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A B S T R A C T

LINEAR MODELS FOR MULTIVARIATE REPEATED 

MEASUREMENTS DATA

Shantha S. Rao 

Old Dominion University, 1996 

Director: Dr. Dayanand N. Naik

In this dissertation we focus mainly on the analysis of continuous m ultivariate 

repeated measurements data  based on the  assumption of m ultivariate normality. 

However certain aspects of the analysis of univariate repeated measures d a ta  are also 

considered. Typically, we have measurements on p variables (possibly correlated) in 

the form of p x 1 vectors j/yfc, observed a t k  =  1, 2 occasions on j  =  1, 2 ,..., ni 

individuals from i =  1,2, ...,g groups. We assume a naturally occurring covariance 

structure V y (gi E  among the p variables on the j th individual from i th group made 

a t tij occasions. Here V y and £  are positive definite matrices of order Uj x iy  and 

p x p respectively. We develop a general linear model approach to  accommodate 

both balanced and unbalanced repeated measures data.

Our m ain results are: (1) construction of Rao’s score test for a  simpler model 

with p =  1 (univariate case) and V y  having a structure as in a  mixed effects model, 

(2) comparison of all the methods for analyzing univariate repeated measures data
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with tim e varying covariates, (3) derivation of the maximum likelihood estimates 

of the covariance m atrices V  and £  in the balanced case, (4) derivation of Sat- 

terthw aite type approxim ation to the distribution of m ultivariate quadratic forms, 

(5) estim ation of degrees of freedom for these approximations, and (6) derivation 

of the m axim um  likelihood estimates of the covariance param eters under certain 

specific covariance structures for unbalanced case.

Rao’s score test is derived in Chapter 2. Analysis of repeated measures in the 

presence of tim e varying covariates is a useful but difficult problem. In Chapter 

3, we review the existing methods for analyzing repeated mesaured data  w ith time 

varying covariates and discuss their computational aspects using SAS software. We 

also point out th a t a linear model approach yields an unified tool to  analyze these 

data. In Chapter 4, various results about balanced m ultivariate repeated measures 

models are derived. We present the entire scheme of analysis of balanced m ultivari

ate da ta  including the computational details. Finally, the analysis of unbalanced 

m ultivariate repeated measures is discussed in Chapter 5. In this case we assume 

two commonly used covariance structures namely equicorrelation and autoregres

sive structures for V y  and derive the maximum likelihood estimates of the unknown 

param eters.
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Chapter 1

Introduction

Repeated measurements, as indicated by the nam e, are successive measurements 

made over tim e on each experimental unit. If m easurements are made on n  indi

viduals over t  tim e points on a single characteristic, we have a set of univariate 

repeated measurements data. On the other hand, if measurements are m ade on a 

set of t repeated measurements on p variables (or characteristics) on each of the 

n  individuals, we have a set of m ultivariate repeated measurements data. Thus in 

this case the d a ta  on each individual is a p x t  m atrix.

The n individuals may be randomly divided into one of several groups to  which 

the  levels of an experimental factor are assigned. Repeated measurements occur 

very frequently in a  variety of scientific fields where statistical models are used. The 

distinguishing characteristics of these measurements from those in the usual or more 

traditional regression setting is tha t one or more response variables are measured on

1
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the same observational unit more than  once, hence making the  responses dependent.

The questions tha t one would generally like to  ask and answer, in this context

are

o Is there a  group effect?

• Is there a tim e effect?

• Is there an interaction between tim e and group effects?

Let us first consider a set of univariate repeated measures. In an attem pt to 

answer the above questions treat the t measurements Y(j =  (y i j i , ..., Vijt), on the j th 

individual belonging to the ith group as a single m ultivariate observation Yij rather 

than  as a set of separate univariate observations. Assuming a general covariance 

structure, we can use m ultivariate techniques to analyze these type of data. To be 

more specific, the above questions can be form ulated as linear hypotheses of the 

form Ho : Cyi j  =  0, for appropriate choices of C,  where fiij is the mean or the 

expected value of Yij. Then a profile analysis (MANOVA) can be used to test Ho-

The m ain reason th a t prompted us to use the m ultivariate approach is th a t we 

had no particular structure assumed for cov(Yij) =  V . However in m any practical 

situations, V  is found to have some simpler structures. In th a t case, m ultivariate 

tests are less powerful. As an alternative to  the  m ultivariate approach, by consid

ering each subject as a  random block and tim e points as plots w ithin blocks a split 

plot design model can be used to analyze repeated measures data.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The model in th a t case is

Vi jk  — fj- +  Q!f +  P k  +  { & P ) i k  +  +  £ i j k , i  — 1 ,  (1 .1)

j =  1

6m ~  1V(0,<t2),

eijk ~  1V(0,C72),

where is the  kih observation on th e  j tk individual from the i th group and //, a;, 

ftk, and have the usual meaning as in split plot design. The problems

of interest are to test the following null hypothesis:

(i) o'! =  ... =  a g

(ii) /?! =  ... =  f3t and

(iii) (a/3)'iks are all equal.

We know th a t the usual ANOVA technique can be applied here although the ob

servations y i j i , ..., yijt on an individual are correlated. As before define, Y/j =  

(2/iji) •••) yijt)- Then the covariance m atrix  of Yij = cov(Yij) = V  — cr21 +  cr2J , 

where I  is an identity m atrix of order t  and J is a  t  x  t m atrix  of ones. Further, 

if we define V  =  ( ^ , . . . , ^ , ^ , . . . , 7 ^ , . . . , ^ , . . . , ^ )  then c0u(F) =  Q =  

diag(Ini ® V , . . . ,I „ a ® V ).

The ANOVA table for the above model is

3
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Source D.O.F. s s F statistic

Between individuals

Groups 9 ~  1 Qi = Y ' A Y Fi = (n — g)Qi/(g  -  1 )Q 2

Individuals n - g Q2  = Y ' B Y

Within individuals

Tim e t -  1 Q3  = Y ' C Y Ei — {n — g)Q3/Qs

Time* Group ( g - l ) ( t -  1) g 4 =  Y ' D Y F3  = ( n - g ) Q 4/(g -  1 )Q 5

Error (t -  l)(n  -  g) Qs = Y ' E Y

Total n — 1 Y ' T Y

Here n =  f l ni- The quadratic forms Qi to Q5 are
t=i

Q x =  kj2ni(yi. .-y...)2 = Y'AY
t=i

f t  =  k ’h f j y i j . - n ) ' 1 = Y ‘B Y
t=x j = l

Qz = n J 2 ( y . . k - y ...)2 =  Y ' C Y  
k= 1

Qi = Y , n ' £ ( & *  ~  -  y-k +  ^ - ) 2 =  t ' - d k
t=i k=i

Q* -  + = Y 'E Yi=1 j=i *j=i

and <3i + ... +  <3s = Z Z C  Z X ^  -  y -)2 =  ^ ' r y
t=x i= x  fc=x

with appropriate choice of matrices A  through E ,  and T .  These n x n  matrices are 

all symmetric and can be easily derived.

4
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The tests of hypotheses are carried out using the usual ANOVA F-tests. The 

split-plot design tha t we considered accommodates a  simple correlation among re

peated measures. However, there are certain other covariance structures which also 

adm it the same F tests.

Huynh and Feldt (1970) and Rouanet and Le'pine (1970) have derived a set 

of necessary and sufficient conditions on the covariance structures such tha t the 

distributions of the F statistics remains invariant. Consequently, there are certain 

dependence among repeated measures which still adm it the usual tests. The class 

of all covariance structures which adm it the usual F tests is said to have type 

H structure. A typical member of this class is V  =  <r2(I +  a l '  +  la ') ,  where 

a ' =  ( a i , . . . ,a t) is such tha t V  is positive definite and 1 is a vector of all ones. 

Recently, Chaganty and Vaish (1995) studied this characterization more closely 

and produced the following form for H ( a):

H \ a) =  I  +  i ( a V  +  la ')  -  ^(1 +  o ) l l ' ,  

where a ' =  (a i, . . . ,a t)  is such that

t X X ® * - ® ) 2 (L2)
1  i=i

and d is the mean of the components of the vector a. This characterization by 

Chaganty and Vaish (1995) is most explicit in the sense th a t it gives easy condition 

(1.2) on the elements of a  such tha t V  is positive (semi) definite. Since the form 

of covariance structure determines the choice of the analysis, we have a need for

5
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testing for the  type H structure for V . We have the  following result due to Huynh 

and Feldt (1970) to test for type H structure.

R e s u l t l :  Let be such that CC'  =  I t_i and C l  = 0, and Ut~i xi =

Ct-ixtYtxi-  Then cov(Y ) =  V  is of type H structure iff cov(U) =  C V C '  =  AIt_x.

A likelihood ratio test for testing cov(U) =  AIt_i can be constructed using a 

test of sphericity (Mauchly (1940)) on the transformed variables. The likelihood 

ratio is given by

x _  \CSC'\  
“  [l/(t  -  1)t r ( C S C 0 ]*-1 ’

where S  is the sample variance covariance m atrix. Under the null hypothesis of

sphericity, th a t is cov(JJ) =  AIt_i,

- { ( n  -  1) -  (2(t -  l )2 + ( t -  1) +  2)/(6(f -  l))}Zn A

has an approxim ate x 2 distribution with \ t{ t  — 1) — 1 degrees of freedom. Standard 

statistical software like SAS provides a test for sphericity. For details see K hattree 

and Naik (1995).

So far we have explored the possibility of using the  usual F statistics under 

certain dependent covariance structures. T hat is, we noted tha t the ANOVA re

mains invariant as long as V  is of type H structure. Now we need to address the 

situation where we reject the  hypothesis of sphericity. Rejecting the hypothesis of 

sphericity implies the departure of V  from type H structure. Under no structure

6
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on V , Geisser and Greenhouse (1958) have shown th a t A f l B  — A € lE  = BQ,E —

C U E  =  DCIE = 0. Hence the quadratic forms Q i and Q2, Q\ and Q$, Q 2  and Q5,

Q 3  and Q 5, and Q 4  and Q5 , are all pairwise independent. However, these quadratic

forms no longer have exact y 2 distributions. The results th a t follow enable us to

find the distributions of these quadratic forms and their ratios.

R e s u lt  2: Consider Xtx  1 ~  N t{0, V ). Let A  be any symmetric m atrix  of order

t x t  w ith rank(A)  = r. Then the distribution of any quadratic form X '  A X  is the

same as th e  distribution of certain linear combinations of independent y 2 variables. 

d rT hat is, X ' A X  =  J2 A;y2(l) , where A i,..., Ar are the  eigenvalues of a certain matrix 
j=1

to  be determ ined in the proof. Further x % l) ' s are ah independent.

Proof:

Since V  is a positive definite m atrix we can express the  quadratic form X ' A X  as

X ' A X  = x /V - 1/2V 1/ 2A V 1/ 2V - 1/2X

=  Z ' B Z (  Z  = V ~ V 2 X ,  Z  ~  N ( 0,1)),

=  Z 'TA T 'Z  (B  =  TAT', T P  =  I  and A =  dzay(A1,...,A r ,0 ,..,0 ))

=  U'AU, (U = T'Z, U ~  A^(0,I))
r

=  uj ~  xK 1)’ and X i(l)»-»X ?(1) are independent.
j=1

We observe th a t A i,..., Ar are the nonzero eigenvalues of B.  (note th a t rank  (j4) =  

rank  (B ) — r) . Hence the result.

We see th a t the  quadratic form X ' A X  is the weighted sum of independent x 2 varL

7
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ates. Satterthw aite (1941) has developed the following approximate x 2 distribution 

for X ' A X .

Suppose the distribution of X ' A X  is approximated by axl ,  where a and 6 are 

determined satisfying the following conditions:

( i ) E ( X ' A X )  = E(aXb), ( 1-3)

(:i i ) v a r ( X ' A X ) = var(aX2b). (1.4)

E A 2 ( E  Aj)2
7 — 1 J — 1

Using (1.3) and (1.4) we can show th a t a =  -7 and b =  —f------- .
E  A; E  A?

j =1 ;=1
From Result 2 we have the following:

Qi ~  x 2 { g - 1)

q 2  „  x 2 { n - g )

Qz ~  j x 2 (l)
j = i

Qi ~  E A ^ - 1)
J=1
t-1

Qs ~  jX 2 ( n - g ) ,
3=1

where A i,..., At_i are the  eigenvalues of (I — l / t J ) V .

Box (1954) applied Satterthwaite approximation to obtain the distribution of

( E A ;) 2
the ratio of the quadratic forms. Writing e =  —  ------;----- , we can verify the

( i - l ) E A ?
3=1
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following

F\ ~  ^(ff-i),(n-a) (exact) (1.5)

F 2 ~  F e(t-i),e(t-i)(n-ff) (approx.) (1.6)

F3 ~  F £(t_1)(5_1)ie(t-i)(n-s) (approx.) (1.7)

We use the above F  statistics given by (1.5), (1.6) and (1.7) and test the hy

potheses of interest. Notice tha t in applications we need to estim ate e. Greenhouse 

and Geisser (1959) suggested the estimate of e given by

[tr[C'SC ) ) 2  

e° G ~  { t - l ) t r ( C ' S C ) 2'

where S is the sample variance covariance matrix. Huynh and Feldt (1976) have 

suggested an alternative estim ate of e given by

_  n(t  -  1 )egg -  2
tHF (t -  l)[n  -  1 -  (t -  l)]ec?c?"

We summarize the scheme for analysis of univariate repeated measures using 

the ANOVA approach as follows:

• If e is very small, which is an indication of lack of sphericity, use of the

m ultivariate approach may be suggested.

• If e is very close to 1, usual ANOVA for a split plot design may be carried 

out.

9
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• Otherwise use of ANOVA with an approximate F  (use of e correction) may 

be appropriate.

Next, we give an outline of the  subsequent chapters.

In Chapter 2 we study a generalization of the basic ANOVA model to analyze 

univariate repeated measures data. Laird and Ware (1982), utilizing the ideas 

introduced by Harville (1977), introduced mixed effects models to  analyze these 

data. This modeling approach gives us a choice of various covariance structures 

for both individual random effects component and within individual errors. We 

consider a mixed effects model assuming within individual errors th a t follow an 

autoregressive (AR(1)) structure. We propose a score test for the  param eter tha t 

accounts for the between individual random effects component. This test is very 

useful because it tests for the possibility of a simpler model.

In Chapter 3 we study methods of analyzing repeated measures data  in the 

presence of covariates. We review methods of analyzing univariate repeated mea

sures data  in presence of two types of covariates: (a) covariates fixed over tim e and 

(b) tim e varying covariates. We provide computer programs, using SAS software 

to perform each of these analyses.

In Chapter 4 we consider analysis of balanced m ultivariate repeated measures 

data. Analysis of these data  using a MANOVA model is considered. The well 

known Satterthwaite type approxim ation to the distribution of a quadratic form in 

norm al variables is extended to  the distribution of a m ultivariate quadratic form in

10
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m ultivariate normal variates. The m ultivariate tests using this approximation are 

developed for testing the usual hypotheses.

In Chapter 5 we consider analysis of unbalanced multivaxiate repeated measures 

data. Use of m ultivariate linear models for analysis of these data is illustrated. 

Analysis of these models are discussed under some special covaxiance structures.

11
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C hapter 2 

M ixed Effects M odels For 

U nivariate R epeated M easures

2.1 Introduction

In this chapter we study a generalization of the basic ANOVA model, to analyze 

repeated measures or longitudinal data. The defining characteristic of a repeated 

measures or longitudinal study is tha t the individuals are measured repeatedly over 

time. Longitudinal studies are designed to investigate changes in a characteristic 

which is measured over time. In medical experiments, the characteristic of interest 

might be blood pressure, cholesterol level, lung volume or serum glucose. Suppose 

we have t measurements taken repeatedly over tim e on n experimental units on a  

certain characteristic. Our main problem of interest is to make inference about the

12
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differences between the levels of the characteristic at various tim e points. Stated 

in other words, our interest is to test a hypothesis about the tim e effect. To model 

longitudinal da ta  collected over tim e for each member of a  group of experimental 

units, one must recognize the correlation between serial observations on the same 

experimental unit.

In practice, longitudinal data are often unbalanced or incomplete, that is, all 

individuals are not observed the same number of times or with the same design 

matrix X .  In these situations it is imperative to consider models th a t account for 

both unbalancedness and correlation among the observations on an individual.

Laird and Ware (1982), utilizing the ideas introduced by Harville (1977), intro

duced a generalization of the basic ANOVA model to  analyze repeated measures 

data. Let /3 denote a m  x 1 vector of unknown population parameters and Xk  be 

a known tk x m  design m atrix. Let Tk denote a g x l  vector of unknown individual 

random effects and Ck be a known tk x q design m atrix  for individual effects. For 

each individual k, Laird and Ware (1982) considered the following model:

Yk = Xk/3 +  CkTk +  efe, (2 .1)

where t k is distributed as iV(0, V fc). Here V*, is a  tk X tk positive definite covariance 

matrix, depending on k  through its dimension tk- However, the set of unknown 

parameters in V* do not depend on k. Next, the random vectors r* are distributed 

as N(0,  T), independently of each other and of tk- Here T is a q x q positive definite

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



matrix. To summarize we have model (2.1) with the  following specifications.

E(ek) =  0, V(cfc) =  V fc, (2.2)

E (r k) =  0, V(rk) = T and Cov(rk, ek) = 0. (2.3)

Thus for the model (2.1) we have,

E (Y k) = X k/3 and 

V(Yk) =  CkTC'k + V k.

For this model with Vj, equal to an identity m atrix, Laird and Ware (1982) utilized 

the EM algorithm to obtain the maximum likelihood (ML) and restricted maximum 

likelihood (REML) estim ates of the variance components. However, the  tests of 

hypothesis about the  param eters of the covariance m atrix  were not considered by 

them.

Chi and Reinsel (1989) considered model (2.1) th a t contain both individual

random effect component and within individual errors th a t follow an autoregressive

(AR(1)) tim e series process. They developed a score test for the autocorrelation 

in the within individual errors for the ‘conditional independence’ random  effects 

model. The AR(1) structure is particularly appealing because of the  fact that it 

incorporates the  natural decay in the correlation between observations taken on 

the same experimental unit with increasing tim e lags. In other words, observations 

on the same experim ental unit which axe closer together should be more highly 

correlated than  those th a t axe fax apart in time.

14
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Chi and Reinsel (1989) illustrated their m ethods on a data  set with Ck =  1 fc, 

where 1* is a  tk x 1 vector of ones. This choice of Ck seems to be most useful in 

practical situations. W ith this choice of Ck, in the following section we derive a 

score test for the param eter th a t accounts for the  between individual random effects 

component. Our model for individual k is

hfc =  Xk(3 +  lfcT*; +  ej;, & =  l , . . . ,n ,  (2-4)

with

E[Yk) =  X kP

=  cov{Yk) = <r?ll' +  cr2V k (2.5)

where the (i , j ) th element of Vfc is
P

Notice tha t (2.5) can be w ritten as

Sfc =  cov(Yk) =  <r2(£Jk +  Vfc), (2.6)

where £ =  £T2/gt2 and J k is a tk X tk m atrix of one’s.

2.2 Score test for H q : f  =  0.

We propose a score test for testing Ho ■ cr2 =  0 f?o : £ =  0- The score test is based 

on the score criterion suggested by Rao (1948), and it has the advantage over other 

large sample tests, such as W ald’s test and the likelihood ratio test, of requiring

15
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estim ation only under the null hypothesis. Computation of maximum likelihood 

estim ates is quite tedious in most cases. However the score test enables considerable 

savings in term s of computation. It requires estim ation only under the null model, 

and also yields a test asymptotically equivalent to the corresponding likelihood 

ratio test. Thus the null distribution of the score statistic is asymptotically x 2  with 

degrees of freedom equal to the number of param etric restrictions imposed by the 

hypothesis.

As was mentioned before, Chi and Reinsel (1989) proposed a score test for 

testing the  random effects model (2.1) with cov(e/,) =  cr21 against the same model 

with autocorrelated (AR(1)) errors for the e'ks. Thus a score test for testing H 0  : 

p = 0 (the autoregressive param eter=0) provides a simple check for the  presence 

of possible autocorrelation in the errors. The test for Hq : £ =  0, that we develop 

would provide a check for the possibility of a simpler model without the  random 

effects .

Let a  =  (/?', cr2, £, p)' be the vector of param eters of the model (2.4) and let a 0  =  

(/?o, <Jq, 6 ,  Po)' be the parameters of a  replaced their corresponding ML estimates 

under the  null model. The log-likelihood function of a,  given Y\, Y2, ... ,Yn, for the 

model (2.4) can be written as

/(/?, a 2, £, p) =  constant — t f ;  log i s t  i -  t  £ ( n  -  x w s j 'E i ' t n  -  **/»),
L k=l 1  fc=i

where Sfc =  cov{Yk) =  cr2(£Jfc+Vfc). I t is true th a t when evaluated at a 0 5 th e score

16
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81vector —  has all elements equal to zero except the derivative with respect to £ de
em

81 (  d2l
noted by —  . The ( i , j ) th element of information m atrix is Iij =  E  ( — - — — r

d£|a0 V J \  dctidotj

which has a form partitioned in accordance with a  = (/3,cr2,£ ,p). Then the infor

mation m atrix denoted by I  is given by

7/3/3' 0 0 0

0 Ia 20.2 7CT2p

0 I(tt2

lp£ Ipp

The score statistic denoted by A, then takes the form

1 =

0 lp(T̂  Io

> - ( ! ) > ( £l&o

which in the present context reduces to

(2.7)
|“0

>-(S ('
\ao W O  I*

(2 .8)

where is the (m +  2, m  +  2 )nd element of the m atrix I -1 . The score test statistic 

A is asymptotically distributed as chi-square with 1 degree of freedom under the 

null hypothesis. The second derivatives of 1(6*) with respect to 9* = (o"2,^ ,p ) have 

the form

d2l
86186*1 k=i

,_i 9S/b V _1 , 
861S«J

-  ■ £ ( Y t - x t 0 y s ] ; ' - s ^ ^ - g ^ ( Y k - x k/3). (2.9)
/c=l

17
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Therefore, it is easy to see that

«  i a  a s *
li'-~ m»Mii -  2 ' * as?" * ~Sef'de-do- (2 .10)

The elements of the information m atrix can be calculated using (2.10).

R e su lt 1: With the usual notations, the elements of the information matrix are 

given by

(a)
d2£

E{* - y -  2 j | > ( S ‘

(*)
d2£

=  1 ‘ W  "

W
d2l

2 h .  d ° 2  k

(d)
d2£

E ( - w )

00
d 2£

£ ( - w 2 £ i r ( S ‘  S f S ‘

( / )
rn, d2£ .

 ̂ dP^ -  j E M S .  3 ,  S .

dp

P ro o f: Easy to see from (2.10)

R e su lt 2: Under the null hypothesis, the expressions (a)-(f) reduce to the fol~

18
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Q
lowing: Define V k =  — (Vfc)

(-) ^ ( - 0 )  =  ^ i > d , )  =

(*) B ^ )  =  -  l , ^ - 2) - ^ - 1̂

/̂ 2/? i 7i TiO

W  £ ( - W  =  2 ^ S > ( v ‘ ‘v a  =  - ^ 7 )

. . .  a2t  1 A- . A  [?2(<i -  2) -  2p(tt -  1) +  tkf
( )  =  a £  ( ‘ ‘ ‘ fc) =  £ --------------------2-------------------

f l i p  1 *  n
(e) « ( - | ^ )  =  ^ E M V ^ V J ' V ; )  =  Z ( t k - l ) - f ( i k - 2 )

( / )  ^ ( - p >  =  \ ± ‘r ( v m ' v i )  =

P ro o f: We now give proof of only (e), as the rest similarly follow. Under the 

null hypothesis

B ( - § - p ) =  I t H W W )

Consider M V ^ J f c V ^ )  =  irCV ^lfcl'fcV ^VE)

=  ( W ^ V ^ l * )

Vfc1 =  1 +  p2 0 i — pC%

lfcV^1 =  l'k + p 2l'kCi -  pl'kC2

=  l '  +  p2(0 ,1,1, . . . ,  1 , 1 , 0 ) -  p( l ,  2 ,2 , . . . ,  2 ,2 ,1)

=  (1 -  p, 1 -  2p +  p2, ••••, 1 -  2p +  p2, 1 -  p)

= ( i - p) ( l , l - p , . . . , l - p , l )  (2.11)

19
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0
Recall th a t V? =  — (V^) and V* is of order tk x  tk- For notational convenience, 

* dp

we carry out the further calculations by dropping the subscript k of tk- Let us now 

examine the elements of the  m atrix V* =  (v£), for i, j  =  1,

Case (i)

Case (ii)

For | i — j  | =  0

2 p
(1 -  P2)2

For | i — j  | >  0

(1 -  p2) | i -  j  | pI*'"'!-1 +  2 p W + 1

(1 -  p*)2

Note th a t V* is of the form

V ’ =

Vi V2 V3  . . . Vt- 1  Vt

V2 Vi V2 . . . Vt- 2 Vt-1

Vt - 1  Vt - 2  Vt-3 .

Vt Vt- 1  Vt- 2 •

Vi v2

V2 Ui

(2 .12)

20
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Using (2.11) and (2.12) we can see tha t

V T ' l  =

t- i
« 1 +  ( 1 - / 3 )  E  Vi +  Vt 

1 = 2

t - 2
v 2+  (1  — p )  E  v i +  Vt- 1

i= l

t -2
U t _ ! +  (1 -  p )  E  V.' +  U2t = l

U f +  ( 1 - / 9 )  X > ;  +  ^ i
1 = 2

Then

t - i
l'V -1V*V-1l  = 2t<1 + 2», +  4 ( l - p ) £ t t i  + ( l - p ) J( i -2)tt i

j=2t=2 j=2t=2

It can be verified that

t - l  j - 1  t - 2  t - j

E E «  =  E E « -
j = 3  i — 2  j = 2  i = 2

Therefore, the above equation (2.13) becomes

t - i
1/V~1V*V~11 = 2ui + 2vt + 4(l -p)^2vi

i—2

+  ( l - / 9 ) 2( t - 2 ) v i  +  2 ^ ^ v i
j = 2 t=2

21
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We now evaluate
t- 1 t - i j - i
Y ^  and Y J L vi
i= 2  j=2 t=2

in term s of the elments of V*.

The elements of V* for i =  1, . .. ,t can be written in the  form

Vi =  Pl~2[(i — !) — (* — 3 )p2}

Now,

2(* - * )  -  ( * - 3)p1
i=2 i=2

t-1 t-X t-1 t-1
=  £ ^ t_2- I ^ t_2- ] C ^ t +  3 X V

i=2 t=2  t=2  t= 2

=  2- ^ ± l _ ^ L (v  +  , - i ) - i ( i +  , y - =  (2.15)
1 -  /» 1 ~ p

(< -2 )(2 /?2 +  /j +  l)  ( V  +  p -  1)(1 -  Pt 2 )

S S ”‘ =  — ------------------------ 0 = 7 5  (2-16)

vi = 2 p (2-17)

vt =  ,*"»[(* -  1) -  (i -  3V2] (2.18)

From equations (2.15), (2.16), (2.17) and (2.18) we have

l ' V - 1V * V _1l  =  2[(< -  1) -  p(t -  2)]. (2.19)

Now substituting t = tk back in (2.19), we have

pfiO 1 n n

s ( - ^ )  =  | S ‘r ( v ‘' 1 ,*v * l v i ) =  E ( ‘* - 1 )  -  K** - 2 ) -

22
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Similarly, we calculate the other elements of the inform ation m atrix. 

Partition the information m atrix

where

1 =

D

E

D E  

E' J

8 H
d/3dp' 

~  0,71X3

J  =

V '  1 4- V '  P 2 ( * f c - 2 ) - 2 p ( t f c —l ) + t f c
2-, 2 a* k 2a-2

k= 1 fc=l

JL r»2

np
a2( l - p 2)

k= 1 k= 1
n

p2(tk- 2 ) - 2 p ( t k- l ) + t k ^  [p2(tfc—2)—2p(tfc—l)+tfc]2 ^  ^  -  1 ) -  -  2 )

1 - 2(7 ’ ’ /c=l

E ( U  - 1 )  -  p(h  -  2) £

Writing f l U  — A  and £  t \  =  B ,  we have
fcssl fc=l

J  =

_i_J42ff*

>1(1—p)2-f 2pn(l—p) 
2^

> l( l -p )2+ 2 p n ( l - p )
2a2

np

np
c 2 ( l - p 2)

<r2( l - p 2)

[ { p ^ + s p ^ p + D b  (̂ i _  p'jA +  n( 2 p — 1)

+ ( - v  +  12/j3 -  10/92 +  2p)A  

+ (4pA -  4p3 +  4p2)\

(1 -  p)A +  n( 2 p -  1)
f ( l - p 2) A - n ( l - 3 p 2)]

Recall th a t the  score statistic for testing Ho : £ =  0 is given by

© S L > U 8 ) , ' (2 .20)

23
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where

'  J n

~ i
(  \  

J \ 2

 ̂ -̂ 31 J33 j \  J32 )

\  ^ /  |qjq h—X k ~ \

(J^ ) |a 0 =  J 22 ~  (J 2! J23)

2.2.1 A  sp ecia l case

We now consider a special case of the model (2.4) with tk = t for all k and give the 

score test for testing H 0  : £ =  0. In this case it can be shown tha t

J =

n t  n\p2( t -2) -2p{ t~ l )+i \ np
2<r2 <72(1 -  p2)

[p2( t -2 ) -2p ( t - l )+ t ]  n[p2(t—2)—2p(t—l)+t]2 ^  _  J )  _  p ( t  _  2 )]

n P „r n  n  om
a 2 ( l - p 2 ) A  ( 1 - p 2)2

Now the components of the score test statistic are given by

' d t \

. S f / l *

Mb = (Yt -X„P)

m d  (-&L =ISO n (l — p)4(t — 2)(t — 1) ’ 

Therefore the test statistic A is given by

A =
(1 — p o ) ( t ( l  — Po)  +  2 p o ))  +  — PO)2 H) ( Z )  u ik PO J2  u i k )

0 fc=l i = l  t=2

4 ( l - p 0)4( < - 2 ) ( t - l )  

Here uik is the  ith component of the vector ujt, and

24
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U k =

I A \
yik — XkPo 

V2 k — X kp0

^ Vtk Xkfto j
vector of measurements on individual k. In order to com pute the score test statistic 

given by (2.21), we need j30,<?l and po, estimates of /3,cr2  and p respectively under 

the null hypothesis H 0  : £ =  0. We use the estimates obtained in the Appendix to 

evaluate the test statistic. Once the statistic is evaluated it can be used to test Ho 

by comparing its value with the x 2 cutoff point.

Before proceeding with the analysis with the other components of the  model, 

we provide a brief discussion of the Rao’s score test with the  other two aym ptotic 

tests, the likelihood ratio test and the Wald’s test.

A d iscussion  o f th e  three large sam ple tests

We give a brief discussion of different tools for hypothesis testing in large samples. 

Testing of hypotheses in large samples has a long history. Wilks (1938) introduced 

the likelihood ratio test, Wald (1943) introduced what is now called W ald’s test, 

and Rao (1948) proposed the score test (now known as Rao’s score test) for testing 

in large samples.

25
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These three tests are known to have a  common aym ptotic distribution, which is 

chi-square with degrees of freedom equal to the dimension of the vector of param 

eters under the null hypothesis. In a tex t book on econometrics Amemiya (1985) 

has discussed these three tests. Hall and Mathiason (1990) showed tha t these tests 

axe not just asymptotically equivalent in law (i.e., have the same asym ptotic dis

tribution) but are asymptotically pointwise equivalent. That is, the test statistics 

axe indeed appxoximately equal. This equivalence is pxoved by these authoxs con- 

sidexing Pitm an-type local altexnatives.

By simulation and theoretical investigations, it has been shown by several au

thors that there are no strict dominance relationships among the W ald’s, likelihood 

ratio and score test statistics. For example, see Amemiya (1985). However, Chan

dra and Mukherjee (1991) observed th a t Wald’s and Rao’s tests are not necessaxily 

unbiased while the likelihood ratio te st is. In this sense the three tests are not there

fore strictly comparable. They suggested a Baxtlett type modification for Wald’s 

and score tests to correct for bias. They found th a t the modified score test has 

better local properties than  the likelihood ratio or modified Wald test.

The conclusions from the above discussion and the fact th a t the score test is 

easier to compute than either the likelihood ratio or the Wald’s test, prom pted us 

to restrict out attention to the score test for testing Ho '• £ =  0.

26
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2.3 A nalysis under the reduced m odel

Suppose we accept the null hypothesis Ho : £ =  0. Then the  model (2.4) is reduced 

to

Yk = X k/3 + ek, k = I , n  (2.22)

That is, we now have a linear model with fixed effects and correlated errors. In 

the following sections, we discuss various methods of testing hypothesis of the form 

Ho : Kj3 =  0. In order to test the above linear hypothesis about the mean param 

eter vector (3 we can use one of the following alternatives.

(1) Generalized least squares method

(2) Likelihood ratio  method

(3) Score test

(4) Approximate F  test

While the m ethods (1) and (2) are commonly used, m ethods (3) and (4) are devel

oped in this thesis.

2.3.1 G eneralized  least squares m eth od

The generalized least squaxes estimator /3 is found by minimizing the quadra

tic form £ L i  Qk(P, V ), where Q k(P,V)  =  (Yk -  X k P y V ^ i Y k  -  X k/3). In the 

hypothetical case of known V*,, the solution of f3 is given by 

P =  ( E L  1 ^ V j - ^ O ' H E L i  X'kVk'Yk). W hen V k is unknown, the estim ate of

27
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/? has the  same form as above with V/t replaced by V*., where V* is any consis

ten t estim ator of Vjt. The estimated covariance m atrix  of /3 is var(fi) = V  p =  

( E L i  X i y ' k 1 Xk)~1- This is used for testing the hypothesis of the form K f i  = 0. 

The statistic  Tc = (Kf}) ' {KVpK')~l {K/3) approximately has a  chi-square distribu

tion with r degrees of freedom. This because as n  —»■ oo, V  —► V  in probability. 

Thus under the null hypothesis, Kfi  -> N r(Q ,K VpK ')  and so Tc -> x l  in distribu

tion.

2.3.2 L ikelihood ratio m ethod

Let 0  =  (/?, cr2, p) be the vector of unknown param eters of the model. Let L(j3, cr2, p) 

be the likelihood function obtained by evaluating the joint density of Y i ,Y 2 , . . - ,Yn 

a t their specified values y\,y%, ■■■iVn- The likelihood ratio test for testing the linear 

hypothesis H 0  : K f i  = 0 , where K  is a r x m  m atrix  of full rank r <  m,  rejects H a 

in favor of H a if

maxL(P,cr 2 ,p)
A _  96Q°__________ Q

max L(/3, cr2, p)
96 0

with 0  =  (/?, cr2, p) and 0 O =  {(/?, cr2, p) : K f l  =  0}.

Let 6  =  0 ,  ct2 ,p) be the MLE of 6  £ 0  and &o = 0o,&oiPo) be the MLE of 9 

under Ho, th a t is when K(3 =  0. The method of estimation of 6  under the  entire 

param eter space 0  and under the null hypothesis Hq is discussed in the Appendix 

to this chapter.

28
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Using these estim ates, the likelihood ratio statistic reduces to

ri
S  ' \  2

A =
S | e 0

) n t  , ^ . n

T YV1 -  9 J

In applications of the likelihood ratio method, we must obtain the sampling dis

tribution of the likelihood ratio statistic A. However, it is well known th a t when 

the sample size is large, the sampling distribution of —2In A is well approximated 

by a x 2 distribution with degrees of freedom (v — Vo). Here the degrees of free

dom {v — Vo)= (dimension of 0)-(dimension of 0o). Thus in the present situation 

—2In A ~  x 2 w ith r degrees of freedom approximately.

2.3.3 Score test

Here we develop a score test for testing Ho : K 0  =  0 vs. H a • K/3 ^  0. Let 

a  =  (P',<j2 ,p) and let a 0 =  (i3',<?2 ,p) be the MLE’s of a  under the restriction of 

the null hypothesis. Let I denote the loglikelihood function of Yi, T j , ..., Yn, which 

can be written as

1 n
/(/?, cr2, p) =  constant — -  ^ 2  log \ cr2Vk

1  fc=l

-  A  -  Xi.fi) (2.23)
to i
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The components of the  score vector are
(  d l  \

S  =

d/3
d l

da 2

d l
d P

nt

np 1 £ ( n  -  x t f y y p C t  -  c>)(n -  x kp)
1 -  p2 2 a 2  ^  ' )

We need to evaluate the  score vector S  at do, where do =  (/?o,CTq, p0), /30, <7q, /30 

being the estim ates of /?,cr2, and p under the null model.
(  dl_ x 

S/3 |*o
It is true tha t -5*o = 0

0

Let the inform ation m atrix  of a  =  (/?, cr2, p) be partitioned as

/ \
Ippi 0 0

1 =

0 Ipcr2 Ipp

(  d 2l  \
where I a.a . = E  - - — 7- 7- for a ;, a,- =  /3,cr2 and p. The score statistic for H 0  

‘ 3 \  daidaj J
K/3 = 0 can be expressed in terms of the quadratic form as

A= <$)'«< (g
30
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where Ipp — — Y ^ X i  |&0. Estim ation of a  under H 0  : K f i  =  0 is

discussed in the Appendix. For large n, the distribution of A is approxim ated by a 

X 2- distribution with r  degrees of freedom.

2.3 .4  A pproxim ate F test

We now discuss a new approach to testing hypotheses of the form Ho : K fl  =  0 

under the reduced model. Consider the model

Yk = XkP  +  fc = l , . . . ,r c

We now require tk = t for all k  to develop this m ethod. If we assume th a t cov(ck) = 

cr2I, to test the above hypothesis we have the usual F  statistic given by

{ K p ) ' ( K ( x ' x y xK ' ) - \ K p )
F  =

ra 2

with r and n — r degrees of freedom, r  being the rank of K .  However we have
.2

P‘

this situation the natural question th a t arises is about the distribution of the F

dependent errors w ith covfa)  =  V  =    instead of cov(ek) = cr2 I. In

statistic. Several authors including Box (1954) and Geisser and Greenhouse (1958)

have tried to provide an answer to this question. We know th a t the sum of squares

due to the hypothesis can be expressed as a quadratic form as Y ' H Y .  Let the

sum of squares due to error be expressed as Y ' E Y .  In general to  use the ratio 

Y ' H Y
- ~ as a test statistic, we require the two quadratic forms to be independent.
Y ' E Y
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Stated in other words, we require H Y E  =  0. This condition may not hold true in 

general. However in some special situations, like the one-way ANOVA model, split 

plot designs, the above condition holds true for all the standard hypothesis. The 

distributions of the  F  statitics are considered in detail for the split plot design in 

Chapter 1. We now derive the expressions for the correction factor e for the degrees 

of freedom under this autoregresive structure for V.

We may recall from Chapter 1 tha t

e- (<_ i r .W X n i£ 22!!
1 1 tr(V  -  1 JV )2 '

For our choice of V

t r ( V  -  - J V )  = t r ( Y )  -  - f r ( J V )
t> t

t r ( V - - J V ) 2  = t r ( Y ) - - t r ( V J Y )  + ^ t r ( J Y J Y )  
i i o

where

tr(V ) =

t r ( J Y )  =

P‘
cr2[f(l -  p2) -  2 p(l -  p1)]

{ l - p 2 ) { l - p f  

t r ( y y )  =
a* [t(1 +  p ) 2  +  2t p ^  + 2 p ^ -= $ r -  4p(l +  p ) ± £

a  - p 2 m - p )  
a 2 [t(l -  p2) -  2 p(l  - / ) ] 12

H V J V )  = n  _ . 1W i _

f r ( J V J V )  = ( i - p i ) { i - py

In order to  evaluate e we need the estimates of cr2  and p. The estimation of 

these is described in the Appendix.
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2.4 A ppendix

2.4.1 M odel and estim ators

Consider the model

where ej. is a f x 1 vector, Xk  is the t x m  design m atrix for the mean vector and 

Yk is a t x 1 vector of dependent variables on individual k. It is assumed tha t 

E(ek) = 0 and cov(tk) =  cr2V , where

V  =
1 - P 2

1 p p2  . • • 9‘- 1

1 p . . .  pt - 2

pt- 1 ^t-2 ^t-3

It can be verified th a t I V  1=   r  and V  1 =  I  +  p2 C\ — p2 C2  where
1 - p 2

0 0 . . .0 0

0 1 . . .0 0

<?! =

0 0 . .  1 0

0 0 . .  0 0
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c 2 =

0 1 . . .0 0

1 0 . . .0 0

0 0 0 1

0 0 . .  1 0

The likelihood function for the model is given by

i =  ( - ^ ) »  f t  I r *  E ( y* -  X k P ) ' V - ' ( Y k -  X t 0)}  (2.24)
fc=l 20-2 t i

and the loglikelihood function is given by

Tb"L Tb
I (j3,cr2 ,p) =  constant — —Ina 2  +  — /n (l — p2)

JL £
i  ^

-  ^  Yk ~  Xk/3)' V  + p2Cx "  pC^ Yk ~  Xk(3)• (2'25)fc=i

The equation (2.25) can be written as

, / „ 9 v n t , 0 n , . ,. A\  p2 A. 2  pAz
I (P><r ,p) = constant -  — Ina +  - l n (  1 -  p ) -  ^I' (2.26)

where

•A2

A 3

' E ( Y k - X k/3)'(yk - X kl3)t
k=1

£ ( y * - x * 0 ) 'c l ( y f c - x k / ? ) ,
k=1 

n
^ ( n - x ^ y a 2(yfc- x fcj0).
A=1
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The m axim um  likelihood method yields the following non-linear maximum likeli

hood (ML) equations which can be solved iteratively for the unknown parameters 

/?, a 2 and p respectively.

<9 =  [ £ X ‘kX t + p ' £ x tCi (2.27)
k=1 k=1 

n
k=1 
n

k=i
i

*=i *:=!

cr =
nt

[Ai +  p2A2 — PA3] (2.28)

2(t — 1) A2p  ̂— (t — 2 )A$p2  — 2(Ai +  tA 2)p +  tAs — 0. (2.29)

We note th a t only the equations (2.27) and (2.29) have to be solved iteratively.

2.4.2 E stim ation  under th e  null h yp oth esis K(3 =  0

Consider the  model

Yk = XkP + ek fc =  l , . . . , n (2.30)

We need to estim ate the parameters of the model under H q : K fi  =  0, where K  is

a m atrix  of order r  x m  with rank  (K ) = r. To do th a t choose a m atrix L  of order
/  \

K is a  nonsingular m atrix  , and M M  1 =  I.  Them  — r x m  such th a t M  =  

model (2.30) can be w ritten as

Yk = X k M - ' M f i  + e
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( \ 
K ?  

\ LP I 

=  x P K I 3  + X l 2 )LI3 + e

+  e (writing X kM  1 =  ( A ^ I A ^ ) )

Under Ho the model reduces to

=  Z kp* +  e,

where Z k = X £2) and /?* =  L/3. Now we need the estimates of f3*, a 2 and p. The 

likelihood function under the null hypothesis yields the following non-linear maxi

m um  likelihood (ML) equations which can be solved for the  unknown param eters 

/3*,p and a 2. The equations are:

k—1 A:=l k=l

[E Z'kYk + P2 E  Z'kC,Yk + P E  Z'kC2Yk]
k=l  k= 1 k = 1

cr2 =  +  p 2-S2 -  pB3]
nt

2(i -  l ) £ 2/93 -  (< -  2)B3 p2  -  2(5x +  +  t B 3  =  0

where

Bi = E ( y* -  ^ ) ' ( n  -  
k=i 
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b 2 =  £ ( n  -  z* /s ) 'C i(n  -  z*/»),
fc=i

b z =  £ ( n  -  Z iffl'c2{ n  -  Zk/s).
k=i
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C hapter 3 

A nalysis o f R epeated M easures 

W ith  Covariates

In this chapter we study methods of analyzing repeated measures da ta  in the 

presence of covaxiates. In the medical field we often come across repeated measures 

data  along w ith covariates that influence the response variable. It is im portant 

to conduct th e  analysis of repeated measures da ta  to account for covariate effects, 

when data  contain covariates that might affect the  analysis. In clinical trials, base

line m easurem ent can be thought of as a useful covariate for analyzing response 

patterns at successive visits. In the following we describe two situations, cited by 

Patel (1986), where one or more covaxiates occur naturally. In therapies for the  

treatm ent of chronic stable angina, treadmill walking tim e (a covariate) is recorded 

just before the adm inistration of a dose, and then  at some post-dose time. The
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effectiveness of the visit doses is evaluated relative to  the corresponding baseline 

walking times. In another situation the effectiveness of a drug in the treatm ent of 

atherosclerosis is probably influenced by factors such as diet, exercise and smoking 

(covariates). If the influencing factors are measured we need to  construct a  model 

which makes use of this information.

The situations described above differ in the nature of covariate information 

available. In the  first example, the value of the covariate is specific to the subject 

and does not vary with time. However, in the second situation the value of each 

covariate is being measured a t each tim e point along with the  response variable. 

Thus depending on the type of covariate information available, we have

• Covariates fixed over tim e

• Covariates changing over time, or tim e varying covariates

In a repeated measures da ta  analysis the main problems of interest are

(i) To test for the interaction between tim e and the group effects (parallel profiles)

(ii) To compare the profiles of the means (over tim e) of different groups (coinci

dental profiles)

(iii) To test the difference between the means of the response variables at different 

tim e points (horizontal profiles)

In this chapter, we review the  methods of analyzing repeated measures da ta  in the 

presence of covariates. In the  section 3.1 we discuss the methods of solving these
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problems when the  covariates are fixed over time, In section 3.2 we review various 

methods of analyzing the repeated measures data with tim e varying covariates. 

These methods are illustrated using numerical examples and the SAS software. 

The SAS programs are also provided for convenience.

3.1 Covariates fixed over tim e

Depending on the  nature of the data and other considerations about the covariance 

structures of the repeated measures, one of the following two approaches are usually 

adopted in practice.

3.1.1 T h e m ultivariate approach

Let Y{j =  {Viju ■■■iVijt) be a vector of t measurements on the j th individual from 

the ith group. We also have a  set of m  covariates, x u j ) . . . ,xmij, on each individual. 

Let us assume m  =  1 for simplicity of presentation and denote the value of the 

covariate by Xij. We have the following model for vector Yij,

Yij =  fi H "  ~ t -  A j X j j  ■(■ j  J  =  ^  L  • • • >  5 >

where /i, ex,, and A; are all t x 1 vectors, and Cij ~  Nt(0 , V), V a positive definite 

matrix.

We can rew rite (3.1) as

Yi'j =  V-' +  +  x i j K  +  eij
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=  * & £  + <y,

where X -  is the  1 x (2g +  1) vector (1, 0, ...0, 1, 0, . . . ,z ty, ” .,0) and B  is the

(2g +  1) x t  m atrix  such that B'  =  (fi, a i , . . . , a g, g).
9

Next define Y,ixt = (Yi1 , . . . ,Yini,Y 2 1 , . . . ,Y 2 n2 , . . . ,Ygn J ,  n =  £  n< and
t=i

- ^ n x ( 2 g + l)  = : (-^ 1 1  j •••) - ^ l n ,  > X 2\ , X 2n 2i - ^ g n g ) • T h e n

Y  = X B  + E ,  (3.2)

where E  is a n  x t m atrix of errors. The rows of E  are assumed to be independent 

and each distributed as jVt(0, V). Under this model, our testing problems (i)-(iii) 

can be tested using the general linear hypothesis Ho : L B M  =  0. Any standard 

statistical package like SAS, can be utilized to  do the above MANOVA.

3.1.2 T h e univariate approach

An alternative approach to the method described above is to adopt the analysis

of a split plot design, but with covariates. Let yijk be an observed value of the

response variable on the j th subject from the i th group a t the kth occasion. Then 

we have the model

y i j k  =  y  +  +  Pk  +  ( a P ) i k  +  AkZi j  4- 7j(t) +  jk ,  ( 3 .3 )

Jc — l , . , . , i ,  j  — 1 , . . . , i =

with eijk ~  N ( 0, <T2), 7 j(i) ~  N ( 0 , t f ) .  These assumptions on the random effects 

amounts to  having an equicorrelation structure for cov(Yij) =  V  =  <r2V (p), th a t is,
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V(p)  =  (1 — p)I+ /o l 1̂ , for the correlation m atrix of an individual. Hence we can ap

ply the usual linear model theory. For tha t, write y ' =  (Y^ , ..., Y{ni,..., Y 'gl, ..., Ygng), 

with /?' =  (p,,ai, . . . ,ag, P i , p t, (aP)n , . . . ,(aP)gt, Xr, X g). TheI1 we have

y  = Xp + e, (3.4)

where X  is the appropriately chosen design m atrix  and e ~  Afn(0 ,fi), =  In ®

g
Vtxt =  In ® a 2 V(p) ,  n  =  £  Hi. Under this model, testing of various hypotheses

t=i

can be easily carried out by testing Ho : LP — 0 for specific choices of L. Again 

softwares like SAS, can be utilized to do this testing.

The two approaches (the multivariate and the univariate) are different on the 

following two accounts:

(a) On one hand we assume a completely arbitrary correlation structure for the 

m ultivariate approach, and on the other hand we use a very simple equicor- 

relation structure for the univariate approach.

(b) We use the  theory of multivariate statistical analysis for the first approach, 

and the ANOVA F-tests for the second.

Both of these approaches fail when the correlation structure is not of one of the 

two extremes considered above. To overcome the shortcomings of these methods 

the following alternative linear model approach can be adopted.
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Suppose the linear model

y  =  X/3 +  e, (3.5)

is used to model the repeated measures data with Y  as a  nt  x 1 vector of observations

9observed at t occasions on n = n i patients, X  as a  nt  x m  design m atrix and
t=i

/3 as a m  x 1 vector of param eters. Suppose cov (e) =  fl =  I n ® V txt> where 

V  = V(01, ..., 9k), for some unknown parameters # i , ..., 9 k-

Assuming m ultivariate normality for e, the m axim um  likelihood estimates of 

/3, can be derived. Then the likelihood ratio test, for testing any linear

hypothesis of interest Ho : L/3 =  0, can be utilized appealing to the asymptotic 

distribution of the test.

Another route taken is through generalized least squares estim ates (GLE). For a 

known V, since V  is positive definite, GLE of /3, /3 =  (X 'V _1A’)-1 X 'V -1y .  Using 

this /3 the ANOVA test for testing Ho : L/3 =  0 can be derived. But V  is usually 

unknown. Using some consistent estimators of , V  is estim ated and the

A ^
estim ate V  =  V (# i , ..., 6 k) is used in place of V in the formula for j3 and the same 

ANOVA tests can still be used. But now the distribution of the test statistic will 

have to be approximated.

The maximum likelihood approach, when V is known, yields th e  same estimate 

of fi as the GLE. Further, the likelihood ratio test for testing L(3 — 0 will still 

hold through if a y^n-consistent estim ate of V, instead of the maximum likelihood
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estim ate, is utilized. This fact is useful since in many problems with structured 

covariances, finding the maximum likelihood estimates of ..., &k is generally hard,

if not impossible. However, consistent estimates of ..., and hence of V  can be

obtained easily.

Another serious drawback of the multivariate and ANOVA methods is that 

they cannot be applied when da ta  are unbalanced, th a t is, when different number 

of observations are available on different individuals. Further, the  m ultivariate tests 

have been known to be less powerful, when the variance covariance m atrix  of the 

observation vector has a certain structure. Thus, either if d a ta  are unbalanced or 

the covariance m atrix has a structure other than the equicorrelation structure, the 

maximum likelihood approach or the  two stage GLE approach seems to be the  right 

approach. Further, this general approach can be utilized when the covariates are 

tim e varying. Modification of this approach to accommodate unbalanced d a ta  will 

be discussed in section 3.2.4.

3.1.3 E xam ple 1

In this section, we illustrate m ethods described in section 3.1.1 and 3.1.2 to  analyze 

repeated measures data with fixed covariates. The data set in Table 1 is courtesy of 

Center for Pediatric Research, Eastern Virginia Medical School, Norfolk, Virginia 

and it has been discussed and analyzed by Pickering, Marrow, H errara etal.,(1995). 

The purpose of the study was to  see the effect of m aternal im m unization on the
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serum anti-rotavirus antibody concentration. T hirty  two women were random

ized into three groups and received a single oral dose of either rhesus rotavirus 

monovalent reassortant vaccine (104 pfu), rhesus rotavirus tetravalent vaccine (104 

pfu), or placebo. Measurements on the antibody concentration were taken. One 

measurement was taken before the vaccination and six other measurements were 

collected after a week, one month, two months, three months, four months and five 

months after the  vaccination. Measurement taken before the vaccination is consid

ered a baseline measurement or a covariate. Since there are many missing values 

for months four and five we have omitted them from our analysis.

Prior to carrying out statistical analysis it is im portant to verify if the  data 

satisfy the assumption of multivariate normality. This was done using tests baaed 

on M ardia’s multivariate skewness and kurtosis measures. See Khattree and Naik 

(1995) for SAS programs for computing these tests. For this data set with its 

small p-values, (p-value(skewness) =  0 and p-value{kurtosis)  =  0 ), there is an 

indication th a t the assumption of multivariate norm ality is violated. We make a 

log-transformation on these data, and then again test for multivariate normality. 

We found th a t p-values for the tests based on skewness and kurtosis respectively are

0.1190 and 0.4180. This indicates tha t the log transform ed data can be assumed 

to have come from a multivariate normal distribution. Consequently, we apply our 

methods to the  log-transformed data.

A nalysis  u s in g  m u ltiv a r ia te  te ch n iq u e . Here we present our analysis using
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Table 3.1: Serum Anti-Rotavirus Antibody Concentration

id vac pre w kl m l m2 m3 m4 m5
5001 P 80 20 80 40 80
5007 P 320 40 40 40 40 40 40
5010 P 160 80 320
5013 P 80 40 40 40 40 40
5014 P 640 80 80 80 160 1280
5017 P 1280 320 80 40 40 40 40
5022 P 80 40 20 40 20
5025 P 160 40 40 40
5027 P 320 40 80 40 40
5031 P 80 40 40 20 40
5037 P 160 40 40 40 40 40
5005 R 160 80 80 80 80 160 160
5006 R 160 80 40 40 160 160 320
5008 R 160 80 80 80 1280
5012 R 320 320 80 160
5016 R 1280 320 1280 320 1280 1280 .

5024 R 320 320 640 640 . .

5026 R 640 320 80 160 80 80 .

5029 R 640 160 320 160 160 160 160
5032 R 1280 160 160 160 160 160 .

5033 R 40 40 40 20 40 . •

5036 R 160 80 160 320 160 320
5040 R 80 320 320 320 320
5002 S 320 320 160 80 160 160
5004 s 160 160 80 80 80 320 160
5009 s 640 20 40
5019 s 320 320 320 160 160 160 160
5020 s 80 40 80 80 640 •

5023 s 80 160 1280 .

5034 s 1280 160 160 640
5035 s 320 160 320 160 320 .

5041 s 160 40 40 40 40 •
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m ultivariate technique. The following considerations axe in order.

1. The effect of covariates may be different in various trea tm ent groups. This 

can be tested by testing for statistical significance of the interactions of the 

trea tm ent w ith covariates.

2 . Covariates may influence the measurements taken a t different tim e points very 

differently. This can be tested by examining the significance of the  interaction 

between covariates and the tim e factor.

We summarize the results of the SAS output in the following table:

Hypothesis W ilks’ A Num DOF Den DOF p-value

Covariate* Group 0.60942 8 32 0.3741

Covariate 0.40258 4 16 0.0040

Group 0.60931 8 32 0.3738

It can be observed tha t the m ultivariate tests show th a t the effect of covariate 

over different trea tm ent groups do not differ significantly (p-value=0.3741). How

ever, the effect of the covariate itself is significant (p-value=0.0040). Therefore, it 

is im portant to include the covariate in the model. We also notice th a t there is no 

overall group effect.

Next we would like to examine whether the covariate influences the measure

ments taken a t different tim e points differently. This can be achieved using RE

PEATED statem ent of SAS. The results are summarized in the following table:
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Hypothesis W ilks’ A Num DOF Den DOF p-value 

Time*Covariate 0.62301 3 17 0.0408

We see th a t the covariate does affect the measurements taken a t different time 

points differently if 0.05 level of significance is used. However, if the  level of signif

icance is assumed to be 0.01 then the conclusion would be th a t the covariate does 

not affect differently.

A n aly s is  u s in g  u n iv a r ia te  ap p ro ach . We present our results of the  analysis 

using univariate model in the  following table:

Hypothesis Num DOF Den DOF F  value p-value

Covariate 1 19 7.74 0.0119

Group 2 19 0.21 0.8099

Group*Covariate 2 19 0.31 0.7381

Time 3 57 3.89 0.0135

Time*Covariate 3 57 3.71 0.0166

Time*Group 6 57 1.35 0.2489

Time* Covariate* Group 6 57 1.43 0.2191

We can see th a t the univariate tests indicate th a t the groups do not differ 

significantly (p-value=0.8099). The effect of the tim e factor is significant a t 5% 

level of significance (p-value=0.0135). The interaction between tim e and group is
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not significant (p-value=0.2489). We also see th a t the covariate does not affect 

different vaccination groups differently (p-value=0.7381).

3.2 T im e varying covariates

As we mentioned in the introduction, in many repeated measures study, the covari

ates vary over tim e. Again assuming, for simplicity, th a t there is only one covari

ate, the data  in this case can be represented by j/fjfc, Xijk, k  =  1,.. .,  t, j  =  1, 

i = 1 ,..., <7. Analysis of these data seems to be achallanging problem. Only recently 

attem pts have been made, in the literature, to analyze these data. We review these 

methods below.

3.2.1 T he m ultivariate approach

Patel (1986) proposed the  following multivariate model for analyzing repeated m ea

sures designs with tim e varying covariates. Let Y[- be 1 x t vector of response 

variables and XU  be 1 x t  vector of covariates, both taken over t  occasions on an

9

individual. Next, define YnXt =  {Y11, . . . , Y lni , Y 2x , . . . ,Y 2ni, . . . ,Yg ng)U n =  £  n;
t=i

and X nxt =  {X l u . . . ,X lni iX 2 u . . . , X 2 n„ . . . iXgngy.  Then the  following model

r̂iXt = “I" + EnXf, (3.6)

where A is a design m atrix, £ is a m atrix of unknown param eters, T is a diagonal 

m atrix with the  unknown diagonal elements, 71,..., 7 t, and E  is a n  x t error m atrix,
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can be utilized to represent the time varying covariates. Note tha t the model (3.6) 

is different from the usual multivariate analysis of covariance model in the sense 

that its param eter m atrix T is known (to be zero) except the diagonal entries. This 

makes it hard to  handle the analysis of this model in a routine way.

As usual rows of E  are assumed to be independently distributed with a common 

m ultivariate normal distribution with a zero mean vector and a t x t  covariance 

matrix V . Patel (1986) has provided the maximum likelihood estim ators of the 

parameters. He has also provided an iterative algorithm describing the com putation 

of the unknown parameters and the likelihood ratio test for any general linear 

hypothesis of th e  form Ttxm&nxt-Mtxc =  0.

The likelihood function under model (3.6) is

L  =  {2 ir ) - lt nt\ V \ - t ne x p - \ t r { V - l R),  (3.7)

where R  =  ( Y  — — A T ) '(y  — A £ — AT). The maximum likelihood estimators

of £ and T are obtained by minimizing <f> = In \ R\. The idea is tha t, if £ and T are

R
known then the MLE of V  would be —. In tha t case the log-likelihood function

n
R

reduces to In |i l | besides a constant. Hence the procedure iterates between V  =  — 

and minimizing In |H| with respect to £ and T, R  being R  when £ and T are replaced

A A
by their estim ates, say £ and T.

Note tha t

^  = 0 =c ( = (A'A)-lA'(Y-XT)  (3.8)
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and ^  =  - 2 d i a g { R - 1 X ' ( Y - A i - X T ) }  = 0

implies

d ia g {R - lX ' { I  -  A ( A A ) - l A!)Y] = d ia g iR ' 1 X ' X Y } .  (3.9)

Patel (1986) has suggested the following iterative steps to  solve the ML equa

tions:

Step 1. Taking R  = I ,  com pute T from (3.9). This estim ate of T is same as tha t 

obtained by minimizing t r ( R ) w.r.t. T .

Step 2 . Compute £ from (3.9)

Step 3. Compute R  using £ and f .  Then compute (j> = log |i?|.

Step 4. Compute a revised estim ate of T from (3.9) using R  obtained in step 3.

Step 5. Repeat steps 2, 3 and 4 until the absolute difference between two successive 

values of <j> is less th an  a pre-determined number.

Patel (1986) has also given similar algorithm for computing the ML estimates 

under the null hypothesis Ho : L £M  =  0. Using these M LE’s the likelihood ratio 

test for testing Ho can be obtained. Recall tha t the likelihood function under model 

(3.6) is given by

L = ( 2 t t ) - H |V |- b e x p - U r i V - ' R ) .
<u
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We com pute the maximum of L  as

max L  =  (27r)_2”‘|V | *nea:p(-\-nt),
Li

(3 .10)

where V  =  R f n .  Similarly, writing the maximum likelihood estimator of V  under 

Ho as V  =  R / n ,  we get the maximum of L  under Ho : L £ M  =  0 as

maxLija  =  (27t) 2nt|V | *nexp(—\-nt).
z

(3.11)

From (3.10) and (3.11) the likelihood ratio test for testing Ho is to reject the 

null hypothesis if

where Ca is a constant to be determined satisfying p r (A <  Ca\Ho) =  ex. We use 

the standard result, tha t is, —2 logX has asymptotically a chi-squared distribution 

with m t  — be degrees of freedom, to test the hypothesis.

3.2 .2  E xam ple 2

In this section we illustrate the use of Pate l’s algorithm to analyze repeated mea

sures data w ith tim e varying covariates. We use d a ta  given in Table 2, courtesy of 

D r.Barbara Hargrave of Biological Sciences departm ent, Old Dominion University. 

The effects of phenylephrine induced increase in arterial pressure on the  secretion 

of atrial natriuretic peptide (ANP) in the  ovine fetus are studied by Hargrave and 

Castle (1995). In this study 16 chronically cannulated fetal sheeps were divided into

(3.12)
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two groups. A rterial pressure was increased by infusing phenylephrine to the fetus 

from each of the two groups. Systematic mean arterial pressure (M AP), plasma 

ANP concentrations and plasm a renin activity (PRA) were measured at three tim e 

points (5 min, 15 min, and 30 min) after infusion. We take PRA as the response 

variable and MAP as tim e varying covariate. Here we have g=2, f= 3, n\  = 6  and 

n 2 =10 and one covariate. We illustrate the computation of A given by (3.12) for 

testing various hypotheses by choosing different L  and M.

Let L  — ^2x2 and

1 1

M  = - 1 0

0 - 1

Then the hypothesis of possible differences between different tim e points can be 

tested using the  hypothesis L £ M  =  0. The ML estimates of n S , under the nonnull 

and null hypotheses respectively axe

R  =

and

R  =

19807.802 -4186.271 4663.295

-4186.271 48285.522 30775.957

4663.295 30775.957 24974.933

20212.801 -4704.252 5694.256

-4704.252 48330.394 30810.573

5694.256 30810.573 28866.521
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Table 3.2: Plasma renin activity data

group subject time P R K  ~ MAT ANF '
young "528 ' " T ... 66 135 -20
young 528 15 -12 545 -28
young 528 30 60 840 -24
young 502 5 59 21 9.8
young 502 15 59 97 20
young 502 30 46 224 45
young 505 5 47 55 20
young 505 15 6.7 78 41
young 505 30 6.7 210 39
young 24 5 -16 22 13
young 24 15 2.6 -28 36
young 24 30 -18.4 -33 49
young 599 5 -29 -22 19
young 599 15 -53 155 45
young 599 30 -61 629 50
young 49 5 6.9 7.6 16
young 49 15 -29 169 44
young 49 30 -35 754 60

old 717 5 -16 55 18
old 717 15 -40 158 18
old 717 30 -38 133 24
old 722 5 29 875 35
old 722 15 -40 158 18
old 722 30 -38 133 24
old 617 5 5.8 23 4.3
old 617 15 -29 56 -2.1
old 617 30 5.8 177 -2.1
old 618 5 -40 86 7.4
old 618 15 -60 121 22
old 618 30 -58 82 28
old 29 5 -80 -9.6 15
old 29 15 170 2.4 19
old 29 30 80 76 15
old 79 5 13 -16 -8.4
old 79 15 -45 0.2 -12
old 79 30 -25 -16 -6.7
old 610 5 -1.6 46 0.2
old 610 15 4.1 104 1.6
old 610 30 -7.1 25 3.2
old 623 5 60 31 5
old 623 15 6.6 81 0.2
old 623 30 0.2 442 0.2
old 332 5 16 15 4.9
old 332 15 -73 85 34
old 332 30 -41 830 36
old 20 5 -17 13 -17
old 20 15 -38 54 7.7
old 20 30 -50 205 0.2
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The value of A=0.0025 and —2 /nA=11.9920. Similaxly we can test other hypotheses 

of interest with the appropriate choices of L  and M .  We summaxize our results 

below:

Hypothesis A D.O.F Approximate x 2 value p-value

Group 0.1042 2 4.5225 0.1042

Tim e 0.0025 2 11.9920 0.0025

Time* Group 0.5993 2 1.0241 0.5993
From the above table we see tha t only the  time effect is significant.

3.2 .3  S U R  m odel approach

Verbyla (1988) pointed out that model (3.6) can be expressed as Zellner’s seemingly 

unrelated regression (SUR) model and a  two stage estim ation procedure can be 

utilized.

To illustrate, le t £ =  [& : ... : £t], X  =  [Xi : ... : X t] and the elements of T be 

denoted by 71 , . . . ,71. Then model (3.6) can be w ritten  as

E ( Y )  =  A[6 : . . . :& ]  +  [Xl7 i : . . . : X t7t]

=  [A£ 1 + X 1 'f1 : . . . : A Z t + X a t]

— [Ai0i : ... : At0j\i

where Ak =  [A : Xk] and 9k =

\ ^ /
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Thus writing E ( Y ) =  Y  =  [Yi : ... : Yt] we have

E[Yi : ... : Yt] = [ A &  : ... : A t 6 t], (3.13)

which is a SUR model w ith the  covariance m atrix of vec (Y ') = I ®  V . Now consider 

the maximum likelihood estimation based on (3.13) and the covariance I <g) V  under 

the assumption of normality. Then the log of the likelihood function can be written 

as

log I = ~ l n \ V \  -  ~  A ^ ) ' ( ^  -  AjOj)}, (3.14)
z £ ;=i j=i

where utJ is the (i , j ) th element of V -1 . Differentiating log I with respect to 6 k and 

equating the derivative to zero, we get

h  =  (A 'M -'A 'M  +  ( A ' M - ' A i Z W  -  A A y V - ) - 1}- (3.15)
i^k

The solutions 6 k, k  =  can be obtained using the algorithm provided by

Verbyla and Venables (1988). Equation (3.15) can be regarded as coming from the 

conditional model with the conditional expectation and variance respectively as

E[Yk/ Y u i ^ k ]  =  A k0k + J 2 ( y i - A i 0 i ) B ik (3.16)
i^k

v a r ( Y k l Y i , i ^ k )  =  In <8> (ufcfc)- \  (3-17)

where Bik = — vlk(ykk)~l .

An algorithm for estim ation is as follows:

Step 1. Estim ate the initial 6 k marginally by 6 ° =  (A'kAk)~l A'kYk
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Step 2. To find the j th iterate , begin with 0t, and regress Yt on A t, R{ \  RZ-i,  

where 6 {~x is the (j — l ) 5t step estim ate of 9k and i^ -1 ~ Y k  — Ak 6 {~x.

Step 3. For the j th iterate of 0*, regress Yk on Ak,R{~1, •••, R{Z\, Rl~+i, •••> R i

Step 4. Continue until convergence.

Once the estimates of 0 i , 6 k axe obtained using the algorithm, the maximum 

likelihood estim ator of V  can be derived using the residuals as V  =  ( Y  — [A\9i : 

... : AtOt})'(Y — [Ai§i : ... : At0t])/n . Verbyla (1988) has also provided an algorithm 

to estim ate the  parameters under the null hypothesis Ho : L £M  =  0. Let the  ML 

estim ator of V  under Ho be V . Then the likelihood ratio test can be constructed 

in the usual manner to test any linear hypothesis. The advantage of SUR model is 

in its simplicity of estimation. Only regression calculations are required making its 

im plem entation quite simple.

In the  following, we use the statistic given in (3.12) for testing hypothesis of the 

form L £ M  =  0. The estimators of the covariance m atrix under the null and the 

non-null hypotheses are obtained under SUR model set up. We apply this approach 

on th e  data  set given in Example 2. The results are presented in the following table.
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Hypothesis A D.O.F Approximate x 2 value p-value 

Group 0.0596 2 5.6402 0.0596

Time 0.0255 2 7.3360 0.0255

Time* Group 0.2406 2 2.8488 0.2406

Notice from the above table, as before, that only the time effect is significant.

3.2.4 A n a lternative linear m odel approach

Although SUR model approach seems like a good alternative to the m ultivariate 

approach, both of these approaches have serious shortcomings. None of these ap

proaches will handle unbalanced data. Suppose the ith individual has i,-, i =  1,..., n 

repeated measurements. Then the analysis of data is more complex and both of

the approaches fail. However, an alternative modeling which can handle the un

balanced data  will be described below. This alternative approach is also noted by 

Verbyla and Cullis (1990).

Consider model (3.6)

T r iX t  =  A n x m ^ m x t  4 "  X n x t ^ t x t  4"  -U n X t)

where T =  diag (71 , ... ,7*). Then the i th row of Y  can be modeled as

Viixt ~  : -  : +  e- (3.18)

=  K £ i : ... : a& ] +  [71, ...,'ft]diag(xi u ..., x it) + ej. (3.19)
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Taking transpose of bo th  sides of (3.19) we can write

Vi =

a' 0

0 a';

0

0

0 0 . . . d

6

6

+

Xu 0 . . . 0

0 Xi2 . . . 0

0 0 Xit

71

7 2

I t

— A i t x m t r)m t x i  +  A txt7m  +  e»-

where ^  =  diag{a'i,...,a'i), Di = diag(xiu . . . ,xit), 7 ' =  [ f t , . . ,# ]  and 7 ' =  (71, . . . ,74), 

Further, the above equation can be rewritten in the form

Vi = [Ai : Di]
V

7
+ £t

Vitxl ~  +  6‘>

where Bi = [Ai : D;], and /? =  

Now let y ' =  (y[, ...,y'n) and
7

e' =  T hen

Bx

y = (3.20)

or

B,

y  =  B/3 + e, 

59

(3.21)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which is an usual linear model with cou(e) =  0  =  In <S> V , where V  is a t x t 

covariance m atrix  of the repeated measures, and B  = (B[,. . . ,B' t)'.

Then the general least squares estimator of j3 is

p  =  ( B ' s r ' B y ' B ' n - ' y .  (3 .22)

W riting B'  = (B{ : ... : B'n) and f2-1 = I  <%> V -1 , we have

P = { f ^ B i V - ' B i Y ' i j r B i - V - ' y i } .  (3.23)
t= l  t = l

We may use any two stage procedure to estim ate P and V . Further, any hypothesis 

of interest can be tested using the general linear hypothesis H q : L(3 =  0.

For any specific structured covariance m atrix V , this modeling approach can be 

taken. The SAS statistical procedure PROC MIXED can be adopted to find the 

estim ates and to test any hypothesis of interest. See K hattree and Naik (1995) for 

some da ta  analysis using PROC MIXED.

As it was pointed out earlier, this modeling technique enables us to deal with 

unbalanced da ta  as well. Suppose yi is vector of order ti x 1 containing the repeated 

m easurements on the ith individual. Let y ' and e' be as defined before. The order

n
of y and e is now Yj U x !• Then the model is

t=i

y  = B/3+ e,

where cov(e) =  diag(V i , ..., V n), and V i  is of order ti x U.

Assuming a specific structure for V t- becomes almost inevitable in this case. It 

is common to assume tha t V j depends only on a few param eters, say &i, ..., &k- See
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Jennrich and Schluchter (1986) for a list of possible structures th a t can be used. 

Common structures for V,- are equicorrelation (0i = <t2,02 =  p) and autoregres

sive (0i =  ct2,02 =  p) structures. The maximum likelihood estim ation method is 

adopted to estim ate the unknown param eters 01,...,0*: and /?. The form of the 

MLE of /3 remains as in (3.23) except th a t the m atrix V  has to be replaced by the 

m atrix V,' th a t is of order fs- x ti and B{ is of order ti x (m +  1 )t;, for i =

These (unbalanced) data can also be analyzed by PROC MIXED procedure of SAS 

software.
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Chapter 4 

A nalysis Of M ultivariate 

R epeated  M easurem ents

In this chapter we consider a set of t repeated measurements on p variables (or 

characteristics) on each of the n  individuals. Thus data  on each individual is a  p x t 

m atrix. The n  individuals themselves may be divided and randomly assigned to g 

groups. Analysis of these data using a MANOVA model is considered. The well 

known Satterthw aite type approximation to the distribution of a quadratic form in 

normal variable is extended to the distribution of a m ultivariate quadratic form in 

multivariate normal variates. The multivariate tests using this approximation are 

developed for testing the usual hypotheses.

W hen measurements on a variable (or a characteristic) are made at several oc

casions or under different treatm ent conditions on the  same experimental unit, we
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have repeated measures (or longitudinal) data. Repeated measures data  routinely 

occur in many diverse fields like Medicine, Psychology, and Education. Analysis of 

these data  needs special care since the measurements made at different occasions 

on the  same individual may quite likely be correlated. A typical set of repeated 

measures data  taken on n (=  n\... +  ng) individuals forming g groups over t occa

sions (tim e points) are shown in Figure 4.1. The measurement taken on the  j ih 

individual belonging to the i th group at the t th occasion is denoted by yijk, where 

k — 1 , . .. , t  , j  — 1,..., rij , i = 1 , g.

The problems of interest are to test for (i) the time effect, (ii) the  group effect, 

and (iii) the time*group interaction. Let us assume th a t the vector of t m easure

m ents on each individual is a sample from a  t —variate normal distribution with a 

certain positive definite covariance m atrix, say V . The above three problems can 

be solved using profile analysis, a  standard technique in the m ultivariate statistical 

analysis. For example, see Morrison (1976). In many practical problems where the 

repeated measures occur, the covariance m atrix V  is found to have some struc

ture. In th a t case, the m ultivariate tests are found to  be less powerful and use of 

univariate analysis of variance or regression models is recommended.

If V  has the simple structure cr2I, it is clear th a t the above three problems, 

(i)-(iii), can be w ritten in the form of testing of hypothesis problems in a  two-way 

analysis of variance model. Suppose V  =  cr2 V(p) ,  where V(p)  = (1 — />)I+ />11,) 

I  is an identity m atrix  and 1 is a  vector of ones. Then the analysis of repeated
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measures data is essentially same as th a t of a typical spiit-plot design. The usual 

tests of hypotheses in the split-plot design will address the problems (i)-(iii) (see 

W iner (1971)).

Many authors, for example, Baldessari (1965), Huynh and Feldt (1970), and 

Rouanet and Lepine (1970) have characterized the class of all covariance structures 

for V , such that the split-plot type of analysis will remain invariant. A typical 

m ember of this class, for a fixed vector a! =  (a* ,..., at), is

V  =  <j2(I +  a T  +  la ')  =  cr2 H(a).  (4.1)

This structure is term ed as type H structure. Recently, Chaganty and Vaish (1995) 

studied this characterization more closely and produced the following form for H (a):

H \ a) =  I  +  j- (a l ' +  la ')  -  ^(1 +  a ) l l ' ,  

where a! =  (ai, . .. ,a t) is such tha t

j  X )(a ; ~  a )2 <  a (4.2)
1 i= i

and a is the mean of the components of the vector a. This characterization by 

Chaganty and Vaish (1995) is most explicit in the sense that it gives easy condition 

(4.2) on the elements of a  such th a t V  is positive (semi) definite. The likelihood 

ratio test for testing for type H structure, using the  results of Mauchly (1940), is 

given by Huynh and Feldt (1970). For certain efficiency studies involving these 

type of structures see Jensen (1982).
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Time

Group Subject 1 2 . . . t

1 2

2/m 2/H2

2/121 2/122

2/nt

2/124

« 1  2 / l n j l  2 / ln j2  • • • 2 / l n i t

2 2

2/211 2/212 

2/221 2/222

2/214

2/224

^ 2  2/2n2l  2 /2 ^ 2  • • • 2 /2n24

2/ f f l l  2/ffl2

2/^21 2/322

2/s 14

2/324

U . ,7 2/3%l 2/3n?2 • • • Dgngt

Table 4.1: Repeated measures data
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A strategy for analysis of repeated measures data may be as follows: Test for 

the type H covariance structure; if accepted adopt the univariate split-plot type of 

analysis for solving (i)-(iii), else adopt the profile analysis. When the hypothesis of 

type H structure for V  is rejected, one can still use the F-statistics of the split-plot 

analysis. However, the distributions of these test statistics will no longer be exact. 

Box (1954) and Geisser and Greenhouse (1958) have developed usable approxi

mations to the distributions of these F-statistics using the result of Satterthwaite 

(1941). Satterthwaite (1941) approximated the distribution of a quadratic form 

in normal variables, by a scale multiple of a chi square distribution such th a t the 

expected value and the variance of the quadratic form are equal to those of the ap

proximating quantity. This approximation is called Satterthw aite approximation in 

the literature. Practical implementation of this m ethod requires estim ation of the 

degrees of freedoms of the approximate chi square or the F  distributions. Various 

procedures to estim ate the degrees of freedoms are available in the literature. For 

example, see Greenhouse and Geisser (1959) and Huynh and Feldt (1976). Several 

authors have studied the effect of (a) heterogeneity of covariance, (b) estimating 

the degrees of freedom by different methods, and (c) sample size considerations, on 

the distributions of the F-statistics involved, using simulation experiments. For ex

ample, see Huynh and Feldt (1980), Keselman and Keselman (1990), and Quintana 

and Maxwell (1994). The complete analysis of repeated measures data, includ

ing the estimation of the degrees of freedom, has been successfully implemented
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in several statistical softwares. A detailed explanation of the analysis of repeated 

measures data  using the  SAS software can be found in K hattree and Naik (1995).

When the observations on n experimental units are made on a  set of p variables 

(or characteristics) at t occasions, we have what can be term ed as a set of multi

variate repeated measures data. Analysis of these data is further complicated by 

the existence of correlation among the measurements on different variables along 

with the correlation among measurements taken at different occasions. A typical 

set of m ultivariate repeated measures data would be in the  same form as Figure 

4.1, except th a t, yijk now is a p x 1 vector of measurements on p characteristics. 

For clarity we denote this vector by Yijk- Analysis of these type of da ta  is consid

ered in this article. Considering a mixed effects MANOVA (M ultivariate Analysis 

of Variance) model we formulate the usual testing of hypothesis problems. The 

approximate distributions of various SSCP (sums of squares and crossproducts) 

matrices are derived and used to test the hypotheses. The derivation of the ap

proximate distribution of a SSCP m atrix (a m ultivariate quadratic form) is in the 

spirit of Satterthw aite (1941), Box (1954) and Geisser and Greenhouse (1958).

4.1 G eneral covariance structure

Suppose, as before, a set of repeated measurements a t t occasions are taken on 

p variables on each of n (=  n x +  ... +  ng) individuals belonging to g groups. The
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problems of interest are (i) test for the difference between groups, (ii) te st for the 

difference between the occasions and (iii) test for group and occasion interaction. 

It may also be of interest to  test certain hypothesis about the mean vector of p 

variables. We adopt the m ultivariate analysis of variance (MANOVA) technique to 

analyze the da ta  so tha t our questions of interest can be answered.

Let Yijk, k =  1, j  =  1 ,..., re,-, i =  1, ..., <7, be a p x 1 vector of measurements 

on the  j th individual in the i th group at the kth occasion. Let Y(j =  ( Y ^ ,.. .,  Y/jt) . 

Then Yij is pt x 1 random observational vector corresponding to the j th individual 

in the i th group. Let cov(Yij) =  f2, for j  = i = where S7 is a

positive definite matrix. Define the n  x pt  m atrix Y  as Y  =  (Yu, ...,Ygng) ' . Then 

the m ultivariate repeated measures da ta  can be modeled as

Y  =  X B  +  E,

where X  is a known design m atrix, B  is the m atrix  of unknown param eters, and 

E  is the  m atrix  of errors such th a t the  rows of E  are independently d istributed as 

m ultivariate normal with zero mean vector and variance covariance m atrix  Cl. Any 

hypothesis about the effect of the tim e factor, the group factor, or the interaction 

between them  or any lineax hypothesis about the expected values of Yjfc can be 

form ulated in the  form of the  general linear hypothesis

I B M  =  0 (4.3)

for known and full rank matrices L and M . Using W ilks’ A or any other standard
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multivariate tests the null hypothesis (4.3) can be tested. This approach for an

alyzing the multivariate repeated measures data is commonly adopted in practice 

(see Tim m , 1980). Suppose f t  =  I t <g> £ ,  for a p x p positive definite m atrix  £ ,  to 

indicate that the measurements taken over time are uncorrelated. Then the m ulti

variate repeated measures data  can be analyzed using two-way MANOVA model

Yijk =  fJ- +  <X\ +  fa +  {oiP)ik +  t-ijk, (4-4)

where fi, a, , fa, {afaik are all p x 1 vectors with the usual meaning as in the 

two-way MANOVA model. The hypotheses of interest are

(i)a i =  ... = ag (no group effect), (n)fa =  ••• =  fa (no tim e or occasion effect) and 

(iii)(a.{3)'iks are all equal (no group and tim e interaction). Under the assumption 

f t =  I t ® S , the errors e;^ are independently distributed with zero mean vector 

and variance covariance m atrix  S. Testing of hypothesis problems (i)-(iii), can be 

tackled using the usual MANOVA technique.

Next, to accommodate simple correlation among repeated measures, let us con

sider mixed effects MANOVA model (similar to the split-plot design model of the 

univariate analysis of the usual repeated measures data). The MANOVA table 

similar to the ANOVA table for split-plot design model, is shown in Table (4.2). 

Here the p x nt m atrix Y  is defined as

y  = and N = nt Thema-
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Source D.O.F. SSCP M atrix Dist. Under Hn

Between Groups

Groups g — 1 Qi = Y A i Y '  Wp(g — 1,53)

Individuals n  — g Q 2  = Y  A^Y '  Wp{n — g , S)

Within Groups

Time t - 1 Q3  = Y A 3 Y '  Wp(t -  1,S)

Time*Group (g — l)(f  — 1) Q± = Y  A 4 Y '  W p{(t — l)(g  — 1), S)

Error (t — l )(n  — g) Qs = Y A $ Y '  Wp({t — l)(n  — g), S)

Total IV — 1 Y ( I n  — j j J n ) Y '

Table 4.2: Manova table for mixed effects model
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trix quadratic forms Qx — Q5 are

Qr = t j 2 n i ( Y i. . - Y . ) ( Y i. . - ? . y  = Y A 1 Y '
t = i

f t  =  ‘ E E ( i i i . - K . ) f t - y  =  w
i = i  .7 = 1

Qz =  n Y ^ ( Y . k - Y . . . ) ( Y k - Y j  = Y A 3 Y '  
k=1

q 4 = X >  £ ( £ .*  -  k .  -  Kfc +  K.)(Kfc -  -  Y.k +  y j  =  y v u r
i=l i=I

Q5 =  ± ± ± { Y j k - Y , - Y , k + Yi..)(Yjk -  %  -  Y.k + Yi..y = Y A 5 Y'
t = i  7 = 1  k=1

with appropriate choice of matrices A\  — A5. These m atrices are sym m etric of order 

N  x  N  and can be easily derived. For example, see Geisser and Greenhouse (1958). 

It is clear from the works of K hatri (1962), Arnold (1979), Reinsel (1982), and 

Mathew (1989) tha t the above m atrix  quadratic forms are independent of each 

other and under the appropriate null hypothesis each has a scale multiple of a 

W ishart distribution with a certain degrees of freedom.

Thomas (1983) considered a class of structures for f i, members of which are 

sufficient to keep the m ultivariate analysis of variance (MANOVA) obtained under 

the mixed effects model invariant preserving the independence and distributions 

of th e  SSCP matrices of Table 4.1. Pavur (1987) characterized the class of all 

covariance structures for f i under which the MANOVA remains invariant. Vaish 

(1994) in a recent Ph.D. thesis pointed out using counter examples th a t Pavur 

(1987)’s characterization may contain some matrices th a t are not non negative
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definite. Further, he has provided a more elegant characterization of ft, which is:

f t  =  (It -  j 3 t) <g>E +  j ( l t  ® IP)H ' +  ^ H (lJ  ® Ip) -  j l t l't ® H , (4.5)

where H  is a pt x p arbitrary m atrix of rank (H ) <  p, and H  =  j  £*=i H;. Further, 

the  p x p matrices H j’s are such th a t H  =  (H^, ...,H ()'.

The structure (4.5) is slightly more general than the structure

Ex £2  • • ■ £2

£2 Ei • • • E2

f t  =

£ 2  E 2  • • • E i

considered by Arnold (1979) and Mathew (1989). It may be noted tha t this struc

tu re  is a m ultivariate analogue of the well known equicorrelation structure. Simi

larly, the covariance structure

f t  =  I t  ®  £ 1  +  l f l t  ®  £ 2

considered by Reinsel (1982) is also a particular case of (4.5).

Boik (1988) independently (of Pavur (1987)) showed tha t the structure con

sidered by Thomas (1983) is necessary and sufficient for MANOVA to remain in

variant. He also developed the likelihood ratio test for testing for this structure. 

Further, Boik (1988) considered the Satterthw aite type approximations (multivari

ate Satterthwaite approximation) to the distributions of various sums of squares and
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crossproducts (SSCP) matrices of the MANOVA table, when the covariance m atrix 

Cl is any general positive definite matrix. While approximating th e  distribution of 

a SSCP m atrix  by a scale multiple of W ishart distribution, Boik (1988) assumed 

th a t the expected value and the trace of the covariance m atrix of the SSCP m atrix 

are equal to those of approximating matrix.

Tan and G upta (1983) and recently Khuri, Mathew, and Nel (1994) also have 

considered the problems relating to m ultivariate Satterthwaite approxim ation to 

a SSCP m atrix. Their approximation is different from Boik (1988) in the sense 

th a t they use generalized variance (determinant of the covariance m atrix) instead 

of trace, for their approximations.

4.2 Covariance structure V ® E

All the work done in the literature thus far, about multivariate repeated measures, 

has the basic assumption tha t cov(Yij) = Cl, where Cl is a positive definite ma

trix. The structures similar to type H structure on Cl were found, under which the 

MANOVA remained invariant. As we have noted in the previous section, the  mul

tivariate Satterthwaite approximations for SSCP matrices of the  MANOVA table 

(Table 4.1) were derived under the basic assumption tha t cov(Yij) =  Cl. In this sec

tion we s ta rt with the assumption that cov(Y{j) =  V ® S , where V  is a  t x t positive 

definite m atrix. This structure has several advantages over the general covariance
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structure. First, it is well known th a t (Crowder and Hand (1993), Jones (1993)) 

the correlation m atrix of the repeated measures usually has a simple structure as 

opposed to a general structure. In our formulation it is easier to accommodate any 

structure for the correlation m atrix of repeated measures (via V). Next, the num

ber of unknown parameters of the variance covariance m atrix, in our formulation, 

is much less, (t(t +  l) /2  +  p(p +  l) /2 ) , as opposed to (pt(pt +  l) /2 )  in the case 

of general covariance structure. Furtherm ore, as we will see later, the multivari

ate Satterthw aite approximations to various SSCP matrices is much simpler in the 

present situation.

Note tha t the ith row of the p x nt  m atrix Y, where 

y = (yni,,...,yiit,...,yi„1i,-,^n1t,-,^n9i,-,J/'w)> has the covariance matrix 

proportional to A =  In <g) V . In fact it is <7,,A, where an is the ith diagonal element 

of S .

Suppose V  =  I t , tha t is, the repeated measures are uncorrelated. Then using 

the two-way MANOVA model (4.4) analysis of the  m ultivariate repeated measures 

data  can be carried out as before. Now suppose V  =  V(p) =  (1 — p3t . Using 

a result which is multivariate analogue of Cochran’s theorem for quadratic forms 

it can be shown tha t the MANOVA in Table 1 will remain invariant for this case 

(see Theorem 4.6.3 of Vaish (1994)). Further, a  characterization of the  class of 

structures for V  such tha t the MANOVA remains invariant yields type H structure 

(4.1) for V . Many interesting results about the  structure V  (8> S  are summarized
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in Vaish (1994).

4.2.1 T est for ty p e  H structure

In this section we construct the likelihood ratio test for testing

Ho : cov(Yij) =  H(ai) ® E  vs Ha : cov(Yij) =  V  <E> S .

Make a transform ation on the vector of measurements Yij to Uij, such tha t cov(Uij) =  

W  ® E , where W  =  C V C '. The choice of C  is such tha t C 'l  =  0 and C C '  = l t_x. 

One possible choice for C is the appropriately chosen submatrix of the H elm ert’s 

m atrix. It is true  th a t testing the above hypothesis is equivalent to testing

Ho : cov(Uij) =  I ® E  vs Ha ■ cov(Uij) =  W  <S> E . (4.6)

A likelihood ratio test for testing (4.6) is given by

_ | w  r /2i t  !“<-»/*
| S„ |“(‘-W 2 ’ 1 ' '

where W  and S  are respectively the maximum likelihood estimates (MLEs) of W  

and E  under the  non-null case (Ha) and E 0 is the MLE of E  under the restriction of 

the null hypothesis (H0). Then using standard results - 2 l n X  has a x 2  distribution 

with degrees of freedom equal to t(t  — l)/2 .

4.2.2 D erivation  of the M LEs

We first derive the  maximum likelihood estimators of W  and E  under (H a). We 

have a random  sample Uij, j  =  i =  1 from a p ^ -lj-v a ria te  normal
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distribution with a mean p,i and variance covariance m atrix  W  (g) £ .  Here pi is a 

p( t—1) x l  vector given by where pik is a p x l  vector representing

the expected value of the transformed variable corresponding to the  i th group and 

the j th tim e point.

The log-likelihood function is given by

In I = — ln(2 n) -  ^ l n  | W  ® £  |
Z z

- lE E P ii-nrw ’gs-'ft-w).
t=l j=1

Let B  =  j 2 ^ { U i j - V i ) { U i j - V i) \ y n t h U i .  = Y l Uij lni.
t=i j = i  j=i

Then the likelihood function can be written as

l n l =  -  ln(2it) -  | W  ® S  | - ^ ( W 1 ® £ ~ x) g
z z z

-  -  ^ O 'W -1 ® S - 1^ .  -  m).  (4.8)
1 t=l

Next, we partition the p(t  — 1) x 1 vector (Uij — {/,-.) into (t — 1) blocks of p x 1 

vectors such th a t (t / ij- t /-  ) =  (Uiji-Ui.u  •••, Uij(t- i ) -U i . ( t - i ) ) '■ Using this partition 

of (Uij — Ui.), we rewrite the  likelihood (4.8) and maximize it simultaneously with 

respect to £  and W . We get the following likelihood equations for estimating £  

and W .

£  =  , _  . — Ui.k)(Uiji — Uu) (4.9)
n \Z ) k=l 1= 1 i= lj= l

W  =  —  A,  (4-10)
np
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where wfa is the (k l)-th element of W -1 . The (k l)-th element of m atrix A  is given 

by =  £  E  (Uijk -  U i.ky t - l (Uiji -  U a ).
t=i  j = 1

The above equations are to be solved iteratively to get the estimates of S  

and W . There is no general consensus as to when iterative methods should be 

stopped and the current values declared to be ML estimators. In our illustrative 

example, we have selected the following stopping rule. Compute two matrices: (a) 

m atrix  of difference between two successive solutions of (4.9), and (b) m atrix  of 

difference between two successive solutions of (4.10). Continue the iterations until 

the maximums of the absolute values of the  elements of the matrices in (a) and (b) 

are smaller than the pre-specified quantities. A computer program using IML of 

SAS software is available with the author to compute these estimates.

In a manner analogous to what is described above, we can get the estim ate of 

S  under restriction of the null hypothesis (Ho)- The Maximum likelihood estim ate 

of £  under the null hypothesis is given by

So =  - A - n  i c  E E t t t *  -  -  V i 4 .  (4.11)
n \ l  C  Jc=l t= l j= l

If Ho is accepted, one can use the MANOVA of (4.2) to analyze the data. 

Otherwise multivariate Satterwaithe type approximation can be applied to  find the 

approximation to the distributions of the SSCP matrices. This approximation will 

be described in the following sections.
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4.2.3 A  sim ulation  study

In section 4.2.1 we derive a  test for testing

Ho : cov{Yij) = H(a)  ® E  vs Ha : cov(Yij) — V  ® E ,

using the likelihood ratio principle and derive the MLE’s in section 4.2.2. Since the 

choice of the m ethod of data  analysis rests entirely on the outcome of this testing 

procedure, it is im portant th a t the test we are using is powerful enough. To study 

the power of our test given by (4.7) we conduct a small simulation study section. 

We know tha t the power function /3\(9) of the test statistic A is defined as

=  Pe(Rejecting Ho) =  Pe(A > Ac) (4.12)

as a function of 9, where 9 is the vector of all param eters of the covariance m atrix 

V  <g> E  and Ac is such tha t under Hq : 9 =  0O, Px(90) is a specified value, say 0.05.

In order to calculate the  power of the  test, we generate random samples from 

multivariate normal distribution lVpt(0, V  ® E ), where V  is the autoregressive co- 

variance structure and E  is a positive definite m atrix. Note tha t autoregressive 

structure is not a member of class of all matrices of type H . For p=3,

S  =

2 1 2 

1 4 3

2 3 5

and for t = 3 and 5 and for different choices of p, we generate m ultivariate normal 

samples. To represent both  small samples and large samples we have selected

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sample sizes of 12 and 30. We have selected JV=1000 simulation runs of each case 

and the power of the test was calculated as

Pg (Reject ing H0) = ^  2 ioo5 *-4 '13^

where x l  is the critical value under chi-square distribution with degrees of freedom

t(t  -  l ) /2  and level of significance a=0.05. We summarize the results of our study

for different choices of n, t and p, in the following table:___________________

p 0.0

n =  12 

0.2 0.5 0.8 0.0

n = 30 

0.2 0.5 0.8

t =  3 0.04 0.075 0.248 0.691 0.03 0.107 0.620 0.990

t =  5 0.059 0.168 0.731 0.995 0.052 0.356 0.996 1.000

We make the following observations from the above table:

We see th a t power of the test is close to one as we depart from H q. In other 

words as p increases power of the test increases quite rapidly. Not surprisingly, 

power is higher for larger values of n, p being the same.

W hen p=0, it amounts to sampling from the null distribution, and we expect 

the  power function to take values th a t meets the size condition. T hat is, th e  power 

should be close to the level of significance, which is infact the case in the  present 

context.
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4.2 .4  E xact null d istrib ution  of Qi

In the following, under no structures on V  , we derive the distribution of Qi =

Y A i Y 1, where A; is an appropriately defined symmetric m atrix  of order n t x n t .  First

of all, it is easy to show th a t A1AA2 =  A1AA 5 =  A2A A 5 =  A3A A 5 =  A4A A 5 =  0

(see Geisser and Greenhouse(1958)), where A =  In® V. Hence the  m atrix  quadratic

forms Qi and Q 2 ,  Q 1 and Q 5 ,  Q 2  and Q 5 , Qz and Q 5,  and Q4  and Q 5 ,  are all pairwise

independent. Let the rank of (A;) =  Vi (for example, i>i =  g — 1 and so on). We

observe tha t each row of Y  is a m ultivariate normal vector of order nt  x 1 and has a

covariance m atrix  proportional to A =  I„(S> V. Since by assum ption A is a positive

definite m atrix, there exit A ? and A - ? such tha t A =  A^ A^ and A -1 =  A ^ A - ^

and tha t A _ ?A ^ =  Int.

Consider Qi = Y A i Y '  = Y A ~ ^ A ^ A i A * A ~ * Y '  = Z B i Z ' w ith Z =  F A ' j  and

Bi =  A^AiA^. N ow the rows of Z  form a random sample of size nt  from iVp(0,E)

distribution under certain null hypothesis. Since Bi is a sym m etric m atrix  with

rank 1n, it can be w ritten as Bi =  TAiT', where IT ' =  T T  =  I nt and A; =

Diag(Xi, . . . ,XVi,Q,..,Q), where A i,..., are the eigenvalues of Bi. Thus Qi =

Z B iZ '  = ZFAiT 'Z '  = UAiU' =  £  XjUjUL where Uj ~  N p(0 , S )  under H 0  and
i = i

U\ a r e  all independent.

It is well known th a t UjU'j ~  WP(1 ,E ), which is a pseudo-Wishart distribution, 

since the degrees of freedom is less than  the dimension, and has no pdf.  Thus the 

distribution of Qi is same as the distribution of linear combination of Vi pseudo-
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W ishart random matrices. In summary, we have the following:

Qi ~  w p((5 - i ) , s ) ,

Q i  ~  W ^ n - g ) ^ ) ,

Qz ~  E A i ^ l . S ) ,  
j '= i

g 4 ~  ^ W ^ - l , ! ! ) ,
J=1

Q5 ~  -< ? ,£ ) ,
j=i

where Ax, ..., At_x are the eigenvalues of (I— l / t J ) V  and Wpj(r/j, £ ) ,  for j  =  l , . . . , f —1 

are W ishart random matrices with Uj degrees of freedom, and m utually indepen

dent.

Suppose we want to test Hoi •' a i =  ••• — ag- Then the Wilks’ A for testing Hoi

is

A IQ»I
1 IQi +  Qal'

The test is based on the usual asym ptotic distribution (in some situations exact 

(Ran, 1973, p. 555)) of Ai. For example,

r   \
- {{n  - g )  -  —- —-] In Ai  ~  Xp(ff-i)'approximately.

The approxim ate distributions of the test statistics for testing Hoi '• fii — = fit

and Hoz : (afi)'iks are all equal, will be derived in the next section.
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4.2.5 A pproxim ate null d istributions o f Q3 , Q4 , and Q5

In this section, we approximate the distribution of each of SSCP matrices, Q3 , Q4, 

and Qs, to a scale multiple of a W ishart matrix, gW(h,  E ), for some constants 

g and h. As in the univariate case the approximation is derived by equating the 

first two central moments. For tha t we first find the first two central moments

of Qi . It is well known (for example, see Eaton, 1983, p. 305) th a t for any S  ~

Wp(z/, E ), E(S)  = I/'S and D ( S ) =  2z/E ® E . Here D ( S ) denotes the variance 

covariance m atrix of all the random quantities in S.  Using these formulae we have 

the following:

E (Q 3) =  [tr{V -  l / i J V ) ] E  under H 0 2  : f t  =  ... =  f t

E{Qij  =  [(5 — l)f r(V  — 1/ f  JV )]E  under #03 : (a P)ik =  7  f°r ^1 h k-

E(Qs) = [(n — g) tr (V  — 1 /£JV )]S

also

D (Q 3) =  [2fr(V -  l / f J V ) 2]E  ® E  under H0 2  

D{Q4) = [2(3 -  l) fr(V  -  l / i J V ) 2]E ® S  under H m

D{Q5) =  [2(n -  flr)ir(V -  l / t J V ) 2]S  ® E.

Suppose we want to approximate the distribution of Q3  by a  random m atrix 

having the distribution giW p(/ii,E ) so tha t the first two central moments of Q 2  

and <7iW p(/ii,E ) are the same. Then,

i r [ ( V - l / i J V ) ] E  =  s i f t E  (4.14)
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2[ir(V  -  l / f J V ) 2]£  ® £  =  25l2/i1£ ® £ . (4.15)

From (4.14) and (4.15)

i r ( V -  1 / t J V )2 
51 “  f r ( V - l / f J V )  

_  [ f r ( V -  1 / t /V ) ] 2 
1 fr(V  — 1 / i J V )2

Next, to approxim ate the distribution of Q4  by a random  m atrix  having the distri

bution g2 Wp(h2 , ^ )  so tha t the first two central mom ents of Q4  and g2 Wp(h2 , S )  

are the same we have,

{ 9  ~  1)M (V  -  1 /* JV )]£  =  g2 h 2 S  (4.16)

2(g — l)[ ir(V  — l / i J V ) 2]£  ® £  =  252/i2£  ® £ .  (4.17)

From (4.16) and (4.17) we have,

tr(V  -  1 / iJV )2 
52 ”  fr(V  -  1 /iJV ) ”  9 1

u -  r n W Y - l f f l l !  _  f t u
2 ^   ̂ ir (V  -  1 / iJ V )2  ̂ 1-

Therefore, Q4 ~  g\Wv((g -  l)fe i,£ ) approximately.

Similarly, it can shown th a t Q5 ~  giWp((n — y)/ii, £ )  approximately.

Now for testing #02  •' =  ••• =  A  one can use the W ilks’ A, which is, A2 =

195 L and the  fact tha t 
IQs +  Qsl
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V; " approximately. yi.19''

4.2.6 E stim ation  o f the degrees o f freedom

Since in practice V .x. is unknown tlie degrees of freedoms in (he chi square approx 

imations of (4.IS) and (4.19) a.re unknown. One needs to estim ate those so that the 

distributions in (4.IS) and (4.19) can be utilized in . ations. For estimating 

these degrees of freedoms, which axe functions of (V — 1 /fJY ). we simply need an 

estim ate of V. One can use the maximum likelihood estim ate of V tha t is obtained 

by simultaneously solving the following equations:

t= ij= i

In the next section we consider an example and illiistrn.tr. the estimation ol (.lie 

degrees of freedom using the maximum likelihood estim ate of V.

t JJ Mi
1-1.20)

(4.21)

where v*kl is the (k l)-th element of V  1 and (k l)-th (dement ol matrix A is given
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4.3 Exam ple

To illustrate our methods, we use data from Table 7.2 in Timm (1980), which 

was also analyzed by Thomas (1983) and Boik (1988) . These data were obtained 

by Tim m  from T. Zullo of the School of Dental Medicine at the University of 

Pittsburgh. The study concerns with the relative effectiveness of two orthopedic 

adjustm ents of the mandible. Nine subjects were assigned to each of two orthopedic 

treatm ents (g =  2, n\ =  9 ,n 2 =  9), called activator treatm ents. The measurements 

were made on three characteristics {p—3) to assess the changes in the vertical po

sition of the  mandible at three tim e points (t= 3) of activator treatm ent. Thus the 

data  m atrix  Y  =  (V -̂) is an 18 x 9 matrix. The data is presented in the  following 

table:

The choice of method to analyze our data, rests on the test of hypothesis about 

the  covariance structure described in section (3). Hence to test the null hypothesis 

(4.6), first we transform YtJ to Uij using the transformation Uij =  (C  ® I )Yij, with

0.7071 -0.7071 0.0000

0.4082 0.4082 -0.8165

Then we have cov(Uij) =  W  (g> S .

The maximum likelihood estimates of S  and W , simultaneously solving (4.9) 

and (4.10), are given by

C =
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Table 4.3: Dental data

Subj

SOr-Me

(mm)

ANS-ME

(mm)

Pal-MP

angle

(degrees)

1 117.0 117.5 118.5 59.0 59.0 60.0 10.5 16.5 16.5

2 109.0 110.5 111.0 60.0 61.5 61.5 30.5 30.5 30.5

3 117.0 120.0 120.5 60.0 61.5 62.0 23.5 23.5 23.5

4 122.0 126.0 127.0 67.5 70.5 71.5 33.0 32.0 32.5

7i 5 116.0 118.5 119.5 61.5 62.5 63.5 24.5 24.5 24.5

6 123.0 126.0 127.0 65.5 61.5 67.5 22.0 22.0 22.0

7 130.5 132.0 134.5 68.5 69.5 71.0 33.0 32.5 32.0

8 126.5 128.5 130.5 69.0 71.0 73.0 20.0 20.0 20.0

9 113.0 116.5 118.0 58.0 59.0 60.5 25.0 25.0 24.5

1 128.0 129.0 131.5 67.0 67.5 69.0 24.0 24.0 24.0

2 116.5 120.0 121.5 63.5 65.0 66.0 28.5 29.5 29.5

3 121.5 125.5 127.0 64.5 67.5 69.0 26.5 27.0 27.0

4 109.5 112.0 114.0 54.0 55.5 57.0 18.0 18.5 19.0

5 133.0 136.0 137.5 72.0 73.5 75.7 34.5 34.5 34.5

T2 6 120.0 124.5 126.0 62.5 65.0 66.0 26.0 26.0 26.0

7 129.5 133.5 134.5 65.0 68.0 69.0 18.5 18.5 18.5

8 122.0 124.0 125.5 64.5 65.5 66.0 18.5 18.5 18.5

9 125.0 127.0 128.0 65.5 86 66.5 67.0 21.5 21.5 21.6
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and

0.3861535 0.2324518 -0.16931

0.2324518 1.0859517 -0.097388

-0.16931 -0.097388 0.4350231

W  =
1.5931756 0.5033948

0.5033948 0.5951812

Estim ate of S  under Ho using (4.11) is

£ 0 =

0.4192387 0.2425412 -0.240329

0.2425412 0.7572016 -0.145422

-0.240329 -0.145422 0.6873045

The value of the statistic given in (4.7) is A=0.0000139. Then the test statistic 

value, —2 l n \ ,  is equal to 22.37366. Comparing this with ^(O-OS) =  7.815, we 

clearly reject Ho given in (4.6). Therefore, we use multivariate Satterwaithe type 

approximation described in  sections (3.3-3.4), to find approximation to the distri

butions of the SSCP matrices. In order to  use these methods we need to estim ate 

gi and hi which in turn  requires the estim ate of V . We simultaneously solve (4.9)
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Hypothesis W ilks’ A D.O.F Approximate x 2  value p-value

Group 0.9083 3 1.4903

Time 0.0619 3.7891 61.3910

Time*Group 0.8145 3.7891 4.5279

0.6845

0.0000

0.3108

Table 4.4: Approximate MANOVA

and (4.10) to get the maximum likelihood estim ate of V  and it is found to be

V  =

2.4224556 2.2517394 2.2765762

2.2517394 2.2246306 2.2018579

2.2765762 2.2018579 2.2294622

Using this we get <7j= 0.0636441 and ^1=1.5332644.

We summarize our results in Table 4.3.

For computing the above p-values one can use any easily available softwares. For 

example, we have used PRO BF function of SAS Software. Note from Table 4.3 

th a t only the  effect of tim e factor is significant.
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Chapter 5

Analysis o f Unbalanced  

M ultivariate R epeated  

M easurem ent s

In chapter 4 we have considered a set of balanced (same num ber of measurements 

on each individual) m ultivariate repeated measurements. These data  can be rep

resented by Yijk, k  =  j  = i = 1 ,...,<7, which is a p x 1 vector

of measurements on the j th individual in the ith group a t the kth occasion. Let 

yv. =  (y/;1, Then Yij is pi x 1 random observational vector corresponding

to the j th individual in the i th group. We have assumed th a t cov(Yij) = V ® £ , where 

V  is a t x t positive definite m atrix. It was seen th a t if V  =  V(p) =  (1 — p)It +  pJt, 

then the analysis of m ultivariate repeated measurements can be carried out using
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the two-way MANOVA model. Further, it was noted th a t a characterization of the 

class of structures for V  such tha t the MANOVA remains invariant yields type H 

structure. On the other hand, if V  is completely arbitrary, we have suggested Sat- 

terthwaite type approximation to the distribution of m ultivariate quadratic forms 

of SS&CP matrices. M ultivariate tests using this approximation were developed 

for testing the usual hypothesis.

5.1 A utoregressive structure for V

We now assume autoregressive structure for V , th a t is, V  =  This structure

is neither type H, nor completely arbitrary. W ith this structure on V , we derive the 

approximate distributions of SS&CP matrices. In chapter 4, assuming no structure 

on V  we have shown the following:

Qi ~  Wp((ff- l ) , S ) ,

Qi ~  Wp( ( n - 5 ) ,S ) ,

Qz ~  yiW p(/ii,£ ) approximately,

Qi ~  9 iW p( ( g - 1 ) ^ , 1 !) approximately,

Qs ~  9 iW p((n -  g ty u 'S )  approximately,

with

tr(V - 1 ftJV)2 
91 ~ tr(V — 1/iJV)
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hi =
[£r(V -  1/£ JV )]2 
£r(V — 1/£ J V )2 '

Now, let V  =  (/»|t" ,‘l). Next we derive expressions for 51 and hi in term s of p. 

Notice th a t

£ r ( V - l / £ J V )  =  t r ( V ) - l / t t r ( J V ) ,  (5.1)

tr (V  — 1/ t J V )2 =  tr(V V ) — 2£r(V JV ) +  l /£ 2 £ r(JV JV ). (5.2)

Expressions (5.1) and (5.2) and in turn  31 and hx can be evaluated using the 

following:

£r(V)

£ r(JV )

£r(V V )

£r(V JV )

£ r(JV JV )

=  t,

£( 1 -  p2) -  2 p(l -  p*)

(1 -  P)2
1

( 1 - p 2)2 
1

[l(l -  / )  -  2 / ( 1  -  /') ]

1(1 +  p f  +  2 l / «  + 2 / ^ - 4 -  " M l  + Z 1 ^
(1 - / 2 
'£(1 - p 2) - 2 p(l -/>*)]

1 - p 2

(1 -  ?)2

5.1.1 D istr ib u tion s o f Q3 , Q4  and Q5

In order to find th e  distributions of the m atrix  quadratic forms Q 3 , Q4  and Q 5 we 

need to estim ate gi and hi. In the above discussion we have given expressions for
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<7i and h\ as functions of p. However since p is unknown, we need to estim ate the 

same. In the following we present maximum likelihood estim ate of p.

Consider a random sample Yij, j  =  1 ,..., n,-; i =  1 , <7 from a pt-variate normal 

distribution with mean pi (can be a linear function in a smaller dimension space) 

and variance covariance m atrix  V  <g) S . Here V  is an autoregressive structure 

m atrix  and S  is any positive definite m atrix. Then the log-likelihood function can 

be w ritten as,

T i

In I =  constant — —In | V  <g> E  |

4  i= 1 7 = 1

Let B  =  " ^ . ) ( ^  - n y ^ i t h  F ,  =  E F , / n ,
i= i 7 = 1  7 = 1

Then

In I =  constant — ^ I n  | V  ® E  | — ® E ~l )B
Z Z

~  ^  ~  ® S - \ Y i .  -  pi). (5.3)
z i=i

Clearly the maximum likelihood estim ate of pi =  Yi.. By plugging this value for pi 

in (5.3) we get

In I =  — ^ I n ( 2 i r )  -  £ ln  | V  ® E  | - ^ ( V 1 ® (5.4)
Z Z Z

Recall th a t |V | =  (1 — p2)t-1 and V -1 =   -----j[7  +  p2 C\ — pC2]. Differentiating

(5.4) with respect to p and equating to zero we have,

—p3 2 np(t — 1) +  p2Az +  p(2 np(t — 1) — 2Ai — 2 A 2 ) +  A 3  =  0, (5.5)
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where

i=l  j= l

^  =  E E W i - n n c . s s - ^ t ^ - F , . ) ,
t= l  j = 1

^  =  £ f : ( Y i i - Y i. n C 1 ® 'E - ') (Y i j - Y L).
t '= l 3 = 1

The cubic equation in p given by (5.5) can easily be shown to have a unique root 

in the interval (-1,1). Hence it is easy to compute the MLE p , of p. Let V  =  V(p). 

Next, to find the  maximum likelihood estimator of E , we need to maximize (5.4) 

with respect to E . In order to do that, partition the pt x 1 vector (Yij — Yi.) into t 

blocks of p x 1 vectors such th a t (Yij — Yi.) = {Yijx — T u ,  Yijt - Y i . ty. Using this 

partition of (Yij — U{.), we rewrite the likelihood (5.4) and maximize with respect 

to S . This process yields,

t  = (5.6)
UZ k=l  1=1 i=l 3=1 

where is the (kl) th element of V -1 .

A  A
By solving equations (5.5) and (5.6) iteratively we find V  and S , and then the 

estimates of gi and hi. Thus we have approximate distributions of Q3, Q 4  and Q 5 .

5.2 Unbalanced m ultivariate repeated m easures

So far, we have considered balanced case of m ultivariate repeated measures. T hat 

is, we have considered a set of t repeated measurements on p variables (or char-
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acteristics) on each of the n individuals. Thus data on each individual is a  p X t 

m atrix. However, in practice we do come across data where we may not have mea

surements on the individuals at all the t tim e points. S tated in other words, we 

have repeated measurements on p variables on the j th individual from the i th 

group. Now data on each individual is a p x Uj matrix. Let Yijk be a p x 1 vector 

of observations on the j th individual from the ith group a t the k th occasion. Let 

Y/j = ( Y / ^ , ..., Y{jt ). Then Y,j is a pUj x 1 random observational vector correspond

ing to the j th individual from the ith group. Let us assume th a t cov(Y{j) = V y <g> E, 

where V y is a tij x fy positive definite m atrix and E is a p x  p positive definite 

m atrix. It appears tha t the covariance m atrix Vy is different for every i , j .  How

ever this is not true. If V  is a positive definite m atrix of order i  x t, where t is 

the maximum of t ^ ,  then V ,j is the fy x Uj submatrix of V . In applications, we 

assume V,y for every i and j ,  to have some structure depending on the same set of 

parameters, say 6 i , . . . , 6 k. In other words, V y depends on i and j  only through its 

dimension. Analysis of this type of data is not very easy. In the following section, 

we describe a general linear model approach to analyze unbalanced data, assuming 

certain structures for V y.
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5.3 A linear m odel approach

Consider the situation where we have a set of unbalanced m ultivariate repeated 

measurements. Let Y y  be the Uj x p m atrix of observations on the j th individual 

from the i th group. Let us assume the following model for Y y  :

Y y  =  XijBi -f Eij, i =  1 j  = 1 , . (5.7)

where X{j is Uj x m  design m atrix and Bi is m x p m atrix  of unknown param eters, 

with cov(vec E-j) =  V y <g) S . Here V y is a positive definite m atrix depending on 

only a few param eters, say 0i,...,0*. If fy =  t for all i and ^ (balanced data) then 

Xij is a t x  m  m atrix, say Xi. Further if Xi an identity m atrix, then the model 

would contain a m atrix  of unstructured means, different for different groups.

In the unbalanced case, the interpretation of Y y  can be made as follows. Sup

pose Gij is a  i y  x t  m atrix of 0’s and l ’s such th a t it has 1 at the (k , lk)th position 

and 0 everywhere else, assuming tha t observations are available at the tim e points 

h , ..., ltij. Then we take X(j =  GijXi.

Let us stack all the Uj observations from the  ith group one below the other 
j
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and write

Yu Xn

Y t- = ,Xi =

Yin; x ini

and Ei =

Then we have the multivariate linear model

Y r X i 0 .

0 X2 .

0 0 . X a

Eia

Eim

B ! Ei

+

B 3 Eg.

By writing n  =  and with other obvious notations we have the following

m ultivariate regression model

Y nXp — XnXTnjBmpxp ”1” E nxpj (5.8)

with cou(uec(Y ')) =  W  =  diag(Vlu  •••, V im , •••> V sn3) ® S .

Prom the  usual multivariate regression theory it can be shown that

B =  ( X 'W ^ X ^ X 'W ^ Y

=  £  x W ' Y i j ]
i=l j= l 1=1 3=1

and £  =  (Y — X B ) 'W -1(Y — X B ) /(n  — m).
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Using this B  (say 8 i , . . , , 6 -k are known) any one of the MANOVA tests, for 

example W ilks’ A for testing Ho : L B M  =  0 can be used. But V y and in turn  W  

is usually unknown. Using some consistent estimators of 0 i , ...,&k, Vy is estim ated 

and the estim ate W  is used in place of W  in the formula for B . The same MAN OVA 

tests can be used, even in this case for testing Ho : L B M  =  0. In the following 

sections we assume equicorrelation and autoregressive structures for Vy and discuss 

estimation of parameters of vaxiance covariance m atrix. These two structures are 

commonly used in practice. Note tha t in both of these cases, V y is a function of 

only one unknown param eter p. We derive the maximun likelihood estimate of this 

unknown param eter and utilize it to perform the MANOVA.

5.3.1 Equicorrelation structure for

Suppose we have an initial estim ate of B . For example, an initial estimate of B  may 

be obtained by performing regression under p =  0. Then let EtJ =  Yy — XijBi .  We 

can assume th a t • =  vec{E[j), i =  1 ,..., g] j  =  1 ,..., rz;, form a random sample 

from pty-variate normal distribution with zero mean vector and covariance m atrix 

V y ® S . Then the log-likelihood function can be w ritten as

2 3 ni
In I =  constant — — ^  I V y ® E  |

2 »=i j =i

-  (“ ) 
L  t= 1 j = l
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Next, partition the pUj x 1 vector Uj into Uj blocks of p x 1 vectors such tha t 

Uj =  (eiji, • Using this partition rewrite the likelihood (5.9) as

In I = constant — ^  ty ln |S |
1  t = i  j = i  1  i = i  1 = 1

I g rij t j j  t jj

-  (5-10)
z i=i j=i fc=i ;=i

Differentiating (5.10) with respect to £  and equating to zero we get

E E E E  v t ^ i U j i y
t  =  • (5-11)

E  E  Uj
i=i y=i

Recall tha t |Vy | =  (1 -  p ) ^ (  1 +  (Uj -  l)p) and v*kk =

and vt, =  7----- 7-------—r—rr-------r . Now using this we can rewrite (5.10) as
^  [l +  ( t y - l ) p ] ( l - / 9 )

In I = constant — j- E E f c ;  -  - p) ~  ?  E E  M i  +  (.Uj -  i )p]
1 t = i  j = i  z  t = i  j - 1

I f r ' ,  > itii 1 y-^ 1 ~h (fij ~  2)p . y r i - i /«  \
2§S ' ' 1 2S|?S[l + (iv-lV](l-rt("‘) {vk)

-  5 g § l | - iT T ( i r w ^ ^ 1(!w) (5-12)
Differentiating (5.12) with respect to p and equating to zero yields,

-EE2 ^ 1fr'1 (̂  +  ( U j - l ) p } ( l - p )
t i i  ti

+  (5-i3)
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Solving (5.11) and (5.13) simultaneously, we get the  estimates of S  and p. Now, 

with this new estimate of p find a revised estim ate of B . This two-stage estim ation 

procedure of finding p and B , is continued until the  estimates are stabilized.

5.3.2 A utoregressive structure for

In this case, unlike in the equicorrelation case, the basic structure of is distorted 

in the  presence of missing observations. We may now consider two types of missing 

data. If the missing observations are only at the end (monotone data) then the  basic 

form of Y i j  remains the same. That is Vij =  ( ^ ,-J'0 where i , j  =  1, However

in the other forms of missing values, where the observations may be missing for any 

occassion the autoregressive structure leads to w hat is called a  Markov structure. 

In the  following we describe the method of estim ating p in both situations. 

M o n o to n e  d a ta : As noted before, monotone da ta  refers to the unbalanced case 

where the d a ta  are missing from the last few occassions. As before, let us suppose 

tha t an initial estimate of B is available. Then the  form of the MLE of S  is same 

as th a t in (5.11). But now, is the (kl) th element of V - 1 given by

v ii‘ =  ^  ~

where Cuj and Cnj are iy  x tij matrices w ith sim ilar structures as described in 

the Appendix of Chapter 2. Next, using, |V -̂1 =  (1 — p2 ) t i ’ ~ 1 and V"-1 rewrite the
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log-likelihood function given by (5.10) as

=  constant — ^  t i j l n m
L i=l j=1 z  t= l  j=1

-  s r r^ T  [(!'.,■ ® S_1 + f C u j  ® S - 1 -  p c 2ii 8 s -%  (5.14)
P ) i=i j= 1

Differentiating (5.14) with respect to p and equating to zero we get,

- 2 p3pn +  p2 A 3  +  2p(pn -  A\ -  A 2) +  A3 =  0, (5.15)

where

9  n ;

n = E E f e - 1)
i=i j = 1

t=i j'=i 

t= i  i = i  

t= i  i = i

The cubic equation (5.15) is similar to the one studied by Prabhala (1995) in the 

context of growth curve models. It has been proved th a t the equation has a unique 

root in the interval (-1,1). Solving (5.15) and (5.11) with appropriate v simluta- 

neously we get the estimates of p and S .

General unbalanced data: We now consider a model th a t can be used for ana

lyzing data th a t are missing from any of the interm ediate occassions as well. Let 

Y{j be the tij x p m atrix  of observations on the  j th individual from the i th group
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such tha t = Gy Y y . Here Y y is a t x  p m atrix of measurements, t — max{tij)  

and Gij is a m atrix of order t tJ x i as defined in the beginning of section 5.3.

Let us assume the following model for Y y

Y ij — -VyBi -F Eij , i — 1,...,<7, j  1,..., rii, (5 .16 )

where Xij  is iy  x m  design m atrix and B t is m  x  p  m atrix of unknown param eters. 

Then cov(vec(E-j)) =  Gy V G y ® S , where V  is a t x t  matrix having an autoregres

sive structure. Then we can verify tha t GyVGL has a Markov structure, th a t is 

GijVG'ij — V ij — k, k' =  1,..., Uj, where UjkS are the consecutive tim e

points where the observations are made on the j th individual from the ith group.

Then V y is of the form 

/

p t i j 2 - t i j l  p U j 3 ~ t i j 2  _ _ p t i } t {j - U j 2

Vi(p) =

. . 1

T he determ inant and the  inverse of this m atrix  are given below. Let dijk 

tij(k+i) and fijk = ^ _ 2d.ijk i k =  1, ...,ty  1- Then

lV b'l =
- l

and V y 1 =
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/  f i j i  0

— f i j l P d':1 f i j l  +  f i j i  — 1 - f i j 2 P d':2

0 — f i j 2 P d'j2 f i j 2  +  f i j 3  ~  1 •

0  ■ • f i j t i j - 2  +  f i j t i j - 1  — 1 — f i j t i j - l P

o • o - f i j U i - i P * * - 1 f i j U i - 1

Let Eij =  — XijBi.  The log-likelihood function of =  uec((i?y), i =

1 , - , 5 ,  j  = 1 ,-■-»«<» is

j  j

In I — constant — -  ^  ^  In | Vy- (8) £  |
^ t=i j=i

-  ; E K i v i ® S ' ‘s i '  <5-17)
z  t = l j = l

Following steps similar to what we did in the previous scetion, it is easy to see that
g  n» Uj  Uj

E  E  E  E w 2 ,fo * )(W  
S  =   . (5.18)

E  E  Uj
i=ij=i

Next, differentiating In I with respect to p and equating to zero, we get

9 Tii t ;> - l  „  , 2dijk-l  1 9 ni

th a t is,

g  n i  i i j - 1 9  J . 1 1 ff

2 u h h  i - p 2di>k z k U  °p
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i.e .,

g  n ; t i j - 1  n )  2 d i j k - \  i  3  n< Uj

- I E E E  i W  - \ E E E -aMs-'W,*)
2  i= l  j= l  fc=l L -  P 3K z ,= i  j = l  A=i

t»v—1
+  i c  u« + ii r (s  i£tjfceu + i )  (5-19)

1 t=i j=i fc=i

where u** is the kth diagonal element of — V ”-1 and Vfcjt+i is the (k, k  +  l ) st off 

diagonal element of — V ”-1. These elements are calculated below.

d V f 1
To evaluate , consider

dp

df i jk  _ d  r  ̂ N ZdjjkP ljfe _  r2 2d -i'0ldiik~l
d P ~ d p [ i - P2d̂ ) { \ - p 2d̂ y  Jijk tJkP

Thus the diagonal elements of §^VtJ l are:

U h 2di^P2iiil~ \  f i i J d i n p K f i - 1 +  f?j22dij2p2di» - \  . ..,

- 2 p2 diit'i"2_1 +

Also,

fakdnkP^ - 1 + P didkf?j k2dijkp2di’k 1

P
1 4 - 0 2<d'dk 

= dijkpd'3k _  ^ 2  dyfc]

Therefore, the  off-diagonal elements of are:
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fU l + • • • ■  * ) < » > - ' ' / ^ . . ( i  +

p2 di:tij-i )).

Plugging these values in (5.19) we can solve for p. As before an iterative scheme 

can be developed to find the ML estimates of B , p and E .
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