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ABSTRACT

PRINCIPAL COM PONENT REGRESSION FOR  

CONSTRUCTION OF W ING W EIGHT  
ESTIMATION MODELS

H um berto Rocha 

Old Dominion University, 2005 

D irector: Dr. John  J. Swetits

T he m ultivariate  d a ta  fitting  problem  occurs frequently in m any branches of science 

and engineering. It is very easy to  fit a d a ta  set exactly  by a  m athem atical model 

no m a tte r how th e  d a ta  poin ts are d istribu ted . B ut build ing a  response by using a 

lim ited num ber of poorly d istribu ted  d a ta  points is very unreliable, yet necessary in 

conceptual design process. T his thesis docum ents the lessons learned from fitting  the 

wing weight d a ta  of 41 subsonic tran sp o rts  by th ree types of in terpo lation  m ethods -  

least polynom ial in terpolation, radial basis function in terpo lation , and Kriging in ter­

polation. T he objective of th is thesis is to  develop an au to m atic  procedure of using 

th is in terpo la tion  m ethods for construction of an approxim ation  of the  relationship 

between th e  ac tu a l wing weight and various key configuration param eters of wing by 

using actual wing weight d a ta  of 41 subsonic transports . T he focus of th e  thesis is 

on four key technical issues in practical use of approxim ation m ethods: d a ta  genera­

tion  and  variable screening, fitting  the d a ta  by a param etric  function model, tuning 

intrinsic m odel param eters by using cross-validation, and  verification of constructed  

approxim ation. One controversial topic is the  assessm ent of th e  constructed  approx­

im ations, w hich is of g reat im portance to  practitioners b u t depends too  much on 

subjective judgm ent. Some formal approaches for th e  assessm ent will be proposed 

and analyzed. Even though the  benefits of using principal com ponent regression w ith 

cross validation are only dem onstrated  by th e  wing weight d a ta  fitting  problem , the 

proposed m ethodology could have significant advantages in fitting  other historical or 

hard -to -ob ta in  data .
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Chapter I 

INTRODUCTION

System  analysis is a m ultidisciplinary, constrained, optim ization process th a t tries 

to  find a solution th a t best satisfies a set of requirem ents. For simple systems, 

th is process can be relatively efficient (few function evaluations) and quick (short 

execution tim e). For very com plex system s, such as aircraft design, the sheer num ber 

of analyses needed and the  difficulty of the  individual function evaluations can quickly 

m ake the  large num ber of function evaluations needed im practical. Often, the  d a ta  

generated  in th e  function evaluation are poorly behaved, in term s of bo th  execution 

com pletion and  the  sm oothness of the  results, which th en  causes the efficiency and 

robustness of th e  optim ization to  suffer.

In the  past, when only simple analytic approaches severely lim ited the  problems 

th a t could be analyzed, d a ta  collected from tes ts  were regressed w ith  the aid of engi­

neering theories to  form the  semi-em pirical handbook m ethods familiar to  designers. 

These regressions had  m any advantages, such as low inpu t detail requirem ents as well 

as the ability  to  em body m any detailed  and  difficult-to-assess considerations into an 

average sta te-o f-the-art and very low calculation requirem ents. In fact, the require­

m ents were so low th a t they  could be, and were, calculated by hand  (see [1]). These 

regressions also had m any drawbacks, such as lim ited ranges of applicability and a 

strong dependency on the  database  from which they  were regressed. This m eant th a t  

new and unusual concepts often becam e unanalyzable, which required new tests  to  

expand th e  database. These tests  were tim e consum ing, difficult, and expensive.

A ttem pts to  improve the  applicability of system  analysis has centered around high 

fidelity num erical calculation because the  calculation can generate sim ilar d a ta  w ith 

much less tim e and cost for some disciplines (such as fluid dynam ics) th an  the  tra ­

ditional tests  (such as wind tunnel tests). High fidelity calculation involves running 

com puter sim ulation code to  generate num erical solutions th a t accurately approxi­

m ate the  tru e  system  responses, which could be validated by experim ents. However, 

some high fidelity calculations still can not be included inside of the optim ization 

loop because they  are much too costly, or require hum an intervention to  complete, 

or are still inadequate for the  task.

This dissertation follows the style of American Institute of Aeronautics and Astronautics.
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W h at is needed is a more general, robust, and rigorous regression m ethod th a t 

takes m ultivariate data , generated from any source, and creates a fitting  function th a t 

can be evaluated quickly, robustly, and accurately. T he regression process should 

au tom atically  identify key param eters th a t  the  result strongly depends on, would 

preferably no t depend on theoretical knowledge of th e  physics, be able to  handle 

sparse d a ta  sets, be able to  handle poorly behaved d a ta  sets, and  would be easy to 

im plem ent.

A typical, well understood  regression problem  was chosen to  try  out some new 

m ethods to  see how well they  apply and to  see how well they  com pare to  trad itional 

regression m ethods. T he problem  chosen was the  determ ination  of a wing weight 

estim ation m odel given a database of actual aircraft wing configurations.

This thesis develops an au tom atic  procedure of using in terpo lation  m ethods for 

construction of an  approxim ation of the relationship between th e  actual wing weight 

and various key configuration param eters of wing by using actual wing weight d a ta  

of 41 subsonic tran sp o rts .

1.1 C O N TENTS OF THE THESIS

A stan d ard  approxim ation procedure can usually be decom posed into four steps [2 ]:

(i) d a ta  generation  and variable screening, (ii) fitting  th e  d a ta  by a param etric func­

tion  model, (iii) tun ing  intrinsic m odel param eters by using cross-validation, and 

(iv) verification of th e  constructed  approxim ation. T he focus of th e  thesis is on these 

four key technical issues in practical use of approxim ation m ethods. One contro­

versial topic is th e  assessm ent of the  constructed  approxim ations, which is of great 

im portance to  practitioners b u t depends too  much on subjective judgm ent. Some 

formal approaches for the  assessm ent will be proposed and analyzed.

D a ta  generation in the  approxim ation procedure is m ainly for selection of d a ta  

sites of the  in p u t vector when the  corresponding response is calculated by a com­

pu ter sim ulation code, and  is not needed for wing weight d a ta  fitting  th a t uses only 

historical d a ta . T he rest of the  topics will be discussed in th is thesis. The following 

chapters describe an  au tom atic  procedure for construction of wing weight estim ation 

models based on general approxim ation m ethods, w hereas a user m ay receive warn­

ings by the  au tom atic  procedure and exercise some control options to  avoid potential 

failures of th e  procedure.

The thesis is organized as follows. In the next chap ter we briefly describe the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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wing weight d a ta  fitting  problem . C hap ter III is devoted to  principal com ponent 

analysis. Variable screening is explored in chapter IV. In chapter V we describe 

rad ia l basis function in terpolation  m ethods. Model param eter tun ing  and other d a ta  

fitting  m ethods are presented in chapters VI and VII, respectively. Com parison of 

constructed  approxim ations is given in chapter V III. In th e  last chapter we have 

th e  conclusions. For definitions of wing configuration param eters, see the  book by 

R aym er [1].

1.2 NOTATION

A aspect ra tio  of wing, i.e., b2/ s

b wingspan

Cm m ean chord of wing, i.e., s /b

Cr roo t chord of wing a t fuselage intersection

Ct tip  chord of wing

f theoretical wing weight function

9 approxim ation  of /

n num ber of inpu t variables

N num ber of d a ta  points

s plan  area of wing

t r thickness of airfoil a t fuselage intersection

t t thickness of airfoil a t w ingtip

k  !  Cf th ickness/chord  ra tio  of airfoil a t fuselage intersect]

t t /ct th ickness/chord  ratio  of airfoil a t w ingtip

[f/c]m average th ickness/chord ratio, i.e., (tT/ c T + t t / c t ) /2

X colum n vector of inpu t variables x \ , . . .  , x n

X i the  ith  com ponent of column vector x

4 th e  ith  com ponent of colum n vector x -7

w actual wing weight

w estim ated  or calculated wing weight

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Wto gross takeoff weight of aircraft

1 colum n vector of ones

A tap e r ra tio  of wing, i.e., ct /cr

A wing sweep angle in radian

M u ltim ate  load

Oi estim ated  s tan d ard  deviation of variable Xi

F rad ia l basis function (RBF)

S ubscrip ts and Superscripts

i index for i th  com ponent of vector

j index for d a ta  point

k index for itera tion  or itera te

T transpose of vector or m atrix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Chapter II 

W ING WEIGHT DATA FITTING PROBLEM

I I .l  IN TR O D U C TIO N

For system  analysis of conceptual design of aircraft, one im portan t task  is to  resize a 

conceptual a ircraft for a mission analysis. To conduct a m ission analysis of a resized 

aircraft, system  analysts m ust estim ate the  gross takeoff weight wto of the  aircraft. 

Specifically, one com m only resized com ponent of a ircraft is wing. As a result, system  

analysts need a relationship between the  wing weight w  and  sizing param eters of wing 

(such as s, 6 , A, and  A). A rdem a et al. [3] describe a variety of m ethods to  construct 

weight estim ation  of tran sp o rt aircraft -  from em pirical regression to  classical plate 

theory. In particu lar, they  show how to  use the  beam  theory  s tru c tu ra l analysis for 

fuselage and wing s tru c tu ra l weight estim ation. Linear and  power regression m ethods 

are used by A rdem a et al. (see [3, pp. 18-24]) to  ad just th e  estim ated structu ra l 

weight to  the  ac tua l s tru c tu ra l weight for eight subsonic transpo rts .

T he objective of this thesis is to  develop an au tom atic  procedure of using in ter­

polation m ethods for construction of an approxim ation of the  relationship between 

th e  actual wing weight and various key configuration param eters of wing by using 

actual wing weight d a ta  of 41 subsonic transports . Such a procedure is called an 

em pirical approach by A rdem a et al [3]. However, system  analysts usually reject 

the  idea of using a general regression or approxim ation m odel for wing weight esti­

m ation, because a general m odel lacks any engineering insight and usually leads to  

non-physical weight estim ation form ula th a t gives negative wing weight or exhibits 

non-m onotonicity of wing weight versus some key configuration param eter such as 

s. T he best practices in em pirical regression for wing weight estim ate are based on 

heuristic regression models th a t  incorporate some engineering understanding of the 

weight relationship. For example, the  two best em pirical regression models for the 

given wing weight d a ta  of 41 subsonic tran sp o rts  are the  geom etry model:

w = a  i /i“ 2 (0.016)“3 ( l0 “ 3 s ) “ 4 {tr )a5 (0.1 cr ) “ 6 (cos A ) " 7 (O.lct) " 8 (lO“ 5 wto) C

1.1)

and th e  ra tio  model:

w — a \  f^a 2 A“ 3 sa4 ([f/c]m)a5(cos A )“6( l  +  A) “ 7 ( l 0 - 3 wto) “ 8 1, (II.2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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where a ± , . . .  , a^  or a \ , . . . ,  dg are determ ined by least squares fitting of the  data. 

T he engineering in tu ition  behind these wing weight models is th a t  the wing weight 

is a m onotone function w ith respect to  each of the configuration param eters in the 

m odel and  its  range is from 0 to  oo. However, there are two lim itations of these 

two wing weight models: (i) the models are based on system  analysts’ knowledge of 

subsonic tran sp o rts  and it is nontrivial to  derive sim ilar em pirical regression models 

for o ther types of aircrafts, and (ii) th e  models are no t flexible enough to fit the wing 

weight d a ta  for the  41 subsonic transports . Fig. 1 shows m ore th an  10% errors in the 

wing weight estim ation by the  best fit of each of these two engineering wing weight 

m odels. Moreover, la ter on, we will see th a t  these models do no t exhibit the  expected 

weight grow th trends w ith  respect to  changes of some key configuration param eters 

(such as b).

-  E x a c t fit o f d a ta
-  O v e re s tim a te  o f 10%

-  -  U n d e re s tim a te  o f 10%
0 B e s t fit by th e  g e o m e try  m ode l 
+  B e s t  fit by  th e  ra tio  m o d e l

80000

O) 60000

& 40000

20000

20000 40000
A ctua l w ing  w eig h t

60000 80000

Figure 1: Regression errors of wing weight fitting by the  geom etry m odel and the 
ratio  model.

F ittin g  the  wing weight d a ta  by either the  geom etry m odel or th e  ra tio  model is 

a nonlinear least squares problem  th a t  m ay have m any local op tim al solutions. T he 

best fitting  depends on the  in itial choice of the  regression param eters a n , . . . ,  ccg or 

d i , . . . , Qi 8 - Fig- 1 shows the  best fitting  com puted by the  nonlinear optim ization  

code lsqnonlin  in M ATLAB. T he m axim um s of relative fitting  errors are 56.44%
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and 57.55% for the  geom etry model and the ratio  model, respectively. T here is no 

decisive advantage of one m odel over the  o ther if the  goodness-of-fit is the  decision 

criterion. I t is im p o rtan t to  provide analysts w ith useful inform ation about the 

prediction behaviors of these wing weight models (instead of fitting  errors), th a t  helps 

the  analysts choose an  appropriate  prediction model based on th e  characteristics of 

configuration design study  a t hand.

F igure 2: A variety of subsonic tran sp o rts  in th e  d a ta  set.

There are m any studies [3, 4] on building approxim ation m odels for weight estim a­

tion. So far, useful weight models, such as Eqs. (II. 1) and  (II.2), are m ainly derived 

from knowledge and insight of experienced engineers, instead  of rigorous principles 

of physics. In some cases, useful weight estim ation m odels are considered propri­

etary  inform ation n o t to be shared w ith  the  public. W eight inform ation of existing 

aircrafts is no t necessarily available to  the  public. System  analysts at NASA Ames 

Research C enter were able to  collect weight inform ation of 41 subsonic transports 

including Boeing 747, Douglas DC-7C, Fokker F-28 tw in engine je t liner, and Lock­

heed C-130B cargo aircraft (see Fig. 2). This set of weight d a ta  allows the  current 

study of benefits and lim itations of general approxim ation m ethods for building a 

wing weight estim ation  model.

Each wing weight d a ta  point consists of the  actual wing weight w and relevant 

key configuration param eters: A,  b, cm, cr , q , s , [t/c]m, t r , t r / c r , t t , t t / c t , mt0, A, A, and
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F ig u r e  3: A irplane wing geom etry param eters.

fi. These param eters can be regrouped in th ree categories: (1) wing geom etry para­

m eters including chord length a t roo t (cr ), chord length a t tip  (ct ), span (b), reference 

area (s), thickness a t root (t r ), thickness a t tip  (t t ), and sweep angle (A =  |90 —A0|);

(2) wing aerodynam ics param eters including tap er ra tio  (A =  c4 / c r), aspect ratio  

[A — b2/ s ), m ean chord of wing (cm =  s / b ) , th ickness-to-chord ra tio  a t root (t r/ cT), 

and  thickness-to-chord ra tio  a t tip  (t t/ c t ); and (3) wing s tru c tu re  param eters includ­

ing gross takeoff weight of aircraft (wt0) and wing load factor (fi). Fig. 3 shows 

th e  wing geom etry  param eters for a  trapezoidal approxim ation of the actual wing. 

A detailed explanation  of wing configuration param eters can be found in R aym er’s 

book [1 ],

T he goal is to  construct a weight estim ation m odel w  «  w,  where w is a function 

of all or a  subset of the configuration param eters. Notice th a t  some configuration 

param eters are related , e.g., t t / c t + t r/ cr — 2[t/c}m and A  — b2/ s .  There are m any 

different ways to  select a set of independent configuration param eters, such as the 

two sets of param eters  in Eqs. (II. 1) and (II.2). Even though  replacing 6  by A 

in Eq. (II. 1) yields a m athem atically  identical m odel w ith  appropriate  choices of 

model param eters, such a replacem ent will lead to  a com pletely different regression 

model if a general approxim ation model is used. For exam ple, if a general quadratic 

polynom ial P2 is used as a regression model, then  P2(A,  s) = a0 + a i A  +  a2s +  a^A2 +  

a^As  +  <2 5 s 2 and  P2(b, s) — do +  dib +  a2s +  a^b2 +  <2 4 bs + a5s2 are two completely 

different regression models no m atte r w hat are the  values of and  a,. Similarly, 

each choice of configuration param eters as inpu t variables of a general approxim ation
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m odel (such as polynom ials, radial basis functions, and  K riging models) will lead to a 

new regression model. As a consequence, one m ust exercise caution in determ ination 

of which configuration param eters should be used as th e  in p u t variables.

Recently, Li and P adu la  [2] did a survey of approxim ation m ethods th a t  m ight be 

useful for conceptual design of complex system s. However, the  survey d idn’t  give any 

specific exam ple on how th e  approxim ation m ethods can be used in conceptual design. 

In th is thesis, the  wing weight approxim ation problem  is used to  show feasibility of 

using approxim ation m ethods in construction of a wing weight estim ation formula 

for conceptual design of subsonic transports . In particu la r, th is thesis docum ents 

th e  lessons learned from fitting the 41 wing weight d a ta  points by three types of 

in terpolation  m ethods -  least polynom ial in terpolation , rad ia l basis function (RBF) 

in terpolation , and Kriging in terpolation.

II.2 CHALLENGES IN W ING  W EIG H T DATA FITTING

T he wing weight d a ta  set was collected over a period of tim e and  will be expanded 

when new weight sta tem en ts of subsonic tran sp o rts  becom e available. Such dynam ic 

characteristics of the  d a ta  set requires a relatively easy way to  generate a wing weight 

estim ation m odel to  cap ture  the trend  in the  u p d ated  d a ta  set, when Eqs. (II.1) and

(II.2) becom e inadequate as estim ation models.

A d a ta  fitting  m odel can only be as good as th e  d a ta  in representation of a 

m athem atical relationship of the d a ta  a ttrib u tes . W hile expert knowledge could be 

extrem ely helpful in choosing a practical regression m odel, it  is im portan t to  elim inate 

unjustifiable subjective decisions when th e  d a ta  is fitted  by general approxim ation 

or regression models.

Because th e  wing weight d a ta  is reliable, only in terpolation  m ethods will be con­

sidered for th e  d a ta  fitting. In o ther words, each wing weight estim ation model will 

reproduce th e  actual wing weight for 41 subsonic tran sp o rts . However, such an  exact 

fit of th e  d a ta  has no useful purpose for th e  sizing of wing in conceptual design phase. 

System analysts are m ostly interested in w hether an estim ation  model captures the 

weight grow th trends “correctly” between and  beyond th e  known d a ta  points. There 

is no physics-based criterion for verification of a correct solution; instead, expert opin­

ions determ ine w hether a  m athem atical solution is useful in practice. Nevertheless, 

strategies of avoiding unjustifiable subjective decisions will be discussed.
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II.3 M ODELING OF W ING  W EIG H T DATA FITTIN G  PROBLEM

Before getting  into details of the steps of the  approxim ation procedure, notations 

to  describe th e  d a ta  in terpolation are needed. Let /(x) be the  tru e  response to  a 

given in p u t vector x (of n  com ponents) such th a t the  value of /  is only known at 

a set of N  in p u t vectors x =  x1, . . . ,  xw, i.e., only f t  — /(x fc) (k =  1 , . . . ,  N )  are 

known. A n in terpolation  m odel g(x)  =  0Lj tPj{yL) is used as an approxim ation 

of /(x), where aj  are the coefficients to  be determ ined by interpolation conditions 

g ( x k) = f k or J2jLi  =  f k  {k =  1, • • . ,  N) ,  and  are the basis

functions depending on th e  choice of in terpolation  m ethods. T he coefficient m atrix  

of the linear equations a i¥b (xfc) — fk {k =  1, • ■ •, N )  is called the interpolation 

m atrix .

For m ultivariate  d a ta  fitting  problem s, it is not easy to  decide w hat should be 

po ten tial in p u t variables. For the wing weight approxim ation problem, the  in­

p u t variables are usually th e  sizing param eters required in conceptual design of 

aircraft. T he regression m odels (II. 1) and  (II.2) indicate system  analysts’ prefer­

ence of in p u t variables. One objective of the  weight d a ta  fitting  study  is to  un­

derstand  w hether ana lysts’ choice is justifiable or can be reproduced by a variable 

screening m ethod, which identifies the  inpu t variables th a t have a  significant in­

fluence on th e  response. To avoid m issing any im p o rtan t inpu t variable, all the 

configuration param eters of wing (including the ratios) will be included as po­

ten tia l in p u t variables of fif(x), i.e., x  is a vector of 15 configuration param eters: 

A,  b, Cm, Cr, ct , s, [f/c]m, t r , t r/ c r , t t , t t / c t , w to, A, A, and /i. Note th a t  the  engineering 

insight of using cos (A) instead  of A for wing weight estim ation  is intentionally  ignored 

in this s tudy  to  see w hether general approxim ation m ethods w ithout engineering in­

sight is capable of generating a  useful wing weight estim ation  formula. T he “ra tio s” 

are included as poten tial inpu t variables because they  are native configuration para­

m eters of wing.

The first step  of the  approxim ation procedure is to  find out which of the  15 vari­

ables are im portan t for a  wing weight estim ation m odel and  w hether there is any 

collinearity of the  input variables. T his step  tries to  reduce the  dimension of the 

input space of the  d a ta  fitting  problem . Two approaches will be used for dim en­

sion reduction of the  inpu t space: principal com ponent analysis (PCA) and variable 

screening. B oth  approaches require preprocessing of the  data .
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I I . 4 P R E P R O C E S S I N G  O F  D A T A

T he given wing weight d a ta  of 41 subsonic tran sp o rts  had some errors. For example, 

some recorded tap e r ratio  is no t th e  same as ct /cy and some recorded thickness-to- 

chord ra tio  a t roo t is not the  sam e as t r/ cr . A careful exam ination  of the d a ta  file 

reveals the nine source inpu t a ttrib u tes  of the  data: A , c r ,ct, s , t r , t t / c t , w to, A, and 

li. Based on these nine a ttribu tes, the  rem aining six d a ta  a ttrib u te s  are uniquely 

determ ined by th e  m athem atical relationships am ong the a ttrib u tes . For example,

b = v A  ■ s, A — ct /cr , and cm — s/b.

A stan d ard  d a ta  norm alization approach is to  scale each com ponent Xi by an 

estim ation of its s tan d ard  deviation ov calculated from the  data:

E Li x ave(xj ) ) 2 1 N
w ith  ave(xj) =  — xj

i = i

Index Variable Min Max M ean (ave(xj)) D eviation (cr,)
1 A 0.3 12.4 8 . 8 6 2.3
2 b 26.11 222.7 1 2 2 . 1 40.22
3 Cm 7.78 86.17 16.26 12.83
4 Cr 11.15 54.39 2 2 . 2 1 0 . 6 6

5 Ct 3.62 16.16 7.35 2.96
6 s 542.5 8 , 2 0 0 2,019 1,589
7 t r 1.56 9.75 3.42 1.45
8 tt 0.34 1.65 0 . 8 0.25
9 Cj. 0 . 1 1 0 . 2 2 0.16 0.03

1 0 t t /ct 0.06 0.17 0 . 1 2 0.03
1 1 \t/c\m 0.08 0.18 0.13 0.03
1 2 W to 26,000 800,000 163,806 175,787
13 A 0 . 2 0 0.61 0.35 0 . 1

14 A 0 55 11.91 15.83
15 M 3.75 5.3 4.06 0.46

T a b le  1: E stim ated  m eans and standard  deviations of configuration variables.

Note th a t system  analysts need to  be w arned of sm all values of a*, say, less th an  

ten  percent of th e  m ean value ave(xj). There are two reasons for such a small value 

of Oi'. (i) the  ac tua l range of the  variable Xi is abou t the  sam e m agnitude as cq or
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(ii) there  is not enough d a ta  to  m odel the change of the  response w ith respect to  X;. 

E xpert knowledge can be used to  determ ine which case it is. For example, in Table 

1 , the sm allest ra tio  of Ui/ma{xi )  is the  u ltim ate load /x, which is usually determ ined 

by FAA regulation and has a range from 3.75 to  5.3 for subsonic transports w ith 

estim ated  s tan d ard  deviation of 0.46 and m ean of 4.06. A w arning will help analysts 

to  discover th a t  am ong 41 subsonic transports, 26 of them  have the  sam e ultim ate 

load of 3.75, i.e., there  is not m uch variation in /j  for the  given d a ta  set. Therefore, 

any relationship  between the  u ltim ate  load and the  wing weight based on the given 

d a ta  set m ight be questionable. In th is study, the  estim ated  s tan d ard  deviation of /x 

is accepted for scaling, which m ay inflate the significance of /x in bo th  the  PCA and 

variable screening analysis.

Scaling each d a ta  a ttrib u te  by its estim ated stan d ard  deviation also helps the 

initial form ulation of the  approxim ation problem. To illustra te  how scaling affects the 

problem  form ulation in practice, the  cubic R BF in terpolation  is used as an example. 

T he cubic R B F  m odel is defined by

RBF, and  ||x  — x J j| is a param eterized distance betw een x  and  x J defined as

T he scalars 9 \ , . . .  , 9n in Eq. (II.3) are the  m odel tun ing  param eters th a t  will be 

determ ined by a cross-validation m ethod for the  best prediction m odel of the given 

data . M athem atically , one could rew rite |jx — x J || as

ill-conditioning of th e  in terpolation  problem  even though  th e  m athem atical theory  

[5, 6 ] guaran tees th e  existence of a unique cubic R B F  in terpo lan t for any given d a ta  

points (x 1, / i ) , . . . ,  (x w, f N ). For eight inpu t variables given in (II .1) and forty-one

N

#(X) =

where yj(||x  — x-7 11) represents </?j(x) in the in terpolation model, ip{t) = t 3  is the cubic

(II.3)

n

w ith  9, (II.4)

In practice, s ta rtin g  w ithout any scaling (i.e., Qi =  1 in Eq. (II.4)) m ay lead to

d a ta  points, th e  condition num ber of the  unsealed in terpo lation  m atrix  is 4.4 x 1014,
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while the  scaled in terpolation  m atrix  (corresponding to  9i =  1 in Eq. (II.3)) has a 

condition num ber of 1.1 x 105. T he purpose of using two sets of scaling param eters 

in Eq. (II.3) is to  allow a nondim ensional in itial choice of 0* =  1.
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Chapter III 

PRINCIPAL COM PONENT REGRESSION

III .l IN TR O D U C TIO N

For a lim ited num ber of historical or m easurem ent d a ta  points in a high-dimensional 

in p u t space, a  principal com ponent analysis (PCA ) is recom m ended to  check any 

collinearity of th e  inpu t a ttrib u te s  of the d a ta  points. Assum e th a t  there exists in 

fact collinearity am ong the inpu t vectors x 1, . . . ,x.N in R n . T hen  the inpu t vectors 

are sca tte red  around  a r-dim ensional subspace of R n spanned by a set of orthogonal 

vectors u 1, . . . ,  ur w ith  f  < n.  These orthogonal vectors u 1, . . . ,  u7, can be generated 

by PC A  and will be called th e  feature vectors for the  vectors T he m ain

applications of PC A  are: (i) reduce the  num ber of variables; (ii) detect s tructu re  

in the  relationships between variables; and (iii) transform  correlated variables into 

uncorrelated  ones. In other words, PC A  is applied as a d a ta  reduction or structu re  

detection and  correction m ethod.

T he im portance of using PC A  for irregularly  d istribu ted  inpu t vectors was dis­

cussed in [2, section 3.6] where we can find th e  following exam ple th a t illustrates 

the  im portance of using PCA: all the  inpu t vectors fall in a straigh t line th a t is not 

parallel to  any coordinate axis, e.g., x 1, . . . , x N are d istribu ted  along a line w ith a 

un it direction u 1. Thus, x-7 =  o^u1 for some scalar o.j w ith  j  =  1 , . . .  ,7V. For this 

worst case exam ple, variable screening m ethods will not work because the  collinear 

inpu t vectors suggest the ra te  of th e  changes in the  response w ith  respect to  the  cor­

responding changes in each of the  com ponents of the  inpu t vector is the same when 

all the com ponents of u1 are equal. Therefore, all inpu t variables are equally im por­

tan t. In th is case, the  only inform ation given by the  d a ta  points is how the  response 

changes when th e  inpu t vector changes along the line w ith  th e  direction vector u 1. 

Thus, any m eaningful approxim ation should only cap tu re th e  tren d  of th e  response 

in the feature direction u 1. T h a t can be accom plished by reducing the inpu t space 

to  one-dim ensional feature space ( f  =  1 ) and solving the corresponding fitting  prob­

lem in th a t  space to  construct an approxim ation f ( a ) .  T he relationship a  =  x Tu 1 

allows us to  recover the corresponding approxim ation / (x )  ~  / ( x Tu1) in the  original 

inpu t space from  the  constructed  approxim ation in the  feature space. Fig. 4 shows 

a  sim ilar exam ple in R 2  on how PC A  can be used to  construct approxim ations to
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cap tu re  th e  d a ta  trends in the  first feature direction.

12

, •  J'
10

-6 -2

Figure 4: C apture d a ta  trend  in the  first feature direction of historical and m ea­
surem ent data .

T he dim ension reduction illustra ted  in the  previous examples works for any 

collinear or nearly collinear d a ta  d istribu tion  in the  in p u t space. By applying PC A  to 

the  in p u t vectors x 1, . . . ,  xw, we can tre a t th e  response as a function defined on the  

feature space R r w ith  a reduced dim ension fi (<  n)  and  th en  solve th e  approxim ation 

problem  by fitting  th e  transform ed d a ta  in the  feature space. We can th en  recover 

the corresponding approxim ation found in the  feature space to  the  original input 

space. Regression m ethods based on PC A  are called principal com ponent regression 

(PC R).

III.2 PC A  OF W IN G  W EIG H T DATA

In th is section we discuss the  PC A  of th e  wing weight data.

T he wing d a ta  of each subsonic tran sp o rt have 15 configuration param eters: 

A, 6 , cm, cr , ct, s , t r , t r j cT, t i , t i j q , ; A, A, and [i. Because \ t f  ĉ m (tv f  cr -f-

t t / c t) / 2 , th e  th ree configuration param eters [t/c]m , t r / c r , and t t / c t are linearly de­

pendent. T he redundan t param eter [t/c}m is considered as an in p u t variable due to  

ana lysts’ preference of using [t/c}m as an  inpu t variable instead of t r / c r and t t / c t (see

T he PC A  of the 41 subsonic tran sp o rt wing d a ta  is done as follows. F irst, relabel 

the  15 param eters as variables x \ , . . . , x n (n — 15) and the 41 wing configurations 

as x 1, . . . ^ ^  ( N  =  41). Scale each variable by its estim ated  s tan d ard  deviation:

Eq. (II.2)).
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x\  — x^ / a  j. (Note th a t  different orders of m agnitude of the  com ponents of x 1, . . .  , xw

may render the  PCA of x 1, . . .  , x N useless for collinearity analysis.)

Next calculate the  covariance m atrix  C  of the scaled inpu t vectors x 1, . . . ,  x^:

where 7 1  >  7 2  >  ■ • • >  >  0 are the  eigenvalues of C , and u1, . . . ,  u" are the

corresponding unit eigenvectors.

For th e  15 wing configuration param eters of th e  41 subsonic transports, the

0.096, 0.031, 0.019, 0.005, 0.003, and 0.000. The last eigenvalue of 0 m eans lin­

ear dependence of the  15 configuration param eters due to  the  linear relationship 

[t/c]m — (t r/ c r + t t / c t ) /2.  In fact, the  three com ponents of u15 corresponding to 

[t/c]m , tr/ c T, t t / c t are —0.45, —0.43, and 0.78, while the  rem aining com ponents of u15 
are zero (accurate  up to  two significant digits). T he next two sm allest eigenvalues 

0.003 and 0.005 also indicate nearly collinear relationships am ong the  15 configuration 

param eters because of specific locations of the  41 inpu t vectors in th e  15-dimensional 

space. Such data-specific relationships are m ost likely to  d isappear when new wing 

weight d a ta  is added to  th e  existing d a ta  set. However, one should exercise caution 

when using a  weight prediction  of a wing configuration represented by x  w ith rela­

tively large absolute values of (x  — ave(x))Tu 1 3  or (x  — ave(x))Tu 14, because the d a ta  

do not have m uch inform ation on how the  wing weight changes in term s of these two 

quantities.

If tr/ c r and t t /ct  arc excluded from the  list of wing configuration param eters, then 

the 13 eigenvalues of the  corresponding C  are 7.17, 2.17, 1.33, 0.758, 0.631, 0.312, 

0.244, 0.179, 0.123, 0.047, 0.021, 0.016, and 0.004. I t also suggests th a t  one nearly 

collinear relationship could be used to  reduce the dim ension of th e  inpu t space to  1 2 , 

which is th e  same conclusion from the  previous PCA.

If th e  PCA is applied to  analyze the  collinearity of the  configuration param eters 

in the two engineering wing weight models, then  the sm allest eigenvalue of C  is 0.146 

for configuration param eters in model (H-2). However, for configuration param eters 

in model (I I .1), the  two sm allest eigenvalues of C  are 0.082 and  0.019, which indicates

N

( I I I . l )

where ave(x) =  T hen the  following spectral decom position of C  can

be used to  analyze the  collinearity of the  inpu t param eters: C  — ^ 7 = 1  7 j u '?(u '7)T;

eigenvalues of C  are 7.952, 2.757, 1.349, 0.861, 0.676, 0.565, 0.341, 0.187, 0.157,
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a higher level of collinearity am ong the input variables in m odel (II. 1) th an  th a t in 

m odel (II.2).

111.3 P R O J E C T I O N  O F  D A T A  T O  R E D U C E D  F E A T U R E  S P A C E S

We call the  u n it vector iP , th e  j t h  feature vector of the  sam ple d a ta  set x 1, . . . ,  

and  the  scalar Vj =  x Tu J the  j t h  principal com ponent of x . T he num ber of positive 

eigenvalues of C , r, is the  degree of freedom in the  sam pled inpu t set and we can 

w rite each in p u t vector x k as a linear com bination of the  f  feature vectors u1, . . . ,  u r :

f
x k -  ave(x) +  [(** “  ave(x))Tu j u j . (III.2)

i = i

T he value of each eigenvalue of C , 7 j, indicates th e  significance the j t h  principal 

com ponent of x  in representing th e  variance in the  sam pled in p u t set. Therefore, the 

principal com ponent analysis (PCA ) is sim ply an  ord ination  technique for describing 

th e  variation in a  m ultivariate d a ta  set. The first axis (the first principal com ponent) 

describes the  m ost significant direction of variance in th e  sam pled inpu t set; the 

second describes th e  second m ost significant direction of variance in the sam pled 

in p u t set, and  so forth , w ith  each direction orthogonal to  th e  preceding ones.

A stan d ard  dim ension reduction technique is to  use the  r  m ost significant feature 

vectors corresponding to  the r  largest eigenvalues of C  for an  approxim ate represen­

ta tio n  of th e  in p u t vectors x k instead of the exact representa tion  formula (III.2). The 

approxim ation is based on the  projection from the  inpu t space to  the r-dim ensional 

feature space:
r

.P(x) =  ave(x) +  £ [ ( x  — ave(x))TtP ]u J'. (III.3)
j = 1

If r — f , th en  P ( x k) — x k for k — 1 , . . . ,  N .  If r < r, th en  the  difference between

(III.2) and  (III .3), i.e., the  difference between x k and P ( x k), increases as the  m ax­

im um  value of 7 j for j  >  r  increases. If 7 j for j  > r  are small, we can consider 

x k k , P(x.k) as a  vector in the  reduced r-dim ensional feature space w ithout m uch loss 

of accuracy.

111.4 P C R  F O R  W IN G  W E I G H T  A P P R O X IM A T IO N

P C R  for wing weight approxim ation is a process of constructing  wing weight estim a­

tion  models by fitting  the d a ta  in reduced feature spaces.
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Suppose th a t  th e  first r  (<  n)  principal com ponents (x — ave(x))r u 1, . . . ,  (x — 

av e (x ))Tu r are chosen as the significant inpu t variables. Let be the vector w ith r 

com ponents v j , . . . ,  v-j. defined by

vf  =  (xJ — ave(x))Tu* for i — 1 , . . . ,  r.

T hen  th e  reform ulated problem  of fitting N  d a ta  points (v 1, / i ) , . . . ,  ( vN , f N ) can 

be solved by using any regression m ethod or the  in terpolation  m ethods described in 

C hap ters  V and  VII. If the solution of the  reform ulated problem  is g(v),  then  the 

corresponding fitting  of the  d a ta  points in the  x-space is the  following:

w =  </^(x — ave(x))Tu 1, . . . ,  (x  — ave(x))Tu r^ , (HI-4)

w here Xi — Xi /ui  are scaled variables.

There are two m ain advantages for fitting the  d a ta  in reduced feature spaces: (i) v  

has fewer com ponents th an  x  which reduces the  im pact of curse of dim ensionality [7];

(ii) significant uncorrelated  variances of the  in p u t vectors in th e  directions u 1, . . . ,  u r 

ensure th a t  sufficient d a ta  inform ation are available for m odeling of the relationship 

betw een th e  response and independent variables V i , . . .  , v r .

T he wing weight estim ation m odel (III.4) has two sources of approxim ation errors: 

(i) errors due to  dim ension reduction, i.e., errors due to  approxim ate representation

(III.3) of x , and  (ii) errors inherited  from fitting  g(v)  to  the  d a ta  in the feature space. 

However, we will see la ter th a t  P C R  can produce m uch b e tte r  approxim ations of the 

response th a n  directly  fitting the d a ta  in the original space because the  fitting process 

is custom ized for th e  given data.

If 7 r is m uch greater th an  0 and  7 r+i =  . . .  =  j n =  0, th en  all the existing 

inpu t vectors have the  same j t h  principal com ponent for j  =  r  +  l , . . . , n ,  i.e., 

(x 1 )-r u-? =  . . .  =  (x Ar)Tu 3  for j  =  r  -f 1 , . . . ,  n.  In th is simple case, the existing 

inpu t vectors spread out in an r-dim ensional subspace and th e  d a ta  do not provide 

enough inform ation for building any approxim ation m odel w ith  m ore th an  r degree 

of freedom in th e  input. In the  sim plest case when n — 2 and  all the existing 

inpu t vectors have the  same value of the  X i-coordinate, any nonconstan t relationship 

between an approxim ation model and the  inpu t variable x\  is unjustified and should 

be avoided, which is exactly the purpose of the  P C R  process described above.

In real world, it  is not easy to  choose r. For example, based on the PC A  of all 

15 configuration param eters, one could choose r — 10 or r  =  12. The key issue is
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w hether one w ants to  ex tract a functional relationship between the  change of the 

inpu t vector x along a direction u7 and the  response /(x )  even if the  existing input 

vectors x 1, . . . ,  x w have a small variation along the direction u-7. A nalysts can view 

th e  d istribu tion  of the eigenvalues of C  and make a few plausible choices of r, build 

approxim ations for the  different values of r , and use a system atic evaluation process 

to  down select th e  approxim ation th a t is m ost appropria te  for the analysis task  at 

hand.
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Chapter IV 

APPLICATION OF VARIABLE SCREENING METHODS

IV. 1 IN TR O D U CTIO N

A standard  variable screening process identifies a subset of the input variables 

X \ , ... , x n , denoted  by x, th a t  have significant influences on th e  response /(x). In 

other words, if th e  change of /(x) w ith respect to  a variable Xi  is negligible, then 

elim inate Xi  from  the  inpu t vector. It is w orth  pointing ou t th a t  variable screening 

should be applied in the r-dim ensional feature space if the  dim ension of the  input 

space has been reduced by th e  PCA , where the  purpose of variable screening is to  

identify variables in v th a t  have significant influences on th e  response. For the  wing 

weight approxim ation problem , any variable screening m ethod  (such as ANOVA) 

th a t  requires th e  values of the  response for specific inpu t vectors is not applicable. 

T he m ain effects estim ate (M EE) m ethod, proposed by Tu and  Jones [8 ], generally 

requires a uniform  d istribu tion  of the existing input vectors in a rectangular do­

m ain of the in p u t space, while the  forward or backward variable selection m ethod 

is m ainly to  determ ine th e  explanatory  power of input variables of linear regression 

models (such as polynom ial models) th a t  are independent of the  d a ta  distribution. 

Rech et al. [9] proposed a  variable selection technique based on polynom ial approx­

im ations of th e  nonlinear regression model, b u t this m ethod  only works well when 

the  response can be approxim ated by a low-degree polynom ial. Moreover, their rule- 

of-the-thum b is th a t  there are a t least abou t four times as m any observations as the 

num ber of th e  coefficients in polynom ials. For forty one wing weight d a ta  points and 

th e  geom etry m odel (II. 1) w ith  eight variables, this rule-of-the-thum b leads to  a poor 

linear polynom ial approxim ation of the  geom etry model. Therefore, these variable 

screening m ethods cannot be applied to  identify im portan t in p u t variables for wing 

weight estim ation  models based on the historical wing weight data .

However, th e  two-dim ensional plots of the  response w ith  respect to  the  input 

variables are always helpful to  gain an  intu itive understanding  of w hether a particu lar 

input variable is im portan t for modeling th e  response. Fig. 5 indicates th a t  the  wing 

weight w  has some functional relationship w ith  respect to  each of the  15 configuration 

param eters except n.  Note th a t significant wing weight changes only occur a t the 

same /i value of 3.75, suggesting th a t o ther configuration param eters determ ine the
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wing weight instead  of ji. In fact, for civil transports , /j, is usually determ ined by 

FAA regulation and  is not a design variable.
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Figure 5: Two-dim ensional plots of wing weight versus configuration param eters.

If we assum e th a t  the  forward and  backward variable selection m ethods are valid 

for variable screening in nonlinear models, then  th ey  can be formally applied for 

variable screening in wing weight d a ta  fitting by th e  geom etry model. In general, 

under th is assum ption, the  forward and backward variable selection m ethods can be 

formally applied for variable screening if the wing weight d a ta  is fitted  by a regression 

model th a t  is independent of d a ta  distribution. For dem onstration  purpose, these 

two m ethods are applied to  check which input variable in the  geom etry model (II. 1) 

is insignificant for wing weight estim ation.

IV .2 FORW ARD SCREENING

For convenience, relabel the eight variables in Eq. (II .1) as x \ , . . .  , x n (with n — 8 ). 

If the sam ple coefficient of determ ination (R 2) is used to  m easure the proportion of
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the  to ta l varia tion  in / i , . . . ,  explained by a given m odel, then  the  corresponding 

forward variable selection procedure can be described as follows.

Forward Variable Selection

1. Let gi(xi) be the  best fit of the simplified geom etry m odel representing the 

relationship  between the  ith  inpu t variable in Eq. (II .1) and w,  i.e., ft(x j) is 

in th e  form of the  univariate model obtained by setting  the  exponents of the 

term s n o t involving x* to  zero in Eq. (II. 1).

2 . C om pute the  sam ple coefficients of determ ination  ( R f )  for gf.

w here av e (/)  =  ^  f j - T he quan tity  R f  is th e  proportion of the to tal 

varia tion  in f i , . .. , / n  explained by the  simplified geom etry model and it can 

be used as a m etric for ranking the significance of Xj in variation  of th e  response.

3. If a simplified geom etry model of k  inpu t variables is desirable, th en  the input 

variables corresponding to  the k largest R \  shall be selected as th e  significant 

inpu t variables.

V a r ia b le s

Figure 6: Forw ard variable selection for wing weight approxim ation  by the  geometry 
model.
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T his variable selection procedure is designed for linear regression problems, while 

th e  wing weight approxim ation by the  geom etry m odel is a nonlinear regression prob­

lem  whose solution is very sensitive to  the  in itial guess of th e  optim al solution. T he 

nonlinear op tim ization  code lsqnonlin in MATLAB was used to  solve the nonlinear 

least squares problem s and the results given in Fig. 6  represent the best solutions 

found by try ing  a  few educated guesses (see M ATLAB code in section A. 1.1).

Fig. 6  shows th e  results of applying the  forw ard variable selection to  the wing 

weight d a ta  fitting  problem  by using the  geom etry model. T he result suggests th a t  /r 

is an  insignificant variable in the geom etry m odel for wing weight estim ation, which 

is consistent w ith  the  observation from Fig. 5. However, it is puzzling to see th a t 

th e  sweep angle A is identified as th e  least significant variable. L ater, the backward 

variable selection will contradict the  conclusion of insignificance of A implied by the 

forw ard variable selection procedure.

IV.3 BACK W ARD SCREENING

T he backw ard variable selection procedure can be described as follows.

Backward Variable Selection

1. Let <?(x) be the  best fit of the  wing weight d a ta  by the geom etry model (II .1).

2. Let <?_i(x_j) be the best fit of the  simplified geom etry m odel obtained by setting  

th e  exponent of the  term  involving Xi to  zero in Eq. (II. 1).

3. C om pute the  adjusted  sam ple coefficients of determ ination  (R 2  and R 2̂ )  for g 

and (i =  1 , . . .  , n):

R2 = 1 _  ( N - l ) Z j =1 ( / j - g ( x J ' ) ) 2

(.N  -  n) ( f j  ~  ave ( / ) ) 2

and

( N  -  n  +  1) Y%=1(f j  -  ave ( / ) ) 2

4. If the  difference in adjusted  sam ple coefficients of determ ination  A R 2_t =  R 2 — 

R 2̂  is nonpositive for some i, then  th e  corresponding variable Xi could be 

removed from the  inpu t vector and the  simplified geom etry model would have 

(n — 1 ) variables.
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5. R epeat the  process w ith the  simplified geom etry model until the num ber of 

in p u t variables becomes desirable or all A a r e  positive.

9= 0.001

V a ria b le s

Figure 7: First itera tion  of backw ard variable selection for the  geom etry model.

Fig. 7 shows A R A  from the  first itera tion  of th e  backward variable selection for 

th e  geom etry m odel and  Fig. 8  shows A R 2̂  from the  second itera tion  (where ct was 

already removed). In the  th ird  itera tion , all A R 2_i are positive, thus the  itera tion  

process is term inated .

Again the  nonlinear optim ization code lsqnonlin in M ATLAB was used to  solve 

the  nonlinear least squares problem s and  the  results given in Figs. 7 and 8  represent 

th e  best solutions found by try ing  a few educated guesses (see MATLAB code in 

section A .1.2).

IV.4 CONCLUSION

Variable screening for nonlinear regression is a challenging problem  if there are only 

a  few historical or m easured d a ta  points available. If th e  nonlinear regression m odel 

is independent of d a ta  d istribution , one could formally use the  forward and backward 

variable selection m ethods for variable screening, even though these m ethods were 

developed for variable screening of linear regression models. Together w ith the two- 

dim ensional plots, these screening m ethods could provide some insight on significance 

of inpu t variables.
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Figure 8: Second ite ra tio n  of backw ard variable selection for th e  geom etry model.

It is heuristic to  use th e  ad justed  R 2 in variable selection for nonlinear models. 

F urther s tu d y  is needed to  understand  the  m erit of th is  approach. However, for wing 

weight approxim ation by the  geom etry model, the consistency of the  forward and 

backward variable selections in identifying the  u ltim ate  load /j, as an insignificant 

variable is encouraging, because the  values of /r for civil tran sp o rts  are m andated by 

FAA, no t a design variable determ ined by engineers. T he reason of including n  as a 

design variable is a  legacy inherited  from m ilitary aircraft weight estim ation  practices, 

where n  is a com m on param eter in the  design tradeoff and there  is considerably 

greater variation in th e  values of j i .
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Chapter V  

RADIAL BASIS FUNCTION INTERPOLATION

V .l  INTR O D U C TIO N

For num erical approxim ation of m ultivariate functions, rad ia l basis functions (RBFs) 

are very useful. For any finite d a ta  set in any finite dim ensional space, one can 

construct an  in terpo lation  of the d a ta  by using RBFs. T here is a wide range of 

applications w here R B F in terpolation m ethods can be successfully applied (see [10]). 

One in teresting application of R BF in terpolation is in m edical im aging for skull defect 

repair [1 1 ].

In the  following sections, we will form ulate R BF in terpo lation  problems, discuss 

th e  solvability of R B F  in terpolation  problems, and in troduce two related interpola­

tion  m ethods (Kriging and G aussian process).

V .2 R BF INTERPO LATIO N PROBLEM S

Let / ( x )  be a real-valued function of the inpu t vector x  defined on a subset fl of R n 

such th a t  th e  value of /  is given a t N  input vectors x7, j  — 1 , . . . ,  N .  Let f j  «  / ( x 7), 

j  — 1 , . . . ,  N .  For wing weight d a ta  fitting, f j  and / ( x 7) represent the docum ented 

and actual wing weight for the  j t h  tran sp o rt in the d a ta . In th is case, f j  is almost 

the  sam e as / ( x 7). Therefore, it is desirable to  construct a  wing weight estim ation 

model g(x) such th a t <?(x7) =  f j  for j  =  1 , . . . ,  N .  T he in terpo lation  requirem ent 

can be satisfied by R B F interpolation.

In terpo la tion  functions generated from a  R B F ip{t) can be represented in the 

following form:
N

^(X) =  (v . l )
3 = 1

where ||x  — x J || denotes the  param eterized d istance betw een x  and x J defined as

x
\ 1 =  1

and 9i are positive num bers.

The m ost im p o rtan t examples of R BF [5, 12, 13] are m ultiquadric ip(t) =  \ / l  +  t 2, 

th in  p la te  spline ip(t) = t 2 Inf,  cubic spline ip{t) =  f3, and  G aussian <p{t) — exp (—t 2)
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(see Fig. 9). These RBFs can be used to  model linear, alm ost quadratic, and cubic 

grow th rates, as well as exponential decay, of the  response for tren d  predictions.

  C ub ic  sp lin e  c(j(t)=t3

_  Thin plate spline <t>(t)=t2ln t

  M ultiquadric <J)(t)=(1+t2)1/2
G a u ss ia n  ct>(t)=exp{—t2)

-©

0 2 31
t

Figure 9: G raphs of radial basis functions.

For fixed positive param eters 9i, th e  coefficients o n , . . . ,  ajv in (V .l) can be cal­

culated  by solving th e  following linear system  of in terpo lation  equations:

N

I |x fe — X-7 11) = fk,  for k — 1 , . . .  ,N .
j =i

One can rew rite (V.3) in m atrix  form as

M ( h \
OL2 h<F —

j \ f N J

where <f> is th e  in terpolation  m atrix  defined as

/  tKIIx1 — X 1 11) ^(llx1 - x 2|| 
^(l|x2 - X 1 ! ! )  ^(||x2 - x 2||

<£> =

(^dlx1 - x ^ l l ) ^
, 2  XW|

\ v > ( l x  -  X" ¥>(||x — x; v?(||xw - x " | \ ) J

(V.3)

(V.4)

(V.5)
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For m ultiquadric and Gaussian RBFs, a unique in terpo lan t is guaranteed (i.e., <f> 

is a nonsingular m atrix) even if the  inpu t vectors x j  are few and poorly d istributed, 

provided only th a t  the  inpu t vectors are all different when N  > 1. B ut for cubic and 

th in  p la te  spline RBFs, $  m ight be singular. See [5] for an  example of singular <f> when 

ip(t) — t 3. If ip(t) — f2 lnt ,  we can easily find an exam ple where the interpolation 

m atrix  $  is singular for a nontrivial set of d istinct points x 1, . . .  , x N . For example, 

let x 2, . . . ,  x N be any different points on the  sphere centered a t x 1 w ith radius 1. For 

this set of points, the  first row and colum n of <F consist of zeros, which implies the 

singularity  of <f>.

A practical approach for constructing cubic and th in  p late spline RBF inter- 

po lants is to  add low-degree polynom ials to  in terpolation  functions in (V .l) and for­

m ulate an  in terpolation  problem  w ith  constraints. T h a t is, let p(x) = PjPj(x),  

where Pi, ■ ■ ■ , p m  form a basis of algebraic polynom ials in R n w ith degree a t most m.  

T hen  in terpo lation  functions are of th e  following form:

N

g{*) -p(*-) + ^ a M  l!x
3=1

(V.6)

T he M  ex tra  degrees of freedom in g(x )  can be elim inated by forcing the  following 

M  constraints:
N

ajPk{x.i) =  0 for k — 1 , . . . ,  M ,  (V.7)
3 =  1

which has th e  following m atrix  form:

a  2
=  0 ,

where

yajv y

( Pi (x 1) . . .  P l { x N ) \

P  =

^ ( x 1) . . .  Pm (x N)/

T he in terpolation  equations using g{x)  in Eq. (V.6 ) become

N  M

X ] QbV (l|x fc - x - ’ ll) +  J ] / 3 ) P j ( x k) = f k for k =  1 , . . . ,  N.  
3= 1  3=1

(V. 8 )
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Com bining (V.7) and (V.8 ), wc obtain  the  following m atrix  equation for the  con­

strained  R B F interpolation:

$  P T 

>P 0  ,

( a A ( fA
CtN I n

Pi 0

\ P m ) W

(V-9)

V.3 SOLVABILITY OF R BF INTERPO LATIO N PROBLEM S

In th is section, we study  the  solvability of the  linear system s (V.4) and (V.9). Proofs 

of some known results are included for a b e tte r  understand ing  of why these linear 

system s are solvable. The key results on solvability of R B F in terpolations related  to  

th e  four R B Fs shown in Fig. 9 are the  following:

•  if if(t) — V l  + 12 or (p[t) — exp (—t 2), th en  Eq. (V.4) is always solvable;

•  if (p(t) =  t 3  or ip(t) = t 2 ln t ,  then  Eq. (V.9) for m  =  2 is solvable provided 

th a t  th e  inpu t vectors x 1, . . . ,  x.N do not fall into the  zero set of a nonconstant 

quadratic  polynom ial.

T he proofs of th e  above sta tem ents are based on m athem atica l concepts called 

(conditionally) positive definiteness and their Schoenberg-M icchelli characterizations 

as described by Schaback and W endland [14].

F irst we give th e  definitions of (conditionally) positive definiteness of functions 

defined on R n.

Definition V .l  Suppose that  R (x) is a real-valued function on R " and H ( —x.) =  

H (x ) .  Then

•  H ( x )  is said to be positive definite on R ” , i f

N  N

a j a kH(x.k — x J ) >  0 whenever  |a j | >  0 and yfi x fc f o r  j  k; (V.10) 
j,k= 1 2 = 1

•  H ( x )  is said to be conditionally positive definite o f  o r d er m  o n W 1, i f  Eq. (V.10)  

holds for  any vector ( oq , . . . ,  ojv)t  £ R N satisfying (V.7).
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For a R B F pi t ) ,  there  is a corresponding H(x)  =  ^(||x||). N ote th a t if </?(||x||) 
is positive definite, th en  the  R B F interpolation m atrix  $  defined in Eq. (V.5) is 

positive definite, which implies the  nonsingularity of $  and  th e  solvability of the 

R BF in terpo lation  problem  (V.4). In the case of <p(|]x||) being conditionally positive 

definite of order m,  the  constrained R B F in terpolation  problem  (V.9) is a linear 

system  w ith  a  nonsingular coefficient m atrix  and has a unique solution too.

To prove th e  positive definiteness of <f> for p { t ) =  ex p (—i2), we need the  following 

characterization of positive definiteness of H(x)  =  y>(||x||) by Schoenberg [15].

Theorem  V .l  (Schoenberg) Suppose that p{t) > 0 is a nonconstant  continuous 

funct ion for  t  > 0. Then H (x )  — </?(||x|j) is positive definite on K" for  every positive 

integer n  i f  and only if

>  0  for  t > 0  and k — 1 , 2 , , (V .l l)

where ^  \p  (V t )  ] denotes the kth derivative of p  (V t )  with respect to t.

T he nonnegative and nonconstan t continuous function p ( V t )  satisfying Eq. 

(V .l l)  is also called a com pletely m onotone function by Schoenberg [15]. T he solv­

ability of R B F  in terpolation  problem  (V.4) for G aussian R B F follows im m ediately 

from Theorem  V .l.

Theorem  V .2 Suppose that x 1, . . . , ^  are distinct points in M" and p{t ) = 

exp(—t 2) (Gaussian RBF).  Then the R B F  interpolation matr ix  defined in Eq. 

(V.5) is positive definite and the R B F  interpolation problem ( V . f )  is always solvable.

Proof: Obviously, ip(t) is a  nonnegative and nonconstan t continuous function for 

t > 0. Moreover,

( - 1)' dtk
dk

=  exP ( “ 0  =  e x p ( - i )  >  0 .

Therefore, by T heorem  V .l, <F is positive definite; hence, the  in terpolation  problem  

(V.4) always has a unique solution. □

However, for ip(t) =  V l  +  t 2 (m ultiquadric R B F), y>(||x||) is no t a positive definite 

function. In fact,

fL
dt

p  [ V t
d_
dt

\ / l  + 1
1

"2 v T T ~t
< 0  for t  > 0 ,
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which, along w ith  Theorem  V. l ,  implies th a t  $  is no t always positive definite. How­

ever, $  is always nonsingular if x 1, . . .  , x N are d istinct. To understand  why $  is 

nonsingular for ip(t) — \J l  + 12 (which was first in troduced  by H ardy [16] in topog­

raphy applications), we reproduce the proof by Powell [5] here.

T h e o r e m  V .3  Suppose that  x 1, . . . ,  x N are distinct points in R n and p( t)  = \J l  +  t 2 

(multiquadric RBF) .  Then the R B F  interpolation matr ix  <f> defined in Eq. (V.5) is 

nonsingular (with (N  — 1) negative eigenvalues and one positive eigenvalue) and the 

R B F  interpolation problem ( V f i )  is always solvable.

P ro o f :  T he change of variables s — z t  establishes th e  iden tity
PO O

\ f z  — k /  [1 — exp(—z t )} T~?dT,  (V-12)
Jo

where

k =  [ 1  — cxp(—s)] s~?ds' j  > 0 .

Let « i , . . .  , a n be such th a t a j = 0 anc  ̂ / L jL i \a j\ >  0- T hen, for H ( x )  =

v(IWI) =  V l  +  || x | |2, we have

N  N  _______________________

y ,  a jd kH(xk — xJ) =  y  ajCtk\J 1 +  ||xfc — xJ||2 
j,k= 1

where the  second equality follows from Eq. (V.12), the  th ird  equality de­

pends on ctj — 0 , and the last inequality is based on th e  positiveness of

Ylj,k=l Ojttfcexp ( -  r | |x fc -  x 2||2) for r  >  0 (which is a  consequence of Theorem

V.2 ab o u t th e  positive definiteness of the G aussian R B F in terpo lation  m atrix  for the 

scaled in p u t vectors f i f i x 1, . . . ,  s J r x N).

If the  m ultiquadric  R B F  interpolation m atrix  <f>, whose ( k , j )  en try  is H ( x k — x 2), 

has two nonnegative eigenvalues w ith  eigenvectors v 1 and  v 2, th en  there is a nonzero 

vector of th e  form  v  =  a i v 1  +  0 2 V2  whose com ponents sum  to  zero. Because is a 

sym m etric m atrix , we have

v T$ v  =  a i ( v 1 )T$ v 1 +  a^(v 2 )T$ v 2  >  0. (V.14)
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However, if we use o n , . . . ,  to  denote the  com ponents of v , th en  XpLi a j =  0 and 

E jL i  \a j\ > By Bq. (V.13), v T4?v =  Yl f ,k=ia j a k H { x k -  x j ) < 0, which is a

contrad iction  to  Eq. (V.14). This contradiction  proves th a t  <£> has at least (N  — 1) 

negative eigenvalues. Moreover, because th e  trace of <f> (the sum  of the  diagonal 

elem ents) is N  > 0, which is the  same as the  sum  of all eigenvalues, <f> also has 

a  positive eigenvalue. Hence, <£> has exactly ( N  — 1) negative eigenvalues and one 

positive eigenvalue. As a consequence, all th e  eigenvalues of <f> are nonzero and $  

is nonsingular; so the  m ultiquadric R BF in terpolation  problem  (V.4) always has a 

unique solution. □

For cubic spline and th in  p late  spline RBFs, it is no t easy to  determ ine the solv­

ability  of the  R B F interpolation  problem  (V.4) based on d istributions of the  input 

vectors x 1, . . . ,  x N . However, using the concept of conditionally positive definiteness, 

one can solve th e  constrained R B F interpolation  problem  (V.9) for alm ost all non­

triv ial d istribu tions of x 1, . . . ,  x.N . The theory  is based on following generalization of 

the  sufficient p a rt of Theorem  V .l by Micchelli [6 ].

Theorem  V .4 (Micchelli) Suppose that (p(t) is a continuous funct ion for  t  >  0 and

then (p(||x ||) is conditionally positive definite of  order m  on R ra f or  every positive 

integer n.

T he u tility  of the  conditional positive definiteness concept is shown in the next 

theorem  [14].

M71 that do not  fall  into the zero set o f  a nonconstant  polynomial  p (x ) of  degree at

p (x J) =  0 f o r  j  — 1 , . . . ,  N ) .  Then the constrained R B F  interpolation problem (V.9)  

has a unique solution.

P ro o f :  N ote th a t  Eq. (V.9) has a unique solution if and  only if th e  coefficient m atrix  

in the linear system  (V.9) is nonsingular. We prove T heorem  V.5 by contradiction.

f or  t  >  0 and k = m ,  m  +  1 , . . . ,  (V.15)

T h e o r e m  V .5  Suppose that <p{t) is a continuous funct ion of  t > 0 and <p(||x||) is 

conditionally positive definite o f  order m  on ]Rn . Let  x 1, . . . ,  x.N be distinct points in

most  m  (i.e., p (x ) is identical to 0 i f  p (x ) is a polynomial o f  degree at most  m  and
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If the  coefficient m atrix  is singular, then  there exist e q , . . . ,  a/v,  Pi, ■ ■ •, Pm , not 

all zeros, such th a t Eq. (V.7) holds and

N  M

| |x fc — x J |j) +  ^ / 3 jpi (x fc) =  0 for k =  1, . . .  , N .  (V.16)
j= i j= i

M ultiplying the  kth. equation in Eq. (V.16) by a k for k — 1 , . . . ,  ./V and adding the 

scaled equations together, we obtain

N  N  N  MEE a j a k<p(\|x fc — x J 11) +  EE a kpjP j{xk) =  0. (V.17)
k=1 j=1 k=1 j=1

However, by (V.7), the  second term  in Eq. (V.17) is zero, so we have

N  NEE Qqafc(/?(||xfc -  x J ||) =  0. (V.18)
k=1 j=l

Because c q , . . . ,  aw  satisfy (V.7), by the  conditional positive definiteness of <^(||x||), 

Eq. (V.18) forces aq — . . .  =  =  0. Thus, Eq. (V.16) implies th a t  x 1, . . .  , x N are

zeros of the  polynom ial X q i i  PjPj(x )- By the  assum ption abou t x 1, . . . ,  x N given in 

Theorem  V.5, YlfjLi PjPj(x ) — 0 f°r x i which implies Pi — = Pm  =  0 because

P i ( x ) , . . .  , pm(x ) form a basis for polynom ials of degree a t m ost m .  The conclusion 

th a t a i  = . . .  = — Pi — . . .  = Pm  = 0 contradicts the  assum ption th a t they  are

not all zeros. T he contradiction proves the  nonsingularity  of the  coefficient m atrix  of 

th e  linear system  (V.9), thus, the  constrained R B F interpolation  problem  (V.9) has 

a  unique solution. □

R e m a rk ,  (i) Note th a t  </?(£) =  exp (—t 2) obviously satisfies Eq. (V.15) for any 

nonnegative integer m , so exp ( — 11 x  112) is conditionally positive definite of order m  

for every rn > 0 (sec Theorem  V.4). By Theorem  V.5, for any nonnegative integer 

m , the constrained G aussian R B F interpolation  problem  (V.9) has a unique solution 

if x 1, . . . ,  x N do no t fall into the  zero set of a nonconstan t polynom ial of degree a t 

m ost m.  In particu lar, if x V . ^ x ^  are d istinct, the  constrained  G aussian R B F 

in terpolation  problem  (V.9) w ith  m  =  0 has a unique solution.

(ii) For R B F ip(t) = —\ / l  + 12, we have

r I  / i \  1 / T , k d k I r  il { 2 k - 2 ) \  1- 2k
(_1)  ^ K ^ j ]  - (- 1} ^ [ - v T + * ]  ~  2 ^ ( k - i y . {1 + t) 2 > 0

for t > 0 and any positive integer k. Here (k — 1)! =  1 • 2 ■ ■ ■ (k — 1) is the  factorial 

notation. By Theorem  V.4, </?(||x||) is conditionally positive definite of order m  for
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m  > 1. By T heorem  V.5, if m  >  1 and x 1, . . . ,  x.N do not fall into the zero set of a 

nonconstan t polynom ial of degree a t m ost m,  then  the  constrained R B F interpolation 

problem  (V.9) has a  unique solution for ip(t) — — v71 +  t 2, which is equivalent to  say 

th a t the  constrained  m ultiquadric R B F in terpolation problem  (V.9) has a unique 

solution.

M icchelli’s theorem  on conditionally positive definite functions allows us to  prove 

th e  conditional positive definiteness of cubic and th in  p la te  RBFs, and solvability of 

th e  related  constrained  R B F in terpolation  problems.

T h e o r e m  V . 6  Let  m  > 2. Then, for  cubic R B F  ip(t) = t 3  or thin plate R B F  

ip(t) — t 2 l nt ,  the constrained R B F  interpolation problem (V.9) has a unique solution 

i f  x 1, . . . ,  x.N do not fall into the zero set of  a nonconstant polynomial of  degree at 

most  7 7 1 .

Proof: For t > 0 and k — 2, 3 , . . . ,  we have either

d!'k

dtk

or

( - T n  v ( S t )j =  ( - 1 ) ^
ii* 3 (2 f c - 4 ) !

2  ' 22k~3(k — 2 )!
t  2 >  0,

d‘
d tk( - T i n  <p(Tt) =

i k
- t i n t
2

( f c - 2 )
2

t l - k > 0  for t  >  0 .

By Theorem  V.4 and  m  > 2, y>(||x||) is conditionally positive definite of order m.  

T he solvability of Eq. (V.9) follows from Theorem  V.5. □

T he above argum ent can be easily modified to  prove theorem s on solvability of 

the  constrained R B F in terpolation  problem  (V.9) for ip(t) — tK w ith  any positive n 

th a t  is not an  even integer and (p(t) = t 21 ln t  w ith positive integer I.

V .4 KRIG ING  V ERSU S G AUSSIAN R BF INTERPO LATIO N

Kriging is an  in terpo lation  m ethod nam ed after a South African m ining engineer D. 

G. Krige who developed the  technique in an  a ttem p t to  m ore accurately  predict ore 

reserves. Over th e  past several decades Kriging has become a fundam ental tool in 

m any fields [17, 18].

In ordinary  Kriging, the  estim ation g(x)  of an unknow n function value /(x )  is 

done by using a  weighted average of the  known function values / ( x 1) , . . . ,  / ( x w):

N  N

9(x)  = '52'rj f (x>)  w ith =  (v -19)
j= i j =i
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T he function value / ( x )  is assum ed to  be a realization of an  intrinsic random  function 

w ith the  sem ivariance

^ ( ||A x ||)  =  £ ( j / ( x  +  A x ) - - - / ( x ) | 2) , (V.20)

where E(-)  denotes the  expected value of a random  function and  ip(t) is a  decreasing 

function of t  > 0. Semi variance is a m easure of the  degree of spatial dependence 

between two function values and depends only on the d istance ||A x || between the two 

input locations. A sm aller distance yields a sm aller sem ivariance and a larger distance 

results in a  larger semivariance. T he plot of the  sem ivariances as a function of 

d istance from a point is referred to  as a semivariogram. T he sem ivariance increases as 

the  d istance increases until a t a certain  d istance away from a  po int the semivariance 

will equal th e  variance around the  average value, and will therefore no longer increase, 

causing a flat region (whose height is called a sill) to  occur on the  semivariogram. 

The distance from the  point of interest to  where the  flat region begins is term ed 

the range or span of the  regionalized inpu t variable. W ith in  th is range, denoted 

by 5, locations are re la ted  to  each other, and all known sam ples contained in this 

region, also referred to  as the  neighborhood, m ust be considered when estim ating 

the  function value a t an  unknown point of in terest in th e  region. Two examples of 

sem ivariance are the  spherical semivariance

ip{t) =
Co +  Cl ( l .5 §  -  0 . 5 ( f ) 3)  if \t\ < 5

Co +  Cl

and th e  exponential sem ivariance

<P(t) =

if \t\ > 5

if |£| =  0

co +  ci ( l  — exp ( ~ a ^ ) )  if \t\ >  0 .

In bo th  exam ples th e  sill is co +  ci, where c0  and ci are constants.

Using Eq. (V .l9), one can calculate the variance of estim ation  error as follows:

N

\ j = 1

N  N

J 2  Ti TkE
3=1 k= 1

x) -  / ( x J) / (x )  -  /(X (V.21)
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However,

<p(||x -  x J ||) +  y?(||x — x fc||) — <p(||x* -  xJ I

-  E x) -  / ( x J + E x) -  /(x* E x 3) -  f { x k

=  2 E x) - / ( x j ) / ( x )  - / ( x ' (V.22)

S ubstitu ting  Eq. (V.22) into Eq. (V.21) and simplifying th e  resulting expression by 

using Tj — 1 , we ob ta in  the  following form ula for th e  variance of estim ation

error:

N  N N

E [ ( / ( X ) - 5 ( X ) ) 2 ] =  - - ^ ^ T J T fe¥> ( | | x f c - X j | | )  +  J ^ T ^ ( | | X - X J | | ) .

j =1 k=1 j =1

T he ord inary  Kriging estim ate g(x)  of /(x) is ob tained  by m inimizing the  variance 

of estim ation  error w ith the  constrain t on weights Tj given in Eq. (V.19). The optim al 

solution of T i , . . . ,  tjv is the  solution to  the following system  of linear equations (i.e., 

the  op tim ality  conditions):

N

j =i
N

To +  ^ T iv?(||xfc — x-71!) = </?(||x - X k \\) for k  = 1,. . .  , N
3 =  1

or

0

1  (^(Hx1

1  ^

^( l l x 1 - x ^ n ;

v 0 \  /

T\

^(Iix^-x1!!) ... ^(I|x"-x"ii)y \ T n J

(V.23)

V^dlx-x^iDy

where th e  param eter to is a Lagrange m ultiplier for th e  equality  constrain t of 

Y^j=iTj =  1- T he left-hand side of Eq. (V.23) describes the  dissim ilarities am ong 

d a ta  points while the  right-hand side describes the  dissim ilarities between the  d a ta  

points and  th e  estim ation point.

It is well-known th a t ordinary  Kriging estim ation  g(x)  is an  in terpolation of the 

d a ta  poin ts (x 1 , / ( x 1 ) ) , . . . , ( x JV, / ( x Ar)), i.e., g ( x k) =  f ( x k) for k  =  1 , . . . ,  N .  In 

fact, if x  =  x fc, th en  it is easy to  verify th a t Tj — 0  for j  ^  k, =  1 , and r 0  =  0  solve
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Eq. (V.23). Once th e  inverse of th e  coefficient m atrix  of Eq. (V.23) is available, we 

can com pute the  weights t\, . . . ,  tjv for Kriging estim ation  <?(x) by a m atrix-vector 

m ultiplication.

Kriging in terpolation is very sim ilar to  G aussian R B F in terpolation  bu t the two 

in terpo lation  m ethods are not the  same. Li and P adu la  [2] proved th a t Kriging 

in terpo lan t is the  solution of the constrained G aussian R B F in terpolation problem  

(V.9) w ith  m  — 0. By R em ark (i) after Theorem  V.5, Kriging interpolation has a 

unique solution.

Li and  P adu la  [2] also gave the following classical in terpolation  form ulation of 

Kriging in terpo lation  th a t  shows the  relationship between G aussian RBF interpola­

tion  and  Kriging interpolation. Let ip(t) =  exp (—t 2) be th e  G aussian RBF, <f> the 

in terpo lation  m atrix  defined by Eq. (V.5), and  /  the  colum n vector in th e  right-hand 

side of Eq. (V.4) (i.e., the  j t h  com ponent of /  is f j ) .  Use VKX) t °  denote the column 

vector whose j t h  com ponent is <p(||x — x J'||) for j  =  1 , . . . ,  N ,  and  define

where 1 denotes the  column vector of ones. T hen  th e  Kriging in terpolan t can be 

w ritten  as a linear com bination of Cj(x ) :
N

3 =  1

In o ther words, th e  Kriging in terpolation  problem  can be considered as a classical 

in terpolation  problem  w ith the  basis functions Ci(x )> • • ■ > Gv(x )-
T he system  of linear equations (V.3) for G aussian R B F interpolation  has the

where the  first term  on the righ t-hand side is th e  G aussian R B F in terpolant.

( <  i M \

coo =
\C jv(x ) /

3=1

where a y , . . . ,  satisfy the  following in terpolation  conditions:

N

a j ( j ( x k) = fk  for k  =  1 , . . . ,  N. (V.24)

sam e solution as Eq. (V.24) for Kriging in terpolation  because Cj(xfc) — T ’ d l ^  —  x J l l )  

for j ,  k — 1 , . . . ,  N .  Thus, the  Kriging in terpo lan t is
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Chapter VI

MODEL PARAM ETER TUNING

VI. 1 IN TR O D U CTIO N

B oth Kriging and R B F in terpolation  models use the  param eterized distance:

where cq is the  estim ated  standard  deviation of the ith  com ponent of x  and Oi,. . .  ,9n 

are scalars. M athem atically, one could pick any fixed set of 0 i , . . . ,  9n and  construct 

the  in terpolation  function for the  given data . However, two different sets of 9\ , . . . ,  6n 

will lead to  two in terpolation  models th a t  behave very differently between the input 

vectors x 1, . . . ,  x.N . M odel param eter tun ing  for Kriging or R B F in terpolation  aims a t 

finding a set of param eters 9\ , . . . ,  9n th a t  results in the  best prediction m odel of the 

unknown response based on the  available data . Cross validation (CV) [8 , 19, 20, 21] 

and m axim um  likelihood estim ation [22, 23, 24, 25, 26] are two sta tis tica l m ethods 

for tun ing  the  m odel param eters 9 i , . . . ,  9n for best prediction models.

CV can be used for general m odel param eter tuning, while m axim um  likelihood 

estim ation can only be applied for density function p aram eter estim ation. B oth 

statis tica l m ethods are in troduced in th is chapter. R B F  in terpo lation  for wing weight 

estim ation is used as an  application of CV for m odel p aram eter tun ing  and  Gaussian 

process [27, 28] for d a ta  fitting is used as an application of m axim um  likelihood 

estim ation. In the  last section, we in troduce an au tom atic  P C R  procedure based on 

CV errors.

are m ost appropria te  to  m odel the  response function /(x ) . A technique th a t  can be 

used, b u t often im practical (and always expensive) is to  ob ta in  values of /(x )  a t some

k — N  + 1 , . . . ,  N  to  assess the  prediction accuracy of <?(x). T he prediction accuracy

(V I.l)

V I.2 MODEL PA R A M E TER  TU N IN G  BY CV

Because either K riging or R BF in terpolation  m ethod yields a  fitting  function g(x) 
whose value at x fc is exactly  /& for Ac =  1 , . . . ,  iV, o ther m etrics instead  of fitting  errors 

m ust be used to  determ ine which basis function ip(t) and w hat scaling param eters 9i

additional d a ta  poin ts x .N+1, . . . ,  x.N and  use the  prediction errors |g(xfc) — / ( x fc)| for
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can be used as a criterion for choosing the  best basis function <p(t) and param eters 

Oi.

W ith o u t additional sam ple points, CV [20, 8 ] was proposed to  find ip(t) and 0, 

th a t  lead to  an  approxim ate response m odel g(x)  w ith op tim al prediction capability 

and proved to  be effective [19, 21]. For wing weight d a ta  of 41 subsonic transports, 

only the  leave-one-out CV procedure is applicable for R B F  interpolation.

Leave-one-out Cross Validation for Kriging or R BF Interpolation:

•  F ix  a set of param eters 9 \ , . . .  ,9n .

For j  — 1 , . . . ,  N ,  construct the Kriging or R B F in terpo lan t <?-j(x) of the d a ta

poin ts (x fc, f k) for 1 <  k < N,  k ^  j .

•  Use th e  following CV root m ean square error as th e  prediction error:

E  (9i, ■ ■ ■ ,9n) — \
i "

T f E  ( s - j W - f i f -  (VI.2)
1=1

Remark. One could also use o ther forms of CV errors such as the  CV average

19- i (absolute error: j ,  ^ = 1  \9 - j (^ j ) ~  / ( x 7 )I-

In th e  case th a t  each x7 has a close neighbor xfc (k  ^  j )  in the  space of input 

variables and  /(x )  is a sm ooth function, E c v  is not a m eaningful m easure of the 

prediction accuracy of the  fitting  model because g- j(x.k) = f k implies g _ j(x 7) ss f j  

due to  sm all values of |]xfe — x-71| and |f k — fj \ .  Therefore, if th e  leave-one-out CV 

error is used as a criterion for model param eter tuning, th en  analysts m ust be warned 

when undesirable clustering of x7 occurs.

Model param eter tun ing  by CV is to  find 9 i , . . . , 9 n th a t  minim ize the  CV error 

E c v (91 , . . . ,  9n) so th a t  the  in terpolation model has the  highest prediction accuracy 

when m easured by th e  CV error.

It is w orth  pointing out th a t  it is difficult to  m inimize E c v (9i , . . . ,  9n) num erically 

because E c v {9 \ , . . .  ,9n) is a highly nonlinear and nonconvex function. One could 

make th e  m odel p aram eter tuning much easier by assum ing 9\ = ■ ■ ■ = 9n, which 

reduces the  problem  to unconstrained m inim ization of a  un ivaria te  function (see [19]). 

This approach has the  obvious benefit of dealing w ith  a m uch easier optim ization 

problem  b u t th e  disadvantage of not using all different 0j. D ifferent 9i allow the model 

param eter tun ing  to  scale each variable Xi based on its significance in modeling the
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variance in th e  response, thus, have the benefit of im plicit variable screening built in 

the  m odel param eter tuning.

V I.3 CV FO R PRINCIPAL C O M PO NENT REGRESSION

Following th e  no ta tions for P C R  in C hapter III, we can p ro ject th e  d a ta  to  a reduced 

feature space by using the following formula:

vj  =  (x -7 — ave(x))Tu* for 1 <  i < r, 1 <  j  < N ,  (VI.3)

where x* =  Xi/cq, i.e., x  is a scaled version of x. Let v -7 be the  reduced feature vector

w ith  r  com ponents vf  for i — 1 , . . . ,  r . T hen th e  R B F in terpo lation  problem  in the

reduced feature space can be form ulated as follows:

N

^ 2 a M \ \ v k ~  v l )  =  fk  for k  =  1 , . . . ,  N .  (VI.4)
.7 = 1

■VN
Ji =

wing weight p rediction model in the  x-space:

The in terpo lation  function g(v) =  X q l i  ay</?(|)v — v-7’||) can be used to  construct a

w =  <?^(x — ave(x))Tu 1, . . . ,  (x  — ave(x ))Tu r^ . (VI-5)

Because we use th e  com ponents of the reduced feature vector as the input vari­

ables, Eq. (VI. 1) has the  following form:

\
\  2

V i —  v 3

• i  \i=l \

where &i is th e  stan d ard  deviation of the ith  com ponents of v  , . . . ,  v  .

The in te rpo la tion  function g~j(v) — i / j  a iV(llv  — v *ll) in th e  CV procedure 

can be ob tained  by solving the  following in terpolation  equations:

N

^ 2  a M \ \ v k - v l \\) = fk  for 1 <  k < N ,  k j .  (VI.7)
i = l ,  i^j

Thus, the  CV error is

N

E  ( 0 i , . . .  ,0r) — \ t= i

Similarly, th e  CV errors for constrained R B F in terpo lation  and  K riging interpolation 

can be com puted in the  reduced feature space or in th e  original x-space.
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V I.4 N UM ERIC AL RESULTS FOR M INIM IZATION OF CV ERROR

T he m ultidim ensional unconstrained nonlinear m inim ization m ethod by Nelder and 

M ead [29] is a d irect search m ethod and one of the  widely used m ethods to  find a 

m inim izer of a  m ultivariate function. We use th e  M ATLAB program  fm in sea rch , an 

im plem entation  of th e  Nelder-M ead m ultidim ensional search algorithm , to  minimize

E c v .

For th e  wing weight d a ta  fitting problem , we use b o th  n  — 14 (all configuration 

param eters listed in Table 1 except [t/c}m th a t  is redundan t) and n =  8  (for the 

inpu t variables in Eq. (II.1)) as the  dim ension of th e  original x  vector. If we do 

no t use reduced feature spaces, then  the  CV error E c v {Q\ , . . . ,  9n) in Eq. (VI.2) is 

m inim ized to  find the  best model param eters 0 i , . . . ,  9n. If x 1, . . .  , x N are projected 

to  the reduced feature space, then  E c v  (9\ , . . . ,  9r) in Eq. (VI.8 ) is minimized to  find 

the  best m odel param eters 9 \ , . . .  ,9r .
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Figure 10: Typical convergence history  for cross-validation error m inim ization.

M ATLAB code fminsearch is very reliable for finding local optim al solutions. 

For n  — 8  and 9\ =  . . .  =  9n =  1 as the  initial guess, a typical convergence history for 

the  objective function and tuning param eters 9i (when n  — 8 ) is given in Fig. 10. The
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local optim al solution generated by MATLAB code fminsearch for m inim ization of 

the  CV error is very sensitive to  the initial guess. M ultiple in itial guesses were used 

for searching a global m inimizer of the CV error by fminsearch. However, there is 

no guarantee th a t the  best solution am ong th e  calculated local optim al solutions is 

a global m inim izer of the CV error. Tables 2 and 3 show the  minimized CV errors 

for various in terpolation  models by using fminsearch w ith  m ultiple initial guesses.

M ultiquadric 
CV Error

T hin  P la te  
CV Error

Cubic 
CV Error

G aussian 
CV E rror

Kriging 
CV Error

71= 14 9162 88352 9180 20276 20151
r  =  14 22694 12443 17605 56377 37187
r  =  13 4724 16057 19703 49478 27091
r  =  1 2 11858 15808 14749 28883 43594
r  =  1 1 7384 44196 45941 34782 49113
r  — 1 0 8074 50617 43110 70896 53259
r  — 9 5731 39986 10711 33132 57457
r  =  8 22266 37790 150800 50059 52972
r =  7 79859 8782 91118 33690 110560
r =  6 4888 43764 39554 60052 81911
r  =  5 10462 28463 26460 57089 94579
r  — 4 67649 118310 63386 231260 206000

Table 2: M inimized CV errors for the  d a ta  set w ith  fourteen input variables.

M ultiquadric 
CV Error

T hin  P la te  
CV Error

Cubic 
CV E rror

G aussian 
CV E rror

Kriging 
CV Error

n — 8 2697 18814 3396 21229 20579
r  =  8 4321 7113 3930 34037 79362
r  =  7 3065 16646 5505 7175000 543410
r  — 6 3724 4372 4157 615560 445280
r  — 5 5837 4583 5745 29257 16308
r  — 4 4163 5589 9100 7757400 19034000

Table 3: M inimized CV errors for the  d a ta  set w ith  eight inpu t variables.

In general, it is difficult to  find global m inim izers of nonconvex objective functions, 

which is not th e  subject of this thesis. H euristic search m ethods like sim ulated 

annealing, ta b u  search, and genetic algorithm s can be applied to  find approxim ate 

solutions of global m inim izers of the  CV error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

Powell’s U O BY Q A  algorithm  ([30] or [31]) is a direct search algorithm  for uncon­

strained  m inim ization of a  function of several variables. U O BY Q A  uses a sm ooth 

quadratic  m odel of the  objective function th a t  is constructed  by using com puted 

objective function values to  accelerate the convergence of iterates. T he CV error was 

also m inimized by using U O BYQ A, b u t the  values of th e  m inim ized CV error ob­

ta ined  by fminsearch are consistently  lower th an  th e  ones obtained  by UOBYQA.

V I.5 AUTOM ATIC P C R  PRO C EDUR E

T he CV error of an  in terpolation  model can be a useful and  objective tool to  help 

analysts decide which m odel is better. In Tables 2 and 3, we have the  CV errors 

of various in terpolation  models. In particular, the  first row of Table 2 or 3 has the 

CV errors for in terpo lation  m odels in the  x-space, while the  o ther rows show the  CV 

errors in the  r-dim ensional feature spaces. Instead  of le tting  analysts make a few 

plausible choices of r , one could also use cross-validation errors to  choose the  best 

value for r  for each given in terpolation  model.

A utom atic P C R  Procedure:

•  C om pute th e  eigenvalues of th e  covariance m atrix  C and let r  be the  num ber 

of positive eigenvalues.

•  Choose an  integer r min <  f  such th a t there is still a function relationship 

between th e  transform ed inpu t vectors in the r min-dim ensional feature space 

and the response. For each integer r  from r min to  f , m inim ize the CV error for 

the given in terpolation  m odel in the r-dim ensional feature space (see section

V I.3).

•  Choose r  corresponding to  th e  sm allest value of the  m inim ized CV errors and 

select the  corresponding in terpolan t as g(v).

•  R econstruct the  wing weight approxim ation in the  x-space by using Eq. (VI.5).

For the  wing weight d a ta  fitting  problem , we have f  — 14 for n  — 14 inpu t 

variables and r  =  8  for n  =  8  variables. Tables 2 and 3 have all th e  m inim ized CV 

errors for r  from r min =  4 to  r — n.  For each in terpolation  m odel, PRC  generates 

11 different in terpolan ts in various feature spaces w ith  r  ranging from r mjn =  4 to
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n  — 14, which yield 11 different wing weight estim ation  models in the original x- 

space. T he above au tom atic  P C R  procedure can help to  reduce the  P C R  interpolants 

to  one for each in terpolation  model. In the  case of m ultiquadric RBF interpolation 

with n  — 8  and  r min =  4, the best P C R  in terpolant is generated  by using r — 7. 

Later on, we shall see th a t th is P C R  in terpolant is indeed the  m ost desirable wing 

weight prediction  m odel for subsonic transports.

VI.6 M A X IM U M  LIKELIHOOD ESTIM ATION

The m axim um  likelihood estim ation is another widely used statis tica l m ethod for 

model param eter tun ing  [25, 26]. T he idea behind m axim um  likelihood estim ation 

is to determ ine the  param eters th a t  maximize the  probability  (likelihood) of the 

sam ple d a ta . From  a  sta tis tica l point of view, the m ethod  of m axim um  likelihood is 

considered to  be m ore robust (w ith some exceptions) and yields estim ators w ith good 

statis tica l properties. In o ther words, m axim um  likelihood estim ation  m ethods are 

versatile and  applicable to  m any probability  density m odels and to  different types of 

d a ta  [22, 23, 24],

Let y  be a random  vector w ith probability  density function

g(y,Ou . . . ,0n),

where Q \ , . . . , 6 n are n  unknown param eters th a t we w ant to  estim ate. Let y 1, . . . , y N 

be the set of sam ple d a ta  points. T hen  the  m axim um  likelihood estim ator maximizes 

the likelihood function
N

L  =  L ( y \  . . . , y N;eu . . . , 6 n) =  £/(yJ 1 • • ■ A ) -
3 = 1

Equivalently, one can m axim ize the  following log-likelihood function to  ob tain  the 

m axim um  likelihood estim ator:
N

I n L  =  ^ l n  (g { y 3]6u . . .  A ) ) .
3 =  1

The first-order op tim ality  conditions for the  m axim um  likelihood estim ator are

5 (ln L ) n f • i
~ m ~  =  0  fc” " 1- - . " -

Except for a few cases where the  m axim um  likelihood functions are simple, it is gen­

erally best to  rely on high quality  sta tis tica l software to  ob tain  m axim um  likelihood

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

estim ators. M axim um  likelihood estim ators m ight have some disadvantages such as 

being sensitive to  the  choice of s ta rting  values or heavily biased when the  num ber of 

sam ples is small.

G ibbs and  M acKay [27] used the m axim um  likelihood estim ation m ethod to 

construct a G aussian process for fitting a  set of sam pled density function values 

/ i  — / ( x l )> • • •) I n  =  / ( xiV)- W ithout th e  noise m odel, th e  G aussian covariance 

function used by Gibbs and M acKay is of the  following form:

i=1

X ;  — X

Oi
(VI.9)

where Ki gives the  overall vertical scale relative to  th e  m ean of the  G aussian process 

and K2 gives th e  vertical uncertainty. T he corresponding covariance m atrix  for the 

sam ple d a ta  is

/^ ( | |x l - x l ||) ^(Ijx1 — x 2!

$  =

0 (iix l  - xJVi i A
^([|x2 -X 1!!) ^(||x2- x 2||) ... <£(||x2 - XN I

\V(I XN
x l l l ) X^-X2!

(VI.IO)

T he m ain result is th a t  an unknown response a t x is a G aussian (or norm al) distri­

bution of /(x )  w ith  the  m ean g(x)  and variance a 2, where

( A
ff(x ) =

( ^(iix - x l i i )\
I , - 1

and

\ / v /

(  ̂ ( l lx -

rN I /

a  — K\ — K2

X

y ^ d i x - x

/ ^ d i x - x i ii)\

$ - i

\ v ( l l x - x  I ! /

(V I.12)

Therefore, th e  Gaussian process generates g(x)  as an  estim ate  of /(x) and uses a 2 

to  quantify  th e  variance in th e  generated estim ate (i.e., a s ta tis tica l error bound for 

the  generated  es tim ate).
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T he m odel param eters k 1; re2, ■ ■ ■ > are com puted by maximizing the log- 

likelihood function ln(T) for the  G aussian process, where

im plem entation of using the m axim um  likelihood estim ation  for tuning the  model 

param eters in th e  Gaussian process.

tion  m atrix . Therefore, one could also use G ibbs and  M acK ay’s procedure to  tune 

th e  m odel param eters for the G aussian R BF interpolation. However, due to  lack of 

positive definiteness of interpolation m atrices of o ther RBFs, the  m axim um  likeli­

hood estim ation  is no t applicable for model p aram eter tun ing  of non-Gaussian R BF 

interpolation.

and  d e t[$ ] denotes the  determ inant of <F. See Ref. [27] for detailed analysis and

Note th a t  if =  1 and K2 =  0, then  $  becomes the  G aussian RBF interpola-
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Chapter VII 

OTHER DATA FITTING METHODS

VII. 1 INTR O D U CTIO N

In th is chapter, we give a brief discussion of the least polynom ial interpolation of the 

d a ta  and th e  least squares fitting  of th e  data.

Polynom ial fitting  of a given d a ta  set { (x 1, / i ) , . . . ,  (x N, / at)} is the  simplest and 

certain ly  th e  m ost widely used technique for d a ta  fitting. Polynom ials owe this 

popu larity  to  their sim ple structu re , well understood  algebraic properties, m oderate 

flexibility of shapes, and  com putationally  simple im plem entation. However, polyno­

m ials also have their lim itations. For example, polynom ials have poor extrapolatory  

properties, i.e., polynom ials m ay provide good fits w ithin the  range of data , bu t 

they  will frequently deteriorate  rapidly outside the  range of the  data . High degree 

polynom ials are notorious for unnecessary oscillations between d a ta  points. There 

is a tradeoff between the  shape and  degree of polynom ials. To m odel d a ta  w ith a 

com plicated structu re , the  degree of the  polynom ial m ust be high. However, a high 

degree m ay cause num erical instab ility  during evaluation of the  polynomials.

I t  is well-known th a t  a m ultivariate polynom ial in terpolation  of the  d a ta  m ight not 

exist if polynom ials of a fixed degree are used. There are several m ethods for finding a 

m ultivariate polynom ial in terpolation  of the  d a ta  [2]. T he m ost prom ising m ethod is 

the  Least Polynom ial In terpola tion  (LPI) m ethod by de Boor and  R on [32, 33, 34, 35], 

which shall be presented  in section V II.2; while least squares fitting m ethods are 

covered in section V II.3.

V II.2 LEAST POLYNOM IAL INTERPO LATIO N

As m entioned in the  previous subsection, polynom ial in terpolan ts ten d  to  be unneces­

sarily oscillatory when the  degree of th e  polynom ial is high. Therefore, it is of interest 

to  ob tain  in terpolan ts w ith degree as low as possible. T he Least Polynom ial In terpo­

lation (LPI) by de Boor and Ron can be used to  com pute a polynom ial in terpolation  

of finitely m any d a ta  points in a finite dim ensional space. G iven any finite set of 

d a ta  points, denoted by { (x 1, / ) ) ,  (x2, / 2) , . . . ,  (x * , / a t )}, the  goal is to  determ ine a 

corresponding polynom ial space w ith  the  least degree from which in terpolation is
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possible and  can be determ ined uniquely.

We shall give a brief description on how the  LPI in terpo lan t is generated and 

list the  m ost prom inent properties as presented by de Boor and Ron in [35]. To 

distinguish th e  power of a scalar or vector from the superscrip t for a scalar or vector, 

we use the  following form for a power term  of x:

x ?  =  { x { p { x 2 ) u ' . . . ( x n y \  (VII.l)

where tu is a vector whose com ponents are nonnegative integers u q , . . . ,  ujn , and (xj)Wi 

denotes Xi raised by the  power of T he degree of x w is |u?|, the sum of the 

com ponents of Co, i.e., |cl;| =  u>\ +  lo2 +  . . .  +  u>n. T he degree coupled w ith the 

lexicographic order can be used to  define the following order for x w:

x “ -< x“ if |cD| <  \Co'\ or jd51 =  jcn'l w ith  Co preceding Co' in th e  lexicographic order. 

Using th is order, we can arrange the power term s of x w ith  n — 2 as follows:

i (0,1) (1,0) (0,2) (1,1) (2,0) (0,3) (1,2) (2,1) (3,0)

The LPI in terpo lan t can be com puted as follows. F irst, generate the  Vander- 

monde m atrix  V  for the d a ta  set, where th e  rows of V  are indexed by the  input 

vectors x-7 for j  — 1 , . . . ,  IV, and the  colum ns of V  correspond to  the power term s 

of x in the  order described above. T h a t is, the entry in th e  j th  row and  the  fcth 

column of V  is (x-7̂  w ith  lo being the  k th  elem ent in th e  ordered sequence of the 

power term s of x. If n  =  2, AT =  4, and x 1 — (0 ,0 )T, x 2 =  (1 ,2 )T, x 3 =  (2 ,4 )T, 

x 4  =  (2, 2)t , th en  the  en try  a t the  2nd row and 5th  colum n of V  is (x2)^1,1) =  2. In 

fact, for th is  set of d a ta , V  has the following form:

V  =

( \  0  0  0  0  0 . .

1 2  1 4  2 1 . .

1 4 2 16 8  4 ..

\1  2 2 4 4 4 . . . /

(V II.2)

Next follows a degree-based G aussian elim ination w ith  pivoting. In th e  elim ina­

tion process, all the  term s w ith  the  same degree d are considered as a  vector term . In 

other words, th e  G aussian elim ination is perform ed on th e  block m atrix , whose (j , d ) 

entry is a  row vector w ith  com ponents (x-7) ^  where jo5| =  d  and  the  com ponents are 

arranged in th e  lexicographic order for Co. For n — 2, th e  (j, 2) en try  in the  block
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m atrix  is the  row vector ((xJ')(0,2V (x-7) ^ ’1), (x-7)^2,0̂ ). A special inner product is used 

for the  vectors in the  d th  colum n of the block m atrix:

(y ,z)d = E y{ti)z{3)
u>l \ . . .LU n

where y(uj) or z { uj )  denotes the  com ponent of y  or z corresponding to  the column with 

power index uj in V .  S tarting  w ith the block version of V  as th e  working array W , 

th e  degree-based Gaussian elim ination w ith pivoting can be carried out as follows. 

A t the j t h  step , we look for the  smallest dj > d j - \  for which there is a nontrivial 

en try  of th e  block m atrix  W  in column dj a t or below row j .  T hen  we find a largest 

such en try  in term s of (•, -)^ and, if necessary, interchange its  row w ith row j  of W  

to  bring it in to  th e  pivot position. For example, the  first step  of the degree-based 

G aussian elim ination for W  =  V  in Eq. (V II.2) is the  s tan d ard  G aussian elim ination 

because the  block column is the  first column. T he resulting  block m atrix  is

W  =

( l  (0 , 0 ) (0 , 0 , 0) . . . \

0 (2,1) (4 ,2 ,1 ) ..

0 (4,2) (16 ,8 ,4 ) ..

\ 0  (2,2) (4 ,4 ,4 ) . . . /

(VII.3)

T he en try  a t th e  3rd row and  2nd column of W  is th e  largest in the  2nd column 

a t or below th e  2nd row, w ith  ((4 ,2), (4, 2 ) ) 2  =  4 • 4 +  2 • 2 =  20. Thus, the pivot 

rule exchanges th e  2nd and 3rd rows of the  working array  W  to  yield the  following 

u p d ated  W :

W  =

f 1 (0 , 0 ) (0 , 0 , 0)

0 (4,2) (16 ,8 ,4 )

0 (2 , 1) 

\ 0  ( 2 , 2 )

(4 ,2 ,1 )

(4 ,4 ,4 )

(V II.4)

T he j t h  elim ination step is to  make the vector entries under th e  (j, d j )  entry  of W  

orthogonal to  th e  vector en try  a t row j  and colum n dj of W  w ith  respect to  the inner 

product (•, -)dr  For the block m atrix  in Eq. (V II.4), the  elim ination step yields the 

following m atrix :

W  =

( \ ( 0 , 0 ) ( 0 , 0 , 0 )  . . . \

0 (4,2) (1 6 ,8 ,4 ) . . .

0 ( 0 , 0 ) (-4,-2,-1) . . .

\ o V 5 ’ 5 /
(  28 4 8 \
V 5 ’ 5 ’ 5 /  ‘ ' V

(V II.5)
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T hen  th e  next pivot step  converts th e  block m atrix  in “row echelon form:’"

W

( l

0

0

(0 , 0 ) 

(4,2)

( -1- 1) (
\ o  (0,0)

(0 , 0 , 0 )

(16 ,8 ,4 )
1  81 

'5 -  5 /

(-4,-2,-1)

A

(V II.6 )

Here th e  block m atrix  W  is said to  be in row echelon form  if there is a nondecreasing 

sequence <A, c?2 , • - ■, <Av such th a t the  vector entry  a t row j  and colum n dj is the  first 

nonzero en try  in row j  and all the vectors in colum n dj below row j  are orthogonal 

to  the  vector en try  a t row j  and colum n dj (in term s of inner p roduct (■, •)(*■)•

T he degree-based G aussian elim ination w ith pivoting  leads to  the factorization 

T V  =  LW, where T is a perm utation  m atrix , W  is a row echelon block m atrix, and 

L  is a u n it lower triangu lar m atrix. For V  in Eq. (V II.2), we have

TV =  LW =

(\  0 0 o \ 
1 1 0  0 

1  |  1  0  

V  I  0  1 /

(l  (0 , 0) (0 , 0 , 0) . . . \

0 (4,2) (1 6 ,8 ,4 ) ..
0 L I  —) (.Si - i  8)
u V 5 ’ 5 /  V 5 5 5 ’ 5 /  ‘ *

Vo (0,0) (-4,-2,-1) . . . /

(V II.7)

To ob ta in  the  basis functions for the in terpolation  polynom ial space, we need a 

further factorization W  = U G ,  where U is an  upper triangu lar m atrix  obtained by 

a degree-based backw ard elim ination, i.e., for each j  =  IV, N  — 1 , . . . ,  1, we scale 

the  vector a t row j  and colum n dj of the block m atrix  W  by (W j^,
and enforce the  vector entries above the  vector W 3̂ . to  be orthogonal to  W ^ . (in 

term s of inner p roduct (-, •)<;.). For m atrix  W  given in Eq. (V II.6 ), the degree-based 

backw ard elim ination by de Boor and Ron generates an  upper triangu lar m atrix  U :

( \  0  0  0  \

0 20 0 -50

0  0  |

\ 0  0  0

w ith th e  following factorization of W :

U =
12
25 i 
2  /

(V II.8 )

W  = U G  =

A 0 0 0  > / l (0 , 0 ) (0 , 0 , 0 ) . . A

0 2 0 0 -50 0 ( U ) (0 , 0 , 0 )

0 0
4
5 1 2 0 H - 1 )

( 11 7 16 5 
1 5 - 5 - 5  /

\ o 0 0
25 , 
2 / \o (0 , 0 ) (  8 4 2 \ 

V 2 5 ’ 25 ’ 25/ • • • /

(V II.9)
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Using m atrices L  and U, one can construct a set of basis functions 

'0i ( x ) , . . . ,  ^ jv(x) for the  interpolation polynom ial space and the LPI for the given 

d a ta  points. T he LPI in terpolan t has th e  following form:

N

p (x ) =  E “ ^ ' ( x )>
i=i

where
f a , \

0.2

\ o n  y

=  diag { U ) { L U r l

and

^ •(x )  = E

/ / ( X 1 ) ^  

/ ( X 2 )

Gj(u5)
UJ\\ .LOn '

(VII. 10)

Here diag(U ) denotes the  diagonal m atrix  whose diagonal entries are the correspond­

ing diagonal entries in U, G j(ul) is the  com ponent of th e  vector en try  a t row j  and 

column dj corresponding to  the  power index uj, and ^ i ( x ), • • ■ , V'w(x) form a set of 

basis functions for the  polynom ial in terpolation  space.

C orresponding to  G  in Eq. (V II.9), th e  basis functions are: ^ i ( x ) =  l , ^ 2 (x) =  

I  (x )(o,i) +  _L (x )(i-o); ^ 3(x ) =  - 1  (x)U ’1! +  (x )^-0), ^ 4 (x) =  - ^  (x )(0’2) -  ^  (x)(u > -

i_ (x )l2 ,0 l. For more details on the degree-based G auss elim ination w ith pivoting, see 

Ref. [35],

T he nam e of LPI comes from the following fact. Let P min be the  space generated 

by linear com binations of , 0 v (x ) .  For any subspace P* of algebraic poly­

nomials, if th e  system  of in terpolation  equations, p (x J ) — f j  for j  =  1 , . . . ,  N  w ith 

constrain t p  £  P*, always has a solution no m atte r w hat values of A , • ■ •, /jv are, 

then  th e  highest degree of polynom ials in P* is no less th an  the  highest degree of 

polynom ials in Pmin-

T he in terpo lation  polynom ial space P mjn also has m any other in teresting  proper­

ties established by dc Boor and Ron [35], such as

•  uniquely defined by {x1, . . . ,  x N }: the basis functions are independent of 

how th e  inpu t vectors are ordered;

•  translation invariance: for any p{x)  € P mm and  any fixed point x  e  Mn. 

p (x  +  x ) is still a polynom ial in Pmm]
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•  sca le  in v a r ia n c e : for any p (x ) 6  Pmin and any fixed scalar a  G R, p (a x )  is 

still a polynom ial in P m;n;

•  c o o r d in a te - s y s te m  in d e p e n d e n c e :  an  alfine transform ation  of variables af­

fects the  L PI polynom ial space in a “reasonable” way;

•  m o n o to n ic ity :  if { x 1, . . . ,  x N } is a subset of {x1, . . . ,  x ^ } , th en  Pmin is a subset 

of the  least polynom ial in terpolation space corresponding to  {x1, . . . ,  x ^ } .

We use the  M ATLAB LPI code developed by de Boor and  Ron [32, 33, 34, 35] 

to  ob tain  the  LPI of the wing weight data . T he m axim um  degree of the polynomial 

basis functions for th e  LPI is 2 for the wing weight d a ta  interpolation. T h a t is, LPI 

generates a q uadratic  polynom ial in terpolation of the  weight data .

T he LPI m ethod  can be very sensitive tow ard the  location of th e  d a ta  points [2], 

However, in th e ir MATLAB L PI code, de Boor and Ron, use an  optional tolerance 

param eter (tol > 0 ) th a t  gives the  m ethod the  ability to  search for a set of basis 

functions such th a t  the  corresponding in terpolation m atrix  has a b e tte r condition 

num ber th an  th e  in terpolation  m atrix  of the  LPI, b u t the  m axim um  degree of the 

basis functions m ay be higher th a n  the  LPI. I t was recom m ended [2] to  use tol > 0 

to  ob tain  a  polynom ial in terpo lan t th a t  is less sensitive to  d a ta  locations, when the 

condition num ber of the  in terpolation  m atrix  is too  large. For th e  wing weight d a ta  

fitting  problem , th e  condition num ber of the  in terpolation  m atrix  is small, therefore 

there is no justification for using polynom ial in terpolants of higher degree.

The relationship between th e  value of tol and  the  degree of th e  generated LPI is 

no t straightforw ard. T he appropria te  tol value for obtaining a polynom ial in terpolan t 

different from L PI depends on the  given d a ta  points. For th e  wing weight d a ta  set, 

tol =  jjjjQ leads to  a  cubic polynom ial in terpolant. If we continue to  increase the  value 

of tol, the  m axim um  degree of th e  generated polynom ial in terpo lan t will also increase. 

For tol <  y^q, th e  generated polynom ial in terpolan t rem ains to  be quadratic.

V II.3 LEAST SQUARES FITTIN G

W hile only in terpo lation  m ethods are used for building wing weight estim ation m od­

els in th is thesis study, it is im p o rtan t to  give a  brief in troduction  of the least squares 

fitting  m ethods [36].

T he m ethod  of least squares assumes th a t  the  best-fit of a set of d a ta  

{ (x 1, f i ) , . . . ,  (x.N , /jv)} by a given param etric m odel g(x; a u , . . . ,  a j f )  is the  one th a t
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achieves th e  m inim al sum  of the  deviations squared (least square error) from the 

d ata . T he corresponding optim ization problem  can be form ulated as follows:

Least squares problem s are classified as linear and nonlinear least squares 

problem s depending on w hether g(x; cni,. . . ,  a ^ )  is a  linear or nonlinear func­

tion of a i , . . . ,  ajif. For the  polynom ial least squares problem , g(x; o n , , c*m) =

(such as the  polynom ials have degree at m ost m ).  In th is case, Eq. (V II.11) is re­

ferred to  as a  linear least squares problem  and its  solution can be obtained by solving 

a system  of linear equations [36]. For wing weight fitting  by th e  geom etry model,

g ( x ,  oti , . . . ,  C T g )

where n  =  8 , X\ = ji, x 2 = b, x 3  =  s, x 4  =  t r , x 5 = cr , x 6 — A, x 7  =  ct) and x 8  =  wto. 

In this case, Eq. (VII. 11) is referred to  as a nonlinear least squares problem  and its 

global optim al solution is difficult to  compute.

Unlike linear least squares problem s, whose estim ates of th e  param eters can al­

ways be ob ta ined  analytically, nonlinear least squares problem s require the use of 

itera tive op tim ization  procedures to  com pute the  p aram eter estim ates. The use of 

itera tive procedures implies the  need for initial guesses for th e  unknown param eters 

before th e  s ta r t  of th e  optim ization process. T he in itia l guesses m ust be reasonably 

chosen, otherw ise th e  optim ization procedure m ay no t converge or converge to  a local 

m inim um  ra th e r th a n  the global m inim um  th a t defines th e  least squares estim ates. 

We use the  nonlinear optim ization code lsqnonlin in M ATLAB to  solve the nonlin­

ear least squares problem . For the  wing weight d a ta  fitting  by th e  geom etry model or 

the  ra tio  model, m ultiple initial guesses including th e  param eters  values obtained by 

engineers and o ther random  ones were used to  search for a global optim al solution.

In C hap ter IV, bo th  forward and backward variable selection procedures use 

the nonlinear op tim ization code lsqnonlin in M ATLAB to  solve th e  nonlinear least 

squares problem s. During th a t optim ization processes, we also use m ultiple initial 

guesses to  search for a global m inim um  (see M ATLAB code in sections A. 1.1 and

mm
Ql (mil)

otjPj(x),  w here p i ( x ) , . . .  ,p j^ (x ) form a basis of a subspace of all polynomials

cki /u“ 2 (0.016)“3 ( 1 0  3 s ) a 4  (t r ) “ 5 (0 .1 cr ) “ 6 (cosA ) “ 7 (0 .1 ct)as ( 1 0  5w t 0 ) a 9

A .1.2).
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Chapter VIII 

COMPARISON OF CONSTRUCTED APPROXIMATIONS

V III .l INTR O D UCTIO N

For scarce and  poorly d istribu ted  d a ta  (like wing weight d a ta) in a high-dimensional 

space, it is difficult to  find an appropriate approxim ation to  m odel th e  data. B ut 

it is m ore problem atic to  verify if a constructed  approxim ation has all the  desirable 

properties th a t  the  underlying function should possess. Because no variable screening 

m ethod is appropria te  for identifying significant inpu t variables for fitting  historical 

d a ta  by in terpo lation  m ethods, the num erical experim ents are designed to  help the 

user und erstan d  w hether P C R  could help to  ex tract m eaningful relationships between 

a  general set of inpu t variables and the  ou tp u t. Two cand ida te  sets of inpu t variables 

are used in th e  num erical experim ents: (i) the  set of eight in p u t variables in Eq. (II. 1) 

and (ii) th e  set of fourteen variables (all th e  d a ta  a ttrib u te s  in the  wing weight d a ta  

set listed in Table 1  except the  mean thickness-to-chord ra tio  [t / c ]m). T he first set is 

used to  stu d y  w hether a general approxim ation m ethod could generate b e tte r wing 

weight estim ation  models th an  the knowledge-based engineering m odel (II. 1); while 

th e  second set tests  w hether P C R  is less effective if all possible inpu t variables are 

used.

Note th a t  P C R  coupled w ith CV assigns various weights to  th e  inpu t variables 

in the  in terpo lation  m odel so th a t the resulting wing weight approxim ation model 

has th e  highest accuracy in predicting the  trend  in th e  d a ta  when m easured by 

the  leave-one-out CV procedure. In con trast to  a classical approxim ation problem  

where th e  in p u t variables are given and the  regression m odel is known, PC R  for 

wing weight d a ta  fitting  generates hundreds of com pletely different approxim ation 

models by using different in terpolation models and in p u t spaces for d a ta  fitting. The 

num erical experim ents for th e  wing weight fitting  problem  will focus on the  benefits 

of using P C R  (a data-driven approxim ation process) and  the  stra tegy  of choosing the  

m ost ap p ropria te  approxim ation out of m any constructed  approxim ation models.

By exam ining all the  in terpolants ob tained  by the  P C A  procedure, in addition to  

the  LPI and  G aussian process in terpolant, we try  to  u n d erstan d  w hether an  appro­

pria te  num ber of features in the  inpu t space allows th e  P C R  in terpo lan t to  capture 

the  “physical tren d s” buried in the d a ta  correctly.
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V III.2 CHORD APPRO XIM ATIO N OF W IN G  CONFIGURATION

Even in the  case of eight variables, not all in p u t variables can change independently. 

For example, if th e  span 6  is fixed and the  reference area s is changed, th en  one m ust 

also change cr a n d /o r ct appropriately  to  m ake the wing configuration feasible. In 

practice, there  is no exact relationship am ong b, s, cr , and ct . For conceptual design 

of subsonic tran sp o rts , it is acceptable to  assum e th a t

where 7  is the  average of (cr +  ct) /c m values for the  known wing configurations. Eq. 

(V III.1) will be used to  approxim ate the dependency relationship among b, s, cr , and 

c(. In the  case of eight variables, there is only one dependency relationship among 

th e  inpu t variables. However, in the  case of fourteen variables, there are six depen­

dency relationships am ong the  inpu t variables and the  m axim um  set of independent 

variables has eight variables. T he ex tra  degree of freedom  for the  wing configuration 

w ith  fourteen variables is th e  thickness or th e  thickness-to-chord ratio  a t the wing 

tip , which was considered to  be insignificant for the wing weight prediction by system  

analysts of subsonic transports . The constructed  approxim ation will be converted to  

a function of the  following variables: b, s , t r / c r ,w to, A, A, /x, and  t t/c t (only for the 

14-variable case). T h a t is, for a  constructed  wing weight approxim ation

T he purpose of using the fourteen variables is to  understand  w hether th e  P C R  w ith 

CV is capable of identifying th e  weight grow th trend  in term s of the relevant inpu t 

variables am ong the  fourteen variables. For example, if t t / c t is tru ly  insignificant for

cr +  (k =  ycm =  7  s/b, (VIII. 1)

th e  final wing weight estim ation formula for conceptual design is

(V III.2)

or

b ’ 6(1 +  A) ’ 6(1 +  A) ’ S’ (1 +  A)6 cr ’ (1 +  A)6 ct ’
s 7  s jA s  'ystr 7 A s t t
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wing weight estim ation, then a useful P C R  with CV should assign a very small weight 

to  U/ct in the constructed approxim ation model (V III.3) so th a t the estim ated wing 

weight is not sensitive to  changes in t t / c t .

V III.3 DESIRABLE PROPERTIES OF W EIGHT APPROXIM ATION

In practice, the standard  approach for validation of a  constructed approxim ation 

g(x)  of /(x) is to  (randomly) generate function values f ( x N+1) , . . .  , f ( x N), where 

x-7 are in the region of interest, and check the prediction errors |/(xJ) — <7 (xJ')| for 

j  = N  + 1 , N.  If the prediction errors are acceptable, then g(x)  is considered as 

a validated approxim ation of /(x). Of course, a large N  and an  even distribution  

of x j leads to  a validation th a t is more reliable th an  in the case of a small N  or an 

uneven distribution of x-7. This process is similar to  training and validation of neural 

networks. Unfortunately, for historical data, this validation process is not applicable 

due to  d a ta  shortage.

An alternative approach is to  use known knowledge of the tru e  physical response 

/(x) for validation of g(x).  For wing weight estim ation, a desirable approxim ation 

should have the following properties: w  is an increasing function w ith respect to  

each of b, s, A, and A; and w  is a decreasing function with respect to  tr/ c r . These 

properties are derived from simple engineering rules on the relationships between 

the wing weight and each of the five key configuration param eters. However, it is 

impossible to  check the m onotonicity of a m ultivariate function w ith respect to  one 

input variable by using visual inspection of the two dimensional plots of the wing 

weight versus the specified input variable because there are infinitely m any choices 

for the  o ther variables.

As a compromise, we will inspect N  plots of the wing weight versus one of the 

five key configuration param eters th a t  pass through the N  d a ta  points, respectively. 

More specifically, for each j ,  except one of th e  five key configuration param eters 

b, s, t r/ c r , A, and A, we substitu te  b, s, t r/c r , wto, A, A, /r, and t t / c t by the correspond­

ing values of the j t h  wing configuration param eters in either Eq. (VIII.2) or Eq. 

(V III.3). The resulting function is a relationship between the  wing weight and 

the unsubstitu ted  configuration param eter, which has one of the  following forms: 

w = hjti(b), w = hjt2(s), w = h j^ ( tr/ c r), w = h j^{A), or w =  /iJ)5 (A). Here the index 

j  in hjj  indicates th a t  the resulting function depends on the j t h  wing configuration 

and the second index in indicates the dependence of the resulting function on the
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unsubstitu ted  configuration param eter. T hen the desirable properties of an  approx­

im ation are the following: and hj,5(-) are increasing functions,

while is a decreasing function. One rationale behind using the selected two

dimensional plots for visual inspection is th a t if these plots show the  desired proper­

ties of the approxim ation, then  the approxim ation gives the  correct trend  predictions 

when system analysts s ta rt conceptual design with an existing configuration as the 

baseline.

However, it is difficult to  find approxim ations with these desirable properties, 

perhaps due to  insufficient inform ation on weight trends in the data. For example, 

the trends in the plots of hjj(-)  for the  geometry model are the  following: w  increases 

as s or A increases, and w  decreases as b or tr/ c r or A increases. T h at is, the trends 

are not desirable in term s of change of the  wing weight versus 6  or A.

VIII.4 IMPACTS OF PROBLEM  FORMULATION

One problem w ith approxim ations generated by using chord approxim ation formula

C r =  6 ( T+A)

after the d a ta  fitting is th a t  the  constructed approxim ation is not an interpolation 

due to  errors in the substitu tion  formula (VIII. 1). Moreover, the  substitu tion  errors 

generally lead to  approxim ations w ith less desirable two dimensional trends. See 

Fig. 11 for typical plots of the  wing weight versus span, where the curves represent 

the approxim ations generated by applying the chord substitu tion  before and after 

m ultiquadric P C R  fitting

For the rem ainder of the  thesis, the  chord substitu tion  formula

7  s
°r =  6(1 +  A)

is applied to  the interpolation models before using CV optim ization to  construct the 

approxim ation. T h a t is, the  com ponents of x J are the corresponding values of the 

algebraic expressions in either Eq. (V III.2) or Eq. (V III.3) for construction of wing 

weight estim ation models.
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—  Chord approximation before fitting
-  - Chord approximation after fitting 
o Data

. £  4

Span

F ig u re  11: Differences betw een using chord approxim ation form ula (V III.1) before 
and after m ultiquadric P C R  fitting.

V I I I .5 C O M P A R IS O N  O F  IN T E R P O L A T IO N  M O D E L S

T he CV error of a  constructed  approxim ation can be useful to  help analysts decide 

which approxim ation  is be tte r. In Tables 2 and 3, th e  CV errors are for approxim a­

tions ob tained  w hen the  chord approxim ation form ula cT = b(i+\) used after the 

d a ta  fitting. In  Tables 4 and 5 we have the  CV errors of all approxim ations obtained 

when the  chord approxim ation form ula cr — ^ 7 +1 ) is used before the d a ta  fitting. 

Again the  row of n  =  8  or n  =  14 includes th e  CV errors for in terpolation  in the 

original x-space (not in a feature space).

For wing weight d a ta  fitting w ith  a fixed type of in terpo la tion  models, the “b est” 

approxim ation m odel am ong all the  approxim ations generated  by P C R  (for a range 

of r) usually corresponds to  the  sm allest value of m inim ized CV errors. Here the 

criterion for best approxim ation is by a subjective judgm ent of overall desirable trends 

of the approxim ation  by inspecting the  five types of two dim ensional plots for all forty- 

one baseline configurations. N ote th a t  th is visual inspection is very tim e consuming 

because over 2 0 0  p lo ts have to  be inspected for each construc ted  approxim ation. 

Therefore, it  m akes sense to  use the  au tom atic  P C R  procedure in section V I.5 for
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M ultiquadric 
CV Error

T hin P la te  
CV E rror

Cubic 
CV E rror

G aussian 
CV E rror

Kriging 
CV Error

Tl — 14 18585 2518 2898 1129900 6284700
r  =  14 12755 3243 4208 70151 74722
r  =  13 10711 3575 4069 42780 54585
r  =  1 2 12540 2887 6395 72993 107630
r  =  1 1 34515 3593 7711 73861 78001
r =  1 0 14235 3952 5780 50194 83175
r =  9 4653 3412 10209 394330 522840
r = 8 9497 14378 11512 43615 213940
r = 7 12425 5271 24341 24782 362550
r =  6 7242 10325 29184 98669 44993
r  =  5 11686 92148 60937 28986 98159
r = 4 17609 25974 144140 17919 37089

T a b le  4: CV errors for the  set of fourteen variables using the  chord approxim ation 
form ula before the  d a ta  fitting.

M ultiquadric 
CV Error

Thin  P la te  
CV E rror

Cubic 
CV E rror

G aussian 
CV E rror

Kriging 
CV Error

n  =  8 5581 2870 6567 260310 27002
r — 8 5581 3772 5463 835360 43241
r = 7 5417 2961 7262 2214100 1084100
r  — 6 5698 2506 5090 245960 178160
r — 5 5566 3852 8108 20800000 52056000
r — 4 5560 2864 19528 470920 12252000

T a b le  5: CV errors for the  set of eight variables using the  chord approxim ation 
form ula before th e  d a ta  fitting.

choosing th e  best P C R  for any fixed in terpolation  model. For exam ple, the  best P C R  

m ultiquadric approxim ation for the  eight-variable case is construc ted  w ith r = 7 (see 

Table 5). L ater on, we shall see th a t  th is approxim ation has the  overall best trends 

for wing weight prediction.

Because the  difference between the sm allest and  the  largest wing weight val­

ues is considerable, one m ust verify w hether th e  CV error value E c v  is dom inated 

by the  prediction errors a t x J w ith large wing weight values. In o ther words, we 

should com pute th e  relative CV prediction errors for each d a ta  point, defined as
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A irplane Prediction Rel. E rror A irplane Prediction Rel. Error
1049G 11932 3.8% DC-7C 10623 -4.5%
C-46A 4274 -36.4% F-28 5046 -28.7%

DC8F-54 34963 2.5% B. 747 76456 -14.1%
DC9-30 11764 -1.5% VC10-1101 33986 0 .2 %

VC10-1151 35565 2.5% G-159 4399 18.8%
C -8 A 5958 30.9% AC-1 6151 59.5%

C-124A 19371 2.3% KC-97E 15506 1 .2 %
C-123J 5879 -2 .0 % XC-120 5327 -13.7%
C-119H 11894 -1.4% C. 440 8057 46.9%
C. 340 4983 -6.9% R4Y-2 5327 6.4%
C-131E 5174 3.9% Con.110 3200 -9.2%

Con.T-29D 4147 -5.3% M artin  404 5118 4.6%
V. V. 800 4878 -18.9% DC-6 B 8492 4.6%

B. 727 15741 -12.7% CL44-D4-1 15411 -2.9%
C-130B 10908 -2 .2 % E lectra 8690 14.8%
B. 720 24341 3.6% Je ts ta r 5866 66.7%
C5-A 77204 - 6 .1 % L-1011 35511 -25.7%

C-135A 29220 15.1% 22(880) 7280 5.6%
30A(990A) 26585 -0 .1 % C-141A 35980 4.7%

C-5A 82296 -4.1% F-27 6150 36.2%
DC10-10 48536 0 .1 %

T a b le  6 : R elative errors for the  leave-one-out CV of m ultiquadric P C R  w ith r =  7.

(g-j(x?)  — f j ) j g - j { y ^ )  in Table 6 , and check if the  CV optim ization a ttem p ts  to  m in­

imize th e  prediction errors (g ^ fx P )  — f j ) 2 for large f j .  One indicator for such a biased 

m inim ization of E c v  is th a t  the relative errors for large g _ j(x 7) (or f j )  are sm aller 

th an  those for sm all g_j{xP). B ut we d o n ’t  see such a biased m inim ization of E c v  in 

Table 6 , which shows the relative errors (g^jfxP) — f j ) /g _ j(xP )  for j  =  1 , . . . ,  N  when 

CV is applied to  m ultiquadric P C R  w ith  r  =  7. In fact, the  big difference between 

the  sm allest and the largest wing weight values does no t lead the  CV optim ization 

to  m inimize the  prediction errors a t x -7 for large f j .  For P C R  w ith  G aussian R BF, 

the  relative errors are fairly uniform  along the  d a ta  points.

Fig. 12 shows the  leave-one-out CV predictions g_j(-x?) (j  =  1 , . . . , N )  for the  

m ultiquadric P C R  w ith r = 7 and th e  geom etry m odel (II .l) . I t is clear th a t  th e  

m ultiquadric P C R  w ith r — 7 has m uch m ore accurate predictions th an  th e  geom etry
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-  Exact fit of data
-  Overestimate of 10%
- - Underestim ate of 10%
C Geometry model estim ates 
-t- Multiquadric pcr7 estim ates

O  80000

"Jq 60000

Actual wing weight

F ig u re  12: Leave-one out CV errors for geom etry m odel and  m ultiquadric PC R  
w ith r =  7 for th e  set of eight variables.

model (II.1). T he m ain advantage of P C R  w ith  CV is its ability  to  explore th e  d a ta  

and to  tu n e  th e  m odel for tren d  prediction.

Figs. 13 and  14 show the  relative and absolute CV error d istribu tions, respectively, 

a t the d a ta  points for th e  m ultiquadric P C R  w ith r  =  7. For the  relative error we 

divide the  intervals [0, l] into 20 subintervals of length 0.05, and  then  plot th e  bar 

chart for the  frequency of the  CV errors fall into each subinterval. T h a t is, each bar 

in Fig. 13 is the  num ber of j  such th a t  \g-j(x?) — / j )/#_.,(xJ ) is in the subinterval 

represented by its m idpoint on the  horizontal axis. For the  absolute CV error the 

procedure is sim ilar, only now we divide the  interval from 0  to  the  m axim um  absolute 

error (about 12300) into 20 subintervals of length 615, and th en  plot the  bar chart 

of the frequency of the  CV errors fall into each subinterval.

For the  wing weight fitting  problem , Kriging and G aussian R B F in terpolants tend  

to  create unnecessary oscillations between d a ta  points in com parison to  the  Gaussian 

process m ethod  -  T pros [27]. Nonetheless, all th ree G aussian based m ethods present 

an exponential decay near th e  end of the d a ta  range, as expected. T he reason is 

th a t the  basis functions y?(||x — x J'||) decreases at the  exponential ra te  as ||x  — x J'|| 

increases (or the  configuration is moving away from the  existing configurations). LPI 

is extrem ely sensitive w ith respect to  d a ta  points and LPI of th e  forty-one wing d a ta
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Li
0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0 925 0.975

Relative Error

F ig u r e  13: R elative CV error d istribu tion  a t the  d a ta  points.
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A bsolute Error

F ig u r e  14: A bsolute CV error d istribu tion  a t th e  d a ta  points.
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-  Multiquadric PCR fitting
-  - Kriging fitting
-  G aussian  fitting 
• Tpros fitting

' ’n LPI fitting 
Data
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F ig u r e  15: W ing weight versus span of constructed  approxim ations.

—  Multiquadric PCR fitting
-  - Kriging fitting

G aussian  fitting 
• Tpros fitting 

" "  LPI fitting 
D ata

R eference area

F ig u r e  16: W ing weight versus reference area of construc ted  approxim ations.
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poin ts is very oscillatory. In com parison, an  appropriate  choice (m ultiquadric) of 

RB Fs leads to  nonoscillatory trend  predictions of the  wing weight. Figs. 15 and 16 

show typical two-dim ensional plots of the  wing weight versus th e  reference area and 

span for various wing weight approxim ations.

V III.6 BENEFITS OF PRINCIPAL C O M PO NENT REGRESSION

One m ajor problem  in fitting historical d a ta  is overfitting, i.e., unreliable minor 

tren d  changes m ight lead to  undesirable characteristics (such as oscillations) in the 

approxim ation. T he following five plots, along w ith  Figs. 15 and 16, show the 

relationships between the  wing weight and each of the  five configuration param eters 

b, s, tT/ c r , A, and A. Points from Fig. 5 are added to  the  plots to  give an  indication 

of the  sca tte r in the  data . And a curve for the  geom etry m odel is added to  indicate 

an  approxim ation generated by system s analysts.

-  Multiquadric PCR fitting
-  - Multiquadric fitting
-  G eom etry  model 
o Data

Span

Figure 17: Differences between m ultiquadric P C R  fitting  and  m ultiquadric fitting 
for span versus wing weight.

Alm ost all the two-dim ensional plots for the  m ultiquadric P C R  fitting  exhibit 

the  desirable properties specified in section V III.3, a t least in a neighborhood of the 

baseline d a ta  point. In few cases, th e  wing weight is no t a decreasing function of 

t r/c r . In m any cases, the  wing weight is not an  increasing function of A.
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.E 4

—  Multiquadric PCR fitting
-  - Multiquadric fitting 
• -  Geometry model
o Data

Reference area

F ig u r e  18: Differences between m ultiquadric P C R  fitting  and m ultiquadric fitting  
for reference area versus wing weight.

9

-  Multiquadric PCR fitting
-  - Multiquadric fitting
-  Geometry model 
o Data
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0.15 0.2 0.250 0.05
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F ig u re  19: Differences between m ultiquadric P C R  fitting  and m ultiquadric fitting  
for thickness-to-chord ra tio  versus wing weight.
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F ig u r e  20: Differences between m ultiquadric P C R  fitting  and m ultiquadric fitting 
for tap er ra tio  versus wing weight.

—  Multiquadric PCR fitting
— - Multiquadric fitting
— • Geometry mode! 
o Data

Sweep

F ig u re  21: Differences between m ultiquadric P C R  fitting  and m ultiquadric fitting 
for sweep angle versus wing weight.
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—  M ultiquadric PCR fitting (8 variables set)
-  -  M ultiquadric PCR fitting (14 variables set) 
o D ata

S pan

F ig u re  22: W ing weight versus span for m ultiquadric P C R  fittings corresponding 
to  n =  8  and  n  — 14.

—  M ultiquadric PCR fitting (8 variab les set)
-  -  M ultiquadric PCR fitting (14 variab les set) 
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F ig u re  23: W ing weight versus reference area for m ultiquadric  P C R  fittings corre­
sponding to  n  =  8  and  n  =  14.
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T he fourteen variables set is tested  to  understand  w hether the  P C R  with CV 

is capable of identifying the  weight grow th tren d  in term s of th e  relevant input 

variables am ong the  fourteen variables. However, wing weight prediction trends 

shown in th e  two-dim ensional plots are not as desirable as th e  m ultiquadric PC R  

w ith r  =  7 for th e  eight variables set (see Figs. 22 and  23). Exam ination of the 

m odel param eters  6i in the fourteen variable case shows th a t  the  P C R  w ith CV did 

no t assign sm all values of 0, to  any principal com ponent. In o ther words, all principal 

com ponents play im portan t roles in construction  of th e  approxim ation models. The 

im plication is th a t  expert knowledge of the underlying physical problem  is essential 

for the  wing weight approxim ation problem. One can no t blindly build a meaningful 

approxim ation m odel of the  response w ithout a deep understand ing  of the  underlying 

physical problem . O n the o ther hand, the m ore desirable prediction  behaviors of the 

m ultiquadric P C R  w ith r =  7 when com pared w ith  th e  geom etry model a ttests  the 

benefit of coupling expert knowledge and intelligent approxim ation m ethods.

V III.7 NUM ERIC AL ESTIM ATION OF PR ED IC TIO N  ERRORS

T here is no theoretical foundation to  choose the  best wing weight approxim ation 

selected by using th e  desirable properties of wing weight approxim ations, because 

the  desirable properties are based on simple engineering rules th a t  are not applicable 

to  all the  possible values of the  specified inpu t variable. For example, if s and A 

are fixed, th en  cy approaches infinity as b goes to  zero. T here is a lim itation on 

how small th e  span  b can be before the configuration becomes unrealistic. Thus, one 

basic question is w hether it is possible to  provide some q u an tita tiv e  estim ate on how 

accurate a wing weight approxim ation is. If G aussian process or Kriging is used to  

construct th e  wing weight approxim ation, th en  each weight estim ate is trea ted  as 

th e  m ean value of the  unknown wing weight function and th e  associated standard  

deviation can be used as a quan tita tive  estim ate of th e  prediction error [28, 17, 18].

For nonsta tis tica l fitting models such as R BF in terpo la tion  models, there is no 

quan tita tive  estim ate  of prediction errors w ithout inform ation on / ( x ) .  However, 

w ith a set of plausible approxim ations of the  wing weight, one can use the  differences 

am ong the  plausible approxim ations as q uan tita tive  m easures of prediction errors. 

For example, if two in terpolants c/i(x) and g2 (x) are plausible estim ations of the wing 

weight by visual inspection, then  the  difference |<?i(x) — _g2 (x) | provides a num erical 

estim ation on how different the  wing weight prediction could be due to  a subjective
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choice of th e  wing weight approxim ation. This idea leads to  the  following numerical 

estim ation  of wing weight prediction errors.

6

lT-5or

10 1 2 3 4 5 6

P * 105

Figure 24: M axim um  and average prediction errors based on the  geom etry model 
and  th e  m ultiquadric P C R  fitting over the  concentric balls centered at the average 
of x 1, . . . ,  x.N .

Num erical Estim ation of W ing W eight Prediction Errors

•  G enerate ( N  — N ) random  points x fc [k — N  +  1 , . . . ,  N )  in th e  convex hull of 

th e  existing inpu t vectors { x 1, . . . ,  x N },  i.e., each x fc =  ej k w ith ejk >  0  

and  Z y L i ejk =  1 -

•  C om pute th e  m axim um  and average prediction errors as follows:

m ax |gi(x.k) -  g2(yik
N + i< k < N ,* k e n

and

X J  l5 i ( x fc) - 5 2 (xfc)|,
jv+i<fc<iv,x'“e n

where 5 i(x ) and  g2(x) are two acceptable approxim ations, is a  region of 

in terest, and  N q is the num ber of x ^ 1, . . . ,  x N in fl.

However, there is no s tan d ard  m ethod  for generating uniform ly d istribu ted  ran ­

dom po in ts in the  convex hull of finitely m any d a ta  points. One can use MATLAB

x 10J

—  M a x im u m  p re d ic t io n  e r ro r
-  -  A v e r a g e  p re d ic t io n  e r ro r
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F ig u re  25: Cum ulative frequency d istribu tion  of random ly generated d a ta  points 
x ^ 1, . . . ,  x N over the  concentric balls centered at the  average of x 1, . . . ,  x N .

code qhull to  construct convex hulls, D elaunay triangulations, halfspace intersec­

tions a t a point, Voronoi diagram s, and o ther geom etry configurations. MATLAB 

code convhulln uses qhull to  determ ine the  convex hull of N  d a ta  points in R". 

T he solution generated by convhulln is an  I x n  m atrix , where I is th e  num ber of 

the  facets of the  convex hull. Each row vector contains the  indices of the d a ta  points 

th a t define a facet of the convex hull. For generation of convex hulls, qhull works 

well if n  is small, say n < 8. In general, the  size of th e  o u tp u t and execution tim e 

grows in order of N nI2. For example, to  build a convex hull of 1000 points in R 16, 

the  num ber of facets of the  convex hull m ight be of th e  order of 1024. In the  case of 

N  = 41 and  n  =  8 , the  num ber of facets could be on th e  order of 2 .8 x l0 6. For a 

random ly generated  d a ta  poin t it is nontrivial to  check w hether x JV+l  is inside

the convex hull generated by x 1, . . . ,  x N . Therefore, it is im practical to  check if a 

point is inside the  convex hull by using th e  facets of the  convex hull. Moreover, if we 

generate uniform ly d istribu ted  random  points in a box containing x 1, . . .  ,x JV, then  

almost all th e  points will be outside of th e  convex hull of x 1, . . . ,  x N when the  convex 

hull is contained in a lower dim ensional subspace of R ” .

An a lternative  is to  generate random  convex com binations of x 1, . . . ,  x N directly.
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T h a t is, generate a  random  point inside the convex hull of x 1, . . . ,  x.N as follows:

N+j _  6,-ix1 + ej2x2 + ... + ej N x.N
)

ej 1 + ej2 + • • • + t jN

where are random ly generated nonnegative num bers between 0  and 1 .

However, it is unclear w hether x w+1, x w+2, . . . ,  x w follow the  uniform  d istribution  as 

N  approaches infinity.

In Fig. 24, g i(x ) and 3 2 (x) are the  geom etry model and th e  m ultiquadric P C R  

fitting, respectively, and the regions of in terest are the balls of radius p centered a t 

th e  average of x 1, . . . ,  x ^ ,  denoted  by ave(x). I t is always tru e  th a t  the m axim um  

prediction error is a nondecreasing function of p. However, th e  general increasing 

tren d  of average prediction  error, as p increases, indicates th a t  th e  difference between 

th e  geom etry m odel and th e  m ultiquadric P C R  fitting tends to  become larger as the 

inpu t vector moves away from ave(x). Fig. 25 shows th e  cum ulative frequency 

d istribu tion  of x w+1, x w+2, . . . ,  x N over the concentric balls, which indicates th a t 

m ost points are clustered around ave(x).
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Chapter IX 

CONCLUSIONS

It is very easy to  fit a d a ta  set exactly by num erous m ethods no m atte r how the d a ta  

points are d istribu ted , b u t approxim ate responses are drastically  different between 

the  d a ta  points, even if they are alm ost identical a t th e  d a ta  points. Principal 

Com ponent Regression w ith  cross-validation incorporates d a ta  m ining into standard  

approxim ation processes so th a t the  resulting approxim ation is less likely to  overfit 

the  d a ta  or to  m ake predictions based on insufficient d a ta  inform ation.

Polynom ial based m ethods (e.g., LPI) are more sensitive to  d a ta  change th an  ra­

dial basis function based m ethods. Among radial basis functions m ethods, Gaussian 

R BF m ethods (as well as Kriging), are more likely to  perform  poorly due to  the 

exponential ra te  of decreasing of the G aussian R B F as the  d istances between points 

increase. G aussian process (Tpros) shows less oscillation th a n  G aussian RBF inter­

polation b u t has th e  same exponential decay trend  outside th e  range of the  data.

Variable screening could be a powerful tool for reducing th e  dim ension of the input 

space for approxim ate responses if applicable. For real world problem s of historical 

or m easurem ent d a ta  fitting, m ost of the commonly used variable screening m ethods 

cannot be used and  th e  few options left should be used w ith  caution. Most of the 

tim es th e  only way to  screen, or a t least to  identify, th e  possible least im portan t 

variables is to  sim ply analyze the  d a ta  carefully.

A system atic principal com ponent analysis procedure, th a t  identifies the collinear 

or nearly collinear variables, is a powerful tool th a t  custom izes the  corresponding 

regression m ethod  for the  feature variables considered.

T he assessm ent of the constructed  approxim ations is of great im portance. The 

physical properties of the  problem, if well established, can be used as objective criteria 

to  determ ine the  ability  of an approxim ation m odel to  cap tu re  correctly the  “physical 

tren d s” buried in th e  data . C ross-validation is m uch m ore th a n  a simple param eter 

estim ation  tool. I t can be used also as a tool to  evaluate th e  perform ance of an 

approxim ation m odel as well as to  indicate locations w here add ition  of new d a ta  

points would im prove the  prediction accuracy of th e  approxim ation  model.

In general, th e  results obtained are quite satisfactory. We were able to  obtain 

a general approxim ation th a t is more accurate and has m ore desirable properties 

th an  th e  best em pirical response available. T he biggest advantage is no t the  be tte r
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perform ance of the  principal com ponent regression in fitting  th e  wing weight d a ta  of 

41 subsonic tran sp o rts , b u t the  applicability of the  principal com ponent regression 

to  general h istorical or m easurem ent d a ta  fitting.

One area for im provem ent is the  cross-validation error optim ization. Cross- 

validation becomes m ore effective as the  obtained  optim al solution moves closer to  a 

global m inim um  of the  cross-validation error. Nonetheless, global optim ization in a 

high dim ensional space is beyond the  scope of this thesis.

O ther tasks for fu ture work are the  developm ent of new variable screening proce­

dures, im provem ent of the  m ethods when the num ber of d a ta  points and the  num ber 

of variables arc close, and to  understand  b e tte r  how th e  approxim ate responses can 

be affected by poor (or collinear) d istribu tion  of d a ta  points.
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Appendix A

MATLAB CODES

A .l  VARIABLE SCREENING

A. 1.1 Forward screening

% Wing Weight Estimation for Matlab 
Copyright (C) 2005 W. Li and H. Rocha

7.
7, Revision history:
7.
7» l-MAR-2005: First version, W. Li and H. Rocha

7, This program is free software; you can redistribute it and/or 
7. modify it under the terms of the GNU General Public License as 
7. published by the Free Software Foundation; A copy of the GNU 
7. General Public License can be obtained from the Free Software 
7. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

7. FS - Forward Screening
7. The Forward Screening algorithm is as follows:

2. Compute the sample coefficients of determination R_i~2 
for g_i, where R_i~2 is the proportion of the total

1. Let g_i be the best fit of the simplified geometry model

geometry model and can be used as a metric for ranking 
the significance of x_i in variation of the response.

variation in f~l,...,f~N explained by the simplified

variable and the wing weight, i.e., g_i is the best of 
the univariate model obtained by setting the exponents 
of the terms not related to x_i as zero.

representing the relationship between the ith input
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3. If a simplified geometry model of k input variables is 
desirable, then the input variables corresponding to 
the k largest R_i~2 shall be selected as the significant 
input variables.

7, The function lsqfun.m is used.
7.

clear all; cla; elf;
approx_option=0; 7,1 for using c_r+c_t=gamma*s/b before PCR analysis 
rawdata=csvread(’wing_data_10.csv’);
7, the actual input variable names 
ref_area=rawdata(l,:); 
aspect_ratio=rawdata(2,:); 
sweep=rawdata(3,:); 
root_chord=rawdata(4,:); 
tip_chord=rawdata(5,:); 
root_thick=rawdata(6,:); 
tip_thick_to_chord=rawdata(7,:); 
ultimate=rawdata(8,:); 
gross_weight=rawdata(9,:); 
wing_weight=rawdata(10,:);
7, the derived variable names 
span=sqrt(ref_area.*aspect_ratio); 
taper_ratio=tip_chord./root_chord; 
root_thick_to_chord=root_thick./root_chord; 
tip_thick=tip_thick_to_chord.*tip_chord; 
mean_chord=ref_area./span;
7. modify the data if c_r+c_t=gamma*s/b is used before PCR analysis 
if approx_option==l

gamma=mean((root_chord+tip_chord)./mean_chord); 
root_chord=gamma*ref_area./(span.*(l+taper_ratio)); 
tip_chord=root_chord.*taper_ratio;
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tip_thick=tip_thick_to_chord.*tip_chord; 
root_thick=root_thick_to_chord.*root_chord;

end
% define f and B for PCR 
f_init=wing_weight’; 
n=8; N=41;
B(l,:)=ref_area;
B(2,:)=span;
B(3, :)=sueep;
B(4,:)=root_chord;
B(5,:)=tip_chord;
B(6,:)=root_thick;
B(7,:)=ultimate;
B(8,:)=gross_weight;
I
R2=zeros(n,1);
fbar=0;
for i=l:N

fbar=fbar+f_init(i)/N;
end 
den=0; 
for i=l:N

den=den+(f_init(i)-fbar)~2 ;
end
%

DTR=pi/180; 
coef=zeros(8,1); 
coef(1)=0.001; 
coef(2)=0.01; 
coef(4)=0.1; 
coef(5)=0.11; 
coef(6)=1; 
coef(7)=1; 
coef(8)=0.00001;
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xcoef Cl)=0.8795; 
xcoef(2)=-0.1008; 
xcoef(3)=-0.7842; 
xcoef(4)=0.3720; 
xcoef(5)=-0.0274; 
xcoef(6)=-0.1580; 
xcoefC7)=0.1895; 
xcoef(8)=0.3469; 
xcoef(9)=5150.6253; 
ub=[10000000,10000000]; 
lb=-ub;
fprintf('Fitting_Error Init_Error Variance\n'); 
for k=l:8

fnew=f_init;
Bl=B(k,:);
N1=N;

x0(l)=xcoef(k); 
x0(2)=xcoef(9); 
x0(l)=l; 
x0(l)=-0.15; 
x0(2)=fbar;
errO = sum(lsqfun(xO,Bl,fnew,Nl,k,coef,DTR)."2);
°/0main process 
tol = 0.00001;
options=optimset('Display','off','TolFun',tol); 
if k==3

[x,err]=lsqnonlin(@lsqfun,xO,lb,ub,options,B1,fnew,... 
N1,k,coef,DTR); 
g=zeros(N1,1); 
for j=l:Nl

g(j)=x(2)*(cos(Bl(j)*DTR))“x(l);
end 
num=0; 
for j=l:Nl
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num=num+(fnew(j)-g(j))~2;
end
R2(k)=l-num/den;

else
[x,err]=lsqnonlin(@lsqfun,xO,lb,ub,options, B1,fnew,... 
N1,k,coef,DTR); 
g=zeros(N1,1); 
for j=l:Nl

g(j)=x(2)*(coef(k)*Bl(j))~x(l);
end 
num=0; 
for j=l:Nl

num=num+(fnew(j)-g(j))~2;
end
R2 (k) = l-num/den;

end
fprintf(’ °/„.3e °/„.3e °/„.3e\n’,err,errO,den);

end
%plot the bar chart 
var=zeros(n,1); 
for i=l:n

var(i)=i;
end
clear id; 
for i=l:n
switch i
case 1, id(i)=2
case 2, id(i)=4
case 3, id(i)=5
case 4, T—1IIf N•H■H

case 5, id(i)=6
case 6, id(i)=8
case 7 , id(i)=3
case 8 , id(i)=7
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end
RR(i)=R2(id(i)); 

end 
R2=RR;
bar(var,R2,0.4,’k’); 
set(gca,’xlim',[0.4,8.6]); 
setCgca,’ylim',[0,1.05]); 
xlabel('\fontsize{14]-\rni Variables'); 
ylabel(’\fontsize-[14}\it R~2’); 
for i=l:8 
yshift=0.04; 
switch i
case 4, lab='\f ontsize{14]-\it s’; 
case 1, lab=;’\fontsize-[14]-\it b’; 
case 7, lab=,\fontsize-[14]- \Lambda'; 
case 2, lab='\fontsize-[14}\it c_r’; 
case 3, lab=’\fontsize{14}\it c_t'; 
case 5, lab='\fontsize{14}\it t_r'; 
case 8, lab=’\fontsize{14}- \mu'; 
case 6, lab='\fontsize-[14H\it w>_-Cto}’; 
end
if R2(i)<0

yshift=-yshift;
end
if i==6
text(i—0.25,R2(i)+yshift,lab) 

else
text(i-0.15,R2(i)+yshift,lab) 

end 
end
set(gca,'YTick', [0:0.2:1]);

% Wing Weight Estimation for Matlab 
% Copyright (C) 2005 W. Li and H. Rocha 
7.
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% Revision history:
7.
V, l-MAR-2005: First version, W. Li and H. Rocha 
7.
7.
7. This program is free software; you can redistribute it and/or 
7o modify it under the terms of the GNU General Public License as 
7. published by the Free Software Foundation; A copy of the GNU 
7. General Public License can be obtained from the Free Software 
7. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

function LSQFUN = lsqfun(x,Bl,fnew,Nl,k,coef,DTR)

7.
7. function LSQFUN 
7.
I

7, Input Arguments 
7o x 
7. B1 
7. fnew 
7. N1 
7. k
7. coef 
7. DTR 
7.

if k==3
LSQFUN=zeros(N1,1); 
for j=l:N1

LSQFUN(j)=fnew(j)-x(2)*(cos(Bl(j)*DTR))"x(l);
end

else
LSQFUN=zeros(N1,1) ;

= lsqfun(x,Bl,fnew,N1,k,coef,DTR)

parameters values
a matrix with the data points
the actual wing weight of each data point
number of data points
index of g_i
variables scaling coefficients 
constant to tranform degrees to radians
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for j=l:Nl
LSQFUN(j)=fnew(j)-x(2)*(coef(k)*Bl(j))~x(l) ;

end
end

A .1.2 Backw ard screening

7. Wing Weight Estimation for Matlab 
% Copyright (C) 2005 W. Li and H. Rocha 
%

% Revision history:
7.
7. l-MAR-2005: First version, W. Li and H. Rocha
7. 
7.
7o This program is free software; you can redistribute it and/or 
7« modify it under the terms of the GNU General Public License as 
7a published by the Free Software Foundation; A copy of the GNU 
7. General Public License can be obtained from the Free Software 
7a Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

7a BS - Backward Screening
7a The Backward Screening algorithm is as follows:
7.
7a 1. Let g be the best fit of the wing weight data by the
7» geometry model.
7a 2. Let g_i be the best fit of the simplified geometry model
7a obtained by setting the exponent of the term related to
7a x_i as zero.
7a 3. Compute the adjusted sample coefficients of determination
7a R~2 and R_i~2 for g and g_i, i=l, . . . ,n.
7a 4. If the difference in adjusted sample coefficients of
7a determination Delta R_i= R~2-R_i~2 is nonpositive for
7a some i, then the corresponding variable x_i could be
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5. Repeat the process with the simplified geometry model 
until the number of input variables becomes desirable 
or all Delta R_i~2 is greater than 0.

removed from the input vector and the simplified 
geometry model would have n-1 variables.

% The function nlsqfun.m is used.
*/.
clear all; elf; cla;
approx_option=0; °/,l for using c_r+c_t=gamma*s/b before PCR analys 
rawdata=csvread('wing_data_10.csv’);
% the actual input variable names 
ref_area=rawdata(l,:); 
aspect_ratio=rawdata(25:); 
sweep=rawdata(3,:); 
root_chord=rawdata(4,:); 
tip_chord=rawdata(5,:); 
root_thick=rawdata(6,:); 
tip_thick_to_chord=rawdata(7, :); 
ultimate=rawdata(8,:); 
gross_weight=rawdata(9,:); 
wing_weight=rawdata(10,:);
"/, the derived variable names 
span=sqrt(ref_area.*aspect_ratio); 
taper_ratio=tip_chord./root_chord; 
root_thick_to_chord=root_thick./root_chord; 
tip_thick=tip_thick_to_chord.*tip_chord; 
mean_chord=ref_area./span;
% modify the data if c_r+c_t=gamma*s/b is used before PCR analysi 
if approx_option==l

gamma=mean((root_chord+tip_chord)./mean_chord); 
root_chord=gamma*ref_area./(span.*(l+taper_ratio)); 
tip_chord=root_chord.*taper_ratio;
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tip_thick=tip_thick_to_chord.*tip_chord; 
root_thick=root_thick_to_chord.*root_chord;

end
% define f and B for PCR 
f=wing_weight’;N=41; 
den=var(f)*(N-l);
DTR=pi/180;
n=8;
xcoef (1)=0.1895; 7, ultimate
xcoef(2)=-0.1008; % b
xcoef(3) =0.8795; 7. s_p
xcoef(4)=-0.1580; % t_r
xcoef (5) =0.3720; 7. c_r
xcoef (6) =-0 . 7842; °/„ sweep
xcoef(7)=-0.0274; 7. c_tip
xcoef(8) =0.3469; 7» gross weight
xcoef(9)=5150.6253; % leading coefficient
B(1,:)=ultimate;
B(2, : )=0.01*span;
B(3,:)=0.001*ref_area;
B(4,:)=root_thick;
B(5,:)=0.l*root_chord;
B(6,:)=cos(DTR*sweep);
B(7, : )=0. l*tip_chord;
B(8,:)=0.00001*gross_weight; 
warning on;
R2i=zeros(8,1);
fprintf(’ Fitting_Error Init_Error Best_Fitting\n'); 
for k=0:8

ub=1000000000; 
lb=-ub; 
id=[1:9] ; 
id=id(id~=k); 
x_init=xcoef(id)*1.25;
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options=optimset('Display','off’,'TolFun',1.0e-10); 
errO = sum(nlsqfun(x_init,B,f,N,k,n).~2);
[x,err]=lsqnonlin(Snlsqfun,x_init,lb,ub,options,B ,f,N,k,n); 
if k==0

err_best=err;
R2=1-((N-1)/(N-n))*err/den; 

else
R2i(k)=l-((N-l)/(N-n+1))*err/den;

end
fprintf (,0/0d: °/„.5e °/„.5e °/,.5e\n’,k,err,errO,err_best);

end

7«plot the bar chart 
var=zeros(n,1); 
for i=l:n

var(i)=i;
end
R2i=R2-R2i; 
clear id; 
for i=l:n 
switch i
case 1, id(i)=2; 
case 2, id(i)=5; 
case 3, id(i)=7; 
case 4, id(i)=3; 
case 5, id(i)=4; 
case 6, id(i)=8; 
case 7, id(i)=6; 
case 8, id(i)=l; 
end
RR(i)=R2i(id(i)); 

end
R2i=RR;
bar (var321,0.4,’k’);
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set(gca,'xlim',[0.4,8.6]); 
xlabel('\fontsize{14}\rm Variables'); 
ylabel(’\fontsize{14}{\it \Delta{R~2}}'); 
ymin=min(R2i); ymax=max(R2i); 
delta=0.00015;
set(gca, 'ylim' , [ymin,ymax]); 
set(gca,'ylim',[-0.001,0.003]); 
for i=l:8 

if R2i(i)<0
yshift=R2i(i)-delta; 

elseif R2i(i)<0.003 
yshift=R2i(i)+delta; 

else
yshift=-delta;

end
switch i
case 4, lab='\fontsize{14}\it s'; 
case 1, lab='\fontsize{14}\it b'; 
case 7, lab='\fontsize{14} \Lambda'; 
case 2, lab='\fontsize{14}\it c_r' ; 
case 3, lab=,\fontsize-[14}-\it c_t'; 
case 5, lab='\fontsize{14}\it t_r'; 
case 8, lab='\fontsize{14} \mu’; 
case 6, lab='\fontsize{14}{\it w}_{to}'; 
end
if i==6
text(i—0.25,yshift,lab) 

else
text(i-0.15,yshift,lab) 

end 
end
set(gca,’YTick', [-0.001:0.001:0.001],'YTickLabel',... 
{ ' - 0 . 0 0 1 ' , '  0 ' , '  0 . 0 0 1 ' } ) ;

7, Wing Weight Estimation for Matlab
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7, Copyright (C) 2005 W. Li and H. Rocha
7.
7o Revision history:
7.
'/, l-MAR-2005: First version, W. Li and H. Rocha
7. 
7.
7. This program is free software; you can redistribute it and/or 
7. modify it under the terms of the GNU General Public License as 
% published by the Free Software Foundation; A copy of the GNU 
7. General Public License can be obtained from the Free Software 
7o Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

function NLSQFUN = nlsqfun(x,B,f,N,k,n)

7.
7. function NLSQFUN 
%

7.
7. Input Arguments:
7. x 
7. B 
7. f 
7. N 
7. k 
7. n 
7.

NLSQFUN=zeros(N,1); 
for j=l:N 

if k==0
tmp=x(n+l);

else
tmp=x(n);

= nlsqfun(x,B,f,N,k,n)

parameters values
a matrix with the data points
the actual wing weight of each data point
number of data points
index of g_i (g_0 == g)
number of variables
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end
for i=l:n

if i ~= k
if i>k & k>0 

id=i-l;
else

id=i;
end
tmp=tmp*B(i,j)~x(id);

end
end
NLSQFUN(j)=f(j)-tmp;

end

A .2 P C A  C O D E S

A .2.1 P C A  autom atic  procedure

*/. Wing Weight Estimation for Matlab 
% Copyright (C) 2005 W. Li and H. Rocha 
I

% Revision history:
7.
% l-MAR-2005: First version, W. Li and H. Rocha
%

7.

7. This program is free software; you can redistribute it and/or 
% modify it under the terms of the GNU General Public License as 
°/0 published by the Free Software Foundation; A copy of the GNU 
°/, General Public License can be obtained from the Free Software 
% Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

% PCR - Principal Component Regression
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*/. The Automatic Principal Component Analysis algorithm is as 
7. follows:
7.
7, 1. Scale each variable by its estimated standard deviation.
7. 2. Compute the covariance matrix C of the scaled input vectors
7. and remove all the variables corresponding to 0 eigenvalue.
7. 3. Let the number of the remaining variables be n_org. For
7o n=n_org downto n = nmin, use RBF or Kriging interpolation,
7. to compute the corresponding n_org-nmin principal component
7o regression approximations.
7.
7.
7. The function CV_error.m is used to compute the 
7. cross-validation error.
I

clear all;
nmin=3; 7. the smallest dimension of feature space
approx_option=l; 7» 1 for using c_r+c_t=gamma*s/b before PCR
approx_model=5; 7» 1 for Multiquadrics, 2 for Thin Plate Splines,

7, 3 for Cubic, 4 for Gaussian, and 5 for Kriging
var_number=14; 7. number of variables used (either 8 or 14)
rawdata=csvread('wing_data_10.csv’);
7. the actual input variable names 
ref_area=rawdata(l,:); 
aspect_ratio=rawdata(2,:); 
sweep=rawdata(3,:); 
root_chord=rawdata(4,:); 
tip_chord=rawdata(5,:); 
root_thick=rawdata(6,:); 
tip_thick_to_chord=rawdata(7,:); 
ultimate=rawdata(8,:); 
gross_weight=rawdata(9,:); 
wing_weight=rawdata(10,:);
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% the derived variable names 
span=sqrt(ref_area.*aspect_ratio); 
taper_ratio=tip_chord./root_chord; 
root_thick_to_chord=root_thick./root_chord; 
tip_thick=tip_thick_to_chord.*tip_chord; 
mean_chord=ref_area./span;
°/0 modify the data if c_r+c_t=gamma*s/b is used before PCR analysis 
if approx_option==l

gamma=mean((root_chord+tip_chord)./mean_chord); 
root_chord=gamma*ref_area./(span.*(l+taper_ratio)); 
tip_chord=root_chord.*taper_ratio; 
tip_thick=tip_thick_to_chord.*tip_chord; 
root_thick=root_thick_to_chord.*root_chord;

end
°/t define f and B for PCR 
f=wing_weight’; 
if var_number==8
n=8;
N=41;
B(l, : )=span;
B(2, :)=root_chord;
B(3, :)=ref_area;
B(4, :)=root_thick_to_chord;
B(5, :)=gross_ueight;
B(6, :)=taper_ratio;
B(7, :)=sweep;
B(8,:)=ultimate;

else
n=14;
N=41;
B(l,:)=aspect_ratio; 
B(2,:)=span;
B(3,:)=mean_chord; 
B(4,:)=root_chord;
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B(5,:)=tip_chord;
B(6,:)=ref_area;
B(7,:)=root_thick;
B(8,:)=tip_thick;
B(9,:)=root_thick_to_chord;
B(10, )=tip_thick_to_chord;
B(ll, )=gross_weight;
B(12, )=taper_ratio;
B(13, )=sweep;
B(14, )=ultimate;

end

/(scaling 
B2=B; 
for i=l:n

B2(i,:)=(B2(i,:)-mean(B2(i,:)))/std(B2(i,:));
end

‘/.coordinate change 
C=cov(B2’);
[V,D]=eig(C);
fp=fopen(sprintf (’ CV_°/„d_°/„d_°/,d. txt ’ ,approx_option, . . . 
approx_model,var_number),’w ’);
fprintf(fp,’Eigenvalues of Covariance Matrix:\n’); 
for i=l:n

fprintf ( f p , 5 f  ’,D(i,i)); 
if (mod(i,5)==0) 

fprintf(fp,’\n’);
end

end
if (mod(n,5)~=0) 

fprintf(fp,’\n’);
end
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n_org=n;
options=optimset('Display’,'of f ’,'TolFun',1.Oe-5);
% Data fitting in the input space
fprintf(fp,'Num_Variable Initial_Objective Final_Objective\n'); 

B1=B2;
prms=ones(n,1);
errO=CV_error(prms,n,N,f,B1,approx_model);
[params,emin]=fminsearch(@CV_error,prms,options,n,...
N,f,Bl,approx_model); 
if n<10
fprintf(fp,' %d (orig space) %.4e %.4e\n',n ,errO,emin);
else
fprintf (fp,' °/.d (orig space) ‘/,.4e %.4e\n',n,err0,emin);
end
save(sprintf ('CV_'/0d_°/,d_%d_Zd.mat ’,approx_option,approx_model, . . . 
var_number,0),’f','B','params');

% transform data into the feature space:
°/0 each column of B1 is a data point in the feature space 
prms=ones(n,1); 
for n=n_org:-l:nmin
T=V(:,n_org-n+l:n_org)’; % transformation matrix 
B1=T*B2;
"/.Cross-validation minimization process 
if n<n_org

prms=prms(2:n+l);
end
errO=CV_error(prms,n,N,f,B1,approx_model);
[params,emin]=fminsearch(@CV_error,prms,options,n,...
N,f,Bl,approx_model); 
if n<10
fprintf (fp,’ %d %.4e %.4e\n’,...
n, errO,emin);
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else
fprintf (fp, ’ 7»d 7.. 4e % • 4e\n ’ , . . .
n,errO,emin); 

end
save (sprintf (,CV_7.d_7od_7«d_7«d.mat' , approx_option, . . . 
approx_model,var_number,n ) ,’f ’, ’ B ’ , ’ params’,'B 1 ’,'T '); 

end
fclose(fp);

A . 2.2 C V  error function

Wing Weight Estimation for Matlab 
7. Copyright (C) 2005 W. Li and H. Rocha
7.
7. Revision history:
7.
7. l-MAR-2005: First version, W. Li and H. Rocha
7.
7.
7. This program is free software; you can redistribute it and/or 
7. modify it under the terms of the GNU General Public License as 
7. published by the Free Software Foundation; A copy of the GNU 
7« General Public License can be obtained from the Free Software 
7o Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

function Ecv = CV_error(params,n,N,f,B,approx_model)

7.
7. function Ecv=CV_error (params ,n,N,f ,B , approx_model)
7.
7. Output Arguments:
7. Ecv - the cross-validation error value
7.
7. Input Arguments:
7, params - a vector with the scaling parameters
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7, n - number of variables
% N - number of data points
•/. f - the actual wing weight of each data point
”/, B - a matrix with the data points in the feature
% space coordinates
°/„ approx_model - regression model to use: 1 for Multiquadrics,
"/„ 2 for Thin Plate Splines, 3 for Cubic,
% 4 for Gaussian, and 5 for Kriging
*/.

’/.Iteration matrix 
phil=zeros(N,N); 
for i=l:N

for j=l:N 
sub=0; 
for k=l:n

sub = sub + params(k)*(B(k,i)-B(k,j))~2;
end
if approx_model==l

phil(i,j)=sqrt(sub+1); 
elseif approx_model==2 

if sub < le-10
sub=sub+le-10;

end
phil(i,j)=sub*log(sqrt(sub)); 

elseif approx_model==3
phil(i,j)=(sqrt(sub))~3; 

else phil(i,j)=exp(-sub); 
end

end
end

’/.Main process 
Ecv=0;
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for i=l:N
fil=zeros(N,1); 
for j=l:N 

sub=0; 
for k=l:n

sub = sub + params(k)*(B(k,i)-B(k,j))"2;
end
if approx_model==l

fil(j)=sqrt(sub+l); 
elseif approx_model==2 

if sub < le-10
sub=sub+le-10;

end
fil(j)=sub*log(sqrt(sub)); 

elseif approx_model==3 
fil(j)=(sqrt(sub))~3; 

else fil(j)=exp(-sub); 
end

end
fl=zeros(N-l,1); 
fi=zeros(N-l,1); 
phi=zeros(N-l,N-1); 
for 1=1:i-1

fl(l)=f(1); 
fi(l)=fil(l); 
for q=1:i — 1

phi(1,q)=phil(1,q);
end

end
for 1=1:i-1

for q=i+l:N
phi(1,q-1)=phil(1,q);

end
end
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for l=i+l:N
fi(l-l)=fil(l); 
fl(l-l)=f(1); 
for q=i+l:N-l

phi(l-l,q-l)=phil(l,q);
end

end
for l=i+l:N

for q=l:i-l
phi(1-1,q)=phil(1,q);

end
end
if rcond(phi) < 10“(-6) 

phi=pinv(phi);
else

phi=inv(phi);
end
if approx_model==5 

ID=ones(N-l,1);
gi=fi+((l-ID;*phi*fi)/(ID,*phi*ID))*ID; 
g=(phi*f1)’ *gi;

else
g=(phi*f1)J *fi;

end
Ecv=Ecv+(f(i)—g)“2;

end
Ecv=Ecv/N;

A .2.3 Basis function evaluation

% Wing Weight Estimation for Matlab 
% Copyright (C) 2005 W. Li and H. Rocha 
I

'/„ Revision history:
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•/.
% l-MAR-2005: First version, W. Li and H. Rocha
7. 
7.
7. This program is free software; you can redistribute it and/or 
7o modify it under the terms of the GNU General Public License as 
7« published by the Free Software Foundation; A copy of the GNU 
7« General Public License can be obtained from the Free Software 
7. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

function fval = basisfunction(x,params,N,n,f,B1,approx_model)

7. function fval=basisfunction(x,params,N,n,f,B,approx_model)

7. approx_model - regression model to use: 1 for Multiquadrics,

7.

7. Output Arguments 
7o fval

7. Input Arguments

- the function value

point to compute the function value 
a vector with the scaling parameters 
number of variables 
number of data points
the actual wing weight of each data point 
a matrix with the data points in the feature 
space coordinates

2 for Thin Plate Splines, 3 for Cubic, 
4 for Gaussian, and 5 for Kriging

7olteration matrix 
phi=zeros(N,N); 
for i=l:N
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for j=l:N 
sub=0; 
for k=l:n

sub = sub + params(k)*(B1(k,i)-B1(k,j))~2;
end
if approx_model==l

phi(i,j)=sqrt(sub+l); 
elseif approx_model==2 

if sub < le-10
sub=sub+le-10;

end
phi(i,j)=sub*log(sqrt(sub)); 

elseif approx_model==3
phi(i,j)=(sqrt(sub))~3; 

else phi(i,j)=exp(-sub); 
end

end
end
if rcond(phi) < 10"(-6) 

phi=pinv(phi);
else

phi=inv(phi);
end

°/0main process 
fi=zeros(N,1); 
for j=l:N 

sub=0; 
for k=l:n

sub = sub + params(k)*(x(k)-B1(k,j))"2;
end
if approx_model==l

fi(j)=sqrt(sub+1); 
elseif approx_model==2
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if sub < le-10
sub=sub+le-10;

end
fi(j)=sub*log(sqrt(sub)); 

elseif approx_model==3 
fi(j)=(sqrt(sub))~3; 

else fi(j)=exp(-sub); 
end

end
if approx_model==5 

ID=ones(N,1);
gi=fi+((1—IDJ*phi*fi)/(ID’*phi*ID))*ID; 
fval=(phi*f)’*gi;

else
fval=(phi*f)’*f i;

end
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