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ABSTRACT

PRINCIPAL COMPONENT REGRESSION FOR

CONSTRUCTION OF WING WEIGHT
ESTIMATION MODELS

Humberto Rocha
Old Dominion University, 2005
Director: Dr. John J. Swetits

The multivariate data fitting problem occurs frequently in many branches of science
and engineering. It is very easy to fit a data set exactly by a mathematical model
no matter how the data points are distributed. But building a response by using a
limited number of poorly distributed data points is very unreliable, yet necessary in
conceptual design process. This thesis documents the lessons learned from fitting the
wing weight data of 41 subsonic transports by three types of interpolation methods -
least polynomial interpolation, radial basis function interpolation, and Kriging inter-
polation. The objective of this thesis is to develop an automatic procedure of using
this interpolation methods for construction of an approximation of the relationship
between the actual wing weight and various key configuration parameters of wing by
using actual wing weight data of 41 subsonic transports. The focus of the thesis is
on four key technical issues in practical use of approximation methods: data genera-
tion and variable screening, fitting the data by a parametric function model, tuning
intrinsic model parameters by using cross-validation, and verification of constructed
approximation. One controversial topic is the assessment of the constructed approx-
imations, which is of great importance to practitioners but depends too much on
subjective judgment. Some formal approaches for the assessment will be proposed
and analyzed. Even though the benefits of using principal component regression with
cross validation are only demonstrated by the wing weight data fitting problem, the
proposed methodology could have significant advantages in fitting other historical or

hard-to-obtain data.
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Chapter I

INTRODUCTION

System analysis is a multidisciplinary, constrained, optimization process that tries
to find a solution that best satisfies a set of requirements. For simple systems,
this process can be relatively efficient (few function evaluations) and quick (short
execution time). For very complex systems, such as aircraft design, the sheer number
of analyses needed and the difficulty of the individual function evaluations can quickly
make the large number of function evaluations needed impractical. Often, the data
generated in the function evaluation are poorly behaved, in terms of both execution
completion and the smoothness of the results, which then causes the efficiency and
robustness of the optimization to suffer.

In the past, when only simple analytic approaches severely limited the problems
that could be analyzed, data collected from tests were regressed with the aid of engi-
neering theories to form the semi-empirical handbook methods familiar to designers.
These regressions had many advantages, such as low input detail requirements as well
as the ability to embody many detailed and difficult-to-assess considerations into an
average state-of-the-art and very low calculation requirements. In fact, the require-
ments were so low that they could be, and were, calculated by hand (see [1}). These
regressions also had many drawbacks, such as limited ranges of applicability and a
strong dependency on the database from which they were regressed. This meant that
new and unusual concepts often became unanalyzable, which required new tests to
expand the database. These tests were time consuming, difficult, and expensive.

Attempts to improve the applicability of system analysis has centered around high
fidelity numerical calculation because the calculation can generate similar data with
much less time and cost for some disciplines (such as fluid dynamics) than the tra-
ditional tests (such as wind tunnel tests). High fidelity calculation involves running
computer simulation code to generate numerical solutions that accurately approxi-
mate the true system responses, which could be validated by experiments. However,
some high fidelity calculations still can not be included inside of the optimization
loop because they are much too costly, or require human intervention to complete,

or are still inadequate for the task.

This dissertation follows the style of American Institute of Aeronautics and Astronautics.
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What is needed is a more general, robust, and rigorous regression method that
takes multivariate data, generated from any source, and creates a fitting function that
can be evaluated quickly, robustly, and accurately. The regression process should
automatically identify key parameters that the result strongly depends on, would
preferably not depend on theoretical knowledge of the physics, be able to handle
sparse data sets, be able to handle poorly behaved data sets, and would be easy to
implement.

A typical, well understood regression problem was chosen to try out some new
methods to see how well they apply and to see how well they compare to traditional
regression methods. The problem chosen was the determination of a wing weight
estimation model given a database of actual aircraft wing configurations.

This thesis develops an automatic procedure of using interpolation methods for
construction of an approximation of the relationship between the actual wing weight
and various key configuration parameters of wing by using actual wing weight data

of 41 subsonic transports.

I.1 CONTENTS OF THE THESIS

A standard approximation procedure can usually be decomposed into four steps [2]:
(i) data generation and variable screening, (ii) fitting the data by a parametric func-
tion model, (iii) tuning intrinsic model parameters by using cross-validation, and
(iv) verification of the constructed approximation. The focus of the thesis is on these
four key technical issues in practical use of approximation methods. One contro-
versial topic is the assessment of the constructed approximations, which is of great
importance to practitioners but depends too much on subjective judgment. Some
formal approaches for the assessment will be proposed and analyzed.

Data generation in the approximation procedure is mainly for selection of data
sites of the input vector when the corresponding response is calculated by a com-
puter simulation code, and is not needed for wing weight data fitting that uses only
historical data. The rest of the topics will be discussed in this thesis. The following
chapters describe an automatic procedure for construction of wing weight estimation
models based on general approximation methods, whereas a user may receive warn-
ings by the automatic procedure and exercise some control options to avoid potential
failures of the procedure.

The thesis is organized as follows. In the next chapter we briefly describe the
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wing weight data fitting problem. Chapter 111 is devoted to principal component
analysis. Variable screening is explored in chapter IV. In chapter V we describe
radial basis function interpolation methods. Model parameter tuning and other data
fitting methods are presented in chapters VI and VII, respectively. Comparison of
constructed approximations is given in chapter VIII. In the last chapter we have
the conclusions. For definitions of wing configuration parameters, see the book by

Raymer [1].

1.2 NOTATION

A aspect ratio of wing, i.e., b*/s

b wingspan

Cm mean chord of wing, i.e., s/b

Cr root chord of wing at fuselage intersection
t tip chord of wing

f theoretical wing weight function

g approximation of f

n number of input variables

N number of data points

s plan area of wing

t, thickness of airfoil at fuselage intersection
t; thickness of airfoil at wingtip

t./cr thickness/chord ratio of airfoil at fuselage intersection
ti/ce thickness/chord ratio of airfoil at wingtip

[t/clm  average thickness/chord ratio, i.e., (¢, /¢, +t:/cy)/2

X column vector of input variables x4, ..., 2,
T the ¢th component of column vector x

! the ith component of column vector x

w actual wing weight

w estimated or calculated wing weight
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Wio gross takeoff weight of aircraft
1 column vector of ones

taper ratio of wing, i.e., ¢;/c,

A wing sweep angle in radian

U ultimate load

o; estimated standard deviation of variable x;
® radial basis function (RBF)

Subscripts and Superscripts

i index for ith component of vector
j index for data point

k index for iteration or iterate

T transpose of vector or matrix
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Chapter 11

WING WEIGHT DATA FITTING PROBLEM

II.1  INTRODUCTION

For system analysis of conceptual design of aircraft, one important task is to resize a
conceptual aircraft for a mission analysis. To conduct a mission analysis of a resized
aircraft, system analysts must estimate the gross takeoff weight wy, of the aircraft.
Specifically, one commonly resized component of aircraft is wing. As a result, system
analysts need a relationship between the wing weight w and sizing parameters of wing
(such as s, b, A, and A). Ardema et al. [3] describe a variety of methods to construct
weight estimation of transport aircraft — from empirical regression to classical plate
theory. In particular, they show how to use the beam theory structural analysis for
fuselage and wing structural weight estimation. Linear and power regression methods
are used by Ardema et al. (see [3, pp. 18-24]) to adjust the estimated structural
weight to the actual structural weight for eight subsonic transports.

The objective of this thesis is to develop an automatic procedure of using inter-
polation methods for construction of an approximation of the relationship between
the actual wing weight and various key configuration parameters of wing by using
actual wing weight data of 41 subsonic transports. Such a procedure is called an
empirical approach by Ardema et al [3]. However, system analysts usually reject
the idea of using a general regression or approximation model for wing weight esti-
mation, because a general model lacks any engineering insight and usually leads to
non-physical weight estimation formula that gives negative wing weight or exhibits
non-monotonicity of wing weight versus some key configuration parameter such as
s. The best practices in empirical regression for wing weight estimate are based on
heuristic regression models that incorporate some engineering understanding of the
weight relationship. For example, the two best empirical regression models for the

given wing weight data of 41 subsonic transports are the geometry model:

D=0 [;ﬂ? (0.016)™ (10735)™ (£,)°% (0.1¢,) (cos A)°7 (0.1¢;)™ (10-5wt0)“9]
(IL1)

and the ratio model:

B = & [M@2A633@4([t/c]m)@s(cos A)YFe(1 4+ N (1073w,,) ™ ] (I1.2)
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where ay,...,a9 Or @y,...,ag are determined by least squares fitting of the data.
The engineering intuition behind these wing weight models is that the wing weight
is a monotone function with respect to each of the configuration parameters in the
model and its range is from 0 to co. However, there are two limitations of these
two wing weight models: (i) the models are based on system analysts’ knowledge of
subsonic transports and it is nontrivial to derive similar empirical regression models
for other types of aircrafts, and (ii) the models are not flexible enough to fit the wing
weight data for the 41 subsonic transports. Fig. 1 shows more than 10% errors in the
wing weight estimation by the best fit of each of these two engineering wing weight
models. Moreover, later on, we will see that these models do not exhibit the expected
weight growth trends with respect to changes of some key configuration parameters
(such as b).

T T T 2
— Exact fit of data e
sooool] ~ Overestimate of 10% e
H . -z 7
- - Underestimate of 10% e .
¢ Best fit by the geometry model P e
+ Best fit by the ratio model e g
e 4 /‘/
= . .
_% 600001 - 4 e 4
.
2 e -
o . prid
£ . p
H Ry
i ‘T
40000 . : 4
K )
3 ya Ve
2 Yt
o Ny
8 g
45
s
20000 4 at
Y
#
5
@/ ()
g
0 o s . .
o 20000 40000 60000 80000

Actual wing weight

Figure 1: Regression errors of wing weight fitting by the geometry model and the
ratio model.

Fitting the wing weight data by either the geometry model or the ratio model is
a nonlinear least squares problem that may have many local optimal solutions. The
best fitting depends on the initial choice of the regression parameters oy, ..., a9 or
ay,...,as. Fig. 1 shows the best fitting computed by the nonlinear optimization

code Isqnonlin in MATLAB. The maximums of rclative fitting errors are 56.44%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and 57.55% for the geometry model and the ratio model, respectively. There is no
decisive advantage of one model over the other if the goodness-of-fit is the decision
criterion. It is important to provide analysts with useful information about the
prediction behaviors of these wing weight models (instead of fitting errors), that helps
the analysts choose an appropriate prediction model based on the characteristics of

configuration design study at hand.

Figure 2: A variety of subsonic transports in the data set.

There are many studies [3, 4] on building approximation models for weight estima-
tion. So far, useful weight models, such as Egs. (II.1) and (I1.2), are mainly derived
from knowledge and insight of experienced engineers, instead of rigorous principles
of physics. In some cases, useful weight estimation models are considered propri-
etary information not to be shared with the public. Weight information of existing
aircrafts is not necessarily available to the public. System analysts at NASA Ames
Research Center were able to collect weight information of 41 subsonic transports
including Boeing 747, Douglas DC-7C, Fokker F-28 twin engine jet liner, and Lock-
heed C-130B cargo aircraft (sce Fig. 2). This set of weight data allows the current
study of benefits and limitations of general approximation methods for building a
wing weight estimation model.

Each wing weight data point consists of the actual wing weight w and relevant

key configuration parameters: A, b, cm, Cr,Ct, S, [E/Clms bry tr/Cry Eey te/Cr Who, A, A, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3: Airplane wing geometry parameters.

i These parameters can be regrouped in three categories: (1) wing geometry para-
meters including chord length at root (¢, ), chord length at tip (¢;), span (b), reference
area (s), thickness at root (¢,), thickness at tip (Z;), and sweep angle (A = |90 — Aql);
(2) wing aerodynamics parameters including taper ratio (A = ¢;/c,), aspect ratio
(A = b*/s), mean chord of wing (c,,, = s/b) , thickness-to-chord ratio at root (t./c;),
and thickness-to-chord ratio at tip (¢;/c:); and (3) wing structure parameters includ-
ing gross takeoff weight of aircraft (w,) and wing load factor (u). Fig. 3 shows
the wing geometry parameters for a trapezoidal approximation of the actual wing.
A detailed explanation of wing configuration parameters can be found in Raymer’s
book [1].

The goal is to construct a weight estimation model @ = w, where @ is a function
of all or a subset of the configuration parameters. Notice that some configuration
parameters are related, e.g., t;/c; + t./c, = 2[t/c]m and A = b?/s. There are many
different ways to select a set of independent configuration parameters, such as the
two sets of parameters in Egs. (IL.1) and (I1.2). Even though replacing b by A
in Eq. (IL.1) yields a mathematically identical model with appropriate choices of
model parameters, such a replacement will lead to a completely different regression
model if a general approximation model is used. For example, if a general quadratic
polynomial P; is used as a regression model, then Py(A, s) = ag+ a1 A+ ass+azA? +
ayAs + ass? and Py(b,s) = @g + a1b + Ggs + azb® + a@ybs + a5s® are two completely
different regression models no matter what are the values of a; and a;. Similarly,

each choice of configuration parameters as input variables of a general approximation
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model (such as polynomials, radial basis functions, and Kriging models) will lead to a
new regression model. As a consequence, one must exercise caution in determination
of which configuration parameters should be used as the input variables.

Recently, Li and Padula [2] did a survey of approximation methods that might be
useful for conceptual design of complex systems. However, the survey didn’t give any
specific example on how the approximation methods can be used in conceptual design.
In this thesis, the wing weight approximation problem is used to show feasibility of
using approximation methods in construction of a wing weight estimation formula
for conceptual design of subsonic transports. In particular, this thesis documents
the lessons learned from fitting the 41 wing weight data points by three types of
interpolation methods — least polynomial interpolation, radial basis function (RBF)

interpolation, and Kriging interpolation.

I1.2 CHALLENGES IN WING WEIGHT DATA FITTING

The wing weight data set was collected over a period of time and will be expanded
when new weight statements of subsonic transports become available. Such dynamic
characteristics of the data set requires a relatively easy way to generate a wing weight
estimation model to capture the trend in the updated data set, when Eqgs. (II.1) and
(I1.2) become inadequate as estimation models.

A data fitting model can only be as good as the data in representation of a
mathematical relationship of the data attributes. While expert knowledge could be
extremely helpful in choosing a practical regression model, it is important to eliminate
unjustifiable subjective decisions when the data is fitted by general approximation
or regression models.

Because the wing weight data is reliable, only interpolation methods will be con-
sidered for the data fitting. In other words, each wing weight estimation model will
reproduce the actual wing weight for 41 subsonic transports. However, such an exact
fit of the data has no useful purpose for the sizing of wing in conceptual design phase.
System analysts are mostly interested in whether an estimation model captures the
weight growth trends “correctly” between and beyond the known data points. There
is no physics-based criterion for verification of a correct solution; instead, expert opin-
ions determine whether a mathematical solution is useful in practice. Nevertheless,

strategies of avoiding unjustifiable subjective decisions will be discussed.
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II.3 MODELING OF WING WEIGHT DATA FITTING PROBLEM

Before getting into details of the steps of the approximation procedure, notations
to describe the data interpolation are needed. Let f(x) be the true response to a
given input vector x (of n components) such that the value of f is only known at
a set of N input vectors x = x!,...,x" ie, only fr = f(x*) (k =1,...,N) are
known. An interpolation model g(x) = Zjvzl ajej(x) is used as an approximation
of f(x), where o are the coefficients to be determined by interpolation conditions
g(x*) = fi, or Z;\Ll ajo;(xF) = fi (k = 1,...,N), and ¢1,...,¢pN are the basis
functions depending on the choice of interpolation methods. The coefficient matrix
of the linear equations Z;vzl a;oj(x*¥) = fr (k=1,...,N) is called the interpolation
matrix.

For multivariate data fitting problems, it is not easy to decide what should be
potential input variables. For the wing weight approximation problem, the in-
put variables are usually the sizing parameters required in conceptual design of
aircraft. The regression models (II.1} and (II.2) indicate system analysts’ prefer-
ence of input variables. One objective of the weight data fitting study is to un-
derstand whether analysts’ choice is justifiable or can be reproduced by a variable
screening method, which identifies the input variables that have a significant in-
fluence on the response. To avoid missing any important input variable, all the
configuration parameters of wing (including the ratios) will be included as po-
tential input variables of g(x), i.e.,, X is a vector of 15 configuration parameters:
A b ey Cry ey 8, [t/ Clmy byt ) Cry ty B/, Whoy A, A, and p. Note that the engineering
insight of using cos(A) instead of A for wing weight estimation is intentionally ignored
in this study to see whether general approximation methods without engineering in-
sight is capable of generating a useful wing weight estimation formula. The “ratios”
are included as potential input variables because they are native configuration para-
meters of wing.

The first step of the approximation procedure is to find out which of the 15 vari-
ables are important for a wing weight estimation model and whether there is any
collinearity of the input variables. This step tries to reduce the dimension of the
input space of the data fitting problem. Two approaches will be used for dimen-
sion reduction of the input space: principal component analysis (PCA) and variable

screening. Both approaches require preprocessing of the data.
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I1.4 PREPROCESSING OF DATA

The given wing weight data of 41 subsonic transports had some errors. For example,
some recorded taper ratio is not the same as ¢;/c. and some recorded thickness-to-
chord ratio at root is not the same as t./c,. A careful examination of the data file
reveals the nine source input attributes of the data: A, ¢, ¢, s, tr, te/ct, Weo, A, and
u. Based on these nine attributes, the remaining six data attributes are uniquely

determined by the mathematical relationships among the attributes. For example,

b=vVA-s, A=c¢/c,, and cn,=s/b.

A standard data normalization approach is to scale each component z; by an

estimation of its standard deviation o; calculated from the data:

N o
o; = \/ZJ (@ le _alve( =)’ . with ave(z;) = Zx
Index | Variable Min Max Mean (ave(z;)) | Deviation (o;)

1 A 0.3 12.4 8.86 2.3

2 b 26.11 222.7 1221 40.22
3 Cm 7.78 86.17 16.26 12.83
4 Cr 11.15 54.39 22.2 10.66
) ct 3.62 16.16 7.35 2.96
6 s 5942.5 8,200 2,019 1,589
7 t, 1.56 9.75 3.42 1.45
8 t 0.34 1.65 0.8 0.25
9 t./cr 0.11 0.22 0.16 0.03
10 ti/c 0.06 0.17 0.12 0.03
11 | [t/d 0.08 0.18 0.13 0.03
12 Wi 26,000 800,000 163,806 175,787
13 A 0.20 0.61 0.35 0.1
14 A 0 ) 11.91 15.83
15 W 3.75 5.3 4.06 0.46

Table 1: Estimated means and standard deviations of configuration variables.

Note that system analysts need to be warned of small values of o;, say, less than
ten percent of the mean value ave(z;). There are two reasons for such a small value

of 0;: (i) the actual range of the variable z; is about the same magnitude as o; or
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(ii) there is not enough data to model the change of the response with respect to ;.
Expert knowledge can be used to determine which case it is. For example, in Table
1, the smallest ratio of o;/ave(z;) is the ultimate load p, which is usually determined
by FAA regulation and has a range from 3.75 to 5.3 for subsonic transports with
estimated standard deviation of 0.46 and mean of 4.06. A warning will help analysts
to discover that among 41 subsonic transports, 26 of them have the same ultimate
load of 3.75, i.e., there is not much variation in yu for the given data set. Therefore,
any relationship between the ultimate load and the wing weight based on the given
data set might be questionable. In this study, the estimated standard deviation of p
is accepted for scaling, which may inflate the significance of ¢ in both the PCA and
variable screening analysis.

Scaling each data attribute by its estimated standard deviation also helps the
initial formulation of the approximation problem. To illustrate how scaling affects the
problem formulation in practice, the cubic RBF interpolation is used as an example.
The cubic RBF model is defined by

g(x) = Zajso(nx —x7|)),

where ¢(||x —x7||) represents ¢;(x) in the interpolation model, (t) = ¢3 is the cubic

RBF, and ||x — x7|| is a parameterized distance between x and x’ defined as

n 7 2
i _ _ r; — Ii I
[Ix — x| ;W < o ) - (IL3)

The scalars 6y,...,0, in Eq. (IL.3) are the model tuning parameters that will be
determined by a cross-validation method for the best prediction model of the given

data. Mathematically, one could rewrite ||x — x?|| as

Ix — x| = Z 10;| (@; — x7)27 with 0; = 9— (I1.4)
i=1

1

In practice, starting without any scaling (i.e., ; = 1 in Eq. (IL.4)) may lead to
ill-conditioning of the interpolation problem even though the mathematical theory
[5, 6] guarantees the existence of a unique cubic RBF interpolant for any given data
points (x!, f1),...,(xY, fn). For eight input variables given in (IL.1) and forty-one

data points, the condition number of the unscaled interpolation matrix is 4.4 x 104,
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while the scaled interpolation matrix (corresponding to §; = 1 in Eq. (I1.3)) has a

condition number of 1.1 x 105. The purpose of using two sets of scaling parameters

in Eq. (I1.3) is to allow a nondimensional initial choice of 8; = 1.
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Chapter II1

PRINCIPAL COMPONENT REGRESSION

III.1 INTRODUCTION

For a limited number of historical or measurement data points in a high-dimensional
input space, a principal component analysis (PCA) is recommended to check any
collinearity of the input attributes of the data points. Assume that there exists in
fact collinearity among the input vectors x',...,x" in R*. Then the input vectors
are scattered around a r-dimensional subspace of R™ spanned by a set of orthogonal
vectors u!, ..., u” with ¥ < n. These orthogonal vectors u',...,u” can be generated
by PCA and will be called the feature vectors for the vectors x!,...,x"V. The main
applications of PCA are: (i) reduce the number of variables; (ii) detect structure
in the relationships between variables; and (iii) transform correlated variables into
uncorrelated ones. In other words, PCA is applied as a data reduction or structure
detection and correction method.

The importance of using PCA for irregularly distributed input vectors was dis-
cussed in [2, section 3.6] where we can find the following example that illustrates
the importance of using PCA: all the input vectors fall in a straight line that is not

N are distributed along a line with a

parallel to any coordinate axis, e.g., x!,...,x
unit direction u'. Thus, x/ = a;u' for some scalar o; with j = 1,..., N. For this
worst case example, variable screening methods will not work because the collinear
input vectors suggest the rate of the changes in the response with respect to the cor-
responding changes in each of the components of the input vector is the same when
all the components of u' are equal. Therefore, all input variables are equally impor-
tant. In this case, the only information given by the data points is how the response
changes when the input vector changes along the line with the direction vector ul.
Thus, any meaningful approximation should only capture the trend of the response
in the feature direction u!. That can be accomplished by reducing the input space
to one-dimensional feature space (7 = 1) and solving the corresponding fitting prob-
lem in that space to construct an approximation f (a). The relationship o = xTu!
allows us to recover the corresponding approximation f(x) = f (xTu!) in the original
input space from the constructed approximation in the feature space. Fig. 4 shows

a similar example in R? on how PCA can be used to construct approximations to
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capture the data trends in the first feature direction.
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Figure 4: Capture data trend in the first feature direction of historical and mea-
surement data.

The dimension reduction illustrated in the previous examples works for any
collinear or nearly collinear data distribution in the input space. By applying PCA to
the input vectors x!,...,x", we can treat the response as a function defined on the
feature space R" with a reduced dimension 7 (< n) and then solve the approximation
problem by fitting the transformed data in the feature space. We can then recover
the corresponding approximation found in the feature space to the original input

space. Regression methods based on PCA are called principal component regression

(PCR).

II1.2 PCA OF WING WEIGHT DATA

In this section we discuss the PCA of the wing weight data.

The wing data of each subsonic transport have 15 configuration parameters:
A b, Cmy Cry €ty 8, [E] Cliny try tr [ Coy ey B €ty Whoy A, A, and p. Because [t/dm = (t/cr +
ti/c:)/2, the three configuration parameters [t/c|m,t,/cr, and t:/c; are linearly de-
pendent. The redundant parameter [t/c], is considered as an input variable due to
analysts’ preference of using [t/cl,, as an input variable instead of ¢,/c, and ;/c; (see
Eq. (IL.2)).

The PCA of the 41 subsonic transport wing data is done as follows. First, relabel
the 15 parameters as variables zy,...,z, (n = 15) and the 41 wing configurations

as x!,...,x" (N = 41). Scale each variable by its estimated standard deviation:
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ff = xf /o;. (Note that different orders of magnitude of the components of x?, . .. ,x
may render the PCA of x!,...,x" useless for collinearity analysis.)
Next calculate the covariance matrix C of the scaled input vectors %!,...,%":
c= 3 °d X)| |%7 o] 111
= w1 ; [x - ave(x)] [x — ave(x)} , (I11.1)

where ave(X) = % Zjvzl %/. Then the following spectral decomposition of C can
be used to analyze the collinearity of the input parameters: C = 37, v;u/(u/)7,
where 71 > v > -+ > 7, > 0 are the eigenvalues of C, and u!,... u” are the
corresponding unit eigenvectors.

For the 15 wing configuration parameters of the 41 subsonic transports, the
eigenvalues of C are 7.952, 2.757, 1.349, 0.861, 0.676, 0.565, 0.341, 0.187, 0.157,
0.096, 0.031, 0.019, 0.005, 0.003, and 0.000. The last eigenvalue of 0 means lin-
ear dependence of the 15 configuration parameters due to the linear relationship
[t/clm = (t:/cr + ti/c:)/2. In fact, the three components of u'® corresponding to
[t/Clmstr/Cry ti/ci are —0.45, —0.43, and 0.78, while the remaining components of u'®
are zero (accurate up to two significant digits). The next two smallest eigenvalues
(0.003 and 0.005 also indicate nearly collinear relationships among the 15 configuration
parameters because of specific locations of the 41 input vectors in the 15-dimensional
space. Such data-specific relationships are most likely to disappear when new wing
weight data is added to the existing data set. However, one should exercise caution
when using a weight prediction of a wing configuration represented by x with rela-
tively large absolute values of (X —ave(%X))Tu!3 or (X — ave(x))Tul4, because the data
do not have much information on how the wing weight changes in terms of these two
quantities.

If t./c. and t;/c; arc excluded from the list of wing configuration parameters, then
the 13 eigenvalues of the corresponding C are 7.17, 2.17, 1.33, 0.758, 0.631, 0.312,
0.244, 0.179, 0.123, 0.047, 0.021, 0.016, and 0.004. It also suggests that one nearly
collinear relationship could be used to reduce the dimension of the input space to 12,
which is the same conclusion from the previous PCA.

If the PCA is applied to analyze the collinearity of the configuration parameters
in the two engineering wing weight models, then the smallest eigenvalue of C is 0.146
for configuration parameters in model (I1.2). However, for configuration parameters

in model (II.1), the two smallest eigenvalues of C are 0.082 and 0.019, which indicates
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a higher level of collinearity among the input variables in model (1I.1) than that in
model (I1.2).

I11.3 PROJECTION OF DATA TO REDUCED FEATURE SPACES

We call the unit vector u’, the jth feature vector of the sample data set %*,... %V

and the scalar v; = %Tu’ the jth principal component of . The number of positive

eigenvalues of C, 7, is the degree of freedom in the sampled input set and we can

write each input vector X* as a linear combination of the 7 feature vectors u',..., u:

% = ave(x -i—Z[X — ave(X)) uj]uj. (I11.2)

The value of each eigenvalue of C, v;, indicates the significance the jth principal
component of X in representing the variance in the sampled input set. Therefore, the
principal component analysis (PCA) is simply an ordination technique for describing
the variation in a multivariate data set. The first axis (the first principal component)
describes the most significant direction of variance in the sampled input set; the
second describes the second most significant direction of variance in the sampled
input set, and so forth, with each direction orthogonal to the preceding ones.

A standard dimension reduction technique is to use the r most significant feature
vectors corresponding to the r largest eigenvalues of C for an approximate represen-
tation of the input vectors x* instead of the exact representation formula (IT1.2). The
approximation is based on the projection from the input space to the r-dimensional

feature space:

P(x) = ave(x) + Z [(x — ave(x))Tu/]u’. (I11.3)

If » = 7, then P(x*) = x* for k = 1,...,N. If r < 7, then the difference between
(II1.2) and (II1.3), i.c., the difference between x* and P(x*), increases as the max-
imum value of ; for j > r increases. If ,; for 7 > r are small, we can consider
x* & P(x*) as a vector in the reduced r-dimensional feature space without much loss

of accuracy.

II1.4 PCR FOR WING WEIGHT APPROXIMATION

PCR for wing weight approximation is a process of constructing wing weight estima-

tion models by fitting the data in reduced feature spaces.
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Suppose that the first r (< n) principal components (x — ave(X))Tul,..., (X —

ave(x))Tu" are chosen as the significant input variables. Let v/ be the vector with r

components v], ..., vl defined by

U.Z7 — (5(] _ ave()”())Tui fore=1,...,r

Then the reformulated problem of fitting N data points (v!, f1),...,(vY, fx) can
be solved by using any regression method or the interpolation methods described in
Chapters V and VII. If the solution of the reformulated problem is §(v), then the

corresponding fitting of the data points in the x-space is the following:
W= g((fc ~ave(®))Tul,..., (k- ave(ic))TuT>, (111.4)

where Z; = z;/0; are scaled variables.
There are two main advantages for fitting the data in reduced feature spaces: (i) v

has fewer components than x which reduces the impact of curse of dimensionality [7];

1 T

(ii) significant uncorrelated variances of the input vectors in the directions u', ..., u
ensure that sufficient data information are available for modeling of the relationship
between the response and independent variables vy, ..., vy.

The wing weight estimation model (111.4) has two sources of approximation errors:
(i) errors due to dimension reduction, i.e., errors due to approximate representation
(IT1.3) of x, and (ii) errors inherited from fitting §(v) to the data in the feature space.
However, we will see later that PCR can produce much better approximations of the
response than directly fitting the data in the original space because the fitting process

is customized for the given data.

If ~. is much greater than O and ~v,41 = ... = 7, = 0, then all the existing
input vectors have the same jth principal component for j = r 4+ 1,...,n, ie,
&Y = ... = XM)Tw for j = r+ 1,...,n. In this simple case, the existing

input vectors spread out in an r-dimensional subspace and the data do not provide
enough information for building any approximation model with more than r degree
of freedom in the input. In the simplest case when n = 2 and all the existing
input vectors have the same value of the z;-coordinate, any nonconstant relationship
between an approximation model and the input variable z; is unjustified and should
be avoided, which is exactly the purpose of the PCR process described above.

In real world, it is not easy to choose r. For example, based on the PCA of all

15 configuration parameters, one could choose r = 10 or r = 12. The key issue is
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whether one wants to extract a functional relationship between the change of the
input vector X along a direction w’ and the response f(X) even if the existing input

1 ..., %" have a small variation along the direction uw’. Analysts can view

vectors X
the distribution of the eigenvalues of C and make a few plausible choices of r, build
approximations for the different values of r, and use a systematic evaluation process

to down select the approximation that is most appropriate for the analysis task at
hand.
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Chapter IV

APPLICATION OF VARIABLE SCREENING METHODS

IV.t INTRODUCTION

A standard variable screening process identifies a subset of the input variables
Z1,...,Zn, denoted by X, that have significant influences on the response f(x). In
other words, if the change of f(x) with respect to a variable z; is negligible, then
eliminate z; from the input vector. It is worth pointing out that variable screening
should be applied in the r-dimensional feature space if the dimension of the input
space has been reduced by the PCA, where the purpose of variable screening is to
identify variables in v that have significant influences on the response. For the wing
weight approximation problem, any variable screening method (such as ANOVA)
that requires the values of the response for specific input vectors is not applicable.
The main effects estimate (MEE) method, proposed by Tu and Jones [8], generally
requires a uniform distribution of the existing input vectors in a rectangular do-
main of the input space, while the forward or backward variable selection method
is mainly to determine the explanatory power of input variables of linear regression
models (such as polynomial models) that are independent of the data distribution.
Rech et al. [9] proposed a variable selection technique based on polynomial approx-
imations of the nonlinear regression model, but this method only works well when
the response can be approximated by a low-degree polynomial. Moreover, their rule-
of-the-thumb is that there are at least about four times as many observations as the
number of the coefficients in polynomials. For forty one wing weight data points and
the geometry model (11.1) with eight variables, this rule-of-the-thumb leads to a poor
linear polynomial approximation of the geometry model. Therefore, these variable
screening methods cannot be applied to identify important input variables for wing
weight estimation models based on the historical wing weight data.

However, the two-dimensional plots of the response with respect to the input
variables are always helpful to gain an intuitive understanding of whether a particular
input variable is important for modeling the response. Fig. 5 indicates that the wing
welght w has some functional relationship with respect to each of the 15 configuration
parameters except u. Note that significant wing weight changes only occur at the

same u value of 3.75, suggesting that other configuration parameters determine the
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wing weight instead of u. In fact, for civil transports, p is usually determined by

FAA regulation and is not a design variable.
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Figure 5: Two-dimensional plots of wing weight versus configuration parameters.

If we assume that the forward and backward variable sclection methods are valid
for variable screening in nonlinear models, then they can be formally applied for
variable screening in wing weight data fitting by the geometry model. In general,
under this assumption, the forward and backward variable selection methods can be
formally applied for variable screening if the wing weight data is fitted by a regression
model that is independent of data distribution. For demonstration purpose, these
two methods are applied to check which input variable in the geometry model (I1.1)

is insignificant for wing weight estimation.

IV.2 FORWARD SCREENING

For convenience, relabel the eight variables in Eq. (IL.1) as zy,...,x, (with n = 8).

If the sample coefficient of determination (R?) is used to measure the proportion of
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the total variation in fi, ..., fiy explained by a given model, then the corresponding

forward variable selection procedure can be described as follows.

Forward Variable Selection

1. Let gi(x;) be the best fit of the simplified geometry model representing the
relationship between the ith input variable in Eq. (IL.1) and w, i.e., gi(z;) is
in the form of the univariate model obtained by sctting the exponents of the

terms not involving x; to zero in Eq. (IL.1).

2. Compute the sample coefficients of determination (R?) for g;:

SN (- alad)’
oL — ave(f))?

where ave(f) = % Z;vd fj- The quantity R? is the proportion of the total

Ri=1-

variation in fi,..., fy explained by the simplified geometry model and it can

be used as a metric for ranking the significance of x; in variation of the response.

3. If a simplified geometry model of k input variables is desirable, then the input
variables corresponding to the k largest R? shall be selected as the significant

input variables.

08

Variables

Figure 6: Forward variable selection for wing weight approximation by the geometry
model.
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This variable selection procedure is designed for linear regression problems, while
the wing weight approximation by the geometry model is a nonlinear regression prob-
lem whose solution is very sensitive to the initial guess of the optimal solution. The
nonlinear optimization code lsgnonlin in MATLAB was used to solve the nonlinear
least squares problems and the results given in Fig. 6 represent the best solutions
found by trying a few educated guesses (see MATLAB code in section A.1.1).

Fig. 6 shows the results of applying the forward variable selection to the wing
weight data fitting problem by using the geometry model. The result suggests that p
is an insignificant variable in the geometry model for wing weight estimation, which
is consistent with the observation from Fig. 5. However, it is puzzling to see that
the sweep angle A is identified as the least significant variable. Later, the backward
variable selection will contradict the conclusion of insignificance of A implied by the

forward variable selection procedure.

IV.3 BACKWARD SCREENING
The backward variable selection procedure can be described as follows.
Backward Variable Selection
1. Let g(x) be the best fit of the wing weight data by the geometry model (II.1).

2. Let g_;(x_;) be the best fit of the simplified geometry model obtained by setting

the exponent of the term involving x; to zero in Eq. (IL.1).

3. Compute the adjusted sample coefficients of determination (R? and R%,) for ¢

andg_; (i =1,...,n):

(N =1 (5 — g(x))?

R*=1- [
(N —=mn) 375, (f; —ave(f))?

and
2

R =1 (N-1) Zjvzl (fj - g—i(xj—z'))
;=1 N .
(N =n+1)> 5, (f; — ave(f))?

4. If the difference in adjusted sample coefficients of determination AR?; = R? —

R?, is nonpositive for some i, then the corresponding variable z; could be
removed from the input vector and the simplified geometry model would have

(n — 1) variables.
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5. Repeat the process with the simplified geometry model until the number of

input variables becomes desirable or all AR?; are positive.

&
4 0.001

-0.001

. . . . . ) 1 .
1 2 3 4 5 6 7 8
Variables

Figure 7: First iteration of backward variable selection for the geometry model.

Fig. 7 shows AR?, from the first iteration of the backward variable selection for
the geometry model and Fig. 8 shows AR?, from the second iteration (where ¢; was
already removed). In the third iteration, all AR?, are positive, thus the iteration
process is terminated.

Again the nonlinear optimization code Isqnonlin in MATLAB was used to solve
the nonlinear least squares problems and the results given in Figs. 7 and 8 represent
the best solutions found by trying a few educated guesses (see MATLAB code in
section A.1.2).

IV4 CONCLUSION

Variable screening for nonlinear regression is a challenging problem if there are only
a few historical or measured data points available. If the nonlinear regression model
is independent of data distribution, one could formally use the forward and backward
variable selection methods for variable screening, even though these methods were
developed for variable screening of linear regression models. Together with the two-
dimensional plots, these screening methods could provide some insight on significance

of input variables.
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Figure 8: Second iteration of backward variable selection for the geometry model.

It is heuristic to use the adjusted R? in variable selection for nonlinear models.
Further study is needed to understand the merit of this approach. However, for wing
weight approximation by the geometry model, the consistency of the forward and
backward variable selections in identifying the ultimate load p as an insignificant
variable is encouraging, because the values of u for civil transports are mandated by
FAA, not a design variable determined by engineers. The reason of including p as a
design variable is a legacy inherited from military aircraft weight estimation practices,
where p is a common parameter in the design tradeoff and there is considerably

greater variation in the values of .
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Chapter V

RADIAL BASIS FUNCTION INTERPOLATION

V.1 INTRODUCTION

For numecrical approximation of multivariate functions, radial basis functions (RBFs)
are very useful. For any finite data set in any finite dimensional space, one can
construct an interpolation of the data by using RBFs. There is a wide range of
applications where RBF interpolation methods can be successfully applied (see [10]).
One interesting application of RBF interpolation is in medical imaging for skull defect
repair {11].

In the following sections, we will formulate RBF interpolation problems, discuss
the solvability of RBF interpolation problems, and introduce two related interpola-

tion methods (Kriging and Gaussian process).

V.2 RBF INTERPOLATION PROBLEMS

Let f(x) be a real-valued function of the input vector x defined on a subset 2 of R®
such that the value of f is given at N input vectors x7, j = 1,..., N. Let f; = f(x?),
j=1,...,N. For wing weight data fitting, f; and f(x’) represent the documented
and actual wing weight for the jth transport in the data. In this case, f; is almost
the same as f(x7). Therefore, it is desirable to construct a wing weight estimation
model g(x) such that g(x’) = f; for j = 1,..., N. The interpolation requirement
can be satisfied by RBF interpolation.

Interpolation functions generated from a RBF ¢(t) can be represented in the

following form:
o) = 3 aze(lx =) (V.1

where ||x — x7|| denotes the parameterized distance between x and x’ defined as

lx = x| = | > [0i] (z: — ), (V.2)
i=1
and #; are positive numbers.

The most important examples of RBF [5, 12, 13] are multiquadric ¢(t) = v 1 + #2,
thin plate spline ¢(t) = t2Int, cubic spline (t) = ¢3, and Gaussian ¢(t) = exp(—t?)
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(see Fig. 9). These RBF's can be used to model linear, almost quadratic, and cubic

growth rates, as well as exponential decay, of the responsc for trend predictions.

T
....... - Cubic spiine ()=t

7
: /
Thin plate spline o(t)=tzln t ; 7
»»»»»»» Multiquadric a(t)=(1+t%)"2
S —— Gaussian q>(t)=exp(-t2)

Figure 9: Graphs of radial basis functions

For fixed positive parameters 6;, the coefficients a,

...,an in (V.1) can be cal-
culated by solving the following linear system of interpolation equations:

N
> ase(lxt —xI||) = fi, fork=1,...,N.
=1

(V.3)
One can rewrite (V.3) in matrix form as
a1 fi
o Ofi’ - {2 : (V.4)
an In
where ® is the interpolation matrix defined as
e(lxt == e(lix! = x*) e(llxt — M)
. <P(HX2'—X1H) SO(IIXQ.— x*1) <P(|\X2.*XN||) V.5)

el == oI —=)) ... (Il —xM]i)
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For multiquadric and Gaussian RBFs, a unique interpolant is guaranteed (i.e., ®
is a nonsingular matrix) even if the input vectors x’ are few and poorly distributed,
provided only that the input vectors are all different when N > 1. But for cubic and
thin plate spline RBFs, ® might be singular. See [5] for an example of singular ® when
o(t) = t3. If p(t) = t*Int, we can easily find an example where the interpolation
matrix ® is singular for a nontrivial set of distinct points x',...,x". For example,
let x2,...,x" be any different points on the sphere centered at x! with radius 1. For
this set of points, the first row and column of ® consist of zeros, which implies the
singularity of ®.

A practical approach for constructing cubic and thin plate spline RBF inter-
polants is to add low-degree polynomials to interpolation functions in (V.1) and for-
mulate an interpolation problem with constraints. That is, let p(z) = Zj\il Bip;(x),
where py, ..., pa form a basis of algebraic polynomials in R™ with degree at most m.

Then interpolation functions are of the following form:

N
9(x) = p(x) + Y azep(|[x = 7). (V.6)
j=1
The M extra degrees of freedom in g(x) can be eliminated by forcing the following
M constraints:
N
Y ap(x’) =0 fork=1,..., M, (V.7)
j=1

which has the following matrix form:

(631
8%

p| 7| =0
an

where
Pl(Xl) Pl(XN)
P =
pM(Xl) PM(XN)

The interpolation equations using g(x) in Eq. (V.6) become

N M
Zajgo(ka —x7||) + Zﬂjpj(xk) =f, fork=1,...,N. (V.8)
j=1 j=1
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Combining (V.7) and (V.8), we obtain the following matrix equation for the con-

strained RBF interpolation:

an fi
T
<® P) o | _ [l (V.9)
P 0 B1 0
Bum 0

V.3 SOLVABILITY OF RBF INTERPOLATION PROBLEMS

In this section, we study the solvability of the linear systems (V.4) and (V.9). Proofs
of some known results are included for a better understanding of why these linear
systems are solvable. The key results on solvability of RBF interpolations related to

the four RBF's shown in Fig. 9 are the following:
o if p(t) = /1 + 12 or (t) = exp(—t?), then Eq. (V.4) is always solvable;

o if p(t) = t3 or p(t) = t?Int, then Eq. (V.9) for m = 2 is solvable provided

1

that the input vectors x', ..., x¥ do not fall into the zero set of a nonconstant

quadratic polynomial.

The proofs of the above statements are based on mathematical concepts called
(conditionally) positive definiteness and their Schoenberg-Micchelli characterizations
as described by Schaback and Wendland [14].

First we give the definitions of (conditionally) positive definiteness of functions
defined on R™.

Definition V.1 Suppose that H(x) is a real-valued function on R™ and H(—x) =
H(x). Then

e H(x) is said to be positive definite on R™, if

N N
Z a;op H(xF —x7) > 0 whenever Z || > 0 and x7 # x* for j # k; (V.10)

k=1 i=1

o H(x) is said to be conditionally positive definite of order m onR", if Eq. (V.10)
holds for any vector (o, ...,an)T € RY satisfying (V.7).
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For a RBF ¢(t), there is a corresponding H(x) = ¢(]|x]|). Note that if ¢(]|x||)
is positive definite, then the RBF interpolation matrix ¢ defined in Eq. (V.5) is
positive definite, which implies the nonsingularity of ® and the solvability of the
RBF interpolation problem (V.4). In the case of ¢(||x||) being conditionally positive
definite of order m, the constrained RBF interpolation problem (V.9) is a linear
system with a nonsingular coefficient matrix and has a unique solution too.

To prove the positive definiteness of ® for p(t) = exp(—t?), we need the following
characterization of positive definiteness of H(x) = ¢(||x||) by Schoenberg [15].

Theorem V.1 (Schoenberg) Suppose that p(t) > 0 is a nonconstant continuous
function for t > 0. Then H(x) = (||x]|) is positive definite on R™ for every positive

integer n if and only if
dk
(—1)’“—[(,0 (\/Z)] >0 fort>0andk=12,. ... (V.11)
where % [go (\/f) ] denotes the kth derivative of ¢ (\/Z) with respect to t.

The nonnegative and nonconstant continuous function ¢(v/%) satisfying Eq.
(V.11) is also called a completely monotone function by Schoenberg [15]. The solv-
ability of RBF interpolation problem (V.4) for Gaussian RBF follows immediately

from Theorem V.1.

N are distinct points in R" and ¢(t) =

Theorem V.2 Suppose that x',... ,x
exp(—t?) (Gaussian RBF). Then the RBF interpolation matriz ® defined in Eq.

(V.5) is positive definite and the RBF interpolation problem (V.4) is always solbable.

Proof: Obviously, ¢(t) is a nonnegative and nonconstant continuous function for
t > 0. Moreover,
k dk \/_ _ L dk
(—1) ;ﬁ[@( t” = (~1) ;ﬁ[exp(—t)] = exp(—t) > 0.

Therefore, by Theorem V.1, ® is positive definite; hence, the interpolation problem
(V.4) always has a unique solution. d

However, for p(t) = V1 + t? (multiquadric RBF), ¢(||x||) is not a positive definite
function. In fact,

4o () = [ -

T <0 fort>0,

1
2v1 4t
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which, along with Theorem V.1, implies that ¢ is not always positive definite. How-

N

ever, ® is always nonsingular if x!,...,x" are distinct. To understand why ® is

nonsingular for ¢(t) = v/1 + t2 (which was first introduced by Hardy [16] in topog-
raphy applications), we reproduce the proof by Powell [5] here.

Theorem V.3 Suppose thatx!,... x" are distinct points in R™ and p(t) = v/1 + t2
(multiquadric RBF). Then the RBF interpolation matriz ® defined in Eq. (V.5) is
nonsingular (with (N — 1) negative eigenvalues and one positive eigenvalue) and the

RBF interpolation problem (V.4) is always solvable.
Proof: The change of variables s = z7 establishes the identity

Vzi=k 000 [1 — exp(—z7)] r3dr, (V.12)

K= </0°° (1 — exp(—s)] s—%ds> B > 0.

Let ay,...,a, be such that Z;V:1 a; = 0 and Zjvzl laj] > 0. Then, for H(x) =

o(|xll) = /1 + ||x||?, we have
N | N
D agorH(x" = x7) = 3 7 ojon/1+ [xk — x|

Jik=1 Jik=1

= K/Ooo i a0y, (1 — exp ( — [T+ |Ix" - xj|l2]7>>'r'%d7'

jk=1
o[ N
= —m/ l:Z Qo €Xp ( —7|x* — xj||2>
0 Ljk=1

where the second equality follows from Eq. (V.12), the third equality de-

where

exp (—7) 77 2dr <0, (V.13)

pends on Zj\;l a; = 0, and the last inequality is based on the positiveness of
ka:l ajoexp ( — 7||x* — x7||?) for 7 > 0 (which is a consequence of Theorem
V.2 about the positive definiteness of the Gaussian RBF interpolation matrix for the
scaled input vectors \/7x!,. .., v/7xV).

If the multiquadric RBF interpolation matrix ®, whose (k, j) entry is H (x* —x7),
has two nonnegative eigenvalues with eigenvectors v! and v2, then there is a nonzero
vector of the form v = a;v! + ayv? whose components sum to zero. Because ® is a

symmetric matrix, we have

vidv = al(vh)Tev! + aj(v?)Tev? > 0. (V.14)
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However, if we use «y, ..., ay to denote the components of v, then Zjvzl a; =0 and
Z;V:l laj| > 0. By Eq. (V.13), vidv = Z?szl ajo H (x* — x7) < 0, which is a
contradiction to Eq. (V.14). This contradiction proves that ® has at least (N — 1)
negative eigenvalues. Moreover, because the trace of & (the sum of the diagonal
elements) is N > 0, which is the same as the sum of all eigenvalues, ® also has
a positive eigenvalue. Hence, ® has exactly (N — 1) negative eigenvalues and one
positive eigenvalue. As a consequence, all the eigenvalues of ® are nonzero and ®
is nonsingular; so the multiquadric RBF interpolation problem (V.4) always has a
unique solution. O

For cubic spline and thin plate spline RBFs, it is not easy to determine the solv-
ability of the RBF interpolation problem (V.4) based on distributions of the input

1 ...,x"V. However, using the concept of conditionally positive definiteness,

vectors x
one can solve the constrained RBF interpolation problem (V.9) for almost all non-
trivial distributions of x*,...,x". The theory is based on following generalization of

the sufficient part of Theorem V.1 by Micchelli [6].

Theorem V.4 (Micchelli) Suppose that o(t) is a continuous function fort > 0 and

(—1)'“;—;%0(%)]20 fort>0andk=m,m+1,..., (V.15)

then @(||x||) is conditionally positive definite of order m on R™ for every positive

mteger n.

The utility of the conditional positive definiteness concept is shown in the next
theorem [14].

Theorem V.5 Suppose that ¢(t) is a continuous function of t > 0 and (||x]|) is
conditionally positive definite of order m on R™. Let x',...,x" be distinct points in
R™ that do not fall into the zero set of a nonconstant polynomial p(x) of degree at
most m (i.e., p(x) is identical to 0 if p(x) is a polynomial of degree at most m and
p(x?) =0 for j=1,...,N). Then the constrained RBF interpolation problem (V.9)

has a unique solution.

Proof: Note that Eq. (V.9) has a unique solution if and only if the coefficient matrix

in the linear system (V.9) is nonsingular. We prove Theorem V.5 by contradiction.
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If the coeflicient matrix is singular, then there exist ay,...,an, 51, ..., Oy, not

all zeros, such that Eq. (V.7) holds and
N _ M
D (|l = %)+ ) Bipi(xF) =0 fork=1,...,N. (V.16)

Multiplying the kth equation in Eq. (V.16) by a4 for k = 1,..., N and adding the

scaled equations together, we obtain

N N A N M
S aarp(lxt = 300) + 30 aups(xh) = o. (V.17)

k=1 j=1 k=1 j=1

However, by (V.7), the second term in Eq. (V.17) is zero, so we have

N N
S aanp(lx ) =0. (V.18)

k=1 j=1
Because a1, . .., ay satisfy (V.7), by the conditional positive definiteness of o(||x||),
Eq. (V.18) forces oy = ... = ay = 0. Thus, Eq. (V.16) implies that x!,...,x" are
zeros of the polynomial Z]Ail B;p;(x). By the assumption about x!,... ,x given in
Theorem V.5, Zj\il B;p;j(x) = 0 for all x, which implies ) = ... v = 0 because
p1(x),...,pp(x) form a basis for polynomials of degree at most m. The conclusion
that oy = ... = ay = 31 = ... = Oy = 0 contradicts the assumption that they are
not all zeros. The contradiction proves the nonsingularity of the coeflicient matrix of
the linear system (V.9), thus, the constrained RBF interpolation problem (V.9) has
a unique solution. O
Remark. (i) Note that ¢(t) = exp(—t?) obviously satisfies Eq. (V.15) for any
nonnegative integer m, so exp(—||x||?) is conditionally positive definite of order m
for every m > 0 (sec Theorem V.4). By Theorem V.5, for any nonnegative integer
m, the constrained Gaussian RBF interpolation problem (V.9) has a unique solution
if x!,...,x" do not fall into the zero set of a nonconstant polynomial of degree at
most m. In particular, if x',...,x" are distinct, the constrained Gaussian RBF

interpolation problem (V.9) with m = 0 has a unique solution.
(ii) For RBF ¢(t) = —v1 + t2, we have

0 o (V)] = 0t [ VI = e P 20

for ¢ > 0 and any positive integer k. Here (k — 1)l =1-2--.(k — 1) is the factorial

notation. By Theorem V.4, ©(]|x||) is conditionally positive definite of order m for
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m > 1. By Theorem V.5, if m > 1 and x!,...,x" do not fall into the zero set of a
nonconstant polynomial of degree at most m, then the constrained RBF interpolation
problem (V.9) has a unique solution for (t) = —v/1 + #2, which is equivalent to say
that the constrained multiquadric RBF interpolation problem (V.9) has a unique
solution.

Micchelli’s theorem on conditionally positive definite functions allows us to prove
the conditional positive definiteness of cubic and thin plate RBFs, and solvability of

the related constrained RBF interpolation problems.

Theorem V.6 Let m > 2. Then, for cubic RBF ¢(t) = t or thin plate RBF
o(t) = t*Int, the constrained RBF interpolation problem (V.9) has a unique solution
if xb,...,xV do not fall into the zero set of a nonconstant polynomial of degree at

most m.

Proof: Fort > 0 and £ =2,3,..., we have either

d* d*rs7 3 (2k—4)  sm
—1)F = (| = 2. 2 T 4R
S [eva)] = (=) dt* ] 2 g - 70
. d* d* 11 (k —2)!
1)k = — (1) _|Z _ VT el -k
(-1 [e(vB)] = (-1) S [2tlnt} 0TS0 fort >0,
By Theorem V.4 and m > 2, ¢(||x||) is conditionally positive definite of order m.
The solvability of Eq. (V.9) follows from Theorem V.5. O

The above argument can be easily modified to prove theorems on solvability of
the constrained RBF interpolation problem (V.9) for ¢(t) = ¢* with any positive s

that is not an even integer and ¢(t) = t* Int with positive integer [.

V.4 KRIGING VERSUS GAUSSIAN RBF INTERPOLATION

Kriging is an interpolation method named after a South African mining engineer D.
G. Krige who developed the technique in an attempt to more accurately predict ore
reserves. Over the past several decades Kriging has become a fundamental tool in
many fields [17, 18].

In ordinary Kriging, the estimation g(x) of an unknown function value f(x) is

done by using a weighted average of the known function values f(x!),..., f(x"):
N N
g(x) = erf(xj) with Z’Tj =1 (V.19)
J=1 j=1
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The function value f(x) is assumed to be a realization of an intrinsic random function

with the semivariance

e(llax]) = B(1f6x+ Ax) - F), (V.20)

where E(-) denotes the expected value of a random function and ¢(t) is a decreasing
function of t > 0. Semivariance is a measure of the degree of spatial dependence
between two function values and depends only on the distance ||Ax| between the two
input locations. A smaller distance yields a smaller semivariance and a larger distance
results in a larger semivariance. The plot of the semivariances as a function of
distance from a point is referred to as a semivariogram. The semivariance increases as
the distance increases until at a certain distance away from a point the semivariance
will equal the variance around the average value, and will therefore no longer increase,
causing a flat region (whose height is called a sill) to occur on the semivariogram.
The distance from the point of interest to where the flat region begins is termed
the range or span of the regionalized input variable. Within this range, denoted
by §, locations are related to each other, and all known samples contained in this
region, also referred to as the neighborhood, must be considered when estimating
the function value at an unknown point of interest in the region. Two examples of

semivariance are the spherical semivariance

co+er (155 —05()°) if [t <
p(t) =
Co+ C1 if ’t’ >0
and the exponential semivariance
0 if [t{=0

o(t) = - (1 B exp<%\tl>> if |t > 0.

In both examples the sill is ¢g + ¢1, where ¢y and ¢; are constants.

Using Eq. (V.19), one can calculate the variance of estimation error as follows:

N

BI(f(x) - g(x))?] = (Z 7 (f60 - f(xj))>

= i i 7Tkl [(f(X) - f(xj)> (f(X) - f(xk))} : (V.21)
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However,

p(lx = =) + e(llx = x*]) — e(llx* —]))

_F [(f(x) _ f(xj))2] +EB [(f(X) - f(x’“))z] ~E {(ﬂxj) - f(Xk)ﬂ

—2E [ (f(x) - 1)) () - £6)] (V.22)

Substituting Eq. (V.22) into Eq. (V.21) and simplifying the resulting expression by
using Zjvzl 7; = 1, we obtain the following formula for the variance of estimation

error:

E[(f(x) - g(x

N N
—S3 N mmellxt = ) +Zw<nx—xf||>

j=1 k=1 j=1

l\JIr—k

The ordinary Kriging estimate g(x) of f(x) is obtained by minimizing the variance
of estimation error with the constraint on weights 7; given in Eq. (V.19). The optimal
solution of 71, ..., 7y is the solution to the following system of linear equations (i.e.,

the optimality conditions):

N
> =1
=1

N
TO+ZTj90(IIX’°~XjII)=<p(HX—X’°H) fork=1,....N
0 1 1 70 1
et Y I KV IR
Loo(llx™ =xM) ool =xM)) ) A\ 7w o(llx = xM)

where the parameter 7y is a Lagrange multiplier for the equality constraint of
Z;V .7 = 1. The left-hand side of Eq. (V.23) describes the dissimilarities among
data points while the right-hand side describes the dissimilarities between the data
points and the estimation point.

It is well-known that ordinary Kriging estimation g(x) is an interpolation of the
data points (x!, f(x!)),...,(x", f(x")), ie., g(x*) = f(x*) for k = 1,...,N. In

fact, if x = x*, then it is easy to verify that 7; = 0 for j # k, 7, = 1, and 75 = 0 solve
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Eq. (V.23). Once the inverse of the coefficient matrix of Eq. (V.23) is available, we
can compute the weights 71,..., 7y for Kriging estimation g(x) by a matrix-vector
multiplication.

Kriging interpolation is very similar to Gaussian RBF interpolation but the two
interpolation methods are not the same. Li and Padula [2] proved that Kriging
interpolant is the solution of the constrained Gaussian RBF interpolation problem
(V.9) with m = 0. By Remark (i) after Theorem V.5, Kriging interpolation has a
unique solution.

Li and Padula [2] also gave the following classical interpolation formulation of
Kriging interpolation that shows the relationship between Gaussian RBF interpola-
tion and Kriging interpolation. Let ¢(t) = exp(—t2?) be the Gaussian RBF, & the
interpolation matrix defined by Eq. (V.5), and f the column vector in the right-hand
side of Eq. (V.4) (i.e., the jth component of f is fi). Use ¥ (%) to denote the column

vector whose jth component is p(||x — x7||) for 7 =1,..., N, and define
G(x) -
- , - 1— 179 1y(x)
((x) = : =¢(X)+—15ﬁ“— ;
(n(x)

where 1 denotes the column vector of ones. Then the Kriging interpolant can be

written as a linear combination of {;(x):

N
o) = 3 a,6,(x).

where @1, ..., &y satisfy the following interpolation conditions:
N
> aGxt) = fi fork=1,...,N. (V.24)
j=1

In other words, the Kriging interpolation problem can be considered as a classical
interpolation problem with the basis functions ¢;(x), ..., (n(x).

The system of linear equations (V.3) for Gaussian RBF interpolation has the
same solution as Eq. (V.24) for Kriging interpolation because (;(x*) = o(||x* — x7|})
for j,k=1,..., N. Thus, the Kriging interpolant is

o . _qT —1"X .
(27 /y*Cl) = (@7 Y70 + (%%#) (@1,

where the first term on the right-hand side is the Gaussian RBF interpolant.
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Chapter VI

MODEL PARAMETER TUNING

VI.1 INTRODUCTION

Both Kriging and RBF interpolation models use the parameterized distance:

=) = | D164 ( - ) , (VL)

where o; is the estimated standard deviation of the ¢th component of x and 64, ...,8,
are scalars. Mathematically, one could pick any fixed set of 6,..., 0, and construct
the interpolation function for the given data. However, two different sets of 0y, ...,0,

will lead to two interpolation models that behave very differently between the input
vectors x1, . .., x". Model parameter tuning for Kriging or RBF interpolation aims at
finding a set of parameters 64, ..., 8, that results in the best prediction model of the
unknown response based on the available data. Cross validation (CV) (8, 19, 20, 21]
and maximum likelihood estimation [22, 23, 24, 25, 26] are two statistical methods
for tuning the model parameters 84, ..., 68, for best prediction models.

CV can be used for general model parameter tuning, while maximum likelihood
estimation can only be applied for density function parameter estimation. Both
statistical methods are introduced in this chapter. RBF interpolation for wing weight
estimation is used as an application of CV for model parameter tuning and Gaussian
process [27, 28] for data fitting is used as an application of maximum likelihood
estimation. In the last section, we introduce an automatic PCR procedure based on

CV errors.

V1.2 MODEL PARAMETER TUNING BY CV

Because either Kriging or RBF interpolation method yields a fitting function g(x)
whose value at x* is exactly fi for k = 1,..., N, other metrics instead of fitting errors
must be used to determine which basis function ¢(t¢) and what scaling parameters 6;
are most appropriate to model the response function f(x). A technique that can be
used, but often impractical (and always expensive) is to obtain values of f(x) at some

1

additional data points x¥*2, .. x" and use the prediction errors |g(x*) — f(x*)| for

k=N+41,...,N to assess the prediction accuracy of g(x). The prediction accuracy
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can be used as a criterion for choosing the best basis function ¢(t) and parameters
f;.

Without additional sample points, CV [20, 8] was proposed to find ¢(¢) and 6;
that lead to an approximate response model g(x) with optimal prediction capability
and proved to be effective [19, 21]. For wing weight data of 41 subsonic transports,

only the leave-one-out CV procedure is applicable for RBF interpolation.

Leave-one-out Cross Validation for Kriging or RBF Interpolation:
e Fix a set of parameters 64,...,0,.

e For j=1,..., N, construct the Kriging or RBF interpolant g_;(x) of the data
points (x*, fi,) for 1 <k < N,k # j.

o Use the following CV root mean square error as the prediction error:

1 N

ECY (01,0 00) = | 57 D (9-5() = f3)". (V1.2)
=1

Remark. One could also use other forms of CV errors such as the CV average

absolute error: + Z;\Izl lg—;(x7) — f(x7)].

In the case that each x’/ has a close neighbor x* (k # j) in the space of input
variables and f(x) is a smooth function, E€V is not a meaningful measure of the
prediction accuracy of the fitting model because g_;(x¥) = f; implies g_;(x’) ~ f;
due to small values of ||x* — x7| and |fx — f;|. Therefore, if the leave-one-out CV
error is used as a criterion for model parameter tuning, then analysts must be warned
when undesirable clustering of x’ occurs.

Model parameter tuning by CV is to find 0y,..., 8, that minimize the CV error
ECV(#y,...,6,) so that the interpolation model has the highest prediction accuracy

when measured by the CV error.

It is worth pointing out that it is difficult to minimize EV (6, ..., 6,) numerically
because ECV(6y,...,6,) is a highly nonlinear and nonconvex function. One could
make the model parameter tuning much easier by assuming ¢, = --- = 6,, which

reduces the problem to unconstrained minimization of a univariate function (see [19]).
This approach has the obvious benefit of dealing with a much easier optimization
problem but the disadvantage of not using all different §;. Different 8, allow the model

parameter tuning to scale each variable z; based on its significance in modeling the
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variance in the response, thus, have the benefit of implicit variable screening built in

the model parameter tuning.

V1.3 CV FOR PRINCIPAL COMPONENT REGRESSION

Following the notations for PCR in Chapter III, we can project the data to a reduced

feature space by using the following formula:

v = (& —ave(x))Tu’ for1<i<r1<j<N, (V1.3)

7

where &; = 1;/0;, i.e., X is a scaled version of x. Let v/ be the reduced feature vector
with r components v{ for : = 1,...,7. Then the RBF interpolation problem in the

reduced feature space can be formulated as follows:

N
> aje(vE=vI|) = fi fork=1,...,N. (V1.4)
j=1
The interpolation function g(v) = Zjvzl ajo(|lv = v7||) can be used to construct a
wing weight prediction model in the x-space:
= g((fc — ave(®)Tul, ..., (R — ave(i))Tur>. (VL5)

Because we use the components of the reduced feature vector as the input vari-
ables, Eq. (VI.1) has the following form:

N\ 2
. L ’Ui—’Ug
Iv = vl = Zw( — ) (VL6)
i=1 ?

where 6; is the standard deviation of the ith components of v!,... vV,

The interpolation function §_;(v) = Zi]\iu 2 (v — v*||) in the CV procedure
can be obtained by solving the following interpolation equations:

N
ST ap(IvE - vill) = fi forl <k< N k#]. (VLT)
i=1,isj

Thus, the CV error is

EV(by,...,0,) = i (g_j(va‘) - fj)Q. (VL8)

j=1
Similarly, the CV errors for constrained RBF interpolation and Kriging interpolation

can be computed in the reduced feature space or in the original x-space.
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V.4 NUMERICAL RESULTS FOR MINIMIZATION OF CV ERROR

The multidimensional unconstrained nonlinear minimization method by Nelder and
Mead [29] is a direct search method and one of the widely used methods to find a
minimizer of a multivariate function. We use the MATLAB program fminsearch, an
implementation of the Nelder-Mead multidimensional search algorithm, to minimize
ECV.

For the wing weight data fitting problem, we use both n = 14 (all configuration
parameters listed in Table 1 except [t/c]m that is redundant) and n = 8 (for the
input variables in Eq. (II.1)) as the dimension of the original x vector. If we do
not use reduced feature spaces, then the CV error E€V(6,,...,6,) in Eq. (VL2) is

minimized to find the best model parameters 6y,...,60,. If x!, ..., x" are projected
to the reduced feature space, then E€V (fs,...,60,) in Eq. (VL8) is minimized to find
the best model parameters 91, .. ,éT.

1.346 17125
1.338 17115
o 1.33 &1.7105
1322 1.7005|
1.314 1.7085
1383 1433 1484 1535 1383 1433 1484 1535
0.0537 1.283(5
0.0531 1.269
700525 & <1.255
0.0519 1.241
0.0513 1.227
1383 1433 1484 1535 1383 1433 1484 1535
1.324
1.312
g 1.3
1.288
1.276| 2
1383 1433 1484 1535 1383 1433 1484 1535 1383 1433 1484 1535
lteration Index Iteration Index Iteration Index

Figure 10: Typical convergence history for cross-validation error minimization.

MATLAB code fminsearch is very reliable for finding local optimal solutions.
Forn =8 and 8, = ... = 0, = 1 as the initial guess, a typical convergence history for

the objective function and tuning parameters 6; (when n = 8) is given in Fig. 10. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

local optimal solution generated by MATLAB code fminsearch for minimization of
the CV error is very sensitive to the initial guess. Multiple initial guesses were used
for searching a global minimizer of the CV error by fminsearch. However, there is
no guarantee that the best solution among the calculated local optimal solutions is
a global minimizer of the CV error. Tables 2 and 3 show the minimized CV errors

for various interpolation models by using fminsearch with multiple initial guesses.

Multiquadric | Thin Plate Cubic Gaussian { Kriging
CV Error CV Error | CV Error | CV Error | CV Error

n=14 9162 88352 9180 20276 20151
r=14 22694 12443 17605 56377 37187
r=13 4724 16057 19703 49478 27091
r =12 11858 15808 14749 28883 43594
r=11 7384 44196 45941 34782 49113
r=10 8074 50617 43110 70896 53259
r=9 5731 39986 10711 33132 57457
r=38 22266 37790 150800 50059 52972
r=7 79859 8782 91118 33690 110560
r==6 4888 43764 39554 60052 81911
r=>5 10462 28463 26460 57089 94579
r=4 67649 118310 63386 231260 206000

Table 2: Minimized CV errors for the data set with fourteen input variables.

Multiquadric | Thin Plate Cubic Gaussian | Kriging

CV Error CV Error | CV Error | CV Error | CV Error
n=2=8 2697 18814 3396 21229 20579
r=28 4321 7113 3930 34037 79362
r=7 3065 16646 5505 7175000 543410
r=26 3724 4372 4157 615560 445280
r=>5 5837 4583 5745 29257 16308
r=4 4163 5589 9100 7757400 | 19034000

Table 3: Minimized CV errors for the data set with eight input variables.

In general, it is difficult to find global minimizers of nonconvex objective functions,
which is not the subject of this thesis. Heuristic search methods like simulated
annealing, tabu search, and genetic algorithms can be applied to find approximate

solutions of global minimizers of the CV error.
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Powell’'s UOBY QA algorithm ([30] or [31]) is a direct search algorithm for uncon-
strained minimization of a function of several variables. UOBY QA uses a smooth
quadratic model of the objective function that is constructed by using computed
objective function values to accelerate the convergence of iterates. The CV error was
also minimized by using UOBYQA, but the values of the minimized CV error ob-
tained by fminsearch are consistently lower than the ones obtained by UOBYQA.

V1.5 AUTOMATIC PCR PROCEDURE

The CV error of an interpolation model can be a useful and objective tool to help
analysts decide which model is better. In Tables 2 and 3, we have the CV errors
of various interpolation models. In particular, the first row of Table 2 or 3 has the
CV errors for interpolation models in the x-space, while the other rows show the CV
errors in the r-dimensional feature spaces. Instead of letting analysts make a few
plausible choices of r, one could also use cross-validation errors to choose the best

value for r for each given interpolation model.

Automatic PCR Procedure:

e Compute the eigenvalues of the covariance matrix C and let 7 be the number

of positive eigenvalues.

e Choose an integer mny, < 7 such that there is still a function relationship
between the transformed input vectors in the ryp,-dimensional feature space
and the response. For cach integer r from ry;, to 7, minimize the CV error for
the given interpolation model in the r-dimensional featurc space (see section
VI.3).

e Choose r corresponding to the smallest value of the minimized CV errors and

select the corresponding interpolant as g(v).
e Reconstruct the wing weight approximation in the x-space by using Eq. (VI.5).

For the wing weight data fitting problem, we have 7 = 14 for n = 14 input
variables and 7 = 8 for n = 8 variables. Tables 2 and 3 have all the minimized CV
errors for r from ry, = 4 to 7 = n. For each interpolation model, PRC generates

11 different interpolants in various feature spaces with r ranging from r;, = 4 to
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n = 14, which yield 11 different wing weight estimation models in the original x-
space. The above automatic PCR procedure can help to reduce the PCR interpolants
to one for each interpolation model. In the case of multiquadric RBF interpolation
with n = 8 and r;, = 4, the best PCR interpolant is generated by using r = 7.
Later on, we shall see that this PCR interpolant is indeed the most desirable wing

weight prediction model for subsonic transports.

VI.6 MAXIMUM LIKELIHOOD ESTIMATION

The maximum likelihood estimation is another widely used statistical method for
model parameter tuning [25, 26]. The idea behind maximum likelihood estimation
is to determine the parameters that maximize the probability (likelihood) of the
sample data. From a statistical point of view, the method of maximum likelihood is
considered to be more robust (with some exceptions) and yields estimators with good
statistical properties. In other words, maximum likelihood estimation methods are
versatile and applicable to many probability density models and to different types of
data [22, 23, 24].

Let y be a random vector with probability density function

g<y301) "7871)7

where 01, . .., 0, are n unknown parameters that we want to estimate. Let y',...,yV
be the set of sample data points. Then the maximum likelihood estimator maximizes

the likelihood function
N

L=Ly...,y"i00,...,00) = [[ oy 01, 0n).

j=1
Equivalently, one can maximize the following log-likelihood function to obtain the

maximum likelihood estimator:
N
InL = Zln (g(yj;Hl, . ,9,1)).
7=1

The first-order optimality conditions for the maximum likelihood estimator are

o(In L)
a0,

Except for a few cases where the maximum likelihood functions are simple, it is gen-

=0 fori=1,...,n

erally best to rely on high quality statistical software to obtain maximum likelihood
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estimators. Maximum likelihood estimators might have some disadvantages such as
being sensitive to the choice of starting values or heavily biased when the number of
samples is small.

Gibbs and MacKay [27] used the maximum likelihood estimation method to
construct a Gaussian process for fitting a set of sampled density function values
fi = f(xY,..., fv = f(xY). Without the noise model, the Gaussian covariance
function used by Gibbs and MacKay is of the following form:

J

n 2

" ; Ty — T

P(lx — %)) = myexp —ZI&-I( , ) + rip, (VL9)
i=1 ¢

g

where k; gives the overall vertical scale relative to the mean of the Gaussian process
and ko gives the vertical uncertainty. The corresponding covariance matrix for the

sample data is

e(llx! = x| plx" == ... @(l[x" —xN])
H([1x2 — x! 5(|1x2 — x2 oo o(x2 = xN

I i
(I =M @(llxY —=*)) ... @(llxN —xN))

The main result is that an unknown response at x is a Gaussian (or normal) distri-

bution of f(x) with the mean g(x) and variance 0%, where

A\ (elx—x)
gx)=1| | & : (VL.11)
n e(Jlx — x|
and
T
@(llx —x')) P(llx = x'))
0% =Ky — Ky — : -1 : ) (VL.12)
@([lx —xN| @(llx — x|

Therefore, the Gaussian process generates g(x) as an estimate of f(x) and uses o

to quantify the variance in the generated estimate (i.e., a statistical error bound for

the generated estimate).
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The model parameters ki, kg, 601,...,60, are computed by maximizing the log-

likelihood function In(L) for the Gaussian process, where

T

) fi fi N
In(L) = —§1n (det[ci]) —% et | - 5111(277)

In I

and det [@] denotes the determinant of ®. See Ref. [27] for detailed analysis and
implementation of using the maximum likelihood estimation for tuning the model
parameters in the Gaussian process.

Note that if k; = 1 and k3 = 0, then ® becomes the Gaussian RBF interpola-
tion matrix. Therefore, one could also use Gibbs and MacKay’s procedure to tune
the model parameters for the Gaussian RBF interpolation. However, due to lack of
positive definiteness of interpolation matrices of other RBFs, the maximum likeli-
hood estimation is not applicable for model parameter tuning of non-Gaussian RBF

interpolation.
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Chapter VII

OTHER DATA FITTING METHODS

VII.1 INTRODUCTION

In this chapter, we give a brief discussion of the least polynomial interpolation of the
data and the least squares fitting of the data.

Polynomial fitting of a given data set {(x!, f1),..., (x", fn)} is the simplest and
certainly the most widely used technique for data fitting. Polynomials owe this
popularity to their simple structure, well understood algebraic properties, moderate
flexibility of shapes, and computationally simple implementation. However, polyno-
mials also have their limitations. For example, polynomials have poor extrapolatory
properties, i.e., polynomials may provide good fits within the range of data, but
they will frequently deteriorate rapidly outside the range of the data. High degree
polynomials are notorious for unnecessary oscillations between data points. There
is a tradeoff between the shape and degree of polynomials. To model data with a
complicated structure, the degree of the polynomial must be high. However, a high
degree may cause numerical instability during evaluation of the polynomials.

It is well-known that a multivariate polynomial interpolation of the data might not
exist if polynomials of a fixed degree are used. There are several methods for finding a
multivariate polynomial interpolation of the data [2]. The most promising method is
the Least Polynomial Interpolation (LPI) method by de Boor and Ron [32, 33, 34, 35],
which shall be presented in section VII.2; while least squares fitting methods are

covered in section VIIL.3.

VII.2 LEAST POLYNOMIAL INTERPOLATION

As mentioned in the previous subsection, polynomial interpolants tend to be unneces-
sarily oscillatory when the degree of the polynomial is high. Therefore, it is of interest
to obtain interpolants with degree as low as possible. The Least Polynomial Interpo-
lation (LPI) by de Boor and Ron can be used to compute a polynomial interpolation
of finitely many data points in a finite dimensional space. Given any finite set of
data points, denoted by {(x}, f1), (X%, fa), ..., (X, fn)}, the goal is to determine a

corresponding polynomial space with the least degree from which interpolation is
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possible and can be determined uniquely.

We shall give a brief description on how the LPI interpolant is generated and
list the most prominent properties as presented by de Boor and Ron in [35]. To
distinguish the power of a scalar or vector from the superscript for a scalar or vector,

we use the following form for a power term of x:

X7 = (21) (22)"2 .. (20)“", (VIL1)

where & is a vector whose components are nonnegative integers wy, . . ., wy, and (x;)“

denotes z; raised by the power of w;. The degree of x¥ is ||, the sum of the
components of &, ie., [J] = w1 +ws + ... + wp. The degree coupled with the

lexicographic order can be used to define the following order for x:
x7 < x¥ if @] < |@] or |@| = || with & preceding & in the lexicographic order.
Using this order, we can arrange the power terms of x with n = 2 as follows:

1 xOD x(10) £02) L) (20 08 (1) @1 (B

The LPI interpolant can be computed as follows. First, generate the Vander-
monde matrix V for the data set, where the rows of V are indexed by the input
vectors x? for j = 1,..., N, and the columns of V correspond to the power terms
of x in the order described above. That is, the entry in the jth row and the kth
column of V is (x7)¥ with w being the kth element in the ordered sequence of the
power terms of x. If n = 2, N = 4, and x! = (0,0)7, x* = (1,2)7, x3 = (2,4)7,
x* = (2,2)7, then the entry at the 2nd row and 5th column of V is (x?)(%1) = 2. In
fact, for this set of data, V' has the following form:

100 00
121 2 1

V= (VIL2)
14216 8 4
122 4 44

Next follows a degree-based Gaussian elimination with pivoting. In the elimina-
tion process, all the terms with the same degree d are considered as a vector term. In
other words, the Gaussian elimination is performed on the block matrix, whose (7, d)
entry is a row vector with components (x/), where |&| = d and the components are

arranged in the lexicographic order for &. For n = 2, the (j,2) entry in the block
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matrix is the row vector ((x?)(®? (x)LD (x7)20) A special inner product is used
for the vectors in the dth column of the block matrix:

(y,2)q = Z y(@)z(&)

)
- N wl! e wp!
G={w1,....wn),|d|=d "

where y(J) or z(&) denotes the component of y or z corresponding to the column with
power index & in V. Starting with the block version of V as the working array W,
the degree-based Gaussian elimination with pivoting can be carried out as follows.
At the jth step, we look for the smallest d; > d;_, for which there is a nontrivial
entry of the block matrix W in column d; at or below row 7. Then we find a largest
such entry in terms of (-,-)4, and, if necessary, interchange its row with row j of W
to bring it into the pivot position. For example, the first step of the degree-based
Gaussian elimination for W = V in Eq. (VII.2) is the standard Gaussian elimination

because the block column is the first column. The resulting block matrix is

1 (0,0) (0,0,0)

wo |0 @y @y (VIL3)
0 (4,2) (16,8,4)
0 (2,2) (4,4,4)

The entry at the 3rd row and 2nd column of W is the largest in the 2nd column
at or below the 2nd row, with ((4,2),(4,2))s = 4-4+2-2 = 20. Thus, the pivot
rule exchanges the 2nd and 3rd rows of the working array W to yield the following

updated W:
1 (0,0) (0,0,0)
W — 0 (4,2) (16,8,4) (VIL4)
0 (2,1) (4,2,1)
0 (2,2) (4,4,4)

The jth elimination step is to make the vector entries under the (7, d;) entry of W
orthogonal to the vector entry at row j and column d; of W with respect to the inner
product (-, -)4,. For the block matrix in Eq. (VIL.4), the elimination step yields the

following matrix:

1 (0,00 (0,0,0)

wo |0 @2 (16849 (VILS)
0 (0,0) (-4-2-1)
0 (33 (%53
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Then the next pivot step converts the block matrix in “row echelon form:”

1 (0,0) (0,0,0)
0 (4,2) (16,8,4)
W = A (VILS)
0 (%3 (F-53)
0 (07 0) (_47'27_1)

Here the block matrix W is said to be in row echelon form if there is a nondecreasing
sequence dj, ds, . .., dy such that the vector entry at row j and column d; is the first
nonzero entry in row j and all the vectors in column d; below row j are orthogonal
to the vector entry at row j and column d; (in terms of inner product (-, -)q;).

The degree-based Gaussian elimination with pivoting leads to the factorization
I'V = LW, where I is a permutation matrix, W is a row echelon block matrix, and

L is a unit lower triangular matrix. For V in Eq. (VIL.2), we have
) (0,0,0)
) (16,8,4)

(33 (5753

(Oa O) ('47'2?'1)

I'V=LW=

0
0

VIL7
) (VIL7)
0

_-_ 0 O O

e e
= e == O
[ B N e

To obtain the basis functions for the interpolation polynomial space, we need a
further factorization W = UG, where U is an upper triangular matrix obtained by
a degree-based backward elimination, i.e., for cach 7 = N, N — 1,...,1, we scale
Wid)a,

and enforce the vector entries above the vector W; 4. to be orthogonal to W 4, (in

the vector W 4. at row j and column d; of the block matrix W by (W4

3?7

terms of inner product (-, -)4,). For matrix W given in Eq. (VIL.6), the degree-based

backward elimination by de Boor and Ron generates an upper triangular matrix U:

1 0 0 0
0 20 0 -50
U= A (VIL.8)
0 0 ¢ 12
0 0o £
with the following factorization of W:
10 0 0 1 (0,0) (0,0,0)
0200 50| |0 (§,4 0,0,0
W=UG= A (51 10) (11 , 1)6 (VIL9)
0 s 12 (0 (1) (%.§%F)
000 2)\0 00 (443
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Using matrices L and U, one can construct a set of basis functions
1(x), ..., ¥n(x) for the interpolation polynomial space and the LPI for the given
data points. The LPI interpolant has the following form:

plx) = 3 ass(x),

where
o3 f(xl)
2| _ gignzo | (>-< )
N f(XN)
and G
hy(x) = > M'J—(‘Zlv,xw (VIL10)

F=(wyewn ), |@|=d;
Here diag(U) denotes the diagonal matrix whose diagonal entries are the correspond-
ing diagonal entries in U, G,() is the component of the vector entry at row j and
column d; corresponding to the power index &, and 91 (x),...,¥n(x) form a set of
basis functions for the polynomial interpolation space.
Corresponding to G in Eq. (VIL.9), the basis functions are: 1;(x) = 1,1(x) =

L0+ 3 (009, pa(x) = =3 (00D + (1) 40, () = — 5 (x)02 — £ () -

L
25

Ref. [35].

The name of LPI comes from the following fact. Let P, be the space generated

(x)20), For more details on the degree-based Gauss elimination with pivoting, see

by linear combinations of ¥1(x),...,¥n(x). For any subspace P* of algebraic poly-
nomials, if the system of interpolation equations, p(x?) = f; for j = 1,..., N with
constraint p € P*, always has a solution no matter what values of fi,..., fv are,
then the highest degree of polynomials in P* is no less than the highest degree of
polynomials in P,.

The interpolation polynomial space Py, also has many other interesting proper-
ties established by de Boor and Ron [35], such as

e uniquely defined by {x!,...,x"}: the basis functions are independent of

how the input vectors are ordered;

e translation invariance: for any p(x) € Py, and any fixed point x € R,

p(x + X) is still a polynomial in Prn;
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e scale invariance: for any p(x) € Py and any fixed scalar o € R, p(ax) is

still a polynomial in Pyy,;

¢ coordinate-system independence: an affinc transformation of variables af-

fects the LPI polynomial space in a “reasonable” way;

e monotonicity: if {x!,...,x"}isasubset of {%!,..., %"}, then Py, is a subset

of the least polynomial interpolation space corresponding to {X',... ,:ch }.

We use the MATLAB LPI code developed by de Boor and Ron [32, 33, 34, 35]
to obtain the LPI of the wing weight data. The maximum degree of the polynomial
basis functions for the LPI is 2 for the wing weight data interpolation. That is, LPI
generates a quadratic polynomial interpolation of the weight data.

The LPI method can be very sensitive toward the location of the data points [2].
However, in their MATLAB LPI code, de Boor and Ron, use an optional tolerance
parameter (tol > 0) that gives the method the ability to search for a set of basis
functions such that the corresponding interpolation matrix has a better condition
number than the interpolation matrix of the LPI, but the maximum degree of the
basis functions may be higher than the LPI. It was recommended [2] to use tol > 0
to obtain a polynomial interpolant that is less sensitive to data locations, when the
condition number of the interpolation matrix is too large. For the wing weight data
fitting problem, the condition number of the interpolation matrix is small, therefore
there is no justification for using polynomial interpolants of higher degree.

The relationship between the value of tol and the degree of the generated LPI is
not straightforward. The appropriate tol value for obtaining a polynomial interpolant
different from LPI depends on the given data points. For the wing weight data set,
tol = T(-l)—ﬁ leads to a cubic polynomial interpolant. If we continue to increase the value
of tol, the maximum degree of the generated polynomial interpolant will also increase.

For tol < ﬁ, the generated polynomial interpolant remains to be quadratic.

VII.3 LEAST SQUARES FITTING

While only interpolation methods are used for building wing weight estimation mod-
els in this thesis study, it is important to give a brief introduction of the least squares
fitting methods [36].

The method of least squares assumes that the best-fit of a set of data

{(x} A1), -, (XN, fx)} by a given parametric model g(x; oy, . .., aar) is the one that
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achieves the minimal sum of the deviations squared (least square error) from the

data. The corresponding optimization problem can be formulated as follows:

N
; 2
W ; (g5, onn) = £ ) (VIL11)

Least squares problems are classified as linear and nonlinear least squares
problems depending on whether g(x;04,...,ay) is a linear or nonlinear func-
tion of aq,...,ap. For the polynomial least squares problem, g(x;04,...,an) =
Z;\il a;p;j(x), where pi(x), ..., pm(x) form a basis of a subspace of all polynomials
(such as the polynomials have degree at most m). In this case, Eq. (VIL.11) is re-
ferred to as a linear least squares problem and its solution can be obtained by solving

a system of linear equations [36]. For wing weight fitting by the geometry model,

g(x;01,..., 09) =

on [ 192 (0.016)% (10735)™ (£,)°% (0.1¢,)" (cos A)°" (0.1¢;)°® (10 Pwy) ™ ]

wheren =8, 1 = p, x93 = b, x3 = 8, T4 = t,, Ts = C, Tg = A, T7 = ¢, and Tg = Wyo.
In this case, Eq. (VII.11) is referred to as a nonlinear least squares problem and its
global optimal solution is difficult to compute.

Unlike linear least squares problems, whose estimates of the parameters can al-
ways be obtained analytically, nonlinear least squares problems require the use of
iterative optimization procedures to compute the parameter estimates. The use of
iterative procedures implies the need for initial guesses for the unknown parameters
before the start of the optimization process. The initial guesses must be reasonably
chosen, otherwise the optimization procedure may not converge or converge to a local
minimum rather than the global minimum that defines the least squares estimates.
We use the nonlinear optimization code Isqnonlin in MATLAB to solve the nonlin-
ear least squares problem. For the wing weight data fitting by the geometry model or
the ratio model, multiple initial guesses including the parameters values obtained by
engineers and other random ones were used to search for a global optimal solution.

In Chapter IV, both forward and backward variable selection procedures use
the nonlinear optimization code lsqnonlin in MATLAB to solve the nonlinear least
squares problems. During that optimization processes, we also use multiple initial
guesses to search for a global minimum (see MATLAB code in sections A.1.1 and
A1.2).
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Chapter VIII

COMPARISON OF CONSTRUCTED APPROXIMATIONS

VIII.1 INTRODUCTION

For scarce and poorly distributed data (like wing weight data) in a high-dimensional
space, it is difficult to find an appropriate approximation to model the data. But
it is more problematic to verify if a constructed approximation has all the desirable
properties that the underlying function should possess. Because no variable screening
method is appropriate for identifying significant input variables for fitting historical
data by interpolation methods, the numerical experiments are designed to help the
user understand whether PCR. could help to extract meaningful relationships between
a general set of input variables and the output. Two candidate sets of input variables
are used in the numerical experiments: (1) the set of eight input variables in Eq. (II.1)
and (i) the set of fourteen variables (all the data attributes in the wing weight data
set listed in Table 1 except the mean thickness-to-chord ratio [t/c],,). The first set is
used to study whether a general approximation method could generate better wing
weight estimation models than the knowledge-based engineering model (II.1); while
the second set tests whether PCR is less effective if all possible input variables are
used.

Note that PCR coupled with CV assigns various weights to the input variables
in the interpolation model so that the resulting wing weight approximation model
has the highest accuracy in predicting the trend in the data when measured by
the leave-one-out CV procedure. In contrast to a classical approximation problem
where the input variables are given and the regression model is known, PCR for
wing weight data fitting generates hundreds of completely different approximation
models by using different interpolation models and input spaces for data fitting. The
numerical experiments for the wing weight fitting problem will focus on the benefits
of using PCR (a data-driven approximation process) and the strategy of choosing the
most appropriate approximation out of many constructed approximation models.

By examining all the interpolants obtained by the PCA procedure, in addition to
the LPI and Gaussian process interpolant, we try to understand whether an appro-
priate number of features in the input space allows the PCR interpolant to capture

the “physical trends” buried in the data correctly.
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VIII.2 CHORD APPROXIMATION OF WING CONFIGURATION

Even in the case of eight variables, not all input variables can change independently.
For example, if the span b is fixed and the reference area s is changed, then one must
also change ¢, and/or ¢, appropriately to make the wing configuration feasible. In
practice, there is no exact relationship among b, s, ¢, and ¢;. For conceptual design

of subsonic transports, it is acceptable to assume that
Cr + € = YCm = 8/, (VIIL.1)

where 7 is the average of (¢, + ¢;)/cm values for the known wing configurations. Eq.
(VIIIL.1) will be used to approximate the dependency relationship among b, s, ¢, and
¢t In the case of eight variables, there is only one dependency relationship among
the input variables. However, in the case of fourteen variables, there are six depen-
dency relationships among the input variables and the maximum set of independent
variables has eight variables. The extra degree of freedom for the wing configuration
with fourteen variables is the thickness or the thickness-to-chord ratio at the wing
tip, which was considered to be insignificant for the wing weight prediction by system
analysts of subsonic transports. The constructed approximation will be converted to
a function of the following variables: b,s,t,/c,, wio, A\, A, p, and ¢;/¢; (only for the

14-variable case). That is, for a constructed wing weight approximation

tr
w= g <b7 Cr, S, c_awtO))‘vAa H)

-
or

_ tr tt

w=4g A,b,Cm,Cr,Ct,S,tr,tt,—,—,'LUtO,)\,A,,LL )

Cr C

the final wing weight estimation formula for conceptual design is

_ s by
w = b ———, 8, — A VIII.2
w g < 7b(1 +)\)a$7 Cr7wtoa>‘7 Hu'> ( )
or
o <b2 p Vs YAs . ~yst, YyAst,  t. b \ A
= DR ) P ) y T T Wigy Ay 1Y, .
IS b b+ N T Nbe T Nbe & H

(VIIL.3)
The purpose of using the fourteen variables is to understand whether the PCR with
CV is capable of identifying the weight growth trend in terms of the relevant input

variables among the fourteen variables. For example, if ¢;/¢; is truly insignificant for
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wing weight estimation, then a useful PCR with CV should assign a very small weight
to t;/c; in the constructed approximation model (VIII.3) so that the estimated wing

weight is not sensitive to changes in ¢,/c;.

VII1.3 DESIRABLE PROPERTIES OF WEIGHT APPROXIMATION

In practice, the standard approach for validation of a constructed approximation
g(x) of f(x) is to (randomly) generate function values f(xN*1),..., f(xV), where
x/ are in the region of interest, and check the prediction errors |f(x%) — g(x’)| for
j=N+4+1,...,N. If the prediction errors are acceptable, then g(x) is considered as
a validated approximation of f(x). Of course, a large N and an even distribution
of x7 leads to a validation that is more reliable than in the case of a small N or an
uneven distribution of x?. This process is similar to training and validation of neural
networks. Unfortunately, for historical data, this validation process is not applicable
due to data shortage.

An alternative approach is to use known knowledge of the true physical response
f(x) for validation of g(x). For wing weight estimation, a desirable approximation
should have the following properties: w is an increasing function with respect to
each of b, s, A, and A; and w is a decreasing function with respect to ¢,/c,. These
properties are derived from simple engineering rules on the relationships between
the wing weight and each of the five key configuration parameters. However, it is
impossible to check the monotonicity of a multivariate function with respect to one
input variable by using visual inspection of the two dimensional plots of the wing
weight versus the specified input variable because there are infinitely many choices
for the other variables.

As a compromise, we will inspect N plots of the wing weight versus one of the
five key configuration parameters that pass through the N data points, respectively.
More specifically, for each j, except one of the five key configuration parameters
b, s, t-/cr, A, and A, we substitute b, s, /c,, wio, A, A, i, and ¢, /c; by the correspond-
ing values of the jth wing configuration parameters in cither Eq. (VIIL.2) or Eq.
(VIIL.3). The resulting function is a relationship between the wing weight and
the unsubstituted configuration parameter, which has one of the following forms:
w=h;1(b), @ = hja(s), = h;3(t,/c;), W = h;ja(N), or & = h;5(A). Here the index
j in h;; indicates that the resulting function depends on the jth wing configuration

and the second index in h;; indicates the dependence of the resulting function on the
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unsubstituted configuration parameter. Then the desirable properties of an approx-
imation are the following: h;1(-), hj2(-), hja(:), and h;s(-) are increasing functions,
while h;3(-) is a decreasing function. One rationale behind using the selected two
dimensional plots for visual inspection is that if these plots show the desired proper-
ties of the approximation, then the approximation gives the correct trend predictions
when system analysts start conceptual design with an existing configuration as the
baseline.

However, it is difficult to find approximations with these desirable properties,
perhaps due to insufficient information on weight trends in the data. For example,
the trends in the plots of h;;(-) for the geometry model are the following: w increases
as s or A increases, and w decreases as b or f,./¢, or A increases. That is, the trends

are not desirable in terms of change of the wing weight versus b or A.

VIII.4 IMPACTS OF PROBLEM FORMULATION

One problem with approximations generated by using chord approximation formula

YS

Cp =

b1+ )

after the data fitting is that the constructed approximation is not an interpolation
due to errors in the substitution formula (VIII.1). Moreover, the substitution errors
generally lead to approximations with less desirable two dimensional trends. See
Fig. 11 for typical plots of the wing weight versus span, where the curves represent
the approximations generated by applying the chord substitution before and after
multiquadric PCR fitting

For the remainder of the thesis, the chord substitution formula

8

MDY

is applied to the interpolation models before using CV optimization to construct the
approximation. That is, the components of x? are the corresponding values of the
algebraic expressions in either Eq. (VII1.2) or Eq. (VIIL.3) for construction of wing

weight estimation models.
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Figure 11: Differences between using chord approximation formula (VIII.1) before
and after multiquadric PCR fitting.

VIIIL.5 COMPARISON OF INTERPOLATION MODELS

The CV error of a constructed approximation can be useful to help analysts decide
which approximation is better. In Tables 2 and 3, the CV errors are for approxima-

tions obtained when the chord approximation formula ¢, = is used after the

Y
IFEDY)
data fitting. In Tables 4 and 5 we have the CV errors of all approximations obtained

when the chord approximation formula ¢, = is used before the data fitting.

s
IEESY
Again the row of n = 8 or n = 14 includes the CV errors for interpolation in the
original x-space (not in a feature space).

For wing weight data fitting with a fixed type of interpolation models, the “best”
approximation model among all the approximations generated by PCR (for a range
of r) usually corresponds to the smallest value of minimized CV errors. Here the
criterion for best approximation is by a subjective judgment of overall desirable trends
of the approximation by inspecting the five types of two dimensional plots for all forty-
one baseline configurations. Note that this visual inspection is very time consuming
because over 200 plots have to be inspected for each constructed approximation.

Therefore, it makes sense to use the automatic PCR procedure in section VI.5 for
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Multiquadric | Thin Plate | Cubic Gaussian | Kriging

CV Error CV Error | CV Error | CV Error | CV Error

n=14 18585 2518 2898 1129900 | 6284700
r=14 12755 3243 4208 70151 74722
r =13 10711 3575 4069 42780 54585
r=12 12540 2887 6395 72993 107630
r=11 34515 3593 7711 73861 78001
r=10 14235 3952 5780 50194 83175
r=9 4653 3412 10209 394330 522840
r=28 9497 14378 11512 43615 213940
r=7 12425 5271 24341 24782 362550
r=206 7242 10325 29184 98669 44993
r=5 11686 92148 60937 28986 98159
r=4 17609 25974 144140 17919 37089

Table 4: CV errors for the set of fourteen variables using the chord approximation

formula before the data fitting.

Multiquadric | Thin Plate Cubic Gaussian | Kriging

CV Error CV Error | CV Error | CV Error | CV Error
n=2_8 5581 2870 6567 260310 27002
r==8 5581 3772 5463 835360 43241
r=7 5417 2961 7262 2214100 | 1084100
r==6 5698 2506 5090 245960 178160
r=5 5566 3852 8108 20800000 | 52056000
r=4 5560 2864 19528 470920 | 12252000

59

Table 5: CV errors for the set of eight variables using the chord approximation
formula before the data fitting.

choosing the best PCR for any fixed interpolation model. For example, the best PCR
multiquadric approximation for the eight-variable case is constructed with r = 7 (see
Table 5). Later on, we shall see that this approximation has the overall best trends
for wing weight prediction.

Because the difference between the smallest and the largest wing weight val-
ues is considerable, one must verify whether the CV error value E¢V is dominated
by the prediction errors at x’ with large wing weight values. In other words, we

should compute the relative CV prediction errors for each data point, defined as
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Airplane | Prediction | Rel. Error Airplane | Prediction | Rel. Error
1049G 11932 3.8% DC-7C 10623 -4.5%
C-46A 4274 -36.4% F-28 5046 -28.7%

DC8F-54 34963 2.5% B. 747 76456 -14.1%
DC9-30 11764 -1.5% VC10-1101 33986 0.2%

VC10-1151 35565 2.5% G-159 4399 18.8%
C-8A 5958 30.9% AC-1 6151 59.5%

C-124A 19371 2.3% KC-97E 15506 1.2%
C-123J 5879 -2.0% XC-120 5327 -13.7%
C-119H 11894 -1.4% C. 440 8057 46.9%
C. 340 4983 -6.9% R4Y-2 5327 6.4%
C-131E 5174 3.9% Con.110 3200 -9.2%

Con. T-29D 4147 -5.3% Martin 404 5118 4.6%

V. V. 800 4878 -18.9% DC-6B 8492 4.6%
B. 727 15741 -12.7% CL44-D4-1 15411 -2.9%
C-130B 10908 -2.2% Electra 8690 14.8%
B. 720 24341 3.6% Jetstar 5866 66.7%
C5-A 77204 -6.1% L-1011 35511 -25.7%
C-135A 29220 15.1% 22(880) 7280 5.6%

30A(990A) 26585 -0.1% C-141A 35980 4.7%
C-5A 82296 -4.1% F-27 6150 36.2%
DC10-10 48536 0.1%

Table 6: Relative errors for the leave-one-out CV of multiquadric PCR with r = 7.

(9-j(x?) — f;)/9-;(x?) in Table 6, and check if the CV optimization attempts to min-
imize the prediction errors (g_;(x?)— f;)? for large f;. One indicator for such a biased
minimization of E€V is that the relative crrors for large g_;(x?) (or f;) are smaller
than those for small g_;(x7). But we don’t see such a biased minimization of E® in
Table 6, which shows the relative errors (g_;(x?) — f;)/g—;(x?) for j = 1,..., N when
CV is applied to multiquadric PCR with » = 7. In fact, the big difference between
the smallest and the largest wing weight values does not lead the CV optimization
to minimize the prediction errors at x? for large f;. For PCR with Gaussian RBF,
the relative errors are fairly uniform along the data points.

Fig. 12 shows the leave-one-out CV predictions g_;(x’) (j = 1,...,N) for the
multiquadric PCR with » = 7 and the geometry model (I1.1). It is clear that the

multiquadric PCR with » = 7 has much more accurate predictions than the geometry
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Figure 12: Leave-one out CV errors for geometry model and multiquadric PCR
with r = 7 for the set of eight variables.

model (II.1). The main advantage of PCR with CV is its ability to explore the data
and to tune the model for trend prediction.

Figs. 13 and 14 show the relative and absolute CV error distributions, respectively,
at the data points for the multiquadric PCR with » = 7. For the relative error we
divide the intervals [0, l] into 20 subintervals of length 0.05, and then plot the bar
chart for the frequency of the CV errors fall into each subinterval. That is, each bar
in Fig. 13 is the number of j such that |g_;(x7) — f;|/g9—;(x?) is in the subinterval
represented by its midpoint on the horizontal axis. For the absolute CV error the
procedure is similar, only now we divide the interval from 0 to the maximum absolute
error (about 12300) into 20 subintervals of length 615, and then plot the bar chart
of the frequency of the CV errors fall into each subinterval.

For the wing weight fitting problem, Kriging and Gaussian RBF interpolants tend
to create unnecessary oscillations between data points in comparison to the Gaussian
process method — Tpros [27]. Nonetheless, all three Gaussian based methods present
an exponential decay near the end of the data range, as expected. The reason is
that the basis functions ¢(||x — x7||) decreases at the exponential rate as ||x — x?||
increases (or the configuration is moving away from the existing configurations). LPI

is extremely sensitive with respect to data points and LPI of the forty-one wing data
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Figure 13: Relative CV error distribution at the data points.
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Figure 14: Absolute CV crror distribution at the data points.
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Figure 15: Wing weight versus span of constructed approximations.
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Figure 16: Wing weight versus reference area of constructed approximations.
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points is very oscillatory. In comparison, an appropriate choice (multiquadric) of
RBF's leads to nonoscillatory trend predictions of the wing weight. Figs. 15 and 16
show typical two-dimensional plots of the wing weight versus the reference area and

span for various wing weight approximations.

VIIL.6 BENEFITS OF PRINCIPAL COMPONENT REGRESSION

One major problem in fitting historical data is overfitting, i.e., unreliable minor
trend changes might lead to undesirable characteristics (such as oscillations) in the
approximation. The following five plots, along with Figs. 15 and 16, show the
relationships between the wing weight and each of the five configuration parameters
b, s, t./cr, A, and A. Points from Fig. 5 are added to the plots to give an indication
of the scatter in the data. And a curve for the geometry model is added to indicate

an approximation generated by systems analysts.

x10°

©

— Multiquadric PCR fitting ° o
= = Multiquadric fitting e}
=+ Geometry model
o Data
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5
S 5F o)
= o]
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£
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L L L L L
0 50 100 150 200 250

Figure 17: Differences between multiquadric PCR fitting and multiquadric fitting
for span versus wing weight.

Almost all the two-dimensional plots for the multiquadric PCR fitting exhibit
the desirable properties specified in section VIIL.3, at least in a neighborhood of the
baseline data point. In few cases, the wing weight is not a decreasing function of

t./c-. In many cases, the wing weight is not an increasing function of A.
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Figure 18: Differences between multiquadric PCR fitting and multiquadric fitting
for reference area versus wing weight.
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Figure 19: Differences between multiquadric PCR fitting and multiquadric fitting
for thickness-to-chord ratio versus wing weight.
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Figure 20: Differences between multiquadric PCR fitting and multiquadric fitting
for taper ratio versus wing weight.
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Figure 21: Differences between multiquadric PCR fitting and multiquadric fitting
for sweep angle versus wing weight.
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Figure 22: Wing weight versus span for multiquadric PCR fittings corresponding
ton =8 and n = 14.
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Figure 23: Wing weight versus reference area for multiquadric PCR fittings corre-
sponding to n = 8 and n = 14.
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The fourteen variables set is tested to understand whether the PCR with CV
is capable of identifying the weight growth trend in terms of the relevant input
variables among the fourteen variables. However, wing weight prediction trends
shown in the two-dimensional plots are not as desirable as the multiquadric PCR
with 7 = 7 for the eight variables set (see Figs. 22 and 23). Examination of the
model parameters §; in the fourtcen variable case shows that the PCR with CV did
not assign small values of 0; to any principal component. In other words, all principal
components play important roles in construction of the approximation models. The
implication is that expert knowledge of the underlying physical problem is essential
for the wing weight approximation problem. One can not blindly build a meaningful
approximation model of the response without a deep understanding of the underlying
physical problem. On the other hand, the more desirable prediction behaviors of the
multiquadric PCR with » = 7 when compared with the geometry model attests the

benefit of coupling expert knowledge and intelligent approximation methods.

VIIIL.7 NUMERICAL ESTIMATION OF PREDICTION ERRORS

There is no theoretical foundation to choose the best wing weight approximation
selected by using the desirable properties of wing weight approximations, because
the desirable properties are based on simple engineering rules that are not applicable
to all the possible values of the specified input variable. For example, if s and A
are fixed, then ¢, approaches infinity as b goes to zero. There is a limitation on
how small the span b can be before the configuration becomes unrealistic. Thus, one
basic question is whether it is possible to provide some quantitative estimate on how
accurate a wing weight approximation is. If Gaussian process or Kriging is used to
construct the wing weight approximation, then ecach weight estimate is treated as
the mean value of the unknown wing weight function and the associated standard
deviation can be used as a quantitative estimate of the prediction error [28, 17, 18].

For nonstatistical fitting models such as RBF interpolation models, there is no
quantitative estimate of prediction errors without information on f(x). However,
with a set of plausible approximations of the wing weight, one can use the differences
among the plausible approximations as quantitative measures of prediction errors.
For example, if two interpolants ¢;(x) and gs(x) are plausible estimations of the wing
weight by visual inspection, then the difference |g;(x) — g2(x)| provides a numerical

estimation on how different the wing weight prediction could be due to a subjective
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choice of the wing weight approximation. This idea leads to the following numerical

estimation of wing weight prediction errors.
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Figure 24: Maximum and average prediction errors based on the geometry model

and the multiquadric PCR fitting over the concentric balls centered at the average

of xb,...,x".

Numerical Estimation of Wing Weight Prediction Errors

e Generate (N — N) random points x* (k= N +1,..., N) in the convex hull of
the existing input vectors {x!,...,x"}, ie., each x* = Zjvzl €;x%? with ej, > 0
and Zjvzl €k = L.

¢ Compute the maximum and average prediction errors as follows:

k k
max X"} — go(x
N+1<k<N xbeQ |91( ) g2( )|

and
1
A > |91 (x*) — g2(x*)],
NAH1<k<N xbe
where g;(x) and go(x) are two acceptable approximations, {2 is a region of

interest, and Ng is the number of xV*!, ... x" in Q.

However, there is no standard method for generating uniformly distributed ran-

dom points in the convex hull of finitely many data points. One can use MATLAB
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Figure 25: Cumulative frequency distribution of randomly generated data points

xN+1 .. xY over the concentric balls centered at the average of x!, ..., x".

code ghull to construct convex hulls, Delaunay triangulations, halfspace intersec-
tions at a point, Voronoi diagrams, and other geometry configurations. MATLAB
code convhulln uses ghull to determine the convex hull of N data points in R™.
The solution generated by convhulln is an [ x n matrix, where [ is the number of
the facets of the convex hull. Each row vector contains the indices of the data points
that define a facet of the convex hull. For generation of convex hulls, ghull works
well if n is small, say n < 8. In general, the size of the output and execution time
grows in order of N™/2. For example, to build a convex hull of 1000 points in RS,
the number of facets of the convex hull might be of the order of 10%*. In the case of
N =41 and n = 8, the number of facets could be on the order of 2.8x10°. For a
randomly gencrated data point x™ 77, it is nontrivial to check whether xV*7 is inside
the convex hull generated by x!,... ,x". Therefore, it is impractical to check if a
point is inside the convex hull by using the facets of the convex hull. Moreover, if we
generate uniformly distributed random points in a box containing x*,...,x", then
almost all the points will be outside of the convex hull of x!, ..., x" when the convex
hull is contained in a lower dimensional subspace of R".

An alternative is to generate random convex combinations of x!, ..., x¥ directly.
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That is, generate a random point inside the convex hull of x', ..., x" as follows:

1 2 N
Nyj 1% + €50X° + ...+ €NX

6j1+€j2+-~-+€jN

X

where €;1,...,€;n are randomly gencrated nonnegative numbers between 0 and 1.

N+ xN+2 0 N follow the uniform distribution as

However, it is unclear whether x
N approaches infinity.

In Fig. 24, g1(x) and go(x) are the geometry model and the multiquadric PCR
fitting, respectively, and the regions of interest are the balls of radius p centered at
the average of x!,...,x", denoted by ave(x). It is always true that the maximum
prediction error is a nondecreasing function of p. However, the general increasing
trend of average prediction error, as p increases, indicates that the difference between
the geometry model and the multiquadric PCR fitting tends to become larger as the
input vector moves away from ave(x). Fig. 25 shows the cumulative frequency

N+1,XN+2,.. N

distribution of x ., x" over the concentric balls, which indicates that

most points are clustered around ave(x).
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Chapter IX

CONCLUSIONS

It is very easy to fit a data set exactly by numerous methods no matter how the data
points are distributed, but approximate responses are drastically different between
the data points, even if they are almost identical at the data points. Principal
Component Regression with cross-validation incorporates data mining into standard
approximation processes so that the resulting approximation is less likely to overfit
the data or to make predictions based on insufficient data information.

Polynomial based methods (e.g., LPI) are more sensitive to data change than ra-
dial basis function based methods. Among radial basis functions methods, Gaussian
RBF methods (as wecll as Kriging), are more likely to perform poorly due to the
exponential rate of decreasing of the Gaussian RBF as the distances between points
increase. Gaussian process (Tpros) shows less oscillation than Gaussian RBF inter-
polation but has the same exponential decay trend outside the range of the data.

Variable screening could be a powerful tool for reducing the dimension of the input
space for approximate responses if applicable. For real world problems of historical
or measurement data fitting, most of the commonly used variable screening methods
cannot be used and the few options left should be used with caution. Most of the
times the only way to screen, or at least to identify, the possible least important
variables is to simply analyze the data carefully.

A systematic principal component analysis procedure, that identifies the collinear
or nearly collinear variables, is a powcrful tool that customizes the corresponding
regression method for the feature variables considered.

The assessment of the constructed approximations is of great importance. The
physical properties of the problem, if well established, can be used as objective criteria
to determine the ability of an approximation model to capture correctly the “physical
trends” buried in the data. Cross-validation is much more than a simple parameter
estimation tool. It can be used also as a tool to evaluate the performance of an
approximation model as well as to indicate locations where addition of new data
points would improve the prediction accuracy of the approximation model.

In general, the results obtained are quite satisfactory. We were able to obtain
a general approximation that is more accurate and has more desirable properties

than the best empirical response available. The biggest advantage is not the better
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performance of the principal component regression in fitting the wing weight data of
41 subsonic transports, but the applicability of the principal component regression
to general historical or measurement data fitting.

One area for improvement is the cross-validation error optimization. Cross-
validation becomes more effective as the obtained optimal solution moves closer to a
global minimum of the cross-validation error. Nonetheless, global optimization in a
high dimensional space is beyond the scope of this thesis.

Other tasks for future work are the development of new variable screening proce-
dures, improvement of the methods when the number of data points and the number
of variables arc close, and to understand better how the approximate responses can

be affected by poor (or collinear) distribution of data points.
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Appendix A

MATLAB CODES

A.1 VARIABLE SCREENING

A.1.1 Forward screening

h
h
h
)
h
)
A
A
A
h
h
h
h

Wing Weight Estimation for Matlab
Copyright (C) 2005 W. Li and H. Rocha

Revision history:

1-MAR-2005: First version, W. Li and H. Rocha

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; A copy of tﬁe GNU

General Public License can be obtained from the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

FS - Forward Screening

The Forward Screening algorithm is as follows:

1. Let g_i be the best fit of the simplified geometry model
representing the relationship between the ith input
variable and the wing weight, i.e., g_i is the best of
the univariate model obtained by setting the exponents
of the terms not related to x_i as zero.

2. Compute the sample coefficients of determination R_i"2
for g_i, where R_i"2 is the proportion of the total
variation in £71,...,f°N explained by the simplified
geometry model and can be used as a metric for ranking

the significance of x_i in variation of the response.
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% 3. If a simplified geometry model of k input variables is

% desirable, then the input variables corresponding to

% the k largest R_i"2 shall be selected as the significant
% input variables.

% The function lsqfun.m is used.

clear all; cla; clf;
approx_option=0; %1 for using c_r+c_t=gamma*s/b before PCR analysis
rawdata=csvread(’wing_data_10.csv’);
% the actual input variable names
ref_area=rawdata(l,:);
aspect_ratio=rawdata(2,:);
sweep=rawdata(3,:);
root_chord=rawdata(4, :);
tip_chord=rawdata(5,:);
root_thick=rawdata(6,:);
tip_thick_to_chord=rawdata(7,:);
ultimate=rawdata(8,:);
gross_weight=rawdata(9,:);
wing_weight=rawdata(10,:);
% the derived variable names
span=sqrt (ref_area.*aspect_ratio);
taper_ratio=tip_chord./root_chord;
root_thick_to_chord=root_thick./root_chord;
tip_thick=tip_thick_to_chord.*tip_chord;
mean_chord=ref_area./span;
% modify the data if c_r+c_t=gamma*s/b is used before PCR analysis
if approx_option==1
gamma=mean ( (root_chord+tip_chord) ./mean_chord) ;
root_chord=gamma*ref _area./(span.*(l+taper_ratio));

tip_chord=root_chord.*taper_ratio;
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tip_thick=tip_thick_to_chord.*tip_chord;
root_thick=root_thick_to_chord.*root_chord;
end
% define f and B for PCR
f_init=wing_weight’;
n=8; N=41;
B(1,:)=ref_area;
B(2,:)=span;
B(3, :)=sweep;
B(4,:)=root_chord;
B(5, :)=tip_chord;
B(6, :)=root_thick;
B(7, :)=ultimate;
B(8, :)=gross_weight;
)
R2=zeros(n,1);
fbar=0;
for i=1:N
fbar=fbar+f_init(i)/N;
end
den=0;
for i=1:N
den=den+(f_init(i)-fbar)"2;
end
%
DTR=pi/180;
coef=zeros(8,1);
coef (1)=0.001;
coef(2)=0.01;
coef(4)=0.1;
coef (5)=0.11;
coef(6)=1;
coef (7)=1;
coef (8)=0.00001;
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xcoef (1)=0.8795;
xcoef (2)=-0.1008;
xcoef (3)=-0.7842;
xcoef (4)=0.3720;
xcoef (5)=-0.0274;
xcoef (6)=-0.1580;
xcoef (7)=0.1895;
xcoef (8)=0.3469;
xcoef (9)=5150.6253;
ub=[10000000, 100000007 ;
1b=-ub;
fprintf CFitting Error Init_Error Variance\n’)};
for k=1:8
fnew=f_init;
B1=B(k,:);
Ni=N;
x0(1)=xcoef (k) ;
x0(2)=xcoef (9) ;
x0(1)=1;
x0(1)=-0.15;
x0(2)=fbar;
err0 = sum(lsqfun(x0,B1,fnew,N1,k,coef ,DTR)."2);
%main process
tol = 0.00001;
options=optimset (’Display’,’off’,’TolFun’,tol);
if k==3
[x,errl=lsgnonlin(@lsqfun,x0,lb,ub,options,Bl,fnew, ...
N1,k,coef ,DTR);
g=zeros(N1,1);
for j=1:N1
g(j)=x(2)*(cos(B1(j)*DTR)) "x(1);
end
num=0;

for j=1:N1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81



num=num+ (fnew (j)-g{(j))"2;
end
R2(k)=1-num/den;
else
[x,err]=lsgnonlin(@lsgfun,x0,1lb,ub,options,B1,fnew, ...
N1,k,coef,DTR);
g=zeros(N1,1);
for j=1:N1
g(§)=x(2)*(coef (k) *B1(j)) "x(1);
end
num=0;
for j=1:N1
num=num+ (fnew(j)-g(j)) ~2;
end
R2(k)=1-num/den;
end
fprintf(° 7 .3e %.3e %.3e\n’,err,err0,den);
end
%plot the bar chart
var=zeros(n,1);
for i=1:n
var(i)=i;
end
clear id;
for i=1:n
switch i
case 1, id(i)=2;

case 2, id(i)=4;

case 3, id(i)=5;
case 4, id(i)=1;
case 5, id(i)=6;
case 6, id(i)=8;
case 7, id(i)=3;
case 8, id(i)=7;
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end
RR(i)=R2(id(i));
end
R2=RR;
bar(var,R2,0.4,°k’);
set(gca,’x1im’, [0.4,8.6]);
set(gca,’ylim’, [0,1.05]);
xlabel (’\fontsize{14}\rm Variables’);
ylabel (’\fontsize{14}\it R"2’);
for i=1:8
yshift=0.04;
switch i
case 4, lab=’\fontsize{14}\it s’;
case 1, lab=’\fontsize{14}\it b’;
, lab=’\fontsize{14} \Lambda’;
, lab=’\fontsize{14}\it c_r’;

case 7
2
case 3, lab=’\fontsize{14}\it c_t’;
5
8
6

case

case 5, lab=’\fontsize{14}\it t_r’;
case 8, lab=’\fontsize{14} \mu’;
case 6, lab=’\fontsize{14}{\it w}_{to}’;
end
if R2(i)<0
yshift=-yshift;
end
if i==

text (i-0.25,R2(i)+yshift,lab)
else
text (i-0.15,R2(i)+yshift,lab)
end
end
set(gca,’YTick’,[0:0.2:1]);

% Wing Weight Estimation for Matlab
% Copyright (C) 2005 W. Li and H. Rocha
)
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% Revision history:

%

% 1-MAR-2005: First version, W. Li and H. Rocha

3

b

% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License as
% published by the Free Software Foundation; A copy of the GNU
% General Public License can be obtained from the Free Software

% Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
function LSQFUN = lsqfun(x,Bl,fnew,N1,k,coef,DTR)

%

% function LSQFUN = lsqfun(x,B1,fnew,N1,k,coef,DTR)

)

% Input Arguments:

hoox - parameters values
» Bl - a matrix with the data points
%  fnew - the actual wing weight of each data point
hooN1 - number of data points
%k - index of g_i
%  coef - variables scaling coefficients
% DIR - constant to tranform degrees to radians
h
if k==3
LSQFUN=zeros(N1,1);
for j=1:N1
LSQFUN(j)=fnew(j)-x(2)*(cos(B1(j)*DTR)) "x(1);
end
else

LSQFUN=zeros(N1,1);
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for j=1:N1
LSQFUN(j)=fnew(j)-x(2)*(coef (k)*B1(j)) "x(1);
end

end

A.1.2 Backward screening

b
h
h
)
h
h
h
h
)

Wing Weight Estimation for Matlab
Copyright (C) 2005 W. Li and H. Rocha

Revision history:

1-MAR-2005: First version, W. Li and H. Rocha

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; A copy of the GNU

General Public License can be obtained from the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

BS - Backward Screening

The Backward Screening algorithm is as follows:

1. Let g be the best fit of the wing weight data by the
geometry model.

2. Let g_i be the best fit of the simplified geometry model
obtained by setting the expoment of the term related to
x_1 as zero.

3. Compute the adjusted sample coefficients of determination
R"2 and R_i1i"2 for g and g_i, i=1,...,n.

4. If the difference in adjusted sample coefficients of
determination Delta R_i= R"2-R_i"2 is nonpositive for

some i, then the corresponding variable x_i could be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A removed from the input vector and the simplified

% geometry model would have n-1 variables.

yA 5. Repeat the process with the simplified geometry model
% until the number of input variables becomes desirable
% or all Delta R_i"2 is greater than O.

b
% The function nlsqfun.m is used.
A
clear all; clf; cla;
approx_option=0; %1 for using c_r+c_t=gamma*s/b before PCR analysis
rawdata=csvread(’wing_data_10.csv’);
% the actual input variable names
ref_area=rawdata(l,:);
aspect_ratio=rawdata(2,:);
sweep=rawdata(3,:);
root_chord=rawdata(4,:);
tip_chord=rawdata(5,:);
root_thick=rawdata(6, :);
tip_thick_to_chord=rawdata(7,:);
ultimate=rawdata(8,:);
gross_weight=rawdata(9,:);
wing_weight=rawdata(10,:);
% the derived variable names
span=sqrt(ref_area.*aspect_ratio);
taper_ratio=tip_chord./root_chord;
root_thick_to_chord=root_thick./root_chord;
tip_thick=tip_thick_to_chord.*tip_chord;
mean_chord=ref_area./span;
% modify the data if c_r+c_t=gamma*s/b is used before PCR analysis
if approx_option==
gamma=mean ( (root_chord+tip_chord)./mean_chord);
root_chord=gamma*ref area./(span.*(l+taper_ratio));

tip_chord=root_chord.*taper_ratio;
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tip_thick=tip_thick_to_chord.*tip_chord;

root_thick=root_thick_to_chord.*root_chord;

end

% define f and B for PCR

f=wing_weight’;N=41;
den=var (f)*(N-1);

DTR=pi/180;

n=8;

xcoef (1)=0.1895; % ultimate
xcoef(2)=-0.1008; % b

xcoef (3)=0.8795; % s_p
xcoef (4)=-0.1580; % t_r
xcoef (5)=0.3720; % c_r

xcoef (6)=-0.7842; ¥, sweep
xcoef(7)=-0.0274; % c_tip
xcoef (8)=0.3469; % gross weight
xcoef (9)=5150.6253; % leading coefficient

B(1,
B(2,
B(3,
B(4,
B(5,
B(6,
B(7,
B(8,

:)=ultimate;
:)=0.01*span;
:)=0.001*ref_area;
:)=root_thick;
:)=0.1*root_chord;
:)=cos(DTR*sweep) ;
:)=0.1%tip_chord;
:)=0.00001*gross_weight;

warning on;

R2i=

zeros(8,1);

fprintf(’  Fitting Error Imnit_Error

for
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x_init=xcoef (id)*1.25;

Best_Fitting\n’);
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options=optimset (’Display’,’off’,’TolFun’,1.0e-10);
err0 = sum(nlsqfun(x_init,B,f,N,k,n)."2);
[x,err]=1sqnonlin(@nlsqfun,x_init,1lb,ub,options,B,f ,N,k,n);
if k==0
err_best=err;
R2=1-((N-1)/(N-n))*err/den;
else
R2i(k)=1-((N-1)/(N-n+1))*err/den;
end
fprintf(°%d: %.be %.be Y .be\n’,k,err,errO,err_best);

end

%plot the bar chart
var=zeros(n,1);
for i=1:n
var(i)=1i;

end
R2i=R2-R2i;
clear id;
for i=1l:n

switch 1

case 1, id(i)=2;

case 2, id(i)=5;

case 3, id(i)=T7;
case 4, i1d(i)=3;
case b, id(i)=4;
case 6, id(i)=8;
case 7, id(i)=6;
case 8, id(i)=1;
end

RR(1)=R2i(id(i));
end
R2i=RR;
bar(var,R2i,0.4,’k’);
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set(gca,’x1lim’,[0.4,8.6]);
xlabel (’\fontsize{14}\rm Variables’);
ylabel(’\fontsize{14}{\it \Delta{R"2}}’);
ymin=min(R21i); ymax=max(R2i);
delta=0.00015;
set(gca,’ylim’, [ymin, ymax]) ;
set(gca, ’ylim’, [-0.001,0.003]);
for i=1:8
if R2i(i)<0
yshift=R2i(i)-delta;
elseif R2i(i)<0.003
yshift=R2i(i)+delta;
else
yshift=-delta;
end
switch i
case 4, lab=’\fontsize{14}\it s’;
case 1, lab=’\fontsize{14}\it b’;
, lab=’\fontsize{14} \Lambda’;
, lab=’\fontsize{14}\it c_r’;
case 3, lab=’\fontsize{14}\it c_t’;

case 7
2
3
case 5, lab=’\fontsize{14}\it t_r’;
8
6

case

case 8, lab=’\fontsize{14} \mu’;

case 6, lab=’\fontsize{14}{\it w}_{to}’;
end

if i==6

text (i-0.25,yshift,lab)
else

text (i-0.15,yshift,lab)

end
end
set(gca,’YTick’,[-0.001:0.001:0.001], ’YTickLabel’,. ..
{’-0.001°,” 0’,’ 0.001°1);

% Wing Weight Estimation for Matlab
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Copyright (C) 2005 W. Li and H. Rocha

Revision history:

1-MAR-2005: First version, W. Li and H. Rocha

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; A copy of the GNU

General Public License can be obtained from the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

function NLSQFUN = nlsqfun(x,B,f,N,k,n)

h
b
A
h
h
h
h
h
h
h
h
h

function NLSQFUN = nlsqfun(x,B,f,N,k,n)

Input Arguments:

X - parameters values

B - a matrix with the data points

f - the actual wing weight of each data point
N —~ number of data points

k - index of g_i (g_0 == g)

n - number of variables

NLSQFUN=zeros(N, 1) ;
for j=1:N
if k==0
tmp=x(n+1) ;
else

tmp=x(n) ;
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end
for i=1:n
if 1 "=k
if i>k & k>0
id=i-1;
else
id=i;
end
tmp=tmp*B(i, ) "x(1id);
end
end
NLSQFUN(j)=£f (j)-tmp;

end

A.2 PCA CODES

A.2.1 PCA automatic procedure

A
)
h
h
b
h
A
h
h
h

A

Wing Weight Estimation for Matlab
Copyright (C) 2005 W. Li and H. Rocha

Revision history:

1-MAR-2005: First version, W. Li and H. Rocha

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; A copy of the GNU

General Public License can be obtained from the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

PCR - Principal Component Regression
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% The Automatic Principal Component Analysis algorithm is as

% follows:

h

A 1.
h 2.
h

b 3.

b
h
A

Scale each variable by its estimated standard deviation.
Compute the covariance matrix C of the scaled input vectors
and remove all the variables corresponding to 0 eigenvalue.
Let the number of the remaining variables be n_org. For
n=n_org downto n = nmin, use RBF or Kriging interpolation,
to compute the corresponding n_org-nmin principal component

regression approximations.

% The function CV_error.m is used to compute the

% cross-validation error.

clear all;

nmin=3; % the smallest dimension of feature space

approx_option=1; % 1 for using c_r+c_t=gamma*s/b before PCR

approx_model=b; % 1 for Multiquadrics, 2 for Thin Plate Splines,
% 3 for Cubic, 4 for Gaussian, and 5 for Kriging

var_number=14; % number of variables used (either 8 or 14)

rawdata=csvread{(’wing_data_10.csv’};

% the actual input variable names

ref_area=rawdata(l,:);

aspect_ratio=rawdata(2,:);

sweep=rawdata(3,:);

root_chord=rawdata(4, :):

tip_chord=rawdata(5,:);

root_thick=rawdata(6, :);

tip_thick_to_chord=rawdata(7,:);

ultimate=rawdata(8,:);

gross_weight=rawdata(9,:);

wing_weight=rawdata(10,:);
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% the derived variable names
span=sqrt(ref_area.*aspect_ratio);
taper_ratio=tip_chord./root_chord;
root_thick_to_chord=root_thick./root_chord;
tip_thick=tip_thick_to_chord.*tip_chord;
mean_chord=ref_area./span;
% modify the data if c_r+c_t=gamma*s/b is used before PCR analysis
if approx_option==1
gamma=mean ({root_chord+tip_chord) ./mean_chord) ;
root_chord=gamma*ref_area./(span.*(l+taper_ratio));
tip_chord=root_chord.*taper_ratio;
tip_thick=tip_thick_to_chord.*tip_chord;
root_thick=root_thick_to_chord.*root_chord;
end
% define f and B for PCR
f=wing_weight’;
if var_number==8
n=8;
N=41;
B(1,:)=span;
B(2,:)=root_chord;
B(3, :)=ref_area;
B(4, :)=root_thick_to_chord;
B(5,:)=gross_weight;
B(6, :)=taper_ratio;
B(7, :)=sweep;
B(8, :)=ultimate;
else
n=14;
N=41;
B(1, :)=aspect_ratio;
B(2, :)=span;
B(3, :)=mean_chord;

B(4,:)=root_chord;
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B(5, :)=tip_chord;
B(6,:)=ref_area;
B(7,:)=root_thick;
B(8,:)=tip_thick;

B(9, :)=root_thick_to_chord;
B(10,:)=tip_thick_to_chord;
B(11,:)=gross_weight;

B(12, :)=taper_ratio;

B(13, :)=sweep;
B(14,:)=ultimate;

end

%scaling

B2=B;

for i=1:n
B2(i,:)=(B2(1i,:)-mean(B2(i,:)))/std(B2(i,:));

end

%coordinate change
C=cov(B2’);
[V,D]=eig(C);
fp=fopen(sprintf (*CV_%d_%d_%d.txt’ ,approx_option, ...
approx_model,var_number),’w’);
fprintf(fp, 'Eigenvalues of Covariance Matrix:\n’);
for i=l:n

fprintf (fp,’%.5f 7 D(i,i));

if (mod(i,5)==0)

fprintf (fp,’\n’);

end
end
if (mod(n,5)~=0)

fprintf(fp,’\n’);

end
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n_org=n;

options=optimset ('Display’,’off’,’TolFun’,1.0e-5);

% Data fitting in the input space

fprintf(fp,’Num_Variable Initial_Objective Final_Objective\n’);

B1=B2;

prms=ones (n, 1) ;

err0=CV_error (prms,n,N,f,Bl,approx_model) ;
[params,emin]=fminsearch(@CV_error,prms,options,n,...

N,f,B1,approx_model);

if n<10

fprintf(fp,’ %d (orig space) %.4e %.4e\n’ ,n,err0,emin) ;
else

fprintf(fp,’ %d (orig space) % . 4e %.4e\n’ ,n,err0,emin) ;
end

save(sprintf (°CV_%d_%d_%d_%d.mat’,approx_option,approx_model,...

var_number,0),’f’,’B’, ’params’);

% transform data into the feature space:
% each column of Bl is a data point in the feature space
prms=ones(n, 1) ;
for n=n_org:-1:nmin
T=V(:,n_org-n+l:n_org)’; % transformation matrix
B1=T*B2;
%Cross-validation minimization process
if n<n_org
prms=prms (2:n+1) ;
end
err0=CV_error(prms,n,N,f,Bl,approx_model) ;
[params,emin]=fminsearch(@CV_error,prms,options,n,. ..
N,f,B1,approx_model);
if n<10
fprintf(fp,’ %d %.4e %.4e\n’, ...

n,err0,emin) ;
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else
fprintf (fp,’ %d % . 4de %.4de\n’, ...
n,err0,emin) ;
end
save (sprintf (°CV_%d_%d_%d_%d.mat’ ,approx_option,...
approx_model,var_number,n),’f’,’B’,’params’,’B1’,°T’);
end
fclose(fp);

A.2.2 CV error function

% Wing Weight Estimation for Matlab
% Copyright (C) 2005 W. Li and H. Rocha

% Revision history:

% 1-MAR-2005: First version, W. Li and H. Rocha

% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License as
% published by the Free Software Foundation; A copy of the GNU

% General Public License can be obtained from the Free Software

% Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

function Ecv = CV_error(params,n,N,f,B,approx_model)

)

% function Ecv=CV_error (params,n,N,f,B,approx_model)
yA

% Output Arguments:

% Ecv - the cross-validation error value
%

% Input Arguments:

%  params - a vector with the scaling parameters
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h
h
h
h
b

o = = o

- number of variables

- number of data points

- the actual wing weight of each data point

- a matrix with the data points in the feature

space coordinates

%  approx_model - regression model to use: 1 for Multiquadrics,

h
h
h

2 for Thin Plate Splines, 3 for Cubic,

4 for Gaussian, and 5 for Kriging

%Iteration matrix

phil=zeros(N,N);
for i=1:N
for j=1:N

end

end

sub=0;
for k=1:n
sub = sub + params(k)*(B(k,i)-B(k,j))"2;
end
if approx_model==
phil (i, j)=sqrt(sub+1);
elseif approx_model==2
if sub < 1le-10
sub=sub+1e-10;
end
phil(i, j)=sub*log(sqrt(sub));
elseif approx_model==3
phil(i,j)=(sqrt(sub))"3;
else phil(i,j)=exp(-sub);

end

%Main process

Ecv=0;
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for i=1:N
fil=zeros(N,1);
for j=1:N
sub=0;
for k=1:n
sub = sub + params(k)*(B(k,i)-B(k,j))"2;
end
if approx_model==
fi1(j)=sqrt(sub+1);
elseif approx_model==2
if sub < 1e-10
sub=sub+1e-10;
end
fi1(j)=sub*log(sqrt(sub));
elseif approx_model==3
£11(j)=(sqrt(sub))"3;
else fil(j)=exp(-sub);
end
end
fl=zeros(N-1,1);
fi=zeros(N-1,1);
phi=zeros (N-1,N-1);
for 1=1:i-1
f1(L=£(1);
fi(L)=fi1(1);
for g=1:1i-1
phi(l,q)=phil(l,q);
end
end
for 1=1:i-1
for g=i+1:N
phi(1,q-1)=phil(l,q);
end

end
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for 1=i+1:N
£i(1-1)=fi1(1);
f1(1-1)=£(1);
for g=i+1:N-1

phi(1-1,9-1)=phil(l,q);

end

end

for 1=i+1:N
for g=1:i-1

phi(1-1,9)=phil(1,q);

end

end

if rcond(phi) < 107(-6)
phi=pinv(phi);

else
phi=inv(phi);

end

if approx_model==5
ID=ones(N-1,1);
gi=fi+((1-ID’*phi*fi)/(ID’*phi*ID))*ID;
g=(phi*f1) ' *gi;

else
g=(phi*f1)’*fi;

end

Ecv=Ecv+(f(i)-g)"2;

end

Ecv=Ecv/N;

A.2.3 Basis function evaluation

% Wing Weight Estimation for Matlab
% Copyright (C) 2005 W. Li and H. Rocha
h

% Revision history:
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h

% 1-MAR-2005: First version, W. Li and H. Rocha

A

A

% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License as
% published by the Free Software Foundation; A copy of the GNU
% General Public License can be obtained from the Free Software

% Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

function fval = basisfunction(x,params,N,n,f,Bl,approx_model)

A

% function fval=basisfunction(x,params,N,n,f,B,approx_model)
h

% Output Arguments:

% fval - the function value

A

% Input Arguments:

b x - point to compute the function value

%  params - a vector with the scaling parameters

5 n - number of variables

hoN - number of data points

% T - the actual wing weight of each data point

% B - a matrix with the data points in the feature

% space coordinates

%  approx_model - regression model to use: 1 for Multiquadrics,
% 2 for Thin Plate Splines, 3 for Cubic,

% 4 for Gaussian, and 5 for Kriging

%
%Iteration matrix

phi=zeros(N,N);
for i=1:N
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for j=1:N
sub=0;
for k=1:n
sub = sub + params(k)+*(B1(k,1)-B1(k,j))"2;
end
if approx_model==
phi(i,j)=sqrt(sub+1);
elseif approx_model==2
if sub < 1e-10
sub=sub+1le-10;
end
phi(i,j)=sub*log(sqrt(sub));
elseif approx_model==3
phi(i,j)=(sqrt(sub))"3;
else phi(i,j)=exp(-sub);
end
end
end
if rcond(phi) < 107 (-6)
phi=pinv(phi);
else
phi=inv(phi);

end

Jmain process
fi=zeros(N,1);
for j=1:N
sub=0;
for k=1:n
sub = sub + params(k)*(x(k)-B1(k,j))"2;
end
if approx_model==
fi(j)=sqrt(sub+l);

elseif approx_model==2
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if sub < 1le-10
sub=sub+1le-10;
end
fi(j)=sub*log(sqrt(sub));
elseif approx_model==3
fi(j)=(sqrt(sub))"3;
else fi(j)=exp(-sub);
end
end
if approx_model==5
ID=ones(N,1);
gi=fi+((1-ID’*phi*fi)/(ID’*phi*ID))*ID;
fval=(phix*f) **gi;
else
fval=(phi*f)’*fi;

end
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