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A B ST R A C T

MARK-RECAPTURE CREEL SURVEY AND SURVIVAL MODELS

Shampa Saha 

Old Dominion University, 1997 

Director: Dr. Ram C. Dahiya

In this dissertation, we consider a  model based approach to  the estim ation of 

exploitation rate of a fish population by combining mark-recapture procedures with 

a creel survey. We also consider the analysis of a proportional hazards survival model 

for randomly censored observations, known as the Koziol-Green model. The model 

assumes that the lifetime survivor function is a power of the censored tim e survivor 

function.

In Chapter 2, we introduce the model based approach to the estimation of the 

exploitation rate of a fish population by combining mark-recapture procedures with a 

creel survey. We assume that in the beginning of a fishing season M  number of fishes 

are captured, marked and then released back into the population. Also, there are N  

available sampling units out of which n are sampled by the creel survey agents. The 

agents observe the num ber of fish captured with and without tags in each sampled 

unit. We make two basic assumptions, (1) the number captured in each unit follows 

a Poisson distribution and (2) the number recaptured given the number captured 

in each unit follows a binomial distribution. We obtain the maximum likelihood 

estim ator and the moment estim ator of the exploitation rate. We also compare the 

performance of these two estim ators. In Chapter 3, the model based approach of 

Chapter 2 is extended to the case where the space-time units of the fisheries are 

stratified according to the different fishing areas or seasons.
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In Chapter 4, we consider the Koziol-Green survival model with the lifetimes 

following a  Weibull distribution. VVe consider the  Bayesian analysis of this model 

by specifying parametric prior distributions for the parameters of the model. The 

method of Gibbs sampler is used for Bayesian computations. The Bayes estimator 

is compared with the maximum likelihood estim ator of the survivor function. In 

Chapter 5, we incorporate covariates in the Koziol-Green model and study their effect 

on the lifetimes. We consider maximum likelihood estimation of the parameters of 

this model.
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C hapter 1

Introduction

1.1 M ark-Recapture Procedures

Capture-recapture or mark-recapture procedures are used to estimate population 

parameters in wildlife and fisheries sciences- Usually, the parameters of interest 

in such kind of studies are the population size, survival rate, mortality rate and 

exploitation rate (in case of fisheries studies). A typical mark-recapture experiment 

consists of sampling the population under study say k  times, usually k  > 2. Each 

time, an unmarked animal caught is uniquely marked and previously marked animals 

have their captures recorded and all animals are released back into the population. 

In some cases animals may be injured by capture, in which case they will not be 

released and are recorded as losses on capture. At the end of the study, we assume 

that the experimenter has the complete capture history of every animal handled.

There are several mark-recapture models classified as closed or open popula

tion models and they are defined as follows:

C losed  P o p u la tio n : A closed population is one where permanent additions (births 

or immigrants) or deletions (deaths or emigrants) do not occur i.e., the population 

has a constant size during the entire study.

O p en  P o p u la tio n : An open population is one where permanent additions or dele

tions occur during the study.

I
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A typical mark-recapture study provides two distinct types of information that 

can be used to estim ate the parameters of interest. ( 1 ) Information obtained from the 

recapture of m arked animals and (2 ) information obtained from comparing numbers 

of marked and unmarked animals captured at each sampling tim e. Data from (1) 

can be used to estim ate survival rates, whereas data from (1 ) and (2 ) are necessary 

to estimate population sizes.

T he L in coln -P etersen  M odel

The Lincoln-Petersen model is the simplest form of mark-recapture models. Here a 

sample of Hi animals is caught, marked and then released. Later, a sample of n2 

animals is captured, of which m2 are marked animals. Then the estimator of the 

population size N  is obtained based on the notion that the ratio of marked to the 

total animals in the second sample should reflect the same ratio in the population, 

so that

m2 nt
n2 N  

m 2

The model makes the following assumptions:

(1) The population is closed to additions and deletions.

(2) All animals are equally likely to be captured in each sample.

(3) Marks are not lost and are not overlooked by the observers.

Several other closed population models have been developed by relaxing assumptions

(2) and (3). Some time-dependent models have also been developed.

The Jo lly -S eb er M odel

In many mark-recapture studies it is not possible to assume th a t the population is 

closed to perm anent additions or deletions. In that case we have to consider open 

population models. The Jolly-Seber model is the most basic open population model.
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The Jolly-Seber model allows estim ation of population size at each sampling time as 

well as estimation of survival rates and number of births between sampling times. 

The Jolly-Seber model requires the following assumptions:

(1) All animals in the population a t a particular sampling time have the same prob

ability of capture.

(2 ) Every marked animal present in the population immediately after a  particular 

sampling time has the same probability of survival until the next sampling time.

(3) Marks are not overlooked or lost a t any time.

(4) Samples axe chosen instantaneously and each release is made immediately after 

sampling is completed.

The estimation of param eters under the Jolly-Seber model involves standard 

methods and the estimators are simple and intuitive. The population size estimators 

have the same form as in the Lincoln-Petersen model. Survival rate estimators are 

based on the ratios of the estim ated numbers of marked animals at successive times. 

The number of additions between two sampling periods is a simple function of the 

two population size estimates and the survival rate for the same period. The Jolly- 

Seber model allows for injured animals not returned to the population.

Tag R eturn M odels

Usually, it is of interest for government agencies to estimate the annual exploitation 

rate of a fish population for recreational and commercial fisheries. One may also 

be interested in estimating the annual survival rate, the natural m ortality rate and 

the size of the fish population. In recent years, there have been several “tag return 

models'" for fish tags returned by recreational or commercial fishers to estim ate the 

above mentioned quantities. See Brownie et al. (1985) for a complete review of 

tag return models. Papers by Jagielo (1991) and Pollack et al. (1991) emphasize 

tag return models run in conjunction with angler surveys. Tags may be solicited 

from anglers on-site by a  survey agent or voluntarily reported by anglers to a fishery 

agency. We first briefly review the existing tag return models presented in Brownie 

et al. (1985) and Pollack et al. (1991).
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4

The paper by Pollack et al. (1991) forms the  basis of this review. Let us 

consider the possible fates of a  fish tagged at the beginning of the year:

S  =  the finite annual survival rate or the probability of surviving the year,

u =  the annual exploitation rate or the probability of being harvested during the

year,

A =  the tag reporting ra te  or the probability that a  tag will be found and reported 

to the fisheries biologists, given that the fish has been harvested.

Furthermore, if we assume that all the fish killed are retrieved by the anglers, 

we have

v =  1 — S  — u

as the finite natural m ortality rate or the probability of dying from natural causes 

in the presence of fishing mortality. The data thus obtained supplies information 

directly only about harvested fish whose tags are reported. Hence the product /  =  

Au, the tag recovery rate, is estimable. We need additional information, such as 

that generated by reward tags or creel surveys or port samples to estimate A and u. 

Consider the set up where we have multi-year taggings and recoveries and the animals 

are not stratified according to  age-class. Following are the set of four models devised 

by Brownie et al. (1985):

M o d el 1 : This is the most general model with the m atrix  of expected recovery 

numbers given in Table 1.1, for three tagging years and four recovery years. Here, 

for the ith year, 5,- is the year-specific annual survival rate, / '  is the year-specific 

annual recovery rate for newly tagged fish and f i  is the year specific annual recovery 

rate for previously tagged fish. There may be a need to have separate recovery rates 

/,” and fi  for previously and newly tagged fish because fishing may begin before all 

tagging is completed, or the newly tagged fish may be more difficult to capture, or 

reporting rates may differ near and away from initial tagging sites.

M o d el 2: This is a special case of Model 1 , where f "  =  f i  for all i. That is, all 

tagged fish irrespective of whether they are newly tagged or previously tagged have 

the same recovery rates in a given year.
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Table 1.1: Matrix of Expected Recoveries.

Expected number of recoveries in year

Year, number tagged 1 2 3 4

1 , iVt iVi/r Ni SiS t f s iVl5 l S'2 5'3 / 4

2 , iV2 tf2/ 2* A2 S2 / 3 iV2 S2 S3 / 4

3, iV3 ^ 3 / 3 iV3 S3 / 4

M odel 3: This is a special case of Model 2, where S,- =  S  for all i . That is. all 

tagged fish have the same annual survival rate over all the years in the study. 

M odel 4: This is a special case of Model 3, where all tagged fish have constant 

annual survival and constant annual recovery rates over all the years in the study.

Model 1 is the most general model and Model 4 is the most restricted model. 

Brownie et al. (1985) provide a computer program, ESTIMATE, that determines the 

best model and estim ates its survival and recovery rates, numerically. The following 

are the model assumptions: ( 1 ) The tagged sample is representative of the target 

population. If tagging takes place in areas with very heavy fishing pressure, it could 

give the appearance of high recovery and low survival rates for the entire region. 

Hence, to avoid this, tagging should be dispersed over a wide area of each region 

under study and should be in proportion to the population density in the area. Also, 

the assumption that tagged fish mix thoroughly throughout the whole area is usually 

unrealistic. (2) There is no tag loss. Nelson et al. (1980) through simulation studies 

found that tag loss produces a negative bias in survival and recovery rate estimates. 

This problem could be overcome by a double tagging study to estim ate the tag loss 

and hence adjust for the survival and recovery rate estimates (see Seber 1982. page 

94). (3) Survival rates are not influenced by tagging. If tagging increases mortality 

substantially then the survival estimates will not apply to untagged fish. (4) The 

year (fishing season) of tag recovery is correctly tabulated. If anglers report tags 

from fish caught in previous years, it produces a positive bias on survival estimates.
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(5) The fate of each tagged fish is independent of the fate of other tagged fish. This 

assumption is violated in almost all practical applications of tag return models. This 

will not cause any model bias in any of the  estimators, but it will mean that true 

sampling variances are larger than those given by the statistical models. (6 ) All 

tagged fish within an identifiable class have the same annual survival and recovery 

probabilities. Simulation studies of Nichols et al. (1982), Pollock and Ravelling 

( L982) revealed that if only recovery rates are heterogeneous, survival estim ates are 

not biased and recovery rate estimates can be averaged for the population (if the 

tagging sample is random). If the survival probabilities are heterogeneous over the 

population then the survival rate estim ators generally will have a negative bias, 

which is more serious when the average survival rate is high and the study is short. 

In theory, survival rate estimators could have a positive bias if segments of the 

population have markedly different survival rates but similar recovery rates.

Pollock et al. (1991) modified the models proposed by Brownie et al. (1985) 

by allowing tags to be solicited by survey agents or other biologists, which is a more 

realistic structure for fisheries studies. There is a certain unknown probability 8 that 

a tag will be solicited. If we define the recovery rate of solicited tags as f s = uS 

and the recovery rate of unsolicited tags as f r =  u(l — 5)A, then 5, f s and f r are 

estimable quantities and their estimates can be obtained using the program SURVIV 

(W hite, 1983). From these estimates we can obtain the estimate of the exploitation 

rate u , if we know or can estim ate the reporting rate A. Estimate of u is given by

U = f s  +  J .  ( 1 -1 )

The expected value of u is

rv-v r u (l —£)AE(u)  ss uS H------ --------
A

=  uS T" u (l — 5)

=  u. ( 1 .2 )

So u will be unbiased for large samples. Notice that it is not necessary to

estim ate 8 because it drops out when we use the above equation. Estimation of A is
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crucial and we can achieve this in two different ways:

(i) U se o f Tag R etu rn  Rewards: We can use two types of tags in a special study 

to estimate A, one (control) that offers no reward and another one that offers reward 

for tag returns. This approach was developed by Henny and Burnham (1976) and 

Conroy and Blandin (1984). An important assumption here is that all recaptured fish 

with special reward tags are reported either voluntarily or via solicitation. Ideally, 

the reward notice should be displayed prominently on the tag  so that it is not likely to 

be overlooked, although it may present operational difficulties in practical situations. 

Another assumption is that angler behavior does not change in response to the study. 

For more details see Pollock et al. (1991).

(ii) U se o f  A n gler  Surveys: We can estim ate the tag reporting rate A with an 

on-site angler survey. That is, we can use a creel survey or port sampling scheme. 

When the survey agent is interviewing anglers or commercial fishermen and checking 

their catch, we assum e that the probability of a  tag being reported is one: whereas,

when the survey agent is not interviewing, the angler or commercial fishermen report

the tags with probability A (0 <  A <  1 ). The estim ator of A is

A =  . Rh ■ (1.3)
R  -  Rs

with estimator of the variance of A given by

^ ) =  ^ + A ( l - W )  ( 1 .4 )
R - R ,  ( R - R , ) 3

where

Rh =  the num ber of tags recovered by anglers or commercial fishermen that are 

reported to the fisheries scientist in the absence of solicitation,

R = estimate of the to tal number of tags recovered by anglers or commercial fisher

men,

Rs =  number of tags recovered by anglers or commercial fishermen that were solicited 

by the survey agent and

R —Rs = the estim ated number of tags recovered by anglers or commercial fishermen 

that are available to be reported with probability A.
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The total num ber of tags, R,  recovered by anglers or commercial fishermen is 

estimated from a creel survey or port sample that runs concurrently with the tagging 

study. The method of estim ation of R  and its variance depends on the nature of the 

sampling scheme used. The fisheries scientist expands the num ber of tags found by 

the agent to the num ber th a t would have been found if the agents were present all 

the time, that is, the agents carry out a census of the fishery. For the derivation of 

the variance of A, see Pollock et al. (1991). The m ethod depends on three im portant 

assumptions: ( 1 ) the agents and the anglers or commercial fishermen do not miss 

any tags on fish that are examined, (2 ) the solicited tags are all reported by the 

anglers or commercial fishermen and (3) the survey design is based on probability 

sampling so that the estim ator of R  does not suffer from model bias.

1.2 Survival M odels

Radio T elem etry  S u rvival M eth od s

Another field of tagging studies is radio-tagging which is becoming a popular method 

of following wild animals for a  variety of purposes including survival analysis. An 

animal is captured by trap , dart gun or by some other method is fitted with a small 

radio transm itter and released. After release, the animal’s unique radio signal can 

be monitored until the anim al dies or its signal is lost which is a form of right 

censoring. As only marked animals are followed, it is usually possible to estim ate 

only survival rates, not population sizes or recruitment rates. Traditional survival 

analysis methods like the Kaplan-Meier distribution free methods and the Cox’s 

proportional hazards model have been used by Pollock et al. (1989).

Following Pollock (1984) and Pollock et al. (1989), we consider a random 

sample of n radio tagged animals. All tagged animals are monitored regularly so that 

the exact times of death are known. VVe assume tha t there is a fixed area to cover 

and if an animal with a functional radio is present, it is found with probability one.

Let 7 \.........Tn form a set of survival times from tagging to death. VVe assume that

these constitute a random sample from some probability distribution with density
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function f ( t )  and survivor function S(t) .  Let C \ , . . .  , Cn form a set of corresponding 

censoring times that constitutes a  random sample from some probability distribution 

with density function g(t) and survivor function G{t).  Let

Zi =  min(Ti,  Ci) and Si =  [{Ti < Ci), i =  1 , . . . ,  n (1-5)

where /  is an indicator function which takes the value 0  if the observation is censored

{Ti > Ci) and 1 if it is not censored [Ti <  Ci).

The survivor function of the lifetimes is given by

S{t) = P ( T > t ) .  ( 1 .6 )

The hazard function is the instantaneous rate of failure or death at time t given that

the individual survives until tim e t and it is given by

= lim n « s r < i  + Ai|rs«)
v 7 At-*0 A t

m (1-7)s(ty
Then the likelihood function of the parameters involved in the model is given by

£ = ri(C(-- ) /(*,-)l‘‘ [S(--,-) s M 1-*- (i-s)
i=l

If g(t) and G(t) do not involve any parameters of interest then the terms involving 

the censoring distribution can be ignored and part of the likelihood function given 

by

(i.9)
: ' = l

is used to estimate the parameters involved in L\.

If one assumes a parametric form for f ( t ) ,  standard maximum likelihood in

ference could be carried out. VVe can also find the nonparametric estimator of the 

survivor function which is the product-limit estim ator (PLE). also known as the
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Kaplan-Meier estimator. Suppose there are observations on n individuals and that 

there are k (k <  n) distinct times < £2 < - - - <  f* at which deaths occur. Let dj 

be the number of deaths at time tj  and nj  be the number of individuals or animals 

at risk at time tj,  tha t is, the number of individuals alive and uncensored just prior 

to tj. Then the Kaplan-Meier estim ator of the survivor function is given by

S ( 0  =  J J  ( u 0 )
n>

The estimator for the variance of the Kaplan-Meier estim ator of the survivor function 

is given by

0 [ S ( ( ) 1  =  [ S ( f ) I 2 £  J j_Ay d ' l l )
j : t j< t  n j \ n i  d j )

Mostly, nonparametric and semi-parametric survival methods have been considered 

for the analysis of radio-telemetry data.

The Proportional H azards M odel

In many situations, a  biologist may be interested in the influence of important co- 

variates on the survival process or on the lifetimes. An im portant class of models to 

study the association of covariates with survival times is the proportional hazards 

model (Cox, 1972). For this model the hazard function takes the form

h( t , x)  = h0(t) g{x) ( 1 .1 2 )

where x  is a vector of covariates; ho(t) is the baseline hazard function, i.e., the hazard 

function for an individual for whom g(x) =  1 when x  =  0. Usually, g(x)  is assumed 

to be of the form

g(x)  =  exp(x'3)  (1.13)

where $  a vector of unknown regression coefficients. Under this model, as the name

suggests, the ratio of hazard functions for two individuals with specified vector of
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covariates does not vary with time. In other words, different individuals have pro

portional hazard functions.

The proportional hazards model assumes that the covariates have a  multiplica

tive effect on the hazard function. This assumption seems to hold in many situations. 

There are several methods in the literature to determine whether the proportional 

hazards model is appropriate for any particular situation. If we assume the baseline 

hazard function to be of param etric form (e.g. Weibull distribution, exponential 

distribution, etc.), then the  proportional hazards models are known as parametric 

regression models.

1.3 Bayesian M ethods

In the Bayesian approach to  statistical inference problems, an effort is made to utilize 

all previously available information and combine it with new information to form the 

basis for statistical procedures. Bayes theorem describes the formal mechanism used 

to combine the new information with previously available information.

Bayes Theorem

Let y'  = (yi, - - -, j/n) be a  vector of n observations whose probability distribution

p(y | 6) depends on the values of k  parameters O' = (0 ! ,...,# * ) . Suppose 6 has a

probability density function (pdf) p(0). Then

p( y  10)p(0) =  p(p, 0) =p(0 I y)p(y)- ( 1. 14)

Given the observed data y,  the conditional distribution of 0 is given by

=  ( U 5 |
p(y)

and

p{y) =  E[p(y | 0)) =  c =
/ P(y I 0 ) p(0)dO if 0 continuous 

Hp( y  I 0 ) p(0 ) if $ discrete
( 1-16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L2

where the integral or sum is taken over th e  admissible range of 9 and E[f{9)\  is the 

mathematical expectation of f (9)  with respect to 6. We can write (1.15) as

P(6 I y)  =  c p ( y  | 9) p(6). (1.17)

The statements of (1.15) or (1.17) are usually known as the Bayes theorem. The 

pdf p(9) is called the the prior distribution of 9 and it tells us what is known about 

9 without any information from the data . In other words, p{9) is the distribution 

apriari. Also p(9 | y) is called the posterior distribution of 9 given y  or the distri

bution aposteriori and it tells us what is known about 9 given knowledge of the 

data. The quantity c is merely a normalizing constant necessary to ensure th a t the 

posterior distribution p(9 \ y) integrates o r sums to one.

Given the data y , p(y | 9) in (1.17) can be regarded as a function of 9 , when 

so regarded, it is called the likelihood function of 9 for given y  and can be w ritten 

as L{9 | y).  Thus the Bayes theorem can be w ritten as

p(9 \ y )  oc L(9 \ y)p(9).  (1.18)

The likelihood function L(9 [ y) plays a  very im portant role in Bayes theorem, since 

it is the function through which the da ta  y  modifies prior knowledge of 9.

Prior D istributions

The Bayesian approach depends on assigning probability distributions not only to 

data variables like y, but also to param eters like 9. Bayesian analysis is based on 

quantifying whatever feelings (however vague) we may have about 9 having a pdf -r. 

before having looked at data y. This distribution is then updated by the data  via the 

Bayes theorem described by (1.15) and (1.17) with the resulting posterior distribution 

reflecting a blend of the information in the  da ta  and the prior distribution. So. it is 

of importance to determine an appropriate form of the prior distribution iz.

Usually, prior distributions are specified based on information accumulated 

from past studies or from the opinions of subject-area experts. Two main methods 

of specifying the prior distributions are given below.
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(1) VVe can restrict tt to some familiar parametric distributional family ~ ( 9 \t j ) .  choos

ing r] such that the result matches our true prior belief. If reasonable approximations 

to our prior belief could be managed by using a particular distribution which will 

lead to a posterior distribution of a  nice form and which would also simplify com

putations to a great extent, then it would be sensible on our part to employ this 

distribution. It is this notion that leads to the concept of conjugate priors.

In many situations, it may be possible to select a member of that family which 

is conjugate to the likelihood function L(9 | y). In other words, choosing a prior 

distribution that leads to a posterior distribution p(9 \ y) belonging to the same 

family of prior distributions. Such types of priors are known as conjugate priors.

(2) Many times, we may not be able to find reliable information on 9 or we may 

prefer an inference based solely on data. Suppose we could find a distribution tt(0) 

that contained no information about 9 or in other words, it did not favor one value 

of 9 over another. VVe refer to such prior distributions as noninformative priors and 

we could infer that all of the information resulting in the posterior p(9 | y) arose 

from the data.

For example, suppose the param eter space is discrete and finite, i.e., 0  =  

{$i, . . .  0/} and tr(9) =  1/1 for i =  1 , . . . ,  /. Clearly, ir(9) does not favor any one of the 

value of 9 over any other value and in this sense it is noninformative for 9. Also, if 

we have a continuous bounded parameter space 0  =  [c, d] where —oo < c < d < oc 

and ~(9) = l / (d  — c) for c < 9 < d. Then 7r(0) is the noninformative prior for 9.

The Jeffreys prior offers a fairly easy way of determining noninformative priors. 

In the univariate case, the prior is given by

*•(«) =  [/(#)]:1 /2 ( 1 .W)

where 1(9) is the expected Fisher information in the model, namely

02 log L(9 | y)'
1(9) =  - E ( 1.2 0 )

d92

One can see that the form of the likelihood helps to determine the prior distribu

tion in (1.19). There are several other methods for constructing informative and 

noninformative priors, see Berger (1985, Chapter 3).
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In specifying prior distribution. Box and Tiao (1973. page 23) suggest that all 

that is important is th a t the data  dominates whatever information is contained in the 

prior. As long as this happens, the precise form of the prior is not very important. 

Next, we give a brief description of the subsequent chapters of this dissertation.

In Chapter 2, we introduce a model based approach to the estimation of the 

exploitation rate of a  fish population by combining mark-recapture procedures with 

a creel survey, which is an angler survey. In literature, most of the tag return 

models which run in conjunction with angler surveys are predominantly design based 

methods. VVe consider maximum likelihood estimation and moment estimation of 

the exploitation rate and also compare the two methods of estimation. Our model 

is for a closed population and it is a simple and useful model in the sense that we 

do not have to rely on voluntary tag returns or rewards.

In Chapter 3, we extend our model based approach to the case where we stratify 

the space-time units of the fisheries according to fishing seasons or different fishing 

areas. Stratification of the space-time units of the fisheries may be carried out for ( 1 ) 

administrative convenience, (2 ) gain in precision of the estimates of the population 

quantities or (3) it may be of interest to obtain the estimates of the parameters of 

the strata themselves.

In Chapter 4, we consider the analysis of a survival model for randomly cen

sored observations where the lifetime survivor function is a power of the censored 

time survivor function with the lifetimes following a Weibull distribution. This sur

vival model is also known as the Koziol-Green model and it is a proportional hazards 

model. The Koziol-Green survival model is useful in medical and reliability studies. 

This model could also be used for radio-telemetry survival data. VVe also consider the 

Bayesian analysis of this model by specifying parametric prior distributions for the 

parameters of the model. The Bayes estimates of the parameters of the model are 

obtained by the method of the Gibbs Sampler. VVe use simulated data to compare 

the maximum likelihood estim ator (MLE) with the Bayes estim ator of the survivor 

function. VVe show an application of this model to a real life medical data.

In Chapter 5. we incorporate covariates in the Koziol-Green survival model to
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study the effect of covariates on. the lifetimes. If the data is randomly censored and 

shows evidence that the lifetime survivor function is a power of the censored time 

survivor function then the model considered here would be appropriate to  study the 

association of covariates with lifetimes. This model is particularly useful when there 

is a substantial amount of censored observations in the data set. We consider maxi

mum likelihood estimation of the parameters of the model and we adopt a  stepwise 

procedure to select the most im portant subset of covariates from the available set of 

covariates.

Note that, throughout this dissertation, the notation MLE will also be used 

to represent maximum likelihood estim ate when working with the observed data. 

Similarly, PLE denotes product-limit estim ator or estimate.
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Chapter 2

E stim ation o f E xploitation  R ate  

by C om bining

M ark-R ecapture Procedures w ith  

a Creel Survey

2.1 Introduction

In this chapter, we introduce a model based approach to the estimation of the ex

ploitation rate of a fish population by combining mark-recapture procedures with a 

creel survey. VVe derive the maximum likelihood estimator and the moment estim ator 

of the exploitation rate and compare them  through a simulation study.

VVe use the following notations in this chapter:

F=population size

M — number of fish marked

:V= total number of sampling units

n= number of sampled units

c, =  number of fish caught in unit i

ri =  number of fish recaptured in unit i

16
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R= number of fish recaptured in all AT units 

C = number of fish caught in all N  units

u =  ^  =  exploitation rate.
F

Note that C — J2iLi <%•> R  — r i- Let r. =  £ £ = 1  ri and c- =  £?=i °i- define 

the following concepts:

C reel survey is an on-site intercept survey design where the survey agents interview 

anglers or commercial fishermen on-site about their catch.

Sam pling unit is a  portion of a day or an entire day in a fishing season.

Pierce et al. (1995) estimated the exploitation rate of native northern pike 

in seven small north central Minnesota lakes in view of the historical decline in 

the population of northern pike. They have combined a mark-recapture procedure 

with a creel survey to estimate the exploitation rate. They mark M  fish at the 

beginning of the fishing season. During the season a simple random creel survey is 

done with a portion of a  day as the sampling unit. The problem was treated as a 

two-stage sampling scheme with the mark-recapture experiment as stage 1 and the 

creel survey as stage 2. The number of fish caught in a sampling unit is assumed 

to be distributed as a  Poisson random variable. The exploitation rate u is given by 

u =  C /F . A standard estimate of u is u =  R f M , but we cannot observe R. Hence, 

an estim ate of u is u =  R / M  where R  is an estimator of R  and it is given by

f t  = tfl= *= ilL  =  OIL.
n n

which is the simple random sample estimator of the population total.

The variance of u was calculated using the formula for a two stage sampling 

scheme (Cochran 1977, page 277),

V(u)  =  Ei{V2 {u | c.)) +  14(F2(u I c.))

where Ey are the variance and expectation under the mark-recapture and Vo, F 2 

are the variance and expectation under the creel survey. They obtained variance of 

u as

V =  T r ^ ~  ~  “ )• (2’1).V/ n
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Here we adopt a model based approach to the estimation of the exploitation 

rate u for a fish population by combining a mark-recapture procedure with a creel 

survey under the same scenario as considered by Pierce et al. (1995). VVe assume 

that fish are tagged at the beginning of the season. We estim ate the total number 

of fish caught and the total number of tags returned based on a simple random creel 

survey. This approach is especially useful when the fisheries biologists do not rely 

on voluntary tag returns or rewards.

VVe assume that there cire iV available sampling units where a sampling unit 

may be a day or a portion of a day in the fishing season. The creel agents choose 

a simple random sample of n sampling units and they observe the number of fish 

caught and the number recaptured in the sampled unit i . We make the following 

distributional assumptions:

(i) c, are i.i.d. (independent and identically distributed) Poisson(A) where A is the 

average number of fish caught in unit i and it remains the same for all the sampling 

units.

(ii) r, |c,- is Binomial(c,-, p) where p =  ^  is the probability of a fish getting recaptured 

in unit i and we assume p to be the same in all the sampling units.

Due to the distributional assumptions th a t we have made above, we observe 

the following:

(a) If all N  units are sampled, then R  and C  are sufficient statistics for A and p.

(b) Based on a sample of size n, r. and c. are complete sufficient for p and A giving
f\

UMVUE (uniformly minimum variance unbiased estimator) of p and A as p =  —
c C'

and A =  —. respectively. 
n

Note that E[p) =  Ec. ^Z?(—|c.) =  Ec. -J =  p.

(c) Based on the notion that the ratio of the total number of fish recaptured to the 

total number captured is same as the ratio of the total number of fish marked to the 

total number of fish in the population, we obtain u as an estimator of u based on all 

.V sampling units. Hence

M _ R  C _ R _  __
\ r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L9

VVe can estim ate F  from the above relationship. Our main aim is to estimate u 

which boils down to estimating R  and C.

(d) Since c. and r. are sufficient for A and p, we obtain the joint distribution of 

(C , c., R, r.) and use this to estimate R  and C. Now the joint probability mass func

tion of (c., C  — c., r., R  — r.) is given by

<2-2>
where q =  1 — p. Note that c. and C  — c. are independent, also r. and R  — r. are 

independent. These facts are used in obtaining (2.2).

Note that (2.2) is also the joint probability mass function of (C, c., R, r.). 

Since R  and C  are not observed, we need to find the conditional distribution of 

(r., c. | /?, C). This is given by

{ i n s~*\ f ( c . , C - c . , r . , R - r . )
r  ' |f l ' C) O & f C )

where {R\C) is distributed as Binomial(C,p) and C  is distributed as Poisson(NA). 

Then

g{r.,c.[R,C)  =  (2-3)

I /l nwhere 9 =  —.
N

From (2.3), it is obvious that c.\C is Binomial(C,0) and (r.|c., R, C)  is hyper

geometric. Also note that c. and r. are sufficient statistics for C and R. This can be 

shown by looking at the joint distribution of ( c i , C 2 , . . . , c „ ,  r i , r 2 , . . . , r n|(7, R).

In Section 2.2, we consider the estim ation of the exploitation rate u. In Section 

2.2.1 . we obtain the maximum likelihood estim ator of u. In Section 2.2.2, we consider 

the moment estimation of u. Section 2.2.3 gives the confidence interval for the 

exploitation rate u. In Section 2.3, we conduct a simulation study to compare the 

maximum likelihood estimator with the moment estim ator of u and we also check the 

assumption of normality for the asymptotic distribution of the moment estimator of 

u. In Section 2.4. we analyze a real data  set using our model based approach.
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2.2 E stim ation  o f the E xploitation  R ate u

la this section, we obtain the MLE and the moment estim ator of the exploitation 

rate u and also construct a confidence interval for u.

2.2.1 Maximum Likelihood Estimation of u

VVe have seen in Section 2.1 that the estimation of u and F  boils down to estimating 

Ft and C. Therefore we concentrate on the maximum likelihood estimation of R and 

C and we do this in Theorem 2.1.

T h e o rem  2.1 The maximum likelihood estimators o f  R and C are given by

R  =  [/?] and C  =  [C], respectively

(i) when c. ^  r
r  r

R = N -  + — — . (2.4)
n c. — r.
C Tc =  /V - + ---- — . (2.5)
n c. — r.

(ii) when c. =  r.
/V

R = C = — c (2.6)
n

where [/?] denotes the greatest integer less than or equal to R  and the same definition 

holds for [C].

P roof: To find the MLEs of R  and C, we use the method of integer maximization of

Dahiya (1981). Considering R  and C  as parameters to be estimated, the likelihood

function of ( /2, C)  is given by

L(R,C)  = g(r. ,c . \R,C)  (2.7)

where g(r., c.\R, C)  is given by (2.3).

C ase(i) c. ^  r.

The method of integer maximization involves solving the two equations given by
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L (R ,C)  = L ( R - 1 , C )  (2 .8 )

and

L(R ,C )  = L ( R ,C  -  1 ). (2.9)

Further simplification of L(R,  C)  is given by

^ C )  =  a a - e f - ( k _ r ) f ^ R + r ) l  (2 .1 0 )

where a is a constant which is independent of R  and C.  Now from (2.8), we have

L ( R , C )
1 =

L { R -  l ,C )
Rl { C - R ) \  ( R -  1 -  r.)! ( C - c . - R  + 1 +  r.)!

(R -  r.)!(C - C . - R  + r.)! (R — l ) l ( C  — R +  1)!
R(C — c. — R  + I + r.)

(C -  R + l ) ( R - r . )

= > R = - { C +  1 ). (2 . 1 1 )
c.

Similarly from (2.9), we have

L(R,  C) 
L ( R ,C  — 1 ) 
( 1  - 0 ) ° ( C - R ) l  (C — I — c. — R + r.)l 
( C - c . - R  + r . ) \ ( l - 0 ) C - i ( C - l - R ) l  
( 1 - 0 )  (C - R ) 

(C — c. — R-\- r.)

=*► 0(C — R) =  (c. — r.). (2.12)

Using (2.11) for R  in (2.12), we get

C = N -  + .
n c. — r.

Finally, substituting for C  given in (2.5) in (2.11), we obtain

r. r
R  =  N — +

n c. — r.

C ase(ii) c. =  r.
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Note that C  is an upper bound on R. Now L(R,C) = a ( l —6)e R (R —l)...(R — c. + l). 

It is obvious that L(R ,C)  increases as R  increases. Hence R  =  C will maximize 

L{ R, C) for a given C. Now using R  =  C  in L(R, C),  we have

L{C,C) = a( 1 - 0 ) c  Cl
(C - c . ) l

hence

L(C,C)
L ( C - l , C - l )  n '

R = C = — c. 
n

Also note that if c. =  0 then

R  =  C  =  0.

This completes the proof of the theorem.

C o ro lla ry  2.1 The maximum likelihood estimator o f  the exploitation rate u is

a =  A  =  I S  (2.13)
M  M  K 1

where R is given by (2.4) in the case of c. ^  r. and by (2.6) in the case of  c. =  r..

P ro o f: The proof of the corollary follows from Theorem 2.1 and the definition of u.

2.2.2 Moment Estimation of u

In this section, we consider moment estimation of u. As we have noted earlier that

estimation of u boils down to estimating C  and R,  hence in Theorem 2 . 2  we consider

the moment estimation of C  and R.

T h e o re m  2.2 The moment estimator of C and its variance are given by

C = iV -  (2.14)
n

and
V2 A

V(C) = -------. (2.15)n
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respectively.

The moment estimator o f  R  and its variance are given by

and

respectively.

R = N -  (2.16)
n

V(R)  =  (2.17)
n

Proof: The moment estimators of C  and R  can be obtained from

C = E(C) = NX  =* C  =  iVA =  N -
n

and

R  =  E{R) = Ec E{R\C)  =  Ec(Cp) = NX p

=> R =  NpX = N - .
n

Note th a t the moment estimators are not integers but can be rounded to the nearest 

integers.

Variances of R  and C  can be easily obtained as follows:

n k )  = a i V(r , = ^
n i n

and
N 2 N2X

K(C) =  L— V{c.) =  :-----,
n e n

respectively. The above results are based on the fact that the marginal distribution 

of r. is Poisson(nAp) and that of c. is Poisson(nA). Which follow from our assump

tions that a  are i.i.d. Poisson(A) and r,-|c,- is Binomial(c,-,p) for i =  l , . . . , n .  This 

completes the proof of the theorem.

C orollary 2.2 The moment estimator o f  u is

fi =  T7—  (2-lS)M  n

and u is an unbiased estimator of  u with variance

V2A
V(u) =  — . (2.19,
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P ro o f: Using the moment estim ators of R  and C  which were obtained in Theorem
_  - M  Me.  , .
2.2 and F  =  —  = ------. we obtain

P r -

_ _  C  _  R _  Nc. r. 1 Nr.
F  M  n Me. M  n

For obtaining the mean and variance of u, we only need to look a t mean and 

variance of r . Consider,

E(r.) =  Ec.E{r.\e.) =  EcXpc.) =  nXp

n>/ »\ *  ,
* E[U) =  M h  p = n r

NX
^ E ( u )  =  — . (2 .2 0 )

Note that u is a random variable and

(,21)
Hence from (2.20) and (2.21), u is an unbiased estim ator of u since E{u — u) =  0.

Using the fact that the m arginal distribution of r. is Poisson(nAp), we can

easily obtain V(u)  which is given by

iV2 N 2 N 2 AM V2A
n * )  =  T 7 =  - n ^ ^ P  =M 2n 2 v ’’ M 2n 2 * M 2n F  M F n '

This completes the proof of the corollary.

Since u is a  random variable, we need to find V{u — u) =  E(u  — u ) 2 which is 

derived in Theorem 2.3 given below.

T h e o re m  2.3

£ ( 4 - “ >2 =  ¥ ? [ 7 - T ] -  <2'22>

P ro o f: Let us consider

E{u — u)2 =  E{u2) — 2 E{uu) +  E{u2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

Since

E(uu) =  F u[uF(ii|u)] =  E{u2),

we have

E(u -  u ) 2 =  E{u2) -  E(u2). (2.23)

v  - C a * iVr* i.i^ovv, since u =  — and u =  -7 7 —. we have
F M n

2. £ (C 2) NX(NX + 1)

and

£ (“  ) =  - ^ r -  =  - - p -  - -  (2-24)

_,v2 /V2

E (“ 2) =  M ^ £ ( r '2) =  M V n A p ( 1  +  nAp)‘ (2-25)
From (2.23), (2.24) and (2.25), we have

r-,- iV* /VA(;VA +  1)
E (“ “ “ ) =  3 7 ^ V (1 + " a f >  /S------

1

F 2M 2n

M N X
F 2M 2n

[ M N  X(F  +  nXM) -  M 2nNX(N X  +  1 )]

[N F  +  nX M N  -  M n N X  -  Mn]

n M F 1 F  J

iVA iV A/
d _ c  J*M F  n F

Therefore we have obtained (2.22) and this completes the proof of the theorem.

Next, in Theorem 2.4 we derive the conditional variance of u given u and show 

that its expected value is same as E(u  — u)2.

T h e o re m  2.4 The conditional variance o f  u given u is given by

u [N  M
(2.26)1/7*1 1 “ \ N  M

' / (u |u )  =  m  I t  ~  c

and

F[V'(u|u)] =  E(u — u)2. (2-27
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P ro o f: Consider

Also.

l^(u|u) =  E{u \u) — u .

/V2 J S p .
E{u2\u) =  -^— E{r?\u) = - ^ E { r ? \ C )

M 2n2 M 2n 2

and

£(r.* |C ) =  Er [[£(r.*|fl)]|C] .

Note that (r.|/?) is distributed as Binomial(i2,0) and (R\C)  is distributed as

Binomial(C,p) where & = -rj and p =  We can write
N  F

E(r>\R) = R j ( l - % )  + R 2£ -

Substituting (2.31) in (2.30), we get

E (r.2 |C) =  EH [ ( « £ ( 1  +

n M  M 2n2
— u- — u-

N  " F N 2 

and substituting (2.32) in (2.29), we obtain

+  u'
M 2n 2

N 2

E(u \u) =  u N  u 2
--------------h u  .n M  F

Finally, from (2.33) and (2.28) we get

u f/V Mlu [N  M l u \ N  M
v ( u u )  =  — --------- — = — ---—«v 1 1 M  I n  F.  M i n  C  .

Therefore, we have (2.26).

Now, in order to  show (2.27), we have

c-fi.v-i „ iV “  M X  M X  r t f  MElVru\u)] = EHJ f - - T ) = — -  —
iVA r/V Ml

~  M F  [n  F.
= E(u — u ) 2

This completes the proof of the theorem.

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
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As we have noted earlier, it is more appropriate to compute E(u — u)2 instead 

of variance of u, so, it is im portant to obtain an unbiased estimator of E(u — u)2 and 

we do this in Theorem 2.5.

T h e o rem  2.5 The unbiased estimator o f  E(u  — u ) 2 is given by

Nr.  f IV r. — r, . . Nr.  [ N  r. — 1
h(r. ,c.) =  —— ------------- -

n M 2 L n c. — 1
(2.34)

P ro o f: Considering the facts th a t (r.Jc.) ~  Binomial(c.,p), r. ~  Poisson(nAp), c. ~  

Poisson(nA) and

, 2 N \  N  M  N p X . N  . N  f N  , 2..
£(“~ “) = mf(« ~ 7 ) = - W ,' n ~ p) = W {'Tpk- pX)- (2'3o)

Now, it is clear that in order to obtain the unbiased estim ator of E(u — u)2. we need

to derive the unbiased estim ators of pA and p2 A.

Note that — is unbiased for pA. S tarting with 
n

_  r -2 c - _  r .2

c. 4 n nc.

we have

E [  — ) = - E c.
\ nc. / n

E{r.2\c.) -  l E (c.pq +  c.2p2)
c. — C,c. n c. - V  + Hn (2.36)

where q = I — p, p =  r.fc. and A =  c ./n .
f \  PQ

Therefore from (2.36), we can see that the bias in (——) is — as an estimator
nc. n

of p2 A. 

Now
c.pq

( c . - l )
is unbiased estim ator of pq, since

=  Ee. [ - ^ — E(pq\c.)} =  Ec.{pq) =  pq 
c. — I c. — 1

.  , C*P9 r -(c- — r -) ,where q = 1 — p. Note that    =  —;-------- , hence
c. — 1 c.(c. — 1 )

r . 2 r.(c. — r.) r.(r. — 1 )
nc. nc.(c. — 1 ) n(c. — I) (2.37)
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is an unbiased estimator of p2X. Substituting the unbiased estimators of pX and p1 X 

in (2.35), the unbiased estimator of E(u  — u)2 is given by (2.34). This completes the 

proof of the above theorem.

VVe can also show that E[h(r., c.)\C] =  K(u|u) and this is done in Theorem

2.6.

T h e o re m  2 . 6

E[h(r., c.)|C] =  K(ti|u) 

where h(r..c.) is given by (2.34).

(2.38)

P ro o f: Note that C  ~Poisson(iVA). Now simplifying (2.26), we have

N u  u N C  C
V(u|u) =

and simplifying (2.34), we have

h(r.. c.) =

M n  F  M n F  F2

N 2r. N  r.(r. — 1)
n2M 2 n M 2 c. — 1

Consider

E(r.\C) =  Ec.[E(r.\c.)\C] =  EcXc. p\C) =  C ^-p  =  ^ u .AT N

From (2.41), we obtain
N 2r N

e W c » “  5 » “ -

Consider

Nr.(r.  — 1 ) 
n M 2(c. — 1) \C =  Ec.

= Er

n M 2 (c. — 1 )

iV c.pq +  c.2p2 — c.p 
n M 2 (c. — 1 ) \C

(2.39)

(2.40)

(2.41)

(2.42)

n M 2 Ec
c.(p - p 2 + c.p2 -  p) 

c. — I \C

Np2-Ec.[c.\C) =  *V^ n -  C
n M 2 n.XPN F2

(2.43)
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Therefore from (2.40), (2.42) and (2.43), we get

iV2 r.
E[h(r., c.)\C] =  E  

Nu
n2M 2 

u
Afn ~  ~F 

=  K(u|u).

\C - E
N  r.(r. — 1) 

n M 2 c. — 1
\C

This completes the proof of the theorem.

Since p is expected to be very small, we expect r ./(c . — r.) to be a small frac

tion. Hence we can concentrate on the moment estim ator instead of the maximum 

likelihood estim ator of u.  Moreover, it is easier to derive the distributional properties 

of u.

2.2.3 Confidence Interval o f u

From the results of Section 2.2.2, it follows that

u — u
, =  —> iV(0,1 ) as n —y oo

y / E ( u - u ) 2

and we can use this to find the asymptotic confidence interval of u. In fact, u is a 

constant multiple of r. which in turn is a Poisson(nAp) variable. Hence, we know the 

exact distribution of u. However, u — u has a complicated probability distribution 

since r. is not independent of C  which is involved in u.

Therefore a large sample 100(1 — a)% confidence interval of u is given by

it ±  Zfyjh(r. ,c.)  (2.44)

where h(r.,c.) is an unbiased estimator of E(u  — u ) 2 given by (2.34) and za is the 

upper 1 0 0 (|-)th  percentile of the standard normal distribution.

2.3 Sim ulation Study

In this section, we present the results of a simulation study which compares the 

moment estim ator with the MLE of u and we check the assumption of asymptotic
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normality for the distribution of the statistic

u — u
.V =  — ............ - (2.45)

\/E (S  -  « ) 2

where E(u — u ) 2 is given by (2.22). We also check the assumption of asymptotic 

normality for the distribution of the statistic

u — u
X '  =   --------  (2.46)

yjh(r., c.)

where h(r., c.) is an unbiased estim ator of E(u — u ) 2 given by (2.34). Since X f is the 

statistic which will be considered in practice, we think it is of interest to study the 

validity of the distributional assumptions of X '.

We use the Shapiro-Wilk test to test the assumption of normality for the 

distribution of X  and X '  given by (2.45) and (2.46), respectively . Table 2.1 gives 

the biases of the moment estim ator and MLE of u. It also gives the ratio of the mean 

square errors of the MLE and the moment estimator of u for different values of M. p. 

n and A. Tables 2.2 and 2.3 give the values of the Shapiro-Wilk test statistic denoted 

by W  and the corresponding p-values for different values of M , p. n and A for X  

and .Y', respectively.

Note that F  =  M — and E { F ) is not finite since F ( - |c .)  is infinity. This can 
r. r-

be avoided if we define F  =  F0, a fixed number, when r. =  0. Note that P(r. =  0) 

is very small. However, variance of F  can be computed. For simulations, F  will 

have to be defined to be some large but fixed constant whenever r. =  0. Otherwise, 

F  =  oo whenever r. =  0.

For the simulation study, we vary the values of M  (number of fish marked or 

tagged), p (probability of capturing a tagged fish in any unit i), n (number of units 

sampled) and A (the average catch rate in any unit i). We fix the total population 

size F  = 15000 and the num ber of available sampling units iV =  150.

We generate c. from Poisson(nA), C — c. from Poisson((iV — n)A), r.|c. from 

Binomial(c-.p) and (R — r.)\(C — c.) from Binomial(C — c.,p). We generate K  =  1000 

such samples for a fixed F . M ,  .V, n and A. The MLE of u is computed using (2.13)
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Table 2.1: Biases and Ratios of the MSEs of the MLE and Moment Estimator of u.

M P n A Bias(Moment) B ias (M LE) Ratio(MS Es)

500 0.033 15 0 . 6 0.0000936 0.0000956 1.0018165

500 0.033 15 2 -0.0003 -0.0003 1

500 0.033 25 0 . 6 0.0000751 0 0.0000751 1

500 0.033 50 0 . 6 -0.000086 -0.000086 1

500 0.033 1 0 0 0 . 6 0.0004231 -0.000553 0.9734267

500 0.033 1 0 0 1 0.0005007 -0.000525 0.9899933

1 0 0 0 0.067 15 0 . 6 0.0002534 0.0002534 1

1 0 0 0 0.067 15 4 -0.000338 -0.000338 1

1 0 0 0 0.067 25 1 -0.00025 -0.00025 1

1 0 0 0 0.067 1 0 0 0 . 6 0.0001269 -0.000386 1.023187

1 0 0 0 0.067 1 0 0 1 0.000015 0.000015 1

2500 0.17 15 0 . 6 -0.00015 -0.000138 1.0078171

2500 0.17 15 2 -0 . 0 0 0 0 2 -0 . 0 0 0 0 2 1

2500 0.17 25 0 . 6 -0.00008 -0.000078 1.0020531

2500 0.17 25 2 0.0000701 0.0000701 1

2500 0.17 50 0 . 6 -0.000071 -0.000071 1

2500 0.17 1 0 0 0 . 6 0.0000885 -0.000108 0.9998873

2500 0.17 1 0 0 2 0.0000789 0.0000789 1

3500 0.23 15 0 . 6 -0.000104 -0.000081 1.0157645

3500 0.23 15 4 0.0000405 0.0000405 1

3500 0.23 25 0 . 6 -0.00009 -0.000084 1.0062969

3500 0.23 25 2 0.0000485 0.0000485 1
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Table 2.1 (continued): Biases and Ratios of the MSEs of the MLE and Moment 

Estimator of u.

M P n A Bias(Moment) B ia s (M L E ) Ratio(MS Es)

3500 0.23 50 0 . 6 -0.00005 -0.00005 1.0016363

3500 0.23 50 1 0.0000361 0.0000361 1

3500 0.23 75 0.5 -0.000077 -0.000077 1

3500 0.23 75 1 -0.000052 -0.000052 1

3500 0.23 1 0 0 0 . 6 0.0000575 -0.000075 1.0183756

3500 0.23 1 0 0 4 0.0000539 -0.000092 0.9979816

5000 0.33 15 0 . 6 -0.000146 -0.000098 1.0299431

5000 0.33 15 2 8.1333E-6 8.1333E-6 1.0036773

5000 0.33 25 0 . 6 -0.000066 -0.000041 1.0206465

5000 0.33 25 1 0.0000145 0.0000253 1.0092577

5000 0.33 50 0 . 6 -0.000045 -0.000038 1.0139726

5000 0.33 50 4 -0.000032 -0.000032 1

5000 0.33 75 0 . 6 -0.000015 -0 . 0 0 0 0 1 2 1.0094264

5000 0.33 75 2 -5.6E-6 -5.6E-6 1

5000 0.33 1 0 0 0 . 6 0.0000451 -4.867E-6 1.0694747

5000 0.33 1 0 0 4 0.0000463 -5.067E-6 1.0255549
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and the moment estim ator of u is computed using (2.18). The biases of the moment 

estimator and MLE of u are
1 A

Bias(M oment)  =  — u) (2-47)
K j=i

and

B ia s (M L E )  =  £ ( « i  -  u), (2.48)
n  j =i

respectively. The mean square errors (MSEs) of the moment estimator and MLE of 

u are

1 ^
M S E ( M o m e n t )  =  -77 ^ ( u j  — u ) 2 (2.49)

*  i=i
and

M S E ( M L E )  =  i  £ ( S y -  u ) \  (2.50)
J=l

respectively. The ratio of the two MSEs is

RaHo(M S E s )  =  (2.51)

VVe can see from Table 2.1 that the moment estimator of u performs moderately 

better than the MLE of u whenever we sample large number of units (n > 75) and 

p is sufficiently large (at least 0.23). In most of the cases, both the estimators show 

negligible negative biases.

Table 2.2 shows that for a small p =  0.033, the distribution of X  is close to 

:V(0,1 ) when n is at least 50 and A is at least 8 . When p is increased to 0.067. 

the distribution of X  is close to iV(0,1) for n =  25 and A =  4. For p = 0.17. the 

distribution of X  is close to iV(0,1 ) for n =  15 and A =  4. When p is increased to 

0.23, the distribution of AT is close to iV(0,1) for n as small as 15 and A =  2. These 

results indicate that if p is small, it would be appropriate to sample a large num ber 

of units.

From Table 2.3, we can see th a t the convergence of distribution of X '  given 

in (2.46) is much slower than X .  For the distribution of .V' to be close to normal, p 

has to be sufficiently large (at least 0.13) and one needs to sample a large number 

of units.
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Table 2.2: Shapiro-Wilk Test o f Normality for X.

M P n A W p — value

500 0.033 15 2 0.856427 0 . 0 0 0 1

500 0.033 15 8 0.960543 0 . 0 0 0 1

500 0.033 25 8 0.98006 0 . 0 0 1 2

500 0.033 50 4 0.981252 0.0065

500 0.033 50 8 0.989722 0.9150

500 0.033 75 2 0.982177 0 . 0 2 0 1

500 0.033 75 4 0.990694 0.9638

500 0.033 1 0 0 2 0.983107 0.0527

1 0 0 0 0.067 15 8 0.981926 0.0150

1 0 0 0 0.067 25 4 0.983289 0.0624

1 0 0 0 0.067 50 2 0.983719 0.0908

1 0 0 0 0.067 75 2 0.991274 0.9797

1 0 0 0 0.067 1 0 0 1 0.984959 0 . 2 2 2 0

2500 0.17 15 4 0.983955 0.1099

2500 0.17 25 2 0.98591 0.3700

2500 0.17 50 1 0.986603 0.4930

2500 0.17 75 0 . 6 0.983828 0.0993

2500 0.17 1 0 0 0 . 6 0.986823 0.5325

3500 0.23 15 2 0.98257 0.0308

3500 0.23 25 1 0.982103 0.0185

3500 0.23 50 1 0.986633 0.4983

3500 0.23 1 0 0 0 . 6 0.985634 0.3237
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Table 2.3: Shapiro-Wilk Test of Normality for X'.

M P n A W p — value

500 0.033 15 8 0.922441 0 . 0 0 0 1

500 0.033 25 10 0.895131 0 . 0 0 0 1

500 0.033 75 1 2 0.96493 0 . 0 0 0 1

500 0.033 75 25 0.977147 0 . 0 0 0 1

1 0 0 0 0.067 75 2 2 0.982095 0.0183

1 0 0 0 0.067 1 0 0 15 0.981946 0.0154

2 0 0 0 0.133 50 15 0.982186 0.0203

2 0 0 0 0.133 75 1 0 0.982077 0.0179

2 0 0 0 0.133 1 0 0 8 0.983315 0.0639

2500 0.17 50 13 0.982977 0.0465

2500 0.17 75 8 0.982376 0.0250

2500 0.17 1 0 0 5 0.981817 0.0132

3000 0 . 2 75 5 0.982076 0.0179

3500 0.23 50 8 0.983345 0.0656

3500 0.23 75 4 0.982013 0.0166

3500 0.23 1 0 0 4 0.98258 0.0311
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2.4 D ata  Analysis

In this section, we analyze a  data set using our model based method. The data was 

collected from Medicine lake, Minnesota by the State of Minnesota, Department of 

Natural Resources in 1988-1989 to study the exploitation of northern pikes. This 

data has been analyzed in the paper by Pierce et al. (1995). The data  was collected 

from May, 1988 to February, 1989. The sampling unit is a  5 hour (summer) or 3 hour 

(winter) period. Pierce et al. (1995) used only the data  from May to October and 

also considered two s tra ta  (weekday vs weekend and holiday). For our analysis we 

do not distinguish between the weekday and weekend or holiday. Table 2.4 gives the 

data that was collected from Medicine Lake. Table 2.5 gives the moment estimate 

of u and an estim ate of its variance and also a 95% confidence interval of u. It is 

likely that we may obtain an under-estimate of the actual number of fish caught, 

since the creel clerks may concentrate more on monitoring tagged fish captured by 

the anglers.

Table 2.4: Data from Medicine Lake, Minnesota.

M 'V n Observed captures (c.) Observed recaptures (r.)

854 741 157 243 32

Table 2.5: Estimates of the Annual Exploitation Rate (u).

u 0.1769

E(u — u)2 =  h(r.,c.) 0.0009509

95% Confidence interval of u (0.1164,0.2373)
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C hapter 3

E stim ation  o f  E xploitation  R ate  

by Stratifying

th e Space-T im e U nits o f the  

Fishery

3.1 Introduction

In this chapter, we extend our model based approach of Chapter 2 to the case where 

we stratify the space-time units (iV) of the fishery to obtain an estim ate of the 

exploitation rate u. We may stratify the space-time units according to different fishing 

seasons (summer, fall, winter and spring). If we are estimating the exploitation rate 

of a fish population in a large water body (lake, pond, etc.) which spreads over 

a large area (perhaps over two or three neighboring states), then we would like to 

stratify the space-time units according to the different areas (states). Since each area 

will have their own fishery office and it would be of interest to obtain the exploitation 

rate estim ate in that particular area (state) in addition to the estim ate of the overall 

exploitation rate of the fish population. Similarly if stratification of the space-time 

units is done according to the fishing seasons then we would probably like to obtain

37
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the exploitation rate estimates for each season in addition to the estimate of the 

annual exploitation rate.

In stratified sampling the population of /V units is divided into L nonoverlap

ping strata  of known sizes /Vi, /V2, such that together they comprise the

whole of the population i.e., /Vt-f N2+  h Nc = N.  There axe many reasons why

one may adopt a  stratification scheme; some of the important reasons are: (1) If 

the population is heterogeneous then stratifying the population into homogeneous 

s tra ta  will reduce the variance of the  population estimators and hence increase the 

precision of the estimators. (2 ) Stratification may be done because of administrative 

convenience; for example, the agency conducting the survey may have field offices, 

each of which can supervise the survey for a part of the population. (3) It may be of 

interest and importance to estim ate the parameters for the s tra ta  themselves, hence 

yielding greater information.

If we adopt a  stratified random sampling scheme i.e., simple random samples 

of size n2, . . . ,  n/, are chosen from the L different strata, then the population 

mean n  can be estim ated by
_ _  E t i  Nhijh

N

instead of the sample mean
- E L i  nhQhy  = --------------

T l

where Qh is the sample mean of stra tum  h and n =  nt -I h n £,. We would prefer

y3t as an estimator of the population mean, since in y3t the estimators from the 

individual strata receive their correct weights N h /N  (see Cochran 1977, page 91). 

The variance of y3t is given by

L /V2
=  £  y$V(y>)

k=l

where V{yh) is the variance of the simple random sample mean yh from stratum  h. 

For our model discussed in C hapter 2, we now stratify the N  available sampling

units into L strata of sizes /Vl? iV2, . . . ,  such that i \ \+  zV2 4 *  b = N. We

choose simple random samples of sizes n t . n2, . . . .  n l from L different strata such
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that rct +  rc2+  F =  n. We observe the number of fish caught and the number of

tagged fish captured in the sampled units in each stratum . Then the total catch and 

the total number of recaptures in each stratum  are estim ated and all the stratum  

estimates are pooled to obtain the estim ate of the overall exploitation rate u.

We use the following notations in this chapter:

F  =  population size 

M =  number o f fish marked

:V/j= total num ber of sampling units in stratum  h

n/,= number of units sampled in stratum  h

rih =  number of fish recaptured in unit i in stratum  h

Cih — number of fish captured in unit i  in stratum  h

Rh= number of fish recaptured in all the Nh units in stratum  h

Ch= number o f fish captured in all the Nh units in stratum  h

C  =  total number of fish captured in ail the L stra ta

R=  total number of fish recaptured in all the L s tra ta

u =  — =  exploitation rate.
F

Note that Ch =  E i=i Cih and Rh =  rih.

Let r,h =  rih, c h = c ,a ,  c . .  =  E L i  E"=i Q/i,

r -  =  E L i  rihi C  =  E L i  R = Z L i  Rk, *  =  E L i  u

and n =  Ea=i n h•

Simple random samples of units are chosen from Nh units in stratum  h and 

sampling is done independently in each stratum . We make the following assumptions:

( i )  Cih are i.i.d. Poisson(A/l ) for h =  1 , . . . ,  L.

( i i )  r,-/i|c,-A is Binomial(c,A, p) for h =  1 , . . . ,  L where p =

We assume p the probability of a recapture to be the same for all the units in all the 

strata.

We note the following:

(a) r_h and c,h are complete and sufficient for p and A^.
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(b) p =  — and Ah =  —  are UMVUE of p and Ah, respectively. Also p =  —  is the
C.. 72/̂  C.h

UMVUE of p based on the fact that rji|cA is also Binomial(c.h,p)- 

Note that

E(p) =  Ec._ [ E ( ^ | , . ) ]  =  Ec.. [ ^ ]  =  p, (3.1)

also

E(p)  =  Ecil [ e ( ^ M ]  =  Ecj, [ ^ ]  =  P■ (3-2)

(c) Our main aim is to estim ate u which boils down, to estimating Rh and Ch for

h =  L L.

Since

and

hence

A Ch
u = 22th =  I

M  R _  E L i  Rk

f  C  E L t  Ch

E h =  1 Ch _  E h = l Rh.
F ~ M

u =  (3-3)M
(d) Since c.h and r.h are sufficient for A/, and p respectively, we obtain the joint distri

bution of {Ch,c.h, Rh, r,h) and use this to estim ate Rh and Ch- The joint distribution 

of ( ch, Ch ~  c.h, r.h, Rh -  r.h) is given by

c, _ „  „  , e~nh'Xh{nhXh)Ch e - {Nh- nh)Xh[(Nh -  nh)*h]Cl'~Cjl „
C.ht 1*.h) “  i />o \ i  ^Ch'~ (Ch c,h) *

f C ' h \ p ’- . h q C h - r j ,  ( C h .  ~  C - ^ \ p R h - r  h - R h + r  h

\ r .h j  \ R k - r . h J
(3.4)

where q =  1 — p.

Note that c.h and Ch — c.h are independent. Also rh and Rh — r.h are independent. 

These facts are used in obtaining (3.4).
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Note that (3.4) also gives the joint probability mass function of (Ch, c h, Rh, Ta)- 

Since, and C\  are not observed, we need to find the  conditional distribution of 

{r.h- c h | Rh, Ch). This is given by

z.r_ .  i d  r* \  f{c.h,Ch Cjl,r_h, Rh r A)
h^ ’C , \ R M  = -------S l ( & | c ; ) j 2-(c o —

where (Rh\Ch) is distributed as Binomial(CA.p) and Ch is distributed as Poisson(iV/lA/l). 

Then

(£ )
where 9h =  jfc.

From (3.5), it is obvious that c.h\Ch is BinomialfC*,#*) and (r  a|c.a, Rh, Ch) is hv- 

pergeometric. Also note that c./, and r  a are sufficient statistics for Ch and Rh-

In Section 3.2, we consider maximum likelihood estim ation of u under strati

fication and in Section 3.3, we consider the moment estim ation of u. In Section 3.4. 

we present the results of a  simulation study similar to the study done in Chapter 2. 

In Section 3.5, we analyze the data set considered in Chapter 2 by stratifying the 

data into four strata.

3.2 M axim um  Likelihood E stim ation  of u

As we have noted in Chapter 2, finding the MLE of u boils down to finding the 

MLEs of Rh and Ch for h =  ! , . . . , £ .  Considering Rh and Ch for h =  ! , . . . . £  as 

parameters to be estimated, we find MLEs by integer maximization of (3.5) with 

respect to Rh and Ch

in order to use the method of Dahiya (1981) for integer maximization, we write

L(Rh,Ch) = h.(r.h,c.h\Rh,Ch)

where L(Rh,Ch)  is the likelihood function of (Rh,Ch). The integer maximization 

involves solving the two equations given by

L{Rh.Ch) =  L{Rh — L.Ca)
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and

L{Rh,Ch) = L { R h , C h -  1 ).

Following the same steps as in Theorem 2.1, the MLEs of Ch and Rh for 

h =  1 , . . . , £  when c a r  a are given by

Ch = Mh—  +  r 'A - (3.6)
Tlh C.h r.h

and

Rh — Nh 1   (3.1 )
nh c.h — r_h

When c.h =  a ,  note that Ch is an upper bound on Rh- Now L{Rh,C'h) =  

a{ 1 — 9h)Ch Rh{Rh — 1) • • • (Rh — C'h +  1 ) where a does not depend on Ch and Rh- It 

is obvious that L{Rh,Ch) increases as Rh increases. Hence Rh = Ch will maximize 

L{Rh,Ch) for a given Ch- Now using Rh =  Ch in L{Rh,Ch), we have

ChiL(Ch,Ch) = a ( l - 0 h f ^
{Ch — c.a)!

Hence

Also, if c a =  0 then

. L(Ch,Ch) , ^  _  Nh 
L{Ch — 1 ,Ca — 1) *

Rh = Ch = — c.h. (3.8)
nh

Rh = Ch = 0 .

Note that the integer MLE Ch of Ch and Rh of Rh are given by Ch =  [Ch] and 

Rh =  [Rh], respectively. Where [a] denotes the greatest integer less than or equal to 

a and Ch, Rh are given by (3.6), (3.7) and (3.8).

Hence the MLE of u is given by

(M )m  h= 1
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3.3 M om ent Estim ation o f u

Here we consider the moment estimation of u under stratification. As we have seen 

previously, to obtain the moment estimator of u, we need to first obtain the moment 

estimators of Ch and Rh for h =  1 , . . . ,  L.

The moment estimators of Ch and Rh can be obtained from

C h  =  E { C h ) =  iVfcA/i =>• C h  =  AftAft =  Aft—  (3.10)
nh

and

Rh = E(Rh)  =  EchE(Rh\Ck) =  Ech(Chp) = NhP^h

=> Rh =  /VftpAft (3-11)

where p is an estim ator of p. Note that the moment estimators are not integers but 

can be rounded to the nearest integers.

Since p is expected to be very small, we expect r^/(c.ft — r.ft) to be a small 

fraction. Ignoring this fraction, we can concentrate on moment estimators instead of 

MLEs of Rh and Ch- We can obtain two unbiased moment estimators of u depending 

on what we choose as an estim ator for p.

C ase(i) If we choose p = r_h/c_h to be an estim ator of p then an unbiased estimator

of u is

«l =  T7 2 L  r-h (3-12>M  ft=L rih
and

£ ( a i )  =

= i f t ^ pm  h= 1

=  E(u).  (3.13)

Note that u is a random variable and

L  ,  L i LE(“> = 4 E £«?») =  4 E =  77 E M h P -  (3-14)
r h= I r  h=l M h= I
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Hence, ut is an unbiased estimator of u since E(ui  — u) = 0. It can be shown 

that the marginal distribution of is Poisson(nfcA^/)). As in the case of without 

stratification, we can derive

\2 _  p (.-,2

but

hence

Now. since

and

we have

E (u i — u) =  £ (u 2) — 2 £ (d iu ) 4- E(u )

E(uiu)  =  £ u[u£(ui|u)J =  E (u 2),

EC&t -  u)2 =  E{u\) -  E{u2). (3.15)

1 £  Nk
“ i =  77  r* ,

1
E(u2) =  E{^jrch)2

t  h= I
L L- 1  L

= 4 E C Z c l  +  i Z  E
k = l  h ~ l  b = h + 1

=  - ^ ( E ^ W ^ A A +  l ) + 2 x i  j r  NhNkXkXk). (3.16)
h = l  h = l  k = h +-1

It can be easily shown that

i L ,y2 L- 1  L
E(u2) = — ( T :  — XhpjrihXhP -f 1) +  2 ^  5 3  i W ^ p 2). (3.17)

-W /i= l n /l  ft=l fc=A+l

Using (3.15), (3.16) and (3.17) we get

Lrp( - >2 i T- '  \r > r^h  A/.
E (“ ‘ - u) = m f S ,v,' a' ' [7 _ T i- (3.18)

We can derive the unbiased estimator of E{u.\ — u)2 on the same lines as we 

did in Theorem 2.5. Hence the unbiased estimator of E(ui  — u ) 2 is

u i  \ 1 v '-V fi ,-V/i r.h — 1 x , n ,hi(r.h,cM) = —  2 ^ — rA(---------------- - .  3.19
-V' aTi C-A _  1
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As in Section 2.2.3, without stratification case, a large sample L00(!-«)%  confidence 

interval of u is given by

“ i ±  v ^ l (r -A,c-A) 

where h ^ r ^ c ^ )  is given by (3.19).

C ase(ii) If we choose p =  —  to be an estimator of p then the estim ator of u is given
c..

by
r "  r '  ^  t o  o r \ \

U2 = m Z ^ cj ' (3-20)

and

£ (« j ) = M  c.. “  nh 

I Nh. w-,, r — C.A .

“  A ? S ^ (— 1'

=

= ^ X > a„
' 1 h=l

since c./,|c.. is Binomial(c.., — -——). Hence u2 is also an unbiased estim ator of u.

=  £ (« ), (3.21)

rih^k 
Ylh=l nh^h

It is more appropriate to use p rather than p as an estimator of p since we 

are assuming the probability of recapture to be the same in all the strata . Hence 

we prefer to use u2 rather than  u t as an estimator of the exploitation rate u. Also, 

simulation results in Section 3.4 show that u2 has a smaller mean square error (MSE) 

as compared to U[.

As in the case of without stratification, we derive E(u2 — u)2 rather than the 

variance of u2. In Theorem 3.1 we obtain £ ( u 2 — u)2.
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T h eo rem  3.1

where

E{u2 - u ) 2 =  -  p){X -  i){^2 ahp.h)2 +  p(l  - p ) Y , alP-h.
iV1 h=  1 A=l

L
+Ap2 ^2 ah{ak -  l)p^]

A=l

iVk
o-h =  — , 

nh
n-h^h

P-A —
£ a=  I n h^h ’ 

L
A =  ^  " nh\h 

a= i

and u2 is given in (3.20). 

P roof: Note that

E(u2 -  u)2 =  E{u2) -  E(u2),

c.. is Poisson(££=l n/iA/J, r..|c.. is Binomial(c..,p) and  ca|c.. is 
nh^h

Ylh=l nh^h
Binomial(c.., ------- —).

Hence

m )  = « £ r ± ^ r

-  t
1 A = l  n h LT. h = l  k = h + l  11 h Tlk --

1 rv -  tv  ,  v -‘ ^  %  N t  r2

M  A =  I r t A C -  A = 1  f c = A + l  k  -

But

=  £ - i E (c2Ar 2-lc- )

^ c . .^ - [ ( c . .p .A( l  —  p . h )  +  C2 p \ ) { c . .  p ( 1 - p ) + C 2 p2)]

£ [p .a (1  ~ P .a )p (1  ~ P ) + c ..(p 2p./,(l -  p.h) + P 2aP(1 - p ) )  + c 2 p2Ap2] 

(P.a( I -  P.a) +  Ap2A)(p( L -  p) +  Ap2) +  \ p 2k p 2 . (3.25)
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To obtain (3.25), we have made use of the fact that given c„, r„ and c a are indepen

dently distributed. Next we derive

E  ^C A C jfc^  =  E C L E  (c.ACjfcr2|c . .)

=  E c„ ^ j [ { c l  P h  P M  -  c .. P M  p.Jt)(c.. p( 1 -  p) +  c2 P 2 )]

=  E [ - p m P m p ( 1 -  p) +  c . . { - p 2p m Pm  +  P.hPMp( 1 -  p ) ) +  c2 PMPMP2] 

=  (p( 1 ~  P) +  Ap2)(Ap.Apjt -  p m Pm ) +  Ap2p.Ap.A- (3 .2 6 )

In d er iv in g  (3 .2 6 ) w e h a v e  u sed  th e  fact th a t  (c.a, c.a |c„) an d  ( r j c „ )  are in d ep en d en tly

d istr ib u ted . A lso  for g iv e n  c  th e  jo in t  p rob ab ility  m ass fu n ctio n  o f  c.a and  c.a is

M u ltin om ia l(c„ ,p .A ,p jt)- F rom  (3 .2 4 ) , (3 .2 5 ) and (3 .26 ) w e g e t

=  T H \ . Y l a h E ( ^ c2h ) + 2 i  £  a ha kE (^ jC M C M )]
lVl A=l - h= l  fc=A+l --

=  Tr2 [ M 1 ~  p) +  Ap2) H  a ^(P.A(l -  P.a) +  Ap2a) +  Ap2 £  OaPji
-v/ A=l A=l

L - 1  £,

+ 2 (p (  1 -  p ) +  Ap2 ) a Aa fc(Ap.AP.A -  Pm Pm )
A=l k=h+1

L - l  £,
+2A p 2 5 D  S  a A«A:P.AP.fc]- (3 .2 7 )

N ow  rew ritin g  (3 .1 6 ) w e  h a v e

£ (“ 2) =  +  
r  A=1 A=l

I  L  L

=  P2 [(A X* OaP.a)(A ^  OAP.A +  1)]
A=t A=1

=  ■fe'[A2( S  a hP.h)2 +  A 5 ^  cap.a]
*W A=1 A=I

=  -777[A2P2( 5 I  a hP-h)2 +  Ap2 ] T  oap.a]- (3 .2 8 )
lVl A=l A=1

H en ce from  (3 .2 3 ), (3 .2 7 ) an d  (3 .2 8 ) , w e have
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E(u2 - u ) 2 =  T H (b  +  (A -  l)P2 ] E aA P -* + (A - l) ( J 3 a fcpA)2] 
y i  h= i a = i

+ V ( £  a h p j , ) 2  -  A2p 2( £  <*aP.a)2 -  Ap2 £  <*aP.a)
A=l A=l A=l

=  1 7 2  5 1  “ f o *  +  P ( X  ~  l ) ( 5 I  a h P . h ?  +  P 2 (A  -  1) Y ,  a h P  A
iW A=L A=1 A=l

+ P 2 (A  -  1 )2 ( 5 3  ° a P - a ) 2 - P 2A(A -  I ) ( 5 Z  a hP.h? ~  Ap2 5 3  o.hP.h)
A=1 A=L A=l

=  o a P .a ) 2 [(A  -  l ) p ( l  +  p (A  -  1) -  A p )] + p Y  a h P a
iV1 A=1 A=l

+ P 2 A 5 3  « aP-A - P 2 E  a APA -  Ap2 5 3  ahP.h)
A=L A=1 A=L

=  ITIPC1 “ P)(A ~  l ) ( 5 3 a ^ ) 2 + P(l  ~ P )  5 3 a AP-A
W A=L A=1

L
+ A p 2 5 3  g a(«A  -  l )p .A .

A=l

Hence we obtain (3.22) and this completes the proof of the theorem.

It is of interest to find the unbiased estimator of E{u2 — u)2 and we do this in 

Theorem 3.2.

T h eo rem  3.2 The unbiased estimator o f  E(u2 — u)2 is given by

l / \  ̂ 17r " V ' \2 /■ST' ^  \2 i ^A / ^A r .A — 1 xlh2(r A, c A =  —  (—  2^ — c h -  (5^  — r.hy  + Y  — r-A(----------------r -M 2 c.. “  nh "  nh nk nh c h -  I
(3.29)

Proof: Note that, u\ is an unbiased estimator of E(u\),  so to find an unbiased 

estimator of E{u2 — u ) 2 it is enough to find an unbiased estim ator of E{u2). Note 

the following:

g ( — y -) =  aaP2- (3.30)
nh

E {— ) =  pAfc (3.31)
nh

and
nr r .h(r .h I )  x 2 \ , o  o n ,
£ ( — 7- rr) =  P ( 3 - 12nh(c.h — 1 )
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Hence the unbiased estim ator of E ( u 2 ) using (3.30), (3.31) and (3.32) is 

f-, 2 , 1 V* ^  A W r j i - l ) ,E<“ ) = / s r C p - r-*(r-*-1) + 2 E  E  ——r.<.  ̂+ E  — /, ._■) ]
M  h=l n h h=l k=h+1 nfl nk  A=l Uh 1C-A 1 '

1 rvV" \2  V"" f ^ h rjl  ̂M /.I o.-»\
=  ( 1

Hence from (3.27) and (3.33) we have

l i  \   ̂ ri T"  NT' \2  / V "  ^  \2  , V '  ^  r -A  ̂mM o ,,  c A) =  t h [ ( —  2 ^ — c-a) -  ( L  ~ r -A) +  2 -  ~ r ^ ( ~  -  
*'* h h=l  ̂ /i=l

This completes the proof of the theorem.

Confidence Interval o f  u

W e  can construct a confidence interval of u by considering u2 to be the estimator of 

u. As mentioned earlier and the simulation results of Section 3.4 show that u2 has 

the least MSE as compared to the MLE and the other moment estim ator ui of u. It 

follows that

Y  =  - .-.= != = = = = : -» /V(0,1) as n —»■ oc. (3.34)
\ / E (&2 -  “ )2

Hence a  large sample 100(l-a)% confidence interval for u is given by

« 2  ±  \ / M r .A, c.h)

where M o , ,  c.h.) is given by (3.29).

3.4 Sim ulation Study

In this section, we compare the MLE u given by (3.9), the moment estimators ut 

given by (3.12) and u2 given by (3.20) of u . W e  also check the assumption of normality 

for the distribution of the statistic Y  given in (3.34).

For the simulation study we assume the population size to be F  =  15000. YVe 

consider three s tra ta  with sizes iVt =  125, iV2 =  105 and 'V3 =  120. VVe vary the 

values of \ I . the s tra ta  sample sizes n l? n l? rc3 and the average catch rates of the 

three strata. At , A2 and A3. YVe generate the total observed catch (c *) and the total
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observed recaptures (r j J  in each stratum  in the same manner as we did in Section

2.3. The MSE of each estim ator is computed, by generating A'=1000 samples, in the 

same way as we did in Section 2.3. The MSE of ui is represented by MSE(fii), VISE 

of u2 is represented by MSE(u2) ami MSE of MLE is represented as VISE(MLE). We 

define the following ratios of MSEs:

R U l  =  M S E ( u i ) / M S E ( u2), (3.35)

RU2 =  M S E ( M L E ) / M S E ( u l ) (3.36)

and

RU3 =  M S E ( M L E ) / M S E ( u 2). (3.37)

Table 3.1 gives the ratios RUl, RU2 and RU3.  We can see that the moment 

estimator u2 performs better than Ui and the VILE of u for all values of p. The VISE 

of tit and the VISE of VILE are close for most cases.

Table 3.2 gives the values of Shapiro-Wilk test statistic (IV) and the corre

sponding p-values for testing the assumption of normality for the asymptotic dis

tribution of Y .  VVe can see that for small values of p, it is imperative to sample 

large number of units from each stratum , for the asym ptotic distribution of Y  to be 

close to -V(0,1 ). We also checked the assumption of normality for the asymptotic 

distribution of Y  by replacing E(u2 — u ) 2 by its unbiased estimator h2(r.h, c./,). We 

found the convergence of the distribution of Y  in this case to be very slow. Since in 

all practical situations only an estimate of E(u2 — u ) 2 will be available, we need to 

sample large number of units from each stratum  for the asymptotic distribution of 

Y  to be close to iV(0,1).
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Table 3.1: Ratios of the MSEs of the Moment Estimators and the MLE of u.

p «i n 2 n3 Ai a 2 a3 RU l RU2 RUZ

0.033 5 1 0 8 1.5 1 1 .2 1.1553952 0.9852173 1.1383153

0.033 •5 1 0 8 2 2 . 1 1.5 1.1584459 0.9900778 1.1469516

0.033 5 1 0 8 4 2 3.5 1.084626 0.9963156 1.0806299

0.033 41 50 35 1.5 1 1 .2 0.9971051 0.9522328 0.9494762

0.033 41 50 35 4 2 3.5 1.0320238 0.9795325 1.0109008

0.067 5 1 0 8 4 2 3.5 1.1359066 0.9965985 1.1320427

0.067 2 0 15 2 1 2 2 . 1 1.5 1.0030873 1.0044495 1.0075505

0.067 2 0 15 2 1 8 6 4.5 1.0062164 1.0091773 1.0154507

0.067 41 50 35 2 2 . 1 1.5 1.0594631 0.9952559 1.0544369

0.067 41 50 35 8 6 4.5 1.0373242 1.0289903 1.0673965

0.167 •5 1 0 8 2 2 . 1 1.5 1.1170693 1.0009484 1.1181288

0.167 2 0 15 2 1 2 2 . 1 1.5 1.0024904 1.0106171 1.013134

0.167 2 0 15 2 1 8 6 4.5 0.9999995 1.002695 1.0026946

0.167 41 50 35 1 1.5 1 .2 1.0341983 1.0100545 1.0445967

0.167 41 50 35 4 2 3.5 1.0451043 0.9977598 1.0427631

0.233 •5 1 0 8 2 2 .1 1.5 1.1249345 1.0061599 1.1318639

0.233 2 0 15 2 1 4 2 3.5 1.0032173 1.0056003 1.0088356

0.233 41 50 35 1.5 1 1 .2 1.0275223 1.0281708 1.0564684

0.233 41 50 35 4 2 3.5 1.0343155 1.0137309 1.0485175
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Table 3.2: Shapiro-Wilk Test o f Normality for Y .

p n t n2 n3 Ai A2 A3 W p — value

0.033 5 10 8 2 2.1 1.5 0.903873 0.0001

0.033 41 50 35 1.5 1 1.2 0.964728 0.0001

0.033 41 50 35 4 2 3.5 0.982709 0.0356

0.067 •5 10 8 4 2 3.5 0.97345 0.0001

0.067 20 15 21 4 2 3.5 0.982935 0.0446

0.067 41 50 35 2 2.1 1.5 0.981975 0.0159

0.067 41 50 35 4 2 3.5 0.985653 0.3268

0.167 5 10 8 2 2.1 1.5 0.980378 0.0019

0.167 5 10 8 8 6 4.5 0.984594 0.1755

0.167 20 15 21 1 1.5 1.2 0.985056 0.2354

0.233 •5 10 8 4 2 3.5 0.980654 0.0028

0.233 20 15 21 2 2.1 1.5 0.984935 0.2187

0.233 41 50 35 1.5 1 1.2 0.989209 0.8742
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3.5 D ata A nalysis

In this section, we analyze the data on Medicine Lake, Minnesota; which was also 

considered in Section 2.4. Here we stratify the sampling units (N ) into four strata. 

Table 3.3 gives the stratified data and also gives the information about the available 

sampling units in each stratum  (iVA), the number of units that was sampled in each 

stratum  (n/,), the to tal observed catch in each stratum  (c^) and the total number of 

observed recaptures (r./J in each stratum.

It would be of interest to know the exploitation rates of the northern pike in the 

summer, fall and winter seasons. In Table 3.4, we present the moment estim ates (u/J 

of the exploitation rates (u/,) for the four strata. The estimates (uh) are obtained 

using the moment estim ator (2.18) and corresponding interval estimates are obtained 

using (2.44). VVe can see from Table 3.4 that the exploitation rate of the northern 

pike is the highest during the summer months, as expected. In Table 3.5, we present 

the moment estim ate (U2 ) and interval estim ate of the annual exploitation rate.

Table 3.3: Stratified Data from Medicine Lake, Minnesota.

S trata iV* nh C.h cm

May 14-July 8 168 38 130 15

July 9-Sept 5 177 41 88 14

Sept 6-Nov 30 165 37 21 3

Dec 1-Feb 15 231 41 4 0

Total iV =  741 n =  157 c.. =  243 r.. =  32
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Table 3.4: Estimates o f the Strata Exploitation Rates.

Strata E(uh - u h)2 95% confidence interval

May 14-July 8 0.07765 0.0003921 (0.0388, 0.11647)

July 9-Sept 5 0.07077 0.0003454 (0.0344, 0.10719)

Sept 6 -Nov 30 0.01567 0.00008 (-0.00186, 0.03319)

Dec 1-Feb 15 0 0 (0 , 0 )

Table 3.5: Estimates of the Annual Exploitation Rate (u).

u2 0.1651

E{u2 -  u)2 =  h2(r.h, Ch) 0.001157

95% confidence interval of u (0.098453, 0.2318)
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C hapter 4

A nalysis o f  K oziol-G reen M odel 

w ith  th e  A ssum ption o f  

W eibull Lifetim es

4.1 Introduction

In this chapter, vve consider the maximum likelihood estim ation and Bayesian anal

ysis of the Koziol-Green model with the assumption of Weibull failure times or life

times. We also compare the maximum likelihood estim ator with the Bayes estimator 

of the survivor function of lifetimes.

The Koziol-Green model is a special competing risks model with proportional 

hazards and the model is described in the following manner. Let T i ,T2, .. . , T n be 

independent and identically distributed random variables denoting lifetimes with 

a continuous distribution function say F  and Ci,C2, . •. ,C n be the corresponding 

independent and identically distributed random variables denoting censoring times 

with a continuous distribution function say G. Let

Zi =  min[Ti,Ci) and Si =  I (T, <  C,) (4.1)

oo
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and (Zi.Si) for i = L n be the observed data.

Let Sr(t )  =  P(T  > t) be the survivor function of the lifetimes and S'c(t) =  

P[C > t) be the survivor function of the censoring times. The Koziol-Green model 

assumes

Sc(f) =  [ST( f ) r  (4.2)

where 7  is a parameter th a t controls the amount of censoring, i.e.,

P ( T  > C )  = 7  >  0. (4.3)

The statement (4.2) is true  if and only if the random variables Z's  and S[s given in 

(4.1) are independent (see Allen (1963)).

This kind of a proportional hazards model has been used in censored data 

problems in medical and industrial life testing studies by various authors (Cox D.R. 

(1959), Efron (1967), Koziol and Green (1976), Chen et al. (1982) and C'hen- 

HYmchen (1984)) to develop statistical procedures and to study their properties 

because of the tractable nature of the model. Koziol and Green (1976) used this 

model to test the hypothesis that an oestrogen treatm ent of prostatic cancer was in

effective. They developed a Cramer-von Mises type statistic to test the hypothesis. 

Since then, this model is popularly known as ‘Koziol-Green’ model.

The Koziol-Green model can also arise as a result of the structure of the sys

tem under study. A good motivational example provided by Chen et al. (1982) 

is the following: suppose one is studying a two component system and the sys

tem is a series system which means that the system functions if and only if both 

components are functioning. Further, let component one itself be a series sys

tem of k \  independent and identically distributed subcomponents with correspond

ing lifetimes 7\, T2, . . . ,  7Vt each having distribution F  (say) and component two 

is also a series system of A'2 independent and identically distributed subcompo

nents with corresponding lifetimes C 1.C 2  C’k 2 each having distribution F. Let
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T  =  min{T\..To.  7V J and C  =  m m (Ct.C 2.  Ckz ) then the pair (T . C ) fol

lows a proportional hazards model described by (4.1) and (4.2). Further, if we have 

n such systems and we observe Z's  and S's where Z's  are the failure times of the 

system and the S's tell us whether the failure of component one or component two 

caused failure of the system. Then on the basis of the Z's  and S's we can estimate 

F , the failure distribution of component one.

The Koziol-Green model is used in medical studies where one is interested in 

studying the failure due to a particular cause, when there is a possibility that failure 

could occur due to other causes also, i.e., we have a competing risks situation.

In this chapter, we consider a parametric Koziol-Green model with the under

lying lifetime distribution being Weibull. In statistical analysis, parametric models 

are often used to model the time until an event occurs. Such events may, for instance, 

be the onset of certain chronic disease in a medical study, the failure of a component 

in industrial life testing, the performance of a certain task in a learning experiment 

in psychology or a change of residence in a demographic study.

The Weibull distribution is one of the most commonly used parametric dis

tribution to model failure or lifetime data with monotone (increasing or decreasing) 

hazard rates. Its probability density function (pdf) is given by

M t \ 0 ,  (4.4)

where 0 >  0 is the scale, j3 > 0 is the shape parameter and t >  0. The corresponding 

survivor and hazard functions axe

(4.5)

and

hT(t) =  hj-(t | 9. 3) =
3 t

(4-6)
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respectively. The hazard rate is increasing for 0  >  1 . decreasing for 0 <  3 < I and 

constant for 0  =  1 , the la tter corresponding to an exponential pdf with mean 0.

Hence under the assumptions (4.1), (4.2) and (4.5), for randomly censored 

data, the survivor function and probability density function of censoring times Cjs 

are

Sc(*) =  [ e x p ( - ( ^ f ) P  =  exp(—j  ( j f )  (4.7)

and

f e w  =  (4.8)

respectively.

In Section 4.2, we discuss the maximum likelihood estimation of the param

eters 0, 0,  7  and the survivor function of lifetimes Sr{t).  Section 4.2.1 gives the 

asymptotic variance-covariance m atrix of the estimators. In Section 4.3, we consider 

the Bayesian analysis of the model. Section 4.3.1 gives the prior distributions and 

the posterior distributions. VVe also discuss briefly the motivation behind the choice 

of the prior distributions. In Section 4.3.2, we discuss the Gibbs sampler technique. 

VVe use it to obtain the Bayes estimates of the posterior pdfs of the scale and shape 

parameters of the model and of the survivor function for a  specified time. Sections

4.3.3, 4.3.4, 4.3.5 and 4.3.6 give conditional posterior distributions, algorithms for 

sampling from them and estim ation of posterior moments and other quantities of 

interest using the Gibbs sampler. In Section 4.3.7, we give a  numerical example. In 

Section 4.3.8, we compare the MLE with the Bayes estim ator of the survivor func

tion of the lifetimes by a simulation study. In Section 4.3.9, we consider a real life 

example.
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4.2 M axim um  Likelihood Estim ation

The likelihood function for the Koziol-Green model described by (4.1), (4.2) and 

with the assumption of Weibull lifetimes is

t=L
TT -0 ~ l n~ T 'n Si l 4" 7 ) V"" JJv / j m  =  i f a p l J X  7 ^ '= l exP( 2 ^ ) -  (4-9)

°  t’= i  u  t ' = i

The likelihood function in (4.9) is obtained using (4.4), (4.5), (4.7) and (4.8) where

z  =  ( z i ,  * 2, • • • ,  - n )  a n d  =  ( ^ l5 <J2 , - - - , S n ) .

The natural logarithm of the likelihood in (4.9) is

In £ =  n log/? - n/?log# +  (/? -  1) Inz,- +  (n -  £ £ )  log7 -  ^  ^  (4-10)
.=1 i= i 0  i= 1

where L =  L(9, /?, 7  [ z, £).

To get the MLEs of 0, j3 and 7 , we partially differentiate the log-likelihood 

given by (4.10) with respect to 0, j3 and 7  and equate the partial derivatives to 

zeros. Hence the estimating equations are

d in  L n
- d T  = °

=* (! +  7 ) / ? ^ ^  -  n/? =  0, (4.11)

d l n L
d(3

=► ^ - n l n 0  +  ] T ln z ,- -  ^ ^ E ( l n z , - -  In 0)zf] =  0, (4.12)
P  i= l  i= l

and
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d\n.L
d~(

. (n -  E fat fr) z? n
7  OP

+  i « •» >
2 ^ i= i - i

Substituting for 7  given by (4.13) in equations (4.11) and (4.12), vve have

G C *? +  ( n - £ < 5 , ) 0 ' ' ) J f - " / J  =  ° (4.14)
t = l  t = l  0

and

+ (- J" > ( £ J  ) 4 ) = 0. (4.15)

VVe solve equations (4.14) and (4.15) simultaneously to obtain the MLEs of 0 

and (3. No explicit expression exists for the MLEs of 0 and 3, equations (4.14) and 

(4.15) have to be solved by a numerical procedure. We employ the Newton-Raphson 

method to solve the equations for 0 and (3. The MLE of 7  can be obtained by 

substituting the MLEs of 0 and (3 in (4.13). Let 0 , (3 and 7  represent the MLEs of 

6, 3  and 7 , respectively. The MLE of the survivor function in (4.5) is given by

S(t)  =  exp(—(L)0). (4.16)
(7

4.2.1 Variances and Covariances of Estimators

The asymptotic variance-covariance matrix of the MLEs of the parameters 0, 3  and 

7  is obtained by inverting the information matrix whose elements are the negative 

expected values o f the second order derivatives of the log-likelihood given in (4.10). 

For a sufficiently large sample we can estim ate the expected values by their MLEs. 

Accordingly, we have the estim ator of asymptotic variance-covariance matrix as
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Where

hi hi hz -i V{0) Cov(0,j3) C < w ( 0 , 7 )

hi hi hz = Cov{0,j3) V(0) C o v { /3 ,7 )

hi hi Izz Coo(0,i) Cov(0,7 ) m )

(4.17)

/ u  =
In L

dO2

=  n/3 ( 1 + 7 ) W  +  1 ) A  j j
u *  02 00+2 k * 6 ,0 +

(4.1S)

112 — 721 =
d 2 ln £
806(3

-  _  ^  + 7^
0 00+i

6,0 + 
n

[ /3 £  zf la.-,-+  ( 1 - / 3  toll)
1=1 1=1

(4.19)

7i3 =  731 =
$ 2 In £
dOd'y

0
6.0 +

00+1 £ * r
«=i

(4.20)

/ 22 = 832 6,0 +
n  , ( l + 7 ) r V ^  0 n  i a \ i i=  ^  +  — E ^ d n ^ - l n 0 ) ]

i=i
(4.21)

and

f23 =  3̂2 =
d 2 ln £
d/3d~f 6.0+ 0,0,5

(4.22)

^33  —

a 2 in/:
a 7 2 . .  = 3 ( » - i »

6 . 0 +  1 t =l 0.0,5
(4.23)

Equation (4.17) is strictly valid only for large samples as noted by Cohen (1965) 

and Lemon (1975), it also works well in case of moderately large samples.
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4.3 Bayesian Analysis

For the Bayesian analysis of the Koziol-Green model with Weibull lifetimes, vve 

consider two sets of prior distributions and we obtain the Bayes estimates of the 

posterior pdfs of the parameters of the model and the survivor function by the 

method of Gibbs sampler.

4.3.1 Prior and Posterior Distributions

(i) The first set of prior distributions th a t we consider for 9, 3 and 7  are given 

below.

We assume the distribution of 9& given j3 to be inverted gamma (IG(a, 6 )) with shape 

parameter a > 0  and scale parameter 6  >  0  such that the prior distribution of 0 given 

3  is given by

-r. W )  =  t  >  0. (4.24)

One advantage of choosing this prior distribution is that the conditional posterior 

distribution of 9 given 3,  7  and the data will also be inverted gamma and this will 

help us to generate samples from the conditional distribution and hence facilitate 

the implementation of the Gibbs sampler and simplify the Bayes estimation of 9.

The prior pdf of 3  is assumed to be a log-concave density. There are

several log-concave densities available in the literature, see Devroye (1986, page 287) 

for more information. Here we assume the prior distribution to be a truncated normal 

distribution with pdf

32
7ri{3) oc eip( — -—-), 0 < c o < / ? < d o < oo .  (4.25)

2  <T

For the same reasons as mentioned above, we assume the prior distribution of 3 to 

be log-concave so that the conditional posterior distribution of 3 given 9, 7  and data  

will also be log-concave and this will help us in the implementation of the Gibbs 

sampler. We can easily show that ~i{3) given in (4.25) is log-concave.
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Consider

In 7̂ / 3) =  C ’ - ^ .  (4.26)
Z (J

By differentiating (4.26) twice with respect to /?, we have

?2lnir̂ > = < o (4.27)
d P  i p  1

which implies that is a  log-concave density.

Finally, the prior density function of the censoring param eter 7  is assumed to

be truncated exponential and it is given by

^ 1(7 ) =  --  eXP-- 0 < 7  <  k  <  0 0 . (4.28)
1 — exp ( — 7  k)

Choices of a, b, cp, </0, a, g and k  will be based on the knowledge of previous similar 

studies. If we are conducting reliability studies then they could also be fixed based 

on engineering knowledge.

The posterior density function of (0, /?, 7 ) using (4.9), (4.24), (4.25) and (4.28) 

is given by

f ( 0 ,  P,  7l Z, i )  oc 7rl(/3)7rl(7 )7ri(0 |/3)£ (0 , j3, 7  | z, 6)

«=i t=i

*  E C ? "  -  £>■
(4.29)

(ii) The other set of prior distributions that we consider for 0, /3 and 7  are as follows. 

The prior pdf of 6 given 3  is same as given in (4.24). Whereas the prior pdf of 3 

is assumed to be truncated gamma with shape parameter ga and scale parameter gb 

with pdf
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7Ti(/?) oc (39a 1 exp(—(3 gt), 0 <  cq < 3 < d0 < oc. (4.30)

It can easily be shown that ftiifl) given in (4.30) is log-concave.

Finally, the prior pdf of 7  is assumed to be uniform with pdf

tti( t)  =  j ,  0 < 7  < / .  (4.31)

The posterior density function of (0, /3, 7 ) is of the same form as (4.29), except that 

7r 1(,i?) and <^(7 ) are the pdfs given by (4.30) and (4.31).

4.3.2 The Gibbs Sampling Scheme

It is difficult to obtain the marginal posterior pdfs of 0, j3 and 7  from the joint 

posterior pdf of 9, (5 and 7  given in (4.29), by integration, in a closed form. Hence, 

we adopt the method of Gibbs sampler which enables us to obtain the marginal 

posterior moments, marginal posterior pdfs and the Bayes estimate of the survivor 

function.

The Gibbs sampler is a technique for generating random variables from a distri

bution indirectly without the necessity to calculate the density. The Gibbs sampler 

helps us to avoid difficult calculations. This sampling scheme became popular with 

the paper of Geman and Geman (1984). Gelfand and Smith (1990) proved several 

properties of the Gibbs sampler and showed its applications to a wide variety of con

ventional statistical problems. Casella and George (1992) give a simple account of

the theory behind the Gibbs sampler. Most of the applications of the Gibbs sampler

have been made in Bayesian models, but it can also be used in classical problems.

Suppose we are given a joint probability density function f { z - y i , y 2 ,  !/p)

and we are interested in obtaining the characteristics of the marginal density

/(-) = j  j ---J  /(--yirl/2 yP) dyi . . . d y p.
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such as the mean and variance. To do this we will have to first calculate / ( - )  

which may be difficult to obtain both analytically and numerically. In such cases 

the Gibbs sampler provides an alternative method for obtaining f ( z ) .  The Gibbs 

sampler allows us to generate a sample z ly. . . ,  zm from f ( z )  without really requiring 

f{z) .  We can simulate a  large enough sample to calculate the mean, variance or any 

other characteristic of f ( z ) .

To explain the Gibbs sampler in the most simple terms, let us consider the 

case of two variables. Suppose we have a pair of random variables (Vi Z), the Gibbs 

sampler generates a sample from the marginal densities f { y )  and f ( z )  by sampling 

from the conditional densities f (y \z )  and f ( z \y )  which are usually known and easy

to obtain. We specify an  initial value Z  =  z0 and generate

Vb ~  f ( y  | Z  =  *0),

zt ~ f ( z  | r  = yQ),

* W ( y  | Z  =  * ) ,

Z2 ~ f { z \ Y  = y i )

and so on, iteratively. Suppose there are N  such iterations giving us the Gibbs 

sequence of random variables

Zo, Vo, Zi, Vi, . . . ,Z,v,  Ytf. (4-32)

We can discard the first values of Y  and Z  and this is known as the bum in

sample. For N  large enough Vi , . . . ,  Yn where n =  N  — Mi is a  sample from f[y)  and
1 n

Z i ,___Zn is a sample from f ( z ) .  Hence the estim ate of the mean of f ( y )  is — V ' Vi
n fet

and we can estimate the  marginal density f [y )  itself with

f ( y )  = - ' t f i y l z i h
n i

(4.33)
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since

£ ( / ( ! / 1 * » = J  n « \  *) m  <iz=/(»).
The end result of any calculations, although based on simulations, are the population

1 71
quantities. For example, to estim ate the mean of f [y )  we use — Y ' Y{ and

n  i=  i

= I  y  f ( y )  dyn-+oo n  7—oo

=  E{Y) .  (4.34)

For a large enough N,  any population characteristic, even the density itself, 

can be obtained to any degree of accuracy. Casella and George (1992) with a simple 

example of a 2  x 2 table with multinomial sampling show that the Gibbs sampler 

generates a Markov chain of random variables which converge to a random variable 

having the marginal distribution of interest.

The Gibbs sampler for estim ating the characteristics of a posterior distribution 

under the framework of a Bayesian model works as follows. Suppose, we want to 

compute an integral of the form J  I x ) where is a function defined on

3f  ̂and /(£  | x) is a general posterior pdf of the parameter £ =  (£i, . . . , £ * ) £  given 

the data x. Suppose the full conditional pdfs /(£,- | x, £_,-) are available for sampling 

where =  {£,- : j  ^  z}. Then for the implementation of the Gibbs sampler we start 

with an initial value =  ( d ° ^ . . .  , d°*) and generate

«J” ).

and so on, up to

eil , ~ / ( & l * ,  d l)* d l), - - . , d - i ) ,

giving =  ( d ^ - ' - i d 1*)* Repeat the process with initial value continue 

iterating, ending with =  ( d ^ i  • • • ? d**) after N  such iterations.

Under milder conditions, it has been shown that
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)V 1 / V -  ]C “ ► f  v»(0 / ( f  I x ) as iV —>• oo
iV iVl 7= ^+1 7

where iV\ is the  discarded bum  in sample size. Furthermore, the marginal posterior 

pdf of (fi can be estimated by

A *  I *> =  *r r w  £iV iVl j=iVt+l

where fP,- =  {fp* : / /  z}. See Gelfand and Smith (1990), Casella and George (1992), 

Ritter and Tanner (1992) and Roberts (1992) for further references.

4.3.3 Available Conditional Posterior Distributions

To implement the Gibbs sampler for our model, we need three conditional posterior 

distributions.

C o n d itio n a l p o s te r io r  d is tr ib u tio n  o f 0 g iv en  0,  7  a n d  th e  d a ta

The conditional posterior pdf of 9 given 0,  7  and the data from (4.29) is given by

/ ( «  1 7, S  oc SS^ iTr e x p ( - i i ± I >  g  z f  -  A )  (4.35)

which is equivalent to (90 |/?, 7 , r, £) ~  IG(n -(-a, 6  +  (1 +  7 ) E i= i s f  )• To show 

this, let {90 | 0 ,  7 , z, <£) ~  IG(n + a ,  6  +  (1 + 7 ) E?=i z f )  and V' =  90. Then the pdf 

of {Y  | 0 , 7 , s , £) is

/(if  I 0 ,7 ,  * £ )  =
( * + ( i + 7 ) i : s =,* - f r +* 1 , ( » + ( i + 7 ) e s . . ^ i ,
  -y  >-

(4.36)

Since Y  =  90, we have d Y  =  /? r/0.

The pdf of (9 | 0.  7 , z , £) is obtained by substituting 90 for Y  and multiplying by
dy

in (4.36). Hence we havethe Jacobian of transformation
d9
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m e ™ a  =  + 7 > £ * r » .  (4 .3 7 )

Similarly, vve can show the converse.

Conditional posterior d istr ib u tion  o f /3 given 0, 7  and th e  d a ta

The conditional posterior pdf of (3 given 0. 7  and the data from (4.29) is given by

/(/J  | 0, 7 , £, £) oc j [ 4 - ' e x H J A ± l i £ 4  _  ^ ) .  (4.38)
t'=l i= l

We have considered Tt(/?) to  be (i) truncated normal distribution with pdf given 

in (4.25) and (**) truncated gamma distribution with pdf given in (4.30) and as 

mentioned earlier, both are log-concave densities.

Mow, we show that f( ,3  [ 0 , 7 , z,  S) is a log-concave density. Taking natural 

logarithm of both sides of (4.38), we have

ln /(/?  | 0, 7 , z, 5) =  lnc“ +  Inn-^/?) +  (n +  1) In/? — \J3(n +  a) +  1] ln0

+ ( / 5 - l ) t l n  ^ < ~ (-1p l ± 4 - L  (4.39)
1 = 1  °  1 = 1

Upon differentiating (4.39) with respect to (3, we get

d(3 df3 ,3 t=i

• ~ ~  i t ,  z i (ln - In9 ) +  -jfi In 0 (4-40)

and differentiating (4.40) with respect to (3 again, we get

d2 \nf{(3 | 0, 7 , z, 8) d 2 ln ~i{j3) n +  1 ( 1 + 7 )^ *  Pn r * \ 2  b n m2

 W   =  — W -----------¥ ------------------------------------- ^ (ln< l)-

(4 -4 l)

Since we have assumed ~i(.3) to be log-concave, from (4.41). we have
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a 2 In /( /? [fl, 7 t & £)  ̂
d / ? 2

Hence /(/?  | 0, 7 , z, 5) is also a log-concave density. We employ the approach of 

Devroye (1986), Berger and Sun (1993) to sample from a log-concave density like 

(4.38). We discuss the method in Section 4.3.5.

C onditional po ste rio r d is trib u tio n  o f 7 given 9 , 3  and  th e  d a ta

The conditional posterior pdf of 7  given 0, (3 and the data from (4.29) is given by

f h  I 9, &  £, £) oc 717(7 ) 7 * e z p ( - S  ^ )- (4*42)
W i=l

( i ) If 7Ti(7 ) is truncated exponential given by (4.28) then

c t  . z, a  _ «  n e x p ( - T J j )  n_ T »  S. ,  ( 1 + 7 ) ^ *  0*
1 * ’ 0' S  “  1 — exp(—q k) 7  ‘ “ P ( --------------- £  *  >t = l

O C  7n E ,= t * exp(_ 7 ( ^ L L iL  +  (4.43)

Hence / ( 7  | 0, (3, z, £) is a truncated gam m a distribution with shape parameter
y ,n

(n — £ " =l +  1), scale parameter (— -+- 7 ) and 0 <  7  <  A:.

(ii) If 717(7 ) is uniform distribution given by (4.31) then

/ ( 7  | 9, 0 , *  <£) o c | 7n- ^ f' e x p ( - ^ ^ | : ^ )

OC 7n-£ ,= i* ' e x p { - ^ Y ^ z f ) .  (4.44)
t = l

From (4.44), we can see that / ( 7  | 0, ,3, z, £) is again truncated gamma with shape
y>n ^0

parameter (n — £ "=l Si -f 1 ), scale parameter (—*-~l ) and 0  <  7  <  /.
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4.3.4 Sampling from the Conditional Posterior Pdfs of 

6 and 7

Sampling from  f {9  \ (3, 7, z,  6)

To generate 0 from f ( 9  | /?, 7 , z,  £) given in (4.35), we generate a random variable 

X  from Gamma(n - f a ,  6  +  ( 1  +  7 )H £=l zf )  an<i  ^ =  ( t f ) ? - This amounts to
A

generating 0 from f ( 6  \ 0,  7 , z,  £).

Sam pling from  /(7 | 9. (3, z,  £)

Let X  be a continuous random variable with pdf f (x )  and cumulative distribution 

function (cdf) F (x ). If we tnm cate X  between ao and at then the pdf of the truncated 

random variable X  is

f ( x )
9W  = a° -  x -  ° lJao n x )d x

and the cdf of the truncated random variable is

C ( x ) =  £  f W dx _ F{x ) - F { a Q)
( )  F ( a t ) - F ( a 0) F ( a t ) - F ( a 0) ‘ (4* o)

To generate a random variable X  from a truncated pdf, we first generate a random 

variable U from Uniform(0, 1 ) distribution and let

.V =  F ~ l[U{F{at) -  F (a 0)) +  F(a0)]. (4.46)

Now, it follows from (4.46) that

P { X  < x) =  P ( F - l [U(F(a i) -  F(a0)) + F(a0)] < x)

= F ( F ( F ( a t ) - F ( a 0)) +  F (a 0 ) < F ( r ) )

=  <  f  (») -  f ( « . ) ,
w  -  F ( « , ) - F ( « . ) '

F(x) -  F (a0)
F ( a t ) - F ( a 0)

=  G(x). (4.47)
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Hence to sample from / ( 7  | 6 , 3, z, £), we first generate a random variable U from 

Uniform(0, 1 ) distribution and let

7  =  F ~ l[U(F(k) -  F(0)) +  F(0)]. (4.48)

Where (2) F  is the cumulative gam m a distribution function with shape parameter
£  ? z?

(n — h  +  1) and scale param eter ( — 1 * +  27); and in the other case (ii) F  isQP
the cumulative gamma distribution function with shape param eter (n — £ £ = 1  & +  I)

52? ^and scale parameter (—

4.3.5 Sampling from a Log-Concave Density

In this section, we present an algorithm for sampling from the conditional posterior 

density f(j3 | 9, 7 , z, £) given in (4.38). The algorithm we use is an explicit 

version of the accept-reject algorithm for sampling from a log-concave density given 

in Devroye (1986). Also see Berger and Sun (1993).

A ccep tan ce -R e je c tio n  A lg o rith m

To simulate X  from f ( x )  may be difficult whenever f { x )  is a complicated distribu

tion. So one way would be to find a simple function g{x) which follows f ( x )  closely, 

and satisfies the following:

/ (* )  <  g{x) Vx.

The density function q(x) corresponding to g(x)  is

_ 9{x)
g \ X )  roo r \ J  'I- 00 a{x)dx

The next step would be to generate X “ from q(x) and also generate another random
f ( x m)

variable U from Uniform(0,1). If U < —— - then X "  will have distribution f {x ) ,
9\x  )

otherwise we reject X '  and generate another X "  from q(x) and U from Uniform(0 . 1 ) 

and we continue this process till we accept X".

Since f (x )  may be a complicated function, calculation of f ( x ‘ ) might take a 

long time and to avoid this to a certain extent we could find another simple function
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h(x) such that

A(x) <  f ( x )  < g(x)  Vx.

Now generate X "  from q(x)  and generate i f  from U niform (0,1).

then X ' ~  / (x ) ,  otherwise compute / ( x “) and

f i x ' )
if U < — - then X “ ~  / (x ) .  If this fails, we reject X* and we again generate X '

9\x  )
from q(x) and i f  from Uniform (0,1 ) and repeat the process till we accept X “. One 

advantage of the acceptance-rejection method is that we can apply this method even 

if we know /(x )  only up to a  constant.

VVe apply the above accept-reject algorithm to our problem of generating ran

dom variables from the conditional posterior distribution f((3 | 0, 7 , z, £) given 

by (4.38), which is known up to a constant and is log-concave with support on the 

interval [c0, do]. The algorithm  proceeds as follows.

Let In f ( f 3  | 6 , 7 , r, <£) =  h((3). Our first aim is to find two functions /q(/3) and 

h u((3) such that

S tep  2 . To find the envelope function hu given by A B C D E F G  (see Figure 4.1), we 

have to find the equations of lines AC. C E  and EG.

The equation of line A C  is

hi{(3) < h{0 ) < hu(fl)

where hi is a squeezing function and hu is an envelope function of h(/3).

S tep  1 . Choose si and S3  (refer Figure 4.1) such tha t Si is close to the lower end 

point and S3 is close to the upper end point of the support interval [c&, do]-

y  =  h{si) + hr{si)(s - (4.49)

and the equation of line E G  is

y  =  h(s3) +  h '(s3)(s -  s3). (4.50)
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In order to find the equation of C E  we need to know s2 which is the intersection point 

of AC and EG.  It is obtained by solving equations (4.49) and (4.50) simultaneously, 

giving

_  h(s3) — h(s i) — h'(s3)s3 + h'(si)si
S2 h'{si) - h ' ( s 3)

and hence the equation of C E  is

V =  h(s2) + h'(s2)(s - s 2). (4.51)

We also need to know the points ui and u2 which axe the intersection points of AC 

and CE,  C E  and EG,  respectively. Hence we have

h(s2) -  h(si) -f h'{si)si -  h'{s2)s2
= ------------- ** ;.-)- v f c j   ( 1

and

^(s3) -  h{s2) -  h'(s3)s3 +  h'{s2)s2 

Therefore, the envelope function hu is given by

hu(s) =  h(si) + h'(si)(s — si) if u0 < s < ui

=  h(s2) + h'(s2)(s — s2) if Ui < s < u2

=  h(s3) +  h'(s3)(s — s3) if u2 < s < u3. (4.54)

The result in (4.54) is obtained from (4.49), (4.50) and (4.51).

S tep  3. To find the squeezing function hi given by uo B D F  u3, we have to find the 

equations of the lines u0B ,  BD, D F  and Fu3.

The equation of u0B  is

l ,   ̂ , h(s i) ~  h(uo) , , , Ay  = h(u0) + — -----------— ( s - u 0)- (4.oo)
(s i -  u0)
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h(s) ----

u iCq =  u0

Figure 4.1: An Example of the Envelope (hu) and Squeezing (hi) Function of 

Concave Function (h(s )).
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The equation of B D  is

y =  h(st ) + ^ ~ - — ^ p - ^ ( s - s i ) .  (4.56)
( « 2  -  si)

The equation of D F  is

v  = AC**) +  A(^ 3 _ ^ ) (s - s*) <4-57)

and the equation of Fu3 is

y  =  h{s3) +  — s3). (4.58)
(«3 - s 3 )

Therefore, the squeezing function hi(s) is given by

h [( s )  =  h ( u 0 ) +  — 7 - —̂ ^ ™ ° \ s — u0 ) if u0  <  s  <  s i
( s t -  u0)

=  +  “ ^ f ^ ( s - S t ) i f  S ! < S < S 2
(«2 - S j

A/ x , A(«3) - M « 2 ) ,  x T  ^  ^=  n ( s 2 ) 4 -----;------------:------( s  — S2) i f  S2 <  S <  S3
(53 — 32)

=  h ( s 3 ) +  — *fr)(s _  S3J Jf s3 < s < u3. (4.59)
(«3 -  S3 )

T h e  resu lt in (4.59) is o b ta in e d  from  (4.55), (4.56), (4.57) an d  (4.58).

H en ce, w e h a v e  d eterm in ed  h i (s )  an d  h u(s ) ,  su ch  th a t

h[(s)  <  h ( s )  <  h u(s)

=>• e x p ( h i (s ) )  <  e x p ( h ( s )) <  e x p ( h u(s ) )

w here cq <  s <  do-

Step 4. To o b ta in  th e  d e n s ity  fu n ction  corresp on d in g  to  e x p (/iu( s ) ) ,  it is n ecessary  

to  find th e  area u n d er e x p ( h u(s ) )  b etw een  u 0 and  u 3  w h ere uo =  cq and u3 =  dQ. Let 

.4 t be th e  area u n d er e x p ( h u(s ) )  b etw een  uq and  th e n
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f Ul.4i =  I exp(/i(st ) +  h'(si)[s — si))ds

=  -  . ,* • ( . ,) )  £ '  y ( *l ^ (<t)) *

=  -a-‘-  ̂ [eip(A '(si)m ) — e i p ( / t ' ( s L) a 0 ) j .  (4.60)

Let .42 be the area under exp(hu(s)) between ut and u2 then

p 12
.42 =  I exp(h(s2) + h (s2)(s — s2))ds 

Ju i

=  — [exp(h/(s2)u2) — exp(h'(si)ui)].  (4.61)

Similarly, the area 4 3  under exp(hu(s)) between u2 and u3 is

A3 =  eJP^ 3ftl(33)3* [exp(h'(s3)u3) -  exp(h'(s3)u2)]. (4.62)

Therefore, the density function p(x) corresponding to exp(hu(s)) is

exp(h(si) + h ' ( s l ) ( s - s t ))
P(*) =  ----------; . t— r~z-----------, u0 < s  < u t

+  ^ 2  +  » *3
exp(h{s2) + h'(s2)(s -  s2))

— , Ui < s < u2
-4i +  A2 4* A3 

exp(h(s3) +  h'(s3)(s -  s3))
, u2 < s < u3. (4.63)

A-i +  4 2 +  4 3

We have used (4.60), (4.61) and (4.62) to obtain (4.63).

S tep  5. To generate X ’ from the piecewise exponential density p(x) given in (4.63). 

we first sample Z  from

* * - * >  =  + (4'64) 

where k  =  1,2,3. If Z  =  k  then generate X * from

Pk(s) = ------— jr.— j - "  - ------ 77-(— rr exp(s h'(sk)) (4.6o)exp{ukh'{sfc)) -  exp(uk-ih'{sk))
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where Uk-i <  .s < i /f  VVe can generate X "  from pk(s) by generating a  random 

variable U~ from Uniform(0,1) and letting

vm In[U’exp(ukh'(sk)) +  ( 1  -  Lfm)exp(uk^ih'{sk)]
x  = -------------------------- W M --------------------------- ■ (4'66)

It can be shown that X m ~  p(x) (see Berger and Sun (1993)).

S tep  6 . Next we generate U from U niform (0,1).

If U < t^en ~  I —7 Otherwise, compute h ( X m) andexp{hu[X  ))

if U < — ^  then X '  ~  /(/3 | 9, 7 , r, £). If this fails then return to Step 5.
exp(hu(X"))

4.3.6 Estimation Using the Gibbs Sample

The estim ates of the various posterior mom ents can be obtained, once we have 

generated the Gibbs sample. Suppose tha t ( 9 ^ \  (3^ \  7 (j); j  =  1, . . . ,  iV) is a  sample 

generated from the Gibbs sampler, then th e  posterior mean and variance of 9 are 

estim ated by

u .  f l  =  t T T a T  t  <4-67>
iV -v l j = N t +1

and

*(«  u .  a  =  « r r v -  ^  t" 0 1 ) 2 - 1 £, s i 2- f4-68)•v i l  j = N i  +  l

Also, the posterior marginal pdf of 0 is estim ated by

/(«u, a = jA -  x; /<« 10W , 7|j| i, a, (4.69)
where / ( #  | 7 ^ ,  r, £) is obtained from (4 .3 5 ) .

Similarly, estimates of the posterior mean, variance and marginal density of 3 

are given by

E ( 3 U, a = tt4tT £  JUI- (4.70)
-Vl
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V W I *, a  =  E  ( £ “ ) 2 -  W  U . £)F (4.71)
/v -Vl 7=^+1

and

/ W U ,  a  =  - ^ - y -  E  /(i» I «UI. 7 01. S  0 . (4-72)
- 1 i=iVi+i

respectively where f(/3 \ 0 ^ \  7 ^ ,  s, £) is obtained from (4.38).

The predictive survivor function is estimated by

S | l | l f l  =  5 r F  E  5 (( | £, £). (4.73)
-v -v l j = N l + l

4.3.7 Numerical Example

In this section, we show the implementation and efficiency of Gibbs sampler by a

simulation study. We obtain the various posterior moments of 0, (3 and 7  from the

Gibbs sample.

We generate samples of size 20 and 60 from the Weibull distribution with

0 = 0.5 and (3 =  1.5 and with 20% ( 7  =  0.25), 33.3% ( 7  =  0.5) and 50% ( 7  =  1) cen

soring under the model assumptions given by (4.1) and (4.2). The data  was generated 

in the following manner. The lifetimes T(s are generated from Weibull(0i,/3) with

01 = 0.5 and (3 =  1.5. Under the assumption of proportional hazards model, the cor-
diresponding censoring times C 's are generated from Weibull(0 2 -A?) where 0 2  =

If T, < Ci then take Zt- =  71, and =  1 , otherwise we take Z, =  C, and S{ =  0. We 

repeat this n times to obtain a sample of size n.

We consider the following set of prior distributions of 0, [3 and 7 .

(i) VVe first fix the prior of /?. The prior of j3 is assumed to be truncated normal with 

mean 0  and standard deviation a  and the range of (3 is [c0, d0], the pdf is as given 

in (4.25). The prior parameters <r, Co and d0 are fixed based on prior information. 

One approach would be to consider the mean, variance and possibly another moment 

of the prior distribution and then choose cr. c and d (see Lee 1989. page 53). The
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expected value and the variance of ,5 (prior distribution) can be computed using the 

result of Johnson et al. 1994. see page 156. If X  ~  cr2) and a < X  < b then

Z i r ? ) - Z  (S=a)
E ( X ) = n  + <r (4.74)

and

V a r { X ) =
' 6—£i

* ( = * ) - * ( = = * )
6—« \ \ 2

(4.75)

where Z(x) =  y = e  f-.

VVe choose c  =  1, Co =  1 and do =  4 such that the expected value of 3  is close to 1.5.

(ii) Once the prior distribution of (3 is fixed, we can fix the prior distribution of 6. 

VVe assume 0^\(3 to be inverted gamma with parameters a and 6 . We fix b the scale 

parameter to be 1 and a is chosen such that the mean

**r(a -  J)
E{9 | 3) = r (a)

(4.76)

and the variance

(4.77)

of the prior distribution of (9 | 3) exist. E{9 | 3)  is defined if only if a >  and

2
V(9 | 3) is defined if and only if a > Since we have fixed 1 <  #  <  4, we choose

r

a =  1 1  such that the above mentioned conditions are satisfied.

(iii) We assume the prior distribution of the censoring parameter 7  to be truncated 

exponential with pdf given in (4.28). We can choose 77 and k by considering the 

expected value

and the variance of 7

V ( l )  =  - 7  -
k 2exp(—r}k)

( 1  -  exp(-r jk))2 (4.79)
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Here we choose T) — 2 and k  =  3 such that the expected value of 7  is approximately 

0.5.

Figures 4.2, 4.3 and 4.4 show the plots of the Gibbs sequence of 0, j3 and 7  for 

2 0 %, 33.3% and 50% censoring, respectively. From the plots of the Gibbs sequence 

we see that 1500 iterations of the Gibbs sampler was quite satisfactory to achieve 

convergence of the posterior quantities.

The posterior mean, variance and marginal posterior density of 6 are estim ated 

by (4.67), (4.68) and (4.69), respectively and that of 0  axe estimated by (4.70), (4.71) 

and (4.72), respectively. The prior and posterior moments of 6 for 20%, 33.3% and 

50% censoring are given in Table 4.1 and Table 4.2 for sample sizes of 20 and 60, 

respectively. The corresponding marginal prior and posterior densities are compared 

in Figure 4.5. Table 4.3 and Table 4.4 give the prior and posterior moments of j3 

for 20%, 33.3% and 50% censoring and for sample sizes 20 and 60, respectively. The 

corresponding marginal prior and posterior densities are compared in Figure 4.6. 

Similarly, the prior and posterior moments of 7  are given in Table 4.5 and Table 4.6 

for sample sizes of 20 and 60, respectively. The corresponding marginal prior and 

posterior densities are compared in Figure 4.7.

Usually, we expect that data  with a smaller percentage of censored observations 

gives better estimates of the parameters as compared to data  with a higher percent

age of censored observation. We can see from the tables of posterior moments of 0. 

i3 and 7  that it is not always true. One possible reason would be that under our 

model assumptions same parameters are involved both in the lifetime distribution 

and censoring tim e distribution.
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Figure 4.2: Plots of Gibbs Sequence of 0, (3 and 7  for 20% Censoring.
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Figure 4.3: Plots of Gibbs Sequence of 0, f3 and 7  for 33.3% Censoring.
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Figure 4.4: Plots of Gibbs Sequence of 0, (3 and 7  for 50% Censoring.
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Table 4.1: Prior and Posterior Moments o f 9 for Sample Size 20.

Prior distribution Posterior distribution

2 0 % 33.3% 50%

censoring censoring censoring

E{9) = 0.2117 E{9\data) 0.4145 0.4459 0.3399

yJV{9) =  0.09662 yJV(9\data) 0.0506 0.0426 0.0457

Table 4.2: Prior and Posterior Moments of 9 for Sample Size 60.

Prior distribution Posterior distribution

2 0 %

censoring

33.3%

censoring

50%

censoring

E{9) = 0.2117

A w

E(9\data)

y/V(9\data)

0.5040

0.0472

0.5242

0.0548

0.4205

0.0431
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Figure 4.5: Marginal Prior and Posterior Densities of 9.
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Table 4.3: Prior and Posterior Moments o f 0  for Sample Size 20.

Prior distribution Posterior distribution

2 0 %

censoring

33.3%

censoring

50%

censoring

E{0) =  1.5229 

y/V(0)  =  0.4428

E{0\data) 

y/V{0\data)

1.7093

0.2402

2.394

0.3419

1.7437

0.2233

Table 4.4: Prior and Posterior Moments of 0  for Sample Size 60.

Prior distribution Posterior distribution

2 0 %

censoring

33.3%

censoring

50%

censoring

E{0)  =  1.5229 

,JV(,3) =  0.4428

E(0\data) 

y/V{0\data)

1.5610

0.1433

1.4433

0.1414

1.4812

0.1353
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Table 4.5: Prior and Posterior Moments of 7  for Sample Size 20.

Prior distribution Posterior distribution

2 0 %

censoring

33.3%

censoring

50%

censoring

E{ 7 ) =  0.4925 

yjv{~t) =  0.4771

E{~f\data)

yJV(~t\data)

0.1629

0.0830

0.4513

0.1773

0.6757

0.2564

Table 4.6: Prior and Posterior Moments of 7  for Sample Size 60.

Prior distribution Posterior distribution

2 0 %

censoring

33.3%

censoring

50%

censoring

£ ( 7 )  =  0.4925 E{-)\data) 0.3187 0.7271 0.8462

0 / ( 7 ) =  0.4771 \JV{~i\data) 0.0981 0.1758 0.1877
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Figure 4.7: Marginal Prior and Posterior Densities of 7 .
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4.3.8 Comparison of MLE w ith the Bayes Estimator o f the 

Survivor Function

In this section, we compaxe the VILE w ith the Bayes estimator of the survivor func

tion for the Koziol-Green model given by (4.1) and (4.2) with Weibull lifetimes given 

by (4.4). We make the comparison by a  simulation study.

Let S(t)  be the MLE of the survivor function in (4.5) given by (4.16) and 5(f) 

be the Bayes estim ate of the survivor function in (4.5) given by (4.73). For the 

simulation study, we generate 100 samples of size 20 each from Weibull distributions 

under the model assumptions (4.1) and (4.2) with 9 =  0.5 and {3 =  1.5 for 20%, 

33.3% and 50% censoring. We make th e  comparisons by considering four sets of 

prior distributions of (0, /?, 7 ) to obtain the Bayes estimate S(t)  of the survivor 

function.

S e t 1 . The prior distribution of (3 is assumed to be truncated normal with mean 

0. standard deviation a  =  2 and pdf as given in (4.25). We assume Co =  0.1 and 

do =  6 . In this case the expected value of (3 works out to be greater than 1.5. For the 

prior distribution of 9, we assume {9l3\0) to  be IG(a =  11, 6  =  1 ); the pdf of {9\(3) 

is given in (4.24). We assume the prior distribution of the censoring param eter 7  to 

be truncated exponential with 7  =  2, K  =  3 and pdf given in (4.28); the expected 

value of 7  being close to 0.5.

S et 2 . The prior distribution of (3 is considered to be truncated gamma with shape 

parameter ga =  3, scale parameter gb =  1 and pdf given in (4.30); the range of ,5 

is fixed again as Co =  0 . 1  and do =  6 . T he expected value of /?, in this case, is 

2.72. The prior distribution of 9 is considered to be the same as in Set 1 . The prior 

distribution of 7  is assumed to be Uniform(0, 3) with pdf given by (4.31).

S e t 3. The prior distribution of (3 is assumed to be truncated normal with mean 0, 

standard deviation <7 =  1 , Co =  1 and d0 =  4. So that the expected value of (3 is close 

to 1.5. The prior distributions of 9 and 7  are considered to be the same as in Set L. 

S e t 4. The prior distribution of t3 is considered to be truncated gamma with shape 

parameter ga =  3, scale parameter g b  =  3, cq =  1 and d0 =  4. So that the expected
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value of 3 is close to  1.53. The prior distribution of 9 is considered to be the same 

as in Set L. The prior distribution of 7  is assumed to be Uniform(0, 3).

Note that, for fixing the parameters of the prior distributions and the ranges 

of 0, (3 and 7 , we follow the same principles discussed in Section 4.3.7.

To compare the MLE and the Bayes estim ator of the survivor function, we 

compute the mean square error (MSE) of 5(f) and the  MSE of 5(f) which are given

by Vf
M S E (S ( t ) )  =  - ^ E ( S ( ( )  -  ST( i ) ) 2

11 i=  I

and

M S E (S ( t ) )  =  - ^ E ( S «  -  S t W ) \
' 1 i= l

respectively where M  =  100.

Figures 4.8 to 4.11 show the ratios of the MSEs of the MLE and Bayes estimator 

of the survivor function with 20%, 33.3% and 50% censoring for Set 1 , Set 2, Set 3 

and Set 4 of prior distributions, respectively. Figures 4.12 to 4.14 show the ratios of 

the MSEs of the MLE and Bayes estimator of the survivor function with the four 

different sets of prior distributions for 20%, 33.3% and 50% censoring, respectively. 

From all the figures we see that the Bayes estim ator 5(f)  does better than the MLE 

5(f) at the tails (left and right tails) of the distribution of the lifetimes for all the four 

sets of prior distributions and all the three percentages of censoring considered. This 

indicates that prior information plays an important role at the tails because of the 

lack of availability of information from observed data  a t the tails of the distribution. 

As expected, the MLE 5(f) does better than the Bayes estim ator 5(f) in the middle 

of the lifetime distribution.
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Figure 4.8: Ratios of MSEs of MLE and Bayes Estimator of Survivor Function for 

Randomly Censored Weibull Lifetime Data with Set 1 of Priors for Sample Size 20.
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Figure 4.9: Ratios of MSEs of MLE and Bayes Estimator of Survivor Function for 

Randomly Censored Weibull Lifetime Data with Set 2 of Priors for Sample Size 20.
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Figure 4.10: Ratios of MSEs of MLE and Bayes Estim ator of Survivor Function for 

Randomly Censored Weibull Lifetime Data with Set 3 of Priors for Sample Size 20.
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Figure 4.11: Ratios of MSEs of MLE and Bayes Estimator of Survivor Function for 

Randomly Censored Weibull Lifetime Data with Set 4 of Priors for Sample Size 20.
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Figure 4.12: Ratios of MSEs of MLE and Bayes Estimator of Survivor Function for 

20% Censored Weibull Lifetime Data with Different Sets of Priors for Sample Size
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Figure 4.13: Ratios of MSEs of MLE aud Bayes Estimator of Survivor Function for 

33.3% Censored Weibull Lifetime Data with Different Sets of Priors for Sample Size
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Figure 4.14: Ratios of MSEs of MLE and Bayes Estim ator of Survivor Function for 

50% Censored Weibull Lifetime Data with Different Sets of Priors for Sample Size 

20 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

4.3.9 An Example

In this section, we analyze a data  set using MLE and Bayes estim ation under the 

assumption of the Koziol-Green model as discussed in the preceding sections of this 

chapter.

The data given in Table 4.7 is obtained from Collett (1994, page 9). The 

data relates to the survival times and values of certain explanatory variables of 48 

patients with multiple myeloma aged between 50 and 80 years. Multiple myeloma is 

a malignant disease characterized by the accumulation of abnormal plasma cells in 

the bone marrow.

The response variable here is tim e in months from diagnosis until death from 

multiple myeloma. The survival status of a patient is coded such th a t zero denotes 

a censored observation and unity denotes death from the above mentioned disease. 

Values of seven covariates are listed for each of the patients in the table. In Chapter 

5, we consider the effect o f these covariates on the survival times of the patients 

suffering from multiple myeloma. For now, we consider only the survival times and 

the survival status of the 48 multiple myeloma patients (i.e., the da ta  in the second 

and third column of Table 4.7). The observations in column two correspond to Z[s 

for i =  1 , . . . ,4 8 . Here Z-s denote observed death times or censored times of the 

48 patients. The observations in column three correspond to S^s for i =  1 , .. . ,4 8 , 

indicating the survival status of the patients.

In order to test whether the data  in Table 4.7 is a  good fit for the Koziol-Green 

model with Weibull lifetimes described by (4.1) and (4.2), we test for the fact that 

under the assumptions of th e  Koziol-Green model, the conditional distribution of Z  

given 8 = 0 is identical to the conditional distribution of Z  given 8 =  1 , which are 

in turn identical to the marginal distribution of Z. We found sufficient evidence to 

support the above fact for the data. The fit of the conditional distributions of Z  

given 8 and the marginal distribution of Z are tested using the Kolmogrov’s D test.

We obtain the MLE and Bayes estimates of the parameters and the standard 

errors of the corresponding estimators. We also obtain the MLE, Bayes estim ate
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Table 4.7: Survival Times o f Patients in a Study on Multiple Myeloma.

Patient no. Survival time Status AGE SEX BUN CA HB PC BJ

1 13 1 6 6 1 25 1 0 14.6 18 1

2 52 0 6 6 1 13 1 1 1 2 1 0 0 0

3 6 1 53 15 13 11.4 33 1

4 40 1 69 1 1 0 1 0 1 0 .2 30 1

•5 1 0 1 65 1 2 0 1 0 13.2 6 6 0

6 7 0 57 2 1 2 8 9.9 45 0

7 6 6 1 52 1 2 1 1 0 1 2 .8 11 1

8 1 0 0 60 1 41 9 14 70 1

9 1 0 1 70 1 37 1 2 7.5 47 0

1 0 14 1 70 1 40 1 1 1 0 .6 27 0

11 16 1 6 8 1 39 1 0 1 1 .2 41 0

1 2 4 1 50 2 172 9 1 0 .1 46 1

13 65 1 59 1 28 9 6 . 6 6 6 0

14 5 1 60 1 13 1 0 9.7 25 0

15 11 0 6 6 2 25 9 8 . 8 23 0

16 1 0 1 51 2 1 2 9 9.6 80 0

17 15 0 55 1 14 9 13 8 0

18 5 1 67 2 26 8 10.4 49 0

19 76 0 60 1 1 2 1 2 14 9 0

2 0 56 0 6 6 1 18 11 12.5 90 0

2 1 8 8 1 63 1 2 1 9 14 42 1

2 2 24 1 67 1 10 1 0 12.4 44 0

23 51 1 60 2 1 0 1 0 1 0 .1 45 1

24 4 1 74 1 48 9 6.5 54 0

25 40 0 72 1 57 9 1 2 .8 28 1
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Table 4.7(continued): Survival Times of Patients in a Study on Multiple Myeloma.

Patient no. Survival time Status AGE SEX BUN CA HB PC BJ

26 8 1 55 1 53 1 2 8 . 2 55 0

27 18 1 51 1 1 2 15 14.4 1 0 0 0

28 5 1 70 2 130 8 1 0 .2 23 0

29 16 1 53 1 17 9 1 0 28 0

30 50 1 74 1 37 13 7.7 11 1

31 40 1 70 2 14 9 5 2 2 0

32 1 1 67 1 165 1 0 9.4 90 0

33 36 1 63 1 40 9 11 16 1

34 5 1 77 1 23 8 9 29 0

35 1 0 1 61 1 13 1 0 14 19 0

36 91 1 58 2 27 11 1 1 26 1

37 18 69 2 2 1 1 0 1 0 .8 33 0

38 1 1 57 1 2 0 9 5.1 1 0 0 1

39 18 59 2 2 1 1 0 13 1 0 0 0

40 6 1 61 2 11 1 0 5.1 1 0 0 0

41 1 1 75 1 56 1 2 11.3 18 0

42 23 1 56 2 2 0 9 14.6 3 0

43 15 1 62 2 2 1 1 0 8 . 8 5 0

44 18 1 60 2 18 9 7.5 85 1

45 1 2 71 2 46 9 4.9 62 0

46 1 2 1 60 2 6 1 0 5.5 25 0

47 17 1 65 2 28 8 7.5 8 0

48 3 0 59 1 90 10 1 0 .2 6 I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L02

Table 4.8: Estim ates of the Parameters and Standard Errors on Fitting Koziol-Green 

Model with Weibull Lifetimes to the Multiple Myeloma Data.

Parameter MLE Bayesa Bayesb

Estim ate S.E. Estimate S.E. Estimate S.E.

0 2.6054 0.4279 2.1097708 0.3188656 2.203005 0.3023263

0 1.0208 0.1130 0.9071306 0.0706174 0.9629012 0.054311

7 0.3333 0 .1 1 1 1 0.2937878 0.094342 0.300202 0.0902365

of the survivor function and compare them with the PLE of the survivor function. 

Mote that, the product limit estimator is the empirical survivor function for censored 

data. For the Bayesian analysis we consider two sets of prior distributions of 0, 0  

and 7 . They are as follows:

S e t(a ): The prior distribution of 0  is assumed to be truncated normal with mean 

0, standard deviation cr =  0 .55 , Cq =  0 .2  and do =  2 . Here <r, Cq and do are chosen 

so that the expected value of f.3 is close to the MLE of 0  and the prior variance of 0  

is close to the estim ate of the variance of MLE of 0 . For the prior distribution of 0, 

we assume (0^|/3) to be IG(a =  12, 6  =  0 .0 2 ). The param eters a and 6  are chosen so 

that the prior mean and variance of (0 \ 0 ) exist and the expected value of 0 is close 

to the MLE of 0. We assume the prior distribution of the censoring parameter 7  to 

be truncated exponential with 77 =  1.12 and K  =  0 .7 7  so that the expected value of 

7  is close to the MLE of 7  and the prior variance of 7  is close to the estimate of the 

variance of MLE of 7 .

S e t(b ): The prior distribution of 0  is considered to  be truncated gamma with 

shape param eterga =  2, scale param eter^  =  9.2, cq =  0.9 and d0 =  3. For the prior 

distribution of 0 we assume (0^\0) to be IG(a =  10, 6 = 1 ) and the prior distribution 

of 7  is assumed to  be Uniform(0, 0.66). The param eters of the prior distributions 

are fixed in the same manner as the parameters in Set(a) are fixed.

In Tables 4.8 and 4.9. Bayesa corresponds to the Bayes estimate with Set (a)
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of prior distributions, Bayesf, corresponds to the Bayes estim ate with Set(b) of prior 

distributions and S.E. stands for the standard error of the corresponding estimators. 

Table 4.8 gives the MLE, the Bayes estimates and corresponding standard errors 

of the MLE and Bayes estim ators of 0, (3 and 7 . Table 4.9 gives the PLE, MLE. 

Bayesa, Bayesi, and standard errors of the corresponding estim ators of the survival 

probabilities of the m ultiple myeloma patients at 23 distinct death times. Figures 

4.15 and 4.16 give the plots of the PLE, MLE and the Bayes estim ate of the survivor 

function with Set(a) and Set(b) of prior distributions, respectively. All the estimates 

are obtained by converting the tim e in months to time in years i.e., the observations 

in column two of Table 4.7 are divided by 12 and the observations in column one of 

Table 4.9 represent the death times in years.

We see from Table 4.9 that the PLE is closer to Bayes estim ates of the survival 

probabilities with both Set(a) and Set(b) of prior distributions than  the MLE in the 

beginning, i.e., till two years of survival time. After which the PLE is closer to the 

MLE than the Bayes estim ates with both Set(a) and Set(b) o f prior distributions. 

Though, towards the very end the PLE is closer to Bayes estim ates with both the sets 

of prior distributions than  MLE. The PLE is closer to Bayes estim ates with Set(b) 

of prior distributions than  the Bayes estimates with Set(a) of prior distributions and 

this can be ascertained from Table 4.9, Figure 4.15 and Figure 4.16.
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Table 4.9: Estimates of the Survival Probabilities and Standard Errors on Fitting 

Koziol-Green Model with Weibull Lifetimes to the Multiple Myeloma Data.

Time PLE MLE Bayesa Bayesb S.E.

PLE

S.E.

MLE

S.E.

Bayesa

S.E.

Bayess

0.083 0.9375 0.9707 0.9460 0.9568 0.0349 0.0540 0.01304 0.0087

0.33 0.8949 0.8846 0.8254 0.8469 0.0445 0.0617 0.02840 0.0229

0.42 0.8097 0.8573 0.7910 0.8141 0.0571 0.0607 0.0314 0.0263

0.5 0.767 0.8307 0.7586 0.7828 0.0616 0.0558 0.0340 0.0292

0.67 0.7451 0.7798 0.6992 0.7242 0.0636 0.0489 0.0379 0.0340

0.83 0.6575 0.7317 0.6457 0.6706 0.0696 0.0413 0.0407 0.0378

1 0.634 0.6864 0.5972 0.6214 0.071 0.0338 0.04290 0.0408

1.08 0.6096 0.6648 0.5746 0.5983 0.0723 0.0270 0.04377 0.0420

1.17 0.5852 0.6438 0.5531 0.5761 0.0734 0 . 0 2 1 2 0.0445 0.0431

1.25 0.5608 0.6234 0.5325 0.555 0.0743 0.0163 0.0452 0.0441

1.33 0.5098 0.6037 0.5127 0.5344 0.0758 0.0124 0.04576 0.0449

1.42 0.4844 0.5846 0.4939 0.5147 0.0762 0.0093 0.0463 0.0456

1.5 0.4334 0.5660 0.4758 0.4959 0.0762 0.0069 0.0467 0.0462

1.92 0.4045 0.4814 0.3960 0.4120 0.0764 0.0051 0.0479 0.0480

2 0.3756 0.4661 0.3820 0.3971 0.0762 0.0037 0.0479 0.0482

3 0.3467 0.3151 0.2503 0.2567 0.0756 0.0027 0.0463 0.0461

3.33 0.2889 0.2764 0.2183 0.2224 0.0732 0 . 0 0 2 0 0.0449 0.0444

4.17 0.2568 0.1989 0.1562 0.1561 0.0718 0.0014 0.0406 0.0391

4.25 0.2247 0.1925 0.1511 0.1507 0.0696 0 . 0 0 1 0 0.0402 0.0386

5.42 0.1798 0 . 1 2 1 1 0.0962 0.0926 0.0687 0.00072 0.0333 0.0306

5.5 0.1348 0.1172 0.0932 0.0895 0.0646 0.0005 0.0328 0.0301

7.33 0.0674 0.0564 0.0474 0.0425 0.0576 0.0004 0.0228 0.0195

7.58 0 0.0510 0.0434 0.0385 0 0.0003 0.0217 0.0183
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Figure 4.15: Plots of PLE, MLE and Bayes Estimate of Survival Probabilities with 

Set(a) of Prior Distributions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

0.8

0.6
Survival

Probability

0.4

0.2

20 300 10 40 50 60 70 80 90
Time in Months

Figure 4.16: Plots of PLE, MLE and Bayes Estimate of Survival Probabilities with 

Set(b) of Prior Distributions.
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C hapter 5 

T he K oziol-G reen  Survival M odel 

w ith  C ovariates

5.1 Introduction

In this chapter, we consider the Koziol-Green survival model by incorporating co

variates in the model and study their effect on the lifetimes.

Let 7 \, T2 , . . . ,  Tn be independent and identically distributed random variables 

denoting failure tim es or lifetimes with a continuous distribution function say F  and 

C i,C 2, - . . ,  Cn be th e  corresponding independent and identically distributed random 

variables denoting censoring times with a continuous distribution function say G. 

Let

Zi =  m in{Ti,C i) a n d  S{ =  I(T{ < Ci) ( 5 .1 )

and ( Z , i =  l , . . . , n  be the observed data. Let S r(t)  =  P {T  > t) be the 

survivor function of the lifetimes and S c ( 0  =  > t) be the survivor function of

the censoring times

Suppose there are p explanatory variables or covariates A'i, X2, . . . .  X p associ

ated with the lifetimes and x,j denotes the value of the j t h  covariate recorded for 

the ith  individual. Let the survivor function for the ith individual be given by

107
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s t m  = [ft?, (or (5.2)

where 7 ,- is the censoring param eter associated with the zth individual and it is given

p
l i  =  exp((3o +  (3jXij) (5.3)

j= 1

for i =  1 , . . . ,  n. If Xij =  0 for all j  then the model reduces to the usual Koziol-Green 

survival model without covariates considered in Chapter 4.

Let C i,C 2, .. -, Cn follow a Weibull distribution with pdf given by

f e w  = ^  e  lexp ( - ( ^ n (5.4)

and the corresponding survivor function is given by

Sc(<) =  e x p ( - ( ‘- r ) (5.5)

where 6 > 0  is the scale, a  > 0  is the  shape parameter and t > 0 .

Hence, under the model assumptions (5.1) and (5.2) for randomly censored 

data, the survivor function, hazard function and probability density function of life

times Ti, T2, . . . ,  Tn are

S t . ( 0  =  exP ( - ( ^ r r  =  ex p (-7 ,- (^ )°), (5.6)

(5.7)

and

(5-8)
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respectively.

In Section 5.2. we consider the maximum likelihood estimation of the param

eters of the model described by (5.1) and (5.2). Section 5.2.1, gives the asymptotic 

variances and covariances of the estimators. In Section 5.3, we briefly discuss covari- 

ate selection procedures and in Section 5.4, we consider a real life example.

5.2 M axim um  Likelihood E stim ation

The likelihood function of (0 ,a,/?o,/?i,. . . , /? p) under the model assumptions (5.1), 

(5.2), (5.3) and (5.4) is given by

L ( 0 , a , 5)  =  I I [Sc(z i )  M z i ) ] s‘ [ST(zi) f c (zi)\
i=i

. n n.

v  i = i  i = i  t = i  v

where z  =  (^l, z 2 ,  . . . , zn), 5 =  (<J1? S2, . . .  ,£„) and 7 ,- is given by (5.3).

The natural logarithm of the likelihood in (5.9) is

In L =  n In a  — net In# +  (a  — 1 ) In̂ r,- -f ^  5{ In 7 ,- — ^  " /L'  ̂W  (5.10)
i = l  i = l  i = l

where L = L(0, a , /?0, | z, £).

To get the MLEs of 6, a ,  /3q. 1, . . .  ,/3p, we partially differentiate the log- 

likelihood (5.10) with respect to 0, a , 0q,/3i , . . .  ,/?p respectively and equate the 

partial derivatives to zero. Hence, the estimating equations are

d in  L n 
00

0 °  =  +  (5.11)
n

O lnL n 
da
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 n ln0 +  ^ l n r , -  -  ^ ( 1  +  7«)(ln *« “  =  O- (5-12)
i= i  «=t

i=i
and

d ln L

d in  L n 
d0o

n

9°E si = °  (5.13)

80j
=  0 , j  =  l , . . . , p

=> E S i  * H  -  - '1 —  =  0. (0 .14)
t ' = l  °

Substituting for 9a given by (5.11) in (5.12), (5.13) and (5.14), we get (5.15), (5.16) 

and (5.17), respectively.

(n +  q  £  In z{) £ (  1 +  n ) z f  -  n a  £ (  1 +  n ) z f  In r,- =  0, (5.15)
t = i  i = i  i = l

( X » ( B i  +  T()*?) - " £ > * ?  =  o (3.16)
t = i  i = i  t = i

and

(]C *•' x0')(]L(1 + 7.)^) -n j^ 7 i  XH zf  = 0- (5-17)
i = i  t ' = i  t = i

VVe simultaneously solve the equations (5.15), (5.16) and (5.17), using Newton- 

Raphson method, to  obtain the MLEs of a, 0 O and f i j  for j  = 1 , . . .  ,p. The MLE of 

9 can be obtained by substituting the MLEs of a , 0O and @j, j  =  1 , . . .  ,p  in (5.11).

5.2.1 Variances and Covariances of Estimators

The asymptotic variance-covariance m atrix of the MLEs of the parameters 9, a. 

,30 and 3j for j  =  l , . . . , p  is obtained by inverting the information matrix whose 

elements are the negative expected values of the second order derivatives of the 

log-likelihood given by (5.10). For sufficiently large samples we can estimate the 

expected values by their MLEs.
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Let 0  =  (0, d. fa , 3 j ,  j  =  l , . . . , p )  be the MLE of o  =  (O.ot. 3 0 . 3j. j  =  

I , . . . ,  p). The estimate of the asym ptotic variance-covariance is given by the inverse 

of the observed information m atrix  of order (p +  3) x (p -f 3). T he elements of the 

observed information m atrix are the following:

dO2
(5.18)

82lnL
dQda

(5.19)

d 2 ln L
dOdfio

=  — Y r  -
0 o+l “ t

(5.20)

d2 In L a
0<*+1 i=l

, j  =  1 , (5.21)

d 2 ln £
d a 2 = 5r + E ( 1+-R>(ln*-In0)2( j r

1=1
(5.22)

d 2 ln £
8ad(30 i  «=i °

(5.23)

82 In L
dadfij <t> t=i

=  S I  7«• x a  (In Zi ~  In 0) ( j ) 

82 la L

i 3 — L • • • >Pi

d(32 0  1=1

(5.24)

(5.25)

52 In L
8t3ad(3j = Sl7«^i(J)°

& ;= i u
(5.26)

82 InL
83,83, SI 7t x ij x is ( n )

t= l  °

, =  l , . . . , p . (5.27)
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5.3 Variable Selection Procedures

In this section, we describe the procedure used to select important covariates which 

have a considerable influence on the survival or the hazard rates from a list of poten

tial covariates. Variable selection procedures have been discussed in detail by Collett 

(1994, Chapter 3).

In order to compare alternative models fitted to an observed set of survival 

data, we need a statistic which measures the extent to which the data are fitted by a 

particular model. Since the likelihood function summarizes the information th a t the 

data contains about the unknown parameters in a given model, a suitable sum m ary 

statistic is the value of the likelihood function when the parameters are replaced 

by their MLEs. For a given da ta  set, a large value of the maximized likelihood 

indicates an agreement between the model and observed data. If we denote the 

maximized likelihood for a given model by L, then —2 log L is considered as the 

summary measure of agreement between the model and the data. The value of 

—2 log L will always be positive for a given set of data and a smaller value of —2 log L 

indicates that the model fits the data  well. The value of —2 log L is only useful when 

comparing models fitted to the same data.

Let us consider two models, M odel(l) and Model(2) say. Suppose th a t p co

variates ATi, AT2 , . . . .  X p are fitted in M odel(l), then the survivor function of Model( 1 ) 

can be written as

ST(t) =  [Sc (t)]exP(P° +  +  • • • +  fir*?) (5.28)

Suppose Model(2) is fitted with additional covariates ATp+t, X p+2 , • • - • X p+q, then the 

survivor function of Model(2) can be written as

ST(t) =  [Sc{t))exP̂° +  "*-------- h &pXp + /^p+i-^p+i 4------- b ,Jp+<7-Vp+ 7 ) ( 5  2 9 )

Let the value of the maximized log-likelihood function for each model be de

noted bv L(l)  and L(2) respectively. Then the statistic given by
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is the log-likelihood ratio statistic for testing the null hypothesis that the q param 

eters /3p+i , . . . .  @p+q in Model(2) axe all zero. The statistic A has an asymptotic 

chi-square distribution under the null hypothesis that the coefficients of the addi

tional variables are zero. The degrees of freedom of this chi-square distribution is 

equal to the difference between the number of parameters being fitted under the two 

models. Here A has a chi-square distribution with q degrees of freedom under the 

null hypothesis tha t (3p+l, . . . ,  (3p+q are all zero.

If the observed value of A is not significantly laxge then we conclude that the 

additional covariates do not significantly affect the survival or

hazard rates and M odel(l) would be preferred to Model(2). If the value of A is sig

nificant then we deem it necessary to include the additional covariates in the model. 

Hence the general strategy for model selection is as follows:

(1) The first step would be to identify a set of explanatory variables that have the 

potential for being included in the model.

(2) The second step is to fit models that contain each of the covariates one at a  time. 

The values —2 log L for these models are then compared with that of the null model 

(without any covariates) to determine which covariates on their own significantly 

reduce the value of this statistic.

(3) The covariates which are determined as significant in step 2, are then fitted to

gether. Those covariates which do not significantly increase the value of — 2  log L. 

when they are om itted from the model cam now be discarded. Only those that lead 

to a significant increase in the value of — 2  log L are retained in the model.

(4) Covariates which were not important on their own and were not under consider

ation in step 3, may become important in the presence of others. These variables are 

therefore added to the model from step 3 one at a time. The covariates that reduce 

— 2  log L significantly are retained in the model.

(5) Finally, a check is made to ensure that no term in the model can be omitted vvith-
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out significantly increasing the value of — 2  log L and no term th a t is not included in 

the model significantly reduces — 2  log L.

Some times it may be necessary to include interaction and other higher order 

terms such as powers of certain covariates. Such terms would be added to the model 

identified in step 4 above. Also there may be some variables which may not appear 

to be statistically significant in the modeling of a given data set but they may be 

important on medical grounds or o ther non-statistical considerations, so, it would 

be sensible to include these variables also in the model.

5.4 An Exam ple

In this section, we analyze the data on the survival times of 48 patients suffering from 

multiple myeloma give in Table 4.7. This data set was also considered in Chapter 

4 without covariates. Here our aim is to study the association between the values 

of certain explanatory variables or covariates and the survival times of the patients 

under our model assumptions given by (5.1), (5.2), (5.3) and (5.4). In Chapter 4, we 

have mentioned that the data in Table 4.7, is a good fit for the Koziol-Green model 

with the lifetime distribution being Weibull. Hence, the data is appropriate for the 

model considered in this chapter.

The multiple myeloma data in Table 4.7 contains values of seven covariates 

which were recorded for each patient along with their survival times and survival 

status. The covariates are as follows:

AGE: age of the patient

SEX: sex of the patient (0 =m ale and 1 =female)

BUN': blood urea nitrogen 

CA: serum calcium 

HB: serum hemoglobin 

PC: percentages of plasma cells

BJ: Bence-Jones protein (0 =absent and 1 =present)
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The sex of the patient and the variable associated with Bence-Jones protein 

are factors with two levels. These terms are fitted using the indicator variable SEX 

and BJ. It is not necessary to include all the seven covariates in our model. We have 

to determine the most appropriate subset of these variables, in doing so, we adopt 

the stepwise procedure discussed in Section 5.3.

The first step is to fit the null model i.e., the model without any covariates and 

then we fit models with each of the seven covariates one at a time. We consider the 

natural logarithm of the variable BUN, since the values of BUN range from 6  to 172 

and the distribution of the values across the 48 individuals is positively skewed. This 

would prevent the extreme values from influencing the estim ate of the coefficient of 

the variable BUN. Let LBUN denotes the natural logarithm of BUN.

A summary of the values of —2 log L for all the models considered is given in 

Table 5.1. VVe can see that LBUN and HB lead to significant reduction in —2 log L. 

The reduction in —2logZ on adding LBUN to the null model is 3.7919 which is 

significant at 1 0 % level when compared with the percentage point of a  chi-square 

distribution with 1 degree of freedom. The reduction in — 2  log Z on adding HB to 

the null model is 4.9974 which is significant at 5% level when compared with the 

percentage point of a chi-square distribution with 1 degree of freedom. The only 

other variable which seems to  have some explanatory power on its own is BJ. The 

other covariates do not bring any significant reduction in — 2  log Z.

The next step would be to fit the model that contains LBUN, HB and BJ. 

When we fit all the three variables in the model, the value of — 2  log Z is 202.9933. 

If LBUN is omitted from this model, the increase in —2logZ  is 4.4816 which is 

significant at 5% level. If HB is om itted from the model the increase in — 2  log Z is 

1.9843 which is not significant even at 10% level. Similarly, om itting BJ from the 

model leads to an increase of 3.00968 in —2  log Z which is significant a t 1 0 % level. 

Even though HB is not significant in the presence of LBUN and BJ, we decide to 

keep it in the model based on medical grounds. We also decide to keep BJ in the 

model since it is significant a t 10% level in presence of LBUN and HB.

Finally, we examine if any of the covariates AGE, SEX, CA and PC could be
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Table 5.1: Values of —2 log L for Models F itted to the Multiple Myeloma Data.

Variables in model - 2  log L

None 213.9591

AGE 213.9264

SEX 213.3509

LBUN 210.1671

CA 213.3310

HB 208.9616

PC 213.8323

BJ 211.3106

LBUN +  HB 206.0030

LBUN +  BJ 204.9777

HB +  BJ 207.4749

LBUN +  HB +  BJ 202.9933

LBUN +  HB +  BJ +  AGE 202.2227

LBUN +  HB +  BJ +  SEX 202.6607

LBUN +  HB +  BJ +  CA 202.9840

LBUN +  HB +  BJ +  PC 202.9806
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Table 5.2: Parameter Estimates and their Standard Errors on Fitting the Model 

Given by (5.31) to the Multiple Myeloma Data.

Parameter Estimate S.E.

6 7.0436 1.9028

a 1.1248 0.1234

Po 0.1517 1.2994

Pi 0.6840 0.3204

P2 -0.0865 0.0609

Pz -0.6687 0.3942

included in the model that contains LBUN, HB and BJ. We can see from Table 5.1 

that when any of these four variables are added to the model containing LBUN, HB 

and BJ, the reduction in —2 log L is less than 0.8. Hence, we do not need to include 

these variables in the model and we consider the most satisfactory model to be that 

containing LBUN, HB and BJ. The survivor function under the model containing 

LBUN, HB and BJ for the ith  individual is given by

ST (t) =  [Sc  (f)]exP(A, +  Pi LBUMi +  P2 HBi + p3 B Jp  (5.31)

for i =  1 , . . . ,  n  where L B U  M i, H B {  and B J i  are the values of the covariates LBUN. 

HB and BJ, respectively for the ith  individual. Table 5.2 gives the MLEs of the 

parameters including the estimates of the coefficients of the covariates and also their 

standard errors (S.E.) for the model containing LBUN, HB and BJ.

The Koziol-Green model with covariates would be an appropriate model to 

study the association of a set of covariates with lifetimes for randomly censored data 

when the lifetime survivor function is a power of the censored time survivor function. 

This model would be especially useful when we have a large percentage of censored 

observations in the data set.
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C hapter 6

Sum m ary

In this dissertation we have concentrated on the analysis of mark-recapture and sur

vival data. In Chapters 2 and 3, we considered the analysis of mark-recapture data. 

We have introduced a model based approach to the estimation of the exploitation 

rate of a fish population by combining mark-recapture procedures with a creel sur

vey. Our model is simple, useful and it is for a closed population. Also it does not 

rely on voluntary tag returns or rewards.

We obtained the maximum likelihood estim ator and the moment estim ator 

of the exploitation rate. A simulation study was performed to compare the two 

estimators and it was found that the moment estim ator performed slightly better 

than the maximum likelihood estimator when we sampled a large number of units 

and the probability of a  marked fish getting captured was reasonably high, otherwise 

both the estimators performed equally well. One can use the moment estimator to 

obtain point and interval estimates of the exploitation rate, since it is easier to derive 

the distributional properties of the moment estimator. The model based procedures 

of Chapter 2 were extended to the case where we stratify the space-time units of the 

fisheries according to fishing areas or seasons. We obtained the maximum likelihood 

estimator and two moment estimators of the exploitation rate and we compared the 

three estimators through a simulation study. We found that the second moment 

estimator u2 performed better that the other two estimators, hence we concentrated

I IS
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on uo to construct a confidence interval of the exploitation rate.

In Chapters 4 and 5, we considered the analysis of a randomly censored sur

vival data. We considered a  parametric survival model where the lifetime survivor 

function is a power of the censored time survivor function with the lifetimes follow

ing a Weibull distribution. We considered the Bayesian analysis of this model by 

specifying parametric prior distributions of the parameters of the model. We showed 

the implementation of the Gibbs sampler and obtained the Bayes estimates of the 

parameters of the model. We also compared the maximum likelihood estimator with 

the Bayes estim ator of the survivor function. We found that the Bayes estimator per

formed better than the maximum likelihood estimator at the tails o f the distribution 

of the data  which seems to be in concert with the fact that there is less information 

at the tails. In Chapter 5 we incorporated covariates in the Koziol-Green survival 

model to study the effect of covariates on the lifetimes. This proportional hazards 

model would be appropriate to study the association of covariates with lifetimes 

when the data  is randomly censored and it shows evidence that the lifetime survivor 

function is a power of the censored time survivor function. This model would be 

particularly useful when we have a large percentage of censored observations in the 

data set. We used the model to analyze a real life data  set related to 48 patients 

suffering from multiple myeloma. We considered maximum likelihood estimation of 

the parameters of the model and adopted a stepwise procedure to  select the most 

important subset of covariates from the available set of covariates.
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