be a BIBD. It is well known that d is universally optimal
(Kiefer, 1975). Let S = {1,2,...,v} be the set containing all of the available treat-
ments for the setting D. A new design, d, also having b blocks, can be obtained
from d by taking each of the b blocks of d to be the complement of the corresponding
blocks of d. That is, if b; and b; are the ith blocks of respectively d and d, then
b; = S\bi, t =1,2,...,b. Design d is called the complement or complementary de-
sign of d; it is a BIBD With parameters t = v, b=bk=v—k, F = b—r, and
A =b—2r + A, and are therefore universally optimal (Street and Street, 1987, page

45). Since b; Ub; = S for each i, the design d* = dUd is a resolvable design with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3

k2 ka ko
k 1 k 1 k 1

Figure 2.2: Resolvable Design With s = 2, Arbitrary r, and k; > k;

v* = v treatments in b* = 2b blocks divided into r* = b replicates each containing
two blocks of sizes k{ = k and k3 = v — k. It follows from Fisher’s inequality that

b* > 2v, or r* > v. Furthermore, the information matrix for d*, which is

Co = Cy+Cy = 22=2) (r- %J) , (2.40)

v—1
is completely symmetric and of maximal trace, and, therefore, by Kiefer’s result
(1975), d* is universally optimal.
For example, a design d in the BIBD setting D(7,7,4) having r =4 and A = 2

with the blocks written as columns is

1111223
223434414
3556655
4 677776

The complementary design d € D(7,7,3) having 7 =3 and A =1is

o wn
~ & W
(= I
[JARN V- ]
UV b
(= I JC I

1
2
7

T
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and the universally optimal resolvable design d* = duUd i
15 13 12 12 21 21 31
26 2 4 34 4 3 3 4 43 4 2
37 97 96 593 6 5 5 6 9 7 (2.41)
s |s |7 |7 |7 |7 |

Despite the elegance of constructing resolvable designs using BIBDs and their
complements, and the potential for generalizing this technique to irregular BIBD
settings or to settings that do not satisfy the necessary conditions for a BIBD by
applying some of the ideas of Chapter I or from Morgan and Srivastav (2000), our
discussion of resolvable block designs will not utilize this approach. Our concern
will be resolvable designs with a small number of replications, and the number of
replications in designs constructed using the procedure described above require r > v
which is a relatively large number of replications. As a result, our optimality analysis
will take the more traditional approach of directly working with the information

matrix for various design settings. We will make the requirement that v > b, that is

r<

wie

, for reasons that will be apparent shortly. For the remainder of this chapter
D(v,r; ky, k2) will denote the subclass of binary, connected, and equireplicate block
designs that are resolvable and satisfy the conditions described above.

A design d € D has information matrix
Ca=1I—-Nyjk™ S NT (2.42)

where [ is the identity matrix of order v, k? is the b x b diagonal matrix whose
diagonal elements are the elements of k, k¢ is the inverse of k%, and Ny is the v x b
incidence matrix. Of concern to us is identifying and constructing the A- and E-
optimal designs d € D for various choices of r, v and (k;, k2), requiring calculation of
the eigenvalues of the information matrix Cy. This task is simplified by the following
manipulation. If the treatments and blocks of design d € D are interchanged so
that treatment ¢ in block j; becomes treatment j in block i, then we obtain a design

having incidence matrix N7 that places b treatments into v blocks of equal size r
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with treatment replication vector k = 1 ® (k,, k2)T. This design is called the dual of

d and has information matrix
5 1
Cdual =k’ - -1: Nd Ny. (243)

The (j, 7')th element of the concurrence matrix NJ Ny of the dual design of d indicates
the number of treatments simultaneously occurring in blocks j and j’, that is, the
number of block j and j’ block concurrences, of the corresponding d € D. The
elements of N V4 are referred to as block concurrence counts.

If we multiply Cy by 1, and if we right and left multiply Cyua by k™%/2, equations
(2.42) and (2.43) become

1 1
=Ca=1I-= N4k S NT = C; (2.44)

and

1
k™2 Cyym k™2 =T — . k™2 NT Nyk™972 = C3 (2.45)

where the b x b matrix k=2 is the inverse of k%2, which is the diagonal matrix
having the elements of vk = 1 ® (v, Vk2)” on the diagonal. Define the v x b

matrix By = N;k~%/2 and substitute into (2.44) and (2.45) to obtain
- 1 T
Ci=1--BuBj (2.46)

and

1
Ciw =1 -~ B}Ba. (2.47)

Suppose a;, a, . .., ap are the eigenvalues of B} By, then, since the nonzero eigen-
values of ByB] and BJ By are identical, the eigenvalues of ByBY (for v > b) are
@1,@2,-.-,a5 and v — b copies of 0. Note that B}B;k'/? = rk!/?; that is, a; = r
for some i, say i = b. Thus, Cg,, has b — 1 nonzero eigenvalues (1 — la;), (1 —
La,),...,(1—1as1) and one eigenvalue equal to 0, and C] has b—1 nonzero eigenval-

ues (1—1a;), (1-1az),...,(1~1as—;), one eigenvalue equal to 0, and v—b eigenvalues
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equal to 1. It follows that the eigenvalues of Cy are (r — a,), (r — az2),-..,(r — ap-1),
0, and v — b copies of r. Therefore, an eigenvalue-based optimality investigation
of designs in D(v, b; k1, k2) can be performed by restricting our efforts to studying
the eigenvalues of Cj, - Since we will be investigating design settings with a fixed
number of blocks b but for a varying number of treatments v, the dimension of Cyya
will remain constant for all v. Furthermore, working with Cg4ua requires us to focus
on block concurrences in the formation of N7 N;. This approach will significantly
simplify our search for optimal designs in D.
Define the symmetric matrix Ay = BfBy = k™ %2NJN;k~%2. Then Cj, =
I - %Ad If (a1,x1), (a2,x2),-..,(as,Xp) are the eigenvalue/vector pairs of A4, its
spectral decomposition is
A=Y axxd, (2.48)

=1
—_ = : ; ; 12 _ 1/2 k!/2
xix; = 1, and x{x; = 0 for ¢ # j. Since Aqk}? = rk'/2, then (r,m)
is one of the eigenvalue/vector pairs, the bth pair say. Note that this eigenvalue
corresponds to the eigenvalue equal to zero that is common to Cyyar and Cy4. The
bth term of (2.48) is then

k'2(kV3)T 1 Jef R VEikz
(k'/2)T kY2~ Ky + ko vkika  ka

where J is a r x r matrix of 1s. Subtracting (2.49) from (2.48) yields the new matrix

apXpX; =T (2.49)

o g, 1 ko VER )] S, T
si=a- e (em Ve )| =Eext o)

Clearly, (@i, x;), 1 < i < b — 1 are eigenvalue/vector pairs for A3, and for the eigen-
vector x,, A} has an eigenvalue of 0. Furthermore, (a;, x;) is an eigenvalue/vector of
Aj if and only if (1 — la;, x;) is an eigenvalue/vector pair of Cj if and only if r — a;
is an eigenvalue of Cy. Therefore, we can obtain all the eigenvalue-based optimality
information for any design d € D using equation (2.50) provided we can construct

N7 Ny for an arbitrary d € D in order to obtain an explicit expression for Aj.
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We will construct the concurrence matrix for a dual design N7 Ny by first observ-
ing the block concurrences for the blocks of two arbitrary replicates, n and n’ say, of a
design d € D. Replication n, 1 < n < r, contains blocks 2n — 1 and 2n which will be
denoted by bs,—; and bs,, respectively. Denote the by, _; and bay 1 block concurrence
counts by ¢, and, without loss of generality, assume 1 < n < n’ < r. The remain-
ing k; — @nns treatments in by, are also in bo,. If the k; treatments in by,_; are
labeled 1,2, ..., k; and the k; treatments in by, are labeled k) +1,k; +2,...,k; + ks,
then, since these labels are arbitrary, we can assume treatments 1,2,..., ¢, are in
ban—1 and bay_1, and treatments ky+1, k1 +2, . .., 2ky — @, are in bo, and bonr—;. Now,
the remaining k) —¢n,’ treatments in b,,_; that are not in b2,/ _;, which are treatments
Oant + 1, O +2, . .., ky, must also be in bay, and the kp — k) + P treatments in by,
that are not in bap-;, which are treatments 2k; — @pnr + 1,251 — Opnr + 2, . .., ky + ko,

are in b,,y. Refer to figure 2.3 below to see the treatment placements. Thus, once

replication n replication n’
ban-1 bon bans -1 bons
1 ki +1 1 Gnnr + 1
2 : 2
2k1 — énn : Kk
P’ 2k1-Gun +1 Prn? 2k) -G +1
P + 1 5 ki +1
ki + k2 : ki + ks
ky 2k; — Gnne

Figure 2.3: Replication n and n’ Block Concurrences
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the ban—; and boy—; and the by, and bop—; block concurrences are chosen, all of
the remaining replication n and n’ block concurrences are prescribed; moreover, the
block concurrence counts for each pair of blocks is determined once ¢, is chosen.
The intersection of rows 2n — 1 and 2n of N7 with columns 2n’ — 1 and 2n’ of
Ny in NI N4, which makes up the submatrix of N3Ny corresponding to the block

concurrence counts for the blocks in replications n and »’, is

&, = ¢nn’ kl - ¢nn’
n kl - ¢nn’ k2 - kl + ¢nn’ ’

Note that, since n and n’ are arbitrary, the block concurrence submatrix for any two

replications will have the same structure, and when n = n’

kh O
@nn=(01 kz)

Therefore, NJ Ny is

(kv 0 o2 ky - ¢12 P13 ki—¢s ... o ki — 61
0 ka k1 =12 ka—ki1+d12 ki — 12 ko —Ki+ 12 ... ki — &1 k2 — kL + 0y,
ky 0 P23 ki — ¢o3 Par ki — ¢ar
0 k2 ki — @23 k2 — ky + d23 ki — éar ka— ki + 0o
ky 0 @3 ki — ¢3¢
0 ks ki — ¢3r ka2 — k1 + &3
k, 0

\ 0 k2 ),

Which may be written

<§11 Q12 e er
& &
NTN; = 2 T (2.51)
®.,

Clearly block concurrences will be constrained by a particular choice of d € D.
The question is, what are the admissible block concurrences and block concurrence
counts? In particular, what range of values can ¢, n < n’ assume? First consider

the block concurrences for blocks b; and b, of replication one with blocks by,r_; and
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bayns of replication n', 1 < n’ < r. When n’ > 1, the b; and bs_; block concurrence
count ¢ must be less than or equal to k;, and the k; — ¢y, block concurrences b,
has with ba,_; must be less than or equal to k;. Therefore, ky — k2 < ¢ < ky for
all 1 < n’ <r,and when n’ =1, ¢1nr = k.

Now we will investigate the replication two, containing blocks b3 and b4, and repli-
cation n’ (2 < n’ < r) block concurrences. The ¢, treatments common to blocks b3
and bg,s—; can be divided into two groups: treatments from b; and treatments from
by. The b3 and bgyp—; block concurrences among treatments from b, must be in b,,
b3, and ban—1, and, consequently are among the ¢;, treatments from b3 that are in b,
and the ¢, treatments from bs,/_; that are in b,. Thus, the number of b; and bo,r—;
block concurrences with the treatments from 4, can be no larger than min{¢;2, $1n}.
Similarly, the b3 and bo,r_; block concurrences among treatments from b2 must be in
ba, b3, and boyr_;, and are among the k; — @, treatments from b3 that are in b, and the
ki — d1n treatments from bo,r—; that are in by. Thus, the number of b3 and by, —_; block
concurrences with the treatments in b, can be no larger than min{k; — @12, k1 — d1n },
and ¢onr < min{érz, g1} + min{ks — 12, k1 — b1} Now, if ¢12 + d1ar > k1 then
b3 and by —; must have at least (12 + @) — k1 block concurrences from b;, and if
(k1 — @12) + (k1 — d1nr) > ko then b3 and bo,r—; must have at least 2k; — (d12+ P1nr) — k2
block concurrences from b,. Note that if @12+ @10 < ky or (ky —12) + (k1 — 1) < ko,
then b3 and bo,/; need not have any block concurrences among the treatments in b, or
ba, respectively. Therefore max{0, (¢12+@1n’) —k1 } +max{0, 2k, — (P12 + 1) —k2} <
G2 < min{¢ra, $rov} + min{ky — 12, k1 — 1}, 2< ' < 7.

We will now generalize the previous discussion to the replication n with repli-
cation n’, 1 < n < n’ < r, block concurrences. As in the replication two and
n' case above, the @,, ban_1 and bon—_; block concurrences can be divided into
two groups, but now the groups are made up of treatments from bo;_; and treat-

ments from by, for arbitrary 1 < I < n. For each [ and for the same reasons
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outlined above in the replication two block concurrence argument replacing b, with
by—1 and by with by, ¢nnr < min{gin, diw} + min{k; — Gin, k1 — b1}, and Gppr >
max{0, ($in + Pin) — k1 } + max{0, 2k; — ($tn + dtn') —k2}. Then for2<n <n' <,
max; <i<n {max{0, (din + dinr) — k1} + max{0,2k; — (dtn + Gtnr) — k2}} < Innr and
Py < miny<t<n {min{Pin, Sin } + min{ky — Pin, k1 — d1ar }}-

In summary, the block concurrence count for the first block of replication n, by,_1,

and the first block of replication n’, by,,; must satisfy

ki — k2 < v < Ky, (2.52)

when n =1 and

Imax {max{0, (¢in + dinr) — k1 } + max{0, 2k; — (Gin + din’) — k2}}

S ¢nn' S min {min{¢lna ¢ln’} + min{kl - ¢lm kl - ¢ln’}}r (2'53)

1<i<n

when 2 < n < n’ < r. The remaining block concurrence counts for each pair of blocks
of any two replications n and n’ which are, k; — @nnr (twice) and ky — &y + @, are
expressions involving only the ¢, s and block sizes k; and &, and their constraints
follow from (2.52) and (2.53). Therefore, the bo,—; and ey —; block concurrence,
that is, the block concurrence for the first block of replications n with the first block
of replication n’, once chosen determine a bound for the block concurrence counts
for the remaining blocks of replications n and n’. We will assume the ¢,,s satisfy
(2.52) and (2.53).

Now that we have derived N7 Ny for an arbitrary resolvable design d € D, we
are ready to write an explicit expression for A4 = k=92 N7 N;sk~%/2 using (2.51). By

rewriting b x b, b = 2r, diagonal matrix k=%2 as

1
I®( 0 )=’®"'m
2
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it follows that

( LT S T R T e O T e
5_6/2§22R_5/2 n—&/Zern—Jﬂ
A =
K K-9/2 q,;f K972
f @5 giz A ST
L Q.
= # 1 (2.54)
\ %,
where ®; = I, the 2 x 2 identity matrix, and
( Sant kr-ooy
- _ ky ]
nn’ — ki—o, .» ka—k 3 ’ (2‘55)
TR e )
for 1 <n<n' <r. A7 in (2.50) can now be easily obtained by subtracting
1 k, Vkiks
ky + k2 ( Vkik2 k2 (2:56)
from each @, in (2.54). Since subtracting (2.56) from ®;,, = I yields
1 ko —Vkiko
k, + k2 —Vkiks ky !
and subtracting (2.56) from &, given in (2.55) yields
Bnne (k1 + ko) — k3 ( k2 —~Vkiks
klkg(kl + kz) - klk2 kl '
then
kikz #12 012 --- @i
k k ¢t -
e 1| & Ele( w_ v
(k1 + kz)k[kz - - k1k2 kl

kikz
where

(ﬁ:m: = ¢nn' (kl “+ kz) - k%.
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ka —Vkiks
—vkik2 k,
eigenvalues of Aj are r copies of 0 and k—“k; times the r eigenvalues of

Since the eigenvalues of ( ) are 0 and k; + k3, then the b = 2r

kiky @52 13 --- o1,
kiky ¢35 o3

Md = klkz ¢;r . (2.57)
ki1ka

Suppose the eigenvalue of My are e;,e2,...,e.. Then the eigenvalues of A4 are r,

r—1 copies of 0, and (ﬁt, k—f{;, A Ffi;); the eigenvalues of C3,, are 0, r —1 copies
of 1, and (I—Téﬁrl'fﬁ""'l“r_gﬁ'); and the eigenvalues of Cyare 0, v—r—1

. [
copies of r, and (r — P

r— %,....,7 — ). Therefore, an eigenvalue-based
optimality analysis of resolvable designs d € D(v,r; k;, k2) can focus on the matrix
My for the corresponding set of block concurrence counts {@12, 913, P23, -- -, Prr-1}-
We will use this fact in the following sections in which we discuss resolvable design

settings for particular values of r.

2.2 General Results

Let D(v,r;k;, k2) be a resolvable design setting with s = 2. Given values of k;, k,,
and r, an experimenter is concerned with knowing the assignment of the treatments
to the blocks that will yield the best possible information about the effect of the
v = ky + k2 treatments, that is, they want to know the optimal design d € D. As
we saw in the introduction, there are many different ways in which a design d € D
can be considered optimal, and for each type of optimality to be achieved, a specific
optimality criteria must be satisfied. In this chapter we will primarily investigate A-
and E-optimality, but will often find much more.

Since designs in D are differentiated from one another by their block concurrences

{¢12, P13, P23, - - -, Orr—1}, Our optimality investigation will focus on describing the
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structure of the matrix given by (2.57),which is
kik2 o2 &3 --- &5,
bk gn o
M= kik2 ?3,
kiks
where

r‘m’ = ¢nn’(k1 + kz) - k%,

for a design d € D that is optimal with respect to one or more eigenvalue optimality
criterion. For convenience, we will refer to the matrix My as the Optimality Matriz
for the design d.

Suppose the eigenvalues of an optimality matrix M, are e; > es > ... > e,, then
tr My = 3.;_, e; = rkk» for any set of treatment concurrences, and the eigenvalues
of Cy4, which are 0 < zg; < 220 < --- < zgy-1, in terms of the eigenvalues of My, are

0 and
o« i
zﬁ={r‘—“m= fl1<i<r

r fr-1<i<uv-1. (2.58)

Now, if M is the class of all optimality matrices for designs in D, the A-optimal

design d € D with optimality matrix My, will have block concurrences that minimize

B
kik2 ’

i=1

over My € M, and the E-optimal design will maximize the minimum eigenvalue of

()
kika/

over My € M or, equivalently, minimize e; over My € M. The Type-1 optimal

Cyq, that is, maximize

design d € D will be the design that minimizes

i f (T B kf;;?z) (2.59)

i=1

over My € M for all type-1 criteria f.
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The following definitions from Inequalities: Theory of Majorization and Its Ap-
plications by Albert W. Marshall and Ingram Olkin (1979) will prove to be extremely
useful for determining when a design d € D satisfies (2.59). After stating the defi-
nitions, we state a theorem, and, afterward, review some of their consequences that

provide the link between the definition and Type-1 optimality.

Definition 2.2.1 Let {z;}%, and {y;}, be nonincreasing sequences of real num-
berssuch that 30, z; = 30 . If
t !
Sz <Yy, foralll<i<n,
i=1 =1

or, equivalently,
n—-l+1 n—i+1

S x> Y y, foralll<i<n
=n i=n

then {y;}%, is said to majorize {z;}1 ;.

Definitions 2.2.2 Suppose the eigenvalues, written in nonincreasing order, of the
optimality matrices for designs d and d* in D(v,r;ky, k2) are {ej,ez,...,e.} and

{ef.€5,... e}, respectively.

1. If {e;, €2,...,e.} majorizes {ej,e3,...,€;}, and the two vectors are not identi-
cal, then design d* is said to be Schur-better than design d, and d is said to be

Schur-inferior to d°.
2. Design d* is defined to be Schur-optimal if it is Schur-better than every other

design in D.

The following theorem is due to Hardy, Littlewood, and Pdlya and can be found
in Marshall and Olkin (1979, p. 108). It shows why the majorization relationship

and Schur-optimality are important.
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Theorem 2.2.1 Let {z;}2, and {y;}%, be sequences of real numbers such that
rZTi =X, ¥i- For all continuous real-valued convez functions f,
n n
D_f(=) <Y flw)
i=1 =1

if and only if {y;}, majorizes {z;}%,.

Corollary 2.2.2 Let d and d* be in D(v,7;ky,k2). If d° is Schur-better than d, then
d® s superior to d with respect to every type-1 optimality criterion. Thus Schur-

optimality implies optimality with respect to every type-1 criterion.

Let {z;}*, and {y}", be two nonincreasing sequences of real numbers such that
1 Ti = L, ¥i- The following facts about majorization will be used extensively

in the subsequent sections.

Fact I: 1. f £, > z2 = z3 = --- =z, and y; > 71, then {y;}%, majorizes {z;},.
2. fzy =22 = -+ = Tny > Zn and T, > Yn, then {y}, majorizes
{zi ?:1'

Fact II: Let a and b be real numbers. If {y;}%, majorizes {z;}; then {a — ¥}7

majorizes {a — 3 }5L,.

Fact ITI: Let {a}™, be a sequence of real numbers. If {y;}*, majorizes {z;}
1 1

then {{x:}%, U {a},} majorizes {{x:}2, U {a}2,}.
2.3 Equal Concurrences

A resolvable design d € D(v, r; k;, k2) having block concurrence counts ¢ = @3 =
@3 = - = @p_1, = 0 for some k; — ka < 8 < k; is called an equal concurrence
design with block concurrences equal to 8, or ECD(8). The optimality matrix (2.57)

for an ECD(8} may be written in the following form

My = {kikz — [6(ky + k2) — KZ]}H + [0(ky + k2) — KZ]J, (2.60)
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where [ is the r X r identity matrix, and J is the r x r matrix of ones. The eigenvalues

of My are r — 1 copies of
kika + [k — 0(ky + k2)] (2.61)
and one copy of

kikz — (r — 1)[k} — 8(ky + k2)]- (2.62)

Theorem 2.3.1 Suppose D(v,r; ki, k2) is a resolvable design setting for which (k\+

k2) | k3, and define
6" = K .
ky + k2

Then ECD(6°)s in D are Schur-optimal whenever they ezist.

Proof Let D(v,r;k;, k2) be a resolvable design setting and suppose (k; + k») | k2.
Since

k2
ki —ky < 1 _ <k
1 2_k1+k2—1

then § = 6° is an admissible value for the common treatment concurrences of an
ECD(@) in D. Since eigenvalues of the optimality matrix of an ECD(8* ), which are
kiky — (r — 1)[k2 — 8°(ky + k2)] = kik2 + [k2 — 6°(k1 + k2)] = kyk2, are identical for
6 = 6*, then they are majorized by the eigenvalues of every competing design in D
that is not an ECD(8*). Therefore, ECD(6* )s are Schur-optimal. O

Theorem 2.3.1 generalizes corollary 3.4 of Bailey, Monod, and Morgan (1995)
when s = 2, which established that affine-resolvable designs are Schur-optimal. We
require only that the first blocks of each replicate have the same block concurrence,
and we allow for unequal block sizes. When k; = k» and 2| k;, our designs are
affine-resolvable designs.

Example Consider the setting D(9, 4;6,3). Since (k; + k;) | k2, then 8" = 4, and
if an ECD(4) exists it is Schur-optimal. In fact, an ECD(4) does exist and is shown
in table 2.19.
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Table 2.19: A Schur-optimal ECD(4) in D(9, 4;6, 3)

[

w 00 =

=2 I

0 W
(3

OV W
O =~ = WD =
00~ O oV K-
00 3 M O W

Is some ECD Schur-optimal when (k; + k») f 2?7 If not, what are the optimal
classes of designs for the various optimality criteria? Our subsequent discussion will
first focus on optimal ECDs when (k; + k2) f k2, and then will be extended to include
designs that are not ECDs. We will leave the existence question for later.

Define the block concurrence parameter

6 =int (klsz) . (2.63)
Note that
0< L -4§<1
“ki+ ke !
or, with v = k; + ka2,
0<rv<vw

where v, the block irregularity, is defined by
v = ki ~v8.

The irregularity is zero if and only if (k; + k2) | 3.

Relative to 8, designs in D(v, r; ky, k2) fall into four categories:
1. ECD(8)s having 8 = 8, or ECD(d)s.
2. ECD(6)s having § =8 + 1, or ECD(§ + 1)s.

3. Designs having ¢ € {8, §+1} forall 1 <i # ¢ < r, with at least one ¢;y =6

and at least one ¢;» =9 +1,1<j#j <r,andi#jori #j'.
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4. Designs having ¢ < or ¢y >+ 1foratleastone 1l <i## <r.

Designs falling into the first category are ECD(8* )s when (k;+k,) | k. Designs falling
into the third or fourth categories will be referred to as nearly equal concurrence
designs or NECDs, and unegual concurrence designs, or UECDs, respectively. We
will first investigate ECD(@)s and ECD(@ + 1)s.

Define the block concurrence discrepancy matriz Ay = (d4;r), where

6'- _{ ¢ii'—0- ifi;éll
dii’ — 0

ifi=1.

For each 1 < i # i/ < r, the off-diagonal elements of A4, d4;r, will be referred to as
block concurrence discrepancies. The block concurrence discrepancies and the block
concurrence discrepancy matrix are denoted using the same notation as pairwise
concurrence discrepancies and the discrepancy matrix in Chapter 1. They both
measure the total departure from symmetry of a design, but they are not the same.
In Chapter 1, symmetry implies treatment concurrence balance; however, for the
remainder of our discussion, symmetry will refer to block concurrence balance.

Define the symbol p = k;k» for the product of the block sizes. The optimality

matrix (2.57) can now be written
My =pl —~v(J-1)+vAq (2.64)
Note that for ECD(8)s, since ¢;» = § foreach 1 <i# i <rand Ay =0,
My=@+)—-~J
and the eigenvalues of My are r — 1 copies of

&LY)=p+7

and one copy of

&) =p—(r—1),
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and &(7) > &(7). For ECD(@ +1)s, ¢iw =8+ 1 and Ag = (J - I),
My=[p~(—7+(v—v)J
and the eigenvalues of My are r — 1 copies of
Gly-v)=p-(v-7)

and one copy of
Ly—v)=p+(r—1)(v-1),

and &(7 —v) 2 &i(y — v)-
The following theorem due to Cheng (1978, Theorem 2.3) will be used to establish
¢ s-optimality for certain classes of ECD(f)s.

Theorem 2.3.2 If there exists a design d € M(v, b, k) such that
(i) C; has two distinct eigenvalues zjy = zp = ... = 23,2 < 23,_1-
(ii) d minimizes SU-} 25 over My,

then d is ¢¢-optimal for all type-1 criteria with lim,_¢+ f(z) = oo.

Theorem 2.3.3 When 0 < v < £, ECD(8)s minimize tr C3, uniquely so if v < -3
Consequently, ECD(8)s are ¢;-optimal in D(v,r;ky, kz) for all type-1 criteria with
lim,_,o+ f(z) = 00.

Proof Let M, be the optimality matrix for d € D(v, r; k1, k2), and recall that tr

My = pr and (My)iy = (vogr — 7). If ey > e32 > --- > e, > 0 are the eigenvalues of

Mdthen
. \2
tr C2 = (v—r—l)rz-f-Z(r—e—')
i=1 p
. 27 1
= (v—1)r* - Ztr My+ —tr M3
( ) > a+ Str My

= (v=-3)y?+r+ %Zz (véar — ¥)?,

i<
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so that tr C? is minimized by designs that minimize 3~ 3 ;i (vdg# — ). Since 4w
is integral, the unique minimum of tr C; on 0 < v < § is at 8z = 0. For v = §,
any values é4y € {0, 1} minimize tr C3.

The eigenvalues of the information matrix for a design in D(v,r; k;, k) are 0 <
Zyy < zgp < --- < 2z and v — r — 1 copies of r, and Y7, z = r(r — 1) is constant
for all designs in D. For ECD(@)s, zgs =T — e—‘f,l)-, 1<i<r-1and zd,=r—§l£12,
and when 0 < v < % they minimize 3°7_, z%. Thus these eigenvalues satisfy the

conditions of Theorem 2.3.2. O

Corollary 2.3.4 When v = 3, if the eigenvalues of the information matriz for a
NECD are identical to the eigenvalues of an ECD(B), then the NECD is ¢;-optimal
in D and ¢s-equivalent to ECD(8)s for all type-1 criteria with im__ ¢+ f(z) = oo.

In the remainder of this document we will take the phrase “type-1 optimal” to
mean ¢g-optimal for all type-1 criteria f with lim, ¢+ f(z) = oo.
Now define the F-criterion as the value of the largest eigenvalue of C, that is not

constrained by the setting to equal r, that is,

or(Ca) = z4r-

Although not a member of the type-1 family, this criterion can be important in
establishing Schur-optimality. Since z4 = r — 5;, minimizing ¢g(Cy) over D is
equivalent to maximizing e, over M. Here is another easily established fact about

ECD()s.

Theorem 2.3.5 An ECD(8) is Schur-better than a competitor with a different set
of eigenvalues if and only if it is F-equivalent or better than that competitor. Conse-
quently, ECD(8)s are Schur-optimal if and only if they are F-optimal.

Proof Letd € D(v,b;k;, k2) be an ECD(). Then the eigenvalues of the optimality
matrix for d are r — 1 copies of &;(7y) and one copy of &(7), and & () = &(7)-
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Suppose the optimality matrix for a competing design d € D that is not an ECD(8)
has eigenvalues e; > e; > --- > e,. Now, the ECD(@) is F-equivalent or better
than d if and only if e, < &(v), which is a necessary and sufficient condition for
the eigenvalues of the information matrix for d to majorize the eigenvalues of the

information matrix for the ECD@) . O

A result of similar flavor holds for ECD(# + 1)s using the E-criterion. As pointed
out by Kunert (1985, page 385), facts 1-3 of section 2.2 says that ECD(d + 1)s are

Schur-best whenever they are E-optimal. We state this as:

Theorem 2.3.6 An ECD(8 + 1) is Schur-better than a competitor with a different
set of eigenvalues if and only if it is E-equivalent or better than that competitor.
Consequently, ECD(8 + 1)s are Schur-optimal if and only if they are E-optimal.

Proof Let d° € D(v,b;k,k;) be an ECD(@ + 1). Then the eigenvalues of the
optimality matrix for d* are r — 1 copies of &;(v — «y) and one copy of &(v — v), and
&(v —v) > & (v — v). Suppose the optimality matrix for a competing design d € D
that is not an ECD(@ + 1) has eigenvalues e; > e, > --- > e,. Now, the ECD(6+1)
is E-equivalent or better than d if and only if e; > &(v—+), which is a necessary and
sufficient condition for the eigenvalues of the information matrix for d to majorize

the eigenvalues of the information matrix for the ECD(6 +1). O
Corollary 2.3.7 ECD(8)s are Schur-better than ECD(@ + 1)s if and only if

’Y<‘—’U,

-
and ECD(8 + 1)s are Schur-better than ECD(8)s if and only if

r—1

Y2 v.

T

Proof Note that the eigenvalues of ECD(@)s and ECD(8 + 1)s are never identical.
ECD(8)s are F-equivalent or better than ECD(§+ 1)s if and only if & (v —v) < &(7)
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which is equivalent to v > tv. ECD(@+ 1)s are E-equivalent or better than ECD(8)s

if and only if & () > &(v — v) which is equivalent to ¥y < ==2v. O

Corollary 2.3.8 ECD(8)s are E-better than ECD(@ + 1)s if and only if

r—1

¥ < v

and ECD(8)s and ECD(8 + 1)s are E-equivalent when

Lemma 2.3.9 Suppose a design d € D(v,r; k,, k;) has optimality matriz My and
concurrence discrepancy matric Ay = (84w ), and suppose the mazimum eigenvalue

of My is e; and the minimum eigenvalue of My is e.. If 652 < 0 then
e 2p+7—vdnz and e <p—7+viq2.

If 8412 > 0 then
e 2p—v+udsn2 and e < p+7v—véns.

Proof The leading 2 x 2 minor of My, which is Mg, = (p+v—vdn2)l —(y—vdaq12)J,

has eigenvalues

p+vY—vdn2 and p—v+ vigqo.

A Sturmian Separation Theorem (Rao, 1973, page 64) provides the bounds. O

Corollary 2.3.10 Suppose d € D(v, b; ky, k) is a UECD with 64y < —a for at least

one 1 <i#1# <r, and for some integer « > 1. ECD(8)s are Schur-better than d if

TS TSY
and ECD(8 + 1)s are Schur better than d if
r—a-—1
Y2 ———v.

r
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Proof Let d € D be a UECD as described in the lemma and let e, and e, be the
maximum and minimum eigenvalues, respectively, of the optimality matrix for d.
For a proper labeling of the design replications, §512 < —a. Then from lemma 2.3.9,
ey >p+7v—av, and p—7v+av > e,. By Theorem 2.3.5, an ECD{8) is Schur-better
than d if &(y) > p—v+va>e,, or

a
r—2

v < v.

By Theorem 2.3.6, an ECD(8+1) is Schur-better than d if e; > p+vy—va > &(y—v),
or
r—a-—1

D> —v.
V= r

O

Corollary 2.3.11 Whenr < 4, all UECDs with 4i» < —1 for some 1 <i# ¢ <r
are Schur-inferior to an ECD, and when r = 5 or 6, UECDs with 64y < —2 for

some 1 < i # i < r are Schur-inferior to an ECD .

Corollary 2.3.12 Suppose d € D(v,b; k1, k2) is a UECD with d4# > a for at least

one 1 <i#i <r, and for some integer « > 2. ECD(@)s are Schur-better than d if

(44
< -
T< 2o,
and ECD( + 1)s are Schur better than d if

r—a-—1
L
Proof Let d € D be a UECD as described in the lemma, and let e; and e, be the
maximum and minimum eigenvalue, respectively, of the optimality matrix for d. For
a proper labeling of the design replications, d42 > a > 2. Then from lemma 2.3.9,
e1 >p—v+av, and p+7 —av > e,. By Theorem 2.3.5, an ECD(8) is Schur-better

than d if &2(7) > p+71—av > e, or
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By Theorem 2.3.6, an ECD(6+1) is Schur-better than d ife; > p—y+av > &(y—v)
or
r—a-—1

> — 0.
T2

a

Corollary 2.3.13 When r < 4, all UECDs with gy > 2 for some 1 <i# ¢ <r
are Schur-inferior to an ECD, and when r = 5 or 6, UECDs with 84+ > 3 for some

1 <1i# i <r are Schur-inferior to an ECD .

Corollaries 2.3.11 and 2.3.13 say that optimal designs in settings D(v, r; k1, k2)
with r < 4 must be an ECD(@) , an ECD(8+1) , or an NECD , and optimal designs in
settings with 7 = 5 or 6 must have block concurrence discrepancies 44 € {—1,0, 1,2}
forall1 <i# ¢ <r. Now we will show that UECDs are always E-inferior to an
ECD(8), and ECD(8)s are E-optimal when 0 < v < &.

Corollary 2.3.14 Forallr > 2 and 0 < v < v, ECD(8)s are E-better than UECDs.

Proof Suppose d € D(v,r;ky,k2) is an UECD, and 64y < —a for some 1 < i #
t' < r and integer @« > 1. Than, for a proper labeling of the design replications,
dair < —a, and €; > p+ v — vég2 > E1(7), and ECD(B)s are E-better than d. Now
suppose 04 > « for some 1 < 7 # ¢ < r and integer a > 2. Then, for a proper

labeling of the design replications, dp2 > « and ey > p — v + véq2 > &(7y) and
ECD(8)s are E-better than d. O

Corollary 2.3.15 When 0 < v < 3, ECD(8)s are E-optimal, uniquely so when

vT# 3

Proof By corollary 2.3.8, ECD(f)s are E-equivalent or better than ECD(@ + 1)s
when v < 3, E-equivalent only when r =2 and v = 3. ECD(8)s are always E-better

than UECDs by corollary 2.3.14. The maximum eigenvalue of the optimality matrix
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for ECD(8)s in any resolvable design setting D(v, ; ky, k2) is £&1(7) = p+-, and with

a proper labeling of the replications, the optimality matrix of a NECD has d52 = 1.

Then, from 2.3.9, 21 > p+ (v — 7). Since p+ (v —7) > &(y) when 0 < v < §, and

p+ (v —7) = &(7) when v = ¥, the result follows. O

The next lemma provides bounds for the maximum and minimum eigenvalues of

the optimality matrix in terms of the eigenvalues derived from the block concurrence

discrepancy matrix for the design.

Lemma 2.3.16 Suppose e; and e, are the marimum and minimum eigenvalues,

respectively, of the optimality matriz My for d € D(v,r;ky, k2). If u, and u, are the

mazimum and minimum eigenvalues of Ag = PTAy4P, where P = (I — 1J) and Ay

is the block concurrence discrepancy matriz, then

provided u, > 0, and

Proof

€
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e1 2 p+7v+vu

e, < p+y+ v,

max xT Myx
xTx=1

max X" [(p + v) —vJ + vA4lx
xTx=1

max xT[(p+ ) —vJ + vAq]x
=T1=0
p+yY+v max xTAgx
=L 1=0
p+ v+ v max x" PTA4Px

xTx=1
xT1=0

p+ 7+ v max x" PTA4Px
xTx=1

p+ v+ vuy.

(2.65)

(2.66)
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Equality (2.66) holds since u; > 0, 1" PTA4P1 =0, and PTA4P1 =01 (that is, 1 is
an eigenvector of PTA4P with eigenvalue 0). Likewise we find

e, = min xTMyx
xTx=1

= min xT[(p+¥)I —vJ + vA4x

xTx=1

< p+vy+v r;nn xT PTA4Px
x4 x=1

xT1=0
= p+7+vu (2.67)

Equality (2.67) is true provided u, < 0, for similar reasons to above. If u, > 0, the
bound still holds, since

tr(M,
e,£¥=p5p+7+vuﬁ0

We end this section with a corollary that provides conditions for when a design

d € D is Schur-inferior to an ECD and for when d is E-inferior to an ECD(4) .

Corollary 2.3.17 Let d € D(v,r; ky, k2) be a resolvable design with optimality ma-
triz My, whose eigenvalues are not identical to those of an ECD(8 ) or an ECD(0-+ 1).

Let u; and u, be the marimum and minimum eigenvalues, respectively, of Ay =

PTA4P, P=(I-1J). If
¥ < —Er':v (2.68)

then ECD(6)s are Schur-better than d. If u; > 0 and

y> (Z‘:—l) v (2.69)

r
then ECD(8 + 1)s are Schur-better than d. Furthermore, if
u; >0 (2.70)

then ECD(8)s are E-better, but not necessarily Schur-better, than d.

Proof The result follows immediately from Theorems 2.3.5 and 2.3.6 and lemma
2.3.16. O
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2.4 Special Cases: (k1 — k2) < 2

In this section we will investigate the three important special cases of k; and k,
being equal or nearly so: that when k; = k,;, that when k; = k; — 1, and that when
k2 = k; — 2. For each case, results that follow immediately from the theory earlier
in this chapter are reported. If we write k; = k; — n, then (k; — k2) < 2 says that
n =20, 1, or 2, and for any n

R __ M _k n
k1+k2 ~2k1—n - 2 4 4(2161-71).

Recall that § is the integer part of (2.71), and v = k2 — v@.

(2.71)

Lemma 2.4.1 When ky = ky, if 2|k, then vy =0, and if 2[ k, then v = 3.

Proof When k; = k», n = 0 and (2.71) becomes M_ — & and the result clearly

k1 +ka 2
follows. O

Corollary 2.4.2 Let k; = k,.
(i) If 2| k; then (ky + k2) | k¥ and ECD(8" )s are Schur-optimal.
(i1) If 2 k, then ECD(8)s are E- and type-1 optimal.

When k; = k2 and v = 2| k;, the resulting design is an affine-resolvable design
since every pair of blocks from different replicates have block concurrence 8* = 52'-
Bailey, Monod, and Morgan (corollary 3.4, 1995) proved that affine-resolvable designs
are Schur-optimal. For 2[ k;, the result is from Theorem 2.3.3 and corollary 2.3.15.
The optimality need not be uniquely so.

Lemma 2.4.3 When ky — ko =1, if 2| ky then vy =%, and if 2f k; then y = 3L

Proof When k; — k; = 1 then n = 1 and the last term on the right hand side of

2 _ 1
(2.71) becomes i@ —n) = 3@k —T)- Then
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and,sincev=2k1—1,4(2k—'i_1—)=§,and

_[% if2|k
”‘{ ot ieofk, -

O

Corollary 2.4.4 Letk, —k, = 1.
(i) If 2| k,, then ¥ <+ < &, and ECD(8)s are E- and type-1 optimal.
(i) If2[ ky, then ¥ <y < 2.

Lemma 2.4.5 When k; —ky =2, if 2|k, theny =k, and if 2/ k, then vy = 1.

Proof When k; — k2 = 2 then n = 2 and the last term on the right hand side of

3 — 1
(2.71) becomes ;mr— = T TES Then

a

Corollary 2.4.6 Let ky — ko, = 2. Then ky > ko > 2 implies k; > 4, and
(i) Ifky =4, theny =%,
(i) If ky =6, then vy = 35—"

(1) If 2|k, and ky > 8, then ¥ <y < 3.

(iv) If2[ ky, then 0 <y < %, and ECD(8)s are E- and type-1 optimal.
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CHAPTER II1

APPLICATION: OPTIMAL RESOLVABLE DESIGNS
WITH UP TO FIVE REPLICATES AND TWO BLOCKS
PER REPLICATE

3.1 Introduction

Optimality in resolvable designs settings D(v,r; ki, k2) for 2 < r < 5 will be investi-
gated in this chapter. As stated in Chapter II, the primary goal is to determine A-
and E-optimal designs, though often we can do much more. If the E-optimal design
is not unique, the Schur-best of the E-optimal designs, or the (E,S)-optimal design
will be identified.

Definition 3.1.1 A design d in a class of designs D is said to be (E,S)-optimal if
(i) d is E-optimal, and
(ii) among all E-optimal designs in D, d is Schur-optimal.

We review some important facts from section 2.3 concerning Schur- and type-1

optimality in D(v, r; k1, k) before commencing our eigenvalue optimality discussion.

1. When (k; + ko) | k2, ECD(8"* )s with

ki

0 =
ki + k2

are Schur-optimal whenever they exist.
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2. When 0 < v < ¥, ECD(8)s with

= int K
- ky + k»

are type-1 and E-optimal, uniquely so when v < 3, whenever they exist.

3. When r < 4, UECDs are Schur-inferior to an ECD(8) or an ECD(§ + 1)

whenever the ECDs exist.

4. When r = 5, UECDs having at least one d4y < —2 or at least one 44 > 3 are

Schur-inferior to an ECD(8) or an ECD(8 + 1) whenever the ECDs exist.

Therefore, in the sequal we will restrict our attention to ECDs and NECDs, when
r < 4, or ECDs, NECDs, and UECDs having —1 < 84 < 2, when r = 5. From fact

2 it follows immediately that

Corollary 3.1.1 When 0 < v < &, ECD(8)s are (E,S)-optimal, uniquely so when

v

By lemma 2.3.15, when ¥ = %, ECD(6)s are Schur-optimal but may not be
uniquely so. Therefore, ECD(8)s are not uniquely (E,S)-optimal when v = 3 only
when a competing design that is not an ECD() has identical eigenvalues to the
ECD(@).

The eigenvalues of the optimality matrix My of designs in resolvable design set-
tings D(v, b; k1, k2) can be directly used to determine the Schur-, E-, and (E,S)-
optimal designs. Establishing A-optimality requires working with the eigenvalues of
the information matrix Cy of the the designs; however, we can still restrict our efforts
to working with the eigenvalues of M in A-optimality investigations, as shown next.

Recall that if z;, 2, . . ., z,—; are the nonzero eigenvalues of the information matrix

C4 for a resolvable design d € D(v, r; k1, k2), then the A-value for the design is

v—1

PIE (3.72)
=1
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and the A-optimal design minimizes (3.72). Furthermore, if €, > €; > --- > e,

are the eigenvalues of the the optimality matrix My of a design d € D, then the

eigenvalue of the information matrix Cy corresponding to each ¢;, 1 < 7 < r, is
[

Z=r—% Moreover, the eigenvalues of the information matrices for resolvable

d&ignsinDa.reO,u-—r—lcopiesofr,a.ndr—-ip’-Sr—ﬂ5---51-—-5;-. Thus,

-]

the class of designs that minimizes
r e\t
> (r - —') (3.73)
i=1
will also minimize (3.72), and, therefore, will be A-optimal.
The following three facts concerning bounds on 2, and a lemma relating intervals
of v to ranges of values of k; for fixed values of k; and 8, will be needed to establish
results on A-optimality.

Fact 3.1.2 [fk1 > kg > 2, then

bk
ki + ko —
Fact 3.1.3 If
(i) kv > k2 > 4, or
(1i) kz = 3 and k1 >6 then
kik>
ki +ky —

Fact 3.1.4 If
(i) k1 > k2 > 5,
(ii) ko =4 and k; > 7, or

(ii1) ko = 3 and k; > 15
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k1 Ky
ki + ko

2

N o

Lemma 3.1.5 Suppose ky, > ko = n > 2 for a given integer n, and let z =
1

int (k:‘:n) For any real numbers 0 < a < f8<1,

av <y < B

if and only if
2 _ 2 _
n n(ﬁ-*-a:)skl(n n(a-&-z)_
B+z - a+z

Proof If k; > kp = n, then

g _ K ?
ki +k2 ki+n ki +n

T = int n
k1+n

then § = k; —n+z and ¥ = n2~z(k, +n). Now, for any real numbers0 < a <8< 1,

If we define

v > av if and only if
n? - n(a +z)

ki <
a+z
and v < Bv if and only if
n? —n(8 +z)
kf > ———=.
L= B+z

The following bounds will be useful to the constructions.

Lemma 3.1.6 Let k, and k, be two integers satisfying 3 < k; and 2 < k» < k;, and
let 8 be as defined by (2.63). Then,

20 +1 ifky odd

20 if k) even. (3.74)

§+25k15{
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Proof For a resolvable block design setting D(v, 7; ky, k2), write

k} k3
P .

For a fixed value of k; > 3, since (3.75) is a decreasing function of ks, 2 < kp < ky,

(3.75)

then
ky k? 4

42 S LS W M i
3 Shak Sh2t

Since -,“4‘:;5 < 1 for all k; > 3 then, by taking the integer part of each term in (3.76),

(3.76)

we have

b=l oif k) odd =
'-‘510 if k; even } s0<skh-2 (3.77)

Rewriting (3.77) in terms of k; yields (3.74).

Corollary 3.1.7 Let 3 < k; and 2 < ky < k; be integers, and let 8 be given by
(2.63). Then, 2k, — ] < ki + k.

Lemma 3.1.8 Let k; and k2 be two integers satisfying 3 < k; and 2 < k» < k,, and
let § be as defined by (2.63). Then the following inequalities hold:

1. Ifky =20 thenky —3 < ko < ky.
2 ifky=20+1thenk, —1< ks <k,
Proof

1. Let k; = 26. Then

k?
k=21 :
1 2int (k]_'("kg)

if and only if

ki ki1k2 ky

Lk - R |

2 S T ks 2
if and only if

8 ki(ky —2)
- —_ <
b S T T2 RSk

then

ki —3< ky < k.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



88

2. Similarly, if k; = 26 + 1 then

» ki
k1—2mt(k1+k2)+l

if and only if
ky —2+

2
<
ki +1 <k <k
then

ki —2< ks <k;.0O

3.2 Resolvable Designs With Two Replicates
3.2.1 Schur-optimality

For two replicates My has two eigenvalues, as given in section 2.3. It follows from
lemma 2.3.9 that the eigenvalues of any design that is not an ECD majorize the
eigenvalues of at least one of ECD(§) and ECD(d + 1). Thus only ECDs need to be

considered in this section. The ECDs are:

ECD(8): The optimality matrix for ECD(@)s is My = pI —~(J —I). The eigenvalues

of My, are

&i(y) = p+7
&) = p—7
and they satisfy
&(7) > &(v)-

ECD(0 + 1): The optimality matrix for ECD(0+1)s is My = pI —y(J—I)+v(J-I).
The eigenvalues of My are

p—(v—"17)

&y —v)

&) = p+(v—-7),
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and they satisfy
Ly —v) > &y —v).

Corollary 2.3.7 of Lemmas 2.3.5 and 2.3.6 establish conditions for when ECD(6)s
are Schur-better than ECD(@ + 1)s and for when ECD(8 + 1)s are Schur-better than

ECD(8)s; see table 3.20.

Table 3.20: Schur-optimal Designs In D(v, 2; k1, k2)

ECD(3)
ECD(@ +1)
Identical
ECD(8) Schur-optimal ECD(8 + 1) Schur-optimal
t + - 7
0 2 v

3.2.2 Special Cases: (k1 — k2) < 2

We now apply the optimality results from section 3.2.1 to the three special cases

described in section 2.4.

Corollary 3.2.1 Suppose k) = k; and r = 2. Then
(i) If 2 | k, then v =0, and ECD(8*)s exist and are Schur-optimal.

(it) If 2| ky then v = £, and ECD(8)s and ECD(@ + 1)s are identical and Schur-

27

optimal.

Proof The optimality results follow immeditely from lemma 2.4.1 and the Schur-
optimality discussion of section 3.2.1. When k; = k;, r = 2, and 2 [ k;, the
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first blocks of the two replicates of any ECD(8) will have § = %=1 concurrences.
The second blocks of the two replicats of the ECD(f) will then have § + 1 = &}
concurrences. By exchanging the two blocks of each replicate, the ECD(8) becomes
an ECD(8 + 1) . Therefore, the ECD(8) and ECD(8 + 1) are the same design. O

Corollary 3.2.2 Suppose ko = k; — 1 and r = 2. Then

(i) If 2 | k, then $ <y < &, and ECD(8)s are Schur-optimal.

(i) If2[ ky then ¥ <y < ¥, and ECD(@ + 1)s are Schur-optimal.
Corollary 3.2.3 Suppose k2 = k; — 2 and r = 2. Then

(i) If 2| ky then ¥ < v < ¥, and ECD(6 + 1)s are Schur-optimal.

(ii) If 2 [ ky then 0 < ¥ < &, and ECD(8)s are Schur-optimal.
3.2.3 Construction of Optimal Designs in D(v, 2; k1, k2)

In this section constructions for ECDs are provided. The common block concurrence
8, 8, or § + 1 is denoted by L so that the constructions are valid for ECD(0")s,
ECD(8)s, and ECD(8 + 1)s, respectively. Since all v treatments appear once in each

replicate, only first-block treatment assignments need be given. The constructions

are:

Block 1 of Replicate 1: {1 ... k;}
Block 1 of Replicate 2: {1 ... L} U {ki+1 ... 2k; — L}

3.2.4 Examples

We conclude this section by providing some examples of optimal resolvable designs
in D(v,2;k,, k;) when (k; — k) < 2. First we construct designs for the two cases

when k1 = kg-
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Example Suppose k; = k2 = 4. Then, according to corollary 3.2.1 the Schur-
optimal design is an ECD(8*). Applying the ECD construction from section 3.2.3
with L = § = 2 yields the first block of each replicate. Adding the remaining four
treatments to the second block produces a Schur-optimal ECD(8*) which is:

15 13
26} 24
37|57
48638

Example Consider the case where k; = k; = 5. Then, according to corollary
3.2.1 ECD(8)s and ECD(8 + 1)s are identical and Schur-optimal. Applying the ECD
construction from section 3.2.3 with L = § = 2 yields a Schur-optimal ECD(#) which

is:
1 6 1 3
2 712 4
3 8|6 5.
4 9 |7 9
510 | 8 10
Now we investigate the two cases when k; — k, = 1.

Example Consider the setting such that k; = 6 and k, = 5. By corollary 3.2.2, the
Schur-optimal design is an ECD(@). Applying the ECD construction from section
3.2.3 with L = 8 = 3 produces a Schur-optimal ECD(8) which is:

1 7 1 4
2 8 2 5
3 9 3 6
4 10 7 10°
5 11 8 11
6 9

Example Suppose k;, = 5 and k2 = 4. By corollary 3.2.2, the Schur-optimal
design is the ECD(@ + 1). Applying the ECD construction from section 3.2.3 with
L =8 +1 = 3 produces a Schur-optimal ECD(@ + 1) which is:

16 14
27| 25
38| 38
49 |69
5 7
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Now we investigate the two cases when k; — ko = 2.

Example Consider the setting such that k; = 5 and k, = 3. By corollary 3.2.3, the
Schur-optimal design is the ECD(G). Applying the ECD construction from section
3.2.3 with L = § = 3 yields a Schur-optimal resolvable design which is

6
7
8

UL W N
W N
00 L

Example Suppose k; = 6 and k; = 4. By corollary 3.2.3, the Schur-optimal
design is the ECD(@ + 1). Applying the ECD construction from section 3.2.3 with
L =8+ 1 = 3 yields a Schur-optimal resolvable design which is

7
8
9
10

o WO Wm

00 =3 o W N
—

G UV N

3.3 Resolvable Designs With Three Replicates

3.3.1 Introduction

In this section we will study optimality for the resolvable design setting D(v, 3; k1, k2).

From section 2.3 we have:

ECD(0): The optimality matrix for ECD(8)s is My = pI —y(J —I). The eigenvalues

of M, are

&(7)

&(v) = p—2v,

p+7 (2 copies)

and they satisfy
&) =&((v) > &(7)-
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ECD(8 + 1): The optimality matrix for ECD(8+1)s is My = pI —y(J—-I)+v(J-I).
The eigenvalues of My are

&y —v) p—(v—7) (2 copies)

&) = p+2v—-1),

and they satisfy
r—v)>&(r—v)=&(r—v).

Corollaries 2.3.7 and 2.3.8 of Lemmas 2.3.5 and 2.3.6 establish conditions for when
ECD(8)s are E-better then or Schur-better than ECD(d + 1)s and for when ECD(§ +
1)s E-better and Schur-better than ECD(8)s; see table 3.21.

Table 3.21: E- and Schur-comparisons Of ECDs In D(v, 3; ky, k2)

ECD(8) Schur-better!| ECD(§) E-better | ECD(8 + 1) Schur-better
|
x -

v

3 v

L
3

0

wie M —

Corollaries 2.3.11 and 2.3.13 eliminate UECDs from consideration. Conditions
for Schur- and E-optimality of NECDs or ECDs can be established using lemma
2.3.17 and by direct eigenvalue comparisons. The optimality matrix My (in order
to apply lemma 2.3.17) or the concurrence discrepancy matrix A4 must be derived
for competing NECDs. Recall that NECDs have block concurrences discrepancies
dgi € {0,1} forall 1 < ¢ # ¢ < 4 and have at least one block concurrence discrepcnsy
equal to 0 and at least one equal to 1. There are two cases of nonisomorphic NECDs;
their block concurrence patterns, {0412, 0413, 0423}, are listed in table 3.22 and the

corresponding block concurrence discrepancy matrices are shown in table 3.23.
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Table 3.22: Block Concurrence Discrepancies For NECDs In D(v, 3; k1, k2)

Case 5412 5413 5¢23
I 1 0 0
II 1 1 0

Table 3.23: Concurrence Discrepancy Matrices for NECDs In D(v, 3; k1, k2)
010 011
Ay,=|100 Ar=]1100
000 100

Using the concurrence discrepancy matrices for the two cases of NECDs, we

o O =

begin our eigenvalue optimality investigation by deriving explicit expressions for the
eigenvalues of the optimality matrices for each case of NECDs. The eigenvalues and

their ordering over the admissible region are given below.

Case I: The optimality matrix for Case I NECDs is My = pI — v(J — I) + v4,,
and the eigenvalues of M; are
egl) D ('U - 7)1

v— 1
e) = p+ — L 5\/872 + (v —7)3

v—-v 1
) = pr——-s\/Er+@w-2

and they satisfy

el > elt) > efl) el > el > fV)

—t
-
-

o
wis
<

Case II: The optimality matrix for Case II NECDs is M, = pI — v(J — I) + vA,,
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and the eigenvalues of M, are

e® = p+1,

1
) = p-J+5Bu-+7

vy 1
) = p—5— V8- +7

and they satisfy

e > @ > e > o) > e

T

T
2

o
I
e

3.3.2 (E,S)-optimal Designs in D(v, 3; k1, k2)

Before we determine the E-optimal designs in D(v, 3;k;, k2) we will make Schur
comparisons of Case I designs with ECD(@)s and ECD(f + 1)s in order to eliminate

it as an optimality competitor.
Lemma 3.3.1 When0< vy < 3, ECD(8)s are Schur-better than Case I designs.

Proof By Theorem 2.3.5, ECD(d)s are Schur-better than Case I designs if they
are F-better. When 0 < v < 3, ECDs are F-better than Case I designs since

&(7) > ey’ O
Lemma 3.3.2 When § <y <, ECD(8 + 1)s are Schur-better than Case I designs.

Proof By Theorem 2.3.6, ECD(8 +1)s are Schur-better than Case I designs if they
are E-better. When < v <, ECD(8 + 1)s are E-better than Case I designs since

G(v-v)<e. o

Now we will establish that Case II designs are (E,S)-optimal when 5 <y < ¥
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Lemma 3.3.3 When Z <v<w, ECD(8)s and Case II designs are E-equivalent.

Proof When § < v < v the largest eigenvalue of the optimality matrix for Case II

designs is ef? = £,(v). O
Lemma 3.3.4 When 5 < v < v, Case II designs are Schur-better than ECD(@)s.

Proof The eigenvalues of ECD(6)s are £,(y) = &1(7) > &(7), and when $ <y <,
the eigenvalues of Case II designs are el > e > e$?). Since &) = el > e,
then the eigenvalues of the optimality matrix for ECD(8)s majorize the eigenvalues

of the optimality matrix for Case II designs. O
Lemma 3.3.5 When £ <y < v, ECD(8+1)are Schur-better than Case II designs.

Proof By Theorem 2.3.6, ECD(@ + 1)s are Schur-better than Case II designs if
they are E-better. When 2 < y < v, ECD(@ + 1)s are E-better than Case II designs
since e(lz) > &(y — v). When v = 27", since 8(12) = &(v — v) and e-(f) > &(v — v), the
eigenvalues of the optimality matrix for Case II designs majorize the eigenvalues of

the optimality matrix for ECD(@ + 1)s. O

Therefore, for all values of 0 < 7 < v there is either a unique Schur-optimal

design or a unique (E,S)-optimal design. See table 3.24.
3.3.3 A-optimal Design

The lemmas of section 3.3.2 establish that ECD(@)s are uniquely A-optimal when
0<v<§, ECD()s and Case II designs are identically A-optimal when v = 3
and ECD(8 + 1)s are uniquely A-optimal when %" < 74 < v; however, on the interval
g<y<Z, ECD( + 1)s and Case II designs are A-optimal candidates. In order to
find the design that minimizes (3.73) we need the expressions for the eigenvalues of

the information matrices of the competing designs in terms of the eigenvalues of the

optimality matrices. These are given below.
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Table 3.24: (E,S)- and Schur-optimal Designs In D(v, 3; k1, k2)

ECD(@)
Case I1
Identical

ECD@) | CaseIl !

|
ECD(@ ECD( +1
© L@ | @ SOV
Schur-optimal | ) . ' Schur-optimal
| optimal | optimal
: : et v
0 3 : & v
ECD(6 + 1):
0D = pt+w-1) (: —7) (2 copies)
o+ _ 2p—(v—1)]
z3 = == 1
p
Case II:
2 = 2p—7
p
2) - 4p+7_\/8(v_7)2+72
2 2
g ETE V8 —7)? + 7
2p

Lemma 3.3.6 When 32 <y < &, ECD(8 + 1)s are A-better than Case II designs.

When % < v < 3, ECD(@ + 1)s are A-better than Case II designs if and only if

—* — 2(p — 2v)4? + (8p® + 6up — 5v%)y — 20(20% + 2pv ~ v?) > 0. (3.78)

Proof When < v < ¥, ECD(§ + 1)s are A-better than Case II designs if and

only if A5 + z?ﬁ_—" < <y + <&y + -y which holds if and only if condition (3.78) is
:l zl Z2 za

satisfied. On the interval 3 < ¥ < %, a lower bound for the left hand side of (3.78),
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obtained by substituting ¥ = ¥ into the negative terms and ¥ = % into the positive

st [ (2)' s (2) -] o

Setting (3.79) equal to zero and solving for 2 yields

p_ (45— V28705 145 + /28705
v 180 ’ 180

terms, is

Since 3 < %@ < 1, and when & = 2, (3.79) is greater than zero, (3.78) is

satisfied on 3¢ < v < % whenever 2 > I, and, by fact 3.1.3, this inequality holds
when k; > k2 > 4 or k2 = 3 and k; > 6. Thus, (3.78) may not be satisfied when
k2 > ky =20r5 >k >k; =3. Bycorollary 3.1.5,0on ¥ <y < & k, =2 if
and only if k; = 4 and k2 = 3 if and only if k; = 3,4 or 5. Since (3.78) is satisfied
when (ki, k2) = (4, 2), (3,3), (4,3), and (5,3), ECD(8 + 1)s are A-better than Case II
designs on the interval. O

A summary of the A-best analysis is given in table 3.25 below.

Table 3.25: A-, Type-1, and Schur-optimal Designs in D(v, 3; ky, k2)

Case II
ECD(@) ECD( +1)

ECD(@) | g+1

| |
ECD(8) Schur-optimal : type-l | ormI : II ECD(8 + 1) Schur-best
| optimal A-best |
[ X )4 X X ) v
T K K —* }
0 3 I v

We have found that the A-optimal design in D(v, 3; ky, k2) is uniquely an ECD(@)

when 0 < ¥ < v and uniquely an ECD(6 + 1) when ¥ < v < v. When v = ¥ the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

optimality matrix for ECD(#)and Case II designs have identical eigenvalues, and

the ECD(@)and Case II designs are A-optimal. When % < v < ¥ the A-optimal

design can either be an ECD(8+1) or a Case II design, and condition (3.78) must be
checked in order to determine if the A-optimal design is an ECD(@ + 1) or a Case II

design. Table 3.26 lists the parameters k;, k2, and « for ten A-optimal ECD(f + 1)s
and Case IT designs.

3.3.4 Special Cases: (k; — k) < 2

We will now apply the optimality results from sections 3.3.2 and 3.3.3 to the three

special cases described in section 2.4.
Corollary 3.3.7 Suppose ky = k; and r = 3. Then
(i) If 2 | ky then v =0, and ECD(6* )s ezist and are Schur-optimal.

(i) If2 | ky theny = %, and ECD(8)s and Case II are identical and (E, S)— and
¢y-optimal.

Corollary 3.3.8 Suppose ko = k; —1 andr =3. Then

(i) If2 | ky then § <y < }, and ECD(8)s are Schur-optimal.

(i) If2f ky then £ <y < %, gnd ECD(8 + 1)s are Schur-optimal.
Corollary 3.3.9 Suppose ks = k; —2 andr =3. Then

(i) If k, =4 theny = 2?"’, and ECD(8 + 1)s are Schur-optimal.

(i3) If ky = 6 then v = 32, Case II designs are (E,S)-optimal, and ECD(+1)s are
A-optimal.

(i) If2 | ky and ky > 8 then & < v < ¥, Case II designs are (E,S)-optimal, and
either an ECD(@ + 1) or a Case II design is A-optimal.

(w) If2f ky then 0 <y < %, and ECD(8)s are Schur-optimal.
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Table 3.26: Parameters for A-optimal Designs In D(v,3, ky, k2) When 2 <y < 3¢

ECD(@ + 1) A-optimal

ECD(@+1) Casell

ki k2 1 A-value A-value
8 6 .57 1.51261 1.51398
10 8 .56 1.50794 1.50851
11 5 .56 1.51309 1.51400
12 7 .58 1.50718 1.50845
12 10 .55 1.50545 1.50575
13 3 .56 1.52702 1.52739
14 12 .54 1.50398 1.50415
16 14 .53 1.50303 1.50313
17 6 .57 1.50762 1.50848
17 8 .56 1.50513 1.50570

Case IT A-optimal

ECD(A+1) Casell

kv k2 1 A-value A-value

5 2 .57 1.58385 1.57738
14 3 .53 1.53069 1.52746
14 9 .52 1.50600 1.50584
26 4 .53 1.51471 1.51413
27 4 .52 1.51571 1.51427
27 20 .51 1.50139 1.50137
29 12 51 1.50255 1.50249
34 8 .52 1.50422 1.50419
42 5 .53 1.50874 1.50862
43 5 .52 1.50912 1.50868

3.3.5 Construction of Optimal Designs in D(v, 3; k;, k2)
ECD Constructions

Let L be the common ECD treatment concurrence. Then for ECD(@)s, L = 8, and
for ECDB+1)s, L=0+1.
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Block 1 of Replicate 1: {1 ... k;}
Block 1 of Replicate 2: {1 ... L} U {k1+1 ... 2k; — L}
Block 1 of Replicate 3:

(i) k < 2L:
{1...2L-k} U {L+1...2k—-L}
(ii) ky > 2L:
if ky=2L+1
{L+1...2L} U {ki+1 ... i +L} U {2k —L+1 ... 3(ks — L)}

Case II Constructions

Block 1 of Replicate 1: {1 ... k;}
Block 1 of Replicate 2: {1 ... 8+1} U {ki+1 ... 2k; — (8 + 1)}

Block 1 of Replicate 3: {1 ... 20 +1)-k} U {§+2... i} U
if ki—L—-2>0 _ _
{ki+1...2—0-2} U {2k, -6}

3.3.6 Examples of Optimal Resolvable Designs in D(v, 3; ki, k2)

We will conclude this section by providing some examples of resolvable designs in
D(v, 3; k1, k2) for various interesting k; > 3 and 2 < k; < k;. First we will construct

designs for the two cases when k; = k;.

Example Suppose k; = k, = 4. Then, according to corollary 3.3.7 the the Schur-
optimal design is an ECD(6*). Applying the ECD construction given above with
L = 8 = 2 yields a Schur-optimal ECD(6*) which is:

W N -
0 o wm
D U N =
Q0 ~J b W
[= T3 I - L]
00 =~ N =
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Example Consider the case where k; = k; = 5. Then, according to corollary 3.3.7
the ECD(8)s and Case II designs are (E,S)- and type-1 optimal. Applying the ECD
construction given above with L = § = 2 produces an (E,S)- and type-1 optimal
ECD() which is:

[ VI R
O WO
® o
O WKW
O~ &~ w
O OOy N

1 1 1

Now we will investigate the two cases when k; — k; = 1.

Example Consider the setting such that k; = 6 and k, = 5. By corollary 3.3.8,
the Schur-optimal design is an ECD(). Applying the ECD construction given above
with L = 8 = 3 produces a Schur-optimal ECD which is:

1 7 1 4 4 1
2 8 2 5 5 2
3 9 3 6 6 3
4 10 710 7 10°
5 11 8 11 8 11
6 12 9 12 9 12

Example Suppose k; = 5 and k; = 4. By corollary 3.3.8, the Schur-optimal design
is an ECD(8 + 1). Applying the ECD construction given above with L =8 +1 =3
yields a Schur-optimal ECD(@ + 1) which is:

[ I VU SR
oW~
N D W
O WO 00 U b
- O U =
O W oo W

1 1 1

Now we will investigate the two cases when k; — k, = 2.

Example Consider the setting such that k;, = 8 and k; = 6. By corollary 3.3.9,
the Case II design is (E,S)-optimal, and the A-optimal design is either the Case IT
design or the ECD(@+1). Checking condition (3.78) establishes that the ECD(@+1)
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is A-optimal. Applying the Case IT construction given above with § = 4 yields an
(E,S)-optimal Case II design which is:

1 9 1 6 1 3
2 10 2 7 2 4
3 11 3 8 6 5
4 12 4 12 711
5 13 5 13 8 13
6 14 9 14 9 14
7 10 10

8 11 12

Applying the ECD(8 + 1) construction given above with L = § + 1 = 5 produces an
A-optimal ECD(8 + 1) which is:

1 9 1 6 1 3
2 10 2 7 2 4
3 11 3 8 6 5
4 12 4 12 7 12
5 13 5 13 8 13°
6 14 9 14 9 14
7 10 10

8 11 11

Example Suppose k; = 5 and k; = 3. By corollary 3.3.9, the Schur-optimal design
is an ECD(6). Applying the ECD construction given above with L =8 = 3 yields a
Schur-optimal ECD(8) which is:

U W
w0~ o
N O W
0 U
N O U
00 W

3.4 Resolvable Designs With Four Replicates

3.4.1 Introduction

In this section we study optimality for the resolvable design setting D(v, 4; ky, k2).

From section 2.3 we have:
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ECD(0): The optimality matrix for ECD(@)s is My = pI —y(J —I). The eigenvalues
of My are
&() = p+7 (3 copies)
&(y) = p—3,
and they satisfy

&(7) = &(7) = &(7) > &(7)-

ECD(0 + 1): The optimality matrix for ECD(6+1)sis My = pl—y(J-=I)+u(J-I).
The eigenvalues of My are

&i(y—v)
&(7)

p—(v—7) (3 copies)

p+3(v—1),

and they satisfy
y—v)>&(y—v)=&(y —v) =&i(y - v)-

Theorem 2.3.3, lemma 2.3.7, and corollary 2.3.8 establish conditions for when ECD(8)s
are E-better or Schur-better than ECD(f+1)s and for when ECD(6+1)s are E-better
and Schur-better than ECD(§s; see table 3.27.

Table 3.27: E- and Schur-comparisons Of ECDs In D(v, 4; ky, k2)

ECD(@)
Schur-better

ECD(@ +1)

ECD(8) E-better
Schur-better

-
bl o — — —
al e — — —
ul
2

wie T

As with all r < 4, corollaries 2.3.11 and 2.3.13 eliminate UECDs as optimal-
ity competitors. Conditions for Schur- and E-optimality of NECDs or ECDs can
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be established using lemma 2.3.17 and by direct eigenvalue comparisons. The op-
timality matrix My (in order to apply lemma 2.3.17) or the concurrence discrep-
ancy matrix A; must be derived for competing NECDs. Recall that NECDs have
block concurrence discrepancies d4; € {0,1} for all 1 < ¢ # ¢ < 4 and have at
least one block concurrence discrepancy equal to 0 and at least one equal to 1.
There are nine cases of nonisomorphic NECDs; their block concurrence discrepan-
cies, {éq12,0xn3, 023, Od14, 024, 0434} are listed in table 3.28 and the corresponding

block concurrence discrepancy matrices are shown in table 3.29.

Table 3.28: Block Concurrence Discrepancies For NECDs In D(v, 4; ky, k2)

Case da12 Oa13 023 014 Oa2a Odsa
I 1 1
Ir
IrI
v

14

vI
VII
VIII
IX

—

e I o I «» I an B = B en Y = B @ I o ]
[= e olelollolell e
OO - O K- - -
OO mrOrF
O OO ri s
—_ O = e = O

Using the concurrence discrepancy matrices for the nine cases of NECDs, we begin
our eigenvalue optimality investigation with the following application of corollary
2.3.17.

Corollary 3.4.1 Letd € D(v,r; k1, k2) be an NECD having optimality matriz My =
pl —y(I — J) + vA4, and let u, and u, be the marimum and minimum eigenvalues,

respectively, of Ag = PTA4P, where P = (I — 1J). If
< -2y
7<%

then ECD(8)s are Schur-better than d. If u; > 0 and

> (3—u1)v
Y 1 '
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Table 3.29: Concurrence Discrepancy Matrices For NECDs In D(v, 4; ki, k2)

(0011\
CaseI: A1= 0011
1101 0001
\1110)
0010
Case VI: Ag =
0011 0101
( \ 1010
0011
Case II: Az'—' 1100
000 1)
\1100/ 0010
Case VII: A7 =
0001 0100
( \ 1000/
0011
Case III: A3=
0101) 0000
\1110 0001}
Case VII: Ag = 0001
0000 0110
0011
Case IV: Ay = 0101
0000)
\0110) 0000
Case IX: A9= 0001
0001 0010/
Case V- A |0001
ase v: 5=10001
1110
then E’CD(@ + 1)s are Schur-better than d. Furthermore, if
U1>0 (3.80)

then ECD(8)s are E-better, but not necessarily Schur-better, than d.

We now use these tools to eliminate as many designs as possible. For each NECD,
condition (3.80) was calculated with results given in table 3.30. Immediately we see
all cases except Cases I, II, and V are E-inferior to ECD(@)s. Values of « for which
ECD(8)s or ECD(+1)s are Schur-better than NECDs having any of the concurrence
discrepancy matrices listed in table 3.29 have been determined using corollary 3.4.1
and are also listed in table 3.30. We also know by Theorem 2.3.3 and corollary
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Table 3.30: Corollary 3.4.1 Results In D(v, 4; k1, k2)

G —% TE
I 375 .750 .000

Ir .500 .750 .000
IIr  .342 658 .366
v 250 .625 .500
|4 375 750 .000
VI 405 .595 .618
vIiI 250 .500 1.000
VIIIT .342 .658 .366
IX 250 .625 .500

2.3.15 that ECD(8)s are type-1 and E-optimal on 0 < v < £, which is sufficient on
this range for our primary goals of A-optimality. Here we get stronger optimality
for a subset of 0 < v < 3. Note that on :'—::i < v < v, ECD(8 + 1)s are uniquely
Schur-optimal.

The majorization results we have so far are summarized in table 3.31 which shows,
for each of the nine cases, the range for which each NECD majorizes an ECD. We see
that Case VII designs are Schur-inferior to ECD(8 + 1)s when 3 <7 < v. Thus Case
VII designs are type-1 inferior to £ECDs over the entire interval. Case VII is the only
case that is completely eliminated from type-1 optimality contention, so in order to
proceed, we must make direct eigenvalue comparisons. We need explicit expressions
for the eigenvalues of the optimality matrices for each of the remaining eight NECD
competitors when possible. The eigenvalues and their ordering over the admissible

region are given below.

Case I: The optimality matrix for Case I NECDs is M; = pI — y(J — I) +v4\,,
and the eigenvalues of M are

ef) = p+7
&) = p—(v-7)
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Table 3.31: Majorization Intervals For NECDs In D(v, 4; ky, k2)

Case ] —pArrrrrrrArr As—
0 37v

i

L1 o
Gél

[~

Case IT

v
0 3 s v

o
NS
w
S
[
wie o
(=]
[=¢]
e
3
(-

(=]

N

wie A
o

w

Q

3

<

Case V —pArrararrAnrrrs- F FAAAAAAAAA— Y
0 H 37y 3 3;’ v

0 i 40v 3 .60v e v
Case VII

0 * 5 3 v
Case VIII —prrrrrnrrmrmvhrnne + —Brrtrar AR AAY— T

0 i 3w 5 66v ¥ v
Case IX —{‘W t Ww%%&:)—— 4

0 1 5 63 ¥ v

1
) = prw-7-s+5/16(-12+v?

1
egl) = p+(v—7)—‘;'—'§¢16(v—7)2+v2,

and they satisfy
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el > ell) 5 el 5 el ell) > e > V) > eV

[ i ' ! Lo ! A v
l ] 13 T 1] 13 f
v v v v 3v
0 1 3 2 3 2 v

Case II: The optimality matrix for Case II NECDs is M = pI — y(J — I) + vA,,

and the eigenvalues of M, are

e = p+v
2
&) = p+7
e = p+3v-v)-v
eff’ = p+7v—2,
and they satisfy
|
|
D> = > | e = > e 5 e
{ +——t . +——it -7
0 : 3 3 = o v

Case ITI: The optimality matrix for Case IIl NECDs is M3 = pI —vy(J ~I) + vA;.
Three of the eigenvalues of M3 can not be expressed in closed form. The fourth

eigenvalue is

e® =p—(v-17).

Case IV: The optimality matrix for Case IV NECDs is My = pI —v(J —I) +vAq,
and the eigenvalues of My are
e) = p—(v-17)

& = p-(w-1)
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e = p+(—1)+/(v—7?2+37
@ _

p+(@—7)—(v—7)2+37,

and they satisfy

el > el > el =¥ el > el =l > ¥

-

]
¥

2
3

o

NCEE o

wis -

N - — — —

Case V: The optimality matrix for Case V NECDs is Ms = pI — v(J — I) + vAs;,

and the eigenvalues of M5 are

e = p+v
&) = p+7

e = p—v+Bu-v2+7

S
e P—7—/3v—7)2+2

and they satisfy
!
|
> =P > el | e el > e > o
f f t t F } 7
0 i 3 3 T ¥ v

Case VI: The optimality matrix for Case VI NECDs is Mg = pI —v(J — I) +vAs,

and the eigenvalues of Mg are

o - rmme (20),
&) = P—(v—7)+(1_2‘/§)v
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1
e = p+(v—7)-2+§\/4('u—27)2+02

2
1
e = p+-1)-3-5V/Ar -2 +2,

and they satisfy

el > el > e > e

[
8

0

)

O 5 e > el > e | ¥ > el > e > el

|
|

| e

- - 7

FNI-E

3v
r

(57 (5% v

v

wie —r
vie 4
w|P 1
— e — — o

Case VIII: The optimality matrix for Case VIII NECDs is Mg =pl —y(J - I) +
vAg. Three of the eigenvalues of M3 can not be expressed in closed form. The
fourth eigenvalue is

e® =p+4.

Case IX: The optimality matrix for Case IX NECDs is My = pI —v(J — I) + vAq,

and the eigenvalues of My are

o) = p+7

e = p—(v-17)

9 _ v 1

e3 = p+(v—7)—§+§\/1672+v2
@ _ v 1

eq = p+(v—'y)—§—§\/1612+v2,

and they satisfy
l
l
e > e > o > o | e > e > o) > ¢
f % : + : f 7
0 i 3 2 F % v
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We conclude this section with a lemma that uses the explicit expressions for the
eigenvalues of the optimality matrices for the nine cases of NECDs and corollary

2.3.4 to determine Schur-optimality when v = 3.

Lemma 3.4.2 When v = 3, ECD(8)s, Case II and Case V designs are Schur-
optimal.

Proof Since all cases of NECDs except for Cases I, II, and V are E-inferior to
ECD(8)s when v =

wi<

, the optimality matrices for these cases are the only ones that
can potentially have eigenvalues that are identical to the eigenvalues of the optimality
matrix for ECD(8)s. Putting v = 3 into the eigenvalue expressions for these three

cases gives the result. O
3.4.2 (E,S)-Optimal Designs in D(v, 4; k1, k2)

Corollary 3.4.1 established that the only NECDs that can be E-optimal in the re-
solvable design setting D(v, r; ki, k2) are Cases I, II, and V designs. E-optimality will
now be investigated in detail, but first we will review a few useful optimality results

from above.
1. ECD(8)s are E-optimal when 0 < v < 2, uniquely so when y < 3

2. The optimality matrices for ECD(§), Case II, and V designs have identical

eigenvalues when v = 3
3. ECD(8 + 1)s are Schur-optimal when ¥ < vy < v.

E-optimality is solved for 0 < v < $and ¥ < y < v; ECD(6)s, Case II, and V designs
are E-equivalent when v = }; and Case I, II, and V designs may be E-optimal on
2 <y < ¥ In this section we will find the E-optimal designs on < v < ¥,
and if more than one design is E-optimal on a subinterval of 3 < v < 37", then the
(E,S)-optimal design will be identified, see definition 3.1.1. Based on the conclusions

above we can state
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Corollary 3.4.3 When 0 < v < %, ECD(8)s are (E,S)-optimal, uniquely so when
v<%. When % <y < v, ECD(@ +1)s are (E,S)-optimal.

The following lemma establishes exactly when Cases I, I, and V are E-optimal.

Lemma 3.4.4

1. ECD(8), Case II, and V designs are E-equivalent and E-better than Case I

designs when 3 < v < 2—;’-
2. When & <y < 3, ECD(8)s, Case I, II, and V designs are E-equivalent.

3. When vy = ¥, ECD()s, ECD(@ + 1)s, Case I, II, and V designs are E-
equivalent.

Proof The maximum eigenvalue of ECD(@)s is & () = p + 7, and the maximum
eigenvalue of ECD(@ + 1)s is &(y — v) = p— (v — 7). On the interval § < v < %,
the maximum eigenvalue of Case II and V designs is 8(12) = e(ls) =p+v=&(v);
therefore, ECD(8)s, Case II, and V designs are E-equivalent. On <7< %", Case I
designs are E-inferior to ECD(@)s, Case II, and V designs since they have maximum

eigenvalue eg‘) =p+(v—-7)—-%+ é\/ 16(v — )2 +v2 > &(y) = e(f) = e({‘). However,
when 2 <y < ¥, the maximum eigenvalue of Case I designs is e{") = p++~ which is
identical to the maximum eigenvalues of ECD(G- Js, Case I, and V designs, and Case I
is E-equivalent to ECD(8)s, Case II, and V designs. When v = 32, &(y —v) = &(7),
and ECD(@)s, ECD(8 + 1)s, Case I, II, and V are E-equivalent. O

Now Schur comparisons of the E-optimal designs can be made.

Lemma 3.4.5 Case II designs are Schur-better than ECD(8)s when % < v < v.

Proof When I < v < v, the largest two eigenvalues of Case II designs, which

are e?) = egz’ = p+ v = &(v), are identical to each other and to the largest two
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eigenvalues of ECD(@)s. Since the third largest Case II eigenvalue ef,?’ is less than
e&z) = eg") = &(7) when § < v < 0, then the eigenvalues of ECD(8)s majorize the
eigenvalues of Case II designs on the interval, and, therefore, Case II designs are

Schur-better. O
Lemma 3.4.6 When I <y < v, Case II is Schur-better than Case V.

Proof When § < v < v, the largest two eigenvalues of Case V designs, egs) =
e.(_,s) = p + v, are identical to each other and identical to e?’ = eéz), the largest two
eigenvalues of Case II designs. It is then necessary and sufficient for the eigenvalues
of Case V designs to majorize the eigenvalues of Case II designs that the third
largest eigenvalue of Case V designs be greater than or equal to the third largest
eigenvalue of Case II designs, or egs) > egz). This inequality is true if and only if

p—7+\/3(v-7)2+'72 > p + 3(v — 7) — v which is true if and only if v > £.

Therefore, Case II is Schur-better. O

Lemma 3.4.7 When %" < v < v, Case I designs are Schur-better than Case II

designs.

Proof When %:’- < v < v, Case I and Case II designs have the same maximum
eigenvalue, which is e‘ll) = e(lz’ = p + <. In order to establish the result, we will
show that the remaining three eigenvalues of Case II designs eg) > e&” > e.(f)
majorize the remaining three eigenvalues of Case I designs efo}) > egl) > e.(tl). Since

e = el > &) we have the result if and only if ) < e{’). This inequality holds

ifandonlyifp+7y—-2v <p+(v~-v)—-% - %\ﬁG(v—'y)z-i-v2 which is true if and
only if 8v(v—+) > 0, that is when v < v. Therefore, Case I designs are Schur-better
than Case II designs. O

Lemma 3.4.8 When v =¥, ECD(@ + 1)s are Schur-better than Case I designs.
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Proof When v = ¥, since the largest eigenvalue of Case I designs is equal to the
largest eigenvalue of ECD(@ + 1)s, then p+ v = egl) =&y —v) =p+ 3 —7)
Since e;(,l’ > egl) =&y —-v)> ef,l) then the eigenvalues of Case I designs majorize

the eigenvalues of ECD(@ + 1)s. Therefore ECD(8 + 1)s are Schur-better. O

Lemmas 3.4.4, 3.4.5, 3.4.6, and 3.4.7 guarantee that for 0 < vy < v and v # 3,
there is a unique Schur-best design among the E-best designs, and when v = 3 three
classes of designs, ECD(8)s, Case II, and Case V, have identical eigenvalues and are
Schur-best. The (E,S)-optimality breakdown is shown in table 3.32.

Table 3.32: (E,S)- and Schur-optimal Designs In D(v, 4; k1, k2)

Case II
Case V
- Case I
ECD@) - S}-aptiml
Identical (E.S)-optim
_ ! - Case IT ! ! _
EcD@) | ECD(@) (;s;) \ ' | ECD@E+1)
Schur-optimal | (E,S)-optimal ' [ | Schur-optimal
| optlma.l | |
f t X —* 7
0 i 3 T v

3.4.3 Schur-Optimality in D(v, 4; k1, k2)

From corollary 3.4.1, we know that ECD(f)s are Schur-optimal when 0 < v < ¢
and ECD(6 + 1)s are Schur-optimal when ¥ < v < v, and from Theorem 2.3.3, we
know ECD(8)s are type-1 optimal when ¥ < v < . Now we will focus our attention
on A-optimality, and along the way, establish some Schur-orderings. Before fully
restricting to A-optimality in section 3.4.4, we will use the explicit expressions for
the eigenvalues of the ECDs and the five remaining cases of NECD competitors to

identify subregions of £ < v < 3 on which various cases are Schur-inferior to other
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cases. In essence, we will use the eigenvalue expressions to obtain a more accurate
version of table 3.31. Recall that Case V and VII designs are Schur-inferior to Case
II designs and ECD(f + 1)s, respectively, and we do not know the eigenvalues for
Cases III and VIII.

Lemma 3.4.9 When§ <v<v, ECD(8+1)s are Schur-better than Case IV designs,

and when v = %, ECD(8 + 1)s and Case IV designs have identical eigenvalues.

Proof In order for the eigenvalues of Case IV design to majorize the eigenvalues of

ECD(8 + 1)s, it is necessary and sufficient for the largest Case IV eigenvalue, which

is e:(;‘) =p+(v—1v)+ \/(v —v)>+ 372 when } < 7 < v, to be greater than or
equal to the largest ECD(8 + 1) eigenvalue &(y — v) = p + 3(v — ), which is true
if and only if v > 3. When v = £, e:(f) = & (v — v), and, since the second and third
largest eigenvalues of Case IV designs are identical to the three smallest eigenvalues
of ECD(8 + 1)s, Case IV and ECD(@ + 1)s have identical eigenvalues. O

Lemma 3.4.10 When (Tisé) v < v < v, ECD(8 + 1)s are Schur-better than Case

VI designs.

Proof The eigenvalues of Case VI designs majorize the eigenvalues of ECD(@ + 1)s
when the largest Case VI eigenvalue is greater than the unique largest ECD(@ + 1)
eigenvalue &(y —v) = p+ 3(v — v). When (%)v < v < v, the largest Case
VI eigenvalue is e(f) =p—(v—-9)+ (L‘zﬁ) v, and e(le) > &(y — v) if and only if
(T‘Bj) v<v<v. Wheny = (7—"8@) , since the four Case VI eigenvalues are unique,
the ECD(@ + 1) and Case VI eigenvalues are not identical. Therefore, ECD(@ + 1)s

are Schur-better than Case VI eigenvalues when (7—?5) v<y<wv. O

Lemma 3.4.11 When £ < v < ¥, Case I designs are Schur-better than Case IX
designs, and when v = 3, Case I and Case IX designs have identical eigenvalues.
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Proof On the interval § < 7 < v, the ranking of Case IX eigenvalues is consistently

e > e > & > o

> e;3 > eq , and the third largest Case IX and Case I eigenvalues are
identically eg” = egl) =p—(v-7). On§<~v< "‘T", the largest two Case I eigenvalues

are egl) > e(ll) = e(lg), and Case IX eigenvalues majorize Case I eigenvalues if and
only if e Ze:(,l),ifandonlyifp-i-(v—’y)—§+§\/1—67W2p+(v—7)—§+
g‘/lﬁ(v —v)?2+v? ifandonlyify> % O

Since it is possible to express in closed form only one of the eigenvalues of the
optimality matrices for Case III designs and Case VIII designs, we will derive bounds
for their maximum and minimum eigenvalues in order to eliminate them from opti-
mality contention. As usual, let e; and e, be the maximum and minimum eigenvalues

of an optimality matrix My, respectively. Then

e; = max = x* Mgx > x*TM,x" (3.81)
xTx=1
and
e, = min x"Myx < x*T M x* (3.82)
xTx=1

where x* is any fixed, normalized vector. Typically we take, for a fixed value of
Y = 7°, X° to be an eigenvector of M = (p + v*)] — v*J + vA4. Bounds obtained

using this procedure are used in the next two lemmas.

Lemma 3.4.12 When § < v < 33‘-’—, Case I designs are Schur-better than Case IIT

designs

Proof Since the known eigenvalue of the optimality matrix for Case III designs
e® =p — (v — v), is identical to one of the eigenvalues of the optimality matrix for
Case I designs, e?’, we need to shew that the remaining three Case III eigenvalues

majorize the remaining three Case I eigenvalues on the interval. When § <y < v

the maximum Case I eigenvalue is e) = p+ (v — 7) — 2 + 1,/16(v —7)2 + v? and
3 272

the minimum Case I eigenvalue is e{") = p + (v — ) —% - é\/lﬁ(u -7+
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the maximum and minimum Case III eigenvalues are e?) and e,({”, respectively, then,
since there are only three eigenvalues per case to compare, Case III eigenvalues
majorize Case I eigenvalues when e(a) (1) and e(3) < e(l)
When v* = 3,
P -r  -Y —v+v
M=l 7 P —T+v —y+v
3 -y —v+v p —rv+vu |’
-vY+v —vy+v —y+v P

and the normalized eigenvectors of M; are

1= -v5,2,2, -1+ V5)T
x 2\/:/__(1 + V'5)
s = 1+v5,2,2, -1 — V5"
% m‘ * ?
x; = 7.5(0,-1,1,0)T

x; = _\% (1,0,0,1)7.

Now, if X* = (x] | x5 | x5 | x3), then

xiMax{ P+ é(&z -4)
M;x; — ¥5(3y —
XTMx = | X2 MaXa | _ P 2(3v—-17) | 3.83
x3" M3xg p + (v -9)

The first two components of the vector on the right had side of (3.83) serve as the
bounds defined by (3.81) and (3.82), respectively, that is, ef’) >p+ §(3v — ) and

e <p—¥(3v—~) forall § <v< % Since
)
P+ %(311—7) > ef

and
p- —‘sf—s(sv 1) <ed,

Case I is Schur-better than Case III on the interval. O
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Lemma 3.4.13 When 3 <y < %’i Case I designs are Schur-better than Case VIIT

designs

Proof Since the known eigenvalue of the optimality matrix for Case VIII designs
e® = p + 4, is identical to one of the eigenvalues of the optimality matrix for Case
I designs, egn, we need to show that the remaining three Case VIII eigenvalues

majorize the remaining three Case I eigenvalues on the interval. When f <y < 23—",

the maximum Case I eigenvalue is e) = p + (v — 7) — 3 %\/16(1: —7)% + v2 and

the minimum Case I eigenvalue is e{) = p+ (v — 7) — - é\/lﬁ(v —7v)% + v2. If the
maximum and minimum Case VIII eigenvalues are e?) and e.(,s), respectively, then,
since there are only three eigenvalues per case to compare, Case VIII eigenvalues

majorize Case I eigenvalues when e{® > i and ) < e{’). When v* = ¢,
1 2

P -7 -1 -7
lwso . =Y p i —-Y+v ,
-r -7 P —+v

-y —y+v =y +v P

and the normalized eigenvectors of My are

1
X = ———— (-2,-1+V5,-1+V5,2)7
Y oafs-vE
1
X3 = ———= (-2,-1-v5,-1-V5,2)
2y/5+ V5
X3 = %(0,—1,1,0)T

1
x; = 7 (1,0,0,1)7.

Now, if X* = (x{ | x3 | x3 | x3), then

X" Myxi p+ :Z@; (2v+17)

- = 2 Mx. - 3 2 + )
XTMX =| X2 MeX2 | _| p—F(2v+7) | 3.84
’ x3” Max; P+ (3:84)

The first two components of the vector on the right hand side of (3.84) will serve as

the bounds defined by (3.81) and (3.82), respectively, that is, e?’ >p+ 35§(2v +7)
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and el Sp——“s—g(2v+'y) for all § <y < %. Since

5
P+ %(211 +7) > e
and
5
p— %(21} +7) < eg),

Case I is Schur-better than Case VIII on the interval. O

The results of the majorization analysis are summarized in table 3.33 in which,
for subintervals of 0 < ¥ < v, the cases not ruled out by majorization are listed. For

example, when < v < U—'s‘—/-ﬂv, the A-best design is either an ECD(8 + 1), Case I,
II, or VI design.

Table 3.33: Remaining Optimality Candidates in D(v, 4; k1, k2)

I, v,98

I |
- I _
ECD(8) m ' '1 ' ECD@+1)

Im_
type-1 optimal | VI :é :0+1 Schur-optimal
+1
+1

¥
A

ECD(@8)
Schur-optimal

!
!
!
I
I
X
A

-

SlE N - — = — —
A =g
2

2]

1
1 v

nig < -

|
1
2v
3
(7).
3.4.4 A-optimality in D(v, 4; ki, k2)

Now that we have eliminated as many designs as possible using majorization, eigen-
value optimality investigations must focus on specific functions of the eigenvalues
of the information matrices for the remaining design competitors. In this section,

we will find the A-optimal design(s) in D(v, 4; k1, k2) on the interval 3 <v < ¥ by
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directly comparing the A-values of the designs that were not eliminated by majoriza-
tion on the subinterval.

There are four classes of designs, ECD(8 + 1)s, and three classes of NECDs, that
can potentially be optimal on the interval. Each class along with the interval on

which the designs in the class are optimality competitors and the eigenvalues of the

information matrix for the designs are listed below.

ECD(6 + 1): $<v<uv,

3 _
z§6+1) —_ _p.%_l) (3 copies)
@+1) _ 3[? — (v - 'Y)]
22 —_— —————————————————————
p
Casel: §<y< ¥,
o _ 3p+(v-1)
z! = ——
p
(1) 3p—7
z =
2 P
m 6p—2(v—'y)-i-v—\/16(21—7)2-+-v2
23 = 2p
(1) 6p—(v—7)+v+\/16(v—7)'-’+v2
34 =
2p
CaseIl: § << %”,
z{z) — 3p—~
p
3p —
zéz) _ P—7
p
@ _ 3p—-3v—v)+v
23 =
p
@ _ 3¥—7+2w
zg' = ————p-—

Case VI: §-<7$(-7—‘3ﬁ)v,

z{s) _ bp+2(v—v)—-(1+ \/5)11
2p
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6 _ 6p+2(v—7)—(1-5w

~

Lo _ 6p—2(v—v)+v-— \/4(11 —2v)2 + o2
3 = 2

O 6p—2(v—7y)+v+ \/4(11 —27)2 +v?
2p

Now we will make A-value comparisons for the competitors on 3 < v < 3—4"-.

Lemma 3.4.14 When ¥ < v < (Tﬂsé) v, Case II designs are A-better than Case
VI designs.

Proof Case II designs are A-better than Case VI designs if and only if

L ottt 1.1 1 1
mtoeoteatesertetwe e
AT T m = E T et E T e

if and only if

6(2p + v)7* + 120%(3p + 2v)y? + 18p*(9p? + 2v%)y + 9p*(18p° + 15pv + 4v°)—
[29° + v(16v + 27p)¥® + 9p*(12p + v)¥? + 2v%(9p + 8v)y + (3.85)

9p%v(9p® + 2v7)] > 0

A lower bound for the left hand side of (3.85) on § < v < (7—3@) v can be obtained

by substituting ¥ = ¥ into the positive terms and v = (7‘8 5) v into the negative

terms. Doing so yields
*[-24192(1 — V/5) (%)3 - (3.86)
2
288(27 — 7/5) (%) — 16(1896 — 657v/5) (5) — (20225 — 7817V3)].

If we can show that the lower bound (3.86) is greater than zero when 2 > z for
some real number z < 1 then the result follows from corollary (3.1.2). Consider the
function

f(z) = —24192(1—/5)z® - 288(27—7V/5)z> — 16(1896 —657v/5)z — (20225 —7817V5).
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Clearly the lower bound (3.86) is greater than zero for all values of 2 = z for which
f(z) > 0. The derivative of f(z) is

f'(z) = -72576(1 — V/5)z® — 576(27 — 7V/5)z — 16(1896 — 657/5),

and f’(z) =0 if and only if

~9[(27 - 7v8) ¥ 2/~17890 + 8841.V5
= 2268(1 — v/5) -

Since

. -9 [(27 ~ 7v/3) — 2¢/~17890 + 88415

-—— < <0
2 2268(1 — v/5)
-9 [(27 —7V5) +2/-17890 + 88413|
< =< =,
2268(1 — v/5) 3

f (%) >0, and f (%) > 0, then f(z) >0 forallz > § Therefore, Case II designs
are A-better than Case VI designson § <y < (7-=§-f—5) v. O

Lemma 3.4.15 When ¥ <y < % ECD(8 + 1)s are A-better than Case I designs,
and when 3 <7 < 35—", ECD(@ + 1)s are A-better than Case I designs provided

—27% + 10v7? + (18p% + 9pv — 14v%)y — 3u(3p® — 3pv — 20°) >0 (3.87)

Proof ECD(8 + 1)s are A-better than Case I designs if and only if

3 1 1 1 1 1

+ S+ +-m+—-
Z{6+1) z§6+1) ZP) zél) z:(,l) Zil)

if and only if
—29° + 10v7* + (18p* + 9pv — 14v%)y — 3u(3p? + 3pv — 2v%) > 0,

which is (3.87). On 3 <y < %, the left hand side of (3.87) is bounded below by

a2 (2) - (8) o
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which is obtained by substituting v = 3 into the positive terms and v = 3 into the

negative terms. Setting the bound (3.88) equal to zero and solving for 2 yields

1_:_8;3\/14
v 8 ’
Since
1 8§ —3v14 8+3v14
3<7g <0< <3

and (3.88) is greater than zero when 2 > 3, (3.87) is satisfied on 3 < v < ¥ when
2 > 2 and, by corollary 3.1.4, this inequality holds if k; > kz > 5, ks =4 and
ky > 7, or k2 = 3 and k; > 15. Thus (3.87) may not be satisfied when k; > k, = 2,
14>k >k =3,0r 62>k >k, =4 Bylemma3.12 when £ < y < 3
ko = 2 ifand only if ky, = 4, 14 > k; > k, = 3 if and only if k; = 9,10, 11, or
12, and 6 > k; > k2 = 4 if and only if k;, = 6. Since condition (3.87) is satisfied
when (k;, k2) = (4,2), (9, 3), (10, 3), (11, 3), (12, 3), and (6,4), then ECD(@ + 1)s are

A-better than Case I designs on the interval. O

Lemma 3.4.16 When £ <y < %” ECD(8 + 1)s are A-better than Case II designs.
When § < v < ¥, ECD(8 + 1)s are A-better than Case II designs provided

—29° + 12v7% + (18p® + 15pv — 16v%)y — 3vu(3p? + 4pv — 0*) > 0. (3.89)

Proof ECD( + 1)s are A-better than Case II designs if and only if

3 + 1 < 1 + 1 + 1 + 1
- (2 2 2 2
PO g TP Et P

if and only if
—273 + 12v9* + (18p? + 15pv — 16v%)y — 3v(3p® + 4pv — 2¢%) > 0

which is (3.89). On £ <y < %, the left hand side of (3.89) is bounded from below
by

675 215 (p ) 2025 (” ) — 634], (3.90)
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which results from substituting v = 22 into the positive terms and vy = % into the

negative terms. Since the bound (3.90) is equal to zero if and only if

p _ 225F /88665

v 270
3 225 - /88665 225 + /88665
G< T ag <0< —F— <19,

and (3.90) is greater than zero when 2 = 2, then (3.89) is satisfied on 2 <y < &
when & > 2. By fact 3.1.3, this inequality holds when k; > k2 > 4 or k2 = 3 and
k; > 6. Thus, (3.89) may not be satisfied when ks > k; =2 0or 5> k; > ka = 3. On
¥ <4 <%, (k1 k2) does not take on the values (3,3), (4,3), or (5,3), and by corollary
3.1.5, k2 = 2 if and only if k; = 4. Since (3.89) is satisfied when (k;, k2) = (4, 2),
then ECD(8 + 1)s are A-better than Case II designs on the interval. O

Lemma 3.4.17 When ¥ < v < 2, Case I designs are A-better than Case II de-

signs, and when § < v < %’-, Case I designs are A-better than Case II designs
provided

27v* — 2(3p + 8v)y* — (18p® — 21py — 34v?)y + (3.91)

2(27p* + 45p%v — 6pv? — 14v®)y — v(27p° + 54p*v — 8v3) > 0.

Proof Case I designs are A-better than Case II designs if and only if

1 1 1 1 < 1 1 1 1
ot oot ot etetet e
%1 29 23 21 22 <3 24

Q)
~4

if and only if

2y* — 2(3p + 8v)7y® — (18p? — 21pv — 34v? )+

2(27p® + 45p*v — 6pv® ~ 14v°)y — v(27p® + 54p*v — 8v°%) > 0.

which is (3.91). On 32 < 2 (3.91) is bounded from below by

1

r\? p\? D
— (91125 (£} — )y — ) - T .
68T -[91125 (u) 135000 (v) 37425 (v) 49076] (3.92)
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which results from substituting v = 3?" into the positive terms and v = 27” into the
negative terms. We will now show that the bound (3.92) is greater than zero on

% < v < % when 2 > 2 by using the function
f(x) = 911252% — 135000z — 37425z — 49076.

since the bound is greater than or equal to zero when 2 = z for values of x such that
f(z) > 0. Since f'(z) =0 if and only if

_ 400 F V62455

- 405 ’

< 400 —4\/0562455 <0< 400 +4\/0562455 <13,

and f(2) = 65074, then (3.92) is greater than zero and (3.91) is satisfied when 2 > 2.

-1.2

From the proof of lemma 3.4.16 we know the only pair (k;, k2) for which § Z2on
T <y < %is(4,2), and it is easy to see that (3.91) is satisfied when (k, k2) = (4,2).

Therefore, Case I designs are A-better than Case I designson ¥ <y < %Z. O
A summary of the A-best analysis is given in table 3.34 below.

Table 3.34: A-, Type-1, and Schur-optimal Designs In D(v, 4; k1, k2)

Case I1
Case V
ECD(@ )

_ ' _ 6+1 _
ECD(8) I ECD(@®) - |ECD@+1), ECD(@ +1)
or
Schur-best | type-1 best I A-best | Schur-best
| A—best| I
% X —— -
0 H 5 ¥ 'y v

Note that the A-best design is uniquely an ECD(f) when 0 < v < % and uniquely
an ECD(f + 1) when 32 < 4 < v. When v = ¥ the eigenvalues for ECD(@)s, Case I
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and Case V designs are identical, and the same designs are A-best. On the interval
2 <y < %, the A-best design can be either an ECD(@ + 1), a Case I, or a Case I
design; conditions (3.87), (3.89), and (3.91) must be checked in order to determine

the A-best design. For 10,000 > k; > 3 and k; > k; > 2 with § < v < ¥ the

Nig

designs were ranked by their A-value with the following results:

Table 3.35: A-optimal Design Counts In D(v,4;k;, k2) When % <y <

nic
|
@

interval
oY < v < .60V
DU <y <.53v
S <y < .57y

A-optimal
ECD@B +1)
Case I

Case I1

count
5,027,032
77
18,034

Case IT A-optimal, ECD(8 + 1) second best

332

615
1026
1589
2328
3267
4430
5841
7524
9503

41

61

85
113
145
181
221
265
313
365

1

0.5067
0.5044
0.5032
0.5024
0.5018
0.5015
0.5012
0.5010
0.5008
0.5007

ECD@ +1)
A-value
1.33341528681224
1.33336898681649
1.33335121489144
1.33334325422629
1.33333926800729
1.33333709653531
1.33333583303917
1.33333505784887
1.33333456108502
1.33333423094228

Case [
A-value
1.33341528616835
1.33336898657864
1.33335121481050
1.33334325419645
1.33333926799523
1.33333709653001
1.33333583303667
1.33333505784761
1.33333456108436
1.33333423094191

Case II
A-value
1.33341529455844
1.33336898804561
1.33335121515767
1.33334325429825
1.33333926803025
1.33333709654363
1.33333583304252
1.33333505785033
1.33333456108571
1.33333423094262
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ky

85

113
145
181
221
265
313
365
421
481
545
613
685
761
841
925

ka
7

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22

v
0.5326
0.5289
0.5260
0.5236
0.5216
0.5199
0.5184
0.5172
0.5161
0.5151
0.5142
0.5135
0.5128
0.5122
0.5116
0.5111

Case I A-optimal, Case II second best

ECD(6 +1)
1.33577654097824
1.33518039792047
1.33477950084018
1.33449673022044
1.33428971292312
1.33413355144468
1.33401281884187
1.33391753469016
1.33384100659906
1.33377860909054
1.33372706130054
1.33368398324226
1.33364761415738
1.33361662859149
1.33359001324405
1.33356698266158

A-value

Case I
1.33576851757101
1.33517611041577
1.33477701479240
1.33449519480483
1.33428871579687
1.33413287687614
1.33401234675116
1.33391719472945
1.33384075574521
1.33377842004996
1.33372691620282
1.33368387006051
1.33364752459940
1.33361655681632
1.33358995505806
1.33356693500184

Case IT
1.33576872031938
1.33517651436696
1.33477739857049
1.33449551298767
1.33428896905532
1.33413307629157
1.33401250391211
1.33391731931784
1.33384085529994
1.33377850029529
1.33372698145427
1.33368392357517
1.33364756884820
1.33361659368708
1.33358998600468
1.33356696115336

3.4.5

Special Cases: (k1 — k2) < 2

We now apply the optimality results from sections 3.4.2 and 3.4.4 to the three special

cases described in section 2.4.

Corollary 3.4.18 Suppose k; = k2 and r = 4. Then

(i) If 2| ky then v = 0, and ECD(8*)s ezist and are Schur-optimal.

(i) If 2 { ky then v = %, and ECD(8)s, Case II, and V are identical and (E, S)—
and type-1

Corollary 3.4.19 Suppose ko = k; — 1 and r =4. Then

(i) If 2| ky then 3 <y < 2, and ECD(8}s are (E,S)- and type-1 optimal.

(i) If2{ ky then 3 < v < %2, and ECD(8 + 1)s are Schur-optimal.
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Corollary 3.4.20 Suppose k; = k; — 2 and r =4. Then

(i) If ky = 4 then v = ¥, Case I designs are (E,S)-optimal, and ECD(8 + 1)s are
A-optimal.

(it) If ky =6 theny = 3?”, Case II designs are (E,S)-optimal, and ECD(8 +1)s are
A-optimal.

(iti) If2 | ky and ky > 8 then § <y < 3—5"-, Case II designs are (E,S)-optimal, and
either an ECD(@ + 1) , a Case I, or a Case II design is A-optimal.

(iv) If2{ ky then 0 <y < &, and ECD(8)s are Schur-optimal.

3.4.6 Construction of Optimal Designs in D(v, 4; k, k2)

The A-, (E,S)-, type-1, and Schur-optimal resolvable designs in D(v, 4; k1, k2), k1 > 3
and k; > k, > 2, are ECD(8) , ECD(8+1) , Case I, and Case II designs depending on
the value of 0 < ¥ < v. In particular, when 0 < v < %, ECD(@)s are type-1 optimal;
when v = £, ECD(8)s, Case I, and Case V designs are type-1 equivalent and type-1
optimal; when 32 < ¥ < v, ECD(f + 1)s are Schur-optimal; and when % < v < ¥,
A- and (E,S)-optimal designs are ECD(@ + 1)Js, Case I designs, and Case II designs.
Furthermore, in the previous section we determined that, when k; — k» < 1, A-,
(E,S)-, and Schur-optimal designs are ECDs and when k; — k2 = 2, A- and (E,S)-
optimal designs can be ECD, Case I, and Case II designs. However, we have yet
to address the question of if and when the theoretically optimal designs exist, and
if they do, provide a means for finding the optimal design. In this section we will
determine constructions for ECDs, Case I, and Case II designs. The constructions for
ECDs will be described in such a way that they will be valid for ECD(6* Js, ECD(8)s
and ECD(@ + 1)s.

Now we are ready to provide constructions for the first block of each replicate for

values of k; in the interval given by (3.74).
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Construction of ECD(0)s

Let L be the common ECD treatment concurrence. Then for ECD(8)s, L = 8, and

for ECD( +1)s, L = § + 1. Not that when k; > 2L, then by 3.74, L = §.

Block 1 of Replicate 1: {1 ... k}
Block 1 of Replicate 2: {1 ... L} U {ki1+1 ... 2k, — L}

Block 1 of Replicate 3:

(i) ki <2L or (k; = 2L and L even):
if kl1<2L
{1...20-k} U{L+1...2k—-L}

(ii) k1 = 2L and L odd:
1.5y U {L+1... Yy U+l . h+5} U
{2k, +1-L ... 2k — &}
(iii) &y =2L +1:
{L+1...2Ly U{ki+1 ...k +L} U {2ki+1—L ... 3(ki— L)}

Block 1 of Replicate 4:

(i) L+1<k <3iL
if 2k1<3L
{1...3L-2K} U{2L+1—k ... 2k; — L}

(ii) 3L < ky < 2L and L even:
{2L+1-k ...3L—k} U {L+1...3L} U
{ki+1...ki+%} U{2ki+1-L ... 3k, — 3L}

(iii) 3L < k; < 2L and L odd:
{1} U{2L+1—-k ... -k} U {L+1... %1}y
{ki+1...k+5} U {2ki+1-L ... 3k — 3£}
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(iv) ky =2L and L odd:
{u{L+r... & Uy lh-5 ...k} U
{fi+1.. k+5} U {2k-3(L-1)... 26, =L} U
{3k, — 71}

(v) 2L <k, < 3L:
if k1 <3L—2
{1 Lrine (Bp2)} U {L+1 . Lo Line (S522)} U

{2L+1...ki} U {ki+1... ki+1+int(%=h=l)} y
if L-3-2 int(E=f1=2)>0
{k1+L+1 .o 2k1—L} U {2k1+1—~L - 2kl_2_2int(3L-:l—1)}

U{B(ki—L)+1 ...3(ky—L)+1+int (3!.—;,-1)}

(vi) ky =3L:
{2L+1...3L} U {ki+L+1...k+2L} U
{2k, +1-L ... 2k}

Construction of Case I Designs

Block 1 of Replicate 1: {1 ... k;}
Block 1 of Replicate 2: {1 ... 8} U {k;+1 ... 2k; — 6§}

Block 1 of Replicate 3: {1 ... 2(0+1) -k} U {f+1... kK, —1} U
{k1+1 ...2’31—(9-'{"1)}

Block 1 of Replicate 4:

() 6+2<k <3(@+1):
- _ ifk1>§+2 _ _
{1...30+4-2K} U {20+3-k ...0} U{f+1.. . k,—1} U
if k1>8+2 _
{k1+1 ...2k1—(0+2)} U {2’61—0}

(ii) 3(6+1) <k; <20+ 1 and § even

_ if §-2>0 _ _ -
{1} U {26+3—k ... 36+1-Kk} U {f+1... 36} U
i+l .. k+8} U {k} U (2k—8... 3k —2- 38}
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(iii) 3(f+1) <k <2+ 1 and § odd
ifd>1
{20+3—k ... 82—k} U{G+1... %2 U {k} U

{bi+1.. ki +8Y U {26-8 ... 3k -3@F+1)}
Construction of Case II Designs
Block 1 of Replicate 1: {1 ... k;}
Block 1 of Replicate 2: {1 ...} U {ki+1 ... 2k; — 8}

Block 1 of Replicate 3: {1 ... 2(+1)-k} U {§+1... ky—1} U
{k1+1 ... 2k, —(@+1)}

Block 1 of Replicate 4:

(i) §+2<k <3(@+1):
_ . i ki>+2 _ _ ifki>6+2
{1...30+4-2k} U {26+3—k, ... 60} U {#+1... -2} U
if ky>8+2
{kfi} U {k1+1...26,-(6+2)} U {2k, -6}
(ii) 3(f+1) <k <20+ 1 and § even
{260+3~k ...36+2-k} U {f+1...36} U {k} U
{k1+1...k1+g} U {2&1—6-... 3k1—2—gg—}
(iii) 2(f+1) <k <20 +1 and 8 odd
{20 +3—Fk ... 30+1) -k} U {f+1... ¥} y

if §+1>0 _
{fi+1.. . k+%} U {26 -8 ... 3k, — %53}

3.4.7 Examples of Resolvable Designs in D(v, 4; k1, k2)

We will now use the constructions of the previous section to provide some examples
of resolvable designs in D(v, 4; k1, k) for various interesting k; > 3 and 2 < k; < k3.

First we construct designs for the two cases when k; = k,.

Example Suppose k; = k2 = 8. Then, according to corollary 2.4.2 the the Schur-
optimal design is an ECD(8*). Applying the ECD construction given above with
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L = § = 4, and using condition (i) for block 1 of replicarte 3 and condition (ii) for
block 1 of replicate 4 yields a Schur-optimal ECD(8*) which is:

1 9 1 5 5 1 1 3
210 2 6 6 2 2 4
3 11 3 7 7 3 5 7
4 12 4 8 8 4 6 8
5 13 9 13 9 13 9 11°
6 14 10 14 10 14 10 12
7 15 11 15 11 15 13 15
8 16 12 16 12 16 14 16

Example Consider the case where k; = k; = 3. Then, according to corollary 2.4.2
the (E,S)- and typt-1 optimal design is an ECD(8). Applying the ECD construction
given above with L = § = 1, condition (iii) for block 1 of replicate 3, and condition
(vi) for block 1 of replicate 4 produces an (E,S)- and A-optimal resolvable ECD(8)
which is:

w o

4 12
5 4 3
6 56

(= I N V)
W~

1
2.
4

oUW

Now we investigate the two cases when k; — k; = 1.

Example Consider the setting such that k; = 6 and k; = 5. By corollary 2.4.4,
the (E,S)- and type-1 optimal design is an ECD(@). Applying the ECD construction
given above with L = 8 = 3 using condition (i) for block 1 or replicate 3 and condition

(ii) for block 1 or replicate 4 yields an (E,S)- and type-1 optimal ECD(4) which is:

1 7 1 4 1 2 1 2
2 8 2 5 4 3 4 3
3 9 3 6 5 6 6 5
4 10 7 10 79 7 8°
511 8 11 8 11 9 10
6 9 10 11

Example Suppose k; = 5 and k; = 4. By corollary 2.4.4, the Schur-optimal design
is an ECD( + 1). Applying the ECD construction given above with L=6+1=3

using condition (i) for block 1 of replicate 3 and condition (iii) for block 1 or replicate
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4 produces the a Schur-optimal ECD( + 1) which is:

16 14 12 13
274125 | 43 25
3 8 38| 58|47
49 69 |69 6 9
5 7 7 8

Finally, for our last example we investigate a setting for which the (E,S)-optimal

and A-optimal designs are not the same.

Example Consider the setting for which k, = 12 and k; = 7. For this setting § = 7
and y = .58v, and since § < v < ¥, the (E,S)-optimal design is a Case II design
and the A-optimal design may be an ECD(@ + 1), Case I, or a Case II design. In
order to determine the A-optimal design, the optimality conditions (3.87), (3.89),
and (3.91) must be checked, and in doing so, we observe that all three conditions are
positive (81488, 92508, and 27236404, respectively). Thus, ECD(8 + 1)s are A-better
than both Case I and Case II designs, and Case I designs are A-better than Case II
designs which means an ECD(@ + 1)is A-optimal.

Applying the Case II construction for § = 7 using condition (iii) for block 1 or
replicate 4 yields an (E,S)-optimal Case II design which is:

113 1 8 1 5 1 2
2 14 2 9 2 6 5 3
3 15 3 10 3 7 6 4
4 16 4 11 4 12 711
5 17 5 12 8 17 8 16
6 18 6 18 9 18 9 18
719 719 10 19 10 19~
8 20 13 20 11 20 12 20
9 14 13 13

10 15 14 14

11 16 15 15

12 17 16 17

The E-value for this design is 2.86 and the A-value is 1.3383. Since 2.86 > 2.71 Case
II is E-better than the ECD(@ + 1), and since 1.3377 < 1.3383 the ECD(@ + 1) is
A-better than the Case II design.
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Applying the ECD construction with L = § + 1 = 8 using condition (i) for

block 1 if replicate 3 and condition (i) for block 1 of replicate 4 yields an A-optimal

ECD(8 + 1) which is:

WO~ WU -

10
11
12

13
14
15
16
17
18
19
20

10
11
12
17
18
19
20

13

15
16

=20 N = R

10 18
11 19°
12 10
13
14
15
16

The E-value for this design is 2.71 and the A-value is 1.3377.

3.5 Resolvable Designs With Five Replicates

3.5.1 Introduction

In this section we study optimality for the the resolvable design setting D(v, 5; ky, ka).

We will determine (E,S)-optimal designs, and the A-optimal designs in some special

cases. We also exploit the majorization theory of Chapter II in so far as possible.

From section 2.3 we have:

ECD(6): The optimality matrix for ECD()s is My = pI —v(J —I). The eigenvalues

of M, are

&) =
&) =

p+y

p—4y,

(4 copies)

&(7) =&(7) =&(v) > &(7)

ECD(0 + 1): The optimality matrix for ECD(@+1)s is My = pl —v(J—I)+v(J~I).
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The eigenvalues of My are

&i(y —v)

E0y—v) = p+4(v—-1),

p—(v—1) (4 copies)

Ly =v)>&(r—v)=&(y—v)=&(y—v)

Theorem 2.3.3, lemma 2.3.7, and corollary 2.3.8 establish conditions for when ECD(8)s
are E-better or Schur-better than ECD(d+1)s and for when ECD(8+1)s are E-better
and Schur-better than ECD(8)s; see table 3.36.

Table 3.36: E- and Schur-comparisons Of ECDs In D(v, 5; ki, k2)

ECD() _ 'BCD@ +1)
! ECD(6) E-better !

Schur-better | Schur-better
¥ -

4v
3 v

I
L

wie =
Nie  +

0

Conditions for Schur- and E-optimality of NECDs or ECDs can be established
using lemma 2.3.17 and by direct eigenvalue comparisons. The optimality matrix
M; (in order to apply lemma 2.3.17) or the concurrence discrepancy matrix Ay
must be derived for competing NECDs. Recall that NECDs have block concurrences
¢ € {8,8+1} forall 1 < i # ' < 4 and have at least one block concurreace equal to
@ and at least one equal to § + 1. There are 32 cases of nonisomorphic NECDs; their
block concurrence patterns, {12, $13, P14, D15, D23, P24, D25, P34, P35, Pas } are listed in

table 3.37 and the corresponding block concurrence discrepancy matrices are shown

in table 3.38.
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Table 3.37: Block Concurrence Discrepancies For NECD In D(v, 5; k1, k3)

Oa12 Oa13 Odia Omis Oms Ouza Owrs Ouzs Ouzs Ouss

Case

II

1

IIr

v
|4

1
1

VI

VII

1
1

VIII
IX
X

1
1
1
1
1
1
1
1
1
1

XI

XII

XIII
XIv

XV

XVI

XVII

1

XVIII
XIX

XX

1
1
1
1
1
1

XXI

XXII

1
1

XXIIT

XXIV
XXV

1
1
1

XXVI

1

XXVII

XXVIII 1
XXIX
XXX

1
1
1

1
1

XXXI

1

XXXII
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{01111\
10000
10000
10000

\10000

(01110\
10100
11000
10000

\000O0O

(01 110)
10000
10000
10001

\00O010)

(01100)
10000

10010

As=
A9=

(0100 0)

o - (3] ~ A
4 4 4 4 4
N ~ ~~ ~ ~~ — ~~ ~ ~~ ~ N ~
(e e i en B o [ e e B o B o OO0 0O0O [en B en B e T o J oo OO0 0OO (oo I e B e B e i o o oo
(e I e B e Y o) oo oCocoo OO ~0O0 -0 O 00 (o= i em I o i e i o] OO0 -=0O0 (== == =]
oo oo - O00Oo OO O ~O0O - OO OO ~ O O0O0O OoO~O0O~0 - O O
[e= R e B oo B o} - OO0OOoOOo -~ O 000 - O O OO0 - O ~00 - O -~00 - o Q
-~ O OO O r v OO O -OO0OO O - =~ O O~ ~O0O0O O~ O 0O O e~
e N— e N— — N— e N— ——— N— — N—

Ar =
Az =

Table 3.38: Concurrence Discrepancy Matrices For NECDs In D(v, 5; k, k2)
A1 =

AWA

[01010)
10100
01010
10100

\0 0000

(01100)
10100
11000
00001

\00010)

(01 111)
10100
11000
10000

\1000 0

=

A5=
Ag =
A7 =
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Table 3.38: Continued

-~ S ~ N ~~ N
OO0 COHOO OFMMHOO
HH A0 HHOO0OO HOOOO
HEH OO HMHOOM wWeHOO -
- O - O - O - O - O -~
O = - O Ol = -~ O O =t =~ O
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Table 3.38: Continued

/01110) (01 111)
10110 10111
Ap=|11001 Ap=|11001
11001 11000
\00110)) \1 1100}/
(01 111) (01 111)
10111 10111
Axp=|11010 Ap=|11011
11100 11100
\1100 0 \11100)/

Using the concurrence discrepancy matrices for the 32 cases of NECDs, we begin
our eigenvalue optimality investigation by applying the following corollary of lemma
2.3.17.

Corollary 3.5.1 Letd € D(v,5;ky, k2) be an NECD having optimality matriz My =
pl —~(I — J) +vA, and let u, and u, be the mazimum and minimum eigenvalues,

respectively, of PTAP, where P = (I - LJ). If
<=2ty
TS
then ECD(@)s are Schur-better than d. If uy > 0 and

()
v > = v,
5

then ECD(8 + 1)s are Schur-better than d. Furthermore, if

u; >0 (3.93)
then ECD(8)s are E-better, but not necessarily Schur-better, than d.

We now use these tools to eliminate as many designs as possible. For each NECD,
condition (3.93) was calculated with results given in column four of table 3.39. We
see all cases except Cases VIII, XXV, XXVIII, and XXXII are E-inferior to ECD(8 Js.
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Table 3.39: Corollary 3.5.1 Results In D(wv, 5; k1, k2)

Case ._.'Asn ﬁ—T“L Uy
I 0.200 0.680 0.600
Ir 0.276 0.684 0.580
IIr 0.200 0.600 1.000
v 0.316 0.724 0.380
|4 0.200 0.640 0.800
VI 0.324 0.676 0.618
VII 0.274 0.566 1.169
VIII 0.320 0.800 0.000
IX 0.282 0.689 0.554
X 0.359 0.645 0.773
XI 0.343 0.600 1.000
XII 0.400 0.720 0.400
XIII 0.200 0.520 1.400
X1V 0.305 0.695 0.525
XV 0.305 0.695 0.525
XVI 0.324 0.676 0.618
XVII 0.334 0.579 1.104
XVIIT 0305 0.695 0.525
XIX 0.324 0.676 0.618
XX 0.311 0.718 0.410
XXI 0.280 0.600 1.000
XXIr 0.200 0.680 0.600
XXIIT (0355 0.641 0.797
XXIV 0.355 0.641 0.797
XXV 0.480 0.800 0.000
XXVI 0.324 0.676¢ 0.618
XXVII (0276 0.684 0.580
XXVIIT|0.360 0.800 0.000
XXIX 0434 0.726 0.369
XXX 0.316 0.724 0.380
XXXI |0316 0.724 0.380
XXXII {0320 0.800 0.000

141

Values of v for which ECD(@)s or ECD(d + 1 s are Schur-better than NECDs having

any of the concurrence discrepancy matrices listed in table 3.38 have been determined

using corollary 3.5.1 and are also listed in table 3.39. ECD(# )are uniquely Schur-

optimal on 0 < v < £, and ECD(@ + 1)are uniquely Schur-optimal on % <y < v.
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Since none of the four remaining NECDs cases are completely eliminated from
(E,S)-optimality contention, in order to proceed we must make direct eigenvalue
comparisons; consequently, we need explicit expressions for the eigenvalues of .he
optimality matrices. The eigenvalues and their ordering over the admissible region

are given below.

Case VIII: The optimality matrix for Case VIII NECDs is Mg = pl —y(J = I) +
vAg, and the eigenvalues of M; are

e = p+v
&) = p+7
e = p+7
e = p- 37-&- \/16(11—‘7)2+9‘7
e = p—gl—-\/lﬁ(v—7)2+9*r

e ‘(‘8) (8) (8) _ _(8)

® P = > el® e =ey =e3

> el® = e >el¥ >

~r
-
2

o
I
S

Case XXV: The optimality matrix for Case XXV NECDs is Mas = pI — y(J —

I) + vAss, and the eigenvalues of Mas are

e™ = p+v
e = p+v
e = p+7
e = p—%+£\/24(v—7)2+72
e = p—3—7—-\/24(v—7)2+72
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!
el > e = & = ¥ > &™) (™) = &) = &{®) > ) > 2
|

1
8

—_

v

wie -+

0

Case XXVIII: The optimality matrix for Case XXVIII NECDs is My = pI —
v(J — I) + vQ2g, and the eigenvalues of Mg are

e = p+v
e = p+v
28
e = p—(v-7)
2 Br-v) 1
¥ = p- T+ 5/ AU )
28 By—-v) 1
S e e VRS CREls
i
(28) (28) (28)
28 28 28 28 28 &L =€ > &
e‘(‘)>e€)=e(2)>€;(;)>e§) ! (28) (28)
¢ | -
0 3 ’

Case XXXII: The optimality matrix for Case XXXII NECDs is M3z = pI —(J —
I) + vA32, and the eigenvalues of M3, are

e = p+ry

& = p—(v-7)

e = p—(v-1)

eq = p-f-T-i-5\/(211—'7)2-4-24(11—‘7)2
2v—3 1

e = p+ —2—7 - 5\/(211 —7)2 +24(v — v)?
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!
(32) (32) (32)

e >e >e

e‘(,”) > 8(132) > egsz) - e:(’zz) > e§32) 1 4 2

— egaz) > 6(532)

\
3 — 7
v

o
A 4 — —

We conclude this section by settling the case v = 3.

Lemma 3.5.2 When~y =, ECD(8)s, Case VIII and Case XXV designs are type-1

equivalent.

Proof Since all cases of NECDs except for Cases VIII, XXV, XXVTII, and XXXII
are E-inferior to ECD(8)s, when vy = 3. the optimality matrices for these cases are
the only optimality matrices that can potentially have eigenvalues that are identical
to the eigenvalues of the optimality matrix for ECD(8)s and, therefore, be type-1
equivalent to ECD(#)s. When v = %, it is easy to prove that the eigenvalues of the
optimality matrices for ECD(8)s, Case VIII, and XXV designs are identical, and the
eigenvalues of the optimality matrix for Case XXVIII and XXXII designs are not
identical to those of ECD(8)s using the explicit expressions for the eigenvalues. O

3.5.2 (E,S)-Optimal Designs in D(v, 5; k1, k2)

In section 3.5.1 we proved that the only NECDs that can be E-optimal in a resolvable
design setting D(v, 4; k;, k2) are Cases VIII, XXV, XXVIII, and XXXII. Before in-
vestigating E-optimality in detail we will review a few useful optimality results from

above.
1. ECD(8)s are uniquely Schur-optimal when 0 < v < £,
2. ECD(@), Case VIII, and XXV designs are type-1 equivalent when v = ¥

3. ECD(6)s and ECD(8 + 1)s are E-equivalent when v = .
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4. ECD(8 + 1)s are uniquely Schur-optimal when £ <y < v.

Thus, all UECDs are E-inferior to an ECD; on 0 < v < %, ECD(8)s are E-optimal;
ECD(f)s, Case VIII, and XXV designs are E-equivalent when v = ¥; Case VIII,
XXV, XXVIII, and XXII designs can be E-optimal on § <y < %; and ECD@ +1)s
are E-optimal when 42 < v < v. In this section we will find the E-optimal designs on
2 < v <%, and when the E-optimal design is not unique, the (E,S)-optimal design
will be identified.

Lemma 3.5.3

1. ECD(8), Case VIII, and XXV designs are E-equivalent and E-better than Case
XXVIII and Case XXXII designs when § < v < 27"

2. When £ < v < %, ECD(6)s, Case VIII, XXV, and XXVIII designs are E-
equivalent and E-better than Case XXXII designs.

3. When & <y < % ECD()s, Case VIII, XXV, XXVIII, and XXXII designs

are E-equivalent.

4. When v =%, ECD(B)s, ECD( + 1)s, Case VIII, XXV, XXVIII, and XXXII
designs are E-equivalent.

Proof The maximum eigenvalue of the optimality matrix for ECD@@)s is & () =
p + v, and the maximum eigenvalue of the optimality matrix for ECD(@ + 1)s is
&(y —v) =p— (v —+). On the interval § < v < v, the maximum eigenvalue of the
optimality matrices for Case VIII and XXV designs is e?’ = e(fs) = & (7); therefore,
ECD(8)s, Case VIII, and XXV designs are E-equivalent on the interval, and ECD(6 s,
Case VIII, XXV, and ECD(6 + 1)s are E-equivalent when v = 4. On the interval
2 < ¥ < Z, the maximum eigenvalue of the optimality matrix for Case XXVIII is

e.(fs) > &1(7), and on 2?" < 7 < v the maximum eigenvalue of the optimality matrix for
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Case XXVIII designs is e1 = £&(7)- Thus, when § < v < Z, Case XXVIII designs
are E-inferior to ECD(8)s, when T <y < ¢ Case XXVIII desxgns are E-equivalent
to ECD(f)s, and when v = % Case XXVIII designs are E-equivalent to ECD(8)s
and ECD(@ + 1)s. On the interval § < v < % the maximum eigenvalue of the
optimality matrix for Case XXXII designs is e{2) > £ (7), and when 3 <y <uvthe
maximum eigenvalue of the optimality matrix for Case XXXII designs is e(3 ) = &i(v)-
Therefore, Case XXXII designs are E-inferior to ECD(f)s when % < v < 3, Case
XXXII designs are E-equivalent to ECD(#)s when % < v < % and Case XXXII
designs are E-equivalent to ECD(@)s and ECD(8 + 1)s when v = . O

Now Schur comparisons of the E-optimal designs can be made.
Lemma 3.5.4 Case XXV designs are Schur-better than Case VIII when § <y < v.

Proof When 3 < v < v, the eigenvalues of the optimality matrix for Case VIII

designs are e(ls) = egs) = e;(,s) > e(s) > e(s) and the eigenvalues of the optimality
matrix for Case XXV designs are e(l ) = egzs) = e( b > eﬁm > egm Since e(ls) =
egs) = e;(,s) = e(lzs) = e(zzs) = e;(fs) and e.(,s) > eés) then the eigenvalues of the optimality

matrix for Case VIII designs majorize the eigenvalues of the optimality matrix for

Case XXV designs. O

Lemma 3.5.5 Case XXVIII designs are Schur-better than Case XXV when <

v <uw.

Proof When 2?" < 4 < v the eigenvalues of the optimality matrix for Case XXV

(25) (25) __ (

designs are e;” ' = e; BN e(zs) > e(25) and the eigenvalues of the optimality

matrix for Case XXVIII designs are e(l ) = B > 28 5 e:(,,”) > e2®. Since

o) = o2 = of25) _ ((29)

=ef™ =l = &f® > e and ef™ < ™, then the eigenvalues of the

optimality matrix for Case XXV designs majorize the eigenvalues of the optimality
matrix for Case XXVIII designs. O
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Lemma 3.5.6 Case XXXII designs are Schur-better than Case XXVIII when 3 <

¥ <.

Proof When %’ < v < v the eigenvalues of the optimality matrix for Case XXVIII

(28)

designs are 6(128) = e&m > eﬂm > e&”’ > es ', and the eigenvalues of the optimality

matrix for Case XXXII designs are e(lm > e.(fz) > e.fm = e;(,,m > egm. Since

(28)

el (28) _ (32) 32

=e  =¢e€ 2 e.(,sz) and e.(,m > e&”’ = eg ) = eg‘m then the eigenvalues
of the optimality matrix for Case XXVIII designs majorize the eigenvalues of the

optimality matrix for Case XXXII designs. O
Lemma 3.5.7 ECD(f + 1)s are Schur-better than Case XXXII when v = .

Proof When v = % the eigenvalues of the optimality matrix for Case XXXII

(32)

designs are e‘ln) > e.‘,‘m > egm = e:(,n) > es’, and the eigenvalues of ECD(@ + 1)s

are &(7—v) > &(y—v) = &(v—v) = & (7 — v) = &(y —v). Since e = &(v - v)

(32) (32)
4

and e; ' > &i(y —v) = eg’z) = eg“” > es ' then the eigenvalues of the optimality

matrix for Case XXXII designs majorize the eigenvalues for ECD(@ + 1)s. O

Lemmas 3.5.3, 3.5.4, 3.5.5, 3.5.6, and 3.5.7 guarantee that for £ < v < ¢ there
is a unique Schur-best design among the E-best designs, and when v = 3 three
classes of designs, ECD(8)s, Case VIII, and XXV, have identical eigenvalues and are
Schur-best. The (E,S)-optimality breakdown is shown in table 3.40.

3.5.3 Special Cases: (k; — k2) <2

We will now apply the optimality results in the setting D(v, 5; ky, k2) from section

3.5.2 to the three special cases when (k; — k;) < 2 described in section 2.4.

Corollary 3.5.8 Suppose k1 = kz andr =5. Then

(i) If 2 | k, then v = 0, and ECD(8")s exist and are Schur-optimal.
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Table 3.40: (E,S)- and Schur-optimal Designs In D(v, 5; ki, k2)

ECD(B) Case XXVIII
Case VIII (E,S)-optimal

Case XXV Case XXXII
Identical (E,S)-optimal
_ _ Case XXV! | | l ! _
ECDG) |  ECD@) (; 5. |+ 141 EODE+1)
Schur-optimal!  (E,S)-optimal ' | | 1 Schur-optimal
[ Y )'d X Y X AY vy
|9 A .Y A A A VA
0 : : Tz ue v

(i) If 2 { k, then ¥ = %, and ECD(8)s, Case VIII, and XXV are type-1 and
(E,S)-optimal

Corollary 3.5.9 Suppose k; =k; —1 andr=5. Then
(i) If2 | ky then < v < %, and ECD(B)s are type-1 and (E,S)-optimal.
(i) If2 ) ky then ¥ <y < %, and Case XXII is (E,S)-optimal.

By corollary 2.3.17, when ¥ < v < %, the optimality candidates are Case VIII,
XXV, XXVIII, XXXII, and ECD(@ + 1)s, see table 3.39. On the interval, Cases VIII,
XXV, and XXVIII were eliminated by majorization in section 3.5.2, leaving only Case
XXXII and ECD(8 + 1)s as optimality candidates. We will state an A-optimality
result for corollary 3.5.9 after proving the following lemma.

Lemma 3.5.10 When 32 < v < 4, ECD( + 1)s are A-better than Case XXXII

57

designs.

Proof Recall that if e;, # = 1,2,...,5 is an eigenvalues of the optimality matrix
for a design d € D(v,5; ki, k2), then 5 — % is a corresponding eigenvalue of the

information matrix of d, and the A-value of the design in terms of the eigenvalues of
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the optimality matirx is $2_, ;- Since e = el = £, (y—v), then ECD@+1)s
are A-better than Case XXXII designs if and only if

2p 4 p p p
+ < + + .
Sp—&(y—v) Sp-&(v—v) s5p—ef?  5p— el 5p— el

(3.94)

Substituting the closed form expressions for the eigenvalues of ECD(A+1)s and Case
XXXII designs from section 3.5.1 into (3.94) yields

=37 +2(2p + v)7* + (32p% + 12pv — 27v%)y — 4u(4p® + 4pv — 3v%) > 0. (3.95)

A lower bound for the left hand side of (3.95) on the interval ¥ < vy < % obtained

by substituting vy = £ into the negative terms and v = % into the postitive terms is

2 22,2(2)_1‘2
p"[s(v) 4 \y/ ~ 1000]" (3.96)

Setting (3.96) equal to zero and solving for 2 yields

p_4T5F V3461145
v 1600 )

Since &‘1%5—17—5 <0< @-‘% < 1.5, and when 2 = 2, (3.96) is greater than
zero, then (3.95) is satisfied whenever 2 > 2. By fact 3.1.3, this inequality holds
when k; > k2 > 4 or when k; = 3 and k; > 6. Thus, (3.89) may not be satisfied
when k; > ki =2o0r5 > ki > kp =3. On 3 < v < %, (ky,k2) does not take on
the values (3,3), (4,3), or (5,3), and by corollary 3.1.5, k2 = 2 if and only if k; = 3.
Since (3.89) is satisfied when (k,, kz) = (3,2), then ECD(@ + 1)s are A-better than
Case XXXII designs on the interval. O

Corollary 3.5.11 Supposek; =k, — 1,7 =5, and2[ k;. Then ¥ < v < %2, Case
XXXII is (E,S)-optimal, and ECD(@ + 1)s are A-optimal.

Corollary 3.5.12 Suppose k; =k; —2 andr =5. Then

(i) If ky = 4 then v = 2, Case XXVIII designs are (E,S)-optimal.
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(i) If2 | ki and ky > 6 then £ < v < 2, and Case XXV designs are (E,S)-optimal.

(i) If2 { ki then 0 < v < %, and ECD(B)s are uniquely Schur-optimal (hence
(E,S)-optimal).

3.5.4 Construction of Optimal Designs in D(v, 5; k;, k2)

The (E,S)- and Schur-optimal resolvable designs in D(v, 5; k1, k2), k1 > 3 and k, >
ky > 2, are ECD(8) , ECD(@ + 1) , Case XXV, Case XXVIII, and Case XXXII
depending on the value of 0 < v < v. Now we will provide constructions for these
optimal deisngs designs. The constructions for ECDs will be described in such 2
way that they will be valid for ECD(8")s, ECD(8)s and ECD(8 + 1)s. For brevity,

treatment arrangements for the first block of each replicate only are given.
Construction of ECD(0)s

Let L be the common ECD treatment concurrence. When v < L= 8, and the

design is an ECD(f), and when v > £, L = § + 1, and the design is an ECD(@ + 1).
Block 1 of Replicate 1: {1 ... k;}
Block 1 of Replicate 1: {1 ... k;}
Block 1 of Replicate 2: {1 ... L} U {ki+1 ... 2k; - L}
I Ifk, <4/3L
Block 1 of Replicate 3: {1 ... 2L —k;} U {L+1 ... 2k; — L}

Block 1 of Replicate 4: {1 ... 3L—-2k;} U {2L-k, +1 ... 2k, — L}

Block 1 of Replicate 5: {3L —2k; +1 ... 2k; — L}
Ifk, <4L/3

Block 1 of Replicate 5: {1 ... 4L — 3k}
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Let z = int (’ﬂfﬁ)

Block 1 of Replicate 3: {1 ... 2L—k;+z} U {L+1 ... ky—z} U
{k1+1...2k1—L—2} U {2k1—L+1.2k1—L+I}

Block 1 of Replicate 4: {1 ... 3L—2k;+2z} U {2L—k;+z+1 ... L} U
{L+1 cen k]_"l’} U {k1+1.’+1 - 2k1—L} U
{2k, -L+1... 2k, —L+z}

Block 1 of Replicate 5: {3L ~2k; +2z+1 ... 20—k} U
{2L-ky+z+1 ... L} U {L+z+1... 1} U
{kr+1...25y ~L—-2z} U {2k —L+1...2k,—-L+1z}
If 4L — 3k, + 4z > 0

Block 1 of Replicate 5: U {1 ... 4L — 3k, + 4z}
III. If (3/2L < k, < 2L), (k; = 3/2L and k; = 6) or (k; = 3/2L and k; = 15)

A. If2| (k, — L)

Block 1 of Replicate 3: {1 ... 3£z&} y {L+1 ... &L} y
{kfi+1... %=L} y {2k, —L+1 ... Saz3f}

Block 1 of Replicate 4: {1 ... 35k} y {(Btls2 g1 Y
{3ftt2 2%k, - L} U {2k —L+1 ... %33Ly

1. If4| (k — L)

Block 1 of Replicate 5: {1 ... 2L —k;} U {35022 L} U

{L+1 ... H3L} y (asls2  Susby
{k1+1 .. ﬁ%[‘} U {3_kl-2_£'+_2 . Tkx;sL} U

{2k, - L+1 ... 323k}

2. K4f (k, — L)
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Block 1 of Replicate 5: {1 ... 2L -k} U {3&=p£2 L} U

if ki>L+3
{L+1 .. 3Lz} flele2 | 3kli2) |
if ky>L+3
{ky+1 ... Sasie2} |y (acle2 | Tho3L-2}

{2k, —L+1 ... 3Ly
B. I£2] (ki — L)
Block 1 of Replicate 3: {1 ... 3=h=l} y {L+1 ... azl+l} Gy
{ko+1 ... 3astil} y {2k —L+1 ... 3a=3L=l}
Block 1 of Replicate 4: {1 ... 2L —k,} U {35t L1} U

{L+1} U {bizl“ﬂ ok} U {k+2... 3k;-2L+3} U

{2k, —L+1 ... Sas3i-l}
f k1>L+5
Block 1 of Replicate 5: {1 ... 20—k} U {3&=hsl [ -2} U
{L} U {L+2 ... 8528} U (ki +1} U

{3t 2% —L} U {2k —L+1 ... Sa=ii=ly
IV. If k;, = 2L

A.If2|L

Block 1 of Replicate 3: {L+1 ... ky} U {ky+1 ... 2k; — L}
Block 1 of Replicate 4: {1 ... L/2} U {L+1...3/2L} U
{ki+1...ki+L/2} U {2k, —L+1...2k —L/2}

Block 1 of Replicate 5: {1 ... L/2} U {3/2L+1 ... k} U
{kv+1/2L+1 ... 2k —L} U {2k, —L+1 ... 2k, —1/2L}
B. If2f L

Block 1 of Replicate 3: {1} U {L+1 ...k -1} U
{k1+1 eee 2k1-[4—1} U {2k1—L+1}
Block 1 of Replicate 4: {2 ... &} Uy {L+1... 31} y

{ky ... BEgl=l} y {2k — L ...ttty
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if L>3
Block 1 of Replicate 5: {2 ... &%} U {42} U {332 ...k} U

(atlel | ghoLo1y
2 2
V.Ifk, =2L+1

Block 1 of Replicate 3: {L+1 ... 2L} U {ky+1 ... ki +L} U
{2k, — L + 1}

A.If2|Landk >5

Block 1 of Replicate 4: {1 ... 52} U {L+1 ... 3/2L} U
{kr ... B|L} U {2k, — L} U {2ki—L+2 ... $azLe2}
Block 1 of Replicate 5: {1 l”‘>;-‘2i} U{L/2} U{¥%2 ...k} U
{Pathd2 2k — L} U {2k —L+2 ... #sli2)
B.If2f Land k, > 7
Block 1 of Replicate 4: {1 ... &1} U {L+1 ... &L} y

{kl 2/:,-0;&-1} U {2kl~L 4/:;-2[.4-1}
if L>5
Block 1 of Replicate 5: {1 ... &2} U {&2 ... &4} U
(352 ... k-2 Uk} U {3 2 -L-2} U

{2k, — L ... tazlsly

The ECD constructions given above are valid for all k; > 3 and k; > kp > 2

except for the following seven (k,, k;) pairs:

Pair ki k, § 2
1 3 2 2 80
2 3 3 1 .50
3 5 5 2 50
4 6 2 4 .50
5 T 2 5 4
6 7 3 4 .90
7T T 7 3 .50
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Constructions do not exist for pairs 1, 2, 4, and 5; however, valid constructions exist
for the remaining three (3, 6, and 7). The first block of each replicate (written in
columns) of these designs are:

Pair 3:
(k1, k2) = (5,5)

1 1 3 3 1
2 2 4 5 4
3 6 6 6 8
4 7 7 8 9
9 8 9 10 10
Pair 6:
(k1, kz) = (71 3)
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 6 4 4
5 3 7 6 7
6 8 8 8 9
7 9 9 10 10
Pair 7
(K1, k2) = (7,7)
1 1 4 1 2
2 2 5 4 5
3 3 6 7 7
4 8 8 8 9
d 9 9 11 11
6 10 10 12 12
7 11 12 13 14

Construction of Case XXV Designs

Since Case XXV designs are (E,S)-optimal on £ < v < %, then the following con-

structions are valid for values of (k;, k;) that produce a value of 7y in the interval.

Block 1 of Replicate 1: {1 ... k,}
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Block 1 of Replicate 2: {1 ... 8} U {ki+1 ... 2k; — 6}

Block 1 of Replicate 3: {1 ... 20 —k; +2} U {#+1... -1} U
{k1+1...2k1—0-—1}

I Ifk, < 3/20

Block 1 of Replicate 4: {1 ... 2k; —4k; +50 +4} U
{20 —ki+3 ... ki—k} U {+1...25,—ky—6-2} U
{kl e 3k1—k2—29——'2} ] {2]61—'5 . k2+k1}
A.Ifk1<k2+6-

Block 1 of Replicate 5: {1 ... 4k, — 7k, + 86 + 6} U
{2ky —4ky +56+5 ... ky—ko} U {ka—ki+20+2 ... iy} U
{k2 +8+2 ... ky +ka}

B. Ifk, =k, +8

Block 1 of Replicate 5: {1 ... 4§ — 3k, +6} U
{36-—2k1+5...9_} U {kz—k1+29—+2...k1} U
{k2+86+2 ... ky +ka}

C.Ifk; >k, +8

Block 1 of Replicate 5: {ko —k; +20+2 ... iy} U
{k2+8+2 ... ky +k}

IL. If3/20 <k, <20 +1

A. 2| (kh—0-1)

Block 1 of Replicate 4: {1 ... 20—k, +1} U
{20 -k +3 ... ¥=hss) y (41 ... Bl y

{ki+1 ... B=ly {2k —F+1 ... BasPoly
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ifk;<_20'
Block 1 of Replicate 5: {1 ... 20 —k;} U

{20 -k, +2 ... ¥=hsSy | (ltdel | f 1} Y

(el | 2%k —F-1} U {2k -G +1 ... E=P-ly

B. If2f (k; -6 —-1)
if ky <28
Block 1 of Replicate 4: {1 ... 26 —k;} U
{20-k+3 ... ¥p28) U {f+1 .. &by y
{ki+1... ¥} y {2k —F+1 ... Sty

1. If3/20 < k; <20 -1
ifk1_<26—2
Block 1 of Replicate 5: {1 ... 26 -k, -2} U
{20k +1 .. ¥hasy g (B k1) U
(=8 2% —6-1} U {2k —0+1 ... Hus¥-2y
2. Ifk; =26—1
Block 1 of Replicate 5: {3 ... ¥=hti} |y (¥=k8) |y
{8k -1} U (B2 2%k -F-1} U
{2k —f+1 ... $az38=2}
3. Ifk, >20
Block 1 of Replicate 5: {3 ... &8} y {&& ..k -1} U
if >6
(=8 2%k -G-1} U {2ki—G+1 ... iy gy

{Sk, -34 Sky—34+2 }
2 st 2

The Case XXV constructions given above are valid for all k; > 3 and k; > k, > 2

such that ¥ <y < % except for the following four (k;, k2) pairs:

Pair k; k, 6 2
1 5 2 3 57
2 6 4 3 60
3 8 6 4 57
4 11 5 7 .56
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Constructions do not exist for the fist pair; however, valid constructions exist for
the remaining three (pairs 2, 3 and 4). The first block of each replicate (written in

columns) of these designs are:

Pair 3
(kh kz) = (6, 4)

oUW
© 00~ W -
Q0 =] UV b D =
© OB L
©CWwoO U W

Pair 6:
(k1, k2) = (8,6)
1 1 1 1 1
2 2 2 3 3
3 3 5 4 4
4 4 6 5 7
5 9 7 6 8
6 10 9 11 9
7 11 10 12 10
8 12 11 13 13
Pair 7:
(K1, k2) = (11,5)
1 1 1 1 1
2 2 2 2 4
3 3 3 3 53
4 4 4 6 6
5 5 5 7 7
6 6 8 8 9
7 7 9 9 10
8 12 10 11 11
9 13 12 12 13
10 14 13 13 14
11 15 14 15 15
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Construction of Case XXVIII Designs

Since Case XXVIII designs are (E,S)-optimal on 2 < v < 32, then the following

constructions are valid for values of (k;, k2) that produce a value of ¥ in the interval.

Block 1 of Replicate 1: {1 ... k;}
Block 1 of Replicate 2: {1 ...8+1} U {ky+1 ... 2k; —§—1}

Block 1 of Replicate 3: {1 ... 20 -k; +2} U {§+2 ...k} U
(ki+1... 2k ~G-1}

L Ifk < 3/29-

Block 1 of Replicate 4: {1 ... 2k, — 4k, +50 +4} U
{20 —ki+3 ... ki —ka+1} U {+2...26,—k,—06-1} U
{ki+1...3ki—ko—20-2} U {2k; -0 ... k1 + k2}

Block 1 of Replicate 5: {1 ... 4k; — 7k; + 80 + 6} U
{2k2— 4k, +50+5 ... 20—k +2} U {20—ki+3 ... ki —ko+1} U
{k2=ky+20+3 ... 1} U {k2+0+2...25,-6—-1} U
{2k, -8 ... ky + Kk}

II. Ifk, > 3/20 and k, # 13

A If2 | (kh-6-1)
Block 1 of Replicate 4: {1 ... 26 —k; +1} U
{20 -k +3 ... B=huB) Yy {§+2 ... azfly g
(ki +1 ... F3i=l} y (o, —§ ... =33y
Block 1 of Replicate 5: {1 ... 20 —k;} U
{20 -k, +2 ... ¥=husy y [aads3 | gy oy

{8l 2k ~G-1} U {2k —F ... B3y
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B. If2f (k,—-8-1)

Block 1 of Replicate 4: {1 ... 20 -k} U
{26 -k +3 ... ¥=kax8y y (F42 .. Eks2y

{ke+1 ... 38} y {2k —§ ... Sus3=dy

if ky<26—-2
Block 1 of Replicate 5: {1 ... 20 -k, — 2} U

{20 -k +1 .. ¥=hst)  (Gshs2 g}y

(=8 2%k -G-1} U {2k, —F ... TPty

The Case XXVIII constructions given are valid for all k; > 3 and k; > ky > 2
such that ¥ <y < ¥ except for (ki,k2,8) = (4,2,1) and (13, 9,7). A construction
for (ky, k2) = (4,2) does not exist; however, there does exist a vaild construction for
(ky, k2) = (13,9) which is:

(kla k2) = (137 9)

1 1 1 1 2
2 2 2 4 4
3 3 3 S )
4 4 9 6 6
) ) 10 7 7
6 6 11 9 11
7 7 12 10 12
8 8 13 11 13
9 14 14 14 16

10 15 15 15 17
11 16 16 16 18
12 17 17 19 19
13 18 18 20 21

Construction of Case XXXII Designs

Since Case XXXII designs are (E,S)-optimal on 3 < y < %, then the following

constructions are valid for values of (k;, k;) that produce a value of 7 in the interval.

Block 1 of Replicate 1: {1 ... k;}
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Block 1 of Replicate 2: {1 ... 8+1} U {k+1 ... 2k, -0 -1}

Block 1 of Replicate 3: {1 ... 20—k +2} U {§+2 ... ki} U
{kFr+1...2k —-8-1}

L Ifk, <3/20

Block 1 of Replicate 4: {1 ... 2k, — 4k; +56 +5} U
{20—ki+3 ... ki—ks} U {8+2... 2k —ky—~6—1} U
{kr+1...3ki—ka—20—2} U {2k1 =8 ... ky + ka}

A.Ifklgﬁﬂi;iﬂ

Block 1 of Replicate 5: {1 ... 4k, — 7k, + 80 + 8} U

.p Sky +504+7 sk +80+7
if 3 <k 7

{2k, — 4k, +50+6 ... ky —ka—1} U {k1 —ka+1} U
{Fo—k +20+3 ...k} U {ka+0+2... ki +kz}

4k3+86+7
B. If ky > $ax88s7

Block 1 of Replicate 5:
{2k; — 4k, +58 +6 ... dky — 8k, + 10 + 10} U
{20 —k; +3 ... 3k —6k; +80+7} U
{ky—ka+1 ... 8k;—5k2—80—-7} U {ko—Fk1+20+3 ... iy} U
{k2+6+2 ... ky + ka}

II. Ifk; >3/20 and k; # 7

A 2| (k—0-1)
Block 1 of Replicate 4: {1 ... ¥=kt3} \y {§+2 ... k)
{ke+1... 351}y {2k, —F ... Speny

Block 1 of Replicate 5: {1 ... ¥=kurl} |y [3=hussy
{3 g} oU (P 2k -F-1} U

{2k, —F ... §f_=:23§_-£}
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B. f2f(ky—-8-1)

if k1 <20
Block 1 of Replicate 4: {1 ... 26 —k; +1} U

{26~k +3 ... ¥k} y (42 .. Eas2y
{h+1 ... B0}y {2k -G ... Susgigy
1. Ifkl < 26
Block 1 of Replicate 5: {1 ... 20—k} U {20 -k +2} U
{29-—k1+3 30'-—I2q+2} U {30’—1;.-(»6}
2. If kl = 25
Block 1 of Replicate 5: {1} U {2§—k, +3 ... Z53}
{¥=hizsy y (B=hie)
3. Kk, =26+1
Block 1 of Replicate 5: {2 — k; +3 ... E=3as2}
{36—?4»6} U {36—5,4»8}
Block 1 of Replicate 5: {blocks from 1 to 3 above} U

{B42 k} UM 2k-8-1} U

{2k, -6 ... Bu=3=4)

The Case XXXII constructions given above are valid for all k; > 3 and k; >
k2 > 2 such that £ < vy < {2 except for the pair (ki,k2,8) = (7,6,3). The vaild

construction for (ki, k2) = (7, 6) is:

(K1, k2) = (7, 6)

O DR W=
O WO W=
O WO~ o
[

-0 00 U Wi
|l A

NO WO aN
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3.5.5 Examples of Optimal Resolvable Designs in D(v, 5; k;, k2)

We conclude this chapter by providing some examples of resolvable designs in D(v, 5; ki, k3)
and for various interesting k; > 3 and 2 < k; < k;. First we construct designs for

the two cases when k; = k.

Example Suppose k; = k; = 8. Then, according to corollary 2.4.2 the the Schur-
optimal design is an ECD(8*). Applying the ECD construction given above with
L = 8§ = 4, yields a Schur-optimal ECD(8*) which is:

1 9 1 5 5 1 1 3 1 3
2 10 2 6 6 2 2 4 2 4
311 3 7 7 3 5 7 7 5
4 12 4 8 8 4 6 8 8 6
5 13 9 13 9 13 9 11 11 9°
6 14 10 14 10 14 10 12 12 10
7 15 11 15 11 15 13 15 13 15
8 16 12 16 12 16 14 16 14 16

Example Consider the case where k; = k, = 11. Then, according to corollary 2.4.2
the (E,S)- and type-1 optimal design is an ECD(f). Applying the ECD construction
given above with L = # = 5 produces an (E,S)- and type-1 optimal design which is:

112 1 6 6 1 1 3 3 1
213 2 7 7 2 2 4 4 2
3 14 3 8 8 3 6 5 8 5
4 15 4 9 9 4 7 8 9 6
5 16 5 10 10 5 11 9 11 7
6 17 12 11 12 11 12 10 14 10.
7 18 13 18 13 17 13 14 15 12
8 19 14 19 14 19 17 15 17 13
9 20 15 20 15 20 18 16 18 16
10 21 16 21 16 21 19 21 19 21
11 22 17 22 18 22 20 22 20 22

Now we investigate the two cases when k; — ko = 1.

Example Consider the setting such that k; = 6 and k; = 5. By corollary 2.4.4,
the (E,S)- and type-1 optimal design is an ECD(f). Applying the ECD construction
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given above with L = § = 3 yields an (E,S)- and type-1 optimal design which is:
1 7 1 4 1 2 2 1 3 1
2 8 2 5 4 3 4 3 5 2
3 9 3 6 5 6 6 5 6 4
4 10 7 10 7 9 7 8 8 7°
511 8 11 8 11 9 11 9 11
6 9 10 10 10

Example Suppose k; = 13 and k; = 12. By corollary 3.5.11, the (E,S)-optimal
design is a Case XXXII design, and the A-optimal design isan ECD(@+1). Applying

the Case XXXII construction given above with § = 6 produces an (E,S)-optimal

design which is:
114 1 8 1 2 1 5 1 4
215 2 9 8 3 2 6 2 6
3 16 3 10 9 4 3 7 3 7
4 17 4 11 10 5 4 11 5 8
5 18 5 12 11 6 8 12 | 11 9
6 19 6 13 12 7 9 13 | 12 10
7 20 7 20 13 20 10 17 | 13 14.
8 21 14 21 14 21 14 18 | 17 15
9 22 15 22 15 22 15 19 18 16

10 23 16 23 16 23 16 23 19 23
11 24 17 24 17 24 20 24 20 24
12 25 18 25 18 25 21 25 21 25
13 19 19 22 22

Applying the ECD construction given above with L = § + 1 = 7 produces an

A-optimal design which is:

114 1 8 1 5 1 5 1 2
2 15 2 9 2 6 2 6 5 3
3 16 310 3 7 3 7 6 4
4 17 4 11 4 11 4 8 79
5 18 5 12 8 12 11 9 8 10
6 19 6 13 9 13 12 10 11 13
7 20 7 20 10 17 13 14 12 16.
8 21 14 21 14 18 17 15 14 18
9 22 15 22 15 19 18 16 15 19

10 23 16 23 16 23 19 23 17 23
11 24 17 24 20 24 20 24 | 20 24
12 25 18 25 21 25 21 25 | 21 25
13 19 22 22 22
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Four our final example we investigate a setting for which k; — k; = 2.
Example Suppose k; = 12 and k2 = 10. Then by corollary 3.5.12, the (E,S)-

optimal design is a Case XXV design. Applying the Case XXV construction for
8 = 6 yields an (E,S)-optimal design which is:

113 1 7 1 3 3 1 3 1
2 14 2 8 2 4 4 2 4 2
315 3 9 7 5 5 10 5 7
4 16 4 10 8 6 6 11 6 8
5 17 5 11 9 12 7 12 9 12
6 18 6 12 10 18 8 16 10 13
719 13 19 11 19 9 17 11 14~
8 20 14 20 13 20 13 18 15 18
9 21 15 21 14 21 14 21 16 19
10 22 16 22 15 22 15 22 17 20
11 17 16 19 21

12 18 17 20 22

3.6 Robustness of Optimal Designs

As was mentioned in the airplane part manufacturing example of section 2.1, an im-
portant question regarding optimal resolvable designs with r replications is whether
optimality holds if fewer than r replicates of the experiment are completed. That is,
is optimality of a resolvable design in D(v, r; k;, k2) robust to the loss of an arbitrary
replicate. With the optimality results of the previous few sections in hand, we are

now ready to investigate robustness, but first we need the following definition.

Definition 3.6.1 Let d be a resolvable design in D(v,r; ki, k2). A design d* €
D*(v,r*; k1, k2), * < 7, is said to be a subdesign of d if the r* replicates of d* are

also replicates of d.

Recall that the optimal resolvable design in D(v, r, k1, k2) depends on the location
of y =k - v in the interval 0 < v < v. The value of v does not depend on the

number of replicates r; however, subintervals of 0 < v < v on which various classes
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of designs are optimal does depend on r, see tables 3.20, 3.24, 3.25, 3.32, 3.34, and
3.40.
The intervals on which the optimality of ECDs is robust to the loss of replicates

for the various criteria are established by the following two lemmas.

Lemma 3.6.1 Let D(v,r;ky, k2) be a resolvable design setting such that 0 < v < &,
and let d € D be an ECD(). If d* € D*(u,r*; ky, k,), is any subdesign of d, then d*
is an ECD(8) and is type-1 and (E,S)-optimal.

Proof Since all subdesigns of an ECD clearly are necessarily also an ECD , then

d* is anECD(8). By corollaries 2.3.4 and 2.3.15, ECD(8)s are at least type-1 and
(E,S)-optimal for all r when 0 <y < 3. O

Lemma 3.6.2 Let D(v,r;k;, k;) be a resolvable design setting , and let d € D be
a Schur-optimal ECD. Ifd* € D*(v,r*; ky,kz), is any subdesign of d, then d® is an
ECD and the following are true about the Schur-optimality of d*.

1. Ifr=5,and0<y< £ or %"' < v < v, then d* is Schur-optimal.

(301

2. Ifr=4,and0<v< % or ¥ <y <, then d" is Schur-optimal.

e

3. Ifr=3,and0<7v<%or® <vy<u, then d € D(v,r*; k1, k2) is Schur-

optimal.

Proof Corollary 2.3.17 provides the subintervals of 0 < ¥ < v on which ECDs are
Schur-optimal. O

When § <y < %, regions of the interval on which various resolvable designs are
optimal are determined by the design replication r. A robustness argument for these

values of ¥ must involve direct comparisons of optimal designs for different values of

T.
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Lemma 3.6.3 Let D(v, 3; k1, k2) be a resolvable design setting, and suppose 5 < v <
2o Ifd € D is an (E,S)-optimal Case II design, then 2/3 of the possible subdesigns
d* € D*(v,2; k1, k2) of d are (E,S)-optimal and the remaining 1/3 are not.

Proof The discrepancy matrix for the (E,S)-optimal Case II design d € D(v, 3; ky, k2)

011
Ag = 100 .
100
Removing row column two or three from A, produces the discrepancy matrix for a
Schur-optimal ECD(5 + 1) in D*(v, 2; k1, k2). Removing row and column one from

A, produces the discrepancy matrix for an ECD(@) in D* which is not optimal on

the interval. Therefore, two of the three subdesigns are Schur-optimal. O

Lemma 3.6.4 Let D(v,3; ki, k2) be a resolvable design setting, suppose § < v < T
and let d € D be an A-optimal design. If d* € D*(v,2; ky, k2) is a subdesign of d

then the following are true.
1. If$ <y <%, and d is an A-optimal ECD(@ + 1) , then d* is Schur-optimal.

2 If3<v< :"5—", and d is an A-optimal Case II design, then 2/3 of the possible

d* are Schur-optimal and 1/3 are not optimal.

3. If¥ <y< %, then d” is A-optimal

Proof If % <y < 3 and the A-optimal d € D(v, 3; ki, k») is an ECD(f + 1), then
a subdesign d* € D*(v, 2; k1, k;) is a Schur-optimal ECD(@ +1). If £ <y < % and
the A-optimal d € D is a Case II design, then it was established in the previous
lemma that 2/3 of the subdesigns d* € D* are Schur-optimal ECD(6+1)s and 1/3 of
the subdesigns d* are ECD(8)s and are not optimal. If 3 < vy < %, the A-optimal
design d € D is an ECD(6 + 1) , and any subdesign d* € D* is a Schur-optimal
ECD(@B +1). O
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Lemma 3.6.5 Let D(v,4;k,,k;) be a resolvable design setting, supposed € D is an
(E,S)-optimal design, and let d* € D*(v, 3; ky, k2) be a subdesign of d.

1. If 3 <v < %, then d” is (E,S)-optimal.

2. If 2 <y < ¥, then 1/2 of the subdesigns d* of d are Schur-optimal and the
3 a

remaining 1/2 are not optimal.

Proof When § < v < ¥, Case II designs in D(v,4; k1, k) are (E,S)-optimal and

have discrepancy matrix

0011
0011
Az = 1100
1100

Removing any one of the four rows and columns from A, produces the discrepancy
matrix for an (E,S)-optimal Case II design d* € D*(v, 3; k;, k2).
When %" <7< :"4—", Case I designs in D are (E,S)-optimal and have discrepancy

matrix

A1=

-0 0
-0 0
-0 -
=

Removing row and column one or two from A; produces the discrepancy matrix
of a Schur-optimal ECD(@ + 1) in D, and removing row and column three or four
produces the discrepancy matrix of a Case II design d* which is not optimal on the
interval. O

Lemma 3.6.6 Let d € D(v,4;k1,k;) be an A-optimal resolvable design, suppose
<1< ‘%’, and let d* € D*(v, 3; ky, ko) be a subdesign of d.

LIf3<v< 353, an ECD(8 + 1) is A-optimal in D, and an ECD(@ + 1) is
A-optimal in D*, then d* is always A-optimal.

2. If3 <v < %, an ECD(6 + 1) is A-optimal in D, and a Case II design is
A-optimal in D*, then d* is never optimal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



168

3 Ifz <7< 3;", a Case I design is A-optimal in D, and an ECD(G + 1) is
A-optimal in D*, then 1/2 of the possible d* are A-optimal and 1/2 are not

optimal.

4. If § < v < %, a Case I design is A-optimal in D, and a Case II design is
A-optimal in D*, then 1/2 of the possible d* are A-optimal and 1/2 are not

optimal.

5. If$ <v < %, a Case II design is A-optimal in D, and an ECD(G + 1) is

A-optimal in D*, then d* is never optimal.

6. If 3 <v < %, a Case II design is A-optimal in D, and a Case II design is
A-optimal in D*, then d* is always A-optimal.

7. If ¥ <y < %, then d* is always Schur-optimal.

Proof Since all subdesigns of ECD(@ +1)s are ECD( +1)s, then 1, 2, and 7 follow

immediately, and 3, 4, 5, and 6 follow from the previous lemma. O

Lemma 3.6.7 Let D(v, 5; k1, k2) be a resolvable design setting, supposed € D is an
(E,S)-optimal design, and let d* € D*(v,4; ky, k2) be a subdesign of d.

LIfi<y< %", then 3/5 of the possible d* are (E,S)-optimal and the remaining
2/5 are E-optimal.

2. If ¥ <y <%, then 3/5 of the possible d* are (E,S)-optimal and the remaining
2/5 are E-optimal.

3. If ¥ <y < %, then 2/5 of the possible d* are Schur-optimal and the remaining

3/5 are not optimal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



169

Proof When ¥ < v < %, Case XXV designs in D(v,5; k1, k2) are (E,S)-optimal

and have discrepancy matrix

01110
10001
Ay=110001
10001
01110

Removing row and column two, three, or four from A,s produces the discrepancy
matrix of an (E,S)-optimal Case II design d* € D*(v,4; k,, k2), and removing row
and column one or five from A,s produces the discrepancy matrix of an E-optimal
Case V design d°.

When ¥ < v < ¥, Case XXVIII designs in D are (E,S)-optimal and have

discrepancy matrix

01111
10111
Qog=111000
11000
11000

Removing row and column three, four, or five from A, produces the discrepancy

matrix of an (E,S)-optimal Case I design d* € D*, and removing row and column

one or two produces the discrepancy matrix for a E-optimal Case V design d°.
When ¥ < v < 42, Case XXXII designs in D are (E,S)-optimal and have dis-

crepancy matrix

01111
10111
Azpz=| 11011
11100
11100

Removing row and column three or four from Aj; produces the discrepancy matrix
for a Schur-optimal ECD(@ + 1) in D*, and removing row and column one, two, or
three produces the discrepancy matrix for a Case I design d* which is not optimal

on the interval. O
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APPENDIX A
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APPENDIX B

DISCREPANCY MATRICES RANKED BY MAXTMUM
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